xref: /openbmc/linux/net/core/dev.c (revision 95298d63)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/bpf.h>
95 #include <linux/bpf_trace.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <net/busy_poll.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/dst_metadata.h>
103 #include <net/pkt_sched.h>
104 #include <net/pkt_cls.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/module.h>
110 #include <linux/netpoll.h>
111 #include <linux/rcupdate.h>
112 #include <linux/delay.h>
113 #include <net/iw_handler.h>
114 #include <asm/current.h>
115 #include <linux/audit.h>
116 #include <linux/dmaengine.h>
117 #include <linux/err.h>
118 #include <linux/ctype.h>
119 #include <linux/if_arp.h>
120 #include <linux/if_vlan.h>
121 #include <linux/ip.h>
122 #include <net/ip.h>
123 #include <net/mpls.h>
124 #include <linux/ipv6.h>
125 #include <linux/in.h>
126 #include <linux/jhash.h>
127 #include <linux/random.h>
128 #include <trace/events/napi.h>
129 #include <trace/events/net.h>
130 #include <trace/events/skb.h>
131 #include <linux/inetdevice.h>
132 #include <linux/cpu_rmap.h>
133 #include <linux/static_key.h>
134 #include <linux/hashtable.h>
135 #include <linux/vmalloc.h>
136 #include <linux/if_macvlan.h>
137 #include <linux/errqueue.h>
138 #include <linux/hrtimer.h>
139 #include <linux/netfilter_ingress.h>
140 #include <linux/crash_dump.h>
141 #include <linux/sctp.h>
142 #include <net/udp_tunnel.h>
143 #include <linux/net_namespace.h>
144 #include <linux/indirect_call_wrapper.h>
145 #include <net/devlink.h>
146 #include <linux/pm_runtime.h>
147 
148 #include "net-sysfs.h"
149 
150 #define MAX_GRO_SKBS 8
151 
152 /* This should be increased if a protocol with a bigger head is added. */
153 #define GRO_MAX_HEAD (MAX_HEADER + 128)
154 
155 static DEFINE_SPINLOCK(ptype_lock);
156 static DEFINE_SPINLOCK(offload_lock);
157 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
158 struct list_head ptype_all __read_mostly;	/* Taps */
159 static struct list_head offload_base __read_mostly;
160 
161 static int netif_rx_internal(struct sk_buff *skb);
162 static int call_netdevice_notifiers_info(unsigned long val,
163 					 struct netdev_notifier_info *info);
164 static int call_netdevice_notifiers_extack(unsigned long val,
165 					   struct net_device *dev,
166 					   struct netlink_ext_ack *extack);
167 static struct napi_struct *napi_by_id(unsigned int napi_id);
168 
169 /*
170  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171  * semaphore.
172  *
173  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174  *
175  * Writers must hold the rtnl semaphore while they loop through the
176  * dev_base_head list, and hold dev_base_lock for writing when they do the
177  * actual updates.  This allows pure readers to access the list even
178  * while a writer is preparing to update it.
179  *
180  * To put it another way, dev_base_lock is held for writing only to
181  * protect against pure readers; the rtnl semaphore provides the
182  * protection against other writers.
183  *
184  * See, for example usages, register_netdevice() and
185  * unregister_netdevice(), which must be called with the rtnl
186  * semaphore held.
187  */
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
190 
191 static DEFINE_MUTEX(ifalias_mutex);
192 
193 /* protects napi_hash addition/deletion and napi_gen_id */
194 static DEFINE_SPINLOCK(napi_hash_lock);
195 
196 static unsigned int napi_gen_id = NR_CPUS;
197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198 
199 static DECLARE_RWSEM(devnet_rename_sem);
200 
201 static inline void dev_base_seq_inc(struct net *net)
202 {
203 	while (++net->dev_base_seq == 0)
204 		;
205 }
206 
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 {
209 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210 
211 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212 }
213 
214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215 {
216 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217 }
218 
219 static inline void rps_lock(struct softnet_data *sd)
220 {
221 #ifdef CONFIG_RPS
222 	spin_lock(&sd->input_pkt_queue.lock);
223 #endif
224 }
225 
226 static inline void rps_unlock(struct softnet_data *sd)
227 {
228 #ifdef CONFIG_RPS
229 	spin_unlock(&sd->input_pkt_queue.lock);
230 #endif
231 }
232 
233 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
234 						       const char *name)
235 {
236 	struct netdev_name_node *name_node;
237 
238 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
239 	if (!name_node)
240 		return NULL;
241 	INIT_HLIST_NODE(&name_node->hlist);
242 	name_node->dev = dev;
243 	name_node->name = name;
244 	return name_node;
245 }
246 
247 static struct netdev_name_node *
248 netdev_name_node_head_alloc(struct net_device *dev)
249 {
250 	struct netdev_name_node *name_node;
251 
252 	name_node = netdev_name_node_alloc(dev, dev->name);
253 	if (!name_node)
254 		return NULL;
255 	INIT_LIST_HEAD(&name_node->list);
256 	return name_node;
257 }
258 
259 static void netdev_name_node_free(struct netdev_name_node *name_node)
260 {
261 	kfree(name_node);
262 }
263 
264 static void netdev_name_node_add(struct net *net,
265 				 struct netdev_name_node *name_node)
266 {
267 	hlist_add_head_rcu(&name_node->hlist,
268 			   dev_name_hash(net, name_node->name));
269 }
270 
271 static void netdev_name_node_del(struct netdev_name_node *name_node)
272 {
273 	hlist_del_rcu(&name_node->hlist);
274 }
275 
276 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
277 							const char *name)
278 {
279 	struct hlist_head *head = dev_name_hash(net, name);
280 	struct netdev_name_node *name_node;
281 
282 	hlist_for_each_entry(name_node, head, hlist)
283 		if (!strcmp(name_node->name, name))
284 			return name_node;
285 	return NULL;
286 }
287 
288 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
289 							    const char *name)
290 {
291 	struct hlist_head *head = dev_name_hash(net, name);
292 	struct netdev_name_node *name_node;
293 
294 	hlist_for_each_entry_rcu(name_node, head, hlist)
295 		if (!strcmp(name_node->name, name))
296 			return name_node;
297 	return NULL;
298 }
299 
300 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
301 {
302 	struct netdev_name_node *name_node;
303 	struct net *net = dev_net(dev);
304 
305 	name_node = netdev_name_node_lookup(net, name);
306 	if (name_node)
307 		return -EEXIST;
308 	name_node = netdev_name_node_alloc(dev, name);
309 	if (!name_node)
310 		return -ENOMEM;
311 	netdev_name_node_add(net, name_node);
312 	/* The node that holds dev->name acts as a head of per-device list. */
313 	list_add_tail(&name_node->list, &dev->name_node->list);
314 
315 	return 0;
316 }
317 EXPORT_SYMBOL(netdev_name_node_alt_create);
318 
319 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
320 {
321 	list_del(&name_node->list);
322 	netdev_name_node_del(name_node);
323 	kfree(name_node->name);
324 	netdev_name_node_free(name_node);
325 }
326 
327 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
328 {
329 	struct netdev_name_node *name_node;
330 	struct net *net = dev_net(dev);
331 
332 	name_node = netdev_name_node_lookup(net, name);
333 	if (!name_node)
334 		return -ENOENT;
335 	/* lookup might have found our primary name or a name belonging
336 	 * to another device.
337 	 */
338 	if (name_node == dev->name_node || name_node->dev != dev)
339 		return -EINVAL;
340 
341 	__netdev_name_node_alt_destroy(name_node);
342 
343 	return 0;
344 }
345 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
346 
347 static void netdev_name_node_alt_flush(struct net_device *dev)
348 {
349 	struct netdev_name_node *name_node, *tmp;
350 
351 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
352 		__netdev_name_node_alt_destroy(name_node);
353 }
354 
355 /* Device list insertion */
356 static void list_netdevice(struct net_device *dev)
357 {
358 	struct net *net = dev_net(dev);
359 
360 	ASSERT_RTNL();
361 
362 	write_lock_bh(&dev_base_lock);
363 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
364 	netdev_name_node_add(net, dev->name_node);
365 	hlist_add_head_rcu(&dev->index_hlist,
366 			   dev_index_hash(net, dev->ifindex));
367 	write_unlock_bh(&dev_base_lock);
368 
369 	dev_base_seq_inc(net);
370 }
371 
372 /* Device list removal
373  * caller must respect a RCU grace period before freeing/reusing dev
374  */
375 static void unlist_netdevice(struct net_device *dev)
376 {
377 	ASSERT_RTNL();
378 
379 	/* Unlink dev from the device chain */
380 	write_lock_bh(&dev_base_lock);
381 	list_del_rcu(&dev->dev_list);
382 	netdev_name_node_del(dev->name_node);
383 	hlist_del_rcu(&dev->index_hlist);
384 	write_unlock_bh(&dev_base_lock);
385 
386 	dev_base_seq_inc(dev_net(dev));
387 }
388 
389 /*
390  *	Our notifier list
391  */
392 
393 static RAW_NOTIFIER_HEAD(netdev_chain);
394 
395 /*
396  *	Device drivers call our routines to queue packets here. We empty the
397  *	queue in the local softnet handler.
398  */
399 
400 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
401 EXPORT_PER_CPU_SYMBOL(softnet_data);
402 
403 #ifdef CONFIG_LOCKDEP
404 /*
405  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
406  * according to dev->type
407  */
408 static const unsigned short netdev_lock_type[] = {
409 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
410 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
411 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
412 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
413 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
414 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
415 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
416 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
417 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
418 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
419 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
420 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
421 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
422 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
423 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
424 
425 static const char *const netdev_lock_name[] = {
426 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
427 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
428 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
429 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
430 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
431 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
432 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
433 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
434 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
435 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
436 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
437 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
438 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
439 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
440 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
441 
442 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
443 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
444 
445 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
446 {
447 	int i;
448 
449 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
450 		if (netdev_lock_type[i] == dev_type)
451 			return i;
452 	/* the last key is used by default */
453 	return ARRAY_SIZE(netdev_lock_type) - 1;
454 }
455 
456 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
457 						 unsigned short dev_type)
458 {
459 	int i;
460 
461 	i = netdev_lock_pos(dev_type);
462 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
463 				   netdev_lock_name[i]);
464 }
465 
466 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
467 {
468 	int i;
469 
470 	i = netdev_lock_pos(dev->type);
471 	lockdep_set_class_and_name(&dev->addr_list_lock,
472 				   &netdev_addr_lock_key[i],
473 				   netdev_lock_name[i]);
474 }
475 #else
476 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
477 						 unsigned short dev_type)
478 {
479 }
480 
481 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
482 {
483 }
484 #endif
485 
486 /*******************************************************************************
487  *
488  *		Protocol management and registration routines
489  *
490  *******************************************************************************/
491 
492 
493 /*
494  *	Add a protocol ID to the list. Now that the input handler is
495  *	smarter we can dispense with all the messy stuff that used to be
496  *	here.
497  *
498  *	BEWARE!!! Protocol handlers, mangling input packets,
499  *	MUST BE last in hash buckets and checking protocol handlers
500  *	MUST start from promiscuous ptype_all chain in net_bh.
501  *	It is true now, do not change it.
502  *	Explanation follows: if protocol handler, mangling packet, will
503  *	be the first on list, it is not able to sense, that packet
504  *	is cloned and should be copied-on-write, so that it will
505  *	change it and subsequent readers will get broken packet.
506  *							--ANK (980803)
507  */
508 
509 static inline struct list_head *ptype_head(const struct packet_type *pt)
510 {
511 	if (pt->type == htons(ETH_P_ALL))
512 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
513 	else
514 		return pt->dev ? &pt->dev->ptype_specific :
515 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
516 }
517 
518 /**
519  *	dev_add_pack - add packet handler
520  *	@pt: packet type declaration
521  *
522  *	Add a protocol handler to the networking stack. The passed &packet_type
523  *	is linked into kernel lists and may not be freed until it has been
524  *	removed from the kernel lists.
525  *
526  *	This call does not sleep therefore it can not
527  *	guarantee all CPU's that are in middle of receiving packets
528  *	will see the new packet type (until the next received packet).
529  */
530 
531 void dev_add_pack(struct packet_type *pt)
532 {
533 	struct list_head *head = ptype_head(pt);
534 
535 	spin_lock(&ptype_lock);
536 	list_add_rcu(&pt->list, head);
537 	spin_unlock(&ptype_lock);
538 }
539 EXPORT_SYMBOL(dev_add_pack);
540 
541 /**
542  *	__dev_remove_pack	 - remove packet handler
543  *	@pt: packet type declaration
544  *
545  *	Remove a protocol handler that was previously added to the kernel
546  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
547  *	from the kernel lists and can be freed or reused once this function
548  *	returns.
549  *
550  *      The packet type might still be in use by receivers
551  *	and must not be freed until after all the CPU's have gone
552  *	through a quiescent state.
553  */
554 void __dev_remove_pack(struct packet_type *pt)
555 {
556 	struct list_head *head = ptype_head(pt);
557 	struct packet_type *pt1;
558 
559 	spin_lock(&ptype_lock);
560 
561 	list_for_each_entry(pt1, head, list) {
562 		if (pt == pt1) {
563 			list_del_rcu(&pt->list);
564 			goto out;
565 		}
566 	}
567 
568 	pr_warn("dev_remove_pack: %p not found\n", pt);
569 out:
570 	spin_unlock(&ptype_lock);
571 }
572 EXPORT_SYMBOL(__dev_remove_pack);
573 
574 /**
575  *	dev_remove_pack	 - remove packet handler
576  *	@pt: packet type declaration
577  *
578  *	Remove a protocol handler that was previously added to the kernel
579  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
580  *	from the kernel lists and can be freed or reused once this function
581  *	returns.
582  *
583  *	This call sleeps to guarantee that no CPU is looking at the packet
584  *	type after return.
585  */
586 void dev_remove_pack(struct packet_type *pt)
587 {
588 	__dev_remove_pack(pt);
589 
590 	synchronize_net();
591 }
592 EXPORT_SYMBOL(dev_remove_pack);
593 
594 
595 /**
596  *	dev_add_offload - register offload handlers
597  *	@po: protocol offload declaration
598  *
599  *	Add protocol offload handlers to the networking stack. The passed
600  *	&proto_offload is linked into kernel lists and may not be freed until
601  *	it has been removed from the kernel lists.
602  *
603  *	This call does not sleep therefore it can not
604  *	guarantee all CPU's that are in middle of receiving packets
605  *	will see the new offload handlers (until the next received packet).
606  */
607 void dev_add_offload(struct packet_offload *po)
608 {
609 	struct packet_offload *elem;
610 
611 	spin_lock(&offload_lock);
612 	list_for_each_entry(elem, &offload_base, list) {
613 		if (po->priority < elem->priority)
614 			break;
615 	}
616 	list_add_rcu(&po->list, elem->list.prev);
617 	spin_unlock(&offload_lock);
618 }
619 EXPORT_SYMBOL(dev_add_offload);
620 
621 /**
622  *	__dev_remove_offload	 - remove offload handler
623  *	@po: packet offload declaration
624  *
625  *	Remove a protocol offload handler that was previously added to the
626  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
627  *	is removed from the kernel lists and can be freed or reused once this
628  *	function returns.
629  *
630  *      The packet type might still be in use by receivers
631  *	and must not be freed until after all the CPU's have gone
632  *	through a quiescent state.
633  */
634 static void __dev_remove_offload(struct packet_offload *po)
635 {
636 	struct list_head *head = &offload_base;
637 	struct packet_offload *po1;
638 
639 	spin_lock(&offload_lock);
640 
641 	list_for_each_entry(po1, head, list) {
642 		if (po == po1) {
643 			list_del_rcu(&po->list);
644 			goto out;
645 		}
646 	}
647 
648 	pr_warn("dev_remove_offload: %p not found\n", po);
649 out:
650 	spin_unlock(&offload_lock);
651 }
652 
653 /**
654  *	dev_remove_offload	 - remove packet offload handler
655  *	@po: packet offload declaration
656  *
657  *	Remove a packet offload handler that was previously added to the kernel
658  *	offload handlers by dev_add_offload(). The passed &offload_type is
659  *	removed from the kernel lists and can be freed or reused once this
660  *	function returns.
661  *
662  *	This call sleeps to guarantee that no CPU is looking at the packet
663  *	type after return.
664  */
665 void dev_remove_offload(struct packet_offload *po)
666 {
667 	__dev_remove_offload(po);
668 
669 	synchronize_net();
670 }
671 EXPORT_SYMBOL(dev_remove_offload);
672 
673 /******************************************************************************
674  *
675  *		      Device Boot-time Settings Routines
676  *
677  ******************************************************************************/
678 
679 /* Boot time configuration table */
680 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
681 
682 /**
683  *	netdev_boot_setup_add	- add new setup entry
684  *	@name: name of the device
685  *	@map: configured settings for the device
686  *
687  *	Adds new setup entry to the dev_boot_setup list.  The function
688  *	returns 0 on error and 1 on success.  This is a generic routine to
689  *	all netdevices.
690  */
691 static int netdev_boot_setup_add(char *name, struct ifmap *map)
692 {
693 	struct netdev_boot_setup *s;
694 	int i;
695 
696 	s = dev_boot_setup;
697 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
698 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
699 			memset(s[i].name, 0, sizeof(s[i].name));
700 			strlcpy(s[i].name, name, IFNAMSIZ);
701 			memcpy(&s[i].map, map, sizeof(s[i].map));
702 			break;
703 		}
704 	}
705 
706 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
707 }
708 
709 /**
710  * netdev_boot_setup_check	- check boot time settings
711  * @dev: the netdevice
712  *
713  * Check boot time settings for the device.
714  * The found settings are set for the device to be used
715  * later in the device probing.
716  * Returns 0 if no settings found, 1 if they are.
717  */
718 int netdev_boot_setup_check(struct net_device *dev)
719 {
720 	struct netdev_boot_setup *s = dev_boot_setup;
721 	int i;
722 
723 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
724 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
725 		    !strcmp(dev->name, s[i].name)) {
726 			dev->irq = s[i].map.irq;
727 			dev->base_addr = s[i].map.base_addr;
728 			dev->mem_start = s[i].map.mem_start;
729 			dev->mem_end = s[i].map.mem_end;
730 			return 1;
731 		}
732 	}
733 	return 0;
734 }
735 EXPORT_SYMBOL(netdev_boot_setup_check);
736 
737 
738 /**
739  * netdev_boot_base	- get address from boot time settings
740  * @prefix: prefix for network device
741  * @unit: id for network device
742  *
743  * Check boot time settings for the base address of device.
744  * The found settings are set for the device to be used
745  * later in the device probing.
746  * Returns 0 if no settings found.
747  */
748 unsigned long netdev_boot_base(const char *prefix, int unit)
749 {
750 	const struct netdev_boot_setup *s = dev_boot_setup;
751 	char name[IFNAMSIZ];
752 	int i;
753 
754 	sprintf(name, "%s%d", prefix, unit);
755 
756 	/*
757 	 * If device already registered then return base of 1
758 	 * to indicate not to probe for this interface
759 	 */
760 	if (__dev_get_by_name(&init_net, name))
761 		return 1;
762 
763 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
764 		if (!strcmp(name, s[i].name))
765 			return s[i].map.base_addr;
766 	return 0;
767 }
768 
769 /*
770  * Saves at boot time configured settings for any netdevice.
771  */
772 int __init netdev_boot_setup(char *str)
773 {
774 	int ints[5];
775 	struct ifmap map;
776 
777 	str = get_options(str, ARRAY_SIZE(ints), ints);
778 	if (!str || !*str)
779 		return 0;
780 
781 	/* Save settings */
782 	memset(&map, 0, sizeof(map));
783 	if (ints[0] > 0)
784 		map.irq = ints[1];
785 	if (ints[0] > 1)
786 		map.base_addr = ints[2];
787 	if (ints[0] > 2)
788 		map.mem_start = ints[3];
789 	if (ints[0] > 3)
790 		map.mem_end = ints[4];
791 
792 	/* Add new entry to the list */
793 	return netdev_boot_setup_add(str, &map);
794 }
795 
796 __setup("netdev=", netdev_boot_setup);
797 
798 /*******************************************************************************
799  *
800  *			    Device Interface Subroutines
801  *
802  *******************************************************************************/
803 
804 /**
805  *	dev_get_iflink	- get 'iflink' value of a interface
806  *	@dev: targeted interface
807  *
808  *	Indicates the ifindex the interface is linked to.
809  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
810  */
811 
812 int dev_get_iflink(const struct net_device *dev)
813 {
814 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
815 		return dev->netdev_ops->ndo_get_iflink(dev);
816 
817 	return dev->ifindex;
818 }
819 EXPORT_SYMBOL(dev_get_iflink);
820 
821 /**
822  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
823  *	@dev: targeted interface
824  *	@skb: The packet.
825  *
826  *	For better visibility of tunnel traffic OVS needs to retrieve
827  *	egress tunnel information for a packet. Following API allows
828  *	user to get this info.
829  */
830 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
831 {
832 	struct ip_tunnel_info *info;
833 
834 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
835 		return -EINVAL;
836 
837 	info = skb_tunnel_info_unclone(skb);
838 	if (!info)
839 		return -ENOMEM;
840 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
841 		return -EINVAL;
842 
843 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
844 }
845 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
846 
847 /**
848  *	__dev_get_by_name	- find a device by its name
849  *	@net: the applicable net namespace
850  *	@name: name to find
851  *
852  *	Find an interface by name. Must be called under RTNL semaphore
853  *	or @dev_base_lock. If the name is found a pointer to the device
854  *	is returned. If the name is not found then %NULL is returned. The
855  *	reference counters are not incremented so the caller must be
856  *	careful with locks.
857  */
858 
859 struct net_device *__dev_get_by_name(struct net *net, const char *name)
860 {
861 	struct netdev_name_node *node_name;
862 
863 	node_name = netdev_name_node_lookup(net, name);
864 	return node_name ? node_name->dev : NULL;
865 }
866 EXPORT_SYMBOL(__dev_get_by_name);
867 
868 /**
869  * dev_get_by_name_rcu	- find a device by its name
870  * @net: the applicable net namespace
871  * @name: name to find
872  *
873  * Find an interface by name.
874  * If the name is found a pointer to the device is returned.
875  * If the name is not found then %NULL is returned.
876  * The reference counters are not incremented so the caller must be
877  * careful with locks. The caller must hold RCU lock.
878  */
879 
880 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
881 {
882 	struct netdev_name_node *node_name;
883 
884 	node_name = netdev_name_node_lookup_rcu(net, name);
885 	return node_name ? node_name->dev : NULL;
886 }
887 EXPORT_SYMBOL(dev_get_by_name_rcu);
888 
889 /**
890  *	dev_get_by_name		- find a device by its name
891  *	@net: the applicable net namespace
892  *	@name: name to find
893  *
894  *	Find an interface by name. This can be called from any
895  *	context and does its own locking. The returned handle has
896  *	the usage count incremented and the caller must use dev_put() to
897  *	release it when it is no longer needed. %NULL is returned if no
898  *	matching device is found.
899  */
900 
901 struct net_device *dev_get_by_name(struct net *net, const char *name)
902 {
903 	struct net_device *dev;
904 
905 	rcu_read_lock();
906 	dev = dev_get_by_name_rcu(net, name);
907 	if (dev)
908 		dev_hold(dev);
909 	rcu_read_unlock();
910 	return dev;
911 }
912 EXPORT_SYMBOL(dev_get_by_name);
913 
914 /**
915  *	__dev_get_by_index - find a device by its ifindex
916  *	@net: the applicable net namespace
917  *	@ifindex: index of device
918  *
919  *	Search for an interface by index. Returns %NULL if the device
920  *	is not found or a pointer to the device. The device has not
921  *	had its reference counter increased so the caller must be careful
922  *	about locking. The caller must hold either the RTNL semaphore
923  *	or @dev_base_lock.
924  */
925 
926 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
927 {
928 	struct net_device *dev;
929 	struct hlist_head *head = dev_index_hash(net, ifindex);
930 
931 	hlist_for_each_entry(dev, head, index_hlist)
932 		if (dev->ifindex == ifindex)
933 			return dev;
934 
935 	return NULL;
936 }
937 EXPORT_SYMBOL(__dev_get_by_index);
938 
939 /**
940  *	dev_get_by_index_rcu - find a device by its ifindex
941  *	@net: the applicable net namespace
942  *	@ifindex: index of device
943  *
944  *	Search for an interface by index. Returns %NULL if the device
945  *	is not found or a pointer to the device. The device has not
946  *	had its reference counter increased so the caller must be careful
947  *	about locking. The caller must hold RCU lock.
948  */
949 
950 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
951 {
952 	struct net_device *dev;
953 	struct hlist_head *head = dev_index_hash(net, ifindex);
954 
955 	hlist_for_each_entry_rcu(dev, head, index_hlist)
956 		if (dev->ifindex == ifindex)
957 			return dev;
958 
959 	return NULL;
960 }
961 EXPORT_SYMBOL(dev_get_by_index_rcu);
962 
963 
964 /**
965  *	dev_get_by_index - find a device by its ifindex
966  *	@net: the applicable net namespace
967  *	@ifindex: index of device
968  *
969  *	Search for an interface by index. Returns NULL if the device
970  *	is not found or a pointer to the device. The device returned has
971  *	had a reference added and the pointer is safe until the user calls
972  *	dev_put to indicate they have finished with it.
973  */
974 
975 struct net_device *dev_get_by_index(struct net *net, int ifindex)
976 {
977 	struct net_device *dev;
978 
979 	rcu_read_lock();
980 	dev = dev_get_by_index_rcu(net, ifindex);
981 	if (dev)
982 		dev_hold(dev);
983 	rcu_read_unlock();
984 	return dev;
985 }
986 EXPORT_SYMBOL(dev_get_by_index);
987 
988 /**
989  *	dev_get_by_napi_id - find a device by napi_id
990  *	@napi_id: ID of the NAPI struct
991  *
992  *	Search for an interface by NAPI ID. Returns %NULL if the device
993  *	is not found or a pointer to the device. The device has not had
994  *	its reference counter increased so the caller must be careful
995  *	about locking. The caller must hold RCU lock.
996  */
997 
998 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
999 {
1000 	struct napi_struct *napi;
1001 
1002 	WARN_ON_ONCE(!rcu_read_lock_held());
1003 
1004 	if (napi_id < MIN_NAPI_ID)
1005 		return NULL;
1006 
1007 	napi = napi_by_id(napi_id);
1008 
1009 	return napi ? napi->dev : NULL;
1010 }
1011 EXPORT_SYMBOL(dev_get_by_napi_id);
1012 
1013 /**
1014  *	netdev_get_name - get a netdevice name, knowing its ifindex.
1015  *	@net: network namespace
1016  *	@name: a pointer to the buffer where the name will be stored.
1017  *	@ifindex: the ifindex of the interface to get the name from.
1018  */
1019 int netdev_get_name(struct net *net, char *name, int ifindex)
1020 {
1021 	struct net_device *dev;
1022 	int ret;
1023 
1024 	down_read(&devnet_rename_sem);
1025 	rcu_read_lock();
1026 
1027 	dev = dev_get_by_index_rcu(net, ifindex);
1028 	if (!dev) {
1029 		ret = -ENODEV;
1030 		goto out;
1031 	}
1032 
1033 	strcpy(name, dev->name);
1034 
1035 	ret = 0;
1036 out:
1037 	rcu_read_unlock();
1038 	up_read(&devnet_rename_sem);
1039 	return ret;
1040 }
1041 
1042 /**
1043  *	dev_getbyhwaddr_rcu - find a device by its hardware address
1044  *	@net: the applicable net namespace
1045  *	@type: media type of device
1046  *	@ha: hardware address
1047  *
1048  *	Search for an interface by MAC address. Returns NULL if the device
1049  *	is not found or a pointer to the device.
1050  *	The caller must hold RCU or RTNL.
1051  *	The returned device has not had its ref count increased
1052  *	and the caller must therefore be careful about locking
1053  *
1054  */
1055 
1056 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1057 				       const char *ha)
1058 {
1059 	struct net_device *dev;
1060 
1061 	for_each_netdev_rcu(net, dev)
1062 		if (dev->type == type &&
1063 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
1064 			return dev;
1065 
1066 	return NULL;
1067 }
1068 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1069 
1070 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1071 {
1072 	struct net_device *dev;
1073 
1074 	ASSERT_RTNL();
1075 	for_each_netdev(net, dev)
1076 		if (dev->type == type)
1077 			return dev;
1078 
1079 	return NULL;
1080 }
1081 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
1082 
1083 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1084 {
1085 	struct net_device *dev, *ret = NULL;
1086 
1087 	rcu_read_lock();
1088 	for_each_netdev_rcu(net, dev)
1089 		if (dev->type == type) {
1090 			dev_hold(dev);
1091 			ret = dev;
1092 			break;
1093 		}
1094 	rcu_read_unlock();
1095 	return ret;
1096 }
1097 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1098 
1099 /**
1100  *	__dev_get_by_flags - find any device with given flags
1101  *	@net: the applicable net namespace
1102  *	@if_flags: IFF_* values
1103  *	@mask: bitmask of bits in if_flags to check
1104  *
1105  *	Search for any interface with the given flags. Returns NULL if a device
1106  *	is not found or a pointer to the device. Must be called inside
1107  *	rtnl_lock(), and result refcount is unchanged.
1108  */
1109 
1110 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1111 				      unsigned short mask)
1112 {
1113 	struct net_device *dev, *ret;
1114 
1115 	ASSERT_RTNL();
1116 
1117 	ret = NULL;
1118 	for_each_netdev(net, dev) {
1119 		if (((dev->flags ^ if_flags) & mask) == 0) {
1120 			ret = dev;
1121 			break;
1122 		}
1123 	}
1124 	return ret;
1125 }
1126 EXPORT_SYMBOL(__dev_get_by_flags);
1127 
1128 /**
1129  *	dev_valid_name - check if name is okay for network device
1130  *	@name: name string
1131  *
1132  *	Network device names need to be valid file names to
1133  *	to allow sysfs to work.  We also disallow any kind of
1134  *	whitespace.
1135  */
1136 bool dev_valid_name(const char *name)
1137 {
1138 	if (*name == '\0')
1139 		return false;
1140 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1141 		return false;
1142 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1143 		return false;
1144 
1145 	while (*name) {
1146 		if (*name == '/' || *name == ':' || isspace(*name))
1147 			return false;
1148 		name++;
1149 	}
1150 	return true;
1151 }
1152 EXPORT_SYMBOL(dev_valid_name);
1153 
1154 /**
1155  *	__dev_alloc_name - allocate a name for a device
1156  *	@net: network namespace to allocate the device name in
1157  *	@name: name format string
1158  *	@buf:  scratch buffer and result name string
1159  *
1160  *	Passed a format string - eg "lt%d" it will try and find a suitable
1161  *	id. It scans list of devices to build up a free map, then chooses
1162  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1163  *	while allocating the name and adding the device in order to avoid
1164  *	duplicates.
1165  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1166  *	Returns the number of the unit assigned or a negative errno code.
1167  */
1168 
1169 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1170 {
1171 	int i = 0;
1172 	const char *p;
1173 	const int max_netdevices = 8*PAGE_SIZE;
1174 	unsigned long *inuse;
1175 	struct net_device *d;
1176 
1177 	if (!dev_valid_name(name))
1178 		return -EINVAL;
1179 
1180 	p = strchr(name, '%');
1181 	if (p) {
1182 		/*
1183 		 * Verify the string as this thing may have come from
1184 		 * the user.  There must be either one "%d" and no other "%"
1185 		 * characters.
1186 		 */
1187 		if (p[1] != 'd' || strchr(p + 2, '%'))
1188 			return -EINVAL;
1189 
1190 		/* Use one page as a bit array of possible slots */
1191 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1192 		if (!inuse)
1193 			return -ENOMEM;
1194 
1195 		for_each_netdev(net, d) {
1196 			if (!sscanf(d->name, name, &i))
1197 				continue;
1198 			if (i < 0 || i >= max_netdevices)
1199 				continue;
1200 
1201 			/*  avoid cases where sscanf is not exact inverse of printf */
1202 			snprintf(buf, IFNAMSIZ, name, i);
1203 			if (!strncmp(buf, d->name, IFNAMSIZ))
1204 				set_bit(i, inuse);
1205 		}
1206 
1207 		i = find_first_zero_bit(inuse, max_netdevices);
1208 		free_page((unsigned long) inuse);
1209 	}
1210 
1211 	snprintf(buf, IFNAMSIZ, name, i);
1212 	if (!__dev_get_by_name(net, buf))
1213 		return i;
1214 
1215 	/* It is possible to run out of possible slots
1216 	 * when the name is long and there isn't enough space left
1217 	 * for the digits, or if all bits are used.
1218 	 */
1219 	return -ENFILE;
1220 }
1221 
1222 static int dev_alloc_name_ns(struct net *net,
1223 			     struct net_device *dev,
1224 			     const char *name)
1225 {
1226 	char buf[IFNAMSIZ];
1227 	int ret;
1228 
1229 	BUG_ON(!net);
1230 	ret = __dev_alloc_name(net, name, buf);
1231 	if (ret >= 0)
1232 		strlcpy(dev->name, buf, IFNAMSIZ);
1233 	return ret;
1234 }
1235 
1236 /**
1237  *	dev_alloc_name - allocate a name for a device
1238  *	@dev: device
1239  *	@name: name format string
1240  *
1241  *	Passed a format string - eg "lt%d" it will try and find a suitable
1242  *	id. It scans list of devices to build up a free map, then chooses
1243  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1244  *	while allocating the name and adding the device in order to avoid
1245  *	duplicates.
1246  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1247  *	Returns the number of the unit assigned or a negative errno code.
1248  */
1249 
1250 int dev_alloc_name(struct net_device *dev, const char *name)
1251 {
1252 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1253 }
1254 EXPORT_SYMBOL(dev_alloc_name);
1255 
1256 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1257 			      const char *name)
1258 {
1259 	BUG_ON(!net);
1260 
1261 	if (!dev_valid_name(name))
1262 		return -EINVAL;
1263 
1264 	if (strchr(name, '%'))
1265 		return dev_alloc_name_ns(net, dev, name);
1266 	else if (__dev_get_by_name(net, name))
1267 		return -EEXIST;
1268 	else if (dev->name != name)
1269 		strlcpy(dev->name, name, IFNAMSIZ);
1270 
1271 	return 0;
1272 }
1273 
1274 /**
1275  *	dev_change_name - change name of a device
1276  *	@dev: device
1277  *	@newname: name (or format string) must be at least IFNAMSIZ
1278  *
1279  *	Change name of a device, can pass format strings "eth%d".
1280  *	for wildcarding.
1281  */
1282 int dev_change_name(struct net_device *dev, const char *newname)
1283 {
1284 	unsigned char old_assign_type;
1285 	char oldname[IFNAMSIZ];
1286 	int err = 0;
1287 	int ret;
1288 	struct net *net;
1289 
1290 	ASSERT_RTNL();
1291 	BUG_ON(!dev_net(dev));
1292 
1293 	net = dev_net(dev);
1294 
1295 	/* Some auto-enslaved devices e.g. failover slaves are
1296 	 * special, as userspace might rename the device after
1297 	 * the interface had been brought up and running since
1298 	 * the point kernel initiated auto-enslavement. Allow
1299 	 * live name change even when these slave devices are
1300 	 * up and running.
1301 	 *
1302 	 * Typically, users of these auto-enslaving devices
1303 	 * don't actually care about slave name change, as
1304 	 * they are supposed to operate on master interface
1305 	 * directly.
1306 	 */
1307 	if (dev->flags & IFF_UP &&
1308 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1309 		return -EBUSY;
1310 
1311 	down_write(&devnet_rename_sem);
1312 
1313 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1314 		up_write(&devnet_rename_sem);
1315 		return 0;
1316 	}
1317 
1318 	memcpy(oldname, dev->name, IFNAMSIZ);
1319 
1320 	err = dev_get_valid_name(net, dev, newname);
1321 	if (err < 0) {
1322 		up_write(&devnet_rename_sem);
1323 		return err;
1324 	}
1325 
1326 	if (oldname[0] && !strchr(oldname, '%'))
1327 		netdev_info(dev, "renamed from %s\n", oldname);
1328 
1329 	old_assign_type = dev->name_assign_type;
1330 	dev->name_assign_type = NET_NAME_RENAMED;
1331 
1332 rollback:
1333 	ret = device_rename(&dev->dev, dev->name);
1334 	if (ret) {
1335 		memcpy(dev->name, oldname, IFNAMSIZ);
1336 		dev->name_assign_type = old_assign_type;
1337 		up_write(&devnet_rename_sem);
1338 		return ret;
1339 	}
1340 
1341 	up_write(&devnet_rename_sem);
1342 
1343 	netdev_adjacent_rename_links(dev, oldname);
1344 
1345 	write_lock_bh(&dev_base_lock);
1346 	netdev_name_node_del(dev->name_node);
1347 	write_unlock_bh(&dev_base_lock);
1348 
1349 	synchronize_rcu();
1350 
1351 	write_lock_bh(&dev_base_lock);
1352 	netdev_name_node_add(net, dev->name_node);
1353 	write_unlock_bh(&dev_base_lock);
1354 
1355 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1356 	ret = notifier_to_errno(ret);
1357 
1358 	if (ret) {
1359 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1360 		if (err >= 0) {
1361 			err = ret;
1362 			down_write(&devnet_rename_sem);
1363 			memcpy(dev->name, oldname, IFNAMSIZ);
1364 			memcpy(oldname, newname, IFNAMSIZ);
1365 			dev->name_assign_type = old_assign_type;
1366 			old_assign_type = NET_NAME_RENAMED;
1367 			goto rollback;
1368 		} else {
1369 			pr_err("%s: name change rollback failed: %d\n",
1370 			       dev->name, ret);
1371 		}
1372 	}
1373 
1374 	return err;
1375 }
1376 
1377 /**
1378  *	dev_set_alias - change ifalias of a device
1379  *	@dev: device
1380  *	@alias: name up to IFALIASZ
1381  *	@len: limit of bytes to copy from info
1382  *
1383  *	Set ifalias for a device,
1384  */
1385 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1386 {
1387 	struct dev_ifalias *new_alias = NULL;
1388 
1389 	if (len >= IFALIASZ)
1390 		return -EINVAL;
1391 
1392 	if (len) {
1393 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1394 		if (!new_alias)
1395 			return -ENOMEM;
1396 
1397 		memcpy(new_alias->ifalias, alias, len);
1398 		new_alias->ifalias[len] = 0;
1399 	}
1400 
1401 	mutex_lock(&ifalias_mutex);
1402 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1403 					mutex_is_locked(&ifalias_mutex));
1404 	mutex_unlock(&ifalias_mutex);
1405 
1406 	if (new_alias)
1407 		kfree_rcu(new_alias, rcuhead);
1408 
1409 	return len;
1410 }
1411 EXPORT_SYMBOL(dev_set_alias);
1412 
1413 /**
1414  *	dev_get_alias - get ifalias of a device
1415  *	@dev: device
1416  *	@name: buffer to store name of ifalias
1417  *	@len: size of buffer
1418  *
1419  *	get ifalias for a device.  Caller must make sure dev cannot go
1420  *	away,  e.g. rcu read lock or own a reference count to device.
1421  */
1422 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1423 {
1424 	const struct dev_ifalias *alias;
1425 	int ret = 0;
1426 
1427 	rcu_read_lock();
1428 	alias = rcu_dereference(dev->ifalias);
1429 	if (alias)
1430 		ret = snprintf(name, len, "%s", alias->ifalias);
1431 	rcu_read_unlock();
1432 
1433 	return ret;
1434 }
1435 
1436 /**
1437  *	netdev_features_change - device changes features
1438  *	@dev: device to cause notification
1439  *
1440  *	Called to indicate a device has changed features.
1441  */
1442 void netdev_features_change(struct net_device *dev)
1443 {
1444 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1445 }
1446 EXPORT_SYMBOL(netdev_features_change);
1447 
1448 /**
1449  *	netdev_state_change - device changes state
1450  *	@dev: device to cause notification
1451  *
1452  *	Called to indicate a device has changed state. This function calls
1453  *	the notifier chains for netdev_chain and sends a NEWLINK message
1454  *	to the routing socket.
1455  */
1456 void netdev_state_change(struct net_device *dev)
1457 {
1458 	if (dev->flags & IFF_UP) {
1459 		struct netdev_notifier_change_info change_info = {
1460 			.info.dev = dev,
1461 		};
1462 
1463 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1464 					      &change_info.info);
1465 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1466 	}
1467 }
1468 EXPORT_SYMBOL(netdev_state_change);
1469 
1470 /**
1471  * netdev_notify_peers - notify network peers about existence of @dev
1472  * @dev: network device
1473  *
1474  * Generate traffic such that interested network peers are aware of
1475  * @dev, such as by generating a gratuitous ARP. This may be used when
1476  * a device wants to inform the rest of the network about some sort of
1477  * reconfiguration such as a failover event or virtual machine
1478  * migration.
1479  */
1480 void netdev_notify_peers(struct net_device *dev)
1481 {
1482 	rtnl_lock();
1483 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1484 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1485 	rtnl_unlock();
1486 }
1487 EXPORT_SYMBOL(netdev_notify_peers);
1488 
1489 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1490 {
1491 	const struct net_device_ops *ops = dev->netdev_ops;
1492 	int ret;
1493 
1494 	ASSERT_RTNL();
1495 
1496 	if (!netif_device_present(dev)) {
1497 		/* may be detached because parent is runtime-suspended */
1498 		if (dev->dev.parent)
1499 			pm_runtime_resume(dev->dev.parent);
1500 		if (!netif_device_present(dev))
1501 			return -ENODEV;
1502 	}
1503 
1504 	/* Block netpoll from trying to do any rx path servicing.
1505 	 * If we don't do this there is a chance ndo_poll_controller
1506 	 * or ndo_poll may be running while we open the device
1507 	 */
1508 	netpoll_poll_disable(dev);
1509 
1510 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1511 	ret = notifier_to_errno(ret);
1512 	if (ret)
1513 		return ret;
1514 
1515 	set_bit(__LINK_STATE_START, &dev->state);
1516 
1517 	if (ops->ndo_validate_addr)
1518 		ret = ops->ndo_validate_addr(dev);
1519 
1520 	if (!ret && ops->ndo_open)
1521 		ret = ops->ndo_open(dev);
1522 
1523 	netpoll_poll_enable(dev);
1524 
1525 	if (ret)
1526 		clear_bit(__LINK_STATE_START, &dev->state);
1527 	else {
1528 		dev->flags |= IFF_UP;
1529 		dev_set_rx_mode(dev);
1530 		dev_activate(dev);
1531 		add_device_randomness(dev->dev_addr, dev->addr_len);
1532 	}
1533 
1534 	return ret;
1535 }
1536 
1537 /**
1538  *	dev_open	- prepare an interface for use.
1539  *	@dev: device to open
1540  *	@extack: netlink extended ack
1541  *
1542  *	Takes a device from down to up state. The device's private open
1543  *	function is invoked and then the multicast lists are loaded. Finally
1544  *	the device is moved into the up state and a %NETDEV_UP message is
1545  *	sent to the netdev notifier chain.
1546  *
1547  *	Calling this function on an active interface is a nop. On a failure
1548  *	a negative errno code is returned.
1549  */
1550 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1551 {
1552 	int ret;
1553 
1554 	if (dev->flags & IFF_UP)
1555 		return 0;
1556 
1557 	ret = __dev_open(dev, extack);
1558 	if (ret < 0)
1559 		return ret;
1560 
1561 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1562 	call_netdevice_notifiers(NETDEV_UP, dev);
1563 
1564 	return ret;
1565 }
1566 EXPORT_SYMBOL(dev_open);
1567 
1568 static void __dev_close_many(struct list_head *head)
1569 {
1570 	struct net_device *dev;
1571 
1572 	ASSERT_RTNL();
1573 	might_sleep();
1574 
1575 	list_for_each_entry(dev, head, close_list) {
1576 		/* Temporarily disable netpoll until the interface is down */
1577 		netpoll_poll_disable(dev);
1578 
1579 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1580 
1581 		clear_bit(__LINK_STATE_START, &dev->state);
1582 
1583 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1584 		 * can be even on different cpu. So just clear netif_running().
1585 		 *
1586 		 * dev->stop() will invoke napi_disable() on all of it's
1587 		 * napi_struct instances on this device.
1588 		 */
1589 		smp_mb__after_atomic(); /* Commit netif_running(). */
1590 	}
1591 
1592 	dev_deactivate_many(head);
1593 
1594 	list_for_each_entry(dev, head, close_list) {
1595 		const struct net_device_ops *ops = dev->netdev_ops;
1596 
1597 		/*
1598 		 *	Call the device specific close. This cannot fail.
1599 		 *	Only if device is UP
1600 		 *
1601 		 *	We allow it to be called even after a DETACH hot-plug
1602 		 *	event.
1603 		 */
1604 		if (ops->ndo_stop)
1605 			ops->ndo_stop(dev);
1606 
1607 		dev->flags &= ~IFF_UP;
1608 		netpoll_poll_enable(dev);
1609 	}
1610 }
1611 
1612 static void __dev_close(struct net_device *dev)
1613 {
1614 	LIST_HEAD(single);
1615 
1616 	list_add(&dev->close_list, &single);
1617 	__dev_close_many(&single);
1618 	list_del(&single);
1619 }
1620 
1621 void dev_close_many(struct list_head *head, bool unlink)
1622 {
1623 	struct net_device *dev, *tmp;
1624 
1625 	/* Remove the devices that don't need to be closed */
1626 	list_for_each_entry_safe(dev, tmp, head, close_list)
1627 		if (!(dev->flags & IFF_UP))
1628 			list_del_init(&dev->close_list);
1629 
1630 	__dev_close_many(head);
1631 
1632 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1633 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1634 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1635 		if (unlink)
1636 			list_del_init(&dev->close_list);
1637 	}
1638 }
1639 EXPORT_SYMBOL(dev_close_many);
1640 
1641 /**
1642  *	dev_close - shutdown an interface.
1643  *	@dev: device to shutdown
1644  *
1645  *	This function moves an active device into down state. A
1646  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1647  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1648  *	chain.
1649  */
1650 void dev_close(struct net_device *dev)
1651 {
1652 	if (dev->flags & IFF_UP) {
1653 		LIST_HEAD(single);
1654 
1655 		list_add(&dev->close_list, &single);
1656 		dev_close_many(&single, true);
1657 		list_del(&single);
1658 	}
1659 }
1660 EXPORT_SYMBOL(dev_close);
1661 
1662 
1663 /**
1664  *	dev_disable_lro - disable Large Receive Offload on a device
1665  *	@dev: device
1666  *
1667  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1668  *	called under RTNL.  This is needed if received packets may be
1669  *	forwarded to another interface.
1670  */
1671 void dev_disable_lro(struct net_device *dev)
1672 {
1673 	struct net_device *lower_dev;
1674 	struct list_head *iter;
1675 
1676 	dev->wanted_features &= ~NETIF_F_LRO;
1677 	netdev_update_features(dev);
1678 
1679 	if (unlikely(dev->features & NETIF_F_LRO))
1680 		netdev_WARN(dev, "failed to disable LRO!\n");
1681 
1682 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1683 		dev_disable_lro(lower_dev);
1684 }
1685 EXPORT_SYMBOL(dev_disable_lro);
1686 
1687 /**
1688  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1689  *	@dev: device
1690  *
1691  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1692  *	called under RTNL.  This is needed if Generic XDP is installed on
1693  *	the device.
1694  */
1695 static void dev_disable_gro_hw(struct net_device *dev)
1696 {
1697 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1698 	netdev_update_features(dev);
1699 
1700 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1701 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1702 }
1703 
1704 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1705 {
1706 #define N(val) 						\
1707 	case NETDEV_##val:				\
1708 		return "NETDEV_" __stringify(val);
1709 	switch (cmd) {
1710 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1711 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1712 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1713 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1714 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1715 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1716 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1717 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1718 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1719 	N(PRE_CHANGEADDR)
1720 	}
1721 #undef N
1722 	return "UNKNOWN_NETDEV_EVENT";
1723 }
1724 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1725 
1726 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1727 				   struct net_device *dev)
1728 {
1729 	struct netdev_notifier_info info = {
1730 		.dev = dev,
1731 	};
1732 
1733 	return nb->notifier_call(nb, val, &info);
1734 }
1735 
1736 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1737 					     struct net_device *dev)
1738 {
1739 	int err;
1740 
1741 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1742 	err = notifier_to_errno(err);
1743 	if (err)
1744 		return err;
1745 
1746 	if (!(dev->flags & IFF_UP))
1747 		return 0;
1748 
1749 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1750 	return 0;
1751 }
1752 
1753 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1754 						struct net_device *dev)
1755 {
1756 	if (dev->flags & IFF_UP) {
1757 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1758 					dev);
1759 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1760 	}
1761 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1762 }
1763 
1764 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1765 						 struct net *net)
1766 {
1767 	struct net_device *dev;
1768 	int err;
1769 
1770 	for_each_netdev(net, dev) {
1771 		err = call_netdevice_register_notifiers(nb, dev);
1772 		if (err)
1773 			goto rollback;
1774 	}
1775 	return 0;
1776 
1777 rollback:
1778 	for_each_netdev_continue_reverse(net, dev)
1779 		call_netdevice_unregister_notifiers(nb, dev);
1780 	return err;
1781 }
1782 
1783 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1784 						    struct net *net)
1785 {
1786 	struct net_device *dev;
1787 
1788 	for_each_netdev(net, dev)
1789 		call_netdevice_unregister_notifiers(nb, dev);
1790 }
1791 
1792 static int dev_boot_phase = 1;
1793 
1794 /**
1795  * register_netdevice_notifier - register a network notifier block
1796  * @nb: notifier
1797  *
1798  * Register a notifier to be called when network device events occur.
1799  * The notifier passed is linked into the kernel structures and must
1800  * not be reused until it has been unregistered. A negative errno code
1801  * is returned on a failure.
1802  *
1803  * When registered all registration and up events are replayed
1804  * to the new notifier to allow device to have a race free
1805  * view of the network device list.
1806  */
1807 
1808 int register_netdevice_notifier(struct notifier_block *nb)
1809 {
1810 	struct net *net;
1811 	int err;
1812 
1813 	/* Close race with setup_net() and cleanup_net() */
1814 	down_write(&pernet_ops_rwsem);
1815 	rtnl_lock();
1816 	err = raw_notifier_chain_register(&netdev_chain, nb);
1817 	if (err)
1818 		goto unlock;
1819 	if (dev_boot_phase)
1820 		goto unlock;
1821 	for_each_net(net) {
1822 		err = call_netdevice_register_net_notifiers(nb, net);
1823 		if (err)
1824 			goto rollback;
1825 	}
1826 
1827 unlock:
1828 	rtnl_unlock();
1829 	up_write(&pernet_ops_rwsem);
1830 	return err;
1831 
1832 rollback:
1833 	for_each_net_continue_reverse(net)
1834 		call_netdevice_unregister_net_notifiers(nb, net);
1835 
1836 	raw_notifier_chain_unregister(&netdev_chain, nb);
1837 	goto unlock;
1838 }
1839 EXPORT_SYMBOL(register_netdevice_notifier);
1840 
1841 /**
1842  * unregister_netdevice_notifier - unregister a network notifier block
1843  * @nb: notifier
1844  *
1845  * Unregister a notifier previously registered by
1846  * register_netdevice_notifier(). The notifier is unlinked into the
1847  * kernel structures and may then be reused. A negative errno code
1848  * is returned on a failure.
1849  *
1850  * After unregistering unregister and down device events are synthesized
1851  * for all devices on the device list to the removed notifier to remove
1852  * the need for special case cleanup code.
1853  */
1854 
1855 int unregister_netdevice_notifier(struct notifier_block *nb)
1856 {
1857 	struct net *net;
1858 	int err;
1859 
1860 	/* Close race with setup_net() and cleanup_net() */
1861 	down_write(&pernet_ops_rwsem);
1862 	rtnl_lock();
1863 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1864 	if (err)
1865 		goto unlock;
1866 
1867 	for_each_net(net)
1868 		call_netdevice_unregister_net_notifiers(nb, net);
1869 
1870 unlock:
1871 	rtnl_unlock();
1872 	up_write(&pernet_ops_rwsem);
1873 	return err;
1874 }
1875 EXPORT_SYMBOL(unregister_netdevice_notifier);
1876 
1877 static int __register_netdevice_notifier_net(struct net *net,
1878 					     struct notifier_block *nb,
1879 					     bool ignore_call_fail)
1880 {
1881 	int err;
1882 
1883 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1884 	if (err)
1885 		return err;
1886 	if (dev_boot_phase)
1887 		return 0;
1888 
1889 	err = call_netdevice_register_net_notifiers(nb, net);
1890 	if (err && !ignore_call_fail)
1891 		goto chain_unregister;
1892 
1893 	return 0;
1894 
1895 chain_unregister:
1896 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1897 	return err;
1898 }
1899 
1900 static int __unregister_netdevice_notifier_net(struct net *net,
1901 					       struct notifier_block *nb)
1902 {
1903 	int err;
1904 
1905 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1906 	if (err)
1907 		return err;
1908 
1909 	call_netdevice_unregister_net_notifiers(nb, net);
1910 	return 0;
1911 }
1912 
1913 /**
1914  * register_netdevice_notifier_net - register a per-netns network notifier block
1915  * @net: network namespace
1916  * @nb: notifier
1917  *
1918  * Register a notifier to be called when network device events occur.
1919  * The notifier passed is linked into the kernel structures and must
1920  * not be reused until it has been unregistered. A negative errno code
1921  * is returned on a failure.
1922  *
1923  * When registered all registration and up events are replayed
1924  * to the new notifier to allow device to have a race free
1925  * view of the network device list.
1926  */
1927 
1928 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1929 {
1930 	int err;
1931 
1932 	rtnl_lock();
1933 	err = __register_netdevice_notifier_net(net, nb, false);
1934 	rtnl_unlock();
1935 	return err;
1936 }
1937 EXPORT_SYMBOL(register_netdevice_notifier_net);
1938 
1939 /**
1940  * unregister_netdevice_notifier_net - unregister a per-netns
1941  *                                     network notifier block
1942  * @net: network namespace
1943  * @nb: notifier
1944  *
1945  * Unregister a notifier previously registered by
1946  * register_netdevice_notifier(). The notifier is unlinked into the
1947  * kernel structures and may then be reused. A negative errno code
1948  * is returned on a failure.
1949  *
1950  * After unregistering unregister and down device events are synthesized
1951  * for all devices on the device list to the removed notifier to remove
1952  * the need for special case cleanup code.
1953  */
1954 
1955 int unregister_netdevice_notifier_net(struct net *net,
1956 				      struct notifier_block *nb)
1957 {
1958 	int err;
1959 
1960 	rtnl_lock();
1961 	err = __unregister_netdevice_notifier_net(net, nb);
1962 	rtnl_unlock();
1963 	return err;
1964 }
1965 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1966 
1967 int register_netdevice_notifier_dev_net(struct net_device *dev,
1968 					struct notifier_block *nb,
1969 					struct netdev_net_notifier *nn)
1970 {
1971 	int err;
1972 
1973 	rtnl_lock();
1974 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1975 	if (!err) {
1976 		nn->nb = nb;
1977 		list_add(&nn->list, &dev->net_notifier_list);
1978 	}
1979 	rtnl_unlock();
1980 	return err;
1981 }
1982 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1983 
1984 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1985 					  struct notifier_block *nb,
1986 					  struct netdev_net_notifier *nn)
1987 {
1988 	int err;
1989 
1990 	rtnl_lock();
1991 	list_del(&nn->list);
1992 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1993 	rtnl_unlock();
1994 	return err;
1995 }
1996 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1997 
1998 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1999 					     struct net *net)
2000 {
2001 	struct netdev_net_notifier *nn;
2002 
2003 	list_for_each_entry(nn, &dev->net_notifier_list, list) {
2004 		__unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2005 		__register_netdevice_notifier_net(net, nn->nb, true);
2006 	}
2007 }
2008 
2009 /**
2010  *	call_netdevice_notifiers_info - call all network notifier blocks
2011  *	@val: value passed unmodified to notifier function
2012  *	@info: notifier information data
2013  *
2014  *	Call all network notifier blocks.  Parameters and return value
2015  *	are as for raw_notifier_call_chain().
2016  */
2017 
2018 static int call_netdevice_notifiers_info(unsigned long val,
2019 					 struct netdev_notifier_info *info)
2020 {
2021 	struct net *net = dev_net(info->dev);
2022 	int ret;
2023 
2024 	ASSERT_RTNL();
2025 
2026 	/* Run per-netns notifier block chain first, then run the global one.
2027 	 * Hopefully, one day, the global one is going to be removed after
2028 	 * all notifier block registrators get converted to be per-netns.
2029 	 */
2030 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2031 	if (ret & NOTIFY_STOP_MASK)
2032 		return ret;
2033 	return raw_notifier_call_chain(&netdev_chain, val, info);
2034 }
2035 
2036 static int call_netdevice_notifiers_extack(unsigned long val,
2037 					   struct net_device *dev,
2038 					   struct netlink_ext_ack *extack)
2039 {
2040 	struct netdev_notifier_info info = {
2041 		.dev = dev,
2042 		.extack = extack,
2043 	};
2044 
2045 	return call_netdevice_notifiers_info(val, &info);
2046 }
2047 
2048 /**
2049  *	call_netdevice_notifiers - call all network notifier blocks
2050  *      @val: value passed unmodified to notifier function
2051  *      @dev: net_device pointer passed unmodified to notifier function
2052  *
2053  *	Call all network notifier blocks.  Parameters and return value
2054  *	are as for raw_notifier_call_chain().
2055  */
2056 
2057 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2058 {
2059 	return call_netdevice_notifiers_extack(val, dev, NULL);
2060 }
2061 EXPORT_SYMBOL(call_netdevice_notifiers);
2062 
2063 /**
2064  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2065  *	@val: value passed unmodified to notifier function
2066  *	@dev: net_device pointer passed unmodified to notifier function
2067  *	@arg: additional u32 argument passed to the notifier function
2068  *
2069  *	Call all network notifier blocks.  Parameters and return value
2070  *	are as for raw_notifier_call_chain().
2071  */
2072 static int call_netdevice_notifiers_mtu(unsigned long val,
2073 					struct net_device *dev, u32 arg)
2074 {
2075 	struct netdev_notifier_info_ext info = {
2076 		.info.dev = dev,
2077 		.ext.mtu = arg,
2078 	};
2079 
2080 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2081 
2082 	return call_netdevice_notifiers_info(val, &info.info);
2083 }
2084 
2085 #ifdef CONFIG_NET_INGRESS
2086 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2087 
2088 void net_inc_ingress_queue(void)
2089 {
2090 	static_branch_inc(&ingress_needed_key);
2091 }
2092 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2093 
2094 void net_dec_ingress_queue(void)
2095 {
2096 	static_branch_dec(&ingress_needed_key);
2097 }
2098 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2099 #endif
2100 
2101 #ifdef CONFIG_NET_EGRESS
2102 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2103 
2104 void net_inc_egress_queue(void)
2105 {
2106 	static_branch_inc(&egress_needed_key);
2107 }
2108 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2109 
2110 void net_dec_egress_queue(void)
2111 {
2112 	static_branch_dec(&egress_needed_key);
2113 }
2114 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2115 #endif
2116 
2117 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2118 #ifdef CONFIG_JUMP_LABEL
2119 static atomic_t netstamp_needed_deferred;
2120 static atomic_t netstamp_wanted;
2121 static void netstamp_clear(struct work_struct *work)
2122 {
2123 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2124 	int wanted;
2125 
2126 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2127 	if (wanted > 0)
2128 		static_branch_enable(&netstamp_needed_key);
2129 	else
2130 		static_branch_disable(&netstamp_needed_key);
2131 }
2132 static DECLARE_WORK(netstamp_work, netstamp_clear);
2133 #endif
2134 
2135 void net_enable_timestamp(void)
2136 {
2137 #ifdef CONFIG_JUMP_LABEL
2138 	int wanted;
2139 
2140 	while (1) {
2141 		wanted = atomic_read(&netstamp_wanted);
2142 		if (wanted <= 0)
2143 			break;
2144 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2145 			return;
2146 	}
2147 	atomic_inc(&netstamp_needed_deferred);
2148 	schedule_work(&netstamp_work);
2149 #else
2150 	static_branch_inc(&netstamp_needed_key);
2151 #endif
2152 }
2153 EXPORT_SYMBOL(net_enable_timestamp);
2154 
2155 void net_disable_timestamp(void)
2156 {
2157 #ifdef CONFIG_JUMP_LABEL
2158 	int wanted;
2159 
2160 	while (1) {
2161 		wanted = atomic_read(&netstamp_wanted);
2162 		if (wanted <= 1)
2163 			break;
2164 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2165 			return;
2166 	}
2167 	atomic_dec(&netstamp_needed_deferred);
2168 	schedule_work(&netstamp_work);
2169 #else
2170 	static_branch_dec(&netstamp_needed_key);
2171 #endif
2172 }
2173 EXPORT_SYMBOL(net_disable_timestamp);
2174 
2175 static inline void net_timestamp_set(struct sk_buff *skb)
2176 {
2177 	skb->tstamp = 0;
2178 	if (static_branch_unlikely(&netstamp_needed_key))
2179 		__net_timestamp(skb);
2180 }
2181 
2182 #define net_timestamp_check(COND, SKB)				\
2183 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2184 		if ((COND) && !(SKB)->tstamp)			\
2185 			__net_timestamp(SKB);			\
2186 	}							\
2187 
2188 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2189 {
2190 	unsigned int len;
2191 
2192 	if (!(dev->flags & IFF_UP))
2193 		return false;
2194 
2195 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2196 	if (skb->len <= len)
2197 		return true;
2198 
2199 	/* if TSO is enabled, we don't care about the length as the packet
2200 	 * could be forwarded without being segmented before
2201 	 */
2202 	if (skb_is_gso(skb))
2203 		return true;
2204 
2205 	return false;
2206 }
2207 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2208 
2209 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2210 {
2211 	int ret = ____dev_forward_skb(dev, skb);
2212 
2213 	if (likely(!ret)) {
2214 		skb->protocol = eth_type_trans(skb, dev);
2215 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2216 	}
2217 
2218 	return ret;
2219 }
2220 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2221 
2222 /**
2223  * dev_forward_skb - loopback an skb to another netif
2224  *
2225  * @dev: destination network device
2226  * @skb: buffer to forward
2227  *
2228  * return values:
2229  *	NET_RX_SUCCESS	(no congestion)
2230  *	NET_RX_DROP     (packet was dropped, but freed)
2231  *
2232  * dev_forward_skb can be used for injecting an skb from the
2233  * start_xmit function of one device into the receive queue
2234  * of another device.
2235  *
2236  * The receiving device may be in another namespace, so
2237  * we have to clear all information in the skb that could
2238  * impact namespace isolation.
2239  */
2240 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2241 {
2242 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2243 }
2244 EXPORT_SYMBOL_GPL(dev_forward_skb);
2245 
2246 static inline int deliver_skb(struct sk_buff *skb,
2247 			      struct packet_type *pt_prev,
2248 			      struct net_device *orig_dev)
2249 {
2250 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2251 		return -ENOMEM;
2252 	refcount_inc(&skb->users);
2253 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2254 }
2255 
2256 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2257 					  struct packet_type **pt,
2258 					  struct net_device *orig_dev,
2259 					  __be16 type,
2260 					  struct list_head *ptype_list)
2261 {
2262 	struct packet_type *ptype, *pt_prev = *pt;
2263 
2264 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2265 		if (ptype->type != type)
2266 			continue;
2267 		if (pt_prev)
2268 			deliver_skb(skb, pt_prev, orig_dev);
2269 		pt_prev = ptype;
2270 	}
2271 	*pt = pt_prev;
2272 }
2273 
2274 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2275 {
2276 	if (!ptype->af_packet_priv || !skb->sk)
2277 		return false;
2278 
2279 	if (ptype->id_match)
2280 		return ptype->id_match(ptype, skb->sk);
2281 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2282 		return true;
2283 
2284 	return false;
2285 }
2286 
2287 /**
2288  * dev_nit_active - return true if any network interface taps are in use
2289  *
2290  * @dev: network device to check for the presence of taps
2291  */
2292 bool dev_nit_active(struct net_device *dev)
2293 {
2294 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2295 }
2296 EXPORT_SYMBOL_GPL(dev_nit_active);
2297 
2298 /*
2299  *	Support routine. Sends outgoing frames to any network
2300  *	taps currently in use.
2301  */
2302 
2303 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2304 {
2305 	struct packet_type *ptype;
2306 	struct sk_buff *skb2 = NULL;
2307 	struct packet_type *pt_prev = NULL;
2308 	struct list_head *ptype_list = &ptype_all;
2309 
2310 	rcu_read_lock();
2311 again:
2312 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2313 		if (ptype->ignore_outgoing)
2314 			continue;
2315 
2316 		/* Never send packets back to the socket
2317 		 * they originated from - MvS (miquels@drinkel.ow.org)
2318 		 */
2319 		if (skb_loop_sk(ptype, skb))
2320 			continue;
2321 
2322 		if (pt_prev) {
2323 			deliver_skb(skb2, pt_prev, skb->dev);
2324 			pt_prev = ptype;
2325 			continue;
2326 		}
2327 
2328 		/* need to clone skb, done only once */
2329 		skb2 = skb_clone(skb, GFP_ATOMIC);
2330 		if (!skb2)
2331 			goto out_unlock;
2332 
2333 		net_timestamp_set(skb2);
2334 
2335 		/* skb->nh should be correctly
2336 		 * set by sender, so that the second statement is
2337 		 * just protection against buggy protocols.
2338 		 */
2339 		skb_reset_mac_header(skb2);
2340 
2341 		if (skb_network_header(skb2) < skb2->data ||
2342 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2343 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2344 					     ntohs(skb2->protocol),
2345 					     dev->name);
2346 			skb_reset_network_header(skb2);
2347 		}
2348 
2349 		skb2->transport_header = skb2->network_header;
2350 		skb2->pkt_type = PACKET_OUTGOING;
2351 		pt_prev = ptype;
2352 	}
2353 
2354 	if (ptype_list == &ptype_all) {
2355 		ptype_list = &dev->ptype_all;
2356 		goto again;
2357 	}
2358 out_unlock:
2359 	if (pt_prev) {
2360 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2361 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2362 		else
2363 			kfree_skb(skb2);
2364 	}
2365 	rcu_read_unlock();
2366 }
2367 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2368 
2369 /**
2370  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2371  * @dev: Network device
2372  * @txq: number of queues available
2373  *
2374  * If real_num_tx_queues is changed the tc mappings may no longer be
2375  * valid. To resolve this verify the tc mapping remains valid and if
2376  * not NULL the mapping. With no priorities mapping to this
2377  * offset/count pair it will no longer be used. In the worst case TC0
2378  * is invalid nothing can be done so disable priority mappings. If is
2379  * expected that drivers will fix this mapping if they can before
2380  * calling netif_set_real_num_tx_queues.
2381  */
2382 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2383 {
2384 	int i;
2385 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2386 
2387 	/* If TC0 is invalidated disable TC mapping */
2388 	if (tc->offset + tc->count > txq) {
2389 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2390 		dev->num_tc = 0;
2391 		return;
2392 	}
2393 
2394 	/* Invalidated prio to tc mappings set to TC0 */
2395 	for (i = 1; i < TC_BITMASK + 1; i++) {
2396 		int q = netdev_get_prio_tc_map(dev, i);
2397 
2398 		tc = &dev->tc_to_txq[q];
2399 		if (tc->offset + tc->count > txq) {
2400 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2401 				i, q);
2402 			netdev_set_prio_tc_map(dev, i, 0);
2403 		}
2404 	}
2405 }
2406 
2407 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2408 {
2409 	if (dev->num_tc) {
2410 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2411 		int i;
2412 
2413 		/* walk through the TCs and see if it falls into any of them */
2414 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2415 			if ((txq - tc->offset) < tc->count)
2416 				return i;
2417 		}
2418 
2419 		/* didn't find it, just return -1 to indicate no match */
2420 		return -1;
2421 	}
2422 
2423 	return 0;
2424 }
2425 EXPORT_SYMBOL(netdev_txq_to_tc);
2426 
2427 #ifdef CONFIG_XPS
2428 struct static_key xps_needed __read_mostly;
2429 EXPORT_SYMBOL(xps_needed);
2430 struct static_key xps_rxqs_needed __read_mostly;
2431 EXPORT_SYMBOL(xps_rxqs_needed);
2432 static DEFINE_MUTEX(xps_map_mutex);
2433 #define xmap_dereference(P)		\
2434 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2435 
2436 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2437 			     int tci, u16 index)
2438 {
2439 	struct xps_map *map = NULL;
2440 	int pos;
2441 
2442 	if (dev_maps)
2443 		map = xmap_dereference(dev_maps->attr_map[tci]);
2444 	if (!map)
2445 		return false;
2446 
2447 	for (pos = map->len; pos--;) {
2448 		if (map->queues[pos] != index)
2449 			continue;
2450 
2451 		if (map->len > 1) {
2452 			map->queues[pos] = map->queues[--map->len];
2453 			break;
2454 		}
2455 
2456 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2457 		kfree_rcu(map, rcu);
2458 		return false;
2459 	}
2460 
2461 	return true;
2462 }
2463 
2464 static bool remove_xps_queue_cpu(struct net_device *dev,
2465 				 struct xps_dev_maps *dev_maps,
2466 				 int cpu, u16 offset, u16 count)
2467 {
2468 	int num_tc = dev->num_tc ? : 1;
2469 	bool active = false;
2470 	int tci;
2471 
2472 	for (tci = cpu * num_tc; num_tc--; tci++) {
2473 		int i, j;
2474 
2475 		for (i = count, j = offset; i--; j++) {
2476 			if (!remove_xps_queue(dev_maps, tci, j))
2477 				break;
2478 		}
2479 
2480 		active |= i < 0;
2481 	}
2482 
2483 	return active;
2484 }
2485 
2486 static void reset_xps_maps(struct net_device *dev,
2487 			   struct xps_dev_maps *dev_maps,
2488 			   bool is_rxqs_map)
2489 {
2490 	if (is_rxqs_map) {
2491 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2492 		RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2493 	} else {
2494 		RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2495 	}
2496 	static_key_slow_dec_cpuslocked(&xps_needed);
2497 	kfree_rcu(dev_maps, rcu);
2498 }
2499 
2500 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2501 			   struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2502 			   u16 offset, u16 count, bool is_rxqs_map)
2503 {
2504 	bool active = false;
2505 	int i, j;
2506 
2507 	for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2508 	     j < nr_ids;)
2509 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2510 					       count);
2511 	if (!active)
2512 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2513 
2514 	if (!is_rxqs_map) {
2515 		for (i = offset + (count - 1); count--; i--) {
2516 			netdev_queue_numa_node_write(
2517 				netdev_get_tx_queue(dev, i),
2518 				NUMA_NO_NODE);
2519 		}
2520 	}
2521 }
2522 
2523 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2524 				   u16 count)
2525 {
2526 	const unsigned long *possible_mask = NULL;
2527 	struct xps_dev_maps *dev_maps;
2528 	unsigned int nr_ids;
2529 
2530 	if (!static_key_false(&xps_needed))
2531 		return;
2532 
2533 	cpus_read_lock();
2534 	mutex_lock(&xps_map_mutex);
2535 
2536 	if (static_key_false(&xps_rxqs_needed)) {
2537 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2538 		if (dev_maps) {
2539 			nr_ids = dev->num_rx_queues;
2540 			clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2541 				       offset, count, true);
2542 		}
2543 	}
2544 
2545 	dev_maps = xmap_dereference(dev->xps_cpus_map);
2546 	if (!dev_maps)
2547 		goto out_no_maps;
2548 
2549 	if (num_possible_cpus() > 1)
2550 		possible_mask = cpumask_bits(cpu_possible_mask);
2551 	nr_ids = nr_cpu_ids;
2552 	clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2553 		       false);
2554 
2555 out_no_maps:
2556 	mutex_unlock(&xps_map_mutex);
2557 	cpus_read_unlock();
2558 }
2559 
2560 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2561 {
2562 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2563 }
2564 
2565 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2566 				      u16 index, bool is_rxqs_map)
2567 {
2568 	struct xps_map *new_map;
2569 	int alloc_len = XPS_MIN_MAP_ALLOC;
2570 	int i, pos;
2571 
2572 	for (pos = 0; map && pos < map->len; pos++) {
2573 		if (map->queues[pos] != index)
2574 			continue;
2575 		return map;
2576 	}
2577 
2578 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2579 	if (map) {
2580 		if (pos < map->alloc_len)
2581 			return map;
2582 
2583 		alloc_len = map->alloc_len * 2;
2584 	}
2585 
2586 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2587 	 *  map
2588 	 */
2589 	if (is_rxqs_map)
2590 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2591 	else
2592 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2593 				       cpu_to_node(attr_index));
2594 	if (!new_map)
2595 		return NULL;
2596 
2597 	for (i = 0; i < pos; i++)
2598 		new_map->queues[i] = map->queues[i];
2599 	new_map->alloc_len = alloc_len;
2600 	new_map->len = pos;
2601 
2602 	return new_map;
2603 }
2604 
2605 /* Must be called under cpus_read_lock */
2606 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2607 			  u16 index, bool is_rxqs_map)
2608 {
2609 	const unsigned long *online_mask = NULL, *possible_mask = NULL;
2610 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2611 	int i, j, tci, numa_node_id = -2;
2612 	int maps_sz, num_tc = 1, tc = 0;
2613 	struct xps_map *map, *new_map;
2614 	bool active = false;
2615 	unsigned int nr_ids;
2616 
2617 	if (dev->num_tc) {
2618 		/* Do not allow XPS on subordinate device directly */
2619 		num_tc = dev->num_tc;
2620 		if (num_tc < 0)
2621 			return -EINVAL;
2622 
2623 		/* If queue belongs to subordinate dev use its map */
2624 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2625 
2626 		tc = netdev_txq_to_tc(dev, index);
2627 		if (tc < 0)
2628 			return -EINVAL;
2629 	}
2630 
2631 	mutex_lock(&xps_map_mutex);
2632 	if (is_rxqs_map) {
2633 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2634 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2635 		nr_ids = dev->num_rx_queues;
2636 	} else {
2637 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2638 		if (num_possible_cpus() > 1) {
2639 			online_mask = cpumask_bits(cpu_online_mask);
2640 			possible_mask = cpumask_bits(cpu_possible_mask);
2641 		}
2642 		dev_maps = xmap_dereference(dev->xps_cpus_map);
2643 		nr_ids = nr_cpu_ids;
2644 	}
2645 
2646 	if (maps_sz < L1_CACHE_BYTES)
2647 		maps_sz = L1_CACHE_BYTES;
2648 
2649 	/* allocate memory for queue storage */
2650 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2651 	     j < nr_ids;) {
2652 		if (!new_dev_maps)
2653 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2654 		if (!new_dev_maps) {
2655 			mutex_unlock(&xps_map_mutex);
2656 			return -ENOMEM;
2657 		}
2658 
2659 		tci = j * num_tc + tc;
2660 		map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2661 				 NULL;
2662 
2663 		map = expand_xps_map(map, j, index, is_rxqs_map);
2664 		if (!map)
2665 			goto error;
2666 
2667 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2668 	}
2669 
2670 	if (!new_dev_maps)
2671 		goto out_no_new_maps;
2672 
2673 	if (!dev_maps) {
2674 		/* Increment static keys at most once per type */
2675 		static_key_slow_inc_cpuslocked(&xps_needed);
2676 		if (is_rxqs_map)
2677 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2678 	}
2679 
2680 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2681 	     j < nr_ids;) {
2682 		/* copy maps belonging to foreign traffic classes */
2683 		for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2684 			/* fill in the new device map from the old device map */
2685 			map = xmap_dereference(dev_maps->attr_map[tci]);
2686 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2687 		}
2688 
2689 		/* We need to explicitly update tci as prevous loop
2690 		 * could break out early if dev_maps is NULL.
2691 		 */
2692 		tci = j * num_tc + tc;
2693 
2694 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2695 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2696 			/* add tx-queue to CPU/rx-queue maps */
2697 			int pos = 0;
2698 
2699 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2700 			while ((pos < map->len) && (map->queues[pos] != index))
2701 				pos++;
2702 
2703 			if (pos == map->len)
2704 				map->queues[map->len++] = index;
2705 #ifdef CONFIG_NUMA
2706 			if (!is_rxqs_map) {
2707 				if (numa_node_id == -2)
2708 					numa_node_id = cpu_to_node(j);
2709 				else if (numa_node_id != cpu_to_node(j))
2710 					numa_node_id = -1;
2711 			}
2712 #endif
2713 		} else if (dev_maps) {
2714 			/* fill in the new device map from the old device map */
2715 			map = xmap_dereference(dev_maps->attr_map[tci]);
2716 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2717 		}
2718 
2719 		/* copy maps belonging to foreign traffic classes */
2720 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2721 			/* fill in the new device map from the old device map */
2722 			map = xmap_dereference(dev_maps->attr_map[tci]);
2723 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2724 		}
2725 	}
2726 
2727 	if (is_rxqs_map)
2728 		rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2729 	else
2730 		rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2731 
2732 	/* Cleanup old maps */
2733 	if (!dev_maps)
2734 		goto out_no_old_maps;
2735 
2736 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2737 	     j < nr_ids;) {
2738 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2739 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2740 			map = xmap_dereference(dev_maps->attr_map[tci]);
2741 			if (map && map != new_map)
2742 				kfree_rcu(map, rcu);
2743 		}
2744 	}
2745 
2746 	kfree_rcu(dev_maps, rcu);
2747 
2748 out_no_old_maps:
2749 	dev_maps = new_dev_maps;
2750 	active = true;
2751 
2752 out_no_new_maps:
2753 	if (!is_rxqs_map) {
2754 		/* update Tx queue numa node */
2755 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2756 					     (numa_node_id >= 0) ?
2757 					     numa_node_id : NUMA_NO_NODE);
2758 	}
2759 
2760 	if (!dev_maps)
2761 		goto out_no_maps;
2762 
2763 	/* removes tx-queue from unused CPUs/rx-queues */
2764 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2765 	     j < nr_ids;) {
2766 		for (i = tc, tci = j * num_tc; i--; tci++)
2767 			active |= remove_xps_queue(dev_maps, tci, index);
2768 		if (!netif_attr_test_mask(j, mask, nr_ids) ||
2769 		    !netif_attr_test_online(j, online_mask, nr_ids))
2770 			active |= remove_xps_queue(dev_maps, tci, index);
2771 		for (i = num_tc - tc, tci++; --i; tci++)
2772 			active |= remove_xps_queue(dev_maps, tci, index);
2773 	}
2774 
2775 	/* free map if not active */
2776 	if (!active)
2777 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2778 
2779 out_no_maps:
2780 	mutex_unlock(&xps_map_mutex);
2781 
2782 	return 0;
2783 error:
2784 	/* remove any maps that we added */
2785 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2786 	     j < nr_ids;) {
2787 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2788 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2789 			map = dev_maps ?
2790 			      xmap_dereference(dev_maps->attr_map[tci]) :
2791 			      NULL;
2792 			if (new_map && new_map != map)
2793 				kfree(new_map);
2794 		}
2795 	}
2796 
2797 	mutex_unlock(&xps_map_mutex);
2798 
2799 	kfree(new_dev_maps);
2800 	return -ENOMEM;
2801 }
2802 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2803 
2804 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2805 			u16 index)
2806 {
2807 	int ret;
2808 
2809 	cpus_read_lock();
2810 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2811 	cpus_read_unlock();
2812 
2813 	return ret;
2814 }
2815 EXPORT_SYMBOL(netif_set_xps_queue);
2816 
2817 #endif
2818 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2819 {
2820 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2821 
2822 	/* Unbind any subordinate channels */
2823 	while (txq-- != &dev->_tx[0]) {
2824 		if (txq->sb_dev)
2825 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2826 	}
2827 }
2828 
2829 void netdev_reset_tc(struct net_device *dev)
2830 {
2831 #ifdef CONFIG_XPS
2832 	netif_reset_xps_queues_gt(dev, 0);
2833 #endif
2834 	netdev_unbind_all_sb_channels(dev);
2835 
2836 	/* Reset TC configuration of device */
2837 	dev->num_tc = 0;
2838 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2839 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2840 }
2841 EXPORT_SYMBOL(netdev_reset_tc);
2842 
2843 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2844 {
2845 	if (tc >= dev->num_tc)
2846 		return -EINVAL;
2847 
2848 #ifdef CONFIG_XPS
2849 	netif_reset_xps_queues(dev, offset, count);
2850 #endif
2851 	dev->tc_to_txq[tc].count = count;
2852 	dev->tc_to_txq[tc].offset = offset;
2853 	return 0;
2854 }
2855 EXPORT_SYMBOL(netdev_set_tc_queue);
2856 
2857 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2858 {
2859 	if (num_tc > TC_MAX_QUEUE)
2860 		return -EINVAL;
2861 
2862 #ifdef CONFIG_XPS
2863 	netif_reset_xps_queues_gt(dev, 0);
2864 #endif
2865 	netdev_unbind_all_sb_channels(dev);
2866 
2867 	dev->num_tc = num_tc;
2868 	return 0;
2869 }
2870 EXPORT_SYMBOL(netdev_set_num_tc);
2871 
2872 void netdev_unbind_sb_channel(struct net_device *dev,
2873 			      struct net_device *sb_dev)
2874 {
2875 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2876 
2877 #ifdef CONFIG_XPS
2878 	netif_reset_xps_queues_gt(sb_dev, 0);
2879 #endif
2880 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2881 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2882 
2883 	while (txq-- != &dev->_tx[0]) {
2884 		if (txq->sb_dev == sb_dev)
2885 			txq->sb_dev = NULL;
2886 	}
2887 }
2888 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2889 
2890 int netdev_bind_sb_channel_queue(struct net_device *dev,
2891 				 struct net_device *sb_dev,
2892 				 u8 tc, u16 count, u16 offset)
2893 {
2894 	/* Make certain the sb_dev and dev are already configured */
2895 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2896 		return -EINVAL;
2897 
2898 	/* We cannot hand out queues we don't have */
2899 	if ((offset + count) > dev->real_num_tx_queues)
2900 		return -EINVAL;
2901 
2902 	/* Record the mapping */
2903 	sb_dev->tc_to_txq[tc].count = count;
2904 	sb_dev->tc_to_txq[tc].offset = offset;
2905 
2906 	/* Provide a way for Tx queue to find the tc_to_txq map or
2907 	 * XPS map for itself.
2908 	 */
2909 	while (count--)
2910 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2911 
2912 	return 0;
2913 }
2914 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2915 
2916 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2917 {
2918 	/* Do not use a multiqueue device to represent a subordinate channel */
2919 	if (netif_is_multiqueue(dev))
2920 		return -ENODEV;
2921 
2922 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2923 	 * Channel 0 is meant to be "native" mode and used only to represent
2924 	 * the main root device. We allow writing 0 to reset the device back
2925 	 * to normal mode after being used as a subordinate channel.
2926 	 */
2927 	if (channel > S16_MAX)
2928 		return -EINVAL;
2929 
2930 	dev->num_tc = -channel;
2931 
2932 	return 0;
2933 }
2934 EXPORT_SYMBOL(netdev_set_sb_channel);
2935 
2936 /*
2937  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2938  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2939  */
2940 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2941 {
2942 	bool disabling;
2943 	int rc;
2944 
2945 	disabling = txq < dev->real_num_tx_queues;
2946 
2947 	if (txq < 1 || txq > dev->num_tx_queues)
2948 		return -EINVAL;
2949 
2950 	if (dev->reg_state == NETREG_REGISTERED ||
2951 	    dev->reg_state == NETREG_UNREGISTERING) {
2952 		ASSERT_RTNL();
2953 
2954 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2955 						  txq);
2956 		if (rc)
2957 			return rc;
2958 
2959 		if (dev->num_tc)
2960 			netif_setup_tc(dev, txq);
2961 
2962 		dev->real_num_tx_queues = txq;
2963 
2964 		if (disabling) {
2965 			synchronize_net();
2966 			qdisc_reset_all_tx_gt(dev, txq);
2967 #ifdef CONFIG_XPS
2968 			netif_reset_xps_queues_gt(dev, txq);
2969 #endif
2970 		}
2971 	} else {
2972 		dev->real_num_tx_queues = txq;
2973 	}
2974 
2975 	return 0;
2976 }
2977 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2978 
2979 #ifdef CONFIG_SYSFS
2980 /**
2981  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2982  *	@dev: Network device
2983  *	@rxq: Actual number of RX queues
2984  *
2985  *	This must be called either with the rtnl_lock held or before
2986  *	registration of the net device.  Returns 0 on success, or a
2987  *	negative error code.  If called before registration, it always
2988  *	succeeds.
2989  */
2990 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2991 {
2992 	int rc;
2993 
2994 	if (rxq < 1 || rxq > dev->num_rx_queues)
2995 		return -EINVAL;
2996 
2997 	if (dev->reg_state == NETREG_REGISTERED) {
2998 		ASSERT_RTNL();
2999 
3000 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3001 						  rxq);
3002 		if (rc)
3003 			return rc;
3004 	}
3005 
3006 	dev->real_num_rx_queues = rxq;
3007 	return 0;
3008 }
3009 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3010 #endif
3011 
3012 /**
3013  * netif_get_num_default_rss_queues - default number of RSS queues
3014  *
3015  * This routine should set an upper limit on the number of RSS queues
3016  * used by default by multiqueue devices.
3017  */
3018 int netif_get_num_default_rss_queues(void)
3019 {
3020 	return is_kdump_kernel() ?
3021 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3022 }
3023 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3024 
3025 static void __netif_reschedule(struct Qdisc *q)
3026 {
3027 	struct softnet_data *sd;
3028 	unsigned long flags;
3029 
3030 	local_irq_save(flags);
3031 	sd = this_cpu_ptr(&softnet_data);
3032 	q->next_sched = NULL;
3033 	*sd->output_queue_tailp = q;
3034 	sd->output_queue_tailp = &q->next_sched;
3035 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3036 	local_irq_restore(flags);
3037 }
3038 
3039 void __netif_schedule(struct Qdisc *q)
3040 {
3041 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3042 		__netif_reschedule(q);
3043 }
3044 EXPORT_SYMBOL(__netif_schedule);
3045 
3046 struct dev_kfree_skb_cb {
3047 	enum skb_free_reason reason;
3048 };
3049 
3050 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3051 {
3052 	return (struct dev_kfree_skb_cb *)skb->cb;
3053 }
3054 
3055 void netif_schedule_queue(struct netdev_queue *txq)
3056 {
3057 	rcu_read_lock();
3058 	if (!netif_xmit_stopped(txq)) {
3059 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3060 
3061 		__netif_schedule(q);
3062 	}
3063 	rcu_read_unlock();
3064 }
3065 EXPORT_SYMBOL(netif_schedule_queue);
3066 
3067 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3068 {
3069 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3070 		struct Qdisc *q;
3071 
3072 		rcu_read_lock();
3073 		q = rcu_dereference(dev_queue->qdisc);
3074 		__netif_schedule(q);
3075 		rcu_read_unlock();
3076 	}
3077 }
3078 EXPORT_SYMBOL(netif_tx_wake_queue);
3079 
3080 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3081 {
3082 	unsigned long flags;
3083 
3084 	if (unlikely(!skb))
3085 		return;
3086 
3087 	if (likely(refcount_read(&skb->users) == 1)) {
3088 		smp_rmb();
3089 		refcount_set(&skb->users, 0);
3090 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3091 		return;
3092 	}
3093 	get_kfree_skb_cb(skb)->reason = reason;
3094 	local_irq_save(flags);
3095 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3096 	__this_cpu_write(softnet_data.completion_queue, skb);
3097 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3098 	local_irq_restore(flags);
3099 }
3100 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3101 
3102 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3103 {
3104 	if (in_irq() || irqs_disabled())
3105 		__dev_kfree_skb_irq(skb, reason);
3106 	else
3107 		dev_kfree_skb(skb);
3108 }
3109 EXPORT_SYMBOL(__dev_kfree_skb_any);
3110 
3111 
3112 /**
3113  * netif_device_detach - mark device as removed
3114  * @dev: network device
3115  *
3116  * Mark device as removed from system and therefore no longer available.
3117  */
3118 void netif_device_detach(struct net_device *dev)
3119 {
3120 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3121 	    netif_running(dev)) {
3122 		netif_tx_stop_all_queues(dev);
3123 	}
3124 }
3125 EXPORT_SYMBOL(netif_device_detach);
3126 
3127 /**
3128  * netif_device_attach - mark device as attached
3129  * @dev: network device
3130  *
3131  * Mark device as attached from system and restart if needed.
3132  */
3133 void netif_device_attach(struct net_device *dev)
3134 {
3135 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3136 	    netif_running(dev)) {
3137 		netif_tx_wake_all_queues(dev);
3138 		__netdev_watchdog_up(dev);
3139 	}
3140 }
3141 EXPORT_SYMBOL(netif_device_attach);
3142 
3143 /*
3144  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3145  * to be used as a distribution range.
3146  */
3147 static u16 skb_tx_hash(const struct net_device *dev,
3148 		       const struct net_device *sb_dev,
3149 		       struct sk_buff *skb)
3150 {
3151 	u32 hash;
3152 	u16 qoffset = 0;
3153 	u16 qcount = dev->real_num_tx_queues;
3154 
3155 	if (dev->num_tc) {
3156 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3157 
3158 		qoffset = sb_dev->tc_to_txq[tc].offset;
3159 		qcount = sb_dev->tc_to_txq[tc].count;
3160 	}
3161 
3162 	if (skb_rx_queue_recorded(skb)) {
3163 		hash = skb_get_rx_queue(skb);
3164 		if (hash >= qoffset)
3165 			hash -= qoffset;
3166 		while (unlikely(hash >= qcount))
3167 			hash -= qcount;
3168 		return hash + qoffset;
3169 	}
3170 
3171 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3172 }
3173 
3174 static void skb_warn_bad_offload(const struct sk_buff *skb)
3175 {
3176 	static const netdev_features_t null_features;
3177 	struct net_device *dev = skb->dev;
3178 	const char *name = "";
3179 
3180 	if (!net_ratelimit())
3181 		return;
3182 
3183 	if (dev) {
3184 		if (dev->dev.parent)
3185 			name = dev_driver_string(dev->dev.parent);
3186 		else
3187 			name = netdev_name(dev);
3188 	}
3189 	skb_dump(KERN_WARNING, skb, false);
3190 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3191 	     name, dev ? &dev->features : &null_features,
3192 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3193 }
3194 
3195 /*
3196  * Invalidate hardware checksum when packet is to be mangled, and
3197  * complete checksum manually on outgoing path.
3198  */
3199 int skb_checksum_help(struct sk_buff *skb)
3200 {
3201 	__wsum csum;
3202 	int ret = 0, offset;
3203 
3204 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3205 		goto out_set_summed;
3206 
3207 	if (unlikely(skb_shinfo(skb)->gso_size)) {
3208 		skb_warn_bad_offload(skb);
3209 		return -EINVAL;
3210 	}
3211 
3212 	/* Before computing a checksum, we should make sure no frag could
3213 	 * be modified by an external entity : checksum could be wrong.
3214 	 */
3215 	if (skb_has_shared_frag(skb)) {
3216 		ret = __skb_linearize(skb);
3217 		if (ret)
3218 			goto out;
3219 	}
3220 
3221 	offset = skb_checksum_start_offset(skb);
3222 	BUG_ON(offset >= skb_headlen(skb));
3223 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3224 
3225 	offset += skb->csum_offset;
3226 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3227 
3228 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3229 	if (ret)
3230 		goto out;
3231 
3232 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3233 out_set_summed:
3234 	skb->ip_summed = CHECKSUM_NONE;
3235 out:
3236 	return ret;
3237 }
3238 EXPORT_SYMBOL(skb_checksum_help);
3239 
3240 int skb_crc32c_csum_help(struct sk_buff *skb)
3241 {
3242 	__le32 crc32c_csum;
3243 	int ret = 0, offset, start;
3244 
3245 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3246 		goto out;
3247 
3248 	if (unlikely(skb_is_gso(skb)))
3249 		goto out;
3250 
3251 	/* Before computing a checksum, we should make sure no frag could
3252 	 * be modified by an external entity : checksum could be wrong.
3253 	 */
3254 	if (unlikely(skb_has_shared_frag(skb))) {
3255 		ret = __skb_linearize(skb);
3256 		if (ret)
3257 			goto out;
3258 	}
3259 	start = skb_checksum_start_offset(skb);
3260 	offset = start + offsetof(struct sctphdr, checksum);
3261 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3262 		ret = -EINVAL;
3263 		goto out;
3264 	}
3265 
3266 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3267 	if (ret)
3268 		goto out;
3269 
3270 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3271 						  skb->len - start, ~(__u32)0,
3272 						  crc32c_csum_stub));
3273 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3274 	skb->ip_summed = CHECKSUM_NONE;
3275 	skb->csum_not_inet = 0;
3276 out:
3277 	return ret;
3278 }
3279 
3280 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3281 {
3282 	__be16 type = skb->protocol;
3283 
3284 	/* Tunnel gso handlers can set protocol to ethernet. */
3285 	if (type == htons(ETH_P_TEB)) {
3286 		struct ethhdr *eth;
3287 
3288 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3289 			return 0;
3290 
3291 		eth = (struct ethhdr *)skb->data;
3292 		type = eth->h_proto;
3293 	}
3294 
3295 	return __vlan_get_protocol(skb, type, depth);
3296 }
3297 
3298 /**
3299  *	skb_mac_gso_segment - mac layer segmentation handler.
3300  *	@skb: buffer to segment
3301  *	@features: features for the output path (see dev->features)
3302  */
3303 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3304 				    netdev_features_t features)
3305 {
3306 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3307 	struct packet_offload *ptype;
3308 	int vlan_depth = skb->mac_len;
3309 	__be16 type = skb_network_protocol(skb, &vlan_depth);
3310 
3311 	if (unlikely(!type))
3312 		return ERR_PTR(-EINVAL);
3313 
3314 	__skb_pull(skb, vlan_depth);
3315 
3316 	rcu_read_lock();
3317 	list_for_each_entry_rcu(ptype, &offload_base, list) {
3318 		if (ptype->type == type && ptype->callbacks.gso_segment) {
3319 			segs = ptype->callbacks.gso_segment(skb, features);
3320 			break;
3321 		}
3322 	}
3323 	rcu_read_unlock();
3324 
3325 	__skb_push(skb, skb->data - skb_mac_header(skb));
3326 
3327 	return segs;
3328 }
3329 EXPORT_SYMBOL(skb_mac_gso_segment);
3330 
3331 
3332 /* openvswitch calls this on rx path, so we need a different check.
3333  */
3334 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3335 {
3336 	if (tx_path)
3337 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3338 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3339 
3340 	return skb->ip_summed == CHECKSUM_NONE;
3341 }
3342 
3343 /**
3344  *	__skb_gso_segment - Perform segmentation on skb.
3345  *	@skb: buffer to segment
3346  *	@features: features for the output path (see dev->features)
3347  *	@tx_path: whether it is called in TX path
3348  *
3349  *	This function segments the given skb and returns a list of segments.
3350  *
3351  *	It may return NULL if the skb requires no segmentation.  This is
3352  *	only possible when GSO is used for verifying header integrity.
3353  *
3354  *	Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3355  */
3356 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3357 				  netdev_features_t features, bool tx_path)
3358 {
3359 	struct sk_buff *segs;
3360 
3361 	if (unlikely(skb_needs_check(skb, tx_path))) {
3362 		int err;
3363 
3364 		/* We're going to init ->check field in TCP or UDP header */
3365 		err = skb_cow_head(skb, 0);
3366 		if (err < 0)
3367 			return ERR_PTR(err);
3368 	}
3369 
3370 	/* Only report GSO partial support if it will enable us to
3371 	 * support segmentation on this frame without needing additional
3372 	 * work.
3373 	 */
3374 	if (features & NETIF_F_GSO_PARTIAL) {
3375 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3376 		struct net_device *dev = skb->dev;
3377 
3378 		partial_features |= dev->features & dev->gso_partial_features;
3379 		if (!skb_gso_ok(skb, features | partial_features))
3380 			features &= ~NETIF_F_GSO_PARTIAL;
3381 	}
3382 
3383 	BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3384 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3385 
3386 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3387 	SKB_GSO_CB(skb)->encap_level = 0;
3388 
3389 	skb_reset_mac_header(skb);
3390 	skb_reset_mac_len(skb);
3391 
3392 	segs = skb_mac_gso_segment(skb, features);
3393 
3394 	if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3395 		skb_warn_bad_offload(skb);
3396 
3397 	return segs;
3398 }
3399 EXPORT_SYMBOL(__skb_gso_segment);
3400 
3401 /* Take action when hardware reception checksum errors are detected. */
3402 #ifdef CONFIG_BUG
3403 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3404 {
3405 	if (net_ratelimit()) {
3406 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3407 		skb_dump(KERN_ERR, skb, true);
3408 		dump_stack();
3409 	}
3410 }
3411 EXPORT_SYMBOL(netdev_rx_csum_fault);
3412 #endif
3413 
3414 /* XXX: check that highmem exists at all on the given machine. */
3415 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3416 {
3417 #ifdef CONFIG_HIGHMEM
3418 	int i;
3419 
3420 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3421 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3422 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3423 
3424 			if (PageHighMem(skb_frag_page(frag)))
3425 				return 1;
3426 		}
3427 	}
3428 #endif
3429 	return 0;
3430 }
3431 
3432 /* If MPLS offload request, verify we are testing hardware MPLS features
3433  * instead of standard features for the netdev.
3434  */
3435 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3436 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3437 					   netdev_features_t features,
3438 					   __be16 type)
3439 {
3440 	if (eth_p_mpls(type))
3441 		features &= skb->dev->mpls_features;
3442 
3443 	return features;
3444 }
3445 #else
3446 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3447 					   netdev_features_t features,
3448 					   __be16 type)
3449 {
3450 	return features;
3451 }
3452 #endif
3453 
3454 static netdev_features_t harmonize_features(struct sk_buff *skb,
3455 	netdev_features_t features)
3456 {
3457 	int tmp;
3458 	__be16 type;
3459 
3460 	type = skb_network_protocol(skb, &tmp);
3461 	features = net_mpls_features(skb, features, type);
3462 
3463 	if (skb->ip_summed != CHECKSUM_NONE &&
3464 	    !can_checksum_protocol(features, type)) {
3465 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3466 	}
3467 	if (illegal_highdma(skb->dev, skb))
3468 		features &= ~NETIF_F_SG;
3469 
3470 	return features;
3471 }
3472 
3473 netdev_features_t passthru_features_check(struct sk_buff *skb,
3474 					  struct net_device *dev,
3475 					  netdev_features_t features)
3476 {
3477 	return features;
3478 }
3479 EXPORT_SYMBOL(passthru_features_check);
3480 
3481 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3482 					     struct net_device *dev,
3483 					     netdev_features_t features)
3484 {
3485 	return vlan_features_check(skb, features);
3486 }
3487 
3488 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3489 					    struct net_device *dev,
3490 					    netdev_features_t features)
3491 {
3492 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3493 
3494 	if (gso_segs > dev->gso_max_segs)
3495 		return features & ~NETIF_F_GSO_MASK;
3496 
3497 	/* Support for GSO partial features requires software
3498 	 * intervention before we can actually process the packets
3499 	 * so we need to strip support for any partial features now
3500 	 * and we can pull them back in after we have partially
3501 	 * segmented the frame.
3502 	 */
3503 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3504 		features &= ~dev->gso_partial_features;
3505 
3506 	/* Make sure to clear the IPv4 ID mangling feature if the
3507 	 * IPv4 header has the potential to be fragmented.
3508 	 */
3509 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3510 		struct iphdr *iph = skb->encapsulation ?
3511 				    inner_ip_hdr(skb) : ip_hdr(skb);
3512 
3513 		if (!(iph->frag_off & htons(IP_DF)))
3514 			features &= ~NETIF_F_TSO_MANGLEID;
3515 	}
3516 
3517 	return features;
3518 }
3519 
3520 netdev_features_t netif_skb_features(struct sk_buff *skb)
3521 {
3522 	struct net_device *dev = skb->dev;
3523 	netdev_features_t features = dev->features;
3524 
3525 	if (skb_is_gso(skb))
3526 		features = gso_features_check(skb, dev, features);
3527 
3528 	/* If encapsulation offload request, verify we are testing
3529 	 * hardware encapsulation features instead of standard
3530 	 * features for the netdev
3531 	 */
3532 	if (skb->encapsulation)
3533 		features &= dev->hw_enc_features;
3534 
3535 	if (skb_vlan_tagged(skb))
3536 		features = netdev_intersect_features(features,
3537 						     dev->vlan_features |
3538 						     NETIF_F_HW_VLAN_CTAG_TX |
3539 						     NETIF_F_HW_VLAN_STAG_TX);
3540 
3541 	if (dev->netdev_ops->ndo_features_check)
3542 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3543 								features);
3544 	else
3545 		features &= dflt_features_check(skb, dev, features);
3546 
3547 	return harmonize_features(skb, features);
3548 }
3549 EXPORT_SYMBOL(netif_skb_features);
3550 
3551 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3552 		    struct netdev_queue *txq, bool more)
3553 {
3554 	unsigned int len;
3555 	int rc;
3556 
3557 	if (dev_nit_active(dev))
3558 		dev_queue_xmit_nit(skb, dev);
3559 
3560 	len = skb->len;
3561 	trace_net_dev_start_xmit(skb, dev);
3562 	rc = netdev_start_xmit(skb, dev, txq, more);
3563 	trace_net_dev_xmit(skb, rc, dev, len);
3564 
3565 	return rc;
3566 }
3567 
3568 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3569 				    struct netdev_queue *txq, int *ret)
3570 {
3571 	struct sk_buff *skb = first;
3572 	int rc = NETDEV_TX_OK;
3573 
3574 	while (skb) {
3575 		struct sk_buff *next = skb->next;
3576 
3577 		skb_mark_not_on_list(skb);
3578 		rc = xmit_one(skb, dev, txq, next != NULL);
3579 		if (unlikely(!dev_xmit_complete(rc))) {
3580 			skb->next = next;
3581 			goto out;
3582 		}
3583 
3584 		skb = next;
3585 		if (netif_tx_queue_stopped(txq) && skb) {
3586 			rc = NETDEV_TX_BUSY;
3587 			break;
3588 		}
3589 	}
3590 
3591 out:
3592 	*ret = rc;
3593 	return skb;
3594 }
3595 
3596 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3597 					  netdev_features_t features)
3598 {
3599 	if (skb_vlan_tag_present(skb) &&
3600 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3601 		skb = __vlan_hwaccel_push_inside(skb);
3602 	return skb;
3603 }
3604 
3605 int skb_csum_hwoffload_help(struct sk_buff *skb,
3606 			    const netdev_features_t features)
3607 {
3608 	if (unlikely(skb->csum_not_inet))
3609 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3610 			skb_crc32c_csum_help(skb);
3611 
3612 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3613 }
3614 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3615 
3616 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3617 {
3618 	netdev_features_t features;
3619 
3620 	features = netif_skb_features(skb);
3621 	skb = validate_xmit_vlan(skb, features);
3622 	if (unlikely(!skb))
3623 		goto out_null;
3624 
3625 	skb = sk_validate_xmit_skb(skb, dev);
3626 	if (unlikely(!skb))
3627 		goto out_null;
3628 
3629 	if (netif_needs_gso(skb, features)) {
3630 		struct sk_buff *segs;
3631 
3632 		segs = skb_gso_segment(skb, features);
3633 		if (IS_ERR(segs)) {
3634 			goto out_kfree_skb;
3635 		} else if (segs) {
3636 			consume_skb(skb);
3637 			skb = segs;
3638 		}
3639 	} else {
3640 		if (skb_needs_linearize(skb, features) &&
3641 		    __skb_linearize(skb))
3642 			goto out_kfree_skb;
3643 
3644 		/* If packet is not checksummed and device does not
3645 		 * support checksumming for this protocol, complete
3646 		 * checksumming here.
3647 		 */
3648 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3649 			if (skb->encapsulation)
3650 				skb_set_inner_transport_header(skb,
3651 							       skb_checksum_start_offset(skb));
3652 			else
3653 				skb_set_transport_header(skb,
3654 							 skb_checksum_start_offset(skb));
3655 			if (skb_csum_hwoffload_help(skb, features))
3656 				goto out_kfree_skb;
3657 		}
3658 	}
3659 
3660 	skb = validate_xmit_xfrm(skb, features, again);
3661 
3662 	return skb;
3663 
3664 out_kfree_skb:
3665 	kfree_skb(skb);
3666 out_null:
3667 	atomic_long_inc(&dev->tx_dropped);
3668 	return NULL;
3669 }
3670 
3671 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3672 {
3673 	struct sk_buff *next, *head = NULL, *tail;
3674 
3675 	for (; skb != NULL; skb = next) {
3676 		next = skb->next;
3677 		skb_mark_not_on_list(skb);
3678 
3679 		/* in case skb wont be segmented, point to itself */
3680 		skb->prev = skb;
3681 
3682 		skb = validate_xmit_skb(skb, dev, again);
3683 		if (!skb)
3684 			continue;
3685 
3686 		if (!head)
3687 			head = skb;
3688 		else
3689 			tail->next = skb;
3690 		/* If skb was segmented, skb->prev points to
3691 		 * the last segment. If not, it still contains skb.
3692 		 */
3693 		tail = skb->prev;
3694 	}
3695 	return head;
3696 }
3697 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3698 
3699 static void qdisc_pkt_len_init(struct sk_buff *skb)
3700 {
3701 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3702 
3703 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3704 
3705 	/* To get more precise estimation of bytes sent on wire,
3706 	 * we add to pkt_len the headers size of all segments
3707 	 */
3708 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3709 		unsigned int hdr_len;
3710 		u16 gso_segs = shinfo->gso_segs;
3711 
3712 		/* mac layer + network layer */
3713 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3714 
3715 		/* + transport layer */
3716 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3717 			const struct tcphdr *th;
3718 			struct tcphdr _tcphdr;
3719 
3720 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3721 						sizeof(_tcphdr), &_tcphdr);
3722 			if (likely(th))
3723 				hdr_len += __tcp_hdrlen(th);
3724 		} else {
3725 			struct udphdr _udphdr;
3726 
3727 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3728 					       sizeof(_udphdr), &_udphdr))
3729 				hdr_len += sizeof(struct udphdr);
3730 		}
3731 
3732 		if (shinfo->gso_type & SKB_GSO_DODGY)
3733 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3734 						shinfo->gso_size);
3735 
3736 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3737 	}
3738 }
3739 
3740 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3741 				 struct net_device *dev,
3742 				 struct netdev_queue *txq)
3743 {
3744 	spinlock_t *root_lock = qdisc_lock(q);
3745 	struct sk_buff *to_free = NULL;
3746 	bool contended;
3747 	int rc;
3748 
3749 	qdisc_calculate_pkt_len(skb, q);
3750 
3751 	if (q->flags & TCQ_F_NOLOCK) {
3752 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3753 		qdisc_run(q);
3754 
3755 		if (unlikely(to_free))
3756 			kfree_skb_list(to_free);
3757 		return rc;
3758 	}
3759 
3760 	/*
3761 	 * Heuristic to force contended enqueues to serialize on a
3762 	 * separate lock before trying to get qdisc main lock.
3763 	 * This permits qdisc->running owner to get the lock more
3764 	 * often and dequeue packets faster.
3765 	 */
3766 	contended = qdisc_is_running(q);
3767 	if (unlikely(contended))
3768 		spin_lock(&q->busylock);
3769 
3770 	spin_lock(root_lock);
3771 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3772 		__qdisc_drop(skb, &to_free);
3773 		rc = NET_XMIT_DROP;
3774 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3775 		   qdisc_run_begin(q)) {
3776 		/*
3777 		 * This is a work-conserving queue; there are no old skbs
3778 		 * waiting to be sent out; and the qdisc is not running -
3779 		 * xmit the skb directly.
3780 		 */
3781 
3782 		qdisc_bstats_update(q, skb);
3783 
3784 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3785 			if (unlikely(contended)) {
3786 				spin_unlock(&q->busylock);
3787 				contended = false;
3788 			}
3789 			__qdisc_run(q);
3790 		}
3791 
3792 		qdisc_run_end(q);
3793 		rc = NET_XMIT_SUCCESS;
3794 	} else {
3795 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3796 		if (qdisc_run_begin(q)) {
3797 			if (unlikely(contended)) {
3798 				spin_unlock(&q->busylock);
3799 				contended = false;
3800 			}
3801 			__qdisc_run(q);
3802 			qdisc_run_end(q);
3803 		}
3804 	}
3805 	spin_unlock(root_lock);
3806 	if (unlikely(to_free))
3807 		kfree_skb_list(to_free);
3808 	if (unlikely(contended))
3809 		spin_unlock(&q->busylock);
3810 	return rc;
3811 }
3812 
3813 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3814 static void skb_update_prio(struct sk_buff *skb)
3815 {
3816 	const struct netprio_map *map;
3817 	const struct sock *sk;
3818 	unsigned int prioidx;
3819 
3820 	if (skb->priority)
3821 		return;
3822 	map = rcu_dereference_bh(skb->dev->priomap);
3823 	if (!map)
3824 		return;
3825 	sk = skb_to_full_sk(skb);
3826 	if (!sk)
3827 		return;
3828 
3829 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3830 
3831 	if (prioidx < map->priomap_len)
3832 		skb->priority = map->priomap[prioidx];
3833 }
3834 #else
3835 #define skb_update_prio(skb)
3836 #endif
3837 
3838 /**
3839  *	dev_loopback_xmit - loop back @skb
3840  *	@net: network namespace this loopback is happening in
3841  *	@sk:  sk needed to be a netfilter okfn
3842  *	@skb: buffer to transmit
3843  */
3844 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3845 {
3846 	skb_reset_mac_header(skb);
3847 	__skb_pull(skb, skb_network_offset(skb));
3848 	skb->pkt_type = PACKET_LOOPBACK;
3849 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3850 	WARN_ON(!skb_dst(skb));
3851 	skb_dst_force(skb);
3852 	netif_rx_ni(skb);
3853 	return 0;
3854 }
3855 EXPORT_SYMBOL(dev_loopback_xmit);
3856 
3857 #ifdef CONFIG_NET_EGRESS
3858 static struct sk_buff *
3859 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3860 {
3861 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3862 	struct tcf_result cl_res;
3863 
3864 	if (!miniq)
3865 		return skb;
3866 
3867 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3868 	mini_qdisc_bstats_cpu_update(miniq, skb);
3869 
3870 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3871 	case TC_ACT_OK:
3872 	case TC_ACT_RECLASSIFY:
3873 		skb->tc_index = TC_H_MIN(cl_res.classid);
3874 		break;
3875 	case TC_ACT_SHOT:
3876 		mini_qdisc_qstats_cpu_drop(miniq);
3877 		*ret = NET_XMIT_DROP;
3878 		kfree_skb(skb);
3879 		return NULL;
3880 	case TC_ACT_STOLEN:
3881 	case TC_ACT_QUEUED:
3882 	case TC_ACT_TRAP:
3883 		*ret = NET_XMIT_SUCCESS;
3884 		consume_skb(skb);
3885 		return NULL;
3886 	case TC_ACT_REDIRECT:
3887 		/* No need to push/pop skb's mac_header here on egress! */
3888 		skb_do_redirect(skb);
3889 		*ret = NET_XMIT_SUCCESS;
3890 		return NULL;
3891 	default:
3892 		break;
3893 	}
3894 
3895 	return skb;
3896 }
3897 #endif /* CONFIG_NET_EGRESS */
3898 
3899 #ifdef CONFIG_XPS
3900 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3901 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3902 {
3903 	struct xps_map *map;
3904 	int queue_index = -1;
3905 
3906 	if (dev->num_tc) {
3907 		tci *= dev->num_tc;
3908 		tci += netdev_get_prio_tc_map(dev, skb->priority);
3909 	}
3910 
3911 	map = rcu_dereference(dev_maps->attr_map[tci]);
3912 	if (map) {
3913 		if (map->len == 1)
3914 			queue_index = map->queues[0];
3915 		else
3916 			queue_index = map->queues[reciprocal_scale(
3917 						skb_get_hash(skb), map->len)];
3918 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3919 			queue_index = -1;
3920 	}
3921 	return queue_index;
3922 }
3923 #endif
3924 
3925 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3926 			 struct sk_buff *skb)
3927 {
3928 #ifdef CONFIG_XPS
3929 	struct xps_dev_maps *dev_maps;
3930 	struct sock *sk = skb->sk;
3931 	int queue_index = -1;
3932 
3933 	if (!static_key_false(&xps_needed))
3934 		return -1;
3935 
3936 	rcu_read_lock();
3937 	if (!static_key_false(&xps_rxqs_needed))
3938 		goto get_cpus_map;
3939 
3940 	dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3941 	if (dev_maps) {
3942 		int tci = sk_rx_queue_get(sk);
3943 
3944 		if (tci >= 0 && tci < dev->num_rx_queues)
3945 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3946 							  tci);
3947 	}
3948 
3949 get_cpus_map:
3950 	if (queue_index < 0) {
3951 		dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3952 		if (dev_maps) {
3953 			unsigned int tci = skb->sender_cpu - 1;
3954 
3955 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3956 							  tci);
3957 		}
3958 	}
3959 	rcu_read_unlock();
3960 
3961 	return queue_index;
3962 #else
3963 	return -1;
3964 #endif
3965 }
3966 
3967 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3968 		     struct net_device *sb_dev)
3969 {
3970 	return 0;
3971 }
3972 EXPORT_SYMBOL(dev_pick_tx_zero);
3973 
3974 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3975 		       struct net_device *sb_dev)
3976 {
3977 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3978 }
3979 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3980 
3981 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3982 		     struct net_device *sb_dev)
3983 {
3984 	struct sock *sk = skb->sk;
3985 	int queue_index = sk_tx_queue_get(sk);
3986 
3987 	sb_dev = sb_dev ? : dev;
3988 
3989 	if (queue_index < 0 || skb->ooo_okay ||
3990 	    queue_index >= dev->real_num_tx_queues) {
3991 		int new_index = get_xps_queue(dev, sb_dev, skb);
3992 
3993 		if (new_index < 0)
3994 			new_index = skb_tx_hash(dev, sb_dev, skb);
3995 
3996 		if (queue_index != new_index && sk &&
3997 		    sk_fullsock(sk) &&
3998 		    rcu_access_pointer(sk->sk_dst_cache))
3999 			sk_tx_queue_set(sk, new_index);
4000 
4001 		queue_index = new_index;
4002 	}
4003 
4004 	return queue_index;
4005 }
4006 EXPORT_SYMBOL(netdev_pick_tx);
4007 
4008 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4009 					 struct sk_buff *skb,
4010 					 struct net_device *sb_dev)
4011 {
4012 	int queue_index = 0;
4013 
4014 #ifdef CONFIG_XPS
4015 	u32 sender_cpu = skb->sender_cpu - 1;
4016 
4017 	if (sender_cpu >= (u32)NR_CPUS)
4018 		skb->sender_cpu = raw_smp_processor_id() + 1;
4019 #endif
4020 
4021 	if (dev->real_num_tx_queues != 1) {
4022 		const struct net_device_ops *ops = dev->netdev_ops;
4023 
4024 		if (ops->ndo_select_queue)
4025 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4026 		else
4027 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4028 
4029 		queue_index = netdev_cap_txqueue(dev, queue_index);
4030 	}
4031 
4032 	skb_set_queue_mapping(skb, queue_index);
4033 	return netdev_get_tx_queue(dev, queue_index);
4034 }
4035 
4036 /**
4037  *	__dev_queue_xmit - transmit a buffer
4038  *	@skb: buffer to transmit
4039  *	@sb_dev: suboordinate device used for L2 forwarding offload
4040  *
4041  *	Queue a buffer for transmission to a network device. The caller must
4042  *	have set the device and priority and built the buffer before calling
4043  *	this function. The function can be called from an interrupt.
4044  *
4045  *	A negative errno code is returned on a failure. A success does not
4046  *	guarantee the frame will be transmitted as it may be dropped due
4047  *	to congestion or traffic shaping.
4048  *
4049  * -----------------------------------------------------------------------------------
4050  *      I notice this method can also return errors from the queue disciplines,
4051  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4052  *      be positive.
4053  *
4054  *      Regardless of the return value, the skb is consumed, so it is currently
4055  *      difficult to retry a send to this method.  (You can bump the ref count
4056  *      before sending to hold a reference for retry if you are careful.)
4057  *
4058  *      When calling this method, interrupts MUST be enabled.  This is because
4059  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4060  *          --BLG
4061  */
4062 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4063 {
4064 	struct net_device *dev = skb->dev;
4065 	struct netdev_queue *txq;
4066 	struct Qdisc *q;
4067 	int rc = -ENOMEM;
4068 	bool again = false;
4069 
4070 	skb_reset_mac_header(skb);
4071 
4072 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4073 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
4074 
4075 	/* Disable soft irqs for various locks below. Also
4076 	 * stops preemption for RCU.
4077 	 */
4078 	rcu_read_lock_bh();
4079 
4080 	skb_update_prio(skb);
4081 
4082 	qdisc_pkt_len_init(skb);
4083 #ifdef CONFIG_NET_CLS_ACT
4084 	skb->tc_at_ingress = 0;
4085 # ifdef CONFIG_NET_EGRESS
4086 	if (static_branch_unlikely(&egress_needed_key)) {
4087 		skb = sch_handle_egress(skb, &rc, dev);
4088 		if (!skb)
4089 			goto out;
4090 	}
4091 # endif
4092 #endif
4093 	/* If device/qdisc don't need skb->dst, release it right now while
4094 	 * its hot in this cpu cache.
4095 	 */
4096 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4097 		skb_dst_drop(skb);
4098 	else
4099 		skb_dst_force(skb);
4100 
4101 	txq = netdev_core_pick_tx(dev, skb, sb_dev);
4102 	q = rcu_dereference_bh(txq->qdisc);
4103 
4104 	trace_net_dev_queue(skb);
4105 	if (q->enqueue) {
4106 		rc = __dev_xmit_skb(skb, q, dev, txq);
4107 		goto out;
4108 	}
4109 
4110 	/* The device has no queue. Common case for software devices:
4111 	 * loopback, all the sorts of tunnels...
4112 
4113 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4114 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4115 	 * counters.)
4116 	 * However, it is possible, that they rely on protection
4117 	 * made by us here.
4118 
4119 	 * Check this and shot the lock. It is not prone from deadlocks.
4120 	 *Either shot noqueue qdisc, it is even simpler 8)
4121 	 */
4122 	if (dev->flags & IFF_UP) {
4123 		int cpu = smp_processor_id(); /* ok because BHs are off */
4124 
4125 		if (txq->xmit_lock_owner != cpu) {
4126 			if (dev_xmit_recursion())
4127 				goto recursion_alert;
4128 
4129 			skb = validate_xmit_skb(skb, dev, &again);
4130 			if (!skb)
4131 				goto out;
4132 
4133 			HARD_TX_LOCK(dev, txq, cpu);
4134 
4135 			if (!netif_xmit_stopped(txq)) {
4136 				dev_xmit_recursion_inc();
4137 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4138 				dev_xmit_recursion_dec();
4139 				if (dev_xmit_complete(rc)) {
4140 					HARD_TX_UNLOCK(dev, txq);
4141 					goto out;
4142 				}
4143 			}
4144 			HARD_TX_UNLOCK(dev, txq);
4145 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4146 					     dev->name);
4147 		} else {
4148 			/* Recursion is detected! It is possible,
4149 			 * unfortunately
4150 			 */
4151 recursion_alert:
4152 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4153 					     dev->name);
4154 		}
4155 	}
4156 
4157 	rc = -ENETDOWN;
4158 	rcu_read_unlock_bh();
4159 
4160 	atomic_long_inc(&dev->tx_dropped);
4161 	kfree_skb_list(skb);
4162 	return rc;
4163 out:
4164 	rcu_read_unlock_bh();
4165 	return rc;
4166 }
4167 
4168 int dev_queue_xmit(struct sk_buff *skb)
4169 {
4170 	return __dev_queue_xmit(skb, NULL);
4171 }
4172 EXPORT_SYMBOL(dev_queue_xmit);
4173 
4174 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4175 {
4176 	return __dev_queue_xmit(skb, sb_dev);
4177 }
4178 EXPORT_SYMBOL(dev_queue_xmit_accel);
4179 
4180 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4181 {
4182 	struct net_device *dev = skb->dev;
4183 	struct sk_buff *orig_skb = skb;
4184 	struct netdev_queue *txq;
4185 	int ret = NETDEV_TX_BUSY;
4186 	bool again = false;
4187 
4188 	if (unlikely(!netif_running(dev) ||
4189 		     !netif_carrier_ok(dev)))
4190 		goto drop;
4191 
4192 	skb = validate_xmit_skb_list(skb, dev, &again);
4193 	if (skb != orig_skb)
4194 		goto drop;
4195 
4196 	skb_set_queue_mapping(skb, queue_id);
4197 	txq = skb_get_tx_queue(dev, skb);
4198 
4199 	local_bh_disable();
4200 
4201 	dev_xmit_recursion_inc();
4202 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4203 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4204 		ret = netdev_start_xmit(skb, dev, txq, false);
4205 	HARD_TX_UNLOCK(dev, txq);
4206 	dev_xmit_recursion_dec();
4207 
4208 	local_bh_enable();
4209 
4210 	if (!dev_xmit_complete(ret))
4211 		kfree_skb(skb);
4212 
4213 	return ret;
4214 drop:
4215 	atomic_long_inc(&dev->tx_dropped);
4216 	kfree_skb_list(skb);
4217 	return NET_XMIT_DROP;
4218 }
4219 EXPORT_SYMBOL(dev_direct_xmit);
4220 
4221 /*************************************************************************
4222  *			Receiver routines
4223  *************************************************************************/
4224 
4225 int netdev_max_backlog __read_mostly = 1000;
4226 EXPORT_SYMBOL(netdev_max_backlog);
4227 
4228 int netdev_tstamp_prequeue __read_mostly = 1;
4229 int netdev_budget __read_mostly = 300;
4230 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4231 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4232 int weight_p __read_mostly = 64;           /* old backlog weight */
4233 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4234 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4235 int dev_rx_weight __read_mostly = 64;
4236 int dev_tx_weight __read_mostly = 64;
4237 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4238 int gro_normal_batch __read_mostly = 8;
4239 
4240 /* Called with irq disabled */
4241 static inline void ____napi_schedule(struct softnet_data *sd,
4242 				     struct napi_struct *napi)
4243 {
4244 	list_add_tail(&napi->poll_list, &sd->poll_list);
4245 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4246 }
4247 
4248 #ifdef CONFIG_RPS
4249 
4250 /* One global table that all flow-based protocols share. */
4251 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4252 EXPORT_SYMBOL(rps_sock_flow_table);
4253 u32 rps_cpu_mask __read_mostly;
4254 EXPORT_SYMBOL(rps_cpu_mask);
4255 
4256 struct static_key_false rps_needed __read_mostly;
4257 EXPORT_SYMBOL(rps_needed);
4258 struct static_key_false rfs_needed __read_mostly;
4259 EXPORT_SYMBOL(rfs_needed);
4260 
4261 static struct rps_dev_flow *
4262 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4263 	    struct rps_dev_flow *rflow, u16 next_cpu)
4264 {
4265 	if (next_cpu < nr_cpu_ids) {
4266 #ifdef CONFIG_RFS_ACCEL
4267 		struct netdev_rx_queue *rxqueue;
4268 		struct rps_dev_flow_table *flow_table;
4269 		struct rps_dev_flow *old_rflow;
4270 		u32 flow_id;
4271 		u16 rxq_index;
4272 		int rc;
4273 
4274 		/* Should we steer this flow to a different hardware queue? */
4275 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4276 		    !(dev->features & NETIF_F_NTUPLE))
4277 			goto out;
4278 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4279 		if (rxq_index == skb_get_rx_queue(skb))
4280 			goto out;
4281 
4282 		rxqueue = dev->_rx + rxq_index;
4283 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4284 		if (!flow_table)
4285 			goto out;
4286 		flow_id = skb_get_hash(skb) & flow_table->mask;
4287 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4288 							rxq_index, flow_id);
4289 		if (rc < 0)
4290 			goto out;
4291 		old_rflow = rflow;
4292 		rflow = &flow_table->flows[flow_id];
4293 		rflow->filter = rc;
4294 		if (old_rflow->filter == rflow->filter)
4295 			old_rflow->filter = RPS_NO_FILTER;
4296 	out:
4297 #endif
4298 		rflow->last_qtail =
4299 			per_cpu(softnet_data, next_cpu).input_queue_head;
4300 	}
4301 
4302 	rflow->cpu = next_cpu;
4303 	return rflow;
4304 }
4305 
4306 /*
4307  * get_rps_cpu is called from netif_receive_skb and returns the target
4308  * CPU from the RPS map of the receiving queue for a given skb.
4309  * rcu_read_lock must be held on entry.
4310  */
4311 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4312 		       struct rps_dev_flow **rflowp)
4313 {
4314 	const struct rps_sock_flow_table *sock_flow_table;
4315 	struct netdev_rx_queue *rxqueue = dev->_rx;
4316 	struct rps_dev_flow_table *flow_table;
4317 	struct rps_map *map;
4318 	int cpu = -1;
4319 	u32 tcpu;
4320 	u32 hash;
4321 
4322 	if (skb_rx_queue_recorded(skb)) {
4323 		u16 index = skb_get_rx_queue(skb);
4324 
4325 		if (unlikely(index >= dev->real_num_rx_queues)) {
4326 			WARN_ONCE(dev->real_num_rx_queues > 1,
4327 				  "%s received packet on queue %u, but number "
4328 				  "of RX queues is %u\n",
4329 				  dev->name, index, dev->real_num_rx_queues);
4330 			goto done;
4331 		}
4332 		rxqueue += index;
4333 	}
4334 
4335 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4336 
4337 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4338 	map = rcu_dereference(rxqueue->rps_map);
4339 	if (!flow_table && !map)
4340 		goto done;
4341 
4342 	skb_reset_network_header(skb);
4343 	hash = skb_get_hash(skb);
4344 	if (!hash)
4345 		goto done;
4346 
4347 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4348 	if (flow_table && sock_flow_table) {
4349 		struct rps_dev_flow *rflow;
4350 		u32 next_cpu;
4351 		u32 ident;
4352 
4353 		/* First check into global flow table if there is a match */
4354 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4355 		if ((ident ^ hash) & ~rps_cpu_mask)
4356 			goto try_rps;
4357 
4358 		next_cpu = ident & rps_cpu_mask;
4359 
4360 		/* OK, now we know there is a match,
4361 		 * we can look at the local (per receive queue) flow table
4362 		 */
4363 		rflow = &flow_table->flows[hash & flow_table->mask];
4364 		tcpu = rflow->cpu;
4365 
4366 		/*
4367 		 * If the desired CPU (where last recvmsg was done) is
4368 		 * different from current CPU (one in the rx-queue flow
4369 		 * table entry), switch if one of the following holds:
4370 		 *   - Current CPU is unset (>= nr_cpu_ids).
4371 		 *   - Current CPU is offline.
4372 		 *   - The current CPU's queue tail has advanced beyond the
4373 		 *     last packet that was enqueued using this table entry.
4374 		 *     This guarantees that all previous packets for the flow
4375 		 *     have been dequeued, thus preserving in order delivery.
4376 		 */
4377 		if (unlikely(tcpu != next_cpu) &&
4378 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4379 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4380 		      rflow->last_qtail)) >= 0)) {
4381 			tcpu = next_cpu;
4382 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4383 		}
4384 
4385 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4386 			*rflowp = rflow;
4387 			cpu = tcpu;
4388 			goto done;
4389 		}
4390 	}
4391 
4392 try_rps:
4393 
4394 	if (map) {
4395 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4396 		if (cpu_online(tcpu)) {
4397 			cpu = tcpu;
4398 			goto done;
4399 		}
4400 	}
4401 
4402 done:
4403 	return cpu;
4404 }
4405 
4406 #ifdef CONFIG_RFS_ACCEL
4407 
4408 /**
4409  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4410  * @dev: Device on which the filter was set
4411  * @rxq_index: RX queue index
4412  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4413  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4414  *
4415  * Drivers that implement ndo_rx_flow_steer() should periodically call
4416  * this function for each installed filter and remove the filters for
4417  * which it returns %true.
4418  */
4419 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4420 			 u32 flow_id, u16 filter_id)
4421 {
4422 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4423 	struct rps_dev_flow_table *flow_table;
4424 	struct rps_dev_flow *rflow;
4425 	bool expire = true;
4426 	unsigned int cpu;
4427 
4428 	rcu_read_lock();
4429 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4430 	if (flow_table && flow_id <= flow_table->mask) {
4431 		rflow = &flow_table->flows[flow_id];
4432 		cpu = READ_ONCE(rflow->cpu);
4433 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4434 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4435 			   rflow->last_qtail) <
4436 		     (int)(10 * flow_table->mask)))
4437 			expire = false;
4438 	}
4439 	rcu_read_unlock();
4440 	return expire;
4441 }
4442 EXPORT_SYMBOL(rps_may_expire_flow);
4443 
4444 #endif /* CONFIG_RFS_ACCEL */
4445 
4446 /* Called from hardirq (IPI) context */
4447 static void rps_trigger_softirq(void *data)
4448 {
4449 	struct softnet_data *sd = data;
4450 
4451 	____napi_schedule(sd, &sd->backlog);
4452 	sd->received_rps++;
4453 }
4454 
4455 #endif /* CONFIG_RPS */
4456 
4457 /*
4458  * Check if this softnet_data structure is another cpu one
4459  * If yes, queue it to our IPI list and return 1
4460  * If no, return 0
4461  */
4462 static int rps_ipi_queued(struct softnet_data *sd)
4463 {
4464 #ifdef CONFIG_RPS
4465 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4466 
4467 	if (sd != mysd) {
4468 		sd->rps_ipi_next = mysd->rps_ipi_list;
4469 		mysd->rps_ipi_list = sd;
4470 
4471 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4472 		return 1;
4473 	}
4474 #endif /* CONFIG_RPS */
4475 	return 0;
4476 }
4477 
4478 #ifdef CONFIG_NET_FLOW_LIMIT
4479 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4480 #endif
4481 
4482 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4483 {
4484 #ifdef CONFIG_NET_FLOW_LIMIT
4485 	struct sd_flow_limit *fl;
4486 	struct softnet_data *sd;
4487 	unsigned int old_flow, new_flow;
4488 
4489 	if (qlen < (netdev_max_backlog >> 1))
4490 		return false;
4491 
4492 	sd = this_cpu_ptr(&softnet_data);
4493 
4494 	rcu_read_lock();
4495 	fl = rcu_dereference(sd->flow_limit);
4496 	if (fl) {
4497 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4498 		old_flow = fl->history[fl->history_head];
4499 		fl->history[fl->history_head] = new_flow;
4500 
4501 		fl->history_head++;
4502 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4503 
4504 		if (likely(fl->buckets[old_flow]))
4505 			fl->buckets[old_flow]--;
4506 
4507 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4508 			fl->count++;
4509 			rcu_read_unlock();
4510 			return true;
4511 		}
4512 	}
4513 	rcu_read_unlock();
4514 #endif
4515 	return false;
4516 }
4517 
4518 /*
4519  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4520  * queue (may be a remote CPU queue).
4521  */
4522 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4523 			      unsigned int *qtail)
4524 {
4525 	struct softnet_data *sd;
4526 	unsigned long flags;
4527 	unsigned int qlen;
4528 
4529 	sd = &per_cpu(softnet_data, cpu);
4530 
4531 	local_irq_save(flags);
4532 
4533 	rps_lock(sd);
4534 	if (!netif_running(skb->dev))
4535 		goto drop;
4536 	qlen = skb_queue_len(&sd->input_pkt_queue);
4537 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4538 		if (qlen) {
4539 enqueue:
4540 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4541 			input_queue_tail_incr_save(sd, qtail);
4542 			rps_unlock(sd);
4543 			local_irq_restore(flags);
4544 			return NET_RX_SUCCESS;
4545 		}
4546 
4547 		/* Schedule NAPI for backlog device
4548 		 * We can use non atomic operation since we own the queue lock
4549 		 */
4550 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4551 			if (!rps_ipi_queued(sd))
4552 				____napi_schedule(sd, &sd->backlog);
4553 		}
4554 		goto enqueue;
4555 	}
4556 
4557 drop:
4558 	sd->dropped++;
4559 	rps_unlock(sd);
4560 
4561 	local_irq_restore(flags);
4562 
4563 	atomic_long_inc(&skb->dev->rx_dropped);
4564 	kfree_skb(skb);
4565 	return NET_RX_DROP;
4566 }
4567 
4568 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4569 {
4570 	struct net_device *dev = skb->dev;
4571 	struct netdev_rx_queue *rxqueue;
4572 
4573 	rxqueue = dev->_rx;
4574 
4575 	if (skb_rx_queue_recorded(skb)) {
4576 		u16 index = skb_get_rx_queue(skb);
4577 
4578 		if (unlikely(index >= dev->real_num_rx_queues)) {
4579 			WARN_ONCE(dev->real_num_rx_queues > 1,
4580 				  "%s received packet on queue %u, but number "
4581 				  "of RX queues is %u\n",
4582 				  dev->name, index, dev->real_num_rx_queues);
4583 
4584 			return rxqueue; /* Return first rxqueue */
4585 		}
4586 		rxqueue += index;
4587 	}
4588 	return rxqueue;
4589 }
4590 
4591 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4592 				     struct xdp_buff *xdp,
4593 				     struct bpf_prog *xdp_prog)
4594 {
4595 	struct netdev_rx_queue *rxqueue;
4596 	void *orig_data, *orig_data_end;
4597 	u32 metalen, act = XDP_DROP;
4598 	__be16 orig_eth_type;
4599 	struct ethhdr *eth;
4600 	bool orig_bcast;
4601 	int hlen, off;
4602 	u32 mac_len;
4603 
4604 	/* Reinjected packets coming from act_mirred or similar should
4605 	 * not get XDP generic processing.
4606 	 */
4607 	if (skb_is_redirected(skb))
4608 		return XDP_PASS;
4609 
4610 	/* XDP packets must be linear and must have sufficient headroom
4611 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4612 	 * native XDP provides, thus we need to do it here as well.
4613 	 */
4614 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4615 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4616 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4617 		int troom = skb->tail + skb->data_len - skb->end;
4618 
4619 		/* In case we have to go down the path and also linearize,
4620 		 * then lets do the pskb_expand_head() work just once here.
4621 		 */
4622 		if (pskb_expand_head(skb,
4623 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4624 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4625 			goto do_drop;
4626 		if (skb_linearize(skb))
4627 			goto do_drop;
4628 	}
4629 
4630 	/* The XDP program wants to see the packet starting at the MAC
4631 	 * header.
4632 	 */
4633 	mac_len = skb->data - skb_mac_header(skb);
4634 	hlen = skb_headlen(skb) + mac_len;
4635 	xdp->data = skb->data - mac_len;
4636 	xdp->data_meta = xdp->data;
4637 	xdp->data_end = xdp->data + hlen;
4638 	xdp->data_hard_start = skb->data - skb_headroom(skb);
4639 
4640 	/* SKB "head" area always have tailroom for skb_shared_info */
4641 	xdp->frame_sz  = (void *)skb_end_pointer(skb) - xdp->data_hard_start;
4642 	xdp->frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4643 
4644 	orig_data_end = xdp->data_end;
4645 	orig_data = xdp->data;
4646 	eth = (struct ethhdr *)xdp->data;
4647 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4648 	orig_eth_type = eth->h_proto;
4649 
4650 	rxqueue = netif_get_rxqueue(skb);
4651 	xdp->rxq = &rxqueue->xdp_rxq;
4652 
4653 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4654 
4655 	/* check if bpf_xdp_adjust_head was used */
4656 	off = xdp->data - orig_data;
4657 	if (off) {
4658 		if (off > 0)
4659 			__skb_pull(skb, off);
4660 		else if (off < 0)
4661 			__skb_push(skb, -off);
4662 
4663 		skb->mac_header += off;
4664 		skb_reset_network_header(skb);
4665 	}
4666 
4667 	/* check if bpf_xdp_adjust_tail was used */
4668 	off = xdp->data_end - orig_data_end;
4669 	if (off != 0) {
4670 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4671 		skb->len += off; /* positive on grow, negative on shrink */
4672 	}
4673 
4674 	/* check if XDP changed eth hdr such SKB needs update */
4675 	eth = (struct ethhdr *)xdp->data;
4676 	if ((orig_eth_type != eth->h_proto) ||
4677 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4678 		__skb_push(skb, ETH_HLEN);
4679 		skb->protocol = eth_type_trans(skb, skb->dev);
4680 	}
4681 
4682 	switch (act) {
4683 	case XDP_REDIRECT:
4684 	case XDP_TX:
4685 		__skb_push(skb, mac_len);
4686 		break;
4687 	case XDP_PASS:
4688 		metalen = xdp->data - xdp->data_meta;
4689 		if (metalen)
4690 			skb_metadata_set(skb, metalen);
4691 		break;
4692 	default:
4693 		bpf_warn_invalid_xdp_action(act);
4694 		/* fall through */
4695 	case XDP_ABORTED:
4696 		trace_xdp_exception(skb->dev, xdp_prog, act);
4697 		/* fall through */
4698 	case XDP_DROP:
4699 	do_drop:
4700 		kfree_skb(skb);
4701 		break;
4702 	}
4703 
4704 	return act;
4705 }
4706 
4707 /* When doing generic XDP we have to bypass the qdisc layer and the
4708  * network taps in order to match in-driver-XDP behavior.
4709  */
4710 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4711 {
4712 	struct net_device *dev = skb->dev;
4713 	struct netdev_queue *txq;
4714 	bool free_skb = true;
4715 	int cpu, rc;
4716 
4717 	txq = netdev_core_pick_tx(dev, skb, NULL);
4718 	cpu = smp_processor_id();
4719 	HARD_TX_LOCK(dev, txq, cpu);
4720 	if (!netif_xmit_stopped(txq)) {
4721 		rc = netdev_start_xmit(skb, dev, txq, 0);
4722 		if (dev_xmit_complete(rc))
4723 			free_skb = false;
4724 	}
4725 	HARD_TX_UNLOCK(dev, txq);
4726 	if (free_skb) {
4727 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4728 		kfree_skb(skb);
4729 	}
4730 }
4731 
4732 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4733 
4734 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4735 {
4736 	if (xdp_prog) {
4737 		struct xdp_buff xdp;
4738 		u32 act;
4739 		int err;
4740 
4741 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4742 		if (act != XDP_PASS) {
4743 			switch (act) {
4744 			case XDP_REDIRECT:
4745 				err = xdp_do_generic_redirect(skb->dev, skb,
4746 							      &xdp, xdp_prog);
4747 				if (err)
4748 					goto out_redir;
4749 				break;
4750 			case XDP_TX:
4751 				generic_xdp_tx(skb, xdp_prog);
4752 				break;
4753 			}
4754 			return XDP_DROP;
4755 		}
4756 	}
4757 	return XDP_PASS;
4758 out_redir:
4759 	kfree_skb(skb);
4760 	return XDP_DROP;
4761 }
4762 EXPORT_SYMBOL_GPL(do_xdp_generic);
4763 
4764 static int netif_rx_internal(struct sk_buff *skb)
4765 {
4766 	int ret;
4767 
4768 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4769 
4770 	trace_netif_rx(skb);
4771 
4772 #ifdef CONFIG_RPS
4773 	if (static_branch_unlikely(&rps_needed)) {
4774 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4775 		int cpu;
4776 
4777 		preempt_disable();
4778 		rcu_read_lock();
4779 
4780 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4781 		if (cpu < 0)
4782 			cpu = smp_processor_id();
4783 
4784 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4785 
4786 		rcu_read_unlock();
4787 		preempt_enable();
4788 	} else
4789 #endif
4790 	{
4791 		unsigned int qtail;
4792 
4793 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4794 		put_cpu();
4795 	}
4796 	return ret;
4797 }
4798 
4799 /**
4800  *	netif_rx	-	post buffer to the network code
4801  *	@skb: buffer to post
4802  *
4803  *	This function receives a packet from a device driver and queues it for
4804  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4805  *	may be dropped during processing for congestion control or by the
4806  *	protocol layers.
4807  *
4808  *	return values:
4809  *	NET_RX_SUCCESS	(no congestion)
4810  *	NET_RX_DROP     (packet was dropped)
4811  *
4812  */
4813 
4814 int netif_rx(struct sk_buff *skb)
4815 {
4816 	int ret;
4817 
4818 	trace_netif_rx_entry(skb);
4819 
4820 	ret = netif_rx_internal(skb);
4821 	trace_netif_rx_exit(ret);
4822 
4823 	return ret;
4824 }
4825 EXPORT_SYMBOL(netif_rx);
4826 
4827 int netif_rx_ni(struct sk_buff *skb)
4828 {
4829 	int err;
4830 
4831 	trace_netif_rx_ni_entry(skb);
4832 
4833 	preempt_disable();
4834 	err = netif_rx_internal(skb);
4835 	if (local_softirq_pending())
4836 		do_softirq();
4837 	preempt_enable();
4838 	trace_netif_rx_ni_exit(err);
4839 
4840 	return err;
4841 }
4842 EXPORT_SYMBOL(netif_rx_ni);
4843 
4844 static __latent_entropy void net_tx_action(struct softirq_action *h)
4845 {
4846 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4847 
4848 	if (sd->completion_queue) {
4849 		struct sk_buff *clist;
4850 
4851 		local_irq_disable();
4852 		clist = sd->completion_queue;
4853 		sd->completion_queue = NULL;
4854 		local_irq_enable();
4855 
4856 		while (clist) {
4857 			struct sk_buff *skb = clist;
4858 
4859 			clist = clist->next;
4860 
4861 			WARN_ON(refcount_read(&skb->users));
4862 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4863 				trace_consume_skb(skb);
4864 			else
4865 				trace_kfree_skb(skb, net_tx_action);
4866 
4867 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4868 				__kfree_skb(skb);
4869 			else
4870 				__kfree_skb_defer(skb);
4871 		}
4872 
4873 		__kfree_skb_flush();
4874 	}
4875 
4876 	if (sd->output_queue) {
4877 		struct Qdisc *head;
4878 
4879 		local_irq_disable();
4880 		head = sd->output_queue;
4881 		sd->output_queue = NULL;
4882 		sd->output_queue_tailp = &sd->output_queue;
4883 		local_irq_enable();
4884 
4885 		while (head) {
4886 			struct Qdisc *q = head;
4887 			spinlock_t *root_lock = NULL;
4888 
4889 			head = head->next_sched;
4890 
4891 			if (!(q->flags & TCQ_F_NOLOCK)) {
4892 				root_lock = qdisc_lock(q);
4893 				spin_lock(root_lock);
4894 			}
4895 			/* We need to make sure head->next_sched is read
4896 			 * before clearing __QDISC_STATE_SCHED
4897 			 */
4898 			smp_mb__before_atomic();
4899 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4900 			qdisc_run(q);
4901 			if (root_lock)
4902 				spin_unlock(root_lock);
4903 		}
4904 	}
4905 
4906 	xfrm_dev_backlog(sd);
4907 }
4908 
4909 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4910 /* This hook is defined here for ATM LANE */
4911 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4912 			     unsigned char *addr) __read_mostly;
4913 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4914 #endif
4915 
4916 static inline struct sk_buff *
4917 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4918 		   struct net_device *orig_dev)
4919 {
4920 #ifdef CONFIG_NET_CLS_ACT
4921 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4922 	struct tcf_result cl_res;
4923 
4924 	/* If there's at least one ingress present somewhere (so
4925 	 * we get here via enabled static key), remaining devices
4926 	 * that are not configured with an ingress qdisc will bail
4927 	 * out here.
4928 	 */
4929 	if (!miniq)
4930 		return skb;
4931 
4932 	if (*pt_prev) {
4933 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4934 		*pt_prev = NULL;
4935 	}
4936 
4937 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4938 	skb->tc_at_ingress = 1;
4939 	mini_qdisc_bstats_cpu_update(miniq, skb);
4940 
4941 	switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
4942 				     &cl_res, false)) {
4943 	case TC_ACT_OK:
4944 	case TC_ACT_RECLASSIFY:
4945 		skb->tc_index = TC_H_MIN(cl_res.classid);
4946 		break;
4947 	case TC_ACT_SHOT:
4948 		mini_qdisc_qstats_cpu_drop(miniq);
4949 		kfree_skb(skb);
4950 		return NULL;
4951 	case TC_ACT_STOLEN:
4952 	case TC_ACT_QUEUED:
4953 	case TC_ACT_TRAP:
4954 		consume_skb(skb);
4955 		return NULL;
4956 	case TC_ACT_REDIRECT:
4957 		/* skb_mac_header check was done by cls/act_bpf, so
4958 		 * we can safely push the L2 header back before
4959 		 * redirecting to another netdev
4960 		 */
4961 		__skb_push(skb, skb->mac_len);
4962 		skb_do_redirect(skb);
4963 		return NULL;
4964 	case TC_ACT_CONSUMED:
4965 		return NULL;
4966 	default:
4967 		break;
4968 	}
4969 #endif /* CONFIG_NET_CLS_ACT */
4970 	return skb;
4971 }
4972 
4973 /**
4974  *	netdev_is_rx_handler_busy - check if receive handler is registered
4975  *	@dev: device to check
4976  *
4977  *	Check if a receive handler is already registered for a given device.
4978  *	Return true if there one.
4979  *
4980  *	The caller must hold the rtnl_mutex.
4981  */
4982 bool netdev_is_rx_handler_busy(struct net_device *dev)
4983 {
4984 	ASSERT_RTNL();
4985 	return dev && rtnl_dereference(dev->rx_handler);
4986 }
4987 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4988 
4989 /**
4990  *	netdev_rx_handler_register - register receive handler
4991  *	@dev: device to register a handler for
4992  *	@rx_handler: receive handler to register
4993  *	@rx_handler_data: data pointer that is used by rx handler
4994  *
4995  *	Register a receive handler for a device. This handler will then be
4996  *	called from __netif_receive_skb. A negative errno code is returned
4997  *	on a failure.
4998  *
4999  *	The caller must hold the rtnl_mutex.
5000  *
5001  *	For a general description of rx_handler, see enum rx_handler_result.
5002  */
5003 int netdev_rx_handler_register(struct net_device *dev,
5004 			       rx_handler_func_t *rx_handler,
5005 			       void *rx_handler_data)
5006 {
5007 	if (netdev_is_rx_handler_busy(dev))
5008 		return -EBUSY;
5009 
5010 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5011 		return -EINVAL;
5012 
5013 	/* Note: rx_handler_data must be set before rx_handler */
5014 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5015 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5016 
5017 	return 0;
5018 }
5019 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5020 
5021 /**
5022  *	netdev_rx_handler_unregister - unregister receive handler
5023  *	@dev: device to unregister a handler from
5024  *
5025  *	Unregister a receive handler from a device.
5026  *
5027  *	The caller must hold the rtnl_mutex.
5028  */
5029 void netdev_rx_handler_unregister(struct net_device *dev)
5030 {
5031 
5032 	ASSERT_RTNL();
5033 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5034 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5035 	 * section has a guarantee to see a non NULL rx_handler_data
5036 	 * as well.
5037 	 */
5038 	synchronize_net();
5039 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5040 }
5041 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5042 
5043 /*
5044  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5045  * the special handling of PFMEMALLOC skbs.
5046  */
5047 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5048 {
5049 	switch (skb->protocol) {
5050 	case htons(ETH_P_ARP):
5051 	case htons(ETH_P_IP):
5052 	case htons(ETH_P_IPV6):
5053 	case htons(ETH_P_8021Q):
5054 	case htons(ETH_P_8021AD):
5055 		return true;
5056 	default:
5057 		return false;
5058 	}
5059 }
5060 
5061 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5062 			     int *ret, struct net_device *orig_dev)
5063 {
5064 	if (nf_hook_ingress_active(skb)) {
5065 		int ingress_retval;
5066 
5067 		if (*pt_prev) {
5068 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5069 			*pt_prev = NULL;
5070 		}
5071 
5072 		rcu_read_lock();
5073 		ingress_retval = nf_hook_ingress(skb);
5074 		rcu_read_unlock();
5075 		return ingress_retval;
5076 	}
5077 	return 0;
5078 }
5079 
5080 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5081 				    struct packet_type **ppt_prev)
5082 {
5083 	struct packet_type *ptype, *pt_prev;
5084 	rx_handler_func_t *rx_handler;
5085 	struct sk_buff *skb = *pskb;
5086 	struct net_device *orig_dev;
5087 	bool deliver_exact = false;
5088 	int ret = NET_RX_DROP;
5089 	__be16 type;
5090 
5091 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
5092 
5093 	trace_netif_receive_skb(skb);
5094 
5095 	orig_dev = skb->dev;
5096 
5097 	skb_reset_network_header(skb);
5098 	if (!skb_transport_header_was_set(skb))
5099 		skb_reset_transport_header(skb);
5100 	skb_reset_mac_len(skb);
5101 
5102 	pt_prev = NULL;
5103 
5104 another_round:
5105 	skb->skb_iif = skb->dev->ifindex;
5106 
5107 	__this_cpu_inc(softnet_data.processed);
5108 
5109 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5110 		int ret2;
5111 
5112 		preempt_disable();
5113 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5114 		preempt_enable();
5115 
5116 		if (ret2 != XDP_PASS) {
5117 			ret = NET_RX_DROP;
5118 			goto out;
5119 		}
5120 		skb_reset_mac_len(skb);
5121 	}
5122 
5123 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5124 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5125 		skb = skb_vlan_untag(skb);
5126 		if (unlikely(!skb))
5127 			goto out;
5128 	}
5129 
5130 	if (skb_skip_tc_classify(skb))
5131 		goto skip_classify;
5132 
5133 	if (pfmemalloc)
5134 		goto skip_taps;
5135 
5136 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5137 		if (pt_prev)
5138 			ret = deliver_skb(skb, pt_prev, orig_dev);
5139 		pt_prev = ptype;
5140 	}
5141 
5142 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5143 		if (pt_prev)
5144 			ret = deliver_skb(skb, pt_prev, orig_dev);
5145 		pt_prev = ptype;
5146 	}
5147 
5148 skip_taps:
5149 #ifdef CONFIG_NET_INGRESS
5150 	if (static_branch_unlikely(&ingress_needed_key)) {
5151 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
5152 		if (!skb)
5153 			goto out;
5154 
5155 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5156 			goto out;
5157 	}
5158 #endif
5159 	skb_reset_redirect(skb);
5160 skip_classify:
5161 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5162 		goto drop;
5163 
5164 	if (skb_vlan_tag_present(skb)) {
5165 		if (pt_prev) {
5166 			ret = deliver_skb(skb, pt_prev, orig_dev);
5167 			pt_prev = NULL;
5168 		}
5169 		if (vlan_do_receive(&skb))
5170 			goto another_round;
5171 		else if (unlikely(!skb))
5172 			goto out;
5173 	}
5174 
5175 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5176 	if (rx_handler) {
5177 		if (pt_prev) {
5178 			ret = deliver_skb(skb, pt_prev, orig_dev);
5179 			pt_prev = NULL;
5180 		}
5181 		switch (rx_handler(&skb)) {
5182 		case RX_HANDLER_CONSUMED:
5183 			ret = NET_RX_SUCCESS;
5184 			goto out;
5185 		case RX_HANDLER_ANOTHER:
5186 			goto another_round;
5187 		case RX_HANDLER_EXACT:
5188 			deliver_exact = true;
5189 		case RX_HANDLER_PASS:
5190 			break;
5191 		default:
5192 			BUG();
5193 		}
5194 	}
5195 
5196 	if (unlikely(skb_vlan_tag_present(skb))) {
5197 check_vlan_id:
5198 		if (skb_vlan_tag_get_id(skb)) {
5199 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5200 			 * find vlan device.
5201 			 */
5202 			skb->pkt_type = PACKET_OTHERHOST;
5203 		} else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5204 			   skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5205 			/* Outer header is 802.1P with vlan 0, inner header is
5206 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5207 			 * not find vlan dev for vlan id 0.
5208 			 */
5209 			__vlan_hwaccel_clear_tag(skb);
5210 			skb = skb_vlan_untag(skb);
5211 			if (unlikely(!skb))
5212 				goto out;
5213 			if (vlan_do_receive(&skb))
5214 				/* After stripping off 802.1P header with vlan 0
5215 				 * vlan dev is found for inner header.
5216 				 */
5217 				goto another_round;
5218 			else if (unlikely(!skb))
5219 				goto out;
5220 			else
5221 				/* We have stripped outer 802.1P vlan 0 header.
5222 				 * But could not find vlan dev.
5223 				 * check again for vlan id to set OTHERHOST.
5224 				 */
5225 				goto check_vlan_id;
5226 		}
5227 		/* Note: we might in the future use prio bits
5228 		 * and set skb->priority like in vlan_do_receive()
5229 		 * For the time being, just ignore Priority Code Point
5230 		 */
5231 		__vlan_hwaccel_clear_tag(skb);
5232 	}
5233 
5234 	type = skb->protocol;
5235 
5236 	/* deliver only exact match when indicated */
5237 	if (likely(!deliver_exact)) {
5238 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5239 				       &ptype_base[ntohs(type) &
5240 						   PTYPE_HASH_MASK]);
5241 	}
5242 
5243 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5244 			       &orig_dev->ptype_specific);
5245 
5246 	if (unlikely(skb->dev != orig_dev)) {
5247 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5248 				       &skb->dev->ptype_specific);
5249 	}
5250 
5251 	if (pt_prev) {
5252 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5253 			goto drop;
5254 		*ppt_prev = pt_prev;
5255 	} else {
5256 drop:
5257 		if (!deliver_exact)
5258 			atomic_long_inc(&skb->dev->rx_dropped);
5259 		else
5260 			atomic_long_inc(&skb->dev->rx_nohandler);
5261 		kfree_skb(skb);
5262 		/* Jamal, now you will not able to escape explaining
5263 		 * me how you were going to use this. :-)
5264 		 */
5265 		ret = NET_RX_DROP;
5266 	}
5267 
5268 out:
5269 	/* The invariant here is that if *ppt_prev is not NULL
5270 	 * then skb should also be non-NULL.
5271 	 *
5272 	 * Apparently *ppt_prev assignment above holds this invariant due to
5273 	 * skb dereferencing near it.
5274 	 */
5275 	*pskb = skb;
5276 	return ret;
5277 }
5278 
5279 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5280 {
5281 	struct net_device *orig_dev = skb->dev;
5282 	struct packet_type *pt_prev = NULL;
5283 	int ret;
5284 
5285 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5286 	if (pt_prev)
5287 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5288 					 skb->dev, pt_prev, orig_dev);
5289 	return ret;
5290 }
5291 
5292 /**
5293  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5294  *	@skb: buffer to process
5295  *
5296  *	More direct receive version of netif_receive_skb().  It should
5297  *	only be used by callers that have a need to skip RPS and Generic XDP.
5298  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5299  *
5300  *	This function may only be called from softirq context and interrupts
5301  *	should be enabled.
5302  *
5303  *	Return values (usually ignored):
5304  *	NET_RX_SUCCESS: no congestion
5305  *	NET_RX_DROP: packet was dropped
5306  */
5307 int netif_receive_skb_core(struct sk_buff *skb)
5308 {
5309 	int ret;
5310 
5311 	rcu_read_lock();
5312 	ret = __netif_receive_skb_one_core(skb, false);
5313 	rcu_read_unlock();
5314 
5315 	return ret;
5316 }
5317 EXPORT_SYMBOL(netif_receive_skb_core);
5318 
5319 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5320 						  struct packet_type *pt_prev,
5321 						  struct net_device *orig_dev)
5322 {
5323 	struct sk_buff *skb, *next;
5324 
5325 	if (!pt_prev)
5326 		return;
5327 	if (list_empty(head))
5328 		return;
5329 	if (pt_prev->list_func != NULL)
5330 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5331 				   ip_list_rcv, head, pt_prev, orig_dev);
5332 	else
5333 		list_for_each_entry_safe(skb, next, head, list) {
5334 			skb_list_del_init(skb);
5335 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5336 		}
5337 }
5338 
5339 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5340 {
5341 	/* Fast-path assumptions:
5342 	 * - There is no RX handler.
5343 	 * - Only one packet_type matches.
5344 	 * If either of these fails, we will end up doing some per-packet
5345 	 * processing in-line, then handling the 'last ptype' for the whole
5346 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5347 	 * because the 'last ptype' must be constant across the sublist, and all
5348 	 * other ptypes are handled per-packet.
5349 	 */
5350 	/* Current (common) ptype of sublist */
5351 	struct packet_type *pt_curr = NULL;
5352 	/* Current (common) orig_dev of sublist */
5353 	struct net_device *od_curr = NULL;
5354 	struct list_head sublist;
5355 	struct sk_buff *skb, *next;
5356 
5357 	INIT_LIST_HEAD(&sublist);
5358 	list_for_each_entry_safe(skb, next, head, list) {
5359 		struct net_device *orig_dev = skb->dev;
5360 		struct packet_type *pt_prev = NULL;
5361 
5362 		skb_list_del_init(skb);
5363 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5364 		if (!pt_prev)
5365 			continue;
5366 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5367 			/* dispatch old sublist */
5368 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5369 			/* start new sublist */
5370 			INIT_LIST_HEAD(&sublist);
5371 			pt_curr = pt_prev;
5372 			od_curr = orig_dev;
5373 		}
5374 		list_add_tail(&skb->list, &sublist);
5375 	}
5376 
5377 	/* dispatch final sublist */
5378 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5379 }
5380 
5381 static int __netif_receive_skb(struct sk_buff *skb)
5382 {
5383 	int ret;
5384 
5385 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5386 		unsigned int noreclaim_flag;
5387 
5388 		/*
5389 		 * PFMEMALLOC skbs are special, they should
5390 		 * - be delivered to SOCK_MEMALLOC sockets only
5391 		 * - stay away from userspace
5392 		 * - have bounded memory usage
5393 		 *
5394 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5395 		 * context down to all allocation sites.
5396 		 */
5397 		noreclaim_flag = memalloc_noreclaim_save();
5398 		ret = __netif_receive_skb_one_core(skb, true);
5399 		memalloc_noreclaim_restore(noreclaim_flag);
5400 	} else
5401 		ret = __netif_receive_skb_one_core(skb, false);
5402 
5403 	return ret;
5404 }
5405 
5406 static void __netif_receive_skb_list(struct list_head *head)
5407 {
5408 	unsigned long noreclaim_flag = 0;
5409 	struct sk_buff *skb, *next;
5410 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5411 
5412 	list_for_each_entry_safe(skb, next, head, list) {
5413 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5414 			struct list_head sublist;
5415 
5416 			/* Handle the previous sublist */
5417 			list_cut_before(&sublist, head, &skb->list);
5418 			if (!list_empty(&sublist))
5419 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5420 			pfmemalloc = !pfmemalloc;
5421 			/* See comments in __netif_receive_skb */
5422 			if (pfmemalloc)
5423 				noreclaim_flag = memalloc_noreclaim_save();
5424 			else
5425 				memalloc_noreclaim_restore(noreclaim_flag);
5426 		}
5427 	}
5428 	/* Handle the remaining sublist */
5429 	if (!list_empty(head))
5430 		__netif_receive_skb_list_core(head, pfmemalloc);
5431 	/* Restore pflags */
5432 	if (pfmemalloc)
5433 		memalloc_noreclaim_restore(noreclaim_flag);
5434 }
5435 
5436 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5437 {
5438 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5439 	struct bpf_prog *new = xdp->prog;
5440 	int ret = 0;
5441 
5442 	if (new) {
5443 		u32 i;
5444 
5445 		/* generic XDP does not work with DEVMAPs that can
5446 		 * have a bpf_prog installed on an entry
5447 		 */
5448 		for (i = 0; i < new->aux->used_map_cnt; i++) {
5449 			if (dev_map_can_have_prog(new->aux->used_maps[i]))
5450 				return -EINVAL;
5451 		}
5452 	}
5453 
5454 	switch (xdp->command) {
5455 	case XDP_SETUP_PROG:
5456 		rcu_assign_pointer(dev->xdp_prog, new);
5457 		if (old)
5458 			bpf_prog_put(old);
5459 
5460 		if (old && !new) {
5461 			static_branch_dec(&generic_xdp_needed_key);
5462 		} else if (new && !old) {
5463 			static_branch_inc(&generic_xdp_needed_key);
5464 			dev_disable_lro(dev);
5465 			dev_disable_gro_hw(dev);
5466 		}
5467 		break;
5468 
5469 	case XDP_QUERY_PROG:
5470 		xdp->prog_id = old ? old->aux->id : 0;
5471 		break;
5472 
5473 	default:
5474 		ret = -EINVAL;
5475 		break;
5476 	}
5477 
5478 	return ret;
5479 }
5480 
5481 static int netif_receive_skb_internal(struct sk_buff *skb)
5482 {
5483 	int ret;
5484 
5485 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5486 
5487 	if (skb_defer_rx_timestamp(skb))
5488 		return NET_RX_SUCCESS;
5489 
5490 	rcu_read_lock();
5491 #ifdef CONFIG_RPS
5492 	if (static_branch_unlikely(&rps_needed)) {
5493 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5494 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5495 
5496 		if (cpu >= 0) {
5497 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5498 			rcu_read_unlock();
5499 			return ret;
5500 		}
5501 	}
5502 #endif
5503 	ret = __netif_receive_skb(skb);
5504 	rcu_read_unlock();
5505 	return ret;
5506 }
5507 
5508 static void netif_receive_skb_list_internal(struct list_head *head)
5509 {
5510 	struct sk_buff *skb, *next;
5511 	struct list_head sublist;
5512 
5513 	INIT_LIST_HEAD(&sublist);
5514 	list_for_each_entry_safe(skb, next, head, list) {
5515 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5516 		skb_list_del_init(skb);
5517 		if (!skb_defer_rx_timestamp(skb))
5518 			list_add_tail(&skb->list, &sublist);
5519 	}
5520 	list_splice_init(&sublist, head);
5521 
5522 	rcu_read_lock();
5523 #ifdef CONFIG_RPS
5524 	if (static_branch_unlikely(&rps_needed)) {
5525 		list_for_each_entry_safe(skb, next, head, list) {
5526 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5527 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5528 
5529 			if (cpu >= 0) {
5530 				/* Will be handled, remove from list */
5531 				skb_list_del_init(skb);
5532 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5533 			}
5534 		}
5535 	}
5536 #endif
5537 	__netif_receive_skb_list(head);
5538 	rcu_read_unlock();
5539 }
5540 
5541 /**
5542  *	netif_receive_skb - process receive buffer from network
5543  *	@skb: buffer to process
5544  *
5545  *	netif_receive_skb() is the main receive data processing function.
5546  *	It always succeeds. The buffer may be dropped during processing
5547  *	for congestion control or by the protocol layers.
5548  *
5549  *	This function may only be called from softirq context and interrupts
5550  *	should be enabled.
5551  *
5552  *	Return values (usually ignored):
5553  *	NET_RX_SUCCESS: no congestion
5554  *	NET_RX_DROP: packet was dropped
5555  */
5556 int netif_receive_skb(struct sk_buff *skb)
5557 {
5558 	int ret;
5559 
5560 	trace_netif_receive_skb_entry(skb);
5561 
5562 	ret = netif_receive_skb_internal(skb);
5563 	trace_netif_receive_skb_exit(ret);
5564 
5565 	return ret;
5566 }
5567 EXPORT_SYMBOL(netif_receive_skb);
5568 
5569 /**
5570  *	netif_receive_skb_list - process many receive buffers from network
5571  *	@head: list of skbs to process.
5572  *
5573  *	Since return value of netif_receive_skb() is normally ignored, and
5574  *	wouldn't be meaningful for a list, this function returns void.
5575  *
5576  *	This function may only be called from softirq context and interrupts
5577  *	should be enabled.
5578  */
5579 void netif_receive_skb_list(struct list_head *head)
5580 {
5581 	struct sk_buff *skb;
5582 
5583 	if (list_empty(head))
5584 		return;
5585 	if (trace_netif_receive_skb_list_entry_enabled()) {
5586 		list_for_each_entry(skb, head, list)
5587 			trace_netif_receive_skb_list_entry(skb);
5588 	}
5589 	netif_receive_skb_list_internal(head);
5590 	trace_netif_receive_skb_list_exit(0);
5591 }
5592 EXPORT_SYMBOL(netif_receive_skb_list);
5593 
5594 DEFINE_PER_CPU(struct work_struct, flush_works);
5595 
5596 /* Network device is going away, flush any packets still pending */
5597 static void flush_backlog(struct work_struct *work)
5598 {
5599 	struct sk_buff *skb, *tmp;
5600 	struct softnet_data *sd;
5601 
5602 	local_bh_disable();
5603 	sd = this_cpu_ptr(&softnet_data);
5604 
5605 	local_irq_disable();
5606 	rps_lock(sd);
5607 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5608 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5609 			__skb_unlink(skb, &sd->input_pkt_queue);
5610 			kfree_skb(skb);
5611 			input_queue_head_incr(sd);
5612 		}
5613 	}
5614 	rps_unlock(sd);
5615 	local_irq_enable();
5616 
5617 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5618 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5619 			__skb_unlink(skb, &sd->process_queue);
5620 			kfree_skb(skb);
5621 			input_queue_head_incr(sd);
5622 		}
5623 	}
5624 	local_bh_enable();
5625 }
5626 
5627 static void flush_all_backlogs(void)
5628 {
5629 	unsigned int cpu;
5630 
5631 	get_online_cpus();
5632 
5633 	for_each_online_cpu(cpu)
5634 		queue_work_on(cpu, system_highpri_wq,
5635 			      per_cpu_ptr(&flush_works, cpu));
5636 
5637 	for_each_online_cpu(cpu)
5638 		flush_work(per_cpu_ptr(&flush_works, cpu));
5639 
5640 	put_online_cpus();
5641 }
5642 
5643 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5644 static void gro_normal_list(struct napi_struct *napi)
5645 {
5646 	if (!napi->rx_count)
5647 		return;
5648 	netif_receive_skb_list_internal(&napi->rx_list);
5649 	INIT_LIST_HEAD(&napi->rx_list);
5650 	napi->rx_count = 0;
5651 }
5652 
5653 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5654  * pass the whole batch up to the stack.
5655  */
5656 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5657 {
5658 	list_add_tail(&skb->list, &napi->rx_list);
5659 	if (++napi->rx_count >= gro_normal_batch)
5660 		gro_normal_list(napi);
5661 }
5662 
5663 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5664 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5665 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5666 {
5667 	struct packet_offload *ptype;
5668 	__be16 type = skb->protocol;
5669 	struct list_head *head = &offload_base;
5670 	int err = -ENOENT;
5671 
5672 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5673 
5674 	if (NAPI_GRO_CB(skb)->count == 1) {
5675 		skb_shinfo(skb)->gso_size = 0;
5676 		goto out;
5677 	}
5678 
5679 	rcu_read_lock();
5680 	list_for_each_entry_rcu(ptype, head, list) {
5681 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5682 			continue;
5683 
5684 		err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5685 					 ipv6_gro_complete, inet_gro_complete,
5686 					 skb, 0);
5687 		break;
5688 	}
5689 	rcu_read_unlock();
5690 
5691 	if (err) {
5692 		WARN_ON(&ptype->list == head);
5693 		kfree_skb(skb);
5694 		return NET_RX_SUCCESS;
5695 	}
5696 
5697 out:
5698 	gro_normal_one(napi, skb);
5699 	return NET_RX_SUCCESS;
5700 }
5701 
5702 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5703 				   bool flush_old)
5704 {
5705 	struct list_head *head = &napi->gro_hash[index].list;
5706 	struct sk_buff *skb, *p;
5707 
5708 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5709 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5710 			return;
5711 		skb_list_del_init(skb);
5712 		napi_gro_complete(napi, skb);
5713 		napi->gro_hash[index].count--;
5714 	}
5715 
5716 	if (!napi->gro_hash[index].count)
5717 		__clear_bit(index, &napi->gro_bitmask);
5718 }
5719 
5720 /* napi->gro_hash[].list contains packets ordered by age.
5721  * youngest packets at the head of it.
5722  * Complete skbs in reverse order to reduce latencies.
5723  */
5724 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5725 {
5726 	unsigned long bitmask = napi->gro_bitmask;
5727 	unsigned int i, base = ~0U;
5728 
5729 	while ((i = ffs(bitmask)) != 0) {
5730 		bitmask >>= i;
5731 		base += i;
5732 		__napi_gro_flush_chain(napi, base, flush_old);
5733 	}
5734 }
5735 EXPORT_SYMBOL(napi_gro_flush);
5736 
5737 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5738 					  struct sk_buff *skb)
5739 {
5740 	unsigned int maclen = skb->dev->hard_header_len;
5741 	u32 hash = skb_get_hash_raw(skb);
5742 	struct list_head *head;
5743 	struct sk_buff *p;
5744 
5745 	head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5746 	list_for_each_entry(p, head, list) {
5747 		unsigned long diffs;
5748 
5749 		NAPI_GRO_CB(p)->flush = 0;
5750 
5751 		if (hash != skb_get_hash_raw(p)) {
5752 			NAPI_GRO_CB(p)->same_flow = 0;
5753 			continue;
5754 		}
5755 
5756 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5757 		diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5758 		if (skb_vlan_tag_present(p))
5759 			diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5760 		diffs |= skb_metadata_dst_cmp(p, skb);
5761 		diffs |= skb_metadata_differs(p, skb);
5762 		if (maclen == ETH_HLEN)
5763 			diffs |= compare_ether_header(skb_mac_header(p),
5764 						      skb_mac_header(skb));
5765 		else if (!diffs)
5766 			diffs = memcmp(skb_mac_header(p),
5767 				       skb_mac_header(skb),
5768 				       maclen);
5769 		NAPI_GRO_CB(p)->same_flow = !diffs;
5770 	}
5771 
5772 	return head;
5773 }
5774 
5775 static void skb_gro_reset_offset(struct sk_buff *skb)
5776 {
5777 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
5778 	const skb_frag_t *frag0 = &pinfo->frags[0];
5779 
5780 	NAPI_GRO_CB(skb)->data_offset = 0;
5781 	NAPI_GRO_CB(skb)->frag0 = NULL;
5782 	NAPI_GRO_CB(skb)->frag0_len = 0;
5783 
5784 	if (!skb_headlen(skb) && pinfo->nr_frags &&
5785 	    !PageHighMem(skb_frag_page(frag0))) {
5786 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5787 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5788 						    skb_frag_size(frag0),
5789 						    skb->end - skb->tail);
5790 	}
5791 }
5792 
5793 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5794 {
5795 	struct skb_shared_info *pinfo = skb_shinfo(skb);
5796 
5797 	BUG_ON(skb->end - skb->tail < grow);
5798 
5799 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5800 
5801 	skb->data_len -= grow;
5802 	skb->tail += grow;
5803 
5804 	skb_frag_off_add(&pinfo->frags[0], grow);
5805 	skb_frag_size_sub(&pinfo->frags[0], grow);
5806 
5807 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5808 		skb_frag_unref(skb, 0);
5809 		memmove(pinfo->frags, pinfo->frags + 1,
5810 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
5811 	}
5812 }
5813 
5814 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5815 {
5816 	struct sk_buff *oldest;
5817 
5818 	oldest = list_last_entry(head, struct sk_buff, list);
5819 
5820 	/* We are called with head length >= MAX_GRO_SKBS, so this is
5821 	 * impossible.
5822 	 */
5823 	if (WARN_ON_ONCE(!oldest))
5824 		return;
5825 
5826 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
5827 	 * SKB to the chain.
5828 	 */
5829 	skb_list_del_init(oldest);
5830 	napi_gro_complete(napi, oldest);
5831 }
5832 
5833 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5834 							   struct sk_buff *));
5835 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5836 							   struct sk_buff *));
5837 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5838 {
5839 	u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5840 	struct list_head *head = &offload_base;
5841 	struct packet_offload *ptype;
5842 	__be16 type = skb->protocol;
5843 	struct list_head *gro_head;
5844 	struct sk_buff *pp = NULL;
5845 	enum gro_result ret;
5846 	int same_flow;
5847 	int grow;
5848 
5849 	if (netif_elide_gro(skb->dev))
5850 		goto normal;
5851 
5852 	gro_head = gro_list_prepare(napi, skb);
5853 
5854 	rcu_read_lock();
5855 	list_for_each_entry_rcu(ptype, head, list) {
5856 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5857 			continue;
5858 
5859 		skb_set_network_header(skb, skb_gro_offset(skb));
5860 		skb_reset_mac_len(skb);
5861 		NAPI_GRO_CB(skb)->same_flow = 0;
5862 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5863 		NAPI_GRO_CB(skb)->free = 0;
5864 		NAPI_GRO_CB(skb)->encap_mark = 0;
5865 		NAPI_GRO_CB(skb)->recursion_counter = 0;
5866 		NAPI_GRO_CB(skb)->is_fou = 0;
5867 		NAPI_GRO_CB(skb)->is_atomic = 1;
5868 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5869 
5870 		/* Setup for GRO checksum validation */
5871 		switch (skb->ip_summed) {
5872 		case CHECKSUM_COMPLETE:
5873 			NAPI_GRO_CB(skb)->csum = skb->csum;
5874 			NAPI_GRO_CB(skb)->csum_valid = 1;
5875 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5876 			break;
5877 		case CHECKSUM_UNNECESSARY:
5878 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5879 			NAPI_GRO_CB(skb)->csum_valid = 0;
5880 			break;
5881 		default:
5882 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5883 			NAPI_GRO_CB(skb)->csum_valid = 0;
5884 		}
5885 
5886 		pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5887 					ipv6_gro_receive, inet_gro_receive,
5888 					gro_head, skb);
5889 		break;
5890 	}
5891 	rcu_read_unlock();
5892 
5893 	if (&ptype->list == head)
5894 		goto normal;
5895 
5896 	if (PTR_ERR(pp) == -EINPROGRESS) {
5897 		ret = GRO_CONSUMED;
5898 		goto ok;
5899 	}
5900 
5901 	same_flow = NAPI_GRO_CB(skb)->same_flow;
5902 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5903 
5904 	if (pp) {
5905 		skb_list_del_init(pp);
5906 		napi_gro_complete(napi, pp);
5907 		napi->gro_hash[hash].count--;
5908 	}
5909 
5910 	if (same_flow)
5911 		goto ok;
5912 
5913 	if (NAPI_GRO_CB(skb)->flush)
5914 		goto normal;
5915 
5916 	if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5917 		gro_flush_oldest(napi, gro_head);
5918 	} else {
5919 		napi->gro_hash[hash].count++;
5920 	}
5921 	NAPI_GRO_CB(skb)->count = 1;
5922 	NAPI_GRO_CB(skb)->age = jiffies;
5923 	NAPI_GRO_CB(skb)->last = skb;
5924 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5925 	list_add(&skb->list, gro_head);
5926 	ret = GRO_HELD;
5927 
5928 pull:
5929 	grow = skb_gro_offset(skb) - skb_headlen(skb);
5930 	if (grow > 0)
5931 		gro_pull_from_frag0(skb, grow);
5932 ok:
5933 	if (napi->gro_hash[hash].count) {
5934 		if (!test_bit(hash, &napi->gro_bitmask))
5935 			__set_bit(hash, &napi->gro_bitmask);
5936 	} else if (test_bit(hash, &napi->gro_bitmask)) {
5937 		__clear_bit(hash, &napi->gro_bitmask);
5938 	}
5939 
5940 	return ret;
5941 
5942 normal:
5943 	ret = GRO_NORMAL;
5944 	goto pull;
5945 }
5946 
5947 struct packet_offload *gro_find_receive_by_type(__be16 type)
5948 {
5949 	struct list_head *offload_head = &offload_base;
5950 	struct packet_offload *ptype;
5951 
5952 	list_for_each_entry_rcu(ptype, offload_head, list) {
5953 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5954 			continue;
5955 		return ptype;
5956 	}
5957 	return NULL;
5958 }
5959 EXPORT_SYMBOL(gro_find_receive_by_type);
5960 
5961 struct packet_offload *gro_find_complete_by_type(__be16 type)
5962 {
5963 	struct list_head *offload_head = &offload_base;
5964 	struct packet_offload *ptype;
5965 
5966 	list_for_each_entry_rcu(ptype, offload_head, list) {
5967 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5968 			continue;
5969 		return ptype;
5970 	}
5971 	return NULL;
5972 }
5973 EXPORT_SYMBOL(gro_find_complete_by_type);
5974 
5975 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5976 {
5977 	skb_dst_drop(skb);
5978 	skb_ext_put(skb);
5979 	kmem_cache_free(skbuff_head_cache, skb);
5980 }
5981 
5982 static gro_result_t napi_skb_finish(struct napi_struct *napi,
5983 				    struct sk_buff *skb,
5984 				    gro_result_t ret)
5985 {
5986 	switch (ret) {
5987 	case GRO_NORMAL:
5988 		gro_normal_one(napi, skb);
5989 		break;
5990 
5991 	case GRO_DROP:
5992 		kfree_skb(skb);
5993 		break;
5994 
5995 	case GRO_MERGED_FREE:
5996 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5997 			napi_skb_free_stolen_head(skb);
5998 		else
5999 			__kfree_skb(skb);
6000 		break;
6001 
6002 	case GRO_HELD:
6003 	case GRO_MERGED:
6004 	case GRO_CONSUMED:
6005 		break;
6006 	}
6007 
6008 	return ret;
6009 }
6010 
6011 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6012 {
6013 	gro_result_t ret;
6014 
6015 	skb_mark_napi_id(skb, napi);
6016 	trace_napi_gro_receive_entry(skb);
6017 
6018 	skb_gro_reset_offset(skb);
6019 
6020 	ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6021 	trace_napi_gro_receive_exit(ret);
6022 
6023 	return ret;
6024 }
6025 EXPORT_SYMBOL(napi_gro_receive);
6026 
6027 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6028 {
6029 	if (unlikely(skb->pfmemalloc)) {
6030 		consume_skb(skb);
6031 		return;
6032 	}
6033 	__skb_pull(skb, skb_headlen(skb));
6034 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
6035 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6036 	__vlan_hwaccel_clear_tag(skb);
6037 	skb->dev = napi->dev;
6038 	skb->skb_iif = 0;
6039 
6040 	/* eth_type_trans() assumes pkt_type is PACKET_HOST */
6041 	skb->pkt_type = PACKET_HOST;
6042 
6043 	skb->encapsulation = 0;
6044 	skb_shinfo(skb)->gso_type = 0;
6045 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6046 	skb_ext_reset(skb);
6047 
6048 	napi->skb = skb;
6049 }
6050 
6051 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6052 {
6053 	struct sk_buff *skb = napi->skb;
6054 
6055 	if (!skb) {
6056 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6057 		if (skb) {
6058 			napi->skb = skb;
6059 			skb_mark_napi_id(skb, napi);
6060 		}
6061 	}
6062 	return skb;
6063 }
6064 EXPORT_SYMBOL(napi_get_frags);
6065 
6066 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6067 				      struct sk_buff *skb,
6068 				      gro_result_t ret)
6069 {
6070 	switch (ret) {
6071 	case GRO_NORMAL:
6072 	case GRO_HELD:
6073 		__skb_push(skb, ETH_HLEN);
6074 		skb->protocol = eth_type_trans(skb, skb->dev);
6075 		if (ret == GRO_NORMAL)
6076 			gro_normal_one(napi, skb);
6077 		break;
6078 
6079 	case GRO_DROP:
6080 		napi_reuse_skb(napi, skb);
6081 		break;
6082 
6083 	case GRO_MERGED_FREE:
6084 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6085 			napi_skb_free_stolen_head(skb);
6086 		else
6087 			napi_reuse_skb(napi, skb);
6088 		break;
6089 
6090 	case GRO_MERGED:
6091 	case GRO_CONSUMED:
6092 		break;
6093 	}
6094 
6095 	return ret;
6096 }
6097 
6098 /* Upper GRO stack assumes network header starts at gro_offset=0
6099  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6100  * We copy ethernet header into skb->data to have a common layout.
6101  */
6102 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6103 {
6104 	struct sk_buff *skb = napi->skb;
6105 	const struct ethhdr *eth;
6106 	unsigned int hlen = sizeof(*eth);
6107 
6108 	napi->skb = NULL;
6109 
6110 	skb_reset_mac_header(skb);
6111 	skb_gro_reset_offset(skb);
6112 
6113 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
6114 		eth = skb_gro_header_slow(skb, hlen, 0);
6115 		if (unlikely(!eth)) {
6116 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6117 					     __func__, napi->dev->name);
6118 			napi_reuse_skb(napi, skb);
6119 			return NULL;
6120 		}
6121 	} else {
6122 		eth = (const struct ethhdr *)skb->data;
6123 		gro_pull_from_frag0(skb, hlen);
6124 		NAPI_GRO_CB(skb)->frag0 += hlen;
6125 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
6126 	}
6127 	__skb_pull(skb, hlen);
6128 
6129 	/*
6130 	 * This works because the only protocols we care about don't require
6131 	 * special handling.
6132 	 * We'll fix it up properly in napi_frags_finish()
6133 	 */
6134 	skb->protocol = eth->h_proto;
6135 
6136 	return skb;
6137 }
6138 
6139 gro_result_t napi_gro_frags(struct napi_struct *napi)
6140 {
6141 	gro_result_t ret;
6142 	struct sk_buff *skb = napi_frags_skb(napi);
6143 
6144 	if (!skb)
6145 		return GRO_DROP;
6146 
6147 	trace_napi_gro_frags_entry(skb);
6148 
6149 	ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6150 	trace_napi_gro_frags_exit(ret);
6151 
6152 	return ret;
6153 }
6154 EXPORT_SYMBOL(napi_gro_frags);
6155 
6156 /* Compute the checksum from gro_offset and return the folded value
6157  * after adding in any pseudo checksum.
6158  */
6159 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6160 {
6161 	__wsum wsum;
6162 	__sum16 sum;
6163 
6164 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6165 
6166 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6167 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6168 	/* See comments in __skb_checksum_complete(). */
6169 	if (likely(!sum)) {
6170 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6171 		    !skb->csum_complete_sw)
6172 			netdev_rx_csum_fault(skb->dev, skb);
6173 	}
6174 
6175 	NAPI_GRO_CB(skb)->csum = wsum;
6176 	NAPI_GRO_CB(skb)->csum_valid = 1;
6177 
6178 	return sum;
6179 }
6180 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6181 
6182 static void net_rps_send_ipi(struct softnet_data *remsd)
6183 {
6184 #ifdef CONFIG_RPS
6185 	while (remsd) {
6186 		struct softnet_data *next = remsd->rps_ipi_next;
6187 
6188 		if (cpu_online(remsd->cpu))
6189 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6190 		remsd = next;
6191 	}
6192 #endif
6193 }
6194 
6195 /*
6196  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6197  * Note: called with local irq disabled, but exits with local irq enabled.
6198  */
6199 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6200 {
6201 #ifdef CONFIG_RPS
6202 	struct softnet_data *remsd = sd->rps_ipi_list;
6203 
6204 	if (remsd) {
6205 		sd->rps_ipi_list = NULL;
6206 
6207 		local_irq_enable();
6208 
6209 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6210 		net_rps_send_ipi(remsd);
6211 	} else
6212 #endif
6213 		local_irq_enable();
6214 }
6215 
6216 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6217 {
6218 #ifdef CONFIG_RPS
6219 	return sd->rps_ipi_list != NULL;
6220 #else
6221 	return false;
6222 #endif
6223 }
6224 
6225 static int process_backlog(struct napi_struct *napi, int quota)
6226 {
6227 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6228 	bool again = true;
6229 	int work = 0;
6230 
6231 	/* Check if we have pending ipi, its better to send them now,
6232 	 * not waiting net_rx_action() end.
6233 	 */
6234 	if (sd_has_rps_ipi_waiting(sd)) {
6235 		local_irq_disable();
6236 		net_rps_action_and_irq_enable(sd);
6237 	}
6238 
6239 	napi->weight = dev_rx_weight;
6240 	while (again) {
6241 		struct sk_buff *skb;
6242 
6243 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6244 			rcu_read_lock();
6245 			__netif_receive_skb(skb);
6246 			rcu_read_unlock();
6247 			input_queue_head_incr(sd);
6248 			if (++work >= quota)
6249 				return work;
6250 
6251 		}
6252 
6253 		local_irq_disable();
6254 		rps_lock(sd);
6255 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6256 			/*
6257 			 * Inline a custom version of __napi_complete().
6258 			 * only current cpu owns and manipulates this napi,
6259 			 * and NAPI_STATE_SCHED is the only possible flag set
6260 			 * on backlog.
6261 			 * We can use a plain write instead of clear_bit(),
6262 			 * and we dont need an smp_mb() memory barrier.
6263 			 */
6264 			napi->state = 0;
6265 			again = false;
6266 		} else {
6267 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6268 						   &sd->process_queue);
6269 		}
6270 		rps_unlock(sd);
6271 		local_irq_enable();
6272 	}
6273 
6274 	return work;
6275 }
6276 
6277 /**
6278  * __napi_schedule - schedule for receive
6279  * @n: entry to schedule
6280  *
6281  * The entry's receive function will be scheduled to run.
6282  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6283  */
6284 void __napi_schedule(struct napi_struct *n)
6285 {
6286 	unsigned long flags;
6287 
6288 	local_irq_save(flags);
6289 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6290 	local_irq_restore(flags);
6291 }
6292 EXPORT_SYMBOL(__napi_schedule);
6293 
6294 /**
6295  *	napi_schedule_prep - check if napi can be scheduled
6296  *	@n: napi context
6297  *
6298  * Test if NAPI routine is already running, and if not mark
6299  * it as running.  This is used as a condition variable
6300  * insure only one NAPI poll instance runs.  We also make
6301  * sure there is no pending NAPI disable.
6302  */
6303 bool napi_schedule_prep(struct napi_struct *n)
6304 {
6305 	unsigned long val, new;
6306 
6307 	do {
6308 		val = READ_ONCE(n->state);
6309 		if (unlikely(val & NAPIF_STATE_DISABLE))
6310 			return false;
6311 		new = val | NAPIF_STATE_SCHED;
6312 
6313 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6314 		 * This was suggested by Alexander Duyck, as compiler
6315 		 * emits better code than :
6316 		 * if (val & NAPIF_STATE_SCHED)
6317 		 *     new |= NAPIF_STATE_MISSED;
6318 		 */
6319 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6320 						   NAPIF_STATE_MISSED;
6321 	} while (cmpxchg(&n->state, val, new) != val);
6322 
6323 	return !(val & NAPIF_STATE_SCHED);
6324 }
6325 EXPORT_SYMBOL(napi_schedule_prep);
6326 
6327 /**
6328  * __napi_schedule_irqoff - schedule for receive
6329  * @n: entry to schedule
6330  *
6331  * Variant of __napi_schedule() assuming hard irqs are masked
6332  */
6333 void __napi_schedule_irqoff(struct napi_struct *n)
6334 {
6335 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6336 }
6337 EXPORT_SYMBOL(__napi_schedule_irqoff);
6338 
6339 bool napi_complete_done(struct napi_struct *n, int work_done)
6340 {
6341 	unsigned long flags, val, new, timeout = 0;
6342 	bool ret = true;
6343 
6344 	/*
6345 	 * 1) Don't let napi dequeue from the cpu poll list
6346 	 *    just in case its running on a different cpu.
6347 	 * 2) If we are busy polling, do nothing here, we have
6348 	 *    the guarantee we will be called later.
6349 	 */
6350 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6351 				 NAPIF_STATE_IN_BUSY_POLL)))
6352 		return false;
6353 
6354 	if (work_done) {
6355 		if (n->gro_bitmask)
6356 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6357 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6358 	}
6359 	if (n->defer_hard_irqs_count > 0) {
6360 		n->defer_hard_irqs_count--;
6361 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6362 		if (timeout)
6363 			ret = false;
6364 	}
6365 	if (n->gro_bitmask) {
6366 		/* When the NAPI instance uses a timeout and keeps postponing
6367 		 * it, we need to bound somehow the time packets are kept in
6368 		 * the GRO layer
6369 		 */
6370 		napi_gro_flush(n, !!timeout);
6371 	}
6372 
6373 	gro_normal_list(n);
6374 
6375 	if (unlikely(!list_empty(&n->poll_list))) {
6376 		/* If n->poll_list is not empty, we need to mask irqs */
6377 		local_irq_save(flags);
6378 		list_del_init(&n->poll_list);
6379 		local_irq_restore(flags);
6380 	}
6381 
6382 	do {
6383 		val = READ_ONCE(n->state);
6384 
6385 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6386 
6387 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6388 
6389 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6390 		 * because we will call napi->poll() one more time.
6391 		 * This C code was suggested by Alexander Duyck to help gcc.
6392 		 */
6393 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6394 						    NAPIF_STATE_SCHED;
6395 	} while (cmpxchg(&n->state, val, new) != val);
6396 
6397 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6398 		__napi_schedule(n);
6399 		return false;
6400 	}
6401 
6402 	if (timeout)
6403 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6404 			      HRTIMER_MODE_REL_PINNED);
6405 	return ret;
6406 }
6407 EXPORT_SYMBOL(napi_complete_done);
6408 
6409 /* must be called under rcu_read_lock(), as we dont take a reference */
6410 static struct napi_struct *napi_by_id(unsigned int napi_id)
6411 {
6412 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6413 	struct napi_struct *napi;
6414 
6415 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6416 		if (napi->napi_id == napi_id)
6417 			return napi;
6418 
6419 	return NULL;
6420 }
6421 
6422 #if defined(CONFIG_NET_RX_BUSY_POLL)
6423 
6424 #define BUSY_POLL_BUDGET 8
6425 
6426 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6427 {
6428 	int rc;
6429 
6430 	/* Busy polling means there is a high chance device driver hard irq
6431 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6432 	 * set in napi_schedule_prep().
6433 	 * Since we are about to call napi->poll() once more, we can safely
6434 	 * clear NAPI_STATE_MISSED.
6435 	 *
6436 	 * Note: x86 could use a single "lock and ..." instruction
6437 	 * to perform these two clear_bit()
6438 	 */
6439 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6440 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6441 
6442 	local_bh_disable();
6443 
6444 	/* All we really want here is to re-enable device interrupts.
6445 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6446 	 */
6447 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
6448 	/* We can't gro_normal_list() here, because napi->poll() might have
6449 	 * rearmed the napi (napi_complete_done()) in which case it could
6450 	 * already be running on another CPU.
6451 	 */
6452 	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6453 	netpoll_poll_unlock(have_poll_lock);
6454 	if (rc == BUSY_POLL_BUDGET) {
6455 		/* As the whole budget was spent, we still own the napi so can
6456 		 * safely handle the rx_list.
6457 		 */
6458 		gro_normal_list(napi);
6459 		__napi_schedule(napi);
6460 	}
6461 	local_bh_enable();
6462 }
6463 
6464 void napi_busy_loop(unsigned int napi_id,
6465 		    bool (*loop_end)(void *, unsigned long),
6466 		    void *loop_end_arg)
6467 {
6468 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6469 	int (*napi_poll)(struct napi_struct *napi, int budget);
6470 	void *have_poll_lock = NULL;
6471 	struct napi_struct *napi;
6472 
6473 restart:
6474 	napi_poll = NULL;
6475 
6476 	rcu_read_lock();
6477 
6478 	napi = napi_by_id(napi_id);
6479 	if (!napi)
6480 		goto out;
6481 
6482 	preempt_disable();
6483 	for (;;) {
6484 		int work = 0;
6485 
6486 		local_bh_disable();
6487 		if (!napi_poll) {
6488 			unsigned long val = READ_ONCE(napi->state);
6489 
6490 			/* If multiple threads are competing for this napi,
6491 			 * we avoid dirtying napi->state as much as we can.
6492 			 */
6493 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6494 				   NAPIF_STATE_IN_BUSY_POLL))
6495 				goto count;
6496 			if (cmpxchg(&napi->state, val,
6497 				    val | NAPIF_STATE_IN_BUSY_POLL |
6498 					  NAPIF_STATE_SCHED) != val)
6499 				goto count;
6500 			have_poll_lock = netpoll_poll_lock(napi);
6501 			napi_poll = napi->poll;
6502 		}
6503 		work = napi_poll(napi, BUSY_POLL_BUDGET);
6504 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6505 		gro_normal_list(napi);
6506 count:
6507 		if (work > 0)
6508 			__NET_ADD_STATS(dev_net(napi->dev),
6509 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6510 		local_bh_enable();
6511 
6512 		if (!loop_end || loop_end(loop_end_arg, start_time))
6513 			break;
6514 
6515 		if (unlikely(need_resched())) {
6516 			if (napi_poll)
6517 				busy_poll_stop(napi, have_poll_lock);
6518 			preempt_enable();
6519 			rcu_read_unlock();
6520 			cond_resched();
6521 			if (loop_end(loop_end_arg, start_time))
6522 				return;
6523 			goto restart;
6524 		}
6525 		cpu_relax();
6526 	}
6527 	if (napi_poll)
6528 		busy_poll_stop(napi, have_poll_lock);
6529 	preempt_enable();
6530 out:
6531 	rcu_read_unlock();
6532 }
6533 EXPORT_SYMBOL(napi_busy_loop);
6534 
6535 #endif /* CONFIG_NET_RX_BUSY_POLL */
6536 
6537 static void napi_hash_add(struct napi_struct *napi)
6538 {
6539 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6540 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6541 		return;
6542 
6543 	spin_lock(&napi_hash_lock);
6544 
6545 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6546 	do {
6547 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6548 			napi_gen_id = MIN_NAPI_ID;
6549 	} while (napi_by_id(napi_gen_id));
6550 	napi->napi_id = napi_gen_id;
6551 
6552 	hlist_add_head_rcu(&napi->napi_hash_node,
6553 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6554 
6555 	spin_unlock(&napi_hash_lock);
6556 }
6557 
6558 /* Warning : caller is responsible to make sure rcu grace period
6559  * is respected before freeing memory containing @napi
6560  */
6561 bool napi_hash_del(struct napi_struct *napi)
6562 {
6563 	bool rcu_sync_needed = false;
6564 
6565 	spin_lock(&napi_hash_lock);
6566 
6567 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6568 		rcu_sync_needed = true;
6569 		hlist_del_rcu(&napi->napi_hash_node);
6570 	}
6571 	spin_unlock(&napi_hash_lock);
6572 	return rcu_sync_needed;
6573 }
6574 EXPORT_SYMBOL_GPL(napi_hash_del);
6575 
6576 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6577 {
6578 	struct napi_struct *napi;
6579 
6580 	napi = container_of(timer, struct napi_struct, timer);
6581 
6582 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6583 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6584 	 */
6585 	if (!napi_disable_pending(napi) &&
6586 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6587 		__napi_schedule_irqoff(napi);
6588 
6589 	return HRTIMER_NORESTART;
6590 }
6591 
6592 static void init_gro_hash(struct napi_struct *napi)
6593 {
6594 	int i;
6595 
6596 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6597 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6598 		napi->gro_hash[i].count = 0;
6599 	}
6600 	napi->gro_bitmask = 0;
6601 }
6602 
6603 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6604 		    int (*poll)(struct napi_struct *, int), int weight)
6605 {
6606 	INIT_LIST_HEAD(&napi->poll_list);
6607 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6608 	napi->timer.function = napi_watchdog;
6609 	init_gro_hash(napi);
6610 	napi->skb = NULL;
6611 	INIT_LIST_HEAD(&napi->rx_list);
6612 	napi->rx_count = 0;
6613 	napi->poll = poll;
6614 	if (weight > NAPI_POLL_WEIGHT)
6615 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6616 				weight);
6617 	napi->weight = weight;
6618 	list_add(&napi->dev_list, &dev->napi_list);
6619 	napi->dev = dev;
6620 #ifdef CONFIG_NETPOLL
6621 	napi->poll_owner = -1;
6622 #endif
6623 	set_bit(NAPI_STATE_SCHED, &napi->state);
6624 	napi_hash_add(napi);
6625 }
6626 EXPORT_SYMBOL(netif_napi_add);
6627 
6628 void napi_disable(struct napi_struct *n)
6629 {
6630 	might_sleep();
6631 	set_bit(NAPI_STATE_DISABLE, &n->state);
6632 
6633 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6634 		msleep(1);
6635 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6636 		msleep(1);
6637 
6638 	hrtimer_cancel(&n->timer);
6639 
6640 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6641 }
6642 EXPORT_SYMBOL(napi_disable);
6643 
6644 static void flush_gro_hash(struct napi_struct *napi)
6645 {
6646 	int i;
6647 
6648 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6649 		struct sk_buff *skb, *n;
6650 
6651 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6652 			kfree_skb(skb);
6653 		napi->gro_hash[i].count = 0;
6654 	}
6655 }
6656 
6657 /* Must be called in process context */
6658 void netif_napi_del(struct napi_struct *napi)
6659 {
6660 	might_sleep();
6661 	if (napi_hash_del(napi))
6662 		synchronize_net();
6663 	list_del_init(&napi->dev_list);
6664 	napi_free_frags(napi);
6665 
6666 	flush_gro_hash(napi);
6667 	napi->gro_bitmask = 0;
6668 }
6669 EXPORT_SYMBOL(netif_napi_del);
6670 
6671 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6672 {
6673 	void *have;
6674 	int work, weight;
6675 
6676 	list_del_init(&n->poll_list);
6677 
6678 	have = netpoll_poll_lock(n);
6679 
6680 	weight = n->weight;
6681 
6682 	/* This NAPI_STATE_SCHED test is for avoiding a race
6683 	 * with netpoll's poll_napi().  Only the entity which
6684 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6685 	 * actually make the ->poll() call.  Therefore we avoid
6686 	 * accidentally calling ->poll() when NAPI is not scheduled.
6687 	 */
6688 	work = 0;
6689 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6690 		work = n->poll(n, weight);
6691 		trace_napi_poll(n, work, weight);
6692 	}
6693 
6694 	if (unlikely(work > weight))
6695 		pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6696 			    n->poll, work, weight);
6697 
6698 	if (likely(work < weight))
6699 		goto out_unlock;
6700 
6701 	/* Drivers must not modify the NAPI state if they
6702 	 * consume the entire weight.  In such cases this code
6703 	 * still "owns" the NAPI instance and therefore can
6704 	 * move the instance around on the list at-will.
6705 	 */
6706 	if (unlikely(napi_disable_pending(n))) {
6707 		napi_complete(n);
6708 		goto out_unlock;
6709 	}
6710 
6711 	if (n->gro_bitmask) {
6712 		/* flush too old packets
6713 		 * If HZ < 1000, flush all packets.
6714 		 */
6715 		napi_gro_flush(n, HZ >= 1000);
6716 	}
6717 
6718 	gro_normal_list(n);
6719 
6720 	/* Some drivers may have called napi_schedule
6721 	 * prior to exhausting their budget.
6722 	 */
6723 	if (unlikely(!list_empty(&n->poll_list))) {
6724 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6725 			     n->dev ? n->dev->name : "backlog");
6726 		goto out_unlock;
6727 	}
6728 
6729 	list_add_tail(&n->poll_list, repoll);
6730 
6731 out_unlock:
6732 	netpoll_poll_unlock(have);
6733 
6734 	return work;
6735 }
6736 
6737 static __latent_entropy void net_rx_action(struct softirq_action *h)
6738 {
6739 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6740 	unsigned long time_limit = jiffies +
6741 		usecs_to_jiffies(netdev_budget_usecs);
6742 	int budget = netdev_budget;
6743 	LIST_HEAD(list);
6744 	LIST_HEAD(repoll);
6745 
6746 	local_irq_disable();
6747 	list_splice_init(&sd->poll_list, &list);
6748 	local_irq_enable();
6749 
6750 	for (;;) {
6751 		struct napi_struct *n;
6752 
6753 		if (list_empty(&list)) {
6754 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6755 				goto out;
6756 			break;
6757 		}
6758 
6759 		n = list_first_entry(&list, struct napi_struct, poll_list);
6760 		budget -= napi_poll(n, &repoll);
6761 
6762 		/* If softirq window is exhausted then punt.
6763 		 * Allow this to run for 2 jiffies since which will allow
6764 		 * an average latency of 1.5/HZ.
6765 		 */
6766 		if (unlikely(budget <= 0 ||
6767 			     time_after_eq(jiffies, time_limit))) {
6768 			sd->time_squeeze++;
6769 			break;
6770 		}
6771 	}
6772 
6773 	local_irq_disable();
6774 
6775 	list_splice_tail_init(&sd->poll_list, &list);
6776 	list_splice_tail(&repoll, &list);
6777 	list_splice(&list, &sd->poll_list);
6778 	if (!list_empty(&sd->poll_list))
6779 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6780 
6781 	net_rps_action_and_irq_enable(sd);
6782 out:
6783 	__kfree_skb_flush();
6784 }
6785 
6786 struct netdev_adjacent {
6787 	struct net_device *dev;
6788 
6789 	/* upper master flag, there can only be one master device per list */
6790 	bool master;
6791 
6792 	/* lookup ignore flag */
6793 	bool ignore;
6794 
6795 	/* counter for the number of times this device was added to us */
6796 	u16 ref_nr;
6797 
6798 	/* private field for the users */
6799 	void *private;
6800 
6801 	struct list_head list;
6802 	struct rcu_head rcu;
6803 };
6804 
6805 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6806 						 struct list_head *adj_list)
6807 {
6808 	struct netdev_adjacent *adj;
6809 
6810 	list_for_each_entry(adj, adj_list, list) {
6811 		if (adj->dev == adj_dev)
6812 			return adj;
6813 	}
6814 	return NULL;
6815 }
6816 
6817 static int ____netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6818 {
6819 	struct net_device *dev = data;
6820 
6821 	return upper_dev == dev;
6822 }
6823 
6824 /**
6825  * netdev_has_upper_dev - Check if device is linked to an upper device
6826  * @dev: device
6827  * @upper_dev: upper device to check
6828  *
6829  * Find out if a device is linked to specified upper device and return true
6830  * in case it is. Note that this checks only immediate upper device,
6831  * not through a complete stack of devices. The caller must hold the RTNL lock.
6832  */
6833 bool netdev_has_upper_dev(struct net_device *dev,
6834 			  struct net_device *upper_dev)
6835 {
6836 	ASSERT_RTNL();
6837 
6838 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6839 					     upper_dev);
6840 }
6841 EXPORT_SYMBOL(netdev_has_upper_dev);
6842 
6843 /**
6844  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6845  * @dev: device
6846  * @upper_dev: upper device to check
6847  *
6848  * Find out if a device is linked to specified upper device and return true
6849  * in case it is. Note that this checks the entire upper device chain.
6850  * The caller must hold rcu lock.
6851  */
6852 
6853 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6854 				  struct net_device *upper_dev)
6855 {
6856 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6857 					       upper_dev);
6858 }
6859 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6860 
6861 /**
6862  * netdev_has_any_upper_dev - Check if device is linked to some device
6863  * @dev: device
6864  *
6865  * Find out if a device is linked to an upper device and return true in case
6866  * it is. The caller must hold the RTNL lock.
6867  */
6868 bool netdev_has_any_upper_dev(struct net_device *dev)
6869 {
6870 	ASSERT_RTNL();
6871 
6872 	return !list_empty(&dev->adj_list.upper);
6873 }
6874 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6875 
6876 /**
6877  * netdev_master_upper_dev_get - Get master upper device
6878  * @dev: device
6879  *
6880  * Find a master upper device and return pointer to it or NULL in case
6881  * it's not there. The caller must hold the RTNL lock.
6882  */
6883 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6884 {
6885 	struct netdev_adjacent *upper;
6886 
6887 	ASSERT_RTNL();
6888 
6889 	if (list_empty(&dev->adj_list.upper))
6890 		return NULL;
6891 
6892 	upper = list_first_entry(&dev->adj_list.upper,
6893 				 struct netdev_adjacent, list);
6894 	if (likely(upper->master))
6895 		return upper->dev;
6896 	return NULL;
6897 }
6898 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6899 
6900 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6901 {
6902 	struct netdev_adjacent *upper;
6903 
6904 	ASSERT_RTNL();
6905 
6906 	if (list_empty(&dev->adj_list.upper))
6907 		return NULL;
6908 
6909 	upper = list_first_entry(&dev->adj_list.upper,
6910 				 struct netdev_adjacent, list);
6911 	if (likely(upper->master) && !upper->ignore)
6912 		return upper->dev;
6913 	return NULL;
6914 }
6915 
6916 /**
6917  * netdev_has_any_lower_dev - Check if device is linked to some device
6918  * @dev: device
6919  *
6920  * Find out if a device is linked to a lower device and return true in case
6921  * it is. The caller must hold the RTNL lock.
6922  */
6923 static bool netdev_has_any_lower_dev(struct net_device *dev)
6924 {
6925 	ASSERT_RTNL();
6926 
6927 	return !list_empty(&dev->adj_list.lower);
6928 }
6929 
6930 void *netdev_adjacent_get_private(struct list_head *adj_list)
6931 {
6932 	struct netdev_adjacent *adj;
6933 
6934 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6935 
6936 	return adj->private;
6937 }
6938 EXPORT_SYMBOL(netdev_adjacent_get_private);
6939 
6940 /**
6941  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6942  * @dev: device
6943  * @iter: list_head ** of the current position
6944  *
6945  * Gets the next device from the dev's upper list, starting from iter
6946  * position. The caller must hold RCU read lock.
6947  */
6948 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6949 						 struct list_head **iter)
6950 {
6951 	struct netdev_adjacent *upper;
6952 
6953 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6954 
6955 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6956 
6957 	if (&upper->list == &dev->adj_list.upper)
6958 		return NULL;
6959 
6960 	*iter = &upper->list;
6961 
6962 	return upper->dev;
6963 }
6964 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6965 
6966 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6967 						  struct list_head **iter,
6968 						  bool *ignore)
6969 {
6970 	struct netdev_adjacent *upper;
6971 
6972 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6973 
6974 	if (&upper->list == &dev->adj_list.upper)
6975 		return NULL;
6976 
6977 	*iter = &upper->list;
6978 	*ignore = upper->ignore;
6979 
6980 	return upper->dev;
6981 }
6982 
6983 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6984 						    struct list_head **iter)
6985 {
6986 	struct netdev_adjacent *upper;
6987 
6988 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6989 
6990 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6991 
6992 	if (&upper->list == &dev->adj_list.upper)
6993 		return NULL;
6994 
6995 	*iter = &upper->list;
6996 
6997 	return upper->dev;
6998 }
6999 
7000 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7001 				       int (*fn)(struct net_device *dev,
7002 						 void *data),
7003 				       void *data)
7004 {
7005 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7006 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7007 	int ret, cur = 0;
7008 	bool ignore;
7009 
7010 	now = dev;
7011 	iter = &dev->adj_list.upper;
7012 
7013 	while (1) {
7014 		if (now != dev) {
7015 			ret = fn(now, data);
7016 			if (ret)
7017 				return ret;
7018 		}
7019 
7020 		next = NULL;
7021 		while (1) {
7022 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7023 			if (!udev)
7024 				break;
7025 			if (ignore)
7026 				continue;
7027 
7028 			next = udev;
7029 			niter = &udev->adj_list.upper;
7030 			dev_stack[cur] = now;
7031 			iter_stack[cur++] = iter;
7032 			break;
7033 		}
7034 
7035 		if (!next) {
7036 			if (!cur)
7037 				return 0;
7038 			next = dev_stack[--cur];
7039 			niter = iter_stack[cur];
7040 		}
7041 
7042 		now = next;
7043 		iter = niter;
7044 	}
7045 
7046 	return 0;
7047 }
7048 
7049 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7050 				  int (*fn)(struct net_device *dev,
7051 					    void *data),
7052 				  void *data)
7053 {
7054 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7055 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7056 	int ret, cur = 0;
7057 
7058 	now = dev;
7059 	iter = &dev->adj_list.upper;
7060 
7061 	while (1) {
7062 		if (now != dev) {
7063 			ret = fn(now, data);
7064 			if (ret)
7065 				return ret;
7066 		}
7067 
7068 		next = NULL;
7069 		while (1) {
7070 			udev = netdev_next_upper_dev_rcu(now, &iter);
7071 			if (!udev)
7072 				break;
7073 
7074 			next = udev;
7075 			niter = &udev->adj_list.upper;
7076 			dev_stack[cur] = now;
7077 			iter_stack[cur++] = iter;
7078 			break;
7079 		}
7080 
7081 		if (!next) {
7082 			if (!cur)
7083 				return 0;
7084 			next = dev_stack[--cur];
7085 			niter = iter_stack[cur];
7086 		}
7087 
7088 		now = next;
7089 		iter = niter;
7090 	}
7091 
7092 	return 0;
7093 }
7094 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7095 
7096 static bool __netdev_has_upper_dev(struct net_device *dev,
7097 				   struct net_device *upper_dev)
7098 {
7099 	ASSERT_RTNL();
7100 
7101 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7102 					   upper_dev);
7103 }
7104 
7105 /**
7106  * netdev_lower_get_next_private - Get the next ->private from the
7107  *				   lower neighbour list
7108  * @dev: device
7109  * @iter: list_head ** of the current position
7110  *
7111  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7112  * list, starting from iter position. The caller must hold either hold the
7113  * RTNL lock or its own locking that guarantees that the neighbour lower
7114  * list will remain unchanged.
7115  */
7116 void *netdev_lower_get_next_private(struct net_device *dev,
7117 				    struct list_head **iter)
7118 {
7119 	struct netdev_adjacent *lower;
7120 
7121 	lower = list_entry(*iter, struct netdev_adjacent, list);
7122 
7123 	if (&lower->list == &dev->adj_list.lower)
7124 		return NULL;
7125 
7126 	*iter = lower->list.next;
7127 
7128 	return lower->private;
7129 }
7130 EXPORT_SYMBOL(netdev_lower_get_next_private);
7131 
7132 /**
7133  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7134  *				       lower neighbour list, RCU
7135  *				       variant
7136  * @dev: device
7137  * @iter: list_head ** of the current position
7138  *
7139  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7140  * list, starting from iter position. The caller must hold RCU read lock.
7141  */
7142 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7143 					struct list_head **iter)
7144 {
7145 	struct netdev_adjacent *lower;
7146 
7147 	WARN_ON_ONCE(!rcu_read_lock_held());
7148 
7149 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7150 
7151 	if (&lower->list == &dev->adj_list.lower)
7152 		return NULL;
7153 
7154 	*iter = &lower->list;
7155 
7156 	return lower->private;
7157 }
7158 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7159 
7160 /**
7161  * netdev_lower_get_next - Get the next device from the lower neighbour
7162  *                         list
7163  * @dev: device
7164  * @iter: list_head ** of the current position
7165  *
7166  * Gets the next netdev_adjacent from the dev's lower neighbour
7167  * list, starting from iter position. The caller must hold RTNL lock or
7168  * its own locking that guarantees that the neighbour lower
7169  * list will remain unchanged.
7170  */
7171 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7172 {
7173 	struct netdev_adjacent *lower;
7174 
7175 	lower = list_entry(*iter, struct netdev_adjacent, list);
7176 
7177 	if (&lower->list == &dev->adj_list.lower)
7178 		return NULL;
7179 
7180 	*iter = lower->list.next;
7181 
7182 	return lower->dev;
7183 }
7184 EXPORT_SYMBOL(netdev_lower_get_next);
7185 
7186 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7187 						struct list_head **iter)
7188 {
7189 	struct netdev_adjacent *lower;
7190 
7191 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7192 
7193 	if (&lower->list == &dev->adj_list.lower)
7194 		return NULL;
7195 
7196 	*iter = &lower->list;
7197 
7198 	return lower->dev;
7199 }
7200 
7201 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7202 						  struct list_head **iter,
7203 						  bool *ignore)
7204 {
7205 	struct netdev_adjacent *lower;
7206 
7207 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7208 
7209 	if (&lower->list == &dev->adj_list.lower)
7210 		return NULL;
7211 
7212 	*iter = &lower->list;
7213 	*ignore = lower->ignore;
7214 
7215 	return lower->dev;
7216 }
7217 
7218 int netdev_walk_all_lower_dev(struct net_device *dev,
7219 			      int (*fn)(struct net_device *dev,
7220 					void *data),
7221 			      void *data)
7222 {
7223 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7224 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7225 	int ret, cur = 0;
7226 
7227 	now = dev;
7228 	iter = &dev->adj_list.lower;
7229 
7230 	while (1) {
7231 		if (now != dev) {
7232 			ret = fn(now, data);
7233 			if (ret)
7234 				return ret;
7235 		}
7236 
7237 		next = NULL;
7238 		while (1) {
7239 			ldev = netdev_next_lower_dev(now, &iter);
7240 			if (!ldev)
7241 				break;
7242 
7243 			next = ldev;
7244 			niter = &ldev->adj_list.lower;
7245 			dev_stack[cur] = now;
7246 			iter_stack[cur++] = iter;
7247 			break;
7248 		}
7249 
7250 		if (!next) {
7251 			if (!cur)
7252 				return 0;
7253 			next = dev_stack[--cur];
7254 			niter = iter_stack[cur];
7255 		}
7256 
7257 		now = next;
7258 		iter = niter;
7259 	}
7260 
7261 	return 0;
7262 }
7263 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7264 
7265 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7266 				       int (*fn)(struct net_device *dev,
7267 						 void *data),
7268 				       void *data)
7269 {
7270 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7271 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7272 	int ret, cur = 0;
7273 	bool ignore;
7274 
7275 	now = dev;
7276 	iter = &dev->adj_list.lower;
7277 
7278 	while (1) {
7279 		if (now != dev) {
7280 			ret = fn(now, data);
7281 			if (ret)
7282 				return ret;
7283 		}
7284 
7285 		next = NULL;
7286 		while (1) {
7287 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7288 			if (!ldev)
7289 				break;
7290 			if (ignore)
7291 				continue;
7292 
7293 			next = ldev;
7294 			niter = &ldev->adj_list.lower;
7295 			dev_stack[cur] = now;
7296 			iter_stack[cur++] = iter;
7297 			break;
7298 		}
7299 
7300 		if (!next) {
7301 			if (!cur)
7302 				return 0;
7303 			next = dev_stack[--cur];
7304 			niter = iter_stack[cur];
7305 		}
7306 
7307 		now = next;
7308 		iter = niter;
7309 	}
7310 
7311 	return 0;
7312 }
7313 
7314 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7315 					     struct list_head **iter)
7316 {
7317 	struct netdev_adjacent *lower;
7318 
7319 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7320 	if (&lower->list == &dev->adj_list.lower)
7321 		return NULL;
7322 
7323 	*iter = &lower->list;
7324 
7325 	return lower->dev;
7326 }
7327 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7328 
7329 static u8 __netdev_upper_depth(struct net_device *dev)
7330 {
7331 	struct net_device *udev;
7332 	struct list_head *iter;
7333 	u8 max_depth = 0;
7334 	bool ignore;
7335 
7336 	for (iter = &dev->adj_list.upper,
7337 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7338 	     udev;
7339 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7340 		if (ignore)
7341 			continue;
7342 		if (max_depth < udev->upper_level)
7343 			max_depth = udev->upper_level;
7344 	}
7345 
7346 	return max_depth;
7347 }
7348 
7349 static u8 __netdev_lower_depth(struct net_device *dev)
7350 {
7351 	struct net_device *ldev;
7352 	struct list_head *iter;
7353 	u8 max_depth = 0;
7354 	bool ignore;
7355 
7356 	for (iter = &dev->adj_list.lower,
7357 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7358 	     ldev;
7359 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7360 		if (ignore)
7361 			continue;
7362 		if (max_depth < ldev->lower_level)
7363 			max_depth = ldev->lower_level;
7364 	}
7365 
7366 	return max_depth;
7367 }
7368 
7369 static int __netdev_update_upper_level(struct net_device *dev, void *data)
7370 {
7371 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7372 	return 0;
7373 }
7374 
7375 static int __netdev_update_lower_level(struct net_device *dev, void *data)
7376 {
7377 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7378 	return 0;
7379 }
7380 
7381 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7382 				  int (*fn)(struct net_device *dev,
7383 					    void *data),
7384 				  void *data)
7385 {
7386 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7387 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7388 	int ret, cur = 0;
7389 
7390 	now = dev;
7391 	iter = &dev->adj_list.lower;
7392 
7393 	while (1) {
7394 		if (now != dev) {
7395 			ret = fn(now, data);
7396 			if (ret)
7397 				return ret;
7398 		}
7399 
7400 		next = NULL;
7401 		while (1) {
7402 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7403 			if (!ldev)
7404 				break;
7405 
7406 			next = ldev;
7407 			niter = &ldev->adj_list.lower;
7408 			dev_stack[cur] = now;
7409 			iter_stack[cur++] = iter;
7410 			break;
7411 		}
7412 
7413 		if (!next) {
7414 			if (!cur)
7415 				return 0;
7416 			next = dev_stack[--cur];
7417 			niter = iter_stack[cur];
7418 		}
7419 
7420 		now = next;
7421 		iter = niter;
7422 	}
7423 
7424 	return 0;
7425 }
7426 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7427 
7428 /**
7429  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7430  *				       lower neighbour list, RCU
7431  *				       variant
7432  * @dev: device
7433  *
7434  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7435  * list. The caller must hold RCU read lock.
7436  */
7437 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7438 {
7439 	struct netdev_adjacent *lower;
7440 
7441 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7442 			struct netdev_adjacent, list);
7443 	if (lower)
7444 		return lower->private;
7445 	return NULL;
7446 }
7447 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7448 
7449 /**
7450  * netdev_master_upper_dev_get_rcu - Get master upper device
7451  * @dev: device
7452  *
7453  * Find a master upper device and return pointer to it or NULL in case
7454  * it's not there. The caller must hold the RCU read lock.
7455  */
7456 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7457 {
7458 	struct netdev_adjacent *upper;
7459 
7460 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7461 				       struct netdev_adjacent, list);
7462 	if (upper && likely(upper->master))
7463 		return upper->dev;
7464 	return NULL;
7465 }
7466 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7467 
7468 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7469 			      struct net_device *adj_dev,
7470 			      struct list_head *dev_list)
7471 {
7472 	char linkname[IFNAMSIZ+7];
7473 
7474 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7475 		"upper_%s" : "lower_%s", adj_dev->name);
7476 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7477 				 linkname);
7478 }
7479 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7480 			       char *name,
7481 			       struct list_head *dev_list)
7482 {
7483 	char linkname[IFNAMSIZ+7];
7484 
7485 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7486 		"upper_%s" : "lower_%s", name);
7487 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7488 }
7489 
7490 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7491 						 struct net_device *adj_dev,
7492 						 struct list_head *dev_list)
7493 {
7494 	return (dev_list == &dev->adj_list.upper ||
7495 		dev_list == &dev->adj_list.lower) &&
7496 		net_eq(dev_net(dev), dev_net(adj_dev));
7497 }
7498 
7499 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7500 					struct net_device *adj_dev,
7501 					struct list_head *dev_list,
7502 					void *private, bool master)
7503 {
7504 	struct netdev_adjacent *adj;
7505 	int ret;
7506 
7507 	adj = __netdev_find_adj(adj_dev, dev_list);
7508 
7509 	if (adj) {
7510 		adj->ref_nr += 1;
7511 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7512 			 dev->name, adj_dev->name, adj->ref_nr);
7513 
7514 		return 0;
7515 	}
7516 
7517 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7518 	if (!adj)
7519 		return -ENOMEM;
7520 
7521 	adj->dev = adj_dev;
7522 	adj->master = master;
7523 	adj->ref_nr = 1;
7524 	adj->private = private;
7525 	adj->ignore = false;
7526 	dev_hold(adj_dev);
7527 
7528 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7529 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7530 
7531 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7532 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7533 		if (ret)
7534 			goto free_adj;
7535 	}
7536 
7537 	/* Ensure that master link is always the first item in list. */
7538 	if (master) {
7539 		ret = sysfs_create_link(&(dev->dev.kobj),
7540 					&(adj_dev->dev.kobj), "master");
7541 		if (ret)
7542 			goto remove_symlinks;
7543 
7544 		list_add_rcu(&adj->list, dev_list);
7545 	} else {
7546 		list_add_tail_rcu(&adj->list, dev_list);
7547 	}
7548 
7549 	return 0;
7550 
7551 remove_symlinks:
7552 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7553 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7554 free_adj:
7555 	kfree(adj);
7556 	dev_put(adj_dev);
7557 
7558 	return ret;
7559 }
7560 
7561 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7562 					 struct net_device *adj_dev,
7563 					 u16 ref_nr,
7564 					 struct list_head *dev_list)
7565 {
7566 	struct netdev_adjacent *adj;
7567 
7568 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7569 		 dev->name, adj_dev->name, ref_nr);
7570 
7571 	adj = __netdev_find_adj(adj_dev, dev_list);
7572 
7573 	if (!adj) {
7574 		pr_err("Adjacency does not exist for device %s from %s\n",
7575 		       dev->name, adj_dev->name);
7576 		WARN_ON(1);
7577 		return;
7578 	}
7579 
7580 	if (adj->ref_nr > ref_nr) {
7581 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7582 			 dev->name, adj_dev->name, ref_nr,
7583 			 adj->ref_nr - ref_nr);
7584 		adj->ref_nr -= ref_nr;
7585 		return;
7586 	}
7587 
7588 	if (adj->master)
7589 		sysfs_remove_link(&(dev->dev.kobj), "master");
7590 
7591 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7592 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7593 
7594 	list_del_rcu(&adj->list);
7595 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7596 		 adj_dev->name, dev->name, adj_dev->name);
7597 	dev_put(adj_dev);
7598 	kfree_rcu(adj, rcu);
7599 }
7600 
7601 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7602 					    struct net_device *upper_dev,
7603 					    struct list_head *up_list,
7604 					    struct list_head *down_list,
7605 					    void *private, bool master)
7606 {
7607 	int ret;
7608 
7609 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7610 					   private, master);
7611 	if (ret)
7612 		return ret;
7613 
7614 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7615 					   private, false);
7616 	if (ret) {
7617 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7618 		return ret;
7619 	}
7620 
7621 	return 0;
7622 }
7623 
7624 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7625 					       struct net_device *upper_dev,
7626 					       u16 ref_nr,
7627 					       struct list_head *up_list,
7628 					       struct list_head *down_list)
7629 {
7630 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7631 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7632 }
7633 
7634 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7635 						struct net_device *upper_dev,
7636 						void *private, bool master)
7637 {
7638 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7639 						&dev->adj_list.upper,
7640 						&upper_dev->adj_list.lower,
7641 						private, master);
7642 }
7643 
7644 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7645 						   struct net_device *upper_dev)
7646 {
7647 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7648 					   &dev->adj_list.upper,
7649 					   &upper_dev->adj_list.lower);
7650 }
7651 
7652 static int __netdev_upper_dev_link(struct net_device *dev,
7653 				   struct net_device *upper_dev, bool master,
7654 				   void *upper_priv, void *upper_info,
7655 				   struct netlink_ext_ack *extack)
7656 {
7657 	struct netdev_notifier_changeupper_info changeupper_info = {
7658 		.info = {
7659 			.dev = dev,
7660 			.extack = extack,
7661 		},
7662 		.upper_dev = upper_dev,
7663 		.master = master,
7664 		.linking = true,
7665 		.upper_info = upper_info,
7666 	};
7667 	struct net_device *master_dev;
7668 	int ret = 0;
7669 
7670 	ASSERT_RTNL();
7671 
7672 	if (dev == upper_dev)
7673 		return -EBUSY;
7674 
7675 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7676 	if (__netdev_has_upper_dev(upper_dev, dev))
7677 		return -EBUSY;
7678 
7679 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7680 		return -EMLINK;
7681 
7682 	if (!master) {
7683 		if (__netdev_has_upper_dev(dev, upper_dev))
7684 			return -EEXIST;
7685 	} else {
7686 		master_dev = __netdev_master_upper_dev_get(dev);
7687 		if (master_dev)
7688 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7689 	}
7690 
7691 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7692 					    &changeupper_info.info);
7693 	ret = notifier_to_errno(ret);
7694 	if (ret)
7695 		return ret;
7696 
7697 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7698 						   master);
7699 	if (ret)
7700 		return ret;
7701 
7702 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7703 					    &changeupper_info.info);
7704 	ret = notifier_to_errno(ret);
7705 	if (ret)
7706 		goto rollback;
7707 
7708 	__netdev_update_upper_level(dev, NULL);
7709 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7710 
7711 	__netdev_update_lower_level(upper_dev, NULL);
7712 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7713 				    NULL);
7714 
7715 	return 0;
7716 
7717 rollback:
7718 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7719 
7720 	return ret;
7721 }
7722 
7723 /**
7724  * netdev_upper_dev_link - Add a link to the upper device
7725  * @dev: device
7726  * @upper_dev: new upper device
7727  * @extack: netlink extended ack
7728  *
7729  * Adds a link to device which is upper to this one. The caller must hold
7730  * the RTNL lock. On a failure a negative errno code is returned.
7731  * On success the reference counts are adjusted and the function
7732  * returns zero.
7733  */
7734 int netdev_upper_dev_link(struct net_device *dev,
7735 			  struct net_device *upper_dev,
7736 			  struct netlink_ext_ack *extack)
7737 {
7738 	return __netdev_upper_dev_link(dev, upper_dev, false,
7739 				       NULL, NULL, extack);
7740 }
7741 EXPORT_SYMBOL(netdev_upper_dev_link);
7742 
7743 /**
7744  * netdev_master_upper_dev_link - Add a master link to the upper device
7745  * @dev: device
7746  * @upper_dev: new upper device
7747  * @upper_priv: upper device private
7748  * @upper_info: upper info to be passed down via notifier
7749  * @extack: netlink extended ack
7750  *
7751  * Adds a link to device which is upper to this one. In this case, only
7752  * one master upper device can be linked, although other non-master devices
7753  * might be linked as well. The caller must hold the RTNL lock.
7754  * On a failure a negative errno code is returned. On success the reference
7755  * counts are adjusted and the function returns zero.
7756  */
7757 int netdev_master_upper_dev_link(struct net_device *dev,
7758 				 struct net_device *upper_dev,
7759 				 void *upper_priv, void *upper_info,
7760 				 struct netlink_ext_ack *extack)
7761 {
7762 	return __netdev_upper_dev_link(dev, upper_dev, true,
7763 				       upper_priv, upper_info, extack);
7764 }
7765 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7766 
7767 /**
7768  * netdev_upper_dev_unlink - Removes a link to upper device
7769  * @dev: device
7770  * @upper_dev: new upper device
7771  *
7772  * Removes a link to device which is upper to this one. The caller must hold
7773  * the RTNL lock.
7774  */
7775 void netdev_upper_dev_unlink(struct net_device *dev,
7776 			     struct net_device *upper_dev)
7777 {
7778 	struct netdev_notifier_changeupper_info changeupper_info = {
7779 		.info = {
7780 			.dev = dev,
7781 		},
7782 		.upper_dev = upper_dev,
7783 		.linking = false,
7784 	};
7785 
7786 	ASSERT_RTNL();
7787 
7788 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7789 
7790 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7791 				      &changeupper_info.info);
7792 
7793 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7794 
7795 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7796 				      &changeupper_info.info);
7797 
7798 	__netdev_update_upper_level(dev, NULL);
7799 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7800 
7801 	__netdev_update_lower_level(upper_dev, NULL);
7802 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7803 				    NULL);
7804 }
7805 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7806 
7807 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7808 				      struct net_device *lower_dev,
7809 				      bool val)
7810 {
7811 	struct netdev_adjacent *adj;
7812 
7813 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7814 	if (adj)
7815 		adj->ignore = val;
7816 
7817 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7818 	if (adj)
7819 		adj->ignore = val;
7820 }
7821 
7822 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7823 					struct net_device *lower_dev)
7824 {
7825 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7826 }
7827 
7828 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7829 				       struct net_device *lower_dev)
7830 {
7831 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7832 }
7833 
7834 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7835 				   struct net_device *new_dev,
7836 				   struct net_device *dev,
7837 				   struct netlink_ext_ack *extack)
7838 {
7839 	int err;
7840 
7841 	if (!new_dev)
7842 		return 0;
7843 
7844 	if (old_dev && new_dev != old_dev)
7845 		netdev_adjacent_dev_disable(dev, old_dev);
7846 
7847 	err = netdev_upper_dev_link(new_dev, dev, extack);
7848 	if (err) {
7849 		if (old_dev && new_dev != old_dev)
7850 			netdev_adjacent_dev_enable(dev, old_dev);
7851 		return err;
7852 	}
7853 
7854 	return 0;
7855 }
7856 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7857 
7858 void netdev_adjacent_change_commit(struct net_device *old_dev,
7859 				   struct net_device *new_dev,
7860 				   struct net_device *dev)
7861 {
7862 	if (!new_dev || !old_dev)
7863 		return;
7864 
7865 	if (new_dev == old_dev)
7866 		return;
7867 
7868 	netdev_adjacent_dev_enable(dev, old_dev);
7869 	netdev_upper_dev_unlink(old_dev, dev);
7870 }
7871 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7872 
7873 void netdev_adjacent_change_abort(struct net_device *old_dev,
7874 				  struct net_device *new_dev,
7875 				  struct net_device *dev)
7876 {
7877 	if (!new_dev)
7878 		return;
7879 
7880 	if (old_dev && new_dev != old_dev)
7881 		netdev_adjacent_dev_enable(dev, old_dev);
7882 
7883 	netdev_upper_dev_unlink(new_dev, dev);
7884 }
7885 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7886 
7887 /**
7888  * netdev_bonding_info_change - Dispatch event about slave change
7889  * @dev: device
7890  * @bonding_info: info to dispatch
7891  *
7892  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7893  * The caller must hold the RTNL lock.
7894  */
7895 void netdev_bonding_info_change(struct net_device *dev,
7896 				struct netdev_bonding_info *bonding_info)
7897 {
7898 	struct netdev_notifier_bonding_info info = {
7899 		.info.dev = dev,
7900 	};
7901 
7902 	memcpy(&info.bonding_info, bonding_info,
7903 	       sizeof(struct netdev_bonding_info));
7904 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7905 				      &info.info);
7906 }
7907 EXPORT_SYMBOL(netdev_bonding_info_change);
7908 
7909 /**
7910  * netdev_get_xmit_slave - Get the xmit slave of master device
7911  * @skb: The packet
7912  * @all_slaves: assume all the slaves are active
7913  *
7914  * The reference counters are not incremented so the caller must be
7915  * careful with locks. The caller must hold RCU lock.
7916  * %NULL is returned if no slave is found.
7917  */
7918 
7919 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
7920 					 struct sk_buff *skb,
7921 					 bool all_slaves)
7922 {
7923 	const struct net_device_ops *ops = dev->netdev_ops;
7924 
7925 	if (!ops->ndo_get_xmit_slave)
7926 		return NULL;
7927 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
7928 }
7929 EXPORT_SYMBOL(netdev_get_xmit_slave);
7930 
7931 static void netdev_adjacent_add_links(struct net_device *dev)
7932 {
7933 	struct netdev_adjacent *iter;
7934 
7935 	struct net *net = dev_net(dev);
7936 
7937 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7938 		if (!net_eq(net, dev_net(iter->dev)))
7939 			continue;
7940 		netdev_adjacent_sysfs_add(iter->dev, dev,
7941 					  &iter->dev->adj_list.lower);
7942 		netdev_adjacent_sysfs_add(dev, iter->dev,
7943 					  &dev->adj_list.upper);
7944 	}
7945 
7946 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7947 		if (!net_eq(net, dev_net(iter->dev)))
7948 			continue;
7949 		netdev_adjacent_sysfs_add(iter->dev, dev,
7950 					  &iter->dev->adj_list.upper);
7951 		netdev_adjacent_sysfs_add(dev, iter->dev,
7952 					  &dev->adj_list.lower);
7953 	}
7954 }
7955 
7956 static void netdev_adjacent_del_links(struct net_device *dev)
7957 {
7958 	struct netdev_adjacent *iter;
7959 
7960 	struct net *net = dev_net(dev);
7961 
7962 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7963 		if (!net_eq(net, dev_net(iter->dev)))
7964 			continue;
7965 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7966 					  &iter->dev->adj_list.lower);
7967 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7968 					  &dev->adj_list.upper);
7969 	}
7970 
7971 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7972 		if (!net_eq(net, dev_net(iter->dev)))
7973 			continue;
7974 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7975 					  &iter->dev->adj_list.upper);
7976 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7977 					  &dev->adj_list.lower);
7978 	}
7979 }
7980 
7981 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7982 {
7983 	struct netdev_adjacent *iter;
7984 
7985 	struct net *net = dev_net(dev);
7986 
7987 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7988 		if (!net_eq(net, dev_net(iter->dev)))
7989 			continue;
7990 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7991 					  &iter->dev->adj_list.lower);
7992 		netdev_adjacent_sysfs_add(iter->dev, dev,
7993 					  &iter->dev->adj_list.lower);
7994 	}
7995 
7996 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7997 		if (!net_eq(net, dev_net(iter->dev)))
7998 			continue;
7999 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8000 					  &iter->dev->adj_list.upper);
8001 		netdev_adjacent_sysfs_add(iter->dev, dev,
8002 					  &iter->dev->adj_list.upper);
8003 	}
8004 }
8005 
8006 void *netdev_lower_dev_get_private(struct net_device *dev,
8007 				   struct net_device *lower_dev)
8008 {
8009 	struct netdev_adjacent *lower;
8010 
8011 	if (!lower_dev)
8012 		return NULL;
8013 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8014 	if (!lower)
8015 		return NULL;
8016 
8017 	return lower->private;
8018 }
8019 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8020 
8021 
8022 /**
8023  * netdev_lower_change - Dispatch event about lower device state change
8024  * @lower_dev: device
8025  * @lower_state_info: state to dispatch
8026  *
8027  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8028  * The caller must hold the RTNL lock.
8029  */
8030 void netdev_lower_state_changed(struct net_device *lower_dev,
8031 				void *lower_state_info)
8032 {
8033 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8034 		.info.dev = lower_dev,
8035 	};
8036 
8037 	ASSERT_RTNL();
8038 	changelowerstate_info.lower_state_info = lower_state_info;
8039 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8040 				      &changelowerstate_info.info);
8041 }
8042 EXPORT_SYMBOL(netdev_lower_state_changed);
8043 
8044 static void dev_change_rx_flags(struct net_device *dev, int flags)
8045 {
8046 	const struct net_device_ops *ops = dev->netdev_ops;
8047 
8048 	if (ops->ndo_change_rx_flags)
8049 		ops->ndo_change_rx_flags(dev, flags);
8050 }
8051 
8052 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8053 {
8054 	unsigned int old_flags = dev->flags;
8055 	kuid_t uid;
8056 	kgid_t gid;
8057 
8058 	ASSERT_RTNL();
8059 
8060 	dev->flags |= IFF_PROMISC;
8061 	dev->promiscuity += inc;
8062 	if (dev->promiscuity == 0) {
8063 		/*
8064 		 * Avoid overflow.
8065 		 * If inc causes overflow, untouch promisc and return error.
8066 		 */
8067 		if (inc < 0)
8068 			dev->flags &= ~IFF_PROMISC;
8069 		else {
8070 			dev->promiscuity -= inc;
8071 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8072 				dev->name);
8073 			return -EOVERFLOW;
8074 		}
8075 	}
8076 	if (dev->flags != old_flags) {
8077 		pr_info("device %s %s promiscuous mode\n",
8078 			dev->name,
8079 			dev->flags & IFF_PROMISC ? "entered" : "left");
8080 		if (audit_enabled) {
8081 			current_uid_gid(&uid, &gid);
8082 			audit_log(audit_context(), GFP_ATOMIC,
8083 				  AUDIT_ANOM_PROMISCUOUS,
8084 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8085 				  dev->name, (dev->flags & IFF_PROMISC),
8086 				  (old_flags & IFF_PROMISC),
8087 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8088 				  from_kuid(&init_user_ns, uid),
8089 				  from_kgid(&init_user_ns, gid),
8090 				  audit_get_sessionid(current));
8091 		}
8092 
8093 		dev_change_rx_flags(dev, IFF_PROMISC);
8094 	}
8095 	if (notify)
8096 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
8097 	return 0;
8098 }
8099 
8100 /**
8101  *	dev_set_promiscuity	- update promiscuity count on a device
8102  *	@dev: device
8103  *	@inc: modifier
8104  *
8105  *	Add or remove promiscuity from a device. While the count in the device
8106  *	remains above zero the interface remains promiscuous. Once it hits zero
8107  *	the device reverts back to normal filtering operation. A negative inc
8108  *	value is used to drop promiscuity on the device.
8109  *	Return 0 if successful or a negative errno code on error.
8110  */
8111 int dev_set_promiscuity(struct net_device *dev, int inc)
8112 {
8113 	unsigned int old_flags = dev->flags;
8114 	int err;
8115 
8116 	err = __dev_set_promiscuity(dev, inc, true);
8117 	if (err < 0)
8118 		return err;
8119 	if (dev->flags != old_flags)
8120 		dev_set_rx_mode(dev);
8121 	return err;
8122 }
8123 EXPORT_SYMBOL(dev_set_promiscuity);
8124 
8125 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8126 {
8127 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8128 
8129 	ASSERT_RTNL();
8130 
8131 	dev->flags |= IFF_ALLMULTI;
8132 	dev->allmulti += inc;
8133 	if (dev->allmulti == 0) {
8134 		/*
8135 		 * Avoid overflow.
8136 		 * If inc causes overflow, untouch allmulti and return error.
8137 		 */
8138 		if (inc < 0)
8139 			dev->flags &= ~IFF_ALLMULTI;
8140 		else {
8141 			dev->allmulti -= inc;
8142 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8143 				dev->name);
8144 			return -EOVERFLOW;
8145 		}
8146 	}
8147 	if (dev->flags ^ old_flags) {
8148 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8149 		dev_set_rx_mode(dev);
8150 		if (notify)
8151 			__dev_notify_flags(dev, old_flags,
8152 					   dev->gflags ^ old_gflags);
8153 	}
8154 	return 0;
8155 }
8156 
8157 /**
8158  *	dev_set_allmulti	- update allmulti count on a device
8159  *	@dev: device
8160  *	@inc: modifier
8161  *
8162  *	Add or remove reception of all multicast frames to a device. While the
8163  *	count in the device remains above zero the interface remains listening
8164  *	to all interfaces. Once it hits zero the device reverts back to normal
8165  *	filtering operation. A negative @inc value is used to drop the counter
8166  *	when releasing a resource needing all multicasts.
8167  *	Return 0 if successful or a negative errno code on error.
8168  */
8169 
8170 int dev_set_allmulti(struct net_device *dev, int inc)
8171 {
8172 	return __dev_set_allmulti(dev, inc, true);
8173 }
8174 EXPORT_SYMBOL(dev_set_allmulti);
8175 
8176 /*
8177  *	Upload unicast and multicast address lists to device and
8178  *	configure RX filtering. When the device doesn't support unicast
8179  *	filtering it is put in promiscuous mode while unicast addresses
8180  *	are present.
8181  */
8182 void __dev_set_rx_mode(struct net_device *dev)
8183 {
8184 	const struct net_device_ops *ops = dev->netdev_ops;
8185 
8186 	/* dev_open will call this function so the list will stay sane. */
8187 	if (!(dev->flags&IFF_UP))
8188 		return;
8189 
8190 	if (!netif_device_present(dev))
8191 		return;
8192 
8193 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8194 		/* Unicast addresses changes may only happen under the rtnl,
8195 		 * therefore calling __dev_set_promiscuity here is safe.
8196 		 */
8197 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8198 			__dev_set_promiscuity(dev, 1, false);
8199 			dev->uc_promisc = true;
8200 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8201 			__dev_set_promiscuity(dev, -1, false);
8202 			dev->uc_promisc = false;
8203 		}
8204 	}
8205 
8206 	if (ops->ndo_set_rx_mode)
8207 		ops->ndo_set_rx_mode(dev);
8208 }
8209 
8210 void dev_set_rx_mode(struct net_device *dev)
8211 {
8212 	netif_addr_lock_bh(dev);
8213 	__dev_set_rx_mode(dev);
8214 	netif_addr_unlock_bh(dev);
8215 }
8216 
8217 /**
8218  *	dev_get_flags - get flags reported to userspace
8219  *	@dev: device
8220  *
8221  *	Get the combination of flag bits exported through APIs to userspace.
8222  */
8223 unsigned int dev_get_flags(const struct net_device *dev)
8224 {
8225 	unsigned int flags;
8226 
8227 	flags = (dev->flags & ~(IFF_PROMISC |
8228 				IFF_ALLMULTI |
8229 				IFF_RUNNING |
8230 				IFF_LOWER_UP |
8231 				IFF_DORMANT)) |
8232 		(dev->gflags & (IFF_PROMISC |
8233 				IFF_ALLMULTI));
8234 
8235 	if (netif_running(dev)) {
8236 		if (netif_oper_up(dev))
8237 			flags |= IFF_RUNNING;
8238 		if (netif_carrier_ok(dev))
8239 			flags |= IFF_LOWER_UP;
8240 		if (netif_dormant(dev))
8241 			flags |= IFF_DORMANT;
8242 	}
8243 
8244 	return flags;
8245 }
8246 EXPORT_SYMBOL(dev_get_flags);
8247 
8248 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8249 		       struct netlink_ext_ack *extack)
8250 {
8251 	unsigned int old_flags = dev->flags;
8252 	int ret;
8253 
8254 	ASSERT_RTNL();
8255 
8256 	/*
8257 	 *	Set the flags on our device.
8258 	 */
8259 
8260 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8261 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8262 			       IFF_AUTOMEDIA)) |
8263 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8264 				    IFF_ALLMULTI));
8265 
8266 	/*
8267 	 *	Load in the correct multicast list now the flags have changed.
8268 	 */
8269 
8270 	if ((old_flags ^ flags) & IFF_MULTICAST)
8271 		dev_change_rx_flags(dev, IFF_MULTICAST);
8272 
8273 	dev_set_rx_mode(dev);
8274 
8275 	/*
8276 	 *	Have we downed the interface. We handle IFF_UP ourselves
8277 	 *	according to user attempts to set it, rather than blindly
8278 	 *	setting it.
8279 	 */
8280 
8281 	ret = 0;
8282 	if ((old_flags ^ flags) & IFF_UP) {
8283 		if (old_flags & IFF_UP)
8284 			__dev_close(dev);
8285 		else
8286 			ret = __dev_open(dev, extack);
8287 	}
8288 
8289 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8290 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8291 		unsigned int old_flags = dev->flags;
8292 
8293 		dev->gflags ^= IFF_PROMISC;
8294 
8295 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8296 			if (dev->flags != old_flags)
8297 				dev_set_rx_mode(dev);
8298 	}
8299 
8300 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8301 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8302 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8303 	 */
8304 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8305 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8306 
8307 		dev->gflags ^= IFF_ALLMULTI;
8308 		__dev_set_allmulti(dev, inc, false);
8309 	}
8310 
8311 	return ret;
8312 }
8313 
8314 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8315 			unsigned int gchanges)
8316 {
8317 	unsigned int changes = dev->flags ^ old_flags;
8318 
8319 	if (gchanges)
8320 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8321 
8322 	if (changes & IFF_UP) {
8323 		if (dev->flags & IFF_UP)
8324 			call_netdevice_notifiers(NETDEV_UP, dev);
8325 		else
8326 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8327 	}
8328 
8329 	if (dev->flags & IFF_UP &&
8330 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8331 		struct netdev_notifier_change_info change_info = {
8332 			.info = {
8333 				.dev = dev,
8334 			},
8335 			.flags_changed = changes,
8336 		};
8337 
8338 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8339 	}
8340 }
8341 
8342 /**
8343  *	dev_change_flags - change device settings
8344  *	@dev: device
8345  *	@flags: device state flags
8346  *	@extack: netlink extended ack
8347  *
8348  *	Change settings on device based state flags. The flags are
8349  *	in the userspace exported format.
8350  */
8351 int dev_change_flags(struct net_device *dev, unsigned int flags,
8352 		     struct netlink_ext_ack *extack)
8353 {
8354 	int ret;
8355 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8356 
8357 	ret = __dev_change_flags(dev, flags, extack);
8358 	if (ret < 0)
8359 		return ret;
8360 
8361 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8362 	__dev_notify_flags(dev, old_flags, changes);
8363 	return ret;
8364 }
8365 EXPORT_SYMBOL(dev_change_flags);
8366 
8367 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8368 {
8369 	const struct net_device_ops *ops = dev->netdev_ops;
8370 
8371 	if (ops->ndo_change_mtu)
8372 		return ops->ndo_change_mtu(dev, new_mtu);
8373 
8374 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8375 	WRITE_ONCE(dev->mtu, new_mtu);
8376 	return 0;
8377 }
8378 EXPORT_SYMBOL(__dev_set_mtu);
8379 
8380 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8381 		     struct netlink_ext_ack *extack)
8382 {
8383 	/* MTU must be positive, and in range */
8384 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8385 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8386 		return -EINVAL;
8387 	}
8388 
8389 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8390 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8391 		return -EINVAL;
8392 	}
8393 	return 0;
8394 }
8395 
8396 /**
8397  *	dev_set_mtu_ext - Change maximum transfer unit
8398  *	@dev: device
8399  *	@new_mtu: new transfer unit
8400  *	@extack: netlink extended ack
8401  *
8402  *	Change the maximum transfer size of the network device.
8403  */
8404 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8405 		    struct netlink_ext_ack *extack)
8406 {
8407 	int err, orig_mtu;
8408 
8409 	if (new_mtu == dev->mtu)
8410 		return 0;
8411 
8412 	err = dev_validate_mtu(dev, new_mtu, extack);
8413 	if (err)
8414 		return err;
8415 
8416 	if (!netif_device_present(dev))
8417 		return -ENODEV;
8418 
8419 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8420 	err = notifier_to_errno(err);
8421 	if (err)
8422 		return err;
8423 
8424 	orig_mtu = dev->mtu;
8425 	err = __dev_set_mtu(dev, new_mtu);
8426 
8427 	if (!err) {
8428 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8429 						   orig_mtu);
8430 		err = notifier_to_errno(err);
8431 		if (err) {
8432 			/* setting mtu back and notifying everyone again,
8433 			 * so that they have a chance to revert changes.
8434 			 */
8435 			__dev_set_mtu(dev, orig_mtu);
8436 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8437 						     new_mtu);
8438 		}
8439 	}
8440 	return err;
8441 }
8442 
8443 int dev_set_mtu(struct net_device *dev, int new_mtu)
8444 {
8445 	struct netlink_ext_ack extack;
8446 	int err;
8447 
8448 	memset(&extack, 0, sizeof(extack));
8449 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8450 	if (err && extack._msg)
8451 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8452 	return err;
8453 }
8454 EXPORT_SYMBOL(dev_set_mtu);
8455 
8456 /**
8457  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8458  *	@dev: device
8459  *	@new_len: new tx queue length
8460  */
8461 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8462 {
8463 	unsigned int orig_len = dev->tx_queue_len;
8464 	int res;
8465 
8466 	if (new_len != (unsigned int)new_len)
8467 		return -ERANGE;
8468 
8469 	if (new_len != orig_len) {
8470 		dev->tx_queue_len = new_len;
8471 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8472 		res = notifier_to_errno(res);
8473 		if (res)
8474 			goto err_rollback;
8475 		res = dev_qdisc_change_tx_queue_len(dev);
8476 		if (res)
8477 			goto err_rollback;
8478 	}
8479 
8480 	return 0;
8481 
8482 err_rollback:
8483 	netdev_err(dev, "refused to change device tx_queue_len\n");
8484 	dev->tx_queue_len = orig_len;
8485 	return res;
8486 }
8487 
8488 /**
8489  *	dev_set_group - Change group this device belongs to
8490  *	@dev: device
8491  *	@new_group: group this device should belong to
8492  */
8493 void dev_set_group(struct net_device *dev, int new_group)
8494 {
8495 	dev->group = new_group;
8496 }
8497 EXPORT_SYMBOL(dev_set_group);
8498 
8499 /**
8500  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8501  *	@dev: device
8502  *	@addr: new address
8503  *	@extack: netlink extended ack
8504  */
8505 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8506 			      struct netlink_ext_ack *extack)
8507 {
8508 	struct netdev_notifier_pre_changeaddr_info info = {
8509 		.info.dev = dev,
8510 		.info.extack = extack,
8511 		.dev_addr = addr,
8512 	};
8513 	int rc;
8514 
8515 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8516 	return notifier_to_errno(rc);
8517 }
8518 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8519 
8520 /**
8521  *	dev_set_mac_address - Change Media Access Control Address
8522  *	@dev: device
8523  *	@sa: new address
8524  *	@extack: netlink extended ack
8525  *
8526  *	Change the hardware (MAC) address of the device
8527  */
8528 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8529 			struct netlink_ext_ack *extack)
8530 {
8531 	const struct net_device_ops *ops = dev->netdev_ops;
8532 	int err;
8533 
8534 	if (!ops->ndo_set_mac_address)
8535 		return -EOPNOTSUPP;
8536 	if (sa->sa_family != dev->type)
8537 		return -EINVAL;
8538 	if (!netif_device_present(dev))
8539 		return -ENODEV;
8540 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8541 	if (err)
8542 		return err;
8543 	err = ops->ndo_set_mac_address(dev, sa);
8544 	if (err)
8545 		return err;
8546 	dev->addr_assign_type = NET_ADDR_SET;
8547 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8548 	add_device_randomness(dev->dev_addr, dev->addr_len);
8549 	return 0;
8550 }
8551 EXPORT_SYMBOL(dev_set_mac_address);
8552 
8553 /**
8554  *	dev_change_carrier - Change device carrier
8555  *	@dev: device
8556  *	@new_carrier: new value
8557  *
8558  *	Change device carrier
8559  */
8560 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8561 {
8562 	const struct net_device_ops *ops = dev->netdev_ops;
8563 
8564 	if (!ops->ndo_change_carrier)
8565 		return -EOPNOTSUPP;
8566 	if (!netif_device_present(dev))
8567 		return -ENODEV;
8568 	return ops->ndo_change_carrier(dev, new_carrier);
8569 }
8570 EXPORT_SYMBOL(dev_change_carrier);
8571 
8572 /**
8573  *	dev_get_phys_port_id - Get device physical port ID
8574  *	@dev: device
8575  *	@ppid: port ID
8576  *
8577  *	Get device physical port ID
8578  */
8579 int dev_get_phys_port_id(struct net_device *dev,
8580 			 struct netdev_phys_item_id *ppid)
8581 {
8582 	const struct net_device_ops *ops = dev->netdev_ops;
8583 
8584 	if (!ops->ndo_get_phys_port_id)
8585 		return -EOPNOTSUPP;
8586 	return ops->ndo_get_phys_port_id(dev, ppid);
8587 }
8588 EXPORT_SYMBOL(dev_get_phys_port_id);
8589 
8590 /**
8591  *	dev_get_phys_port_name - Get device physical port name
8592  *	@dev: device
8593  *	@name: port name
8594  *	@len: limit of bytes to copy to name
8595  *
8596  *	Get device physical port name
8597  */
8598 int dev_get_phys_port_name(struct net_device *dev,
8599 			   char *name, size_t len)
8600 {
8601 	const struct net_device_ops *ops = dev->netdev_ops;
8602 	int err;
8603 
8604 	if (ops->ndo_get_phys_port_name) {
8605 		err = ops->ndo_get_phys_port_name(dev, name, len);
8606 		if (err != -EOPNOTSUPP)
8607 			return err;
8608 	}
8609 	return devlink_compat_phys_port_name_get(dev, name, len);
8610 }
8611 EXPORT_SYMBOL(dev_get_phys_port_name);
8612 
8613 /**
8614  *	dev_get_port_parent_id - Get the device's port parent identifier
8615  *	@dev: network device
8616  *	@ppid: pointer to a storage for the port's parent identifier
8617  *	@recurse: allow/disallow recursion to lower devices
8618  *
8619  *	Get the devices's port parent identifier
8620  */
8621 int dev_get_port_parent_id(struct net_device *dev,
8622 			   struct netdev_phys_item_id *ppid,
8623 			   bool recurse)
8624 {
8625 	const struct net_device_ops *ops = dev->netdev_ops;
8626 	struct netdev_phys_item_id first = { };
8627 	struct net_device *lower_dev;
8628 	struct list_head *iter;
8629 	int err;
8630 
8631 	if (ops->ndo_get_port_parent_id) {
8632 		err = ops->ndo_get_port_parent_id(dev, ppid);
8633 		if (err != -EOPNOTSUPP)
8634 			return err;
8635 	}
8636 
8637 	err = devlink_compat_switch_id_get(dev, ppid);
8638 	if (!err || err != -EOPNOTSUPP)
8639 		return err;
8640 
8641 	if (!recurse)
8642 		return -EOPNOTSUPP;
8643 
8644 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
8645 		err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8646 		if (err)
8647 			break;
8648 		if (!first.id_len)
8649 			first = *ppid;
8650 		else if (memcmp(&first, ppid, sizeof(*ppid)))
8651 			return -ENODATA;
8652 	}
8653 
8654 	return err;
8655 }
8656 EXPORT_SYMBOL(dev_get_port_parent_id);
8657 
8658 /**
8659  *	netdev_port_same_parent_id - Indicate if two network devices have
8660  *	the same port parent identifier
8661  *	@a: first network device
8662  *	@b: second network device
8663  */
8664 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8665 {
8666 	struct netdev_phys_item_id a_id = { };
8667 	struct netdev_phys_item_id b_id = { };
8668 
8669 	if (dev_get_port_parent_id(a, &a_id, true) ||
8670 	    dev_get_port_parent_id(b, &b_id, true))
8671 		return false;
8672 
8673 	return netdev_phys_item_id_same(&a_id, &b_id);
8674 }
8675 EXPORT_SYMBOL(netdev_port_same_parent_id);
8676 
8677 /**
8678  *	dev_change_proto_down - update protocol port state information
8679  *	@dev: device
8680  *	@proto_down: new value
8681  *
8682  *	This info can be used by switch drivers to set the phys state of the
8683  *	port.
8684  */
8685 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8686 {
8687 	const struct net_device_ops *ops = dev->netdev_ops;
8688 
8689 	if (!ops->ndo_change_proto_down)
8690 		return -EOPNOTSUPP;
8691 	if (!netif_device_present(dev))
8692 		return -ENODEV;
8693 	return ops->ndo_change_proto_down(dev, proto_down);
8694 }
8695 EXPORT_SYMBOL(dev_change_proto_down);
8696 
8697 /**
8698  *	dev_change_proto_down_generic - generic implementation for
8699  * 	ndo_change_proto_down that sets carrier according to
8700  * 	proto_down.
8701  *
8702  *	@dev: device
8703  *	@proto_down: new value
8704  */
8705 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8706 {
8707 	if (proto_down)
8708 		netif_carrier_off(dev);
8709 	else
8710 		netif_carrier_on(dev);
8711 	dev->proto_down = proto_down;
8712 	return 0;
8713 }
8714 EXPORT_SYMBOL(dev_change_proto_down_generic);
8715 
8716 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
8717 		    enum bpf_netdev_command cmd)
8718 {
8719 	struct netdev_bpf xdp;
8720 
8721 	if (!bpf_op)
8722 		return 0;
8723 
8724 	memset(&xdp, 0, sizeof(xdp));
8725 	xdp.command = cmd;
8726 
8727 	/* Query must always succeed. */
8728 	WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
8729 
8730 	return xdp.prog_id;
8731 }
8732 
8733 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8734 			   struct netlink_ext_ack *extack, u32 flags,
8735 			   struct bpf_prog *prog)
8736 {
8737 	bool non_hw = !(flags & XDP_FLAGS_HW_MODE);
8738 	struct bpf_prog *prev_prog = NULL;
8739 	struct netdev_bpf xdp;
8740 	int err;
8741 
8742 	if (non_hw) {
8743 		prev_prog = bpf_prog_by_id(__dev_xdp_query(dev, bpf_op,
8744 							   XDP_QUERY_PROG));
8745 		if (IS_ERR(prev_prog))
8746 			prev_prog = NULL;
8747 	}
8748 
8749 	memset(&xdp, 0, sizeof(xdp));
8750 	if (flags & XDP_FLAGS_HW_MODE)
8751 		xdp.command = XDP_SETUP_PROG_HW;
8752 	else
8753 		xdp.command = XDP_SETUP_PROG;
8754 	xdp.extack = extack;
8755 	xdp.flags = flags;
8756 	xdp.prog = prog;
8757 
8758 	err = bpf_op(dev, &xdp);
8759 	if (!err && non_hw)
8760 		bpf_prog_change_xdp(prev_prog, prog);
8761 
8762 	if (prev_prog)
8763 		bpf_prog_put(prev_prog);
8764 
8765 	return err;
8766 }
8767 
8768 static void dev_xdp_uninstall(struct net_device *dev)
8769 {
8770 	struct netdev_bpf xdp;
8771 	bpf_op_t ndo_bpf;
8772 
8773 	/* Remove generic XDP */
8774 	WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8775 
8776 	/* Remove from the driver */
8777 	ndo_bpf = dev->netdev_ops->ndo_bpf;
8778 	if (!ndo_bpf)
8779 		return;
8780 
8781 	memset(&xdp, 0, sizeof(xdp));
8782 	xdp.command = XDP_QUERY_PROG;
8783 	WARN_ON(ndo_bpf(dev, &xdp));
8784 	if (xdp.prog_id)
8785 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8786 					NULL));
8787 
8788 	/* Remove HW offload */
8789 	memset(&xdp, 0, sizeof(xdp));
8790 	xdp.command = XDP_QUERY_PROG_HW;
8791 	if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8792 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8793 					NULL));
8794 }
8795 
8796 /**
8797  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
8798  *	@dev: device
8799  *	@extack: netlink extended ack
8800  *	@fd: new program fd or negative value to clear
8801  *	@expected_fd: old program fd that userspace expects to replace or clear
8802  *	@flags: xdp-related flags
8803  *
8804  *	Set or clear a bpf program for a device
8805  */
8806 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8807 		      int fd, int expected_fd, u32 flags)
8808 {
8809 	const struct net_device_ops *ops = dev->netdev_ops;
8810 	enum bpf_netdev_command query;
8811 	u32 prog_id, expected_id = 0;
8812 	bpf_op_t bpf_op, bpf_chk;
8813 	struct bpf_prog *prog;
8814 	bool offload;
8815 	int err;
8816 
8817 	ASSERT_RTNL();
8818 
8819 	offload = flags & XDP_FLAGS_HW_MODE;
8820 	query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8821 
8822 	bpf_op = bpf_chk = ops->ndo_bpf;
8823 	if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8824 		NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8825 		return -EOPNOTSUPP;
8826 	}
8827 	if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8828 		bpf_op = generic_xdp_install;
8829 	if (bpf_op == bpf_chk)
8830 		bpf_chk = generic_xdp_install;
8831 
8832 	prog_id = __dev_xdp_query(dev, bpf_op, query);
8833 	if (flags & XDP_FLAGS_REPLACE) {
8834 		if (expected_fd >= 0) {
8835 			prog = bpf_prog_get_type_dev(expected_fd,
8836 						     BPF_PROG_TYPE_XDP,
8837 						     bpf_op == ops->ndo_bpf);
8838 			if (IS_ERR(prog))
8839 				return PTR_ERR(prog);
8840 			expected_id = prog->aux->id;
8841 			bpf_prog_put(prog);
8842 		}
8843 
8844 		if (prog_id != expected_id) {
8845 			NL_SET_ERR_MSG(extack, "Active program does not match expected");
8846 			return -EEXIST;
8847 		}
8848 	}
8849 	if (fd >= 0) {
8850 		if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8851 			NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8852 			return -EEXIST;
8853 		}
8854 
8855 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && prog_id) {
8856 			NL_SET_ERR_MSG(extack, "XDP program already attached");
8857 			return -EBUSY;
8858 		}
8859 
8860 		prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8861 					     bpf_op == ops->ndo_bpf);
8862 		if (IS_ERR(prog))
8863 			return PTR_ERR(prog);
8864 
8865 		if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8866 			NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8867 			bpf_prog_put(prog);
8868 			return -EINVAL;
8869 		}
8870 
8871 		if (prog->expected_attach_type == BPF_XDP_DEVMAP) {
8872 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
8873 			bpf_prog_put(prog);
8874 			return -EINVAL;
8875 		}
8876 
8877 		/* prog->aux->id may be 0 for orphaned device-bound progs */
8878 		if (prog->aux->id && prog->aux->id == prog_id) {
8879 			bpf_prog_put(prog);
8880 			return 0;
8881 		}
8882 	} else {
8883 		if (!prog_id)
8884 			return 0;
8885 		prog = NULL;
8886 	}
8887 
8888 	err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8889 	if (err < 0 && prog)
8890 		bpf_prog_put(prog);
8891 
8892 	return err;
8893 }
8894 
8895 /**
8896  *	dev_new_index	-	allocate an ifindex
8897  *	@net: the applicable net namespace
8898  *
8899  *	Returns a suitable unique value for a new device interface
8900  *	number.  The caller must hold the rtnl semaphore or the
8901  *	dev_base_lock to be sure it remains unique.
8902  */
8903 static int dev_new_index(struct net *net)
8904 {
8905 	int ifindex = net->ifindex;
8906 
8907 	for (;;) {
8908 		if (++ifindex <= 0)
8909 			ifindex = 1;
8910 		if (!__dev_get_by_index(net, ifindex))
8911 			return net->ifindex = ifindex;
8912 	}
8913 }
8914 
8915 /* Delayed registration/unregisteration */
8916 static LIST_HEAD(net_todo_list);
8917 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8918 
8919 static void net_set_todo(struct net_device *dev)
8920 {
8921 	list_add_tail(&dev->todo_list, &net_todo_list);
8922 	dev_net(dev)->dev_unreg_count++;
8923 }
8924 
8925 static void rollback_registered_many(struct list_head *head)
8926 {
8927 	struct net_device *dev, *tmp;
8928 	LIST_HEAD(close_head);
8929 
8930 	BUG_ON(dev_boot_phase);
8931 	ASSERT_RTNL();
8932 
8933 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8934 		/* Some devices call without registering
8935 		 * for initialization unwind. Remove those
8936 		 * devices and proceed with the remaining.
8937 		 */
8938 		if (dev->reg_state == NETREG_UNINITIALIZED) {
8939 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8940 				 dev->name, dev);
8941 
8942 			WARN_ON(1);
8943 			list_del(&dev->unreg_list);
8944 			continue;
8945 		}
8946 		dev->dismantle = true;
8947 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
8948 	}
8949 
8950 	/* If device is running, close it first. */
8951 	list_for_each_entry(dev, head, unreg_list)
8952 		list_add_tail(&dev->close_list, &close_head);
8953 	dev_close_many(&close_head, true);
8954 
8955 	list_for_each_entry(dev, head, unreg_list) {
8956 		/* And unlink it from device chain. */
8957 		unlist_netdevice(dev);
8958 
8959 		dev->reg_state = NETREG_UNREGISTERING;
8960 	}
8961 	flush_all_backlogs();
8962 
8963 	synchronize_net();
8964 
8965 	list_for_each_entry(dev, head, unreg_list) {
8966 		struct sk_buff *skb = NULL;
8967 
8968 		/* Shutdown queueing discipline. */
8969 		dev_shutdown(dev);
8970 
8971 		dev_xdp_uninstall(dev);
8972 
8973 		/* Notify protocols, that we are about to destroy
8974 		 * this device. They should clean all the things.
8975 		 */
8976 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8977 
8978 		if (!dev->rtnl_link_ops ||
8979 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8980 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8981 						     GFP_KERNEL, NULL, 0);
8982 
8983 		/*
8984 		 *	Flush the unicast and multicast chains
8985 		 */
8986 		dev_uc_flush(dev);
8987 		dev_mc_flush(dev);
8988 
8989 		netdev_name_node_alt_flush(dev);
8990 		netdev_name_node_free(dev->name_node);
8991 
8992 		if (dev->netdev_ops->ndo_uninit)
8993 			dev->netdev_ops->ndo_uninit(dev);
8994 
8995 		if (skb)
8996 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8997 
8998 		/* Notifier chain MUST detach us all upper devices. */
8999 		WARN_ON(netdev_has_any_upper_dev(dev));
9000 		WARN_ON(netdev_has_any_lower_dev(dev));
9001 
9002 		/* Remove entries from kobject tree */
9003 		netdev_unregister_kobject(dev);
9004 #ifdef CONFIG_XPS
9005 		/* Remove XPS queueing entries */
9006 		netif_reset_xps_queues_gt(dev, 0);
9007 #endif
9008 	}
9009 
9010 	synchronize_net();
9011 
9012 	list_for_each_entry(dev, head, unreg_list)
9013 		dev_put(dev);
9014 }
9015 
9016 static void rollback_registered(struct net_device *dev)
9017 {
9018 	LIST_HEAD(single);
9019 
9020 	list_add(&dev->unreg_list, &single);
9021 	rollback_registered_many(&single);
9022 	list_del(&single);
9023 }
9024 
9025 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9026 	struct net_device *upper, netdev_features_t features)
9027 {
9028 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9029 	netdev_features_t feature;
9030 	int feature_bit;
9031 
9032 	for_each_netdev_feature(upper_disables, feature_bit) {
9033 		feature = __NETIF_F_BIT(feature_bit);
9034 		if (!(upper->wanted_features & feature)
9035 		    && (features & feature)) {
9036 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9037 				   &feature, upper->name);
9038 			features &= ~feature;
9039 		}
9040 	}
9041 
9042 	return features;
9043 }
9044 
9045 static void netdev_sync_lower_features(struct net_device *upper,
9046 	struct net_device *lower, netdev_features_t features)
9047 {
9048 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9049 	netdev_features_t feature;
9050 	int feature_bit;
9051 
9052 	for_each_netdev_feature(upper_disables, feature_bit) {
9053 		feature = __NETIF_F_BIT(feature_bit);
9054 		if (!(features & feature) && (lower->features & feature)) {
9055 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9056 				   &feature, lower->name);
9057 			lower->wanted_features &= ~feature;
9058 			__netdev_update_features(lower);
9059 
9060 			if (unlikely(lower->features & feature))
9061 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9062 					    &feature, lower->name);
9063 			else
9064 				netdev_features_change(lower);
9065 		}
9066 	}
9067 }
9068 
9069 static netdev_features_t netdev_fix_features(struct net_device *dev,
9070 	netdev_features_t features)
9071 {
9072 	/* Fix illegal checksum combinations */
9073 	if ((features & NETIF_F_HW_CSUM) &&
9074 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9075 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9076 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9077 	}
9078 
9079 	/* TSO requires that SG is present as well. */
9080 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9081 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9082 		features &= ~NETIF_F_ALL_TSO;
9083 	}
9084 
9085 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9086 					!(features & NETIF_F_IP_CSUM)) {
9087 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9088 		features &= ~NETIF_F_TSO;
9089 		features &= ~NETIF_F_TSO_ECN;
9090 	}
9091 
9092 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9093 					 !(features & NETIF_F_IPV6_CSUM)) {
9094 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9095 		features &= ~NETIF_F_TSO6;
9096 	}
9097 
9098 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9099 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9100 		features &= ~NETIF_F_TSO_MANGLEID;
9101 
9102 	/* TSO ECN requires that TSO is present as well. */
9103 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9104 		features &= ~NETIF_F_TSO_ECN;
9105 
9106 	/* Software GSO depends on SG. */
9107 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9108 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9109 		features &= ~NETIF_F_GSO;
9110 	}
9111 
9112 	/* GSO partial features require GSO partial be set */
9113 	if ((features & dev->gso_partial_features) &&
9114 	    !(features & NETIF_F_GSO_PARTIAL)) {
9115 		netdev_dbg(dev,
9116 			   "Dropping partially supported GSO features since no GSO partial.\n");
9117 		features &= ~dev->gso_partial_features;
9118 	}
9119 
9120 	if (!(features & NETIF_F_RXCSUM)) {
9121 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9122 		 * successfully merged by hardware must also have the
9123 		 * checksum verified by hardware.  If the user does not
9124 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9125 		 */
9126 		if (features & NETIF_F_GRO_HW) {
9127 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9128 			features &= ~NETIF_F_GRO_HW;
9129 		}
9130 	}
9131 
9132 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9133 	if (features & NETIF_F_RXFCS) {
9134 		if (features & NETIF_F_LRO) {
9135 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9136 			features &= ~NETIF_F_LRO;
9137 		}
9138 
9139 		if (features & NETIF_F_GRO_HW) {
9140 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9141 			features &= ~NETIF_F_GRO_HW;
9142 		}
9143 	}
9144 
9145 	return features;
9146 }
9147 
9148 int __netdev_update_features(struct net_device *dev)
9149 {
9150 	struct net_device *upper, *lower;
9151 	netdev_features_t features;
9152 	struct list_head *iter;
9153 	int err = -1;
9154 
9155 	ASSERT_RTNL();
9156 
9157 	features = netdev_get_wanted_features(dev);
9158 
9159 	if (dev->netdev_ops->ndo_fix_features)
9160 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9161 
9162 	/* driver might be less strict about feature dependencies */
9163 	features = netdev_fix_features(dev, features);
9164 
9165 	/* some features can't be enabled if they're off an an upper device */
9166 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9167 		features = netdev_sync_upper_features(dev, upper, features);
9168 
9169 	if (dev->features == features)
9170 		goto sync_lower;
9171 
9172 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9173 		&dev->features, &features);
9174 
9175 	if (dev->netdev_ops->ndo_set_features)
9176 		err = dev->netdev_ops->ndo_set_features(dev, features);
9177 	else
9178 		err = 0;
9179 
9180 	if (unlikely(err < 0)) {
9181 		netdev_err(dev,
9182 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9183 			err, &features, &dev->features);
9184 		/* return non-0 since some features might have changed and
9185 		 * it's better to fire a spurious notification than miss it
9186 		 */
9187 		return -1;
9188 	}
9189 
9190 sync_lower:
9191 	/* some features must be disabled on lower devices when disabled
9192 	 * on an upper device (think: bonding master or bridge)
9193 	 */
9194 	netdev_for_each_lower_dev(dev, lower, iter)
9195 		netdev_sync_lower_features(dev, lower, features);
9196 
9197 	if (!err) {
9198 		netdev_features_t diff = features ^ dev->features;
9199 
9200 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9201 			/* udp_tunnel_{get,drop}_rx_info both need
9202 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9203 			 * device, or they won't do anything.
9204 			 * Thus we need to update dev->features
9205 			 * *before* calling udp_tunnel_get_rx_info,
9206 			 * but *after* calling udp_tunnel_drop_rx_info.
9207 			 */
9208 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9209 				dev->features = features;
9210 				udp_tunnel_get_rx_info(dev);
9211 			} else {
9212 				udp_tunnel_drop_rx_info(dev);
9213 			}
9214 		}
9215 
9216 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9217 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9218 				dev->features = features;
9219 				err |= vlan_get_rx_ctag_filter_info(dev);
9220 			} else {
9221 				vlan_drop_rx_ctag_filter_info(dev);
9222 			}
9223 		}
9224 
9225 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9226 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9227 				dev->features = features;
9228 				err |= vlan_get_rx_stag_filter_info(dev);
9229 			} else {
9230 				vlan_drop_rx_stag_filter_info(dev);
9231 			}
9232 		}
9233 
9234 		dev->features = features;
9235 	}
9236 
9237 	return err < 0 ? 0 : 1;
9238 }
9239 
9240 /**
9241  *	netdev_update_features - recalculate device features
9242  *	@dev: the device to check
9243  *
9244  *	Recalculate dev->features set and send notifications if it
9245  *	has changed. Should be called after driver or hardware dependent
9246  *	conditions might have changed that influence the features.
9247  */
9248 void netdev_update_features(struct net_device *dev)
9249 {
9250 	if (__netdev_update_features(dev))
9251 		netdev_features_change(dev);
9252 }
9253 EXPORT_SYMBOL(netdev_update_features);
9254 
9255 /**
9256  *	netdev_change_features - recalculate device features
9257  *	@dev: the device to check
9258  *
9259  *	Recalculate dev->features set and send notifications even
9260  *	if they have not changed. Should be called instead of
9261  *	netdev_update_features() if also dev->vlan_features might
9262  *	have changed to allow the changes to be propagated to stacked
9263  *	VLAN devices.
9264  */
9265 void netdev_change_features(struct net_device *dev)
9266 {
9267 	__netdev_update_features(dev);
9268 	netdev_features_change(dev);
9269 }
9270 EXPORT_SYMBOL(netdev_change_features);
9271 
9272 /**
9273  *	netif_stacked_transfer_operstate -	transfer operstate
9274  *	@rootdev: the root or lower level device to transfer state from
9275  *	@dev: the device to transfer operstate to
9276  *
9277  *	Transfer operational state from root to device. This is normally
9278  *	called when a stacking relationship exists between the root
9279  *	device and the device(a leaf device).
9280  */
9281 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9282 					struct net_device *dev)
9283 {
9284 	if (rootdev->operstate == IF_OPER_DORMANT)
9285 		netif_dormant_on(dev);
9286 	else
9287 		netif_dormant_off(dev);
9288 
9289 	if (rootdev->operstate == IF_OPER_TESTING)
9290 		netif_testing_on(dev);
9291 	else
9292 		netif_testing_off(dev);
9293 
9294 	if (netif_carrier_ok(rootdev))
9295 		netif_carrier_on(dev);
9296 	else
9297 		netif_carrier_off(dev);
9298 }
9299 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9300 
9301 static int netif_alloc_rx_queues(struct net_device *dev)
9302 {
9303 	unsigned int i, count = dev->num_rx_queues;
9304 	struct netdev_rx_queue *rx;
9305 	size_t sz = count * sizeof(*rx);
9306 	int err = 0;
9307 
9308 	BUG_ON(count < 1);
9309 
9310 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9311 	if (!rx)
9312 		return -ENOMEM;
9313 
9314 	dev->_rx = rx;
9315 
9316 	for (i = 0; i < count; i++) {
9317 		rx[i].dev = dev;
9318 
9319 		/* XDP RX-queue setup */
9320 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
9321 		if (err < 0)
9322 			goto err_rxq_info;
9323 	}
9324 	return 0;
9325 
9326 err_rxq_info:
9327 	/* Rollback successful reg's and free other resources */
9328 	while (i--)
9329 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9330 	kvfree(dev->_rx);
9331 	dev->_rx = NULL;
9332 	return err;
9333 }
9334 
9335 static void netif_free_rx_queues(struct net_device *dev)
9336 {
9337 	unsigned int i, count = dev->num_rx_queues;
9338 
9339 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9340 	if (!dev->_rx)
9341 		return;
9342 
9343 	for (i = 0; i < count; i++)
9344 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9345 
9346 	kvfree(dev->_rx);
9347 }
9348 
9349 static void netdev_init_one_queue(struct net_device *dev,
9350 				  struct netdev_queue *queue, void *_unused)
9351 {
9352 	/* Initialize queue lock */
9353 	spin_lock_init(&queue->_xmit_lock);
9354 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9355 	queue->xmit_lock_owner = -1;
9356 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9357 	queue->dev = dev;
9358 #ifdef CONFIG_BQL
9359 	dql_init(&queue->dql, HZ);
9360 #endif
9361 }
9362 
9363 static void netif_free_tx_queues(struct net_device *dev)
9364 {
9365 	kvfree(dev->_tx);
9366 }
9367 
9368 static int netif_alloc_netdev_queues(struct net_device *dev)
9369 {
9370 	unsigned int count = dev->num_tx_queues;
9371 	struct netdev_queue *tx;
9372 	size_t sz = count * sizeof(*tx);
9373 
9374 	if (count < 1 || count > 0xffff)
9375 		return -EINVAL;
9376 
9377 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9378 	if (!tx)
9379 		return -ENOMEM;
9380 
9381 	dev->_tx = tx;
9382 
9383 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9384 	spin_lock_init(&dev->tx_global_lock);
9385 
9386 	return 0;
9387 }
9388 
9389 void netif_tx_stop_all_queues(struct net_device *dev)
9390 {
9391 	unsigned int i;
9392 
9393 	for (i = 0; i < dev->num_tx_queues; i++) {
9394 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9395 
9396 		netif_tx_stop_queue(txq);
9397 	}
9398 }
9399 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9400 
9401 /**
9402  *	register_netdevice	- register a network device
9403  *	@dev: device to register
9404  *
9405  *	Take a completed network device structure and add it to the kernel
9406  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9407  *	chain. 0 is returned on success. A negative errno code is returned
9408  *	on a failure to set up the device, or if the name is a duplicate.
9409  *
9410  *	Callers must hold the rtnl semaphore. You may want
9411  *	register_netdev() instead of this.
9412  *
9413  *	BUGS:
9414  *	The locking appears insufficient to guarantee two parallel registers
9415  *	will not get the same name.
9416  */
9417 
9418 int register_netdevice(struct net_device *dev)
9419 {
9420 	int ret;
9421 	struct net *net = dev_net(dev);
9422 
9423 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9424 		     NETDEV_FEATURE_COUNT);
9425 	BUG_ON(dev_boot_phase);
9426 	ASSERT_RTNL();
9427 
9428 	might_sleep();
9429 
9430 	/* When net_device's are persistent, this will be fatal. */
9431 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9432 	BUG_ON(!net);
9433 
9434 	ret = ethtool_check_ops(dev->ethtool_ops);
9435 	if (ret)
9436 		return ret;
9437 
9438 	spin_lock_init(&dev->addr_list_lock);
9439 	netdev_set_addr_lockdep_class(dev);
9440 
9441 	ret = dev_get_valid_name(net, dev, dev->name);
9442 	if (ret < 0)
9443 		goto out;
9444 
9445 	ret = -ENOMEM;
9446 	dev->name_node = netdev_name_node_head_alloc(dev);
9447 	if (!dev->name_node)
9448 		goto out;
9449 
9450 	/* Init, if this function is available */
9451 	if (dev->netdev_ops->ndo_init) {
9452 		ret = dev->netdev_ops->ndo_init(dev);
9453 		if (ret) {
9454 			if (ret > 0)
9455 				ret = -EIO;
9456 			goto err_free_name;
9457 		}
9458 	}
9459 
9460 	if (((dev->hw_features | dev->features) &
9461 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
9462 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9463 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9464 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9465 		ret = -EINVAL;
9466 		goto err_uninit;
9467 	}
9468 
9469 	ret = -EBUSY;
9470 	if (!dev->ifindex)
9471 		dev->ifindex = dev_new_index(net);
9472 	else if (__dev_get_by_index(net, dev->ifindex))
9473 		goto err_uninit;
9474 
9475 	/* Transfer changeable features to wanted_features and enable
9476 	 * software offloads (GSO and GRO).
9477 	 */
9478 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9479 	dev->features |= NETIF_F_SOFT_FEATURES;
9480 
9481 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
9482 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9483 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9484 	}
9485 
9486 	dev->wanted_features = dev->features & dev->hw_features;
9487 
9488 	if (!(dev->flags & IFF_LOOPBACK))
9489 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
9490 
9491 	/* If IPv4 TCP segmentation offload is supported we should also
9492 	 * allow the device to enable segmenting the frame with the option
9493 	 * of ignoring a static IP ID value.  This doesn't enable the
9494 	 * feature itself but allows the user to enable it later.
9495 	 */
9496 	if (dev->hw_features & NETIF_F_TSO)
9497 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
9498 	if (dev->vlan_features & NETIF_F_TSO)
9499 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9500 	if (dev->mpls_features & NETIF_F_TSO)
9501 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9502 	if (dev->hw_enc_features & NETIF_F_TSO)
9503 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9504 
9505 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9506 	 */
9507 	dev->vlan_features |= NETIF_F_HIGHDMA;
9508 
9509 	/* Make NETIF_F_SG inheritable to tunnel devices.
9510 	 */
9511 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9512 
9513 	/* Make NETIF_F_SG inheritable to MPLS.
9514 	 */
9515 	dev->mpls_features |= NETIF_F_SG;
9516 
9517 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9518 	ret = notifier_to_errno(ret);
9519 	if (ret)
9520 		goto err_uninit;
9521 
9522 	ret = netdev_register_kobject(dev);
9523 	if (ret) {
9524 		dev->reg_state = NETREG_UNREGISTERED;
9525 		goto err_uninit;
9526 	}
9527 	dev->reg_state = NETREG_REGISTERED;
9528 
9529 	__netdev_update_features(dev);
9530 
9531 	/*
9532 	 *	Default initial state at registry is that the
9533 	 *	device is present.
9534 	 */
9535 
9536 	set_bit(__LINK_STATE_PRESENT, &dev->state);
9537 
9538 	linkwatch_init_dev(dev);
9539 
9540 	dev_init_scheduler(dev);
9541 	dev_hold(dev);
9542 	list_netdevice(dev);
9543 	add_device_randomness(dev->dev_addr, dev->addr_len);
9544 
9545 	/* If the device has permanent device address, driver should
9546 	 * set dev_addr and also addr_assign_type should be set to
9547 	 * NET_ADDR_PERM (default value).
9548 	 */
9549 	if (dev->addr_assign_type == NET_ADDR_PERM)
9550 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9551 
9552 	/* Notify protocols, that a new device appeared. */
9553 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
9554 	ret = notifier_to_errno(ret);
9555 	if (ret) {
9556 		rollback_registered(dev);
9557 		rcu_barrier();
9558 
9559 		dev->reg_state = NETREG_UNREGISTERED;
9560 		/* We should put the kobject that hold in
9561 		 * netdev_unregister_kobject(), otherwise
9562 		 * the net device cannot be freed when
9563 		 * driver calls free_netdev(), because the
9564 		 * kobject is being hold.
9565 		 */
9566 		kobject_put(&dev->dev.kobj);
9567 	}
9568 	/*
9569 	 *	Prevent userspace races by waiting until the network
9570 	 *	device is fully setup before sending notifications.
9571 	 */
9572 	if (!dev->rtnl_link_ops ||
9573 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9574 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9575 
9576 out:
9577 	return ret;
9578 
9579 err_uninit:
9580 	if (dev->netdev_ops->ndo_uninit)
9581 		dev->netdev_ops->ndo_uninit(dev);
9582 	if (dev->priv_destructor)
9583 		dev->priv_destructor(dev);
9584 err_free_name:
9585 	netdev_name_node_free(dev->name_node);
9586 	goto out;
9587 }
9588 EXPORT_SYMBOL(register_netdevice);
9589 
9590 /**
9591  *	init_dummy_netdev	- init a dummy network device for NAPI
9592  *	@dev: device to init
9593  *
9594  *	This takes a network device structure and initialize the minimum
9595  *	amount of fields so it can be used to schedule NAPI polls without
9596  *	registering a full blown interface. This is to be used by drivers
9597  *	that need to tie several hardware interfaces to a single NAPI
9598  *	poll scheduler due to HW limitations.
9599  */
9600 int init_dummy_netdev(struct net_device *dev)
9601 {
9602 	/* Clear everything. Note we don't initialize spinlocks
9603 	 * are they aren't supposed to be taken by any of the
9604 	 * NAPI code and this dummy netdev is supposed to be
9605 	 * only ever used for NAPI polls
9606 	 */
9607 	memset(dev, 0, sizeof(struct net_device));
9608 
9609 	/* make sure we BUG if trying to hit standard
9610 	 * register/unregister code path
9611 	 */
9612 	dev->reg_state = NETREG_DUMMY;
9613 
9614 	/* NAPI wants this */
9615 	INIT_LIST_HEAD(&dev->napi_list);
9616 
9617 	/* a dummy interface is started by default */
9618 	set_bit(__LINK_STATE_PRESENT, &dev->state);
9619 	set_bit(__LINK_STATE_START, &dev->state);
9620 
9621 	/* napi_busy_loop stats accounting wants this */
9622 	dev_net_set(dev, &init_net);
9623 
9624 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
9625 	 * because users of this 'device' dont need to change
9626 	 * its refcount.
9627 	 */
9628 
9629 	return 0;
9630 }
9631 EXPORT_SYMBOL_GPL(init_dummy_netdev);
9632 
9633 
9634 /**
9635  *	register_netdev	- register a network device
9636  *	@dev: device to register
9637  *
9638  *	Take a completed network device structure and add it to the kernel
9639  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9640  *	chain. 0 is returned on success. A negative errno code is returned
9641  *	on a failure to set up the device, or if the name is a duplicate.
9642  *
9643  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
9644  *	and expands the device name if you passed a format string to
9645  *	alloc_netdev.
9646  */
9647 int register_netdev(struct net_device *dev)
9648 {
9649 	int err;
9650 
9651 	if (rtnl_lock_killable())
9652 		return -EINTR;
9653 	err = register_netdevice(dev);
9654 	rtnl_unlock();
9655 	return err;
9656 }
9657 EXPORT_SYMBOL(register_netdev);
9658 
9659 int netdev_refcnt_read(const struct net_device *dev)
9660 {
9661 	int i, refcnt = 0;
9662 
9663 	for_each_possible_cpu(i)
9664 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
9665 	return refcnt;
9666 }
9667 EXPORT_SYMBOL(netdev_refcnt_read);
9668 
9669 /**
9670  * netdev_wait_allrefs - wait until all references are gone.
9671  * @dev: target net_device
9672  *
9673  * This is called when unregistering network devices.
9674  *
9675  * Any protocol or device that holds a reference should register
9676  * for netdevice notification, and cleanup and put back the
9677  * reference if they receive an UNREGISTER event.
9678  * We can get stuck here if buggy protocols don't correctly
9679  * call dev_put.
9680  */
9681 static void netdev_wait_allrefs(struct net_device *dev)
9682 {
9683 	unsigned long rebroadcast_time, warning_time;
9684 	int refcnt;
9685 
9686 	linkwatch_forget_dev(dev);
9687 
9688 	rebroadcast_time = warning_time = jiffies;
9689 	refcnt = netdev_refcnt_read(dev);
9690 
9691 	while (refcnt != 0) {
9692 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
9693 			rtnl_lock();
9694 
9695 			/* Rebroadcast unregister notification */
9696 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9697 
9698 			__rtnl_unlock();
9699 			rcu_barrier();
9700 			rtnl_lock();
9701 
9702 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
9703 				     &dev->state)) {
9704 				/* We must not have linkwatch events
9705 				 * pending on unregister. If this
9706 				 * happens, we simply run the queue
9707 				 * unscheduled, resulting in a noop
9708 				 * for this device.
9709 				 */
9710 				linkwatch_run_queue();
9711 			}
9712 
9713 			__rtnl_unlock();
9714 
9715 			rebroadcast_time = jiffies;
9716 		}
9717 
9718 		msleep(250);
9719 
9720 		refcnt = netdev_refcnt_read(dev);
9721 
9722 		if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
9723 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
9724 				 dev->name, refcnt);
9725 			warning_time = jiffies;
9726 		}
9727 	}
9728 }
9729 
9730 /* The sequence is:
9731  *
9732  *	rtnl_lock();
9733  *	...
9734  *	register_netdevice(x1);
9735  *	register_netdevice(x2);
9736  *	...
9737  *	unregister_netdevice(y1);
9738  *	unregister_netdevice(y2);
9739  *      ...
9740  *	rtnl_unlock();
9741  *	free_netdev(y1);
9742  *	free_netdev(y2);
9743  *
9744  * We are invoked by rtnl_unlock().
9745  * This allows us to deal with problems:
9746  * 1) We can delete sysfs objects which invoke hotplug
9747  *    without deadlocking with linkwatch via keventd.
9748  * 2) Since we run with the RTNL semaphore not held, we can sleep
9749  *    safely in order to wait for the netdev refcnt to drop to zero.
9750  *
9751  * We must not return until all unregister events added during
9752  * the interval the lock was held have been completed.
9753  */
9754 void netdev_run_todo(void)
9755 {
9756 	struct list_head list;
9757 
9758 	/* Snapshot list, allow later requests */
9759 	list_replace_init(&net_todo_list, &list);
9760 
9761 	__rtnl_unlock();
9762 
9763 
9764 	/* Wait for rcu callbacks to finish before next phase */
9765 	if (!list_empty(&list))
9766 		rcu_barrier();
9767 
9768 	while (!list_empty(&list)) {
9769 		struct net_device *dev
9770 			= list_first_entry(&list, struct net_device, todo_list);
9771 		list_del(&dev->todo_list);
9772 
9773 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
9774 			pr_err("network todo '%s' but state %d\n",
9775 			       dev->name, dev->reg_state);
9776 			dump_stack();
9777 			continue;
9778 		}
9779 
9780 		dev->reg_state = NETREG_UNREGISTERED;
9781 
9782 		netdev_wait_allrefs(dev);
9783 
9784 		/* paranoia */
9785 		BUG_ON(netdev_refcnt_read(dev));
9786 		BUG_ON(!list_empty(&dev->ptype_all));
9787 		BUG_ON(!list_empty(&dev->ptype_specific));
9788 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
9789 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
9790 #if IS_ENABLED(CONFIG_DECNET)
9791 		WARN_ON(dev->dn_ptr);
9792 #endif
9793 		if (dev->priv_destructor)
9794 			dev->priv_destructor(dev);
9795 		if (dev->needs_free_netdev)
9796 			free_netdev(dev);
9797 
9798 		/* Report a network device has been unregistered */
9799 		rtnl_lock();
9800 		dev_net(dev)->dev_unreg_count--;
9801 		__rtnl_unlock();
9802 		wake_up(&netdev_unregistering_wq);
9803 
9804 		/* Free network device */
9805 		kobject_put(&dev->dev.kobj);
9806 	}
9807 }
9808 
9809 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9810  * all the same fields in the same order as net_device_stats, with only
9811  * the type differing, but rtnl_link_stats64 may have additional fields
9812  * at the end for newer counters.
9813  */
9814 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9815 			     const struct net_device_stats *netdev_stats)
9816 {
9817 #if BITS_PER_LONG == 64
9818 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9819 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9820 	/* zero out counters that only exist in rtnl_link_stats64 */
9821 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
9822 	       sizeof(*stats64) - sizeof(*netdev_stats));
9823 #else
9824 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9825 	const unsigned long *src = (const unsigned long *)netdev_stats;
9826 	u64 *dst = (u64 *)stats64;
9827 
9828 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9829 	for (i = 0; i < n; i++)
9830 		dst[i] = src[i];
9831 	/* zero out counters that only exist in rtnl_link_stats64 */
9832 	memset((char *)stats64 + n * sizeof(u64), 0,
9833 	       sizeof(*stats64) - n * sizeof(u64));
9834 #endif
9835 }
9836 EXPORT_SYMBOL(netdev_stats_to_stats64);
9837 
9838 /**
9839  *	dev_get_stats	- get network device statistics
9840  *	@dev: device to get statistics from
9841  *	@storage: place to store stats
9842  *
9843  *	Get network statistics from device. Return @storage.
9844  *	The device driver may provide its own method by setting
9845  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9846  *	otherwise the internal statistics structure is used.
9847  */
9848 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9849 					struct rtnl_link_stats64 *storage)
9850 {
9851 	const struct net_device_ops *ops = dev->netdev_ops;
9852 
9853 	if (ops->ndo_get_stats64) {
9854 		memset(storage, 0, sizeof(*storage));
9855 		ops->ndo_get_stats64(dev, storage);
9856 	} else if (ops->ndo_get_stats) {
9857 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9858 	} else {
9859 		netdev_stats_to_stats64(storage, &dev->stats);
9860 	}
9861 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9862 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9863 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9864 	return storage;
9865 }
9866 EXPORT_SYMBOL(dev_get_stats);
9867 
9868 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9869 {
9870 	struct netdev_queue *queue = dev_ingress_queue(dev);
9871 
9872 #ifdef CONFIG_NET_CLS_ACT
9873 	if (queue)
9874 		return queue;
9875 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9876 	if (!queue)
9877 		return NULL;
9878 	netdev_init_one_queue(dev, queue, NULL);
9879 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9880 	queue->qdisc_sleeping = &noop_qdisc;
9881 	rcu_assign_pointer(dev->ingress_queue, queue);
9882 #endif
9883 	return queue;
9884 }
9885 
9886 static const struct ethtool_ops default_ethtool_ops;
9887 
9888 void netdev_set_default_ethtool_ops(struct net_device *dev,
9889 				    const struct ethtool_ops *ops)
9890 {
9891 	if (dev->ethtool_ops == &default_ethtool_ops)
9892 		dev->ethtool_ops = ops;
9893 }
9894 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9895 
9896 void netdev_freemem(struct net_device *dev)
9897 {
9898 	char *addr = (char *)dev - dev->padded;
9899 
9900 	kvfree(addr);
9901 }
9902 
9903 /**
9904  * alloc_netdev_mqs - allocate network device
9905  * @sizeof_priv: size of private data to allocate space for
9906  * @name: device name format string
9907  * @name_assign_type: origin of device name
9908  * @setup: callback to initialize device
9909  * @txqs: the number of TX subqueues to allocate
9910  * @rxqs: the number of RX subqueues to allocate
9911  *
9912  * Allocates a struct net_device with private data area for driver use
9913  * and performs basic initialization.  Also allocates subqueue structs
9914  * for each queue on the device.
9915  */
9916 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9917 		unsigned char name_assign_type,
9918 		void (*setup)(struct net_device *),
9919 		unsigned int txqs, unsigned int rxqs)
9920 {
9921 	struct net_device *dev;
9922 	unsigned int alloc_size;
9923 	struct net_device *p;
9924 
9925 	BUG_ON(strlen(name) >= sizeof(dev->name));
9926 
9927 	if (txqs < 1) {
9928 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9929 		return NULL;
9930 	}
9931 
9932 	if (rxqs < 1) {
9933 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9934 		return NULL;
9935 	}
9936 
9937 	alloc_size = sizeof(struct net_device);
9938 	if (sizeof_priv) {
9939 		/* ensure 32-byte alignment of private area */
9940 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9941 		alloc_size += sizeof_priv;
9942 	}
9943 	/* ensure 32-byte alignment of whole construct */
9944 	alloc_size += NETDEV_ALIGN - 1;
9945 
9946 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9947 	if (!p)
9948 		return NULL;
9949 
9950 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
9951 	dev->padded = (char *)dev - (char *)p;
9952 
9953 	dev->pcpu_refcnt = alloc_percpu(int);
9954 	if (!dev->pcpu_refcnt)
9955 		goto free_dev;
9956 
9957 	if (dev_addr_init(dev))
9958 		goto free_pcpu;
9959 
9960 	dev_mc_init(dev);
9961 	dev_uc_init(dev);
9962 
9963 	dev_net_set(dev, &init_net);
9964 
9965 	dev->gso_max_size = GSO_MAX_SIZE;
9966 	dev->gso_max_segs = GSO_MAX_SEGS;
9967 	dev->upper_level = 1;
9968 	dev->lower_level = 1;
9969 
9970 	INIT_LIST_HEAD(&dev->napi_list);
9971 	INIT_LIST_HEAD(&dev->unreg_list);
9972 	INIT_LIST_HEAD(&dev->close_list);
9973 	INIT_LIST_HEAD(&dev->link_watch_list);
9974 	INIT_LIST_HEAD(&dev->adj_list.upper);
9975 	INIT_LIST_HEAD(&dev->adj_list.lower);
9976 	INIT_LIST_HEAD(&dev->ptype_all);
9977 	INIT_LIST_HEAD(&dev->ptype_specific);
9978 	INIT_LIST_HEAD(&dev->net_notifier_list);
9979 #ifdef CONFIG_NET_SCHED
9980 	hash_init(dev->qdisc_hash);
9981 #endif
9982 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9983 	setup(dev);
9984 
9985 	if (!dev->tx_queue_len) {
9986 		dev->priv_flags |= IFF_NO_QUEUE;
9987 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9988 	}
9989 
9990 	dev->num_tx_queues = txqs;
9991 	dev->real_num_tx_queues = txqs;
9992 	if (netif_alloc_netdev_queues(dev))
9993 		goto free_all;
9994 
9995 	dev->num_rx_queues = rxqs;
9996 	dev->real_num_rx_queues = rxqs;
9997 	if (netif_alloc_rx_queues(dev))
9998 		goto free_all;
9999 
10000 	strcpy(dev->name, name);
10001 	dev->name_assign_type = name_assign_type;
10002 	dev->group = INIT_NETDEV_GROUP;
10003 	if (!dev->ethtool_ops)
10004 		dev->ethtool_ops = &default_ethtool_ops;
10005 
10006 	nf_hook_ingress_init(dev);
10007 
10008 	return dev;
10009 
10010 free_all:
10011 	free_netdev(dev);
10012 	return NULL;
10013 
10014 free_pcpu:
10015 	free_percpu(dev->pcpu_refcnt);
10016 free_dev:
10017 	netdev_freemem(dev);
10018 	return NULL;
10019 }
10020 EXPORT_SYMBOL(alloc_netdev_mqs);
10021 
10022 /**
10023  * free_netdev - free network device
10024  * @dev: device
10025  *
10026  * This function does the last stage of destroying an allocated device
10027  * interface. The reference to the device object is released. If this
10028  * is the last reference then it will be freed.Must be called in process
10029  * context.
10030  */
10031 void free_netdev(struct net_device *dev)
10032 {
10033 	struct napi_struct *p, *n;
10034 
10035 	might_sleep();
10036 	netif_free_tx_queues(dev);
10037 	netif_free_rx_queues(dev);
10038 
10039 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10040 
10041 	/* Flush device addresses */
10042 	dev_addr_flush(dev);
10043 
10044 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10045 		netif_napi_del(p);
10046 
10047 	free_percpu(dev->pcpu_refcnt);
10048 	dev->pcpu_refcnt = NULL;
10049 	free_percpu(dev->xdp_bulkq);
10050 	dev->xdp_bulkq = NULL;
10051 
10052 	/*  Compatibility with error handling in drivers */
10053 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10054 		netdev_freemem(dev);
10055 		return;
10056 	}
10057 
10058 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10059 	dev->reg_state = NETREG_RELEASED;
10060 
10061 	/* will free via device release */
10062 	put_device(&dev->dev);
10063 }
10064 EXPORT_SYMBOL(free_netdev);
10065 
10066 /**
10067  *	synchronize_net -  Synchronize with packet receive processing
10068  *
10069  *	Wait for packets currently being received to be done.
10070  *	Does not block later packets from starting.
10071  */
10072 void synchronize_net(void)
10073 {
10074 	might_sleep();
10075 	if (rtnl_is_locked())
10076 		synchronize_rcu_expedited();
10077 	else
10078 		synchronize_rcu();
10079 }
10080 EXPORT_SYMBOL(synchronize_net);
10081 
10082 /**
10083  *	unregister_netdevice_queue - remove device from the kernel
10084  *	@dev: device
10085  *	@head: list
10086  *
10087  *	This function shuts down a device interface and removes it
10088  *	from the kernel tables.
10089  *	If head not NULL, device is queued to be unregistered later.
10090  *
10091  *	Callers must hold the rtnl semaphore.  You may want
10092  *	unregister_netdev() instead of this.
10093  */
10094 
10095 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10096 {
10097 	ASSERT_RTNL();
10098 
10099 	if (head) {
10100 		list_move_tail(&dev->unreg_list, head);
10101 	} else {
10102 		rollback_registered(dev);
10103 		/* Finish processing unregister after unlock */
10104 		net_set_todo(dev);
10105 	}
10106 }
10107 EXPORT_SYMBOL(unregister_netdevice_queue);
10108 
10109 /**
10110  *	unregister_netdevice_many - unregister many devices
10111  *	@head: list of devices
10112  *
10113  *  Note: As most callers use a stack allocated list_head,
10114  *  we force a list_del() to make sure stack wont be corrupted later.
10115  */
10116 void unregister_netdevice_many(struct list_head *head)
10117 {
10118 	struct net_device *dev;
10119 
10120 	if (!list_empty(head)) {
10121 		rollback_registered_many(head);
10122 		list_for_each_entry(dev, head, unreg_list)
10123 			net_set_todo(dev);
10124 		list_del(head);
10125 	}
10126 }
10127 EXPORT_SYMBOL(unregister_netdevice_many);
10128 
10129 /**
10130  *	unregister_netdev - remove device from the kernel
10131  *	@dev: device
10132  *
10133  *	This function shuts down a device interface and removes it
10134  *	from the kernel tables.
10135  *
10136  *	This is just a wrapper for unregister_netdevice that takes
10137  *	the rtnl semaphore.  In general you want to use this and not
10138  *	unregister_netdevice.
10139  */
10140 void unregister_netdev(struct net_device *dev)
10141 {
10142 	rtnl_lock();
10143 	unregister_netdevice(dev);
10144 	rtnl_unlock();
10145 }
10146 EXPORT_SYMBOL(unregister_netdev);
10147 
10148 /**
10149  *	dev_change_net_namespace - move device to different nethost namespace
10150  *	@dev: device
10151  *	@net: network namespace
10152  *	@pat: If not NULL name pattern to try if the current device name
10153  *	      is already taken in the destination network namespace.
10154  *
10155  *	This function shuts down a device interface and moves it
10156  *	to a new network namespace. On success 0 is returned, on
10157  *	a failure a netagive errno code is returned.
10158  *
10159  *	Callers must hold the rtnl semaphore.
10160  */
10161 
10162 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10163 {
10164 	struct net *net_old = dev_net(dev);
10165 	int err, new_nsid, new_ifindex;
10166 
10167 	ASSERT_RTNL();
10168 
10169 	/* Don't allow namespace local devices to be moved. */
10170 	err = -EINVAL;
10171 	if (dev->features & NETIF_F_NETNS_LOCAL)
10172 		goto out;
10173 
10174 	/* Ensure the device has been registrered */
10175 	if (dev->reg_state != NETREG_REGISTERED)
10176 		goto out;
10177 
10178 	/* Get out if there is nothing todo */
10179 	err = 0;
10180 	if (net_eq(net_old, net))
10181 		goto out;
10182 
10183 	/* Pick the destination device name, and ensure
10184 	 * we can use it in the destination network namespace.
10185 	 */
10186 	err = -EEXIST;
10187 	if (__dev_get_by_name(net, dev->name)) {
10188 		/* We get here if we can't use the current device name */
10189 		if (!pat)
10190 			goto out;
10191 		err = dev_get_valid_name(net, dev, pat);
10192 		if (err < 0)
10193 			goto out;
10194 	}
10195 
10196 	/*
10197 	 * And now a mini version of register_netdevice unregister_netdevice.
10198 	 */
10199 
10200 	/* If device is running close it first. */
10201 	dev_close(dev);
10202 
10203 	/* And unlink it from device chain */
10204 	unlist_netdevice(dev);
10205 
10206 	synchronize_net();
10207 
10208 	/* Shutdown queueing discipline. */
10209 	dev_shutdown(dev);
10210 
10211 	/* Notify protocols, that we are about to destroy
10212 	 * this device. They should clean all the things.
10213 	 *
10214 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
10215 	 * This is wanted because this way 8021q and macvlan know
10216 	 * the device is just moving and can keep their slaves up.
10217 	 */
10218 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10219 	rcu_barrier();
10220 
10221 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10222 	/* If there is an ifindex conflict assign a new one */
10223 	if (__dev_get_by_index(net, dev->ifindex))
10224 		new_ifindex = dev_new_index(net);
10225 	else
10226 		new_ifindex = dev->ifindex;
10227 
10228 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10229 			    new_ifindex);
10230 
10231 	/*
10232 	 *	Flush the unicast and multicast chains
10233 	 */
10234 	dev_uc_flush(dev);
10235 	dev_mc_flush(dev);
10236 
10237 	/* Send a netdev-removed uevent to the old namespace */
10238 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10239 	netdev_adjacent_del_links(dev);
10240 
10241 	/* Move per-net netdevice notifiers that are following the netdevice */
10242 	move_netdevice_notifiers_dev_net(dev, net);
10243 
10244 	/* Actually switch the network namespace */
10245 	dev_net_set(dev, net);
10246 	dev->ifindex = new_ifindex;
10247 
10248 	/* Send a netdev-add uevent to the new namespace */
10249 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10250 	netdev_adjacent_add_links(dev);
10251 
10252 	/* Fixup kobjects */
10253 	err = device_rename(&dev->dev, dev->name);
10254 	WARN_ON(err);
10255 
10256 	/* Adapt owner in case owning user namespace of target network
10257 	 * namespace is different from the original one.
10258 	 */
10259 	err = netdev_change_owner(dev, net_old, net);
10260 	WARN_ON(err);
10261 
10262 	/* Add the device back in the hashes */
10263 	list_netdevice(dev);
10264 
10265 	/* Notify protocols, that a new device appeared. */
10266 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
10267 
10268 	/*
10269 	 *	Prevent userspace races by waiting until the network
10270 	 *	device is fully setup before sending notifications.
10271 	 */
10272 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10273 
10274 	synchronize_net();
10275 	err = 0;
10276 out:
10277 	return err;
10278 }
10279 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
10280 
10281 static int dev_cpu_dead(unsigned int oldcpu)
10282 {
10283 	struct sk_buff **list_skb;
10284 	struct sk_buff *skb;
10285 	unsigned int cpu;
10286 	struct softnet_data *sd, *oldsd, *remsd = NULL;
10287 
10288 	local_irq_disable();
10289 	cpu = smp_processor_id();
10290 	sd = &per_cpu(softnet_data, cpu);
10291 	oldsd = &per_cpu(softnet_data, oldcpu);
10292 
10293 	/* Find end of our completion_queue. */
10294 	list_skb = &sd->completion_queue;
10295 	while (*list_skb)
10296 		list_skb = &(*list_skb)->next;
10297 	/* Append completion queue from offline CPU. */
10298 	*list_skb = oldsd->completion_queue;
10299 	oldsd->completion_queue = NULL;
10300 
10301 	/* Append output queue from offline CPU. */
10302 	if (oldsd->output_queue) {
10303 		*sd->output_queue_tailp = oldsd->output_queue;
10304 		sd->output_queue_tailp = oldsd->output_queue_tailp;
10305 		oldsd->output_queue = NULL;
10306 		oldsd->output_queue_tailp = &oldsd->output_queue;
10307 	}
10308 	/* Append NAPI poll list from offline CPU, with one exception :
10309 	 * process_backlog() must be called by cpu owning percpu backlog.
10310 	 * We properly handle process_queue & input_pkt_queue later.
10311 	 */
10312 	while (!list_empty(&oldsd->poll_list)) {
10313 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10314 							    struct napi_struct,
10315 							    poll_list);
10316 
10317 		list_del_init(&napi->poll_list);
10318 		if (napi->poll == process_backlog)
10319 			napi->state = 0;
10320 		else
10321 			____napi_schedule(sd, napi);
10322 	}
10323 
10324 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
10325 	local_irq_enable();
10326 
10327 #ifdef CONFIG_RPS
10328 	remsd = oldsd->rps_ipi_list;
10329 	oldsd->rps_ipi_list = NULL;
10330 #endif
10331 	/* send out pending IPI's on offline CPU */
10332 	net_rps_send_ipi(remsd);
10333 
10334 	/* Process offline CPU's input_pkt_queue */
10335 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10336 		netif_rx_ni(skb);
10337 		input_queue_head_incr(oldsd);
10338 	}
10339 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10340 		netif_rx_ni(skb);
10341 		input_queue_head_incr(oldsd);
10342 	}
10343 
10344 	return 0;
10345 }
10346 
10347 /**
10348  *	netdev_increment_features - increment feature set by one
10349  *	@all: current feature set
10350  *	@one: new feature set
10351  *	@mask: mask feature set
10352  *
10353  *	Computes a new feature set after adding a device with feature set
10354  *	@one to the master device with current feature set @all.  Will not
10355  *	enable anything that is off in @mask. Returns the new feature set.
10356  */
10357 netdev_features_t netdev_increment_features(netdev_features_t all,
10358 	netdev_features_t one, netdev_features_t mask)
10359 {
10360 	if (mask & NETIF_F_HW_CSUM)
10361 		mask |= NETIF_F_CSUM_MASK;
10362 	mask |= NETIF_F_VLAN_CHALLENGED;
10363 
10364 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10365 	all &= one | ~NETIF_F_ALL_FOR_ALL;
10366 
10367 	/* If one device supports hw checksumming, set for all. */
10368 	if (all & NETIF_F_HW_CSUM)
10369 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
10370 
10371 	return all;
10372 }
10373 EXPORT_SYMBOL(netdev_increment_features);
10374 
10375 static struct hlist_head * __net_init netdev_create_hash(void)
10376 {
10377 	int i;
10378 	struct hlist_head *hash;
10379 
10380 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
10381 	if (hash != NULL)
10382 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
10383 			INIT_HLIST_HEAD(&hash[i]);
10384 
10385 	return hash;
10386 }
10387 
10388 /* Initialize per network namespace state */
10389 static int __net_init netdev_init(struct net *net)
10390 {
10391 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
10392 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
10393 
10394 	if (net != &init_net)
10395 		INIT_LIST_HEAD(&net->dev_base_head);
10396 
10397 	net->dev_name_head = netdev_create_hash();
10398 	if (net->dev_name_head == NULL)
10399 		goto err_name;
10400 
10401 	net->dev_index_head = netdev_create_hash();
10402 	if (net->dev_index_head == NULL)
10403 		goto err_idx;
10404 
10405 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
10406 
10407 	return 0;
10408 
10409 err_idx:
10410 	kfree(net->dev_name_head);
10411 err_name:
10412 	return -ENOMEM;
10413 }
10414 
10415 /**
10416  *	netdev_drivername - network driver for the device
10417  *	@dev: network device
10418  *
10419  *	Determine network driver for device.
10420  */
10421 const char *netdev_drivername(const struct net_device *dev)
10422 {
10423 	const struct device_driver *driver;
10424 	const struct device *parent;
10425 	const char *empty = "";
10426 
10427 	parent = dev->dev.parent;
10428 	if (!parent)
10429 		return empty;
10430 
10431 	driver = parent->driver;
10432 	if (driver && driver->name)
10433 		return driver->name;
10434 	return empty;
10435 }
10436 
10437 static void __netdev_printk(const char *level, const struct net_device *dev,
10438 			    struct va_format *vaf)
10439 {
10440 	if (dev && dev->dev.parent) {
10441 		dev_printk_emit(level[1] - '0',
10442 				dev->dev.parent,
10443 				"%s %s %s%s: %pV",
10444 				dev_driver_string(dev->dev.parent),
10445 				dev_name(dev->dev.parent),
10446 				netdev_name(dev), netdev_reg_state(dev),
10447 				vaf);
10448 	} else if (dev) {
10449 		printk("%s%s%s: %pV",
10450 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
10451 	} else {
10452 		printk("%s(NULL net_device): %pV", level, vaf);
10453 	}
10454 }
10455 
10456 void netdev_printk(const char *level, const struct net_device *dev,
10457 		   const char *format, ...)
10458 {
10459 	struct va_format vaf;
10460 	va_list args;
10461 
10462 	va_start(args, format);
10463 
10464 	vaf.fmt = format;
10465 	vaf.va = &args;
10466 
10467 	__netdev_printk(level, dev, &vaf);
10468 
10469 	va_end(args);
10470 }
10471 EXPORT_SYMBOL(netdev_printk);
10472 
10473 #define define_netdev_printk_level(func, level)			\
10474 void func(const struct net_device *dev, const char *fmt, ...)	\
10475 {								\
10476 	struct va_format vaf;					\
10477 	va_list args;						\
10478 								\
10479 	va_start(args, fmt);					\
10480 								\
10481 	vaf.fmt = fmt;						\
10482 	vaf.va = &args;						\
10483 								\
10484 	__netdev_printk(level, dev, &vaf);			\
10485 								\
10486 	va_end(args);						\
10487 }								\
10488 EXPORT_SYMBOL(func);
10489 
10490 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10491 define_netdev_printk_level(netdev_alert, KERN_ALERT);
10492 define_netdev_printk_level(netdev_crit, KERN_CRIT);
10493 define_netdev_printk_level(netdev_err, KERN_ERR);
10494 define_netdev_printk_level(netdev_warn, KERN_WARNING);
10495 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
10496 define_netdev_printk_level(netdev_info, KERN_INFO);
10497 
10498 static void __net_exit netdev_exit(struct net *net)
10499 {
10500 	kfree(net->dev_name_head);
10501 	kfree(net->dev_index_head);
10502 	if (net != &init_net)
10503 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
10504 }
10505 
10506 static struct pernet_operations __net_initdata netdev_net_ops = {
10507 	.init = netdev_init,
10508 	.exit = netdev_exit,
10509 };
10510 
10511 static void __net_exit default_device_exit(struct net *net)
10512 {
10513 	struct net_device *dev, *aux;
10514 	/*
10515 	 * Push all migratable network devices back to the
10516 	 * initial network namespace
10517 	 */
10518 	rtnl_lock();
10519 	for_each_netdev_safe(net, dev, aux) {
10520 		int err;
10521 		char fb_name[IFNAMSIZ];
10522 
10523 		/* Ignore unmoveable devices (i.e. loopback) */
10524 		if (dev->features & NETIF_F_NETNS_LOCAL)
10525 			continue;
10526 
10527 		/* Leave virtual devices for the generic cleanup */
10528 		if (dev->rtnl_link_ops)
10529 			continue;
10530 
10531 		/* Push remaining network devices to init_net */
10532 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
10533 		if (__dev_get_by_name(&init_net, fb_name))
10534 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
10535 		err = dev_change_net_namespace(dev, &init_net, fb_name);
10536 		if (err) {
10537 			pr_emerg("%s: failed to move %s to init_net: %d\n",
10538 				 __func__, dev->name, err);
10539 			BUG();
10540 		}
10541 	}
10542 	rtnl_unlock();
10543 }
10544 
10545 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
10546 {
10547 	/* Return with the rtnl_lock held when there are no network
10548 	 * devices unregistering in any network namespace in net_list.
10549 	 */
10550 	struct net *net;
10551 	bool unregistering;
10552 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
10553 
10554 	add_wait_queue(&netdev_unregistering_wq, &wait);
10555 	for (;;) {
10556 		unregistering = false;
10557 		rtnl_lock();
10558 		list_for_each_entry(net, net_list, exit_list) {
10559 			if (net->dev_unreg_count > 0) {
10560 				unregistering = true;
10561 				break;
10562 			}
10563 		}
10564 		if (!unregistering)
10565 			break;
10566 		__rtnl_unlock();
10567 
10568 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
10569 	}
10570 	remove_wait_queue(&netdev_unregistering_wq, &wait);
10571 }
10572 
10573 static void __net_exit default_device_exit_batch(struct list_head *net_list)
10574 {
10575 	/* At exit all network devices most be removed from a network
10576 	 * namespace.  Do this in the reverse order of registration.
10577 	 * Do this across as many network namespaces as possible to
10578 	 * improve batching efficiency.
10579 	 */
10580 	struct net_device *dev;
10581 	struct net *net;
10582 	LIST_HEAD(dev_kill_list);
10583 
10584 	/* To prevent network device cleanup code from dereferencing
10585 	 * loopback devices or network devices that have been freed
10586 	 * wait here for all pending unregistrations to complete,
10587 	 * before unregistring the loopback device and allowing the
10588 	 * network namespace be freed.
10589 	 *
10590 	 * The netdev todo list containing all network devices
10591 	 * unregistrations that happen in default_device_exit_batch
10592 	 * will run in the rtnl_unlock() at the end of
10593 	 * default_device_exit_batch.
10594 	 */
10595 	rtnl_lock_unregistering(net_list);
10596 	list_for_each_entry(net, net_list, exit_list) {
10597 		for_each_netdev_reverse(net, dev) {
10598 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
10599 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
10600 			else
10601 				unregister_netdevice_queue(dev, &dev_kill_list);
10602 		}
10603 	}
10604 	unregister_netdevice_many(&dev_kill_list);
10605 	rtnl_unlock();
10606 }
10607 
10608 static struct pernet_operations __net_initdata default_device_ops = {
10609 	.exit = default_device_exit,
10610 	.exit_batch = default_device_exit_batch,
10611 };
10612 
10613 /*
10614  *	Initialize the DEV module. At boot time this walks the device list and
10615  *	unhooks any devices that fail to initialise (normally hardware not
10616  *	present) and leaves us with a valid list of present and active devices.
10617  *
10618  */
10619 
10620 /*
10621  *       This is called single threaded during boot, so no need
10622  *       to take the rtnl semaphore.
10623  */
10624 static int __init net_dev_init(void)
10625 {
10626 	int i, rc = -ENOMEM;
10627 
10628 	BUG_ON(!dev_boot_phase);
10629 
10630 	if (dev_proc_init())
10631 		goto out;
10632 
10633 	if (netdev_kobject_init())
10634 		goto out;
10635 
10636 	INIT_LIST_HEAD(&ptype_all);
10637 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
10638 		INIT_LIST_HEAD(&ptype_base[i]);
10639 
10640 	INIT_LIST_HEAD(&offload_base);
10641 
10642 	if (register_pernet_subsys(&netdev_net_ops))
10643 		goto out;
10644 
10645 	/*
10646 	 *	Initialise the packet receive queues.
10647 	 */
10648 
10649 	for_each_possible_cpu(i) {
10650 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
10651 		struct softnet_data *sd = &per_cpu(softnet_data, i);
10652 
10653 		INIT_WORK(flush, flush_backlog);
10654 
10655 		skb_queue_head_init(&sd->input_pkt_queue);
10656 		skb_queue_head_init(&sd->process_queue);
10657 #ifdef CONFIG_XFRM_OFFLOAD
10658 		skb_queue_head_init(&sd->xfrm_backlog);
10659 #endif
10660 		INIT_LIST_HEAD(&sd->poll_list);
10661 		sd->output_queue_tailp = &sd->output_queue;
10662 #ifdef CONFIG_RPS
10663 		sd->csd.func = rps_trigger_softirq;
10664 		sd->csd.info = sd;
10665 		sd->cpu = i;
10666 #endif
10667 
10668 		init_gro_hash(&sd->backlog);
10669 		sd->backlog.poll = process_backlog;
10670 		sd->backlog.weight = weight_p;
10671 	}
10672 
10673 	dev_boot_phase = 0;
10674 
10675 	/* The loopback device is special if any other network devices
10676 	 * is present in a network namespace the loopback device must
10677 	 * be present. Since we now dynamically allocate and free the
10678 	 * loopback device ensure this invariant is maintained by
10679 	 * keeping the loopback device as the first device on the
10680 	 * list of network devices.  Ensuring the loopback devices
10681 	 * is the first device that appears and the last network device
10682 	 * that disappears.
10683 	 */
10684 	if (register_pernet_device(&loopback_net_ops))
10685 		goto out;
10686 
10687 	if (register_pernet_device(&default_device_ops))
10688 		goto out;
10689 
10690 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
10691 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
10692 
10693 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
10694 				       NULL, dev_cpu_dead);
10695 	WARN_ON(rc < 0);
10696 	rc = 0;
10697 out:
10698 	return rc;
10699 }
10700 
10701 subsys_initcall(net_dev_init);
10702