1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/mutex.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/notifier.h> 96 #include <linux/skbuff.h> 97 #include <net/net_namespace.h> 98 #include <net/sock.h> 99 #include <linux/rtnetlink.h> 100 #include <linux/proc_fs.h> 101 #include <linux/seq_file.h> 102 #include <linux/stat.h> 103 #include <net/dst.h> 104 #include <net/pkt_sched.h> 105 #include <net/checksum.h> 106 #include <net/xfrm.h> 107 #include <linux/highmem.h> 108 #include <linux/init.h> 109 #include <linux/kmod.h> 110 #include <linux/module.h> 111 #include <linux/netpoll.h> 112 #include <linux/rcupdate.h> 113 #include <linux/delay.h> 114 #include <net/wext.h> 115 #include <net/iw_handler.h> 116 #include <asm/current.h> 117 #include <linux/audit.h> 118 #include <linux/dmaengine.h> 119 #include <linux/err.h> 120 #include <linux/ctype.h> 121 #include <linux/if_arp.h> 122 #include <linux/if_vlan.h> 123 #include <linux/ip.h> 124 #include <net/ip.h> 125 #include <linux/ipv6.h> 126 #include <linux/in.h> 127 #include <linux/jhash.h> 128 #include <linux/random.h> 129 #include <trace/events/napi.h> 130 #include <trace/events/net.h> 131 #include <trace/events/skb.h> 132 #include <linux/pci.h> 133 #include <linux/inetdevice.h> 134 #include <linux/cpu_rmap.h> 135 #include <linux/net_tstamp.h> 136 #include <linux/static_key.h> 137 #include <net/flow_keys.h> 138 139 #include "net-sysfs.h" 140 141 /* Instead of increasing this, you should create a hash table. */ 142 #define MAX_GRO_SKBS 8 143 144 /* This should be increased if a protocol with a bigger head is added. */ 145 #define GRO_MAX_HEAD (MAX_HEADER + 128) 146 147 /* 148 * The list of packet types we will receive (as opposed to discard) 149 * and the routines to invoke. 150 * 151 * Why 16. Because with 16 the only overlap we get on a hash of the 152 * low nibble of the protocol value is RARP/SNAP/X.25. 153 * 154 * NOTE: That is no longer true with the addition of VLAN tags. Not 155 * sure which should go first, but I bet it won't make much 156 * difference if we are running VLANs. The good news is that 157 * this protocol won't be in the list unless compiled in, so 158 * the average user (w/out VLANs) will not be adversely affected. 159 * --BLG 160 * 161 * 0800 IP 162 * 8100 802.1Q VLAN 163 * 0001 802.3 164 * 0002 AX.25 165 * 0004 802.2 166 * 8035 RARP 167 * 0005 SNAP 168 * 0805 X.25 169 * 0806 ARP 170 * 8137 IPX 171 * 0009 Localtalk 172 * 86DD IPv6 173 */ 174 175 #define PTYPE_HASH_SIZE (16) 176 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 177 178 static DEFINE_SPINLOCK(ptype_lock); 179 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 180 static struct list_head ptype_all __read_mostly; /* Taps */ 181 182 /* 183 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 184 * semaphore. 185 * 186 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 187 * 188 * Writers must hold the rtnl semaphore while they loop through the 189 * dev_base_head list, and hold dev_base_lock for writing when they do the 190 * actual updates. This allows pure readers to access the list even 191 * while a writer is preparing to update it. 192 * 193 * To put it another way, dev_base_lock is held for writing only to 194 * protect against pure readers; the rtnl semaphore provides the 195 * protection against other writers. 196 * 197 * See, for example usages, register_netdevice() and 198 * unregister_netdevice(), which must be called with the rtnl 199 * semaphore held. 200 */ 201 DEFINE_RWLOCK(dev_base_lock); 202 EXPORT_SYMBOL(dev_base_lock); 203 204 static inline void dev_base_seq_inc(struct net *net) 205 { 206 while (++net->dev_base_seq == 0); 207 } 208 209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 210 { 211 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 212 213 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 214 } 215 216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 217 { 218 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 219 } 220 221 static inline void rps_lock(struct softnet_data *sd) 222 { 223 #ifdef CONFIG_RPS 224 spin_lock(&sd->input_pkt_queue.lock); 225 #endif 226 } 227 228 static inline void rps_unlock(struct softnet_data *sd) 229 { 230 #ifdef CONFIG_RPS 231 spin_unlock(&sd->input_pkt_queue.lock); 232 #endif 233 } 234 235 /* Device list insertion */ 236 static int list_netdevice(struct net_device *dev) 237 { 238 struct net *net = dev_net(dev); 239 240 ASSERT_RTNL(); 241 242 write_lock_bh(&dev_base_lock); 243 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 244 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 245 hlist_add_head_rcu(&dev->index_hlist, 246 dev_index_hash(net, dev->ifindex)); 247 write_unlock_bh(&dev_base_lock); 248 249 dev_base_seq_inc(net); 250 251 return 0; 252 } 253 254 /* Device list removal 255 * caller must respect a RCU grace period before freeing/reusing dev 256 */ 257 static void unlist_netdevice(struct net_device *dev) 258 { 259 ASSERT_RTNL(); 260 261 /* Unlink dev from the device chain */ 262 write_lock_bh(&dev_base_lock); 263 list_del_rcu(&dev->dev_list); 264 hlist_del_rcu(&dev->name_hlist); 265 hlist_del_rcu(&dev->index_hlist); 266 write_unlock_bh(&dev_base_lock); 267 268 dev_base_seq_inc(dev_net(dev)); 269 } 270 271 /* 272 * Our notifier list 273 */ 274 275 static RAW_NOTIFIER_HEAD(netdev_chain); 276 277 /* 278 * Device drivers call our routines to queue packets here. We empty the 279 * queue in the local softnet handler. 280 */ 281 282 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 283 EXPORT_PER_CPU_SYMBOL(softnet_data); 284 285 #ifdef CONFIG_LOCKDEP 286 /* 287 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 288 * according to dev->type 289 */ 290 static const unsigned short netdev_lock_type[] = 291 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 292 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 293 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 294 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 295 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 296 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 297 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 298 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 299 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 300 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 301 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 302 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 303 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 304 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 305 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 306 307 static const char *const netdev_lock_name[] = 308 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 309 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 310 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 311 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 312 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 313 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 314 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 315 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 316 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 317 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 318 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 319 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 320 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 321 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 322 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 323 324 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 325 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 326 327 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 328 { 329 int i; 330 331 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 332 if (netdev_lock_type[i] == dev_type) 333 return i; 334 /* the last key is used by default */ 335 return ARRAY_SIZE(netdev_lock_type) - 1; 336 } 337 338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 339 unsigned short dev_type) 340 { 341 int i; 342 343 i = netdev_lock_pos(dev_type); 344 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 345 netdev_lock_name[i]); 346 } 347 348 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 349 { 350 int i; 351 352 i = netdev_lock_pos(dev->type); 353 lockdep_set_class_and_name(&dev->addr_list_lock, 354 &netdev_addr_lock_key[i], 355 netdev_lock_name[i]); 356 } 357 #else 358 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 359 unsigned short dev_type) 360 { 361 } 362 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 363 { 364 } 365 #endif 366 367 /******************************************************************************* 368 369 Protocol management and registration routines 370 371 *******************************************************************************/ 372 373 /* 374 * Add a protocol ID to the list. Now that the input handler is 375 * smarter we can dispense with all the messy stuff that used to be 376 * here. 377 * 378 * BEWARE!!! Protocol handlers, mangling input packets, 379 * MUST BE last in hash buckets and checking protocol handlers 380 * MUST start from promiscuous ptype_all chain in net_bh. 381 * It is true now, do not change it. 382 * Explanation follows: if protocol handler, mangling packet, will 383 * be the first on list, it is not able to sense, that packet 384 * is cloned and should be copied-on-write, so that it will 385 * change it and subsequent readers will get broken packet. 386 * --ANK (980803) 387 */ 388 389 static inline struct list_head *ptype_head(const struct packet_type *pt) 390 { 391 if (pt->type == htons(ETH_P_ALL)) 392 return &ptype_all; 393 else 394 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 395 } 396 397 /** 398 * dev_add_pack - add packet handler 399 * @pt: packet type declaration 400 * 401 * Add a protocol handler to the networking stack. The passed &packet_type 402 * is linked into kernel lists and may not be freed until it has been 403 * removed from the kernel lists. 404 * 405 * This call does not sleep therefore it can not 406 * guarantee all CPU's that are in middle of receiving packets 407 * will see the new packet type (until the next received packet). 408 */ 409 410 void dev_add_pack(struct packet_type *pt) 411 { 412 struct list_head *head = ptype_head(pt); 413 414 spin_lock(&ptype_lock); 415 list_add_rcu(&pt->list, head); 416 spin_unlock(&ptype_lock); 417 } 418 EXPORT_SYMBOL(dev_add_pack); 419 420 /** 421 * __dev_remove_pack - remove packet handler 422 * @pt: packet type declaration 423 * 424 * Remove a protocol handler that was previously added to the kernel 425 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 426 * from the kernel lists and can be freed or reused once this function 427 * returns. 428 * 429 * The packet type might still be in use by receivers 430 * and must not be freed until after all the CPU's have gone 431 * through a quiescent state. 432 */ 433 void __dev_remove_pack(struct packet_type *pt) 434 { 435 struct list_head *head = ptype_head(pt); 436 struct packet_type *pt1; 437 438 spin_lock(&ptype_lock); 439 440 list_for_each_entry(pt1, head, list) { 441 if (pt == pt1) { 442 list_del_rcu(&pt->list); 443 goto out; 444 } 445 } 446 447 pr_warn("dev_remove_pack: %p not found\n", pt); 448 out: 449 spin_unlock(&ptype_lock); 450 } 451 EXPORT_SYMBOL(__dev_remove_pack); 452 453 /** 454 * dev_remove_pack - remove packet handler 455 * @pt: packet type declaration 456 * 457 * Remove a protocol handler that was previously added to the kernel 458 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 459 * from the kernel lists and can be freed or reused once this function 460 * returns. 461 * 462 * This call sleeps to guarantee that no CPU is looking at the packet 463 * type after return. 464 */ 465 void dev_remove_pack(struct packet_type *pt) 466 { 467 __dev_remove_pack(pt); 468 469 synchronize_net(); 470 } 471 EXPORT_SYMBOL(dev_remove_pack); 472 473 /****************************************************************************** 474 475 Device Boot-time Settings Routines 476 477 *******************************************************************************/ 478 479 /* Boot time configuration table */ 480 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 481 482 /** 483 * netdev_boot_setup_add - add new setup entry 484 * @name: name of the device 485 * @map: configured settings for the device 486 * 487 * Adds new setup entry to the dev_boot_setup list. The function 488 * returns 0 on error and 1 on success. This is a generic routine to 489 * all netdevices. 490 */ 491 static int netdev_boot_setup_add(char *name, struct ifmap *map) 492 { 493 struct netdev_boot_setup *s; 494 int i; 495 496 s = dev_boot_setup; 497 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 498 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 499 memset(s[i].name, 0, sizeof(s[i].name)); 500 strlcpy(s[i].name, name, IFNAMSIZ); 501 memcpy(&s[i].map, map, sizeof(s[i].map)); 502 break; 503 } 504 } 505 506 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 507 } 508 509 /** 510 * netdev_boot_setup_check - check boot time settings 511 * @dev: the netdevice 512 * 513 * Check boot time settings for the device. 514 * The found settings are set for the device to be used 515 * later in the device probing. 516 * Returns 0 if no settings found, 1 if they are. 517 */ 518 int netdev_boot_setup_check(struct net_device *dev) 519 { 520 struct netdev_boot_setup *s = dev_boot_setup; 521 int i; 522 523 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 524 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 525 !strcmp(dev->name, s[i].name)) { 526 dev->irq = s[i].map.irq; 527 dev->base_addr = s[i].map.base_addr; 528 dev->mem_start = s[i].map.mem_start; 529 dev->mem_end = s[i].map.mem_end; 530 return 1; 531 } 532 } 533 return 0; 534 } 535 EXPORT_SYMBOL(netdev_boot_setup_check); 536 537 538 /** 539 * netdev_boot_base - get address from boot time settings 540 * @prefix: prefix for network device 541 * @unit: id for network device 542 * 543 * Check boot time settings for the base address of device. 544 * The found settings are set for the device to be used 545 * later in the device probing. 546 * Returns 0 if no settings found. 547 */ 548 unsigned long netdev_boot_base(const char *prefix, int unit) 549 { 550 const struct netdev_boot_setup *s = dev_boot_setup; 551 char name[IFNAMSIZ]; 552 int i; 553 554 sprintf(name, "%s%d", prefix, unit); 555 556 /* 557 * If device already registered then return base of 1 558 * to indicate not to probe for this interface 559 */ 560 if (__dev_get_by_name(&init_net, name)) 561 return 1; 562 563 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 564 if (!strcmp(name, s[i].name)) 565 return s[i].map.base_addr; 566 return 0; 567 } 568 569 /* 570 * Saves at boot time configured settings for any netdevice. 571 */ 572 int __init netdev_boot_setup(char *str) 573 { 574 int ints[5]; 575 struct ifmap map; 576 577 str = get_options(str, ARRAY_SIZE(ints), ints); 578 if (!str || !*str) 579 return 0; 580 581 /* Save settings */ 582 memset(&map, 0, sizeof(map)); 583 if (ints[0] > 0) 584 map.irq = ints[1]; 585 if (ints[0] > 1) 586 map.base_addr = ints[2]; 587 if (ints[0] > 2) 588 map.mem_start = ints[3]; 589 if (ints[0] > 3) 590 map.mem_end = ints[4]; 591 592 /* Add new entry to the list */ 593 return netdev_boot_setup_add(str, &map); 594 } 595 596 __setup("netdev=", netdev_boot_setup); 597 598 /******************************************************************************* 599 600 Device Interface Subroutines 601 602 *******************************************************************************/ 603 604 /** 605 * __dev_get_by_name - find a device by its name 606 * @net: the applicable net namespace 607 * @name: name to find 608 * 609 * Find an interface by name. Must be called under RTNL semaphore 610 * or @dev_base_lock. If the name is found a pointer to the device 611 * is returned. If the name is not found then %NULL is returned. The 612 * reference counters are not incremented so the caller must be 613 * careful with locks. 614 */ 615 616 struct net_device *__dev_get_by_name(struct net *net, const char *name) 617 { 618 struct hlist_node *p; 619 struct net_device *dev; 620 struct hlist_head *head = dev_name_hash(net, name); 621 622 hlist_for_each_entry(dev, p, head, name_hlist) 623 if (!strncmp(dev->name, name, IFNAMSIZ)) 624 return dev; 625 626 return NULL; 627 } 628 EXPORT_SYMBOL(__dev_get_by_name); 629 630 /** 631 * dev_get_by_name_rcu - find a device by its name 632 * @net: the applicable net namespace 633 * @name: name to find 634 * 635 * Find an interface by name. 636 * If the name is found a pointer to the device is returned. 637 * If the name is not found then %NULL is returned. 638 * The reference counters are not incremented so the caller must be 639 * careful with locks. The caller must hold RCU lock. 640 */ 641 642 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 643 { 644 struct hlist_node *p; 645 struct net_device *dev; 646 struct hlist_head *head = dev_name_hash(net, name); 647 648 hlist_for_each_entry_rcu(dev, p, head, name_hlist) 649 if (!strncmp(dev->name, name, IFNAMSIZ)) 650 return dev; 651 652 return NULL; 653 } 654 EXPORT_SYMBOL(dev_get_by_name_rcu); 655 656 /** 657 * dev_get_by_name - find a device by its name 658 * @net: the applicable net namespace 659 * @name: name to find 660 * 661 * Find an interface by name. This can be called from any 662 * context and does its own locking. The returned handle has 663 * the usage count incremented and the caller must use dev_put() to 664 * release it when it is no longer needed. %NULL is returned if no 665 * matching device is found. 666 */ 667 668 struct net_device *dev_get_by_name(struct net *net, const char *name) 669 { 670 struct net_device *dev; 671 672 rcu_read_lock(); 673 dev = dev_get_by_name_rcu(net, name); 674 if (dev) 675 dev_hold(dev); 676 rcu_read_unlock(); 677 return dev; 678 } 679 EXPORT_SYMBOL(dev_get_by_name); 680 681 /** 682 * __dev_get_by_index - find a device by its ifindex 683 * @net: the applicable net namespace 684 * @ifindex: index of device 685 * 686 * Search for an interface by index. Returns %NULL if the device 687 * is not found or a pointer to the device. The device has not 688 * had its reference counter increased so the caller must be careful 689 * about locking. The caller must hold either the RTNL semaphore 690 * or @dev_base_lock. 691 */ 692 693 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 694 { 695 struct hlist_node *p; 696 struct net_device *dev; 697 struct hlist_head *head = dev_index_hash(net, ifindex); 698 699 hlist_for_each_entry(dev, p, head, index_hlist) 700 if (dev->ifindex == ifindex) 701 return dev; 702 703 return NULL; 704 } 705 EXPORT_SYMBOL(__dev_get_by_index); 706 707 /** 708 * dev_get_by_index_rcu - find a device by its ifindex 709 * @net: the applicable net namespace 710 * @ifindex: index of device 711 * 712 * Search for an interface by index. Returns %NULL if the device 713 * is not found or a pointer to the device. The device has not 714 * had its reference counter increased so the caller must be careful 715 * about locking. The caller must hold RCU lock. 716 */ 717 718 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 719 { 720 struct hlist_node *p; 721 struct net_device *dev; 722 struct hlist_head *head = dev_index_hash(net, ifindex); 723 724 hlist_for_each_entry_rcu(dev, p, head, index_hlist) 725 if (dev->ifindex == ifindex) 726 return dev; 727 728 return NULL; 729 } 730 EXPORT_SYMBOL(dev_get_by_index_rcu); 731 732 733 /** 734 * dev_get_by_index - find a device by its ifindex 735 * @net: the applicable net namespace 736 * @ifindex: index of device 737 * 738 * Search for an interface by index. Returns NULL if the device 739 * is not found or a pointer to the device. The device returned has 740 * had a reference added and the pointer is safe until the user calls 741 * dev_put to indicate they have finished with it. 742 */ 743 744 struct net_device *dev_get_by_index(struct net *net, int ifindex) 745 { 746 struct net_device *dev; 747 748 rcu_read_lock(); 749 dev = dev_get_by_index_rcu(net, ifindex); 750 if (dev) 751 dev_hold(dev); 752 rcu_read_unlock(); 753 return dev; 754 } 755 EXPORT_SYMBOL(dev_get_by_index); 756 757 /** 758 * dev_getbyhwaddr_rcu - find a device by its hardware address 759 * @net: the applicable net namespace 760 * @type: media type of device 761 * @ha: hardware address 762 * 763 * Search for an interface by MAC address. Returns NULL if the device 764 * is not found or a pointer to the device. 765 * The caller must hold RCU or RTNL. 766 * The returned device has not had its ref count increased 767 * and the caller must therefore be careful about locking 768 * 769 */ 770 771 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 772 const char *ha) 773 { 774 struct net_device *dev; 775 776 for_each_netdev_rcu(net, dev) 777 if (dev->type == type && 778 !memcmp(dev->dev_addr, ha, dev->addr_len)) 779 return dev; 780 781 return NULL; 782 } 783 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 784 785 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 786 { 787 struct net_device *dev; 788 789 ASSERT_RTNL(); 790 for_each_netdev(net, dev) 791 if (dev->type == type) 792 return dev; 793 794 return NULL; 795 } 796 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 797 798 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 799 { 800 struct net_device *dev, *ret = NULL; 801 802 rcu_read_lock(); 803 for_each_netdev_rcu(net, dev) 804 if (dev->type == type) { 805 dev_hold(dev); 806 ret = dev; 807 break; 808 } 809 rcu_read_unlock(); 810 return ret; 811 } 812 EXPORT_SYMBOL(dev_getfirstbyhwtype); 813 814 /** 815 * dev_get_by_flags_rcu - find any device with given flags 816 * @net: the applicable net namespace 817 * @if_flags: IFF_* values 818 * @mask: bitmask of bits in if_flags to check 819 * 820 * Search for any interface with the given flags. Returns NULL if a device 821 * is not found or a pointer to the device. Must be called inside 822 * rcu_read_lock(), and result refcount is unchanged. 823 */ 824 825 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags, 826 unsigned short mask) 827 { 828 struct net_device *dev, *ret; 829 830 ret = NULL; 831 for_each_netdev_rcu(net, dev) { 832 if (((dev->flags ^ if_flags) & mask) == 0) { 833 ret = dev; 834 break; 835 } 836 } 837 return ret; 838 } 839 EXPORT_SYMBOL(dev_get_by_flags_rcu); 840 841 /** 842 * dev_valid_name - check if name is okay for network device 843 * @name: name string 844 * 845 * Network device names need to be valid file names to 846 * to allow sysfs to work. We also disallow any kind of 847 * whitespace. 848 */ 849 bool dev_valid_name(const char *name) 850 { 851 if (*name == '\0') 852 return false; 853 if (strlen(name) >= IFNAMSIZ) 854 return false; 855 if (!strcmp(name, ".") || !strcmp(name, "..")) 856 return false; 857 858 while (*name) { 859 if (*name == '/' || isspace(*name)) 860 return false; 861 name++; 862 } 863 return true; 864 } 865 EXPORT_SYMBOL(dev_valid_name); 866 867 /** 868 * __dev_alloc_name - allocate a name for a device 869 * @net: network namespace to allocate the device name in 870 * @name: name format string 871 * @buf: scratch buffer and result name string 872 * 873 * Passed a format string - eg "lt%d" it will try and find a suitable 874 * id. It scans list of devices to build up a free map, then chooses 875 * the first empty slot. The caller must hold the dev_base or rtnl lock 876 * while allocating the name and adding the device in order to avoid 877 * duplicates. 878 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 879 * Returns the number of the unit assigned or a negative errno code. 880 */ 881 882 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 883 { 884 int i = 0; 885 const char *p; 886 const int max_netdevices = 8*PAGE_SIZE; 887 unsigned long *inuse; 888 struct net_device *d; 889 890 p = strnchr(name, IFNAMSIZ-1, '%'); 891 if (p) { 892 /* 893 * Verify the string as this thing may have come from 894 * the user. There must be either one "%d" and no other "%" 895 * characters. 896 */ 897 if (p[1] != 'd' || strchr(p + 2, '%')) 898 return -EINVAL; 899 900 /* Use one page as a bit array of possible slots */ 901 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 902 if (!inuse) 903 return -ENOMEM; 904 905 for_each_netdev(net, d) { 906 if (!sscanf(d->name, name, &i)) 907 continue; 908 if (i < 0 || i >= max_netdevices) 909 continue; 910 911 /* avoid cases where sscanf is not exact inverse of printf */ 912 snprintf(buf, IFNAMSIZ, name, i); 913 if (!strncmp(buf, d->name, IFNAMSIZ)) 914 set_bit(i, inuse); 915 } 916 917 i = find_first_zero_bit(inuse, max_netdevices); 918 free_page((unsigned long) inuse); 919 } 920 921 if (buf != name) 922 snprintf(buf, IFNAMSIZ, name, i); 923 if (!__dev_get_by_name(net, buf)) 924 return i; 925 926 /* It is possible to run out of possible slots 927 * when the name is long and there isn't enough space left 928 * for the digits, or if all bits are used. 929 */ 930 return -ENFILE; 931 } 932 933 /** 934 * dev_alloc_name - allocate a name for a device 935 * @dev: device 936 * @name: name format string 937 * 938 * Passed a format string - eg "lt%d" it will try and find a suitable 939 * id. It scans list of devices to build up a free map, then chooses 940 * the first empty slot. The caller must hold the dev_base or rtnl lock 941 * while allocating the name and adding the device in order to avoid 942 * duplicates. 943 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 944 * Returns the number of the unit assigned or a negative errno code. 945 */ 946 947 int dev_alloc_name(struct net_device *dev, const char *name) 948 { 949 char buf[IFNAMSIZ]; 950 struct net *net; 951 int ret; 952 953 BUG_ON(!dev_net(dev)); 954 net = dev_net(dev); 955 ret = __dev_alloc_name(net, name, buf); 956 if (ret >= 0) 957 strlcpy(dev->name, buf, IFNAMSIZ); 958 return ret; 959 } 960 EXPORT_SYMBOL(dev_alloc_name); 961 962 static int dev_get_valid_name(struct net_device *dev, const char *name) 963 { 964 struct net *net; 965 966 BUG_ON(!dev_net(dev)); 967 net = dev_net(dev); 968 969 if (!dev_valid_name(name)) 970 return -EINVAL; 971 972 if (strchr(name, '%')) 973 return dev_alloc_name(dev, name); 974 else if (__dev_get_by_name(net, name)) 975 return -EEXIST; 976 else if (dev->name != name) 977 strlcpy(dev->name, name, IFNAMSIZ); 978 979 return 0; 980 } 981 982 /** 983 * dev_change_name - change name of a device 984 * @dev: device 985 * @newname: name (or format string) must be at least IFNAMSIZ 986 * 987 * Change name of a device, can pass format strings "eth%d". 988 * for wildcarding. 989 */ 990 int dev_change_name(struct net_device *dev, const char *newname) 991 { 992 char oldname[IFNAMSIZ]; 993 int err = 0; 994 int ret; 995 struct net *net; 996 997 ASSERT_RTNL(); 998 BUG_ON(!dev_net(dev)); 999 1000 net = dev_net(dev); 1001 if (dev->flags & IFF_UP) 1002 return -EBUSY; 1003 1004 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) 1005 return 0; 1006 1007 memcpy(oldname, dev->name, IFNAMSIZ); 1008 1009 err = dev_get_valid_name(dev, newname); 1010 if (err < 0) 1011 return err; 1012 1013 rollback: 1014 ret = device_rename(&dev->dev, dev->name); 1015 if (ret) { 1016 memcpy(dev->name, oldname, IFNAMSIZ); 1017 return ret; 1018 } 1019 1020 write_lock_bh(&dev_base_lock); 1021 hlist_del_rcu(&dev->name_hlist); 1022 write_unlock_bh(&dev_base_lock); 1023 1024 synchronize_rcu(); 1025 1026 write_lock_bh(&dev_base_lock); 1027 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1028 write_unlock_bh(&dev_base_lock); 1029 1030 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1031 ret = notifier_to_errno(ret); 1032 1033 if (ret) { 1034 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1035 if (err >= 0) { 1036 err = ret; 1037 memcpy(dev->name, oldname, IFNAMSIZ); 1038 goto rollback; 1039 } else { 1040 pr_err("%s: name change rollback failed: %d\n", 1041 dev->name, ret); 1042 } 1043 } 1044 1045 return err; 1046 } 1047 1048 /** 1049 * dev_set_alias - change ifalias of a device 1050 * @dev: device 1051 * @alias: name up to IFALIASZ 1052 * @len: limit of bytes to copy from info 1053 * 1054 * Set ifalias for a device, 1055 */ 1056 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1057 { 1058 char *new_ifalias; 1059 1060 ASSERT_RTNL(); 1061 1062 if (len >= IFALIASZ) 1063 return -EINVAL; 1064 1065 if (!len) { 1066 if (dev->ifalias) { 1067 kfree(dev->ifalias); 1068 dev->ifalias = NULL; 1069 } 1070 return 0; 1071 } 1072 1073 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1074 if (!new_ifalias) 1075 return -ENOMEM; 1076 dev->ifalias = new_ifalias; 1077 1078 strlcpy(dev->ifalias, alias, len+1); 1079 return len; 1080 } 1081 1082 1083 /** 1084 * netdev_features_change - device changes features 1085 * @dev: device to cause notification 1086 * 1087 * Called to indicate a device has changed features. 1088 */ 1089 void netdev_features_change(struct net_device *dev) 1090 { 1091 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1092 } 1093 EXPORT_SYMBOL(netdev_features_change); 1094 1095 /** 1096 * netdev_state_change - device changes state 1097 * @dev: device to cause notification 1098 * 1099 * Called to indicate a device has changed state. This function calls 1100 * the notifier chains for netdev_chain and sends a NEWLINK message 1101 * to the routing socket. 1102 */ 1103 void netdev_state_change(struct net_device *dev) 1104 { 1105 if (dev->flags & IFF_UP) { 1106 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1107 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1108 } 1109 } 1110 EXPORT_SYMBOL(netdev_state_change); 1111 1112 int netdev_bonding_change(struct net_device *dev, unsigned long event) 1113 { 1114 return call_netdevice_notifiers(event, dev); 1115 } 1116 EXPORT_SYMBOL(netdev_bonding_change); 1117 1118 /** 1119 * dev_load - load a network module 1120 * @net: the applicable net namespace 1121 * @name: name of interface 1122 * 1123 * If a network interface is not present and the process has suitable 1124 * privileges this function loads the module. If module loading is not 1125 * available in this kernel then it becomes a nop. 1126 */ 1127 1128 void dev_load(struct net *net, const char *name) 1129 { 1130 struct net_device *dev; 1131 int no_module; 1132 1133 rcu_read_lock(); 1134 dev = dev_get_by_name_rcu(net, name); 1135 rcu_read_unlock(); 1136 1137 no_module = !dev; 1138 if (no_module && capable(CAP_NET_ADMIN)) 1139 no_module = request_module("netdev-%s", name); 1140 if (no_module && capable(CAP_SYS_MODULE)) { 1141 if (!request_module("%s", name)) 1142 pr_warn("Loading kernel module for a network device with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s instead.\n", 1143 name); 1144 } 1145 } 1146 EXPORT_SYMBOL(dev_load); 1147 1148 static int __dev_open(struct net_device *dev) 1149 { 1150 const struct net_device_ops *ops = dev->netdev_ops; 1151 int ret; 1152 1153 ASSERT_RTNL(); 1154 1155 if (!netif_device_present(dev)) 1156 return -ENODEV; 1157 1158 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1159 ret = notifier_to_errno(ret); 1160 if (ret) 1161 return ret; 1162 1163 set_bit(__LINK_STATE_START, &dev->state); 1164 1165 if (ops->ndo_validate_addr) 1166 ret = ops->ndo_validate_addr(dev); 1167 1168 if (!ret && ops->ndo_open) 1169 ret = ops->ndo_open(dev); 1170 1171 if (ret) 1172 clear_bit(__LINK_STATE_START, &dev->state); 1173 else { 1174 dev->flags |= IFF_UP; 1175 net_dmaengine_get(); 1176 dev_set_rx_mode(dev); 1177 dev_activate(dev); 1178 add_device_randomness(dev->dev_addr, dev->addr_len); 1179 } 1180 1181 return ret; 1182 } 1183 1184 /** 1185 * dev_open - prepare an interface for use. 1186 * @dev: device to open 1187 * 1188 * Takes a device from down to up state. The device's private open 1189 * function is invoked and then the multicast lists are loaded. Finally 1190 * the device is moved into the up state and a %NETDEV_UP message is 1191 * sent to the netdev notifier chain. 1192 * 1193 * Calling this function on an active interface is a nop. On a failure 1194 * a negative errno code is returned. 1195 */ 1196 int dev_open(struct net_device *dev) 1197 { 1198 int ret; 1199 1200 if (dev->flags & IFF_UP) 1201 return 0; 1202 1203 ret = __dev_open(dev); 1204 if (ret < 0) 1205 return ret; 1206 1207 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1208 call_netdevice_notifiers(NETDEV_UP, dev); 1209 1210 return ret; 1211 } 1212 EXPORT_SYMBOL(dev_open); 1213 1214 static int __dev_close_many(struct list_head *head) 1215 { 1216 struct net_device *dev; 1217 1218 ASSERT_RTNL(); 1219 might_sleep(); 1220 1221 list_for_each_entry(dev, head, unreg_list) { 1222 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1223 1224 clear_bit(__LINK_STATE_START, &dev->state); 1225 1226 /* Synchronize to scheduled poll. We cannot touch poll list, it 1227 * can be even on different cpu. So just clear netif_running(). 1228 * 1229 * dev->stop() will invoke napi_disable() on all of it's 1230 * napi_struct instances on this device. 1231 */ 1232 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1233 } 1234 1235 dev_deactivate_many(head); 1236 1237 list_for_each_entry(dev, head, unreg_list) { 1238 const struct net_device_ops *ops = dev->netdev_ops; 1239 1240 /* 1241 * Call the device specific close. This cannot fail. 1242 * Only if device is UP 1243 * 1244 * We allow it to be called even after a DETACH hot-plug 1245 * event. 1246 */ 1247 if (ops->ndo_stop) 1248 ops->ndo_stop(dev); 1249 1250 dev->flags &= ~IFF_UP; 1251 net_dmaengine_put(); 1252 } 1253 1254 return 0; 1255 } 1256 1257 static int __dev_close(struct net_device *dev) 1258 { 1259 int retval; 1260 LIST_HEAD(single); 1261 1262 list_add(&dev->unreg_list, &single); 1263 retval = __dev_close_many(&single); 1264 list_del(&single); 1265 return retval; 1266 } 1267 1268 static int dev_close_many(struct list_head *head) 1269 { 1270 struct net_device *dev, *tmp; 1271 LIST_HEAD(tmp_list); 1272 1273 list_for_each_entry_safe(dev, tmp, head, unreg_list) 1274 if (!(dev->flags & IFF_UP)) 1275 list_move(&dev->unreg_list, &tmp_list); 1276 1277 __dev_close_many(head); 1278 1279 list_for_each_entry(dev, head, unreg_list) { 1280 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1281 call_netdevice_notifiers(NETDEV_DOWN, dev); 1282 } 1283 1284 /* rollback_registered_many needs the complete original list */ 1285 list_splice(&tmp_list, head); 1286 return 0; 1287 } 1288 1289 /** 1290 * dev_close - shutdown an interface. 1291 * @dev: device to shutdown 1292 * 1293 * This function moves an active device into down state. A 1294 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1295 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1296 * chain. 1297 */ 1298 int dev_close(struct net_device *dev) 1299 { 1300 if (dev->flags & IFF_UP) { 1301 LIST_HEAD(single); 1302 1303 list_add(&dev->unreg_list, &single); 1304 dev_close_many(&single); 1305 list_del(&single); 1306 } 1307 return 0; 1308 } 1309 EXPORT_SYMBOL(dev_close); 1310 1311 1312 /** 1313 * dev_disable_lro - disable Large Receive Offload on a device 1314 * @dev: device 1315 * 1316 * Disable Large Receive Offload (LRO) on a net device. Must be 1317 * called under RTNL. This is needed if received packets may be 1318 * forwarded to another interface. 1319 */ 1320 void dev_disable_lro(struct net_device *dev) 1321 { 1322 /* 1323 * If we're trying to disable lro on a vlan device 1324 * use the underlying physical device instead 1325 */ 1326 if (is_vlan_dev(dev)) 1327 dev = vlan_dev_real_dev(dev); 1328 1329 dev->wanted_features &= ~NETIF_F_LRO; 1330 netdev_update_features(dev); 1331 1332 if (unlikely(dev->features & NETIF_F_LRO)) 1333 netdev_WARN(dev, "failed to disable LRO!\n"); 1334 } 1335 EXPORT_SYMBOL(dev_disable_lro); 1336 1337 1338 static int dev_boot_phase = 1; 1339 1340 /** 1341 * register_netdevice_notifier - register a network notifier block 1342 * @nb: notifier 1343 * 1344 * Register a notifier to be called when network device events occur. 1345 * The notifier passed is linked into the kernel structures and must 1346 * not be reused until it has been unregistered. A negative errno code 1347 * is returned on a failure. 1348 * 1349 * When registered all registration and up events are replayed 1350 * to the new notifier to allow device to have a race free 1351 * view of the network device list. 1352 */ 1353 1354 int register_netdevice_notifier(struct notifier_block *nb) 1355 { 1356 struct net_device *dev; 1357 struct net_device *last; 1358 struct net *net; 1359 int err; 1360 1361 rtnl_lock(); 1362 err = raw_notifier_chain_register(&netdev_chain, nb); 1363 if (err) 1364 goto unlock; 1365 if (dev_boot_phase) 1366 goto unlock; 1367 for_each_net(net) { 1368 for_each_netdev(net, dev) { 1369 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1370 err = notifier_to_errno(err); 1371 if (err) 1372 goto rollback; 1373 1374 if (!(dev->flags & IFF_UP)) 1375 continue; 1376 1377 nb->notifier_call(nb, NETDEV_UP, dev); 1378 } 1379 } 1380 1381 unlock: 1382 rtnl_unlock(); 1383 return err; 1384 1385 rollback: 1386 last = dev; 1387 for_each_net(net) { 1388 for_each_netdev(net, dev) { 1389 if (dev == last) 1390 goto outroll; 1391 1392 if (dev->flags & IFF_UP) { 1393 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1394 nb->notifier_call(nb, NETDEV_DOWN, dev); 1395 } 1396 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1397 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev); 1398 } 1399 } 1400 1401 outroll: 1402 raw_notifier_chain_unregister(&netdev_chain, nb); 1403 goto unlock; 1404 } 1405 EXPORT_SYMBOL(register_netdevice_notifier); 1406 1407 /** 1408 * unregister_netdevice_notifier - unregister a network notifier block 1409 * @nb: notifier 1410 * 1411 * Unregister a notifier previously registered by 1412 * register_netdevice_notifier(). The notifier is unlinked into the 1413 * kernel structures and may then be reused. A negative errno code 1414 * is returned on a failure. 1415 * 1416 * After unregistering unregister and down device events are synthesized 1417 * for all devices on the device list to the removed notifier to remove 1418 * the need for special case cleanup code. 1419 */ 1420 1421 int unregister_netdevice_notifier(struct notifier_block *nb) 1422 { 1423 struct net_device *dev; 1424 struct net *net; 1425 int err; 1426 1427 rtnl_lock(); 1428 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1429 if (err) 1430 goto unlock; 1431 1432 for_each_net(net) { 1433 for_each_netdev(net, dev) { 1434 if (dev->flags & IFF_UP) { 1435 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1436 nb->notifier_call(nb, NETDEV_DOWN, dev); 1437 } 1438 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1439 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev); 1440 } 1441 } 1442 unlock: 1443 rtnl_unlock(); 1444 return err; 1445 } 1446 EXPORT_SYMBOL(unregister_netdevice_notifier); 1447 1448 /** 1449 * call_netdevice_notifiers - call all network notifier blocks 1450 * @val: value passed unmodified to notifier function 1451 * @dev: net_device pointer passed unmodified to notifier function 1452 * 1453 * Call all network notifier blocks. Parameters and return value 1454 * are as for raw_notifier_call_chain(). 1455 */ 1456 1457 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1458 { 1459 ASSERT_RTNL(); 1460 return raw_notifier_call_chain(&netdev_chain, val, dev); 1461 } 1462 EXPORT_SYMBOL(call_netdevice_notifiers); 1463 1464 static struct static_key netstamp_needed __read_mostly; 1465 #ifdef HAVE_JUMP_LABEL 1466 /* We are not allowed to call static_key_slow_dec() from irq context 1467 * If net_disable_timestamp() is called from irq context, defer the 1468 * static_key_slow_dec() calls. 1469 */ 1470 static atomic_t netstamp_needed_deferred; 1471 #endif 1472 1473 void net_enable_timestamp(void) 1474 { 1475 #ifdef HAVE_JUMP_LABEL 1476 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1477 1478 if (deferred) { 1479 while (--deferred) 1480 static_key_slow_dec(&netstamp_needed); 1481 return; 1482 } 1483 #endif 1484 WARN_ON(in_interrupt()); 1485 static_key_slow_inc(&netstamp_needed); 1486 } 1487 EXPORT_SYMBOL(net_enable_timestamp); 1488 1489 void net_disable_timestamp(void) 1490 { 1491 #ifdef HAVE_JUMP_LABEL 1492 if (in_interrupt()) { 1493 atomic_inc(&netstamp_needed_deferred); 1494 return; 1495 } 1496 #endif 1497 static_key_slow_dec(&netstamp_needed); 1498 } 1499 EXPORT_SYMBOL(net_disable_timestamp); 1500 1501 static inline void net_timestamp_set(struct sk_buff *skb) 1502 { 1503 skb->tstamp.tv64 = 0; 1504 if (static_key_false(&netstamp_needed)) 1505 __net_timestamp(skb); 1506 } 1507 1508 #define net_timestamp_check(COND, SKB) \ 1509 if (static_key_false(&netstamp_needed)) { \ 1510 if ((COND) && !(SKB)->tstamp.tv64) \ 1511 __net_timestamp(SKB); \ 1512 } \ 1513 1514 static int net_hwtstamp_validate(struct ifreq *ifr) 1515 { 1516 struct hwtstamp_config cfg; 1517 enum hwtstamp_tx_types tx_type; 1518 enum hwtstamp_rx_filters rx_filter; 1519 int tx_type_valid = 0; 1520 int rx_filter_valid = 0; 1521 1522 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) 1523 return -EFAULT; 1524 1525 if (cfg.flags) /* reserved for future extensions */ 1526 return -EINVAL; 1527 1528 tx_type = cfg.tx_type; 1529 rx_filter = cfg.rx_filter; 1530 1531 switch (tx_type) { 1532 case HWTSTAMP_TX_OFF: 1533 case HWTSTAMP_TX_ON: 1534 case HWTSTAMP_TX_ONESTEP_SYNC: 1535 tx_type_valid = 1; 1536 break; 1537 } 1538 1539 switch (rx_filter) { 1540 case HWTSTAMP_FILTER_NONE: 1541 case HWTSTAMP_FILTER_ALL: 1542 case HWTSTAMP_FILTER_SOME: 1543 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 1544 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 1545 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 1546 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 1547 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 1548 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 1549 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 1550 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 1551 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 1552 case HWTSTAMP_FILTER_PTP_V2_EVENT: 1553 case HWTSTAMP_FILTER_PTP_V2_SYNC: 1554 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 1555 rx_filter_valid = 1; 1556 break; 1557 } 1558 1559 if (!tx_type_valid || !rx_filter_valid) 1560 return -ERANGE; 1561 1562 return 0; 1563 } 1564 1565 static inline bool is_skb_forwardable(struct net_device *dev, 1566 struct sk_buff *skb) 1567 { 1568 unsigned int len; 1569 1570 if (!(dev->flags & IFF_UP)) 1571 return false; 1572 1573 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1574 if (skb->len <= len) 1575 return true; 1576 1577 /* if TSO is enabled, we don't care about the length as the packet 1578 * could be forwarded without being segmented before 1579 */ 1580 if (skb_is_gso(skb)) 1581 return true; 1582 1583 return false; 1584 } 1585 1586 /** 1587 * dev_forward_skb - loopback an skb to another netif 1588 * 1589 * @dev: destination network device 1590 * @skb: buffer to forward 1591 * 1592 * return values: 1593 * NET_RX_SUCCESS (no congestion) 1594 * NET_RX_DROP (packet was dropped, but freed) 1595 * 1596 * dev_forward_skb can be used for injecting an skb from the 1597 * start_xmit function of one device into the receive queue 1598 * of another device. 1599 * 1600 * The receiving device may be in another namespace, so 1601 * we have to clear all information in the skb that could 1602 * impact namespace isolation. 1603 */ 1604 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1605 { 1606 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 1607 if (skb_copy_ubufs(skb, GFP_ATOMIC)) { 1608 atomic_long_inc(&dev->rx_dropped); 1609 kfree_skb(skb); 1610 return NET_RX_DROP; 1611 } 1612 } 1613 1614 skb_orphan(skb); 1615 nf_reset(skb); 1616 1617 if (unlikely(!is_skb_forwardable(dev, skb))) { 1618 atomic_long_inc(&dev->rx_dropped); 1619 kfree_skb(skb); 1620 return NET_RX_DROP; 1621 } 1622 skb->skb_iif = 0; 1623 skb->dev = dev; 1624 skb_dst_drop(skb); 1625 skb->tstamp.tv64 = 0; 1626 skb->pkt_type = PACKET_HOST; 1627 skb->protocol = eth_type_trans(skb, dev); 1628 skb->mark = 0; 1629 secpath_reset(skb); 1630 nf_reset(skb); 1631 return netif_rx(skb); 1632 } 1633 EXPORT_SYMBOL_GPL(dev_forward_skb); 1634 1635 static inline int deliver_skb(struct sk_buff *skb, 1636 struct packet_type *pt_prev, 1637 struct net_device *orig_dev) 1638 { 1639 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 1640 return -ENOMEM; 1641 atomic_inc(&skb->users); 1642 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1643 } 1644 1645 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1646 { 1647 if (ptype->af_packet_priv == NULL) 1648 return false; 1649 1650 if (ptype->id_match) 1651 return ptype->id_match(ptype, skb->sk); 1652 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1653 return true; 1654 1655 return false; 1656 } 1657 1658 /* 1659 * Support routine. Sends outgoing frames to any network 1660 * taps currently in use. 1661 */ 1662 1663 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1664 { 1665 struct packet_type *ptype; 1666 struct sk_buff *skb2 = NULL; 1667 struct packet_type *pt_prev = NULL; 1668 1669 rcu_read_lock(); 1670 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1671 /* Never send packets back to the socket 1672 * they originated from - MvS (miquels@drinkel.ow.org) 1673 */ 1674 if ((ptype->dev == dev || !ptype->dev) && 1675 (!skb_loop_sk(ptype, skb))) { 1676 if (pt_prev) { 1677 deliver_skb(skb2, pt_prev, skb->dev); 1678 pt_prev = ptype; 1679 continue; 1680 } 1681 1682 skb2 = skb_clone(skb, GFP_ATOMIC); 1683 if (!skb2) 1684 break; 1685 1686 net_timestamp_set(skb2); 1687 1688 /* skb->nh should be correctly 1689 set by sender, so that the second statement is 1690 just protection against buggy protocols. 1691 */ 1692 skb_reset_mac_header(skb2); 1693 1694 if (skb_network_header(skb2) < skb2->data || 1695 skb2->network_header > skb2->tail) { 1696 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1697 ntohs(skb2->protocol), 1698 dev->name); 1699 skb_reset_network_header(skb2); 1700 } 1701 1702 skb2->transport_header = skb2->network_header; 1703 skb2->pkt_type = PACKET_OUTGOING; 1704 pt_prev = ptype; 1705 } 1706 } 1707 if (pt_prev) 1708 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1709 rcu_read_unlock(); 1710 } 1711 1712 /** 1713 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1714 * @dev: Network device 1715 * @txq: number of queues available 1716 * 1717 * If real_num_tx_queues is changed the tc mappings may no longer be 1718 * valid. To resolve this verify the tc mapping remains valid and if 1719 * not NULL the mapping. With no priorities mapping to this 1720 * offset/count pair it will no longer be used. In the worst case TC0 1721 * is invalid nothing can be done so disable priority mappings. If is 1722 * expected that drivers will fix this mapping if they can before 1723 * calling netif_set_real_num_tx_queues. 1724 */ 1725 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1726 { 1727 int i; 1728 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1729 1730 /* If TC0 is invalidated disable TC mapping */ 1731 if (tc->offset + tc->count > txq) { 1732 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1733 dev->num_tc = 0; 1734 return; 1735 } 1736 1737 /* Invalidated prio to tc mappings set to TC0 */ 1738 for (i = 1; i < TC_BITMASK + 1; i++) { 1739 int q = netdev_get_prio_tc_map(dev, i); 1740 1741 tc = &dev->tc_to_txq[q]; 1742 if (tc->offset + tc->count > txq) { 1743 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1744 i, q); 1745 netdev_set_prio_tc_map(dev, i, 0); 1746 } 1747 } 1748 } 1749 1750 /* 1751 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 1752 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 1753 */ 1754 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 1755 { 1756 int rc; 1757 1758 if (txq < 1 || txq > dev->num_tx_queues) 1759 return -EINVAL; 1760 1761 if (dev->reg_state == NETREG_REGISTERED || 1762 dev->reg_state == NETREG_UNREGISTERING) { 1763 ASSERT_RTNL(); 1764 1765 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 1766 txq); 1767 if (rc) 1768 return rc; 1769 1770 if (dev->num_tc) 1771 netif_setup_tc(dev, txq); 1772 1773 if (txq < dev->real_num_tx_queues) 1774 qdisc_reset_all_tx_gt(dev, txq); 1775 } 1776 1777 dev->real_num_tx_queues = txq; 1778 return 0; 1779 } 1780 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 1781 1782 #ifdef CONFIG_RPS 1783 /** 1784 * netif_set_real_num_rx_queues - set actual number of RX queues used 1785 * @dev: Network device 1786 * @rxq: Actual number of RX queues 1787 * 1788 * This must be called either with the rtnl_lock held or before 1789 * registration of the net device. Returns 0 on success, or a 1790 * negative error code. If called before registration, it always 1791 * succeeds. 1792 */ 1793 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 1794 { 1795 int rc; 1796 1797 if (rxq < 1 || rxq > dev->num_rx_queues) 1798 return -EINVAL; 1799 1800 if (dev->reg_state == NETREG_REGISTERED) { 1801 ASSERT_RTNL(); 1802 1803 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 1804 rxq); 1805 if (rc) 1806 return rc; 1807 } 1808 1809 dev->real_num_rx_queues = rxq; 1810 return 0; 1811 } 1812 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 1813 #endif 1814 1815 /** 1816 * netif_get_num_default_rss_queues - default number of RSS queues 1817 * 1818 * This routine should set an upper limit on the number of RSS queues 1819 * used by default by multiqueue devices. 1820 */ 1821 int netif_get_num_default_rss_queues(void) 1822 { 1823 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 1824 } 1825 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 1826 1827 static inline void __netif_reschedule(struct Qdisc *q) 1828 { 1829 struct softnet_data *sd; 1830 unsigned long flags; 1831 1832 local_irq_save(flags); 1833 sd = &__get_cpu_var(softnet_data); 1834 q->next_sched = NULL; 1835 *sd->output_queue_tailp = q; 1836 sd->output_queue_tailp = &q->next_sched; 1837 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1838 local_irq_restore(flags); 1839 } 1840 1841 void __netif_schedule(struct Qdisc *q) 1842 { 1843 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 1844 __netif_reschedule(q); 1845 } 1846 EXPORT_SYMBOL(__netif_schedule); 1847 1848 void dev_kfree_skb_irq(struct sk_buff *skb) 1849 { 1850 if (atomic_dec_and_test(&skb->users)) { 1851 struct softnet_data *sd; 1852 unsigned long flags; 1853 1854 local_irq_save(flags); 1855 sd = &__get_cpu_var(softnet_data); 1856 skb->next = sd->completion_queue; 1857 sd->completion_queue = skb; 1858 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1859 local_irq_restore(flags); 1860 } 1861 } 1862 EXPORT_SYMBOL(dev_kfree_skb_irq); 1863 1864 void dev_kfree_skb_any(struct sk_buff *skb) 1865 { 1866 if (in_irq() || irqs_disabled()) 1867 dev_kfree_skb_irq(skb); 1868 else 1869 dev_kfree_skb(skb); 1870 } 1871 EXPORT_SYMBOL(dev_kfree_skb_any); 1872 1873 1874 /** 1875 * netif_device_detach - mark device as removed 1876 * @dev: network device 1877 * 1878 * Mark device as removed from system and therefore no longer available. 1879 */ 1880 void netif_device_detach(struct net_device *dev) 1881 { 1882 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1883 netif_running(dev)) { 1884 netif_tx_stop_all_queues(dev); 1885 } 1886 } 1887 EXPORT_SYMBOL(netif_device_detach); 1888 1889 /** 1890 * netif_device_attach - mark device as attached 1891 * @dev: network device 1892 * 1893 * Mark device as attached from system and restart if needed. 1894 */ 1895 void netif_device_attach(struct net_device *dev) 1896 { 1897 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1898 netif_running(dev)) { 1899 netif_tx_wake_all_queues(dev); 1900 __netdev_watchdog_up(dev); 1901 } 1902 } 1903 EXPORT_SYMBOL(netif_device_attach); 1904 1905 static void skb_warn_bad_offload(const struct sk_buff *skb) 1906 { 1907 static const netdev_features_t null_features = 0; 1908 struct net_device *dev = skb->dev; 1909 const char *driver = ""; 1910 1911 if (dev && dev->dev.parent) 1912 driver = dev_driver_string(dev->dev.parent); 1913 1914 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 1915 "gso_type=%d ip_summed=%d\n", 1916 driver, dev ? &dev->features : &null_features, 1917 skb->sk ? &skb->sk->sk_route_caps : &null_features, 1918 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 1919 skb_shinfo(skb)->gso_type, skb->ip_summed); 1920 } 1921 1922 /* 1923 * Invalidate hardware checksum when packet is to be mangled, and 1924 * complete checksum manually on outgoing path. 1925 */ 1926 int skb_checksum_help(struct sk_buff *skb) 1927 { 1928 __wsum csum; 1929 int ret = 0, offset; 1930 1931 if (skb->ip_summed == CHECKSUM_COMPLETE) 1932 goto out_set_summed; 1933 1934 if (unlikely(skb_shinfo(skb)->gso_size)) { 1935 skb_warn_bad_offload(skb); 1936 return -EINVAL; 1937 } 1938 1939 offset = skb_checksum_start_offset(skb); 1940 BUG_ON(offset >= skb_headlen(skb)); 1941 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1942 1943 offset += skb->csum_offset; 1944 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1945 1946 if (skb_cloned(skb) && 1947 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1948 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1949 if (ret) 1950 goto out; 1951 } 1952 1953 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1954 out_set_summed: 1955 skb->ip_summed = CHECKSUM_NONE; 1956 out: 1957 return ret; 1958 } 1959 EXPORT_SYMBOL(skb_checksum_help); 1960 1961 /** 1962 * skb_gso_segment - Perform segmentation on skb. 1963 * @skb: buffer to segment 1964 * @features: features for the output path (see dev->features) 1965 * 1966 * This function segments the given skb and returns a list of segments. 1967 * 1968 * It may return NULL if the skb requires no segmentation. This is 1969 * only possible when GSO is used for verifying header integrity. 1970 */ 1971 struct sk_buff *skb_gso_segment(struct sk_buff *skb, 1972 netdev_features_t features) 1973 { 1974 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1975 struct packet_type *ptype; 1976 __be16 type = skb->protocol; 1977 int vlan_depth = ETH_HLEN; 1978 int err; 1979 1980 while (type == htons(ETH_P_8021Q)) { 1981 struct vlan_hdr *vh; 1982 1983 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN))) 1984 return ERR_PTR(-EINVAL); 1985 1986 vh = (struct vlan_hdr *)(skb->data + vlan_depth); 1987 type = vh->h_vlan_encapsulated_proto; 1988 vlan_depth += VLAN_HLEN; 1989 } 1990 1991 skb_reset_mac_header(skb); 1992 skb->mac_len = skb->network_header - skb->mac_header; 1993 __skb_pull(skb, skb->mac_len); 1994 1995 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1996 skb_warn_bad_offload(skb); 1997 1998 if (skb_header_cloned(skb) && 1999 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 2000 return ERR_PTR(err); 2001 } 2002 2003 rcu_read_lock(); 2004 list_for_each_entry_rcu(ptype, 2005 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 2006 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 2007 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 2008 err = ptype->gso_send_check(skb); 2009 segs = ERR_PTR(err); 2010 if (err || skb_gso_ok(skb, features)) 2011 break; 2012 __skb_push(skb, (skb->data - 2013 skb_network_header(skb))); 2014 } 2015 segs = ptype->gso_segment(skb, features); 2016 break; 2017 } 2018 } 2019 rcu_read_unlock(); 2020 2021 __skb_push(skb, skb->data - skb_mac_header(skb)); 2022 2023 return segs; 2024 } 2025 EXPORT_SYMBOL(skb_gso_segment); 2026 2027 /* Take action when hardware reception checksum errors are detected. */ 2028 #ifdef CONFIG_BUG 2029 void netdev_rx_csum_fault(struct net_device *dev) 2030 { 2031 if (net_ratelimit()) { 2032 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2033 dump_stack(); 2034 } 2035 } 2036 EXPORT_SYMBOL(netdev_rx_csum_fault); 2037 #endif 2038 2039 /* Actually, we should eliminate this check as soon as we know, that: 2040 * 1. IOMMU is present and allows to map all the memory. 2041 * 2. No high memory really exists on this machine. 2042 */ 2043 2044 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2045 { 2046 #ifdef CONFIG_HIGHMEM 2047 int i; 2048 if (!(dev->features & NETIF_F_HIGHDMA)) { 2049 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2050 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2051 if (PageHighMem(skb_frag_page(frag))) 2052 return 1; 2053 } 2054 } 2055 2056 if (PCI_DMA_BUS_IS_PHYS) { 2057 struct device *pdev = dev->dev.parent; 2058 2059 if (!pdev) 2060 return 0; 2061 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2062 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2063 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2064 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2065 return 1; 2066 } 2067 } 2068 #endif 2069 return 0; 2070 } 2071 2072 struct dev_gso_cb { 2073 void (*destructor)(struct sk_buff *skb); 2074 }; 2075 2076 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 2077 2078 static void dev_gso_skb_destructor(struct sk_buff *skb) 2079 { 2080 struct dev_gso_cb *cb; 2081 2082 do { 2083 struct sk_buff *nskb = skb->next; 2084 2085 skb->next = nskb->next; 2086 nskb->next = NULL; 2087 kfree_skb(nskb); 2088 } while (skb->next); 2089 2090 cb = DEV_GSO_CB(skb); 2091 if (cb->destructor) 2092 cb->destructor(skb); 2093 } 2094 2095 /** 2096 * dev_gso_segment - Perform emulated hardware segmentation on skb. 2097 * @skb: buffer to segment 2098 * @features: device features as applicable to this skb 2099 * 2100 * This function segments the given skb and stores the list of segments 2101 * in skb->next. 2102 */ 2103 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features) 2104 { 2105 struct sk_buff *segs; 2106 2107 segs = skb_gso_segment(skb, features); 2108 2109 /* Verifying header integrity only. */ 2110 if (!segs) 2111 return 0; 2112 2113 if (IS_ERR(segs)) 2114 return PTR_ERR(segs); 2115 2116 skb->next = segs; 2117 DEV_GSO_CB(skb)->destructor = skb->destructor; 2118 skb->destructor = dev_gso_skb_destructor; 2119 2120 return 0; 2121 } 2122 2123 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol) 2124 { 2125 return ((features & NETIF_F_GEN_CSUM) || 2126 ((features & NETIF_F_V4_CSUM) && 2127 protocol == htons(ETH_P_IP)) || 2128 ((features & NETIF_F_V6_CSUM) && 2129 protocol == htons(ETH_P_IPV6)) || 2130 ((features & NETIF_F_FCOE_CRC) && 2131 protocol == htons(ETH_P_FCOE))); 2132 } 2133 2134 static netdev_features_t harmonize_features(struct sk_buff *skb, 2135 __be16 protocol, netdev_features_t features) 2136 { 2137 if (!can_checksum_protocol(features, protocol)) { 2138 features &= ~NETIF_F_ALL_CSUM; 2139 features &= ~NETIF_F_SG; 2140 } else if (illegal_highdma(skb->dev, skb)) { 2141 features &= ~NETIF_F_SG; 2142 } 2143 2144 return features; 2145 } 2146 2147 netdev_features_t netif_skb_features(struct sk_buff *skb) 2148 { 2149 __be16 protocol = skb->protocol; 2150 netdev_features_t features = skb->dev->features; 2151 2152 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs) 2153 features &= ~NETIF_F_GSO_MASK; 2154 2155 if (protocol == htons(ETH_P_8021Q)) { 2156 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 2157 protocol = veh->h_vlan_encapsulated_proto; 2158 } else if (!vlan_tx_tag_present(skb)) { 2159 return harmonize_features(skb, protocol, features); 2160 } 2161 2162 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX); 2163 2164 if (protocol != htons(ETH_P_8021Q)) { 2165 return harmonize_features(skb, protocol, features); 2166 } else { 2167 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST | 2168 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX; 2169 return harmonize_features(skb, protocol, features); 2170 } 2171 } 2172 EXPORT_SYMBOL(netif_skb_features); 2173 2174 /* 2175 * Returns true if either: 2176 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 2177 * 2. skb is fragmented and the device does not support SG, or if 2178 * at least one of fragments is in highmem and device does not 2179 * support DMA from it. 2180 */ 2181 static inline int skb_needs_linearize(struct sk_buff *skb, 2182 int features) 2183 { 2184 return skb_is_nonlinear(skb) && 2185 ((skb_has_frag_list(skb) && 2186 !(features & NETIF_F_FRAGLIST)) || 2187 (skb_shinfo(skb)->nr_frags && 2188 !(features & NETIF_F_SG))); 2189 } 2190 2191 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 2192 struct netdev_queue *txq) 2193 { 2194 const struct net_device_ops *ops = dev->netdev_ops; 2195 int rc = NETDEV_TX_OK; 2196 unsigned int skb_len; 2197 2198 if (likely(!skb->next)) { 2199 netdev_features_t features; 2200 2201 /* 2202 * If device doesn't need skb->dst, release it right now while 2203 * its hot in this cpu cache 2204 */ 2205 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2206 skb_dst_drop(skb); 2207 2208 if (!list_empty(&ptype_all)) 2209 dev_queue_xmit_nit(skb, dev); 2210 2211 features = netif_skb_features(skb); 2212 2213 if (vlan_tx_tag_present(skb) && 2214 !(features & NETIF_F_HW_VLAN_TX)) { 2215 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb)); 2216 if (unlikely(!skb)) 2217 goto out; 2218 2219 skb->vlan_tci = 0; 2220 } 2221 2222 if (netif_needs_gso(skb, features)) { 2223 if (unlikely(dev_gso_segment(skb, features))) 2224 goto out_kfree_skb; 2225 if (skb->next) 2226 goto gso; 2227 } else { 2228 if (skb_needs_linearize(skb, features) && 2229 __skb_linearize(skb)) 2230 goto out_kfree_skb; 2231 2232 /* If packet is not checksummed and device does not 2233 * support checksumming for this protocol, complete 2234 * checksumming here. 2235 */ 2236 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2237 skb_set_transport_header(skb, 2238 skb_checksum_start_offset(skb)); 2239 if (!(features & NETIF_F_ALL_CSUM) && 2240 skb_checksum_help(skb)) 2241 goto out_kfree_skb; 2242 } 2243 } 2244 2245 skb_len = skb->len; 2246 rc = ops->ndo_start_xmit(skb, dev); 2247 trace_net_dev_xmit(skb, rc, dev, skb_len); 2248 if (rc == NETDEV_TX_OK) 2249 txq_trans_update(txq); 2250 return rc; 2251 } 2252 2253 gso: 2254 do { 2255 struct sk_buff *nskb = skb->next; 2256 2257 skb->next = nskb->next; 2258 nskb->next = NULL; 2259 2260 /* 2261 * If device doesn't need nskb->dst, release it right now while 2262 * its hot in this cpu cache 2263 */ 2264 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2265 skb_dst_drop(nskb); 2266 2267 skb_len = nskb->len; 2268 rc = ops->ndo_start_xmit(nskb, dev); 2269 trace_net_dev_xmit(nskb, rc, dev, skb_len); 2270 if (unlikely(rc != NETDEV_TX_OK)) { 2271 if (rc & ~NETDEV_TX_MASK) 2272 goto out_kfree_gso_skb; 2273 nskb->next = skb->next; 2274 skb->next = nskb; 2275 return rc; 2276 } 2277 txq_trans_update(txq); 2278 if (unlikely(netif_xmit_stopped(txq) && skb->next)) 2279 return NETDEV_TX_BUSY; 2280 } while (skb->next); 2281 2282 out_kfree_gso_skb: 2283 if (likely(skb->next == NULL)) 2284 skb->destructor = DEV_GSO_CB(skb)->destructor; 2285 out_kfree_skb: 2286 kfree_skb(skb); 2287 out: 2288 return rc; 2289 } 2290 2291 static u32 hashrnd __read_mostly; 2292 2293 /* 2294 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2295 * to be used as a distribution range. 2296 */ 2297 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb, 2298 unsigned int num_tx_queues) 2299 { 2300 u32 hash; 2301 u16 qoffset = 0; 2302 u16 qcount = num_tx_queues; 2303 2304 if (skb_rx_queue_recorded(skb)) { 2305 hash = skb_get_rx_queue(skb); 2306 while (unlikely(hash >= num_tx_queues)) 2307 hash -= num_tx_queues; 2308 return hash; 2309 } 2310 2311 if (dev->num_tc) { 2312 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2313 qoffset = dev->tc_to_txq[tc].offset; 2314 qcount = dev->tc_to_txq[tc].count; 2315 } 2316 2317 if (skb->sk && skb->sk->sk_hash) 2318 hash = skb->sk->sk_hash; 2319 else 2320 hash = (__force u16) skb->protocol; 2321 hash = jhash_1word(hash, hashrnd); 2322 2323 return (u16) (((u64) hash * qcount) >> 32) + qoffset; 2324 } 2325 EXPORT_SYMBOL(__skb_tx_hash); 2326 2327 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index) 2328 { 2329 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 2330 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 2331 dev->name, queue_index, 2332 dev->real_num_tx_queues); 2333 return 0; 2334 } 2335 return queue_index; 2336 } 2337 2338 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 2339 { 2340 #ifdef CONFIG_XPS 2341 struct xps_dev_maps *dev_maps; 2342 struct xps_map *map; 2343 int queue_index = -1; 2344 2345 rcu_read_lock(); 2346 dev_maps = rcu_dereference(dev->xps_maps); 2347 if (dev_maps) { 2348 map = rcu_dereference( 2349 dev_maps->cpu_map[raw_smp_processor_id()]); 2350 if (map) { 2351 if (map->len == 1) 2352 queue_index = map->queues[0]; 2353 else { 2354 u32 hash; 2355 if (skb->sk && skb->sk->sk_hash) 2356 hash = skb->sk->sk_hash; 2357 else 2358 hash = (__force u16) skb->protocol ^ 2359 skb->rxhash; 2360 hash = jhash_1word(hash, hashrnd); 2361 queue_index = map->queues[ 2362 ((u64)hash * map->len) >> 32]; 2363 } 2364 if (unlikely(queue_index >= dev->real_num_tx_queues)) 2365 queue_index = -1; 2366 } 2367 } 2368 rcu_read_unlock(); 2369 2370 return queue_index; 2371 #else 2372 return -1; 2373 #endif 2374 } 2375 2376 static struct netdev_queue *dev_pick_tx(struct net_device *dev, 2377 struct sk_buff *skb) 2378 { 2379 int queue_index; 2380 const struct net_device_ops *ops = dev->netdev_ops; 2381 2382 if (dev->real_num_tx_queues == 1) 2383 queue_index = 0; 2384 else if (ops->ndo_select_queue) { 2385 queue_index = ops->ndo_select_queue(dev, skb); 2386 queue_index = dev_cap_txqueue(dev, queue_index); 2387 } else { 2388 struct sock *sk = skb->sk; 2389 queue_index = sk_tx_queue_get(sk); 2390 2391 if (queue_index < 0 || skb->ooo_okay || 2392 queue_index >= dev->real_num_tx_queues) { 2393 int old_index = queue_index; 2394 2395 queue_index = get_xps_queue(dev, skb); 2396 if (queue_index < 0) 2397 queue_index = skb_tx_hash(dev, skb); 2398 2399 if (queue_index != old_index && sk) { 2400 struct dst_entry *dst = 2401 rcu_dereference_check(sk->sk_dst_cache, 1); 2402 2403 if (dst && skb_dst(skb) == dst) 2404 sk_tx_queue_set(sk, queue_index); 2405 } 2406 } 2407 } 2408 2409 skb_set_queue_mapping(skb, queue_index); 2410 return netdev_get_tx_queue(dev, queue_index); 2411 } 2412 2413 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2414 struct net_device *dev, 2415 struct netdev_queue *txq) 2416 { 2417 spinlock_t *root_lock = qdisc_lock(q); 2418 bool contended; 2419 int rc; 2420 2421 qdisc_skb_cb(skb)->pkt_len = skb->len; 2422 qdisc_calculate_pkt_len(skb, q); 2423 /* 2424 * Heuristic to force contended enqueues to serialize on a 2425 * separate lock before trying to get qdisc main lock. 2426 * This permits __QDISC_STATE_RUNNING owner to get the lock more often 2427 * and dequeue packets faster. 2428 */ 2429 contended = qdisc_is_running(q); 2430 if (unlikely(contended)) 2431 spin_lock(&q->busylock); 2432 2433 spin_lock(root_lock); 2434 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2435 kfree_skb(skb); 2436 rc = NET_XMIT_DROP; 2437 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2438 qdisc_run_begin(q)) { 2439 /* 2440 * This is a work-conserving queue; there are no old skbs 2441 * waiting to be sent out; and the qdisc is not running - 2442 * xmit the skb directly. 2443 */ 2444 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE)) 2445 skb_dst_force(skb); 2446 2447 qdisc_bstats_update(q, skb); 2448 2449 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) { 2450 if (unlikely(contended)) { 2451 spin_unlock(&q->busylock); 2452 contended = false; 2453 } 2454 __qdisc_run(q); 2455 } else 2456 qdisc_run_end(q); 2457 2458 rc = NET_XMIT_SUCCESS; 2459 } else { 2460 skb_dst_force(skb); 2461 rc = q->enqueue(skb, q) & NET_XMIT_MASK; 2462 if (qdisc_run_begin(q)) { 2463 if (unlikely(contended)) { 2464 spin_unlock(&q->busylock); 2465 contended = false; 2466 } 2467 __qdisc_run(q); 2468 } 2469 } 2470 spin_unlock(root_lock); 2471 if (unlikely(contended)) 2472 spin_unlock(&q->busylock); 2473 return rc; 2474 } 2475 2476 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP) 2477 static void skb_update_prio(struct sk_buff *skb) 2478 { 2479 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 2480 2481 if (!skb->priority && skb->sk && map) { 2482 unsigned int prioidx = skb->sk->sk_cgrp_prioidx; 2483 2484 if (prioidx < map->priomap_len) 2485 skb->priority = map->priomap[prioidx]; 2486 } 2487 } 2488 #else 2489 #define skb_update_prio(skb) 2490 #endif 2491 2492 static DEFINE_PER_CPU(int, xmit_recursion); 2493 #define RECURSION_LIMIT 10 2494 2495 /** 2496 * dev_loopback_xmit - loop back @skb 2497 * @skb: buffer to transmit 2498 */ 2499 int dev_loopback_xmit(struct sk_buff *skb) 2500 { 2501 skb_reset_mac_header(skb); 2502 __skb_pull(skb, skb_network_offset(skb)); 2503 skb->pkt_type = PACKET_LOOPBACK; 2504 skb->ip_summed = CHECKSUM_UNNECESSARY; 2505 WARN_ON(!skb_dst(skb)); 2506 skb_dst_force(skb); 2507 netif_rx_ni(skb); 2508 return 0; 2509 } 2510 EXPORT_SYMBOL(dev_loopback_xmit); 2511 2512 /** 2513 * dev_queue_xmit - transmit a buffer 2514 * @skb: buffer to transmit 2515 * 2516 * Queue a buffer for transmission to a network device. The caller must 2517 * have set the device and priority and built the buffer before calling 2518 * this function. The function can be called from an interrupt. 2519 * 2520 * A negative errno code is returned on a failure. A success does not 2521 * guarantee the frame will be transmitted as it may be dropped due 2522 * to congestion or traffic shaping. 2523 * 2524 * ----------------------------------------------------------------------------------- 2525 * I notice this method can also return errors from the queue disciplines, 2526 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2527 * be positive. 2528 * 2529 * Regardless of the return value, the skb is consumed, so it is currently 2530 * difficult to retry a send to this method. (You can bump the ref count 2531 * before sending to hold a reference for retry if you are careful.) 2532 * 2533 * When calling this method, interrupts MUST be enabled. This is because 2534 * the BH enable code must have IRQs enabled so that it will not deadlock. 2535 * --BLG 2536 */ 2537 int dev_queue_xmit(struct sk_buff *skb) 2538 { 2539 struct net_device *dev = skb->dev; 2540 struct netdev_queue *txq; 2541 struct Qdisc *q; 2542 int rc = -ENOMEM; 2543 2544 /* Disable soft irqs for various locks below. Also 2545 * stops preemption for RCU. 2546 */ 2547 rcu_read_lock_bh(); 2548 2549 skb_update_prio(skb); 2550 2551 txq = dev_pick_tx(dev, skb); 2552 q = rcu_dereference_bh(txq->qdisc); 2553 2554 #ifdef CONFIG_NET_CLS_ACT 2555 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2556 #endif 2557 trace_net_dev_queue(skb); 2558 if (q->enqueue) { 2559 rc = __dev_xmit_skb(skb, q, dev, txq); 2560 goto out; 2561 } 2562 2563 /* The device has no queue. Common case for software devices: 2564 loopback, all the sorts of tunnels... 2565 2566 Really, it is unlikely that netif_tx_lock protection is necessary 2567 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2568 counters.) 2569 However, it is possible, that they rely on protection 2570 made by us here. 2571 2572 Check this and shot the lock. It is not prone from deadlocks. 2573 Either shot noqueue qdisc, it is even simpler 8) 2574 */ 2575 if (dev->flags & IFF_UP) { 2576 int cpu = smp_processor_id(); /* ok because BHs are off */ 2577 2578 if (txq->xmit_lock_owner != cpu) { 2579 2580 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 2581 goto recursion_alert; 2582 2583 HARD_TX_LOCK(dev, txq, cpu); 2584 2585 if (!netif_xmit_stopped(txq)) { 2586 __this_cpu_inc(xmit_recursion); 2587 rc = dev_hard_start_xmit(skb, dev, txq); 2588 __this_cpu_dec(xmit_recursion); 2589 if (dev_xmit_complete(rc)) { 2590 HARD_TX_UNLOCK(dev, txq); 2591 goto out; 2592 } 2593 } 2594 HARD_TX_UNLOCK(dev, txq); 2595 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 2596 dev->name); 2597 } else { 2598 /* Recursion is detected! It is possible, 2599 * unfortunately 2600 */ 2601 recursion_alert: 2602 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 2603 dev->name); 2604 } 2605 } 2606 2607 rc = -ENETDOWN; 2608 rcu_read_unlock_bh(); 2609 2610 kfree_skb(skb); 2611 return rc; 2612 out: 2613 rcu_read_unlock_bh(); 2614 return rc; 2615 } 2616 EXPORT_SYMBOL(dev_queue_xmit); 2617 2618 2619 /*======================================================================= 2620 Receiver routines 2621 =======================================================================*/ 2622 2623 int netdev_max_backlog __read_mostly = 1000; 2624 int netdev_tstamp_prequeue __read_mostly = 1; 2625 int netdev_budget __read_mostly = 300; 2626 int weight_p __read_mostly = 64; /* old backlog weight */ 2627 2628 /* Called with irq disabled */ 2629 static inline void ____napi_schedule(struct softnet_data *sd, 2630 struct napi_struct *napi) 2631 { 2632 list_add_tail(&napi->poll_list, &sd->poll_list); 2633 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2634 } 2635 2636 /* 2637 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses 2638 * and src/dst port numbers. Sets rxhash in skb to non-zero hash value 2639 * on success, zero indicates no valid hash. Also, sets l4_rxhash in skb 2640 * if hash is a canonical 4-tuple hash over transport ports. 2641 */ 2642 void __skb_get_rxhash(struct sk_buff *skb) 2643 { 2644 struct flow_keys keys; 2645 u32 hash; 2646 2647 if (!skb_flow_dissect(skb, &keys)) 2648 return; 2649 2650 if (keys.ports) { 2651 if ((__force u16)keys.port16[1] < (__force u16)keys.port16[0]) 2652 swap(keys.port16[0], keys.port16[1]); 2653 skb->l4_rxhash = 1; 2654 } 2655 2656 /* get a consistent hash (same value on both flow directions) */ 2657 if ((__force u32)keys.dst < (__force u32)keys.src) 2658 swap(keys.dst, keys.src); 2659 2660 hash = jhash_3words((__force u32)keys.dst, 2661 (__force u32)keys.src, 2662 (__force u32)keys.ports, hashrnd); 2663 if (!hash) 2664 hash = 1; 2665 2666 skb->rxhash = hash; 2667 } 2668 EXPORT_SYMBOL(__skb_get_rxhash); 2669 2670 #ifdef CONFIG_RPS 2671 2672 /* One global table that all flow-based protocols share. */ 2673 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 2674 EXPORT_SYMBOL(rps_sock_flow_table); 2675 2676 struct static_key rps_needed __read_mostly; 2677 2678 static struct rps_dev_flow * 2679 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2680 struct rps_dev_flow *rflow, u16 next_cpu) 2681 { 2682 if (next_cpu != RPS_NO_CPU) { 2683 #ifdef CONFIG_RFS_ACCEL 2684 struct netdev_rx_queue *rxqueue; 2685 struct rps_dev_flow_table *flow_table; 2686 struct rps_dev_flow *old_rflow; 2687 u32 flow_id; 2688 u16 rxq_index; 2689 int rc; 2690 2691 /* Should we steer this flow to a different hardware queue? */ 2692 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 2693 !(dev->features & NETIF_F_NTUPLE)) 2694 goto out; 2695 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 2696 if (rxq_index == skb_get_rx_queue(skb)) 2697 goto out; 2698 2699 rxqueue = dev->_rx + rxq_index; 2700 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2701 if (!flow_table) 2702 goto out; 2703 flow_id = skb->rxhash & flow_table->mask; 2704 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 2705 rxq_index, flow_id); 2706 if (rc < 0) 2707 goto out; 2708 old_rflow = rflow; 2709 rflow = &flow_table->flows[flow_id]; 2710 rflow->filter = rc; 2711 if (old_rflow->filter == rflow->filter) 2712 old_rflow->filter = RPS_NO_FILTER; 2713 out: 2714 #endif 2715 rflow->last_qtail = 2716 per_cpu(softnet_data, next_cpu).input_queue_head; 2717 } 2718 2719 rflow->cpu = next_cpu; 2720 return rflow; 2721 } 2722 2723 /* 2724 * get_rps_cpu is called from netif_receive_skb and returns the target 2725 * CPU from the RPS map of the receiving queue for a given skb. 2726 * rcu_read_lock must be held on entry. 2727 */ 2728 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2729 struct rps_dev_flow **rflowp) 2730 { 2731 struct netdev_rx_queue *rxqueue; 2732 struct rps_map *map; 2733 struct rps_dev_flow_table *flow_table; 2734 struct rps_sock_flow_table *sock_flow_table; 2735 int cpu = -1; 2736 u16 tcpu; 2737 2738 if (skb_rx_queue_recorded(skb)) { 2739 u16 index = skb_get_rx_queue(skb); 2740 if (unlikely(index >= dev->real_num_rx_queues)) { 2741 WARN_ONCE(dev->real_num_rx_queues > 1, 2742 "%s received packet on queue %u, but number " 2743 "of RX queues is %u\n", 2744 dev->name, index, dev->real_num_rx_queues); 2745 goto done; 2746 } 2747 rxqueue = dev->_rx + index; 2748 } else 2749 rxqueue = dev->_rx; 2750 2751 map = rcu_dereference(rxqueue->rps_map); 2752 if (map) { 2753 if (map->len == 1 && 2754 !rcu_access_pointer(rxqueue->rps_flow_table)) { 2755 tcpu = map->cpus[0]; 2756 if (cpu_online(tcpu)) 2757 cpu = tcpu; 2758 goto done; 2759 } 2760 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) { 2761 goto done; 2762 } 2763 2764 skb_reset_network_header(skb); 2765 if (!skb_get_rxhash(skb)) 2766 goto done; 2767 2768 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2769 sock_flow_table = rcu_dereference(rps_sock_flow_table); 2770 if (flow_table && sock_flow_table) { 2771 u16 next_cpu; 2772 struct rps_dev_flow *rflow; 2773 2774 rflow = &flow_table->flows[skb->rxhash & flow_table->mask]; 2775 tcpu = rflow->cpu; 2776 2777 next_cpu = sock_flow_table->ents[skb->rxhash & 2778 sock_flow_table->mask]; 2779 2780 /* 2781 * If the desired CPU (where last recvmsg was done) is 2782 * different from current CPU (one in the rx-queue flow 2783 * table entry), switch if one of the following holds: 2784 * - Current CPU is unset (equal to RPS_NO_CPU). 2785 * - Current CPU is offline. 2786 * - The current CPU's queue tail has advanced beyond the 2787 * last packet that was enqueued using this table entry. 2788 * This guarantees that all previous packets for the flow 2789 * have been dequeued, thus preserving in order delivery. 2790 */ 2791 if (unlikely(tcpu != next_cpu) && 2792 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) || 2793 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 2794 rflow->last_qtail)) >= 0)) 2795 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 2796 2797 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) { 2798 *rflowp = rflow; 2799 cpu = tcpu; 2800 goto done; 2801 } 2802 } 2803 2804 if (map) { 2805 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32]; 2806 2807 if (cpu_online(tcpu)) { 2808 cpu = tcpu; 2809 goto done; 2810 } 2811 } 2812 2813 done: 2814 return cpu; 2815 } 2816 2817 #ifdef CONFIG_RFS_ACCEL 2818 2819 /** 2820 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 2821 * @dev: Device on which the filter was set 2822 * @rxq_index: RX queue index 2823 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 2824 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 2825 * 2826 * Drivers that implement ndo_rx_flow_steer() should periodically call 2827 * this function for each installed filter and remove the filters for 2828 * which it returns %true. 2829 */ 2830 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 2831 u32 flow_id, u16 filter_id) 2832 { 2833 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 2834 struct rps_dev_flow_table *flow_table; 2835 struct rps_dev_flow *rflow; 2836 bool expire = true; 2837 int cpu; 2838 2839 rcu_read_lock(); 2840 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2841 if (flow_table && flow_id <= flow_table->mask) { 2842 rflow = &flow_table->flows[flow_id]; 2843 cpu = ACCESS_ONCE(rflow->cpu); 2844 if (rflow->filter == filter_id && cpu != RPS_NO_CPU && 2845 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 2846 rflow->last_qtail) < 2847 (int)(10 * flow_table->mask))) 2848 expire = false; 2849 } 2850 rcu_read_unlock(); 2851 return expire; 2852 } 2853 EXPORT_SYMBOL(rps_may_expire_flow); 2854 2855 #endif /* CONFIG_RFS_ACCEL */ 2856 2857 /* Called from hardirq (IPI) context */ 2858 static void rps_trigger_softirq(void *data) 2859 { 2860 struct softnet_data *sd = data; 2861 2862 ____napi_schedule(sd, &sd->backlog); 2863 sd->received_rps++; 2864 } 2865 2866 #endif /* CONFIG_RPS */ 2867 2868 /* 2869 * Check if this softnet_data structure is another cpu one 2870 * If yes, queue it to our IPI list and return 1 2871 * If no, return 0 2872 */ 2873 static int rps_ipi_queued(struct softnet_data *sd) 2874 { 2875 #ifdef CONFIG_RPS 2876 struct softnet_data *mysd = &__get_cpu_var(softnet_data); 2877 2878 if (sd != mysd) { 2879 sd->rps_ipi_next = mysd->rps_ipi_list; 2880 mysd->rps_ipi_list = sd; 2881 2882 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2883 return 1; 2884 } 2885 #endif /* CONFIG_RPS */ 2886 return 0; 2887 } 2888 2889 /* 2890 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 2891 * queue (may be a remote CPU queue). 2892 */ 2893 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 2894 unsigned int *qtail) 2895 { 2896 struct softnet_data *sd; 2897 unsigned long flags; 2898 2899 sd = &per_cpu(softnet_data, cpu); 2900 2901 local_irq_save(flags); 2902 2903 rps_lock(sd); 2904 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) { 2905 if (skb_queue_len(&sd->input_pkt_queue)) { 2906 enqueue: 2907 __skb_queue_tail(&sd->input_pkt_queue, skb); 2908 input_queue_tail_incr_save(sd, qtail); 2909 rps_unlock(sd); 2910 local_irq_restore(flags); 2911 return NET_RX_SUCCESS; 2912 } 2913 2914 /* Schedule NAPI for backlog device 2915 * We can use non atomic operation since we own the queue lock 2916 */ 2917 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 2918 if (!rps_ipi_queued(sd)) 2919 ____napi_schedule(sd, &sd->backlog); 2920 } 2921 goto enqueue; 2922 } 2923 2924 sd->dropped++; 2925 rps_unlock(sd); 2926 2927 local_irq_restore(flags); 2928 2929 atomic_long_inc(&skb->dev->rx_dropped); 2930 kfree_skb(skb); 2931 return NET_RX_DROP; 2932 } 2933 2934 /** 2935 * netif_rx - post buffer to the network code 2936 * @skb: buffer to post 2937 * 2938 * This function receives a packet from a device driver and queues it for 2939 * the upper (protocol) levels to process. It always succeeds. The buffer 2940 * may be dropped during processing for congestion control or by the 2941 * protocol layers. 2942 * 2943 * return values: 2944 * NET_RX_SUCCESS (no congestion) 2945 * NET_RX_DROP (packet was dropped) 2946 * 2947 */ 2948 2949 int netif_rx(struct sk_buff *skb) 2950 { 2951 int ret; 2952 2953 /* if netpoll wants it, pretend we never saw it */ 2954 if (netpoll_rx(skb)) 2955 return NET_RX_DROP; 2956 2957 net_timestamp_check(netdev_tstamp_prequeue, skb); 2958 2959 trace_netif_rx(skb); 2960 #ifdef CONFIG_RPS 2961 if (static_key_false(&rps_needed)) { 2962 struct rps_dev_flow voidflow, *rflow = &voidflow; 2963 int cpu; 2964 2965 preempt_disable(); 2966 rcu_read_lock(); 2967 2968 cpu = get_rps_cpu(skb->dev, skb, &rflow); 2969 if (cpu < 0) 2970 cpu = smp_processor_id(); 2971 2972 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 2973 2974 rcu_read_unlock(); 2975 preempt_enable(); 2976 } else 2977 #endif 2978 { 2979 unsigned int qtail; 2980 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 2981 put_cpu(); 2982 } 2983 return ret; 2984 } 2985 EXPORT_SYMBOL(netif_rx); 2986 2987 int netif_rx_ni(struct sk_buff *skb) 2988 { 2989 int err; 2990 2991 preempt_disable(); 2992 err = netif_rx(skb); 2993 if (local_softirq_pending()) 2994 do_softirq(); 2995 preempt_enable(); 2996 2997 return err; 2998 } 2999 EXPORT_SYMBOL(netif_rx_ni); 3000 3001 static void net_tx_action(struct softirq_action *h) 3002 { 3003 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3004 3005 if (sd->completion_queue) { 3006 struct sk_buff *clist; 3007 3008 local_irq_disable(); 3009 clist = sd->completion_queue; 3010 sd->completion_queue = NULL; 3011 local_irq_enable(); 3012 3013 while (clist) { 3014 struct sk_buff *skb = clist; 3015 clist = clist->next; 3016 3017 WARN_ON(atomic_read(&skb->users)); 3018 trace_kfree_skb(skb, net_tx_action); 3019 __kfree_skb(skb); 3020 } 3021 } 3022 3023 if (sd->output_queue) { 3024 struct Qdisc *head; 3025 3026 local_irq_disable(); 3027 head = sd->output_queue; 3028 sd->output_queue = NULL; 3029 sd->output_queue_tailp = &sd->output_queue; 3030 local_irq_enable(); 3031 3032 while (head) { 3033 struct Qdisc *q = head; 3034 spinlock_t *root_lock; 3035 3036 head = head->next_sched; 3037 3038 root_lock = qdisc_lock(q); 3039 if (spin_trylock(root_lock)) { 3040 smp_mb__before_clear_bit(); 3041 clear_bit(__QDISC_STATE_SCHED, 3042 &q->state); 3043 qdisc_run(q); 3044 spin_unlock(root_lock); 3045 } else { 3046 if (!test_bit(__QDISC_STATE_DEACTIVATED, 3047 &q->state)) { 3048 __netif_reschedule(q); 3049 } else { 3050 smp_mb__before_clear_bit(); 3051 clear_bit(__QDISC_STATE_SCHED, 3052 &q->state); 3053 } 3054 } 3055 } 3056 } 3057 } 3058 3059 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 3060 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 3061 /* This hook is defined here for ATM LANE */ 3062 int (*br_fdb_test_addr_hook)(struct net_device *dev, 3063 unsigned char *addr) __read_mostly; 3064 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3065 #endif 3066 3067 #ifdef CONFIG_NET_CLS_ACT 3068 /* TODO: Maybe we should just force sch_ingress to be compiled in 3069 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 3070 * a compare and 2 stores extra right now if we dont have it on 3071 * but have CONFIG_NET_CLS_ACT 3072 * NOTE: This doesn't stop any functionality; if you dont have 3073 * the ingress scheduler, you just can't add policies on ingress. 3074 * 3075 */ 3076 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq) 3077 { 3078 struct net_device *dev = skb->dev; 3079 u32 ttl = G_TC_RTTL(skb->tc_verd); 3080 int result = TC_ACT_OK; 3081 struct Qdisc *q; 3082 3083 if (unlikely(MAX_RED_LOOP < ttl++)) { 3084 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n", 3085 skb->skb_iif, dev->ifindex); 3086 return TC_ACT_SHOT; 3087 } 3088 3089 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 3090 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3091 3092 q = rxq->qdisc; 3093 if (q != &noop_qdisc) { 3094 spin_lock(qdisc_lock(q)); 3095 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 3096 result = qdisc_enqueue_root(skb, q); 3097 spin_unlock(qdisc_lock(q)); 3098 } 3099 3100 return result; 3101 } 3102 3103 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 3104 struct packet_type **pt_prev, 3105 int *ret, struct net_device *orig_dev) 3106 { 3107 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue); 3108 3109 if (!rxq || rxq->qdisc == &noop_qdisc) 3110 goto out; 3111 3112 if (*pt_prev) { 3113 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3114 *pt_prev = NULL; 3115 } 3116 3117 switch (ing_filter(skb, rxq)) { 3118 case TC_ACT_SHOT: 3119 case TC_ACT_STOLEN: 3120 kfree_skb(skb); 3121 return NULL; 3122 } 3123 3124 out: 3125 skb->tc_verd = 0; 3126 return skb; 3127 } 3128 #endif 3129 3130 /** 3131 * netdev_rx_handler_register - register receive handler 3132 * @dev: device to register a handler for 3133 * @rx_handler: receive handler to register 3134 * @rx_handler_data: data pointer that is used by rx handler 3135 * 3136 * Register a receive hander for a device. This handler will then be 3137 * called from __netif_receive_skb. A negative errno code is returned 3138 * on a failure. 3139 * 3140 * The caller must hold the rtnl_mutex. 3141 * 3142 * For a general description of rx_handler, see enum rx_handler_result. 3143 */ 3144 int netdev_rx_handler_register(struct net_device *dev, 3145 rx_handler_func_t *rx_handler, 3146 void *rx_handler_data) 3147 { 3148 ASSERT_RTNL(); 3149 3150 if (dev->rx_handler) 3151 return -EBUSY; 3152 3153 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3154 rcu_assign_pointer(dev->rx_handler, rx_handler); 3155 3156 return 0; 3157 } 3158 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3159 3160 /** 3161 * netdev_rx_handler_unregister - unregister receive handler 3162 * @dev: device to unregister a handler from 3163 * 3164 * Unregister a receive hander from a device. 3165 * 3166 * The caller must hold the rtnl_mutex. 3167 */ 3168 void netdev_rx_handler_unregister(struct net_device *dev) 3169 { 3170 3171 ASSERT_RTNL(); 3172 RCU_INIT_POINTER(dev->rx_handler, NULL); 3173 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 3174 } 3175 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 3176 3177 /* 3178 * Limit the use of PFMEMALLOC reserves to those protocols that implement 3179 * the special handling of PFMEMALLOC skbs. 3180 */ 3181 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 3182 { 3183 switch (skb->protocol) { 3184 case __constant_htons(ETH_P_ARP): 3185 case __constant_htons(ETH_P_IP): 3186 case __constant_htons(ETH_P_IPV6): 3187 case __constant_htons(ETH_P_8021Q): 3188 return true; 3189 default: 3190 return false; 3191 } 3192 } 3193 3194 static int __netif_receive_skb(struct sk_buff *skb) 3195 { 3196 struct packet_type *ptype, *pt_prev; 3197 rx_handler_func_t *rx_handler; 3198 struct net_device *orig_dev; 3199 struct net_device *null_or_dev; 3200 bool deliver_exact = false; 3201 int ret = NET_RX_DROP; 3202 __be16 type; 3203 unsigned long pflags = current->flags; 3204 3205 net_timestamp_check(!netdev_tstamp_prequeue, skb); 3206 3207 trace_netif_receive_skb(skb); 3208 3209 /* 3210 * PFMEMALLOC skbs are special, they should 3211 * - be delivered to SOCK_MEMALLOC sockets only 3212 * - stay away from userspace 3213 * - have bounded memory usage 3214 * 3215 * Use PF_MEMALLOC as this saves us from propagating the allocation 3216 * context down to all allocation sites. 3217 */ 3218 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) 3219 current->flags |= PF_MEMALLOC; 3220 3221 /* if we've gotten here through NAPI, check netpoll */ 3222 if (netpoll_receive_skb(skb)) 3223 goto out; 3224 3225 orig_dev = skb->dev; 3226 3227 skb_reset_network_header(skb); 3228 skb_reset_transport_header(skb); 3229 skb_reset_mac_len(skb); 3230 3231 pt_prev = NULL; 3232 3233 rcu_read_lock(); 3234 3235 another_round: 3236 skb->skb_iif = skb->dev->ifindex; 3237 3238 __this_cpu_inc(softnet_data.processed); 3239 3240 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) { 3241 skb = vlan_untag(skb); 3242 if (unlikely(!skb)) 3243 goto unlock; 3244 } 3245 3246 #ifdef CONFIG_NET_CLS_ACT 3247 if (skb->tc_verd & TC_NCLS) { 3248 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3249 goto ncls; 3250 } 3251 #endif 3252 3253 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) 3254 goto skip_taps; 3255 3256 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3257 if (!ptype->dev || ptype->dev == skb->dev) { 3258 if (pt_prev) 3259 ret = deliver_skb(skb, pt_prev, orig_dev); 3260 pt_prev = ptype; 3261 } 3262 } 3263 3264 skip_taps: 3265 #ifdef CONFIG_NET_CLS_ACT 3266 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 3267 if (!skb) 3268 goto unlock; 3269 ncls: 3270 #endif 3271 3272 if (sk_memalloc_socks() && skb_pfmemalloc(skb) 3273 && !skb_pfmemalloc_protocol(skb)) 3274 goto drop; 3275 3276 rx_handler = rcu_dereference(skb->dev->rx_handler); 3277 if (vlan_tx_tag_present(skb)) { 3278 if (pt_prev) { 3279 ret = deliver_skb(skb, pt_prev, orig_dev); 3280 pt_prev = NULL; 3281 } 3282 if (vlan_do_receive(&skb, !rx_handler)) 3283 goto another_round; 3284 else if (unlikely(!skb)) 3285 goto unlock; 3286 } 3287 3288 if (rx_handler) { 3289 if (pt_prev) { 3290 ret = deliver_skb(skb, pt_prev, orig_dev); 3291 pt_prev = NULL; 3292 } 3293 switch (rx_handler(&skb)) { 3294 case RX_HANDLER_CONSUMED: 3295 goto unlock; 3296 case RX_HANDLER_ANOTHER: 3297 goto another_round; 3298 case RX_HANDLER_EXACT: 3299 deliver_exact = true; 3300 case RX_HANDLER_PASS: 3301 break; 3302 default: 3303 BUG(); 3304 } 3305 } 3306 3307 /* deliver only exact match when indicated */ 3308 null_or_dev = deliver_exact ? skb->dev : NULL; 3309 3310 type = skb->protocol; 3311 list_for_each_entry_rcu(ptype, 3312 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 3313 if (ptype->type == type && 3314 (ptype->dev == null_or_dev || ptype->dev == skb->dev || 3315 ptype->dev == orig_dev)) { 3316 if (pt_prev) 3317 ret = deliver_skb(skb, pt_prev, orig_dev); 3318 pt_prev = ptype; 3319 } 3320 } 3321 3322 if (pt_prev) { 3323 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 3324 ret = -ENOMEM; 3325 else 3326 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 3327 } else { 3328 drop: 3329 atomic_long_inc(&skb->dev->rx_dropped); 3330 kfree_skb(skb); 3331 /* Jamal, now you will not able to escape explaining 3332 * me how you were going to use this. :-) 3333 */ 3334 ret = NET_RX_DROP; 3335 } 3336 3337 unlock: 3338 rcu_read_unlock(); 3339 out: 3340 tsk_restore_flags(current, pflags, PF_MEMALLOC); 3341 return ret; 3342 } 3343 3344 /** 3345 * netif_receive_skb - process receive buffer from network 3346 * @skb: buffer to process 3347 * 3348 * netif_receive_skb() is the main receive data processing function. 3349 * It always succeeds. The buffer may be dropped during processing 3350 * for congestion control or by the protocol layers. 3351 * 3352 * This function may only be called from softirq context and interrupts 3353 * should be enabled. 3354 * 3355 * Return values (usually ignored): 3356 * NET_RX_SUCCESS: no congestion 3357 * NET_RX_DROP: packet was dropped 3358 */ 3359 int netif_receive_skb(struct sk_buff *skb) 3360 { 3361 net_timestamp_check(netdev_tstamp_prequeue, skb); 3362 3363 if (skb_defer_rx_timestamp(skb)) 3364 return NET_RX_SUCCESS; 3365 3366 #ifdef CONFIG_RPS 3367 if (static_key_false(&rps_needed)) { 3368 struct rps_dev_flow voidflow, *rflow = &voidflow; 3369 int cpu, ret; 3370 3371 rcu_read_lock(); 3372 3373 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3374 3375 if (cpu >= 0) { 3376 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3377 rcu_read_unlock(); 3378 return ret; 3379 } 3380 rcu_read_unlock(); 3381 } 3382 #endif 3383 return __netif_receive_skb(skb); 3384 } 3385 EXPORT_SYMBOL(netif_receive_skb); 3386 3387 /* Network device is going away, flush any packets still pending 3388 * Called with irqs disabled. 3389 */ 3390 static void flush_backlog(void *arg) 3391 { 3392 struct net_device *dev = arg; 3393 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3394 struct sk_buff *skb, *tmp; 3395 3396 rps_lock(sd); 3397 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 3398 if (skb->dev == dev) { 3399 __skb_unlink(skb, &sd->input_pkt_queue); 3400 kfree_skb(skb); 3401 input_queue_head_incr(sd); 3402 } 3403 } 3404 rps_unlock(sd); 3405 3406 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 3407 if (skb->dev == dev) { 3408 __skb_unlink(skb, &sd->process_queue); 3409 kfree_skb(skb); 3410 input_queue_head_incr(sd); 3411 } 3412 } 3413 } 3414 3415 static int napi_gro_complete(struct sk_buff *skb) 3416 { 3417 struct packet_type *ptype; 3418 __be16 type = skb->protocol; 3419 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3420 int err = -ENOENT; 3421 3422 if (NAPI_GRO_CB(skb)->count == 1) { 3423 skb_shinfo(skb)->gso_size = 0; 3424 goto out; 3425 } 3426 3427 rcu_read_lock(); 3428 list_for_each_entry_rcu(ptype, head, list) { 3429 if (ptype->type != type || ptype->dev || !ptype->gro_complete) 3430 continue; 3431 3432 err = ptype->gro_complete(skb); 3433 break; 3434 } 3435 rcu_read_unlock(); 3436 3437 if (err) { 3438 WARN_ON(&ptype->list == head); 3439 kfree_skb(skb); 3440 return NET_RX_SUCCESS; 3441 } 3442 3443 out: 3444 return netif_receive_skb(skb); 3445 } 3446 3447 inline void napi_gro_flush(struct napi_struct *napi) 3448 { 3449 struct sk_buff *skb, *next; 3450 3451 for (skb = napi->gro_list; skb; skb = next) { 3452 next = skb->next; 3453 skb->next = NULL; 3454 napi_gro_complete(skb); 3455 } 3456 3457 napi->gro_count = 0; 3458 napi->gro_list = NULL; 3459 } 3460 EXPORT_SYMBOL(napi_gro_flush); 3461 3462 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3463 { 3464 struct sk_buff **pp = NULL; 3465 struct packet_type *ptype; 3466 __be16 type = skb->protocol; 3467 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3468 int same_flow; 3469 int mac_len; 3470 enum gro_result ret; 3471 3472 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb)) 3473 goto normal; 3474 3475 if (skb_is_gso(skb) || skb_has_frag_list(skb)) 3476 goto normal; 3477 3478 rcu_read_lock(); 3479 list_for_each_entry_rcu(ptype, head, list) { 3480 if (ptype->type != type || ptype->dev || !ptype->gro_receive) 3481 continue; 3482 3483 skb_set_network_header(skb, skb_gro_offset(skb)); 3484 mac_len = skb->network_header - skb->mac_header; 3485 skb->mac_len = mac_len; 3486 NAPI_GRO_CB(skb)->same_flow = 0; 3487 NAPI_GRO_CB(skb)->flush = 0; 3488 NAPI_GRO_CB(skb)->free = 0; 3489 3490 pp = ptype->gro_receive(&napi->gro_list, skb); 3491 break; 3492 } 3493 rcu_read_unlock(); 3494 3495 if (&ptype->list == head) 3496 goto normal; 3497 3498 same_flow = NAPI_GRO_CB(skb)->same_flow; 3499 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 3500 3501 if (pp) { 3502 struct sk_buff *nskb = *pp; 3503 3504 *pp = nskb->next; 3505 nskb->next = NULL; 3506 napi_gro_complete(nskb); 3507 napi->gro_count--; 3508 } 3509 3510 if (same_flow) 3511 goto ok; 3512 3513 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS) 3514 goto normal; 3515 3516 napi->gro_count++; 3517 NAPI_GRO_CB(skb)->count = 1; 3518 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 3519 skb->next = napi->gro_list; 3520 napi->gro_list = skb; 3521 ret = GRO_HELD; 3522 3523 pull: 3524 if (skb_headlen(skb) < skb_gro_offset(skb)) { 3525 int grow = skb_gro_offset(skb) - skb_headlen(skb); 3526 3527 BUG_ON(skb->end - skb->tail < grow); 3528 3529 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 3530 3531 skb->tail += grow; 3532 skb->data_len -= grow; 3533 3534 skb_shinfo(skb)->frags[0].page_offset += grow; 3535 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow); 3536 3537 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) { 3538 skb_frag_unref(skb, 0); 3539 memmove(skb_shinfo(skb)->frags, 3540 skb_shinfo(skb)->frags + 1, 3541 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t)); 3542 } 3543 } 3544 3545 ok: 3546 return ret; 3547 3548 normal: 3549 ret = GRO_NORMAL; 3550 goto pull; 3551 } 3552 EXPORT_SYMBOL(dev_gro_receive); 3553 3554 static inline gro_result_t 3555 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3556 { 3557 struct sk_buff *p; 3558 unsigned int maclen = skb->dev->hard_header_len; 3559 3560 for (p = napi->gro_list; p; p = p->next) { 3561 unsigned long diffs; 3562 3563 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 3564 diffs |= p->vlan_tci ^ skb->vlan_tci; 3565 if (maclen == ETH_HLEN) 3566 diffs |= compare_ether_header(skb_mac_header(p), 3567 skb_gro_mac_header(skb)); 3568 else if (!diffs) 3569 diffs = memcmp(skb_mac_header(p), 3570 skb_gro_mac_header(skb), 3571 maclen); 3572 NAPI_GRO_CB(p)->same_flow = !diffs; 3573 NAPI_GRO_CB(p)->flush = 0; 3574 } 3575 3576 return dev_gro_receive(napi, skb); 3577 } 3578 3579 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 3580 { 3581 switch (ret) { 3582 case GRO_NORMAL: 3583 if (netif_receive_skb(skb)) 3584 ret = GRO_DROP; 3585 break; 3586 3587 case GRO_DROP: 3588 kfree_skb(skb); 3589 break; 3590 3591 case GRO_MERGED_FREE: 3592 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 3593 kmem_cache_free(skbuff_head_cache, skb); 3594 else 3595 __kfree_skb(skb); 3596 break; 3597 3598 case GRO_HELD: 3599 case GRO_MERGED: 3600 break; 3601 } 3602 3603 return ret; 3604 } 3605 EXPORT_SYMBOL(napi_skb_finish); 3606 3607 void skb_gro_reset_offset(struct sk_buff *skb) 3608 { 3609 NAPI_GRO_CB(skb)->data_offset = 0; 3610 NAPI_GRO_CB(skb)->frag0 = NULL; 3611 NAPI_GRO_CB(skb)->frag0_len = 0; 3612 3613 if (skb->mac_header == skb->tail && 3614 !PageHighMem(skb_frag_page(&skb_shinfo(skb)->frags[0]))) { 3615 NAPI_GRO_CB(skb)->frag0 = 3616 skb_frag_address(&skb_shinfo(skb)->frags[0]); 3617 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(&skb_shinfo(skb)->frags[0]); 3618 } 3619 } 3620 EXPORT_SYMBOL(skb_gro_reset_offset); 3621 3622 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3623 { 3624 skb_gro_reset_offset(skb); 3625 3626 return napi_skb_finish(__napi_gro_receive(napi, skb), skb); 3627 } 3628 EXPORT_SYMBOL(napi_gro_receive); 3629 3630 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 3631 { 3632 __skb_pull(skb, skb_headlen(skb)); 3633 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 3634 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 3635 skb->vlan_tci = 0; 3636 skb->dev = napi->dev; 3637 skb->skb_iif = 0; 3638 3639 napi->skb = skb; 3640 } 3641 3642 struct sk_buff *napi_get_frags(struct napi_struct *napi) 3643 { 3644 struct sk_buff *skb = napi->skb; 3645 3646 if (!skb) { 3647 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD); 3648 if (skb) 3649 napi->skb = skb; 3650 } 3651 return skb; 3652 } 3653 EXPORT_SYMBOL(napi_get_frags); 3654 3655 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, 3656 gro_result_t ret) 3657 { 3658 switch (ret) { 3659 case GRO_NORMAL: 3660 case GRO_HELD: 3661 skb->protocol = eth_type_trans(skb, skb->dev); 3662 3663 if (ret == GRO_HELD) 3664 skb_gro_pull(skb, -ETH_HLEN); 3665 else if (netif_receive_skb(skb)) 3666 ret = GRO_DROP; 3667 break; 3668 3669 case GRO_DROP: 3670 case GRO_MERGED_FREE: 3671 napi_reuse_skb(napi, skb); 3672 break; 3673 3674 case GRO_MERGED: 3675 break; 3676 } 3677 3678 return ret; 3679 } 3680 EXPORT_SYMBOL(napi_frags_finish); 3681 3682 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 3683 { 3684 struct sk_buff *skb = napi->skb; 3685 struct ethhdr *eth; 3686 unsigned int hlen; 3687 unsigned int off; 3688 3689 napi->skb = NULL; 3690 3691 skb_reset_mac_header(skb); 3692 skb_gro_reset_offset(skb); 3693 3694 off = skb_gro_offset(skb); 3695 hlen = off + sizeof(*eth); 3696 eth = skb_gro_header_fast(skb, off); 3697 if (skb_gro_header_hard(skb, hlen)) { 3698 eth = skb_gro_header_slow(skb, hlen, off); 3699 if (unlikely(!eth)) { 3700 napi_reuse_skb(napi, skb); 3701 skb = NULL; 3702 goto out; 3703 } 3704 } 3705 3706 skb_gro_pull(skb, sizeof(*eth)); 3707 3708 /* 3709 * This works because the only protocols we care about don't require 3710 * special handling. We'll fix it up properly at the end. 3711 */ 3712 skb->protocol = eth->h_proto; 3713 3714 out: 3715 return skb; 3716 } 3717 3718 gro_result_t napi_gro_frags(struct napi_struct *napi) 3719 { 3720 struct sk_buff *skb = napi_frags_skb(napi); 3721 3722 if (!skb) 3723 return GRO_DROP; 3724 3725 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb)); 3726 } 3727 EXPORT_SYMBOL(napi_gro_frags); 3728 3729 /* 3730 * net_rps_action sends any pending IPI's for rps. 3731 * Note: called with local irq disabled, but exits with local irq enabled. 3732 */ 3733 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 3734 { 3735 #ifdef CONFIG_RPS 3736 struct softnet_data *remsd = sd->rps_ipi_list; 3737 3738 if (remsd) { 3739 sd->rps_ipi_list = NULL; 3740 3741 local_irq_enable(); 3742 3743 /* Send pending IPI's to kick RPS processing on remote cpus. */ 3744 while (remsd) { 3745 struct softnet_data *next = remsd->rps_ipi_next; 3746 3747 if (cpu_online(remsd->cpu)) 3748 __smp_call_function_single(remsd->cpu, 3749 &remsd->csd, 0); 3750 remsd = next; 3751 } 3752 } else 3753 #endif 3754 local_irq_enable(); 3755 } 3756 3757 static int process_backlog(struct napi_struct *napi, int quota) 3758 { 3759 int work = 0; 3760 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 3761 3762 #ifdef CONFIG_RPS 3763 /* Check if we have pending ipi, its better to send them now, 3764 * not waiting net_rx_action() end. 3765 */ 3766 if (sd->rps_ipi_list) { 3767 local_irq_disable(); 3768 net_rps_action_and_irq_enable(sd); 3769 } 3770 #endif 3771 napi->weight = weight_p; 3772 local_irq_disable(); 3773 while (work < quota) { 3774 struct sk_buff *skb; 3775 unsigned int qlen; 3776 3777 while ((skb = __skb_dequeue(&sd->process_queue))) { 3778 local_irq_enable(); 3779 __netif_receive_skb(skb); 3780 local_irq_disable(); 3781 input_queue_head_incr(sd); 3782 if (++work >= quota) { 3783 local_irq_enable(); 3784 return work; 3785 } 3786 } 3787 3788 rps_lock(sd); 3789 qlen = skb_queue_len(&sd->input_pkt_queue); 3790 if (qlen) 3791 skb_queue_splice_tail_init(&sd->input_pkt_queue, 3792 &sd->process_queue); 3793 3794 if (qlen < quota - work) { 3795 /* 3796 * Inline a custom version of __napi_complete(). 3797 * only current cpu owns and manipulates this napi, 3798 * and NAPI_STATE_SCHED is the only possible flag set on backlog. 3799 * we can use a plain write instead of clear_bit(), 3800 * and we dont need an smp_mb() memory barrier. 3801 */ 3802 list_del(&napi->poll_list); 3803 napi->state = 0; 3804 3805 quota = work + qlen; 3806 } 3807 rps_unlock(sd); 3808 } 3809 local_irq_enable(); 3810 3811 return work; 3812 } 3813 3814 /** 3815 * __napi_schedule - schedule for receive 3816 * @n: entry to schedule 3817 * 3818 * The entry's receive function will be scheduled to run 3819 */ 3820 void __napi_schedule(struct napi_struct *n) 3821 { 3822 unsigned long flags; 3823 3824 local_irq_save(flags); 3825 ____napi_schedule(&__get_cpu_var(softnet_data), n); 3826 local_irq_restore(flags); 3827 } 3828 EXPORT_SYMBOL(__napi_schedule); 3829 3830 void __napi_complete(struct napi_struct *n) 3831 { 3832 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 3833 BUG_ON(n->gro_list); 3834 3835 list_del(&n->poll_list); 3836 smp_mb__before_clear_bit(); 3837 clear_bit(NAPI_STATE_SCHED, &n->state); 3838 } 3839 EXPORT_SYMBOL(__napi_complete); 3840 3841 void napi_complete(struct napi_struct *n) 3842 { 3843 unsigned long flags; 3844 3845 /* 3846 * don't let napi dequeue from the cpu poll list 3847 * just in case its running on a different cpu 3848 */ 3849 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 3850 return; 3851 3852 napi_gro_flush(n); 3853 local_irq_save(flags); 3854 __napi_complete(n); 3855 local_irq_restore(flags); 3856 } 3857 EXPORT_SYMBOL(napi_complete); 3858 3859 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 3860 int (*poll)(struct napi_struct *, int), int weight) 3861 { 3862 INIT_LIST_HEAD(&napi->poll_list); 3863 napi->gro_count = 0; 3864 napi->gro_list = NULL; 3865 napi->skb = NULL; 3866 napi->poll = poll; 3867 napi->weight = weight; 3868 list_add(&napi->dev_list, &dev->napi_list); 3869 napi->dev = dev; 3870 #ifdef CONFIG_NETPOLL 3871 spin_lock_init(&napi->poll_lock); 3872 napi->poll_owner = -1; 3873 #endif 3874 set_bit(NAPI_STATE_SCHED, &napi->state); 3875 } 3876 EXPORT_SYMBOL(netif_napi_add); 3877 3878 void netif_napi_del(struct napi_struct *napi) 3879 { 3880 struct sk_buff *skb, *next; 3881 3882 list_del_init(&napi->dev_list); 3883 napi_free_frags(napi); 3884 3885 for (skb = napi->gro_list; skb; skb = next) { 3886 next = skb->next; 3887 skb->next = NULL; 3888 kfree_skb(skb); 3889 } 3890 3891 napi->gro_list = NULL; 3892 napi->gro_count = 0; 3893 } 3894 EXPORT_SYMBOL(netif_napi_del); 3895 3896 static void net_rx_action(struct softirq_action *h) 3897 { 3898 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3899 unsigned long time_limit = jiffies + 2; 3900 int budget = netdev_budget; 3901 void *have; 3902 3903 local_irq_disable(); 3904 3905 while (!list_empty(&sd->poll_list)) { 3906 struct napi_struct *n; 3907 int work, weight; 3908 3909 /* If softirq window is exhuasted then punt. 3910 * Allow this to run for 2 jiffies since which will allow 3911 * an average latency of 1.5/HZ. 3912 */ 3913 if (unlikely(budget <= 0 || time_after(jiffies, time_limit))) 3914 goto softnet_break; 3915 3916 local_irq_enable(); 3917 3918 /* Even though interrupts have been re-enabled, this 3919 * access is safe because interrupts can only add new 3920 * entries to the tail of this list, and only ->poll() 3921 * calls can remove this head entry from the list. 3922 */ 3923 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list); 3924 3925 have = netpoll_poll_lock(n); 3926 3927 weight = n->weight; 3928 3929 /* This NAPI_STATE_SCHED test is for avoiding a race 3930 * with netpoll's poll_napi(). Only the entity which 3931 * obtains the lock and sees NAPI_STATE_SCHED set will 3932 * actually make the ->poll() call. Therefore we avoid 3933 * accidentally calling ->poll() when NAPI is not scheduled. 3934 */ 3935 work = 0; 3936 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 3937 work = n->poll(n, weight); 3938 trace_napi_poll(n); 3939 } 3940 3941 WARN_ON_ONCE(work > weight); 3942 3943 budget -= work; 3944 3945 local_irq_disable(); 3946 3947 /* Drivers must not modify the NAPI state if they 3948 * consume the entire weight. In such cases this code 3949 * still "owns" the NAPI instance and therefore can 3950 * move the instance around on the list at-will. 3951 */ 3952 if (unlikely(work == weight)) { 3953 if (unlikely(napi_disable_pending(n))) { 3954 local_irq_enable(); 3955 napi_complete(n); 3956 local_irq_disable(); 3957 } else 3958 list_move_tail(&n->poll_list, &sd->poll_list); 3959 } 3960 3961 netpoll_poll_unlock(have); 3962 } 3963 out: 3964 net_rps_action_and_irq_enable(sd); 3965 3966 #ifdef CONFIG_NET_DMA 3967 /* 3968 * There may not be any more sk_buffs coming right now, so push 3969 * any pending DMA copies to hardware 3970 */ 3971 dma_issue_pending_all(); 3972 #endif 3973 3974 return; 3975 3976 softnet_break: 3977 sd->time_squeeze++; 3978 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3979 goto out; 3980 } 3981 3982 static gifconf_func_t *gifconf_list[NPROTO]; 3983 3984 /** 3985 * register_gifconf - register a SIOCGIF handler 3986 * @family: Address family 3987 * @gifconf: Function handler 3988 * 3989 * Register protocol dependent address dumping routines. The handler 3990 * that is passed must not be freed or reused until it has been replaced 3991 * by another handler. 3992 */ 3993 int register_gifconf(unsigned int family, gifconf_func_t *gifconf) 3994 { 3995 if (family >= NPROTO) 3996 return -EINVAL; 3997 gifconf_list[family] = gifconf; 3998 return 0; 3999 } 4000 EXPORT_SYMBOL(register_gifconf); 4001 4002 4003 /* 4004 * Map an interface index to its name (SIOCGIFNAME) 4005 */ 4006 4007 /* 4008 * We need this ioctl for efficient implementation of the 4009 * if_indextoname() function required by the IPv6 API. Without 4010 * it, we would have to search all the interfaces to find a 4011 * match. --pb 4012 */ 4013 4014 static int dev_ifname(struct net *net, struct ifreq __user *arg) 4015 { 4016 struct net_device *dev; 4017 struct ifreq ifr; 4018 4019 /* 4020 * Fetch the caller's info block. 4021 */ 4022 4023 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 4024 return -EFAULT; 4025 4026 rcu_read_lock(); 4027 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex); 4028 if (!dev) { 4029 rcu_read_unlock(); 4030 return -ENODEV; 4031 } 4032 4033 strcpy(ifr.ifr_name, dev->name); 4034 rcu_read_unlock(); 4035 4036 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 4037 return -EFAULT; 4038 return 0; 4039 } 4040 4041 /* 4042 * Perform a SIOCGIFCONF call. This structure will change 4043 * size eventually, and there is nothing I can do about it. 4044 * Thus we will need a 'compatibility mode'. 4045 */ 4046 4047 static int dev_ifconf(struct net *net, char __user *arg) 4048 { 4049 struct ifconf ifc; 4050 struct net_device *dev; 4051 char __user *pos; 4052 int len; 4053 int total; 4054 int i; 4055 4056 /* 4057 * Fetch the caller's info block. 4058 */ 4059 4060 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 4061 return -EFAULT; 4062 4063 pos = ifc.ifc_buf; 4064 len = ifc.ifc_len; 4065 4066 /* 4067 * Loop over the interfaces, and write an info block for each. 4068 */ 4069 4070 total = 0; 4071 for_each_netdev(net, dev) { 4072 for (i = 0; i < NPROTO; i++) { 4073 if (gifconf_list[i]) { 4074 int done; 4075 if (!pos) 4076 done = gifconf_list[i](dev, NULL, 0); 4077 else 4078 done = gifconf_list[i](dev, pos + total, 4079 len - total); 4080 if (done < 0) 4081 return -EFAULT; 4082 total += done; 4083 } 4084 } 4085 } 4086 4087 /* 4088 * All done. Write the updated control block back to the caller. 4089 */ 4090 ifc.ifc_len = total; 4091 4092 /* 4093 * Both BSD and Solaris return 0 here, so we do too. 4094 */ 4095 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 4096 } 4097 4098 #ifdef CONFIG_PROC_FS 4099 4100 #define BUCKET_SPACE (32 - NETDEV_HASHBITS - 1) 4101 4102 #define get_bucket(x) ((x) >> BUCKET_SPACE) 4103 #define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1)) 4104 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o)) 4105 4106 static inline struct net_device *dev_from_same_bucket(struct seq_file *seq, loff_t *pos) 4107 { 4108 struct net *net = seq_file_net(seq); 4109 struct net_device *dev; 4110 struct hlist_node *p; 4111 struct hlist_head *h; 4112 unsigned int count = 0, offset = get_offset(*pos); 4113 4114 h = &net->dev_name_head[get_bucket(*pos)]; 4115 hlist_for_each_entry_rcu(dev, p, h, name_hlist) { 4116 if (++count == offset) 4117 return dev; 4118 } 4119 4120 return NULL; 4121 } 4122 4123 static inline struct net_device *dev_from_bucket(struct seq_file *seq, loff_t *pos) 4124 { 4125 struct net_device *dev; 4126 unsigned int bucket; 4127 4128 do { 4129 dev = dev_from_same_bucket(seq, pos); 4130 if (dev) 4131 return dev; 4132 4133 bucket = get_bucket(*pos) + 1; 4134 *pos = set_bucket_offset(bucket, 1); 4135 } while (bucket < NETDEV_HASHENTRIES); 4136 4137 return NULL; 4138 } 4139 4140 /* 4141 * This is invoked by the /proc filesystem handler to display a device 4142 * in detail. 4143 */ 4144 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 4145 __acquires(RCU) 4146 { 4147 rcu_read_lock(); 4148 if (!*pos) 4149 return SEQ_START_TOKEN; 4150 4151 if (get_bucket(*pos) >= NETDEV_HASHENTRIES) 4152 return NULL; 4153 4154 return dev_from_bucket(seq, pos); 4155 } 4156 4157 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4158 { 4159 ++*pos; 4160 return dev_from_bucket(seq, pos); 4161 } 4162 4163 void dev_seq_stop(struct seq_file *seq, void *v) 4164 __releases(RCU) 4165 { 4166 rcu_read_unlock(); 4167 } 4168 4169 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 4170 { 4171 struct rtnl_link_stats64 temp; 4172 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp); 4173 4174 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu " 4175 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n", 4176 dev->name, stats->rx_bytes, stats->rx_packets, 4177 stats->rx_errors, 4178 stats->rx_dropped + stats->rx_missed_errors, 4179 stats->rx_fifo_errors, 4180 stats->rx_length_errors + stats->rx_over_errors + 4181 stats->rx_crc_errors + stats->rx_frame_errors, 4182 stats->rx_compressed, stats->multicast, 4183 stats->tx_bytes, stats->tx_packets, 4184 stats->tx_errors, stats->tx_dropped, 4185 stats->tx_fifo_errors, stats->collisions, 4186 stats->tx_carrier_errors + 4187 stats->tx_aborted_errors + 4188 stats->tx_window_errors + 4189 stats->tx_heartbeat_errors, 4190 stats->tx_compressed); 4191 } 4192 4193 /* 4194 * Called from the PROCfs module. This now uses the new arbitrary sized 4195 * /proc/net interface to create /proc/net/dev 4196 */ 4197 static int dev_seq_show(struct seq_file *seq, void *v) 4198 { 4199 if (v == SEQ_START_TOKEN) 4200 seq_puts(seq, "Inter-| Receive " 4201 " | Transmit\n" 4202 " face |bytes packets errs drop fifo frame " 4203 "compressed multicast|bytes packets errs " 4204 "drop fifo colls carrier compressed\n"); 4205 else 4206 dev_seq_printf_stats(seq, v); 4207 return 0; 4208 } 4209 4210 static struct softnet_data *softnet_get_online(loff_t *pos) 4211 { 4212 struct softnet_data *sd = NULL; 4213 4214 while (*pos < nr_cpu_ids) 4215 if (cpu_online(*pos)) { 4216 sd = &per_cpu(softnet_data, *pos); 4217 break; 4218 } else 4219 ++*pos; 4220 return sd; 4221 } 4222 4223 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 4224 { 4225 return softnet_get_online(pos); 4226 } 4227 4228 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4229 { 4230 ++*pos; 4231 return softnet_get_online(pos); 4232 } 4233 4234 static void softnet_seq_stop(struct seq_file *seq, void *v) 4235 { 4236 } 4237 4238 static int softnet_seq_show(struct seq_file *seq, void *v) 4239 { 4240 struct softnet_data *sd = v; 4241 4242 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 4243 sd->processed, sd->dropped, sd->time_squeeze, 0, 4244 0, 0, 0, 0, /* was fastroute */ 4245 sd->cpu_collision, sd->received_rps); 4246 return 0; 4247 } 4248 4249 static const struct seq_operations dev_seq_ops = { 4250 .start = dev_seq_start, 4251 .next = dev_seq_next, 4252 .stop = dev_seq_stop, 4253 .show = dev_seq_show, 4254 }; 4255 4256 static int dev_seq_open(struct inode *inode, struct file *file) 4257 { 4258 return seq_open_net(inode, file, &dev_seq_ops, 4259 sizeof(struct seq_net_private)); 4260 } 4261 4262 static const struct file_operations dev_seq_fops = { 4263 .owner = THIS_MODULE, 4264 .open = dev_seq_open, 4265 .read = seq_read, 4266 .llseek = seq_lseek, 4267 .release = seq_release_net, 4268 }; 4269 4270 static const struct seq_operations softnet_seq_ops = { 4271 .start = softnet_seq_start, 4272 .next = softnet_seq_next, 4273 .stop = softnet_seq_stop, 4274 .show = softnet_seq_show, 4275 }; 4276 4277 static int softnet_seq_open(struct inode *inode, struct file *file) 4278 { 4279 return seq_open(file, &softnet_seq_ops); 4280 } 4281 4282 static const struct file_operations softnet_seq_fops = { 4283 .owner = THIS_MODULE, 4284 .open = softnet_seq_open, 4285 .read = seq_read, 4286 .llseek = seq_lseek, 4287 .release = seq_release, 4288 }; 4289 4290 static void *ptype_get_idx(loff_t pos) 4291 { 4292 struct packet_type *pt = NULL; 4293 loff_t i = 0; 4294 int t; 4295 4296 list_for_each_entry_rcu(pt, &ptype_all, list) { 4297 if (i == pos) 4298 return pt; 4299 ++i; 4300 } 4301 4302 for (t = 0; t < PTYPE_HASH_SIZE; t++) { 4303 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 4304 if (i == pos) 4305 return pt; 4306 ++i; 4307 } 4308 } 4309 return NULL; 4310 } 4311 4312 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 4313 __acquires(RCU) 4314 { 4315 rcu_read_lock(); 4316 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 4317 } 4318 4319 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4320 { 4321 struct packet_type *pt; 4322 struct list_head *nxt; 4323 int hash; 4324 4325 ++*pos; 4326 if (v == SEQ_START_TOKEN) 4327 return ptype_get_idx(0); 4328 4329 pt = v; 4330 nxt = pt->list.next; 4331 if (pt->type == htons(ETH_P_ALL)) { 4332 if (nxt != &ptype_all) 4333 goto found; 4334 hash = 0; 4335 nxt = ptype_base[0].next; 4336 } else 4337 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 4338 4339 while (nxt == &ptype_base[hash]) { 4340 if (++hash >= PTYPE_HASH_SIZE) 4341 return NULL; 4342 nxt = ptype_base[hash].next; 4343 } 4344 found: 4345 return list_entry(nxt, struct packet_type, list); 4346 } 4347 4348 static void ptype_seq_stop(struct seq_file *seq, void *v) 4349 __releases(RCU) 4350 { 4351 rcu_read_unlock(); 4352 } 4353 4354 static int ptype_seq_show(struct seq_file *seq, void *v) 4355 { 4356 struct packet_type *pt = v; 4357 4358 if (v == SEQ_START_TOKEN) 4359 seq_puts(seq, "Type Device Function\n"); 4360 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) { 4361 if (pt->type == htons(ETH_P_ALL)) 4362 seq_puts(seq, "ALL "); 4363 else 4364 seq_printf(seq, "%04x", ntohs(pt->type)); 4365 4366 seq_printf(seq, " %-8s %pF\n", 4367 pt->dev ? pt->dev->name : "", pt->func); 4368 } 4369 4370 return 0; 4371 } 4372 4373 static const struct seq_operations ptype_seq_ops = { 4374 .start = ptype_seq_start, 4375 .next = ptype_seq_next, 4376 .stop = ptype_seq_stop, 4377 .show = ptype_seq_show, 4378 }; 4379 4380 static int ptype_seq_open(struct inode *inode, struct file *file) 4381 { 4382 return seq_open_net(inode, file, &ptype_seq_ops, 4383 sizeof(struct seq_net_private)); 4384 } 4385 4386 static const struct file_operations ptype_seq_fops = { 4387 .owner = THIS_MODULE, 4388 .open = ptype_seq_open, 4389 .read = seq_read, 4390 .llseek = seq_lseek, 4391 .release = seq_release_net, 4392 }; 4393 4394 4395 static int __net_init dev_proc_net_init(struct net *net) 4396 { 4397 int rc = -ENOMEM; 4398 4399 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 4400 goto out; 4401 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 4402 goto out_dev; 4403 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 4404 goto out_softnet; 4405 4406 if (wext_proc_init(net)) 4407 goto out_ptype; 4408 rc = 0; 4409 out: 4410 return rc; 4411 out_ptype: 4412 proc_net_remove(net, "ptype"); 4413 out_softnet: 4414 proc_net_remove(net, "softnet_stat"); 4415 out_dev: 4416 proc_net_remove(net, "dev"); 4417 goto out; 4418 } 4419 4420 static void __net_exit dev_proc_net_exit(struct net *net) 4421 { 4422 wext_proc_exit(net); 4423 4424 proc_net_remove(net, "ptype"); 4425 proc_net_remove(net, "softnet_stat"); 4426 proc_net_remove(net, "dev"); 4427 } 4428 4429 static struct pernet_operations __net_initdata dev_proc_ops = { 4430 .init = dev_proc_net_init, 4431 .exit = dev_proc_net_exit, 4432 }; 4433 4434 static int __init dev_proc_init(void) 4435 { 4436 return register_pernet_subsys(&dev_proc_ops); 4437 } 4438 #else 4439 #define dev_proc_init() 0 4440 #endif /* CONFIG_PROC_FS */ 4441 4442 4443 /** 4444 * netdev_set_master - set up master pointer 4445 * @slave: slave device 4446 * @master: new master device 4447 * 4448 * Changes the master device of the slave. Pass %NULL to break the 4449 * bonding. The caller must hold the RTNL semaphore. On a failure 4450 * a negative errno code is returned. On success the reference counts 4451 * are adjusted and the function returns zero. 4452 */ 4453 int netdev_set_master(struct net_device *slave, struct net_device *master) 4454 { 4455 struct net_device *old = slave->master; 4456 4457 ASSERT_RTNL(); 4458 4459 if (master) { 4460 if (old) 4461 return -EBUSY; 4462 dev_hold(master); 4463 } 4464 4465 slave->master = master; 4466 4467 if (old) 4468 dev_put(old); 4469 return 0; 4470 } 4471 EXPORT_SYMBOL(netdev_set_master); 4472 4473 /** 4474 * netdev_set_bond_master - set up bonding master/slave pair 4475 * @slave: slave device 4476 * @master: new master device 4477 * 4478 * Changes the master device of the slave. Pass %NULL to break the 4479 * bonding. The caller must hold the RTNL semaphore. On a failure 4480 * a negative errno code is returned. On success %RTM_NEWLINK is sent 4481 * to the routing socket and the function returns zero. 4482 */ 4483 int netdev_set_bond_master(struct net_device *slave, struct net_device *master) 4484 { 4485 int err; 4486 4487 ASSERT_RTNL(); 4488 4489 err = netdev_set_master(slave, master); 4490 if (err) 4491 return err; 4492 if (master) 4493 slave->flags |= IFF_SLAVE; 4494 else 4495 slave->flags &= ~IFF_SLAVE; 4496 4497 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 4498 return 0; 4499 } 4500 EXPORT_SYMBOL(netdev_set_bond_master); 4501 4502 static void dev_change_rx_flags(struct net_device *dev, int flags) 4503 { 4504 const struct net_device_ops *ops = dev->netdev_ops; 4505 4506 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags) 4507 ops->ndo_change_rx_flags(dev, flags); 4508 } 4509 4510 static int __dev_set_promiscuity(struct net_device *dev, int inc) 4511 { 4512 unsigned int old_flags = dev->flags; 4513 uid_t uid; 4514 gid_t gid; 4515 4516 ASSERT_RTNL(); 4517 4518 dev->flags |= IFF_PROMISC; 4519 dev->promiscuity += inc; 4520 if (dev->promiscuity == 0) { 4521 /* 4522 * Avoid overflow. 4523 * If inc causes overflow, untouch promisc and return error. 4524 */ 4525 if (inc < 0) 4526 dev->flags &= ~IFF_PROMISC; 4527 else { 4528 dev->promiscuity -= inc; 4529 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 4530 dev->name); 4531 return -EOVERFLOW; 4532 } 4533 } 4534 if (dev->flags != old_flags) { 4535 pr_info("device %s %s promiscuous mode\n", 4536 dev->name, 4537 dev->flags & IFF_PROMISC ? "entered" : "left"); 4538 if (audit_enabled) { 4539 current_uid_gid(&uid, &gid); 4540 audit_log(current->audit_context, GFP_ATOMIC, 4541 AUDIT_ANOM_PROMISCUOUS, 4542 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 4543 dev->name, (dev->flags & IFF_PROMISC), 4544 (old_flags & IFF_PROMISC), 4545 audit_get_loginuid(current), 4546 uid, gid, 4547 audit_get_sessionid(current)); 4548 } 4549 4550 dev_change_rx_flags(dev, IFF_PROMISC); 4551 } 4552 return 0; 4553 } 4554 4555 /** 4556 * dev_set_promiscuity - update promiscuity count on a device 4557 * @dev: device 4558 * @inc: modifier 4559 * 4560 * Add or remove promiscuity from a device. While the count in the device 4561 * remains above zero the interface remains promiscuous. Once it hits zero 4562 * the device reverts back to normal filtering operation. A negative inc 4563 * value is used to drop promiscuity on the device. 4564 * Return 0 if successful or a negative errno code on error. 4565 */ 4566 int dev_set_promiscuity(struct net_device *dev, int inc) 4567 { 4568 unsigned int old_flags = dev->flags; 4569 int err; 4570 4571 err = __dev_set_promiscuity(dev, inc); 4572 if (err < 0) 4573 return err; 4574 if (dev->flags != old_flags) 4575 dev_set_rx_mode(dev); 4576 return err; 4577 } 4578 EXPORT_SYMBOL(dev_set_promiscuity); 4579 4580 /** 4581 * dev_set_allmulti - update allmulti count on a device 4582 * @dev: device 4583 * @inc: modifier 4584 * 4585 * Add or remove reception of all multicast frames to a device. While the 4586 * count in the device remains above zero the interface remains listening 4587 * to all interfaces. Once it hits zero the device reverts back to normal 4588 * filtering operation. A negative @inc value is used to drop the counter 4589 * when releasing a resource needing all multicasts. 4590 * Return 0 if successful or a negative errno code on error. 4591 */ 4592 4593 int dev_set_allmulti(struct net_device *dev, int inc) 4594 { 4595 unsigned int old_flags = dev->flags; 4596 4597 ASSERT_RTNL(); 4598 4599 dev->flags |= IFF_ALLMULTI; 4600 dev->allmulti += inc; 4601 if (dev->allmulti == 0) { 4602 /* 4603 * Avoid overflow. 4604 * If inc causes overflow, untouch allmulti and return error. 4605 */ 4606 if (inc < 0) 4607 dev->flags &= ~IFF_ALLMULTI; 4608 else { 4609 dev->allmulti -= inc; 4610 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 4611 dev->name); 4612 return -EOVERFLOW; 4613 } 4614 } 4615 if (dev->flags ^ old_flags) { 4616 dev_change_rx_flags(dev, IFF_ALLMULTI); 4617 dev_set_rx_mode(dev); 4618 } 4619 return 0; 4620 } 4621 EXPORT_SYMBOL(dev_set_allmulti); 4622 4623 /* 4624 * Upload unicast and multicast address lists to device and 4625 * configure RX filtering. When the device doesn't support unicast 4626 * filtering it is put in promiscuous mode while unicast addresses 4627 * are present. 4628 */ 4629 void __dev_set_rx_mode(struct net_device *dev) 4630 { 4631 const struct net_device_ops *ops = dev->netdev_ops; 4632 4633 /* dev_open will call this function so the list will stay sane. */ 4634 if (!(dev->flags&IFF_UP)) 4635 return; 4636 4637 if (!netif_device_present(dev)) 4638 return; 4639 4640 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 4641 /* Unicast addresses changes may only happen under the rtnl, 4642 * therefore calling __dev_set_promiscuity here is safe. 4643 */ 4644 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 4645 __dev_set_promiscuity(dev, 1); 4646 dev->uc_promisc = true; 4647 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 4648 __dev_set_promiscuity(dev, -1); 4649 dev->uc_promisc = false; 4650 } 4651 } 4652 4653 if (ops->ndo_set_rx_mode) 4654 ops->ndo_set_rx_mode(dev); 4655 } 4656 4657 void dev_set_rx_mode(struct net_device *dev) 4658 { 4659 netif_addr_lock_bh(dev); 4660 __dev_set_rx_mode(dev); 4661 netif_addr_unlock_bh(dev); 4662 } 4663 4664 /** 4665 * dev_get_flags - get flags reported to userspace 4666 * @dev: device 4667 * 4668 * Get the combination of flag bits exported through APIs to userspace. 4669 */ 4670 unsigned int dev_get_flags(const struct net_device *dev) 4671 { 4672 unsigned int flags; 4673 4674 flags = (dev->flags & ~(IFF_PROMISC | 4675 IFF_ALLMULTI | 4676 IFF_RUNNING | 4677 IFF_LOWER_UP | 4678 IFF_DORMANT)) | 4679 (dev->gflags & (IFF_PROMISC | 4680 IFF_ALLMULTI)); 4681 4682 if (netif_running(dev)) { 4683 if (netif_oper_up(dev)) 4684 flags |= IFF_RUNNING; 4685 if (netif_carrier_ok(dev)) 4686 flags |= IFF_LOWER_UP; 4687 if (netif_dormant(dev)) 4688 flags |= IFF_DORMANT; 4689 } 4690 4691 return flags; 4692 } 4693 EXPORT_SYMBOL(dev_get_flags); 4694 4695 int __dev_change_flags(struct net_device *dev, unsigned int flags) 4696 { 4697 unsigned int old_flags = dev->flags; 4698 int ret; 4699 4700 ASSERT_RTNL(); 4701 4702 /* 4703 * Set the flags on our device. 4704 */ 4705 4706 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 4707 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 4708 IFF_AUTOMEDIA)) | 4709 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 4710 IFF_ALLMULTI)); 4711 4712 /* 4713 * Load in the correct multicast list now the flags have changed. 4714 */ 4715 4716 if ((old_flags ^ flags) & IFF_MULTICAST) 4717 dev_change_rx_flags(dev, IFF_MULTICAST); 4718 4719 dev_set_rx_mode(dev); 4720 4721 /* 4722 * Have we downed the interface. We handle IFF_UP ourselves 4723 * according to user attempts to set it, rather than blindly 4724 * setting it. 4725 */ 4726 4727 ret = 0; 4728 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 4729 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 4730 4731 if (!ret) 4732 dev_set_rx_mode(dev); 4733 } 4734 4735 if ((flags ^ dev->gflags) & IFF_PROMISC) { 4736 int inc = (flags & IFF_PROMISC) ? 1 : -1; 4737 4738 dev->gflags ^= IFF_PROMISC; 4739 dev_set_promiscuity(dev, inc); 4740 } 4741 4742 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 4743 is important. Some (broken) drivers set IFF_PROMISC, when 4744 IFF_ALLMULTI is requested not asking us and not reporting. 4745 */ 4746 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 4747 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 4748 4749 dev->gflags ^= IFF_ALLMULTI; 4750 dev_set_allmulti(dev, inc); 4751 } 4752 4753 return ret; 4754 } 4755 4756 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags) 4757 { 4758 unsigned int changes = dev->flags ^ old_flags; 4759 4760 if (changes & IFF_UP) { 4761 if (dev->flags & IFF_UP) 4762 call_netdevice_notifiers(NETDEV_UP, dev); 4763 else 4764 call_netdevice_notifiers(NETDEV_DOWN, dev); 4765 } 4766 4767 if (dev->flags & IFF_UP && 4768 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) 4769 call_netdevice_notifiers(NETDEV_CHANGE, dev); 4770 } 4771 4772 /** 4773 * dev_change_flags - change device settings 4774 * @dev: device 4775 * @flags: device state flags 4776 * 4777 * Change settings on device based state flags. The flags are 4778 * in the userspace exported format. 4779 */ 4780 int dev_change_flags(struct net_device *dev, unsigned int flags) 4781 { 4782 int ret; 4783 unsigned int changes, old_flags = dev->flags; 4784 4785 ret = __dev_change_flags(dev, flags); 4786 if (ret < 0) 4787 return ret; 4788 4789 changes = old_flags ^ dev->flags; 4790 if (changes) 4791 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 4792 4793 __dev_notify_flags(dev, old_flags); 4794 return ret; 4795 } 4796 EXPORT_SYMBOL(dev_change_flags); 4797 4798 /** 4799 * dev_set_mtu - Change maximum transfer unit 4800 * @dev: device 4801 * @new_mtu: new transfer unit 4802 * 4803 * Change the maximum transfer size of the network device. 4804 */ 4805 int dev_set_mtu(struct net_device *dev, int new_mtu) 4806 { 4807 const struct net_device_ops *ops = dev->netdev_ops; 4808 int err; 4809 4810 if (new_mtu == dev->mtu) 4811 return 0; 4812 4813 /* MTU must be positive. */ 4814 if (new_mtu < 0) 4815 return -EINVAL; 4816 4817 if (!netif_device_present(dev)) 4818 return -ENODEV; 4819 4820 err = 0; 4821 if (ops->ndo_change_mtu) 4822 err = ops->ndo_change_mtu(dev, new_mtu); 4823 else 4824 dev->mtu = new_mtu; 4825 4826 if (!err && dev->flags & IFF_UP) 4827 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 4828 return err; 4829 } 4830 EXPORT_SYMBOL(dev_set_mtu); 4831 4832 /** 4833 * dev_set_group - Change group this device belongs to 4834 * @dev: device 4835 * @new_group: group this device should belong to 4836 */ 4837 void dev_set_group(struct net_device *dev, int new_group) 4838 { 4839 dev->group = new_group; 4840 } 4841 EXPORT_SYMBOL(dev_set_group); 4842 4843 /** 4844 * dev_set_mac_address - Change Media Access Control Address 4845 * @dev: device 4846 * @sa: new address 4847 * 4848 * Change the hardware (MAC) address of the device 4849 */ 4850 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 4851 { 4852 const struct net_device_ops *ops = dev->netdev_ops; 4853 int err; 4854 4855 if (!ops->ndo_set_mac_address) 4856 return -EOPNOTSUPP; 4857 if (sa->sa_family != dev->type) 4858 return -EINVAL; 4859 if (!netif_device_present(dev)) 4860 return -ENODEV; 4861 err = ops->ndo_set_mac_address(dev, sa); 4862 if (!err) 4863 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4864 add_device_randomness(dev->dev_addr, dev->addr_len); 4865 return err; 4866 } 4867 EXPORT_SYMBOL(dev_set_mac_address); 4868 4869 /* 4870 * Perform the SIOCxIFxxx calls, inside rcu_read_lock() 4871 */ 4872 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 4873 { 4874 int err; 4875 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name); 4876 4877 if (!dev) 4878 return -ENODEV; 4879 4880 switch (cmd) { 4881 case SIOCGIFFLAGS: /* Get interface flags */ 4882 ifr->ifr_flags = (short) dev_get_flags(dev); 4883 return 0; 4884 4885 case SIOCGIFMETRIC: /* Get the metric on the interface 4886 (currently unused) */ 4887 ifr->ifr_metric = 0; 4888 return 0; 4889 4890 case SIOCGIFMTU: /* Get the MTU of a device */ 4891 ifr->ifr_mtu = dev->mtu; 4892 return 0; 4893 4894 case SIOCGIFHWADDR: 4895 if (!dev->addr_len) 4896 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 4897 else 4898 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 4899 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4900 ifr->ifr_hwaddr.sa_family = dev->type; 4901 return 0; 4902 4903 case SIOCGIFSLAVE: 4904 err = -EINVAL; 4905 break; 4906 4907 case SIOCGIFMAP: 4908 ifr->ifr_map.mem_start = dev->mem_start; 4909 ifr->ifr_map.mem_end = dev->mem_end; 4910 ifr->ifr_map.base_addr = dev->base_addr; 4911 ifr->ifr_map.irq = dev->irq; 4912 ifr->ifr_map.dma = dev->dma; 4913 ifr->ifr_map.port = dev->if_port; 4914 return 0; 4915 4916 case SIOCGIFINDEX: 4917 ifr->ifr_ifindex = dev->ifindex; 4918 return 0; 4919 4920 case SIOCGIFTXQLEN: 4921 ifr->ifr_qlen = dev->tx_queue_len; 4922 return 0; 4923 4924 default: 4925 /* dev_ioctl() should ensure this case 4926 * is never reached 4927 */ 4928 WARN_ON(1); 4929 err = -ENOTTY; 4930 break; 4931 4932 } 4933 return err; 4934 } 4935 4936 /* 4937 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 4938 */ 4939 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 4940 { 4941 int err; 4942 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 4943 const struct net_device_ops *ops; 4944 4945 if (!dev) 4946 return -ENODEV; 4947 4948 ops = dev->netdev_ops; 4949 4950 switch (cmd) { 4951 case SIOCSIFFLAGS: /* Set interface flags */ 4952 return dev_change_flags(dev, ifr->ifr_flags); 4953 4954 case SIOCSIFMETRIC: /* Set the metric on the interface 4955 (currently unused) */ 4956 return -EOPNOTSUPP; 4957 4958 case SIOCSIFMTU: /* Set the MTU of a device */ 4959 return dev_set_mtu(dev, ifr->ifr_mtu); 4960 4961 case SIOCSIFHWADDR: 4962 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 4963 4964 case SIOCSIFHWBROADCAST: 4965 if (ifr->ifr_hwaddr.sa_family != dev->type) 4966 return -EINVAL; 4967 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 4968 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4969 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4970 return 0; 4971 4972 case SIOCSIFMAP: 4973 if (ops->ndo_set_config) { 4974 if (!netif_device_present(dev)) 4975 return -ENODEV; 4976 return ops->ndo_set_config(dev, &ifr->ifr_map); 4977 } 4978 return -EOPNOTSUPP; 4979 4980 case SIOCADDMULTI: 4981 if (!ops->ndo_set_rx_mode || 4982 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4983 return -EINVAL; 4984 if (!netif_device_present(dev)) 4985 return -ENODEV; 4986 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data); 4987 4988 case SIOCDELMULTI: 4989 if (!ops->ndo_set_rx_mode || 4990 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4991 return -EINVAL; 4992 if (!netif_device_present(dev)) 4993 return -ENODEV; 4994 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data); 4995 4996 case SIOCSIFTXQLEN: 4997 if (ifr->ifr_qlen < 0) 4998 return -EINVAL; 4999 dev->tx_queue_len = ifr->ifr_qlen; 5000 return 0; 5001 5002 case SIOCSIFNAME: 5003 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 5004 return dev_change_name(dev, ifr->ifr_newname); 5005 5006 case SIOCSHWTSTAMP: 5007 err = net_hwtstamp_validate(ifr); 5008 if (err) 5009 return err; 5010 /* fall through */ 5011 5012 /* 5013 * Unknown or private ioctl 5014 */ 5015 default: 5016 if ((cmd >= SIOCDEVPRIVATE && 5017 cmd <= SIOCDEVPRIVATE + 15) || 5018 cmd == SIOCBONDENSLAVE || 5019 cmd == SIOCBONDRELEASE || 5020 cmd == SIOCBONDSETHWADDR || 5021 cmd == SIOCBONDSLAVEINFOQUERY || 5022 cmd == SIOCBONDINFOQUERY || 5023 cmd == SIOCBONDCHANGEACTIVE || 5024 cmd == SIOCGMIIPHY || 5025 cmd == SIOCGMIIREG || 5026 cmd == SIOCSMIIREG || 5027 cmd == SIOCBRADDIF || 5028 cmd == SIOCBRDELIF || 5029 cmd == SIOCSHWTSTAMP || 5030 cmd == SIOCWANDEV) { 5031 err = -EOPNOTSUPP; 5032 if (ops->ndo_do_ioctl) { 5033 if (netif_device_present(dev)) 5034 err = ops->ndo_do_ioctl(dev, ifr, cmd); 5035 else 5036 err = -ENODEV; 5037 } 5038 } else 5039 err = -EINVAL; 5040 5041 } 5042 return err; 5043 } 5044 5045 /* 5046 * This function handles all "interface"-type I/O control requests. The actual 5047 * 'doing' part of this is dev_ifsioc above. 5048 */ 5049 5050 /** 5051 * dev_ioctl - network device ioctl 5052 * @net: the applicable net namespace 5053 * @cmd: command to issue 5054 * @arg: pointer to a struct ifreq in user space 5055 * 5056 * Issue ioctl functions to devices. This is normally called by the 5057 * user space syscall interfaces but can sometimes be useful for 5058 * other purposes. The return value is the return from the syscall if 5059 * positive or a negative errno code on error. 5060 */ 5061 5062 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 5063 { 5064 struct ifreq ifr; 5065 int ret; 5066 char *colon; 5067 5068 /* One special case: SIOCGIFCONF takes ifconf argument 5069 and requires shared lock, because it sleeps writing 5070 to user space. 5071 */ 5072 5073 if (cmd == SIOCGIFCONF) { 5074 rtnl_lock(); 5075 ret = dev_ifconf(net, (char __user *) arg); 5076 rtnl_unlock(); 5077 return ret; 5078 } 5079 if (cmd == SIOCGIFNAME) 5080 return dev_ifname(net, (struct ifreq __user *)arg); 5081 5082 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 5083 return -EFAULT; 5084 5085 ifr.ifr_name[IFNAMSIZ-1] = 0; 5086 5087 colon = strchr(ifr.ifr_name, ':'); 5088 if (colon) 5089 *colon = 0; 5090 5091 /* 5092 * See which interface the caller is talking about. 5093 */ 5094 5095 switch (cmd) { 5096 /* 5097 * These ioctl calls: 5098 * - can be done by all. 5099 * - atomic and do not require locking. 5100 * - return a value 5101 */ 5102 case SIOCGIFFLAGS: 5103 case SIOCGIFMETRIC: 5104 case SIOCGIFMTU: 5105 case SIOCGIFHWADDR: 5106 case SIOCGIFSLAVE: 5107 case SIOCGIFMAP: 5108 case SIOCGIFINDEX: 5109 case SIOCGIFTXQLEN: 5110 dev_load(net, ifr.ifr_name); 5111 rcu_read_lock(); 5112 ret = dev_ifsioc_locked(net, &ifr, cmd); 5113 rcu_read_unlock(); 5114 if (!ret) { 5115 if (colon) 5116 *colon = ':'; 5117 if (copy_to_user(arg, &ifr, 5118 sizeof(struct ifreq))) 5119 ret = -EFAULT; 5120 } 5121 return ret; 5122 5123 case SIOCETHTOOL: 5124 dev_load(net, ifr.ifr_name); 5125 rtnl_lock(); 5126 ret = dev_ethtool(net, &ifr); 5127 rtnl_unlock(); 5128 if (!ret) { 5129 if (colon) 5130 *colon = ':'; 5131 if (copy_to_user(arg, &ifr, 5132 sizeof(struct ifreq))) 5133 ret = -EFAULT; 5134 } 5135 return ret; 5136 5137 /* 5138 * These ioctl calls: 5139 * - require superuser power. 5140 * - require strict serialization. 5141 * - return a value 5142 */ 5143 case SIOCGMIIPHY: 5144 case SIOCGMIIREG: 5145 case SIOCSIFNAME: 5146 if (!capable(CAP_NET_ADMIN)) 5147 return -EPERM; 5148 dev_load(net, ifr.ifr_name); 5149 rtnl_lock(); 5150 ret = dev_ifsioc(net, &ifr, cmd); 5151 rtnl_unlock(); 5152 if (!ret) { 5153 if (colon) 5154 *colon = ':'; 5155 if (copy_to_user(arg, &ifr, 5156 sizeof(struct ifreq))) 5157 ret = -EFAULT; 5158 } 5159 return ret; 5160 5161 /* 5162 * These ioctl calls: 5163 * - require superuser power. 5164 * - require strict serialization. 5165 * - do not return a value 5166 */ 5167 case SIOCSIFFLAGS: 5168 case SIOCSIFMETRIC: 5169 case SIOCSIFMTU: 5170 case SIOCSIFMAP: 5171 case SIOCSIFHWADDR: 5172 case SIOCSIFSLAVE: 5173 case SIOCADDMULTI: 5174 case SIOCDELMULTI: 5175 case SIOCSIFHWBROADCAST: 5176 case SIOCSIFTXQLEN: 5177 case SIOCSMIIREG: 5178 case SIOCBONDENSLAVE: 5179 case SIOCBONDRELEASE: 5180 case SIOCBONDSETHWADDR: 5181 case SIOCBONDCHANGEACTIVE: 5182 case SIOCBRADDIF: 5183 case SIOCBRDELIF: 5184 case SIOCSHWTSTAMP: 5185 if (!capable(CAP_NET_ADMIN)) 5186 return -EPERM; 5187 /* fall through */ 5188 case SIOCBONDSLAVEINFOQUERY: 5189 case SIOCBONDINFOQUERY: 5190 dev_load(net, ifr.ifr_name); 5191 rtnl_lock(); 5192 ret = dev_ifsioc(net, &ifr, cmd); 5193 rtnl_unlock(); 5194 return ret; 5195 5196 case SIOCGIFMEM: 5197 /* Get the per device memory space. We can add this but 5198 * currently do not support it */ 5199 case SIOCSIFMEM: 5200 /* Set the per device memory buffer space. 5201 * Not applicable in our case */ 5202 case SIOCSIFLINK: 5203 return -ENOTTY; 5204 5205 /* 5206 * Unknown or private ioctl. 5207 */ 5208 default: 5209 if (cmd == SIOCWANDEV || 5210 (cmd >= SIOCDEVPRIVATE && 5211 cmd <= SIOCDEVPRIVATE + 15)) { 5212 dev_load(net, ifr.ifr_name); 5213 rtnl_lock(); 5214 ret = dev_ifsioc(net, &ifr, cmd); 5215 rtnl_unlock(); 5216 if (!ret && copy_to_user(arg, &ifr, 5217 sizeof(struct ifreq))) 5218 ret = -EFAULT; 5219 return ret; 5220 } 5221 /* Take care of Wireless Extensions */ 5222 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 5223 return wext_handle_ioctl(net, &ifr, cmd, arg); 5224 return -ENOTTY; 5225 } 5226 } 5227 5228 5229 /** 5230 * dev_new_index - allocate an ifindex 5231 * @net: the applicable net namespace 5232 * 5233 * Returns a suitable unique value for a new device interface 5234 * number. The caller must hold the rtnl semaphore or the 5235 * dev_base_lock to be sure it remains unique. 5236 */ 5237 static int dev_new_index(struct net *net) 5238 { 5239 static int ifindex; 5240 for (;;) { 5241 if (++ifindex <= 0) 5242 ifindex = 1; 5243 if (!__dev_get_by_index(net, ifindex)) 5244 return ifindex; 5245 } 5246 } 5247 5248 /* Delayed registration/unregisteration */ 5249 static LIST_HEAD(net_todo_list); 5250 5251 static void net_set_todo(struct net_device *dev) 5252 { 5253 list_add_tail(&dev->todo_list, &net_todo_list); 5254 } 5255 5256 static void rollback_registered_many(struct list_head *head) 5257 { 5258 struct net_device *dev, *tmp; 5259 5260 BUG_ON(dev_boot_phase); 5261 ASSERT_RTNL(); 5262 5263 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 5264 /* Some devices call without registering 5265 * for initialization unwind. Remove those 5266 * devices and proceed with the remaining. 5267 */ 5268 if (dev->reg_state == NETREG_UNINITIALIZED) { 5269 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 5270 dev->name, dev); 5271 5272 WARN_ON(1); 5273 list_del(&dev->unreg_list); 5274 continue; 5275 } 5276 dev->dismantle = true; 5277 BUG_ON(dev->reg_state != NETREG_REGISTERED); 5278 } 5279 5280 /* If device is running, close it first. */ 5281 dev_close_many(head); 5282 5283 list_for_each_entry(dev, head, unreg_list) { 5284 /* And unlink it from device chain. */ 5285 unlist_netdevice(dev); 5286 5287 dev->reg_state = NETREG_UNREGISTERING; 5288 } 5289 5290 synchronize_net(); 5291 5292 list_for_each_entry(dev, head, unreg_list) { 5293 /* Shutdown queueing discipline. */ 5294 dev_shutdown(dev); 5295 5296 5297 /* Notify protocols, that we are about to destroy 5298 this device. They should clean all the things. 5299 */ 5300 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5301 5302 if (!dev->rtnl_link_ops || 5303 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5304 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 5305 5306 /* 5307 * Flush the unicast and multicast chains 5308 */ 5309 dev_uc_flush(dev); 5310 dev_mc_flush(dev); 5311 5312 if (dev->netdev_ops->ndo_uninit) 5313 dev->netdev_ops->ndo_uninit(dev); 5314 5315 /* Notifier chain MUST detach us from master device. */ 5316 WARN_ON(dev->master); 5317 5318 /* Remove entries from kobject tree */ 5319 netdev_unregister_kobject(dev); 5320 } 5321 5322 /* Process any work delayed until the end of the batch */ 5323 dev = list_first_entry(head, struct net_device, unreg_list); 5324 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 5325 5326 synchronize_net(); 5327 5328 list_for_each_entry(dev, head, unreg_list) 5329 dev_put(dev); 5330 } 5331 5332 static void rollback_registered(struct net_device *dev) 5333 { 5334 LIST_HEAD(single); 5335 5336 list_add(&dev->unreg_list, &single); 5337 rollback_registered_many(&single); 5338 list_del(&single); 5339 } 5340 5341 static netdev_features_t netdev_fix_features(struct net_device *dev, 5342 netdev_features_t features) 5343 { 5344 /* Fix illegal checksum combinations */ 5345 if ((features & NETIF_F_HW_CSUM) && 5346 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5347 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 5348 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5349 } 5350 5351 /* Fix illegal SG+CSUM combinations. */ 5352 if ((features & NETIF_F_SG) && 5353 !(features & NETIF_F_ALL_CSUM)) { 5354 netdev_dbg(dev, 5355 "Dropping NETIF_F_SG since no checksum feature.\n"); 5356 features &= ~NETIF_F_SG; 5357 } 5358 5359 /* TSO requires that SG is present as well. */ 5360 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 5361 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 5362 features &= ~NETIF_F_ALL_TSO; 5363 } 5364 5365 /* TSO ECN requires that TSO is present as well. */ 5366 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 5367 features &= ~NETIF_F_TSO_ECN; 5368 5369 /* Software GSO depends on SG. */ 5370 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 5371 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 5372 features &= ~NETIF_F_GSO; 5373 } 5374 5375 /* UFO needs SG and checksumming */ 5376 if (features & NETIF_F_UFO) { 5377 /* maybe split UFO into V4 and V6? */ 5378 if (!((features & NETIF_F_GEN_CSUM) || 5379 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM)) 5380 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5381 netdev_dbg(dev, 5382 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 5383 features &= ~NETIF_F_UFO; 5384 } 5385 5386 if (!(features & NETIF_F_SG)) { 5387 netdev_dbg(dev, 5388 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 5389 features &= ~NETIF_F_UFO; 5390 } 5391 } 5392 5393 return features; 5394 } 5395 5396 int __netdev_update_features(struct net_device *dev) 5397 { 5398 netdev_features_t features; 5399 int err = 0; 5400 5401 ASSERT_RTNL(); 5402 5403 features = netdev_get_wanted_features(dev); 5404 5405 if (dev->netdev_ops->ndo_fix_features) 5406 features = dev->netdev_ops->ndo_fix_features(dev, features); 5407 5408 /* driver might be less strict about feature dependencies */ 5409 features = netdev_fix_features(dev, features); 5410 5411 if (dev->features == features) 5412 return 0; 5413 5414 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 5415 &dev->features, &features); 5416 5417 if (dev->netdev_ops->ndo_set_features) 5418 err = dev->netdev_ops->ndo_set_features(dev, features); 5419 5420 if (unlikely(err < 0)) { 5421 netdev_err(dev, 5422 "set_features() failed (%d); wanted %pNF, left %pNF\n", 5423 err, &features, &dev->features); 5424 return -1; 5425 } 5426 5427 if (!err) 5428 dev->features = features; 5429 5430 return 1; 5431 } 5432 5433 /** 5434 * netdev_update_features - recalculate device features 5435 * @dev: the device to check 5436 * 5437 * Recalculate dev->features set and send notifications if it 5438 * has changed. Should be called after driver or hardware dependent 5439 * conditions might have changed that influence the features. 5440 */ 5441 void netdev_update_features(struct net_device *dev) 5442 { 5443 if (__netdev_update_features(dev)) 5444 netdev_features_change(dev); 5445 } 5446 EXPORT_SYMBOL(netdev_update_features); 5447 5448 /** 5449 * netdev_change_features - recalculate device features 5450 * @dev: the device to check 5451 * 5452 * Recalculate dev->features set and send notifications even 5453 * if they have not changed. Should be called instead of 5454 * netdev_update_features() if also dev->vlan_features might 5455 * have changed to allow the changes to be propagated to stacked 5456 * VLAN devices. 5457 */ 5458 void netdev_change_features(struct net_device *dev) 5459 { 5460 __netdev_update_features(dev); 5461 netdev_features_change(dev); 5462 } 5463 EXPORT_SYMBOL(netdev_change_features); 5464 5465 /** 5466 * netif_stacked_transfer_operstate - transfer operstate 5467 * @rootdev: the root or lower level device to transfer state from 5468 * @dev: the device to transfer operstate to 5469 * 5470 * Transfer operational state from root to device. This is normally 5471 * called when a stacking relationship exists between the root 5472 * device and the device(a leaf device). 5473 */ 5474 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5475 struct net_device *dev) 5476 { 5477 if (rootdev->operstate == IF_OPER_DORMANT) 5478 netif_dormant_on(dev); 5479 else 5480 netif_dormant_off(dev); 5481 5482 if (netif_carrier_ok(rootdev)) { 5483 if (!netif_carrier_ok(dev)) 5484 netif_carrier_on(dev); 5485 } else { 5486 if (netif_carrier_ok(dev)) 5487 netif_carrier_off(dev); 5488 } 5489 } 5490 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 5491 5492 #ifdef CONFIG_RPS 5493 static int netif_alloc_rx_queues(struct net_device *dev) 5494 { 5495 unsigned int i, count = dev->num_rx_queues; 5496 struct netdev_rx_queue *rx; 5497 5498 BUG_ON(count < 1); 5499 5500 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL); 5501 if (!rx) { 5502 pr_err("netdev: Unable to allocate %u rx queues\n", count); 5503 return -ENOMEM; 5504 } 5505 dev->_rx = rx; 5506 5507 for (i = 0; i < count; i++) 5508 rx[i].dev = dev; 5509 return 0; 5510 } 5511 #endif 5512 5513 static void netdev_init_one_queue(struct net_device *dev, 5514 struct netdev_queue *queue, void *_unused) 5515 { 5516 /* Initialize queue lock */ 5517 spin_lock_init(&queue->_xmit_lock); 5518 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 5519 queue->xmit_lock_owner = -1; 5520 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 5521 queue->dev = dev; 5522 #ifdef CONFIG_BQL 5523 dql_init(&queue->dql, HZ); 5524 #endif 5525 } 5526 5527 static int netif_alloc_netdev_queues(struct net_device *dev) 5528 { 5529 unsigned int count = dev->num_tx_queues; 5530 struct netdev_queue *tx; 5531 5532 BUG_ON(count < 1); 5533 5534 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL); 5535 if (!tx) { 5536 pr_err("netdev: Unable to allocate %u tx queues\n", count); 5537 return -ENOMEM; 5538 } 5539 dev->_tx = tx; 5540 5541 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 5542 spin_lock_init(&dev->tx_global_lock); 5543 5544 return 0; 5545 } 5546 5547 /** 5548 * register_netdevice - register a network device 5549 * @dev: device to register 5550 * 5551 * Take a completed network device structure and add it to the kernel 5552 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5553 * chain. 0 is returned on success. A negative errno code is returned 5554 * on a failure to set up the device, or if the name is a duplicate. 5555 * 5556 * Callers must hold the rtnl semaphore. You may want 5557 * register_netdev() instead of this. 5558 * 5559 * BUGS: 5560 * The locking appears insufficient to guarantee two parallel registers 5561 * will not get the same name. 5562 */ 5563 5564 int register_netdevice(struct net_device *dev) 5565 { 5566 int ret; 5567 struct net *net = dev_net(dev); 5568 5569 BUG_ON(dev_boot_phase); 5570 ASSERT_RTNL(); 5571 5572 might_sleep(); 5573 5574 /* When net_device's are persistent, this will be fatal. */ 5575 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 5576 BUG_ON(!net); 5577 5578 spin_lock_init(&dev->addr_list_lock); 5579 netdev_set_addr_lockdep_class(dev); 5580 5581 dev->iflink = -1; 5582 5583 ret = dev_get_valid_name(dev, dev->name); 5584 if (ret < 0) 5585 goto out; 5586 5587 /* Init, if this function is available */ 5588 if (dev->netdev_ops->ndo_init) { 5589 ret = dev->netdev_ops->ndo_init(dev); 5590 if (ret) { 5591 if (ret > 0) 5592 ret = -EIO; 5593 goto out; 5594 } 5595 } 5596 5597 dev->ifindex = dev_new_index(net); 5598 if (dev->iflink == -1) 5599 dev->iflink = dev->ifindex; 5600 5601 /* Transfer changeable features to wanted_features and enable 5602 * software offloads (GSO and GRO). 5603 */ 5604 dev->hw_features |= NETIF_F_SOFT_FEATURES; 5605 dev->features |= NETIF_F_SOFT_FEATURES; 5606 dev->wanted_features = dev->features & dev->hw_features; 5607 5608 /* Turn on no cache copy if HW is doing checksum */ 5609 if (!(dev->flags & IFF_LOOPBACK)) { 5610 dev->hw_features |= NETIF_F_NOCACHE_COPY; 5611 if (dev->features & NETIF_F_ALL_CSUM) { 5612 dev->wanted_features |= NETIF_F_NOCACHE_COPY; 5613 dev->features |= NETIF_F_NOCACHE_COPY; 5614 } 5615 } 5616 5617 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 5618 */ 5619 dev->vlan_features |= NETIF_F_HIGHDMA; 5620 5621 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 5622 ret = notifier_to_errno(ret); 5623 if (ret) 5624 goto err_uninit; 5625 5626 ret = netdev_register_kobject(dev); 5627 if (ret) 5628 goto err_uninit; 5629 dev->reg_state = NETREG_REGISTERED; 5630 5631 __netdev_update_features(dev); 5632 5633 /* 5634 * Default initial state at registry is that the 5635 * device is present. 5636 */ 5637 5638 set_bit(__LINK_STATE_PRESENT, &dev->state); 5639 5640 dev_init_scheduler(dev); 5641 dev_hold(dev); 5642 list_netdevice(dev); 5643 add_device_randomness(dev->dev_addr, dev->addr_len); 5644 5645 /* Notify protocols, that a new device appeared. */ 5646 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 5647 ret = notifier_to_errno(ret); 5648 if (ret) { 5649 rollback_registered(dev); 5650 dev->reg_state = NETREG_UNREGISTERED; 5651 } 5652 /* 5653 * Prevent userspace races by waiting until the network 5654 * device is fully setup before sending notifications. 5655 */ 5656 if (!dev->rtnl_link_ops || 5657 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5658 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5659 5660 out: 5661 return ret; 5662 5663 err_uninit: 5664 if (dev->netdev_ops->ndo_uninit) 5665 dev->netdev_ops->ndo_uninit(dev); 5666 goto out; 5667 } 5668 EXPORT_SYMBOL(register_netdevice); 5669 5670 /** 5671 * init_dummy_netdev - init a dummy network device for NAPI 5672 * @dev: device to init 5673 * 5674 * This takes a network device structure and initialize the minimum 5675 * amount of fields so it can be used to schedule NAPI polls without 5676 * registering a full blown interface. This is to be used by drivers 5677 * that need to tie several hardware interfaces to a single NAPI 5678 * poll scheduler due to HW limitations. 5679 */ 5680 int init_dummy_netdev(struct net_device *dev) 5681 { 5682 /* Clear everything. Note we don't initialize spinlocks 5683 * are they aren't supposed to be taken by any of the 5684 * NAPI code and this dummy netdev is supposed to be 5685 * only ever used for NAPI polls 5686 */ 5687 memset(dev, 0, sizeof(struct net_device)); 5688 5689 /* make sure we BUG if trying to hit standard 5690 * register/unregister code path 5691 */ 5692 dev->reg_state = NETREG_DUMMY; 5693 5694 /* NAPI wants this */ 5695 INIT_LIST_HEAD(&dev->napi_list); 5696 5697 /* a dummy interface is started by default */ 5698 set_bit(__LINK_STATE_PRESENT, &dev->state); 5699 set_bit(__LINK_STATE_START, &dev->state); 5700 5701 /* Note : We dont allocate pcpu_refcnt for dummy devices, 5702 * because users of this 'device' dont need to change 5703 * its refcount. 5704 */ 5705 5706 return 0; 5707 } 5708 EXPORT_SYMBOL_GPL(init_dummy_netdev); 5709 5710 5711 /** 5712 * register_netdev - register a network device 5713 * @dev: device to register 5714 * 5715 * Take a completed network device structure and add it to the kernel 5716 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5717 * chain. 0 is returned on success. A negative errno code is returned 5718 * on a failure to set up the device, or if the name is a duplicate. 5719 * 5720 * This is a wrapper around register_netdevice that takes the rtnl semaphore 5721 * and expands the device name if you passed a format string to 5722 * alloc_netdev. 5723 */ 5724 int register_netdev(struct net_device *dev) 5725 { 5726 int err; 5727 5728 rtnl_lock(); 5729 err = register_netdevice(dev); 5730 rtnl_unlock(); 5731 return err; 5732 } 5733 EXPORT_SYMBOL(register_netdev); 5734 5735 int netdev_refcnt_read(const struct net_device *dev) 5736 { 5737 int i, refcnt = 0; 5738 5739 for_each_possible_cpu(i) 5740 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 5741 return refcnt; 5742 } 5743 EXPORT_SYMBOL(netdev_refcnt_read); 5744 5745 /** 5746 * netdev_wait_allrefs - wait until all references are gone. 5747 * @dev: target net_device 5748 * 5749 * This is called when unregistering network devices. 5750 * 5751 * Any protocol or device that holds a reference should register 5752 * for netdevice notification, and cleanup and put back the 5753 * reference if they receive an UNREGISTER event. 5754 * We can get stuck here if buggy protocols don't correctly 5755 * call dev_put. 5756 */ 5757 static void netdev_wait_allrefs(struct net_device *dev) 5758 { 5759 unsigned long rebroadcast_time, warning_time; 5760 int refcnt; 5761 5762 linkwatch_forget_dev(dev); 5763 5764 rebroadcast_time = warning_time = jiffies; 5765 refcnt = netdev_refcnt_read(dev); 5766 5767 while (refcnt != 0) { 5768 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 5769 rtnl_lock(); 5770 5771 /* Rebroadcast unregister notification */ 5772 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5773 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users 5774 * should have already handle it the first time */ 5775 5776 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 5777 &dev->state)) { 5778 /* We must not have linkwatch events 5779 * pending on unregister. If this 5780 * happens, we simply run the queue 5781 * unscheduled, resulting in a noop 5782 * for this device. 5783 */ 5784 linkwatch_run_queue(); 5785 } 5786 5787 __rtnl_unlock(); 5788 5789 rebroadcast_time = jiffies; 5790 } 5791 5792 msleep(250); 5793 5794 refcnt = netdev_refcnt_read(dev); 5795 5796 if (time_after(jiffies, warning_time + 10 * HZ)) { 5797 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 5798 dev->name, refcnt); 5799 warning_time = jiffies; 5800 } 5801 } 5802 } 5803 5804 /* The sequence is: 5805 * 5806 * rtnl_lock(); 5807 * ... 5808 * register_netdevice(x1); 5809 * register_netdevice(x2); 5810 * ... 5811 * unregister_netdevice(y1); 5812 * unregister_netdevice(y2); 5813 * ... 5814 * rtnl_unlock(); 5815 * free_netdev(y1); 5816 * free_netdev(y2); 5817 * 5818 * We are invoked by rtnl_unlock(). 5819 * This allows us to deal with problems: 5820 * 1) We can delete sysfs objects which invoke hotplug 5821 * without deadlocking with linkwatch via keventd. 5822 * 2) Since we run with the RTNL semaphore not held, we can sleep 5823 * safely in order to wait for the netdev refcnt to drop to zero. 5824 * 5825 * We must not return until all unregister events added during 5826 * the interval the lock was held have been completed. 5827 */ 5828 void netdev_run_todo(void) 5829 { 5830 struct list_head list; 5831 5832 /* Snapshot list, allow later requests */ 5833 list_replace_init(&net_todo_list, &list); 5834 5835 __rtnl_unlock(); 5836 5837 /* Wait for rcu callbacks to finish before attempting to drain 5838 * the device list. This usually avoids a 250ms wait. 5839 */ 5840 if (!list_empty(&list)) 5841 rcu_barrier(); 5842 5843 while (!list_empty(&list)) { 5844 struct net_device *dev 5845 = list_first_entry(&list, struct net_device, todo_list); 5846 list_del(&dev->todo_list); 5847 5848 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 5849 pr_err("network todo '%s' but state %d\n", 5850 dev->name, dev->reg_state); 5851 dump_stack(); 5852 continue; 5853 } 5854 5855 dev->reg_state = NETREG_UNREGISTERED; 5856 5857 on_each_cpu(flush_backlog, dev, 1); 5858 5859 netdev_wait_allrefs(dev); 5860 5861 /* paranoia */ 5862 BUG_ON(netdev_refcnt_read(dev)); 5863 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 5864 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 5865 WARN_ON(dev->dn_ptr); 5866 5867 if (dev->destructor) 5868 dev->destructor(dev); 5869 5870 /* Free network device */ 5871 kobject_put(&dev->dev.kobj); 5872 } 5873 } 5874 5875 /* Convert net_device_stats to rtnl_link_stats64. They have the same 5876 * fields in the same order, with only the type differing. 5877 */ 5878 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 5879 const struct net_device_stats *netdev_stats) 5880 { 5881 #if BITS_PER_LONG == 64 5882 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 5883 memcpy(stats64, netdev_stats, sizeof(*stats64)); 5884 #else 5885 size_t i, n = sizeof(*stats64) / sizeof(u64); 5886 const unsigned long *src = (const unsigned long *)netdev_stats; 5887 u64 *dst = (u64 *)stats64; 5888 5889 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 5890 sizeof(*stats64) / sizeof(u64)); 5891 for (i = 0; i < n; i++) 5892 dst[i] = src[i]; 5893 #endif 5894 } 5895 EXPORT_SYMBOL(netdev_stats_to_stats64); 5896 5897 /** 5898 * dev_get_stats - get network device statistics 5899 * @dev: device to get statistics from 5900 * @storage: place to store stats 5901 * 5902 * Get network statistics from device. Return @storage. 5903 * The device driver may provide its own method by setting 5904 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 5905 * otherwise the internal statistics structure is used. 5906 */ 5907 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 5908 struct rtnl_link_stats64 *storage) 5909 { 5910 const struct net_device_ops *ops = dev->netdev_ops; 5911 5912 if (ops->ndo_get_stats64) { 5913 memset(storage, 0, sizeof(*storage)); 5914 ops->ndo_get_stats64(dev, storage); 5915 } else if (ops->ndo_get_stats) { 5916 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 5917 } else { 5918 netdev_stats_to_stats64(storage, &dev->stats); 5919 } 5920 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 5921 return storage; 5922 } 5923 EXPORT_SYMBOL(dev_get_stats); 5924 5925 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 5926 { 5927 struct netdev_queue *queue = dev_ingress_queue(dev); 5928 5929 #ifdef CONFIG_NET_CLS_ACT 5930 if (queue) 5931 return queue; 5932 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 5933 if (!queue) 5934 return NULL; 5935 netdev_init_one_queue(dev, queue, NULL); 5936 queue->qdisc = &noop_qdisc; 5937 queue->qdisc_sleeping = &noop_qdisc; 5938 rcu_assign_pointer(dev->ingress_queue, queue); 5939 #endif 5940 return queue; 5941 } 5942 5943 /** 5944 * alloc_netdev_mqs - allocate network device 5945 * @sizeof_priv: size of private data to allocate space for 5946 * @name: device name format string 5947 * @setup: callback to initialize device 5948 * @txqs: the number of TX subqueues to allocate 5949 * @rxqs: the number of RX subqueues to allocate 5950 * 5951 * Allocates a struct net_device with private data area for driver use 5952 * and performs basic initialization. Also allocates subquue structs 5953 * for each queue on the device. 5954 */ 5955 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 5956 void (*setup)(struct net_device *), 5957 unsigned int txqs, unsigned int rxqs) 5958 { 5959 struct net_device *dev; 5960 size_t alloc_size; 5961 struct net_device *p; 5962 5963 BUG_ON(strlen(name) >= sizeof(dev->name)); 5964 5965 if (txqs < 1) { 5966 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 5967 return NULL; 5968 } 5969 5970 #ifdef CONFIG_RPS 5971 if (rxqs < 1) { 5972 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 5973 return NULL; 5974 } 5975 #endif 5976 5977 alloc_size = sizeof(struct net_device); 5978 if (sizeof_priv) { 5979 /* ensure 32-byte alignment of private area */ 5980 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 5981 alloc_size += sizeof_priv; 5982 } 5983 /* ensure 32-byte alignment of whole construct */ 5984 alloc_size += NETDEV_ALIGN - 1; 5985 5986 p = kzalloc(alloc_size, GFP_KERNEL); 5987 if (!p) { 5988 pr_err("alloc_netdev: Unable to allocate device\n"); 5989 return NULL; 5990 } 5991 5992 dev = PTR_ALIGN(p, NETDEV_ALIGN); 5993 dev->padded = (char *)dev - (char *)p; 5994 5995 dev->pcpu_refcnt = alloc_percpu(int); 5996 if (!dev->pcpu_refcnt) 5997 goto free_p; 5998 5999 if (dev_addr_init(dev)) 6000 goto free_pcpu; 6001 6002 dev_mc_init(dev); 6003 dev_uc_init(dev); 6004 6005 dev_net_set(dev, &init_net); 6006 6007 dev->gso_max_size = GSO_MAX_SIZE; 6008 dev->gso_max_segs = GSO_MAX_SEGS; 6009 6010 INIT_LIST_HEAD(&dev->napi_list); 6011 INIT_LIST_HEAD(&dev->unreg_list); 6012 INIT_LIST_HEAD(&dev->link_watch_list); 6013 dev->priv_flags = IFF_XMIT_DST_RELEASE; 6014 setup(dev); 6015 6016 dev->num_tx_queues = txqs; 6017 dev->real_num_tx_queues = txqs; 6018 if (netif_alloc_netdev_queues(dev)) 6019 goto free_all; 6020 6021 #ifdef CONFIG_RPS 6022 dev->num_rx_queues = rxqs; 6023 dev->real_num_rx_queues = rxqs; 6024 if (netif_alloc_rx_queues(dev)) 6025 goto free_all; 6026 #endif 6027 6028 strcpy(dev->name, name); 6029 dev->group = INIT_NETDEV_GROUP; 6030 return dev; 6031 6032 free_all: 6033 free_netdev(dev); 6034 return NULL; 6035 6036 free_pcpu: 6037 free_percpu(dev->pcpu_refcnt); 6038 kfree(dev->_tx); 6039 #ifdef CONFIG_RPS 6040 kfree(dev->_rx); 6041 #endif 6042 6043 free_p: 6044 kfree(p); 6045 return NULL; 6046 } 6047 EXPORT_SYMBOL(alloc_netdev_mqs); 6048 6049 /** 6050 * free_netdev - free network device 6051 * @dev: device 6052 * 6053 * This function does the last stage of destroying an allocated device 6054 * interface. The reference to the device object is released. 6055 * If this is the last reference then it will be freed. 6056 */ 6057 void free_netdev(struct net_device *dev) 6058 { 6059 struct napi_struct *p, *n; 6060 6061 release_net(dev_net(dev)); 6062 6063 kfree(dev->_tx); 6064 #ifdef CONFIG_RPS 6065 kfree(dev->_rx); 6066 #endif 6067 6068 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 6069 6070 /* Flush device addresses */ 6071 dev_addr_flush(dev); 6072 6073 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 6074 netif_napi_del(p); 6075 6076 free_percpu(dev->pcpu_refcnt); 6077 dev->pcpu_refcnt = NULL; 6078 6079 /* Compatibility with error handling in drivers */ 6080 if (dev->reg_state == NETREG_UNINITIALIZED) { 6081 kfree((char *)dev - dev->padded); 6082 return; 6083 } 6084 6085 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 6086 dev->reg_state = NETREG_RELEASED; 6087 6088 /* will free via device release */ 6089 put_device(&dev->dev); 6090 } 6091 EXPORT_SYMBOL(free_netdev); 6092 6093 /** 6094 * synchronize_net - Synchronize with packet receive processing 6095 * 6096 * Wait for packets currently being received to be done. 6097 * Does not block later packets from starting. 6098 */ 6099 void synchronize_net(void) 6100 { 6101 might_sleep(); 6102 if (rtnl_is_locked()) 6103 synchronize_rcu_expedited(); 6104 else 6105 synchronize_rcu(); 6106 } 6107 EXPORT_SYMBOL(synchronize_net); 6108 6109 /** 6110 * unregister_netdevice_queue - remove device from the kernel 6111 * @dev: device 6112 * @head: list 6113 * 6114 * This function shuts down a device interface and removes it 6115 * from the kernel tables. 6116 * If head not NULL, device is queued to be unregistered later. 6117 * 6118 * Callers must hold the rtnl semaphore. You may want 6119 * unregister_netdev() instead of this. 6120 */ 6121 6122 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 6123 { 6124 ASSERT_RTNL(); 6125 6126 if (head) { 6127 list_move_tail(&dev->unreg_list, head); 6128 } else { 6129 rollback_registered(dev); 6130 /* Finish processing unregister after unlock */ 6131 net_set_todo(dev); 6132 } 6133 } 6134 EXPORT_SYMBOL(unregister_netdevice_queue); 6135 6136 /** 6137 * unregister_netdevice_many - unregister many devices 6138 * @head: list of devices 6139 */ 6140 void unregister_netdevice_many(struct list_head *head) 6141 { 6142 struct net_device *dev; 6143 6144 if (!list_empty(head)) { 6145 rollback_registered_many(head); 6146 list_for_each_entry(dev, head, unreg_list) 6147 net_set_todo(dev); 6148 } 6149 } 6150 EXPORT_SYMBOL(unregister_netdevice_many); 6151 6152 /** 6153 * unregister_netdev - remove device from the kernel 6154 * @dev: device 6155 * 6156 * This function shuts down a device interface and removes it 6157 * from the kernel tables. 6158 * 6159 * This is just a wrapper for unregister_netdevice that takes 6160 * the rtnl semaphore. In general you want to use this and not 6161 * unregister_netdevice. 6162 */ 6163 void unregister_netdev(struct net_device *dev) 6164 { 6165 rtnl_lock(); 6166 unregister_netdevice(dev); 6167 rtnl_unlock(); 6168 } 6169 EXPORT_SYMBOL(unregister_netdev); 6170 6171 /** 6172 * dev_change_net_namespace - move device to different nethost namespace 6173 * @dev: device 6174 * @net: network namespace 6175 * @pat: If not NULL name pattern to try if the current device name 6176 * is already taken in the destination network namespace. 6177 * 6178 * This function shuts down a device interface and moves it 6179 * to a new network namespace. On success 0 is returned, on 6180 * a failure a netagive errno code is returned. 6181 * 6182 * Callers must hold the rtnl semaphore. 6183 */ 6184 6185 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 6186 { 6187 int err; 6188 6189 ASSERT_RTNL(); 6190 6191 /* Don't allow namespace local devices to be moved. */ 6192 err = -EINVAL; 6193 if (dev->features & NETIF_F_NETNS_LOCAL) 6194 goto out; 6195 6196 /* Ensure the device has been registrered */ 6197 err = -EINVAL; 6198 if (dev->reg_state != NETREG_REGISTERED) 6199 goto out; 6200 6201 /* Get out if there is nothing todo */ 6202 err = 0; 6203 if (net_eq(dev_net(dev), net)) 6204 goto out; 6205 6206 /* Pick the destination device name, and ensure 6207 * we can use it in the destination network namespace. 6208 */ 6209 err = -EEXIST; 6210 if (__dev_get_by_name(net, dev->name)) { 6211 /* We get here if we can't use the current device name */ 6212 if (!pat) 6213 goto out; 6214 if (dev_get_valid_name(dev, pat) < 0) 6215 goto out; 6216 } 6217 6218 /* 6219 * And now a mini version of register_netdevice unregister_netdevice. 6220 */ 6221 6222 /* If device is running close it first. */ 6223 dev_close(dev); 6224 6225 /* And unlink it from device chain */ 6226 err = -ENODEV; 6227 unlist_netdevice(dev); 6228 6229 synchronize_net(); 6230 6231 /* Shutdown queueing discipline. */ 6232 dev_shutdown(dev); 6233 6234 /* Notify protocols, that we are about to destroy 6235 this device. They should clean all the things. 6236 6237 Note that dev->reg_state stays at NETREG_REGISTERED. 6238 This is wanted because this way 8021q and macvlan know 6239 the device is just moving and can keep their slaves up. 6240 */ 6241 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6242 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 6243 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 6244 6245 /* 6246 * Flush the unicast and multicast chains 6247 */ 6248 dev_uc_flush(dev); 6249 dev_mc_flush(dev); 6250 6251 /* Actually switch the network namespace */ 6252 dev_net_set(dev, net); 6253 6254 /* If there is an ifindex conflict assign a new one */ 6255 if (__dev_get_by_index(net, dev->ifindex)) { 6256 int iflink = (dev->iflink == dev->ifindex); 6257 dev->ifindex = dev_new_index(net); 6258 if (iflink) 6259 dev->iflink = dev->ifindex; 6260 } 6261 6262 /* Fixup kobjects */ 6263 err = device_rename(&dev->dev, dev->name); 6264 WARN_ON(err); 6265 6266 /* Add the device back in the hashes */ 6267 list_netdevice(dev); 6268 6269 /* Notify protocols, that a new device appeared. */ 6270 call_netdevice_notifiers(NETDEV_REGISTER, dev); 6271 6272 /* 6273 * Prevent userspace races by waiting until the network 6274 * device is fully setup before sending notifications. 6275 */ 6276 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 6277 6278 synchronize_net(); 6279 err = 0; 6280 out: 6281 return err; 6282 } 6283 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 6284 6285 static int dev_cpu_callback(struct notifier_block *nfb, 6286 unsigned long action, 6287 void *ocpu) 6288 { 6289 struct sk_buff **list_skb; 6290 struct sk_buff *skb; 6291 unsigned int cpu, oldcpu = (unsigned long)ocpu; 6292 struct softnet_data *sd, *oldsd; 6293 6294 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 6295 return NOTIFY_OK; 6296 6297 local_irq_disable(); 6298 cpu = smp_processor_id(); 6299 sd = &per_cpu(softnet_data, cpu); 6300 oldsd = &per_cpu(softnet_data, oldcpu); 6301 6302 /* Find end of our completion_queue. */ 6303 list_skb = &sd->completion_queue; 6304 while (*list_skb) 6305 list_skb = &(*list_skb)->next; 6306 /* Append completion queue from offline CPU. */ 6307 *list_skb = oldsd->completion_queue; 6308 oldsd->completion_queue = NULL; 6309 6310 /* Append output queue from offline CPU. */ 6311 if (oldsd->output_queue) { 6312 *sd->output_queue_tailp = oldsd->output_queue; 6313 sd->output_queue_tailp = oldsd->output_queue_tailp; 6314 oldsd->output_queue = NULL; 6315 oldsd->output_queue_tailp = &oldsd->output_queue; 6316 } 6317 /* Append NAPI poll list from offline CPU. */ 6318 if (!list_empty(&oldsd->poll_list)) { 6319 list_splice_init(&oldsd->poll_list, &sd->poll_list); 6320 raise_softirq_irqoff(NET_RX_SOFTIRQ); 6321 } 6322 6323 raise_softirq_irqoff(NET_TX_SOFTIRQ); 6324 local_irq_enable(); 6325 6326 /* Process offline CPU's input_pkt_queue */ 6327 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 6328 netif_rx(skb); 6329 input_queue_head_incr(oldsd); 6330 } 6331 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) { 6332 netif_rx(skb); 6333 input_queue_head_incr(oldsd); 6334 } 6335 6336 return NOTIFY_OK; 6337 } 6338 6339 6340 /** 6341 * netdev_increment_features - increment feature set by one 6342 * @all: current feature set 6343 * @one: new feature set 6344 * @mask: mask feature set 6345 * 6346 * Computes a new feature set after adding a device with feature set 6347 * @one to the master device with current feature set @all. Will not 6348 * enable anything that is off in @mask. Returns the new feature set. 6349 */ 6350 netdev_features_t netdev_increment_features(netdev_features_t all, 6351 netdev_features_t one, netdev_features_t mask) 6352 { 6353 if (mask & NETIF_F_GEN_CSUM) 6354 mask |= NETIF_F_ALL_CSUM; 6355 mask |= NETIF_F_VLAN_CHALLENGED; 6356 6357 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask; 6358 all &= one | ~NETIF_F_ALL_FOR_ALL; 6359 6360 /* If one device supports hw checksumming, set for all. */ 6361 if (all & NETIF_F_GEN_CSUM) 6362 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 6363 6364 return all; 6365 } 6366 EXPORT_SYMBOL(netdev_increment_features); 6367 6368 static struct hlist_head *netdev_create_hash(void) 6369 { 6370 int i; 6371 struct hlist_head *hash; 6372 6373 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 6374 if (hash != NULL) 6375 for (i = 0; i < NETDEV_HASHENTRIES; i++) 6376 INIT_HLIST_HEAD(&hash[i]); 6377 6378 return hash; 6379 } 6380 6381 /* Initialize per network namespace state */ 6382 static int __net_init netdev_init(struct net *net) 6383 { 6384 if (net != &init_net) 6385 INIT_LIST_HEAD(&net->dev_base_head); 6386 6387 net->dev_name_head = netdev_create_hash(); 6388 if (net->dev_name_head == NULL) 6389 goto err_name; 6390 6391 net->dev_index_head = netdev_create_hash(); 6392 if (net->dev_index_head == NULL) 6393 goto err_idx; 6394 6395 return 0; 6396 6397 err_idx: 6398 kfree(net->dev_name_head); 6399 err_name: 6400 return -ENOMEM; 6401 } 6402 6403 /** 6404 * netdev_drivername - network driver for the device 6405 * @dev: network device 6406 * 6407 * Determine network driver for device. 6408 */ 6409 const char *netdev_drivername(const struct net_device *dev) 6410 { 6411 const struct device_driver *driver; 6412 const struct device *parent; 6413 const char *empty = ""; 6414 6415 parent = dev->dev.parent; 6416 if (!parent) 6417 return empty; 6418 6419 driver = parent->driver; 6420 if (driver && driver->name) 6421 return driver->name; 6422 return empty; 6423 } 6424 6425 int __netdev_printk(const char *level, const struct net_device *dev, 6426 struct va_format *vaf) 6427 { 6428 int r; 6429 6430 if (dev && dev->dev.parent) 6431 r = dev_printk(level, dev->dev.parent, "%s: %pV", 6432 netdev_name(dev), vaf); 6433 else if (dev) 6434 r = printk("%s%s: %pV", level, netdev_name(dev), vaf); 6435 else 6436 r = printk("%s(NULL net_device): %pV", level, vaf); 6437 6438 return r; 6439 } 6440 EXPORT_SYMBOL(__netdev_printk); 6441 6442 int netdev_printk(const char *level, const struct net_device *dev, 6443 const char *format, ...) 6444 { 6445 struct va_format vaf; 6446 va_list args; 6447 int r; 6448 6449 va_start(args, format); 6450 6451 vaf.fmt = format; 6452 vaf.va = &args; 6453 6454 r = __netdev_printk(level, dev, &vaf); 6455 va_end(args); 6456 6457 return r; 6458 } 6459 EXPORT_SYMBOL(netdev_printk); 6460 6461 #define define_netdev_printk_level(func, level) \ 6462 int func(const struct net_device *dev, const char *fmt, ...) \ 6463 { \ 6464 int r; \ 6465 struct va_format vaf; \ 6466 va_list args; \ 6467 \ 6468 va_start(args, fmt); \ 6469 \ 6470 vaf.fmt = fmt; \ 6471 vaf.va = &args; \ 6472 \ 6473 r = __netdev_printk(level, dev, &vaf); \ 6474 va_end(args); \ 6475 \ 6476 return r; \ 6477 } \ 6478 EXPORT_SYMBOL(func); 6479 6480 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 6481 define_netdev_printk_level(netdev_alert, KERN_ALERT); 6482 define_netdev_printk_level(netdev_crit, KERN_CRIT); 6483 define_netdev_printk_level(netdev_err, KERN_ERR); 6484 define_netdev_printk_level(netdev_warn, KERN_WARNING); 6485 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 6486 define_netdev_printk_level(netdev_info, KERN_INFO); 6487 6488 static void __net_exit netdev_exit(struct net *net) 6489 { 6490 kfree(net->dev_name_head); 6491 kfree(net->dev_index_head); 6492 } 6493 6494 static struct pernet_operations __net_initdata netdev_net_ops = { 6495 .init = netdev_init, 6496 .exit = netdev_exit, 6497 }; 6498 6499 static void __net_exit default_device_exit(struct net *net) 6500 { 6501 struct net_device *dev, *aux; 6502 /* 6503 * Push all migratable network devices back to the 6504 * initial network namespace 6505 */ 6506 rtnl_lock(); 6507 for_each_netdev_safe(net, dev, aux) { 6508 int err; 6509 char fb_name[IFNAMSIZ]; 6510 6511 /* Ignore unmoveable devices (i.e. loopback) */ 6512 if (dev->features & NETIF_F_NETNS_LOCAL) 6513 continue; 6514 6515 /* Leave virtual devices for the generic cleanup */ 6516 if (dev->rtnl_link_ops) 6517 continue; 6518 6519 /* Push remaining network devices to init_net */ 6520 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 6521 err = dev_change_net_namespace(dev, &init_net, fb_name); 6522 if (err) { 6523 pr_emerg("%s: failed to move %s to init_net: %d\n", 6524 __func__, dev->name, err); 6525 BUG(); 6526 } 6527 } 6528 rtnl_unlock(); 6529 } 6530 6531 static void __net_exit default_device_exit_batch(struct list_head *net_list) 6532 { 6533 /* At exit all network devices most be removed from a network 6534 * namespace. Do this in the reverse order of registration. 6535 * Do this across as many network namespaces as possible to 6536 * improve batching efficiency. 6537 */ 6538 struct net_device *dev; 6539 struct net *net; 6540 LIST_HEAD(dev_kill_list); 6541 6542 rtnl_lock(); 6543 list_for_each_entry(net, net_list, exit_list) { 6544 for_each_netdev_reverse(net, dev) { 6545 if (dev->rtnl_link_ops) 6546 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 6547 else 6548 unregister_netdevice_queue(dev, &dev_kill_list); 6549 } 6550 } 6551 unregister_netdevice_many(&dev_kill_list); 6552 list_del(&dev_kill_list); 6553 rtnl_unlock(); 6554 } 6555 6556 static struct pernet_operations __net_initdata default_device_ops = { 6557 .exit = default_device_exit, 6558 .exit_batch = default_device_exit_batch, 6559 }; 6560 6561 /* 6562 * Initialize the DEV module. At boot time this walks the device list and 6563 * unhooks any devices that fail to initialise (normally hardware not 6564 * present) and leaves us with a valid list of present and active devices. 6565 * 6566 */ 6567 6568 /* 6569 * This is called single threaded during boot, so no need 6570 * to take the rtnl semaphore. 6571 */ 6572 static int __init net_dev_init(void) 6573 { 6574 int i, rc = -ENOMEM; 6575 6576 BUG_ON(!dev_boot_phase); 6577 6578 if (dev_proc_init()) 6579 goto out; 6580 6581 if (netdev_kobject_init()) 6582 goto out; 6583 6584 INIT_LIST_HEAD(&ptype_all); 6585 for (i = 0; i < PTYPE_HASH_SIZE; i++) 6586 INIT_LIST_HEAD(&ptype_base[i]); 6587 6588 if (register_pernet_subsys(&netdev_net_ops)) 6589 goto out; 6590 6591 /* 6592 * Initialise the packet receive queues. 6593 */ 6594 6595 for_each_possible_cpu(i) { 6596 struct softnet_data *sd = &per_cpu(softnet_data, i); 6597 6598 memset(sd, 0, sizeof(*sd)); 6599 skb_queue_head_init(&sd->input_pkt_queue); 6600 skb_queue_head_init(&sd->process_queue); 6601 sd->completion_queue = NULL; 6602 INIT_LIST_HEAD(&sd->poll_list); 6603 sd->output_queue = NULL; 6604 sd->output_queue_tailp = &sd->output_queue; 6605 #ifdef CONFIG_RPS 6606 sd->csd.func = rps_trigger_softirq; 6607 sd->csd.info = sd; 6608 sd->csd.flags = 0; 6609 sd->cpu = i; 6610 #endif 6611 6612 sd->backlog.poll = process_backlog; 6613 sd->backlog.weight = weight_p; 6614 sd->backlog.gro_list = NULL; 6615 sd->backlog.gro_count = 0; 6616 } 6617 6618 dev_boot_phase = 0; 6619 6620 /* The loopback device is special if any other network devices 6621 * is present in a network namespace the loopback device must 6622 * be present. Since we now dynamically allocate and free the 6623 * loopback device ensure this invariant is maintained by 6624 * keeping the loopback device as the first device on the 6625 * list of network devices. Ensuring the loopback devices 6626 * is the first device that appears and the last network device 6627 * that disappears. 6628 */ 6629 if (register_pernet_device(&loopback_net_ops)) 6630 goto out; 6631 6632 if (register_pernet_device(&default_device_ops)) 6633 goto out; 6634 6635 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 6636 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 6637 6638 hotcpu_notifier(dev_cpu_callback, 0); 6639 dst_init(); 6640 dev_mcast_init(); 6641 rc = 0; 6642 out: 6643 return rc; 6644 } 6645 6646 subsys_initcall(net_dev_init); 6647 6648 static int __init initialize_hashrnd(void) 6649 { 6650 get_random_bytes(&hashrnd, sizeof(hashrnd)); 6651 return 0; 6652 } 6653 6654 late_initcall_sync(initialize_hashrnd); 6655 6656