xref: /openbmc/linux/net/core/dev.c (revision 9ac17575)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/string.h>
83 #include <linux/mm.h>
84 #include <linux/socket.h>
85 #include <linux/sockios.h>
86 #include <linux/errno.h>
87 #include <linux/interrupt.h>
88 #include <linux/if_ether.h>
89 #include <linux/netdevice.h>
90 #include <linux/etherdevice.h>
91 #include <linux/ethtool.h>
92 #include <linux/skbuff.h>
93 #include <linux/bpf.h>
94 #include <linux/bpf_trace.h>
95 #include <net/net_namespace.h>
96 #include <net/sock.h>
97 #include <net/busy_poll.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/stat.h>
100 #include <net/dst.h>
101 #include <net/dst_metadata.h>
102 #include <net/pkt_sched.h>
103 #include <net/pkt_cls.h>
104 #include <net/checksum.h>
105 #include <net/xfrm.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/module.h>
109 #include <linux/netpoll.h>
110 #include <linux/rcupdate.h>
111 #include <linux/delay.h>
112 #include <net/iw_handler.h>
113 #include <asm/current.h>
114 #include <linux/audit.h>
115 #include <linux/dmaengine.h>
116 #include <linux/err.h>
117 #include <linux/ctype.h>
118 #include <linux/if_arp.h>
119 #include <linux/if_vlan.h>
120 #include <linux/ip.h>
121 #include <net/ip.h>
122 #include <net/mpls.h>
123 #include <linux/ipv6.h>
124 #include <linux/in.h>
125 #include <linux/jhash.h>
126 #include <linux/random.h>
127 #include <trace/events/napi.h>
128 #include <trace/events/net.h>
129 #include <trace/events/skb.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138 #include <linux/netfilter_ingress.h>
139 #include <linux/crash_dump.h>
140 #include <linux/sctp.h>
141 #include <net/udp_tunnel.h>
142 #include <linux/net_namespace.h>
143 #include <linux/indirect_call_wrapper.h>
144 #include <net/devlink.h>
145 
146 #include "net-sysfs.h"
147 
148 #define MAX_GRO_SKBS 8
149 
150 /* This should be increased if a protocol with a bigger head is added. */
151 #define GRO_MAX_HEAD (MAX_HEADER + 128)
152 
153 static DEFINE_SPINLOCK(ptype_lock);
154 static DEFINE_SPINLOCK(offload_lock);
155 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
156 struct list_head ptype_all __read_mostly;	/* Taps */
157 static struct list_head offload_base __read_mostly;
158 
159 static int netif_rx_internal(struct sk_buff *skb);
160 static int call_netdevice_notifiers_info(unsigned long val,
161 					 struct netdev_notifier_info *info);
162 static int call_netdevice_notifiers_extack(unsigned long val,
163 					   struct net_device *dev,
164 					   struct netlink_ext_ack *extack);
165 static struct napi_struct *napi_by_id(unsigned int napi_id);
166 
167 /*
168  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
169  * semaphore.
170  *
171  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
172  *
173  * Writers must hold the rtnl semaphore while they loop through the
174  * dev_base_head list, and hold dev_base_lock for writing when they do the
175  * actual updates.  This allows pure readers to access the list even
176  * while a writer is preparing to update it.
177  *
178  * To put it another way, dev_base_lock is held for writing only to
179  * protect against pure readers; the rtnl semaphore provides the
180  * protection against other writers.
181  *
182  * See, for example usages, register_netdevice() and
183  * unregister_netdevice(), which must be called with the rtnl
184  * semaphore held.
185  */
186 DEFINE_RWLOCK(dev_base_lock);
187 EXPORT_SYMBOL(dev_base_lock);
188 
189 static DEFINE_MUTEX(ifalias_mutex);
190 
191 /* protects napi_hash addition/deletion and napi_gen_id */
192 static DEFINE_SPINLOCK(napi_hash_lock);
193 
194 static unsigned int napi_gen_id = NR_CPUS;
195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
196 
197 static seqcount_t devnet_rename_seq;
198 
199 static inline void dev_base_seq_inc(struct net *net)
200 {
201 	while (++net->dev_base_seq == 0)
202 		;
203 }
204 
205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
206 {
207 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
208 
209 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
210 }
211 
212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
213 {
214 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
215 }
216 
217 static inline void rps_lock(struct softnet_data *sd)
218 {
219 #ifdef CONFIG_RPS
220 	spin_lock(&sd->input_pkt_queue.lock);
221 #endif
222 }
223 
224 static inline void rps_unlock(struct softnet_data *sd)
225 {
226 #ifdef CONFIG_RPS
227 	spin_unlock(&sd->input_pkt_queue.lock);
228 #endif
229 }
230 
231 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
232 						       const char *name)
233 {
234 	struct netdev_name_node *name_node;
235 
236 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
237 	if (!name_node)
238 		return NULL;
239 	INIT_HLIST_NODE(&name_node->hlist);
240 	name_node->dev = dev;
241 	name_node->name = name;
242 	return name_node;
243 }
244 
245 static struct netdev_name_node *
246 netdev_name_node_head_alloc(struct net_device *dev)
247 {
248 	struct netdev_name_node *name_node;
249 
250 	name_node = netdev_name_node_alloc(dev, dev->name);
251 	if (!name_node)
252 		return NULL;
253 	INIT_LIST_HEAD(&name_node->list);
254 	return name_node;
255 }
256 
257 static void netdev_name_node_free(struct netdev_name_node *name_node)
258 {
259 	kfree(name_node);
260 }
261 
262 static void netdev_name_node_add(struct net *net,
263 				 struct netdev_name_node *name_node)
264 {
265 	hlist_add_head_rcu(&name_node->hlist,
266 			   dev_name_hash(net, name_node->name));
267 }
268 
269 static void netdev_name_node_del(struct netdev_name_node *name_node)
270 {
271 	hlist_del_rcu(&name_node->hlist);
272 }
273 
274 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
275 							const char *name)
276 {
277 	struct hlist_head *head = dev_name_hash(net, name);
278 	struct netdev_name_node *name_node;
279 
280 	hlist_for_each_entry(name_node, head, hlist)
281 		if (!strcmp(name_node->name, name))
282 			return name_node;
283 	return NULL;
284 }
285 
286 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
287 							    const char *name)
288 {
289 	struct hlist_head *head = dev_name_hash(net, name);
290 	struct netdev_name_node *name_node;
291 
292 	hlist_for_each_entry_rcu(name_node, head, hlist)
293 		if (!strcmp(name_node->name, name))
294 			return name_node;
295 	return NULL;
296 }
297 
298 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
299 {
300 	struct netdev_name_node *name_node;
301 	struct net *net = dev_net(dev);
302 
303 	name_node = netdev_name_node_lookup(net, name);
304 	if (name_node)
305 		return -EEXIST;
306 	name_node = netdev_name_node_alloc(dev, name);
307 	if (!name_node)
308 		return -ENOMEM;
309 	netdev_name_node_add(net, name_node);
310 	/* The node that holds dev->name acts as a head of per-device list. */
311 	list_add_tail(&name_node->list, &dev->name_node->list);
312 
313 	return 0;
314 }
315 EXPORT_SYMBOL(netdev_name_node_alt_create);
316 
317 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
318 {
319 	list_del(&name_node->list);
320 	netdev_name_node_del(name_node);
321 	kfree(name_node->name);
322 	netdev_name_node_free(name_node);
323 }
324 
325 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
326 {
327 	struct netdev_name_node *name_node;
328 	struct net *net = dev_net(dev);
329 
330 	name_node = netdev_name_node_lookup(net, name);
331 	if (!name_node)
332 		return -ENOENT;
333 	/* lookup might have found our primary name or a name belonging
334 	 * to another device.
335 	 */
336 	if (name_node == dev->name_node || name_node->dev != dev)
337 		return -EINVAL;
338 
339 	__netdev_name_node_alt_destroy(name_node);
340 
341 	return 0;
342 }
343 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
344 
345 static void netdev_name_node_alt_flush(struct net_device *dev)
346 {
347 	struct netdev_name_node *name_node, *tmp;
348 
349 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
350 		__netdev_name_node_alt_destroy(name_node);
351 }
352 
353 /* Device list insertion */
354 static void list_netdevice(struct net_device *dev)
355 {
356 	struct net *net = dev_net(dev);
357 
358 	ASSERT_RTNL();
359 
360 	write_lock_bh(&dev_base_lock);
361 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
362 	netdev_name_node_add(net, dev->name_node);
363 	hlist_add_head_rcu(&dev->index_hlist,
364 			   dev_index_hash(net, dev->ifindex));
365 	write_unlock_bh(&dev_base_lock);
366 
367 	dev_base_seq_inc(net);
368 }
369 
370 /* Device list removal
371  * caller must respect a RCU grace period before freeing/reusing dev
372  */
373 static void unlist_netdevice(struct net_device *dev)
374 {
375 	ASSERT_RTNL();
376 
377 	/* Unlink dev from the device chain */
378 	write_lock_bh(&dev_base_lock);
379 	list_del_rcu(&dev->dev_list);
380 	netdev_name_node_del(dev->name_node);
381 	hlist_del_rcu(&dev->index_hlist);
382 	write_unlock_bh(&dev_base_lock);
383 
384 	dev_base_seq_inc(dev_net(dev));
385 }
386 
387 /*
388  *	Our notifier list
389  */
390 
391 static RAW_NOTIFIER_HEAD(netdev_chain);
392 
393 /*
394  *	Device drivers call our routines to queue packets here. We empty the
395  *	queue in the local softnet handler.
396  */
397 
398 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
399 EXPORT_PER_CPU_SYMBOL(softnet_data);
400 
401 #ifdef CONFIG_LOCKDEP
402 /*
403  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
404  * according to dev->type
405  */
406 static const unsigned short netdev_lock_type[] = {
407 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
408 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
409 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
410 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
411 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
412 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
413 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
414 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
415 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
416 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
417 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
418 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
419 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
420 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
421 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
422 
423 static const char *const netdev_lock_name[] = {
424 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
425 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
426 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
427 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
428 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
429 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
430 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
431 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
432 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
433 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
434 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
435 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
436 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
437 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
438 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
439 
440 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
441 
442 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
443 {
444 	int i;
445 
446 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
447 		if (netdev_lock_type[i] == dev_type)
448 			return i;
449 	/* the last key is used by default */
450 	return ARRAY_SIZE(netdev_lock_type) - 1;
451 }
452 
453 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
454 						 unsigned short dev_type)
455 {
456 	int i;
457 
458 	i = netdev_lock_pos(dev_type);
459 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
460 				   netdev_lock_name[i]);
461 }
462 #else
463 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
464 						 unsigned short dev_type)
465 {
466 }
467 #endif
468 
469 /*******************************************************************************
470  *
471  *		Protocol management and registration routines
472  *
473  *******************************************************************************/
474 
475 
476 /*
477  *	Add a protocol ID to the list. Now that the input handler is
478  *	smarter we can dispense with all the messy stuff that used to be
479  *	here.
480  *
481  *	BEWARE!!! Protocol handlers, mangling input packets,
482  *	MUST BE last in hash buckets and checking protocol handlers
483  *	MUST start from promiscuous ptype_all chain in net_bh.
484  *	It is true now, do not change it.
485  *	Explanation follows: if protocol handler, mangling packet, will
486  *	be the first on list, it is not able to sense, that packet
487  *	is cloned and should be copied-on-write, so that it will
488  *	change it and subsequent readers will get broken packet.
489  *							--ANK (980803)
490  */
491 
492 static inline struct list_head *ptype_head(const struct packet_type *pt)
493 {
494 	if (pt->type == htons(ETH_P_ALL))
495 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
496 	else
497 		return pt->dev ? &pt->dev->ptype_specific :
498 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
499 }
500 
501 /**
502  *	dev_add_pack - add packet handler
503  *	@pt: packet type declaration
504  *
505  *	Add a protocol handler to the networking stack. The passed &packet_type
506  *	is linked into kernel lists and may not be freed until it has been
507  *	removed from the kernel lists.
508  *
509  *	This call does not sleep therefore it can not
510  *	guarantee all CPU's that are in middle of receiving packets
511  *	will see the new packet type (until the next received packet).
512  */
513 
514 void dev_add_pack(struct packet_type *pt)
515 {
516 	struct list_head *head = ptype_head(pt);
517 
518 	spin_lock(&ptype_lock);
519 	list_add_rcu(&pt->list, head);
520 	spin_unlock(&ptype_lock);
521 }
522 EXPORT_SYMBOL(dev_add_pack);
523 
524 /**
525  *	__dev_remove_pack	 - remove packet handler
526  *	@pt: packet type declaration
527  *
528  *	Remove a protocol handler that was previously added to the kernel
529  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
530  *	from the kernel lists and can be freed or reused once this function
531  *	returns.
532  *
533  *      The packet type might still be in use by receivers
534  *	and must not be freed until after all the CPU's have gone
535  *	through a quiescent state.
536  */
537 void __dev_remove_pack(struct packet_type *pt)
538 {
539 	struct list_head *head = ptype_head(pt);
540 	struct packet_type *pt1;
541 
542 	spin_lock(&ptype_lock);
543 
544 	list_for_each_entry(pt1, head, list) {
545 		if (pt == pt1) {
546 			list_del_rcu(&pt->list);
547 			goto out;
548 		}
549 	}
550 
551 	pr_warn("dev_remove_pack: %p not found\n", pt);
552 out:
553 	spin_unlock(&ptype_lock);
554 }
555 EXPORT_SYMBOL(__dev_remove_pack);
556 
557 /**
558  *	dev_remove_pack	 - remove packet handler
559  *	@pt: packet type declaration
560  *
561  *	Remove a protocol handler that was previously added to the kernel
562  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
563  *	from the kernel lists and can be freed or reused once this function
564  *	returns.
565  *
566  *	This call sleeps to guarantee that no CPU is looking at the packet
567  *	type after return.
568  */
569 void dev_remove_pack(struct packet_type *pt)
570 {
571 	__dev_remove_pack(pt);
572 
573 	synchronize_net();
574 }
575 EXPORT_SYMBOL(dev_remove_pack);
576 
577 
578 /**
579  *	dev_add_offload - register offload handlers
580  *	@po: protocol offload declaration
581  *
582  *	Add protocol offload handlers to the networking stack. The passed
583  *	&proto_offload is linked into kernel lists and may not be freed until
584  *	it has been removed from the kernel lists.
585  *
586  *	This call does not sleep therefore it can not
587  *	guarantee all CPU's that are in middle of receiving packets
588  *	will see the new offload handlers (until the next received packet).
589  */
590 void dev_add_offload(struct packet_offload *po)
591 {
592 	struct packet_offload *elem;
593 
594 	spin_lock(&offload_lock);
595 	list_for_each_entry(elem, &offload_base, list) {
596 		if (po->priority < elem->priority)
597 			break;
598 	}
599 	list_add_rcu(&po->list, elem->list.prev);
600 	spin_unlock(&offload_lock);
601 }
602 EXPORT_SYMBOL(dev_add_offload);
603 
604 /**
605  *	__dev_remove_offload	 - remove offload handler
606  *	@po: packet offload declaration
607  *
608  *	Remove a protocol offload handler that was previously added to the
609  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
610  *	is removed from the kernel lists and can be freed or reused once this
611  *	function returns.
612  *
613  *      The packet type might still be in use by receivers
614  *	and must not be freed until after all the CPU's have gone
615  *	through a quiescent state.
616  */
617 static void __dev_remove_offload(struct packet_offload *po)
618 {
619 	struct list_head *head = &offload_base;
620 	struct packet_offload *po1;
621 
622 	spin_lock(&offload_lock);
623 
624 	list_for_each_entry(po1, head, list) {
625 		if (po == po1) {
626 			list_del_rcu(&po->list);
627 			goto out;
628 		}
629 	}
630 
631 	pr_warn("dev_remove_offload: %p not found\n", po);
632 out:
633 	spin_unlock(&offload_lock);
634 }
635 
636 /**
637  *	dev_remove_offload	 - remove packet offload handler
638  *	@po: packet offload declaration
639  *
640  *	Remove a packet offload handler that was previously added to the kernel
641  *	offload handlers by dev_add_offload(). The passed &offload_type is
642  *	removed from the kernel lists and can be freed or reused once this
643  *	function returns.
644  *
645  *	This call sleeps to guarantee that no CPU is looking at the packet
646  *	type after return.
647  */
648 void dev_remove_offload(struct packet_offload *po)
649 {
650 	__dev_remove_offload(po);
651 
652 	synchronize_net();
653 }
654 EXPORT_SYMBOL(dev_remove_offload);
655 
656 /******************************************************************************
657  *
658  *		      Device Boot-time Settings Routines
659  *
660  ******************************************************************************/
661 
662 /* Boot time configuration table */
663 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
664 
665 /**
666  *	netdev_boot_setup_add	- add new setup entry
667  *	@name: name of the device
668  *	@map: configured settings for the device
669  *
670  *	Adds new setup entry to the dev_boot_setup list.  The function
671  *	returns 0 on error and 1 on success.  This is a generic routine to
672  *	all netdevices.
673  */
674 static int netdev_boot_setup_add(char *name, struct ifmap *map)
675 {
676 	struct netdev_boot_setup *s;
677 	int i;
678 
679 	s = dev_boot_setup;
680 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
681 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
682 			memset(s[i].name, 0, sizeof(s[i].name));
683 			strlcpy(s[i].name, name, IFNAMSIZ);
684 			memcpy(&s[i].map, map, sizeof(s[i].map));
685 			break;
686 		}
687 	}
688 
689 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
690 }
691 
692 /**
693  * netdev_boot_setup_check	- check boot time settings
694  * @dev: the netdevice
695  *
696  * Check boot time settings for the device.
697  * The found settings are set for the device to be used
698  * later in the device probing.
699  * Returns 0 if no settings found, 1 if they are.
700  */
701 int netdev_boot_setup_check(struct net_device *dev)
702 {
703 	struct netdev_boot_setup *s = dev_boot_setup;
704 	int i;
705 
706 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
707 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
708 		    !strcmp(dev->name, s[i].name)) {
709 			dev->irq = s[i].map.irq;
710 			dev->base_addr = s[i].map.base_addr;
711 			dev->mem_start = s[i].map.mem_start;
712 			dev->mem_end = s[i].map.mem_end;
713 			return 1;
714 		}
715 	}
716 	return 0;
717 }
718 EXPORT_SYMBOL(netdev_boot_setup_check);
719 
720 
721 /**
722  * netdev_boot_base	- get address from boot time settings
723  * @prefix: prefix for network device
724  * @unit: id for network device
725  *
726  * Check boot time settings for the base address of device.
727  * The found settings are set for the device to be used
728  * later in the device probing.
729  * Returns 0 if no settings found.
730  */
731 unsigned long netdev_boot_base(const char *prefix, int unit)
732 {
733 	const struct netdev_boot_setup *s = dev_boot_setup;
734 	char name[IFNAMSIZ];
735 	int i;
736 
737 	sprintf(name, "%s%d", prefix, unit);
738 
739 	/*
740 	 * If device already registered then return base of 1
741 	 * to indicate not to probe for this interface
742 	 */
743 	if (__dev_get_by_name(&init_net, name))
744 		return 1;
745 
746 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
747 		if (!strcmp(name, s[i].name))
748 			return s[i].map.base_addr;
749 	return 0;
750 }
751 
752 /*
753  * Saves at boot time configured settings for any netdevice.
754  */
755 int __init netdev_boot_setup(char *str)
756 {
757 	int ints[5];
758 	struct ifmap map;
759 
760 	str = get_options(str, ARRAY_SIZE(ints), ints);
761 	if (!str || !*str)
762 		return 0;
763 
764 	/* Save settings */
765 	memset(&map, 0, sizeof(map));
766 	if (ints[0] > 0)
767 		map.irq = ints[1];
768 	if (ints[0] > 1)
769 		map.base_addr = ints[2];
770 	if (ints[0] > 2)
771 		map.mem_start = ints[3];
772 	if (ints[0] > 3)
773 		map.mem_end = ints[4];
774 
775 	/* Add new entry to the list */
776 	return netdev_boot_setup_add(str, &map);
777 }
778 
779 __setup("netdev=", netdev_boot_setup);
780 
781 /*******************************************************************************
782  *
783  *			    Device Interface Subroutines
784  *
785  *******************************************************************************/
786 
787 /**
788  *	dev_get_iflink	- get 'iflink' value of a interface
789  *	@dev: targeted interface
790  *
791  *	Indicates the ifindex the interface is linked to.
792  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
793  */
794 
795 int dev_get_iflink(const struct net_device *dev)
796 {
797 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
798 		return dev->netdev_ops->ndo_get_iflink(dev);
799 
800 	return dev->ifindex;
801 }
802 EXPORT_SYMBOL(dev_get_iflink);
803 
804 /**
805  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
806  *	@dev: targeted interface
807  *	@skb: The packet.
808  *
809  *	For better visibility of tunnel traffic OVS needs to retrieve
810  *	egress tunnel information for a packet. Following API allows
811  *	user to get this info.
812  */
813 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
814 {
815 	struct ip_tunnel_info *info;
816 
817 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
818 		return -EINVAL;
819 
820 	info = skb_tunnel_info_unclone(skb);
821 	if (!info)
822 		return -ENOMEM;
823 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
824 		return -EINVAL;
825 
826 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
827 }
828 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
829 
830 /**
831  *	__dev_get_by_name	- find a device by its name
832  *	@net: the applicable net namespace
833  *	@name: name to find
834  *
835  *	Find an interface by name. Must be called under RTNL semaphore
836  *	or @dev_base_lock. If the name is found a pointer to the device
837  *	is returned. If the name is not found then %NULL is returned. The
838  *	reference counters are not incremented so the caller must be
839  *	careful with locks.
840  */
841 
842 struct net_device *__dev_get_by_name(struct net *net, const char *name)
843 {
844 	struct netdev_name_node *node_name;
845 
846 	node_name = netdev_name_node_lookup(net, name);
847 	return node_name ? node_name->dev : NULL;
848 }
849 EXPORT_SYMBOL(__dev_get_by_name);
850 
851 /**
852  * dev_get_by_name_rcu	- find a device by its name
853  * @net: the applicable net namespace
854  * @name: name to find
855  *
856  * Find an interface by name.
857  * If the name is found a pointer to the device is returned.
858  * If the name is not found then %NULL is returned.
859  * The reference counters are not incremented so the caller must be
860  * careful with locks. The caller must hold RCU lock.
861  */
862 
863 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
864 {
865 	struct netdev_name_node *node_name;
866 
867 	node_name = netdev_name_node_lookup_rcu(net, name);
868 	return node_name ? node_name->dev : NULL;
869 }
870 EXPORT_SYMBOL(dev_get_by_name_rcu);
871 
872 /**
873  *	dev_get_by_name		- find a device by its name
874  *	@net: the applicable net namespace
875  *	@name: name to find
876  *
877  *	Find an interface by name. This can be called from any
878  *	context and does its own locking. The returned handle has
879  *	the usage count incremented and the caller must use dev_put() to
880  *	release it when it is no longer needed. %NULL is returned if no
881  *	matching device is found.
882  */
883 
884 struct net_device *dev_get_by_name(struct net *net, const char *name)
885 {
886 	struct net_device *dev;
887 
888 	rcu_read_lock();
889 	dev = dev_get_by_name_rcu(net, name);
890 	if (dev)
891 		dev_hold(dev);
892 	rcu_read_unlock();
893 	return dev;
894 }
895 EXPORT_SYMBOL(dev_get_by_name);
896 
897 /**
898  *	__dev_get_by_index - find a device by its ifindex
899  *	@net: the applicable net namespace
900  *	@ifindex: index of device
901  *
902  *	Search for an interface by index. Returns %NULL if the device
903  *	is not found or a pointer to the device. The device has not
904  *	had its reference counter increased so the caller must be careful
905  *	about locking. The caller must hold either the RTNL semaphore
906  *	or @dev_base_lock.
907  */
908 
909 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
910 {
911 	struct net_device *dev;
912 	struct hlist_head *head = dev_index_hash(net, ifindex);
913 
914 	hlist_for_each_entry(dev, head, index_hlist)
915 		if (dev->ifindex == ifindex)
916 			return dev;
917 
918 	return NULL;
919 }
920 EXPORT_SYMBOL(__dev_get_by_index);
921 
922 /**
923  *	dev_get_by_index_rcu - find a device by its ifindex
924  *	@net: the applicable net namespace
925  *	@ifindex: index of device
926  *
927  *	Search for an interface by index. Returns %NULL if the device
928  *	is not found or a pointer to the device. The device has not
929  *	had its reference counter increased so the caller must be careful
930  *	about locking. The caller must hold RCU lock.
931  */
932 
933 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
934 {
935 	struct net_device *dev;
936 	struct hlist_head *head = dev_index_hash(net, ifindex);
937 
938 	hlist_for_each_entry_rcu(dev, head, index_hlist)
939 		if (dev->ifindex == ifindex)
940 			return dev;
941 
942 	return NULL;
943 }
944 EXPORT_SYMBOL(dev_get_by_index_rcu);
945 
946 
947 /**
948  *	dev_get_by_index - find a device by its ifindex
949  *	@net: the applicable net namespace
950  *	@ifindex: index of device
951  *
952  *	Search for an interface by index. Returns NULL if the device
953  *	is not found or a pointer to the device. The device returned has
954  *	had a reference added and the pointer is safe until the user calls
955  *	dev_put to indicate they have finished with it.
956  */
957 
958 struct net_device *dev_get_by_index(struct net *net, int ifindex)
959 {
960 	struct net_device *dev;
961 
962 	rcu_read_lock();
963 	dev = dev_get_by_index_rcu(net, ifindex);
964 	if (dev)
965 		dev_hold(dev);
966 	rcu_read_unlock();
967 	return dev;
968 }
969 EXPORT_SYMBOL(dev_get_by_index);
970 
971 /**
972  *	dev_get_by_napi_id - find a device by napi_id
973  *	@napi_id: ID of the NAPI struct
974  *
975  *	Search for an interface by NAPI ID. Returns %NULL if the device
976  *	is not found or a pointer to the device. The device has not had
977  *	its reference counter increased so the caller must be careful
978  *	about locking. The caller must hold RCU lock.
979  */
980 
981 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
982 {
983 	struct napi_struct *napi;
984 
985 	WARN_ON_ONCE(!rcu_read_lock_held());
986 
987 	if (napi_id < MIN_NAPI_ID)
988 		return NULL;
989 
990 	napi = napi_by_id(napi_id);
991 
992 	return napi ? napi->dev : NULL;
993 }
994 EXPORT_SYMBOL(dev_get_by_napi_id);
995 
996 /**
997  *	netdev_get_name - get a netdevice name, knowing its ifindex.
998  *	@net: network namespace
999  *	@name: a pointer to the buffer where the name will be stored.
1000  *	@ifindex: the ifindex of the interface to get the name from.
1001  *
1002  *	The use of raw_seqcount_begin() and cond_resched() before
1003  *	retrying is required as we want to give the writers a chance
1004  *	to complete when CONFIG_PREEMPTION is not set.
1005  */
1006 int netdev_get_name(struct net *net, char *name, int ifindex)
1007 {
1008 	struct net_device *dev;
1009 	unsigned int seq;
1010 
1011 retry:
1012 	seq = raw_seqcount_begin(&devnet_rename_seq);
1013 	rcu_read_lock();
1014 	dev = dev_get_by_index_rcu(net, ifindex);
1015 	if (!dev) {
1016 		rcu_read_unlock();
1017 		return -ENODEV;
1018 	}
1019 
1020 	strcpy(name, dev->name);
1021 	rcu_read_unlock();
1022 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
1023 		cond_resched();
1024 		goto retry;
1025 	}
1026 
1027 	return 0;
1028 }
1029 
1030 /**
1031  *	dev_getbyhwaddr_rcu - find a device by its hardware address
1032  *	@net: the applicable net namespace
1033  *	@type: media type of device
1034  *	@ha: hardware address
1035  *
1036  *	Search for an interface by MAC address. Returns NULL if the device
1037  *	is not found or a pointer to the device.
1038  *	The caller must hold RCU or RTNL.
1039  *	The returned device has not had its ref count increased
1040  *	and the caller must therefore be careful about locking
1041  *
1042  */
1043 
1044 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1045 				       const char *ha)
1046 {
1047 	struct net_device *dev;
1048 
1049 	for_each_netdev_rcu(net, dev)
1050 		if (dev->type == type &&
1051 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
1052 			return dev;
1053 
1054 	return NULL;
1055 }
1056 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1057 
1058 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1059 {
1060 	struct net_device *dev;
1061 
1062 	ASSERT_RTNL();
1063 	for_each_netdev(net, dev)
1064 		if (dev->type == type)
1065 			return dev;
1066 
1067 	return NULL;
1068 }
1069 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
1070 
1071 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1072 {
1073 	struct net_device *dev, *ret = NULL;
1074 
1075 	rcu_read_lock();
1076 	for_each_netdev_rcu(net, dev)
1077 		if (dev->type == type) {
1078 			dev_hold(dev);
1079 			ret = dev;
1080 			break;
1081 		}
1082 	rcu_read_unlock();
1083 	return ret;
1084 }
1085 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1086 
1087 /**
1088  *	__dev_get_by_flags - find any device with given flags
1089  *	@net: the applicable net namespace
1090  *	@if_flags: IFF_* values
1091  *	@mask: bitmask of bits in if_flags to check
1092  *
1093  *	Search for any interface with the given flags. Returns NULL if a device
1094  *	is not found or a pointer to the device. Must be called inside
1095  *	rtnl_lock(), and result refcount is unchanged.
1096  */
1097 
1098 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1099 				      unsigned short mask)
1100 {
1101 	struct net_device *dev, *ret;
1102 
1103 	ASSERT_RTNL();
1104 
1105 	ret = NULL;
1106 	for_each_netdev(net, dev) {
1107 		if (((dev->flags ^ if_flags) & mask) == 0) {
1108 			ret = dev;
1109 			break;
1110 		}
1111 	}
1112 	return ret;
1113 }
1114 EXPORT_SYMBOL(__dev_get_by_flags);
1115 
1116 /**
1117  *	dev_valid_name - check if name is okay for network device
1118  *	@name: name string
1119  *
1120  *	Network device names need to be valid file names to
1121  *	to allow sysfs to work.  We also disallow any kind of
1122  *	whitespace.
1123  */
1124 bool dev_valid_name(const char *name)
1125 {
1126 	if (*name == '\0')
1127 		return false;
1128 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1129 		return false;
1130 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1131 		return false;
1132 
1133 	while (*name) {
1134 		if (*name == '/' || *name == ':' || isspace(*name))
1135 			return false;
1136 		name++;
1137 	}
1138 	return true;
1139 }
1140 EXPORT_SYMBOL(dev_valid_name);
1141 
1142 /**
1143  *	__dev_alloc_name - allocate a name for a device
1144  *	@net: network namespace to allocate the device name in
1145  *	@name: name format string
1146  *	@buf:  scratch buffer and result name string
1147  *
1148  *	Passed a format string - eg "lt%d" it will try and find a suitable
1149  *	id. It scans list of devices to build up a free map, then chooses
1150  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1151  *	while allocating the name and adding the device in order to avoid
1152  *	duplicates.
1153  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1154  *	Returns the number of the unit assigned or a negative errno code.
1155  */
1156 
1157 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1158 {
1159 	int i = 0;
1160 	const char *p;
1161 	const int max_netdevices = 8*PAGE_SIZE;
1162 	unsigned long *inuse;
1163 	struct net_device *d;
1164 
1165 	if (!dev_valid_name(name))
1166 		return -EINVAL;
1167 
1168 	p = strchr(name, '%');
1169 	if (p) {
1170 		/*
1171 		 * Verify the string as this thing may have come from
1172 		 * the user.  There must be either one "%d" and no other "%"
1173 		 * characters.
1174 		 */
1175 		if (p[1] != 'd' || strchr(p + 2, '%'))
1176 			return -EINVAL;
1177 
1178 		/* Use one page as a bit array of possible slots */
1179 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1180 		if (!inuse)
1181 			return -ENOMEM;
1182 
1183 		for_each_netdev(net, d) {
1184 			if (!sscanf(d->name, name, &i))
1185 				continue;
1186 			if (i < 0 || i >= max_netdevices)
1187 				continue;
1188 
1189 			/*  avoid cases where sscanf is not exact inverse of printf */
1190 			snprintf(buf, IFNAMSIZ, name, i);
1191 			if (!strncmp(buf, d->name, IFNAMSIZ))
1192 				set_bit(i, inuse);
1193 		}
1194 
1195 		i = find_first_zero_bit(inuse, max_netdevices);
1196 		free_page((unsigned long) inuse);
1197 	}
1198 
1199 	snprintf(buf, IFNAMSIZ, name, i);
1200 	if (!__dev_get_by_name(net, buf))
1201 		return i;
1202 
1203 	/* It is possible to run out of possible slots
1204 	 * when the name is long and there isn't enough space left
1205 	 * for the digits, or if all bits are used.
1206 	 */
1207 	return -ENFILE;
1208 }
1209 
1210 static int dev_alloc_name_ns(struct net *net,
1211 			     struct net_device *dev,
1212 			     const char *name)
1213 {
1214 	char buf[IFNAMSIZ];
1215 	int ret;
1216 
1217 	BUG_ON(!net);
1218 	ret = __dev_alloc_name(net, name, buf);
1219 	if (ret >= 0)
1220 		strlcpy(dev->name, buf, IFNAMSIZ);
1221 	return ret;
1222 }
1223 
1224 /**
1225  *	dev_alloc_name - allocate a name for a device
1226  *	@dev: device
1227  *	@name: name format string
1228  *
1229  *	Passed a format string - eg "lt%d" it will try and find a suitable
1230  *	id. It scans list of devices to build up a free map, then chooses
1231  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1232  *	while allocating the name and adding the device in order to avoid
1233  *	duplicates.
1234  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1235  *	Returns the number of the unit assigned or a negative errno code.
1236  */
1237 
1238 int dev_alloc_name(struct net_device *dev, const char *name)
1239 {
1240 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1241 }
1242 EXPORT_SYMBOL(dev_alloc_name);
1243 
1244 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1245 			      const char *name)
1246 {
1247 	BUG_ON(!net);
1248 
1249 	if (!dev_valid_name(name))
1250 		return -EINVAL;
1251 
1252 	if (strchr(name, '%'))
1253 		return dev_alloc_name_ns(net, dev, name);
1254 	else if (__dev_get_by_name(net, name))
1255 		return -EEXIST;
1256 	else if (dev->name != name)
1257 		strlcpy(dev->name, name, IFNAMSIZ);
1258 
1259 	return 0;
1260 }
1261 
1262 /**
1263  *	dev_change_name - change name of a device
1264  *	@dev: device
1265  *	@newname: name (or format string) must be at least IFNAMSIZ
1266  *
1267  *	Change name of a device, can pass format strings "eth%d".
1268  *	for wildcarding.
1269  */
1270 int dev_change_name(struct net_device *dev, const char *newname)
1271 {
1272 	unsigned char old_assign_type;
1273 	char oldname[IFNAMSIZ];
1274 	int err = 0;
1275 	int ret;
1276 	struct net *net;
1277 
1278 	ASSERT_RTNL();
1279 	BUG_ON(!dev_net(dev));
1280 
1281 	net = dev_net(dev);
1282 
1283 	/* Some auto-enslaved devices e.g. failover slaves are
1284 	 * special, as userspace might rename the device after
1285 	 * the interface had been brought up and running since
1286 	 * the point kernel initiated auto-enslavement. Allow
1287 	 * live name change even when these slave devices are
1288 	 * up and running.
1289 	 *
1290 	 * Typically, users of these auto-enslaving devices
1291 	 * don't actually care about slave name change, as
1292 	 * they are supposed to operate on master interface
1293 	 * directly.
1294 	 */
1295 	if (dev->flags & IFF_UP &&
1296 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1297 		return -EBUSY;
1298 
1299 	write_seqcount_begin(&devnet_rename_seq);
1300 
1301 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1302 		write_seqcount_end(&devnet_rename_seq);
1303 		return 0;
1304 	}
1305 
1306 	memcpy(oldname, dev->name, IFNAMSIZ);
1307 
1308 	err = dev_get_valid_name(net, dev, newname);
1309 	if (err < 0) {
1310 		write_seqcount_end(&devnet_rename_seq);
1311 		return err;
1312 	}
1313 
1314 	if (oldname[0] && !strchr(oldname, '%'))
1315 		netdev_info(dev, "renamed from %s\n", oldname);
1316 
1317 	old_assign_type = dev->name_assign_type;
1318 	dev->name_assign_type = NET_NAME_RENAMED;
1319 
1320 rollback:
1321 	ret = device_rename(&dev->dev, dev->name);
1322 	if (ret) {
1323 		memcpy(dev->name, oldname, IFNAMSIZ);
1324 		dev->name_assign_type = old_assign_type;
1325 		write_seqcount_end(&devnet_rename_seq);
1326 		return ret;
1327 	}
1328 
1329 	write_seqcount_end(&devnet_rename_seq);
1330 
1331 	netdev_adjacent_rename_links(dev, oldname);
1332 
1333 	write_lock_bh(&dev_base_lock);
1334 	netdev_name_node_del(dev->name_node);
1335 	write_unlock_bh(&dev_base_lock);
1336 
1337 	synchronize_rcu();
1338 
1339 	write_lock_bh(&dev_base_lock);
1340 	netdev_name_node_add(net, dev->name_node);
1341 	write_unlock_bh(&dev_base_lock);
1342 
1343 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1344 	ret = notifier_to_errno(ret);
1345 
1346 	if (ret) {
1347 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1348 		if (err >= 0) {
1349 			err = ret;
1350 			write_seqcount_begin(&devnet_rename_seq);
1351 			memcpy(dev->name, oldname, IFNAMSIZ);
1352 			memcpy(oldname, newname, IFNAMSIZ);
1353 			dev->name_assign_type = old_assign_type;
1354 			old_assign_type = NET_NAME_RENAMED;
1355 			goto rollback;
1356 		} else {
1357 			pr_err("%s: name change rollback failed: %d\n",
1358 			       dev->name, ret);
1359 		}
1360 	}
1361 
1362 	return err;
1363 }
1364 
1365 /**
1366  *	dev_set_alias - change ifalias of a device
1367  *	@dev: device
1368  *	@alias: name up to IFALIASZ
1369  *	@len: limit of bytes to copy from info
1370  *
1371  *	Set ifalias for a device,
1372  */
1373 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1374 {
1375 	struct dev_ifalias *new_alias = NULL;
1376 
1377 	if (len >= IFALIASZ)
1378 		return -EINVAL;
1379 
1380 	if (len) {
1381 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1382 		if (!new_alias)
1383 			return -ENOMEM;
1384 
1385 		memcpy(new_alias->ifalias, alias, len);
1386 		new_alias->ifalias[len] = 0;
1387 	}
1388 
1389 	mutex_lock(&ifalias_mutex);
1390 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1391 					mutex_is_locked(&ifalias_mutex));
1392 	mutex_unlock(&ifalias_mutex);
1393 
1394 	if (new_alias)
1395 		kfree_rcu(new_alias, rcuhead);
1396 
1397 	return len;
1398 }
1399 EXPORT_SYMBOL(dev_set_alias);
1400 
1401 /**
1402  *	dev_get_alias - get ifalias of a device
1403  *	@dev: device
1404  *	@name: buffer to store name of ifalias
1405  *	@len: size of buffer
1406  *
1407  *	get ifalias for a device.  Caller must make sure dev cannot go
1408  *	away,  e.g. rcu read lock or own a reference count to device.
1409  */
1410 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1411 {
1412 	const struct dev_ifalias *alias;
1413 	int ret = 0;
1414 
1415 	rcu_read_lock();
1416 	alias = rcu_dereference(dev->ifalias);
1417 	if (alias)
1418 		ret = snprintf(name, len, "%s", alias->ifalias);
1419 	rcu_read_unlock();
1420 
1421 	return ret;
1422 }
1423 
1424 /**
1425  *	netdev_features_change - device changes features
1426  *	@dev: device to cause notification
1427  *
1428  *	Called to indicate a device has changed features.
1429  */
1430 void netdev_features_change(struct net_device *dev)
1431 {
1432 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1433 }
1434 EXPORT_SYMBOL(netdev_features_change);
1435 
1436 /**
1437  *	netdev_state_change - device changes state
1438  *	@dev: device to cause notification
1439  *
1440  *	Called to indicate a device has changed state. This function calls
1441  *	the notifier chains for netdev_chain and sends a NEWLINK message
1442  *	to the routing socket.
1443  */
1444 void netdev_state_change(struct net_device *dev)
1445 {
1446 	if (dev->flags & IFF_UP) {
1447 		struct netdev_notifier_change_info change_info = {
1448 			.info.dev = dev,
1449 		};
1450 
1451 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1452 					      &change_info.info);
1453 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1454 	}
1455 }
1456 EXPORT_SYMBOL(netdev_state_change);
1457 
1458 /**
1459  * netdev_notify_peers - notify network peers about existence of @dev
1460  * @dev: network device
1461  *
1462  * Generate traffic such that interested network peers are aware of
1463  * @dev, such as by generating a gratuitous ARP. This may be used when
1464  * a device wants to inform the rest of the network about some sort of
1465  * reconfiguration such as a failover event or virtual machine
1466  * migration.
1467  */
1468 void netdev_notify_peers(struct net_device *dev)
1469 {
1470 	rtnl_lock();
1471 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1472 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1473 	rtnl_unlock();
1474 }
1475 EXPORT_SYMBOL(netdev_notify_peers);
1476 
1477 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1478 {
1479 	const struct net_device_ops *ops = dev->netdev_ops;
1480 	int ret;
1481 
1482 	ASSERT_RTNL();
1483 
1484 	if (!netif_device_present(dev))
1485 		return -ENODEV;
1486 
1487 	/* Block netpoll from trying to do any rx path servicing.
1488 	 * If we don't do this there is a chance ndo_poll_controller
1489 	 * or ndo_poll may be running while we open the device
1490 	 */
1491 	netpoll_poll_disable(dev);
1492 
1493 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1494 	ret = notifier_to_errno(ret);
1495 	if (ret)
1496 		return ret;
1497 
1498 	set_bit(__LINK_STATE_START, &dev->state);
1499 
1500 	if (ops->ndo_validate_addr)
1501 		ret = ops->ndo_validate_addr(dev);
1502 
1503 	if (!ret && ops->ndo_open)
1504 		ret = ops->ndo_open(dev);
1505 
1506 	netpoll_poll_enable(dev);
1507 
1508 	if (ret)
1509 		clear_bit(__LINK_STATE_START, &dev->state);
1510 	else {
1511 		dev->flags |= IFF_UP;
1512 		dev_set_rx_mode(dev);
1513 		dev_activate(dev);
1514 		add_device_randomness(dev->dev_addr, dev->addr_len);
1515 	}
1516 
1517 	return ret;
1518 }
1519 
1520 /**
1521  *	dev_open	- prepare an interface for use.
1522  *	@dev: device to open
1523  *	@extack: netlink extended ack
1524  *
1525  *	Takes a device from down to up state. The device's private open
1526  *	function is invoked and then the multicast lists are loaded. Finally
1527  *	the device is moved into the up state and a %NETDEV_UP message is
1528  *	sent to the netdev notifier chain.
1529  *
1530  *	Calling this function on an active interface is a nop. On a failure
1531  *	a negative errno code is returned.
1532  */
1533 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1534 {
1535 	int ret;
1536 
1537 	if (dev->flags & IFF_UP)
1538 		return 0;
1539 
1540 	ret = __dev_open(dev, extack);
1541 	if (ret < 0)
1542 		return ret;
1543 
1544 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1545 	call_netdevice_notifiers(NETDEV_UP, dev);
1546 
1547 	return ret;
1548 }
1549 EXPORT_SYMBOL(dev_open);
1550 
1551 static void __dev_close_many(struct list_head *head)
1552 {
1553 	struct net_device *dev;
1554 
1555 	ASSERT_RTNL();
1556 	might_sleep();
1557 
1558 	list_for_each_entry(dev, head, close_list) {
1559 		/* Temporarily disable netpoll until the interface is down */
1560 		netpoll_poll_disable(dev);
1561 
1562 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1563 
1564 		clear_bit(__LINK_STATE_START, &dev->state);
1565 
1566 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1567 		 * can be even on different cpu. So just clear netif_running().
1568 		 *
1569 		 * dev->stop() will invoke napi_disable() on all of it's
1570 		 * napi_struct instances on this device.
1571 		 */
1572 		smp_mb__after_atomic(); /* Commit netif_running(). */
1573 	}
1574 
1575 	dev_deactivate_many(head);
1576 
1577 	list_for_each_entry(dev, head, close_list) {
1578 		const struct net_device_ops *ops = dev->netdev_ops;
1579 
1580 		/*
1581 		 *	Call the device specific close. This cannot fail.
1582 		 *	Only if device is UP
1583 		 *
1584 		 *	We allow it to be called even after a DETACH hot-plug
1585 		 *	event.
1586 		 */
1587 		if (ops->ndo_stop)
1588 			ops->ndo_stop(dev);
1589 
1590 		dev->flags &= ~IFF_UP;
1591 		netpoll_poll_enable(dev);
1592 	}
1593 }
1594 
1595 static void __dev_close(struct net_device *dev)
1596 {
1597 	LIST_HEAD(single);
1598 
1599 	list_add(&dev->close_list, &single);
1600 	__dev_close_many(&single);
1601 	list_del(&single);
1602 }
1603 
1604 void dev_close_many(struct list_head *head, bool unlink)
1605 {
1606 	struct net_device *dev, *tmp;
1607 
1608 	/* Remove the devices that don't need to be closed */
1609 	list_for_each_entry_safe(dev, tmp, head, close_list)
1610 		if (!(dev->flags & IFF_UP))
1611 			list_del_init(&dev->close_list);
1612 
1613 	__dev_close_many(head);
1614 
1615 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1616 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1617 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1618 		if (unlink)
1619 			list_del_init(&dev->close_list);
1620 	}
1621 }
1622 EXPORT_SYMBOL(dev_close_many);
1623 
1624 /**
1625  *	dev_close - shutdown an interface.
1626  *	@dev: device to shutdown
1627  *
1628  *	This function moves an active device into down state. A
1629  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1630  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1631  *	chain.
1632  */
1633 void dev_close(struct net_device *dev)
1634 {
1635 	if (dev->flags & IFF_UP) {
1636 		LIST_HEAD(single);
1637 
1638 		list_add(&dev->close_list, &single);
1639 		dev_close_many(&single, true);
1640 		list_del(&single);
1641 	}
1642 }
1643 EXPORT_SYMBOL(dev_close);
1644 
1645 
1646 /**
1647  *	dev_disable_lro - disable Large Receive Offload on a device
1648  *	@dev: device
1649  *
1650  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1651  *	called under RTNL.  This is needed if received packets may be
1652  *	forwarded to another interface.
1653  */
1654 void dev_disable_lro(struct net_device *dev)
1655 {
1656 	struct net_device *lower_dev;
1657 	struct list_head *iter;
1658 
1659 	dev->wanted_features &= ~NETIF_F_LRO;
1660 	netdev_update_features(dev);
1661 
1662 	if (unlikely(dev->features & NETIF_F_LRO))
1663 		netdev_WARN(dev, "failed to disable LRO!\n");
1664 
1665 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1666 		dev_disable_lro(lower_dev);
1667 }
1668 EXPORT_SYMBOL(dev_disable_lro);
1669 
1670 /**
1671  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1672  *	@dev: device
1673  *
1674  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1675  *	called under RTNL.  This is needed if Generic XDP is installed on
1676  *	the device.
1677  */
1678 static void dev_disable_gro_hw(struct net_device *dev)
1679 {
1680 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1681 	netdev_update_features(dev);
1682 
1683 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1684 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1685 }
1686 
1687 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1688 {
1689 #define N(val) 						\
1690 	case NETDEV_##val:				\
1691 		return "NETDEV_" __stringify(val);
1692 	switch (cmd) {
1693 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1694 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1695 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1696 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1697 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1698 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1699 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1700 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1701 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1702 	N(PRE_CHANGEADDR)
1703 	}
1704 #undef N
1705 	return "UNKNOWN_NETDEV_EVENT";
1706 }
1707 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1708 
1709 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1710 				   struct net_device *dev)
1711 {
1712 	struct netdev_notifier_info info = {
1713 		.dev = dev,
1714 	};
1715 
1716 	return nb->notifier_call(nb, val, &info);
1717 }
1718 
1719 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1720 					     struct net_device *dev)
1721 {
1722 	int err;
1723 
1724 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1725 	err = notifier_to_errno(err);
1726 	if (err)
1727 		return err;
1728 
1729 	if (!(dev->flags & IFF_UP))
1730 		return 0;
1731 
1732 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1733 	return 0;
1734 }
1735 
1736 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1737 						struct net_device *dev)
1738 {
1739 	if (dev->flags & IFF_UP) {
1740 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1741 					dev);
1742 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1743 	}
1744 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1745 }
1746 
1747 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1748 						 struct net *net)
1749 {
1750 	struct net_device *dev;
1751 	int err;
1752 
1753 	for_each_netdev(net, dev) {
1754 		err = call_netdevice_register_notifiers(nb, dev);
1755 		if (err)
1756 			goto rollback;
1757 	}
1758 	return 0;
1759 
1760 rollback:
1761 	for_each_netdev_continue_reverse(net, dev)
1762 		call_netdevice_unregister_notifiers(nb, dev);
1763 	return err;
1764 }
1765 
1766 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1767 						    struct net *net)
1768 {
1769 	struct net_device *dev;
1770 
1771 	for_each_netdev(net, dev)
1772 		call_netdevice_unregister_notifiers(nb, dev);
1773 }
1774 
1775 static int dev_boot_phase = 1;
1776 
1777 /**
1778  * register_netdevice_notifier - register a network notifier block
1779  * @nb: notifier
1780  *
1781  * Register a notifier to be called when network device events occur.
1782  * The notifier passed is linked into the kernel structures and must
1783  * not be reused until it has been unregistered. A negative errno code
1784  * is returned on a failure.
1785  *
1786  * When registered all registration and up events are replayed
1787  * to the new notifier to allow device to have a race free
1788  * view of the network device list.
1789  */
1790 
1791 int register_netdevice_notifier(struct notifier_block *nb)
1792 {
1793 	struct net *net;
1794 	int err;
1795 
1796 	/* Close race with setup_net() and cleanup_net() */
1797 	down_write(&pernet_ops_rwsem);
1798 	rtnl_lock();
1799 	err = raw_notifier_chain_register(&netdev_chain, nb);
1800 	if (err)
1801 		goto unlock;
1802 	if (dev_boot_phase)
1803 		goto unlock;
1804 	for_each_net(net) {
1805 		err = call_netdevice_register_net_notifiers(nb, net);
1806 		if (err)
1807 			goto rollback;
1808 	}
1809 
1810 unlock:
1811 	rtnl_unlock();
1812 	up_write(&pernet_ops_rwsem);
1813 	return err;
1814 
1815 rollback:
1816 	for_each_net_continue_reverse(net)
1817 		call_netdevice_unregister_net_notifiers(nb, net);
1818 
1819 	raw_notifier_chain_unregister(&netdev_chain, nb);
1820 	goto unlock;
1821 }
1822 EXPORT_SYMBOL(register_netdevice_notifier);
1823 
1824 /**
1825  * unregister_netdevice_notifier - unregister a network notifier block
1826  * @nb: notifier
1827  *
1828  * Unregister a notifier previously registered by
1829  * register_netdevice_notifier(). The notifier is unlinked into the
1830  * kernel structures and may then be reused. A negative errno code
1831  * is returned on a failure.
1832  *
1833  * After unregistering unregister and down device events are synthesized
1834  * for all devices on the device list to the removed notifier to remove
1835  * the need for special case cleanup code.
1836  */
1837 
1838 int unregister_netdevice_notifier(struct notifier_block *nb)
1839 {
1840 	struct net *net;
1841 	int err;
1842 
1843 	/* Close race with setup_net() and cleanup_net() */
1844 	down_write(&pernet_ops_rwsem);
1845 	rtnl_lock();
1846 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1847 	if (err)
1848 		goto unlock;
1849 
1850 	for_each_net(net)
1851 		call_netdevice_unregister_net_notifiers(nb, net);
1852 
1853 unlock:
1854 	rtnl_unlock();
1855 	up_write(&pernet_ops_rwsem);
1856 	return err;
1857 }
1858 EXPORT_SYMBOL(unregister_netdevice_notifier);
1859 
1860 static int __register_netdevice_notifier_net(struct net *net,
1861 					     struct notifier_block *nb,
1862 					     bool ignore_call_fail)
1863 {
1864 	int err;
1865 
1866 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1867 	if (err)
1868 		return err;
1869 	if (dev_boot_phase)
1870 		return 0;
1871 
1872 	err = call_netdevice_register_net_notifiers(nb, net);
1873 	if (err && !ignore_call_fail)
1874 		goto chain_unregister;
1875 
1876 	return 0;
1877 
1878 chain_unregister:
1879 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1880 	return err;
1881 }
1882 
1883 static int __unregister_netdevice_notifier_net(struct net *net,
1884 					       struct notifier_block *nb)
1885 {
1886 	int err;
1887 
1888 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1889 	if (err)
1890 		return err;
1891 
1892 	call_netdevice_unregister_net_notifiers(nb, net);
1893 	return 0;
1894 }
1895 
1896 /**
1897  * register_netdevice_notifier_net - register a per-netns network notifier block
1898  * @net: network namespace
1899  * @nb: notifier
1900  *
1901  * Register a notifier to be called when network device events occur.
1902  * The notifier passed is linked into the kernel structures and must
1903  * not be reused until it has been unregistered. A negative errno code
1904  * is returned on a failure.
1905  *
1906  * When registered all registration and up events are replayed
1907  * to the new notifier to allow device to have a race free
1908  * view of the network device list.
1909  */
1910 
1911 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1912 {
1913 	int err;
1914 
1915 	rtnl_lock();
1916 	err = __register_netdevice_notifier_net(net, nb, false);
1917 	rtnl_unlock();
1918 	return err;
1919 }
1920 EXPORT_SYMBOL(register_netdevice_notifier_net);
1921 
1922 /**
1923  * unregister_netdevice_notifier_net - unregister a per-netns
1924  *                                     network notifier block
1925  * @net: network namespace
1926  * @nb: notifier
1927  *
1928  * Unregister a notifier previously registered by
1929  * register_netdevice_notifier(). The notifier is unlinked into the
1930  * kernel structures and may then be reused. A negative errno code
1931  * is returned on a failure.
1932  *
1933  * After unregistering unregister and down device events are synthesized
1934  * for all devices on the device list to the removed notifier to remove
1935  * the need for special case cleanup code.
1936  */
1937 
1938 int unregister_netdevice_notifier_net(struct net *net,
1939 				      struct notifier_block *nb)
1940 {
1941 	int err;
1942 
1943 	rtnl_lock();
1944 	err = __unregister_netdevice_notifier_net(net, nb);
1945 	rtnl_unlock();
1946 	return err;
1947 }
1948 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1949 
1950 int register_netdevice_notifier_dev_net(struct net_device *dev,
1951 					struct notifier_block *nb,
1952 					struct netdev_net_notifier *nn)
1953 {
1954 	int err;
1955 
1956 	rtnl_lock();
1957 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1958 	if (!err) {
1959 		nn->nb = nb;
1960 		list_add(&nn->list, &dev->net_notifier_list);
1961 	}
1962 	rtnl_unlock();
1963 	return err;
1964 }
1965 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1966 
1967 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1968 					  struct notifier_block *nb,
1969 					  struct netdev_net_notifier *nn)
1970 {
1971 	int err;
1972 
1973 	rtnl_lock();
1974 	list_del(&nn->list);
1975 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1976 	rtnl_unlock();
1977 	return err;
1978 }
1979 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1980 
1981 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1982 					     struct net *net)
1983 {
1984 	struct netdev_net_notifier *nn;
1985 
1986 	list_for_each_entry(nn, &dev->net_notifier_list, list) {
1987 		__unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1988 		__register_netdevice_notifier_net(net, nn->nb, true);
1989 	}
1990 }
1991 
1992 /**
1993  *	call_netdevice_notifiers_info - call all network notifier blocks
1994  *	@val: value passed unmodified to notifier function
1995  *	@info: notifier information data
1996  *
1997  *	Call all network notifier blocks.  Parameters and return value
1998  *	are as for raw_notifier_call_chain().
1999  */
2000 
2001 static int call_netdevice_notifiers_info(unsigned long val,
2002 					 struct netdev_notifier_info *info)
2003 {
2004 	struct net *net = dev_net(info->dev);
2005 	int ret;
2006 
2007 	ASSERT_RTNL();
2008 
2009 	/* Run per-netns notifier block chain first, then run the global one.
2010 	 * Hopefully, one day, the global one is going to be removed after
2011 	 * all notifier block registrators get converted to be per-netns.
2012 	 */
2013 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2014 	if (ret & NOTIFY_STOP_MASK)
2015 		return ret;
2016 	return raw_notifier_call_chain(&netdev_chain, val, info);
2017 }
2018 
2019 static int call_netdevice_notifiers_extack(unsigned long val,
2020 					   struct net_device *dev,
2021 					   struct netlink_ext_ack *extack)
2022 {
2023 	struct netdev_notifier_info info = {
2024 		.dev = dev,
2025 		.extack = extack,
2026 	};
2027 
2028 	return call_netdevice_notifiers_info(val, &info);
2029 }
2030 
2031 /**
2032  *	call_netdevice_notifiers - call all network notifier blocks
2033  *      @val: value passed unmodified to notifier function
2034  *      @dev: net_device pointer passed unmodified to notifier function
2035  *
2036  *	Call all network notifier blocks.  Parameters and return value
2037  *	are as for raw_notifier_call_chain().
2038  */
2039 
2040 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2041 {
2042 	return call_netdevice_notifiers_extack(val, dev, NULL);
2043 }
2044 EXPORT_SYMBOL(call_netdevice_notifiers);
2045 
2046 /**
2047  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2048  *	@val: value passed unmodified to notifier function
2049  *	@dev: net_device pointer passed unmodified to notifier function
2050  *	@arg: additional u32 argument passed to the notifier function
2051  *
2052  *	Call all network notifier blocks.  Parameters and return value
2053  *	are as for raw_notifier_call_chain().
2054  */
2055 static int call_netdevice_notifiers_mtu(unsigned long val,
2056 					struct net_device *dev, u32 arg)
2057 {
2058 	struct netdev_notifier_info_ext info = {
2059 		.info.dev = dev,
2060 		.ext.mtu = arg,
2061 	};
2062 
2063 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2064 
2065 	return call_netdevice_notifiers_info(val, &info.info);
2066 }
2067 
2068 #ifdef CONFIG_NET_INGRESS
2069 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2070 
2071 void net_inc_ingress_queue(void)
2072 {
2073 	static_branch_inc(&ingress_needed_key);
2074 }
2075 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2076 
2077 void net_dec_ingress_queue(void)
2078 {
2079 	static_branch_dec(&ingress_needed_key);
2080 }
2081 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2082 #endif
2083 
2084 #ifdef CONFIG_NET_EGRESS
2085 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2086 
2087 void net_inc_egress_queue(void)
2088 {
2089 	static_branch_inc(&egress_needed_key);
2090 }
2091 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2092 
2093 void net_dec_egress_queue(void)
2094 {
2095 	static_branch_dec(&egress_needed_key);
2096 }
2097 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2098 #endif
2099 
2100 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2101 #ifdef CONFIG_JUMP_LABEL
2102 static atomic_t netstamp_needed_deferred;
2103 static atomic_t netstamp_wanted;
2104 static void netstamp_clear(struct work_struct *work)
2105 {
2106 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2107 	int wanted;
2108 
2109 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2110 	if (wanted > 0)
2111 		static_branch_enable(&netstamp_needed_key);
2112 	else
2113 		static_branch_disable(&netstamp_needed_key);
2114 }
2115 static DECLARE_WORK(netstamp_work, netstamp_clear);
2116 #endif
2117 
2118 void net_enable_timestamp(void)
2119 {
2120 #ifdef CONFIG_JUMP_LABEL
2121 	int wanted;
2122 
2123 	while (1) {
2124 		wanted = atomic_read(&netstamp_wanted);
2125 		if (wanted <= 0)
2126 			break;
2127 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2128 			return;
2129 	}
2130 	atomic_inc(&netstamp_needed_deferred);
2131 	schedule_work(&netstamp_work);
2132 #else
2133 	static_branch_inc(&netstamp_needed_key);
2134 #endif
2135 }
2136 EXPORT_SYMBOL(net_enable_timestamp);
2137 
2138 void net_disable_timestamp(void)
2139 {
2140 #ifdef CONFIG_JUMP_LABEL
2141 	int wanted;
2142 
2143 	while (1) {
2144 		wanted = atomic_read(&netstamp_wanted);
2145 		if (wanted <= 1)
2146 			break;
2147 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2148 			return;
2149 	}
2150 	atomic_dec(&netstamp_needed_deferred);
2151 	schedule_work(&netstamp_work);
2152 #else
2153 	static_branch_dec(&netstamp_needed_key);
2154 #endif
2155 }
2156 EXPORT_SYMBOL(net_disable_timestamp);
2157 
2158 static inline void net_timestamp_set(struct sk_buff *skb)
2159 {
2160 	skb->tstamp = 0;
2161 	if (static_branch_unlikely(&netstamp_needed_key))
2162 		__net_timestamp(skb);
2163 }
2164 
2165 #define net_timestamp_check(COND, SKB)				\
2166 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2167 		if ((COND) && !(SKB)->tstamp)			\
2168 			__net_timestamp(SKB);			\
2169 	}							\
2170 
2171 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2172 {
2173 	unsigned int len;
2174 
2175 	if (!(dev->flags & IFF_UP))
2176 		return false;
2177 
2178 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2179 	if (skb->len <= len)
2180 		return true;
2181 
2182 	/* if TSO is enabled, we don't care about the length as the packet
2183 	 * could be forwarded without being segmented before
2184 	 */
2185 	if (skb_is_gso(skb))
2186 		return true;
2187 
2188 	return false;
2189 }
2190 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2191 
2192 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2193 {
2194 	int ret = ____dev_forward_skb(dev, skb);
2195 
2196 	if (likely(!ret)) {
2197 		skb->protocol = eth_type_trans(skb, dev);
2198 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2199 	}
2200 
2201 	return ret;
2202 }
2203 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2204 
2205 /**
2206  * dev_forward_skb - loopback an skb to another netif
2207  *
2208  * @dev: destination network device
2209  * @skb: buffer to forward
2210  *
2211  * return values:
2212  *	NET_RX_SUCCESS	(no congestion)
2213  *	NET_RX_DROP     (packet was dropped, but freed)
2214  *
2215  * dev_forward_skb can be used for injecting an skb from the
2216  * start_xmit function of one device into the receive queue
2217  * of another device.
2218  *
2219  * The receiving device may be in another namespace, so
2220  * we have to clear all information in the skb that could
2221  * impact namespace isolation.
2222  */
2223 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2224 {
2225 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2226 }
2227 EXPORT_SYMBOL_GPL(dev_forward_skb);
2228 
2229 static inline int deliver_skb(struct sk_buff *skb,
2230 			      struct packet_type *pt_prev,
2231 			      struct net_device *orig_dev)
2232 {
2233 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2234 		return -ENOMEM;
2235 	refcount_inc(&skb->users);
2236 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2237 }
2238 
2239 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2240 					  struct packet_type **pt,
2241 					  struct net_device *orig_dev,
2242 					  __be16 type,
2243 					  struct list_head *ptype_list)
2244 {
2245 	struct packet_type *ptype, *pt_prev = *pt;
2246 
2247 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2248 		if (ptype->type != type)
2249 			continue;
2250 		if (pt_prev)
2251 			deliver_skb(skb, pt_prev, orig_dev);
2252 		pt_prev = ptype;
2253 	}
2254 	*pt = pt_prev;
2255 }
2256 
2257 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2258 {
2259 	if (!ptype->af_packet_priv || !skb->sk)
2260 		return false;
2261 
2262 	if (ptype->id_match)
2263 		return ptype->id_match(ptype, skb->sk);
2264 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2265 		return true;
2266 
2267 	return false;
2268 }
2269 
2270 /**
2271  * dev_nit_active - return true if any network interface taps are in use
2272  *
2273  * @dev: network device to check for the presence of taps
2274  */
2275 bool dev_nit_active(struct net_device *dev)
2276 {
2277 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2278 }
2279 EXPORT_SYMBOL_GPL(dev_nit_active);
2280 
2281 /*
2282  *	Support routine. Sends outgoing frames to any network
2283  *	taps currently in use.
2284  */
2285 
2286 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2287 {
2288 	struct packet_type *ptype;
2289 	struct sk_buff *skb2 = NULL;
2290 	struct packet_type *pt_prev = NULL;
2291 	struct list_head *ptype_list = &ptype_all;
2292 
2293 	rcu_read_lock();
2294 again:
2295 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2296 		if (ptype->ignore_outgoing)
2297 			continue;
2298 
2299 		/* Never send packets back to the socket
2300 		 * they originated from - MvS (miquels@drinkel.ow.org)
2301 		 */
2302 		if (skb_loop_sk(ptype, skb))
2303 			continue;
2304 
2305 		if (pt_prev) {
2306 			deliver_skb(skb2, pt_prev, skb->dev);
2307 			pt_prev = ptype;
2308 			continue;
2309 		}
2310 
2311 		/* need to clone skb, done only once */
2312 		skb2 = skb_clone(skb, GFP_ATOMIC);
2313 		if (!skb2)
2314 			goto out_unlock;
2315 
2316 		net_timestamp_set(skb2);
2317 
2318 		/* skb->nh should be correctly
2319 		 * set by sender, so that the second statement is
2320 		 * just protection against buggy protocols.
2321 		 */
2322 		skb_reset_mac_header(skb2);
2323 
2324 		if (skb_network_header(skb2) < skb2->data ||
2325 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2326 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2327 					     ntohs(skb2->protocol),
2328 					     dev->name);
2329 			skb_reset_network_header(skb2);
2330 		}
2331 
2332 		skb2->transport_header = skb2->network_header;
2333 		skb2->pkt_type = PACKET_OUTGOING;
2334 		pt_prev = ptype;
2335 	}
2336 
2337 	if (ptype_list == &ptype_all) {
2338 		ptype_list = &dev->ptype_all;
2339 		goto again;
2340 	}
2341 out_unlock:
2342 	if (pt_prev) {
2343 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2344 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2345 		else
2346 			kfree_skb(skb2);
2347 	}
2348 	rcu_read_unlock();
2349 }
2350 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2351 
2352 /**
2353  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2354  * @dev: Network device
2355  * @txq: number of queues available
2356  *
2357  * If real_num_tx_queues is changed the tc mappings may no longer be
2358  * valid. To resolve this verify the tc mapping remains valid and if
2359  * not NULL the mapping. With no priorities mapping to this
2360  * offset/count pair it will no longer be used. In the worst case TC0
2361  * is invalid nothing can be done so disable priority mappings. If is
2362  * expected that drivers will fix this mapping if they can before
2363  * calling netif_set_real_num_tx_queues.
2364  */
2365 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2366 {
2367 	int i;
2368 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2369 
2370 	/* If TC0 is invalidated disable TC mapping */
2371 	if (tc->offset + tc->count > txq) {
2372 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2373 		dev->num_tc = 0;
2374 		return;
2375 	}
2376 
2377 	/* Invalidated prio to tc mappings set to TC0 */
2378 	for (i = 1; i < TC_BITMASK + 1; i++) {
2379 		int q = netdev_get_prio_tc_map(dev, i);
2380 
2381 		tc = &dev->tc_to_txq[q];
2382 		if (tc->offset + tc->count > txq) {
2383 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2384 				i, q);
2385 			netdev_set_prio_tc_map(dev, i, 0);
2386 		}
2387 	}
2388 }
2389 
2390 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2391 {
2392 	if (dev->num_tc) {
2393 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2394 		int i;
2395 
2396 		/* walk through the TCs and see if it falls into any of them */
2397 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2398 			if ((txq - tc->offset) < tc->count)
2399 				return i;
2400 		}
2401 
2402 		/* didn't find it, just return -1 to indicate no match */
2403 		return -1;
2404 	}
2405 
2406 	return 0;
2407 }
2408 EXPORT_SYMBOL(netdev_txq_to_tc);
2409 
2410 #ifdef CONFIG_XPS
2411 struct static_key xps_needed __read_mostly;
2412 EXPORT_SYMBOL(xps_needed);
2413 struct static_key xps_rxqs_needed __read_mostly;
2414 EXPORT_SYMBOL(xps_rxqs_needed);
2415 static DEFINE_MUTEX(xps_map_mutex);
2416 #define xmap_dereference(P)		\
2417 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2418 
2419 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2420 			     int tci, u16 index)
2421 {
2422 	struct xps_map *map = NULL;
2423 	int pos;
2424 
2425 	if (dev_maps)
2426 		map = xmap_dereference(dev_maps->attr_map[tci]);
2427 	if (!map)
2428 		return false;
2429 
2430 	for (pos = map->len; pos--;) {
2431 		if (map->queues[pos] != index)
2432 			continue;
2433 
2434 		if (map->len > 1) {
2435 			map->queues[pos] = map->queues[--map->len];
2436 			break;
2437 		}
2438 
2439 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2440 		kfree_rcu(map, rcu);
2441 		return false;
2442 	}
2443 
2444 	return true;
2445 }
2446 
2447 static bool remove_xps_queue_cpu(struct net_device *dev,
2448 				 struct xps_dev_maps *dev_maps,
2449 				 int cpu, u16 offset, u16 count)
2450 {
2451 	int num_tc = dev->num_tc ? : 1;
2452 	bool active = false;
2453 	int tci;
2454 
2455 	for (tci = cpu * num_tc; num_tc--; tci++) {
2456 		int i, j;
2457 
2458 		for (i = count, j = offset; i--; j++) {
2459 			if (!remove_xps_queue(dev_maps, tci, j))
2460 				break;
2461 		}
2462 
2463 		active |= i < 0;
2464 	}
2465 
2466 	return active;
2467 }
2468 
2469 static void reset_xps_maps(struct net_device *dev,
2470 			   struct xps_dev_maps *dev_maps,
2471 			   bool is_rxqs_map)
2472 {
2473 	if (is_rxqs_map) {
2474 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2475 		RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2476 	} else {
2477 		RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2478 	}
2479 	static_key_slow_dec_cpuslocked(&xps_needed);
2480 	kfree_rcu(dev_maps, rcu);
2481 }
2482 
2483 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2484 			   struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2485 			   u16 offset, u16 count, bool is_rxqs_map)
2486 {
2487 	bool active = false;
2488 	int i, j;
2489 
2490 	for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2491 	     j < nr_ids;)
2492 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2493 					       count);
2494 	if (!active)
2495 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2496 
2497 	if (!is_rxqs_map) {
2498 		for (i = offset + (count - 1); count--; i--) {
2499 			netdev_queue_numa_node_write(
2500 				netdev_get_tx_queue(dev, i),
2501 				NUMA_NO_NODE);
2502 		}
2503 	}
2504 }
2505 
2506 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2507 				   u16 count)
2508 {
2509 	const unsigned long *possible_mask = NULL;
2510 	struct xps_dev_maps *dev_maps;
2511 	unsigned int nr_ids;
2512 
2513 	if (!static_key_false(&xps_needed))
2514 		return;
2515 
2516 	cpus_read_lock();
2517 	mutex_lock(&xps_map_mutex);
2518 
2519 	if (static_key_false(&xps_rxqs_needed)) {
2520 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2521 		if (dev_maps) {
2522 			nr_ids = dev->num_rx_queues;
2523 			clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2524 				       offset, count, true);
2525 		}
2526 	}
2527 
2528 	dev_maps = xmap_dereference(dev->xps_cpus_map);
2529 	if (!dev_maps)
2530 		goto out_no_maps;
2531 
2532 	if (num_possible_cpus() > 1)
2533 		possible_mask = cpumask_bits(cpu_possible_mask);
2534 	nr_ids = nr_cpu_ids;
2535 	clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2536 		       false);
2537 
2538 out_no_maps:
2539 	mutex_unlock(&xps_map_mutex);
2540 	cpus_read_unlock();
2541 }
2542 
2543 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2544 {
2545 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2546 }
2547 
2548 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2549 				      u16 index, bool is_rxqs_map)
2550 {
2551 	struct xps_map *new_map;
2552 	int alloc_len = XPS_MIN_MAP_ALLOC;
2553 	int i, pos;
2554 
2555 	for (pos = 0; map && pos < map->len; pos++) {
2556 		if (map->queues[pos] != index)
2557 			continue;
2558 		return map;
2559 	}
2560 
2561 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2562 	if (map) {
2563 		if (pos < map->alloc_len)
2564 			return map;
2565 
2566 		alloc_len = map->alloc_len * 2;
2567 	}
2568 
2569 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2570 	 *  map
2571 	 */
2572 	if (is_rxqs_map)
2573 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2574 	else
2575 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2576 				       cpu_to_node(attr_index));
2577 	if (!new_map)
2578 		return NULL;
2579 
2580 	for (i = 0; i < pos; i++)
2581 		new_map->queues[i] = map->queues[i];
2582 	new_map->alloc_len = alloc_len;
2583 	new_map->len = pos;
2584 
2585 	return new_map;
2586 }
2587 
2588 /* Must be called under cpus_read_lock */
2589 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2590 			  u16 index, bool is_rxqs_map)
2591 {
2592 	const unsigned long *online_mask = NULL, *possible_mask = NULL;
2593 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2594 	int i, j, tci, numa_node_id = -2;
2595 	int maps_sz, num_tc = 1, tc = 0;
2596 	struct xps_map *map, *new_map;
2597 	bool active = false;
2598 	unsigned int nr_ids;
2599 
2600 	if (dev->num_tc) {
2601 		/* Do not allow XPS on subordinate device directly */
2602 		num_tc = dev->num_tc;
2603 		if (num_tc < 0)
2604 			return -EINVAL;
2605 
2606 		/* If queue belongs to subordinate dev use its map */
2607 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2608 
2609 		tc = netdev_txq_to_tc(dev, index);
2610 		if (tc < 0)
2611 			return -EINVAL;
2612 	}
2613 
2614 	mutex_lock(&xps_map_mutex);
2615 	if (is_rxqs_map) {
2616 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2617 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2618 		nr_ids = dev->num_rx_queues;
2619 	} else {
2620 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2621 		if (num_possible_cpus() > 1) {
2622 			online_mask = cpumask_bits(cpu_online_mask);
2623 			possible_mask = cpumask_bits(cpu_possible_mask);
2624 		}
2625 		dev_maps = xmap_dereference(dev->xps_cpus_map);
2626 		nr_ids = nr_cpu_ids;
2627 	}
2628 
2629 	if (maps_sz < L1_CACHE_BYTES)
2630 		maps_sz = L1_CACHE_BYTES;
2631 
2632 	/* allocate memory for queue storage */
2633 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2634 	     j < nr_ids;) {
2635 		if (!new_dev_maps)
2636 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2637 		if (!new_dev_maps) {
2638 			mutex_unlock(&xps_map_mutex);
2639 			return -ENOMEM;
2640 		}
2641 
2642 		tci = j * num_tc + tc;
2643 		map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2644 				 NULL;
2645 
2646 		map = expand_xps_map(map, j, index, is_rxqs_map);
2647 		if (!map)
2648 			goto error;
2649 
2650 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2651 	}
2652 
2653 	if (!new_dev_maps)
2654 		goto out_no_new_maps;
2655 
2656 	if (!dev_maps) {
2657 		/* Increment static keys at most once per type */
2658 		static_key_slow_inc_cpuslocked(&xps_needed);
2659 		if (is_rxqs_map)
2660 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2661 	}
2662 
2663 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2664 	     j < nr_ids;) {
2665 		/* copy maps belonging to foreign traffic classes */
2666 		for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2667 			/* fill in the new device map from the old device map */
2668 			map = xmap_dereference(dev_maps->attr_map[tci]);
2669 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2670 		}
2671 
2672 		/* We need to explicitly update tci as prevous loop
2673 		 * could break out early if dev_maps is NULL.
2674 		 */
2675 		tci = j * num_tc + tc;
2676 
2677 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2678 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2679 			/* add tx-queue to CPU/rx-queue maps */
2680 			int pos = 0;
2681 
2682 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2683 			while ((pos < map->len) && (map->queues[pos] != index))
2684 				pos++;
2685 
2686 			if (pos == map->len)
2687 				map->queues[map->len++] = index;
2688 #ifdef CONFIG_NUMA
2689 			if (!is_rxqs_map) {
2690 				if (numa_node_id == -2)
2691 					numa_node_id = cpu_to_node(j);
2692 				else if (numa_node_id != cpu_to_node(j))
2693 					numa_node_id = -1;
2694 			}
2695 #endif
2696 		} else if (dev_maps) {
2697 			/* fill in the new device map from the old device map */
2698 			map = xmap_dereference(dev_maps->attr_map[tci]);
2699 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2700 		}
2701 
2702 		/* copy maps belonging to foreign traffic classes */
2703 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2704 			/* fill in the new device map from the old device map */
2705 			map = xmap_dereference(dev_maps->attr_map[tci]);
2706 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2707 		}
2708 	}
2709 
2710 	if (is_rxqs_map)
2711 		rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2712 	else
2713 		rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2714 
2715 	/* Cleanup old maps */
2716 	if (!dev_maps)
2717 		goto out_no_old_maps;
2718 
2719 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2720 	     j < nr_ids;) {
2721 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2722 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2723 			map = xmap_dereference(dev_maps->attr_map[tci]);
2724 			if (map && map != new_map)
2725 				kfree_rcu(map, rcu);
2726 		}
2727 	}
2728 
2729 	kfree_rcu(dev_maps, rcu);
2730 
2731 out_no_old_maps:
2732 	dev_maps = new_dev_maps;
2733 	active = true;
2734 
2735 out_no_new_maps:
2736 	if (!is_rxqs_map) {
2737 		/* update Tx queue numa node */
2738 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2739 					     (numa_node_id >= 0) ?
2740 					     numa_node_id : NUMA_NO_NODE);
2741 	}
2742 
2743 	if (!dev_maps)
2744 		goto out_no_maps;
2745 
2746 	/* removes tx-queue from unused CPUs/rx-queues */
2747 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2748 	     j < nr_ids;) {
2749 		for (i = tc, tci = j * num_tc; i--; tci++)
2750 			active |= remove_xps_queue(dev_maps, tci, index);
2751 		if (!netif_attr_test_mask(j, mask, nr_ids) ||
2752 		    !netif_attr_test_online(j, online_mask, nr_ids))
2753 			active |= remove_xps_queue(dev_maps, tci, index);
2754 		for (i = num_tc - tc, tci++; --i; tci++)
2755 			active |= remove_xps_queue(dev_maps, tci, index);
2756 	}
2757 
2758 	/* free map if not active */
2759 	if (!active)
2760 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2761 
2762 out_no_maps:
2763 	mutex_unlock(&xps_map_mutex);
2764 
2765 	return 0;
2766 error:
2767 	/* remove any maps that we added */
2768 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2769 	     j < nr_ids;) {
2770 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2771 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2772 			map = dev_maps ?
2773 			      xmap_dereference(dev_maps->attr_map[tci]) :
2774 			      NULL;
2775 			if (new_map && new_map != map)
2776 				kfree(new_map);
2777 		}
2778 	}
2779 
2780 	mutex_unlock(&xps_map_mutex);
2781 
2782 	kfree(new_dev_maps);
2783 	return -ENOMEM;
2784 }
2785 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2786 
2787 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2788 			u16 index)
2789 {
2790 	int ret;
2791 
2792 	cpus_read_lock();
2793 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2794 	cpus_read_unlock();
2795 
2796 	return ret;
2797 }
2798 EXPORT_SYMBOL(netif_set_xps_queue);
2799 
2800 #endif
2801 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2802 {
2803 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2804 
2805 	/* Unbind any subordinate channels */
2806 	while (txq-- != &dev->_tx[0]) {
2807 		if (txq->sb_dev)
2808 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2809 	}
2810 }
2811 
2812 void netdev_reset_tc(struct net_device *dev)
2813 {
2814 #ifdef CONFIG_XPS
2815 	netif_reset_xps_queues_gt(dev, 0);
2816 #endif
2817 	netdev_unbind_all_sb_channels(dev);
2818 
2819 	/* Reset TC configuration of device */
2820 	dev->num_tc = 0;
2821 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2822 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2823 }
2824 EXPORT_SYMBOL(netdev_reset_tc);
2825 
2826 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2827 {
2828 	if (tc >= dev->num_tc)
2829 		return -EINVAL;
2830 
2831 #ifdef CONFIG_XPS
2832 	netif_reset_xps_queues(dev, offset, count);
2833 #endif
2834 	dev->tc_to_txq[tc].count = count;
2835 	dev->tc_to_txq[tc].offset = offset;
2836 	return 0;
2837 }
2838 EXPORT_SYMBOL(netdev_set_tc_queue);
2839 
2840 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2841 {
2842 	if (num_tc > TC_MAX_QUEUE)
2843 		return -EINVAL;
2844 
2845 #ifdef CONFIG_XPS
2846 	netif_reset_xps_queues_gt(dev, 0);
2847 #endif
2848 	netdev_unbind_all_sb_channels(dev);
2849 
2850 	dev->num_tc = num_tc;
2851 	return 0;
2852 }
2853 EXPORT_SYMBOL(netdev_set_num_tc);
2854 
2855 void netdev_unbind_sb_channel(struct net_device *dev,
2856 			      struct net_device *sb_dev)
2857 {
2858 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2859 
2860 #ifdef CONFIG_XPS
2861 	netif_reset_xps_queues_gt(sb_dev, 0);
2862 #endif
2863 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2864 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2865 
2866 	while (txq-- != &dev->_tx[0]) {
2867 		if (txq->sb_dev == sb_dev)
2868 			txq->sb_dev = NULL;
2869 	}
2870 }
2871 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2872 
2873 int netdev_bind_sb_channel_queue(struct net_device *dev,
2874 				 struct net_device *sb_dev,
2875 				 u8 tc, u16 count, u16 offset)
2876 {
2877 	/* Make certain the sb_dev and dev are already configured */
2878 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2879 		return -EINVAL;
2880 
2881 	/* We cannot hand out queues we don't have */
2882 	if ((offset + count) > dev->real_num_tx_queues)
2883 		return -EINVAL;
2884 
2885 	/* Record the mapping */
2886 	sb_dev->tc_to_txq[tc].count = count;
2887 	sb_dev->tc_to_txq[tc].offset = offset;
2888 
2889 	/* Provide a way for Tx queue to find the tc_to_txq map or
2890 	 * XPS map for itself.
2891 	 */
2892 	while (count--)
2893 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2894 
2895 	return 0;
2896 }
2897 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2898 
2899 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2900 {
2901 	/* Do not use a multiqueue device to represent a subordinate channel */
2902 	if (netif_is_multiqueue(dev))
2903 		return -ENODEV;
2904 
2905 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2906 	 * Channel 0 is meant to be "native" mode and used only to represent
2907 	 * the main root device. We allow writing 0 to reset the device back
2908 	 * to normal mode after being used as a subordinate channel.
2909 	 */
2910 	if (channel > S16_MAX)
2911 		return -EINVAL;
2912 
2913 	dev->num_tc = -channel;
2914 
2915 	return 0;
2916 }
2917 EXPORT_SYMBOL(netdev_set_sb_channel);
2918 
2919 /*
2920  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2921  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2922  */
2923 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2924 {
2925 	bool disabling;
2926 	int rc;
2927 
2928 	disabling = txq < dev->real_num_tx_queues;
2929 
2930 	if (txq < 1 || txq > dev->num_tx_queues)
2931 		return -EINVAL;
2932 
2933 	if (dev->reg_state == NETREG_REGISTERED ||
2934 	    dev->reg_state == NETREG_UNREGISTERING) {
2935 		ASSERT_RTNL();
2936 
2937 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2938 						  txq);
2939 		if (rc)
2940 			return rc;
2941 
2942 		if (dev->num_tc)
2943 			netif_setup_tc(dev, txq);
2944 
2945 		dev->real_num_tx_queues = txq;
2946 
2947 		if (disabling) {
2948 			synchronize_net();
2949 			qdisc_reset_all_tx_gt(dev, txq);
2950 #ifdef CONFIG_XPS
2951 			netif_reset_xps_queues_gt(dev, txq);
2952 #endif
2953 		}
2954 	} else {
2955 		dev->real_num_tx_queues = txq;
2956 	}
2957 
2958 	return 0;
2959 }
2960 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2961 
2962 #ifdef CONFIG_SYSFS
2963 /**
2964  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2965  *	@dev: Network device
2966  *	@rxq: Actual number of RX queues
2967  *
2968  *	This must be called either with the rtnl_lock held or before
2969  *	registration of the net device.  Returns 0 on success, or a
2970  *	negative error code.  If called before registration, it always
2971  *	succeeds.
2972  */
2973 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2974 {
2975 	int rc;
2976 
2977 	if (rxq < 1 || rxq > dev->num_rx_queues)
2978 		return -EINVAL;
2979 
2980 	if (dev->reg_state == NETREG_REGISTERED) {
2981 		ASSERT_RTNL();
2982 
2983 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2984 						  rxq);
2985 		if (rc)
2986 			return rc;
2987 	}
2988 
2989 	dev->real_num_rx_queues = rxq;
2990 	return 0;
2991 }
2992 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2993 #endif
2994 
2995 /**
2996  * netif_get_num_default_rss_queues - default number of RSS queues
2997  *
2998  * This routine should set an upper limit on the number of RSS queues
2999  * used by default by multiqueue devices.
3000  */
3001 int netif_get_num_default_rss_queues(void)
3002 {
3003 	return is_kdump_kernel() ?
3004 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3005 }
3006 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3007 
3008 static void __netif_reschedule(struct Qdisc *q)
3009 {
3010 	struct softnet_data *sd;
3011 	unsigned long flags;
3012 
3013 	local_irq_save(flags);
3014 	sd = this_cpu_ptr(&softnet_data);
3015 	q->next_sched = NULL;
3016 	*sd->output_queue_tailp = q;
3017 	sd->output_queue_tailp = &q->next_sched;
3018 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3019 	local_irq_restore(flags);
3020 }
3021 
3022 void __netif_schedule(struct Qdisc *q)
3023 {
3024 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3025 		__netif_reschedule(q);
3026 }
3027 EXPORT_SYMBOL(__netif_schedule);
3028 
3029 struct dev_kfree_skb_cb {
3030 	enum skb_free_reason reason;
3031 };
3032 
3033 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3034 {
3035 	return (struct dev_kfree_skb_cb *)skb->cb;
3036 }
3037 
3038 void netif_schedule_queue(struct netdev_queue *txq)
3039 {
3040 	rcu_read_lock();
3041 	if (!netif_xmit_stopped(txq)) {
3042 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3043 
3044 		__netif_schedule(q);
3045 	}
3046 	rcu_read_unlock();
3047 }
3048 EXPORT_SYMBOL(netif_schedule_queue);
3049 
3050 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3051 {
3052 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3053 		struct Qdisc *q;
3054 
3055 		rcu_read_lock();
3056 		q = rcu_dereference(dev_queue->qdisc);
3057 		__netif_schedule(q);
3058 		rcu_read_unlock();
3059 	}
3060 }
3061 EXPORT_SYMBOL(netif_tx_wake_queue);
3062 
3063 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3064 {
3065 	unsigned long flags;
3066 
3067 	if (unlikely(!skb))
3068 		return;
3069 
3070 	if (likely(refcount_read(&skb->users) == 1)) {
3071 		smp_rmb();
3072 		refcount_set(&skb->users, 0);
3073 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3074 		return;
3075 	}
3076 	get_kfree_skb_cb(skb)->reason = reason;
3077 	local_irq_save(flags);
3078 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3079 	__this_cpu_write(softnet_data.completion_queue, skb);
3080 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3081 	local_irq_restore(flags);
3082 }
3083 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3084 
3085 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3086 {
3087 	if (in_irq() || irqs_disabled())
3088 		__dev_kfree_skb_irq(skb, reason);
3089 	else
3090 		dev_kfree_skb(skb);
3091 }
3092 EXPORT_SYMBOL(__dev_kfree_skb_any);
3093 
3094 
3095 /**
3096  * netif_device_detach - mark device as removed
3097  * @dev: network device
3098  *
3099  * Mark device as removed from system and therefore no longer available.
3100  */
3101 void netif_device_detach(struct net_device *dev)
3102 {
3103 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3104 	    netif_running(dev)) {
3105 		netif_tx_stop_all_queues(dev);
3106 	}
3107 }
3108 EXPORT_SYMBOL(netif_device_detach);
3109 
3110 /**
3111  * netif_device_attach - mark device as attached
3112  * @dev: network device
3113  *
3114  * Mark device as attached from system and restart if needed.
3115  */
3116 void netif_device_attach(struct net_device *dev)
3117 {
3118 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3119 	    netif_running(dev)) {
3120 		netif_tx_wake_all_queues(dev);
3121 		__netdev_watchdog_up(dev);
3122 	}
3123 }
3124 EXPORT_SYMBOL(netif_device_attach);
3125 
3126 /*
3127  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3128  * to be used as a distribution range.
3129  */
3130 static u16 skb_tx_hash(const struct net_device *dev,
3131 		       const struct net_device *sb_dev,
3132 		       struct sk_buff *skb)
3133 {
3134 	u32 hash;
3135 	u16 qoffset = 0;
3136 	u16 qcount = dev->real_num_tx_queues;
3137 
3138 	if (dev->num_tc) {
3139 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3140 
3141 		qoffset = sb_dev->tc_to_txq[tc].offset;
3142 		qcount = sb_dev->tc_to_txq[tc].count;
3143 	}
3144 
3145 	if (skb_rx_queue_recorded(skb)) {
3146 		hash = skb_get_rx_queue(skb);
3147 		if (hash >= qoffset)
3148 			hash -= qoffset;
3149 		while (unlikely(hash >= qcount))
3150 			hash -= qcount;
3151 		return hash + qoffset;
3152 	}
3153 
3154 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3155 }
3156 
3157 static void skb_warn_bad_offload(const struct sk_buff *skb)
3158 {
3159 	static const netdev_features_t null_features;
3160 	struct net_device *dev = skb->dev;
3161 	const char *name = "";
3162 
3163 	if (!net_ratelimit())
3164 		return;
3165 
3166 	if (dev) {
3167 		if (dev->dev.parent)
3168 			name = dev_driver_string(dev->dev.parent);
3169 		else
3170 			name = netdev_name(dev);
3171 	}
3172 	skb_dump(KERN_WARNING, skb, false);
3173 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3174 	     name, dev ? &dev->features : &null_features,
3175 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3176 }
3177 
3178 /*
3179  * Invalidate hardware checksum when packet is to be mangled, and
3180  * complete checksum manually on outgoing path.
3181  */
3182 int skb_checksum_help(struct sk_buff *skb)
3183 {
3184 	__wsum csum;
3185 	int ret = 0, offset;
3186 
3187 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3188 		goto out_set_summed;
3189 
3190 	if (unlikely(skb_shinfo(skb)->gso_size)) {
3191 		skb_warn_bad_offload(skb);
3192 		return -EINVAL;
3193 	}
3194 
3195 	/* Before computing a checksum, we should make sure no frag could
3196 	 * be modified by an external entity : checksum could be wrong.
3197 	 */
3198 	if (skb_has_shared_frag(skb)) {
3199 		ret = __skb_linearize(skb);
3200 		if (ret)
3201 			goto out;
3202 	}
3203 
3204 	offset = skb_checksum_start_offset(skb);
3205 	BUG_ON(offset >= skb_headlen(skb));
3206 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3207 
3208 	offset += skb->csum_offset;
3209 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3210 
3211 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3212 	if (ret)
3213 		goto out;
3214 
3215 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3216 out_set_summed:
3217 	skb->ip_summed = CHECKSUM_NONE;
3218 out:
3219 	return ret;
3220 }
3221 EXPORT_SYMBOL(skb_checksum_help);
3222 
3223 int skb_crc32c_csum_help(struct sk_buff *skb)
3224 {
3225 	__le32 crc32c_csum;
3226 	int ret = 0, offset, start;
3227 
3228 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3229 		goto out;
3230 
3231 	if (unlikely(skb_is_gso(skb)))
3232 		goto out;
3233 
3234 	/* Before computing a checksum, we should make sure no frag could
3235 	 * be modified by an external entity : checksum could be wrong.
3236 	 */
3237 	if (unlikely(skb_has_shared_frag(skb))) {
3238 		ret = __skb_linearize(skb);
3239 		if (ret)
3240 			goto out;
3241 	}
3242 	start = skb_checksum_start_offset(skb);
3243 	offset = start + offsetof(struct sctphdr, checksum);
3244 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3245 		ret = -EINVAL;
3246 		goto out;
3247 	}
3248 
3249 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3250 	if (ret)
3251 		goto out;
3252 
3253 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3254 						  skb->len - start, ~(__u32)0,
3255 						  crc32c_csum_stub));
3256 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3257 	skb->ip_summed = CHECKSUM_NONE;
3258 	skb->csum_not_inet = 0;
3259 out:
3260 	return ret;
3261 }
3262 
3263 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3264 {
3265 	__be16 type = skb->protocol;
3266 
3267 	/* Tunnel gso handlers can set protocol to ethernet. */
3268 	if (type == htons(ETH_P_TEB)) {
3269 		struct ethhdr *eth;
3270 
3271 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3272 			return 0;
3273 
3274 		eth = (struct ethhdr *)skb->data;
3275 		type = eth->h_proto;
3276 	}
3277 
3278 	return __vlan_get_protocol(skb, type, depth);
3279 }
3280 
3281 /**
3282  *	skb_mac_gso_segment - mac layer segmentation handler.
3283  *	@skb: buffer to segment
3284  *	@features: features for the output path (see dev->features)
3285  */
3286 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3287 				    netdev_features_t features)
3288 {
3289 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3290 	struct packet_offload *ptype;
3291 	int vlan_depth = skb->mac_len;
3292 	__be16 type = skb_network_protocol(skb, &vlan_depth);
3293 
3294 	if (unlikely(!type))
3295 		return ERR_PTR(-EINVAL);
3296 
3297 	__skb_pull(skb, vlan_depth);
3298 
3299 	rcu_read_lock();
3300 	list_for_each_entry_rcu(ptype, &offload_base, list) {
3301 		if (ptype->type == type && ptype->callbacks.gso_segment) {
3302 			segs = ptype->callbacks.gso_segment(skb, features);
3303 			break;
3304 		}
3305 	}
3306 	rcu_read_unlock();
3307 
3308 	__skb_push(skb, skb->data - skb_mac_header(skb));
3309 
3310 	return segs;
3311 }
3312 EXPORT_SYMBOL(skb_mac_gso_segment);
3313 
3314 
3315 /* openvswitch calls this on rx path, so we need a different check.
3316  */
3317 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3318 {
3319 	if (tx_path)
3320 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3321 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3322 
3323 	return skb->ip_summed == CHECKSUM_NONE;
3324 }
3325 
3326 /**
3327  *	__skb_gso_segment - Perform segmentation on skb.
3328  *	@skb: buffer to segment
3329  *	@features: features for the output path (see dev->features)
3330  *	@tx_path: whether it is called in TX path
3331  *
3332  *	This function segments the given skb and returns a list of segments.
3333  *
3334  *	It may return NULL if the skb requires no segmentation.  This is
3335  *	only possible when GSO is used for verifying header integrity.
3336  *
3337  *	Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3338  */
3339 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3340 				  netdev_features_t features, bool tx_path)
3341 {
3342 	struct sk_buff *segs;
3343 
3344 	if (unlikely(skb_needs_check(skb, tx_path))) {
3345 		int err;
3346 
3347 		/* We're going to init ->check field in TCP or UDP header */
3348 		err = skb_cow_head(skb, 0);
3349 		if (err < 0)
3350 			return ERR_PTR(err);
3351 	}
3352 
3353 	/* Only report GSO partial support if it will enable us to
3354 	 * support segmentation on this frame without needing additional
3355 	 * work.
3356 	 */
3357 	if (features & NETIF_F_GSO_PARTIAL) {
3358 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3359 		struct net_device *dev = skb->dev;
3360 
3361 		partial_features |= dev->features & dev->gso_partial_features;
3362 		if (!skb_gso_ok(skb, features | partial_features))
3363 			features &= ~NETIF_F_GSO_PARTIAL;
3364 	}
3365 
3366 	BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3367 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3368 
3369 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3370 	SKB_GSO_CB(skb)->encap_level = 0;
3371 
3372 	skb_reset_mac_header(skb);
3373 	skb_reset_mac_len(skb);
3374 
3375 	segs = skb_mac_gso_segment(skb, features);
3376 
3377 	if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3378 		skb_warn_bad_offload(skb);
3379 
3380 	return segs;
3381 }
3382 EXPORT_SYMBOL(__skb_gso_segment);
3383 
3384 /* Take action when hardware reception checksum errors are detected. */
3385 #ifdef CONFIG_BUG
3386 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3387 {
3388 	if (net_ratelimit()) {
3389 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3390 		skb_dump(KERN_ERR, skb, true);
3391 		dump_stack();
3392 	}
3393 }
3394 EXPORT_SYMBOL(netdev_rx_csum_fault);
3395 #endif
3396 
3397 /* XXX: check that highmem exists at all on the given machine. */
3398 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3399 {
3400 #ifdef CONFIG_HIGHMEM
3401 	int i;
3402 
3403 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3404 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3405 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3406 
3407 			if (PageHighMem(skb_frag_page(frag)))
3408 				return 1;
3409 		}
3410 	}
3411 #endif
3412 	return 0;
3413 }
3414 
3415 /* If MPLS offload request, verify we are testing hardware MPLS features
3416  * instead of standard features for the netdev.
3417  */
3418 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3419 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3420 					   netdev_features_t features,
3421 					   __be16 type)
3422 {
3423 	if (eth_p_mpls(type))
3424 		features &= skb->dev->mpls_features;
3425 
3426 	return features;
3427 }
3428 #else
3429 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3430 					   netdev_features_t features,
3431 					   __be16 type)
3432 {
3433 	return features;
3434 }
3435 #endif
3436 
3437 static netdev_features_t harmonize_features(struct sk_buff *skb,
3438 	netdev_features_t features)
3439 {
3440 	int tmp;
3441 	__be16 type;
3442 
3443 	type = skb_network_protocol(skb, &tmp);
3444 	features = net_mpls_features(skb, features, type);
3445 
3446 	if (skb->ip_summed != CHECKSUM_NONE &&
3447 	    !can_checksum_protocol(features, type)) {
3448 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3449 	}
3450 	if (illegal_highdma(skb->dev, skb))
3451 		features &= ~NETIF_F_SG;
3452 
3453 	return features;
3454 }
3455 
3456 netdev_features_t passthru_features_check(struct sk_buff *skb,
3457 					  struct net_device *dev,
3458 					  netdev_features_t features)
3459 {
3460 	return features;
3461 }
3462 EXPORT_SYMBOL(passthru_features_check);
3463 
3464 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3465 					     struct net_device *dev,
3466 					     netdev_features_t features)
3467 {
3468 	return vlan_features_check(skb, features);
3469 }
3470 
3471 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3472 					    struct net_device *dev,
3473 					    netdev_features_t features)
3474 {
3475 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3476 
3477 	if (gso_segs > dev->gso_max_segs)
3478 		return features & ~NETIF_F_GSO_MASK;
3479 
3480 	/* Support for GSO partial features requires software
3481 	 * intervention before we can actually process the packets
3482 	 * so we need to strip support for any partial features now
3483 	 * and we can pull them back in after we have partially
3484 	 * segmented the frame.
3485 	 */
3486 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3487 		features &= ~dev->gso_partial_features;
3488 
3489 	/* Make sure to clear the IPv4 ID mangling feature if the
3490 	 * IPv4 header has the potential to be fragmented.
3491 	 */
3492 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3493 		struct iphdr *iph = skb->encapsulation ?
3494 				    inner_ip_hdr(skb) : ip_hdr(skb);
3495 
3496 		if (!(iph->frag_off & htons(IP_DF)))
3497 			features &= ~NETIF_F_TSO_MANGLEID;
3498 	}
3499 
3500 	return features;
3501 }
3502 
3503 netdev_features_t netif_skb_features(struct sk_buff *skb)
3504 {
3505 	struct net_device *dev = skb->dev;
3506 	netdev_features_t features = dev->features;
3507 
3508 	if (skb_is_gso(skb))
3509 		features = gso_features_check(skb, dev, features);
3510 
3511 	/* If encapsulation offload request, verify we are testing
3512 	 * hardware encapsulation features instead of standard
3513 	 * features for the netdev
3514 	 */
3515 	if (skb->encapsulation)
3516 		features &= dev->hw_enc_features;
3517 
3518 	if (skb_vlan_tagged(skb))
3519 		features = netdev_intersect_features(features,
3520 						     dev->vlan_features |
3521 						     NETIF_F_HW_VLAN_CTAG_TX |
3522 						     NETIF_F_HW_VLAN_STAG_TX);
3523 
3524 	if (dev->netdev_ops->ndo_features_check)
3525 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3526 								features);
3527 	else
3528 		features &= dflt_features_check(skb, dev, features);
3529 
3530 	return harmonize_features(skb, features);
3531 }
3532 EXPORT_SYMBOL(netif_skb_features);
3533 
3534 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3535 		    struct netdev_queue *txq, bool more)
3536 {
3537 	unsigned int len;
3538 	int rc;
3539 
3540 	if (dev_nit_active(dev))
3541 		dev_queue_xmit_nit(skb, dev);
3542 
3543 	len = skb->len;
3544 	trace_net_dev_start_xmit(skb, dev);
3545 	rc = netdev_start_xmit(skb, dev, txq, more);
3546 	trace_net_dev_xmit(skb, rc, dev, len);
3547 
3548 	return rc;
3549 }
3550 
3551 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3552 				    struct netdev_queue *txq, int *ret)
3553 {
3554 	struct sk_buff *skb = first;
3555 	int rc = NETDEV_TX_OK;
3556 
3557 	while (skb) {
3558 		struct sk_buff *next = skb->next;
3559 
3560 		skb_mark_not_on_list(skb);
3561 		rc = xmit_one(skb, dev, txq, next != NULL);
3562 		if (unlikely(!dev_xmit_complete(rc))) {
3563 			skb->next = next;
3564 			goto out;
3565 		}
3566 
3567 		skb = next;
3568 		if (netif_tx_queue_stopped(txq) && skb) {
3569 			rc = NETDEV_TX_BUSY;
3570 			break;
3571 		}
3572 	}
3573 
3574 out:
3575 	*ret = rc;
3576 	return skb;
3577 }
3578 
3579 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3580 					  netdev_features_t features)
3581 {
3582 	if (skb_vlan_tag_present(skb) &&
3583 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3584 		skb = __vlan_hwaccel_push_inside(skb);
3585 	return skb;
3586 }
3587 
3588 int skb_csum_hwoffload_help(struct sk_buff *skb,
3589 			    const netdev_features_t features)
3590 {
3591 	if (unlikely(skb->csum_not_inet))
3592 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3593 			skb_crc32c_csum_help(skb);
3594 
3595 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3596 }
3597 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3598 
3599 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3600 {
3601 	netdev_features_t features;
3602 
3603 	features = netif_skb_features(skb);
3604 	skb = validate_xmit_vlan(skb, features);
3605 	if (unlikely(!skb))
3606 		goto out_null;
3607 
3608 	skb = sk_validate_xmit_skb(skb, dev);
3609 	if (unlikely(!skb))
3610 		goto out_null;
3611 
3612 	if (netif_needs_gso(skb, features)) {
3613 		struct sk_buff *segs;
3614 
3615 		segs = skb_gso_segment(skb, features);
3616 		if (IS_ERR(segs)) {
3617 			goto out_kfree_skb;
3618 		} else if (segs) {
3619 			consume_skb(skb);
3620 			skb = segs;
3621 		}
3622 	} else {
3623 		if (skb_needs_linearize(skb, features) &&
3624 		    __skb_linearize(skb))
3625 			goto out_kfree_skb;
3626 
3627 		/* If packet is not checksummed and device does not
3628 		 * support checksumming for this protocol, complete
3629 		 * checksumming here.
3630 		 */
3631 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3632 			if (skb->encapsulation)
3633 				skb_set_inner_transport_header(skb,
3634 							       skb_checksum_start_offset(skb));
3635 			else
3636 				skb_set_transport_header(skb,
3637 							 skb_checksum_start_offset(skb));
3638 			if (skb_csum_hwoffload_help(skb, features))
3639 				goto out_kfree_skb;
3640 		}
3641 	}
3642 
3643 	skb = validate_xmit_xfrm(skb, features, again);
3644 
3645 	return skb;
3646 
3647 out_kfree_skb:
3648 	kfree_skb(skb);
3649 out_null:
3650 	atomic_long_inc(&dev->tx_dropped);
3651 	return NULL;
3652 }
3653 
3654 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3655 {
3656 	struct sk_buff *next, *head = NULL, *tail;
3657 
3658 	for (; skb != NULL; skb = next) {
3659 		next = skb->next;
3660 		skb_mark_not_on_list(skb);
3661 
3662 		/* in case skb wont be segmented, point to itself */
3663 		skb->prev = skb;
3664 
3665 		skb = validate_xmit_skb(skb, dev, again);
3666 		if (!skb)
3667 			continue;
3668 
3669 		if (!head)
3670 			head = skb;
3671 		else
3672 			tail->next = skb;
3673 		/* If skb was segmented, skb->prev points to
3674 		 * the last segment. If not, it still contains skb.
3675 		 */
3676 		tail = skb->prev;
3677 	}
3678 	return head;
3679 }
3680 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3681 
3682 static void qdisc_pkt_len_init(struct sk_buff *skb)
3683 {
3684 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3685 
3686 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3687 
3688 	/* To get more precise estimation of bytes sent on wire,
3689 	 * we add to pkt_len the headers size of all segments
3690 	 */
3691 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3692 		unsigned int hdr_len;
3693 		u16 gso_segs = shinfo->gso_segs;
3694 
3695 		/* mac layer + network layer */
3696 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3697 
3698 		/* + transport layer */
3699 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3700 			const struct tcphdr *th;
3701 			struct tcphdr _tcphdr;
3702 
3703 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3704 						sizeof(_tcphdr), &_tcphdr);
3705 			if (likely(th))
3706 				hdr_len += __tcp_hdrlen(th);
3707 		} else {
3708 			struct udphdr _udphdr;
3709 
3710 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3711 					       sizeof(_udphdr), &_udphdr))
3712 				hdr_len += sizeof(struct udphdr);
3713 		}
3714 
3715 		if (shinfo->gso_type & SKB_GSO_DODGY)
3716 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3717 						shinfo->gso_size);
3718 
3719 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3720 	}
3721 }
3722 
3723 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3724 				 struct net_device *dev,
3725 				 struct netdev_queue *txq)
3726 {
3727 	spinlock_t *root_lock = qdisc_lock(q);
3728 	struct sk_buff *to_free = NULL;
3729 	bool contended;
3730 	int rc;
3731 
3732 	qdisc_calculate_pkt_len(skb, q);
3733 
3734 	if (q->flags & TCQ_F_NOLOCK) {
3735 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3736 		qdisc_run(q);
3737 
3738 		if (unlikely(to_free))
3739 			kfree_skb_list(to_free);
3740 		return rc;
3741 	}
3742 
3743 	/*
3744 	 * Heuristic to force contended enqueues to serialize on a
3745 	 * separate lock before trying to get qdisc main lock.
3746 	 * This permits qdisc->running owner to get the lock more
3747 	 * often and dequeue packets faster.
3748 	 */
3749 	contended = qdisc_is_running(q);
3750 	if (unlikely(contended))
3751 		spin_lock(&q->busylock);
3752 
3753 	spin_lock(root_lock);
3754 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3755 		__qdisc_drop(skb, &to_free);
3756 		rc = NET_XMIT_DROP;
3757 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3758 		   qdisc_run_begin(q)) {
3759 		/*
3760 		 * This is a work-conserving queue; there are no old skbs
3761 		 * waiting to be sent out; and the qdisc is not running -
3762 		 * xmit the skb directly.
3763 		 */
3764 
3765 		qdisc_bstats_update(q, skb);
3766 
3767 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3768 			if (unlikely(contended)) {
3769 				spin_unlock(&q->busylock);
3770 				contended = false;
3771 			}
3772 			__qdisc_run(q);
3773 		}
3774 
3775 		qdisc_run_end(q);
3776 		rc = NET_XMIT_SUCCESS;
3777 	} else {
3778 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3779 		if (qdisc_run_begin(q)) {
3780 			if (unlikely(contended)) {
3781 				spin_unlock(&q->busylock);
3782 				contended = false;
3783 			}
3784 			__qdisc_run(q);
3785 			qdisc_run_end(q);
3786 		}
3787 	}
3788 	spin_unlock(root_lock);
3789 	if (unlikely(to_free))
3790 		kfree_skb_list(to_free);
3791 	if (unlikely(contended))
3792 		spin_unlock(&q->busylock);
3793 	return rc;
3794 }
3795 
3796 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3797 static void skb_update_prio(struct sk_buff *skb)
3798 {
3799 	const struct netprio_map *map;
3800 	const struct sock *sk;
3801 	unsigned int prioidx;
3802 
3803 	if (skb->priority)
3804 		return;
3805 	map = rcu_dereference_bh(skb->dev->priomap);
3806 	if (!map)
3807 		return;
3808 	sk = skb_to_full_sk(skb);
3809 	if (!sk)
3810 		return;
3811 
3812 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3813 
3814 	if (prioidx < map->priomap_len)
3815 		skb->priority = map->priomap[prioidx];
3816 }
3817 #else
3818 #define skb_update_prio(skb)
3819 #endif
3820 
3821 /**
3822  *	dev_loopback_xmit - loop back @skb
3823  *	@net: network namespace this loopback is happening in
3824  *	@sk:  sk needed to be a netfilter okfn
3825  *	@skb: buffer to transmit
3826  */
3827 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3828 {
3829 	skb_reset_mac_header(skb);
3830 	__skb_pull(skb, skb_network_offset(skb));
3831 	skb->pkt_type = PACKET_LOOPBACK;
3832 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3833 	WARN_ON(!skb_dst(skb));
3834 	skb_dst_force(skb);
3835 	netif_rx_ni(skb);
3836 	return 0;
3837 }
3838 EXPORT_SYMBOL(dev_loopback_xmit);
3839 
3840 #ifdef CONFIG_NET_EGRESS
3841 static struct sk_buff *
3842 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3843 {
3844 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3845 	struct tcf_result cl_res;
3846 
3847 	if (!miniq)
3848 		return skb;
3849 
3850 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3851 	mini_qdisc_bstats_cpu_update(miniq, skb);
3852 
3853 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3854 	case TC_ACT_OK:
3855 	case TC_ACT_RECLASSIFY:
3856 		skb->tc_index = TC_H_MIN(cl_res.classid);
3857 		break;
3858 	case TC_ACT_SHOT:
3859 		mini_qdisc_qstats_cpu_drop(miniq);
3860 		*ret = NET_XMIT_DROP;
3861 		kfree_skb(skb);
3862 		return NULL;
3863 	case TC_ACT_STOLEN:
3864 	case TC_ACT_QUEUED:
3865 	case TC_ACT_TRAP:
3866 		*ret = NET_XMIT_SUCCESS;
3867 		consume_skb(skb);
3868 		return NULL;
3869 	case TC_ACT_REDIRECT:
3870 		/* No need to push/pop skb's mac_header here on egress! */
3871 		skb_do_redirect(skb);
3872 		*ret = NET_XMIT_SUCCESS;
3873 		return NULL;
3874 	default:
3875 		break;
3876 	}
3877 
3878 	return skb;
3879 }
3880 #endif /* CONFIG_NET_EGRESS */
3881 
3882 #ifdef CONFIG_XPS
3883 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3884 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3885 {
3886 	struct xps_map *map;
3887 	int queue_index = -1;
3888 
3889 	if (dev->num_tc) {
3890 		tci *= dev->num_tc;
3891 		tci += netdev_get_prio_tc_map(dev, skb->priority);
3892 	}
3893 
3894 	map = rcu_dereference(dev_maps->attr_map[tci]);
3895 	if (map) {
3896 		if (map->len == 1)
3897 			queue_index = map->queues[0];
3898 		else
3899 			queue_index = map->queues[reciprocal_scale(
3900 						skb_get_hash(skb), map->len)];
3901 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3902 			queue_index = -1;
3903 	}
3904 	return queue_index;
3905 }
3906 #endif
3907 
3908 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3909 			 struct sk_buff *skb)
3910 {
3911 #ifdef CONFIG_XPS
3912 	struct xps_dev_maps *dev_maps;
3913 	struct sock *sk = skb->sk;
3914 	int queue_index = -1;
3915 
3916 	if (!static_key_false(&xps_needed))
3917 		return -1;
3918 
3919 	rcu_read_lock();
3920 	if (!static_key_false(&xps_rxqs_needed))
3921 		goto get_cpus_map;
3922 
3923 	dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3924 	if (dev_maps) {
3925 		int tci = sk_rx_queue_get(sk);
3926 
3927 		if (tci >= 0 && tci < dev->num_rx_queues)
3928 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3929 							  tci);
3930 	}
3931 
3932 get_cpus_map:
3933 	if (queue_index < 0) {
3934 		dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3935 		if (dev_maps) {
3936 			unsigned int tci = skb->sender_cpu - 1;
3937 
3938 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3939 							  tci);
3940 		}
3941 	}
3942 	rcu_read_unlock();
3943 
3944 	return queue_index;
3945 #else
3946 	return -1;
3947 #endif
3948 }
3949 
3950 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3951 		     struct net_device *sb_dev)
3952 {
3953 	return 0;
3954 }
3955 EXPORT_SYMBOL(dev_pick_tx_zero);
3956 
3957 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3958 		       struct net_device *sb_dev)
3959 {
3960 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3961 }
3962 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3963 
3964 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3965 		     struct net_device *sb_dev)
3966 {
3967 	struct sock *sk = skb->sk;
3968 	int queue_index = sk_tx_queue_get(sk);
3969 
3970 	sb_dev = sb_dev ? : dev;
3971 
3972 	if (queue_index < 0 || skb->ooo_okay ||
3973 	    queue_index >= dev->real_num_tx_queues) {
3974 		int new_index = get_xps_queue(dev, sb_dev, skb);
3975 
3976 		if (new_index < 0)
3977 			new_index = skb_tx_hash(dev, sb_dev, skb);
3978 
3979 		if (queue_index != new_index && sk &&
3980 		    sk_fullsock(sk) &&
3981 		    rcu_access_pointer(sk->sk_dst_cache))
3982 			sk_tx_queue_set(sk, new_index);
3983 
3984 		queue_index = new_index;
3985 	}
3986 
3987 	return queue_index;
3988 }
3989 EXPORT_SYMBOL(netdev_pick_tx);
3990 
3991 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3992 					 struct sk_buff *skb,
3993 					 struct net_device *sb_dev)
3994 {
3995 	int queue_index = 0;
3996 
3997 #ifdef CONFIG_XPS
3998 	u32 sender_cpu = skb->sender_cpu - 1;
3999 
4000 	if (sender_cpu >= (u32)NR_CPUS)
4001 		skb->sender_cpu = raw_smp_processor_id() + 1;
4002 #endif
4003 
4004 	if (dev->real_num_tx_queues != 1) {
4005 		const struct net_device_ops *ops = dev->netdev_ops;
4006 
4007 		if (ops->ndo_select_queue)
4008 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4009 		else
4010 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4011 
4012 		queue_index = netdev_cap_txqueue(dev, queue_index);
4013 	}
4014 
4015 	skb_set_queue_mapping(skb, queue_index);
4016 	return netdev_get_tx_queue(dev, queue_index);
4017 }
4018 
4019 /**
4020  *	__dev_queue_xmit - transmit a buffer
4021  *	@skb: buffer to transmit
4022  *	@sb_dev: suboordinate device used for L2 forwarding offload
4023  *
4024  *	Queue a buffer for transmission to a network device. The caller must
4025  *	have set the device and priority and built the buffer before calling
4026  *	this function. The function can be called from an interrupt.
4027  *
4028  *	A negative errno code is returned on a failure. A success does not
4029  *	guarantee the frame will be transmitted as it may be dropped due
4030  *	to congestion or traffic shaping.
4031  *
4032  * -----------------------------------------------------------------------------------
4033  *      I notice this method can also return errors from the queue disciplines,
4034  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4035  *      be positive.
4036  *
4037  *      Regardless of the return value, the skb is consumed, so it is currently
4038  *      difficult to retry a send to this method.  (You can bump the ref count
4039  *      before sending to hold a reference for retry if you are careful.)
4040  *
4041  *      When calling this method, interrupts MUST be enabled.  This is because
4042  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4043  *          --BLG
4044  */
4045 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4046 {
4047 	struct net_device *dev = skb->dev;
4048 	struct netdev_queue *txq;
4049 	struct Qdisc *q;
4050 	int rc = -ENOMEM;
4051 	bool again = false;
4052 
4053 	skb_reset_mac_header(skb);
4054 
4055 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4056 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
4057 
4058 	/* Disable soft irqs for various locks below. Also
4059 	 * stops preemption for RCU.
4060 	 */
4061 	rcu_read_lock_bh();
4062 
4063 	skb_update_prio(skb);
4064 
4065 	qdisc_pkt_len_init(skb);
4066 #ifdef CONFIG_NET_CLS_ACT
4067 	skb->tc_at_ingress = 0;
4068 # ifdef CONFIG_NET_EGRESS
4069 	if (static_branch_unlikely(&egress_needed_key)) {
4070 		skb = sch_handle_egress(skb, &rc, dev);
4071 		if (!skb)
4072 			goto out;
4073 	}
4074 # endif
4075 #endif
4076 	/* If device/qdisc don't need skb->dst, release it right now while
4077 	 * its hot in this cpu cache.
4078 	 */
4079 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4080 		skb_dst_drop(skb);
4081 	else
4082 		skb_dst_force(skb);
4083 
4084 	txq = netdev_core_pick_tx(dev, skb, sb_dev);
4085 	q = rcu_dereference_bh(txq->qdisc);
4086 
4087 	trace_net_dev_queue(skb);
4088 	if (q->enqueue) {
4089 		rc = __dev_xmit_skb(skb, q, dev, txq);
4090 		goto out;
4091 	}
4092 
4093 	/* The device has no queue. Common case for software devices:
4094 	 * loopback, all the sorts of tunnels...
4095 
4096 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4097 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4098 	 * counters.)
4099 	 * However, it is possible, that they rely on protection
4100 	 * made by us here.
4101 
4102 	 * Check this and shot the lock. It is not prone from deadlocks.
4103 	 *Either shot noqueue qdisc, it is even simpler 8)
4104 	 */
4105 	if (dev->flags & IFF_UP) {
4106 		int cpu = smp_processor_id(); /* ok because BHs are off */
4107 
4108 		if (txq->xmit_lock_owner != cpu) {
4109 			if (dev_xmit_recursion())
4110 				goto recursion_alert;
4111 
4112 			skb = validate_xmit_skb(skb, dev, &again);
4113 			if (!skb)
4114 				goto out;
4115 
4116 			HARD_TX_LOCK(dev, txq, cpu);
4117 
4118 			if (!netif_xmit_stopped(txq)) {
4119 				dev_xmit_recursion_inc();
4120 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4121 				dev_xmit_recursion_dec();
4122 				if (dev_xmit_complete(rc)) {
4123 					HARD_TX_UNLOCK(dev, txq);
4124 					goto out;
4125 				}
4126 			}
4127 			HARD_TX_UNLOCK(dev, txq);
4128 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4129 					     dev->name);
4130 		} else {
4131 			/* Recursion is detected! It is possible,
4132 			 * unfortunately
4133 			 */
4134 recursion_alert:
4135 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4136 					     dev->name);
4137 		}
4138 	}
4139 
4140 	rc = -ENETDOWN;
4141 	rcu_read_unlock_bh();
4142 
4143 	atomic_long_inc(&dev->tx_dropped);
4144 	kfree_skb_list(skb);
4145 	return rc;
4146 out:
4147 	rcu_read_unlock_bh();
4148 	return rc;
4149 }
4150 
4151 int dev_queue_xmit(struct sk_buff *skb)
4152 {
4153 	return __dev_queue_xmit(skb, NULL);
4154 }
4155 EXPORT_SYMBOL(dev_queue_xmit);
4156 
4157 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4158 {
4159 	return __dev_queue_xmit(skb, sb_dev);
4160 }
4161 EXPORT_SYMBOL(dev_queue_xmit_accel);
4162 
4163 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4164 {
4165 	struct net_device *dev = skb->dev;
4166 	struct sk_buff *orig_skb = skb;
4167 	struct netdev_queue *txq;
4168 	int ret = NETDEV_TX_BUSY;
4169 	bool again = false;
4170 
4171 	if (unlikely(!netif_running(dev) ||
4172 		     !netif_carrier_ok(dev)))
4173 		goto drop;
4174 
4175 	skb = validate_xmit_skb_list(skb, dev, &again);
4176 	if (skb != orig_skb)
4177 		goto drop;
4178 
4179 	skb_set_queue_mapping(skb, queue_id);
4180 	txq = skb_get_tx_queue(dev, skb);
4181 
4182 	local_bh_disable();
4183 
4184 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4185 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4186 		ret = netdev_start_xmit(skb, dev, txq, false);
4187 	HARD_TX_UNLOCK(dev, txq);
4188 
4189 	local_bh_enable();
4190 
4191 	if (!dev_xmit_complete(ret))
4192 		kfree_skb(skb);
4193 
4194 	return ret;
4195 drop:
4196 	atomic_long_inc(&dev->tx_dropped);
4197 	kfree_skb_list(skb);
4198 	return NET_XMIT_DROP;
4199 }
4200 EXPORT_SYMBOL(dev_direct_xmit);
4201 
4202 /*************************************************************************
4203  *			Receiver routines
4204  *************************************************************************/
4205 
4206 int netdev_max_backlog __read_mostly = 1000;
4207 EXPORT_SYMBOL(netdev_max_backlog);
4208 
4209 int netdev_tstamp_prequeue __read_mostly = 1;
4210 int netdev_budget __read_mostly = 300;
4211 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4212 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4213 int weight_p __read_mostly = 64;           /* old backlog weight */
4214 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4215 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4216 int dev_rx_weight __read_mostly = 64;
4217 int dev_tx_weight __read_mostly = 64;
4218 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4219 int gro_normal_batch __read_mostly = 8;
4220 
4221 /* Called with irq disabled */
4222 static inline void ____napi_schedule(struct softnet_data *sd,
4223 				     struct napi_struct *napi)
4224 {
4225 	list_add_tail(&napi->poll_list, &sd->poll_list);
4226 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4227 }
4228 
4229 #ifdef CONFIG_RPS
4230 
4231 /* One global table that all flow-based protocols share. */
4232 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4233 EXPORT_SYMBOL(rps_sock_flow_table);
4234 u32 rps_cpu_mask __read_mostly;
4235 EXPORT_SYMBOL(rps_cpu_mask);
4236 
4237 struct static_key_false rps_needed __read_mostly;
4238 EXPORT_SYMBOL(rps_needed);
4239 struct static_key_false rfs_needed __read_mostly;
4240 EXPORT_SYMBOL(rfs_needed);
4241 
4242 static struct rps_dev_flow *
4243 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4244 	    struct rps_dev_flow *rflow, u16 next_cpu)
4245 {
4246 	if (next_cpu < nr_cpu_ids) {
4247 #ifdef CONFIG_RFS_ACCEL
4248 		struct netdev_rx_queue *rxqueue;
4249 		struct rps_dev_flow_table *flow_table;
4250 		struct rps_dev_flow *old_rflow;
4251 		u32 flow_id;
4252 		u16 rxq_index;
4253 		int rc;
4254 
4255 		/* Should we steer this flow to a different hardware queue? */
4256 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4257 		    !(dev->features & NETIF_F_NTUPLE))
4258 			goto out;
4259 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4260 		if (rxq_index == skb_get_rx_queue(skb))
4261 			goto out;
4262 
4263 		rxqueue = dev->_rx + rxq_index;
4264 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4265 		if (!flow_table)
4266 			goto out;
4267 		flow_id = skb_get_hash(skb) & flow_table->mask;
4268 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4269 							rxq_index, flow_id);
4270 		if (rc < 0)
4271 			goto out;
4272 		old_rflow = rflow;
4273 		rflow = &flow_table->flows[flow_id];
4274 		rflow->filter = rc;
4275 		if (old_rflow->filter == rflow->filter)
4276 			old_rflow->filter = RPS_NO_FILTER;
4277 	out:
4278 #endif
4279 		rflow->last_qtail =
4280 			per_cpu(softnet_data, next_cpu).input_queue_head;
4281 	}
4282 
4283 	rflow->cpu = next_cpu;
4284 	return rflow;
4285 }
4286 
4287 /*
4288  * get_rps_cpu is called from netif_receive_skb and returns the target
4289  * CPU from the RPS map of the receiving queue for a given skb.
4290  * rcu_read_lock must be held on entry.
4291  */
4292 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4293 		       struct rps_dev_flow **rflowp)
4294 {
4295 	const struct rps_sock_flow_table *sock_flow_table;
4296 	struct netdev_rx_queue *rxqueue = dev->_rx;
4297 	struct rps_dev_flow_table *flow_table;
4298 	struct rps_map *map;
4299 	int cpu = -1;
4300 	u32 tcpu;
4301 	u32 hash;
4302 
4303 	if (skb_rx_queue_recorded(skb)) {
4304 		u16 index = skb_get_rx_queue(skb);
4305 
4306 		if (unlikely(index >= dev->real_num_rx_queues)) {
4307 			WARN_ONCE(dev->real_num_rx_queues > 1,
4308 				  "%s received packet on queue %u, but number "
4309 				  "of RX queues is %u\n",
4310 				  dev->name, index, dev->real_num_rx_queues);
4311 			goto done;
4312 		}
4313 		rxqueue += index;
4314 	}
4315 
4316 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4317 
4318 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4319 	map = rcu_dereference(rxqueue->rps_map);
4320 	if (!flow_table && !map)
4321 		goto done;
4322 
4323 	skb_reset_network_header(skb);
4324 	hash = skb_get_hash(skb);
4325 	if (!hash)
4326 		goto done;
4327 
4328 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4329 	if (flow_table && sock_flow_table) {
4330 		struct rps_dev_flow *rflow;
4331 		u32 next_cpu;
4332 		u32 ident;
4333 
4334 		/* First check into global flow table if there is a match */
4335 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4336 		if ((ident ^ hash) & ~rps_cpu_mask)
4337 			goto try_rps;
4338 
4339 		next_cpu = ident & rps_cpu_mask;
4340 
4341 		/* OK, now we know there is a match,
4342 		 * we can look at the local (per receive queue) flow table
4343 		 */
4344 		rflow = &flow_table->flows[hash & flow_table->mask];
4345 		tcpu = rflow->cpu;
4346 
4347 		/*
4348 		 * If the desired CPU (where last recvmsg was done) is
4349 		 * different from current CPU (one in the rx-queue flow
4350 		 * table entry), switch if one of the following holds:
4351 		 *   - Current CPU is unset (>= nr_cpu_ids).
4352 		 *   - Current CPU is offline.
4353 		 *   - The current CPU's queue tail has advanced beyond the
4354 		 *     last packet that was enqueued using this table entry.
4355 		 *     This guarantees that all previous packets for the flow
4356 		 *     have been dequeued, thus preserving in order delivery.
4357 		 */
4358 		if (unlikely(tcpu != next_cpu) &&
4359 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4360 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4361 		      rflow->last_qtail)) >= 0)) {
4362 			tcpu = next_cpu;
4363 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4364 		}
4365 
4366 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4367 			*rflowp = rflow;
4368 			cpu = tcpu;
4369 			goto done;
4370 		}
4371 	}
4372 
4373 try_rps:
4374 
4375 	if (map) {
4376 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4377 		if (cpu_online(tcpu)) {
4378 			cpu = tcpu;
4379 			goto done;
4380 		}
4381 	}
4382 
4383 done:
4384 	return cpu;
4385 }
4386 
4387 #ifdef CONFIG_RFS_ACCEL
4388 
4389 /**
4390  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4391  * @dev: Device on which the filter was set
4392  * @rxq_index: RX queue index
4393  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4394  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4395  *
4396  * Drivers that implement ndo_rx_flow_steer() should periodically call
4397  * this function for each installed filter and remove the filters for
4398  * which it returns %true.
4399  */
4400 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4401 			 u32 flow_id, u16 filter_id)
4402 {
4403 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4404 	struct rps_dev_flow_table *flow_table;
4405 	struct rps_dev_flow *rflow;
4406 	bool expire = true;
4407 	unsigned int cpu;
4408 
4409 	rcu_read_lock();
4410 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4411 	if (flow_table && flow_id <= flow_table->mask) {
4412 		rflow = &flow_table->flows[flow_id];
4413 		cpu = READ_ONCE(rflow->cpu);
4414 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4415 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4416 			   rflow->last_qtail) <
4417 		     (int)(10 * flow_table->mask)))
4418 			expire = false;
4419 	}
4420 	rcu_read_unlock();
4421 	return expire;
4422 }
4423 EXPORT_SYMBOL(rps_may_expire_flow);
4424 
4425 #endif /* CONFIG_RFS_ACCEL */
4426 
4427 /* Called from hardirq (IPI) context */
4428 static void rps_trigger_softirq(void *data)
4429 {
4430 	struct softnet_data *sd = data;
4431 
4432 	____napi_schedule(sd, &sd->backlog);
4433 	sd->received_rps++;
4434 }
4435 
4436 #endif /* CONFIG_RPS */
4437 
4438 /*
4439  * Check if this softnet_data structure is another cpu one
4440  * If yes, queue it to our IPI list and return 1
4441  * If no, return 0
4442  */
4443 static int rps_ipi_queued(struct softnet_data *sd)
4444 {
4445 #ifdef CONFIG_RPS
4446 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4447 
4448 	if (sd != mysd) {
4449 		sd->rps_ipi_next = mysd->rps_ipi_list;
4450 		mysd->rps_ipi_list = sd;
4451 
4452 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4453 		return 1;
4454 	}
4455 #endif /* CONFIG_RPS */
4456 	return 0;
4457 }
4458 
4459 #ifdef CONFIG_NET_FLOW_LIMIT
4460 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4461 #endif
4462 
4463 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4464 {
4465 #ifdef CONFIG_NET_FLOW_LIMIT
4466 	struct sd_flow_limit *fl;
4467 	struct softnet_data *sd;
4468 	unsigned int old_flow, new_flow;
4469 
4470 	if (qlen < (netdev_max_backlog >> 1))
4471 		return false;
4472 
4473 	sd = this_cpu_ptr(&softnet_data);
4474 
4475 	rcu_read_lock();
4476 	fl = rcu_dereference(sd->flow_limit);
4477 	if (fl) {
4478 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4479 		old_flow = fl->history[fl->history_head];
4480 		fl->history[fl->history_head] = new_flow;
4481 
4482 		fl->history_head++;
4483 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4484 
4485 		if (likely(fl->buckets[old_flow]))
4486 			fl->buckets[old_flow]--;
4487 
4488 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4489 			fl->count++;
4490 			rcu_read_unlock();
4491 			return true;
4492 		}
4493 	}
4494 	rcu_read_unlock();
4495 #endif
4496 	return false;
4497 }
4498 
4499 /*
4500  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4501  * queue (may be a remote CPU queue).
4502  */
4503 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4504 			      unsigned int *qtail)
4505 {
4506 	struct softnet_data *sd;
4507 	unsigned long flags;
4508 	unsigned int qlen;
4509 
4510 	sd = &per_cpu(softnet_data, cpu);
4511 
4512 	local_irq_save(flags);
4513 
4514 	rps_lock(sd);
4515 	if (!netif_running(skb->dev))
4516 		goto drop;
4517 	qlen = skb_queue_len(&sd->input_pkt_queue);
4518 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4519 		if (qlen) {
4520 enqueue:
4521 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4522 			input_queue_tail_incr_save(sd, qtail);
4523 			rps_unlock(sd);
4524 			local_irq_restore(flags);
4525 			return NET_RX_SUCCESS;
4526 		}
4527 
4528 		/* Schedule NAPI for backlog device
4529 		 * We can use non atomic operation since we own the queue lock
4530 		 */
4531 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4532 			if (!rps_ipi_queued(sd))
4533 				____napi_schedule(sd, &sd->backlog);
4534 		}
4535 		goto enqueue;
4536 	}
4537 
4538 drop:
4539 	sd->dropped++;
4540 	rps_unlock(sd);
4541 
4542 	local_irq_restore(flags);
4543 
4544 	atomic_long_inc(&skb->dev->rx_dropped);
4545 	kfree_skb(skb);
4546 	return NET_RX_DROP;
4547 }
4548 
4549 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4550 {
4551 	struct net_device *dev = skb->dev;
4552 	struct netdev_rx_queue *rxqueue;
4553 
4554 	rxqueue = dev->_rx;
4555 
4556 	if (skb_rx_queue_recorded(skb)) {
4557 		u16 index = skb_get_rx_queue(skb);
4558 
4559 		if (unlikely(index >= dev->real_num_rx_queues)) {
4560 			WARN_ONCE(dev->real_num_rx_queues > 1,
4561 				  "%s received packet on queue %u, but number "
4562 				  "of RX queues is %u\n",
4563 				  dev->name, index, dev->real_num_rx_queues);
4564 
4565 			return rxqueue; /* Return first rxqueue */
4566 		}
4567 		rxqueue += index;
4568 	}
4569 	return rxqueue;
4570 }
4571 
4572 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4573 				     struct xdp_buff *xdp,
4574 				     struct bpf_prog *xdp_prog)
4575 {
4576 	struct netdev_rx_queue *rxqueue;
4577 	void *orig_data, *orig_data_end;
4578 	u32 metalen, act = XDP_DROP;
4579 	__be16 orig_eth_type;
4580 	struct ethhdr *eth;
4581 	bool orig_bcast;
4582 	int hlen, off;
4583 	u32 mac_len;
4584 
4585 	/* Reinjected packets coming from act_mirred or similar should
4586 	 * not get XDP generic processing.
4587 	 */
4588 	if (skb_is_redirected(skb))
4589 		return XDP_PASS;
4590 
4591 	/* XDP packets must be linear and must have sufficient headroom
4592 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4593 	 * native XDP provides, thus we need to do it here as well.
4594 	 */
4595 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4596 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4597 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4598 		int troom = skb->tail + skb->data_len - skb->end;
4599 
4600 		/* In case we have to go down the path and also linearize,
4601 		 * then lets do the pskb_expand_head() work just once here.
4602 		 */
4603 		if (pskb_expand_head(skb,
4604 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4605 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4606 			goto do_drop;
4607 		if (skb_linearize(skb))
4608 			goto do_drop;
4609 	}
4610 
4611 	/* The XDP program wants to see the packet starting at the MAC
4612 	 * header.
4613 	 */
4614 	mac_len = skb->data - skb_mac_header(skb);
4615 	hlen = skb_headlen(skb) + mac_len;
4616 	xdp->data = skb->data - mac_len;
4617 	xdp->data_meta = xdp->data;
4618 	xdp->data_end = xdp->data + hlen;
4619 	xdp->data_hard_start = skb->data - skb_headroom(skb);
4620 
4621 	/* SKB "head" area always have tailroom for skb_shared_info */
4622 	xdp->frame_sz  = (void *)skb_end_pointer(skb) - xdp->data_hard_start;
4623 	xdp->frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4624 
4625 	orig_data_end = xdp->data_end;
4626 	orig_data = xdp->data;
4627 	eth = (struct ethhdr *)xdp->data;
4628 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4629 	orig_eth_type = eth->h_proto;
4630 
4631 	rxqueue = netif_get_rxqueue(skb);
4632 	xdp->rxq = &rxqueue->xdp_rxq;
4633 
4634 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4635 
4636 	/* check if bpf_xdp_adjust_head was used */
4637 	off = xdp->data - orig_data;
4638 	if (off) {
4639 		if (off > 0)
4640 			__skb_pull(skb, off);
4641 		else if (off < 0)
4642 			__skb_push(skb, -off);
4643 
4644 		skb->mac_header += off;
4645 		skb_reset_network_header(skb);
4646 	}
4647 
4648 	/* check if bpf_xdp_adjust_tail was used */
4649 	off = xdp->data_end - orig_data_end;
4650 	if (off != 0) {
4651 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4652 		skb->len += off; /* positive on grow, negative on shrink */
4653 	}
4654 
4655 	/* check if XDP changed eth hdr such SKB needs update */
4656 	eth = (struct ethhdr *)xdp->data;
4657 	if ((orig_eth_type != eth->h_proto) ||
4658 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4659 		__skb_push(skb, ETH_HLEN);
4660 		skb->protocol = eth_type_trans(skb, skb->dev);
4661 	}
4662 
4663 	switch (act) {
4664 	case XDP_REDIRECT:
4665 	case XDP_TX:
4666 		__skb_push(skb, mac_len);
4667 		break;
4668 	case XDP_PASS:
4669 		metalen = xdp->data - xdp->data_meta;
4670 		if (metalen)
4671 			skb_metadata_set(skb, metalen);
4672 		break;
4673 	default:
4674 		bpf_warn_invalid_xdp_action(act);
4675 		/* fall through */
4676 	case XDP_ABORTED:
4677 		trace_xdp_exception(skb->dev, xdp_prog, act);
4678 		/* fall through */
4679 	case XDP_DROP:
4680 	do_drop:
4681 		kfree_skb(skb);
4682 		break;
4683 	}
4684 
4685 	return act;
4686 }
4687 
4688 /* When doing generic XDP we have to bypass the qdisc layer and the
4689  * network taps in order to match in-driver-XDP behavior.
4690  */
4691 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4692 {
4693 	struct net_device *dev = skb->dev;
4694 	struct netdev_queue *txq;
4695 	bool free_skb = true;
4696 	int cpu, rc;
4697 
4698 	txq = netdev_core_pick_tx(dev, skb, NULL);
4699 	cpu = smp_processor_id();
4700 	HARD_TX_LOCK(dev, txq, cpu);
4701 	if (!netif_xmit_stopped(txq)) {
4702 		rc = netdev_start_xmit(skb, dev, txq, 0);
4703 		if (dev_xmit_complete(rc))
4704 			free_skb = false;
4705 	}
4706 	HARD_TX_UNLOCK(dev, txq);
4707 	if (free_skb) {
4708 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4709 		kfree_skb(skb);
4710 	}
4711 }
4712 
4713 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4714 
4715 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4716 {
4717 	if (xdp_prog) {
4718 		struct xdp_buff xdp;
4719 		u32 act;
4720 		int err;
4721 
4722 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4723 		if (act != XDP_PASS) {
4724 			switch (act) {
4725 			case XDP_REDIRECT:
4726 				err = xdp_do_generic_redirect(skb->dev, skb,
4727 							      &xdp, xdp_prog);
4728 				if (err)
4729 					goto out_redir;
4730 				break;
4731 			case XDP_TX:
4732 				generic_xdp_tx(skb, xdp_prog);
4733 				break;
4734 			}
4735 			return XDP_DROP;
4736 		}
4737 	}
4738 	return XDP_PASS;
4739 out_redir:
4740 	kfree_skb(skb);
4741 	return XDP_DROP;
4742 }
4743 EXPORT_SYMBOL_GPL(do_xdp_generic);
4744 
4745 static int netif_rx_internal(struct sk_buff *skb)
4746 {
4747 	int ret;
4748 
4749 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4750 
4751 	trace_netif_rx(skb);
4752 
4753 #ifdef CONFIG_RPS
4754 	if (static_branch_unlikely(&rps_needed)) {
4755 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4756 		int cpu;
4757 
4758 		preempt_disable();
4759 		rcu_read_lock();
4760 
4761 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4762 		if (cpu < 0)
4763 			cpu = smp_processor_id();
4764 
4765 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4766 
4767 		rcu_read_unlock();
4768 		preempt_enable();
4769 	} else
4770 #endif
4771 	{
4772 		unsigned int qtail;
4773 
4774 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4775 		put_cpu();
4776 	}
4777 	return ret;
4778 }
4779 
4780 /**
4781  *	netif_rx	-	post buffer to the network code
4782  *	@skb: buffer to post
4783  *
4784  *	This function receives a packet from a device driver and queues it for
4785  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4786  *	may be dropped during processing for congestion control or by the
4787  *	protocol layers.
4788  *
4789  *	return values:
4790  *	NET_RX_SUCCESS	(no congestion)
4791  *	NET_RX_DROP     (packet was dropped)
4792  *
4793  */
4794 
4795 int netif_rx(struct sk_buff *skb)
4796 {
4797 	int ret;
4798 
4799 	trace_netif_rx_entry(skb);
4800 
4801 	ret = netif_rx_internal(skb);
4802 	trace_netif_rx_exit(ret);
4803 
4804 	return ret;
4805 }
4806 EXPORT_SYMBOL(netif_rx);
4807 
4808 int netif_rx_ni(struct sk_buff *skb)
4809 {
4810 	int err;
4811 
4812 	trace_netif_rx_ni_entry(skb);
4813 
4814 	preempt_disable();
4815 	err = netif_rx_internal(skb);
4816 	if (local_softirq_pending())
4817 		do_softirq();
4818 	preempt_enable();
4819 	trace_netif_rx_ni_exit(err);
4820 
4821 	return err;
4822 }
4823 EXPORT_SYMBOL(netif_rx_ni);
4824 
4825 static __latent_entropy void net_tx_action(struct softirq_action *h)
4826 {
4827 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4828 
4829 	if (sd->completion_queue) {
4830 		struct sk_buff *clist;
4831 
4832 		local_irq_disable();
4833 		clist = sd->completion_queue;
4834 		sd->completion_queue = NULL;
4835 		local_irq_enable();
4836 
4837 		while (clist) {
4838 			struct sk_buff *skb = clist;
4839 
4840 			clist = clist->next;
4841 
4842 			WARN_ON(refcount_read(&skb->users));
4843 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4844 				trace_consume_skb(skb);
4845 			else
4846 				trace_kfree_skb(skb, net_tx_action);
4847 
4848 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4849 				__kfree_skb(skb);
4850 			else
4851 				__kfree_skb_defer(skb);
4852 		}
4853 
4854 		__kfree_skb_flush();
4855 	}
4856 
4857 	if (sd->output_queue) {
4858 		struct Qdisc *head;
4859 
4860 		local_irq_disable();
4861 		head = sd->output_queue;
4862 		sd->output_queue = NULL;
4863 		sd->output_queue_tailp = &sd->output_queue;
4864 		local_irq_enable();
4865 
4866 		while (head) {
4867 			struct Qdisc *q = head;
4868 			spinlock_t *root_lock = NULL;
4869 
4870 			head = head->next_sched;
4871 
4872 			if (!(q->flags & TCQ_F_NOLOCK)) {
4873 				root_lock = qdisc_lock(q);
4874 				spin_lock(root_lock);
4875 			}
4876 			/* We need to make sure head->next_sched is read
4877 			 * before clearing __QDISC_STATE_SCHED
4878 			 */
4879 			smp_mb__before_atomic();
4880 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4881 			qdisc_run(q);
4882 			if (root_lock)
4883 				spin_unlock(root_lock);
4884 		}
4885 	}
4886 
4887 	xfrm_dev_backlog(sd);
4888 }
4889 
4890 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4891 /* This hook is defined here for ATM LANE */
4892 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4893 			     unsigned char *addr) __read_mostly;
4894 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4895 #endif
4896 
4897 static inline struct sk_buff *
4898 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4899 		   struct net_device *orig_dev)
4900 {
4901 #ifdef CONFIG_NET_CLS_ACT
4902 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4903 	struct tcf_result cl_res;
4904 
4905 	/* If there's at least one ingress present somewhere (so
4906 	 * we get here via enabled static key), remaining devices
4907 	 * that are not configured with an ingress qdisc will bail
4908 	 * out here.
4909 	 */
4910 	if (!miniq)
4911 		return skb;
4912 
4913 	if (*pt_prev) {
4914 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4915 		*pt_prev = NULL;
4916 	}
4917 
4918 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4919 	skb->tc_at_ingress = 1;
4920 	mini_qdisc_bstats_cpu_update(miniq, skb);
4921 
4922 	switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
4923 				     &cl_res, false)) {
4924 	case TC_ACT_OK:
4925 	case TC_ACT_RECLASSIFY:
4926 		skb->tc_index = TC_H_MIN(cl_res.classid);
4927 		break;
4928 	case TC_ACT_SHOT:
4929 		mini_qdisc_qstats_cpu_drop(miniq);
4930 		kfree_skb(skb);
4931 		return NULL;
4932 	case TC_ACT_STOLEN:
4933 	case TC_ACT_QUEUED:
4934 	case TC_ACT_TRAP:
4935 		consume_skb(skb);
4936 		return NULL;
4937 	case TC_ACT_REDIRECT:
4938 		/* skb_mac_header check was done by cls/act_bpf, so
4939 		 * we can safely push the L2 header back before
4940 		 * redirecting to another netdev
4941 		 */
4942 		__skb_push(skb, skb->mac_len);
4943 		skb_do_redirect(skb);
4944 		return NULL;
4945 	case TC_ACT_CONSUMED:
4946 		return NULL;
4947 	default:
4948 		break;
4949 	}
4950 #endif /* CONFIG_NET_CLS_ACT */
4951 	return skb;
4952 }
4953 
4954 /**
4955  *	netdev_is_rx_handler_busy - check if receive handler is registered
4956  *	@dev: device to check
4957  *
4958  *	Check if a receive handler is already registered for a given device.
4959  *	Return true if there one.
4960  *
4961  *	The caller must hold the rtnl_mutex.
4962  */
4963 bool netdev_is_rx_handler_busy(struct net_device *dev)
4964 {
4965 	ASSERT_RTNL();
4966 	return dev && rtnl_dereference(dev->rx_handler);
4967 }
4968 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4969 
4970 /**
4971  *	netdev_rx_handler_register - register receive handler
4972  *	@dev: device to register a handler for
4973  *	@rx_handler: receive handler to register
4974  *	@rx_handler_data: data pointer that is used by rx handler
4975  *
4976  *	Register a receive handler for a device. This handler will then be
4977  *	called from __netif_receive_skb. A negative errno code is returned
4978  *	on a failure.
4979  *
4980  *	The caller must hold the rtnl_mutex.
4981  *
4982  *	For a general description of rx_handler, see enum rx_handler_result.
4983  */
4984 int netdev_rx_handler_register(struct net_device *dev,
4985 			       rx_handler_func_t *rx_handler,
4986 			       void *rx_handler_data)
4987 {
4988 	if (netdev_is_rx_handler_busy(dev))
4989 		return -EBUSY;
4990 
4991 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
4992 		return -EINVAL;
4993 
4994 	/* Note: rx_handler_data must be set before rx_handler */
4995 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4996 	rcu_assign_pointer(dev->rx_handler, rx_handler);
4997 
4998 	return 0;
4999 }
5000 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5001 
5002 /**
5003  *	netdev_rx_handler_unregister - unregister receive handler
5004  *	@dev: device to unregister a handler from
5005  *
5006  *	Unregister a receive handler from a device.
5007  *
5008  *	The caller must hold the rtnl_mutex.
5009  */
5010 void netdev_rx_handler_unregister(struct net_device *dev)
5011 {
5012 
5013 	ASSERT_RTNL();
5014 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5015 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5016 	 * section has a guarantee to see a non NULL rx_handler_data
5017 	 * as well.
5018 	 */
5019 	synchronize_net();
5020 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5021 }
5022 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5023 
5024 /*
5025  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5026  * the special handling of PFMEMALLOC skbs.
5027  */
5028 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5029 {
5030 	switch (skb->protocol) {
5031 	case htons(ETH_P_ARP):
5032 	case htons(ETH_P_IP):
5033 	case htons(ETH_P_IPV6):
5034 	case htons(ETH_P_8021Q):
5035 	case htons(ETH_P_8021AD):
5036 		return true;
5037 	default:
5038 		return false;
5039 	}
5040 }
5041 
5042 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5043 			     int *ret, struct net_device *orig_dev)
5044 {
5045 	if (nf_hook_ingress_active(skb)) {
5046 		int ingress_retval;
5047 
5048 		if (*pt_prev) {
5049 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5050 			*pt_prev = NULL;
5051 		}
5052 
5053 		rcu_read_lock();
5054 		ingress_retval = nf_hook_ingress(skb);
5055 		rcu_read_unlock();
5056 		return ingress_retval;
5057 	}
5058 	return 0;
5059 }
5060 
5061 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5062 				    struct packet_type **ppt_prev)
5063 {
5064 	struct packet_type *ptype, *pt_prev;
5065 	rx_handler_func_t *rx_handler;
5066 	struct sk_buff *skb = *pskb;
5067 	struct net_device *orig_dev;
5068 	bool deliver_exact = false;
5069 	int ret = NET_RX_DROP;
5070 	__be16 type;
5071 
5072 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
5073 
5074 	trace_netif_receive_skb(skb);
5075 
5076 	orig_dev = skb->dev;
5077 
5078 	skb_reset_network_header(skb);
5079 	if (!skb_transport_header_was_set(skb))
5080 		skb_reset_transport_header(skb);
5081 	skb_reset_mac_len(skb);
5082 
5083 	pt_prev = NULL;
5084 
5085 another_round:
5086 	skb->skb_iif = skb->dev->ifindex;
5087 
5088 	__this_cpu_inc(softnet_data.processed);
5089 
5090 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5091 		int ret2;
5092 
5093 		preempt_disable();
5094 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5095 		preempt_enable();
5096 
5097 		if (ret2 != XDP_PASS) {
5098 			ret = NET_RX_DROP;
5099 			goto out;
5100 		}
5101 		skb_reset_mac_len(skb);
5102 	}
5103 
5104 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5105 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5106 		skb = skb_vlan_untag(skb);
5107 		if (unlikely(!skb))
5108 			goto out;
5109 	}
5110 
5111 	if (skb_skip_tc_classify(skb))
5112 		goto skip_classify;
5113 
5114 	if (pfmemalloc)
5115 		goto skip_taps;
5116 
5117 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5118 		if (pt_prev)
5119 			ret = deliver_skb(skb, pt_prev, orig_dev);
5120 		pt_prev = ptype;
5121 	}
5122 
5123 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5124 		if (pt_prev)
5125 			ret = deliver_skb(skb, pt_prev, orig_dev);
5126 		pt_prev = ptype;
5127 	}
5128 
5129 skip_taps:
5130 #ifdef CONFIG_NET_INGRESS
5131 	if (static_branch_unlikely(&ingress_needed_key)) {
5132 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
5133 		if (!skb)
5134 			goto out;
5135 
5136 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5137 			goto out;
5138 	}
5139 #endif
5140 	skb_reset_redirect(skb);
5141 skip_classify:
5142 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5143 		goto drop;
5144 
5145 	if (skb_vlan_tag_present(skb)) {
5146 		if (pt_prev) {
5147 			ret = deliver_skb(skb, pt_prev, orig_dev);
5148 			pt_prev = NULL;
5149 		}
5150 		if (vlan_do_receive(&skb))
5151 			goto another_round;
5152 		else if (unlikely(!skb))
5153 			goto out;
5154 	}
5155 
5156 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5157 	if (rx_handler) {
5158 		if (pt_prev) {
5159 			ret = deliver_skb(skb, pt_prev, orig_dev);
5160 			pt_prev = NULL;
5161 		}
5162 		switch (rx_handler(&skb)) {
5163 		case RX_HANDLER_CONSUMED:
5164 			ret = NET_RX_SUCCESS;
5165 			goto out;
5166 		case RX_HANDLER_ANOTHER:
5167 			goto another_round;
5168 		case RX_HANDLER_EXACT:
5169 			deliver_exact = true;
5170 		case RX_HANDLER_PASS:
5171 			break;
5172 		default:
5173 			BUG();
5174 		}
5175 	}
5176 
5177 	if (unlikely(skb_vlan_tag_present(skb))) {
5178 check_vlan_id:
5179 		if (skb_vlan_tag_get_id(skb)) {
5180 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5181 			 * find vlan device.
5182 			 */
5183 			skb->pkt_type = PACKET_OTHERHOST;
5184 		} else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5185 			   skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5186 			/* Outer header is 802.1P with vlan 0, inner header is
5187 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5188 			 * not find vlan dev for vlan id 0.
5189 			 */
5190 			__vlan_hwaccel_clear_tag(skb);
5191 			skb = skb_vlan_untag(skb);
5192 			if (unlikely(!skb))
5193 				goto out;
5194 			if (vlan_do_receive(&skb))
5195 				/* After stripping off 802.1P header with vlan 0
5196 				 * vlan dev is found for inner header.
5197 				 */
5198 				goto another_round;
5199 			else if (unlikely(!skb))
5200 				goto out;
5201 			else
5202 				/* We have stripped outer 802.1P vlan 0 header.
5203 				 * But could not find vlan dev.
5204 				 * check again for vlan id to set OTHERHOST.
5205 				 */
5206 				goto check_vlan_id;
5207 		}
5208 		/* Note: we might in the future use prio bits
5209 		 * and set skb->priority like in vlan_do_receive()
5210 		 * For the time being, just ignore Priority Code Point
5211 		 */
5212 		__vlan_hwaccel_clear_tag(skb);
5213 	}
5214 
5215 	type = skb->protocol;
5216 
5217 	/* deliver only exact match when indicated */
5218 	if (likely(!deliver_exact)) {
5219 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5220 				       &ptype_base[ntohs(type) &
5221 						   PTYPE_HASH_MASK]);
5222 	}
5223 
5224 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5225 			       &orig_dev->ptype_specific);
5226 
5227 	if (unlikely(skb->dev != orig_dev)) {
5228 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5229 				       &skb->dev->ptype_specific);
5230 	}
5231 
5232 	if (pt_prev) {
5233 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5234 			goto drop;
5235 		*ppt_prev = pt_prev;
5236 	} else {
5237 drop:
5238 		if (!deliver_exact)
5239 			atomic_long_inc(&skb->dev->rx_dropped);
5240 		else
5241 			atomic_long_inc(&skb->dev->rx_nohandler);
5242 		kfree_skb(skb);
5243 		/* Jamal, now you will not able to escape explaining
5244 		 * me how you were going to use this. :-)
5245 		 */
5246 		ret = NET_RX_DROP;
5247 	}
5248 
5249 out:
5250 	/* The invariant here is that if *ppt_prev is not NULL
5251 	 * then skb should also be non-NULL.
5252 	 *
5253 	 * Apparently *ppt_prev assignment above holds this invariant due to
5254 	 * skb dereferencing near it.
5255 	 */
5256 	*pskb = skb;
5257 	return ret;
5258 }
5259 
5260 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5261 {
5262 	struct net_device *orig_dev = skb->dev;
5263 	struct packet_type *pt_prev = NULL;
5264 	int ret;
5265 
5266 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5267 	if (pt_prev)
5268 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5269 					 skb->dev, pt_prev, orig_dev);
5270 	return ret;
5271 }
5272 
5273 /**
5274  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5275  *	@skb: buffer to process
5276  *
5277  *	More direct receive version of netif_receive_skb().  It should
5278  *	only be used by callers that have a need to skip RPS and Generic XDP.
5279  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5280  *
5281  *	This function may only be called from softirq context and interrupts
5282  *	should be enabled.
5283  *
5284  *	Return values (usually ignored):
5285  *	NET_RX_SUCCESS: no congestion
5286  *	NET_RX_DROP: packet was dropped
5287  */
5288 int netif_receive_skb_core(struct sk_buff *skb)
5289 {
5290 	int ret;
5291 
5292 	rcu_read_lock();
5293 	ret = __netif_receive_skb_one_core(skb, false);
5294 	rcu_read_unlock();
5295 
5296 	return ret;
5297 }
5298 EXPORT_SYMBOL(netif_receive_skb_core);
5299 
5300 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5301 						  struct packet_type *pt_prev,
5302 						  struct net_device *orig_dev)
5303 {
5304 	struct sk_buff *skb, *next;
5305 
5306 	if (!pt_prev)
5307 		return;
5308 	if (list_empty(head))
5309 		return;
5310 	if (pt_prev->list_func != NULL)
5311 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5312 				   ip_list_rcv, head, pt_prev, orig_dev);
5313 	else
5314 		list_for_each_entry_safe(skb, next, head, list) {
5315 			skb_list_del_init(skb);
5316 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5317 		}
5318 }
5319 
5320 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5321 {
5322 	/* Fast-path assumptions:
5323 	 * - There is no RX handler.
5324 	 * - Only one packet_type matches.
5325 	 * If either of these fails, we will end up doing some per-packet
5326 	 * processing in-line, then handling the 'last ptype' for the whole
5327 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5328 	 * because the 'last ptype' must be constant across the sublist, and all
5329 	 * other ptypes are handled per-packet.
5330 	 */
5331 	/* Current (common) ptype of sublist */
5332 	struct packet_type *pt_curr = NULL;
5333 	/* Current (common) orig_dev of sublist */
5334 	struct net_device *od_curr = NULL;
5335 	struct list_head sublist;
5336 	struct sk_buff *skb, *next;
5337 
5338 	INIT_LIST_HEAD(&sublist);
5339 	list_for_each_entry_safe(skb, next, head, list) {
5340 		struct net_device *orig_dev = skb->dev;
5341 		struct packet_type *pt_prev = NULL;
5342 
5343 		skb_list_del_init(skb);
5344 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5345 		if (!pt_prev)
5346 			continue;
5347 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5348 			/* dispatch old sublist */
5349 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5350 			/* start new sublist */
5351 			INIT_LIST_HEAD(&sublist);
5352 			pt_curr = pt_prev;
5353 			od_curr = orig_dev;
5354 		}
5355 		list_add_tail(&skb->list, &sublist);
5356 	}
5357 
5358 	/* dispatch final sublist */
5359 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5360 }
5361 
5362 static int __netif_receive_skb(struct sk_buff *skb)
5363 {
5364 	int ret;
5365 
5366 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5367 		unsigned int noreclaim_flag;
5368 
5369 		/*
5370 		 * PFMEMALLOC skbs are special, they should
5371 		 * - be delivered to SOCK_MEMALLOC sockets only
5372 		 * - stay away from userspace
5373 		 * - have bounded memory usage
5374 		 *
5375 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5376 		 * context down to all allocation sites.
5377 		 */
5378 		noreclaim_flag = memalloc_noreclaim_save();
5379 		ret = __netif_receive_skb_one_core(skb, true);
5380 		memalloc_noreclaim_restore(noreclaim_flag);
5381 	} else
5382 		ret = __netif_receive_skb_one_core(skb, false);
5383 
5384 	return ret;
5385 }
5386 
5387 static void __netif_receive_skb_list(struct list_head *head)
5388 {
5389 	unsigned long noreclaim_flag = 0;
5390 	struct sk_buff *skb, *next;
5391 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5392 
5393 	list_for_each_entry_safe(skb, next, head, list) {
5394 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5395 			struct list_head sublist;
5396 
5397 			/* Handle the previous sublist */
5398 			list_cut_before(&sublist, head, &skb->list);
5399 			if (!list_empty(&sublist))
5400 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5401 			pfmemalloc = !pfmemalloc;
5402 			/* See comments in __netif_receive_skb */
5403 			if (pfmemalloc)
5404 				noreclaim_flag = memalloc_noreclaim_save();
5405 			else
5406 				memalloc_noreclaim_restore(noreclaim_flag);
5407 		}
5408 	}
5409 	/* Handle the remaining sublist */
5410 	if (!list_empty(head))
5411 		__netif_receive_skb_list_core(head, pfmemalloc);
5412 	/* Restore pflags */
5413 	if (pfmemalloc)
5414 		memalloc_noreclaim_restore(noreclaim_flag);
5415 }
5416 
5417 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5418 {
5419 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5420 	struct bpf_prog *new = xdp->prog;
5421 	int ret = 0;
5422 
5423 	if (new) {
5424 		u32 i;
5425 
5426 		/* generic XDP does not work with DEVMAPs that can
5427 		 * have a bpf_prog installed on an entry
5428 		 */
5429 		for (i = 0; i < new->aux->used_map_cnt; i++) {
5430 			if (dev_map_can_have_prog(new->aux->used_maps[i]))
5431 				return -EINVAL;
5432 		}
5433 	}
5434 
5435 	switch (xdp->command) {
5436 	case XDP_SETUP_PROG:
5437 		rcu_assign_pointer(dev->xdp_prog, new);
5438 		if (old)
5439 			bpf_prog_put(old);
5440 
5441 		if (old && !new) {
5442 			static_branch_dec(&generic_xdp_needed_key);
5443 		} else if (new && !old) {
5444 			static_branch_inc(&generic_xdp_needed_key);
5445 			dev_disable_lro(dev);
5446 			dev_disable_gro_hw(dev);
5447 		}
5448 		break;
5449 
5450 	case XDP_QUERY_PROG:
5451 		xdp->prog_id = old ? old->aux->id : 0;
5452 		break;
5453 
5454 	default:
5455 		ret = -EINVAL;
5456 		break;
5457 	}
5458 
5459 	return ret;
5460 }
5461 
5462 static int netif_receive_skb_internal(struct sk_buff *skb)
5463 {
5464 	int ret;
5465 
5466 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5467 
5468 	if (skb_defer_rx_timestamp(skb))
5469 		return NET_RX_SUCCESS;
5470 
5471 	rcu_read_lock();
5472 #ifdef CONFIG_RPS
5473 	if (static_branch_unlikely(&rps_needed)) {
5474 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5475 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5476 
5477 		if (cpu >= 0) {
5478 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5479 			rcu_read_unlock();
5480 			return ret;
5481 		}
5482 	}
5483 #endif
5484 	ret = __netif_receive_skb(skb);
5485 	rcu_read_unlock();
5486 	return ret;
5487 }
5488 
5489 static void netif_receive_skb_list_internal(struct list_head *head)
5490 {
5491 	struct sk_buff *skb, *next;
5492 	struct list_head sublist;
5493 
5494 	INIT_LIST_HEAD(&sublist);
5495 	list_for_each_entry_safe(skb, next, head, list) {
5496 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5497 		skb_list_del_init(skb);
5498 		if (!skb_defer_rx_timestamp(skb))
5499 			list_add_tail(&skb->list, &sublist);
5500 	}
5501 	list_splice_init(&sublist, head);
5502 
5503 	rcu_read_lock();
5504 #ifdef CONFIG_RPS
5505 	if (static_branch_unlikely(&rps_needed)) {
5506 		list_for_each_entry_safe(skb, next, head, list) {
5507 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5508 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5509 
5510 			if (cpu >= 0) {
5511 				/* Will be handled, remove from list */
5512 				skb_list_del_init(skb);
5513 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5514 			}
5515 		}
5516 	}
5517 #endif
5518 	__netif_receive_skb_list(head);
5519 	rcu_read_unlock();
5520 }
5521 
5522 /**
5523  *	netif_receive_skb - process receive buffer from network
5524  *	@skb: buffer to process
5525  *
5526  *	netif_receive_skb() is the main receive data processing function.
5527  *	It always succeeds. The buffer may be dropped during processing
5528  *	for congestion control or by the protocol layers.
5529  *
5530  *	This function may only be called from softirq context and interrupts
5531  *	should be enabled.
5532  *
5533  *	Return values (usually ignored):
5534  *	NET_RX_SUCCESS: no congestion
5535  *	NET_RX_DROP: packet was dropped
5536  */
5537 int netif_receive_skb(struct sk_buff *skb)
5538 {
5539 	int ret;
5540 
5541 	trace_netif_receive_skb_entry(skb);
5542 
5543 	ret = netif_receive_skb_internal(skb);
5544 	trace_netif_receive_skb_exit(ret);
5545 
5546 	return ret;
5547 }
5548 EXPORT_SYMBOL(netif_receive_skb);
5549 
5550 /**
5551  *	netif_receive_skb_list - process many receive buffers from network
5552  *	@head: list of skbs to process.
5553  *
5554  *	Since return value of netif_receive_skb() is normally ignored, and
5555  *	wouldn't be meaningful for a list, this function returns void.
5556  *
5557  *	This function may only be called from softirq context and interrupts
5558  *	should be enabled.
5559  */
5560 void netif_receive_skb_list(struct list_head *head)
5561 {
5562 	struct sk_buff *skb;
5563 
5564 	if (list_empty(head))
5565 		return;
5566 	if (trace_netif_receive_skb_list_entry_enabled()) {
5567 		list_for_each_entry(skb, head, list)
5568 			trace_netif_receive_skb_list_entry(skb);
5569 	}
5570 	netif_receive_skb_list_internal(head);
5571 	trace_netif_receive_skb_list_exit(0);
5572 }
5573 EXPORT_SYMBOL(netif_receive_skb_list);
5574 
5575 DEFINE_PER_CPU(struct work_struct, flush_works);
5576 
5577 /* Network device is going away, flush any packets still pending */
5578 static void flush_backlog(struct work_struct *work)
5579 {
5580 	struct sk_buff *skb, *tmp;
5581 	struct softnet_data *sd;
5582 
5583 	local_bh_disable();
5584 	sd = this_cpu_ptr(&softnet_data);
5585 
5586 	local_irq_disable();
5587 	rps_lock(sd);
5588 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5589 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5590 			__skb_unlink(skb, &sd->input_pkt_queue);
5591 			kfree_skb(skb);
5592 			input_queue_head_incr(sd);
5593 		}
5594 	}
5595 	rps_unlock(sd);
5596 	local_irq_enable();
5597 
5598 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5599 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5600 			__skb_unlink(skb, &sd->process_queue);
5601 			kfree_skb(skb);
5602 			input_queue_head_incr(sd);
5603 		}
5604 	}
5605 	local_bh_enable();
5606 }
5607 
5608 static void flush_all_backlogs(void)
5609 {
5610 	unsigned int cpu;
5611 
5612 	get_online_cpus();
5613 
5614 	for_each_online_cpu(cpu)
5615 		queue_work_on(cpu, system_highpri_wq,
5616 			      per_cpu_ptr(&flush_works, cpu));
5617 
5618 	for_each_online_cpu(cpu)
5619 		flush_work(per_cpu_ptr(&flush_works, cpu));
5620 
5621 	put_online_cpus();
5622 }
5623 
5624 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5625 static void gro_normal_list(struct napi_struct *napi)
5626 {
5627 	if (!napi->rx_count)
5628 		return;
5629 	netif_receive_skb_list_internal(&napi->rx_list);
5630 	INIT_LIST_HEAD(&napi->rx_list);
5631 	napi->rx_count = 0;
5632 }
5633 
5634 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5635  * pass the whole batch up to the stack.
5636  */
5637 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5638 {
5639 	list_add_tail(&skb->list, &napi->rx_list);
5640 	if (++napi->rx_count >= gro_normal_batch)
5641 		gro_normal_list(napi);
5642 }
5643 
5644 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5645 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5646 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5647 {
5648 	struct packet_offload *ptype;
5649 	__be16 type = skb->protocol;
5650 	struct list_head *head = &offload_base;
5651 	int err = -ENOENT;
5652 
5653 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5654 
5655 	if (NAPI_GRO_CB(skb)->count == 1) {
5656 		skb_shinfo(skb)->gso_size = 0;
5657 		goto out;
5658 	}
5659 
5660 	rcu_read_lock();
5661 	list_for_each_entry_rcu(ptype, head, list) {
5662 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5663 			continue;
5664 
5665 		err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5666 					 ipv6_gro_complete, inet_gro_complete,
5667 					 skb, 0);
5668 		break;
5669 	}
5670 	rcu_read_unlock();
5671 
5672 	if (err) {
5673 		WARN_ON(&ptype->list == head);
5674 		kfree_skb(skb);
5675 		return NET_RX_SUCCESS;
5676 	}
5677 
5678 out:
5679 	gro_normal_one(napi, skb);
5680 	return NET_RX_SUCCESS;
5681 }
5682 
5683 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5684 				   bool flush_old)
5685 {
5686 	struct list_head *head = &napi->gro_hash[index].list;
5687 	struct sk_buff *skb, *p;
5688 
5689 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5690 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5691 			return;
5692 		skb_list_del_init(skb);
5693 		napi_gro_complete(napi, skb);
5694 		napi->gro_hash[index].count--;
5695 	}
5696 
5697 	if (!napi->gro_hash[index].count)
5698 		__clear_bit(index, &napi->gro_bitmask);
5699 }
5700 
5701 /* napi->gro_hash[].list contains packets ordered by age.
5702  * youngest packets at the head of it.
5703  * Complete skbs in reverse order to reduce latencies.
5704  */
5705 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5706 {
5707 	unsigned long bitmask = napi->gro_bitmask;
5708 	unsigned int i, base = ~0U;
5709 
5710 	while ((i = ffs(bitmask)) != 0) {
5711 		bitmask >>= i;
5712 		base += i;
5713 		__napi_gro_flush_chain(napi, base, flush_old);
5714 	}
5715 }
5716 EXPORT_SYMBOL(napi_gro_flush);
5717 
5718 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5719 					  struct sk_buff *skb)
5720 {
5721 	unsigned int maclen = skb->dev->hard_header_len;
5722 	u32 hash = skb_get_hash_raw(skb);
5723 	struct list_head *head;
5724 	struct sk_buff *p;
5725 
5726 	head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5727 	list_for_each_entry(p, head, list) {
5728 		unsigned long diffs;
5729 
5730 		NAPI_GRO_CB(p)->flush = 0;
5731 
5732 		if (hash != skb_get_hash_raw(p)) {
5733 			NAPI_GRO_CB(p)->same_flow = 0;
5734 			continue;
5735 		}
5736 
5737 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5738 		diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5739 		if (skb_vlan_tag_present(p))
5740 			diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5741 		diffs |= skb_metadata_dst_cmp(p, skb);
5742 		diffs |= skb_metadata_differs(p, skb);
5743 		if (maclen == ETH_HLEN)
5744 			diffs |= compare_ether_header(skb_mac_header(p),
5745 						      skb_mac_header(skb));
5746 		else if (!diffs)
5747 			diffs = memcmp(skb_mac_header(p),
5748 				       skb_mac_header(skb),
5749 				       maclen);
5750 		NAPI_GRO_CB(p)->same_flow = !diffs;
5751 	}
5752 
5753 	return head;
5754 }
5755 
5756 static void skb_gro_reset_offset(struct sk_buff *skb)
5757 {
5758 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
5759 	const skb_frag_t *frag0 = &pinfo->frags[0];
5760 
5761 	NAPI_GRO_CB(skb)->data_offset = 0;
5762 	NAPI_GRO_CB(skb)->frag0 = NULL;
5763 	NAPI_GRO_CB(skb)->frag0_len = 0;
5764 
5765 	if (!skb_headlen(skb) && pinfo->nr_frags &&
5766 	    !PageHighMem(skb_frag_page(frag0))) {
5767 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5768 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5769 						    skb_frag_size(frag0),
5770 						    skb->end - skb->tail);
5771 	}
5772 }
5773 
5774 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5775 {
5776 	struct skb_shared_info *pinfo = skb_shinfo(skb);
5777 
5778 	BUG_ON(skb->end - skb->tail < grow);
5779 
5780 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5781 
5782 	skb->data_len -= grow;
5783 	skb->tail += grow;
5784 
5785 	skb_frag_off_add(&pinfo->frags[0], grow);
5786 	skb_frag_size_sub(&pinfo->frags[0], grow);
5787 
5788 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5789 		skb_frag_unref(skb, 0);
5790 		memmove(pinfo->frags, pinfo->frags + 1,
5791 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
5792 	}
5793 }
5794 
5795 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5796 {
5797 	struct sk_buff *oldest;
5798 
5799 	oldest = list_last_entry(head, struct sk_buff, list);
5800 
5801 	/* We are called with head length >= MAX_GRO_SKBS, so this is
5802 	 * impossible.
5803 	 */
5804 	if (WARN_ON_ONCE(!oldest))
5805 		return;
5806 
5807 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
5808 	 * SKB to the chain.
5809 	 */
5810 	skb_list_del_init(oldest);
5811 	napi_gro_complete(napi, oldest);
5812 }
5813 
5814 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5815 							   struct sk_buff *));
5816 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5817 							   struct sk_buff *));
5818 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5819 {
5820 	u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5821 	struct list_head *head = &offload_base;
5822 	struct packet_offload *ptype;
5823 	__be16 type = skb->protocol;
5824 	struct list_head *gro_head;
5825 	struct sk_buff *pp = NULL;
5826 	enum gro_result ret;
5827 	int same_flow;
5828 	int grow;
5829 
5830 	if (netif_elide_gro(skb->dev))
5831 		goto normal;
5832 
5833 	gro_head = gro_list_prepare(napi, skb);
5834 
5835 	rcu_read_lock();
5836 	list_for_each_entry_rcu(ptype, head, list) {
5837 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5838 			continue;
5839 
5840 		skb_set_network_header(skb, skb_gro_offset(skb));
5841 		skb_reset_mac_len(skb);
5842 		NAPI_GRO_CB(skb)->same_flow = 0;
5843 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5844 		NAPI_GRO_CB(skb)->free = 0;
5845 		NAPI_GRO_CB(skb)->encap_mark = 0;
5846 		NAPI_GRO_CB(skb)->recursion_counter = 0;
5847 		NAPI_GRO_CB(skb)->is_fou = 0;
5848 		NAPI_GRO_CB(skb)->is_atomic = 1;
5849 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5850 
5851 		/* Setup for GRO checksum validation */
5852 		switch (skb->ip_summed) {
5853 		case CHECKSUM_COMPLETE:
5854 			NAPI_GRO_CB(skb)->csum = skb->csum;
5855 			NAPI_GRO_CB(skb)->csum_valid = 1;
5856 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5857 			break;
5858 		case CHECKSUM_UNNECESSARY:
5859 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5860 			NAPI_GRO_CB(skb)->csum_valid = 0;
5861 			break;
5862 		default:
5863 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5864 			NAPI_GRO_CB(skb)->csum_valid = 0;
5865 		}
5866 
5867 		pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5868 					ipv6_gro_receive, inet_gro_receive,
5869 					gro_head, skb);
5870 		break;
5871 	}
5872 	rcu_read_unlock();
5873 
5874 	if (&ptype->list == head)
5875 		goto normal;
5876 
5877 	if (PTR_ERR(pp) == -EINPROGRESS) {
5878 		ret = GRO_CONSUMED;
5879 		goto ok;
5880 	}
5881 
5882 	same_flow = NAPI_GRO_CB(skb)->same_flow;
5883 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5884 
5885 	if (pp) {
5886 		skb_list_del_init(pp);
5887 		napi_gro_complete(napi, pp);
5888 		napi->gro_hash[hash].count--;
5889 	}
5890 
5891 	if (same_flow)
5892 		goto ok;
5893 
5894 	if (NAPI_GRO_CB(skb)->flush)
5895 		goto normal;
5896 
5897 	if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5898 		gro_flush_oldest(napi, gro_head);
5899 	} else {
5900 		napi->gro_hash[hash].count++;
5901 	}
5902 	NAPI_GRO_CB(skb)->count = 1;
5903 	NAPI_GRO_CB(skb)->age = jiffies;
5904 	NAPI_GRO_CB(skb)->last = skb;
5905 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5906 	list_add(&skb->list, gro_head);
5907 	ret = GRO_HELD;
5908 
5909 pull:
5910 	grow = skb_gro_offset(skb) - skb_headlen(skb);
5911 	if (grow > 0)
5912 		gro_pull_from_frag0(skb, grow);
5913 ok:
5914 	if (napi->gro_hash[hash].count) {
5915 		if (!test_bit(hash, &napi->gro_bitmask))
5916 			__set_bit(hash, &napi->gro_bitmask);
5917 	} else if (test_bit(hash, &napi->gro_bitmask)) {
5918 		__clear_bit(hash, &napi->gro_bitmask);
5919 	}
5920 
5921 	return ret;
5922 
5923 normal:
5924 	ret = GRO_NORMAL;
5925 	goto pull;
5926 }
5927 
5928 struct packet_offload *gro_find_receive_by_type(__be16 type)
5929 {
5930 	struct list_head *offload_head = &offload_base;
5931 	struct packet_offload *ptype;
5932 
5933 	list_for_each_entry_rcu(ptype, offload_head, list) {
5934 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5935 			continue;
5936 		return ptype;
5937 	}
5938 	return NULL;
5939 }
5940 EXPORT_SYMBOL(gro_find_receive_by_type);
5941 
5942 struct packet_offload *gro_find_complete_by_type(__be16 type)
5943 {
5944 	struct list_head *offload_head = &offload_base;
5945 	struct packet_offload *ptype;
5946 
5947 	list_for_each_entry_rcu(ptype, offload_head, list) {
5948 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5949 			continue;
5950 		return ptype;
5951 	}
5952 	return NULL;
5953 }
5954 EXPORT_SYMBOL(gro_find_complete_by_type);
5955 
5956 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5957 {
5958 	skb_dst_drop(skb);
5959 	skb_ext_put(skb);
5960 	kmem_cache_free(skbuff_head_cache, skb);
5961 }
5962 
5963 static gro_result_t napi_skb_finish(struct napi_struct *napi,
5964 				    struct sk_buff *skb,
5965 				    gro_result_t ret)
5966 {
5967 	switch (ret) {
5968 	case GRO_NORMAL:
5969 		gro_normal_one(napi, skb);
5970 		break;
5971 
5972 	case GRO_DROP:
5973 		kfree_skb(skb);
5974 		break;
5975 
5976 	case GRO_MERGED_FREE:
5977 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5978 			napi_skb_free_stolen_head(skb);
5979 		else
5980 			__kfree_skb(skb);
5981 		break;
5982 
5983 	case GRO_HELD:
5984 	case GRO_MERGED:
5985 	case GRO_CONSUMED:
5986 		break;
5987 	}
5988 
5989 	return ret;
5990 }
5991 
5992 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5993 {
5994 	gro_result_t ret;
5995 
5996 	skb_mark_napi_id(skb, napi);
5997 	trace_napi_gro_receive_entry(skb);
5998 
5999 	skb_gro_reset_offset(skb);
6000 
6001 	ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6002 	trace_napi_gro_receive_exit(ret);
6003 
6004 	return ret;
6005 }
6006 EXPORT_SYMBOL(napi_gro_receive);
6007 
6008 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6009 {
6010 	if (unlikely(skb->pfmemalloc)) {
6011 		consume_skb(skb);
6012 		return;
6013 	}
6014 	__skb_pull(skb, skb_headlen(skb));
6015 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
6016 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6017 	__vlan_hwaccel_clear_tag(skb);
6018 	skb->dev = napi->dev;
6019 	skb->skb_iif = 0;
6020 
6021 	/* eth_type_trans() assumes pkt_type is PACKET_HOST */
6022 	skb->pkt_type = PACKET_HOST;
6023 
6024 	skb->encapsulation = 0;
6025 	skb_shinfo(skb)->gso_type = 0;
6026 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6027 	skb_ext_reset(skb);
6028 
6029 	napi->skb = skb;
6030 }
6031 
6032 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6033 {
6034 	struct sk_buff *skb = napi->skb;
6035 
6036 	if (!skb) {
6037 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6038 		if (skb) {
6039 			napi->skb = skb;
6040 			skb_mark_napi_id(skb, napi);
6041 		}
6042 	}
6043 	return skb;
6044 }
6045 EXPORT_SYMBOL(napi_get_frags);
6046 
6047 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6048 				      struct sk_buff *skb,
6049 				      gro_result_t ret)
6050 {
6051 	switch (ret) {
6052 	case GRO_NORMAL:
6053 	case GRO_HELD:
6054 		__skb_push(skb, ETH_HLEN);
6055 		skb->protocol = eth_type_trans(skb, skb->dev);
6056 		if (ret == GRO_NORMAL)
6057 			gro_normal_one(napi, skb);
6058 		break;
6059 
6060 	case GRO_DROP:
6061 		napi_reuse_skb(napi, skb);
6062 		break;
6063 
6064 	case GRO_MERGED_FREE:
6065 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6066 			napi_skb_free_stolen_head(skb);
6067 		else
6068 			napi_reuse_skb(napi, skb);
6069 		break;
6070 
6071 	case GRO_MERGED:
6072 	case GRO_CONSUMED:
6073 		break;
6074 	}
6075 
6076 	return ret;
6077 }
6078 
6079 /* Upper GRO stack assumes network header starts at gro_offset=0
6080  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6081  * We copy ethernet header into skb->data to have a common layout.
6082  */
6083 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6084 {
6085 	struct sk_buff *skb = napi->skb;
6086 	const struct ethhdr *eth;
6087 	unsigned int hlen = sizeof(*eth);
6088 
6089 	napi->skb = NULL;
6090 
6091 	skb_reset_mac_header(skb);
6092 	skb_gro_reset_offset(skb);
6093 
6094 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
6095 		eth = skb_gro_header_slow(skb, hlen, 0);
6096 		if (unlikely(!eth)) {
6097 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6098 					     __func__, napi->dev->name);
6099 			napi_reuse_skb(napi, skb);
6100 			return NULL;
6101 		}
6102 	} else {
6103 		eth = (const struct ethhdr *)skb->data;
6104 		gro_pull_from_frag0(skb, hlen);
6105 		NAPI_GRO_CB(skb)->frag0 += hlen;
6106 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
6107 	}
6108 	__skb_pull(skb, hlen);
6109 
6110 	/*
6111 	 * This works because the only protocols we care about don't require
6112 	 * special handling.
6113 	 * We'll fix it up properly in napi_frags_finish()
6114 	 */
6115 	skb->protocol = eth->h_proto;
6116 
6117 	return skb;
6118 }
6119 
6120 gro_result_t napi_gro_frags(struct napi_struct *napi)
6121 {
6122 	gro_result_t ret;
6123 	struct sk_buff *skb = napi_frags_skb(napi);
6124 
6125 	if (!skb)
6126 		return GRO_DROP;
6127 
6128 	trace_napi_gro_frags_entry(skb);
6129 
6130 	ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6131 	trace_napi_gro_frags_exit(ret);
6132 
6133 	return ret;
6134 }
6135 EXPORT_SYMBOL(napi_gro_frags);
6136 
6137 /* Compute the checksum from gro_offset and return the folded value
6138  * after adding in any pseudo checksum.
6139  */
6140 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6141 {
6142 	__wsum wsum;
6143 	__sum16 sum;
6144 
6145 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6146 
6147 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6148 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6149 	/* See comments in __skb_checksum_complete(). */
6150 	if (likely(!sum)) {
6151 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6152 		    !skb->csum_complete_sw)
6153 			netdev_rx_csum_fault(skb->dev, skb);
6154 	}
6155 
6156 	NAPI_GRO_CB(skb)->csum = wsum;
6157 	NAPI_GRO_CB(skb)->csum_valid = 1;
6158 
6159 	return sum;
6160 }
6161 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6162 
6163 static void net_rps_send_ipi(struct softnet_data *remsd)
6164 {
6165 #ifdef CONFIG_RPS
6166 	while (remsd) {
6167 		struct softnet_data *next = remsd->rps_ipi_next;
6168 
6169 		if (cpu_online(remsd->cpu))
6170 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6171 		remsd = next;
6172 	}
6173 #endif
6174 }
6175 
6176 /*
6177  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6178  * Note: called with local irq disabled, but exits with local irq enabled.
6179  */
6180 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6181 {
6182 #ifdef CONFIG_RPS
6183 	struct softnet_data *remsd = sd->rps_ipi_list;
6184 
6185 	if (remsd) {
6186 		sd->rps_ipi_list = NULL;
6187 
6188 		local_irq_enable();
6189 
6190 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6191 		net_rps_send_ipi(remsd);
6192 	} else
6193 #endif
6194 		local_irq_enable();
6195 }
6196 
6197 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6198 {
6199 #ifdef CONFIG_RPS
6200 	return sd->rps_ipi_list != NULL;
6201 #else
6202 	return false;
6203 #endif
6204 }
6205 
6206 static int process_backlog(struct napi_struct *napi, int quota)
6207 {
6208 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6209 	bool again = true;
6210 	int work = 0;
6211 
6212 	/* Check if we have pending ipi, its better to send them now,
6213 	 * not waiting net_rx_action() end.
6214 	 */
6215 	if (sd_has_rps_ipi_waiting(sd)) {
6216 		local_irq_disable();
6217 		net_rps_action_and_irq_enable(sd);
6218 	}
6219 
6220 	napi->weight = dev_rx_weight;
6221 	while (again) {
6222 		struct sk_buff *skb;
6223 
6224 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6225 			rcu_read_lock();
6226 			__netif_receive_skb(skb);
6227 			rcu_read_unlock();
6228 			input_queue_head_incr(sd);
6229 			if (++work >= quota)
6230 				return work;
6231 
6232 		}
6233 
6234 		local_irq_disable();
6235 		rps_lock(sd);
6236 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6237 			/*
6238 			 * Inline a custom version of __napi_complete().
6239 			 * only current cpu owns and manipulates this napi,
6240 			 * and NAPI_STATE_SCHED is the only possible flag set
6241 			 * on backlog.
6242 			 * We can use a plain write instead of clear_bit(),
6243 			 * and we dont need an smp_mb() memory barrier.
6244 			 */
6245 			napi->state = 0;
6246 			again = false;
6247 		} else {
6248 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6249 						   &sd->process_queue);
6250 		}
6251 		rps_unlock(sd);
6252 		local_irq_enable();
6253 	}
6254 
6255 	return work;
6256 }
6257 
6258 /**
6259  * __napi_schedule - schedule for receive
6260  * @n: entry to schedule
6261  *
6262  * The entry's receive function will be scheduled to run.
6263  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6264  */
6265 void __napi_schedule(struct napi_struct *n)
6266 {
6267 	unsigned long flags;
6268 
6269 	local_irq_save(flags);
6270 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6271 	local_irq_restore(flags);
6272 }
6273 EXPORT_SYMBOL(__napi_schedule);
6274 
6275 /**
6276  *	napi_schedule_prep - check if napi can be scheduled
6277  *	@n: napi context
6278  *
6279  * Test if NAPI routine is already running, and if not mark
6280  * it as running.  This is used as a condition variable
6281  * insure only one NAPI poll instance runs.  We also make
6282  * sure there is no pending NAPI disable.
6283  */
6284 bool napi_schedule_prep(struct napi_struct *n)
6285 {
6286 	unsigned long val, new;
6287 
6288 	do {
6289 		val = READ_ONCE(n->state);
6290 		if (unlikely(val & NAPIF_STATE_DISABLE))
6291 			return false;
6292 		new = val | NAPIF_STATE_SCHED;
6293 
6294 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6295 		 * This was suggested by Alexander Duyck, as compiler
6296 		 * emits better code than :
6297 		 * if (val & NAPIF_STATE_SCHED)
6298 		 *     new |= NAPIF_STATE_MISSED;
6299 		 */
6300 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6301 						   NAPIF_STATE_MISSED;
6302 	} while (cmpxchg(&n->state, val, new) != val);
6303 
6304 	return !(val & NAPIF_STATE_SCHED);
6305 }
6306 EXPORT_SYMBOL(napi_schedule_prep);
6307 
6308 /**
6309  * __napi_schedule_irqoff - schedule for receive
6310  * @n: entry to schedule
6311  *
6312  * Variant of __napi_schedule() assuming hard irqs are masked
6313  */
6314 void __napi_schedule_irqoff(struct napi_struct *n)
6315 {
6316 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6317 }
6318 EXPORT_SYMBOL(__napi_schedule_irqoff);
6319 
6320 bool napi_complete_done(struct napi_struct *n, int work_done)
6321 {
6322 	unsigned long flags, val, new, timeout = 0;
6323 	bool ret = true;
6324 
6325 	/*
6326 	 * 1) Don't let napi dequeue from the cpu poll list
6327 	 *    just in case its running on a different cpu.
6328 	 * 2) If we are busy polling, do nothing here, we have
6329 	 *    the guarantee we will be called later.
6330 	 */
6331 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6332 				 NAPIF_STATE_IN_BUSY_POLL)))
6333 		return false;
6334 
6335 	if (work_done) {
6336 		if (n->gro_bitmask)
6337 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6338 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6339 	}
6340 	if (n->defer_hard_irqs_count > 0) {
6341 		n->defer_hard_irqs_count--;
6342 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6343 		if (timeout)
6344 			ret = false;
6345 	}
6346 	if (n->gro_bitmask) {
6347 		/* When the NAPI instance uses a timeout and keeps postponing
6348 		 * it, we need to bound somehow the time packets are kept in
6349 		 * the GRO layer
6350 		 */
6351 		napi_gro_flush(n, !!timeout);
6352 	}
6353 
6354 	gro_normal_list(n);
6355 
6356 	if (unlikely(!list_empty(&n->poll_list))) {
6357 		/* If n->poll_list is not empty, we need to mask irqs */
6358 		local_irq_save(flags);
6359 		list_del_init(&n->poll_list);
6360 		local_irq_restore(flags);
6361 	}
6362 
6363 	do {
6364 		val = READ_ONCE(n->state);
6365 
6366 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6367 
6368 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6369 
6370 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6371 		 * because we will call napi->poll() one more time.
6372 		 * This C code was suggested by Alexander Duyck to help gcc.
6373 		 */
6374 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6375 						    NAPIF_STATE_SCHED;
6376 	} while (cmpxchg(&n->state, val, new) != val);
6377 
6378 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6379 		__napi_schedule(n);
6380 		return false;
6381 	}
6382 
6383 	if (timeout)
6384 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6385 			      HRTIMER_MODE_REL_PINNED);
6386 	return ret;
6387 }
6388 EXPORT_SYMBOL(napi_complete_done);
6389 
6390 /* must be called under rcu_read_lock(), as we dont take a reference */
6391 static struct napi_struct *napi_by_id(unsigned int napi_id)
6392 {
6393 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6394 	struct napi_struct *napi;
6395 
6396 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6397 		if (napi->napi_id == napi_id)
6398 			return napi;
6399 
6400 	return NULL;
6401 }
6402 
6403 #if defined(CONFIG_NET_RX_BUSY_POLL)
6404 
6405 #define BUSY_POLL_BUDGET 8
6406 
6407 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6408 {
6409 	int rc;
6410 
6411 	/* Busy polling means there is a high chance device driver hard irq
6412 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6413 	 * set in napi_schedule_prep().
6414 	 * Since we are about to call napi->poll() once more, we can safely
6415 	 * clear NAPI_STATE_MISSED.
6416 	 *
6417 	 * Note: x86 could use a single "lock and ..." instruction
6418 	 * to perform these two clear_bit()
6419 	 */
6420 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6421 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6422 
6423 	local_bh_disable();
6424 
6425 	/* All we really want here is to re-enable device interrupts.
6426 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6427 	 */
6428 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
6429 	/* We can't gro_normal_list() here, because napi->poll() might have
6430 	 * rearmed the napi (napi_complete_done()) in which case it could
6431 	 * already be running on another CPU.
6432 	 */
6433 	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6434 	netpoll_poll_unlock(have_poll_lock);
6435 	if (rc == BUSY_POLL_BUDGET) {
6436 		/* As the whole budget was spent, we still own the napi so can
6437 		 * safely handle the rx_list.
6438 		 */
6439 		gro_normal_list(napi);
6440 		__napi_schedule(napi);
6441 	}
6442 	local_bh_enable();
6443 }
6444 
6445 void napi_busy_loop(unsigned int napi_id,
6446 		    bool (*loop_end)(void *, unsigned long),
6447 		    void *loop_end_arg)
6448 {
6449 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6450 	int (*napi_poll)(struct napi_struct *napi, int budget);
6451 	void *have_poll_lock = NULL;
6452 	struct napi_struct *napi;
6453 
6454 restart:
6455 	napi_poll = NULL;
6456 
6457 	rcu_read_lock();
6458 
6459 	napi = napi_by_id(napi_id);
6460 	if (!napi)
6461 		goto out;
6462 
6463 	preempt_disable();
6464 	for (;;) {
6465 		int work = 0;
6466 
6467 		local_bh_disable();
6468 		if (!napi_poll) {
6469 			unsigned long val = READ_ONCE(napi->state);
6470 
6471 			/* If multiple threads are competing for this napi,
6472 			 * we avoid dirtying napi->state as much as we can.
6473 			 */
6474 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6475 				   NAPIF_STATE_IN_BUSY_POLL))
6476 				goto count;
6477 			if (cmpxchg(&napi->state, val,
6478 				    val | NAPIF_STATE_IN_BUSY_POLL |
6479 					  NAPIF_STATE_SCHED) != val)
6480 				goto count;
6481 			have_poll_lock = netpoll_poll_lock(napi);
6482 			napi_poll = napi->poll;
6483 		}
6484 		work = napi_poll(napi, BUSY_POLL_BUDGET);
6485 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6486 		gro_normal_list(napi);
6487 count:
6488 		if (work > 0)
6489 			__NET_ADD_STATS(dev_net(napi->dev),
6490 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6491 		local_bh_enable();
6492 
6493 		if (!loop_end || loop_end(loop_end_arg, start_time))
6494 			break;
6495 
6496 		if (unlikely(need_resched())) {
6497 			if (napi_poll)
6498 				busy_poll_stop(napi, have_poll_lock);
6499 			preempt_enable();
6500 			rcu_read_unlock();
6501 			cond_resched();
6502 			if (loop_end(loop_end_arg, start_time))
6503 				return;
6504 			goto restart;
6505 		}
6506 		cpu_relax();
6507 	}
6508 	if (napi_poll)
6509 		busy_poll_stop(napi, have_poll_lock);
6510 	preempt_enable();
6511 out:
6512 	rcu_read_unlock();
6513 }
6514 EXPORT_SYMBOL(napi_busy_loop);
6515 
6516 #endif /* CONFIG_NET_RX_BUSY_POLL */
6517 
6518 static void napi_hash_add(struct napi_struct *napi)
6519 {
6520 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6521 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6522 		return;
6523 
6524 	spin_lock(&napi_hash_lock);
6525 
6526 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6527 	do {
6528 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6529 			napi_gen_id = MIN_NAPI_ID;
6530 	} while (napi_by_id(napi_gen_id));
6531 	napi->napi_id = napi_gen_id;
6532 
6533 	hlist_add_head_rcu(&napi->napi_hash_node,
6534 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6535 
6536 	spin_unlock(&napi_hash_lock);
6537 }
6538 
6539 /* Warning : caller is responsible to make sure rcu grace period
6540  * is respected before freeing memory containing @napi
6541  */
6542 bool napi_hash_del(struct napi_struct *napi)
6543 {
6544 	bool rcu_sync_needed = false;
6545 
6546 	spin_lock(&napi_hash_lock);
6547 
6548 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6549 		rcu_sync_needed = true;
6550 		hlist_del_rcu(&napi->napi_hash_node);
6551 	}
6552 	spin_unlock(&napi_hash_lock);
6553 	return rcu_sync_needed;
6554 }
6555 EXPORT_SYMBOL_GPL(napi_hash_del);
6556 
6557 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6558 {
6559 	struct napi_struct *napi;
6560 
6561 	napi = container_of(timer, struct napi_struct, timer);
6562 
6563 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6564 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6565 	 */
6566 	if (!napi_disable_pending(napi) &&
6567 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6568 		__napi_schedule_irqoff(napi);
6569 
6570 	return HRTIMER_NORESTART;
6571 }
6572 
6573 static void init_gro_hash(struct napi_struct *napi)
6574 {
6575 	int i;
6576 
6577 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6578 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6579 		napi->gro_hash[i].count = 0;
6580 	}
6581 	napi->gro_bitmask = 0;
6582 }
6583 
6584 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6585 		    int (*poll)(struct napi_struct *, int), int weight)
6586 {
6587 	INIT_LIST_HEAD(&napi->poll_list);
6588 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6589 	napi->timer.function = napi_watchdog;
6590 	init_gro_hash(napi);
6591 	napi->skb = NULL;
6592 	INIT_LIST_HEAD(&napi->rx_list);
6593 	napi->rx_count = 0;
6594 	napi->poll = poll;
6595 	if (weight > NAPI_POLL_WEIGHT)
6596 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6597 				weight);
6598 	napi->weight = weight;
6599 	list_add(&napi->dev_list, &dev->napi_list);
6600 	napi->dev = dev;
6601 #ifdef CONFIG_NETPOLL
6602 	napi->poll_owner = -1;
6603 #endif
6604 	set_bit(NAPI_STATE_SCHED, &napi->state);
6605 	napi_hash_add(napi);
6606 }
6607 EXPORT_SYMBOL(netif_napi_add);
6608 
6609 void napi_disable(struct napi_struct *n)
6610 {
6611 	might_sleep();
6612 	set_bit(NAPI_STATE_DISABLE, &n->state);
6613 
6614 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6615 		msleep(1);
6616 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6617 		msleep(1);
6618 
6619 	hrtimer_cancel(&n->timer);
6620 
6621 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6622 }
6623 EXPORT_SYMBOL(napi_disable);
6624 
6625 static void flush_gro_hash(struct napi_struct *napi)
6626 {
6627 	int i;
6628 
6629 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6630 		struct sk_buff *skb, *n;
6631 
6632 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6633 			kfree_skb(skb);
6634 		napi->gro_hash[i].count = 0;
6635 	}
6636 }
6637 
6638 /* Must be called in process context */
6639 void netif_napi_del(struct napi_struct *napi)
6640 {
6641 	might_sleep();
6642 	if (napi_hash_del(napi))
6643 		synchronize_net();
6644 	list_del_init(&napi->dev_list);
6645 	napi_free_frags(napi);
6646 
6647 	flush_gro_hash(napi);
6648 	napi->gro_bitmask = 0;
6649 }
6650 EXPORT_SYMBOL(netif_napi_del);
6651 
6652 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6653 {
6654 	void *have;
6655 	int work, weight;
6656 
6657 	list_del_init(&n->poll_list);
6658 
6659 	have = netpoll_poll_lock(n);
6660 
6661 	weight = n->weight;
6662 
6663 	/* This NAPI_STATE_SCHED test is for avoiding a race
6664 	 * with netpoll's poll_napi().  Only the entity which
6665 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6666 	 * actually make the ->poll() call.  Therefore we avoid
6667 	 * accidentally calling ->poll() when NAPI is not scheduled.
6668 	 */
6669 	work = 0;
6670 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6671 		work = n->poll(n, weight);
6672 		trace_napi_poll(n, work, weight);
6673 	}
6674 
6675 	WARN_ON_ONCE(work > weight);
6676 
6677 	if (likely(work < weight))
6678 		goto out_unlock;
6679 
6680 	/* Drivers must not modify the NAPI state if they
6681 	 * consume the entire weight.  In such cases this code
6682 	 * still "owns" the NAPI instance and therefore can
6683 	 * move the instance around on the list at-will.
6684 	 */
6685 	if (unlikely(napi_disable_pending(n))) {
6686 		napi_complete(n);
6687 		goto out_unlock;
6688 	}
6689 
6690 	if (n->gro_bitmask) {
6691 		/* flush too old packets
6692 		 * If HZ < 1000, flush all packets.
6693 		 */
6694 		napi_gro_flush(n, HZ >= 1000);
6695 	}
6696 
6697 	gro_normal_list(n);
6698 
6699 	/* Some drivers may have called napi_schedule
6700 	 * prior to exhausting their budget.
6701 	 */
6702 	if (unlikely(!list_empty(&n->poll_list))) {
6703 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6704 			     n->dev ? n->dev->name : "backlog");
6705 		goto out_unlock;
6706 	}
6707 
6708 	list_add_tail(&n->poll_list, repoll);
6709 
6710 out_unlock:
6711 	netpoll_poll_unlock(have);
6712 
6713 	return work;
6714 }
6715 
6716 static __latent_entropy void net_rx_action(struct softirq_action *h)
6717 {
6718 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6719 	unsigned long time_limit = jiffies +
6720 		usecs_to_jiffies(netdev_budget_usecs);
6721 	int budget = netdev_budget;
6722 	LIST_HEAD(list);
6723 	LIST_HEAD(repoll);
6724 
6725 	local_irq_disable();
6726 	list_splice_init(&sd->poll_list, &list);
6727 	local_irq_enable();
6728 
6729 	for (;;) {
6730 		struct napi_struct *n;
6731 
6732 		if (list_empty(&list)) {
6733 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6734 				goto out;
6735 			break;
6736 		}
6737 
6738 		n = list_first_entry(&list, struct napi_struct, poll_list);
6739 		budget -= napi_poll(n, &repoll);
6740 
6741 		/* If softirq window is exhausted then punt.
6742 		 * Allow this to run for 2 jiffies since which will allow
6743 		 * an average latency of 1.5/HZ.
6744 		 */
6745 		if (unlikely(budget <= 0 ||
6746 			     time_after_eq(jiffies, time_limit))) {
6747 			sd->time_squeeze++;
6748 			break;
6749 		}
6750 	}
6751 
6752 	local_irq_disable();
6753 
6754 	list_splice_tail_init(&sd->poll_list, &list);
6755 	list_splice_tail(&repoll, &list);
6756 	list_splice(&list, &sd->poll_list);
6757 	if (!list_empty(&sd->poll_list))
6758 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6759 
6760 	net_rps_action_and_irq_enable(sd);
6761 out:
6762 	__kfree_skb_flush();
6763 }
6764 
6765 struct netdev_adjacent {
6766 	struct net_device *dev;
6767 
6768 	/* upper master flag, there can only be one master device per list */
6769 	bool master;
6770 
6771 	/* lookup ignore flag */
6772 	bool ignore;
6773 
6774 	/* counter for the number of times this device was added to us */
6775 	u16 ref_nr;
6776 
6777 	/* private field for the users */
6778 	void *private;
6779 
6780 	struct list_head list;
6781 	struct rcu_head rcu;
6782 };
6783 
6784 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6785 						 struct list_head *adj_list)
6786 {
6787 	struct netdev_adjacent *adj;
6788 
6789 	list_for_each_entry(adj, adj_list, list) {
6790 		if (adj->dev == adj_dev)
6791 			return adj;
6792 	}
6793 	return NULL;
6794 }
6795 
6796 static int ____netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6797 {
6798 	struct net_device *dev = data;
6799 
6800 	return upper_dev == dev;
6801 }
6802 
6803 /**
6804  * netdev_has_upper_dev - Check if device is linked to an upper device
6805  * @dev: device
6806  * @upper_dev: upper device to check
6807  *
6808  * Find out if a device is linked to specified upper device and return true
6809  * in case it is. Note that this checks only immediate upper device,
6810  * not through a complete stack of devices. The caller must hold the RTNL lock.
6811  */
6812 bool netdev_has_upper_dev(struct net_device *dev,
6813 			  struct net_device *upper_dev)
6814 {
6815 	ASSERT_RTNL();
6816 
6817 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6818 					     upper_dev);
6819 }
6820 EXPORT_SYMBOL(netdev_has_upper_dev);
6821 
6822 /**
6823  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6824  * @dev: device
6825  * @upper_dev: upper device to check
6826  *
6827  * Find out if a device is linked to specified upper device and return true
6828  * in case it is. Note that this checks the entire upper device chain.
6829  * The caller must hold rcu lock.
6830  */
6831 
6832 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6833 				  struct net_device *upper_dev)
6834 {
6835 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6836 					       upper_dev);
6837 }
6838 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6839 
6840 /**
6841  * netdev_has_any_upper_dev - Check if device is linked to some device
6842  * @dev: device
6843  *
6844  * Find out if a device is linked to an upper device and return true in case
6845  * it is. The caller must hold the RTNL lock.
6846  */
6847 bool netdev_has_any_upper_dev(struct net_device *dev)
6848 {
6849 	ASSERT_RTNL();
6850 
6851 	return !list_empty(&dev->adj_list.upper);
6852 }
6853 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6854 
6855 /**
6856  * netdev_master_upper_dev_get - Get master upper device
6857  * @dev: device
6858  *
6859  * Find a master upper device and return pointer to it or NULL in case
6860  * it's not there. The caller must hold the RTNL lock.
6861  */
6862 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6863 {
6864 	struct netdev_adjacent *upper;
6865 
6866 	ASSERT_RTNL();
6867 
6868 	if (list_empty(&dev->adj_list.upper))
6869 		return NULL;
6870 
6871 	upper = list_first_entry(&dev->adj_list.upper,
6872 				 struct netdev_adjacent, list);
6873 	if (likely(upper->master))
6874 		return upper->dev;
6875 	return NULL;
6876 }
6877 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6878 
6879 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6880 {
6881 	struct netdev_adjacent *upper;
6882 
6883 	ASSERT_RTNL();
6884 
6885 	if (list_empty(&dev->adj_list.upper))
6886 		return NULL;
6887 
6888 	upper = list_first_entry(&dev->adj_list.upper,
6889 				 struct netdev_adjacent, list);
6890 	if (likely(upper->master) && !upper->ignore)
6891 		return upper->dev;
6892 	return NULL;
6893 }
6894 
6895 /**
6896  * netdev_has_any_lower_dev - Check if device is linked to some device
6897  * @dev: device
6898  *
6899  * Find out if a device is linked to a lower device and return true in case
6900  * it is. The caller must hold the RTNL lock.
6901  */
6902 static bool netdev_has_any_lower_dev(struct net_device *dev)
6903 {
6904 	ASSERT_RTNL();
6905 
6906 	return !list_empty(&dev->adj_list.lower);
6907 }
6908 
6909 void *netdev_adjacent_get_private(struct list_head *adj_list)
6910 {
6911 	struct netdev_adjacent *adj;
6912 
6913 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6914 
6915 	return adj->private;
6916 }
6917 EXPORT_SYMBOL(netdev_adjacent_get_private);
6918 
6919 /**
6920  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6921  * @dev: device
6922  * @iter: list_head ** of the current position
6923  *
6924  * Gets the next device from the dev's upper list, starting from iter
6925  * position. The caller must hold RCU read lock.
6926  */
6927 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6928 						 struct list_head **iter)
6929 {
6930 	struct netdev_adjacent *upper;
6931 
6932 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6933 
6934 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6935 
6936 	if (&upper->list == &dev->adj_list.upper)
6937 		return NULL;
6938 
6939 	*iter = &upper->list;
6940 
6941 	return upper->dev;
6942 }
6943 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6944 
6945 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6946 						  struct list_head **iter,
6947 						  bool *ignore)
6948 {
6949 	struct netdev_adjacent *upper;
6950 
6951 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6952 
6953 	if (&upper->list == &dev->adj_list.upper)
6954 		return NULL;
6955 
6956 	*iter = &upper->list;
6957 	*ignore = upper->ignore;
6958 
6959 	return upper->dev;
6960 }
6961 
6962 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6963 						    struct list_head **iter)
6964 {
6965 	struct netdev_adjacent *upper;
6966 
6967 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6968 
6969 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6970 
6971 	if (&upper->list == &dev->adj_list.upper)
6972 		return NULL;
6973 
6974 	*iter = &upper->list;
6975 
6976 	return upper->dev;
6977 }
6978 
6979 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6980 				       int (*fn)(struct net_device *dev,
6981 						 void *data),
6982 				       void *data)
6983 {
6984 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6985 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6986 	int ret, cur = 0;
6987 	bool ignore;
6988 
6989 	now = dev;
6990 	iter = &dev->adj_list.upper;
6991 
6992 	while (1) {
6993 		if (now != dev) {
6994 			ret = fn(now, data);
6995 			if (ret)
6996 				return ret;
6997 		}
6998 
6999 		next = NULL;
7000 		while (1) {
7001 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7002 			if (!udev)
7003 				break;
7004 			if (ignore)
7005 				continue;
7006 
7007 			next = udev;
7008 			niter = &udev->adj_list.upper;
7009 			dev_stack[cur] = now;
7010 			iter_stack[cur++] = iter;
7011 			break;
7012 		}
7013 
7014 		if (!next) {
7015 			if (!cur)
7016 				return 0;
7017 			next = dev_stack[--cur];
7018 			niter = iter_stack[cur];
7019 		}
7020 
7021 		now = next;
7022 		iter = niter;
7023 	}
7024 
7025 	return 0;
7026 }
7027 
7028 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7029 				  int (*fn)(struct net_device *dev,
7030 					    void *data),
7031 				  void *data)
7032 {
7033 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7034 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7035 	int ret, cur = 0;
7036 
7037 	now = dev;
7038 	iter = &dev->adj_list.upper;
7039 
7040 	while (1) {
7041 		if (now != dev) {
7042 			ret = fn(now, data);
7043 			if (ret)
7044 				return ret;
7045 		}
7046 
7047 		next = NULL;
7048 		while (1) {
7049 			udev = netdev_next_upper_dev_rcu(now, &iter);
7050 			if (!udev)
7051 				break;
7052 
7053 			next = udev;
7054 			niter = &udev->adj_list.upper;
7055 			dev_stack[cur] = now;
7056 			iter_stack[cur++] = iter;
7057 			break;
7058 		}
7059 
7060 		if (!next) {
7061 			if (!cur)
7062 				return 0;
7063 			next = dev_stack[--cur];
7064 			niter = iter_stack[cur];
7065 		}
7066 
7067 		now = next;
7068 		iter = niter;
7069 	}
7070 
7071 	return 0;
7072 }
7073 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7074 
7075 static bool __netdev_has_upper_dev(struct net_device *dev,
7076 				   struct net_device *upper_dev)
7077 {
7078 	ASSERT_RTNL();
7079 
7080 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7081 					   upper_dev);
7082 }
7083 
7084 /**
7085  * netdev_lower_get_next_private - Get the next ->private from the
7086  *				   lower neighbour list
7087  * @dev: device
7088  * @iter: list_head ** of the current position
7089  *
7090  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7091  * list, starting from iter position. The caller must hold either hold the
7092  * RTNL lock or its own locking that guarantees that the neighbour lower
7093  * list will remain unchanged.
7094  */
7095 void *netdev_lower_get_next_private(struct net_device *dev,
7096 				    struct list_head **iter)
7097 {
7098 	struct netdev_adjacent *lower;
7099 
7100 	lower = list_entry(*iter, struct netdev_adjacent, list);
7101 
7102 	if (&lower->list == &dev->adj_list.lower)
7103 		return NULL;
7104 
7105 	*iter = lower->list.next;
7106 
7107 	return lower->private;
7108 }
7109 EXPORT_SYMBOL(netdev_lower_get_next_private);
7110 
7111 /**
7112  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7113  *				       lower neighbour list, RCU
7114  *				       variant
7115  * @dev: device
7116  * @iter: list_head ** of the current position
7117  *
7118  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7119  * list, starting from iter position. The caller must hold RCU read lock.
7120  */
7121 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7122 					struct list_head **iter)
7123 {
7124 	struct netdev_adjacent *lower;
7125 
7126 	WARN_ON_ONCE(!rcu_read_lock_held());
7127 
7128 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7129 
7130 	if (&lower->list == &dev->adj_list.lower)
7131 		return NULL;
7132 
7133 	*iter = &lower->list;
7134 
7135 	return lower->private;
7136 }
7137 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7138 
7139 /**
7140  * netdev_lower_get_next - Get the next device from the lower neighbour
7141  *                         list
7142  * @dev: device
7143  * @iter: list_head ** of the current position
7144  *
7145  * Gets the next netdev_adjacent from the dev's lower neighbour
7146  * list, starting from iter position. The caller must hold RTNL lock or
7147  * its own locking that guarantees that the neighbour lower
7148  * list will remain unchanged.
7149  */
7150 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7151 {
7152 	struct netdev_adjacent *lower;
7153 
7154 	lower = list_entry(*iter, struct netdev_adjacent, list);
7155 
7156 	if (&lower->list == &dev->adj_list.lower)
7157 		return NULL;
7158 
7159 	*iter = lower->list.next;
7160 
7161 	return lower->dev;
7162 }
7163 EXPORT_SYMBOL(netdev_lower_get_next);
7164 
7165 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7166 						struct list_head **iter)
7167 {
7168 	struct netdev_adjacent *lower;
7169 
7170 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7171 
7172 	if (&lower->list == &dev->adj_list.lower)
7173 		return NULL;
7174 
7175 	*iter = &lower->list;
7176 
7177 	return lower->dev;
7178 }
7179 
7180 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7181 						  struct list_head **iter,
7182 						  bool *ignore)
7183 {
7184 	struct netdev_adjacent *lower;
7185 
7186 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7187 
7188 	if (&lower->list == &dev->adj_list.lower)
7189 		return NULL;
7190 
7191 	*iter = &lower->list;
7192 	*ignore = lower->ignore;
7193 
7194 	return lower->dev;
7195 }
7196 
7197 int netdev_walk_all_lower_dev(struct net_device *dev,
7198 			      int (*fn)(struct net_device *dev,
7199 					void *data),
7200 			      void *data)
7201 {
7202 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7203 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7204 	int ret, cur = 0;
7205 
7206 	now = dev;
7207 	iter = &dev->adj_list.lower;
7208 
7209 	while (1) {
7210 		if (now != dev) {
7211 			ret = fn(now, data);
7212 			if (ret)
7213 				return ret;
7214 		}
7215 
7216 		next = NULL;
7217 		while (1) {
7218 			ldev = netdev_next_lower_dev(now, &iter);
7219 			if (!ldev)
7220 				break;
7221 
7222 			next = ldev;
7223 			niter = &ldev->adj_list.lower;
7224 			dev_stack[cur] = now;
7225 			iter_stack[cur++] = iter;
7226 			break;
7227 		}
7228 
7229 		if (!next) {
7230 			if (!cur)
7231 				return 0;
7232 			next = dev_stack[--cur];
7233 			niter = iter_stack[cur];
7234 		}
7235 
7236 		now = next;
7237 		iter = niter;
7238 	}
7239 
7240 	return 0;
7241 }
7242 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7243 
7244 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7245 				       int (*fn)(struct net_device *dev,
7246 						 void *data),
7247 				       void *data)
7248 {
7249 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7250 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7251 	int ret, cur = 0;
7252 	bool ignore;
7253 
7254 	now = dev;
7255 	iter = &dev->adj_list.lower;
7256 
7257 	while (1) {
7258 		if (now != dev) {
7259 			ret = fn(now, data);
7260 			if (ret)
7261 				return ret;
7262 		}
7263 
7264 		next = NULL;
7265 		while (1) {
7266 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7267 			if (!ldev)
7268 				break;
7269 			if (ignore)
7270 				continue;
7271 
7272 			next = ldev;
7273 			niter = &ldev->adj_list.lower;
7274 			dev_stack[cur] = now;
7275 			iter_stack[cur++] = iter;
7276 			break;
7277 		}
7278 
7279 		if (!next) {
7280 			if (!cur)
7281 				return 0;
7282 			next = dev_stack[--cur];
7283 			niter = iter_stack[cur];
7284 		}
7285 
7286 		now = next;
7287 		iter = niter;
7288 	}
7289 
7290 	return 0;
7291 }
7292 
7293 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7294 					     struct list_head **iter)
7295 {
7296 	struct netdev_adjacent *lower;
7297 
7298 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7299 	if (&lower->list == &dev->adj_list.lower)
7300 		return NULL;
7301 
7302 	*iter = &lower->list;
7303 
7304 	return lower->dev;
7305 }
7306 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7307 
7308 static u8 __netdev_upper_depth(struct net_device *dev)
7309 {
7310 	struct net_device *udev;
7311 	struct list_head *iter;
7312 	u8 max_depth = 0;
7313 	bool ignore;
7314 
7315 	for (iter = &dev->adj_list.upper,
7316 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7317 	     udev;
7318 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7319 		if (ignore)
7320 			continue;
7321 		if (max_depth < udev->upper_level)
7322 			max_depth = udev->upper_level;
7323 	}
7324 
7325 	return max_depth;
7326 }
7327 
7328 static u8 __netdev_lower_depth(struct net_device *dev)
7329 {
7330 	struct net_device *ldev;
7331 	struct list_head *iter;
7332 	u8 max_depth = 0;
7333 	bool ignore;
7334 
7335 	for (iter = &dev->adj_list.lower,
7336 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7337 	     ldev;
7338 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7339 		if (ignore)
7340 			continue;
7341 		if (max_depth < ldev->lower_level)
7342 			max_depth = ldev->lower_level;
7343 	}
7344 
7345 	return max_depth;
7346 }
7347 
7348 static int __netdev_update_upper_level(struct net_device *dev, void *data)
7349 {
7350 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7351 	return 0;
7352 }
7353 
7354 static int __netdev_update_lower_level(struct net_device *dev, void *data)
7355 {
7356 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7357 	return 0;
7358 }
7359 
7360 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7361 				  int (*fn)(struct net_device *dev,
7362 					    void *data),
7363 				  void *data)
7364 {
7365 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7366 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7367 	int ret, cur = 0;
7368 
7369 	now = dev;
7370 	iter = &dev->adj_list.lower;
7371 
7372 	while (1) {
7373 		if (now != dev) {
7374 			ret = fn(now, data);
7375 			if (ret)
7376 				return ret;
7377 		}
7378 
7379 		next = NULL;
7380 		while (1) {
7381 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7382 			if (!ldev)
7383 				break;
7384 
7385 			next = ldev;
7386 			niter = &ldev->adj_list.lower;
7387 			dev_stack[cur] = now;
7388 			iter_stack[cur++] = iter;
7389 			break;
7390 		}
7391 
7392 		if (!next) {
7393 			if (!cur)
7394 				return 0;
7395 			next = dev_stack[--cur];
7396 			niter = iter_stack[cur];
7397 		}
7398 
7399 		now = next;
7400 		iter = niter;
7401 	}
7402 
7403 	return 0;
7404 }
7405 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7406 
7407 /**
7408  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7409  *				       lower neighbour list, RCU
7410  *				       variant
7411  * @dev: device
7412  *
7413  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7414  * list. The caller must hold RCU read lock.
7415  */
7416 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7417 {
7418 	struct netdev_adjacent *lower;
7419 
7420 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7421 			struct netdev_adjacent, list);
7422 	if (lower)
7423 		return lower->private;
7424 	return NULL;
7425 }
7426 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7427 
7428 /**
7429  * netdev_master_upper_dev_get_rcu - Get master upper device
7430  * @dev: device
7431  *
7432  * Find a master upper device and return pointer to it or NULL in case
7433  * it's not there. The caller must hold the RCU read lock.
7434  */
7435 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7436 {
7437 	struct netdev_adjacent *upper;
7438 
7439 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7440 				       struct netdev_adjacent, list);
7441 	if (upper && likely(upper->master))
7442 		return upper->dev;
7443 	return NULL;
7444 }
7445 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7446 
7447 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7448 			      struct net_device *adj_dev,
7449 			      struct list_head *dev_list)
7450 {
7451 	char linkname[IFNAMSIZ+7];
7452 
7453 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7454 		"upper_%s" : "lower_%s", adj_dev->name);
7455 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7456 				 linkname);
7457 }
7458 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7459 			       char *name,
7460 			       struct list_head *dev_list)
7461 {
7462 	char linkname[IFNAMSIZ+7];
7463 
7464 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7465 		"upper_%s" : "lower_%s", name);
7466 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7467 }
7468 
7469 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7470 						 struct net_device *adj_dev,
7471 						 struct list_head *dev_list)
7472 {
7473 	return (dev_list == &dev->adj_list.upper ||
7474 		dev_list == &dev->adj_list.lower) &&
7475 		net_eq(dev_net(dev), dev_net(adj_dev));
7476 }
7477 
7478 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7479 					struct net_device *adj_dev,
7480 					struct list_head *dev_list,
7481 					void *private, bool master)
7482 {
7483 	struct netdev_adjacent *adj;
7484 	int ret;
7485 
7486 	adj = __netdev_find_adj(adj_dev, dev_list);
7487 
7488 	if (adj) {
7489 		adj->ref_nr += 1;
7490 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7491 			 dev->name, adj_dev->name, adj->ref_nr);
7492 
7493 		return 0;
7494 	}
7495 
7496 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7497 	if (!adj)
7498 		return -ENOMEM;
7499 
7500 	adj->dev = adj_dev;
7501 	adj->master = master;
7502 	adj->ref_nr = 1;
7503 	adj->private = private;
7504 	adj->ignore = false;
7505 	dev_hold(adj_dev);
7506 
7507 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7508 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7509 
7510 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7511 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7512 		if (ret)
7513 			goto free_adj;
7514 	}
7515 
7516 	/* Ensure that master link is always the first item in list. */
7517 	if (master) {
7518 		ret = sysfs_create_link(&(dev->dev.kobj),
7519 					&(adj_dev->dev.kobj), "master");
7520 		if (ret)
7521 			goto remove_symlinks;
7522 
7523 		list_add_rcu(&adj->list, dev_list);
7524 	} else {
7525 		list_add_tail_rcu(&adj->list, dev_list);
7526 	}
7527 
7528 	return 0;
7529 
7530 remove_symlinks:
7531 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7532 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7533 free_adj:
7534 	kfree(adj);
7535 	dev_put(adj_dev);
7536 
7537 	return ret;
7538 }
7539 
7540 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7541 					 struct net_device *adj_dev,
7542 					 u16 ref_nr,
7543 					 struct list_head *dev_list)
7544 {
7545 	struct netdev_adjacent *adj;
7546 
7547 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7548 		 dev->name, adj_dev->name, ref_nr);
7549 
7550 	adj = __netdev_find_adj(adj_dev, dev_list);
7551 
7552 	if (!adj) {
7553 		pr_err("Adjacency does not exist for device %s from %s\n",
7554 		       dev->name, adj_dev->name);
7555 		WARN_ON(1);
7556 		return;
7557 	}
7558 
7559 	if (adj->ref_nr > ref_nr) {
7560 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7561 			 dev->name, adj_dev->name, ref_nr,
7562 			 adj->ref_nr - ref_nr);
7563 		adj->ref_nr -= ref_nr;
7564 		return;
7565 	}
7566 
7567 	if (adj->master)
7568 		sysfs_remove_link(&(dev->dev.kobj), "master");
7569 
7570 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7571 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7572 
7573 	list_del_rcu(&adj->list);
7574 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7575 		 adj_dev->name, dev->name, adj_dev->name);
7576 	dev_put(adj_dev);
7577 	kfree_rcu(adj, rcu);
7578 }
7579 
7580 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7581 					    struct net_device *upper_dev,
7582 					    struct list_head *up_list,
7583 					    struct list_head *down_list,
7584 					    void *private, bool master)
7585 {
7586 	int ret;
7587 
7588 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7589 					   private, master);
7590 	if (ret)
7591 		return ret;
7592 
7593 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7594 					   private, false);
7595 	if (ret) {
7596 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7597 		return ret;
7598 	}
7599 
7600 	return 0;
7601 }
7602 
7603 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7604 					       struct net_device *upper_dev,
7605 					       u16 ref_nr,
7606 					       struct list_head *up_list,
7607 					       struct list_head *down_list)
7608 {
7609 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7610 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7611 }
7612 
7613 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7614 						struct net_device *upper_dev,
7615 						void *private, bool master)
7616 {
7617 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7618 						&dev->adj_list.upper,
7619 						&upper_dev->adj_list.lower,
7620 						private, master);
7621 }
7622 
7623 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7624 						   struct net_device *upper_dev)
7625 {
7626 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7627 					   &dev->adj_list.upper,
7628 					   &upper_dev->adj_list.lower);
7629 }
7630 
7631 static int __netdev_upper_dev_link(struct net_device *dev,
7632 				   struct net_device *upper_dev, bool master,
7633 				   void *upper_priv, void *upper_info,
7634 				   struct netlink_ext_ack *extack)
7635 {
7636 	struct netdev_notifier_changeupper_info changeupper_info = {
7637 		.info = {
7638 			.dev = dev,
7639 			.extack = extack,
7640 		},
7641 		.upper_dev = upper_dev,
7642 		.master = master,
7643 		.linking = true,
7644 		.upper_info = upper_info,
7645 	};
7646 	struct net_device *master_dev;
7647 	int ret = 0;
7648 
7649 	ASSERT_RTNL();
7650 
7651 	if (dev == upper_dev)
7652 		return -EBUSY;
7653 
7654 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7655 	if (__netdev_has_upper_dev(upper_dev, dev))
7656 		return -EBUSY;
7657 
7658 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7659 		return -EMLINK;
7660 
7661 	if (!master) {
7662 		if (__netdev_has_upper_dev(dev, upper_dev))
7663 			return -EEXIST;
7664 	} else {
7665 		master_dev = __netdev_master_upper_dev_get(dev);
7666 		if (master_dev)
7667 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7668 	}
7669 
7670 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7671 					    &changeupper_info.info);
7672 	ret = notifier_to_errno(ret);
7673 	if (ret)
7674 		return ret;
7675 
7676 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7677 						   master);
7678 	if (ret)
7679 		return ret;
7680 
7681 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7682 					    &changeupper_info.info);
7683 	ret = notifier_to_errno(ret);
7684 	if (ret)
7685 		goto rollback;
7686 
7687 	__netdev_update_upper_level(dev, NULL);
7688 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7689 
7690 	__netdev_update_lower_level(upper_dev, NULL);
7691 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7692 				    NULL);
7693 
7694 	return 0;
7695 
7696 rollback:
7697 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7698 
7699 	return ret;
7700 }
7701 
7702 /**
7703  * netdev_upper_dev_link - Add a link to the upper device
7704  * @dev: device
7705  * @upper_dev: new upper device
7706  * @extack: netlink extended ack
7707  *
7708  * Adds a link to device which is upper to this one. The caller must hold
7709  * the RTNL lock. On a failure a negative errno code is returned.
7710  * On success the reference counts are adjusted and the function
7711  * returns zero.
7712  */
7713 int netdev_upper_dev_link(struct net_device *dev,
7714 			  struct net_device *upper_dev,
7715 			  struct netlink_ext_ack *extack)
7716 {
7717 	return __netdev_upper_dev_link(dev, upper_dev, false,
7718 				       NULL, NULL, extack);
7719 }
7720 EXPORT_SYMBOL(netdev_upper_dev_link);
7721 
7722 /**
7723  * netdev_master_upper_dev_link - Add a master link to the upper device
7724  * @dev: device
7725  * @upper_dev: new upper device
7726  * @upper_priv: upper device private
7727  * @upper_info: upper info to be passed down via notifier
7728  * @extack: netlink extended ack
7729  *
7730  * Adds a link to device which is upper to this one. In this case, only
7731  * one master upper device can be linked, although other non-master devices
7732  * might be linked as well. The caller must hold the RTNL lock.
7733  * On a failure a negative errno code is returned. On success the reference
7734  * counts are adjusted and the function returns zero.
7735  */
7736 int netdev_master_upper_dev_link(struct net_device *dev,
7737 				 struct net_device *upper_dev,
7738 				 void *upper_priv, void *upper_info,
7739 				 struct netlink_ext_ack *extack)
7740 {
7741 	return __netdev_upper_dev_link(dev, upper_dev, true,
7742 				       upper_priv, upper_info, extack);
7743 }
7744 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7745 
7746 /**
7747  * netdev_upper_dev_unlink - Removes a link to upper device
7748  * @dev: device
7749  * @upper_dev: new upper device
7750  *
7751  * Removes a link to device which is upper to this one. The caller must hold
7752  * the RTNL lock.
7753  */
7754 void netdev_upper_dev_unlink(struct net_device *dev,
7755 			     struct net_device *upper_dev)
7756 {
7757 	struct netdev_notifier_changeupper_info changeupper_info = {
7758 		.info = {
7759 			.dev = dev,
7760 		},
7761 		.upper_dev = upper_dev,
7762 		.linking = false,
7763 	};
7764 
7765 	ASSERT_RTNL();
7766 
7767 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7768 
7769 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7770 				      &changeupper_info.info);
7771 
7772 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7773 
7774 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7775 				      &changeupper_info.info);
7776 
7777 	__netdev_update_upper_level(dev, NULL);
7778 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7779 
7780 	__netdev_update_lower_level(upper_dev, NULL);
7781 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7782 				    NULL);
7783 }
7784 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7785 
7786 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7787 				      struct net_device *lower_dev,
7788 				      bool val)
7789 {
7790 	struct netdev_adjacent *adj;
7791 
7792 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7793 	if (adj)
7794 		adj->ignore = val;
7795 
7796 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7797 	if (adj)
7798 		adj->ignore = val;
7799 }
7800 
7801 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7802 					struct net_device *lower_dev)
7803 {
7804 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7805 }
7806 
7807 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7808 				       struct net_device *lower_dev)
7809 {
7810 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7811 }
7812 
7813 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7814 				   struct net_device *new_dev,
7815 				   struct net_device *dev,
7816 				   struct netlink_ext_ack *extack)
7817 {
7818 	int err;
7819 
7820 	if (!new_dev)
7821 		return 0;
7822 
7823 	if (old_dev && new_dev != old_dev)
7824 		netdev_adjacent_dev_disable(dev, old_dev);
7825 
7826 	err = netdev_upper_dev_link(new_dev, dev, extack);
7827 	if (err) {
7828 		if (old_dev && new_dev != old_dev)
7829 			netdev_adjacent_dev_enable(dev, old_dev);
7830 		return err;
7831 	}
7832 
7833 	return 0;
7834 }
7835 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7836 
7837 void netdev_adjacent_change_commit(struct net_device *old_dev,
7838 				   struct net_device *new_dev,
7839 				   struct net_device *dev)
7840 {
7841 	if (!new_dev || !old_dev)
7842 		return;
7843 
7844 	if (new_dev == old_dev)
7845 		return;
7846 
7847 	netdev_adjacent_dev_enable(dev, old_dev);
7848 	netdev_upper_dev_unlink(old_dev, dev);
7849 }
7850 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7851 
7852 void netdev_adjacent_change_abort(struct net_device *old_dev,
7853 				  struct net_device *new_dev,
7854 				  struct net_device *dev)
7855 {
7856 	if (!new_dev)
7857 		return;
7858 
7859 	if (old_dev && new_dev != old_dev)
7860 		netdev_adjacent_dev_enable(dev, old_dev);
7861 
7862 	netdev_upper_dev_unlink(new_dev, dev);
7863 }
7864 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7865 
7866 /**
7867  * netdev_bonding_info_change - Dispatch event about slave change
7868  * @dev: device
7869  * @bonding_info: info to dispatch
7870  *
7871  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7872  * The caller must hold the RTNL lock.
7873  */
7874 void netdev_bonding_info_change(struct net_device *dev,
7875 				struct netdev_bonding_info *bonding_info)
7876 {
7877 	struct netdev_notifier_bonding_info info = {
7878 		.info.dev = dev,
7879 	};
7880 
7881 	memcpy(&info.bonding_info, bonding_info,
7882 	       sizeof(struct netdev_bonding_info));
7883 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7884 				      &info.info);
7885 }
7886 EXPORT_SYMBOL(netdev_bonding_info_change);
7887 
7888 /**
7889  * netdev_get_xmit_slave - Get the xmit slave of master device
7890  * @skb: The packet
7891  * @all_slaves: assume all the slaves are active
7892  *
7893  * The reference counters are not incremented so the caller must be
7894  * careful with locks. The caller must hold RCU lock.
7895  * %NULL is returned if no slave is found.
7896  */
7897 
7898 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
7899 					 struct sk_buff *skb,
7900 					 bool all_slaves)
7901 {
7902 	const struct net_device_ops *ops = dev->netdev_ops;
7903 
7904 	if (!ops->ndo_get_xmit_slave)
7905 		return NULL;
7906 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
7907 }
7908 EXPORT_SYMBOL(netdev_get_xmit_slave);
7909 
7910 static void netdev_adjacent_add_links(struct net_device *dev)
7911 {
7912 	struct netdev_adjacent *iter;
7913 
7914 	struct net *net = dev_net(dev);
7915 
7916 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7917 		if (!net_eq(net, dev_net(iter->dev)))
7918 			continue;
7919 		netdev_adjacent_sysfs_add(iter->dev, dev,
7920 					  &iter->dev->adj_list.lower);
7921 		netdev_adjacent_sysfs_add(dev, iter->dev,
7922 					  &dev->adj_list.upper);
7923 	}
7924 
7925 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7926 		if (!net_eq(net, dev_net(iter->dev)))
7927 			continue;
7928 		netdev_adjacent_sysfs_add(iter->dev, dev,
7929 					  &iter->dev->adj_list.upper);
7930 		netdev_adjacent_sysfs_add(dev, iter->dev,
7931 					  &dev->adj_list.lower);
7932 	}
7933 }
7934 
7935 static void netdev_adjacent_del_links(struct net_device *dev)
7936 {
7937 	struct netdev_adjacent *iter;
7938 
7939 	struct net *net = dev_net(dev);
7940 
7941 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7942 		if (!net_eq(net, dev_net(iter->dev)))
7943 			continue;
7944 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7945 					  &iter->dev->adj_list.lower);
7946 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7947 					  &dev->adj_list.upper);
7948 	}
7949 
7950 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7951 		if (!net_eq(net, dev_net(iter->dev)))
7952 			continue;
7953 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7954 					  &iter->dev->adj_list.upper);
7955 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7956 					  &dev->adj_list.lower);
7957 	}
7958 }
7959 
7960 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7961 {
7962 	struct netdev_adjacent *iter;
7963 
7964 	struct net *net = dev_net(dev);
7965 
7966 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7967 		if (!net_eq(net, dev_net(iter->dev)))
7968 			continue;
7969 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7970 					  &iter->dev->adj_list.lower);
7971 		netdev_adjacent_sysfs_add(iter->dev, dev,
7972 					  &iter->dev->adj_list.lower);
7973 	}
7974 
7975 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7976 		if (!net_eq(net, dev_net(iter->dev)))
7977 			continue;
7978 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7979 					  &iter->dev->adj_list.upper);
7980 		netdev_adjacent_sysfs_add(iter->dev, dev,
7981 					  &iter->dev->adj_list.upper);
7982 	}
7983 }
7984 
7985 void *netdev_lower_dev_get_private(struct net_device *dev,
7986 				   struct net_device *lower_dev)
7987 {
7988 	struct netdev_adjacent *lower;
7989 
7990 	if (!lower_dev)
7991 		return NULL;
7992 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7993 	if (!lower)
7994 		return NULL;
7995 
7996 	return lower->private;
7997 }
7998 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7999 
8000 
8001 /**
8002  * netdev_lower_change - Dispatch event about lower device state change
8003  * @lower_dev: device
8004  * @lower_state_info: state to dispatch
8005  *
8006  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8007  * The caller must hold the RTNL lock.
8008  */
8009 void netdev_lower_state_changed(struct net_device *lower_dev,
8010 				void *lower_state_info)
8011 {
8012 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8013 		.info.dev = lower_dev,
8014 	};
8015 
8016 	ASSERT_RTNL();
8017 	changelowerstate_info.lower_state_info = lower_state_info;
8018 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8019 				      &changelowerstate_info.info);
8020 }
8021 EXPORT_SYMBOL(netdev_lower_state_changed);
8022 
8023 static void dev_change_rx_flags(struct net_device *dev, int flags)
8024 {
8025 	const struct net_device_ops *ops = dev->netdev_ops;
8026 
8027 	if (ops->ndo_change_rx_flags)
8028 		ops->ndo_change_rx_flags(dev, flags);
8029 }
8030 
8031 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8032 {
8033 	unsigned int old_flags = dev->flags;
8034 	kuid_t uid;
8035 	kgid_t gid;
8036 
8037 	ASSERT_RTNL();
8038 
8039 	dev->flags |= IFF_PROMISC;
8040 	dev->promiscuity += inc;
8041 	if (dev->promiscuity == 0) {
8042 		/*
8043 		 * Avoid overflow.
8044 		 * If inc causes overflow, untouch promisc and return error.
8045 		 */
8046 		if (inc < 0)
8047 			dev->flags &= ~IFF_PROMISC;
8048 		else {
8049 			dev->promiscuity -= inc;
8050 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8051 				dev->name);
8052 			return -EOVERFLOW;
8053 		}
8054 	}
8055 	if (dev->flags != old_flags) {
8056 		pr_info("device %s %s promiscuous mode\n",
8057 			dev->name,
8058 			dev->flags & IFF_PROMISC ? "entered" : "left");
8059 		if (audit_enabled) {
8060 			current_uid_gid(&uid, &gid);
8061 			audit_log(audit_context(), GFP_ATOMIC,
8062 				  AUDIT_ANOM_PROMISCUOUS,
8063 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8064 				  dev->name, (dev->flags & IFF_PROMISC),
8065 				  (old_flags & IFF_PROMISC),
8066 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8067 				  from_kuid(&init_user_ns, uid),
8068 				  from_kgid(&init_user_ns, gid),
8069 				  audit_get_sessionid(current));
8070 		}
8071 
8072 		dev_change_rx_flags(dev, IFF_PROMISC);
8073 	}
8074 	if (notify)
8075 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
8076 	return 0;
8077 }
8078 
8079 /**
8080  *	dev_set_promiscuity	- update promiscuity count on a device
8081  *	@dev: device
8082  *	@inc: modifier
8083  *
8084  *	Add or remove promiscuity from a device. While the count in the device
8085  *	remains above zero the interface remains promiscuous. Once it hits zero
8086  *	the device reverts back to normal filtering operation. A negative inc
8087  *	value is used to drop promiscuity on the device.
8088  *	Return 0 if successful or a negative errno code on error.
8089  */
8090 int dev_set_promiscuity(struct net_device *dev, int inc)
8091 {
8092 	unsigned int old_flags = dev->flags;
8093 	int err;
8094 
8095 	err = __dev_set_promiscuity(dev, inc, true);
8096 	if (err < 0)
8097 		return err;
8098 	if (dev->flags != old_flags)
8099 		dev_set_rx_mode(dev);
8100 	return err;
8101 }
8102 EXPORT_SYMBOL(dev_set_promiscuity);
8103 
8104 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8105 {
8106 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8107 
8108 	ASSERT_RTNL();
8109 
8110 	dev->flags |= IFF_ALLMULTI;
8111 	dev->allmulti += inc;
8112 	if (dev->allmulti == 0) {
8113 		/*
8114 		 * Avoid overflow.
8115 		 * If inc causes overflow, untouch allmulti and return error.
8116 		 */
8117 		if (inc < 0)
8118 			dev->flags &= ~IFF_ALLMULTI;
8119 		else {
8120 			dev->allmulti -= inc;
8121 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8122 				dev->name);
8123 			return -EOVERFLOW;
8124 		}
8125 	}
8126 	if (dev->flags ^ old_flags) {
8127 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8128 		dev_set_rx_mode(dev);
8129 		if (notify)
8130 			__dev_notify_flags(dev, old_flags,
8131 					   dev->gflags ^ old_gflags);
8132 	}
8133 	return 0;
8134 }
8135 
8136 /**
8137  *	dev_set_allmulti	- update allmulti count on a device
8138  *	@dev: device
8139  *	@inc: modifier
8140  *
8141  *	Add or remove reception of all multicast frames to a device. While the
8142  *	count in the device remains above zero the interface remains listening
8143  *	to all interfaces. Once it hits zero the device reverts back to normal
8144  *	filtering operation. A negative @inc value is used to drop the counter
8145  *	when releasing a resource needing all multicasts.
8146  *	Return 0 if successful or a negative errno code on error.
8147  */
8148 
8149 int dev_set_allmulti(struct net_device *dev, int inc)
8150 {
8151 	return __dev_set_allmulti(dev, inc, true);
8152 }
8153 EXPORT_SYMBOL(dev_set_allmulti);
8154 
8155 /*
8156  *	Upload unicast and multicast address lists to device and
8157  *	configure RX filtering. When the device doesn't support unicast
8158  *	filtering it is put in promiscuous mode while unicast addresses
8159  *	are present.
8160  */
8161 void __dev_set_rx_mode(struct net_device *dev)
8162 {
8163 	const struct net_device_ops *ops = dev->netdev_ops;
8164 
8165 	/* dev_open will call this function so the list will stay sane. */
8166 	if (!(dev->flags&IFF_UP))
8167 		return;
8168 
8169 	if (!netif_device_present(dev))
8170 		return;
8171 
8172 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8173 		/* Unicast addresses changes may only happen under the rtnl,
8174 		 * therefore calling __dev_set_promiscuity here is safe.
8175 		 */
8176 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8177 			__dev_set_promiscuity(dev, 1, false);
8178 			dev->uc_promisc = true;
8179 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8180 			__dev_set_promiscuity(dev, -1, false);
8181 			dev->uc_promisc = false;
8182 		}
8183 	}
8184 
8185 	if (ops->ndo_set_rx_mode)
8186 		ops->ndo_set_rx_mode(dev);
8187 }
8188 
8189 void dev_set_rx_mode(struct net_device *dev)
8190 {
8191 	netif_addr_lock_bh(dev);
8192 	__dev_set_rx_mode(dev);
8193 	netif_addr_unlock_bh(dev);
8194 }
8195 
8196 /**
8197  *	dev_get_flags - get flags reported to userspace
8198  *	@dev: device
8199  *
8200  *	Get the combination of flag bits exported through APIs to userspace.
8201  */
8202 unsigned int dev_get_flags(const struct net_device *dev)
8203 {
8204 	unsigned int flags;
8205 
8206 	flags = (dev->flags & ~(IFF_PROMISC |
8207 				IFF_ALLMULTI |
8208 				IFF_RUNNING |
8209 				IFF_LOWER_UP |
8210 				IFF_DORMANT)) |
8211 		(dev->gflags & (IFF_PROMISC |
8212 				IFF_ALLMULTI));
8213 
8214 	if (netif_running(dev)) {
8215 		if (netif_oper_up(dev))
8216 			flags |= IFF_RUNNING;
8217 		if (netif_carrier_ok(dev))
8218 			flags |= IFF_LOWER_UP;
8219 		if (netif_dormant(dev))
8220 			flags |= IFF_DORMANT;
8221 	}
8222 
8223 	return flags;
8224 }
8225 EXPORT_SYMBOL(dev_get_flags);
8226 
8227 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8228 		       struct netlink_ext_ack *extack)
8229 {
8230 	unsigned int old_flags = dev->flags;
8231 	int ret;
8232 
8233 	ASSERT_RTNL();
8234 
8235 	/*
8236 	 *	Set the flags on our device.
8237 	 */
8238 
8239 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8240 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8241 			       IFF_AUTOMEDIA)) |
8242 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8243 				    IFF_ALLMULTI));
8244 
8245 	/*
8246 	 *	Load in the correct multicast list now the flags have changed.
8247 	 */
8248 
8249 	if ((old_flags ^ flags) & IFF_MULTICAST)
8250 		dev_change_rx_flags(dev, IFF_MULTICAST);
8251 
8252 	dev_set_rx_mode(dev);
8253 
8254 	/*
8255 	 *	Have we downed the interface. We handle IFF_UP ourselves
8256 	 *	according to user attempts to set it, rather than blindly
8257 	 *	setting it.
8258 	 */
8259 
8260 	ret = 0;
8261 	if ((old_flags ^ flags) & IFF_UP) {
8262 		if (old_flags & IFF_UP)
8263 			__dev_close(dev);
8264 		else
8265 			ret = __dev_open(dev, extack);
8266 	}
8267 
8268 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8269 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8270 		unsigned int old_flags = dev->flags;
8271 
8272 		dev->gflags ^= IFF_PROMISC;
8273 
8274 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8275 			if (dev->flags != old_flags)
8276 				dev_set_rx_mode(dev);
8277 	}
8278 
8279 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8280 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8281 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8282 	 */
8283 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8284 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8285 
8286 		dev->gflags ^= IFF_ALLMULTI;
8287 		__dev_set_allmulti(dev, inc, false);
8288 	}
8289 
8290 	return ret;
8291 }
8292 
8293 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8294 			unsigned int gchanges)
8295 {
8296 	unsigned int changes = dev->flags ^ old_flags;
8297 
8298 	if (gchanges)
8299 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8300 
8301 	if (changes & IFF_UP) {
8302 		if (dev->flags & IFF_UP)
8303 			call_netdevice_notifiers(NETDEV_UP, dev);
8304 		else
8305 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8306 	}
8307 
8308 	if (dev->flags & IFF_UP &&
8309 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8310 		struct netdev_notifier_change_info change_info = {
8311 			.info = {
8312 				.dev = dev,
8313 			},
8314 			.flags_changed = changes,
8315 		};
8316 
8317 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8318 	}
8319 }
8320 
8321 /**
8322  *	dev_change_flags - change device settings
8323  *	@dev: device
8324  *	@flags: device state flags
8325  *	@extack: netlink extended ack
8326  *
8327  *	Change settings on device based state flags. The flags are
8328  *	in the userspace exported format.
8329  */
8330 int dev_change_flags(struct net_device *dev, unsigned int flags,
8331 		     struct netlink_ext_ack *extack)
8332 {
8333 	int ret;
8334 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8335 
8336 	ret = __dev_change_flags(dev, flags, extack);
8337 	if (ret < 0)
8338 		return ret;
8339 
8340 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8341 	__dev_notify_flags(dev, old_flags, changes);
8342 	return ret;
8343 }
8344 EXPORT_SYMBOL(dev_change_flags);
8345 
8346 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8347 {
8348 	const struct net_device_ops *ops = dev->netdev_ops;
8349 
8350 	if (ops->ndo_change_mtu)
8351 		return ops->ndo_change_mtu(dev, new_mtu);
8352 
8353 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8354 	WRITE_ONCE(dev->mtu, new_mtu);
8355 	return 0;
8356 }
8357 EXPORT_SYMBOL(__dev_set_mtu);
8358 
8359 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8360 		     struct netlink_ext_ack *extack)
8361 {
8362 	/* MTU must be positive, and in range */
8363 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8364 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8365 		return -EINVAL;
8366 	}
8367 
8368 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8369 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8370 		return -EINVAL;
8371 	}
8372 	return 0;
8373 }
8374 
8375 /**
8376  *	dev_set_mtu_ext - Change maximum transfer unit
8377  *	@dev: device
8378  *	@new_mtu: new transfer unit
8379  *	@extack: netlink extended ack
8380  *
8381  *	Change the maximum transfer size of the network device.
8382  */
8383 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8384 		    struct netlink_ext_ack *extack)
8385 {
8386 	int err, orig_mtu;
8387 
8388 	if (new_mtu == dev->mtu)
8389 		return 0;
8390 
8391 	err = dev_validate_mtu(dev, new_mtu, extack);
8392 	if (err)
8393 		return err;
8394 
8395 	if (!netif_device_present(dev))
8396 		return -ENODEV;
8397 
8398 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8399 	err = notifier_to_errno(err);
8400 	if (err)
8401 		return err;
8402 
8403 	orig_mtu = dev->mtu;
8404 	err = __dev_set_mtu(dev, new_mtu);
8405 
8406 	if (!err) {
8407 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8408 						   orig_mtu);
8409 		err = notifier_to_errno(err);
8410 		if (err) {
8411 			/* setting mtu back and notifying everyone again,
8412 			 * so that they have a chance to revert changes.
8413 			 */
8414 			__dev_set_mtu(dev, orig_mtu);
8415 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8416 						     new_mtu);
8417 		}
8418 	}
8419 	return err;
8420 }
8421 
8422 int dev_set_mtu(struct net_device *dev, int new_mtu)
8423 {
8424 	struct netlink_ext_ack extack;
8425 	int err;
8426 
8427 	memset(&extack, 0, sizeof(extack));
8428 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8429 	if (err && extack._msg)
8430 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8431 	return err;
8432 }
8433 EXPORT_SYMBOL(dev_set_mtu);
8434 
8435 /**
8436  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8437  *	@dev: device
8438  *	@new_len: new tx queue length
8439  */
8440 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8441 {
8442 	unsigned int orig_len = dev->tx_queue_len;
8443 	int res;
8444 
8445 	if (new_len != (unsigned int)new_len)
8446 		return -ERANGE;
8447 
8448 	if (new_len != orig_len) {
8449 		dev->tx_queue_len = new_len;
8450 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8451 		res = notifier_to_errno(res);
8452 		if (res)
8453 			goto err_rollback;
8454 		res = dev_qdisc_change_tx_queue_len(dev);
8455 		if (res)
8456 			goto err_rollback;
8457 	}
8458 
8459 	return 0;
8460 
8461 err_rollback:
8462 	netdev_err(dev, "refused to change device tx_queue_len\n");
8463 	dev->tx_queue_len = orig_len;
8464 	return res;
8465 }
8466 
8467 /**
8468  *	dev_set_group - Change group this device belongs to
8469  *	@dev: device
8470  *	@new_group: group this device should belong to
8471  */
8472 void dev_set_group(struct net_device *dev, int new_group)
8473 {
8474 	dev->group = new_group;
8475 }
8476 EXPORT_SYMBOL(dev_set_group);
8477 
8478 /**
8479  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8480  *	@dev: device
8481  *	@addr: new address
8482  *	@extack: netlink extended ack
8483  */
8484 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8485 			      struct netlink_ext_ack *extack)
8486 {
8487 	struct netdev_notifier_pre_changeaddr_info info = {
8488 		.info.dev = dev,
8489 		.info.extack = extack,
8490 		.dev_addr = addr,
8491 	};
8492 	int rc;
8493 
8494 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8495 	return notifier_to_errno(rc);
8496 }
8497 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8498 
8499 /**
8500  *	dev_set_mac_address - Change Media Access Control Address
8501  *	@dev: device
8502  *	@sa: new address
8503  *	@extack: netlink extended ack
8504  *
8505  *	Change the hardware (MAC) address of the device
8506  */
8507 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8508 			struct netlink_ext_ack *extack)
8509 {
8510 	const struct net_device_ops *ops = dev->netdev_ops;
8511 	int err;
8512 
8513 	if (!ops->ndo_set_mac_address)
8514 		return -EOPNOTSUPP;
8515 	if (sa->sa_family != dev->type)
8516 		return -EINVAL;
8517 	if (!netif_device_present(dev))
8518 		return -ENODEV;
8519 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8520 	if (err)
8521 		return err;
8522 	err = ops->ndo_set_mac_address(dev, sa);
8523 	if (err)
8524 		return err;
8525 	dev->addr_assign_type = NET_ADDR_SET;
8526 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8527 	add_device_randomness(dev->dev_addr, dev->addr_len);
8528 	return 0;
8529 }
8530 EXPORT_SYMBOL(dev_set_mac_address);
8531 
8532 /**
8533  *	dev_change_carrier - Change device carrier
8534  *	@dev: device
8535  *	@new_carrier: new value
8536  *
8537  *	Change device carrier
8538  */
8539 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8540 {
8541 	const struct net_device_ops *ops = dev->netdev_ops;
8542 
8543 	if (!ops->ndo_change_carrier)
8544 		return -EOPNOTSUPP;
8545 	if (!netif_device_present(dev))
8546 		return -ENODEV;
8547 	return ops->ndo_change_carrier(dev, new_carrier);
8548 }
8549 EXPORT_SYMBOL(dev_change_carrier);
8550 
8551 /**
8552  *	dev_get_phys_port_id - Get device physical port ID
8553  *	@dev: device
8554  *	@ppid: port ID
8555  *
8556  *	Get device physical port ID
8557  */
8558 int dev_get_phys_port_id(struct net_device *dev,
8559 			 struct netdev_phys_item_id *ppid)
8560 {
8561 	const struct net_device_ops *ops = dev->netdev_ops;
8562 
8563 	if (!ops->ndo_get_phys_port_id)
8564 		return -EOPNOTSUPP;
8565 	return ops->ndo_get_phys_port_id(dev, ppid);
8566 }
8567 EXPORT_SYMBOL(dev_get_phys_port_id);
8568 
8569 /**
8570  *	dev_get_phys_port_name - Get device physical port name
8571  *	@dev: device
8572  *	@name: port name
8573  *	@len: limit of bytes to copy to name
8574  *
8575  *	Get device physical port name
8576  */
8577 int dev_get_phys_port_name(struct net_device *dev,
8578 			   char *name, size_t len)
8579 {
8580 	const struct net_device_ops *ops = dev->netdev_ops;
8581 	int err;
8582 
8583 	if (ops->ndo_get_phys_port_name) {
8584 		err = ops->ndo_get_phys_port_name(dev, name, len);
8585 		if (err != -EOPNOTSUPP)
8586 			return err;
8587 	}
8588 	return devlink_compat_phys_port_name_get(dev, name, len);
8589 }
8590 EXPORT_SYMBOL(dev_get_phys_port_name);
8591 
8592 /**
8593  *	dev_get_port_parent_id - Get the device's port parent identifier
8594  *	@dev: network device
8595  *	@ppid: pointer to a storage for the port's parent identifier
8596  *	@recurse: allow/disallow recursion to lower devices
8597  *
8598  *	Get the devices's port parent identifier
8599  */
8600 int dev_get_port_parent_id(struct net_device *dev,
8601 			   struct netdev_phys_item_id *ppid,
8602 			   bool recurse)
8603 {
8604 	const struct net_device_ops *ops = dev->netdev_ops;
8605 	struct netdev_phys_item_id first = { };
8606 	struct net_device *lower_dev;
8607 	struct list_head *iter;
8608 	int err;
8609 
8610 	if (ops->ndo_get_port_parent_id) {
8611 		err = ops->ndo_get_port_parent_id(dev, ppid);
8612 		if (err != -EOPNOTSUPP)
8613 			return err;
8614 	}
8615 
8616 	err = devlink_compat_switch_id_get(dev, ppid);
8617 	if (!err || err != -EOPNOTSUPP)
8618 		return err;
8619 
8620 	if (!recurse)
8621 		return -EOPNOTSUPP;
8622 
8623 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
8624 		err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8625 		if (err)
8626 			break;
8627 		if (!first.id_len)
8628 			first = *ppid;
8629 		else if (memcmp(&first, ppid, sizeof(*ppid)))
8630 			return -ENODATA;
8631 	}
8632 
8633 	return err;
8634 }
8635 EXPORT_SYMBOL(dev_get_port_parent_id);
8636 
8637 /**
8638  *	netdev_port_same_parent_id - Indicate if two network devices have
8639  *	the same port parent identifier
8640  *	@a: first network device
8641  *	@b: second network device
8642  */
8643 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8644 {
8645 	struct netdev_phys_item_id a_id = { };
8646 	struct netdev_phys_item_id b_id = { };
8647 
8648 	if (dev_get_port_parent_id(a, &a_id, true) ||
8649 	    dev_get_port_parent_id(b, &b_id, true))
8650 		return false;
8651 
8652 	return netdev_phys_item_id_same(&a_id, &b_id);
8653 }
8654 EXPORT_SYMBOL(netdev_port_same_parent_id);
8655 
8656 /**
8657  *	dev_change_proto_down - update protocol port state information
8658  *	@dev: device
8659  *	@proto_down: new value
8660  *
8661  *	This info can be used by switch drivers to set the phys state of the
8662  *	port.
8663  */
8664 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8665 {
8666 	const struct net_device_ops *ops = dev->netdev_ops;
8667 
8668 	if (!ops->ndo_change_proto_down)
8669 		return -EOPNOTSUPP;
8670 	if (!netif_device_present(dev))
8671 		return -ENODEV;
8672 	return ops->ndo_change_proto_down(dev, proto_down);
8673 }
8674 EXPORT_SYMBOL(dev_change_proto_down);
8675 
8676 /**
8677  *	dev_change_proto_down_generic - generic implementation for
8678  * 	ndo_change_proto_down that sets carrier according to
8679  * 	proto_down.
8680  *
8681  *	@dev: device
8682  *	@proto_down: new value
8683  */
8684 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8685 {
8686 	if (proto_down)
8687 		netif_carrier_off(dev);
8688 	else
8689 		netif_carrier_on(dev);
8690 	dev->proto_down = proto_down;
8691 	return 0;
8692 }
8693 EXPORT_SYMBOL(dev_change_proto_down_generic);
8694 
8695 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
8696 		    enum bpf_netdev_command cmd)
8697 {
8698 	struct netdev_bpf xdp;
8699 
8700 	if (!bpf_op)
8701 		return 0;
8702 
8703 	memset(&xdp, 0, sizeof(xdp));
8704 	xdp.command = cmd;
8705 
8706 	/* Query must always succeed. */
8707 	WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
8708 
8709 	return xdp.prog_id;
8710 }
8711 
8712 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8713 			   struct netlink_ext_ack *extack, u32 flags,
8714 			   struct bpf_prog *prog)
8715 {
8716 	bool non_hw = !(flags & XDP_FLAGS_HW_MODE);
8717 	struct bpf_prog *prev_prog = NULL;
8718 	struct netdev_bpf xdp;
8719 	int err;
8720 
8721 	if (non_hw) {
8722 		prev_prog = bpf_prog_by_id(__dev_xdp_query(dev, bpf_op,
8723 							   XDP_QUERY_PROG));
8724 		if (IS_ERR(prev_prog))
8725 			prev_prog = NULL;
8726 	}
8727 
8728 	memset(&xdp, 0, sizeof(xdp));
8729 	if (flags & XDP_FLAGS_HW_MODE)
8730 		xdp.command = XDP_SETUP_PROG_HW;
8731 	else
8732 		xdp.command = XDP_SETUP_PROG;
8733 	xdp.extack = extack;
8734 	xdp.flags = flags;
8735 	xdp.prog = prog;
8736 
8737 	err = bpf_op(dev, &xdp);
8738 	if (!err && non_hw)
8739 		bpf_prog_change_xdp(prev_prog, prog);
8740 
8741 	if (prev_prog)
8742 		bpf_prog_put(prev_prog);
8743 
8744 	return err;
8745 }
8746 
8747 static void dev_xdp_uninstall(struct net_device *dev)
8748 {
8749 	struct netdev_bpf xdp;
8750 	bpf_op_t ndo_bpf;
8751 
8752 	/* Remove generic XDP */
8753 	WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8754 
8755 	/* Remove from the driver */
8756 	ndo_bpf = dev->netdev_ops->ndo_bpf;
8757 	if (!ndo_bpf)
8758 		return;
8759 
8760 	memset(&xdp, 0, sizeof(xdp));
8761 	xdp.command = XDP_QUERY_PROG;
8762 	WARN_ON(ndo_bpf(dev, &xdp));
8763 	if (xdp.prog_id)
8764 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8765 					NULL));
8766 
8767 	/* Remove HW offload */
8768 	memset(&xdp, 0, sizeof(xdp));
8769 	xdp.command = XDP_QUERY_PROG_HW;
8770 	if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8771 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8772 					NULL));
8773 }
8774 
8775 /**
8776  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
8777  *	@dev: device
8778  *	@extack: netlink extended ack
8779  *	@fd: new program fd or negative value to clear
8780  *	@expected_fd: old program fd that userspace expects to replace or clear
8781  *	@flags: xdp-related flags
8782  *
8783  *	Set or clear a bpf program for a device
8784  */
8785 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8786 		      int fd, int expected_fd, u32 flags)
8787 {
8788 	const struct net_device_ops *ops = dev->netdev_ops;
8789 	enum bpf_netdev_command query;
8790 	u32 prog_id, expected_id = 0;
8791 	bpf_op_t bpf_op, bpf_chk;
8792 	struct bpf_prog *prog;
8793 	bool offload;
8794 	int err;
8795 
8796 	ASSERT_RTNL();
8797 
8798 	offload = flags & XDP_FLAGS_HW_MODE;
8799 	query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8800 
8801 	bpf_op = bpf_chk = ops->ndo_bpf;
8802 	if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8803 		NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8804 		return -EOPNOTSUPP;
8805 	}
8806 	if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8807 		bpf_op = generic_xdp_install;
8808 	if (bpf_op == bpf_chk)
8809 		bpf_chk = generic_xdp_install;
8810 
8811 	prog_id = __dev_xdp_query(dev, bpf_op, query);
8812 	if (flags & XDP_FLAGS_REPLACE) {
8813 		if (expected_fd >= 0) {
8814 			prog = bpf_prog_get_type_dev(expected_fd,
8815 						     BPF_PROG_TYPE_XDP,
8816 						     bpf_op == ops->ndo_bpf);
8817 			if (IS_ERR(prog))
8818 				return PTR_ERR(prog);
8819 			expected_id = prog->aux->id;
8820 			bpf_prog_put(prog);
8821 		}
8822 
8823 		if (prog_id != expected_id) {
8824 			NL_SET_ERR_MSG(extack, "Active program does not match expected");
8825 			return -EEXIST;
8826 		}
8827 	}
8828 	if (fd >= 0) {
8829 		if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8830 			NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8831 			return -EEXIST;
8832 		}
8833 
8834 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && prog_id) {
8835 			NL_SET_ERR_MSG(extack, "XDP program already attached");
8836 			return -EBUSY;
8837 		}
8838 
8839 		prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8840 					     bpf_op == ops->ndo_bpf);
8841 		if (IS_ERR(prog))
8842 			return PTR_ERR(prog);
8843 
8844 		if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8845 			NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8846 			bpf_prog_put(prog);
8847 			return -EINVAL;
8848 		}
8849 
8850 		if (prog->expected_attach_type == BPF_XDP_DEVMAP) {
8851 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
8852 			bpf_prog_put(prog);
8853 			return -EINVAL;
8854 		}
8855 
8856 		/* prog->aux->id may be 0 for orphaned device-bound progs */
8857 		if (prog->aux->id && prog->aux->id == prog_id) {
8858 			bpf_prog_put(prog);
8859 			return 0;
8860 		}
8861 	} else {
8862 		if (!prog_id)
8863 			return 0;
8864 		prog = NULL;
8865 	}
8866 
8867 	err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8868 	if (err < 0 && prog)
8869 		bpf_prog_put(prog);
8870 
8871 	return err;
8872 }
8873 
8874 /**
8875  *	dev_new_index	-	allocate an ifindex
8876  *	@net: the applicable net namespace
8877  *
8878  *	Returns a suitable unique value for a new device interface
8879  *	number.  The caller must hold the rtnl semaphore or the
8880  *	dev_base_lock to be sure it remains unique.
8881  */
8882 static int dev_new_index(struct net *net)
8883 {
8884 	int ifindex = net->ifindex;
8885 
8886 	for (;;) {
8887 		if (++ifindex <= 0)
8888 			ifindex = 1;
8889 		if (!__dev_get_by_index(net, ifindex))
8890 			return net->ifindex = ifindex;
8891 	}
8892 }
8893 
8894 /* Delayed registration/unregisteration */
8895 static LIST_HEAD(net_todo_list);
8896 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8897 
8898 static void net_set_todo(struct net_device *dev)
8899 {
8900 	list_add_tail(&dev->todo_list, &net_todo_list);
8901 	dev_net(dev)->dev_unreg_count++;
8902 }
8903 
8904 static void rollback_registered_many(struct list_head *head)
8905 {
8906 	struct net_device *dev, *tmp;
8907 	LIST_HEAD(close_head);
8908 
8909 	BUG_ON(dev_boot_phase);
8910 	ASSERT_RTNL();
8911 
8912 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8913 		/* Some devices call without registering
8914 		 * for initialization unwind. Remove those
8915 		 * devices and proceed with the remaining.
8916 		 */
8917 		if (dev->reg_state == NETREG_UNINITIALIZED) {
8918 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8919 				 dev->name, dev);
8920 
8921 			WARN_ON(1);
8922 			list_del(&dev->unreg_list);
8923 			continue;
8924 		}
8925 		dev->dismantle = true;
8926 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
8927 	}
8928 
8929 	/* If device is running, close it first. */
8930 	list_for_each_entry(dev, head, unreg_list)
8931 		list_add_tail(&dev->close_list, &close_head);
8932 	dev_close_many(&close_head, true);
8933 
8934 	list_for_each_entry(dev, head, unreg_list) {
8935 		/* And unlink it from device chain. */
8936 		unlist_netdevice(dev);
8937 
8938 		dev->reg_state = NETREG_UNREGISTERING;
8939 	}
8940 	flush_all_backlogs();
8941 
8942 	synchronize_net();
8943 
8944 	list_for_each_entry(dev, head, unreg_list) {
8945 		struct sk_buff *skb = NULL;
8946 
8947 		/* Shutdown queueing discipline. */
8948 		dev_shutdown(dev);
8949 
8950 		dev_xdp_uninstall(dev);
8951 
8952 		/* Notify protocols, that we are about to destroy
8953 		 * this device. They should clean all the things.
8954 		 */
8955 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8956 
8957 		if (!dev->rtnl_link_ops ||
8958 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8959 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8960 						     GFP_KERNEL, NULL, 0);
8961 
8962 		/*
8963 		 *	Flush the unicast and multicast chains
8964 		 */
8965 		dev_uc_flush(dev);
8966 		dev_mc_flush(dev);
8967 
8968 		netdev_name_node_alt_flush(dev);
8969 		netdev_name_node_free(dev->name_node);
8970 
8971 		if (dev->netdev_ops->ndo_uninit)
8972 			dev->netdev_ops->ndo_uninit(dev);
8973 
8974 		if (skb)
8975 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8976 
8977 		/* Notifier chain MUST detach us all upper devices. */
8978 		WARN_ON(netdev_has_any_upper_dev(dev));
8979 		WARN_ON(netdev_has_any_lower_dev(dev));
8980 
8981 		/* Remove entries from kobject tree */
8982 		netdev_unregister_kobject(dev);
8983 #ifdef CONFIG_XPS
8984 		/* Remove XPS queueing entries */
8985 		netif_reset_xps_queues_gt(dev, 0);
8986 #endif
8987 	}
8988 
8989 	synchronize_net();
8990 
8991 	list_for_each_entry(dev, head, unreg_list)
8992 		dev_put(dev);
8993 }
8994 
8995 static void rollback_registered(struct net_device *dev)
8996 {
8997 	LIST_HEAD(single);
8998 
8999 	list_add(&dev->unreg_list, &single);
9000 	rollback_registered_many(&single);
9001 	list_del(&single);
9002 }
9003 
9004 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9005 	struct net_device *upper, netdev_features_t features)
9006 {
9007 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9008 	netdev_features_t feature;
9009 	int feature_bit;
9010 
9011 	for_each_netdev_feature(upper_disables, feature_bit) {
9012 		feature = __NETIF_F_BIT(feature_bit);
9013 		if (!(upper->wanted_features & feature)
9014 		    && (features & feature)) {
9015 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9016 				   &feature, upper->name);
9017 			features &= ~feature;
9018 		}
9019 	}
9020 
9021 	return features;
9022 }
9023 
9024 static void netdev_sync_lower_features(struct net_device *upper,
9025 	struct net_device *lower, netdev_features_t features)
9026 {
9027 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9028 	netdev_features_t feature;
9029 	int feature_bit;
9030 
9031 	for_each_netdev_feature(upper_disables, feature_bit) {
9032 		feature = __NETIF_F_BIT(feature_bit);
9033 		if (!(features & feature) && (lower->features & feature)) {
9034 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9035 				   &feature, lower->name);
9036 			lower->wanted_features &= ~feature;
9037 			__netdev_update_features(lower);
9038 
9039 			if (unlikely(lower->features & feature))
9040 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9041 					    &feature, lower->name);
9042 			else
9043 				netdev_features_change(lower);
9044 		}
9045 	}
9046 }
9047 
9048 static netdev_features_t netdev_fix_features(struct net_device *dev,
9049 	netdev_features_t features)
9050 {
9051 	/* Fix illegal checksum combinations */
9052 	if ((features & NETIF_F_HW_CSUM) &&
9053 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9054 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9055 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9056 	}
9057 
9058 	/* TSO requires that SG is present as well. */
9059 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9060 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9061 		features &= ~NETIF_F_ALL_TSO;
9062 	}
9063 
9064 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9065 					!(features & NETIF_F_IP_CSUM)) {
9066 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9067 		features &= ~NETIF_F_TSO;
9068 		features &= ~NETIF_F_TSO_ECN;
9069 	}
9070 
9071 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9072 					 !(features & NETIF_F_IPV6_CSUM)) {
9073 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9074 		features &= ~NETIF_F_TSO6;
9075 	}
9076 
9077 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9078 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9079 		features &= ~NETIF_F_TSO_MANGLEID;
9080 
9081 	/* TSO ECN requires that TSO is present as well. */
9082 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9083 		features &= ~NETIF_F_TSO_ECN;
9084 
9085 	/* Software GSO depends on SG. */
9086 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9087 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9088 		features &= ~NETIF_F_GSO;
9089 	}
9090 
9091 	/* GSO partial features require GSO partial be set */
9092 	if ((features & dev->gso_partial_features) &&
9093 	    !(features & NETIF_F_GSO_PARTIAL)) {
9094 		netdev_dbg(dev,
9095 			   "Dropping partially supported GSO features since no GSO partial.\n");
9096 		features &= ~dev->gso_partial_features;
9097 	}
9098 
9099 	if (!(features & NETIF_F_RXCSUM)) {
9100 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9101 		 * successfully merged by hardware must also have the
9102 		 * checksum verified by hardware.  If the user does not
9103 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9104 		 */
9105 		if (features & NETIF_F_GRO_HW) {
9106 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9107 			features &= ~NETIF_F_GRO_HW;
9108 		}
9109 	}
9110 
9111 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9112 	if (features & NETIF_F_RXFCS) {
9113 		if (features & NETIF_F_LRO) {
9114 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9115 			features &= ~NETIF_F_LRO;
9116 		}
9117 
9118 		if (features & NETIF_F_GRO_HW) {
9119 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9120 			features &= ~NETIF_F_GRO_HW;
9121 		}
9122 	}
9123 
9124 	return features;
9125 }
9126 
9127 int __netdev_update_features(struct net_device *dev)
9128 {
9129 	struct net_device *upper, *lower;
9130 	netdev_features_t features;
9131 	struct list_head *iter;
9132 	int err = -1;
9133 
9134 	ASSERT_RTNL();
9135 
9136 	features = netdev_get_wanted_features(dev);
9137 
9138 	if (dev->netdev_ops->ndo_fix_features)
9139 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9140 
9141 	/* driver might be less strict about feature dependencies */
9142 	features = netdev_fix_features(dev, features);
9143 
9144 	/* some features can't be enabled if they're off an an upper device */
9145 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9146 		features = netdev_sync_upper_features(dev, upper, features);
9147 
9148 	if (dev->features == features)
9149 		goto sync_lower;
9150 
9151 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9152 		&dev->features, &features);
9153 
9154 	if (dev->netdev_ops->ndo_set_features)
9155 		err = dev->netdev_ops->ndo_set_features(dev, features);
9156 	else
9157 		err = 0;
9158 
9159 	if (unlikely(err < 0)) {
9160 		netdev_err(dev,
9161 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9162 			err, &features, &dev->features);
9163 		/* return non-0 since some features might have changed and
9164 		 * it's better to fire a spurious notification than miss it
9165 		 */
9166 		return -1;
9167 	}
9168 
9169 sync_lower:
9170 	/* some features must be disabled on lower devices when disabled
9171 	 * on an upper device (think: bonding master or bridge)
9172 	 */
9173 	netdev_for_each_lower_dev(dev, lower, iter)
9174 		netdev_sync_lower_features(dev, lower, features);
9175 
9176 	if (!err) {
9177 		netdev_features_t diff = features ^ dev->features;
9178 
9179 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9180 			/* udp_tunnel_{get,drop}_rx_info both need
9181 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9182 			 * device, or they won't do anything.
9183 			 * Thus we need to update dev->features
9184 			 * *before* calling udp_tunnel_get_rx_info,
9185 			 * but *after* calling udp_tunnel_drop_rx_info.
9186 			 */
9187 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9188 				dev->features = features;
9189 				udp_tunnel_get_rx_info(dev);
9190 			} else {
9191 				udp_tunnel_drop_rx_info(dev);
9192 			}
9193 		}
9194 
9195 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9196 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9197 				dev->features = features;
9198 				err |= vlan_get_rx_ctag_filter_info(dev);
9199 			} else {
9200 				vlan_drop_rx_ctag_filter_info(dev);
9201 			}
9202 		}
9203 
9204 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9205 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9206 				dev->features = features;
9207 				err |= vlan_get_rx_stag_filter_info(dev);
9208 			} else {
9209 				vlan_drop_rx_stag_filter_info(dev);
9210 			}
9211 		}
9212 
9213 		dev->features = features;
9214 	}
9215 
9216 	return err < 0 ? 0 : 1;
9217 }
9218 
9219 /**
9220  *	netdev_update_features - recalculate device features
9221  *	@dev: the device to check
9222  *
9223  *	Recalculate dev->features set and send notifications if it
9224  *	has changed. Should be called after driver or hardware dependent
9225  *	conditions might have changed that influence the features.
9226  */
9227 void netdev_update_features(struct net_device *dev)
9228 {
9229 	if (__netdev_update_features(dev))
9230 		netdev_features_change(dev);
9231 }
9232 EXPORT_SYMBOL(netdev_update_features);
9233 
9234 /**
9235  *	netdev_change_features - recalculate device features
9236  *	@dev: the device to check
9237  *
9238  *	Recalculate dev->features set and send notifications even
9239  *	if they have not changed. Should be called instead of
9240  *	netdev_update_features() if also dev->vlan_features might
9241  *	have changed to allow the changes to be propagated to stacked
9242  *	VLAN devices.
9243  */
9244 void netdev_change_features(struct net_device *dev)
9245 {
9246 	__netdev_update_features(dev);
9247 	netdev_features_change(dev);
9248 }
9249 EXPORT_SYMBOL(netdev_change_features);
9250 
9251 /**
9252  *	netif_stacked_transfer_operstate -	transfer operstate
9253  *	@rootdev: the root or lower level device to transfer state from
9254  *	@dev: the device to transfer operstate to
9255  *
9256  *	Transfer operational state from root to device. This is normally
9257  *	called when a stacking relationship exists between the root
9258  *	device and the device(a leaf device).
9259  */
9260 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9261 					struct net_device *dev)
9262 {
9263 	if (rootdev->operstate == IF_OPER_DORMANT)
9264 		netif_dormant_on(dev);
9265 	else
9266 		netif_dormant_off(dev);
9267 
9268 	if (rootdev->operstate == IF_OPER_TESTING)
9269 		netif_testing_on(dev);
9270 	else
9271 		netif_testing_off(dev);
9272 
9273 	if (netif_carrier_ok(rootdev))
9274 		netif_carrier_on(dev);
9275 	else
9276 		netif_carrier_off(dev);
9277 }
9278 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9279 
9280 static int netif_alloc_rx_queues(struct net_device *dev)
9281 {
9282 	unsigned int i, count = dev->num_rx_queues;
9283 	struct netdev_rx_queue *rx;
9284 	size_t sz = count * sizeof(*rx);
9285 	int err = 0;
9286 
9287 	BUG_ON(count < 1);
9288 
9289 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9290 	if (!rx)
9291 		return -ENOMEM;
9292 
9293 	dev->_rx = rx;
9294 
9295 	for (i = 0; i < count; i++) {
9296 		rx[i].dev = dev;
9297 
9298 		/* XDP RX-queue setup */
9299 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
9300 		if (err < 0)
9301 			goto err_rxq_info;
9302 	}
9303 	return 0;
9304 
9305 err_rxq_info:
9306 	/* Rollback successful reg's and free other resources */
9307 	while (i--)
9308 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9309 	kvfree(dev->_rx);
9310 	dev->_rx = NULL;
9311 	return err;
9312 }
9313 
9314 static void netif_free_rx_queues(struct net_device *dev)
9315 {
9316 	unsigned int i, count = dev->num_rx_queues;
9317 
9318 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9319 	if (!dev->_rx)
9320 		return;
9321 
9322 	for (i = 0; i < count; i++)
9323 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9324 
9325 	kvfree(dev->_rx);
9326 }
9327 
9328 static void netdev_init_one_queue(struct net_device *dev,
9329 				  struct netdev_queue *queue, void *_unused)
9330 {
9331 	/* Initialize queue lock */
9332 	spin_lock_init(&queue->_xmit_lock);
9333 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9334 	queue->xmit_lock_owner = -1;
9335 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9336 	queue->dev = dev;
9337 #ifdef CONFIG_BQL
9338 	dql_init(&queue->dql, HZ);
9339 #endif
9340 }
9341 
9342 static void netif_free_tx_queues(struct net_device *dev)
9343 {
9344 	kvfree(dev->_tx);
9345 }
9346 
9347 static int netif_alloc_netdev_queues(struct net_device *dev)
9348 {
9349 	unsigned int count = dev->num_tx_queues;
9350 	struct netdev_queue *tx;
9351 	size_t sz = count * sizeof(*tx);
9352 
9353 	if (count < 1 || count > 0xffff)
9354 		return -EINVAL;
9355 
9356 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9357 	if (!tx)
9358 		return -ENOMEM;
9359 
9360 	dev->_tx = tx;
9361 
9362 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9363 	spin_lock_init(&dev->tx_global_lock);
9364 
9365 	return 0;
9366 }
9367 
9368 void netif_tx_stop_all_queues(struct net_device *dev)
9369 {
9370 	unsigned int i;
9371 
9372 	for (i = 0; i < dev->num_tx_queues; i++) {
9373 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9374 
9375 		netif_tx_stop_queue(txq);
9376 	}
9377 }
9378 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9379 
9380 void netdev_update_lockdep_key(struct net_device *dev)
9381 {
9382 	lockdep_unregister_key(&dev->addr_list_lock_key);
9383 	lockdep_register_key(&dev->addr_list_lock_key);
9384 
9385 	lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
9386 }
9387 EXPORT_SYMBOL(netdev_update_lockdep_key);
9388 
9389 /**
9390  *	register_netdevice	- register a network device
9391  *	@dev: device to register
9392  *
9393  *	Take a completed network device structure and add it to the kernel
9394  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9395  *	chain. 0 is returned on success. A negative errno code is returned
9396  *	on a failure to set up the device, or if the name is a duplicate.
9397  *
9398  *	Callers must hold the rtnl semaphore. You may want
9399  *	register_netdev() instead of this.
9400  *
9401  *	BUGS:
9402  *	The locking appears insufficient to guarantee two parallel registers
9403  *	will not get the same name.
9404  */
9405 
9406 int register_netdevice(struct net_device *dev)
9407 {
9408 	int ret;
9409 	struct net *net = dev_net(dev);
9410 
9411 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9412 		     NETDEV_FEATURE_COUNT);
9413 	BUG_ON(dev_boot_phase);
9414 	ASSERT_RTNL();
9415 
9416 	might_sleep();
9417 
9418 	/* When net_device's are persistent, this will be fatal. */
9419 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9420 	BUG_ON(!net);
9421 
9422 	ret = ethtool_check_ops(dev->ethtool_ops);
9423 	if (ret)
9424 		return ret;
9425 
9426 	spin_lock_init(&dev->addr_list_lock);
9427 	lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
9428 
9429 	ret = dev_get_valid_name(net, dev, dev->name);
9430 	if (ret < 0)
9431 		goto out;
9432 
9433 	ret = -ENOMEM;
9434 	dev->name_node = netdev_name_node_head_alloc(dev);
9435 	if (!dev->name_node)
9436 		goto out;
9437 
9438 	/* Init, if this function is available */
9439 	if (dev->netdev_ops->ndo_init) {
9440 		ret = dev->netdev_ops->ndo_init(dev);
9441 		if (ret) {
9442 			if (ret > 0)
9443 				ret = -EIO;
9444 			goto err_free_name;
9445 		}
9446 	}
9447 
9448 	if (((dev->hw_features | dev->features) &
9449 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
9450 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9451 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9452 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9453 		ret = -EINVAL;
9454 		goto err_uninit;
9455 	}
9456 
9457 	ret = -EBUSY;
9458 	if (!dev->ifindex)
9459 		dev->ifindex = dev_new_index(net);
9460 	else if (__dev_get_by_index(net, dev->ifindex))
9461 		goto err_uninit;
9462 
9463 	/* Transfer changeable features to wanted_features and enable
9464 	 * software offloads (GSO and GRO).
9465 	 */
9466 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9467 	dev->features |= NETIF_F_SOFT_FEATURES;
9468 
9469 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
9470 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9471 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9472 	}
9473 
9474 	dev->wanted_features = dev->features & dev->hw_features;
9475 
9476 	if (!(dev->flags & IFF_LOOPBACK))
9477 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
9478 
9479 	/* If IPv4 TCP segmentation offload is supported we should also
9480 	 * allow the device to enable segmenting the frame with the option
9481 	 * of ignoring a static IP ID value.  This doesn't enable the
9482 	 * feature itself but allows the user to enable it later.
9483 	 */
9484 	if (dev->hw_features & NETIF_F_TSO)
9485 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
9486 	if (dev->vlan_features & NETIF_F_TSO)
9487 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9488 	if (dev->mpls_features & NETIF_F_TSO)
9489 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9490 	if (dev->hw_enc_features & NETIF_F_TSO)
9491 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9492 
9493 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9494 	 */
9495 	dev->vlan_features |= NETIF_F_HIGHDMA;
9496 
9497 	/* Make NETIF_F_SG inheritable to tunnel devices.
9498 	 */
9499 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9500 
9501 	/* Make NETIF_F_SG inheritable to MPLS.
9502 	 */
9503 	dev->mpls_features |= NETIF_F_SG;
9504 
9505 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9506 	ret = notifier_to_errno(ret);
9507 	if (ret)
9508 		goto err_uninit;
9509 
9510 	ret = netdev_register_kobject(dev);
9511 	if (ret) {
9512 		dev->reg_state = NETREG_UNREGISTERED;
9513 		goto err_uninit;
9514 	}
9515 	dev->reg_state = NETREG_REGISTERED;
9516 
9517 	__netdev_update_features(dev);
9518 
9519 	/*
9520 	 *	Default initial state at registry is that the
9521 	 *	device is present.
9522 	 */
9523 
9524 	set_bit(__LINK_STATE_PRESENT, &dev->state);
9525 
9526 	linkwatch_init_dev(dev);
9527 
9528 	dev_init_scheduler(dev);
9529 	dev_hold(dev);
9530 	list_netdevice(dev);
9531 	add_device_randomness(dev->dev_addr, dev->addr_len);
9532 
9533 	/* If the device has permanent device address, driver should
9534 	 * set dev_addr and also addr_assign_type should be set to
9535 	 * NET_ADDR_PERM (default value).
9536 	 */
9537 	if (dev->addr_assign_type == NET_ADDR_PERM)
9538 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9539 
9540 	/* Notify protocols, that a new device appeared. */
9541 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
9542 	ret = notifier_to_errno(ret);
9543 	if (ret) {
9544 		rollback_registered(dev);
9545 		rcu_barrier();
9546 
9547 		dev->reg_state = NETREG_UNREGISTERED;
9548 	}
9549 	/*
9550 	 *	Prevent userspace races by waiting until the network
9551 	 *	device is fully setup before sending notifications.
9552 	 */
9553 	if (!dev->rtnl_link_ops ||
9554 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9555 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9556 
9557 out:
9558 	return ret;
9559 
9560 err_uninit:
9561 	if (dev->netdev_ops->ndo_uninit)
9562 		dev->netdev_ops->ndo_uninit(dev);
9563 	if (dev->priv_destructor)
9564 		dev->priv_destructor(dev);
9565 err_free_name:
9566 	netdev_name_node_free(dev->name_node);
9567 	goto out;
9568 }
9569 EXPORT_SYMBOL(register_netdevice);
9570 
9571 /**
9572  *	init_dummy_netdev	- init a dummy network device for NAPI
9573  *	@dev: device to init
9574  *
9575  *	This takes a network device structure and initialize the minimum
9576  *	amount of fields so it can be used to schedule NAPI polls without
9577  *	registering a full blown interface. This is to be used by drivers
9578  *	that need to tie several hardware interfaces to a single NAPI
9579  *	poll scheduler due to HW limitations.
9580  */
9581 int init_dummy_netdev(struct net_device *dev)
9582 {
9583 	/* Clear everything. Note we don't initialize spinlocks
9584 	 * are they aren't supposed to be taken by any of the
9585 	 * NAPI code and this dummy netdev is supposed to be
9586 	 * only ever used for NAPI polls
9587 	 */
9588 	memset(dev, 0, sizeof(struct net_device));
9589 
9590 	/* make sure we BUG if trying to hit standard
9591 	 * register/unregister code path
9592 	 */
9593 	dev->reg_state = NETREG_DUMMY;
9594 
9595 	/* NAPI wants this */
9596 	INIT_LIST_HEAD(&dev->napi_list);
9597 
9598 	/* a dummy interface is started by default */
9599 	set_bit(__LINK_STATE_PRESENT, &dev->state);
9600 	set_bit(__LINK_STATE_START, &dev->state);
9601 
9602 	/* napi_busy_loop stats accounting wants this */
9603 	dev_net_set(dev, &init_net);
9604 
9605 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
9606 	 * because users of this 'device' dont need to change
9607 	 * its refcount.
9608 	 */
9609 
9610 	return 0;
9611 }
9612 EXPORT_SYMBOL_GPL(init_dummy_netdev);
9613 
9614 
9615 /**
9616  *	register_netdev	- register a network device
9617  *	@dev: device to register
9618  *
9619  *	Take a completed network device structure and add it to the kernel
9620  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9621  *	chain. 0 is returned on success. A negative errno code is returned
9622  *	on a failure to set up the device, or if the name is a duplicate.
9623  *
9624  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
9625  *	and expands the device name if you passed a format string to
9626  *	alloc_netdev.
9627  */
9628 int register_netdev(struct net_device *dev)
9629 {
9630 	int err;
9631 
9632 	if (rtnl_lock_killable())
9633 		return -EINTR;
9634 	err = register_netdevice(dev);
9635 	rtnl_unlock();
9636 	return err;
9637 }
9638 EXPORT_SYMBOL(register_netdev);
9639 
9640 int netdev_refcnt_read(const struct net_device *dev)
9641 {
9642 	int i, refcnt = 0;
9643 
9644 	for_each_possible_cpu(i)
9645 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
9646 	return refcnt;
9647 }
9648 EXPORT_SYMBOL(netdev_refcnt_read);
9649 
9650 /**
9651  * netdev_wait_allrefs - wait until all references are gone.
9652  * @dev: target net_device
9653  *
9654  * This is called when unregistering network devices.
9655  *
9656  * Any protocol or device that holds a reference should register
9657  * for netdevice notification, and cleanup and put back the
9658  * reference if they receive an UNREGISTER event.
9659  * We can get stuck here if buggy protocols don't correctly
9660  * call dev_put.
9661  */
9662 static void netdev_wait_allrefs(struct net_device *dev)
9663 {
9664 	unsigned long rebroadcast_time, warning_time;
9665 	int refcnt;
9666 
9667 	linkwatch_forget_dev(dev);
9668 
9669 	rebroadcast_time = warning_time = jiffies;
9670 	refcnt = netdev_refcnt_read(dev);
9671 
9672 	while (refcnt != 0) {
9673 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
9674 			rtnl_lock();
9675 
9676 			/* Rebroadcast unregister notification */
9677 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9678 
9679 			__rtnl_unlock();
9680 			rcu_barrier();
9681 			rtnl_lock();
9682 
9683 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
9684 				     &dev->state)) {
9685 				/* We must not have linkwatch events
9686 				 * pending on unregister. If this
9687 				 * happens, we simply run the queue
9688 				 * unscheduled, resulting in a noop
9689 				 * for this device.
9690 				 */
9691 				linkwatch_run_queue();
9692 			}
9693 
9694 			__rtnl_unlock();
9695 
9696 			rebroadcast_time = jiffies;
9697 		}
9698 
9699 		msleep(250);
9700 
9701 		refcnt = netdev_refcnt_read(dev);
9702 
9703 		if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
9704 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
9705 				 dev->name, refcnt);
9706 			warning_time = jiffies;
9707 		}
9708 	}
9709 }
9710 
9711 /* The sequence is:
9712  *
9713  *	rtnl_lock();
9714  *	...
9715  *	register_netdevice(x1);
9716  *	register_netdevice(x2);
9717  *	...
9718  *	unregister_netdevice(y1);
9719  *	unregister_netdevice(y2);
9720  *      ...
9721  *	rtnl_unlock();
9722  *	free_netdev(y1);
9723  *	free_netdev(y2);
9724  *
9725  * We are invoked by rtnl_unlock().
9726  * This allows us to deal with problems:
9727  * 1) We can delete sysfs objects which invoke hotplug
9728  *    without deadlocking with linkwatch via keventd.
9729  * 2) Since we run with the RTNL semaphore not held, we can sleep
9730  *    safely in order to wait for the netdev refcnt to drop to zero.
9731  *
9732  * We must not return until all unregister events added during
9733  * the interval the lock was held have been completed.
9734  */
9735 void netdev_run_todo(void)
9736 {
9737 	struct list_head list;
9738 
9739 	/* Snapshot list, allow later requests */
9740 	list_replace_init(&net_todo_list, &list);
9741 
9742 	__rtnl_unlock();
9743 
9744 
9745 	/* Wait for rcu callbacks to finish before next phase */
9746 	if (!list_empty(&list))
9747 		rcu_barrier();
9748 
9749 	while (!list_empty(&list)) {
9750 		struct net_device *dev
9751 			= list_first_entry(&list, struct net_device, todo_list);
9752 		list_del(&dev->todo_list);
9753 
9754 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
9755 			pr_err("network todo '%s' but state %d\n",
9756 			       dev->name, dev->reg_state);
9757 			dump_stack();
9758 			continue;
9759 		}
9760 
9761 		dev->reg_state = NETREG_UNREGISTERED;
9762 
9763 		netdev_wait_allrefs(dev);
9764 
9765 		/* paranoia */
9766 		BUG_ON(netdev_refcnt_read(dev));
9767 		BUG_ON(!list_empty(&dev->ptype_all));
9768 		BUG_ON(!list_empty(&dev->ptype_specific));
9769 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
9770 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
9771 #if IS_ENABLED(CONFIG_DECNET)
9772 		WARN_ON(dev->dn_ptr);
9773 #endif
9774 		if (dev->priv_destructor)
9775 			dev->priv_destructor(dev);
9776 		if (dev->needs_free_netdev)
9777 			free_netdev(dev);
9778 
9779 		/* Report a network device has been unregistered */
9780 		rtnl_lock();
9781 		dev_net(dev)->dev_unreg_count--;
9782 		__rtnl_unlock();
9783 		wake_up(&netdev_unregistering_wq);
9784 
9785 		/* Free network device */
9786 		kobject_put(&dev->dev.kobj);
9787 	}
9788 }
9789 
9790 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9791  * all the same fields in the same order as net_device_stats, with only
9792  * the type differing, but rtnl_link_stats64 may have additional fields
9793  * at the end for newer counters.
9794  */
9795 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9796 			     const struct net_device_stats *netdev_stats)
9797 {
9798 #if BITS_PER_LONG == 64
9799 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9800 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9801 	/* zero out counters that only exist in rtnl_link_stats64 */
9802 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
9803 	       sizeof(*stats64) - sizeof(*netdev_stats));
9804 #else
9805 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9806 	const unsigned long *src = (const unsigned long *)netdev_stats;
9807 	u64 *dst = (u64 *)stats64;
9808 
9809 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9810 	for (i = 0; i < n; i++)
9811 		dst[i] = src[i];
9812 	/* zero out counters that only exist in rtnl_link_stats64 */
9813 	memset((char *)stats64 + n * sizeof(u64), 0,
9814 	       sizeof(*stats64) - n * sizeof(u64));
9815 #endif
9816 }
9817 EXPORT_SYMBOL(netdev_stats_to_stats64);
9818 
9819 /**
9820  *	dev_get_stats	- get network device statistics
9821  *	@dev: device to get statistics from
9822  *	@storage: place to store stats
9823  *
9824  *	Get network statistics from device. Return @storage.
9825  *	The device driver may provide its own method by setting
9826  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9827  *	otherwise the internal statistics structure is used.
9828  */
9829 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9830 					struct rtnl_link_stats64 *storage)
9831 {
9832 	const struct net_device_ops *ops = dev->netdev_ops;
9833 
9834 	if (ops->ndo_get_stats64) {
9835 		memset(storage, 0, sizeof(*storage));
9836 		ops->ndo_get_stats64(dev, storage);
9837 	} else if (ops->ndo_get_stats) {
9838 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9839 	} else {
9840 		netdev_stats_to_stats64(storage, &dev->stats);
9841 	}
9842 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9843 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9844 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9845 	return storage;
9846 }
9847 EXPORT_SYMBOL(dev_get_stats);
9848 
9849 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9850 {
9851 	struct netdev_queue *queue = dev_ingress_queue(dev);
9852 
9853 #ifdef CONFIG_NET_CLS_ACT
9854 	if (queue)
9855 		return queue;
9856 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9857 	if (!queue)
9858 		return NULL;
9859 	netdev_init_one_queue(dev, queue, NULL);
9860 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9861 	queue->qdisc_sleeping = &noop_qdisc;
9862 	rcu_assign_pointer(dev->ingress_queue, queue);
9863 #endif
9864 	return queue;
9865 }
9866 
9867 static const struct ethtool_ops default_ethtool_ops;
9868 
9869 void netdev_set_default_ethtool_ops(struct net_device *dev,
9870 				    const struct ethtool_ops *ops)
9871 {
9872 	if (dev->ethtool_ops == &default_ethtool_ops)
9873 		dev->ethtool_ops = ops;
9874 }
9875 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9876 
9877 void netdev_freemem(struct net_device *dev)
9878 {
9879 	char *addr = (char *)dev - dev->padded;
9880 
9881 	kvfree(addr);
9882 }
9883 
9884 /**
9885  * alloc_netdev_mqs - allocate network device
9886  * @sizeof_priv: size of private data to allocate space for
9887  * @name: device name format string
9888  * @name_assign_type: origin of device name
9889  * @setup: callback to initialize device
9890  * @txqs: the number of TX subqueues to allocate
9891  * @rxqs: the number of RX subqueues to allocate
9892  *
9893  * Allocates a struct net_device with private data area for driver use
9894  * and performs basic initialization.  Also allocates subqueue structs
9895  * for each queue on the device.
9896  */
9897 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9898 		unsigned char name_assign_type,
9899 		void (*setup)(struct net_device *),
9900 		unsigned int txqs, unsigned int rxqs)
9901 {
9902 	struct net_device *dev;
9903 	unsigned int alloc_size;
9904 	struct net_device *p;
9905 
9906 	BUG_ON(strlen(name) >= sizeof(dev->name));
9907 
9908 	if (txqs < 1) {
9909 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9910 		return NULL;
9911 	}
9912 
9913 	if (rxqs < 1) {
9914 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9915 		return NULL;
9916 	}
9917 
9918 	alloc_size = sizeof(struct net_device);
9919 	if (sizeof_priv) {
9920 		/* ensure 32-byte alignment of private area */
9921 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9922 		alloc_size += sizeof_priv;
9923 	}
9924 	/* ensure 32-byte alignment of whole construct */
9925 	alloc_size += NETDEV_ALIGN - 1;
9926 
9927 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9928 	if (!p)
9929 		return NULL;
9930 
9931 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
9932 	dev->padded = (char *)dev - (char *)p;
9933 
9934 	dev->pcpu_refcnt = alloc_percpu(int);
9935 	if (!dev->pcpu_refcnt)
9936 		goto free_dev;
9937 
9938 	if (dev_addr_init(dev))
9939 		goto free_pcpu;
9940 
9941 	dev_mc_init(dev);
9942 	dev_uc_init(dev);
9943 
9944 	dev_net_set(dev, &init_net);
9945 
9946 	lockdep_register_key(&dev->addr_list_lock_key);
9947 
9948 	dev->gso_max_size = GSO_MAX_SIZE;
9949 	dev->gso_max_segs = GSO_MAX_SEGS;
9950 	dev->upper_level = 1;
9951 	dev->lower_level = 1;
9952 
9953 	INIT_LIST_HEAD(&dev->napi_list);
9954 	INIT_LIST_HEAD(&dev->unreg_list);
9955 	INIT_LIST_HEAD(&dev->close_list);
9956 	INIT_LIST_HEAD(&dev->link_watch_list);
9957 	INIT_LIST_HEAD(&dev->adj_list.upper);
9958 	INIT_LIST_HEAD(&dev->adj_list.lower);
9959 	INIT_LIST_HEAD(&dev->ptype_all);
9960 	INIT_LIST_HEAD(&dev->ptype_specific);
9961 	INIT_LIST_HEAD(&dev->net_notifier_list);
9962 #ifdef CONFIG_NET_SCHED
9963 	hash_init(dev->qdisc_hash);
9964 #endif
9965 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9966 	setup(dev);
9967 
9968 	if (!dev->tx_queue_len) {
9969 		dev->priv_flags |= IFF_NO_QUEUE;
9970 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9971 	}
9972 
9973 	dev->num_tx_queues = txqs;
9974 	dev->real_num_tx_queues = txqs;
9975 	if (netif_alloc_netdev_queues(dev))
9976 		goto free_all;
9977 
9978 	dev->num_rx_queues = rxqs;
9979 	dev->real_num_rx_queues = rxqs;
9980 	if (netif_alloc_rx_queues(dev))
9981 		goto free_all;
9982 
9983 	strcpy(dev->name, name);
9984 	dev->name_assign_type = name_assign_type;
9985 	dev->group = INIT_NETDEV_GROUP;
9986 	if (!dev->ethtool_ops)
9987 		dev->ethtool_ops = &default_ethtool_ops;
9988 
9989 	nf_hook_ingress_init(dev);
9990 
9991 	return dev;
9992 
9993 free_all:
9994 	free_netdev(dev);
9995 	return NULL;
9996 
9997 free_pcpu:
9998 	free_percpu(dev->pcpu_refcnt);
9999 free_dev:
10000 	netdev_freemem(dev);
10001 	return NULL;
10002 }
10003 EXPORT_SYMBOL(alloc_netdev_mqs);
10004 
10005 /**
10006  * free_netdev - free network device
10007  * @dev: device
10008  *
10009  * This function does the last stage of destroying an allocated device
10010  * interface. The reference to the device object is released. If this
10011  * is the last reference then it will be freed.Must be called in process
10012  * context.
10013  */
10014 void free_netdev(struct net_device *dev)
10015 {
10016 	struct napi_struct *p, *n;
10017 
10018 	might_sleep();
10019 	netif_free_tx_queues(dev);
10020 	netif_free_rx_queues(dev);
10021 
10022 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10023 
10024 	/* Flush device addresses */
10025 	dev_addr_flush(dev);
10026 
10027 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10028 		netif_napi_del(p);
10029 
10030 	free_percpu(dev->pcpu_refcnt);
10031 	dev->pcpu_refcnt = NULL;
10032 	free_percpu(dev->xdp_bulkq);
10033 	dev->xdp_bulkq = NULL;
10034 
10035 	lockdep_unregister_key(&dev->addr_list_lock_key);
10036 
10037 	/*  Compatibility with error handling in drivers */
10038 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10039 		netdev_freemem(dev);
10040 		return;
10041 	}
10042 
10043 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10044 	dev->reg_state = NETREG_RELEASED;
10045 
10046 	/* will free via device release */
10047 	put_device(&dev->dev);
10048 }
10049 EXPORT_SYMBOL(free_netdev);
10050 
10051 /**
10052  *	synchronize_net -  Synchronize with packet receive processing
10053  *
10054  *	Wait for packets currently being received to be done.
10055  *	Does not block later packets from starting.
10056  */
10057 void synchronize_net(void)
10058 {
10059 	might_sleep();
10060 	if (rtnl_is_locked())
10061 		synchronize_rcu_expedited();
10062 	else
10063 		synchronize_rcu();
10064 }
10065 EXPORT_SYMBOL(synchronize_net);
10066 
10067 /**
10068  *	unregister_netdevice_queue - remove device from the kernel
10069  *	@dev: device
10070  *	@head: list
10071  *
10072  *	This function shuts down a device interface and removes it
10073  *	from the kernel tables.
10074  *	If head not NULL, device is queued to be unregistered later.
10075  *
10076  *	Callers must hold the rtnl semaphore.  You may want
10077  *	unregister_netdev() instead of this.
10078  */
10079 
10080 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10081 {
10082 	ASSERT_RTNL();
10083 
10084 	if (head) {
10085 		list_move_tail(&dev->unreg_list, head);
10086 	} else {
10087 		rollback_registered(dev);
10088 		/* Finish processing unregister after unlock */
10089 		net_set_todo(dev);
10090 	}
10091 }
10092 EXPORT_SYMBOL(unregister_netdevice_queue);
10093 
10094 /**
10095  *	unregister_netdevice_many - unregister many devices
10096  *	@head: list of devices
10097  *
10098  *  Note: As most callers use a stack allocated list_head,
10099  *  we force a list_del() to make sure stack wont be corrupted later.
10100  */
10101 void unregister_netdevice_many(struct list_head *head)
10102 {
10103 	struct net_device *dev;
10104 
10105 	if (!list_empty(head)) {
10106 		rollback_registered_many(head);
10107 		list_for_each_entry(dev, head, unreg_list)
10108 			net_set_todo(dev);
10109 		list_del(head);
10110 	}
10111 }
10112 EXPORT_SYMBOL(unregister_netdevice_many);
10113 
10114 /**
10115  *	unregister_netdev - remove device from the kernel
10116  *	@dev: device
10117  *
10118  *	This function shuts down a device interface and removes it
10119  *	from the kernel tables.
10120  *
10121  *	This is just a wrapper for unregister_netdevice that takes
10122  *	the rtnl semaphore.  In general you want to use this and not
10123  *	unregister_netdevice.
10124  */
10125 void unregister_netdev(struct net_device *dev)
10126 {
10127 	rtnl_lock();
10128 	unregister_netdevice(dev);
10129 	rtnl_unlock();
10130 }
10131 EXPORT_SYMBOL(unregister_netdev);
10132 
10133 /**
10134  *	dev_change_net_namespace - move device to different nethost namespace
10135  *	@dev: device
10136  *	@net: network namespace
10137  *	@pat: If not NULL name pattern to try if the current device name
10138  *	      is already taken in the destination network namespace.
10139  *
10140  *	This function shuts down a device interface and moves it
10141  *	to a new network namespace. On success 0 is returned, on
10142  *	a failure a netagive errno code is returned.
10143  *
10144  *	Callers must hold the rtnl semaphore.
10145  */
10146 
10147 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10148 {
10149 	struct net *net_old = dev_net(dev);
10150 	int err, new_nsid, new_ifindex;
10151 
10152 	ASSERT_RTNL();
10153 
10154 	/* Don't allow namespace local devices to be moved. */
10155 	err = -EINVAL;
10156 	if (dev->features & NETIF_F_NETNS_LOCAL)
10157 		goto out;
10158 
10159 	/* Ensure the device has been registrered */
10160 	if (dev->reg_state != NETREG_REGISTERED)
10161 		goto out;
10162 
10163 	/* Get out if there is nothing todo */
10164 	err = 0;
10165 	if (net_eq(net_old, net))
10166 		goto out;
10167 
10168 	/* Pick the destination device name, and ensure
10169 	 * we can use it in the destination network namespace.
10170 	 */
10171 	err = -EEXIST;
10172 	if (__dev_get_by_name(net, dev->name)) {
10173 		/* We get here if we can't use the current device name */
10174 		if (!pat)
10175 			goto out;
10176 		err = dev_get_valid_name(net, dev, pat);
10177 		if (err < 0)
10178 			goto out;
10179 	}
10180 
10181 	/*
10182 	 * And now a mini version of register_netdevice unregister_netdevice.
10183 	 */
10184 
10185 	/* If device is running close it first. */
10186 	dev_close(dev);
10187 
10188 	/* And unlink it from device chain */
10189 	unlist_netdevice(dev);
10190 
10191 	synchronize_net();
10192 
10193 	/* Shutdown queueing discipline. */
10194 	dev_shutdown(dev);
10195 
10196 	/* Notify protocols, that we are about to destroy
10197 	 * this device. They should clean all the things.
10198 	 *
10199 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
10200 	 * This is wanted because this way 8021q and macvlan know
10201 	 * the device is just moving and can keep their slaves up.
10202 	 */
10203 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10204 	rcu_barrier();
10205 
10206 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10207 	/* If there is an ifindex conflict assign a new one */
10208 	if (__dev_get_by_index(net, dev->ifindex))
10209 		new_ifindex = dev_new_index(net);
10210 	else
10211 		new_ifindex = dev->ifindex;
10212 
10213 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10214 			    new_ifindex);
10215 
10216 	/*
10217 	 *	Flush the unicast and multicast chains
10218 	 */
10219 	dev_uc_flush(dev);
10220 	dev_mc_flush(dev);
10221 
10222 	/* Send a netdev-removed uevent to the old namespace */
10223 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10224 	netdev_adjacent_del_links(dev);
10225 
10226 	/* Move per-net netdevice notifiers that are following the netdevice */
10227 	move_netdevice_notifiers_dev_net(dev, net);
10228 
10229 	/* Actually switch the network namespace */
10230 	dev_net_set(dev, net);
10231 	dev->ifindex = new_ifindex;
10232 
10233 	/* Send a netdev-add uevent to the new namespace */
10234 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10235 	netdev_adjacent_add_links(dev);
10236 
10237 	/* Fixup kobjects */
10238 	err = device_rename(&dev->dev, dev->name);
10239 	WARN_ON(err);
10240 
10241 	/* Adapt owner in case owning user namespace of target network
10242 	 * namespace is different from the original one.
10243 	 */
10244 	err = netdev_change_owner(dev, net_old, net);
10245 	WARN_ON(err);
10246 
10247 	/* Add the device back in the hashes */
10248 	list_netdevice(dev);
10249 
10250 	/* Notify protocols, that a new device appeared. */
10251 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
10252 
10253 	/*
10254 	 *	Prevent userspace races by waiting until the network
10255 	 *	device is fully setup before sending notifications.
10256 	 */
10257 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10258 
10259 	synchronize_net();
10260 	err = 0;
10261 out:
10262 	return err;
10263 }
10264 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
10265 
10266 static int dev_cpu_dead(unsigned int oldcpu)
10267 {
10268 	struct sk_buff **list_skb;
10269 	struct sk_buff *skb;
10270 	unsigned int cpu;
10271 	struct softnet_data *sd, *oldsd, *remsd = NULL;
10272 
10273 	local_irq_disable();
10274 	cpu = smp_processor_id();
10275 	sd = &per_cpu(softnet_data, cpu);
10276 	oldsd = &per_cpu(softnet_data, oldcpu);
10277 
10278 	/* Find end of our completion_queue. */
10279 	list_skb = &sd->completion_queue;
10280 	while (*list_skb)
10281 		list_skb = &(*list_skb)->next;
10282 	/* Append completion queue from offline CPU. */
10283 	*list_skb = oldsd->completion_queue;
10284 	oldsd->completion_queue = NULL;
10285 
10286 	/* Append output queue from offline CPU. */
10287 	if (oldsd->output_queue) {
10288 		*sd->output_queue_tailp = oldsd->output_queue;
10289 		sd->output_queue_tailp = oldsd->output_queue_tailp;
10290 		oldsd->output_queue = NULL;
10291 		oldsd->output_queue_tailp = &oldsd->output_queue;
10292 	}
10293 	/* Append NAPI poll list from offline CPU, with one exception :
10294 	 * process_backlog() must be called by cpu owning percpu backlog.
10295 	 * We properly handle process_queue & input_pkt_queue later.
10296 	 */
10297 	while (!list_empty(&oldsd->poll_list)) {
10298 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10299 							    struct napi_struct,
10300 							    poll_list);
10301 
10302 		list_del_init(&napi->poll_list);
10303 		if (napi->poll == process_backlog)
10304 			napi->state = 0;
10305 		else
10306 			____napi_schedule(sd, napi);
10307 	}
10308 
10309 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
10310 	local_irq_enable();
10311 
10312 #ifdef CONFIG_RPS
10313 	remsd = oldsd->rps_ipi_list;
10314 	oldsd->rps_ipi_list = NULL;
10315 #endif
10316 	/* send out pending IPI's on offline CPU */
10317 	net_rps_send_ipi(remsd);
10318 
10319 	/* Process offline CPU's input_pkt_queue */
10320 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10321 		netif_rx_ni(skb);
10322 		input_queue_head_incr(oldsd);
10323 	}
10324 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10325 		netif_rx_ni(skb);
10326 		input_queue_head_incr(oldsd);
10327 	}
10328 
10329 	return 0;
10330 }
10331 
10332 /**
10333  *	netdev_increment_features - increment feature set by one
10334  *	@all: current feature set
10335  *	@one: new feature set
10336  *	@mask: mask feature set
10337  *
10338  *	Computes a new feature set after adding a device with feature set
10339  *	@one to the master device with current feature set @all.  Will not
10340  *	enable anything that is off in @mask. Returns the new feature set.
10341  */
10342 netdev_features_t netdev_increment_features(netdev_features_t all,
10343 	netdev_features_t one, netdev_features_t mask)
10344 {
10345 	if (mask & NETIF_F_HW_CSUM)
10346 		mask |= NETIF_F_CSUM_MASK;
10347 	mask |= NETIF_F_VLAN_CHALLENGED;
10348 
10349 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10350 	all &= one | ~NETIF_F_ALL_FOR_ALL;
10351 
10352 	/* If one device supports hw checksumming, set for all. */
10353 	if (all & NETIF_F_HW_CSUM)
10354 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
10355 
10356 	return all;
10357 }
10358 EXPORT_SYMBOL(netdev_increment_features);
10359 
10360 static struct hlist_head * __net_init netdev_create_hash(void)
10361 {
10362 	int i;
10363 	struct hlist_head *hash;
10364 
10365 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
10366 	if (hash != NULL)
10367 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
10368 			INIT_HLIST_HEAD(&hash[i]);
10369 
10370 	return hash;
10371 }
10372 
10373 /* Initialize per network namespace state */
10374 static int __net_init netdev_init(struct net *net)
10375 {
10376 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
10377 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
10378 
10379 	if (net != &init_net)
10380 		INIT_LIST_HEAD(&net->dev_base_head);
10381 
10382 	net->dev_name_head = netdev_create_hash();
10383 	if (net->dev_name_head == NULL)
10384 		goto err_name;
10385 
10386 	net->dev_index_head = netdev_create_hash();
10387 	if (net->dev_index_head == NULL)
10388 		goto err_idx;
10389 
10390 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
10391 
10392 	return 0;
10393 
10394 err_idx:
10395 	kfree(net->dev_name_head);
10396 err_name:
10397 	return -ENOMEM;
10398 }
10399 
10400 /**
10401  *	netdev_drivername - network driver for the device
10402  *	@dev: network device
10403  *
10404  *	Determine network driver for device.
10405  */
10406 const char *netdev_drivername(const struct net_device *dev)
10407 {
10408 	const struct device_driver *driver;
10409 	const struct device *parent;
10410 	const char *empty = "";
10411 
10412 	parent = dev->dev.parent;
10413 	if (!parent)
10414 		return empty;
10415 
10416 	driver = parent->driver;
10417 	if (driver && driver->name)
10418 		return driver->name;
10419 	return empty;
10420 }
10421 
10422 static void __netdev_printk(const char *level, const struct net_device *dev,
10423 			    struct va_format *vaf)
10424 {
10425 	if (dev && dev->dev.parent) {
10426 		dev_printk_emit(level[1] - '0',
10427 				dev->dev.parent,
10428 				"%s %s %s%s: %pV",
10429 				dev_driver_string(dev->dev.parent),
10430 				dev_name(dev->dev.parent),
10431 				netdev_name(dev), netdev_reg_state(dev),
10432 				vaf);
10433 	} else if (dev) {
10434 		printk("%s%s%s: %pV",
10435 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
10436 	} else {
10437 		printk("%s(NULL net_device): %pV", level, vaf);
10438 	}
10439 }
10440 
10441 void netdev_printk(const char *level, const struct net_device *dev,
10442 		   const char *format, ...)
10443 {
10444 	struct va_format vaf;
10445 	va_list args;
10446 
10447 	va_start(args, format);
10448 
10449 	vaf.fmt = format;
10450 	vaf.va = &args;
10451 
10452 	__netdev_printk(level, dev, &vaf);
10453 
10454 	va_end(args);
10455 }
10456 EXPORT_SYMBOL(netdev_printk);
10457 
10458 #define define_netdev_printk_level(func, level)			\
10459 void func(const struct net_device *dev, const char *fmt, ...)	\
10460 {								\
10461 	struct va_format vaf;					\
10462 	va_list args;						\
10463 								\
10464 	va_start(args, fmt);					\
10465 								\
10466 	vaf.fmt = fmt;						\
10467 	vaf.va = &args;						\
10468 								\
10469 	__netdev_printk(level, dev, &vaf);			\
10470 								\
10471 	va_end(args);						\
10472 }								\
10473 EXPORT_SYMBOL(func);
10474 
10475 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10476 define_netdev_printk_level(netdev_alert, KERN_ALERT);
10477 define_netdev_printk_level(netdev_crit, KERN_CRIT);
10478 define_netdev_printk_level(netdev_err, KERN_ERR);
10479 define_netdev_printk_level(netdev_warn, KERN_WARNING);
10480 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
10481 define_netdev_printk_level(netdev_info, KERN_INFO);
10482 
10483 static void __net_exit netdev_exit(struct net *net)
10484 {
10485 	kfree(net->dev_name_head);
10486 	kfree(net->dev_index_head);
10487 	if (net != &init_net)
10488 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
10489 }
10490 
10491 static struct pernet_operations __net_initdata netdev_net_ops = {
10492 	.init = netdev_init,
10493 	.exit = netdev_exit,
10494 };
10495 
10496 static void __net_exit default_device_exit(struct net *net)
10497 {
10498 	struct net_device *dev, *aux;
10499 	/*
10500 	 * Push all migratable network devices back to the
10501 	 * initial network namespace
10502 	 */
10503 	rtnl_lock();
10504 	for_each_netdev_safe(net, dev, aux) {
10505 		int err;
10506 		char fb_name[IFNAMSIZ];
10507 
10508 		/* Ignore unmoveable devices (i.e. loopback) */
10509 		if (dev->features & NETIF_F_NETNS_LOCAL)
10510 			continue;
10511 
10512 		/* Leave virtual devices for the generic cleanup */
10513 		if (dev->rtnl_link_ops)
10514 			continue;
10515 
10516 		/* Push remaining network devices to init_net */
10517 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
10518 		if (__dev_get_by_name(&init_net, fb_name))
10519 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
10520 		err = dev_change_net_namespace(dev, &init_net, fb_name);
10521 		if (err) {
10522 			pr_emerg("%s: failed to move %s to init_net: %d\n",
10523 				 __func__, dev->name, err);
10524 			BUG();
10525 		}
10526 	}
10527 	rtnl_unlock();
10528 }
10529 
10530 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
10531 {
10532 	/* Return with the rtnl_lock held when there are no network
10533 	 * devices unregistering in any network namespace in net_list.
10534 	 */
10535 	struct net *net;
10536 	bool unregistering;
10537 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
10538 
10539 	add_wait_queue(&netdev_unregistering_wq, &wait);
10540 	for (;;) {
10541 		unregistering = false;
10542 		rtnl_lock();
10543 		list_for_each_entry(net, net_list, exit_list) {
10544 			if (net->dev_unreg_count > 0) {
10545 				unregistering = true;
10546 				break;
10547 			}
10548 		}
10549 		if (!unregistering)
10550 			break;
10551 		__rtnl_unlock();
10552 
10553 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
10554 	}
10555 	remove_wait_queue(&netdev_unregistering_wq, &wait);
10556 }
10557 
10558 static void __net_exit default_device_exit_batch(struct list_head *net_list)
10559 {
10560 	/* At exit all network devices most be removed from a network
10561 	 * namespace.  Do this in the reverse order of registration.
10562 	 * Do this across as many network namespaces as possible to
10563 	 * improve batching efficiency.
10564 	 */
10565 	struct net_device *dev;
10566 	struct net *net;
10567 	LIST_HEAD(dev_kill_list);
10568 
10569 	/* To prevent network device cleanup code from dereferencing
10570 	 * loopback devices or network devices that have been freed
10571 	 * wait here for all pending unregistrations to complete,
10572 	 * before unregistring the loopback device and allowing the
10573 	 * network namespace be freed.
10574 	 *
10575 	 * The netdev todo list containing all network devices
10576 	 * unregistrations that happen in default_device_exit_batch
10577 	 * will run in the rtnl_unlock() at the end of
10578 	 * default_device_exit_batch.
10579 	 */
10580 	rtnl_lock_unregistering(net_list);
10581 	list_for_each_entry(net, net_list, exit_list) {
10582 		for_each_netdev_reverse(net, dev) {
10583 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
10584 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
10585 			else
10586 				unregister_netdevice_queue(dev, &dev_kill_list);
10587 		}
10588 	}
10589 	unregister_netdevice_many(&dev_kill_list);
10590 	rtnl_unlock();
10591 }
10592 
10593 static struct pernet_operations __net_initdata default_device_ops = {
10594 	.exit = default_device_exit,
10595 	.exit_batch = default_device_exit_batch,
10596 };
10597 
10598 /*
10599  *	Initialize the DEV module. At boot time this walks the device list and
10600  *	unhooks any devices that fail to initialise (normally hardware not
10601  *	present) and leaves us with a valid list of present and active devices.
10602  *
10603  */
10604 
10605 /*
10606  *       This is called single threaded during boot, so no need
10607  *       to take the rtnl semaphore.
10608  */
10609 static int __init net_dev_init(void)
10610 {
10611 	int i, rc = -ENOMEM;
10612 
10613 	BUG_ON(!dev_boot_phase);
10614 
10615 	if (dev_proc_init())
10616 		goto out;
10617 
10618 	if (netdev_kobject_init())
10619 		goto out;
10620 
10621 	INIT_LIST_HEAD(&ptype_all);
10622 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
10623 		INIT_LIST_HEAD(&ptype_base[i]);
10624 
10625 	INIT_LIST_HEAD(&offload_base);
10626 
10627 	if (register_pernet_subsys(&netdev_net_ops))
10628 		goto out;
10629 
10630 	/*
10631 	 *	Initialise the packet receive queues.
10632 	 */
10633 
10634 	for_each_possible_cpu(i) {
10635 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
10636 		struct softnet_data *sd = &per_cpu(softnet_data, i);
10637 
10638 		INIT_WORK(flush, flush_backlog);
10639 
10640 		skb_queue_head_init(&sd->input_pkt_queue);
10641 		skb_queue_head_init(&sd->process_queue);
10642 #ifdef CONFIG_XFRM_OFFLOAD
10643 		skb_queue_head_init(&sd->xfrm_backlog);
10644 #endif
10645 		INIT_LIST_HEAD(&sd->poll_list);
10646 		sd->output_queue_tailp = &sd->output_queue;
10647 #ifdef CONFIG_RPS
10648 		sd->csd.func = rps_trigger_softirq;
10649 		sd->csd.info = sd;
10650 		sd->cpu = i;
10651 #endif
10652 
10653 		init_gro_hash(&sd->backlog);
10654 		sd->backlog.poll = process_backlog;
10655 		sd->backlog.weight = weight_p;
10656 	}
10657 
10658 	dev_boot_phase = 0;
10659 
10660 	/* The loopback device is special if any other network devices
10661 	 * is present in a network namespace the loopback device must
10662 	 * be present. Since we now dynamically allocate and free the
10663 	 * loopback device ensure this invariant is maintained by
10664 	 * keeping the loopback device as the first device on the
10665 	 * list of network devices.  Ensuring the loopback devices
10666 	 * is the first device that appears and the last network device
10667 	 * that disappears.
10668 	 */
10669 	if (register_pernet_device(&loopback_net_ops))
10670 		goto out;
10671 
10672 	if (register_pernet_device(&default_device_ops))
10673 		goto out;
10674 
10675 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
10676 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
10677 
10678 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
10679 				       NULL, dev_cpu_dead);
10680 	WARN_ON(rc < 0);
10681 	rc = 0;
10682 out:
10683 	return rc;
10684 }
10685 
10686 subsys_initcall(net_dev_init);
10687