xref: /openbmc/linux/net/core/dev.c (revision 9adc8050)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/string.h>
83 #include <linux/mm.h>
84 #include <linux/socket.h>
85 #include <linux/sockios.h>
86 #include <linux/errno.h>
87 #include <linux/interrupt.h>
88 #include <linux/if_ether.h>
89 #include <linux/netdevice.h>
90 #include <linux/etherdevice.h>
91 #include <linux/ethtool.h>
92 #include <linux/skbuff.h>
93 #include <linux/bpf.h>
94 #include <linux/bpf_trace.h>
95 #include <net/net_namespace.h>
96 #include <net/sock.h>
97 #include <net/busy_poll.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/stat.h>
100 #include <net/dst.h>
101 #include <net/dst_metadata.h>
102 #include <net/pkt_sched.h>
103 #include <net/pkt_cls.h>
104 #include <net/checksum.h>
105 #include <net/xfrm.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/module.h>
109 #include <linux/netpoll.h>
110 #include <linux/rcupdate.h>
111 #include <linux/delay.h>
112 #include <net/iw_handler.h>
113 #include <asm/current.h>
114 #include <linux/audit.h>
115 #include <linux/dmaengine.h>
116 #include <linux/err.h>
117 #include <linux/ctype.h>
118 #include <linux/if_arp.h>
119 #include <linux/if_vlan.h>
120 #include <linux/ip.h>
121 #include <net/ip.h>
122 #include <net/mpls.h>
123 #include <linux/ipv6.h>
124 #include <linux/in.h>
125 #include <linux/jhash.h>
126 #include <linux/random.h>
127 #include <trace/events/napi.h>
128 #include <trace/events/net.h>
129 #include <trace/events/skb.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138 #include <linux/netfilter_ingress.h>
139 #include <linux/crash_dump.h>
140 #include <linux/sctp.h>
141 #include <net/udp_tunnel.h>
142 #include <linux/net_namespace.h>
143 #include <linux/indirect_call_wrapper.h>
144 #include <net/devlink.h>
145 
146 #include "net-sysfs.h"
147 
148 #define MAX_GRO_SKBS 8
149 
150 /* This should be increased if a protocol with a bigger head is added. */
151 #define GRO_MAX_HEAD (MAX_HEADER + 128)
152 
153 static DEFINE_SPINLOCK(ptype_lock);
154 static DEFINE_SPINLOCK(offload_lock);
155 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
156 struct list_head ptype_all __read_mostly;	/* Taps */
157 static struct list_head offload_base __read_mostly;
158 
159 static int netif_rx_internal(struct sk_buff *skb);
160 static int call_netdevice_notifiers_info(unsigned long val,
161 					 struct netdev_notifier_info *info);
162 static int call_netdevice_notifiers_extack(unsigned long val,
163 					   struct net_device *dev,
164 					   struct netlink_ext_ack *extack);
165 static struct napi_struct *napi_by_id(unsigned int napi_id);
166 
167 /*
168  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
169  * semaphore.
170  *
171  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
172  *
173  * Writers must hold the rtnl semaphore while they loop through the
174  * dev_base_head list, and hold dev_base_lock for writing when they do the
175  * actual updates.  This allows pure readers to access the list even
176  * while a writer is preparing to update it.
177  *
178  * To put it another way, dev_base_lock is held for writing only to
179  * protect against pure readers; the rtnl semaphore provides the
180  * protection against other writers.
181  *
182  * See, for example usages, register_netdevice() and
183  * unregister_netdevice(), which must be called with the rtnl
184  * semaphore held.
185  */
186 DEFINE_RWLOCK(dev_base_lock);
187 EXPORT_SYMBOL(dev_base_lock);
188 
189 static DEFINE_MUTEX(ifalias_mutex);
190 
191 /* protects napi_hash addition/deletion and napi_gen_id */
192 static DEFINE_SPINLOCK(napi_hash_lock);
193 
194 static unsigned int napi_gen_id = NR_CPUS;
195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
196 
197 static seqcount_t devnet_rename_seq;
198 
199 static inline void dev_base_seq_inc(struct net *net)
200 {
201 	while (++net->dev_base_seq == 0)
202 		;
203 }
204 
205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
206 {
207 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
208 
209 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
210 }
211 
212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
213 {
214 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
215 }
216 
217 static inline void rps_lock(struct softnet_data *sd)
218 {
219 #ifdef CONFIG_RPS
220 	spin_lock(&sd->input_pkt_queue.lock);
221 #endif
222 }
223 
224 static inline void rps_unlock(struct softnet_data *sd)
225 {
226 #ifdef CONFIG_RPS
227 	spin_unlock(&sd->input_pkt_queue.lock);
228 #endif
229 }
230 
231 /* Device list insertion */
232 static void list_netdevice(struct net_device *dev)
233 {
234 	struct net *net = dev_net(dev);
235 
236 	ASSERT_RTNL();
237 
238 	write_lock_bh(&dev_base_lock);
239 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
240 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
241 	hlist_add_head_rcu(&dev->index_hlist,
242 			   dev_index_hash(net, dev->ifindex));
243 	write_unlock_bh(&dev_base_lock);
244 
245 	dev_base_seq_inc(net);
246 }
247 
248 /* Device list removal
249  * caller must respect a RCU grace period before freeing/reusing dev
250  */
251 static void unlist_netdevice(struct net_device *dev)
252 {
253 	ASSERT_RTNL();
254 
255 	/* Unlink dev from the device chain */
256 	write_lock_bh(&dev_base_lock);
257 	list_del_rcu(&dev->dev_list);
258 	hlist_del_rcu(&dev->name_hlist);
259 	hlist_del_rcu(&dev->index_hlist);
260 	write_unlock_bh(&dev_base_lock);
261 
262 	dev_base_seq_inc(dev_net(dev));
263 }
264 
265 /*
266  *	Our notifier list
267  */
268 
269 static RAW_NOTIFIER_HEAD(netdev_chain);
270 
271 /*
272  *	Device drivers call our routines to queue packets here. We empty the
273  *	queue in the local softnet handler.
274  */
275 
276 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
277 EXPORT_PER_CPU_SYMBOL(softnet_data);
278 
279 #ifdef CONFIG_LOCKDEP
280 /*
281  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
282  * according to dev->type
283  */
284 static const unsigned short netdev_lock_type[] = {
285 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
286 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
287 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
288 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
289 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
290 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
291 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
292 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
293 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
294 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
295 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
296 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
297 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
298 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
299 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
300 
301 static const char *const netdev_lock_name[] = {
302 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
303 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
304 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
305 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
306 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
307 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
308 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
309 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
310 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
311 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
312 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
313 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
314 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
315 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
316 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
317 
318 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
319 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
320 
321 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
322 {
323 	int i;
324 
325 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
326 		if (netdev_lock_type[i] == dev_type)
327 			return i;
328 	/* the last key is used by default */
329 	return ARRAY_SIZE(netdev_lock_type) - 1;
330 }
331 
332 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
333 						 unsigned short dev_type)
334 {
335 	int i;
336 
337 	i = netdev_lock_pos(dev_type);
338 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
339 				   netdev_lock_name[i]);
340 }
341 
342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
343 {
344 	int i;
345 
346 	i = netdev_lock_pos(dev->type);
347 	lockdep_set_class_and_name(&dev->addr_list_lock,
348 				   &netdev_addr_lock_key[i],
349 				   netdev_lock_name[i]);
350 }
351 #else
352 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
353 						 unsigned short dev_type)
354 {
355 }
356 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
357 {
358 }
359 #endif
360 
361 /*******************************************************************************
362  *
363  *		Protocol management and registration routines
364  *
365  *******************************************************************************/
366 
367 
368 /*
369  *	Add a protocol ID to the list. Now that the input handler is
370  *	smarter we can dispense with all the messy stuff that used to be
371  *	here.
372  *
373  *	BEWARE!!! Protocol handlers, mangling input packets,
374  *	MUST BE last in hash buckets and checking protocol handlers
375  *	MUST start from promiscuous ptype_all chain in net_bh.
376  *	It is true now, do not change it.
377  *	Explanation follows: if protocol handler, mangling packet, will
378  *	be the first on list, it is not able to sense, that packet
379  *	is cloned and should be copied-on-write, so that it will
380  *	change it and subsequent readers will get broken packet.
381  *							--ANK (980803)
382  */
383 
384 static inline struct list_head *ptype_head(const struct packet_type *pt)
385 {
386 	if (pt->type == htons(ETH_P_ALL))
387 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
388 	else
389 		return pt->dev ? &pt->dev->ptype_specific :
390 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
391 }
392 
393 /**
394  *	dev_add_pack - add packet handler
395  *	@pt: packet type declaration
396  *
397  *	Add a protocol handler to the networking stack. The passed &packet_type
398  *	is linked into kernel lists and may not be freed until it has been
399  *	removed from the kernel lists.
400  *
401  *	This call does not sleep therefore it can not
402  *	guarantee all CPU's that are in middle of receiving packets
403  *	will see the new packet type (until the next received packet).
404  */
405 
406 void dev_add_pack(struct packet_type *pt)
407 {
408 	struct list_head *head = ptype_head(pt);
409 
410 	spin_lock(&ptype_lock);
411 	list_add_rcu(&pt->list, head);
412 	spin_unlock(&ptype_lock);
413 }
414 EXPORT_SYMBOL(dev_add_pack);
415 
416 /**
417  *	__dev_remove_pack	 - remove packet handler
418  *	@pt: packet type declaration
419  *
420  *	Remove a protocol handler that was previously added to the kernel
421  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
422  *	from the kernel lists and can be freed or reused once this function
423  *	returns.
424  *
425  *      The packet type might still be in use by receivers
426  *	and must not be freed until after all the CPU's have gone
427  *	through a quiescent state.
428  */
429 void __dev_remove_pack(struct packet_type *pt)
430 {
431 	struct list_head *head = ptype_head(pt);
432 	struct packet_type *pt1;
433 
434 	spin_lock(&ptype_lock);
435 
436 	list_for_each_entry(pt1, head, list) {
437 		if (pt == pt1) {
438 			list_del_rcu(&pt->list);
439 			goto out;
440 		}
441 	}
442 
443 	pr_warn("dev_remove_pack: %p not found\n", pt);
444 out:
445 	spin_unlock(&ptype_lock);
446 }
447 EXPORT_SYMBOL(__dev_remove_pack);
448 
449 /**
450  *	dev_remove_pack	 - remove packet handler
451  *	@pt: packet type declaration
452  *
453  *	Remove a protocol handler that was previously added to the kernel
454  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
455  *	from the kernel lists and can be freed or reused once this function
456  *	returns.
457  *
458  *	This call sleeps to guarantee that no CPU is looking at the packet
459  *	type after return.
460  */
461 void dev_remove_pack(struct packet_type *pt)
462 {
463 	__dev_remove_pack(pt);
464 
465 	synchronize_net();
466 }
467 EXPORT_SYMBOL(dev_remove_pack);
468 
469 
470 /**
471  *	dev_add_offload - register offload handlers
472  *	@po: protocol offload declaration
473  *
474  *	Add protocol offload handlers to the networking stack. The passed
475  *	&proto_offload is linked into kernel lists and may not be freed until
476  *	it has been removed from the kernel lists.
477  *
478  *	This call does not sleep therefore it can not
479  *	guarantee all CPU's that are in middle of receiving packets
480  *	will see the new offload handlers (until the next received packet).
481  */
482 void dev_add_offload(struct packet_offload *po)
483 {
484 	struct packet_offload *elem;
485 
486 	spin_lock(&offload_lock);
487 	list_for_each_entry(elem, &offload_base, list) {
488 		if (po->priority < elem->priority)
489 			break;
490 	}
491 	list_add_rcu(&po->list, elem->list.prev);
492 	spin_unlock(&offload_lock);
493 }
494 EXPORT_SYMBOL(dev_add_offload);
495 
496 /**
497  *	__dev_remove_offload	 - remove offload handler
498  *	@po: packet offload declaration
499  *
500  *	Remove a protocol offload handler that was previously added to the
501  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
502  *	is removed from the kernel lists and can be freed or reused once this
503  *	function returns.
504  *
505  *      The packet type might still be in use by receivers
506  *	and must not be freed until after all the CPU's have gone
507  *	through a quiescent state.
508  */
509 static void __dev_remove_offload(struct packet_offload *po)
510 {
511 	struct list_head *head = &offload_base;
512 	struct packet_offload *po1;
513 
514 	spin_lock(&offload_lock);
515 
516 	list_for_each_entry(po1, head, list) {
517 		if (po == po1) {
518 			list_del_rcu(&po->list);
519 			goto out;
520 		}
521 	}
522 
523 	pr_warn("dev_remove_offload: %p not found\n", po);
524 out:
525 	spin_unlock(&offload_lock);
526 }
527 
528 /**
529  *	dev_remove_offload	 - remove packet offload handler
530  *	@po: packet offload declaration
531  *
532  *	Remove a packet offload handler that was previously added to the kernel
533  *	offload handlers by dev_add_offload(). The passed &offload_type is
534  *	removed from the kernel lists and can be freed or reused once this
535  *	function returns.
536  *
537  *	This call sleeps to guarantee that no CPU is looking at the packet
538  *	type after return.
539  */
540 void dev_remove_offload(struct packet_offload *po)
541 {
542 	__dev_remove_offload(po);
543 
544 	synchronize_net();
545 }
546 EXPORT_SYMBOL(dev_remove_offload);
547 
548 /******************************************************************************
549  *
550  *		      Device Boot-time Settings Routines
551  *
552  ******************************************************************************/
553 
554 /* Boot time configuration table */
555 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
556 
557 /**
558  *	netdev_boot_setup_add	- add new setup entry
559  *	@name: name of the device
560  *	@map: configured settings for the device
561  *
562  *	Adds new setup entry to the dev_boot_setup list.  The function
563  *	returns 0 on error and 1 on success.  This is a generic routine to
564  *	all netdevices.
565  */
566 static int netdev_boot_setup_add(char *name, struct ifmap *map)
567 {
568 	struct netdev_boot_setup *s;
569 	int i;
570 
571 	s = dev_boot_setup;
572 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
573 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
574 			memset(s[i].name, 0, sizeof(s[i].name));
575 			strlcpy(s[i].name, name, IFNAMSIZ);
576 			memcpy(&s[i].map, map, sizeof(s[i].map));
577 			break;
578 		}
579 	}
580 
581 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
582 }
583 
584 /**
585  * netdev_boot_setup_check	- check boot time settings
586  * @dev: the netdevice
587  *
588  * Check boot time settings for the device.
589  * The found settings are set for the device to be used
590  * later in the device probing.
591  * Returns 0 if no settings found, 1 if they are.
592  */
593 int netdev_boot_setup_check(struct net_device *dev)
594 {
595 	struct netdev_boot_setup *s = dev_boot_setup;
596 	int i;
597 
598 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
599 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
600 		    !strcmp(dev->name, s[i].name)) {
601 			dev->irq = s[i].map.irq;
602 			dev->base_addr = s[i].map.base_addr;
603 			dev->mem_start = s[i].map.mem_start;
604 			dev->mem_end = s[i].map.mem_end;
605 			return 1;
606 		}
607 	}
608 	return 0;
609 }
610 EXPORT_SYMBOL(netdev_boot_setup_check);
611 
612 
613 /**
614  * netdev_boot_base	- get address from boot time settings
615  * @prefix: prefix for network device
616  * @unit: id for network device
617  *
618  * Check boot time settings for the base address of device.
619  * The found settings are set for the device to be used
620  * later in the device probing.
621  * Returns 0 if no settings found.
622  */
623 unsigned long netdev_boot_base(const char *prefix, int unit)
624 {
625 	const struct netdev_boot_setup *s = dev_boot_setup;
626 	char name[IFNAMSIZ];
627 	int i;
628 
629 	sprintf(name, "%s%d", prefix, unit);
630 
631 	/*
632 	 * If device already registered then return base of 1
633 	 * to indicate not to probe for this interface
634 	 */
635 	if (__dev_get_by_name(&init_net, name))
636 		return 1;
637 
638 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
639 		if (!strcmp(name, s[i].name))
640 			return s[i].map.base_addr;
641 	return 0;
642 }
643 
644 /*
645  * Saves at boot time configured settings for any netdevice.
646  */
647 int __init netdev_boot_setup(char *str)
648 {
649 	int ints[5];
650 	struct ifmap map;
651 
652 	str = get_options(str, ARRAY_SIZE(ints), ints);
653 	if (!str || !*str)
654 		return 0;
655 
656 	/* Save settings */
657 	memset(&map, 0, sizeof(map));
658 	if (ints[0] > 0)
659 		map.irq = ints[1];
660 	if (ints[0] > 1)
661 		map.base_addr = ints[2];
662 	if (ints[0] > 2)
663 		map.mem_start = ints[3];
664 	if (ints[0] > 3)
665 		map.mem_end = ints[4];
666 
667 	/* Add new entry to the list */
668 	return netdev_boot_setup_add(str, &map);
669 }
670 
671 __setup("netdev=", netdev_boot_setup);
672 
673 /*******************************************************************************
674  *
675  *			    Device Interface Subroutines
676  *
677  *******************************************************************************/
678 
679 /**
680  *	dev_get_iflink	- get 'iflink' value of a interface
681  *	@dev: targeted interface
682  *
683  *	Indicates the ifindex the interface is linked to.
684  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
685  */
686 
687 int dev_get_iflink(const struct net_device *dev)
688 {
689 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
690 		return dev->netdev_ops->ndo_get_iflink(dev);
691 
692 	return dev->ifindex;
693 }
694 EXPORT_SYMBOL(dev_get_iflink);
695 
696 /**
697  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
698  *	@dev: targeted interface
699  *	@skb: The packet.
700  *
701  *	For better visibility of tunnel traffic OVS needs to retrieve
702  *	egress tunnel information for a packet. Following API allows
703  *	user to get this info.
704  */
705 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
706 {
707 	struct ip_tunnel_info *info;
708 
709 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
710 		return -EINVAL;
711 
712 	info = skb_tunnel_info_unclone(skb);
713 	if (!info)
714 		return -ENOMEM;
715 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
716 		return -EINVAL;
717 
718 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
719 }
720 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
721 
722 /**
723  *	__dev_get_by_name	- find a device by its name
724  *	@net: the applicable net namespace
725  *	@name: name to find
726  *
727  *	Find an interface by name. Must be called under RTNL semaphore
728  *	or @dev_base_lock. If the name is found a pointer to the device
729  *	is returned. If the name is not found then %NULL is returned. The
730  *	reference counters are not incremented so the caller must be
731  *	careful with locks.
732  */
733 
734 struct net_device *__dev_get_by_name(struct net *net, const char *name)
735 {
736 	struct net_device *dev;
737 	struct hlist_head *head = dev_name_hash(net, name);
738 
739 	hlist_for_each_entry(dev, head, name_hlist)
740 		if (!strncmp(dev->name, name, IFNAMSIZ))
741 			return dev;
742 
743 	return NULL;
744 }
745 EXPORT_SYMBOL(__dev_get_by_name);
746 
747 /**
748  * dev_get_by_name_rcu	- find a device by its name
749  * @net: the applicable net namespace
750  * @name: name to find
751  *
752  * Find an interface by name.
753  * If the name is found a pointer to the device is returned.
754  * If the name is not found then %NULL is returned.
755  * The reference counters are not incremented so the caller must be
756  * careful with locks. The caller must hold RCU lock.
757  */
758 
759 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
760 {
761 	struct net_device *dev;
762 	struct hlist_head *head = dev_name_hash(net, name);
763 
764 	hlist_for_each_entry_rcu(dev, head, name_hlist)
765 		if (!strncmp(dev->name, name, IFNAMSIZ))
766 			return dev;
767 
768 	return NULL;
769 }
770 EXPORT_SYMBOL(dev_get_by_name_rcu);
771 
772 /**
773  *	dev_get_by_name		- find a device by its name
774  *	@net: the applicable net namespace
775  *	@name: name to find
776  *
777  *	Find an interface by name. This can be called from any
778  *	context and does its own locking. The returned handle has
779  *	the usage count incremented and the caller must use dev_put() to
780  *	release it when it is no longer needed. %NULL is returned if no
781  *	matching device is found.
782  */
783 
784 struct net_device *dev_get_by_name(struct net *net, const char *name)
785 {
786 	struct net_device *dev;
787 
788 	rcu_read_lock();
789 	dev = dev_get_by_name_rcu(net, name);
790 	if (dev)
791 		dev_hold(dev);
792 	rcu_read_unlock();
793 	return dev;
794 }
795 EXPORT_SYMBOL(dev_get_by_name);
796 
797 /**
798  *	__dev_get_by_index - find a device by its ifindex
799  *	@net: the applicable net namespace
800  *	@ifindex: index of device
801  *
802  *	Search for an interface by index. Returns %NULL if the device
803  *	is not found or a pointer to the device. The device has not
804  *	had its reference counter increased so the caller must be careful
805  *	about locking. The caller must hold either the RTNL semaphore
806  *	or @dev_base_lock.
807  */
808 
809 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
810 {
811 	struct net_device *dev;
812 	struct hlist_head *head = dev_index_hash(net, ifindex);
813 
814 	hlist_for_each_entry(dev, head, index_hlist)
815 		if (dev->ifindex == ifindex)
816 			return dev;
817 
818 	return NULL;
819 }
820 EXPORT_SYMBOL(__dev_get_by_index);
821 
822 /**
823  *	dev_get_by_index_rcu - find a device by its ifindex
824  *	@net: the applicable net namespace
825  *	@ifindex: index of device
826  *
827  *	Search for an interface by index. Returns %NULL if the device
828  *	is not found or a pointer to the device. The device has not
829  *	had its reference counter increased so the caller must be careful
830  *	about locking. The caller must hold RCU lock.
831  */
832 
833 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
834 {
835 	struct net_device *dev;
836 	struct hlist_head *head = dev_index_hash(net, ifindex);
837 
838 	hlist_for_each_entry_rcu(dev, head, index_hlist)
839 		if (dev->ifindex == ifindex)
840 			return dev;
841 
842 	return NULL;
843 }
844 EXPORT_SYMBOL(dev_get_by_index_rcu);
845 
846 
847 /**
848  *	dev_get_by_index - find a device by its ifindex
849  *	@net: the applicable net namespace
850  *	@ifindex: index of device
851  *
852  *	Search for an interface by index. Returns NULL if the device
853  *	is not found or a pointer to the device. The device returned has
854  *	had a reference added and the pointer is safe until the user calls
855  *	dev_put to indicate they have finished with it.
856  */
857 
858 struct net_device *dev_get_by_index(struct net *net, int ifindex)
859 {
860 	struct net_device *dev;
861 
862 	rcu_read_lock();
863 	dev = dev_get_by_index_rcu(net, ifindex);
864 	if (dev)
865 		dev_hold(dev);
866 	rcu_read_unlock();
867 	return dev;
868 }
869 EXPORT_SYMBOL(dev_get_by_index);
870 
871 /**
872  *	dev_get_by_napi_id - find a device by napi_id
873  *	@napi_id: ID of the NAPI struct
874  *
875  *	Search for an interface by NAPI ID. Returns %NULL if the device
876  *	is not found or a pointer to the device. The device has not had
877  *	its reference counter increased so the caller must be careful
878  *	about locking. The caller must hold RCU lock.
879  */
880 
881 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
882 {
883 	struct napi_struct *napi;
884 
885 	WARN_ON_ONCE(!rcu_read_lock_held());
886 
887 	if (napi_id < MIN_NAPI_ID)
888 		return NULL;
889 
890 	napi = napi_by_id(napi_id);
891 
892 	return napi ? napi->dev : NULL;
893 }
894 EXPORT_SYMBOL(dev_get_by_napi_id);
895 
896 /**
897  *	netdev_get_name - get a netdevice name, knowing its ifindex.
898  *	@net: network namespace
899  *	@name: a pointer to the buffer where the name will be stored.
900  *	@ifindex: the ifindex of the interface to get the name from.
901  *
902  *	The use of raw_seqcount_begin() and cond_resched() before
903  *	retrying is required as we want to give the writers a chance
904  *	to complete when CONFIG_PREEMPT is not set.
905  */
906 int netdev_get_name(struct net *net, char *name, int ifindex)
907 {
908 	struct net_device *dev;
909 	unsigned int seq;
910 
911 retry:
912 	seq = raw_seqcount_begin(&devnet_rename_seq);
913 	rcu_read_lock();
914 	dev = dev_get_by_index_rcu(net, ifindex);
915 	if (!dev) {
916 		rcu_read_unlock();
917 		return -ENODEV;
918 	}
919 
920 	strcpy(name, dev->name);
921 	rcu_read_unlock();
922 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
923 		cond_resched();
924 		goto retry;
925 	}
926 
927 	return 0;
928 }
929 
930 /**
931  *	dev_getbyhwaddr_rcu - find a device by its hardware address
932  *	@net: the applicable net namespace
933  *	@type: media type of device
934  *	@ha: hardware address
935  *
936  *	Search for an interface by MAC address. Returns NULL if the device
937  *	is not found or a pointer to the device.
938  *	The caller must hold RCU or RTNL.
939  *	The returned device has not had its ref count increased
940  *	and the caller must therefore be careful about locking
941  *
942  */
943 
944 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
945 				       const char *ha)
946 {
947 	struct net_device *dev;
948 
949 	for_each_netdev_rcu(net, dev)
950 		if (dev->type == type &&
951 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
952 			return dev;
953 
954 	return NULL;
955 }
956 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
957 
958 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
959 {
960 	struct net_device *dev;
961 
962 	ASSERT_RTNL();
963 	for_each_netdev(net, dev)
964 		if (dev->type == type)
965 			return dev;
966 
967 	return NULL;
968 }
969 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
970 
971 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
972 {
973 	struct net_device *dev, *ret = NULL;
974 
975 	rcu_read_lock();
976 	for_each_netdev_rcu(net, dev)
977 		if (dev->type == type) {
978 			dev_hold(dev);
979 			ret = dev;
980 			break;
981 		}
982 	rcu_read_unlock();
983 	return ret;
984 }
985 EXPORT_SYMBOL(dev_getfirstbyhwtype);
986 
987 /**
988  *	__dev_get_by_flags - find any device with given flags
989  *	@net: the applicable net namespace
990  *	@if_flags: IFF_* values
991  *	@mask: bitmask of bits in if_flags to check
992  *
993  *	Search for any interface with the given flags. Returns NULL if a device
994  *	is not found or a pointer to the device. Must be called inside
995  *	rtnl_lock(), and result refcount is unchanged.
996  */
997 
998 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
999 				      unsigned short mask)
1000 {
1001 	struct net_device *dev, *ret;
1002 
1003 	ASSERT_RTNL();
1004 
1005 	ret = NULL;
1006 	for_each_netdev(net, dev) {
1007 		if (((dev->flags ^ if_flags) & mask) == 0) {
1008 			ret = dev;
1009 			break;
1010 		}
1011 	}
1012 	return ret;
1013 }
1014 EXPORT_SYMBOL(__dev_get_by_flags);
1015 
1016 /**
1017  *	dev_valid_name - check if name is okay for network device
1018  *	@name: name string
1019  *
1020  *	Network device names need to be valid file names to
1021  *	to allow sysfs to work.  We also disallow any kind of
1022  *	whitespace.
1023  */
1024 bool dev_valid_name(const char *name)
1025 {
1026 	if (*name == '\0')
1027 		return false;
1028 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1029 		return false;
1030 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1031 		return false;
1032 
1033 	while (*name) {
1034 		if (*name == '/' || *name == ':' || isspace(*name))
1035 			return false;
1036 		name++;
1037 	}
1038 	return true;
1039 }
1040 EXPORT_SYMBOL(dev_valid_name);
1041 
1042 /**
1043  *	__dev_alloc_name - allocate a name for a device
1044  *	@net: network namespace to allocate the device name in
1045  *	@name: name format string
1046  *	@buf:  scratch buffer and result name string
1047  *
1048  *	Passed a format string - eg "lt%d" it will try and find a suitable
1049  *	id. It scans list of devices to build up a free map, then chooses
1050  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1051  *	while allocating the name and adding the device in order to avoid
1052  *	duplicates.
1053  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1054  *	Returns the number of the unit assigned or a negative errno code.
1055  */
1056 
1057 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1058 {
1059 	int i = 0;
1060 	const char *p;
1061 	const int max_netdevices = 8*PAGE_SIZE;
1062 	unsigned long *inuse;
1063 	struct net_device *d;
1064 
1065 	if (!dev_valid_name(name))
1066 		return -EINVAL;
1067 
1068 	p = strchr(name, '%');
1069 	if (p) {
1070 		/*
1071 		 * Verify the string as this thing may have come from
1072 		 * the user.  There must be either one "%d" and no other "%"
1073 		 * characters.
1074 		 */
1075 		if (p[1] != 'd' || strchr(p + 2, '%'))
1076 			return -EINVAL;
1077 
1078 		/* Use one page as a bit array of possible slots */
1079 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1080 		if (!inuse)
1081 			return -ENOMEM;
1082 
1083 		for_each_netdev(net, d) {
1084 			if (!sscanf(d->name, name, &i))
1085 				continue;
1086 			if (i < 0 || i >= max_netdevices)
1087 				continue;
1088 
1089 			/*  avoid cases where sscanf is not exact inverse of printf */
1090 			snprintf(buf, IFNAMSIZ, name, i);
1091 			if (!strncmp(buf, d->name, IFNAMSIZ))
1092 				set_bit(i, inuse);
1093 		}
1094 
1095 		i = find_first_zero_bit(inuse, max_netdevices);
1096 		free_page((unsigned long) inuse);
1097 	}
1098 
1099 	snprintf(buf, IFNAMSIZ, name, i);
1100 	if (!__dev_get_by_name(net, buf))
1101 		return i;
1102 
1103 	/* It is possible to run out of possible slots
1104 	 * when the name is long and there isn't enough space left
1105 	 * for the digits, or if all bits are used.
1106 	 */
1107 	return -ENFILE;
1108 }
1109 
1110 static int dev_alloc_name_ns(struct net *net,
1111 			     struct net_device *dev,
1112 			     const char *name)
1113 {
1114 	char buf[IFNAMSIZ];
1115 	int ret;
1116 
1117 	BUG_ON(!net);
1118 	ret = __dev_alloc_name(net, name, buf);
1119 	if (ret >= 0)
1120 		strlcpy(dev->name, buf, IFNAMSIZ);
1121 	return ret;
1122 }
1123 
1124 /**
1125  *	dev_alloc_name - allocate a name for a device
1126  *	@dev: device
1127  *	@name: name format string
1128  *
1129  *	Passed a format string - eg "lt%d" it will try and find a suitable
1130  *	id. It scans list of devices to build up a free map, then chooses
1131  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1132  *	while allocating the name and adding the device in order to avoid
1133  *	duplicates.
1134  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1135  *	Returns the number of the unit assigned or a negative errno code.
1136  */
1137 
1138 int dev_alloc_name(struct net_device *dev, const char *name)
1139 {
1140 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1141 }
1142 EXPORT_SYMBOL(dev_alloc_name);
1143 
1144 int dev_get_valid_name(struct net *net, struct net_device *dev,
1145 		       const char *name)
1146 {
1147 	BUG_ON(!net);
1148 
1149 	if (!dev_valid_name(name))
1150 		return -EINVAL;
1151 
1152 	if (strchr(name, '%'))
1153 		return dev_alloc_name_ns(net, dev, name);
1154 	else if (__dev_get_by_name(net, name))
1155 		return -EEXIST;
1156 	else if (dev->name != name)
1157 		strlcpy(dev->name, name, IFNAMSIZ);
1158 
1159 	return 0;
1160 }
1161 EXPORT_SYMBOL(dev_get_valid_name);
1162 
1163 /**
1164  *	dev_change_name - change name of a device
1165  *	@dev: device
1166  *	@newname: name (or format string) must be at least IFNAMSIZ
1167  *
1168  *	Change name of a device, can pass format strings "eth%d".
1169  *	for wildcarding.
1170  */
1171 int dev_change_name(struct net_device *dev, const char *newname)
1172 {
1173 	unsigned char old_assign_type;
1174 	char oldname[IFNAMSIZ];
1175 	int err = 0;
1176 	int ret;
1177 	struct net *net;
1178 
1179 	ASSERT_RTNL();
1180 	BUG_ON(!dev_net(dev));
1181 
1182 	net = dev_net(dev);
1183 
1184 	/* Some auto-enslaved devices e.g. failover slaves are
1185 	 * special, as userspace might rename the device after
1186 	 * the interface had been brought up and running since
1187 	 * the point kernel initiated auto-enslavement. Allow
1188 	 * live name change even when these slave devices are
1189 	 * up and running.
1190 	 *
1191 	 * Typically, users of these auto-enslaving devices
1192 	 * don't actually care about slave name change, as
1193 	 * they are supposed to operate on master interface
1194 	 * directly.
1195 	 */
1196 	if (dev->flags & IFF_UP &&
1197 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1198 		return -EBUSY;
1199 
1200 	write_seqcount_begin(&devnet_rename_seq);
1201 
1202 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1203 		write_seqcount_end(&devnet_rename_seq);
1204 		return 0;
1205 	}
1206 
1207 	memcpy(oldname, dev->name, IFNAMSIZ);
1208 
1209 	err = dev_get_valid_name(net, dev, newname);
1210 	if (err < 0) {
1211 		write_seqcount_end(&devnet_rename_seq);
1212 		return err;
1213 	}
1214 
1215 	if (oldname[0] && !strchr(oldname, '%'))
1216 		netdev_info(dev, "renamed from %s\n", oldname);
1217 
1218 	old_assign_type = dev->name_assign_type;
1219 	dev->name_assign_type = NET_NAME_RENAMED;
1220 
1221 rollback:
1222 	ret = device_rename(&dev->dev, dev->name);
1223 	if (ret) {
1224 		memcpy(dev->name, oldname, IFNAMSIZ);
1225 		dev->name_assign_type = old_assign_type;
1226 		write_seqcount_end(&devnet_rename_seq);
1227 		return ret;
1228 	}
1229 
1230 	write_seqcount_end(&devnet_rename_seq);
1231 
1232 	netdev_adjacent_rename_links(dev, oldname);
1233 
1234 	write_lock_bh(&dev_base_lock);
1235 	hlist_del_rcu(&dev->name_hlist);
1236 	write_unlock_bh(&dev_base_lock);
1237 
1238 	synchronize_rcu();
1239 
1240 	write_lock_bh(&dev_base_lock);
1241 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1242 	write_unlock_bh(&dev_base_lock);
1243 
1244 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1245 	ret = notifier_to_errno(ret);
1246 
1247 	if (ret) {
1248 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1249 		if (err >= 0) {
1250 			err = ret;
1251 			write_seqcount_begin(&devnet_rename_seq);
1252 			memcpy(dev->name, oldname, IFNAMSIZ);
1253 			memcpy(oldname, newname, IFNAMSIZ);
1254 			dev->name_assign_type = old_assign_type;
1255 			old_assign_type = NET_NAME_RENAMED;
1256 			goto rollback;
1257 		} else {
1258 			pr_err("%s: name change rollback failed: %d\n",
1259 			       dev->name, ret);
1260 		}
1261 	}
1262 
1263 	return err;
1264 }
1265 
1266 /**
1267  *	dev_set_alias - change ifalias of a device
1268  *	@dev: device
1269  *	@alias: name up to IFALIASZ
1270  *	@len: limit of bytes to copy from info
1271  *
1272  *	Set ifalias for a device,
1273  */
1274 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1275 {
1276 	struct dev_ifalias *new_alias = NULL;
1277 
1278 	if (len >= IFALIASZ)
1279 		return -EINVAL;
1280 
1281 	if (len) {
1282 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1283 		if (!new_alias)
1284 			return -ENOMEM;
1285 
1286 		memcpy(new_alias->ifalias, alias, len);
1287 		new_alias->ifalias[len] = 0;
1288 	}
1289 
1290 	mutex_lock(&ifalias_mutex);
1291 	rcu_swap_protected(dev->ifalias, new_alias,
1292 			   mutex_is_locked(&ifalias_mutex));
1293 	mutex_unlock(&ifalias_mutex);
1294 
1295 	if (new_alias)
1296 		kfree_rcu(new_alias, rcuhead);
1297 
1298 	return len;
1299 }
1300 EXPORT_SYMBOL(dev_set_alias);
1301 
1302 /**
1303  *	dev_get_alias - get ifalias of a device
1304  *	@dev: device
1305  *	@name: buffer to store name of ifalias
1306  *	@len: size of buffer
1307  *
1308  *	get ifalias for a device.  Caller must make sure dev cannot go
1309  *	away,  e.g. rcu read lock or own a reference count to device.
1310  */
1311 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1312 {
1313 	const struct dev_ifalias *alias;
1314 	int ret = 0;
1315 
1316 	rcu_read_lock();
1317 	alias = rcu_dereference(dev->ifalias);
1318 	if (alias)
1319 		ret = snprintf(name, len, "%s", alias->ifalias);
1320 	rcu_read_unlock();
1321 
1322 	return ret;
1323 }
1324 
1325 /**
1326  *	netdev_features_change - device changes features
1327  *	@dev: device to cause notification
1328  *
1329  *	Called to indicate a device has changed features.
1330  */
1331 void netdev_features_change(struct net_device *dev)
1332 {
1333 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1334 }
1335 EXPORT_SYMBOL(netdev_features_change);
1336 
1337 /**
1338  *	netdev_state_change - device changes state
1339  *	@dev: device to cause notification
1340  *
1341  *	Called to indicate a device has changed state. This function calls
1342  *	the notifier chains for netdev_chain and sends a NEWLINK message
1343  *	to the routing socket.
1344  */
1345 void netdev_state_change(struct net_device *dev)
1346 {
1347 	if (dev->flags & IFF_UP) {
1348 		struct netdev_notifier_change_info change_info = {
1349 			.info.dev = dev,
1350 		};
1351 
1352 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1353 					      &change_info.info);
1354 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1355 	}
1356 }
1357 EXPORT_SYMBOL(netdev_state_change);
1358 
1359 /**
1360  * netdev_notify_peers - notify network peers about existence of @dev
1361  * @dev: network device
1362  *
1363  * Generate traffic such that interested network peers are aware of
1364  * @dev, such as by generating a gratuitous ARP. This may be used when
1365  * a device wants to inform the rest of the network about some sort of
1366  * reconfiguration such as a failover event or virtual machine
1367  * migration.
1368  */
1369 void netdev_notify_peers(struct net_device *dev)
1370 {
1371 	rtnl_lock();
1372 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1373 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1374 	rtnl_unlock();
1375 }
1376 EXPORT_SYMBOL(netdev_notify_peers);
1377 
1378 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1379 {
1380 	const struct net_device_ops *ops = dev->netdev_ops;
1381 	int ret;
1382 
1383 	ASSERT_RTNL();
1384 
1385 	if (!netif_device_present(dev))
1386 		return -ENODEV;
1387 
1388 	/* Block netpoll from trying to do any rx path servicing.
1389 	 * If we don't do this there is a chance ndo_poll_controller
1390 	 * or ndo_poll may be running while we open the device
1391 	 */
1392 	netpoll_poll_disable(dev);
1393 
1394 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1395 	ret = notifier_to_errno(ret);
1396 	if (ret)
1397 		return ret;
1398 
1399 	set_bit(__LINK_STATE_START, &dev->state);
1400 
1401 	if (ops->ndo_validate_addr)
1402 		ret = ops->ndo_validate_addr(dev);
1403 
1404 	if (!ret && ops->ndo_open)
1405 		ret = ops->ndo_open(dev);
1406 
1407 	netpoll_poll_enable(dev);
1408 
1409 	if (ret)
1410 		clear_bit(__LINK_STATE_START, &dev->state);
1411 	else {
1412 		dev->flags |= IFF_UP;
1413 		dev_set_rx_mode(dev);
1414 		dev_activate(dev);
1415 		add_device_randomness(dev->dev_addr, dev->addr_len);
1416 	}
1417 
1418 	return ret;
1419 }
1420 
1421 /**
1422  *	dev_open	- prepare an interface for use.
1423  *	@dev: device to open
1424  *	@extack: netlink extended ack
1425  *
1426  *	Takes a device from down to up state. The device's private open
1427  *	function is invoked and then the multicast lists are loaded. Finally
1428  *	the device is moved into the up state and a %NETDEV_UP message is
1429  *	sent to the netdev notifier chain.
1430  *
1431  *	Calling this function on an active interface is a nop. On a failure
1432  *	a negative errno code is returned.
1433  */
1434 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1435 {
1436 	int ret;
1437 
1438 	if (dev->flags & IFF_UP)
1439 		return 0;
1440 
1441 	ret = __dev_open(dev, extack);
1442 	if (ret < 0)
1443 		return ret;
1444 
1445 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1446 	call_netdevice_notifiers(NETDEV_UP, dev);
1447 
1448 	return ret;
1449 }
1450 EXPORT_SYMBOL(dev_open);
1451 
1452 static void __dev_close_many(struct list_head *head)
1453 {
1454 	struct net_device *dev;
1455 
1456 	ASSERT_RTNL();
1457 	might_sleep();
1458 
1459 	list_for_each_entry(dev, head, close_list) {
1460 		/* Temporarily disable netpoll until the interface is down */
1461 		netpoll_poll_disable(dev);
1462 
1463 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1464 
1465 		clear_bit(__LINK_STATE_START, &dev->state);
1466 
1467 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1468 		 * can be even on different cpu. So just clear netif_running().
1469 		 *
1470 		 * dev->stop() will invoke napi_disable() on all of it's
1471 		 * napi_struct instances on this device.
1472 		 */
1473 		smp_mb__after_atomic(); /* Commit netif_running(). */
1474 	}
1475 
1476 	dev_deactivate_many(head);
1477 
1478 	list_for_each_entry(dev, head, close_list) {
1479 		const struct net_device_ops *ops = dev->netdev_ops;
1480 
1481 		/*
1482 		 *	Call the device specific close. This cannot fail.
1483 		 *	Only if device is UP
1484 		 *
1485 		 *	We allow it to be called even after a DETACH hot-plug
1486 		 *	event.
1487 		 */
1488 		if (ops->ndo_stop)
1489 			ops->ndo_stop(dev);
1490 
1491 		dev->flags &= ~IFF_UP;
1492 		netpoll_poll_enable(dev);
1493 	}
1494 }
1495 
1496 static void __dev_close(struct net_device *dev)
1497 {
1498 	LIST_HEAD(single);
1499 
1500 	list_add(&dev->close_list, &single);
1501 	__dev_close_many(&single);
1502 	list_del(&single);
1503 }
1504 
1505 void dev_close_many(struct list_head *head, bool unlink)
1506 {
1507 	struct net_device *dev, *tmp;
1508 
1509 	/* Remove the devices that don't need to be closed */
1510 	list_for_each_entry_safe(dev, tmp, head, close_list)
1511 		if (!(dev->flags & IFF_UP))
1512 			list_del_init(&dev->close_list);
1513 
1514 	__dev_close_many(head);
1515 
1516 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1517 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1518 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1519 		if (unlink)
1520 			list_del_init(&dev->close_list);
1521 	}
1522 }
1523 EXPORT_SYMBOL(dev_close_many);
1524 
1525 /**
1526  *	dev_close - shutdown an interface.
1527  *	@dev: device to shutdown
1528  *
1529  *	This function moves an active device into down state. A
1530  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1531  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1532  *	chain.
1533  */
1534 void dev_close(struct net_device *dev)
1535 {
1536 	if (dev->flags & IFF_UP) {
1537 		LIST_HEAD(single);
1538 
1539 		list_add(&dev->close_list, &single);
1540 		dev_close_many(&single, true);
1541 		list_del(&single);
1542 	}
1543 }
1544 EXPORT_SYMBOL(dev_close);
1545 
1546 
1547 /**
1548  *	dev_disable_lro - disable Large Receive Offload on a device
1549  *	@dev: device
1550  *
1551  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1552  *	called under RTNL.  This is needed if received packets may be
1553  *	forwarded to another interface.
1554  */
1555 void dev_disable_lro(struct net_device *dev)
1556 {
1557 	struct net_device *lower_dev;
1558 	struct list_head *iter;
1559 
1560 	dev->wanted_features &= ~NETIF_F_LRO;
1561 	netdev_update_features(dev);
1562 
1563 	if (unlikely(dev->features & NETIF_F_LRO))
1564 		netdev_WARN(dev, "failed to disable LRO!\n");
1565 
1566 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1567 		dev_disable_lro(lower_dev);
1568 }
1569 EXPORT_SYMBOL(dev_disable_lro);
1570 
1571 /**
1572  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1573  *	@dev: device
1574  *
1575  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1576  *	called under RTNL.  This is needed if Generic XDP is installed on
1577  *	the device.
1578  */
1579 static void dev_disable_gro_hw(struct net_device *dev)
1580 {
1581 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1582 	netdev_update_features(dev);
1583 
1584 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1585 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1586 }
1587 
1588 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1589 {
1590 #define N(val) 						\
1591 	case NETDEV_##val:				\
1592 		return "NETDEV_" __stringify(val);
1593 	switch (cmd) {
1594 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1595 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1596 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1597 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1598 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1599 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1600 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1601 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1602 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1603 	N(PRE_CHANGEADDR)
1604 	}
1605 #undef N
1606 	return "UNKNOWN_NETDEV_EVENT";
1607 }
1608 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1609 
1610 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1611 				   struct net_device *dev)
1612 {
1613 	struct netdev_notifier_info info = {
1614 		.dev = dev,
1615 	};
1616 
1617 	return nb->notifier_call(nb, val, &info);
1618 }
1619 
1620 static int dev_boot_phase = 1;
1621 
1622 /**
1623  * register_netdevice_notifier - register a network notifier block
1624  * @nb: notifier
1625  *
1626  * Register a notifier to be called when network device events occur.
1627  * The notifier passed is linked into the kernel structures and must
1628  * not be reused until it has been unregistered. A negative errno code
1629  * is returned on a failure.
1630  *
1631  * When registered all registration and up events are replayed
1632  * to the new notifier to allow device to have a race free
1633  * view of the network device list.
1634  */
1635 
1636 int register_netdevice_notifier(struct notifier_block *nb)
1637 {
1638 	struct net_device *dev;
1639 	struct net_device *last;
1640 	struct net *net;
1641 	int err;
1642 
1643 	/* Close race with setup_net() and cleanup_net() */
1644 	down_write(&pernet_ops_rwsem);
1645 	rtnl_lock();
1646 	err = raw_notifier_chain_register(&netdev_chain, nb);
1647 	if (err)
1648 		goto unlock;
1649 	if (dev_boot_phase)
1650 		goto unlock;
1651 	for_each_net(net) {
1652 		for_each_netdev(net, dev) {
1653 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1654 			err = notifier_to_errno(err);
1655 			if (err)
1656 				goto rollback;
1657 
1658 			if (!(dev->flags & IFF_UP))
1659 				continue;
1660 
1661 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1662 		}
1663 	}
1664 
1665 unlock:
1666 	rtnl_unlock();
1667 	up_write(&pernet_ops_rwsem);
1668 	return err;
1669 
1670 rollback:
1671 	last = dev;
1672 	for_each_net(net) {
1673 		for_each_netdev(net, dev) {
1674 			if (dev == last)
1675 				goto outroll;
1676 
1677 			if (dev->flags & IFF_UP) {
1678 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1679 							dev);
1680 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1681 			}
1682 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1683 		}
1684 	}
1685 
1686 outroll:
1687 	raw_notifier_chain_unregister(&netdev_chain, nb);
1688 	goto unlock;
1689 }
1690 EXPORT_SYMBOL(register_netdevice_notifier);
1691 
1692 /**
1693  * unregister_netdevice_notifier - unregister a network notifier block
1694  * @nb: notifier
1695  *
1696  * Unregister a notifier previously registered by
1697  * register_netdevice_notifier(). The notifier is unlinked into the
1698  * kernel structures and may then be reused. A negative errno code
1699  * is returned on a failure.
1700  *
1701  * After unregistering unregister and down device events are synthesized
1702  * for all devices on the device list to the removed notifier to remove
1703  * the need for special case cleanup code.
1704  */
1705 
1706 int unregister_netdevice_notifier(struct notifier_block *nb)
1707 {
1708 	struct net_device *dev;
1709 	struct net *net;
1710 	int err;
1711 
1712 	/* Close race with setup_net() and cleanup_net() */
1713 	down_write(&pernet_ops_rwsem);
1714 	rtnl_lock();
1715 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1716 	if (err)
1717 		goto unlock;
1718 
1719 	for_each_net(net) {
1720 		for_each_netdev(net, dev) {
1721 			if (dev->flags & IFF_UP) {
1722 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1723 							dev);
1724 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1725 			}
1726 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1727 		}
1728 	}
1729 unlock:
1730 	rtnl_unlock();
1731 	up_write(&pernet_ops_rwsem);
1732 	return err;
1733 }
1734 EXPORT_SYMBOL(unregister_netdevice_notifier);
1735 
1736 /**
1737  *	call_netdevice_notifiers_info - call all network notifier blocks
1738  *	@val: value passed unmodified to notifier function
1739  *	@info: notifier information data
1740  *
1741  *	Call all network notifier blocks.  Parameters and return value
1742  *	are as for raw_notifier_call_chain().
1743  */
1744 
1745 static int call_netdevice_notifiers_info(unsigned long val,
1746 					 struct netdev_notifier_info *info)
1747 {
1748 	ASSERT_RTNL();
1749 	return raw_notifier_call_chain(&netdev_chain, val, info);
1750 }
1751 
1752 static int call_netdevice_notifiers_extack(unsigned long val,
1753 					   struct net_device *dev,
1754 					   struct netlink_ext_ack *extack)
1755 {
1756 	struct netdev_notifier_info info = {
1757 		.dev = dev,
1758 		.extack = extack,
1759 	};
1760 
1761 	return call_netdevice_notifiers_info(val, &info);
1762 }
1763 
1764 /**
1765  *	call_netdevice_notifiers - call all network notifier blocks
1766  *      @val: value passed unmodified to notifier function
1767  *      @dev: net_device pointer passed unmodified to notifier function
1768  *
1769  *	Call all network notifier blocks.  Parameters and return value
1770  *	are as for raw_notifier_call_chain().
1771  */
1772 
1773 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1774 {
1775 	return call_netdevice_notifiers_extack(val, dev, NULL);
1776 }
1777 EXPORT_SYMBOL(call_netdevice_notifiers);
1778 
1779 /**
1780  *	call_netdevice_notifiers_mtu - call all network notifier blocks
1781  *	@val: value passed unmodified to notifier function
1782  *	@dev: net_device pointer passed unmodified to notifier function
1783  *	@arg: additional u32 argument passed to the notifier function
1784  *
1785  *	Call all network notifier blocks.  Parameters and return value
1786  *	are as for raw_notifier_call_chain().
1787  */
1788 static int call_netdevice_notifiers_mtu(unsigned long val,
1789 					struct net_device *dev, u32 arg)
1790 {
1791 	struct netdev_notifier_info_ext info = {
1792 		.info.dev = dev,
1793 		.ext.mtu = arg,
1794 	};
1795 
1796 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1797 
1798 	return call_netdevice_notifiers_info(val, &info.info);
1799 }
1800 
1801 #ifdef CONFIG_NET_INGRESS
1802 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1803 
1804 void net_inc_ingress_queue(void)
1805 {
1806 	static_branch_inc(&ingress_needed_key);
1807 }
1808 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1809 
1810 void net_dec_ingress_queue(void)
1811 {
1812 	static_branch_dec(&ingress_needed_key);
1813 }
1814 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1815 #endif
1816 
1817 #ifdef CONFIG_NET_EGRESS
1818 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1819 
1820 void net_inc_egress_queue(void)
1821 {
1822 	static_branch_inc(&egress_needed_key);
1823 }
1824 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1825 
1826 void net_dec_egress_queue(void)
1827 {
1828 	static_branch_dec(&egress_needed_key);
1829 }
1830 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1831 #endif
1832 
1833 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1834 #ifdef CONFIG_JUMP_LABEL
1835 static atomic_t netstamp_needed_deferred;
1836 static atomic_t netstamp_wanted;
1837 static void netstamp_clear(struct work_struct *work)
1838 {
1839 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1840 	int wanted;
1841 
1842 	wanted = atomic_add_return(deferred, &netstamp_wanted);
1843 	if (wanted > 0)
1844 		static_branch_enable(&netstamp_needed_key);
1845 	else
1846 		static_branch_disable(&netstamp_needed_key);
1847 }
1848 static DECLARE_WORK(netstamp_work, netstamp_clear);
1849 #endif
1850 
1851 void net_enable_timestamp(void)
1852 {
1853 #ifdef CONFIG_JUMP_LABEL
1854 	int wanted;
1855 
1856 	while (1) {
1857 		wanted = atomic_read(&netstamp_wanted);
1858 		if (wanted <= 0)
1859 			break;
1860 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1861 			return;
1862 	}
1863 	atomic_inc(&netstamp_needed_deferred);
1864 	schedule_work(&netstamp_work);
1865 #else
1866 	static_branch_inc(&netstamp_needed_key);
1867 #endif
1868 }
1869 EXPORT_SYMBOL(net_enable_timestamp);
1870 
1871 void net_disable_timestamp(void)
1872 {
1873 #ifdef CONFIG_JUMP_LABEL
1874 	int wanted;
1875 
1876 	while (1) {
1877 		wanted = atomic_read(&netstamp_wanted);
1878 		if (wanted <= 1)
1879 			break;
1880 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1881 			return;
1882 	}
1883 	atomic_dec(&netstamp_needed_deferred);
1884 	schedule_work(&netstamp_work);
1885 #else
1886 	static_branch_dec(&netstamp_needed_key);
1887 #endif
1888 }
1889 EXPORT_SYMBOL(net_disable_timestamp);
1890 
1891 static inline void net_timestamp_set(struct sk_buff *skb)
1892 {
1893 	skb->tstamp = 0;
1894 	if (static_branch_unlikely(&netstamp_needed_key))
1895 		__net_timestamp(skb);
1896 }
1897 
1898 #define net_timestamp_check(COND, SKB)				\
1899 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
1900 		if ((COND) && !(SKB)->tstamp)			\
1901 			__net_timestamp(SKB);			\
1902 	}							\
1903 
1904 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1905 {
1906 	unsigned int len;
1907 
1908 	if (!(dev->flags & IFF_UP))
1909 		return false;
1910 
1911 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1912 	if (skb->len <= len)
1913 		return true;
1914 
1915 	/* if TSO is enabled, we don't care about the length as the packet
1916 	 * could be forwarded without being segmented before
1917 	 */
1918 	if (skb_is_gso(skb))
1919 		return true;
1920 
1921 	return false;
1922 }
1923 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1924 
1925 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1926 {
1927 	int ret = ____dev_forward_skb(dev, skb);
1928 
1929 	if (likely(!ret)) {
1930 		skb->protocol = eth_type_trans(skb, dev);
1931 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1932 	}
1933 
1934 	return ret;
1935 }
1936 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1937 
1938 /**
1939  * dev_forward_skb - loopback an skb to another netif
1940  *
1941  * @dev: destination network device
1942  * @skb: buffer to forward
1943  *
1944  * return values:
1945  *	NET_RX_SUCCESS	(no congestion)
1946  *	NET_RX_DROP     (packet was dropped, but freed)
1947  *
1948  * dev_forward_skb can be used for injecting an skb from the
1949  * start_xmit function of one device into the receive queue
1950  * of another device.
1951  *
1952  * The receiving device may be in another namespace, so
1953  * we have to clear all information in the skb that could
1954  * impact namespace isolation.
1955  */
1956 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1957 {
1958 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1959 }
1960 EXPORT_SYMBOL_GPL(dev_forward_skb);
1961 
1962 static inline int deliver_skb(struct sk_buff *skb,
1963 			      struct packet_type *pt_prev,
1964 			      struct net_device *orig_dev)
1965 {
1966 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1967 		return -ENOMEM;
1968 	refcount_inc(&skb->users);
1969 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1970 }
1971 
1972 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1973 					  struct packet_type **pt,
1974 					  struct net_device *orig_dev,
1975 					  __be16 type,
1976 					  struct list_head *ptype_list)
1977 {
1978 	struct packet_type *ptype, *pt_prev = *pt;
1979 
1980 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1981 		if (ptype->type != type)
1982 			continue;
1983 		if (pt_prev)
1984 			deliver_skb(skb, pt_prev, orig_dev);
1985 		pt_prev = ptype;
1986 	}
1987 	*pt = pt_prev;
1988 }
1989 
1990 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1991 {
1992 	if (!ptype->af_packet_priv || !skb->sk)
1993 		return false;
1994 
1995 	if (ptype->id_match)
1996 		return ptype->id_match(ptype, skb->sk);
1997 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1998 		return true;
1999 
2000 	return false;
2001 }
2002 
2003 /**
2004  * dev_nit_active - return true if any network interface taps are in use
2005  *
2006  * @dev: network device to check for the presence of taps
2007  */
2008 bool dev_nit_active(struct net_device *dev)
2009 {
2010 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2011 }
2012 EXPORT_SYMBOL_GPL(dev_nit_active);
2013 
2014 /*
2015  *	Support routine. Sends outgoing frames to any network
2016  *	taps currently in use.
2017  */
2018 
2019 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2020 {
2021 	struct packet_type *ptype;
2022 	struct sk_buff *skb2 = NULL;
2023 	struct packet_type *pt_prev = NULL;
2024 	struct list_head *ptype_list = &ptype_all;
2025 
2026 	rcu_read_lock();
2027 again:
2028 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2029 		if (ptype->ignore_outgoing)
2030 			continue;
2031 
2032 		/* Never send packets back to the socket
2033 		 * they originated from - MvS (miquels@drinkel.ow.org)
2034 		 */
2035 		if (skb_loop_sk(ptype, skb))
2036 			continue;
2037 
2038 		if (pt_prev) {
2039 			deliver_skb(skb2, pt_prev, skb->dev);
2040 			pt_prev = ptype;
2041 			continue;
2042 		}
2043 
2044 		/* need to clone skb, done only once */
2045 		skb2 = skb_clone(skb, GFP_ATOMIC);
2046 		if (!skb2)
2047 			goto out_unlock;
2048 
2049 		net_timestamp_set(skb2);
2050 
2051 		/* skb->nh should be correctly
2052 		 * set by sender, so that the second statement is
2053 		 * just protection against buggy protocols.
2054 		 */
2055 		skb_reset_mac_header(skb2);
2056 
2057 		if (skb_network_header(skb2) < skb2->data ||
2058 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2059 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2060 					     ntohs(skb2->protocol),
2061 					     dev->name);
2062 			skb_reset_network_header(skb2);
2063 		}
2064 
2065 		skb2->transport_header = skb2->network_header;
2066 		skb2->pkt_type = PACKET_OUTGOING;
2067 		pt_prev = ptype;
2068 	}
2069 
2070 	if (ptype_list == &ptype_all) {
2071 		ptype_list = &dev->ptype_all;
2072 		goto again;
2073 	}
2074 out_unlock:
2075 	if (pt_prev) {
2076 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2077 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2078 		else
2079 			kfree_skb(skb2);
2080 	}
2081 	rcu_read_unlock();
2082 }
2083 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2084 
2085 /**
2086  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2087  * @dev: Network device
2088  * @txq: number of queues available
2089  *
2090  * If real_num_tx_queues is changed the tc mappings may no longer be
2091  * valid. To resolve this verify the tc mapping remains valid and if
2092  * not NULL the mapping. With no priorities mapping to this
2093  * offset/count pair it will no longer be used. In the worst case TC0
2094  * is invalid nothing can be done so disable priority mappings. If is
2095  * expected that drivers will fix this mapping if they can before
2096  * calling netif_set_real_num_tx_queues.
2097  */
2098 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2099 {
2100 	int i;
2101 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2102 
2103 	/* If TC0 is invalidated disable TC mapping */
2104 	if (tc->offset + tc->count > txq) {
2105 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2106 		dev->num_tc = 0;
2107 		return;
2108 	}
2109 
2110 	/* Invalidated prio to tc mappings set to TC0 */
2111 	for (i = 1; i < TC_BITMASK + 1; i++) {
2112 		int q = netdev_get_prio_tc_map(dev, i);
2113 
2114 		tc = &dev->tc_to_txq[q];
2115 		if (tc->offset + tc->count > txq) {
2116 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2117 				i, q);
2118 			netdev_set_prio_tc_map(dev, i, 0);
2119 		}
2120 	}
2121 }
2122 
2123 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2124 {
2125 	if (dev->num_tc) {
2126 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2127 		int i;
2128 
2129 		/* walk through the TCs and see if it falls into any of them */
2130 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2131 			if ((txq - tc->offset) < tc->count)
2132 				return i;
2133 		}
2134 
2135 		/* didn't find it, just return -1 to indicate no match */
2136 		return -1;
2137 	}
2138 
2139 	return 0;
2140 }
2141 EXPORT_SYMBOL(netdev_txq_to_tc);
2142 
2143 #ifdef CONFIG_XPS
2144 struct static_key xps_needed __read_mostly;
2145 EXPORT_SYMBOL(xps_needed);
2146 struct static_key xps_rxqs_needed __read_mostly;
2147 EXPORT_SYMBOL(xps_rxqs_needed);
2148 static DEFINE_MUTEX(xps_map_mutex);
2149 #define xmap_dereference(P)		\
2150 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2151 
2152 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2153 			     int tci, u16 index)
2154 {
2155 	struct xps_map *map = NULL;
2156 	int pos;
2157 
2158 	if (dev_maps)
2159 		map = xmap_dereference(dev_maps->attr_map[tci]);
2160 	if (!map)
2161 		return false;
2162 
2163 	for (pos = map->len; pos--;) {
2164 		if (map->queues[pos] != index)
2165 			continue;
2166 
2167 		if (map->len > 1) {
2168 			map->queues[pos] = map->queues[--map->len];
2169 			break;
2170 		}
2171 
2172 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2173 		kfree_rcu(map, rcu);
2174 		return false;
2175 	}
2176 
2177 	return true;
2178 }
2179 
2180 static bool remove_xps_queue_cpu(struct net_device *dev,
2181 				 struct xps_dev_maps *dev_maps,
2182 				 int cpu, u16 offset, u16 count)
2183 {
2184 	int num_tc = dev->num_tc ? : 1;
2185 	bool active = false;
2186 	int tci;
2187 
2188 	for (tci = cpu * num_tc; num_tc--; tci++) {
2189 		int i, j;
2190 
2191 		for (i = count, j = offset; i--; j++) {
2192 			if (!remove_xps_queue(dev_maps, tci, j))
2193 				break;
2194 		}
2195 
2196 		active |= i < 0;
2197 	}
2198 
2199 	return active;
2200 }
2201 
2202 static void reset_xps_maps(struct net_device *dev,
2203 			   struct xps_dev_maps *dev_maps,
2204 			   bool is_rxqs_map)
2205 {
2206 	if (is_rxqs_map) {
2207 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2208 		RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2209 	} else {
2210 		RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2211 	}
2212 	static_key_slow_dec_cpuslocked(&xps_needed);
2213 	kfree_rcu(dev_maps, rcu);
2214 }
2215 
2216 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2217 			   struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2218 			   u16 offset, u16 count, bool is_rxqs_map)
2219 {
2220 	bool active = false;
2221 	int i, j;
2222 
2223 	for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2224 	     j < nr_ids;)
2225 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2226 					       count);
2227 	if (!active)
2228 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2229 
2230 	if (!is_rxqs_map) {
2231 		for (i = offset + (count - 1); count--; i--) {
2232 			netdev_queue_numa_node_write(
2233 				netdev_get_tx_queue(dev, i),
2234 				NUMA_NO_NODE);
2235 		}
2236 	}
2237 }
2238 
2239 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2240 				   u16 count)
2241 {
2242 	const unsigned long *possible_mask = NULL;
2243 	struct xps_dev_maps *dev_maps;
2244 	unsigned int nr_ids;
2245 
2246 	if (!static_key_false(&xps_needed))
2247 		return;
2248 
2249 	cpus_read_lock();
2250 	mutex_lock(&xps_map_mutex);
2251 
2252 	if (static_key_false(&xps_rxqs_needed)) {
2253 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2254 		if (dev_maps) {
2255 			nr_ids = dev->num_rx_queues;
2256 			clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2257 				       offset, count, true);
2258 		}
2259 	}
2260 
2261 	dev_maps = xmap_dereference(dev->xps_cpus_map);
2262 	if (!dev_maps)
2263 		goto out_no_maps;
2264 
2265 	if (num_possible_cpus() > 1)
2266 		possible_mask = cpumask_bits(cpu_possible_mask);
2267 	nr_ids = nr_cpu_ids;
2268 	clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2269 		       false);
2270 
2271 out_no_maps:
2272 	mutex_unlock(&xps_map_mutex);
2273 	cpus_read_unlock();
2274 }
2275 
2276 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2277 {
2278 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2279 }
2280 
2281 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2282 				      u16 index, bool is_rxqs_map)
2283 {
2284 	struct xps_map *new_map;
2285 	int alloc_len = XPS_MIN_MAP_ALLOC;
2286 	int i, pos;
2287 
2288 	for (pos = 0; map && pos < map->len; pos++) {
2289 		if (map->queues[pos] != index)
2290 			continue;
2291 		return map;
2292 	}
2293 
2294 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2295 	if (map) {
2296 		if (pos < map->alloc_len)
2297 			return map;
2298 
2299 		alloc_len = map->alloc_len * 2;
2300 	}
2301 
2302 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2303 	 *  map
2304 	 */
2305 	if (is_rxqs_map)
2306 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2307 	else
2308 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2309 				       cpu_to_node(attr_index));
2310 	if (!new_map)
2311 		return NULL;
2312 
2313 	for (i = 0; i < pos; i++)
2314 		new_map->queues[i] = map->queues[i];
2315 	new_map->alloc_len = alloc_len;
2316 	new_map->len = pos;
2317 
2318 	return new_map;
2319 }
2320 
2321 /* Must be called under cpus_read_lock */
2322 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2323 			  u16 index, bool is_rxqs_map)
2324 {
2325 	const unsigned long *online_mask = NULL, *possible_mask = NULL;
2326 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2327 	int i, j, tci, numa_node_id = -2;
2328 	int maps_sz, num_tc = 1, tc = 0;
2329 	struct xps_map *map, *new_map;
2330 	bool active = false;
2331 	unsigned int nr_ids;
2332 
2333 	if (dev->num_tc) {
2334 		/* Do not allow XPS on subordinate device directly */
2335 		num_tc = dev->num_tc;
2336 		if (num_tc < 0)
2337 			return -EINVAL;
2338 
2339 		/* If queue belongs to subordinate dev use its map */
2340 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2341 
2342 		tc = netdev_txq_to_tc(dev, index);
2343 		if (tc < 0)
2344 			return -EINVAL;
2345 	}
2346 
2347 	mutex_lock(&xps_map_mutex);
2348 	if (is_rxqs_map) {
2349 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2350 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2351 		nr_ids = dev->num_rx_queues;
2352 	} else {
2353 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2354 		if (num_possible_cpus() > 1) {
2355 			online_mask = cpumask_bits(cpu_online_mask);
2356 			possible_mask = cpumask_bits(cpu_possible_mask);
2357 		}
2358 		dev_maps = xmap_dereference(dev->xps_cpus_map);
2359 		nr_ids = nr_cpu_ids;
2360 	}
2361 
2362 	if (maps_sz < L1_CACHE_BYTES)
2363 		maps_sz = L1_CACHE_BYTES;
2364 
2365 	/* allocate memory for queue storage */
2366 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2367 	     j < nr_ids;) {
2368 		if (!new_dev_maps)
2369 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2370 		if (!new_dev_maps) {
2371 			mutex_unlock(&xps_map_mutex);
2372 			return -ENOMEM;
2373 		}
2374 
2375 		tci = j * num_tc + tc;
2376 		map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2377 				 NULL;
2378 
2379 		map = expand_xps_map(map, j, index, is_rxqs_map);
2380 		if (!map)
2381 			goto error;
2382 
2383 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2384 	}
2385 
2386 	if (!new_dev_maps)
2387 		goto out_no_new_maps;
2388 
2389 	if (!dev_maps) {
2390 		/* Increment static keys at most once per type */
2391 		static_key_slow_inc_cpuslocked(&xps_needed);
2392 		if (is_rxqs_map)
2393 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2394 	}
2395 
2396 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2397 	     j < nr_ids;) {
2398 		/* copy maps belonging to foreign traffic classes */
2399 		for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2400 			/* fill in the new device map from the old device map */
2401 			map = xmap_dereference(dev_maps->attr_map[tci]);
2402 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2403 		}
2404 
2405 		/* We need to explicitly update tci as prevous loop
2406 		 * could break out early if dev_maps is NULL.
2407 		 */
2408 		tci = j * num_tc + tc;
2409 
2410 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2411 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2412 			/* add tx-queue to CPU/rx-queue maps */
2413 			int pos = 0;
2414 
2415 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2416 			while ((pos < map->len) && (map->queues[pos] != index))
2417 				pos++;
2418 
2419 			if (pos == map->len)
2420 				map->queues[map->len++] = index;
2421 #ifdef CONFIG_NUMA
2422 			if (!is_rxqs_map) {
2423 				if (numa_node_id == -2)
2424 					numa_node_id = cpu_to_node(j);
2425 				else if (numa_node_id != cpu_to_node(j))
2426 					numa_node_id = -1;
2427 			}
2428 #endif
2429 		} else if (dev_maps) {
2430 			/* fill in the new device map from the old device map */
2431 			map = xmap_dereference(dev_maps->attr_map[tci]);
2432 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2433 		}
2434 
2435 		/* copy maps belonging to foreign traffic classes */
2436 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2437 			/* fill in the new device map from the old device map */
2438 			map = xmap_dereference(dev_maps->attr_map[tci]);
2439 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2440 		}
2441 	}
2442 
2443 	if (is_rxqs_map)
2444 		rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2445 	else
2446 		rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2447 
2448 	/* Cleanup old maps */
2449 	if (!dev_maps)
2450 		goto out_no_old_maps;
2451 
2452 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2453 	     j < nr_ids;) {
2454 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2455 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2456 			map = xmap_dereference(dev_maps->attr_map[tci]);
2457 			if (map && map != new_map)
2458 				kfree_rcu(map, rcu);
2459 		}
2460 	}
2461 
2462 	kfree_rcu(dev_maps, rcu);
2463 
2464 out_no_old_maps:
2465 	dev_maps = new_dev_maps;
2466 	active = true;
2467 
2468 out_no_new_maps:
2469 	if (!is_rxqs_map) {
2470 		/* update Tx queue numa node */
2471 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2472 					     (numa_node_id >= 0) ?
2473 					     numa_node_id : NUMA_NO_NODE);
2474 	}
2475 
2476 	if (!dev_maps)
2477 		goto out_no_maps;
2478 
2479 	/* removes tx-queue from unused CPUs/rx-queues */
2480 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2481 	     j < nr_ids;) {
2482 		for (i = tc, tci = j * num_tc; i--; tci++)
2483 			active |= remove_xps_queue(dev_maps, tci, index);
2484 		if (!netif_attr_test_mask(j, mask, nr_ids) ||
2485 		    !netif_attr_test_online(j, online_mask, nr_ids))
2486 			active |= remove_xps_queue(dev_maps, tci, index);
2487 		for (i = num_tc - tc, tci++; --i; tci++)
2488 			active |= remove_xps_queue(dev_maps, tci, index);
2489 	}
2490 
2491 	/* free map if not active */
2492 	if (!active)
2493 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2494 
2495 out_no_maps:
2496 	mutex_unlock(&xps_map_mutex);
2497 
2498 	return 0;
2499 error:
2500 	/* remove any maps that we added */
2501 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2502 	     j < nr_ids;) {
2503 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2504 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2505 			map = dev_maps ?
2506 			      xmap_dereference(dev_maps->attr_map[tci]) :
2507 			      NULL;
2508 			if (new_map && new_map != map)
2509 				kfree(new_map);
2510 		}
2511 	}
2512 
2513 	mutex_unlock(&xps_map_mutex);
2514 
2515 	kfree(new_dev_maps);
2516 	return -ENOMEM;
2517 }
2518 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2519 
2520 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2521 			u16 index)
2522 {
2523 	int ret;
2524 
2525 	cpus_read_lock();
2526 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2527 	cpus_read_unlock();
2528 
2529 	return ret;
2530 }
2531 EXPORT_SYMBOL(netif_set_xps_queue);
2532 
2533 #endif
2534 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2535 {
2536 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2537 
2538 	/* Unbind any subordinate channels */
2539 	while (txq-- != &dev->_tx[0]) {
2540 		if (txq->sb_dev)
2541 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2542 	}
2543 }
2544 
2545 void netdev_reset_tc(struct net_device *dev)
2546 {
2547 #ifdef CONFIG_XPS
2548 	netif_reset_xps_queues_gt(dev, 0);
2549 #endif
2550 	netdev_unbind_all_sb_channels(dev);
2551 
2552 	/* Reset TC configuration of device */
2553 	dev->num_tc = 0;
2554 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2555 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2556 }
2557 EXPORT_SYMBOL(netdev_reset_tc);
2558 
2559 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2560 {
2561 	if (tc >= dev->num_tc)
2562 		return -EINVAL;
2563 
2564 #ifdef CONFIG_XPS
2565 	netif_reset_xps_queues(dev, offset, count);
2566 #endif
2567 	dev->tc_to_txq[tc].count = count;
2568 	dev->tc_to_txq[tc].offset = offset;
2569 	return 0;
2570 }
2571 EXPORT_SYMBOL(netdev_set_tc_queue);
2572 
2573 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2574 {
2575 	if (num_tc > TC_MAX_QUEUE)
2576 		return -EINVAL;
2577 
2578 #ifdef CONFIG_XPS
2579 	netif_reset_xps_queues_gt(dev, 0);
2580 #endif
2581 	netdev_unbind_all_sb_channels(dev);
2582 
2583 	dev->num_tc = num_tc;
2584 	return 0;
2585 }
2586 EXPORT_SYMBOL(netdev_set_num_tc);
2587 
2588 void netdev_unbind_sb_channel(struct net_device *dev,
2589 			      struct net_device *sb_dev)
2590 {
2591 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2592 
2593 #ifdef CONFIG_XPS
2594 	netif_reset_xps_queues_gt(sb_dev, 0);
2595 #endif
2596 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2597 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2598 
2599 	while (txq-- != &dev->_tx[0]) {
2600 		if (txq->sb_dev == sb_dev)
2601 			txq->sb_dev = NULL;
2602 	}
2603 }
2604 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2605 
2606 int netdev_bind_sb_channel_queue(struct net_device *dev,
2607 				 struct net_device *sb_dev,
2608 				 u8 tc, u16 count, u16 offset)
2609 {
2610 	/* Make certain the sb_dev and dev are already configured */
2611 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2612 		return -EINVAL;
2613 
2614 	/* We cannot hand out queues we don't have */
2615 	if ((offset + count) > dev->real_num_tx_queues)
2616 		return -EINVAL;
2617 
2618 	/* Record the mapping */
2619 	sb_dev->tc_to_txq[tc].count = count;
2620 	sb_dev->tc_to_txq[tc].offset = offset;
2621 
2622 	/* Provide a way for Tx queue to find the tc_to_txq map or
2623 	 * XPS map for itself.
2624 	 */
2625 	while (count--)
2626 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2627 
2628 	return 0;
2629 }
2630 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2631 
2632 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2633 {
2634 	/* Do not use a multiqueue device to represent a subordinate channel */
2635 	if (netif_is_multiqueue(dev))
2636 		return -ENODEV;
2637 
2638 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2639 	 * Channel 0 is meant to be "native" mode and used only to represent
2640 	 * the main root device. We allow writing 0 to reset the device back
2641 	 * to normal mode after being used as a subordinate channel.
2642 	 */
2643 	if (channel > S16_MAX)
2644 		return -EINVAL;
2645 
2646 	dev->num_tc = -channel;
2647 
2648 	return 0;
2649 }
2650 EXPORT_SYMBOL(netdev_set_sb_channel);
2651 
2652 /*
2653  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2654  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2655  */
2656 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2657 {
2658 	bool disabling;
2659 	int rc;
2660 
2661 	disabling = txq < dev->real_num_tx_queues;
2662 
2663 	if (txq < 1 || txq > dev->num_tx_queues)
2664 		return -EINVAL;
2665 
2666 	if (dev->reg_state == NETREG_REGISTERED ||
2667 	    dev->reg_state == NETREG_UNREGISTERING) {
2668 		ASSERT_RTNL();
2669 
2670 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2671 						  txq);
2672 		if (rc)
2673 			return rc;
2674 
2675 		if (dev->num_tc)
2676 			netif_setup_tc(dev, txq);
2677 
2678 		dev->real_num_tx_queues = txq;
2679 
2680 		if (disabling) {
2681 			synchronize_net();
2682 			qdisc_reset_all_tx_gt(dev, txq);
2683 #ifdef CONFIG_XPS
2684 			netif_reset_xps_queues_gt(dev, txq);
2685 #endif
2686 		}
2687 	} else {
2688 		dev->real_num_tx_queues = txq;
2689 	}
2690 
2691 	return 0;
2692 }
2693 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2694 
2695 #ifdef CONFIG_SYSFS
2696 /**
2697  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2698  *	@dev: Network device
2699  *	@rxq: Actual number of RX queues
2700  *
2701  *	This must be called either with the rtnl_lock held or before
2702  *	registration of the net device.  Returns 0 on success, or a
2703  *	negative error code.  If called before registration, it always
2704  *	succeeds.
2705  */
2706 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2707 {
2708 	int rc;
2709 
2710 	if (rxq < 1 || rxq > dev->num_rx_queues)
2711 		return -EINVAL;
2712 
2713 	if (dev->reg_state == NETREG_REGISTERED) {
2714 		ASSERT_RTNL();
2715 
2716 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2717 						  rxq);
2718 		if (rc)
2719 			return rc;
2720 	}
2721 
2722 	dev->real_num_rx_queues = rxq;
2723 	return 0;
2724 }
2725 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2726 #endif
2727 
2728 /**
2729  * netif_get_num_default_rss_queues - default number of RSS queues
2730  *
2731  * This routine should set an upper limit on the number of RSS queues
2732  * used by default by multiqueue devices.
2733  */
2734 int netif_get_num_default_rss_queues(void)
2735 {
2736 	return is_kdump_kernel() ?
2737 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2738 }
2739 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2740 
2741 static void __netif_reschedule(struct Qdisc *q)
2742 {
2743 	struct softnet_data *sd;
2744 	unsigned long flags;
2745 
2746 	local_irq_save(flags);
2747 	sd = this_cpu_ptr(&softnet_data);
2748 	q->next_sched = NULL;
2749 	*sd->output_queue_tailp = q;
2750 	sd->output_queue_tailp = &q->next_sched;
2751 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2752 	local_irq_restore(flags);
2753 }
2754 
2755 void __netif_schedule(struct Qdisc *q)
2756 {
2757 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2758 		__netif_reschedule(q);
2759 }
2760 EXPORT_SYMBOL(__netif_schedule);
2761 
2762 struct dev_kfree_skb_cb {
2763 	enum skb_free_reason reason;
2764 };
2765 
2766 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2767 {
2768 	return (struct dev_kfree_skb_cb *)skb->cb;
2769 }
2770 
2771 void netif_schedule_queue(struct netdev_queue *txq)
2772 {
2773 	rcu_read_lock();
2774 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2775 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2776 
2777 		__netif_schedule(q);
2778 	}
2779 	rcu_read_unlock();
2780 }
2781 EXPORT_SYMBOL(netif_schedule_queue);
2782 
2783 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2784 {
2785 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2786 		struct Qdisc *q;
2787 
2788 		rcu_read_lock();
2789 		q = rcu_dereference(dev_queue->qdisc);
2790 		__netif_schedule(q);
2791 		rcu_read_unlock();
2792 	}
2793 }
2794 EXPORT_SYMBOL(netif_tx_wake_queue);
2795 
2796 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2797 {
2798 	unsigned long flags;
2799 
2800 	if (unlikely(!skb))
2801 		return;
2802 
2803 	if (likely(refcount_read(&skb->users) == 1)) {
2804 		smp_rmb();
2805 		refcount_set(&skb->users, 0);
2806 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
2807 		return;
2808 	}
2809 	get_kfree_skb_cb(skb)->reason = reason;
2810 	local_irq_save(flags);
2811 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2812 	__this_cpu_write(softnet_data.completion_queue, skb);
2813 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2814 	local_irq_restore(flags);
2815 }
2816 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2817 
2818 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2819 {
2820 	if (in_irq() || irqs_disabled())
2821 		__dev_kfree_skb_irq(skb, reason);
2822 	else
2823 		dev_kfree_skb(skb);
2824 }
2825 EXPORT_SYMBOL(__dev_kfree_skb_any);
2826 
2827 
2828 /**
2829  * netif_device_detach - mark device as removed
2830  * @dev: network device
2831  *
2832  * Mark device as removed from system and therefore no longer available.
2833  */
2834 void netif_device_detach(struct net_device *dev)
2835 {
2836 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2837 	    netif_running(dev)) {
2838 		netif_tx_stop_all_queues(dev);
2839 	}
2840 }
2841 EXPORT_SYMBOL(netif_device_detach);
2842 
2843 /**
2844  * netif_device_attach - mark device as attached
2845  * @dev: network device
2846  *
2847  * Mark device as attached from system and restart if needed.
2848  */
2849 void netif_device_attach(struct net_device *dev)
2850 {
2851 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2852 	    netif_running(dev)) {
2853 		netif_tx_wake_all_queues(dev);
2854 		__netdev_watchdog_up(dev);
2855 	}
2856 }
2857 EXPORT_SYMBOL(netif_device_attach);
2858 
2859 /*
2860  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2861  * to be used as a distribution range.
2862  */
2863 static u16 skb_tx_hash(const struct net_device *dev,
2864 		       const struct net_device *sb_dev,
2865 		       struct sk_buff *skb)
2866 {
2867 	u32 hash;
2868 	u16 qoffset = 0;
2869 	u16 qcount = dev->real_num_tx_queues;
2870 
2871 	if (dev->num_tc) {
2872 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2873 
2874 		qoffset = sb_dev->tc_to_txq[tc].offset;
2875 		qcount = sb_dev->tc_to_txq[tc].count;
2876 	}
2877 
2878 	if (skb_rx_queue_recorded(skb)) {
2879 		hash = skb_get_rx_queue(skb);
2880 		while (unlikely(hash >= qcount))
2881 			hash -= qcount;
2882 		return hash + qoffset;
2883 	}
2884 
2885 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2886 }
2887 
2888 static void skb_warn_bad_offload(const struct sk_buff *skb)
2889 {
2890 	static const netdev_features_t null_features;
2891 	struct net_device *dev = skb->dev;
2892 	const char *name = "";
2893 
2894 	if (!net_ratelimit())
2895 		return;
2896 
2897 	if (dev) {
2898 		if (dev->dev.parent)
2899 			name = dev_driver_string(dev->dev.parent);
2900 		else
2901 			name = netdev_name(dev);
2902 	}
2903 	skb_dump(KERN_WARNING, skb, false);
2904 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
2905 	     name, dev ? &dev->features : &null_features,
2906 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
2907 }
2908 
2909 /*
2910  * Invalidate hardware checksum when packet is to be mangled, and
2911  * complete checksum manually on outgoing path.
2912  */
2913 int skb_checksum_help(struct sk_buff *skb)
2914 {
2915 	__wsum csum;
2916 	int ret = 0, offset;
2917 
2918 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2919 		goto out_set_summed;
2920 
2921 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2922 		skb_warn_bad_offload(skb);
2923 		return -EINVAL;
2924 	}
2925 
2926 	/* Before computing a checksum, we should make sure no frag could
2927 	 * be modified by an external entity : checksum could be wrong.
2928 	 */
2929 	if (skb_has_shared_frag(skb)) {
2930 		ret = __skb_linearize(skb);
2931 		if (ret)
2932 			goto out;
2933 	}
2934 
2935 	offset = skb_checksum_start_offset(skb);
2936 	BUG_ON(offset >= skb_headlen(skb));
2937 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2938 
2939 	offset += skb->csum_offset;
2940 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2941 
2942 	if (skb_cloned(skb) &&
2943 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2944 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2945 		if (ret)
2946 			goto out;
2947 	}
2948 
2949 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2950 out_set_summed:
2951 	skb->ip_summed = CHECKSUM_NONE;
2952 out:
2953 	return ret;
2954 }
2955 EXPORT_SYMBOL(skb_checksum_help);
2956 
2957 int skb_crc32c_csum_help(struct sk_buff *skb)
2958 {
2959 	__le32 crc32c_csum;
2960 	int ret = 0, offset, start;
2961 
2962 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2963 		goto out;
2964 
2965 	if (unlikely(skb_is_gso(skb)))
2966 		goto out;
2967 
2968 	/* Before computing a checksum, we should make sure no frag could
2969 	 * be modified by an external entity : checksum could be wrong.
2970 	 */
2971 	if (unlikely(skb_has_shared_frag(skb))) {
2972 		ret = __skb_linearize(skb);
2973 		if (ret)
2974 			goto out;
2975 	}
2976 	start = skb_checksum_start_offset(skb);
2977 	offset = start + offsetof(struct sctphdr, checksum);
2978 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2979 		ret = -EINVAL;
2980 		goto out;
2981 	}
2982 	if (skb_cloned(skb) &&
2983 	    !skb_clone_writable(skb, offset + sizeof(__le32))) {
2984 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2985 		if (ret)
2986 			goto out;
2987 	}
2988 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2989 						  skb->len - start, ~(__u32)0,
2990 						  crc32c_csum_stub));
2991 	*(__le32 *)(skb->data + offset) = crc32c_csum;
2992 	skb->ip_summed = CHECKSUM_NONE;
2993 	skb->csum_not_inet = 0;
2994 out:
2995 	return ret;
2996 }
2997 
2998 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2999 {
3000 	__be16 type = skb->protocol;
3001 
3002 	/* Tunnel gso handlers can set protocol to ethernet. */
3003 	if (type == htons(ETH_P_TEB)) {
3004 		struct ethhdr *eth;
3005 
3006 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3007 			return 0;
3008 
3009 		eth = (struct ethhdr *)skb->data;
3010 		type = eth->h_proto;
3011 	}
3012 
3013 	return __vlan_get_protocol(skb, type, depth);
3014 }
3015 
3016 /**
3017  *	skb_mac_gso_segment - mac layer segmentation handler.
3018  *	@skb: buffer to segment
3019  *	@features: features for the output path (see dev->features)
3020  */
3021 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3022 				    netdev_features_t features)
3023 {
3024 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3025 	struct packet_offload *ptype;
3026 	int vlan_depth = skb->mac_len;
3027 	__be16 type = skb_network_protocol(skb, &vlan_depth);
3028 
3029 	if (unlikely(!type))
3030 		return ERR_PTR(-EINVAL);
3031 
3032 	__skb_pull(skb, vlan_depth);
3033 
3034 	rcu_read_lock();
3035 	list_for_each_entry_rcu(ptype, &offload_base, list) {
3036 		if (ptype->type == type && ptype->callbacks.gso_segment) {
3037 			segs = ptype->callbacks.gso_segment(skb, features);
3038 			break;
3039 		}
3040 	}
3041 	rcu_read_unlock();
3042 
3043 	__skb_push(skb, skb->data - skb_mac_header(skb));
3044 
3045 	return segs;
3046 }
3047 EXPORT_SYMBOL(skb_mac_gso_segment);
3048 
3049 
3050 /* openvswitch calls this on rx path, so we need a different check.
3051  */
3052 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3053 {
3054 	if (tx_path)
3055 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3056 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3057 
3058 	return skb->ip_summed == CHECKSUM_NONE;
3059 }
3060 
3061 /**
3062  *	__skb_gso_segment - Perform segmentation on skb.
3063  *	@skb: buffer to segment
3064  *	@features: features for the output path (see dev->features)
3065  *	@tx_path: whether it is called in TX path
3066  *
3067  *	This function segments the given skb and returns a list of segments.
3068  *
3069  *	It may return NULL if the skb requires no segmentation.  This is
3070  *	only possible when GSO is used for verifying header integrity.
3071  *
3072  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3073  */
3074 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3075 				  netdev_features_t features, bool tx_path)
3076 {
3077 	struct sk_buff *segs;
3078 
3079 	if (unlikely(skb_needs_check(skb, tx_path))) {
3080 		int err;
3081 
3082 		/* We're going to init ->check field in TCP or UDP header */
3083 		err = skb_cow_head(skb, 0);
3084 		if (err < 0)
3085 			return ERR_PTR(err);
3086 	}
3087 
3088 	/* Only report GSO partial support if it will enable us to
3089 	 * support segmentation on this frame without needing additional
3090 	 * work.
3091 	 */
3092 	if (features & NETIF_F_GSO_PARTIAL) {
3093 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3094 		struct net_device *dev = skb->dev;
3095 
3096 		partial_features |= dev->features & dev->gso_partial_features;
3097 		if (!skb_gso_ok(skb, features | partial_features))
3098 			features &= ~NETIF_F_GSO_PARTIAL;
3099 	}
3100 
3101 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3102 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3103 
3104 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3105 	SKB_GSO_CB(skb)->encap_level = 0;
3106 
3107 	skb_reset_mac_header(skb);
3108 	skb_reset_mac_len(skb);
3109 
3110 	segs = skb_mac_gso_segment(skb, features);
3111 
3112 	if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3113 		skb_warn_bad_offload(skb);
3114 
3115 	return segs;
3116 }
3117 EXPORT_SYMBOL(__skb_gso_segment);
3118 
3119 /* Take action when hardware reception checksum errors are detected. */
3120 #ifdef CONFIG_BUG
3121 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3122 {
3123 	if (net_ratelimit()) {
3124 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3125 		skb_dump(KERN_ERR, skb, true);
3126 		dump_stack();
3127 	}
3128 }
3129 EXPORT_SYMBOL(netdev_rx_csum_fault);
3130 #endif
3131 
3132 /* XXX: check that highmem exists at all on the given machine. */
3133 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3134 {
3135 #ifdef CONFIG_HIGHMEM
3136 	int i;
3137 
3138 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3139 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3140 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3141 
3142 			if (PageHighMem(skb_frag_page(frag)))
3143 				return 1;
3144 		}
3145 	}
3146 #endif
3147 	return 0;
3148 }
3149 
3150 /* If MPLS offload request, verify we are testing hardware MPLS features
3151  * instead of standard features for the netdev.
3152  */
3153 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3154 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3155 					   netdev_features_t features,
3156 					   __be16 type)
3157 {
3158 	if (eth_p_mpls(type))
3159 		features &= skb->dev->mpls_features;
3160 
3161 	return features;
3162 }
3163 #else
3164 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3165 					   netdev_features_t features,
3166 					   __be16 type)
3167 {
3168 	return features;
3169 }
3170 #endif
3171 
3172 static netdev_features_t harmonize_features(struct sk_buff *skb,
3173 	netdev_features_t features)
3174 {
3175 	int tmp;
3176 	__be16 type;
3177 
3178 	type = skb_network_protocol(skb, &tmp);
3179 	features = net_mpls_features(skb, features, type);
3180 
3181 	if (skb->ip_summed != CHECKSUM_NONE &&
3182 	    !can_checksum_protocol(features, type)) {
3183 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3184 	}
3185 	if (illegal_highdma(skb->dev, skb))
3186 		features &= ~NETIF_F_SG;
3187 
3188 	return features;
3189 }
3190 
3191 netdev_features_t passthru_features_check(struct sk_buff *skb,
3192 					  struct net_device *dev,
3193 					  netdev_features_t features)
3194 {
3195 	return features;
3196 }
3197 EXPORT_SYMBOL(passthru_features_check);
3198 
3199 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3200 					     struct net_device *dev,
3201 					     netdev_features_t features)
3202 {
3203 	return vlan_features_check(skb, features);
3204 }
3205 
3206 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3207 					    struct net_device *dev,
3208 					    netdev_features_t features)
3209 {
3210 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3211 
3212 	if (gso_segs > dev->gso_max_segs)
3213 		return features & ~NETIF_F_GSO_MASK;
3214 
3215 	/* Support for GSO partial features requires software
3216 	 * intervention before we can actually process the packets
3217 	 * so we need to strip support for any partial features now
3218 	 * and we can pull them back in after we have partially
3219 	 * segmented the frame.
3220 	 */
3221 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3222 		features &= ~dev->gso_partial_features;
3223 
3224 	/* Make sure to clear the IPv4 ID mangling feature if the
3225 	 * IPv4 header has the potential to be fragmented.
3226 	 */
3227 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3228 		struct iphdr *iph = skb->encapsulation ?
3229 				    inner_ip_hdr(skb) : ip_hdr(skb);
3230 
3231 		if (!(iph->frag_off & htons(IP_DF)))
3232 			features &= ~NETIF_F_TSO_MANGLEID;
3233 	}
3234 
3235 	return features;
3236 }
3237 
3238 netdev_features_t netif_skb_features(struct sk_buff *skb)
3239 {
3240 	struct net_device *dev = skb->dev;
3241 	netdev_features_t features = dev->features;
3242 
3243 	if (skb_is_gso(skb))
3244 		features = gso_features_check(skb, dev, features);
3245 
3246 	/* If encapsulation offload request, verify we are testing
3247 	 * hardware encapsulation features instead of standard
3248 	 * features for the netdev
3249 	 */
3250 	if (skb->encapsulation)
3251 		features &= dev->hw_enc_features;
3252 
3253 	if (skb_vlan_tagged(skb))
3254 		features = netdev_intersect_features(features,
3255 						     dev->vlan_features |
3256 						     NETIF_F_HW_VLAN_CTAG_TX |
3257 						     NETIF_F_HW_VLAN_STAG_TX);
3258 
3259 	if (dev->netdev_ops->ndo_features_check)
3260 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3261 								features);
3262 	else
3263 		features &= dflt_features_check(skb, dev, features);
3264 
3265 	return harmonize_features(skb, features);
3266 }
3267 EXPORT_SYMBOL(netif_skb_features);
3268 
3269 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3270 		    struct netdev_queue *txq, bool more)
3271 {
3272 	unsigned int len;
3273 	int rc;
3274 
3275 	if (dev_nit_active(dev))
3276 		dev_queue_xmit_nit(skb, dev);
3277 
3278 	len = skb->len;
3279 	trace_net_dev_start_xmit(skb, dev);
3280 	rc = netdev_start_xmit(skb, dev, txq, more);
3281 	trace_net_dev_xmit(skb, rc, dev, len);
3282 
3283 	return rc;
3284 }
3285 
3286 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3287 				    struct netdev_queue *txq, int *ret)
3288 {
3289 	struct sk_buff *skb = first;
3290 	int rc = NETDEV_TX_OK;
3291 
3292 	while (skb) {
3293 		struct sk_buff *next = skb->next;
3294 
3295 		skb_mark_not_on_list(skb);
3296 		rc = xmit_one(skb, dev, txq, next != NULL);
3297 		if (unlikely(!dev_xmit_complete(rc))) {
3298 			skb->next = next;
3299 			goto out;
3300 		}
3301 
3302 		skb = next;
3303 		if (netif_tx_queue_stopped(txq) && skb) {
3304 			rc = NETDEV_TX_BUSY;
3305 			break;
3306 		}
3307 	}
3308 
3309 out:
3310 	*ret = rc;
3311 	return skb;
3312 }
3313 
3314 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3315 					  netdev_features_t features)
3316 {
3317 	if (skb_vlan_tag_present(skb) &&
3318 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3319 		skb = __vlan_hwaccel_push_inside(skb);
3320 	return skb;
3321 }
3322 
3323 int skb_csum_hwoffload_help(struct sk_buff *skb,
3324 			    const netdev_features_t features)
3325 {
3326 	if (unlikely(skb->csum_not_inet))
3327 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3328 			skb_crc32c_csum_help(skb);
3329 
3330 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3331 }
3332 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3333 
3334 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3335 {
3336 	netdev_features_t features;
3337 
3338 	features = netif_skb_features(skb);
3339 	skb = validate_xmit_vlan(skb, features);
3340 	if (unlikely(!skb))
3341 		goto out_null;
3342 
3343 	skb = sk_validate_xmit_skb(skb, dev);
3344 	if (unlikely(!skb))
3345 		goto out_null;
3346 
3347 	if (netif_needs_gso(skb, features)) {
3348 		struct sk_buff *segs;
3349 
3350 		segs = skb_gso_segment(skb, features);
3351 		if (IS_ERR(segs)) {
3352 			goto out_kfree_skb;
3353 		} else if (segs) {
3354 			consume_skb(skb);
3355 			skb = segs;
3356 		}
3357 	} else {
3358 		if (skb_needs_linearize(skb, features) &&
3359 		    __skb_linearize(skb))
3360 			goto out_kfree_skb;
3361 
3362 		/* If packet is not checksummed and device does not
3363 		 * support checksumming for this protocol, complete
3364 		 * checksumming here.
3365 		 */
3366 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3367 			if (skb->encapsulation)
3368 				skb_set_inner_transport_header(skb,
3369 							       skb_checksum_start_offset(skb));
3370 			else
3371 				skb_set_transport_header(skb,
3372 							 skb_checksum_start_offset(skb));
3373 			if (skb_csum_hwoffload_help(skb, features))
3374 				goto out_kfree_skb;
3375 		}
3376 	}
3377 
3378 	skb = validate_xmit_xfrm(skb, features, again);
3379 
3380 	return skb;
3381 
3382 out_kfree_skb:
3383 	kfree_skb(skb);
3384 out_null:
3385 	atomic_long_inc(&dev->tx_dropped);
3386 	return NULL;
3387 }
3388 
3389 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3390 {
3391 	struct sk_buff *next, *head = NULL, *tail;
3392 
3393 	for (; skb != NULL; skb = next) {
3394 		next = skb->next;
3395 		skb_mark_not_on_list(skb);
3396 
3397 		/* in case skb wont be segmented, point to itself */
3398 		skb->prev = skb;
3399 
3400 		skb = validate_xmit_skb(skb, dev, again);
3401 		if (!skb)
3402 			continue;
3403 
3404 		if (!head)
3405 			head = skb;
3406 		else
3407 			tail->next = skb;
3408 		/* If skb was segmented, skb->prev points to
3409 		 * the last segment. If not, it still contains skb.
3410 		 */
3411 		tail = skb->prev;
3412 	}
3413 	return head;
3414 }
3415 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3416 
3417 static void qdisc_pkt_len_init(struct sk_buff *skb)
3418 {
3419 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3420 
3421 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3422 
3423 	/* To get more precise estimation of bytes sent on wire,
3424 	 * we add to pkt_len the headers size of all segments
3425 	 */
3426 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3427 		unsigned int hdr_len;
3428 		u16 gso_segs = shinfo->gso_segs;
3429 
3430 		/* mac layer + network layer */
3431 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3432 
3433 		/* + transport layer */
3434 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3435 			const struct tcphdr *th;
3436 			struct tcphdr _tcphdr;
3437 
3438 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3439 						sizeof(_tcphdr), &_tcphdr);
3440 			if (likely(th))
3441 				hdr_len += __tcp_hdrlen(th);
3442 		} else {
3443 			struct udphdr _udphdr;
3444 
3445 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3446 					       sizeof(_udphdr), &_udphdr))
3447 				hdr_len += sizeof(struct udphdr);
3448 		}
3449 
3450 		if (shinfo->gso_type & SKB_GSO_DODGY)
3451 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3452 						shinfo->gso_size);
3453 
3454 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3455 	}
3456 }
3457 
3458 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3459 				 struct net_device *dev,
3460 				 struct netdev_queue *txq)
3461 {
3462 	spinlock_t *root_lock = qdisc_lock(q);
3463 	struct sk_buff *to_free = NULL;
3464 	bool contended;
3465 	int rc;
3466 
3467 	qdisc_calculate_pkt_len(skb, q);
3468 
3469 	if (q->flags & TCQ_F_NOLOCK) {
3470 		if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3471 			__qdisc_drop(skb, &to_free);
3472 			rc = NET_XMIT_DROP;
3473 		} else if ((q->flags & TCQ_F_CAN_BYPASS) && q->empty &&
3474 			   qdisc_run_begin(q)) {
3475 			qdisc_bstats_cpu_update(q, skb);
3476 
3477 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true))
3478 				__qdisc_run(q);
3479 
3480 			qdisc_run_end(q);
3481 			rc = NET_XMIT_SUCCESS;
3482 		} else {
3483 			rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3484 			qdisc_run(q);
3485 		}
3486 
3487 		if (unlikely(to_free))
3488 			kfree_skb_list(to_free);
3489 		return rc;
3490 	}
3491 
3492 	/*
3493 	 * Heuristic to force contended enqueues to serialize on a
3494 	 * separate lock before trying to get qdisc main lock.
3495 	 * This permits qdisc->running owner to get the lock more
3496 	 * often and dequeue packets faster.
3497 	 */
3498 	contended = qdisc_is_running(q);
3499 	if (unlikely(contended))
3500 		spin_lock(&q->busylock);
3501 
3502 	spin_lock(root_lock);
3503 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3504 		__qdisc_drop(skb, &to_free);
3505 		rc = NET_XMIT_DROP;
3506 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3507 		   qdisc_run_begin(q)) {
3508 		/*
3509 		 * This is a work-conserving queue; there are no old skbs
3510 		 * waiting to be sent out; and the qdisc is not running -
3511 		 * xmit the skb directly.
3512 		 */
3513 
3514 		qdisc_bstats_update(q, skb);
3515 
3516 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3517 			if (unlikely(contended)) {
3518 				spin_unlock(&q->busylock);
3519 				contended = false;
3520 			}
3521 			__qdisc_run(q);
3522 		}
3523 
3524 		qdisc_run_end(q);
3525 		rc = NET_XMIT_SUCCESS;
3526 	} else {
3527 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3528 		if (qdisc_run_begin(q)) {
3529 			if (unlikely(contended)) {
3530 				spin_unlock(&q->busylock);
3531 				contended = false;
3532 			}
3533 			__qdisc_run(q);
3534 			qdisc_run_end(q);
3535 		}
3536 	}
3537 	spin_unlock(root_lock);
3538 	if (unlikely(to_free))
3539 		kfree_skb_list(to_free);
3540 	if (unlikely(contended))
3541 		spin_unlock(&q->busylock);
3542 	return rc;
3543 }
3544 
3545 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3546 static void skb_update_prio(struct sk_buff *skb)
3547 {
3548 	const struct netprio_map *map;
3549 	const struct sock *sk;
3550 	unsigned int prioidx;
3551 
3552 	if (skb->priority)
3553 		return;
3554 	map = rcu_dereference_bh(skb->dev->priomap);
3555 	if (!map)
3556 		return;
3557 	sk = skb_to_full_sk(skb);
3558 	if (!sk)
3559 		return;
3560 
3561 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3562 
3563 	if (prioidx < map->priomap_len)
3564 		skb->priority = map->priomap[prioidx];
3565 }
3566 #else
3567 #define skb_update_prio(skb)
3568 #endif
3569 
3570 /**
3571  *	dev_loopback_xmit - loop back @skb
3572  *	@net: network namespace this loopback is happening in
3573  *	@sk:  sk needed to be a netfilter okfn
3574  *	@skb: buffer to transmit
3575  */
3576 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3577 {
3578 	skb_reset_mac_header(skb);
3579 	__skb_pull(skb, skb_network_offset(skb));
3580 	skb->pkt_type = PACKET_LOOPBACK;
3581 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3582 	WARN_ON(!skb_dst(skb));
3583 	skb_dst_force(skb);
3584 	netif_rx_ni(skb);
3585 	return 0;
3586 }
3587 EXPORT_SYMBOL(dev_loopback_xmit);
3588 
3589 #ifdef CONFIG_NET_EGRESS
3590 static struct sk_buff *
3591 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3592 {
3593 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3594 	struct tcf_result cl_res;
3595 
3596 	if (!miniq)
3597 		return skb;
3598 
3599 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3600 	mini_qdisc_bstats_cpu_update(miniq, skb);
3601 
3602 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3603 	case TC_ACT_OK:
3604 	case TC_ACT_RECLASSIFY:
3605 		skb->tc_index = TC_H_MIN(cl_res.classid);
3606 		break;
3607 	case TC_ACT_SHOT:
3608 		mini_qdisc_qstats_cpu_drop(miniq);
3609 		*ret = NET_XMIT_DROP;
3610 		kfree_skb(skb);
3611 		return NULL;
3612 	case TC_ACT_STOLEN:
3613 	case TC_ACT_QUEUED:
3614 	case TC_ACT_TRAP:
3615 		*ret = NET_XMIT_SUCCESS;
3616 		consume_skb(skb);
3617 		return NULL;
3618 	case TC_ACT_REDIRECT:
3619 		/* No need to push/pop skb's mac_header here on egress! */
3620 		skb_do_redirect(skb);
3621 		*ret = NET_XMIT_SUCCESS;
3622 		return NULL;
3623 	default:
3624 		break;
3625 	}
3626 
3627 	return skb;
3628 }
3629 #endif /* CONFIG_NET_EGRESS */
3630 
3631 #ifdef CONFIG_XPS
3632 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3633 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3634 {
3635 	struct xps_map *map;
3636 	int queue_index = -1;
3637 
3638 	if (dev->num_tc) {
3639 		tci *= dev->num_tc;
3640 		tci += netdev_get_prio_tc_map(dev, skb->priority);
3641 	}
3642 
3643 	map = rcu_dereference(dev_maps->attr_map[tci]);
3644 	if (map) {
3645 		if (map->len == 1)
3646 			queue_index = map->queues[0];
3647 		else
3648 			queue_index = map->queues[reciprocal_scale(
3649 						skb_get_hash(skb), map->len)];
3650 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3651 			queue_index = -1;
3652 	}
3653 	return queue_index;
3654 }
3655 #endif
3656 
3657 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3658 			 struct sk_buff *skb)
3659 {
3660 #ifdef CONFIG_XPS
3661 	struct xps_dev_maps *dev_maps;
3662 	struct sock *sk = skb->sk;
3663 	int queue_index = -1;
3664 
3665 	if (!static_key_false(&xps_needed))
3666 		return -1;
3667 
3668 	rcu_read_lock();
3669 	if (!static_key_false(&xps_rxqs_needed))
3670 		goto get_cpus_map;
3671 
3672 	dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3673 	if (dev_maps) {
3674 		int tci = sk_rx_queue_get(sk);
3675 
3676 		if (tci >= 0 && tci < dev->num_rx_queues)
3677 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3678 							  tci);
3679 	}
3680 
3681 get_cpus_map:
3682 	if (queue_index < 0) {
3683 		dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3684 		if (dev_maps) {
3685 			unsigned int tci = skb->sender_cpu - 1;
3686 
3687 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3688 							  tci);
3689 		}
3690 	}
3691 	rcu_read_unlock();
3692 
3693 	return queue_index;
3694 #else
3695 	return -1;
3696 #endif
3697 }
3698 
3699 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3700 		     struct net_device *sb_dev)
3701 {
3702 	return 0;
3703 }
3704 EXPORT_SYMBOL(dev_pick_tx_zero);
3705 
3706 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3707 		       struct net_device *sb_dev)
3708 {
3709 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3710 }
3711 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3712 
3713 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3714 		     struct net_device *sb_dev)
3715 {
3716 	struct sock *sk = skb->sk;
3717 	int queue_index = sk_tx_queue_get(sk);
3718 
3719 	sb_dev = sb_dev ? : dev;
3720 
3721 	if (queue_index < 0 || skb->ooo_okay ||
3722 	    queue_index >= dev->real_num_tx_queues) {
3723 		int new_index = get_xps_queue(dev, sb_dev, skb);
3724 
3725 		if (new_index < 0)
3726 			new_index = skb_tx_hash(dev, sb_dev, skb);
3727 
3728 		if (queue_index != new_index && sk &&
3729 		    sk_fullsock(sk) &&
3730 		    rcu_access_pointer(sk->sk_dst_cache))
3731 			sk_tx_queue_set(sk, new_index);
3732 
3733 		queue_index = new_index;
3734 	}
3735 
3736 	return queue_index;
3737 }
3738 EXPORT_SYMBOL(netdev_pick_tx);
3739 
3740 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3741 					 struct sk_buff *skb,
3742 					 struct net_device *sb_dev)
3743 {
3744 	int queue_index = 0;
3745 
3746 #ifdef CONFIG_XPS
3747 	u32 sender_cpu = skb->sender_cpu - 1;
3748 
3749 	if (sender_cpu >= (u32)NR_CPUS)
3750 		skb->sender_cpu = raw_smp_processor_id() + 1;
3751 #endif
3752 
3753 	if (dev->real_num_tx_queues != 1) {
3754 		const struct net_device_ops *ops = dev->netdev_ops;
3755 
3756 		if (ops->ndo_select_queue)
3757 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
3758 		else
3759 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
3760 
3761 		queue_index = netdev_cap_txqueue(dev, queue_index);
3762 	}
3763 
3764 	skb_set_queue_mapping(skb, queue_index);
3765 	return netdev_get_tx_queue(dev, queue_index);
3766 }
3767 
3768 /**
3769  *	__dev_queue_xmit - transmit a buffer
3770  *	@skb: buffer to transmit
3771  *	@sb_dev: suboordinate device used for L2 forwarding offload
3772  *
3773  *	Queue a buffer for transmission to a network device. The caller must
3774  *	have set the device and priority and built the buffer before calling
3775  *	this function. The function can be called from an interrupt.
3776  *
3777  *	A negative errno code is returned on a failure. A success does not
3778  *	guarantee the frame will be transmitted as it may be dropped due
3779  *	to congestion or traffic shaping.
3780  *
3781  * -----------------------------------------------------------------------------------
3782  *      I notice this method can also return errors from the queue disciplines,
3783  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3784  *      be positive.
3785  *
3786  *      Regardless of the return value, the skb is consumed, so it is currently
3787  *      difficult to retry a send to this method.  (You can bump the ref count
3788  *      before sending to hold a reference for retry if you are careful.)
3789  *
3790  *      When calling this method, interrupts MUST be enabled.  This is because
3791  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3792  *          --BLG
3793  */
3794 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3795 {
3796 	struct net_device *dev = skb->dev;
3797 	struct netdev_queue *txq;
3798 	struct Qdisc *q;
3799 	int rc = -ENOMEM;
3800 	bool again = false;
3801 
3802 	skb_reset_mac_header(skb);
3803 
3804 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3805 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3806 
3807 	/* Disable soft irqs for various locks below. Also
3808 	 * stops preemption for RCU.
3809 	 */
3810 	rcu_read_lock_bh();
3811 
3812 	skb_update_prio(skb);
3813 
3814 	qdisc_pkt_len_init(skb);
3815 #ifdef CONFIG_NET_CLS_ACT
3816 	skb->tc_at_ingress = 0;
3817 # ifdef CONFIG_NET_EGRESS
3818 	if (static_branch_unlikely(&egress_needed_key)) {
3819 		skb = sch_handle_egress(skb, &rc, dev);
3820 		if (!skb)
3821 			goto out;
3822 	}
3823 # endif
3824 #endif
3825 	/* If device/qdisc don't need skb->dst, release it right now while
3826 	 * its hot in this cpu cache.
3827 	 */
3828 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3829 		skb_dst_drop(skb);
3830 	else
3831 		skb_dst_force(skb);
3832 
3833 	txq = netdev_core_pick_tx(dev, skb, sb_dev);
3834 	q = rcu_dereference_bh(txq->qdisc);
3835 
3836 	trace_net_dev_queue(skb);
3837 	if (q->enqueue) {
3838 		rc = __dev_xmit_skb(skb, q, dev, txq);
3839 		goto out;
3840 	}
3841 
3842 	/* The device has no queue. Common case for software devices:
3843 	 * loopback, all the sorts of tunnels...
3844 
3845 	 * Really, it is unlikely that netif_tx_lock protection is necessary
3846 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3847 	 * counters.)
3848 	 * However, it is possible, that they rely on protection
3849 	 * made by us here.
3850 
3851 	 * Check this and shot the lock. It is not prone from deadlocks.
3852 	 *Either shot noqueue qdisc, it is even simpler 8)
3853 	 */
3854 	if (dev->flags & IFF_UP) {
3855 		int cpu = smp_processor_id(); /* ok because BHs are off */
3856 
3857 		if (txq->xmit_lock_owner != cpu) {
3858 			if (dev_xmit_recursion())
3859 				goto recursion_alert;
3860 
3861 			skb = validate_xmit_skb(skb, dev, &again);
3862 			if (!skb)
3863 				goto out;
3864 
3865 			HARD_TX_LOCK(dev, txq, cpu);
3866 
3867 			if (!netif_xmit_stopped(txq)) {
3868 				dev_xmit_recursion_inc();
3869 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3870 				dev_xmit_recursion_dec();
3871 				if (dev_xmit_complete(rc)) {
3872 					HARD_TX_UNLOCK(dev, txq);
3873 					goto out;
3874 				}
3875 			}
3876 			HARD_TX_UNLOCK(dev, txq);
3877 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3878 					     dev->name);
3879 		} else {
3880 			/* Recursion is detected! It is possible,
3881 			 * unfortunately
3882 			 */
3883 recursion_alert:
3884 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3885 					     dev->name);
3886 		}
3887 	}
3888 
3889 	rc = -ENETDOWN;
3890 	rcu_read_unlock_bh();
3891 
3892 	atomic_long_inc(&dev->tx_dropped);
3893 	kfree_skb_list(skb);
3894 	return rc;
3895 out:
3896 	rcu_read_unlock_bh();
3897 	return rc;
3898 }
3899 
3900 int dev_queue_xmit(struct sk_buff *skb)
3901 {
3902 	return __dev_queue_xmit(skb, NULL);
3903 }
3904 EXPORT_SYMBOL(dev_queue_xmit);
3905 
3906 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3907 {
3908 	return __dev_queue_xmit(skb, sb_dev);
3909 }
3910 EXPORT_SYMBOL(dev_queue_xmit_accel);
3911 
3912 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3913 {
3914 	struct net_device *dev = skb->dev;
3915 	struct sk_buff *orig_skb = skb;
3916 	struct netdev_queue *txq;
3917 	int ret = NETDEV_TX_BUSY;
3918 	bool again = false;
3919 
3920 	if (unlikely(!netif_running(dev) ||
3921 		     !netif_carrier_ok(dev)))
3922 		goto drop;
3923 
3924 	skb = validate_xmit_skb_list(skb, dev, &again);
3925 	if (skb != orig_skb)
3926 		goto drop;
3927 
3928 	skb_set_queue_mapping(skb, queue_id);
3929 	txq = skb_get_tx_queue(dev, skb);
3930 
3931 	local_bh_disable();
3932 
3933 	HARD_TX_LOCK(dev, txq, smp_processor_id());
3934 	if (!netif_xmit_frozen_or_drv_stopped(txq))
3935 		ret = netdev_start_xmit(skb, dev, txq, false);
3936 	HARD_TX_UNLOCK(dev, txq);
3937 
3938 	local_bh_enable();
3939 
3940 	if (!dev_xmit_complete(ret))
3941 		kfree_skb(skb);
3942 
3943 	return ret;
3944 drop:
3945 	atomic_long_inc(&dev->tx_dropped);
3946 	kfree_skb_list(skb);
3947 	return NET_XMIT_DROP;
3948 }
3949 EXPORT_SYMBOL(dev_direct_xmit);
3950 
3951 /*************************************************************************
3952  *			Receiver routines
3953  *************************************************************************/
3954 
3955 int netdev_max_backlog __read_mostly = 1000;
3956 EXPORT_SYMBOL(netdev_max_backlog);
3957 
3958 int netdev_tstamp_prequeue __read_mostly = 1;
3959 int netdev_budget __read_mostly = 300;
3960 unsigned int __read_mostly netdev_budget_usecs = 2000;
3961 int weight_p __read_mostly = 64;           /* old backlog weight */
3962 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3963 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3964 int dev_rx_weight __read_mostly = 64;
3965 int dev_tx_weight __read_mostly = 64;
3966 
3967 /* Called with irq disabled */
3968 static inline void ____napi_schedule(struct softnet_data *sd,
3969 				     struct napi_struct *napi)
3970 {
3971 	list_add_tail(&napi->poll_list, &sd->poll_list);
3972 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3973 }
3974 
3975 #ifdef CONFIG_RPS
3976 
3977 /* One global table that all flow-based protocols share. */
3978 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3979 EXPORT_SYMBOL(rps_sock_flow_table);
3980 u32 rps_cpu_mask __read_mostly;
3981 EXPORT_SYMBOL(rps_cpu_mask);
3982 
3983 struct static_key_false rps_needed __read_mostly;
3984 EXPORT_SYMBOL(rps_needed);
3985 struct static_key_false rfs_needed __read_mostly;
3986 EXPORT_SYMBOL(rfs_needed);
3987 
3988 static struct rps_dev_flow *
3989 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3990 	    struct rps_dev_flow *rflow, u16 next_cpu)
3991 {
3992 	if (next_cpu < nr_cpu_ids) {
3993 #ifdef CONFIG_RFS_ACCEL
3994 		struct netdev_rx_queue *rxqueue;
3995 		struct rps_dev_flow_table *flow_table;
3996 		struct rps_dev_flow *old_rflow;
3997 		u32 flow_id;
3998 		u16 rxq_index;
3999 		int rc;
4000 
4001 		/* Should we steer this flow to a different hardware queue? */
4002 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4003 		    !(dev->features & NETIF_F_NTUPLE))
4004 			goto out;
4005 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4006 		if (rxq_index == skb_get_rx_queue(skb))
4007 			goto out;
4008 
4009 		rxqueue = dev->_rx + rxq_index;
4010 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4011 		if (!flow_table)
4012 			goto out;
4013 		flow_id = skb_get_hash(skb) & flow_table->mask;
4014 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4015 							rxq_index, flow_id);
4016 		if (rc < 0)
4017 			goto out;
4018 		old_rflow = rflow;
4019 		rflow = &flow_table->flows[flow_id];
4020 		rflow->filter = rc;
4021 		if (old_rflow->filter == rflow->filter)
4022 			old_rflow->filter = RPS_NO_FILTER;
4023 	out:
4024 #endif
4025 		rflow->last_qtail =
4026 			per_cpu(softnet_data, next_cpu).input_queue_head;
4027 	}
4028 
4029 	rflow->cpu = next_cpu;
4030 	return rflow;
4031 }
4032 
4033 /*
4034  * get_rps_cpu is called from netif_receive_skb and returns the target
4035  * CPU from the RPS map of the receiving queue for a given skb.
4036  * rcu_read_lock must be held on entry.
4037  */
4038 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4039 		       struct rps_dev_flow **rflowp)
4040 {
4041 	const struct rps_sock_flow_table *sock_flow_table;
4042 	struct netdev_rx_queue *rxqueue = dev->_rx;
4043 	struct rps_dev_flow_table *flow_table;
4044 	struct rps_map *map;
4045 	int cpu = -1;
4046 	u32 tcpu;
4047 	u32 hash;
4048 
4049 	if (skb_rx_queue_recorded(skb)) {
4050 		u16 index = skb_get_rx_queue(skb);
4051 
4052 		if (unlikely(index >= dev->real_num_rx_queues)) {
4053 			WARN_ONCE(dev->real_num_rx_queues > 1,
4054 				  "%s received packet on queue %u, but number "
4055 				  "of RX queues is %u\n",
4056 				  dev->name, index, dev->real_num_rx_queues);
4057 			goto done;
4058 		}
4059 		rxqueue += index;
4060 	}
4061 
4062 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4063 
4064 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4065 	map = rcu_dereference(rxqueue->rps_map);
4066 	if (!flow_table && !map)
4067 		goto done;
4068 
4069 	skb_reset_network_header(skb);
4070 	hash = skb_get_hash(skb);
4071 	if (!hash)
4072 		goto done;
4073 
4074 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4075 	if (flow_table && sock_flow_table) {
4076 		struct rps_dev_flow *rflow;
4077 		u32 next_cpu;
4078 		u32 ident;
4079 
4080 		/* First check into global flow table if there is a match */
4081 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4082 		if ((ident ^ hash) & ~rps_cpu_mask)
4083 			goto try_rps;
4084 
4085 		next_cpu = ident & rps_cpu_mask;
4086 
4087 		/* OK, now we know there is a match,
4088 		 * we can look at the local (per receive queue) flow table
4089 		 */
4090 		rflow = &flow_table->flows[hash & flow_table->mask];
4091 		tcpu = rflow->cpu;
4092 
4093 		/*
4094 		 * If the desired CPU (where last recvmsg was done) is
4095 		 * different from current CPU (one in the rx-queue flow
4096 		 * table entry), switch if one of the following holds:
4097 		 *   - Current CPU is unset (>= nr_cpu_ids).
4098 		 *   - Current CPU is offline.
4099 		 *   - The current CPU's queue tail has advanced beyond the
4100 		 *     last packet that was enqueued using this table entry.
4101 		 *     This guarantees that all previous packets for the flow
4102 		 *     have been dequeued, thus preserving in order delivery.
4103 		 */
4104 		if (unlikely(tcpu != next_cpu) &&
4105 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4106 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4107 		      rflow->last_qtail)) >= 0)) {
4108 			tcpu = next_cpu;
4109 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4110 		}
4111 
4112 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4113 			*rflowp = rflow;
4114 			cpu = tcpu;
4115 			goto done;
4116 		}
4117 	}
4118 
4119 try_rps:
4120 
4121 	if (map) {
4122 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4123 		if (cpu_online(tcpu)) {
4124 			cpu = tcpu;
4125 			goto done;
4126 		}
4127 	}
4128 
4129 done:
4130 	return cpu;
4131 }
4132 
4133 #ifdef CONFIG_RFS_ACCEL
4134 
4135 /**
4136  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4137  * @dev: Device on which the filter was set
4138  * @rxq_index: RX queue index
4139  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4140  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4141  *
4142  * Drivers that implement ndo_rx_flow_steer() should periodically call
4143  * this function for each installed filter and remove the filters for
4144  * which it returns %true.
4145  */
4146 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4147 			 u32 flow_id, u16 filter_id)
4148 {
4149 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4150 	struct rps_dev_flow_table *flow_table;
4151 	struct rps_dev_flow *rflow;
4152 	bool expire = true;
4153 	unsigned int cpu;
4154 
4155 	rcu_read_lock();
4156 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4157 	if (flow_table && flow_id <= flow_table->mask) {
4158 		rflow = &flow_table->flows[flow_id];
4159 		cpu = READ_ONCE(rflow->cpu);
4160 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4161 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4162 			   rflow->last_qtail) <
4163 		     (int)(10 * flow_table->mask)))
4164 			expire = false;
4165 	}
4166 	rcu_read_unlock();
4167 	return expire;
4168 }
4169 EXPORT_SYMBOL(rps_may_expire_flow);
4170 
4171 #endif /* CONFIG_RFS_ACCEL */
4172 
4173 /* Called from hardirq (IPI) context */
4174 static void rps_trigger_softirq(void *data)
4175 {
4176 	struct softnet_data *sd = data;
4177 
4178 	____napi_schedule(sd, &sd->backlog);
4179 	sd->received_rps++;
4180 }
4181 
4182 #endif /* CONFIG_RPS */
4183 
4184 /*
4185  * Check if this softnet_data structure is another cpu one
4186  * If yes, queue it to our IPI list and return 1
4187  * If no, return 0
4188  */
4189 static int rps_ipi_queued(struct softnet_data *sd)
4190 {
4191 #ifdef CONFIG_RPS
4192 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4193 
4194 	if (sd != mysd) {
4195 		sd->rps_ipi_next = mysd->rps_ipi_list;
4196 		mysd->rps_ipi_list = sd;
4197 
4198 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4199 		return 1;
4200 	}
4201 #endif /* CONFIG_RPS */
4202 	return 0;
4203 }
4204 
4205 #ifdef CONFIG_NET_FLOW_LIMIT
4206 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4207 #endif
4208 
4209 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4210 {
4211 #ifdef CONFIG_NET_FLOW_LIMIT
4212 	struct sd_flow_limit *fl;
4213 	struct softnet_data *sd;
4214 	unsigned int old_flow, new_flow;
4215 
4216 	if (qlen < (netdev_max_backlog >> 1))
4217 		return false;
4218 
4219 	sd = this_cpu_ptr(&softnet_data);
4220 
4221 	rcu_read_lock();
4222 	fl = rcu_dereference(sd->flow_limit);
4223 	if (fl) {
4224 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4225 		old_flow = fl->history[fl->history_head];
4226 		fl->history[fl->history_head] = new_flow;
4227 
4228 		fl->history_head++;
4229 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4230 
4231 		if (likely(fl->buckets[old_flow]))
4232 			fl->buckets[old_flow]--;
4233 
4234 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4235 			fl->count++;
4236 			rcu_read_unlock();
4237 			return true;
4238 		}
4239 	}
4240 	rcu_read_unlock();
4241 #endif
4242 	return false;
4243 }
4244 
4245 /*
4246  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4247  * queue (may be a remote CPU queue).
4248  */
4249 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4250 			      unsigned int *qtail)
4251 {
4252 	struct softnet_data *sd;
4253 	unsigned long flags;
4254 	unsigned int qlen;
4255 
4256 	sd = &per_cpu(softnet_data, cpu);
4257 
4258 	local_irq_save(flags);
4259 
4260 	rps_lock(sd);
4261 	if (!netif_running(skb->dev))
4262 		goto drop;
4263 	qlen = skb_queue_len(&sd->input_pkt_queue);
4264 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4265 		if (qlen) {
4266 enqueue:
4267 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4268 			input_queue_tail_incr_save(sd, qtail);
4269 			rps_unlock(sd);
4270 			local_irq_restore(flags);
4271 			return NET_RX_SUCCESS;
4272 		}
4273 
4274 		/* Schedule NAPI for backlog device
4275 		 * We can use non atomic operation since we own the queue lock
4276 		 */
4277 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4278 			if (!rps_ipi_queued(sd))
4279 				____napi_schedule(sd, &sd->backlog);
4280 		}
4281 		goto enqueue;
4282 	}
4283 
4284 drop:
4285 	sd->dropped++;
4286 	rps_unlock(sd);
4287 
4288 	local_irq_restore(flags);
4289 
4290 	atomic_long_inc(&skb->dev->rx_dropped);
4291 	kfree_skb(skb);
4292 	return NET_RX_DROP;
4293 }
4294 
4295 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4296 {
4297 	struct net_device *dev = skb->dev;
4298 	struct netdev_rx_queue *rxqueue;
4299 
4300 	rxqueue = dev->_rx;
4301 
4302 	if (skb_rx_queue_recorded(skb)) {
4303 		u16 index = skb_get_rx_queue(skb);
4304 
4305 		if (unlikely(index >= dev->real_num_rx_queues)) {
4306 			WARN_ONCE(dev->real_num_rx_queues > 1,
4307 				  "%s received packet on queue %u, but number "
4308 				  "of RX queues is %u\n",
4309 				  dev->name, index, dev->real_num_rx_queues);
4310 
4311 			return rxqueue; /* Return first rxqueue */
4312 		}
4313 		rxqueue += index;
4314 	}
4315 	return rxqueue;
4316 }
4317 
4318 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4319 				     struct xdp_buff *xdp,
4320 				     struct bpf_prog *xdp_prog)
4321 {
4322 	struct netdev_rx_queue *rxqueue;
4323 	void *orig_data, *orig_data_end;
4324 	u32 metalen, act = XDP_DROP;
4325 	__be16 orig_eth_type;
4326 	struct ethhdr *eth;
4327 	bool orig_bcast;
4328 	int hlen, off;
4329 	u32 mac_len;
4330 
4331 	/* Reinjected packets coming from act_mirred or similar should
4332 	 * not get XDP generic processing.
4333 	 */
4334 	if (skb_cloned(skb) || skb_is_tc_redirected(skb))
4335 		return XDP_PASS;
4336 
4337 	/* XDP packets must be linear and must have sufficient headroom
4338 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4339 	 * native XDP provides, thus we need to do it here as well.
4340 	 */
4341 	if (skb_is_nonlinear(skb) ||
4342 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4343 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4344 		int troom = skb->tail + skb->data_len - skb->end;
4345 
4346 		/* In case we have to go down the path and also linearize,
4347 		 * then lets do the pskb_expand_head() work just once here.
4348 		 */
4349 		if (pskb_expand_head(skb,
4350 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4351 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4352 			goto do_drop;
4353 		if (skb_linearize(skb))
4354 			goto do_drop;
4355 	}
4356 
4357 	/* The XDP program wants to see the packet starting at the MAC
4358 	 * header.
4359 	 */
4360 	mac_len = skb->data - skb_mac_header(skb);
4361 	hlen = skb_headlen(skb) + mac_len;
4362 	xdp->data = skb->data - mac_len;
4363 	xdp->data_meta = xdp->data;
4364 	xdp->data_end = xdp->data + hlen;
4365 	xdp->data_hard_start = skb->data - skb_headroom(skb);
4366 	orig_data_end = xdp->data_end;
4367 	orig_data = xdp->data;
4368 	eth = (struct ethhdr *)xdp->data;
4369 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4370 	orig_eth_type = eth->h_proto;
4371 
4372 	rxqueue = netif_get_rxqueue(skb);
4373 	xdp->rxq = &rxqueue->xdp_rxq;
4374 
4375 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4376 
4377 	off = xdp->data - orig_data;
4378 	if (off > 0)
4379 		__skb_pull(skb, off);
4380 	else if (off < 0)
4381 		__skb_push(skb, -off);
4382 	skb->mac_header += off;
4383 
4384 	/* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4385 	 * pckt.
4386 	 */
4387 	off = orig_data_end - xdp->data_end;
4388 	if (off != 0) {
4389 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4390 		skb->len -= off;
4391 
4392 	}
4393 
4394 	/* check if XDP changed eth hdr such SKB needs update */
4395 	eth = (struct ethhdr *)xdp->data;
4396 	if ((orig_eth_type != eth->h_proto) ||
4397 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4398 		__skb_push(skb, ETH_HLEN);
4399 		skb->protocol = eth_type_trans(skb, skb->dev);
4400 	}
4401 
4402 	switch (act) {
4403 	case XDP_REDIRECT:
4404 	case XDP_TX:
4405 		__skb_push(skb, mac_len);
4406 		break;
4407 	case XDP_PASS:
4408 		metalen = xdp->data - xdp->data_meta;
4409 		if (metalen)
4410 			skb_metadata_set(skb, metalen);
4411 		break;
4412 	default:
4413 		bpf_warn_invalid_xdp_action(act);
4414 		/* fall through */
4415 	case XDP_ABORTED:
4416 		trace_xdp_exception(skb->dev, xdp_prog, act);
4417 		/* fall through */
4418 	case XDP_DROP:
4419 	do_drop:
4420 		kfree_skb(skb);
4421 		break;
4422 	}
4423 
4424 	return act;
4425 }
4426 
4427 /* When doing generic XDP we have to bypass the qdisc layer and the
4428  * network taps in order to match in-driver-XDP behavior.
4429  */
4430 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4431 {
4432 	struct net_device *dev = skb->dev;
4433 	struct netdev_queue *txq;
4434 	bool free_skb = true;
4435 	int cpu, rc;
4436 
4437 	txq = netdev_core_pick_tx(dev, skb, NULL);
4438 	cpu = smp_processor_id();
4439 	HARD_TX_LOCK(dev, txq, cpu);
4440 	if (!netif_xmit_stopped(txq)) {
4441 		rc = netdev_start_xmit(skb, dev, txq, 0);
4442 		if (dev_xmit_complete(rc))
4443 			free_skb = false;
4444 	}
4445 	HARD_TX_UNLOCK(dev, txq);
4446 	if (free_skb) {
4447 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4448 		kfree_skb(skb);
4449 	}
4450 }
4451 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4452 
4453 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4454 
4455 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4456 {
4457 	if (xdp_prog) {
4458 		struct xdp_buff xdp;
4459 		u32 act;
4460 		int err;
4461 
4462 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4463 		if (act != XDP_PASS) {
4464 			switch (act) {
4465 			case XDP_REDIRECT:
4466 				err = xdp_do_generic_redirect(skb->dev, skb,
4467 							      &xdp, xdp_prog);
4468 				if (err)
4469 					goto out_redir;
4470 				break;
4471 			case XDP_TX:
4472 				generic_xdp_tx(skb, xdp_prog);
4473 				break;
4474 			}
4475 			return XDP_DROP;
4476 		}
4477 	}
4478 	return XDP_PASS;
4479 out_redir:
4480 	kfree_skb(skb);
4481 	return XDP_DROP;
4482 }
4483 EXPORT_SYMBOL_GPL(do_xdp_generic);
4484 
4485 static int netif_rx_internal(struct sk_buff *skb)
4486 {
4487 	int ret;
4488 
4489 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4490 
4491 	trace_netif_rx(skb);
4492 
4493 #ifdef CONFIG_RPS
4494 	if (static_branch_unlikely(&rps_needed)) {
4495 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4496 		int cpu;
4497 
4498 		preempt_disable();
4499 		rcu_read_lock();
4500 
4501 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4502 		if (cpu < 0)
4503 			cpu = smp_processor_id();
4504 
4505 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4506 
4507 		rcu_read_unlock();
4508 		preempt_enable();
4509 	} else
4510 #endif
4511 	{
4512 		unsigned int qtail;
4513 
4514 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4515 		put_cpu();
4516 	}
4517 	return ret;
4518 }
4519 
4520 /**
4521  *	netif_rx	-	post buffer to the network code
4522  *	@skb: buffer to post
4523  *
4524  *	This function receives a packet from a device driver and queues it for
4525  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4526  *	may be dropped during processing for congestion control or by the
4527  *	protocol layers.
4528  *
4529  *	return values:
4530  *	NET_RX_SUCCESS	(no congestion)
4531  *	NET_RX_DROP     (packet was dropped)
4532  *
4533  */
4534 
4535 int netif_rx(struct sk_buff *skb)
4536 {
4537 	int ret;
4538 
4539 	trace_netif_rx_entry(skb);
4540 
4541 	ret = netif_rx_internal(skb);
4542 	trace_netif_rx_exit(ret);
4543 
4544 	return ret;
4545 }
4546 EXPORT_SYMBOL(netif_rx);
4547 
4548 int netif_rx_ni(struct sk_buff *skb)
4549 {
4550 	int err;
4551 
4552 	trace_netif_rx_ni_entry(skb);
4553 
4554 	preempt_disable();
4555 	err = netif_rx_internal(skb);
4556 	if (local_softirq_pending())
4557 		do_softirq();
4558 	preempt_enable();
4559 	trace_netif_rx_ni_exit(err);
4560 
4561 	return err;
4562 }
4563 EXPORT_SYMBOL(netif_rx_ni);
4564 
4565 static __latent_entropy void net_tx_action(struct softirq_action *h)
4566 {
4567 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4568 
4569 	if (sd->completion_queue) {
4570 		struct sk_buff *clist;
4571 
4572 		local_irq_disable();
4573 		clist = sd->completion_queue;
4574 		sd->completion_queue = NULL;
4575 		local_irq_enable();
4576 
4577 		while (clist) {
4578 			struct sk_buff *skb = clist;
4579 
4580 			clist = clist->next;
4581 
4582 			WARN_ON(refcount_read(&skb->users));
4583 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4584 				trace_consume_skb(skb);
4585 			else
4586 				trace_kfree_skb(skb, net_tx_action);
4587 
4588 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4589 				__kfree_skb(skb);
4590 			else
4591 				__kfree_skb_defer(skb);
4592 		}
4593 
4594 		__kfree_skb_flush();
4595 	}
4596 
4597 	if (sd->output_queue) {
4598 		struct Qdisc *head;
4599 
4600 		local_irq_disable();
4601 		head = sd->output_queue;
4602 		sd->output_queue = NULL;
4603 		sd->output_queue_tailp = &sd->output_queue;
4604 		local_irq_enable();
4605 
4606 		while (head) {
4607 			struct Qdisc *q = head;
4608 			spinlock_t *root_lock = NULL;
4609 
4610 			head = head->next_sched;
4611 
4612 			if (!(q->flags & TCQ_F_NOLOCK)) {
4613 				root_lock = qdisc_lock(q);
4614 				spin_lock(root_lock);
4615 			}
4616 			/* We need to make sure head->next_sched is read
4617 			 * before clearing __QDISC_STATE_SCHED
4618 			 */
4619 			smp_mb__before_atomic();
4620 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4621 			qdisc_run(q);
4622 			if (root_lock)
4623 				spin_unlock(root_lock);
4624 		}
4625 	}
4626 
4627 	xfrm_dev_backlog(sd);
4628 }
4629 
4630 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4631 /* This hook is defined here for ATM LANE */
4632 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4633 			     unsigned char *addr) __read_mostly;
4634 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4635 #endif
4636 
4637 static inline struct sk_buff *
4638 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4639 		   struct net_device *orig_dev)
4640 {
4641 #ifdef CONFIG_NET_CLS_ACT
4642 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4643 	struct tcf_result cl_res;
4644 
4645 	/* If there's at least one ingress present somewhere (so
4646 	 * we get here via enabled static key), remaining devices
4647 	 * that are not configured with an ingress qdisc will bail
4648 	 * out here.
4649 	 */
4650 	if (!miniq)
4651 		return skb;
4652 
4653 	if (*pt_prev) {
4654 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4655 		*pt_prev = NULL;
4656 	}
4657 
4658 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4659 	skb->tc_at_ingress = 1;
4660 	mini_qdisc_bstats_cpu_update(miniq, skb);
4661 
4662 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4663 	case TC_ACT_OK:
4664 	case TC_ACT_RECLASSIFY:
4665 		skb->tc_index = TC_H_MIN(cl_res.classid);
4666 		break;
4667 	case TC_ACT_SHOT:
4668 		mini_qdisc_qstats_cpu_drop(miniq);
4669 		kfree_skb(skb);
4670 		return NULL;
4671 	case TC_ACT_STOLEN:
4672 	case TC_ACT_QUEUED:
4673 	case TC_ACT_TRAP:
4674 		consume_skb(skb);
4675 		return NULL;
4676 	case TC_ACT_REDIRECT:
4677 		/* skb_mac_header check was done by cls/act_bpf, so
4678 		 * we can safely push the L2 header back before
4679 		 * redirecting to another netdev
4680 		 */
4681 		__skb_push(skb, skb->mac_len);
4682 		skb_do_redirect(skb);
4683 		return NULL;
4684 	case TC_ACT_CONSUMED:
4685 		return NULL;
4686 	default:
4687 		break;
4688 	}
4689 #endif /* CONFIG_NET_CLS_ACT */
4690 	return skb;
4691 }
4692 
4693 /**
4694  *	netdev_is_rx_handler_busy - check if receive handler is registered
4695  *	@dev: device to check
4696  *
4697  *	Check if a receive handler is already registered for a given device.
4698  *	Return true if there one.
4699  *
4700  *	The caller must hold the rtnl_mutex.
4701  */
4702 bool netdev_is_rx_handler_busy(struct net_device *dev)
4703 {
4704 	ASSERT_RTNL();
4705 	return dev && rtnl_dereference(dev->rx_handler);
4706 }
4707 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4708 
4709 /**
4710  *	netdev_rx_handler_register - register receive handler
4711  *	@dev: device to register a handler for
4712  *	@rx_handler: receive handler to register
4713  *	@rx_handler_data: data pointer that is used by rx handler
4714  *
4715  *	Register a receive handler for a device. This handler will then be
4716  *	called from __netif_receive_skb. A negative errno code is returned
4717  *	on a failure.
4718  *
4719  *	The caller must hold the rtnl_mutex.
4720  *
4721  *	For a general description of rx_handler, see enum rx_handler_result.
4722  */
4723 int netdev_rx_handler_register(struct net_device *dev,
4724 			       rx_handler_func_t *rx_handler,
4725 			       void *rx_handler_data)
4726 {
4727 	if (netdev_is_rx_handler_busy(dev))
4728 		return -EBUSY;
4729 
4730 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
4731 		return -EINVAL;
4732 
4733 	/* Note: rx_handler_data must be set before rx_handler */
4734 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4735 	rcu_assign_pointer(dev->rx_handler, rx_handler);
4736 
4737 	return 0;
4738 }
4739 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4740 
4741 /**
4742  *	netdev_rx_handler_unregister - unregister receive handler
4743  *	@dev: device to unregister a handler from
4744  *
4745  *	Unregister a receive handler from a device.
4746  *
4747  *	The caller must hold the rtnl_mutex.
4748  */
4749 void netdev_rx_handler_unregister(struct net_device *dev)
4750 {
4751 
4752 	ASSERT_RTNL();
4753 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4754 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4755 	 * section has a guarantee to see a non NULL rx_handler_data
4756 	 * as well.
4757 	 */
4758 	synchronize_net();
4759 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4760 }
4761 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4762 
4763 /*
4764  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4765  * the special handling of PFMEMALLOC skbs.
4766  */
4767 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4768 {
4769 	switch (skb->protocol) {
4770 	case htons(ETH_P_ARP):
4771 	case htons(ETH_P_IP):
4772 	case htons(ETH_P_IPV6):
4773 	case htons(ETH_P_8021Q):
4774 	case htons(ETH_P_8021AD):
4775 		return true;
4776 	default:
4777 		return false;
4778 	}
4779 }
4780 
4781 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4782 			     int *ret, struct net_device *orig_dev)
4783 {
4784 #ifdef CONFIG_NETFILTER_INGRESS
4785 	if (nf_hook_ingress_active(skb)) {
4786 		int ingress_retval;
4787 
4788 		if (*pt_prev) {
4789 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4790 			*pt_prev = NULL;
4791 		}
4792 
4793 		rcu_read_lock();
4794 		ingress_retval = nf_hook_ingress(skb);
4795 		rcu_read_unlock();
4796 		return ingress_retval;
4797 	}
4798 #endif /* CONFIG_NETFILTER_INGRESS */
4799 	return 0;
4800 }
4801 
4802 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4803 				    struct packet_type **ppt_prev)
4804 {
4805 	struct packet_type *ptype, *pt_prev;
4806 	rx_handler_func_t *rx_handler;
4807 	struct net_device *orig_dev;
4808 	bool deliver_exact = false;
4809 	int ret = NET_RX_DROP;
4810 	__be16 type;
4811 
4812 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4813 
4814 	trace_netif_receive_skb(skb);
4815 
4816 	orig_dev = skb->dev;
4817 
4818 	skb_reset_network_header(skb);
4819 	if (!skb_transport_header_was_set(skb))
4820 		skb_reset_transport_header(skb);
4821 	skb_reset_mac_len(skb);
4822 
4823 	pt_prev = NULL;
4824 
4825 another_round:
4826 	skb->skb_iif = skb->dev->ifindex;
4827 
4828 	__this_cpu_inc(softnet_data.processed);
4829 
4830 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
4831 		int ret2;
4832 
4833 		preempt_disable();
4834 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4835 		preempt_enable();
4836 
4837 		if (ret2 != XDP_PASS)
4838 			return NET_RX_DROP;
4839 		skb_reset_mac_len(skb);
4840 	}
4841 
4842 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4843 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4844 		skb = skb_vlan_untag(skb);
4845 		if (unlikely(!skb))
4846 			goto out;
4847 	}
4848 
4849 	if (skb_skip_tc_classify(skb))
4850 		goto skip_classify;
4851 
4852 	if (pfmemalloc)
4853 		goto skip_taps;
4854 
4855 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
4856 		if (pt_prev)
4857 			ret = deliver_skb(skb, pt_prev, orig_dev);
4858 		pt_prev = ptype;
4859 	}
4860 
4861 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4862 		if (pt_prev)
4863 			ret = deliver_skb(skb, pt_prev, orig_dev);
4864 		pt_prev = ptype;
4865 	}
4866 
4867 skip_taps:
4868 #ifdef CONFIG_NET_INGRESS
4869 	if (static_branch_unlikely(&ingress_needed_key)) {
4870 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4871 		if (!skb)
4872 			goto out;
4873 
4874 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4875 			goto out;
4876 	}
4877 #endif
4878 	skb_reset_tc(skb);
4879 skip_classify:
4880 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4881 		goto drop;
4882 
4883 	if (skb_vlan_tag_present(skb)) {
4884 		if (pt_prev) {
4885 			ret = deliver_skb(skb, pt_prev, orig_dev);
4886 			pt_prev = NULL;
4887 		}
4888 		if (vlan_do_receive(&skb))
4889 			goto another_round;
4890 		else if (unlikely(!skb))
4891 			goto out;
4892 	}
4893 
4894 	rx_handler = rcu_dereference(skb->dev->rx_handler);
4895 	if (rx_handler) {
4896 		if (pt_prev) {
4897 			ret = deliver_skb(skb, pt_prev, orig_dev);
4898 			pt_prev = NULL;
4899 		}
4900 		switch (rx_handler(&skb)) {
4901 		case RX_HANDLER_CONSUMED:
4902 			ret = NET_RX_SUCCESS;
4903 			goto out;
4904 		case RX_HANDLER_ANOTHER:
4905 			goto another_round;
4906 		case RX_HANDLER_EXACT:
4907 			deliver_exact = true;
4908 		case RX_HANDLER_PASS:
4909 			break;
4910 		default:
4911 			BUG();
4912 		}
4913 	}
4914 
4915 	if (unlikely(skb_vlan_tag_present(skb))) {
4916 check_vlan_id:
4917 		if (skb_vlan_tag_get_id(skb)) {
4918 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
4919 			 * find vlan device.
4920 			 */
4921 			skb->pkt_type = PACKET_OTHERHOST;
4922 		} else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4923 			   skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4924 			/* Outer header is 802.1P with vlan 0, inner header is
4925 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
4926 			 * not find vlan dev for vlan id 0.
4927 			 */
4928 			__vlan_hwaccel_clear_tag(skb);
4929 			skb = skb_vlan_untag(skb);
4930 			if (unlikely(!skb))
4931 				goto out;
4932 			if (vlan_do_receive(&skb))
4933 				/* After stripping off 802.1P header with vlan 0
4934 				 * vlan dev is found for inner header.
4935 				 */
4936 				goto another_round;
4937 			else if (unlikely(!skb))
4938 				goto out;
4939 			else
4940 				/* We have stripped outer 802.1P vlan 0 header.
4941 				 * But could not find vlan dev.
4942 				 * check again for vlan id to set OTHERHOST.
4943 				 */
4944 				goto check_vlan_id;
4945 		}
4946 		/* Note: we might in the future use prio bits
4947 		 * and set skb->priority like in vlan_do_receive()
4948 		 * For the time being, just ignore Priority Code Point
4949 		 */
4950 		__vlan_hwaccel_clear_tag(skb);
4951 	}
4952 
4953 	type = skb->protocol;
4954 
4955 	/* deliver only exact match when indicated */
4956 	if (likely(!deliver_exact)) {
4957 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4958 				       &ptype_base[ntohs(type) &
4959 						   PTYPE_HASH_MASK]);
4960 	}
4961 
4962 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4963 			       &orig_dev->ptype_specific);
4964 
4965 	if (unlikely(skb->dev != orig_dev)) {
4966 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4967 				       &skb->dev->ptype_specific);
4968 	}
4969 
4970 	if (pt_prev) {
4971 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4972 			goto drop;
4973 		*ppt_prev = pt_prev;
4974 	} else {
4975 drop:
4976 		if (!deliver_exact)
4977 			atomic_long_inc(&skb->dev->rx_dropped);
4978 		else
4979 			atomic_long_inc(&skb->dev->rx_nohandler);
4980 		kfree_skb(skb);
4981 		/* Jamal, now you will not able to escape explaining
4982 		 * me how you were going to use this. :-)
4983 		 */
4984 		ret = NET_RX_DROP;
4985 	}
4986 
4987 out:
4988 	return ret;
4989 }
4990 
4991 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4992 {
4993 	struct net_device *orig_dev = skb->dev;
4994 	struct packet_type *pt_prev = NULL;
4995 	int ret;
4996 
4997 	ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4998 	if (pt_prev)
4999 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5000 					 skb->dev, pt_prev, orig_dev);
5001 	return ret;
5002 }
5003 
5004 /**
5005  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5006  *	@skb: buffer to process
5007  *
5008  *	More direct receive version of netif_receive_skb().  It should
5009  *	only be used by callers that have a need to skip RPS and Generic XDP.
5010  *	Caller must also take care of handling if (page_is_)pfmemalloc.
5011  *
5012  *	This function may only be called from softirq context and interrupts
5013  *	should be enabled.
5014  *
5015  *	Return values (usually ignored):
5016  *	NET_RX_SUCCESS: no congestion
5017  *	NET_RX_DROP: packet was dropped
5018  */
5019 int netif_receive_skb_core(struct sk_buff *skb)
5020 {
5021 	int ret;
5022 
5023 	rcu_read_lock();
5024 	ret = __netif_receive_skb_one_core(skb, false);
5025 	rcu_read_unlock();
5026 
5027 	return ret;
5028 }
5029 EXPORT_SYMBOL(netif_receive_skb_core);
5030 
5031 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5032 						  struct packet_type *pt_prev,
5033 						  struct net_device *orig_dev)
5034 {
5035 	struct sk_buff *skb, *next;
5036 
5037 	if (!pt_prev)
5038 		return;
5039 	if (list_empty(head))
5040 		return;
5041 	if (pt_prev->list_func != NULL)
5042 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5043 				   ip_list_rcv, head, pt_prev, orig_dev);
5044 	else
5045 		list_for_each_entry_safe(skb, next, head, list) {
5046 			skb_list_del_init(skb);
5047 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5048 		}
5049 }
5050 
5051 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5052 {
5053 	/* Fast-path assumptions:
5054 	 * - There is no RX handler.
5055 	 * - Only one packet_type matches.
5056 	 * If either of these fails, we will end up doing some per-packet
5057 	 * processing in-line, then handling the 'last ptype' for the whole
5058 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5059 	 * because the 'last ptype' must be constant across the sublist, and all
5060 	 * other ptypes are handled per-packet.
5061 	 */
5062 	/* Current (common) ptype of sublist */
5063 	struct packet_type *pt_curr = NULL;
5064 	/* Current (common) orig_dev of sublist */
5065 	struct net_device *od_curr = NULL;
5066 	struct list_head sublist;
5067 	struct sk_buff *skb, *next;
5068 
5069 	INIT_LIST_HEAD(&sublist);
5070 	list_for_each_entry_safe(skb, next, head, list) {
5071 		struct net_device *orig_dev = skb->dev;
5072 		struct packet_type *pt_prev = NULL;
5073 
5074 		skb_list_del_init(skb);
5075 		__netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5076 		if (!pt_prev)
5077 			continue;
5078 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5079 			/* dispatch old sublist */
5080 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5081 			/* start new sublist */
5082 			INIT_LIST_HEAD(&sublist);
5083 			pt_curr = pt_prev;
5084 			od_curr = orig_dev;
5085 		}
5086 		list_add_tail(&skb->list, &sublist);
5087 	}
5088 
5089 	/* dispatch final sublist */
5090 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5091 }
5092 
5093 static int __netif_receive_skb(struct sk_buff *skb)
5094 {
5095 	int ret;
5096 
5097 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5098 		unsigned int noreclaim_flag;
5099 
5100 		/*
5101 		 * PFMEMALLOC skbs are special, they should
5102 		 * - be delivered to SOCK_MEMALLOC sockets only
5103 		 * - stay away from userspace
5104 		 * - have bounded memory usage
5105 		 *
5106 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5107 		 * context down to all allocation sites.
5108 		 */
5109 		noreclaim_flag = memalloc_noreclaim_save();
5110 		ret = __netif_receive_skb_one_core(skb, true);
5111 		memalloc_noreclaim_restore(noreclaim_flag);
5112 	} else
5113 		ret = __netif_receive_skb_one_core(skb, false);
5114 
5115 	return ret;
5116 }
5117 
5118 static void __netif_receive_skb_list(struct list_head *head)
5119 {
5120 	unsigned long noreclaim_flag = 0;
5121 	struct sk_buff *skb, *next;
5122 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5123 
5124 	list_for_each_entry_safe(skb, next, head, list) {
5125 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5126 			struct list_head sublist;
5127 
5128 			/* Handle the previous sublist */
5129 			list_cut_before(&sublist, head, &skb->list);
5130 			if (!list_empty(&sublist))
5131 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5132 			pfmemalloc = !pfmemalloc;
5133 			/* See comments in __netif_receive_skb */
5134 			if (pfmemalloc)
5135 				noreclaim_flag = memalloc_noreclaim_save();
5136 			else
5137 				memalloc_noreclaim_restore(noreclaim_flag);
5138 		}
5139 	}
5140 	/* Handle the remaining sublist */
5141 	if (!list_empty(head))
5142 		__netif_receive_skb_list_core(head, pfmemalloc);
5143 	/* Restore pflags */
5144 	if (pfmemalloc)
5145 		memalloc_noreclaim_restore(noreclaim_flag);
5146 }
5147 
5148 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5149 {
5150 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5151 	struct bpf_prog *new = xdp->prog;
5152 	int ret = 0;
5153 
5154 	switch (xdp->command) {
5155 	case XDP_SETUP_PROG:
5156 		rcu_assign_pointer(dev->xdp_prog, new);
5157 		if (old)
5158 			bpf_prog_put(old);
5159 
5160 		if (old && !new) {
5161 			static_branch_dec(&generic_xdp_needed_key);
5162 		} else if (new && !old) {
5163 			static_branch_inc(&generic_xdp_needed_key);
5164 			dev_disable_lro(dev);
5165 			dev_disable_gro_hw(dev);
5166 		}
5167 		break;
5168 
5169 	case XDP_QUERY_PROG:
5170 		xdp->prog_id = old ? old->aux->id : 0;
5171 		break;
5172 
5173 	default:
5174 		ret = -EINVAL;
5175 		break;
5176 	}
5177 
5178 	return ret;
5179 }
5180 
5181 static int netif_receive_skb_internal(struct sk_buff *skb)
5182 {
5183 	int ret;
5184 
5185 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5186 
5187 	if (skb_defer_rx_timestamp(skb))
5188 		return NET_RX_SUCCESS;
5189 
5190 	rcu_read_lock();
5191 #ifdef CONFIG_RPS
5192 	if (static_branch_unlikely(&rps_needed)) {
5193 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5194 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5195 
5196 		if (cpu >= 0) {
5197 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5198 			rcu_read_unlock();
5199 			return ret;
5200 		}
5201 	}
5202 #endif
5203 	ret = __netif_receive_skb(skb);
5204 	rcu_read_unlock();
5205 	return ret;
5206 }
5207 
5208 static void netif_receive_skb_list_internal(struct list_head *head)
5209 {
5210 	struct sk_buff *skb, *next;
5211 	struct list_head sublist;
5212 
5213 	INIT_LIST_HEAD(&sublist);
5214 	list_for_each_entry_safe(skb, next, head, list) {
5215 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5216 		skb_list_del_init(skb);
5217 		if (!skb_defer_rx_timestamp(skb))
5218 			list_add_tail(&skb->list, &sublist);
5219 	}
5220 	list_splice_init(&sublist, head);
5221 
5222 	rcu_read_lock();
5223 #ifdef CONFIG_RPS
5224 	if (static_branch_unlikely(&rps_needed)) {
5225 		list_for_each_entry_safe(skb, next, head, list) {
5226 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5227 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5228 
5229 			if (cpu >= 0) {
5230 				/* Will be handled, remove from list */
5231 				skb_list_del_init(skb);
5232 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5233 			}
5234 		}
5235 	}
5236 #endif
5237 	__netif_receive_skb_list(head);
5238 	rcu_read_unlock();
5239 }
5240 
5241 /**
5242  *	netif_receive_skb - process receive buffer from network
5243  *	@skb: buffer to process
5244  *
5245  *	netif_receive_skb() is the main receive data processing function.
5246  *	It always succeeds. The buffer may be dropped during processing
5247  *	for congestion control or by the protocol layers.
5248  *
5249  *	This function may only be called from softirq context and interrupts
5250  *	should be enabled.
5251  *
5252  *	Return values (usually ignored):
5253  *	NET_RX_SUCCESS: no congestion
5254  *	NET_RX_DROP: packet was dropped
5255  */
5256 int netif_receive_skb(struct sk_buff *skb)
5257 {
5258 	int ret;
5259 
5260 	trace_netif_receive_skb_entry(skb);
5261 
5262 	ret = netif_receive_skb_internal(skb);
5263 	trace_netif_receive_skb_exit(ret);
5264 
5265 	return ret;
5266 }
5267 EXPORT_SYMBOL(netif_receive_skb);
5268 
5269 /**
5270  *	netif_receive_skb_list - process many receive buffers from network
5271  *	@head: list of skbs to process.
5272  *
5273  *	Since return value of netif_receive_skb() is normally ignored, and
5274  *	wouldn't be meaningful for a list, this function returns void.
5275  *
5276  *	This function may only be called from softirq context and interrupts
5277  *	should be enabled.
5278  */
5279 void netif_receive_skb_list(struct list_head *head)
5280 {
5281 	struct sk_buff *skb;
5282 
5283 	if (list_empty(head))
5284 		return;
5285 	if (trace_netif_receive_skb_list_entry_enabled()) {
5286 		list_for_each_entry(skb, head, list)
5287 			trace_netif_receive_skb_list_entry(skb);
5288 	}
5289 	netif_receive_skb_list_internal(head);
5290 	trace_netif_receive_skb_list_exit(0);
5291 }
5292 EXPORT_SYMBOL(netif_receive_skb_list);
5293 
5294 DEFINE_PER_CPU(struct work_struct, flush_works);
5295 
5296 /* Network device is going away, flush any packets still pending */
5297 static void flush_backlog(struct work_struct *work)
5298 {
5299 	struct sk_buff *skb, *tmp;
5300 	struct softnet_data *sd;
5301 
5302 	local_bh_disable();
5303 	sd = this_cpu_ptr(&softnet_data);
5304 
5305 	local_irq_disable();
5306 	rps_lock(sd);
5307 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5308 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5309 			__skb_unlink(skb, &sd->input_pkt_queue);
5310 			kfree_skb(skb);
5311 			input_queue_head_incr(sd);
5312 		}
5313 	}
5314 	rps_unlock(sd);
5315 	local_irq_enable();
5316 
5317 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5318 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5319 			__skb_unlink(skb, &sd->process_queue);
5320 			kfree_skb(skb);
5321 			input_queue_head_incr(sd);
5322 		}
5323 	}
5324 	local_bh_enable();
5325 }
5326 
5327 static void flush_all_backlogs(void)
5328 {
5329 	unsigned int cpu;
5330 
5331 	get_online_cpus();
5332 
5333 	for_each_online_cpu(cpu)
5334 		queue_work_on(cpu, system_highpri_wq,
5335 			      per_cpu_ptr(&flush_works, cpu));
5336 
5337 	for_each_online_cpu(cpu)
5338 		flush_work(per_cpu_ptr(&flush_works, cpu));
5339 
5340 	put_online_cpus();
5341 }
5342 
5343 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5344 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5345 static int napi_gro_complete(struct sk_buff *skb)
5346 {
5347 	struct packet_offload *ptype;
5348 	__be16 type = skb->protocol;
5349 	struct list_head *head = &offload_base;
5350 	int err = -ENOENT;
5351 
5352 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5353 
5354 	if (NAPI_GRO_CB(skb)->count == 1) {
5355 		skb_shinfo(skb)->gso_size = 0;
5356 		goto out;
5357 	}
5358 
5359 	rcu_read_lock();
5360 	list_for_each_entry_rcu(ptype, head, list) {
5361 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5362 			continue;
5363 
5364 		err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5365 					 ipv6_gro_complete, inet_gro_complete,
5366 					 skb, 0);
5367 		break;
5368 	}
5369 	rcu_read_unlock();
5370 
5371 	if (err) {
5372 		WARN_ON(&ptype->list == head);
5373 		kfree_skb(skb);
5374 		return NET_RX_SUCCESS;
5375 	}
5376 
5377 out:
5378 	return netif_receive_skb_internal(skb);
5379 }
5380 
5381 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5382 				   bool flush_old)
5383 {
5384 	struct list_head *head = &napi->gro_hash[index].list;
5385 	struct sk_buff *skb, *p;
5386 
5387 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5388 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5389 			return;
5390 		skb_list_del_init(skb);
5391 		napi_gro_complete(skb);
5392 		napi->gro_hash[index].count--;
5393 	}
5394 
5395 	if (!napi->gro_hash[index].count)
5396 		__clear_bit(index, &napi->gro_bitmask);
5397 }
5398 
5399 /* napi->gro_hash[].list contains packets ordered by age.
5400  * youngest packets at the head of it.
5401  * Complete skbs in reverse order to reduce latencies.
5402  */
5403 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5404 {
5405 	unsigned long bitmask = napi->gro_bitmask;
5406 	unsigned int i, base = ~0U;
5407 
5408 	while ((i = ffs(bitmask)) != 0) {
5409 		bitmask >>= i;
5410 		base += i;
5411 		__napi_gro_flush_chain(napi, base, flush_old);
5412 	}
5413 }
5414 EXPORT_SYMBOL(napi_gro_flush);
5415 
5416 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5417 					  struct sk_buff *skb)
5418 {
5419 	unsigned int maclen = skb->dev->hard_header_len;
5420 	u32 hash = skb_get_hash_raw(skb);
5421 	struct list_head *head;
5422 	struct sk_buff *p;
5423 
5424 	head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5425 	list_for_each_entry(p, head, list) {
5426 		unsigned long diffs;
5427 
5428 		NAPI_GRO_CB(p)->flush = 0;
5429 
5430 		if (hash != skb_get_hash_raw(p)) {
5431 			NAPI_GRO_CB(p)->same_flow = 0;
5432 			continue;
5433 		}
5434 
5435 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5436 		diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5437 		if (skb_vlan_tag_present(p))
5438 			diffs |= p->vlan_tci ^ skb->vlan_tci;
5439 		diffs |= skb_metadata_dst_cmp(p, skb);
5440 		diffs |= skb_metadata_differs(p, skb);
5441 		if (maclen == ETH_HLEN)
5442 			diffs |= compare_ether_header(skb_mac_header(p),
5443 						      skb_mac_header(skb));
5444 		else if (!diffs)
5445 			diffs = memcmp(skb_mac_header(p),
5446 				       skb_mac_header(skb),
5447 				       maclen);
5448 		NAPI_GRO_CB(p)->same_flow = !diffs;
5449 	}
5450 
5451 	return head;
5452 }
5453 
5454 static void skb_gro_reset_offset(struct sk_buff *skb)
5455 {
5456 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
5457 	const skb_frag_t *frag0 = &pinfo->frags[0];
5458 
5459 	NAPI_GRO_CB(skb)->data_offset = 0;
5460 	NAPI_GRO_CB(skb)->frag0 = NULL;
5461 	NAPI_GRO_CB(skb)->frag0_len = 0;
5462 
5463 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5464 	    pinfo->nr_frags &&
5465 	    !PageHighMem(skb_frag_page(frag0))) {
5466 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5467 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5468 						    skb_frag_size(frag0),
5469 						    skb->end - skb->tail);
5470 	}
5471 }
5472 
5473 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5474 {
5475 	struct skb_shared_info *pinfo = skb_shinfo(skb);
5476 
5477 	BUG_ON(skb->end - skb->tail < grow);
5478 
5479 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5480 
5481 	skb->data_len -= grow;
5482 	skb->tail += grow;
5483 
5484 	pinfo->frags[0].page_offset += grow;
5485 	skb_frag_size_sub(&pinfo->frags[0], grow);
5486 
5487 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5488 		skb_frag_unref(skb, 0);
5489 		memmove(pinfo->frags, pinfo->frags + 1,
5490 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
5491 	}
5492 }
5493 
5494 static void gro_flush_oldest(struct list_head *head)
5495 {
5496 	struct sk_buff *oldest;
5497 
5498 	oldest = list_last_entry(head, struct sk_buff, list);
5499 
5500 	/* We are called with head length >= MAX_GRO_SKBS, so this is
5501 	 * impossible.
5502 	 */
5503 	if (WARN_ON_ONCE(!oldest))
5504 		return;
5505 
5506 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
5507 	 * SKB to the chain.
5508 	 */
5509 	skb_list_del_init(oldest);
5510 	napi_gro_complete(oldest);
5511 }
5512 
5513 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5514 							   struct sk_buff *));
5515 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5516 							   struct sk_buff *));
5517 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5518 {
5519 	u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5520 	struct list_head *head = &offload_base;
5521 	struct packet_offload *ptype;
5522 	__be16 type = skb->protocol;
5523 	struct list_head *gro_head;
5524 	struct sk_buff *pp = NULL;
5525 	enum gro_result ret;
5526 	int same_flow;
5527 	int grow;
5528 
5529 	if (netif_elide_gro(skb->dev))
5530 		goto normal;
5531 
5532 	gro_head = gro_list_prepare(napi, skb);
5533 
5534 	rcu_read_lock();
5535 	list_for_each_entry_rcu(ptype, head, list) {
5536 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5537 			continue;
5538 
5539 		skb_set_network_header(skb, skb_gro_offset(skb));
5540 		skb_reset_mac_len(skb);
5541 		NAPI_GRO_CB(skb)->same_flow = 0;
5542 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5543 		NAPI_GRO_CB(skb)->free = 0;
5544 		NAPI_GRO_CB(skb)->encap_mark = 0;
5545 		NAPI_GRO_CB(skb)->recursion_counter = 0;
5546 		NAPI_GRO_CB(skb)->is_fou = 0;
5547 		NAPI_GRO_CB(skb)->is_atomic = 1;
5548 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5549 
5550 		/* Setup for GRO checksum validation */
5551 		switch (skb->ip_summed) {
5552 		case CHECKSUM_COMPLETE:
5553 			NAPI_GRO_CB(skb)->csum = skb->csum;
5554 			NAPI_GRO_CB(skb)->csum_valid = 1;
5555 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5556 			break;
5557 		case CHECKSUM_UNNECESSARY:
5558 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5559 			NAPI_GRO_CB(skb)->csum_valid = 0;
5560 			break;
5561 		default:
5562 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5563 			NAPI_GRO_CB(skb)->csum_valid = 0;
5564 		}
5565 
5566 		pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5567 					ipv6_gro_receive, inet_gro_receive,
5568 					gro_head, skb);
5569 		break;
5570 	}
5571 	rcu_read_unlock();
5572 
5573 	if (&ptype->list == head)
5574 		goto normal;
5575 
5576 	if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5577 		ret = GRO_CONSUMED;
5578 		goto ok;
5579 	}
5580 
5581 	same_flow = NAPI_GRO_CB(skb)->same_flow;
5582 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5583 
5584 	if (pp) {
5585 		skb_list_del_init(pp);
5586 		napi_gro_complete(pp);
5587 		napi->gro_hash[hash].count--;
5588 	}
5589 
5590 	if (same_flow)
5591 		goto ok;
5592 
5593 	if (NAPI_GRO_CB(skb)->flush)
5594 		goto normal;
5595 
5596 	if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5597 		gro_flush_oldest(gro_head);
5598 	} else {
5599 		napi->gro_hash[hash].count++;
5600 	}
5601 	NAPI_GRO_CB(skb)->count = 1;
5602 	NAPI_GRO_CB(skb)->age = jiffies;
5603 	NAPI_GRO_CB(skb)->last = skb;
5604 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5605 	list_add(&skb->list, gro_head);
5606 	ret = GRO_HELD;
5607 
5608 pull:
5609 	grow = skb_gro_offset(skb) - skb_headlen(skb);
5610 	if (grow > 0)
5611 		gro_pull_from_frag0(skb, grow);
5612 ok:
5613 	if (napi->gro_hash[hash].count) {
5614 		if (!test_bit(hash, &napi->gro_bitmask))
5615 			__set_bit(hash, &napi->gro_bitmask);
5616 	} else if (test_bit(hash, &napi->gro_bitmask)) {
5617 		__clear_bit(hash, &napi->gro_bitmask);
5618 	}
5619 
5620 	return ret;
5621 
5622 normal:
5623 	ret = GRO_NORMAL;
5624 	goto pull;
5625 }
5626 
5627 struct packet_offload *gro_find_receive_by_type(__be16 type)
5628 {
5629 	struct list_head *offload_head = &offload_base;
5630 	struct packet_offload *ptype;
5631 
5632 	list_for_each_entry_rcu(ptype, offload_head, list) {
5633 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5634 			continue;
5635 		return ptype;
5636 	}
5637 	return NULL;
5638 }
5639 EXPORT_SYMBOL(gro_find_receive_by_type);
5640 
5641 struct packet_offload *gro_find_complete_by_type(__be16 type)
5642 {
5643 	struct list_head *offload_head = &offload_base;
5644 	struct packet_offload *ptype;
5645 
5646 	list_for_each_entry_rcu(ptype, offload_head, list) {
5647 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5648 			continue;
5649 		return ptype;
5650 	}
5651 	return NULL;
5652 }
5653 EXPORT_SYMBOL(gro_find_complete_by_type);
5654 
5655 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5656 {
5657 	skb_dst_drop(skb);
5658 	secpath_reset(skb);
5659 	kmem_cache_free(skbuff_head_cache, skb);
5660 }
5661 
5662 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5663 {
5664 	switch (ret) {
5665 	case GRO_NORMAL:
5666 		if (netif_receive_skb_internal(skb))
5667 			ret = GRO_DROP;
5668 		break;
5669 
5670 	case GRO_DROP:
5671 		kfree_skb(skb);
5672 		break;
5673 
5674 	case GRO_MERGED_FREE:
5675 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5676 			napi_skb_free_stolen_head(skb);
5677 		else
5678 			__kfree_skb(skb);
5679 		break;
5680 
5681 	case GRO_HELD:
5682 	case GRO_MERGED:
5683 	case GRO_CONSUMED:
5684 		break;
5685 	}
5686 
5687 	return ret;
5688 }
5689 
5690 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5691 {
5692 	gro_result_t ret;
5693 
5694 	skb_mark_napi_id(skb, napi);
5695 	trace_napi_gro_receive_entry(skb);
5696 
5697 	skb_gro_reset_offset(skb);
5698 
5699 	ret = napi_skb_finish(dev_gro_receive(napi, skb), skb);
5700 	trace_napi_gro_receive_exit(ret);
5701 
5702 	return ret;
5703 }
5704 EXPORT_SYMBOL(napi_gro_receive);
5705 
5706 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5707 {
5708 	if (unlikely(skb->pfmemalloc)) {
5709 		consume_skb(skb);
5710 		return;
5711 	}
5712 	__skb_pull(skb, skb_headlen(skb));
5713 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
5714 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5715 	__vlan_hwaccel_clear_tag(skb);
5716 	skb->dev = napi->dev;
5717 	skb->skb_iif = 0;
5718 
5719 	/* eth_type_trans() assumes pkt_type is PACKET_HOST */
5720 	skb->pkt_type = PACKET_HOST;
5721 
5722 	skb->encapsulation = 0;
5723 	skb_shinfo(skb)->gso_type = 0;
5724 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5725 	secpath_reset(skb);
5726 
5727 	napi->skb = skb;
5728 }
5729 
5730 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5731 {
5732 	struct sk_buff *skb = napi->skb;
5733 
5734 	if (!skb) {
5735 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5736 		if (skb) {
5737 			napi->skb = skb;
5738 			skb_mark_napi_id(skb, napi);
5739 		}
5740 	}
5741 	return skb;
5742 }
5743 EXPORT_SYMBOL(napi_get_frags);
5744 
5745 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5746 				      struct sk_buff *skb,
5747 				      gro_result_t ret)
5748 {
5749 	switch (ret) {
5750 	case GRO_NORMAL:
5751 	case GRO_HELD:
5752 		__skb_push(skb, ETH_HLEN);
5753 		skb->protocol = eth_type_trans(skb, skb->dev);
5754 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5755 			ret = GRO_DROP;
5756 		break;
5757 
5758 	case GRO_DROP:
5759 		napi_reuse_skb(napi, skb);
5760 		break;
5761 
5762 	case GRO_MERGED_FREE:
5763 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5764 			napi_skb_free_stolen_head(skb);
5765 		else
5766 			napi_reuse_skb(napi, skb);
5767 		break;
5768 
5769 	case GRO_MERGED:
5770 	case GRO_CONSUMED:
5771 		break;
5772 	}
5773 
5774 	return ret;
5775 }
5776 
5777 /* Upper GRO stack assumes network header starts at gro_offset=0
5778  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5779  * We copy ethernet header into skb->data to have a common layout.
5780  */
5781 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5782 {
5783 	struct sk_buff *skb = napi->skb;
5784 	const struct ethhdr *eth;
5785 	unsigned int hlen = sizeof(*eth);
5786 
5787 	napi->skb = NULL;
5788 
5789 	skb_reset_mac_header(skb);
5790 	skb_gro_reset_offset(skb);
5791 
5792 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
5793 		eth = skb_gro_header_slow(skb, hlen, 0);
5794 		if (unlikely(!eth)) {
5795 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5796 					     __func__, napi->dev->name);
5797 			napi_reuse_skb(napi, skb);
5798 			return NULL;
5799 		}
5800 	} else {
5801 		eth = (const struct ethhdr *)skb->data;
5802 		gro_pull_from_frag0(skb, hlen);
5803 		NAPI_GRO_CB(skb)->frag0 += hlen;
5804 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
5805 	}
5806 	__skb_pull(skb, hlen);
5807 
5808 	/*
5809 	 * This works because the only protocols we care about don't require
5810 	 * special handling.
5811 	 * We'll fix it up properly in napi_frags_finish()
5812 	 */
5813 	skb->protocol = eth->h_proto;
5814 
5815 	return skb;
5816 }
5817 
5818 gro_result_t napi_gro_frags(struct napi_struct *napi)
5819 {
5820 	gro_result_t ret;
5821 	struct sk_buff *skb = napi_frags_skb(napi);
5822 
5823 	if (!skb)
5824 		return GRO_DROP;
5825 
5826 	trace_napi_gro_frags_entry(skb);
5827 
5828 	ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5829 	trace_napi_gro_frags_exit(ret);
5830 
5831 	return ret;
5832 }
5833 EXPORT_SYMBOL(napi_gro_frags);
5834 
5835 /* Compute the checksum from gro_offset and return the folded value
5836  * after adding in any pseudo checksum.
5837  */
5838 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5839 {
5840 	__wsum wsum;
5841 	__sum16 sum;
5842 
5843 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5844 
5845 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5846 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5847 	/* See comments in __skb_checksum_complete(). */
5848 	if (likely(!sum)) {
5849 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5850 		    !skb->csum_complete_sw)
5851 			netdev_rx_csum_fault(skb->dev, skb);
5852 	}
5853 
5854 	NAPI_GRO_CB(skb)->csum = wsum;
5855 	NAPI_GRO_CB(skb)->csum_valid = 1;
5856 
5857 	return sum;
5858 }
5859 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5860 
5861 static void net_rps_send_ipi(struct softnet_data *remsd)
5862 {
5863 #ifdef CONFIG_RPS
5864 	while (remsd) {
5865 		struct softnet_data *next = remsd->rps_ipi_next;
5866 
5867 		if (cpu_online(remsd->cpu))
5868 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5869 		remsd = next;
5870 	}
5871 #endif
5872 }
5873 
5874 /*
5875  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5876  * Note: called with local irq disabled, but exits with local irq enabled.
5877  */
5878 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5879 {
5880 #ifdef CONFIG_RPS
5881 	struct softnet_data *remsd = sd->rps_ipi_list;
5882 
5883 	if (remsd) {
5884 		sd->rps_ipi_list = NULL;
5885 
5886 		local_irq_enable();
5887 
5888 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5889 		net_rps_send_ipi(remsd);
5890 	} else
5891 #endif
5892 		local_irq_enable();
5893 }
5894 
5895 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5896 {
5897 #ifdef CONFIG_RPS
5898 	return sd->rps_ipi_list != NULL;
5899 #else
5900 	return false;
5901 #endif
5902 }
5903 
5904 static int process_backlog(struct napi_struct *napi, int quota)
5905 {
5906 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5907 	bool again = true;
5908 	int work = 0;
5909 
5910 	/* Check if we have pending ipi, its better to send them now,
5911 	 * not waiting net_rx_action() end.
5912 	 */
5913 	if (sd_has_rps_ipi_waiting(sd)) {
5914 		local_irq_disable();
5915 		net_rps_action_and_irq_enable(sd);
5916 	}
5917 
5918 	napi->weight = dev_rx_weight;
5919 	while (again) {
5920 		struct sk_buff *skb;
5921 
5922 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5923 			rcu_read_lock();
5924 			__netif_receive_skb(skb);
5925 			rcu_read_unlock();
5926 			input_queue_head_incr(sd);
5927 			if (++work >= quota)
5928 				return work;
5929 
5930 		}
5931 
5932 		local_irq_disable();
5933 		rps_lock(sd);
5934 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5935 			/*
5936 			 * Inline a custom version of __napi_complete().
5937 			 * only current cpu owns and manipulates this napi,
5938 			 * and NAPI_STATE_SCHED is the only possible flag set
5939 			 * on backlog.
5940 			 * We can use a plain write instead of clear_bit(),
5941 			 * and we dont need an smp_mb() memory barrier.
5942 			 */
5943 			napi->state = 0;
5944 			again = false;
5945 		} else {
5946 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5947 						   &sd->process_queue);
5948 		}
5949 		rps_unlock(sd);
5950 		local_irq_enable();
5951 	}
5952 
5953 	return work;
5954 }
5955 
5956 /**
5957  * __napi_schedule - schedule for receive
5958  * @n: entry to schedule
5959  *
5960  * The entry's receive function will be scheduled to run.
5961  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5962  */
5963 void __napi_schedule(struct napi_struct *n)
5964 {
5965 	unsigned long flags;
5966 
5967 	local_irq_save(flags);
5968 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5969 	local_irq_restore(flags);
5970 }
5971 EXPORT_SYMBOL(__napi_schedule);
5972 
5973 /**
5974  *	napi_schedule_prep - check if napi can be scheduled
5975  *	@n: napi context
5976  *
5977  * Test if NAPI routine is already running, and if not mark
5978  * it as running.  This is used as a condition variable
5979  * insure only one NAPI poll instance runs.  We also make
5980  * sure there is no pending NAPI disable.
5981  */
5982 bool napi_schedule_prep(struct napi_struct *n)
5983 {
5984 	unsigned long val, new;
5985 
5986 	do {
5987 		val = READ_ONCE(n->state);
5988 		if (unlikely(val & NAPIF_STATE_DISABLE))
5989 			return false;
5990 		new = val | NAPIF_STATE_SCHED;
5991 
5992 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
5993 		 * This was suggested by Alexander Duyck, as compiler
5994 		 * emits better code than :
5995 		 * if (val & NAPIF_STATE_SCHED)
5996 		 *     new |= NAPIF_STATE_MISSED;
5997 		 */
5998 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5999 						   NAPIF_STATE_MISSED;
6000 	} while (cmpxchg(&n->state, val, new) != val);
6001 
6002 	return !(val & NAPIF_STATE_SCHED);
6003 }
6004 EXPORT_SYMBOL(napi_schedule_prep);
6005 
6006 /**
6007  * __napi_schedule_irqoff - schedule for receive
6008  * @n: entry to schedule
6009  *
6010  * Variant of __napi_schedule() assuming hard irqs are masked
6011  */
6012 void __napi_schedule_irqoff(struct napi_struct *n)
6013 {
6014 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6015 }
6016 EXPORT_SYMBOL(__napi_schedule_irqoff);
6017 
6018 bool napi_complete_done(struct napi_struct *n, int work_done)
6019 {
6020 	unsigned long flags, val, new;
6021 
6022 	/*
6023 	 * 1) Don't let napi dequeue from the cpu poll list
6024 	 *    just in case its running on a different cpu.
6025 	 * 2) If we are busy polling, do nothing here, we have
6026 	 *    the guarantee we will be called later.
6027 	 */
6028 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6029 				 NAPIF_STATE_IN_BUSY_POLL)))
6030 		return false;
6031 
6032 	if (n->gro_bitmask) {
6033 		unsigned long timeout = 0;
6034 
6035 		if (work_done)
6036 			timeout = n->dev->gro_flush_timeout;
6037 
6038 		/* When the NAPI instance uses a timeout and keeps postponing
6039 		 * it, we need to bound somehow the time packets are kept in
6040 		 * the GRO layer
6041 		 */
6042 		napi_gro_flush(n, !!timeout);
6043 		if (timeout)
6044 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
6045 				      HRTIMER_MODE_REL_PINNED);
6046 	}
6047 	if (unlikely(!list_empty(&n->poll_list))) {
6048 		/* If n->poll_list is not empty, we need to mask irqs */
6049 		local_irq_save(flags);
6050 		list_del_init(&n->poll_list);
6051 		local_irq_restore(flags);
6052 	}
6053 
6054 	do {
6055 		val = READ_ONCE(n->state);
6056 
6057 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6058 
6059 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6060 
6061 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6062 		 * because we will call napi->poll() one more time.
6063 		 * This C code was suggested by Alexander Duyck to help gcc.
6064 		 */
6065 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6066 						    NAPIF_STATE_SCHED;
6067 	} while (cmpxchg(&n->state, val, new) != val);
6068 
6069 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6070 		__napi_schedule(n);
6071 		return false;
6072 	}
6073 
6074 	return true;
6075 }
6076 EXPORT_SYMBOL(napi_complete_done);
6077 
6078 /* must be called under rcu_read_lock(), as we dont take a reference */
6079 static struct napi_struct *napi_by_id(unsigned int napi_id)
6080 {
6081 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6082 	struct napi_struct *napi;
6083 
6084 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6085 		if (napi->napi_id == napi_id)
6086 			return napi;
6087 
6088 	return NULL;
6089 }
6090 
6091 #if defined(CONFIG_NET_RX_BUSY_POLL)
6092 
6093 #define BUSY_POLL_BUDGET 8
6094 
6095 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6096 {
6097 	int rc;
6098 
6099 	/* Busy polling means there is a high chance device driver hard irq
6100 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6101 	 * set in napi_schedule_prep().
6102 	 * Since we are about to call napi->poll() once more, we can safely
6103 	 * clear NAPI_STATE_MISSED.
6104 	 *
6105 	 * Note: x86 could use a single "lock and ..." instruction
6106 	 * to perform these two clear_bit()
6107 	 */
6108 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6109 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6110 
6111 	local_bh_disable();
6112 
6113 	/* All we really want here is to re-enable device interrupts.
6114 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6115 	 */
6116 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
6117 	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6118 	netpoll_poll_unlock(have_poll_lock);
6119 	if (rc == BUSY_POLL_BUDGET)
6120 		__napi_schedule(napi);
6121 	local_bh_enable();
6122 }
6123 
6124 void napi_busy_loop(unsigned int napi_id,
6125 		    bool (*loop_end)(void *, unsigned long),
6126 		    void *loop_end_arg)
6127 {
6128 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6129 	int (*napi_poll)(struct napi_struct *napi, int budget);
6130 	void *have_poll_lock = NULL;
6131 	struct napi_struct *napi;
6132 
6133 restart:
6134 	napi_poll = NULL;
6135 
6136 	rcu_read_lock();
6137 
6138 	napi = napi_by_id(napi_id);
6139 	if (!napi)
6140 		goto out;
6141 
6142 	preempt_disable();
6143 	for (;;) {
6144 		int work = 0;
6145 
6146 		local_bh_disable();
6147 		if (!napi_poll) {
6148 			unsigned long val = READ_ONCE(napi->state);
6149 
6150 			/* If multiple threads are competing for this napi,
6151 			 * we avoid dirtying napi->state as much as we can.
6152 			 */
6153 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6154 				   NAPIF_STATE_IN_BUSY_POLL))
6155 				goto count;
6156 			if (cmpxchg(&napi->state, val,
6157 				    val | NAPIF_STATE_IN_BUSY_POLL |
6158 					  NAPIF_STATE_SCHED) != val)
6159 				goto count;
6160 			have_poll_lock = netpoll_poll_lock(napi);
6161 			napi_poll = napi->poll;
6162 		}
6163 		work = napi_poll(napi, BUSY_POLL_BUDGET);
6164 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6165 count:
6166 		if (work > 0)
6167 			__NET_ADD_STATS(dev_net(napi->dev),
6168 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6169 		local_bh_enable();
6170 
6171 		if (!loop_end || loop_end(loop_end_arg, start_time))
6172 			break;
6173 
6174 		if (unlikely(need_resched())) {
6175 			if (napi_poll)
6176 				busy_poll_stop(napi, have_poll_lock);
6177 			preempt_enable();
6178 			rcu_read_unlock();
6179 			cond_resched();
6180 			if (loop_end(loop_end_arg, start_time))
6181 				return;
6182 			goto restart;
6183 		}
6184 		cpu_relax();
6185 	}
6186 	if (napi_poll)
6187 		busy_poll_stop(napi, have_poll_lock);
6188 	preempt_enable();
6189 out:
6190 	rcu_read_unlock();
6191 }
6192 EXPORT_SYMBOL(napi_busy_loop);
6193 
6194 #endif /* CONFIG_NET_RX_BUSY_POLL */
6195 
6196 static void napi_hash_add(struct napi_struct *napi)
6197 {
6198 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6199 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6200 		return;
6201 
6202 	spin_lock(&napi_hash_lock);
6203 
6204 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6205 	do {
6206 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6207 			napi_gen_id = MIN_NAPI_ID;
6208 	} while (napi_by_id(napi_gen_id));
6209 	napi->napi_id = napi_gen_id;
6210 
6211 	hlist_add_head_rcu(&napi->napi_hash_node,
6212 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6213 
6214 	spin_unlock(&napi_hash_lock);
6215 }
6216 
6217 /* Warning : caller is responsible to make sure rcu grace period
6218  * is respected before freeing memory containing @napi
6219  */
6220 bool napi_hash_del(struct napi_struct *napi)
6221 {
6222 	bool rcu_sync_needed = false;
6223 
6224 	spin_lock(&napi_hash_lock);
6225 
6226 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6227 		rcu_sync_needed = true;
6228 		hlist_del_rcu(&napi->napi_hash_node);
6229 	}
6230 	spin_unlock(&napi_hash_lock);
6231 	return rcu_sync_needed;
6232 }
6233 EXPORT_SYMBOL_GPL(napi_hash_del);
6234 
6235 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6236 {
6237 	struct napi_struct *napi;
6238 
6239 	napi = container_of(timer, struct napi_struct, timer);
6240 
6241 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6242 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6243 	 */
6244 	if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6245 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6246 		__napi_schedule_irqoff(napi);
6247 
6248 	return HRTIMER_NORESTART;
6249 }
6250 
6251 static void init_gro_hash(struct napi_struct *napi)
6252 {
6253 	int i;
6254 
6255 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6256 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6257 		napi->gro_hash[i].count = 0;
6258 	}
6259 	napi->gro_bitmask = 0;
6260 }
6261 
6262 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6263 		    int (*poll)(struct napi_struct *, int), int weight)
6264 {
6265 	INIT_LIST_HEAD(&napi->poll_list);
6266 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6267 	napi->timer.function = napi_watchdog;
6268 	init_gro_hash(napi);
6269 	napi->skb = NULL;
6270 	napi->poll = poll;
6271 	if (weight > NAPI_POLL_WEIGHT)
6272 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6273 				weight);
6274 	napi->weight = weight;
6275 	list_add(&napi->dev_list, &dev->napi_list);
6276 	napi->dev = dev;
6277 #ifdef CONFIG_NETPOLL
6278 	napi->poll_owner = -1;
6279 #endif
6280 	set_bit(NAPI_STATE_SCHED, &napi->state);
6281 	napi_hash_add(napi);
6282 }
6283 EXPORT_SYMBOL(netif_napi_add);
6284 
6285 void napi_disable(struct napi_struct *n)
6286 {
6287 	might_sleep();
6288 	set_bit(NAPI_STATE_DISABLE, &n->state);
6289 
6290 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6291 		msleep(1);
6292 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6293 		msleep(1);
6294 
6295 	hrtimer_cancel(&n->timer);
6296 
6297 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6298 }
6299 EXPORT_SYMBOL(napi_disable);
6300 
6301 static void flush_gro_hash(struct napi_struct *napi)
6302 {
6303 	int i;
6304 
6305 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6306 		struct sk_buff *skb, *n;
6307 
6308 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6309 			kfree_skb(skb);
6310 		napi->gro_hash[i].count = 0;
6311 	}
6312 }
6313 
6314 /* Must be called in process context */
6315 void netif_napi_del(struct napi_struct *napi)
6316 {
6317 	might_sleep();
6318 	if (napi_hash_del(napi))
6319 		synchronize_net();
6320 	list_del_init(&napi->dev_list);
6321 	napi_free_frags(napi);
6322 
6323 	flush_gro_hash(napi);
6324 	napi->gro_bitmask = 0;
6325 }
6326 EXPORT_SYMBOL(netif_napi_del);
6327 
6328 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6329 {
6330 	void *have;
6331 	int work, weight;
6332 
6333 	list_del_init(&n->poll_list);
6334 
6335 	have = netpoll_poll_lock(n);
6336 
6337 	weight = n->weight;
6338 
6339 	/* This NAPI_STATE_SCHED test is for avoiding a race
6340 	 * with netpoll's poll_napi().  Only the entity which
6341 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6342 	 * actually make the ->poll() call.  Therefore we avoid
6343 	 * accidentally calling ->poll() when NAPI is not scheduled.
6344 	 */
6345 	work = 0;
6346 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6347 		work = n->poll(n, weight);
6348 		trace_napi_poll(n, work, weight);
6349 	}
6350 
6351 	WARN_ON_ONCE(work > weight);
6352 
6353 	if (likely(work < weight))
6354 		goto out_unlock;
6355 
6356 	/* Drivers must not modify the NAPI state if they
6357 	 * consume the entire weight.  In such cases this code
6358 	 * still "owns" the NAPI instance and therefore can
6359 	 * move the instance around on the list at-will.
6360 	 */
6361 	if (unlikely(napi_disable_pending(n))) {
6362 		napi_complete(n);
6363 		goto out_unlock;
6364 	}
6365 
6366 	if (n->gro_bitmask) {
6367 		/* flush too old packets
6368 		 * If HZ < 1000, flush all packets.
6369 		 */
6370 		napi_gro_flush(n, HZ >= 1000);
6371 	}
6372 
6373 	/* Some drivers may have called napi_schedule
6374 	 * prior to exhausting their budget.
6375 	 */
6376 	if (unlikely(!list_empty(&n->poll_list))) {
6377 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6378 			     n->dev ? n->dev->name : "backlog");
6379 		goto out_unlock;
6380 	}
6381 
6382 	list_add_tail(&n->poll_list, repoll);
6383 
6384 out_unlock:
6385 	netpoll_poll_unlock(have);
6386 
6387 	return work;
6388 }
6389 
6390 static __latent_entropy void net_rx_action(struct softirq_action *h)
6391 {
6392 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6393 	unsigned long time_limit = jiffies +
6394 		usecs_to_jiffies(netdev_budget_usecs);
6395 	int budget = netdev_budget;
6396 	LIST_HEAD(list);
6397 	LIST_HEAD(repoll);
6398 
6399 	local_irq_disable();
6400 	list_splice_init(&sd->poll_list, &list);
6401 	local_irq_enable();
6402 
6403 	for (;;) {
6404 		struct napi_struct *n;
6405 
6406 		if (list_empty(&list)) {
6407 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6408 				goto out;
6409 			break;
6410 		}
6411 
6412 		n = list_first_entry(&list, struct napi_struct, poll_list);
6413 		budget -= napi_poll(n, &repoll);
6414 
6415 		/* If softirq window is exhausted then punt.
6416 		 * Allow this to run for 2 jiffies since which will allow
6417 		 * an average latency of 1.5/HZ.
6418 		 */
6419 		if (unlikely(budget <= 0 ||
6420 			     time_after_eq(jiffies, time_limit))) {
6421 			sd->time_squeeze++;
6422 			break;
6423 		}
6424 	}
6425 
6426 	local_irq_disable();
6427 
6428 	list_splice_tail_init(&sd->poll_list, &list);
6429 	list_splice_tail(&repoll, &list);
6430 	list_splice(&list, &sd->poll_list);
6431 	if (!list_empty(&sd->poll_list))
6432 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6433 
6434 	net_rps_action_and_irq_enable(sd);
6435 out:
6436 	__kfree_skb_flush();
6437 }
6438 
6439 struct netdev_adjacent {
6440 	struct net_device *dev;
6441 
6442 	/* upper master flag, there can only be one master device per list */
6443 	bool master;
6444 
6445 	/* counter for the number of times this device was added to us */
6446 	u16 ref_nr;
6447 
6448 	/* private field for the users */
6449 	void *private;
6450 
6451 	struct list_head list;
6452 	struct rcu_head rcu;
6453 };
6454 
6455 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6456 						 struct list_head *adj_list)
6457 {
6458 	struct netdev_adjacent *adj;
6459 
6460 	list_for_each_entry(adj, adj_list, list) {
6461 		if (adj->dev == adj_dev)
6462 			return adj;
6463 	}
6464 	return NULL;
6465 }
6466 
6467 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6468 {
6469 	struct net_device *dev = data;
6470 
6471 	return upper_dev == dev;
6472 }
6473 
6474 /**
6475  * netdev_has_upper_dev - Check if device is linked to an upper device
6476  * @dev: device
6477  * @upper_dev: upper device to check
6478  *
6479  * Find out if a device is linked to specified upper device and return true
6480  * in case it is. Note that this checks only immediate upper device,
6481  * not through a complete stack of devices. The caller must hold the RTNL lock.
6482  */
6483 bool netdev_has_upper_dev(struct net_device *dev,
6484 			  struct net_device *upper_dev)
6485 {
6486 	ASSERT_RTNL();
6487 
6488 	return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6489 					     upper_dev);
6490 }
6491 EXPORT_SYMBOL(netdev_has_upper_dev);
6492 
6493 /**
6494  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6495  * @dev: device
6496  * @upper_dev: upper device to check
6497  *
6498  * Find out if a device is linked to specified upper device and return true
6499  * in case it is. Note that this checks the entire upper device chain.
6500  * The caller must hold rcu lock.
6501  */
6502 
6503 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6504 				  struct net_device *upper_dev)
6505 {
6506 	return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6507 					       upper_dev);
6508 }
6509 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6510 
6511 /**
6512  * netdev_has_any_upper_dev - Check if device is linked to some device
6513  * @dev: device
6514  *
6515  * Find out if a device is linked to an upper device and return true in case
6516  * it is. The caller must hold the RTNL lock.
6517  */
6518 bool netdev_has_any_upper_dev(struct net_device *dev)
6519 {
6520 	ASSERT_RTNL();
6521 
6522 	return !list_empty(&dev->adj_list.upper);
6523 }
6524 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6525 
6526 /**
6527  * netdev_master_upper_dev_get - Get master upper device
6528  * @dev: device
6529  *
6530  * Find a master upper device and return pointer to it or NULL in case
6531  * it's not there. The caller must hold the RTNL lock.
6532  */
6533 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6534 {
6535 	struct netdev_adjacent *upper;
6536 
6537 	ASSERT_RTNL();
6538 
6539 	if (list_empty(&dev->adj_list.upper))
6540 		return NULL;
6541 
6542 	upper = list_first_entry(&dev->adj_list.upper,
6543 				 struct netdev_adjacent, list);
6544 	if (likely(upper->master))
6545 		return upper->dev;
6546 	return NULL;
6547 }
6548 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6549 
6550 /**
6551  * netdev_has_any_lower_dev - Check if device is linked to some device
6552  * @dev: device
6553  *
6554  * Find out if a device is linked to a lower device and return true in case
6555  * it is. The caller must hold the RTNL lock.
6556  */
6557 static bool netdev_has_any_lower_dev(struct net_device *dev)
6558 {
6559 	ASSERT_RTNL();
6560 
6561 	return !list_empty(&dev->adj_list.lower);
6562 }
6563 
6564 void *netdev_adjacent_get_private(struct list_head *adj_list)
6565 {
6566 	struct netdev_adjacent *adj;
6567 
6568 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6569 
6570 	return adj->private;
6571 }
6572 EXPORT_SYMBOL(netdev_adjacent_get_private);
6573 
6574 /**
6575  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6576  * @dev: device
6577  * @iter: list_head ** of the current position
6578  *
6579  * Gets the next device from the dev's upper list, starting from iter
6580  * position. The caller must hold RCU read lock.
6581  */
6582 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6583 						 struct list_head **iter)
6584 {
6585 	struct netdev_adjacent *upper;
6586 
6587 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6588 
6589 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6590 
6591 	if (&upper->list == &dev->adj_list.upper)
6592 		return NULL;
6593 
6594 	*iter = &upper->list;
6595 
6596 	return upper->dev;
6597 }
6598 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6599 
6600 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6601 						    struct list_head **iter)
6602 {
6603 	struct netdev_adjacent *upper;
6604 
6605 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6606 
6607 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6608 
6609 	if (&upper->list == &dev->adj_list.upper)
6610 		return NULL;
6611 
6612 	*iter = &upper->list;
6613 
6614 	return upper->dev;
6615 }
6616 
6617 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6618 				  int (*fn)(struct net_device *dev,
6619 					    void *data),
6620 				  void *data)
6621 {
6622 	struct net_device *udev;
6623 	struct list_head *iter;
6624 	int ret;
6625 
6626 	for (iter = &dev->adj_list.upper,
6627 	     udev = netdev_next_upper_dev_rcu(dev, &iter);
6628 	     udev;
6629 	     udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6630 		/* first is the upper device itself */
6631 		ret = fn(udev, data);
6632 		if (ret)
6633 			return ret;
6634 
6635 		/* then look at all of its upper devices */
6636 		ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6637 		if (ret)
6638 			return ret;
6639 	}
6640 
6641 	return 0;
6642 }
6643 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6644 
6645 /**
6646  * netdev_lower_get_next_private - Get the next ->private from the
6647  *				   lower neighbour list
6648  * @dev: device
6649  * @iter: list_head ** of the current position
6650  *
6651  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6652  * list, starting from iter position. The caller must hold either hold the
6653  * RTNL lock or its own locking that guarantees that the neighbour lower
6654  * list will remain unchanged.
6655  */
6656 void *netdev_lower_get_next_private(struct net_device *dev,
6657 				    struct list_head **iter)
6658 {
6659 	struct netdev_adjacent *lower;
6660 
6661 	lower = list_entry(*iter, struct netdev_adjacent, list);
6662 
6663 	if (&lower->list == &dev->adj_list.lower)
6664 		return NULL;
6665 
6666 	*iter = lower->list.next;
6667 
6668 	return lower->private;
6669 }
6670 EXPORT_SYMBOL(netdev_lower_get_next_private);
6671 
6672 /**
6673  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6674  *				       lower neighbour list, RCU
6675  *				       variant
6676  * @dev: device
6677  * @iter: list_head ** of the current position
6678  *
6679  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6680  * list, starting from iter position. The caller must hold RCU read lock.
6681  */
6682 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6683 					struct list_head **iter)
6684 {
6685 	struct netdev_adjacent *lower;
6686 
6687 	WARN_ON_ONCE(!rcu_read_lock_held());
6688 
6689 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6690 
6691 	if (&lower->list == &dev->adj_list.lower)
6692 		return NULL;
6693 
6694 	*iter = &lower->list;
6695 
6696 	return lower->private;
6697 }
6698 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6699 
6700 /**
6701  * netdev_lower_get_next - Get the next device from the lower neighbour
6702  *                         list
6703  * @dev: device
6704  * @iter: list_head ** of the current position
6705  *
6706  * Gets the next netdev_adjacent from the dev's lower neighbour
6707  * list, starting from iter position. The caller must hold RTNL lock or
6708  * its own locking that guarantees that the neighbour lower
6709  * list will remain unchanged.
6710  */
6711 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6712 {
6713 	struct netdev_adjacent *lower;
6714 
6715 	lower = list_entry(*iter, struct netdev_adjacent, list);
6716 
6717 	if (&lower->list == &dev->adj_list.lower)
6718 		return NULL;
6719 
6720 	*iter = lower->list.next;
6721 
6722 	return lower->dev;
6723 }
6724 EXPORT_SYMBOL(netdev_lower_get_next);
6725 
6726 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6727 						struct list_head **iter)
6728 {
6729 	struct netdev_adjacent *lower;
6730 
6731 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6732 
6733 	if (&lower->list == &dev->adj_list.lower)
6734 		return NULL;
6735 
6736 	*iter = &lower->list;
6737 
6738 	return lower->dev;
6739 }
6740 
6741 int netdev_walk_all_lower_dev(struct net_device *dev,
6742 			      int (*fn)(struct net_device *dev,
6743 					void *data),
6744 			      void *data)
6745 {
6746 	struct net_device *ldev;
6747 	struct list_head *iter;
6748 	int ret;
6749 
6750 	for (iter = &dev->adj_list.lower,
6751 	     ldev = netdev_next_lower_dev(dev, &iter);
6752 	     ldev;
6753 	     ldev = netdev_next_lower_dev(dev, &iter)) {
6754 		/* first is the lower device itself */
6755 		ret = fn(ldev, data);
6756 		if (ret)
6757 			return ret;
6758 
6759 		/* then look at all of its lower devices */
6760 		ret = netdev_walk_all_lower_dev(ldev, fn, data);
6761 		if (ret)
6762 			return ret;
6763 	}
6764 
6765 	return 0;
6766 }
6767 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6768 
6769 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6770 						    struct list_head **iter)
6771 {
6772 	struct netdev_adjacent *lower;
6773 
6774 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6775 	if (&lower->list == &dev->adj_list.lower)
6776 		return NULL;
6777 
6778 	*iter = &lower->list;
6779 
6780 	return lower->dev;
6781 }
6782 
6783 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6784 				  int (*fn)(struct net_device *dev,
6785 					    void *data),
6786 				  void *data)
6787 {
6788 	struct net_device *ldev;
6789 	struct list_head *iter;
6790 	int ret;
6791 
6792 	for (iter = &dev->adj_list.lower,
6793 	     ldev = netdev_next_lower_dev_rcu(dev, &iter);
6794 	     ldev;
6795 	     ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6796 		/* first is the lower device itself */
6797 		ret = fn(ldev, data);
6798 		if (ret)
6799 			return ret;
6800 
6801 		/* then look at all of its lower devices */
6802 		ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6803 		if (ret)
6804 			return ret;
6805 	}
6806 
6807 	return 0;
6808 }
6809 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6810 
6811 /**
6812  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6813  *				       lower neighbour list, RCU
6814  *				       variant
6815  * @dev: device
6816  *
6817  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6818  * list. The caller must hold RCU read lock.
6819  */
6820 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6821 {
6822 	struct netdev_adjacent *lower;
6823 
6824 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
6825 			struct netdev_adjacent, list);
6826 	if (lower)
6827 		return lower->private;
6828 	return NULL;
6829 }
6830 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6831 
6832 /**
6833  * netdev_master_upper_dev_get_rcu - Get master upper device
6834  * @dev: device
6835  *
6836  * Find a master upper device and return pointer to it or NULL in case
6837  * it's not there. The caller must hold the RCU read lock.
6838  */
6839 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6840 {
6841 	struct netdev_adjacent *upper;
6842 
6843 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
6844 				       struct netdev_adjacent, list);
6845 	if (upper && likely(upper->master))
6846 		return upper->dev;
6847 	return NULL;
6848 }
6849 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6850 
6851 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6852 			      struct net_device *adj_dev,
6853 			      struct list_head *dev_list)
6854 {
6855 	char linkname[IFNAMSIZ+7];
6856 
6857 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6858 		"upper_%s" : "lower_%s", adj_dev->name);
6859 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6860 				 linkname);
6861 }
6862 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6863 			       char *name,
6864 			       struct list_head *dev_list)
6865 {
6866 	char linkname[IFNAMSIZ+7];
6867 
6868 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6869 		"upper_%s" : "lower_%s", name);
6870 	sysfs_remove_link(&(dev->dev.kobj), linkname);
6871 }
6872 
6873 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6874 						 struct net_device *adj_dev,
6875 						 struct list_head *dev_list)
6876 {
6877 	return (dev_list == &dev->adj_list.upper ||
6878 		dev_list == &dev->adj_list.lower) &&
6879 		net_eq(dev_net(dev), dev_net(adj_dev));
6880 }
6881 
6882 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6883 					struct net_device *adj_dev,
6884 					struct list_head *dev_list,
6885 					void *private, bool master)
6886 {
6887 	struct netdev_adjacent *adj;
6888 	int ret;
6889 
6890 	adj = __netdev_find_adj(adj_dev, dev_list);
6891 
6892 	if (adj) {
6893 		adj->ref_nr += 1;
6894 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6895 			 dev->name, adj_dev->name, adj->ref_nr);
6896 
6897 		return 0;
6898 	}
6899 
6900 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6901 	if (!adj)
6902 		return -ENOMEM;
6903 
6904 	adj->dev = adj_dev;
6905 	adj->master = master;
6906 	adj->ref_nr = 1;
6907 	adj->private = private;
6908 	dev_hold(adj_dev);
6909 
6910 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6911 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6912 
6913 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6914 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6915 		if (ret)
6916 			goto free_adj;
6917 	}
6918 
6919 	/* Ensure that master link is always the first item in list. */
6920 	if (master) {
6921 		ret = sysfs_create_link(&(dev->dev.kobj),
6922 					&(adj_dev->dev.kobj), "master");
6923 		if (ret)
6924 			goto remove_symlinks;
6925 
6926 		list_add_rcu(&adj->list, dev_list);
6927 	} else {
6928 		list_add_tail_rcu(&adj->list, dev_list);
6929 	}
6930 
6931 	return 0;
6932 
6933 remove_symlinks:
6934 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6935 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6936 free_adj:
6937 	kfree(adj);
6938 	dev_put(adj_dev);
6939 
6940 	return ret;
6941 }
6942 
6943 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6944 					 struct net_device *adj_dev,
6945 					 u16 ref_nr,
6946 					 struct list_head *dev_list)
6947 {
6948 	struct netdev_adjacent *adj;
6949 
6950 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6951 		 dev->name, adj_dev->name, ref_nr);
6952 
6953 	adj = __netdev_find_adj(adj_dev, dev_list);
6954 
6955 	if (!adj) {
6956 		pr_err("Adjacency does not exist for device %s from %s\n",
6957 		       dev->name, adj_dev->name);
6958 		WARN_ON(1);
6959 		return;
6960 	}
6961 
6962 	if (adj->ref_nr > ref_nr) {
6963 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6964 			 dev->name, adj_dev->name, ref_nr,
6965 			 adj->ref_nr - ref_nr);
6966 		adj->ref_nr -= ref_nr;
6967 		return;
6968 	}
6969 
6970 	if (adj->master)
6971 		sysfs_remove_link(&(dev->dev.kobj), "master");
6972 
6973 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6974 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6975 
6976 	list_del_rcu(&adj->list);
6977 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6978 		 adj_dev->name, dev->name, adj_dev->name);
6979 	dev_put(adj_dev);
6980 	kfree_rcu(adj, rcu);
6981 }
6982 
6983 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6984 					    struct net_device *upper_dev,
6985 					    struct list_head *up_list,
6986 					    struct list_head *down_list,
6987 					    void *private, bool master)
6988 {
6989 	int ret;
6990 
6991 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6992 					   private, master);
6993 	if (ret)
6994 		return ret;
6995 
6996 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6997 					   private, false);
6998 	if (ret) {
6999 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7000 		return ret;
7001 	}
7002 
7003 	return 0;
7004 }
7005 
7006 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7007 					       struct net_device *upper_dev,
7008 					       u16 ref_nr,
7009 					       struct list_head *up_list,
7010 					       struct list_head *down_list)
7011 {
7012 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7013 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7014 }
7015 
7016 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7017 						struct net_device *upper_dev,
7018 						void *private, bool master)
7019 {
7020 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7021 						&dev->adj_list.upper,
7022 						&upper_dev->adj_list.lower,
7023 						private, master);
7024 }
7025 
7026 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7027 						   struct net_device *upper_dev)
7028 {
7029 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7030 					   &dev->adj_list.upper,
7031 					   &upper_dev->adj_list.lower);
7032 }
7033 
7034 static int __netdev_upper_dev_link(struct net_device *dev,
7035 				   struct net_device *upper_dev, bool master,
7036 				   void *upper_priv, void *upper_info,
7037 				   struct netlink_ext_ack *extack)
7038 {
7039 	struct netdev_notifier_changeupper_info changeupper_info = {
7040 		.info = {
7041 			.dev = dev,
7042 			.extack = extack,
7043 		},
7044 		.upper_dev = upper_dev,
7045 		.master = master,
7046 		.linking = true,
7047 		.upper_info = upper_info,
7048 	};
7049 	struct net_device *master_dev;
7050 	int ret = 0;
7051 
7052 	ASSERT_RTNL();
7053 
7054 	if (dev == upper_dev)
7055 		return -EBUSY;
7056 
7057 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7058 	if (netdev_has_upper_dev(upper_dev, dev))
7059 		return -EBUSY;
7060 
7061 	if (!master) {
7062 		if (netdev_has_upper_dev(dev, upper_dev))
7063 			return -EEXIST;
7064 	} else {
7065 		master_dev = netdev_master_upper_dev_get(dev);
7066 		if (master_dev)
7067 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7068 	}
7069 
7070 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7071 					    &changeupper_info.info);
7072 	ret = notifier_to_errno(ret);
7073 	if (ret)
7074 		return ret;
7075 
7076 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7077 						   master);
7078 	if (ret)
7079 		return ret;
7080 
7081 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7082 					    &changeupper_info.info);
7083 	ret = notifier_to_errno(ret);
7084 	if (ret)
7085 		goto rollback;
7086 
7087 	return 0;
7088 
7089 rollback:
7090 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7091 
7092 	return ret;
7093 }
7094 
7095 /**
7096  * netdev_upper_dev_link - Add a link to the upper device
7097  * @dev: device
7098  * @upper_dev: new upper device
7099  * @extack: netlink extended ack
7100  *
7101  * Adds a link to device which is upper to this one. The caller must hold
7102  * the RTNL lock. On a failure a negative errno code is returned.
7103  * On success the reference counts are adjusted and the function
7104  * returns zero.
7105  */
7106 int netdev_upper_dev_link(struct net_device *dev,
7107 			  struct net_device *upper_dev,
7108 			  struct netlink_ext_ack *extack)
7109 {
7110 	return __netdev_upper_dev_link(dev, upper_dev, false,
7111 				       NULL, NULL, extack);
7112 }
7113 EXPORT_SYMBOL(netdev_upper_dev_link);
7114 
7115 /**
7116  * netdev_master_upper_dev_link - Add a master link to the upper device
7117  * @dev: device
7118  * @upper_dev: new upper device
7119  * @upper_priv: upper device private
7120  * @upper_info: upper info to be passed down via notifier
7121  * @extack: netlink extended ack
7122  *
7123  * Adds a link to device which is upper to this one. In this case, only
7124  * one master upper device can be linked, although other non-master devices
7125  * might be linked as well. The caller must hold the RTNL lock.
7126  * On a failure a negative errno code is returned. On success the reference
7127  * counts are adjusted and the function returns zero.
7128  */
7129 int netdev_master_upper_dev_link(struct net_device *dev,
7130 				 struct net_device *upper_dev,
7131 				 void *upper_priv, void *upper_info,
7132 				 struct netlink_ext_ack *extack)
7133 {
7134 	return __netdev_upper_dev_link(dev, upper_dev, true,
7135 				       upper_priv, upper_info, extack);
7136 }
7137 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7138 
7139 /**
7140  * netdev_upper_dev_unlink - Removes a link to upper device
7141  * @dev: device
7142  * @upper_dev: new upper device
7143  *
7144  * Removes a link to device which is upper to this one. The caller must hold
7145  * the RTNL lock.
7146  */
7147 void netdev_upper_dev_unlink(struct net_device *dev,
7148 			     struct net_device *upper_dev)
7149 {
7150 	struct netdev_notifier_changeupper_info changeupper_info = {
7151 		.info = {
7152 			.dev = dev,
7153 		},
7154 		.upper_dev = upper_dev,
7155 		.linking = false,
7156 	};
7157 
7158 	ASSERT_RTNL();
7159 
7160 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7161 
7162 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7163 				      &changeupper_info.info);
7164 
7165 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7166 
7167 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7168 				      &changeupper_info.info);
7169 }
7170 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7171 
7172 /**
7173  * netdev_bonding_info_change - Dispatch event about slave change
7174  * @dev: device
7175  * @bonding_info: info to dispatch
7176  *
7177  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7178  * The caller must hold the RTNL lock.
7179  */
7180 void netdev_bonding_info_change(struct net_device *dev,
7181 				struct netdev_bonding_info *bonding_info)
7182 {
7183 	struct netdev_notifier_bonding_info info = {
7184 		.info.dev = dev,
7185 	};
7186 
7187 	memcpy(&info.bonding_info, bonding_info,
7188 	       sizeof(struct netdev_bonding_info));
7189 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7190 				      &info.info);
7191 }
7192 EXPORT_SYMBOL(netdev_bonding_info_change);
7193 
7194 static void netdev_adjacent_add_links(struct net_device *dev)
7195 {
7196 	struct netdev_adjacent *iter;
7197 
7198 	struct net *net = dev_net(dev);
7199 
7200 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7201 		if (!net_eq(net, dev_net(iter->dev)))
7202 			continue;
7203 		netdev_adjacent_sysfs_add(iter->dev, dev,
7204 					  &iter->dev->adj_list.lower);
7205 		netdev_adjacent_sysfs_add(dev, iter->dev,
7206 					  &dev->adj_list.upper);
7207 	}
7208 
7209 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7210 		if (!net_eq(net, dev_net(iter->dev)))
7211 			continue;
7212 		netdev_adjacent_sysfs_add(iter->dev, dev,
7213 					  &iter->dev->adj_list.upper);
7214 		netdev_adjacent_sysfs_add(dev, iter->dev,
7215 					  &dev->adj_list.lower);
7216 	}
7217 }
7218 
7219 static void netdev_adjacent_del_links(struct net_device *dev)
7220 {
7221 	struct netdev_adjacent *iter;
7222 
7223 	struct net *net = dev_net(dev);
7224 
7225 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7226 		if (!net_eq(net, dev_net(iter->dev)))
7227 			continue;
7228 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7229 					  &iter->dev->adj_list.lower);
7230 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7231 					  &dev->adj_list.upper);
7232 	}
7233 
7234 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7235 		if (!net_eq(net, dev_net(iter->dev)))
7236 			continue;
7237 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7238 					  &iter->dev->adj_list.upper);
7239 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7240 					  &dev->adj_list.lower);
7241 	}
7242 }
7243 
7244 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7245 {
7246 	struct netdev_adjacent *iter;
7247 
7248 	struct net *net = dev_net(dev);
7249 
7250 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7251 		if (!net_eq(net, dev_net(iter->dev)))
7252 			continue;
7253 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7254 					  &iter->dev->adj_list.lower);
7255 		netdev_adjacent_sysfs_add(iter->dev, dev,
7256 					  &iter->dev->adj_list.lower);
7257 	}
7258 
7259 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7260 		if (!net_eq(net, dev_net(iter->dev)))
7261 			continue;
7262 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7263 					  &iter->dev->adj_list.upper);
7264 		netdev_adjacent_sysfs_add(iter->dev, dev,
7265 					  &iter->dev->adj_list.upper);
7266 	}
7267 }
7268 
7269 void *netdev_lower_dev_get_private(struct net_device *dev,
7270 				   struct net_device *lower_dev)
7271 {
7272 	struct netdev_adjacent *lower;
7273 
7274 	if (!lower_dev)
7275 		return NULL;
7276 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7277 	if (!lower)
7278 		return NULL;
7279 
7280 	return lower->private;
7281 }
7282 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7283 
7284 
7285 int dev_get_nest_level(struct net_device *dev)
7286 {
7287 	struct net_device *lower = NULL;
7288 	struct list_head *iter;
7289 	int max_nest = -1;
7290 	int nest;
7291 
7292 	ASSERT_RTNL();
7293 
7294 	netdev_for_each_lower_dev(dev, lower, iter) {
7295 		nest = dev_get_nest_level(lower);
7296 		if (max_nest < nest)
7297 			max_nest = nest;
7298 	}
7299 
7300 	return max_nest + 1;
7301 }
7302 EXPORT_SYMBOL(dev_get_nest_level);
7303 
7304 /**
7305  * netdev_lower_change - Dispatch event about lower device state change
7306  * @lower_dev: device
7307  * @lower_state_info: state to dispatch
7308  *
7309  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7310  * The caller must hold the RTNL lock.
7311  */
7312 void netdev_lower_state_changed(struct net_device *lower_dev,
7313 				void *lower_state_info)
7314 {
7315 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7316 		.info.dev = lower_dev,
7317 	};
7318 
7319 	ASSERT_RTNL();
7320 	changelowerstate_info.lower_state_info = lower_state_info;
7321 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7322 				      &changelowerstate_info.info);
7323 }
7324 EXPORT_SYMBOL(netdev_lower_state_changed);
7325 
7326 static void dev_change_rx_flags(struct net_device *dev, int flags)
7327 {
7328 	const struct net_device_ops *ops = dev->netdev_ops;
7329 
7330 	if (ops->ndo_change_rx_flags)
7331 		ops->ndo_change_rx_flags(dev, flags);
7332 }
7333 
7334 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7335 {
7336 	unsigned int old_flags = dev->flags;
7337 	kuid_t uid;
7338 	kgid_t gid;
7339 
7340 	ASSERT_RTNL();
7341 
7342 	dev->flags |= IFF_PROMISC;
7343 	dev->promiscuity += inc;
7344 	if (dev->promiscuity == 0) {
7345 		/*
7346 		 * Avoid overflow.
7347 		 * If inc causes overflow, untouch promisc and return error.
7348 		 */
7349 		if (inc < 0)
7350 			dev->flags &= ~IFF_PROMISC;
7351 		else {
7352 			dev->promiscuity -= inc;
7353 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7354 				dev->name);
7355 			return -EOVERFLOW;
7356 		}
7357 	}
7358 	if (dev->flags != old_flags) {
7359 		pr_info("device %s %s promiscuous mode\n",
7360 			dev->name,
7361 			dev->flags & IFF_PROMISC ? "entered" : "left");
7362 		if (audit_enabled) {
7363 			current_uid_gid(&uid, &gid);
7364 			audit_log(audit_context(), GFP_ATOMIC,
7365 				  AUDIT_ANOM_PROMISCUOUS,
7366 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7367 				  dev->name, (dev->flags & IFF_PROMISC),
7368 				  (old_flags & IFF_PROMISC),
7369 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
7370 				  from_kuid(&init_user_ns, uid),
7371 				  from_kgid(&init_user_ns, gid),
7372 				  audit_get_sessionid(current));
7373 		}
7374 
7375 		dev_change_rx_flags(dev, IFF_PROMISC);
7376 	}
7377 	if (notify)
7378 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
7379 	return 0;
7380 }
7381 
7382 /**
7383  *	dev_set_promiscuity	- update promiscuity count on a device
7384  *	@dev: device
7385  *	@inc: modifier
7386  *
7387  *	Add or remove promiscuity from a device. While the count in the device
7388  *	remains above zero the interface remains promiscuous. Once it hits zero
7389  *	the device reverts back to normal filtering operation. A negative inc
7390  *	value is used to drop promiscuity on the device.
7391  *	Return 0 if successful or a negative errno code on error.
7392  */
7393 int dev_set_promiscuity(struct net_device *dev, int inc)
7394 {
7395 	unsigned int old_flags = dev->flags;
7396 	int err;
7397 
7398 	err = __dev_set_promiscuity(dev, inc, true);
7399 	if (err < 0)
7400 		return err;
7401 	if (dev->flags != old_flags)
7402 		dev_set_rx_mode(dev);
7403 	return err;
7404 }
7405 EXPORT_SYMBOL(dev_set_promiscuity);
7406 
7407 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7408 {
7409 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7410 
7411 	ASSERT_RTNL();
7412 
7413 	dev->flags |= IFF_ALLMULTI;
7414 	dev->allmulti += inc;
7415 	if (dev->allmulti == 0) {
7416 		/*
7417 		 * Avoid overflow.
7418 		 * If inc causes overflow, untouch allmulti and return error.
7419 		 */
7420 		if (inc < 0)
7421 			dev->flags &= ~IFF_ALLMULTI;
7422 		else {
7423 			dev->allmulti -= inc;
7424 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7425 				dev->name);
7426 			return -EOVERFLOW;
7427 		}
7428 	}
7429 	if (dev->flags ^ old_flags) {
7430 		dev_change_rx_flags(dev, IFF_ALLMULTI);
7431 		dev_set_rx_mode(dev);
7432 		if (notify)
7433 			__dev_notify_flags(dev, old_flags,
7434 					   dev->gflags ^ old_gflags);
7435 	}
7436 	return 0;
7437 }
7438 
7439 /**
7440  *	dev_set_allmulti	- update allmulti count on a device
7441  *	@dev: device
7442  *	@inc: modifier
7443  *
7444  *	Add or remove reception of all multicast frames to a device. While the
7445  *	count in the device remains above zero the interface remains listening
7446  *	to all interfaces. Once it hits zero the device reverts back to normal
7447  *	filtering operation. A negative @inc value is used to drop the counter
7448  *	when releasing a resource needing all multicasts.
7449  *	Return 0 if successful or a negative errno code on error.
7450  */
7451 
7452 int dev_set_allmulti(struct net_device *dev, int inc)
7453 {
7454 	return __dev_set_allmulti(dev, inc, true);
7455 }
7456 EXPORT_SYMBOL(dev_set_allmulti);
7457 
7458 /*
7459  *	Upload unicast and multicast address lists to device and
7460  *	configure RX filtering. When the device doesn't support unicast
7461  *	filtering it is put in promiscuous mode while unicast addresses
7462  *	are present.
7463  */
7464 void __dev_set_rx_mode(struct net_device *dev)
7465 {
7466 	const struct net_device_ops *ops = dev->netdev_ops;
7467 
7468 	/* dev_open will call this function so the list will stay sane. */
7469 	if (!(dev->flags&IFF_UP))
7470 		return;
7471 
7472 	if (!netif_device_present(dev))
7473 		return;
7474 
7475 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7476 		/* Unicast addresses changes may only happen under the rtnl,
7477 		 * therefore calling __dev_set_promiscuity here is safe.
7478 		 */
7479 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7480 			__dev_set_promiscuity(dev, 1, false);
7481 			dev->uc_promisc = true;
7482 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7483 			__dev_set_promiscuity(dev, -1, false);
7484 			dev->uc_promisc = false;
7485 		}
7486 	}
7487 
7488 	if (ops->ndo_set_rx_mode)
7489 		ops->ndo_set_rx_mode(dev);
7490 }
7491 
7492 void dev_set_rx_mode(struct net_device *dev)
7493 {
7494 	netif_addr_lock_bh(dev);
7495 	__dev_set_rx_mode(dev);
7496 	netif_addr_unlock_bh(dev);
7497 }
7498 
7499 /**
7500  *	dev_get_flags - get flags reported to userspace
7501  *	@dev: device
7502  *
7503  *	Get the combination of flag bits exported through APIs to userspace.
7504  */
7505 unsigned int dev_get_flags(const struct net_device *dev)
7506 {
7507 	unsigned int flags;
7508 
7509 	flags = (dev->flags & ~(IFF_PROMISC |
7510 				IFF_ALLMULTI |
7511 				IFF_RUNNING |
7512 				IFF_LOWER_UP |
7513 				IFF_DORMANT)) |
7514 		(dev->gflags & (IFF_PROMISC |
7515 				IFF_ALLMULTI));
7516 
7517 	if (netif_running(dev)) {
7518 		if (netif_oper_up(dev))
7519 			flags |= IFF_RUNNING;
7520 		if (netif_carrier_ok(dev))
7521 			flags |= IFF_LOWER_UP;
7522 		if (netif_dormant(dev))
7523 			flags |= IFF_DORMANT;
7524 	}
7525 
7526 	return flags;
7527 }
7528 EXPORT_SYMBOL(dev_get_flags);
7529 
7530 int __dev_change_flags(struct net_device *dev, unsigned int flags,
7531 		       struct netlink_ext_ack *extack)
7532 {
7533 	unsigned int old_flags = dev->flags;
7534 	int ret;
7535 
7536 	ASSERT_RTNL();
7537 
7538 	/*
7539 	 *	Set the flags on our device.
7540 	 */
7541 
7542 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7543 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7544 			       IFF_AUTOMEDIA)) |
7545 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7546 				    IFF_ALLMULTI));
7547 
7548 	/*
7549 	 *	Load in the correct multicast list now the flags have changed.
7550 	 */
7551 
7552 	if ((old_flags ^ flags) & IFF_MULTICAST)
7553 		dev_change_rx_flags(dev, IFF_MULTICAST);
7554 
7555 	dev_set_rx_mode(dev);
7556 
7557 	/*
7558 	 *	Have we downed the interface. We handle IFF_UP ourselves
7559 	 *	according to user attempts to set it, rather than blindly
7560 	 *	setting it.
7561 	 */
7562 
7563 	ret = 0;
7564 	if ((old_flags ^ flags) & IFF_UP) {
7565 		if (old_flags & IFF_UP)
7566 			__dev_close(dev);
7567 		else
7568 			ret = __dev_open(dev, extack);
7569 	}
7570 
7571 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
7572 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
7573 		unsigned int old_flags = dev->flags;
7574 
7575 		dev->gflags ^= IFF_PROMISC;
7576 
7577 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
7578 			if (dev->flags != old_flags)
7579 				dev_set_rx_mode(dev);
7580 	}
7581 
7582 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7583 	 * is important. Some (broken) drivers set IFF_PROMISC, when
7584 	 * IFF_ALLMULTI is requested not asking us and not reporting.
7585 	 */
7586 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7587 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7588 
7589 		dev->gflags ^= IFF_ALLMULTI;
7590 		__dev_set_allmulti(dev, inc, false);
7591 	}
7592 
7593 	return ret;
7594 }
7595 
7596 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7597 			unsigned int gchanges)
7598 {
7599 	unsigned int changes = dev->flags ^ old_flags;
7600 
7601 	if (gchanges)
7602 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7603 
7604 	if (changes & IFF_UP) {
7605 		if (dev->flags & IFF_UP)
7606 			call_netdevice_notifiers(NETDEV_UP, dev);
7607 		else
7608 			call_netdevice_notifiers(NETDEV_DOWN, dev);
7609 	}
7610 
7611 	if (dev->flags & IFF_UP &&
7612 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7613 		struct netdev_notifier_change_info change_info = {
7614 			.info = {
7615 				.dev = dev,
7616 			},
7617 			.flags_changed = changes,
7618 		};
7619 
7620 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7621 	}
7622 }
7623 
7624 /**
7625  *	dev_change_flags - change device settings
7626  *	@dev: device
7627  *	@flags: device state flags
7628  *	@extack: netlink extended ack
7629  *
7630  *	Change settings on device based state flags. The flags are
7631  *	in the userspace exported format.
7632  */
7633 int dev_change_flags(struct net_device *dev, unsigned int flags,
7634 		     struct netlink_ext_ack *extack)
7635 {
7636 	int ret;
7637 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7638 
7639 	ret = __dev_change_flags(dev, flags, extack);
7640 	if (ret < 0)
7641 		return ret;
7642 
7643 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7644 	__dev_notify_flags(dev, old_flags, changes);
7645 	return ret;
7646 }
7647 EXPORT_SYMBOL(dev_change_flags);
7648 
7649 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7650 {
7651 	const struct net_device_ops *ops = dev->netdev_ops;
7652 
7653 	if (ops->ndo_change_mtu)
7654 		return ops->ndo_change_mtu(dev, new_mtu);
7655 
7656 	dev->mtu = new_mtu;
7657 	return 0;
7658 }
7659 EXPORT_SYMBOL(__dev_set_mtu);
7660 
7661 /**
7662  *	dev_set_mtu_ext - Change maximum transfer unit
7663  *	@dev: device
7664  *	@new_mtu: new transfer unit
7665  *	@extack: netlink extended ack
7666  *
7667  *	Change the maximum transfer size of the network device.
7668  */
7669 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7670 		    struct netlink_ext_ack *extack)
7671 {
7672 	int err, orig_mtu;
7673 
7674 	if (new_mtu == dev->mtu)
7675 		return 0;
7676 
7677 	/* MTU must be positive, and in range */
7678 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7679 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
7680 		return -EINVAL;
7681 	}
7682 
7683 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7684 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
7685 		return -EINVAL;
7686 	}
7687 
7688 	if (!netif_device_present(dev))
7689 		return -ENODEV;
7690 
7691 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7692 	err = notifier_to_errno(err);
7693 	if (err)
7694 		return err;
7695 
7696 	orig_mtu = dev->mtu;
7697 	err = __dev_set_mtu(dev, new_mtu);
7698 
7699 	if (!err) {
7700 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7701 						   orig_mtu);
7702 		err = notifier_to_errno(err);
7703 		if (err) {
7704 			/* setting mtu back and notifying everyone again,
7705 			 * so that they have a chance to revert changes.
7706 			 */
7707 			__dev_set_mtu(dev, orig_mtu);
7708 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7709 						     new_mtu);
7710 		}
7711 	}
7712 	return err;
7713 }
7714 
7715 int dev_set_mtu(struct net_device *dev, int new_mtu)
7716 {
7717 	struct netlink_ext_ack extack;
7718 	int err;
7719 
7720 	memset(&extack, 0, sizeof(extack));
7721 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
7722 	if (err && extack._msg)
7723 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
7724 	return err;
7725 }
7726 EXPORT_SYMBOL(dev_set_mtu);
7727 
7728 /**
7729  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
7730  *	@dev: device
7731  *	@new_len: new tx queue length
7732  */
7733 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7734 {
7735 	unsigned int orig_len = dev->tx_queue_len;
7736 	int res;
7737 
7738 	if (new_len != (unsigned int)new_len)
7739 		return -ERANGE;
7740 
7741 	if (new_len != orig_len) {
7742 		dev->tx_queue_len = new_len;
7743 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7744 		res = notifier_to_errno(res);
7745 		if (res)
7746 			goto err_rollback;
7747 		res = dev_qdisc_change_tx_queue_len(dev);
7748 		if (res)
7749 			goto err_rollback;
7750 	}
7751 
7752 	return 0;
7753 
7754 err_rollback:
7755 	netdev_err(dev, "refused to change device tx_queue_len\n");
7756 	dev->tx_queue_len = orig_len;
7757 	return res;
7758 }
7759 
7760 /**
7761  *	dev_set_group - Change group this device belongs to
7762  *	@dev: device
7763  *	@new_group: group this device should belong to
7764  */
7765 void dev_set_group(struct net_device *dev, int new_group)
7766 {
7767 	dev->group = new_group;
7768 }
7769 EXPORT_SYMBOL(dev_set_group);
7770 
7771 /**
7772  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
7773  *	@dev: device
7774  *	@addr: new address
7775  *	@extack: netlink extended ack
7776  */
7777 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
7778 			      struct netlink_ext_ack *extack)
7779 {
7780 	struct netdev_notifier_pre_changeaddr_info info = {
7781 		.info.dev = dev,
7782 		.info.extack = extack,
7783 		.dev_addr = addr,
7784 	};
7785 	int rc;
7786 
7787 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
7788 	return notifier_to_errno(rc);
7789 }
7790 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
7791 
7792 /**
7793  *	dev_set_mac_address - Change Media Access Control Address
7794  *	@dev: device
7795  *	@sa: new address
7796  *	@extack: netlink extended ack
7797  *
7798  *	Change the hardware (MAC) address of the device
7799  */
7800 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
7801 			struct netlink_ext_ack *extack)
7802 {
7803 	const struct net_device_ops *ops = dev->netdev_ops;
7804 	int err;
7805 
7806 	if (!ops->ndo_set_mac_address)
7807 		return -EOPNOTSUPP;
7808 	if (sa->sa_family != dev->type)
7809 		return -EINVAL;
7810 	if (!netif_device_present(dev))
7811 		return -ENODEV;
7812 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
7813 	if (err)
7814 		return err;
7815 	err = ops->ndo_set_mac_address(dev, sa);
7816 	if (err)
7817 		return err;
7818 	dev->addr_assign_type = NET_ADDR_SET;
7819 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7820 	add_device_randomness(dev->dev_addr, dev->addr_len);
7821 	return 0;
7822 }
7823 EXPORT_SYMBOL(dev_set_mac_address);
7824 
7825 /**
7826  *	dev_change_carrier - Change device carrier
7827  *	@dev: device
7828  *	@new_carrier: new value
7829  *
7830  *	Change device carrier
7831  */
7832 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7833 {
7834 	const struct net_device_ops *ops = dev->netdev_ops;
7835 
7836 	if (!ops->ndo_change_carrier)
7837 		return -EOPNOTSUPP;
7838 	if (!netif_device_present(dev))
7839 		return -ENODEV;
7840 	return ops->ndo_change_carrier(dev, new_carrier);
7841 }
7842 EXPORT_SYMBOL(dev_change_carrier);
7843 
7844 /**
7845  *	dev_get_phys_port_id - Get device physical port ID
7846  *	@dev: device
7847  *	@ppid: port ID
7848  *
7849  *	Get device physical port ID
7850  */
7851 int dev_get_phys_port_id(struct net_device *dev,
7852 			 struct netdev_phys_item_id *ppid)
7853 {
7854 	const struct net_device_ops *ops = dev->netdev_ops;
7855 
7856 	if (!ops->ndo_get_phys_port_id)
7857 		return -EOPNOTSUPP;
7858 	return ops->ndo_get_phys_port_id(dev, ppid);
7859 }
7860 EXPORT_SYMBOL(dev_get_phys_port_id);
7861 
7862 /**
7863  *	dev_get_phys_port_name - Get device physical port name
7864  *	@dev: device
7865  *	@name: port name
7866  *	@len: limit of bytes to copy to name
7867  *
7868  *	Get device physical port name
7869  */
7870 int dev_get_phys_port_name(struct net_device *dev,
7871 			   char *name, size_t len)
7872 {
7873 	const struct net_device_ops *ops = dev->netdev_ops;
7874 	int err;
7875 
7876 	if (ops->ndo_get_phys_port_name) {
7877 		err = ops->ndo_get_phys_port_name(dev, name, len);
7878 		if (err != -EOPNOTSUPP)
7879 			return err;
7880 	}
7881 	return devlink_compat_phys_port_name_get(dev, name, len);
7882 }
7883 EXPORT_SYMBOL(dev_get_phys_port_name);
7884 
7885 /**
7886  *	dev_get_port_parent_id - Get the device's port parent identifier
7887  *	@dev: network device
7888  *	@ppid: pointer to a storage for the port's parent identifier
7889  *	@recurse: allow/disallow recursion to lower devices
7890  *
7891  *	Get the devices's port parent identifier
7892  */
7893 int dev_get_port_parent_id(struct net_device *dev,
7894 			   struct netdev_phys_item_id *ppid,
7895 			   bool recurse)
7896 {
7897 	const struct net_device_ops *ops = dev->netdev_ops;
7898 	struct netdev_phys_item_id first = { };
7899 	struct net_device *lower_dev;
7900 	struct list_head *iter;
7901 	int err;
7902 
7903 	if (ops->ndo_get_port_parent_id) {
7904 		err = ops->ndo_get_port_parent_id(dev, ppid);
7905 		if (err != -EOPNOTSUPP)
7906 			return err;
7907 	}
7908 
7909 	err = devlink_compat_switch_id_get(dev, ppid);
7910 	if (!err || err != -EOPNOTSUPP)
7911 		return err;
7912 
7913 	if (!recurse)
7914 		return -EOPNOTSUPP;
7915 
7916 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
7917 		err = dev_get_port_parent_id(lower_dev, ppid, recurse);
7918 		if (err)
7919 			break;
7920 		if (!first.id_len)
7921 			first = *ppid;
7922 		else if (memcmp(&first, ppid, sizeof(*ppid)))
7923 			return -ENODATA;
7924 	}
7925 
7926 	return err;
7927 }
7928 EXPORT_SYMBOL(dev_get_port_parent_id);
7929 
7930 /**
7931  *	netdev_port_same_parent_id - Indicate if two network devices have
7932  *	the same port parent identifier
7933  *	@a: first network device
7934  *	@b: second network device
7935  */
7936 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
7937 {
7938 	struct netdev_phys_item_id a_id = { };
7939 	struct netdev_phys_item_id b_id = { };
7940 
7941 	if (dev_get_port_parent_id(a, &a_id, true) ||
7942 	    dev_get_port_parent_id(b, &b_id, true))
7943 		return false;
7944 
7945 	return netdev_phys_item_id_same(&a_id, &b_id);
7946 }
7947 EXPORT_SYMBOL(netdev_port_same_parent_id);
7948 
7949 /**
7950  *	dev_change_proto_down - update protocol port state information
7951  *	@dev: device
7952  *	@proto_down: new value
7953  *
7954  *	This info can be used by switch drivers to set the phys state of the
7955  *	port.
7956  */
7957 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7958 {
7959 	const struct net_device_ops *ops = dev->netdev_ops;
7960 
7961 	if (!ops->ndo_change_proto_down)
7962 		return -EOPNOTSUPP;
7963 	if (!netif_device_present(dev))
7964 		return -ENODEV;
7965 	return ops->ndo_change_proto_down(dev, proto_down);
7966 }
7967 EXPORT_SYMBOL(dev_change_proto_down);
7968 
7969 /**
7970  *	dev_change_proto_down_generic - generic implementation for
7971  * 	ndo_change_proto_down that sets carrier according to
7972  * 	proto_down.
7973  *
7974  *	@dev: device
7975  *	@proto_down: new value
7976  */
7977 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
7978 {
7979 	if (proto_down)
7980 		netif_carrier_off(dev);
7981 	else
7982 		netif_carrier_on(dev);
7983 	dev->proto_down = proto_down;
7984 	return 0;
7985 }
7986 EXPORT_SYMBOL(dev_change_proto_down_generic);
7987 
7988 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7989 		    enum bpf_netdev_command cmd)
7990 {
7991 	struct netdev_bpf xdp;
7992 
7993 	if (!bpf_op)
7994 		return 0;
7995 
7996 	memset(&xdp, 0, sizeof(xdp));
7997 	xdp.command = cmd;
7998 
7999 	/* Query must always succeed. */
8000 	WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
8001 
8002 	return xdp.prog_id;
8003 }
8004 
8005 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8006 			   struct netlink_ext_ack *extack, u32 flags,
8007 			   struct bpf_prog *prog)
8008 {
8009 	struct netdev_bpf xdp;
8010 
8011 	memset(&xdp, 0, sizeof(xdp));
8012 	if (flags & XDP_FLAGS_HW_MODE)
8013 		xdp.command = XDP_SETUP_PROG_HW;
8014 	else
8015 		xdp.command = XDP_SETUP_PROG;
8016 	xdp.extack = extack;
8017 	xdp.flags = flags;
8018 	xdp.prog = prog;
8019 
8020 	return bpf_op(dev, &xdp);
8021 }
8022 
8023 static void dev_xdp_uninstall(struct net_device *dev)
8024 {
8025 	struct netdev_bpf xdp;
8026 	bpf_op_t ndo_bpf;
8027 
8028 	/* Remove generic XDP */
8029 	WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8030 
8031 	/* Remove from the driver */
8032 	ndo_bpf = dev->netdev_ops->ndo_bpf;
8033 	if (!ndo_bpf)
8034 		return;
8035 
8036 	memset(&xdp, 0, sizeof(xdp));
8037 	xdp.command = XDP_QUERY_PROG;
8038 	WARN_ON(ndo_bpf(dev, &xdp));
8039 	if (xdp.prog_id)
8040 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8041 					NULL));
8042 
8043 	/* Remove HW offload */
8044 	memset(&xdp, 0, sizeof(xdp));
8045 	xdp.command = XDP_QUERY_PROG_HW;
8046 	if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8047 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8048 					NULL));
8049 }
8050 
8051 /**
8052  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
8053  *	@dev: device
8054  *	@extack: netlink extended ack
8055  *	@fd: new program fd or negative value to clear
8056  *	@flags: xdp-related flags
8057  *
8058  *	Set or clear a bpf program for a device
8059  */
8060 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8061 		      int fd, u32 flags)
8062 {
8063 	const struct net_device_ops *ops = dev->netdev_ops;
8064 	enum bpf_netdev_command query;
8065 	struct bpf_prog *prog = NULL;
8066 	bpf_op_t bpf_op, bpf_chk;
8067 	bool offload;
8068 	int err;
8069 
8070 	ASSERT_RTNL();
8071 
8072 	offload = flags & XDP_FLAGS_HW_MODE;
8073 	query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8074 
8075 	bpf_op = bpf_chk = ops->ndo_bpf;
8076 	if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8077 		NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8078 		return -EOPNOTSUPP;
8079 	}
8080 	if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8081 		bpf_op = generic_xdp_install;
8082 	if (bpf_op == bpf_chk)
8083 		bpf_chk = generic_xdp_install;
8084 
8085 	if (fd >= 0) {
8086 		if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8087 			NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8088 			return -EEXIST;
8089 		}
8090 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
8091 		    __dev_xdp_query(dev, bpf_op, query)) {
8092 			NL_SET_ERR_MSG(extack, "XDP program already attached");
8093 			return -EBUSY;
8094 		}
8095 
8096 		prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8097 					     bpf_op == ops->ndo_bpf);
8098 		if (IS_ERR(prog))
8099 			return PTR_ERR(prog);
8100 
8101 		if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8102 			NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8103 			bpf_prog_put(prog);
8104 			return -EINVAL;
8105 		}
8106 	}
8107 
8108 	err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8109 	if (err < 0 && prog)
8110 		bpf_prog_put(prog);
8111 
8112 	return err;
8113 }
8114 
8115 /**
8116  *	dev_new_index	-	allocate an ifindex
8117  *	@net: the applicable net namespace
8118  *
8119  *	Returns a suitable unique value for a new device interface
8120  *	number.  The caller must hold the rtnl semaphore or the
8121  *	dev_base_lock to be sure it remains unique.
8122  */
8123 static int dev_new_index(struct net *net)
8124 {
8125 	int ifindex = net->ifindex;
8126 
8127 	for (;;) {
8128 		if (++ifindex <= 0)
8129 			ifindex = 1;
8130 		if (!__dev_get_by_index(net, ifindex))
8131 			return net->ifindex = ifindex;
8132 	}
8133 }
8134 
8135 /* Delayed registration/unregisteration */
8136 static LIST_HEAD(net_todo_list);
8137 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8138 
8139 static void net_set_todo(struct net_device *dev)
8140 {
8141 	list_add_tail(&dev->todo_list, &net_todo_list);
8142 	dev_net(dev)->dev_unreg_count++;
8143 }
8144 
8145 static void rollback_registered_many(struct list_head *head)
8146 {
8147 	struct net_device *dev, *tmp;
8148 	LIST_HEAD(close_head);
8149 
8150 	BUG_ON(dev_boot_phase);
8151 	ASSERT_RTNL();
8152 
8153 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8154 		/* Some devices call without registering
8155 		 * for initialization unwind. Remove those
8156 		 * devices and proceed with the remaining.
8157 		 */
8158 		if (dev->reg_state == NETREG_UNINITIALIZED) {
8159 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8160 				 dev->name, dev);
8161 
8162 			WARN_ON(1);
8163 			list_del(&dev->unreg_list);
8164 			continue;
8165 		}
8166 		dev->dismantle = true;
8167 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
8168 	}
8169 
8170 	/* If device is running, close it first. */
8171 	list_for_each_entry(dev, head, unreg_list)
8172 		list_add_tail(&dev->close_list, &close_head);
8173 	dev_close_many(&close_head, true);
8174 
8175 	list_for_each_entry(dev, head, unreg_list) {
8176 		/* And unlink it from device chain. */
8177 		unlist_netdevice(dev);
8178 
8179 		dev->reg_state = NETREG_UNREGISTERING;
8180 	}
8181 	flush_all_backlogs();
8182 
8183 	synchronize_net();
8184 
8185 	list_for_each_entry(dev, head, unreg_list) {
8186 		struct sk_buff *skb = NULL;
8187 
8188 		/* Shutdown queueing discipline. */
8189 		dev_shutdown(dev);
8190 
8191 		dev_xdp_uninstall(dev);
8192 
8193 		/* Notify protocols, that we are about to destroy
8194 		 * this device. They should clean all the things.
8195 		 */
8196 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8197 
8198 		if (!dev->rtnl_link_ops ||
8199 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8200 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8201 						     GFP_KERNEL, NULL, 0);
8202 
8203 		/*
8204 		 *	Flush the unicast and multicast chains
8205 		 */
8206 		dev_uc_flush(dev);
8207 		dev_mc_flush(dev);
8208 
8209 		if (dev->netdev_ops->ndo_uninit)
8210 			dev->netdev_ops->ndo_uninit(dev);
8211 
8212 		if (skb)
8213 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8214 
8215 		/* Notifier chain MUST detach us all upper devices. */
8216 		WARN_ON(netdev_has_any_upper_dev(dev));
8217 		WARN_ON(netdev_has_any_lower_dev(dev));
8218 
8219 		/* Remove entries from kobject tree */
8220 		netdev_unregister_kobject(dev);
8221 #ifdef CONFIG_XPS
8222 		/* Remove XPS queueing entries */
8223 		netif_reset_xps_queues_gt(dev, 0);
8224 #endif
8225 	}
8226 
8227 	synchronize_net();
8228 
8229 	list_for_each_entry(dev, head, unreg_list)
8230 		dev_put(dev);
8231 }
8232 
8233 static void rollback_registered(struct net_device *dev)
8234 {
8235 	LIST_HEAD(single);
8236 
8237 	list_add(&dev->unreg_list, &single);
8238 	rollback_registered_many(&single);
8239 	list_del(&single);
8240 }
8241 
8242 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8243 	struct net_device *upper, netdev_features_t features)
8244 {
8245 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8246 	netdev_features_t feature;
8247 	int feature_bit;
8248 
8249 	for_each_netdev_feature(upper_disables, feature_bit) {
8250 		feature = __NETIF_F_BIT(feature_bit);
8251 		if (!(upper->wanted_features & feature)
8252 		    && (features & feature)) {
8253 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8254 				   &feature, upper->name);
8255 			features &= ~feature;
8256 		}
8257 	}
8258 
8259 	return features;
8260 }
8261 
8262 static void netdev_sync_lower_features(struct net_device *upper,
8263 	struct net_device *lower, netdev_features_t features)
8264 {
8265 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8266 	netdev_features_t feature;
8267 	int feature_bit;
8268 
8269 	for_each_netdev_feature(upper_disables, feature_bit) {
8270 		feature = __NETIF_F_BIT(feature_bit);
8271 		if (!(features & feature) && (lower->features & feature)) {
8272 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8273 				   &feature, lower->name);
8274 			lower->wanted_features &= ~feature;
8275 			netdev_update_features(lower);
8276 
8277 			if (unlikely(lower->features & feature))
8278 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8279 					    &feature, lower->name);
8280 		}
8281 	}
8282 }
8283 
8284 static netdev_features_t netdev_fix_features(struct net_device *dev,
8285 	netdev_features_t features)
8286 {
8287 	/* Fix illegal checksum combinations */
8288 	if ((features & NETIF_F_HW_CSUM) &&
8289 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8290 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8291 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8292 	}
8293 
8294 	/* TSO requires that SG is present as well. */
8295 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8296 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8297 		features &= ~NETIF_F_ALL_TSO;
8298 	}
8299 
8300 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8301 					!(features & NETIF_F_IP_CSUM)) {
8302 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8303 		features &= ~NETIF_F_TSO;
8304 		features &= ~NETIF_F_TSO_ECN;
8305 	}
8306 
8307 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8308 					 !(features & NETIF_F_IPV6_CSUM)) {
8309 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8310 		features &= ~NETIF_F_TSO6;
8311 	}
8312 
8313 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8314 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8315 		features &= ~NETIF_F_TSO_MANGLEID;
8316 
8317 	/* TSO ECN requires that TSO is present as well. */
8318 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8319 		features &= ~NETIF_F_TSO_ECN;
8320 
8321 	/* Software GSO depends on SG. */
8322 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8323 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8324 		features &= ~NETIF_F_GSO;
8325 	}
8326 
8327 	/* GSO partial features require GSO partial be set */
8328 	if ((features & dev->gso_partial_features) &&
8329 	    !(features & NETIF_F_GSO_PARTIAL)) {
8330 		netdev_dbg(dev,
8331 			   "Dropping partially supported GSO features since no GSO partial.\n");
8332 		features &= ~dev->gso_partial_features;
8333 	}
8334 
8335 	if (!(features & NETIF_F_RXCSUM)) {
8336 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8337 		 * successfully merged by hardware must also have the
8338 		 * checksum verified by hardware.  If the user does not
8339 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
8340 		 */
8341 		if (features & NETIF_F_GRO_HW) {
8342 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8343 			features &= ~NETIF_F_GRO_HW;
8344 		}
8345 	}
8346 
8347 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
8348 	if (features & NETIF_F_RXFCS) {
8349 		if (features & NETIF_F_LRO) {
8350 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8351 			features &= ~NETIF_F_LRO;
8352 		}
8353 
8354 		if (features & NETIF_F_GRO_HW) {
8355 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8356 			features &= ~NETIF_F_GRO_HW;
8357 		}
8358 	}
8359 
8360 	return features;
8361 }
8362 
8363 int __netdev_update_features(struct net_device *dev)
8364 {
8365 	struct net_device *upper, *lower;
8366 	netdev_features_t features;
8367 	struct list_head *iter;
8368 	int err = -1;
8369 
8370 	ASSERT_RTNL();
8371 
8372 	features = netdev_get_wanted_features(dev);
8373 
8374 	if (dev->netdev_ops->ndo_fix_features)
8375 		features = dev->netdev_ops->ndo_fix_features(dev, features);
8376 
8377 	/* driver might be less strict about feature dependencies */
8378 	features = netdev_fix_features(dev, features);
8379 
8380 	/* some features can't be enabled if they're off an an upper device */
8381 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
8382 		features = netdev_sync_upper_features(dev, upper, features);
8383 
8384 	if (dev->features == features)
8385 		goto sync_lower;
8386 
8387 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8388 		&dev->features, &features);
8389 
8390 	if (dev->netdev_ops->ndo_set_features)
8391 		err = dev->netdev_ops->ndo_set_features(dev, features);
8392 	else
8393 		err = 0;
8394 
8395 	if (unlikely(err < 0)) {
8396 		netdev_err(dev,
8397 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
8398 			err, &features, &dev->features);
8399 		/* return non-0 since some features might have changed and
8400 		 * it's better to fire a spurious notification than miss it
8401 		 */
8402 		return -1;
8403 	}
8404 
8405 sync_lower:
8406 	/* some features must be disabled on lower devices when disabled
8407 	 * on an upper device (think: bonding master or bridge)
8408 	 */
8409 	netdev_for_each_lower_dev(dev, lower, iter)
8410 		netdev_sync_lower_features(dev, lower, features);
8411 
8412 	if (!err) {
8413 		netdev_features_t diff = features ^ dev->features;
8414 
8415 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8416 			/* udp_tunnel_{get,drop}_rx_info both need
8417 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8418 			 * device, or they won't do anything.
8419 			 * Thus we need to update dev->features
8420 			 * *before* calling udp_tunnel_get_rx_info,
8421 			 * but *after* calling udp_tunnel_drop_rx_info.
8422 			 */
8423 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8424 				dev->features = features;
8425 				udp_tunnel_get_rx_info(dev);
8426 			} else {
8427 				udp_tunnel_drop_rx_info(dev);
8428 			}
8429 		}
8430 
8431 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8432 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8433 				dev->features = features;
8434 				err |= vlan_get_rx_ctag_filter_info(dev);
8435 			} else {
8436 				vlan_drop_rx_ctag_filter_info(dev);
8437 			}
8438 		}
8439 
8440 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8441 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8442 				dev->features = features;
8443 				err |= vlan_get_rx_stag_filter_info(dev);
8444 			} else {
8445 				vlan_drop_rx_stag_filter_info(dev);
8446 			}
8447 		}
8448 
8449 		dev->features = features;
8450 	}
8451 
8452 	return err < 0 ? 0 : 1;
8453 }
8454 
8455 /**
8456  *	netdev_update_features - recalculate device features
8457  *	@dev: the device to check
8458  *
8459  *	Recalculate dev->features set and send notifications if it
8460  *	has changed. Should be called after driver or hardware dependent
8461  *	conditions might have changed that influence the features.
8462  */
8463 void netdev_update_features(struct net_device *dev)
8464 {
8465 	if (__netdev_update_features(dev))
8466 		netdev_features_change(dev);
8467 }
8468 EXPORT_SYMBOL(netdev_update_features);
8469 
8470 /**
8471  *	netdev_change_features - recalculate device features
8472  *	@dev: the device to check
8473  *
8474  *	Recalculate dev->features set and send notifications even
8475  *	if they have not changed. Should be called instead of
8476  *	netdev_update_features() if also dev->vlan_features might
8477  *	have changed to allow the changes to be propagated to stacked
8478  *	VLAN devices.
8479  */
8480 void netdev_change_features(struct net_device *dev)
8481 {
8482 	__netdev_update_features(dev);
8483 	netdev_features_change(dev);
8484 }
8485 EXPORT_SYMBOL(netdev_change_features);
8486 
8487 /**
8488  *	netif_stacked_transfer_operstate -	transfer operstate
8489  *	@rootdev: the root or lower level device to transfer state from
8490  *	@dev: the device to transfer operstate to
8491  *
8492  *	Transfer operational state from root to device. This is normally
8493  *	called when a stacking relationship exists between the root
8494  *	device and the device(a leaf device).
8495  */
8496 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8497 					struct net_device *dev)
8498 {
8499 	if (rootdev->operstate == IF_OPER_DORMANT)
8500 		netif_dormant_on(dev);
8501 	else
8502 		netif_dormant_off(dev);
8503 
8504 	if (netif_carrier_ok(rootdev))
8505 		netif_carrier_on(dev);
8506 	else
8507 		netif_carrier_off(dev);
8508 }
8509 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8510 
8511 static int netif_alloc_rx_queues(struct net_device *dev)
8512 {
8513 	unsigned int i, count = dev->num_rx_queues;
8514 	struct netdev_rx_queue *rx;
8515 	size_t sz = count * sizeof(*rx);
8516 	int err = 0;
8517 
8518 	BUG_ON(count < 1);
8519 
8520 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8521 	if (!rx)
8522 		return -ENOMEM;
8523 
8524 	dev->_rx = rx;
8525 
8526 	for (i = 0; i < count; i++) {
8527 		rx[i].dev = dev;
8528 
8529 		/* XDP RX-queue setup */
8530 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8531 		if (err < 0)
8532 			goto err_rxq_info;
8533 	}
8534 	return 0;
8535 
8536 err_rxq_info:
8537 	/* Rollback successful reg's and free other resources */
8538 	while (i--)
8539 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8540 	kvfree(dev->_rx);
8541 	dev->_rx = NULL;
8542 	return err;
8543 }
8544 
8545 static void netif_free_rx_queues(struct net_device *dev)
8546 {
8547 	unsigned int i, count = dev->num_rx_queues;
8548 
8549 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8550 	if (!dev->_rx)
8551 		return;
8552 
8553 	for (i = 0; i < count; i++)
8554 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8555 
8556 	kvfree(dev->_rx);
8557 }
8558 
8559 static void netdev_init_one_queue(struct net_device *dev,
8560 				  struct netdev_queue *queue, void *_unused)
8561 {
8562 	/* Initialize queue lock */
8563 	spin_lock_init(&queue->_xmit_lock);
8564 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8565 	queue->xmit_lock_owner = -1;
8566 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8567 	queue->dev = dev;
8568 #ifdef CONFIG_BQL
8569 	dql_init(&queue->dql, HZ);
8570 #endif
8571 }
8572 
8573 static void netif_free_tx_queues(struct net_device *dev)
8574 {
8575 	kvfree(dev->_tx);
8576 }
8577 
8578 static int netif_alloc_netdev_queues(struct net_device *dev)
8579 {
8580 	unsigned int count = dev->num_tx_queues;
8581 	struct netdev_queue *tx;
8582 	size_t sz = count * sizeof(*tx);
8583 
8584 	if (count < 1 || count > 0xffff)
8585 		return -EINVAL;
8586 
8587 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8588 	if (!tx)
8589 		return -ENOMEM;
8590 
8591 	dev->_tx = tx;
8592 
8593 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8594 	spin_lock_init(&dev->tx_global_lock);
8595 
8596 	return 0;
8597 }
8598 
8599 void netif_tx_stop_all_queues(struct net_device *dev)
8600 {
8601 	unsigned int i;
8602 
8603 	for (i = 0; i < dev->num_tx_queues; i++) {
8604 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8605 
8606 		netif_tx_stop_queue(txq);
8607 	}
8608 }
8609 EXPORT_SYMBOL(netif_tx_stop_all_queues);
8610 
8611 /**
8612  *	register_netdevice	- register a network device
8613  *	@dev: device to register
8614  *
8615  *	Take a completed network device structure and add it to the kernel
8616  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8617  *	chain. 0 is returned on success. A negative errno code is returned
8618  *	on a failure to set up the device, or if the name is a duplicate.
8619  *
8620  *	Callers must hold the rtnl semaphore. You may want
8621  *	register_netdev() instead of this.
8622  *
8623  *	BUGS:
8624  *	The locking appears insufficient to guarantee two parallel registers
8625  *	will not get the same name.
8626  */
8627 
8628 int register_netdevice(struct net_device *dev)
8629 {
8630 	int ret;
8631 	struct net *net = dev_net(dev);
8632 
8633 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8634 		     NETDEV_FEATURE_COUNT);
8635 	BUG_ON(dev_boot_phase);
8636 	ASSERT_RTNL();
8637 
8638 	might_sleep();
8639 
8640 	/* When net_device's are persistent, this will be fatal. */
8641 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
8642 	BUG_ON(!net);
8643 
8644 	spin_lock_init(&dev->addr_list_lock);
8645 	netdev_set_addr_lockdep_class(dev);
8646 
8647 	ret = dev_get_valid_name(net, dev, dev->name);
8648 	if (ret < 0)
8649 		goto out;
8650 
8651 	/* Init, if this function is available */
8652 	if (dev->netdev_ops->ndo_init) {
8653 		ret = dev->netdev_ops->ndo_init(dev);
8654 		if (ret) {
8655 			if (ret > 0)
8656 				ret = -EIO;
8657 			goto out;
8658 		}
8659 	}
8660 
8661 	if (((dev->hw_features | dev->features) &
8662 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
8663 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8664 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8665 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8666 		ret = -EINVAL;
8667 		goto err_uninit;
8668 	}
8669 
8670 	ret = -EBUSY;
8671 	if (!dev->ifindex)
8672 		dev->ifindex = dev_new_index(net);
8673 	else if (__dev_get_by_index(net, dev->ifindex))
8674 		goto err_uninit;
8675 
8676 	/* Transfer changeable features to wanted_features and enable
8677 	 * software offloads (GSO and GRO).
8678 	 */
8679 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
8680 	dev->features |= NETIF_F_SOFT_FEATURES;
8681 
8682 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
8683 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8684 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8685 	}
8686 
8687 	dev->wanted_features = dev->features & dev->hw_features;
8688 
8689 	if (!(dev->flags & IFF_LOOPBACK))
8690 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
8691 
8692 	/* If IPv4 TCP segmentation offload is supported we should also
8693 	 * allow the device to enable segmenting the frame with the option
8694 	 * of ignoring a static IP ID value.  This doesn't enable the
8695 	 * feature itself but allows the user to enable it later.
8696 	 */
8697 	if (dev->hw_features & NETIF_F_TSO)
8698 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
8699 	if (dev->vlan_features & NETIF_F_TSO)
8700 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8701 	if (dev->mpls_features & NETIF_F_TSO)
8702 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8703 	if (dev->hw_enc_features & NETIF_F_TSO)
8704 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8705 
8706 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8707 	 */
8708 	dev->vlan_features |= NETIF_F_HIGHDMA;
8709 
8710 	/* Make NETIF_F_SG inheritable to tunnel devices.
8711 	 */
8712 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8713 
8714 	/* Make NETIF_F_SG inheritable to MPLS.
8715 	 */
8716 	dev->mpls_features |= NETIF_F_SG;
8717 
8718 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8719 	ret = notifier_to_errno(ret);
8720 	if (ret)
8721 		goto err_uninit;
8722 
8723 	ret = netdev_register_kobject(dev);
8724 	if (ret)
8725 		goto err_uninit;
8726 	dev->reg_state = NETREG_REGISTERED;
8727 
8728 	__netdev_update_features(dev);
8729 
8730 	/*
8731 	 *	Default initial state at registry is that the
8732 	 *	device is present.
8733 	 */
8734 
8735 	set_bit(__LINK_STATE_PRESENT, &dev->state);
8736 
8737 	linkwatch_init_dev(dev);
8738 
8739 	dev_init_scheduler(dev);
8740 	dev_hold(dev);
8741 	list_netdevice(dev);
8742 	add_device_randomness(dev->dev_addr, dev->addr_len);
8743 
8744 	/* If the device has permanent device address, driver should
8745 	 * set dev_addr and also addr_assign_type should be set to
8746 	 * NET_ADDR_PERM (default value).
8747 	 */
8748 	if (dev->addr_assign_type == NET_ADDR_PERM)
8749 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8750 
8751 	/* Notify protocols, that a new device appeared. */
8752 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8753 	ret = notifier_to_errno(ret);
8754 	if (ret) {
8755 		rollback_registered(dev);
8756 		dev->reg_state = NETREG_UNREGISTERED;
8757 	}
8758 	/*
8759 	 *	Prevent userspace races by waiting until the network
8760 	 *	device is fully setup before sending notifications.
8761 	 */
8762 	if (!dev->rtnl_link_ops ||
8763 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8764 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8765 
8766 out:
8767 	return ret;
8768 
8769 err_uninit:
8770 	if (dev->netdev_ops->ndo_uninit)
8771 		dev->netdev_ops->ndo_uninit(dev);
8772 	if (dev->priv_destructor)
8773 		dev->priv_destructor(dev);
8774 	goto out;
8775 }
8776 EXPORT_SYMBOL(register_netdevice);
8777 
8778 /**
8779  *	init_dummy_netdev	- init a dummy network device for NAPI
8780  *	@dev: device to init
8781  *
8782  *	This takes a network device structure and initialize the minimum
8783  *	amount of fields so it can be used to schedule NAPI polls without
8784  *	registering a full blown interface. This is to be used by drivers
8785  *	that need to tie several hardware interfaces to a single NAPI
8786  *	poll scheduler due to HW limitations.
8787  */
8788 int init_dummy_netdev(struct net_device *dev)
8789 {
8790 	/* Clear everything. Note we don't initialize spinlocks
8791 	 * are they aren't supposed to be taken by any of the
8792 	 * NAPI code and this dummy netdev is supposed to be
8793 	 * only ever used for NAPI polls
8794 	 */
8795 	memset(dev, 0, sizeof(struct net_device));
8796 
8797 	/* make sure we BUG if trying to hit standard
8798 	 * register/unregister code path
8799 	 */
8800 	dev->reg_state = NETREG_DUMMY;
8801 
8802 	/* NAPI wants this */
8803 	INIT_LIST_HEAD(&dev->napi_list);
8804 
8805 	/* a dummy interface is started by default */
8806 	set_bit(__LINK_STATE_PRESENT, &dev->state);
8807 	set_bit(__LINK_STATE_START, &dev->state);
8808 
8809 	/* napi_busy_loop stats accounting wants this */
8810 	dev_net_set(dev, &init_net);
8811 
8812 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
8813 	 * because users of this 'device' dont need to change
8814 	 * its refcount.
8815 	 */
8816 
8817 	return 0;
8818 }
8819 EXPORT_SYMBOL_GPL(init_dummy_netdev);
8820 
8821 
8822 /**
8823  *	register_netdev	- register a network device
8824  *	@dev: device to register
8825  *
8826  *	Take a completed network device structure and add it to the kernel
8827  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8828  *	chain. 0 is returned on success. A negative errno code is returned
8829  *	on a failure to set up the device, or if the name is a duplicate.
8830  *
8831  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
8832  *	and expands the device name if you passed a format string to
8833  *	alloc_netdev.
8834  */
8835 int register_netdev(struct net_device *dev)
8836 {
8837 	int err;
8838 
8839 	if (rtnl_lock_killable())
8840 		return -EINTR;
8841 	err = register_netdevice(dev);
8842 	rtnl_unlock();
8843 	return err;
8844 }
8845 EXPORT_SYMBOL(register_netdev);
8846 
8847 int netdev_refcnt_read(const struct net_device *dev)
8848 {
8849 	int i, refcnt = 0;
8850 
8851 	for_each_possible_cpu(i)
8852 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8853 	return refcnt;
8854 }
8855 EXPORT_SYMBOL(netdev_refcnt_read);
8856 
8857 /**
8858  * netdev_wait_allrefs - wait until all references are gone.
8859  * @dev: target net_device
8860  *
8861  * This is called when unregistering network devices.
8862  *
8863  * Any protocol or device that holds a reference should register
8864  * for netdevice notification, and cleanup and put back the
8865  * reference if they receive an UNREGISTER event.
8866  * We can get stuck here if buggy protocols don't correctly
8867  * call dev_put.
8868  */
8869 static void netdev_wait_allrefs(struct net_device *dev)
8870 {
8871 	unsigned long rebroadcast_time, warning_time;
8872 	int refcnt;
8873 
8874 	linkwatch_forget_dev(dev);
8875 
8876 	rebroadcast_time = warning_time = jiffies;
8877 	refcnt = netdev_refcnt_read(dev);
8878 
8879 	while (refcnt != 0) {
8880 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8881 			rtnl_lock();
8882 
8883 			/* Rebroadcast unregister notification */
8884 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8885 
8886 			__rtnl_unlock();
8887 			rcu_barrier();
8888 			rtnl_lock();
8889 
8890 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8891 				     &dev->state)) {
8892 				/* We must not have linkwatch events
8893 				 * pending on unregister. If this
8894 				 * happens, we simply run the queue
8895 				 * unscheduled, resulting in a noop
8896 				 * for this device.
8897 				 */
8898 				linkwatch_run_queue();
8899 			}
8900 
8901 			__rtnl_unlock();
8902 
8903 			rebroadcast_time = jiffies;
8904 		}
8905 
8906 		msleep(250);
8907 
8908 		refcnt = netdev_refcnt_read(dev);
8909 
8910 		if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
8911 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8912 				 dev->name, refcnt);
8913 			warning_time = jiffies;
8914 		}
8915 	}
8916 }
8917 
8918 /* The sequence is:
8919  *
8920  *	rtnl_lock();
8921  *	...
8922  *	register_netdevice(x1);
8923  *	register_netdevice(x2);
8924  *	...
8925  *	unregister_netdevice(y1);
8926  *	unregister_netdevice(y2);
8927  *      ...
8928  *	rtnl_unlock();
8929  *	free_netdev(y1);
8930  *	free_netdev(y2);
8931  *
8932  * We are invoked by rtnl_unlock().
8933  * This allows us to deal with problems:
8934  * 1) We can delete sysfs objects which invoke hotplug
8935  *    without deadlocking with linkwatch via keventd.
8936  * 2) Since we run with the RTNL semaphore not held, we can sleep
8937  *    safely in order to wait for the netdev refcnt to drop to zero.
8938  *
8939  * We must not return until all unregister events added during
8940  * the interval the lock was held have been completed.
8941  */
8942 void netdev_run_todo(void)
8943 {
8944 	struct list_head list;
8945 
8946 	/* Snapshot list, allow later requests */
8947 	list_replace_init(&net_todo_list, &list);
8948 
8949 	__rtnl_unlock();
8950 
8951 
8952 	/* Wait for rcu callbacks to finish before next phase */
8953 	if (!list_empty(&list))
8954 		rcu_barrier();
8955 
8956 	while (!list_empty(&list)) {
8957 		struct net_device *dev
8958 			= list_first_entry(&list, struct net_device, todo_list);
8959 		list_del(&dev->todo_list);
8960 
8961 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8962 			pr_err("network todo '%s' but state %d\n",
8963 			       dev->name, dev->reg_state);
8964 			dump_stack();
8965 			continue;
8966 		}
8967 
8968 		dev->reg_state = NETREG_UNREGISTERED;
8969 
8970 		netdev_wait_allrefs(dev);
8971 
8972 		/* paranoia */
8973 		BUG_ON(netdev_refcnt_read(dev));
8974 		BUG_ON(!list_empty(&dev->ptype_all));
8975 		BUG_ON(!list_empty(&dev->ptype_specific));
8976 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
8977 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8978 #if IS_ENABLED(CONFIG_DECNET)
8979 		WARN_ON(dev->dn_ptr);
8980 #endif
8981 		if (dev->priv_destructor)
8982 			dev->priv_destructor(dev);
8983 		if (dev->needs_free_netdev)
8984 			free_netdev(dev);
8985 
8986 		/* Report a network device has been unregistered */
8987 		rtnl_lock();
8988 		dev_net(dev)->dev_unreg_count--;
8989 		__rtnl_unlock();
8990 		wake_up(&netdev_unregistering_wq);
8991 
8992 		/* Free network device */
8993 		kobject_put(&dev->dev.kobj);
8994 	}
8995 }
8996 
8997 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8998  * all the same fields in the same order as net_device_stats, with only
8999  * the type differing, but rtnl_link_stats64 may have additional fields
9000  * at the end for newer counters.
9001  */
9002 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9003 			     const struct net_device_stats *netdev_stats)
9004 {
9005 #if BITS_PER_LONG == 64
9006 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9007 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9008 	/* zero out counters that only exist in rtnl_link_stats64 */
9009 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
9010 	       sizeof(*stats64) - sizeof(*netdev_stats));
9011 #else
9012 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9013 	const unsigned long *src = (const unsigned long *)netdev_stats;
9014 	u64 *dst = (u64 *)stats64;
9015 
9016 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9017 	for (i = 0; i < n; i++)
9018 		dst[i] = src[i];
9019 	/* zero out counters that only exist in rtnl_link_stats64 */
9020 	memset((char *)stats64 + n * sizeof(u64), 0,
9021 	       sizeof(*stats64) - n * sizeof(u64));
9022 #endif
9023 }
9024 EXPORT_SYMBOL(netdev_stats_to_stats64);
9025 
9026 /**
9027  *	dev_get_stats	- get network device statistics
9028  *	@dev: device to get statistics from
9029  *	@storage: place to store stats
9030  *
9031  *	Get network statistics from device. Return @storage.
9032  *	The device driver may provide its own method by setting
9033  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9034  *	otherwise the internal statistics structure is used.
9035  */
9036 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9037 					struct rtnl_link_stats64 *storage)
9038 {
9039 	const struct net_device_ops *ops = dev->netdev_ops;
9040 
9041 	if (ops->ndo_get_stats64) {
9042 		memset(storage, 0, sizeof(*storage));
9043 		ops->ndo_get_stats64(dev, storage);
9044 	} else if (ops->ndo_get_stats) {
9045 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9046 	} else {
9047 		netdev_stats_to_stats64(storage, &dev->stats);
9048 	}
9049 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9050 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9051 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9052 	return storage;
9053 }
9054 EXPORT_SYMBOL(dev_get_stats);
9055 
9056 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9057 {
9058 	struct netdev_queue *queue = dev_ingress_queue(dev);
9059 
9060 #ifdef CONFIG_NET_CLS_ACT
9061 	if (queue)
9062 		return queue;
9063 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9064 	if (!queue)
9065 		return NULL;
9066 	netdev_init_one_queue(dev, queue, NULL);
9067 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9068 	queue->qdisc_sleeping = &noop_qdisc;
9069 	rcu_assign_pointer(dev->ingress_queue, queue);
9070 #endif
9071 	return queue;
9072 }
9073 
9074 static const struct ethtool_ops default_ethtool_ops;
9075 
9076 void netdev_set_default_ethtool_ops(struct net_device *dev,
9077 				    const struct ethtool_ops *ops)
9078 {
9079 	if (dev->ethtool_ops == &default_ethtool_ops)
9080 		dev->ethtool_ops = ops;
9081 }
9082 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9083 
9084 void netdev_freemem(struct net_device *dev)
9085 {
9086 	char *addr = (char *)dev - dev->padded;
9087 
9088 	kvfree(addr);
9089 }
9090 
9091 /**
9092  * alloc_netdev_mqs - allocate network device
9093  * @sizeof_priv: size of private data to allocate space for
9094  * @name: device name format string
9095  * @name_assign_type: origin of device name
9096  * @setup: callback to initialize device
9097  * @txqs: the number of TX subqueues to allocate
9098  * @rxqs: the number of RX subqueues to allocate
9099  *
9100  * Allocates a struct net_device with private data area for driver use
9101  * and performs basic initialization.  Also allocates subqueue structs
9102  * for each queue on the device.
9103  */
9104 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9105 		unsigned char name_assign_type,
9106 		void (*setup)(struct net_device *),
9107 		unsigned int txqs, unsigned int rxqs)
9108 {
9109 	struct net_device *dev;
9110 	unsigned int alloc_size;
9111 	struct net_device *p;
9112 
9113 	BUG_ON(strlen(name) >= sizeof(dev->name));
9114 
9115 	if (txqs < 1) {
9116 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9117 		return NULL;
9118 	}
9119 
9120 	if (rxqs < 1) {
9121 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9122 		return NULL;
9123 	}
9124 
9125 	alloc_size = sizeof(struct net_device);
9126 	if (sizeof_priv) {
9127 		/* ensure 32-byte alignment of private area */
9128 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9129 		alloc_size += sizeof_priv;
9130 	}
9131 	/* ensure 32-byte alignment of whole construct */
9132 	alloc_size += NETDEV_ALIGN - 1;
9133 
9134 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9135 	if (!p)
9136 		return NULL;
9137 
9138 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
9139 	dev->padded = (char *)dev - (char *)p;
9140 
9141 	dev->pcpu_refcnt = alloc_percpu(int);
9142 	if (!dev->pcpu_refcnt)
9143 		goto free_dev;
9144 
9145 	if (dev_addr_init(dev))
9146 		goto free_pcpu;
9147 
9148 	dev_mc_init(dev);
9149 	dev_uc_init(dev);
9150 
9151 	dev_net_set(dev, &init_net);
9152 
9153 	dev->gso_max_size = GSO_MAX_SIZE;
9154 	dev->gso_max_segs = GSO_MAX_SEGS;
9155 
9156 	INIT_LIST_HEAD(&dev->napi_list);
9157 	INIT_LIST_HEAD(&dev->unreg_list);
9158 	INIT_LIST_HEAD(&dev->close_list);
9159 	INIT_LIST_HEAD(&dev->link_watch_list);
9160 	INIT_LIST_HEAD(&dev->adj_list.upper);
9161 	INIT_LIST_HEAD(&dev->adj_list.lower);
9162 	INIT_LIST_HEAD(&dev->ptype_all);
9163 	INIT_LIST_HEAD(&dev->ptype_specific);
9164 #ifdef CONFIG_NET_SCHED
9165 	hash_init(dev->qdisc_hash);
9166 #endif
9167 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9168 	setup(dev);
9169 
9170 	if (!dev->tx_queue_len) {
9171 		dev->priv_flags |= IFF_NO_QUEUE;
9172 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9173 	}
9174 
9175 	dev->num_tx_queues = txqs;
9176 	dev->real_num_tx_queues = txqs;
9177 	if (netif_alloc_netdev_queues(dev))
9178 		goto free_all;
9179 
9180 	dev->num_rx_queues = rxqs;
9181 	dev->real_num_rx_queues = rxqs;
9182 	if (netif_alloc_rx_queues(dev))
9183 		goto free_all;
9184 
9185 	strcpy(dev->name, name);
9186 	dev->name_assign_type = name_assign_type;
9187 	dev->group = INIT_NETDEV_GROUP;
9188 	if (!dev->ethtool_ops)
9189 		dev->ethtool_ops = &default_ethtool_ops;
9190 
9191 	nf_hook_ingress_init(dev);
9192 
9193 	return dev;
9194 
9195 free_all:
9196 	free_netdev(dev);
9197 	return NULL;
9198 
9199 free_pcpu:
9200 	free_percpu(dev->pcpu_refcnt);
9201 free_dev:
9202 	netdev_freemem(dev);
9203 	return NULL;
9204 }
9205 EXPORT_SYMBOL(alloc_netdev_mqs);
9206 
9207 /**
9208  * free_netdev - free network device
9209  * @dev: device
9210  *
9211  * This function does the last stage of destroying an allocated device
9212  * interface. The reference to the device object is released. If this
9213  * is the last reference then it will be freed.Must be called in process
9214  * context.
9215  */
9216 void free_netdev(struct net_device *dev)
9217 {
9218 	struct napi_struct *p, *n;
9219 
9220 	might_sleep();
9221 	netif_free_tx_queues(dev);
9222 	netif_free_rx_queues(dev);
9223 
9224 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9225 
9226 	/* Flush device addresses */
9227 	dev_addr_flush(dev);
9228 
9229 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9230 		netif_napi_del(p);
9231 
9232 	free_percpu(dev->pcpu_refcnt);
9233 	dev->pcpu_refcnt = NULL;
9234 
9235 	/*  Compatibility with error handling in drivers */
9236 	if (dev->reg_state == NETREG_UNINITIALIZED) {
9237 		netdev_freemem(dev);
9238 		return;
9239 	}
9240 
9241 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9242 	dev->reg_state = NETREG_RELEASED;
9243 
9244 	/* will free via device release */
9245 	put_device(&dev->dev);
9246 }
9247 EXPORT_SYMBOL(free_netdev);
9248 
9249 /**
9250  *	synchronize_net -  Synchronize with packet receive processing
9251  *
9252  *	Wait for packets currently being received to be done.
9253  *	Does not block later packets from starting.
9254  */
9255 void synchronize_net(void)
9256 {
9257 	might_sleep();
9258 	if (rtnl_is_locked())
9259 		synchronize_rcu_expedited();
9260 	else
9261 		synchronize_rcu();
9262 }
9263 EXPORT_SYMBOL(synchronize_net);
9264 
9265 /**
9266  *	unregister_netdevice_queue - remove device from the kernel
9267  *	@dev: device
9268  *	@head: list
9269  *
9270  *	This function shuts down a device interface and removes it
9271  *	from the kernel tables.
9272  *	If head not NULL, device is queued to be unregistered later.
9273  *
9274  *	Callers must hold the rtnl semaphore.  You may want
9275  *	unregister_netdev() instead of this.
9276  */
9277 
9278 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9279 {
9280 	ASSERT_RTNL();
9281 
9282 	if (head) {
9283 		list_move_tail(&dev->unreg_list, head);
9284 	} else {
9285 		rollback_registered(dev);
9286 		/* Finish processing unregister after unlock */
9287 		net_set_todo(dev);
9288 	}
9289 }
9290 EXPORT_SYMBOL(unregister_netdevice_queue);
9291 
9292 /**
9293  *	unregister_netdevice_many - unregister many devices
9294  *	@head: list of devices
9295  *
9296  *  Note: As most callers use a stack allocated list_head,
9297  *  we force a list_del() to make sure stack wont be corrupted later.
9298  */
9299 void unregister_netdevice_many(struct list_head *head)
9300 {
9301 	struct net_device *dev;
9302 
9303 	if (!list_empty(head)) {
9304 		rollback_registered_many(head);
9305 		list_for_each_entry(dev, head, unreg_list)
9306 			net_set_todo(dev);
9307 		list_del(head);
9308 	}
9309 }
9310 EXPORT_SYMBOL(unregister_netdevice_many);
9311 
9312 /**
9313  *	unregister_netdev - remove device from the kernel
9314  *	@dev: device
9315  *
9316  *	This function shuts down a device interface and removes it
9317  *	from the kernel tables.
9318  *
9319  *	This is just a wrapper for unregister_netdevice that takes
9320  *	the rtnl semaphore.  In general you want to use this and not
9321  *	unregister_netdevice.
9322  */
9323 void unregister_netdev(struct net_device *dev)
9324 {
9325 	rtnl_lock();
9326 	unregister_netdevice(dev);
9327 	rtnl_unlock();
9328 }
9329 EXPORT_SYMBOL(unregister_netdev);
9330 
9331 /**
9332  *	dev_change_net_namespace - move device to different nethost namespace
9333  *	@dev: device
9334  *	@net: network namespace
9335  *	@pat: If not NULL name pattern to try if the current device name
9336  *	      is already taken in the destination network namespace.
9337  *
9338  *	This function shuts down a device interface and moves it
9339  *	to a new network namespace. On success 0 is returned, on
9340  *	a failure a netagive errno code is returned.
9341  *
9342  *	Callers must hold the rtnl semaphore.
9343  */
9344 
9345 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9346 {
9347 	int err, new_nsid, new_ifindex;
9348 
9349 	ASSERT_RTNL();
9350 
9351 	/* Don't allow namespace local devices to be moved. */
9352 	err = -EINVAL;
9353 	if (dev->features & NETIF_F_NETNS_LOCAL)
9354 		goto out;
9355 
9356 	/* Ensure the device has been registrered */
9357 	if (dev->reg_state != NETREG_REGISTERED)
9358 		goto out;
9359 
9360 	/* Get out if there is nothing todo */
9361 	err = 0;
9362 	if (net_eq(dev_net(dev), net))
9363 		goto out;
9364 
9365 	/* Pick the destination device name, and ensure
9366 	 * we can use it in the destination network namespace.
9367 	 */
9368 	err = -EEXIST;
9369 	if (__dev_get_by_name(net, dev->name)) {
9370 		/* We get here if we can't use the current device name */
9371 		if (!pat)
9372 			goto out;
9373 		err = dev_get_valid_name(net, dev, pat);
9374 		if (err < 0)
9375 			goto out;
9376 	}
9377 
9378 	/*
9379 	 * And now a mini version of register_netdevice unregister_netdevice.
9380 	 */
9381 
9382 	/* If device is running close it first. */
9383 	dev_close(dev);
9384 
9385 	/* And unlink it from device chain */
9386 	unlist_netdevice(dev);
9387 
9388 	synchronize_net();
9389 
9390 	/* Shutdown queueing discipline. */
9391 	dev_shutdown(dev);
9392 
9393 	/* Notify protocols, that we are about to destroy
9394 	 * this device. They should clean all the things.
9395 	 *
9396 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
9397 	 * This is wanted because this way 8021q and macvlan know
9398 	 * the device is just moving and can keep their slaves up.
9399 	 */
9400 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9401 	rcu_barrier();
9402 
9403 	new_nsid = peernet2id_alloc(dev_net(dev), net);
9404 	/* If there is an ifindex conflict assign a new one */
9405 	if (__dev_get_by_index(net, dev->ifindex))
9406 		new_ifindex = dev_new_index(net);
9407 	else
9408 		new_ifindex = dev->ifindex;
9409 
9410 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9411 			    new_ifindex);
9412 
9413 	/*
9414 	 *	Flush the unicast and multicast chains
9415 	 */
9416 	dev_uc_flush(dev);
9417 	dev_mc_flush(dev);
9418 
9419 	/* Send a netdev-removed uevent to the old namespace */
9420 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9421 	netdev_adjacent_del_links(dev);
9422 
9423 	/* Actually switch the network namespace */
9424 	dev_net_set(dev, net);
9425 	dev->ifindex = new_ifindex;
9426 
9427 	/* Send a netdev-add uevent to the new namespace */
9428 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9429 	netdev_adjacent_add_links(dev);
9430 
9431 	/* Fixup kobjects */
9432 	err = device_rename(&dev->dev, dev->name);
9433 	WARN_ON(err);
9434 
9435 	/* Add the device back in the hashes */
9436 	list_netdevice(dev);
9437 
9438 	/* Notify protocols, that a new device appeared. */
9439 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
9440 
9441 	/*
9442 	 *	Prevent userspace races by waiting until the network
9443 	 *	device is fully setup before sending notifications.
9444 	 */
9445 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9446 
9447 	synchronize_net();
9448 	err = 0;
9449 out:
9450 	return err;
9451 }
9452 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9453 
9454 static int dev_cpu_dead(unsigned int oldcpu)
9455 {
9456 	struct sk_buff **list_skb;
9457 	struct sk_buff *skb;
9458 	unsigned int cpu;
9459 	struct softnet_data *sd, *oldsd, *remsd = NULL;
9460 
9461 	local_irq_disable();
9462 	cpu = smp_processor_id();
9463 	sd = &per_cpu(softnet_data, cpu);
9464 	oldsd = &per_cpu(softnet_data, oldcpu);
9465 
9466 	/* Find end of our completion_queue. */
9467 	list_skb = &sd->completion_queue;
9468 	while (*list_skb)
9469 		list_skb = &(*list_skb)->next;
9470 	/* Append completion queue from offline CPU. */
9471 	*list_skb = oldsd->completion_queue;
9472 	oldsd->completion_queue = NULL;
9473 
9474 	/* Append output queue from offline CPU. */
9475 	if (oldsd->output_queue) {
9476 		*sd->output_queue_tailp = oldsd->output_queue;
9477 		sd->output_queue_tailp = oldsd->output_queue_tailp;
9478 		oldsd->output_queue = NULL;
9479 		oldsd->output_queue_tailp = &oldsd->output_queue;
9480 	}
9481 	/* Append NAPI poll list from offline CPU, with one exception :
9482 	 * process_backlog() must be called by cpu owning percpu backlog.
9483 	 * We properly handle process_queue & input_pkt_queue later.
9484 	 */
9485 	while (!list_empty(&oldsd->poll_list)) {
9486 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9487 							    struct napi_struct,
9488 							    poll_list);
9489 
9490 		list_del_init(&napi->poll_list);
9491 		if (napi->poll == process_backlog)
9492 			napi->state = 0;
9493 		else
9494 			____napi_schedule(sd, napi);
9495 	}
9496 
9497 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
9498 	local_irq_enable();
9499 
9500 #ifdef CONFIG_RPS
9501 	remsd = oldsd->rps_ipi_list;
9502 	oldsd->rps_ipi_list = NULL;
9503 #endif
9504 	/* send out pending IPI's on offline CPU */
9505 	net_rps_send_ipi(remsd);
9506 
9507 	/* Process offline CPU's input_pkt_queue */
9508 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9509 		netif_rx_ni(skb);
9510 		input_queue_head_incr(oldsd);
9511 	}
9512 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9513 		netif_rx_ni(skb);
9514 		input_queue_head_incr(oldsd);
9515 	}
9516 
9517 	return 0;
9518 }
9519 
9520 /**
9521  *	netdev_increment_features - increment feature set by one
9522  *	@all: current feature set
9523  *	@one: new feature set
9524  *	@mask: mask feature set
9525  *
9526  *	Computes a new feature set after adding a device with feature set
9527  *	@one to the master device with current feature set @all.  Will not
9528  *	enable anything that is off in @mask. Returns the new feature set.
9529  */
9530 netdev_features_t netdev_increment_features(netdev_features_t all,
9531 	netdev_features_t one, netdev_features_t mask)
9532 {
9533 	if (mask & NETIF_F_HW_CSUM)
9534 		mask |= NETIF_F_CSUM_MASK;
9535 	mask |= NETIF_F_VLAN_CHALLENGED;
9536 
9537 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9538 	all &= one | ~NETIF_F_ALL_FOR_ALL;
9539 
9540 	/* If one device supports hw checksumming, set for all. */
9541 	if (all & NETIF_F_HW_CSUM)
9542 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9543 
9544 	return all;
9545 }
9546 EXPORT_SYMBOL(netdev_increment_features);
9547 
9548 static struct hlist_head * __net_init netdev_create_hash(void)
9549 {
9550 	int i;
9551 	struct hlist_head *hash;
9552 
9553 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9554 	if (hash != NULL)
9555 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
9556 			INIT_HLIST_HEAD(&hash[i]);
9557 
9558 	return hash;
9559 }
9560 
9561 /* Initialize per network namespace state */
9562 static int __net_init netdev_init(struct net *net)
9563 {
9564 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
9565 		     8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
9566 
9567 	if (net != &init_net)
9568 		INIT_LIST_HEAD(&net->dev_base_head);
9569 
9570 	net->dev_name_head = netdev_create_hash();
9571 	if (net->dev_name_head == NULL)
9572 		goto err_name;
9573 
9574 	net->dev_index_head = netdev_create_hash();
9575 	if (net->dev_index_head == NULL)
9576 		goto err_idx;
9577 
9578 	return 0;
9579 
9580 err_idx:
9581 	kfree(net->dev_name_head);
9582 err_name:
9583 	return -ENOMEM;
9584 }
9585 
9586 /**
9587  *	netdev_drivername - network driver for the device
9588  *	@dev: network device
9589  *
9590  *	Determine network driver for device.
9591  */
9592 const char *netdev_drivername(const struct net_device *dev)
9593 {
9594 	const struct device_driver *driver;
9595 	const struct device *parent;
9596 	const char *empty = "";
9597 
9598 	parent = dev->dev.parent;
9599 	if (!parent)
9600 		return empty;
9601 
9602 	driver = parent->driver;
9603 	if (driver && driver->name)
9604 		return driver->name;
9605 	return empty;
9606 }
9607 
9608 static void __netdev_printk(const char *level, const struct net_device *dev,
9609 			    struct va_format *vaf)
9610 {
9611 	if (dev && dev->dev.parent) {
9612 		dev_printk_emit(level[1] - '0',
9613 				dev->dev.parent,
9614 				"%s %s %s%s: %pV",
9615 				dev_driver_string(dev->dev.parent),
9616 				dev_name(dev->dev.parent),
9617 				netdev_name(dev), netdev_reg_state(dev),
9618 				vaf);
9619 	} else if (dev) {
9620 		printk("%s%s%s: %pV",
9621 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
9622 	} else {
9623 		printk("%s(NULL net_device): %pV", level, vaf);
9624 	}
9625 }
9626 
9627 void netdev_printk(const char *level, const struct net_device *dev,
9628 		   const char *format, ...)
9629 {
9630 	struct va_format vaf;
9631 	va_list args;
9632 
9633 	va_start(args, format);
9634 
9635 	vaf.fmt = format;
9636 	vaf.va = &args;
9637 
9638 	__netdev_printk(level, dev, &vaf);
9639 
9640 	va_end(args);
9641 }
9642 EXPORT_SYMBOL(netdev_printk);
9643 
9644 #define define_netdev_printk_level(func, level)			\
9645 void func(const struct net_device *dev, const char *fmt, ...)	\
9646 {								\
9647 	struct va_format vaf;					\
9648 	va_list args;						\
9649 								\
9650 	va_start(args, fmt);					\
9651 								\
9652 	vaf.fmt = fmt;						\
9653 	vaf.va = &args;						\
9654 								\
9655 	__netdev_printk(level, dev, &vaf);			\
9656 								\
9657 	va_end(args);						\
9658 }								\
9659 EXPORT_SYMBOL(func);
9660 
9661 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9662 define_netdev_printk_level(netdev_alert, KERN_ALERT);
9663 define_netdev_printk_level(netdev_crit, KERN_CRIT);
9664 define_netdev_printk_level(netdev_err, KERN_ERR);
9665 define_netdev_printk_level(netdev_warn, KERN_WARNING);
9666 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9667 define_netdev_printk_level(netdev_info, KERN_INFO);
9668 
9669 static void __net_exit netdev_exit(struct net *net)
9670 {
9671 	kfree(net->dev_name_head);
9672 	kfree(net->dev_index_head);
9673 	if (net != &init_net)
9674 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
9675 }
9676 
9677 static struct pernet_operations __net_initdata netdev_net_ops = {
9678 	.init = netdev_init,
9679 	.exit = netdev_exit,
9680 };
9681 
9682 static void __net_exit default_device_exit(struct net *net)
9683 {
9684 	struct net_device *dev, *aux;
9685 	/*
9686 	 * Push all migratable network devices back to the
9687 	 * initial network namespace
9688 	 */
9689 	rtnl_lock();
9690 	for_each_netdev_safe(net, dev, aux) {
9691 		int err;
9692 		char fb_name[IFNAMSIZ];
9693 
9694 		/* Ignore unmoveable devices (i.e. loopback) */
9695 		if (dev->features & NETIF_F_NETNS_LOCAL)
9696 			continue;
9697 
9698 		/* Leave virtual devices for the generic cleanup */
9699 		if (dev->rtnl_link_ops)
9700 			continue;
9701 
9702 		/* Push remaining network devices to init_net */
9703 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9704 		err = dev_change_net_namespace(dev, &init_net, fb_name);
9705 		if (err) {
9706 			pr_emerg("%s: failed to move %s to init_net: %d\n",
9707 				 __func__, dev->name, err);
9708 			BUG();
9709 		}
9710 	}
9711 	rtnl_unlock();
9712 }
9713 
9714 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9715 {
9716 	/* Return with the rtnl_lock held when there are no network
9717 	 * devices unregistering in any network namespace in net_list.
9718 	 */
9719 	struct net *net;
9720 	bool unregistering;
9721 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
9722 
9723 	add_wait_queue(&netdev_unregistering_wq, &wait);
9724 	for (;;) {
9725 		unregistering = false;
9726 		rtnl_lock();
9727 		list_for_each_entry(net, net_list, exit_list) {
9728 			if (net->dev_unreg_count > 0) {
9729 				unregistering = true;
9730 				break;
9731 			}
9732 		}
9733 		if (!unregistering)
9734 			break;
9735 		__rtnl_unlock();
9736 
9737 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9738 	}
9739 	remove_wait_queue(&netdev_unregistering_wq, &wait);
9740 }
9741 
9742 static void __net_exit default_device_exit_batch(struct list_head *net_list)
9743 {
9744 	/* At exit all network devices most be removed from a network
9745 	 * namespace.  Do this in the reverse order of registration.
9746 	 * Do this across as many network namespaces as possible to
9747 	 * improve batching efficiency.
9748 	 */
9749 	struct net_device *dev;
9750 	struct net *net;
9751 	LIST_HEAD(dev_kill_list);
9752 
9753 	/* To prevent network device cleanup code from dereferencing
9754 	 * loopback devices or network devices that have been freed
9755 	 * wait here for all pending unregistrations to complete,
9756 	 * before unregistring the loopback device and allowing the
9757 	 * network namespace be freed.
9758 	 *
9759 	 * The netdev todo list containing all network devices
9760 	 * unregistrations that happen in default_device_exit_batch
9761 	 * will run in the rtnl_unlock() at the end of
9762 	 * default_device_exit_batch.
9763 	 */
9764 	rtnl_lock_unregistering(net_list);
9765 	list_for_each_entry(net, net_list, exit_list) {
9766 		for_each_netdev_reverse(net, dev) {
9767 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9768 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9769 			else
9770 				unregister_netdevice_queue(dev, &dev_kill_list);
9771 		}
9772 	}
9773 	unregister_netdevice_many(&dev_kill_list);
9774 	rtnl_unlock();
9775 }
9776 
9777 static struct pernet_operations __net_initdata default_device_ops = {
9778 	.exit = default_device_exit,
9779 	.exit_batch = default_device_exit_batch,
9780 };
9781 
9782 /*
9783  *	Initialize the DEV module. At boot time this walks the device list and
9784  *	unhooks any devices that fail to initialise (normally hardware not
9785  *	present) and leaves us with a valid list of present and active devices.
9786  *
9787  */
9788 
9789 /*
9790  *       This is called single threaded during boot, so no need
9791  *       to take the rtnl semaphore.
9792  */
9793 static int __init net_dev_init(void)
9794 {
9795 	int i, rc = -ENOMEM;
9796 
9797 	BUG_ON(!dev_boot_phase);
9798 
9799 	if (dev_proc_init())
9800 		goto out;
9801 
9802 	if (netdev_kobject_init())
9803 		goto out;
9804 
9805 	INIT_LIST_HEAD(&ptype_all);
9806 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
9807 		INIT_LIST_HEAD(&ptype_base[i]);
9808 
9809 	INIT_LIST_HEAD(&offload_base);
9810 
9811 	if (register_pernet_subsys(&netdev_net_ops))
9812 		goto out;
9813 
9814 	/*
9815 	 *	Initialise the packet receive queues.
9816 	 */
9817 
9818 	for_each_possible_cpu(i) {
9819 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9820 		struct softnet_data *sd = &per_cpu(softnet_data, i);
9821 
9822 		INIT_WORK(flush, flush_backlog);
9823 
9824 		skb_queue_head_init(&sd->input_pkt_queue);
9825 		skb_queue_head_init(&sd->process_queue);
9826 #ifdef CONFIG_XFRM_OFFLOAD
9827 		skb_queue_head_init(&sd->xfrm_backlog);
9828 #endif
9829 		INIT_LIST_HEAD(&sd->poll_list);
9830 		sd->output_queue_tailp = &sd->output_queue;
9831 #ifdef CONFIG_RPS
9832 		sd->csd.func = rps_trigger_softirq;
9833 		sd->csd.info = sd;
9834 		sd->cpu = i;
9835 #endif
9836 
9837 		init_gro_hash(&sd->backlog);
9838 		sd->backlog.poll = process_backlog;
9839 		sd->backlog.weight = weight_p;
9840 	}
9841 
9842 	dev_boot_phase = 0;
9843 
9844 	/* The loopback device is special if any other network devices
9845 	 * is present in a network namespace the loopback device must
9846 	 * be present. Since we now dynamically allocate and free the
9847 	 * loopback device ensure this invariant is maintained by
9848 	 * keeping the loopback device as the first device on the
9849 	 * list of network devices.  Ensuring the loopback devices
9850 	 * is the first device that appears and the last network device
9851 	 * that disappears.
9852 	 */
9853 	if (register_pernet_device(&loopback_net_ops))
9854 		goto out;
9855 
9856 	if (register_pernet_device(&default_device_ops))
9857 		goto out;
9858 
9859 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9860 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9861 
9862 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9863 				       NULL, dev_cpu_dead);
9864 	WARN_ON(rc < 0);
9865 	rc = 0;
9866 out:
9867 	return rc;
9868 }
9869 
9870 subsys_initcall(net_dev_init);
9871