xref: /openbmc/linux/net/core/dev.c (revision 96ac6d43)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/string.h>
83 #include <linux/mm.h>
84 #include <linux/socket.h>
85 #include <linux/sockios.h>
86 #include <linux/errno.h>
87 #include <linux/interrupt.h>
88 #include <linux/if_ether.h>
89 #include <linux/netdevice.h>
90 #include <linux/etherdevice.h>
91 #include <linux/ethtool.h>
92 #include <linux/skbuff.h>
93 #include <linux/bpf.h>
94 #include <linux/bpf_trace.h>
95 #include <net/net_namespace.h>
96 #include <net/sock.h>
97 #include <net/busy_poll.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/stat.h>
100 #include <net/dst.h>
101 #include <net/dst_metadata.h>
102 #include <net/pkt_sched.h>
103 #include <net/pkt_cls.h>
104 #include <net/checksum.h>
105 #include <net/xfrm.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/module.h>
109 #include <linux/netpoll.h>
110 #include <linux/rcupdate.h>
111 #include <linux/delay.h>
112 #include <net/iw_handler.h>
113 #include <asm/current.h>
114 #include <linux/audit.h>
115 #include <linux/dmaengine.h>
116 #include <linux/err.h>
117 #include <linux/ctype.h>
118 #include <linux/if_arp.h>
119 #include <linux/if_vlan.h>
120 #include <linux/ip.h>
121 #include <net/ip.h>
122 #include <net/mpls.h>
123 #include <linux/ipv6.h>
124 #include <linux/in.h>
125 #include <linux/jhash.h>
126 #include <linux/random.h>
127 #include <trace/events/napi.h>
128 #include <trace/events/net.h>
129 #include <trace/events/skb.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138 #include <linux/netfilter_ingress.h>
139 #include <linux/crash_dump.h>
140 #include <linux/sctp.h>
141 #include <net/udp_tunnel.h>
142 #include <linux/net_namespace.h>
143 #include <linux/indirect_call_wrapper.h>
144 #include <net/devlink.h>
145 
146 #include "net-sysfs.h"
147 
148 #define MAX_GRO_SKBS 8
149 
150 /* This should be increased if a protocol with a bigger head is added. */
151 #define GRO_MAX_HEAD (MAX_HEADER + 128)
152 
153 static DEFINE_SPINLOCK(ptype_lock);
154 static DEFINE_SPINLOCK(offload_lock);
155 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
156 struct list_head ptype_all __read_mostly;	/* Taps */
157 static struct list_head offload_base __read_mostly;
158 
159 static int netif_rx_internal(struct sk_buff *skb);
160 static int call_netdevice_notifiers_info(unsigned long val,
161 					 struct netdev_notifier_info *info);
162 static int call_netdevice_notifiers_extack(unsigned long val,
163 					   struct net_device *dev,
164 					   struct netlink_ext_ack *extack);
165 static struct napi_struct *napi_by_id(unsigned int napi_id);
166 
167 /*
168  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
169  * semaphore.
170  *
171  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
172  *
173  * Writers must hold the rtnl semaphore while they loop through the
174  * dev_base_head list, and hold dev_base_lock for writing when they do the
175  * actual updates.  This allows pure readers to access the list even
176  * while a writer is preparing to update it.
177  *
178  * To put it another way, dev_base_lock is held for writing only to
179  * protect against pure readers; the rtnl semaphore provides the
180  * protection against other writers.
181  *
182  * See, for example usages, register_netdevice() and
183  * unregister_netdevice(), which must be called with the rtnl
184  * semaphore held.
185  */
186 DEFINE_RWLOCK(dev_base_lock);
187 EXPORT_SYMBOL(dev_base_lock);
188 
189 static DEFINE_MUTEX(ifalias_mutex);
190 
191 /* protects napi_hash addition/deletion and napi_gen_id */
192 static DEFINE_SPINLOCK(napi_hash_lock);
193 
194 static unsigned int napi_gen_id = NR_CPUS;
195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
196 
197 static seqcount_t devnet_rename_seq;
198 
199 static inline void dev_base_seq_inc(struct net *net)
200 {
201 	while (++net->dev_base_seq == 0)
202 		;
203 }
204 
205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
206 {
207 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
208 
209 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
210 }
211 
212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
213 {
214 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
215 }
216 
217 static inline void rps_lock(struct softnet_data *sd)
218 {
219 #ifdef CONFIG_RPS
220 	spin_lock(&sd->input_pkt_queue.lock);
221 #endif
222 }
223 
224 static inline void rps_unlock(struct softnet_data *sd)
225 {
226 #ifdef CONFIG_RPS
227 	spin_unlock(&sd->input_pkt_queue.lock);
228 #endif
229 }
230 
231 /* Device list insertion */
232 static void list_netdevice(struct net_device *dev)
233 {
234 	struct net *net = dev_net(dev);
235 
236 	ASSERT_RTNL();
237 
238 	write_lock_bh(&dev_base_lock);
239 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
240 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
241 	hlist_add_head_rcu(&dev->index_hlist,
242 			   dev_index_hash(net, dev->ifindex));
243 	write_unlock_bh(&dev_base_lock);
244 
245 	dev_base_seq_inc(net);
246 }
247 
248 /* Device list removal
249  * caller must respect a RCU grace period before freeing/reusing dev
250  */
251 static void unlist_netdevice(struct net_device *dev)
252 {
253 	ASSERT_RTNL();
254 
255 	/* Unlink dev from the device chain */
256 	write_lock_bh(&dev_base_lock);
257 	list_del_rcu(&dev->dev_list);
258 	hlist_del_rcu(&dev->name_hlist);
259 	hlist_del_rcu(&dev->index_hlist);
260 	write_unlock_bh(&dev_base_lock);
261 
262 	dev_base_seq_inc(dev_net(dev));
263 }
264 
265 /*
266  *	Our notifier list
267  */
268 
269 static RAW_NOTIFIER_HEAD(netdev_chain);
270 
271 /*
272  *	Device drivers call our routines to queue packets here. We empty the
273  *	queue in the local softnet handler.
274  */
275 
276 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
277 EXPORT_PER_CPU_SYMBOL(softnet_data);
278 
279 #ifdef CONFIG_LOCKDEP
280 /*
281  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
282  * according to dev->type
283  */
284 static const unsigned short netdev_lock_type[] = {
285 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
286 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
287 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
288 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
289 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
290 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
291 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
292 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
293 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
294 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
295 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
296 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
297 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
298 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
299 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
300 
301 static const char *const netdev_lock_name[] = {
302 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
303 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
304 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
305 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
306 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
307 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
308 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
309 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
310 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
311 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
312 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
313 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
314 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
315 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
316 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
317 
318 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
319 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
320 
321 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
322 {
323 	int i;
324 
325 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
326 		if (netdev_lock_type[i] == dev_type)
327 			return i;
328 	/* the last key is used by default */
329 	return ARRAY_SIZE(netdev_lock_type) - 1;
330 }
331 
332 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
333 						 unsigned short dev_type)
334 {
335 	int i;
336 
337 	i = netdev_lock_pos(dev_type);
338 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
339 				   netdev_lock_name[i]);
340 }
341 
342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
343 {
344 	int i;
345 
346 	i = netdev_lock_pos(dev->type);
347 	lockdep_set_class_and_name(&dev->addr_list_lock,
348 				   &netdev_addr_lock_key[i],
349 				   netdev_lock_name[i]);
350 }
351 #else
352 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
353 						 unsigned short dev_type)
354 {
355 }
356 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
357 {
358 }
359 #endif
360 
361 /*******************************************************************************
362  *
363  *		Protocol management and registration routines
364  *
365  *******************************************************************************/
366 
367 
368 /*
369  *	Add a protocol ID to the list. Now that the input handler is
370  *	smarter we can dispense with all the messy stuff that used to be
371  *	here.
372  *
373  *	BEWARE!!! Protocol handlers, mangling input packets,
374  *	MUST BE last in hash buckets and checking protocol handlers
375  *	MUST start from promiscuous ptype_all chain in net_bh.
376  *	It is true now, do not change it.
377  *	Explanation follows: if protocol handler, mangling packet, will
378  *	be the first on list, it is not able to sense, that packet
379  *	is cloned and should be copied-on-write, so that it will
380  *	change it and subsequent readers will get broken packet.
381  *							--ANK (980803)
382  */
383 
384 static inline struct list_head *ptype_head(const struct packet_type *pt)
385 {
386 	if (pt->type == htons(ETH_P_ALL))
387 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
388 	else
389 		return pt->dev ? &pt->dev->ptype_specific :
390 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
391 }
392 
393 /**
394  *	dev_add_pack - add packet handler
395  *	@pt: packet type declaration
396  *
397  *	Add a protocol handler to the networking stack. The passed &packet_type
398  *	is linked into kernel lists and may not be freed until it has been
399  *	removed from the kernel lists.
400  *
401  *	This call does not sleep therefore it can not
402  *	guarantee all CPU's that are in middle of receiving packets
403  *	will see the new packet type (until the next received packet).
404  */
405 
406 void dev_add_pack(struct packet_type *pt)
407 {
408 	struct list_head *head = ptype_head(pt);
409 
410 	spin_lock(&ptype_lock);
411 	list_add_rcu(&pt->list, head);
412 	spin_unlock(&ptype_lock);
413 }
414 EXPORT_SYMBOL(dev_add_pack);
415 
416 /**
417  *	__dev_remove_pack	 - remove packet handler
418  *	@pt: packet type declaration
419  *
420  *	Remove a protocol handler that was previously added to the kernel
421  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
422  *	from the kernel lists and can be freed or reused once this function
423  *	returns.
424  *
425  *      The packet type might still be in use by receivers
426  *	and must not be freed until after all the CPU's have gone
427  *	through a quiescent state.
428  */
429 void __dev_remove_pack(struct packet_type *pt)
430 {
431 	struct list_head *head = ptype_head(pt);
432 	struct packet_type *pt1;
433 
434 	spin_lock(&ptype_lock);
435 
436 	list_for_each_entry(pt1, head, list) {
437 		if (pt == pt1) {
438 			list_del_rcu(&pt->list);
439 			goto out;
440 		}
441 	}
442 
443 	pr_warn("dev_remove_pack: %p not found\n", pt);
444 out:
445 	spin_unlock(&ptype_lock);
446 }
447 EXPORT_SYMBOL(__dev_remove_pack);
448 
449 /**
450  *	dev_remove_pack	 - remove packet handler
451  *	@pt: packet type declaration
452  *
453  *	Remove a protocol handler that was previously added to the kernel
454  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
455  *	from the kernel lists and can be freed or reused once this function
456  *	returns.
457  *
458  *	This call sleeps to guarantee that no CPU is looking at the packet
459  *	type after return.
460  */
461 void dev_remove_pack(struct packet_type *pt)
462 {
463 	__dev_remove_pack(pt);
464 
465 	synchronize_net();
466 }
467 EXPORT_SYMBOL(dev_remove_pack);
468 
469 
470 /**
471  *	dev_add_offload - register offload handlers
472  *	@po: protocol offload declaration
473  *
474  *	Add protocol offload handlers to the networking stack. The passed
475  *	&proto_offload is linked into kernel lists and may not be freed until
476  *	it has been removed from the kernel lists.
477  *
478  *	This call does not sleep therefore it can not
479  *	guarantee all CPU's that are in middle of receiving packets
480  *	will see the new offload handlers (until the next received packet).
481  */
482 void dev_add_offload(struct packet_offload *po)
483 {
484 	struct packet_offload *elem;
485 
486 	spin_lock(&offload_lock);
487 	list_for_each_entry(elem, &offload_base, list) {
488 		if (po->priority < elem->priority)
489 			break;
490 	}
491 	list_add_rcu(&po->list, elem->list.prev);
492 	spin_unlock(&offload_lock);
493 }
494 EXPORT_SYMBOL(dev_add_offload);
495 
496 /**
497  *	__dev_remove_offload	 - remove offload handler
498  *	@po: packet offload declaration
499  *
500  *	Remove a protocol offload handler that was previously added to the
501  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
502  *	is removed from the kernel lists and can be freed or reused once this
503  *	function returns.
504  *
505  *      The packet type might still be in use by receivers
506  *	and must not be freed until after all the CPU's have gone
507  *	through a quiescent state.
508  */
509 static void __dev_remove_offload(struct packet_offload *po)
510 {
511 	struct list_head *head = &offload_base;
512 	struct packet_offload *po1;
513 
514 	spin_lock(&offload_lock);
515 
516 	list_for_each_entry(po1, head, list) {
517 		if (po == po1) {
518 			list_del_rcu(&po->list);
519 			goto out;
520 		}
521 	}
522 
523 	pr_warn("dev_remove_offload: %p not found\n", po);
524 out:
525 	spin_unlock(&offload_lock);
526 }
527 
528 /**
529  *	dev_remove_offload	 - remove packet offload handler
530  *	@po: packet offload declaration
531  *
532  *	Remove a packet offload handler that was previously added to the kernel
533  *	offload handlers by dev_add_offload(). The passed &offload_type is
534  *	removed from the kernel lists and can be freed or reused once this
535  *	function returns.
536  *
537  *	This call sleeps to guarantee that no CPU is looking at the packet
538  *	type after return.
539  */
540 void dev_remove_offload(struct packet_offload *po)
541 {
542 	__dev_remove_offload(po);
543 
544 	synchronize_net();
545 }
546 EXPORT_SYMBOL(dev_remove_offload);
547 
548 /******************************************************************************
549  *
550  *		      Device Boot-time Settings Routines
551  *
552  ******************************************************************************/
553 
554 /* Boot time configuration table */
555 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
556 
557 /**
558  *	netdev_boot_setup_add	- add new setup entry
559  *	@name: name of the device
560  *	@map: configured settings for the device
561  *
562  *	Adds new setup entry to the dev_boot_setup list.  The function
563  *	returns 0 on error and 1 on success.  This is a generic routine to
564  *	all netdevices.
565  */
566 static int netdev_boot_setup_add(char *name, struct ifmap *map)
567 {
568 	struct netdev_boot_setup *s;
569 	int i;
570 
571 	s = dev_boot_setup;
572 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
573 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
574 			memset(s[i].name, 0, sizeof(s[i].name));
575 			strlcpy(s[i].name, name, IFNAMSIZ);
576 			memcpy(&s[i].map, map, sizeof(s[i].map));
577 			break;
578 		}
579 	}
580 
581 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
582 }
583 
584 /**
585  * netdev_boot_setup_check	- check boot time settings
586  * @dev: the netdevice
587  *
588  * Check boot time settings for the device.
589  * The found settings are set for the device to be used
590  * later in the device probing.
591  * Returns 0 if no settings found, 1 if they are.
592  */
593 int netdev_boot_setup_check(struct net_device *dev)
594 {
595 	struct netdev_boot_setup *s = dev_boot_setup;
596 	int i;
597 
598 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
599 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
600 		    !strcmp(dev->name, s[i].name)) {
601 			dev->irq = s[i].map.irq;
602 			dev->base_addr = s[i].map.base_addr;
603 			dev->mem_start = s[i].map.mem_start;
604 			dev->mem_end = s[i].map.mem_end;
605 			return 1;
606 		}
607 	}
608 	return 0;
609 }
610 EXPORT_SYMBOL(netdev_boot_setup_check);
611 
612 
613 /**
614  * netdev_boot_base	- get address from boot time settings
615  * @prefix: prefix for network device
616  * @unit: id for network device
617  *
618  * Check boot time settings for the base address of device.
619  * The found settings are set for the device to be used
620  * later in the device probing.
621  * Returns 0 if no settings found.
622  */
623 unsigned long netdev_boot_base(const char *prefix, int unit)
624 {
625 	const struct netdev_boot_setup *s = dev_boot_setup;
626 	char name[IFNAMSIZ];
627 	int i;
628 
629 	sprintf(name, "%s%d", prefix, unit);
630 
631 	/*
632 	 * If device already registered then return base of 1
633 	 * to indicate not to probe for this interface
634 	 */
635 	if (__dev_get_by_name(&init_net, name))
636 		return 1;
637 
638 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
639 		if (!strcmp(name, s[i].name))
640 			return s[i].map.base_addr;
641 	return 0;
642 }
643 
644 /*
645  * Saves at boot time configured settings for any netdevice.
646  */
647 int __init netdev_boot_setup(char *str)
648 {
649 	int ints[5];
650 	struct ifmap map;
651 
652 	str = get_options(str, ARRAY_SIZE(ints), ints);
653 	if (!str || !*str)
654 		return 0;
655 
656 	/* Save settings */
657 	memset(&map, 0, sizeof(map));
658 	if (ints[0] > 0)
659 		map.irq = ints[1];
660 	if (ints[0] > 1)
661 		map.base_addr = ints[2];
662 	if (ints[0] > 2)
663 		map.mem_start = ints[3];
664 	if (ints[0] > 3)
665 		map.mem_end = ints[4];
666 
667 	/* Add new entry to the list */
668 	return netdev_boot_setup_add(str, &map);
669 }
670 
671 __setup("netdev=", netdev_boot_setup);
672 
673 /*******************************************************************************
674  *
675  *			    Device Interface Subroutines
676  *
677  *******************************************************************************/
678 
679 /**
680  *	dev_get_iflink	- get 'iflink' value of a interface
681  *	@dev: targeted interface
682  *
683  *	Indicates the ifindex the interface is linked to.
684  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
685  */
686 
687 int dev_get_iflink(const struct net_device *dev)
688 {
689 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
690 		return dev->netdev_ops->ndo_get_iflink(dev);
691 
692 	return dev->ifindex;
693 }
694 EXPORT_SYMBOL(dev_get_iflink);
695 
696 /**
697  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
698  *	@dev: targeted interface
699  *	@skb: The packet.
700  *
701  *	For better visibility of tunnel traffic OVS needs to retrieve
702  *	egress tunnel information for a packet. Following API allows
703  *	user to get this info.
704  */
705 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
706 {
707 	struct ip_tunnel_info *info;
708 
709 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
710 		return -EINVAL;
711 
712 	info = skb_tunnel_info_unclone(skb);
713 	if (!info)
714 		return -ENOMEM;
715 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
716 		return -EINVAL;
717 
718 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
719 }
720 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
721 
722 /**
723  *	__dev_get_by_name	- find a device by its name
724  *	@net: the applicable net namespace
725  *	@name: name to find
726  *
727  *	Find an interface by name. Must be called under RTNL semaphore
728  *	or @dev_base_lock. If the name is found a pointer to the device
729  *	is returned. If the name is not found then %NULL is returned. The
730  *	reference counters are not incremented so the caller must be
731  *	careful with locks.
732  */
733 
734 struct net_device *__dev_get_by_name(struct net *net, const char *name)
735 {
736 	struct net_device *dev;
737 	struct hlist_head *head = dev_name_hash(net, name);
738 
739 	hlist_for_each_entry(dev, head, name_hlist)
740 		if (!strncmp(dev->name, name, IFNAMSIZ))
741 			return dev;
742 
743 	return NULL;
744 }
745 EXPORT_SYMBOL(__dev_get_by_name);
746 
747 /**
748  * dev_get_by_name_rcu	- find a device by its name
749  * @net: the applicable net namespace
750  * @name: name to find
751  *
752  * Find an interface by name.
753  * If the name is found a pointer to the device is returned.
754  * If the name is not found then %NULL is returned.
755  * The reference counters are not incremented so the caller must be
756  * careful with locks. The caller must hold RCU lock.
757  */
758 
759 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
760 {
761 	struct net_device *dev;
762 	struct hlist_head *head = dev_name_hash(net, name);
763 
764 	hlist_for_each_entry_rcu(dev, head, name_hlist)
765 		if (!strncmp(dev->name, name, IFNAMSIZ))
766 			return dev;
767 
768 	return NULL;
769 }
770 EXPORT_SYMBOL(dev_get_by_name_rcu);
771 
772 /**
773  *	dev_get_by_name		- find a device by its name
774  *	@net: the applicable net namespace
775  *	@name: name to find
776  *
777  *	Find an interface by name. This can be called from any
778  *	context and does its own locking. The returned handle has
779  *	the usage count incremented and the caller must use dev_put() to
780  *	release it when it is no longer needed. %NULL is returned if no
781  *	matching device is found.
782  */
783 
784 struct net_device *dev_get_by_name(struct net *net, const char *name)
785 {
786 	struct net_device *dev;
787 
788 	rcu_read_lock();
789 	dev = dev_get_by_name_rcu(net, name);
790 	if (dev)
791 		dev_hold(dev);
792 	rcu_read_unlock();
793 	return dev;
794 }
795 EXPORT_SYMBOL(dev_get_by_name);
796 
797 /**
798  *	__dev_get_by_index - find a device by its ifindex
799  *	@net: the applicable net namespace
800  *	@ifindex: index of device
801  *
802  *	Search for an interface by index. Returns %NULL if the device
803  *	is not found or a pointer to the device. The device has not
804  *	had its reference counter increased so the caller must be careful
805  *	about locking. The caller must hold either the RTNL semaphore
806  *	or @dev_base_lock.
807  */
808 
809 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
810 {
811 	struct net_device *dev;
812 	struct hlist_head *head = dev_index_hash(net, ifindex);
813 
814 	hlist_for_each_entry(dev, head, index_hlist)
815 		if (dev->ifindex == ifindex)
816 			return dev;
817 
818 	return NULL;
819 }
820 EXPORT_SYMBOL(__dev_get_by_index);
821 
822 /**
823  *	dev_get_by_index_rcu - find a device by its ifindex
824  *	@net: the applicable net namespace
825  *	@ifindex: index of device
826  *
827  *	Search for an interface by index. Returns %NULL if the device
828  *	is not found or a pointer to the device. The device has not
829  *	had its reference counter increased so the caller must be careful
830  *	about locking. The caller must hold RCU lock.
831  */
832 
833 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
834 {
835 	struct net_device *dev;
836 	struct hlist_head *head = dev_index_hash(net, ifindex);
837 
838 	hlist_for_each_entry_rcu(dev, head, index_hlist)
839 		if (dev->ifindex == ifindex)
840 			return dev;
841 
842 	return NULL;
843 }
844 EXPORT_SYMBOL(dev_get_by_index_rcu);
845 
846 
847 /**
848  *	dev_get_by_index - find a device by its ifindex
849  *	@net: the applicable net namespace
850  *	@ifindex: index of device
851  *
852  *	Search for an interface by index. Returns NULL if the device
853  *	is not found or a pointer to the device. The device returned has
854  *	had a reference added and the pointer is safe until the user calls
855  *	dev_put to indicate they have finished with it.
856  */
857 
858 struct net_device *dev_get_by_index(struct net *net, int ifindex)
859 {
860 	struct net_device *dev;
861 
862 	rcu_read_lock();
863 	dev = dev_get_by_index_rcu(net, ifindex);
864 	if (dev)
865 		dev_hold(dev);
866 	rcu_read_unlock();
867 	return dev;
868 }
869 EXPORT_SYMBOL(dev_get_by_index);
870 
871 /**
872  *	dev_get_by_napi_id - find a device by napi_id
873  *	@napi_id: ID of the NAPI struct
874  *
875  *	Search for an interface by NAPI ID. Returns %NULL if the device
876  *	is not found or a pointer to the device. The device has not had
877  *	its reference counter increased so the caller must be careful
878  *	about locking. The caller must hold RCU lock.
879  */
880 
881 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
882 {
883 	struct napi_struct *napi;
884 
885 	WARN_ON_ONCE(!rcu_read_lock_held());
886 
887 	if (napi_id < MIN_NAPI_ID)
888 		return NULL;
889 
890 	napi = napi_by_id(napi_id);
891 
892 	return napi ? napi->dev : NULL;
893 }
894 EXPORT_SYMBOL(dev_get_by_napi_id);
895 
896 /**
897  *	netdev_get_name - get a netdevice name, knowing its ifindex.
898  *	@net: network namespace
899  *	@name: a pointer to the buffer where the name will be stored.
900  *	@ifindex: the ifindex of the interface to get the name from.
901  *
902  *	The use of raw_seqcount_begin() and cond_resched() before
903  *	retrying is required as we want to give the writers a chance
904  *	to complete when CONFIG_PREEMPT is not set.
905  */
906 int netdev_get_name(struct net *net, char *name, int ifindex)
907 {
908 	struct net_device *dev;
909 	unsigned int seq;
910 
911 retry:
912 	seq = raw_seqcount_begin(&devnet_rename_seq);
913 	rcu_read_lock();
914 	dev = dev_get_by_index_rcu(net, ifindex);
915 	if (!dev) {
916 		rcu_read_unlock();
917 		return -ENODEV;
918 	}
919 
920 	strcpy(name, dev->name);
921 	rcu_read_unlock();
922 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
923 		cond_resched();
924 		goto retry;
925 	}
926 
927 	return 0;
928 }
929 
930 /**
931  *	dev_getbyhwaddr_rcu - find a device by its hardware address
932  *	@net: the applicable net namespace
933  *	@type: media type of device
934  *	@ha: hardware address
935  *
936  *	Search for an interface by MAC address. Returns NULL if the device
937  *	is not found or a pointer to the device.
938  *	The caller must hold RCU or RTNL.
939  *	The returned device has not had its ref count increased
940  *	and the caller must therefore be careful about locking
941  *
942  */
943 
944 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
945 				       const char *ha)
946 {
947 	struct net_device *dev;
948 
949 	for_each_netdev_rcu(net, dev)
950 		if (dev->type == type &&
951 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
952 			return dev;
953 
954 	return NULL;
955 }
956 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
957 
958 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
959 {
960 	struct net_device *dev;
961 
962 	ASSERT_RTNL();
963 	for_each_netdev(net, dev)
964 		if (dev->type == type)
965 			return dev;
966 
967 	return NULL;
968 }
969 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
970 
971 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
972 {
973 	struct net_device *dev, *ret = NULL;
974 
975 	rcu_read_lock();
976 	for_each_netdev_rcu(net, dev)
977 		if (dev->type == type) {
978 			dev_hold(dev);
979 			ret = dev;
980 			break;
981 		}
982 	rcu_read_unlock();
983 	return ret;
984 }
985 EXPORT_SYMBOL(dev_getfirstbyhwtype);
986 
987 /**
988  *	__dev_get_by_flags - find any device with given flags
989  *	@net: the applicable net namespace
990  *	@if_flags: IFF_* values
991  *	@mask: bitmask of bits in if_flags to check
992  *
993  *	Search for any interface with the given flags. Returns NULL if a device
994  *	is not found or a pointer to the device. Must be called inside
995  *	rtnl_lock(), and result refcount is unchanged.
996  */
997 
998 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
999 				      unsigned short mask)
1000 {
1001 	struct net_device *dev, *ret;
1002 
1003 	ASSERT_RTNL();
1004 
1005 	ret = NULL;
1006 	for_each_netdev(net, dev) {
1007 		if (((dev->flags ^ if_flags) & mask) == 0) {
1008 			ret = dev;
1009 			break;
1010 		}
1011 	}
1012 	return ret;
1013 }
1014 EXPORT_SYMBOL(__dev_get_by_flags);
1015 
1016 /**
1017  *	dev_valid_name - check if name is okay for network device
1018  *	@name: name string
1019  *
1020  *	Network device names need to be valid file names to
1021  *	to allow sysfs to work.  We also disallow any kind of
1022  *	whitespace.
1023  */
1024 bool dev_valid_name(const char *name)
1025 {
1026 	if (*name == '\0')
1027 		return false;
1028 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1029 		return false;
1030 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1031 		return false;
1032 
1033 	while (*name) {
1034 		if (*name == '/' || *name == ':' || isspace(*name))
1035 			return false;
1036 		name++;
1037 	}
1038 	return true;
1039 }
1040 EXPORT_SYMBOL(dev_valid_name);
1041 
1042 /**
1043  *	__dev_alloc_name - allocate a name for a device
1044  *	@net: network namespace to allocate the device name in
1045  *	@name: name format string
1046  *	@buf:  scratch buffer and result name string
1047  *
1048  *	Passed a format string - eg "lt%d" it will try and find a suitable
1049  *	id. It scans list of devices to build up a free map, then chooses
1050  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1051  *	while allocating the name and adding the device in order to avoid
1052  *	duplicates.
1053  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1054  *	Returns the number of the unit assigned or a negative errno code.
1055  */
1056 
1057 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1058 {
1059 	int i = 0;
1060 	const char *p;
1061 	const int max_netdevices = 8*PAGE_SIZE;
1062 	unsigned long *inuse;
1063 	struct net_device *d;
1064 
1065 	if (!dev_valid_name(name))
1066 		return -EINVAL;
1067 
1068 	p = strchr(name, '%');
1069 	if (p) {
1070 		/*
1071 		 * Verify the string as this thing may have come from
1072 		 * the user.  There must be either one "%d" and no other "%"
1073 		 * characters.
1074 		 */
1075 		if (p[1] != 'd' || strchr(p + 2, '%'))
1076 			return -EINVAL;
1077 
1078 		/* Use one page as a bit array of possible slots */
1079 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1080 		if (!inuse)
1081 			return -ENOMEM;
1082 
1083 		for_each_netdev(net, d) {
1084 			if (!sscanf(d->name, name, &i))
1085 				continue;
1086 			if (i < 0 || i >= max_netdevices)
1087 				continue;
1088 
1089 			/*  avoid cases where sscanf is not exact inverse of printf */
1090 			snprintf(buf, IFNAMSIZ, name, i);
1091 			if (!strncmp(buf, d->name, IFNAMSIZ))
1092 				set_bit(i, inuse);
1093 		}
1094 
1095 		i = find_first_zero_bit(inuse, max_netdevices);
1096 		free_page((unsigned long) inuse);
1097 	}
1098 
1099 	snprintf(buf, IFNAMSIZ, name, i);
1100 	if (!__dev_get_by_name(net, buf))
1101 		return i;
1102 
1103 	/* It is possible to run out of possible slots
1104 	 * when the name is long and there isn't enough space left
1105 	 * for the digits, or if all bits are used.
1106 	 */
1107 	return -ENFILE;
1108 }
1109 
1110 static int dev_alloc_name_ns(struct net *net,
1111 			     struct net_device *dev,
1112 			     const char *name)
1113 {
1114 	char buf[IFNAMSIZ];
1115 	int ret;
1116 
1117 	BUG_ON(!net);
1118 	ret = __dev_alloc_name(net, name, buf);
1119 	if (ret >= 0)
1120 		strlcpy(dev->name, buf, IFNAMSIZ);
1121 	return ret;
1122 }
1123 
1124 /**
1125  *	dev_alloc_name - allocate a name for a device
1126  *	@dev: device
1127  *	@name: name format string
1128  *
1129  *	Passed a format string - eg "lt%d" it will try and find a suitable
1130  *	id. It scans list of devices to build up a free map, then chooses
1131  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1132  *	while allocating the name and adding the device in order to avoid
1133  *	duplicates.
1134  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1135  *	Returns the number of the unit assigned or a negative errno code.
1136  */
1137 
1138 int dev_alloc_name(struct net_device *dev, const char *name)
1139 {
1140 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1141 }
1142 EXPORT_SYMBOL(dev_alloc_name);
1143 
1144 int dev_get_valid_name(struct net *net, struct net_device *dev,
1145 		       const char *name)
1146 {
1147 	BUG_ON(!net);
1148 
1149 	if (!dev_valid_name(name))
1150 		return -EINVAL;
1151 
1152 	if (strchr(name, '%'))
1153 		return dev_alloc_name_ns(net, dev, name);
1154 	else if (__dev_get_by_name(net, name))
1155 		return -EEXIST;
1156 	else if (dev->name != name)
1157 		strlcpy(dev->name, name, IFNAMSIZ);
1158 
1159 	return 0;
1160 }
1161 EXPORT_SYMBOL(dev_get_valid_name);
1162 
1163 /**
1164  *	dev_change_name - change name of a device
1165  *	@dev: device
1166  *	@newname: name (or format string) must be at least IFNAMSIZ
1167  *
1168  *	Change name of a device, can pass format strings "eth%d".
1169  *	for wildcarding.
1170  */
1171 int dev_change_name(struct net_device *dev, const char *newname)
1172 {
1173 	unsigned char old_assign_type;
1174 	char oldname[IFNAMSIZ];
1175 	int err = 0;
1176 	int ret;
1177 	struct net *net;
1178 
1179 	ASSERT_RTNL();
1180 	BUG_ON(!dev_net(dev));
1181 
1182 	net = dev_net(dev);
1183 
1184 	/* Some auto-enslaved devices e.g. failover slaves are
1185 	 * special, as userspace might rename the device after
1186 	 * the interface had been brought up and running since
1187 	 * the point kernel initiated auto-enslavement. Allow
1188 	 * live name change even when these slave devices are
1189 	 * up and running.
1190 	 *
1191 	 * Typically, users of these auto-enslaving devices
1192 	 * don't actually care about slave name change, as
1193 	 * they are supposed to operate on master interface
1194 	 * directly.
1195 	 */
1196 	if (dev->flags & IFF_UP &&
1197 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1198 		return -EBUSY;
1199 
1200 	write_seqcount_begin(&devnet_rename_seq);
1201 
1202 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1203 		write_seqcount_end(&devnet_rename_seq);
1204 		return 0;
1205 	}
1206 
1207 	memcpy(oldname, dev->name, IFNAMSIZ);
1208 
1209 	err = dev_get_valid_name(net, dev, newname);
1210 	if (err < 0) {
1211 		write_seqcount_end(&devnet_rename_seq);
1212 		return err;
1213 	}
1214 
1215 	if (oldname[0] && !strchr(oldname, '%'))
1216 		netdev_info(dev, "renamed from %s\n", oldname);
1217 
1218 	old_assign_type = dev->name_assign_type;
1219 	dev->name_assign_type = NET_NAME_RENAMED;
1220 
1221 rollback:
1222 	ret = device_rename(&dev->dev, dev->name);
1223 	if (ret) {
1224 		memcpy(dev->name, oldname, IFNAMSIZ);
1225 		dev->name_assign_type = old_assign_type;
1226 		write_seqcount_end(&devnet_rename_seq);
1227 		return ret;
1228 	}
1229 
1230 	write_seqcount_end(&devnet_rename_seq);
1231 
1232 	netdev_adjacent_rename_links(dev, oldname);
1233 
1234 	write_lock_bh(&dev_base_lock);
1235 	hlist_del_rcu(&dev->name_hlist);
1236 	write_unlock_bh(&dev_base_lock);
1237 
1238 	synchronize_rcu();
1239 
1240 	write_lock_bh(&dev_base_lock);
1241 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1242 	write_unlock_bh(&dev_base_lock);
1243 
1244 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1245 	ret = notifier_to_errno(ret);
1246 
1247 	if (ret) {
1248 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1249 		if (err >= 0) {
1250 			err = ret;
1251 			write_seqcount_begin(&devnet_rename_seq);
1252 			memcpy(dev->name, oldname, IFNAMSIZ);
1253 			memcpy(oldname, newname, IFNAMSIZ);
1254 			dev->name_assign_type = old_assign_type;
1255 			old_assign_type = NET_NAME_RENAMED;
1256 			goto rollback;
1257 		} else {
1258 			pr_err("%s: name change rollback failed: %d\n",
1259 			       dev->name, ret);
1260 		}
1261 	}
1262 
1263 	return err;
1264 }
1265 
1266 /**
1267  *	dev_set_alias - change ifalias of a device
1268  *	@dev: device
1269  *	@alias: name up to IFALIASZ
1270  *	@len: limit of bytes to copy from info
1271  *
1272  *	Set ifalias for a device,
1273  */
1274 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1275 {
1276 	struct dev_ifalias *new_alias = NULL;
1277 
1278 	if (len >= IFALIASZ)
1279 		return -EINVAL;
1280 
1281 	if (len) {
1282 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1283 		if (!new_alias)
1284 			return -ENOMEM;
1285 
1286 		memcpy(new_alias->ifalias, alias, len);
1287 		new_alias->ifalias[len] = 0;
1288 	}
1289 
1290 	mutex_lock(&ifalias_mutex);
1291 	rcu_swap_protected(dev->ifalias, new_alias,
1292 			   mutex_is_locked(&ifalias_mutex));
1293 	mutex_unlock(&ifalias_mutex);
1294 
1295 	if (new_alias)
1296 		kfree_rcu(new_alias, rcuhead);
1297 
1298 	return len;
1299 }
1300 EXPORT_SYMBOL(dev_set_alias);
1301 
1302 /**
1303  *	dev_get_alias - get ifalias of a device
1304  *	@dev: device
1305  *	@name: buffer to store name of ifalias
1306  *	@len: size of buffer
1307  *
1308  *	get ifalias for a device.  Caller must make sure dev cannot go
1309  *	away,  e.g. rcu read lock or own a reference count to device.
1310  */
1311 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1312 {
1313 	const struct dev_ifalias *alias;
1314 	int ret = 0;
1315 
1316 	rcu_read_lock();
1317 	alias = rcu_dereference(dev->ifalias);
1318 	if (alias)
1319 		ret = snprintf(name, len, "%s", alias->ifalias);
1320 	rcu_read_unlock();
1321 
1322 	return ret;
1323 }
1324 
1325 /**
1326  *	netdev_features_change - device changes features
1327  *	@dev: device to cause notification
1328  *
1329  *	Called to indicate a device has changed features.
1330  */
1331 void netdev_features_change(struct net_device *dev)
1332 {
1333 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1334 }
1335 EXPORT_SYMBOL(netdev_features_change);
1336 
1337 /**
1338  *	netdev_state_change - device changes state
1339  *	@dev: device to cause notification
1340  *
1341  *	Called to indicate a device has changed state. This function calls
1342  *	the notifier chains for netdev_chain and sends a NEWLINK message
1343  *	to the routing socket.
1344  */
1345 void netdev_state_change(struct net_device *dev)
1346 {
1347 	if (dev->flags & IFF_UP) {
1348 		struct netdev_notifier_change_info change_info = {
1349 			.info.dev = dev,
1350 		};
1351 
1352 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1353 					      &change_info.info);
1354 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1355 	}
1356 }
1357 EXPORT_SYMBOL(netdev_state_change);
1358 
1359 /**
1360  * netdev_notify_peers - notify network peers about existence of @dev
1361  * @dev: network device
1362  *
1363  * Generate traffic such that interested network peers are aware of
1364  * @dev, such as by generating a gratuitous ARP. This may be used when
1365  * a device wants to inform the rest of the network about some sort of
1366  * reconfiguration such as a failover event or virtual machine
1367  * migration.
1368  */
1369 void netdev_notify_peers(struct net_device *dev)
1370 {
1371 	rtnl_lock();
1372 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1373 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1374 	rtnl_unlock();
1375 }
1376 EXPORT_SYMBOL(netdev_notify_peers);
1377 
1378 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1379 {
1380 	const struct net_device_ops *ops = dev->netdev_ops;
1381 	int ret;
1382 
1383 	ASSERT_RTNL();
1384 
1385 	if (!netif_device_present(dev))
1386 		return -ENODEV;
1387 
1388 	/* Block netpoll from trying to do any rx path servicing.
1389 	 * If we don't do this there is a chance ndo_poll_controller
1390 	 * or ndo_poll may be running while we open the device
1391 	 */
1392 	netpoll_poll_disable(dev);
1393 
1394 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1395 	ret = notifier_to_errno(ret);
1396 	if (ret)
1397 		return ret;
1398 
1399 	set_bit(__LINK_STATE_START, &dev->state);
1400 
1401 	if (ops->ndo_validate_addr)
1402 		ret = ops->ndo_validate_addr(dev);
1403 
1404 	if (!ret && ops->ndo_open)
1405 		ret = ops->ndo_open(dev);
1406 
1407 	netpoll_poll_enable(dev);
1408 
1409 	if (ret)
1410 		clear_bit(__LINK_STATE_START, &dev->state);
1411 	else {
1412 		dev->flags |= IFF_UP;
1413 		dev_set_rx_mode(dev);
1414 		dev_activate(dev);
1415 		add_device_randomness(dev->dev_addr, dev->addr_len);
1416 	}
1417 
1418 	return ret;
1419 }
1420 
1421 /**
1422  *	dev_open	- prepare an interface for use.
1423  *	@dev: device to open
1424  *	@extack: netlink extended ack
1425  *
1426  *	Takes a device from down to up state. The device's private open
1427  *	function is invoked and then the multicast lists are loaded. Finally
1428  *	the device is moved into the up state and a %NETDEV_UP message is
1429  *	sent to the netdev notifier chain.
1430  *
1431  *	Calling this function on an active interface is a nop. On a failure
1432  *	a negative errno code is returned.
1433  */
1434 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1435 {
1436 	int ret;
1437 
1438 	if (dev->flags & IFF_UP)
1439 		return 0;
1440 
1441 	ret = __dev_open(dev, extack);
1442 	if (ret < 0)
1443 		return ret;
1444 
1445 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1446 	call_netdevice_notifiers(NETDEV_UP, dev);
1447 
1448 	return ret;
1449 }
1450 EXPORT_SYMBOL(dev_open);
1451 
1452 static void __dev_close_many(struct list_head *head)
1453 {
1454 	struct net_device *dev;
1455 
1456 	ASSERT_RTNL();
1457 	might_sleep();
1458 
1459 	list_for_each_entry(dev, head, close_list) {
1460 		/* Temporarily disable netpoll until the interface is down */
1461 		netpoll_poll_disable(dev);
1462 
1463 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1464 
1465 		clear_bit(__LINK_STATE_START, &dev->state);
1466 
1467 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1468 		 * can be even on different cpu. So just clear netif_running().
1469 		 *
1470 		 * dev->stop() will invoke napi_disable() on all of it's
1471 		 * napi_struct instances on this device.
1472 		 */
1473 		smp_mb__after_atomic(); /* Commit netif_running(). */
1474 	}
1475 
1476 	dev_deactivate_many(head);
1477 
1478 	list_for_each_entry(dev, head, close_list) {
1479 		const struct net_device_ops *ops = dev->netdev_ops;
1480 
1481 		/*
1482 		 *	Call the device specific close. This cannot fail.
1483 		 *	Only if device is UP
1484 		 *
1485 		 *	We allow it to be called even after a DETACH hot-plug
1486 		 *	event.
1487 		 */
1488 		if (ops->ndo_stop)
1489 			ops->ndo_stop(dev);
1490 
1491 		dev->flags &= ~IFF_UP;
1492 		netpoll_poll_enable(dev);
1493 	}
1494 }
1495 
1496 static void __dev_close(struct net_device *dev)
1497 {
1498 	LIST_HEAD(single);
1499 
1500 	list_add(&dev->close_list, &single);
1501 	__dev_close_many(&single);
1502 	list_del(&single);
1503 }
1504 
1505 void dev_close_many(struct list_head *head, bool unlink)
1506 {
1507 	struct net_device *dev, *tmp;
1508 
1509 	/* Remove the devices that don't need to be closed */
1510 	list_for_each_entry_safe(dev, tmp, head, close_list)
1511 		if (!(dev->flags & IFF_UP))
1512 			list_del_init(&dev->close_list);
1513 
1514 	__dev_close_many(head);
1515 
1516 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1517 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1518 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1519 		if (unlink)
1520 			list_del_init(&dev->close_list);
1521 	}
1522 }
1523 EXPORT_SYMBOL(dev_close_many);
1524 
1525 /**
1526  *	dev_close - shutdown an interface.
1527  *	@dev: device to shutdown
1528  *
1529  *	This function moves an active device into down state. A
1530  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1531  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1532  *	chain.
1533  */
1534 void dev_close(struct net_device *dev)
1535 {
1536 	if (dev->flags & IFF_UP) {
1537 		LIST_HEAD(single);
1538 
1539 		list_add(&dev->close_list, &single);
1540 		dev_close_many(&single, true);
1541 		list_del(&single);
1542 	}
1543 }
1544 EXPORT_SYMBOL(dev_close);
1545 
1546 
1547 /**
1548  *	dev_disable_lro - disable Large Receive Offload on a device
1549  *	@dev: device
1550  *
1551  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1552  *	called under RTNL.  This is needed if received packets may be
1553  *	forwarded to another interface.
1554  */
1555 void dev_disable_lro(struct net_device *dev)
1556 {
1557 	struct net_device *lower_dev;
1558 	struct list_head *iter;
1559 
1560 	dev->wanted_features &= ~NETIF_F_LRO;
1561 	netdev_update_features(dev);
1562 
1563 	if (unlikely(dev->features & NETIF_F_LRO))
1564 		netdev_WARN(dev, "failed to disable LRO!\n");
1565 
1566 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1567 		dev_disable_lro(lower_dev);
1568 }
1569 EXPORT_SYMBOL(dev_disable_lro);
1570 
1571 /**
1572  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1573  *	@dev: device
1574  *
1575  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1576  *	called under RTNL.  This is needed if Generic XDP is installed on
1577  *	the device.
1578  */
1579 static void dev_disable_gro_hw(struct net_device *dev)
1580 {
1581 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1582 	netdev_update_features(dev);
1583 
1584 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1585 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1586 }
1587 
1588 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1589 {
1590 #define N(val) 						\
1591 	case NETDEV_##val:				\
1592 		return "NETDEV_" __stringify(val);
1593 	switch (cmd) {
1594 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1595 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1596 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1597 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1598 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1599 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1600 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1601 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1602 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1603 	N(PRE_CHANGEADDR)
1604 	}
1605 #undef N
1606 	return "UNKNOWN_NETDEV_EVENT";
1607 }
1608 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1609 
1610 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1611 				   struct net_device *dev)
1612 {
1613 	struct netdev_notifier_info info = {
1614 		.dev = dev,
1615 	};
1616 
1617 	return nb->notifier_call(nb, val, &info);
1618 }
1619 
1620 static int dev_boot_phase = 1;
1621 
1622 /**
1623  * register_netdevice_notifier - register a network notifier block
1624  * @nb: notifier
1625  *
1626  * Register a notifier to be called when network device events occur.
1627  * The notifier passed is linked into the kernel structures and must
1628  * not be reused until it has been unregistered. A negative errno code
1629  * is returned on a failure.
1630  *
1631  * When registered all registration and up events are replayed
1632  * to the new notifier to allow device to have a race free
1633  * view of the network device list.
1634  */
1635 
1636 int register_netdevice_notifier(struct notifier_block *nb)
1637 {
1638 	struct net_device *dev;
1639 	struct net_device *last;
1640 	struct net *net;
1641 	int err;
1642 
1643 	/* Close race with setup_net() and cleanup_net() */
1644 	down_write(&pernet_ops_rwsem);
1645 	rtnl_lock();
1646 	err = raw_notifier_chain_register(&netdev_chain, nb);
1647 	if (err)
1648 		goto unlock;
1649 	if (dev_boot_phase)
1650 		goto unlock;
1651 	for_each_net(net) {
1652 		for_each_netdev(net, dev) {
1653 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1654 			err = notifier_to_errno(err);
1655 			if (err)
1656 				goto rollback;
1657 
1658 			if (!(dev->flags & IFF_UP))
1659 				continue;
1660 
1661 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1662 		}
1663 	}
1664 
1665 unlock:
1666 	rtnl_unlock();
1667 	up_write(&pernet_ops_rwsem);
1668 	return err;
1669 
1670 rollback:
1671 	last = dev;
1672 	for_each_net(net) {
1673 		for_each_netdev(net, dev) {
1674 			if (dev == last)
1675 				goto outroll;
1676 
1677 			if (dev->flags & IFF_UP) {
1678 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1679 							dev);
1680 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1681 			}
1682 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1683 		}
1684 	}
1685 
1686 outroll:
1687 	raw_notifier_chain_unregister(&netdev_chain, nb);
1688 	goto unlock;
1689 }
1690 EXPORT_SYMBOL(register_netdevice_notifier);
1691 
1692 /**
1693  * unregister_netdevice_notifier - unregister a network notifier block
1694  * @nb: notifier
1695  *
1696  * Unregister a notifier previously registered by
1697  * register_netdevice_notifier(). The notifier is unlinked into the
1698  * kernel structures and may then be reused. A negative errno code
1699  * is returned on a failure.
1700  *
1701  * After unregistering unregister and down device events are synthesized
1702  * for all devices on the device list to the removed notifier to remove
1703  * the need for special case cleanup code.
1704  */
1705 
1706 int unregister_netdevice_notifier(struct notifier_block *nb)
1707 {
1708 	struct net_device *dev;
1709 	struct net *net;
1710 	int err;
1711 
1712 	/* Close race with setup_net() and cleanup_net() */
1713 	down_write(&pernet_ops_rwsem);
1714 	rtnl_lock();
1715 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1716 	if (err)
1717 		goto unlock;
1718 
1719 	for_each_net(net) {
1720 		for_each_netdev(net, dev) {
1721 			if (dev->flags & IFF_UP) {
1722 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1723 							dev);
1724 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1725 			}
1726 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1727 		}
1728 	}
1729 unlock:
1730 	rtnl_unlock();
1731 	up_write(&pernet_ops_rwsem);
1732 	return err;
1733 }
1734 EXPORT_SYMBOL(unregister_netdevice_notifier);
1735 
1736 /**
1737  *	call_netdevice_notifiers_info - call all network notifier blocks
1738  *	@val: value passed unmodified to notifier function
1739  *	@info: notifier information data
1740  *
1741  *	Call all network notifier blocks.  Parameters and return value
1742  *	are as for raw_notifier_call_chain().
1743  */
1744 
1745 static int call_netdevice_notifiers_info(unsigned long val,
1746 					 struct netdev_notifier_info *info)
1747 {
1748 	ASSERT_RTNL();
1749 	return raw_notifier_call_chain(&netdev_chain, val, info);
1750 }
1751 
1752 static int call_netdevice_notifiers_extack(unsigned long val,
1753 					   struct net_device *dev,
1754 					   struct netlink_ext_ack *extack)
1755 {
1756 	struct netdev_notifier_info info = {
1757 		.dev = dev,
1758 		.extack = extack,
1759 	};
1760 
1761 	return call_netdevice_notifiers_info(val, &info);
1762 }
1763 
1764 /**
1765  *	call_netdevice_notifiers - call all network notifier blocks
1766  *      @val: value passed unmodified to notifier function
1767  *      @dev: net_device pointer passed unmodified to notifier function
1768  *
1769  *	Call all network notifier blocks.  Parameters and return value
1770  *	are as for raw_notifier_call_chain().
1771  */
1772 
1773 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1774 {
1775 	return call_netdevice_notifiers_extack(val, dev, NULL);
1776 }
1777 EXPORT_SYMBOL(call_netdevice_notifiers);
1778 
1779 /**
1780  *	call_netdevice_notifiers_mtu - call all network notifier blocks
1781  *	@val: value passed unmodified to notifier function
1782  *	@dev: net_device pointer passed unmodified to notifier function
1783  *	@arg: additional u32 argument passed to the notifier function
1784  *
1785  *	Call all network notifier blocks.  Parameters and return value
1786  *	are as for raw_notifier_call_chain().
1787  */
1788 static int call_netdevice_notifiers_mtu(unsigned long val,
1789 					struct net_device *dev, u32 arg)
1790 {
1791 	struct netdev_notifier_info_ext info = {
1792 		.info.dev = dev,
1793 		.ext.mtu = arg,
1794 	};
1795 
1796 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1797 
1798 	return call_netdevice_notifiers_info(val, &info.info);
1799 }
1800 
1801 #ifdef CONFIG_NET_INGRESS
1802 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1803 
1804 void net_inc_ingress_queue(void)
1805 {
1806 	static_branch_inc(&ingress_needed_key);
1807 }
1808 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1809 
1810 void net_dec_ingress_queue(void)
1811 {
1812 	static_branch_dec(&ingress_needed_key);
1813 }
1814 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1815 #endif
1816 
1817 #ifdef CONFIG_NET_EGRESS
1818 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1819 
1820 void net_inc_egress_queue(void)
1821 {
1822 	static_branch_inc(&egress_needed_key);
1823 }
1824 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1825 
1826 void net_dec_egress_queue(void)
1827 {
1828 	static_branch_dec(&egress_needed_key);
1829 }
1830 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1831 #endif
1832 
1833 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1834 #ifdef CONFIG_JUMP_LABEL
1835 static atomic_t netstamp_needed_deferred;
1836 static atomic_t netstamp_wanted;
1837 static void netstamp_clear(struct work_struct *work)
1838 {
1839 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1840 	int wanted;
1841 
1842 	wanted = atomic_add_return(deferred, &netstamp_wanted);
1843 	if (wanted > 0)
1844 		static_branch_enable(&netstamp_needed_key);
1845 	else
1846 		static_branch_disable(&netstamp_needed_key);
1847 }
1848 static DECLARE_WORK(netstamp_work, netstamp_clear);
1849 #endif
1850 
1851 void net_enable_timestamp(void)
1852 {
1853 #ifdef CONFIG_JUMP_LABEL
1854 	int wanted;
1855 
1856 	while (1) {
1857 		wanted = atomic_read(&netstamp_wanted);
1858 		if (wanted <= 0)
1859 			break;
1860 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1861 			return;
1862 	}
1863 	atomic_inc(&netstamp_needed_deferred);
1864 	schedule_work(&netstamp_work);
1865 #else
1866 	static_branch_inc(&netstamp_needed_key);
1867 #endif
1868 }
1869 EXPORT_SYMBOL(net_enable_timestamp);
1870 
1871 void net_disable_timestamp(void)
1872 {
1873 #ifdef CONFIG_JUMP_LABEL
1874 	int wanted;
1875 
1876 	while (1) {
1877 		wanted = atomic_read(&netstamp_wanted);
1878 		if (wanted <= 1)
1879 			break;
1880 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1881 			return;
1882 	}
1883 	atomic_dec(&netstamp_needed_deferred);
1884 	schedule_work(&netstamp_work);
1885 #else
1886 	static_branch_dec(&netstamp_needed_key);
1887 #endif
1888 }
1889 EXPORT_SYMBOL(net_disable_timestamp);
1890 
1891 static inline void net_timestamp_set(struct sk_buff *skb)
1892 {
1893 	skb->tstamp = 0;
1894 	if (static_branch_unlikely(&netstamp_needed_key))
1895 		__net_timestamp(skb);
1896 }
1897 
1898 #define net_timestamp_check(COND, SKB)				\
1899 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
1900 		if ((COND) && !(SKB)->tstamp)			\
1901 			__net_timestamp(SKB);			\
1902 	}							\
1903 
1904 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1905 {
1906 	unsigned int len;
1907 
1908 	if (!(dev->flags & IFF_UP))
1909 		return false;
1910 
1911 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1912 	if (skb->len <= len)
1913 		return true;
1914 
1915 	/* if TSO is enabled, we don't care about the length as the packet
1916 	 * could be forwarded without being segmented before
1917 	 */
1918 	if (skb_is_gso(skb))
1919 		return true;
1920 
1921 	return false;
1922 }
1923 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1924 
1925 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1926 {
1927 	int ret = ____dev_forward_skb(dev, skb);
1928 
1929 	if (likely(!ret)) {
1930 		skb->protocol = eth_type_trans(skb, dev);
1931 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1932 	}
1933 
1934 	return ret;
1935 }
1936 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1937 
1938 /**
1939  * dev_forward_skb - loopback an skb to another netif
1940  *
1941  * @dev: destination network device
1942  * @skb: buffer to forward
1943  *
1944  * return values:
1945  *	NET_RX_SUCCESS	(no congestion)
1946  *	NET_RX_DROP     (packet was dropped, but freed)
1947  *
1948  * dev_forward_skb can be used for injecting an skb from the
1949  * start_xmit function of one device into the receive queue
1950  * of another device.
1951  *
1952  * The receiving device may be in another namespace, so
1953  * we have to clear all information in the skb that could
1954  * impact namespace isolation.
1955  */
1956 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1957 {
1958 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1959 }
1960 EXPORT_SYMBOL_GPL(dev_forward_skb);
1961 
1962 static inline int deliver_skb(struct sk_buff *skb,
1963 			      struct packet_type *pt_prev,
1964 			      struct net_device *orig_dev)
1965 {
1966 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1967 		return -ENOMEM;
1968 	refcount_inc(&skb->users);
1969 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1970 }
1971 
1972 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1973 					  struct packet_type **pt,
1974 					  struct net_device *orig_dev,
1975 					  __be16 type,
1976 					  struct list_head *ptype_list)
1977 {
1978 	struct packet_type *ptype, *pt_prev = *pt;
1979 
1980 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1981 		if (ptype->type != type)
1982 			continue;
1983 		if (pt_prev)
1984 			deliver_skb(skb, pt_prev, orig_dev);
1985 		pt_prev = ptype;
1986 	}
1987 	*pt = pt_prev;
1988 }
1989 
1990 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1991 {
1992 	if (!ptype->af_packet_priv || !skb->sk)
1993 		return false;
1994 
1995 	if (ptype->id_match)
1996 		return ptype->id_match(ptype, skb->sk);
1997 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1998 		return true;
1999 
2000 	return false;
2001 }
2002 
2003 /**
2004  * dev_nit_active - return true if any network interface taps are in use
2005  *
2006  * @dev: network device to check for the presence of taps
2007  */
2008 bool dev_nit_active(struct net_device *dev)
2009 {
2010 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2011 }
2012 EXPORT_SYMBOL_GPL(dev_nit_active);
2013 
2014 /*
2015  *	Support routine. Sends outgoing frames to any network
2016  *	taps currently in use.
2017  */
2018 
2019 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2020 {
2021 	struct packet_type *ptype;
2022 	struct sk_buff *skb2 = NULL;
2023 	struct packet_type *pt_prev = NULL;
2024 	struct list_head *ptype_list = &ptype_all;
2025 
2026 	rcu_read_lock();
2027 again:
2028 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2029 		if (ptype->ignore_outgoing)
2030 			continue;
2031 
2032 		/* Never send packets back to the socket
2033 		 * they originated from - MvS (miquels@drinkel.ow.org)
2034 		 */
2035 		if (skb_loop_sk(ptype, skb))
2036 			continue;
2037 
2038 		if (pt_prev) {
2039 			deliver_skb(skb2, pt_prev, skb->dev);
2040 			pt_prev = ptype;
2041 			continue;
2042 		}
2043 
2044 		/* need to clone skb, done only once */
2045 		skb2 = skb_clone(skb, GFP_ATOMIC);
2046 		if (!skb2)
2047 			goto out_unlock;
2048 
2049 		net_timestamp_set(skb2);
2050 
2051 		/* skb->nh should be correctly
2052 		 * set by sender, so that the second statement is
2053 		 * just protection against buggy protocols.
2054 		 */
2055 		skb_reset_mac_header(skb2);
2056 
2057 		if (skb_network_header(skb2) < skb2->data ||
2058 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2059 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2060 					     ntohs(skb2->protocol),
2061 					     dev->name);
2062 			skb_reset_network_header(skb2);
2063 		}
2064 
2065 		skb2->transport_header = skb2->network_header;
2066 		skb2->pkt_type = PACKET_OUTGOING;
2067 		pt_prev = ptype;
2068 	}
2069 
2070 	if (ptype_list == &ptype_all) {
2071 		ptype_list = &dev->ptype_all;
2072 		goto again;
2073 	}
2074 out_unlock:
2075 	if (pt_prev) {
2076 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2077 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2078 		else
2079 			kfree_skb(skb2);
2080 	}
2081 	rcu_read_unlock();
2082 }
2083 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2084 
2085 /**
2086  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2087  * @dev: Network device
2088  * @txq: number of queues available
2089  *
2090  * If real_num_tx_queues is changed the tc mappings may no longer be
2091  * valid. To resolve this verify the tc mapping remains valid and if
2092  * not NULL the mapping. With no priorities mapping to this
2093  * offset/count pair it will no longer be used. In the worst case TC0
2094  * is invalid nothing can be done so disable priority mappings. If is
2095  * expected that drivers will fix this mapping if they can before
2096  * calling netif_set_real_num_tx_queues.
2097  */
2098 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2099 {
2100 	int i;
2101 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2102 
2103 	/* If TC0 is invalidated disable TC mapping */
2104 	if (tc->offset + tc->count > txq) {
2105 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2106 		dev->num_tc = 0;
2107 		return;
2108 	}
2109 
2110 	/* Invalidated prio to tc mappings set to TC0 */
2111 	for (i = 1; i < TC_BITMASK + 1; i++) {
2112 		int q = netdev_get_prio_tc_map(dev, i);
2113 
2114 		tc = &dev->tc_to_txq[q];
2115 		if (tc->offset + tc->count > txq) {
2116 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2117 				i, q);
2118 			netdev_set_prio_tc_map(dev, i, 0);
2119 		}
2120 	}
2121 }
2122 
2123 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2124 {
2125 	if (dev->num_tc) {
2126 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2127 		int i;
2128 
2129 		/* walk through the TCs and see if it falls into any of them */
2130 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2131 			if ((txq - tc->offset) < tc->count)
2132 				return i;
2133 		}
2134 
2135 		/* didn't find it, just return -1 to indicate no match */
2136 		return -1;
2137 	}
2138 
2139 	return 0;
2140 }
2141 EXPORT_SYMBOL(netdev_txq_to_tc);
2142 
2143 #ifdef CONFIG_XPS
2144 struct static_key xps_needed __read_mostly;
2145 EXPORT_SYMBOL(xps_needed);
2146 struct static_key xps_rxqs_needed __read_mostly;
2147 EXPORT_SYMBOL(xps_rxqs_needed);
2148 static DEFINE_MUTEX(xps_map_mutex);
2149 #define xmap_dereference(P)		\
2150 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2151 
2152 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2153 			     int tci, u16 index)
2154 {
2155 	struct xps_map *map = NULL;
2156 	int pos;
2157 
2158 	if (dev_maps)
2159 		map = xmap_dereference(dev_maps->attr_map[tci]);
2160 	if (!map)
2161 		return false;
2162 
2163 	for (pos = map->len; pos--;) {
2164 		if (map->queues[pos] != index)
2165 			continue;
2166 
2167 		if (map->len > 1) {
2168 			map->queues[pos] = map->queues[--map->len];
2169 			break;
2170 		}
2171 
2172 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2173 		kfree_rcu(map, rcu);
2174 		return false;
2175 	}
2176 
2177 	return true;
2178 }
2179 
2180 static bool remove_xps_queue_cpu(struct net_device *dev,
2181 				 struct xps_dev_maps *dev_maps,
2182 				 int cpu, u16 offset, u16 count)
2183 {
2184 	int num_tc = dev->num_tc ? : 1;
2185 	bool active = false;
2186 	int tci;
2187 
2188 	for (tci = cpu * num_tc; num_tc--; tci++) {
2189 		int i, j;
2190 
2191 		for (i = count, j = offset; i--; j++) {
2192 			if (!remove_xps_queue(dev_maps, tci, j))
2193 				break;
2194 		}
2195 
2196 		active |= i < 0;
2197 	}
2198 
2199 	return active;
2200 }
2201 
2202 static void reset_xps_maps(struct net_device *dev,
2203 			   struct xps_dev_maps *dev_maps,
2204 			   bool is_rxqs_map)
2205 {
2206 	if (is_rxqs_map) {
2207 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2208 		RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2209 	} else {
2210 		RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2211 	}
2212 	static_key_slow_dec_cpuslocked(&xps_needed);
2213 	kfree_rcu(dev_maps, rcu);
2214 }
2215 
2216 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2217 			   struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2218 			   u16 offset, u16 count, bool is_rxqs_map)
2219 {
2220 	bool active = false;
2221 	int i, j;
2222 
2223 	for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2224 	     j < nr_ids;)
2225 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2226 					       count);
2227 	if (!active)
2228 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2229 
2230 	if (!is_rxqs_map) {
2231 		for (i = offset + (count - 1); count--; i--) {
2232 			netdev_queue_numa_node_write(
2233 				netdev_get_tx_queue(dev, i),
2234 				NUMA_NO_NODE);
2235 		}
2236 	}
2237 }
2238 
2239 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2240 				   u16 count)
2241 {
2242 	const unsigned long *possible_mask = NULL;
2243 	struct xps_dev_maps *dev_maps;
2244 	unsigned int nr_ids;
2245 
2246 	if (!static_key_false(&xps_needed))
2247 		return;
2248 
2249 	cpus_read_lock();
2250 	mutex_lock(&xps_map_mutex);
2251 
2252 	if (static_key_false(&xps_rxqs_needed)) {
2253 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2254 		if (dev_maps) {
2255 			nr_ids = dev->num_rx_queues;
2256 			clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2257 				       offset, count, true);
2258 		}
2259 	}
2260 
2261 	dev_maps = xmap_dereference(dev->xps_cpus_map);
2262 	if (!dev_maps)
2263 		goto out_no_maps;
2264 
2265 	if (num_possible_cpus() > 1)
2266 		possible_mask = cpumask_bits(cpu_possible_mask);
2267 	nr_ids = nr_cpu_ids;
2268 	clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2269 		       false);
2270 
2271 out_no_maps:
2272 	mutex_unlock(&xps_map_mutex);
2273 	cpus_read_unlock();
2274 }
2275 
2276 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2277 {
2278 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2279 }
2280 
2281 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2282 				      u16 index, bool is_rxqs_map)
2283 {
2284 	struct xps_map *new_map;
2285 	int alloc_len = XPS_MIN_MAP_ALLOC;
2286 	int i, pos;
2287 
2288 	for (pos = 0; map && pos < map->len; pos++) {
2289 		if (map->queues[pos] != index)
2290 			continue;
2291 		return map;
2292 	}
2293 
2294 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2295 	if (map) {
2296 		if (pos < map->alloc_len)
2297 			return map;
2298 
2299 		alloc_len = map->alloc_len * 2;
2300 	}
2301 
2302 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2303 	 *  map
2304 	 */
2305 	if (is_rxqs_map)
2306 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2307 	else
2308 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2309 				       cpu_to_node(attr_index));
2310 	if (!new_map)
2311 		return NULL;
2312 
2313 	for (i = 0; i < pos; i++)
2314 		new_map->queues[i] = map->queues[i];
2315 	new_map->alloc_len = alloc_len;
2316 	new_map->len = pos;
2317 
2318 	return new_map;
2319 }
2320 
2321 /* Must be called under cpus_read_lock */
2322 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2323 			  u16 index, bool is_rxqs_map)
2324 {
2325 	const unsigned long *online_mask = NULL, *possible_mask = NULL;
2326 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2327 	int i, j, tci, numa_node_id = -2;
2328 	int maps_sz, num_tc = 1, tc = 0;
2329 	struct xps_map *map, *new_map;
2330 	bool active = false;
2331 	unsigned int nr_ids;
2332 
2333 	if (dev->num_tc) {
2334 		/* Do not allow XPS on subordinate device directly */
2335 		num_tc = dev->num_tc;
2336 		if (num_tc < 0)
2337 			return -EINVAL;
2338 
2339 		/* If queue belongs to subordinate dev use its map */
2340 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2341 
2342 		tc = netdev_txq_to_tc(dev, index);
2343 		if (tc < 0)
2344 			return -EINVAL;
2345 	}
2346 
2347 	mutex_lock(&xps_map_mutex);
2348 	if (is_rxqs_map) {
2349 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2350 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2351 		nr_ids = dev->num_rx_queues;
2352 	} else {
2353 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2354 		if (num_possible_cpus() > 1) {
2355 			online_mask = cpumask_bits(cpu_online_mask);
2356 			possible_mask = cpumask_bits(cpu_possible_mask);
2357 		}
2358 		dev_maps = xmap_dereference(dev->xps_cpus_map);
2359 		nr_ids = nr_cpu_ids;
2360 	}
2361 
2362 	if (maps_sz < L1_CACHE_BYTES)
2363 		maps_sz = L1_CACHE_BYTES;
2364 
2365 	/* allocate memory for queue storage */
2366 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2367 	     j < nr_ids;) {
2368 		if (!new_dev_maps)
2369 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2370 		if (!new_dev_maps) {
2371 			mutex_unlock(&xps_map_mutex);
2372 			return -ENOMEM;
2373 		}
2374 
2375 		tci = j * num_tc + tc;
2376 		map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2377 				 NULL;
2378 
2379 		map = expand_xps_map(map, j, index, is_rxqs_map);
2380 		if (!map)
2381 			goto error;
2382 
2383 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2384 	}
2385 
2386 	if (!new_dev_maps)
2387 		goto out_no_new_maps;
2388 
2389 	if (!dev_maps) {
2390 		/* Increment static keys at most once per type */
2391 		static_key_slow_inc_cpuslocked(&xps_needed);
2392 		if (is_rxqs_map)
2393 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2394 	}
2395 
2396 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2397 	     j < nr_ids;) {
2398 		/* copy maps belonging to foreign traffic classes */
2399 		for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2400 			/* fill in the new device map from the old device map */
2401 			map = xmap_dereference(dev_maps->attr_map[tci]);
2402 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2403 		}
2404 
2405 		/* We need to explicitly update tci as prevous loop
2406 		 * could break out early if dev_maps is NULL.
2407 		 */
2408 		tci = j * num_tc + tc;
2409 
2410 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2411 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2412 			/* add tx-queue to CPU/rx-queue maps */
2413 			int pos = 0;
2414 
2415 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2416 			while ((pos < map->len) && (map->queues[pos] != index))
2417 				pos++;
2418 
2419 			if (pos == map->len)
2420 				map->queues[map->len++] = index;
2421 #ifdef CONFIG_NUMA
2422 			if (!is_rxqs_map) {
2423 				if (numa_node_id == -2)
2424 					numa_node_id = cpu_to_node(j);
2425 				else if (numa_node_id != cpu_to_node(j))
2426 					numa_node_id = -1;
2427 			}
2428 #endif
2429 		} else if (dev_maps) {
2430 			/* fill in the new device map from the old device map */
2431 			map = xmap_dereference(dev_maps->attr_map[tci]);
2432 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2433 		}
2434 
2435 		/* copy maps belonging to foreign traffic classes */
2436 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2437 			/* fill in the new device map from the old device map */
2438 			map = xmap_dereference(dev_maps->attr_map[tci]);
2439 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2440 		}
2441 	}
2442 
2443 	if (is_rxqs_map)
2444 		rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2445 	else
2446 		rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2447 
2448 	/* Cleanup old maps */
2449 	if (!dev_maps)
2450 		goto out_no_old_maps;
2451 
2452 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2453 	     j < nr_ids;) {
2454 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2455 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2456 			map = xmap_dereference(dev_maps->attr_map[tci]);
2457 			if (map && map != new_map)
2458 				kfree_rcu(map, rcu);
2459 		}
2460 	}
2461 
2462 	kfree_rcu(dev_maps, rcu);
2463 
2464 out_no_old_maps:
2465 	dev_maps = new_dev_maps;
2466 	active = true;
2467 
2468 out_no_new_maps:
2469 	if (!is_rxqs_map) {
2470 		/* update Tx queue numa node */
2471 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2472 					     (numa_node_id >= 0) ?
2473 					     numa_node_id : NUMA_NO_NODE);
2474 	}
2475 
2476 	if (!dev_maps)
2477 		goto out_no_maps;
2478 
2479 	/* removes tx-queue from unused CPUs/rx-queues */
2480 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2481 	     j < nr_ids;) {
2482 		for (i = tc, tci = j * num_tc; i--; tci++)
2483 			active |= remove_xps_queue(dev_maps, tci, index);
2484 		if (!netif_attr_test_mask(j, mask, nr_ids) ||
2485 		    !netif_attr_test_online(j, online_mask, nr_ids))
2486 			active |= remove_xps_queue(dev_maps, tci, index);
2487 		for (i = num_tc - tc, tci++; --i; tci++)
2488 			active |= remove_xps_queue(dev_maps, tci, index);
2489 	}
2490 
2491 	/* free map if not active */
2492 	if (!active)
2493 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2494 
2495 out_no_maps:
2496 	mutex_unlock(&xps_map_mutex);
2497 
2498 	return 0;
2499 error:
2500 	/* remove any maps that we added */
2501 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2502 	     j < nr_ids;) {
2503 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2504 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2505 			map = dev_maps ?
2506 			      xmap_dereference(dev_maps->attr_map[tci]) :
2507 			      NULL;
2508 			if (new_map && new_map != map)
2509 				kfree(new_map);
2510 		}
2511 	}
2512 
2513 	mutex_unlock(&xps_map_mutex);
2514 
2515 	kfree(new_dev_maps);
2516 	return -ENOMEM;
2517 }
2518 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2519 
2520 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2521 			u16 index)
2522 {
2523 	int ret;
2524 
2525 	cpus_read_lock();
2526 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2527 	cpus_read_unlock();
2528 
2529 	return ret;
2530 }
2531 EXPORT_SYMBOL(netif_set_xps_queue);
2532 
2533 #endif
2534 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2535 {
2536 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2537 
2538 	/* Unbind any subordinate channels */
2539 	while (txq-- != &dev->_tx[0]) {
2540 		if (txq->sb_dev)
2541 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2542 	}
2543 }
2544 
2545 void netdev_reset_tc(struct net_device *dev)
2546 {
2547 #ifdef CONFIG_XPS
2548 	netif_reset_xps_queues_gt(dev, 0);
2549 #endif
2550 	netdev_unbind_all_sb_channels(dev);
2551 
2552 	/* Reset TC configuration of device */
2553 	dev->num_tc = 0;
2554 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2555 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2556 }
2557 EXPORT_SYMBOL(netdev_reset_tc);
2558 
2559 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2560 {
2561 	if (tc >= dev->num_tc)
2562 		return -EINVAL;
2563 
2564 #ifdef CONFIG_XPS
2565 	netif_reset_xps_queues(dev, offset, count);
2566 #endif
2567 	dev->tc_to_txq[tc].count = count;
2568 	dev->tc_to_txq[tc].offset = offset;
2569 	return 0;
2570 }
2571 EXPORT_SYMBOL(netdev_set_tc_queue);
2572 
2573 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2574 {
2575 	if (num_tc > TC_MAX_QUEUE)
2576 		return -EINVAL;
2577 
2578 #ifdef CONFIG_XPS
2579 	netif_reset_xps_queues_gt(dev, 0);
2580 #endif
2581 	netdev_unbind_all_sb_channels(dev);
2582 
2583 	dev->num_tc = num_tc;
2584 	return 0;
2585 }
2586 EXPORT_SYMBOL(netdev_set_num_tc);
2587 
2588 void netdev_unbind_sb_channel(struct net_device *dev,
2589 			      struct net_device *sb_dev)
2590 {
2591 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2592 
2593 #ifdef CONFIG_XPS
2594 	netif_reset_xps_queues_gt(sb_dev, 0);
2595 #endif
2596 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2597 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2598 
2599 	while (txq-- != &dev->_tx[0]) {
2600 		if (txq->sb_dev == sb_dev)
2601 			txq->sb_dev = NULL;
2602 	}
2603 }
2604 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2605 
2606 int netdev_bind_sb_channel_queue(struct net_device *dev,
2607 				 struct net_device *sb_dev,
2608 				 u8 tc, u16 count, u16 offset)
2609 {
2610 	/* Make certain the sb_dev and dev are already configured */
2611 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2612 		return -EINVAL;
2613 
2614 	/* We cannot hand out queues we don't have */
2615 	if ((offset + count) > dev->real_num_tx_queues)
2616 		return -EINVAL;
2617 
2618 	/* Record the mapping */
2619 	sb_dev->tc_to_txq[tc].count = count;
2620 	sb_dev->tc_to_txq[tc].offset = offset;
2621 
2622 	/* Provide a way for Tx queue to find the tc_to_txq map or
2623 	 * XPS map for itself.
2624 	 */
2625 	while (count--)
2626 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2627 
2628 	return 0;
2629 }
2630 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2631 
2632 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2633 {
2634 	/* Do not use a multiqueue device to represent a subordinate channel */
2635 	if (netif_is_multiqueue(dev))
2636 		return -ENODEV;
2637 
2638 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2639 	 * Channel 0 is meant to be "native" mode and used only to represent
2640 	 * the main root device. We allow writing 0 to reset the device back
2641 	 * to normal mode after being used as a subordinate channel.
2642 	 */
2643 	if (channel > S16_MAX)
2644 		return -EINVAL;
2645 
2646 	dev->num_tc = -channel;
2647 
2648 	return 0;
2649 }
2650 EXPORT_SYMBOL(netdev_set_sb_channel);
2651 
2652 /*
2653  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2654  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2655  */
2656 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2657 {
2658 	bool disabling;
2659 	int rc;
2660 
2661 	disabling = txq < dev->real_num_tx_queues;
2662 
2663 	if (txq < 1 || txq > dev->num_tx_queues)
2664 		return -EINVAL;
2665 
2666 	if (dev->reg_state == NETREG_REGISTERED ||
2667 	    dev->reg_state == NETREG_UNREGISTERING) {
2668 		ASSERT_RTNL();
2669 
2670 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2671 						  txq);
2672 		if (rc)
2673 			return rc;
2674 
2675 		if (dev->num_tc)
2676 			netif_setup_tc(dev, txq);
2677 
2678 		dev->real_num_tx_queues = txq;
2679 
2680 		if (disabling) {
2681 			synchronize_net();
2682 			qdisc_reset_all_tx_gt(dev, txq);
2683 #ifdef CONFIG_XPS
2684 			netif_reset_xps_queues_gt(dev, txq);
2685 #endif
2686 		}
2687 	} else {
2688 		dev->real_num_tx_queues = txq;
2689 	}
2690 
2691 	return 0;
2692 }
2693 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2694 
2695 #ifdef CONFIG_SYSFS
2696 /**
2697  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2698  *	@dev: Network device
2699  *	@rxq: Actual number of RX queues
2700  *
2701  *	This must be called either with the rtnl_lock held or before
2702  *	registration of the net device.  Returns 0 on success, or a
2703  *	negative error code.  If called before registration, it always
2704  *	succeeds.
2705  */
2706 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2707 {
2708 	int rc;
2709 
2710 	if (rxq < 1 || rxq > dev->num_rx_queues)
2711 		return -EINVAL;
2712 
2713 	if (dev->reg_state == NETREG_REGISTERED) {
2714 		ASSERT_RTNL();
2715 
2716 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2717 						  rxq);
2718 		if (rc)
2719 			return rc;
2720 	}
2721 
2722 	dev->real_num_rx_queues = rxq;
2723 	return 0;
2724 }
2725 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2726 #endif
2727 
2728 /**
2729  * netif_get_num_default_rss_queues - default number of RSS queues
2730  *
2731  * This routine should set an upper limit on the number of RSS queues
2732  * used by default by multiqueue devices.
2733  */
2734 int netif_get_num_default_rss_queues(void)
2735 {
2736 	return is_kdump_kernel() ?
2737 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2738 }
2739 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2740 
2741 static void __netif_reschedule(struct Qdisc *q)
2742 {
2743 	struct softnet_data *sd;
2744 	unsigned long flags;
2745 
2746 	local_irq_save(flags);
2747 	sd = this_cpu_ptr(&softnet_data);
2748 	q->next_sched = NULL;
2749 	*sd->output_queue_tailp = q;
2750 	sd->output_queue_tailp = &q->next_sched;
2751 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2752 	local_irq_restore(flags);
2753 }
2754 
2755 void __netif_schedule(struct Qdisc *q)
2756 {
2757 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2758 		__netif_reschedule(q);
2759 }
2760 EXPORT_SYMBOL(__netif_schedule);
2761 
2762 struct dev_kfree_skb_cb {
2763 	enum skb_free_reason reason;
2764 };
2765 
2766 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2767 {
2768 	return (struct dev_kfree_skb_cb *)skb->cb;
2769 }
2770 
2771 void netif_schedule_queue(struct netdev_queue *txq)
2772 {
2773 	rcu_read_lock();
2774 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2775 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2776 
2777 		__netif_schedule(q);
2778 	}
2779 	rcu_read_unlock();
2780 }
2781 EXPORT_SYMBOL(netif_schedule_queue);
2782 
2783 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2784 {
2785 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2786 		struct Qdisc *q;
2787 
2788 		rcu_read_lock();
2789 		q = rcu_dereference(dev_queue->qdisc);
2790 		__netif_schedule(q);
2791 		rcu_read_unlock();
2792 	}
2793 }
2794 EXPORT_SYMBOL(netif_tx_wake_queue);
2795 
2796 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2797 {
2798 	unsigned long flags;
2799 
2800 	if (unlikely(!skb))
2801 		return;
2802 
2803 	if (likely(refcount_read(&skb->users) == 1)) {
2804 		smp_rmb();
2805 		refcount_set(&skb->users, 0);
2806 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
2807 		return;
2808 	}
2809 	get_kfree_skb_cb(skb)->reason = reason;
2810 	local_irq_save(flags);
2811 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2812 	__this_cpu_write(softnet_data.completion_queue, skb);
2813 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2814 	local_irq_restore(flags);
2815 }
2816 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2817 
2818 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2819 {
2820 	if (in_irq() || irqs_disabled())
2821 		__dev_kfree_skb_irq(skb, reason);
2822 	else
2823 		dev_kfree_skb(skb);
2824 }
2825 EXPORT_SYMBOL(__dev_kfree_skb_any);
2826 
2827 
2828 /**
2829  * netif_device_detach - mark device as removed
2830  * @dev: network device
2831  *
2832  * Mark device as removed from system and therefore no longer available.
2833  */
2834 void netif_device_detach(struct net_device *dev)
2835 {
2836 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2837 	    netif_running(dev)) {
2838 		netif_tx_stop_all_queues(dev);
2839 	}
2840 }
2841 EXPORT_SYMBOL(netif_device_detach);
2842 
2843 /**
2844  * netif_device_attach - mark device as attached
2845  * @dev: network device
2846  *
2847  * Mark device as attached from system and restart if needed.
2848  */
2849 void netif_device_attach(struct net_device *dev)
2850 {
2851 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2852 	    netif_running(dev)) {
2853 		netif_tx_wake_all_queues(dev);
2854 		__netdev_watchdog_up(dev);
2855 	}
2856 }
2857 EXPORT_SYMBOL(netif_device_attach);
2858 
2859 /*
2860  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2861  * to be used as a distribution range.
2862  */
2863 static u16 skb_tx_hash(const struct net_device *dev,
2864 		       const struct net_device *sb_dev,
2865 		       struct sk_buff *skb)
2866 {
2867 	u32 hash;
2868 	u16 qoffset = 0;
2869 	u16 qcount = dev->real_num_tx_queues;
2870 
2871 	if (dev->num_tc) {
2872 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2873 
2874 		qoffset = sb_dev->tc_to_txq[tc].offset;
2875 		qcount = sb_dev->tc_to_txq[tc].count;
2876 	}
2877 
2878 	if (skb_rx_queue_recorded(skb)) {
2879 		hash = skb_get_rx_queue(skb);
2880 		while (unlikely(hash >= qcount))
2881 			hash -= qcount;
2882 		return hash + qoffset;
2883 	}
2884 
2885 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2886 }
2887 
2888 static void skb_warn_bad_offload(const struct sk_buff *skb)
2889 {
2890 	static const netdev_features_t null_features;
2891 	struct net_device *dev = skb->dev;
2892 	const char *name = "";
2893 
2894 	if (!net_ratelimit())
2895 		return;
2896 
2897 	if (dev) {
2898 		if (dev->dev.parent)
2899 			name = dev_driver_string(dev->dev.parent);
2900 		else
2901 			name = netdev_name(dev);
2902 	}
2903 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2904 	     "gso_type=%d ip_summed=%d\n",
2905 	     name, dev ? &dev->features : &null_features,
2906 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2907 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2908 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2909 }
2910 
2911 /*
2912  * Invalidate hardware checksum when packet is to be mangled, and
2913  * complete checksum manually on outgoing path.
2914  */
2915 int skb_checksum_help(struct sk_buff *skb)
2916 {
2917 	__wsum csum;
2918 	int ret = 0, offset;
2919 
2920 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2921 		goto out_set_summed;
2922 
2923 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2924 		skb_warn_bad_offload(skb);
2925 		return -EINVAL;
2926 	}
2927 
2928 	/* Before computing a checksum, we should make sure no frag could
2929 	 * be modified by an external entity : checksum could be wrong.
2930 	 */
2931 	if (skb_has_shared_frag(skb)) {
2932 		ret = __skb_linearize(skb);
2933 		if (ret)
2934 			goto out;
2935 	}
2936 
2937 	offset = skb_checksum_start_offset(skb);
2938 	BUG_ON(offset >= skb_headlen(skb));
2939 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2940 
2941 	offset += skb->csum_offset;
2942 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2943 
2944 	if (skb_cloned(skb) &&
2945 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2946 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2947 		if (ret)
2948 			goto out;
2949 	}
2950 
2951 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2952 out_set_summed:
2953 	skb->ip_summed = CHECKSUM_NONE;
2954 out:
2955 	return ret;
2956 }
2957 EXPORT_SYMBOL(skb_checksum_help);
2958 
2959 int skb_crc32c_csum_help(struct sk_buff *skb)
2960 {
2961 	__le32 crc32c_csum;
2962 	int ret = 0, offset, start;
2963 
2964 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2965 		goto out;
2966 
2967 	if (unlikely(skb_is_gso(skb)))
2968 		goto out;
2969 
2970 	/* Before computing a checksum, we should make sure no frag could
2971 	 * be modified by an external entity : checksum could be wrong.
2972 	 */
2973 	if (unlikely(skb_has_shared_frag(skb))) {
2974 		ret = __skb_linearize(skb);
2975 		if (ret)
2976 			goto out;
2977 	}
2978 	start = skb_checksum_start_offset(skb);
2979 	offset = start + offsetof(struct sctphdr, checksum);
2980 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2981 		ret = -EINVAL;
2982 		goto out;
2983 	}
2984 	if (skb_cloned(skb) &&
2985 	    !skb_clone_writable(skb, offset + sizeof(__le32))) {
2986 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2987 		if (ret)
2988 			goto out;
2989 	}
2990 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2991 						  skb->len - start, ~(__u32)0,
2992 						  crc32c_csum_stub));
2993 	*(__le32 *)(skb->data + offset) = crc32c_csum;
2994 	skb->ip_summed = CHECKSUM_NONE;
2995 	skb->csum_not_inet = 0;
2996 out:
2997 	return ret;
2998 }
2999 
3000 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3001 {
3002 	__be16 type = skb->protocol;
3003 
3004 	/* Tunnel gso handlers can set protocol to ethernet. */
3005 	if (type == htons(ETH_P_TEB)) {
3006 		struct ethhdr *eth;
3007 
3008 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3009 			return 0;
3010 
3011 		eth = (struct ethhdr *)skb->data;
3012 		type = eth->h_proto;
3013 	}
3014 
3015 	return __vlan_get_protocol(skb, type, depth);
3016 }
3017 
3018 /**
3019  *	skb_mac_gso_segment - mac layer segmentation handler.
3020  *	@skb: buffer to segment
3021  *	@features: features for the output path (see dev->features)
3022  */
3023 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3024 				    netdev_features_t features)
3025 {
3026 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3027 	struct packet_offload *ptype;
3028 	int vlan_depth = skb->mac_len;
3029 	__be16 type = skb_network_protocol(skb, &vlan_depth);
3030 
3031 	if (unlikely(!type))
3032 		return ERR_PTR(-EINVAL);
3033 
3034 	__skb_pull(skb, vlan_depth);
3035 
3036 	rcu_read_lock();
3037 	list_for_each_entry_rcu(ptype, &offload_base, list) {
3038 		if (ptype->type == type && ptype->callbacks.gso_segment) {
3039 			segs = ptype->callbacks.gso_segment(skb, features);
3040 			break;
3041 		}
3042 	}
3043 	rcu_read_unlock();
3044 
3045 	__skb_push(skb, skb->data - skb_mac_header(skb));
3046 
3047 	return segs;
3048 }
3049 EXPORT_SYMBOL(skb_mac_gso_segment);
3050 
3051 
3052 /* openvswitch calls this on rx path, so we need a different check.
3053  */
3054 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3055 {
3056 	if (tx_path)
3057 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3058 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3059 
3060 	return skb->ip_summed == CHECKSUM_NONE;
3061 }
3062 
3063 /**
3064  *	__skb_gso_segment - Perform segmentation on skb.
3065  *	@skb: buffer to segment
3066  *	@features: features for the output path (see dev->features)
3067  *	@tx_path: whether it is called in TX path
3068  *
3069  *	This function segments the given skb and returns a list of segments.
3070  *
3071  *	It may return NULL if the skb requires no segmentation.  This is
3072  *	only possible when GSO is used for verifying header integrity.
3073  *
3074  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3075  */
3076 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3077 				  netdev_features_t features, bool tx_path)
3078 {
3079 	struct sk_buff *segs;
3080 
3081 	if (unlikely(skb_needs_check(skb, tx_path))) {
3082 		int err;
3083 
3084 		/* We're going to init ->check field in TCP or UDP header */
3085 		err = skb_cow_head(skb, 0);
3086 		if (err < 0)
3087 			return ERR_PTR(err);
3088 	}
3089 
3090 	/* Only report GSO partial support if it will enable us to
3091 	 * support segmentation on this frame without needing additional
3092 	 * work.
3093 	 */
3094 	if (features & NETIF_F_GSO_PARTIAL) {
3095 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3096 		struct net_device *dev = skb->dev;
3097 
3098 		partial_features |= dev->features & dev->gso_partial_features;
3099 		if (!skb_gso_ok(skb, features | partial_features))
3100 			features &= ~NETIF_F_GSO_PARTIAL;
3101 	}
3102 
3103 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3104 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3105 
3106 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3107 	SKB_GSO_CB(skb)->encap_level = 0;
3108 
3109 	skb_reset_mac_header(skb);
3110 	skb_reset_mac_len(skb);
3111 
3112 	segs = skb_mac_gso_segment(skb, features);
3113 
3114 	if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3115 		skb_warn_bad_offload(skb);
3116 
3117 	return segs;
3118 }
3119 EXPORT_SYMBOL(__skb_gso_segment);
3120 
3121 /* Take action when hardware reception checksum errors are detected. */
3122 #ifdef CONFIG_BUG
3123 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3124 {
3125 	if (net_ratelimit()) {
3126 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3127 		if (dev)
3128 			pr_err("dev features: %pNF\n", &dev->features);
3129 		pr_err("skb len=%u data_len=%u pkt_type=%u gso_size=%u gso_type=%u nr_frags=%u ip_summed=%u csum=%x csum_complete_sw=%d csum_valid=%d csum_level=%u\n",
3130 		       skb->len, skb->data_len, skb->pkt_type,
3131 		       skb_shinfo(skb)->gso_size, skb_shinfo(skb)->gso_type,
3132 		       skb_shinfo(skb)->nr_frags, skb->ip_summed, skb->csum,
3133 		       skb->csum_complete_sw, skb->csum_valid, skb->csum_level);
3134 		dump_stack();
3135 	}
3136 }
3137 EXPORT_SYMBOL(netdev_rx_csum_fault);
3138 #endif
3139 
3140 /* XXX: check that highmem exists at all on the given machine. */
3141 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3142 {
3143 #ifdef CONFIG_HIGHMEM
3144 	int i;
3145 
3146 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3147 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3148 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3149 
3150 			if (PageHighMem(skb_frag_page(frag)))
3151 				return 1;
3152 		}
3153 	}
3154 #endif
3155 	return 0;
3156 }
3157 
3158 /* If MPLS offload request, verify we are testing hardware MPLS features
3159  * instead of standard features for the netdev.
3160  */
3161 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3162 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3163 					   netdev_features_t features,
3164 					   __be16 type)
3165 {
3166 	if (eth_p_mpls(type))
3167 		features &= skb->dev->mpls_features;
3168 
3169 	return features;
3170 }
3171 #else
3172 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3173 					   netdev_features_t features,
3174 					   __be16 type)
3175 {
3176 	return features;
3177 }
3178 #endif
3179 
3180 static netdev_features_t harmonize_features(struct sk_buff *skb,
3181 	netdev_features_t features)
3182 {
3183 	int tmp;
3184 	__be16 type;
3185 
3186 	type = skb_network_protocol(skb, &tmp);
3187 	features = net_mpls_features(skb, features, type);
3188 
3189 	if (skb->ip_summed != CHECKSUM_NONE &&
3190 	    !can_checksum_protocol(features, type)) {
3191 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3192 	}
3193 	if (illegal_highdma(skb->dev, skb))
3194 		features &= ~NETIF_F_SG;
3195 
3196 	return features;
3197 }
3198 
3199 netdev_features_t passthru_features_check(struct sk_buff *skb,
3200 					  struct net_device *dev,
3201 					  netdev_features_t features)
3202 {
3203 	return features;
3204 }
3205 EXPORT_SYMBOL(passthru_features_check);
3206 
3207 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3208 					     struct net_device *dev,
3209 					     netdev_features_t features)
3210 {
3211 	return vlan_features_check(skb, features);
3212 }
3213 
3214 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3215 					    struct net_device *dev,
3216 					    netdev_features_t features)
3217 {
3218 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3219 
3220 	if (gso_segs > dev->gso_max_segs)
3221 		return features & ~NETIF_F_GSO_MASK;
3222 
3223 	/* Support for GSO partial features requires software
3224 	 * intervention before we can actually process the packets
3225 	 * so we need to strip support for any partial features now
3226 	 * and we can pull them back in after we have partially
3227 	 * segmented the frame.
3228 	 */
3229 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3230 		features &= ~dev->gso_partial_features;
3231 
3232 	/* Make sure to clear the IPv4 ID mangling feature if the
3233 	 * IPv4 header has the potential to be fragmented.
3234 	 */
3235 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3236 		struct iphdr *iph = skb->encapsulation ?
3237 				    inner_ip_hdr(skb) : ip_hdr(skb);
3238 
3239 		if (!(iph->frag_off & htons(IP_DF)))
3240 			features &= ~NETIF_F_TSO_MANGLEID;
3241 	}
3242 
3243 	return features;
3244 }
3245 
3246 netdev_features_t netif_skb_features(struct sk_buff *skb)
3247 {
3248 	struct net_device *dev = skb->dev;
3249 	netdev_features_t features = dev->features;
3250 
3251 	if (skb_is_gso(skb))
3252 		features = gso_features_check(skb, dev, features);
3253 
3254 	/* If encapsulation offload request, verify we are testing
3255 	 * hardware encapsulation features instead of standard
3256 	 * features for the netdev
3257 	 */
3258 	if (skb->encapsulation)
3259 		features &= dev->hw_enc_features;
3260 
3261 	if (skb_vlan_tagged(skb))
3262 		features = netdev_intersect_features(features,
3263 						     dev->vlan_features |
3264 						     NETIF_F_HW_VLAN_CTAG_TX |
3265 						     NETIF_F_HW_VLAN_STAG_TX);
3266 
3267 	if (dev->netdev_ops->ndo_features_check)
3268 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3269 								features);
3270 	else
3271 		features &= dflt_features_check(skb, dev, features);
3272 
3273 	return harmonize_features(skb, features);
3274 }
3275 EXPORT_SYMBOL(netif_skb_features);
3276 
3277 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3278 		    struct netdev_queue *txq, bool more)
3279 {
3280 	unsigned int len;
3281 	int rc;
3282 
3283 	if (dev_nit_active(dev))
3284 		dev_queue_xmit_nit(skb, dev);
3285 
3286 	len = skb->len;
3287 	trace_net_dev_start_xmit(skb, dev);
3288 	rc = netdev_start_xmit(skb, dev, txq, more);
3289 	trace_net_dev_xmit(skb, rc, dev, len);
3290 
3291 	return rc;
3292 }
3293 
3294 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3295 				    struct netdev_queue *txq, int *ret)
3296 {
3297 	struct sk_buff *skb = first;
3298 	int rc = NETDEV_TX_OK;
3299 
3300 	while (skb) {
3301 		struct sk_buff *next = skb->next;
3302 
3303 		skb_mark_not_on_list(skb);
3304 		rc = xmit_one(skb, dev, txq, next != NULL);
3305 		if (unlikely(!dev_xmit_complete(rc))) {
3306 			skb->next = next;
3307 			goto out;
3308 		}
3309 
3310 		skb = next;
3311 		if (netif_tx_queue_stopped(txq) && skb) {
3312 			rc = NETDEV_TX_BUSY;
3313 			break;
3314 		}
3315 	}
3316 
3317 out:
3318 	*ret = rc;
3319 	return skb;
3320 }
3321 
3322 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3323 					  netdev_features_t features)
3324 {
3325 	if (skb_vlan_tag_present(skb) &&
3326 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3327 		skb = __vlan_hwaccel_push_inside(skb);
3328 	return skb;
3329 }
3330 
3331 int skb_csum_hwoffload_help(struct sk_buff *skb,
3332 			    const netdev_features_t features)
3333 {
3334 	if (unlikely(skb->csum_not_inet))
3335 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3336 			skb_crc32c_csum_help(skb);
3337 
3338 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3339 }
3340 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3341 
3342 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3343 {
3344 	netdev_features_t features;
3345 
3346 	features = netif_skb_features(skb);
3347 	skb = validate_xmit_vlan(skb, features);
3348 	if (unlikely(!skb))
3349 		goto out_null;
3350 
3351 	skb = sk_validate_xmit_skb(skb, dev);
3352 	if (unlikely(!skb))
3353 		goto out_null;
3354 
3355 	if (netif_needs_gso(skb, features)) {
3356 		struct sk_buff *segs;
3357 
3358 		segs = skb_gso_segment(skb, features);
3359 		if (IS_ERR(segs)) {
3360 			goto out_kfree_skb;
3361 		} else if (segs) {
3362 			consume_skb(skb);
3363 			skb = segs;
3364 		}
3365 	} else {
3366 		if (skb_needs_linearize(skb, features) &&
3367 		    __skb_linearize(skb))
3368 			goto out_kfree_skb;
3369 
3370 		/* If packet is not checksummed and device does not
3371 		 * support checksumming for this protocol, complete
3372 		 * checksumming here.
3373 		 */
3374 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3375 			if (skb->encapsulation)
3376 				skb_set_inner_transport_header(skb,
3377 							       skb_checksum_start_offset(skb));
3378 			else
3379 				skb_set_transport_header(skb,
3380 							 skb_checksum_start_offset(skb));
3381 			if (skb_csum_hwoffload_help(skb, features))
3382 				goto out_kfree_skb;
3383 		}
3384 	}
3385 
3386 	skb = validate_xmit_xfrm(skb, features, again);
3387 
3388 	return skb;
3389 
3390 out_kfree_skb:
3391 	kfree_skb(skb);
3392 out_null:
3393 	atomic_long_inc(&dev->tx_dropped);
3394 	return NULL;
3395 }
3396 
3397 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3398 {
3399 	struct sk_buff *next, *head = NULL, *tail;
3400 
3401 	for (; skb != NULL; skb = next) {
3402 		next = skb->next;
3403 		skb_mark_not_on_list(skb);
3404 
3405 		/* in case skb wont be segmented, point to itself */
3406 		skb->prev = skb;
3407 
3408 		skb = validate_xmit_skb(skb, dev, again);
3409 		if (!skb)
3410 			continue;
3411 
3412 		if (!head)
3413 			head = skb;
3414 		else
3415 			tail->next = skb;
3416 		/* If skb was segmented, skb->prev points to
3417 		 * the last segment. If not, it still contains skb.
3418 		 */
3419 		tail = skb->prev;
3420 	}
3421 	return head;
3422 }
3423 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3424 
3425 static void qdisc_pkt_len_init(struct sk_buff *skb)
3426 {
3427 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3428 
3429 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3430 
3431 	/* To get more precise estimation of bytes sent on wire,
3432 	 * we add to pkt_len the headers size of all segments
3433 	 */
3434 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3435 		unsigned int hdr_len;
3436 		u16 gso_segs = shinfo->gso_segs;
3437 
3438 		/* mac layer + network layer */
3439 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3440 
3441 		/* + transport layer */
3442 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3443 			const struct tcphdr *th;
3444 			struct tcphdr _tcphdr;
3445 
3446 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3447 						sizeof(_tcphdr), &_tcphdr);
3448 			if (likely(th))
3449 				hdr_len += __tcp_hdrlen(th);
3450 		} else {
3451 			struct udphdr _udphdr;
3452 
3453 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3454 					       sizeof(_udphdr), &_udphdr))
3455 				hdr_len += sizeof(struct udphdr);
3456 		}
3457 
3458 		if (shinfo->gso_type & SKB_GSO_DODGY)
3459 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3460 						shinfo->gso_size);
3461 
3462 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3463 	}
3464 }
3465 
3466 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3467 				 struct net_device *dev,
3468 				 struct netdev_queue *txq)
3469 {
3470 	spinlock_t *root_lock = qdisc_lock(q);
3471 	struct sk_buff *to_free = NULL;
3472 	bool contended;
3473 	int rc;
3474 
3475 	qdisc_calculate_pkt_len(skb, q);
3476 
3477 	if (q->flags & TCQ_F_NOLOCK) {
3478 		if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3479 			__qdisc_drop(skb, &to_free);
3480 			rc = NET_XMIT_DROP;
3481 		} else if ((q->flags & TCQ_F_CAN_BYPASS) && q->empty &&
3482 			   qdisc_run_begin(q)) {
3483 			qdisc_bstats_cpu_update(q, skb);
3484 
3485 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true))
3486 				__qdisc_run(q);
3487 
3488 			qdisc_run_end(q);
3489 			rc = NET_XMIT_SUCCESS;
3490 		} else {
3491 			rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3492 			qdisc_run(q);
3493 		}
3494 
3495 		if (unlikely(to_free))
3496 			kfree_skb_list(to_free);
3497 		return rc;
3498 	}
3499 
3500 	/*
3501 	 * Heuristic to force contended enqueues to serialize on a
3502 	 * separate lock before trying to get qdisc main lock.
3503 	 * This permits qdisc->running owner to get the lock more
3504 	 * often and dequeue packets faster.
3505 	 */
3506 	contended = qdisc_is_running(q);
3507 	if (unlikely(contended))
3508 		spin_lock(&q->busylock);
3509 
3510 	spin_lock(root_lock);
3511 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3512 		__qdisc_drop(skb, &to_free);
3513 		rc = NET_XMIT_DROP;
3514 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3515 		   qdisc_run_begin(q)) {
3516 		/*
3517 		 * This is a work-conserving queue; there are no old skbs
3518 		 * waiting to be sent out; and the qdisc is not running -
3519 		 * xmit the skb directly.
3520 		 */
3521 
3522 		qdisc_bstats_update(q, skb);
3523 
3524 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3525 			if (unlikely(contended)) {
3526 				spin_unlock(&q->busylock);
3527 				contended = false;
3528 			}
3529 			__qdisc_run(q);
3530 		}
3531 
3532 		qdisc_run_end(q);
3533 		rc = NET_XMIT_SUCCESS;
3534 	} else {
3535 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3536 		if (qdisc_run_begin(q)) {
3537 			if (unlikely(contended)) {
3538 				spin_unlock(&q->busylock);
3539 				contended = false;
3540 			}
3541 			__qdisc_run(q);
3542 			qdisc_run_end(q);
3543 		}
3544 	}
3545 	spin_unlock(root_lock);
3546 	if (unlikely(to_free))
3547 		kfree_skb_list(to_free);
3548 	if (unlikely(contended))
3549 		spin_unlock(&q->busylock);
3550 	return rc;
3551 }
3552 
3553 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3554 static void skb_update_prio(struct sk_buff *skb)
3555 {
3556 	const struct netprio_map *map;
3557 	const struct sock *sk;
3558 	unsigned int prioidx;
3559 
3560 	if (skb->priority)
3561 		return;
3562 	map = rcu_dereference_bh(skb->dev->priomap);
3563 	if (!map)
3564 		return;
3565 	sk = skb_to_full_sk(skb);
3566 	if (!sk)
3567 		return;
3568 
3569 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3570 
3571 	if (prioidx < map->priomap_len)
3572 		skb->priority = map->priomap[prioidx];
3573 }
3574 #else
3575 #define skb_update_prio(skb)
3576 #endif
3577 
3578 /**
3579  *	dev_loopback_xmit - loop back @skb
3580  *	@net: network namespace this loopback is happening in
3581  *	@sk:  sk needed to be a netfilter okfn
3582  *	@skb: buffer to transmit
3583  */
3584 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3585 {
3586 	skb_reset_mac_header(skb);
3587 	__skb_pull(skb, skb_network_offset(skb));
3588 	skb->pkt_type = PACKET_LOOPBACK;
3589 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3590 	WARN_ON(!skb_dst(skb));
3591 	skb_dst_force(skb);
3592 	netif_rx_ni(skb);
3593 	return 0;
3594 }
3595 EXPORT_SYMBOL(dev_loopback_xmit);
3596 
3597 #ifdef CONFIG_NET_EGRESS
3598 static struct sk_buff *
3599 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3600 {
3601 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3602 	struct tcf_result cl_res;
3603 
3604 	if (!miniq)
3605 		return skb;
3606 
3607 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3608 	mini_qdisc_bstats_cpu_update(miniq, skb);
3609 
3610 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3611 	case TC_ACT_OK:
3612 	case TC_ACT_RECLASSIFY:
3613 		skb->tc_index = TC_H_MIN(cl_res.classid);
3614 		break;
3615 	case TC_ACT_SHOT:
3616 		mini_qdisc_qstats_cpu_drop(miniq);
3617 		*ret = NET_XMIT_DROP;
3618 		kfree_skb(skb);
3619 		return NULL;
3620 	case TC_ACT_STOLEN:
3621 	case TC_ACT_QUEUED:
3622 	case TC_ACT_TRAP:
3623 		*ret = NET_XMIT_SUCCESS;
3624 		consume_skb(skb);
3625 		return NULL;
3626 	case TC_ACT_REDIRECT:
3627 		/* No need to push/pop skb's mac_header here on egress! */
3628 		skb_do_redirect(skb);
3629 		*ret = NET_XMIT_SUCCESS;
3630 		return NULL;
3631 	default:
3632 		break;
3633 	}
3634 
3635 	return skb;
3636 }
3637 #endif /* CONFIG_NET_EGRESS */
3638 
3639 #ifdef CONFIG_XPS
3640 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3641 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3642 {
3643 	struct xps_map *map;
3644 	int queue_index = -1;
3645 
3646 	if (dev->num_tc) {
3647 		tci *= dev->num_tc;
3648 		tci += netdev_get_prio_tc_map(dev, skb->priority);
3649 	}
3650 
3651 	map = rcu_dereference(dev_maps->attr_map[tci]);
3652 	if (map) {
3653 		if (map->len == 1)
3654 			queue_index = map->queues[0];
3655 		else
3656 			queue_index = map->queues[reciprocal_scale(
3657 						skb_get_hash(skb), map->len)];
3658 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3659 			queue_index = -1;
3660 	}
3661 	return queue_index;
3662 }
3663 #endif
3664 
3665 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3666 			 struct sk_buff *skb)
3667 {
3668 #ifdef CONFIG_XPS
3669 	struct xps_dev_maps *dev_maps;
3670 	struct sock *sk = skb->sk;
3671 	int queue_index = -1;
3672 
3673 	if (!static_key_false(&xps_needed))
3674 		return -1;
3675 
3676 	rcu_read_lock();
3677 	if (!static_key_false(&xps_rxqs_needed))
3678 		goto get_cpus_map;
3679 
3680 	dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3681 	if (dev_maps) {
3682 		int tci = sk_rx_queue_get(sk);
3683 
3684 		if (tci >= 0 && tci < dev->num_rx_queues)
3685 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3686 							  tci);
3687 	}
3688 
3689 get_cpus_map:
3690 	if (queue_index < 0) {
3691 		dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3692 		if (dev_maps) {
3693 			unsigned int tci = skb->sender_cpu - 1;
3694 
3695 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3696 							  tci);
3697 		}
3698 	}
3699 	rcu_read_unlock();
3700 
3701 	return queue_index;
3702 #else
3703 	return -1;
3704 #endif
3705 }
3706 
3707 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3708 		     struct net_device *sb_dev)
3709 {
3710 	return 0;
3711 }
3712 EXPORT_SYMBOL(dev_pick_tx_zero);
3713 
3714 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3715 		       struct net_device *sb_dev)
3716 {
3717 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3718 }
3719 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3720 
3721 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3722 		     struct net_device *sb_dev)
3723 {
3724 	struct sock *sk = skb->sk;
3725 	int queue_index = sk_tx_queue_get(sk);
3726 
3727 	sb_dev = sb_dev ? : dev;
3728 
3729 	if (queue_index < 0 || skb->ooo_okay ||
3730 	    queue_index >= dev->real_num_tx_queues) {
3731 		int new_index = get_xps_queue(dev, sb_dev, skb);
3732 
3733 		if (new_index < 0)
3734 			new_index = skb_tx_hash(dev, sb_dev, skb);
3735 
3736 		if (queue_index != new_index && sk &&
3737 		    sk_fullsock(sk) &&
3738 		    rcu_access_pointer(sk->sk_dst_cache))
3739 			sk_tx_queue_set(sk, new_index);
3740 
3741 		queue_index = new_index;
3742 	}
3743 
3744 	return queue_index;
3745 }
3746 EXPORT_SYMBOL(netdev_pick_tx);
3747 
3748 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3749 					 struct sk_buff *skb,
3750 					 struct net_device *sb_dev)
3751 {
3752 	int queue_index = 0;
3753 
3754 #ifdef CONFIG_XPS
3755 	u32 sender_cpu = skb->sender_cpu - 1;
3756 
3757 	if (sender_cpu >= (u32)NR_CPUS)
3758 		skb->sender_cpu = raw_smp_processor_id() + 1;
3759 #endif
3760 
3761 	if (dev->real_num_tx_queues != 1) {
3762 		const struct net_device_ops *ops = dev->netdev_ops;
3763 
3764 		if (ops->ndo_select_queue)
3765 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
3766 		else
3767 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
3768 
3769 		queue_index = netdev_cap_txqueue(dev, queue_index);
3770 	}
3771 
3772 	skb_set_queue_mapping(skb, queue_index);
3773 	return netdev_get_tx_queue(dev, queue_index);
3774 }
3775 
3776 /**
3777  *	__dev_queue_xmit - transmit a buffer
3778  *	@skb: buffer to transmit
3779  *	@sb_dev: suboordinate device used for L2 forwarding offload
3780  *
3781  *	Queue a buffer for transmission to a network device. The caller must
3782  *	have set the device and priority and built the buffer before calling
3783  *	this function. The function can be called from an interrupt.
3784  *
3785  *	A negative errno code is returned on a failure. A success does not
3786  *	guarantee the frame will be transmitted as it may be dropped due
3787  *	to congestion or traffic shaping.
3788  *
3789  * -----------------------------------------------------------------------------------
3790  *      I notice this method can also return errors from the queue disciplines,
3791  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3792  *      be positive.
3793  *
3794  *      Regardless of the return value, the skb is consumed, so it is currently
3795  *      difficult to retry a send to this method.  (You can bump the ref count
3796  *      before sending to hold a reference for retry if you are careful.)
3797  *
3798  *      When calling this method, interrupts MUST be enabled.  This is because
3799  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3800  *          --BLG
3801  */
3802 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3803 {
3804 	struct net_device *dev = skb->dev;
3805 	struct netdev_queue *txq;
3806 	struct Qdisc *q;
3807 	int rc = -ENOMEM;
3808 	bool again = false;
3809 
3810 	skb_reset_mac_header(skb);
3811 
3812 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3813 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3814 
3815 	/* Disable soft irqs for various locks below. Also
3816 	 * stops preemption for RCU.
3817 	 */
3818 	rcu_read_lock_bh();
3819 
3820 	skb_update_prio(skb);
3821 
3822 	qdisc_pkt_len_init(skb);
3823 #ifdef CONFIG_NET_CLS_ACT
3824 	skb->tc_at_ingress = 0;
3825 # ifdef CONFIG_NET_EGRESS
3826 	if (static_branch_unlikely(&egress_needed_key)) {
3827 		skb = sch_handle_egress(skb, &rc, dev);
3828 		if (!skb)
3829 			goto out;
3830 	}
3831 # endif
3832 #endif
3833 	/* If device/qdisc don't need skb->dst, release it right now while
3834 	 * its hot in this cpu cache.
3835 	 */
3836 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3837 		skb_dst_drop(skb);
3838 	else
3839 		skb_dst_force(skb);
3840 
3841 	txq = netdev_core_pick_tx(dev, skb, sb_dev);
3842 	q = rcu_dereference_bh(txq->qdisc);
3843 
3844 	trace_net_dev_queue(skb);
3845 	if (q->enqueue) {
3846 		rc = __dev_xmit_skb(skb, q, dev, txq);
3847 		goto out;
3848 	}
3849 
3850 	/* The device has no queue. Common case for software devices:
3851 	 * loopback, all the sorts of tunnels...
3852 
3853 	 * Really, it is unlikely that netif_tx_lock protection is necessary
3854 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3855 	 * counters.)
3856 	 * However, it is possible, that they rely on protection
3857 	 * made by us here.
3858 
3859 	 * Check this and shot the lock. It is not prone from deadlocks.
3860 	 *Either shot noqueue qdisc, it is even simpler 8)
3861 	 */
3862 	if (dev->flags & IFF_UP) {
3863 		int cpu = smp_processor_id(); /* ok because BHs are off */
3864 
3865 		if (txq->xmit_lock_owner != cpu) {
3866 			if (dev_xmit_recursion())
3867 				goto recursion_alert;
3868 
3869 			skb = validate_xmit_skb(skb, dev, &again);
3870 			if (!skb)
3871 				goto out;
3872 
3873 			HARD_TX_LOCK(dev, txq, cpu);
3874 
3875 			if (!netif_xmit_stopped(txq)) {
3876 				dev_xmit_recursion_inc();
3877 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3878 				dev_xmit_recursion_dec();
3879 				if (dev_xmit_complete(rc)) {
3880 					HARD_TX_UNLOCK(dev, txq);
3881 					goto out;
3882 				}
3883 			}
3884 			HARD_TX_UNLOCK(dev, txq);
3885 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3886 					     dev->name);
3887 		} else {
3888 			/* Recursion is detected! It is possible,
3889 			 * unfortunately
3890 			 */
3891 recursion_alert:
3892 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3893 					     dev->name);
3894 		}
3895 	}
3896 
3897 	rc = -ENETDOWN;
3898 	rcu_read_unlock_bh();
3899 
3900 	atomic_long_inc(&dev->tx_dropped);
3901 	kfree_skb_list(skb);
3902 	return rc;
3903 out:
3904 	rcu_read_unlock_bh();
3905 	return rc;
3906 }
3907 
3908 int dev_queue_xmit(struct sk_buff *skb)
3909 {
3910 	return __dev_queue_xmit(skb, NULL);
3911 }
3912 EXPORT_SYMBOL(dev_queue_xmit);
3913 
3914 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3915 {
3916 	return __dev_queue_xmit(skb, sb_dev);
3917 }
3918 EXPORT_SYMBOL(dev_queue_xmit_accel);
3919 
3920 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3921 {
3922 	struct net_device *dev = skb->dev;
3923 	struct sk_buff *orig_skb = skb;
3924 	struct netdev_queue *txq;
3925 	int ret = NETDEV_TX_BUSY;
3926 	bool again = false;
3927 
3928 	if (unlikely(!netif_running(dev) ||
3929 		     !netif_carrier_ok(dev)))
3930 		goto drop;
3931 
3932 	skb = validate_xmit_skb_list(skb, dev, &again);
3933 	if (skb != orig_skb)
3934 		goto drop;
3935 
3936 	skb_set_queue_mapping(skb, queue_id);
3937 	txq = skb_get_tx_queue(dev, skb);
3938 
3939 	local_bh_disable();
3940 
3941 	HARD_TX_LOCK(dev, txq, smp_processor_id());
3942 	if (!netif_xmit_frozen_or_drv_stopped(txq))
3943 		ret = netdev_start_xmit(skb, dev, txq, false);
3944 	HARD_TX_UNLOCK(dev, txq);
3945 
3946 	local_bh_enable();
3947 
3948 	if (!dev_xmit_complete(ret))
3949 		kfree_skb(skb);
3950 
3951 	return ret;
3952 drop:
3953 	atomic_long_inc(&dev->tx_dropped);
3954 	kfree_skb_list(skb);
3955 	return NET_XMIT_DROP;
3956 }
3957 EXPORT_SYMBOL(dev_direct_xmit);
3958 
3959 /*************************************************************************
3960  *			Receiver routines
3961  *************************************************************************/
3962 
3963 int netdev_max_backlog __read_mostly = 1000;
3964 EXPORT_SYMBOL(netdev_max_backlog);
3965 
3966 int netdev_tstamp_prequeue __read_mostly = 1;
3967 int netdev_budget __read_mostly = 300;
3968 unsigned int __read_mostly netdev_budget_usecs = 2000;
3969 int weight_p __read_mostly = 64;           /* old backlog weight */
3970 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3971 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3972 int dev_rx_weight __read_mostly = 64;
3973 int dev_tx_weight __read_mostly = 64;
3974 
3975 /* Called with irq disabled */
3976 static inline void ____napi_schedule(struct softnet_data *sd,
3977 				     struct napi_struct *napi)
3978 {
3979 	list_add_tail(&napi->poll_list, &sd->poll_list);
3980 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3981 }
3982 
3983 #ifdef CONFIG_RPS
3984 
3985 /* One global table that all flow-based protocols share. */
3986 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3987 EXPORT_SYMBOL(rps_sock_flow_table);
3988 u32 rps_cpu_mask __read_mostly;
3989 EXPORT_SYMBOL(rps_cpu_mask);
3990 
3991 struct static_key_false rps_needed __read_mostly;
3992 EXPORT_SYMBOL(rps_needed);
3993 struct static_key_false rfs_needed __read_mostly;
3994 EXPORT_SYMBOL(rfs_needed);
3995 
3996 static struct rps_dev_flow *
3997 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3998 	    struct rps_dev_flow *rflow, u16 next_cpu)
3999 {
4000 	if (next_cpu < nr_cpu_ids) {
4001 #ifdef CONFIG_RFS_ACCEL
4002 		struct netdev_rx_queue *rxqueue;
4003 		struct rps_dev_flow_table *flow_table;
4004 		struct rps_dev_flow *old_rflow;
4005 		u32 flow_id;
4006 		u16 rxq_index;
4007 		int rc;
4008 
4009 		/* Should we steer this flow to a different hardware queue? */
4010 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4011 		    !(dev->features & NETIF_F_NTUPLE))
4012 			goto out;
4013 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4014 		if (rxq_index == skb_get_rx_queue(skb))
4015 			goto out;
4016 
4017 		rxqueue = dev->_rx + rxq_index;
4018 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4019 		if (!flow_table)
4020 			goto out;
4021 		flow_id = skb_get_hash(skb) & flow_table->mask;
4022 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4023 							rxq_index, flow_id);
4024 		if (rc < 0)
4025 			goto out;
4026 		old_rflow = rflow;
4027 		rflow = &flow_table->flows[flow_id];
4028 		rflow->filter = rc;
4029 		if (old_rflow->filter == rflow->filter)
4030 			old_rflow->filter = RPS_NO_FILTER;
4031 	out:
4032 #endif
4033 		rflow->last_qtail =
4034 			per_cpu(softnet_data, next_cpu).input_queue_head;
4035 	}
4036 
4037 	rflow->cpu = next_cpu;
4038 	return rflow;
4039 }
4040 
4041 /*
4042  * get_rps_cpu is called from netif_receive_skb and returns the target
4043  * CPU from the RPS map of the receiving queue for a given skb.
4044  * rcu_read_lock must be held on entry.
4045  */
4046 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4047 		       struct rps_dev_flow **rflowp)
4048 {
4049 	const struct rps_sock_flow_table *sock_flow_table;
4050 	struct netdev_rx_queue *rxqueue = dev->_rx;
4051 	struct rps_dev_flow_table *flow_table;
4052 	struct rps_map *map;
4053 	int cpu = -1;
4054 	u32 tcpu;
4055 	u32 hash;
4056 
4057 	if (skb_rx_queue_recorded(skb)) {
4058 		u16 index = skb_get_rx_queue(skb);
4059 
4060 		if (unlikely(index >= dev->real_num_rx_queues)) {
4061 			WARN_ONCE(dev->real_num_rx_queues > 1,
4062 				  "%s received packet on queue %u, but number "
4063 				  "of RX queues is %u\n",
4064 				  dev->name, index, dev->real_num_rx_queues);
4065 			goto done;
4066 		}
4067 		rxqueue += index;
4068 	}
4069 
4070 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4071 
4072 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4073 	map = rcu_dereference(rxqueue->rps_map);
4074 	if (!flow_table && !map)
4075 		goto done;
4076 
4077 	skb_reset_network_header(skb);
4078 	hash = skb_get_hash(skb);
4079 	if (!hash)
4080 		goto done;
4081 
4082 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4083 	if (flow_table && sock_flow_table) {
4084 		struct rps_dev_flow *rflow;
4085 		u32 next_cpu;
4086 		u32 ident;
4087 
4088 		/* First check into global flow table if there is a match */
4089 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4090 		if ((ident ^ hash) & ~rps_cpu_mask)
4091 			goto try_rps;
4092 
4093 		next_cpu = ident & rps_cpu_mask;
4094 
4095 		/* OK, now we know there is a match,
4096 		 * we can look at the local (per receive queue) flow table
4097 		 */
4098 		rflow = &flow_table->flows[hash & flow_table->mask];
4099 		tcpu = rflow->cpu;
4100 
4101 		/*
4102 		 * If the desired CPU (where last recvmsg was done) is
4103 		 * different from current CPU (one in the rx-queue flow
4104 		 * table entry), switch if one of the following holds:
4105 		 *   - Current CPU is unset (>= nr_cpu_ids).
4106 		 *   - Current CPU is offline.
4107 		 *   - The current CPU's queue tail has advanced beyond the
4108 		 *     last packet that was enqueued using this table entry.
4109 		 *     This guarantees that all previous packets for the flow
4110 		 *     have been dequeued, thus preserving in order delivery.
4111 		 */
4112 		if (unlikely(tcpu != next_cpu) &&
4113 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4114 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4115 		      rflow->last_qtail)) >= 0)) {
4116 			tcpu = next_cpu;
4117 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4118 		}
4119 
4120 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4121 			*rflowp = rflow;
4122 			cpu = tcpu;
4123 			goto done;
4124 		}
4125 	}
4126 
4127 try_rps:
4128 
4129 	if (map) {
4130 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4131 		if (cpu_online(tcpu)) {
4132 			cpu = tcpu;
4133 			goto done;
4134 		}
4135 	}
4136 
4137 done:
4138 	return cpu;
4139 }
4140 
4141 #ifdef CONFIG_RFS_ACCEL
4142 
4143 /**
4144  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4145  * @dev: Device on which the filter was set
4146  * @rxq_index: RX queue index
4147  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4148  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4149  *
4150  * Drivers that implement ndo_rx_flow_steer() should periodically call
4151  * this function for each installed filter and remove the filters for
4152  * which it returns %true.
4153  */
4154 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4155 			 u32 flow_id, u16 filter_id)
4156 {
4157 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4158 	struct rps_dev_flow_table *flow_table;
4159 	struct rps_dev_flow *rflow;
4160 	bool expire = true;
4161 	unsigned int cpu;
4162 
4163 	rcu_read_lock();
4164 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4165 	if (flow_table && flow_id <= flow_table->mask) {
4166 		rflow = &flow_table->flows[flow_id];
4167 		cpu = READ_ONCE(rflow->cpu);
4168 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4169 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4170 			   rflow->last_qtail) <
4171 		     (int)(10 * flow_table->mask)))
4172 			expire = false;
4173 	}
4174 	rcu_read_unlock();
4175 	return expire;
4176 }
4177 EXPORT_SYMBOL(rps_may_expire_flow);
4178 
4179 #endif /* CONFIG_RFS_ACCEL */
4180 
4181 /* Called from hardirq (IPI) context */
4182 static void rps_trigger_softirq(void *data)
4183 {
4184 	struct softnet_data *sd = data;
4185 
4186 	____napi_schedule(sd, &sd->backlog);
4187 	sd->received_rps++;
4188 }
4189 
4190 #endif /* CONFIG_RPS */
4191 
4192 /*
4193  * Check if this softnet_data structure is another cpu one
4194  * If yes, queue it to our IPI list and return 1
4195  * If no, return 0
4196  */
4197 static int rps_ipi_queued(struct softnet_data *sd)
4198 {
4199 #ifdef CONFIG_RPS
4200 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4201 
4202 	if (sd != mysd) {
4203 		sd->rps_ipi_next = mysd->rps_ipi_list;
4204 		mysd->rps_ipi_list = sd;
4205 
4206 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4207 		return 1;
4208 	}
4209 #endif /* CONFIG_RPS */
4210 	return 0;
4211 }
4212 
4213 #ifdef CONFIG_NET_FLOW_LIMIT
4214 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4215 #endif
4216 
4217 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4218 {
4219 #ifdef CONFIG_NET_FLOW_LIMIT
4220 	struct sd_flow_limit *fl;
4221 	struct softnet_data *sd;
4222 	unsigned int old_flow, new_flow;
4223 
4224 	if (qlen < (netdev_max_backlog >> 1))
4225 		return false;
4226 
4227 	sd = this_cpu_ptr(&softnet_data);
4228 
4229 	rcu_read_lock();
4230 	fl = rcu_dereference(sd->flow_limit);
4231 	if (fl) {
4232 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4233 		old_flow = fl->history[fl->history_head];
4234 		fl->history[fl->history_head] = new_flow;
4235 
4236 		fl->history_head++;
4237 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4238 
4239 		if (likely(fl->buckets[old_flow]))
4240 			fl->buckets[old_flow]--;
4241 
4242 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4243 			fl->count++;
4244 			rcu_read_unlock();
4245 			return true;
4246 		}
4247 	}
4248 	rcu_read_unlock();
4249 #endif
4250 	return false;
4251 }
4252 
4253 /*
4254  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4255  * queue (may be a remote CPU queue).
4256  */
4257 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4258 			      unsigned int *qtail)
4259 {
4260 	struct softnet_data *sd;
4261 	unsigned long flags;
4262 	unsigned int qlen;
4263 
4264 	sd = &per_cpu(softnet_data, cpu);
4265 
4266 	local_irq_save(flags);
4267 
4268 	rps_lock(sd);
4269 	if (!netif_running(skb->dev))
4270 		goto drop;
4271 	qlen = skb_queue_len(&sd->input_pkt_queue);
4272 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4273 		if (qlen) {
4274 enqueue:
4275 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4276 			input_queue_tail_incr_save(sd, qtail);
4277 			rps_unlock(sd);
4278 			local_irq_restore(flags);
4279 			return NET_RX_SUCCESS;
4280 		}
4281 
4282 		/* Schedule NAPI for backlog device
4283 		 * We can use non atomic operation since we own the queue lock
4284 		 */
4285 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4286 			if (!rps_ipi_queued(sd))
4287 				____napi_schedule(sd, &sd->backlog);
4288 		}
4289 		goto enqueue;
4290 	}
4291 
4292 drop:
4293 	sd->dropped++;
4294 	rps_unlock(sd);
4295 
4296 	local_irq_restore(flags);
4297 
4298 	atomic_long_inc(&skb->dev->rx_dropped);
4299 	kfree_skb(skb);
4300 	return NET_RX_DROP;
4301 }
4302 
4303 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4304 {
4305 	struct net_device *dev = skb->dev;
4306 	struct netdev_rx_queue *rxqueue;
4307 
4308 	rxqueue = dev->_rx;
4309 
4310 	if (skb_rx_queue_recorded(skb)) {
4311 		u16 index = skb_get_rx_queue(skb);
4312 
4313 		if (unlikely(index >= dev->real_num_rx_queues)) {
4314 			WARN_ONCE(dev->real_num_rx_queues > 1,
4315 				  "%s received packet on queue %u, but number "
4316 				  "of RX queues is %u\n",
4317 				  dev->name, index, dev->real_num_rx_queues);
4318 
4319 			return rxqueue; /* Return first rxqueue */
4320 		}
4321 		rxqueue += index;
4322 	}
4323 	return rxqueue;
4324 }
4325 
4326 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4327 				     struct xdp_buff *xdp,
4328 				     struct bpf_prog *xdp_prog)
4329 {
4330 	struct netdev_rx_queue *rxqueue;
4331 	void *orig_data, *orig_data_end;
4332 	u32 metalen, act = XDP_DROP;
4333 	__be16 orig_eth_type;
4334 	struct ethhdr *eth;
4335 	bool orig_bcast;
4336 	int hlen, off;
4337 	u32 mac_len;
4338 
4339 	/* Reinjected packets coming from act_mirred or similar should
4340 	 * not get XDP generic processing.
4341 	 */
4342 	if (skb_cloned(skb) || skb_is_tc_redirected(skb))
4343 		return XDP_PASS;
4344 
4345 	/* XDP packets must be linear and must have sufficient headroom
4346 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4347 	 * native XDP provides, thus we need to do it here as well.
4348 	 */
4349 	if (skb_is_nonlinear(skb) ||
4350 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4351 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4352 		int troom = skb->tail + skb->data_len - skb->end;
4353 
4354 		/* In case we have to go down the path and also linearize,
4355 		 * then lets do the pskb_expand_head() work just once here.
4356 		 */
4357 		if (pskb_expand_head(skb,
4358 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4359 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4360 			goto do_drop;
4361 		if (skb_linearize(skb))
4362 			goto do_drop;
4363 	}
4364 
4365 	/* The XDP program wants to see the packet starting at the MAC
4366 	 * header.
4367 	 */
4368 	mac_len = skb->data - skb_mac_header(skb);
4369 	hlen = skb_headlen(skb) + mac_len;
4370 	xdp->data = skb->data - mac_len;
4371 	xdp->data_meta = xdp->data;
4372 	xdp->data_end = xdp->data + hlen;
4373 	xdp->data_hard_start = skb->data - skb_headroom(skb);
4374 	orig_data_end = xdp->data_end;
4375 	orig_data = xdp->data;
4376 	eth = (struct ethhdr *)xdp->data;
4377 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4378 	orig_eth_type = eth->h_proto;
4379 
4380 	rxqueue = netif_get_rxqueue(skb);
4381 	xdp->rxq = &rxqueue->xdp_rxq;
4382 
4383 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4384 
4385 	off = xdp->data - orig_data;
4386 	if (off > 0)
4387 		__skb_pull(skb, off);
4388 	else if (off < 0)
4389 		__skb_push(skb, -off);
4390 	skb->mac_header += off;
4391 
4392 	/* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4393 	 * pckt.
4394 	 */
4395 	off = orig_data_end - xdp->data_end;
4396 	if (off != 0) {
4397 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4398 		skb->len -= off;
4399 
4400 	}
4401 
4402 	/* check if XDP changed eth hdr such SKB needs update */
4403 	eth = (struct ethhdr *)xdp->data;
4404 	if ((orig_eth_type != eth->h_proto) ||
4405 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4406 		__skb_push(skb, ETH_HLEN);
4407 		skb->protocol = eth_type_trans(skb, skb->dev);
4408 	}
4409 
4410 	switch (act) {
4411 	case XDP_REDIRECT:
4412 	case XDP_TX:
4413 		__skb_push(skb, mac_len);
4414 		break;
4415 	case XDP_PASS:
4416 		metalen = xdp->data - xdp->data_meta;
4417 		if (metalen)
4418 			skb_metadata_set(skb, metalen);
4419 		break;
4420 	default:
4421 		bpf_warn_invalid_xdp_action(act);
4422 		/* fall through */
4423 	case XDP_ABORTED:
4424 		trace_xdp_exception(skb->dev, xdp_prog, act);
4425 		/* fall through */
4426 	case XDP_DROP:
4427 	do_drop:
4428 		kfree_skb(skb);
4429 		break;
4430 	}
4431 
4432 	return act;
4433 }
4434 
4435 /* When doing generic XDP we have to bypass the qdisc layer and the
4436  * network taps in order to match in-driver-XDP behavior.
4437  */
4438 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4439 {
4440 	struct net_device *dev = skb->dev;
4441 	struct netdev_queue *txq;
4442 	bool free_skb = true;
4443 	int cpu, rc;
4444 
4445 	txq = netdev_core_pick_tx(dev, skb, NULL);
4446 	cpu = smp_processor_id();
4447 	HARD_TX_LOCK(dev, txq, cpu);
4448 	if (!netif_xmit_stopped(txq)) {
4449 		rc = netdev_start_xmit(skb, dev, txq, 0);
4450 		if (dev_xmit_complete(rc))
4451 			free_skb = false;
4452 	}
4453 	HARD_TX_UNLOCK(dev, txq);
4454 	if (free_skb) {
4455 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4456 		kfree_skb(skb);
4457 	}
4458 }
4459 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4460 
4461 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4462 
4463 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4464 {
4465 	if (xdp_prog) {
4466 		struct xdp_buff xdp;
4467 		u32 act;
4468 		int err;
4469 
4470 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4471 		if (act != XDP_PASS) {
4472 			switch (act) {
4473 			case XDP_REDIRECT:
4474 				err = xdp_do_generic_redirect(skb->dev, skb,
4475 							      &xdp, xdp_prog);
4476 				if (err)
4477 					goto out_redir;
4478 				break;
4479 			case XDP_TX:
4480 				generic_xdp_tx(skb, xdp_prog);
4481 				break;
4482 			}
4483 			return XDP_DROP;
4484 		}
4485 	}
4486 	return XDP_PASS;
4487 out_redir:
4488 	kfree_skb(skb);
4489 	return XDP_DROP;
4490 }
4491 EXPORT_SYMBOL_GPL(do_xdp_generic);
4492 
4493 static int netif_rx_internal(struct sk_buff *skb)
4494 {
4495 	int ret;
4496 
4497 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4498 
4499 	trace_netif_rx(skb);
4500 
4501 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
4502 		int ret;
4503 
4504 		preempt_disable();
4505 		rcu_read_lock();
4506 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4507 		rcu_read_unlock();
4508 		preempt_enable();
4509 
4510 		/* Consider XDP consuming the packet a success from
4511 		 * the netdev point of view we do not want to count
4512 		 * this as an error.
4513 		 */
4514 		if (ret != XDP_PASS)
4515 			return NET_RX_SUCCESS;
4516 	}
4517 
4518 #ifdef CONFIG_RPS
4519 	if (static_branch_unlikely(&rps_needed)) {
4520 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4521 		int cpu;
4522 
4523 		preempt_disable();
4524 		rcu_read_lock();
4525 
4526 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4527 		if (cpu < 0)
4528 			cpu = smp_processor_id();
4529 
4530 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4531 
4532 		rcu_read_unlock();
4533 		preempt_enable();
4534 	} else
4535 #endif
4536 	{
4537 		unsigned int qtail;
4538 
4539 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4540 		put_cpu();
4541 	}
4542 	return ret;
4543 }
4544 
4545 /**
4546  *	netif_rx	-	post buffer to the network code
4547  *	@skb: buffer to post
4548  *
4549  *	This function receives a packet from a device driver and queues it for
4550  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4551  *	may be dropped during processing for congestion control or by the
4552  *	protocol layers.
4553  *
4554  *	return values:
4555  *	NET_RX_SUCCESS	(no congestion)
4556  *	NET_RX_DROP     (packet was dropped)
4557  *
4558  */
4559 
4560 int netif_rx(struct sk_buff *skb)
4561 {
4562 	int ret;
4563 
4564 	trace_netif_rx_entry(skb);
4565 
4566 	ret = netif_rx_internal(skb);
4567 	trace_netif_rx_exit(ret);
4568 
4569 	return ret;
4570 }
4571 EXPORT_SYMBOL(netif_rx);
4572 
4573 int netif_rx_ni(struct sk_buff *skb)
4574 {
4575 	int err;
4576 
4577 	trace_netif_rx_ni_entry(skb);
4578 
4579 	preempt_disable();
4580 	err = netif_rx_internal(skb);
4581 	if (local_softirq_pending())
4582 		do_softirq();
4583 	preempt_enable();
4584 	trace_netif_rx_ni_exit(err);
4585 
4586 	return err;
4587 }
4588 EXPORT_SYMBOL(netif_rx_ni);
4589 
4590 static __latent_entropy void net_tx_action(struct softirq_action *h)
4591 {
4592 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4593 
4594 	if (sd->completion_queue) {
4595 		struct sk_buff *clist;
4596 
4597 		local_irq_disable();
4598 		clist = sd->completion_queue;
4599 		sd->completion_queue = NULL;
4600 		local_irq_enable();
4601 
4602 		while (clist) {
4603 			struct sk_buff *skb = clist;
4604 
4605 			clist = clist->next;
4606 
4607 			WARN_ON(refcount_read(&skb->users));
4608 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4609 				trace_consume_skb(skb);
4610 			else
4611 				trace_kfree_skb(skb, net_tx_action);
4612 
4613 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4614 				__kfree_skb(skb);
4615 			else
4616 				__kfree_skb_defer(skb);
4617 		}
4618 
4619 		__kfree_skb_flush();
4620 	}
4621 
4622 	if (sd->output_queue) {
4623 		struct Qdisc *head;
4624 
4625 		local_irq_disable();
4626 		head = sd->output_queue;
4627 		sd->output_queue = NULL;
4628 		sd->output_queue_tailp = &sd->output_queue;
4629 		local_irq_enable();
4630 
4631 		while (head) {
4632 			struct Qdisc *q = head;
4633 			spinlock_t *root_lock = NULL;
4634 
4635 			head = head->next_sched;
4636 
4637 			if (!(q->flags & TCQ_F_NOLOCK)) {
4638 				root_lock = qdisc_lock(q);
4639 				spin_lock(root_lock);
4640 			}
4641 			/* We need to make sure head->next_sched is read
4642 			 * before clearing __QDISC_STATE_SCHED
4643 			 */
4644 			smp_mb__before_atomic();
4645 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4646 			qdisc_run(q);
4647 			if (root_lock)
4648 				spin_unlock(root_lock);
4649 		}
4650 	}
4651 
4652 	xfrm_dev_backlog(sd);
4653 }
4654 
4655 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4656 /* This hook is defined here for ATM LANE */
4657 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4658 			     unsigned char *addr) __read_mostly;
4659 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4660 #endif
4661 
4662 static inline struct sk_buff *
4663 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4664 		   struct net_device *orig_dev)
4665 {
4666 #ifdef CONFIG_NET_CLS_ACT
4667 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4668 	struct tcf_result cl_res;
4669 
4670 	/* If there's at least one ingress present somewhere (so
4671 	 * we get here via enabled static key), remaining devices
4672 	 * that are not configured with an ingress qdisc will bail
4673 	 * out here.
4674 	 */
4675 	if (!miniq)
4676 		return skb;
4677 
4678 	if (*pt_prev) {
4679 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4680 		*pt_prev = NULL;
4681 	}
4682 
4683 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4684 	skb->tc_at_ingress = 1;
4685 	mini_qdisc_bstats_cpu_update(miniq, skb);
4686 
4687 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4688 	case TC_ACT_OK:
4689 	case TC_ACT_RECLASSIFY:
4690 		skb->tc_index = TC_H_MIN(cl_res.classid);
4691 		break;
4692 	case TC_ACT_SHOT:
4693 		mini_qdisc_qstats_cpu_drop(miniq);
4694 		kfree_skb(skb);
4695 		return NULL;
4696 	case TC_ACT_STOLEN:
4697 	case TC_ACT_QUEUED:
4698 	case TC_ACT_TRAP:
4699 		consume_skb(skb);
4700 		return NULL;
4701 	case TC_ACT_REDIRECT:
4702 		/* skb_mac_header check was done by cls/act_bpf, so
4703 		 * we can safely push the L2 header back before
4704 		 * redirecting to another netdev
4705 		 */
4706 		__skb_push(skb, skb->mac_len);
4707 		skb_do_redirect(skb);
4708 		return NULL;
4709 	case TC_ACT_REINSERT:
4710 		/* this does not scrub the packet, and updates stats on error */
4711 		skb_tc_reinsert(skb, &cl_res);
4712 		return NULL;
4713 	default:
4714 		break;
4715 	}
4716 #endif /* CONFIG_NET_CLS_ACT */
4717 	return skb;
4718 }
4719 
4720 /**
4721  *	netdev_is_rx_handler_busy - check if receive handler is registered
4722  *	@dev: device to check
4723  *
4724  *	Check if a receive handler is already registered for a given device.
4725  *	Return true if there one.
4726  *
4727  *	The caller must hold the rtnl_mutex.
4728  */
4729 bool netdev_is_rx_handler_busy(struct net_device *dev)
4730 {
4731 	ASSERT_RTNL();
4732 	return dev && rtnl_dereference(dev->rx_handler);
4733 }
4734 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4735 
4736 /**
4737  *	netdev_rx_handler_register - register receive handler
4738  *	@dev: device to register a handler for
4739  *	@rx_handler: receive handler to register
4740  *	@rx_handler_data: data pointer that is used by rx handler
4741  *
4742  *	Register a receive handler for a device. This handler will then be
4743  *	called from __netif_receive_skb. A negative errno code is returned
4744  *	on a failure.
4745  *
4746  *	The caller must hold the rtnl_mutex.
4747  *
4748  *	For a general description of rx_handler, see enum rx_handler_result.
4749  */
4750 int netdev_rx_handler_register(struct net_device *dev,
4751 			       rx_handler_func_t *rx_handler,
4752 			       void *rx_handler_data)
4753 {
4754 	if (netdev_is_rx_handler_busy(dev))
4755 		return -EBUSY;
4756 
4757 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
4758 		return -EINVAL;
4759 
4760 	/* Note: rx_handler_data must be set before rx_handler */
4761 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4762 	rcu_assign_pointer(dev->rx_handler, rx_handler);
4763 
4764 	return 0;
4765 }
4766 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4767 
4768 /**
4769  *	netdev_rx_handler_unregister - unregister receive handler
4770  *	@dev: device to unregister a handler from
4771  *
4772  *	Unregister a receive handler from a device.
4773  *
4774  *	The caller must hold the rtnl_mutex.
4775  */
4776 void netdev_rx_handler_unregister(struct net_device *dev)
4777 {
4778 
4779 	ASSERT_RTNL();
4780 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4781 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4782 	 * section has a guarantee to see a non NULL rx_handler_data
4783 	 * as well.
4784 	 */
4785 	synchronize_net();
4786 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4787 }
4788 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4789 
4790 /*
4791  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4792  * the special handling of PFMEMALLOC skbs.
4793  */
4794 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4795 {
4796 	switch (skb->protocol) {
4797 	case htons(ETH_P_ARP):
4798 	case htons(ETH_P_IP):
4799 	case htons(ETH_P_IPV6):
4800 	case htons(ETH_P_8021Q):
4801 	case htons(ETH_P_8021AD):
4802 		return true;
4803 	default:
4804 		return false;
4805 	}
4806 }
4807 
4808 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4809 			     int *ret, struct net_device *orig_dev)
4810 {
4811 #ifdef CONFIG_NETFILTER_INGRESS
4812 	if (nf_hook_ingress_active(skb)) {
4813 		int ingress_retval;
4814 
4815 		if (*pt_prev) {
4816 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4817 			*pt_prev = NULL;
4818 		}
4819 
4820 		rcu_read_lock();
4821 		ingress_retval = nf_hook_ingress(skb);
4822 		rcu_read_unlock();
4823 		return ingress_retval;
4824 	}
4825 #endif /* CONFIG_NETFILTER_INGRESS */
4826 	return 0;
4827 }
4828 
4829 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4830 				    struct packet_type **ppt_prev)
4831 {
4832 	struct packet_type *ptype, *pt_prev;
4833 	rx_handler_func_t *rx_handler;
4834 	struct net_device *orig_dev;
4835 	bool deliver_exact = false;
4836 	int ret = NET_RX_DROP;
4837 	__be16 type;
4838 
4839 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4840 
4841 	trace_netif_receive_skb(skb);
4842 
4843 	orig_dev = skb->dev;
4844 
4845 	skb_reset_network_header(skb);
4846 	if (!skb_transport_header_was_set(skb))
4847 		skb_reset_transport_header(skb);
4848 	skb_reset_mac_len(skb);
4849 
4850 	pt_prev = NULL;
4851 
4852 another_round:
4853 	skb->skb_iif = skb->dev->ifindex;
4854 
4855 	__this_cpu_inc(softnet_data.processed);
4856 
4857 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4858 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4859 		skb = skb_vlan_untag(skb);
4860 		if (unlikely(!skb))
4861 			goto out;
4862 	}
4863 
4864 	if (skb_skip_tc_classify(skb))
4865 		goto skip_classify;
4866 
4867 	if (pfmemalloc)
4868 		goto skip_taps;
4869 
4870 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
4871 		if (pt_prev)
4872 			ret = deliver_skb(skb, pt_prev, orig_dev);
4873 		pt_prev = ptype;
4874 	}
4875 
4876 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4877 		if (pt_prev)
4878 			ret = deliver_skb(skb, pt_prev, orig_dev);
4879 		pt_prev = ptype;
4880 	}
4881 
4882 skip_taps:
4883 #ifdef CONFIG_NET_INGRESS
4884 	if (static_branch_unlikely(&ingress_needed_key)) {
4885 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4886 		if (!skb)
4887 			goto out;
4888 
4889 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4890 			goto out;
4891 	}
4892 #endif
4893 	skb_reset_tc(skb);
4894 skip_classify:
4895 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4896 		goto drop;
4897 
4898 	if (skb_vlan_tag_present(skb)) {
4899 		if (pt_prev) {
4900 			ret = deliver_skb(skb, pt_prev, orig_dev);
4901 			pt_prev = NULL;
4902 		}
4903 		if (vlan_do_receive(&skb))
4904 			goto another_round;
4905 		else if (unlikely(!skb))
4906 			goto out;
4907 	}
4908 
4909 	rx_handler = rcu_dereference(skb->dev->rx_handler);
4910 	if (rx_handler) {
4911 		if (pt_prev) {
4912 			ret = deliver_skb(skb, pt_prev, orig_dev);
4913 			pt_prev = NULL;
4914 		}
4915 		switch (rx_handler(&skb)) {
4916 		case RX_HANDLER_CONSUMED:
4917 			ret = NET_RX_SUCCESS;
4918 			goto out;
4919 		case RX_HANDLER_ANOTHER:
4920 			goto another_round;
4921 		case RX_HANDLER_EXACT:
4922 			deliver_exact = true;
4923 		case RX_HANDLER_PASS:
4924 			break;
4925 		default:
4926 			BUG();
4927 		}
4928 	}
4929 
4930 	if (unlikely(skb_vlan_tag_present(skb))) {
4931 		if (skb_vlan_tag_get_id(skb))
4932 			skb->pkt_type = PACKET_OTHERHOST;
4933 		/* Note: we might in the future use prio bits
4934 		 * and set skb->priority like in vlan_do_receive()
4935 		 * For the time being, just ignore Priority Code Point
4936 		 */
4937 		__vlan_hwaccel_clear_tag(skb);
4938 	}
4939 
4940 	type = skb->protocol;
4941 
4942 	/* deliver only exact match when indicated */
4943 	if (likely(!deliver_exact)) {
4944 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4945 				       &ptype_base[ntohs(type) &
4946 						   PTYPE_HASH_MASK]);
4947 	}
4948 
4949 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4950 			       &orig_dev->ptype_specific);
4951 
4952 	if (unlikely(skb->dev != orig_dev)) {
4953 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4954 				       &skb->dev->ptype_specific);
4955 	}
4956 
4957 	if (pt_prev) {
4958 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4959 			goto drop;
4960 		*ppt_prev = pt_prev;
4961 	} else {
4962 drop:
4963 		if (!deliver_exact)
4964 			atomic_long_inc(&skb->dev->rx_dropped);
4965 		else
4966 			atomic_long_inc(&skb->dev->rx_nohandler);
4967 		kfree_skb(skb);
4968 		/* Jamal, now you will not able to escape explaining
4969 		 * me how you were going to use this. :-)
4970 		 */
4971 		ret = NET_RX_DROP;
4972 	}
4973 
4974 out:
4975 	return ret;
4976 }
4977 
4978 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4979 {
4980 	struct net_device *orig_dev = skb->dev;
4981 	struct packet_type *pt_prev = NULL;
4982 	int ret;
4983 
4984 	ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4985 	if (pt_prev)
4986 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
4987 					 skb->dev, pt_prev, orig_dev);
4988 	return ret;
4989 }
4990 
4991 /**
4992  *	netif_receive_skb_core - special purpose version of netif_receive_skb
4993  *	@skb: buffer to process
4994  *
4995  *	More direct receive version of netif_receive_skb().  It should
4996  *	only be used by callers that have a need to skip RPS and Generic XDP.
4997  *	Caller must also take care of handling if (page_is_)pfmemalloc.
4998  *
4999  *	This function may only be called from softirq context and interrupts
5000  *	should be enabled.
5001  *
5002  *	Return values (usually ignored):
5003  *	NET_RX_SUCCESS: no congestion
5004  *	NET_RX_DROP: packet was dropped
5005  */
5006 int netif_receive_skb_core(struct sk_buff *skb)
5007 {
5008 	int ret;
5009 
5010 	rcu_read_lock();
5011 	ret = __netif_receive_skb_one_core(skb, false);
5012 	rcu_read_unlock();
5013 
5014 	return ret;
5015 }
5016 EXPORT_SYMBOL(netif_receive_skb_core);
5017 
5018 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5019 						  struct packet_type *pt_prev,
5020 						  struct net_device *orig_dev)
5021 {
5022 	struct sk_buff *skb, *next;
5023 
5024 	if (!pt_prev)
5025 		return;
5026 	if (list_empty(head))
5027 		return;
5028 	if (pt_prev->list_func != NULL)
5029 		pt_prev->list_func(head, pt_prev, orig_dev);
5030 	else
5031 		list_for_each_entry_safe(skb, next, head, list) {
5032 			skb_list_del_init(skb);
5033 			INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5034 					   skb->dev, pt_prev, orig_dev);
5035 		}
5036 }
5037 
5038 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5039 {
5040 	/* Fast-path assumptions:
5041 	 * - There is no RX handler.
5042 	 * - Only one packet_type matches.
5043 	 * If either of these fails, we will end up doing some per-packet
5044 	 * processing in-line, then handling the 'last ptype' for the whole
5045 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5046 	 * because the 'last ptype' must be constant across the sublist, and all
5047 	 * other ptypes are handled per-packet.
5048 	 */
5049 	/* Current (common) ptype of sublist */
5050 	struct packet_type *pt_curr = NULL;
5051 	/* Current (common) orig_dev of sublist */
5052 	struct net_device *od_curr = NULL;
5053 	struct list_head sublist;
5054 	struct sk_buff *skb, *next;
5055 
5056 	INIT_LIST_HEAD(&sublist);
5057 	list_for_each_entry_safe(skb, next, head, list) {
5058 		struct net_device *orig_dev = skb->dev;
5059 		struct packet_type *pt_prev = NULL;
5060 
5061 		skb_list_del_init(skb);
5062 		__netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5063 		if (!pt_prev)
5064 			continue;
5065 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5066 			/* dispatch old sublist */
5067 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5068 			/* start new sublist */
5069 			INIT_LIST_HEAD(&sublist);
5070 			pt_curr = pt_prev;
5071 			od_curr = orig_dev;
5072 		}
5073 		list_add_tail(&skb->list, &sublist);
5074 	}
5075 
5076 	/* dispatch final sublist */
5077 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5078 }
5079 
5080 static int __netif_receive_skb(struct sk_buff *skb)
5081 {
5082 	int ret;
5083 
5084 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5085 		unsigned int noreclaim_flag;
5086 
5087 		/*
5088 		 * PFMEMALLOC skbs are special, they should
5089 		 * - be delivered to SOCK_MEMALLOC sockets only
5090 		 * - stay away from userspace
5091 		 * - have bounded memory usage
5092 		 *
5093 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5094 		 * context down to all allocation sites.
5095 		 */
5096 		noreclaim_flag = memalloc_noreclaim_save();
5097 		ret = __netif_receive_skb_one_core(skb, true);
5098 		memalloc_noreclaim_restore(noreclaim_flag);
5099 	} else
5100 		ret = __netif_receive_skb_one_core(skb, false);
5101 
5102 	return ret;
5103 }
5104 
5105 static void __netif_receive_skb_list(struct list_head *head)
5106 {
5107 	unsigned long noreclaim_flag = 0;
5108 	struct sk_buff *skb, *next;
5109 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5110 
5111 	list_for_each_entry_safe(skb, next, head, list) {
5112 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5113 			struct list_head sublist;
5114 
5115 			/* Handle the previous sublist */
5116 			list_cut_before(&sublist, head, &skb->list);
5117 			if (!list_empty(&sublist))
5118 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5119 			pfmemalloc = !pfmemalloc;
5120 			/* See comments in __netif_receive_skb */
5121 			if (pfmemalloc)
5122 				noreclaim_flag = memalloc_noreclaim_save();
5123 			else
5124 				memalloc_noreclaim_restore(noreclaim_flag);
5125 		}
5126 	}
5127 	/* Handle the remaining sublist */
5128 	if (!list_empty(head))
5129 		__netif_receive_skb_list_core(head, pfmemalloc);
5130 	/* Restore pflags */
5131 	if (pfmemalloc)
5132 		memalloc_noreclaim_restore(noreclaim_flag);
5133 }
5134 
5135 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5136 {
5137 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5138 	struct bpf_prog *new = xdp->prog;
5139 	int ret = 0;
5140 
5141 	switch (xdp->command) {
5142 	case XDP_SETUP_PROG:
5143 		rcu_assign_pointer(dev->xdp_prog, new);
5144 		if (old)
5145 			bpf_prog_put(old);
5146 
5147 		if (old && !new) {
5148 			static_branch_dec(&generic_xdp_needed_key);
5149 		} else if (new && !old) {
5150 			static_branch_inc(&generic_xdp_needed_key);
5151 			dev_disable_lro(dev);
5152 			dev_disable_gro_hw(dev);
5153 		}
5154 		break;
5155 
5156 	case XDP_QUERY_PROG:
5157 		xdp->prog_id = old ? old->aux->id : 0;
5158 		break;
5159 
5160 	default:
5161 		ret = -EINVAL;
5162 		break;
5163 	}
5164 
5165 	return ret;
5166 }
5167 
5168 static int netif_receive_skb_internal(struct sk_buff *skb)
5169 {
5170 	int ret;
5171 
5172 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5173 
5174 	if (skb_defer_rx_timestamp(skb))
5175 		return NET_RX_SUCCESS;
5176 
5177 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5178 		int ret;
5179 
5180 		preempt_disable();
5181 		rcu_read_lock();
5182 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5183 		rcu_read_unlock();
5184 		preempt_enable();
5185 
5186 		if (ret != XDP_PASS)
5187 			return NET_RX_DROP;
5188 	}
5189 
5190 	rcu_read_lock();
5191 #ifdef CONFIG_RPS
5192 	if (static_branch_unlikely(&rps_needed)) {
5193 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5194 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5195 
5196 		if (cpu >= 0) {
5197 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5198 			rcu_read_unlock();
5199 			return ret;
5200 		}
5201 	}
5202 #endif
5203 	ret = __netif_receive_skb(skb);
5204 	rcu_read_unlock();
5205 	return ret;
5206 }
5207 
5208 static void netif_receive_skb_list_internal(struct list_head *head)
5209 {
5210 	struct bpf_prog *xdp_prog = NULL;
5211 	struct sk_buff *skb, *next;
5212 	struct list_head sublist;
5213 
5214 	INIT_LIST_HEAD(&sublist);
5215 	list_for_each_entry_safe(skb, next, head, list) {
5216 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5217 		skb_list_del_init(skb);
5218 		if (!skb_defer_rx_timestamp(skb))
5219 			list_add_tail(&skb->list, &sublist);
5220 	}
5221 	list_splice_init(&sublist, head);
5222 
5223 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5224 		preempt_disable();
5225 		rcu_read_lock();
5226 		list_for_each_entry_safe(skb, next, head, list) {
5227 			xdp_prog = rcu_dereference(skb->dev->xdp_prog);
5228 			skb_list_del_init(skb);
5229 			if (do_xdp_generic(xdp_prog, skb) == XDP_PASS)
5230 				list_add_tail(&skb->list, &sublist);
5231 		}
5232 		rcu_read_unlock();
5233 		preempt_enable();
5234 		/* Put passed packets back on main list */
5235 		list_splice_init(&sublist, head);
5236 	}
5237 
5238 	rcu_read_lock();
5239 #ifdef CONFIG_RPS
5240 	if (static_branch_unlikely(&rps_needed)) {
5241 		list_for_each_entry_safe(skb, next, head, list) {
5242 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5243 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5244 
5245 			if (cpu >= 0) {
5246 				/* Will be handled, remove from list */
5247 				skb_list_del_init(skb);
5248 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5249 			}
5250 		}
5251 	}
5252 #endif
5253 	__netif_receive_skb_list(head);
5254 	rcu_read_unlock();
5255 }
5256 
5257 /**
5258  *	netif_receive_skb - process receive buffer from network
5259  *	@skb: buffer to process
5260  *
5261  *	netif_receive_skb() is the main receive data processing function.
5262  *	It always succeeds. The buffer may be dropped during processing
5263  *	for congestion control or by the protocol layers.
5264  *
5265  *	This function may only be called from softirq context and interrupts
5266  *	should be enabled.
5267  *
5268  *	Return values (usually ignored):
5269  *	NET_RX_SUCCESS: no congestion
5270  *	NET_RX_DROP: packet was dropped
5271  */
5272 int netif_receive_skb(struct sk_buff *skb)
5273 {
5274 	int ret;
5275 
5276 	trace_netif_receive_skb_entry(skb);
5277 
5278 	ret = netif_receive_skb_internal(skb);
5279 	trace_netif_receive_skb_exit(ret);
5280 
5281 	return ret;
5282 }
5283 EXPORT_SYMBOL(netif_receive_skb);
5284 
5285 /**
5286  *	netif_receive_skb_list - process many receive buffers from network
5287  *	@head: list of skbs to process.
5288  *
5289  *	Since return value of netif_receive_skb() is normally ignored, and
5290  *	wouldn't be meaningful for a list, this function returns void.
5291  *
5292  *	This function may only be called from softirq context and interrupts
5293  *	should be enabled.
5294  */
5295 void netif_receive_skb_list(struct list_head *head)
5296 {
5297 	struct sk_buff *skb;
5298 
5299 	if (list_empty(head))
5300 		return;
5301 	if (trace_netif_receive_skb_list_entry_enabled()) {
5302 		list_for_each_entry(skb, head, list)
5303 			trace_netif_receive_skb_list_entry(skb);
5304 	}
5305 	netif_receive_skb_list_internal(head);
5306 	trace_netif_receive_skb_list_exit(0);
5307 }
5308 EXPORT_SYMBOL(netif_receive_skb_list);
5309 
5310 DEFINE_PER_CPU(struct work_struct, flush_works);
5311 
5312 /* Network device is going away, flush any packets still pending */
5313 static void flush_backlog(struct work_struct *work)
5314 {
5315 	struct sk_buff *skb, *tmp;
5316 	struct softnet_data *sd;
5317 
5318 	local_bh_disable();
5319 	sd = this_cpu_ptr(&softnet_data);
5320 
5321 	local_irq_disable();
5322 	rps_lock(sd);
5323 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5324 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5325 			__skb_unlink(skb, &sd->input_pkt_queue);
5326 			kfree_skb(skb);
5327 			input_queue_head_incr(sd);
5328 		}
5329 	}
5330 	rps_unlock(sd);
5331 	local_irq_enable();
5332 
5333 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5334 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5335 			__skb_unlink(skb, &sd->process_queue);
5336 			kfree_skb(skb);
5337 			input_queue_head_incr(sd);
5338 		}
5339 	}
5340 	local_bh_enable();
5341 }
5342 
5343 static void flush_all_backlogs(void)
5344 {
5345 	unsigned int cpu;
5346 
5347 	get_online_cpus();
5348 
5349 	for_each_online_cpu(cpu)
5350 		queue_work_on(cpu, system_highpri_wq,
5351 			      per_cpu_ptr(&flush_works, cpu));
5352 
5353 	for_each_online_cpu(cpu)
5354 		flush_work(per_cpu_ptr(&flush_works, cpu));
5355 
5356 	put_online_cpus();
5357 }
5358 
5359 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5360 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5361 static int napi_gro_complete(struct sk_buff *skb)
5362 {
5363 	struct packet_offload *ptype;
5364 	__be16 type = skb->protocol;
5365 	struct list_head *head = &offload_base;
5366 	int err = -ENOENT;
5367 
5368 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5369 
5370 	if (NAPI_GRO_CB(skb)->count == 1) {
5371 		skb_shinfo(skb)->gso_size = 0;
5372 		goto out;
5373 	}
5374 
5375 	rcu_read_lock();
5376 	list_for_each_entry_rcu(ptype, head, list) {
5377 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5378 			continue;
5379 
5380 		err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5381 					 ipv6_gro_complete, inet_gro_complete,
5382 					 skb, 0);
5383 		break;
5384 	}
5385 	rcu_read_unlock();
5386 
5387 	if (err) {
5388 		WARN_ON(&ptype->list == head);
5389 		kfree_skb(skb);
5390 		return NET_RX_SUCCESS;
5391 	}
5392 
5393 out:
5394 	return netif_receive_skb_internal(skb);
5395 }
5396 
5397 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5398 				   bool flush_old)
5399 {
5400 	struct list_head *head = &napi->gro_hash[index].list;
5401 	struct sk_buff *skb, *p;
5402 
5403 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5404 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5405 			return;
5406 		skb_list_del_init(skb);
5407 		napi_gro_complete(skb);
5408 		napi->gro_hash[index].count--;
5409 	}
5410 
5411 	if (!napi->gro_hash[index].count)
5412 		__clear_bit(index, &napi->gro_bitmask);
5413 }
5414 
5415 /* napi->gro_hash[].list contains packets ordered by age.
5416  * youngest packets at the head of it.
5417  * Complete skbs in reverse order to reduce latencies.
5418  */
5419 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5420 {
5421 	unsigned long bitmask = napi->gro_bitmask;
5422 	unsigned int i, base = ~0U;
5423 
5424 	while ((i = ffs(bitmask)) != 0) {
5425 		bitmask >>= i;
5426 		base += i;
5427 		__napi_gro_flush_chain(napi, base, flush_old);
5428 	}
5429 }
5430 EXPORT_SYMBOL(napi_gro_flush);
5431 
5432 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5433 					  struct sk_buff *skb)
5434 {
5435 	unsigned int maclen = skb->dev->hard_header_len;
5436 	u32 hash = skb_get_hash_raw(skb);
5437 	struct list_head *head;
5438 	struct sk_buff *p;
5439 
5440 	head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5441 	list_for_each_entry(p, head, list) {
5442 		unsigned long diffs;
5443 
5444 		NAPI_GRO_CB(p)->flush = 0;
5445 
5446 		if (hash != skb_get_hash_raw(p)) {
5447 			NAPI_GRO_CB(p)->same_flow = 0;
5448 			continue;
5449 		}
5450 
5451 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5452 		diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5453 		if (skb_vlan_tag_present(p))
5454 			diffs |= p->vlan_tci ^ skb->vlan_tci;
5455 		diffs |= skb_metadata_dst_cmp(p, skb);
5456 		diffs |= skb_metadata_differs(p, skb);
5457 		if (maclen == ETH_HLEN)
5458 			diffs |= compare_ether_header(skb_mac_header(p),
5459 						      skb_mac_header(skb));
5460 		else if (!diffs)
5461 			diffs = memcmp(skb_mac_header(p),
5462 				       skb_mac_header(skb),
5463 				       maclen);
5464 		NAPI_GRO_CB(p)->same_flow = !diffs;
5465 	}
5466 
5467 	return head;
5468 }
5469 
5470 static void skb_gro_reset_offset(struct sk_buff *skb)
5471 {
5472 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
5473 	const skb_frag_t *frag0 = &pinfo->frags[0];
5474 
5475 	NAPI_GRO_CB(skb)->data_offset = 0;
5476 	NAPI_GRO_CB(skb)->frag0 = NULL;
5477 	NAPI_GRO_CB(skb)->frag0_len = 0;
5478 
5479 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5480 	    pinfo->nr_frags &&
5481 	    !PageHighMem(skb_frag_page(frag0))) {
5482 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5483 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5484 						    skb_frag_size(frag0),
5485 						    skb->end - skb->tail);
5486 	}
5487 }
5488 
5489 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5490 {
5491 	struct skb_shared_info *pinfo = skb_shinfo(skb);
5492 
5493 	BUG_ON(skb->end - skb->tail < grow);
5494 
5495 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5496 
5497 	skb->data_len -= grow;
5498 	skb->tail += grow;
5499 
5500 	pinfo->frags[0].page_offset += grow;
5501 	skb_frag_size_sub(&pinfo->frags[0], grow);
5502 
5503 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5504 		skb_frag_unref(skb, 0);
5505 		memmove(pinfo->frags, pinfo->frags + 1,
5506 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
5507 	}
5508 }
5509 
5510 static void gro_flush_oldest(struct list_head *head)
5511 {
5512 	struct sk_buff *oldest;
5513 
5514 	oldest = list_last_entry(head, struct sk_buff, list);
5515 
5516 	/* We are called with head length >= MAX_GRO_SKBS, so this is
5517 	 * impossible.
5518 	 */
5519 	if (WARN_ON_ONCE(!oldest))
5520 		return;
5521 
5522 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
5523 	 * SKB to the chain.
5524 	 */
5525 	skb_list_del_init(oldest);
5526 	napi_gro_complete(oldest);
5527 }
5528 
5529 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5530 							   struct sk_buff *));
5531 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5532 							   struct sk_buff *));
5533 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5534 {
5535 	u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5536 	struct list_head *head = &offload_base;
5537 	struct packet_offload *ptype;
5538 	__be16 type = skb->protocol;
5539 	struct list_head *gro_head;
5540 	struct sk_buff *pp = NULL;
5541 	enum gro_result ret;
5542 	int same_flow;
5543 	int grow;
5544 
5545 	if (netif_elide_gro(skb->dev))
5546 		goto normal;
5547 
5548 	gro_head = gro_list_prepare(napi, skb);
5549 
5550 	rcu_read_lock();
5551 	list_for_each_entry_rcu(ptype, head, list) {
5552 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5553 			continue;
5554 
5555 		skb_set_network_header(skb, skb_gro_offset(skb));
5556 		skb_reset_mac_len(skb);
5557 		NAPI_GRO_CB(skb)->same_flow = 0;
5558 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5559 		NAPI_GRO_CB(skb)->free = 0;
5560 		NAPI_GRO_CB(skb)->encap_mark = 0;
5561 		NAPI_GRO_CB(skb)->recursion_counter = 0;
5562 		NAPI_GRO_CB(skb)->is_fou = 0;
5563 		NAPI_GRO_CB(skb)->is_atomic = 1;
5564 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5565 
5566 		/* Setup for GRO checksum validation */
5567 		switch (skb->ip_summed) {
5568 		case CHECKSUM_COMPLETE:
5569 			NAPI_GRO_CB(skb)->csum = skb->csum;
5570 			NAPI_GRO_CB(skb)->csum_valid = 1;
5571 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5572 			break;
5573 		case CHECKSUM_UNNECESSARY:
5574 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5575 			NAPI_GRO_CB(skb)->csum_valid = 0;
5576 			break;
5577 		default:
5578 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5579 			NAPI_GRO_CB(skb)->csum_valid = 0;
5580 		}
5581 
5582 		pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5583 					ipv6_gro_receive, inet_gro_receive,
5584 					gro_head, skb);
5585 		break;
5586 	}
5587 	rcu_read_unlock();
5588 
5589 	if (&ptype->list == head)
5590 		goto normal;
5591 
5592 	if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5593 		ret = GRO_CONSUMED;
5594 		goto ok;
5595 	}
5596 
5597 	same_flow = NAPI_GRO_CB(skb)->same_flow;
5598 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5599 
5600 	if (pp) {
5601 		skb_list_del_init(pp);
5602 		napi_gro_complete(pp);
5603 		napi->gro_hash[hash].count--;
5604 	}
5605 
5606 	if (same_flow)
5607 		goto ok;
5608 
5609 	if (NAPI_GRO_CB(skb)->flush)
5610 		goto normal;
5611 
5612 	if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5613 		gro_flush_oldest(gro_head);
5614 	} else {
5615 		napi->gro_hash[hash].count++;
5616 	}
5617 	NAPI_GRO_CB(skb)->count = 1;
5618 	NAPI_GRO_CB(skb)->age = jiffies;
5619 	NAPI_GRO_CB(skb)->last = skb;
5620 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5621 	list_add(&skb->list, gro_head);
5622 	ret = GRO_HELD;
5623 
5624 pull:
5625 	grow = skb_gro_offset(skb) - skb_headlen(skb);
5626 	if (grow > 0)
5627 		gro_pull_from_frag0(skb, grow);
5628 ok:
5629 	if (napi->gro_hash[hash].count) {
5630 		if (!test_bit(hash, &napi->gro_bitmask))
5631 			__set_bit(hash, &napi->gro_bitmask);
5632 	} else if (test_bit(hash, &napi->gro_bitmask)) {
5633 		__clear_bit(hash, &napi->gro_bitmask);
5634 	}
5635 
5636 	return ret;
5637 
5638 normal:
5639 	ret = GRO_NORMAL;
5640 	goto pull;
5641 }
5642 
5643 struct packet_offload *gro_find_receive_by_type(__be16 type)
5644 {
5645 	struct list_head *offload_head = &offload_base;
5646 	struct packet_offload *ptype;
5647 
5648 	list_for_each_entry_rcu(ptype, offload_head, list) {
5649 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5650 			continue;
5651 		return ptype;
5652 	}
5653 	return NULL;
5654 }
5655 EXPORT_SYMBOL(gro_find_receive_by_type);
5656 
5657 struct packet_offload *gro_find_complete_by_type(__be16 type)
5658 {
5659 	struct list_head *offload_head = &offload_base;
5660 	struct packet_offload *ptype;
5661 
5662 	list_for_each_entry_rcu(ptype, offload_head, list) {
5663 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5664 			continue;
5665 		return ptype;
5666 	}
5667 	return NULL;
5668 }
5669 EXPORT_SYMBOL(gro_find_complete_by_type);
5670 
5671 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5672 {
5673 	skb_dst_drop(skb);
5674 	secpath_reset(skb);
5675 	kmem_cache_free(skbuff_head_cache, skb);
5676 }
5677 
5678 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5679 {
5680 	switch (ret) {
5681 	case GRO_NORMAL:
5682 		if (netif_receive_skb_internal(skb))
5683 			ret = GRO_DROP;
5684 		break;
5685 
5686 	case GRO_DROP:
5687 		kfree_skb(skb);
5688 		break;
5689 
5690 	case GRO_MERGED_FREE:
5691 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5692 			napi_skb_free_stolen_head(skb);
5693 		else
5694 			__kfree_skb(skb);
5695 		break;
5696 
5697 	case GRO_HELD:
5698 	case GRO_MERGED:
5699 	case GRO_CONSUMED:
5700 		break;
5701 	}
5702 
5703 	return ret;
5704 }
5705 
5706 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5707 {
5708 	gro_result_t ret;
5709 
5710 	skb_mark_napi_id(skb, napi);
5711 	trace_napi_gro_receive_entry(skb);
5712 
5713 	skb_gro_reset_offset(skb);
5714 
5715 	ret = napi_skb_finish(dev_gro_receive(napi, skb), skb);
5716 	trace_napi_gro_receive_exit(ret);
5717 
5718 	return ret;
5719 }
5720 EXPORT_SYMBOL(napi_gro_receive);
5721 
5722 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5723 {
5724 	if (unlikely(skb->pfmemalloc)) {
5725 		consume_skb(skb);
5726 		return;
5727 	}
5728 	__skb_pull(skb, skb_headlen(skb));
5729 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
5730 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5731 	__vlan_hwaccel_clear_tag(skb);
5732 	skb->dev = napi->dev;
5733 	skb->skb_iif = 0;
5734 
5735 	/* eth_type_trans() assumes pkt_type is PACKET_HOST */
5736 	skb->pkt_type = PACKET_HOST;
5737 
5738 	skb->encapsulation = 0;
5739 	skb_shinfo(skb)->gso_type = 0;
5740 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5741 	secpath_reset(skb);
5742 
5743 	napi->skb = skb;
5744 }
5745 
5746 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5747 {
5748 	struct sk_buff *skb = napi->skb;
5749 
5750 	if (!skb) {
5751 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5752 		if (skb) {
5753 			napi->skb = skb;
5754 			skb_mark_napi_id(skb, napi);
5755 		}
5756 	}
5757 	return skb;
5758 }
5759 EXPORT_SYMBOL(napi_get_frags);
5760 
5761 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5762 				      struct sk_buff *skb,
5763 				      gro_result_t ret)
5764 {
5765 	switch (ret) {
5766 	case GRO_NORMAL:
5767 	case GRO_HELD:
5768 		__skb_push(skb, ETH_HLEN);
5769 		skb->protocol = eth_type_trans(skb, skb->dev);
5770 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5771 			ret = GRO_DROP;
5772 		break;
5773 
5774 	case GRO_DROP:
5775 		napi_reuse_skb(napi, skb);
5776 		break;
5777 
5778 	case GRO_MERGED_FREE:
5779 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5780 			napi_skb_free_stolen_head(skb);
5781 		else
5782 			napi_reuse_skb(napi, skb);
5783 		break;
5784 
5785 	case GRO_MERGED:
5786 	case GRO_CONSUMED:
5787 		break;
5788 	}
5789 
5790 	return ret;
5791 }
5792 
5793 /* Upper GRO stack assumes network header starts at gro_offset=0
5794  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5795  * We copy ethernet header into skb->data to have a common layout.
5796  */
5797 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5798 {
5799 	struct sk_buff *skb = napi->skb;
5800 	const struct ethhdr *eth;
5801 	unsigned int hlen = sizeof(*eth);
5802 
5803 	napi->skb = NULL;
5804 
5805 	skb_reset_mac_header(skb);
5806 	skb_gro_reset_offset(skb);
5807 
5808 	eth = skb_gro_header_fast(skb, 0);
5809 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
5810 		eth = skb_gro_header_slow(skb, hlen, 0);
5811 		if (unlikely(!eth)) {
5812 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5813 					     __func__, napi->dev->name);
5814 			napi_reuse_skb(napi, skb);
5815 			return NULL;
5816 		}
5817 	} else {
5818 		gro_pull_from_frag0(skb, hlen);
5819 		NAPI_GRO_CB(skb)->frag0 += hlen;
5820 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
5821 	}
5822 	__skb_pull(skb, hlen);
5823 
5824 	/*
5825 	 * This works because the only protocols we care about don't require
5826 	 * special handling.
5827 	 * We'll fix it up properly in napi_frags_finish()
5828 	 */
5829 	skb->protocol = eth->h_proto;
5830 
5831 	return skb;
5832 }
5833 
5834 gro_result_t napi_gro_frags(struct napi_struct *napi)
5835 {
5836 	gro_result_t ret;
5837 	struct sk_buff *skb = napi_frags_skb(napi);
5838 
5839 	if (!skb)
5840 		return GRO_DROP;
5841 
5842 	trace_napi_gro_frags_entry(skb);
5843 
5844 	ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5845 	trace_napi_gro_frags_exit(ret);
5846 
5847 	return ret;
5848 }
5849 EXPORT_SYMBOL(napi_gro_frags);
5850 
5851 /* Compute the checksum from gro_offset and return the folded value
5852  * after adding in any pseudo checksum.
5853  */
5854 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5855 {
5856 	__wsum wsum;
5857 	__sum16 sum;
5858 
5859 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5860 
5861 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5862 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5863 	/* See comments in __skb_checksum_complete(). */
5864 	if (likely(!sum)) {
5865 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5866 		    !skb->csum_complete_sw)
5867 			netdev_rx_csum_fault(skb->dev, skb);
5868 	}
5869 
5870 	NAPI_GRO_CB(skb)->csum = wsum;
5871 	NAPI_GRO_CB(skb)->csum_valid = 1;
5872 
5873 	return sum;
5874 }
5875 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5876 
5877 static void net_rps_send_ipi(struct softnet_data *remsd)
5878 {
5879 #ifdef CONFIG_RPS
5880 	while (remsd) {
5881 		struct softnet_data *next = remsd->rps_ipi_next;
5882 
5883 		if (cpu_online(remsd->cpu))
5884 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5885 		remsd = next;
5886 	}
5887 #endif
5888 }
5889 
5890 /*
5891  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5892  * Note: called with local irq disabled, but exits with local irq enabled.
5893  */
5894 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5895 {
5896 #ifdef CONFIG_RPS
5897 	struct softnet_data *remsd = sd->rps_ipi_list;
5898 
5899 	if (remsd) {
5900 		sd->rps_ipi_list = NULL;
5901 
5902 		local_irq_enable();
5903 
5904 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5905 		net_rps_send_ipi(remsd);
5906 	} else
5907 #endif
5908 		local_irq_enable();
5909 }
5910 
5911 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5912 {
5913 #ifdef CONFIG_RPS
5914 	return sd->rps_ipi_list != NULL;
5915 #else
5916 	return false;
5917 #endif
5918 }
5919 
5920 static int process_backlog(struct napi_struct *napi, int quota)
5921 {
5922 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5923 	bool again = true;
5924 	int work = 0;
5925 
5926 	/* Check if we have pending ipi, its better to send them now,
5927 	 * not waiting net_rx_action() end.
5928 	 */
5929 	if (sd_has_rps_ipi_waiting(sd)) {
5930 		local_irq_disable();
5931 		net_rps_action_and_irq_enable(sd);
5932 	}
5933 
5934 	napi->weight = dev_rx_weight;
5935 	while (again) {
5936 		struct sk_buff *skb;
5937 
5938 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5939 			rcu_read_lock();
5940 			__netif_receive_skb(skb);
5941 			rcu_read_unlock();
5942 			input_queue_head_incr(sd);
5943 			if (++work >= quota)
5944 				return work;
5945 
5946 		}
5947 
5948 		local_irq_disable();
5949 		rps_lock(sd);
5950 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5951 			/*
5952 			 * Inline a custom version of __napi_complete().
5953 			 * only current cpu owns and manipulates this napi,
5954 			 * and NAPI_STATE_SCHED is the only possible flag set
5955 			 * on backlog.
5956 			 * We can use a plain write instead of clear_bit(),
5957 			 * and we dont need an smp_mb() memory barrier.
5958 			 */
5959 			napi->state = 0;
5960 			again = false;
5961 		} else {
5962 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5963 						   &sd->process_queue);
5964 		}
5965 		rps_unlock(sd);
5966 		local_irq_enable();
5967 	}
5968 
5969 	return work;
5970 }
5971 
5972 /**
5973  * __napi_schedule - schedule for receive
5974  * @n: entry to schedule
5975  *
5976  * The entry's receive function will be scheduled to run.
5977  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5978  */
5979 void __napi_schedule(struct napi_struct *n)
5980 {
5981 	unsigned long flags;
5982 
5983 	local_irq_save(flags);
5984 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5985 	local_irq_restore(flags);
5986 }
5987 EXPORT_SYMBOL(__napi_schedule);
5988 
5989 /**
5990  *	napi_schedule_prep - check if napi can be scheduled
5991  *	@n: napi context
5992  *
5993  * Test if NAPI routine is already running, and if not mark
5994  * it as running.  This is used as a condition variable
5995  * insure only one NAPI poll instance runs.  We also make
5996  * sure there is no pending NAPI disable.
5997  */
5998 bool napi_schedule_prep(struct napi_struct *n)
5999 {
6000 	unsigned long val, new;
6001 
6002 	do {
6003 		val = READ_ONCE(n->state);
6004 		if (unlikely(val & NAPIF_STATE_DISABLE))
6005 			return false;
6006 		new = val | NAPIF_STATE_SCHED;
6007 
6008 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6009 		 * This was suggested by Alexander Duyck, as compiler
6010 		 * emits better code than :
6011 		 * if (val & NAPIF_STATE_SCHED)
6012 		 *     new |= NAPIF_STATE_MISSED;
6013 		 */
6014 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6015 						   NAPIF_STATE_MISSED;
6016 	} while (cmpxchg(&n->state, val, new) != val);
6017 
6018 	return !(val & NAPIF_STATE_SCHED);
6019 }
6020 EXPORT_SYMBOL(napi_schedule_prep);
6021 
6022 /**
6023  * __napi_schedule_irqoff - schedule for receive
6024  * @n: entry to schedule
6025  *
6026  * Variant of __napi_schedule() assuming hard irqs are masked
6027  */
6028 void __napi_schedule_irqoff(struct napi_struct *n)
6029 {
6030 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6031 }
6032 EXPORT_SYMBOL(__napi_schedule_irqoff);
6033 
6034 bool napi_complete_done(struct napi_struct *n, int work_done)
6035 {
6036 	unsigned long flags, val, new;
6037 
6038 	/*
6039 	 * 1) Don't let napi dequeue from the cpu poll list
6040 	 *    just in case its running on a different cpu.
6041 	 * 2) If we are busy polling, do nothing here, we have
6042 	 *    the guarantee we will be called later.
6043 	 */
6044 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6045 				 NAPIF_STATE_IN_BUSY_POLL)))
6046 		return false;
6047 
6048 	if (n->gro_bitmask) {
6049 		unsigned long timeout = 0;
6050 
6051 		if (work_done)
6052 			timeout = n->dev->gro_flush_timeout;
6053 
6054 		/* When the NAPI instance uses a timeout and keeps postponing
6055 		 * it, we need to bound somehow the time packets are kept in
6056 		 * the GRO layer
6057 		 */
6058 		napi_gro_flush(n, !!timeout);
6059 		if (timeout)
6060 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
6061 				      HRTIMER_MODE_REL_PINNED);
6062 	}
6063 	if (unlikely(!list_empty(&n->poll_list))) {
6064 		/* If n->poll_list is not empty, we need to mask irqs */
6065 		local_irq_save(flags);
6066 		list_del_init(&n->poll_list);
6067 		local_irq_restore(flags);
6068 	}
6069 
6070 	do {
6071 		val = READ_ONCE(n->state);
6072 
6073 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6074 
6075 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6076 
6077 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6078 		 * because we will call napi->poll() one more time.
6079 		 * This C code was suggested by Alexander Duyck to help gcc.
6080 		 */
6081 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6082 						    NAPIF_STATE_SCHED;
6083 	} while (cmpxchg(&n->state, val, new) != val);
6084 
6085 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6086 		__napi_schedule(n);
6087 		return false;
6088 	}
6089 
6090 	return true;
6091 }
6092 EXPORT_SYMBOL(napi_complete_done);
6093 
6094 /* must be called under rcu_read_lock(), as we dont take a reference */
6095 static struct napi_struct *napi_by_id(unsigned int napi_id)
6096 {
6097 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6098 	struct napi_struct *napi;
6099 
6100 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6101 		if (napi->napi_id == napi_id)
6102 			return napi;
6103 
6104 	return NULL;
6105 }
6106 
6107 #if defined(CONFIG_NET_RX_BUSY_POLL)
6108 
6109 #define BUSY_POLL_BUDGET 8
6110 
6111 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6112 {
6113 	int rc;
6114 
6115 	/* Busy polling means there is a high chance device driver hard irq
6116 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6117 	 * set in napi_schedule_prep().
6118 	 * Since we are about to call napi->poll() once more, we can safely
6119 	 * clear NAPI_STATE_MISSED.
6120 	 *
6121 	 * Note: x86 could use a single "lock and ..." instruction
6122 	 * to perform these two clear_bit()
6123 	 */
6124 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6125 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6126 
6127 	local_bh_disable();
6128 
6129 	/* All we really want here is to re-enable device interrupts.
6130 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6131 	 */
6132 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
6133 	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6134 	netpoll_poll_unlock(have_poll_lock);
6135 	if (rc == BUSY_POLL_BUDGET)
6136 		__napi_schedule(napi);
6137 	local_bh_enable();
6138 }
6139 
6140 void napi_busy_loop(unsigned int napi_id,
6141 		    bool (*loop_end)(void *, unsigned long),
6142 		    void *loop_end_arg)
6143 {
6144 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6145 	int (*napi_poll)(struct napi_struct *napi, int budget);
6146 	void *have_poll_lock = NULL;
6147 	struct napi_struct *napi;
6148 
6149 restart:
6150 	napi_poll = NULL;
6151 
6152 	rcu_read_lock();
6153 
6154 	napi = napi_by_id(napi_id);
6155 	if (!napi)
6156 		goto out;
6157 
6158 	preempt_disable();
6159 	for (;;) {
6160 		int work = 0;
6161 
6162 		local_bh_disable();
6163 		if (!napi_poll) {
6164 			unsigned long val = READ_ONCE(napi->state);
6165 
6166 			/* If multiple threads are competing for this napi,
6167 			 * we avoid dirtying napi->state as much as we can.
6168 			 */
6169 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6170 				   NAPIF_STATE_IN_BUSY_POLL))
6171 				goto count;
6172 			if (cmpxchg(&napi->state, val,
6173 				    val | NAPIF_STATE_IN_BUSY_POLL |
6174 					  NAPIF_STATE_SCHED) != val)
6175 				goto count;
6176 			have_poll_lock = netpoll_poll_lock(napi);
6177 			napi_poll = napi->poll;
6178 		}
6179 		work = napi_poll(napi, BUSY_POLL_BUDGET);
6180 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6181 count:
6182 		if (work > 0)
6183 			__NET_ADD_STATS(dev_net(napi->dev),
6184 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6185 		local_bh_enable();
6186 
6187 		if (!loop_end || loop_end(loop_end_arg, start_time))
6188 			break;
6189 
6190 		if (unlikely(need_resched())) {
6191 			if (napi_poll)
6192 				busy_poll_stop(napi, have_poll_lock);
6193 			preempt_enable();
6194 			rcu_read_unlock();
6195 			cond_resched();
6196 			if (loop_end(loop_end_arg, start_time))
6197 				return;
6198 			goto restart;
6199 		}
6200 		cpu_relax();
6201 	}
6202 	if (napi_poll)
6203 		busy_poll_stop(napi, have_poll_lock);
6204 	preempt_enable();
6205 out:
6206 	rcu_read_unlock();
6207 }
6208 EXPORT_SYMBOL(napi_busy_loop);
6209 
6210 #endif /* CONFIG_NET_RX_BUSY_POLL */
6211 
6212 static void napi_hash_add(struct napi_struct *napi)
6213 {
6214 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6215 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6216 		return;
6217 
6218 	spin_lock(&napi_hash_lock);
6219 
6220 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6221 	do {
6222 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6223 			napi_gen_id = MIN_NAPI_ID;
6224 	} while (napi_by_id(napi_gen_id));
6225 	napi->napi_id = napi_gen_id;
6226 
6227 	hlist_add_head_rcu(&napi->napi_hash_node,
6228 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6229 
6230 	spin_unlock(&napi_hash_lock);
6231 }
6232 
6233 /* Warning : caller is responsible to make sure rcu grace period
6234  * is respected before freeing memory containing @napi
6235  */
6236 bool napi_hash_del(struct napi_struct *napi)
6237 {
6238 	bool rcu_sync_needed = false;
6239 
6240 	spin_lock(&napi_hash_lock);
6241 
6242 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6243 		rcu_sync_needed = true;
6244 		hlist_del_rcu(&napi->napi_hash_node);
6245 	}
6246 	spin_unlock(&napi_hash_lock);
6247 	return rcu_sync_needed;
6248 }
6249 EXPORT_SYMBOL_GPL(napi_hash_del);
6250 
6251 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6252 {
6253 	struct napi_struct *napi;
6254 
6255 	napi = container_of(timer, struct napi_struct, timer);
6256 
6257 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6258 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6259 	 */
6260 	if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6261 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6262 		__napi_schedule_irqoff(napi);
6263 
6264 	return HRTIMER_NORESTART;
6265 }
6266 
6267 static void init_gro_hash(struct napi_struct *napi)
6268 {
6269 	int i;
6270 
6271 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6272 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6273 		napi->gro_hash[i].count = 0;
6274 	}
6275 	napi->gro_bitmask = 0;
6276 }
6277 
6278 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6279 		    int (*poll)(struct napi_struct *, int), int weight)
6280 {
6281 	INIT_LIST_HEAD(&napi->poll_list);
6282 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6283 	napi->timer.function = napi_watchdog;
6284 	init_gro_hash(napi);
6285 	napi->skb = NULL;
6286 	napi->poll = poll;
6287 	if (weight > NAPI_POLL_WEIGHT)
6288 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6289 				weight);
6290 	napi->weight = weight;
6291 	list_add(&napi->dev_list, &dev->napi_list);
6292 	napi->dev = dev;
6293 #ifdef CONFIG_NETPOLL
6294 	napi->poll_owner = -1;
6295 #endif
6296 	set_bit(NAPI_STATE_SCHED, &napi->state);
6297 	napi_hash_add(napi);
6298 }
6299 EXPORT_SYMBOL(netif_napi_add);
6300 
6301 void napi_disable(struct napi_struct *n)
6302 {
6303 	might_sleep();
6304 	set_bit(NAPI_STATE_DISABLE, &n->state);
6305 
6306 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6307 		msleep(1);
6308 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6309 		msleep(1);
6310 
6311 	hrtimer_cancel(&n->timer);
6312 
6313 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6314 }
6315 EXPORT_SYMBOL(napi_disable);
6316 
6317 static void flush_gro_hash(struct napi_struct *napi)
6318 {
6319 	int i;
6320 
6321 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6322 		struct sk_buff *skb, *n;
6323 
6324 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6325 			kfree_skb(skb);
6326 		napi->gro_hash[i].count = 0;
6327 	}
6328 }
6329 
6330 /* Must be called in process context */
6331 void netif_napi_del(struct napi_struct *napi)
6332 {
6333 	might_sleep();
6334 	if (napi_hash_del(napi))
6335 		synchronize_net();
6336 	list_del_init(&napi->dev_list);
6337 	napi_free_frags(napi);
6338 
6339 	flush_gro_hash(napi);
6340 	napi->gro_bitmask = 0;
6341 }
6342 EXPORT_SYMBOL(netif_napi_del);
6343 
6344 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6345 {
6346 	void *have;
6347 	int work, weight;
6348 
6349 	list_del_init(&n->poll_list);
6350 
6351 	have = netpoll_poll_lock(n);
6352 
6353 	weight = n->weight;
6354 
6355 	/* This NAPI_STATE_SCHED test is for avoiding a race
6356 	 * with netpoll's poll_napi().  Only the entity which
6357 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6358 	 * actually make the ->poll() call.  Therefore we avoid
6359 	 * accidentally calling ->poll() when NAPI is not scheduled.
6360 	 */
6361 	work = 0;
6362 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6363 		work = n->poll(n, weight);
6364 		trace_napi_poll(n, work, weight);
6365 	}
6366 
6367 	WARN_ON_ONCE(work > weight);
6368 
6369 	if (likely(work < weight))
6370 		goto out_unlock;
6371 
6372 	/* Drivers must not modify the NAPI state if they
6373 	 * consume the entire weight.  In such cases this code
6374 	 * still "owns" the NAPI instance and therefore can
6375 	 * move the instance around on the list at-will.
6376 	 */
6377 	if (unlikely(napi_disable_pending(n))) {
6378 		napi_complete(n);
6379 		goto out_unlock;
6380 	}
6381 
6382 	if (n->gro_bitmask) {
6383 		/* flush too old packets
6384 		 * If HZ < 1000, flush all packets.
6385 		 */
6386 		napi_gro_flush(n, HZ >= 1000);
6387 	}
6388 
6389 	/* Some drivers may have called napi_schedule
6390 	 * prior to exhausting their budget.
6391 	 */
6392 	if (unlikely(!list_empty(&n->poll_list))) {
6393 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6394 			     n->dev ? n->dev->name : "backlog");
6395 		goto out_unlock;
6396 	}
6397 
6398 	list_add_tail(&n->poll_list, repoll);
6399 
6400 out_unlock:
6401 	netpoll_poll_unlock(have);
6402 
6403 	return work;
6404 }
6405 
6406 static __latent_entropy void net_rx_action(struct softirq_action *h)
6407 {
6408 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6409 	unsigned long time_limit = jiffies +
6410 		usecs_to_jiffies(netdev_budget_usecs);
6411 	int budget = netdev_budget;
6412 	LIST_HEAD(list);
6413 	LIST_HEAD(repoll);
6414 
6415 	local_irq_disable();
6416 	list_splice_init(&sd->poll_list, &list);
6417 	local_irq_enable();
6418 
6419 	for (;;) {
6420 		struct napi_struct *n;
6421 
6422 		if (list_empty(&list)) {
6423 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6424 				goto out;
6425 			break;
6426 		}
6427 
6428 		n = list_first_entry(&list, struct napi_struct, poll_list);
6429 		budget -= napi_poll(n, &repoll);
6430 
6431 		/* If softirq window is exhausted then punt.
6432 		 * Allow this to run for 2 jiffies since which will allow
6433 		 * an average latency of 1.5/HZ.
6434 		 */
6435 		if (unlikely(budget <= 0 ||
6436 			     time_after_eq(jiffies, time_limit))) {
6437 			sd->time_squeeze++;
6438 			break;
6439 		}
6440 	}
6441 
6442 	local_irq_disable();
6443 
6444 	list_splice_tail_init(&sd->poll_list, &list);
6445 	list_splice_tail(&repoll, &list);
6446 	list_splice(&list, &sd->poll_list);
6447 	if (!list_empty(&sd->poll_list))
6448 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6449 
6450 	net_rps_action_and_irq_enable(sd);
6451 out:
6452 	__kfree_skb_flush();
6453 }
6454 
6455 struct netdev_adjacent {
6456 	struct net_device *dev;
6457 
6458 	/* upper master flag, there can only be one master device per list */
6459 	bool master;
6460 
6461 	/* counter for the number of times this device was added to us */
6462 	u16 ref_nr;
6463 
6464 	/* private field for the users */
6465 	void *private;
6466 
6467 	struct list_head list;
6468 	struct rcu_head rcu;
6469 };
6470 
6471 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6472 						 struct list_head *adj_list)
6473 {
6474 	struct netdev_adjacent *adj;
6475 
6476 	list_for_each_entry(adj, adj_list, list) {
6477 		if (adj->dev == adj_dev)
6478 			return adj;
6479 	}
6480 	return NULL;
6481 }
6482 
6483 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6484 {
6485 	struct net_device *dev = data;
6486 
6487 	return upper_dev == dev;
6488 }
6489 
6490 /**
6491  * netdev_has_upper_dev - Check if device is linked to an upper device
6492  * @dev: device
6493  * @upper_dev: upper device to check
6494  *
6495  * Find out if a device is linked to specified upper device and return true
6496  * in case it is. Note that this checks only immediate upper device,
6497  * not through a complete stack of devices. The caller must hold the RTNL lock.
6498  */
6499 bool netdev_has_upper_dev(struct net_device *dev,
6500 			  struct net_device *upper_dev)
6501 {
6502 	ASSERT_RTNL();
6503 
6504 	return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6505 					     upper_dev);
6506 }
6507 EXPORT_SYMBOL(netdev_has_upper_dev);
6508 
6509 /**
6510  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6511  * @dev: device
6512  * @upper_dev: upper device to check
6513  *
6514  * Find out if a device is linked to specified upper device and return true
6515  * in case it is. Note that this checks the entire upper device chain.
6516  * The caller must hold rcu lock.
6517  */
6518 
6519 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6520 				  struct net_device *upper_dev)
6521 {
6522 	return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6523 					       upper_dev);
6524 }
6525 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6526 
6527 /**
6528  * netdev_has_any_upper_dev - Check if device is linked to some device
6529  * @dev: device
6530  *
6531  * Find out if a device is linked to an upper device and return true in case
6532  * it is. The caller must hold the RTNL lock.
6533  */
6534 bool netdev_has_any_upper_dev(struct net_device *dev)
6535 {
6536 	ASSERT_RTNL();
6537 
6538 	return !list_empty(&dev->adj_list.upper);
6539 }
6540 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6541 
6542 /**
6543  * netdev_master_upper_dev_get - Get master upper device
6544  * @dev: device
6545  *
6546  * Find a master upper device and return pointer to it or NULL in case
6547  * it's not there. The caller must hold the RTNL lock.
6548  */
6549 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6550 {
6551 	struct netdev_adjacent *upper;
6552 
6553 	ASSERT_RTNL();
6554 
6555 	if (list_empty(&dev->adj_list.upper))
6556 		return NULL;
6557 
6558 	upper = list_first_entry(&dev->adj_list.upper,
6559 				 struct netdev_adjacent, list);
6560 	if (likely(upper->master))
6561 		return upper->dev;
6562 	return NULL;
6563 }
6564 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6565 
6566 /**
6567  * netdev_has_any_lower_dev - Check if device is linked to some device
6568  * @dev: device
6569  *
6570  * Find out if a device is linked to a lower device and return true in case
6571  * it is. The caller must hold the RTNL lock.
6572  */
6573 static bool netdev_has_any_lower_dev(struct net_device *dev)
6574 {
6575 	ASSERT_RTNL();
6576 
6577 	return !list_empty(&dev->adj_list.lower);
6578 }
6579 
6580 void *netdev_adjacent_get_private(struct list_head *adj_list)
6581 {
6582 	struct netdev_adjacent *adj;
6583 
6584 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6585 
6586 	return adj->private;
6587 }
6588 EXPORT_SYMBOL(netdev_adjacent_get_private);
6589 
6590 /**
6591  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6592  * @dev: device
6593  * @iter: list_head ** of the current position
6594  *
6595  * Gets the next device from the dev's upper list, starting from iter
6596  * position. The caller must hold RCU read lock.
6597  */
6598 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6599 						 struct list_head **iter)
6600 {
6601 	struct netdev_adjacent *upper;
6602 
6603 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6604 
6605 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6606 
6607 	if (&upper->list == &dev->adj_list.upper)
6608 		return NULL;
6609 
6610 	*iter = &upper->list;
6611 
6612 	return upper->dev;
6613 }
6614 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6615 
6616 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6617 						    struct list_head **iter)
6618 {
6619 	struct netdev_adjacent *upper;
6620 
6621 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6622 
6623 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6624 
6625 	if (&upper->list == &dev->adj_list.upper)
6626 		return NULL;
6627 
6628 	*iter = &upper->list;
6629 
6630 	return upper->dev;
6631 }
6632 
6633 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6634 				  int (*fn)(struct net_device *dev,
6635 					    void *data),
6636 				  void *data)
6637 {
6638 	struct net_device *udev;
6639 	struct list_head *iter;
6640 	int ret;
6641 
6642 	for (iter = &dev->adj_list.upper,
6643 	     udev = netdev_next_upper_dev_rcu(dev, &iter);
6644 	     udev;
6645 	     udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6646 		/* first is the upper device itself */
6647 		ret = fn(udev, data);
6648 		if (ret)
6649 			return ret;
6650 
6651 		/* then look at all of its upper devices */
6652 		ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6653 		if (ret)
6654 			return ret;
6655 	}
6656 
6657 	return 0;
6658 }
6659 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6660 
6661 /**
6662  * netdev_lower_get_next_private - Get the next ->private from the
6663  *				   lower neighbour list
6664  * @dev: device
6665  * @iter: list_head ** of the current position
6666  *
6667  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6668  * list, starting from iter position. The caller must hold either hold the
6669  * RTNL lock or its own locking that guarantees that the neighbour lower
6670  * list will remain unchanged.
6671  */
6672 void *netdev_lower_get_next_private(struct net_device *dev,
6673 				    struct list_head **iter)
6674 {
6675 	struct netdev_adjacent *lower;
6676 
6677 	lower = list_entry(*iter, struct netdev_adjacent, list);
6678 
6679 	if (&lower->list == &dev->adj_list.lower)
6680 		return NULL;
6681 
6682 	*iter = lower->list.next;
6683 
6684 	return lower->private;
6685 }
6686 EXPORT_SYMBOL(netdev_lower_get_next_private);
6687 
6688 /**
6689  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6690  *				       lower neighbour list, RCU
6691  *				       variant
6692  * @dev: device
6693  * @iter: list_head ** of the current position
6694  *
6695  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6696  * list, starting from iter position. The caller must hold RCU read lock.
6697  */
6698 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6699 					struct list_head **iter)
6700 {
6701 	struct netdev_adjacent *lower;
6702 
6703 	WARN_ON_ONCE(!rcu_read_lock_held());
6704 
6705 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6706 
6707 	if (&lower->list == &dev->adj_list.lower)
6708 		return NULL;
6709 
6710 	*iter = &lower->list;
6711 
6712 	return lower->private;
6713 }
6714 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6715 
6716 /**
6717  * netdev_lower_get_next - Get the next device from the lower neighbour
6718  *                         list
6719  * @dev: device
6720  * @iter: list_head ** of the current position
6721  *
6722  * Gets the next netdev_adjacent from the dev's lower neighbour
6723  * list, starting from iter position. The caller must hold RTNL lock or
6724  * its own locking that guarantees that the neighbour lower
6725  * list will remain unchanged.
6726  */
6727 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6728 {
6729 	struct netdev_adjacent *lower;
6730 
6731 	lower = list_entry(*iter, struct netdev_adjacent, list);
6732 
6733 	if (&lower->list == &dev->adj_list.lower)
6734 		return NULL;
6735 
6736 	*iter = lower->list.next;
6737 
6738 	return lower->dev;
6739 }
6740 EXPORT_SYMBOL(netdev_lower_get_next);
6741 
6742 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6743 						struct list_head **iter)
6744 {
6745 	struct netdev_adjacent *lower;
6746 
6747 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6748 
6749 	if (&lower->list == &dev->adj_list.lower)
6750 		return NULL;
6751 
6752 	*iter = &lower->list;
6753 
6754 	return lower->dev;
6755 }
6756 
6757 int netdev_walk_all_lower_dev(struct net_device *dev,
6758 			      int (*fn)(struct net_device *dev,
6759 					void *data),
6760 			      void *data)
6761 {
6762 	struct net_device *ldev;
6763 	struct list_head *iter;
6764 	int ret;
6765 
6766 	for (iter = &dev->adj_list.lower,
6767 	     ldev = netdev_next_lower_dev(dev, &iter);
6768 	     ldev;
6769 	     ldev = netdev_next_lower_dev(dev, &iter)) {
6770 		/* first is the lower device itself */
6771 		ret = fn(ldev, data);
6772 		if (ret)
6773 			return ret;
6774 
6775 		/* then look at all of its lower devices */
6776 		ret = netdev_walk_all_lower_dev(ldev, fn, data);
6777 		if (ret)
6778 			return ret;
6779 	}
6780 
6781 	return 0;
6782 }
6783 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6784 
6785 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6786 						    struct list_head **iter)
6787 {
6788 	struct netdev_adjacent *lower;
6789 
6790 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6791 	if (&lower->list == &dev->adj_list.lower)
6792 		return NULL;
6793 
6794 	*iter = &lower->list;
6795 
6796 	return lower->dev;
6797 }
6798 
6799 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6800 				  int (*fn)(struct net_device *dev,
6801 					    void *data),
6802 				  void *data)
6803 {
6804 	struct net_device *ldev;
6805 	struct list_head *iter;
6806 	int ret;
6807 
6808 	for (iter = &dev->adj_list.lower,
6809 	     ldev = netdev_next_lower_dev_rcu(dev, &iter);
6810 	     ldev;
6811 	     ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6812 		/* first is the lower device itself */
6813 		ret = fn(ldev, data);
6814 		if (ret)
6815 			return ret;
6816 
6817 		/* then look at all of its lower devices */
6818 		ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6819 		if (ret)
6820 			return ret;
6821 	}
6822 
6823 	return 0;
6824 }
6825 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6826 
6827 /**
6828  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6829  *				       lower neighbour list, RCU
6830  *				       variant
6831  * @dev: device
6832  *
6833  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6834  * list. The caller must hold RCU read lock.
6835  */
6836 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6837 {
6838 	struct netdev_adjacent *lower;
6839 
6840 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
6841 			struct netdev_adjacent, list);
6842 	if (lower)
6843 		return lower->private;
6844 	return NULL;
6845 }
6846 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6847 
6848 /**
6849  * netdev_master_upper_dev_get_rcu - Get master upper device
6850  * @dev: device
6851  *
6852  * Find a master upper device and return pointer to it or NULL in case
6853  * it's not there. The caller must hold the RCU read lock.
6854  */
6855 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6856 {
6857 	struct netdev_adjacent *upper;
6858 
6859 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
6860 				       struct netdev_adjacent, list);
6861 	if (upper && likely(upper->master))
6862 		return upper->dev;
6863 	return NULL;
6864 }
6865 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6866 
6867 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6868 			      struct net_device *adj_dev,
6869 			      struct list_head *dev_list)
6870 {
6871 	char linkname[IFNAMSIZ+7];
6872 
6873 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6874 		"upper_%s" : "lower_%s", adj_dev->name);
6875 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6876 				 linkname);
6877 }
6878 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6879 			       char *name,
6880 			       struct list_head *dev_list)
6881 {
6882 	char linkname[IFNAMSIZ+7];
6883 
6884 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6885 		"upper_%s" : "lower_%s", name);
6886 	sysfs_remove_link(&(dev->dev.kobj), linkname);
6887 }
6888 
6889 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6890 						 struct net_device *adj_dev,
6891 						 struct list_head *dev_list)
6892 {
6893 	return (dev_list == &dev->adj_list.upper ||
6894 		dev_list == &dev->adj_list.lower) &&
6895 		net_eq(dev_net(dev), dev_net(adj_dev));
6896 }
6897 
6898 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6899 					struct net_device *adj_dev,
6900 					struct list_head *dev_list,
6901 					void *private, bool master)
6902 {
6903 	struct netdev_adjacent *adj;
6904 	int ret;
6905 
6906 	adj = __netdev_find_adj(adj_dev, dev_list);
6907 
6908 	if (adj) {
6909 		adj->ref_nr += 1;
6910 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6911 			 dev->name, adj_dev->name, adj->ref_nr);
6912 
6913 		return 0;
6914 	}
6915 
6916 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6917 	if (!adj)
6918 		return -ENOMEM;
6919 
6920 	adj->dev = adj_dev;
6921 	adj->master = master;
6922 	adj->ref_nr = 1;
6923 	adj->private = private;
6924 	dev_hold(adj_dev);
6925 
6926 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6927 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6928 
6929 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6930 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6931 		if (ret)
6932 			goto free_adj;
6933 	}
6934 
6935 	/* Ensure that master link is always the first item in list. */
6936 	if (master) {
6937 		ret = sysfs_create_link(&(dev->dev.kobj),
6938 					&(adj_dev->dev.kobj), "master");
6939 		if (ret)
6940 			goto remove_symlinks;
6941 
6942 		list_add_rcu(&adj->list, dev_list);
6943 	} else {
6944 		list_add_tail_rcu(&adj->list, dev_list);
6945 	}
6946 
6947 	return 0;
6948 
6949 remove_symlinks:
6950 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6951 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6952 free_adj:
6953 	kfree(adj);
6954 	dev_put(adj_dev);
6955 
6956 	return ret;
6957 }
6958 
6959 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6960 					 struct net_device *adj_dev,
6961 					 u16 ref_nr,
6962 					 struct list_head *dev_list)
6963 {
6964 	struct netdev_adjacent *adj;
6965 
6966 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6967 		 dev->name, adj_dev->name, ref_nr);
6968 
6969 	adj = __netdev_find_adj(adj_dev, dev_list);
6970 
6971 	if (!adj) {
6972 		pr_err("Adjacency does not exist for device %s from %s\n",
6973 		       dev->name, adj_dev->name);
6974 		WARN_ON(1);
6975 		return;
6976 	}
6977 
6978 	if (adj->ref_nr > ref_nr) {
6979 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6980 			 dev->name, adj_dev->name, ref_nr,
6981 			 adj->ref_nr - ref_nr);
6982 		adj->ref_nr -= ref_nr;
6983 		return;
6984 	}
6985 
6986 	if (adj->master)
6987 		sysfs_remove_link(&(dev->dev.kobj), "master");
6988 
6989 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6990 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6991 
6992 	list_del_rcu(&adj->list);
6993 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6994 		 adj_dev->name, dev->name, adj_dev->name);
6995 	dev_put(adj_dev);
6996 	kfree_rcu(adj, rcu);
6997 }
6998 
6999 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7000 					    struct net_device *upper_dev,
7001 					    struct list_head *up_list,
7002 					    struct list_head *down_list,
7003 					    void *private, bool master)
7004 {
7005 	int ret;
7006 
7007 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7008 					   private, master);
7009 	if (ret)
7010 		return ret;
7011 
7012 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7013 					   private, false);
7014 	if (ret) {
7015 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7016 		return ret;
7017 	}
7018 
7019 	return 0;
7020 }
7021 
7022 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7023 					       struct net_device *upper_dev,
7024 					       u16 ref_nr,
7025 					       struct list_head *up_list,
7026 					       struct list_head *down_list)
7027 {
7028 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7029 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7030 }
7031 
7032 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7033 						struct net_device *upper_dev,
7034 						void *private, bool master)
7035 {
7036 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7037 						&dev->adj_list.upper,
7038 						&upper_dev->adj_list.lower,
7039 						private, master);
7040 }
7041 
7042 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7043 						   struct net_device *upper_dev)
7044 {
7045 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7046 					   &dev->adj_list.upper,
7047 					   &upper_dev->adj_list.lower);
7048 }
7049 
7050 static int __netdev_upper_dev_link(struct net_device *dev,
7051 				   struct net_device *upper_dev, bool master,
7052 				   void *upper_priv, void *upper_info,
7053 				   struct netlink_ext_ack *extack)
7054 {
7055 	struct netdev_notifier_changeupper_info changeupper_info = {
7056 		.info = {
7057 			.dev = dev,
7058 			.extack = extack,
7059 		},
7060 		.upper_dev = upper_dev,
7061 		.master = master,
7062 		.linking = true,
7063 		.upper_info = upper_info,
7064 	};
7065 	struct net_device *master_dev;
7066 	int ret = 0;
7067 
7068 	ASSERT_RTNL();
7069 
7070 	if (dev == upper_dev)
7071 		return -EBUSY;
7072 
7073 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7074 	if (netdev_has_upper_dev(upper_dev, dev))
7075 		return -EBUSY;
7076 
7077 	if (!master) {
7078 		if (netdev_has_upper_dev(dev, upper_dev))
7079 			return -EEXIST;
7080 	} else {
7081 		master_dev = netdev_master_upper_dev_get(dev);
7082 		if (master_dev)
7083 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7084 	}
7085 
7086 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7087 					    &changeupper_info.info);
7088 	ret = notifier_to_errno(ret);
7089 	if (ret)
7090 		return ret;
7091 
7092 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7093 						   master);
7094 	if (ret)
7095 		return ret;
7096 
7097 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7098 					    &changeupper_info.info);
7099 	ret = notifier_to_errno(ret);
7100 	if (ret)
7101 		goto rollback;
7102 
7103 	return 0;
7104 
7105 rollback:
7106 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7107 
7108 	return ret;
7109 }
7110 
7111 /**
7112  * netdev_upper_dev_link - Add a link to the upper device
7113  * @dev: device
7114  * @upper_dev: new upper device
7115  * @extack: netlink extended ack
7116  *
7117  * Adds a link to device which is upper to this one. The caller must hold
7118  * the RTNL lock. On a failure a negative errno code is returned.
7119  * On success the reference counts are adjusted and the function
7120  * returns zero.
7121  */
7122 int netdev_upper_dev_link(struct net_device *dev,
7123 			  struct net_device *upper_dev,
7124 			  struct netlink_ext_ack *extack)
7125 {
7126 	return __netdev_upper_dev_link(dev, upper_dev, false,
7127 				       NULL, NULL, extack);
7128 }
7129 EXPORT_SYMBOL(netdev_upper_dev_link);
7130 
7131 /**
7132  * netdev_master_upper_dev_link - Add a master link to the upper device
7133  * @dev: device
7134  * @upper_dev: new upper device
7135  * @upper_priv: upper device private
7136  * @upper_info: upper info to be passed down via notifier
7137  * @extack: netlink extended ack
7138  *
7139  * Adds a link to device which is upper to this one. In this case, only
7140  * one master upper device can be linked, although other non-master devices
7141  * might be linked as well. The caller must hold the RTNL lock.
7142  * On a failure a negative errno code is returned. On success the reference
7143  * counts are adjusted and the function returns zero.
7144  */
7145 int netdev_master_upper_dev_link(struct net_device *dev,
7146 				 struct net_device *upper_dev,
7147 				 void *upper_priv, void *upper_info,
7148 				 struct netlink_ext_ack *extack)
7149 {
7150 	return __netdev_upper_dev_link(dev, upper_dev, true,
7151 				       upper_priv, upper_info, extack);
7152 }
7153 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7154 
7155 /**
7156  * netdev_upper_dev_unlink - Removes a link to upper device
7157  * @dev: device
7158  * @upper_dev: new upper device
7159  *
7160  * Removes a link to device which is upper to this one. The caller must hold
7161  * the RTNL lock.
7162  */
7163 void netdev_upper_dev_unlink(struct net_device *dev,
7164 			     struct net_device *upper_dev)
7165 {
7166 	struct netdev_notifier_changeupper_info changeupper_info = {
7167 		.info = {
7168 			.dev = dev,
7169 		},
7170 		.upper_dev = upper_dev,
7171 		.linking = false,
7172 	};
7173 
7174 	ASSERT_RTNL();
7175 
7176 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7177 
7178 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7179 				      &changeupper_info.info);
7180 
7181 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7182 
7183 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7184 				      &changeupper_info.info);
7185 }
7186 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7187 
7188 /**
7189  * netdev_bonding_info_change - Dispatch event about slave change
7190  * @dev: device
7191  * @bonding_info: info to dispatch
7192  *
7193  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7194  * The caller must hold the RTNL lock.
7195  */
7196 void netdev_bonding_info_change(struct net_device *dev,
7197 				struct netdev_bonding_info *bonding_info)
7198 {
7199 	struct netdev_notifier_bonding_info info = {
7200 		.info.dev = dev,
7201 	};
7202 
7203 	memcpy(&info.bonding_info, bonding_info,
7204 	       sizeof(struct netdev_bonding_info));
7205 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7206 				      &info.info);
7207 }
7208 EXPORT_SYMBOL(netdev_bonding_info_change);
7209 
7210 static void netdev_adjacent_add_links(struct net_device *dev)
7211 {
7212 	struct netdev_adjacent *iter;
7213 
7214 	struct net *net = dev_net(dev);
7215 
7216 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7217 		if (!net_eq(net, dev_net(iter->dev)))
7218 			continue;
7219 		netdev_adjacent_sysfs_add(iter->dev, dev,
7220 					  &iter->dev->adj_list.lower);
7221 		netdev_adjacent_sysfs_add(dev, iter->dev,
7222 					  &dev->adj_list.upper);
7223 	}
7224 
7225 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7226 		if (!net_eq(net, dev_net(iter->dev)))
7227 			continue;
7228 		netdev_adjacent_sysfs_add(iter->dev, dev,
7229 					  &iter->dev->adj_list.upper);
7230 		netdev_adjacent_sysfs_add(dev, iter->dev,
7231 					  &dev->adj_list.lower);
7232 	}
7233 }
7234 
7235 static void netdev_adjacent_del_links(struct net_device *dev)
7236 {
7237 	struct netdev_adjacent *iter;
7238 
7239 	struct net *net = dev_net(dev);
7240 
7241 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7242 		if (!net_eq(net, dev_net(iter->dev)))
7243 			continue;
7244 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7245 					  &iter->dev->adj_list.lower);
7246 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7247 					  &dev->adj_list.upper);
7248 	}
7249 
7250 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7251 		if (!net_eq(net, dev_net(iter->dev)))
7252 			continue;
7253 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7254 					  &iter->dev->adj_list.upper);
7255 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7256 					  &dev->adj_list.lower);
7257 	}
7258 }
7259 
7260 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7261 {
7262 	struct netdev_adjacent *iter;
7263 
7264 	struct net *net = dev_net(dev);
7265 
7266 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7267 		if (!net_eq(net, dev_net(iter->dev)))
7268 			continue;
7269 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7270 					  &iter->dev->adj_list.lower);
7271 		netdev_adjacent_sysfs_add(iter->dev, dev,
7272 					  &iter->dev->adj_list.lower);
7273 	}
7274 
7275 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7276 		if (!net_eq(net, dev_net(iter->dev)))
7277 			continue;
7278 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7279 					  &iter->dev->adj_list.upper);
7280 		netdev_adjacent_sysfs_add(iter->dev, dev,
7281 					  &iter->dev->adj_list.upper);
7282 	}
7283 }
7284 
7285 void *netdev_lower_dev_get_private(struct net_device *dev,
7286 				   struct net_device *lower_dev)
7287 {
7288 	struct netdev_adjacent *lower;
7289 
7290 	if (!lower_dev)
7291 		return NULL;
7292 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7293 	if (!lower)
7294 		return NULL;
7295 
7296 	return lower->private;
7297 }
7298 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7299 
7300 
7301 int dev_get_nest_level(struct net_device *dev)
7302 {
7303 	struct net_device *lower = NULL;
7304 	struct list_head *iter;
7305 	int max_nest = -1;
7306 	int nest;
7307 
7308 	ASSERT_RTNL();
7309 
7310 	netdev_for_each_lower_dev(dev, lower, iter) {
7311 		nest = dev_get_nest_level(lower);
7312 		if (max_nest < nest)
7313 			max_nest = nest;
7314 	}
7315 
7316 	return max_nest + 1;
7317 }
7318 EXPORT_SYMBOL(dev_get_nest_level);
7319 
7320 /**
7321  * netdev_lower_change - Dispatch event about lower device state change
7322  * @lower_dev: device
7323  * @lower_state_info: state to dispatch
7324  *
7325  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7326  * The caller must hold the RTNL lock.
7327  */
7328 void netdev_lower_state_changed(struct net_device *lower_dev,
7329 				void *lower_state_info)
7330 {
7331 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7332 		.info.dev = lower_dev,
7333 	};
7334 
7335 	ASSERT_RTNL();
7336 	changelowerstate_info.lower_state_info = lower_state_info;
7337 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7338 				      &changelowerstate_info.info);
7339 }
7340 EXPORT_SYMBOL(netdev_lower_state_changed);
7341 
7342 static void dev_change_rx_flags(struct net_device *dev, int flags)
7343 {
7344 	const struct net_device_ops *ops = dev->netdev_ops;
7345 
7346 	if (ops->ndo_change_rx_flags)
7347 		ops->ndo_change_rx_flags(dev, flags);
7348 }
7349 
7350 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7351 {
7352 	unsigned int old_flags = dev->flags;
7353 	kuid_t uid;
7354 	kgid_t gid;
7355 
7356 	ASSERT_RTNL();
7357 
7358 	dev->flags |= IFF_PROMISC;
7359 	dev->promiscuity += inc;
7360 	if (dev->promiscuity == 0) {
7361 		/*
7362 		 * Avoid overflow.
7363 		 * If inc causes overflow, untouch promisc and return error.
7364 		 */
7365 		if (inc < 0)
7366 			dev->flags &= ~IFF_PROMISC;
7367 		else {
7368 			dev->promiscuity -= inc;
7369 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7370 				dev->name);
7371 			return -EOVERFLOW;
7372 		}
7373 	}
7374 	if (dev->flags != old_flags) {
7375 		pr_info("device %s %s promiscuous mode\n",
7376 			dev->name,
7377 			dev->flags & IFF_PROMISC ? "entered" : "left");
7378 		if (audit_enabled) {
7379 			current_uid_gid(&uid, &gid);
7380 			audit_log(audit_context(), GFP_ATOMIC,
7381 				  AUDIT_ANOM_PROMISCUOUS,
7382 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7383 				  dev->name, (dev->flags & IFF_PROMISC),
7384 				  (old_flags & IFF_PROMISC),
7385 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
7386 				  from_kuid(&init_user_ns, uid),
7387 				  from_kgid(&init_user_ns, gid),
7388 				  audit_get_sessionid(current));
7389 		}
7390 
7391 		dev_change_rx_flags(dev, IFF_PROMISC);
7392 	}
7393 	if (notify)
7394 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
7395 	return 0;
7396 }
7397 
7398 /**
7399  *	dev_set_promiscuity	- update promiscuity count on a device
7400  *	@dev: device
7401  *	@inc: modifier
7402  *
7403  *	Add or remove promiscuity from a device. While the count in the device
7404  *	remains above zero the interface remains promiscuous. Once it hits zero
7405  *	the device reverts back to normal filtering operation. A negative inc
7406  *	value is used to drop promiscuity on the device.
7407  *	Return 0 if successful or a negative errno code on error.
7408  */
7409 int dev_set_promiscuity(struct net_device *dev, int inc)
7410 {
7411 	unsigned int old_flags = dev->flags;
7412 	int err;
7413 
7414 	err = __dev_set_promiscuity(dev, inc, true);
7415 	if (err < 0)
7416 		return err;
7417 	if (dev->flags != old_flags)
7418 		dev_set_rx_mode(dev);
7419 	return err;
7420 }
7421 EXPORT_SYMBOL(dev_set_promiscuity);
7422 
7423 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7424 {
7425 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7426 
7427 	ASSERT_RTNL();
7428 
7429 	dev->flags |= IFF_ALLMULTI;
7430 	dev->allmulti += inc;
7431 	if (dev->allmulti == 0) {
7432 		/*
7433 		 * Avoid overflow.
7434 		 * If inc causes overflow, untouch allmulti and return error.
7435 		 */
7436 		if (inc < 0)
7437 			dev->flags &= ~IFF_ALLMULTI;
7438 		else {
7439 			dev->allmulti -= inc;
7440 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7441 				dev->name);
7442 			return -EOVERFLOW;
7443 		}
7444 	}
7445 	if (dev->flags ^ old_flags) {
7446 		dev_change_rx_flags(dev, IFF_ALLMULTI);
7447 		dev_set_rx_mode(dev);
7448 		if (notify)
7449 			__dev_notify_flags(dev, old_flags,
7450 					   dev->gflags ^ old_gflags);
7451 	}
7452 	return 0;
7453 }
7454 
7455 /**
7456  *	dev_set_allmulti	- update allmulti count on a device
7457  *	@dev: device
7458  *	@inc: modifier
7459  *
7460  *	Add or remove reception of all multicast frames to a device. While the
7461  *	count in the device remains above zero the interface remains listening
7462  *	to all interfaces. Once it hits zero the device reverts back to normal
7463  *	filtering operation. A negative @inc value is used to drop the counter
7464  *	when releasing a resource needing all multicasts.
7465  *	Return 0 if successful or a negative errno code on error.
7466  */
7467 
7468 int dev_set_allmulti(struct net_device *dev, int inc)
7469 {
7470 	return __dev_set_allmulti(dev, inc, true);
7471 }
7472 EXPORT_SYMBOL(dev_set_allmulti);
7473 
7474 /*
7475  *	Upload unicast and multicast address lists to device and
7476  *	configure RX filtering. When the device doesn't support unicast
7477  *	filtering it is put in promiscuous mode while unicast addresses
7478  *	are present.
7479  */
7480 void __dev_set_rx_mode(struct net_device *dev)
7481 {
7482 	const struct net_device_ops *ops = dev->netdev_ops;
7483 
7484 	/* dev_open will call this function so the list will stay sane. */
7485 	if (!(dev->flags&IFF_UP))
7486 		return;
7487 
7488 	if (!netif_device_present(dev))
7489 		return;
7490 
7491 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7492 		/* Unicast addresses changes may only happen under the rtnl,
7493 		 * therefore calling __dev_set_promiscuity here is safe.
7494 		 */
7495 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7496 			__dev_set_promiscuity(dev, 1, false);
7497 			dev->uc_promisc = true;
7498 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7499 			__dev_set_promiscuity(dev, -1, false);
7500 			dev->uc_promisc = false;
7501 		}
7502 	}
7503 
7504 	if (ops->ndo_set_rx_mode)
7505 		ops->ndo_set_rx_mode(dev);
7506 }
7507 
7508 void dev_set_rx_mode(struct net_device *dev)
7509 {
7510 	netif_addr_lock_bh(dev);
7511 	__dev_set_rx_mode(dev);
7512 	netif_addr_unlock_bh(dev);
7513 }
7514 
7515 /**
7516  *	dev_get_flags - get flags reported to userspace
7517  *	@dev: device
7518  *
7519  *	Get the combination of flag bits exported through APIs to userspace.
7520  */
7521 unsigned int dev_get_flags(const struct net_device *dev)
7522 {
7523 	unsigned int flags;
7524 
7525 	flags = (dev->flags & ~(IFF_PROMISC |
7526 				IFF_ALLMULTI |
7527 				IFF_RUNNING |
7528 				IFF_LOWER_UP |
7529 				IFF_DORMANT)) |
7530 		(dev->gflags & (IFF_PROMISC |
7531 				IFF_ALLMULTI));
7532 
7533 	if (netif_running(dev)) {
7534 		if (netif_oper_up(dev))
7535 			flags |= IFF_RUNNING;
7536 		if (netif_carrier_ok(dev))
7537 			flags |= IFF_LOWER_UP;
7538 		if (netif_dormant(dev))
7539 			flags |= IFF_DORMANT;
7540 	}
7541 
7542 	return flags;
7543 }
7544 EXPORT_SYMBOL(dev_get_flags);
7545 
7546 int __dev_change_flags(struct net_device *dev, unsigned int flags,
7547 		       struct netlink_ext_ack *extack)
7548 {
7549 	unsigned int old_flags = dev->flags;
7550 	int ret;
7551 
7552 	ASSERT_RTNL();
7553 
7554 	/*
7555 	 *	Set the flags on our device.
7556 	 */
7557 
7558 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7559 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7560 			       IFF_AUTOMEDIA)) |
7561 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7562 				    IFF_ALLMULTI));
7563 
7564 	/*
7565 	 *	Load in the correct multicast list now the flags have changed.
7566 	 */
7567 
7568 	if ((old_flags ^ flags) & IFF_MULTICAST)
7569 		dev_change_rx_flags(dev, IFF_MULTICAST);
7570 
7571 	dev_set_rx_mode(dev);
7572 
7573 	/*
7574 	 *	Have we downed the interface. We handle IFF_UP ourselves
7575 	 *	according to user attempts to set it, rather than blindly
7576 	 *	setting it.
7577 	 */
7578 
7579 	ret = 0;
7580 	if ((old_flags ^ flags) & IFF_UP) {
7581 		if (old_flags & IFF_UP)
7582 			__dev_close(dev);
7583 		else
7584 			ret = __dev_open(dev, extack);
7585 	}
7586 
7587 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
7588 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
7589 		unsigned int old_flags = dev->flags;
7590 
7591 		dev->gflags ^= IFF_PROMISC;
7592 
7593 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
7594 			if (dev->flags != old_flags)
7595 				dev_set_rx_mode(dev);
7596 	}
7597 
7598 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7599 	 * is important. Some (broken) drivers set IFF_PROMISC, when
7600 	 * IFF_ALLMULTI is requested not asking us and not reporting.
7601 	 */
7602 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7603 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7604 
7605 		dev->gflags ^= IFF_ALLMULTI;
7606 		__dev_set_allmulti(dev, inc, false);
7607 	}
7608 
7609 	return ret;
7610 }
7611 
7612 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7613 			unsigned int gchanges)
7614 {
7615 	unsigned int changes = dev->flags ^ old_flags;
7616 
7617 	if (gchanges)
7618 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7619 
7620 	if (changes & IFF_UP) {
7621 		if (dev->flags & IFF_UP)
7622 			call_netdevice_notifiers(NETDEV_UP, dev);
7623 		else
7624 			call_netdevice_notifiers(NETDEV_DOWN, dev);
7625 	}
7626 
7627 	if (dev->flags & IFF_UP &&
7628 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7629 		struct netdev_notifier_change_info change_info = {
7630 			.info = {
7631 				.dev = dev,
7632 			},
7633 			.flags_changed = changes,
7634 		};
7635 
7636 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7637 	}
7638 }
7639 
7640 /**
7641  *	dev_change_flags - change device settings
7642  *	@dev: device
7643  *	@flags: device state flags
7644  *	@extack: netlink extended ack
7645  *
7646  *	Change settings on device based state flags. The flags are
7647  *	in the userspace exported format.
7648  */
7649 int dev_change_flags(struct net_device *dev, unsigned int flags,
7650 		     struct netlink_ext_ack *extack)
7651 {
7652 	int ret;
7653 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7654 
7655 	ret = __dev_change_flags(dev, flags, extack);
7656 	if (ret < 0)
7657 		return ret;
7658 
7659 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7660 	__dev_notify_flags(dev, old_flags, changes);
7661 	return ret;
7662 }
7663 EXPORT_SYMBOL(dev_change_flags);
7664 
7665 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7666 {
7667 	const struct net_device_ops *ops = dev->netdev_ops;
7668 
7669 	if (ops->ndo_change_mtu)
7670 		return ops->ndo_change_mtu(dev, new_mtu);
7671 
7672 	dev->mtu = new_mtu;
7673 	return 0;
7674 }
7675 EXPORT_SYMBOL(__dev_set_mtu);
7676 
7677 /**
7678  *	dev_set_mtu_ext - Change maximum transfer unit
7679  *	@dev: device
7680  *	@new_mtu: new transfer unit
7681  *	@extack: netlink extended ack
7682  *
7683  *	Change the maximum transfer size of the network device.
7684  */
7685 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7686 		    struct netlink_ext_ack *extack)
7687 {
7688 	int err, orig_mtu;
7689 
7690 	if (new_mtu == dev->mtu)
7691 		return 0;
7692 
7693 	/* MTU must be positive, and in range */
7694 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7695 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
7696 		return -EINVAL;
7697 	}
7698 
7699 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7700 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
7701 		return -EINVAL;
7702 	}
7703 
7704 	if (!netif_device_present(dev))
7705 		return -ENODEV;
7706 
7707 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7708 	err = notifier_to_errno(err);
7709 	if (err)
7710 		return err;
7711 
7712 	orig_mtu = dev->mtu;
7713 	err = __dev_set_mtu(dev, new_mtu);
7714 
7715 	if (!err) {
7716 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7717 						   orig_mtu);
7718 		err = notifier_to_errno(err);
7719 		if (err) {
7720 			/* setting mtu back and notifying everyone again,
7721 			 * so that they have a chance to revert changes.
7722 			 */
7723 			__dev_set_mtu(dev, orig_mtu);
7724 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7725 						     new_mtu);
7726 		}
7727 	}
7728 	return err;
7729 }
7730 
7731 int dev_set_mtu(struct net_device *dev, int new_mtu)
7732 {
7733 	struct netlink_ext_ack extack;
7734 	int err;
7735 
7736 	memset(&extack, 0, sizeof(extack));
7737 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
7738 	if (err && extack._msg)
7739 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
7740 	return err;
7741 }
7742 EXPORT_SYMBOL(dev_set_mtu);
7743 
7744 /**
7745  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
7746  *	@dev: device
7747  *	@new_len: new tx queue length
7748  */
7749 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7750 {
7751 	unsigned int orig_len = dev->tx_queue_len;
7752 	int res;
7753 
7754 	if (new_len != (unsigned int)new_len)
7755 		return -ERANGE;
7756 
7757 	if (new_len != orig_len) {
7758 		dev->tx_queue_len = new_len;
7759 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7760 		res = notifier_to_errno(res);
7761 		if (res)
7762 			goto err_rollback;
7763 		res = dev_qdisc_change_tx_queue_len(dev);
7764 		if (res)
7765 			goto err_rollback;
7766 	}
7767 
7768 	return 0;
7769 
7770 err_rollback:
7771 	netdev_err(dev, "refused to change device tx_queue_len\n");
7772 	dev->tx_queue_len = orig_len;
7773 	return res;
7774 }
7775 
7776 /**
7777  *	dev_set_group - Change group this device belongs to
7778  *	@dev: device
7779  *	@new_group: group this device should belong to
7780  */
7781 void dev_set_group(struct net_device *dev, int new_group)
7782 {
7783 	dev->group = new_group;
7784 }
7785 EXPORT_SYMBOL(dev_set_group);
7786 
7787 /**
7788  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
7789  *	@dev: device
7790  *	@addr: new address
7791  *	@extack: netlink extended ack
7792  */
7793 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
7794 			      struct netlink_ext_ack *extack)
7795 {
7796 	struct netdev_notifier_pre_changeaddr_info info = {
7797 		.info.dev = dev,
7798 		.info.extack = extack,
7799 		.dev_addr = addr,
7800 	};
7801 	int rc;
7802 
7803 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
7804 	return notifier_to_errno(rc);
7805 }
7806 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
7807 
7808 /**
7809  *	dev_set_mac_address - Change Media Access Control Address
7810  *	@dev: device
7811  *	@sa: new address
7812  *	@extack: netlink extended ack
7813  *
7814  *	Change the hardware (MAC) address of the device
7815  */
7816 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
7817 			struct netlink_ext_ack *extack)
7818 {
7819 	const struct net_device_ops *ops = dev->netdev_ops;
7820 	int err;
7821 
7822 	if (!ops->ndo_set_mac_address)
7823 		return -EOPNOTSUPP;
7824 	if (sa->sa_family != dev->type)
7825 		return -EINVAL;
7826 	if (!netif_device_present(dev))
7827 		return -ENODEV;
7828 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
7829 	if (err)
7830 		return err;
7831 	err = ops->ndo_set_mac_address(dev, sa);
7832 	if (err)
7833 		return err;
7834 	dev->addr_assign_type = NET_ADDR_SET;
7835 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7836 	add_device_randomness(dev->dev_addr, dev->addr_len);
7837 	return 0;
7838 }
7839 EXPORT_SYMBOL(dev_set_mac_address);
7840 
7841 /**
7842  *	dev_change_carrier - Change device carrier
7843  *	@dev: device
7844  *	@new_carrier: new value
7845  *
7846  *	Change device carrier
7847  */
7848 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7849 {
7850 	const struct net_device_ops *ops = dev->netdev_ops;
7851 
7852 	if (!ops->ndo_change_carrier)
7853 		return -EOPNOTSUPP;
7854 	if (!netif_device_present(dev))
7855 		return -ENODEV;
7856 	return ops->ndo_change_carrier(dev, new_carrier);
7857 }
7858 EXPORT_SYMBOL(dev_change_carrier);
7859 
7860 /**
7861  *	dev_get_phys_port_id - Get device physical port ID
7862  *	@dev: device
7863  *	@ppid: port ID
7864  *
7865  *	Get device physical port ID
7866  */
7867 int dev_get_phys_port_id(struct net_device *dev,
7868 			 struct netdev_phys_item_id *ppid)
7869 {
7870 	const struct net_device_ops *ops = dev->netdev_ops;
7871 
7872 	if (!ops->ndo_get_phys_port_id)
7873 		return -EOPNOTSUPP;
7874 	return ops->ndo_get_phys_port_id(dev, ppid);
7875 }
7876 EXPORT_SYMBOL(dev_get_phys_port_id);
7877 
7878 /**
7879  *	dev_get_phys_port_name - Get device physical port name
7880  *	@dev: device
7881  *	@name: port name
7882  *	@len: limit of bytes to copy to name
7883  *
7884  *	Get device physical port name
7885  */
7886 int dev_get_phys_port_name(struct net_device *dev,
7887 			   char *name, size_t len)
7888 {
7889 	const struct net_device_ops *ops = dev->netdev_ops;
7890 	int err;
7891 
7892 	if (ops->ndo_get_phys_port_name) {
7893 		err = ops->ndo_get_phys_port_name(dev, name, len);
7894 		if (err != -EOPNOTSUPP)
7895 			return err;
7896 	}
7897 	return devlink_compat_phys_port_name_get(dev, name, len);
7898 }
7899 EXPORT_SYMBOL(dev_get_phys_port_name);
7900 
7901 /**
7902  *	dev_get_port_parent_id - Get the device's port parent identifier
7903  *	@dev: network device
7904  *	@ppid: pointer to a storage for the port's parent identifier
7905  *	@recurse: allow/disallow recursion to lower devices
7906  *
7907  *	Get the devices's port parent identifier
7908  */
7909 int dev_get_port_parent_id(struct net_device *dev,
7910 			   struct netdev_phys_item_id *ppid,
7911 			   bool recurse)
7912 {
7913 	const struct net_device_ops *ops = dev->netdev_ops;
7914 	struct netdev_phys_item_id first = { };
7915 	struct net_device *lower_dev;
7916 	struct list_head *iter;
7917 	int err;
7918 
7919 	if (ops->ndo_get_port_parent_id) {
7920 		err = ops->ndo_get_port_parent_id(dev, ppid);
7921 		if (err != -EOPNOTSUPP)
7922 			return err;
7923 	}
7924 
7925 	err = devlink_compat_switch_id_get(dev, ppid);
7926 	if (!err || err != -EOPNOTSUPP)
7927 		return err;
7928 
7929 	if (!recurse)
7930 		return -EOPNOTSUPP;
7931 
7932 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
7933 		err = dev_get_port_parent_id(lower_dev, ppid, recurse);
7934 		if (err)
7935 			break;
7936 		if (!first.id_len)
7937 			first = *ppid;
7938 		else if (memcmp(&first, ppid, sizeof(*ppid)))
7939 			return -ENODATA;
7940 	}
7941 
7942 	return err;
7943 }
7944 EXPORT_SYMBOL(dev_get_port_parent_id);
7945 
7946 /**
7947  *	netdev_port_same_parent_id - Indicate if two network devices have
7948  *	the same port parent identifier
7949  *	@a: first network device
7950  *	@b: second network device
7951  */
7952 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
7953 {
7954 	struct netdev_phys_item_id a_id = { };
7955 	struct netdev_phys_item_id b_id = { };
7956 
7957 	if (dev_get_port_parent_id(a, &a_id, true) ||
7958 	    dev_get_port_parent_id(b, &b_id, true))
7959 		return false;
7960 
7961 	return netdev_phys_item_id_same(&a_id, &b_id);
7962 }
7963 EXPORT_SYMBOL(netdev_port_same_parent_id);
7964 
7965 /**
7966  *	dev_change_proto_down - update protocol port state information
7967  *	@dev: device
7968  *	@proto_down: new value
7969  *
7970  *	This info can be used by switch drivers to set the phys state of the
7971  *	port.
7972  */
7973 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7974 {
7975 	const struct net_device_ops *ops = dev->netdev_ops;
7976 
7977 	if (!ops->ndo_change_proto_down)
7978 		return -EOPNOTSUPP;
7979 	if (!netif_device_present(dev))
7980 		return -ENODEV;
7981 	return ops->ndo_change_proto_down(dev, proto_down);
7982 }
7983 EXPORT_SYMBOL(dev_change_proto_down);
7984 
7985 /**
7986  *	dev_change_proto_down_generic - generic implementation for
7987  * 	ndo_change_proto_down that sets carrier according to
7988  * 	proto_down.
7989  *
7990  *	@dev: device
7991  *	@proto_down: new value
7992  */
7993 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
7994 {
7995 	if (proto_down)
7996 		netif_carrier_off(dev);
7997 	else
7998 		netif_carrier_on(dev);
7999 	dev->proto_down = proto_down;
8000 	return 0;
8001 }
8002 EXPORT_SYMBOL(dev_change_proto_down_generic);
8003 
8004 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
8005 		    enum bpf_netdev_command cmd)
8006 {
8007 	struct netdev_bpf xdp;
8008 
8009 	if (!bpf_op)
8010 		return 0;
8011 
8012 	memset(&xdp, 0, sizeof(xdp));
8013 	xdp.command = cmd;
8014 
8015 	/* Query must always succeed. */
8016 	WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
8017 
8018 	return xdp.prog_id;
8019 }
8020 
8021 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8022 			   struct netlink_ext_ack *extack, u32 flags,
8023 			   struct bpf_prog *prog)
8024 {
8025 	struct netdev_bpf xdp;
8026 
8027 	memset(&xdp, 0, sizeof(xdp));
8028 	if (flags & XDP_FLAGS_HW_MODE)
8029 		xdp.command = XDP_SETUP_PROG_HW;
8030 	else
8031 		xdp.command = XDP_SETUP_PROG;
8032 	xdp.extack = extack;
8033 	xdp.flags = flags;
8034 	xdp.prog = prog;
8035 
8036 	return bpf_op(dev, &xdp);
8037 }
8038 
8039 static void dev_xdp_uninstall(struct net_device *dev)
8040 {
8041 	struct netdev_bpf xdp;
8042 	bpf_op_t ndo_bpf;
8043 
8044 	/* Remove generic XDP */
8045 	WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8046 
8047 	/* Remove from the driver */
8048 	ndo_bpf = dev->netdev_ops->ndo_bpf;
8049 	if (!ndo_bpf)
8050 		return;
8051 
8052 	memset(&xdp, 0, sizeof(xdp));
8053 	xdp.command = XDP_QUERY_PROG;
8054 	WARN_ON(ndo_bpf(dev, &xdp));
8055 	if (xdp.prog_id)
8056 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8057 					NULL));
8058 
8059 	/* Remove HW offload */
8060 	memset(&xdp, 0, sizeof(xdp));
8061 	xdp.command = XDP_QUERY_PROG_HW;
8062 	if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8063 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8064 					NULL));
8065 }
8066 
8067 /**
8068  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
8069  *	@dev: device
8070  *	@extack: netlink extended ack
8071  *	@fd: new program fd or negative value to clear
8072  *	@flags: xdp-related flags
8073  *
8074  *	Set or clear a bpf program for a device
8075  */
8076 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8077 		      int fd, u32 flags)
8078 {
8079 	const struct net_device_ops *ops = dev->netdev_ops;
8080 	enum bpf_netdev_command query;
8081 	struct bpf_prog *prog = NULL;
8082 	bpf_op_t bpf_op, bpf_chk;
8083 	bool offload;
8084 	int err;
8085 
8086 	ASSERT_RTNL();
8087 
8088 	offload = flags & XDP_FLAGS_HW_MODE;
8089 	query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8090 
8091 	bpf_op = bpf_chk = ops->ndo_bpf;
8092 	if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8093 		NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8094 		return -EOPNOTSUPP;
8095 	}
8096 	if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8097 		bpf_op = generic_xdp_install;
8098 	if (bpf_op == bpf_chk)
8099 		bpf_chk = generic_xdp_install;
8100 
8101 	if (fd >= 0) {
8102 		if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8103 			NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8104 			return -EEXIST;
8105 		}
8106 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
8107 		    __dev_xdp_query(dev, bpf_op, query)) {
8108 			NL_SET_ERR_MSG(extack, "XDP program already attached");
8109 			return -EBUSY;
8110 		}
8111 
8112 		prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8113 					     bpf_op == ops->ndo_bpf);
8114 		if (IS_ERR(prog))
8115 			return PTR_ERR(prog);
8116 
8117 		if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8118 			NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8119 			bpf_prog_put(prog);
8120 			return -EINVAL;
8121 		}
8122 	}
8123 
8124 	err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8125 	if (err < 0 && prog)
8126 		bpf_prog_put(prog);
8127 
8128 	return err;
8129 }
8130 
8131 /**
8132  *	dev_new_index	-	allocate an ifindex
8133  *	@net: the applicable net namespace
8134  *
8135  *	Returns a suitable unique value for a new device interface
8136  *	number.  The caller must hold the rtnl semaphore or the
8137  *	dev_base_lock to be sure it remains unique.
8138  */
8139 static int dev_new_index(struct net *net)
8140 {
8141 	int ifindex = net->ifindex;
8142 
8143 	for (;;) {
8144 		if (++ifindex <= 0)
8145 			ifindex = 1;
8146 		if (!__dev_get_by_index(net, ifindex))
8147 			return net->ifindex = ifindex;
8148 	}
8149 }
8150 
8151 /* Delayed registration/unregisteration */
8152 static LIST_HEAD(net_todo_list);
8153 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8154 
8155 static void net_set_todo(struct net_device *dev)
8156 {
8157 	list_add_tail(&dev->todo_list, &net_todo_list);
8158 	dev_net(dev)->dev_unreg_count++;
8159 }
8160 
8161 static void rollback_registered_many(struct list_head *head)
8162 {
8163 	struct net_device *dev, *tmp;
8164 	LIST_HEAD(close_head);
8165 
8166 	BUG_ON(dev_boot_phase);
8167 	ASSERT_RTNL();
8168 
8169 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8170 		/* Some devices call without registering
8171 		 * for initialization unwind. Remove those
8172 		 * devices and proceed with the remaining.
8173 		 */
8174 		if (dev->reg_state == NETREG_UNINITIALIZED) {
8175 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8176 				 dev->name, dev);
8177 
8178 			WARN_ON(1);
8179 			list_del(&dev->unreg_list);
8180 			continue;
8181 		}
8182 		dev->dismantle = true;
8183 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
8184 	}
8185 
8186 	/* If device is running, close it first. */
8187 	list_for_each_entry(dev, head, unreg_list)
8188 		list_add_tail(&dev->close_list, &close_head);
8189 	dev_close_many(&close_head, true);
8190 
8191 	list_for_each_entry(dev, head, unreg_list) {
8192 		/* And unlink it from device chain. */
8193 		unlist_netdevice(dev);
8194 
8195 		dev->reg_state = NETREG_UNREGISTERING;
8196 	}
8197 	flush_all_backlogs();
8198 
8199 	synchronize_net();
8200 
8201 	list_for_each_entry(dev, head, unreg_list) {
8202 		struct sk_buff *skb = NULL;
8203 
8204 		/* Shutdown queueing discipline. */
8205 		dev_shutdown(dev);
8206 
8207 		dev_xdp_uninstall(dev);
8208 
8209 		/* Notify protocols, that we are about to destroy
8210 		 * this device. They should clean all the things.
8211 		 */
8212 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8213 
8214 		if (!dev->rtnl_link_ops ||
8215 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8216 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8217 						     GFP_KERNEL, NULL, 0);
8218 
8219 		/*
8220 		 *	Flush the unicast and multicast chains
8221 		 */
8222 		dev_uc_flush(dev);
8223 		dev_mc_flush(dev);
8224 
8225 		if (dev->netdev_ops->ndo_uninit)
8226 			dev->netdev_ops->ndo_uninit(dev);
8227 
8228 		if (skb)
8229 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8230 
8231 		/* Notifier chain MUST detach us all upper devices. */
8232 		WARN_ON(netdev_has_any_upper_dev(dev));
8233 		WARN_ON(netdev_has_any_lower_dev(dev));
8234 
8235 		/* Remove entries from kobject tree */
8236 		netdev_unregister_kobject(dev);
8237 #ifdef CONFIG_XPS
8238 		/* Remove XPS queueing entries */
8239 		netif_reset_xps_queues_gt(dev, 0);
8240 #endif
8241 	}
8242 
8243 	synchronize_net();
8244 
8245 	list_for_each_entry(dev, head, unreg_list)
8246 		dev_put(dev);
8247 }
8248 
8249 static void rollback_registered(struct net_device *dev)
8250 {
8251 	LIST_HEAD(single);
8252 
8253 	list_add(&dev->unreg_list, &single);
8254 	rollback_registered_many(&single);
8255 	list_del(&single);
8256 }
8257 
8258 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8259 	struct net_device *upper, netdev_features_t features)
8260 {
8261 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8262 	netdev_features_t feature;
8263 	int feature_bit;
8264 
8265 	for_each_netdev_feature(upper_disables, feature_bit) {
8266 		feature = __NETIF_F_BIT(feature_bit);
8267 		if (!(upper->wanted_features & feature)
8268 		    && (features & feature)) {
8269 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8270 				   &feature, upper->name);
8271 			features &= ~feature;
8272 		}
8273 	}
8274 
8275 	return features;
8276 }
8277 
8278 static void netdev_sync_lower_features(struct net_device *upper,
8279 	struct net_device *lower, netdev_features_t features)
8280 {
8281 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8282 	netdev_features_t feature;
8283 	int feature_bit;
8284 
8285 	for_each_netdev_feature(upper_disables, feature_bit) {
8286 		feature = __NETIF_F_BIT(feature_bit);
8287 		if (!(features & feature) && (lower->features & feature)) {
8288 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8289 				   &feature, lower->name);
8290 			lower->wanted_features &= ~feature;
8291 			netdev_update_features(lower);
8292 
8293 			if (unlikely(lower->features & feature))
8294 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8295 					    &feature, lower->name);
8296 		}
8297 	}
8298 }
8299 
8300 static netdev_features_t netdev_fix_features(struct net_device *dev,
8301 	netdev_features_t features)
8302 {
8303 	/* Fix illegal checksum combinations */
8304 	if ((features & NETIF_F_HW_CSUM) &&
8305 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8306 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8307 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8308 	}
8309 
8310 	/* TSO requires that SG is present as well. */
8311 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8312 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8313 		features &= ~NETIF_F_ALL_TSO;
8314 	}
8315 
8316 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8317 					!(features & NETIF_F_IP_CSUM)) {
8318 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8319 		features &= ~NETIF_F_TSO;
8320 		features &= ~NETIF_F_TSO_ECN;
8321 	}
8322 
8323 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8324 					 !(features & NETIF_F_IPV6_CSUM)) {
8325 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8326 		features &= ~NETIF_F_TSO6;
8327 	}
8328 
8329 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8330 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8331 		features &= ~NETIF_F_TSO_MANGLEID;
8332 
8333 	/* TSO ECN requires that TSO is present as well. */
8334 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8335 		features &= ~NETIF_F_TSO_ECN;
8336 
8337 	/* Software GSO depends on SG. */
8338 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8339 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8340 		features &= ~NETIF_F_GSO;
8341 	}
8342 
8343 	/* GSO partial features require GSO partial be set */
8344 	if ((features & dev->gso_partial_features) &&
8345 	    !(features & NETIF_F_GSO_PARTIAL)) {
8346 		netdev_dbg(dev,
8347 			   "Dropping partially supported GSO features since no GSO partial.\n");
8348 		features &= ~dev->gso_partial_features;
8349 	}
8350 
8351 	if (!(features & NETIF_F_RXCSUM)) {
8352 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8353 		 * successfully merged by hardware must also have the
8354 		 * checksum verified by hardware.  If the user does not
8355 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
8356 		 */
8357 		if (features & NETIF_F_GRO_HW) {
8358 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8359 			features &= ~NETIF_F_GRO_HW;
8360 		}
8361 	}
8362 
8363 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
8364 	if (features & NETIF_F_RXFCS) {
8365 		if (features & NETIF_F_LRO) {
8366 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8367 			features &= ~NETIF_F_LRO;
8368 		}
8369 
8370 		if (features & NETIF_F_GRO_HW) {
8371 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8372 			features &= ~NETIF_F_GRO_HW;
8373 		}
8374 	}
8375 
8376 	return features;
8377 }
8378 
8379 int __netdev_update_features(struct net_device *dev)
8380 {
8381 	struct net_device *upper, *lower;
8382 	netdev_features_t features;
8383 	struct list_head *iter;
8384 	int err = -1;
8385 
8386 	ASSERT_RTNL();
8387 
8388 	features = netdev_get_wanted_features(dev);
8389 
8390 	if (dev->netdev_ops->ndo_fix_features)
8391 		features = dev->netdev_ops->ndo_fix_features(dev, features);
8392 
8393 	/* driver might be less strict about feature dependencies */
8394 	features = netdev_fix_features(dev, features);
8395 
8396 	/* some features can't be enabled if they're off an an upper device */
8397 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
8398 		features = netdev_sync_upper_features(dev, upper, features);
8399 
8400 	if (dev->features == features)
8401 		goto sync_lower;
8402 
8403 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8404 		&dev->features, &features);
8405 
8406 	if (dev->netdev_ops->ndo_set_features)
8407 		err = dev->netdev_ops->ndo_set_features(dev, features);
8408 	else
8409 		err = 0;
8410 
8411 	if (unlikely(err < 0)) {
8412 		netdev_err(dev,
8413 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
8414 			err, &features, &dev->features);
8415 		/* return non-0 since some features might have changed and
8416 		 * it's better to fire a spurious notification than miss it
8417 		 */
8418 		return -1;
8419 	}
8420 
8421 sync_lower:
8422 	/* some features must be disabled on lower devices when disabled
8423 	 * on an upper device (think: bonding master or bridge)
8424 	 */
8425 	netdev_for_each_lower_dev(dev, lower, iter)
8426 		netdev_sync_lower_features(dev, lower, features);
8427 
8428 	if (!err) {
8429 		netdev_features_t diff = features ^ dev->features;
8430 
8431 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8432 			/* udp_tunnel_{get,drop}_rx_info both need
8433 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8434 			 * device, or they won't do anything.
8435 			 * Thus we need to update dev->features
8436 			 * *before* calling udp_tunnel_get_rx_info,
8437 			 * but *after* calling udp_tunnel_drop_rx_info.
8438 			 */
8439 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8440 				dev->features = features;
8441 				udp_tunnel_get_rx_info(dev);
8442 			} else {
8443 				udp_tunnel_drop_rx_info(dev);
8444 			}
8445 		}
8446 
8447 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8448 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8449 				dev->features = features;
8450 				err |= vlan_get_rx_ctag_filter_info(dev);
8451 			} else {
8452 				vlan_drop_rx_ctag_filter_info(dev);
8453 			}
8454 		}
8455 
8456 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8457 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8458 				dev->features = features;
8459 				err |= vlan_get_rx_stag_filter_info(dev);
8460 			} else {
8461 				vlan_drop_rx_stag_filter_info(dev);
8462 			}
8463 		}
8464 
8465 		dev->features = features;
8466 	}
8467 
8468 	return err < 0 ? 0 : 1;
8469 }
8470 
8471 /**
8472  *	netdev_update_features - recalculate device features
8473  *	@dev: the device to check
8474  *
8475  *	Recalculate dev->features set and send notifications if it
8476  *	has changed. Should be called after driver or hardware dependent
8477  *	conditions might have changed that influence the features.
8478  */
8479 void netdev_update_features(struct net_device *dev)
8480 {
8481 	if (__netdev_update_features(dev))
8482 		netdev_features_change(dev);
8483 }
8484 EXPORT_SYMBOL(netdev_update_features);
8485 
8486 /**
8487  *	netdev_change_features - recalculate device features
8488  *	@dev: the device to check
8489  *
8490  *	Recalculate dev->features set and send notifications even
8491  *	if they have not changed. Should be called instead of
8492  *	netdev_update_features() if also dev->vlan_features might
8493  *	have changed to allow the changes to be propagated to stacked
8494  *	VLAN devices.
8495  */
8496 void netdev_change_features(struct net_device *dev)
8497 {
8498 	__netdev_update_features(dev);
8499 	netdev_features_change(dev);
8500 }
8501 EXPORT_SYMBOL(netdev_change_features);
8502 
8503 /**
8504  *	netif_stacked_transfer_operstate -	transfer operstate
8505  *	@rootdev: the root or lower level device to transfer state from
8506  *	@dev: the device to transfer operstate to
8507  *
8508  *	Transfer operational state from root to device. This is normally
8509  *	called when a stacking relationship exists between the root
8510  *	device and the device(a leaf device).
8511  */
8512 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8513 					struct net_device *dev)
8514 {
8515 	if (rootdev->operstate == IF_OPER_DORMANT)
8516 		netif_dormant_on(dev);
8517 	else
8518 		netif_dormant_off(dev);
8519 
8520 	if (netif_carrier_ok(rootdev))
8521 		netif_carrier_on(dev);
8522 	else
8523 		netif_carrier_off(dev);
8524 }
8525 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8526 
8527 static int netif_alloc_rx_queues(struct net_device *dev)
8528 {
8529 	unsigned int i, count = dev->num_rx_queues;
8530 	struct netdev_rx_queue *rx;
8531 	size_t sz = count * sizeof(*rx);
8532 	int err = 0;
8533 
8534 	BUG_ON(count < 1);
8535 
8536 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8537 	if (!rx)
8538 		return -ENOMEM;
8539 
8540 	dev->_rx = rx;
8541 
8542 	for (i = 0; i < count; i++) {
8543 		rx[i].dev = dev;
8544 
8545 		/* XDP RX-queue setup */
8546 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8547 		if (err < 0)
8548 			goto err_rxq_info;
8549 	}
8550 	return 0;
8551 
8552 err_rxq_info:
8553 	/* Rollback successful reg's and free other resources */
8554 	while (i--)
8555 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8556 	kvfree(dev->_rx);
8557 	dev->_rx = NULL;
8558 	return err;
8559 }
8560 
8561 static void netif_free_rx_queues(struct net_device *dev)
8562 {
8563 	unsigned int i, count = dev->num_rx_queues;
8564 
8565 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8566 	if (!dev->_rx)
8567 		return;
8568 
8569 	for (i = 0; i < count; i++)
8570 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8571 
8572 	kvfree(dev->_rx);
8573 }
8574 
8575 static void netdev_init_one_queue(struct net_device *dev,
8576 				  struct netdev_queue *queue, void *_unused)
8577 {
8578 	/* Initialize queue lock */
8579 	spin_lock_init(&queue->_xmit_lock);
8580 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8581 	queue->xmit_lock_owner = -1;
8582 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8583 	queue->dev = dev;
8584 #ifdef CONFIG_BQL
8585 	dql_init(&queue->dql, HZ);
8586 #endif
8587 }
8588 
8589 static void netif_free_tx_queues(struct net_device *dev)
8590 {
8591 	kvfree(dev->_tx);
8592 }
8593 
8594 static int netif_alloc_netdev_queues(struct net_device *dev)
8595 {
8596 	unsigned int count = dev->num_tx_queues;
8597 	struct netdev_queue *tx;
8598 	size_t sz = count * sizeof(*tx);
8599 
8600 	if (count < 1 || count > 0xffff)
8601 		return -EINVAL;
8602 
8603 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8604 	if (!tx)
8605 		return -ENOMEM;
8606 
8607 	dev->_tx = tx;
8608 
8609 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8610 	spin_lock_init(&dev->tx_global_lock);
8611 
8612 	return 0;
8613 }
8614 
8615 void netif_tx_stop_all_queues(struct net_device *dev)
8616 {
8617 	unsigned int i;
8618 
8619 	for (i = 0; i < dev->num_tx_queues; i++) {
8620 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8621 
8622 		netif_tx_stop_queue(txq);
8623 	}
8624 }
8625 EXPORT_SYMBOL(netif_tx_stop_all_queues);
8626 
8627 /**
8628  *	register_netdevice	- register a network device
8629  *	@dev: device to register
8630  *
8631  *	Take a completed network device structure and add it to the kernel
8632  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8633  *	chain. 0 is returned on success. A negative errno code is returned
8634  *	on a failure to set up the device, or if the name is a duplicate.
8635  *
8636  *	Callers must hold the rtnl semaphore. You may want
8637  *	register_netdev() instead of this.
8638  *
8639  *	BUGS:
8640  *	The locking appears insufficient to guarantee two parallel registers
8641  *	will not get the same name.
8642  */
8643 
8644 int register_netdevice(struct net_device *dev)
8645 {
8646 	int ret;
8647 	struct net *net = dev_net(dev);
8648 
8649 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8650 		     NETDEV_FEATURE_COUNT);
8651 	BUG_ON(dev_boot_phase);
8652 	ASSERT_RTNL();
8653 
8654 	might_sleep();
8655 
8656 	/* When net_device's are persistent, this will be fatal. */
8657 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
8658 	BUG_ON(!net);
8659 
8660 	spin_lock_init(&dev->addr_list_lock);
8661 	netdev_set_addr_lockdep_class(dev);
8662 
8663 	ret = dev_get_valid_name(net, dev, dev->name);
8664 	if (ret < 0)
8665 		goto out;
8666 
8667 	/* Init, if this function is available */
8668 	if (dev->netdev_ops->ndo_init) {
8669 		ret = dev->netdev_ops->ndo_init(dev);
8670 		if (ret) {
8671 			if (ret > 0)
8672 				ret = -EIO;
8673 			goto out;
8674 		}
8675 	}
8676 
8677 	if (((dev->hw_features | dev->features) &
8678 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
8679 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8680 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8681 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8682 		ret = -EINVAL;
8683 		goto err_uninit;
8684 	}
8685 
8686 	ret = -EBUSY;
8687 	if (!dev->ifindex)
8688 		dev->ifindex = dev_new_index(net);
8689 	else if (__dev_get_by_index(net, dev->ifindex))
8690 		goto err_uninit;
8691 
8692 	/* Transfer changeable features to wanted_features and enable
8693 	 * software offloads (GSO and GRO).
8694 	 */
8695 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
8696 	dev->features |= NETIF_F_SOFT_FEATURES;
8697 
8698 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
8699 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8700 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8701 	}
8702 
8703 	dev->wanted_features = dev->features & dev->hw_features;
8704 
8705 	if (!(dev->flags & IFF_LOOPBACK))
8706 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
8707 
8708 	/* If IPv4 TCP segmentation offload is supported we should also
8709 	 * allow the device to enable segmenting the frame with the option
8710 	 * of ignoring a static IP ID value.  This doesn't enable the
8711 	 * feature itself but allows the user to enable it later.
8712 	 */
8713 	if (dev->hw_features & NETIF_F_TSO)
8714 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
8715 	if (dev->vlan_features & NETIF_F_TSO)
8716 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8717 	if (dev->mpls_features & NETIF_F_TSO)
8718 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8719 	if (dev->hw_enc_features & NETIF_F_TSO)
8720 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8721 
8722 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8723 	 */
8724 	dev->vlan_features |= NETIF_F_HIGHDMA;
8725 
8726 	/* Make NETIF_F_SG inheritable to tunnel devices.
8727 	 */
8728 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8729 
8730 	/* Make NETIF_F_SG inheritable to MPLS.
8731 	 */
8732 	dev->mpls_features |= NETIF_F_SG;
8733 
8734 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8735 	ret = notifier_to_errno(ret);
8736 	if (ret)
8737 		goto err_uninit;
8738 
8739 	ret = netdev_register_kobject(dev);
8740 	if (ret)
8741 		goto err_uninit;
8742 	dev->reg_state = NETREG_REGISTERED;
8743 
8744 	__netdev_update_features(dev);
8745 
8746 	/*
8747 	 *	Default initial state at registry is that the
8748 	 *	device is present.
8749 	 */
8750 
8751 	set_bit(__LINK_STATE_PRESENT, &dev->state);
8752 
8753 	linkwatch_init_dev(dev);
8754 
8755 	dev_init_scheduler(dev);
8756 	dev_hold(dev);
8757 	list_netdevice(dev);
8758 	add_device_randomness(dev->dev_addr, dev->addr_len);
8759 
8760 	/* If the device has permanent device address, driver should
8761 	 * set dev_addr and also addr_assign_type should be set to
8762 	 * NET_ADDR_PERM (default value).
8763 	 */
8764 	if (dev->addr_assign_type == NET_ADDR_PERM)
8765 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8766 
8767 	/* Notify protocols, that a new device appeared. */
8768 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8769 	ret = notifier_to_errno(ret);
8770 	if (ret) {
8771 		rollback_registered(dev);
8772 		dev->reg_state = NETREG_UNREGISTERED;
8773 	}
8774 	/*
8775 	 *	Prevent userspace races by waiting until the network
8776 	 *	device is fully setup before sending notifications.
8777 	 */
8778 	if (!dev->rtnl_link_ops ||
8779 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8780 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8781 
8782 out:
8783 	return ret;
8784 
8785 err_uninit:
8786 	if (dev->netdev_ops->ndo_uninit)
8787 		dev->netdev_ops->ndo_uninit(dev);
8788 	if (dev->priv_destructor)
8789 		dev->priv_destructor(dev);
8790 	goto out;
8791 }
8792 EXPORT_SYMBOL(register_netdevice);
8793 
8794 /**
8795  *	init_dummy_netdev	- init a dummy network device for NAPI
8796  *	@dev: device to init
8797  *
8798  *	This takes a network device structure and initialize the minimum
8799  *	amount of fields so it can be used to schedule NAPI polls without
8800  *	registering a full blown interface. This is to be used by drivers
8801  *	that need to tie several hardware interfaces to a single NAPI
8802  *	poll scheduler due to HW limitations.
8803  */
8804 int init_dummy_netdev(struct net_device *dev)
8805 {
8806 	/* Clear everything. Note we don't initialize spinlocks
8807 	 * are they aren't supposed to be taken by any of the
8808 	 * NAPI code and this dummy netdev is supposed to be
8809 	 * only ever used for NAPI polls
8810 	 */
8811 	memset(dev, 0, sizeof(struct net_device));
8812 
8813 	/* make sure we BUG if trying to hit standard
8814 	 * register/unregister code path
8815 	 */
8816 	dev->reg_state = NETREG_DUMMY;
8817 
8818 	/* NAPI wants this */
8819 	INIT_LIST_HEAD(&dev->napi_list);
8820 
8821 	/* a dummy interface is started by default */
8822 	set_bit(__LINK_STATE_PRESENT, &dev->state);
8823 	set_bit(__LINK_STATE_START, &dev->state);
8824 
8825 	/* napi_busy_loop stats accounting wants this */
8826 	dev_net_set(dev, &init_net);
8827 
8828 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
8829 	 * because users of this 'device' dont need to change
8830 	 * its refcount.
8831 	 */
8832 
8833 	return 0;
8834 }
8835 EXPORT_SYMBOL_GPL(init_dummy_netdev);
8836 
8837 
8838 /**
8839  *	register_netdev	- register a network device
8840  *	@dev: device to register
8841  *
8842  *	Take a completed network device structure and add it to the kernel
8843  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8844  *	chain. 0 is returned on success. A negative errno code is returned
8845  *	on a failure to set up the device, or if the name is a duplicate.
8846  *
8847  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
8848  *	and expands the device name if you passed a format string to
8849  *	alloc_netdev.
8850  */
8851 int register_netdev(struct net_device *dev)
8852 {
8853 	int err;
8854 
8855 	if (rtnl_lock_killable())
8856 		return -EINTR;
8857 	err = register_netdevice(dev);
8858 	rtnl_unlock();
8859 	return err;
8860 }
8861 EXPORT_SYMBOL(register_netdev);
8862 
8863 int netdev_refcnt_read(const struct net_device *dev)
8864 {
8865 	int i, refcnt = 0;
8866 
8867 	for_each_possible_cpu(i)
8868 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8869 	return refcnt;
8870 }
8871 EXPORT_SYMBOL(netdev_refcnt_read);
8872 
8873 /**
8874  * netdev_wait_allrefs - wait until all references are gone.
8875  * @dev: target net_device
8876  *
8877  * This is called when unregistering network devices.
8878  *
8879  * Any protocol or device that holds a reference should register
8880  * for netdevice notification, and cleanup and put back the
8881  * reference if they receive an UNREGISTER event.
8882  * We can get stuck here if buggy protocols don't correctly
8883  * call dev_put.
8884  */
8885 static void netdev_wait_allrefs(struct net_device *dev)
8886 {
8887 	unsigned long rebroadcast_time, warning_time;
8888 	int refcnt;
8889 
8890 	linkwatch_forget_dev(dev);
8891 
8892 	rebroadcast_time = warning_time = jiffies;
8893 	refcnt = netdev_refcnt_read(dev);
8894 
8895 	while (refcnt != 0) {
8896 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8897 			rtnl_lock();
8898 
8899 			/* Rebroadcast unregister notification */
8900 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8901 
8902 			__rtnl_unlock();
8903 			rcu_barrier();
8904 			rtnl_lock();
8905 
8906 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8907 				     &dev->state)) {
8908 				/* We must not have linkwatch events
8909 				 * pending on unregister. If this
8910 				 * happens, we simply run the queue
8911 				 * unscheduled, resulting in a noop
8912 				 * for this device.
8913 				 */
8914 				linkwatch_run_queue();
8915 			}
8916 
8917 			__rtnl_unlock();
8918 
8919 			rebroadcast_time = jiffies;
8920 		}
8921 
8922 		msleep(250);
8923 
8924 		refcnt = netdev_refcnt_read(dev);
8925 
8926 		if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
8927 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8928 				 dev->name, refcnt);
8929 			warning_time = jiffies;
8930 		}
8931 	}
8932 }
8933 
8934 /* The sequence is:
8935  *
8936  *	rtnl_lock();
8937  *	...
8938  *	register_netdevice(x1);
8939  *	register_netdevice(x2);
8940  *	...
8941  *	unregister_netdevice(y1);
8942  *	unregister_netdevice(y2);
8943  *      ...
8944  *	rtnl_unlock();
8945  *	free_netdev(y1);
8946  *	free_netdev(y2);
8947  *
8948  * We are invoked by rtnl_unlock().
8949  * This allows us to deal with problems:
8950  * 1) We can delete sysfs objects which invoke hotplug
8951  *    without deadlocking with linkwatch via keventd.
8952  * 2) Since we run with the RTNL semaphore not held, we can sleep
8953  *    safely in order to wait for the netdev refcnt to drop to zero.
8954  *
8955  * We must not return until all unregister events added during
8956  * the interval the lock was held have been completed.
8957  */
8958 void netdev_run_todo(void)
8959 {
8960 	struct list_head list;
8961 
8962 	/* Snapshot list, allow later requests */
8963 	list_replace_init(&net_todo_list, &list);
8964 
8965 	__rtnl_unlock();
8966 
8967 
8968 	/* Wait for rcu callbacks to finish before next phase */
8969 	if (!list_empty(&list))
8970 		rcu_barrier();
8971 
8972 	while (!list_empty(&list)) {
8973 		struct net_device *dev
8974 			= list_first_entry(&list, struct net_device, todo_list);
8975 		list_del(&dev->todo_list);
8976 
8977 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8978 			pr_err("network todo '%s' but state %d\n",
8979 			       dev->name, dev->reg_state);
8980 			dump_stack();
8981 			continue;
8982 		}
8983 
8984 		dev->reg_state = NETREG_UNREGISTERED;
8985 
8986 		netdev_wait_allrefs(dev);
8987 
8988 		/* paranoia */
8989 		BUG_ON(netdev_refcnt_read(dev));
8990 		BUG_ON(!list_empty(&dev->ptype_all));
8991 		BUG_ON(!list_empty(&dev->ptype_specific));
8992 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
8993 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8994 #if IS_ENABLED(CONFIG_DECNET)
8995 		WARN_ON(dev->dn_ptr);
8996 #endif
8997 		if (dev->priv_destructor)
8998 			dev->priv_destructor(dev);
8999 		if (dev->needs_free_netdev)
9000 			free_netdev(dev);
9001 
9002 		/* Report a network device has been unregistered */
9003 		rtnl_lock();
9004 		dev_net(dev)->dev_unreg_count--;
9005 		__rtnl_unlock();
9006 		wake_up(&netdev_unregistering_wq);
9007 
9008 		/* Free network device */
9009 		kobject_put(&dev->dev.kobj);
9010 	}
9011 }
9012 
9013 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9014  * all the same fields in the same order as net_device_stats, with only
9015  * the type differing, but rtnl_link_stats64 may have additional fields
9016  * at the end for newer counters.
9017  */
9018 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9019 			     const struct net_device_stats *netdev_stats)
9020 {
9021 #if BITS_PER_LONG == 64
9022 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9023 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9024 	/* zero out counters that only exist in rtnl_link_stats64 */
9025 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
9026 	       sizeof(*stats64) - sizeof(*netdev_stats));
9027 #else
9028 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9029 	const unsigned long *src = (const unsigned long *)netdev_stats;
9030 	u64 *dst = (u64 *)stats64;
9031 
9032 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9033 	for (i = 0; i < n; i++)
9034 		dst[i] = src[i];
9035 	/* zero out counters that only exist in rtnl_link_stats64 */
9036 	memset((char *)stats64 + n * sizeof(u64), 0,
9037 	       sizeof(*stats64) - n * sizeof(u64));
9038 #endif
9039 }
9040 EXPORT_SYMBOL(netdev_stats_to_stats64);
9041 
9042 /**
9043  *	dev_get_stats	- get network device statistics
9044  *	@dev: device to get statistics from
9045  *	@storage: place to store stats
9046  *
9047  *	Get network statistics from device. Return @storage.
9048  *	The device driver may provide its own method by setting
9049  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9050  *	otherwise the internal statistics structure is used.
9051  */
9052 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9053 					struct rtnl_link_stats64 *storage)
9054 {
9055 	const struct net_device_ops *ops = dev->netdev_ops;
9056 
9057 	if (ops->ndo_get_stats64) {
9058 		memset(storage, 0, sizeof(*storage));
9059 		ops->ndo_get_stats64(dev, storage);
9060 	} else if (ops->ndo_get_stats) {
9061 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9062 	} else {
9063 		netdev_stats_to_stats64(storage, &dev->stats);
9064 	}
9065 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9066 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9067 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9068 	return storage;
9069 }
9070 EXPORT_SYMBOL(dev_get_stats);
9071 
9072 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9073 {
9074 	struct netdev_queue *queue = dev_ingress_queue(dev);
9075 
9076 #ifdef CONFIG_NET_CLS_ACT
9077 	if (queue)
9078 		return queue;
9079 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9080 	if (!queue)
9081 		return NULL;
9082 	netdev_init_one_queue(dev, queue, NULL);
9083 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9084 	queue->qdisc_sleeping = &noop_qdisc;
9085 	rcu_assign_pointer(dev->ingress_queue, queue);
9086 #endif
9087 	return queue;
9088 }
9089 
9090 static const struct ethtool_ops default_ethtool_ops;
9091 
9092 void netdev_set_default_ethtool_ops(struct net_device *dev,
9093 				    const struct ethtool_ops *ops)
9094 {
9095 	if (dev->ethtool_ops == &default_ethtool_ops)
9096 		dev->ethtool_ops = ops;
9097 }
9098 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9099 
9100 void netdev_freemem(struct net_device *dev)
9101 {
9102 	char *addr = (char *)dev - dev->padded;
9103 
9104 	kvfree(addr);
9105 }
9106 
9107 /**
9108  * alloc_netdev_mqs - allocate network device
9109  * @sizeof_priv: size of private data to allocate space for
9110  * @name: device name format string
9111  * @name_assign_type: origin of device name
9112  * @setup: callback to initialize device
9113  * @txqs: the number of TX subqueues to allocate
9114  * @rxqs: the number of RX subqueues to allocate
9115  *
9116  * Allocates a struct net_device with private data area for driver use
9117  * and performs basic initialization.  Also allocates subqueue structs
9118  * for each queue on the device.
9119  */
9120 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9121 		unsigned char name_assign_type,
9122 		void (*setup)(struct net_device *),
9123 		unsigned int txqs, unsigned int rxqs)
9124 {
9125 	struct net_device *dev;
9126 	unsigned int alloc_size;
9127 	struct net_device *p;
9128 
9129 	BUG_ON(strlen(name) >= sizeof(dev->name));
9130 
9131 	if (txqs < 1) {
9132 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9133 		return NULL;
9134 	}
9135 
9136 	if (rxqs < 1) {
9137 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9138 		return NULL;
9139 	}
9140 
9141 	alloc_size = sizeof(struct net_device);
9142 	if (sizeof_priv) {
9143 		/* ensure 32-byte alignment of private area */
9144 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9145 		alloc_size += sizeof_priv;
9146 	}
9147 	/* ensure 32-byte alignment of whole construct */
9148 	alloc_size += NETDEV_ALIGN - 1;
9149 
9150 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9151 	if (!p)
9152 		return NULL;
9153 
9154 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
9155 	dev->padded = (char *)dev - (char *)p;
9156 
9157 	dev->pcpu_refcnt = alloc_percpu(int);
9158 	if (!dev->pcpu_refcnt)
9159 		goto free_dev;
9160 
9161 	if (dev_addr_init(dev))
9162 		goto free_pcpu;
9163 
9164 	dev_mc_init(dev);
9165 	dev_uc_init(dev);
9166 
9167 	dev_net_set(dev, &init_net);
9168 
9169 	dev->gso_max_size = GSO_MAX_SIZE;
9170 	dev->gso_max_segs = GSO_MAX_SEGS;
9171 
9172 	INIT_LIST_HEAD(&dev->napi_list);
9173 	INIT_LIST_HEAD(&dev->unreg_list);
9174 	INIT_LIST_HEAD(&dev->close_list);
9175 	INIT_LIST_HEAD(&dev->link_watch_list);
9176 	INIT_LIST_HEAD(&dev->adj_list.upper);
9177 	INIT_LIST_HEAD(&dev->adj_list.lower);
9178 	INIT_LIST_HEAD(&dev->ptype_all);
9179 	INIT_LIST_HEAD(&dev->ptype_specific);
9180 #ifdef CONFIG_NET_SCHED
9181 	hash_init(dev->qdisc_hash);
9182 #endif
9183 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9184 	setup(dev);
9185 
9186 	if (!dev->tx_queue_len) {
9187 		dev->priv_flags |= IFF_NO_QUEUE;
9188 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9189 	}
9190 
9191 	dev->num_tx_queues = txqs;
9192 	dev->real_num_tx_queues = txqs;
9193 	if (netif_alloc_netdev_queues(dev))
9194 		goto free_all;
9195 
9196 	dev->num_rx_queues = rxqs;
9197 	dev->real_num_rx_queues = rxqs;
9198 	if (netif_alloc_rx_queues(dev))
9199 		goto free_all;
9200 
9201 	strcpy(dev->name, name);
9202 	dev->name_assign_type = name_assign_type;
9203 	dev->group = INIT_NETDEV_GROUP;
9204 	if (!dev->ethtool_ops)
9205 		dev->ethtool_ops = &default_ethtool_ops;
9206 
9207 	nf_hook_ingress_init(dev);
9208 
9209 	return dev;
9210 
9211 free_all:
9212 	free_netdev(dev);
9213 	return NULL;
9214 
9215 free_pcpu:
9216 	free_percpu(dev->pcpu_refcnt);
9217 free_dev:
9218 	netdev_freemem(dev);
9219 	return NULL;
9220 }
9221 EXPORT_SYMBOL(alloc_netdev_mqs);
9222 
9223 /**
9224  * free_netdev - free network device
9225  * @dev: device
9226  *
9227  * This function does the last stage of destroying an allocated device
9228  * interface. The reference to the device object is released. If this
9229  * is the last reference then it will be freed.Must be called in process
9230  * context.
9231  */
9232 void free_netdev(struct net_device *dev)
9233 {
9234 	struct napi_struct *p, *n;
9235 
9236 	might_sleep();
9237 	netif_free_tx_queues(dev);
9238 	netif_free_rx_queues(dev);
9239 
9240 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9241 
9242 	/* Flush device addresses */
9243 	dev_addr_flush(dev);
9244 
9245 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9246 		netif_napi_del(p);
9247 
9248 	free_percpu(dev->pcpu_refcnt);
9249 	dev->pcpu_refcnt = NULL;
9250 
9251 	/*  Compatibility with error handling in drivers */
9252 	if (dev->reg_state == NETREG_UNINITIALIZED) {
9253 		netdev_freemem(dev);
9254 		return;
9255 	}
9256 
9257 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9258 	dev->reg_state = NETREG_RELEASED;
9259 
9260 	/* will free via device release */
9261 	put_device(&dev->dev);
9262 }
9263 EXPORT_SYMBOL(free_netdev);
9264 
9265 /**
9266  *	synchronize_net -  Synchronize with packet receive processing
9267  *
9268  *	Wait for packets currently being received to be done.
9269  *	Does not block later packets from starting.
9270  */
9271 void synchronize_net(void)
9272 {
9273 	might_sleep();
9274 	if (rtnl_is_locked())
9275 		synchronize_rcu_expedited();
9276 	else
9277 		synchronize_rcu();
9278 }
9279 EXPORT_SYMBOL(synchronize_net);
9280 
9281 /**
9282  *	unregister_netdevice_queue - remove device from the kernel
9283  *	@dev: device
9284  *	@head: list
9285  *
9286  *	This function shuts down a device interface and removes it
9287  *	from the kernel tables.
9288  *	If head not NULL, device is queued to be unregistered later.
9289  *
9290  *	Callers must hold the rtnl semaphore.  You may want
9291  *	unregister_netdev() instead of this.
9292  */
9293 
9294 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9295 {
9296 	ASSERT_RTNL();
9297 
9298 	if (head) {
9299 		list_move_tail(&dev->unreg_list, head);
9300 	} else {
9301 		rollback_registered(dev);
9302 		/* Finish processing unregister after unlock */
9303 		net_set_todo(dev);
9304 	}
9305 }
9306 EXPORT_SYMBOL(unregister_netdevice_queue);
9307 
9308 /**
9309  *	unregister_netdevice_many - unregister many devices
9310  *	@head: list of devices
9311  *
9312  *  Note: As most callers use a stack allocated list_head,
9313  *  we force a list_del() to make sure stack wont be corrupted later.
9314  */
9315 void unregister_netdevice_many(struct list_head *head)
9316 {
9317 	struct net_device *dev;
9318 
9319 	if (!list_empty(head)) {
9320 		rollback_registered_many(head);
9321 		list_for_each_entry(dev, head, unreg_list)
9322 			net_set_todo(dev);
9323 		list_del(head);
9324 	}
9325 }
9326 EXPORT_SYMBOL(unregister_netdevice_many);
9327 
9328 /**
9329  *	unregister_netdev - remove device from the kernel
9330  *	@dev: device
9331  *
9332  *	This function shuts down a device interface and removes it
9333  *	from the kernel tables.
9334  *
9335  *	This is just a wrapper for unregister_netdevice that takes
9336  *	the rtnl semaphore.  In general you want to use this and not
9337  *	unregister_netdevice.
9338  */
9339 void unregister_netdev(struct net_device *dev)
9340 {
9341 	rtnl_lock();
9342 	unregister_netdevice(dev);
9343 	rtnl_unlock();
9344 }
9345 EXPORT_SYMBOL(unregister_netdev);
9346 
9347 /**
9348  *	dev_change_net_namespace - move device to different nethost namespace
9349  *	@dev: device
9350  *	@net: network namespace
9351  *	@pat: If not NULL name pattern to try if the current device name
9352  *	      is already taken in the destination network namespace.
9353  *
9354  *	This function shuts down a device interface and moves it
9355  *	to a new network namespace. On success 0 is returned, on
9356  *	a failure a netagive errno code is returned.
9357  *
9358  *	Callers must hold the rtnl semaphore.
9359  */
9360 
9361 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9362 {
9363 	int err, new_nsid, new_ifindex;
9364 
9365 	ASSERT_RTNL();
9366 
9367 	/* Don't allow namespace local devices to be moved. */
9368 	err = -EINVAL;
9369 	if (dev->features & NETIF_F_NETNS_LOCAL)
9370 		goto out;
9371 
9372 	/* Ensure the device has been registrered */
9373 	if (dev->reg_state != NETREG_REGISTERED)
9374 		goto out;
9375 
9376 	/* Get out if there is nothing todo */
9377 	err = 0;
9378 	if (net_eq(dev_net(dev), net))
9379 		goto out;
9380 
9381 	/* Pick the destination device name, and ensure
9382 	 * we can use it in the destination network namespace.
9383 	 */
9384 	err = -EEXIST;
9385 	if (__dev_get_by_name(net, dev->name)) {
9386 		/* We get here if we can't use the current device name */
9387 		if (!pat)
9388 			goto out;
9389 		err = dev_get_valid_name(net, dev, pat);
9390 		if (err < 0)
9391 			goto out;
9392 	}
9393 
9394 	/*
9395 	 * And now a mini version of register_netdevice unregister_netdevice.
9396 	 */
9397 
9398 	/* If device is running close it first. */
9399 	dev_close(dev);
9400 
9401 	/* And unlink it from device chain */
9402 	unlist_netdevice(dev);
9403 
9404 	synchronize_net();
9405 
9406 	/* Shutdown queueing discipline. */
9407 	dev_shutdown(dev);
9408 
9409 	/* Notify protocols, that we are about to destroy
9410 	 * this device. They should clean all the things.
9411 	 *
9412 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
9413 	 * This is wanted because this way 8021q and macvlan know
9414 	 * the device is just moving and can keep their slaves up.
9415 	 */
9416 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9417 	rcu_barrier();
9418 
9419 	new_nsid = peernet2id_alloc(dev_net(dev), net);
9420 	/* If there is an ifindex conflict assign a new one */
9421 	if (__dev_get_by_index(net, dev->ifindex))
9422 		new_ifindex = dev_new_index(net);
9423 	else
9424 		new_ifindex = dev->ifindex;
9425 
9426 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9427 			    new_ifindex);
9428 
9429 	/*
9430 	 *	Flush the unicast and multicast chains
9431 	 */
9432 	dev_uc_flush(dev);
9433 	dev_mc_flush(dev);
9434 
9435 	/* Send a netdev-removed uevent to the old namespace */
9436 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9437 	netdev_adjacent_del_links(dev);
9438 
9439 	/* Actually switch the network namespace */
9440 	dev_net_set(dev, net);
9441 	dev->ifindex = new_ifindex;
9442 
9443 	/* Send a netdev-add uevent to the new namespace */
9444 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9445 	netdev_adjacent_add_links(dev);
9446 
9447 	/* Fixup kobjects */
9448 	err = device_rename(&dev->dev, dev->name);
9449 	WARN_ON(err);
9450 
9451 	/* Add the device back in the hashes */
9452 	list_netdevice(dev);
9453 
9454 	/* Notify protocols, that a new device appeared. */
9455 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
9456 
9457 	/*
9458 	 *	Prevent userspace races by waiting until the network
9459 	 *	device is fully setup before sending notifications.
9460 	 */
9461 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9462 
9463 	synchronize_net();
9464 	err = 0;
9465 out:
9466 	return err;
9467 }
9468 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9469 
9470 static int dev_cpu_dead(unsigned int oldcpu)
9471 {
9472 	struct sk_buff **list_skb;
9473 	struct sk_buff *skb;
9474 	unsigned int cpu;
9475 	struct softnet_data *sd, *oldsd, *remsd = NULL;
9476 
9477 	local_irq_disable();
9478 	cpu = smp_processor_id();
9479 	sd = &per_cpu(softnet_data, cpu);
9480 	oldsd = &per_cpu(softnet_data, oldcpu);
9481 
9482 	/* Find end of our completion_queue. */
9483 	list_skb = &sd->completion_queue;
9484 	while (*list_skb)
9485 		list_skb = &(*list_skb)->next;
9486 	/* Append completion queue from offline CPU. */
9487 	*list_skb = oldsd->completion_queue;
9488 	oldsd->completion_queue = NULL;
9489 
9490 	/* Append output queue from offline CPU. */
9491 	if (oldsd->output_queue) {
9492 		*sd->output_queue_tailp = oldsd->output_queue;
9493 		sd->output_queue_tailp = oldsd->output_queue_tailp;
9494 		oldsd->output_queue = NULL;
9495 		oldsd->output_queue_tailp = &oldsd->output_queue;
9496 	}
9497 	/* Append NAPI poll list from offline CPU, with one exception :
9498 	 * process_backlog() must be called by cpu owning percpu backlog.
9499 	 * We properly handle process_queue & input_pkt_queue later.
9500 	 */
9501 	while (!list_empty(&oldsd->poll_list)) {
9502 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9503 							    struct napi_struct,
9504 							    poll_list);
9505 
9506 		list_del_init(&napi->poll_list);
9507 		if (napi->poll == process_backlog)
9508 			napi->state = 0;
9509 		else
9510 			____napi_schedule(sd, napi);
9511 	}
9512 
9513 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
9514 	local_irq_enable();
9515 
9516 #ifdef CONFIG_RPS
9517 	remsd = oldsd->rps_ipi_list;
9518 	oldsd->rps_ipi_list = NULL;
9519 #endif
9520 	/* send out pending IPI's on offline CPU */
9521 	net_rps_send_ipi(remsd);
9522 
9523 	/* Process offline CPU's input_pkt_queue */
9524 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9525 		netif_rx_ni(skb);
9526 		input_queue_head_incr(oldsd);
9527 	}
9528 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9529 		netif_rx_ni(skb);
9530 		input_queue_head_incr(oldsd);
9531 	}
9532 
9533 	return 0;
9534 }
9535 
9536 /**
9537  *	netdev_increment_features - increment feature set by one
9538  *	@all: current feature set
9539  *	@one: new feature set
9540  *	@mask: mask feature set
9541  *
9542  *	Computes a new feature set after adding a device with feature set
9543  *	@one to the master device with current feature set @all.  Will not
9544  *	enable anything that is off in @mask. Returns the new feature set.
9545  */
9546 netdev_features_t netdev_increment_features(netdev_features_t all,
9547 	netdev_features_t one, netdev_features_t mask)
9548 {
9549 	if (mask & NETIF_F_HW_CSUM)
9550 		mask |= NETIF_F_CSUM_MASK;
9551 	mask |= NETIF_F_VLAN_CHALLENGED;
9552 
9553 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9554 	all &= one | ~NETIF_F_ALL_FOR_ALL;
9555 
9556 	/* If one device supports hw checksumming, set for all. */
9557 	if (all & NETIF_F_HW_CSUM)
9558 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9559 
9560 	return all;
9561 }
9562 EXPORT_SYMBOL(netdev_increment_features);
9563 
9564 static struct hlist_head * __net_init netdev_create_hash(void)
9565 {
9566 	int i;
9567 	struct hlist_head *hash;
9568 
9569 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9570 	if (hash != NULL)
9571 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
9572 			INIT_HLIST_HEAD(&hash[i]);
9573 
9574 	return hash;
9575 }
9576 
9577 /* Initialize per network namespace state */
9578 static int __net_init netdev_init(struct net *net)
9579 {
9580 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
9581 		     8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
9582 
9583 	if (net != &init_net)
9584 		INIT_LIST_HEAD(&net->dev_base_head);
9585 
9586 	net->dev_name_head = netdev_create_hash();
9587 	if (net->dev_name_head == NULL)
9588 		goto err_name;
9589 
9590 	net->dev_index_head = netdev_create_hash();
9591 	if (net->dev_index_head == NULL)
9592 		goto err_idx;
9593 
9594 	return 0;
9595 
9596 err_idx:
9597 	kfree(net->dev_name_head);
9598 err_name:
9599 	return -ENOMEM;
9600 }
9601 
9602 /**
9603  *	netdev_drivername - network driver for the device
9604  *	@dev: network device
9605  *
9606  *	Determine network driver for device.
9607  */
9608 const char *netdev_drivername(const struct net_device *dev)
9609 {
9610 	const struct device_driver *driver;
9611 	const struct device *parent;
9612 	const char *empty = "";
9613 
9614 	parent = dev->dev.parent;
9615 	if (!parent)
9616 		return empty;
9617 
9618 	driver = parent->driver;
9619 	if (driver && driver->name)
9620 		return driver->name;
9621 	return empty;
9622 }
9623 
9624 static void __netdev_printk(const char *level, const struct net_device *dev,
9625 			    struct va_format *vaf)
9626 {
9627 	if (dev && dev->dev.parent) {
9628 		dev_printk_emit(level[1] - '0',
9629 				dev->dev.parent,
9630 				"%s %s %s%s: %pV",
9631 				dev_driver_string(dev->dev.parent),
9632 				dev_name(dev->dev.parent),
9633 				netdev_name(dev), netdev_reg_state(dev),
9634 				vaf);
9635 	} else if (dev) {
9636 		printk("%s%s%s: %pV",
9637 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
9638 	} else {
9639 		printk("%s(NULL net_device): %pV", level, vaf);
9640 	}
9641 }
9642 
9643 void netdev_printk(const char *level, const struct net_device *dev,
9644 		   const char *format, ...)
9645 {
9646 	struct va_format vaf;
9647 	va_list args;
9648 
9649 	va_start(args, format);
9650 
9651 	vaf.fmt = format;
9652 	vaf.va = &args;
9653 
9654 	__netdev_printk(level, dev, &vaf);
9655 
9656 	va_end(args);
9657 }
9658 EXPORT_SYMBOL(netdev_printk);
9659 
9660 #define define_netdev_printk_level(func, level)			\
9661 void func(const struct net_device *dev, const char *fmt, ...)	\
9662 {								\
9663 	struct va_format vaf;					\
9664 	va_list args;						\
9665 								\
9666 	va_start(args, fmt);					\
9667 								\
9668 	vaf.fmt = fmt;						\
9669 	vaf.va = &args;						\
9670 								\
9671 	__netdev_printk(level, dev, &vaf);			\
9672 								\
9673 	va_end(args);						\
9674 }								\
9675 EXPORT_SYMBOL(func);
9676 
9677 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9678 define_netdev_printk_level(netdev_alert, KERN_ALERT);
9679 define_netdev_printk_level(netdev_crit, KERN_CRIT);
9680 define_netdev_printk_level(netdev_err, KERN_ERR);
9681 define_netdev_printk_level(netdev_warn, KERN_WARNING);
9682 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9683 define_netdev_printk_level(netdev_info, KERN_INFO);
9684 
9685 static void __net_exit netdev_exit(struct net *net)
9686 {
9687 	kfree(net->dev_name_head);
9688 	kfree(net->dev_index_head);
9689 	if (net != &init_net)
9690 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
9691 }
9692 
9693 static struct pernet_operations __net_initdata netdev_net_ops = {
9694 	.init = netdev_init,
9695 	.exit = netdev_exit,
9696 };
9697 
9698 static void __net_exit default_device_exit(struct net *net)
9699 {
9700 	struct net_device *dev, *aux;
9701 	/*
9702 	 * Push all migratable network devices back to the
9703 	 * initial network namespace
9704 	 */
9705 	rtnl_lock();
9706 	for_each_netdev_safe(net, dev, aux) {
9707 		int err;
9708 		char fb_name[IFNAMSIZ];
9709 
9710 		/* Ignore unmoveable devices (i.e. loopback) */
9711 		if (dev->features & NETIF_F_NETNS_LOCAL)
9712 			continue;
9713 
9714 		/* Leave virtual devices for the generic cleanup */
9715 		if (dev->rtnl_link_ops)
9716 			continue;
9717 
9718 		/* Push remaining network devices to init_net */
9719 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9720 		err = dev_change_net_namespace(dev, &init_net, fb_name);
9721 		if (err) {
9722 			pr_emerg("%s: failed to move %s to init_net: %d\n",
9723 				 __func__, dev->name, err);
9724 			BUG();
9725 		}
9726 	}
9727 	rtnl_unlock();
9728 }
9729 
9730 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9731 {
9732 	/* Return with the rtnl_lock held when there are no network
9733 	 * devices unregistering in any network namespace in net_list.
9734 	 */
9735 	struct net *net;
9736 	bool unregistering;
9737 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
9738 
9739 	add_wait_queue(&netdev_unregistering_wq, &wait);
9740 	for (;;) {
9741 		unregistering = false;
9742 		rtnl_lock();
9743 		list_for_each_entry(net, net_list, exit_list) {
9744 			if (net->dev_unreg_count > 0) {
9745 				unregistering = true;
9746 				break;
9747 			}
9748 		}
9749 		if (!unregistering)
9750 			break;
9751 		__rtnl_unlock();
9752 
9753 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9754 	}
9755 	remove_wait_queue(&netdev_unregistering_wq, &wait);
9756 }
9757 
9758 static void __net_exit default_device_exit_batch(struct list_head *net_list)
9759 {
9760 	/* At exit all network devices most be removed from a network
9761 	 * namespace.  Do this in the reverse order of registration.
9762 	 * Do this across as many network namespaces as possible to
9763 	 * improve batching efficiency.
9764 	 */
9765 	struct net_device *dev;
9766 	struct net *net;
9767 	LIST_HEAD(dev_kill_list);
9768 
9769 	/* To prevent network device cleanup code from dereferencing
9770 	 * loopback devices or network devices that have been freed
9771 	 * wait here for all pending unregistrations to complete,
9772 	 * before unregistring the loopback device and allowing the
9773 	 * network namespace be freed.
9774 	 *
9775 	 * The netdev todo list containing all network devices
9776 	 * unregistrations that happen in default_device_exit_batch
9777 	 * will run in the rtnl_unlock() at the end of
9778 	 * default_device_exit_batch.
9779 	 */
9780 	rtnl_lock_unregistering(net_list);
9781 	list_for_each_entry(net, net_list, exit_list) {
9782 		for_each_netdev_reverse(net, dev) {
9783 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9784 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9785 			else
9786 				unregister_netdevice_queue(dev, &dev_kill_list);
9787 		}
9788 	}
9789 	unregister_netdevice_many(&dev_kill_list);
9790 	rtnl_unlock();
9791 }
9792 
9793 static struct pernet_operations __net_initdata default_device_ops = {
9794 	.exit = default_device_exit,
9795 	.exit_batch = default_device_exit_batch,
9796 };
9797 
9798 /*
9799  *	Initialize the DEV module. At boot time this walks the device list and
9800  *	unhooks any devices that fail to initialise (normally hardware not
9801  *	present) and leaves us with a valid list of present and active devices.
9802  *
9803  */
9804 
9805 /*
9806  *       This is called single threaded during boot, so no need
9807  *       to take the rtnl semaphore.
9808  */
9809 static int __init net_dev_init(void)
9810 {
9811 	int i, rc = -ENOMEM;
9812 
9813 	BUG_ON(!dev_boot_phase);
9814 
9815 	if (dev_proc_init())
9816 		goto out;
9817 
9818 	if (netdev_kobject_init())
9819 		goto out;
9820 
9821 	INIT_LIST_HEAD(&ptype_all);
9822 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
9823 		INIT_LIST_HEAD(&ptype_base[i]);
9824 
9825 	INIT_LIST_HEAD(&offload_base);
9826 
9827 	if (register_pernet_subsys(&netdev_net_ops))
9828 		goto out;
9829 
9830 	/*
9831 	 *	Initialise the packet receive queues.
9832 	 */
9833 
9834 	for_each_possible_cpu(i) {
9835 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9836 		struct softnet_data *sd = &per_cpu(softnet_data, i);
9837 
9838 		INIT_WORK(flush, flush_backlog);
9839 
9840 		skb_queue_head_init(&sd->input_pkt_queue);
9841 		skb_queue_head_init(&sd->process_queue);
9842 #ifdef CONFIG_XFRM_OFFLOAD
9843 		skb_queue_head_init(&sd->xfrm_backlog);
9844 #endif
9845 		INIT_LIST_HEAD(&sd->poll_list);
9846 		sd->output_queue_tailp = &sd->output_queue;
9847 #ifdef CONFIG_RPS
9848 		sd->csd.func = rps_trigger_softirq;
9849 		sd->csd.info = sd;
9850 		sd->cpu = i;
9851 #endif
9852 
9853 		init_gro_hash(&sd->backlog);
9854 		sd->backlog.poll = process_backlog;
9855 		sd->backlog.weight = weight_p;
9856 	}
9857 
9858 	dev_boot_phase = 0;
9859 
9860 	/* The loopback device is special if any other network devices
9861 	 * is present in a network namespace the loopback device must
9862 	 * be present. Since we now dynamically allocate and free the
9863 	 * loopback device ensure this invariant is maintained by
9864 	 * keeping the loopback device as the first device on the
9865 	 * list of network devices.  Ensuring the loopback devices
9866 	 * is the first device that appears and the last network device
9867 	 * that disappears.
9868 	 */
9869 	if (register_pernet_device(&loopback_net_ops))
9870 		goto out;
9871 
9872 	if (register_pernet_device(&default_device_ops))
9873 		goto out;
9874 
9875 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9876 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9877 
9878 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9879 				       NULL, dev_cpu_dead);
9880 	WARN_ON(rc < 0);
9881 	rc = 0;
9882 out:
9883 	return rc;
9884 }
9885 
9886 subsys_initcall(net_dev_init);
9887