xref: /openbmc/linux/net/core/dev.c (revision 94c7b6fc)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
132 #include <linux/hashtable.h>
133 #include <linux/vmalloc.h>
134 #include <linux/if_macvlan.h>
135 
136 #include "net-sysfs.h"
137 
138 /* Instead of increasing this, you should create a hash table. */
139 #define MAX_GRO_SKBS 8
140 
141 /* This should be increased if a protocol with a bigger head is added. */
142 #define GRO_MAX_HEAD (MAX_HEADER + 128)
143 
144 static DEFINE_SPINLOCK(ptype_lock);
145 static DEFINE_SPINLOCK(offload_lock);
146 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
147 struct list_head ptype_all __read_mostly;	/* Taps */
148 static struct list_head offload_base __read_mostly;
149 
150 static int netif_rx_internal(struct sk_buff *skb);
151 
152 /*
153  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
154  * semaphore.
155  *
156  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
157  *
158  * Writers must hold the rtnl semaphore while they loop through the
159  * dev_base_head list, and hold dev_base_lock for writing when they do the
160  * actual updates.  This allows pure readers to access the list even
161  * while a writer is preparing to update it.
162  *
163  * To put it another way, dev_base_lock is held for writing only to
164  * protect against pure readers; the rtnl semaphore provides the
165  * protection against other writers.
166  *
167  * See, for example usages, register_netdevice() and
168  * unregister_netdevice(), which must be called with the rtnl
169  * semaphore held.
170  */
171 DEFINE_RWLOCK(dev_base_lock);
172 EXPORT_SYMBOL(dev_base_lock);
173 
174 /* protects napi_hash addition/deletion and napi_gen_id */
175 static DEFINE_SPINLOCK(napi_hash_lock);
176 
177 static unsigned int napi_gen_id;
178 static DEFINE_HASHTABLE(napi_hash, 8);
179 
180 static seqcount_t devnet_rename_seq;
181 
182 static inline void dev_base_seq_inc(struct net *net)
183 {
184 	while (++net->dev_base_seq == 0);
185 }
186 
187 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
188 {
189 	unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
190 
191 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
192 }
193 
194 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
195 {
196 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
197 }
198 
199 static inline void rps_lock(struct softnet_data *sd)
200 {
201 #ifdef CONFIG_RPS
202 	spin_lock(&sd->input_pkt_queue.lock);
203 #endif
204 }
205 
206 static inline void rps_unlock(struct softnet_data *sd)
207 {
208 #ifdef CONFIG_RPS
209 	spin_unlock(&sd->input_pkt_queue.lock);
210 #endif
211 }
212 
213 /* Device list insertion */
214 static void list_netdevice(struct net_device *dev)
215 {
216 	struct net *net = dev_net(dev);
217 
218 	ASSERT_RTNL();
219 
220 	write_lock_bh(&dev_base_lock);
221 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
222 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
223 	hlist_add_head_rcu(&dev->index_hlist,
224 			   dev_index_hash(net, dev->ifindex));
225 	write_unlock_bh(&dev_base_lock);
226 
227 	dev_base_seq_inc(net);
228 }
229 
230 /* Device list removal
231  * caller must respect a RCU grace period before freeing/reusing dev
232  */
233 static void unlist_netdevice(struct net_device *dev)
234 {
235 	ASSERT_RTNL();
236 
237 	/* Unlink dev from the device chain */
238 	write_lock_bh(&dev_base_lock);
239 	list_del_rcu(&dev->dev_list);
240 	hlist_del_rcu(&dev->name_hlist);
241 	hlist_del_rcu(&dev->index_hlist);
242 	write_unlock_bh(&dev_base_lock);
243 
244 	dev_base_seq_inc(dev_net(dev));
245 }
246 
247 /*
248  *	Our notifier list
249  */
250 
251 static RAW_NOTIFIER_HEAD(netdev_chain);
252 
253 /*
254  *	Device drivers call our routines to queue packets here. We empty the
255  *	queue in the local softnet handler.
256  */
257 
258 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
259 EXPORT_PER_CPU_SYMBOL(softnet_data);
260 
261 #ifdef CONFIG_LOCKDEP
262 /*
263  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
264  * according to dev->type
265  */
266 static const unsigned short netdev_lock_type[] =
267 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
268 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
269 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
270 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
271 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
272 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
273 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
274 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
275 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
276 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
277 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
278 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
279 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
280 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
281 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
282 
283 static const char *const netdev_lock_name[] =
284 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
285 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
286 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
287 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
288 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
289 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
290 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
291 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
292 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
293 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
294 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
295 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
296 	 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
297 	 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
298 	 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
299 
300 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
301 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
302 
303 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
304 {
305 	int i;
306 
307 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
308 		if (netdev_lock_type[i] == dev_type)
309 			return i;
310 	/* the last key is used by default */
311 	return ARRAY_SIZE(netdev_lock_type) - 1;
312 }
313 
314 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
315 						 unsigned short dev_type)
316 {
317 	int i;
318 
319 	i = netdev_lock_pos(dev_type);
320 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
321 				   netdev_lock_name[i]);
322 }
323 
324 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
325 {
326 	int i;
327 
328 	i = netdev_lock_pos(dev->type);
329 	lockdep_set_class_and_name(&dev->addr_list_lock,
330 				   &netdev_addr_lock_key[i],
331 				   netdev_lock_name[i]);
332 }
333 #else
334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335 						 unsigned short dev_type)
336 {
337 }
338 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
339 {
340 }
341 #endif
342 
343 /*******************************************************************************
344 
345 		Protocol management and registration routines
346 
347 *******************************************************************************/
348 
349 /*
350  *	Add a protocol ID to the list. Now that the input handler is
351  *	smarter we can dispense with all the messy stuff that used to be
352  *	here.
353  *
354  *	BEWARE!!! Protocol handlers, mangling input packets,
355  *	MUST BE last in hash buckets and checking protocol handlers
356  *	MUST start from promiscuous ptype_all chain in net_bh.
357  *	It is true now, do not change it.
358  *	Explanation follows: if protocol handler, mangling packet, will
359  *	be the first on list, it is not able to sense, that packet
360  *	is cloned and should be copied-on-write, so that it will
361  *	change it and subsequent readers will get broken packet.
362  *							--ANK (980803)
363  */
364 
365 static inline struct list_head *ptype_head(const struct packet_type *pt)
366 {
367 	if (pt->type == htons(ETH_P_ALL))
368 		return &ptype_all;
369 	else
370 		return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
371 }
372 
373 /**
374  *	dev_add_pack - add packet handler
375  *	@pt: packet type declaration
376  *
377  *	Add a protocol handler to the networking stack. The passed &packet_type
378  *	is linked into kernel lists and may not be freed until it has been
379  *	removed from the kernel lists.
380  *
381  *	This call does not sleep therefore it can not
382  *	guarantee all CPU's that are in middle of receiving packets
383  *	will see the new packet type (until the next received packet).
384  */
385 
386 void dev_add_pack(struct packet_type *pt)
387 {
388 	struct list_head *head = ptype_head(pt);
389 
390 	spin_lock(&ptype_lock);
391 	list_add_rcu(&pt->list, head);
392 	spin_unlock(&ptype_lock);
393 }
394 EXPORT_SYMBOL(dev_add_pack);
395 
396 /**
397  *	__dev_remove_pack	 - remove packet handler
398  *	@pt: packet type declaration
399  *
400  *	Remove a protocol handler that was previously added to the kernel
401  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
402  *	from the kernel lists and can be freed or reused once this function
403  *	returns.
404  *
405  *      The packet type might still be in use by receivers
406  *	and must not be freed until after all the CPU's have gone
407  *	through a quiescent state.
408  */
409 void __dev_remove_pack(struct packet_type *pt)
410 {
411 	struct list_head *head = ptype_head(pt);
412 	struct packet_type *pt1;
413 
414 	spin_lock(&ptype_lock);
415 
416 	list_for_each_entry(pt1, head, list) {
417 		if (pt == pt1) {
418 			list_del_rcu(&pt->list);
419 			goto out;
420 		}
421 	}
422 
423 	pr_warn("dev_remove_pack: %p not found\n", pt);
424 out:
425 	spin_unlock(&ptype_lock);
426 }
427 EXPORT_SYMBOL(__dev_remove_pack);
428 
429 /**
430  *	dev_remove_pack	 - remove packet handler
431  *	@pt: packet type declaration
432  *
433  *	Remove a protocol handler that was previously added to the kernel
434  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
435  *	from the kernel lists and can be freed or reused once this function
436  *	returns.
437  *
438  *	This call sleeps to guarantee that no CPU is looking at the packet
439  *	type after return.
440  */
441 void dev_remove_pack(struct packet_type *pt)
442 {
443 	__dev_remove_pack(pt);
444 
445 	synchronize_net();
446 }
447 EXPORT_SYMBOL(dev_remove_pack);
448 
449 
450 /**
451  *	dev_add_offload - register offload handlers
452  *	@po: protocol offload declaration
453  *
454  *	Add protocol offload handlers to the networking stack. The passed
455  *	&proto_offload is linked into kernel lists and may not be freed until
456  *	it has been removed from the kernel lists.
457  *
458  *	This call does not sleep therefore it can not
459  *	guarantee all CPU's that are in middle of receiving packets
460  *	will see the new offload handlers (until the next received packet).
461  */
462 void dev_add_offload(struct packet_offload *po)
463 {
464 	struct list_head *head = &offload_base;
465 
466 	spin_lock(&offload_lock);
467 	list_add_rcu(&po->list, head);
468 	spin_unlock(&offload_lock);
469 }
470 EXPORT_SYMBOL(dev_add_offload);
471 
472 /**
473  *	__dev_remove_offload	 - remove offload handler
474  *	@po: packet offload declaration
475  *
476  *	Remove a protocol offload handler that was previously added to the
477  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
478  *	is removed from the kernel lists and can be freed or reused once this
479  *	function returns.
480  *
481  *      The packet type might still be in use by receivers
482  *	and must not be freed until after all the CPU's have gone
483  *	through a quiescent state.
484  */
485 static void __dev_remove_offload(struct packet_offload *po)
486 {
487 	struct list_head *head = &offload_base;
488 	struct packet_offload *po1;
489 
490 	spin_lock(&offload_lock);
491 
492 	list_for_each_entry(po1, head, list) {
493 		if (po == po1) {
494 			list_del_rcu(&po->list);
495 			goto out;
496 		}
497 	}
498 
499 	pr_warn("dev_remove_offload: %p not found\n", po);
500 out:
501 	spin_unlock(&offload_lock);
502 }
503 
504 /**
505  *	dev_remove_offload	 - remove packet offload handler
506  *	@po: packet offload declaration
507  *
508  *	Remove a packet offload handler that was previously added to the kernel
509  *	offload handlers by dev_add_offload(). The passed &offload_type is
510  *	removed from the kernel lists and can be freed or reused once this
511  *	function returns.
512  *
513  *	This call sleeps to guarantee that no CPU is looking at the packet
514  *	type after return.
515  */
516 void dev_remove_offload(struct packet_offload *po)
517 {
518 	__dev_remove_offload(po);
519 
520 	synchronize_net();
521 }
522 EXPORT_SYMBOL(dev_remove_offload);
523 
524 /******************************************************************************
525 
526 		      Device Boot-time Settings Routines
527 
528 *******************************************************************************/
529 
530 /* Boot time configuration table */
531 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
532 
533 /**
534  *	netdev_boot_setup_add	- add new setup entry
535  *	@name: name of the device
536  *	@map: configured settings for the device
537  *
538  *	Adds new setup entry to the dev_boot_setup list.  The function
539  *	returns 0 on error and 1 on success.  This is a generic routine to
540  *	all netdevices.
541  */
542 static int netdev_boot_setup_add(char *name, struct ifmap *map)
543 {
544 	struct netdev_boot_setup *s;
545 	int i;
546 
547 	s = dev_boot_setup;
548 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
549 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
550 			memset(s[i].name, 0, sizeof(s[i].name));
551 			strlcpy(s[i].name, name, IFNAMSIZ);
552 			memcpy(&s[i].map, map, sizeof(s[i].map));
553 			break;
554 		}
555 	}
556 
557 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
558 }
559 
560 /**
561  *	netdev_boot_setup_check	- check boot time settings
562  *	@dev: the netdevice
563  *
564  * 	Check boot time settings for the device.
565  *	The found settings are set for the device to be used
566  *	later in the device probing.
567  *	Returns 0 if no settings found, 1 if they are.
568  */
569 int netdev_boot_setup_check(struct net_device *dev)
570 {
571 	struct netdev_boot_setup *s = dev_boot_setup;
572 	int i;
573 
574 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
576 		    !strcmp(dev->name, s[i].name)) {
577 			dev->irq 	= s[i].map.irq;
578 			dev->base_addr 	= s[i].map.base_addr;
579 			dev->mem_start 	= s[i].map.mem_start;
580 			dev->mem_end 	= s[i].map.mem_end;
581 			return 1;
582 		}
583 	}
584 	return 0;
585 }
586 EXPORT_SYMBOL(netdev_boot_setup_check);
587 
588 
589 /**
590  *	netdev_boot_base	- get address from boot time settings
591  *	@prefix: prefix for network device
592  *	@unit: id for network device
593  *
594  * 	Check boot time settings for the base address of device.
595  *	The found settings are set for the device to be used
596  *	later in the device probing.
597  *	Returns 0 if no settings found.
598  */
599 unsigned long netdev_boot_base(const char *prefix, int unit)
600 {
601 	const struct netdev_boot_setup *s = dev_boot_setup;
602 	char name[IFNAMSIZ];
603 	int i;
604 
605 	sprintf(name, "%s%d", prefix, unit);
606 
607 	/*
608 	 * If device already registered then return base of 1
609 	 * to indicate not to probe for this interface
610 	 */
611 	if (__dev_get_by_name(&init_net, name))
612 		return 1;
613 
614 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
615 		if (!strcmp(name, s[i].name))
616 			return s[i].map.base_addr;
617 	return 0;
618 }
619 
620 /*
621  * Saves at boot time configured settings for any netdevice.
622  */
623 int __init netdev_boot_setup(char *str)
624 {
625 	int ints[5];
626 	struct ifmap map;
627 
628 	str = get_options(str, ARRAY_SIZE(ints), ints);
629 	if (!str || !*str)
630 		return 0;
631 
632 	/* Save settings */
633 	memset(&map, 0, sizeof(map));
634 	if (ints[0] > 0)
635 		map.irq = ints[1];
636 	if (ints[0] > 1)
637 		map.base_addr = ints[2];
638 	if (ints[0] > 2)
639 		map.mem_start = ints[3];
640 	if (ints[0] > 3)
641 		map.mem_end = ints[4];
642 
643 	/* Add new entry to the list */
644 	return netdev_boot_setup_add(str, &map);
645 }
646 
647 __setup("netdev=", netdev_boot_setup);
648 
649 /*******************************************************************************
650 
651 			    Device Interface Subroutines
652 
653 *******************************************************************************/
654 
655 /**
656  *	__dev_get_by_name	- find a device by its name
657  *	@net: the applicable net namespace
658  *	@name: name to find
659  *
660  *	Find an interface by name. Must be called under RTNL semaphore
661  *	or @dev_base_lock. If the name is found a pointer to the device
662  *	is returned. If the name is not found then %NULL is returned. The
663  *	reference counters are not incremented so the caller must be
664  *	careful with locks.
665  */
666 
667 struct net_device *__dev_get_by_name(struct net *net, const char *name)
668 {
669 	struct net_device *dev;
670 	struct hlist_head *head = dev_name_hash(net, name);
671 
672 	hlist_for_each_entry(dev, head, name_hlist)
673 		if (!strncmp(dev->name, name, IFNAMSIZ))
674 			return dev;
675 
676 	return NULL;
677 }
678 EXPORT_SYMBOL(__dev_get_by_name);
679 
680 /**
681  *	dev_get_by_name_rcu	- find a device by its name
682  *	@net: the applicable net namespace
683  *	@name: name to find
684  *
685  *	Find an interface by name.
686  *	If the name is found a pointer to the device is returned.
687  * 	If the name is not found then %NULL is returned.
688  *	The reference counters are not incremented so the caller must be
689  *	careful with locks. The caller must hold RCU lock.
690  */
691 
692 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
693 {
694 	struct net_device *dev;
695 	struct hlist_head *head = dev_name_hash(net, name);
696 
697 	hlist_for_each_entry_rcu(dev, head, name_hlist)
698 		if (!strncmp(dev->name, name, IFNAMSIZ))
699 			return dev;
700 
701 	return NULL;
702 }
703 EXPORT_SYMBOL(dev_get_by_name_rcu);
704 
705 /**
706  *	dev_get_by_name		- find a device by its name
707  *	@net: the applicable net namespace
708  *	@name: name to find
709  *
710  *	Find an interface by name. This can be called from any
711  *	context and does its own locking. The returned handle has
712  *	the usage count incremented and the caller must use dev_put() to
713  *	release it when it is no longer needed. %NULL is returned if no
714  *	matching device is found.
715  */
716 
717 struct net_device *dev_get_by_name(struct net *net, const char *name)
718 {
719 	struct net_device *dev;
720 
721 	rcu_read_lock();
722 	dev = dev_get_by_name_rcu(net, name);
723 	if (dev)
724 		dev_hold(dev);
725 	rcu_read_unlock();
726 	return dev;
727 }
728 EXPORT_SYMBOL(dev_get_by_name);
729 
730 /**
731  *	__dev_get_by_index - find a device by its ifindex
732  *	@net: the applicable net namespace
733  *	@ifindex: index of device
734  *
735  *	Search for an interface by index. Returns %NULL if the device
736  *	is not found or a pointer to the device. The device has not
737  *	had its reference counter increased so the caller must be careful
738  *	about locking. The caller must hold either the RTNL semaphore
739  *	or @dev_base_lock.
740  */
741 
742 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
743 {
744 	struct net_device *dev;
745 	struct hlist_head *head = dev_index_hash(net, ifindex);
746 
747 	hlist_for_each_entry(dev, head, index_hlist)
748 		if (dev->ifindex == ifindex)
749 			return dev;
750 
751 	return NULL;
752 }
753 EXPORT_SYMBOL(__dev_get_by_index);
754 
755 /**
756  *	dev_get_by_index_rcu - find a device by its ifindex
757  *	@net: the applicable net namespace
758  *	@ifindex: index of device
759  *
760  *	Search for an interface by index. Returns %NULL if the device
761  *	is not found or a pointer to the device. The device has not
762  *	had its reference counter increased so the caller must be careful
763  *	about locking. The caller must hold RCU lock.
764  */
765 
766 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
767 {
768 	struct net_device *dev;
769 	struct hlist_head *head = dev_index_hash(net, ifindex);
770 
771 	hlist_for_each_entry_rcu(dev, head, index_hlist)
772 		if (dev->ifindex == ifindex)
773 			return dev;
774 
775 	return NULL;
776 }
777 EXPORT_SYMBOL(dev_get_by_index_rcu);
778 
779 
780 /**
781  *	dev_get_by_index - find a device by its ifindex
782  *	@net: the applicable net namespace
783  *	@ifindex: index of device
784  *
785  *	Search for an interface by index. Returns NULL if the device
786  *	is not found or a pointer to the device. The device returned has
787  *	had a reference added and the pointer is safe until the user calls
788  *	dev_put to indicate they have finished with it.
789  */
790 
791 struct net_device *dev_get_by_index(struct net *net, int ifindex)
792 {
793 	struct net_device *dev;
794 
795 	rcu_read_lock();
796 	dev = dev_get_by_index_rcu(net, ifindex);
797 	if (dev)
798 		dev_hold(dev);
799 	rcu_read_unlock();
800 	return dev;
801 }
802 EXPORT_SYMBOL(dev_get_by_index);
803 
804 /**
805  *	netdev_get_name - get a netdevice name, knowing its ifindex.
806  *	@net: network namespace
807  *	@name: a pointer to the buffer where the name will be stored.
808  *	@ifindex: the ifindex of the interface to get the name from.
809  *
810  *	The use of raw_seqcount_begin() and cond_resched() before
811  *	retrying is required as we want to give the writers a chance
812  *	to complete when CONFIG_PREEMPT is not set.
813  */
814 int netdev_get_name(struct net *net, char *name, int ifindex)
815 {
816 	struct net_device *dev;
817 	unsigned int seq;
818 
819 retry:
820 	seq = raw_seqcount_begin(&devnet_rename_seq);
821 	rcu_read_lock();
822 	dev = dev_get_by_index_rcu(net, ifindex);
823 	if (!dev) {
824 		rcu_read_unlock();
825 		return -ENODEV;
826 	}
827 
828 	strcpy(name, dev->name);
829 	rcu_read_unlock();
830 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
831 		cond_resched();
832 		goto retry;
833 	}
834 
835 	return 0;
836 }
837 
838 /**
839  *	dev_getbyhwaddr_rcu - find a device by its hardware address
840  *	@net: the applicable net namespace
841  *	@type: media type of device
842  *	@ha: hardware address
843  *
844  *	Search for an interface by MAC address. Returns NULL if the device
845  *	is not found or a pointer to the device.
846  *	The caller must hold RCU or RTNL.
847  *	The returned device has not had its ref count increased
848  *	and the caller must therefore be careful about locking
849  *
850  */
851 
852 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
853 				       const char *ha)
854 {
855 	struct net_device *dev;
856 
857 	for_each_netdev_rcu(net, dev)
858 		if (dev->type == type &&
859 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
860 			return dev;
861 
862 	return NULL;
863 }
864 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
865 
866 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
867 {
868 	struct net_device *dev;
869 
870 	ASSERT_RTNL();
871 	for_each_netdev(net, dev)
872 		if (dev->type == type)
873 			return dev;
874 
875 	return NULL;
876 }
877 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
878 
879 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
880 {
881 	struct net_device *dev, *ret = NULL;
882 
883 	rcu_read_lock();
884 	for_each_netdev_rcu(net, dev)
885 		if (dev->type == type) {
886 			dev_hold(dev);
887 			ret = dev;
888 			break;
889 		}
890 	rcu_read_unlock();
891 	return ret;
892 }
893 EXPORT_SYMBOL(dev_getfirstbyhwtype);
894 
895 /**
896  *	dev_get_by_flags_rcu - find any device with given flags
897  *	@net: the applicable net namespace
898  *	@if_flags: IFF_* values
899  *	@mask: bitmask of bits in if_flags to check
900  *
901  *	Search for any interface with the given flags. Returns NULL if a device
902  *	is not found or a pointer to the device. Must be called inside
903  *	rcu_read_lock(), and result refcount is unchanged.
904  */
905 
906 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
907 				    unsigned short mask)
908 {
909 	struct net_device *dev, *ret;
910 
911 	ret = NULL;
912 	for_each_netdev_rcu(net, dev) {
913 		if (((dev->flags ^ if_flags) & mask) == 0) {
914 			ret = dev;
915 			break;
916 		}
917 	}
918 	return ret;
919 }
920 EXPORT_SYMBOL(dev_get_by_flags_rcu);
921 
922 /**
923  *	dev_valid_name - check if name is okay for network device
924  *	@name: name string
925  *
926  *	Network device names need to be valid file names to
927  *	to allow sysfs to work.  We also disallow any kind of
928  *	whitespace.
929  */
930 bool dev_valid_name(const char *name)
931 {
932 	if (*name == '\0')
933 		return false;
934 	if (strlen(name) >= IFNAMSIZ)
935 		return false;
936 	if (!strcmp(name, ".") || !strcmp(name, ".."))
937 		return false;
938 
939 	while (*name) {
940 		if (*name == '/' || isspace(*name))
941 			return false;
942 		name++;
943 	}
944 	return true;
945 }
946 EXPORT_SYMBOL(dev_valid_name);
947 
948 /**
949  *	__dev_alloc_name - allocate a name for a device
950  *	@net: network namespace to allocate the device name in
951  *	@name: name format string
952  *	@buf:  scratch buffer and result name string
953  *
954  *	Passed a format string - eg "lt%d" it will try and find a suitable
955  *	id. It scans list of devices to build up a free map, then chooses
956  *	the first empty slot. The caller must hold the dev_base or rtnl lock
957  *	while allocating the name and adding the device in order to avoid
958  *	duplicates.
959  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
960  *	Returns the number of the unit assigned or a negative errno code.
961  */
962 
963 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
964 {
965 	int i = 0;
966 	const char *p;
967 	const int max_netdevices = 8*PAGE_SIZE;
968 	unsigned long *inuse;
969 	struct net_device *d;
970 
971 	p = strnchr(name, IFNAMSIZ-1, '%');
972 	if (p) {
973 		/*
974 		 * Verify the string as this thing may have come from
975 		 * the user.  There must be either one "%d" and no other "%"
976 		 * characters.
977 		 */
978 		if (p[1] != 'd' || strchr(p + 2, '%'))
979 			return -EINVAL;
980 
981 		/* Use one page as a bit array of possible slots */
982 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
983 		if (!inuse)
984 			return -ENOMEM;
985 
986 		for_each_netdev(net, d) {
987 			if (!sscanf(d->name, name, &i))
988 				continue;
989 			if (i < 0 || i >= max_netdevices)
990 				continue;
991 
992 			/*  avoid cases where sscanf is not exact inverse of printf */
993 			snprintf(buf, IFNAMSIZ, name, i);
994 			if (!strncmp(buf, d->name, IFNAMSIZ))
995 				set_bit(i, inuse);
996 		}
997 
998 		i = find_first_zero_bit(inuse, max_netdevices);
999 		free_page((unsigned long) inuse);
1000 	}
1001 
1002 	if (buf != name)
1003 		snprintf(buf, IFNAMSIZ, name, i);
1004 	if (!__dev_get_by_name(net, buf))
1005 		return i;
1006 
1007 	/* It is possible to run out of possible slots
1008 	 * when the name is long and there isn't enough space left
1009 	 * for the digits, or if all bits are used.
1010 	 */
1011 	return -ENFILE;
1012 }
1013 
1014 /**
1015  *	dev_alloc_name - allocate a name for a device
1016  *	@dev: device
1017  *	@name: name format string
1018  *
1019  *	Passed a format string - eg "lt%d" it will try and find a suitable
1020  *	id. It scans list of devices to build up a free map, then chooses
1021  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1022  *	while allocating the name and adding the device in order to avoid
1023  *	duplicates.
1024  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1025  *	Returns the number of the unit assigned or a negative errno code.
1026  */
1027 
1028 int dev_alloc_name(struct net_device *dev, const char *name)
1029 {
1030 	char buf[IFNAMSIZ];
1031 	struct net *net;
1032 	int ret;
1033 
1034 	BUG_ON(!dev_net(dev));
1035 	net = dev_net(dev);
1036 	ret = __dev_alloc_name(net, name, buf);
1037 	if (ret >= 0)
1038 		strlcpy(dev->name, buf, IFNAMSIZ);
1039 	return ret;
1040 }
1041 EXPORT_SYMBOL(dev_alloc_name);
1042 
1043 static int dev_alloc_name_ns(struct net *net,
1044 			     struct net_device *dev,
1045 			     const char *name)
1046 {
1047 	char buf[IFNAMSIZ];
1048 	int ret;
1049 
1050 	ret = __dev_alloc_name(net, name, buf);
1051 	if (ret >= 0)
1052 		strlcpy(dev->name, buf, IFNAMSIZ);
1053 	return ret;
1054 }
1055 
1056 static int dev_get_valid_name(struct net *net,
1057 			      struct net_device *dev,
1058 			      const char *name)
1059 {
1060 	BUG_ON(!net);
1061 
1062 	if (!dev_valid_name(name))
1063 		return -EINVAL;
1064 
1065 	if (strchr(name, '%'))
1066 		return dev_alloc_name_ns(net, dev, name);
1067 	else if (__dev_get_by_name(net, name))
1068 		return -EEXIST;
1069 	else if (dev->name != name)
1070 		strlcpy(dev->name, name, IFNAMSIZ);
1071 
1072 	return 0;
1073 }
1074 
1075 /**
1076  *	dev_change_name - change name of a device
1077  *	@dev: device
1078  *	@newname: name (or format string) must be at least IFNAMSIZ
1079  *
1080  *	Change name of a device, can pass format strings "eth%d".
1081  *	for wildcarding.
1082  */
1083 int dev_change_name(struct net_device *dev, const char *newname)
1084 {
1085 	char oldname[IFNAMSIZ];
1086 	int err = 0;
1087 	int ret;
1088 	struct net *net;
1089 
1090 	ASSERT_RTNL();
1091 	BUG_ON(!dev_net(dev));
1092 
1093 	net = dev_net(dev);
1094 	if (dev->flags & IFF_UP)
1095 		return -EBUSY;
1096 
1097 	write_seqcount_begin(&devnet_rename_seq);
1098 
1099 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1100 		write_seqcount_end(&devnet_rename_seq);
1101 		return 0;
1102 	}
1103 
1104 	memcpy(oldname, dev->name, IFNAMSIZ);
1105 
1106 	err = dev_get_valid_name(net, dev, newname);
1107 	if (err < 0) {
1108 		write_seqcount_end(&devnet_rename_seq);
1109 		return err;
1110 	}
1111 
1112 rollback:
1113 	ret = device_rename(&dev->dev, dev->name);
1114 	if (ret) {
1115 		memcpy(dev->name, oldname, IFNAMSIZ);
1116 		write_seqcount_end(&devnet_rename_seq);
1117 		return ret;
1118 	}
1119 
1120 	write_seqcount_end(&devnet_rename_seq);
1121 
1122 	netdev_adjacent_rename_links(dev, oldname);
1123 
1124 	write_lock_bh(&dev_base_lock);
1125 	hlist_del_rcu(&dev->name_hlist);
1126 	write_unlock_bh(&dev_base_lock);
1127 
1128 	synchronize_rcu();
1129 
1130 	write_lock_bh(&dev_base_lock);
1131 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1132 	write_unlock_bh(&dev_base_lock);
1133 
1134 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1135 	ret = notifier_to_errno(ret);
1136 
1137 	if (ret) {
1138 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1139 		if (err >= 0) {
1140 			err = ret;
1141 			write_seqcount_begin(&devnet_rename_seq);
1142 			memcpy(dev->name, oldname, IFNAMSIZ);
1143 			memcpy(oldname, newname, IFNAMSIZ);
1144 			goto rollback;
1145 		} else {
1146 			pr_err("%s: name change rollback failed: %d\n",
1147 			       dev->name, ret);
1148 		}
1149 	}
1150 
1151 	return err;
1152 }
1153 
1154 /**
1155  *	dev_set_alias - change ifalias of a device
1156  *	@dev: device
1157  *	@alias: name up to IFALIASZ
1158  *	@len: limit of bytes to copy from info
1159  *
1160  *	Set ifalias for a device,
1161  */
1162 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1163 {
1164 	char *new_ifalias;
1165 
1166 	ASSERT_RTNL();
1167 
1168 	if (len >= IFALIASZ)
1169 		return -EINVAL;
1170 
1171 	if (!len) {
1172 		kfree(dev->ifalias);
1173 		dev->ifalias = NULL;
1174 		return 0;
1175 	}
1176 
1177 	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1178 	if (!new_ifalias)
1179 		return -ENOMEM;
1180 	dev->ifalias = new_ifalias;
1181 
1182 	strlcpy(dev->ifalias, alias, len+1);
1183 	return len;
1184 }
1185 
1186 
1187 /**
1188  *	netdev_features_change - device changes features
1189  *	@dev: device to cause notification
1190  *
1191  *	Called to indicate a device has changed features.
1192  */
1193 void netdev_features_change(struct net_device *dev)
1194 {
1195 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1196 }
1197 EXPORT_SYMBOL(netdev_features_change);
1198 
1199 /**
1200  *	netdev_state_change - device changes state
1201  *	@dev: device to cause notification
1202  *
1203  *	Called to indicate a device has changed state. This function calls
1204  *	the notifier chains for netdev_chain and sends a NEWLINK message
1205  *	to the routing socket.
1206  */
1207 void netdev_state_change(struct net_device *dev)
1208 {
1209 	if (dev->flags & IFF_UP) {
1210 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
1211 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1212 	}
1213 }
1214 EXPORT_SYMBOL(netdev_state_change);
1215 
1216 /**
1217  * 	netdev_notify_peers - notify network peers about existence of @dev
1218  * 	@dev: network device
1219  *
1220  * Generate traffic such that interested network peers are aware of
1221  * @dev, such as by generating a gratuitous ARP. This may be used when
1222  * a device wants to inform the rest of the network about some sort of
1223  * reconfiguration such as a failover event or virtual machine
1224  * migration.
1225  */
1226 void netdev_notify_peers(struct net_device *dev)
1227 {
1228 	rtnl_lock();
1229 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1230 	rtnl_unlock();
1231 }
1232 EXPORT_SYMBOL(netdev_notify_peers);
1233 
1234 static int __dev_open(struct net_device *dev)
1235 {
1236 	const struct net_device_ops *ops = dev->netdev_ops;
1237 	int ret;
1238 
1239 	ASSERT_RTNL();
1240 
1241 	if (!netif_device_present(dev))
1242 		return -ENODEV;
1243 
1244 	/* Block netpoll from trying to do any rx path servicing.
1245 	 * If we don't do this there is a chance ndo_poll_controller
1246 	 * or ndo_poll may be running while we open the device
1247 	 */
1248 	netpoll_poll_disable(dev);
1249 
1250 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1251 	ret = notifier_to_errno(ret);
1252 	if (ret)
1253 		return ret;
1254 
1255 	set_bit(__LINK_STATE_START, &dev->state);
1256 
1257 	if (ops->ndo_validate_addr)
1258 		ret = ops->ndo_validate_addr(dev);
1259 
1260 	if (!ret && ops->ndo_open)
1261 		ret = ops->ndo_open(dev);
1262 
1263 	netpoll_poll_enable(dev);
1264 
1265 	if (ret)
1266 		clear_bit(__LINK_STATE_START, &dev->state);
1267 	else {
1268 		dev->flags |= IFF_UP;
1269 		net_dmaengine_get();
1270 		dev_set_rx_mode(dev);
1271 		dev_activate(dev);
1272 		add_device_randomness(dev->dev_addr, dev->addr_len);
1273 	}
1274 
1275 	return ret;
1276 }
1277 
1278 /**
1279  *	dev_open	- prepare an interface for use.
1280  *	@dev:	device to open
1281  *
1282  *	Takes a device from down to up state. The device's private open
1283  *	function is invoked and then the multicast lists are loaded. Finally
1284  *	the device is moved into the up state and a %NETDEV_UP message is
1285  *	sent to the netdev notifier chain.
1286  *
1287  *	Calling this function on an active interface is a nop. On a failure
1288  *	a negative errno code is returned.
1289  */
1290 int dev_open(struct net_device *dev)
1291 {
1292 	int ret;
1293 
1294 	if (dev->flags & IFF_UP)
1295 		return 0;
1296 
1297 	ret = __dev_open(dev);
1298 	if (ret < 0)
1299 		return ret;
1300 
1301 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1302 	call_netdevice_notifiers(NETDEV_UP, dev);
1303 
1304 	return ret;
1305 }
1306 EXPORT_SYMBOL(dev_open);
1307 
1308 static int __dev_close_many(struct list_head *head)
1309 {
1310 	struct net_device *dev;
1311 
1312 	ASSERT_RTNL();
1313 	might_sleep();
1314 
1315 	list_for_each_entry(dev, head, close_list) {
1316 		/* Temporarily disable netpoll until the interface is down */
1317 		netpoll_poll_disable(dev);
1318 
1319 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1320 
1321 		clear_bit(__LINK_STATE_START, &dev->state);
1322 
1323 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1324 		 * can be even on different cpu. So just clear netif_running().
1325 		 *
1326 		 * dev->stop() will invoke napi_disable() on all of it's
1327 		 * napi_struct instances on this device.
1328 		 */
1329 		smp_mb__after_atomic(); /* Commit netif_running(). */
1330 	}
1331 
1332 	dev_deactivate_many(head);
1333 
1334 	list_for_each_entry(dev, head, close_list) {
1335 		const struct net_device_ops *ops = dev->netdev_ops;
1336 
1337 		/*
1338 		 *	Call the device specific close. This cannot fail.
1339 		 *	Only if device is UP
1340 		 *
1341 		 *	We allow it to be called even after a DETACH hot-plug
1342 		 *	event.
1343 		 */
1344 		if (ops->ndo_stop)
1345 			ops->ndo_stop(dev);
1346 
1347 		dev->flags &= ~IFF_UP;
1348 		net_dmaengine_put();
1349 		netpoll_poll_enable(dev);
1350 	}
1351 
1352 	return 0;
1353 }
1354 
1355 static int __dev_close(struct net_device *dev)
1356 {
1357 	int retval;
1358 	LIST_HEAD(single);
1359 
1360 	list_add(&dev->close_list, &single);
1361 	retval = __dev_close_many(&single);
1362 	list_del(&single);
1363 
1364 	return retval;
1365 }
1366 
1367 static int dev_close_many(struct list_head *head)
1368 {
1369 	struct net_device *dev, *tmp;
1370 
1371 	/* Remove the devices that don't need to be closed */
1372 	list_for_each_entry_safe(dev, tmp, head, close_list)
1373 		if (!(dev->flags & IFF_UP))
1374 			list_del_init(&dev->close_list);
1375 
1376 	__dev_close_many(head);
1377 
1378 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1379 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1380 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1381 		list_del_init(&dev->close_list);
1382 	}
1383 
1384 	return 0;
1385 }
1386 
1387 /**
1388  *	dev_close - shutdown an interface.
1389  *	@dev: device to shutdown
1390  *
1391  *	This function moves an active device into down state. A
1392  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1393  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1394  *	chain.
1395  */
1396 int dev_close(struct net_device *dev)
1397 {
1398 	if (dev->flags & IFF_UP) {
1399 		LIST_HEAD(single);
1400 
1401 		list_add(&dev->close_list, &single);
1402 		dev_close_many(&single);
1403 		list_del(&single);
1404 	}
1405 	return 0;
1406 }
1407 EXPORT_SYMBOL(dev_close);
1408 
1409 
1410 /**
1411  *	dev_disable_lro - disable Large Receive Offload on a device
1412  *	@dev: device
1413  *
1414  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1415  *	called under RTNL.  This is needed if received packets may be
1416  *	forwarded to another interface.
1417  */
1418 void dev_disable_lro(struct net_device *dev)
1419 {
1420 	/*
1421 	 * If we're trying to disable lro on a vlan device
1422 	 * use the underlying physical device instead
1423 	 */
1424 	if (is_vlan_dev(dev))
1425 		dev = vlan_dev_real_dev(dev);
1426 
1427 	/* the same for macvlan devices */
1428 	if (netif_is_macvlan(dev))
1429 		dev = macvlan_dev_real_dev(dev);
1430 
1431 	dev->wanted_features &= ~NETIF_F_LRO;
1432 	netdev_update_features(dev);
1433 
1434 	if (unlikely(dev->features & NETIF_F_LRO))
1435 		netdev_WARN(dev, "failed to disable LRO!\n");
1436 }
1437 EXPORT_SYMBOL(dev_disable_lro);
1438 
1439 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1440 				   struct net_device *dev)
1441 {
1442 	struct netdev_notifier_info info;
1443 
1444 	netdev_notifier_info_init(&info, dev);
1445 	return nb->notifier_call(nb, val, &info);
1446 }
1447 
1448 static int dev_boot_phase = 1;
1449 
1450 /**
1451  *	register_netdevice_notifier - register a network notifier block
1452  *	@nb: notifier
1453  *
1454  *	Register a notifier to be called when network device events occur.
1455  *	The notifier passed is linked into the kernel structures and must
1456  *	not be reused until it has been unregistered. A negative errno code
1457  *	is returned on a failure.
1458  *
1459  * 	When registered all registration and up events are replayed
1460  *	to the new notifier to allow device to have a race free
1461  *	view of the network device list.
1462  */
1463 
1464 int register_netdevice_notifier(struct notifier_block *nb)
1465 {
1466 	struct net_device *dev;
1467 	struct net_device *last;
1468 	struct net *net;
1469 	int err;
1470 
1471 	rtnl_lock();
1472 	err = raw_notifier_chain_register(&netdev_chain, nb);
1473 	if (err)
1474 		goto unlock;
1475 	if (dev_boot_phase)
1476 		goto unlock;
1477 	for_each_net(net) {
1478 		for_each_netdev(net, dev) {
1479 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1480 			err = notifier_to_errno(err);
1481 			if (err)
1482 				goto rollback;
1483 
1484 			if (!(dev->flags & IFF_UP))
1485 				continue;
1486 
1487 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1488 		}
1489 	}
1490 
1491 unlock:
1492 	rtnl_unlock();
1493 	return err;
1494 
1495 rollback:
1496 	last = dev;
1497 	for_each_net(net) {
1498 		for_each_netdev(net, dev) {
1499 			if (dev == last)
1500 				goto outroll;
1501 
1502 			if (dev->flags & IFF_UP) {
1503 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1504 							dev);
1505 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1506 			}
1507 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1508 		}
1509 	}
1510 
1511 outroll:
1512 	raw_notifier_chain_unregister(&netdev_chain, nb);
1513 	goto unlock;
1514 }
1515 EXPORT_SYMBOL(register_netdevice_notifier);
1516 
1517 /**
1518  *	unregister_netdevice_notifier - unregister a network notifier block
1519  *	@nb: notifier
1520  *
1521  *	Unregister a notifier previously registered by
1522  *	register_netdevice_notifier(). The notifier is unlinked into the
1523  *	kernel structures and may then be reused. A negative errno code
1524  *	is returned on a failure.
1525  *
1526  * 	After unregistering unregister and down device events are synthesized
1527  *	for all devices on the device list to the removed notifier to remove
1528  *	the need for special case cleanup code.
1529  */
1530 
1531 int unregister_netdevice_notifier(struct notifier_block *nb)
1532 {
1533 	struct net_device *dev;
1534 	struct net *net;
1535 	int err;
1536 
1537 	rtnl_lock();
1538 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1539 	if (err)
1540 		goto unlock;
1541 
1542 	for_each_net(net) {
1543 		for_each_netdev(net, dev) {
1544 			if (dev->flags & IFF_UP) {
1545 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1546 							dev);
1547 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1548 			}
1549 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1550 		}
1551 	}
1552 unlock:
1553 	rtnl_unlock();
1554 	return err;
1555 }
1556 EXPORT_SYMBOL(unregister_netdevice_notifier);
1557 
1558 /**
1559  *	call_netdevice_notifiers_info - call all network notifier blocks
1560  *	@val: value passed unmodified to notifier function
1561  *	@dev: net_device pointer passed unmodified to notifier function
1562  *	@info: notifier information data
1563  *
1564  *	Call all network notifier blocks.  Parameters and return value
1565  *	are as for raw_notifier_call_chain().
1566  */
1567 
1568 static int call_netdevice_notifiers_info(unsigned long val,
1569 					 struct net_device *dev,
1570 					 struct netdev_notifier_info *info)
1571 {
1572 	ASSERT_RTNL();
1573 	netdev_notifier_info_init(info, dev);
1574 	return raw_notifier_call_chain(&netdev_chain, val, info);
1575 }
1576 
1577 /**
1578  *	call_netdevice_notifiers - call all network notifier blocks
1579  *      @val: value passed unmodified to notifier function
1580  *      @dev: net_device pointer passed unmodified to notifier function
1581  *
1582  *	Call all network notifier blocks.  Parameters and return value
1583  *	are as for raw_notifier_call_chain().
1584  */
1585 
1586 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1587 {
1588 	struct netdev_notifier_info info;
1589 
1590 	return call_netdevice_notifiers_info(val, dev, &info);
1591 }
1592 EXPORT_SYMBOL(call_netdevice_notifiers);
1593 
1594 static struct static_key netstamp_needed __read_mostly;
1595 #ifdef HAVE_JUMP_LABEL
1596 /* We are not allowed to call static_key_slow_dec() from irq context
1597  * If net_disable_timestamp() is called from irq context, defer the
1598  * static_key_slow_dec() calls.
1599  */
1600 static atomic_t netstamp_needed_deferred;
1601 #endif
1602 
1603 void net_enable_timestamp(void)
1604 {
1605 #ifdef HAVE_JUMP_LABEL
1606 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1607 
1608 	if (deferred) {
1609 		while (--deferred)
1610 			static_key_slow_dec(&netstamp_needed);
1611 		return;
1612 	}
1613 #endif
1614 	static_key_slow_inc(&netstamp_needed);
1615 }
1616 EXPORT_SYMBOL(net_enable_timestamp);
1617 
1618 void net_disable_timestamp(void)
1619 {
1620 #ifdef HAVE_JUMP_LABEL
1621 	if (in_interrupt()) {
1622 		atomic_inc(&netstamp_needed_deferred);
1623 		return;
1624 	}
1625 #endif
1626 	static_key_slow_dec(&netstamp_needed);
1627 }
1628 EXPORT_SYMBOL(net_disable_timestamp);
1629 
1630 static inline void net_timestamp_set(struct sk_buff *skb)
1631 {
1632 	skb->tstamp.tv64 = 0;
1633 	if (static_key_false(&netstamp_needed))
1634 		__net_timestamp(skb);
1635 }
1636 
1637 #define net_timestamp_check(COND, SKB)			\
1638 	if (static_key_false(&netstamp_needed)) {		\
1639 		if ((COND) && !(SKB)->tstamp.tv64)	\
1640 			__net_timestamp(SKB);		\
1641 	}						\
1642 
1643 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1644 {
1645 	unsigned int len;
1646 
1647 	if (!(dev->flags & IFF_UP))
1648 		return false;
1649 
1650 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1651 	if (skb->len <= len)
1652 		return true;
1653 
1654 	/* if TSO is enabled, we don't care about the length as the packet
1655 	 * could be forwarded without being segmented before
1656 	 */
1657 	if (skb_is_gso(skb))
1658 		return true;
1659 
1660 	return false;
1661 }
1662 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1663 
1664 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1665 {
1666 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1667 		if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1668 			atomic_long_inc(&dev->rx_dropped);
1669 			kfree_skb(skb);
1670 			return NET_RX_DROP;
1671 		}
1672 	}
1673 
1674 	if (unlikely(!is_skb_forwardable(dev, skb))) {
1675 		atomic_long_inc(&dev->rx_dropped);
1676 		kfree_skb(skb);
1677 		return NET_RX_DROP;
1678 	}
1679 
1680 	skb_scrub_packet(skb, true);
1681 	skb->protocol = eth_type_trans(skb, dev);
1682 
1683 	return 0;
1684 }
1685 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1686 
1687 /**
1688  * dev_forward_skb - loopback an skb to another netif
1689  *
1690  * @dev: destination network device
1691  * @skb: buffer to forward
1692  *
1693  * return values:
1694  *	NET_RX_SUCCESS	(no congestion)
1695  *	NET_RX_DROP     (packet was dropped, but freed)
1696  *
1697  * dev_forward_skb can be used for injecting an skb from the
1698  * start_xmit function of one device into the receive queue
1699  * of another device.
1700  *
1701  * The receiving device may be in another namespace, so
1702  * we have to clear all information in the skb that could
1703  * impact namespace isolation.
1704  */
1705 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1706 {
1707 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1708 }
1709 EXPORT_SYMBOL_GPL(dev_forward_skb);
1710 
1711 static inline int deliver_skb(struct sk_buff *skb,
1712 			      struct packet_type *pt_prev,
1713 			      struct net_device *orig_dev)
1714 {
1715 	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1716 		return -ENOMEM;
1717 	atomic_inc(&skb->users);
1718 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1719 }
1720 
1721 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1722 {
1723 	if (!ptype->af_packet_priv || !skb->sk)
1724 		return false;
1725 
1726 	if (ptype->id_match)
1727 		return ptype->id_match(ptype, skb->sk);
1728 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1729 		return true;
1730 
1731 	return false;
1732 }
1733 
1734 /*
1735  *	Support routine. Sends outgoing frames to any network
1736  *	taps currently in use.
1737  */
1738 
1739 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1740 {
1741 	struct packet_type *ptype;
1742 	struct sk_buff *skb2 = NULL;
1743 	struct packet_type *pt_prev = NULL;
1744 
1745 	rcu_read_lock();
1746 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1747 		/* Never send packets back to the socket
1748 		 * they originated from - MvS (miquels@drinkel.ow.org)
1749 		 */
1750 		if ((ptype->dev == dev || !ptype->dev) &&
1751 		    (!skb_loop_sk(ptype, skb))) {
1752 			if (pt_prev) {
1753 				deliver_skb(skb2, pt_prev, skb->dev);
1754 				pt_prev = ptype;
1755 				continue;
1756 			}
1757 
1758 			skb2 = skb_clone(skb, GFP_ATOMIC);
1759 			if (!skb2)
1760 				break;
1761 
1762 			net_timestamp_set(skb2);
1763 
1764 			/* skb->nh should be correctly
1765 			   set by sender, so that the second statement is
1766 			   just protection against buggy protocols.
1767 			 */
1768 			skb_reset_mac_header(skb2);
1769 
1770 			if (skb_network_header(skb2) < skb2->data ||
1771 			    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1772 				net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1773 						     ntohs(skb2->protocol),
1774 						     dev->name);
1775 				skb_reset_network_header(skb2);
1776 			}
1777 
1778 			skb2->transport_header = skb2->network_header;
1779 			skb2->pkt_type = PACKET_OUTGOING;
1780 			pt_prev = ptype;
1781 		}
1782 	}
1783 	if (pt_prev)
1784 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1785 	rcu_read_unlock();
1786 }
1787 
1788 /**
1789  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1790  * @dev: Network device
1791  * @txq: number of queues available
1792  *
1793  * If real_num_tx_queues is changed the tc mappings may no longer be
1794  * valid. To resolve this verify the tc mapping remains valid and if
1795  * not NULL the mapping. With no priorities mapping to this
1796  * offset/count pair it will no longer be used. In the worst case TC0
1797  * is invalid nothing can be done so disable priority mappings. If is
1798  * expected that drivers will fix this mapping if they can before
1799  * calling netif_set_real_num_tx_queues.
1800  */
1801 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1802 {
1803 	int i;
1804 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1805 
1806 	/* If TC0 is invalidated disable TC mapping */
1807 	if (tc->offset + tc->count > txq) {
1808 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1809 		dev->num_tc = 0;
1810 		return;
1811 	}
1812 
1813 	/* Invalidated prio to tc mappings set to TC0 */
1814 	for (i = 1; i < TC_BITMASK + 1; i++) {
1815 		int q = netdev_get_prio_tc_map(dev, i);
1816 
1817 		tc = &dev->tc_to_txq[q];
1818 		if (tc->offset + tc->count > txq) {
1819 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1820 				i, q);
1821 			netdev_set_prio_tc_map(dev, i, 0);
1822 		}
1823 	}
1824 }
1825 
1826 #ifdef CONFIG_XPS
1827 static DEFINE_MUTEX(xps_map_mutex);
1828 #define xmap_dereference(P)		\
1829 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1830 
1831 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1832 					int cpu, u16 index)
1833 {
1834 	struct xps_map *map = NULL;
1835 	int pos;
1836 
1837 	if (dev_maps)
1838 		map = xmap_dereference(dev_maps->cpu_map[cpu]);
1839 
1840 	for (pos = 0; map && pos < map->len; pos++) {
1841 		if (map->queues[pos] == index) {
1842 			if (map->len > 1) {
1843 				map->queues[pos] = map->queues[--map->len];
1844 			} else {
1845 				RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1846 				kfree_rcu(map, rcu);
1847 				map = NULL;
1848 			}
1849 			break;
1850 		}
1851 	}
1852 
1853 	return map;
1854 }
1855 
1856 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1857 {
1858 	struct xps_dev_maps *dev_maps;
1859 	int cpu, i;
1860 	bool active = false;
1861 
1862 	mutex_lock(&xps_map_mutex);
1863 	dev_maps = xmap_dereference(dev->xps_maps);
1864 
1865 	if (!dev_maps)
1866 		goto out_no_maps;
1867 
1868 	for_each_possible_cpu(cpu) {
1869 		for (i = index; i < dev->num_tx_queues; i++) {
1870 			if (!remove_xps_queue(dev_maps, cpu, i))
1871 				break;
1872 		}
1873 		if (i == dev->num_tx_queues)
1874 			active = true;
1875 	}
1876 
1877 	if (!active) {
1878 		RCU_INIT_POINTER(dev->xps_maps, NULL);
1879 		kfree_rcu(dev_maps, rcu);
1880 	}
1881 
1882 	for (i = index; i < dev->num_tx_queues; i++)
1883 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1884 					     NUMA_NO_NODE);
1885 
1886 out_no_maps:
1887 	mutex_unlock(&xps_map_mutex);
1888 }
1889 
1890 static struct xps_map *expand_xps_map(struct xps_map *map,
1891 				      int cpu, u16 index)
1892 {
1893 	struct xps_map *new_map;
1894 	int alloc_len = XPS_MIN_MAP_ALLOC;
1895 	int i, pos;
1896 
1897 	for (pos = 0; map && pos < map->len; pos++) {
1898 		if (map->queues[pos] != index)
1899 			continue;
1900 		return map;
1901 	}
1902 
1903 	/* Need to add queue to this CPU's existing map */
1904 	if (map) {
1905 		if (pos < map->alloc_len)
1906 			return map;
1907 
1908 		alloc_len = map->alloc_len * 2;
1909 	}
1910 
1911 	/* Need to allocate new map to store queue on this CPU's map */
1912 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1913 			       cpu_to_node(cpu));
1914 	if (!new_map)
1915 		return NULL;
1916 
1917 	for (i = 0; i < pos; i++)
1918 		new_map->queues[i] = map->queues[i];
1919 	new_map->alloc_len = alloc_len;
1920 	new_map->len = pos;
1921 
1922 	return new_map;
1923 }
1924 
1925 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1926 			u16 index)
1927 {
1928 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1929 	struct xps_map *map, *new_map;
1930 	int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1931 	int cpu, numa_node_id = -2;
1932 	bool active = false;
1933 
1934 	mutex_lock(&xps_map_mutex);
1935 
1936 	dev_maps = xmap_dereference(dev->xps_maps);
1937 
1938 	/* allocate memory for queue storage */
1939 	for_each_online_cpu(cpu) {
1940 		if (!cpumask_test_cpu(cpu, mask))
1941 			continue;
1942 
1943 		if (!new_dev_maps)
1944 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1945 		if (!new_dev_maps) {
1946 			mutex_unlock(&xps_map_mutex);
1947 			return -ENOMEM;
1948 		}
1949 
1950 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1951 				 NULL;
1952 
1953 		map = expand_xps_map(map, cpu, index);
1954 		if (!map)
1955 			goto error;
1956 
1957 		RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1958 	}
1959 
1960 	if (!new_dev_maps)
1961 		goto out_no_new_maps;
1962 
1963 	for_each_possible_cpu(cpu) {
1964 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1965 			/* add queue to CPU maps */
1966 			int pos = 0;
1967 
1968 			map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1969 			while ((pos < map->len) && (map->queues[pos] != index))
1970 				pos++;
1971 
1972 			if (pos == map->len)
1973 				map->queues[map->len++] = index;
1974 #ifdef CONFIG_NUMA
1975 			if (numa_node_id == -2)
1976 				numa_node_id = cpu_to_node(cpu);
1977 			else if (numa_node_id != cpu_to_node(cpu))
1978 				numa_node_id = -1;
1979 #endif
1980 		} else if (dev_maps) {
1981 			/* fill in the new device map from the old device map */
1982 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
1983 			RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1984 		}
1985 
1986 	}
1987 
1988 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
1989 
1990 	/* Cleanup old maps */
1991 	if (dev_maps) {
1992 		for_each_possible_cpu(cpu) {
1993 			new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1994 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
1995 			if (map && map != new_map)
1996 				kfree_rcu(map, rcu);
1997 		}
1998 
1999 		kfree_rcu(dev_maps, rcu);
2000 	}
2001 
2002 	dev_maps = new_dev_maps;
2003 	active = true;
2004 
2005 out_no_new_maps:
2006 	/* update Tx queue numa node */
2007 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2008 				     (numa_node_id >= 0) ? numa_node_id :
2009 				     NUMA_NO_NODE);
2010 
2011 	if (!dev_maps)
2012 		goto out_no_maps;
2013 
2014 	/* removes queue from unused CPUs */
2015 	for_each_possible_cpu(cpu) {
2016 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2017 			continue;
2018 
2019 		if (remove_xps_queue(dev_maps, cpu, index))
2020 			active = true;
2021 	}
2022 
2023 	/* free map if not active */
2024 	if (!active) {
2025 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2026 		kfree_rcu(dev_maps, rcu);
2027 	}
2028 
2029 out_no_maps:
2030 	mutex_unlock(&xps_map_mutex);
2031 
2032 	return 0;
2033 error:
2034 	/* remove any maps that we added */
2035 	for_each_possible_cpu(cpu) {
2036 		new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2037 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2038 				 NULL;
2039 		if (new_map && new_map != map)
2040 			kfree(new_map);
2041 	}
2042 
2043 	mutex_unlock(&xps_map_mutex);
2044 
2045 	kfree(new_dev_maps);
2046 	return -ENOMEM;
2047 }
2048 EXPORT_SYMBOL(netif_set_xps_queue);
2049 
2050 #endif
2051 /*
2052  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2053  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2054  */
2055 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2056 {
2057 	int rc;
2058 
2059 	if (txq < 1 || txq > dev->num_tx_queues)
2060 		return -EINVAL;
2061 
2062 	if (dev->reg_state == NETREG_REGISTERED ||
2063 	    dev->reg_state == NETREG_UNREGISTERING) {
2064 		ASSERT_RTNL();
2065 
2066 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2067 						  txq);
2068 		if (rc)
2069 			return rc;
2070 
2071 		if (dev->num_tc)
2072 			netif_setup_tc(dev, txq);
2073 
2074 		if (txq < dev->real_num_tx_queues) {
2075 			qdisc_reset_all_tx_gt(dev, txq);
2076 #ifdef CONFIG_XPS
2077 			netif_reset_xps_queues_gt(dev, txq);
2078 #endif
2079 		}
2080 	}
2081 
2082 	dev->real_num_tx_queues = txq;
2083 	return 0;
2084 }
2085 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2086 
2087 #ifdef CONFIG_SYSFS
2088 /**
2089  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2090  *	@dev: Network device
2091  *	@rxq: Actual number of RX queues
2092  *
2093  *	This must be called either with the rtnl_lock held or before
2094  *	registration of the net device.  Returns 0 on success, or a
2095  *	negative error code.  If called before registration, it always
2096  *	succeeds.
2097  */
2098 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2099 {
2100 	int rc;
2101 
2102 	if (rxq < 1 || rxq > dev->num_rx_queues)
2103 		return -EINVAL;
2104 
2105 	if (dev->reg_state == NETREG_REGISTERED) {
2106 		ASSERT_RTNL();
2107 
2108 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2109 						  rxq);
2110 		if (rc)
2111 			return rc;
2112 	}
2113 
2114 	dev->real_num_rx_queues = rxq;
2115 	return 0;
2116 }
2117 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2118 #endif
2119 
2120 /**
2121  * netif_get_num_default_rss_queues - default number of RSS queues
2122  *
2123  * This routine should set an upper limit on the number of RSS queues
2124  * used by default by multiqueue devices.
2125  */
2126 int netif_get_num_default_rss_queues(void)
2127 {
2128 	return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2129 }
2130 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2131 
2132 static inline void __netif_reschedule(struct Qdisc *q)
2133 {
2134 	struct softnet_data *sd;
2135 	unsigned long flags;
2136 
2137 	local_irq_save(flags);
2138 	sd = &__get_cpu_var(softnet_data);
2139 	q->next_sched = NULL;
2140 	*sd->output_queue_tailp = q;
2141 	sd->output_queue_tailp = &q->next_sched;
2142 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2143 	local_irq_restore(flags);
2144 }
2145 
2146 void __netif_schedule(struct Qdisc *q)
2147 {
2148 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2149 		__netif_reschedule(q);
2150 }
2151 EXPORT_SYMBOL(__netif_schedule);
2152 
2153 struct dev_kfree_skb_cb {
2154 	enum skb_free_reason reason;
2155 };
2156 
2157 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2158 {
2159 	return (struct dev_kfree_skb_cb *)skb->cb;
2160 }
2161 
2162 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2163 {
2164 	unsigned long flags;
2165 
2166 	if (likely(atomic_read(&skb->users) == 1)) {
2167 		smp_rmb();
2168 		atomic_set(&skb->users, 0);
2169 	} else if (likely(!atomic_dec_and_test(&skb->users))) {
2170 		return;
2171 	}
2172 	get_kfree_skb_cb(skb)->reason = reason;
2173 	local_irq_save(flags);
2174 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2175 	__this_cpu_write(softnet_data.completion_queue, skb);
2176 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2177 	local_irq_restore(flags);
2178 }
2179 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2180 
2181 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2182 {
2183 	if (in_irq() || irqs_disabled())
2184 		__dev_kfree_skb_irq(skb, reason);
2185 	else
2186 		dev_kfree_skb(skb);
2187 }
2188 EXPORT_SYMBOL(__dev_kfree_skb_any);
2189 
2190 
2191 /**
2192  * netif_device_detach - mark device as removed
2193  * @dev: network device
2194  *
2195  * Mark device as removed from system and therefore no longer available.
2196  */
2197 void netif_device_detach(struct net_device *dev)
2198 {
2199 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2200 	    netif_running(dev)) {
2201 		netif_tx_stop_all_queues(dev);
2202 	}
2203 }
2204 EXPORT_SYMBOL(netif_device_detach);
2205 
2206 /**
2207  * netif_device_attach - mark device as attached
2208  * @dev: network device
2209  *
2210  * Mark device as attached from system and restart if needed.
2211  */
2212 void netif_device_attach(struct net_device *dev)
2213 {
2214 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2215 	    netif_running(dev)) {
2216 		netif_tx_wake_all_queues(dev);
2217 		__netdev_watchdog_up(dev);
2218 	}
2219 }
2220 EXPORT_SYMBOL(netif_device_attach);
2221 
2222 static void skb_warn_bad_offload(const struct sk_buff *skb)
2223 {
2224 	static const netdev_features_t null_features = 0;
2225 	struct net_device *dev = skb->dev;
2226 	const char *driver = "";
2227 
2228 	if (!net_ratelimit())
2229 		return;
2230 
2231 	if (dev && dev->dev.parent)
2232 		driver = dev_driver_string(dev->dev.parent);
2233 
2234 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2235 	     "gso_type=%d ip_summed=%d\n",
2236 	     driver, dev ? &dev->features : &null_features,
2237 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2238 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2239 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2240 }
2241 
2242 /*
2243  * Invalidate hardware checksum when packet is to be mangled, and
2244  * complete checksum manually on outgoing path.
2245  */
2246 int skb_checksum_help(struct sk_buff *skb)
2247 {
2248 	__wsum csum;
2249 	int ret = 0, offset;
2250 
2251 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2252 		goto out_set_summed;
2253 
2254 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2255 		skb_warn_bad_offload(skb);
2256 		return -EINVAL;
2257 	}
2258 
2259 	/* Before computing a checksum, we should make sure no frag could
2260 	 * be modified by an external entity : checksum could be wrong.
2261 	 */
2262 	if (skb_has_shared_frag(skb)) {
2263 		ret = __skb_linearize(skb);
2264 		if (ret)
2265 			goto out;
2266 	}
2267 
2268 	offset = skb_checksum_start_offset(skb);
2269 	BUG_ON(offset >= skb_headlen(skb));
2270 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2271 
2272 	offset += skb->csum_offset;
2273 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2274 
2275 	if (skb_cloned(skb) &&
2276 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2277 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2278 		if (ret)
2279 			goto out;
2280 	}
2281 
2282 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
2283 out_set_summed:
2284 	skb->ip_summed = CHECKSUM_NONE;
2285 out:
2286 	return ret;
2287 }
2288 EXPORT_SYMBOL(skb_checksum_help);
2289 
2290 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2291 {
2292 	unsigned int vlan_depth = skb->mac_len;
2293 	__be16 type = skb->protocol;
2294 
2295 	/* Tunnel gso handlers can set protocol to ethernet. */
2296 	if (type == htons(ETH_P_TEB)) {
2297 		struct ethhdr *eth;
2298 
2299 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2300 			return 0;
2301 
2302 		eth = (struct ethhdr *)skb_mac_header(skb);
2303 		type = eth->h_proto;
2304 	}
2305 
2306 	/* if skb->protocol is 802.1Q/AD then the header should already be
2307 	 * present at mac_len - VLAN_HLEN (if mac_len > 0), or at
2308 	 * ETH_HLEN otherwise
2309 	 */
2310 	if (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2311 		if (vlan_depth) {
2312 			if (unlikely(WARN_ON(vlan_depth < VLAN_HLEN)))
2313 				return 0;
2314 			vlan_depth -= VLAN_HLEN;
2315 		} else {
2316 			vlan_depth = ETH_HLEN;
2317 		}
2318 		do {
2319 			struct vlan_hdr *vh;
2320 
2321 			if (unlikely(!pskb_may_pull(skb,
2322 						    vlan_depth + VLAN_HLEN)))
2323 				return 0;
2324 
2325 			vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2326 			type = vh->h_vlan_encapsulated_proto;
2327 			vlan_depth += VLAN_HLEN;
2328 		} while (type == htons(ETH_P_8021Q) ||
2329 			 type == htons(ETH_P_8021AD));
2330 	}
2331 
2332 	*depth = vlan_depth;
2333 
2334 	return type;
2335 }
2336 
2337 /**
2338  *	skb_mac_gso_segment - mac layer segmentation handler.
2339  *	@skb: buffer to segment
2340  *	@features: features for the output path (see dev->features)
2341  */
2342 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2343 				    netdev_features_t features)
2344 {
2345 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2346 	struct packet_offload *ptype;
2347 	int vlan_depth = skb->mac_len;
2348 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2349 
2350 	if (unlikely(!type))
2351 		return ERR_PTR(-EINVAL);
2352 
2353 	__skb_pull(skb, vlan_depth);
2354 
2355 	rcu_read_lock();
2356 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2357 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2358 			if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2359 				int err;
2360 
2361 				err = ptype->callbacks.gso_send_check(skb);
2362 				segs = ERR_PTR(err);
2363 				if (err || skb_gso_ok(skb, features))
2364 					break;
2365 				__skb_push(skb, (skb->data -
2366 						 skb_network_header(skb)));
2367 			}
2368 			segs = ptype->callbacks.gso_segment(skb, features);
2369 			break;
2370 		}
2371 	}
2372 	rcu_read_unlock();
2373 
2374 	__skb_push(skb, skb->data - skb_mac_header(skb));
2375 
2376 	return segs;
2377 }
2378 EXPORT_SYMBOL(skb_mac_gso_segment);
2379 
2380 
2381 /* openvswitch calls this on rx path, so we need a different check.
2382  */
2383 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2384 {
2385 	if (tx_path)
2386 		return skb->ip_summed != CHECKSUM_PARTIAL;
2387 	else
2388 		return skb->ip_summed == CHECKSUM_NONE;
2389 }
2390 
2391 /**
2392  *	__skb_gso_segment - Perform segmentation on skb.
2393  *	@skb: buffer to segment
2394  *	@features: features for the output path (see dev->features)
2395  *	@tx_path: whether it is called in TX path
2396  *
2397  *	This function segments the given skb and returns a list of segments.
2398  *
2399  *	It may return NULL if the skb requires no segmentation.  This is
2400  *	only possible when GSO is used for verifying header integrity.
2401  */
2402 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2403 				  netdev_features_t features, bool tx_path)
2404 {
2405 	if (unlikely(skb_needs_check(skb, tx_path))) {
2406 		int err;
2407 
2408 		skb_warn_bad_offload(skb);
2409 
2410 		if (skb_header_cloned(skb) &&
2411 		    (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2412 			return ERR_PTR(err);
2413 	}
2414 
2415 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2416 	SKB_GSO_CB(skb)->encap_level = 0;
2417 
2418 	skb_reset_mac_header(skb);
2419 	skb_reset_mac_len(skb);
2420 
2421 	return skb_mac_gso_segment(skb, features);
2422 }
2423 EXPORT_SYMBOL(__skb_gso_segment);
2424 
2425 /* Take action when hardware reception checksum errors are detected. */
2426 #ifdef CONFIG_BUG
2427 void netdev_rx_csum_fault(struct net_device *dev)
2428 {
2429 	if (net_ratelimit()) {
2430 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2431 		dump_stack();
2432 	}
2433 }
2434 EXPORT_SYMBOL(netdev_rx_csum_fault);
2435 #endif
2436 
2437 /* Actually, we should eliminate this check as soon as we know, that:
2438  * 1. IOMMU is present and allows to map all the memory.
2439  * 2. No high memory really exists on this machine.
2440  */
2441 
2442 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2443 {
2444 #ifdef CONFIG_HIGHMEM
2445 	int i;
2446 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2447 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2448 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2449 			if (PageHighMem(skb_frag_page(frag)))
2450 				return 1;
2451 		}
2452 	}
2453 
2454 	if (PCI_DMA_BUS_IS_PHYS) {
2455 		struct device *pdev = dev->dev.parent;
2456 
2457 		if (!pdev)
2458 			return 0;
2459 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2460 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2461 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2462 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2463 				return 1;
2464 		}
2465 	}
2466 #endif
2467 	return 0;
2468 }
2469 
2470 struct dev_gso_cb {
2471 	void (*destructor)(struct sk_buff *skb);
2472 };
2473 
2474 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2475 
2476 static void dev_gso_skb_destructor(struct sk_buff *skb)
2477 {
2478 	struct dev_gso_cb *cb;
2479 
2480 	kfree_skb_list(skb->next);
2481 	skb->next = NULL;
2482 
2483 	cb = DEV_GSO_CB(skb);
2484 	if (cb->destructor)
2485 		cb->destructor(skb);
2486 }
2487 
2488 /**
2489  *	dev_gso_segment - Perform emulated hardware segmentation on skb.
2490  *	@skb: buffer to segment
2491  *	@features: device features as applicable to this skb
2492  *
2493  *	This function segments the given skb and stores the list of segments
2494  *	in skb->next.
2495  */
2496 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2497 {
2498 	struct sk_buff *segs;
2499 
2500 	segs = skb_gso_segment(skb, features);
2501 
2502 	/* Verifying header integrity only. */
2503 	if (!segs)
2504 		return 0;
2505 
2506 	if (IS_ERR(segs))
2507 		return PTR_ERR(segs);
2508 
2509 	skb->next = segs;
2510 	DEV_GSO_CB(skb)->destructor = skb->destructor;
2511 	skb->destructor = dev_gso_skb_destructor;
2512 
2513 	return 0;
2514 }
2515 
2516 /* If MPLS offload request, verify we are testing hardware MPLS features
2517  * instead of standard features for the netdev.
2518  */
2519 #ifdef CONFIG_NET_MPLS_GSO
2520 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2521 					   netdev_features_t features,
2522 					   __be16 type)
2523 {
2524 	if (type == htons(ETH_P_MPLS_UC) || type == htons(ETH_P_MPLS_MC))
2525 		features &= skb->dev->mpls_features;
2526 
2527 	return features;
2528 }
2529 #else
2530 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2531 					   netdev_features_t features,
2532 					   __be16 type)
2533 {
2534 	return features;
2535 }
2536 #endif
2537 
2538 static netdev_features_t harmonize_features(struct sk_buff *skb,
2539 	netdev_features_t features)
2540 {
2541 	int tmp;
2542 	__be16 type;
2543 
2544 	type = skb_network_protocol(skb, &tmp);
2545 	features = net_mpls_features(skb, features, type);
2546 
2547 	if (skb->ip_summed != CHECKSUM_NONE &&
2548 	    !can_checksum_protocol(features, type)) {
2549 		features &= ~NETIF_F_ALL_CSUM;
2550 	} else if (illegal_highdma(skb->dev, skb)) {
2551 		features &= ~NETIF_F_SG;
2552 	}
2553 
2554 	return features;
2555 }
2556 
2557 netdev_features_t netif_skb_features(struct sk_buff *skb)
2558 {
2559 	__be16 protocol = skb->protocol;
2560 	netdev_features_t features = skb->dev->features;
2561 
2562 	if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2563 		features &= ~NETIF_F_GSO_MASK;
2564 
2565 	if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
2566 		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2567 		protocol = veh->h_vlan_encapsulated_proto;
2568 	} else if (!vlan_tx_tag_present(skb)) {
2569 		return harmonize_features(skb, features);
2570 	}
2571 
2572 	features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX |
2573 					       NETIF_F_HW_VLAN_STAG_TX);
2574 
2575 	if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2576 		features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2577 				NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX |
2578 				NETIF_F_HW_VLAN_STAG_TX;
2579 
2580 	return harmonize_features(skb, features);
2581 }
2582 EXPORT_SYMBOL(netif_skb_features);
2583 
2584 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2585 			struct netdev_queue *txq)
2586 {
2587 	const struct net_device_ops *ops = dev->netdev_ops;
2588 	int rc = NETDEV_TX_OK;
2589 	unsigned int skb_len;
2590 
2591 	if (likely(!skb->next)) {
2592 		netdev_features_t features;
2593 
2594 		/*
2595 		 * If device doesn't need skb->dst, release it right now while
2596 		 * its hot in this cpu cache
2597 		 */
2598 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2599 			skb_dst_drop(skb);
2600 
2601 		features = netif_skb_features(skb);
2602 
2603 		if (vlan_tx_tag_present(skb) &&
2604 		    !vlan_hw_offload_capable(features, skb->vlan_proto)) {
2605 			skb = __vlan_put_tag(skb, skb->vlan_proto,
2606 					     vlan_tx_tag_get(skb));
2607 			if (unlikely(!skb))
2608 				goto out;
2609 
2610 			skb->vlan_tci = 0;
2611 		}
2612 
2613 		/* If encapsulation offload request, verify we are testing
2614 		 * hardware encapsulation features instead of standard
2615 		 * features for the netdev
2616 		 */
2617 		if (skb->encapsulation)
2618 			features &= dev->hw_enc_features;
2619 
2620 		if (netif_needs_gso(skb, features)) {
2621 			if (unlikely(dev_gso_segment(skb, features)))
2622 				goto out_kfree_skb;
2623 			if (skb->next)
2624 				goto gso;
2625 		} else {
2626 			if (skb_needs_linearize(skb, features) &&
2627 			    __skb_linearize(skb))
2628 				goto out_kfree_skb;
2629 
2630 			/* If packet is not checksummed and device does not
2631 			 * support checksumming for this protocol, complete
2632 			 * checksumming here.
2633 			 */
2634 			if (skb->ip_summed == CHECKSUM_PARTIAL) {
2635 				if (skb->encapsulation)
2636 					skb_set_inner_transport_header(skb,
2637 						skb_checksum_start_offset(skb));
2638 				else
2639 					skb_set_transport_header(skb,
2640 						skb_checksum_start_offset(skb));
2641 				if (!(features & NETIF_F_ALL_CSUM) &&
2642 				     skb_checksum_help(skb))
2643 					goto out_kfree_skb;
2644 			}
2645 		}
2646 
2647 		if (!list_empty(&ptype_all))
2648 			dev_queue_xmit_nit(skb, dev);
2649 
2650 		skb_len = skb->len;
2651 		trace_net_dev_start_xmit(skb, dev);
2652 		rc = ops->ndo_start_xmit(skb, dev);
2653 		trace_net_dev_xmit(skb, rc, dev, skb_len);
2654 		if (rc == NETDEV_TX_OK)
2655 			txq_trans_update(txq);
2656 		return rc;
2657 	}
2658 
2659 gso:
2660 	do {
2661 		struct sk_buff *nskb = skb->next;
2662 
2663 		skb->next = nskb->next;
2664 		nskb->next = NULL;
2665 
2666 		if (!list_empty(&ptype_all))
2667 			dev_queue_xmit_nit(nskb, dev);
2668 
2669 		skb_len = nskb->len;
2670 		trace_net_dev_start_xmit(nskb, dev);
2671 		rc = ops->ndo_start_xmit(nskb, dev);
2672 		trace_net_dev_xmit(nskb, rc, dev, skb_len);
2673 		if (unlikely(rc != NETDEV_TX_OK)) {
2674 			if (rc & ~NETDEV_TX_MASK)
2675 				goto out_kfree_gso_skb;
2676 			nskb->next = skb->next;
2677 			skb->next = nskb;
2678 			return rc;
2679 		}
2680 		txq_trans_update(txq);
2681 		if (unlikely(netif_xmit_stopped(txq) && skb->next))
2682 			return NETDEV_TX_BUSY;
2683 	} while (skb->next);
2684 
2685 out_kfree_gso_skb:
2686 	if (likely(skb->next == NULL)) {
2687 		skb->destructor = DEV_GSO_CB(skb)->destructor;
2688 		consume_skb(skb);
2689 		return rc;
2690 	}
2691 out_kfree_skb:
2692 	kfree_skb(skb);
2693 out:
2694 	return rc;
2695 }
2696 EXPORT_SYMBOL_GPL(dev_hard_start_xmit);
2697 
2698 static void qdisc_pkt_len_init(struct sk_buff *skb)
2699 {
2700 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
2701 
2702 	qdisc_skb_cb(skb)->pkt_len = skb->len;
2703 
2704 	/* To get more precise estimation of bytes sent on wire,
2705 	 * we add to pkt_len the headers size of all segments
2706 	 */
2707 	if (shinfo->gso_size)  {
2708 		unsigned int hdr_len;
2709 		u16 gso_segs = shinfo->gso_segs;
2710 
2711 		/* mac layer + network layer */
2712 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2713 
2714 		/* + transport layer */
2715 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2716 			hdr_len += tcp_hdrlen(skb);
2717 		else
2718 			hdr_len += sizeof(struct udphdr);
2719 
2720 		if (shinfo->gso_type & SKB_GSO_DODGY)
2721 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2722 						shinfo->gso_size);
2723 
2724 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2725 	}
2726 }
2727 
2728 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2729 				 struct net_device *dev,
2730 				 struct netdev_queue *txq)
2731 {
2732 	spinlock_t *root_lock = qdisc_lock(q);
2733 	bool contended;
2734 	int rc;
2735 
2736 	qdisc_pkt_len_init(skb);
2737 	qdisc_calculate_pkt_len(skb, q);
2738 	/*
2739 	 * Heuristic to force contended enqueues to serialize on a
2740 	 * separate lock before trying to get qdisc main lock.
2741 	 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2742 	 * and dequeue packets faster.
2743 	 */
2744 	contended = qdisc_is_running(q);
2745 	if (unlikely(contended))
2746 		spin_lock(&q->busylock);
2747 
2748 	spin_lock(root_lock);
2749 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2750 		kfree_skb(skb);
2751 		rc = NET_XMIT_DROP;
2752 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2753 		   qdisc_run_begin(q)) {
2754 		/*
2755 		 * This is a work-conserving queue; there are no old skbs
2756 		 * waiting to be sent out; and the qdisc is not running -
2757 		 * xmit the skb directly.
2758 		 */
2759 		if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2760 			skb_dst_force(skb);
2761 
2762 		qdisc_bstats_update(q, skb);
2763 
2764 		if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2765 			if (unlikely(contended)) {
2766 				spin_unlock(&q->busylock);
2767 				contended = false;
2768 			}
2769 			__qdisc_run(q);
2770 		} else
2771 			qdisc_run_end(q);
2772 
2773 		rc = NET_XMIT_SUCCESS;
2774 	} else {
2775 		skb_dst_force(skb);
2776 		rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2777 		if (qdisc_run_begin(q)) {
2778 			if (unlikely(contended)) {
2779 				spin_unlock(&q->busylock);
2780 				contended = false;
2781 			}
2782 			__qdisc_run(q);
2783 		}
2784 	}
2785 	spin_unlock(root_lock);
2786 	if (unlikely(contended))
2787 		spin_unlock(&q->busylock);
2788 	return rc;
2789 }
2790 
2791 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2792 static void skb_update_prio(struct sk_buff *skb)
2793 {
2794 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2795 
2796 	if (!skb->priority && skb->sk && map) {
2797 		unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2798 
2799 		if (prioidx < map->priomap_len)
2800 			skb->priority = map->priomap[prioidx];
2801 	}
2802 }
2803 #else
2804 #define skb_update_prio(skb)
2805 #endif
2806 
2807 static DEFINE_PER_CPU(int, xmit_recursion);
2808 #define RECURSION_LIMIT 10
2809 
2810 /**
2811  *	dev_loopback_xmit - loop back @skb
2812  *	@skb: buffer to transmit
2813  */
2814 int dev_loopback_xmit(struct sk_buff *skb)
2815 {
2816 	skb_reset_mac_header(skb);
2817 	__skb_pull(skb, skb_network_offset(skb));
2818 	skb->pkt_type = PACKET_LOOPBACK;
2819 	skb->ip_summed = CHECKSUM_UNNECESSARY;
2820 	WARN_ON(!skb_dst(skb));
2821 	skb_dst_force(skb);
2822 	netif_rx_ni(skb);
2823 	return 0;
2824 }
2825 EXPORT_SYMBOL(dev_loopback_xmit);
2826 
2827 /**
2828  *	__dev_queue_xmit - transmit a buffer
2829  *	@skb: buffer to transmit
2830  *	@accel_priv: private data used for L2 forwarding offload
2831  *
2832  *	Queue a buffer for transmission to a network device. The caller must
2833  *	have set the device and priority and built the buffer before calling
2834  *	this function. The function can be called from an interrupt.
2835  *
2836  *	A negative errno code is returned on a failure. A success does not
2837  *	guarantee the frame will be transmitted as it may be dropped due
2838  *	to congestion or traffic shaping.
2839  *
2840  * -----------------------------------------------------------------------------------
2841  *      I notice this method can also return errors from the queue disciplines,
2842  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2843  *      be positive.
2844  *
2845  *      Regardless of the return value, the skb is consumed, so it is currently
2846  *      difficult to retry a send to this method.  (You can bump the ref count
2847  *      before sending to hold a reference for retry if you are careful.)
2848  *
2849  *      When calling this method, interrupts MUST be enabled.  This is because
2850  *      the BH enable code must have IRQs enabled so that it will not deadlock.
2851  *          --BLG
2852  */
2853 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2854 {
2855 	struct net_device *dev = skb->dev;
2856 	struct netdev_queue *txq;
2857 	struct Qdisc *q;
2858 	int rc = -ENOMEM;
2859 
2860 	skb_reset_mac_header(skb);
2861 
2862 	/* Disable soft irqs for various locks below. Also
2863 	 * stops preemption for RCU.
2864 	 */
2865 	rcu_read_lock_bh();
2866 
2867 	skb_update_prio(skb);
2868 
2869 	txq = netdev_pick_tx(dev, skb, accel_priv);
2870 	q = rcu_dereference_bh(txq->qdisc);
2871 
2872 #ifdef CONFIG_NET_CLS_ACT
2873 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2874 #endif
2875 	trace_net_dev_queue(skb);
2876 	if (q->enqueue) {
2877 		rc = __dev_xmit_skb(skb, q, dev, txq);
2878 		goto out;
2879 	}
2880 
2881 	/* The device has no queue. Common case for software devices:
2882 	   loopback, all the sorts of tunnels...
2883 
2884 	   Really, it is unlikely that netif_tx_lock protection is necessary
2885 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2886 	   counters.)
2887 	   However, it is possible, that they rely on protection
2888 	   made by us here.
2889 
2890 	   Check this and shot the lock. It is not prone from deadlocks.
2891 	   Either shot noqueue qdisc, it is even simpler 8)
2892 	 */
2893 	if (dev->flags & IFF_UP) {
2894 		int cpu = smp_processor_id(); /* ok because BHs are off */
2895 
2896 		if (txq->xmit_lock_owner != cpu) {
2897 
2898 			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2899 				goto recursion_alert;
2900 
2901 			HARD_TX_LOCK(dev, txq, cpu);
2902 
2903 			if (!netif_xmit_stopped(txq)) {
2904 				__this_cpu_inc(xmit_recursion);
2905 				rc = dev_hard_start_xmit(skb, dev, txq);
2906 				__this_cpu_dec(xmit_recursion);
2907 				if (dev_xmit_complete(rc)) {
2908 					HARD_TX_UNLOCK(dev, txq);
2909 					goto out;
2910 				}
2911 			}
2912 			HARD_TX_UNLOCK(dev, txq);
2913 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2914 					     dev->name);
2915 		} else {
2916 			/* Recursion is detected! It is possible,
2917 			 * unfortunately
2918 			 */
2919 recursion_alert:
2920 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2921 					     dev->name);
2922 		}
2923 	}
2924 
2925 	rc = -ENETDOWN;
2926 	rcu_read_unlock_bh();
2927 
2928 	atomic_long_inc(&dev->tx_dropped);
2929 	kfree_skb(skb);
2930 	return rc;
2931 out:
2932 	rcu_read_unlock_bh();
2933 	return rc;
2934 }
2935 
2936 int dev_queue_xmit(struct sk_buff *skb)
2937 {
2938 	return __dev_queue_xmit(skb, NULL);
2939 }
2940 EXPORT_SYMBOL(dev_queue_xmit);
2941 
2942 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
2943 {
2944 	return __dev_queue_xmit(skb, accel_priv);
2945 }
2946 EXPORT_SYMBOL(dev_queue_xmit_accel);
2947 
2948 
2949 /*=======================================================================
2950 			Receiver routines
2951   =======================================================================*/
2952 
2953 int netdev_max_backlog __read_mostly = 1000;
2954 EXPORT_SYMBOL(netdev_max_backlog);
2955 
2956 int netdev_tstamp_prequeue __read_mostly = 1;
2957 int netdev_budget __read_mostly = 300;
2958 int weight_p __read_mostly = 64;            /* old backlog weight */
2959 
2960 /* Called with irq disabled */
2961 static inline void ____napi_schedule(struct softnet_data *sd,
2962 				     struct napi_struct *napi)
2963 {
2964 	list_add_tail(&napi->poll_list, &sd->poll_list);
2965 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2966 }
2967 
2968 #ifdef CONFIG_RPS
2969 
2970 /* One global table that all flow-based protocols share. */
2971 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2972 EXPORT_SYMBOL(rps_sock_flow_table);
2973 
2974 struct static_key rps_needed __read_mostly;
2975 
2976 static struct rps_dev_flow *
2977 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2978 	    struct rps_dev_flow *rflow, u16 next_cpu)
2979 {
2980 	if (next_cpu != RPS_NO_CPU) {
2981 #ifdef CONFIG_RFS_ACCEL
2982 		struct netdev_rx_queue *rxqueue;
2983 		struct rps_dev_flow_table *flow_table;
2984 		struct rps_dev_flow *old_rflow;
2985 		u32 flow_id;
2986 		u16 rxq_index;
2987 		int rc;
2988 
2989 		/* Should we steer this flow to a different hardware queue? */
2990 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2991 		    !(dev->features & NETIF_F_NTUPLE))
2992 			goto out;
2993 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2994 		if (rxq_index == skb_get_rx_queue(skb))
2995 			goto out;
2996 
2997 		rxqueue = dev->_rx + rxq_index;
2998 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
2999 		if (!flow_table)
3000 			goto out;
3001 		flow_id = skb_get_hash(skb) & flow_table->mask;
3002 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3003 							rxq_index, flow_id);
3004 		if (rc < 0)
3005 			goto out;
3006 		old_rflow = rflow;
3007 		rflow = &flow_table->flows[flow_id];
3008 		rflow->filter = rc;
3009 		if (old_rflow->filter == rflow->filter)
3010 			old_rflow->filter = RPS_NO_FILTER;
3011 	out:
3012 #endif
3013 		rflow->last_qtail =
3014 			per_cpu(softnet_data, next_cpu).input_queue_head;
3015 	}
3016 
3017 	rflow->cpu = next_cpu;
3018 	return rflow;
3019 }
3020 
3021 /*
3022  * get_rps_cpu is called from netif_receive_skb and returns the target
3023  * CPU from the RPS map of the receiving queue for a given skb.
3024  * rcu_read_lock must be held on entry.
3025  */
3026 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3027 		       struct rps_dev_flow **rflowp)
3028 {
3029 	struct netdev_rx_queue *rxqueue;
3030 	struct rps_map *map;
3031 	struct rps_dev_flow_table *flow_table;
3032 	struct rps_sock_flow_table *sock_flow_table;
3033 	int cpu = -1;
3034 	u16 tcpu;
3035 	u32 hash;
3036 
3037 	if (skb_rx_queue_recorded(skb)) {
3038 		u16 index = skb_get_rx_queue(skb);
3039 		if (unlikely(index >= dev->real_num_rx_queues)) {
3040 			WARN_ONCE(dev->real_num_rx_queues > 1,
3041 				  "%s received packet on queue %u, but number "
3042 				  "of RX queues is %u\n",
3043 				  dev->name, index, dev->real_num_rx_queues);
3044 			goto done;
3045 		}
3046 		rxqueue = dev->_rx + index;
3047 	} else
3048 		rxqueue = dev->_rx;
3049 
3050 	map = rcu_dereference(rxqueue->rps_map);
3051 	if (map) {
3052 		if (map->len == 1 &&
3053 		    !rcu_access_pointer(rxqueue->rps_flow_table)) {
3054 			tcpu = map->cpus[0];
3055 			if (cpu_online(tcpu))
3056 				cpu = tcpu;
3057 			goto done;
3058 		}
3059 	} else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
3060 		goto done;
3061 	}
3062 
3063 	skb_reset_network_header(skb);
3064 	hash = skb_get_hash(skb);
3065 	if (!hash)
3066 		goto done;
3067 
3068 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3069 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3070 	if (flow_table && sock_flow_table) {
3071 		u16 next_cpu;
3072 		struct rps_dev_flow *rflow;
3073 
3074 		rflow = &flow_table->flows[hash & flow_table->mask];
3075 		tcpu = rflow->cpu;
3076 
3077 		next_cpu = sock_flow_table->ents[hash & sock_flow_table->mask];
3078 
3079 		/*
3080 		 * If the desired CPU (where last recvmsg was done) is
3081 		 * different from current CPU (one in the rx-queue flow
3082 		 * table entry), switch if one of the following holds:
3083 		 *   - Current CPU is unset (equal to RPS_NO_CPU).
3084 		 *   - Current CPU is offline.
3085 		 *   - The current CPU's queue tail has advanced beyond the
3086 		 *     last packet that was enqueued using this table entry.
3087 		 *     This guarantees that all previous packets for the flow
3088 		 *     have been dequeued, thus preserving in order delivery.
3089 		 */
3090 		if (unlikely(tcpu != next_cpu) &&
3091 		    (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3092 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3093 		      rflow->last_qtail)) >= 0)) {
3094 			tcpu = next_cpu;
3095 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3096 		}
3097 
3098 		if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3099 			*rflowp = rflow;
3100 			cpu = tcpu;
3101 			goto done;
3102 		}
3103 	}
3104 
3105 	if (map) {
3106 		tcpu = map->cpus[((u64) hash * map->len) >> 32];
3107 
3108 		if (cpu_online(tcpu)) {
3109 			cpu = tcpu;
3110 			goto done;
3111 		}
3112 	}
3113 
3114 done:
3115 	return cpu;
3116 }
3117 
3118 #ifdef CONFIG_RFS_ACCEL
3119 
3120 /**
3121  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3122  * @dev: Device on which the filter was set
3123  * @rxq_index: RX queue index
3124  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3125  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3126  *
3127  * Drivers that implement ndo_rx_flow_steer() should periodically call
3128  * this function for each installed filter and remove the filters for
3129  * which it returns %true.
3130  */
3131 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3132 			 u32 flow_id, u16 filter_id)
3133 {
3134 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3135 	struct rps_dev_flow_table *flow_table;
3136 	struct rps_dev_flow *rflow;
3137 	bool expire = true;
3138 	int cpu;
3139 
3140 	rcu_read_lock();
3141 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3142 	if (flow_table && flow_id <= flow_table->mask) {
3143 		rflow = &flow_table->flows[flow_id];
3144 		cpu = ACCESS_ONCE(rflow->cpu);
3145 		if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3146 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3147 			   rflow->last_qtail) <
3148 		     (int)(10 * flow_table->mask)))
3149 			expire = false;
3150 	}
3151 	rcu_read_unlock();
3152 	return expire;
3153 }
3154 EXPORT_SYMBOL(rps_may_expire_flow);
3155 
3156 #endif /* CONFIG_RFS_ACCEL */
3157 
3158 /* Called from hardirq (IPI) context */
3159 static void rps_trigger_softirq(void *data)
3160 {
3161 	struct softnet_data *sd = data;
3162 
3163 	____napi_schedule(sd, &sd->backlog);
3164 	sd->received_rps++;
3165 }
3166 
3167 #endif /* CONFIG_RPS */
3168 
3169 /*
3170  * Check if this softnet_data structure is another cpu one
3171  * If yes, queue it to our IPI list and return 1
3172  * If no, return 0
3173  */
3174 static int rps_ipi_queued(struct softnet_data *sd)
3175 {
3176 #ifdef CONFIG_RPS
3177 	struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3178 
3179 	if (sd != mysd) {
3180 		sd->rps_ipi_next = mysd->rps_ipi_list;
3181 		mysd->rps_ipi_list = sd;
3182 
3183 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3184 		return 1;
3185 	}
3186 #endif /* CONFIG_RPS */
3187 	return 0;
3188 }
3189 
3190 #ifdef CONFIG_NET_FLOW_LIMIT
3191 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3192 #endif
3193 
3194 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3195 {
3196 #ifdef CONFIG_NET_FLOW_LIMIT
3197 	struct sd_flow_limit *fl;
3198 	struct softnet_data *sd;
3199 	unsigned int old_flow, new_flow;
3200 
3201 	if (qlen < (netdev_max_backlog >> 1))
3202 		return false;
3203 
3204 	sd = &__get_cpu_var(softnet_data);
3205 
3206 	rcu_read_lock();
3207 	fl = rcu_dereference(sd->flow_limit);
3208 	if (fl) {
3209 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3210 		old_flow = fl->history[fl->history_head];
3211 		fl->history[fl->history_head] = new_flow;
3212 
3213 		fl->history_head++;
3214 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3215 
3216 		if (likely(fl->buckets[old_flow]))
3217 			fl->buckets[old_flow]--;
3218 
3219 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3220 			fl->count++;
3221 			rcu_read_unlock();
3222 			return true;
3223 		}
3224 	}
3225 	rcu_read_unlock();
3226 #endif
3227 	return false;
3228 }
3229 
3230 /*
3231  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3232  * queue (may be a remote CPU queue).
3233  */
3234 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3235 			      unsigned int *qtail)
3236 {
3237 	struct softnet_data *sd;
3238 	unsigned long flags;
3239 	unsigned int qlen;
3240 
3241 	sd = &per_cpu(softnet_data, cpu);
3242 
3243 	local_irq_save(flags);
3244 
3245 	rps_lock(sd);
3246 	qlen = skb_queue_len(&sd->input_pkt_queue);
3247 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3248 		if (skb_queue_len(&sd->input_pkt_queue)) {
3249 enqueue:
3250 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3251 			input_queue_tail_incr_save(sd, qtail);
3252 			rps_unlock(sd);
3253 			local_irq_restore(flags);
3254 			return NET_RX_SUCCESS;
3255 		}
3256 
3257 		/* Schedule NAPI for backlog device
3258 		 * We can use non atomic operation since we own the queue lock
3259 		 */
3260 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3261 			if (!rps_ipi_queued(sd))
3262 				____napi_schedule(sd, &sd->backlog);
3263 		}
3264 		goto enqueue;
3265 	}
3266 
3267 	sd->dropped++;
3268 	rps_unlock(sd);
3269 
3270 	local_irq_restore(flags);
3271 
3272 	atomic_long_inc(&skb->dev->rx_dropped);
3273 	kfree_skb(skb);
3274 	return NET_RX_DROP;
3275 }
3276 
3277 static int netif_rx_internal(struct sk_buff *skb)
3278 {
3279 	int ret;
3280 
3281 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3282 
3283 	trace_netif_rx(skb);
3284 #ifdef CONFIG_RPS
3285 	if (static_key_false(&rps_needed)) {
3286 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3287 		int cpu;
3288 
3289 		preempt_disable();
3290 		rcu_read_lock();
3291 
3292 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3293 		if (cpu < 0)
3294 			cpu = smp_processor_id();
3295 
3296 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3297 
3298 		rcu_read_unlock();
3299 		preempt_enable();
3300 	} else
3301 #endif
3302 	{
3303 		unsigned int qtail;
3304 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3305 		put_cpu();
3306 	}
3307 	return ret;
3308 }
3309 
3310 /**
3311  *	netif_rx	-	post buffer to the network code
3312  *	@skb: buffer to post
3313  *
3314  *	This function receives a packet from a device driver and queues it for
3315  *	the upper (protocol) levels to process.  It always succeeds. The buffer
3316  *	may be dropped during processing for congestion control or by the
3317  *	protocol layers.
3318  *
3319  *	return values:
3320  *	NET_RX_SUCCESS	(no congestion)
3321  *	NET_RX_DROP     (packet was dropped)
3322  *
3323  */
3324 
3325 int netif_rx(struct sk_buff *skb)
3326 {
3327 	trace_netif_rx_entry(skb);
3328 
3329 	return netif_rx_internal(skb);
3330 }
3331 EXPORT_SYMBOL(netif_rx);
3332 
3333 int netif_rx_ni(struct sk_buff *skb)
3334 {
3335 	int err;
3336 
3337 	trace_netif_rx_ni_entry(skb);
3338 
3339 	preempt_disable();
3340 	err = netif_rx_internal(skb);
3341 	if (local_softirq_pending())
3342 		do_softirq();
3343 	preempt_enable();
3344 
3345 	return err;
3346 }
3347 EXPORT_SYMBOL(netif_rx_ni);
3348 
3349 static void net_tx_action(struct softirq_action *h)
3350 {
3351 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3352 
3353 	if (sd->completion_queue) {
3354 		struct sk_buff *clist;
3355 
3356 		local_irq_disable();
3357 		clist = sd->completion_queue;
3358 		sd->completion_queue = NULL;
3359 		local_irq_enable();
3360 
3361 		while (clist) {
3362 			struct sk_buff *skb = clist;
3363 			clist = clist->next;
3364 
3365 			WARN_ON(atomic_read(&skb->users));
3366 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3367 				trace_consume_skb(skb);
3368 			else
3369 				trace_kfree_skb(skb, net_tx_action);
3370 			__kfree_skb(skb);
3371 		}
3372 	}
3373 
3374 	if (sd->output_queue) {
3375 		struct Qdisc *head;
3376 
3377 		local_irq_disable();
3378 		head = sd->output_queue;
3379 		sd->output_queue = NULL;
3380 		sd->output_queue_tailp = &sd->output_queue;
3381 		local_irq_enable();
3382 
3383 		while (head) {
3384 			struct Qdisc *q = head;
3385 			spinlock_t *root_lock;
3386 
3387 			head = head->next_sched;
3388 
3389 			root_lock = qdisc_lock(q);
3390 			if (spin_trylock(root_lock)) {
3391 				smp_mb__before_atomic();
3392 				clear_bit(__QDISC_STATE_SCHED,
3393 					  &q->state);
3394 				qdisc_run(q);
3395 				spin_unlock(root_lock);
3396 			} else {
3397 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
3398 					      &q->state)) {
3399 					__netif_reschedule(q);
3400 				} else {
3401 					smp_mb__before_atomic();
3402 					clear_bit(__QDISC_STATE_SCHED,
3403 						  &q->state);
3404 				}
3405 			}
3406 		}
3407 	}
3408 }
3409 
3410 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3411     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3412 /* This hook is defined here for ATM LANE */
3413 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3414 			     unsigned char *addr) __read_mostly;
3415 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3416 #endif
3417 
3418 #ifdef CONFIG_NET_CLS_ACT
3419 /* TODO: Maybe we should just force sch_ingress to be compiled in
3420  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3421  * a compare and 2 stores extra right now if we dont have it on
3422  * but have CONFIG_NET_CLS_ACT
3423  * NOTE: This doesn't stop any functionality; if you dont have
3424  * the ingress scheduler, you just can't add policies on ingress.
3425  *
3426  */
3427 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3428 {
3429 	struct net_device *dev = skb->dev;
3430 	u32 ttl = G_TC_RTTL(skb->tc_verd);
3431 	int result = TC_ACT_OK;
3432 	struct Qdisc *q;
3433 
3434 	if (unlikely(MAX_RED_LOOP < ttl++)) {
3435 		net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3436 				     skb->skb_iif, dev->ifindex);
3437 		return TC_ACT_SHOT;
3438 	}
3439 
3440 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3441 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3442 
3443 	q = rxq->qdisc;
3444 	if (q != &noop_qdisc) {
3445 		spin_lock(qdisc_lock(q));
3446 		if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3447 			result = qdisc_enqueue_root(skb, q);
3448 		spin_unlock(qdisc_lock(q));
3449 	}
3450 
3451 	return result;
3452 }
3453 
3454 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3455 					 struct packet_type **pt_prev,
3456 					 int *ret, struct net_device *orig_dev)
3457 {
3458 	struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3459 
3460 	if (!rxq || rxq->qdisc == &noop_qdisc)
3461 		goto out;
3462 
3463 	if (*pt_prev) {
3464 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3465 		*pt_prev = NULL;
3466 	}
3467 
3468 	switch (ing_filter(skb, rxq)) {
3469 	case TC_ACT_SHOT:
3470 	case TC_ACT_STOLEN:
3471 		kfree_skb(skb);
3472 		return NULL;
3473 	}
3474 
3475 out:
3476 	skb->tc_verd = 0;
3477 	return skb;
3478 }
3479 #endif
3480 
3481 /**
3482  *	netdev_rx_handler_register - register receive handler
3483  *	@dev: device to register a handler for
3484  *	@rx_handler: receive handler to register
3485  *	@rx_handler_data: data pointer that is used by rx handler
3486  *
3487  *	Register a receive handler for a device. This handler will then be
3488  *	called from __netif_receive_skb. A negative errno code is returned
3489  *	on a failure.
3490  *
3491  *	The caller must hold the rtnl_mutex.
3492  *
3493  *	For a general description of rx_handler, see enum rx_handler_result.
3494  */
3495 int netdev_rx_handler_register(struct net_device *dev,
3496 			       rx_handler_func_t *rx_handler,
3497 			       void *rx_handler_data)
3498 {
3499 	ASSERT_RTNL();
3500 
3501 	if (dev->rx_handler)
3502 		return -EBUSY;
3503 
3504 	/* Note: rx_handler_data must be set before rx_handler */
3505 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3506 	rcu_assign_pointer(dev->rx_handler, rx_handler);
3507 
3508 	return 0;
3509 }
3510 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3511 
3512 /**
3513  *	netdev_rx_handler_unregister - unregister receive handler
3514  *	@dev: device to unregister a handler from
3515  *
3516  *	Unregister a receive handler from a device.
3517  *
3518  *	The caller must hold the rtnl_mutex.
3519  */
3520 void netdev_rx_handler_unregister(struct net_device *dev)
3521 {
3522 
3523 	ASSERT_RTNL();
3524 	RCU_INIT_POINTER(dev->rx_handler, NULL);
3525 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3526 	 * section has a guarantee to see a non NULL rx_handler_data
3527 	 * as well.
3528 	 */
3529 	synchronize_net();
3530 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3531 }
3532 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3533 
3534 /*
3535  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3536  * the special handling of PFMEMALLOC skbs.
3537  */
3538 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3539 {
3540 	switch (skb->protocol) {
3541 	case htons(ETH_P_ARP):
3542 	case htons(ETH_P_IP):
3543 	case htons(ETH_P_IPV6):
3544 	case htons(ETH_P_8021Q):
3545 	case htons(ETH_P_8021AD):
3546 		return true;
3547 	default:
3548 		return false;
3549 	}
3550 }
3551 
3552 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3553 {
3554 	struct packet_type *ptype, *pt_prev;
3555 	rx_handler_func_t *rx_handler;
3556 	struct net_device *orig_dev;
3557 	struct net_device *null_or_dev;
3558 	bool deliver_exact = false;
3559 	int ret = NET_RX_DROP;
3560 	__be16 type;
3561 
3562 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
3563 
3564 	trace_netif_receive_skb(skb);
3565 
3566 	orig_dev = skb->dev;
3567 
3568 	skb_reset_network_header(skb);
3569 	if (!skb_transport_header_was_set(skb))
3570 		skb_reset_transport_header(skb);
3571 	skb_reset_mac_len(skb);
3572 
3573 	pt_prev = NULL;
3574 
3575 	rcu_read_lock();
3576 
3577 another_round:
3578 	skb->skb_iif = skb->dev->ifindex;
3579 
3580 	__this_cpu_inc(softnet_data.processed);
3581 
3582 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3583 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3584 		skb = vlan_untag(skb);
3585 		if (unlikely(!skb))
3586 			goto unlock;
3587 	}
3588 
3589 #ifdef CONFIG_NET_CLS_ACT
3590 	if (skb->tc_verd & TC_NCLS) {
3591 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3592 		goto ncls;
3593 	}
3594 #endif
3595 
3596 	if (pfmemalloc)
3597 		goto skip_taps;
3598 
3599 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
3600 		if (!ptype->dev || ptype->dev == skb->dev) {
3601 			if (pt_prev)
3602 				ret = deliver_skb(skb, pt_prev, orig_dev);
3603 			pt_prev = ptype;
3604 		}
3605 	}
3606 
3607 skip_taps:
3608 #ifdef CONFIG_NET_CLS_ACT
3609 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3610 	if (!skb)
3611 		goto unlock;
3612 ncls:
3613 #endif
3614 
3615 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3616 		goto drop;
3617 
3618 	if (vlan_tx_tag_present(skb)) {
3619 		if (pt_prev) {
3620 			ret = deliver_skb(skb, pt_prev, orig_dev);
3621 			pt_prev = NULL;
3622 		}
3623 		if (vlan_do_receive(&skb))
3624 			goto another_round;
3625 		else if (unlikely(!skb))
3626 			goto unlock;
3627 	}
3628 
3629 	rx_handler = rcu_dereference(skb->dev->rx_handler);
3630 	if (rx_handler) {
3631 		if (pt_prev) {
3632 			ret = deliver_skb(skb, pt_prev, orig_dev);
3633 			pt_prev = NULL;
3634 		}
3635 		switch (rx_handler(&skb)) {
3636 		case RX_HANDLER_CONSUMED:
3637 			ret = NET_RX_SUCCESS;
3638 			goto unlock;
3639 		case RX_HANDLER_ANOTHER:
3640 			goto another_round;
3641 		case RX_HANDLER_EXACT:
3642 			deliver_exact = true;
3643 		case RX_HANDLER_PASS:
3644 			break;
3645 		default:
3646 			BUG();
3647 		}
3648 	}
3649 
3650 	if (unlikely(vlan_tx_tag_present(skb))) {
3651 		if (vlan_tx_tag_get_id(skb))
3652 			skb->pkt_type = PACKET_OTHERHOST;
3653 		/* Note: we might in the future use prio bits
3654 		 * and set skb->priority like in vlan_do_receive()
3655 		 * For the time being, just ignore Priority Code Point
3656 		 */
3657 		skb->vlan_tci = 0;
3658 	}
3659 
3660 	/* deliver only exact match when indicated */
3661 	null_or_dev = deliver_exact ? skb->dev : NULL;
3662 
3663 	type = skb->protocol;
3664 	list_for_each_entry_rcu(ptype,
3665 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3666 		if (ptype->type == type &&
3667 		    (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3668 		     ptype->dev == orig_dev)) {
3669 			if (pt_prev)
3670 				ret = deliver_skb(skb, pt_prev, orig_dev);
3671 			pt_prev = ptype;
3672 		}
3673 	}
3674 
3675 	if (pt_prev) {
3676 		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3677 			goto drop;
3678 		else
3679 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3680 	} else {
3681 drop:
3682 		atomic_long_inc(&skb->dev->rx_dropped);
3683 		kfree_skb(skb);
3684 		/* Jamal, now you will not able to escape explaining
3685 		 * me how you were going to use this. :-)
3686 		 */
3687 		ret = NET_RX_DROP;
3688 	}
3689 
3690 unlock:
3691 	rcu_read_unlock();
3692 	return ret;
3693 }
3694 
3695 static int __netif_receive_skb(struct sk_buff *skb)
3696 {
3697 	int ret;
3698 
3699 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3700 		unsigned long pflags = current->flags;
3701 
3702 		/*
3703 		 * PFMEMALLOC skbs are special, they should
3704 		 * - be delivered to SOCK_MEMALLOC sockets only
3705 		 * - stay away from userspace
3706 		 * - have bounded memory usage
3707 		 *
3708 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
3709 		 * context down to all allocation sites.
3710 		 */
3711 		current->flags |= PF_MEMALLOC;
3712 		ret = __netif_receive_skb_core(skb, true);
3713 		tsk_restore_flags(current, pflags, PF_MEMALLOC);
3714 	} else
3715 		ret = __netif_receive_skb_core(skb, false);
3716 
3717 	return ret;
3718 }
3719 
3720 static int netif_receive_skb_internal(struct sk_buff *skb)
3721 {
3722 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3723 
3724 	if (skb_defer_rx_timestamp(skb))
3725 		return NET_RX_SUCCESS;
3726 
3727 #ifdef CONFIG_RPS
3728 	if (static_key_false(&rps_needed)) {
3729 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3730 		int cpu, ret;
3731 
3732 		rcu_read_lock();
3733 
3734 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3735 
3736 		if (cpu >= 0) {
3737 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3738 			rcu_read_unlock();
3739 			return ret;
3740 		}
3741 		rcu_read_unlock();
3742 	}
3743 #endif
3744 	return __netif_receive_skb(skb);
3745 }
3746 
3747 /**
3748  *	netif_receive_skb - process receive buffer from network
3749  *	@skb: buffer to process
3750  *
3751  *	netif_receive_skb() is the main receive data processing function.
3752  *	It always succeeds. The buffer may be dropped during processing
3753  *	for congestion control or by the protocol layers.
3754  *
3755  *	This function may only be called from softirq context and interrupts
3756  *	should be enabled.
3757  *
3758  *	Return values (usually ignored):
3759  *	NET_RX_SUCCESS: no congestion
3760  *	NET_RX_DROP: packet was dropped
3761  */
3762 int netif_receive_skb(struct sk_buff *skb)
3763 {
3764 	trace_netif_receive_skb_entry(skb);
3765 
3766 	return netif_receive_skb_internal(skb);
3767 }
3768 EXPORT_SYMBOL(netif_receive_skb);
3769 
3770 /* Network device is going away, flush any packets still pending
3771  * Called with irqs disabled.
3772  */
3773 static void flush_backlog(void *arg)
3774 {
3775 	struct net_device *dev = arg;
3776 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3777 	struct sk_buff *skb, *tmp;
3778 
3779 	rps_lock(sd);
3780 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3781 		if (skb->dev == dev) {
3782 			__skb_unlink(skb, &sd->input_pkt_queue);
3783 			kfree_skb(skb);
3784 			input_queue_head_incr(sd);
3785 		}
3786 	}
3787 	rps_unlock(sd);
3788 
3789 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3790 		if (skb->dev == dev) {
3791 			__skb_unlink(skb, &sd->process_queue);
3792 			kfree_skb(skb);
3793 			input_queue_head_incr(sd);
3794 		}
3795 	}
3796 }
3797 
3798 static int napi_gro_complete(struct sk_buff *skb)
3799 {
3800 	struct packet_offload *ptype;
3801 	__be16 type = skb->protocol;
3802 	struct list_head *head = &offload_base;
3803 	int err = -ENOENT;
3804 
3805 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3806 
3807 	if (NAPI_GRO_CB(skb)->count == 1) {
3808 		skb_shinfo(skb)->gso_size = 0;
3809 		goto out;
3810 	}
3811 
3812 	rcu_read_lock();
3813 	list_for_each_entry_rcu(ptype, head, list) {
3814 		if (ptype->type != type || !ptype->callbacks.gro_complete)
3815 			continue;
3816 
3817 		err = ptype->callbacks.gro_complete(skb, 0);
3818 		break;
3819 	}
3820 	rcu_read_unlock();
3821 
3822 	if (err) {
3823 		WARN_ON(&ptype->list == head);
3824 		kfree_skb(skb);
3825 		return NET_RX_SUCCESS;
3826 	}
3827 
3828 out:
3829 	return netif_receive_skb_internal(skb);
3830 }
3831 
3832 /* napi->gro_list contains packets ordered by age.
3833  * youngest packets at the head of it.
3834  * Complete skbs in reverse order to reduce latencies.
3835  */
3836 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3837 {
3838 	struct sk_buff *skb, *prev = NULL;
3839 
3840 	/* scan list and build reverse chain */
3841 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3842 		skb->prev = prev;
3843 		prev = skb;
3844 	}
3845 
3846 	for (skb = prev; skb; skb = prev) {
3847 		skb->next = NULL;
3848 
3849 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3850 			return;
3851 
3852 		prev = skb->prev;
3853 		napi_gro_complete(skb);
3854 		napi->gro_count--;
3855 	}
3856 
3857 	napi->gro_list = NULL;
3858 }
3859 EXPORT_SYMBOL(napi_gro_flush);
3860 
3861 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3862 {
3863 	struct sk_buff *p;
3864 	unsigned int maclen = skb->dev->hard_header_len;
3865 	u32 hash = skb_get_hash_raw(skb);
3866 
3867 	for (p = napi->gro_list; p; p = p->next) {
3868 		unsigned long diffs;
3869 
3870 		NAPI_GRO_CB(p)->flush = 0;
3871 
3872 		if (hash != skb_get_hash_raw(p)) {
3873 			NAPI_GRO_CB(p)->same_flow = 0;
3874 			continue;
3875 		}
3876 
3877 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3878 		diffs |= p->vlan_tci ^ skb->vlan_tci;
3879 		if (maclen == ETH_HLEN)
3880 			diffs |= compare_ether_header(skb_mac_header(p),
3881 						      skb_mac_header(skb));
3882 		else if (!diffs)
3883 			diffs = memcmp(skb_mac_header(p),
3884 				       skb_mac_header(skb),
3885 				       maclen);
3886 		NAPI_GRO_CB(p)->same_flow = !diffs;
3887 	}
3888 }
3889 
3890 static void skb_gro_reset_offset(struct sk_buff *skb)
3891 {
3892 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
3893 	const skb_frag_t *frag0 = &pinfo->frags[0];
3894 
3895 	NAPI_GRO_CB(skb)->data_offset = 0;
3896 	NAPI_GRO_CB(skb)->frag0 = NULL;
3897 	NAPI_GRO_CB(skb)->frag0_len = 0;
3898 
3899 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3900 	    pinfo->nr_frags &&
3901 	    !PageHighMem(skb_frag_page(frag0))) {
3902 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3903 		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3904 	}
3905 }
3906 
3907 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
3908 {
3909 	struct skb_shared_info *pinfo = skb_shinfo(skb);
3910 
3911 	BUG_ON(skb->end - skb->tail < grow);
3912 
3913 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3914 
3915 	skb->data_len -= grow;
3916 	skb->tail += grow;
3917 
3918 	pinfo->frags[0].page_offset += grow;
3919 	skb_frag_size_sub(&pinfo->frags[0], grow);
3920 
3921 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
3922 		skb_frag_unref(skb, 0);
3923 		memmove(pinfo->frags, pinfo->frags + 1,
3924 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
3925 	}
3926 }
3927 
3928 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3929 {
3930 	struct sk_buff **pp = NULL;
3931 	struct packet_offload *ptype;
3932 	__be16 type = skb->protocol;
3933 	struct list_head *head = &offload_base;
3934 	int same_flow;
3935 	enum gro_result ret;
3936 	int grow;
3937 
3938 	if (!(skb->dev->features & NETIF_F_GRO))
3939 		goto normal;
3940 
3941 	if (skb_is_gso(skb) || skb_has_frag_list(skb))
3942 		goto normal;
3943 
3944 	gro_list_prepare(napi, skb);
3945 	NAPI_GRO_CB(skb)->csum = skb->csum; /* Needed for CHECKSUM_COMPLETE */
3946 
3947 	rcu_read_lock();
3948 	list_for_each_entry_rcu(ptype, head, list) {
3949 		if (ptype->type != type || !ptype->callbacks.gro_receive)
3950 			continue;
3951 
3952 		skb_set_network_header(skb, skb_gro_offset(skb));
3953 		skb_reset_mac_len(skb);
3954 		NAPI_GRO_CB(skb)->same_flow = 0;
3955 		NAPI_GRO_CB(skb)->flush = 0;
3956 		NAPI_GRO_CB(skb)->free = 0;
3957 		NAPI_GRO_CB(skb)->udp_mark = 0;
3958 
3959 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3960 		break;
3961 	}
3962 	rcu_read_unlock();
3963 
3964 	if (&ptype->list == head)
3965 		goto normal;
3966 
3967 	same_flow = NAPI_GRO_CB(skb)->same_flow;
3968 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3969 
3970 	if (pp) {
3971 		struct sk_buff *nskb = *pp;
3972 
3973 		*pp = nskb->next;
3974 		nskb->next = NULL;
3975 		napi_gro_complete(nskb);
3976 		napi->gro_count--;
3977 	}
3978 
3979 	if (same_flow)
3980 		goto ok;
3981 
3982 	if (NAPI_GRO_CB(skb)->flush)
3983 		goto normal;
3984 
3985 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
3986 		struct sk_buff *nskb = napi->gro_list;
3987 
3988 		/* locate the end of the list to select the 'oldest' flow */
3989 		while (nskb->next) {
3990 			pp = &nskb->next;
3991 			nskb = *pp;
3992 		}
3993 		*pp = NULL;
3994 		nskb->next = NULL;
3995 		napi_gro_complete(nskb);
3996 	} else {
3997 		napi->gro_count++;
3998 	}
3999 	NAPI_GRO_CB(skb)->count = 1;
4000 	NAPI_GRO_CB(skb)->age = jiffies;
4001 	NAPI_GRO_CB(skb)->last = skb;
4002 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4003 	skb->next = napi->gro_list;
4004 	napi->gro_list = skb;
4005 	ret = GRO_HELD;
4006 
4007 pull:
4008 	grow = skb_gro_offset(skb) - skb_headlen(skb);
4009 	if (grow > 0)
4010 		gro_pull_from_frag0(skb, grow);
4011 ok:
4012 	return ret;
4013 
4014 normal:
4015 	ret = GRO_NORMAL;
4016 	goto pull;
4017 }
4018 
4019 struct packet_offload *gro_find_receive_by_type(__be16 type)
4020 {
4021 	struct list_head *offload_head = &offload_base;
4022 	struct packet_offload *ptype;
4023 
4024 	list_for_each_entry_rcu(ptype, offload_head, list) {
4025 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4026 			continue;
4027 		return ptype;
4028 	}
4029 	return NULL;
4030 }
4031 EXPORT_SYMBOL(gro_find_receive_by_type);
4032 
4033 struct packet_offload *gro_find_complete_by_type(__be16 type)
4034 {
4035 	struct list_head *offload_head = &offload_base;
4036 	struct packet_offload *ptype;
4037 
4038 	list_for_each_entry_rcu(ptype, offload_head, list) {
4039 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4040 			continue;
4041 		return ptype;
4042 	}
4043 	return NULL;
4044 }
4045 EXPORT_SYMBOL(gro_find_complete_by_type);
4046 
4047 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4048 {
4049 	switch (ret) {
4050 	case GRO_NORMAL:
4051 		if (netif_receive_skb_internal(skb))
4052 			ret = GRO_DROP;
4053 		break;
4054 
4055 	case GRO_DROP:
4056 		kfree_skb(skb);
4057 		break;
4058 
4059 	case GRO_MERGED_FREE:
4060 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4061 			kmem_cache_free(skbuff_head_cache, skb);
4062 		else
4063 			__kfree_skb(skb);
4064 		break;
4065 
4066 	case GRO_HELD:
4067 	case GRO_MERGED:
4068 		break;
4069 	}
4070 
4071 	return ret;
4072 }
4073 
4074 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4075 {
4076 	trace_napi_gro_receive_entry(skb);
4077 
4078 	skb_gro_reset_offset(skb);
4079 
4080 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4081 }
4082 EXPORT_SYMBOL(napi_gro_receive);
4083 
4084 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4085 {
4086 	__skb_pull(skb, skb_headlen(skb));
4087 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
4088 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4089 	skb->vlan_tci = 0;
4090 	skb->dev = napi->dev;
4091 	skb->skb_iif = 0;
4092 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4093 
4094 	napi->skb = skb;
4095 }
4096 
4097 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4098 {
4099 	struct sk_buff *skb = napi->skb;
4100 
4101 	if (!skb) {
4102 		skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
4103 		napi->skb = skb;
4104 	}
4105 	return skb;
4106 }
4107 EXPORT_SYMBOL(napi_get_frags);
4108 
4109 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4110 				      struct sk_buff *skb,
4111 				      gro_result_t ret)
4112 {
4113 	switch (ret) {
4114 	case GRO_NORMAL:
4115 	case GRO_HELD:
4116 		__skb_push(skb, ETH_HLEN);
4117 		skb->protocol = eth_type_trans(skb, skb->dev);
4118 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4119 			ret = GRO_DROP;
4120 		break;
4121 
4122 	case GRO_DROP:
4123 	case GRO_MERGED_FREE:
4124 		napi_reuse_skb(napi, skb);
4125 		break;
4126 
4127 	case GRO_MERGED:
4128 		break;
4129 	}
4130 
4131 	return ret;
4132 }
4133 
4134 /* Upper GRO stack assumes network header starts at gro_offset=0
4135  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4136  * We copy ethernet header into skb->data to have a common layout.
4137  */
4138 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4139 {
4140 	struct sk_buff *skb = napi->skb;
4141 	const struct ethhdr *eth;
4142 	unsigned int hlen = sizeof(*eth);
4143 
4144 	napi->skb = NULL;
4145 
4146 	skb_reset_mac_header(skb);
4147 	skb_gro_reset_offset(skb);
4148 
4149 	eth = skb_gro_header_fast(skb, 0);
4150 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
4151 		eth = skb_gro_header_slow(skb, hlen, 0);
4152 		if (unlikely(!eth)) {
4153 			napi_reuse_skb(napi, skb);
4154 			return NULL;
4155 		}
4156 	} else {
4157 		gro_pull_from_frag0(skb, hlen);
4158 		NAPI_GRO_CB(skb)->frag0 += hlen;
4159 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
4160 	}
4161 	__skb_pull(skb, hlen);
4162 
4163 	/*
4164 	 * This works because the only protocols we care about don't require
4165 	 * special handling.
4166 	 * We'll fix it up properly in napi_frags_finish()
4167 	 */
4168 	skb->protocol = eth->h_proto;
4169 
4170 	return skb;
4171 }
4172 
4173 gro_result_t napi_gro_frags(struct napi_struct *napi)
4174 {
4175 	struct sk_buff *skb = napi_frags_skb(napi);
4176 
4177 	if (!skb)
4178 		return GRO_DROP;
4179 
4180 	trace_napi_gro_frags_entry(skb);
4181 
4182 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4183 }
4184 EXPORT_SYMBOL(napi_gro_frags);
4185 
4186 /*
4187  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4188  * Note: called with local irq disabled, but exits with local irq enabled.
4189  */
4190 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4191 {
4192 #ifdef CONFIG_RPS
4193 	struct softnet_data *remsd = sd->rps_ipi_list;
4194 
4195 	if (remsd) {
4196 		sd->rps_ipi_list = NULL;
4197 
4198 		local_irq_enable();
4199 
4200 		/* Send pending IPI's to kick RPS processing on remote cpus. */
4201 		while (remsd) {
4202 			struct softnet_data *next = remsd->rps_ipi_next;
4203 
4204 			if (cpu_online(remsd->cpu))
4205 				smp_call_function_single_async(remsd->cpu,
4206 							   &remsd->csd);
4207 			remsd = next;
4208 		}
4209 	} else
4210 #endif
4211 		local_irq_enable();
4212 }
4213 
4214 static int process_backlog(struct napi_struct *napi, int quota)
4215 {
4216 	int work = 0;
4217 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4218 
4219 #ifdef CONFIG_RPS
4220 	/* Check if we have pending ipi, its better to send them now,
4221 	 * not waiting net_rx_action() end.
4222 	 */
4223 	if (sd->rps_ipi_list) {
4224 		local_irq_disable();
4225 		net_rps_action_and_irq_enable(sd);
4226 	}
4227 #endif
4228 	napi->weight = weight_p;
4229 	local_irq_disable();
4230 	while (work < quota) {
4231 		struct sk_buff *skb;
4232 		unsigned int qlen;
4233 
4234 		while ((skb = __skb_dequeue(&sd->process_queue))) {
4235 			local_irq_enable();
4236 			__netif_receive_skb(skb);
4237 			local_irq_disable();
4238 			input_queue_head_incr(sd);
4239 			if (++work >= quota) {
4240 				local_irq_enable();
4241 				return work;
4242 			}
4243 		}
4244 
4245 		rps_lock(sd);
4246 		qlen = skb_queue_len(&sd->input_pkt_queue);
4247 		if (qlen)
4248 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
4249 						   &sd->process_queue);
4250 
4251 		if (qlen < quota - work) {
4252 			/*
4253 			 * Inline a custom version of __napi_complete().
4254 			 * only current cpu owns and manipulates this napi,
4255 			 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
4256 			 * we can use a plain write instead of clear_bit(),
4257 			 * and we dont need an smp_mb() memory barrier.
4258 			 */
4259 			list_del(&napi->poll_list);
4260 			napi->state = 0;
4261 
4262 			quota = work + qlen;
4263 		}
4264 		rps_unlock(sd);
4265 	}
4266 	local_irq_enable();
4267 
4268 	return work;
4269 }
4270 
4271 /**
4272  * __napi_schedule - schedule for receive
4273  * @n: entry to schedule
4274  *
4275  * The entry's receive function will be scheduled to run
4276  */
4277 void __napi_schedule(struct napi_struct *n)
4278 {
4279 	unsigned long flags;
4280 
4281 	local_irq_save(flags);
4282 	____napi_schedule(&__get_cpu_var(softnet_data), n);
4283 	local_irq_restore(flags);
4284 }
4285 EXPORT_SYMBOL(__napi_schedule);
4286 
4287 void __napi_complete(struct napi_struct *n)
4288 {
4289 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4290 	BUG_ON(n->gro_list);
4291 
4292 	list_del(&n->poll_list);
4293 	smp_mb__before_atomic();
4294 	clear_bit(NAPI_STATE_SCHED, &n->state);
4295 }
4296 EXPORT_SYMBOL(__napi_complete);
4297 
4298 void napi_complete(struct napi_struct *n)
4299 {
4300 	unsigned long flags;
4301 
4302 	/*
4303 	 * don't let napi dequeue from the cpu poll list
4304 	 * just in case its running on a different cpu
4305 	 */
4306 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4307 		return;
4308 
4309 	napi_gro_flush(n, false);
4310 	local_irq_save(flags);
4311 	__napi_complete(n);
4312 	local_irq_restore(flags);
4313 }
4314 EXPORT_SYMBOL(napi_complete);
4315 
4316 /* must be called under rcu_read_lock(), as we dont take a reference */
4317 struct napi_struct *napi_by_id(unsigned int napi_id)
4318 {
4319 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4320 	struct napi_struct *napi;
4321 
4322 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4323 		if (napi->napi_id == napi_id)
4324 			return napi;
4325 
4326 	return NULL;
4327 }
4328 EXPORT_SYMBOL_GPL(napi_by_id);
4329 
4330 void napi_hash_add(struct napi_struct *napi)
4331 {
4332 	if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4333 
4334 		spin_lock(&napi_hash_lock);
4335 
4336 		/* 0 is not a valid id, we also skip an id that is taken
4337 		 * we expect both events to be extremely rare
4338 		 */
4339 		napi->napi_id = 0;
4340 		while (!napi->napi_id) {
4341 			napi->napi_id = ++napi_gen_id;
4342 			if (napi_by_id(napi->napi_id))
4343 				napi->napi_id = 0;
4344 		}
4345 
4346 		hlist_add_head_rcu(&napi->napi_hash_node,
4347 			&napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4348 
4349 		spin_unlock(&napi_hash_lock);
4350 	}
4351 }
4352 EXPORT_SYMBOL_GPL(napi_hash_add);
4353 
4354 /* Warning : caller is responsible to make sure rcu grace period
4355  * is respected before freeing memory containing @napi
4356  */
4357 void napi_hash_del(struct napi_struct *napi)
4358 {
4359 	spin_lock(&napi_hash_lock);
4360 
4361 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4362 		hlist_del_rcu(&napi->napi_hash_node);
4363 
4364 	spin_unlock(&napi_hash_lock);
4365 }
4366 EXPORT_SYMBOL_GPL(napi_hash_del);
4367 
4368 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4369 		    int (*poll)(struct napi_struct *, int), int weight)
4370 {
4371 	INIT_LIST_HEAD(&napi->poll_list);
4372 	napi->gro_count = 0;
4373 	napi->gro_list = NULL;
4374 	napi->skb = NULL;
4375 	napi->poll = poll;
4376 	if (weight > NAPI_POLL_WEIGHT)
4377 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4378 			    weight, dev->name);
4379 	napi->weight = weight;
4380 	list_add(&napi->dev_list, &dev->napi_list);
4381 	napi->dev = dev;
4382 #ifdef CONFIG_NETPOLL
4383 	spin_lock_init(&napi->poll_lock);
4384 	napi->poll_owner = -1;
4385 #endif
4386 	set_bit(NAPI_STATE_SCHED, &napi->state);
4387 }
4388 EXPORT_SYMBOL(netif_napi_add);
4389 
4390 void netif_napi_del(struct napi_struct *napi)
4391 {
4392 	list_del_init(&napi->dev_list);
4393 	napi_free_frags(napi);
4394 
4395 	kfree_skb_list(napi->gro_list);
4396 	napi->gro_list = NULL;
4397 	napi->gro_count = 0;
4398 }
4399 EXPORT_SYMBOL(netif_napi_del);
4400 
4401 static void net_rx_action(struct softirq_action *h)
4402 {
4403 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
4404 	unsigned long time_limit = jiffies + 2;
4405 	int budget = netdev_budget;
4406 	void *have;
4407 
4408 	local_irq_disable();
4409 
4410 	while (!list_empty(&sd->poll_list)) {
4411 		struct napi_struct *n;
4412 		int work, weight;
4413 
4414 		/* If softirq window is exhuasted then punt.
4415 		 * Allow this to run for 2 jiffies since which will allow
4416 		 * an average latency of 1.5/HZ.
4417 		 */
4418 		if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4419 			goto softnet_break;
4420 
4421 		local_irq_enable();
4422 
4423 		/* Even though interrupts have been re-enabled, this
4424 		 * access is safe because interrupts can only add new
4425 		 * entries to the tail of this list, and only ->poll()
4426 		 * calls can remove this head entry from the list.
4427 		 */
4428 		n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4429 
4430 		have = netpoll_poll_lock(n);
4431 
4432 		weight = n->weight;
4433 
4434 		/* This NAPI_STATE_SCHED test is for avoiding a race
4435 		 * with netpoll's poll_napi().  Only the entity which
4436 		 * obtains the lock and sees NAPI_STATE_SCHED set will
4437 		 * actually make the ->poll() call.  Therefore we avoid
4438 		 * accidentally calling ->poll() when NAPI is not scheduled.
4439 		 */
4440 		work = 0;
4441 		if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4442 			work = n->poll(n, weight);
4443 			trace_napi_poll(n);
4444 		}
4445 
4446 		WARN_ON_ONCE(work > weight);
4447 
4448 		budget -= work;
4449 
4450 		local_irq_disable();
4451 
4452 		/* Drivers must not modify the NAPI state if they
4453 		 * consume the entire weight.  In such cases this code
4454 		 * still "owns" the NAPI instance and therefore can
4455 		 * move the instance around on the list at-will.
4456 		 */
4457 		if (unlikely(work == weight)) {
4458 			if (unlikely(napi_disable_pending(n))) {
4459 				local_irq_enable();
4460 				napi_complete(n);
4461 				local_irq_disable();
4462 			} else {
4463 				if (n->gro_list) {
4464 					/* flush too old packets
4465 					 * If HZ < 1000, flush all packets.
4466 					 */
4467 					local_irq_enable();
4468 					napi_gro_flush(n, HZ >= 1000);
4469 					local_irq_disable();
4470 				}
4471 				list_move_tail(&n->poll_list, &sd->poll_list);
4472 			}
4473 		}
4474 
4475 		netpoll_poll_unlock(have);
4476 	}
4477 out:
4478 	net_rps_action_and_irq_enable(sd);
4479 
4480 #ifdef CONFIG_NET_DMA
4481 	/*
4482 	 * There may not be any more sk_buffs coming right now, so push
4483 	 * any pending DMA copies to hardware
4484 	 */
4485 	dma_issue_pending_all();
4486 #endif
4487 
4488 	return;
4489 
4490 softnet_break:
4491 	sd->time_squeeze++;
4492 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4493 	goto out;
4494 }
4495 
4496 struct netdev_adjacent {
4497 	struct net_device *dev;
4498 
4499 	/* upper master flag, there can only be one master device per list */
4500 	bool master;
4501 
4502 	/* counter for the number of times this device was added to us */
4503 	u16 ref_nr;
4504 
4505 	/* private field for the users */
4506 	void *private;
4507 
4508 	struct list_head list;
4509 	struct rcu_head rcu;
4510 };
4511 
4512 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4513 						 struct net_device *adj_dev,
4514 						 struct list_head *adj_list)
4515 {
4516 	struct netdev_adjacent *adj;
4517 
4518 	list_for_each_entry(adj, adj_list, list) {
4519 		if (adj->dev == adj_dev)
4520 			return adj;
4521 	}
4522 	return NULL;
4523 }
4524 
4525 /**
4526  * netdev_has_upper_dev - Check if device is linked to an upper device
4527  * @dev: device
4528  * @upper_dev: upper device to check
4529  *
4530  * Find out if a device is linked to specified upper device and return true
4531  * in case it is. Note that this checks only immediate upper device,
4532  * not through a complete stack of devices. The caller must hold the RTNL lock.
4533  */
4534 bool netdev_has_upper_dev(struct net_device *dev,
4535 			  struct net_device *upper_dev)
4536 {
4537 	ASSERT_RTNL();
4538 
4539 	return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4540 }
4541 EXPORT_SYMBOL(netdev_has_upper_dev);
4542 
4543 /**
4544  * netdev_has_any_upper_dev - Check if device is linked to some device
4545  * @dev: device
4546  *
4547  * Find out if a device is linked to an upper device and return true in case
4548  * it is. The caller must hold the RTNL lock.
4549  */
4550 static bool netdev_has_any_upper_dev(struct net_device *dev)
4551 {
4552 	ASSERT_RTNL();
4553 
4554 	return !list_empty(&dev->all_adj_list.upper);
4555 }
4556 
4557 /**
4558  * netdev_master_upper_dev_get - Get master upper device
4559  * @dev: device
4560  *
4561  * Find a master upper device and return pointer to it or NULL in case
4562  * it's not there. The caller must hold the RTNL lock.
4563  */
4564 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4565 {
4566 	struct netdev_adjacent *upper;
4567 
4568 	ASSERT_RTNL();
4569 
4570 	if (list_empty(&dev->adj_list.upper))
4571 		return NULL;
4572 
4573 	upper = list_first_entry(&dev->adj_list.upper,
4574 				 struct netdev_adjacent, list);
4575 	if (likely(upper->master))
4576 		return upper->dev;
4577 	return NULL;
4578 }
4579 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4580 
4581 void *netdev_adjacent_get_private(struct list_head *adj_list)
4582 {
4583 	struct netdev_adjacent *adj;
4584 
4585 	adj = list_entry(adj_list, struct netdev_adjacent, list);
4586 
4587 	return adj->private;
4588 }
4589 EXPORT_SYMBOL(netdev_adjacent_get_private);
4590 
4591 /**
4592  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4593  * @dev: device
4594  * @iter: list_head ** of the current position
4595  *
4596  * Gets the next device from the dev's upper list, starting from iter
4597  * position. The caller must hold RCU read lock.
4598  */
4599 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4600 						 struct list_head **iter)
4601 {
4602 	struct netdev_adjacent *upper;
4603 
4604 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4605 
4606 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4607 
4608 	if (&upper->list == &dev->adj_list.upper)
4609 		return NULL;
4610 
4611 	*iter = &upper->list;
4612 
4613 	return upper->dev;
4614 }
4615 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4616 
4617 /**
4618  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4619  * @dev: device
4620  * @iter: list_head ** of the current position
4621  *
4622  * Gets the next device from the dev's upper list, starting from iter
4623  * position. The caller must hold RCU read lock.
4624  */
4625 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4626 						     struct list_head **iter)
4627 {
4628 	struct netdev_adjacent *upper;
4629 
4630 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4631 
4632 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4633 
4634 	if (&upper->list == &dev->all_adj_list.upper)
4635 		return NULL;
4636 
4637 	*iter = &upper->list;
4638 
4639 	return upper->dev;
4640 }
4641 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4642 
4643 /**
4644  * netdev_lower_get_next_private - Get the next ->private from the
4645  *				   lower neighbour list
4646  * @dev: device
4647  * @iter: list_head ** of the current position
4648  *
4649  * Gets the next netdev_adjacent->private from the dev's lower neighbour
4650  * list, starting from iter position. The caller must hold either hold the
4651  * RTNL lock or its own locking that guarantees that the neighbour lower
4652  * list will remain unchainged.
4653  */
4654 void *netdev_lower_get_next_private(struct net_device *dev,
4655 				    struct list_head **iter)
4656 {
4657 	struct netdev_adjacent *lower;
4658 
4659 	lower = list_entry(*iter, struct netdev_adjacent, list);
4660 
4661 	if (&lower->list == &dev->adj_list.lower)
4662 		return NULL;
4663 
4664 	*iter = lower->list.next;
4665 
4666 	return lower->private;
4667 }
4668 EXPORT_SYMBOL(netdev_lower_get_next_private);
4669 
4670 /**
4671  * netdev_lower_get_next_private_rcu - Get the next ->private from the
4672  *				       lower neighbour list, RCU
4673  *				       variant
4674  * @dev: device
4675  * @iter: list_head ** of the current position
4676  *
4677  * Gets the next netdev_adjacent->private from the dev's lower neighbour
4678  * list, starting from iter position. The caller must hold RCU read lock.
4679  */
4680 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4681 					struct list_head **iter)
4682 {
4683 	struct netdev_adjacent *lower;
4684 
4685 	WARN_ON_ONCE(!rcu_read_lock_held());
4686 
4687 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4688 
4689 	if (&lower->list == &dev->adj_list.lower)
4690 		return NULL;
4691 
4692 	*iter = &lower->list;
4693 
4694 	return lower->private;
4695 }
4696 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4697 
4698 /**
4699  * netdev_lower_get_next - Get the next device from the lower neighbour
4700  *                         list
4701  * @dev: device
4702  * @iter: list_head ** of the current position
4703  *
4704  * Gets the next netdev_adjacent from the dev's lower neighbour
4705  * list, starting from iter position. The caller must hold RTNL lock or
4706  * its own locking that guarantees that the neighbour lower
4707  * list will remain unchainged.
4708  */
4709 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4710 {
4711 	struct netdev_adjacent *lower;
4712 
4713 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4714 
4715 	if (&lower->list == &dev->adj_list.lower)
4716 		return NULL;
4717 
4718 	*iter = &lower->list;
4719 
4720 	return lower->dev;
4721 }
4722 EXPORT_SYMBOL(netdev_lower_get_next);
4723 
4724 /**
4725  * netdev_lower_get_first_private_rcu - Get the first ->private from the
4726  *				       lower neighbour list, RCU
4727  *				       variant
4728  * @dev: device
4729  *
4730  * Gets the first netdev_adjacent->private from the dev's lower neighbour
4731  * list. The caller must hold RCU read lock.
4732  */
4733 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4734 {
4735 	struct netdev_adjacent *lower;
4736 
4737 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
4738 			struct netdev_adjacent, list);
4739 	if (lower)
4740 		return lower->private;
4741 	return NULL;
4742 }
4743 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4744 
4745 /**
4746  * netdev_master_upper_dev_get_rcu - Get master upper device
4747  * @dev: device
4748  *
4749  * Find a master upper device and return pointer to it or NULL in case
4750  * it's not there. The caller must hold the RCU read lock.
4751  */
4752 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4753 {
4754 	struct netdev_adjacent *upper;
4755 
4756 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
4757 				       struct netdev_adjacent, list);
4758 	if (upper && likely(upper->master))
4759 		return upper->dev;
4760 	return NULL;
4761 }
4762 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4763 
4764 static int netdev_adjacent_sysfs_add(struct net_device *dev,
4765 			      struct net_device *adj_dev,
4766 			      struct list_head *dev_list)
4767 {
4768 	char linkname[IFNAMSIZ+7];
4769 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
4770 		"upper_%s" : "lower_%s", adj_dev->name);
4771 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4772 				 linkname);
4773 }
4774 static void netdev_adjacent_sysfs_del(struct net_device *dev,
4775 			       char *name,
4776 			       struct list_head *dev_list)
4777 {
4778 	char linkname[IFNAMSIZ+7];
4779 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
4780 		"upper_%s" : "lower_%s", name);
4781 	sysfs_remove_link(&(dev->dev.kobj), linkname);
4782 }
4783 
4784 #define netdev_adjacent_is_neigh_list(dev, dev_list) \
4785 		(dev_list == &dev->adj_list.upper || \
4786 		 dev_list == &dev->adj_list.lower)
4787 
4788 static int __netdev_adjacent_dev_insert(struct net_device *dev,
4789 					struct net_device *adj_dev,
4790 					struct list_head *dev_list,
4791 					void *private, bool master)
4792 {
4793 	struct netdev_adjacent *adj;
4794 	int ret;
4795 
4796 	adj = __netdev_find_adj(dev, adj_dev, dev_list);
4797 
4798 	if (adj) {
4799 		adj->ref_nr++;
4800 		return 0;
4801 	}
4802 
4803 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4804 	if (!adj)
4805 		return -ENOMEM;
4806 
4807 	adj->dev = adj_dev;
4808 	adj->master = master;
4809 	adj->ref_nr = 1;
4810 	adj->private = private;
4811 	dev_hold(adj_dev);
4812 
4813 	pr_debug("dev_hold for %s, because of link added from %s to %s\n",
4814 		 adj_dev->name, dev->name, adj_dev->name);
4815 
4816 	if (netdev_adjacent_is_neigh_list(dev, dev_list)) {
4817 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
4818 		if (ret)
4819 			goto free_adj;
4820 	}
4821 
4822 	/* Ensure that master link is always the first item in list. */
4823 	if (master) {
4824 		ret = sysfs_create_link(&(dev->dev.kobj),
4825 					&(adj_dev->dev.kobj), "master");
4826 		if (ret)
4827 			goto remove_symlinks;
4828 
4829 		list_add_rcu(&adj->list, dev_list);
4830 	} else {
4831 		list_add_tail_rcu(&adj->list, dev_list);
4832 	}
4833 
4834 	return 0;
4835 
4836 remove_symlinks:
4837 	if (netdev_adjacent_is_neigh_list(dev, dev_list))
4838 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4839 free_adj:
4840 	kfree(adj);
4841 	dev_put(adj_dev);
4842 
4843 	return ret;
4844 }
4845 
4846 static void __netdev_adjacent_dev_remove(struct net_device *dev,
4847 					 struct net_device *adj_dev,
4848 					 struct list_head *dev_list)
4849 {
4850 	struct netdev_adjacent *adj;
4851 
4852 	adj = __netdev_find_adj(dev, adj_dev, dev_list);
4853 
4854 	if (!adj) {
4855 		pr_err("tried to remove device %s from %s\n",
4856 		       dev->name, adj_dev->name);
4857 		BUG();
4858 	}
4859 
4860 	if (adj->ref_nr > 1) {
4861 		pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
4862 			 adj->ref_nr-1);
4863 		adj->ref_nr--;
4864 		return;
4865 	}
4866 
4867 	if (adj->master)
4868 		sysfs_remove_link(&(dev->dev.kobj), "master");
4869 
4870 	if (netdev_adjacent_is_neigh_list(dev, dev_list))
4871 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4872 
4873 	list_del_rcu(&adj->list);
4874 	pr_debug("dev_put for %s, because link removed from %s to %s\n",
4875 		 adj_dev->name, dev->name, adj_dev->name);
4876 	dev_put(adj_dev);
4877 	kfree_rcu(adj, rcu);
4878 }
4879 
4880 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
4881 					    struct net_device *upper_dev,
4882 					    struct list_head *up_list,
4883 					    struct list_head *down_list,
4884 					    void *private, bool master)
4885 {
4886 	int ret;
4887 
4888 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
4889 					   master);
4890 	if (ret)
4891 		return ret;
4892 
4893 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
4894 					   false);
4895 	if (ret) {
4896 		__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4897 		return ret;
4898 	}
4899 
4900 	return 0;
4901 }
4902 
4903 static int __netdev_adjacent_dev_link(struct net_device *dev,
4904 				      struct net_device *upper_dev)
4905 {
4906 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
4907 						&dev->all_adj_list.upper,
4908 						&upper_dev->all_adj_list.lower,
4909 						NULL, false);
4910 }
4911 
4912 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
4913 					       struct net_device *upper_dev,
4914 					       struct list_head *up_list,
4915 					       struct list_head *down_list)
4916 {
4917 	__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4918 	__netdev_adjacent_dev_remove(upper_dev, dev, down_list);
4919 }
4920 
4921 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
4922 					 struct net_device *upper_dev)
4923 {
4924 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4925 					   &dev->all_adj_list.upper,
4926 					   &upper_dev->all_adj_list.lower);
4927 }
4928 
4929 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
4930 						struct net_device *upper_dev,
4931 						void *private, bool master)
4932 {
4933 	int ret = __netdev_adjacent_dev_link(dev, upper_dev);
4934 
4935 	if (ret)
4936 		return ret;
4937 
4938 	ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
4939 					       &dev->adj_list.upper,
4940 					       &upper_dev->adj_list.lower,
4941 					       private, master);
4942 	if (ret) {
4943 		__netdev_adjacent_dev_unlink(dev, upper_dev);
4944 		return ret;
4945 	}
4946 
4947 	return 0;
4948 }
4949 
4950 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
4951 						   struct net_device *upper_dev)
4952 {
4953 	__netdev_adjacent_dev_unlink(dev, upper_dev);
4954 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4955 					   &dev->adj_list.upper,
4956 					   &upper_dev->adj_list.lower);
4957 }
4958 
4959 static int __netdev_upper_dev_link(struct net_device *dev,
4960 				   struct net_device *upper_dev, bool master,
4961 				   void *private)
4962 {
4963 	struct netdev_adjacent *i, *j, *to_i, *to_j;
4964 	int ret = 0;
4965 
4966 	ASSERT_RTNL();
4967 
4968 	if (dev == upper_dev)
4969 		return -EBUSY;
4970 
4971 	/* To prevent loops, check if dev is not upper device to upper_dev. */
4972 	if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
4973 		return -EBUSY;
4974 
4975 	if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
4976 		return -EEXIST;
4977 
4978 	if (master && netdev_master_upper_dev_get(dev))
4979 		return -EBUSY;
4980 
4981 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
4982 						   master);
4983 	if (ret)
4984 		return ret;
4985 
4986 	/* Now that we linked these devs, make all the upper_dev's
4987 	 * all_adj_list.upper visible to every dev's all_adj_list.lower an
4988 	 * versa, and don't forget the devices itself. All of these
4989 	 * links are non-neighbours.
4990 	 */
4991 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4992 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
4993 			pr_debug("Interlinking %s with %s, non-neighbour\n",
4994 				 i->dev->name, j->dev->name);
4995 			ret = __netdev_adjacent_dev_link(i->dev, j->dev);
4996 			if (ret)
4997 				goto rollback_mesh;
4998 		}
4999 	}
5000 
5001 	/* add dev to every upper_dev's upper device */
5002 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5003 		pr_debug("linking %s's upper device %s with %s\n",
5004 			 upper_dev->name, i->dev->name, dev->name);
5005 		ret = __netdev_adjacent_dev_link(dev, i->dev);
5006 		if (ret)
5007 			goto rollback_upper_mesh;
5008 	}
5009 
5010 	/* add upper_dev to every dev's lower device */
5011 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5012 		pr_debug("linking %s's lower device %s with %s\n", dev->name,
5013 			 i->dev->name, upper_dev->name);
5014 		ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5015 		if (ret)
5016 			goto rollback_lower_mesh;
5017 	}
5018 
5019 	call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5020 	return 0;
5021 
5022 rollback_lower_mesh:
5023 	to_i = i;
5024 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5025 		if (i == to_i)
5026 			break;
5027 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
5028 	}
5029 
5030 	i = NULL;
5031 
5032 rollback_upper_mesh:
5033 	to_i = i;
5034 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5035 		if (i == to_i)
5036 			break;
5037 		__netdev_adjacent_dev_unlink(dev, i->dev);
5038 	}
5039 
5040 	i = j = NULL;
5041 
5042 rollback_mesh:
5043 	to_i = i;
5044 	to_j = j;
5045 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5046 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5047 			if (i == to_i && j == to_j)
5048 				break;
5049 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5050 		}
5051 		if (i == to_i)
5052 			break;
5053 	}
5054 
5055 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5056 
5057 	return ret;
5058 }
5059 
5060 /**
5061  * netdev_upper_dev_link - Add a link to the upper device
5062  * @dev: device
5063  * @upper_dev: new upper device
5064  *
5065  * Adds a link to device which is upper to this one. The caller must hold
5066  * the RTNL lock. On a failure a negative errno code is returned.
5067  * On success the reference counts are adjusted and the function
5068  * returns zero.
5069  */
5070 int netdev_upper_dev_link(struct net_device *dev,
5071 			  struct net_device *upper_dev)
5072 {
5073 	return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5074 }
5075 EXPORT_SYMBOL(netdev_upper_dev_link);
5076 
5077 /**
5078  * netdev_master_upper_dev_link - Add a master link to the upper device
5079  * @dev: device
5080  * @upper_dev: new upper device
5081  *
5082  * Adds a link to device which is upper to this one. In this case, only
5083  * one master upper device can be linked, although other non-master devices
5084  * might be linked as well. The caller must hold the RTNL lock.
5085  * On a failure a negative errno code is returned. On success the reference
5086  * counts are adjusted and the function returns zero.
5087  */
5088 int netdev_master_upper_dev_link(struct net_device *dev,
5089 				 struct net_device *upper_dev)
5090 {
5091 	return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5092 }
5093 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5094 
5095 int netdev_master_upper_dev_link_private(struct net_device *dev,
5096 					 struct net_device *upper_dev,
5097 					 void *private)
5098 {
5099 	return __netdev_upper_dev_link(dev, upper_dev, true, private);
5100 }
5101 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5102 
5103 /**
5104  * netdev_upper_dev_unlink - Removes a link to upper device
5105  * @dev: device
5106  * @upper_dev: new upper device
5107  *
5108  * Removes a link to device which is upper to this one. The caller must hold
5109  * the RTNL lock.
5110  */
5111 void netdev_upper_dev_unlink(struct net_device *dev,
5112 			     struct net_device *upper_dev)
5113 {
5114 	struct netdev_adjacent *i, *j;
5115 	ASSERT_RTNL();
5116 
5117 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5118 
5119 	/* Here is the tricky part. We must remove all dev's lower
5120 	 * devices from all upper_dev's upper devices and vice
5121 	 * versa, to maintain the graph relationship.
5122 	 */
5123 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5124 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5125 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5126 
5127 	/* remove also the devices itself from lower/upper device
5128 	 * list
5129 	 */
5130 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5131 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
5132 
5133 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5134 		__netdev_adjacent_dev_unlink(dev, i->dev);
5135 
5136 	call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5137 }
5138 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5139 
5140 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5141 {
5142 	struct netdev_adjacent *iter;
5143 
5144 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5145 		netdev_adjacent_sysfs_del(iter->dev, oldname,
5146 					  &iter->dev->adj_list.lower);
5147 		netdev_adjacent_sysfs_add(iter->dev, dev,
5148 					  &iter->dev->adj_list.lower);
5149 	}
5150 
5151 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5152 		netdev_adjacent_sysfs_del(iter->dev, oldname,
5153 					  &iter->dev->adj_list.upper);
5154 		netdev_adjacent_sysfs_add(iter->dev, dev,
5155 					  &iter->dev->adj_list.upper);
5156 	}
5157 }
5158 
5159 void *netdev_lower_dev_get_private(struct net_device *dev,
5160 				   struct net_device *lower_dev)
5161 {
5162 	struct netdev_adjacent *lower;
5163 
5164 	if (!lower_dev)
5165 		return NULL;
5166 	lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5167 	if (!lower)
5168 		return NULL;
5169 
5170 	return lower->private;
5171 }
5172 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5173 
5174 
5175 int dev_get_nest_level(struct net_device *dev,
5176 		       bool (*type_check)(struct net_device *dev))
5177 {
5178 	struct net_device *lower = NULL;
5179 	struct list_head *iter;
5180 	int max_nest = -1;
5181 	int nest;
5182 
5183 	ASSERT_RTNL();
5184 
5185 	netdev_for_each_lower_dev(dev, lower, iter) {
5186 		nest = dev_get_nest_level(lower, type_check);
5187 		if (max_nest < nest)
5188 			max_nest = nest;
5189 	}
5190 
5191 	if (type_check(dev))
5192 		max_nest++;
5193 
5194 	return max_nest;
5195 }
5196 EXPORT_SYMBOL(dev_get_nest_level);
5197 
5198 static void dev_change_rx_flags(struct net_device *dev, int flags)
5199 {
5200 	const struct net_device_ops *ops = dev->netdev_ops;
5201 
5202 	if (ops->ndo_change_rx_flags)
5203 		ops->ndo_change_rx_flags(dev, flags);
5204 }
5205 
5206 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5207 {
5208 	unsigned int old_flags = dev->flags;
5209 	kuid_t uid;
5210 	kgid_t gid;
5211 
5212 	ASSERT_RTNL();
5213 
5214 	dev->flags |= IFF_PROMISC;
5215 	dev->promiscuity += inc;
5216 	if (dev->promiscuity == 0) {
5217 		/*
5218 		 * Avoid overflow.
5219 		 * If inc causes overflow, untouch promisc and return error.
5220 		 */
5221 		if (inc < 0)
5222 			dev->flags &= ~IFF_PROMISC;
5223 		else {
5224 			dev->promiscuity -= inc;
5225 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5226 				dev->name);
5227 			return -EOVERFLOW;
5228 		}
5229 	}
5230 	if (dev->flags != old_flags) {
5231 		pr_info("device %s %s promiscuous mode\n",
5232 			dev->name,
5233 			dev->flags & IFF_PROMISC ? "entered" : "left");
5234 		if (audit_enabled) {
5235 			current_uid_gid(&uid, &gid);
5236 			audit_log(current->audit_context, GFP_ATOMIC,
5237 				AUDIT_ANOM_PROMISCUOUS,
5238 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5239 				dev->name, (dev->flags & IFF_PROMISC),
5240 				(old_flags & IFF_PROMISC),
5241 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
5242 				from_kuid(&init_user_ns, uid),
5243 				from_kgid(&init_user_ns, gid),
5244 				audit_get_sessionid(current));
5245 		}
5246 
5247 		dev_change_rx_flags(dev, IFF_PROMISC);
5248 	}
5249 	if (notify)
5250 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
5251 	return 0;
5252 }
5253 
5254 /**
5255  *	dev_set_promiscuity	- update promiscuity count on a device
5256  *	@dev: device
5257  *	@inc: modifier
5258  *
5259  *	Add or remove promiscuity from a device. While the count in the device
5260  *	remains above zero the interface remains promiscuous. Once it hits zero
5261  *	the device reverts back to normal filtering operation. A negative inc
5262  *	value is used to drop promiscuity on the device.
5263  *	Return 0 if successful or a negative errno code on error.
5264  */
5265 int dev_set_promiscuity(struct net_device *dev, int inc)
5266 {
5267 	unsigned int old_flags = dev->flags;
5268 	int err;
5269 
5270 	err = __dev_set_promiscuity(dev, inc, true);
5271 	if (err < 0)
5272 		return err;
5273 	if (dev->flags != old_flags)
5274 		dev_set_rx_mode(dev);
5275 	return err;
5276 }
5277 EXPORT_SYMBOL(dev_set_promiscuity);
5278 
5279 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5280 {
5281 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5282 
5283 	ASSERT_RTNL();
5284 
5285 	dev->flags |= IFF_ALLMULTI;
5286 	dev->allmulti += inc;
5287 	if (dev->allmulti == 0) {
5288 		/*
5289 		 * Avoid overflow.
5290 		 * If inc causes overflow, untouch allmulti and return error.
5291 		 */
5292 		if (inc < 0)
5293 			dev->flags &= ~IFF_ALLMULTI;
5294 		else {
5295 			dev->allmulti -= inc;
5296 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5297 				dev->name);
5298 			return -EOVERFLOW;
5299 		}
5300 	}
5301 	if (dev->flags ^ old_flags) {
5302 		dev_change_rx_flags(dev, IFF_ALLMULTI);
5303 		dev_set_rx_mode(dev);
5304 		if (notify)
5305 			__dev_notify_flags(dev, old_flags,
5306 					   dev->gflags ^ old_gflags);
5307 	}
5308 	return 0;
5309 }
5310 
5311 /**
5312  *	dev_set_allmulti	- update allmulti count on a device
5313  *	@dev: device
5314  *	@inc: modifier
5315  *
5316  *	Add or remove reception of all multicast frames to a device. While the
5317  *	count in the device remains above zero the interface remains listening
5318  *	to all interfaces. Once it hits zero the device reverts back to normal
5319  *	filtering operation. A negative @inc value is used to drop the counter
5320  *	when releasing a resource needing all multicasts.
5321  *	Return 0 if successful or a negative errno code on error.
5322  */
5323 
5324 int dev_set_allmulti(struct net_device *dev, int inc)
5325 {
5326 	return __dev_set_allmulti(dev, inc, true);
5327 }
5328 EXPORT_SYMBOL(dev_set_allmulti);
5329 
5330 /*
5331  *	Upload unicast and multicast address lists to device and
5332  *	configure RX filtering. When the device doesn't support unicast
5333  *	filtering it is put in promiscuous mode while unicast addresses
5334  *	are present.
5335  */
5336 void __dev_set_rx_mode(struct net_device *dev)
5337 {
5338 	const struct net_device_ops *ops = dev->netdev_ops;
5339 
5340 	/* dev_open will call this function so the list will stay sane. */
5341 	if (!(dev->flags&IFF_UP))
5342 		return;
5343 
5344 	if (!netif_device_present(dev))
5345 		return;
5346 
5347 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5348 		/* Unicast addresses changes may only happen under the rtnl,
5349 		 * therefore calling __dev_set_promiscuity here is safe.
5350 		 */
5351 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5352 			__dev_set_promiscuity(dev, 1, false);
5353 			dev->uc_promisc = true;
5354 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5355 			__dev_set_promiscuity(dev, -1, false);
5356 			dev->uc_promisc = false;
5357 		}
5358 	}
5359 
5360 	if (ops->ndo_set_rx_mode)
5361 		ops->ndo_set_rx_mode(dev);
5362 }
5363 
5364 void dev_set_rx_mode(struct net_device *dev)
5365 {
5366 	netif_addr_lock_bh(dev);
5367 	__dev_set_rx_mode(dev);
5368 	netif_addr_unlock_bh(dev);
5369 }
5370 
5371 /**
5372  *	dev_get_flags - get flags reported to userspace
5373  *	@dev: device
5374  *
5375  *	Get the combination of flag bits exported through APIs to userspace.
5376  */
5377 unsigned int dev_get_flags(const struct net_device *dev)
5378 {
5379 	unsigned int flags;
5380 
5381 	flags = (dev->flags & ~(IFF_PROMISC |
5382 				IFF_ALLMULTI |
5383 				IFF_RUNNING |
5384 				IFF_LOWER_UP |
5385 				IFF_DORMANT)) |
5386 		(dev->gflags & (IFF_PROMISC |
5387 				IFF_ALLMULTI));
5388 
5389 	if (netif_running(dev)) {
5390 		if (netif_oper_up(dev))
5391 			flags |= IFF_RUNNING;
5392 		if (netif_carrier_ok(dev))
5393 			flags |= IFF_LOWER_UP;
5394 		if (netif_dormant(dev))
5395 			flags |= IFF_DORMANT;
5396 	}
5397 
5398 	return flags;
5399 }
5400 EXPORT_SYMBOL(dev_get_flags);
5401 
5402 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5403 {
5404 	unsigned int old_flags = dev->flags;
5405 	int ret;
5406 
5407 	ASSERT_RTNL();
5408 
5409 	/*
5410 	 *	Set the flags on our device.
5411 	 */
5412 
5413 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5414 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5415 			       IFF_AUTOMEDIA)) |
5416 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5417 				    IFF_ALLMULTI));
5418 
5419 	/*
5420 	 *	Load in the correct multicast list now the flags have changed.
5421 	 */
5422 
5423 	if ((old_flags ^ flags) & IFF_MULTICAST)
5424 		dev_change_rx_flags(dev, IFF_MULTICAST);
5425 
5426 	dev_set_rx_mode(dev);
5427 
5428 	/*
5429 	 *	Have we downed the interface. We handle IFF_UP ourselves
5430 	 *	according to user attempts to set it, rather than blindly
5431 	 *	setting it.
5432 	 */
5433 
5434 	ret = 0;
5435 	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
5436 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5437 
5438 		if (!ret)
5439 			dev_set_rx_mode(dev);
5440 	}
5441 
5442 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
5443 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
5444 		unsigned int old_flags = dev->flags;
5445 
5446 		dev->gflags ^= IFF_PROMISC;
5447 
5448 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
5449 			if (dev->flags != old_flags)
5450 				dev_set_rx_mode(dev);
5451 	}
5452 
5453 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5454 	   is important. Some (broken) drivers set IFF_PROMISC, when
5455 	   IFF_ALLMULTI is requested not asking us and not reporting.
5456 	 */
5457 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5458 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5459 
5460 		dev->gflags ^= IFF_ALLMULTI;
5461 		__dev_set_allmulti(dev, inc, false);
5462 	}
5463 
5464 	return ret;
5465 }
5466 
5467 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5468 			unsigned int gchanges)
5469 {
5470 	unsigned int changes = dev->flags ^ old_flags;
5471 
5472 	if (gchanges)
5473 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5474 
5475 	if (changes & IFF_UP) {
5476 		if (dev->flags & IFF_UP)
5477 			call_netdevice_notifiers(NETDEV_UP, dev);
5478 		else
5479 			call_netdevice_notifiers(NETDEV_DOWN, dev);
5480 	}
5481 
5482 	if (dev->flags & IFF_UP &&
5483 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5484 		struct netdev_notifier_change_info change_info;
5485 
5486 		change_info.flags_changed = changes;
5487 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5488 					      &change_info.info);
5489 	}
5490 }
5491 
5492 /**
5493  *	dev_change_flags - change device settings
5494  *	@dev: device
5495  *	@flags: device state flags
5496  *
5497  *	Change settings on device based state flags. The flags are
5498  *	in the userspace exported format.
5499  */
5500 int dev_change_flags(struct net_device *dev, unsigned int flags)
5501 {
5502 	int ret;
5503 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5504 
5505 	ret = __dev_change_flags(dev, flags);
5506 	if (ret < 0)
5507 		return ret;
5508 
5509 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5510 	__dev_notify_flags(dev, old_flags, changes);
5511 	return ret;
5512 }
5513 EXPORT_SYMBOL(dev_change_flags);
5514 
5515 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5516 {
5517 	const struct net_device_ops *ops = dev->netdev_ops;
5518 
5519 	if (ops->ndo_change_mtu)
5520 		return ops->ndo_change_mtu(dev, new_mtu);
5521 
5522 	dev->mtu = new_mtu;
5523 	return 0;
5524 }
5525 
5526 /**
5527  *	dev_set_mtu - Change maximum transfer unit
5528  *	@dev: device
5529  *	@new_mtu: new transfer unit
5530  *
5531  *	Change the maximum transfer size of the network device.
5532  */
5533 int dev_set_mtu(struct net_device *dev, int new_mtu)
5534 {
5535 	int err, orig_mtu;
5536 
5537 	if (new_mtu == dev->mtu)
5538 		return 0;
5539 
5540 	/*	MTU must be positive.	 */
5541 	if (new_mtu < 0)
5542 		return -EINVAL;
5543 
5544 	if (!netif_device_present(dev))
5545 		return -ENODEV;
5546 
5547 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5548 	err = notifier_to_errno(err);
5549 	if (err)
5550 		return err;
5551 
5552 	orig_mtu = dev->mtu;
5553 	err = __dev_set_mtu(dev, new_mtu);
5554 
5555 	if (!err) {
5556 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5557 		err = notifier_to_errno(err);
5558 		if (err) {
5559 			/* setting mtu back and notifying everyone again,
5560 			 * so that they have a chance to revert changes.
5561 			 */
5562 			__dev_set_mtu(dev, orig_mtu);
5563 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5564 		}
5565 	}
5566 	return err;
5567 }
5568 EXPORT_SYMBOL(dev_set_mtu);
5569 
5570 /**
5571  *	dev_set_group - Change group this device belongs to
5572  *	@dev: device
5573  *	@new_group: group this device should belong to
5574  */
5575 void dev_set_group(struct net_device *dev, int new_group)
5576 {
5577 	dev->group = new_group;
5578 }
5579 EXPORT_SYMBOL(dev_set_group);
5580 
5581 /**
5582  *	dev_set_mac_address - Change Media Access Control Address
5583  *	@dev: device
5584  *	@sa: new address
5585  *
5586  *	Change the hardware (MAC) address of the device
5587  */
5588 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5589 {
5590 	const struct net_device_ops *ops = dev->netdev_ops;
5591 	int err;
5592 
5593 	if (!ops->ndo_set_mac_address)
5594 		return -EOPNOTSUPP;
5595 	if (sa->sa_family != dev->type)
5596 		return -EINVAL;
5597 	if (!netif_device_present(dev))
5598 		return -ENODEV;
5599 	err = ops->ndo_set_mac_address(dev, sa);
5600 	if (err)
5601 		return err;
5602 	dev->addr_assign_type = NET_ADDR_SET;
5603 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5604 	add_device_randomness(dev->dev_addr, dev->addr_len);
5605 	return 0;
5606 }
5607 EXPORT_SYMBOL(dev_set_mac_address);
5608 
5609 /**
5610  *	dev_change_carrier - Change device carrier
5611  *	@dev: device
5612  *	@new_carrier: new value
5613  *
5614  *	Change device carrier
5615  */
5616 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5617 {
5618 	const struct net_device_ops *ops = dev->netdev_ops;
5619 
5620 	if (!ops->ndo_change_carrier)
5621 		return -EOPNOTSUPP;
5622 	if (!netif_device_present(dev))
5623 		return -ENODEV;
5624 	return ops->ndo_change_carrier(dev, new_carrier);
5625 }
5626 EXPORT_SYMBOL(dev_change_carrier);
5627 
5628 /**
5629  *	dev_get_phys_port_id - Get device physical port ID
5630  *	@dev: device
5631  *	@ppid: port ID
5632  *
5633  *	Get device physical port ID
5634  */
5635 int dev_get_phys_port_id(struct net_device *dev,
5636 			 struct netdev_phys_port_id *ppid)
5637 {
5638 	const struct net_device_ops *ops = dev->netdev_ops;
5639 
5640 	if (!ops->ndo_get_phys_port_id)
5641 		return -EOPNOTSUPP;
5642 	return ops->ndo_get_phys_port_id(dev, ppid);
5643 }
5644 EXPORT_SYMBOL(dev_get_phys_port_id);
5645 
5646 /**
5647  *	dev_new_index	-	allocate an ifindex
5648  *	@net: the applicable net namespace
5649  *
5650  *	Returns a suitable unique value for a new device interface
5651  *	number.  The caller must hold the rtnl semaphore or the
5652  *	dev_base_lock to be sure it remains unique.
5653  */
5654 static int dev_new_index(struct net *net)
5655 {
5656 	int ifindex = net->ifindex;
5657 	for (;;) {
5658 		if (++ifindex <= 0)
5659 			ifindex = 1;
5660 		if (!__dev_get_by_index(net, ifindex))
5661 			return net->ifindex = ifindex;
5662 	}
5663 }
5664 
5665 /* Delayed registration/unregisteration */
5666 static LIST_HEAD(net_todo_list);
5667 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5668 
5669 static void net_set_todo(struct net_device *dev)
5670 {
5671 	list_add_tail(&dev->todo_list, &net_todo_list);
5672 	dev_net(dev)->dev_unreg_count++;
5673 }
5674 
5675 static void rollback_registered_many(struct list_head *head)
5676 {
5677 	struct net_device *dev, *tmp;
5678 	LIST_HEAD(close_head);
5679 
5680 	BUG_ON(dev_boot_phase);
5681 	ASSERT_RTNL();
5682 
5683 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5684 		/* Some devices call without registering
5685 		 * for initialization unwind. Remove those
5686 		 * devices and proceed with the remaining.
5687 		 */
5688 		if (dev->reg_state == NETREG_UNINITIALIZED) {
5689 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5690 				 dev->name, dev);
5691 
5692 			WARN_ON(1);
5693 			list_del(&dev->unreg_list);
5694 			continue;
5695 		}
5696 		dev->dismantle = true;
5697 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
5698 	}
5699 
5700 	/* If device is running, close it first. */
5701 	list_for_each_entry(dev, head, unreg_list)
5702 		list_add_tail(&dev->close_list, &close_head);
5703 	dev_close_many(&close_head);
5704 
5705 	list_for_each_entry(dev, head, unreg_list) {
5706 		/* And unlink it from device chain. */
5707 		unlist_netdevice(dev);
5708 
5709 		dev->reg_state = NETREG_UNREGISTERING;
5710 	}
5711 
5712 	synchronize_net();
5713 
5714 	list_for_each_entry(dev, head, unreg_list) {
5715 		/* Shutdown queueing discipline. */
5716 		dev_shutdown(dev);
5717 
5718 
5719 		/* Notify protocols, that we are about to destroy
5720 		   this device. They should clean all the things.
5721 		*/
5722 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5723 
5724 		/*
5725 		 *	Flush the unicast and multicast chains
5726 		 */
5727 		dev_uc_flush(dev);
5728 		dev_mc_flush(dev);
5729 
5730 		if (dev->netdev_ops->ndo_uninit)
5731 			dev->netdev_ops->ndo_uninit(dev);
5732 
5733 		if (!dev->rtnl_link_ops ||
5734 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5735 			rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
5736 
5737 		/* Notifier chain MUST detach us all upper devices. */
5738 		WARN_ON(netdev_has_any_upper_dev(dev));
5739 
5740 		/* Remove entries from kobject tree */
5741 		netdev_unregister_kobject(dev);
5742 #ifdef CONFIG_XPS
5743 		/* Remove XPS queueing entries */
5744 		netif_reset_xps_queues_gt(dev, 0);
5745 #endif
5746 	}
5747 
5748 	synchronize_net();
5749 
5750 	list_for_each_entry(dev, head, unreg_list)
5751 		dev_put(dev);
5752 }
5753 
5754 static void rollback_registered(struct net_device *dev)
5755 {
5756 	LIST_HEAD(single);
5757 
5758 	list_add(&dev->unreg_list, &single);
5759 	rollback_registered_many(&single);
5760 	list_del(&single);
5761 }
5762 
5763 static netdev_features_t netdev_fix_features(struct net_device *dev,
5764 	netdev_features_t features)
5765 {
5766 	/* Fix illegal checksum combinations */
5767 	if ((features & NETIF_F_HW_CSUM) &&
5768 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5769 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5770 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5771 	}
5772 
5773 	/* TSO requires that SG is present as well. */
5774 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5775 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5776 		features &= ~NETIF_F_ALL_TSO;
5777 	}
5778 
5779 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5780 					!(features & NETIF_F_IP_CSUM)) {
5781 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5782 		features &= ~NETIF_F_TSO;
5783 		features &= ~NETIF_F_TSO_ECN;
5784 	}
5785 
5786 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
5787 					 !(features & NETIF_F_IPV6_CSUM)) {
5788 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
5789 		features &= ~NETIF_F_TSO6;
5790 	}
5791 
5792 	/* TSO ECN requires that TSO is present as well. */
5793 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5794 		features &= ~NETIF_F_TSO_ECN;
5795 
5796 	/* Software GSO depends on SG. */
5797 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5798 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5799 		features &= ~NETIF_F_GSO;
5800 	}
5801 
5802 	/* UFO needs SG and checksumming */
5803 	if (features & NETIF_F_UFO) {
5804 		/* maybe split UFO into V4 and V6? */
5805 		if (!((features & NETIF_F_GEN_CSUM) ||
5806 		    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5807 			    == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5808 			netdev_dbg(dev,
5809 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
5810 			features &= ~NETIF_F_UFO;
5811 		}
5812 
5813 		if (!(features & NETIF_F_SG)) {
5814 			netdev_dbg(dev,
5815 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5816 			features &= ~NETIF_F_UFO;
5817 		}
5818 	}
5819 
5820 #ifdef CONFIG_NET_RX_BUSY_POLL
5821 	if (dev->netdev_ops->ndo_busy_poll)
5822 		features |= NETIF_F_BUSY_POLL;
5823 	else
5824 #endif
5825 		features &= ~NETIF_F_BUSY_POLL;
5826 
5827 	return features;
5828 }
5829 
5830 int __netdev_update_features(struct net_device *dev)
5831 {
5832 	netdev_features_t features;
5833 	int err = 0;
5834 
5835 	ASSERT_RTNL();
5836 
5837 	features = netdev_get_wanted_features(dev);
5838 
5839 	if (dev->netdev_ops->ndo_fix_features)
5840 		features = dev->netdev_ops->ndo_fix_features(dev, features);
5841 
5842 	/* driver might be less strict about feature dependencies */
5843 	features = netdev_fix_features(dev, features);
5844 
5845 	if (dev->features == features)
5846 		return 0;
5847 
5848 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5849 		&dev->features, &features);
5850 
5851 	if (dev->netdev_ops->ndo_set_features)
5852 		err = dev->netdev_ops->ndo_set_features(dev, features);
5853 
5854 	if (unlikely(err < 0)) {
5855 		netdev_err(dev,
5856 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
5857 			err, &features, &dev->features);
5858 		return -1;
5859 	}
5860 
5861 	if (!err)
5862 		dev->features = features;
5863 
5864 	return 1;
5865 }
5866 
5867 /**
5868  *	netdev_update_features - recalculate device features
5869  *	@dev: the device to check
5870  *
5871  *	Recalculate dev->features set and send notifications if it
5872  *	has changed. Should be called after driver or hardware dependent
5873  *	conditions might have changed that influence the features.
5874  */
5875 void netdev_update_features(struct net_device *dev)
5876 {
5877 	if (__netdev_update_features(dev))
5878 		netdev_features_change(dev);
5879 }
5880 EXPORT_SYMBOL(netdev_update_features);
5881 
5882 /**
5883  *	netdev_change_features - recalculate device features
5884  *	@dev: the device to check
5885  *
5886  *	Recalculate dev->features set and send notifications even
5887  *	if they have not changed. Should be called instead of
5888  *	netdev_update_features() if also dev->vlan_features might
5889  *	have changed to allow the changes to be propagated to stacked
5890  *	VLAN devices.
5891  */
5892 void netdev_change_features(struct net_device *dev)
5893 {
5894 	__netdev_update_features(dev);
5895 	netdev_features_change(dev);
5896 }
5897 EXPORT_SYMBOL(netdev_change_features);
5898 
5899 /**
5900  *	netif_stacked_transfer_operstate -	transfer operstate
5901  *	@rootdev: the root or lower level device to transfer state from
5902  *	@dev: the device to transfer operstate to
5903  *
5904  *	Transfer operational state from root to device. This is normally
5905  *	called when a stacking relationship exists between the root
5906  *	device and the device(a leaf device).
5907  */
5908 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5909 					struct net_device *dev)
5910 {
5911 	if (rootdev->operstate == IF_OPER_DORMANT)
5912 		netif_dormant_on(dev);
5913 	else
5914 		netif_dormant_off(dev);
5915 
5916 	if (netif_carrier_ok(rootdev)) {
5917 		if (!netif_carrier_ok(dev))
5918 			netif_carrier_on(dev);
5919 	} else {
5920 		if (netif_carrier_ok(dev))
5921 			netif_carrier_off(dev);
5922 	}
5923 }
5924 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5925 
5926 #ifdef CONFIG_SYSFS
5927 static int netif_alloc_rx_queues(struct net_device *dev)
5928 {
5929 	unsigned int i, count = dev->num_rx_queues;
5930 	struct netdev_rx_queue *rx;
5931 
5932 	BUG_ON(count < 1);
5933 
5934 	rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5935 	if (!rx)
5936 		return -ENOMEM;
5937 
5938 	dev->_rx = rx;
5939 
5940 	for (i = 0; i < count; i++)
5941 		rx[i].dev = dev;
5942 	return 0;
5943 }
5944 #endif
5945 
5946 static void netdev_init_one_queue(struct net_device *dev,
5947 				  struct netdev_queue *queue, void *_unused)
5948 {
5949 	/* Initialize queue lock */
5950 	spin_lock_init(&queue->_xmit_lock);
5951 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5952 	queue->xmit_lock_owner = -1;
5953 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5954 	queue->dev = dev;
5955 #ifdef CONFIG_BQL
5956 	dql_init(&queue->dql, HZ);
5957 #endif
5958 }
5959 
5960 static void netif_free_tx_queues(struct net_device *dev)
5961 {
5962 	kvfree(dev->_tx);
5963 }
5964 
5965 static int netif_alloc_netdev_queues(struct net_device *dev)
5966 {
5967 	unsigned int count = dev->num_tx_queues;
5968 	struct netdev_queue *tx;
5969 	size_t sz = count * sizeof(*tx);
5970 
5971 	BUG_ON(count < 1 || count > 0xffff);
5972 
5973 	tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
5974 	if (!tx) {
5975 		tx = vzalloc(sz);
5976 		if (!tx)
5977 			return -ENOMEM;
5978 	}
5979 	dev->_tx = tx;
5980 
5981 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5982 	spin_lock_init(&dev->tx_global_lock);
5983 
5984 	return 0;
5985 }
5986 
5987 /**
5988  *	register_netdevice	- register a network device
5989  *	@dev: device to register
5990  *
5991  *	Take a completed network device structure and add it to the kernel
5992  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5993  *	chain. 0 is returned on success. A negative errno code is returned
5994  *	on a failure to set up the device, or if the name is a duplicate.
5995  *
5996  *	Callers must hold the rtnl semaphore. You may want
5997  *	register_netdev() instead of this.
5998  *
5999  *	BUGS:
6000  *	The locking appears insufficient to guarantee two parallel registers
6001  *	will not get the same name.
6002  */
6003 
6004 int register_netdevice(struct net_device *dev)
6005 {
6006 	int ret;
6007 	struct net *net = dev_net(dev);
6008 
6009 	BUG_ON(dev_boot_phase);
6010 	ASSERT_RTNL();
6011 
6012 	might_sleep();
6013 
6014 	/* When net_device's are persistent, this will be fatal. */
6015 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6016 	BUG_ON(!net);
6017 
6018 	spin_lock_init(&dev->addr_list_lock);
6019 	netdev_set_addr_lockdep_class(dev);
6020 
6021 	dev->iflink = -1;
6022 
6023 	ret = dev_get_valid_name(net, dev, dev->name);
6024 	if (ret < 0)
6025 		goto out;
6026 
6027 	/* Init, if this function is available */
6028 	if (dev->netdev_ops->ndo_init) {
6029 		ret = dev->netdev_ops->ndo_init(dev);
6030 		if (ret) {
6031 			if (ret > 0)
6032 				ret = -EIO;
6033 			goto out;
6034 		}
6035 	}
6036 
6037 	if (((dev->hw_features | dev->features) &
6038 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
6039 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6040 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6041 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6042 		ret = -EINVAL;
6043 		goto err_uninit;
6044 	}
6045 
6046 	ret = -EBUSY;
6047 	if (!dev->ifindex)
6048 		dev->ifindex = dev_new_index(net);
6049 	else if (__dev_get_by_index(net, dev->ifindex))
6050 		goto err_uninit;
6051 
6052 	if (dev->iflink == -1)
6053 		dev->iflink = dev->ifindex;
6054 
6055 	/* Transfer changeable features to wanted_features and enable
6056 	 * software offloads (GSO and GRO).
6057 	 */
6058 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
6059 	dev->features |= NETIF_F_SOFT_FEATURES;
6060 	dev->wanted_features = dev->features & dev->hw_features;
6061 
6062 	if (!(dev->flags & IFF_LOOPBACK)) {
6063 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
6064 	}
6065 
6066 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6067 	 */
6068 	dev->vlan_features |= NETIF_F_HIGHDMA;
6069 
6070 	/* Make NETIF_F_SG inheritable to tunnel devices.
6071 	 */
6072 	dev->hw_enc_features |= NETIF_F_SG;
6073 
6074 	/* Make NETIF_F_SG inheritable to MPLS.
6075 	 */
6076 	dev->mpls_features |= NETIF_F_SG;
6077 
6078 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6079 	ret = notifier_to_errno(ret);
6080 	if (ret)
6081 		goto err_uninit;
6082 
6083 	ret = netdev_register_kobject(dev);
6084 	if (ret)
6085 		goto err_uninit;
6086 	dev->reg_state = NETREG_REGISTERED;
6087 
6088 	__netdev_update_features(dev);
6089 
6090 	/*
6091 	 *	Default initial state at registry is that the
6092 	 *	device is present.
6093 	 */
6094 
6095 	set_bit(__LINK_STATE_PRESENT, &dev->state);
6096 
6097 	linkwatch_init_dev(dev);
6098 
6099 	dev_init_scheduler(dev);
6100 	dev_hold(dev);
6101 	list_netdevice(dev);
6102 	add_device_randomness(dev->dev_addr, dev->addr_len);
6103 
6104 	/* If the device has permanent device address, driver should
6105 	 * set dev_addr and also addr_assign_type should be set to
6106 	 * NET_ADDR_PERM (default value).
6107 	 */
6108 	if (dev->addr_assign_type == NET_ADDR_PERM)
6109 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6110 
6111 	/* Notify protocols, that a new device appeared. */
6112 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6113 	ret = notifier_to_errno(ret);
6114 	if (ret) {
6115 		rollback_registered(dev);
6116 		dev->reg_state = NETREG_UNREGISTERED;
6117 	}
6118 	/*
6119 	 *	Prevent userspace races by waiting until the network
6120 	 *	device is fully setup before sending notifications.
6121 	 */
6122 	if (!dev->rtnl_link_ops ||
6123 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6124 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6125 
6126 out:
6127 	return ret;
6128 
6129 err_uninit:
6130 	if (dev->netdev_ops->ndo_uninit)
6131 		dev->netdev_ops->ndo_uninit(dev);
6132 	goto out;
6133 }
6134 EXPORT_SYMBOL(register_netdevice);
6135 
6136 /**
6137  *	init_dummy_netdev	- init a dummy network device for NAPI
6138  *	@dev: device to init
6139  *
6140  *	This takes a network device structure and initialize the minimum
6141  *	amount of fields so it can be used to schedule NAPI polls without
6142  *	registering a full blown interface. This is to be used by drivers
6143  *	that need to tie several hardware interfaces to a single NAPI
6144  *	poll scheduler due to HW limitations.
6145  */
6146 int init_dummy_netdev(struct net_device *dev)
6147 {
6148 	/* Clear everything. Note we don't initialize spinlocks
6149 	 * are they aren't supposed to be taken by any of the
6150 	 * NAPI code and this dummy netdev is supposed to be
6151 	 * only ever used for NAPI polls
6152 	 */
6153 	memset(dev, 0, sizeof(struct net_device));
6154 
6155 	/* make sure we BUG if trying to hit standard
6156 	 * register/unregister code path
6157 	 */
6158 	dev->reg_state = NETREG_DUMMY;
6159 
6160 	/* NAPI wants this */
6161 	INIT_LIST_HEAD(&dev->napi_list);
6162 
6163 	/* a dummy interface is started by default */
6164 	set_bit(__LINK_STATE_PRESENT, &dev->state);
6165 	set_bit(__LINK_STATE_START, &dev->state);
6166 
6167 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
6168 	 * because users of this 'device' dont need to change
6169 	 * its refcount.
6170 	 */
6171 
6172 	return 0;
6173 }
6174 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6175 
6176 
6177 /**
6178  *	register_netdev	- register a network device
6179  *	@dev: device to register
6180  *
6181  *	Take a completed network device structure and add it to the kernel
6182  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6183  *	chain. 0 is returned on success. A negative errno code is returned
6184  *	on a failure to set up the device, or if the name is a duplicate.
6185  *
6186  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
6187  *	and expands the device name if you passed a format string to
6188  *	alloc_netdev.
6189  */
6190 int register_netdev(struct net_device *dev)
6191 {
6192 	int err;
6193 
6194 	rtnl_lock();
6195 	err = register_netdevice(dev);
6196 	rtnl_unlock();
6197 	return err;
6198 }
6199 EXPORT_SYMBOL(register_netdev);
6200 
6201 int netdev_refcnt_read(const struct net_device *dev)
6202 {
6203 	int i, refcnt = 0;
6204 
6205 	for_each_possible_cpu(i)
6206 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6207 	return refcnt;
6208 }
6209 EXPORT_SYMBOL(netdev_refcnt_read);
6210 
6211 /**
6212  * netdev_wait_allrefs - wait until all references are gone.
6213  * @dev: target net_device
6214  *
6215  * This is called when unregistering network devices.
6216  *
6217  * Any protocol or device that holds a reference should register
6218  * for netdevice notification, and cleanup and put back the
6219  * reference if they receive an UNREGISTER event.
6220  * We can get stuck here if buggy protocols don't correctly
6221  * call dev_put.
6222  */
6223 static void netdev_wait_allrefs(struct net_device *dev)
6224 {
6225 	unsigned long rebroadcast_time, warning_time;
6226 	int refcnt;
6227 
6228 	linkwatch_forget_dev(dev);
6229 
6230 	rebroadcast_time = warning_time = jiffies;
6231 	refcnt = netdev_refcnt_read(dev);
6232 
6233 	while (refcnt != 0) {
6234 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6235 			rtnl_lock();
6236 
6237 			/* Rebroadcast unregister notification */
6238 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6239 
6240 			__rtnl_unlock();
6241 			rcu_barrier();
6242 			rtnl_lock();
6243 
6244 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6245 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6246 				     &dev->state)) {
6247 				/* We must not have linkwatch events
6248 				 * pending on unregister. If this
6249 				 * happens, we simply run the queue
6250 				 * unscheduled, resulting in a noop
6251 				 * for this device.
6252 				 */
6253 				linkwatch_run_queue();
6254 			}
6255 
6256 			__rtnl_unlock();
6257 
6258 			rebroadcast_time = jiffies;
6259 		}
6260 
6261 		msleep(250);
6262 
6263 		refcnt = netdev_refcnt_read(dev);
6264 
6265 		if (time_after(jiffies, warning_time + 10 * HZ)) {
6266 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6267 				 dev->name, refcnt);
6268 			warning_time = jiffies;
6269 		}
6270 	}
6271 }
6272 
6273 /* The sequence is:
6274  *
6275  *	rtnl_lock();
6276  *	...
6277  *	register_netdevice(x1);
6278  *	register_netdevice(x2);
6279  *	...
6280  *	unregister_netdevice(y1);
6281  *	unregister_netdevice(y2);
6282  *      ...
6283  *	rtnl_unlock();
6284  *	free_netdev(y1);
6285  *	free_netdev(y2);
6286  *
6287  * We are invoked by rtnl_unlock().
6288  * This allows us to deal with problems:
6289  * 1) We can delete sysfs objects which invoke hotplug
6290  *    without deadlocking with linkwatch via keventd.
6291  * 2) Since we run with the RTNL semaphore not held, we can sleep
6292  *    safely in order to wait for the netdev refcnt to drop to zero.
6293  *
6294  * We must not return until all unregister events added during
6295  * the interval the lock was held have been completed.
6296  */
6297 void netdev_run_todo(void)
6298 {
6299 	struct list_head list;
6300 
6301 	/* Snapshot list, allow later requests */
6302 	list_replace_init(&net_todo_list, &list);
6303 
6304 	__rtnl_unlock();
6305 
6306 
6307 	/* Wait for rcu callbacks to finish before next phase */
6308 	if (!list_empty(&list))
6309 		rcu_barrier();
6310 
6311 	while (!list_empty(&list)) {
6312 		struct net_device *dev
6313 			= list_first_entry(&list, struct net_device, todo_list);
6314 		list_del(&dev->todo_list);
6315 
6316 		rtnl_lock();
6317 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6318 		__rtnl_unlock();
6319 
6320 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6321 			pr_err("network todo '%s' but state %d\n",
6322 			       dev->name, dev->reg_state);
6323 			dump_stack();
6324 			continue;
6325 		}
6326 
6327 		dev->reg_state = NETREG_UNREGISTERED;
6328 
6329 		on_each_cpu(flush_backlog, dev, 1);
6330 
6331 		netdev_wait_allrefs(dev);
6332 
6333 		/* paranoia */
6334 		BUG_ON(netdev_refcnt_read(dev));
6335 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
6336 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6337 		WARN_ON(dev->dn_ptr);
6338 
6339 		if (dev->destructor)
6340 			dev->destructor(dev);
6341 
6342 		/* Report a network device has been unregistered */
6343 		rtnl_lock();
6344 		dev_net(dev)->dev_unreg_count--;
6345 		__rtnl_unlock();
6346 		wake_up(&netdev_unregistering_wq);
6347 
6348 		/* Free network device */
6349 		kobject_put(&dev->dev.kobj);
6350 	}
6351 }
6352 
6353 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
6354  * fields in the same order, with only the type differing.
6355  */
6356 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6357 			     const struct net_device_stats *netdev_stats)
6358 {
6359 #if BITS_PER_LONG == 64
6360 	BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6361 	memcpy(stats64, netdev_stats, sizeof(*stats64));
6362 #else
6363 	size_t i, n = sizeof(*stats64) / sizeof(u64);
6364 	const unsigned long *src = (const unsigned long *)netdev_stats;
6365 	u64 *dst = (u64 *)stats64;
6366 
6367 	BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6368 		     sizeof(*stats64) / sizeof(u64));
6369 	for (i = 0; i < n; i++)
6370 		dst[i] = src[i];
6371 #endif
6372 }
6373 EXPORT_SYMBOL(netdev_stats_to_stats64);
6374 
6375 /**
6376  *	dev_get_stats	- get network device statistics
6377  *	@dev: device to get statistics from
6378  *	@storage: place to store stats
6379  *
6380  *	Get network statistics from device. Return @storage.
6381  *	The device driver may provide its own method by setting
6382  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6383  *	otherwise the internal statistics structure is used.
6384  */
6385 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6386 					struct rtnl_link_stats64 *storage)
6387 {
6388 	const struct net_device_ops *ops = dev->netdev_ops;
6389 
6390 	if (ops->ndo_get_stats64) {
6391 		memset(storage, 0, sizeof(*storage));
6392 		ops->ndo_get_stats64(dev, storage);
6393 	} else if (ops->ndo_get_stats) {
6394 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6395 	} else {
6396 		netdev_stats_to_stats64(storage, &dev->stats);
6397 	}
6398 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6399 	storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6400 	return storage;
6401 }
6402 EXPORT_SYMBOL(dev_get_stats);
6403 
6404 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6405 {
6406 	struct netdev_queue *queue = dev_ingress_queue(dev);
6407 
6408 #ifdef CONFIG_NET_CLS_ACT
6409 	if (queue)
6410 		return queue;
6411 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6412 	if (!queue)
6413 		return NULL;
6414 	netdev_init_one_queue(dev, queue, NULL);
6415 	queue->qdisc = &noop_qdisc;
6416 	queue->qdisc_sleeping = &noop_qdisc;
6417 	rcu_assign_pointer(dev->ingress_queue, queue);
6418 #endif
6419 	return queue;
6420 }
6421 
6422 static const struct ethtool_ops default_ethtool_ops;
6423 
6424 void netdev_set_default_ethtool_ops(struct net_device *dev,
6425 				    const struct ethtool_ops *ops)
6426 {
6427 	if (dev->ethtool_ops == &default_ethtool_ops)
6428 		dev->ethtool_ops = ops;
6429 }
6430 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6431 
6432 void netdev_freemem(struct net_device *dev)
6433 {
6434 	char *addr = (char *)dev - dev->padded;
6435 
6436 	kvfree(addr);
6437 }
6438 
6439 /**
6440  *	alloc_netdev_mqs - allocate network device
6441  *	@sizeof_priv:	size of private data to allocate space for
6442  *	@name:		device name format string
6443  *	@setup:		callback to initialize device
6444  *	@txqs:		the number of TX subqueues to allocate
6445  *	@rxqs:		the number of RX subqueues to allocate
6446  *
6447  *	Allocates a struct net_device with private data area for driver use
6448  *	and performs basic initialization.  Also allocates subqueue structs
6449  *	for each queue on the device.
6450  */
6451 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6452 		void (*setup)(struct net_device *),
6453 		unsigned int txqs, unsigned int rxqs)
6454 {
6455 	struct net_device *dev;
6456 	size_t alloc_size;
6457 	struct net_device *p;
6458 
6459 	BUG_ON(strlen(name) >= sizeof(dev->name));
6460 
6461 	if (txqs < 1) {
6462 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6463 		return NULL;
6464 	}
6465 
6466 #ifdef CONFIG_SYSFS
6467 	if (rxqs < 1) {
6468 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6469 		return NULL;
6470 	}
6471 #endif
6472 
6473 	alloc_size = sizeof(struct net_device);
6474 	if (sizeof_priv) {
6475 		/* ensure 32-byte alignment of private area */
6476 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6477 		alloc_size += sizeof_priv;
6478 	}
6479 	/* ensure 32-byte alignment of whole construct */
6480 	alloc_size += NETDEV_ALIGN - 1;
6481 
6482 	p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6483 	if (!p)
6484 		p = vzalloc(alloc_size);
6485 	if (!p)
6486 		return NULL;
6487 
6488 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
6489 	dev->padded = (char *)dev - (char *)p;
6490 
6491 	dev->pcpu_refcnt = alloc_percpu(int);
6492 	if (!dev->pcpu_refcnt)
6493 		goto free_dev;
6494 
6495 	if (dev_addr_init(dev))
6496 		goto free_pcpu;
6497 
6498 	dev_mc_init(dev);
6499 	dev_uc_init(dev);
6500 
6501 	dev_net_set(dev, &init_net);
6502 
6503 	dev->gso_max_size = GSO_MAX_SIZE;
6504 	dev->gso_max_segs = GSO_MAX_SEGS;
6505 
6506 	INIT_LIST_HEAD(&dev->napi_list);
6507 	INIT_LIST_HEAD(&dev->unreg_list);
6508 	INIT_LIST_HEAD(&dev->close_list);
6509 	INIT_LIST_HEAD(&dev->link_watch_list);
6510 	INIT_LIST_HEAD(&dev->adj_list.upper);
6511 	INIT_LIST_HEAD(&dev->adj_list.lower);
6512 	INIT_LIST_HEAD(&dev->all_adj_list.upper);
6513 	INIT_LIST_HEAD(&dev->all_adj_list.lower);
6514 	dev->priv_flags = IFF_XMIT_DST_RELEASE;
6515 	setup(dev);
6516 
6517 	dev->num_tx_queues = txqs;
6518 	dev->real_num_tx_queues = txqs;
6519 	if (netif_alloc_netdev_queues(dev))
6520 		goto free_all;
6521 
6522 #ifdef CONFIG_SYSFS
6523 	dev->num_rx_queues = rxqs;
6524 	dev->real_num_rx_queues = rxqs;
6525 	if (netif_alloc_rx_queues(dev))
6526 		goto free_all;
6527 #endif
6528 
6529 	strcpy(dev->name, name);
6530 	dev->group = INIT_NETDEV_GROUP;
6531 	if (!dev->ethtool_ops)
6532 		dev->ethtool_ops = &default_ethtool_ops;
6533 	return dev;
6534 
6535 free_all:
6536 	free_netdev(dev);
6537 	return NULL;
6538 
6539 free_pcpu:
6540 	free_percpu(dev->pcpu_refcnt);
6541 free_dev:
6542 	netdev_freemem(dev);
6543 	return NULL;
6544 }
6545 EXPORT_SYMBOL(alloc_netdev_mqs);
6546 
6547 /**
6548  *	free_netdev - free network device
6549  *	@dev: device
6550  *
6551  *	This function does the last stage of destroying an allocated device
6552  * 	interface. The reference to the device object is released.
6553  *	If this is the last reference then it will be freed.
6554  */
6555 void free_netdev(struct net_device *dev)
6556 {
6557 	struct napi_struct *p, *n;
6558 
6559 	release_net(dev_net(dev));
6560 
6561 	netif_free_tx_queues(dev);
6562 #ifdef CONFIG_SYSFS
6563 	kfree(dev->_rx);
6564 #endif
6565 
6566 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6567 
6568 	/* Flush device addresses */
6569 	dev_addr_flush(dev);
6570 
6571 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6572 		netif_napi_del(p);
6573 
6574 	free_percpu(dev->pcpu_refcnt);
6575 	dev->pcpu_refcnt = NULL;
6576 
6577 	/*  Compatibility with error handling in drivers */
6578 	if (dev->reg_state == NETREG_UNINITIALIZED) {
6579 		netdev_freemem(dev);
6580 		return;
6581 	}
6582 
6583 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6584 	dev->reg_state = NETREG_RELEASED;
6585 
6586 	/* will free via device release */
6587 	put_device(&dev->dev);
6588 }
6589 EXPORT_SYMBOL(free_netdev);
6590 
6591 /**
6592  *	synchronize_net -  Synchronize with packet receive processing
6593  *
6594  *	Wait for packets currently being received to be done.
6595  *	Does not block later packets from starting.
6596  */
6597 void synchronize_net(void)
6598 {
6599 	might_sleep();
6600 	if (rtnl_is_locked())
6601 		synchronize_rcu_expedited();
6602 	else
6603 		synchronize_rcu();
6604 }
6605 EXPORT_SYMBOL(synchronize_net);
6606 
6607 /**
6608  *	unregister_netdevice_queue - remove device from the kernel
6609  *	@dev: device
6610  *	@head: list
6611  *
6612  *	This function shuts down a device interface and removes it
6613  *	from the kernel tables.
6614  *	If head not NULL, device is queued to be unregistered later.
6615  *
6616  *	Callers must hold the rtnl semaphore.  You may want
6617  *	unregister_netdev() instead of this.
6618  */
6619 
6620 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6621 {
6622 	ASSERT_RTNL();
6623 
6624 	if (head) {
6625 		list_move_tail(&dev->unreg_list, head);
6626 	} else {
6627 		rollback_registered(dev);
6628 		/* Finish processing unregister after unlock */
6629 		net_set_todo(dev);
6630 	}
6631 }
6632 EXPORT_SYMBOL(unregister_netdevice_queue);
6633 
6634 /**
6635  *	unregister_netdevice_many - unregister many devices
6636  *	@head: list of devices
6637  *
6638  *  Note: As most callers use a stack allocated list_head,
6639  *  we force a list_del() to make sure stack wont be corrupted later.
6640  */
6641 void unregister_netdevice_many(struct list_head *head)
6642 {
6643 	struct net_device *dev;
6644 
6645 	if (!list_empty(head)) {
6646 		rollback_registered_many(head);
6647 		list_for_each_entry(dev, head, unreg_list)
6648 			net_set_todo(dev);
6649 		list_del(head);
6650 	}
6651 }
6652 EXPORT_SYMBOL(unregister_netdevice_many);
6653 
6654 /**
6655  *	unregister_netdev - remove device from the kernel
6656  *	@dev: device
6657  *
6658  *	This function shuts down a device interface and removes it
6659  *	from the kernel tables.
6660  *
6661  *	This is just a wrapper for unregister_netdevice that takes
6662  *	the rtnl semaphore.  In general you want to use this and not
6663  *	unregister_netdevice.
6664  */
6665 void unregister_netdev(struct net_device *dev)
6666 {
6667 	rtnl_lock();
6668 	unregister_netdevice(dev);
6669 	rtnl_unlock();
6670 }
6671 EXPORT_SYMBOL(unregister_netdev);
6672 
6673 /**
6674  *	dev_change_net_namespace - move device to different nethost namespace
6675  *	@dev: device
6676  *	@net: network namespace
6677  *	@pat: If not NULL name pattern to try if the current device name
6678  *	      is already taken in the destination network namespace.
6679  *
6680  *	This function shuts down a device interface and moves it
6681  *	to a new network namespace. On success 0 is returned, on
6682  *	a failure a netagive errno code is returned.
6683  *
6684  *	Callers must hold the rtnl semaphore.
6685  */
6686 
6687 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6688 {
6689 	int err;
6690 
6691 	ASSERT_RTNL();
6692 
6693 	/* Don't allow namespace local devices to be moved. */
6694 	err = -EINVAL;
6695 	if (dev->features & NETIF_F_NETNS_LOCAL)
6696 		goto out;
6697 
6698 	/* Ensure the device has been registrered */
6699 	if (dev->reg_state != NETREG_REGISTERED)
6700 		goto out;
6701 
6702 	/* Get out if there is nothing todo */
6703 	err = 0;
6704 	if (net_eq(dev_net(dev), net))
6705 		goto out;
6706 
6707 	/* Pick the destination device name, and ensure
6708 	 * we can use it in the destination network namespace.
6709 	 */
6710 	err = -EEXIST;
6711 	if (__dev_get_by_name(net, dev->name)) {
6712 		/* We get here if we can't use the current device name */
6713 		if (!pat)
6714 			goto out;
6715 		if (dev_get_valid_name(net, dev, pat) < 0)
6716 			goto out;
6717 	}
6718 
6719 	/*
6720 	 * And now a mini version of register_netdevice unregister_netdevice.
6721 	 */
6722 
6723 	/* If device is running close it first. */
6724 	dev_close(dev);
6725 
6726 	/* And unlink it from device chain */
6727 	err = -ENODEV;
6728 	unlist_netdevice(dev);
6729 
6730 	synchronize_net();
6731 
6732 	/* Shutdown queueing discipline. */
6733 	dev_shutdown(dev);
6734 
6735 	/* Notify protocols, that we are about to destroy
6736 	   this device. They should clean all the things.
6737 
6738 	   Note that dev->reg_state stays at NETREG_REGISTERED.
6739 	   This is wanted because this way 8021q and macvlan know
6740 	   the device is just moving and can keep their slaves up.
6741 	*/
6742 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6743 	rcu_barrier();
6744 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6745 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
6746 
6747 	/*
6748 	 *	Flush the unicast and multicast chains
6749 	 */
6750 	dev_uc_flush(dev);
6751 	dev_mc_flush(dev);
6752 
6753 	/* Send a netdev-removed uevent to the old namespace */
6754 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6755 
6756 	/* Actually switch the network namespace */
6757 	dev_net_set(dev, net);
6758 
6759 	/* If there is an ifindex conflict assign a new one */
6760 	if (__dev_get_by_index(net, dev->ifindex)) {
6761 		int iflink = (dev->iflink == dev->ifindex);
6762 		dev->ifindex = dev_new_index(net);
6763 		if (iflink)
6764 			dev->iflink = dev->ifindex;
6765 	}
6766 
6767 	/* Send a netdev-add uevent to the new namespace */
6768 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6769 
6770 	/* Fixup kobjects */
6771 	err = device_rename(&dev->dev, dev->name);
6772 	WARN_ON(err);
6773 
6774 	/* Add the device back in the hashes */
6775 	list_netdevice(dev);
6776 
6777 	/* Notify protocols, that a new device appeared. */
6778 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
6779 
6780 	/*
6781 	 *	Prevent userspace races by waiting until the network
6782 	 *	device is fully setup before sending notifications.
6783 	 */
6784 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6785 
6786 	synchronize_net();
6787 	err = 0;
6788 out:
6789 	return err;
6790 }
6791 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6792 
6793 static int dev_cpu_callback(struct notifier_block *nfb,
6794 			    unsigned long action,
6795 			    void *ocpu)
6796 {
6797 	struct sk_buff **list_skb;
6798 	struct sk_buff *skb;
6799 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
6800 	struct softnet_data *sd, *oldsd;
6801 
6802 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6803 		return NOTIFY_OK;
6804 
6805 	local_irq_disable();
6806 	cpu = smp_processor_id();
6807 	sd = &per_cpu(softnet_data, cpu);
6808 	oldsd = &per_cpu(softnet_data, oldcpu);
6809 
6810 	/* Find end of our completion_queue. */
6811 	list_skb = &sd->completion_queue;
6812 	while (*list_skb)
6813 		list_skb = &(*list_skb)->next;
6814 	/* Append completion queue from offline CPU. */
6815 	*list_skb = oldsd->completion_queue;
6816 	oldsd->completion_queue = NULL;
6817 
6818 	/* Append output queue from offline CPU. */
6819 	if (oldsd->output_queue) {
6820 		*sd->output_queue_tailp = oldsd->output_queue;
6821 		sd->output_queue_tailp = oldsd->output_queue_tailp;
6822 		oldsd->output_queue = NULL;
6823 		oldsd->output_queue_tailp = &oldsd->output_queue;
6824 	}
6825 	/* Append NAPI poll list from offline CPU. */
6826 	if (!list_empty(&oldsd->poll_list)) {
6827 		list_splice_init(&oldsd->poll_list, &sd->poll_list);
6828 		raise_softirq_irqoff(NET_RX_SOFTIRQ);
6829 	}
6830 
6831 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
6832 	local_irq_enable();
6833 
6834 	/* Process offline CPU's input_pkt_queue */
6835 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6836 		netif_rx_internal(skb);
6837 		input_queue_head_incr(oldsd);
6838 	}
6839 	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6840 		netif_rx_internal(skb);
6841 		input_queue_head_incr(oldsd);
6842 	}
6843 
6844 	return NOTIFY_OK;
6845 }
6846 
6847 
6848 /**
6849  *	netdev_increment_features - increment feature set by one
6850  *	@all: current feature set
6851  *	@one: new feature set
6852  *	@mask: mask feature set
6853  *
6854  *	Computes a new feature set after adding a device with feature set
6855  *	@one to the master device with current feature set @all.  Will not
6856  *	enable anything that is off in @mask. Returns the new feature set.
6857  */
6858 netdev_features_t netdev_increment_features(netdev_features_t all,
6859 	netdev_features_t one, netdev_features_t mask)
6860 {
6861 	if (mask & NETIF_F_GEN_CSUM)
6862 		mask |= NETIF_F_ALL_CSUM;
6863 	mask |= NETIF_F_VLAN_CHALLENGED;
6864 
6865 	all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6866 	all &= one | ~NETIF_F_ALL_FOR_ALL;
6867 
6868 	/* If one device supports hw checksumming, set for all. */
6869 	if (all & NETIF_F_GEN_CSUM)
6870 		all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6871 
6872 	return all;
6873 }
6874 EXPORT_SYMBOL(netdev_increment_features);
6875 
6876 static struct hlist_head * __net_init netdev_create_hash(void)
6877 {
6878 	int i;
6879 	struct hlist_head *hash;
6880 
6881 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6882 	if (hash != NULL)
6883 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
6884 			INIT_HLIST_HEAD(&hash[i]);
6885 
6886 	return hash;
6887 }
6888 
6889 /* Initialize per network namespace state */
6890 static int __net_init netdev_init(struct net *net)
6891 {
6892 	if (net != &init_net)
6893 		INIT_LIST_HEAD(&net->dev_base_head);
6894 
6895 	net->dev_name_head = netdev_create_hash();
6896 	if (net->dev_name_head == NULL)
6897 		goto err_name;
6898 
6899 	net->dev_index_head = netdev_create_hash();
6900 	if (net->dev_index_head == NULL)
6901 		goto err_idx;
6902 
6903 	return 0;
6904 
6905 err_idx:
6906 	kfree(net->dev_name_head);
6907 err_name:
6908 	return -ENOMEM;
6909 }
6910 
6911 /**
6912  *	netdev_drivername - network driver for the device
6913  *	@dev: network device
6914  *
6915  *	Determine network driver for device.
6916  */
6917 const char *netdev_drivername(const struct net_device *dev)
6918 {
6919 	const struct device_driver *driver;
6920 	const struct device *parent;
6921 	const char *empty = "";
6922 
6923 	parent = dev->dev.parent;
6924 	if (!parent)
6925 		return empty;
6926 
6927 	driver = parent->driver;
6928 	if (driver && driver->name)
6929 		return driver->name;
6930 	return empty;
6931 }
6932 
6933 static int __netdev_printk(const char *level, const struct net_device *dev,
6934 			   struct va_format *vaf)
6935 {
6936 	int r;
6937 
6938 	if (dev && dev->dev.parent) {
6939 		r = dev_printk_emit(level[1] - '0',
6940 				    dev->dev.parent,
6941 				    "%s %s %s: %pV",
6942 				    dev_driver_string(dev->dev.parent),
6943 				    dev_name(dev->dev.parent),
6944 				    netdev_name(dev), vaf);
6945 	} else if (dev) {
6946 		r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6947 	} else {
6948 		r = printk("%s(NULL net_device): %pV", level, vaf);
6949 	}
6950 
6951 	return r;
6952 }
6953 
6954 int netdev_printk(const char *level, const struct net_device *dev,
6955 		  const char *format, ...)
6956 {
6957 	struct va_format vaf;
6958 	va_list args;
6959 	int r;
6960 
6961 	va_start(args, format);
6962 
6963 	vaf.fmt = format;
6964 	vaf.va = &args;
6965 
6966 	r = __netdev_printk(level, dev, &vaf);
6967 
6968 	va_end(args);
6969 
6970 	return r;
6971 }
6972 EXPORT_SYMBOL(netdev_printk);
6973 
6974 #define define_netdev_printk_level(func, level)			\
6975 int func(const struct net_device *dev, const char *fmt, ...)	\
6976 {								\
6977 	int r;							\
6978 	struct va_format vaf;					\
6979 	va_list args;						\
6980 								\
6981 	va_start(args, fmt);					\
6982 								\
6983 	vaf.fmt = fmt;						\
6984 	vaf.va = &args;						\
6985 								\
6986 	r = __netdev_printk(level, dev, &vaf);			\
6987 								\
6988 	va_end(args);						\
6989 								\
6990 	return r;						\
6991 }								\
6992 EXPORT_SYMBOL(func);
6993 
6994 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6995 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6996 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6997 define_netdev_printk_level(netdev_err, KERN_ERR);
6998 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6999 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7000 define_netdev_printk_level(netdev_info, KERN_INFO);
7001 
7002 static void __net_exit netdev_exit(struct net *net)
7003 {
7004 	kfree(net->dev_name_head);
7005 	kfree(net->dev_index_head);
7006 }
7007 
7008 static struct pernet_operations __net_initdata netdev_net_ops = {
7009 	.init = netdev_init,
7010 	.exit = netdev_exit,
7011 };
7012 
7013 static void __net_exit default_device_exit(struct net *net)
7014 {
7015 	struct net_device *dev, *aux;
7016 	/*
7017 	 * Push all migratable network devices back to the
7018 	 * initial network namespace
7019 	 */
7020 	rtnl_lock();
7021 	for_each_netdev_safe(net, dev, aux) {
7022 		int err;
7023 		char fb_name[IFNAMSIZ];
7024 
7025 		/* Ignore unmoveable devices (i.e. loopback) */
7026 		if (dev->features & NETIF_F_NETNS_LOCAL)
7027 			continue;
7028 
7029 		/* Leave virtual devices for the generic cleanup */
7030 		if (dev->rtnl_link_ops)
7031 			continue;
7032 
7033 		/* Push remaining network devices to init_net */
7034 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7035 		err = dev_change_net_namespace(dev, &init_net, fb_name);
7036 		if (err) {
7037 			pr_emerg("%s: failed to move %s to init_net: %d\n",
7038 				 __func__, dev->name, err);
7039 			BUG();
7040 		}
7041 	}
7042 	rtnl_unlock();
7043 }
7044 
7045 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7046 {
7047 	/* Return with the rtnl_lock held when there are no network
7048 	 * devices unregistering in any network namespace in net_list.
7049 	 */
7050 	struct net *net;
7051 	bool unregistering;
7052 	DEFINE_WAIT(wait);
7053 
7054 	for (;;) {
7055 		prepare_to_wait(&netdev_unregistering_wq, &wait,
7056 				TASK_UNINTERRUPTIBLE);
7057 		unregistering = false;
7058 		rtnl_lock();
7059 		list_for_each_entry(net, net_list, exit_list) {
7060 			if (net->dev_unreg_count > 0) {
7061 				unregistering = true;
7062 				break;
7063 			}
7064 		}
7065 		if (!unregistering)
7066 			break;
7067 		__rtnl_unlock();
7068 		schedule();
7069 	}
7070 	finish_wait(&netdev_unregistering_wq, &wait);
7071 }
7072 
7073 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7074 {
7075 	/* At exit all network devices most be removed from a network
7076 	 * namespace.  Do this in the reverse order of registration.
7077 	 * Do this across as many network namespaces as possible to
7078 	 * improve batching efficiency.
7079 	 */
7080 	struct net_device *dev;
7081 	struct net *net;
7082 	LIST_HEAD(dev_kill_list);
7083 
7084 	/* To prevent network device cleanup code from dereferencing
7085 	 * loopback devices or network devices that have been freed
7086 	 * wait here for all pending unregistrations to complete,
7087 	 * before unregistring the loopback device and allowing the
7088 	 * network namespace be freed.
7089 	 *
7090 	 * The netdev todo list containing all network devices
7091 	 * unregistrations that happen in default_device_exit_batch
7092 	 * will run in the rtnl_unlock() at the end of
7093 	 * default_device_exit_batch.
7094 	 */
7095 	rtnl_lock_unregistering(net_list);
7096 	list_for_each_entry(net, net_list, exit_list) {
7097 		for_each_netdev_reverse(net, dev) {
7098 			if (dev->rtnl_link_ops)
7099 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7100 			else
7101 				unregister_netdevice_queue(dev, &dev_kill_list);
7102 		}
7103 	}
7104 	unregister_netdevice_many(&dev_kill_list);
7105 	rtnl_unlock();
7106 }
7107 
7108 static struct pernet_operations __net_initdata default_device_ops = {
7109 	.exit = default_device_exit,
7110 	.exit_batch = default_device_exit_batch,
7111 };
7112 
7113 /*
7114  *	Initialize the DEV module. At boot time this walks the device list and
7115  *	unhooks any devices that fail to initialise (normally hardware not
7116  *	present) and leaves us with a valid list of present and active devices.
7117  *
7118  */
7119 
7120 /*
7121  *       This is called single threaded during boot, so no need
7122  *       to take the rtnl semaphore.
7123  */
7124 static int __init net_dev_init(void)
7125 {
7126 	int i, rc = -ENOMEM;
7127 
7128 	BUG_ON(!dev_boot_phase);
7129 
7130 	if (dev_proc_init())
7131 		goto out;
7132 
7133 	if (netdev_kobject_init())
7134 		goto out;
7135 
7136 	INIT_LIST_HEAD(&ptype_all);
7137 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
7138 		INIT_LIST_HEAD(&ptype_base[i]);
7139 
7140 	INIT_LIST_HEAD(&offload_base);
7141 
7142 	if (register_pernet_subsys(&netdev_net_ops))
7143 		goto out;
7144 
7145 	/*
7146 	 *	Initialise the packet receive queues.
7147 	 */
7148 
7149 	for_each_possible_cpu(i) {
7150 		struct softnet_data *sd = &per_cpu(softnet_data, i);
7151 
7152 		skb_queue_head_init(&sd->input_pkt_queue);
7153 		skb_queue_head_init(&sd->process_queue);
7154 		INIT_LIST_HEAD(&sd->poll_list);
7155 		sd->output_queue_tailp = &sd->output_queue;
7156 #ifdef CONFIG_RPS
7157 		sd->csd.func = rps_trigger_softirq;
7158 		sd->csd.info = sd;
7159 		sd->cpu = i;
7160 #endif
7161 
7162 		sd->backlog.poll = process_backlog;
7163 		sd->backlog.weight = weight_p;
7164 	}
7165 
7166 	dev_boot_phase = 0;
7167 
7168 	/* The loopback device is special if any other network devices
7169 	 * is present in a network namespace the loopback device must
7170 	 * be present. Since we now dynamically allocate and free the
7171 	 * loopback device ensure this invariant is maintained by
7172 	 * keeping the loopback device as the first device on the
7173 	 * list of network devices.  Ensuring the loopback devices
7174 	 * is the first device that appears and the last network device
7175 	 * that disappears.
7176 	 */
7177 	if (register_pernet_device(&loopback_net_ops))
7178 		goto out;
7179 
7180 	if (register_pernet_device(&default_device_ops))
7181 		goto out;
7182 
7183 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7184 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7185 
7186 	hotcpu_notifier(dev_cpu_callback, 0);
7187 	dst_init();
7188 	rc = 0;
7189 out:
7190 	return rc;
7191 }
7192 
7193 subsys_initcall(net_dev_init);
7194