xref: /openbmc/linux/net/core/dev.c (revision 95e9fd10)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/net_tstamp.h>
136 #include <linux/static_key.h>
137 #include <net/flow_keys.h>
138 
139 #include "net-sysfs.h"
140 
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
143 
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
146 
147 /*
148  *	The list of packet types we will receive (as opposed to discard)
149  *	and the routines to invoke.
150  *
151  *	Why 16. Because with 16 the only overlap we get on a hash of the
152  *	low nibble of the protocol value is RARP/SNAP/X.25.
153  *
154  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
155  *             sure which should go first, but I bet it won't make much
156  *             difference if we are running VLANs.  The good news is that
157  *             this protocol won't be in the list unless compiled in, so
158  *             the average user (w/out VLANs) will not be adversely affected.
159  *             --BLG
160  *
161  *		0800	IP
162  *		8100    802.1Q VLAN
163  *		0001	802.3
164  *		0002	AX.25
165  *		0004	802.2
166  *		8035	RARP
167  *		0005	SNAP
168  *		0805	X.25
169  *		0806	ARP
170  *		8137	IPX
171  *		0009	Localtalk
172  *		86DD	IPv6
173  */
174 
175 #define PTYPE_HASH_SIZE	(16)
176 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
177 
178 static DEFINE_SPINLOCK(ptype_lock);
179 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
180 static struct list_head ptype_all __read_mostly;	/* Taps */
181 
182 /*
183  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
184  * semaphore.
185  *
186  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
187  *
188  * Writers must hold the rtnl semaphore while they loop through the
189  * dev_base_head list, and hold dev_base_lock for writing when they do the
190  * actual updates.  This allows pure readers to access the list even
191  * while a writer is preparing to update it.
192  *
193  * To put it another way, dev_base_lock is held for writing only to
194  * protect against pure readers; the rtnl semaphore provides the
195  * protection against other writers.
196  *
197  * See, for example usages, register_netdevice() and
198  * unregister_netdevice(), which must be called with the rtnl
199  * semaphore held.
200  */
201 DEFINE_RWLOCK(dev_base_lock);
202 EXPORT_SYMBOL(dev_base_lock);
203 
204 static inline void dev_base_seq_inc(struct net *net)
205 {
206 	while (++net->dev_base_seq == 0);
207 }
208 
209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 {
211 	unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
212 
213 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214 }
215 
216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 {
218 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219 }
220 
221 static inline void rps_lock(struct softnet_data *sd)
222 {
223 #ifdef CONFIG_RPS
224 	spin_lock(&sd->input_pkt_queue.lock);
225 #endif
226 }
227 
228 static inline void rps_unlock(struct softnet_data *sd)
229 {
230 #ifdef CONFIG_RPS
231 	spin_unlock(&sd->input_pkt_queue.lock);
232 #endif
233 }
234 
235 /* Device list insertion */
236 static int list_netdevice(struct net_device *dev)
237 {
238 	struct net *net = dev_net(dev);
239 
240 	ASSERT_RTNL();
241 
242 	write_lock_bh(&dev_base_lock);
243 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
244 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
245 	hlist_add_head_rcu(&dev->index_hlist,
246 			   dev_index_hash(net, dev->ifindex));
247 	write_unlock_bh(&dev_base_lock);
248 
249 	dev_base_seq_inc(net);
250 
251 	return 0;
252 }
253 
254 /* Device list removal
255  * caller must respect a RCU grace period before freeing/reusing dev
256  */
257 static void unlist_netdevice(struct net_device *dev)
258 {
259 	ASSERT_RTNL();
260 
261 	/* Unlink dev from the device chain */
262 	write_lock_bh(&dev_base_lock);
263 	list_del_rcu(&dev->dev_list);
264 	hlist_del_rcu(&dev->name_hlist);
265 	hlist_del_rcu(&dev->index_hlist);
266 	write_unlock_bh(&dev_base_lock);
267 
268 	dev_base_seq_inc(dev_net(dev));
269 }
270 
271 /*
272  *	Our notifier list
273  */
274 
275 static RAW_NOTIFIER_HEAD(netdev_chain);
276 
277 /*
278  *	Device drivers call our routines to queue packets here. We empty the
279  *	queue in the local softnet handler.
280  */
281 
282 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
283 EXPORT_PER_CPU_SYMBOL(softnet_data);
284 
285 #ifdef CONFIG_LOCKDEP
286 /*
287  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
288  * according to dev->type
289  */
290 static const unsigned short netdev_lock_type[] =
291 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
292 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
293 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
294 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
295 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
296 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
297 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
298 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
299 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
300 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
301 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
302 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
303 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
304 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
305 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
306 
307 static const char *const netdev_lock_name[] =
308 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
309 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
310 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
311 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
312 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
313 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
314 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
315 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
316 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
317 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
318 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
319 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
320 	 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
321 	 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
322 	 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
323 
324 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
325 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
326 
327 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
328 {
329 	int i;
330 
331 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
332 		if (netdev_lock_type[i] == dev_type)
333 			return i;
334 	/* the last key is used by default */
335 	return ARRAY_SIZE(netdev_lock_type) - 1;
336 }
337 
338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
339 						 unsigned short dev_type)
340 {
341 	int i;
342 
343 	i = netdev_lock_pos(dev_type);
344 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
345 				   netdev_lock_name[i]);
346 }
347 
348 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
349 {
350 	int i;
351 
352 	i = netdev_lock_pos(dev->type);
353 	lockdep_set_class_and_name(&dev->addr_list_lock,
354 				   &netdev_addr_lock_key[i],
355 				   netdev_lock_name[i]);
356 }
357 #else
358 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
359 						 unsigned short dev_type)
360 {
361 }
362 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
363 {
364 }
365 #endif
366 
367 /*******************************************************************************
368 
369 		Protocol management and registration routines
370 
371 *******************************************************************************/
372 
373 /*
374  *	Add a protocol ID to the list. Now that the input handler is
375  *	smarter we can dispense with all the messy stuff that used to be
376  *	here.
377  *
378  *	BEWARE!!! Protocol handlers, mangling input packets,
379  *	MUST BE last in hash buckets and checking protocol handlers
380  *	MUST start from promiscuous ptype_all chain in net_bh.
381  *	It is true now, do not change it.
382  *	Explanation follows: if protocol handler, mangling packet, will
383  *	be the first on list, it is not able to sense, that packet
384  *	is cloned and should be copied-on-write, so that it will
385  *	change it and subsequent readers will get broken packet.
386  *							--ANK (980803)
387  */
388 
389 static inline struct list_head *ptype_head(const struct packet_type *pt)
390 {
391 	if (pt->type == htons(ETH_P_ALL))
392 		return &ptype_all;
393 	else
394 		return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
395 }
396 
397 /**
398  *	dev_add_pack - add packet handler
399  *	@pt: packet type declaration
400  *
401  *	Add a protocol handler to the networking stack. The passed &packet_type
402  *	is linked into kernel lists and may not be freed until it has been
403  *	removed from the kernel lists.
404  *
405  *	This call does not sleep therefore it can not
406  *	guarantee all CPU's that are in middle of receiving packets
407  *	will see the new packet type (until the next received packet).
408  */
409 
410 void dev_add_pack(struct packet_type *pt)
411 {
412 	struct list_head *head = ptype_head(pt);
413 
414 	spin_lock(&ptype_lock);
415 	list_add_rcu(&pt->list, head);
416 	spin_unlock(&ptype_lock);
417 }
418 EXPORT_SYMBOL(dev_add_pack);
419 
420 /**
421  *	__dev_remove_pack	 - remove packet handler
422  *	@pt: packet type declaration
423  *
424  *	Remove a protocol handler that was previously added to the kernel
425  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
426  *	from the kernel lists and can be freed or reused once this function
427  *	returns.
428  *
429  *      The packet type might still be in use by receivers
430  *	and must not be freed until after all the CPU's have gone
431  *	through a quiescent state.
432  */
433 void __dev_remove_pack(struct packet_type *pt)
434 {
435 	struct list_head *head = ptype_head(pt);
436 	struct packet_type *pt1;
437 
438 	spin_lock(&ptype_lock);
439 
440 	list_for_each_entry(pt1, head, list) {
441 		if (pt == pt1) {
442 			list_del_rcu(&pt->list);
443 			goto out;
444 		}
445 	}
446 
447 	pr_warn("dev_remove_pack: %p not found\n", pt);
448 out:
449 	spin_unlock(&ptype_lock);
450 }
451 EXPORT_SYMBOL(__dev_remove_pack);
452 
453 /**
454  *	dev_remove_pack	 - remove packet handler
455  *	@pt: packet type declaration
456  *
457  *	Remove a protocol handler that was previously added to the kernel
458  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
459  *	from the kernel lists and can be freed or reused once this function
460  *	returns.
461  *
462  *	This call sleeps to guarantee that no CPU is looking at the packet
463  *	type after return.
464  */
465 void dev_remove_pack(struct packet_type *pt)
466 {
467 	__dev_remove_pack(pt);
468 
469 	synchronize_net();
470 }
471 EXPORT_SYMBOL(dev_remove_pack);
472 
473 /******************************************************************************
474 
475 		      Device Boot-time Settings Routines
476 
477 *******************************************************************************/
478 
479 /* Boot time configuration table */
480 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
481 
482 /**
483  *	netdev_boot_setup_add	- add new setup entry
484  *	@name: name of the device
485  *	@map: configured settings for the device
486  *
487  *	Adds new setup entry to the dev_boot_setup list.  The function
488  *	returns 0 on error and 1 on success.  This is a generic routine to
489  *	all netdevices.
490  */
491 static int netdev_boot_setup_add(char *name, struct ifmap *map)
492 {
493 	struct netdev_boot_setup *s;
494 	int i;
495 
496 	s = dev_boot_setup;
497 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
498 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
499 			memset(s[i].name, 0, sizeof(s[i].name));
500 			strlcpy(s[i].name, name, IFNAMSIZ);
501 			memcpy(&s[i].map, map, sizeof(s[i].map));
502 			break;
503 		}
504 	}
505 
506 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
507 }
508 
509 /**
510  *	netdev_boot_setup_check	- check boot time settings
511  *	@dev: the netdevice
512  *
513  * 	Check boot time settings for the device.
514  *	The found settings are set for the device to be used
515  *	later in the device probing.
516  *	Returns 0 if no settings found, 1 if they are.
517  */
518 int netdev_boot_setup_check(struct net_device *dev)
519 {
520 	struct netdev_boot_setup *s = dev_boot_setup;
521 	int i;
522 
523 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
524 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
525 		    !strcmp(dev->name, s[i].name)) {
526 			dev->irq 	= s[i].map.irq;
527 			dev->base_addr 	= s[i].map.base_addr;
528 			dev->mem_start 	= s[i].map.mem_start;
529 			dev->mem_end 	= s[i].map.mem_end;
530 			return 1;
531 		}
532 	}
533 	return 0;
534 }
535 EXPORT_SYMBOL(netdev_boot_setup_check);
536 
537 
538 /**
539  *	netdev_boot_base	- get address from boot time settings
540  *	@prefix: prefix for network device
541  *	@unit: id for network device
542  *
543  * 	Check boot time settings for the base address of device.
544  *	The found settings are set for the device to be used
545  *	later in the device probing.
546  *	Returns 0 if no settings found.
547  */
548 unsigned long netdev_boot_base(const char *prefix, int unit)
549 {
550 	const struct netdev_boot_setup *s = dev_boot_setup;
551 	char name[IFNAMSIZ];
552 	int i;
553 
554 	sprintf(name, "%s%d", prefix, unit);
555 
556 	/*
557 	 * If device already registered then return base of 1
558 	 * to indicate not to probe for this interface
559 	 */
560 	if (__dev_get_by_name(&init_net, name))
561 		return 1;
562 
563 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
564 		if (!strcmp(name, s[i].name))
565 			return s[i].map.base_addr;
566 	return 0;
567 }
568 
569 /*
570  * Saves at boot time configured settings for any netdevice.
571  */
572 int __init netdev_boot_setup(char *str)
573 {
574 	int ints[5];
575 	struct ifmap map;
576 
577 	str = get_options(str, ARRAY_SIZE(ints), ints);
578 	if (!str || !*str)
579 		return 0;
580 
581 	/* Save settings */
582 	memset(&map, 0, sizeof(map));
583 	if (ints[0] > 0)
584 		map.irq = ints[1];
585 	if (ints[0] > 1)
586 		map.base_addr = ints[2];
587 	if (ints[0] > 2)
588 		map.mem_start = ints[3];
589 	if (ints[0] > 3)
590 		map.mem_end = ints[4];
591 
592 	/* Add new entry to the list */
593 	return netdev_boot_setup_add(str, &map);
594 }
595 
596 __setup("netdev=", netdev_boot_setup);
597 
598 /*******************************************************************************
599 
600 			    Device Interface Subroutines
601 
602 *******************************************************************************/
603 
604 /**
605  *	__dev_get_by_name	- find a device by its name
606  *	@net: the applicable net namespace
607  *	@name: name to find
608  *
609  *	Find an interface by name. Must be called under RTNL semaphore
610  *	or @dev_base_lock. If the name is found a pointer to the device
611  *	is returned. If the name is not found then %NULL is returned. The
612  *	reference counters are not incremented so the caller must be
613  *	careful with locks.
614  */
615 
616 struct net_device *__dev_get_by_name(struct net *net, const char *name)
617 {
618 	struct hlist_node *p;
619 	struct net_device *dev;
620 	struct hlist_head *head = dev_name_hash(net, name);
621 
622 	hlist_for_each_entry(dev, p, head, name_hlist)
623 		if (!strncmp(dev->name, name, IFNAMSIZ))
624 			return dev;
625 
626 	return NULL;
627 }
628 EXPORT_SYMBOL(__dev_get_by_name);
629 
630 /**
631  *	dev_get_by_name_rcu	- find a device by its name
632  *	@net: the applicable net namespace
633  *	@name: name to find
634  *
635  *	Find an interface by name.
636  *	If the name is found a pointer to the device is returned.
637  * 	If the name is not found then %NULL is returned.
638  *	The reference counters are not incremented so the caller must be
639  *	careful with locks. The caller must hold RCU lock.
640  */
641 
642 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
643 {
644 	struct hlist_node *p;
645 	struct net_device *dev;
646 	struct hlist_head *head = dev_name_hash(net, name);
647 
648 	hlist_for_each_entry_rcu(dev, p, head, name_hlist)
649 		if (!strncmp(dev->name, name, IFNAMSIZ))
650 			return dev;
651 
652 	return NULL;
653 }
654 EXPORT_SYMBOL(dev_get_by_name_rcu);
655 
656 /**
657  *	dev_get_by_name		- find a device by its name
658  *	@net: the applicable net namespace
659  *	@name: name to find
660  *
661  *	Find an interface by name. This can be called from any
662  *	context and does its own locking. The returned handle has
663  *	the usage count incremented and the caller must use dev_put() to
664  *	release it when it is no longer needed. %NULL is returned if no
665  *	matching device is found.
666  */
667 
668 struct net_device *dev_get_by_name(struct net *net, const char *name)
669 {
670 	struct net_device *dev;
671 
672 	rcu_read_lock();
673 	dev = dev_get_by_name_rcu(net, name);
674 	if (dev)
675 		dev_hold(dev);
676 	rcu_read_unlock();
677 	return dev;
678 }
679 EXPORT_SYMBOL(dev_get_by_name);
680 
681 /**
682  *	__dev_get_by_index - find a device by its ifindex
683  *	@net: the applicable net namespace
684  *	@ifindex: index of device
685  *
686  *	Search for an interface by index. Returns %NULL if the device
687  *	is not found or a pointer to the device. The device has not
688  *	had its reference counter increased so the caller must be careful
689  *	about locking. The caller must hold either the RTNL semaphore
690  *	or @dev_base_lock.
691  */
692 
693 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
694 {
695 	struct hlist_node *p;
696 	struct net_device *dev;
697 	struct hlist_head *head = dev_index_hash(net, ifindex);
698 
699 	hlist_for_each_entry(dev, p, head, index_hlist)
700 		if (dev->ifindex == ifindex)
701 			return dev;
702 
703 	return NULL;
704 }
705 EXPORT_SYMBOL(__dev_get_by_index);
706 
707 /**
708  *	dev_get_by_index_rcu - find a device by its ifindex
709  *	@net: the applicable net namespace
710  *	@ifindex: index of device
711  *
712  *	Search for an interface by index. Returns %NULL if the device
713  *	is not found or a pointer to the device. The device has not
714  *	had its reference counter increased so the caller must be careful
715  *	about locking. The caller must hold RCU lock.
716  */
717 
718 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
719 {
720 	struct hlist_node *p;
721 	struct net_device *dev;
722 	struct hlist_head *head = dev_index_hash(net, ifindex);
723 
724 	hlist_for_each_entry_rcu(dev, p, head, index_hlist)
725 		if (dev->ifindex == ifindex)
726 			return dev;
727 
728 	return NULL;
729 }
730 EXPORT_SYMBOL(dev_get_by_index_rcu);
731 
732 
733 /**
734  *	dev_get_by_index - find a device by its ifindex
735  *	@net: the applicable net namespace
736  *	@ifindex: index of device
737  *
738  *	Search for an interface by index. Returns NULL if the device
739  *	is not found or a pointer to the device. The device returned has
740  *	had a reference added and the pointer is safe until the user calls
741  *	dev_put to indicate they have finished with it.
742  */
743 
744 struct net_device *dev_get_by_index(struct net *net, int ifindex)
745 {
746 	struct net_device *dev;
747 
748 	rcu_read_lock();
749 	dev = dev_get_by_index_rcu(net, ifindex);
750 	if (dev)
751 		dev_hold(dev);
752 	rcu_read_unlock();
753 	return dev;
754 }
755 EXPORT_SYMBOL(dev_get_by_index);
756 
757 /**
758  *	dev_getbyhwaddr_rcu - find a device by its hardware address
759  *	@net: the applicable net namespace
760  *	@type: media type of device
761  *	@ha: hardware address
762  *
763  *	Search for an interface by MAC address. Returns NULL if the device
764  *	is not found or a pointer to the device.
765  *	The caller must hold RCU or RTNL.
766  *	The returned device has not had its ref count increased
767  *	and the caller must therefore be careful about locking
768  *
769  */
770 
771 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
772 				       const char *ha)
773 {
774 	struct net_device *dev;
775 
776 	for_each_netdev_rcu(net, dev)
777 		if (dev->type == type &&
778 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
779 			return dev;
780 
781 	return NULL;
782 }
783 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
784 
785 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
786 {
787 	struct net_device *dev;
788 
789 	ASSERT_RTNL();
790 	for_each_netdev(net, dev)
791 		if (dev->type == type)
792 			return dev;
793 
794 	return NULL;
795 }
796 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
797 
798 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
799 {
800 	struct net_device *dev, *ret = NULL;
801 
802 	rcu_read_lock();
803 	for_each_netdev_rcu(net, dev)
804 		if (dev->type == type) {
805 			dev_hold(dev);
806 			ret = dev;
807 			break;
808 		}
809 	rcu_read_unlock();
810 	return ret;
811 }
812 EXPORT_SYMBOL(dev_getfirstbyhwtype);
813 
814 /**
815  *	dev_get_by_flags_rcu - find any device with given flags
816  *	@net: the applicable net namespace
817  *	@if_flags: IFF_* values
818  *	@mask: bitmask of bits in if_flags to check
819  *
820  *	Search for any interface with the given flags. Returns NULL if a device
821  *	is not found or a pointer to the device. Must be called inside
822  *	rcu_read_lock(), and result refcount is unchanged.
823  */
824 
825 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
826 				    unsigned short mask)
827 {
828 	struct net_device *dev, *ret;
829 
830 	ret = NULL;
831 	for_each_netdev_rcu(net, dev) {
832 		if (((dev->flags ^ if_flags) & mask) == 0) {
833 			ret = dev;
834 			break;
835 		}
836 	}
837 	return ret;
838 }
839 EXPORT_SYMBOL(dev_get_by_flags_rcu);
840 
841 /**
842  *	dev_valid_name - check if name is okay for network device
843  *	@name: name string
844  *
845  *	Network device names need to be valid file names to
846  *	to allow sysfs to work.  We also disallow any kind of
847  *	whitespace.
848  */
849 bool dev_valid_name(const char *name)
850 {
851 	if (*name == '\0')
852 		return false;
853 	if (strlen(name) >= IFNAMSIZ)
854 		return false;
855 	if (!strcmp(name, ".") || !strcmp(name, ".."))
856 		return false;
857 
858 	while (*name) {
859 		if (*name == '/' || isspace(*name))
860 			return false;
861 		name++;
862 	}
863 	return true;
864 }
865 EXPORT_SYMBOL(dev_valid_name);
866 
867 /**
868  *	__dev_alloc_name - allocate a name for a device
869  *	@net: network namespace to allocate the device name in
870  *	@name: name format string
871  *	@buf:  scratch buffer and result name string
872  *
873  *	Passed a format string - eg "lt%d" it will try and find a suitable
874  *	id. It scans list of devices to build up a free map, then chooses
875  *	the first empty slot. The caller must hold the dev_base or rtnl lock
876  *	while allocating the name and adding the device in order to avoid
877  *	duplicates.
878  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
879  *	Returns the number of the unit assigned or a negative errno code.
880  */
881 
882 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
883 {
884 	int i = 0;
885 	const char *p;
886 	const int max_netdevices = 8*PAGE_SIZE;
887 	unsigned long *inuse;
888 	struct net_device *d;
889 
890 	p = strnchr(name, IFNAMSIZ-1, '%');
891 	if (p) {
892 		/*
893 		 * Verify the string as this thing may have come from
894 		 * the user.  There must be either one "%d" and no other "%"
895 		 * characters.
896 		 */
897 		if (p[1] != 'd' || strchr(p + 2, '%'))
898 			return -EINVAL;
899 
900 		/* Use one page as a bit array of possible slots */
901 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
902 		if (!inuse)
903 			return -ENOMEM;
904 
905 		for_each_netdev(net, d) {
906 			if (!sscanf(d->name, name, &i))
907 				continue;
908 			if (i < 0 || i >= max_netdevices)
909 				continue;
910 
911 			/*  avoid cases where sscanf is not exact inverse of printf */
912 			snprintf(buf, IFNAMSIZ, name, i);
913 			if (!strncmp(buf, d->name, IFNAMSIZ))
914 				set_bit(i, inuse);
915 		}
916 
917 		i = find_first_zero_bit(inuse, max_netdevices);
918 		free_page((unsigned long) inuse);
919 	}
920 
921 	if (buf != name)
922 		snprintf(buf, IFNAMSIZ, name, i);
923 	if (!__dev_get_by_name(net, buf))
924 		return i;
925 
926 	/* It is possible to run out of possible slots
927 	 * when the name is long and there isn't enough space left
928 	 * for the digits, or if all bits are used.
929 	 */
930 	return -ENFILE;
931 }
932 
933 /**
934  *	dev_alloc_name - allocate a name for a device
935  *	@dev: device
936  *	@name: name format string
937  *
938  *	Passed a format string - eg "lt%d" it will try and find a suitable
939  *	id. It scans list of devices to build up a free map, then chooses
940  *	the first empty slot. The caller must hold the dev_base or rtnl lock
941  *	while allocating the name and adding the device in order to avoid
942  *	duplicates.
943  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
944  *	Returns the number of the unit assigned or a negative errno code.
945  */
946 
947 int dev_alloc_name(struct net_device *dev, const char *name)
948 {
949 	char buf[IFNAMSIZ];
950 	struct net *net;
951 	int ret;
952 
953 	BUG_ON(!dev_net(dev));
954 	net = dev_net(dev);
955 	ret = __dev_alloc_name(net, name, buf);
956 	if (ret >= 0)
957 		strlcpy(dev->name, buf, IFNAMSIZ);
958 	return ret;
959 }
960 EXPORT_SYMBOL(dev_alloc_name);
961 
962 static int dev_get_valid_name(struct net_device *dev, const char *name)
963 {
964 	struct net *net;
965 
966 	BUG_ON(!dev_net(dev));
967 	net = dev_net(dev);
968 
969 	if (!dev_valid_name(name))
970 		return -EINVAL;
971 
972 	if (strchr(name, '%'))
973 		return dev_alloc_name(dev, name);
974 	else if (__dev_get_by_name(net, name))
975 		return -EEXIST;
976 	else if (dev->name != name)
977 		strlcpy(dev->name, name, IFNAMSIZ);
978 
979 	return 0;
980 }
981 
982 /**
983  *	dev_change_name - change name of a device
984  *	@dev: device
985  *	@newname: name (or format string) must be at least IFNAMSIZ
986  *
987  *	Change name of a device, can pass format strings "eth%d".
988  *	for wildcarding.
989  */
990 int dev_change_name(struct net_device *dev, const char *newname)
991 {
992 	char oldname[IFNAMSIZ];
993 	int err = 0;
994 	int ret;
995 	struct net *net;
996 
997 	ASSERT_RTNL();
998 	BUG_ON(!dev_net(dev));
999 
1000 	net = dev_net(dev);
1001 	if (dev->flags & IFF_UP)
1002 		return -EBUSY;
1003 
1004 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
1005 		return 0;
1006 
1007 	memcpy(oldname, dev->name, IFNAMSIZ);
1008 
1009 	err = dev_get_valid_name(dev, newname);
1010 	if (err < 0)
1011 		return err;
1012 
1013 rollback:
1014 	ret = device_rename(&dev->dev, dev->name);
1015 	if (ret) {
1016 		memcpy(dev->name, oldname, IFNAMSIZ);
1017 		return ret;
1018 	}
1019 
1020 	write_lock_bh(&dev_base_lock);
1021 	hlist_del_rcu(&dev->name_hlist);
1022 	write_unlock_bh(&dev_base_lock);
1023 
1024 	synchronize_rcu();
1025 
1026 	write_lock_bh(&dev_base_lock);
1027 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1028 	write_unlock_bh(&dev_base_lock);
1029 
1030 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1031 	ret = notifier_to_errno(ret);
1032 
1033 	if (ret) {
1034 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1035 		if (err >= 0) {
1036 			err = ret;
1037 			memcpy(dev->name, oldname, IFNAMSIZ);
1038 			goto rollback;
1039 		} else {
1040 			pr_err("%s: name change rollback failed: %d\n",
1041 			       dev->name, ret);
1042 		}
1043 	}
1044 
1045 	return err;
1046 }
1047 
1048 /**
1049  *	dev_set_alias - change ifalias of a device
1050  *	@dev: device
1051  *	@alias: name up to IFALIASZ
1052  *	@len: limit of bytes to copy from info
1053  *
1054  *	Set ifalias for a device,
1055  */
1056 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1057 {
1058 	char *new_ifalias;
1059 
1060 	ASSERT_RTNL();
1061 
1062 	if (len >= IFALIASZ)
1063 		return -EINVAL;
1064 
1065 	if (!len) {
1066 		if (dev->ifalias) {
1067 			kfree(dev->ifalias);
1068 			dev->ifalias = NULL;
1069 		}
1070 		return 0;
1071 	}
1072 
1073 	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1074 	if (!new_ifalias)
1075 		return -ENOMEM;
1076 	dev->ifalias = new_ifalias;
1077 
1078 	strlcpy(dev->ifalias, alias, len+1);
1079 	return len;
1080 }
1081 
1082 
1083 /**
1084  *	netdev_features_change - device changes features
1085  *	@dev: device to cause notification
1086  *
1087  *	Called to indicate a device has changed features.
1088  */
1089 void netdev_features_change(struct net_device *dev)
1090 {
1091 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1092 }
1093 EXPORT_SYMBOL(netdev_features_change);
1094 
1095 /**
1096  *	netdev_state_change - device changes state
1097  *	@dev: device to cause notification
1098  *
1099  *	Called to indicate a device has changed state. This function calls
1100  *	the notifier chains for netdev_chain and sends a NEWLINK message
1101  *	to the routing socket.
1102  */
1103 void netdev_state_change(struct net_device *dev)
1104 {
1105 	if (dev->flags & IFF_UP) {
1106 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
1107 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1108 	}
1109 }
1110 EXPORT_SYMBOL(netdev_state_change);
1111 
1112 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1113 {
1114 	return call_netdevice_notifiers(event, dev);
1115 }
1116 EXPORT_SYMBOL(netdev_bonding_change);
1117 
1118 /**
1119  *	dev_load 	- load a network module
1120  *	@net: the applicable net namespace
1121  *	@name: name of interface
1122  *
1123  *	If a network interface is not present and the process has suitable
1124  *	privileges this function loads the module. If module loading is not
1125  *	available in this kernel then it becomes a nop.
1126  */
1127 
1128 void dev_load(struct net *net, const char *name)
1129 {
1130 	struct net_device *dev;
1131 	int no_module;
1132 
1133 	rcu_read_lock();
1134 	dev = dev_get_by_name_rcu(net, name);
1135 	rcu_read_unlock();
1136 
1137 	no_module = !dev;
1138 	if (no_module && capable(CAP_NET_ADMIN))
1139 		no_module = request_module("netdev-%s", name);
1140 	if (no_module && capable(CAP_SYS_MODULE)) {
1141 		if (!request_module("%s", name))
1142 			pr_warn("Loading kernel module for a network device with CAP_SYS_MODULE (deprecated).  Use CAP_NET_ADMIN and alias netdev-%s instead.\n",
1143 				name);
1144 	}
1145 }
1146 EXPORT_SYMBOL(dev_load);
1147 
1148 static int __dev_open(struct net_device *dev)
1149 {
1150 	const struct net_device_ops *ops = dev->netdev_ops;
1151 	int ret;
1152 
1153 	ASSERT_RTNL();
1154 
1155 	if (!netif_device_present(dev))
1156 		return -ENODEV;
1157 
1158 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1159 	ret = notifier_to_errno(ret);
1160 	if (ret)
1161 		return ret;
1162 
1163 	set_bit(__LINK_STATE_START, &dev->state);
1164 
1165 	if (ops->ndo_validate_addr)
1166 		ret = ops->ndo_validate_addr(dev);
1167 
1168 	if (!ret && ops->ndo_open)
1169 		ret = ops->ndo_open(dev);
1170 
1171 	if (ret)
1172 		clear_bit(__LINK_STATE_START, &dev->state);
1173 	else {
1174 		dev->flags |= IFF_UP;
1175 		net_dmaengine_get();
1176 		dev_set_rx_mode(dev);
1177 		dev_activate(dev);
1178 		add_device_randomness(dev->dev_addr, dev->addr_len);
1179 	}
1180 
1181 	return ret;
1182 }
1183 
1184 /**
1185  *	dev_open	- prepare an interface for use.
1186  *	@dev:	device to open
1187  *
1188  *	Takes a device from down to up state. The device's private open
1189  *	function is invoked and then the multicast lists are loaded. Finally
1190  *	the device is moved into the up state and a %NETDEV_UP message is
1191  *	sent to the netdev notifier chain.
1192  *
1193  *	Calling this function on an active interface is a nop. On a failure
1194  *	a negative errno code is returned.
1195  */
1196 int dev_open(struct net_device *dev)
1197 {
1198 	int ret;
1199 
1200 	if (dev->flags & IFF_UP)
1201 		return 0;
1202 
1203 	ret = __dev_open(dev);
1204 	if (ret < 0)
1205 		return ret;
1206 
1207 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1208 	call_netdevice_notifiers(NETDEV_UP, dev);
1209 
1210 	return ret;
1211 }
1212 EXPORT_SYMBOL(dev_open);
1213 
1214 static int __dev_close_many(struct list_head *head)
1215 {
1216 	struct net_device *dev;
1217 
1218 	ASSERT_RTNL();
1219 	might_sleep();
1220 
1221 	list_for_each_entry(dev, head, unreg_list) {
1222 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1223 
1224 		clear_bit(__LINK_STATE_START, &dev->state);
1225 
1226 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1227 		 * can be even on different cpu. So just clear netif_running().
1228 		 *
1229 		 * dev->stop() will invoke napi_disable() on all of it's
1230 		 * napi_struct instances on this device.
1231 		 */
1232 		smp_mb__after_clear_bit(); /* Commit netif_running(). */
1233 	}
1234 
1235 	dev_deactivate_many(head);
1236 
1237 	list_for_each_entry(dev, head, unreg_list) {
1238 		const struct net_device_ops *ops = dev->netdev_ops;
1239 
1240 		/*
1241 		 *	Call the device specific close. This cannot fail.
1242 		 *	Only if device is UP
1243 		 *
1244 		 *	We allow it to be called even after a DETACH hot-plug
1245 		 *	event.
1246 		 */
1247 		if (ops->ndo_stop)
1248 			ops->ndo_stop(dev);
1249 
1250 		dev->flags &= ~IFF_UP;
1251 		net_dmaengine_put();
1252 	}
1253 
1254 	return 0;
1255 }
1256 
1257 static int __dev_close(struct net_device *dev)
1258 {
1259 	int retval;
1260 	LIST_HEAD(single);
1261 
1262 	list_add(&dev->unreg_list, &single);
1263 	retval = __dev_close_many(&single);
1264 	list_del(&single);
1265 	return retval;
1266 }
1267 
1268 static int dev_close_many(struct list_head *head)
1269 {
1270 	struct net_device *dev, *tmp;
1271 	LIST_HEAD(tmp_list);
1272 
1273 	list_for_each_entry_safe(dev, tmp, head, unreg_list)
1274 		if (!(dev->flags & IFF_UP))
1275 			list_move(&dev->unreg_list, &tmp_list);
1276 
1277 	__dev_close_many(head);
1278 
1279 	list_for_each_entry(dev, head, unreg_list) {
1280 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1281 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1282 	}
1283 
1284 	/* rollback_registered_many needs the complete original list */
1285 	list_splice(&tmp_list, head);
1286 	return 0;
1287 }
1288 
1289 /**
1290  *	dev_close - shutdown an interface.
1291  *	@dev: device to shutdown
1292  *
1293  *	This function moves an active device into down state. A
1294  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1295  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1296  *	chain.
1297  */
1298 int dev_close(struct net_device *dev)
1299 {
1300 	if (dev->flags & IFF_UP) {
1301 		LIST_HEAD(single);
1302 
1303 		list_add(&dev->unreg_list, &single);
1304 		dev_close_many(&single);
1305 		list_del(&single);
1306 	}
1307 	return 0;
1308 }
1309 EXPORT_SYMBOL(dev_close);
1310 
1311 
1312 /**
1313  *	dev_disable_lro - disable Large Receive Offload on a device
1314  *	@dev: device
1315  *
1316  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1317  *	called under RTNL.  This is needed if received packets may be
1318  *	forwarded to another interface.
1319  */
1320 void dev_disable_lro(struct net_device *dev)
1321 {
1322 	/*
1323 	 * If we're trying to disable lro on a vlan device
1324 	 * use the underlying physical device instead
1325 	 */
1326 	if (is_vlan_dev(dev))
1327 		dev = vlan_dev_real_dev(dev);
1328 
1329 	dev->wanted_features &= ~NETIF_F_LRO;
1330 	netdev_update_features(dev);
1331 
1332 	if (unlikely(dev->features & NETIF_F_LRO))
1333 		netdev_WARN(dev, "failed to disable LRO!\n");
1334 }
1335 EXPORT_SYMBOL(dev_disable_lro);
1336 
1337 
1338 static int dev_boot_phase = 1;
1339 
1340 /**
1341  *	register_netdevice_notifier - register a network notifier block
1342  *	@nb: notifier
1343  *
1344  *	Register a notifier to be called when network device events occur.
1345  *	The notifier passed is linked into the kernel structures and must
1346  *	not be reused until it has been unregistered. A negative errno code
1347  *	is returned on a failure.
1348  *
1349  * 	When registered all registration and up events are replayed
1350  *	to the new notifier to allow device to have a race free
1351  *	view of the network device list.
1352  */
1353 
1354 int register_netdevice_notifier(struct notifier_block *nb)
1355 {
1356 	struct net_device *dev;
1357 	struct net_device *last;
1358 	struct net *net;
1359 	int err;
1360 
1361 	rtnl_lock();
1362 	err = raw_notifier_chain_register(&netdev_chain, nb);
1363 	if (err)
1364 		goto unlock;
1365 	if (dev_boot_phase)
1366 		goto unlock;
1367 	for_each_net(net) {
1368 		for_each_netdev(net, dev) {
1369 			err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1370 			err = notifier_to_errno(err);
1371 			if (err)
1372 				goto rollback;
1373 
1374 			if (!(dev->flags & IFF_UP))
1375 				continue;
1376 
1377 			nb->notifier_call(nb, NETDEV_UP, dev);
1378 		}
1379 	}
1380 
1381 unlock:
1382 	rtnl_unlock();
1383 	return err;
1384 
1385 rollback:
1386 	last = dev;
1387 	for_each_net(net) {
1388 		for_each_netdev(net, dev) {
1389 			if (dev == last)
1390 				goto outroll;
1391 
1392 			if (dev->flags & IFF_UP) {
1393 				nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1394 				nb->notifier_call(nb, NETDEV_DOWN, dev);
1395 			}
1396 			nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1397 			nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1398 		}
1399 	}
1400 
1401 outroll:
1402 	raw_notifier_chain_unregister(&netdev_chain, nb);
1403 	goto unlock;
1404 }
1405 EXPORT_SYMBOL(register_netdevice_notifier);
1406 
1407 /**
1408  *	unregister_netdevice_notifier - unregister a network notifier block
1409  *	@nb: notifier
1410  *
1411  *	Unregister a notifier previously registered by
1412  *	register_netdevice_notifier(). The notifier is unlinked into the
1413  *	kernel structures and may then be reused. A negative errno code
1414  *	is returned on a failure.
1415  *
1416  * 	After unregistering unregister and down device events are synthesized
1417  *	for all devices on the device list to the removed notifier to remove
1418  *	the need for special case cleanup code.
1419  */
1420 
1421 int unregister_netdevice_notifier(struct notifier_block *nb)
1422 {
1423 	struct net_device *dev;
1424 	struct net *net;
1425 	int err;
1426 
1427 	rtnl_lock();
1428 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1429 	if (err)
1430 		goto unlock;
1431 
1432 	for_each_net(net) {
1433 		for_each_netdev(net, dev) {
1434 			if (dev->flags & IFF_UP) {
1435 				nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1436 				nb->notifier_call(nb, NETDEV_DOWN, dev);
1437 			}
1438 			nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1439 			nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1440 		}
1441 	}
1442 unlock:
1443 	rtnl_unlock();
1444 	return err;
1445 }
1446 EXPORT_SYMBOL(unregister_netdevice_notifier);
1447 
1448 /**
1449  *	call_netdevice_notifiers - call all network notifier blocks
1450  *      @val: value passed unmodified to notifier function
1451  *      @dev: net_device pointer passed unmodified to notifier function
1452  *
1453  *	Call all network notifier blocks.  Parameters and return value
1454  *	are as for raw_notifier_call_chain().
1455  */
1456 
1457 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1458 {
1459 	ASSERT_RTNL();
1460 	return raw_notifier_call_chain(&netdev_chain, val, dev);
1461 }
1462 EXPORT_SYMBOL(call_netdevice_notifiers);
1463 
1464 static struct static_key netstamp_needed __read_mostly;
1465 #ifdef HAVE_JUMP_LABEL
1466 /* We are not allowed to call static_key_slow_dec() from irq context
1467  * If net_disable_timestamp() is called from irq context, defer the
1468  * static_key_slow_dec() calls.
1469  */
1470 static atomic_t netstamp_needed_deferred;
1471 #endif
1472 
1473 void net_enable_timestamp(void)
1474 {
1475 #ifdef HAVE_JUMP_LABEL
1476 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1477 
1478 	if (deferred) {
1479 		while (--deferred)
1480 			static_key_slow_dec(&netstamp_needed);
1481 		return;
1482 	}
1483 #endif
1484 	WARN_ON(in_interrupt());
1485 	static_key_slow_inc(&netstamp_needed);
1486 }
1487 EXPORT_SYMBOL(net_enable_timestamp);
1488 
1489 void net_disable_timestamp(void)
1490 {
1491 #ifdef HAVE_JUMP_LABEL
1492 	if (in_interrupt()) {
1493 		atomic_inc(&netstamp_needed_deferred);
1494 		return;
1495 	}
1496 #endif
1497 	static_key_slow_dec(&netstamp_needed);
1498 }
1499 EXPORT_SYMBOL(net_disable_timestamp);
1500 
1501 static inline void net_timestamp_set(struct sk_buff *skb)
1502 {
1503 	skb->tstamp.tv64 = 0;
1504 	if (static_key_false(&netstamp_needed))
1505 		__net_timestamp(skb);
1506 }
1507 
1508 #define net_timestamp_check(COND, SKB)			\
1509 	if (static_key_false(&netstamp_needed)) {		\
1510 		if ((COND) && !(SKB)->tstamp.tv64)	\
1511 			__net_timestamp(SKB);		\
1512 	}						\
1513 
1514 static int net_hwtstamp_validate(struct ifreq *ifr)
1515 {
1516 	struct hwtstamp_config cfg;
1517 	enum hwtstamp_tx_types tx_type;
1518 	enum hwtstamp_rx_filters rx_filter;
1519 	int tx_type_valid = 0;
1520 	int rx_filter_valid = 0;
1521 
1522 	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1523 		return -EFAULT;
1524 
1525 	if (cfg.flags) /* reserved for future extensions */
1526 		return -EINVAL;
1527 
1528 	tx_type = cfg.tx_type;
1529 	rx_filter = cfg.rx_filter;
1530 
1531 	switch (tx_type) {
1532 	case HWTSTAMP_TX_OFF:
1533 	case HWTSTAMP_TX_ON:
1534 	case HWTSTAMP_TX_ONESTEP_SYNC:
1535 		tx_type_valid = 1;
1536 		break;
1537 	}
1538 
1539 	switch (rx_filter) {
1540 	case HWTSTAMP_FILTER_NONE:
1541 	case HWTSTAMP_FILTER_ALL:
1542 	case HWTSTAMP_FILTER_SOME:
1543 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1544 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1545 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1546 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1547 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1548 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1549 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1550 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1551 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1552 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1553 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1554 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1555 		rx_filter_valid = 1;
1556 		break;
1557 	}
1558 
1559 	if (!tx_type_valid || !rx_filter_valid)
1560 		return -ERANGE;
1561 
1562 	return 0;
1563 }
1564 
1565 static inline bool is_skb_forwardable(struct net_device *dev,
1566 				      struct sk_buff *skb)
1567 {
1568 	unsigned int len;
1569 
1570 	if (!(dev->flags & IFF_UP))
1571 		return false;
1572 
1573 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1574 	if (skb->len <= len)
1575 		return true;
1576 
1577 	/* if TSO is enabled, we don't care about the length as the packet
1578 	 * could be forwarded without being segmented before
1579 	 */
1580 	if (skb_is_gso(skb))
1581 		return true;
1582 
1583 	return false;
1584 }
1585 
1586 /**
1587  * dev_forward_skb - loopback an skb to another netif
1588  *
1589  * @dev: destination network device
1590  * @skb: buffer to forward
1591  *
1592  * return values:
1593  *	NET_RX_SUCCESS	(no congestion)
1594  *	NET_RX_DROP     (packet was dropped, but freed)
1595  *
1596  * dev_forward_skb can be used for injecting an skb from the
1597  * start_xmit function of one device into the receive queue
1598  * of another device.
1599  *
1600  * The receiving device may be in another namespace, so
1601  * we have to clear all information in the skb that could
1602  * impact namespace isolation.
1603  */
1604 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1605 {
1606 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1607 		if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1608 			atomic_long_inc(&dev->rx_dropped);
1609 			kfree_skb(skb);
1610 			return NET_RX_DROP;
1611 		}
1612 	}
1613 
1614 	skb_orphan(skb);
1615 	nf_reset(skb);
1616 
1617 	if (unlikely(!is_skb_forwardable(dev, skb))) {
1618 		atomic_long_inc(&dev->rx_dropped);
1619 		kfree_skb(skb);
1620 		return NET_RX_DROP;
1621 	}
1622 	skb->skb_iif = 0;
1623 	skb->dev = dev;
1624 	skb_dst_drop(skb);
1625 	skb->tstamp.tv64 = 0;
1626 	skb->pkt_type = PACKET_HOST;
1627 	skb->protocol = eth_type_trans(skb, dev);
1628 	skb->mark = 0;
1629 	secpath_reset(skb);
1630 	nf_reset(skb);
1631 	return netif_rx(skb);
1632 }
1633 EXPORT_SYMBOL_GPL(dev_forward_skb);
1634 
1635 static inline int deliver_skb(struct sk_buff *skb,
1636 			      struct packet_type *pt_prev,
1637 			      struct net_device *orig_dev)
1638 {
1639 	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1640 		return -ENOMEM;
1641 	atomic_inc(&skb->users);
1642 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1643 }
1644 
1645 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1646 {
1647 	if (ptype->af_packet_priv == NULL)
1648 		return false;
1649 
1650 	if (ptype->id_match)
1651 		return ptype->id_match(ptype, skb->sk);
1652 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1653 		return true;
1654 
1655 	return false;
1656 }
1657 
1658 /*
1659  *	Support routine. Sends outgoing frames to any network
1660  *	taps currently in use.
1661  */
1662 
1663 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1664 {
1665 	struct packet_type *ptype;
1666 	struct sk_buff *skb2 = NULL;
1667 	struct packet_type *pt_prev = NULL;
1668 
1669 	rcu_read_lock();
1670 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1671 		/* Never send packets back to the socket
1672 		 * they originated from - MvS (miquels@drinkel.ow.org)
1673 		 */
1674 		if ((ptype->dev == dev || !ptype->dev) &&
1675 		    (!skb_loop_sk(ptype, skb))) {
1676 			if (pt_prev) {
1677 				deliver_skb(skb2, pt_prev, skb->dev);
1678 				pt_prev = ptype;
1679 				continue;
1680 			}
1681 
1682 			skb2 = skb_clone(skb, GFP_ATOMIC);
1683 			if (!skb2)
1684 				break;
1685 
1686 			net_timestamp_set(skb2);
1687 
1688 			/* skb->nh should be correctly
1689 			   set by sender, so that the second statement is
1690 			   just protection against buggy protocols.
1691 			 */
1692 			skb_reset_mac_header(skb2);
1693 
1694 			if (skb_network_header(skb2) < skb2->data ||
1695 			    skb2->network_header > skb2->tail) {
1696 				net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1697 						     ntohs(skb2->protocol),
1698 						     dev->name);
1699 				skb_reset_network_header(skb2);
1700 			}
1701 
1702 			skb2->transport_header = skb2->network_header;
1703 			skb2->pkt_type = PACKET_OUTGOING;
1704 			pt_prev = ptype;
1705 		}
1706 	}
1707 	if (pt_prev)
1708 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1709 	rcu_read_unlock();
1710 }
1711 
1712 /**
1713  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1714  * @dev: Network device
1715  * @txq: number of queues available
1716  *
1717  * If real_num_tx_queues is changed the tc mappings may no longer be
1718  * valid. To resolve this verify the tc mapping remains valid and if
1719  * not NULL the mapping. With no priorities mapping to this
1720  * offset/count pair it will no longer be used. In the worst case TC0
1721  * is invalid nothing can be done so disable priority mappings. If is
1722  * expected that drivers will fix this mapping if they can before
1723  * calling netif_set_real_num_tx_queues.
1724  */
1725 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1726 {
1727 	int i;
1728 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1729 
1730 	/* If TC0 is invalidated disable TC mapping */
1731 	if (tc->offset + tc->count > txq) {
1732 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1733 		dev->num_tc = 0;
1734 		return;
1735 	}
1736 
1737 	/* Invalidated prio to tc mappings set to TC0 */
1738 	for (i = 1; i < TC_BITMASK + 1; i++) {
1739 		int q = netdev_get_prio_tc_map(dev, i);
1740 
1741 		tc = &dev->tc_to_txq[q];
1742 		if (tc->offset + tc->count > txq) {
1743 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1744 				i, q);
1745 			netdev_set_prio_tc_map(dev, i, 0);
1746 		}
1747 	}
1748 }
1749 
1750 /*
1751  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1752  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1753  */
1754 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1755 {
1756 	int rc;
1757 
1758 	if (txq < 1 || txq > dev->num_tx_queues)
1759 		return -EINVAL;
1760 
1761 	if (dev->reg_state == NETREG_REGISTERED ||
1762 	    dev->reg_state == NETREG_UNREGISTERING) {
1763 		ASSERT_RTNL();
1764 
1765 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1766 						  txq);
1767 		if (rc)
1768 			return rc;
1769 
1770 		if (dev->num_tc)
1771 			netif_setup_tc(dev, txq);
1772 
1773 		if (txq < dev->real_num_tx_queues)
1774 			qdisc_reset_all_tx_gt(dev, txq);
1775 	}
1776 
1777 	dev->real_num_tx_queues = txq;
1778 	return 0;
1779 }
1780 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1781 
1782 #ifdef CONFIG_RPS
1783 /**
1784  *	netif_set_real_num_rx_queues - set actual number of RX queues used
1785  *	@dev: Network device
1786  *	@rxq: Actual number of RX queues
1787  *
1788  *	This must be called either with the rtnl_lock held or before
1789  *	registration of the net device.  Returns 0 on success, or a
1790  *	negative error code.  If called before registration, it always
1791  *	succeeds.
1792  */
1793 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1794 {
1795 	int rc;
1796 
1797 	if (rxq < 1 || rxq > dev->num_rx_queues)
1798 		return -EINVAL;
1799 
1800 	if (dev->reg_state == NETREG_REGISTERED) {
1801 		ASSERT_RTNL();
1802 
1803 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1804 						  rxq);
1805 		if (rc)
1806 			return rc;
1807 	}
1808 
1809 	dev->real_num_rx_queues = rxq;
1810 	return 0;
1811 }
1812 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1813 #endif
1814 
1815 /**
1816  * netif_get_num_default_rss_queues - default number of RSS queues
1817  *
1818  * This routine should set an upper limit on the number of RSS queues
1819  * used by default by multiqueue devices.
1820  */
1821 int netif_get_num_default_rss_queues(void)
1822 {
1823 	return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
1824 }
1825 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
1826 
1827 static inline void __netif_reschedule(struct Qdisc *q)
1828 {
1829 	struct softnet_data *sd;
1830 	unsigned long flags;
1831 
1832 	local_irq_save(flags);
1833 	sd = &__get_cpu_var(softnet_data);
1834 	q->next_sched = NULL;
1835 	*sd->output_queue_tailp = q;
1836 	sd->output_queue_tailp = &q->next_sched;
1837 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
1838 	local_irq_restore(flags);
1839 }
1840 
1841 void __netif_schedule(struct Qdisc *q)
1842 {
1843 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1844 		__netif_reschedule(q);
1845 }
1846 EXPORT_SYMBOL(__netif_schedule);
1847 
1848 void dev_kfree_skb_irq(struct sk_buff *skb)
1849 {
1850 	if (atomic_dec_and_test(&skb->users)) {
1851 		struct softnet_data *sd;
1852 		unsigned long flags;
1853 
1854 		local_irq_save(flags);
1855 		sd = &__get_cpu_var(softnet_data);
1856 		skb->next = sd->completion_queue;
1857 		sd->completion_queue = skb;
1858 		raise_softirq_irqoff(NET_TX_SOFTIRQ);
1859 		local_irq_restore(flags);
1860 	}
1861 }
1862 EXPORT_SYMBOL(dev_kfree_skb_irq);
1863 
1864 void dev_kfree_skb_any(struct sk_buff *skb)
1865 {
1866 	if (in_irq() || irqs_disabled())
1867 		dev_kfree_skb_irq(skb);
1868 	else
1869 		dev_kfree_skb(skb);
1870 }
1871 EXPORT_SYMBOL(dev_kfree_skb_any);
1872 
1873 
1874 /**
1875  * netif_device_detach - mark device as removed
1876  * @dev: network device
1877  *
1878  * Mark device as removed from system and therefore no longer available.
1879  */
1880 void netif_device_detach(struct net_device *dev)
1881 {
1882 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1883 	    netif_running(dev)) {
1884 		netif_tx_stop_all_queues(dev);
1885 	}
1886 }
1887 EXPORT_SYMBOL(netif_device_detach);
1888 
1889 /**
1890  * netif_device_attach - mark device as attached
1891  * @dev: network device
1892  *
1893  * Mark device as attached from system and restart if needed.
1894  */
1895 void netif_device_attach(struct net_device *dev)
1896 {
1897 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1898 	    netif_running(dev)) {
1899 		netif_tx_wake_all_queues(dev);
1900 		__netdev_watchdog_up(dev);
1901 	}
1902 }
1903 EXPORT_SYMBOL(netif_device_attach);
1904 
1905 static void skb_warn_bad_offload(const struct sk_buff *skb)
1906 {
1907 	static const netdev_features_t null_features = 0;
1908 	struct net_device *dev = skb->dev;
1909 	const char *driver = "";
1910 
1911 	if (dev && dev->dev.parent)
1912 		driver = dev_driver_string(dev->dev.parent);
1913 
1914 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
1915 	     "gso_type=%d ip_summed=%d\n",
1916 	     driver, dev ? &dev->features : &null_features,
1917 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
1918 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
1919 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
1920 }
1921 
1922 /*
1923  * Invalidate hardware checksum when packet is to be mangled, and
1924  * complete checksum manually on outgoing path.
1925  */
1926 int skb_checksum_help(struct sk_buff *skb)
1927 {
1928 	__wsum csum;
1929 	int ret = 0, offset;
1930 
1931 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1932 		goto out_set_summed;
1933 
1934 	if (unlikely(skb_shinfo(skb)->gso_size)) {
1935 		skb_warn_bad_offload(skb);
1936 		return -EINVAL;
1937 	}
1938 
1939 	offset = skb_checksum_start_offset(skb);
1940 	BUG_ON(offset >= skb_headlen(skb));
1941 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
1942 
1943 	offset += skb->csum_offset;
1944 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1945 
1946 	if (skb_cloned(skb) &&
1947 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1948 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1949 		if (ret)
1950 			goto out;
1951 	}
1952 
1953 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
1954 out_set_summed:
1955 	skb->ip_summed = CHECKSUM_NONE;
1956 out:
1957 	return ret;
1958 }
1959 EXPORT_SYMBOL(skb_checksum_help);
1960 
1961 /**
1962  *	skb_gso_segment - Perform segmentation on skb.
1963  *	@skb: buffer to segment
1964  *	@features: features for the output path (see dev->features)
1965  *
1966  *	This function segments the given skb and returns a list of segments.
1967  *
1968  *	It may return NULL if the skb requires no segmentation.  This is
1969  *	only possible when GSO is used for verifying header integrity.
1970  */
1971 struct sk_buff *skb_gso_segment(struct sk_buff *skb,
1972 	netdev_features_t features)
1973 {
1974 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1975 	struct packet_type *ptype;
1976 	__be16 type = skb->protocol;
1977 	int vlan_depth = ETH_HLEN;
1978 	int err;
1979 
1980 	while (type == htons(ETH_P_8021Q)) {
1981 		struct vlan_hdr *vh;
1982 
1983 		if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1984 			return ERR_PTR(-EINVAL);
1985 
1986 		vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1987 		type = vh->h_vlan_encapsulated_proto;
1988 		vlan_depth += VLAN_HLEN;
1989 	}
1990 
1991 	skb_reset_mac_header(skb);
1992 	skb->mac_len = skb->network_header - skb->mac_header;
1993 	__skb_pull(skb, skb->mac_len);
1994 
1995 	if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1996 		skb_warn_bad_offload(skb);
1997 
1998 		if (skb_header_cloned(skb) &&
1999 		    (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2000 			return ERR_PTR(err);
2001 	}
2002 
2003 	rcu_read_lock();
2004 	list_for_each_entry_rcu(ptype,
2005 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2006 		if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
2007 			if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2008 				err = ptype->gso_send_check(skb);
2009 				segs = ERR_PTR(err);
2010 				if (err || skb_gso_ok(skb, features))
2011 					break;
2012 				__skb_push(skb, (skb->data -
2013 						 skb_network_header(skb)));
2014 			}
2015 			segs = ptype->gso_segment(skb, features);
2016 			break;
2017 		}
2018 	}
2019 	rcu_read_unlock();
2020 
2021 	__skb_push(skb, skb->data - skb_mac_header(skb));
2022 
2023 	return segs;
2024 }
2025 EXPORT_SYMBOL(skb_gso_segment);
2026 
2027 /* Take action when hardware reception checksum errors are detected. */
2028 #ifdef CONFIG_BUG
2029 void netdev_rx_csum_fault(struct net_device *dev)
2030 {
2031 	if (net_ratelimit()) {
2032 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2033 		dump_stack();
2034 	}
2035 }
2036 EXPORT_SYMBOL(netdev_rx_csum_fault);
2037 #endif
2038 
2039 /* Actually, we should eliminate this check as soon as we know, that:
2040  * 1. IOMMU is present and allows to map all the memory.
2041  * 2. No high memory really exists on this machine.
2042  */
2043 
2044 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2045 {
2046 #ifdef CONFIG_HIGHMEM
2047 	int i;
2048 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2049 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2050 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2051 			if (PageHighMem(skb_frag_page(frag)))
2052 				return 1;
2053 		}
2054 	}
2055 
2056 	if (PCI_DMA_BUS_IS_PHYS) {
2057 		struct device *pdev = dev->dev.parent;
2058 
2059 		if (!pdev)
2060 			return 0;
2061 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2062 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2063 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2064 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2065 				return 1;
2066 		}
2067 	}
2068 #endif
2069 	return 0;
2070 }
2071 
2072 struct dev_gso_cb {
2073 	void (*destructor)(struct sk_buff *skb);
2074 };
2075 
2076 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2077 
2078 static void dev_gso_skb_destructor(struct sk_buff *skb)
2079 {
2080 	struct dev_gso_cb *cb;
2081 
2082 	do {
2083 		struct sk_buff *nskb = skb->next;
2084 
2085 		skb->next = nskb->next;
2086 		nskb->next = NULL;
2087 		kfree_skb(nskb);
2088 	} while (skb->next);
2089 
2090 	cb = DEV_GSO_CB(skb);
2091 	if (cb->destructor)
2092 		cb->destructor(skb);
2093 }
2094 
2095 /**
2096  *	dev_gso_segment - Perform emulated hardware segmentation on skb.
2097  *	@skb: buffer to segment
2098  *	@features: device features as applicable to this skb
2099  *
2100  *	This function segments the given skb and stores the list of segments
2101  *	in skb->next.
2102  */
2103 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2104 {
2105 	struct sk_buff *segs;
2106 
2107 	segs = skb_gso_segment(skb, features);
2108 
2109 	/* Verifying header integrity only. */
2110 	if (!segs)
2111 		return 0;
2112 
2113 	if (IS_ERR(segs))
2114 		return PTR_ERR(segs);
2115 
2116 	skb->next = segs;
2117 	DEV_GSO_CB(skb)->destructor = skb->destructor;
2118 	skb->destructor = dev_gso_skb_destructor;
2119 
2120 	return 0;
2121 }
2122 
2123 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol)
2124 {
2125 	return ((features & NETIF_F_GEN_CSUM) ||
2126 		((features & NETIF_F_V4_CSUM) &&
2127 		 protocol == htons(ETH_P_IP)) ||
2128 		((features & NETIF_F_V6_CSUM) &&
2129 		 protocol == htons(ETH_P_IPV6)) ||
2130 		((features & NETIF_F_FCOE_CRC) &&
2131 		 protocol == htons(ETH_P_FCOE)));
2132 }
2133 
2134 static netdev_features_t harmonize_features(struct sk_buff *skb,
2135 	__be16 protocol, netdev_features_t features)
2136 {
2137 	if (!can_checksum_protocol(features, protocol)) {
2138 		features &= ~NETIF_F_ALL_CSUM;
2139 		features &= ~NETIF_F_SG;
2140 	} else if (illegal_highdma(skb->dev, skb)) {
2141 		features &= ~NETIF_F_SG;
2142 	}
2143 
2144 	return features;
2145 }
2146 
2147 netdev_features_t netif_skb_features(struct sk_buff *skb)
2148 {
2149 	__be16 protocol = skb->protocol;
2150 	netdev_features_t features = skb->dev->features;
2151 
2152 	if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2153 		features &= ~NETIF_F_GSO_MASK;
2154 
2155 	if (protocol == htons(ETH_P_8021Q)) {
2156 		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2157 		protocol = veh->h_vlan_encapsulated_proto;
2158 	} else if (!vlan_tx_tag_present(skb)) {
2159 		return harmonize_features(skb, protocol, features);
2160 	}
2161 
2162 	features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2163 
2164 	if (protocol != htons(ETH_P_8021Q)) {
2165 		return harmonize_features(skb, protocol, features);
2166 	} else {
2167 		features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2168 				NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2169 		return harmonize_features(skb, protocol, features);
2170 	}
2171 }
2172 EXPORT_SYMBOL(netif_skb_features);
2173 
2174 /*
2175  * Returns true if either:
2176  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
2177  *	2. skb is fragmented and the device does not support SG, or if
2178  *	   at least one of fragments is in highmem and device does not
2179  *	   support DMA from it.
2180  */
2181 static inline int skb_needs_linearize(struct sk_buff *skb,
2182 				      int features)
2183 {
2184 	return skb_is_nonlinear(skb) &&
2185 			((skb_has_frag_list(skb) &&
2186 				!(features & NETIF_F_FRAGLIST)) ||
2187 			(skb_shinfo(skb)->nr_frags &&
2188 				!(features & NETIF_F_SG)));
2189 }
2190 
2191 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2192 			struct netdev_queue *txq)
2193 {
2194 	const struct net_device_ops *ops = dev->netdev_ops;
2195 	int rc = NETDEV_TX_OK;
2196 	unsigned int skb_len;
2197 
2198 	if (likely(!skb->next)) {
2199 		netdev_features_t features;
2200 
2201 		/*
2202 		 * If device doesn't need skb->dst, release it right now while
2203 		 * its hot in this cpu cache
2204 		 */
2205 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2206 			skb_dst_drop(skb);
2207 
2208 		if (!list_empty(&ptype_all))
2209 			dev_queue_xmit_nit(skb, dev);
2210 
2211 		features = netif_skb_features(skb);
2212 
2213 		if (vlan_tx_tag_present(skb) &&
2214 		    !(features & NETIF_F_HW_VLAN_TX)) {
2215 			skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2216 			if (unlikely(!skb))
2217 				goto out;
2218 
2219 			skb->vlan_tci = 0;
2220 		}
2221 
2222 		if (netif_needs_gso(skb, features)) {
2223 			if (unlikely(dev_gso_segment(skb, features)))
2224 				goto out_kfree_skb;
2225 			if (skb->next)
2226 				goto gso;
2227 		} else {
2228 			if (skb_needs_linearize(skb, features) &&
2229 			    __skb_linearize(skb))
2230 				goto out_kfree_skb;
2231 
2232 			/* If packet is not checksummed and device does not
2233 			 * support checksumming for this protocol, complete
2234 			 * checksumming here.
2235 			 */
2236 			if (skb->ip_summed == CHECKSUM_PARTIAL) {
2237 				skb_set_transport_header(skb,
2238 					skb_checksum_start_offset(skb));
2239 				if (!(features & NETIF_F_ALL_CSUM) &&
2240 				     skb_checksum_help(skb))
2241 					goto out_kfree_skb;
2242 			}
2243 		}
2244 
2245 		skb_len = skb->len;
2246 		rc = ops->ndo_start_xmit(skb, dev);
2247 		trace_net_dev_xmit(skb, rc, dev, skb_len);
2248 		if (rc == NETDEV_TX_OK)
2249 			txq_trans_update(txq);
2250 		return rc;
2251 	}
2252 
2253 gso:
2254 	do {
2255 		struct sk_buff *nskb = skb->next;
2256 
2257 		skb->next = nskb->next;
2258 		nskb->next = NULL;
2259 
2260 		/*
2261 		 * If device doesn't need nskb->dst, release it right now while
2262 		 * its hot in this cpu cache
2263 		 */
2264 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2265 			skb_dst_drop(nskb);
2266 
2267 		skb_len = nskb->len;
2268 		rc = ops->ndo_start_xmit(nskb, dev);
2269 		trace_net_dev_xmit(nskb, rc, dev, skb_len);
2270 		if (unlikely(rc != NETDEV_TX_OK)) {
2271 			if (rc & ~NETDEV_TX_MASK)
2272 				goto out_kfree_gso_skb;
2273 			nskb->next = skb->next;
2274 			skb->next = nskb;
2275 			return rc;
2276 		}
2277 		txq_trans_update(txq);
2278 		if (unlikely(netif_xmit_stopped(txq) && skb->next))
2279 			return NETDEV_TX_BUSY;
2280 	} while (skb->next);
2281 
2282 out_kfree_gso_skb:
2283 	if (likely(skb->next == NULL))
2284 		skb->destructor = DEV_GSO_CB(skb)->destructor;
2285 out_kfree_skb:
2286 	kfree_skb(skb);
2287 out:
2288 	return rc;
2289 }
2290 
2291 static u32 hashrnd __read_mostly;
2292 
2293 /*
2294  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2295  * to be used as a distribution range.
2296  */
2297 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2298 		  unsigned int num_tx_queues)
2299 {
2300 	u32 hash;
2301 	u16 qoffset = 0;
2302 	u16 qcount = num_tx_queues;
2303 
2304 	if (skb_rx_queue_recorded(skb)) {
2305 		hash = skb_get_rx_queue(skb);
2306 		while (unlikely(hash >= num_tx_queues))
2307 			hash -= num_tx_queues;
2308 		return hash;
2309 	}
2310 
2311 	if (dev->num_tc) {
2312 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2313 		qoffset = dev->tc_to_txq[tc].offset;
2314 		qcount = dev->tc_to_txq[tc].count;
2315 	}
2316 
2317 	if (skb->sk && skb->sk->sk_hash)
2318 		hash = skb->sk->sk_hash;
2319 	else
2320 		hash = (__force u16) skb->protocol;
2321 	hash = jhash_1word(hash, hashrnd);
2322 
2323 	return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2324 }
2325 EXPORT_SYMBOL(__skb_tx_hash);
2326 
2327 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2328 {
2329 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2330 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2331 				     dev->name, queue_index,
2332 				     dev->real_num_tx_queues);
2333 		return 0;
2334 	}
2335 	return queue_index;
2336 }
2337 
2338 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2339 {
2340 #ifdef CONFIG_XPS
2341 	struct xps_dev_maps *dev_maps;
2342 	struct xps_map *map;
2343 	int queue_index = -1;
2344 
2345 	rcu_read_lock();
2346 	dev_maps = rcu_dereference(dev->xps_maps);
2347 	if (dev_maps) {
2348 		map = rcu_dereference(
2349 		    dev_maps->cpu_map[raw_smp_processor_id()]);
2350 		if (map) {
2351 			if (map->len == 1)
2352 				queue_index = map->queues[0];
2353 			else {
2354 				u32 hash;
2355 				if (skb->sk && skb->sk->sk_hash)
2356 					hash = skb->sk->sk_hash;
2357 				else
2358 					hash = (__force u16) skb->protocol ^
2359 					    skb->rxhash;
2360 				hash = jhash_1word(hash, hashrnd);
2361 				queue_index = map->queues[
2362 				    ((u64)hash * map->len) >> 32];
2363 			}
2364 			if (unlikely(queue_index >= dev->real_num_tx_queues))
2365 				queue_index = -1;
2366 		}
2367 	}
2368 	rcu_read_unlock();
2369 
2370 	return queue_index;
2371 #else
2372 	return -1;
2373 #endif
2374 }
2375 
2376 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2377 					struct sk_buff *skb)
2378 {
2379 	int queue_index;
2380 	const struct net_device_ops *ops = dev->netdev_ops;
2381 
2382 	if (dev->real_num_tx_queues == 1)
2383 		queue_index = 0;
2384 	else if (ops->ndo_select_queue) {
2385 		queue_index = ops->ndo_select_queue(dev, skb);
2386 		queue_index = dev_cap_txqueue(dev, queue_index);
2387 	} else {
2388 		struct sock *sk = skb->sk;
2389 		queue_index = sk_tx_queue_get(sk);
2390 
2391 		if (queue_index < 0 || skb->ooo_okay ||
2392 		    queue_index >= dev->real_num_tx_queues) {
2393 			int old_index = queue_index;
2394 
2395 			queue_index = get_xps_queue(dev, skb);
2396 			if (queue_index < 0)
2397 				queue_index = skb_tx_hash(dev, skb);
2398 
2399 			if (queue_index != old_index && sk) {
2400 				struct dst_entry *dst =
2401 				    rcu_dereference_check(sk->sk_dst_cache, 1);
2402 
2403 				if (dst && skb_dst(skb) == dst)
2404 					sk_tx_queue_set(sk, queue_index);
2405 			}
2406 		}
2407 	}
2408 
2409 	skb_set_queue_mapping(skb, queue_index);
2410 	return netdev_get_tx_queue(dev, queue_index);
2411 }
2412 
2413 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2414 				 struct net_device *dev,
2415 				 struct netdev_queue *txq)
2416 {
2417 	spinlock_t *root_lock = qdisc_lock(q);
2418 	bool contended;
2419 	int rc;
2420 
2421 	qdisc_skb_cb(skb)->pkt_len = skb->len;
2422 	qdisc_calculate_pkt_len(skb, q);
2423 	/*
2424 	 * Heuristic to force contended enqueues to serialize on a
2425 	 * separate lock before trying to get qdisc main lock.
2426 	 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2427 	 * and dequeue packets faster.
2428 	 */
2429 	contended = qdisc_is_running(q);
2430 	if (unlikely(contended))
2431 		spin_lock(&q->busylock);
2432 
2433 	spin_lock(root_lock);
2434 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2435 		kfree_skb(skb);
2436 		rc = NET_XMIT_DROP;
2437 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2438 		   qdisc_run_begin(q)) {
2439 		/*
2440 		 * This is a work-conserving queue; there are no old skbs
2441 		 * waiting to be sent out; and the qdisc is not running -
2442 		 * xmit the skb directly.
2443 		 */
2444 		if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2445 			skb_dst_force(skb);
2446 
2447 		qdisc_bstats_update(q, skb);
2448 
2449 		if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2450 			if (unlikely(contended)) {
2451 				spin_unlock(&q->busylock);
2452 				contended = false;
2453 			}
2454 			__qdisc_run(q);
2455 		} else
2456 			qdisc_run_end(q);
2457 
2458 		rc = NET_XMIT_SUCCESS;
2459 	} else {
2460 		skb_dst_force(skb);
2461 		rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2462 		if (qdisc_run_begin(q)) {
2463 			if (unlikely(contended)) {
2464 				spin_unlock(&q->busylock);
2465 				contended = false;
2466 			}
2467 			__qdisc_run(q);
2468 		}
2469 	}
2470 	spin_unlock(root_lock);
2471 	if (unlikely(contended))
2472 		spin_unlock(&q->busylock);
2473 	return rc;
2474 }
2475 
2476 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2477 static void skb_update_prio(struct sk_buff *skb)
2478 {
2479 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2480 
2481 	if (!skb->priority && skb->sk && map) {
2482 		unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2483 
2484 		if (prioidx < map->priomap_len)
2485 			skb->priority = map->priomap[prioidx];
2486 	}
2487 }
2488 #else
2489 #define skb_update_prio(skb)
2490 #endif
2491 
2492 static DEFINE_PER_CPU(int, xmit_recursion);
2493 #define RECURSION_LIMIT 10
2494 
2495 /**
2496  *	dev_loopback_xmit - loop back @skb
2497  *	@skb: buffer to transmit
2498  */
2499 int dev_loopback_xmit(struct sk_buff *skb)
2500 {
2501 	skb_reset_mac_header(skb);
2502 	__skb_pull(skb, skb_network_offset(skb));
2503 	skb->pkt_type = PACKET_LOOPBACK;
2504 	skb->ip_summed = CHECKSUM_UNNECESSARY;
2505 	WARN_ON(!skb_dst(skb));
2506 	skb_dst_force(skb);
2507 	netif_rx_ni(skb);
2508 	return 0;
2509 }
2510 EXPORT_SYMBOL(dev_loopback_xmit);
2511 
2512 /**
2513  *	dev_queue_xmit - transmit a buffer
2514  *	@skb: buffer to transmit
2515  *
2516  *	Queue a buffer for transmission to a network device. The caller must
2517  *	have set the device and priority and built the buffer before calling
2518  *	this function. The function can be called from an interrupt.
2519  *
2520  *	A negative errno code is returned on a failure. A success does not
2521  *	guarantee the frame will be transmitted as it may be dropped due
2522  *	to congestion or traffic shaping.
2523  *
2524  * -----------------------------------------------------------------------------------
2525  *      I notice this method can also return errors from the queue disciplines,
2526  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2527  *      be positive.
2528  *
2529  *      Regardless of the return value, the skb is consumed, so it is currently
2530  *      difficult to retry a send to this method.  (You can bump the ref count
2531  *      before sending to hold a reference for retry if you are careful.)
2532  *
2533  *      When calling this method, interrupts MUST be enabled.  This is because
2534  *      the BH enable code must have IRQs enabled so that it will not deadlock.
2535  *          --BLG
2536  */
2537 int dev_queue_xmit(struct sk_buff *skb)
2538 {
2539 	struct net_device *dev = skb->dev;
2540 	struct netdev_queue *txq;
2541 	struct Qdisc *q;
2542 	int rc = -ENOMEM;
2543 
2544 	/* Disable soft irqs for various locks below. Also
2545 	 * stops preemption for RCU.
2546 	 */
2547 	rcu_read_lock_bh();
2548 
2549 	skb_update_prio(skb);
2550 
2551 	txq = dev_pick_tx(dev, skb);
2552 	q = rcu_dereference_bh(txq->qdisc);
2553 
2554 #ifdef CONFIG_NET_CLS_ACT
2555 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2556 #endif
2557 	trace_net_dev_queue(skb);
2558 	if (q->enqueue) {
2559 		rc = __dev_xmit_skb(skb, q, dev, txq);
2560 		goto out;
2561 	}
2562 
2563 	/* The device has no queue. Common case for software devices:
2564 	   loopback, all the sorts of tunnels...
2565 
2566 	   Really, it is unlikely that netif_tx_lock protection is necessary
2567 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2568 	   counters.)
2569 	   However, it is possible, that they rely on protection
2570 	   made by us here.
2571 
2572 	   Check this and shot the lock. It is not prone from deadlocks.
2573 	   Either shot noqueue qdisc, it is even simpler 8)
2574 	 */
2575 	if (dev->flags & IFF_UP) {
2576 		int cpu = smp_processor_id(); /* ok because BHs are off */
2577 
2578 		if (txq->xmit_lock_owner != cpu) {
2579 
2580 			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2581 				goto recursion_alert;
2582 
2583 			HARD_TX_LOCK(dev, txq, cpu);
2584 
2585 			if (!netif_xmit_stopped(txq)) {
2586 				__this_cpu_inc(xmit_recursion);
2587 				rc = dev_hard_start_xmit(skb, dev, txq);
2588 				__this_cpu_dec(xmit_recursion);
2589 				if (dev_xmit_complete(rc)) {
2590 					HARD_TX_UNLOCK(dev, txq);
2591 					goto out;
2592 				}
2593 			}
2594 			HARD_TX_UNLOCK(dev, txq);
2595 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2596 					     dev->name);
2597 		} else {
2598 			/* Recursion is detected! It is possible,
2599 			 * unfortunately
2600 			 */
2601 recursion_alert:
2602 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2603 					     dev->name);
2604 		}
2605 	}
2606 
2607 	rc = -ENETDOWN;
2608 	rcu_read_unlock_bh();
2609 
2610 	kfree_skb(skb);
2611 	return rc;
2612 out:
2613 	rcu_read_unlock_bh();
2614 	return rc;
2615 }
2616 EXPORT_SYMBOL(dev_queue_xmit);
2617 
2618 
2619 /*=======================================================================
2620 			Receiver routines
2621   =======================================================================*/
2622 
2623 int netdev_max_backlog __read_mostly = 1000;
2624 int netdev_tstamp_prequeue __read_mostly = 1;
2625 int netdev_budget __read_mostly = 300;
2626 int weight_p __read_mostly = 64;            /* old backlog weight */
2627 
2628 /* Called with irq disabled */
2629 static inline void ____napi_schedule(struct softnet_data *sd,
2630 				     struct napi_struct *napi)
2631 {
2632 	list_add_tail(&napi->poll_list, &sd->poll_list);
2633 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2634 }
2635 
2636 /*
2637  * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2638  * and src/dst port numbers.  Sets rxhash in skb to non-zero hash value
2639  * on success, zero indicates no valid hash.  Also, sets l4_rxhash in skb
2640  * if hash is a canonical 4-tuple hash over transport ports.
2641  */
2642 void __skb_get_rxhash(struct sk_buff *skb)
2643 {
2644 	struct flow_keys keys;
2645 	u32 hash;
2646 
2647 	if (!skb_flow_dissect(skb, &keys))
2648 		return;
2649 
2650 	if (keys.ports) {
2651 		if ((__force u16)keys.port16[1] < (__force u16)keys.port16[0])
2652 			swap(keys.port16[0], keys.port16[1]);
2653 		skb->l4_rxhash = 1;
2654 	}
2655 
2656 	/* get a consistent hash (same value on both flow directions) */
2657 	if ((__force u32)keys.dst < (__force u32)keys.src)
2658 		swap(keys.dst, keys.src);
2659 
2660 	hash = jhash_3words((__force u32)keys.dst,
2661 			    (__force u32)keys.src,
2662 			    (__force u32)keys.ports, hashrnd);
2663 	if (!hash)
2664 		hash = 1;
2665 
2666 	skb->rxhash = hash;
2667 }
2668 EXPORT_SYMBOL(__skb_get_rxhash);
2669 
2670 #ifdef CONFIG_RPS
2671 
2672 /* One global table that all flow-based protocols share. */
2673 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2674 EXPORT_SYMBOL(rps_sock_flow_table);
2675 
2676 struct static_key rps_needed __read_mostly;
2677 
2678 static struct rps_dev_flow *
2679 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2680 	    struct rps_dev_flow *rflow, u16 next_cpu)
2681 {
2682 	if (next_cpu != RPS_NO_CPU) {
2683 #ifdef CONFIG_RFS_ACCEL
2684 		struct netdev_rx_queue *rxqueue;
2685 		struct rps_dev_flow_table *flow_table;
2686 		struct rps_dev_flow *old_rflow;
2687 		u32 flow_id;
2688 		u16 rxq_index;
2689 		int rc;
2690 
2691 		/* Should we steer this flow to a different hardware queue? */
2692 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2693 		    !(dev->features & NETIF_F_NTUPLE))
2694 			goto out;
2695 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2696 		if (rxq_index == skb_get_rx_queue(skb))
2697 			goto out;
2698 
2699 		rxqueue = dev->_rx + rxq_index;
2700 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
2701 		if (!flow_table)
2702 			goto out;
2703 		flow_id = skb->rxhash & flow_table->mask;
2704 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2705 							rxq_index, flow_id);
2706 		if (rc < 0)
2707 			goto out;
2708 		old_rflow = rflow;
2709 		rflow = &flow_table->flows[flow_id];
2710 		rflow->filter = rc;
2711 		if (old_rflow->filter == rflow->filter)
2712 			old_rflow->filter = RPS_NO_FILTER;
2713 	out:
2714 #endif
2715 		rflow->last_qtail =
2716 			per_cpu(softnet_data, next_cpu).input_queue_head;
2717 	}
2718 
2719 	rflow->cpu = next_cpu;
2720 	return rflow;
2721 }
2722 
2723 /*
2724  * get_rps_cpu is called from netif_receive_skb and returns the target
2725  * CPU from the RPS map of the receiving queue for a given skb.
2726  * rcu_read_lock must be held on entry.
2727  */
2728 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2729 		       struct rps_dev_flow **rflowp)
2730 {
2731 	struct netdev_rx_queue *rxqueue;
2732 	struct rps_map *map;
2733 	struct rps_dev_flow_table *flow_table;
2734 	struct rps_sock_flow_table *sock_flow_table;
2735 	int cpu = -1;
2736 	u16 tcpu;
2737 
2738 	if (skb_rx_queue_recorded(skb)) {
2739 		u16 index = skb_get_rx_queue(skb);
2740 		if (unlikely(index >= dev->real_num_rx_queues)) {
2741 			WARN_ONCE(dev->real_num_rx_queues > 1,
2742 				  "%s received packet on queue %u, but number "
2743 				  "of RX queues is %u\n",
2744 				  dev->name, index, dev->real_num_rx_queues);
2745 			goto done;
2746 		}
2747 		rxqueue = dev->_rx + index;
2748 	} else
2749 		rxqueue = dev->_rx;
2750 
2751 	map = rcu_dereference(rxqueue->rps_map);
2752 	if (map) {
2753 		if (map->len == 1 &&
2754 		    !rcu_access_pointer(rxqueue->rps_flow_table)) {
2755 			tcpu = map->cpus[0];
2756 			if (cpu_online(tcpu))
2757 				cpu = tcpu;
2758 			goto done;
2759 		}
2760 	} else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2761 		goto done;
2762 	}
2763 
2764 	skb_reset_network_header(skb);
2765 	if (!skb_get_rxhash(skb))
2766 		goto done;
2767 
2768 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
2769 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
2770 	if (flow_table && sock_flow_table) {
2771 		u16 next_cpu;
2772 		struct rps_dev_flow *rflow;
2773 
2774 		rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2775 		tcpu = rflow->cpu;
2776 
2777 		next_cpu = sock_flow_table->ents[skb->rxhash &
2778 		    sock_flow_table->mask];
2779 
2780 		/*
2781 		 * If the desired CPU (where last recvmsg was done) is
2782 		 * different from current CPU (one in the rx-queue flow
2783 		 * table entry), switch if one of the following holds:
2784 		 *   - Current CPU is unset (equal to RPS_NO_CPU).
2785 		 *   - Current CPU is offline.
2786 		 *   - The current CPU's queue tail has advanced beyond the
2787 		 *     last packet that was enqueued using this table entry.
2788 		 *     This guarantees that all previous packets for the flow
2789 		 *     have been dequeued, thus preserving in order delivery.
2790 		 */
2791 		if (unlikely(tcpu != next_cpu) &&
2792 		    (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2793 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2794 		      rflow->last_qtail)) >= 0))
2795 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2796 
2797 		if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2798 			*rflowp = rflow;
2799 			cpu = tcpu;
2800 			goto done;
2801 		}
2802 	}
2803 
2804 	if (map) {
2805 		tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2806 
2807 		if (cpu_online(tcpu)) {
2808 			cpu = tcpu;
2809 			goto done;
2810 		}
2811 	}
2812 
2813 done:
2814 	return cpu;
2815 }
2816 
2817 #ifdef CONFIG_RFS_ACCEL
2818 
2819 /**
2820  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2821  * @dev: Device on which the filter was set
2822  * @rxq_index: RX queue index
2823  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2824  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2825  *
2826  * Drivers that implement ndo_rx_flow_steer() should periodically call
2827  * this function for each installed filter and remove the filters for
2828  * which it returns %true.
2829  */
2830 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2831 			 u32 flow_id, u16 filter_id)
2832 {
2833 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2834 	struct rps_dev_flow_table *flow_table;
2835 	struct rps_dev_flow *rflow;
2836 	bool expire = true;
2837 	int cpu;
2838 
2839 	rcu_read_lock();
2840 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
2841 	if (flow_table && flow_id <= flow_table->mask) {
2842 		rflow = &flow_table->flows[flow_id];
2843 		cpu = ACCESS_ONCE(rflow->cpu);
2844 		if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2845 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2846 			   rflow->last_qtail) <
2847 		     (int)(10 * flow_table->mask)))
2848 			expire = false;
2849 	}
2850 	rcu_read_unlock();
2851 	return expire;
2852 }
2853 EXPORT_SYMBOL(rps_may_expire_flow);
2854 
2855 #endif /* CONFIG_RFS_ACCEL */
2856 
2857 /* Called from hardirq (IPI) context */
2858 static void rps_trigger_softirq(void *data)
2859 {
2860 	struct softnet_data *sd = data;
2861 
2862 	____napi_schedule(sd, &sd->backlog);
2863 	sd->received_rps++;
2864 }
2865 
2866 #endif /* CONFIG_RPS */
2867 
2868 /*
2869  * Check if this softnet_data structure is another cpu one
2870  * If yes, queue it to our IPI list and return 1
2871  * If no, return 0
2872  */
2873 static int rps_ipi_queued(struct softnet_data *sd)
2874 {
2875 #ifdef CONFIG_RPS
2876 	struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2877 
2878 	if (sd != mysd) {
2879 		sd->rps_ipi_next = mysd->rps_ipi_list;
2880 		mysd->rps_ipi_list = sd;
2881 
2882 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2883 		return 1;
2884 	}
2885 #endif /* CONFIG_RPS */
2886 	return 0;
2887 }
2888 
2889 /*
2890  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2891  * queue (may be a remote CPU queue).
2892  */
2893 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2894 			      unsigned int *qtail)
2895 {
2896 	struct softnet_data *sd;
2897 	unsigned long flags;
2898 
2899 	sd = &per_cpu(softnet_data, cpu);
2900 
2901 	local_irq_save(flags);
2902 
2903 	rps_lock(sd);
2904 	if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2905 		if (skb_queue_len(&sd->input_pkt_queue)) {
2906 enqueue:
2907 			__skb_queue_tail(&sd->input_pkt_queue, skb);
2908 			input_queue_tail_incr_save(sd, qtail);
2909 			rps_unlock(sd);
2910 			local_irq_restore(flags);
2911 			return NET_RX_SUCCESS;
2912 		}
2913 
2914 		/* Schedule NAPI for backlog device
2915 		 * We can use non atomic operation since we own the queue lock
2916 		 */
2917 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2918 			if (!rps_ipi_queued(sd))
2919 				____napi_schedule(sd, &sd->backlog);
2920 		}
2921 		goto enqueue;
2922 	}
2923 
2924 	sd->dropped++;
2925 	rps_unlock(sd);
2926 
2927 	local_irq_restore(flags);
2928 
2929 	atomic_long_inc(&skb->dev->rx_dropped);
2930 	kfree_skb(skb);
2931 	return NET_RX_DROP;
2932 }
2933 
2934 /**
2935  *	netif_rx	-	post buffer to the network code
2936  *	@skb: buffer to post
2937  *
2938  *	This function receives a packet from a device driver and queues it for
2939  *	the upper (protocol) levels to process.  It always succeeds. The buffer
2940  *	may be dropped during processing for congestion control or by the
2941  *	protocol layers.
2942  *
2943  *	return values:
2944  *	NET_RX_SUCCESS	(no congestion)
2945  *	NET_RX_DROP     (packet was dropped)
2946  *
2947  */
2948 
2949 int netif_rx(struct sk_buff *skb)
2950 {
2951 	int ret;
2952 
2953 	/* if netpoll wants it, pretend we never saw it */
2954 	if (netpoll_rx(skb))
2955 		return NET_RX_DROP;
2956 
2957 	net_timestamp_check(netdev_tstamp_prequeue, skb);
2958 
2959 	trace_netif_rx(skb);
2960 #ifdef CONFIG_RPS
2961 	if (static_key_false(&rps_needed)) {
2962 		struct rps_dev_flow voidflow, *rflow = &voidflow;
2963 		int cpu;
2964 
2965 		preempt_disable();
2966 		rcu_read_lock();
2967 
2968 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
2969 		if (cpu < 0)
2970 			cpu = smp_processor_id();
2971 
2972 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2973 
2974 		rcu_read_unlock();
2975 		preempt_enable();
2976 	} else
2977 #endif
2978 	{
2979 		unsigned int qtail;
2980 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2981 		put_cpu();
2982 	}
2983 	return ret;
2984 }
2985 EXPORT_SYMBOL(netif_rx);
2986 
2987 int netif_rx_ni(struct sk_buff *skb)
2988 {
2989 	int err;
2990 
2991 	preempt_disable();
2992 	err = netif_rx(skb);
2993 	if (local_softirq_pending())
2994 		do_softirq();
2995 	preempt_enable();
2996 
2997 	return err;
2998 }
2999 EXPORT_SYMBOL(netif_rx_ni);
3000 
3001 static void net_tx_action(struct softirq_action *h)
3002 {
3003 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3004 
3005 	if (sd->completion_queue) {
3006 		struct sk_buff *clist;
3007 
3008 		local_irq_disable();
3009 		clist = sd->completion_queue;
3010 		sd->completion_queue = NULL;
3011 		local_irq_enable();
3012 
3013 		while (clist) {
3014 			struct sk_buff *skb = clist;
3015 			clist = clist->next;
3016 
3017 			WARN_ON(atomic_read(&skb->users));
3018 			trace_kfree_skb(skb, net_tx_action);
3019 			__kfree_skb(skb);
3020 		}
3021 	}
3022 
3023 	if (sd->output_queue) {
3024 		struct Qdisc *head;
3025 
3026 		local_irq_disable();
3027 		head = sd->output_queue;
3028 		sd->output_queue = NULL;
3029 		sd->output_queue_tailp = &sd->output_queue;
3030 		local_irq_enable();
3031 
3032 		while (head) {
3033 			struct Qdisc *q = head;
3034 			spinlock_t *root_lock;
3035 
3036 			head = head->next_sched;
3037 
3038 			root_lock = qdisc_lock(q);
3039 			if (spin_trylock(root_lock)) {
3040 				smp_mb__before_clear_bit();
3041 				clear_bit(__QDISC_STATE_SCHED,
3042 					  &q->state);
3043 				qdisc_run(q);
3044 				spin_unlock(root_lock);
3045 			} else {
3046 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
3047 					      &q->state)) {
3048 					__netif_reschedule(q);
3049 				} else {
3050 					smp_mb__before_clear_bit();
3051 					clear_bit(__QDISC_STATE_SCHED,
3052 						  &q->state);
3053 				}
3054 			}
3055 		}
3056 	}
3057 }
3058 
3059 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3060     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3061 /* This hook is defined here for ATM LANE */
3062 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3063 			     unsigned char *addr) __read_mostly;
3064 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3065 #endif
3066 
3067 #ifdef CONFIG_NET_CLS_ACT
3068 /* TODO: Maybe we should just force sch_ingress to be compiled in
3069  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3070  * a compare and 2 stores extra right now if we dont have it on
3071  * but have CONFIG_NET_CLS_ACT
3072  * NOTE: This doesn't stop any functionality; if you dont have
3073  * the ingress scheduler, you just can't add policies on ingress.
3074  *
3075  */
3076 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3077 {
3078 	struct net_device *dev = skb->dev;
3079 	u32 ttl = G_TC_RTTL(skb->tc_verd);
3080 	int result = TC_ACT_OK;
3081 	struct Qdisc *q;
3082 
3083 	if (unlikely(MAX_RED_LOOP < ttl++)) {
3084 		net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3085 				     skb->skb_iif, dev->ifindex);
3086 		return TC_ACT_SHOT;
3087 	}
3088 
3089 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3090 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3091 
3092 	q = rxq->qdisc;
3093 	if (q != &noop_qdisc) {
3094 		spin_lock(qdisc_lock(q));
3095 		if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3096 			result = qdisc_enqueue_root(skb, q);
3097 		spin_unlock(qdisc_lock(q));
3098 	}
3099 
3100 	return result;
3101 }
3102 
3103 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3104 					 struct packet_type **pt_prev,
3105 					 int *ret, struct net_device *orig_dev)
3106 {
3107 	struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3108 
3109 	if (!rxq || rxq->qdisc == &noop_qdisc)
3110 		goto out;
3111 
3112 	if (*pt_prev) {
3113 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3114 		*pt_prev = NULL;
3115 	}
3116 
3117 	switch (ing_filter(skb, rxq)) {
3118 	case TC_ACT_SHOT:
3119 	case TC_ACT_STOLEN:
3120 		kfree_skb(skb);
3121 		return NULL;
3122 	}
3123 
3124 out:
3125 	skb->tc_verd = 0;
3126 	return skb;
3127 }
3128 #endif
3129 
3130 /**
3131  *	netdev_rx_handler_register - register receive handler
3132  *	@dev: device to register a handler for
3133  *	@rx_handler: receive handler to register
3134  *	@rx_handler_data: data pointer that is used by rx handler
3135  *
3136  *	Register a receive hander for a device. This handler will then be
3137  *	called from __netif_receive_skb. A negative errno code is returned
3138  *	on a failure.
3139  *
3140  *	The caller must hold the rtnl_mutex.
3141  *
3142  *	For a general description of rx_handler, see enum rx_handler_result.
3143  */
3144 int netdev_rx_handler_register(struct net_device *dev,
3145 			       rx_handler_func_t *rx_handler,
3146 			       void *rx_handler_data)
3147 {
3148 	ASSERT_RTNL();
3149 
3150 	if (dev->rx_handler)
3151 		return -EBUSY;
3152 
3153 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3154 	rcu_assign_pointer(dev->rx_handler, rx_handler);
3155 
3156 	return 0;
3157 }
3158 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3159 
3160 /**
3161  *	netdev_rx_handler_unregister - unregister receive handler
3162  *	@dev: device to unregister a handler from
3163  *
3164  *	Unregister a receive hander from a device.
3165  *
3166  *	The caller must hold the rtnl_mutex.
3167  */
3168 void netdev_rx_handler_unregister(struct net_device *dev)
3169 {
3170 
3171 	ASSERT_RTNL();
3172 	RCU_INIT_POINTER(dev->rx_handler, NULL);
3173 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3174 }
3175 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3176 
3177 /*
3178  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3179  * the special handling of PFMEMALLOC skbs.
3180  */
3181 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3182 {
3183 	switch (skb->protocol) {
3184 	case __constant_htons(ETH_P_ARP):
3185 	case __constant_htons(ETH_P_IP):
3186 	case __constant_htons(ETH_P_IPV6):
3187 	case __constant_htons(ETH_P_8021Q):
3188 		return true;
3189 	default:
3190 		return false;
3191 	}
3192 }
3193 
3194 static int __netif_receive_skb(struct sk_buff *skb)
3195 {
3196 	struct packet_type *ptype, *pt_prev;
3197 	rx_handler_func_t *rx_handler;
3198 	struct net_device *orig_dev;
3199 	struct net_device *null_or_dev;
3200 	bool deliver_exact = false;
3201 	int ret = NET_RX_DROP;
3202 	__be16 type;
3203 	unsigned long pflags = current->flags;
3204 
3205 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
3206 
3207 	trace_netif_receive_skb(skb);
3208 
3209 	/*
3210 	 * PFMEMALLOC skbs are special, they should
3211 	 * - be delivered to SOCK_MEMALLOC sockets only
3212 	 * - stay away from userspace
3213 	 * - have bounded memory usage
3214 	 *
3215 	 * Use PF_MEMALLOC as this saves us from propagating the allocation
3216 	 * context down to all allocation sites.
3217 	 */
3218 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
3219 		current->flags |= PF_MEMALLOC;
3220 
3221 	/* if we've gotten here through NAPI, check netpoll */
3222 	if (netpoll_receive_skb(skb))
3223 		goto out;
3224 
3225 	orig_dev = skb->dev;
3226 
3227 	skb_reset_network_header(skb);
3228 	skb_reset_transport_header(skb);
3229 	skb_reset_mac_len(skb);
3230 
3231 	pt_prev = NULL;
3232 
3233 	rcu_read_lock();
3234 
3235 another_round:
3236 	skb->skb_iif = skb->dev->ifindex;
3237 
3238 	__this_cpu_inc(softnet_data.processed);
3239 
3240 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3241 		skb = vlan_untag(skb);
3242 		if (unlikely(!skb))
3243 			goto unlock;
3244 	}
3245 
3246 #ifdef CONFIG_NET_CLS_ACT
3247 	if (skb->tc_verd & TC_NCLS) {
3248 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3249 		goto ncls;
3250 	}
3251 #endif
3252 
3253 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
3254 		goto skip_taps;
3255 
3256 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
3257 		if (!ptype->dev || ptype->dev == skb->dev) {
3258 			if (pt_prev)
3259 				ret = deliver_skb(skb, pt_prev, orig_dev);
3260 			pt_prev = ptype;
3261 		}
3262 	}
3263 
3264 skip_taps:
3265 #ifdef CONFIG_NET_CLS_ACT
3266 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3267 	if (!skb)
3268 		goto unlock;
3269 ncls:
3270 #endif
3271 
3272 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)
3273 				&& !skb_pfmemalloc_protocol(skb))
3274 		goto drop;
3275 
3276 	rx_handler = rcu_dereference(skb->dev->rx_handler);
3277 	if (vlan_tx_tag_present(skb)) {
3278 		if (pt_prev) {
3279 			ret = deliver_skb(skb, pt_prev, orig_dev);
3280 			pt_prev = NULL;
3281 		}
3282 		if (vlan_do_receive(&skb, !rx_handler))
3283 			goto another_round;
3284 		else if (unlikely(!skb))
3285 			goto unlock;
3286 	}
3287 
3288 	if (rx_handler) {
3289 		if (pt_prev) {
3290 			ret = deliver_skb(skb, pt_prev, orig_dev);
3291 			pt_prev = NULL;
3292 		}
3293 		switch (rx_handler(&skb)) {
3294 		case RX_HANDLER_CONSUMED:
3295 			goto unlock;
3296 		case RX_HANDLER_ANOTHER:
3297 			goto another_round;
3298 		case RX_HANDLER_EXACT:
3299 			deliver_exact = true;
3300 		case RX_HANDLER_PASS:
3301 			break;
3302 		default:
3303 			BUG();
3304 		}
3305 	}
3306 
3307 	/* deliver only exact match when indicated */
3308 	null_or_dev = deliver_exact ? skb->dev : NULL;
3309 
3310 	type = skb->protocol;
3311 	list_for_each_entry_rcu(ptype,
3312 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3313 		if (ptype->type == type &&
3314 		    (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3315 		     ptype->dev == orig_dev)) {
3316 			if (pt_prev)
3317 				ret = deliver_skb(skb, pt_prev, orig_dev);
3318 			pt_prev = ptype;
3319 		}
3320 	}
3321 
3322 	if (pt_prev) {
3323 		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3324 			ret = -ENOMEM;
3325 		else
3326 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3327 	} else {
3328 drop:
3329 		atomic_long_inc(&skb->dev->rx_dropped);
3330 		kfree_skb(skb);
3331 		/* Jamal, now you will not able to escape explaining
3332 		 * me how you were going to use this. :-)
3333 		 */
3334 		ret = NET_RX_DROP;
3335 	}
3336 
3337 unlock:
3338 	rcu_read_unlock();
3339 out:
3340 	tsk_restore_flags(current, pflags, PF_MEMALLOC);
3341 	return ret;
3342 }
3343 
3344 /**
3345  *	netif_receive_skb - process receive buffer from network
3346  *	@skb: buffer to process
3347  *
3348  *	netif_receive_skb() is the main receive data processing function.
3349  *	It always succeeds. The buffer may be dropped during processing
3350  *	for congestion control or by the protocol layers.
3351  *
3352  *	This function may only be called from softirq context and interrupts
3353  *	should be enabled.
3354  *
3355  *	Return values (usually ignored):
3356  *	NET_RX_SUCCESS: no congestion
3357  *	NET_RX_DROP: packet was dropped
3358  */
3359 int netif_receive_skb(struct sk_buff *skb)
3360 {
3361 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3362 
3363 	if (skb_defer_rx_timestamp(skb))
3364 		return NET_RX_SUCCESS;
3365 
3366 #ifdef CONFIG_RPS
3367 	if (static_key_false(&rps_needed)) {
3368 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3369 		int cpu, ret;
3370 
3371 		rcu_read_lock();
3372 
3373 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3374 
3375 		if (cpu >= 0) {
3376 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3377 			rcu_read_unlock();
3378 			return ret;
3379 		}
3380 		rcu_read_unlock();
3381 	}
3382 #endif
3383 	return __netif_receive_skb(skb);
3384 }
3385 EXPORT_SYMBOL(netif_receive_skb);
3386 
3387 /* Network device is going away, flush any packets still pending
3388  * Called with irqs disabled.
3389  */
3390 static void flush_backlog(void *arg)
3391 {
3392 	struct net_device *dev = arg;
3393 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3394 	struct sk_buff *skb, *tmp;
3395 
3396 	rps_lock(sd);
3397 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3398 		if (skb->dev == dev) {
3399 			__skb_unlink(skb, &sd->input_pkt_queue);
3400 			kfree_skb(skb);
3401 			input_queue_head_incr(sd);
3402 		}
3403 	}
3404 	rps_unlock(sd);
3405 
3406 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3407 		if (skb->dev == dev) {
3408 			__skb_unlink(skb, &sd->process_queue);
3409 			kfree_skb(skb);
3410 			input_queue_head_incr(sd);
3411 		}
3412 	}
3413 }
3414 
3415 static int napi_gro_complete(struct sk_buff *skb)
3416 {
3417 	struct packet_type *ptype;
3418 	__be16 type = skb->protocol;
3419 	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3420 	int err = -ENOENT;
3421 
3422 	if (NAPI_GRO_CB(skb)->count == 1) {
3423 		skb_shinfo(skb)->gso_size = 0;
3424 		goto out;
3425 	}
3426 
3427 	rcu_read_lock();
3428 	list_for_each_entry_rcu(ptype, head, list) {
3429 		if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3430 			continue;
3431 
3432 		err = ptype->gro_complete(skb);
3433 		break;
3434 	}
3435 	rcu_read_unlock();
3436 
3437 	if (err) {
3438 		WARN_ON(&ptype->list == head);
3439 		kfree_skb(skb);
3440 		return NET_RX_SUCCESS;
3441 	}
3442 
3443 out:
3444 	return netif_receive_skb(skb);
3445 }
3446 
3447 inline void napi_gro_flush(struct napi_struct *napi)
3448 {
3449 	struct sk_buff *skb, *next;
3450 
3451 	for (skb = napi->gro_list; skb; skb = next) {
3452 		next = skb->next;
3453 		skb->next = NULL;
3454 		napi_gro_complete(skb);
3455 	}
3456 
3457 	napi->gro_count = 0;
3458 	napi->gro_list = NULL;
3459 }
3460 EXPORT_SYMBOL(napi_gro_flush);
3461 
3462 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3463 {
3464 	struct sk_buff **pp = NULL;
3465 	struct packet_type *ptype;
3466 	__be16 type = skb->protocol;
3467 	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3468 	int same_flow;
3469 	int mac_len;
3470 	enum gro_result ret;
3471 
3472 	if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3473 		goto normal;
3474 
3475 	if (skb_is_gso(skb) || skb_has_frag_list(skb))
3476 		goto normal;
3477 
3478 	rcu_read_lock();
3479 	list_for_each_entry_rcu(ptype, head, list) {
3480 		if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3481 			continue;
3482 
3483 		skb_set_network_header(skb, skb_gro_offset(skb));
3484 		mac_len = skb->network_header - skb->mac_header;
3485 		skb->mac_len = mac_len;
3486 		NAPI_GRO_CB(skb)->same_flow = 0;
3487 		NAPI_GRO_CB(skb)->flush = 0;
3488 		NAPI_GRO_CB(skb)->free = 0;
3489 
3490 		pp = ptype->gro_receive(&napi->gro_list, skb);
3491 		break;
3492 	}
3493 	rcu_read_unlock();
3494 
3495 	if (&ptype->list == head)
3496 		goto normal;
3497 
3498 	same_flow = NAPI_GRO_CB(skb)->same_flow;
3499 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3500 
3501 	if (pp) {
3502 		struct sk_buff *nskb = *pp;
3503 
3504 		*pp = nskb->next;
3505 		nskb->next = NULL;
3506 		napi_gro_complete(nskb);
3507 		napi->gro_count--;
3508 	}
3509 
3510 	if (same_flow)
3511 		goto ok;
3512 
3513 	if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3514 		goto normal;
3515 
3516 	napi->gro_count++;
3517 	NAPI_GRO_CB(skb)->count = 1;
3518 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3519 	skb->next = napi->gro_list;
3520 	napi->gro_list = skb;
3521 	ret = GRO_HELD;
3522 
3523 pull:
3524 	if (skb_headlen(skb) < skb_gro_offset(skb)) {
3525 		int grow = skb_gro_offset(skb) - skb_headlen(skb);
3526 
3527 		BUG_ON(skb->end - skb->tail < grow);
3528 
3529 		memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3530 
3531 		skb->tail += grow;
3532 		skb->data_len -= grow;
3533 
3534 		skb_shinfo(skb)->frags[0].page_offset += grow;
3535 		skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3536 
3537 		if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3538 			skb_frag_unref(skb, 0);
3539 			memmove(skb_shinfo(skb)->frags,
3540 				skb_shinfo(skb)->frags + 1,
3541 				--skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3542 		}
3543 	}
3544 
3545 ok:
3546 	return ret;
3547 
3548 normal:
3549 	ret = GRO_NORMAL;
3550 	goto pull;
3551 }
3552 EXPORT_SYMBOL(dev_gro_receive);
3553 
3554 static inline gro_result_t
3555 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3556 {
3557 	struct sk_buff *p;
3558 	unsigned int maclen = skb->dev->hard_header_len;
3559 
3560 	for (p = napi->gro_list; p; p = p->next) {
3561 		unsigned long diffs;
3562 
3563 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3564 		diffs |= p->vlan_tci ^ skb->vlan_tci;
3565 		if (maclen == ETH_HLEN)
3566 			diffs |= compare_ether_header(skb_mac_header(p),
3567 						      skb_gro_mac_header(skb));
3568 		else if (!diffs)
3569 			diffs = memcmp(skb_mac_header(p),
3570 				       skb_gro_mac_header(skb),
3571 				       maclen);
3572 		NAPI_GRO_CB(p)->same_flow = !diffs;
3573 		NAPI_GRO_CB(p)->flush = 0;
3574 	}
3575 
3576 	return dev_gro_receive(napi, skb);
3577 }
3578 
3579 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3580 {
3581 	switch (ret) {
3582 	case GRO_NORMAL:
3583 		if (netif_receive_skb(skb))
3584 			ret = GRO_DROP;
3585 		break;
3586 
3587 	case GRO_DROP:
3588 		kfree_skb(skb);
3589 		break;
3590 
3591 	case GRO_MERGED_FREE:
3592 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3593 			kmem_cache_free(skbuff_head_cache, skb);
3594 		else
3595 			__kfree_skb(skb);
3596 		break;
3597 
3598 	case GRO_HELD:
3599 	case GRO_MERGED:
3600 		break;
3601 	}
3602 
3603 	return ret;
3604 }
3605 EXPORT_SYMBOL(napi_skb_finish);
3606 
3607 void skb_gro_reset_offset(struct sk_buff *skb)
3608 {
3609 	NAPI_GRO_CB(skb)->data_offset = 0;
3610 	NAPI_GRO_CB(skb)->frag0 = NULL;
3611 	NAPI_GRO_CB(skb)->frag0_len = 0;
3612 
3613 	if (skb->mac_header == skb->tail &&
3614 	    !PageHighMem(skb_frag_page(&skb_shinfo(skb)->frags[0]))) {
3615 		NAPI_GRO_CB(skb)->frag0 =
3616 			skb_frag_address(&skb_shinfo(skb)->frags[0]);
3617 		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(&skb_shinfo(skb)->frags[0]);
3618 	}
3619 }
3620 EXPORT_SYMBOL(skb_gro_reset_offset);
3621 
3622 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3623 {
3624 	skb_gro_reset_offset(skb);
3625 
3626 	return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3627 }
3628 EXPORT_SYMBOL(napi_gro_receive);
3629 
3630 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3631 {
3632 	__skb_pull(skb, skb_headlen(skb));
3633 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
3634 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3635 	skb->vlan_tci = 0;
3636 	skb->dev = napi->dev;
3637 	skb->skb_iif = 0;
3638 
3639 	napi->skb = skb;
3640 }
3641 
3642 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3643 {
3644 	struct sk_buff *skb = napi->skb;
3645 
3646 	if (!skb) {
3647 		skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3648 		if (skb)
3649 			napi->skb = skb;
3650 	}
3651 	return skb;
3652 }
3653 EXPORT_SYMBOL(napi_get_frags);
3654 
3655 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3656 			       gro_result_t ret)
3657 {
3658 	switch (ret) {
3659 	case GRO_NORMAL:
3660 	case GRO_HELD:
3661 		skb->protocol = eth_type_trans(skb, skb->dev);
3662 
3663 		if (ret == GRO_HELD)
3664 			skb_gro_pull(skb, -ETH_HLEN);
3665 		else if (netif_receive_skb(skb))
3666 			ret = GRO_DROP;
3667 		break;
3668 
3669 	case GRO_DROP:
3670 	case GRO_MERGED_FREE:
3671 		napi_reuse_skb(napi, skb);
3672 		break;
3673 
3674 	case GRO_MERGED:
3675 		break;
3676 	}
3677 
3678 	return ret;
3679 }
3680 EXPORT_SYMBOL(napi_frags_finish);
3681 
3682 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3683 {
3684 	struct sk_buff *skb = napi->skb;
3685 	struct ethhdr *eth;
3686 	unsigned int hlen;
3687 	unsigned int off;
3688 
3689 	napi->skb = NULL;
3690 
3691 	skb_reset_mac_header(skb);
3692 	skb_gro_reset_offset(skb);
3693 
3694 	off = skb_gro_offset(skb);
3695 	hlen = off + sizeof(*eth);
3696 	eth = skb_gro_header_fast(skb, off);
3697 	if (skb_gro_header_hard(skb, hlen)) {
3698 		eth = skb_gro_header_slow(skb, hlen, off);
3699 		if (unlikely(!eth)) {
3700 			napi_reuse_skb(napi, skb);
3701 			skb = NULL;
3702 			goto out;
3703 		}
3704 	}
3705 
3706 	skb_gro_pull(skb, sizeof(*eth));
3707 
3708 	/*
3709 	 * This works because the only protocols we care about don't require
3710 	 * special handling.  We'll fix it up properly at the end.
3711 	 */
3712 	skb->protocol = eth->h_proto;
3713 
3714 out:
3715 	return skb;
3716 }
3717 
3718 gro_result_t napi_gro_frags(struct napi_struct *napi)
3719 {
3720 	struct sk_buff *skb = napi_frags_skb(napi);
3721 
3722 	if (!skb)
3723 		return GRO_DROP;
3724 
3725 	return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3726 }
3727 EXPORT_SYMBOL(napi_gro_frags);
3728 
3729 /*
3730  * net_rps_action sends any pending IPI's for rps.
3731  * Note: called with local irq disabled, but exits with local irq enabled.
3732  */
3733 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3734 {
3735 #ifdef CONFIG_RPS
3736 	struct softnet_data *remsd = sd->rps_ipi_list;
3737 
3738 	if (remsd) {
3739 		sd->rps_ipi_list = NULL;
3740 
3741 		local_irq_enable();
3742 
3743 		/* Send pending IPI's to kick RPS processing on remote cpus. */
3744 		while (remsd) {
3745 			struct softnet_data *next = remsd->rps_ipi_next;
3746 
3747 			if (cpu_online(remsd->cpu))
3748 				__smp_call_function_single(remsd->cpu,
3749 							   &remsd->csd, 0);
3750 			remsd = next;
3751 		}
3752 	} else
3753 #endif
3754 		local_irq_enable();
3755 }
3756 
3757 static int process_backlog(struct napi_struct *napi, int quota)
3758 {
3759 	int work = 0;
3760 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3761 
3762 #ifdef CONFIG_RPS
3763 	/* Check if we have pending ipi, its better to send them now,
3764 	 * not waiting net_rx_action() end.
3765 	 */
3766 	if (sd->rps_ipi_list) {
3767 		local_irq_disable();
3768 		net_rps_action_and_irq_enable(sd);
3769 	}
3770 #endif
3771 	napi->weight = weight_p;
3772 	local_irq_disable();
3773 	while (work < quota) {
3774 		struct sk_buff *skb;
3775 		unsigned int qlen;
3776 
3777 		while ((skb = __skb_dequeue(&sd->process_queue))) {
3778 			local_irq_enable();
3779 			__netif_receive_skb(skb);
3780 			local_irq_disable();
3781 			input_queue_head_incr(sd);
3782 			if (++work >= quota) {
3783 				local_irq_enable();
3784 				return work;
3785 			}
3786 		}
3787 
3788 		rps_lock(sd);
3789 		qlen = skb_queue_len(&sd->input_pkt_queue);
3790 		if (qlen)
3791 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
3792 						   &sd->process_queue);
3793 
3794 		if (qlen < quota - work) {
3795 			/*
3796 			 * Inline a custom version of __napi_complete().
3797 			 * only current cpu owns and manipulates this napi,
3798 			 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3799 			 * we can use a plain write instead of clear_bit(),
3800 			 * and we dont need an smp_mb() memory barrier.
3801 			 */
3802 			list_del(&napi->poll_list);
3803 			napi->state = 0;
3804 
3805 			quota = work + qlen;
3806 		}
3807 		rps_unlock(sd);
3808 	}
3809 	local_irq_enable();
3810 
3811 	return work;
3812 }
3813 
3814 /**
3815  * __napi_schedule - schedule for receive
3816  * @n: entry to schedule
3817  *
3818  * The entry's receive function will be scheduled to run
3819  */
3820 void __napi_schedule(struct napi_struct *n)
3821 {
3822 	unsigned long flags;
3823 
3824 	local_irq_save(flags);
3825 	____napi_schedule(&__get_cpu_var(softnet_data), n);
3826 	local_irq_restore(flags);
3827 }
3828 EXPORT_SYMBOL(__napi_schedule);
3829 
3830 void __napi_complete(struct napi_struct *n)
3831 {
3832 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3833 	BUG_ON(n->gro_list);
3834 
3835 	list_del(&n->poll_list);
3836 	smp_mb__before_clear_bit();
3837 	clear_bit(NAPI_STATE_SCHED, &n->state);
3838 }
3839 EXPORT_SYMBOL(__napi_complete);
3840 
3841 void napi_complete(struct napi_struct *n)
3842 {
3843 	unsigned long flags;
3844 
3845 	/*
3846 	 * don't let napi dequeue from the cpu poll list
3847 	 * just in case its running on a different cpu
3848 	 */
3849 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3850 		return;
3851 
3852 	napi_gro_flush(n);
3853 	local_irq_save(flags);
3854 	__napi_complete(n);
3855 	local_irq_restore(flags);
3856 }
3857 EXPORT_SYMBOL(napi_complete);
3858 
3859 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3860 		    int (*poll)(struct napi_struct *, int), int weight)
3861 {
3862 	INIT_LIST_HEAD(&napi->poll_list);
3863 	napi->gro_count = 0;
3864 	napi->gro_list = NULL;
3865 	napi->skb = NULL;
3866 	napi->poll = poll;
3867 	napi->weight = weight;
3868 	list_add(&napi->dev_list, &dev->napi_list);
3869 	napi->dev = dev;
3870 #ifdef CONFIG_NETPOLL
3871 	spin_lock_init(&napi->poll_lock);
3872 	napi->poll_owner = -1;
3873 #endif
3874 	set_bit(NAPI_STATE_SCHED, &napi->state);
3875 }
3876 EXPORT_SYMBOL(netif_napi_add);
3877 
3878 void netif_napi_del(struct napi_struct *napi)
3879 {
3880 	struct sk_buff *skb, *next;
3881 
3882 	list_del_init(&napi->dev_list);
3883 	napi_free_frags(napi);
3884 
3885 	for (skb = napi->gro_list; skb; skb = next) {
3886 		next = skb->next;
3887 		skb->next = NULL;
3888 		kfree_skb(skb);
3889 	}
3890 
3891 	napi->gro_list = NULL;
3892 	napi->gro_count = 0;
3893 }
3894 EXPORT_SYMBOL(netif_napi_del);
3895 
3896 static void net_rx_action(struct softirq_action *h)
3897 {
3898 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3899 	unsigned long time_limit = jiffies + 2;
3900 	int budget = netdev_budget;
3901 	void *have;
3902 
3903 	local_irq_disable();
3904 
3905 	while (!list_empty(&sd->poll_list)) {
3906 		struct napi_struct *n;
3907 		int work, weight;
3908 
3909 		/* If softirq window is exhuasted then punt.
3910 		 * Allow this to run for 2 jiffies since which will allow
3911 		 * an average latency of 1.5/HZ.
3912 		 */
3913 		if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3914 			goto softnet_break;
3915 
3916 		local_irq_enable();
3917 
3918 		/* Even though interrupts have been re-enabled, this
3919 		 * access is safe because interrupts can only add new
3920 		 * entries to the tail of this list, and only ->poll()
3921 		 * calls can remove this head entry from the list.
3922 		 */
3923 		n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3924 
3925 		have = netpoll_poll_lock(n);
3926 
3927 		weight = n->weight;
3928 
3929 		/* This NAPI_STATE_SCHED test is for avoiding a race
3930 		 * with netpoll's poll_napi().  Only the entity which
3931 		 * obtains the lock and sees NAPI_STATE_SCHED set will
3932 		 * actually make the ->poll() call.  Therefore we avoid
3933 		 * accidentally calling ->poll() when NAPI is not scheduled.
3934 		 */
3935 		work = 0;
3936 		if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3937 			work = n->poll(n, weight);
3938 			trace_napi_poll(n);
3939 		}
3940 
3941 		WARN_ON_ONCE(work > weight);
3942 
3943 		budget -= work;
3944 
3945 		local_irq_disable();
3946 
3947 		/* Drivers must not modify the NAPI state if they
3948 		 * consume the entire weight.  In such cases this code
3949 		 * still "owns" the NAPI instance and therefore can
3950 		 * move the instance around on the list at-will.
3951 		 */
3952 		if (unlikely(work == weight)) {
3953 			if (unlikely(napi_disable_pending(n))) {
3954 				local_irq_enable();
3955 				napi_complete(n);
3956 				local_irq_disable();
3957 			} else
3958 				list_move_tail(&n->poll_list, &sd->poll_list);
3959 		}
3960 
3961 		netpoll_poll_unlock(have);
3962 	}
3963 out:
3964 	net_rps_action_and_irq_enable(sd);
3965 
3966 #ifdef CONFIG_NET_DMA
3967 	/*
3968 	 * There may not be any more sk_buffs coming right now, so push
3969 	 * any pending DMA copies to hardware
3970 	 */
3971 	dma_issue_pending_all();
3972 #endif
3973 
3974 	return;
3975 
3976 softnet_break:
3977 	sd->time_squeeze++;
3978 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3979 	goto out;
3980 }
3981 
3982 static gifconf_func_t *gifconf_list[NPROTO];
3983 
3984 /**
3985  *	register_gifconf	-	register a SIOCGIF handler
3986  *	@family: Address family
3987  *	@gifconf: Function handler
3988  *
3989  *	Register protocol dependent address dumping routines. The handler
3990  *	that is passed must not be freed or reused until it has been replaced
3991  *	by another handler.
3992  */
3993 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3994 {
3995 	if (family >= NPROTO)
3996 		return -EINVAL;
3997 	gifconf_list[family] = gifconf;
3998 	return 0;
3999 }
4000 EXPORT_SYMBOL(register_gifconf);
4001 
4002 
4003 /*
4004  *	Map an interface index to its name (SIOCGIFNAME)
4005  */
4006 
4007 /*
4008  *	We need this ioctl for efficient implementation of the
4009  *	if_indextoname() function required by the IPv6 API.  Without
4010  *	it, we would have to search all the interfaces to find a
4011  *	match.  --pb
4012  */
4013 
4014 static int dev_ifname(struct net *net, struct ifreq __user *arg)
4015 {
4016 	struct net_device *dev;
4017 	struct ifreq ifr;
4018 
4019 	/*
4020 	 *	Fetch the caller's info block.
4021 	 */
4022 
4023 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4024 		return -EFAULT;
4025 
4026 	rcu_read_lock();
4027 	dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
4028 	if (!dev) {
4029 		rcu_read_unlock();
4030 		return -ENODEV;
4031 	}
4032 
4033 	strcpy(ifr.ifr_name, dev->name);
4034 	rcu_read_unlock();
4035 
4036 	if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
4037 		return -EFAULT;
4038 	return 0;
4039 }
4040 
4041 /*
4042  *	Perform a SIOCGIFCONF call. This structure will change
4043  *	size eventually, and there is nothing I can do about it.
4044  *	Thus we will need a 'compatibility mode'.
4045  */
4046 
4047 static int dev_ifconf(struct net *net, char __user *arg)
4048 {
4049 	struct ifconf ifc;
4050 	struct net_device *dev;
4051 	char __user *pos;
4052 	int len;
4053 	int total;
4054 	int i;
4055 
4056 	/*
4057 	 *	Fetch the caller's info block.
4058 	 */
4059 
4060 	if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
4061 		return -EFAULT;
4062 
4063 	pos = ifc.ifc_buf;
4064 	len = ifc.ifc_len;
4065 
4066 	/*
4067 	 *	Loop over the interfaces, and write an info block for each.
4068 	 */
4069 
4070 	total = 0;
4071 	for_each_netdev(net, dev) {
4072 		for (i = 0; i < NPROTO; i++) {
4073 			if (gifconf_list[i]) {
4074 				int done;
4075 				if (!pos)
4076 					done = gifconf_list[i](dev, NULL, 0);
4077 				else
4078 					done = gifconf_list[i](dev, pos + total,
4079 							       len - total);
4080 				if (done < 0)
4081 					return -EFAULT;
4082 				total += done;
4083 			}
4084 		}
4085 	}
4086 
4087 	/*
4088 	 *	All done.  Write the updated control block back to the caller.
4089 	 */
4090 	ifc.ifc_len = total;
4091 
4092 	/*
4093 	 * 	Both BSD and Solaris return 0 here, so we do too.
4094 	 */
4095 	return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
4096 }
4097 
4098 #ifdef CONFIG_PROC_FS
4099 
4100 #define BUCKET_SPACE (32 - NETDEV_HASHBITS - 1)
4101 
4102 #define get_bucket(x) ((x) >> BUCKET_SPACE)
4103 #define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1))
4104 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o))
4105 
4106 static inline struct net_device *dev_from_same_bucket(struct seq_file *seq, loff_t *pos)
4107 {
4108 	struct net *net = seq_file_net(seq);
4109 	struct net_device *dev;
4110 	struct hlist_node *p;
4111 	struct hlist_head *h;
4112 	unsigned int count = 0, offset = get_offset(*pos);
4113 
4114 	h = &net->dev_name_head[get_bucket(*pos)];
4115 	hlist_for_each_entry_rcu(dev, p, h, name_hlist) {
4116 		if (++count == offset)
4117 			return dev;
4118 	}
4119 
4120 	return NULL;
4121 }
4122 
4123 static inline struct net_device *dev_from_bucket(struct seq_file *seq, loff_t *pos)
4124 {
4125 	struct net_device *dev;
4126 	unsigned int bucket;
4127 
4128 	do {
4129 		dev = dev_from_same_bucket(seq, pos);
4130 		if (dev)
4131 			return dev;
4132 
4133 		bucket = get_bucket(*pos) + 1;
4134 		*pos = set_bucket_offset(bucket, 1);
4135 	} while (bucket < NETDEV_HASHENTRIES);
4136 
4137 	return NULL;
4138 }
4139 
4140 /*
4141  *	This is invoked by the /proc filesystem handler to display a device
4142  *	in detail.
4143  */
4144 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
4145 	__acquires(RCU)
4146 {
4147 	rcu_read_lock();
4148 	if (!*pos)
4149 		return SEQ_START_TOKEN;
4150 
4151 	if (get_bucket(*pos) >= NETDEV_HASHENTRIES)
4152 		return NULL;
4153 
4154 	return dev_from_bucket(seq, pos);
4155 }
4156 
4157 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4158 {
4159 	++*pos;
4160 	return dev_from_bucket(seq, pos);
4161 }
4162 
4163 void dev_seq_stop(struct seq_file *seq, void *v)
4164 	__releases(RCU)
4165 {
4166 	rcu_read_unlock();
4167 }
4168 
4169 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4170 {
4171 	struct rtnl_link_stats64 temp;
4172 	const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4173 
4174 	seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4175 		   "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4176 		   dev->name, stats->rx_bytes, stats->rx_packets,
4177 		   stats->rx_errors,
4178 		   stats->rx_dropped + stats->rx_missed_errors,
4179 		   stats->rx_fifo_errors,
4180 		   stats->rx_length_errors + stats->rx_over_errors +
4181 		    stats->rx_crc_errors + stats->rx_frame_errors,
4182 		   stats->rx_compressed, stats->multicast,
4183 		   stats->tx_bytes, stats->tx_packets,
4184 		   stats->tx_errors, stats->tx_dropped,
4185 		   stats->tx_fifo_errors, stats->collisions,
4186 		   stats->tx_carrier_errors +
4187 		    stats->tx_aborted_errors +
4188 		    stats->tx_window_errors +
4189 		    stats->tx_heartbeat_errors,
4190 		   stats->tx_compressed);
4191 }
4192 
4193 /*
4194  *	Called from the PROCfs module. This now uses the new arbitrary sized
4195  *	/proc/net interface to create /proc/net/dev
4196  */
4197 static int dev_seq_show(struct seq_file *seq, void *v)
4198 {
4199 	if (v == SEQ_START_TOKEN)
4200 		seq_puts(seq, "Inter-|   Receive                            "
4201 			      "                    |  Transmit\n"
4202 			      " face |bytes    packets errs drop fifo frame "
4203 			      "compressed multicast|bytes    packets errs "
4204 			      "drop fifo colls carrier compressed\n");
4205 	else
4206 		dev_seq_printf_stats(seq, v);
4207 	return 0;
4208 }
4209 
4210 static struct softnet_data *softnet_get_online(loff_t *pos)
4211 {
4212 	struct softnet_data *sd = NULL;
4213 
4214 	while (*pos < nr_cpu_ids)
4215 		if (cpu_online(*pos)) {
4216 			sd = &per_cpu(softnet_data, *pos);
4217 			break;
4218 		} else
4219 			++*pos;
4220 	return sd;
4221 }
4222 
4223 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4224 {
4225 	return softnet_get_online(pos);
4226 }
4227 
4228 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4229 {
4230 	++*pos;
4231 	return softnet_get_online(pos);
4232 }
4233 
4234 static void softnet_seq_stop(struct seq_file *seq, void *v)
4235 {
4236 }
4237 
4238 static int softnet_seq_show(struct seq_file *seq, void *v)
4239 {
4240 	struct softnet_data *sd = v;
4241 
4242 	seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4243 		   sd->processed, sd->dropped, sd->time_squeeze, 0,
4244 		   0, 0, 0, 0, /* was fastroute */
4245 		   sd->cpu_collision, sd->received_rps);
4246 	return 0;
4247 }
4248 
4249 static const struct seq_operations dev_seq_ops = {
4250 	.start = dev_seq_start,
4251 	.next  = dev_seq_next,
4252 	.stop  = dev_seq_stop,
4253 	.show  = dev_seq_show,
4254 };
4255 
4256 static int dev_seq_open(struct inode *inode, struct file *file)
4257 {
4258 	return seq_open_net(inode, file, &dev_seq_ops,
4259 			    sizeof(struct seq_net_private));
4260 }
4261 
4262 static const struct file_operations dev_seq_fops = {
4263 	.owner	 = THIS_MODULE,
4264 	.open    = dev_seq_open,
4265 	.read    = seq_read,
4266 	.llseek  = seq_lseek,
4267 	.release = seq_release_net,
4268 };
4269 
4270 static const struct seq_operations softnet_seq_ops = {
4271 	.start = softnet_seq_start,
4272 	.next  = softnet_seq_next,
4273 	.stop  = softnet_seq_stop,
4274 	.show  = softnet_seq_show,
4275 };
4276 
4277 static int softnet_seq_open(struct inode *inode, struct file *file)
4278 {
4279 	return seq_open(file, &softnet_seq_ops);
4280 }
4281 
4282 static const struct file_operations softnet_seq_fops = {
4283 	.owner	 = THIS_MODULE,
4284 	.open    = softnet_seq_open,
4285 	.read    = seq_read,
4286 	.llseek  = seq_lseek,
4287 	.release = seq_release,
4288 };
4289 
4290 static void *ptype_get_idx(loff_t pos)
4291 {
4292 	struct packet_type *pt = NULL;
4293 	loff_t i = 0;
4294 	int t;
4295 
4296 	list_for_each_entry_rcu(pt, &ptype_all, list) {
4297 		if (i == pos)
4298 			return pt;
4299 		++i;
4300 	}
4301 
4302 	for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4303 		list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4304 			if (i == pos)
4305 				return pt;
4306 			++i;
4307 		}
4308 	}
4309 	return NULL;
4310 }
4311 
4312 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4313 	__acquires(RCU)
4314 {
4315 	rcu_read_lock();
4316 	return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4317 }
4318 
4319 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4320 {
4321 	struct packet_type *pt;
4322 	struct list_head *nxt;
4323 	int hash;
4324 
4325 	++*pos;
4326 	if (v == SEQ_START_TOKEN)
4327 		return ptype_get_idx(0);
4328 
4329 	pt = v;
4330 	nxt = pt->list.next;
4331 	if (pt->type == htons(ETH_P_ALL)) {
4332 		if (nxt != &ptype_all)
4333 			goto found;
4334 		hash = 0;
4335 		nxt = ptype_base[0].next;
4336 	} else
4337 		hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4338 
4339 	while (nxt == &ptype_base[hash]) {
4340 		if (++hash >= PTYPE_HASH_SIZE)
4341 			return NULL;
4342 		nxt = ptype_base[hash].next;
4343 	}
4344 found:
4345 	return list_entry(nxt, struct packet_type, list);
4346 }
4347 
4348 static void ptype_seq_stop(struct seq_file *seq, void *v)
4349 	__releases(RCU)
4350 {
4351 	rcu_read_unlock();
4352 }
4353 
4354 static int ptype_seq_show(struct seq_file *seq, void *v)
4355 {
4356 	struct packet_type *pt = v;
4357 
4358 	if (v == SEQ_START_TOKEN)
4359 		seq_puts(seq, "Type Device      Function\n");
4360 	else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4361 		if (pt->type == htons(ETH_P_ALL))
4362 			seq_puts(seq, "ALL ");
4363 		else
4364 			seq_printf(seq, "%04x", ntohs(pt->type));
4365 
4366 		seq_printf(seq, " %-8s %pF\n",
4367 			   pt->dev ? pt->dev->name : "", pt->func);
4368 	}
4369 
4370 	return 0;
4371 }
4372 
4373 static const struct seq_operations ptype_seq_ops = {
4374 	.start = ptype_seq_start,
4375 	.next  = ptype_seq_next,
4376 	.stop  = ptype_seq_stop,
4377 	.show  = ptype_seq_show,
4378 };
4379 
4380 static int ptype_seq_open(struct inode *inode, struct file *file)
4381 {
4382 	return seq_open_net(inode, file, &ptype_seq_ops,
4383 			sizeof(struct seq_net_private));
4384 }
4385 
4386 static const struct file_operations ptype_seq_fops = {
4387 	.owner	 = THIS_MODULE,
4388 	.open    = ptype_seq_open,
4389 	.read    = seq_read,
4390 	.llseek  = seq_lseek,
4391 	.release = seq_release_net,
4392 };
4393 
4394 
4395 static int __net_init dev_proc_net_init(struct net *net)
4396 {
4397 	int rc = -ENOMEM;
4398 
4399 	if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4400 		goto out;
4401 	if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4402 		goto out_dev;
4403 	if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4404 		goto out_softnet;
4405 
4406 	if (wext_proc_init(net))
4407 		goto out_ptype;
4408 	rc = 0;
4409 out:
4410 	return rc;
4411 out_ptype:
4412 	proc_net_remove(net, "ptype");
4413 out_softnet:
4414 	proc_net_remove(net, "softnet_stat");
4415 out_dev:
4416 	proc_net_remove(net, "dev");
4417 	goto out;
4418 }
4419 
4420 static void __net_exit dev_proc_net_exit(struct net *net)
4421 {
4422 	wext_proc_exit(net);
4423 
4424 	proc_net_remove(net, "ptype");
4425 	proc_net_remove(net, "softnet_stat");
4426 	proc_net_remove(net, "dev");
4427 }
4428 
4429 static struct pernet_operations __net_initdata dev_proc_ops = {
4430 	.init = dev_proc_net_init,
4431 	.exit = dev_proc_net_exit,
4432 };
4433 
4434 static int __init dev_proc_init(void)
4435 {
4436 	return register_pernet_subsys(&dev_proc_ops);
4437 }
4438 #else
4439 #define dev_proc_init() 0
4440 #endif	/* CONFIG_PROC_FS */
4441 
4442 
4443 /**
4444  *	netdev_set_master	-	set up master pointer
4445  *	@slave: slave device
4446  *	@master: new master device
4447  *
4448  *	Changes the master device of the slave. Pass %NULL to break the
4449  *	bonding. The caller must hold the RTNL semaphore. On a failure
4450  *	a negative errno code is returned. On success the reference counts
4451  *	are adjusted and the function returns zero.
4452  */
4453 int netdev_set_master(struct net_device *slave, struct net_device *master)
4454 {
4455 	struct net_device *old = slave->master;
4456 
4457 	ASSERT_RTNL();
4458 
4459 	if (master) {
4460 		if (old)
4461 			return -EBUSY;
4462 		dev_hold(master);
4463 	}
4464 
4465 	slave->master = master;
4466 
4467 	if (old)
4468 		dev_put(old);
4469 	return 0;
4470 }
4471 EXPORT_SYMBOL(netdev_set_master);
4472 
4473 /**
4474  *	netdev_set_bond_master	-	set up bonding master/slave pair
4475  *	@slave: slave device
4476  *	@master: new master device
4477  *
4478  *	Changes the master device of the slave. Pass %NULL to break the
4479  *	bonding. The caller must hold the RTNL semaphore. On a failure
4480  *	a negative errno code is returned. On success %RTM_NEWLINK is sent
4481  *	to the routing socket and the function returns zero.
4482  */
4483 int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4484 {
4485 	int err;
4486 
4487 	ASSERT_RTNL();
4488 
4489 	err = netdev_set_master(slave, master);
4490 	if (err)
4491 		return err;
4492 	if (master)
4493 		slave->flags |= IFF_SLAVE;
4494 	else
4495 		slave->flags &= ~IFF_SLAVE;
4496 
4497 	rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4498 	return 0;
4499 }
4500 EXPORT_SYMBOL(netdev_set_bond_master);
4501 
4502 static void dev_change_rx_flags(struct net_device *dev, int flags)
4503 {
4504 	const struct net_device_ops *ops = dev->netdev_ops;
4505 
4506 	if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4507 		ops->ndo_change_rx_flags(dev, flags);
4508 }
4509 
4510 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4511 {
4512 	unsigned int old_flags = dev->flags;
4513 	uid_t uid;
4514 	gid_t gid;
4515 
4516 	ASSERT_RTNL();
4517 
4518 	dev->flags |= IFF_PROMISC;
4519 	dev->promiscuity += inc;
4520 	if (dev->promiscuity == 0) {
4521 		/*
4522 		 * Avoid overflow.
4523 		 * If inc causes overflow, untouch promisc and return error.
4524 		 */
4525 		if (inc < 0)
4526 			dev->flags &= ~IFF_PROMISC;
4527 		else {
4528 			dev->promiscuity -= inc;
4529 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4530 				dev->name);
4531 			return -EOVERFLOW;
4532 		}
4533 	}
4534 	if (dev->flags != old_flags) {
4535 		pr_info("device %s %s promiscuous mode\n",
4536 			dev->name,
4537 			dev->flags & IFF_PROMISC ? "entered" : "left");
4538 		if (audit_enabled) {
4539 			current_uid_gid(&uid, &gid);
4540 			audit_log(current->audit_context, GFP_ATOMIC,
4541 				AUDIT_ANOM_PROMISCUOUS,
4542 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4543 				dev->name, (dev->flags & IFF_PROMISC),
4544 				(old_flags & IFF_PROMISC),
4545 				audit_get_loginuid(current),
4546 				uid, gid,
4547 				audit_get_sessionid(current));
4548 		}
4549 
4550 		dev_change_rx_flags(dev, IFF_PROMISC);
4551 	}
4552 	return 0;
4553 }
4554 
4555 /**
4556  *	dev_set_promiscuity	- update promiscuity count on a device
4557  *	@dev: device
4558  *	@inc: modifier
4559  *
4560  *	Add or remove promiscuity from a device. While the count in the device
4561  *	remains above zero the interface remains promiscuous. Once it hits zero
4562  *	the device reverts back to normal filtering operation. A negative inc
4563  *	value is used to drop promiscuity on the device.
4564  *	Return 0 if successful or a negative errno code on error.
4565  */
4566 int dev_set_promiscuity(struct net_device *dev, int inc)
4567 {
4568 	unsigned int old_flags = dev->flags;
4569 	int err;
4570 
4571 	err = __dev_set_promiscuity(dev, inc);
4572 	if (err < 0)
4573 		return err;
4574 	if (dev->flags != old_flags)
4575 		dev_set_rx_mode(dev);
4576 	return err;
4577 }
4578 EXPORT_SYMBOL(dev_set_promiscuity);
4579 
4580 /**
4581  *	dev_set_allmulti	- update allmulti count on a device
4582  *	@dev: device
4583  *	@inc: modifier
4584  *
4585  *	Add or remove reception of all multicast frames to a device. While the
4586  *	count in the device remains above zero the interface remains listening
4587  *	to all interfaces. Once it hits zero the device reverts back to normal
4588  *	filtering operation. A negative @inc value is used to drop the counter
4589  *	when releasing a resource needing all multicasts.
4590  *	Return 0 if successful or a negative errno code on error.
4591  */
4592 
4593 int dev_set_allmulti(struct net_device *dev, int inc)
4594 {
4595 	unsigned int old_flags = dev->flags;
4596 
4597 	ASSERT_RTNL();
4598 
4599 	dev->flags |= IFF_ALLMULTI;
4600 	dev->allmulti += inc;
4601 	if (dev->allmulti == 0) {
4602 		/*
4603 		 * Avoid overflow.
4604 		 * If inc causes overflow, untouch allmulti and return error.
4605 		 */
4606 		if (inc < 0)
4607 			dev->flags &= ~IFF_ALLMULTI;
4608 		else {
4609 			dev->allmulti -= inc;
4610 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4611 				dev->name);
4612 			return -EOVERFLOW;
4613 		}
4614 	}
4615 	if (dev->flags ^ old_flags) {
4616 		dev_change_rx_flags(dev, IFF_ALLMULTI);
4617 		dev_set_rx_mode(dev);
4618 	}
4619 	return 0;
4620 }
4621 EXPORT_SYMBOL(dev_set_allmulti);
4622 
4623 /*
4624  *	Upload unicast and multicast address lists to device and
4625  *	configure RX filtering. When the device doesn't support unicast
4626  *	filtering it is put in promiscuous mode while unicast addresses
4627  *	are present.
4628  */
4629 void __dev_set_rx_mode(struct net_device *dev)
4630 {
4631 	const struct net_device_ops *ops = dev->netdev_ops;
4632 
4633 	/* dev_open will call this function so the list will stay sane. */
4634 	if (!(dev->flags&IFF_UP))
4635 		return;
4636 
4637 	if (!netif_device_present(dev))
4638 		return;
4639 
4640 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4641 		/* Unicast addresses changes may only happen under the rtnl,
4642 		 * therefore calling __dev_set_promiscuity here is safe.
4643 		 */
4644 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4645 			__dev_set_promiscuity(dev, 1);
4646 			dev->uc_promisc = true;
4647 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4648 			__dev_set_promiscuity(dev, -1);
4649 			dev->uc_promisc = false;
4650 		}
4651 	}
4652 
4653 	if (ops->ndo_set_rx_mode)
4654 		ops->ndo_set_rx_mode(dev);
4655 }
4656 
4657 void dev_set_rx_mode(struct net_device *dev)
4658 {
4659 	netif_addr_lock_bh(dev);
4660 	__dev_set_rx_mode(dev);
4661 	netif_addr_unlock_bh(dev);
4662 }
4663 
4664 /**
4665  *	dev_get_flags - get flags reported to userspace
4666  *	@dev: device
4667  *
4668  *	Get the combination of flag bits exported through APIs to userspace.
4669  */
4670 unsigned int dev_get_flags(const struct net_device *dev)
4671 {
4672 	unsigned int flags;
4673 
4674 	flags = (dev->flags & ~(IFF_PROMISC |
4675 				IFF_ALLMULTI |
4676 				IFF_RUNNING |
4677 				IFF_LOWER_UP |
4678 				IFF_DORMANT)) |
4679 		(dev->gflags & (IFF_PROMISC |
4680 				IFF_ALLMULTI));
4681 
4682 	if (netif_running(dev)) {
4683 		if (netif_oper_up(dev))
4684 			flags |= IFF_RUNNING;
4685 		if (netif_carrier_ok(dev))
4686 			flags |= IFF_LOWER_UP;
4687 		if (netif_dormant(dev))
4688 			flags |= IFF_DORMANT;
4689 	}
4690 
4691 	return flags;
4692 }
4693 EXPORT_SYMBOL(dev_get_flags);
4694 
4695 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4696 {
4697 	unsigned int old_flags = dev->flags;
4698 	int ret;
4699 
4700 	ASSERT_RTNL();
4701 
4702 	/*
4703 	 *	Set the flags on our device.
4704 	 */
4705 
4706 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4707 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4708 			       IFF_AUTOMEDIA)) |
4709 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4710 				    IFF_ALLMULTI));
4711 
4712 	/*
4713 	 *	Load in the correct multicast list now the flags have changed.
4714 	 */
4715 
4716 	if ((old_flags ^ flags) & IFF_MULTICAST)
4717 		dev_change_rx_flags(dev, IFF_MULTICAST);
4718 
4719 	dev_set_rx_mode(dev);
4720 
4721 	/*
4722 	 *	Have we downed the interface. We handle IFF_UP ourselves
4723 	 *	according to user attempts to set it, rather than blindly
4724 	 *	setting it.
4725 	 */
4726 
4727 	ret = 0;
4728 	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
4729 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4730 
4731 		if (!ret)
4732 			dev_set_rx_mode(dev);
4733 	}
4734 
4735 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
4736 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
4737 
4738 		dev->gflags ^= IFF_PROMISC;
4739 		dev_set_promiscuity(dev, inc);
4740 	}
4741 
4742 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4743 	   is important. Some (broken) drivers set IFF_PROMISC, when
4744 	   IFF_ALLMULTI is requested not asking us and not reporting.
4745 	 */
4746 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4747 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4748 
4749 		dev->gflags ^= IFF_ALLMULTI;
4750 		dev_set_allmulti(dev, inc);
4751 	}
4752 
4753 	return ret;
4754 }
4755 
4756 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4757 {
4758 	unsigned int changes = dev->flags ^ old_flags;
4759 
4760 	if (changes & IFF_UP) {
4761 		if (dev->flags & IFF_UP)
4762 			call_netdevice_notifiers(NETDEV_UP, dev);
4763 		else
4764 			call_netdevice_notifiers(NETDEV_DOWN, dev);
4765 	}
4766 
4767 	if (dev->flags & IFF_UP &&
4768 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4769 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
4770 }
4771 
4772 /**
4773  *	dev_change_flags - change device settings
4774  *	@dev: device
4775  *	@flags: device state flags
4776  *
4777  *	Change settings on device based state flags. The flags are
4778  *	in the userspace exported format.
4779  */
4780 int dev_change_flags(struct net_device *dev, unsigned int flags)
4781 {
4782 	int ret;
4783 	unsigned int changes, old_flags = dev->flags;
4784 
4785 	ret = __dev_change_flags(dev, flags);
4786 	if (ret < 0)
4787 		return ret;
4788 
4789 	changes = old_flags ^ dev->flags;
4790 	if (changes)
4791 		rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4792 
4793 	__dev_notify_flags(dev, old_flags);
4794 	return ret;
4795 }
4796 EXPORT_SYMBOL(dev_change_flags);
4797 
4798 /**
4799  *	dev_set_mtu - Change maximum transfer unit
4800  *	@dev: device
4801  *	@new_mtu: new transfer unit
4802  *
4803  *	Change the maximum transfer size of the network device.
4804  */
4805 int dev_set_mtu(struct net_device *dev, int new_mtu)
4806 {
4807 	const struct net_device_ops *ops = dev->netdev_ops;
4808 	int err;
4809 
4810 	if (new_mtu == dev->mtu)
4811 		return 0;
4812 
4813 	/*	MTU must be positive.	 */
4814 	if (new_mtu < 0)
4815 		return -EINVAL;
4816 
4817 	if (!netif_device_present(dev))
4818 		return -ENODEV;
4819 
4820 	err = 0;
4821 	if (ops->ndo_change_mtu)
4822 		err = ops->ndo_change_mtu(dev, new_mtu);
4823 	else
4824 		dev->mtu = new_mtu;
4825 
4826 	if (!err && dev->flags & IFF_UP)
4827 		call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4828 	return err;
4829 }
4830 EXPORT_SYMBOL(dev_set_mtu);
4831 
4832 /**
4833  *	dev_set_group - Change group this device belongs to
4834  *	@dev: device
4835  *	@new_group: group this device should belong to
4836  */
4837 void dev_set_group(struct net_device *dev, int new_group)
4838 {
4839 	dev->group = new_group;
4840 }
4841 EXPORT_SYMBOL(dev_set_group);
4842 
4843 /**
4844  *	dev_set_mac_address - Change Media Access Control Address
4845  *	@dev: device
4846  *	@sa: new address
4847  *
4848  *	Change the hardware (MAC) address of the device
4849  */
4850 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4851 {
4852 	const struct net_device_ops *ops = dev->netdev_ops;
4853 	int err;
4854 
4855 	if (!ops->ndo_set_mac_address)
4856 		return -EOPNOTSUPP;
4857 	if (sa->sa_family != dev->type)
4858 		return -EINVAL;
4859 	if (!netif_device_present(dev))
4860 		return -ENODEV;
4861 	err = ops->ndo_set_mac_address(dev, sa);
4862 	if (!err)
4863 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4864 	add_device_randomness(dev->dev_addr, dev->addr_len);
4865 	return err;
4866 }
4867 EXPORT_SYMBOL(dev_set_mac_address);
4868 
4869 /*
4870  *	Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4871  */
4872 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4873 {
4874 	int err;
4875 	struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4876 
4877 	if (!dev)
4878 		return -ENODEV;
4879 
4880 	switch (cmd) {
4881 	case SIOCGIFFLAGS:	/* Get interface flags */
4882 		ifr->ifr_flags = (short) dev_get_flags(dev);
4883 		return 0;
4884 
4885 	case SIOCGIFMETRIC:	/* Get the metric on the interface
4886 				   (currently unused) */
4887 		ifr->ifr_metric = 0;
4888 		return 0;
4889 
4890 	case SIOCGIFMTU:	/* Get the MTU of a device */
4891 		ifr->ifr_mtu = dev->mtu;
4892 		return 0;
4893 
4894 	case SIOCGIFHWADDR:
4895 		if (!dev->addr_len)
4896 			memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4897 		else
4898 			memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4899 			       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4900 		ifr->ifr_hwaddr.sa_family = dev->type;
4901 		return 0;
4902 
4903 	case SIOCGIFSLAVE:
4904 		err = -EINVAL;
4905 		break;
4906 
4907 	case SIOCGIFMAP:
4908 		ifr->ifr_map.mem_start = dev->mem_start;
4909 		ifr->ifr_map.mem_end   = dev->mem_end;
4910 		ifr->ifr_map.base_addr = dev->base_addr;
4911 		ifr->ifr_map.irq       = dev->irq;
4912 		ifr->ifr_map.dma       = dev->dma;
4913 		ifr->ifr_map.port      = dev->if_port;
4914 		return 0;
4915 
4916 	case SIOCGIFINDEX:
4917 		ifr->ifr_ifindex = dev->ifindex;
4918 		return 0;
4919 
4920 	case SIOCGIFTXQLEN:
4921 		ifr->ifr_qlen = dev->tx_queue_len;
4922 		return 0;
4923 
4924 	default:
4925 		/* dev_ioctl() should ensure this case
4926 		 * is never reached
4927 		 */
4928 		WARN_ON(1);
4929 		err = -ENOTTY;
4930 		break;
4931 
4932 	}
4933 	return err;
4934 }
4935 
4936 /*
4937  *	Perform the SIOCxIFxxx calls, inside rtnl_lock()
4938  */
4939 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4940 {
4941 	int err;
4942 	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4943 	const struct net_device_ops *ops;
4944 
4945 	if (!dev)
4946 		return -ENODEV;
4947 
4948 	ops = dev->netdev_ops;
4949 
4950 	switch (cmd) {
4951 	case SIOCSIFFLAGS:	/* Set interface flags */
4952 		return dev_change_flags(dev, ifr->ifr_flags);
4953 
4954 	case SIOCSIFMETRIC:	/* Set the metric on the interface
4955 				   (currently unused) */
4956 		return -EOPNOTSUPP;
4957 
4958 	case SIOCSIFMTU:	/* Set the MTU of a device */
4959 		return dev_set_mtu(dev, ifr->ifr_mtu);
4960 
4961 	case SIOCSIFHWADDR:
4962 		return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4963 
4964 	case SIOCSIFHWBROADCAST:
4965 		if (ifr->ifr_hwaddr.sa_family != dev->type)
4966 			return -EINVAL;
4967 		memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4968 		       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4969 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4970 		return 0;
4971 
4972 	case SIOCSIFMAP:
4973 		if (ops->ndo_set_config) {
4974 			if (!netif_device_present(dev))
4975 				return -ENODEV;
4976 			return ops->ndo_set_config(dev, &ifr->ifr_map);
4977 		}
4978 		return -EOPNOTSUPP;
4979 
4980 	case SIOCADDMULTI:
4981 		if (!ops->ndo_set_rx_mode ||
4982 		    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4983 			return -EINVAL;
4984 		if (!netif_device_present(dev))
4985 			return -ENODEV;
4986 		return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4987 
4988 	case SIOCDELMULTI:
4989 		if (!ops->ndo_set_rx_mode ||
4990 		    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4991 			return -EINVAL;
4992 		if (!netif_device_present(dev))
4993 			return -ENODEV;
4994 		return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4995 
4996 	case SIOCSIFTXQLEN:
4997 		if (ifr->ifr_qlen < 0)
4998 			return -EINVAL;
4999 		dev->tx_queue_len = ifr->ifr_qlen;
5000 		return 0;
5001 
5002 	case SIOCSIFNAME:
5003 		ifr->ifr_newname[IFNAMSIZ-1] = '\0';
5004 		return dev_change_name(dev, ifr->ifr_newname);
5005 
5006 	case SIOCSHWTSTAMP:
5007 		err = net_hwtstamp_validate(ifr);
5008 		if (err)
5009 			return err;
5010 		/* fall through */
5011 
5012 	/*
5013 	 *	Unknown or private ioctl
5014 	 */
5015 	default:
5016 		if ((cmd >= SIOCDEVPRIVATE &&
5017 		    cmd <= SIOCDEVPRIVATE + 15) ||
5018 		    cmd == SIOCBONDENSLAVE ||
5019 		    cmd == SIOCBONDRELEASE ||
5020 		    cmd == SIOCBONDSETHWADDR ||
5021 		    cmd == SIOCBONDSLAVEINFOQUERY ||
5022 		    cmd == SIOCBONDINFOQUERY ||
5023 		    cmd == SIOCBONDCHANGEACTIVE ||
5024 		    cmd == SIOCGMIIPHY ||
5025 		    cmd == SIOCGMIIREG ||
5026 		    cmd == SIOCSMIIREG ||
5027 		    cmd == SIOCBRADDIF ||
5028 		    cmd == SIOCBRDELIF ||
5029 		    cmd == SIOCSHWTSTAMP ||
5030 		    cmd == SIOCWANDEV) {
5031 			err = -EOPNOTSUPP;
5032 			if (ops->ndo_do_ioctl) {
5033 				if (netif_device_present(dev))
5034 					err = ops->ndo_do_ioctl(dev, ifr, cmd);
5035 				else
5036 					err = -ENODEV;
5037 			}
5038 		} else
5039 			err = -EINVAL;
5040 
5041 	}
5042 	return err;
5043 }
5044 
5045 /*
5046  *	This function handles all "interface"-type I/O control requests. The actual
5047  *	'doing' part of this is dev_ifsioc above.
5048  */
5049 
5050 /**
5051  *	dev_ioctl	-	network device ioctl
5052  *	@net: the applicable net namespace
5053  *	@cmd: command to issue
5054  *	@arg: pointer to a struct ifreq in user space
5055  *
5056  *	Issue ioctl functions to devices. This is normally called by the
5057  *	user space syscall interfaces but can sometimes be useful for
5058  *	other purposes. The return value is the return from the syscall if
5059  *	positive or a negative errno code on error.
5060  */
5061 
5062 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
5063 {
5064 	struct ifreq ifr;
5065 	int ret;
5066 	char *colon;
5067 
5068 	/* One special case: SIOCGIFCONF takes ifconf argument
5069 	   and requires shared lock, because it sleeps writing
5070 	   to user space.
5071 	 */
5072 
5073 	if (cmd == SIOCGIFCONF) {
5074 		rtnl_lock();
5075 		ret = dev_ifconf(net, (char __user *) arg);
5076 		rtnl_unlock();
5077 		return ret;
5078 	}
5079 	if (cmd == SIOCGIFNAME)
5080 		return dev_ifname(net, (struct ifreq __user *)arg);
5081 
5082 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
5083 		return -EFAULT;
5084 
5085 	ifr.ifr_name[IFNAMSIZ-1] = 0;
5086 
5087 	colon = strchr(ifr.ifr_name, ':');
5088 	if (colon)
5089 		*colon = 0;
5090 
5091 	/*
5092 	 *	See which interface the caller is talking about.
5093 	 */
5094 
5095 	switch (cmd) {
5096 	/*
5097 	 *	These ioctl calls:
5098 	 *	- can be done by all.
5099 	 *	- atomic and do not require locking.
5100 	 *	- return a value
5101 	 */
5102 	case SIOCGIFFLAGS:
5103 	case SIOCGIFMETRIC:
5104 	case SIOCGIFMTU:
5105 	case SIOCGIFHWADDR:
5106 	case SIOCGIFSLAVE:
5107 	case SIOCGIFMAP:
5108 	case SIOCGIFINDEX:
5109 	case SIOCGIFTXQLEN:
5110 		dev_load(net, ifr.ifr_name);
5111 		rcu_read_lock();
5112 		ret = dev_ifsioc_locked(net, &ifr, cmd);
5113 		rcu_read_unlock();
5114 		if (!ret) {
5115 			if (colon)
5116 				*colon = ':';
5117 			if (copy_to_user(arg, &ifr,
5118 					 sizeof(struct ifreq)))
5119 				ret = -EFAULT;
5120 		}
5121 		return ret;
5122 
5123 	case SIOCETHTOOL:
5124 		dev_load(net, ifr.ifr_name);
5125 		rtnl_lock();
5126 		ret = dev_ethtool(net, &ifr);
5127 		rtnl_unlock();
5128 		if (!ret) {
5129 			if (colon)
5130 				*colon = ':';
5131 			if (copy_to_user(arg, &ifr,
5132 					 sizeof(struct ifreq)))
5133 				ret = -EFAULT;
5134 		}
5135 		return ret;
5136 
5137 	/*
5138 	 *	These ioctl calls:
5139 	 *	- require superuser power.
5140 	 *	- require strict serialization.
5141 	 *	- return a value
5142 	 */
5143 	case SIOCGMIIPHY:
5144 	case SIOCGMIIREG:
5145 	case SIOCSIFNAME:
5146 		if (!capable(CAP_NET_ADMIN))
5147 			return -EPERM;
5148 		dev_load(net, ifr.ifr_name);
5149 		rtnl_lock();
5150 		ret = dev_ifsioc(net, &ifr, cmd);
5151 		rtnl_unlock();
5152 		if (!ret) {
5153 			if (colon)
5154 				*colon = ':';
5155 			if (copy_to_user(arg, &ifr,
5156 					 sizeof(struct ifreq)))
5157 				ret = -EFAULT;
5158 		}
5159 		return ret;
5160 
5161 	/*
5162 	 *	These ioctl calls:
5163 	 *	- require superuser power.
5164 	 *	- require strict serialization.
5165 	 *	- do not return a value
5166 	 */
5167 	case SIOCSIFFLAGS:
5168 	case SIOCSIFMETRIC:
5169 	case SIOCSIFMTU:
5170 	case SIOCSIFMAP:
5171 	case SIOCSIFHWADDR:
5172 	case SIOCSIFSLAVE:
5173 	case SIOCADDMULTI:
5174 	case SIOCDELMULTI:
5175 	case SIOCSIFHWBROADCAST:
5176 	case SIOCSIFTXQLEN:
5177 	case SIOCSMIIREG:
5178 	case SIOCBONDENSLAVE:
5179 	case SIOCBONDRELEASE:
5180 	case SIOCBONDSETHWADDR:
5181 	case SIOCBONDCHANGEACTIVE:
5182 	case SIOCBRADDIF:
5183 	case SIOCBRDELIF:
5184 	case SIOCSHWTSTAMP:
5185 		if (!capable(CAP_NET_ADMIN))
5186 			return -EPERM;
5187 		/* fall through */
5188 	case SIOCBONDSLAVEINFOQUERY:
5189 	case SIOCBONDINFOQUERY:
5190 		dev_load(net, ifr.ifr_name);
5191 		rtnl_lock();
5192 		ret = dev_ifsioc(net, &ifr, cmd);
5193 		rtnl_unlock();
5194 		return ret;
5195 
5196 	case SIOCGIFMEM:
5197 		/* Get the per device memory space. We can add this but
5198 		 * currently do not support it */
5199 	case SIOCSIFMEM:
5200 		/* Set the per device memory buffer space.
5201 		 * Not applicable in our case */
5202 	case SIOCSIFLINK:
5203 		return -ENOTTY;
5204 
5205 	/*
5206 	 *	Unknown or private ioctl.
5207 	 */
5208 	default:
5209 		if (cmd == SIOCWANDEV ||
5210 		    (cmd >= SIOCDEVPRIVATE &&
5211 		     cmd <= SIOCDEVPRIVATE + 15)) {
5212 			dev_load(net, ifr.ifr_name);
5213 			rtnl_lock();
5214 			ret = dev_ifsioc(net, &ifr, cmd);
5215 			rtnl_unlock();
5216 			if (!ret && copy_to_user(arg, &ifr,
5217 						 sizeof(struct ifreq)))
5218 				ret = -EFAULT;
5219 			return ret;
5220 		}
5221 		/* Take care of Wireless Extensions */
5222 		if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5223 			return wext_handle_ioctl(net, &ifr, cmd, arg);
5224 		return -ENOTTY;
5225 	}
5226 }
5227 
5228 
5229 /**
5230  *	dev_new_index	-	allocate an ifindex
5231  *	@net: the applicable net namespace
5232  *
5233  *	Returns a suitable unique value for a new device interface
5234  *	number.  The caller must hold the rtnl semaphore or the
5235  *	dev_base_lock to be sure it remains unique.
5236  */
5237 static int dev_new_index(struct net *net)
5238 {
5239 	static int ifindex;
5240 	for (;;) {
5241 		if (++ifindex <= 0)
5242 			ifindex = 1;
5243 		if (!__dev_get_by_index(net, ifindex))
5244 			return ifindex;
5245 	}
5246 }
5247 
5248 /* Delayed registration/unregisteration */
5249 static LIST_HEAD(net_todo_list);
5250 
5251 static void net_set_todo(struct net_device *dev)
5252 {
5253 	list_add_tail(&dev->todo_list, &net_todo_list);
5254 }
5255 
5256 static void rollback_registered_many(struct list_head *head)
5257 {
5258 	struct net_device *dev, *tmp;
5259 
5260 	BUG_ON(dev_boot_phase);
5261 	ASSERT_RTNL();
5262 
5263 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5264 		/* Some devices call without registering
5265 		 * for initialization unwind. Remove those
5266 		 * devices and proceed with the remaining.
5267 		 */
5268 		if (dev->reg_state == NETREG_UNINITIALIZED) {
5269 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5270 				 dev->name, dev);
5271 
5272 			WARN_ON(1);
5273 			list_del(&dev->unreg_list);
5274 			continue;
5275 		}
5276 		dev->dismantle = true;
5277 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
5278 	}
5279 
5280 	/* If device is running, close it first. */
5281 	dev_close_many(head);
5282 
5283 	list_for_each_entry(dev, head, unreg_list) {
5284 		/* And unlink it from device chain. */
5285 		unlist_netdevice(dev);
5286 
5287 		dev->reg_state = NETREG_UNREGISTERING;
5288 	}
5289 
5290 	synchronize_net();
5291 
5292 	list_for_each_entry(dev, head, unreg_list) {
5293 		/* Shutdown queueing discipline. */
5294 		dev_shutdown(dev);
5295 
5296 
5297 		/* Notify protocols, that we are about to destroy
5298 		   this device. They should clean all the things.
5299 		*/
5300 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5301 
5302 		if (!dev->rtnl_link_ops ||
5303 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5304 			rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5305 
5306 		/*
5307 		 *	Flush the unicast and multicast chains
5308 		 */
5309 		dev_uc_flush(dev);
5310 		dev_mc_flush(dev);
5311 
5312 		if (dev->netdev_ops->ndo_uninit)
5313 			dev->netdev_ops->ndo_uninit(dev);
5314 
5315 		/* Notifier chain MUST detach us from master device. */
5316 		WARN_ON(dev->master);
5317 
5318 		/* Remove entries from kobject tree */
5319 		netdev_unregister_kobject(dev);
5320 	}
5321 
5322 	/* Process any work delayed until the end of the batch */
5323 	dev = list_first_entry(head, struct net_device, unreg_list);
5324 	call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5325 
5326 	synchronize_net();
5327 
5328 	list_for_each_entry(dev, head, unreg_list)
5329 		dev_put(dev);
5330 }
5331 
5332 static void rollback_registered(struct net_device *dev)
5333 {
5334 	LIST_HEAD(single);
5335 
5336 	list_add(&dev->unreg_list, &single);
5337 	rollback_registered_many(&single);
5338 	list_del(&single);
5339 }
5340 
5341 static netdev_features_t netdev_fix_features(struct net_device *dev,
5342 	netdev_features_t features)
5343 {
5344 	/* Fix illegal checksum combinations */
5345 	if ((features & NETIF_F_HW_CSUM) &&
5346 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5347 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5348 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5349 	}
5350 
5351 	/* Fix illegal SG+CSUM combinations. */
5352 	if ((features & NETIF_F_SG) &&
5353 	    !(features & NETIF_F_ALL_CSUM)) {
5354 		netdev_dbg(dev,
5355 			"Dropping NETIF_F_SG since no checksum feature.\n");
5356 		features &= ~NETIF_F_SG;
5357 	}
5358 
5359 	/* TSO requires that SG is present as well. */
5360 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5361 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5362 		features &= ~NETIF_F_ALL_TSO;
5363 	}
5364 
5365 	/* TSO ECN requires that TSO is present as well. */
5366 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5367 		features &= ~NETIF_F_TSO_ECN;
5368 
5369 	/* Software GSO depends on SG. */
5370 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5371 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5372 		features &= ~NETIF_F_GSO;
5373 	}
5374 
5375 	/* UFO needs SG and checksumming */
5376 	if (features & NETIF_F_UFO) {
5377 		/* maybe split UFO into V4 and V6? */
5378 		if (!((features & NETIF_F_GEN_CSUM) ||
5379 		    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5380 			    == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5381 			netdev_dbg(dev,
5382 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
5383 			features &= ~NETIF_F_UFO;
5384 		}
5385 
5386 		if (!(features & NETIF_F_SG)) {
5387 			netdev_dbg(dev,
5388 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5389 			features &= ~NETIF_F_UFO;
5390 		}
5391 	}
5392 
5393 	return features;
5394 }
5395 
5396 int __netdev_update_features(struct net_device *dev)
5397 {
5398 	netdev_features_t features;
5399 	int err = 0;
5400 
5401 	ASSERT_RTNL();
5402 
5403 	features = netdev_get_wanted_features(dev);
5404 
5405 	if (dev->netdev_ops->ndo_fix_features)
5406 		features = dev->netdev_ops->ndo_fix_features(dev, features);
5407 
5408 	/* driver might be less strict about feature dependencies */
5409 	features = netdev_fix_features(dev, features);
5410 
5411 	if (dev->features == features)
5412 		return 0;
5413 
5414 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5415 		&dev->features, &features);
5416 
5417 	if (dev->netdev_ops->ndo_set_features)
5418 		err = dev->netdev_ops->ndo_set_features(dev, features);
5419 
5420 	if (unlikely(err < 0)) {
5421 		netdev_err(dev,
5422 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
5423 			err, &features, &dev->features);
5424 		return -1;
5425 	}
5426 
5427 	if (!err)
5428 		dev->features = features;
5429 
5430 	return 1;
5431 }
5432 
5433 /**
5434  *	netdev_update_features - recalculate device features
5435  *	@dev: the device to check
5436  *
5437  *	Recalculate dev->features set and send notifications if it
5438  *	has changed. Should be called after driver or hardware dependent
5439  *	conditions might have changed that influence the features.
5440  */
5441 void netdev_update_features(struct net_device *dev)
5442 {
5443 	if (__netdev_update_features(dev))
5444 		netdev_features_change(dev);
5445 }
5446 EXPORT_SYMBOL(netdev_update_features);
5447 
5448 /**
5449  *	netdev_change_features - recalculate device features
5450  *	@dev: the device to check
5451  *
5452  *	Recalculate dev->features set and send notifications even
5453  *	if they have not changed. Should be called instead of
5454  *	netdev_update_features() if also dev->vlan_features might
5455  *	have changed to allow the changes to be propagated to stacked
5456  *	VLAN devices.
5457  */
5458 void netdev_change_features(struct net_device *dev)
5459 {
5460 	__netdev_update_features(dev);
5461 	netdev_features_change(dev);
5462 }
5463 EXPORT_SYMBOL(netdev_change_features);
5464 
5465 /**
5466  *	netif_stacked_transfer_operstate -	transfer operstate
5467  *	@rootdev: the root or lower level device to transfer state from
5468  *	@dev: the device to transfer operstate to
5469  *
5470  *	Transfer operational state from root to device. This is normally
5471  *	called when a stacking relationship exists between the root
5472  *	device and the device(a leaf device).
5473  */
5474 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5475 					struct net_device *dev)
5476 {
5477 	if (rootdev->operstate == IF_OPER_DORMANT)
5478 		netif_dormant_on(dev);
5479 	else
5480 		netif_dormant_off(dev);
5481 
5482 	if (netif_carrier_ok(rootdev)) {
5483 		if (!netif_carrier_ok(dev))
5484 			netif_carrier_on(dev);
5485 	} else {
5486 		if (netif_carrier_ok(dev))
5487 			netif_carrier_off(dev);
5488 	}
5489 }
5490 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5491 
5492 #ifdef CONFIG_RPS
5493 static int netif_alloc_rx_queues(struct net_device *dev)
5494 {
5495 	unsigned int i, count = dev->num_rx_queues;
5496 	struct netdev_rx_queue *rx;
5497 
5498 	BUG_ON(count < 1);
5499 
5500 	rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5501 	if (!rx) {
5502 		pr_err("netdev: Unable to allocate %u rx queues\n", count);
5503 		return -ENOMEM;
5504 	}
5505 	dev->_rx = rx;
5506 
5507 	for (i = 0; i < count; i++)
5508 		rx[i].dev = dev;
5509 	return 0;
5510 }
5511 #endif
5512 
5513 static void netdev_init_one_queue(struct net_device *dev,
5514 				  struct netdev_queue *queue, void *_unused)
5515 {
5516 	/* Initialize queue lock */
5517 	spin_lock_init(&queue->_xmit_lock);
5518 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5519 	queue->xmit_lock_owner = -1;
5520 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5521 	queue->dev = dev;
5522 #ifdef CONFIG_BQL
5523 	dql_init(&queue->dql, HZ);
5524 #endif
5525 }
5526 
5527 static int netif_alloc_netdev_queues(struct net_device *dev)
5528 {
5529 	unsigned int count = dev->num_tx_queues;
5530 	struct netdev_queue *tx;
5531 
5532 	BUG_ON(count < 1);
5533 
5534 	tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5535 	if (!tx) {
5536 		pr_err("netdev: Unable to allocate %u tx queues\n", count);
5537 		return -ENOMEM;
5538 	}
5539 	dev->_tx = tx;
5540 
5541 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5542 	spin_lock_init(&dev->tx_global_lock);
5543 
5544 	return 0;
5545 }
5546 
5547 /**
5548  *	register_netdevice	- register a network device
5549  *	@dev: device to register
5550  *
5551  *	Take a completed network device structure and add it to the kernel
5552  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5553  *	chain. 0 is returned on success. A negative errno code is returned
5554  *	on a failure to set up the device, or if the name is a duplicate.
5555  *
5556  *	Callers must hold the rtnl semaphore. You may want
5557  *	register_netdev() instead of this.
5558  *
5559  *	BUGS:
5560  *	The locking appears insufficient to guarantee two parallel registers
5561  *	will not get the same name.
5562  */
5563 
5564 int register_netdevice(struct net_device *dev)
5565 {
5566 	int ret;
5567 	struct net *net = dev_net(dev);
5568 
5569 	BUG_ON(dev_boot_phase);
5570 	ASSERT_RTNL();
5571 
5572 	might_sleep();
5573 
5574 	/* When net_device's are persistent, this will be fatal. */
5575 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5576 	BUG_ON(!net);
5577 
5578 	spin_lock_init(&dev->addr_list_lock);
5579 	netdev_set_addr_lockdep_class(dev);
5580 
5581 	dev->iflink = -1;
5582 
5583 	ret = dev_get_valid_name(dev, dev->name);
5584 	if (ret < 0)
5585 		goto out;
5586 
5587 	/* Init, if this function is available */
5588 	if (dev->netdev_ops->ndo_init) {
5589 		ret = dev->netdev_ops->ndo_init(dev);
5590 		if (ret) {
5591 			if (ret > 0)
5592 				ret = -EIO;
5593 			goto out;
5594 		}
5595 	}
5596 
5597 	dev->ifindex = dev_new_index(net);
5598 	if (dev->iflink == -1)
5599 		dev->iflink = dev->ifindex;
5600 
5601 	/* Transfer changeable features to wanted_features and enable
5602 	 * software offloads (GSO and GRO).
5603 	 */
5604 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
5605 	dev->features |= NETIF_F_SOFT_FEATURES;
5606 	dev->wanted_features = dev->features & dev->hw_features;
5607 
5608 	/* Turn on no cache copy if HW is doing checksum */
5609 	if (!(dev->flags & IFF_LOOPBACK)) {
5610 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
5611 		if (dev->features & NETIF_F_ALL_CSUM) {
5612 			dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5613 			dev->features |= NETIF_F_NOCACHE_COPY;
5614 		}
5615 	}
5616 
5617 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5618 	 */
5619 	dev->vlan_features |= NETIF_F_HIGHDMA;
5620 
5621 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5622 	ret = notifier_to_errno(ret);
5623 	if (ret)
5624 		goto err_uninit;
5625 
5626 	ret = netdev_register_kobject(dev);
5627 	if (ret)
5628 		goto err_uninit;
5629 	dev->reg_state = NETREG_REGISTERED;
5630 
5631 	__netdev_update_features(dev);
5632 
5633 	/*
5634 	 *	Default initial state at registry is that the
5635 	 *	device is present.
5636 	 */
5637 
5638 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5639 
5640 	dev_init_scheduler(dev);
5641 	dev_hold(dev);
5642 	list_netdevice(dev);
5643 	add_device_randomness(dev->dev_addr, dev->addr_len);
5644 
5645 	/* Notify protocols, that a new device appeared. */
5646 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5647 	ret = notifier_to_errno(ret);
5648 	if (ret) {
5649 		rollback_registered(dev);
5650 		dev->reg_state = NETREG_UNREGISTERED;
5651 	}
5652 	/*
5653 	 *	Prevent userspace races by waiting until the network
5654 	 *	device is fully setup before sending notifications.
5655 	 */
5656 	if (!dev->rtnl_link_ops ||
5657 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5658 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5659 
5660 out:
5661 	return ret;
5662 
5663 err_uninit:
5664 	if (dev->netdev_ops->ndo_uninit)
5665 		dev->netdev_ops->ndo_uninit(dev);
5666 	goto out;
5667 }
5668 EXPORT_SYMBOL(register_netdevice);
5669 
5670 /**
5671  *	init_dummy_netdev	- init a dummy network device for NAPI
5672  *	@dev: device to init
5673  *
5674  *	This takes a network device structure and initialize the minimum
5675  *	amount of fields so it can be used to schedule NAPI polls without
5676  *	registering a full blown interface. This is to be used by drivers
5677  *	that need to tie several hardware interfaces to a single NAPI
5678  *	poll scheduler due to HW limitations.
5679  */
5680 int init_dummy_netdev(struct net_device *dev)
5681 {
5682 	/* Clear everything. Note we don't initialize spinlocks
5683 	 * are they aren't supposed to be taken by any of the
5684 	 * NAPI code and this dummy netdev is supposed to be
5685 	 * only ever used for NAPI polls
5686 	 */
5687 	memset(dev, 0, sizeof(struct net_device));
5688 
5689 	/* make sure we BUG if trying to hit standard
5690 	 * register/unregister code path
5691 	 */
5692 	dev->reg_state = NETREG_DUMMY;
5693 
5694 	/* NAPI wants this */
5695 	INIT_LIST_HEAD(&dev->napi_list);
5696 
5697 	/* a dummy interface is started by default */
5698 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5699 	set_bit(__LINK_STATE_START, &dev->state);
5700 
5701 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
5702 	 * because users of this 'device' dont need to change
5703 	 * its refcount.
5704 	 */
5705 
5706 	return 0;
5707 }
5708 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5709 
5710 
5711 /**
5712  *	register_netdev	- register a network device
5713  *	@dev: device to register
5714  *
5715  *	Take a completed network device structure and add it to the kernel
5716  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5717  *	chain. 0 is returned on success. A negative errno code is returned
5718  *	on a failure to set up the device, or if the name is a duplicate.
5719  *
5720  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
5721  *	and expands the device name if you passed a format string to
5722  *	alloc_netdev.
5723  */
5724 int register_netdev(struct net_device *dev)
5725 {
5726 	int err;
5727 
5728 	rtnl_lock();
5729 	err = register_netdevice(dev);
5730 	rtnl_unlock();
5731 	return err;
5732 }
5733 EXPORT_SYMBOL(register_netdev);
5734 
5735 int netdev_refcnt_read(const struct net_device *dev)
5736 {
5737 	int i, refcnt = 0;
5738 
5739 	for_each_possible_cpu(i)
5740 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5741 	return refcnt;
5742 }
5743 EXPORT_SYMBOL(netdev_refcnt_read);
5744 
5745 /**
5746  * netdev_wait_allrefs - wait until all references are gone.
5747  * @dev: target net_device
5748  *
5749  * This is called when unregistering network devices.
5750  *
5751  * Any protocol or device that holds a reference should register
5752  * for netdevice notification, and cleanup and put back the
5753  * reference if they receive an UNREGISTER event.
5754  * We can get stuck here if buggy protocols don't correctly
5755  * call dev_put.
5756  */
5757 static void netdev_wait_allrefs(struct net_device *dev)
5758 {
5759 	unsigned long rebroadcast_time, warning_time;
5760 	int refcnt;
5761 
5762 	linkwatch_forget_dev(dev);
5763 
5764 	rebroadcast_time = warning_time = jiffies;
5765 	refcnt = netdev_refcnt_read(dev);
5766 
5767 	while (refcnt != 0) {
5768 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5769 			rtnl_lock();
5770 
5771 			/* Rebroadcast unregister notification */
5772 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5773 			/* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5774 			 * should have already handle it the first time */
5775 
5776 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5777 				     &dev->state)) {
5778 				/* We must not have linkwatch events
5779 				 * pending on unregister. If this
5780 				 * happens, we simply run the queue
5781 				 * unscheduled, resulting in a noop
5782 				 * for this device.
5783 				 */
5784 				linkwatch_run_queue();
5785 			}
5786 
5787 			__rtnl_unlock();
5788 
5789 			rebroadcast_time = jiffies;
5790 		}
5791 
5792 		msleep(250);
5793 
5794 		refcnt = netdev_refcnt_read(dev);
5795 
5796 		if (time_after(jiffies, warning_time + 10 * HZ)) {
5797 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5798 				 dev->name, refcnt);
5799 			warning_time = jiffies;
5800 		}
5801 	}
5802 }
5803 
5804 /* The sequence is:
5805  *
5806  *	rtnl_lock();
5807  *	...
5808  *	register_netdevice(x1);
5809  *	register_netdevice(x2);
5810  *	...
5811  *	unregister_netdevice(y1);
5812  *	unregister_netdevice(y2);
5813  *      ...
5814  *	rtnl_unlock();
5815  *	free_netdev(y1);
5816  *	free_netdev(y2);
5817  *
5818  * We are invoked by rtnl_unlock().
5819  * This allows us to deal with problems:
5820  * 1) We can delete sysfs objects which invoke hotplug
5821  *    without deadlocking with linkwatch via keventd.
5822  * 2) Since we run with the RTNL semaphore not held, we can sleep
5823  *    safely in order to wait for the netdev refcnt to drop to zero.
5824  *
5825  * We must not return until all unregister events added during
5826  * the interval the lock was held have been completed.
5827  */
5828 void netdev_run_todo(void)
5829 {
5830 	struct list_head list;
5831 
5832 	/* Snapshot list, allow later requests */
5833 	list_replace_init(&net_todo_list, &list);
5834 
5835 	__rtnl_unlock();
5836 
5837 	/* Wait for rcu callbacks to finish before attempting to drain
5838 	 * the device list.  This usually avoids a 250ms wait.
5839 	 */
5840 	if (!list_empty(&list))
5841 		rcu_barrier();
5842 
5843 	while (!list_empty(&list)) {
5844 		struct net_device *dev
5845 			= list_first_entry(&list, struct net_device, todo_list);
5846 		list_del(&dev->todo_list);
5847 
5848 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5849 			pr_err("network todo '%s' but state %d\n",
5850 			       dev->name, dev->reg_state);
5851 			dump_stack();
5852 			continue;
5853 		}
5854 
5855 		dev->reg_state = NETREG_UNREGISTERED;
5856 
5857 		on_each_cpu(flush_backlog, dev, 1);
5858 
5859 		netdev_wait_allrefs(dev);
5860 
5861 		/* paranoia */
5862 		BUG_ON(netdev_refcnt_read(dev));
5863 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
5864 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5865 		WARN_ON(dev->dn_ptr);
5866 
5867 		if (dev->destructor)
5868 			dev->destructor(dev);
5869 
5870 		/* Free network device */
5871 		kobject_put(&dev->dev.kobj);
5872 	}
5873 }
5874 
5875 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
5876  * fields in the same order, with only the type differing.
5877  */
5878 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5879 			     const struct net_device_stats *netdev_stats)
5880 {
5881 #if BITS_PER_LONG == 64
5882 	BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5883 	memcpy(stats64, netdev_stats, sizeof(*stats64));
5884 #else
5885 	size_t i, n = sizeof(*stats64) / sizeof(u64);
5886 	const unsigned long *src = (const unsigned long *)netdev_stats;
5887 	u64 *dst = (u64 *)stats64;
5888 
5889 	BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5890 		     sizeof(*stats64) / sizeof(u64));
5891 	for (i = 0; i < n; i++)
5892 		dst[i] = src[i];
5893 #endif
5894 }
5895 EXPORT_SYMBOL(netdev_stats_to_stats64);
5896 
5897 /**
5898  *	dev_get_stats	- get network device statistics
5899  *	@dev: device to get statistics from
5900  *	@storage: place to store stats
5901  *
5902  *	Get network statistics from device. Return @storage.
5903  *	The device driver may provide its own method by setting
5904  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5905  *	otherwise the internal statistics structure is used.
5906  */
5907 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5908 					struct rtnl_link_stats64 *storage)
5909 {
5910 	const struct net_device_ops *ops = dev->netdev_ops;
5911 
5912 	if (ops->ndo_get_stats64) {
5913 		memset(storage, 0, sizeof(*storage));
5914 		ops->ndo_get_stats64(dev, storage);
5915 	} else if (ops->ndo_get_stats) {
5916 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5917 	} else {
5918 		netdev_stats_to_stats64(storage, &dev->stats);
5919 	}
5920 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5921 	return storage;
5922 }
5923 EXPORT_SYMBOL(dev_get_stats);
5924 
5925 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5926 {
5927 	struct netdev_queue *queue = dev_ingress_queue(dev);
5928 
5929 #ifdef CONFIG_NET_CLS_ACT
5930 	if (queue)
5931 		return queue;
5932 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5933 	if (!queue)
5934 		return NULL;
5935 	netdev_init_one_queue(dev, queue, NULL);
5936 	queue->qdisc = &noop_qdisc;
5937 	queue->qdisc_sleeping = &noop_qdisc;
5938 	rcu_assign_pointer(dev->ingress_queue, queue);
5939 #endif
5940 	return queue;
5941 }
5942 
5943 /**
5944  *	alloc_netdev_mqs - allocate network device
5945  *	@sizeof_priv:	size of private data to allocate space for
5946  *	@name:		device name format string
5947  *	@setup:		callback to initialize device
5948  *	@txqs:		the number of TX subqueues to allocate
5949  *	@rxqs:		the number of RX subqueues to allocate
5950  *
5951  *	Allocates a struct net_device with private data area for driver use
5952  *	and performs basic initialization.  Also allocates subquue structs
5953  *	for each queue on the device.
5954  */
5955 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5956 		void (*setup)(struct net_device *),
5957 		unsigned int txqs, unsigned int rxqs)
5958 {
5959 	struct net_device *dev;
5960 	size_t alloc_size;
5961 	struct net_device *p;
5962 
5963 	BUG_ON(strlen(name) >= sizeof(dev->name));
5964 
5965 	if (txqs < 1) {
5966 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
5967 		return NULL;
5968 	}
5969 
5970 #ifdef CONFIG_RPS
5971 	if (rxqs < 1) {
5972 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
5973 		return NULL;
5974 	}
5975 #endif
5976 
5977 	alloc_size = sizeof(struct net_device);
5978 	if (sizeof_priv) {
5979 		/* ensure 32-byte alignment of private area */
5980 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5981 		alloc_size += sizeof_priv;
5982 	}
5983 	/* ensure 32-byte alignment of whole construct */
5984 	alloc_size += NETDEV_ALIGN - 1;
5985 
5986 	p = kzalloc(alloc_size, GFP_KERNEL);
5987 	if (!p) {
5988 		pr_err("alloc_netdev: Unable to allocate device\n");
5989 		return NULL;
5990 	}
5991 
5992 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
5993 	dev->padded = (char *)dev - (char *)p;
5994 
5995 	dev->pcpu_refcnt = alloc_percpu(int);
5996 	if (!dev->pcpu_refcnt)
5997 		goto free_p;
5998 
5999 	if (dev_addr_init(dev))
6000 		goto free_pcpu;
6001 
6002 	dev_mc_init(dev);
6003 	dev_uc_init(dev);
6004 
6005 	dev_net_set(dev, &init_net);
6006 
6007 	dev->gso_max_size = GSO_MAX_SIZE;
6008 	dev->gso_max_segs = GSO_MAX_SEGS;
6009 
6010 	INIT_LIST_HEAD(&dev->napi_list);
6011 	INIT_LIST_HEAD(&dev->unreg_list);
6012 	INIT_LIST_HEAD(&dev->link_watch_list);
6013 	dev->priv_flags = IFF_XMIT_DST_RELEASE;
6014 	setup(dev);
6015 
6016 	dev->num_tx_queues = txqs;
6017 	dev->real_num_tx_queues = txqs;
6018 	if (netif_alloc_netdev_queues(dev))
6019 		goto free_all;
6020 
6021 #ifdef CONFIG_RPS
6022 	dev->num_rx_queues = rxqs;
6023 	dev->real_num_rx_queues = rxqs;
6024 	if (netif_alloc_rx_queues(dev))
6025 		goto free_all;
6026 #endif
6027 
6028 	strcpy(dev->name, name);
6029 	dev->group = INIT_NETDEV_GROUP;
6030 	return dev;
6031 
6032 free_all:
6033 	free_netdev(dev);
6034 	return NULL;
6035 
6036 free_pcpu:
6037 	free_percpu(dev->pcpu_refcnt);
6038 	kfree(dev->_tx);
6039 #ifdef CONFIG_RPS
6040 	kfree(dev->_rx);
6041 #endif
6042 
6043 free_p:
6044 	kfree(p);
6045 	return NULL;
6046 }
6047 EXPORT_SYMBOL(alloc_netdev_mqs);
6048 
6049 /**
6050  *	free_netdev - free network device
6051  *	@dev: device
6052  *
6053  *	This function does the last stage of destroying an allocated device
6054  * 	interface. The reference to the device object is released.
6055  *	If this is the last reference then it will be freed.
6056  */
6057 void free_netdev(struct net_device *dev)
6058 {
6059 	struct napi_struct *p, *n;
6060 
6061 	release_net(dev_net(dev));
6062 
6063 	kfree(dev->_tx);
6064 #ifdef CONFIG_RPS
6065 	kfree(dev->_rx);
6066 #endif
6067 
6068 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6069 
6070 	/* Flush device addresses */
6071 	dev_addr_flush(dev);
6072 
6073 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6074 		netif_napi_del(p);
6075 
6076 	free_percpu(dev->pcpu_refcnt);
6077 	dev->pcpu_refcnt = NULL;
6078 
6079 	/*  Compatibility with error handling in drivers */
6080 	if (dev->reg_state == NETREG_UNINITIALIZED) {
6081 		kfree((char *)dev - dev->padded);
6082 		return;
6083 	}
6084 
6085 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6086 	dev->reg_state = NETREG_RELEASED;
6087 
6088 	/* will free via device release */
6089 	put_device(&dev->dev);
6090 }
6091 EXPORT_SYMBOL(free_netdev);
6092 
6093 /**
6094  *	synchronize_net -  Synchronize with packet receive processing
6095  *
6096  *	Wait for packets currently being received to be done.
6097  *	Does not block later packets from starting.
6098  */
6099 void synchronize_net(void)
6100 {
6101 	might_sleep();
6102 	if (rtnl_is_locked())
6103 		synchronize_rcu_expedited();
6104 	else
6105 		synchronize_rcu();
6106 }
6107 EXPORT_SYMBOL(synchronize_net);
6108 
6109 /**
6110  *	unregister_netdevice_queue - remove device from the kernel
6111  *	@dev: device
6112  *	@head: list
6113  *
6114  *	This function shuts down a device interface and removes it
6115  *	from the kernel tables.
6116  *	If head not NULL, device is queued to be unregistered later.
6117  *
6118  *	Callers must hold the rtnl semaphore.  You may want
6119  *	unregister_netdev() instead of this.
6120  */
6121 
6122 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6123 {
6124 	ASSERT_RTNL();
6125 
6126 	if (head) {
6127 		list_move_tail(&dev->unreg_list, head);
6128 	} else {
6129 		rollback_registered(dev);
6130 		/* Finish processing unregister after unlock */
6131 		net_set_todo(dev);
6132 	}
6133 }
6134 EXPORT_SYMBOL(unregister_netdevice_queue);
6135 
6136 /**
6137  *	unregister_netdevice_many - unregister many devices
6138  *	@head: list of devices
6139  */
6140 void unregister_netdevice_many(struct list_head *head)
6141 {
6142 	struct net_device *dev;
6143 
6144 	if (!list_empty(head)) {
6145 		rollback_registered_many(head);
6146 		list_for_each_entry(dev, head, unreg_list)
6147 			net_set_todo(dev);
6148 	}
6149 }
6150 EXPORT_SYMBOL(unregister_netdevice_many);
6151 
6152 /**
6153  *	unregister_netdev - remove device from the kernel
6154  *	@dev: device
6155  *
6156  *	This function shuts down a device interface and removes it
6157  *	from the kernel tables.
6158  *
6159  *	This is just a wrapper for unregister_netdevice that takes
6160  *	the rtnl semaphore.  In general you want to use this and not
6161  *	unregister_netdevice.
6162  */
6163 void unregister_netdev(struct net_device *dev)
6164 {
6165 	rtnl_lock();
6166 	unregister_netdevice(dev);
6167 	rtnl_unlock();
6168 }
6169 EXPORT_SYMBOL(unregister_netdev);
6170 
6171 /**
6172  *	dev_change_net_namespace - move device to different nethost namespace
6173  *	@dev: device
6174  *	@net: network namespace
6175  *	@pat: If not NULL name pattern to try if the current device name
6176  *	      is already taken in the destination network namespace.
6177  *
6178  *	This function shuts down a device interface and moves it
6179  *	to a new network namespace. On success 0 is returned, on
6180  *	a failure a netagive errno code is returned.
6181  *
6182  *	Callers must hold the rtnl semaphore.
6183  */
6184 
6185 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6186 {
6187 	int err;
6188 
6189 	ASSERT_RTNL();
6190 
6191 	/* Don't allow namespace local devices to be moved. */
6192 	err = -EINVAL;
6193 	if (dev->features & NETIF_F_NETNS_LOCAL)
6194 		goto out;
6195 
6196 	/* Ensure the device has been registrered */
6197 	err = -EINVAL;
6198 	if (dev->reg_state != NETREG_REGISTERED)
6199 		goto out;
6200 
6201 	/* Get out if there is nothing todo */
6202 	err = 0;
6203 	if (net_eq(dev_net(dev), net))
6204 		goto out;
6205 
6206 	/* Pick the destination device name, and ensure
6207 	 * we can use it in the destination network namespace.
6208 	 */
6209 	err = -EEXIST;
6210 	if (__dev_get_by_name(net, dev->name)) {
6211 		/* We get here if we can't use the current device name */
6212 		if (!pat)
6213 			goto out;
6214 		if (dev_get_valid_name(dev, pat) < 0)
6215 			goto out;
6216 	}
6217 
6218 	/*
6219 	 * And now a mini version of register_netdevice unregister_netdevice.
6220 	 */
6221 
6222 	/* If device is running close it first. */
6223 	dev_close(dev);
6224 
6225 	/* And unlink it from device chain */
6226 	err = -ENODEV;
6227 	unlist_netdevice(dev);
6228 
6229 	synchronize_net();
6230 
6231 	/* Shutdown queueing discipline. */
6232 	dev_shutdown(dev);
6233 
6234 	/* Notify protocols, that we are about to destroy
6235 	   this device. They should clean all the things.
6236 
6237 	   Note that dev->reg_state stays at NETREG_REGISTERED.
6238 	   This is wanted because this way 8021q and macvlan know
6239 	   the device is just moving and can keep their slaves up.
6240 	*/
6241 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6242 	call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
6243 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
6244 
6245 	/*
6246 	 *	Flush the unicast and multicast chains
6247 	 */
6248 	dev_uc_flush(dev);
6249 	dev_mc_flush(dev);
6250 
6251 	/* Actually switch the network namespace */
6252 	dev_net_set(dev, net);
6253 
6254 	/* If there is an ifindex conflict assign a new one */
6255 	if (__dev_get_by_index(net, dev->ifindex)) {
6256 		int iflink = (dev->iflink == dev->ifindex);
6257 		dev->ifindex = dev_new_index(net);
6258 		if (iflink)
6259 			dev->iflink = dev->ifindex;
6260 	}
6261 
6262 	/* Fixup kobjects */
6263 	err = device_rename(&dev->dev, dev->name);
6264 	WARN_ON(err);
6265 
6266 	/* Add the device back in the hashes */
6267 	list_netdevice(dev);
6268 
6269 	/* Notify protocols, that a new device appeared. */
6270 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
6271 
6272 	/*
6273 	 *	Prevent userspace races by waiting until the network
6274 	 *	device is fully setup before sending notifications.
6275 	 */
6276 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6277 
6278 	synchronize_net();
6279 	err = 0;
6280 out:
6281 	return err;
6282 }
6283 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6284 
6285 static int dev_cpu_callback(struct notifier_block *nfb,
6286 			    unsigned long action,
6287 			    void *ocpu)
6288 {
6289 	struct sk_buff **list_skb;
6290 	struct sk_buff *skb;
6291 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
6292 	struct softnet_data *sd, *oldsd;
6293 
6294 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6295 		return NOTIFY_OK;
6296 
6297 	local_irq_disable();
6298 	cpu = smp_processor_id();
6299 	sd = &per_cpu(softnet_data, cpu);
6300 	oldsd = &per_cpu(softnet_data, oldcpu);
6301 
6302 	/* Find end of our completion_queue. */
6303 	list_skb = &sd->completion_queue;
6304 	while (*list_skb)
6305 		list_skb = &(*list_skb)->next;
6306 	/* Append completion queue from offline CPU. */
6307 	*list_skb = oldsd->completion_queue;
6308 	oldsd->completion_queue = NULL;
6309 
6310 	/* Append output queue from offline CPU. */
6311 	if (oldsd->output_queue) {
6312 		*sd->output_queue_tailp = oldsd->output_queue;
6313 		sd->output_queue_tailp = oldsd->output_queue_tailp;
6314 		oldsd->output_queue = NULL;
6315 		oldsd->output_queue_tailp = &oldsd->output_queue;
6316 	}
6317 	/* Append NAPI poll list from offline CPU. */
6318 	if (!list_empty(&oldsd->poll_list)) {
6319 		list_splice_init(&oldsd->poll_list, &sd->poll_list);
6320 		raise_softirq_irqoff(NET_RX_SOFTIRQ);
6321 	}
6322 
6323 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
6324 	local_irq_enable();
6325 
6326 	/* Process offline CPU's input_pkt_queue */
6327 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6328 		netif_rx(skb);
6329 		input_queue_head_incr(oldsd);
6330 	}
6331 	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6332 		netif_rx(skb);
6333 		input_queue_head_incr(oldsd);
6334 	}
6335 
6336 	return NOTIFY_OK;
6337 }
6338 
6339 
6340 /**
6341  *	netdev_increment_features - increment feature set by one
6342  *	@all: current feature set
6343  *	@one: new feature set
6344  *	@mask: mask feature set
6345  *
6346  *	Computes a new feature set after adding a device with feature set
6347  *	@one to the master device with current feature set @all.  Will not
6348  *	enable anything that is off in @mask. Returns the new feature set.
6349  */
6350 netdev_features_t netdev_increment_features(netdev_features_t all,
6351 	netdev_features_t one, netdev_features_t mask)
6352 {
6353 	if (mask & NETIF_F_GEN_CSUM)
6354 		mask |= NETIF_F_ALL_CSUM;
6355 	mask |= NETIF_F_VLAN_CHALLENGED;
6356 
6357 	all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6358 	all &= one | ~NETIF_F_ALL_FOR_ALL;
6359 
6360 	/* If one device supports hw checksumming, set for all. */
6361 	if (all & NETIF_F_GEN_CSUM)
6362 		all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6363 
6364 	return all;
6365 }
6366 EXPORT_SYMBOL(netdev_increment_features);
6367 
6368 static struct hlist_head *netdev_create_hash(void)
6369 {
6370 	int i;
6371 	struct hlist_head *hash;
6372 
6373 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6374 	if (hash != NULL)
6375 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
6376 			INIT_HLIST_HEAD(&hash[i]);
6377 
6378 	return hash;
6379 }
6380 
6381 /* Initialize per network namespace state */
6382 static int __net_init netdev_init(struct net *net)
6383 {
6384 	if (net != &init_net)
6385 		INIT_LIST_HEAD(&net->dev_base_head);
6386 
6387 	net->dev_name_head = netdev_create_hash();
6388 	if (net->dev_name_head == NULL)
6389 		goto err_name;
6390 
6391 	net->dev_index_head = netdev_create_hash();
6392 	if (net->dev_index_head == NULL)
6393 		goto err_idx;
6394 
6395 	return 0;
6396 
6397 err_idx:
6398 	kfree(net->dev_name_head);
6399 err_name:
6400 	return -ENOMEM;
6401 }
6402 
6403 /**
6404  *	netdev_drivername - network driver for the device
6405  *	@dev: network device
6406  *
6407  *	Determine network driver for device.
6408  */
6409 const char *netdev_drivername(const struct net_device *dev)
6410 {
6411 	const struct device_driver *driver;
6412 	const struct device *parent;
6413 	const char *empty = "";
6414 
6415 	parent = dev->dev.parent;
6416 	if (!parent)
6417 		return empty;
6418 
6419 	driver = parent->driver;
6420 	if (driver && driver->name)
6421 		return driver->name;
6422 	return empty;
6423 }
6424 
6425 int __netdev_printk(const char *level, const struct net_device *dev,
6426 			   struct va_format *vaf)
6427 {
6428 	int r;
6429 
6430 	if (dev && dev->dev.parent)
6431 		r = dev_printk(level, dev->dev.parent, "%s: %pV",
6432 			       netdev_name(dev), vaf);
6433 	else if (dev)
6434 		r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6435 	else
6436 		r = printk("%s(NULL net_device): %pV", level, vaf);
6437 
6438 	return r;
6439 }
6440 EXPORT_SYMBOL(__netdev_printk);
6441 
6442 int netdev_printk(const char *level, const struct net_device *dev,
6443 		  const char *format, ...)
6444 {
6445 	struct va_format vaf;
6446 	va_list args;
6447 	int r;
6448 
6449 	va_start(args, format);
6450 
6451 	vaf.fmt = format;
6452 	vaf.va = &args;
6453 
6454 	r = __netdev_printk(level, dev, &vaf);
6455 	va_end(args);
6456 
6457 	return r;
6458 }
6459 EXPORT_SYMBOL(netdev_printk);
6460 
6461 #define define_netdev_printk_level(func, level)			\
6462 int func(const struct net_device *dev, const char *fmt, ...)	\
6463 {								\
6464 	int r;							\
6465 	struct va_format vaf;					\
6466 	va_list args;						\
6467 								\
6468 	va_start(args, fmt);					\
6469 								\
6470 	vaf.fmt = fmt;						\
6471 	vaf.va = &args;						\
6472 								\
6473 	r = __netdev_printk(level, dev, &vaf);			\
6474 	va_end(args);						\
6475 								\
6476 	return r;						\
6477 }								\
6478 EXPORT_SYMBOL(func);
6479 
6480 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6481 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6482 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6483 define_netdev_printk_level(netdev_err, KERN_ERR);
6484 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6485 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6486 define_netdev_printk_level(netdev_info, KERN_INFO);
6487 
6488 static void __net_exit netdev_exit(struct net *net)
6489 {
6490 	kfree(net->dev_name_head);
6491 	kfree(net->dev_index_head);
6492 }
6493 
6494 static struct pernet_operations __net_initdata netdev_net_ops = {
6495 	.init = netdev_init,
6496 	.exit = netdev_exit,
6497 };
6498 
6499 static void __net_exit default_device_exit(struct net *net)
6500 {
6501 	struct net_device *dev, *aux;
6502 	/*
6503 	 * Push all migratable network devices back to the
6504 	 * initial network namespace
6505 	 */
6506 	rtnl_lock();
6507 	for_each_netdev_safe(net, dev, aux) {
6508 		int err;
6509 		char fb_name[IFNAMSIZ];
6510 
6511 		/* Ignore unmoveable devices (i.e. loopback) */
6512 		if (dev->features & NETIF_F_NETNS_LOCAL)
6513 			continue;
6514 
6515 		/* Leave virtual devices for the generic cleanup */
6516 		if (dev->rtnl_link_ops)
6517 			continue;
6518 
6519 		/* Push remaining network devices to init_net */
6520 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6521 		err = dev_change_net_namespace(dev, &init_net, fb_name);
6522 		if (err) {
6523 			pr_emerg("%s: failed to move %s to init_net: %d\n",
6524 				 __func__, dev->name, err);
6525 			BUG();
6526 		}
6527 	}
6528 	rtnl_unlock();
6529 }
6530 
6531 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6532 {
6533 	/* At exit all network devices most be removed from a network
6534 	 * namespace.  Do this in the reverse order of registration.
6535 	 * Do this across as many network namespaces as possible to
6536 	 * improve batching efficiency.
6537 	 */
6538 	struct net_device *dev;
6539 	struct net *net;
6540 	LIST_HEAD(dev_kill_list);
6541 
6542 	rtnl_lock();
6543 	list_for_each_entry(net, net_list, exit_list) {
6544 		for_each_netdev_reverse(net, dev) {
6545 			if (dev->rtnl_link_ops)
6546 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6547 			else
6548 				unregister_netdevice_queue(dev, &dev_kill_list);
6549 		}
6550 	}
6551 	unregister_netdevice_many(&dev_kill_list);
6552 	list_del(&dev_kill_list);
6553 	rtnl_unlock();
6554 }
6555 
6556 static struct pernet_operations __net_initdata default_device_ops = {
6557 	.exit = default_device_exit,
6558 	.exit_batch = default_device_exit_batch,
6559 };
6560 
6561 /*
6562  *	Initialize the DEV module. At boot time this walks the device list and
6563  *	unhooks any devices that fail to initialise (normally hardware not
6564  *	present) and leaves us with a valid list of present and active devices.
6565  *
6566  */
6567 
6568 /*
6569  *       This is called single threaded during boot, so no need
6570  *       to take the rtnl semaphore.
6571  */
6572 static int __init net_dev_init(void)
6573 {
6574 	int i, rc = -ENOMEM;
6575 
6576 	BUG_ON(!dev_boot_phase);
6577 
6578 	if (dev_proc_init())
6579 		goto out;
6580 
6581 	if (netdev_kobject_init())
6582 		goto out;
6583 
6584 	INIT_LIST_HEAD(&ptype_all);
6585 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
6586 		INIT_LIST_HEAD(&ptype_base[i]);
6587 
6588 	if (register_pernet_subsys(&netdev_net_ops))
6589 		goto out;
6590 
6591 	/*
6592 	 *	Initialise the packet receive queues.
6593 	 */
6594 
6595 	for_each_possible_cpu(i) {
6596 		struct softnet_data *sd = &per_cpu(softnet_data, i);
6597 
6598 		memset(sd, 0, sizeof(*sd));
6599 		skb_queue_head_init(&sd->input_pkt_queue);
6600 		skb_queue_head_init(&sd->process_queue);
6601 		sd->completion_queue = NULL;
6602 		INIT_LIST_HEAD(&sd->poll_list);
6603 		sd->output_queue = NULL;
6604 		sd->output_queue_tailp = &sd->output_queue;
6605 #ifdef CONFIG_RPS
6606 		sd->csd.func = rps_trigger_softirq;
6607 		sd->csd.info = sd;
6608 		sd->csd.flags = 0;
6609 		sd->cpu = i;
6610 #endif
6611 
6612 		sd->backlog.poll = process_backlog;
6613 		sd->backlog.weight = weight_p;
6614 		sd->backlog.gro_list = NULL;
6615 		sd->backlog.gro_count = 0;
6616 	}
6617 
6618 	dev_boot_phase = 0;
6619 
6620 	/* The loopback device is special if any other network devices
6621 	 * is present in a network namespace the loopback device must
6622 	 * be present. Since we now dynamically allocate and free the
6623 	 * loopback device ensure this invariant is maintained by
6624 	 * keeping the loopback device as the first device on the
6625 	 * list of network devices.  Ensuring the loopback devices
6626 	 * is the first device that appears and the last network device
6627 	 * that disappears.
6628 	 */
6629 	if (register_pernet_device(&loopback_net_ops))
6630 		goto out;
6631 
6632 	if (register_pernet_device(&default_device_ops))
6633 		goto out;
6634 
6635 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6636 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6637 
6638 	hotcpu_notifier(dev_cpu_callback, 0);
6639 	dst_init();
6640 	dev_mcast_init();
6641 	rc = 0;
6642 out:
6643 	return rc;
6644 }
6645 
6646 subsys_initcall(net_dev_init);
6647 
6648 static int __init initialize_hashrnd(void)
6649 {
6650 	get_random_bytes(&hashrnd, sizeof(hashrnd));
6651 	return 0;
6652 }
6653 
6654 late_initcall_sync(initialize_hashrnd);
6655 
6656