1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/mutex.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/notifier.h> 96 #include <linux/skbuff.h> 97 #include <net/net_namespace.h> 98 #include <net/sock.h> 99 #include <net/busy_poll.h> 100 #include <linux/rtnetlink.h> 101 #include <linux/stat.h> 102 #include <net/dst.h> 103 #include <net/dst_metadata.h> 104 #include <net/pkt_sched.h> 105 #include <net/checksum.h> 106 #include <net/xfrm.h> 107 #include <linux/highmem.h> 108 #include <linux/init.h> 109 #include <linux/module.h> 110 #include <linux/netpoll.h> 111 #include <linux/rcupdate.h> 112 #include <linux/delay.h> 113 #include <net/iw_handler.h> 114 #include <asm/current.h> 115 #include <linux/audit.h> 116 #include <linux/dmaengine.h> 117 #include <linux/err.h> 118 #include <linux/ctype.h> 119 #include <linux/if_arp.h> 120 #include <linux/if_vlan.h> 121 #include <linux/ip.h> 122 #include <net/ip.h> 123 #include <net/mpls.h> 124 #include <linux/ipv6.h> 125 #include <linux/in.h> 126 #include <linux/jhash.h> 127 #include <linux/random.h> 128 #include <trace/events/napi.h> 129 #include <trace/events/net.h> 130 #include <trace/events/skb.h> 131 #include <linux/pci.h> 132 #include <linux/inetdevice.h> 133 #include <linux/cpu_rmap.h> 134 #include <linux/static_key.h> 135 #include <linux/hashtable.h> 136 #include <linux/vmalloc.h> 137 #include <linux/if_macvlan.h> 138 #include <linux/errqueue.h> 139 #include <linux/hrtimer.h> 140 #include <linux/netfilter_ingress.h> 141 #include <linux/sctp.h> 142 #include <linux/crash_dump.h> 143 144 #include "net-sysfs.h" 145 146 /* Instead of increasing this, you should create a hash table. */ 147 #define MAX_GRO_SKBS 8 148 149 /* This should be increased if a protocol with a bigger head is added. */ 150 #define GRO_MAX_HEAD (MAX_HEADER + 128) 151 152 static DEFINE_SPINLOCK(ptype_lock); 153 static DEFINE_SPINLOCK(offload_lock); 154 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 155 struct list_head ptype_all __read_mostly; /* Taps */ 156 static struct list_head offload_base __read_mostly; 157 158 static int netif_rx_internal(struct sk_buff *skb); 159 static int call_netdevice_notifiers_info(unsigned long val, 160 struct net_device *dev, 161 struct netdev_notifier_info *info); 162 163 /* 164 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 165 * semaphore. 166 * 167 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 168 * 169 * Writers must hold the rtnl semaphore while they loop through the 170 * dev_base_head list, and hold dev_base_lock for writing when they do the 171 * actual updates. This allows pure readers to access the list even 172 * while a writer is preparing to update it. 173 * 174 * To put it another way, dev_base_lock is held for writing only to 175 * protect against pure readers; the rtnl semaphore provides the 176 * protection against other writers. 177 * 178 * See, for example usages, register_netdevice() and 179 * unregister_netdevice(), which must be called with the rtnl 180 * semaphore held. 181 */ 182 DEFINE_RWLOCK(dev_base_lock); 183 EXPORT_SYMBOL(dev_base_lock); 184 185 /* protects napi_hash addition/deletion and napi_gen_id */ 186 static DEFINE_SPINLOCK(napi_hash_lock); 187 188 static unsigned int napi_gen_id = NR_CPUS; 189 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 190 191 static seqcount_t devnet_rename_seq; 192 193 static inline void dev_base_seq_inc(struct net *net) 194 { 195 while (++net->dev_base_seq == 0); 196 } 197 198 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 199 { 200 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 201 202 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 203 } 204 205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 206 { 207 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 208 } 209 210 static inline void rps_lock(struct softnet_data *sd) 211 { 212 #ifdef CONFIG_RPS 213 spin_lock(&sd->input_pkt_queue.lock); 214 #endif 215 } 216 217 static inline void rps_unlock(struct softnet_data *sd) 218 { 219 #ifdef CONFIG_RPS 220 spin_unlock(&sd->input_pkt_queue.lock); 221 #endif 222 } 223 224 /* Device list insertion */ 225 static void list_netdevice(struct net_device *dev) 226 { 227 struct net *net = dev_net(dev); 228 229 ASSERT_RTNL(); 230 231 write_lock_bh(&dev_base_lock); 232 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 233 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 234 hlist_add_head_rcu(&dev->index_hlist, 235 dev_index_hash(net, dev->ifindex)); 236 write_unlock_bh(&dev_base_lock); 237 238 dev_base_seq_inc(net); 239 } 240 241 /* Device list removal 242 * caller must respect a RCU grace period before freeing/reusing dev 243 */ 244 static void unlist_netdevice(struct net_device *dev) 245 { 246 ASSERT_RTNL(); 247 248 /* Unlink dev from the device chain */ 249 write_lock_bh(&dev_base_lock); 250 list_del_rcu(&dev->dev_list); 251 hlist_del_rcu(&dev->name_hlist); 252 hlist_del_rcu(&dev->index_hlist); 253 write_unlock_bh(&dev_base_lock); 254 255 dev_base_seq_inc(dev_net(dev)); 256 } 257 258 /* 259 * Our notifier list 260 */ 261 262 static RAW_NOTIFIER_HEAD(netdev_chain); 263 264 /* 265 * Device drivers call our routines to queue packets here. We empty the 266 * queue in the local softnet handler. 267 */ 268 269 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 270 EXPORT_PER_CPU_SYMBOL(softnet_data); 271 272 #ifdef CONFIG_LOCKDEP 273 /* 274 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 275 * according to dev->type 276 */ 277 static const unsigned short netdev_lock_type[] = 278 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 279 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 280 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 281 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 282 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 283 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 284 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 285 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 286 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 287 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 288 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 289 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 290 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 291 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 292 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 293 294 static const char *const netdev_lock_name[] = 295 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 296 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 297 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 298 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 299 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 300 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 301 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 302 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 303 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 304 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 305 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 306 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 307 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 308 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 309 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 310 311 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 312 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 313 314 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 315 { 316 int i; 317 318 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 319 if (netdev_lock_type[i] == dev_type) 320 return i; 321 /* the last key is used by default */ 322 return ARRAY_SIZE(netdev_lock_type) - 1; 323 } 324 325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 326 unsigned short dev_type) 327 { 328 int i; 329 330 i = netdev_lock_pos(dev_type); 331 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 332 netdev_lock_name[i]); 333 } 334 335 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 336 { 337 int i; 338 339 i = netdev_lock_pos(dev->type); 340 lockdep_set_class_and_name(&dev->addr_list_lock, 341 &netdev_addr_lock_key[i], 342 netdev_lock_name[i]); 343 } 344 #else 345 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 346 unsigned short dev_type) 347 { 348 } 349 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 350 { 351 } 352 #endif 353 354 /******************************************************************************* 355 356 Protocol management and registration routines 357 358 *******************************************************************************/ 359 360 /* 361 * Add a protocol ID to the list. Now that the input handler is 362 * smarter we can dispense with all the messy stuff that used to be 363 * here. 364 * 365 * BEWARE!!! Protocol handlers, mangling input packets, 366 * MUST BE last in hash buckets and checking protocol handlers 367 * MUST start from promiscuous ptype_all chain in net_bh. 368 * It is true now, do not change it. 369 * Explanation follows: if protocol handler, mangling packet, will 370 * be the first on list, it is not able to sense, that packet 371 * is cloned and should be copied-on-write, so that it will 372 * change it and subsequent readers will get broken packet. 373 * --ANK (980803) 374 */ 375 376 static inline struct list_head *ptype_head(const struct packet_type *pt) 377 { 378 if (pt->type == htons(ETH_P_ALL)) 379 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 380 else 381 return pt->dev ? &pt->dev->ptype_specific : 382 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 383 } 384 385 /** 386 * dev_add_pack - add packet handler 387 * @pt: packet type declaration 388 * 389 * Add a protocol handler to the networking stack. The passed &packet_type 390 * is linked into kernel lists and may not be freed until it has been 391 * removed from the kernel lists. 392 * 393 * This call does not sleep therefore it can not 394 * guarantee all CPU's that are in middle of receiving packets 395 * will see the new packet type (until the next received packet). 396 */ 397 398 void dev_add_pack(struct packet_type *pt) 399 { 400 struct list_head *head = ptype_head(pt); 401 402 spin_lock(&ptype_lock); 403 list_add_rcu(&pt->list, head); 404 spin_unlock(&ptype_lock); 405 } 406 EXPORT_SYMBOL(dev_add_pack); 407 408 /** 409 * __dev_remove_pack - remove packet handler 410 * @pt: packet type declaration 411 * 412 * Remove a protocol handler that was previously added to the kernel 413 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 414 * from the kernel lists and can be freed or reused once this function 415 * returns. 416 * 417 * The packet type might still be in use by receivers 418 * and must not be freed until after all the CPU's have gone 419 * through a quiescent state. 420 */ 421 void __dev_remove_pack(struct packet_type *pt) 422 { 423 struct list_head *head = ptype_head(pt); 424 struct packet_type *pt1; 425 426 spin_lock(&ptype_lock); 427 428 list_for_each_entry(pt1, head, list) { 429 if (pt == pt1) { 430 list_del_rcu(&pt->list); 431 goto out; 432 } 433 } 434 435 pr_warn("dev_remove_pack: %p not found\n", pt); 436 out: 437 spin_unlock(&ptype_lock); 438 } 439 EXPORT_SYMBOL(__dev_remove_pack); 440 441 /** 442 * dev_remove_pack - remove packet handler 443 * @pt: packet type declaration 444 * 445 * Remove a protocol handler that was previously added to the kernel 446 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 447 * from the kernel lists and can be freed or reused once this function 448 * returns. 449 * 450 * This call sleeps to guarantee that no CPU is looking at the packet 451 * type after return. 452 */ 453 void dev_remove_pack(struct packet_type *pt) 454 { 455 __dev_remove_pack(pt); 456 457 synchronize_net(); 458 } 459 EXPORT_SYMBOL(dev_remove_pack); 460 461 462 /** 463 * dev_add_offload - register offload handlers 464 * @po: protocol offload declaration 465 * 466 * Add protocol offload handlers to the networking stack. The passed 467 * &proto_offload is linked into kernel lists and may not be freed until 468 * it has been removed from the kernel lists. 469 * 470 * This call does not sleep therefore it can not 471 * guarantee all CPU's that are in middle of receiving packets 472 * will see the new offload handlers (until the next received packet). 473 */ 474 void dev_add_offload(struct packet_offload *po) 475 { 476 struct packet_offload *elem; 477 478 spin_lock(&offload_lock); 479 list_for_each_entry(elem, &offload_base, list) { 480 if (po->priority < elem->priority) 481 break; 482 } 483 list_add_rcu(&po->list, elem->list.prev); 484 spin_unlock(&offload_lock); 485 } 486 EXPORT_SYMBOL(dev_add_offload); 487 488 /** 489 * __dev_remove_offload - remove offload handler 490 * @po: packet offload declaration 491 * 492 * Remove a protocol offload handler that was previously added to the 493 * kernel offload handlers by dev_add_offload(). The passed &offload_type 494 * is removed from the kernel lists and can be freed or reused once this 495 * function returns. 496 * 497 * The packet type might still be in use by receivers 498 * and must not be freed until after all the CPU's have gone 499 * through a quiescent state. 500 */ 501 static void __dev_remove_offload(struct packet_offload *po) 502 { 503 struct list_head *head = &offload_base; 504 struct packet_offload *po1; 505 506 spin_lock(&offload_lock); 507 508 list_for_each_entry(po1, head, list) { 509 if (po == po1) { 510 list_del_rcu(&po->list); 511 goto out; 512 } 513 } 514 515 pr_warn("dev_remove_offload: %p not found\n", po); 516 out: 517 spin_unlock(&offload_lock); 518 } 519 520 /** 521 * dev_remove_offload - remove packet offload handler 522 * @po: packet offload declaration 523 * 524 * Remove a packet offload handler that was previously added to the kernel 525 * offload handlers by dev_add_offload(). The passed &offload_type is 526 * removed from the kernel lists and can be freed or reused once this 527 * function returns. 528 * 529 * This call sleeps to guarantee that no CPU is looking at the packet 530 * type after return. 531 */ 532 void dev_remove_offload(struct packet_offload *po) 533 { 534 __dev_remove_offload(po); 535 536 synchronize_net(); 537 } 538 EXPORT_SYMBOL(dev_remove_offload); 539 540 /****************************************************************************** 541 542 Device Boot-time Settings Routines 543 544 *******************************************************************************/ 545 546 /* Boot time configuration table */ 547 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 548 549 /** 550 * netdev_boot_setup_add - add new setup entry 551 * @name: name of the device 552 * @map: configured settings for the device 553 * 554 * Adds new setup entry to the dev_boot_setup list. The function 555 * returns 0 on error and 1 on success. This is a generic routine to 556 * all netdevices. 557 */ 558 static int netdev_boot_setup_add(char *name, struct ifmap *map) 559 { 560 struct netdev_boot_setup *s; 561 int i; 562 563 s = dev_boot_setup; 564 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 565 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 566 memset(s[i].name, 0, sizeof(s[i].name)); 567 strlcpy(s[i].name, name, IFNAMSIZ); 568 memcpy(&s[i].map, map, sizeof(s[i].map)); 569 break; 570 } 571 } 572 573 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 574 } 575 576 /** 577 * netdev_boot_setup_check - check boot time settings 578 * @dev: the netdevice 579 * 580 * Check boot time settings for the device. 581 * The found settings are set for the device to be used 582 * later in the device probing. 583 * Returns 0 if no settings found, 1 if they are. 584 */ 585 int netdev_boot_setup_check(struct net_device *dev) 586 { 587 struct netdev_boot_setup *s = dev_boot_setup; 588 int i; 589 590 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 591 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 592 !strcmp(dev->name, s[i].name)) { 593 dev->irq = s[i].map.irq; 594 dev->base_addr = s[i].map.base_addr; 595 dev->mem_start = s[i].map.mem_start; 596 dev->mem_end = s[i].map.mem_end; 597 return 1; 598 } 599 } 600 return 0; 601 } 602 EXPORT_SYMBOL(netdev_boot_setup_check); 603 604 605 /** 606 * netdev_boot_base - get address from boot time settings 607 * @prefix: prefix for network device 608 * @unit: id for network device 609 * 610 * Check boot time settings for the base address of device. 611 * The found settings are set for the device to be used 612 * later in the device probing. 613 * Returns 0 if no settings found. 614 */ 615 unsigned long netdev_boot_base(const char *prefix, int unit) 616 { 617 const struct netdev_boot_setup *s = dev_boot_setup; 618 char name[IFNAMSIZ]; 619 int i; 620 621 sprintf(name, "%s%d", prefix, unit); 622 623 /* 624 * If device already registered then return base of 1 625 * to indicate not to probe for this interface 626 */ 627 if (__dev_get_by_name(&init_net, name)) 628 return 1; 629 630 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 631 if (!strcmp(name, s[i].name)) 632 return s[i].map.base_addr; 633 return 0; 634 } 635 636 /* 637 * Saves at boot time configured settings for any netdevice. 638 */ 639 int __init netdev_boot_setup(char *str) 640 { 641 int ints[5]; 642 struct ifmap map; 643 644 str = get_options(str, ARRAY_SIZE(ints), ints); 645 if (!str || !*str) 646 return 0; 647 648 /* Save settings */ 649 memset(&map, 0, sizeof(map)); 650 if (ints[0] > 0) 651 map.irq = ints[1]; 652 if (ints[0] > 1) 653 map.base_addr = ints[2]; 654 if (ints[0] > 2) 655 map.mem_start = ints[3]; 656 if (ints[0] > 3) 657 map.mem_end = ints[4]; 658 659 /* Add new entry to the list */ 660 return netdev_boot_setup_add(str, &map); 661 } 662 663 __setup("netdev=", netdev_boot_setup); 664 665 /******************************************************************************* 666 667 Device Interface Subroutines 668 669 *******************************************************************************/ 670 671 /** 672 * dev_get_iflink - get 'iflink' value of a interface 673 * @dev: targeted interface 674 * 675 * Indicates the ifindex the interface is linked to. 676 * Physical interfaces have the same 'ifindex' and 'iflink' values. 677 */ 678 679 int dev_get_iflink(const struct net_device *dev) 680 { 681 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 682 return dev->netdev_ops->ndo_get_iflink(dev); 683 684 return dev->ifindex; 685 } 686 EXPORT_SYMBOL(dev_get_iflink); 687 688 /** 689 * dev_fill_metadata_dst - Retrieve tunnel egress information. 690 * @dev: targeted interface 691 * @skb: The packet. 692 * 693 * For better visibility of tunnel traffic OVS needs to retrieve 694 * egress tunnel information for a packet. Following API allows 695 * user to get this info. 696 */ 697 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 698 { 699 struct ip_tunnel_info *info; 700 701 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 702 return -EINVAL; 703 704 info = skb_tunnel_info_unclone(skb); 705 if (!info) 706 return -ENOMEM; 707 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 708 return -EINVAL; 709 710 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 711 } 712 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 713 714 /** 715 * __dev_get_by_name - find a device by its name 716 * @net: the applicable net namespace 717 * @name: name to find 718 * 719 * Find an interface by name. Must be called under RTNL semaphore 720 * or @dev_base_lock. If the name is found a pointer to the device 721 * is returned. If the name is not found then %NULL is returned. The 722 * reference counters are not incremented so the caller must be 723 * careful with locks. 724 */ 725 726 struct net_device *__dev_get_by_name(struct net *net, const char *name) 727 { 728 struct net_device *dev; 729 struct hlist_head *head = dev_name_hash(net, name); 730 731 hlist_for_each_entry(dev, head, name_hlist) 732 if (!strncmp(dev->name, name, IFNAMSIZ)) 733 return dev; 734 735 return NULL; 736 } 737 EXPORT_SYMBOL(__dev_get_by_name); 738 739 /** 740 * dev_get_by_name_rcu - find a device by its name 741 * @net: the applicable net namespace 742 * @name: name to find 743 * 744 * Find an interface by name. 745 * If the name is found a pointer to the device is returned. 746 * If the name is not found then %NULL is returned. 747 * The reference counters are not incremented so the caller must be 748 * careful with locks. The caller must hold RCU lock. 749 */ 750 751 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 752 { 753 struct net_device *dev; 754 struct hlist_head *head = dev_name_hash(net, name); 755 756 hlist_for_each_entry_rcu(dev, head, name_hlist) 757 if (!strncmp(dev->name, name, IFNAMSIZ)) 758 return dev; 759 760 return NULL; 761 } 762 EXPORT_SYMBOL(dev_get_by_name_rcu); 763 764 /** 765 * dev_get_by_name - find a device by its name 766 * @net: the applicable net namespace 767 * @name: name to find 768 * 769 * Find an interface by name. This can be called from any 770 * context and does its own locking. The returned handle has 771 * the usage count incremented and the caller must use dev_put() to 772 * release it when it is no longer needed. %NULL is returned if no 773 * matching device is found. 774 */ 775 776 struct net_device *dev_get_by_name(struct net *net, const char *name) 777 { 778 struct net_device *dev; 779 780 rcu_read_lock(); 781 dev = dev_get_by_name_rcu(net, name); 782 if (dev) 783 dev_hold(dev); 784 rcu_read_unlock(); 785 return dev; 786 } 787 EXPORT_SYMBOL(dev_get_by_name); 788 789 /** 790 * __dev_get_by_index - find a device by its ifindex 791 * @net: the applicable net namespace 792 * @ifindex: index of device 793 * 794 * Search for an interface by index. Returns %NULL if the device 795 * is not found or a pointer to the device. The device has not 796 * had its reference counter increased so the caller must be careful 797 * about locking. The caller must hold either the RTNL semaphore 798 * or @dev_base_lock. 799 */ 800 801 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 802 { 803 struct net_device *dev; 804 struct hlist_head *head = dev_index_hash(net, ifindex); 805 806 hlist_for_each_entry(dev, head, index_hlist) 807 if (dev->ifindex == ifindex) 808 return dev; 809 810 return NULL; 811 } 812 EXPORT_SYMBOL(__dev_get_by_index); 813 814 /** 815 * dev_get_by_index_rcu - find a device by its ifindex 816 * @net: the applicable net namespace 817 * @ifindex: index of device 818 * 819 * Search for an interface by index. Returns %NULL if the device 820 * is not found or a pointer to the device. The device has not 821 * had its reference counter increased so the caller must be careful 822 * about locking. The caller must hold RCU lock. 823 */ 824 825 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 826 { 827 struct net_device *dev; 828 struct hlist_head *head = dev_index_hash(net, ifindex); 829 830 hlist_for_each_entry_rcu(dev, head, index_hlist) 831 if (dev->ifindex == ifindex) 832 return dev; 833 834 return NULL; 835 } 836 EXPORT_SYMBOL(dev_get_by_index_rcu); 837 838 839 /** 840 * dev_get_by_index - find a device by its ifindex 841 * @net: the applicable net namespace 842 * @ifindex: index of device 843 * 844 * Search for an interface by index. Returns NULL if the device 845 * is not found or a pointer to the device. The device returned has 846 * had a reference added and the pointer is safe until the user calls 847 * dev_put to indicate they have finished with it. 848 */ 849 850 struct net_device *dev_get_by_index(struct net *net, int ifindex) 851 { 852 struct net_device *dev; 853 854 rcu_read_lock(); 855 dev = dev_get_by_index_rcu(net, ifindex); 856 if (dev) 857 dev_hold(dev); 858 rcu_read_unlock(); 859 return dev; 860 } 861 EXPORT_SYMBOL(dev_get_by_index); 862 863 /** 864 * netdev_get_name - get a netdevice name, knowing its ifindex. 865 * @net: network namespace 866 * @name: a pointer to the buffer where the name will be stored. 867 * @ifindex: the ifindex of the interface to get the name from. 868 * 869 * The use of raw_seqcount_begin() and cond_resched() before 870 * retrying is required as we want to give the writers a chance 871 * to complete when CONFIG_PREEMPT is not set. 872 */ 873 int netdev_get_name(struct net *net, char *name, int ifindex) 874 { 875 struct net_device *dev; 876 unsigned int seq; 877 878 retry: 879 seq = raw_seqcount_begin(&devnet_rename_seq); 880 rcu_read_lock(); 881 dev = dev_get_by_index_rcu(net, ifindex); 882 if (!dev) { 883 rcu_read_unlock(); 884 return -ENODEV; 885 } 886 887 strcpy(name, dev->name); 888 rcu_read_unlock(); 889 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 890 cond_resched(); 891 goto retry; 892 } 893 894 return 0; 895 } 896 897 /** 898 * dev_getbyhwaddr_rcu - find a device by its hardware address 899 * @net: the applicable net namespace 900 * @type: media type of device 901 * @ha: hardware address 902 * 903 * Search for an interface by MAC address. Returns NULL if the device 904 * is not found or a pointer to the device. 905 * The caller must hold RCU or RTNL. 906 * The returned device has not had its ref count increased 907 * and the caller must therefore be careful about locking 908 * 909 */ 910 911 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 912 const char *ha) 913 { 914 struct net_device *dev; 915 916 for_each_netdev_rcu(net, dev) 917 if (dev->type == type && 918 !memcmp(dev->dev_addr, ha, dev->addr_len)) 919 return dev; 920 921 return NULL; 922 } 923 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 924 925 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 926 { 927 struct net_device *dev; 928 929 ASSERT_RTNL(); 930 for_each_netdev(net, dev) 931 if (dev->type == type) 932 return dev; 933 934 return NULL; 935 } 936 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 937 938 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 939 { 940 struct net_device *dev, *ret = NULL; 941 942 rcu_read_lock(); 943 for_each_netdev_rcu(net, dev) 944 if (dev->type == type) { 945 dev_hold(dev); 946 ret = dev; 947 break; 948 } 949 rcu_read_unlock(); 950 return ret; 951 } 952 EXPORT_SYMBOL(dev_getfirstbyhwtype); 953 954 /** 955 * __dev_get_by_flags - find any device with given flags 956 * @net: the applicable net namespace 957 * @if_flags: IFF_* values 958 * @mask: bitmask of bits in if_flags to check 959 * 960 * Search for any interface with the given flags. Returns NULL if a device 961 * is not found or a pointer to the device. Must be called inside 962 * rtnl_lock(), and result refcount is unchanged. 963 */ 964 965 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 966 unsigned short mask) 967 { 968 struct net_device *dev, *ret; 969 970 ASSERT_RTNL(); 971 972 ret = NULL; 973 for_each_netdev(net, dev) { 974 if (((dev->flags ^ if_flags) & mask) == 0) { 975 ret = dev; 976 break; 977 } 978 } 979 return ret; 980 } 981 EXPORT_SYMBOL(__dev_get_by_flags); 982 983 /** 984 * dev_valid_name - check if name is okay for network device 985 * @name: name string 986 * 987 * Network device names need to be valid file names to 988 * to allow sysfs to work. We also disallow any kind of 989 * whitespace. 990 */ 991 bool dev_valid_name(const char *name) 992 { 993 if (*name == '\0') 994 return false; 995 if (strlen(name) >= IFNAMSIZ) 996 return false; 997 if (!strcmp(name, ".") || !strcmp(name, "..")) 998 return false; 999 1000 while (*name) { 1001 if (*name == '/' || *name == ':' || isspace(*name)) 1002 return false; 1003 name++; 1004 } 1005 return true; 1006 } 1007 EXPORT_SYMBOL(dev_valid_name); 1008 1009 /** 1010 * __dev_alloc_name - allocate a name for a device 1011 * @net: network namespace to allocate the device name in 1012 * @name: name format string 1013 * @buf: scratch buffer and result name string 1014 * 1015 * Passed a format string - eg "lt%d" it will try and find a suitable 1016 * id. It scans list of devices to build up a free map, then chooses 1017 * the first empty slot. The caller must hold the dev_base or rtnl lock 1018 * while allocating the name and adding the device in order to avoid 1019 * duplicates. 1020 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1021 * Returns the number of the unit assigned or a negative errno code. 1022 */ 1023 1024 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1025 { 1026 int i = 0; 1027 const char *p; 1028 const int max_netdevices = 8*PAGE_SIZE; 1029 unsigned long *inuse; 1030 struct net_device *d; 1031 1032 p = strnchr(name, IFNAMSIZ-1, '%'); 1033 if (p) { 1034 /* 1035 * Verify the string as this thing may have come from 1036 * the user. There must be either one "%d" and no other "%" 1037 * characters. 1038 */ 1039 if (p[1] != 'd' || strchr(p + 2, '%')) 1040 return -EINVAL; 1041 1042 /* Use one page as a bit array of possible slots */ 1043 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1044 if (!inuse) 1045 return -ENOMEM; 1046 1047 for_each_netdev(net, d) { 1048 if (!sscanf(d->name, name, &i)) 1049 continue; 1050 if (i < 0 || i >= max_netdevices) 1051 continue; 1052 1053 /* avoid cases where sscanf is not exact inverse of printf */ 1054 snprintf(buf, IFNAMSIZ, name, i); 1055 if (!strncmp(buf, d->name, IFNAMSIZ)) 1056 set_bit(i, inuse); 1057 } 1058 1059 i = find_first_zero_bit(inuse, max_netdevices); 1060 free_page((unsigned long) inuse); 1061 } 1062 1063 if (buf != name) 1064 snprintf(buf, IFNAMSIZ, name, i); 1065 if (!__dev_get_by_name(net, buf)) 1066 return i; 1067 1068 /* It is possible to run out of possible slots 1069 * when the name is long and there isn't enough space left 1070 * for the digits, or if all bits are used. 1071 */ 1072 return -ENFILE; 1073 } 1074 1075 /** 1076 * dev_alloc_name - allocate a name for a device 1077 * @dev: device 1078 * @name: name format string 1079 * 1080 * Passed a format string - eg "lt%d" it will try and find a suitable 1081 * id. It scans list of devices to build up a free map, then chooses 1082 * the first empty slot. The caller must hold the dev_base or rtnl lock 1083 * while allocating the name and adding the device in order to avoid 1084 * duplicates. 1085 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1086 * Returns the number of the unit assigned or a negative errno code. 1087 */ 1088 1089 int dev_alloc_name(struct net_device *dev, const char *name) 1090 { 1091 char buf[IFNAMSIZ]; 1092 struct net *net; 1093 int ret; 1094 1095 BUG_ON(!dev_net(dev)); 1096 net = dev_net(dev); 1097 ret = __dev_alloc_name(net, name, buf); 1098 if (ret >= 0) 1099 strlcpy(dev->name, buf, IFNAMSIZ); 1100 return ret; 1101 } 1102 EXPORT_SYMBOL(dev_alloc_name); 1103 1104 static int dev_alloc_name_ns(struct net *net, 1105 struct net_device *dev, 1106 const char *name) 1107 { 1108 char buf[IFNAMSIZ]; 1109 int ret; 1110 1111 ret = __dev_alloc_name(net, name, buf); 1112 if (ret >= 0) 1113 strlcpy(dev->name, buf, IFNAMSIZ); 1114 return ret; 1115 } 1116 1117 static int dev_get_valid_name(struct net *net, 1118 struct net_device *dev, 1119 const char *name) 1120 { 1121 BUG_ON(!net); 1122 1123 if (!dev_valid_name(name)) 1124 return -EINVAL; 1125 1126 if (strchr(name, '%')) 1127 return dev_alloc_name_ns(net, dev, name); 1128 else if (__dev_get_by_name(net, name)) 1129 return -EEXIST; 1130 else if (dev->name != name) 1131 strlcpy(dev->name, name, IFNAMSIZ); 1132 1133 return 0; 1134 } 1135 1136 /** 1137 * dev_change_name - change name of a device 1138 * @dev: device 1139 * @newname: name (or format string) must be at least IFNAMSIZ 1140 * 1141 * Change name of a device, can pass format strings "eth%d". 1142 * for wildcarding. 1143 */ 1144 int dev_change_name(struct net_device *dev, const char *newname) 1145 { 1146 unsigned char old_assign_type; 1147 char oldname[IFNAMSIZ]; 1148 int err = 0; 1149 int ret; 1150 struct net *net; 1151 1152 ASSERT_RTNL(); 1153 BUG_ON(!dev_net(dev)); 1154 1155 net = dev_net(dev); 1156 if (dev->flags & IFF_UP) 1157 return -EBUSY; 1158 1159 write_seqcount_begin(&devnet_rename_seq); 1160 1161 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1162 write_seqcount_end(&devnet_rename_seq); 1163 return 0; 1164 } 1165 1166 memcpy(oldname, dev->name, IFNAMSIZ); 1167 1168 err = dev_get_valid_name(net, dev, newname); 1169 if (err < 0) { 1170 write_seqcount_end(&devnet_rename_seq); 1171 return err; 1172 } 1173 1174 if (oldname[0] && !strchr(oldname, '%')) 1175 netdev_info(dev, "renamed from %s\n", oldname); 1176 1177 old_assign_type = dev->name_assign_type; 1178 dev->name_assign_type = NET_NAME_RENAMED; 1179 1180 rollback: 1181 ret = device_rename(&dev->dev, dev->name); 1182 if (ret) { 1183 memcpy(dev->name, oldname, IFNAMSIZ); 1184 dev->name_assign_type = old_assign_type; 1185 write_seqcount_end(&devnet_rename_seq); 1186 return ret; 1187 } 1188 1189 write_seqcount_end(&devnet_rename_seq); 1190 1191 netdev_adjacent_rename_links(dev, oldname); 1192 1193 write_lock_bh(&dev_base_lock); 1194 hlist_del_rcu(&dev->name_hlist); 1195 write_unlock_bh(&dev_base_lock); 1196 1197 synchronize_rcu(); 1198 1199 write_lock_bh(&dev_base_lock); 1200 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1201 write_unlock_bh(&dev_base_lock); 1202 1203 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1204 ret = notifier_to_errno(ret); 1205 1206 if (ret) { 1207 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1208 if (err >= 0) { 1209 err = ret; 1210 write_seqcount_begin(&devnet_rename_seq); 1211 memcpy(dev->name, oldname, IFNAMSIZ); 1212 memcpy(oldname, newname, IFNAMSIZ); 1213 dev->name_assign_type = old_assign_type; 1214 old_assign_type = NET_NAME_RENAMED; 1215 goto rollback; 1216 } else { 1217 pr_err("%s: name change rollback failed: %d\n", 1218 dev->name, ret); 1219 } 1220 } 1221 1222 return err; 1223 } 1224 1225 /** 1226 * dev_set_alias - change ifalias of a device 1227 * @dev: device 1228 * @alias: name up to IFALIASZ 1229 * @len: limit of bytes to copy from info 1230 * 1231 * Set ifalias for a device, 1232 */ 1233 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1234 { 1235 char *new_ifalias; 1236 1237 ASSERT_RTNL(); 1238 1239 if (len >= IFALIASZ) 1240 return -EINVAL; 1241 1242 if (!len) { 1243 kfree(dev->ifalias); 1244 dev->ifalias = NULL; 1245 return 0; 1246 } 1247 1248 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1249 if (!new_ifalias) 1250 return -ENOMEM; 1251 dev->ifalias = new_ifalias; 1252 1253 strlcpy(dev->ifalias, alias, len+1); 1254 return len; 1255 } 1256 1257 1258 /** 1259 * netdev_features_change - device changes features 1260 * @dev: device to cause notification 1261 * 1262 * Called to indicate a device has changed features. 1263 */ 1264 void netdev_features_change(struct net_device *dev) 1265 { 1266 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1267 } 1268 EXPORT_SYMBOL(netdev_features_change); 1269 1270 /** 1271 * netdev_state_change - device changes state 1272 * @dev: device to cause notification 1273 * 1274 * Called to indicate a device has changed state. This function calls 1275 * the notifier chains for netdev_chain and sends a NEWLINK message 1276 * to the routing socket. 1277 */ 1278 void netdev_state_change(struct net_device *dev) 1279 { 1280 if (dev->flags & IFF_UP) { 1281 struct netdev_notifier_change_info change_info; 1282 1283 change_info.flags_changed = 0; 1284 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 1285 &change_info.info); 1286 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1287 } 1288 } 1289 EXPORT_SYMBOL(netdev_state_change); 1290 1291 /** 1292 * netdev_notify_peers - notify network peers about existence of @dev 1293 * @dev: network device 1294 * 1295 * Generate traffic such that interested network peers are aware of 1296 * @dev, such as by generating a gratuitous ARP. This may be used when 1297 * a device wants to inform the rest of the network about some sort of 1298 * reconfiguration such as a failover event or virtual machine 1299 * migration. 1300 */ 1301 void netdev_notify_peers(struct net_device *dev) 1302 { 1303 rtnl_lock(); 1304 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1305 rtnl_unlock(); 1306 } 1307 EXPORT_SYMBOL(netdev_notify_peers); 1308 1309 static int __dev_open(struct net_device *dev) 1310 { 1311 const struct net_device_ops *ops = dev->netdev_ops; 1312 int ret; 1313 1314 ASSERT_RTNL(); 1315 1316 if (!netif_device_present(dev)) 1317 return -ENODEV; 1318 1319 /* Block netpoll from trying to do any rx path servicing. 1320 * If we don't do this there is a chance ndo_poll_controller 1321 * or ndo_poll may be running while we open the device 1322 */ 1323 netpoll_poll_disable(dev); 1324 1325 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1326 ret = notifier_to_errno(ret); 1327 if (ret) 1328 return ret; 1329 1330 set_bit(__LINK_STATE_START, &dev->state); 1331 1332 if (ops->ndo_validate_addr) 1333 ret = ops->ndo_validate_addr(dev); 1334 1335 if (!ret && ops->ndo_open) 1336 ret = ops->ndo_open(dev); 1337 1338 netpoll_poll_enable(dev); 1339 1340 if (ret) 1341 clear_bit(__LINK_STATE_START, &dev->state); 1342 else { 1343 dev->flags |= IFF_UP; 1344 dev_set_rx_mode(dev); 1345 dev_activate(dev); 1346 add_device_randomness(dev->dev_addr, dev->addr_len); 1347 } 1348 1349 return ret; 1350 } 1351 1352 /** 1353 * dev_open - prepare an interface for use. 1354 * @dev: device to open 1355 * 1356 * Takes a device from down to up state. The device's private open 1357 * function is invoked and then the multicast lists are loaded. Finally 1358 * the device is moved into the up state and a %NETDEV_UP message is 1359 * sent to the netdev notifier chain. 1360 * 1361 * Calling this function on an active interface is a nop. On a failure 1362 * a negative errno code is returned. 1363 */ 1364 int dev_open(struct net_device *dev) 1365 { 1366 int ret; 1367 1368 if (dev->flags & IFF_UP) 1369 return 0; 1370 1371 ret = __dev_open(dev); 1372 if (ret < 0) 1373 return ret; 1374 1375 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1376 call_netdevice_notifiers(NETDEV_UP, dev); 1377 1378 return ret; 1379 } 1380 EXPORT_SYMBOL(dev_open); 1381 1382 static int __dev_close_many(struct list_head *head) 1383 { 1384 struct net_device *dev; 1385 1386 ASSERT_RTNL(); 1387 might_sleep(); 1388 1389 list_for_each_entry(dev, head, close_list) { 1390 /* Temporarily disable netpoll until the interface is down */ 1391 netpoll_poll_disable(dev); 1392 1393 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1394 1395 clear_bit(__LINK_STATE_START, &dev->state); 1396 1397 /* Synchronize to scheduled poll. We cannot touch poll list, it 1398 * can be even on different cpu. So just clear netif_running(). 1399 * 1400 * dev->stop() will invoke napi_disable() on all of it's 1401 * napi_struct instances on this device. 1402 */ 1403 smp_mb__after_atomic(); /* Commit netif_running(). */ 1404 } 1405 1406 dev_deactivate_many(head); 1407 1408 list_for_each_entry(dev, head, close_list) { 1409 const struct net_device_ops *ops = dev->netdev_ops; 1410 1411 /* 1412 * Call the device specific close. This cannot fail. 1413 * Only if device is UP 1414 * 1415 * We allow it to be called even after a DETACH hot-plug 1416 * event. 1417 */ 1418 if (ops->ndo_stop) 1419 ops->ndo_stop(dev); 1420 1421 dev->flags &= ~IFF_UP; 1422 netpoll_poll_enable(dev); 1423 } 1424 1425 return 0; 1426 } 1427 1428 static int __dev_close(struct net_device *dev) 1429 { 1430 int retval; 1431 LIST_HEAD(single); 1432 1433 list_add(&dev->close_list, &single); 1434 retval = __dev_close_many(&single); 1435 list_del(&single); 1436 1437 return retval; 1438 } 1439 1440 int dev_close_many(struct list_head *head, bool unlink) 1441 { 1442 struct net_device *dev, *tmp; 1443 1444 /* Remove the devices that don't need to be closed */ 1445 list_for_each_entry_safe(dev, tmp, head, close_list) 1446 if (!(dev->flags & IFF_UP)) 1447 list_del_init(&dev->close_list); 1448 1449 __dev_close_many(head); 1450 1451 list_for_each_entry_safe(dev, tmp, head, close_list) { 1452 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1453 call_netdevice_notifiers(NETDEV_DOWN, dev); 1454 if (unlink) 1455 list_del_init(&dev->close_list); 1456 } 1457 1458 return 0; 1459 } 1460 EXPORT_SYMBOL(dev_close_many); 1461 1462 /** 1463 * dev_close - shutdown an interface. 1464 * @dev: device to shutdown 1465 * 1466 * This function moves an active device into down state. A 1467 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1468 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1469 * chain. 1470 */ 1471 int dev_close(struct net_device *dev) 1472 { 1473 if (dev->flags & IFF_UP) { 1474 LIST_HEAD(single); 1475 1476 list_add(&dev->close_list, &single); 1477 dev_close_many(&single, true); 1478 list_del(&single); 1479 } 1480 return 0; 1481 } 1482 EXPORT_SYMBOL(dev_close); 1483 1484 1485 /** 1486 * dev_disable_lro - disable Large Receive Offload on a device 1487 * @dev: device 1488 * 1489 * Disable Large Receive Offload (LRO) on a net device. Must be 1490 * called under RTNL. This is needed if received packets may be 1491 * forwarded to another interface. 1492 */ 1493 void dev_disable_lro(struct net_device *dev) 1494 { 1495 struct net_device *lower_dev; 1496 struct list_head *iter; 1497 1498 dev->wanted_features &= ~NETIF_F_LRO; 1499 netdev_update_features(dev); 1500 1501 if (unlikely(dev->features & NETIF_F_LRO)) 1502 netdev_WARN(dev, "failed to disable LRO!\n"); 1503 1504 netdev_for_each_lower_dev(dev, lower_dev, iter) 1505 dev_disable_lro(lower_dev); 1506 } 1507 EXPORT_SYMBOL(dev_disable_lro); 1508 1509 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1510 struct net_device *dev) 1511 { 1512 struct netdev_notifier_info info; 1513 1514 netdev_notifier_info_init(&info, dev); 1515 return nb->notifier_call(nb, val, &info); 1516 } 1517 1518 static int dev_boot_phase = 1; 1519 1520 /** 1521 * register_netdevice_notifier - register a network notifier block 1522 * @nb: notifier 1523 * 1524 * Register a notifier to be called when network device events occur. 1525 * The notifier passed is linked into the kernel structures and must 1526 * not be reused until it has been unregistered. A negative errno code 1527 * is returned on a failure. 1528 * 1529 * When registered all registration and up events are replayed 1530 * to the new notifier to allow device to have a race free 1531 * view of the network device list. 1532 */ 1533 1534 int register_netdevice_notifier(struct notifier_block *nb) 1535 { 1536 struct net_device *dev; 1537 struct net_device *last; 1538 struct net *net; 1539 int err; 1540 1541 rtnl_lock(); 1542 err = raw_notifier_chain_register(&netdev_chain, nb); 1543 if (err) 1544 goto unlock; 1545 if (dev_boot_phase) 1546 goto unlock; 1547 for_each_net(net) { 1548 for_each_netdev(net, dev) { 1549 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1550 err = notifier_to_errno(err); 1551 if (err) 1552 goto rollback; 1553 1554 if (!(dev->flags & IFF_UP)) 1555 continue; 1556 1557 call_netdevice_notifier(nb, NETDEV_UP, dev); 1558 } 1559 } 1560 1561 unlock: 1562 rtnl_unlock(); 1563 return err; 1564 1565 rollback: 1566 last = dev; 1567 for_each_net(net) { 1568 for_each_netdev(net, dev) { 1569 if (dev == last) 1570 goto outroll; 1571 1572 if (dev->flags & IFF_UP) { 1573 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1574 dev); 1575 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1576 } 1577 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1578 } 1579 } 1580 1581 outroll: 1582 raw_notifier_chain_unregister(&netdev_chain, nb); 1583 goto unlock; 1584 } 1585 EXPORT_SYMBOL(register_netdevice_notifier); 1586 1587 /** 1588 * unregister_netdevice_notifier - unregister a network notifier block 1589 * @nb: notifier 1590 * 1591 * Unregister a notifier previously registered by 1592 * register_netdevice_notifier(). The notifier is unlinked into the 1593 * kernel structures and may then be reused. A negative errno code 1594 * is returned on a failure. 1595 * 1596 * After unregistering unregister and down device events are synthesized 1597 * for all devices on the device list to the removed notifier to remove 1598 * the need for special case cleanup code. 1599 */ 1600 1601 int unregister_netdevice_notifier(struct notifier_block *nb) 1602 { 1603 struct net_device *dev; 1604 struct net *net; 1605 int err; 1606 1607 rtnl_lock(); 1608 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1609 if (err) 1610 goto unlock; 1611 1612 for_each_net(net) { 1613 for_each_netdev(net, dev) { 1614 if (dev->flags & IFF_UP) { 1615 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1616 dev); 1617 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1618 } 1619 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1620 } 1621 } 1622 unlock: 1623 rtnl_unlock(); 1624 return err; 1625 } 1626 EXPORT_SYMBOL(unregister_netdevice_notifier); 1627 1628 /** 1629 * call_netdevice_notifiers_info - call all network notifier blocks 1630 * @val: value passed unmodified to notifier function 1631 * @dev: net_device pointer passed unmodified to notifier function 1632 * @info: notifier information data 1633 * 1634 * Call all network notifier blocks. Parameters and return value 1635 * are as for raw_notifier_call_chain(). 1636 */ 1637 1638 static int call_netdevice_notifiers_info(unsigned long val, 1639 struct net_device *dev, 1640 struct netdev_notifier_info *info) 1641 { 1642 ASSERT_RTNL(); 1643 netdev_notifier_info_init(info, dev); 1644 return raw_notifier_call_chain(&netdev_chain, val, info); 1645 } 1646 1647 /** 1648 * call_netdevice_notifiers - call all network notifier blocks 1649 * @val: value passed unmodified to notifier function 1650 * @dev: net_device pointer passed unmodified to notifier function 1651 * 1652 * Call all network notifier blocks. Parameters and return value 1653 * are as for raw_notifier_call_chain(). 1654 */ 1655 1656 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1657 { 1658 struct netdev_notifier_info info; 1659 1660 return call_netdevice_notifiers_info(val, dev, &info); 1661 } 1662 EXPORT_SYMBOL(call_netdevice_notifiers); 1663 1664 #ifdef CONFIG_NET_INGRESS 1665 static struct static_key ingress_needed __read_mostly; 1666 1667 void net_inc_ingress_queue(void) 1668 { 1669 static_key_slow_inc(&ingress_needed); 1670 } 1671 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 1672 1673 void net_dec_ingress_queue(void) 1674 { 1675 static_key_slow_dec(&ingress_needed); 1676 } 1677 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 1678 #endif 1679 1680 #ifdef CONFIG_NET_EGRESS 1681 static struct static_key egress_needed __read_mostly; 1682 1683 void net_inc_egress_queue(void) 1684 { 1685 static_key_slow_inc(&egress_needed); 1686 } 1687 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 1688 1689 void net_dec_egress_queue(void) 1690 { 1691 static_key_slow_dec(&egress_needed); 1692 } 1693 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 1694 #endif 1695 1696 static struct static_key netstamp_needed __read_mostly; 1697 #ifdef HAVE_JUMP_LABEL 1698 /* We are not allowed to call static_key_slow_dec() from irq context 1699 * If net_disable_timestamp() is called from irq context, defer the 1700 * static_key_slow_dec() calls. 1701 */ 1702 static atomic_t netstamp_needed_deferred; 1703 #endif 1704 1705 void net_enable_timestamp(void) 1706 { 1707 #ifdef HAVE_JUMP_LABEL 1708 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1709 1710 if (deferred) { 1711 while (--deferred) 1712 static_key_slow_dec(&netstamp_needed); 1713 return; 1714 } 1715 #endif 1716 static_key_slow_inc(&netstamp_needed); 1717 } 1718 EXPORT_SYMBOL(net_enable_timestamp); 1719 1720 void net_disable_timestamp(void) 1721 { 1722 #ifdef HAVE_JUMP_LABEL 1723 if (in_interrupt()) { 1724 atomic_inc(&netstamp_needed_deferred); 1725 return; 1726 } 1727 #endif 1728 static_key_slow_dec(&netstamp_needed); 1729 } 1730 EXPORT_SYMBOL(net_disable_timestamp); 1731 1732 static inline void net_timestamp_set(struct sk_buff *skb) 1733 { 1734 skb->tstamp.tv64 = 0; 1735 if (static_key_false(&netstamp_needed)) 1736 __net_timestamp(skb); 1737 } 1738 1739 #define net_timestamp_check(COND, SKB) \ 1740 if (static_key_false(&netstamp_needed)) { \ 1741 if ((COND) && !(SKB)->tstamp.tv64) \ 1742 __net_timestamp(SKB); \ 1743 } \ 1744 1745 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 1746 { 1747 unsigned int len; 1748 1749 if (!(dev->flags & IFF_UP)) 1750 return false; 1751 1752 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1753 if (skb->len <= len) 1754 return true; 1755 1756 /* if TSO is enabled, we don't care about the length as the packet 1757 * could be forwarded without being segmented before 1758 */ 1759 if (skb_is_gso(skb)) 1760 return true; 1761 1762 return false; 1763 } 1764 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1765 1766 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1767 { 1768 if (skb_orphan_frags(skb, GFP_ATOMIC) || 1769 unlikely(!is_skb_forwardable(dev, skb))) { 1770 atomic_long_inc(&dev->rx_dropped); 1771 kfree_skb(skb); 1772 return NET_RX_DROP; 1773 } 1774 1775 skb_scrub_packet(skb, true); 1776 skb->priority = 0; 1777 skb->protocol = eth_type_trans(skb, dev); 1778 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 1779 1780 return 0; 1781 } 1782 EXPORT_SYMBOL_GPL(__dev_forward_skb); 1783 1784 /** 1785 * dev_forward_skb - loopback an skb to another netif 1786 * 1787 * @dev: destination network device 1788 * @skb: buffer to forward 1789 * 1790 * return values: 1791 * NET_RX_SUCCESS (no congestion) 1792 * NET_RX_DROP (packet was dropped, but freed) 1793 * 1794 * dev_forward_skb can be used for injecting an skb from the 1795 * start_xmit function of one device into the receive queue 1796 * of another device. 1797 * 1798 * The receiving device may be in another namespace, so 1799 * we have to clear all information in the skb that could 1800 * impact namespace isolation. 1801 */ 1802 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1803 { 1804 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1805 } 1806 EXPORT_SYMBOL_GPL(dev_forward_skb); 1807 1808 static inline int deliver_skb(struct sk_buff *skb, 1809 struct packet_type *pt_prev, 1810 struct net_device *orig_dev) 1811 { 1812 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 1813 return -ENOMEM; 1814 atomic_inc(&skb->users); 1815 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1816 } 1817 1818 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 1819 struct packet_type **pt, 1820 struct net_device *orig_dev, 1821 __be16 type, 1822 struct list_head *ptype_list) 1823 { 1824 struct packet_type *ptype, *pt_prev = *pt; 1825 1826 list_for_each_entry_rcu(ptype, ptype_list, list) { 1827 if (ptype->type != type) 1828 continue; 1829 if (pt_prev) 1830 deliver_skb(skb, pt_prev, orig_dev); 1831 pt_prev = ptype; 1832 } 1833 *pt = pt_prev; 1834 } 1835 1836 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1837 { 1838 if (!ptype->af_packet_priv || !skb->sk) 1839 return false; 1840 1841 if (ptype->id_match) 1842 return ptype->id_match(ptype, skb->sk); 1843 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1844 return true; 1845 1846 return false; 1847 } 1848 1849 /* 1850 * Support routine. Sends outgoing frames to any network 1851 * taps currently in use. 1852 */ 1853 1854 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1855 { 1856 struct packet_type *ptype; 1857 struct sk_buff *skb2 = NULL; 1858 struct packet_type *pt_prev = NULL; 1859 struct list_head *ptype_list = &ptype_all; 1860 1861 rcu_read_lock(); 1862 again: 1863 list_for_each_entry_rcu(ptype, ptype_list, list) { 1864 /* Never send packets back to the socket 1865 * they originated from - MvS (miquels@drinkel.ow.org) 1866 */ 1867 if (skb_loop_sk(ptype, skb)) 1868 continue; 1869 1870 if (pt_prev) { 1871 deliver_skb(skb2, pt_prev, skb->dev); 1872 pt_prev = ptype; 1873 continue; 1874 } 1875 1876 /* need to clone skb, done only once */ 1877 skb2 = skb_clone(skb, GFP_ATOMIC); 1878 if (!skb2) 1879 goto out_unlock; 1880 1881 net_timestamp_set(skb2); 1882 1883 /* skb->nh should be correctly 1884 * set by sender, so that the second statement is 1885 * just protection against buggy protocols. 1886 */ 1887 skb_reset_mac_header(skb2); 1888 1889 if (skb_network_header(skb2) < skb2->data || 1890 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 1891 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1892 ntohs(skb2->protocol), 1893 dev->name); 1894 skb_reset_network_header(skb2); 1895 } 1896 1897 skb2->transport_header = skb2->network_header; 1898 skb2->pkt_type = PACKET_OUTGOING; 1899 pt_prev = ptype; 1900 } 1901 1902 if (ptype_list == &ptype_all) { 1903 ptype_list = &dev->ptype_all; 1904 goto again; 1905 } 1906 out_unlock: 1907 if (pt_prev) 1908 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1909 rcu_read_unlock(); 1910 } 1911 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 1912 1913 /** 1914 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1915 * @dev: Network device 1916 * @txq: number of queues available 1917 * 1918 * If real_num_tx_queues is changed the tc mappings may no longer be 1919 * valid. To resolve this verify the tc mapping remains valid and if 1920 * not NULL the mapping. With no priorities mapping to this 1921 * offset/count pair it will no longer be used. In the worst case TC0 1922 * is invalid nothing can be done so disable priority mappings. If is 1923 * expected that drivers will fix this mapping if they can before 1924 * calling netif_set_real_num_tx_queues. 1925 */ 1926 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1927 { 1928 int i; 1929 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1930 1931 /* If TC0 is invalidated disable TC mapping */ 1932 if (tc->offset + tc->count > txq) { 1933 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1934 dev->num_tc = 0; 1935 return; 1936 } 1937 1938 /* Invalidated prio to tc mappings set to TC0 */ 1939 for (i = 1; i < TC_BITMASK + 1; i++) { 1940 int q = netdev_get_prio_tc_map(dev, i); 1941 1942 tc = &dev->tc_to_txq[q]; 1943 if (tc->offset + tc->count > txq) { 1944 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1945 i, q); 1946 netdev_set_prio_tc_map(dev, i, 0); 1947 } 1948 } 1949 } 1950 1951 #ifdef CONFIG_XPS 1952 static DEFINE_MUTEX(xps_map_mutex); 1953 #define xmap_dereference(P) \ 1954 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 1955 1956 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps, 1957 int cpu, u16 index) 1958 { 1959 struct xps_map *map = NULL; 1960 int pos; 1961 1962 if (dev_maps) 1963 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1964 1965 for (pos = 0; map && pos < map->len; pos++) { 1966 if (map->queues[pos] == index) { 1967 if (map->len > 1) { 1968 map->queues[pos] = map->queues[--map->len]; 1969 } else { 1970 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL); 1971 kfree_rcu(map, rcu); 1972 map = NULL; 1973 } 1974 break; 1975 } 1976 } 1977 1978 return map; 1979 } 1980 1981 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 1982 { 1983 struct xps_dev_maps *dev_maps; 1984 int cpu, i; 1985 bool active = false; 1986 1987 mutex_lock(&xps_map_mutex); 1988 dev_maps = xmap_dereference(dev->xps_maps); 1989 1990 if (!dev_maps) 1991 goto out_no_maps; 1992 1993 for_each_possible_cpu(cpu) { 1994 for (i = index; i < dev->num_tx_queues; i++) { 1995 if (!remove_xps_queue(dev_maps, cpu, i)) 1996 break; 1997 } 1998 if (i == dev->num_tx_queues) 1999 active = true; 2000 } 2001 2002 if (!active) { 2003 RCU_INIT_POINTER(dev->xps_maps, NULL); 2004 kfree_rcu(dev_maps, rcu); 2005 } 2006 2007 for (i = index; i < dev->num_tx_queues; i++) 2008 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 2009 NUMA_NO_NODE); 2010 2011 out_no_maps: 2012 mutex_unlock(&xps_map_mutex); 2013 } 2014 2015 static struct xps_map *expand_xps_map(struct xps_map *map, 2016 int cpu, u16 index) 2017 { 2018 struct xps_map *new_map; 2019 int alloc_len = XPS_MIN_MAP_ALLOC; 2020 int i, pos; 2021 2022 for (pos = 0; map && pos < map->len; pos++) { 2023 if (map->queues[pos] != index) 2024 continue; 2025 return map; 2026 } 2027 2028 /* Need to add queue to this CPU's existing map */ 2029 if (map) { 2030 if (pos < map->alloc_len) 2031 return map; 2032 2033 alloc_len = map->alloc_len * 2; 2034 } 2035 2036 /* Need to allocate new map to store queue on this CPU's map */ 2037 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2038 cpu_to_node(cpu)); 2039 if (!new_map) 2040 return NULL; 2041 2042 for (i = 0; i < pos; i++) 2043 new_map->queues[i] = map->queues[i]; 2044 new_map->alloc_len = alloc_len; 2045 new_map->len = pos; 2046 2047 return new_map; 2048 } 2049 2050 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2051 u16 index) 2052 { 2053 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2054 struct xps_map *map, *new_map; 2055 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES); 2056 int cpu, numa_node_id = -2; 2057 bool active = false; 2058 2059 mutex_lock(&xps_map_mutex); 2060 2061 dev_maps = xmap_dereference(dev->xps_maps); 2062 2063 /* allocate memory for queue storage */ 2064 for_each_online_cpu(cpu) { 2065 if (!cpumask_test_cpu(cpu, mask)) 2066 continue; 2067 2068 if (!new_dev_maps) 2069 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2070 if (!new_dev_maps) { 2071 mutex_unlock(&xps_map_mutex); 2072 return -ENOMEM; 2073 } 2074 2075 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 2076 NULL; 2077 2078 map = expand_xps_map(map, cpu, index); 2079 if (!map) 2080 goto error; 2081 2082 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 2083 } 2084 2085 if (!new_dev_maps) 2086 goto out_no_new_maps; 2087 2088 for_each_possible_cpu(cpu) { 2089 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 2090 /* add queue to CPU maps */ 2091 int pos = 0; 2092 2093 map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2094 while ((pos < map->len) && (map->queues[pos] != index)) 2095 pos++; 2096 2097 if (pos == map->len) 2098 map->queues[map->len++] = index; 2099 #ifdef CONFIG_NUMA 2100 if (numa_node_id == -2) 2101 numa_node_id = cpu_to_node(cpu); 2102 else if (numa_node_id != cpu_to_node(cpu)) 2103 numa_node_id = -1; 2104 #endif 2105 } else if (dev_maps) { 2106 /* fill in the new device map from the old device map */ 2107 map = xmap_dereference(dev_maps->cpu_map[cpu]); 2108 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 2109 } 2110 2111 } 2112 2113 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 2114 2115 /* Cleanup old maps */ 2116 if (dev_maps) { 2117 for_each_possible_cpu(cpu) { 2118 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2119 map = xmap_dereference(dev_maps->cpu_map[cpu]); 2120 if (map && map != new_map) 2121 kfree_rcu(map, rcu); 2122 } 2123 2124 kfree_rcu(dev_maps, rcu); 2125 } 2126 2127 dev_maps = new_dev_maps; 2128 active = true; 2129 2130 out_no_new_maps: 2131 /* update Tx queue numa node */ 2132 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2133 (numa_node_id >= 0) ? numa_node_id : 2134 NUMA_NO_NODE); 2135 2136 if (!dev_maps) 2137 goto out_no_maps; 2138 2139 /* removes queue from unused CPUs */ 2140 for_each_possible_cpu(cpu) { 2141 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) 2142 continue; 2143 2144 if (remove_xps_queue(dev_maps, cpu, index)) 2145 active = true; 2146 } 2147 2148 /* free map if not active */ 2149 if (!active) { 2150 RCU_INIT_POINTER(dev->xps_maps, NULL); 2151 kfree_rcu(dev_maps, rcu); 2152 } 2153 2154 out_no_maps: 2155 mutex_unlock(&xps_map_mutex); 2156 2157 return 0; 2158 error: 2159 /* remove any maps that we added */ 2160 for_each_possible_cpu(cpu) { 2161 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2162 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 2163 NULL; 2164 if (new_map && new_map != map) 2165 kfree(new_map); 2166 } 2167 2168 mutex_unlock(&xps_map_mutex); 2169 2170 kfree(new_dev_maps); 2171 return -ENOMEM; 2172 } 2173 EXPORT_SYMBOL(netif_set_xps_queue); 2174 2175 #endif 2176 /* 2177 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2178 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 2179 */ 2180 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2181 { 2182 int rc; 2183 2184 if (txq < 1 || txq > dev->num_tx_queues) 2185 return -EINVAL; 2186 2187 if (dev->reg_state == NETREG_REGISTERED || 2188 dev->reg_state == NETREG_UNREGISTERING) { 2189 ASSERT_RTNL(); 2190 2191 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2192 txq); 2193 if (rc) 2194 return rc; 2195 2196 if (dev->num_tc) 2197 netif_setup_tc(dev, txq); 2198 2199 if (txq < dev->real_num_tx_queues) { 2200 qdisc_reset_all_tx_gt(dev, txq); 2201 #ifdef CONFIG_XPS 2202 netif_reset_xps_queues_gt(dev, txq); 2203 #endif 2204 } 2205 } 2206 2207 dev->real_num_tx_queues = txq; 2208 return 0; 2209 } 2210 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2211 2212 #ifdef CONFIG_SYSFS 2213 /** 2214 * netif_set_real_num_rx_queues - set actual number of RX queues used 2215 * @dev: Network device 2216 * @rxq: Actual number of RX queues 2217 * 2218 * This must be called either with the rtnl_lock held or before 2219 * registration of the net device. Returns 0 on success, or a 2220 * negative error code. If called before registration, it always 2221 * succeeds. 2222 */ 2223 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2224 { 2225 int rc; 2226 2227 if (rxq < 1 || rxq > dev->num_rx_queues) 2228 return -EINVAL; 2229 2230 if (dev->reg_state == NETREG_REGISTERED) { 2231 ASSERT_RTNL(); 2232 2233 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2234 rxq); 2235 if (rc) 2236 return rc; 2237 } 2238 2239 dev->real_num_rx_queues = rxq; 2240 return 0; 2241 } 2242 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2243 #endif 2244 2245 /** 2246 * netif_get_num_default_rss_queues - default number of RSS queues 2247 * 2248 * This routine should set an upper limit on the number of RSS queues 2249 * used by default by multiqueue devices. 2250 */ 2251 int netif_get_num_default_rss_queues(void) 2252 { 2253 return is_kdump_kernel() ? 2254 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2255 } 2256 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2257 2258 static void __netif_reschedule(struct Qdisc *q) 2259 { 2260 struct softnet_data *sd; 2261 unsigned long flags; 2262 2263 local_irq_save(flags); 2264 sd = this_cpu_ptr(&softnet_data); 2265 q->next_sched = NULL; 2266 *sd->output_queue_tailp = q; 2267 sd->output_queue_tailp = &q->next_sched; 2268 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2269 local_irq_restore(flags); 2270 } 2271 2272 void __netif_schedule(struct Qdisc *q) 2273 { 2274 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2275 __netif_reschedule(q); 2276 } 2277 EXPORT_SYMBOL(__netif_schedule); 2278 2279 struct dev_kfree_skb_cb { 2280 enum skb_free_reason reason; 2281 }; 2282 2283 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2284 { 2285 return (struct dev_kfree_skb_cb *)skb->cb; 2286 } 2287 2288 void netif_schedule_queue(struct netdev_queue *txq) 2289 { 2290 rcu_read_lock(); 2291 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2292 struct Qdisc *q = rcu_dereference(txq->qdisc); 2293 2294 __netif_schedule(q); 2295 } 2296 rcu_read_unlock(); 2297 } 2298 EXPORT_SYMBOL(netif_schedule_queue); 2299 2300 /** 2301 * netif_wake_subqueue - allow sending packets on subqueue 2302 * @dev: network device 2303 * @queue_index: sub queue index 2304 * 2305 * Resume individual transmit queue of a device with multiple transmit queues. 2306 */ 2307 void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 2308 { 2309 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2310 2311 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) { 2312 struct Qdisc *q; 2313 2314 rcu_read_lock(); 2315 q = rcu_dereference(txq->qdisc); 2316 __netif_schedule(q); 2317 rcu_read_unlock(); 2318 } 2319 } 2320 EXPORT_SYMBOL(netif_wake_subqueue); 2321 2322 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2323 { 2324 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2325 struct Qdisc *q; 2326 2327 rcu_read_lock(); 2328 q = rcu_dereference(dev_queue->qdisc); 2329 __netif_schedule(q); 2330 rcu_read_unlock(); 2331 } 2332 } 2333 EXPORT_SYMBOL(netif_tx_wake_queue); 2334 2335 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2336 { 2337 unsigned long flags; 2338 2339 if (likely(atomic_read(&skb->users) == 1)) { 2340 smp_rmb(); 2341 atomic_set(&skb->users, 0); 2342 } else if (likely(!atomic_dec_and_test(&skb->users))) { 2343 return; 2344 } 2345 get_kfree_skb_cb(skb)->reason = reason; 2346 local_irq_save(flags); 2347 skb->next = __this_cpu_read(softnet_data.completion_queue); 2348 __this_cpu_write(softnet_data.completion_queue, skb); 2349 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2350 local_irq_restore(flags); 2351 } 2352 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2353 2354 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2355 { 2356 if (in_irq() || irqs_disabled()) 2357 __dev_kfree_skb_irq(skb, reason); 2358 else 2359 dev_kfree_skb(skb); 2360 } 2361 EXPORT_SYMBOL(__dev_kfree_skb_any); 2362 2363 2364 /** 2365 * netif_device_detach - mark device as removed 2366 * @dev: network device 2367 * 2368 * Mark device as removed from system and therefore no longer available. 2369 */ 2370 void netif_device_detach(struct net_device *dev) 2371 { 2372 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2373 netif_running(dev)) { 2374 netif_tx_stop_all_queues(dev); 2375 } 2376 } 2377 EXPORT_SYMBOL(netif_device_detach); 2378 2379 /** 2380 * netif_device_attach - mark device as attached 2381 * @dev: network device 2382 * 2383 * Mark device as attached from system and restart if needed. 2384 */ 2385 void netif_device_attach(struct net_device *dev) 2386 { 2387 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2388 netif_running(dev)) { 2389 netif_tx_wake_all_queues(dev); 2390 __netdev_watchdog_up(dev); 2391 } 2392 } 2393 EXPORT_SYMBOL(netif_device_attach); 2394 2395 /* 2396 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2397 * to be used as a distribution range. 2398 */ 2399 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 2400 unsigned int num_tx_queues) 2401 { 2402 u32 hash; 2403 u16 qoffset = 0; 2404 u16 qcount = num_tx_queues; 2405 2406 if (skb_rx_queue_recorded(skb)) { 2407 hash = skb_get_rx_queue(skb); 2408 while (unlikely(hash >= num_tx_queues)) 2409 hash -= num_tx_queues; 2410 return hash; 2411 } 2412 2413 if (dev->num_tc) { 2414 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2415 qoffset = dev->tc_to_txq[tc].offset; 2416 qcount = dev->tc_to_txq[tc].count; 2417 } 2418 2419 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 2420 } 2421 EXPORT_SYMBOL(__skb_tx_hash); 2422 2423 static void skb_warn_bad_offload(const struct sk_buff *skb) 2424 { 2425 static const netdev_features_t null_features = 0; 2426 struct net_device *dev = skb->dev; 2427 const char *name = ""; 2428 2429 if (!net_ratelimit()) 2430 return; 2431 2432 if (dev) { 2433 if (dev->dev.parent) 2434 name = dev_driver_string(dev->dev.parent); 2435 else 2436 name = netdev_name(dev); 2437 } 2438 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2439 "gso_type=%d ip_summed=%d\n", 2440 name, dev ? &dev->features : &null_features, 2441 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2442 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2443 skb_shinfo(skb)->gso_type, skb->ip_summed); 2444 } 2445 2446 /* 2447 * Invalidate hardware checksum when packet is to be mangled, and 2448 * complete checksum manually on outgoing path. 2449 */ 2450 int skb_checksum_help(struct sk_buff *skb) 2451 { 2452 __wsum csum; 2453 int ret = 0, offset; 2454 2455 if (skb->ip_summed == CHECKSUM_COMPLETE) 2456 goto out_set_summed; 2457 2458 if (unlikely(skb_shinfo(skb)->gso_size)) { 2459 skb_warn_bad_offload(skb); 2460 return -EINVAL; 2461 } 2462 2463 /* Before computing a checksum, we should make sure no frag could 2464 * be modified by an external entity : checksum could be wrong. 2465 */ 2466 if (skb_has_shared_frag(skb)) { 2467 ret = __skb_linearize(skb); 2468 if (ret) 2469 goto out; 2470 } 2471 2472 offset = skb_checksum_start_offset(skb); 2473 BUG_ON(offset >= skb_headlen(skb)); 2474 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2475 2476 offset += skb->csum_offset; 2477 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2478 2479 if (skb_cloned(skb) && 2480 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2481 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2482 if (ret) 2483 goto out; 2484 } 2485 2486 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 2487 out_set_summed: 2488 skb->ip_summed = CHECKSUM_NONE; 2489 out: 2490 return ret; 2491 } 2492 EXPORT_SYMBOL(skb_checksum_help); 2493 2494 /* skb_csum_offload_check - Driver helper function to determine if a device 2495 * with limited checksum offload capabilities is able to offload the checksum 2496 * for a given packet. 2497 * 2498 * Arguments: 2499 * skb - sk_buff for the packet in question 2500 * spec - contains the description of what device can offload 2501 * csum_encapped - returns true if the checksum being offloaded is 2502 * encpasulated. That is it is checksum for the transport header 2503 * in the inner headers. 2504 * checksum_help - when set indicates that helper function should 2505 * call skb_checksum_help if offload checks fail 2506 * 2507 * Returns: 2508 * true: Packet has passed the checksum checks and should be offloadable to 2509 * the device (a driver may still need to check for additional 2510 * restrictions of its device) 2511 * false: Checksum is not offloadable. If checksum_help was set then 2512 * skb_checksum_help was called to resolve checksum for non-GSO 2513 * packets and when IP protocol is not SCTP 2514 */ 2515 bool __skb_csum_offload_chk(struct sk_buff *skb, 2516 const struct skb_csum_offl_spec *spec, 2517 bool *csum_encapped, 2518 bool csum_help) 2519 { 2520 struct iphdr *iph; 2521 struct ipv6hdr *ipv6; 2522 void *nhdr; 2523 int protocol; 2524 u8 ip_proto; 2525 2526 if (skb->protocol == htons(ETH_P_8021Q) || 2527 skb->protocol == htons(ETH_P_8021AD)) { 2528 if (!spec->vlan_okay) 2529 goto need_help; 2530 } 2531 2532 /* We check whether the checksum refers to a transport layer checksum in 2533 * the outermost header or an encapsulated transport layer checksum that 2534 * corresponds to the inner headers of the skb. If the checksum is for 2535 * something else in the packet we need help. 2536 */ 2537 if (skb_checksum_start_offset(skb) == skb_transport_offset(skb)) { 2538 /* Non-encapsulated checksum */ 2539 protocol = eproto_to_ipproto(vlan_get_protocol(skb)); 2540 nhdr = skb_network_header(skb); 2541 *csum_encapped = false; 2542 if (spec->no_not_encapped) 2543 goto need_help; 2544 } else if (skb->encapsulation && spec->encap_okay && 2545 skb_checksum_start_offset(skb) == 2546 skb_inner_transport_offset(skb)) { 2547 /* Encapsulated checksum */ 2548 *csum_encapped = true; 2549 switch (skb->inner_protocol_type) { 2550 case ENCAP_TYPE_ETHER: 2551 protocol = eproto_to_ipproto(skb->inner_protocol); 2552 break; 2553 case ENCAP_TYPE_IPPROTO: 2554 protocol = skb->inner_protocol; 2555 break; 2556 } 2557 nhdr = skb_inner_network_header(skb); 2558 } else { 2559 goto need_help; 2560 } 2561 2562 switch (protocol) { 2563 case IPPROTO_IP: 2564 if (!spec->ipv4_okay) 2565 goto need_help; 2566 iph = nhdr; 2567 ip_proto = iph->protocol; 2568 if (iph->ihl != 5 && !spec->ip_options_okay) 2569 goto need_help; 2570 break; 2571 case IPPROTO_IPV6: 2572 if (!spec->ipv6_okay) 2573 goto need_help; 2574 if (spec->no_encapped_ipv6 && *csum_encapped) 2575 goto need_help; 2576 ipv6 = nhdr; 2577 nhdr += sizeof(*ipv6); 2578 ip_proto = ipv6->nexthdr; 2579 break; 2580 default: 2581 goto need_help; 2582 } 2583 2584 ip_proto_again: 2585 switch (ip_proto) { 2586 case IPPROTO_TCP: 2587 if (!spec->tcp_okay || 2588 skb->csum_offset != offsetof(struct tcphdr, check)) 2589 goto need_help; 2590 break; 2591 case IPPROTO_UDP: 2592 if (!spec->udp_okay || 2593 skb->csum_offset != offsetof(struct udphdr, check)) 2594 goto need_help; 2595 break; 2596 case IPPROTO_SCTP: 2597 if (!spec->sctp_okay || 2598 skb->csum_offset != offsetof(struct sctphdr, checksum)) 2599 goto cant_help; 2600 break; 2601 case NEXTHDR_HOP: 2602 case NEXTHDR_ROUTING: 2603 case NEXTHDR_DEST: { 2604 u8 *opthdr = nhdr; 2605 2606 if (protocol != IPPROTO_IPV6 || !spec->ext_hdrs_okay) 2607 goto need_help; 2608 2609 ip_proto = opthdr[0]; 2610 nhdr += (opthdr[1] + 1) << 3; 2611 2612 goto ip_proto_again; 2613 } 2614 default: 2615 goto need_help; 2616 } 2617 2618 /* Passed the tests for offloading checksum */ 2619 return true; 2620 2621 need_help: 2622 if (csum_help && !skb_shinfo(skb)->gso_size) 2623 skb_checksum_help(skb); 2624 cant_help: 2625 return false; 2626 } 2627 EXPORT_SYMBOL(__skb_csum_offload_chk); 2628 2629 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2630 { 2631 __be16 type = skb->protocol; 2632 2633 /* Tunnel gso handlers can set protocol to ethernet. */ 2634 if (type == htons(ETH_P_TEB)) { 2635 struct ethhdr *eth; 2636 2637 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2638 return 0; 2639 2640 eth = (struct ethhdr *)skb_mac_header(skb); 2641 type = eth->h_proto; 2642 } 2643 2644 return __vlan_get_protocol(skb, type, depth); 2645 } 2646 2647 /** 2648 * skb_mac_gso_segment - mac layer segmentation handler. 2649 * @skb: buffer to segment 2650 * @features: features for the output path (see dev->features) 2651 */ 2652 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2653 netdev_features_t features) 2654 { 2655 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2656 struct packet_offload *ptype; 2657 int vlan_depth = skb->mac_len; 2658 __be16 type = skb_network_protocol(skb, &vlan_depth); 2659 2660 if (unlikely(!type)) 2661 return ERR_PTR(-EINVAL); 2662 2663 __skb_pull(skb, vlan_depth); 2664 2665 rcu_read_lock(); 2666 list_for_each_entry_rcu(ptype, &offload_base, list) { 2667 if (ptype->type == type && ptype->callbacks.gso_segment) { 2668 segs = ptype->callbacks.gso_segment(skb, features); 2669 break; 2670 } 2671 } 2672 rcu_read_unlock(); 2673 2674 __skb_push(skb, skb->data - skb_mac_header(skb)); 2675 2676 return segs; 2677 } 2678 EXPORT_SYMBOL(skb_mac_gso_segment); 2679 2680 2681 /* openvswitch calls this on rx path, so we need a different check. 2682 */ 2683 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2684 { 2685 if (tx_path) 2686 return skb->ip_summed != CHECKSUM_PARTIAL; 2687 else 2688 return skb->ip_summed == CHECKSUM_NONE; 2689 } 2690 2691 /** 2692 * __skb_gso_segment - Perform segmentation on skb. 2693 * @skb: buffer to segment 2694 * @features: features for the output path (see dev->features) 2695 * @tx_path: whether it is called in TX path 2696 * 2697 * This function segments the given skb and returns a list of segments. 2698 * 2699 * It may return NULL if the skb requires no segmentation. This is 2700 * only possible when GSO is used for verifying header integrity. 2701 * 2702 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb. 2703 */ 2704 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2705 netdev_features_t features, bool tx_path) 2706 { 2707 if (unlikely(skb_needs_check(skb, tx_path))) { 2708 int err; 2709 2710 skb_warn_bad_offload(skb); 2711 2712 err = skb_cow_head(skb, 0); 2713 if (err < 0) 2714 return ERR_PTR(err); 2715 } 2716 2717 /* Only report GSO partial support if it will enable us to 2718 * support segmentation on this frame without needing additional 2719 * work. 2720 */ 2721 if (features & NETIF_F_GSO_PARTIAL) { 2722 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 2723 struct net_device *dev = skb->dev; 2724 2725 partial_features |= dev->features & dev->gso_partial_features; 2726 if (!skb_gso_ok(skb, features | partial_features)) 2727 features &= ~NETIF_F_GSO_PARTIAL; 2728 } 2729 2730 BUILD_BUG_ON(SKB_SGO_CB_OFFSET + 2731 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 2732 2733 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2734 SKB_GSO_CB(skb)->encap_level = 0; 2735 2736 skb_reset_mac_header(skb); 2737 skb_reset_mac_len(skb); 2738 2739 return skb_mac_gso_segment(skb, features); 2740 } 2741 EXPORT_SYMBOL(__skb_gso_segment); 2742 2743 /* Take action when hardware reception checksum errors are detected. */ 2744 #ifdef CONFIG_BUG 2745 void netdev_rx_csum_fault(struct net_device *dev) 2746 { 2747 if (net_ratelimit()) { 2748 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2749 dump_stack(); 2750 } 2751 } 2752 EXPORT_SYMBOL(netdev_rx_csum_fault); 2753 #endif 2754 2755 /* Actually, we should eliminate this check as soon as we know, that: 2756 * 1. IOMMU is present and allows to map all the memory. 2757 * 2. No high memory really exists on this machine. 2758 */ 2759 2760 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2761 { 2762 #ifdef CONFIG_HIGHMEM 2763 int i; 2764 if (!(dev->features & NETIF_F_HIGHDMA)) { 2765 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2766 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2767 if (PageHighMem(skb_frag_page(frag))) 2768 return 1; 2769 } 2770 } 2771 2772 if (PCI_DMA_BUS_IS_PHYS) { 2773 struct device *pdev = dev->dev.parent; 2774 2775 if (!pdev) 2776 return 0; 2777 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2778 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2779 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2780 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2781 return 1; 2782 } 2783 } 2784 #endif 2785 return 0; 2786 } 2787 2788 /* If MPLS offload request, verify we are testing hardware MPLS features 2789 * instead of standard features for the netdev. 2790 */ 2791 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 2792 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2793 netdev_features_t features, 2794 __be16 type) 2795 { 2796 if (eth_p_mpls(type)) 2797 features &= skb->dev->mpls_features; 2798 2799 return features; 2800 } 2801 #else 2802 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2803 netdev_features_t features, 2804 __be16 type) 2805 { 2806 return features; 2807 } 2808 #endif 2809 2810 static netdev_features_t harmonize_features(struct sk_buff *skb, 2811 netdev_features_t features) 2812 { 2813 int tmp; 2814 __be16 type; 2815 2816 type = skb_network_protocol(skb, &tmp); 2817 features = net_mpls_features(skb, features, type); 2818 2819 if (skb->ip_summed != CHECKSUM_NONE && 2820 !can_checksum_protocol(features, type)) { 2821 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 2822 } else if (illegal_highdma(skb->dev, skb)) { 2823 features &= ~NETIF_F_SG; 2824 } 2825 2826 return features; 2827 } 2828 2829 netdev_features_t passthru_features_check(struct sk_buff *skb, 2830 struct net_device *dev, 2831 netdev_features_t features) 2832 { 2833 return features; 2834 } 2835 EXPORT_SYMBOL(passthru_features_check); 2836 2837 static netdev_features_t dflt_features_check(const struct sk_buff *skb, 2838 struct net_device *dev, 2839 netdev_features_t features) 2840 { 2841 return vlan_features_check(skb, features); 2842 } 2843 2844 static netdev_features_t gso_features_check(const struct sk_buff *skb, 2845 struct net_device *dev, 2846 netdev_features_t features) 2847 { 2848 u16 gso_segs = skb_shinfo(skb)->gso_segs; 2849 2850 if (gso_segs > dev->gso_max_segs) 2851 return features & ~NETIF_F_GSO_MASK; 2852 2853 /* Support for GSO partial features requires software 2854 * intervention before we can actually process the packets 2855 * so we need to strip support for any partial features now 2856 * and we can pull them back in after we have partially 2857 * segmented the frame. 2858 */ 2859 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 2860 features &= ~dev->gso_partial_features; 2861 2862 /* Make sure to clear the IPv4 ID mangling feature if the 2863 * IPv4 header has the potential to be fragmented. 2864 */ 2865 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 2866 struct iphdr *iph = skb->encapsulation ? 2867 inner_ip_hdr(skb) : ip_hdr(skb); 2868 2869 if (!(iph->frag_off & htons(IP_DF))) 2870 features &= ~NETIF_F_TSO_MANGLEID; 2871 } 2872 2873 return features; 2874 } 2875 2876 netdev_features_t netif_skb_features(struct sk_buff *skb) 2877 { 2878 struct net_device *dev = skb->dev; 2879 netdev_features_t features = dev->features; 2880 2881 if (skb_is_gso(skb)) 2882 features = gso_features_check(skb, dev, features); 2883 2884 /* If encapsulation offload request, verify we are testing 2885 * hardware encapsulation features instead of standard 2886 * features for the netdev 2887 */ 2888 if (skb->encapsulation) 2889 features &= dev->hw_enc_features; 2890 2891 if (skb_vlan_tagged(skb)) 2892 features = netdev_intersect_features(features, 2893 dev->vlan_features | 2894 NETIF_F_HW_VLAN_CTAG_TX | 2895 NETIF_F_HW_VLAN_STAG_TX); 2896 2897 if (dev->netdev_ops->ndo_features_check) 2898 features &= dev->netdev_ops->ndo_features_check(skb, dev, 2899 features); 2900 else 2901 features &= dflt_features_check(skb, dev, features); 2902 2903 return harmonize_features(skb, features); 2904 } 2905 EXPORT_SYMBOL(netif_skb_features); 2906 2907 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 2908 struct netdev_queue *txq, bool more) 2909 { 2910 unsigned int len; 2911 int rc; 2912 2913 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all)) 2914 dev_queue_xmit_nit(skb, dev); 2915 2916 len = skb->len; 2917 trace_net_dev_start_xmit(skb, dev); 2918 rc = netdev_start_xmit(skb, dev, txq, more); 2919 trace_net_dev_xmit(skb, rc, dev, len); 2920 2921 return rc; 2922 } 2923 2924 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 2925 struct netdev_queue *txq, int *ret) 2926 { 2927 struct sk_buff *skb = first; 2928 int rc = NETDEV_TX_OK; 2929 2930 while (skb) { 2931 struct sk_buff *next = skb->next; 2932 2933 skb->next = NULL; 2934 rc = xmit_one(skb, dev, txq, next != NULL); 2935 if (unlikely(!dev_xmit_complete(rc))) { 2936 skb->next = next; 2937 goto out; 2938 } 2939 2940 skb = next; 2941 if (netif_xmit_stopped(txq) && skb) { 2942 rc = NETDEV_TX_BUSY; 2943 break; 2944 } 2945 } 2946 2947 out: 2948 *ret = rc; 2949 return skb; 2950 } 2951 2952 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 2953 netdev_features_t features) 2954 { 2955 if (skb_vlan_tag_present(skb) && 2956 !vlan_hw_offload_capable(features, skb->vlan_proto)) 2957 skb = __vlan_hwaccel_push_inside(skb); 2958 return skb; 2959 } 2960 2961 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev) 2962 { 2963 netdev_features_t features; 2964 2965 features = netif_skb_features(skb); 2966 skb = validate_xmit_vlan(skb, features); 2967 if (unlikely(!skb)) 2968 goto out_null; 2969 2970 if (netif_needs_gso(skb, features)) { 2971 struct sk_buff *segs; 2972 2973 segs = skb_gso_segment(skb, features); 2974 if (IS_ERR(segs)) { 2975 goto out_kfree_skb; 2976 } else if (segs) { 2977 consume_skb(skb); 2978 skb = segs; 2979 } 2980 } else { 2981 if (skb_needs_linearize(skb, features) && 2982 __skb_linearize(skb)) 2983 goto out_kfree_skb; 2984 2985 /* If packet is not checksummed and device does not 2986 * support checksumming for this protocol, complete 2987 * checksumming here. 2988 */ 2989 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2990 if (skb->encapsulation) 2991 skb_set_inner_transport_header(skb, 2992 skb_checksum_start_offset(skb)); 2993 else 2994 skb_set_transport_header(skb, 2995 skb_checksum_start_offset(skb)); 2996 if (!(features & NETIF_F_CSUM_MASK) && 2997 skb_checksum_help(skb)) 2998 goto out_kfree_skb; 2999 } 3000 } 3001 3002 return skb; 3003 3004 out_kfree_skb: 3005 kfree_skb(skb); 3006 out_null: 3007 atomic_long_inc(&dev->tx_dropped); 3008 return NULL; 3009 } 3010 3011 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev) 3012 { 3013 struct sk_buff *next, *head = NULL, *tail; 3014 3015 for (; skb != NULL; skb = next) { 3016 next = skb->next; 3017 skb->next = NULL; 3018 3019 /* in case skb wont be segmented, point to itself */ 3020 skb->prev = skb; 3021 3022 skb = validate_xmit_skb(skb, dev); 3023 if (!skb) 3024 continue; 3025 3026 if (!head) 3027 head = skb; 3028 else 3029 tail->next = skb; 3030 /* If skb was segmented, skb->prev points to 3031 * the last segment. If not, it still contains skb. 3032 */ 3033 tail = skb->prev; 3034 } 3035 return head; 3036 } 3037 3038 static void qdisc_pkt_len_init(struct sk_buff *skb) 3039 { 3040 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3041 3042 qdisc_skb_cb(skb)->pkt_len = skb->len; 3043 3044 /* To get more precise estimation of bytes sent on wire, 3045 * we add to pkt_len the headers size of all segments 3046 */ 3047 if (shinfo->gso_size) { 3048 unsigned int hdr_len; 3049 u16 gso_segs = shinfo->gso_segs; 3050 3051 /* mac layer + network layer */ 3052 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3053 3054 /* + transport layer */ 3055 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 3056 hdr_len += tcp_hdrlen(skb); 3057 else 3058 hdr_len += sizeof(struct udphdr); 3059 3060 if (shinfo->gso_type & SKB_GSO_DODGY) 3061 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3062 shinfo->gso_size); 3063 3064 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3065 } 3066 } 3067 3068 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3069 struct net_device *dev, 3070 struct netdev_queue *txq) 3071 { 3072 spinlock_t *root_lock = qdisc_lock(q); 3073 bool contended; 3074 int rc; 3075 3076 qdisc_calculate_pkt_len(skb, q); 3077 /* 3078 * Heuristic to force contended enqueues to serialize on a 3079 * separate lock before trying to get qdisc main lock. 3080 * This permits qdisc->running owner to get the lock more 3081 * often and dequeue packets faster. 3082 */ 3083 contended = qdisc_is_running(q); 3084 if (unlikely(contended)) 3085 spin_lock(&q->busylock); 3086 3087 spin_lock(root_lock); 3088 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3089 kfree_skb(skb); 3090 rc = NET_XMIT_DROP; 3091 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3092 qdisc_run_begin(q)) { 3093 /* 3094 * This is a work-conserving queue; there are no old skbs 3095 * waiting to be sent out; and the qdisc is not running - 3096 * xmit the skb directly. 3097 */ 3098 3099 qdisc_bstats_update(q, skb); 3100 3101 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3102 if (unlikely(contended)) { 3103 spin_unlock(&q->busylock); 3104 contended = false; 3105 } 3106 __qdisc_run(q); 3107 } else 3108 qdisc_run_end(q); 3109 3110 rc = NET_XMIT_SUCCESS; 3111 } else { 3112 rc = q->enqueue(skb, q) & NET_XMIT_MASK; 3113 if (qdisc_run_begin(q)) { 3114 if (unlikely(contended)) { 3115 spin_unlock(&q->busylock); 3116 contended = false; 3117 } 3118 __qdisc_run(q); 3119 } 3120 } 3121 spin_unlock(root_lock); 3122 if (unlikely(contended)) 3123 spin_unlock(&q->busylock); 3124 return rc; 3125 } 3126 3127 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3128 static void skb_update_prio(struct sk_buff *skb) 3129 { 3130 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 3131 3132 if (!skb->priority && skb->sk && map) { 3133 unsigned int prioidx = 3134 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data); 3135 3136 if (prioidx < map->priomap_len) 3137 skb->priority = map->priomap[prioidx]; 3138 } 3139 } 3140 #else 3141 #define skb_update_prio(skb) 3142 #endif 3143 3144 DEFINE_PER_CPU(int, xmit_recursion); 3145 EXPORT_SYMBOL(xmit_recursion); 3146 3147 #define RECURSION_LIMIT 10 3148 3149 /** 3150 * dev_loopback_xmit - loop back @skb 3151 * @net: network namespace this loopback is happening in 3152 * @sk: sk needed to be a netfilter okfn 3153 * @skb: buffer to transmit 3154 */ 3155 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3156 { 3157 skb_reset_mac_header(skb); 3158 __skb_pull(skb, skb_network_offset(skb)); 3159 skb->pkt_type = PACKET_LOOPBACK; 3160 skb->ip_summed = CHECKSUM_UNNECESSARY; 3161 WARN_ON(!skb_dst(skb)); 3162 skb_dst_force(skb); 3163 netif_rx_ni(skb); 3164 return 0; 3165 } 3166 EXPORT_SYMBOL(dev_loopback_xmit); 3167 3168 #ifdef CONFIG_NET_EGRESS 3169 static struct sk_buff * 3170 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3171 { 3172 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list); 3173 struct tcf_result cl_res; 3174 3175 if (!cl) 3176 return skb; 3177 3178 /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set 3179 * earlier by the caller. 3180 */ 3181 qdisc_bstats_cpu_update(cl->q, skb); 3182 3183 switch (tc_classify(skb, cl, &cl_res, false)) { 3184 case TC_ACT_OK: 3185 case TC_ACT_RECLASSIFY: 3186 skb->tc_index = TC_H_MIN(cl_res.classid); 3187 break; 3188 case TC_ACT_SHOT: 3189 qdisc_qstats_cpu_drop(cl->q); 3190 *ret = NET_XMIT_DROP; 3191 kfree_skb(skb); 3192 return NULL; 3193 case TC_ACT_STOLEN: 3194 case TC_ACT_QUEUED: 3195 *ret = NET_XMIT_SUCCESS; 3196 consume_skb(skb); 3197 return NULL; 3198 case TC_ACT_REDIRECT: 3199 /* No need to push/pop skb's mac_header here on egress! */ 3200 skb_do_redirect(skb); 3201 *ret = NET_XMIT_SUCCESS; 3202 return NULL; 3203 default: 3204 break; 3205 } 3206 3207 return skb; 3208 } 3209 #endif /* CONFIG_NET_EGRESS */ 3210 3211 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 3212 { 3213 #ifdef CONFIG_XPS 3214 struct xps_dev_maps *dev_maps; 3215 struct xps_map *map; 3216 int queue_index = -1; 3217 3218 rcu_read_lock(); 3219 dev_maps = rcu_dereference(dev->xps_maps); 3220 if (dev_maps) { 3221 map = rcu_dereference( 3222 dev_maps->cpu_map[skb->sender_cpu - 1]); 3223 if (map) { 3224 if (map->len == 1) 3225 queue_index = map->queues[0]; 3226 else 3227 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb), 3228 map->len)]; 3229 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3230 queue_index = -1; 3231 } 3232 } 3233 rcu_read_unlock(); 3234 3235 return queue_index; 3236 #else 3237 return -1; 3238 #endif 3239 } 3240 3241 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb) 3242 { 3243 struct sock *sk = skb->sk; 3244 int queue_index = sk_tx_queue_get(sk); 3245 3246 if (queue_index < 0 || skb->ooo_okay || 3247 queue_index >= dev->real_num_tx_queues) { 3248 int new_index = get_xps_queue(dev, skb); 3249 if (new_index < 0) 3250 new_index = skb_tx_hash(dev, skb); 3251 3252 if (queue_index != new_index && sk && 3253 sk_fullsock(sk) && 3254 rcu_access_pointer(sk->sk_dst_cache)) 3255 sk_tx_queue_set(sk, new_index); 3256 3257 queue_index = new_index; 3258 } 3259 3260 return queue_index; 3261 } 3262 3263 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 3264 struct sk_buff *skb, 3265 void *accel_priv) 3266 { 3267 int queue_index = 0; 3268 3269 #ifdef CONFIG_XPS 3270 u32 sender_cpu = skb->sender_cpu - 1; 3271 3272 if (sender_cpu >= (u32)NR_CPUS) 3273 skb->sender_cpu = raw_smp_processor_id() + 1; 3274 #endif 3275 3276 if (dev->real_num_tx_queues != 1) { 3277 const struct net_device_ops *ops = dev->netdev_ops; 3278 if (ops->ndo_select_queue) 3279 queue_index = ops->ndo_select_queue(dev, skb, accel_priv, 3280 __netdev_pick_tx); 3281 else 3282 queue_index = __netdev_pick_tx(dev, skb); 3283 3284 if (!accel_priv) 3285 queue_index = netdev_cap_txqueue(dev, queue_index); 3286 } 3287 3288 skb_set_queue_mapping(skb, queue_index); 3289 return netdev_get_tx_queue(dev, queue_index); 3290 } 3291 3292 /** 3293 * __dev_queue_xmit - transmit a buffer 3294 * @skb: buffer to transmit 3295 * @accel_priv: private data used for L2 forwarding offload 3296 * 3297 * Queue a buffer for transmission to a network device. The caller must 3298 * have set the device and priority and built the buffer before calling 3299 * this function. The function can be called from an interrupt. 3300 * 3301 * A negative errno code is returned on a failure. A success does not 3302 * guarantee the frame will be transmitted as it may be dropped due 3303 * to congestion or traffic shaping. 3304 * 3305 * ----------------------------------------------------------------------------------- 3306 * I notice this method can also return errors from the queue disciplines, 3307 * including NET_XMIT_DROP, which is a positive value. So, errors can also 3308 * be positive. 3309 * 3310 * Regardless of the return value, the skb is consumed, so it is currently 3311 * difficult to retry a send to this method. (You can bump the ref count 3312 * before sending to hold a reference for retry if you are careful.) 3313 * 3314 * When calling this method, interrupts MUST be enabled. This is because 3315 * the BH enable code must have IRQs enabled so that it will not deadlock. 3316 * --BLG 3317 */ 3318 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv) 3319 { 3320 struct net_device *dev = skb->dev; 3321 struct netdev_queue *txq; 3322 struct Qdisc *q; 3323 int rc = -ENOMEM; 3324 3325 skb_reset_mac_header(skb); 3326 3327 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 3328 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 3329 3330 /* Disable soft irqs for various locks below. Also 3331 * stops preemption for RCU. 3332 */ 3333 rcu_read_lock_bh(); 3334 3335 skb_update_prio(skb); 3336 3337 qdisc_pkt_len_init(skb); 3338 #ifdef CONFIG_NET_CLS_ACT 3339 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 3340 # ifdef CONFIG_NET_EGRESS 3341 if (static_key_false(&egress_needed)) { 3342 skb = sch_handle_egress(skb, &rc, dev); 3343 if (!skb) 3344 goto out; 3345 } 3346 # endif 3347 #endif 3348 /* If device/qdisc don't need skb->dst, release it right now while 3349 * its hot in this cpu cache. 3350 */ 3351 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 3352 skb_dst_drop(skb); 3353 else 3354 skb_dst_force(skb); 3355 3356 #ifdef CONFIG_NET_SWITCHDEV 3357 /* Don't forward if offload device already forwarded */ 3358 if (skb->offload_fwd_mark && 3359 skb->offload_fwd_mark == dev->offload_fwd_mark) { 3360 consume_skb(skb); 3361 rc = NET_XMIT_SUCCESS; 3362 goto out; 3363 } 3364 #endif 3365 3366 txq = netdev_pick_tx(dev, skb, accel_priv); 3367 q = rcu_dereference_bh(txq->qdisc); 3368 3369 trace_net_dev_queue(skb); 3370 if (q->enqueue) { 3371 rc = __dev_xmit_skb(skb, q, dev, txq); 3372 goto out; 3373 } 3374 3375 /* The device has no queue. Common case for software devices: 3376 loopback, all the sorts of tunnels... 3377 3378 Really, it is unlikely that netif_tx_lock protection is necessary 3379 here. (f.e. loopback and IP tunnels are clean ignoring statistics 3380 counters.) 3381 However, it is possible, that they rely on protection 3382 made by us here. 3383 3384 Check this and shot the lock. It is not prone from deadlocks. 3385 Either shot noqueue qdisc, it is even simpler 8) 3386 */ 3387 if (dev->flags & IFF_UP) { 3388 int cpu = smp_processor_id(); /* ok because BHs are off */ 3389 3390 if (txq->xmit_lock_owner != cpu) { 3391 3392 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 3393 goto recursion_alert; 3394 3395 skb = validate_xmit_skb(skb, dev); 3396 if (!skb) 3397 goto out; 3398 3399 HARD_TX_LOCK(dev, txq, cpu); 3400 3401 if (!netif_xmit_stopped(txq)) { 3402 __this_cpu_inc(xmit_recursion); 3403 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 3404 __this_cpu_dec(xmit_recursion); 3405 if (dev_xmit_complete(rc)) { 3406 HARD_TX_UNLOCK(dev, txq); 3407 goto out; 3408 } 3409 } 3410 HARD_TX_UNLOCK(dev, txq); 3411 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 3412 dev->name); 3413 } else { 3414 /* Recursion is detected! It is possible, 3415 * unfortunately 3416 */ 3417 recursion_alert: 3418 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 3419 dev->name); 3420 } 3421 } 3422 3423 rc = -ENETDOWN; 3424 rcu_read_unlock_bh(); 3425 3426 atomic_long_inc(&dev->tx_dropped); 3427 kfree_skb_list(skb); 3428 return rc; 3429 out: 3430 rcu_read_unlock_bh(); 3431 return rc; 3432 } 3433 3434 int dev_queue_xmit(struct sk_buff *skb) 3435 { 3436 return __dev_queue_xmit(skb, NULL); 3437 } 3438 EXPORT_SYMBOL(dev_queue_xmit); 3439 3440 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv) 3441 { 3442 return __dev_queue_xmit(skb, accel_priv); 3443 } 3444 EXPORT_SYMBOL(dev_queue_xmit_accel); 3445 3446 3447 /*======================================================================= 3448 Receiver routines 3449 =======================================================================*/ 3450 3451 int netdev_max_backlog __read_mostly = 1000; 3452 EXPORT_SYMBOL(netdev_max_backlog); 3453 3454 int netdev_tstamp_prequeue __read_mostly = 1; 3455 int netdev_budget __read_mostly = 300; 3456 int weight_p __read_mostly = 64; /* old backlog weight */ 3457 3458 /* Called with irq disabled */ 3459 static inline void ____napi_schedule(struct softnet_data *sd, 3460 struct napi_struct *napi) 3461 { 3462 list_add_tail(&napi->poll_list, &sd->poll_list); 3463 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3464 } 3465 3466 #ifdef CONFIG_RPS 3467 3468 /* One global table that all flow-based protocols share. */ 3469 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3470 EXPORT_SYMBOL(rps_sock_flow_table); 3471 u32 rps_cpu_mask __read_mostly; 3472 EXPORT_SYMBOL(rps_cpu_mask); 3473 3474 struct static_key rps_needed __read_mostly; 3475 EXPORT_SYMBOL(rps_needed); 3476 3477 static struct rps_dev_flow * 3478 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3479 struct rps_dev_flow *rflow, u16 next_cpu) 3480 { 3481 if (next_cpu < nr_cpu_ids) { 3482 #ifdef CONFIG_RFS_ACCEL 3483 struct netdev_rx_queue *rxqueue; 3484 struct rps_dev_flow_table *flow_table; 3485 struct rps_dev_flow *old_rflow; 3486 u32 flow_id; 3487 u16 rxq_index; 3488 int rc; 3489 3490 /* Should we steer this flow to a different hardware queue? */ 3491 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 3492 !(dev->features & NETIF_F_NTUPLE)) 3493 goto out; 3494 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 3495 if (rxq_index == skb_get_rx_queue(skb)) 3496 goto out; 3497 3498 rxqueue = dev->_rx + rxq_index; 3499 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3500 if (!flow_table) 3501 goto out; 3502 flow_id = skb_get_hash(skb) & flow_table->mask; 3503 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 3504 rxq_index, flow_id); 3505 if (rc < 0) 3506 goto out; 3507 old_rflow = rflow; 3508 rflow = &flow_table->flows[flow_id]; 3509 rflow->filter = rc; 3510 if (old_rflow->filter == rflow->filter) 3511 old_rflow->filter = RPS_NO_FILTER; 3512 out: 3513 #endif 3514 rflow->last_qtail = 3515 per_cpu(softnet_data, next_cpu).input_queue_head; 3516 } 3517 3518 rflow->cpu = next_cpu; 3519 return rflow; 3520 } 3521 3522 /* 3523 * get_rps_cpu is called from netif_receive_skb and returns the target 3524 * CPU from the RPS map of the receiving queue for a given skb. 3525 * rcu_read_lock must be held on entry. 3526 */ 3527 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3528 struct rps_dev_flow **rflowp) 3529 { 3530 const struct rps_sock_flow_table *sock_flow_table; 3531 struct netdev_rx_queue *rxqueue = dev->_rx; 3532 struct rps_dev_flow_table *flow_table; 3533 struct rps_map *map; 3534 int cpu = -1; 3535 u32 tcpu; 3536 u32 hash; 3537 3538 if (skb_rx_queue_recorded(skb)) { 3539 u16 index = skb_get_rx_queue(skb); 3540 3541 if (unlikely(index >= dev->real_num_rx_queues)) { 3542 WARN_ONCE(dev->real_num_rx_queues > 1, 3543 "%s received packet on queue %u, but number " 3544 "of RX queues is %u\n", 3545 dev->name, index, dev->real_num_rx_queues); 3546 goto done; 3547 } 3548 rxqueue += index; 3549 } 3550 3551 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 3552 3553 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3554 map = rcu_dereference(rxqueue->rps_map); 3555 if (!flow_table && !map) 3556 goto done; 3557 3558 skb_reset_network_header(skb); 3559 hash = skb_get_hash(skb); 3560 if (!hash) 3561 goto done; 3562 3563 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3564 if (flow_table && sock_flow_table) { 3565 struct rps_dev_flow *rflow; 3566 u32 next_cpu; 3567 u32 ident; 3568 3569 /* First check into global flow table if there is a match */ 3570 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 3571 if ((ident ^ hash) & ~rps_cpu_mask) 3572 goto try_rps; 3573 3574 next_cpu = ident & rps_cpu_mask; 3575 3576 /* OK, now we know there is a match, 3577 * we can look at the local (per receive queue) flow table 3578 */ 3579 rflow = &flow_table->flows[hash & flow_table->mask]; 3580 tcpu = rflow->cpu; 3581 3582 /* 3583 * If the desired CPU (where last recvmsg was done) is 3584 * different from current CPU (one in the rx-queue flow 3585 * table entry), switch if one of the following holds: 3586 * - Current CPU is unset (>= nr_cpu_ids). 3587 * - Current CPU is offline. 3588 * - The current CPU's queue tail has advanced beyond the 3589 * last packet that was enqueued using this table entry. 3590 * This guarantees that all previous packets for the flow 3591 * have been dequeued, thus preserving in order delivery. 3592 */ 3593 if (unlikely(tcpu != next_cpu) && 3594 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 3595 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3596 rflow->last_qtail)) >= 0)) { 3597 tcpu = next_cpu; 3598 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3599 } 3600 3601 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 3602 *rflowp = rflow; 3603 cpu = tcpu; 3604 goto done; 3605 } 3606 } 3607 3608 try_rps: 3609 3610 if (map) { 3611 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 3612 if (cpu_online(tcpu)) { 3613 cpu = tcpu; 3614 goto done; 3615 } 3616 } 3617 3618 done: 3619 return cpu; 3620 } 3621 3622 #ifdef CONFIG_RFS_ACCEL 3623 3624 /** 3625 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3626 * @dev: Device on which the filter was set 3627 * @rxq_index: RX queue index 3628 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3629 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3630 * 3631 * Drivers that implement ndo_rx_flow_steer() should periodically call 3632 * this function for each installed filter and remove the filters for 3633 * which it returns %true. 3634 */ 3635 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3636 u32 flow_id, u16 filter_id) 3637 { 3638 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3639 struct rps_dev_flow_table *flow_table; 3640 struct rps_dev_flow *rflow; 3641 bool expire = true; 3642 unsigned int cpu; 3643 3644 rcu_read_lock(); 3645 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3646 if (flow_table && flow_id <= flow_table->mask) { 3647 rflow = &flow_table->flows[flow_id]; 3648 cpu = ACCESS_ONCE(rflow->cpu); 3649 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 3650 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3651 rflow->last_qtail) < 3652 (int)(10 * flow_table->mask))) 3653 expire = false; 3654 } 3655 rcu_read_unlock(); 3656 return expire; 3657 } 3658 EXPORT_SYMBOL(rps_may_expire_flow); 3659 3660 #endif /* CONFIG_RFS_ACCEL */ 3661 3662 /* Called from hardirq (IPI) context */ 3663 static void rps_trigger_softirq(void *data) 3664 { 3665 struct softnet_data *sd = data; 3666 3667 ____napi_schedule(sd, &sd->backlog); 3668 sd->received_rps++; 3669 } 3670 3671 #endif /* CONFIG_RPS */ 3672 3673 /* 3674 * Check if this softnet_data structure is another cpu one 3675 * If yes, queue it to our IPI list and return 1 3676 * If no, return 0 3677 */ 3678 static int rps_ipi_queued(struct softnet_data *sd) 3679 { 3680 #ifdef CONFIG_RPS 3681 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 3682 3683 if (sd != mysd) { 3684 sd->rps_ipi_next = mysd->rps_ipi_list; 3685 mysd->rps_ipi_list = sd; 3686 3687 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3688 return 1; 3689 } 3690 #endif /* CONFIG_RPS */ 3691 return 0; 3692 } 3693 3694 #ifdef CONFIG_NET_FLOW_LIMIT 3695 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3696 #endif 3697 3698 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3699 { 3700 #ifdef CONFIG_NET_FLOW_LIMIT 3701 struct sd_flow_limit *fl; 3702 struct softnet_data *sd; 3703 unsigned int old_flow, new_flow; 3704 3705 if (qlen < (netdev_max_backlog >> 1)) 3706 return false; 3707 3708 sd = this_cpu_ptr(&softnet_data); 3709 3710 rcu_read_lock(); 3711 fl = rcu_dereference(sd->flow_limit); 3712 if (fl) { 3713 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 3714 old_flow = fl->history[fl->history_head]; 3715 fl->history[fl->history_head] = new_flow; 3716 3717 fl->history_head++; 3718 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3719 3720 if (likely(fl->buckets[old_flow])) 3721 fl->buckets[old_flow]--; 3722 3723 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3724 fl->count++; 3725 rcu_read_unlock(); 3726 return true; 3727 } 3728 } 3729 rcu_read_unlock(); 3730 #endif 3731 return false; 3732 } 3733 3734 /* 3735 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3736 * queue (may be a remote CPU queue). 3737 */ 3738 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3739 unsigned int *qtail) 3740 { 3741 struct softnet_data *sd; 3742 unsigned long flags; 3743 unsigned int qlen; 3744 3745 sd = &per_cpu(softnet_data, cpu); 3746 3747 local_irq_save(flags); 3748 3749 rps_lock(sd); 3750 if (!netif_running(skb->dev)) 3751 goto drop; 3752 qlen = skb_queue_len(&sd->input_pkt_queue); 3753 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3754 if (qlen) { 3755 enqueue: 3756 __skb_queue_tail(&sd->input_pkt_queue, skb); 3757 input_queue_tail_incr_save(sd, qtail); 3758 rps_unlock(sd); 3759 local_irq_restore(flags); 3760 return NET_RX_SUCCESS; 3761 } 3762 3763 /* Schedule NAPI for backlog device 3764 * We can use non atomic operation since we own the queue lock 3765 */ 3766 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3767 if (!rps_ipi_queued(sd)) 3768 ____napi_schedule(sd, &sd->backlog); 3769 } 3770 goto enqueue; 3771 } 3772 3773 drop: 3774 sd->dropped++; 3775 rps_unlock(sd); 3776 3777 local_irq_restore(flags); 3778 3779 atomic_long_inc(&skb->dev->rx_dropped); 3780 kfree_skb(skb); 3781 return NET_RX_DROP; 3782 } 3783 3784 static int netif_rx_internal(struct sk_buff *skb) 3785 { 3786 int ret; 3787 3788 net_timestamp_check(netdev_tstamp_prequeue, skb); 3789 3790 trace_netif_rx(skb); 3791 #ifdef CONFIG_RPS 3792 if (static_key_false(&rps_needed)) { 3793 struct rps_dev_flow voidflow, *rflow = &voidflow; 3794 int cpu; 3795 3796 preempt_disable(); 3797 rcu_read_lock(); 3798 3799 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3800 if (cpu < 0) 3801 cpu = smp_processor_id(); 3802 3803 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3804 3805 rcu_read_unlock(); 3806 preempt_enable(); 3807 } else 3808 #endif 3809 { 3810 unsigned int qtail; 3811 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 3812 put_cpu(); 3813 } 3814 return ret; 3815 } 3816 3817 /** 3818 * netif_rx - post buffer to the network code 3819 * @skb: buffer to post 3820 * 3821 * This function receives a packet from a device driver and queues it for 3822 * the upper (protocol) levels to process. It always succeeds. The buffer 3823 * may be dropped during processing for congestion control or by the 3824 * protocol layers. 3825 * 3826 * return values: 3827 * NET_RX_SUCCESS (no congestion) 3828 * NET_RX_DROP (packet was dropped) 3829 * 3830 */ 3831 3832 int netif_rx(struct sk_buff *skb) 3833 { 3834 trace_netif_rx_entry(skb); 3835 3836 return netif_rx_internal(skb); 3837 } 3838 EXPORT_SYMBOL(netif_rx); 3839 3840 int netif_rx_ni(struct sk_buff *skb) 3841 { 3842 int err; 3843 3844 trace_netif_rx_ni_entry(skb); 3845 3846 preempt_disable(); 3847 err = netif_rx_internal(skb); 3848 if (local_softirq_pending()) 3849 do_softirq(); 3850 preempt_enable(); 3851 3852 return err; 3853 } 3854 EXPORT_SYMBOL(netif_rx_ni); 3855 3856 static void net_tx_action(struct softirq_action *h) 3857 { 3858 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 3859 3860 if (sd->completion_queue) { 3861 struct sk_buff *clist; 3862 3863 local_irq_disable(); 3864 clist = sd->completion_queue; 3865 sd->completion_queue = NULL; 3866 local_irq_enable(); 3867 3868 while (clist) { 3869 struct sk_buff *skb = clist; 3870 clist = clist->next; 3871 3872 WARN_ON(atomic_read(&skb->users)); 3873 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 3874 trace_consume_skb(skb); 3875 else 3876 trace_kfree_skb(skb, net_tx_action); 3877 3878 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 3879 __kfree_skb(skb); 3880 else 3881 __kfree_skb_defer(skb); 3882 } 3883 3884 __kfree_skb_flush(); 3885 } 3886 3887 if (sd->output_queue) { 3888 struct Qdisc *head; 3889 3890 local_irq_disable(); 3891 head = sd->output_queue; 3892 sd->output_queue = NULL; 3893 sd->output_queue_tailp = &sd->output_queue; 3894 local_irq_enable(); 3895 3896 while (head) { 3897 struct Qdisc *q = head; 3898 spinlock_t *root_lock; 3899 3900 head = head->next_sched; 3901 3902 root_lock = qdisc_lock(q); 3903 spin_lock(root_lock); 3904 /* We need to make sure head->next_sched is read 3905 * before clearing __QDISC_STATE_SCHED 3906 */ 3907 smp_mb__before_atomic(); 3908 clear_bit(__QDISC_STATE_SCHED, &q->state); 3909 qdisc_run(q); 3910 spin_unlock(root_lock); 3911 } 3912 } 3913 } 3914 3915 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 3916 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 3917 /* This hook is defined here for ATM LANE */ 3918 int (*br_fdb_test_addr_hook)(struct net_device *dev, 3919 unsigned char *addr) __read_mostly; 3920 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3921 #endif 3922 3923 static inline struct sk_buff * 3924 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 3925 struct net_device *orig_dev) 3926 { 3927 #ifdef CONFIG_NET_CLS_ACT 3928 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list); 3929 struct tcf_result cl_res; 3930 3931 /* If there's at least one ingress present somewhere (so 3932 * we get here via enabled static key), remaining devices 3933 * that are not configured with an ingress qdisc will bail 3934 * out here. 3935 */ 3936 if (!cl) 3937 return skb; 3938 if (*pt_prev) { 3939 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3940 *pt_prev = NULL; 3941 } 3942 3943 qdisc_skb_cb(skb)->pkt_len = skb->len; 3944 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3945 qdisc_bstats_cpu_update(cl->q, skb); 3946 3947 switch (tc_classify(skb, cl, &cl_res, false)) { 3948 case TC_ACT_OK: 3949 case TC_ACT_RECLASSIFY: 3950 skb->tc_index = TC_H_MIN(cl_res.classid); 3951 break; 3952 case TC_ACT_SHOT: 3953 qdisc_qstats_cpu_drop(cl->q); 3954 kfree_skb(skb); 3955 return NULL; 3956 case TC_ACT_STOLEN: 3957 case TC_ACT_QUEUED: 3958 consume_skb(skb); 3959 return NULL; 3960 case TC_ACT_REDIRECT: 3961 /* skb_mac_header check was done by cls/act_bpf, so 3962 * we can safely push the L2 header back before 3963 * redirecting to another netdev 3964 */ 3965 __skb_push(skb, skb->mac_len); 3966 skb_do_redirect(skb); 3967 return NULL; 3968 default: 3969 break; 3970 } 3971 #endif /* CONFIG_NET_CLS_ACT */ 3972 return skb; 3973 } 3974 3975 /** 3976 * netdev_rx_handler_register - register receive handler 3977 * @dev: device to register a handler for 3978 * @rx_handler: receive handler to register 3979 * @rx_handler_data: data pointer that is used by rx handler 3980 * 3981 * Register a receive handler for a device. This handler will then be 3982 * called from __netif_receive_skb. A negative errno code is returned 3983 * on a failure. 3984 * 3985 * The caller must hold the rtnl_mutex. 3986 * 3987 * For a general description of rx_handler, see enum rx_handler_result. 3988 */ 3989 int netdev_rx_handler_register(struct net_device *dev, 3990 rx_handler_func_t *rx_handler, 3991 void *rx_handler_data) 3992 { 3993 ASSERT_RTNL(); 3994 3995 if (dev->rx_handler) 3996 return -EBUSY; 3997 3998 /* Note: rx_handler_data must be set before rx_handler */ 3999 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 4000 rcu_assign_pointer(dev->rx_handler, rx_handler); 4001 4002 return 0; 4003 } 4004 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 4005 4006 /** 4007 * netdev_rx_handler_unregister - unregister receive handler 4008 * @dev: device to unregister a handler from 4009 * 4010 * Unregister a receive handler from a device. 4011 * 4012 * The caller must hold the rtnl_mutex. 4013 */ 4014 void netdev_rx_handler_unregister(struct net_device *dev) 4015 { 4016 4017 ASSERT_RTNL(); 4018 RCU_INIT_POINTER(dev->rx_handler, NULL); 4019 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 4020 * section has a guarantee to see a non NULL rx_handler_data 4021 * as well. 4022 */ 4023 synchronize_net(); 4024 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 4025 } 4026 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 4027 4028 /* 4029 * Limit the use of PFMEMALLOC reserves to those protocols that implement 4030 * the special handling of PFMEMALLOC skbs. 4031 */ 4032 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 4033 { 4034 switch (skb->protocol) { 4035 case htons(ETH_P_ARP): 4036 case htons(ETH_P_IP): 4037 case htons(ETH_P_IPV6): 4038 case htons(ETH_P_8021Q): 4039 case htons(ETH_P_8021AD): 4040 return true; 4041 default: 4042 return false; 4043 } 4044 } 4045 4046 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 4047 int *ret, struct net_device *orig_dev) 4048 { 4049 #ifdef CONFIG_NETFILTER_INGRESS 4050 if (nf_hook_ingress_active(skb)) { 4051 if (*pt_prev) { 4052 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4053 *pt_prev = NULL; 4054 } 4055 4056 return nf_hook_ingress(skb); 4057 } 4058 #endif /* CONFIG_NETFILTER_INGRESS */ 4059 return 0; 4060 } 4061 4062 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 4063 { 4064 struct packet_type *ptype, *pt_prev; 4065 rx_handler_func_t *rx_handler; 4066 struct net_device *orig_dev; 4067 bool deliver_exact = false; 4068 int ret = NET_RX_DROP; 4069 __be16 type; 4070 4071 net_timestamp_check(!netdev_tstamp_prequeue, skb); 4072 4073 trace_netif_receive_skb(skb); 4074 4075 orig_dev = skb->dev; 4076 4077 skb_reset_network_header(skb); 4078 if (!skb_transport_header_was_set(skb)) 4079 skb_reset_transport_header(skb); 4080 skb_reset_mac_len(skb); 4081 4082 pt_prev = NULL; 4083 4084 another_round: 4085 skb->skb_iif = skb->dev->ifindex; 4086 4087 __this_cpu_inc(softnet_data.processed); 4088 4089 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 4090 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 4091 skb = skb_vlan_untag(skb); 4092 if (unlikely(!skb)) 4093 goto out; 4094 } 4095 4096 #ifdef CONFIG_NET_CLS_ACT 4097 if (skb->tc_verd & TC_NCLS) { 4098 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 4099 goto ncls; 4100 } 4101 #endif 4102 4103 if (pfmemalloc) 4104 goto skip_taps; 4105 4106 list_for_each_entry_rcu(ptype, &ptype_all, list) { 4107 if (pt_prev) 4108 ret = deliver_skb(skb, pt_prev, orig_dev); 4109 pt_prev = ptype; 4110 } 4111 4112 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 4113 if (pt_prev) 4114 ret = deliver_skb(skb, pt_prev, orig_dev); 4115 pt_prev = ptype; 4116 } 4117 4118 skip_taps: 4119 #ifdef CONFIG_NET_INGRESS 4120 if (static_key_false(&ingress_needed)) { 4121 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev); 4122 if (!skb) 4123 goto out; 4124 4125 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 4126 goto out; 4127 } 4128 #endif 4129 #ifdef CONFIG_NET_CLS_ACT 4130 skb->tc_verd = 0; 4131 ncls: 4132 #endif 4133 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 4134 goto drop; 4135 4136 if (skb_vlan_tag_present(skb)) { 4137 if (pt_prev) { 4138 ret = deliver_skb(skb, pt_prev, orig_dev); 4139 pt_prev = NULL; 4140 } 4141 if (vlan_do_receive(&skb)) 4142 goto another_round; 4143 else if (unlikely(!skb)) 4144 goto out; 4145 } 4146 4147 rx_handler = rcu_dereference(skb->dev->rx_handler); 4148 if (rx_handler) { 4149 if (pt_prev) { 4150 ret = deliver_skb(skb, pt_prev, orig_dev); 4151 pt_prev = NULL; 4152 } 4153 switch (rx_handler(&skb)) { 4154 case RX_HANDLER_CONSUMED: 4155 ret = NET_RX_SUCCESS; 4156 goto out; 4157 case RX_HANDLER_ANOTHER: 4158 goto another_round; 4159 case RX_HANDLER_EXACT: 4160 deliver_exact = true; 4161 case RX_HANDLER_PASS: 4162 break; 4163 default: 4164 BUG(); 4165 } 4166 } 4167 4168 if (unlikely(skb_vlan_tag_present(skb))) { 4169 if (skb_vlan_tag_get_id(skb)) 4170 skb->pkt_type = PACKET_OTHERHOST; 4171 /* Note: we might in the future use prio bits 4172 * and set skb->priority like in vlan_do_receive() 4173 * For the time being, just ignore Priority Code Point 4174 */ 4175 skb->vlan_tci = 0; 4176 } 4177 4178 type = skb->protocol; 4179 4180 /* deliver only exact match when indicated */ 4181 if (likely(!deliver_exact)) { 4182 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4183 &ptype_base[ntohs(type) & 4184 PTYPE_HASH_MASK]); 4185 } 4186 4187 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4188 &orig_dev->ptype_specific); 4189 4190 if (unlikely(skb->dev != orig_dev)) { 4191 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4192 &skb->dev->ptype_specific); 4193 } 4194 4195 if (pt_prev) { 4196 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 4197 goto drop; 4198 else 4199 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 4200 } else { 4201 drop: 4202 if (!deliver_exact) 4203 atomic_long_inc(&skb->dev->rx_dropped); 4204 else 4205 atomic_long_inc(&skb->dev->rx_nohandler); 4206 kfree_skb(skb); 4207 /* Jamal, now you will not able to escape explaining 4208 * me how you were going to use this. :-) 4209 */ 4210 ret = NET_RX_DROP; 4211 } 4212 4213 out: 4214 return ret; 4215 } 4216 4217 static int __netif_receive_skb(struct sk_buff *skb) 4218 { 4219 int ret; 4220 4221 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 4222 unsigned long pflags = current->flags; 4223 4224 /* 4225 * PFMEMALLOC skbs are special, they should 4226 * - be delivered to SOCK_MEMALLOC sockets only 4227 * - stay away from userspace 4228 * - have bounded memory usage 4229 * 4230 * Use PF_MEMALLOC as this saves us from propagating the allocation 4231 * context down to all allocation sites. 4232 */ 4233 current->flags |= PF_MEMALLOC; 4234 ret = __netif_receive_skb_core(skb, true); 4235 tsk_restore_flags(current, pflags, PF_MEMALLOC); 4236 } else 4237 ret = __netif_receive_skb_core(skb, false); 4238 4239 return ret; 4240 } 4241 4242 static int netif_receive_skb_internal(struct sk_buff *skb) 4243 { 4244 int ret; 4245 4246 net_timestamp_check(netdev_tstamp_prequeue, skb); 4247 4248 if (skb_defer_rx_timestamp(skb)) 4249 return NET_RX_SUCCESS; 4250 4251 rcu_read_lock(); 4252 4253 #ifdef CONFIG_RPS 4254 if (static_key_false(&rps_needed)) { 4255 struct rps_dev_flow voidflow, *rflow = &voidflow; 4256 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 4257 4258 if (cpu >= 0) { 4259 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4260 rcu_read_unlock(); 4261 return ret; 4262 } 4263 } 4264 #endif 4265 ret = __netif_receive_skb(skb); 4266 rcu_read_unlock(); 4267 return ret; 4268 } 4269 4270 /** 4271 * netif_receive_skb - process receive buffer from network 4272 * @skb: buffer to process 4273 * 4274 * netif_receive_skb() is the main receive data processing function. 4275 * It always succeeds. The buffer may be dropped during processing 4276 * for congestion control or by the protocol layers. 4277 * 4278 * This function may only be called from softirq context and interrupts 4279 * should be enabled. 4280 * 4281 * Return values (usually ignored): 4282 * NET_RX_SUCCESS: no congestion 4283 * NET_RX_DROP: packet was dropped 4284 */ 4285 int netif_receive_skb(struct sk_buff *skb) 4286 { 4287 trace_netif_receive_skb_entry(skb); 4288 4289 return netif_receive_skb_internal(skb); 4290 } 4291 EXPORT_SYMBOL(netif_receive_skb); 4292 4293 /* Network device is going away, flush any packets still pending 4294 * Called with irqs disabled. 4295 */ 4296 static void flush_backlog(void *arg) 4297 { 4298 struct net_device *dev = arg; 4299 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4300 struct sk_buff *skb, *tmp; 4301 4302 rps_lock(sd); 4303 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 4304 if (skb->dev == dev) { 4305 __skb_unlink(skb, &sd->input_pkt_queue); 4306 kfree_skb(skb); 4307 input_queue_head_incr(sd); 4308 } 4309 } 4310 rps_unlock(sd); 4311 4312 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 4313 if (skb->dev == dev) { 4314 __skb_unlink(skb, &sd->process_queue); 4315 kfree_skb(skb); 4316 input_queue_head_incr(sd); 4317 } 4318 } 4319 } 4320 4321 static int napi_gro_complete(struct sk_buff *skb) 4322 { 4323 struct packet_offload *ptype; 4324 __be16 type = skb->protocol; 4325 struct list_head *head = &offload_base; 4326 int err = -ENOENT; 4327 4328 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 4329 4330 if (NAPI_GRO_CB(skb)->count == 1) { 4331 skb_shinfo(skb)->gso_size = 0; 4332 goto out; 4333 } 4334 4335 rcu_read_lock(); 4336 list_for_each_entry_rcu(ptype, head, list) { 4337 if (ptype->type != type || !ptype->callbacks.gro_complete) 4338 continue; 4339 4340 err = ptype->callbacks.gro_complete(skb, 0); 4341 break; 4342 } 4343 rcu_read_unlock(); 4344 4345 if (err) { 4346 WARN_ON(&ptype->list == head); 4347 kfree_skb(skb); 4348 return NET_RX_SUCCESS; 4349 } 4350 4351 out: 4352 return netif_receive_skb_internal(skb); 4353 } 4354 4355 /* napi->gro_list contains packets ordered by age. 4356 * youngest packets at the head of it. 4357 * Complete skbs in reverse order to reduce latencies. 4358 */ 4359 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 4360 { 4361 struct sk_buff *skb, *prev = NULL; 4362 4363 /* scan list and build reverse chain */ 4364 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 4365 skb->prev = prev; 4366 prev = skb; 4367 } 4368 4369 for (skb = prev; skb; skb = prev) { 4370 skb->next = NULL; 4371 4372 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 4373 return; 4374 4375 prev = skb->prev; 4376 napi_gro_complete(skb); 4377 napi->gro_count--; 4378 } 4379 4380 napi->gro_list = NULL; 4381 } 4382 EXPORT_SYMBOL(napi_gro_flush); 4383 4384 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 4385 { 4386 struct sk_buff *p; 4387 unsigned int maclen = skb->dev->hard_header_len; 4388 u32 hash = skb_get_hash_raw(skb); 4389 4390 for (p = napi->gro_list; p; p = p->next) { 4391 unsigned long diffs; 4392 4393 NAPI_GRO_CB(p)->flush = 0; 4394 4395 if (hash != skb_get_hash_raw(p)) { 4396 NAPI_GRO_CB(p)->same_flow = 0; 4397 continue; 4398 } 4399 4400 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 4401 diffs |= p->vlan_tci ^ skb->vlan_tci; 4402 diffs |= skb_metadata_dst_cmp(p, skb); 4403 if (maclen == ETH_HLEN) 4404 diffs |= compare_ether_header(skb_mac_header(p), 4405 skb_mac_header(skb)); 4406 else if (!diffs) 4407 diffs = memcmp(skb_mac_header(p), 4408 skb_mac_header(skb), 4409 maclen); 4410 NAPI_GRO_CB(p)->same_flow = !diffs; 4411 } 4412 } 4413 4414 static void skb_gro_reset_offset(struct sk_buff *skb) 4415 { 4416 const struct skb_shared_info *pinfo = skb_shinfo(skb); 4417 const skb_frag_t *frag0 = &pinfo->frags[0]; 4418 4419 NAPI_GRO_CB(skb)->data_offset = 0; 4420 NAPI_GRO_CB(skb)->frag0 = NULL; 4421 NAPI_GRO_CB(skb)->frag0_len = 0; 4422 4423 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 4424 pinfo->nr_frags && 4425 !PageHighMem(skb_frag_page(frag0))) { 4426 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 4427 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0); 4428 } 4429 } 4430 4431 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 4432 { 4433 struct skb_shared_info *pinfo = skb_shinfo(skb); 4434 4435 BUG_ON(skb->end - skb->tail < grow); 4436 4437 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 4438 4439 skb->data_len -= grow; 4440 skb->tail += grow; 4441 4442 pinfo->frags[0].page_offset += grow; 4443 skb_frag_size_sub(&pinfo->frags[0], grow); 4444 4445 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 4446 skb_frag_unref(skb, 0); 4447 memmove(pinfo->frags, pinfo->frags + 1, 4448 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 4449 } 4450 } 4451 4452 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4453 { 4454 struct sk_buff **pp = NULL; 4455 struct packet_offload *ptype; 4456 __be16 type = skb->protocol; 4457 struct list_head *head = &offload_base; 4458 int same_flow; 4459 enum gro_result ret; 4460 int grow; 4461 4462 if (!(skb->dev->features & NETIF_F_GRO)) 4463 goto normal; 4464 4465 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad) 4466 goto normal; 4467 4468 gro_list_prepare(napi, skb); 4469 4470 rcu_read_lock(); 4471 list_for_each_entry_rcu(ptype, head, list) { 4472 if (ptype->type != type || !ptype->callbacks.gro_receive) 4473 continue; 4474 4475 skb_set_network_header(skb, skb_gro_offset(skb)); 4476 skb_reset_mac_len(skb); 4477 NAPI_GRO_CB(skb)->same_flow = 0; 4478 NAPI_GRO_CB(skb)->flush = 0; 4479 NAPI_GRO_CB(skb)->free = 0; 4480 NAPI_GRO_CB(skb)->encap_mark = 0; 4481 NAPI_GRO_CB(skb)->is_fou = 0; 4482 NAPI_GRO_CB(skb)->is_atomic = 1; 4483 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 4484 4485 /* Setup for GRO checksum validation */ 4486 switch (skb->ip_summed) { 4487 case CHECKSUM_COMPLETE: 4488 NAPI_GRO_CB(skb)->csum = skb->csum; 4489 NAPI_GRO_CB(skb)->csum_valid = 1; 4490 NAPI_GRO_CB(skb)->csum_cnt = 0; 4491 break; 4492 case CHECKSUM_UNNECESSARY: 4493 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 4494 NAPI_GRO_CB(skb)->csum_valid = 0; 4495 break; 4496 default: 4497 NAPI_GRO_CB(skb)->csum_cnt = 0; 4498 NAPI_GRO_CB(skb)->csum_valid = 0; 4499 } 4500 4501 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 4502 break; 4503 } 4504 rcu_read_unlock(); 4505 4506 if (&ptype->list == head) 4507 goto normal; 4508 4509 same_flow = NAPI_GRO_CB(skb)->same_flow; 4510 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 4511 4512 if (pp) { 4513 struct sk_buff *nskb = *pp; 4514 4515 *pp = nskb->next; 4516 nskb->next = NULL; 4517 napi_gro_complete(nskb); 4518 napi->gro_count--; 4519 } 4520 4521 if (same_flow) 4522 goto ok; 4523 4524 if (NAPI_GRO_CB(skb)->flush) 4525 goto normal; 4526 4527 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) { 4528 struct sk_buff *nskb = napi->gro_list; 4529 4530 /* locate the end of the list to select the 'oldest' flow */ 4531 while (nskb->next) { 4532 pp = &nskb->next; 4533 nskb = *pp; 4534 } 4535 *pp = NULL; 4536 nskb->next = NULL; 4537 napi_gro_complete(nskb); 4538 } else { 4539 napi->gro_count++; 4540 } 4541 NAPI_GRO_CB(skb)->count = 1; 4542 NAPI_GRO_CB(skb)->age = jiffies; 4543 NAPI_GRO_CB(skb)->last = skb; 4544 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 4545 skb->next = napi->gro_list; 4546 napi->gro_list = skb; 4547 ret = GRO_HELD; 4548 4549 pull: 4550 grow = skb_gro_offset(skb) - skb_headlen(skb); 4551 if (grow > 0) 4552 gro_pull_from_frag0(skb, grow); 4553 ok: 4554 return ret; 4555 4556 normal: 4557 ret = GRO_NORMAL; 4558 goto pull; 4559 } 4560 4561 struct packet_offload *gro_find_receive_by_type(__be16 type) 4562 { 4563 struct list_head *offload_head = &offload_base; 4564 struct packet_offload *ptype; 4565 4566 list_for_each_entry_rcu(ptype, offload_head, list) { 4567 if (ptype->type != type || !ptype->callbacks.gro_receive) 4568 continue; 4569 return ptype; 4570 } 4571 return NULL; 4572 } 4573 EXPORT_SYMBOL(gro_find_receive_by_type); 4574 4575 struct packet_offload *gro_find_complete_by_type(__be16 type) 4576 { 4577 struct list_head *offload_head = &offload_base; 4578 struct packet_offload *ptype; 4579 4580 list_for_each_entry_rcu(ptype, offload_head, list) { 4581 if (ptype->type != type || !ptype->callbacks.gro_complete) 4582 continue; 4583 return ptype; 4584 } 4585 return NULL; 4586 } 4587 EXPORT_SYMBOL(gro_find_complete_by_type); 4588 4589 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 4590 { 4591 switch (ret) { 4592 case GRO_NORMAL: 4593 if (netif_receive_skb_internal(skb)) 4594 ret = GRO_DROP; 4595 break; 4596 4597 case GRO_DROP: 4598 kfree_skb(skb); 4599 break; 4600 4601 case GRO_MERGED_FREE: 4602 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) { 4603 skb_dst_drop(skb); 4604 kmem_cache_free(skbuff_head_cache, skb); 4605 } else { 4606 __kfree_skb(skb); 4607 } 4608 break; 4609 4610 case GRO_HELD: 4611 case GRO_MERGED: 4612 break; 4613 } 4614 4615 return ret; 4616 } 4617 4618 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4619 { 4620 skb_mark_napi_id(skb, napi); 4621 trace_napi_gro_receive_entry(skb); 4622 4623 skb_gro_reset_offset(skb); 4624 4625 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 4626 } 4627 EXPORT_SYMBOL(napi_gro_receive); 4628 4629 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 4630 { 4631 if (unlikely(skb->pfmemalloc)) { 4632 consume_skb(skb); 4633 return; 4634 } 4635 __skb_pull(skb, skb_headlen(skb)); 4636 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 4637 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 4638 skb->vlan_tci = 0; 4639 skb->dev = napi->dev; 4640 skb->skb_iif = 0; 4641 skb->encapsulation = 0; 4642 skb_shinfo(skb)->gso_type = 0; 4643 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 4644 4645 napi->skb = skb; 4646 } 4647 4648 struct sk_buff *napi_get_frags(struct napi_struct *napi) 4649 { 4650 struct sk_buff *skb = napi->skb; 4651 4652 if (!skb) { 4653 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 4654 if (skb) { 4655 napi->skb = skb; 4656 skb_mark_napi_id(skb, napi); 4657 } 4658 } 4659 return skb; 4660 } 4661 EXPORT_SYMBOL(napi_get_frags); 4662 4663 static gro_result_t napi_frags_finish(struct napi_struct *napi, 4664 struct sk_buff *skb, 4665 gro_result_t ret) 4666 { 4667 switch (ret) { 4668 case GRO_NORMAL: 4669 case GRO_HELD: 4670 __skb_push(skb, ETH_HLEN); 4671 skb->protocol = eth_type_trans(skb, skb->dev); 4672 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 4673 ret = GRO_DROP; 4674 break; 4675 4676 case GRO_DROP: 4677 case GRO_MERGED_FREE: 4678 napi_reuse_skb(napi, skb); 4679 break; 4680 4681 case GRO_MERGED: 4682 break; 4683 } 4684 4685 return ret; 4686 } 4687 4688 /* Upper GRO stack assumes network header starts at gro_offset=0 4689 * Drivers could call both napi_gro_frags() and napi_gro_receive() 4690 * We copy ethernet header into skb->data to have a common layout. 4691 */ 4692 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 4693 { 4694 struct sk_buff *skb = napi->skb; 4695 const struct ethhdr *eth; 4696 unsigned int hlen = sizeof(*eth); 4697 4698 napi->skb = NULL; 4699 4700 skb_reset_mac_header(skb); 4701 skb_gro_reset_offset(skb); 4702 4703 eth = skb_gro_header_fast(skb, 0); 4704 if (unlikely(skb_gro_header_hard(skb, hlen))) { 4705 eth = skb_gro_header_slow(skb, hlen, 0); 4706 if (unlikely(!eth)) { 4707 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 4708 __func__, napi->dev->name); 4709 napi_reuse_skb(napi, skb); 4710 return NULL; 4711 } 4712 } else { 4713 gro_pull_from_frag0(skb, hlen); 4714 NAPI_GRO_CB(skb)->frag0 += hlen; 4715 NAPI_GRO_CB(skb)->frag0_len -= hlen; 4716 } 4717 __skb_pull(skb, hlen); 4718 4719 /* 4720 * This works because the only protocols we care about don't require 4721 * special handling. 4722 * We'll fix it up properly in napi_frags_finish() 4723 */ 4724 skb->protocol = eth->h_proto; 4725 4726 return skb; 4727 } 4728 4729 gro_result_t napi_gro_frags(struct napi_struct *napi) 4730 { 4731 struct sk_buff *skb = napi_frags_skb(napi); 4732 4733 if (!skb) 4734 return GRO_DROP; 4735 4736 trace_napi_gro_frags_entry(skb); 4737 4738 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 4739 } 4740 EXPORT_SYMBOL(napi_gro_frags); 4741 4742 /* Compute the checksum from gro_offset and return the folded value 4743 * after adding in any pseudo checksum. 4744 */ 4745 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 4746 { 4747 __wsum wsum; 4748 __sum16 sum; 4749 4750 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 4751 4752 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 4753 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 4754 if (likely(!sum)) { 4755 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 4756 !skb->csum_complete_sw) 4757 netdev_rx_csum_fault(skb->dev); 4758 } 4759 4760 NAPI_GRO_CB(skb)->csum = wsum; 4761 NAPI_GRO_CB(skb)->csum_valid = 1; 4762 4763 return sum; 4764 } 4765 EXPORT_SYMBOL(__skb_gro_checksum_complete); 4766 4767 /* 4768 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 4769 * Note: called with local irq disabled, but exits with local irq enabled. 4770 */ 4771 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 4772 { 4773 #ifdef CONFIG_RPS 4774 struct softnet_data *remsd = sd->rps_ipi_list; 4775 4776 if (remsd) { 4777 sd->rps_ipi_list = NULL; 4778 4779 local_irq_enable(); 4780 4781 /* Send pending IPI's to kick RPS processing on remote cpus. */ 4782 while (remsd) { 4783 struct softnet_data *next = remsd->rps_ipi_next; 4784 4785 if (cpu_online(remsd->cpu)) 4786 smp_call_function_single_async(remsd->cpu, 4787 &remsd->csd); 4788 remsd = next; 4789 } 4790 } else 4791 #endif 4792 local_irq_enable(); 4793 } 4794 4795 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 4796 { 4797 #ifdef CONFIG_RPS 4798 return sd->rps_ipi_list != NULL; 4799 #else 4800 return false; 4801 #endif 4802 } 4803 4804 static int process_backlog(struct napi_struct *napi, int quota) 4805 { 4806 int work = 0; 4807 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 4808 4809 /* Check if we have pending ipi, its better to send them now, 4810 * not waiting net_rx_action() end. 4811 */ 4812 if (sd_has_rps_ipi_waiting(sd)) { 4813 local_irq_disable(); 4814 net_rps_action_and_irq_enable(sd); 4815 } 4816 4817 napi->weight = weight_p; 4818 local_irq_disable(); 4819 while (1) { 4820 struct sk_buff *skb; 4821 4822 while ((skb = __skb_dequeue(&sd->process_queue))) { 4823 rcu_read_lock(); 4824 local_irq_enable(); 4825 __netif_receive_skb(skb); 4826 rcu_read_unlock(); 4827 local_irq_disable(); 4828 input_queue_head_incr(sd); 4829 if (++work >= quota) { 4830 local_irq_enable(); 4831 return work; 4832 } 4833 } 4834 4835 rps_lock(sd); 4836 if (skb_queue_empty(&sd->input_pkt_queue)) { 4837 /* 4838 * Inline a custom version of __napi_complete(). 4839 * only current cpu owns and manipulates this napi, 4840 * and NAPI_STATE_SCHED is the only possible flag set 4841 * on backlog. 4842 * We can use a plain write instead of clear_bit(), 4843 * and we dont need an smp_mb() memory barrier. 4844 */ 4845 napi->state = 0; 4846 rps_unlock(sd); 4847 4848 break; 4849 } 4850 4851 skb_queue_splice_tail_init(&sd->input_pkt_queue, 4852 &sd->process_queue); 4853 rps_unlock(sd); 4854 } 4855 local_irq_enable(); 4856 4857 return work; 4858 } 4859 4860 /** 4861 * __napi_schedule - schedule for receive 4862 * @n: entry to schedule 4863 * 4864 * The entry's receive function will be scheduled to run. 4865 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 4866 */ 4867 void __napi_schedule(struct napi_struct *n) 4868 { 4869 unsigned long flags; 4870 4871 local_irq_save(flags); 4872 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 4873 local_irq_restore(flags); 4874 } 4875 EXPORT_SYMBOL(__napi_schedule); 4876 4877 /** 4878 * __napi_schedule_irqoff - schedule for receive 4879 * @n: entry to schedule 4880 * 4881 * Variant of __napi_schedule() assuming hard irqs are masked 4882 */ 4883 void __napi_schedule_irqoff(struct napi_struct *n) 4884 { 4885 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 4886 } 4887 EXPORT_SYMBOL(__napi_schedule_irqoff); 4888 4889 void __napi_complete(struct napi_struct *n) 4890 { 4891 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 4892 4893 list_del_init(&n->poll_list); 4894 smp_mb__before_atomic(); 4895 clear_bit(NAPI_STATE_SCHED, &n->state); 4896 } 4897 EXPORT_SYMBOL(__napi_complete); 4898 4899 void napi_complete_done(struct napi_struct *n, int work_done) 4900 { 4901 unsigned long flags; 4902 4903 /* 4904 * don't let napi dequeue from the cpu poll list 4905 * just in case its running on a different cpu 4906 */ 4907 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 4908 return; 4909 4910 if (n->gro_list) { 4911 unsigned long timeout = 0; 4912 4913 if (work_done) 4914 timeout = n->dev->gro_flush_timeout; 4915 4916 if (timeout) 4917 hrtimer_start(&n->timer, ns_to_ktime(timeout), 4918 HRTIMER_MODE_REL_PINNED); 4919 else 4920 napi_gro_flush(n, false); 4921 } 4922 if (likely(list_empty(&n->poll_list))) { 4923 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state)); 4924 } else { 4925 /* If n->poll_list is not empty, we need to mask irqs */ 4926 local_irq_save(flags); 4927 __napi_complete(n); 4928 local_irq_restore(flags); 4929 } 4930 } 4931 EXPORT_SYMBOL(napi_complete_done); 4932 4933 /* must be called under rcu_read_lock(), as we dont take a reference */ 4934 static struct napi_struct *napi_by_id(unsigned int napi_id) 4935 { 4936 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 4937 struct napi_struct *napi; 4938 4939 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 4940 if (napi->napi_id == napi_id) 4941 return napi; 4942 4943 return NULL; 4944 } 4945 4946 #if defined(CONFIG_NET_RX_BUSY_POLL) 4947 #define BUSY_POLL_BUDGET 8 4948 bool sk_busy_loop(struct sock *sk, int nonblock) 4949 { 4950 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0; 4951 int (*busy_poll)(struct napi_struct *dev); 4952 struct napi_struct *napi; 4953 int rc = false; 4954 4955 rcu_read_lock(); 4956 4957 napi = napi_by_id(sk->sk_napi_id); 4958 if (!napi) 4959 goto out; 4960 4961 /* Note: ndo_busy_poll method is optional in linux-4.5 */ 4962 busy_poll = napi->dev->netdev_ops->ndo_busy_poll; 4963 4964 do { 4965 rc = 0; 4966 local_bh_disable(); 4967 if (busy_poll) { 4968 rc = busy_poll(napi); 4969 } else if (napi_schedule_prep(napi)) { 4970 void *have = netpoll_poll_lock(napi); 4971 4972 if (test_bit(NAPI_STATE_SCHED, &napi->state)) { 4973 rc = napi->poll(napi, BUSY_POLL_BUDGET); 4974 trace_napi_poll(napi); 4975 if (rc == BUSY_POLL_BUDGET) { 4976 napi_complete_done(napi, rc); 4977 napi_schedule(napi); 4978 } 4979 } 4980 netpoll_poll_unlock(have); 4981 } 4982 if (rc > 0) 4983 __NET_ADD_STATS(sock_net(sk), 4984 LINUX_MIB_BUSYPOLLRXPACKETS, rc); 4985 local_bh_enable(); 4986 4987 if (rc == LL_FLUSH_FAILED) 4988 break; /* permanent failure */ 4989 4990 cpu_relax(); 4991 } while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) && 4992 !need_resched() && !busy_loop_timeout(end_time)); 4993 4994 rc = !skb_queue_empty(&sk->sk_receive_queue); 4995 out: 4996 rcu_read_unlock(); 4997 return rc; 4998 } 4999 EXPORT_SYMBOL(sk_busy_loop); 5000 5001 #endif /* CONFIG_NET_RX_BUSY_POLL */ 5002 5003 void napi_hash_add(struct napi_struct *napi) 5004 { 5005 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) || 5006 test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) 5007 return; 5008 5009 spin_lock(&napi_hash_lock); 5010 5011 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */ 5012 do { 5013 if (unlikely(++napi_gen_id < NR_CPUS + 1)) 5014 napi_gen_id = NR_CPUS + 1; 5015 } while (napi_by_id(napi_gen_id)); 5016 napi->napi_id = napi_gen_id; 5017 5018 hlist_add_head_rcu(&napi->napi_hash_node, 5019 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 5020 5021 spin_unlock(&napi_hash_lock); 5022 } 5023 EXPORT_SYMBOL_GPL(napi_hash_add); 5024 5025 /* Warning : caller is responsible to make sure rcu grace period 5026 * is respected before freeing memory containing @napi 5027 */ 5028 bool napi_hash_del(struct napi_struct *napi) 5029 { 5030 bool rcu_sync_needed = false; 5031 5032 spin_lock(&napi_hash_lock); 5033 5034 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) { 5035 rcu_sync_needed = true; 5036 hlist_del_rcu(&napi->napi_hash_node); 5037 } 5038 spin_unlock(&napi_hash_lock); 5039 return rcu_sync_needed; 5040 } 5041 EXPORT_SYMBOL_GPL(napi_hash_del); 5042 5043 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 5044 { 5045 struct napi_struct *napi; 5046 5047 napi = container_of(timer, struct napi_struct, timer); 5048 if (napi->gro_list) 5049 napi_schedule(napi); 5050 5051 return HRTIMER_NORESTART; 5052 } 5053 5054 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 5055 int (*poll)(struct napi_struct *, int), int weight) 5056 { 5057 INIT_LIST_HEAD(&napi->poll_list); 5058 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 5059 napi->timer.function = napi_watchdog; 5060 napi->gro_count = 0; 5061 napi->gro_list = NULL; 5062 napi->skb = NULL; 5063 napi->poll = poll; 5064 if (weight > NAPI_POLL_WEIGHT) 5065 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 5066 weight, dev->name); 5067 napi->weight = weight; 5068 list_add(&napi->dev_list, &dev->napi_list); 5069 napi->dev = dev; 5070 #ifdef CONFIG_NETPOLL 5071 spin_lock_init(&napi->poll_lock); 5072 napi->poll_owner = -1; 5073 #endif 5074 set_bit(NAPI_STATE_SCHED, &napi->state); 5075 napi_hash_add(napi); 5076 } 5077 EXPORT_SYMBOL(netif_napi_add); 5078 5079 void napi_disable(struct napi_struct *n) 5080 { 5081 might_sleep(); 5082 set_bit(NAPI_STATE_DISABLE, &n->state); 5083 5084 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 5085 msleep(1); 5086 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 5087 msleep(1); 5088 5089 hrtimer_cancel(&n->timer); 5090 5091 clear_bit(NAPI_STATE_DISABLE, &n->state); 5092 } 5093 EXPORT_SYMBOL(napi_disable); 5094 5095 /* Must be called in process context */ 5096 void netif_napi_del(struct napi_struct *napi) 5097 { 5098 might_sleep(); 5099 if (napi_hash_del(napi)) 5100 synchronize_net(); 5101 list_del_init(&napi->dev_list); 5102 napi_free_frags(napi); 5103 5104 kfree_skb_list(napi->gro_list); 5105 napi->gro_list = NULL; 5106 napi->gro_count = 0; 5107 } 5108 EXPORT_SYMBOL(netif_napi_del); 5109 5110 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 5111 { 5112 void *have; 5113 int work, weight; 5114 5115 list_del_init(&n->poll_list); 5116 5117 have = netpoll_poll_lock(n); 5118 5119 weight = n->weight; 5120 5121 /* This NAPI_STATE_SCHED test is for avoiding a race 5122 * with netpoll's poll_napi(). Only the entity which 5123 * obtains the lock and sees NAPI_STATE_SCHED set will 5124 * actually make the ->poll() call. Therefore we avoid 5125 * accidentally calling ->poll() when NAPI is not scheduled. 5126 */ 5127 work = 0; 5128 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 5129 work = n->poll(n, weight); 5130 trace_napi_poll(n); 5131 } 5132 5133 WARN_ON_ONCE(work > weight); 5134 5135 if (likely(work < weight)) 5136 goto out_unlock; 5137 5138 /* Drivers must not modify the NAPI state if they 5139 * consume the entire weight. In such cases this code 5140 * still "owns" the NAPI instance and therefore can 5141 * move the instance around on the list at-will. 5142 */ 5143 if (unlikely(napi_disable_pending(n))) { 5144 napi_complete(n); 5145 goto out_unlock; 5146 } 5147 5148 if (n->gro_list) { 5149 /* flush too old packets 5150 * If HZ < 1000, flush all packets. 5151 */ 5152 napi_gro_flush(n, HZ >= 1000); 5153 } 5154 5155 /* Some drivers may have called napi_schedule 5156 * prior to exhausting their budget. 5157 */ 5158 if (unlikely(!list_empty(&n->poll_list))) { 5159 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 5160 n->dev ? n->dev->name : "backlog"); 5161 goto out_unlock; 5162 } 5163 5164 list_add_tail(&n->poll_list, repoll); 5165 5166 out_unlock: 5167 netpoll_poll_unlock(have); 5168 5169 return work; 5170 } 5171 5172 static void net_rx_action(struct softirq_action *h) 5173 { 5174 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5175 unsigned long time_limit = jiffies + 2; 5176 int budget = netdev_budget; 5177 LIST_HEAD(list); 5178 LIST_HEAD(repoll); 5179 5180 local_irq_disable(); 5181 list_splice_init(&sd->poll_list, &list); 5182 local_irq_enable(); 5183 5184 for (;;) { 5185 struct napi_struct *n; 5186 5187 if (list_empty(&list)) { 5188 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 5189 return; 5190 break; 5191 } 5192 5193 n = list_first_entry(&list, struct napi_struct, poll_list); 5194 budget -= napi_poll(n, &repoll); 5195 5196 /* If softirq window is exhausted then punt. 5197 * Allow this to run for 2 jiffies since which will allow 5198 * an average latency of 1.5/HZ. 5199 */ 5200 if (unlikely(budget <= 0 || 5201 time_after_eq(jiffies, time_limit))) { 5202 sd->time_squeeze++; 5203 break; 5204 } 5205 } 5206 5207 __kfree_skb_flush(); 5208 local_irq_disable(); 5209 5210 list_splice_tail_init(&sd->poll_list, &list); 5211 list_splice_tail(&repoll, &list); 5212 list_splice(&list, &sd->poll_list); 5213 if (!list_empty(&sd->poll_list)) 5214 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5215 5216 net_rps_action_and_irq_enable(sd); 5217 } 5218 5219 struct netdev_adjacent { 5220 struct net_device *dev; 5221 5222 /* upper master flag, there can only be one master device per list */ 5223 bool master; 5224 5225 /* counter for the number of times this device was added to us */ 5226 u16 ref_nr; 5227 5228 /* private field for the users */ 5229 void *private; 5230 5231 struct list_head list; 5232 struct rcu_head rcu; 5233 }; 5234 5235 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 5236 struct list_head *adj_list) 5237 { 5238 struct netdev_adjacent *adj; 5239 5240 list_for_each_entry(adj, adj_list, list) { 5241 if (adj->dev == adj_dev) 5242 return adj; 5243 } 5244 return NULL; 5245 } 5246 5247 /** 5248 * netdev_has_upper_dev - Check if device is linked to an upper device 5249 * @dev: device 5250 * @upper_dev: upper device to check 5251 * 5252 * Find out if a device is linked to specified upper device and return true 5253 * in case it is. Note that this checks only immediate upper device, 5254 * not through a complete stack of devices. The caller must hold the RTNL lock. 5255 */ 5256 bool netdev_has_upper_dev(struct net_device *dev, 5257 struct net_device *upper_dev) 5258 { 5259 ASSERT_RTNL(); 5260 5261 return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper); 5262 } 5263 EXPORT_SYMBOL(netdev_has_upper_dev); 5264 5265 /** 5266 * netdev_has_any_upper_dev - Check if device is linked to some device 5267 * @dev: device 5268 * 5269 * Find out if a device is linked to an upper device and return true in case 5270 * it is. The caller must hold the RTNL lock. 5271 */ 5272 static bool netdev_has_any_upper_dev(struct net_device *dev) 5273 { 5274 ASSERT_RTNL(); 5275 5276 return !list_empty(&dev->all_adj_list.upper); 5277 } 5278 5279 /** 5280 * netdev_master_upper_dev_get - Get master upper device 5281 * @dev: device 5282 * 5283 * Find a master upper device and return pointer to it or NULL in case 5284 * it's not there. The caller must hold the RTNL lock. 5285 */ 5286 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 5287 { 5288 struct netdev_adjacent *upper; 5289 5290 ASSERT_RTNL(); 5291 5292 if (list_empty(&dev->adj_list.upper)) 5293 return NULL; 5294 5295 upper = list_first_entry(&dev->adj_list.upper, 5296 struct netdev_adjacent, list); 5297 if (likely(upper->master)) 5298 return upper->dev; 5299 return NULL; 5300 } 5301 EXPORT_SYMBOL(netdev_master_upper_dev_get); 5302 5303 void *netdev_adjacent_get_private(struct list_head *adj_list) 5304 { 5305 struct netdev_adjacent *adj; 5306 5307 adj = list_entry(adj_list, struct netdev_adjacent, list); 5308 5309 return adj->private; 5310 } 5311 EXPORT_SYMBOL(netdev_adjacent_get_private); 5312 5313 /** 5314 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 5315 * @dev: device 5316 * @iter: list_head ** of the current position 5317 * 5318 * Gets the next device from the dev's upper list, starting from iter 5319 * position. The caller must hold RCU read lock. 5320 */ 5321 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 5322 struct list_head **iter) 5323 { 5324 struct netdev_adjacent *upper; 5325 5326 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5327 5328 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5329 5330 if (&upper->list == &dev->adj_list.upper) 5331 return NULL; 5332 5333 *iter = &upper->list; 5334 5335 return upper->dev; 5336 } 5337 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 5338 5339 /** 5340 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list 5341 * @dev: device 5342 * @iter: list_head ** of the current position 5343 * 5344 * Gets the next device from the dev's upper list, starting from iter 5345 * position. The caller must hold RCU read lock. 5346 */ 5347 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 5348 struct list_head **iter) 5349 { 5350 struct netdev_adjacent *upper; 5351 5352 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5353 5354 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5355 5356 if (&upper->list == &dev->all_adj_list.upper) 5357 return NULL; 5358 5359 *iter = &upper->list; 5360 5361 return upper->dev; 5362 } 5363 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu); 5364 5365 /** 5366 * netdev_lower_get_next_private - Get the next ->private from the 5367 * lower neighbour list 5368 * @dev: device 5369 * @iter: list_head ** of the current position 5370 * 5371 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5372 * list, starting from iter position. The caller must hold either hold the 5373 * RTNL lock or its own locking that guarantees that the neighbour lower 5374 * list will remain unchanged. 5375 */ 5376 void *netdev_lower_get_next_private(struct net_device *dev, 5377 struct list_head **iter) 5378 { 5379 struct netdev_adjacent *lower; 5380 5381 lower = list_entry(*iter, struct netdev_adjacent, list); 5382 5383 if (&lower->list == &dev->adj_list.lower) 5384 return NULL; 5385 5386 *iter = lower->list.next; 5387 5388 return lower->private; 5389 } 5390 EXPORT_SYMBOL(netdev_lower_get_next_private); 5391 5392 /** 5393 * netdev_lower_get_next_private_rcu - Get the next ->private from the 5394 * lower neighbour list, RCU 5395 * variant 5396 * @dev: device 5397 * @iter: list_head ** of the current position 5398 * 5399 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5400 * list, starting from iter position. The caller must hold RCU read lock. 5401 */ 5402 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 5403 struct list_head **iter) 5404 { 5405 struct netdev_adjacent *lower; 5406 5407 WARN_ON_ONCE(!rcu_read_lock_held()); 5408 5409 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5410 5411 if (&lower->list == &dev->adj_list.lower) 5412 return NULL; 5413 5414 *iter = &lower->list; 5415 5416 return lower->private; 5417 } 5418 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 5419 5420 /** 5421 * netdev_lower_get_next - Get the next device from the lower neighbour 5422 * list 5423 * @dev: device 5424 * @iter: list_head ** of the current position 5425 * 5426 * Gets the next netdev_adjacent from the dev's lower neighbour 5427 * list, starting from iter position. The caller must hold RTNL lock or 5428 * its own locking that guarantees that the neighbour lower 5429 * list will remain unchanged. 5430 */ 5431 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 5432 { 5433 struct netdev_adjacent *lower; 5434 5435 lower = list_entry(*iter, struct netdev_adjacent, list); 5436 5437 if (&lower->list == &dev->adj_list.lower) 5438 return NULL; 5439 5440 *iter = lower->list.next; 5441 5442 return lower->dev; 5443 } 5444 EXPORT_SYMBOL(netdev_lower_get_next); 5445 5446 /** 5447 * netdev_lower_get_first_private_rcu - Get the first ->private from the 5448 * lower neighbour list, RCU 5449 * variant 5450 * @dev: device 5451 * 5452 * Gets the first netdev_adjacent->private from the dev's lower neighbour 5453 * list. The caller must hold RCU read lock. 5454 */ 5455 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 5456 { 5457 struct netdev_adjacent *lower; 5458 5459 lower = list_first_or_null_rcu(&dev->adj_list.lower, 5460 struct netdev_adjacent, list); 5461 if (lower) 5462 return lower->private; 5463 return NULL; 5464 } 5465 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 5466 5467 /** 5468 * netdev_master_upper_dev_get_rcu - Get master upper device 5469 * @dev: device 5470 * 5471 * Find a master upper device and return pointer to it or NULL in case 5472 * it's not there. The caller must hold the RCU read lock. 5473 */ 5474 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 5475 { 5476 struct netdev_adjacent *upper; 5477 5478 upper = list_first_or_null_rcu(&dev->adj_list.upper, 5479 struct netdev_adjacent, list); 5480 if (upper && likely(upper->master)) 5481 return upper->dev; 5482 return NULL; 5483 } 5484 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 5485 5486 static int netdev_adjacent_sysfs_add(struct net_device *dev, 5487 struct net_device *adj_dev, 5488 struct list_head *dev_list) 5489 { 5490 char linkname[IFNAMSIZ+7]; 5491 sprintf(linkname, dev_list == &dev->adj_list.upper ? 5492 "upper_%s" : "lower_%s", adj_dev->name); 5493 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 5494 linkname); 5495 } 5496 static void netdev_adjacent_sysfs_del(struct net_device *dev, 5497 char *name, 5498 struct list_head *dev_list) 5499 { 5500 char linkname[IFNAMSIZ+7]; 5501 sprintf(linkname, dev_list == &dev->adj_list.upper ? 5502 "upper_%s" : "lower_%s", name); 5503 sysfs_remove_link(&(dev->dev.kobj), linkname); 5504 } 5505 5506 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 5507 struct net_device *adj_dev, 5508 struct list_head *dev_list) 5509 { 5510 return (dev_list == &dev->adj_list.upper || 5511 dev_list == &dev->adj_list.lower) && 5512 net_eq(dev_net(dev), dev_net(adj_dev)); 5513 } 5514 5515 static int __netdev_adjacent_dev_insert(struct net_device *dev, 5516 struct net_device *adj_dev, 5517 struct list_head *dev_list, 5518 void *private, bool master) 5519 { 5520 struct netdev_adjacent *adj; 5521 int ret; 5522 5523 adj = __netdev_find_adj(adj_dev, dev_list); 5524 5525 if (adj) { 5526 adj->ref_nr++; 5527 return 0; 5528 } 5529 5530 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 5531 if (!adj) 5532 return -ENOMEM; 5533 5534 adj->dev = adj_dev; 5535 adj->master = master; 5536 adj->ref_nr = 1; 5537 adj->private = private; 5538 dev_hold(adj_dev); 5539 5540 pr_debug("dev_hold for %s, because of link added from %s to %s\n", 5541 adj_dev->name, dev->name, adj_dev->name); 5542 5543 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 5544 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 5545 if (ret) 5546 goto free_adj; 5547 } 5548 5549 /* Ensure that master link is always the first item in list. */ 5550 if (master) { 5551 ret = sysfs_create_link(&(dev->dev.kobj), 5552 &(adj_dev->dev.kobj), "master"); 5553 if (ret) 5554 goto remove_symlinks; 5555 5556 list_add_rcu(&adj->list, dev_list); 5557 } else { 5558 list_add_tail_rcu(&adj->list, dev_list); 5559 } 5560 5561 return 0; 5562 5563 remove_symlinks: 5564 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 5565 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 5566 free_adj: 5567 kfree(adj); 5568 dev_put(adj_dev); 5569 5570 return ret; 5571 } 5572 5573 static void __netdev_adjacent_dev_remove(struct net_device *dev, 5574 struct net_device *adj_dev, 5575 struct list_head *dev_list) 5576 { 5577 struct netdev_adjacent *adj; 5578 5579 adj = __netdev_find_adj(adj_dev, dev_list); 5580 5581 if (!adj) { 5582 pr_err("tried to remove device %s from %s\n", 5583 dev->name, adj_dev->name); 5584 BUG(); 5585 } 5586 5587 if (adj->ref_nr > 1) { 5588 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name, 5589 adj->ref_nr-1); 5590 adj->ref_nr--; 5591 return; 5592 } 5593 5594 if (adj->master) 5595 sysfs_remove_link(&(dev->dev.kobj), "master"); 5596 5597 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 5598 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 5599 5600 list_del_rcu(&adj->list); 5601 pr_debug("dev_put for %s, because link removed from %s to %s\n", 5602 adj_dev->name, dev->name, adj_dev->name); 5603 dev_put(adj_dev); 5604 kfree_rcu(adj, rcu); 5605 } 5606 5607 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 5608 struct net_device *upper_dev, 5609 struct list_head *up_list, 5610 struct list_head *down_list, 5611 void *private, bool master) 5612 { 5613 int ret; 5614 5615 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private, 5616 master); 5617 if (ret) 5618 return ret; 5619 5620 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private, 5621 false); 5622 if (ret) { 5623 __netdev_adjacent_dev_remove(dev, upper_dev, up_list); 5624 return ret; 5625 } 5626 5627 return 0; 5628 } 5629 5630 static int __netdev_adjacent_dev_link(struct net_device *dev, 5631 struct net_device *upper_dev) 5632 { 5633 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 5634 &dev->all_adj_list.upper, 5635 &upper_dev->all_adj_list.lower, 5636 NULL, false); 5637 } 5638 5639 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 5640 struct net_device *upper_dev, 5641 struct list_head *up_list, 5642 struct list_head *down_list) 5643 { 5644 __netdev_adjacent_dev_remove(dev, upper_dev, up_list); 5645 __netdev_adjacent_dev_remove(upper_dev, dev, down_list); 5646 } 5647 5648 static void __netdev_adjacent_dev_unlink(struct net_device *dev, 5649 struct net_device *upper_dev) 5650 { 5651 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 5652 &dev->all_adj_list.upper, 5653 &upper_dev->all_adj_list.lower); 5654 } 5655 5656 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 5657 struct net_device *upper_dev, 5658 void *private, bool master) 5659 { 5660 int ret = __netdev_adjacent_dev_link(dev, upper_dev); 5661 5662 if (ret) 5663 return ret; 5664 5665 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev, 5666 &dev->adj_list.upper, 5667 &upper_dev->adj_list.lower, 5668 private, master); 5669 if (ret) { 5670 __netdev_adjacent_dev_unlink(dev, upper_dev); 5671 return ret; 5672 } 5673 5674 return 0; 5675 } 5676 5677 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 5678 struct net_device *upper_dev) 5679 { 5680 __netdev_adjacent_dev_unlink(dev, upper_dev); 5681 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 5682 &dev->adj_list.upper, 5683 &upper_dev->adj_list.lower); 5684 } 5685 5686 static int __netdev_upper_dev_link(struct net_device *dev, 5687 struct net_device *upper_dev, bool master, 5688 void *upper_priv, void *upper_info) 5689 { 5690 struct netdev_notifier_changeupper_info changeupper_info; 5691 struct netdev_adjacent *i, *j, *to_i, *to_j; 5692 int ret = 0; 5693 5694 ASSERT_RTNL(); 5695 5696 if (dev == upper_dev) 5697 return -EBUSY; 5698 5699 /* To prevent loops, check if dev is not upper device to upper_dev. */ 5700 if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper)) 5701 return -EBUSY; 5702 5703 if (__netdev_find_adj(upper_dev, &dev->adj_list.upper)) 5704 return -EEXIST; 5705 5706 if (master && netdev_master_upper_dev_get(dev)) 5707 return -EBUSY; 5708 5709 changeupper_info.upper_dev = upper_dev; 5710 changeupper_info.master = master; 5711 changeupper_info.linking = true; 5712 changeupper_info.upper_info = upper_info; 5713 5714 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev, 5715 &changeupper_info.info); 5716 ret = notifier_to_errno(ret); 5717 if (ret) 5718 return ret; 5719 5720 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 5721 master); 5722 if (ret) 5723 return ret; 5724 5725 /* Now that we linked these devs, make all the upper_dev's 5726 * all_adj_list.upper visible to every dev's all_adj_list.lower an 5727 * versa, and don't forget the devices itself. All of these 5728 * links are non-neighbours. 5729 */ 5730 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5731 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) { 5732 pr_debug("Interlinking %s with %s, non-neighbour\n", 5733 i->dev->name, j->dev->name); 5734 ret = __netdev_adjacent_dev_link(i->dev, j->dev); 5735 if (ret) 5736 goto rollback_mesh; 5737 } 5738 } 5739 5740 /* add dev to every upper_dev's upper device */ 5741 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) { 5742 pr_debug("linking %s's upper device %s with %s\n", 5743 upper_dev->name, i->dev->name, dev->name); 5744 ret = __netdev_adjacent_dev_link(dev, i->dev); 5745 if (ret) 5746 goto rollback_upper_mesh; 5747 } 5748 5749 /* add upper_dev to every dev's lower device */ 5750 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5751 pr_debug("linking %s's lower device %s with %s\n", dev->name, 5752 i->dev->name, upper_dev->name); 5753 ret = __netdev_adjacent_dev_link(i->dev, upper_dev); 5754 if (ret) 5755 goto rollback_lower_mesh; 5756 } 5757 5758 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev, 5759 &changeupper_info.info); 5760 ret = notifier_to_errno(ret); 5761 if (ret) 5762 goto rollback_lower_mesh; 5763 5764 return 0; 5765 5766 rollback_lower_mesh: 5767 to_i = i; 5768 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5769 if (i == to_i) 5770 break; 5771 __netdev_adjacent_dev_unlink(i->dev, upper_dev); 5772 } 5773 5774 i = NULL; 5775 5776 rollback_upper_mesh: 5777 to_i = i; 5778 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) { 5779 if (i == to_i) 5780 break; 5781 __netdev_adjacent_dev_unlink(dev, i->dev); 5782 } 5783 5784 i = j = NULL; 5785 5786 rollback_mesh: 5787 to_i = i; 5788 to_j = j; 5789 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5790 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) { 5791 if (i == to_i && j == to_j) 5792 break; 5793 __netdev_adjacent_dev_unlink(i->dev, j->dev); 5794 } 5795 if (i == to_i) 5796 break; 5797 } 5798 5799 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 5800 5801 return ret; 5802 } 5803 5804 /** 5805 * netdev_upper_dev_link - Add a link to the upper device 5806 * @dev: device 5807 * @upper_dev: new upper device 5808 * 5809 * Adds a link to device which is upper to this one. The caller must hold 5810 * the RTNL lock. On a failure a negative errno code is returned. 5811 * On success the reference counts are adjusted and the function 5812 * returns zero. 5813 */ 5814 int netdev_upper_dev_link(struct net_device *dev, 5815 struct net_device *upper_dev) 5816 { 5817 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL); 5818 } 5819 EXPORT_SYMBOL(netdev_upper_dev_link); 5820 5821 /** 5822 * netdev_master_upper_dev_link - Add a master link to the upper device 5823 * @dev: device 5824 * @upper_dev: new upper device 5825 * @upper_priv: upper device private 5826 * @upper_info: upper info to be passed down via notifier 5827 * 5828 * Adds a link to device which is upper to this one. In this case, only 5829 * one master upper device can be linked, although other non-master devices 5830 * might be linked as well. The caller must hold the RTNL lock. 5831 * On a failure a negative errno code is returned. On success the reference 5832 * counts are adjusted and the function returns zero. 5833 */ 5834 int netdev_master_upper_dev_link(struct net_device *dev, 5835 struct net_device *upper_dev, 5836 void *upper_priv, void *upper_info) 5837 { 5838 return __netdev_upper_dev_link(dev, upper_dev, true, 5839 upper_priv, upper_info); 5840 } 5841 EXPORT_SYMBOL(netdev_master_upper_dev_link); 5842 5843 /** 5844 * netdev_upper_dev_unlink - Removes a link to upper device 5845 * @dev: device 5846 * @upper_dev: new upper device 5847 * 5848 * Removes a link to device which is upper to this one. The caller must hold 5849 * the RTNL lock. 5850 */ 5851 void netdev_upper_dev_unlink(struct net_device *dev, 5852 struct net_device *upper_dev) 5853 { 5854 struct netdev_notifier_changeupper_info changeupper_info; 5855 struct netdev_adjacent *i, *j; 5856 ASSERT_RTNL(); 5857 5858 changeupper_info.upper_dev = upper_dev; 5859 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 5860 changeupper_info.linking = false; 5861 5862 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev, 5863 &changeupper_info.info); 5864 5865 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 5866 5867 /* Here is the tricky part. We must remove all dev's lower 5868 * devices from all upper_dev's upper devices and vice 5869 * versa, to maintain the graph relationship. 5870 */ 5871 list_for_each_entry(i, &dev->all_adj_list.lower, list) 5872 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) 5873 __netdev_adjacent_dev_unlink(i->dev, j->dev); 5874 5875 /* remove also the devices itself from lower/upper device 5876 * list 5877 */ 5878 list_for_each_entry(i, &dev->all_adj_list.lower, list) 5879 __netdev_adjacent_dev_unlink(i->dev, upper_dev); 5880 5881 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) 5882 __netdev_adjacent_dev_unlink(dev, i->dev); 5883 5884 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev, 5885 &changeupper_info.info); 5886 } 5887 EXPORT_SYMBOL(netdev_upper_dev_unlink); 5888 5889 /** 5890 * netdev_bonding_info_change - Dispatch event about slave change 5891 * @dev: device 5892 * @bonding_info: info to dispatch 5893 * 5894 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 5895 * The caller must hold the RTNL lock. 5896 */ 5897 void netdev_bonding_info_change(struct net_device *dev, 5898 struct netdev_bonding_info *bonding_info) 5899 { 5900 struct netdev_notifier_bonding_info info; 5901 5902 memcpy(&info.bonding_info, bonding_info, 5903 sizeof(struct netdev_bonding_info)); 5904 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev, 5905 &info.info); 5906 } 5907 EXPORT_SYMBOL(netdev_bonding_info_change); 5908 5909 static void netdev_adjacent_add_links(struct net_device *dev) 5910 { 5911 struct netdev_adjacent *iter; 5912 5913 struct net *net = dev_net(dev); 5914 5915 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5916 if (!net_eq(net,dev_net(iter->dev))) 5917 continue; 5918 netdev_adjacent_sysfs_add(iter->dev, dev, 5919 &iter->dev->adj_list.lower); 5920 netdev_adjacent_sysfs_add(dev, iter->dev, 5921 &dev->adj_list.upper); 5922 } 5923 5924 list_for_each_entry(iter, &dev->adj_list.lower, list) { 5925 if (!net_eq(net,dev_net(iter->dev))) 5926 continue; 5927 netdev_adjacent_sysfs_add(iter->dev, dev, 5928 &iter->dev->adj_list.upper); 5929 netdev_adjacent_sysfs_add(dev, iter->dev, 5930 &dev->adj_list.lower); 5931 } 5932 } 5933 5934 static void netdev_adjacent_del_links(struct net_device *dev) 5935 { 5936 struct netdev_adjacent *iter; 5937 5938 struct net *net = dev_net(dev); 5939 5940 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5941 if (!net_eq(net,dev_net(iter->dev))) 5942 continue; 5943 netdev_adjacent_sysfs_del(iter->dev, dev->name, 5944 &iter->dev->adj_list.lower); 5945 netdev_adjacent_sysfs_del(dev, iter->dev->name, 5946 &dev->adj_list.upper); 5947 } 5948 5949 list_for_each_entry(iter, &dev->adj_list.lower, list) { 5950 if (!net_eq(net,dev_net(iter->dev))) 5951 continue; 5952 netdev_adjacent_sysfs_del(iter->dev, dev->name, 5953 &iter->dev->adj_list.upper); 5954 netdev_adjacent_sysfs_del(dev, iter->dev->name, 5955 &dev->adj_list.lower); 5956 } 5957 } 5958 5959 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 5960 { 5961 struct netdev_adjacent *iter; 5962 5963 struct net *net = dev_net(dev); 5964 5965 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5966 if (!net_eq(net,dev_net(iter->dev))) 5967 continue; 5968 netdev_adjacent_sysfs_del(iter->dev, oldname, 5969 &iter->dev->adj_list.lower); 5970 netdev_adjacent_sysfs_add(iter->dev, dev, 5971 &iter->dev->adj_list.lower); 5972 } 5973 5974 list_for_each_entry(iter, &dev->adj_list.lower, list) { 5975 if (!net_eq(net,dev_net(iter->dev))) 5976 continue; 5977 netdev_adjacent_sysfs_del(iter->dev, oldname, 5978 &iter->dev->adj_list.upper); 5979 netdev_adjacent_sysfs_add(iter->dev, dev, 5980 &iter->dev->adj_list.upper); 5981 } 5982 } 5983 5984 void *netdev_lower_dev_get_private(struct net_device *dev, 5985 struct net_device *lower_dev) 5986 { 5987 struct netdev_adjacent *lower; 5988 5989 if (!lower_dev) 5990 return NULL; 5991 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 5992 if (!lower) 5993 return NULL; 5994 5995 return lower->private; 5996 } 5997 EXPORT_SYMBOL(netdev_lower_dev_get_private); 5998 5999 6000 int dev_get_nest_level(struct net_device *dev, 6001 bool (*type_check)(const struct net_device *dev)) 6002 { 6003 struct net_device *lower = NULL; 6004 struct list_head *iter; 6005 int max_nest = -1; 6006 int nest; 6007 6008 ASSERT_RTNL(); 6009 6010 netdev_for_each_lower_dev(dev, lower, iter) { 6011 nest = dev_get_nest_level(lower, type_check); 6012 if (max_nest < nest) 6013 max_nest = nest; 6014 } 6015 6016 if (type_check(dev)) 6017 max_nest++; 6018 6019 return max_nest; 6020 } 6021 EXPORT_SYMBOL(dev_get_nest_level); 6022 6023 /** 6024 * netdev_lower_change - Dispatch event about lower device state change 6025 * @lower_dev: device 6026 * @lower_state_info: state to dispatch 6027 * 6028 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 6029 * The caller must hold the RTNL lock. 6030 */ 6031 void netdev_lower_state_changed(struct net_device *lower_dev, 6032 void *lower_state_info) 6033 { 6034 struct netdev_notifier_changelowerstate_info changelowerstate_info; 6035 6036 ASSERT_RTNL(); 6037 changelowerstate_info.lower_state_info = lower_state_info; 6038 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev, 6039 &changelowerstate_info.info); 6040 } 6041 EXPORT_SYMBOL(netdev_lower_state_changed); 6042 6043 static void dev_change_rx_flags(struct net_device *dev, int flags) 6044 { 6045 const struct net_device_ops *ops = dev->netdev_ops; 6046 6047 if (ops->ndo_change_rx_flags) 6048 ops->ndo_change_rx_flags(dev, flags); 6049 } 6050 6051 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 6052 { 6053 unsigned int old_flags = dev->flags; 6054 kuid_t uid; 6055 kgid_t gid; 6056 6057 ASSERT_RTNL(); 6058 6059 dev->flags |= IFF_PROMISC; 6060 dev->promiscuity += inc; 6061 if (dev->promiscuity == 0) { 6062 /* 6063 * Avoid overflow. 6064 * If inc causes overflow, untouch promisc and return error. 6065 */ 6066 if (inc < 0) 6067 dev->flags &= ~IFF_PROMISC; 6068 else { 6069 dev->promiscuity -= inc; 6070 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 6071 dev->name); 6072 return -EOVERFLOW; 6073 } 6074 } 6075 if (dev->flags != old_flags) { 6076 pr_info("device %s %s promiscuous mode\n", 6077 dev->name, 6078 dev->flags & IFF_PROMISC ? "entered" : "left"); 6079 if (audit_enabled) { 6080 current_uid_gid(&uid, &gid); 6081 audit_log(current->audit_context, GFP_ATOMIC, 6082 AUDIT_ANOM_PROMISCUOUS, 6083 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 6084 dev->name, (dev->flags & IFF_PROMISC), 6085 (old_flags & IFF_PROMISC), 6086 from_kuid(&init_user_ns, audit_get_loginuid(current)), 6087 from_kuid(&init_user_ns, uid), 6088 from_kgid(&init_user_ns, gid), 6089 audit_get_sessionid(current)); 6090 } 6091 6092 dev_change_rx_flags(dev, IFF_PROMISC); 6093 } 6094 if (notify) 6095 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 6096 return 0; 6097 } 6098 6099 /** 6100 * dev_set_promiscuity - update promiscuity count on a device 6101 * @dev: device 6102 * @inc: modifier 6103 * 6104 * Add or remove promiscuity from a device. While the count in the device 6105 * remains above zero the interface remains promiscuous. Once it hits zero 6106 * the device reverts back to normal filtering operation. A negative inc 6107 * value is used to drop promiscuity on the device. 6108 * Return 0 if successful or a negative errno code on error. 6109 */ 6110 int dev_set_promiscuity(struct net_device *dev, int inc) 6111 { 6112 unsigned int old_flags = dev->flags; 6113 int err; 6114 6115 err = __dev_set_promiscuity(dev, inc, true); 6116 if (err < 0) 6117 return err; 6118 if (dev->flags != old_flags) 6119 dev_set_rx_mode(dev); 6120 return err; 6121 } 6122 EXPORT_SYMBOL(dev_set_promiscuity); 6123 6124 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 6125 { 6126 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 6127 6128 ASSERT_RTNL(); 6129 6130 dev->flags |= IFF_ALLMULTI; 6131 dev->allmulti += inc; 6132 if (dev->allmulti == 0) { 6133 /* 6134 * Avoid overflow. 6135 * If inc causes overflow, untouch allmulti and return error. 6136 */ 6137 if (inc < 0) 6138 dev->flags &= ~IFF_ALLMULTI; 6139 else { 6140 dev->allmulti -= inc; 6141 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 6142 dev->name); 6143 return -EOVERFLOW; 6144 } 6145 } 6146 if (dev->flags ^ old_flags) { 6147 dev_change_rx_flags(dev, IFF_ALLMULTI); 6148 dev_set_rx_mode(dev); 6149 if (notify) 6150 __dev_notify_flags(dev, old_flags, 6151 dev->gflags ^ old_gflags); 6152 } 6153 return 0; 6154 } 6155 6156 /** 6157 * dev_set_allmulti - update allmulti count on a device 6158 * @dev: device 6159 * @inc: modifier 6160 * 6161 * Add or remove reception of all multicast frames to a device. While the 6162 * count in the device remains above zero the interface remains listening 6163 * to all interfaces. Once it hits zero the device reverts back to normal 6164 * filtering operation. A negative @inc value is used to drop the counter 6165 * when releasing a resource needing all multicasts. 6166 * Return 0 if successful or a negative errno code on error. 6167 */ 6168 6169 int dev_set_allmulti(struct net_device *dev, int inc) 6170 { 6171 return __dev_set_allmulti(dev, inc, true); 6172 } 6173 EXPORT_SYMBOL(dev_set_allmulti); 6174 6175 /* 6176 * Upload unicast and multicast address lists to device and 6177 * configure RX filtering. When the device doesn't support unicast 6178 * filtering it is put in promiscuous mode while unicast addresses 6179 * are present. 6180 */ 6181 void __dev_set_rx_mode(struct net_device *dev) 6182 { 6183 const struct net_device_ops *ops = dev->netdev_ops; 6184 6185 /* dev_open will call this function so the list will stay sane. */ 6186 if (!(dev->flags&IFF_UP)) 6187 return; 6188 6189 if (!netif_device_present(dev)) 6190 return; 6191 6192 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 6193 /* Unicast addresses changes may only happen under the rtnl, 6194 * therefore calling __dev_set_promiscuity here is safe. 6195 */ 6196 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 6197 __dev_set_promiscuity(dev, 1, false); 6198 dev->uc_promisc = true; 6199 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 6200 __dev_set_promiscuity(dev, -1, false); 6201 dev->uc_promisc = false; 6202 } 6203 } 6204 6205 if (ops->ndo_set_rx_mode) 6206 ops->ndo_set_rx_mode(dev); 6207 } 6208 6209 void dev_set_rx_mode(struct net_device *dev) 6210 { 6211 netif_addr_lock_bh(dev); 6212 __dev_set_rx_mode(dev); 6213 netif_addr_unlock_bh(dev); 6214 } 6215 6216 /** 6217 * dev_get_flags - get flags reported to userspace 6218 * @dev: device 6219 * 6220 * Get the combination of flag bits exported through APIs to userspace. 6221 */ 6222 unsigned int dev_get_flags(const struct net_device *dev) 6223 { 6224 unsigned int flags; 6225 6226 flags = (dev->flags & ~(IFF_PROMISC | 6227 IFF_ALLMULTI | 6228 IFF_RUNNING | 6229 IFF_LOWER_UP | 6230 IFF_DORMANT)) | 6231 (dev->gflags & (IFF_PROMISC | 6232 IFF_ALLMULTI)); 6233 6234 if (netif_running(dev)) { 6235 if (netif_oper_up(dev)) 6236 flags |= IFF_RUNNING; 6237 if (netif_carrier_ok(dev)) 6238 flags |= IFF_LOWER_UP; 6239 if (netif_dormant(dev)) 6240 flags |= IFF_DORMANT; 6241 } 6242 6243 return flags; 6244 } 6245 EXPORT_SYMBOL(dev_get_flags); 6246 6247 int __dev_change_flags(struct net_device *dev, unsigned int flags) 6248 { 6249 unsigned int old_flags = dev->flags; 6250 int ret; 6251 6252 ASSERT_RTNL(); 6253 6254 /* 6255 * Set the flags on our device. 6256 */ 6257 6258 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 6259 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 6260 IFF_AUTOMEDIA)) | 6261 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 6262 IFF_ALLMULTI)); 6263 6264 /* 6265 * Load in the correct multicast list now the flags have changed. 6266 */ 6267 6268 if ((old_flags ^ flags) & IFF_MULTICAST) 6269 dev_change_rx_flags(dev, IFF_MULTICAST); 6270 6271 dev_set_rx_mode(dev); 6272 6273 /* 6274 * Have we downed the interface. We handle IFF_UP ourselves 6275 * according to user attempts to set it, rather than blindly 6276 * setting it. 6277 */ 6278 6279 ret = 0; 6280 if ((old_flags ^ flags) & IFF_UP) 6281 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 6282 6283 if ((flags ^ dev->gflags) & IFF_PROMISC) { 6284 int inc = (flags & IFF_PROMISC) ? 1 : -1; 6285 unsigned int old_flags = dev->flags; 6286 6287 dev->gflags ^= IFF_PROMISC; 6288 6289 if (__dev_set_promiscuity(dev, inc, false) >= 0) 6290 if (dev->flags != old_flags) 6291 dev_set_rx_mode(dev); 6292 } 6293 6294 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 6295 is important. Some (broken) drivers set IFF_PROMISC, when 6296 IFF_ALLMULTI is requested not asking us and not reporting. 6297 */ 6298 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 6299 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 6300 6301 dev->gflags ^= IFF_ALLMULTI; 6302 __dev_set_allmulti(dev, inc, false); 6303 } 6304 6305 return ret; 6306 } 6307 6308 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 6309 unsigned int gchanges) 6310 { 6311 unsigned int changes = dev->flags ^ old_flags; 6312 6313 if (gchanges) 6314 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 6315 6316 if (changes & IFF_UP) { 6317 if (dev->flags & IFF_UP) 6318 call_netdevice_notifiers(NETDEV_UP, dev); 6319 else 6320 call_netdevice_notifiers(NETDEV_DOWN, dev); 6321 } 6322 6323 if (dev->flags & IFF_UP && 6324 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 6325 struct netdev_notifier_change_info change_info; 6326 6327 change_info.flags_changed = changes; 6328 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 6329 &change_info.info); 6330 } 6331 } 6332 6333 /** 6334 * dev_change_flags - change device settings 6335 * @dev: device 6336 * @flags: device state flags 6337 * 6338 * Change settings on device based state flags. The flags are 6339 * in the userspace exported format. 6340 */ 6341 int dev_change_flags(struct net_device *dev, unsigned int flags) 6342 { 6343 int ret; 6344 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 6345 6346 ret = __dev_change_flags(dev, flags); 6347 if (ret < 0) 6348 return ret; 6349 6350 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 6351 __dev_notify_flags(dev, old_flags, changes); 6352 return ret; 6353 } 6354 EXPORT_SYMBOL(dev_change_flags); 6355 6356 static int __dev_set_mtu(struct net_device *dev, int new_mtu) 6357 { 6358 const struct net_device_ops *ops = dev->netdev_ops; 6359 6360 if (ops->ndo_change_mtu) 6361 return ops->ndo_change_mtu(dev, new_mtu); 6362 6363 dev->mtu = new_mtu; 6364 return 0; 6365 } 6366 6367 /** 6368 * dev_set_mtu - Change maximum transfer unit 6369 * @dev: device 6370 * @new_mtu: new transfer unit 6371 * 6372 * Change the maximum transfer size of the network device. 6373 */ 6374 int dev_set_mtu(struct net_device *dev, int new_mtu) 6375 { 6376 int err, orig_mtu; 6377 6378 if (new_mtu == dev->mtu) 6379 return 0; 6380 6381 /* MTU must be positive. */ 6382 if (new_mtu < 0) 6383 return -EINVAL; 6384 6385 if (!netif_device_present(dev)) 6386 return -ENODEV; 6387 6388 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 6389 err = notifier_to_errno(err); 6390 if (err) 6391 return err; 6392 6393 orig_mtu = dev->mtu; 6394 err = __dev_set_mtu(dev, new_mtu); 6395 6396 if (!err) { 6397 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 6398 err = notifier_to_errno(err); 6399 if (err) { 6400 /* setting mtu back and notifying everyone again, 6401 * so that they have a chance to revert changes. 6402 */ 6403 __dev_set_mtu(dev, orig_mtu); 6404 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 6405 } 6406 } 6407 return err; 6408 } 6409 EXPORT_SYMBOL(dev_set_mtu); 6410 6411 /** 6412 * dev_set_group - Change group this device belongs to 6413 * @dev: device 6414 * @new_group: group this device should belong to 6415 */ 6416 void dev_set_group(struct net_device *dev, int new_group) 6417 { 6418 dev->group = new_group; 6419 } 6420 EXPORT_SYMBOL(dev_set_group); 6421 6422 /** 6423 * dev_set_mac_address - Change Media Access Control Address 6424 * @dev: device 6425 * @sa: new address 6426 * 6427 * Change the hardware (MAC) address of the device 6428 */ 6429 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 6430 { 6431 const struct net_device_ops *ops = dev->netdev_ops; 6432 int err; 6433 6434 if (!ops->ndo_set_mac_address) 6435 return -EOPNOTSUPP; 6436 if (sa->sa_family != dev->type) 6437 return -EINVAL; 6438 if (!netif_device_present(dev)) 6439 return -ENODEV; 6440 err = ops->ndo_set_mac_address(dev, sa); 6441 if (err) 6442 return err; 6443 dev->addr_assign_type = NET_ADDR_SET; 6444 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 6445 add_device_randomness(dev->dev_addr, dev->addr_len); 6446 return 0; 6447 } 6448 EXPORT_SYMBOL(dev_set_mac_address); 6449 6450 /** 6451 * dev_change_carrier - Change device carrier 6452 * @dev: device 6453 * @new_carrier: new value 6454 * 6455 * Change device carrier 6456 */ 6457 int dev_change_carrier(struct net_device *dev, bool new_carrier) 6458 { 6459 const struct net_device_ops *ops = dev->netdev_ops; 6460 6461 if (!ops->ndo_change_carrier) 6462 return -EOPNOTSUPP; 6463 if (!netif_device_present(dev)) 6464 return -ENODEV; 6465 return ops->ndo_change_carrier(dev, new_carrier); 6466 } 6467 EXPORT_SYMBOL(dev_change_carrier); 6468 6469 /** 6470 * dev_get_phys_port_id - Get device physical port ID 6471 * @dev: device 6472 * @ppid: port ID 6473 * 6474 * Get device physical port ID 6475 */ 6476 int dev_get_phys_port_id(struct net_device *dev, 6477 struct netdev_phys_item_id *ppid) 6478 { 6479 const struct net_device_ops *ops = dev->netdev_ops; 6480 6481 if (!ops->ndo_get_phys_port_id) 6482 return -EOPNOTSUPP; 6483 return ops->ndo_get_phys_port_id(dev, ppid); 6484 } 6485 EXPORT_SYMBOL(dev_get_phys_port_id); 6486 6487 /** 6488 * dev_get_phys_port_name - Get device physical port name 6489 * @dev: device 6490 * @name: port name 6491 * @len: limit of bytes to copy to name 6492 * 6493 * Get device physical port name 6494 */ 6495 int dev_get_phys_port_name(struct net_device *dev, 6496 char *name, size_t len) 6497 { 6498 const struct net_device_ops *ops = dev->netdev_ops; 6499 6500 if (!ops->ndo_get_phys_port_name) 6501 return -EOPNOTSUPP; 6502 return ops->ndo_get_phys_port_name(dev, name, len); 6503 } 6504 EXPORT_SYMBOL(dev_get_phys_port_name); 6505 6506 /** 6507 * dev_change_proto_down - update protocol port state information 6508 * @dev: device 6509 * @proto_down: new value 6510 * 6511 * This info can be used by switch drivers to set the phys state of the 6512 * port. 6513 */ 6514 int dev_change_proto_down(struct net_device *dev, bool proto_down) 6515 { 6516 const struct net_device_ops *ops = dev->netdev_ops; 6517 6518 if (!ops->ndo_change_proto_down) 6519 return -EOPNOTSUPP; 6520 if (!netif_device_present(dev)) 6521 return -ENODEV; 6522 return ops->ndo_change_proto_down(dev, proto_down); 6523 } 6524 EXPORT_SYMBOL(dev_change_proto_down); 6525 6526 /** 6527 * dev_new_index - allocate an ifindex 6528 * @net: the applicable net namespace 6529 * 6530 * Returns a suitable unique value for a new device interface 6531 * number. The caller must hold the rtnl semaphore or the 6532 * dev_base_lock to be sure it remains unique. 6533 */ 6534 static int dev_new_index(struct net *net) 6535 { 6536 int ifindex = net->ifindex; 6537 for (;;) { 6538 if (++ifindex <= 0) 6539 ifindex = 1; 6540 if (!__dev_get_by_index(net, ifindex)) 6541 return net->ifindex = ifindex; 6542 } 6543 } 6544 6545 /* Delayed registration/unregisteration */ 6546 static LIST_HEAD(net_todo_list); 6547 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 6548 6549 static void net_set_todo(struct net_device *dev) 6550 { 6551 list_add_tail(&dev->todo_list, &net_todo_list); 6552 dev_net(dev)->dev_unreg_count++; 6553 } 6554 6555 static void rollback_registered_many(struct list_head *head) 6556 { 6557 struct net_device *dev, *tmp; 6558 LIST_HEAD(close_head); 6559 6560 BUG_ON(dev_boot_phase); 6561 ASSERT_RTNL(); 6562 6563 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 6564 /* Some devices call without registering 6565 * for initialization unwind. Remove those 6566 * devices and proceed with the remaining. 6567 */ 6568 if (dev->reg_state == NETREG_UNINITIALIZED) { 6569 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 6570 dev->name, dev); 6571 6572 WARN_ON(1); 6573 list_del(&dev->unreg_list); 6574 continue; 6575 } 6576 dev->dismantle = true; 6577 BUG_ON(dev->reg_state != NETREG_REGISTERED); 6578 } 6579 6580 /* If device is running, close it first. */ 6581 list_for_each_entry(dev, head, unreg_list) 6582 list_add_tail(&dev->close_list, &close_head); 6583 dev_close_many(&close_head, true); 6584 6585 list_for_each_entry(dev, head, unreg_list) { 6586 /* And unlink it from device chain. */ 6587 unlist_netdevice(dev); 6588 6589 dev->reg_state = NETREG_UNREGISTERING; 6590 on_each_cpu(flush_backlog, dev, 1); 6591 } 6592 6593 synchronize_net(); 6594 6595 list_for_each_entry(dev, head, unreg_list) { 6596 struct sk_buff *skb = NULL; 6597 6598 /* Shutdown queueing discipline. */ 6599 dev_shutdown(dev); 6600 6601 6602 /* Notify protocols, that we are about to destroy 6603 this device. They should clean all the things. 6604 */ 6605 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6606 6607 if (!dev->rtnl_link_ops || 6608 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 6609 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 6610 GFP_KERNEL); 6611 6612 /* 6613 * Flush the unicast and multicast chains 6614 */ 6615 dev_uc_flush(dev); 6616 dev_mc_flush(dev); 6617 6618 if (dev->netdev_ops->ndo_uninit) 6619 dev->netdev_ops->ndo_uninit(dev); 6620 6621 if (skb) 6622 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 6623 6624 /* Notifier chain MUST detach us all upper devices. */ 6625 WARN_ON(netdev_has_any_upper_dev(dev)); 6626 6627 /* Remove entries from kobject tree */ 6628 netdev_unregister_kobject(dev); 6629 #ifdef CONFIG_XPS 6630 /* Remove XPS queueing entries */ 6631 netif_reset_xps_queues_gt(dev, 0); 6632 #endif 6633 } 6634 6635 synchronize_net(); 6636 6637 list_for_each_entry(dev, head, unreg_list) 6638 dev_put(dev); 6639 } 6640 6641 static void rollback_registered(struct net_device *dev) 6642 { 6643 LIST_HEAD(single); 6644 6645 list_add(&dev->unreg_list, &single); 6646 rollback_registered_many(&single); 6647 list_del(&single); 6648 } 6649 6650 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 6651 struct net_device *upper, netdev_features_t features) 6652 { 6653 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 6654 netdev_features_t feature; 6655 int feature_bit; 6656 6657 for_each_netdev_feature(&upper_disables, feature_bit) { 6658 feature = __NETIF_F_BIT(feature_bit); 6659 if (!(upper->wanted_features & feature) 6660 && (features & feature)) { 6661 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 6662 &feature, upper->name); 6663 features &= ~feature; 6664 } 6665 } 6666 6667 return features; 6668 } 6669 6670 static void netdev_sync_lower_features(struct net_device *upper, 6671 struct net_device *lower, netdev_features_t features) 6672 { 6673 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 6674 netdev_features_t feature; 6675 int feature_bit; 6676 6677 for_each_netdev_feature(&upper_disables, feature_bit) { 6678 feature = __NETIF_F_BIT(feature_bit); 6679 if (!(features & feature) && (lower->features & feature)) { 6680 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 6681 &feature, lower->name); 6682 lower->wanted_features &= ~feature; 6683 netdev_update_features(lower); 6684 6685 if (unlikely(lower->features & feature)) 6686 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 6687 &feature, lower->name); 6688 } 6689 } 6690 } 6691 6692 static netdev_features_t netdev_fix_features(struct net_device *dev, 6693 netdev_features_t features) 6694 { 6695 /* Fix illegal checksum combinations */ 6696 if ((features & NETIF_F_HW_CSUM) && 6697 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 6698 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 6699 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 6700 } 6701 6702 /* TSO requires that SG is present as well. */ 6703 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 6704 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 6705 features &= ~NETIF_F_ALL_TSO; 6706 } 6707 6708 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 6709 !(features & NETIF_F_IP_CSUM)) { 6710 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 6711 features &= ~NETIF_F_TSO; 6712 features &= ~NETIF_F_TSO_ECN; 6713 } 6714 6715 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 6716 !(features & NETIF_F_IPV6_CSUM)) { 6717 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 6718 features &= ~NETIF_F_TSO6; 6719 } 6720 6721 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 6722 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 6723 features &= ~NETIF_F_TSO_MANGLEID; 6724 6725 /* TSO ECN requires that TSO is present as well. */ 6726 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 6727 features &= ~NETIF_F_TSO_ECN; 6728 6729 /* Software GSO depends on SG. */ 6730 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 6731 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 6732 features &= ~NETIF_F_GSO; 6733 } 6734 6735 /* UFO needs SG and checksumming */ 6736 if (features & NETIF_F_UFO) { 6737 /* maybe split UFO into V4 and V6? */ 6738 if (!(features & NETIF_F_HW_CSUM) && 6739 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) != 6740 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) { 6741 netdev_dbg(dev, 6742 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 6743 features &= ~NETIF_F_UFO; 6744 } 6745 6746 if (!(features & NETIF_F_SG)) { 6747 netdev_dbg(dev, 6748 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 6749 features &= ~NETIF_F_UFO; 6750 } 6751 } 6752 6753 /* GSO partial features require GSO partial be set */ 6754 if ((features & dev->gso_partial_features) && 6755 !(features & NETIF_F_GSO_PARTIAL)) { 6756 netdev_dbg(dev, 6757 "Dropping partially supported GSO features since no GSO partial.\n"); 6758 features &= ~dev->gso_partial_features; 6759 } 6760 6761 #ifdef CONFIG_NET_RX_BUSY_POLL 6762 if (dev->netdev_ops->ndo_busy_poll) 6763 features |= NETIF_F_BUSY_POLL; 6764 else 6765 #endif 6766 features &= ~NETIF_F_BUSY_POLL; 6767 6768 return features; 6769 } 6770 6771 int __netdev_update_features(struct net_device *dev) 6772 { 6773 struct net_device *upper, *lower; 6774 netdev_features_t features; 6775 struct list_head *iter; 6776 int err = -1; 6777 6778 ASSERT_RTNL(); 6779 6780 features = netdev_get_wanted_features(dev); 6781 6782 if (dev->netdev_ops->ndo_fix_features) 6783 features = dev->netdev_ops->ndo_fix_features(dev, features); 6784 6785 /* driver might be less strict about feature dependencies */ 6786 features = netdev_fix_features(dev, features); 6787 6788 /* some features can't be enabled if they're off an an upper device */ 6789 netdev_for_each_upper_dev_rcu(dev, upper, iter) 6790 features = netdev_sync_upper_features(dev, upper, features); 6791 6792 if (dev->features == features) 6793 goto sync_lower; 6794 6795 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 6796 &dev->features, &features); 6797 6798 if (dev->netdev_ops->ndo_set_features) 6799 err = dev->netdev_ops->ndo_set_features(dev, features); 6800 else 6801 err = 0; 6802 6803 if (unlikely(err < 0)) { 6804 netdev_err(dev, 6805 "set_features() failed (%d); wanted %pNF, left %pNF\n", 6806 err, &features, &dev->features); 6807 /* return non-0 since some features might have changed and 6808 * it's better to fire a spurious notification than miss it 6809 */ 6810 return -1; 6811 } 6812 6813 sync_lower: 6814 /* some features must be disabled on lower devices when disabled 6815 * on an upper device (think: bonding master or bridge) 6816 */ 6817 netdev_for_each_lower_dev(dev, lower, iter) 6818 netdev_sync_lower_features(dev, lower, features); 6819 6820 if (!err) 6821 dev->features = features; 6822 6823 return err < 0 ? 0 : 1; 6824 } 6825 6826 /** 6827 * netdev_update_features - recalculate device features 6828 * @dev: the device to check 6829 * 6830 * Recalculate dev->features set and send notifications if it 6831 * has changed. Should be called after driver or hardware dependent 6832 * conditions might have changed that influence the features. 6833 */ 6834 void netdev_update_features(struct net_device *dev) 6835 { 6836 if (__netdev_update_features(dev)) 6837 netdev_features_change(dev); 6838 } 6839 EXPORT_SYMBOL(netdev_update_features); 6840 6841 /** 6842 * netdev_change_features - recalculate device features 6843 * @dev: the device to check 6844 * 6845 * Recalculate dev->features set and send notifications even 6846 * if they have not changed. Should be called instead of 6847 * netdev_update_features() if also dev->vlan_features might 6848 * have changed to allow the changes to be propagated to stacked 6849 * VLAN devices. 6850 */ 6851 void netdev_change_features(struct net_device *dev) 6852 { 6853 __netdev_update_features(dev); 6854 netdev_features_change(dev); 6855 } 6856 EXPORT_SYMBOL(netdev_change_features); 6857 6858 /** 6859 * netif_stacked_transfer_operstate - transfer operstate 6860 * @rootdev: the root or lower level device to transfer state from 6861 * @dev: the device to transfer operstate to 6862 * 6863 * Transfer operational state from root to device. This is normally 6864 * called when a stacking relationship exists between the root 6865 * device and the device(a leaf device). 6866 */ 6867 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 6868 struct net_device *dev) 6869 { 6870 if (rootdev->operstate == IF_OPER_DORMANT) 6871 netif_dormant_on(dev); 6872 else 6873 netif_dormant_off(dev); 6874 6875 if (netif_carrier_ok(rootdev)) { 6876 if (!netif_carrier_ok(dev)) 6877 netif_carrier_on(dev); 6878 } else { 6879 if (netif_carrier_ok(dev)) 6880 netif_carrier_off(dev); 6881 } 6882 } 6883 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 6884 6885 #ifdef CONFIG_SYSFS 6886 static int netif_alloc_rx_queues(struct net_device *dev) 6887 { 6888 unsigned int i, count = dev->num_rx_queues; 6889 struct netdev_rx_queue *rx; 6890 size_t sz = count * sizeof(*rx); 6891 6892 BUG_ON(count < 1); 6893 6894 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 6895 if (!rx) { 6896 rx = vzalloc(sz); 6897 if (!rx) 6898 return -ENOMEM; 6899 } 6900 dev->_rx = rx; 6901 6902 for (i = 0; i < count; i++) 6903 rx[i].dev = dev; 6904 return 0; 6905 } 6906 #endif 6907 6908 static void netdev_init_one_queue(struct net_device *dev, 6909 struct netdev_queue *queue, void *_unused) 6910 { 6911 /* Initialize queue lock */ 6912 spin_lock_init(&queue->_xmit_lock); 6913 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 6914 queue->xmit_lock_owner = -1; 6915 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 6916 queue->dev = dev; 6917 #ifdef CONFIG_BQL 6918 dql_init(&queue->dql, HZ); 6919 #endif 6920 } 6921 6922 static void netif_free_tx_queues(struct net_device *dev) 6923 { 6924 kvfree(dev->_tx); 6925 } 6926 6927 static int netif_alloc_netdev_queues(struct net_device *dev) 6928 { 6929 unsigned int count = dev->num_tx_queues; 6930 struct netdev_queue *tx; 6931 size_t sz = count * sizeof(*tx); 6932 6933 if (count < 1 || count > 0xffff) 6934 return -EINVAL; 6935 6936 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 6937 if (!tx) { 6938 tx = vzalloc(sz); 6939 if (!tx) 6940 return -ENOMEM; 6941 } 6942 dev->_tx = tx; 6943 6944 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 6945 spin_lock_init(&dev->tx_global_lock); 6946 6947 return 0; 6948 } 6949 6950 void netif_tx_stop_all_queues(struct net_device *dev) 6951 { 6952 unsigned int i; 6953 6954 for (i = 0; i < dev->num_tx_queues; i++) { 6955 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 6956 netif_tx_stop_queue(txq); 6957 } 6958 } 6959 EXPORT_SYMBOL(netif_tx_stop_all_queues); 6960 6961 /** 6962 * register_netdevice - register a network device 6963 * @dev: device to register 6964 * 6965 * Take a completed network device structure and add it to the kernel 6966 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 6967 * chain. 0 is returned on success. A negative errno code is returned 6968 * on a failure to set up the device, or if the name is a duplicate. 6969 * 6970 * Callers must hold the rtnl semaphore. You may want 6971 * register_netdev() instead of this. 6972 * 6973 * BUGS: 6974 * The locking appears insufficient to guarantee two parallel registers 6975 * will not get the same name. 6976 */ 6977 6978 int register_netdevice(struct net_device *dev) 6979 { 6980 int ret; 6981 struct net *net = dev_net(dev); 6982 6983 BUG_ON(dev_boot_phase); 6984 ASSERT_RTNL(); 6985 6986 might_sleep(); 6987 6988 /* When net_device's are persistent, this will be fatal. */ 6989 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 6990 BUG_ON(!net); 6991 6992 spin_lock_init(&dev->addr_list_lock); 6993 netdev_set_addr_lockdep_class(dev); 6994 6995 ret = dev_get_valid_name(net, dev, dev->name); 6996 if (ret < 0) 6997 goto out; 6998 6999 /* Init, if this function is available */ 7000 if (dev->netdev_ops->ndo_init) { 7001 ret = dev->netdev_ops->ndo_init(dev); 7002 if (ret) { 7003 if (ret > 0) 7004 ret = -EIO; 7005 goto out; 7006 } 7007 } 7008 7009 if (((dev->hw_features | dev->features) & 7010 NETIF_F_HW_VLAN_CTAG_FILTER) && 7011 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 7012 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 7013 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 7014 ret = -EINVAL; 7015 goto err_uninit; 7016 } 7017 7018 ret = -EBUSY; 7019 if (!dev->ifindex) 7020 dev->ifindex = dev_new_index(net); 7021 else if (__dev_get_by_index(net, dev->ifindex)) 7022 goto err_uninit; 7023 7024 /* Transfer changeable features to wanted_features and enable 7025 * software offloads (GSO and GRO). 7026 */ 7027 dev->hw_features |= NETIF_F_SOFT_FEATURES; 7028 dev->features |= NETIF_F_SOFT_FEATURES; 7029 dev->wanted_features = dev->features & dev->hw_features; 7030 7031 if (!(dev->flags & IFF_LOOPBACK)) 7032 dev->hw_features |= NETIF_F_NOCACHE_COPY; 7033 7034 /* If IPv4 TCP segmentation offload is supported we should also 7035 * allow the device to enable segmenting the frame with the option 7036 * of ignoring a static IP ID value. This doesn't enable the 7037 * feature itself but allows the user to enable it later. 7038 */ 7039 if (dev->hw_features & NETIF_F_TSO) 7040 dev->hw_features |= NETIF_F_TSO_MANGLEID; 7041 if (dev->vlan_features & NETIF_F_TSO) 7042 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 7043 if (dev->mpls_features & NETIF_F_TSO) 7044 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 7045 if (dev->hw_enc_features & NETIF_F_TSO) 7046 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 7047 7048 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 7049 */ 7050 dev->vlan_features |= NETIF_F_HIGHDMA; 7051 7052 /* Make NETIF_F_SG inheritable to tunnel devices. 7053 */ 7054 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 7055 7056 /* Make NETIF_F_SG inheritable to MPLS. 7057 */ 7058 dev->mpls_features |= NETIF_F_SG; 7059 7060 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 7061 ret = notifier_to_errno(ret); 7062 if (ret) 7063 goto err_uninit; 7064 7065 ret = netdev_register_kobject(dev); 7066 if (ret) 7067 goto err_uninit; 7068 dev->reg_state = NETREG_REGISTERED; 7069 7070 __netdev_update_features(dev); 7071 7072 /* 7073 * Default initial state at registry is that the 7074 * device is present. 7075 */ 7076 7077 set_bit(__LINK_STATE_PRESENT, &dev->state); 7078 7079 linkwatch_init_dev(dev); 7080 7081 dev_init_scheduler(dev); 7082 dev_hold(dev); 7083 list_netdevice(dev); 7084 add_device_randomness(dev->dev_addr, dev->addr_len); 7085 7086 /* If the device has permanent device address, driver should 7087 * set dev_addr and also addr_assign_type should be set to 7088 * NET_ADDR_PERM (default value). 7089 */ 7090 if (dev->addr_assign_type == NET_ADDR_PERM) 7091 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 7092 7093 /* Notify protocols, that a new device appeared. */ 7094 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 7095 ret = notifier_to_errno(ret); 7096 if (ret) { 7097 rollback_registered(dev); 7098 dev->reg_state = NETREG_UNREGISTERED; 7099 } 7100 /* 7101 * Prevent userspace races by waiting until the network 7102 * device is fully setup before sending notifications. 7103 */ 7104 if (!dev->rtnl_link_ops || 7105 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 7106 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 7107 7108 out: 7109 return ret; 7110 7111 err_uninit: 7112 if (dev->netdev_ops->ndo_uninit) 7113 dev->netdev_ops->ndo_uninit(dev); 7114 goto out; 7115 } 7116 EXPORT_SYMBOL(register_netdevice); 7117 7118 /** 7119 * init_dummy_netdev - init a dummy network device for NAPI 7120 * @dev: device to init 7121 * 7122 * This takes a network device structure and initialize the minimum 7123 * amount of fields so it can be used to schedule NAPI polls without 7124 * registering a full blown interface. This is to be used by drivers 7125 * that need to tie several hardware interfaces to a single NAPI 7126 * poll scheduler due to HW limitations. 7127 */ 7128 int init_dummy_netdev(struct net_device *dev) 7129 { 7130 /* Clear everything. Note we don't initialize spinlocks 7131 * are they aren't supposed to be taken by any of the 7132 * NAPI code and this dummy netdev is supposed to be 7133 * only ever used for NAPI polls 7134 */ 7135 memset(dev, 0, sizeof(struct net_device)); 7136 7137 /* make sure we BUG if trying to hit standard 7138 * register/unregister code path 7139 */ 7140 dev->reg_state = NETREG_DUMMY; 7141 7142 /* NAPI wants this */ 7143 INIT_LIST_HEAD(&dev->napi_list); 7144 7145 /* a dummy interface is started by default */ 7146 set_bit(__LINK_STATE_PRESENT, &dev->state); 7147 set_bit(__LINK_STATE_START, &dev->state); 7148 7149 /* Note : We dont allocate pcpu_refcnt for dummy devices, 7150 * because users of this 'device' dont need to change 7151 * its refcount. 7152 */ 7153 7154 return 0; 7155 } 7156 EXPORT_SYMBOL_GPL(init_dummy_netdev); 7157 7158 7159 /** 7160 * register_netdev - register a network device 7161 * @dev: device to register 7162 * 7163 * Take a completed network device structure and add it to the kernel 7164 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 7165 * chain. 0 is returned on success. A negative errno code is returned 7166 * on a failure to set up the device, or if the name is a duplicate. 7167 * 7168 * This is a wrapper around register_netdevice that takes the rtnl semaphore 7169 * and expands the device name if you passed a format string to 7170 * alloc_netdev. 7171 */ 7172 int register_netdev(struct net_device *dev) 7173 { 7174 int err; 7175 7176 rtnl_lock(); 7177 err = register_netdevice(dev); 7178 rtnl_unlock(); 7179 return err; 7180 } 7181 EXPORT_SYMBOL(register_netdev); 7182 7183 int netdev_refcnt_read(const struct net_device *dev) 7184 { 7185 int i, refcnt = 0; 7186 7187 for_each_possible_cpu(i) 7188 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 7189 return refcnt; 7190 } 7191 EXPORT_SYMBOL(netdev_refcnt_read); 7192 7193 /** 7194 * netdev_wait_allrefs - wait until all references are gone. 7195 * @dev: target net_device 7196 * 7197 * This is called when unregistering network devices. 7198 * 7199 * Any protocol or device that holds a reference should register 7200 * for netdevice notification, and cleanup and put back the 7201 * reference if they receive an UNREGISTER event. 7202 * We can get stuck here if buggy protocols don't correctly 7203 * call dev_put. 7204 */ 7205 static void netdev_wait_allrefs(struct net_device *dev) 7206 { 7207 unsigned long rebroadcast_time, warning_time; 7208 int refcnt; 7209 7210 linkwatch_forget_dev(dev); 7211 7212 rebroadcast_time = warning_time = jiffies; 7213 refcnt = netdev_refcnt_read(dev); 7214 7215 while (refcnt != 0) { 7216 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 7217 rtnl_lock(); 7218 7219 /* Rebroadcast unregister notification */ 7220 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7221 7222 __rtnl_unlock(); 7223 rcu_barrier(); 7224 rtnl_lock(); 7225 7226 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7227 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 7228 &dev->state)) { 7229 /* We must not have linkwatch events 7230 * pending on unregister. If this 7231 * happens, we simply run the queue 7232 * unscheduled, resulting in a noop 7233 * for this device. 7234 */ 7235 linkwatch_run_queue(); 7236 } 7237 7238 __rtnl_unlock(); 7239 7240 rebroadcast_time = jiffies; 7241 } 7242 7243 msleep(250); 7244 7245 refcnt = netdev_refcnt_read(dev); 7246 7247 if (time_after(jiffies, warning_time + 10 * HZ)) { 7248 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 7249 dev->name, refcnt); 7250 warning_time = jiffies; 7251 } 7252 } 7253 } 7254 7255 /* The sequence is: 7256 * 7257 * rtnl_lock(); 7258 * ... 7259 * register_netdevice(x1); 7260 * register_netdevice(x2); 7261 * ... 7262 * unregister_netdevice(y1); 7263 * unregister_netdevice(y2); 7264 * ... 7265 * rtnl_unlock(); 7266 * free_netdev(y1); 7267 * free_netdev(y2); 7268 * 7269 * We are invoked by rtnl_unlock(). 7270 * This allows us to deal with problems: 7271 * 1) We can delete sysfs objects which invoke hotplug 7272 * without deadlocking with linkwatch via keventd. 7273 * 2) Since we run with the RTNL semaphore not held, we can sleep 7274 * safely in order to wait for the netdev refcnt to drop to zero. 7275 * 7276 * We must not return until all unregister events added during 7277 * the interval the lock was held have been completed. 7278 */ 7279 void netdev_run_todo(void) 7280 { 7281 struct list_head list; 7282 7283 /* Snapshot list, allow later requests */ 7284 list_replace_init(&net_todo_list, &list); 7285 7286 __rtnl_unlock(); 7287 7288 7289 /* Wait for rcu callbacks to finish before next phase */ 7290 if (!list_empty(&list)) 7291 rcu_barrier(); 7292 7293 while (!list_empty(&list)) { 7294 struct net_device *dev 7295 = list_first_entry(&list, struct net_device, todo_list); 7296 list_del(&dev->todo_list); 7297 7298 rtnl_lock(); 7299 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7300 __rtnl_unlock(); 7301 7302 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 7303 pr_err("network todo '%s' but state %d\n", 7304 dev->name, dev->reg_state); 7305 dump_stack(); 7306 continue; 7307 } 7308 7309 dev->reg_state = NETREG_UNREGISTERED; 7310 7311 netdev_wait_allrefs(dev); 7312 7313 /* paranoia */ 7314 BUG_ON(netdev_refcnt_read(dev)); 7315 BUG_ON(!list_empty(&dev->ptype_all)); 7316 BUG_ON(!list_empty(&dev->ptype_specific)); 7317 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 7318 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 7319 WARN_ON(dev->dn_ptr); 7320 7321 if (dev->destructor) 7322 dev->destructor(dev); 7323 7324 /* Report a network device has been unregistered */ 7325 rtnl_lock(); 7326 dev_net(dev)->dev_unreg_count--; 7327 __rtnl_unlock(); 7328 wake_up(&netdev_unregistering_wq); 7329 7330 /* Free network device */ 7331 kobject_put(&dev->dev.kobj); 7332 } 7333 } 7334 7335 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 7336 * all the same fields in the same order as net_device_stats, with only 7337 * the type differing, but rtnl_link_stats64 may have additional fields 7338 * at the end for newer counters. 7339 */ 7340 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 7341 const struct net_device_stats *netdev_stats) 7342 { 7343 #if BITS_PER_LONG == 64 7344 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 7345 memcpy(stats64, netdev_stats, sizeof(*stats64)); 7346 /* zero out counters that only exist in rtnl_link_stats64 */ 7347 memset((char *)stats64 + sizeof(*netdev_stats), 0, 7348 sizeof(*stats64) - sizeof(*netdev_stats)); 7349 #else 7350 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 7351 const unsigned long *src = (const unsigned long *)netdev_stats; 7352 u64 *dst = (u64 *)stats64; 7353 7354 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 7355 for (i = 0; i < n; i++) 7356 dst[i] = src[i]; 7357 /* zero out counters that only exist in rtnl_link_stats64 */ 7358 memset((char *)stats64 + n * sizeof(u64), 0, 7359 sizeof(*stats64) - n * sizeof(u64)); 7360 #endif 7361 } 7362 EXPORT_SYMBOL(netdev_stats_to_stats64); 7363 7364 /** 7365 * dev_get_stats - get network device statistics 7366 * @dev: device to get statistics from 7367 * @storage: place to store stats 7368 * 7369 * Get network statistics from device. Return @storage. 7370 * The device driver may provide its own method by setting 7371 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 7372 * otherwise the internal statistics structure is used. 7373 */ 7374 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 7375 struct rtnl_link_stats64 *storage) 7376 { 7377 const struct net_device_ops *ops = dev->netdev_ops; 7378 7379 if (ops->ndo_get_stats64) { 7380 memset(storage, 0, sizeof(*storage)); 7381 ops->ndo_get_stats64(dev, storage); 7382 } else if (ops->ndo_get_stats) { 7383 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 7384 } else { 7385 netdev_stats_to_stats64(storage, &dev->stats); 7386 } 7387 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 7388 storage->tx_dropped += atomic_long_read(&dev->tx_dropped); 7389 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler); 7390 return storage; 7391 } 7392 EXPORT_SYMBOL(dev_get_stats); 7393 7394 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 7395 { 7396 struct netdev_queue *queue = dev_ingress_queue(dev); 7397 7398 #ifdef CONFIG_NET_CLS_ACT 7399 if (queue) 7400 return queue; 7401 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 7402 if (!queue) 7403 return NULL; 7404 netdev_init_one_queue(dev, queue, NULL); 7405 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 7406 queue->qdisc_sleeping = &noop_qdisc; 7407 rcu_assign_pointer(dev->ingress_queue, queue); 7408 #endif 7409 return queue; 7410 } 7411 7412 static const struct ethtool_ops default_ethtool_ops; 7413 7414 void netdev_set_default_ethtool_ops(struct net_device *dev, 7415 const struct ethtool_ops *ops) 7416 { 7417 if (dev->ethtool_ops == &default_ethtool_ops) 7418 dev->ethtool_ops = ops; 7419 } 7420 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 7421 7422 void netdev_freemem(struct net_device *dev) 7423 { 7424 char *addr = (char *)dev - dev->padded; 7425 7426 kvfree(addr); 7427 } 7428 7429 /** 7430 * alloc_netdev_mqs - allocate network device 7431 * @sizeof_priv: size of private data to allocate space for 7432 * @name: device name format string 7433 * @name_assign_type: origin of device name 7434 * @setup: callback to initialize device 7435 * @txqs: the number of TX subqueues to allocate 7436 * @rxqs: the number of RX subqueues to allocate 7437 * 7438 * Allocates a struct net_device with private data area for driver use 7439 * and performs basic initialization. Also allocates subqueue structs 7440 * for each queue on the device. 7441 */ 7442 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 7443 unsigned char name_assign_type, 7444 void (*setup)(struct net_device *), 7445 unsigned int txqs, unsigned int rxqs) 7446 { 7447 struct net_device *dev; 7448 size_t alloc_size; 7449 struct net_device *p; 7450 7451 BUG_ON(strlen(name) >= sizeof(dev->name)); 7452 7453 if (txqs < 1) { 7454 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 7455 return NULL; 7456 } 7457 7458 #ifdef CONFIG_SYSFS 7459 if (rxqs < 1) { 7460 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 7461 return NULL; 7462 } 7463 #endif 7464 7465 alloc_size = sizeof(struct net_device); 7466 if (sizeof_priv) { 7467 /* ensure 32-byte alignment of private area */ 7468 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 7469 alloc_size += sizeof_priv; 7470 } 7471 /* ensure 32-byte alignment of whole construct */ 7472 alloc_size += NETDEV_ALIGN - 1; 7473 7474 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 7475 if (!p) 7476 p = vzalloc(alloc_size); 7477 if (!p) 7478 return NULL; 7479 7480 dev = PTR_ALIGN(p, NETDEV_ALIGN); 7481 dev->padded = (char *)dev - (char *)p; 7482 7483 dev->pcpu_refcnt = alloc_percpu(int); 7484 if (!dev->pcpu_refcnt) 7485 goto free_dev; 7486 7487 if (dev_addr_init(dev)) 7488 goto free_pcpu; 7489 7490 dev_mc_init(dev); 7491 dev_uc_init(dev); 7492 7493 dev_net_set(dev, &init_net); 7494 7495 dev->gso_max_size = GSO_MAX_SIZE; 7496 dev->gso_max_segs = GSO_MAX_SEGS; 7497 7498 INIT_LIST_HEAD(&dev->napi_list); 7499 INIT_LIST_HEAD(&dev->unreg_list); 7500 INIT_LIST_HEAD(&dev->close_list); 7501 INIT_LIST_HEAD(&dev->link_watch_list); 7502 INIT_LIST_HEAD(&dev->adj_list.upper); 7503 INIT_LIST_HEAD(&dev->adj_list.lower); 7504 INIT_LIST_HEAD(&dev->all_adj_list.upper); 7505 INIT_LIST_HEAD(&dev->all_adj_list.lower); 7506 INIT_LIST_HEAD(&dev->ptype_all); 7507 INIT_LIST_HEAD(&dev->ptype_specific); 7508 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 7509 setup(dev); 7510 7511 if (!dev->tx_queue_len) { 7512 dev->priv_flags |= IFF_NO_QUEUE; 7513 dev->tx_queue_len = 1; 7514 } 7515 7516 dev->num_tx_queues = txqs; 7517 dev->real_num_tx_queues = txqs; 7518 if (netif_alloc_netdev_queues(dev)) 7519 goto free_all; 7520 7521 #ifdef CONFIG_SYSFS 7522 dev->num_rx_queues = rxqs; 7523 dev->real_num_rx_queues = rxqs; 7524 if (netif_alloc_rx_queues(dev)) 7525 goto free_all; 7526 #endif 7527 7528 strcpy(dev->name, name); 7529 dev->name_assign_type = name_assign_type; 7530 dev->group = INIT_NETDEV_GROUP; 7531 if (!dev->ethtool_ops) 7532 dev->ethtool_ops = &default_ethtool_ops; 7533 7534 nf_hook_ingress_init(dev); 7535 7536 return dev; 7537 7538 free_all: 7539 free_netdev(dev); 7540 return NULL; 7541 7542 free_pcpu: 7543 free_percpu(dev->pcpu_refcnt); 7544 free_dev: 7545 netdev_freemem(dev); 7546 return NULL; 7547 } 7548 EXPORT_SYMBOL(alloc_netdev_mqs); 7549 7550 /** 7551 * free_netdev - free network device 7552 * @dev: device 7553 * 7554 * This function does the last stage of destroying an allocated device 7555 * interface. The reference to the device object is released. 7556 * If this is the last reference then it will be freed. 7557 * Must be called in process context. 7558 */ 7559 void free_netdev(struct net_device *dev) 7560 { 7561 struct napi_struct *p, *n; 7562 7563 might_sleep(); 7564 netif_free_tx_queues(dev); 7565 #ifdef CONFIG_SYSFS 7566 kvfree(dev->_rx); 7567 #endif 7568 7569 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 7570 7571 /* Flush device addresses */ 7572 dev_addr_flush(dev); 7573 7574 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 7575 netif_napi_del(p); 7576 7577 free_percpu(dev->pcpu_refcnt); 7578 dev->pcpu_refcnt = NULL; 7579 7580 /* Compatibility with error handling in drivers */ 7581 if (dev->reg_state == NETREG_UNINITIALIZED) { 7582 netdev_freemem(dev); 7583 return; 7584 } 7585 7586 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 7587 dev->reg_state = NETREG_RELEASED; 7588 7589 /* will free via device release */ 7590 put_device(&dev->dev); 7591 } 7592 EXPORT_SYMBOL(free_netdev); 7593 7594 /** 7595 * synchronize_net - Synchronize with packet receive processing 7596 * 7597 * Wait for packets currently being received to be done. 7598 * Does not block later packets from starting. 7599 */ 7600 void synchronize_net(void) 7601 { 7602 might_sleep(); 7603 if (rtnl_is_locked()) 7604 synchronize_rcu_expedited(); 7605 else 7606 synchronize_rcu(); 7607 } 7608 EXPORT_SYMBOL(synchronize_net); 7609 7610 /** 7611 * unregister_netdevice_queue - remove device from the kernel 7612 * @dev: device 7613 * @head: list 7614 * 7615 * This function shuts down a device interface and removes it 7616 * from the kernel tables. 7617 * If head not NULL, device is queued to be unregistered later. 7618 * 7619 * Callers must hold the rtnl semaphore. You may want 7620 * unregister_netdev() instead of this. 7621 */ 7622 7623 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 7624 { 7625 ASSERT_RTNL(); 7626 7627 if (head) { 7628 list_move_tail(&dev->unreg_list, head); 7629 } else { 7630 rollback_registered(dev); 7631 /* Finish processing unregister after unlock */ 7632 net_set_todo(dev); 7633 } 7634 } 7635 EXPORT_SYMBOL(unregister_netdevice_queue); 7636 7637 /** 7638 * unregister_netdevice_many - unregister many devices 7639 * @head: list of devices 7640 * 7641 * Note: As most callers use a stack allocated list_head, 7642 * we force a list_del() to make sure stack wont be corrupted later. 7643 */ 7644 void unregister_netdevice_many(struct list_head *head) 7645 { 7646 struct net_device *dev; 7647 7648 if (!list_empty(head)) { 7649 rollback_registered_many(head); 7650 list_for_each_entry(dev, head, unreg_list) 7651 net_set_todo(dev); 7652 list_del(head); 7653 } 7654 } 7655 EXPORT_SYMBOL(unregister_netdevice_many); 7656 7657 /** 7658 * unregister_netdev - remove device from the kernel 7659 * @dev: device 7660 * 7661 * This function shuts down a device interface and removes it 7662 * from the kernel tables. 7663 * 7664 * This is just a wrapper for unregister_netdevice that takes 7665 * the rtnl semaphore. In general you want to use this and not 7666 * unregister_netdevice. 7667 */ 7668 void unregister_netdev(struct net_device *dev) 7669 { 7670 rtnl_lock(); 7671 unregister_netdevice(dev); 7672 rtnl_unlock(); 7673 } 7674 EXPORT_SYMBOL(unregister_netdev); 7675 7676 /** 7677 * dev_change_net_namespace - move device to different nethost namespace 7678 * @dev: device 7679 * @net: network namespace 7680 * @pat: If not NULL name pattern to try if the current device name 7681 * is already taken in the destination network namespace. 7682 * 7683 * This function shuts down a device interface and moves it 7684 * to a new network namespace. On success 0 is returned, on 7685 * a failure a netagive errno code is returned. 7686 * 7687 * Callers must hold the rtnl semaphore. 7688 */ 7689 7690 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 7691 { 7692 int err; 7693 7694 ASSERT_RTNL(); 7695 7696 /* Don't allow namespace local devices to be moved. */ 7697 err = -EINVAL; 7698 if (dev->features & NETIF_F_NETNS_LOCAL) 7699 goto out; 7700 7701 /* Ensure the device has been registrered */ 7702 if (dev->reg_state != NETREG_REGISTERED) 7703 goto out; 7704 7705 /* Get out if there is nothing todo */ 7706 err = 0; 7707 if (net_eq(dev_net(dev), net)) 7708 goto out; 7709 7710 /* Pick the destination device name, and ensure 7711 * we can use it in the destination network namespace. 7712 */ 7713 err = -EEXIST; 7714 if (__dev_get_by_name(net, dev->name)) { 7715 /* We get here if we can't use the current device name */ 7716 if (!pat) 7717 goto out; 7718 if (dev_get_valid_name(net, dev, pat) < 0) 7719 goto out; 7720 } 7721 7722 /* 7723 * And now a mini version of register_netdevice unregister_netdevice. 7724 */ 7725 7726 /* If device is running close it first. */ 7727 dev_close(dev); 7728 7729 /* And unlink it from device chain */ 7730 err = -ENODEV; 7731 unlist_netdevice(dev); 7732 7733 synchronize_net(); 7734 7735 /* Shutdown queueing discipline. */ 7736 dev_shutdown(dev); 7737 7738 /* Notify protocols, that we are about to destroy 7739 this device. They should clean all the things. 7740 7741 Note that dev->reg_state stays at NETREG_REGISTERED. 7742 This is wanted because this way 8021q and macvlan know 7743 the device is just moving and can keep their slaves up. 7744 */ 7745 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7746 rcu_barrier(); 7747 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7748 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL); 7749 7750 /* 7751 * Flush the unicast and multicast chains 7752 */ 7753 dev_uc_flush(dev); 7754 dev_mc_flush(dev); 7755 7756 /* Send a netdev-removed uevent to the old namespace */ 7757 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 7758 netdev_adjacent_del_links(dev); 7759 7760 /* Actually switch the network namespace */ 7761 dev_net_set(dev, net); 7762 7763 /* If there is an ifindex conflict assign a new one */ 7764 if (__dev_get_by_index(net, dev->ifindex)) 7765 dev->ifindex = dev_new_index(net); 7766 7767 /* Send a netdev-add uevent to the new namespace */ 7768 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 7769 netdev_adjacent_add_links(dev); 7770 7771 /* Fixup kobjects */ 7772 err = device_rename(&dev->dev, dev->name); 7773 WARN_ON(err); 7774 7775 /* Add the device back in the hashes */ 7776 list_netdevice(dev); 7777 7778 /* Notify protocols, that a new device appeared. */ 7779 call_netdevice_notifiers(NETDEV_REGISTER, dev); 7780 7781 /* 7782 * Prevent userspace races by waiting until the network 7783 * device is fully setup before sending notifications. 7784 */ 7785 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 7786 7787 synchronize_net(); 7788 err = 0; 7789 out: 7790 return err; 7791 } 7792 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 7793 7794 static int dev_cpu_callback(struct notifier_block *nfb, 7795 unsigned long action, 7796 void *ocpu) 7797 { 7798 struct sk_buff **list_skb; 7799 struct sk_buff *skb; 7800 unsigned int cpu, oldcpu = (unsigned long)ocpu; 7801 struct softnet_data *sd, *oldsd; 7802 7803 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 7804 return NOTIFY_OK; 7805 7806 local_irq_disable(); 7807 cpu = smp_processor_id(); 7808 sd = &per_cpu(softnet_data, cpu); 7809 oldsd = &per_cpu(softnet_data, oldcpu); 7810 7811 /* Find end of our completion_queue. */ 7812 list_skb = &sd->completion_queue; 7813 while (*list_skb) 7814 list_skb = &(*list_skb)->next; 7815 /* Append completion queue from offline CPU. */ 7816 *list_skb = oldsd->completion_queue; 7817 oldsd->completion_queue = NULL; 7818 7819 /* Append output queue from offline CPU. */ 7820 if (oldsd->output_queue) { 7821 *sd->output_queue_tailp = oldsd->output_queue; 7822 sd->output_queue_tailp = oldsd->output_queue_tailp; 7823 oldsd->output_queue = NULL; 7824 oldsd->output_queue_tailp = &oldsd->output_queue; 7825 } 7826 /* Append NAPI poll list from offline CPU, with one exception : 7827 * process_backlog() must be called by cpu owning percpu backlog. 7828 * We properly handle process_queue & input_pkt_queue later. 7829 */ 7830 while (!list_empty(&oldsd->poll_list)) { 7831 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 7832 struct napi_struct, 7833 poll_list); 7834 7835 list_del_init(&napi->poll_list); 7836 if (napi->poll == process_backlog) 7837 napi->state = 0; 7838 else 7839 ____napi_schedule(sd, napi); 7840 } 7841 7842 raise_softirq_irqoff(NET_TX_SOFTIRQ); 7843 local_irq_enable(); 7844 7845 /* Process offline CPU's input_pkt_queue */ 7846 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 7847 netif_rx_ni(skb); 7848 input_queue_head_incr(oldsd); 7849 } 7850 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 7851 netif_rx_ni(skb); 7852 input_queue_head_incr(oldsd); 7853 } 7854 7855 return NOTIFY_OK; 7856 } 7857 7858 7859 /** 7860 * netdev_increment_features - increment feature set by one 7861 * @all: current feature set 7862 * @one: new feature set 7863 * @mask: mask feature set 7864 * 7865 * Computes a new feature set after adding a device with feature set 7866 * @one to the master device with current feature set @all. Will not 7867 * enable anything that is off in @mask. Returns the new feature set. 7868 */ 7869 netdev_features_t netdev_increment_features(netdev_features_t all, 7870 netdev_features_t one, netdev_features_t mask) 7871 { 7872 if (mask & NETIF_F_HW_CSUM) 7873 mask |= NETIF_F_CSUM_MASK; 7874 mask |= NETIF_F_VLAN_CHALLENGED; 7875 7876 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 7877 all &= one | ~NETIF_F_ALL_FOR_ALL; 7878 7879 /* If one device supports hw checksumming, set for all. */ 7880 if (all & NETIF_F_HW_CSUM) 7881 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 7882 7883 return all; 7884 } 7885 EXPORT_SYMBOL(netdev_increment_features); 7886 7887 static struct hlist_head * __net_init netdev_create_hash(void) 7888 { 7889 int i; 7890 struct hlist_head *hash; 7891 7892 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 7893 if (hash != NULL) 7894 for (i = 0; i < NETDEV_HASHENTRIES; i++) 7895 INIT_HLIST_HEAD(&hash[i]); 7896 7897 return hash; 7898 } 7899 7900 /* Initialize per network namespace state */ 7901 static int __net_init netdev_init(struct net *net) 7902 { 7903 if (net != &init_net) 7904 INIT_LIST_HEAD(&net->dev_base_head); 7905 7906 net->dev_name_head = netdev_create_hash(); 7907 if (net->dev_name_head == NULL) 7908 goto err_name; 7909 7910 net->dev_index_head = netdev_create_hash(); 7911 if (net->dev_index_head == NULL) 7912 goto err_idx; 7913 7914 return 0; 7915 7916 err_idx: 7917 kfree(net->dev_name_head); 7918 err_name: 7919 return -ENOMEM; 7920 } 7921 7922 /** 7923 * netdev_drivername - network driver for the device 7924 * @dev: network device 7925 * 7926 * Determine network driver for device. 7927 */ 7928 const char *netdev_drivername(const struct net_device *dev) 7929 { 7930 const struct device_driver *driver; 7931 const struct device *parent; 7932 const char *empty = ""; 7933 7934 parent = dev->dev.parent; 7935 if (!parent) 7936 return empty; 7937 7938 driver = parent->driver; 7939 if (driver && driver->name) 7940 return driver->name; 7941 return empty; 7942 } 7943 7944 static void __netdev_printk(const char *level, const struct net_device *dev, 7945 struct va_format *vaf) 7946 { 7947 if (dev && dev->dev.parent) { 7948 dev_printk_emit(level[1] - '0', 7949 dev->dev.parent, 7950 "%s %s %s%s: %pV", 7951 dev_driver_string(dev->dev.parent), 7952 dev_name(dev->dev.parent), 7953 netdev_name(dev), netdev_reg_state(dev), 7954 vaf); 7955 } else if (dev) { 7956 printk("%s%s%s: %pV", 7957 level, netdev_name(dev), netdev_reg_state(dev), vaf); 7958 } else { 7959 printk("%s(NULL net_device): %pV", level, vaf); 7960 } 7961 } 7962 7963 void netdev_printk(const char *level, const struct net_device *dev, 7964 const char *format, ...) 7965 { 7966 struct va_format vaf; 7967 va_list args; 7968 7969 va_start(args, format); 7970 7971 vaf.fmt = format; 7972 vaf.va = &args; 7973 7974 __netdev_printk(level, dev, &vaf); 7975 7976 va_end(args); 7977 } 7978 EXPORT_SYMBOL(netdev_printk); 7979 7980 #define define_netdev_printk_level(func, level) \ 7981 void func(const struct net_device *dev, const char *fmt, ...) \ 7982 { \ 7983 struct va_format vaf; \ 7984 va_list args; \ 7985 \ 7986 va_start(args, fmt); \ 7987 \ 7988 vaf.fmt = fmt; \ 7989 vaf.va = &args; \ 7990 \ 7991 __netdev_printk(level, dev, &vaf); \ 7992 \ 7993 va_end(args); \ 7994 } \ 7995 EXPORT_SYMBOL(func); 7996 7997 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 7998 define_netdev_printk_level(netdev_alert, KERN_ALERT); 7999 define_netdev_printk_level(netdev_crit, KERN_CRIT); 8000 define_netdev_printk_level(netdev_err, KERN_ERR); 8001 define_netdev_printk_level(netdev_warn, KERN_WARNING); 8002 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 8003 define_netdev_printk_level(netdev_info, KERN_INFO); 8004 8005 static void __net_exit netdev_exit(struct net *net) 8006 { 8007 kfree(net->dev_name_head); 8008 kfree(net->dev_index_head); 8009 } 8010 8011 static struct pernet_operations __net_initdata netdev_net_ops = { 8012 .init = netdev_init, 8013 .exit = netdev_exit, 8014 }; 8015 8016 static void __net_exit default_device_exit(struct net *net) 8017 { 8018 struct net_device *dev, *aux; 8019 /* 8020 * Push all migratable network devices back to the 8021 * initial network namespace 8022 */ 8023 rtnl_lock(); 8024 for_each_netdev_safe(net, dev, aux) { 8025 int err; 8026 char fb_name[IFNAMSIZ]; 8027 8028 /* Ignore unmoveable devices (i.e. loopback) */ 8029 if (dev->features & NETIF_F_NETNS_LOCAL) 8030 continue; 8031 8032 /* Leave virtual devices for the generic cleanup */ 8033 if (dev->rtnl_link_ops) 8034 continue; 8035 8036 /* Push remaining network devices to init_net */ 8037 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 8038 err = dev_change_net_namespace(dev, &init_net, fb_name); 8039 if (err) { 8040 pr_emerg("%s: failed to move %s to init_net: %d\n", 8041 __func__, dev->name, err); 8042 BUG(); 8043 } 8044 } 8045 rtnl_unlock(); 8046 } 8047 8048 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 8049 { 8050 /* Return with the rtnl_lock held when there are no network 8051 * devices unregistering in any network namespace in net_list. 8052 */ 8053 struct net *net; 8054 bool unregistering; 8055 DEFINE_WAIT_FUNC(wait, woken_wake_function); 8056 8057 add_wait_queue(&netdev_unregistering_wq, &wait); 8058 for (;;) { 8059 unregistering = false; 8060 rtnl_lock(); 8061 list_for_each_entry(net, net_list, exit_list) { 8062 if (net->dev_unreg_count > 0) { 8063 unregistering = true; 8064 break; 8065 } 8066 } 8067 if (!unregistering) 8068 break; 8069 __rtnl_unlock(); 8070 8071 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 8072 } 8073 remove_wait_queue(&netdev_unregistering_wq, &wait); 8074 } 8075 8076 static void __net_exit default_device_exit_batch(struct list_head *net_list) 8077 { 8078 /* At exit all network devices most be removed from a network 8079 * namespace. Do this in the reverse order of registration. 8080 * Do this across as many network namespaces as possible to 8081 * improve batching efficiency. 8082 */ 8083 struct net_device *dev; 8084 struct net *net; 8085 LIST_HEAD(dev_kill_list); 8086 8087 /* To prevent network device cleanup code from dereferencing 8088 * loopback devices or network devices that have been freed 8089 * wait here for all pending unregistrations to complete, 8090 * before unregistring the loopback device and allowing the 8091 * network namespace be freed. 8092 * 8093 * The netdev todo list containing all network devices 8094 * unregistrations that happen in default_device_exit_batch 8095 * will run in the rtnl_unlock() at the end of 8096 * default_device_exit_batch. 8097 */ 8098 rtnl_lock_unregistering(net_list); 8099 list_for_each_entry(net, net_list, exit_list) { 8100 for_each_netdev_reverse(net, dev) { 8101 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 8102 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 8103 else 8104 unregister_netdevice_queue(dev, &dev_kill_list); 8105 } 8106 } 8107 unregister_netdevice_many(&dev_kill_list); 8108 rtnl_unlock(); 8109 } 8110 8111 static struct pernet_operations __net_initdata default_device_ops = { 8112 .exit = default_device_exit, 8113 .exit_batch = default_device_exit_batch, 8114 }; 8115 8116 /* 8117 * Initialize the DEV module. At boot time this walks the device list and 8118 * unhooks any devices that fail to initialise (normally hardware not 8119 * present) and leaves us with a valid list of present and active devices. 8120 * 8121 */ 8122 8123 /* 8124 * This is called single threaded during boot, so no need 8125 * to take the rtnl semaphore. 8126 */ 8127 static int __init net_dev_init(void) 8128 { 8129 int i, rc = -ENOMEM; 8130 8131 BUG_ON(!dev_boot_phase); 8132 8133 if (dev_proc_init()) 8134 goto out; 8135 8136 if (netdev_kobject_init()) 8137 goto out; 8138 8139 INIT_LIST_HEAD(&ptype_all); 8140 for (i = 0; i < PTYPE_HASH_SIZE; i++) 8141 INIT_LIST_HEAD(&ptype_base[i]); 8142 8143 INIT_LIST_HEAD(&offload_base); 8144 8145 if (register_pernet_subsys(&netdev_net_ops)) 8146 goto out; 8147 8148 /* 8149 * Initialise the packet receive queues. 8150 */ 8151 8152 for_each_possible_cpu(i) { 8153 struct softnet_data *sd = &per_cpu(softnet_data, i); 8154 8155 skb_queue_head_init(&sd->input_pkt_queue); 8156 skb_queue_head_init(&sd->process_queue); 8157 INIT_LIST_HEAD(&sd->poll_list); 8158 sd->output_queue_tailp = &sd->output_queue; 8159 #ifdef CONFIG_RPS 8160 sd->csd.func = rps_trigger_softirq; 8161 sd->csd.info = sd; 8162 sd->cpu = i; 8163 #endif 8164 8165 sd->backlog.poll = process_backlog; 8166 sd->backlog.weight = weight_p; 8167 } 8168 8169 dev_boot_phase = 0; 8170 8171 /* The loopback device is special if any other network devices 8172 * is present in a network namespace the loopback device must 8173 * be present. Since we now dynamically allocate and free the 8174 * loopback device ensure this invariant is maintained by 8175 * keeping the loopback device as the first device on the 8176 * list of network devices. Ensuring the loopback devices 8177 * is the first device that appears and the last network device 8178 * that disappears. 8179 */ 8180 if (register_pernet_device(&loopback_net_ops)) 8181 goto out; 8182 8183 if (register_pernet_device(&default_device_ops)) 8184 goto out; 8185 8186 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 8187 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 8188 8189 hotcpu_notifier(dev_cpu_callback, 0); 8190 dst_subsys_init(); 8191 rc = 0; 8192 out: 8193 return rc; 8194 } 8195 8196 subsys_initcall(net_dev_init); 8197