1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET3 Protocol independent device support routines. 4 * 5 * Derived from the non IP parts of dev.c 1.0.19 6 * Authors: Ross Biro 7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 8 * Mark Evans, <evansmp@uhura.aston.ac.uk> 9 * 10 * Additional Authors: 11 * Florian la Roche <rzsfl@rz.uni-sb.de> 12 * Alan Cox <gw4pts@gw4pts.ampr.org> 13 * David Hinds <dahinds@users.sourceforge.net> 14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 15 * Adam Sulmicki <adam@cfar.umd.edu> 16 * Pekka Riikonen <priikone@poesidon.pspt.fi> 17 * 18 * Changes: 19 * D.J. Barrow : Fixed bug where dev->refcnt gets set 20 * to 2 if register_netdev gets called 21 * before net_dev_init & also removed a 22 * few lines of code in the process. 23 * Alan Cox : device private ioctl copies fields back. 24 * Alan Cox : Transmit queue code does relevant 25 * stunts to keep the queue safe. 26 * Alan Cox : Fixed double lock. 27 * Alan Cox : Fixed promisc NULL pointer trap 28 * ???????? : Support the full private ioctl range 29 * Alan Cox : Moved ioctl permission check into 30 * drivers 31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 32 * Alan Cox : 100 backlog just doesn't cut it when 33 * you start doing multicast video 8) 34 * Alan Cox : Rewrote net_bh and list manager. 35 * Alan Cox : Fix ETH_P_ALL echoback lengths. 36 * Alan Cox : Took out transmit every packet pass 37 * Saved a few bytes in the ioctl handler 38 * Alan Cox : Network driver sets packet type before 39 * calling netif_rx. Saves a function 40 * call a packet. 41 * Alan Cox : Hashed net_bh() 42 * Richard Kooijman: Timestamp fixes. 43 * Alan Cox : Wrong field in SIOCGIFDSTADDR 44 * Alan Cox : Device lock protection. 45 * Alan Cox : Fixed nasty side effect of device close 46 * changes. 47 * Rudi Cilibrasi : Pass the right thing to 48 * set_mac_address() 49 * Dave Miller : 32bit quantity for the device lock to 50 * make it work out on a Sparc. 51 * Bjorn Ekwall : Added KERNELD hack. 52 * Alan Cox : Cleaned up the backlog initialise. 53 * Craig Metz : SIOCGIFCONF fix if space for under 54 * 1 device. 55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 56 * is no device open function. 57 * Andi Kleen : Fix error reporting for SIOCGIFCONF 58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 59 * Cyrus Durgin : Cleaned for KMOD 60 * Adam Sulmicki : Bug Fix : Network Device Unload 61 * A network device unload needs to purge 62 * the backlog queue. 63 * Paul Rusty Russell : SIOCSIFNAME 64 * Pekka Riikonen : Netdev boot-time settings code 65 * Andrew Morton : Make unregister_netdevice wait 66 * indefinitely on dev->refcnt 67 * J Hadi Salim : - Backlog queue sampling 68 * - netif_rx() feedback 69 */ 70 71 #include <linux/uaccess.h> 72 #include <linux/bitops.h> 73 #include <linux/capability.h> 74 #include <linux/cpu.h> 75 #include <linux/types.h> 76 #include <linux/kernel.h> 77 #include <linux/hash.h> 78 #include <linux/slab.h> 79 #include <linux/sched.h> 80 #include <linux/sched/mm.h> 81 #include <linux/mutex.h> 82 #include <linux/string.h> 83 #include <linux/mm.h> 84 #include <linux/socket.h> 85 #include <linux/sockios.h> 86 #include <linux/errno.h> 87 #include <linux/interrupt.h> 88 #include <linux/if_ether.h> 89 #include <linux/netdevice.h> 90 #include <linux/etherdevice.h> 91 #include <linux/ethtool.h> 92 #include <linux/skbuff.h> 93 #include <linux/bpf.h> 94 #include <linux/bpf_trace.h> 95 #include <net/net_namespace.h> 96 #include <net/sock.h> 97 #include <net/busy_poll.h> 98 #include <linux/rtnetlink.h> 99 #include <linux/stat.h> 100 #include <net/dst.h> 101 #include <net/dst_metadata.h> 102 #include <net/pkt_sched.h> 103 #include <net/pkt_cls.h> 104 #include <net/checksum.h> 105 #include <net/xfrm.h> 106 #include <linux/highmem.h> 107 #include <linux/init.h> 108 #include <linux/module.h> 109 #include <linux/netpoll.h> 110 #include <linux/rcupdate.h> 111 #include <linux/delay.h> 112 #include <net/iw_handler.h> 113 #include <asm/current.h> 114 #include <linux/audit.h> 115 #include <linux/dmaengine.h> 116 #include <linux/err.h> 117 #include <linux/ctype.h> 118 #include <linux/if_arp.h> 119 #include <linux/if_vlan.h> 120 #include <linux/ip.h> 121 #include <net/ip.h> 122 #include <net/mpls.h> 123 #include <linux/ipv6.h> 124 #include <linux/in.h> 125 #include <linux/jhash.h> 126 #include <linux/random.h> 127 #include <trace/events/napi.h> 128 #include <trace/events/net.h> 129 #include <trace/events/skb.h> 130 #include <linux/inetdevice.h> 131 #include <linux/cpu_rmap.h> 132 #include <linux/static_key.h> 133 #include <linux/hashtable.h> 134 #include <linux/vmalloc.h> 135 #include <linux/if_macvlan.h> 136 #include <linux/errqueue.h> 137 #include <linux/hrtimer.h> 138 #include <linux/netfilter_ingress.h> 139 #include <linux/crash_dump.h> 140 #include <linux/sctp.h> 141 #include <net/udp_tunnel.h> 142 #include <linux/net_namespace.h> 143 #include <linux/indirect_call_wrapper.h> 144 #include <net/devlink.h> 145 146 #include "net-sysfs.h" 147 148 #define MAX_GRO_SKBS 8 149 150 /* This should be increased if a protocol with a bigger head is added. */ 151 #define GRO_MAX_HEAD (MAX_HEADER + 128) 152 153 static DEFINE_SPINLOCK(ptype_lock); 154 static DEFINE_SPINLOCK(offload_lock); 155 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 156 struct list_head ptype_all __read_mostly; /* Taps */ 157 static struct list_head offload_base __read_mostly; 158 159 static int netif_rx_internal(struct sk_buff *skb); 160 static int call_netdevice_notifiers_info(unsigned long val, 161 struct netdev_notifier_info *info); 162 static int call_netdevice_notifiers_extack(unsigned long val, 163 struct net_device *dev, 164 struct netlink_ext_ack *extack); 165 static struct napi_struct *napi_by_id(unsigned int napi_id); 166 167 /* 168 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 169 * semaphore. 170 * 171 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 172 * 173 * Writers must hold the rtnl semaphore while they loop through the 174 * dev_base_head list, and hold dev_base_lock for writing when they do the 175 * actual updates. This allows pure readers to access the list even 176 * while a writer is preparing to update it. 177 * 178 * To put it another way, dev_base_lock is held for writing only to 179 * protect against pure readers; the rtnl semaphore provides the 180 * protection against other writers. 181 * 182 * See, for example usages, register_netdevice() and 183 * unregister_netdevice(), which must be called with the rtnl 184 * semaphore held. 185 */ 186 DEFINE_RWLOCK(dev_base_lock); 187 EXPORT_SYMBOL(dev_base_lock); 188 189 static DEFINE_MUTEX(ifalias_mutex); 190 191 /* protects napi_hash addition/deletion and napi_gen_id */ 192 static DEFINE_SPINLOCK(napi_hash_lock); 193 194 static unsigned int napi_gen_id = NR_CPUS; 195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 196 197 static seqcount_t devnet_rename_seq; 198 199 static inline void dev_base_seq_inc(struct net *net) 200 { 201 while (++net->dev_base_seq == 0) 202 ; 203 } 204 205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 206 { 207 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 208 209 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 210 } 211 212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 213 { 214 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 215 } 216 217 static inline void rps_lock(struct softnet_data *sd) 218 { 219 #ifdef CONFIG_RPS 220 spin_lock(&sd->input_pkt_queue.lock); 221 #endif 222 } 223 224 static inline void rps_unlock(struct softnet_data *sd) 225 { 226 #ifdef CONFIG_RPS 227 spin_unlock(&sd->input_pkt_queue.lock); 228 #endif 229 } 230 231 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev, 232 const char *name) 233 { 234 struct netdev_name_node *name_node; 235 236 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL); 237 if (!name_node) 238 return NULL; 239 INIT_HLIST_NODE(&name_node->hlist); 240 name_node->dev = dev; 241 name_node->name = name; 242 return name_node; 243 } 244 245 static struct netdev_name_node * 246 netdev_name_node_head_alloc(struct net_device *dev) 247 { 248 struct netdev_name_node *name_node; 249 250 name_node = netdev_name_node_alloc(dev, dev->name); 251 if (!name_node) 252 return NULL; 253 INIT_LIST_HEAD(&name_node->list); 254 return name_node; 255 } 256 257 static void netdev_name_node_free(struct netdev_name_node *name_node) 258 { 259 kfree(name_node); 260 } 261 262 static void netdev_name_node_add(struct net *net, 263 struct netdev_name_node *name_node) 264 { 265 hlist_add_head_rcu(&name_node->hlist, 266 dev_name_hash(net, name_node->name)); 267 } 268 269 static void netdev_name_node_del(struct netdev_name_node *name_node) 270 { 271 hlist_del_rcu(&name_node->hlist); 272 } 273 274 static struct netdev_name_node *netdev_name_node_lookup(struct net *net, 275 const char *name) 276 { 277 struct hlist_head *head = dev_name_hash(net, name); 278 struct netdev_name_node *name_node; 279 280 hlist_for_each_entry(name_node, head, hlist) 281 if (!strcmp(name_node->name, name)) 282 return name_node; 283 return NULL; 284 } 285 286 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net, 287 const char *name) 288 { 289 struct hlist_head *head = dev_name_hash(net, name); 290 struct netdev_name_node *name_node; 291 292 hlist_for_each_entry_rcu(name_node, head, hlist) 293 if (!strcmp(name_node->name, name)) 294 return name_node; 295 return NULL; 296 } 297 298 int netdev_name_node_alt_create(struct net_device *dev, const char *name) 299 { 300 struct netdev_name_node *name_node; 301 struct net *net = dev_net(dev); 302 303 name_node = netdev_name_node_lookup(net, name); 304 if (name_node) 305 return -EEXIST; 306 name_node = netdev_name_node_alloc(dev, name); 307 if (!name_node) 308 return -ENOMEM; 309 netdev_name_node_add(net, name_node); 310 /* The node that holds dev->name acts as a head of per-device list. */ 311 list_add_tail(&name_node->list, &dev->name_node->list); 312 313 return 0; 314 } 315 EXPORT_SYMBOL(netdev_name_node_alt_create); 316 317 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node) 318 { 319 list_del(&name_node->list); 320 netdev_name_node_del(name_node); 321 kfree(name_node->name); 322 netdev_name_node_free(name_node); 323 } 324 325 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name) 326 { 327 struct netdev_name_node *name_node; 328 struct net *net = dev_net(dev); 329 330 name_node = netdev_name_node_lookup(net, name); 331 if (!name_node) 332 return -ENOENT; 333 /* lookup might have found our primary name or a name belonging 334 * to another device. 335 */ 336 if (name_node == dev->name_node || name_node->dev != dev) 337 return -EINVAL; 338 339 __netdev_name_node_alt_destroy(name_node); 340 341 return 0; 342 } 343 EXPORT_SYMBOL(netdev_name_node_alt_destroy); 344 345 static void netdev_name_node_alt_flush(struct net_device *dev) 346 { 347 struct netdev_name_node *name_node, *tmp; 348 349 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) 350 __netdev_name_node_alt_destroy(name_node); 351 } 352 353 /* Device list insertion */ 354 static void list_netdevice(struct net_device *dev) 355 { 356 struct net *net = dev_net(dev); 357 358 ASSERT_RTNL(); 359 360 write_lock_bh(&dev_base_lock); 361 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 362 netdev_name_node_add(net, dev->name_node); 363 hlist_add_head_rcu(&dev->index_hlist, 364 dev_index_hash(net, dev->ifindex)); 365 write_unlock_bh(&dev_base_lock); 366 367 dev_base_seq_inc(net); 368 } 369 370 /* Device list removal 371 * caller must respect a RCU grace period before freeing/reusing dev 372 */ 373 static void unlist_netdevice(struct net_device *dev) 374 { 375 ASSERT_RTNL(); 376 377 /* Unlink dev from the device chain */ 378 write_lock_bh(&dev_base_lock); 379 list_del_rcu(&dev->dev_list); 380 netdev_name_node_del(dev->name_node); 381 hlist_del_rcu(&dev->index_hlist); 382 write_unlock_bh(&dev_base_lock); 383 384 dev_base_seq_inc(dev_net(dev)); 385 } 386 387 /* 388 * Our notifier list 389 */ 390 391 static RAW_NOTIFIER_HEAD(netdev_chain); 392 393 /* 394 * Device drivers call our routines to queue packets here. We empty the 395 * queue in the local softnet handler. 396 */ 397 398 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 399 EXPORT_PER_CPU_SYMBOL(softnet_data); 400 401 #ifdef CONFIG_LOCKDEP 402 /* 403 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 404 * according to dev->type 405 */ 406 static const unsigned short netdev_lock_type[] = { 407 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 408 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 409 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 410 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 411 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 412 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 413 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 414 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 415 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 416 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 417 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 418 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 419 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 420 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 421 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 422 423 static const char *const netdev_lock_name[] = { 424 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 425 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 426 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 427 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 428 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 429 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 430 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 431 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 432 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 433 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 434 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 435 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 436 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 437 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 438 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 439 440 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 441 442 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 443 { 444 int i; 445 446 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 447 if (netdev_lock_type[i] == dev_type) 448 return i; 449 /* the last key is used by default */ 450 return ARRAY_SIZE(netdev_lock_type) - 1; 451 } 452 453 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 454 unsigned short dev_type) 455 { 456 int i; 457 458 i = netdev_lock_pos(dev_type); 459 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 460 netdev_lock_name[i]); 461 } 462 #else 463 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 464 unsigned short dev_type) 465 { 466 } 467 #endif 468 469 /******************************************************************************* 470 * 471 * Protocol management and registration routines 472 * 473 *******************************************************************************/ 474 475 476 /* 477 * Add a protocol ID to the list. Now that the input handler is 478 * smarter we can dispense with all the messy stuff that used to be 479 * here. 480 * 481 * BEWARE!!! Protocol handlers, mangling input packets, 482 * MUST BE last in hash buckets and checking protocol handlers 483 * MUST start from promiscuous ptype_all chain in net_bh. 484 * It is true now, do not change it. 485 * Explanation follows: if protocol handler, mangling packet, will 486 * be the first on list, it is not able to sense, that packet 487 * is cloned and should be copied-on-write, so that it will 488 * change it and subsequent readers will get broken packet. 489 * --ANK (980803) 490 */ 491 492 static inline struct list_head *ptype_head(const struct packet_type *pt) 493 { 494 if (pt->type == htons(ETH_P_ALL)) 495 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 496 else 497 return pt->dev ? &pt->dev->ptype_specific : 498 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 499 } 500 501 /** 502 * dev_add_pack - add packet handler 503 * @pt: packet type declaration 504 * 505 * Add a protocol handler to the networking stack. The passed &packet_type 506 * is linked into kernel lists and may not be freed until it has been 507 * removed from the kernel lists. 508 * 509 * This call does not sleep therefore it can not 510 * guarantee all CPU's that are in middle of receiving packets 511 * will see the new packet type (until the next received packet). 512 */ 513 514 void dev_add_pack(struct packet_type *pt) 515 { 516 struct list_head *head = ptype_head(pt); 517 518 spin_lock(&ptype_lock); 519 list_add_rcu(&pt->list, head); 520 spin_unlock(&ptype_lock); 521 } 522 EXPORT_SYMBOL(dev_add_pack); 523 524 /** 525 * __dev_remove_pack - remove packet handler 526 * @pt: packet type declaration 527 * 528 * Remove a protocol handler that was previously added to the kernel 529 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 530 * from the kernel lists and can be freed or reused once this function 531 * returns. 532 * 533 * The packet type might still be in use by receivers 534 * and must not be freed until after all the CPU's have gone 535 * through a quiescent state. 536 */ 537 void __dev_remove_pack(struct packet_type *pt) 538 { 539 struct list_head *head = ptype_head(pt); 540 struct packet_type *pt1; 541 542 spin_lock(&ptype_lock); 543 544 list_for_each_entry(pt1, head, list) { 545 if (pt == pt1) { 546 list_del_rcu(&pt->list); 547 goto out; 548 } 549 } 550 551 pr_warn("dev_remove_pack: %p not found\n", pt); 552 out: 553 spin_unlock(&ptype_lock); 554 } 555 EXPORT_SYMBOL(__dev_remove_pack); 556 557 /** 558 * dev_remove_pack - remove packet handler 559 * @pt: packet type declaration 560 * 561 * Remove a protocol handler that was previously added to the kernel 562 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 563 * from the kernel lists and can be freed or reused once this function 564 * returns. 565 * 566 * This call sleeps to guarantee that no CPU is looking at the packet 567 * type after return. 568 */ 569 void dev_remove_pack(struct packet_type *pt) 570 { 571 __dev_remove_pack(pt); 572 573 synchronize_net(); 574 } 575 EXPORT_SYMBOL(dev_remove_pack); 576 577 578 /** 579 * dev_add_offload - register offload handlers 580 * @po: protocol offload declaration 581 * 582 * Add protocol offload handlers to the networking stack. The passed 583 * &proto_offload is linked into kernel lists and may not be freed until 584 * it has been removed from the kernel lists. 585 * 586 * This call does not sleep therefore it can not 587 * guarantee all CPU's that are in middle of receiving packets 588 * will see the new offload handlers (until the next received packet). 589 */ 590 void dev_add_offload(struct packet_offload *po) 591 { 592 struct packet_offload *elem; 593 594 spin_lock(&offload_lock); 595 list_for_each_entry(elem, &offload_base, list) { 596 if (po->priority < elem->priority) 597 break; 598 } 599 list_add_rcu(&po->list, elem->list.prev); 600 spin_unlock(&offload_lock); 601 } 602 EXPORT_SYMBOL(dev_add_offload); 603 604 /** 605 * __dev_remove_offload - remove offload handler 606 * @po: packet offload declaration 607 * 608 * Remove a protocol offload handler that was previously added to the 609 * kernel offload handlers by dev_add_offload(). The passed &offload_type 610 * is removed from the kernel lists and can be freed or reused once this 611 * function returns. 612 * 613 * The packet type might still be in use by receivers 614 * and must not be freed until after all the CPU's have gone 615 * through a quiescent state. 616 */ 617 static void __dev_remove_offload(struct packet_offload *po) 618 { 619 struct list_head *head = &offload_base; 620 struct packet_offload *po1; 621 622 spin_lock(&offload_lock); 623 624 list_for_each_entry(po1, head, list) { 625 if (po == po1) { 626 list_del_rcu(&po->list); 627 goto out; 628 } 629 } 630 631 pr_warn("dev_remove_offload: %p not found\n", po); 632 out: 633 spin_unlock(&offload_lock); 634 } 635 636 /** 637 * dev_remove_offload - remove packet offload handler 638 * @po: packet offload declaration 639 * 640 * Remove a packet offload handler that was previously added to the kernel 641 * offload handlers by dev_add_offload(). The passed &offload_type is 642 * removed from the kernel lists and can be freed or reused once this 643 * function returns. 644 * 645 * This call sleeps to guarantee that no CPU is looking at the packet 646 * type after return. 647 */ 648 void dev_remove_offload(struct packet_offload *po) 649 { 650 __dev_remove_offload(po); 651 652 synchronize_net(); 653 } 654 EXPORT_SYMBOL(dev_remove_offload); 655 656 /****************************************************************************** 657 * 658 * Device Boot-time Settings Routines 659 * 660 ******************************************************************************/ 661 662 /* Boot time configuration table */ 663 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 664 665 /** 666 * netdev_boot_setup_add - add new setup entry 667 * @name: name of the device 668 * @map: configured settings for the device 669 * 670 * Adds new setup entry to the dev_boot_setup list. The function 671 * returns 0 on error and 1 on success. This is a generic routine to 672 * all netdevices. 673 */ 674 static int netdev_boot_setup_add(char *name, struct ifmap *map) 675 { 676 struct netdev_boot_setup *s; 677 int i; 678 679 s = dev_boot_setup; 680 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 681 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 682 memset(s[i].name, 0, sizeof(s[i].name)); 683 strlcpy(s[i].name, name, IFNAMSIZ); 684 memcpy(&s[i].map, map, sizeof(s[i].map)); 685 break; 686 } 687 } 688 689 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 690 } 691 692 /** 693 * netdev_boot_setup_check - check boot time settings 694 * @dev: the netdevice 695 * 696 * Check boot time settings for the device. 697 * The found settings are set for the device to be used 698 * later in the device probing. 699 * Returns 0 if no settings found, 1 if they are. 700 */ 701 int netdev_boot_setup_check(struct net_device *dev) 702 { 703 struct netdev_boot_setup *s = dev_boot_setup; 704 int i; 705 706 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 707 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 708 !strcmp(dev->name, s[i].name)) { 709 dev->irq = s[i].map.irq; 710 dev->base_addr = s[i].map.base_addr; 711 dev->mem_start = s[i].map.mem_start; 712 dev->mem_end = s[i].map.mem_end; 713 return 1; 714 } 715 } 716 return 0; 717 } 718 EXPORT_SYMBOL(netdev_boot_setup_check); 719 720 721 /** 722 * netdev_boot_base - get address from boot time settings 723 * @prefix: prefix for network device 724 * @unit: id for network device 725 * 726 * Check boot time settings for the base address of device. 727 * The found settings are set for the device to be used 728 * later in the device probing. 729 * Returns 0 if no settings found. 730 */ 731 unsigned long netdev_boot_base(const char *prefix, int unit) 732 { 733 const struct netdev_boot_setup *s = dev_boot_setup; 734 char name[IFNAMSIZ]; 735 int i; 736 737 sprintf(name, "%s%d", prefix, unit); 738 739 /* 740 * If device already registered then return base of 1 741 * to indicate not to probe for this interface 742 */ 743 if (__dev_get_by_name(&init_net, name)) 744 return 1; 745 746 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 747 if (!strcmp(name, s[i].name)) 748 return s[i].map.base_addr; 749 return 0; 750 } 751 752 /* 753 * Saves at boot time configured settings for any netdevice. 754 */ 755 int __init netdev_boot_setup(char *str) 756 { 757 int ints[5]; 758 struct ifmap map; 759 760 str = get_options(str, ARRAY_SIZE(ints), ints); 761 if (!str || !*str) 762 return 0; 763 764 /* Save settings */ 765 memset(&map, 0, sizeof(map)); 766 if (ints[0] > 0) 767 map.irq = ints[1]; 768 if (ints[0] > 1) 769 map.base_addr = ints[2]; 770 if (ints[0] > 2) 771 map.mem_start = ints[3]; 772 if (ints[0] > 3) 773 map.mem_end = ints[4]; 774 775 /* Add new entry to the list */ 776 return netdev_boot_setup_add(str, &map); 777 } 778 779 __setup("netdev=", netdev_boot_setup); 780 781 /******************************************************************************* 782 * 783 * Device Interface Subroutines 784 * 785 *******************************************************************************/ 786 787 /** 788 * dev_get_iflink - get 'iflink' value of a interface 789 * @dev: targeted interface 790 * 791 * Indicates the ifindex the interface is linked to. 792 * Physical interfaces have the same 'ifindex' and 'iflink' values. 793 */ 794 795 int dev_get_iflink(const struct net_device *dev) 796 { 797 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 798 return dev->netdev_ops->ndo_get_iflink(dev); 799 800 return dev->ifindex; 801 } 802 EXPORT_SYMBOL(dev_get_iflink); 803 804 /** 805 * dev_fill_metadata_dst - Retrieve tunnel egress information. 806 * @dev: targeted interface 807 * @skb: The packet. 808 * 809 * For better visibility of tunnel traffic OVS needs to retrieve 810 * egress tunnel information for a packet. Following API allows 811 * user to get this info. 812 */ 813 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 814 { 815 struct ip_tunnel_info *info; 816 817 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 818 return -EINVAL; 819 820 info = skb_tunnel_info_unclone(skb); 821 if (!info) 822 return -ENOMEM; 823 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 824 return -EINVAL; 825 826 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 827 } 828 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 829 830 /** 831 * __dev_get_by_name - find a device by its name 832 * @net: the applicable net namespace 833 * @name: name to find 834 * 835 * Find an interface by name. Must be called under RTNL semaphore 836 * or @dev_base_lock. If the name is found a pointer to the device 837 * is returned. If the name is not found then %NULL is returned. The 838 * reference counters are not incremented so the caller must be 839 * careful with locks. 840 */ 841 842 struct net_device *__dev_get_by_name(struct net *net, const char *name) 843 { 844 struct netdev_name_node *node_name; 845 846 node_name = netdev_name_node_lookup(net, name); 847 return node_name ? node_name->dev : NULL; 848 } 849 EXPORT_SYMBOL(__dev_get_by_name); 850 851 /** 852 * dev_get_by_name_rcu - find a device by its name 853 * @net: the applicable net namespace 854 * @name: name to find 855 * 856 * Find an interface by name. 857 * If the name is found a pointer to the device is returned. 858 * If the name is not found then %NULL is returned. 859 * The reference counters are not incremented so the caller must be 860 * careful with locks. The caller must hold RCU lock. 861 */ 862 863 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 864 { 865 struct netdev_name_node *node_name; 866 867 node_name = netdev_name_node_lookup_rcu(net, name); 868 return node_name ? node_name->dev : NULL; 869 } 870 EXPORT_SYMBOL(dev_get_by_name_rcu); 871 872 /** 873 * dev_get_by_name - find a device by its name 874 * @net: the applicable net namespace 875 * @name: name to find 876 * 877 * Find an interface by name. This can be called from any 878 * context and does its own locking. The returned handle has 879 * the usage count incremented and the caller must use dev_put() to 880 * release it when it is no longer needed. %NULL is returned if no 881 * matching device is found. 882 */ 883 884 struct net_device *dev_get_by_name(struct net *net, const char *name) 885 { 886 struct net_device *dev; 887 888 rcu_read_lock(); 889 dev = dev_get_by_name_rcu(net, name); 890 if (dev) 891 dev_hold(dev); 892 rcu_read_unlock(); 893 return dev; 894 } 895 EXPORT_SYMBOL(dev_get_by_name); 896 897 /** 898 * __dev_get_by_index - find a device by its ifindex 899 * @net: the applicable net namespace 900 * @ifindex: index of device 901 * 902 * Search for an interface by index. Returns %NULL if the device 903 * is not found or a pointer to the device. The device has not 904 * had its reference counter increased so the caller must be careful 905 * about locking. The caller must hold either the RTNL semaphore 906 * or @dev_base_lock. 907 */ 908 909 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 910 { 911 struct net_device *dev; 912 struct hlist_head *head = dev_index_hash(net, ifindex); 913 914 hlist_for_each_entry(dev, head, index_hlist) 915 if (dev->ifindex == ifindex) 916 return dev; 917 918 return NULL; 919 } 920 EXPORT_SYMBOL(__dev_get_by_index); 921 922 /** 923 * dev_get_by_index_rcu - find a device by its ifindex 924 * @net: the applicable net namespace 925 * @ifindex: index of device 926 * 927 * Search for an interface by index. Returns %NULL if the device 928 * is not found or a pointer to the device. The device has not 929 * had its reference counter increased so the caller must be careful 930 * about locking. The caller must hold RCU lock. 931 */ 932 933 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 934 { 935 struct net_device *dev; 936 struct hlist_head *head = dev_index_hash(net, ifindex); 937 938 hlist_for_each_entry_rcu(dev, head, index_hlist) 939 if (dev->ifindex == ifindex) 940 return dev; 941 942 return NULL; 943 } 944 EXPORT_SYMBOL(dev_get_by_index_rcu); 945 946 947 /** 948 * dev_get_by_index - find a device by its ifindex 949 * @net: the applicable net namespace 950 * @ifindex: index of device 951 * 952 * Search for an interface by index. Returns NULL if the device 953 * is not found or a pointer to the device. The device returned has 954 * had a reference added and the pointer is safe until the user calls 955 * dev_put to indicate they have finished with it. 956 */ 957 958 struct net_device *dev_get_by_index(struct net *net, int ifindex) 959 { 960 struct net_device *dev; 961 962 rcu_read_lock(); 963 dev = dev_get_by_index_rcu(net, ifindex); 964 if (dev) 965 dev_hold(dev); 966 rcu_read_unlock(); 967 return dev; 968 } 969 EXPORT_SYMBOL(dev_get_by_index); 970 971 /** 972 * dev_get_by_napi_id - find a device by napi_id 973 * @napi_id: ID of the NAPI struct 974 * 975 * Search for an interface by NAPI ID. Returns %NULL if the device 976 * is not found or a pointer to the device. The device has not had 977 * its reference counter increased so the caller must be careful 978 * about locking. The caller must hold RCU lock. 979 */ 980 981 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 982 { 983 struct napi_struct *napi; 984 985 WARN_ON_ONCE(!rcu_read_lock_held()); 986 987 if (napi_id < MIN_NAPI_ID) 988 return NULL; 989 990 napi = napi_by_id(napi_id); 991 992 return napi ? napi->dev : NULL; 993 } 994 EXPORT_SYMBOL(dev_get_by_napi_id); 995 996 /** 997 * netdev_get_name - get a netdevice name, knowing its ifindex. 998 * @net: network namespace 999 * @name: a pointer to the buffer where the name will be stored. 1000 * @ifindex: the ifindex of the interface to get the name from. 1001 * 1002 * The use of raw_seqcount_begin() and cond_resched() before 1003 * retrying is required as we want to give the writers a chance 1004 * to complete when CONFIG_PREEMPTION is not set. 1005 */ 1006 int netdev_get_name(struct net *net, char *name, int ifindex) 1007 { 1008 struct net_device *dev; 1009 unsigned int seq; 1010 1011 retry: 1012 seq = raw_seqcount_begin(&devnet_rename_seq); 1013 rcu_read_lock(); 1014 dev = dev_get_by_index_rcu(net, ifindex); 1015 if (!dev) { 1016 rcu_read_unlock(); 1017 return -ENODEV; 1018 } 1019 1020 strcpy(name, dev->name); 1021 rcu_read_unlock(); 1022 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 1023 cond_resched(); 1024 goto retry; 1025 } 1026 1027 return 0; 1028 } 1029 1030 /** 1031 * dev_getbyhwaddr_rcu - find a device by its hardware address 1032 * @net: the applicable net namespace 1033 * @type: media type of device 1034 * @ha: hardware address 1035 * 1036 * Search for an interface by MAC address. Returns NULL if the device 1037 * is not found or a pointer to the device. 1038 * The caller must hold RCU or RTNL. 1039 * The returned device has not had its ref count increased 1040 * and the caller must therefore be careful about locking 1041 * 1042 */ 1043 1044 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 1045 const char *ha) 1046 { 1047 struct net_device *dev; 1048 1049 for_each_netdev_rcu(net, dev) 1050 if (dev->type == type && 1051 !memcmp(dev->dev_addr, ha, dev->addr_len)) 1052 return dev; 1053 1054 return NULL; 1055 } 1056 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 1057 1058 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 1059 { 1060 struct net_device *dev; 1061 1062 ASSERT_RTNL(); 1063 for_each_netdev(net, dev) 1064 if (dev->type == type) 1065 return dev; 1066 1067 return NULL; 1068 } 1069 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 1070 1071 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 1072 { 1073 struct net_device *dev, *ret = NULL; 1074 1075 rcu_read_lock(); 1076 for_each_netdev_rcu(net, dev) 1077 if (dev->type == type) { 1078 dev_hold(dev); 1079 ret = dev; 1080 break; 1081 } 1082 rcu_read_unlock(); 1083 return ret; 1084 } 1085 EXPORT_SYMBOL(dev_getfirstbyhwtype); 1086 1087 /** 1088 * __dev_get_by_flags - find any device with given flags 1089 * @net: the applicable net namespace 1090 * @if_flags: IFF_* values 1091 * @mask: bitmask of bits in if_flags to check 1092 * 1093 * Search for any interface with the given flags. Returns NULL if a device 1094 * is not found or a pointer to the device. Must be called inside 1095 * rtnl_lock(), and result refcount is unchanged. 1096 */ 1097 1098 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 1099 unsigned short mask) 1100 { 1101 struct net_device *dev, *ret; 1102 1103 ASSERT_RTNL(); 1104 1105 ret = NULL; 1106 for_each_netdev(net, dev) { 1107 if (((dev->flags ^ if_flags) & mask) == 0) { 1108 ret = dev; 1109 break; 1110 } 1111 } 1112 return ret; 1113 } 1114 EXPORT_SYMBOL(__dev_get_by_flags); 1115 1116 /** 1117 * dev_valid_name - check if name is okay for network device 1118 * @name: name string 1119 * 1120 * Network device names need to be valid file names to 1121 * to allow sysfs to work. We also disallow any kind of 1122 * whitespace. 1123 */ 1124 bool dev_valid_name(const char *name) 1125 { 1126 if (*name == '\0') 1127 return false; 1128 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1129 return false; 1130 if (!strcmp(name, ".") || !strcmp(name, "..")) 1131 return false; 1132 1133 while (*name) { 1134 if (*name == '/' || *name == ':' || isspace(*name)) 1135 return false; 1136 name++; 1137 } 1138 return true; 1139 } 1140 EXPORT_SYMBOL(dev_valid_name); 1141 1142 /** 1143 * __dev_alloc_name - allocate a name for a device 1144 * @net: network namespace to allocate the device name in 1145 * @name: name format string 1146 * @buf: scratch buffer and result name string 1147 * 1148 * Passed a format string - eg "lt%d" it will try and find a suitable 1149 * id. It scans list of devices to build up a free map, then chooses 1150 * the first empty slot. The caller must hold the dev_base or rtnl lock 1151 * while allocating the name and adding the device in order to avoid 1152 * duplicates. 1153 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1154 * Returns the number of the unit assigned or a negative errno code. 1155 */ 1156 1157 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1158 { 1159 int i = 0; 1160 const char *p; 1161 const int max_netdevices = 8*PAGE_SIZE; 1162 unsigned long *inuse; 1163 struct net_device *d; 1164 1165 if (!dev_valid_name(name)) 1166 return -EINVAL; 1167 1168 p = strchr(name, '%'); 1169 if (p) { 1170 /* 1171 * Verify the string as this thing may have come from 1172 * the user. There must be either one "%d" and no other "%" 1173 * characters. 1174 */ 1175 if (p[1] != 'd' || strchr(p + 2, '%')) 1176 return -EINVAL; 1177 1178 /* Use one page as a bit array of possible slots */ 1179 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1180 if (!inuse) 1181 return -ENOMEM; 1182 1183 for_each_netdev(net, d) { 1184 if (!sscanf(d->name, name, &i)) 1185 continue; 1186 if (i < 0 || i >= max_netdevices) 1187 continue; 1188 1189 /* avoid cases where sscanf is not exact inverse of printf */ 1190 snprintf(buf, IFNAMSIZ, name, i); 1191 if (!strncmp(buf, d->name, IFNAMSIZ)) 1192 set_bit(i, inuse); 1193 } 1194 1195 i = find_first_zero_bit(inuse, max_netdevices); 1196 free_page((unsigned long) inuse); 1197 } 1198 1199 snprintf(buf, IFNAMSIZ, name, i); 1200 if (!__dev_get_by_name(net, buf)) 1201 return i; 1202 1203 /* It is possible to run out of possible slots 1204 * when the name is long and there isn't enough space left 1205 * for the digits, or if all bits are used. 1206 */ 1207 return -ENFILE; 1208 } 1209 1210 static int dev_alloc_name_ns(struct net *net, 1211 struct net_device *dev, 1212 const char *name) 1213 { 1214 char buf[IFNAMSIZ]; 1215 int ret; 1216 1217 BUG_ON(!net); 1218 ret = __dev_alloc_name(net, name, buf); 1219 if (ret >= 0) 1220 strlcpy(dev->name, buf, IFNAMSIZ); 1221 return ret; 1222 } 1223 1224 /** 1225 * dev_alloc_name - allocate a name for a device 1226 * @dev: device 1227 * @name: name format string 1228 * 1229 * Passed a format string - eg "lt%d" it will try and find a suitable 1230 * id. It scans list of devices to build up a free map, then chooses 1231 * the first empty slot. The caller must hold the dev_base or rtnl lock 1232 * while allocating the name and adding the device in order to avoid 1233 * duplicates. 1234 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1235 * Returns the number of the unit assigned or a negative errno code. 1236 */ 1237 1238 int dev_alloc_name(struct net_device *dev, const char *name) 1239 { 1240 return dev_alloc_name_ns(dev_net(dev), dev, name); 1241 } 1242 EXPORT_SYMBOL(dev_alloc_name); 1243 1244 static int dev_get_valid_name(struct net *net, struct net_device *dev, 1245 const char *name) 1246 { 1247 BUG_ON(!net); 1248 1249 if (!dev_valid_name(name)) 1250 return -EINVAL; 1251 1252 if (strchr(name, '%')) 1253 return dev_alloc_name_ns(net, dev, name); 1254 else if (__dev_get_by_name(net, name)) 1255 return -EEXIST; 1256 else if (dev->name != name) 1257 strlcpy(dev->name, name, IFNAMSIZ); 1258 1259 return 0; 1260 } 1261 1262 /** 1263 * dev_change_name - change name of a device 1264 * @dev: device 1265 * @newname: name (or format string) must be at least IFNAMSIZ 1266 * 1267 * Change name of a device, can pass format strings "eth%d". 1268 * for wildcarding. 1269 */ 1270 int dev_change_name(struct net_device *dev, const char *newname) 1271 { 1272 unsigned char old_assign_type; 1273 char oldname[IFNAMSIZ]; 1274 int err = 0; 1275 int ret; 1276 struct net *net; 1277 1278 ASSERT_RTNL(); 1279 BUG_ON(!dev_net(dev)); 1280 1281 net = dev_net(dev); 1282 1283 /* Some auto-enslaved devices e.g. failover slaves are 1284 * special, as userspace might rename the device after 1285 * the interface had been brought up and running since 1286 * the point kernel initiated auto-enslavement. Allow 1287 * live name change even when these slave devices are 1288 * up and running. 1289 * 1290 * Typically, users of these auto-enslaving devices 1291 * don't actually care about slave name change, as 1292 * they are supposed to operate on master interface 1293 * directly. 1294 */ 1295 if (dev->flags & IFF_UP && 1296 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK))) 1297 return -EBUSY; 1298 1299 write_seqcount_begin(&devnet_rename_seq); 1300 1301 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1302 write_seqcount_end(&devnet_rename_seq); 1303 return 0; 1304 } 1305 1306 memcpy(oldname, dev->name, IFNAMSIZ); 1307 1308 err = dev_get_valid_name(net, dev, newname); 1309 if (err < 0) { 1310 write_seqcount_end(&devnet_rename_seq); 1311 return err; 1312 } 1313 1314 if (oldname[0] && !strchr(oldname, '%')) 1315 netdev_info(dev, "renamed from %s\n", oldname); 1316 1317 old_assign_type = dev->name_assign_type; 1318 dev->name_assign_type = NET_NAME_RENAMED; 1319 1320 rollback: 1321 ret = device_rename(&dev->dev, dev->name); 1322 if (ret) { 1323 memcpy(dev->name, oldname, IFNAMSIZ); 1324 dev->name_assign_type = old_assign_type; 1325 write_seqcount_end(&devnet_rename_seq); 1326 return ret; 1327 } 1328 1329 write_seqcount_end(&devnet_rename_seq); 1330 1331 netdev_adjacent_rename_links(dev, oldname); 1332 1333 write_lock_bh(&dev_base_lock); 1334 netdev_name_node_del(dev->name_node); 1335 write_unlock_bh(&dev_base_lock); 1336 1337 synchronize_rcu(); 1338 1339 write_lock_bh(&dev_base_lock); 1340 netdev_name_node_add(net, dev->name_node); 1341 write_unlock_bh(&dev_base_lock); 1342 1343 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1344 ret = notifier_to_errno(ret); 1345 1346 if (ret) { 1347 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1348 if (err >= 0) { 1349 err = ret; 1350 write_seqcount_begin(&devnet_rename_seq); 1351 memcpy(dev->name, oldname, IFNAMSIZ); 1352 memcpy(oldname, newname, IFNAMSIZ); 1353 dev->name_assign_type = old_assign_type; 1354 old_assign_type = NET_NAME_RENAMED; 1355 goto rollback; 1356 } else { 1357 pr_err("%s: name change rollback failed: %d\n", 1358 dev->name, ret); 1359 } 1360 } 1361 1362 return err; 1363 } 1364 1365 /** 1366 * dev_set_alias - change ifalias of a device 1367 * @dev: device 1368 * @alias: name up to IFALIASZ 1369 * @len: limit of bytes to copy from info 1370 * 1371 * Set ifalias for a device, 1372 */ 1373 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1374 { 1375 struct dev_ifalias *new_alias = NULL; 1376 1377 if (len >= IFALIASZ) 1378 return -EINVAL; 1379 1380 if (len) { 1381 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1382 if (!new_alias) 1383 return -ENOMEM; 1384 1385 memcpy(new_alias->ifalias, alias, len); 1386 new_alias->ifalias[len] = 0; 1387 } 1388 1389 mutex_lock(&ifalias_mutex); 1390 new_alias = rcu_replace_pointer(dev->ifalias, new_alias, 1391 mutex_is_locked(&ifalias_mutex)); 1392 mutex_unlock(&ifalias_mutex); 1393 1394 if (new_alias) 1395 kfree_rcu(new_alias, rcuhead); 1396 1397 return len; 1398 } 1399 EXPORT_SYMBOL(dev_set_alias); 1400 1401 /** 1402 * dev_get_alias - get ifalias of a device 1403 * @dev: device 1404 * @name: buffer to store name of ifalias 1405 * @len: size of buffer 1406 * 1407 * get ifalias for a device. Caller must make sure dev cannot go 1408 * away, e.g. rcu read lock or own a reference count to device. 1409 */ 1410 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1411 { 1412 const struct dev_ifalias *alias; 1413 int ret = 0; 1414 1415 rcu_read_lock(); 1416 alias = rcu_dereference(dev->ifalias); 1417 if (alias) 1418 ret = snprintf(name, len, "%s", alias->ifalias); 1419 rcu_read_unlock(); 1420 1421 return ret; 1422 } 1423 1424 /** 1425 * netdev_features_change - device changes features 1426 * @dev: device to cause notification 1427 * 1428 * Called to indicate a device has changed features. 1429 */ 1430 void netdev_features_change(struct net_device *dev) 1431 { 1432 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1433 } 1434 EXPORT_SYMBOL(netdev_features_change); 1435 1436 /** 1437 * netdev_state_change - device changes state 1438 * @dev: device to cause notification 1439 * 1440 * Called to indicate a device has changed state. This function calls 1441 * the notifier chains for netdev_chain and sends a NEWLINK message 1442 * to the routing socket. 1443 */ 1444 void netdev_state_change(struct net_device *dev) 1445 { 1446 if (dev->flags & IFF_UP) { 1447 struct netdev_notifier_change_info change_info = { 1448 .info.dev = dev, 1449 }; 1450 1451 call_netdevice_notifiers_info(NETDEV_CHANGE, 1452 &change_info.info); 1453 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1454 } 1455 } 1456 EXPORT_SYMBOL(netdev_state_change); 1457 1458 /** 1459 * netdev_notify_peers - notify network peers about existence of @dev 1460 * @dev: network device 1461 * 1462 * Generate traffic such that interested network peers are aware of 1463 * @dev, such as by generating a gratuitous ARP. This may be used when 1464 * a device wants to inform the rest of the network about some sort of 1465 * reconfiguration such as a failover event or virtual machine 1466 * migration. 1467 */ 1468 void netdev_notify_peers(struct net_device *dev) 1469 { 1470 rtnl_lock(); 1471 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1472 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1473 rtnl_unlock(); 1474 } 1475 EXPORT_SYMBOL(netdev_notify_peers); 1476 1477 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1478 { 1479 const struct net_device_ops *ops = dev->netdev_ops; 1480 int ret; 1481 1482 ASSERT_RTNL(); 1483 1484 if (!netif_device_present(dev)) 1485 return -ENODEV; 1486 1487 /* Block netpoll from trying to do any rx path servicing. 1488 * If we don't do this there is a chance ndo_poll_controller 1489 * or ndo_poll may be running while we open the device 1490 */ 1491 netpoll_poll_disable(dev); 1492 1493 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1494 ret = notifier_to_errno(ret); 1495 if (ret) 1496 return ret; 1497 1498 set_bit(__LINK_STATE_START, &dev->state); 1499 1500 if (ops->ndo_validate_addr) 1501 ret = ops->ndo_validate_addr(dev); 1502 1503 if (!ret && ops->ndo_open) 1504 ret = ops->ndo_open(dev); 1505 1506 netpoll_poll_enable(dev); 1507 1508 if (ret) 1509 clear_bit(__LINK_STATE_START, &dev->state); 1510 else { 1511 dev->flags |= IFF_UP; 1512 dev_set_rx_mode(dev); 1513 dev_activate(dev); 1514 add_device_randomness(dev->dev_addr, dev->addr_len); 1515 } 1516 1517 return ret; 1518 } 1519 1520 /** 1521 * dev_open - prepare an interface for use. 1522 * @dev: device to open 1523 * @extack: netlink extended ack 1524 * 1525 * Takes a device from down to up state. The device's private open 1526 * function is invoked and then the multicast lists are loaded. Finally 1527 * the device is moved into the up state and a %NETDEV_UP message is 1528 * sent to the netdev notifier chain. 1529 * 1530 * Calling this function on an active interface is a nop. On a failure 1531 * a negative errno code is returned. 1532 */ 1533 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1534 { 1535 int ret; 1536 1537 if (dev->flags & IFF_UP) 1538 return 0; 1539 1540 ret = __dev_open(dev, extack); 1541 if (ret < 0) 1542 return ret; 1543 1544 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1545 call_netdevice_notifiers(NETDEV_UP, dev); 1546 1547 return ret; 1548 } 1549 EXPORT_SYMBOL(dev_open); 1550 1551 static void __dev_close_many(struct list_head *head) 1552 { 1553 struct net_device *dev; 1554 1555 ASSERT_RTNL(); 1556 might_sleep(); 1557 1558 list_for_each_entry(dev, head, close_list) { 1559 /* Temporarily disable netpoll until the interface is down */ 1560 netpoll_poll_disable(dev); 1561 1562 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1563 1564 clear_bit(__LINK_STATE_START, &dev->state); 1565 1566 /* Synchronize to scheduled poll. We cannot touch poll list, it 1567 * can be even on different cpu. So just clear netif_running(). 1568 * 1569 * dev->stop() will invoke napi_disable() on all of it's 1570 * napi_struct instances on this device. 1571 */ 1572 smp_mb__after_atomic(); /* Commit netif_running(). */ 1573 } 1574 1575 dev_deactivate_many(head); 1576 1577 list_for_each_entry(dev, head, close_list) { 1578 const struct net_device_ops *ops = dev->netdev_ops; 1579 1580 /* 1581 * Call the device specific close. This cannot fail. 1582 * Only if device is UP 1583 * 1584 * We allow it to be called even after a DETACH hot-plug 1585 * event. 1586 */ 1587 if (ops->ndo_stop) 1588 ops->ndo_stop(dev); 1589 1590 dev->flags &= ~IFF_UP; 1591 netpoll_poll_enable(dev); 1592 } 1593 } 1594 1595 static void __dev_close(struct net_device *dev) 1596 { 1597 LIST_HEAD(single); 1598 1599 list_add(&dev->close_list, &single); 1600 __dev_close_many(&single); 1601 list_del(&single); 1602 } 1603 1604 void dev_close_many(struct list_head *head, bool unlink) 1605 { 1606 struct net_device *dev, *tmp; 1607 1608 /* Remove the devices that don't need to be closed */ 1609 list_for_each_entry_safe(dev, tmp, head, close_list) 1610 if (!(dev->flags & IFF_UP)) 1611 list_del_init(&dev->close_list); 1612 1613 __dev_close_many(head); 1614 1615 list_for_each_entry_safe(dev, tmp, head, close_list) { 1616 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1617 call_netdevice_notifiers(NETDEV_DOWN, dev); 1618 if (unlink) 1619 list_del_init(&dev->close_list); 1620 } 1621 } 1622 EXPORT_SYMBOL(dev_close_many); 1623 1624 /** 1625 * dev_close - shutdown an interface. 1626 * @dev: device to shutdown 1627 * 1628 * This function moves an active device into down state. A 1629 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1630 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1631 * chain. 1632 */ 1633 void dev_close(struct net_device *dev) 1634 { 1635 if (dev->flags & IFF_UP) { 1636 LIST_HEAD(single); 1637 1638 list_add(&dev->close_list, &single); 1639 dev_close_many(&single, true); 1640 list_del(&single); 1641 } 1642 } 1643 EXPORT_SYMBOL(dev_close); 1644 1645 1646 /** 1647 * dev_disable_lro - disable Large Receive Offload on a device 1648 * @dev: device 1649 * 1650 * Disable Large Receive Offload (LRO) on a net device. Must be 1651 * called under RTNL. This is needed if received packets may be 1652 * forwarded to another interface. 1653 */ 1654 void dev_disable_lro(struct net_device *dev) 1655 { 1656 struct net_device *lower_dev; 1657 struct list_head *iter; 1658 1659 dev->wanted_features &= ~NETIF_F_LRO; 1660 netdev_update_features(dev); 1661 1662 if (unlikely(dev->features & NETIF_F_LRO)) 1663 netdev_WARN(dev, "failed to disable LRO!\n"); 1664 1665 netdev_for_each_lower_dev(dev, lower_dev, iter) 1666 dev_disable_lro(lower_dev); 1667 } 1668 EXPORT_SYMBOL(dev_disable_lro); 1669 1670 /** 1671 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1672 * @dev: device 1673 * 1674 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1675 * called under RTNL. This is needed if Generic XDP is installed on 1676 * the device. 1677 */ 1678 static void dev_disable_gro_hw(struct net_device *dev) 1679 { 1680 dev->wanted_features &= ~NETIF_F_GRO_HW; 1681 netdev_update_features(dev); 1682 1683 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1684 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1685 } 1686 1687 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1688 { 1689 #define N(val) \ 1690 case NETDEV_##val: \ 1691 return "NETDEV_" __stringify(val); 1692 switch (cmd) { 1693 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1694 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1695 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1696 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER) 1697 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO) 1698 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO) 1699 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1700 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1701 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1702 N(PRE_CHANGEADDR) 1703 } 1704 #undef N 1705 return "UNKNOWN_NETDEV_EVENT"; 1706 } 1707 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1708 1709 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1710 struct net_device *dev) 1711 { 1712 struct netdev_notifier_info info = { 1713 .dev = dev, 1714 }; 1715 1716 return nb->notifier_call(nb, val, &info); 1717 } 1718 1719 static int call_netdevice_register_notifiers(struct notifier_block *nb, 1720 struct net_device *dev) 1721 { 1722 int err; 1723 1724 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1725 err = notifier_to_errno(err); 1726 if (err) 1727 return err; 1728 1729 if (!(dev->flags & IFF_UP)) 1730 return 0; 1731 1732 call_netdevice_notifier(nb, NETDEV_UP, dev); 1733 return 0; 1734 } 1735 1736 static void call_netdevice_unregister_notifiers(struct notifier_block *nb, 1737 struct net_device *dev) 1738 { 1739 if (dev->flags & IFF_UP) { 1740 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1741 dev); 1742 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1743 } 1744 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1745 } 1746 1747 static int call_netdevice_register_net_notifiers(struct notifier_block *nb, 1748 struct net *net) 1749 { 1750 struct net_device *dev; 1751 int err; 1752 1753 for_each_netdev(net, dev) { 1754 err = call_netdevice_register_notifiers(nb, dev); 1755 if (err) 1756 goto rollback; 1757 } 1758 return 0; 1759 1760 rollback: 1761 for_each_netdev_continue_reverse(net, dev) 1762 call_netdevice_unregister_notifiers(nb, dev); 1763 return err; 1764 } 1765 1766 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb, 1767 struct net *net) 1768 { 1769 struct net_device *dev; 1770 1771 for_each_netdev(net, dev) 1772 call_netdevice_unregister_notifiers(nb, dev); 1773 } 1774 1775 static int dev_boot_phase = 1; 1776 1777 /** 1778 * register_netdevice_notifier - register a network notifier block 1779 * @nb: notifier 1780 * 1781 * Register a notifier to be called when network device events occur. 1782 * The notifier passed is linked into the kernel structures and must 1783 * not be reused until it has been unregistered. A negative errno code 1784 * is returned on a failure. 1785 * 1786 * When registered all registration and up events are replayed 1787 * to the new notifier to allow device to have a race free 1788 * view of the network device list. 1789 */ 1790 1791 int register_netdevice_notifier(struct notifier_block *nb) 1792 { 1793 struct net *net; 1794 int err; 1795 1796 /* Close race with setup_net() and cleanup_net() */ 1797 down_write(&pernet_ops_rwsem); 1798 rtnl_lock(); 1799 err = raw_notifier_chain_register(&netdev_chain, nb); 1800 if (err) 1801 goto unlock; 1802 if (dev_boot_phase) 1803 goto unlock; 1804 for_each_net(net) { 1805 err = call_netdevice_register_net_notifiers(nb, net); 1806 if (err) 1807 goto rollback; 1808 } 1809 1810 unlock: 1811 rtnl_unlock(); 1812 up_write(&pernet_ops_rwsem); 1813 return err; 1814 1815 rollback: 1816 for_each_net_continue_reverse(net) 1817 call_netdevice_unregister_net_notifiers(nb, net); 1818 1819 raw_notifier_chain_unregister(&netdev_chain, nb); 1820 goto unlock; 1821 } 1822 EXPORT_SYMBOL(register_netdevice_notifier); 1823 1824 /** 1825 * unregister_netdevice_notifier - unregister a network notifier block 1826 * @nb: notifier 1827 * 1828 * Unregister a notifier previously registered by 1829 * register_netdevice_notifier(). The notifier is unlinked into the 1830 * kernel structures and may then be reused. A negative errno code 1831 * is returned on a failure. 1832 * 1833 * After unregistering unregister and down device events are synthesized 1834 * for all devices on the device list to the removed notifier to remove 1835 * the need for special case cleanup code. 1836 */ 1837 1838 int unregister_netdevice_notifier(struct notifier_block *nb) 1839 { 1840 struct net *net; 1841 int err; 1842 1843 /* Close race with setup_net() and cleanup_net() */ 1844 down_write(&pernet_ops_rwsem); 1845 rtnl_lock(); 1846 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1847 if (err) 1848 goto unlock; 1849 1850 for_each_net(net) 1851 call_netdevice_unregister_net_notifiers(nb, net); 1852 1853 unlock: 1854 rtnl_unlock(); 1855 up_write(&pernet_ops_rwsem); 1856 return err; 1857 } 1858 EXPORT_SYMBOL(unregister_netdevice_notifier); 1859 1860 static int __register_netdevice_notifier_net(struct net *net, 1861 struct notifier_block *nb, 1862 bool ignore_call_fail) 1863 { 1864 int err; 1865 1866 err = raw_notifier_chain_register(&net->netdev_chain, nb); 1867 if (err) 1868 return err; 1869 if (dev_boot_phase) 1870 return 0; 1871 1872 err = call_netdevice_register_net_notifiers(nb, net); 1873 if (err && !ignore_call_fail) 1874 goto chain_unregister; 1875 1876 return 0; 1877 1878 chain_unregister: 1879 raw_notifier_chain_unregister(&net->netdev_chain, nb); 1880 return err; 1881 } 1882 1883 static int __unregister_netdevice_notifier_net(struct net *net, 1884 struct notifier_block *nb) 1885 { 1886 int err; 1887 1888 err = raw_notifier_chain_unregister(&net->netdev_chain, nb); 1889 if (err) 1890 return err; 1891 1892 call_netdevice_unregister_net_notifiers(nb, net); 1893 return 0; 1894 } 1895 1896 /** 1897 * register_netdevice_notifier_net - register a per-netns network notifier block 1898 * @net: network namespace 1899 * @nb: notifier 1900 * 1901 * Register a notifier to be called when network device events occur. 1902 * The notifier passed is linked into the kernel structures and must 1903 * not be reused until it has been unregistered. A negative errno code 1904 * is returned on a failure. 1905 * 1906 * When registered all registration and up events are replayed 1907 * to the new notifier to allow device to have a race free 1908 * view of the network device list. 1909 */ 1910 1911 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb) 1912 { 1913 int err; 1914 1915 rtnl_lock(); 1916 err = __register_netdevice_notifier_net(net, nb, false); 1917 rtnl_unlock(); 1918 return err; 1919 } 1920 EXPORT_SYMBOL(register_netdevice_notifier_net); 1921 1922 /** 1923 * unregister_netdevice_notifier_net - unregister a per-netns 1924 * network notifier block 1925 * @net: network namespace 1926 * @nb: notifier 1927 * 1928 * Unregister a notifier previously registered by 1929 * register_netdevice_notifier(). The notifier is unlinked into the 1930 * kernel structures and may then be reused. A negative errno code 1931 * is returned on a failure. 1932 * 1933 * After unregistering unregister and down device events are synthesized 1934 * for all devices on the device list to the removed notifier to remove 1935 * the need for special case cleanup code. 1936 */ 1937 1938 int unregister_netdevice_notifier_net(struct net *net, 1939 struct notifier_block *nb) 1940 { 1941 int err; 1942 1943 rtnl_lock(); 1944 err = __unregister_netdevice_notifier_net(net, nb); 1945 rtnl_unlock(); 1946 return err; 1947 } 1948 EXPORT_SYMBOL(unregister_netdevice_notifier_net); 1949 1950 int register_netdevice_notifier_dev_net(struct net_device *dev, 1951 struct notifier_block *nb, 1952 struct netdev_net_notifier *nn) 1953 { 1954 int err; 1955 1956 rtnl_lock(); 1957 err = __register_netdevice_notifier_net(dev_net(dev), nb, false); 1958 if (!err) { 1959 nn->nb = nb; 1960 list_add(&nn->list, &dev->net_notifier_list); 1961 } 1962 rtnl_unlock(); 1963 return err; 1964 } 1965 EXPORT_SYMBOL(register_netdevice_notifier_dev_net); 1966 1967 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 1968 struct notifier_block *nb, 1969 struct netdev_net_notifier *nn) 1970 { 1971 int err; 1972 1973 rtnl_lock(); 1974 list_del(&nn->list); 1975 err = __unregister_netdevice_notifier_net(dev_net(dev), nb); 1976 rtnl_unlock(); 1977 return err; 1978 } 1979 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net); 1980 1981 static void move_netdevice_notifiers_dev_net(struct net_device *dev, 1982 struct net *net) 1983 { 1984 struct netdev_net_notifier *nn; 1985 1986 list_for_each_entry(nn, &dev->net_notifier_list, list) { 1987 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb); 1988 __register_netdevice_notifier_net(net, nn->nb, true); 1989 } 1990 } 1991 1992 /** 1993 * call_netdevice_notifiers_info - call all network notifier blocks 1994 * @val: value passed unmodified to notifier function 1995 * @info: notifier information data 1996 * 1997 * Call all network notifier blocks. Parameters and return value 1998 * are as for raw_notifier_call_chain(). 1999 */ 2000 2001 static int call_netdevice_notifiers_info(unsigned long val, 2002 struct netdev_notifier_info *info) 2003 { 2004 struct net *net = dev_net(info->dev); 2005 int ret; 2006 2007 ASSERT_RTNL(); 2008 2009 /* Run per-netns notifier block chain first, then run the global one. 2010 * Hopefully, one day, the global one is going to be removed after 2011 * all notifier block registrators get converted to be per-netns. 2012 */ 2013 ret = raw_notifier_call_chain(&net->netdev_chain, val, info); 2014 if (ret & NOTIFY_STOP_MASK) 2015 return ret; 2016 return raw_notifier_call_chain(&netdev_chain, val, info); 2017 } 2018 2019 static int call_netdevice_notifiers_extack(unsigned long val, 2020 struct net_device *dev, 2021 struct netlink_ext_ack *extack) 2022 { 2023 struct netdev_notifier_info info = { 2024 .dev = dev, 2025 .extack = extack, 2026 }; 2027 2028 return call_netdevice_notifiers_info(val, &info); 2029 } 2030 2031 /** 2032 * call_netdevice_notifiers - call all network notifier blocks 2033 * @val: value passed unmodified to notifier function 2034 * @dev: net_device pointer passed unmodified to notifier function 2035 * 2036 * Call all network notifier blocks. Parameters and return value 2037 * are as for raw_notifier_call_chain(). 2038 */ 2039 2040 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 2041 { 2042 return call_netdevice_notifiers_extack(val, dev, NULL); 2043 } 2044 EXPORT_SYMBOL(call_netdevice_notifiers); 2045 2046 /** 2047 * call_netdevice_notifiers_mtu - call all network notifier blocks 2048 * @val: value passed unmodified to notifier function 2049 * @dev: net_device pointer passed unmodified to notifier function 2050 * @arg: additional u32 argument passed to the notifier function 2051 * 2052 * Call all network notifier blocks. Parameters and return value 2053 * are as for raw_notifier_call_chain(). 2054 */ 2055 static int call_netdevice_notifiers_mtu(unsigned long val, 2056 struct net_device *dev, u32 arg) 2057 { 2058 struct netdev_notifier_info_ext info = { 2059 .info.dev = dev, 2060 .ext.mtu = arg, 2061 }; 2062 2063 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 2064 2065 return call_netdevice_notifiers_info(val, &info.info); 2066 } 2067 2068 #ifdef CONFIG_NET_INGRESS 2069 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 2070 2071 void net_inc_ingress_queue(void) 2072 { 2073 static_branch_inc(&ingress_needed_key); 2074 } 2075 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 2076 2077 void net_dec_ingress_queue(void) 2078 { 2079 static_branch_dec(&ingress_needed_key); 2080 } 2081 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 2082 #endif 2083 2084 #ifdef CONFIG_NET_EGRESS 2085 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 2086 2087 void net_inc_egress_queue(void) 2088 { 2089 static_branch_inc(&egress_needed_key); 2090 } 2091 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 2092 2093 void net_dec_egress_queue(void) 2094 { 2095 static_branch_dec(&egress_needed_key); 2096 } 2097 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 2098 #endif 2099 2100 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 2101 #ifdef CONFIG_JUMP_LABEL 2102 static atomic_t netstamp_needed_deferred; 2103 static atomic_t netstamp_wanted; 2104 static void netstamp_clear(struct work_struct *work) 2105 { 2106 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 2107 int wanted; 2108 2109 wanted = atomic_add_return(deferred, &netstamp_wanted); 2110 if (wanted > 0) 2111 static_branch_enable(&netstamp_needed_key); 2112 else 2113 static_branch_disable(&netstamp_needed_key); 2114 } 2115 static DECLARE_WORK(netstamp_work, netstamp_clear); 2116 #endif 2117 2118 void net_enable_timestamp(void) 2119 { 2120 #ifdef CONFIG_JUMP_LABEL 2121 int wanted; 2122 2123 while (1) { 2124 wanted = atomic_read(&netstamp_wanted); 2125 if (wanted <= 0) 2126 break; 2127 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 2128 return; 2129 } 2130 atomic_inc(&netstamp_needed_deferred); 2131 schedule_work(&netstamp_work); 2132 #else 2133 static_branch_inc(&netstamp_needed_key); 2134 #endif 2135 } 2136 EXPORT_SYMBOL(net_enable_timestamp); 2137 2138 void net_disable_timestamp(void) 2139 { 2140 #ifdef CONFIG_JUMP_LABEL 2141 int wanted; 2142 2143 while (1) { 2144 wanted = atomic_read(&netstamp_wanted); 2145 if (wanted <= 1) 2146 break; 2147 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 2148 return; 2149 } 2150 atomic_dec(&netstamp_needed_deferred); 2151 schedule_work(&netstamp_work); 2152 #else 2153 static_branch_dec(&netstamp_needed_key); 2154 #endif 2155 } 2156 EXPORT_SYMBOL(net_disable_timestamp); 2157 2158 static inline void net_timestamp_set(struct sk_buff *skb) 2159 { 2160 skb->tstamp = 0; 2161 if (static_branch_unlikely(&netstamp_needed_key)) 2162 __net_timestamp(skb); 2163 } 2164 2165 #define net_timestamp_check(COND, SKB) \ 2166 if (static_branch_unlikely(&netstamp_needed_key)) { \ 2167 if ((COND) && !(SKB)->tstamp) \ 2168 __net_timestamp(SKB); \ 2169 } \ 2170 2171 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 2172 { 2173 unsigned int len; 2174 2175 if (!(dev->flags & IFF_UP)) 2176 return false; 2177 2178 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 2179 if (skb->len <= len) 2180 return true; 2181 2182 /* if TSO is enabled, we don't care about the length as the packet 2183 * could be forwarded without being segmented before 2184 */ 2185 if (skb_is_gso(skb)) 2186 return true; 2187 2188 return false; 2189 } 2190 EXPORT_SYMBOL_GPL(is_skb_forwardable); 2191 2192 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2193 { 2194 int ret = ____dev_forward_skb(dev, skb); 2195 2196 if (likely(!ret)) { 2197 skb->protocol = eth_type_trans(skb, dev); 2198 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 2199 } 2200 2201 return ret; 2202 } 2203 EXPORT_SYMBOL_GPL(__dev_forward_skb); 2204 2205 /** 2206 * dev_forward_skb - loopback an skb to another netif 2207 * 2208 * @dev: destination network device 2209 * @skb: buffer to forward 2210 * 2211 * return values: 2212 * NET_RX_SUCCESS (no congestion) 2213 * NET_RX_DROP (packet was dropped, but freed) 2214 * 2215 * dev_forward_skb can be used for injecting an skb from the 2216 * start_xmit function of one device into the receive queue 2217 * of another device. 2218 * 2219 * The receiving device may be in another namespace, so 2220 * we have to clear all information in the skb that could 2221 * impact namespace isolation. 2222 */ 2223 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2224 { 2225 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 2226 } 2227 EXPORT_SYMBOL_GPL(dev_forward_skb); 2228 2229 static inline int deliver_skb(struct sk_buff *skb, 2230 struct packet_type *pt_prev, 2231 struct net_device *orig_dev) 2232 { 2233 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 2234 return -ENOMEM; 2235 refcount_inc(&skb->users); 2236 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2237 } 2238 2239 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 2240 struct packet_type **pt, 2241 struct net_device *orig_dev, 2242 __be16 type, 2243 struct list_head *ptype_list) 2244 { 2245 struct packet_type *ptype, *pt_prev = *pt; 2246 2247 list_for_each_entry_rcu(ptype, ptype_list, list) { 2248 if (ptype->type != type) 2249 continue; 2250 if (pt_prev) 2251 deliver_skb(skb, pt_prev, orig_dev); 2252 pt_prev = ptype; 2253 } 2254 *pt = pt_prev; 2255 } 2256 2257 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 2258 { 2259 if (!ptype->af_packet_priv || !skb->sk) 2260 return false; 2261 2262 if (ptype->id_match) 2263 return ptype->id_match(ptype, skb->sk); 2264 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 2265 return true; 2266 2267 return false; 2268 } 2269 2270 /** 2271 * dev_nit_active - return true if any network interface taps are in use 2272 * 2273 * @dev: network device to check for the presence of taps 2274 */ 2275 bool dev_nit_active(struct net_device *dev) 2276 { 2277 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all); 2278 } 2279 EXPORT_SYMBOL_GPL(dev_nit_active); 2280 2281 /* 2282 * Support routine. Sends outgoing frames to any network 2283 * taps currently in use. 2284 */ 2285 2286 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 2287 { 2288 struct packet_type *ptype; 2289 struct sk_buff *skb2 = NULL; 2290 struct packet_type *pt_prev = NULL; 2291 struct list_head *ptype_list = &ptype_all; 2292 2293 rcu_read_lock(); 2294 again: 2295 list_for_each_entry_rcu(ptype, ptype_list, list) { 2296 if (ptype->ignore_outgoing) 2297 continue; 2298 2299 /* Never send packets back to the socket 2300 * they originated from - MvS (miquels@drinkel.ow.org) 2301 */ 2302 if (skb_loop_sk(ptype, skb)) 2303 continue; 2304 2305 if (pt_prev) { 2306 deliver_skb(skb2, pt_prev, skb->dev); 2307 pt_prev = ptype; 2308 continue; 2309 } 2310 2311 /* need to clone skb, done only once */ 2312 skb2 = skb_clone(skb, GFP_ATOMIC); 2313 if (!skb2) 2314 goto out_unlock; 2315 2316 net_timestamp_set(skb2); 2317 2318 /* skb->nh should be correctly 2319 * set by sender, so that the second statement is 2320 * just protection against buggy protocols. 2321 */ 2322 skb_reset_mac_header(skb2); 2323 2324 if (skb_network_header(skb2) < skb2->data || 2325 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2326 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2327 ntohs(skb2->protocol), 2328 dev->name); 2329 skb_reset_network_header(skb2); 2330 } 2331 2332 skb2->transport_header = skb2->network_header; 2333 skb2->pkt_type = PACKET_OUTGOING; 2334 pt_prev = ptype; 2335 } 2336 2337 if (ptype_list == &ptype_all) { 2338 ptype_list = &dev->ptype_all; 2339 goto again; 2340 } 2341 out_unlock: 2342 if (pt_prev) { 2343 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2344 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2345 else 2346 kfree_skb(skb2); 2347 } 2348 rcu_read_unlock(); 2349 } 2350 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2351 2352 /** 2353 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2354 * @dev: Network device 2355 * @txq: number of queues available 2356 * 2357 * If real_num_tx_queues is changed the tc mappings may no longer be 2358 * valid. To resolve this verify the tc mapping remains valid and if 2359 * not NULL the mapping. With no priorities mapping to this 2360 * offset/count pair it will no longer be used. In the worst case TC0 2361 * is invalid nothing can be done so disable priority mappings. If is 2362 * expected that drivers will fix this mapping if they can before 2363 * calling netif_set_real_num_tx_queues. 2364 */ 2365 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2366 { 2367 int i; 2368 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2369 2370 /* If TC0 is invalidated disable TC mapping */ 2371 if (tc->offset + tc->count > txq) { 2372 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2373 dev->num_tc = 0; 2374 return; 2375 } 2376 2377 /* Invalidated prio to tc mappings set to TC0 */ 2378 for (i = 1; i < TC_BITMASK + 1; i++) { 2379 int q = netdev_get_prio_tc_map(dev, i); 2380 2381 tc = &dev->tc_to_txq[q]; 2382 if (tc->offset + tc->count > txq) { 2383 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2384 i, q); 2385 netdev_set_prio_tc_map(dev, i, 0); 2386 } 2387 } 2388 } 2389 2390 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2391 { 2392 if (dev->num_tc) { 2393 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2394 int i; 2395 2396 /* walk through the TCs and see if it falls into any of them */ 2397 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2398 if ((txq - tc->offset) < tc->count) 2399 return i; 2400 } 2401 2402 /* didn't find it, just return -1 to indicate no match */ 2403 return -1; 2404 } 2405 2406 return 0; 2407 } 2408 EXPORT_SYMBOL(netdev_txq_to_tc); 2409 2410 #ifdef CONFIG_XPS 2411 struct static_key xps_needed __read_mostly; 2412 EXPORT_SYMBOL(xps_needed); 2413 struct static_key xps_rxqs_needed __read_mostly; 2414 EXPORT_SYMBOL(xps_rxqs_needed); 2415 static DEFINE_MUTEX(xps_map_mutex); 2416 #define xmap_dereference(P) \ 2417 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2418 2419 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2420 int tci, u16 index) 2421 { 2422 struct xps_map *map = NULL; 2423 int pos; 2424 2425 if (dev_maps) 2426 map = xmap_dereference(dev_maps->attr_map[tci]); 2427 if (!map) 2428 return false; 2429 2430 for (pos = map->len; pos--;) { 2431 if (map->queues[pos] != index) 2432 continue; 2433 2434 if (map->len > 1) { 2435 map->queues[pos] = map->queues[--map->len]; 2436 break; 2437 } 2438 2439 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2440 kfree_rcu(map, rcu); 2441 return false; 2442 } 2443 2444 return true; 2445 } 2446 2447 static bool remove_xps_queue_cpu(struct net_device *dev, 2448 struct xps_dev_maps *dev_maps, 2449 int cpu, u16 offset, u16 count) 2450 { 2451 int num_tc = dev->num_tc ? : 1; 2452 bool active = false; 2453 int tci; 2454 2455 for (tci = cpu * num_tc; num_tc--; tci++) { 2456 int i, j; 2457 2458 for (i = count, j = offset; i--; j++) { 2459 if (!remove_xps_queue(dev_maps, tci, j)) 2460 break; 2461 } 2462 2463 active |= i < 0; 2464 } 2465 2466 return active; 2467 } 2468 2469 static void reset_xps_maps(struct net_device *dev, 2470 struct xps_dev_maps *dev_maps, 2471 bool is_rxqs_map) 2472 { 2473 if (is_rxqs_map) { 2474 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2475 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL); 2476 } else { 2477 RCU_INIT_POINTER(dev->xps_cpus_map, NULL); 2478 } 2479 static_key_slow_dec_cpuslocked(&xps_needed); 2480 kfree_rcu(dev_maps, rcu); 2481 } 2482 2483 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask, 2484 struct xps_dev_maps *dev_maps, unsigned int nr_ids, 2485 u16 offset, u16 count, bool is_rxqs_map) 2486 { 2487 bool active = false; 2488 int i, j; 2489 2490 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids), 2491 j < nr_ids;) 2492 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, 2493 count); 2494 if (!active) 2495 reset_xps_maps(dev, dev_maps, is_rxqs_map); 2496 2497 if (!is_rxqs_map) { 2498 for (i = offset + (count - 1); count--; i--) { 2499 netdev_queue_numa_node_write( 2500 netdev_get_tx_queue(dev, i), 2501 NUMA_NO_NODE); 2502 } 2503 } 2504 } 2505 2506 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2507 u16 count) 2508 { 2509 const unsigned long *possible_mask = NULL; 2510 struct xps_dev_maps *dev_maps; 2511 unsigned int nr_ids; 2512 2513 if (!static_key_false(&xps_needed)) 2514 return; 2515 2516 cpus_read_lock(); 2517 mutex_lock(&xps_map_mutex); 2518 2519 if (static_key_false(&xps_rxqs_needed)) { 2520 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2521 if (dev_maps) { 2522 nr_ids = dev->num_rx_queues; 2523 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, 2524 offset, count, true); 2525 } 2526 } 2527 2528 dev_maps = xmap_dereference(dev->xps_cpus_map); 2529 if (!dev_maps) 2530 goto out_no_maps; 2531 2532 if (num_possible_cpus() > 1) 2533 possible_mask = cpumask_bits(cpu_possible_mask); 2534 nr_ids = nr_cpu_ids; 2535 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count, 2536 false); 2537 2538 out_no_maps: 2539 mutex_unlock(&xps_map_mutex); 2540 cpus_read_unlock(); 2541 } 2542 2543 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2544 { 2545 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2546 } 2547 2548 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2549 u16 index, bool is_rxqs_map) 2550 { 2551 struct xps_map *new_map; 2552 int alloc_len = XPS_MIN_MAP_ALLOC; 2553 int i, pos; 2554 2555 for (pos = 0; map && pos < map->len; pos++) { 2556 if (map->queues[pos] != index) 2557 continue; 2558 return map; 2559 } 2560 2561 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2562 if (map) { 2563 if (pos < map->alloc_len) 2564 return map; 2565 2566 alloc_len = map->alloc_len * 2; 2567 } 2568 2569 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2570 * map 2571 */ 2572 if (is_rxqs_map) 2573 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2574 else 2575 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2576 cpu_to_node(attr_index)); 2577 if (!new_map) 2578 return NULL; 2579 2580 for (i = 0; i < pos; i++) 2581 new_map->queues[i] = map->queues[i]; 2582 new_map->alloc_len = alloc_len; 2583 new_map->len = pos; 2584 2585 return new_map; 2586 } 2587 2588 /* Must be called under cpus_read_lock */ 2589 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2590 u16 index, bool is_rxqs_map) 2591 { 2592 const unsigned long *online_mask = NULL, *possible_mask = NULL; 2593 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2594 int i, j, tci, numa_node_id = -2; 2595 int maps_sz, num_tc = 1, tc = 0; 2596 struct xps_map *map, *new_map; 2597 bool active = false; 2598 unsigned int nr_ids; 2599 2600 if (dev->num_tc) { 2601 /* Do not allow XPS on subordinate device directly */ 2602 num_tc = dev->num_tc; 2603 if (num_tc < 0) 2604 return -EINVAL; 2605 2606 /* If queue belongs to subordinate dev use its map */ 2607 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2608 2609 tc = netdev_txq_to_tc(dev, index); 2610 if (tc < 0) 2611 return -EINVAL; 2612 } 2613 2614 mutex_lock(&xps_map_mutex); 2615 if (is_rxqs_map) { 2616 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2617 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2618 nr_ids = dev->num_rx_queues; 2619 } else { 2620 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2621 if (num_possible_cpus() > 1) { 2622 online_mask = cpumask_bits(cpu_online_mask); 2623 possible_mask = cpumask_bits(cpu_possible_mask); 2624 } 2625 dev_maps = xmap_dereference(dev->xps_cpus_map); 2626 nr_ids = nr_cpu_ids; 2627 } 2628 2629 if (maps_sz < L1_CACHE_BYTES) 2630 maps_sz = L1_CACHE_BYTES; 2631 2632 /* allocate memory for queue storage */ 2633 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2634 j < nr_ids;) { 2635 if (!new_dev_maps) 2636 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2637 if (!new_dev_maps) { 2638 mutex_unlock(&xps_map_mutex); 2639 return -ENOMEM; 2640 } 2641 2642 tci = j * num_tc + tc; 2643 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) : 2644 NULL; 2645 2646 map = expand_xps_map(map, j, index, is_rxqs_map); 2647 if (!map) 2648 goto error; 2649 2650 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2651 } 2652 2653 if (!new_dev_maps) 2654 goto out_no_new_maps; 2655 2656 if (!dev_maps) { 2657 /* Increment static keys at most once per type */ 2658 static_key_slow_inc_cpuslocked(&xps_needed); 2659 if (is_rxqs_map) 2660 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2661 } 2662 2663 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2664 j < nr_ids;) { 2665 /* copy maps belonging to foreign traffic classes */ 2666 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) { 2667 /* fill in the new device map from the old device map */ 2668 map = xmap_dereference(dev_maps->attr_map[tci]); 2669 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2670 } 2671 2672 /* We need to explicitly update tci as prevous loop 2673 * could break out early if dev_maps is NULL. 2674 */ 2675 tci = j * num_tc + tc; 2676 2677 if (netif_attr_test_mask(j, mask, nr_ids) && 2678 netif_attr_test_online(j, online_mask, nr_ids)) { 2679 /* add tx-queue to CPU/rx-queue maps */ 2680 int pos = 0; 2681 2682 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2683 while ((pos < map->len) && (map->queues[pos] != index)) 2684 pos++; 2685 2686 if (pos == map->len) 2687 map->queues[map->len++] = index; 2688 #ifdef CONFIG_NUMA 2689 if (!is_rxqs_map) { 2690 if (numa_node_id == -2) 2691 numa_node_id = cpu_to_node(j); 2692 else if (numa_node_id != cpu_to_node(j)) 2693 numa_node_id = -1; 2694 } 2695 #endif 2696 } else if (dev_maps) { 2697 /* fill in the new device map from the old device map */ 2698 map = xmap_dereference(dev_maps->attr_map[tci]); 2699 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2700 } 2701 2702 /* copy maps belonging to foreign traffic classes */ 2703 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { 2704 /* fill in the new device map from the old device map */ 2705 map = xmap_dereference(dev_maps->attr_map[tci]); 2706 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2707 } 2708 } 2709 2710 if (is_rxqs_map) 2711 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps); 2712 else 2713 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps); 2714 2715 /* Cleanup old maps */ 2716 if (!dev_maps) 2717 goto out_no_old_maps; 2718 2719 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2720 j < nr_ids;) { 2721 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2722 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2723 map = xmap_dereference(dev_maps->attr_map[tci]); 2724 if (map && map != new_map) 2725 kfree_rcu(map, rcu); 2726 } 2727 } 2728 2729 kfree_rcu(dev_maps, rcu); 2730 2731 out_no_old_maps: 2732 dev_maps = new_dev_maps; 2733 active = true; 2734 2735 out_no_new_maps: 2736 if (!is_rxqs_map) { 2737 /* update Tx queue numa node */ 2738 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2739 (numa_node_id >= 0) ? 2740 numa_node_id : NUMA_NO_NODE); 2741 } 2742 2743 if (!dev_maps) 2744 goto out_no_maps; 2745 2746 /* removes tx-queue from unused CPUs/rx-queues */ 2747 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2748 j < nr_ids;) { 2749 for (i = tc, tci = j * num_tc; i--; tci++) 2750 active |= remove_xps_queue(dev_maps, tci, index); 2751 if (!netif_attr_test_mask(j, mask, nr_ids) || 2752 !netif_attr_test_online(j, online_mask, nr_ids)) 2753 active |= remove_xps_queue(dev_maps, tci, index); 2754 for (i = num_tc - tc, tci++; --i; tci++) 2755 active |= remove_xps_queue(dev_maps, tci, index); 2756 } 2757 2758 /* free map if not active */ 2759 if (!active) 2760 reset_xps_maps(dev, dev_maps, is_rxqs_map); 2761 2762 out_no_maps: 2763 mutex_unlock(&xps_map_mutex); 2764 2765 return 0; 2766 error: 2767 /* remove any maps that we added */ 2768 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2769 j < nr_ids;) { 2770 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2771 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2772 map = dev_maps ? 2773 xmap_dereference(dev_maps->attr_map[tci]) : 2774 NULL; 2775 if (new_map && new_map != map) 2776 kfree(new_map); 2777 } 2778 } 2779 2780 mutex_unlock(&xps_map_mutex); 2781 2782 kfree(new_dev_maps); 2783 return -ENOMEM; 2784 } 2785 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 2786 2787 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2788 u16 index) 2789 { 2790 int ret; 2791 2792 cpus_read_lock(); 2793 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false); 2794 cpus_read_unlock(); 2795 2796 return ret; 2797 } 2798 EXPORT_SYMBOL(netif_set_xps_queue); 2799 2800 #endif 2801 static void netdev_unbind_all_sb_channels(struct net_device *dev) 2802 { 2803 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2804 2805 /* Unbind any subordinate channels */ 2806 while (txq-- != &dev->_tx[0]) { 2807 if (txq->sb_dev) 2808 netdev_unbind_sb_channel(dev, txq->sb_dev); 2809 } 2810 } 2811 2812 void netdev_reset_tc(struct net_device *dev) 2813 { 2814 #ifdef CONFIG_XPS 2815 netif_reset_xps_queues_gt(dev, 0); 2816 #endif 2817 netdev_unbind_all_sb_channels(dev); 2818 2819 /* Reset TC configuration of device */ 2820 dev->num_tc = 0; 2821 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2822 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2823 } 2824 EXPORT_SYMBOL(netdev_reset_tc); 2825 2826 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2827 { 2828 if (tc >= dev->num_tc) 2829 return -EINVAL; 2830 2831 #ifdef CONFIG_XPS 2832 netif_reset_xps_queues(dev, offset, count); 2833 #endif 2834 dev->tc_to_txq[tc].count = count; 2835 dev->tc_to_txq[tc].offset = offset; 2836 return 0; 2837 } 2838 EXPORT_SYMBOL(netdev_set_tc_queue); 2839 2840 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2841 { 2842 if (num_tc > TC_MAX_QUEUE) 2843 return -EINVAL; 2844 2845 #ifdef CONFIG_XPS 2846 netif_reset_xps_queues_gt(dev, 0); 2847 #endif 2848 netdev_unbind_all_sb_channels(dev); 2849 2850 dev->num_tc = num_tc; 2851 return 0; 2852 } 2853 EXPORT_SYMBOL(netdev_set_num_tc); 2854 2855 void netdev_unbind_sb_channel(struct net_device *dev, 2856 struct net_device *sb_dev) 2857 { 2858 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2859 2860 #ifdef CONFIG_XPS 2861 netif_reset_xps_queues_gt(sb_dev, 0); 2862 #endif 2863 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 2864 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 2865 2866 while (txq-- != &dev->_tx[0]) { 2867 if (txq->sb_dev == sb_dev) 2868 txq->sb_dev = NULL; 2869 } 2870 } 2871 EXPORT_SYMBOL(netdev_unbind_sb_channel); 2872 2873 int netdev_bind_sb_channel_queue(struct net_device *dev, 2874 struct net_device *sb_dev, 2875 u8 tc, u16 count, u16 offset) 2876 { 2877 /* Make certain the sb_dev and dev are already configured */ 2878 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 2879 return -EINVAL; 2880 2881 /* We cannot hand out queues we don't have */ 2882 if ((offset + count) > dev->real_num_tx_queues) 2883 return -EINVAL; 2884 2885 /* Record the mapping */ 2886 sb_dev->tc_to_txq[tc].count = count; 2887 sb_dev->tc_to_txq[tc].offset = offset; 2888 2889 /* Provide a way for Tx queue to find the tc_to_txq map or 2890 * XPS map for itself. 2891 */ 2892 while (count--) 2893 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 2894 2895 return 0; 2896 } 2897 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 2898 2899 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 2900 { 2901 /* Do not use a multiqueue device to represent a subordinate channel */ 2902 if (netif_is_multiqueue(dev)) 2903 return -ENODEV; 2904 2905 /* We allow channels 1 - 32767 to be used for subordinate channels. 2906 * Channel 0 is meant to be "native" mode and used only to represent 2907 * the main root device. We allow writing 0 to reset the device back 2908 * to normal mode after being used as a subordinate channel. 2909 */ 2910 if (channel > S16_MAX) 2911 return -EINVAL; 2912 2913 dev->num_tc = -channel; 2914 2915 return 0; 2916 } 2917 EXPORT_SYMBOL(netdev_set_sb_channel); 2918 2919 /* 2920 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2921 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 2922 */ 2923 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2924 { 2925 bool disabling; 2926 int rc; 2927 2928 disabling = txq < dev->real_num_tx_queues; 2929 2930 if (txq < 1 || txq > dev->num_tx_queues) 2931 return -EINVAL; 2932 2933 if (dev->reg_state == NETREG_REGISTERED || 2934 dev->reg_state == NETREG_UNREGISTERING) { 2935 ASSERT_RTNL(); 2936 2937 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2938 txq); 2939 if (rc) 2940 return rc; 2941 2942 if (dev->num_tc) 2943 netif_setup_tc(dev, txq); 2944 2945 dev->real_num_tx_queues = txq; 2946 2947 if (disabling) { 2948 synchronize_net(); 2949 qdisc_reset_all_tx_gt(dev, txq); 2950 #ifdef CONFIG_XPS 2951 netif_reset_xps_queues_gt(dev, txq); 2952 #endif 2953 } 2954 } else { 2955 dev->real_num_tx_queues = txq; 2956 } 2957 2958 return 0; 2959 } 2960 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2961 2962 #ifdef CONFIG_SYSFS 2963 /** 2964 * netif_set_real_num_rx_queues - set actual number of RX queues used 2965 * @dev: Network device 2966 * @rxq: Actual number of RX queues 2967 * 2968 * This must be called either with the rtnl_lock held or before 2969 * registration of the net device. Returns 0 on success, or a 2970 * negative error code. If called before registration, it always 2971 * succeeds. 2972 */ 2973 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2974 { 2975 int rc; 2976 2977 if (rxq < 1 || rxq > dev->num_rx_queues) 2978 return -EINVAL; 2979 2980 if (dev->reg_state == NETREG_REGISTERED) { 2981 ASSERT_RTNL(); 2982 2983 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2984 rxq); 2985 if (rc) 2986 return rc; 2987 } 2988 2989 dev->real_num_rx_queues = rxq; 2990 return 0; 2991 } 2992 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2993 #endif 2994 2995 /** 2996 * netif_get_num_default_rss_queues - default number of RSS queues 2997 * 2998 * This routine should set an upper limit on the number of RSS queues 2999 * used by default by multiqueue devices. 3000 */ 3001 int netif_get_num_default_rss_queues(void) 3002 { 3003 return is_kdump_kernel() ? 3004 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 3005 } 3006 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 3007 3008 static void __netif_reschedule(struct Qdisc *q) 3009 { 3010 struct softnet_data *sd; 3011 unsigned long flags; 3012 3013 local_irq_save(flags); 3014 sd = this_cpu_ptr(&softnet_data); 3015 q->next_sched = NULL; 3016 *sd->output_queue_tailp = q; 3017 sd->output_queue_tailp = &q->next_sched; 3018 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3019 local_irq_restore(flags); 3020 } 3021 3022 void __netif_schedule(struct Qdisc *q) 3023 { 3024 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 3025 __netif_reschedule(q); 3026 } 3027 EXPORT_SYMBOL(__netif_schedule); 3028 3029 struct dev_kfree_skb_cb { 3030 enum skb_free_reason reason; 3031 }; 3032 3033 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 3034 { 3035 return (struct dev_kfree_skb_cb *)skb->cb; 3036 } 3037 3038 void netif_schedule_queue(struct netdev_queue *txq) 3039 { 3040 rcu_read_lock(); 3041 if (!netif_xmit_stopped(txq)) { 3042 struct Qdisc *q = rcu_dereference(txq->qdisc); 3043 3044 __netif_schedule(q); 3045 } 3046 rcu_read_unlock(); 3047 } 3048 EXPORT_SYMBOL(netif_schedule_queue); 3049 3050 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 3051 { 3052 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 3053 struct Qdisc *q; 3054 3055 rcu_read_lock(); 3056 q = rcu_dereference(dev_queue->qdisc); 3057 __netif_schedule(q); 3058 rcu_read_unlock(); 3059 } 3060 } 3061 EXPORT_SYMBOL(netif_tx_wake_queue); 3062 3063 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 3064 { 3065 unsigned long flags; 3066 3067 if (unlikely(!skb)) 3068 return; 3069 3070 if (likely(refcount_read(&skb->users) == 1)) { 3071 smp_rmb(); 3072 refcount_set(&skb->users, 0); 3073 } else if (likely(!refcount_dec_and_test(&skb->users))) { 3074 return; 3075 } 3076 get_kfree_skb_cb(skb)->reason = reason; 3077 local_irq_save(flags); 3078 skb->next = __this_cpu_read(softnet_data.completion_queue); 3079 __this_cpu_write(softnet_data.completion_queue, skb); 3080 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3081 local_irq_restore(flags); 3082 } 3083 EXPORT_SYMBOL(__dev_kfree_skb_irq); 3084 3085 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 3086 { 3087 if (in_irq() || irqs_disabled()) 3088 __dev_kfree_skb_irq(skb, reason); 3089 else 3090 dev_kfree_skb(skb); 3091 } 3092 EXPORT_SYMBOL(__dev_kfree_skb_any); 3093 3094 3095 /** 3096 * netif_device_detach - mark device as removed 3097 * @dev: network device 3098 * 3099 * Mark device as removed from system and therefore no longer available. 3100 */ 3101 void netif_device_detach(struct net_device *dev) 3102 { 3103 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 3104 netif_running(dev)) { 3105 netif_tx_stop_all_queues(dev); 3106 } 3107 } 3108 EXPORT_SYMBOL(netif_device_detach); 3109 3110 /** 3111 * netif_device_attach - mark device as attached 3112 * @dev: network device 3113 * 3114 * Mark device as attached from system and restart if needed. 3115 */ 3116 void netif_device_attach(struct net_device *dev) 3117 { 3118 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 3119 netif_running(dev)) { 3120 netif_tx_wake_all_queues(dev); 3121 __netdev_watchdog_up(dev); 3122 } 3123 } 3124 EXPORT_SYMBOL(netif_device_attach); 3125 3126 /* 3127 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 3128 * to be used as a distribution range. 3129 */ 3130 static u16 skb_tx_hash(const struct net_device *dev, 3131 const struct net_device *sb_dev, 3132 struct sk_buff *skb) 3133 { 3134 u32 hash; 3135 u16 qoffset = 0; 3136 u16 qcount = dev->real_num_tx_queues; 3137 3138 if (dev->num_tc) { 3139 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 3140 3141 qoffset = sb_dev->tc_to_txq[tc].offset; 3142 qcount = sb_dev->tc_to_txq[tc].count; 3143 } 3144 3145 if (skb_rx_queue_recorded(skb)) { 3146 hash = skb_get_rx_queue(skb); 3147 if (hash >= qoffset) 3148 hash -= qoffset; 3149 while (unlikely(hash >= qcount)) 3150 hash -= qcount; 3151 return hash + qoffset; 3152 } 3153 3154 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 3155 } 3156 3157 static void skb_warn_bad_offload(const struct sk_buff *skb) 3158 { 3159 static const netdev_features_t null_features; 3160 struct net_device *dev = skb->dev; 3161 const char *name = ""; 3162 3163 if (!net_ratelimit()) 3164 return; 3165 3166 if (dev) { 3167 if (dev->dev.parent) 3168 name = dev_driver_string(dev->dev.parent); 3169 else 3170 name = netdev_name(dev); 3171 } 3172 skb_dump(KERN_WARNING, skb, false); 3173 WARN(1, "%s: caps=(%pNF, %pNF)\n", 3174 name, dev ? &dev->features : &null_features, 3175 skb->sk ? &skb->sk->sk_route_caps : &null_features); 3176 } 3177 3178 /* 3179 * Invalidate hardware checksum when packet is to be mangled, and 3180 * complete checksum manually on outgoing path. 3181 */ 3182 int skb_checksum_help(struct sk_buff *skb) 3183 { 3184 __wsum csum; 3185 int ret = 0, offset; 3186 3187 if (skb->ip_summed == CHECKSUM_COMPLETE) 3188 goto out_set_summed; 3189 3190 if (unlikely(skb_shinfo(skb)->gso_size)) { 3191 skb_warn_bad_offload(skb); 3192 return -EINVAL; 3193 } 3194 3195 /* Before computing a checksum, we should make sure no frag could 3196 * be modified by an external entity : checksum could be wrong. 3197 */ 3198 if (skb_has_shared_frag(skb)) { 3199 ret = __skb_linearize(skb); 3200 if (ret) 3201 goto out; 3202 } 3203 3204 offset = skb_checksum_start_offset(skb); 3205 BUG_ON(offset >= skb_headlen(skb)); 3206 csum = skb_checksum(skb, offset, skb->len - offset, 0); 3207 3208 offset += skb->csum_offset; 3209 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 3210 3211 ret = skb_ensure_writable(skb, offset + sizeof(__sum16)); 3212 if (ret) 3213 goto out; 3214 3215 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 3216 out_set_summed: 3217 skb->ip_summed = CHECKSUM_NONE; 3218 out: 3219 return ret; 3220 } 3221 EXPORT_SYMBOL(skb_checksum_help); 3222 3223 int skb_crc32c_csum_help(struct sk_buff *skb) 3224 { 3225 __le32 crc32c_csum; 3226 int ret = 0, offset, start; 3227 3228 if (skb->ip_summed != CHECKSUM_PARTIAL) 3229 goto out; 3230 3231 if (unlikely(skb_is_gso(skb))) 3232 goto out; 3233 3234 /* Before computing a checksum, we should make sure no frag could 3235 * be modified by an external entity : checksum could be wrong. 3236 */ 3237 if (unlikely(skb_has_shared_frag(skb))) { 3238 ret = __skb_linearize(skb); 3239 if (ret) 3240 goto out; 3241 } 3242 start = skb_checksum_start_offset(skb); 3243 offset = start + offsetof(struct sctphdr, checksum); 3244 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 3245 ret = -EINVAL; 3246 goto out; 3247 } 3248 3249 ret = skb_ensure_writable(skb, offset + sizeof(__le32)); 3250 if (ret) 3251 goto out; 3252 3253 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 3254 skb->len - start, ~(__u32)0, 3255 crc32c_csum_stub)); 3256 *(__le32 *)(skb->data + offset) = crc32c_csum; 3257 skb->ip_summed = CHECKSUM_NONE; 3258 skb->csum_not_inet = 0; 3259 out: 3260 return ret; 3261 } 3262 3263 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 3264 { 3265 __be16 type = skb->protocol; 3266 3267 /* Tunnel gso handlers can set protocol to ethernet. */ 3268 if (type == htons(ETH_P_TEB)) { 3269 struct ethhdr *eth; 3270 3271 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 3272 return 0; 3273 3274 eth = (struct ethhdr *)skb->data; 3275 type = eth->h_proto; 3276 } 3277 3278 return __vlan_get_protocol(skb, type, depth); 3279 } 3280 3281 /** 3282 * skb_mac_gso_segment - mac layer segmentation handler. 3283 * @skb: buffer to segment 3284 * @features: features for the output path (see dev->features) 3285 */ 3286 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 3287 netdev_features_t features) 3288 { 3289 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 3290 struct packet_offload *ptype; 3291 int vlan_depth = skb->mac_len; 3292 __be16 type = skb_network_protocol(skb, &vlan_depth); 3293 3294 if (unlikely(!type)) 3295 return ERR_PTR(-EINVAL); 3296 3297 __skb_pull(skb, vlan_depth); 3298 3299 rcu_read_lock(); 3300 list_for_each_entry_rcu(ptype, &offload_base, list) { 3301 if (ptype->type == type && ptype->callbacks.gso_segment) { 3302 segs = ptype->callbacks.gso_segment(skb, features); 3303 break; 3304 } 3305 } 3306 rcu_read_unlock(); 3307 3308 __skb_push(skb, skb->data - skb_mac_header(skb)); 3309 3310 return segs; 3311 } 3312 EXPORT_SYMBOL(skb_mac_gso_segment); 3313 3314 3315 /* openvswitch calls this on rx path, so we need a different check. 3316 */ 3317 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 3318 { 3319 if (tx_path) 3320 return skb->ip_summed != CHECKSUM_PARTIAL && 3321 skb->ip_summed != CHECKSUM_UNNECESSARY; 3322 3323 return skb->ip_summed == CHECKSUM_NONE; 3324 } 3325 3326 /** 3327 * __skb_gso_segment - Perform segmentation on skb. 3328 * @skb: buffer to segment 3329 * @features: features for the output path (see dev->features) 3330 * @tx_path: whether it is called in TX path 3331 * 3332 * This function segments the given skb and returns a list of segments. 3333 * 3334 * It may return NULL if the skb requires no segmentation. This is 3335 * only possible when GSO is used for verifying header integrity. 3336 * 3337 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb. 3338 */ 3339 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3340 netdev_features_t features, bool tx_path) 3341 { 3342 struct sk_buff *segs; 3343 3344 if (unlikely(skb_needs_check(skb, tx_path))) { 3345 int err; 3346 3347 /* We're going to init ->check field in TCP or UDP header */ 3348 err = skb_cow_head(skb, 0); 3349 if (err < 0) 3350 return ERR_PTR(err); 3351 } 3352 3353 /* Only report GSO partial support if it will enable us to 3354 * support segmentation on this frame without needing additional 3355 * work. 3356 */ 3357 if (features & NETIF_F_GSO_PARTIAL) { 3358 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 3359 struct net_device *dev = skb->dev; 3360 3361 partial_features |= dev->features & dev->gso_partial_features; 3362 if (!skb_gso_ok(skb, features | partial_features)) 3363 features &= ~NETIF_F_GSO_PARTIAL; 3364 } 3365 3366 BUILD_BUG_ON(SKB_GSO_CB_OFFSET + 3367 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 3368 3369 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 3370 SKB_GSO_CB(skb)->encap_level = 0; 3371 3372 skb_reset_mac_header(skb); 3373 skb_reset_mac_len(skb); 3374 3375 segs = skb_mac_gso_segment(skb, features); 3376 3377 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs))) 3378 skb_warn_bad_offload(skb); 3379 3380 return segs; 3381 } 3382 EXPORT_SYMBOL(__skb_gso_segment); 3383 3384 /* Take action when hardware reception checksum errors are detected. */ 3385 #ifdef CONFIG_BUG 3386 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3387 { 3388 if (net_ratelimit()) { 3389 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 3390 skb_dump(KERN_ERR, skb, true); 3391 dump_stack(); 3392 } 3393 } 3394 EXPORT_SYMBOL(netdev_rx_csum_fault); 3395 #endif 3396 3397 /* XXX: check that highmem exists at all on the given machine. */ 3398 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3399 { 3400 #ifdef CONFIG_HIGHMEM 3401 int i; 3402 3403 if (!(dev->features & NETIF_F_HIGHDMA)) { 3404 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3405 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3406 3407 if (PageHighMem(skb_frag_page(frag))) 3408 return 1; 3409 } 3410 } 3411 #endif 3412 return 0; 3413 } 3414 3415 /* If MPLS offload request, verify we are testing hardware MPLS features 3416 * instead of standard features for the netdev. 3417 */ 3418 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3419 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3420 netdev_features_t features, 3421 __be16 type) 3422 { 3423 if (eth_p_mpls(type)) 3424 features &= skb->dev->mpls_features; 3425 3426 return features; 3427 } 3428 #else 3429 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3430 netdev_features_t features, 3431 __be16 type) 3432 { 3433 return features; 3434 } 3435 #endif 3436 3437 static netdev_features_t harmonize_features(struct sk_buff *skb, 3438 netdev_features_t features) 3439 { 3440 int tmp; 3441 __be16 type; 3442 3443 type = skb_network_protocol(skb, &tmp); 3444 features = net_mpls_features(skb, features, type); 3445 3446 if (skb->ip_summed != CHECKSUM_NONE && 3447 !can_checksum_protocol(features, type)) { 3448 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3449 } 3450 if (illegal_highdma(skb->dev, skb)) 3451 features &= ~NETIF_F_SG; 3452 3453 return features; 3454 } 3455 3456 netdev_features_t passthru_features_check(struct sk_buff *skb, 3457 struct net_device *dev, 3458 netdev_features_t features) 3459 { 3460 return features; 3461 } 3462 EXPORT_SYMBOL(passthru_features_check); 3463 3464 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3465 struct net_device *dev, 3466 netdev_features_t features) 3467 { 3468 return vlan_features_check(skb, features); 3469 } 3470 3471 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3472 struct net_device *dev, 3473 netdev_features_t features) 3474 { 3475 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3476 3477 if (gso_segs > dev->gso_max_segs) 3478 return features & ~NETIF_F_GSO_MASK; 3479 3480 /* Support for GSO partial features requires software 3481 * intervention before we can actually process the packets 3482 * so we need to strip support for any partial features now 3483 * and we can pull them back in after we have partially 3484 * segmented the frame. 3485 */ 3486 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3487 features &= ~dev->gso_partial_features; 3488 3489 /* Make sure to clear the IPv4 ID mangling feature if the 3490 * IPv4 header has the potential to be fragmented. 3491 */ 3492 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3493 struct iphdr *iph = skb->encapsulation ? 3494 inner_ip_hdr(skb) : ip_hdr(skb); 3495 3496 if (!(iph->frag_off & htons(IP_DF))) 3497 features &= ~NETIF_F_TSO_MANGLEID; 3498 } 3499 3500 return features; 3501 } 3502 3503 netdev_features_t netif_skb_features(struct sk_buff *skb) 3504 { 3505 struct net_device *dev = skb->dev; 3506 netdev_features_t features = dev->features; 3507 3508 if (skb_is_gso(skb)) 3509 features = gso_features_check(skb, dev, features); 3510 3511 /* If encapsulation offload request, verify we are testing 3512 * hardware encapsulation features instead of standard 3513 * features for the netdev 3514 */ 3515 if (skb->encapsulation) 3516 features &= dev->hw_enc_features; 3517 3518 if (skb_vlan_tagged(skb)) 3519 features = netdev_intersect_features(features, 3520 dev->vlan_features | 3521 NETIF_F_HW_VLAN_CTAG_TX | 3522 NETIF_F_HW_VLAN_STAG_TX); 3523 3524 if (dev->netdev_ops->ndo_features_check) 3525 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3526 features); 3527 else 3528 features &= dflt_features_check(skb, dev, features); 3529 3530 return harmonize_features(skb, features); 3531 } 3532 EXPORT_SYMBOL(netif_skb_features); 3533 3534 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3535 struct netdev_queue *txq, bool more) 3536 { 3537 unsigned int len; 3538 int rc; 3539 3540 if (dev_nit_active(dev)) 3541 dev_queue_xmit_nit(skb, dev); 3542 3543 len = skb->len; 3544 trace_net_dev_start_xmit(skb, dev); 3545 rc = netdev_start_xmit(skb, dev, txq, more); 3546 trace_net_dev_xmit(skb, rc, dev, len); 3547 3548 return rc; 3549 } 3550 3551 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3552 struct netdev_queue *txq, int *ret) 3553 { 3554 struct sk_buff *skb = first; 3555 int rc = NETDEV_TX_OK; 3556 3557 while (skb) { 3558 struct sk_buff *next = skb->next; 3559 3560 skb_mark_not_on_list(skb); 3561 rc = xmit_one(skb, dev, txq, next != NULL); 3562 if (unlikely(!dev_xmit_complete(rc))) { 3563 skb->next = next; 3564 goto out; 3565 } 3566 3567 skb = next; 3568 if (netif_tx_queue_stopped(txq) && skb) { 3569 rc = NETDEV_TX_BUSY; 3570 break; 3571 } 3572 } 3573 3574 out: 3575 *ret = rc; 3576 return skb; 3577 } 3578 3579 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3580 netdev_features_t features) 3581 { 3582 if (skb_vlan_tag_present(skb) && 3583 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3584 skb = __vlan_hwaccel_push_inside(skb); 3585 return skb; 3586 } 3587 3588 int skb_csum_hwoffload_help(struct sk_buff *skb, 3589 const netdev_features_t features) 3590 { 3591 if (unlikely(skb->csum_not_inet)) 3592 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3593 skb_crc32c_csum_help(skb); 3594 3595 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb); 3596 } 3597 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3598 3599 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3600 { 3601 netdev_features_t features; 3602 3603 features = netif_skb_features(skb); 3604 skb = validate_xmit_vlan(skb, features); 3605 if (unlikely(!skb)) 3606 goto out_null; 3607 3608 skb = sk_validate_xmit_skb(skb, dev); 3609 if (unlikely(!skb)) 3610 goto out_null; 3611 3612 if (netif_needs_gso(skb, features)) { 3613 struct sk_buff *segs; 3614 3615 segs = skb_gso_segment(skb, features); 3616 if (IS_ERR(segs)) { 3617 goto out_kfree_skb; 3618 } else if (segs) { 3619 consume_skb(skb); 3620 skb = segs; 3621 } 3622 } else { 3623 if (skb_needs_linearize(skb, features) && 3624 __skb_linearize(skb)) 3625 goto out_kfree_skb; 3626 3627 /* If packet is not checksummed and device does not 3628 * support checksumming for this protocol, complete 3629 * checksumming here. 3630 */ 3631 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3632 if (skb->encapsulation) 3633 skb_set_inner_transport_header(skb, 3634 skb_checksum_start_offset(skb)); 3635 else 3636 skb_set_transport_header(skb, 3637 skb_checksum_start_offset(skb)); 3638 if (skb_csum_hwoffload_help(skb, features)) 3639 goto out_kfree_skb; 3640 } 3641 } 3642 3643 skb = validate_xmit_xfrm(skb, features, again); 3644 3645 return skb; 3646 3647 out_kfree_skb: 3648 kfree_skb(skb); 3649 out_null: 3650 atomic_long_inc(&dev->tx_dropped); 3651 return NULL; 3652 } 3653 3654 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3655 { 3656 struct sk_buff *next, *head = NULL, *tail; 3657 3658 for (; skb != NULL; skb = next) { 3659 next = skb->next; 3660 skb_mark_not_on_list(skb); 3661 3662 /* in case skb wont be segmented, point to itself */ 3663 skb->prev = skb; 3664 3665 skb = validate_xmit_skb(skb, dev, again); 3666 if (!skb) 3667 continue; 3668 3669 if (!head) 3670 head = skb; 3671 else 3672 tail->next = skb; 3673 /* If skb was segmented, skb->prev points to 3674 * the last segment. If not, it still contains skb. 3675 */ 3676 tail = skb->prev; 3677 } 3678 return head; 3679 } 3680 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3681 3682 static void qdisc_pkt_len_init(struct sk_buff *skb) 3683 { 3684 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3685 3686 qdisc_skb_cb(skb)->pkt_len = skb->len; 3687 3688 /* To get more precise estimation of bytes sent on wire, 3689 * we add to pkt_len the headers size of all segments 3690 */ 3691 if (shinfo->gso_size && skb_transport_header_was_set(skb)) { 3692 unsigned int hdr_len; 3693 u16 gso_segs = shinfo->gso_segs; 3694 3695 /* mac layer + network layer */ 3696 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3697 3698 /* + transport layer */ 3699 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3700 const struct tcphdr *th; 3701 struct tcphdr _tcphdr; 3702 3703 th = skb_header_pointer(skb, skb_transport_offset(skb), 3704 sizeof(_tcphdr), &_tcphdr); 3705 if (likely(th)) 3706 hdr_len += __tcp_hdrlen(th); 3707 } else { 3708 struct udphdr _udphdr; 3709 3710 if (skb_header_pointer(skb, skb_transport_offset(skb), 3711 sizeof(_udphdr), &_udphdr)) 3712 hdr_len += sizeof(struct udphdr); 3713 } 3714 3715 if (shinfo->gso_type & SKB_GSO_DODGY) 3716 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3717 shinfo->gso_size); 3718 3719 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3720 } 3721 } 3722 3723 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3724 struct net_device *dev, 3725 struct netdev_queue *txq) 3726 { 3727 spinlock_t *root_lock = qdisc_lock(q); 3728 struct sk_buff *to_free = NULL; 3729 bool contended; 3730 int rc; 3731 3732 qdisc_calculate_pkt_len(skb, q); 3733 3734 if (q->flags & TCQ_F_NOLOCK) { 3735 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3736 qdisc_run(q); 3737 3738 if (unlikely(to_free)) 3739 kfree_skb_list(to_free); 3740 return rc; 3741 } 3742 3743 /* 3744 * Heuristic to force contended enqueues to serialize on a 3745 * separate lock before trying to get qdisc main lock. 3746 * This permits qdisc->running owner to get the lock more 3747 * often and dequeue packets faster. 3748 */ 3749 contended = qdisc_is_running(q); 3750 if (unlikely(contended)) 3751 spin_lock(&q->busylock); 3752 3753 spin_lock(root_lock); 3754 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3755 __qdisc_drop(skb, &to_free); 3756 rc = NET_XMIT_DROP; 3757 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3758 qdisc_run_begin(q)) { 3759 /* 3760 * This is a work-conserving queue; there are no old skbs 3761 * waiting to be sent out; and the qdisc is not running - 3762 * xmit the skb directly. 3763 */ 3764 3765 qdisc_bstats_update(q, skb); 3766 3767 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3768 if (unlikely(contended)) { 3769 spin_unlock(&q->busylock); 3770 contended = false; 3771 } 3772 __qdisc_run(q); 3773 } 3774 3775 qdisc_run_end(q); 3776 rc = NET_XMIT_SUCCESS; 3777 } else { 3778 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3779 if (qdisc_run_begin(q)) { 3780 if (unlikely(contended)) { 3781 spin_unlock(&q->busylock); 3782 contended = false; 3783 } 3784 __qdisc_run(q); 3785 qdisc_run_end(q); 3786 } 3787 } 3788 spin_unlock(root_lock); 3789 if (unlikely(to_free)) 3790 kfree_skb_list(to_free); 3791 if (unlikely(contended)) 3792 spin_unlock(&q->busylock); 3793 return rc; 3794 } 3795 3796 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3797 static void skb_update_prio(struct sk_buff *skb) 3798 { 3799 const struct netprio_map *map; 3800 const struct sock *sk; 3801 unsigned int prioidx; 3802 3803 if (skb->priority) 3804 return; 3805 map = rcu_dereference_bh(skb->dev->priomap); 3806 if (!map) 3807 return; 3808 sk = skb_to_full_sk(skb); 3809 if (!sk) 3810 return; 3811 3812 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 3813 3814 if (prioidx < map->priomap_len) 3815 skb->priority = map->priomap[prioidx]; 3816 } 3817 #else 3818 #define skb_update_prio(skb) 3819 #endif 3820 3821 /** 3822 * dev_loopback_xmit - loop back @skb 3823 * @net: network namespace this loopback is happening in 3824 * @sk: sk needed to be a netfilter okfn 3825 * @skb: buffer to transmit 3826 */ 3827 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3828 { 3829 skb_reset_mac_header(skb); 3830 __skb_pull(skb, skb_network_offset(skb)); 3831 skb->pkt_type = PACKET_LOOPBACK; 3832 skb->ip_summed = CHECKSUM_UNNECESSARY; 3833 WARN_ON(!skb_dst(skb)); 3834 skb_dst_force(skb); 3835 netif_rx_ni(skb); 3836 return 0; 3837 } 3838 EXPORT_SYMBOL(dev_loopback_xmit); 3839 3840 #ifdef CONFIG_NET_EGRESS 3841 static struct sk_buff * 3842 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3843 { 3844 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress); 3845 struct tcf_result cl_res; 3846 3847 if (!miniq) 3848 return skb; 3849 3850 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3851 mini_qdisc_bstats_cpu_update(miniq, skb); 3852 3853 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 3854 case TC_ACT_OK: 3855 case TC_ACT_RECLASSIFY: 3856 skb->tc_index = TC_H_MIN(cl_res.classid); 3857 break; 3858 case TC_ACT_SHOT: 3859 mini_qdisc_qstats_cpu_drop(miniq); 3860 *ret = NET_XMIT_DROP; 3861 kfree_skb(skb); 3862 return NULL; 3863 case TC_ACT_STOLEN: 3864 case TC_ACT_QUEUED: 3865 case TC_ACT_TRAP: 3866 *ret = NET_XMIT_SUCCESS; 3867 consume_skb(skb); 3868 return NULL; 3869 case TC_ACT_REDIRECT: 3870 /* No need to push/pop skb's mac_header here on egress! */ 3871 skb_do_redirect(skb); 3872 *ret = NET_XMIT_SUCCESS; 3873 return NULL; 3874 default: 3875 break; 3876 } 3877 3878 return skb; 3879 } 3880 #endif /* CONFIG_NET_EGRESS */ 3881 3882 #ifdef CONFIG_XPS 3883 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 3884 struct xps_dev_maps *dev_maps, unsigned int tci) 3885 { 3886 struct xps_map *map; 3887 int queue_index = -1; 3888 3889 if (dev->num_tc) { 3890 tci *= dev->num_tc; 3891 tci += netdev_get_prio_tc_map(dev, skb->priority); 3892 } 3893 3894 map = rcu_dereference(dev_maps->attr_map[tci]); 3895 if (map) { 3896 if (map->len == 1) 3897 queue_index = map->queues[0]; 3898 else 3899 queue_index = map->queues[reciprocal_scale( 3900 skb_get_hash(skb), map->len)]; 3901 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3902 queue_index = -1; 3903 } 3904 return queue_index; 3905 } 3906 #endif 3907 3908 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 3909 struct sk_buff *skb) 3910 { 3911 #ifdef CONFIG_XPS 3912 struct xps_dev_maps *dev_maps; 3913 struct sock *sk = skb->sk; 3914 int queue_index = -1; 3915 3916 if (!static_key_false(&xps_needed)) 3917 return -1; 3918 3919 rcu_read_lock(); 3920 if (!static_key_false(&xps_rxqs_needed)) 3921 goto get_cpus_map; 3922 3923 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map); 3924 if (dev_maps) { 3925 int tci = sk_rx_queue_get(sk); 3926 3927 if (tci >= 0 && tci < dev->num_rx_queues) 3928 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3929 tci); 3930 } 3931 3932 get_cpus_map: 3933 if (queue_index < 0) { 3934 dev_maps = rcu_dereference(sb_dev->xps_cpus_map); 3935 if (dev_maps) { 3936 unsigned int tci = skb->sender_cpu - 1; 3937 3938 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3939 tci); 3940 } 3941 } 3942 rcu_read_unlock(); 3943 3944 return queue_index; 3945 #else 3946 return -1; 3947 #endif 3948 } 3949 3950 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 3951 struct net_device *sb_dev) 3952 { 3953 return 0; 3954 } 3955 EXPORT_SYMBOL(dev_pick_tx_zero); 3956 3957 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 3958 struct net_device *sb_dev) 3959 { 3960 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues; 3961 } 3962 EXPORT_SYMBOL(dev_pick_tx_cpu_id); 3963 3964 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 3965 struct net_device *sb_dev) 3966 { 3967 struct sock *sk = skb->sk; 3968 int queue_index = sk_tx_queue_get(sk); 3969 3970 sb_dev = sb_dev ? : dev; 3971 3972 if (queue_index < 0 || skb->ooo_okay || 3973 queue_index >= dev->real_num_tx_queues) { 3974 int new_index = get_xps_queue(dev, sb_dev, skb); 3975 3976 if (new_index < 0) 3977 new_index = skb_tx_hash(dev, sb_dev, skb); 3978 3979 if (queue_index != new_index && sk && 3980 sk_fullsock(sk) && 3981 rcu_access_pointer(sk->sk_dst_cache)) 3982 sk_tx_queue_set(sk, new_index); 3983 3984 queue_index = new_index; 3985 } 3986 3987 return queue_index; 3988 } 3989 EXPORT_SYMBOL(netdev_pick_tx); 3990 3991 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 3992 struct sk_buff *skb, 3993 struct net_device *sb_dev) 3994 { 3995 int queue_index = 0; 3996 3997 #ifdef CONFIG_XPS 3998 u32 sender_cpu = skb->sender_cpu - 1; 3999 4000 if (sender_cpu >= (u32)NR_CPUS) 4001 skb->sender_cpu = raw_smp_processor_id() + 1; 4002 #endif 4003 4004 if (dev->real_num_tx_queues != 1) { 4005 const struct net_device_ops *ops = dev->netdev_ops; 4006 4007 if (ops->ndo_select_queue) 4008 queue_index = ops->ndo_select_queue(dev, skb, sb_dev); 4009 else 4010 queue_index = netdev_pick_tx(dev, skb, sb_dev); 4011 4012 queue_index = netdev_cap_txqueue(dev, queue_index); 4013 } 4014 4015 skb_set_queue_mapping(skb, queue_index); 4016 return netdev_get_tx_queue(dev, queue_index); 4017 } 4018 4019 /** 4020 * __dev_queue_xmit - transmit a buffer 4021 * @skb: buffer to transmit 4022 * @sb_dev: suboordinate device used for L2 forwarding offload 4023 * 4024 * Queue a buffer for transmission to a network device. The caller must 4025 * have set the device and priority and built the buffer before calling 4026 * this function. The function can be called from an interrupt. 4027 * 4028 * A negative errno code is returned on a failure. A success does not 4029 * guarantee the frame will be transmitted as it may be dropped due 4030 * to congestion or traffic shaping. 4031 * 4032 * ----------------------------------------------------------------------------------- 4033 * I notice this method can also return errors from the queue disciplines, 4034 * including NET_XMIT_DROP, which is a positive value. So, errors can also 4035 * be positive. 4036 * 4037 * Regardless of the return value, the skb is consumed, so it is currently 4038 * difficult to retry a send to this method. (You can bump the ref count 4039 * before sending to hold a reference for retry if you are careful.) 4040 * 4041 * When calling this method, interrupts MUST be enabled. This is because 4042 * the BH enable code must have IRQs enabled so that it will not deadlock. 4043 * --BLG 4044 */ 4045 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 4046 { 4047 struct net_device *dev = skb->dev; 4048 struct netdev_queue *txq; 4049 struct Qdisc *q; 4050 int rc = -ENOMEM; 4051 bool again = false; 4052 4053 skb_reset_mac_header(skb); 4054 4055 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 4056 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 4057 4058 /* Disable soft irqs for various locks below. Also 4059 * stops preemption for RCU. 4060 */ 4061 rcu_read_lock_bh(); 4062 4063 skb_update_prio(skb); 4064 4065 qdisc_pkt_len_init(skb); 4066 #ifdef CONFIG_NET_CLS_ACT 4067 skb->tc_at_ingress = 0; 4068 # ifdef CONFIG_NET_EGRESS 4069 if (static_branch_unlikely(&egress_needed_key)) { 4070 skb = sch_handle_egress(skb, &rc, dev); 4071 if (!skb) 4072 goto out; 4073 } 4074 # endif 4075 #endif 4076 /* If device/qdisc don't need skb->dst, release it right now while 4077 * its hot in this cpu cache. 4078 */ 4079 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 4080 skb_dst_drop(skb); 4081 else 4082 skb_dst_force(skb); 4083 4084 txq = netdev_core_pick_tx(dev, skb, sb_dev); 4085 q = rcu_dereference_bh(txq->qdisc); 4086 4087 trace_net_dev_queue(skb); 4088 if (q->enqueue) { 4089 rc = __dev_xmit_skb(skb, q, dev, txq); 4090 goto out; 4091 } 4092 4093 /* The device has no queue. Common case for software devices: 4094 * loopback, all the sorts of tunnels... 4095 4096 * Really, it is unlikely that netif_tx_lock protection is necessary 4097 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 4098 * counters.) 4099 * However, it is possible, that they rely on protection 4100 * made by us here. 4101 4102 * Check this and shot the lock. It is not prone from deadlocks. 4103 *Either shot noqueue qdisc, it is even simpler 8) 4104 */ 4105 if (dev->flags & IFF_UP) { 4106 int cpu = smp_processor_id(); /* ok because BHs are off */ 4107 4108 if (txq->xmit_lock_owner != cpu) { 4109 if (dev_xmit_recursion()) 4110 goto recursion_alert; 4111 4112 skb = validate_xmit_skb(skb, dev, &again); 4113 if (!skb) 4114 goto out; 4115 4116 HARD_TX_LOCK(dev, txq, cpu); 4117 4118 if (!netif_xmit_stopped(txq)) { 4119 dev_xmit_recursion_inc(); 4120 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 4121 dev_xmit_recursion_dec(); 4122 if (dev_xmit_complete(rc)) { 4123 HARD_TX_UNLOCK(dev, txq); 4124 goto out; 4125 } 4126 } 4127 HARD_TX_UNLOCK(dev, txq); 4128 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 4129 dev->name); 4130 } else { 4131 /* Recursion is detected! It is possible, 4132 * unfortunately 4133 */ 4134 recursion_alert: 4135 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 4136 dev->name); 4137 } 4138 } 4139 4140 rc = -ENETDOWN; 4141 rcu_read_unlock_bh(); 4142 4143 atomic_long_inc(&dev->tx_dropped); 4144 kfree_skb_list(skb); 4145 return rc; 4146 out: 4147 rcu_read_unlock_bh(); 4148 return rc; 4149 } 4150 4151 int dev_queue_xmit(struct sk_buff *skb) 4152 { 4153 return __dev_queue_xmit(skb, NULL); 4154 } 4155 EXPORT_SYMBOL(dev_queue_xmit); 4156 4157 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev) 4158 { 4159 return __dev_queue_xmit(skb, sb_dev); 4160 } 4161 EXPORT_SYMBOL(dev_queue_xmit_accel); 4162 4163 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 4164 { 4165 struct net_device *dev = skb->dev; 4166 struct sk_buff *orig_skb = skb; 4167 struct netdev_queue *txq; 4168 int ret = NETDEV_TX_BUSY; 4169 bool again = false; 4170 4171 if (unlikely(!netif_running(dev) || 4172 !netif_carrier_ok(dev))) 4173 goto drop; 4174 4175 skb = validate_xmit_skb_list(skb, dev, &again); 4176 if (skb != orig_skb) 4177 goto drop; 4178 4179 skb_set_queue_mapping(skb, queue_id); 4180 txq = skb_get_tx_queue(dev, skb); 4181 4182 local_bh_disable(); 4183 4184 HARD_TX_LOCK(dev, txq, smp_processor_id()); 4185 if (!netif_xmit_frozen_or_drv_stopped(txq)) 4186 ret = netdev_start_xmit(skb, dev, txq, false); 4187 HARD_TX_UNLOCK(dev, txq); 4188 4189 local_bh_enable(); 4190 4191 if (!dev_xmit_complete(ret)) 4192 kfree_skb(skb); 4193 4194 return ret; 4195 drop: 4196 atomic_long_inc(&dev->tx_dropped); 4197 kfree_skb_list(skb); 4198 return NET_XMIT_DROP; 4199 } 4200 EXPORT_SYMBOL(dev_direct_xmit); 4201 4202 /************************************************************************* 4203 * Receiver routines 4204 *************************************************************************/ 4205 4206 int netdev_max_backlog __read_mostly = 1000; 4207 EXPORT_SYMBOL(netdev_max_backlog); 4208 4209 int netdev_tstamp_prequeue __read_mostly = 1; 4210 int netdev_budget __read_mostly = 300; 4211 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */ 4212 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ; 4213 int weight_p __read_mostly = 64; /* old backlog weight */ 4214 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 4215 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 4216 int dev_rx_weight __read_mostly = 64; 4217 int dev_tx_weight __read_mostly = 64; 4218 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */ 4219 int gro_normal_batch __read_mostly = 8; 4220 4221 /* Called with irq disabled */ 4222 static inline void ____napi_schedule(struct softnet_data *sd, 4223 struct napi_struct *napi) 4224 { 4225 list_add_tail(&napi->poll_list, &sd->poll_list); 4226 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4227 } 4228 4229 #ifdef CONFIG_RPS 4230 4231 /* One global table that all flow-based protocols share. */ 4232 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 4233 EXPORT_SYMBOL(rps_sock_flow_table); 4234 u32 rps_cpu_mask __read_mostly; 4235 EXPORT_SYMBOL(rps_cpu_mask); 4236 4237 struct static_key_false rps_needed __read_mostly; 4238 EXPORT_SYMBOL(rps_needed); 4239 struct static_key_false rfs_needed __read_mostly; 4240 EXPORT_SYMBOL(rfs_needed); 4241 4242 static struct rps_dev_flow * 4243 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4244 struct rps_dev_flow *rflow, u16 next_cpu) 4245 { 4246 if (next_cpu < nr_cpu_ids) { 4247 #ifdef CONFIG_RFS_ACCEL 4248 struct netdev_rx_queue *rxqueue; 4249 struct rps_dev_flow_table *flow_table; 4250 struct rps_dev_flow *old_rflow; 4251 u32 flow_id; 4252 u16 rxq_index; 4253 int rc; 4254 4255 /* Should we steer this flow to a different hardware queue? */ 4256 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 4257 !(dev->features & NETIF_F_NTUPLE)) 4258 goto out; 4259 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 4260 if (rxq_index == skb_get_rx_queue(skb)) 4261 goto out; 4262 4263 rxqueue = dev->_rx + rxq_index; 4264 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4265 if (!flow_table) 4266 goto out; 4267 flow_id = skb_get_hash(skb) & flow_table->mask; 4268 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 4269 rxq_index, flow_id); 4270 if (rc < 0) 4271 goto out; 4272 old_rflow = rflow; 4273 rflow = &flow_table->flows[flow_id]; 4274 rflow->filter = rc; 4275 if (old_rflow->filter == rflow->filter) 4276 old_rflow->filter = RPS_NO_FILTER; 4277 out: 4278 #endif 4279 rflow->last_qtail = 4280 per_cpu(softnet_data, next_cpu).input_queue_head; 4281 } 4282 4283 rflow->cpu = next_cpu; 4284 return rflow; 4285 } 4286 4287 /* 4288 * get_rps_cpu is called from netif_receive_skb and returns the target 4289 * CPU from the RPS map of the receiving queue for a given skb. 4290 * rcu_read_lock must be held on entry. 4291 */ 4292 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4293 struct rps_dev_flow **rflowp) 4294 { 4295 const struct rps_sock_flow_table *sock_flow_table; 4296 struct netdev_rx_queue *rxqueue = dev->_rx; 4297 struct rps_dev_flow_table *flow_table; 4298 struct rps_map *map; 4299 int cpu = -1; 4300 u32 tcpu; 4301 u32 hash; 4302 4303 if (skb_rx_queue_recorded(skb)) { 4304 u16 index = skb_get_rx_queue(skb); 4305 4306 if (unlikely(index >= dev->real_num_rx_queues)) { 4307 WARN_ONCE(dev->real_num_rx_queues > 1, 4308 "%s received packet on queue %u, but number " 4309 "of RX queues is %u\n", 4310 dev->name, index, dev->real_num_rx_queues); 4311 goto done; 4312 } 4313 rxqueue += index; 4314 } 4315 4316 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 4317 4318 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4319 map = rcu_dereference(rxqueue->rps_map); 4320 if (!flow_table && !map) 4321 goto done; 4322 4323 skb_reset_network_header(skb); 4324 hash = skb_get_hash(skb); 4325 if (!hash) 4326 goto done; 4327 4328 sock_flow_table = rcu_dereference(rps_sock_flow_table); 4329 if (flow_table && sock_flow_table) { 4330 struct rps_dev_flow *rflow; 4331 u32 next_cpu; 4332 u32 ident; 4333 4334 /* First check into global flow table if there is a match */ 4335 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 4336 if ((ident ^ hash) & ~rps_cpu_mask) 4337 goto try_rps; 4338 4339 next_cpu = ident & rps_cpu_mask; 4340 4341 /* OK, now we know there is a match, 4342 * we can look at the local (per receive queue) flow table 4343 */ 4344 rflow = &flow_table->flows[hash & flow_table->mask]; 4345 tcpu = rflow->cpu; 4346 4347 /* 4348 * If the desired CPU (where last recvmsg was done) is 4349 * different from current CPU (one in the rx-queue flow 4350 * table entry), switch if one of the following holds: 4351 * - Current CPU is unset (>= nr_cpu_ids). 4352 * - Current CPU is offline. 4353 * - The current CPU's queue tail has advanced beyond the 4354 * last packet that was enqueued using this table entry. 4355 * This guarantees that all previous packets for the flow 4356 * have been dequeued, thus preserving in order delivery. 4357 */ 4358 if (unlikely(tcpu != next_cpu) && 4359 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 4360 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 4361 rflow->last_qtail)) >= 0)) { 4362 tcpu = next_cpu; 4363 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 4364 } 4365 4366 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 4367 *rflowp = rflow; 4368 cpu = tcpu; 4369 goto done; 4370 } 4371 } 4372 4373 try_rps: 4374 4375 if (map) { 4376 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 4377 if (cpu_online(tcpu)) { 4378 cpu = tcpu; 4379 goto done; 4380 } 4381 } 4382 4383 done: 4384 return cpu; 4385 } 4386 4387 #ifdef CONFIG_RFS_ACCEL 4388 4389 /** 4390 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 4391 * @dev: Device on which the filter was set 4392 * @rxq_index: RX queue index 4393 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 4394 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 4395 * 4396 * Drivers that implement ndo_rx_flow_steer() should periodically call 4397 * this function for each installed filter and remove the filters for 4398 * which it returns %true. 4399 */ 4400 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 4401 u32 flow_id, u16 filter_id) 4402 { 4403 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 4404 struct rps_dev_flow_table *flow_table; 4405 struct rps_dev_flow *rflow; 4406 bool expire = true; 4407 unsigned int cpu; 4408 4409 rcu_read_lock(); 4410 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4411 if (flow_table && flow_id <= flow_table->mask) { 4412 rflow = &flow_table->flows[flow_id]; 4413 cpu = READ_ONCE(rflow->cpu); 4414 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 4415 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 4416 rflow->last_qtail) < 4417 (int)(10 * flow_table->mask))) 4418 expire = false; 4419 } 4420 rcu_read_unlock(); 4421 return expire; 4422 } 4423 EXPORT_SYMBOL(rps_may_expire_flow); 4424 4425 #endif /* CONFIG_RFS_ACCEL */ 4426 4427 /* Called from hardirq (IPI) context */ 4428 static void rps_trigger_softirq(void *data) 4429 { 4430 struct softnet_data *sd = data; 4431 4432 ____napi_schedule(sd, &sd->backlog); 4433 sd->received_rps++; 4434 } 4435 4436 #endif /* CONFIG_RPS */ 4437 4438 /* 4439 * Check if this softnet_data structure is another cpu one 4440 * If yes, queue it to our IPI list and return 1 4441 * If no, return 0 4442 */ 4443 static int rps_ipi_queued(struct softnet_data *sd) 4444 { 4445 #ifdef CONFIG_RPS 4446 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 4447 4448 if (sd != mysd) { 4449 sd->rps_ipi_next = mysd->rps_ipi_list; 4450 mysd->rps_ipi_list = sd; 4451 4452 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4453 return 1; 4454 } 4455 #endif /* CONFIG_RPS */ 4456 return 0; 4457 } 4458 4459 #ifdef CONFIG_NET_FLOW_LIMIT 4460 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 4461 #endif 4462 4463 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 4464 { 4465 #ifdef CONFIG_NET_FLOW_LIMIT 4466 struct sd_flow_limit *fl; 4467 struct softnet_data *sd; 4468 unsigned int old_flow, new_flow; 4469 4470 if (qlen < (netdev_max_backlog >> 1)) 4471 return false; 4472 4473 sd = this_cpu_ptr(&softnet_data); 4474 4475 rcu_read_lock(); 4476 fl = rcu_dereference(sd->flow_limit); 4477 if (fl) { 4478 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 4479 old_flow = fl->history[fl->history_head]; 4480 fl->history[fl->history_head] = new_flow; 4481 4482 fl->history_head++; 4483 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 4484 4485 if (likely(fl->buckets[old_flow])) 4486 fl->buckets[old_flow]--; 4487 4488 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 4489 fl->count++; 4490 rcu_read_unlock(); 4491 return true; 4492 } 4493 } 4494 rcu_read_unlock(); 4495 #endif 4496 return false; 4497 } 4498 4499 /* 4500 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 4501 * queue (may be a remote CPU queue). 4502 */ 4503 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 4504 unsigned int *qtail) 4505 { 4506 struct softnet_data *sd; 4507 unsigned long flags; 4508 unsigned int qlen; 4509 4510 sd = &per_cpu(softnet_data, cpu); 4511 4512 local_irq_save(flags); 4513 4514 rps_lock(sd); 4515 if (!netif_running(skb->dev)) 4516 goto drop; 4517 qlen = skb_queue_len(&sd->input_pkt_queue); 4518 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 4519 if (qlen) { 4520 enqueue: 4521 __skb_queue_tail(&sd->input_pkt_queue, skb); 4522 input_queue_tail_incr_save(sd, qtail); 4523 rps_unlock(sd); 4524 local_irq_restore(flags); 4525 return NET_RX_SUCCESS; 4526 } 4527 4528 /* Schedule NAPI for backlog device 4529 * We can use non atomic operation since we own the queue lock 4530 */ 4531 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 4532 if (!rps_ipi_queued(sd)) 4533 ____napi_schedule(sd, &sd->backlog); 4534 } 4535 goto enqueue; 4536 } 4537 4538 drop: 4539 sd->dropped++; 4540 rps_unlock(sd); 4541 4542 local_irq_restore(flags); 4543 4544 atomic_long_inc(&skb->dev->rx_dropped); 4545 kfree_skb(skb); 4546 return NET_RX_DROP; 4547 } 4548 4549 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 4550 { 4551 struct net_device *dev = skb->dev; 4552 struct netdev_rx_queue *rxqueue; 4553 4554 rxqueue = dev->_rx; 4555 4556 if (skb_rx_queue_recorded(skb)) { 4557 u16 index = skb_get_rx_queue(skb); 4558 4559 if (unlikely(index >= dev->real_num_rx_queues)) { 4560 WARN_ONCE(dev->real_num_rx_queues > 1, 4561 "%s received packet on queue %u, but number " 4562 "of RX queues is %u\n", 4563 dev->name, index, dev->real_num_rx_queues); 4564 4565 return rxqueue; /* Return first rxqueue */ 4566 } 4567 rxqueue += index; 4568 } 4569 return rxqueue; 4570 } 4571 4572 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 4573 struct xdp_buff *xdp, 4574 struct bpf_prog *xdp_prog) 4575 { 4576 struct netdev_rx_queue *rxqueue; 4577 void *orig_data, *orig_data_end; 4578 u32 metalen, act = XDP_DROP; 4579 __be16 orig_eth_type; 4580 struct ethhdr *eth; 4581 bool orig_bcast; 4582 int hlen, off; 4583 u32 mac_len; 4584 4585 /* Reinjected packets coming from act_mirred or similar should 4586 * not get XDP generic processing. 4587 */ 4588 if (skb_is_redirected(skb)) 4589 return XDP_PASS; 4590 4591 /* XDP packets must be linear and must have sufficient headroom 4592 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also 4593 * native XDP provides, thus we need to do it here as well. 4594 */ 4595 if (skb_cloned(skb) || skb_is_nonlinear(skb) || 4596 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 4597 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 4598 int troom = skb->tail + skb->data_len - skb->end; 4599 4600 /* In case we have to go down the path and also linearize, 4601 * then lets do the pskb_expand_head() work just once here. 4602 */ 4603 if (pskb_expand_head(skb, 4604 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 4605 troom > 0 ? troom + 128 : 0, GFP_ATOMIC)) 4606 goto do_drop; 4607 if (skb_linearize(skb)) 4608 goto do_drop; 4609 } 4610 4611 /* The XDP program wants to see the packet starting at the MAC 4612 * header. 4613 */ 4614 mac_len = skb->data - skb_mac_header(skb); 4615 hlen = skb_headlen(skb) + mac_len; 4616 xdp->data = skb->data - mac_len; 4617 xdp->data_meta = xdp->data; 4618 xdp->data_end = xdp->data + hlen; 4619 xdp->data_hard_start = skb->data - skb_headroom(skb); 4620 4621 /* SKB "head" area always have tailroom for skb_shared_info */ 4622 xdp->frame_sz = (void *)skb_end_pointer(skb) - xdp->data_hard_start; 4623 xdp->frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4624 4625 orig_data_end = xdp->data_end; 4626 orig_data = xdp->data; 4627 eth = (struct ethhdr *)xdp->data; 4628 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 4629 orig_eth_type = eth->h_proto; 4630 4631 rxqueue = netif_get_rxqueue(skb); 4632 xdp->rxq = &rxqueue->xdp_rxq; 4633 4634 act = bpf_prog_run_xdp(xdp_prog, xdp); 4635 4636 /* check if bpf_xdp_adjust_head was used */ 4637 off = xdp->data - orig_data; 4638 if (off) { 4639 if (off > 0) 4640 __skb_pull(skb, off); 4641 else if (off < 0) 4642 __skb_push(skb, -off); 4643 4644 skb->mac_header += off; 4645 skb_reset_network_header(skb); 4646 } 4647 4648 /* check if bpf_xdp_adjust_tail was used */ 4649 off = xdp->data_end - orig_data_end; 4650 if (off != 0) { 4651 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 4652 skb->len += off; /* positive on grow, negative on shrink */ 4653 } 4654 4655 /* check if XDP changed eth hdr such SKB needs update */ 4656 eth = (struct ethhdr *)xdp->data; 4657 if ((orig_eth_type != eth->h_proto) || 4658 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 4659 __skb_push(skb, ETH_HLEN); 4660 skb->protocol = eth_type_trans(skb, skb->dev); 4661 } 4662 4663 switch (act) { 4664 case XDP_REDIRECT: 4665 case XDP_TX: 4666 __skb_push(skb, mac_len); 4667 break; 4668 case XDP_PASS: 4669 metalen = xdp->data - xdp->data_meta; 4670 if (metalen) 4671 skb_metadata_set(skb, metalen); 4672 break; 4673 default: 4674 bpf_warn_invalid_xdp_action(act); 4675 /* fall through */ 4676 case XDP_ABORTED: 4677 trace_xdp_exception(skb->dev, xdp_prog, act); 4678 /* fall through */ 4679 case XDP_DROP: 4680 do_drop: 4681 kfree_skb(skb); 4682 break; 4683 } 4684 4685 return act; 4686 } 4687 4688 /* When doing generic XDP we have to bypass the qdisc layer and the 4689 * network taps in order to match in-driver-XDP behavior. 4690 */ 4691 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 4692 { 4693 struct net_device *dev = skb->dev; 4694 struct netdev_queue *txq; 4695 bool free_skb = true; 4696 int cpu, rc; 4697 4698 txq = netdev_core_pick_tx(dev, skb, NULL); 4699 cpu = smp_processor_id(); 4700 HARD_TX_LOCK(dev, txq, cpu); 4701 if (!netif_xmit_stopped(txq)) { 4702 rc = netdev_start_xmit(skb, dev, txq, 0); 4703 if (dev_xmit_complete(rc)) 4704 free_skb = false; 4705 } 4706 HARD_TX_UNLOCK(dev, txq); 4707 if (free_skb) { 4708 trace_xdp_exception(dev, xdp_prog, XDP_TX); 4709 kfree_skb(skb); 4710 } 4711 } 4712 4713 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 4714 4715 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 4716 { 4717 if (xdp_prog) { 4718 struct xdp_buff xdp; 4719 u32 act; 4720 int err; 4721 4722 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog); 4723 if (act != XDP_PASS) { 4724 switch (act) { 4725 case XDP_REDIRECT: 4726 err = xdp_do_generic_redirect(skb->dev, skb, 4727 &xdp, xdp_prog); 4728 if (err) 4729 goto out_redir; 4730 break; 4731 case XDP_TX: 4732 generic_xdp_tx(skb, xdp_prog); 4733 break; 4734 } 4735 return XDP_DROP; 4736 } 4737 } 4738 return XDP_PASS; 4739 out_redir: 4740 kfree_skb(skb); 4741 return XDP_DROP; 4742 } 4743 EXPORT_SYMBOL_GPL(do_xdp_generic); 4744 4745 static int netif_rx_internal(struct sk_buff *skb) 4746 { 4747 int ret; 4748 4749 net_timestamp_check(netdev_tstamp_prequeue, skb); 4750 4751 trace_netif_rx(skb); 4752 4753 #ifdef CONFIG_RPS 4754 if (static_branch_unlikely(&rps_needed)) { 4755 struct rps_dev_flow voidflow, *rflow = &voidflow; 4756 int cpu; 4757 4758 preempt_disable(); 4759 rcu_read_lock(); 4760 4761 cpu = get_rps_cpu(skb->dev, skb, &rflow); 4762 if (cpu < 0) 4763 cpu = smp_processor_id(); 4764 4765 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4766 4767 rcu_read_unlock(); 4768 preempt_enable(); 4769 } else 4770 #endif 4771 { 4772 unsigned int qtail; 4773 4774 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 4775 put_cpu(); 4776 } 4777 return ret; 4778 } 4779 4780 /** 4781 * netif_rx - post buffer to the network code 4782 * @skb: buffer to post 4783 * 4784 * This function receives a packet from a device driver and queues it for 4785 * the upper (protocol) levels to process. It always succeeds. The buffer 4786 * may be dropped during processing for congestion control or by the 4787 * protocol layers. 4788 * 4789 * return values: 4790 * NET_RX_SUCCESS (no congestion) 4791 * NET_RX_DROP (packet was dropped) 4792 * 4793 */ 4794 4795 int netif_rx(struct sk_buff *skb) 4796 { 4797 int ret; 4798 4799 trace_netif_rx_entry(skb); 4800 4801 ret = netif_rx_internal(skb); 4802 trace_netif_rx_exit(ret); 4803 4804 return ret; 4805 } 4806 EXPORT_SYMBOL(netif_rx); 4807 4808 int netif_rx_ni(struct sk_buff *skb) 4809 { 4810 int err; 4811 4812 trace_netif_rx_ni_entry(skb); 4813 4814 preempt_disable(); 4815 err = netif_rx_internal(skb); 4816 if (local_softirq_pending()) 4817 do_softirq(); 4818 preempt_enable(); 4819 trace_netif_rx_ni_exit(err); 4820 4821 return err; 4822 } 4823 EXPORT_SYMBOL(netif_rx_ni); 4824 4825 static __latent_entropy void net_tx_action(struct softirq_action *h) 4826 { 4827 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4828 4829 if (sd->completion_queue) { 4830 struct sk_buff *clist; 4831 4832 local_irq_disable(); 4833 clist = sd->completion_queue; 4834 sd->completion_queue = NULL; 4835 local_irq_enable(); 4836 4837 while (clist) { 4838 struct sk_buff *skb = clist; 4839 4840 clist = clist->next; 4841 4842 WARN_ON(refcount_read(&skb->users)); 4843 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 4844 trace_consume_skb(skb); 4845 else 4846 trace_kfree_skb(skb, net_tx_action); 4847 4848 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 4849 __kfree_skb(skb); 4850 else 4851 __kfree_skb_defer(skb); 4852 } 4853 4854 __kfree_skb_flush(); 4855 } 4856 4857 if (sd->output_queue) { 4858 struct Qdisc *head; 4859 4860 local_irq_disable(); 4861 head = sd->output_queue; 4862 sd->output_queue = NULL; 4863 sd->output_queue_tailp = &sd->output_queue; 4864 local_irq_enable(); 4865 4866 while (head) { 4867 struct Qdisc *q = head; 4868 spinlock_t *root_lock = NULL; 4869 4870 head = head->next_sched; 4871 4872 if (!(q->flags & TCQ_F_NOLOCK)) { 4873 root_lock = qdisc_lock(q); 4874 spin_lock(root_lock); 4875 } 4876 /* We need to make sure head->next_sched is read 4877 * before clearing __QDISC_STATE_SCHED 4878 */ 4879 smp_mb__before_atomic(); 4880 clear_bit(__QDISC_STATE_SCHED, &q->state); 4881 qdisc_run(q); 4882 if (root_lock) 4883 spin_unlock(root_lock); 4884 } 4885 } 4886 4887 xfrm_dev_backlog(sd); 4888 } 4889 4890 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 4891 /* This hook is defined here for ATM LANE */ 4892 int (*br_fdb_test_addr_hook)(struct net_device *dev, 4893 unsigned char *addr) __read_mostly; 4894 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 4895 #endif 4896 4897 static inline struct sk_buff * 4898 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4899 struct net_device *orig_dev) 4900 { 4901 #ifdef CONFIG_NET_CLS_ACT 4902 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress); 4903 struct tcf_result cl_res; 4904 4905 /* If there's at least one ingress present somewhere (so 4906 * we get here via enabled static key), remaining devices 4907 * that are not configured with an ingress qdisc will bail 4908 * out here. 4909 */ 4910 if (!miniq) 4911 return skb; 4912 4913 if (*pt_prev) { 4914 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4915 *pt_prev = NULL; 4916 } 4917 4918 qdisc_skb_cb(skb)->pkt_len = skb->len; 4919 skb->tc_at_ingress = 1; 4920 mini_qdisc_bstats_cpu_update(miniq, skb); 4921 4922 switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list, 4923 &cl_res, false)) { 4924 case TC_ACT_OK: 4925 case TC_ACT_RECLASSIFY: 4926 skb->tc_index = TC_H_MIN(cl_res.classid); 4927 break; 4928 case TC_ACT_SHOT: 4929 mini_qdisc_qstats_cpu_drop(miniq); 4930 kfree_skb(skb); 4931 return NULL; 4932 case TC_ACT_STOLEN: 4933 case TC_ACT_QUEUED: 4934 case TC_ACT_TRAP: 4935 consume_skb(skb); 4936 return NULL; 4937 case TC_ACT_REDIRECT: 4938 /* skb_mac_header check was done by cls/act_bpf, so 4939 * we can safely push the L2 header back before 4940 * redirecting to another netdev 4941 */ 4942 __skb_push(skb, skb->mac_len); 4943 skb_do_redirect(skb); 4944 return NULL; 4945 case TC_ACT_CONSUMED: 4946 return NULL; 4947 default: 4948 break; 4949 } 4950 #endif /* CONFIG_NET_CLS_ACT */ 4951 return skb; 4952 } 4953 4954 /** 4955 * netdev_is_rx_handler_busy - check if receive handler is registered 4956 * @dev: device to check 4957 * 4958 * Check if a receive handler is already registered for a given device. 4959 * Return true if there one. 4960 * 4961 * The caller must hold the rtnl_mutex. 4962 */ 4963 bool netdev_is_rx_handler_busy(struct net_device *dev) 4964 { 4965 ASSERT_RTNL(); 4966 return dev && rtnl_dereference(dev->rx_handler); 4967 } 4968 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 4969 4970 /** 4971 * netdev_rx_handler_register - register receive handler 4972 * @dev: device to register a handler for 4973 * @rx_handler: receive handler to register 4974 * @rx_handler_data: data pointer that is used by rx handler 4975 * 4976 * Register a receive handler for a device. This handler will then be 4977 * called from __netif_receive_skb. A negative errno code is returned 4978 * on a failure. 4979 * 4980 * The caller must hold the rtnl_mutex. 4981 * 4982 * For a general description of rx_handler, see enum rx_handler_result. 4983 */ 4984 int netdev_rx_handler_register(struct net_device *dev, 4985 rx_handler_func_t *rx_handler, 4986 void *rx_handler_data) 4987 { 4988 if (netdev_is_rx_handler_busy(dev)) 4989 return -EBUSY; 4990 4991 if (dev->priv_flags & IFF_NO_RX_HANDLER) 4992 return -EINVAL; 4993 4994 /* Note: rx_handler_data must be set before rx_handler */ 4995 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 4996 rcu_assign_pointer(dev->rx_handler, rx_handler); 4997 4998 return 0; 4999 } 5000 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 5001 5002 /** 5003 * netdev_rx_handler_unregister - unregister receive handler 5004 * @dev: device to unregister a handler from 5005 * 5006 * Unregister a receive handler from a device. 5007 * 5008 * The caller must hold the rtnl_mutex. 5009 */ 5010 void netdev_rx_handler_unregister(struct net_device *dev) 5011 { 5012 5013 ASSERT_RTNL(); 5014 RCU_INIT_POINTER(dev->rx_handler, NULL); 5015 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 5016 * section has a guarantee to see a non NULL rx_handler_data 5017 * as well. 5018 */ 5019 synchronize_net(); 5020 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 5021 } 5022 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 5023 5024 /* 5025 * Limit the use of PFMEMALLOC reserves to those protocols that implement 5026 * the special handling of PFMEMALLOC skbs. 5027 */ 5028 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 5029 { 5030 switch (skb->protocol) { 5031 case htons(ETH_P_ARP): 5032 case htons(ETH_P_IP): 5033 case htons(ETH_P_IPV6): 5034 case htons(ETH_P_8021Q): 5035 case htons(ETH_P_8021AD): 5036 return true; 5037 default: 5038 return false; 5039 } 5040 } 5041 5042 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 5043 int *ret, struct net_device *orig_dev) 5044 { 5045 if (nf_hook_ingress_active(skb)) { 5046 int ingress_retval; 5047 5048 if (*pt_prev) { 5049 *ret = deliver_skb(skb, *pt_prev, orig_dev); 5050 *pt_prev = NULL; 5051 } 5052 5053 rcu_read_lock(); 5054 ingress_retval = nf_hook_ingress(skb); 5055 rcu_read_unlock(); 5056 return ingress_retval; 5057 } 5058 return 0; 5059 } 5060 5061 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc, 5062 struct packet_type **ppt_prev) 5063 { 5064 struct packet_type *ptype, *pt_prev; 5065 rx_handler_func_t *rx_handler; 5066 struct sk_buff *skb = *pskb; 5067 struct net_device *orig_dev; 5068 bool deliver_exact = false; 5069 int ret = NET_RX_DROP; 5070 __be16 type; 5071 5072 net_timestamp_check(!netdev_tstamp_prequeue, skb); 5073 5074 trace_netif_receive_skb(skb); 5075 5076 orig_dev = skb->dev; 5077 5078 skb_reset_network_header(skb); 5079 if (!skb_transport_header_was_set(skb)) 5080 skb_reset_transport_header(skb); 5081 skb_reset_mac_len(skb); 5082 5083 pt_prev = NULL; 5084 5085 another_round: 5086 skb->skb_iif = skb->dev->ifindex; 5087 5088 __this_cpu_inc(softnet_data.processed); 5089 5090 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5091 int ret2; 5092 5093 preempt_disable(); 5094 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 5095 preempt_enable(); 5096 5097 if (ret2 != XDP_PASS) { 5098 ret = NET_RX_DROP; 5099 goto out; 5100 } 5101 skb_reset_mac_len(skb); 5102 } 5103 5104 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 5105 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 5106 skb = skb_vlan_untag(skb); 5107 if (unlikely(!skb)) 5108 goto out; 5109 } 5110 5111 if (skb_skip_tc_classify(skb)) 5112 goto skip_classify; 5113 5114 if (pfmemalloc) 5115 goto skip_taps; 5116 5117 list_for_each_entry_rcu(ptype, &ptype_all, list) { 5118 if (pt_prev) 5119 ret = deliver_skb(skb, pt_prev, orig_dev); 5120 pt_prev = ptype; 5121 } 5122 5123 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 5124 if (pt_prev) 5125 ret = deliver_skb(skb, pt_prev, orig_dev); 5126 pt_prev = ptype; 5127 } 5128 5129 skip_taps: 5130 #ifdef CONFIG_NET_INGRESS 5131 if (static_branch_unlikely(&ingress_needed_key)) { 5132 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev); 5133 if (!skb) 5134 goto out; 5135 5136 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 5137 goto out; 5138 } 5139 #endif 5140 skb_reset_redirect(skb); 5141 skip_classify: 5142 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 5143 goto drop; 5144 5145 if (skb_vlan_tag_present(skb)) { 5146 if (pt_prev) { 5147 ret = deliver_skb(skb, pt_prev, orig_dev); 5148 pt_prev = NULL; 5149 } 5150 if (vlan_do_receive(&skb)) 5151 goto another_round; 5152 else if (unlikely(!skb)) 5153 goto out; 5154 } 5155 5156 rx_handler = rcu_dereference(skb->dev->rx_handler); 5157 if (rx_handler) { 5158 if (pt_prev) { 5159 ret = deliver_skb(skb, pt_prev, orig_dev); 5160 pt_prev = NULL; 5161 } 5162 switch (rx_handler(&skb)) { 5163 case RX_HANDLER_CONSUMED: 5164 ret = NET_RX_SUCCESS; 5165 goto out; 5166 case RX_HANDLER_ANOTHER: 5167 goto another_round; 5168 case RX_HANDLER_EXACT: 5169 deliver_exact = true; 5170 case RX_HANDLER_PASS: 5171 break; 5172 default: 5173 BUG(); 5174 } 5175 } 5176 5177 if (unlikely(skb_vlan_tag_present(skb))) { 5178 check_vlan_id: 5179 if (skb_vlan_tag_get_id(skb)) { 5180 /* Vlan id is non 0 and vlan_do_receive() above couldn't 5181 * find vlan device. 5182 */ 5183 skb->pkt_type = PACKET_OTHERHOST; 5184 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 5185 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 5186 /* Outer header is 802.1P with vlan 0, inner header is 5187 * 802.1Q or 802.1AD and vlan_do_receive() above could 5188 * not find vlan dev for vlan id 0. 5189 */ 5190 __vlan_hwaccel_clear_tag(skb); 5191 skb = skb_vlan_untag(skb); 5192 if (unlikely(!skb)) 5193 goto out; 5194 if (vlan_do_receive(&skb)) 5195 /* After stripping off 802.1P header with vlan 0 5196 * vlan dev is found for inner header. 5197 */ 5198 goto another_round; 5199 else if (unlikely(!skb)) 5200 goto out; 5201 else 5202 /* We have stripped outer 802.1P vlan 0 header. 5203 * But could not find vlan dev. 5204 * check again for vlan id to set OTHERHOST. 5205 */ 5206 goto check_vlan_id; 5207 } 5208 /* Note: we might in the future use prio bits 5209 * and set skb->priority like in vlan_do_receive() 5210 * For the time being, just ignore Priority Code Point 5211 */ 5212 __vlan_hwaccel_clear_tag(skb); 5213 } 5214 5215 type = skb->protocol; 5216 5217 /* deliver only exact match when indicated */ 5218 if (likely(!deliver_exact)) { 5219 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5220 &ptype_base[ntohs(type) & 5221 PTYPE_HASH_MASK]); 5222 } 5223 5224 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5225 &orig_dev->ptype_specific); 5226 5227 if (unlikely(skb->dev != orig_dev)) { 5228 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5229 &skb->dev->ptype_specific); 5230 } 5231 5232 if (pt_prev) { 5233 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 5234 goto drop; 5235 *ppt_prev = pt_prev; 5236 } else { 5237 drop: 5238 if (!deliver_exact) 5239 atomic_long_inc(&skb->dev->rx_dropped); 5240 else 5241 atomic_long_inc(&skb->dev->rx_nohandler); 5242 kfree_skb(skb); 5243 /* Jamal, now you will not able to escape explaining 5244 * me how you were going to use this. :-) 5245 */ 5246 ret = NET_RX_DROP; 5247 } 5248 5249 out: 5250 /* The invariant here is that if *ppt_prev is not NULL 5251 * then skb should also be non-NULL. 5252 * 5253 * Apparently *ppt_prev assignment above holds this invariant due to 5254 * skb dereferencing near it. 5255 */ 5256 *pskb = skb; 5257 return ret; 5258 } 5259 5260 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 5261 { 5262 struct net_device *orig_dev = skb->dev; 5263 struct packet_type *pt_prev = NULL; 5264 int ret; 5265 5266 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5267 if (pt_prev) 5268 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, 5269 skb->dev, pt_prev, orig_dev); 5270 return ret; 5271 } 5272 5273 /** 5274 * netif_receive_skb_core - special purpose version of netif_receive_skb 5275 * @skb: buffer to process 5276 * 5277 * More direct receive version of netif_receive_skb(). It should 5278 * only be used by callers that have a need to skip RPS and Generic XDP. 5279 * Caller must also take care of handling if ``(page_is_)pfmemalloc``. 5280 * 5281 * This function may only be called from softirq context and interrupts 5282 * should be enabled. 5283 * 5284 * Return values (usually ignored): 5285 * NET_RX_SUCCESS: no congestion 5286 * NET_RX_DROP: packet was dropped 5287 */ 5288 int netif_receive_skb_core(struct sk_buff *skb) 5289 { 5290 int ret; 5291 5292 rcu_read_lock(); 5293 ret = __netif_receive_skb_one_core(skb, false); 5294 rcu_read_unlock(); 5295 5296 return ret; 5297 } 5298 EXPORT_SYMBOL(netif_receive_skb_core); 5299 5300 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 5301 struct packet_type *pt_prev, 5302 struct net_device *orig_dev) 5303 { 5304 struct sk_buff *skb, *next; 5305 5306 if (!pt_prev) 5307 return; 5308 if (list_empty(head)) 5309 return; 5310 if (pt_prev->list_func != NULL) 5311 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv, 5312 ip_list_rcv, head, pt_prev, orig_dev); 5313 else 5314 list_for_each_entry_safe(skb, next, head, list) { 5315 skb_list_del_init(skb); 5316 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 5317 } 5318 } 5319 5320 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 5321 { 5322 /* Fast-path assumptions: 5323 * - There is no RX handler. 5324 * - Only one packet_type matches. 5325 * If either of these fails, we will end up doing some per-packet 5326 * processing in-line, then handling the 'last ptype' for the whole 5327 * sublist. This can't cause out-of-order delivery to any single ptype, 5328 * because the 'last ptype' must be constant across the sublist, and all 5329 * other ptypes are handled per-packet. 5330 */ 5331 /* Current (common) ptype of sublist */ 5332 struct packet_type *pt_curr = NULL; 5333 /* Current (common) orig_dev of sublist */ 5334 struct net_device *od_curr = NULL; 5335 struct list_head sublist; 5336 struct sk_buff *skb, *next; 5337 5338 INIT_LIST_HEAD(&sublist); 5339 list_for_each_entry_safe(skb, next, head, list) { 5340 struct net_device *orig_dev = skb->dev; 5341 struct packet_type *pt_prev = NULL; 5342 5343 skb_list_del_init(skb); 5344 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5345 if (!pt_prev) 5346 continue; 5347 if (pt_curr != pt_prev || od_curr != orig_dev) { 5348 /* dispatch old sublist */ 5349 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5350 /* start new sublist */ 5351 INIT_LIST_HEAD(&sublist); 5352 pt_curr = pt_prev; 5353 od_curr = orig_dev; 5354 } 5355 list_add_tail(&skb->list, &sublist); 5356 } 5357 5358 /* dispatch final sublist */ 5359 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5360 } 5361 5362 static int __netif_receive_skb(struct sk_buff *skb) 5363 { 5364 int ret; 5365 5366 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 5367 unsigned int noreclaim_flag; 5368 5369 /* 5370 * PFMEMALLOC skbs are special, they should 5371 * - be delivered to SOCK_MEMALLOC sockets only 5372 * - stay away from userspace 5373 * - have bounded memory usage 5374 * 5375 * Use PF_MEMALLOC as this saves us from propagating the allocation 5376 * context down to all allocation sites. 5377 */ 5378 noreclaim_flag = memalloc_noreclaim_save(); 5379 ret = __netif_receive_skb_one_core(skb, true); 5380 memalloc_noreclaim_restore(noreclaim_flag); 5381 } else 5382 ret = __netif_receive_skb_one_core(skb, false); 5383 5384 return ret; 5385 } 5386 5387 static void __netif_receive_skb_list(struct list_head *head) 5388 { 5389 unsigned long noreclaim_flag = 0; 5390 struct sk_buff *skb, *next; 5391 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 5392 5393 list_for_each_entry_safe(skb, next, head, list) { 5394 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 5395 struct list_head sublist; 5396 5397 /* Handle the previous sublist */ 5398 list_cut_before(&sublist, head, &skb->list); 5399 if (!list_empty(&sublist)) 5400 __netif_receive_skb_list_core(&sublist, pfmemalloc); 5401 pfmemalloc = !pfmemalloc; 5402 /* See comments in __netif_receive_skb */ 5403 if (pfmemalloc) 5404 noreclaim_flag = memalloc_noreclaim_save(); 5405 else 5406 memalloc_noreclaim_restore(noreclaim_flag); 5407 } 5408 } 5409 /* Handle the remaining sublist */ 5410 if (!list_empty(head)) 5411 __netif_receive_skb_list_core(head, pfmemalloc); 5412 /* Restore pflags */ 5413 if (pfmemalloc) 5414 memalloc_noreclaim_restore(noreclaim_flag); 5415 } 5416 5417 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 5418 { 5419 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 5420 struct bpf_prog *new = xdp->prog; 5421 int ret = 0; 5422 5423 if (new) { 5424 u32 i; 5425 5426 /* generic XDP does not work with DEVMAPs that can 5427 * have a bpf_prog installed on an entry 5428 */ 5429 for (i = 0; i < new->aux->used_map_cnt; i++) { 5430 if (dev_map_can_have_prog(new->aux->used_maps[i])) 5431 return -EINVAL; 5432 } 5433 } 5434 5435 switch (xdp->command) { 5436 case XDP_SETUP_PROG: 5437 rcu_assign_pointer(dev->xdp_prog, new); 5438 if (old) 5439 bpf_prog_put(old); 5440 5441 if (old && !new) { 5442 static_branch_dec(&generic_xdp_needed_key); 5443 } else if (new && !old) { 5444 static_branch_inc(&generic_xdp_needed_key); 5445 dev_disable_lro(dev); 5446 dev_disable_gro_hw(dev); 5447 } 5448 break; 5449 5450 case XDP_QUERY_PROG: 5451 xdp->prog_id = old ? old->aux->id : 0; 5452 break; 5453 5454 default: 5455 ret = -EINVAL; 5456 break; 5457 } 5458 5459 return ret; 5460 } 5461 5462 static int netif_receive_skb_internal(struct sk_buff *skb) 5463 { 5464 int ret; 5465 5466 net_timestamp_check(netdev_tstamp_prequeue, skb); 5467 5468 if (skb_defer_rx_timestamp(skb)) 5469 return NET_RX_SUCCESS; 5470 5471 rcu_read_lock(); 5472 #ifdef CONFIG_RPS 5473 if (static_branch_unlikely(&rps_needed)) { 5474 struct rps_dev_flow voidflow, *rflow = &voidflow; 5475 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5476 5477 if (cpu >= 0) { 5478 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5479 rcu_read_unlock(); 5480 return ret; 5481 } 5482 } 5483 #endif 5484 ret = __netif_receive_skb(skb); 5485 rcu_read_unlock(); 5486 return ret; 5487 } 5488 5489 static void netif_receive_skb_list_internal(struct list_head *head) 5490 { 5491 struct sk_buff *skb, *next; 5492 struct list_head sublist; 5493 5494 INIT_LIST_HEAD(&sublist); 5495 list_for_each_entry_safe(skb, next, head, list) { 5496 net_timestamp_check(netdev_tstamp_prequeue, skb); 5497 skb_list_del_init(skb); 5498 if (!skb_defer_rx_timestamp(skb)) 5499 list_add_tail(&skb->list, &sublist); 5500 } 5501 list_splice_init(&sublist, head); 5502 5503 rcu_read_lock(); 5504 #ifdef CONFIG_RPS 5505 if (static_branch_unlikely(&rps_needed)) { 5506 list_for_each_entry_safe(skb, next, head, list) { 5507 struct rps_dev_flow voidflow, *rflow = &voidflow; 5508 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5509 5510 if (cpu >= 0) { 5511 /* Will be handled, remove from list */ 5512 skb_list_del_init(skb); 5513 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5514 } 5515 } 5516 } 5517 #endif 5518 __netif_receive_skb_list(head); 5519 rcu_read_unlock(); 5520 } 5521 5522 /** 5523 * netif_receive_skb - process receive buffer from network 5524 * @skb: buffer to process 5525 * 5526 * netif_receive_skb() is the main receive data processing function. 5527 * It always succeeds. The buffer may be dropped during processing 5528 * for congestion control or by the protocol layers. 5529 * 5530 * This function may only be called from softirq context and interrupts 5531 * should be enabled. 5532 * 5533 * Return values (usually ignored): 5534 * NET_RX_SUCCESS: no congestion 5535 * NET_RX_DROP: packet was dropped 5536 */ 5537 int netif_receive_skb(struct sk_buff *skb) 5538 { 5539 int ret; 5540 5541 trace_netif_receive_skb_entry(skb); 5542 5543 ret = netif_receive_skb_internal(skb); 5544 trace_netif_receive_skb_exit(ret); 5545 5546 return ret; 5547 } 5548 EXPORT_SYMBOL(netif_receive_skb); 5549 5550 /** 5551 * netif_receive_skb_list - process many receive buffers from network 5552 * @head: list of skbs to process. 5553 * 5554 * Since return value of netif_receive_skb() is normally ignored, and 5555 * wouldn't be meaningful for a list, this function returns void. 5556 * 5557 * This function may only be called from softirq context and interrupts 5558 * should be enabled. 5559 */ 5560 void netif_receive_skb_list(struct list_head *head) 5561 { 5562 struct sk_buff *skb; 5563 5564 if (list_empty(head)) 5565 return; 5566 if (trace_netif_receive_skb_list_entry_enabled()) { 5567 list_for_each_entry(skb, head, list) 5568 trace_netif_receive_skb_list_entry(skb); 5569 } 5570 netif_receive_skb_list_internal(head); 5571 trace_netif_receive_skb_list_exit(0); 5572 } 5573 EXPORT_SYMBOL(netif_receive_skb_list); 5574 5575 DEFINE_PER_CPU(struct work_struct, flush_works); 5576 5577 /* Network device is going away, flush any packets still pending */ 5578 static void flush_backlog(struct work_struct *work) 5579 { 5580 struct sk_buff *skb, *tmp; 5581 struct softnet_data *sd; 5582 5583 local_bh_disable(); 5584 sd = this_cpu_ptr(&softnet_data); 5585 5586 local_irq_disable(); 5587 rps_lock(sd); 5588 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 5589 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5590 __skb_unlink(skb, &sd->input_pkt_queue); 5591 kfree_skb(skb); 5592 input_queue_head_incr(sd); 5593 } 5594 } 5595 rps_unlock(sd); 5596 local_irq_enable(); 5597 5598 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 5599 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5600 __skb_unlink(skb, &sd->process_queue); 5601 kfree_skb(skb); 5602 input_queue_head_incr(sd); 5603 } 5604 } 5605 local_bh_enable(); 5606 } 5607 5608 static void flush_all_backlogs(void) 5609 { 5610 unsigned int cpu; 5611 5612 get_online_cpus(); 5613 5614 for_each_online_cpu(cpu) 5615 queue_work_on(cpu, system_highpri_wq, 5616 per_cpu_ptr(&flush_works, cpu)); 5617 5618 for_each_online_cpu(cpu) 5619 flush_work(per_cpu_ptr(&flush_works, cpu)); 5620 5621 put_online_cpus(); 5622 } 5623 5624 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */ 5625 static void gro_normal_list(struct napi_struct *napi) 5626 { 5627 if (!napi->rx_count) 5628 return; 5629 netif_receive_skb_list_internal(&napi->rx_list); 5630 INIT_LIST_HEAD(&napi->rx_list); 5631 napi->rx_count = 0; 5632 } 5633 5634 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded, 5635 * pass the whole batch up to the stack. 5636 */ 5637 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb) 5638 { 5639 list_add_tail(&skb->list, &napi->rx_list); 5640 if (++napi->rx_count >= gro_normal_batch) 5641 gro_normal_list(napi); 5642 } 5643 5644 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int)); 5645 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int)); 5646 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb) 5647 { 5648 struct packet_offload *ptype; 5649 __be16 type = skb->protocol; 5650 struct list_head *head = &offload_base; 5651 int err = -ENOENT; 5652 5653 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 5654 5655 if (NAPI_GRO_CB(skb)->count == 1) { 5656 skb_shinfo(skb)->gso_size = 0; 5657 goto out; 5658 } 5659 5660 rcu_read_lock(); 5661 list_for_each_entry_rcu(ptype, head, list) { 5662 if (ptype->type != type || !ptype->callbacks.gro_complete) 5663 continue; 5664 5665 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete, 5666 ipv6_gro_complete, inet_gro_complete, 5667 skb, 0); 5668 break; 5669 } 5670 rcu_read_unlock(); 5671 5672 if (err) { 5673 WARN_ON(&ptype->list == head); 5674 kfree_skb(skb); 5675 return NET_RX_SUCCESS; 5676 } 5677 5678 out: 5679 gro_normal_one(napi, skb); 5680 return NET_RX_SUCCESS; 5681 } 5682 5683 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index, 5684 bool flush_old) 5685 { 5686 struct list_head *head = &napi->gro_hash[index].list; 5687 struct sk_buff *skb, *p; 5688 5689 list_for_each_entry_safe_reverse(skb, p, head, list) { 5690 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 5691 return; 5692 skb_list_del_init(skb); 5693 napi_gro_complete(napi, skb); 5694 napi->gro_hash[index].count--; 5695 } 5696 5697 if (!napi->gro_hash[index].count) 5698 __clear_bit(index, &napi->gro_bitmask); 5699 } 5700 5701 /* napi->gro_hash[].list contains packets ordered by age. 5702 * youngest packets at the head of it. 5703 * Complete skbs in reverse order to reduce latencies. 5704 */ 5705 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 5706 { 5707 unsigned long bitmask = napi->gro_bitmask; 5708 unsigned int i, base = ~0U; 5709 5710 while ((i = ffs(bitmask)) != 0) { 5711 bitmask >>= i; 5712 base += i; 5713 __napi_gro_flush_chain(napi, base, flush_old); 5714 } 5715 } 5716 EXPORT_SYMBOL(napi_gro_flush); 5717 5718 static struct list_head *gro_list_prepare(struct napi_struct *napi, 5719 struct sk_buff *skb) 5720 { 5721 unsigned int maclen = skb->dev->hard_header_len; 5722 u32 hash = skb_get_hash_raw(skb); 5723 struct list_head *head; 5724 struct sk_buff *p; 5725 5726 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list; 5727 list_for_each_entry(p, head, list) { 5728 unsigned long diffs; 5729 5730 NAPI_GRO_CB(p)->flush = 0; 5731 5732 if (hash != skb_get_hash_raw(p)) { 5733 NAPI_GRO_CB(p)->same_flow = 0; 5734 continue; 5735 } 5736 5737 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 5738 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb); 5739 if (skb_vlan_tag_present(p)) 5740 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb); 5741 diffs |= skb_metadata_dst_cmp(p, skb); 5742 diffs |= skb_metadata_differs(p, skb); 5743 if (maclen == ETH_HLEN) 5744 diffs |= compare_ether_header(skb_mac_header(p), 5745 skb_mac_header(skb)); 5746 else if (!diffs) 5747 diffs = memcmp(skb_mac_header(p), 5748 skb_mac_header(skb), 5749 maclen); 5750 NAPI_GRO_CB(p)->same_flow = !diffs; 5751 } 5752 5753 return head; 5754 } 5755 5756 static void skb_gro_reset_offset(struct sk_buff *skb) 5757 { 5758 const struct skb_shared_info *pinfo = skb_shinfo(skb); 5759 const skb_frag_t *frag0 = &pinfo->frags[0]; 5760 5761 NAPI_GRO_CB(skb)->data_offset = 0; 5762 NAPI_GRO_CB(skb)->frag0 = NULL; 5763 NAPI_GRO_CB(skb)->frag0_len = 0; 5764 5765 if (!skb_headlen(skb) && pinfo->nr_frags && 5766 !PageHighMem(skb_frag_page(frag0))) { 5767 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 5768 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 5769 skb_frag_size(frag0), 5770 skb->end - skb->tail); 5771 } 5772 } 5773 5774 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 5775 { 5776 struct skb_shared_info *pinfo = skb_shinfo(skb); 5777 5778 BUG_ON(skb->end - skb->tail < grow); 5779 5780 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 5781 5782 skb->data_len -= grow; 5783 skb->tail += grow; 5784 5785 skb_frag_off_add(&pinfo->frags[0], grow); 5786 skb_frag_size_sub(&pinfo->frags[0], grow); 5787 5788 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 5789 skb_frag_unref(skb, 0); 5790 memmove(pinfo->frags, pinfo->frags + 1, 5791 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 5792 } 5793 } 5794 5795 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head) 5796 { 5797 struct sk_buff *oldest; 5798 5799 oldest = list_last_entry(head, struct sk_buff, list); 5800 5801 /* We are called with head length >= MAX_GRO_SKBS, so this is 5802 * impossible. 5803 */ 5804 if (WARN_ON_ONCE(!oldest)) 5805 return; 5806 5807 /* Do not adjust napi->gro_hash[].count, caller is adding a new 5808 * SKB to the chain. 5809 */ 5810 skb_list_del_init(oldest); 5811 napi_gro_complete(napi, oldest); 5812 } 5813 5814 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *, 5815 struct sk_buff *)); 5816 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *, 5817 struct sk_buff *)); 5818 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5819 { 5820 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1); 5821 struct list_head *head = &offload_base; 5822 struct packet_offload *ptype; 5823 __be16 type = skb->protocol; 5824 struct list_head *gro_head; 5825 struct sk_buff *pp = NULL; 5826 enum gro_result ret; 5827 int same_flow; 5828 int grow; 5829 5830 if (netif_elide_gro(skb->dev)) 5831 goto normal; 5832 5833 gro_head = gro_list_prepare(napi, skb); 5834 5835 rcu_read_lock(); 5836 list_for_each_entry_rcu(ptype, head, list) { 5837 if (ptype->type != type || !ptype->callbacks.gro_receive) 5838 continue; 5839 5840 skb_set_network_header(skb, skb_gro_offset(skb)); 5841 skb_reset_mac_len(skb); 5842 NAPI_GRO_CB(skb)->same_flow = 0; 5843 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 5844 NAPI_GRO_CB(skb)->free = 0; 5845 NAPI_GRO_CB(skb)->encap_mark = 0; 5846 NAPI_GRO_CB(skb)->recursion_counter = 0; 5847 NAPI_GRO_CB(skb)->is_fou = 0; 5848 NAPI_GRO_CB(skb)->is_atomic = 1; 5849 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 5850 5851 /* Setup for GRO checksum validation */ 5852 switch (skb->ip_summed) { 5853 case CHECKSUM_COMPLETE: 5854 NAPI_GRO_CB(skb)->csum = skb->csum; 5855 NAPI_GRO_CB(skb)->csum_valid = 1; 5856 NAPI_GRO_CB(skb)->csum_cnt = 0; 5857 break; 5858 case CHECKSUM_UNNECESSARY: 5859 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 5860 NAPI_GRO_CB(skb)->csum_valid = 0; 5861 break; 5862 default: 5863 NAPI_GRO_CB(skb)->csum_cnt = 0; 5864 NAPI_GRO_CB(skb)->csum_valid = 0; 5865 } 5866 5867 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive, 5868 ipv6_gro_receive, inet_gro_receive, 5869 gro_head, skb); 5870 break; 5871 } 5872 rcu_read_unlock(); 5873 5874 if (&ptype->list == head) 5875 goto normal; 5876 5877 if (PTR_ERR(pp) == -EINPROGRESS) { 5878 ret = GRO_CONSUMED; 5879 goto ok; 5880 } 5881 5882 same_flow = NAPI_GRO_CB(skb)->same_flow; 5883 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 5884 5885 if (pp) { 5886 skb_list_del_init(pp); 5887 napi_gro_complete(napi, pp); 5888 napi->gro_hash[hash].count--; 5889 } 5890 5891 if (same_flow) 5892 goto ok; 5893 5894 if (NAPI_GRO_CB(skb)->flush) 5895 goto normal; 5896 5897 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) { 5898 gro_flush_oldest(napi, gro_head); 5899 } else { 5900 napi->gro_hash[hash].count++; 5901 } 5902 NAPI_GRO_CB(skb)->count = 1; 5903 NAPI_GRO_CB(skb)->age = jiffies; 5904 NAPI_GRO_CB(skb)->last = skb; 5905 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 5906 list_add(&skb->list, gro_head); 5907 ret = GRO_HELD; 5908 5909 pull: 5910 grow = skb_gro_offset(skb) - skb_headlen(skb); 5911 if (grow > 0) 5912 gro_pull_from_frag0(skb, grow); 5913 ok: 5914 if (napi->gro_hash[hash].count) { 5915 if (!test_bit(hash, &napi->gro_bitmask)) 5916 __set_bit(hash, &napi->gro_bitmask); 5917 } else if (test_bit(hash, &napi->gro_bitmask)) { 5918 __clear_bit(hash, &napi->gro_bitmask); 5919 } 5920 5921 return ret; 5922 5923 normal: 5924 ret = GRO_NORMAL; 5925 goto pull; 5926 } 5927 5928 struct packet_offload *gro_find_receive_by_type(__be16 type) 5929 { 5930 struct list_head *offload_head = &offload_base; 5931 struct packet_offload *ptype; 5932 5933 list_for_each_entry_rcu(ptype, offload_head, list) { 5934 if (ptype->type != type || !ptype->callbacks.gro_receive) 5935 continue; 5936 return ptype; 5937 } 5938 return NULL; 5939 } 5940 EXPORT_SYMBOL(gro_find_receive_by_type); 5941 5942 struct packet_offload *gro_find_complete_by_type(__be16 type) 5943 { 5944 struct list_head *offload_head = &offload_base; 5945 struct packet_offload *ptype; 5946 5947 list_for_each_entry_rcu(ptype, offload_head, list) { 5948 if (ptype->type != type || !ptype->callbacks.gro_complete) 5949 continue; 5950 return ptype; 5951 } 5952 return NULL; 5953 } 5954 EXPORT_SYMBOL(gro_find_complete_by_type); 5955 5956 static void napi_skb_free_stolen_head(struct sk_buff *skb) 5957 { 5958 skb_dst_drop(skb); 5959 skb_ext_put(skb); 5960 kmem_cache_free(skbuff_head_cache, skb); 5961 } 5962 5963 static gro_result_t napi_skb_finish(struct napi_struct *napi, 5964 struct sk_buff *skb, 5965 gro_result_t ret) 5966 { 5967 switch (ret) { 5968 case GRO_NORMAL: 5969 gro_normal_one(napi, skb); 5970 break; 5971 5972 case GRO_DROP: 5973 kfree_skb(skb); 5974 break; 5975 5976 case GRO_MERGED_FREE: 5977 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5978 napi_skb_free_stolen_head(skb); 5979 else 5980 __kfree_skb(skb); 5981 break; 5982 5983 case GRO_HELD: 5984 case GRO_MERGED: 5985 case GRO_CONSUMED: 5986 break; 5987 } 5988 5989 return ret; 5990 } 5991 5992 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5993 { 5994 gro_result_t ret; 5995 5996 skb_mark_napi_id(skb, napi); 5997 trace_napi_gro_receive_entry(skb); 5998 5999 skb_gro_reset_offset(skb); 6000 6001 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb)); 6002 trace_napi_gro_receive_exit(ret); 6003 6004 return ret; 6005 } 6006 EXPORT_SYMBOL(napi_gro_receive); 6007 6008 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 6009 { 6010 if (unlikely(skb->pfmemalloc)) { 6011 consume_skb(skb); 6012 return; 6013 } 6014 __skb_pull(skb, skb_headlen(skb)); 6015 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 6016 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 6017 __vlan_hwaccel_clear_tag(skb); 6018 skb->dev = napi->dev; 6019 skb->skb_iif = 0; 6020 6021 /* eth_type_trans() assumes pkt_type is PACKET_HOST */ 6022 skb->pkt_type = PACKET_HOST; 6023 6024 skb->encapsulation = 0; 6025 skb_shinfo(skb)->gso_type = 0; 6026 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6027 skb_ext_reset(skb); 6028 6029 napi->skb = skb; 6030 } 6031 6032 struct sk_buff *napi_get_frags(struct napi_struct *napi) 6033 { 6034 struct sk_buff *skb = napi->skb; 6035 6036 if (!skb) { 6037 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 6038 if (skb) { 6039 napi->skb = skb; 6040 skb_mark_napi_id(skb, napi); 6041 } 6042 } 6043 return skb; 6044 } 6045 EXPORT_SYMBOL(napi_get_frags); 6046 6047 static gro_result_t napi_frags_finish(struct napi_struct *napi, 6048 struct sk_buff *skb, 6049 gro_result_t ret) 6050 { 6051 switch (ret) { 6052 case GRO_NORMAL: 6053 case GRO_HELD: 6054 __skb_push(skb, ETH_HLEN); 6055 skb->protocol = eth_type_trans(skb, skb->dev); 6056 if (ret == GRO_NORMAL) 6057 gro_normal_one(napi, skb); 6058 break; 6059 6060 case GRO_DROP: 6061 napi_reuse_skb(napi, skb); 6062 break; 6063 6064 case GRO_MERGED_FREE: 6065 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 6066 napi_skb_free_stolen_head(skb); 6067 else 6068 napi_reuse_skb(napi, skb); 6069 break; 6070 6071 case GRO_MERGED: 6072 case GRO_CONSUMED: 6073 break; 6074 } 6075 6076 return ret; 6077 } 6078 6079 /* Upper GRO stack assumes network header starts at gro_offset=0 6080 * Drivers could call both napi_gro_frags() and napi_gro_receive() 6081 * We copy ethernet header into skb->data to have a common layout. 6082 */ 6083 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 6084 { 6085 struct sk_buff *skb = napi->skb; 6086 const struct ethhdr *eth; 6087 unsigned int hlen = sizeof(*eth); 6088 6089 napi->skb = NULL; 6090 6091 skb_reset_mac_header(skb); 6092 skb_gro_reset_offset(skb); 6093 6094 if (unlikely(skb_gro_header_hard(skb, hlen))) { 6095 eth = skb_gro_header_slow(skb, hlen, 0); 6096 if (unlikely(!eth)) { 6097 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 6098 __func__, napi->dev->name); 6099 napi_reuse_skb(napi, skb); 6100 return NULL; 6101 } 6102 } else { 6103 eth = (const struct ethhdr *)skb->data; 6104 gro_pull_from_frag0(skb, hlen); 6105 NAPI_GRO_CB(skb)->frag0 += hlen; 6106 NAPI_GRO_CB(skb)->frag0_len -= hlen; 6107 } 6108 __skb_pull(skb, hlen); 6109 6110 /* 6111 * This works because the only protocols we care about don't require 6112 * special handling. 6113 * We'll fix it up properly in napi_frags_finish() 6114 */ 6115 skb->protocol = eth->h_proto; 6116 6117 return skb; 6118 } 6119 6120 gro_result_t napi_gro_frags(struct napi_struct *napi) 6121 { 6122 gro_result_t ret; 6123 struct sk_buff *skb = napi_frags_skb(napi); 6124 6125 if (!skb) 6126 return GRO_DROP; 6127 6128 trace_napi_gro_frags_entry(skb); 6129 6130 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 6131 trace_napi_gro_frags_exit(ret); 6132 6133 return ret; 6134 } 6135 EXPORT_SYMBOL(napi_gro_frags); 6136 6137 /* Compute the checksum from gro_offset and return the folded value 6138 * after adding in any pseudo checksum. 6139 */ 6140 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 6141 { 6142 __wsum wsum; 6143 __sum16 sum; 6144 6145 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 6146 6147 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 6148 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 6149 /* See comments in __skb_checksum_complete(). */ 6150 if (likely(!sum)) { 6151 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 6152 !skb->csum_complete_sw) 6153 netdev_rx_csum_fault(skb->dev, skb); 6154 } 6155 6156 NAPI_GRO_CB(skb)->csum = wsum; 6157 NAPI_GRO_CB(skb)->csum_valid = 1; 6158 6159 return sum; 6160 } 6161 EXPORT_SYMBOL(__skb_gro_checksum_complete); 6162 6163 static void net_rps_send_ipi(struct softnet_data *remsd) 6164 { 6165 #ifdef CONFIG_RPS 6166 while (remsd) { 6167 struct softnet_data *next = remsd->rps_ipi_next; 6168 6169 if (cpu_online(remsd->cpu)) 6170 smp_call_function_single_async(remsd->cpu, &remsd->csd); 6171 remsd = next; 6172 } 6173 #endif 6174 } 6175 6176 /* 6177 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 6178 * Note: called with local irq disabled, but exits with local irq enabled. 6179 */ 6180 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 6181 { 6182 #ifdef CONFIG_RPS 6183 struct softnet_data *remsd = sd->rps_ipi_list; 6184 6185 if (remsd) { 6186 sd->rps_ipi_list = NULL; 6187 6188 local_irq_enable(); 6189 6190 /* Send pending IPI's to kick RPS processing on remote cpus. */ 6191 net_rps_send_ipi(remsd); 6192 } else 6193 #endif 6194 local_irq_enable(); 6195 } 6196 6197 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 6198 { 6199 #ifdef CONFIG_RPS 6200 return sd->rps_ipi_list != NULL; 6201 #else 6202 return false; 6203 #endif 6204 } 6205 6206 static int process_backlog(struct napi_struct *napi, int quota) 6207 { 6208 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 6209 bool again = true; 6210 int work = 0; 6211 6212 /* Check if we have pending ipi, its better to send them now, 6213 * not waiting net_rx_action() end. 6214 */ 6215 if (sd_has_rps_ipi_waiting(sd)) { 6216 local_irq_disable(); 6217 net_rps_action_and_irq_enable(sd); 6218 } 6219 6220 napi->weight = dev_rx_weight; 6221 while (again) { 6222 struct sk_buff *skb; 6223 6224 while ((skb = __skb_dequeue(&sd->process_queue))) { 6225 rcu_read_lock(); 6226 __netif_receive_skb(skb); 6227 rcu_read_unlock(); 6228 input_queue_head_incr(sd); 6229 if (++work >= quota) 6230 return work; 6231 6232 } 6233 6234 local_irq_disable(); 6235 rps_lock(sd); 6236 if (skb_queue_empty(&sd->input_pkt_queue)) { 6237 /* 6238 * Inline a custom version of __napi_complete(). 6239 * only current cpu owns and manipulates this napi, 6240 * and NAPI_STATE_SCHED is the only possible flag set 6241 * on backlog. 6242 * We can use a plain write instead of clear_bit(), 6243 * and we dont need an smp_mb() memory barrier. 6244 */ 6245 napi->state = 0; 6246 again = false; 6247 } else { 6248 skb_queue_splice_tail_init(&sd->input_pkt_queue, 6249 &sd->process_queue); 6250 } 6251 rps_unlock(sd); 6252 local_irq_enable(); 6253 } 6254 6255 return work; 6256 } 6257 6258 /** 6259 * __napi_schedule - schedule for receive 6260 * @n: entry to schedule 6261 * 6262 * The entry's receive function will be scheduled to run. 6263 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 6264 */ 6265 void __napi_schedule(struct napi_struct *n) 6266 { 6267 unsigned long flags; 6268 6269 local_irq_save(flags); 6270 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6271 local_irq_restore(flags); 6272 } 6273 EXPORT_SYMBOL(__napi_schedule); 6274 6275 /** 6276 * napi_schedule_prep - check if napi can be scheduled 6277 * @n: napi context 6278 * 6279 * Test if NAPI routine is already running, and if not mark 6280 * it as running. This is used as a condition variable 6281 * insure only one NAPI poll instance runs. We also make 6282 * sure there is no pending NAPI disable. 6283 */ 6284 bool napi_schedule_prep(struct napi_struct *n) 6285 { 6286 unsigned long val, new; 6287 6288 do { 6289 val = READ_ONCE(n->state); 6290 if (unlikely(val & NAPIF_STATE_DISABLE)) 6291 return false; 6292 new = val | NAPIF_STATE_SCHED; 6293 6294 /* Sets STATE_MISSED bit if STATE_SCHED was already set 6295 * This was suggested by Alexander Duyck, as compiler 6296 * emits better code than : 6297 * if (val & NAPIF_STATE_SCHED) 6298 * new |= NAPIF_STATE_MISSED; 6299 */ 6300 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 6301 NAPIF_STATE_MISSED; 6302 } while (cmpxchg(&n->state, val, new) != val); 6303 6304 return !(val & NAPIF_STATE_SCHED); 6305 } 6306 EXPORT_SYMBOL(napi_schedule_prep); 6307 6308 /** 6309 * __napi_schedule_irqoff - schedule for receive 6310 * @n: entry to schedule 6311 * 6312 * Variant of __napi_schedule() assuming hard irqs are masked 6313 */ 6314 void __napi_schedule_irqoff(struct napi_struct *n) 6315 { 6316 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6317 } 6318 EXPORT_SYMBOL(__napi_schedule_irqoff); 6319 6320 bool napi_complete_done(struct napi_struct *n, int work_done) 6321 { 6322 unsigned long flags, val, new, timeout = 0; 6323 bool ret = true; 6324 6325 /* 6326 * 1) Don't let napi dequeue from the cpu poll list 6327 * just in case its running on a different cpu. 6328 * 2) If we are busy polling, do nothing here, we have 6329 * the guarantee we will be called later. 6330 */ 6331 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 6332 NAPIF_STATE_IN_BUSY_POLL))) 6333 return false; 6334 6335 if (work_done) { 6336 if (n->gro_bitmask) 6337 timeout = READ_ONCE(n->dev->gro_flush_timeout); 6338 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs); 6339 } 6340 if (n->defer_hard_irqs_count > 0) { 6341 n->defer_hard_irqs_count--; 6342 timeout = READ_ONCE(n->dev->gro_flush_timeout); 6343 if (timeout) 6344 ret = false; 6345 } 6346 if (n->gro_bitmask) { 6347 /* When the NAPI instance uses a timeout and keeps postponing 6348 * it, we need to bound somehow the time packets are kept in 6349 * the GRO layer 6350 */ 6351 napi_gro_flush(n, !!timeout); 6352 } 6353 6354 gro_normal_list(n); 6355 6356 if (unlikely(!list_empty(&n->poll_list))) { 6357 /* If n->poll_list is not empty, we need to mask irqs */ 6358 local_irq_save(flags); 6359 list_del_init(&n->poll_list); 6360 local_irq_restore(flags); 6361 } 6362 6363 do { 6364 val = READ_ONCE(n->state); 6365 6366 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 6367 6368 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED); 6369 6370 /* If STATE_MISSED was set, leave STATE_SCHED set, 6371 * because we will call napi->poll() one more time. 6372 * This C code was suggested by Alexander Duyck to help gcc. 6373 */ 6374 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6375 NAPIF_STATE_SCHED; 6376 } while (cmpxchg(&n->state, val, new) != val); 6377 6378 if (unlikely(val & NAPIF_STATE_MISSED)) { 6379 __napi_schedule(n); 6380 return false; 6381 } 6382 6383 if (timeout) 6384 hrtimer_start(&n->timer, ns_to_ktime(timeout), 6385 HRTIMER_MODE_REL_PINNED); 6386 return ret; 6387 } 6388 EXPORT_SYMBOL(napi_complete_done); 6389 6390 /* must be called under rcu_read_lock(), as we dont take a reference */ 6391 static struct napi_struct *napi_by_id(unsigned int napi_id) 6392 { 6393 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 6394 struct napi_struct *napi; 6395 6396 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 6397 if (napi->napi_id == napi_id) 6398 return napi; 6399 6400 return NULL; 6401 } 6402 6403 #if defined(CONFIG_NET_RX_BUSY_POLL) 6404 6405 #define BUSY_POLL_BUDGET 8 6406 6407 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock) 6408 { 6409 int rc; 6410 6411 /* Busy polling means there is a high chance device driver hard irq 6412 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6413 * set in napi_schedule_prep(). 6414 * Since we are about to call napi->poll() once more, we can safely 6415 * clear NAPI_STATE_MISSED. 6416 * 6417 * Note: x86 could use a single "lock and ..." instruction 6418 * to perform these two clear_bit() 6419 */ 6420 clear_bit(NAPI_STATE_MISSED, &napi->state); 6421 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6422 6423 local_bh_disable(); 6424 6425 /* All we really want here is to re-enable device interrupts. 6426 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6427 */ 6428 rc = napi->poll(napi, BUSY_POLL_BUDGET); 6429 /* We can't gro_normal_list() here, because napi->poll() might have 6430 * rearmed the napi (napi_complete_done()) in which case it could 6431 * already be running on another CPU. 6432 */ 6433 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET); 6434 netpoll_poll_unlock(have_poll_lock); 6435 if (rc == BUSY_POLL_BUDGET) { 6436 /* As the whole budget was spent, we still own the napi so can 6437 * safely handle the rx_list. 6438 */ 6439 gro_normal_list(napi); 6440 __napi_schedule(napi); 6441 } 6442 local_bh_enable(); 6443 } 6444 6445 void napi_busy_loop(unsigned int napi_id, 6446 bool (*loop_end)(void *, unsigned long), 6447 void *loop_end_arg) 6448 { 6449 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6450 int (*napi_poll)(struct napi_struct *napi, int budget); 6451 void *have_poll_lock = NULL; 6452 struct napi_struct *napi; 6453 6454 restart: 6455 napi_poll = NULL; 6456 6457 rcu_read_lock(); 6458 6459 napi = napi_by_id(napi_id); 6460 if (!napi) 6461 goto out; 6462 6463 preempt_disable(); 6464 for (;;) { 6465 int work = 0; 6466 6467 local_bh_disable(); 6468 if (!napi_poll) { 6469 unsigned long val = READ_ONCE(napi->state); 6470 6471 /* If multiple threads are competing for this napi, 6472 * we avoid dirtying napi->state as much as we can. 6473 */ 6474 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6475 NAPIF_STATE_IN_BUSY_POLL)) 6476 goto count; 6477 if (cmpxchg(&napi->state, val, 6478 val | NAPIF_STATE_IN_BUSY_POLL | 6479 NAPIF_STATE_SCHED) != val) 6480 goto count; 6481 have_poll_lock = netpoll_poll_lock(napi); 6482 napi_poll = napi->poll; 6483 } 6484 work = napi_poll(napi, BUSY_POLL_BUDGET); 6485 trace_napi_poll(napi, work, BUSY_POLL_BUDGET); 6486 gro_normal_list(napi); 6487 count: 6488 if (work > 0) 6489 __NET_ADD_STATS(dev_net(napi->dev), 6490 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6491 local_bh_enable(); 6492 6493 if (!loop_end || loop_end(loop_end_arg, start_time)) 6494 break; 6495 6496 if (unlikely(need_resched())) { 6497 if (napi_poll) 6498 busy_poll_stop(napi, have_poll_lock); 6499 preempt_enable(); 6500 rcu_read_unlock(); 6501 cond_resched(); 6502 if (loop_end(loop_end_arg, start_time)) 6503 return; 6504 goto restart; 6505 } 6506 cpu_relax(); 6507 } 6508 if (napi_poll) 6509 busy_poll_stop(napi, have_poll_lock); 6510 preempt_enable(); 6511 out: 6512 rcu_read_unlock(); 6513 } 6514 EXPORT_SYMBOL(napi_busy_loop); 6515 6516 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6517 6518 static void napi_hash_add(struct napi_struct *napi) 6519 { 6520 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) || 6521 test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) 6522 return; 6523 6524 spin_lock(&napi_hash_lock); 6525 6526 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6527 do { 6528 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 6529 napi_gen_id = MIN_NAPI_ID; 6530 } while (napi_by_id(napi_gen_id)); 6531 napi->napi_id = napi_gen_id; 6532 6533 hlist_add_head_rcu(&napi->napi_hash_node, 6534 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6535 6536 spin_unlock(&napi_hash_lock); 6537 } 6538 6539 /* Warning : caller is responsible to make sure rcu grace period 6540 * is respected before freeing memory containing @napi 6541 */ 6542 bool napi_hash_del(struct napi_struct *napi) 6543 { 6544 bool rcu_sync_needed = false; 6545 6546 spin_lock(&napi_hash_lock); 6547 6548 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) { 6549 rcu_sync_needed = true; 6550 hlist_del_rcu(&napi->napi_hash_node); 6551 } 6552 spin_unlock(&napi_hash_lock); 6553 return rcu_sync_needed; 6554 } 6555 EXPORT_SYMBOL_GPL(napi_hash_del); 6556 6557 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 6558 { 6559 struct napi_struct *napi; 6560 6561 napi = container_of(timer, struct napi_struct, timer); 6562 6563 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 6564 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 6565 */ 6566 if (!napi_disable_pending(napi) && 6567 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) 6568 __napi_schedule_irqoff(napi); 6569 6570 return HRTIMER_NORESTART; 6571 } 6572 6573 static void init_gro_hash(struct napi_struct *napi) 6574 { 6575 int i; 6576 6577 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6578 INIT_LIST_HEAD(&napi->gro_hash[i].list); 6579 napi->gro_hash[i].count = 0; 6580 } 6581 napi->gro_bitmask = 0; 6582 } 6583 6584 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 6585 int (*poll)(struct napi_struct *, int), int weight) 6586 { 6587 INIT_LIST_HEAD(&napi->poll_list); 6588 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 6589 napi->timer.function = napi_watchdog; 6590 init_gro_hash(napi); 6591 napi->skb = NULL; 6592 INIT_LIST_HEAD(&napi->rx_list); 6593 napi->rx_count = 0; 6594 napi->poll = poll; 6595 if (weight > NAPI_POLL_WEIGHT) 6596 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 6597 weight); 6598 napi->weight = weight; 6599 list_add(&napi->dev_list, &dev->napi_list); 6600 napi->dev = dev; 6601 #ifdef CONFIG_NETPOLL 6602 napi->poll_owner = -1; 6603 #endif 6604 set_bit(NAPI_STATE_SCHED, &napi->state); 6605 napi_hash_add(napi); 6606 } 6607 EXPORT_SYMBOL(netif_napi_add); 6608 6609 void napi_disable(struct napi_struct *n) 6610 { 6611 might_sleep(); 6612 set_bit(NAPI_STATE_DISABLE, &n->state); 6613 6614 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 6615 msleep(1); 6616 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 6617 msleep(1); 6618 6619 hrtimer_cancel(&n->timer); 6620 6621 clear_bit(NAPI_STATE_DISABLE, &n->state); 6622 } 6623 EXPORT_SYMBOL(napi_disable); 6624 6625 static void flush_gro_hash(struct napi_struct *napi) 6626 { 6627 int i; 6628 6629 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6630 struct sk_buff *skb, *n; 6631 6632 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list) 6633 kfree_skb(skb); 6634 napi->gro_hash[i].count = 0; 6635 } 6636 } 6637 6638 /* Must be called in process context */ 6639 void netif_napi_del(struct napi_struct *napi) 6640 { 6641 might_sleep(); 6642 if (napi_hash_del(napi)) 6643 synchronize_net(); 6644 list_del_init(&napi->dev_list); 6645 napi_free_frags(napi); 6646 6647 flush_gro_hash(napi); 6648 napi->gro_bitmask = 0; 6649 } 6650 EXPORT_SYMBOL(netif_napi_del); 6651 6652 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 6653 { 6654 void *have; 6655 int work, weight; 6656 6657 list_del_init(&n->poll_list); 6658 6659 have = netpoll_poll_lock(n); 6660 6661 weight = n->weight; 6662 6663 /* This NAPI_STATE_SCHED test is for avoiding a race 6664 * with netpoll's poll_napi(). Only the entity which 6665 * obtains the lock and sees NAPI_STATE_SCHED set will 6666 * actually make the ->poll() call. Therefore we avoid 6667 * accidentally calling ->poll() when NAPI is not scheduled. 6668 */ 6669 work = 0; 6670 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 6671 work = n->poll(n, weight); 6672 trace_napi_poll(n, work, weight); 6673 } 6674 6675 WARN_ON_ONCE(work > weight); 6676 6677 if (likely(work < weight)) 6678 goto out_unlock; 6679 6680 /* Drivers must not modify the NAPI state if they 6681 * consume the entire weight. In such cases this code 6682 * still "owns" the NAPI instance and therefore can 6683 * move the instance around on the list at-will. 6684 */ 6685 if (unlikely(napi_disable_pending(n))) { 6686 napi_complete(n); 6687 goto out_unlock; 6688 } 6689 6690 if (n->gro_bitmask) { 6691 /* flush too old packets 6692 * If HZ < 1000, flush all packets. 6693 */ 6694 napi_gro_flush(n, HZ >= 1000); 6695 } 6696 6697 gro_normal_list(n); 6698 6699 /* Some drivers may have called napi_schedule 6700 * prior to exhausting their budget. 6701 */ 6702 if (unlikely(!list_empty(&n->poll_list))) { 6703 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 6704 n->dev ? n->dev->name : "backlog"); 6705 goto out_unlock; 6706 } 6707 6708 list_add_tail(&n->poll_list, repoll); 6709 6710 out_unlock: 6711 netpoll_poll_unlock(have); 6712 6713 return work; 6714 } 6715 6716 static __latent_entropy void net_rx_action(struct softirq_action *h) 6717 { 6718 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 6719 unsigned long time_limit = jiffies + 6720 usecs_to_jiffies(netdev_budget_usecs); 6721 int budget = netdev_budget; 6722 LIST_HEAD(list); 6723 LIST_HEAD(repoll); 6724 6725 local_irq_disable(); 6726 list_splice_init(&sd->poll_list, &list); 6727 local_irq_enable(); 6728 6729 for (;;) { 6730 struct napi_struct *n; 6731 6732 if (list_empty(&list)) { 6733 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 6734 goto out; 6735 break; 6736 } 6737 6738 n = list_first_entry(&list, struct napi_struct, poll_list); 6739 budget -= napi_poll(n, &repoll); 6740 6741 /* If softirq window is exhausted then punt. 6742 * Allow this to run for 2 jiffies since which will allow 6743 * an average latency of 1.5/HZ. 6744 */ 6745 if (unlikely(budget <= 0 || 6746 time_after_eq(jiffies, time_limit))) { 6747 sd->time_squeeze++; 6748 break; 6749 } 6750 } 6751 6752 local_irq_disable(); 6753 6754 list_splice_tail_init(&sd->poll_list, &list); 6755 list_splice_tail(&repoll, &list); 6756 list_splice(&list, &sd->poll_list); 6757 if (!list_empty(&sd->poll_list)) 6758 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 6759 6760 net_rps_action_and_irq_enable(sd); 6761 out: 6762 __kfree_skb_flush(); 6763 } 6764 6765 struct netdev_adjacent { 6766 struct net_device *dev; 6767 6768 /* upper master flag, there can only be one master device per list */ 6769 bool master; 6770 6771 /* lookup ignore flag */ 6772 bool ignore; 6773 6774 /* counter for the number of times this device was added to us */ 6775 u16 ref_nr; 6776 6777 /* private field for the users */ 6778 void *private; 6779 6780 struct list_head list; 6781 struct rcu_head rcu; 6782 }; 6783 6784 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 6785 struct list_head *adj_list) 6786 { 6787 struct netdev_adjacent *adj; 6788 6789 list_for_each_entry(adj, adj_list, list) { 6790 if (adj->dev == adj_dev) 6791 return adj; 6792 } 6793 return NULL; 6794 } 6795 6796 static int ____netdev_has_upper_dev(struct net_device *upper_dev, void *data) 6797 { 6798 struct net_device *dev = data; 6799 6800 return upper_dev == dev; 6801 } 6802 6803 /** 6804 * netdev_has_upper_dev - Check if device is linked to an upper device 6805 * @dev: device 6806 * @upper_dev: upper device to check 6807 * 6808 * Find out if a device is linked to specified upper device and return true 6809 * in case it is. Note that this checks only immediate upper device, 6810 * not through a complete stack of devices. The caller must hold the RTNL lock. 6811 */ 6812 bool netdev_has_upper_dev(struct net_device *dev, 6813 struct net_device *upper_dev) 6814 { 6815 ASSERT_RTNL(); 6816 6817 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 6818 upper_dev); 6819 } 6820 EXPORT_SYMBOL(netdev_has_upper_dev); 6821 6822 /** 6823 * netdev_has_upper_dev_all - Check if device is linked to an upper device 6824 * @dev: device 6825 * @upper_dev: upper device to check 6826 * 6827 * Find out if a device is linked to specified upper device and return true 6828 * in case it is. Note that this checks the entire upper device chain. 6829 * The caller must hold rcu lock. 6830 */ 6831 6832 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 6833 struct net_device *upper_dev) 6834 { 6835 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 6836 upper_dev); 6837 } 6838 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 6839 6840 /** 6841 * netdev_has_any_upper_dev - Check if device is linked to some device 6842 * @dev: device 6843 * 6844 * Find out if a device is linked to an upper device and return true in case 6845 * it is. The caller must hold the RTNL lock. 6846 */ 6847 bool netdev_has_any_upper_dev(struct net_device *dev) 6848 { 6849 ASSERT_RTNL(); 6850 6851 return !list_empty(&dev->adj_list.upper); 6852 } 6853 EXPORT_SYMBOL(netdev_has_any_upper_dev); 6854 6855 /** 6856 * netdev_master_upper_dev_get - Get master upper device 6857 * @dev: device 6858 * 6859 * Find a master upper device and return pointer to it or NULL in case 6860 * it's not there. The caller must hold the RTNL lock. 6861 */ 6862 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 6863 { 6864 struct netdev_adjacent *upper; 6865 6866 ASSERT_RTNL(); 6867 6868 if (list_empty(&dev->adj_list.upper)) 6869 return NULL; 6870 6871 upper = list_first_entry(&dev->adj_list.upper, 6872 struct netdev_adjacent, list); 6873 if (likely(upper->master)) 6874 return upper->dev; 6875 return NULL; 6876 } 6877 EXPORT_SYMBOL(netdev_master_upper_dev_get); 6878 6879 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev) 6880 { 6881 struct netdev_adjacent *upper; 6882 6883 ASSERT_RTNL(); 6884 6885 if (list_empty(&dev->adj_list.upper)) 6886 return NULL; 6887 6888 upper = list_first_entry(&dev->adj_list.upper, 6889 struct netdev_adjacent, list); 6890 if (likely(upper->master) && !upper->ignore) 6891 return upper->dev; 6892 return NULL; 6893 } 6894 6895 /** 6896 * netdev_has_any_lower_dev - Check if device is linked to some device 6897 * @dev: device 6898 * 6899 * Find out if a device is linked to a lower device and return true in case 6900 * it is. The caller must hold the RTNL lock. 6901 */ 6902 static bool netdev_has_any_lower_dev(struct net_device *dev) 6903 { 6904 ASSERT_RTNL(); 6905 6906 return !list_empty(&dev->adj_list.lower); 6907 } 6908 6909 void *netdev_adjacent_get_private(struct list_head *adj_list) 6910 { 6911 struct netdev_adjacent *adj; 6912 6913 adj = list_entry(adj_list, struct netdev_adjacent, list); 6914 6915 return adj->private; 6916 } 6917 EXPORT_SYMBOL(netdev_adjacent_get_private); 6918 6919 /** 6920 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 6921 * @dev: device 6922 * @iter: list_head ** of the current position 6923 * 6924 * Gets the next device from the dev's upper list, starting from iter 6925 * position. The caller must hold RCU read lock. 6926 */ 6927 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 6928 struct list_head **iter) 6929 { 6930 struct netdev_adjacent *upper; 6931 6932 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6933 6934 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6935 6936 if (&upper->list == &dev->adj_list.upper) 6937 return NULL; 6938 6939 *iter = &upper->list; 6940 6941 return upper->dev; 6942 } 6943 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 6944 6945 static struct net_device *__netdev_next_upper_dev(struct net_device *dev, 6946 struct list_head **iter, 6947 bool *ignore) 6948 { 6949 struct netdev_adjacent *upper; 6950 6951 upper = list_entry((*iter)->next, struct netdev_adjacent, list); 6952 6953 if (&upper->list == &dev->adj_list.upper) 6954 return NULL; 6955 6956 *iter = &upper->list; 6957 *ignore = upper->ignore; 6958 6959 return upper->dev; 6960 } 6961 6962 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 6963 struct list_head **iter) 6964 { 6965 struct netdev_adjacent *upper; 6966 6967 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6968 6969 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6970 6971 if (&upper->list == &dev->adj_list.upper) 6972 return NULL; 6973 6974 *iter = &upper->list; 6975 6976 return upper->dev; 6977 } 6978 6979 static int __netdev_walk_all_upper_dev(struct net_device *dev, 6980 int (*fn)(struct net_device *dev, 6981 void *data), 6982 void *data) 6983 { 6984 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 6985 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 6986 int ret, cur = 0; 6987 bool ignore; 6988 6989 now = dev; 6990 iter = &dev->adj_list.upper; 6991 6992 while (1) { 6993 if (now != dev) { 6994 ret = fn(now, data); 6995 if (ret) 6996 return ret; 6997 } 6998 6999 next = NULL; 7000 while (1) { 7001 udev = __netdev_next_upper_dev(now, &iter, &ignore); 7002 if (!udev) 7003 break; 7004 if (ignore) 7005 continue; 7006 7007 next = udev; 7008 niter = &udev->adj_list.upper; 7009 dev_stack[cur] = now; 7010 iter_stack[cur++] = iter; 7011 break; 7012 } 7013 7014 if (!next) { 7015 if (!cur) 7016 return 0; 7017 next = dev_stack[--cur]; 7018 niter = iter_stack[cur]; 7019 } 7020 7021 now = next; 7022 iter = niter; 7023 } 7024 7025 return 0; 7026 } 7027 7028 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 7029 int (*fn)(struct net_device *dev, 7030 void *data), 7031 void *data) 7032 { 7033 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7034 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7035 int ret, cur = 0; 7036 7037 now = dev; 7038 iter = &dev->adj_list.upper; 7039 7040 while (1) { 7041 if (now != dev) { 7042 ret = fn(now, data); 7043 if (ret) 7044 return ret; 7045 } 7046 7047 next = NULL; 7048 while (1) { 7049 udev = netdev_next_upper_dev_rcu(now, &iter); 7050 if (!udev) 7051 break; 7052 7053 next = udev; 7054 niter = &udev->adj_list.upper; 7055 dev_stack[cur] = now; 7056 iter_stack[cur++] = iter; 7057 break; 7058 } 7059 7060 if (!next) { 7061 if (!cur) 7062 return 0; 7063 next = dev_stack[--cur]; 7064 niter = iter_stack[cur]; 7065 } 7066 7067 now = next; 7068 iter = niter; 7069 } 7070 7071 return 0; 7072 } 7073 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 7074 7075 static bool __netdev_has_upper_dev(struct net_device *dev, 7076 struct net_device *upper_dev) 7077 { 7078 ASSERT_RTNL(); 7079 7080 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev, 7081 upper_dev); 7082 } 7083 7084 /** 7085 * netdev_lower_get_next_private - Get the next ->private from the 7086 * lower neighbour list 7087 * @dev: device 7088 * @iter: list_head ** of the current position 7089 * 7090 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7091 * list, starting from iter position. The caller must hold either hold the 7092 * RTNL lock or its own locking that guarantees that the neighbour lower 7093 * list will remain unchanged. 7094 */ 7095 void *netdev_lower_get_next_private(struct net_device *dev, 7096 struct list_head **iter) 7097 { 7098 struct netdev_adjacent *lower; 7099 7100 lower = list_entry(*iter, struct netdev_adjacent, list); 7101 7102 if (&lower->list == &dev->adj_list.lower) 7103 return NULL; 7104 7105 *iter = lower->list.next; 7106 7107 return lower->private; 7108 } 7109 EXPORT_SYMBOL(netdev_lower_get_next_private); 7110 7111 /** 7112 * netdev_lower_get_next_private_rcu - Get the next ->private from the 7113 * lower neighbour list, RCU 7114 * variant 7115 * @dev: device 7116 * @iter: list_head ** of the current position 7117 * 7118 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7119 * list, starting from iter position. The caller must hold RCU read lock. 7120 */ 7121 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 7122 struct list_head **iter) 7123 { 7124 struct netdev_adjacent *lower; 7125 7126 WARN_ON_ONCE(!rcu_read_lock_held()); 7127 7128 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7129 7130 if (&lower->list == &dev->adj_list.lower) 7131 return NULL; 7132 7133 *iter = &lower->list; 7134 7135 return lower->private; 7136 } 7137 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 7138 7139 /** 7140 * netdev_lower_get_next - Get the next device from the lower neighbour 7141 * list 7142 * @dev: device 7143 * @iter: list_head ** of the current position 7144 * 7145 * Gets the next netdev_adjacent from the dev's lower neighbour 7146 * list, starting from iter position. The caller must hold RTNL lock or 7147 * its own locking that guarantees that the neighbour lower 7148 * list will remain unchanged. 7149 */ 7150 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 7151 { 7152 struct netdev_adjacent *lower; 7153 7154 lower = list_entry(*iter, struct netdev_adjacent, list); 7155 7156 if (&lower->list == &dev->adj_list.lower) 7157 return NULL; 7158 7159 *iter = lower->list.next; 7160 7161 return lower->dev; 7162 } 7163 EXPORT_SYMBOL(netdev_lower_get_next); 7164 7165 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 7166 struct list_head **iter) 7167 { 7168 struct netdev_adjacent *lower; 7169 7170 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7171 7172 if (&lower->list == &dev->adj_list.lower) 7173 return NULL; 7174 7175 *iter = &lower->list; 7176 7177 return lower->dev; 7178 } 7179 7180 static struct net_device *__netdev_next_lower_dev(struct net_device *dev, 7181 struct list_head **iter, 7182 bool *ignore) 7183 { 7184 struct netdev_adjacent *lower; 7185 7186 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7187 7188 if (&lower->list == &dev->adj_list.lower) 7189 return NULL; 7190 7191 *iter = &lower->list; 7192 *ignore = lower->ignore; 7193 7194 return lower->dev; 7195 } 7196 7197 int netdev_walk_all_lower_dev(struct net_device *dev, 7198 int (*fn)(struct net_device *dev, 7199 void *data), 7200 void *data) 7201 { 7202 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7203 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7204 int ret, cur = 0; 7205 7206 now = dev; 7207 iter = &dev->adj_list.lower; 7208 7209 while (1) { 7210 if (now != dev) { 7211 ret = fn(now, data); 7212 if (ret) 7213 return ret; 7214 } 7215 7216 next = NULL; 7217 while (1) { 7218 ldev = netdev_next_lower_dev(now, &iter); 7219 if (!ldev) 7220 break; 7221 7222 next = ldev; 7223 niter = &ldev->adj_list.lower; 7224 dev_stack[cur] = now; 7225 iter_stack[cur++] = iter; 7226 break; 7227 } 7228 7229 if (!next) { 7230 if (!cur) 7231 return 0; 7232 next = dev_stack[--cur]; 7233 niter = iter_stack[cur]; 7234 } 7235 7236 now = next; 7237 iter = niter; 7238 } 7239 7240 return 0; 7241 } 7242 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 7243 7244 static int __netdev_walk_all_lower_dev(struct net_device *dev, 7245 int (*fn)(struct net_device *dev, 7246 void *data), 7247 void *data) 7248 { 7249 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7250 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7251 int ret, cur = 0; 7252 bool ignore; 7253 7254 now = dev; 7255 iter = &dev->adj_list.lower; 7256 7257 while (1) { 7258 if (now != dev) { 7259 ret = fn(now, data); 7260 if (ret) 7261 return ret; 7262 } 7263 7264 next = NULL; 7265 while (1) { 7266 ldev = __netdev_next_lower_dev(now, &iter, &ignore); 7267 if (!ldev) 7268 break; 7269 if (ignore) 7270 continue; 7271 7272 next = ldev; 7273 niter = &ldev->adj_list.lower; 7274 dev_stack[cur] = now; 7275 iter_stack[cur++] = iter; 7276 break; 7277 } 7278 7279 if (!next) { 7280 if (!cur) 7281 return 0; 7282 next = dev_stack[--cur]; 7283 niter = iter_stack[cur]; 7284 } 7285 7286 now = next; 7287 iter = niter; 7288 } 7289 7290 return 0; 7291 } 7292 7293 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 7294 struct list_head **iter) 7295 { 7296 struct netdev_adjacent *lower; 7297 7298 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7299 if (&lower->list == &dev->adj_list.lower) 7300 return NULL; 7301 7302 *iter = &lower->list; 7303 7304 return lower->dev; 7305 } 7306 EXPORT_SYMBOL(netdev_next_lower_dev_rcu); 7307 7308 static u8 __netdev_upper_depth(struct net_device *dev) 7309 { 7310 struct net_device *udev; 7311 struct list_head *iter; 7312 u8 max_depth = 0; 7313 bool ignore; 7314 7315 for (iter = &dev->adj_list.upper, 7316 udev = __netdev_next_upper_dev(dev, &iter, &ignore); 7317 udev; 7318 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) { 7319 if (ignore) 7320 continue; 7321 if (max_depth < udev->upper_level) 7322 max_depth = udev->upper_level; 7323 } 7324 7325 return max_depth; 7326 } 7327 7328 static u8 __netdev_lower_depth(struct net_device *dev) 7329 { 7330 struct net_device *ldev; 7331 struct list_head *iter; 7332 u8 max_depth = 0; 7333 bool ignore; 7334 7335 for (iter = &dev->adj_list.lower, 7336 ldev = __netdev_next_lower_dev(dev, &iter, &ignore); 7337 ldev; 7338 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) { 7339 if (ignore) 7340 continue; 7341 if (max_depth < ldev->lower_level) 7342 max_depth = ldev->lower_level; 7343 } 7344 7345 return max_depth; 7346 } 7347 7348 static int __netdev_update_upper_level(struct net_device *dev, void *data) 7349 { 7350 dev->upper_level = __netdev_upper_depth(dev) + 1; 7351 return 0; 7352 } 7353 7354 static int __netdev_update_lower_level(struct net_device *dev, void *data) 7355 { 7356 dev->lower_level = __netdev_lower_depth(dev) + 1; 7357 return 0; 7358 } 7359 7360 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 7361 int (*fn)(struct net_device *dev, 7362 void *data), 7363 void *data) 7364 { 7365 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7366 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7367 int ret, cur = 0; 7368 7369 now = dev; 7370 iter = &dev->adj_list.lower; 7371 7372 while (1) { 7373 if (now != dev) { 7374 ret = fn(now, data); 7375 if (ret) 7376 return ret; 7377 } 7378 7379 next = NULL; 7380 while (1) { 7381 ldev = netdev_next_lower_dev_rcu(now, &iter); 7382 if (!ldev) 7383 break; 7384 7385 next = ldev; 7386 niter = &ldev->adj_list.lower; 7387 dev_stack[cur] = now; 7388 iter_stack[cur++] = iter; 7389 break; 7390 } 7391 7392 if (!next) { 7393 if (!cur) 7394 return 0; 7395 next = dev_stack[--cur]; 7396 niter = iter_stack[cur]; 7397 } 7398 7399 now = next; 7400 iter = niter; 7401 } 7402 7403 return 0; 7404 } 7405 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 7406 7407 /** 7408 * netdev_lower_get_first_private_rcu - Get the first ->private from the 7409 * lower neighbour list, RCU 7410 * variant 7411 * @dev: device 7412 * 7413 * Gets the first netdev_adjacent->private from the dev's lower neighbour 7414 * list. The caller must hold RCU read lock. 7415 */ 7416 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 7417 { 7418 struct netdev_adjacent *lower; 7419 7420 lower = list_first_or_null_rcu(&dev->adj_list.lower, 7421 struct netdev_adjacent, list); 7422 if (lower) 7423 return lower->private; 7424 return NULL; 7425 } 7426 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 7427 7428 /** 7429 * netdev_master_upper_dev_get_rcu - Get master upper device 7430 * @dev: device 7431 * 7432 * Find a master upper device and return pointer to it or NULL in case 7433 * it's not there. The caller must hold the RCU read lock. 7434 */ 7435 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 7436 { 7437 struct netdev_adjacent *upper; 7438 7439 upper = list_first_or_null_rcu(&dev->adj_list.upper, 7440 struct netdev_adjacent, list); 7441 if (upper && likely(upper->master)) 7442 return upper->dev; 7443 return NULL; 7444 } 7445 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 7446 7447 static int netdev_adjacent_sysfs_add(struct net_device *dev, 7448 struct net_device *adj_dev, 7449 struct list_head *dev_list) 7450 { 7451 char linkname[IFNAMSIZ+7]; 7452 7453 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7454 "upper_%s" : "lower_%s", adj_dev->name); 7455 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 7456 linkname); 7457 } 7458 static void netdev_adjacent_sysfs_del(struct net_device *dev, 7459 char *name, 7460 struct list_head *dev_list) 7461 { 7462 char linkname[IFNAMSIZ+7]; 7463 7464 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7465 "upper_%s" : "lower_%s", name); 7466 sysfs_remove_link(&(dev->dev.kobj), linkname); 7467 } 7468 7469 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 7470 struct net_device *adj_dev, 7471 struct list_head *dev_list) 7472 { 7473 return (dev_list == &dev->adj_list.upper || 7474 dev_list == &dev->adj_list.lower) && 7475 net_eq(dev_net(dev), dev_net(adj_dev)); 7476 } 7477 7478 static int __netdev_adjacent_dev_insert(struct net_device *dev, 7479 struct net_device *adj_dev, 7480 struct list_head *dev_list, 7481 void *private, bool master) 7482 { 7483 struct netdev_adjacent *adj; 7484 int ret; 7485 7486 adj = __netdev_find_adj(adj_dev, dev_list); 7487 7488 if (adj) { 7489 adj->ref_nr += 1; 7490 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 7491 dev->name, adj_dev->name, adj->ref_nr); 7492 7493 return 0; 7494 } 7495 7496 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 7497 if (!adj) 7498 return -ENOMEM; 7499 7500 adj->dev = adj_dev; 7501 adj->master = master; 7502 adj->ref_nr = 1; 7503 adj->private = private; 7504 adj->ignore = false; 7505 dev_hold(adj_dev); 7506 7507 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 7508 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 7509 7510 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 7511 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 7512 if (ret) 7513 goto free_adj; 7514 } 7515 7516 /* Ensure that master link is always the first item in list. */ 7517 if (master) { 7518 ret = sysfs_create_link(&(dev->dev.kobj), 7519 &(adj_dev->dev.kobj), "master"); 7520 if (ret) 7521 goto remove_symlinks; 7522 7523 list_add_rcu(&adj->list, dev_list); 7524 } else { 7525 list_add_tail_rcu(&adj->list, dev_list); 7526 } 7527 7528 return 0; 7529 7530 remove_symlinks: 7531 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7532 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7533 free_adj: 7534 kfree(adj); 7535 dev_put(adj_dev); 7536 7537 return ret; 7538 } 7539 7540 static void __netdev_adjacent_dev_remove(struct net_device *dev, 7541 struct net_device *adj_dev, 7542 u16 ref_nr, 7543 struct list_head *dev_list) 7544 { 7545 struct netdev_adjacent *adj; 7546 7547 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 7548 dev->name, adj_dev->name, ref_nr); 7549 7550 adj = __netdev_find_adj(adj_dev, dev_list); 7551 7552 if (!adj) { 7553 pr_err("Adjacency does not exist for device %s from %s\n", 7554 dev->name, adj_dev->name); 7555 WARN_ON(1); 7556 return; 7557 } 7558 7559 if (adj->ref_nr > ref_nr) { 7560 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 7561 dev->name, adj_dev->name, ref_nr, 7562 adj->ref_nr - ref_nr); 7563 adj->ref_nr -= ref_nr; 7564 return; 7565 } 7566 7567 if (adj->master) 7568 sysfs_remove_link(&(dev->dev.kobj), "master"); 7569 7570 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7571 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7572 7573 list_del_rcu(&adj->list); 7574 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 7575 adj_dev->name, dev->name, adj_dev->name); 7576 dev_put(adj_dev); 7577 kfree_rcu(adj, rcu); 7578 } 7579 7580 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 7581 struct net_device *upper_dev, 7582 struct list_head *up_list, 7583 struct list_head *down_list, 7584 void *private, bool master) 7585 { 7586 int ret; 7587 7588 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 7589 private, master); 7590 if (ret) 7591 return ret; 7592 7593 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 7594 private, false); 7595 if (ret) { 7596 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 7597 return ret; 7598 } 7599 7600 return 0; 7601 } 7602 7603 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 7604 struct net_device *upper_dev, 7605 u16 ref_nr, 7606 struct list_head *up_list, 7607 struct list_head *down_list) 7608 { 7609 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 7610 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 7611 } 7612 7613 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 7614 struct net_device *upper_dev, 7615 void *private, bool master) 7616 { 7617 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 7618 &dev->adj_list.upper, 7619 &upper_dev->adj_list.lower, 7620 private, master); 7621 } 7622 7623 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 7624 struct net_device *upper_dev) 7625 { 7626 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 7627 &dev->adj_list.upper, 7628 &upper_dev->adj_list.lower); 7629 } 7630 7631 static int __netdev_upper_dev_link(struct net_device *dev, 7632 struct net_device *upper_dev, bool master, 7633 void *upper_priv, void *upper_info, 7634 struct netlink_ext_ack *extack) 7635 { 7636 struct netdev_notifier_changeupper_info changeupper_info = { 7637 .info = { 7638 .dev = dev, 7639 .extack = extack, 7640 }, 7641 .upper_dev = upper_dev, 7642 .master = master, 7643 .linking = true, 7644 .upper_info = upper_info, 7645 }; 7646 struct net_device *master_dev; 7647 int ret = 0; 7648 7649 ASSERT_RTNL(); 7650 7651 if (dev == upper_dev) 7652 return -EBUSY; 7653 7654 /* To prevent loops, check if dev is not upper device to upper_dev. */ 7655 if (__netdev_has_upper_dev(upper_dev, dev)) 7656 return -EBUSY; 7657 7658 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV) 7659 return -EMLINK; 7660 7661 if (!master) { 7662 if (__netdev_has_upper_dev(dev, upper_dev)) 7663 return -EEXIST; 7664 } else { 7665 master_dev = __netdev_master_upper_dev_get(dev); 7666 if (master_dev) 7667 return master_dev == upper_dev ? -EEXIST : -EBUSY; 7668 } 7669 7670 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7671 &changeupper_info.info); 7672 ret = notifier_to_errno(ret); 7673 if (ret) 7674 return ret; 7675 7676 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 7677 master); 7678 if (ret) 7679 return ret; 7680 7681 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7682 &changeupper_info.info); 7683 ret = notifier_to_errno(ret); 7684 if (ret) 7685 goto rollback; 7686 7687 __netdev_update_upper_level(dev, NULL); 7688 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7689 7690 __netdev_update_lower_level(upper_dev, NULL); 7691 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 7692 NULL); 7693 7694 return 0; 7695 7696 rollback: 7697 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7698 7699 return ret; 7700 } 7701 7702 /** 7703 * netdev_upper_dev_link - Add a link to the upper device 7704 * @dev: device 7705 * @upper_dev: new upper device 7706 * @extack: netlink extended ack 7707 * 7708 * Adds a link to device which is upper to this one. The caller must hold 7709 * the RTNL lock. On a failure a negative errno code is returned. 7710 * On success the reference counts are adjusted and the function 7711 * returns zero. 7712 */ 7713 int netdev_upper_dev_link(struct net_device *dev, 7714 struct net_device *upper_dev, 7715 struct netlink_ext_ack *extack) 7716 { 7717 return __netdev_upper_dev_link(dev, upper_dev, false, 7718 NULL, NULL, extack); 7719 } 7720 EXPORT_SYMBOL(netdev_upper_dev_link); 7721 7722 /** 7723 * netdev_master_upper_dev_link - Add a master link to the upper device 7724 * @dev: device 7725 * @upper_dev: new upper device 7726 * @upper_priv: upper device private 7727 * @upper_info: upper info to be passed down via notifier 7728 * @extack: netlink extended ack 7729 * 7730 * Adds a link to device which is upper to this one. In this case, only 7731 * one master upper device can be linked, although other non-master devices 7732 * might be linked as well. The caller must hold the RTNL lock. 7733 * On a failure a negative errno code is returned. On success the reference 7734 * counts are adjusted and the function returns zero. 7735 */ 7736 int netdev_master_upper_dev_link(struct net_device *dev, 7737 struct net_device *upper_dev, 7738 void *upper_priv, void *upper_info, 7739 struct netlink_ext_ack *extack) 7740 { 7741 return __netdev_upper_dev_link(dev, upper_dev, true, 7742 upper_priv, upper_info, extack); 7743 } 7744 EXPORT_SYMBOL(netdev_master_upper_dev_link); 7745 7746 /** 7747 * netdev_upper_dev_unlink - Removes a link to upper device 7748 * @dev: device 7749 * @upper_dev: new upper device 7750 * 7751 * Removes a link to device which is upper to this one. The caller must hold 7752 * the RTNL lock. 7753 */ 7754 void netdev_upper_dev_unlink(struct net_device *dev, 7755 struct net_device *upper_dev) 7756 { 7757 struct netdev_notifier_changeupper_info changeupper_info = { 7758 .info = { 7759 .dev = dev, 7760 }, 7761 .upper_dev = upper_dev, 7762 .linking = false, 7763 }; 7764 7765 ASSERT_RTNL(); 7766 7767 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 7768 7769 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7770 &changeupper_info.info); 7771 7772 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7773 7774 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7775 &changeupper_info.info); 7776 7777 __netdev_update_upper_level(dev, NULL); 7778 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7779 7780 __netdev_update_lower_level(upper_dev, NULL); 7781 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 7782 NULL); 7783 } 7784 EXPORT_SYMBOL(netdev_upper_dev_unlink); 7785 7786 static void __netdev_adjacent_dev_set(struct net_device *upper_dev, 7787 struct net_device *lower_dev, 7788 bool val) 7789 { 7790 struct netdev_adjacent *adj; 7791 7792 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower); 7793 if (adj) 7794 adj->ignore = val; 7795 7796 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper); 7797 if (adj) 7798 adj->ignore = val; 7799 } 7800 7801 static void netdev_adjacent_dev_disable(struct net_device *upper_dev, 7802 struct net_device *lower_dev) 7803 { 7804 __netdev_adjacent_dev_set(upper_dev, lower_dev, true); 7805 } 7806 7807 static void netdev_adjacent_dev_enable(struct net_device *upper_dev, 7808 struct net_device *lower_dev) 7809 { 7810 __netdev_adjacent_dev_set(upper_dev, lower_dev, false); 7811 } 7812 7813 int netdev_adjacent_change_prepare(struct net_device *old_dev, 7814 struct net_device *new_dev, 7815 struct net_device *dev, 7816 struct netlink_ext_ack *extack) 7817 { 7818 int err; 7819 7820 if (!new_dev) 7821 return 0; 7822 7823 if (old_dev && new_dev != old_dev) 7824 netdev_adjacent_dev_disable(dev, old_dev); 7825 7826 err = netdev_upper_dev_link(new_dev, dev, extack); 7827 if (err) { 7828 if (old_dev && new_dev != old_dev) 7829 netdev_adjacent_dev_enable(dev, old_dev); 7830 return err; 7831 } 7832 7833 return 0; 7834 } 7835 EXPORT_SYMBOL(netdev_adjacent_change_prepare); 7836 7837 void netdev_adjacent_change_commit(struct net_device *old_dev, 7838 struct net_device *new_dev, 7839 struct net_device *dev) 7840 { 7841 if (!new_dev || !old_dev) 7842 return; 7843 7844 if (new_dev == old_dev) 7845 return; 7846 7847 netdev_adjacent_dev_enable(dev, old_dev); 7848 netdev_upper_dev_unlink(old_dev, dev); 7849 } 7850 EXPORT_SYMBOL(netdev_adjacent_change_commit); 7851 7852 void netdev_adjacent_change_abort(struct net_device *old_dev, 7853 struct net_device *new_dev, 7854 struct net_device *dev) 7855 { 7856 if (!new_dev) 7857 return; 7858 7859 if (old_dev && new_dev != old_dev) 7860 netdev_adjacent_dev_enable(dev, old_dev); 7861 7862 netdev_upper_dev_unlink(new_dev, dev); 7863 } 7864 EXPORT_SYMBOL(netdev_adjacent_change_abort); 7865 7866 /** 7867 * netdev_bonding_info_change - Dispatch event about slave change 7868 * @dev: device 7869 * @bonding_info: info to dispatch 7870 * 7871 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 7872 * The caller must hold the RTNL lock. 7873 */ 7874 void netdev_bonding_info_change(struct net_device *dev, 7875 struct netdev_bonding_info *bonding_info) 7876 { 7877 struct netdev_notifier_bonding_info info = { 7878 .info.dev = dev, 7879 }; 7880 7881 memcpy(&info.bonding_info, bonding_info, 7882 sizeof(struct netdev_bonding_info)); 7883 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 7884 &info.info); 7885 } 7886 EXPORT_SYMBOL(netdev_bonding_info_change); 7887 7888 /** 7889 * netdev_get_xmit_slave - Get the xmit slave of master device 7890 * @skb: The packet 7891 * @all_slaves: assume all the slaves are active 7892 * 7893 * The reference counters are not incremented so the caller must be 7894 * careful with locks. The caller must hold RCU lock. 7895 * %NULL is returned if no slave is found. 7896 */ 7897 7898 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 7899 struct sk_buff *skb, 7900 bool all_slaves) 7901 { 7902 const struct net_device_ops *ops = dev->netdev_ops; 7903 7904 if (!ops->ndo_get_xmit_slave) 7905 return NULL; 7906 return ops->ndo_get_xmit_slave(dev, skb, all_slaves); 7907 } 7908 EXPORT_SYMBOL(netdev_get_xmit_slave); 7909 7910 static void netdev_adjacent_add_links(struct net_device *dev) 7911 { 7912 struct netdev_adjacent *iter; 7913 7914 struct net *net = dev_net(dev); 7915 7916 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7917 if (!net_eq(net, dev_net(iter->dev))) 7918 continue; 7919 netdev_adjacent_sysfs_add(iter->dev, dev, 7920 &iter->dev->adj_list.lower); 7921 netdev_adjacent_sysfs_add(dev, iter->dev, 7922 &dev->adj_list.upper); 7923 } 7924 7925 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7926 if (!net_eq(net, dev_net(iter->dev))) 7927 continue; 7928 netdev_adjacent_sysfs_add(iter->dev, dev, 7929 &iter->dev->adj_list.upper); 7930 netdev_adjacent_sysfs_add(dev, iter->dev, 7931 &dev->adj_list.lower); 7932 } 7933 } 7934 7935 static void netdev_adjacent_del_links(struct net_device *dev) 7936 { 7937 struct netdev_adjacent *iter; 7938 7939 struct net *net = dev_net(dev); 7940 7941 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7942 if (!net_eq(net, dev_net(iter->dev))) 7943 continue; 7944 netdev_adjacent_sysfs_del(iter->dev, dev->name, 7945 &iter->dev->adj_list.lower); 7946 netdev_adjacent_sysfs_del(dev, iter->dev->name, 7947 &dev->adj_list.upper); 7948 } 7949 7950 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7951 if (!net_eq(net, dev_net(iter->dev))) 7952 continue; 7953 netdev_adjacent_sysfs_del(iter->dev, dev->name, 7954 &iter->dev->adj_list.upper); 7955 netdev_adjacent_sysfs_del(dev, iter->dev->name, 7956 &dev->adj_list.lower); 7957 } 7958 } 7959 7960 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 7961 { 7962 struct netdev_adjacent *iter; 7963 7964 struct net *net = dev_net(dev); 7965 7966 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7967 if (!net_eq(net, dev_net(iter->dev))) 7968 continue; 7969 netdev_adjacent_sysfs_del(iter->dev, oldname, 7970 &iter->dev->adj_list.lower); 7971 netdev_adjacent_sysfs_add(iter->dev, dev, 7972 &iter->dev->adj_list.lower); 7973 } 7974 7975 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7976 if (!net_eq(net, dev_net(iter->dev))) 7977 continue; 7978 netdev_adjacent_sysfs_del(iter->dev, oldname, 7979 &iter->dev->adj_list.upper); 7980 netdev_adjacent_sysfs_add(iter->dev, dev, 7981 &iter->dev->adj_list.upper); 7982 } 7983 } 7984 7985 void *netdev_lower_dev_get_private(struct net_device *dev, 7986 struct net_device *lower_dev) 7987 { 7988 struct netdev_adjacent *lower; 7989 7990 if (!lower_dev) 7991 return NULL; 7992 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 7993 if (!lower) 7994 return NULL; 7995 7996 return lower->private; 7997 } 7998 EXPORT_SYMBOL(netdev_lower_dev_get_private); 7999 8000 8001 /** 8002 * netdev_lower_change - Dispatch event about lower device state change 8003 * @lower_dev: device 8004 * @lower_state_info: state to dispatch 8005 * 8006 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 8007 * The caller must hold the RTNL lock. 8008 */ 8009 void netdev_lower_state_changed(struct net_device *lower_dev, 8010 void *lower_state_info) 8011 { 8012 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 8013 .info.dev = lower_dev, 8014 }; 8015 8016 ASSERT_RTNL(); 8017 changelowerstate_info.lower_state_info = lower_state_info; 8018 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 8019 &changelowerstate_info.info); 8020 } 8021 EXPORT_SYMBOL(netdev_lower_state_changed); 8022 8023 static void dev_change_rx_flags(struct net_device *dev, int flags) 8024 { 8025 const struct net_device_ops *ops = dev->netdev_ops; 8026 8027 if (ops->ndo_change_rx_flags) 8028 ops->ndo_change_rx_flags(dev, flags); 8029 } 8030 8031 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 8032 { 8033 unsigned int old_flags = dev->flags; 8034 kuid_t uid; 8035 kgid_t gid; 8036 8037 ASSERT_RTNL(); 8038 8039 dev->flags |= IFF_PROMISC; 8040 dev->promiscuity += inc; 8041 if (dev->promiscuity == 0) { 8042 /* 8043 * Avoid overflow. 8044 * If inc causes overflow, untouch promisc and return error. 8045 */ 8046 if (inc < 0) 8047 dev->flags &= ~IFF_PROMISC; 8048 else { 8049 dev->promiscuity -= inc; 8050 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 8051 dev->name); 8052 return -EOVERFLOW; 8053 } 8054 } 8055 if (dev->flags != old_flags) { 8056 pr_info("device %s %s promiscuous mode\n", 8057 dev->name, 8058 dev->flags & IFF_PROMISC ? "entered" : "left"); 8059 if (audit_enabled) { 8060 current_uid_gid(&uid, &gid); 8061 audit_log(audit_context(), GFP_ATOMIC, 8062 AUDIT_ANOM_PROMISCUOUS, 8063 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 8064 dev->name, (dev->flags & IFF_PROMISC), 8065 (old_flags & IFF_PROMISC), 8066 from_kuid(&init_user_ns, audit_get_loginuid(current)), 8067 from_kuid(&init_user_ns, uid), 8068 from_kgid(&init_user_ns, gid), 8069 audit_get_sessionid(current)); 8070 } 8071 8072 dev_change_rx_flags(dev, IFF_PROMISC); 8073 } 8074 if (notify) 8075 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 8076 return 0; 8077 } 8078 8079 /** 8080 * dev_set_promiscuity - update promiscuity count on a device 8081 * @dev: device 8082 * @inc: modifier 8083 * 8084 * Add or remove promiscuity from a device. While the count in the device 8085 * remains above zero the interface remains promiscuous. Once it hits zero 8086 * the device reverts back to normal filtering operation. A negative inc 8087 * value is used to drop promiscuity on the device. 8088 * Return 0 if successful or a negative errno code on error. 8089 */ 8090 int dev_set_promiscuity(struct net_device *dev, int inc) 8091 { 8092 unsigned int old_flags = dev->flags; 8093 int err; 8094 8095 err = __dev_set_promiscuity(dev, inc, true); 8096 if (err < 0) 8097 return err; 8098 if (dev->flags != old_flags) 8099 dev_set_rx_mode(dev); 8100 return err; 8101 } 8102 EXPORT_SYMBOL(dev_set_promiscuity); 8103 8104 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 8105 { 8106 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 8107 8108 ASSERT_RTNL(); 8109 8110 dev->flags |= IFF_ALLMULTI; 8111 dev->allmulti += inc; 8112 if (dev->allmulti == 0) { 8113 /* 8114 * Avoid overflow. 8115 * If inc causes overflow, untouch allmulti and return error. 8116 */ 8117 if (inc < 0) 8118 dev->flags &= ~IFF_ALLMULTI; 8119 else { 8120 dev->allmulti -= inc; 8121 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 8122 dev->name); 8123 return -EOVERFLOW; 8124 } 8125 } 8126 if (dev->flags ^ old_flags) { 8127 dev_change_rx_flags(dev, IFF_ALLMULTI); 8128 dev_set_rx_mode(dev); 8129 if (notify) 8130 __dev_notify_flags(dev, old_flags, 8131 dev->gflags ^ old_gflags); 8132 } 8133 return 0; 8134 } 8135 8136 /** 8137 * dev_set_allmulti - update allmulti count on a device 8138 * @dev: device 8139 * @inc: modifier 8140 * 8141 * Add or remove reception of all multicast frames to a device. While the 8142 * count in the device remains above zero the interface remains listening 8143 * to all interfaces. Once it hits zero the device reverts back to normal 8144 * filtering operation. A negative @inc value is used to drop the counter 8145 * when releasing a resource needing all multicasts. 8146 * Return 0 if successful or a negative errno code on error. 8147 */ 8148 8149 int dev_set_allmulti(struct net_device *dev, int inc) 8150 { 8151 return __dev_set_allmulti(dev, inc, true); 8152 } 8153 EXPORT_SYMBOL(dev_set_allmulti); 8154 8155 /* 8156 * Upload unicast and multicast address lists to device and 8157 * configure RX filtering. When the device doesn't support unicast 8158 * filtering it is put in promiscuous mode while unicast addresses 8159 * are present. 8160 */ 8161 void __dev_set_rx_mode(struct net_device *dev) 8162 { 8163 const struct net_device_ops *ops = dev->netdev_ops; 8164 8165 /* dev_open will call this function so the list will stay sane. */ 8166 if (!(dev->flags&IFF_UP)) 8167 return; 8168 8169 if (!netif_device_present(dev)) 8170 return; 8171 8172 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 8173 /* Unicast addresses changes may only happen under the rtnl, 8174 * therefore calling __dev_set_promiscuity here is safe. 8175 */ 8176 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 8177 __dev_set_promiscuity(dev, 1, false); 8178 dev->uc_promisc = true; 8179 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 8180 __dev_set_promiscuity(dev, -1, false); 8181 dev->uc_promisc = false; 8182 } 8183 } 8184 8185 if (ops->ndo_set_rx_mode) 8186 ops->ndo_set_rx_mode(dev); 8187 } 8188 8189 void dev_set_rx_mode(struct net_device *dev) 8190 { 8191 netif_addr_lock_bh(dev); 8192 __dev_set_rx_mode(dev); 8193 netif_addr_unlock_bh(dev); 8194 } 8195 8196 /** 8197 * dev_get_flags - get flags reported to userspace 8198 * @dev: device 8199 * 8200 * Get the combination of flag bits exported through APIs to userspace. 8201 */ 8202 unsigned int dev_get_flags(const struct net_device *dev) 8203 { 8204 unsigned int flags; 8205 8206 flags = (dev->flags & ~(IFF_PROMISC | 8207 IFF_ALLMULTI | 8208 IFF_RUNNING | 8209 IFF_LOWER_UP | 8210 IFF_DORMANT)) | 8211 (dev->gflags & (IFF_PROMISC | 8212 IFF_ALLMULTI)); 8213 8214 if (netif_running(dev)) { 8215 if (netif_oper_up(dev)) 8216 flags |= IFF_RUNNING; 8217 if (netif_carrier_ok(dev)) 8218 flags |= IFF_LOWER_UP; 8219 if (netif_dormant(dev)) 8220 flags |= IFF_DORMANT; 8221 } 8222 8223 return flags; 8224 } 8225 EXPORT_SYMBOL(dev_get_flags); 8226 8227 int __dev_change_flags(struct net_device *dev, unsigned int flags, 8228 struct netlink_ext_ack *extack) 8229 { 8230 unsigned int old_flags = dev->flags; 8231 int ret; 8232 8233 ASSERT_RTNL(); 8234 8235 /* 8236 * Set the flags on our device. 8237 */ 8238 8239 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 8240 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 8241 IFF_AUTOMEDIA)) | 8242 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 8243 IFF_ALLMULTI)); 8244 8245 /* 8246 * Load in the correct multicast list now the flags have changed. 8247 */ 8248 8249 if ((old_flags ^ flags) & IFF_MULTICAST) 8250 dev_change_rx_flags(dev, IFF_MULTICAST); 8251 8252 dev_set_rx_mode(dev); 8253 8254 /* 8255 * Have we downed the interface. We handle IFF_UP ourselves 8256 * according to user attempts to set it, rather than blindly 8257 * setting it. 8258 */ 8259 8260 ret = 0; 8261 if ((old_flags ^ flags) & IFF_UP) { 8262 if (old_flags & IFF_UP) 8263 __dev_close(dev); 8264 else 8265 ret = __dev_open(dev, extack); 8266 } 8267 8268 if ((flags ^ dev->gflags) & IFF_PROMISC) { 8269 int inc = (flags & IFF_PROMISC) ? 1 : -1; 8270 unsigned int old_flags = dev->flags; 8271 8272 dev->gflags ^= IFF_PROMISC; 8273 8274 if (__dev_set_promiscuity(dev, inc, false) >= 0) 8275 if (dev->flags != old_flags) 8276 dev_set_rx_mode(dev); 8277 } 8278 8279 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 8280 * is important. Some (broken) drivers set IFF_PROMISC, when 8281 * IFF_ALLMULTI is requested not asking us and not reporting. 8282 */ 8283 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 8284 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 8285 8286 dev->gflags ^= IFF_ALLMULTI; 8287 __dev_set_allmulti(dev, inc, false); 8288 } 8289 8290 return ret; 8291 } 8292 8293 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 8294 unsigned int gchanges) 8295 { 8296 unsigned int changes = dev->flags ^ old_flags; 8297 8298 if (gchanges) 8299 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 8300 8301 if (changes & IFF_UP) { 8302 if (dev->flags & IFF_UP) 8303 call_netdevice_notifiers(NETDEV_UP, dev); 8304 else 8305 call_netdevice_notifiers(NETDEV_DOWN, dev); 8306 } 8307 8308 if (dev->flags & IFF_UP && 8309 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 8310 struct netdev_notifier_change_info change_info = { 8311 .info = { 8312 .dev = dev, 8313 }, 8314 .flags_changed = changes, 8315 }; 8316 8317 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 8318 } 8319 } 8320 8321 /** 8322 * dev_change_flags - change device settings 8323 * @dev: device 8324 * @flags: device state flags 8325 * @extack: netlink extended ack 8326 * 8327 * Change settings on device based state flags. The flags are 8328 * in the userspace exported format. 8329 */ 8330 int dev_change_flags(struct net_device *dev, unsigned int flags, 8331 struct netlink_ext_ack *extack) 8332 { 8333 int ret; 8334 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 8335 8336 ret = __dev_change_flags(dev, flags, extack); 8337 if (ret < 0) 8338 return ret; 8339 8340 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 8341 __dev_notify_flags(dev, old_flags, changes); 8342 return ret; 8343 } 8344 EXPORT_SYMBOL(dev_change_flags); 8345 8346 int __dev_set_mtu(struct net_device *dev, int new_mtu) 8347 { 8348 const struct net_device_ops *ops = dev->netdev_ops; 8349 8350 if (ops->ndo_change_mtu) 8351 return ops->ndo_change_mtu(dev, new_mtu); 8352 8353 /* Pairs with all the lockless reads of dev->mtu in the stack */ 8354 WRITE_ONCE(dev->mtu, new_mtu); 8355 return 0; 8356 } 8357 EXPORT_SYMBOL(__dev_set_mtu); 8358 8359 int dev_validate_mtu(struct net_device *dev, int new_mtu, 8360 struct netlink_ext_ack *extack) 8361 { 8362 /* MTU must be positive, and in range */ 8363 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 8364 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 8365 return -EINVAL; 8366 } 8367 8368 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 8369 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 8370 return -EINVAL; 8371 } 8372 return 0; 8373 } 8374 8375 /** 8376 * dev_set_mtu_ext - Change maximum transfer unit 8377 * @dev: device 8378 * @new_mtu: new transfer unit 8379 * @extack: netlink extended ack 8380 * 8381 * Change the maximum transfer size of the network device. 8382 */ 8383 int dev_set_mtu_ext(struct net_device *dev, int new_mtu, 8384 struct netlink_ext_ack *extack) 8385 { 8386 int err, orig_mtu; 8387 8388 if (new_mtu == dev->mtu) 8389 return 0; 8390 8391 err = dev_validate_mtu(dev, new_mtu, extack); 8392 if (err) 8393 return err; 8394 8395 if (!netif_device_present(dev)) 8396 return -ENODEV; 8397 8398 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 8399 err = notifier_to_errno(err); 8400 if (err) 8401 return err; 8402 8403 orig_mtu = dev->mtu; 8404 err = __dev_set_mtu(dev, new_mtu); 8405 8406 if (!err) { 8407 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8408 orig_mtu); 8409 err = notifier_to_errno(err); 8410 if (err) { 8411 /* setting mtu back and notifying everyone again, 8412 * so that they have a chance to revert changes. 8413 */ 8414 __dev_set_mtu(dev, orig_mtu); 8415 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8416 new_mtu); 8417 } 8418 } 8419 return err; 8420 } 8421 8422 int dev_set_mtu(struct net_device *dev, int new_mtu) 8423 { 8424 struct netlink_ext_ack extack; 8425 int err; 8426 8427 memset(&extack, 0, sizeof(extack)); 8428 err = dev_set_mtu_ext(dev, new_mtu, &extack); 8429 if (err && extack._msg) 8430 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 8431 return err; 8432 } 8433 EXPORT_SYMBOL(dev_set_mtu); 8434 8435 /** 8436 * dev_change_tx_queue_len - Change TX queue length of a netdevice 8437 * @dev: device 8438 * @new_len: new tx queue length 8439 */ 8440 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 8441 { 8442 unsigned int orig_len = dev->tx_queue_len; 8443 int res; 8444 8445 if (new_len != (unsigned int)new_len) 8446 return -ERANGE; 8447 8448 if (new_len != orig_len) { 8449 dev->tx_queue_len = new_len; 8450 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 8451 res = notifier_to_errno(res); 8452 if (res) 8453 goto err_rollback; 8454 res = dev_qdisc_change_tx_queue_len(dev); 8455 if (res) 8456 goto err_rollback; 8457 } 8458 8459 return 0; 8460 8461 err_rollback: 8462 netdev_err(dev, "refused to change device tx_queue_len\n"); 8463 dev->tx_queue_len = orig_len; 8464 return res; 8465 } 8466 8467 /** 8468 * dev_set_group - Change group this device belongs to 8469 * @dev: device 8470 * @new_group: group this device should belong to 8471 */ 8472 void dev_set_group(struct net_device *dev, int new_group) 8473 { 8474 dev->group = new_group; 8475 } 8476 EXPORT_SYMBOL(dev_set_group); 8477 8478 /** 8479 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR. 8480 * @dev: device 8481 * @addr: new address 8482 * @extack: netlink extended ack 8483 */ 8484 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 8485 struct netlink_ext_ack *extack) 8486 { 8487 struct netdev_notifier_pre_changeaddr_info info = { 8488 .info.dev = dev, 8489 .info.extack = extack, 8490 .dev_addr = addr, 8491 }; 8492 int rc; 8493 8494 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); 8495 return notifier_to_errno(rc); 8496 } 8497 EXPORT_SYMBOL(dev_pre_changeaddr_notify); 8498 8499 /** 8500 * dev_set_mac_address - Change Media Access Control Address 8501 * @dev: device 8502 * @sa: new address 8503 * @extack: netlink extended ack 8504 * 8505 * Change the hardware (MAC) address of the device 8506 */ 8507 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 8508 struct netlink_ext_ack *extack) 8509 { 8510 const struct net_device_ops *ops = dev->netdev_ops; 8511 int err; 8512 8513 if (!ops->ndo_set_mac_address) 8514 return -EOPNOTSUPP; 8515 if (sa->sa_family != dev->type) 8516 return -EINVAL; 8517 if (!netif_device_present(dev)) 8518 return -ENODEV; 8519 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack); 8520 if (err) 8521 return err; 8522 err = ops->ndo_set_mac_address(dev, sa); 8523 if (err) 8524 return err; 8525 dev->addr_assign_type = NET_ADDR_SET; 8526 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 8527 add_device_randomness(dev->dev_addr, dev->addr_len); 8528 return 0; 8529 } 8530 EXPORT_SYMBOL(dev_set_mac_address); 8531 8532 /** 8533 * dev_change_carrier - Change device carrier 8534 * @dev: device 8535 * @new_carrier: new value 8536 * 8537 * Change device carrier 8538 */ 8539 int dev_change_carrier(struct net_device *dev, bool new_carrier) 8540 { 8541 const struct net_device_ops *ops = dev->netdev_ops; 8542 8543 if (!ops->ndo_change_carrier) 8544 return -EOPNOTSUPP; 8545 if (!netif_device_present(dev)) 8546 return -ENODEV; 8547 return ops->ndo_change_carrier(dev, new_carrier); 8548 } 8549 EXPORT_SYMBOL(dev_change_carrier); 8550 8551 /** 8552 * dev_get_phys_port_id - Get device physical port ID 8553 * @dev: device 8554 * @ppid: port ID 8555 * 8556 * Get device physical port ID 8557 */ 8558 int dev_get_phys_port_id(struct net_device *dev, 8559 struct netdev_phys_item_id *ppid) 8560 { 8561 const struct net_device_ops *ops = dev->netdev_ops; 8562 8563 if (!ops->ndo_get_phys_port_id) 8564 return -EOPNOTSUPP; 8565 return ops->ndo_get_phys_port_id(dev, ppid); 8566 } 8567 EXPORT_SYMBOL(dev_get_phys_port_id); 8568 8569 /** 8570 * dev_get_phys_port_name - Get device physical port name 8571 * @dev: device 8572 * @name: port name 8573 * @len: limit of bytes to copy to name 8574 * 8575 * Get device physical port name 8576 */ 8577 int dev_get_phys_port_name(struct net_device *dev, 8578 char *name, size_t len) 8579 { 8580 const struct net_device_ops *ops = dev->netdev_ops; 8581 int err; 8582 8583 if (ops->ndo_get_phys_port_name) { 8584 err = ops->ndo_get_phys_port_name(dev, name, len); 8585 if (err != -EOPNOTSUPP) 8586 return err; 8587 } 8588 return devlink_compat_phys_port_name_get(dev, name, len); 8589 } 8590 EXPORT_SYMBOL(dev_get_phys_port_name); 8591 8592 /** 8593 * dev_get_port_parent_id - Get the device's port parent identifier 8594 * @dev: network device 8595 * @ppid: pointer to a storage for the port's parent identifier 8596 * @recurse: allow/disallow recursion to lower devices 8597 * 8598 * Get the devices's port parent identifier 8599 */ 8600 int dev_get_port_parent_id(struct net_device *dev, 8601 struct netdev_phys_item_id *ppid, 8602 bool recurse) 8603 { 8604 const struct net_device_ops *ops = dev->netdev_ops; 8605 struct netdev_phys_item_id first = { }; 8606 struct net_device *lower_dev; 8607 struct list_head *iter; 8608 int err; 8609 8610 if (ops->ndo_get_port_parent_id) { 8611 err = ops->ndo_get_port_parent_id(dev, ppid); 8612 if (err != -EOPNOTSUPP) 8613 return err; 8614 } 8615 8616 err = devlink_compat_switch_id_get(dev, ppid); 8617 if (!err || err != -EOPNOTSUPP) 8618 return err; 8619 8620 if (!recurse) 8621 return -EOPNOTSUPP; 8622 8623 netdev_for_each_lower_dev(dev, lower_dev, iter) { 8624 err = dev_get_port_parent_id(lower_dev, ppid, recurse); 8625 if (err) 8626 break; 8627 if (!first.id_len) 8628 first = *ppid; 8629 else if (memcmp(&first, ppid, sizeof(*ppid))) 8630 return -ENODATA; 8631 } 8632 8633 return err; 8634 } 8635 EXPORT_SYMBOL(dev_get_port_parent_id); 8636 8637 /** 8638 * netdev_port_same_parent_id - Indicate if two network devices have 8639 * the same port parent identifier 8640 * @a: first network device 8641 * @b: second network device 8642 */ 8643 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) 8644 { 8645 struct netdev_phys_item_id a_id = { }; 8646 struct netdev_phys_item_id b_id = { }; 8647 8648 if (dev_get_port_parent_id(a, &a_id, true) || 8649 dev_get_port_parent_id(b, &b_id, true)) 8650 return false; 8651 8652 return netdev_phys_item_id_same(&a_id, &b_id); 8653 } 8654 EXPORT_SYMBOL(netdev_port_same_parent_id); 8655 8656 /** 8657 * dev_change_proto_down - update protocol port state information 8658 * @dev: device 8659 * @proto_down: new value 8660 * 8661 * This info can be used by switch drivers to set the phys state of the 8662 * port. 8663 */ 8664 int dev_change_proto_down(struct net_device *dev, bool proto_down) 8665 { 8666 const struct net_device_ops *ops = dev->netdev_ops; 8667 8668 if (!ops->ndo_change_proto_down) 8669 return -EOPNOTSUPP; 8670 if (!netif_device_present(dev)) 8671 return -ENODEV; 8672 return ops->ndo_change_proto_down(dev, proto_down); 8673 } 8674 EXPORT_SYMBOL(dev_change_proto_down); 8675 8676 /** 8677 * dev_change_proto_down_generic - generic implementation for 8678 * ndo_change_proto_down that sets carrier according to 8679 * proto_down. 8680 * 8681 * @dev: device 8682 * @proto_down: new value 8683 */ 8684 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down) 8685 { 8686 if (proto_down) 8687 netif_carrier_off(dev); 8688 else 8689 netif_carrier_on(dev); 8690 dev->proto_down = proto_down; 8691 return 0; 8692 } 8693 EXPORT_SYMBOL(dev_change_proto_down_generic); 8694 8695 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op, 8696 enum bpf_netdev_command cmd) 8697 { 8698 struct netdev_bpf xdp; 8699 8700 if (!bpf_op) 8701 return 0; 8702 8703 memset(&xdp, 0, sizeof(xdp)); 8704 xdp.command = cmd; 8705 8706 /* Query must always succeed. */ 8707 WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG); 8708 8709 return xdp.prog_id; 8710 } 8711 8712 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op, 8713 struct netlink_ext_ack *extack, u32 flags, 8714 struct bpf_prog *prog) 8715 { 8716 bool non_hw = !(flags & XDP_FLAGS_HW_MODE); 8717 struct bpf_prog *prev_prog = NULL; 8718 struct netdev_bpf xdp; 8719 int err; 8720 8721 if (non_hw) { 8722 prev_prog = bpf_prog_by_id(__dev_xdp_query(dev, bpf_op, 8723 XDP_QUERY_PROG)); 8724 if (IS_ERR(prev_prog)) 8725 prev_prog = NULL; 8726 } 8727 8728 memset(&xdp, 0, sizeof(xdp)); 8729 if (flags & XDP_FLAGS_HW_MODE) 8730 xdp.command = XDP_SETUP_PROG_HW; 8731 else 8732 xdp.command = XDP_SETUP_PROG; 8733 xdp.extack = extack; 8734 xdp.flags = flags; 8735 xdp.prog = prog; 8736 8737 err = bpf_op(dev, &xdp); 8738 if (!err && non_hw) 8739 bpf_prog_change_xdp(prev_prog, prog); 8740 8741 if (prev_prog) 8742 bpf_prog_put(prev_prog); 8743 8744 return err; 8745 } 8746 8747 static void dev_xdp_uninstall(struct net_device *dev) 8748 { 8749 struct netdev_bpf xdp; 8750 bpf_op_t ndo_bpf; 8751 8752 /* Remove generic XDP */ 8753 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL)); 8754 8755 /* Remove from the driver */ 8756 ndo_bpf = dev->netdev_ops->ndo_bpf; 8757 if (!ndo_bpf) 8758 return; 8759 8760 memset(&xdp, 0, sizeof(xdp)); 8761 xdp.command = XDP_QUERY_PROG; 8762 WARN_ON(ndo_bpf(dev, &xdp)); 8763 if (xdp.prog_id) 8764 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, 8765 NULL)); 8766 8767 /* Remove HW offload */ 8768 memset(&xdp, 0, sizeof(xdp)); 8769 xdp.command = XDP_QUERY_PROG_HW; 8770 if (!ndo_bpf(dev, &xdp) && xdp.prog_id) 8771 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, 8772 NULL)); 8773 } 8774 8775 /** 8776 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 8777 * @dev: device 8778 * @extack: netlink extended ack 8779 * @fd: new program fd or negative value to clear 8780 * @expected_fd: old program fd that userspace expects to replace or clear 8781 * @flags: xdp-related flags 8782 * 8783 * Set or clear a bpf program for a device 8784 */ 8785 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 8786 int fd, int expected_fd, u32 flags) 8787 { 8788 const struct net_device_ops *ops = dev->netdev_ops; 8789 enum bpf_netdev_command query; 8790 u32 prog_id, expected_id = 0; 8791 bpf_op_t bpf_op, bpf_chk; 8792 struct bpf_prog *prog; 8793 bool offload; 8794 int err; 8795 8796 ASSERT_RTNL(); 8797 8798 offload = flags & XDP_FLAGS_HW_MODE; 8799 query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG; 8800 8801 bpf_op = bpf_chk = ops->ndo_bpf; 8802 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) { 8803 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode"); 8804 return -EOPNOTSUPP; 8805 } 8806 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE)) 8807 bpf_op = generic_xdp_install; 8808 if (bpf_op == bpf_chk) 8809 bpf_chk = generic_xdp_install; 8810 8811 prog_id = __dev_xdp_query(dev, bpf_op, query); 8812 if (flags & XDP_FLAGS_REPLACE) { 8813 if (expected_fd >= 0) { 8814 prog = bpf_prog_get_type_dev(expected_fd, 8815 BPF_PROG_TYPE_XDP, 8816 bpf_op == ops->ndo_bpf); 8817 if (IS_ERR(prog)) 8818 return PTR_ERR(prog); 8819 expected_id = prog->aux->id; 8820 bpf_prog_put(prog); 8821 } 8822 8823 if (prog_id != expected_id) { 8824 NL_SET_ERR_MSG(extack, "Active program does not match expected"); 8825 return -EEXIST; 8826 } 8827 } 8828 if (fd >= 0) { 8829 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) { 8830 NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time"); 8831 return -EEXIST; 8832 } 8833 8834 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && prog_id) { 8835 NL_SET_ERR_MSG(extack, "XDP program already attached"); 8836 return -EBUSY; 8837 } 8838 8839 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 8840 bpf_op == ops->ndo_bpf); 8841 if (IS_ERR(prog)) 8842 return PTR_ERR(prog); 8843 8844 if (!offload && bpf_prog_is_dev_bound(prog->aux)) { 8845 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported"); 8846 bpf_prog_put(prog); 8847 return -EINVAL; 8848 } 8849 8850 if (prog->expected_attach_type == BPF_XDP_DEVMAP) { 8851 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device"); 8852 bpf_prog_put(prog); 8853 return -EINVAL; 8854 } 8855 8856 /* prog->aux->id may be 0 for orphaned device-bound progs */ 8857 if (prog->aux->id && prog->aux->id == prog_id) { 8858 bpf_prog_put(prog); 8859 return 0; 8860 } 8861 } else { 8862 if (!prog_id) 8863 return 0; 8864 prog = NULL; 8865 } 8866 8867 err = dev_xdp_install(dev, bpf_op, extack, flags, prog); 8868 if (err < 0 && prog) 8869 bpf_prog_put(prog); 8870 8871 return err; 8872 } 8873 8874 /** 8875 * dev_new_index - allocate an ifindex 8876 * @net: the applicable net namespace 8877 * 8878 * Returns a suitable unique value for a new device interface 8879 * number. The caller must hold the rtnl semaphore or the 8880 * dev_base_lock to be sure it remains unique. 8881 */ 8882 static int dev_new_index(struct net *net) 8883 { 8884 int ifindex = net->ifindex; 8885 8886 for (;;) { 8887 if (++ifindex <= 0) 8888 ifindex = 1; 8889 if (!__dev_get_by_index(net, ifindex)) 8890 return net->ifindex = ifindex; 8891 } 8892 } 8893 8894 /* Delayed registration/unregisteration */ 8895 static LIST_HEAD(net_todo_list); 8896 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 8897 8898 static void net_set_todo(struct net_device *dev) 8899 { 8900 list_add_tail(&dev->todo_list, &net_todo_list); 8901 dev_net(dev)->dev_unreg_count++; 8902 } 8903 8904 static void rollback_registered_many(struct list_head *head) 8905 { 8906 struct net_device *dev, *tmp; 8907 LIST_HEAD(close_head); 8908 8909 BUG_ON(dev_boot_phase); 8910 ASSERT_RTNL(); 8911 8912 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 8913 /* Some devices call without registering 8914 * for initialization unwind. Remove those 8915 * devices and proceed with the remaining. 8916 */ 8917 if (dev->reg_state == NETREG_UNINITIALIZED) { 8918 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 8919 dev->name, dev); 8920 8921 WARN_ON(1); 8922 list_del(&dev->unreg_list); 8923 continue; 8924 } 8925 dev->dismantle = true; 8926 BUG_ON(dev->reg_state != NETREG_REGISTERED); 8927 } 8928 8929 /* If device is running, close it first. */ 8930 list_for_each_entry(dev, head, unreg_list) 8931 list_add_tail(&dev->close_list, &close_head); 8932 dev_close_many(&close_head, true); 8933 8934 list_for_each_entry(dev, head, unreg_list) { 8935 /* And unlink it from device chain. */ 8936 unlist_netdevice(dev); 8937 8938 dev->reg_state = NETREG_UNREGISTERING; 8939 } 8940 flush_all_backlogs(); 8941 8942 synchronize_net(); 8943 8944 list_for_each_entry(dev, head, unreg_list) { 8945 struct sk_buff *skb = NULL; 8946 8947 /* Shutdown queueing discipline. */ 8948 dev_shutdown(dev); 8949 8950 dev_xdp_uninstall(dev); 8951 8952 /* Notify protocols, that we are about to destroy 8953 * this device. They should clean all the things. 8954 */ 8955 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8956 8957 if (!dev->rtnl_link_ops || 8958 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 8959 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 8960 GFP_KERNEL, NULL, 0); 8961 8962 /* 8963 * Flush the unicast and multicast chains 8964 */ 8965 dev_uc_flush(dev); 8966 dev_mc_flush(dev); 8967 8968 netdev_name_node_alt_flush(dev); 8969 netdev_name_node_free(dev->name_node); 8970 8971 if (dev->netdev_ops->ndo_uninit) 8972 dev->netdev_ops->ndo_uninit(dev); 8973 8974 if (skb) 8975 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 8976 8977 /* Notifier chain MUST detach us all upper devices. */ 8978 WARN_ON(netdev_has_any_upper_dev(dev)); 8979 WARN_ON(netdev_has_any_lower_dev(dev)); 8980 8981 /* Remove entries from kobject tree */ 8982 netdev_unregister_kobject(dev); 8983 #ifdef CONFIG_XPS 8984 /* Remove XPS queueing entries */ 8985 netif_reset_xps_queues_gt(dev, 0); 8986 #endif 8987 } 8988 8989 synchronize_net(); 8990 8991 list_for_each_entry(dev, head, unreg_list) 8992 dev_put(dev); 8993 } 8994 8995 static void rollback_registered(struct net_device *dev) 8996 { 8997 LIST_HEAD(single); 8998 8999 list_add(&dev->unreg_list, &single); 9000 rollback_registered_many(&single); 9001 list_del(&single); 9002 } 9003 9004 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 9005 struct net_device *upper, netdev_features_t features) 9006 { 9007 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 9008 netdev_features_t feature; 9009 int feature_bit; 9010 9011 for_each_netdev_feature(upper_disables, feature_bit) { 9012 feature = __NETIF_F_BIT(feature_bit); 9013 if (!(upper->wanted_features & feature) 9014 && (features & feature)) { 9015 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 9016 &feature, upper->name); 9017 features &= ~feature; 9018 } 9019 } 9020 9021 return features; 9022 } 9023 9024 static void netdev_sync_lower_features(struct net_device *upper, 9025 struct net_device *lower, netdev_features_t features) 9026 { 9027 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 9028 netdev_features_t feature; 9029 int feature_bit; 9030 9031 for_each_netdev_feature(upper_disables, feature_bit) { 9032 feature = __NETIF_F_BIT(feature_bit); 9033 if (!(features & feature) && (lower->features & feature)) { 9034 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 9035 &feature, lower->name); 9036 lower->wanted_features &= ~feature; 9037 __netdev_update_features(lower); 9038 9039 if (unlikely(lower->features & feature)) 9040 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 9041 &feature, lower->name); 9042 else 9043 netdev_features_change(lower); 9044 } 9045 } 9046 } 9047 9048 static netdev_features_t netdev_fix_features(struct net_device *dev, 9049 netdev_features_t features) 9050 { 9051 /* Fix illegal checksum combinations */ 9052 if ((features & NETIF_F_HW_CSUM) && 9053 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 9054 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 9055 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 9056 } 9057 9058 /* TSO requires that SG is present as well. */ 9059 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 9060 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 9061 features &= ~NETIF_F_ALL_TSO; 9062 } 9063 9064 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 9065 !(features & NETIF_F_IP_CSUM)) { 9066 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 9067 features &= ~NETIF_F_TSO; 9068 features &= ~NETIF_F_TSO_ECN; 9069 } 9070 9071 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 9072 !(features & NETIF_F_IPV6_CSUM)) { 9073 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 9074 features &= ~NETIF_F_TSO6; 9075 } 9076 9077 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 9078 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 9079 features &= ~NETIF_F_TSO_MANGLEID; 9080 9081 /* TSO ECN requires that TSO is present as well. */ 9082 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 9083 features &= ~NETIF_F_TSO_ECN; 9084 9085 /* Software GSO depends on SG. */ 9086 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 9087 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 9088 features &= ~NETIF_F_GSO; 9089 } 9090 9091 /* GSO partial features require GSO partial be set */ 9092 if ((features & dev->gso_partial_features) && 9093 !(features & NETIF_F_GSO_PARTIAL)) { 9094 netdev_dbg(dev, 9095 "Dropping partially supported GSO features since no GSO partial.\n"); 9096 features &= ~dev->gso_partial_features; 9097 } 9098 9099 if (!(features & NETIF_F_RXCSUM)) { 9100 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 9101 * successfully merged by hardware must also have the 9102 * checksum verified by hardware. If the user does not 9103 * want to enable RXCSUM, logically, we should disable GRO_HW. 9104 */ 9105 if (features & NETIF_F_GRO_HW) { 9106 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 9107 features &= ~NETIF_F_GRO_HW; 9108 } 9109 } 9110 9111 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 9112 if (features & NETIF_F_RXFCS) { 9113 if (features & NETIF_F_LRO) { 9114 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 9115 features &= ~NETIF_F_LRO; 9116 } 9117 9118 if (features & NETIF_F_GRO_HW) { 9119 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 9120 features &= ~NETIF_F_GRO_HW; 9121 } 9122 } 9123 9124 return features; 9125 } 9126 9127 int __netdev_update_features(struct net_device *dev) 9128 { 9129 struct net_device *upper, *lower; 9130 netdev_features_t features; 9131 struct list_head *iter; 9132 int err = -1; 9133 9134 ASSERT_RTNL(); 9135 9136 features = netdev_get_wanted_features(dev); 9137 9138 if (dev->netdev_ops->ndo_fix_features) 9139 features = dev->netdev_ops->ndo_fix_features(dev, features); 9140 9141 /* driver might be less strict about feature dependencies */ 9142 features = netdev_fix_features(dev, features); 9143 9144 /* some features can't be enabled if they're off an an upper device */ 9145 netdev_for_each_upper_dev_rcu(dev, upper, iter) 9146 features = netdev_sync_upper_features(dev, upper, features); 9147 9148 if (dev->features == features) 9149 goto sync_lower; 9150 9151 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 9152 &dev->features, &features); 9153 9154 if (dev->netdev_ops->ndo_set_features) 9155 err = dev->netdev_ops->ndo_set_features(dev, features); 9156 else 9157 err = 0; 9158 9159 if (unlikely(err < 0)) { 9160 netdev_err(dev, 9161 "set_features() failed (%d); wanted %pNF, left %pNF\n", 9162 err, &features, &dev->features); 9163 /* return non-0 since some features might have changed and 9164 * it's better to fire a spurious notification than miss it 9165 */ 9166 return -1; 9167 } 9168 9169 sync_lower: 9170 /* some features must be disabled on lower devices when disabled 9171 * on an upper device (think: bonding master or bridge) 9172 */ 9173 netdev_for_each_lower_dev(dev, lower, iter) 9174 netdev_sync_lower_features(dev, lower, features); 9175 9176 if (!err) { 9177 netdev_features_t diff = features ^ dev->features; 9178 9179 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 9180 /* udp_tunnel_{get,drop}_rx_info both need 9181 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 9182 * device, or they won't do anything. 9183 * Thus we need to update dev->features 9184 * *before* calling udp_tunnel_get_rx_info, 9185 * but *after* calling udp_tunnel_drop_rx_info. 9186 */ 9187 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 9188 dev->features = features; 9189 udp_tunnel_get_rx_info(dev); 9190 } else { 9191 udp_tunnel_drop_rx_info(dev); 9192 } 9193 } 9194 9195 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 9196 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 9197 dev->features = features; 9198 err |= vlan_get_rx_ctag_filter_info(dev); 9199 } else { 9200 vlan_drop_rx_ctag_filter_info(dev); 9201 } 9202 } 9203 9204 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 9205 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 9206 dev->features = features; 9207 err |= vlan_get_rx_stag_filter_info(dev); 9208 } else { 9209 vlan_drop_rx_stag_filter_info(dev); 9210 } 9211 } 9212 9213 dev->features = features; 9214 } 9215 9216 return err < 0 ? 0 : 1; 9217 } 9218 9219 /** 9220 * netdev_update_features - recalculate device features 9221 * @dev: the device to check 9222 * 9223 * Recalculate dev->features set and send notifications if it 9224 * has changed. Should be called after driver or hardware dependent 9225 * conditions might have changed that influence the features. 9226 */ 9227 void netdev_update_features(struct net_device *dev) 9228 { 9229 if (__netdev_update_features(dev)) 9230 netdev_features_change(dev); 9231 } 9232 EXPORT_SYMBOL(netdev_update_features); 9233 9234 /** 9235 * netdev_change_features - recalculate device features 9236 * @dev: the device to check 9237 * 9238 * Recalculate dev->features set and send notifications even 9239 * if they have not changed. Should be called instead of 9240 * netdev_update_features() if also dev->vlan_features might 9241 * have changed to allow the changes to be propagated to stacked 9242 * VLAN devices. 9243 */ 9244 void netdev_change_features(struct net_device *dev) 9245 { 9246 __netdev_update_features(dev); 9247 netdev_features_change(dev); 9248 } 9249 EXPORT_SYMBOL(netdev_change_features); 9250 9251 /** 9252 * netif_stacked_transfer_operstate - transfer operstate 9253 * @rootdev: the root or lower level device to transfer state from 9254 * @dev: the device to transfer operstate to 9255 * 9256 * Transfer operational state from root to device. This is normally 9257 * called when a stacking relationship exists between the root 9258 * device and the device(a leaf device). 9259 */ 9260 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 9261 struct net_device *dev) 9262 { 9263 if (rootdev->operstate == IF_OPER_DORMANT) 9264 netif_dormant_on(dev); 9265 else 9266 netif_dormant_off(dev); 9267 9268 if (rootdev->operstate == IF_OPER_TESTING) 9269 netif_testing_on(dev); 9270 else 9271 netif_testing_off(dev); 9272 9273 if (netif_carrier_ok(rootdev)) 9274 netif_carrier_on(dev); 9275 else 9276 netif_carrier_off(dev); 9277 } 9278 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 9279 9280 static int netif_alloc_rx_queues(struct net_device *dev) 9281 { 9282 unsigned int i, count = dev->num_rx_queues; 9283 struct netdev_rx_queue *rx; 9284 size_t sz = count * sizeof(*rx); 9285 int err = 0; 9286 9287 BUG_ON(count < 1); 9288 9289 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 9290 if (!rx) 9291 return -ENOMEM; 9292 9293 dev->_rx = rx; 9294 9295 for (i = 0; i < count; i++) { 9296 rx[i].dev = dev; 9297 9298 /* XDP RX-queue setup */ 9299 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i); 9300 if (err < 0) 9301 goto err_rxq_info; 9302 } 9303 return 0; 9304 9305 err_rxq_info: 9306 /* Rollback successful reg's and free other resources */ 9307 while (i--) 9308 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 9309 kvfree(dev->_rx); 9310 dev->_rx = NULL; 9311 return err; 9312 } 9313 9314 static void netif_free_rx_queues(struct net_device *dev) 9315 { 9316 unsigned int i, count = dev->num_rx_queues; 9317 9318 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 9319 if (!dev->_rx) 9320 return; 9321 9322 for (i = 0; i < count; i++) 9323 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 9324 9325 kvfree(dev->_rx); 9326 } 9327 9328 static void netdev_init_one_queue(struct net_device *dev, 9329 struct netdev_queue *queue, void *_unused) 9330 { 9331 /* Initialize queue lock */ 9332 spin_lock_init(&queue->_xmit_lock); 9333 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 9334 queue->xmit_lock_owner = -1; 9335 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 9336 queue->dev = dev; 9337 #ifdef CONFIG_BQL 9338 dql_init(&queue->dql, HZ); 9339 #endif 9340 } 9341 9342 static void netif_free_tx_queues(struct net_device *dev) 9343 { 9344 kvfree(dev->_tx); 9345 } 9346 9347 static int netif_alloc_netdev_queues(struct net_device *dev) 9348 { 9349 unsigned int count = dev->num_tx_queues; 9350 struct netdev_queue *tx; 9351 size_t sz = count * sizeof(*tx); 9352 9353 if (count < 1 || count > 0xffff) 9354 return -EINVAL; 9355 9356 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 9357 if (!tx) 9358 return -ENOMEM; 9359 9360 dev->_tx = tx; 9361 9362 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 9363 spin_lock_init(&dev->tx_global_lock); 9364 9365 return 0; 9366 } 9367 9368 void netif_tx_stop_all_queues(struct net_device *dev) 9369 { 9370 unsigned int i; 9371 9372 for (i = 0; i < dev->num_tx_queues; i++) { 9373 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 9374 9375 netif_tx_stop_queue(txq); 9376 } 9377 } 9378 EXPORT_SYMBOL(netif_tx_stop_all_queues); 9379 9380 void netdev_update_lockdep_key(struct net_device *dev) 9381 { 9382 lockdep_unregister_key(&dev->addr_list_lock_key); 9383 lockdep_register_key(&dev->addr_list_lock_key); 9384 9385 lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key); 9386 } 9387 EXPORT_SYMBOL(netdev_update_lockdep_key); 9388 9389 /** 9390 * register_netdevice - register a network device 9391 * @dev: device to register 9392 * 9393 * Take a completed network device structure and add it to the kernel 9394 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 9395 * chain. 0 is returned on success. A negative errno code is returned 9396 * on a failure to set up the device, or if the name is a duplicate. 9397 * 9398 * Callers must hold the rtnl semaphore. You may want 9399 * register_netdev() instead of this. 9400 * 9401 * BUGS: 9402 * The locking appears insufficient to guarantee two parallel registers 9403 * will not get the same name. 9404 */ 9405 9406 int register_netdevice(struct net_device *dev) 9407 { 9408 int ret; 9409 struct net *net = dev_net(dev); 9410 9411 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 9412 NETDEV_FEATURE_COUNT); 9413 BUG_ON(dev_boot_phase); 9414 ASSERT_RTNL(); 9415 9416 might_sleep(); 9417 9418 /* When net_device's are persistent, this will be fatal. */ 9419 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 9420 BUG_ON(!net); 9421 9422 ret = ethtool_check_ops(dev->ethtool_ops); 9423 if (ret) 9424 return ret; 9425 9426 spin_lock_init(&dev->addr_list_lock); 9427 lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key); 9428 9429 ret = dev_get_valid_name(net, dev, dev->name); 9430 if (ret < 0) 9431 goto out; 9432 9433 ret = -ENOMEM; 9434 dev->name_node = netdev_name_node_head_alloc(dev); 9435 if (!dev->name_node) 9436 goto out; 9437 9438 /* Init, if this function is available */ 9439 if (dev->netdev_ops->ndo_init) { 9440 ret = dev->netdev_ops->ndo_init(dev); 9441 if (ret) { 9442 if (ret > 0) 9443 ret = -EIO; 9444 goto err_free_name; 9445 } 9446 } 9447 9448 if (((dev->hw_features | dev->features) & 9449 NETIF_F_HW_VLAN_CTAG_FILTER) && 9450 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 9451 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 9452 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 9453 ret = -EINVAL; 9454 goto err_uninit; 9455 } 9456 9457 ret = -EBUSY; 9458 if (!dev->ifindex) 9459 dev->ifindex = dev_new_index(net); 9460 else if (__dev_get_by_index(net, dev->ifindex)) 9461 goto err_uninit; 9462 9463 /* Transfer changeable features to wanted_features and enable 9464 * software offloads (GSO and GRO). 9465 */ 9466 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF); 9467 dev->features |= NETIF_F_SOFT_FEATURES; 9468 9469 if (dev->netdev_ops->ndo_udp_tunnel_add) { 9470 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 9471 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 9472 } 9473 9474 dev->wanted_features = dev->features & dev->hw_features; 9475 9476 if (!(dev->flags & IFF_LOOPBACK)) 9477 dev->hw_features |= NETIF_F_NOCACHE_COPY; 9478 9479 /* If IPv4 TCP segmentation offload is supported we should also 9480 * allow the device to enable segmenting the frame with the option 9481 * of ignoring a static IP ID value. This doesn't enable the 9482 * feature itself but allows the user to enable it later. 9483 */ 9484 if (dev->hw_features & NETIF_F_TSO) 9485 dev->hw_features |= NETIF_F_TSO_MANGLEID; 9486 if (dev->vlan_features & NETIF_F_TSO) 9487 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 9488 if (dev->mpls_features & NETIF_F_TSO) 9489 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 9490 if (dev->hw_enc_features & NETIF_F_TSO) 9491 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 9492 9493 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 9494 */ 9495 dev->vlan_features |= NETIF_F_HIGHDMA; 9496 9497 /* Make NETIF_F_SG inheritable to tunnel devices. 9498 */ 9499 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 9500 9501 /* Make NETIF_F_SG inheritable to MPLS. 9502 */ 9503 dev->mpls_features |= NETIF_F_SG; 9504 9505 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 9506 ret = notifier_to_errno(ret); 9507 if (ret) 9508 goto err_uninit; 9509 9510 ret = netdev_register_kobject(dev); 9511 if (ret) { 9512 dev->reg_state = NETREG_UNREGISTERED; 9513 goto err_uninit; 9514 } 9515 dev->reg_state = NETREG_REGISTERED; 9516 9517 __netdev_update_features(dev); 9518 9519 /* 9520 * Default initial state at registry is that the 9521 * device is present. 9522 */ 9523 9524 set_bit(__LINK_STATE_PRESENT, &dev->state); 9525 9526 linkwatch_init_dev(dev); 9527 9528 dev_init_scheduler(dev); 9529 dev_hold(dev); 9530 list_netdevice(dev); 9531 add_device_randomness(dev->dev_addr, dev->addr_len); 9532 9533 /* If the device has permanent device address, driver should 9534 * set dev_addr and also addr_assign_type should be set to 9535 * NET_ADDR_PERM (default value). 9536 */ 9537 if (dev->addr_assign_type == NET_ADDR_PERM) 9538 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 9539 9540 /* Notify protocols, that a new device appeared. */ 9541 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 9542 ret = notifier_to_errno(ret); 9543 if (ret) { 9544 rollback_registered(dev); 9545 rcu_barrier(); 9546 9547 dev->reg_state = NETREG_UNREGISTERED; 9548 } 9549 /* 9550 * Prevent userspace races by waiting until the network 9551 * device is fully setup before sending notifications. 9552 */ 9553 if (!dev->rtnl_link_ops || 9554 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 9555 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 9556 9557 out: 9558 return ret; 9559 9560 err_uninit: 9561 if (dev->netdev_ops->ndo_uninit) 9562 dev->netdev_ops->ndo_uninit(dev); 9563 if (dev->priv_destructor) 9564 dev->priv_destructor(dev); 9565 err_free_name: 9566 netdev_name_node_free(dev->name_node); 9567 goto out; 9568 } 9569 EXPORT_SYMBOL(register_netdevice); 9570 9571 /** 9572 * init_dummy_netdev - init a dummy network device for NAPI 9573 * @dev: device to init 9574 * 9575 * This takes a network device structure and initialize the minimum 9576 * amount of fields so it can be used to schedule NAPI polls without 9577 * registering a full blown interface. This is to be used by drivers 9578 * that need to tie several hardware interfaces to a single NAPI 9579 * poll scheduler due to HW limitations. 9580 */ 9581 int init_dummy_netdev(struct net_device *dev) 9582 { 9583 /* Clear everything. Note we don't initialize spinlocks 9584 * are they aren't supposed to be taken by any of the 9585 * NAPI code and this dummy netdev is supposed to be 9586 * only ever used for NAPI polls 9587 */ 9588 memset(dev, 0, sizeof(struct net_device)); 9589 9590 /* make sure we BUG if trying to hit standard 9591 * register/unregister code path 9592 */ 9593 dev->reg_state = NETREG_DUMMY; 9594 9595 /* NAPI wants this */ 9596 INIT_LIST_HEAD(&dev->napi_list); 9597 9598 /* a dummy interface is started by default */ 9599 set_bit(__LINK_STATE_PRESENT, &dev->state); 9600 set_bit(__LINK_STATE_START, &dev->state); 9601 9602 /* napi_busy_loop stats accounting wants this */ 9603 dev_net_set(dev, &init_net); 9604 9605 /* Note : We dont allocate pcpu_refcnt for dummy devices, 9606 * because users of this 'device' dont need to change 9607 * its refcount. 9608 */ 9609 9610 return 0; 9611 } 9612 EXPORT_SYMBOL_GPL(init_dummy_netdev); 9613 9614 9615 /** 9616 * register_netdev - register a network device 9617 * @dev: device to register 9618 * 9619 * Take a completed network device structure and add it to the kernel 9620 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 9621 * chain. 0 is returned on success. A negative errno code is returned 9622 * on a failure to set up the device, or if the name is a duplicate. 9623 * 9624 * This is a wrapper around register_netdevice that takes the rtnl semaphore 9625 * and expands the device name if you passed a format string to 9626 * alloc_netdev. 9627 */ 9628 int register_netdev(struct net_device *dev) 9629 { 9630 int err; 9631 9632 if (rtnl_lock_killable()) 9633 return -EINTR; 9634 err = register_netdevice(dev); 9635 rtnl_unlock(); 9636 return err; 9637 } 9638 EXPORT_SYMBOL(register_netdev); 9639 9640 int netdev_refcnt_read(const struct net_device *dev) 9641 { 9642 int i, refcnt = 0; 9643 9644 for_each_possible_cpu(i) 9645 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 9646 return refcnt; 9647 } 9648 EXPORT_SYMBOL(netdev_refcnt_read); 9649 9650 /** 9651 * netdev_wait_allrefs - wait until all references are gone. 9652 * @dev: target net_device 9653 * 9654 * This is called when unregistering network devices. 9655 * 9656 * Any protocol or device that holds a reference should register 9657 * for netdevice notification, and cleanup and put back the 9658 * reference if they receive an UNREGISTER event. 9659 * We can get stuck here if buggy protocols don't correctly 9660 * call dev_put. 9661 */ 9662 static void netdev_wait_allrefs(struct net_device *dev) 9663 { 9664 unsigned long rebroadcast_time, warning_time; 9665 int refcnt; 9666 9667 linkwatch_forget_dev(dev); 9668 9669 rebroadcast_time = warning_time = jiffies; 9670 refcnt = netdev_refcnt_read(dev); 9671 9672 while (refcnt != 0) { 9673 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 9674 rtnl_lock(); 9675 9676 /* Rebroadcast unregister notification */ 9677 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 9678 9679 __rtnl_unlock(); 9680 rcu_barrier(); 9681 rtnl_lock(); 9682 9683 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 9684 &dev->state)) { 9685 /* We must not have linkwatch events 9686 * pending on unregister. If this 9687 * happens, we simply run the queue 9688 * unscheduled, resulting in a noop 9689 * for this device. 9690 */ 9691 linkwatch_run_queue(); 9692 } 9693 9694 __rtnl_unlock(); 9695 9696 rebroadcast_time = jiffies; 9697 } 9698 9699 msleep(250); 9700 9701 refcnt = netdev_refcnt_read(dev); 9702 9703 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) { 9704 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 9705 dev->name, refcnt); 9706 warning_time = jiffies; 9707 } 9708 } 9709 } 9710 9711 /* The sequence is: 9712 * 9713 * rtnl_lock(); 9714 * ... 9715 * register_netdevice(x1); 9716 * register_netdevice(x2); 9717 * ... 9718 * unregister_netdevice(y1); 9719 * unregister_netdevice(y2); 9720 * ... 9721 * rtnl_unlock(); 9722 * free_netdev(y1); 9723 * free_netdev(y2); 9724 * 9725 * We are invoked by rtnl_unlock(). 9726 * This allows us to deal with problems: 9727 * 1) We can delete sysfs objects which invoke hotplug 9728 * without deadlocking with linkwatch via keventd. 9729 * 2) Since we run with the RTNL semaphore not held, we can sleep 9730 * safely in order to wait for the netdev refcnt to drop to zero. 9731 * 9732 * We must not return until all unregister events added during 9733 * the interval the lock was held have been completed. 9734 */ 9735 void netdev_run_todo(void) 9736 { 9737 struct list_head list; 9738 9739 /* Snapshot list, allow later requests */ 9740 list_replace_init(&net_todo_list, &list); 9741 9742 __rtnl_unlock(); 9743 9744 9745 /* Wait for rcu callbacks to finish before next phase */ 9746 if (!list_empty(&list)) 9747 rcu_barrier(); 9748 9749 while (!list_empty(&list)) { 9750 struct net_device *dev 9751 = list_first_entry(&list, struct net_device, todo_list); 9752 list_del(&dev->todo_list); 9753 9754 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 9755 pr_err("network todo '%s' but state %d\n", 9756 dev->name, dev->reg_state); 9757 dump_stack(); 9758 continue; 9759 } 9760 9761 dev->reg_state = NETREG_UNREGISTERED; 9762 9763 netdev_wait_allrefs(dev); 9764 9765 /* paranoia */ 9766 BUG_ON(netdev_refcnt_read(dev)); 9767 BUG_ON(!list_empty(&dev->ptype_all)); 9768 BUG_ON(!list_empty(&dev->ptype_specific)); 9769 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 9770 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 9771 #if IS_ENABLED(CONFIG_DECNET) 9772 WARN_ON(dev->dn_ptr); 9773 #endif 9774 if (dev->priv_destructor) 9775 dev->priv_destructor(dev); 9776 if (dev->needs_free_netdev) 9777 free_netdev(dev); 9778 9779 /* Report a network device has been unregistered */ 9780 rtnl_lock(); 9781 dev_net(dev)->dev_unreg_count--; 9782 __rtnl_unlock(); 9783 wake_up(&netdev_unregistering_wq); 9784 9785 /* Free network device */ 9786 kobject_put(&dev->dev.kobj); 9787 } 9788 } 9789 9790 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 9791 * all the same fields in the same order as net_device_stats, with only 9792 * the type differing, but rtnl_link_stats64 may have additional fields 9793 * at the end for newer counters. 9794 */ 9795 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 9796 const struct net_device_stats *netdev_stats) 9797 { 9798 #if BITS_PER_LONG == 64 9799 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 9800 memcpy(stats64, netdev_stats, sizeof(*netdev_stats)); 9801 /* zero out counters that only exist in rtnl_link_stats64 */ 9802 memset((char *)stats64 + sizeof(*netdev_stats), 0, 9803 sizeof(*stats64) - sizeof(*netdev_stats)); 9804 #else 9805 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 9806 const unsigned long *src = (const unsigned long *)netdev_stats; 9807 u64 *dst = (u64 *)stats64; 9808 9809 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 9810 for (i = 0; i < n; i++) 9811 dst[i] = src[i]; 9812 /* zero out counters that only exist in rtnl_link_stats64 */ 9813 memset((char *)stats64 + n * sizeof(u64), 0, 9814 sizeof(*stats64) - n * sizeof(u64)); 9815 #endif 9816 } 9817 EXPORT_SYMBOL(netdev_stats_to_stats64); 9818 9819 /** 9820 * dev_get_stats - get network device statistics 9821 * @dev: device to get statistics from 9822 * @storage: place to store stats 9823 * 9824 * Get network statistics from device. Return @storage. 9825 * The device driver may provide its own method by setting 9826 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 9827 * otherwise the internal statistics structure is used. 9828 */ 9829 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 9830 struct rtnl_link_stats64 *storage) 9831 { 9832 const struct net_device_ops *ops = dev->netdev_ops; 9833 9834 if (ops->ndo_get_stats64) { 9835 memset(storage, 0, sizeof(*storage)); 9836 ops->ndo_get_stats64(dev, storage); 9837 } else if (ops->ndo_get_stats) { 9838 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 9839 } else { 9840 netdev_stats_to_stats64(storage, &dev->stats); 9841 } 9842 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped); 9843 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped); 9844 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler); 9845 return storage; 9846 } 9847 EXPORT_SYMBOL(dev_get_stats); 9848 9849 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 9850 { 9851 struct netdev_queue *queue = dev_ingress_queue(dev); 9852 9853 #ifdef CONFIG_NET_CLS_ACT 9854 if (queue) 9855 return queue; 9856 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 9857 if (!queue) 9858 return NULL; 9859 netdev_init_one_queue(dev, queue, NULL); 9860 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 9861 queue->qdisc_sleeping = &noop_qdisc; 9862 rcu_assign_pointer(dev->ingress_queue, queue); 9863 #endif 9864 return queue; 9865 } 9866 9867 static const struct ethtool_ops default_ethtool_ops; 9868 9869 void netdev_set_default_ethtool_ops(struct net_device *dev, 9870 const struct ethtool_ops *ops) 9871 { 9872 if (dev->ethtool_ops == &default_ethtool_ops) 9873 dev->ethtool_ops = ops; 9874 } 9875 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 9876 9877 void netdev_freemem(struct net_device *dev) 9878 { 9879 char *addr = (char *)dev - dev->padded; 9880 9881 kvfree(addr); 9882 } 9883 9884 /** 9885 * alloc_netdev_mqs - allocate network device 9886 * @sizeof_priv: size of private data to allocate space for 9887 * @name: device name format string 9888 * @name_assign_type: origin of device name 9889 * @setup: callback to initialize device 9890 * @txqs: the number of TX subqueues to allocate 9891 * @rxqs: the number of RX subqueues to allocate 9892 * 9893 * Allocates a struct net_device with private data area for driver use 9894 * and performs basic initialization. Also allocates subqueue structs 9895 * for each queue on the device. 9896 */ 9897 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 9898 unsigned char name_assign_type, 9899 void (*setup)(struct net_device *), 9900 unsigned int txqs, unsigned int rxqs) 9901 { 9902 struct net_device *dev; 9903 unsigned int alloc_size; 9904 struct net_device *p; 9905 9906 BUG_ON(strlen(name) >= sizeof(dev->name)); 9907 9908 if (txqs < 1) { 9909 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 9910 return NULL; 9911 } 9912 9913 if (rxqs < 1) { 9914 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 9915 return NULL; 9916 } 9917 9918 alloc_size = sizeof(struct net_device); 9919 if (sizeof_priv) { 9920 /* ensure 32-byte alignment of private area */ 9921 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 9922 alloc_size += sizeof_priv; 9923 } 9924 /* ensure 32-byte alignment of whole construct */ 9925 alloc_size += NETDEV_ALIGN - 1; 9926 9927 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 9928 if (!p) 9929 return NULL; 9930 9931 dev = PTR_ALIGN(p, NETDEV_ALIGN); 9932 dev->padded = (char *)dev - (char *)p; 9933 9934 dev->pcpu_refcnt = alloc_percpu(int); 9935 if (!dev->pcpu_refcnt) 9936 goto free_dev; 9937 9938 if (dev_addr_init(dev)) 9939 goto free_pcpu; 9940 9941 dev_mc_init(dev); 9942 dev_uc_init(dev); 9943 9944 dev_net_set(dev, &init_net); 9945 9946 lockdep_register_key(&dev->addr_list_lock_key); 9947 9948 dev->gso_max_size = GSO_MAX_SIZE; 9949 dev->gso_max_segs = GSO_MAX_SEGS; 9950 dev->upper_level = 1; 9951 dev->lower_level = 1; 9952 9953 INIT_LIST_HEAD(&dev->napi_list); 9954 INIT_LIST_HEAD(&dev->unreg_list); 9955 INIT_LIST_HEAD(&dev->close_list); 9956 INIT_LIST_HEAD(&dev->link_watch_list); 9957 INIT_LIST_HEAD(&dev->adj_list.upper); 9958 INIT_LIST_HEAD(&dev->adj_list.lower); 9959 INIT_LIST_HEAD(&dev->ptype_all); 9960 INIT_LIST_HEAD(&dev->ptype_specific); 9961 INIT_LIST_HEAD(&dev->net_notifier_list); 9962 #ifdef CONFIG_NET_SCHED 9963 hash_init(dev->qdisc_hash); 9964 #endif 9965 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 9966 setup(dev); 9967 9968 if (!dev->tx_queue_len) { 9969 dev->priv_flags |= IFF_NO_QUEUE; 9970 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 9971 } 9972 9973 dev->num_tx_queues = txqs; 9974 dev->real_num_tx_queues = txqs; 9975 if (netif_alloc_netdev_queues(dev)) 9976 goto free_all; 9977 9978 dev->num_rx_queues = rxqs; 9979 dev->real_num_rx_queues = rxqs; 9980 if (netif_alloc_rx_queues(dev)) 9981 goto free_all; 9982 9983 strcpy(dev->name, name); 9984 dev->name_assign_type = name_assign_type; 9985 dev->group = INIT_NETDEV_GROUP; 9986 if (!dev->ethtool_ops) 9987 dev->ethtool_ops = &default_ethtool_ops; 9988 9989 nf_hook_ingress_init(dev); 9990 9991 return dev; 9992 9993 free_all: 9994 free_netdev(dev); 9995 return NULL; 9996 9997 free_pcpu: 9998 free_percpu(dev->pcpu_refcnt); 9999 free_dev: 10000 netdev_freemem(dev); 10001 return NULL; 10002 } 10003 EXPORT_SYMBOL(alloc_netdev_mqs); 10004 10005 /** 10006 * free_netdev - free network device 10007 * @dev: device 10008 * 10009 * This function does the last stage of destroying an allocated device 10010 * interface. The reference to the device object is released. If this 10011 * is the last reference then it will be freed.Must be called in process 10012 * context. 10013 */ 10014 void free_netdev(struct net_device *dev) 10015 { 10016 struct napi_struct *p, *n; 10017 10018 might_sleep(); 10019 netif_free_tx_queues(dev); 10020 netif_free_rx_queues(dev); 10021 10022 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 10023 10024 /* Flush device addresses */ 10025 dev_addr_flush(dev); 10026 10027 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 10028 netif_napi_del(p); 10029 10030 free_percpu(dev->pcpu_refcnt); 10031 dev->pcpu_refcnt = NULL; 10032 free_percpu(dev->xdp_bulkq); 10033 dev->xdp_bulkq = NULL; 10034 10035 lockdep_unregister_key(&dev->addr_list_lock_key); 10036 10037 /* Compatibility with error handling in drivers */ 10038 if (dev->reg_state == NETREG_UNINITIALIZED) { 10039 netdev_freemem(dev); 10040 return; 10041 } 10042 10043 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 10044 dev->reg_state = NETREG_RELEASED; 10045 10046 /* will free via device release */ 10047 put_device(&dev->dev); 10048 } 10049 EXPORT_SYMBOL(free_netdev); 10050 10051 /** 10052 * synchronize_net - Synchronize with packet receive processing 10053 * 10054 * Wait for packets currently being received to be done. 10055 * Does not block later packets from starting. 10056 */ 10057 void synchronize_net(void) 10058 { 10059 might_sleep(); 10060 if (rtnl_is_locked()) 10061 synchronize_rcu_expedited(); 10062 else 10063 synchronize_rcu(); 10064 } 10065 EXPORT_SYMBOL(synchronize_net); 10066 10067 /** 10068 * unregister_netdevice_queue - remove device from the kernel 10069 * @dev: device 10070 * @head: list 10071 * 10072 * This function shuts down a device interface and removes it 10073 * from the kernel tables. 10074 * If head not NULL, device is queued to be unregistered later. 10075 * 10076 * Callers must hold the rtnl semaphore. You may want 10077 * unregister_netdev() instead of this. 10078 */ 10079 10080 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 10081 { 10082 ASSERT_RTNL(); 10083 10084 if (head) { 10085 list_move_tail(&dev->unreg_list, head); 10086 } else { 10087 rollback_registered(dev); 10088 /* Finish processing unregister after unlock */ 10089 net_set_todo(dev); 10090 } 10091 } 10092 EXPORT_SYMBOL(unregister_netdevice_queue); 10093 10094 /** 10095 * unregister_netdevice_many - unregister many devices 10096 * @head: list of devices 10097 * 10098 * Note: As most callers use a stack allocated list_head, 10099 * we force a list_del() to make sure stack wont be corrupted later. 10100 */ 10101 void unregister_netdevice_many(struct list_head *head) 10102 { 10103 struct net_device *dev; 10104 10105 if (!list_empty(head)) { 10106 rollback_registered_many(head); 10107 list_for_each_entry(dev, head, unreg_list) 10108 net_set_todo(dev); 10109 list_del(head); 10110 } 10111 } 10112 EXPORT_SYMBOL(unregister_netdevice_many); 10113 10114 /** 10115 * unregister_netdev - remove device from the kernel 10116 * @dev: device 10117 * 10118 * This function shuts down a device interface and removes it 10119 * from the kernel tables. 10120 * 10121 * This is just a wrapper for unregister_netdevice that takes 10122 * the rtnl semaphore. In general you want to use this and not 10123 * unregister_netdevice. 10124 */ 10125 void unregister_netdev(struct net_device *dev) 10126 { 10127 rtnl_lock(); 10128 unregister_netdevice(dev); 10129 rtnl_unlock(); 10130 } 10131 EXPORT_SYMBOL(unregister_netdev); 10132 10133 /** 10134 * dev_change_net_namespace - move device to different nethost namespace 10135 * @dev: device 10136 * @net: network namespace 10137 * @pat: If not NULL name pattern to try if the current device name 10138 * is already taken in the destination network namespace. 10139 * 10140 * This function shuts down a device interface and moves it 10141 * to a new network namespace. On success 0 is returned, on 10142 * a failure a netagive errno code is returned. 10143 * 10144 * Callers must hold the rtnl semaphore. 10145 */ 10146 10147 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 10148 { 10149 struct net *net_old = dev_net(dev); 10150 int err, new_nsid, new_ifindex; 10151 10152 ASSERT_RTNL(); 10153 10154 /* Don't allow namespace local devices to be moved. */ 10155 err = -EINVAL; 10156 if (dev->features & NETIF_F_NETNS_LOCAL) 10157 goto out; 10158 10159 /* Ensure the device has been registrered */ 10160 if (dev->reg_state != NETREG_REGISTERED) 10161 goto out; 10162 10163 /* Get out if there is nothing todo */ 10164 err = 0; 10165 if (net_eq(net_old, net)) 10166 goto out; 10167 10168 /* Pick the destination device name, and ensure 10169 * we can use it in the destination network namespace. 10170 */ 10171 err = -EEXIST; 10172 if (__dev_get_by_name(net, dev->name)) { 10173 /* We get here if we can't use the current device name */ 10174 if (!pat) 10175 goto out; 10176 err = dev_get_valid_name(net, dev, pat); 10177 if (err < 0) 10178 goto out; 10179 } 10180 10181 /* 10182 * And now a mini version of register_netdevice unregister_netdevice. 10183 */ 10184 10185 /* If device is running close it first. */ 10186 dev_close(dev); 10187 10188 /* And unlink it from device chain */ 10189 unlist_netdevice(dev); 10190 10191 synchronize_net(); 10192 10193 /* Shutdown queueing discipline. */ 10194 dev_shutdown(dev); 10195 10196 /* Notify protocols, that we are about to destroy 10197 * this device. They should clean all the things. 10198 * 10199 * Note that dev->reg_state stays at NETREG_REGISTERED. 10200 * This is wanted because this way 8021q and macvlan know 10201 * the device is just moving and can keep their slaves up. 10202 */ 10203 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 10204 rcu_barrier(); 10205 10206 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL); 10207 /* If there is an ifindex conflict assign a new one */ 10208 if (__dev_get_by_index(net, dev->ifindex)) 10209 new_ifindex = dev_new_index(net); 10210 else 10211 new_ifindex = dev->ifindex; 10212 10213 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 10214 new_ifindex); 10215 10216 /* 10217 * Flush the unicast and multicast chains 10218 */ 10219 dev_uc_flush(dev); 10220 dev_mc_flush(dev); 10221 10222 /* Send a netdev-removed uevent to the old namespace */ 10223 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 10224 netdev_adjacent_del_links(dev); 10225 10226 /* Move per-net netdevice notifiers that are following the netdevice */ 10227 move_netdevice_notifiers_dev_net(dev, net); 10228 10229 /* Actually switch the network namespace */ 10230 dev_net_set(dev, net); 10231 dev->ifindex = new_ifindex; 10232 10233 /* Send a netdev-add uevent to the new namespace */ 10234 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 10235 netdev_adjacent_add_links(dev); 10236 10237 /* Fixup kobjects */ 10238 err = device_rename(&dev->dev, dev->name); 10239 WARN_ON(err); 10240 10241 /* Adapt owner in case owning user namespace of target network 10242 * namespace is different from the original one. 10243 */ 10244 err = netdev_change_owner(dev, net_old, net); 10245 WARN_ON(err); 10246 10247 /* Add the device back in the hashes */ 10248 list_netdevice(dev); 10249 10250 /* Notify protocols, that a new device appeared. */ 10251 call_netdevice_notifiers(NETDEV_REGISTER, dev); 10252 10253 /* 10254 * Prevent userspace races by waiting until the network 10255 * device is fully setup before sending notifications. 10256 */ 10257 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 10258 10259 synchronize_net(); 10260 err = 0; 10261 out: 10262 return err; 10263 } 10264 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 10265 10266 static int dev_cpu_dead(unsigned int oldcpu) 10267 { 10268 struct sk_buff **list_skb; 10269 struct sk_buff *skb; 10270 unsigned int cpu; 10271 struct softnet_data *sd, *oldsd, *remsd = NULL; 10272 10273 local_irq_disable(); 10274 cpu = smp_processor_id(); 10275 sd = &per_cpu(softnet_data, cpu); 10276 oldsd = &per_cpu(softnet_data, oldcpu); 10277 10278 /* Find end of our completion_queue. */ 10279 list_skb = &sd->completion_queue; 10280 while (*list_skb) 10281 list_skb = &(*list_skb)->next; 10282 /* Append completion queue from offline CPU. */ 10283 *list_skb = oldsd->completion_queue; 10284 oldsd->completion_queue = NULL; 10285 10286 /* Append output queue from offline CPU. */ 10287 if (oldsd->output_queue) { 10288 *sd->output_queue_tailp = oldsd->output_queue; 10289 sd->output_queue_tailp = oldsd->output_queue_tailp; 10290 oldsd->output_queue = NULL; 10291 oldsd->output_queue_tailp = &oldsd->output_queue; 10292 } 10293 /* Append NAPI poll list from offline CPU, with one exception : 10294 * process_backlog() must be called by cpu owning percpu backlog. 10295 * We properly handle process_queue & input_pkt_queue later. 10296 */ 10297 while (!list_empty(&oldsd->poll_list)) { 10298 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 10299 struct napi_struct, 10300 poll_list); 10301 10302 list_del_init(&napi->poll_list); 10303 if (napi->poll == process_backlog) 10304 napi->state = 0; 10305 else 10306 ____napi_schedule(sd, napi); 10307 } 10308 10309 raise_softirq_irqoff(NET_TX_SOFTIRQ); 10310 local_irq_enable(); 10311 10312 #ifdef CONFIG_RPS 10313 remsd = oldsd->rps_ipi_list; 10314 oldsd->rps_ipi_list = NULL; 10315 #endif 10316 /* send out pending IPI's on offline CPU */ 10317 net_rps_send_ipi(remsd); 10318 10319 /* Process offline CPU's input_pkt_queue */ 10320 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 10321 netif_rx_ni(skb); 10322 input_queue_head_incr(oldsd); 10323 } 10324 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 10325 netif_rx_ni(skb); 10326 input_queue_head_incr(oldsd); 10327 } 10328 10329 return 0; 10330 } 10331 10332 /** 10333 * netdev_increment_features - increment feature set by one 10334 * @all: current feature set 10335 * @one: new feature set 10336 * @mask: mask feature set 10337 * 10338 * Computes a new feature set after adding a device with feature set 10339 * @one to the master device with current feature set @all. Will not 10340 * enable anything that is off in @mask. Returns the new feature set. 10341 */ 10342 netdev_features_t netdev_increment_features(netdev_features_t all, 10343 netdev_features_t one, netdev_features_t mask) 10344 { 10345 if (mask & NETIF_F_HW_CSUM) 10346 mask |= NETIF_F_CSUM_MASK; 10347 mask |= NETIF_F_VLAN_CHALLENGED; 10348 10349 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 10350 all &= one | ~NETIF_F_ALL_FOR_ALL; 10351 10352 /* If one device supports hw checksumming, set for all. */ 10353 if (all & NETIF_F_HW_CSUM) 10354 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 10355 10356 return all; 10357 } 10358 EXPORT_SYMBOL(netdev_increment_features); 10359 10360 static struct hlist_head * __net_init netdev_create_hash(void) 10361 { 10362 int i; 10363 struct hlist_head *hash; 10364 10365 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 10366 if (hash != NULL) 10367 for (i = 0; i < NETDEV_HASHENTRIES; i++) 10368 INIT_HLIST_HEAD(&hash[i]); 10369 10370 return hash; 10371 } 10372 10373 /* Initialize per network namespace state */ 10374 static int __net_init netdev_init(struct net *net) 10375 { 10376 BUILD_BUG_ON(GRO_HASH_BUCKETS > 10377 8 * sizeof_field(struct napi_struct, gro_bitmask)); 10378 10379 if (net != &init_net) 10380 INIT_LIST_HEAD(&net->dev_base_head); 10381 10382 net->dev_name_head = netdev_create_hash(); 10383 if (net->dev_name_head == NULL) 10384 goto err_name; 10385 10386 net->dev_index_head = netdev_create_hash(); 10387 if (net->dev_index_head == NULL) 10388 goto err_idx; 10389 10390 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain); 10391 10392 return 0; 10393 10394 err_idx: 10395 kfree(net->dev_name_head); 10396 err_name: 10397 return -ENOMEM; 10398 } 10399 10400 /** 10401 * netdev_drivername - network driver for the device 10402 * @dev: network device 10403 * 10404 * Determine network driver for device. 10405 */ 10406 const char *netdev_drivername(const struct net_device *dev) 10407 { 10408 const struct device_driver *driver; 10409 const struct device *parent; 10410 const char *empty = ""; 10411 10412 parent = dev->dev.parent; 10413 if (!parent) 10414 return empty; 10415 10416 driver = parent->driver; 10417 if (driver && driver->name) 10418 return driver->name; 10419 return empty; 10420 } 10421 10422 static void __netdev_printk(const char *level, const struct net_device *dev, 10423 struct va_format *vaf) 10424 { 10425 if (dev && dev->dev.parent) { 10426 dev_printk_emit(level[1] - '0', 10427 dev->dev.parent, 10428 "%s %s %s%s: %pV", 10429 dev_driver_string(dev->dev.parent), 10430 dev_name(dev->dev.parent), 10431 netdev_name(dev), netdev_reg_state(dev), 10432 vaf); 10433 } else if (dev) { 10434 printk("%s%s%s: %pV", 10435 level, netdev_name(dev), netdev_reg_state(dev), vaf); 10436 } else { 10437 printk("%s(NULL net_device): %pV", level, vaf); 10438 } 10439 } 10440 10441 void netdev_printk(const char *level, const struct net_device *dev, 10442 const char *format, ...) 10443 { 10444 struct va_format vaf; 10445 va_list args; 10446 10447 va_start(args, format); 10448 10449 vaf.fmt = format; 10450 vaf.va = &args; 10451 10452 __netdev_printk(level, dev, &vaf); 10453 10454 va_end(args); 10455 } 10456 EXPORT_SYMBOL(netdev_printk); 10457 10458 #define define_netdev_printk_level(func, level) \ 10459 void func(const struct net_device *dev, const char *fmt, ...) \ 10460 { \ 10461 struct va_format vaf; \ 10462 va_list args; \ 10463 \ 10464 va_start(args, fmt); \ 10465 \ 10466 vaf.fmt = fmt; \ 10467 vaf.va = &args; \ 10468 \ 10469 __netdev_printk(level, dev, &vaf); \ 10470 \ 10471 va_end(args); \ 10472 } \ 10473 EXPORT_SYMBOL(func); 10474 10475 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 10476 define_netdev_printk_level(netdev_alert, KERN_ALERT); 10477 define_netdev_printk_level(netdev_crit, KERN_CRIT); 10478 define_netdev_printk_level(netdev_err, KERN_ERR); 10479 define_netdev_printk_level(netdev_warn, KERN_WARNING); 10480 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 10481 define_netdev_printk_level(netdev_info, KERN_INFO); 10482 10483 static void __net_exit netdev_exit(struct net *net) 10484 { 10485 kfree(net->dev_name_head); 10486 kfree(net->dev_index_head); 10487 if (net != &init_net) 10488 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 10489 } 10490 10491 static struct pernet_operations __net_initdata netdev_net_ops = { 10492 .init = netdev_init, 10493 .exit = netdev_exit, 10494 }; 10495 10496 static void __net_exit default_device_exit(struct net *net) 10497 { 10498 struct net_device *dev, *aux; 10499 /* 10500 * Push all migratable network devices back to the 10501 * initial network namespace 10502 */ 10503 rtnl_lock(); 10504 for_each_netdev_safe(net, dev, aux) { 10505 int err; 10506 char fb_name[IFNAMSIZ]; 10507 10508 /* Ignore unmoveable devices (i.e. loopback) */ 10509 if (dev->features & NETIF_F_NETNS_LOCAL) 10510 continue; 10511 10512 /* Leave virtual devices for the generic cleanup */ 10513 if (dev->rtnl_link_ops) 10514 continue; 10515 10516 /* Push remaining network devices to init_net */ 10517 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 10518 if (__dev_get_by_name(&init_net, fb_name)) 10519 snprintf(fb_name, IFNAMSIZ, "dev%%d"); 10520 err = dev_change_net_namespace(dev, &init_net, fb_name); 10521 if (err) { 10522 pr_emerg("%s: failed to move %s to init_net: %d\n", 10523 __func__, dev->name, err); 10524 BUG(); 10525 } 10526 } 10527 rtnl_unlock(); 10528 } 10529 10530 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 10531 { 10532 /* Return with the rtnl_lock held when there are no network 10533 * devices unregistering in any network namespace in net_list. 10534 */ 10535 struct net *net; 10536 bool unregistering; 10537 DEFINE_WAIT_FUNC(wait, woken_wake_function); 10538 10539 add_wait_queue(&netdev_unregistering_wq, &wait); 10540 for (;;) { 10541 unregistering = false; 10542 rtnl_lock(); 10543 list_for_each_entry(net, net_list, exit_list) { 10544 if (net->dev_unreg_count > 0) { 10545 unregistering = true; 10546 break; 10547 } 10548 } 10549 if (!unregistering) 10550 break; 10551 __rtnl_unlock(); 10552 10553 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 10554 } 10555 remove_wait_queue(&netdev_unregistering_wq, &wait); 10556 } 10557 10558 static void __net_exit default_device_exit_batch(struct list_head *net_list) 10559 { 10560 /* At exit all network devices most be removed from a network 10561 * namespace. Do this in the reverse order of registration. 10562 * Do this across as many network namespaces as possible to 10563 * improve batching efficiency. 10564 */ 10565 struct net_device *dev; 10566 struct net *net; 10567 LIST_HEAD(dev_kill_list); 10568 10569 /* To prevent network device cleanup code from dereferencing 10570 * loopback devices or network devices that have been freed 10571 * wait here for all pending unregistrations to complete, 10572 * before unregistring the loopback device and allowing the 10573 * network namespace be freed. 10574 * 10575 * The netdev todo list containing all network devices 10576 * unregistrations that happen in default_device_exit_batch 10577 * will run in the rtnl_unlock() at the end of 10578 * default_device_exit_batch. 10579 */ 10580 rtnl_lock_unregistering(net_list); 10581 list_for_each_entry(net, net_list, exit_list) { 10582 for_each_netdev_reverse(net, dev) { 10583 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 10584 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 10585 else 10586 unregister_netdevice_queue(dev, &dev_kill_list); 10587 } 10588 } 10589 unregister_netdevice_many(&dev_kill_list); 10590 rtnl_unlock(); 10591 } 10592 10593 static struct pernet_operations __net_initdata default_device_ops = { 10594 .exit = default_device_exit, 10595 .exit_batch = default_device_exit_batch, 10596 }; 10597 10598 /* 10599 * Initialize the DEV module. At boot time this walks the device list and 10600 * unhooks any devices that fail to initialise (normally hardware not 10601 * present) and leaves us with a valid list of present and active devices. 10602 * 10603 */ 10604 10605 /* 10606 * This is called single threaded during boot, so no need 10607 * to take the rtnl semaphore. 10608 */ 10609 static int __init net_dev_init(void) 10610 { 10611 int i, rc = -ENOMEM; 10612 10613 BUG_ON(!dev_boot_phase); 10614 10615 if (dev_proc_init()) 10616 goto out; 10617 10618 if (netdev_kobject_init()) 10619 goto out; 10620 10621 INIT_LIST_HEAD(&ptype_all); 10622 for (i = 0; i < PTYPE_HASH_SIZE; i++) 10623 INIT_LIST_HEAD(&ptype_base[i]); 10624 10625 INIT_LIST_HEAD(&offload_base); 10626 10627 if (register_pernet_subsys(&netdev_net_ops)) 10628 goto out; 10629 10630 /* 10631 * Initialise the packet receive queues. 10632 */ 10633 10634 for_each_possible_cpu(i) { 10635 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 10636 struct softnet_data *sd = &per_cpu(softnet_data, i); 10637 10638 INIT_WORK(flush, flush_backlog); 10639 10640 skb_queue_head_init(&sd->input_pkt_queue); 10641 skb_queue_head_init(&sd->process_queue); 10642 #ifdef CONFIG_XFRM_OFFLOAD 10643 skb_queue_head_init(&sd->xfrm_backlog); 10644 #endif 10645 INIT_LIST_HEAD(&sd->poll_list); 10646 sd->output_queue_tailp = &sd->output_queue; 10647 #ifdef CONFIG_RPS 10648 sd->csd.func = rps_trigger_softirq; 10649 sd->csd.info = sd; 10650 sd->cpu = i; 10651 #endif 10652 10653 init_gro_hash(&sd->backlog); 10654 sd->backlog.poll = process_backlog; 10655 sd->backlog.weight = weight_p; 10656 } 10657 10658 dev_boot_phase = 0; 10659 10660 /* The loopback device is special if any other network devices 10661 * is present in a network namespace the loopback device must 10662 * be present. Since we now dynamically allocate and free the 10663 * loopback device ensure this invariant is maintained by 10664 * keeping the loopback device as the first device on the 10665 * list of network devices. Ensuring the loopback devices 10666 * is the first device that appears and the last network device 10667 * that disappears. 10668 */ 10669 if (register_pernet_device(&loopback_net_ops)) 10670 goto out; 10671 10672 if (register_pernet_device(&default_device_ops)) 10673 goto out; 10674 10675 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 10676 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 10677 10678 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 10679 NULL, dev_cpu_dead); 10680 WARN_ON(rc < 0); 10681 rc = 0; 10682 out: 10683 return rc; 10684 } 10685 10686 subsys_initcall(net_dev_init); 10687