1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/mutex.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/notifier.h> 96 #include <linux/skbuff.h> 97 #include <net/net_namespace.h> 98 #include <net/sock.h> 99 #include <linux/rtnetlink.h> 100 #include <linux/stat.h> 101 #include <net/dst.h> 102 #include <net/pkt_sched.h> 103 #include <net/checksum.h> 104 #include <net/xfrm.h> 105 #include <linux/highmem.h> 106 #include <linux/init.h> 107 #include <linux/module.h> 108 #include <linux/netpoll.h> 109 #include <linux/rcupdate.h> 110 #include <linux/delay.h> 111 #include <net/iw_handler.h> 112 #include <asm/current.h> 113 #include <linux/audit.h> 114 #include <linux/dmaengine.h> 115 #include <linux/err.h> 116 #include <linux/ctype.h> 117 #include <linux/if_arp.h> 118 #include <linux/if_vlan.h> 119 #include <linux/ip.h> 120 #include <net/ip.h> 121 #include <linux/ipv6.h> 122 #include <linux/in.h> 123 #include <linux/jhash.h> 124 #include <linux/random.h> 125 #include <trace/events/napi.h> 126 #include <trace/events/net.h> 127 #include <trace/events/skb.h> 128 #include <linux/pci.h> 129 #include <linux/inetdevice.h> 130 #include <linux/cpu_rmap.h> 131 #include <linux/static_key.h> 132 #include <linux/hashtable.h> 133 #include <linux/vmalloc.h> 134 #include <linux/if_macvlan.h> 135 136 #include "net-sysfs.h" 137 138 /* Instead of increasing this, you should create a hash table. */ 139 #define MAX_GRO_SKBS 8 140 141 /* This should be increased if a protocol with a bigger head is added. */ 142 #define GRO_MAX_HEAD (MAX_HEADER + 128) 143 144 static DEFINE_SPINLOCK(ptype_lock); 145 static DEFINE_SPINLOCK(offload_lock); 146 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 147 struct list_head ptype_all __read_mostly; /* Taps */ 148 static struct list_head offload_base __read_mostly; 149 150 /* 151 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 152 * semaphore. 153 * 154 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 155 * 156 * Writers must hold the rtnl semaphore while they loop through the 157 * dev_base_head list, and hold dev_base_lock for writing when they do the 158 * actual updates. This allows pure readers to access the list even 159 * while a writer is preparing to update it. 160 * 161 * To put it another way, dev_base_lock is held for writing only to 162 * protect against pure readers; the rtnl semaphore provides the 163 * protection against other writers. 164 * 165 * See, for example usages, register_netdevice() and 166 * unregister_netdevice(), which must be called with the rtnl 167 * semaphore held. 168 */ 169 DEFINE_RWLOCK(dev_base_lock); 170 EXPORT_SYMBOL(dev_base_lock); 171 172 /* protects napi_hash addition/deletion and napi_gen_id */ 173 static DEFINE_SPINLOCK(napi_hash_lock); 174 175 static unsigned int napi_gen_id; 176 static DEFINE_HASHTABLE(napi_hash, 8); 177 178 static seqcount_t devnet_rename_seq; 179 180 static inline void dev_base_seq_inc(struct net *net) 181 { 182 while (++net->dev_base_seq == 0); 183 } 184 185 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 186 { 187 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 188 189 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 190 } 191 192 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 193 { 194 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 195 } 196 197 static inline void rps_lock(struct softnet_data *sd) 198 { 199 #ifdef CONFIG_RPS 200 spin_lock(&sd->input_pkt_queue.lock); 201 #endif 202 } 203 204 static inline void rps_unlock(struct softnet_data *sd) 205 { 206 #ifdef CONFIG_RPS 207 spin_unlock(&sd->input_pkt_queue.lock); 208 #endif 209 } 210 211 /* Device list insertion */ 212 static void list_netdevice(struct net_device *dev) 213 { 214 struct net *net = dev_net(dev); 215 216 ASSERT_RTNL(); 217 218 write_lock_bh(&dev_base_lock); 219 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 220 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 221 hlist_add_head_rcu(&dev->index_hlist, 222 dev_index_hash(net, dev->ifindex)); 223 write_unlock_bh(&dev_base_lock); 224 225 dev_base_seq_inc(net); 226 } 227 228 /* Device list removal 229 * caller must respect a RCU grace period before freeing/reusing dev 230 */ 231 static void unlist_netdevice(struct net_device *dev) 232 { 233 ASSERT_RTNL(); 234 235 /* Unlink dev from the device chain */ 236 write_lock_bh(&dev_base_lock); 237 list_del_rcu(&dev->dev_list); 238 hlist_del_rcu(&dev->name_hlist); 239 hlist_del_rcu(&dev->index_hlist); 240 write_unlock_bh(&dev_base_lock); 241 242 dev_base_seq_inc(dev_net(dev)); 243 } 244 245 /* 246 * Our notifier list 247 */ 248 249 static RAW_NOTIFIER_HEAD(netdev_chain); 250 251 /* 252 * Device drivers call our routines to queue packets here. We empty the 253 * queue in the local softnet handler. 254 */ 255 256 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 257 EXPORT_PER_CPU_SYMBOL(softnet_data); 258 259 #ifdef CONFIG_LOCKDEP 260 /* 261 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 262 * according to dev->type 263 */ 264 static const unsigned short netdev_lock_type[] = 265 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 266 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 267 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 268 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 269 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 270 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 271 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 272 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 273 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 274 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 275 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 276 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 277 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 278 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 279 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 280 281 static const char *const netdev_lock_name[] = 282 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 283 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 284 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 285 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 286 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 287 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 288 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 289 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 290 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 291 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 292 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 293 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 294 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 295 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 296 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 297 298 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 299 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 300 301 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 302 { 303 int i; 304 305 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 306 if (netdev_lock_type[i] == dev_type) 307 return i; 308 /* the last key is used by default */ 309 return ARRAY_SIZE(netdev_lock_type) - 1; 310 } 311 312 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 313 unsigned short dev_type) 314 { 315 int i; 316 317 i = netdev_lock_pos(dev_type); 318 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 319 netdev_lock_name[i]); 320 } 321 322 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 323 { 324 int i; 325 326 i = netdev_lock_pos(dev->type); 327 lockdep_set_class_and_name(&dev->addr_list_lock, 328 &netdev_addr_lock_key[i], 329 netdev_lock_name[i]); 330 } 331 #else 332 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 333 unsigned short dev_type) 334 { 335 } 336 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 337 { 338 } 339 #endif 340 341 /******************************************************************************* 342 343 Protocol management and registration routines 344 345 *******************************************************************************/ 346 347 /* 348 * Add a protocol ID to the list. Now that the input handler is 349 * smarter we can dispense with all the messy stuff that used to be 350 * here. 351 * 352 * BEWARE!!! Protocol handlers, mangling input packets, 353 * MUST BE last in hash buckets and checking protocol handlers 354 * MUST start from promiscuous ptype_all chain in net_bh. 355 * It is true now, do not change it. 356 * Explanation follows: if protocol handler, mangling packet, will 357 * be the first on list, it is not able to sense, that packet 358 * is cloned and should be copied-on-write, so that it will 359 * change it and subsequent readers will get broken packet. 360 * --ANK (980803) 361 */ 362 363 static inline struct list_head *ptype_head(const struct packet_type *pt) 364 { 365 if (pt->type == htons(ETH_P_ALL)) 366 return &ptype_all; 367 else 368 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 369 } 370 371 /** 372 * dev_add_pack - add packet handler 373 * @pt: packet type declaration 374 * 375 * Add a protocol handler to the networking stack. The passed &packet_type 376 * is linked into kernel lists and may not be freed until it has been 377 * removed from the kernel lists. 378 * 379 * This call does not sleep therefore it can not 380 * guarantee all CPU's that are in middle of receiving packets 381 * will see the new packet type (until the next received packet). 382 */ 383 384 void dev_add_pack(struct packet_type *pt) 385 { 386 struct list_head *head = ptype_head(pt); 387 388 spin_lock(&ptype_lock); 389 list_add_rcu(&pt->list, head); 390 spin_unlock(&ptype_lock); 391 } 392 EXPORT_SYMBOL(dev_add_pack); 393 394 /** 395 * __dev_remove_pack - remove packet handler 396 * @pt: packet type declaration 397 * 398 * Remove a protocol handler that was previously added to the kernel 399 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 400 * from the kernel lists and can be freed or reused once this function 401 * returns. 402 * 403 * The packet type might still be in use by receivers 404 * and must not be freed until after all the CPU's have gone 405 * through a quiescent state. 406 */ 407 void __dev_remove_pack(struct packet_type *pt) 408 { 409 struct list_head *head = ptype_head(pt); 410 struct packet_type *pt1; 411 412 spin_lock(&ptype_lock); 413 414 list_for_each_entry(pt1, head, list) { 415 if (pt == pt1) { 416 list_del_rcu(&pt->list); 417 goto out; 418 } 419 } 420 421 pr_warn("dev_remove_pack: %p not found\n", pt); 422 out: 423 spin_unlock(&ptype_lock); 424 } 425 EXPORT_SYMBOL(__dev_remove_pack); 426 427 /** 428 * dev_remove_pack - remove packet handler 429 * @pt: packet type declaration 430 * 431 * Remove a protocol handler that was previously added to the kernel 432 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 433 * from the kernel lists and can be freed or reused once this function 434 * returns. 435 * 436 * This call sleeps to guarantee that no CPU is looking at the packet 437 * type after return. 438 */ 439 void dev_remove_pack(struct packet_type *pt) 440 { 441 __dev_remove_pack(pt); 442 443 synchronize_net(); 444 } 445 EXPORT_SYMBOL(dev_remove_pack); 446 447 448 /** 449 * dev_add_offload - register offload handlers 450 * @po: protocol offload declaration 451 * 452 * Add protocol offload handlers to the networking stack. The passed 453 * &proto_offload is linked into kernel lists and may not be freed until 454 * it has been removed from the kernel lists. 455 * 456 * This call does not sleep therefore it can not 457 * guarantee all CPU's that are in middle of receiving packets 458 * will see the new offload handlers (until the next received packet). 459 */ 460 void dev_add_offload(struct packet_offload *po) 461 { 462 struct list_head *head = &offload_base; 463 464 spin_lock(&offload_lock); 465 list_add_rcu(&po->list, head); 466 spin_unlock(&offload_lock); 467 } 468 EXPORT_SYMBOL(dev_add_offload); 469 470 /** 471 * __dev_remove_offload - remove offload handler 472 * @po: packet offload declaration 473 * 474 * Remove a protocol offload handler that was previously added to the 475 * kernel offload handlers by dev_add_offload(). The passed &offload_type 476 * is removed from the kernel lists and can be freed or reused once this 477 * function returns. 478 * 479 * The packet type might still be in use by receivers 480 * and must not be freed until after all the CPU's have gone 481 * through a quiescent state. 482 */ 483 void __dev_remove_offload(struct packet_offload *po) 484 { 485 struct list_head *head = &offload_base; 486 struct packet_offload *po1; 487 488 spin_lock(&offload_lock); 489 490 list_for_each_entry(po1, head, list) { 491 if (po == po1) { 492 list_del_rcu(&po->list); 493 goto out; 494 } 495 } 496 497 pr_warn("dev_remove_offload: %p not found\n", po); 498 out: 499 spin_unlock(&offload_lock); 500 } 501 EXPORT_SYMBOL(__dev_remove_offload); 502 503 /** 504 * dev_remove_offload - remove packet offload handler 505 * @po: packet offload declaration 506 * 507 * Remove a packet offload handler that was previously added to the kernel 508 * offload handlers by dev_add_offload(). The passed &offload_type is 509 * removed from the kernel lists and can be freed or reused once this 510 * function returns. 511 * 512 * This call sleeps to guarantee that no CPU is looking at the packet 513 * type after return. 514 */ 515 void dev_remove_offload(struct packet_offload *po) 516 { 517 __dev_remove_offload(po); 518 519 synchronize_net(); 520 } 521 EXPORT_SYMBOL(dev_remove_offload); 522 523 /****************************************************************************** 524 525 Device Boot-time Settings Routines 526 527 *******************************************************************************/ 528 529 /* Boot time configuration table */ 530 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 531 532 /** 533 * netdev_boot_setup_add - add new setup entry 534 * @name: name of the device 535 * @map: configured settings for the device 536 * 537 * Adds new setup entry to the dev_boot_setup list. The function 538 * returns 0 on error and 1 on success. This is a generic routine to 539 * all netdevices. 540 */ 541 static int netdev_boot_setup_add(char *name, struct ifmap *map) 542 { 543 struct netdev_boot_setup *s; 544 int i; 545 546 s = dev_boot_setup; 547 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 548 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 549 memset(s[i].name, 0, sizeof(s[i].name)); 550 strlcpy(s[i].name, name, IFNAMSIZ); 551 memcpy(&s[i].map, map, sizeof(s[i].map)); 552 break; 553 } 554 } 555 556 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 557 } 558 559 /** 560 * netdev_boot_setup_check - check boot time settings 561 * @dev: the netdevice 562 * 563 * Check boot time settings for the device. 564 * The found settings are set for the device to be used 565 * later in the device probing. 566 * Returns 0 if no settings found, 1 if they are. 567 */ 568 int netdev_boot_setup_check(struct net_device *dev) 569 { 570 struct netdev_boot_setup *s = dev_boot_setup; 571 int i; 572 573 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 574 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 575 !strcmp(dev->name, s[i].name)) { 576 dev->irq = s[i].map.irq; 577 dev->base_addr = s[i].map.base_addr; 578 dev->mem_start = s[i].map.mem_start; 579 dev->mem_end = s[i].map.mem_end; 580 return 1; 581 } 582 } 583 return 0; 584 } 585 EXPORT_SYMBOL(netdev_boot_setup_check); 586 587 588 /** 589 * netdev_boot_base - get address from boot time settings 590 * @prefix: prefix for network device 591 * @unit: id for network device 592 * 593 * Check boot time settings for the base address of device. 594 * The found settings are set for the device to be used 595 * later in the device probing. 596 * Returns 0 if no settings found. 597 */ 598 unsigned long netdev_boot_base(const char *prefix, int unit) 599 { 600 const struct netdev_boot_setup *s = dev_boot_setup; 601 char name[IFNAMSIZ]; 602 int i; 603 604 sprintf(name, "%s%d", prefix, unit); 605 606 /* 607 * If device already registered then return base of 1 608 * to indicate not to probe for this interface 609 */ 610 if (__dev_get_by_name(&init_net, name)) 611 return 1; 612 613 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 614 if (!strcmp(name, s[i].name)) 615 return s[i].map.base_addr; 616 return 0; 617 } 618 619 /* 620 * Saves at boot time configured settings for any netdevice. 621 */ 622 int __init netdev_boot_setup(char *str) 623 { 624 int ints[5]; 625 struct ifmap map; 626 627 str = get_options(str, ARRAY_SIZE(ints), ints); 628 if (!str || !*str) 629 return 0; 630 631 /* Save settings */ 632 memset(&map, 0, sizeof(map)); 633 if (ints[0] > 0) 634 map.irq = ints[1]; 635 if (ints[0] > 1) 636 map.base_addr = ints[2]; 637 if (ints[0] > 2) 638 map.mem_start = ints[3]; 639 if (ints[0] > 3) 640 map.mem_end = ints[4]; 641 642 /* Add new entry to the list */ 643 return netdev_boot_setup_add(str, &map); 644 } 645 646 __setup("netdev=", netdev_boot_setup); 647 648 /******************************************************************************* 649 650 Device Interface Subroutines 651 652 *******************************************************************************/ 653 654 /** 655 * __dev_get_by_name - find a device by its name 656 * @net: the applicable net namespace 657 * @name: name to find 658 * 659 * Find an interface by name. Must be called under RTNL semaphore 660 * or @dev_base_lock. If the name is found a pointer to the device 661 * is returned. If the name is not found then %NULL is returned. The 662 * reference counters are not incremented so the caller must be 663 * careful with locks. 664 */ 665 666 struct net_device *__dev_get_by_name(struct net *net, const char *name) 667 { 668 struct net_device *dev; 669 struct hlist_head *head = dev_name_hash(net, name); 670 671 hlist_for_each_entry(dev, head, name_hlist) 672 if (!strncmp(dev->name, name, IFNAMSIZ)) 673 return dev; 674 675 return NULL; 676 } 677 EXPORT_SYMBOL(__dev_get_by_name); 678 679 /** 680 * dev_get_by_name_rcu - find a device by its name 681 * @net: the applicable net namespace 682 * @name: name to find 683 * 684 * Find an interface by name. 685 * If the name is found a pointer to the device is returned. 686 * If the name is not found then %NULL is returned. 687 * The reference counters are not incremented so the caller must be 688 * careful with locks. The caller must hold RCU lock. 689 */ 690 691 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 692 { 693 struct net_device *dev; 694 struct hlist_head *head = dev_name_hash(net, name); 695 696 hlist_for_each_entry_rcu(dev, head, name_hlist) 697 if (!strncmp(dev->name, name, IFNAMSIZ)) 698 return dev; 699 700 return NULL; 701 } 702 EXPORT_SYMBOL(dev_get_by_name_rcu); 703 704 /** 705 * dev_get_by_name - find a device by its name 706 * @net: the applicable net namespace 707 * @name: name to find 708 * 709 * Find an interface by name. This can be called from any 710 * context and does its own locking. The returned handle has 711 * the usage count incremented and the caller must use dev_put() to 712 * release it when it is no longer needed. %NULL is returned if no 713 * matching device is found. 714 */ 715 716 struct net_device *dev_get_by_name(struct net *net, const char *name) 717 { 718 struct net_device *dev; 719 720 rcu_read_lock(); 721 dev = dev_get_by_name_rcu(net, name); 722 if (dev) 723 dev_hold(dev); 724 rcu_read_unlock(); 725 return dev; 726 } 727 EXPORT_SYMBOL(dev_get_by_name); 728 729 /** 730 * __dev_get_by_index - find a device by its ifindex 731 * @net: the applicable net namespace 732 * @ifindex: index of device 733 * 734 * Search for an interface by index. Returns %NULL if the device 735 * is not found or a pointer to the device. The device has not 736 * had its reference counter increased so the caller must be careful 737 * about locking. The caller must hold either the RTNL semaphore 738 * or @dev_base_lock. 739 */ 740 741 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 742 { 743 struct net_device *dev; 744 struct hlist_head *head = dev_index_hash(net, ifindex); 745 746 hlist_for_each_entry(dev, head, index_hlist) 747 if (dev->ifindex == ifindex) 748 return dev; 749 750 return NULL; 751 } 752 EXPORT_SYMBOL(__dev_get_by_index); 753 754 /** 755 * dev_get_by_index_rcu - find a device by its ifindex 756 * @net: the applicable net namespace 757 * @ifindex: index of device 758 * 759 * Search for an interface by index. Returns %NULL if the device 760 * is not found or a pointer to the device. The device has not 761 * had its reference counter increased so the caller must be careful 762 * about locking. The caller must hold RCU lock. 763 */ 764 765 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 766 { 767 struct net_device *dev; 768 struct hlist_head *head = dev_index_hash(net, ifindex); 769 770 hlist_for_each_entry_rcu(dev, head, index_hlist) 771 if (dev->ifindex == ifindex) 772 return dev; 773 774 return NULL; 775 } 776 EXPORT_SYMBOL(dev_get_by_index_rcu); 777 778 779 /** 780 * dev_get_by_index - find a device by its ifindex 781 * @net: the applicable net namespace 782 * @ifindex: index of device 783 * 784 * Search for an interface by index. Returns NULL if the device 785 * is not found or a pointer to the device. The device returned has 786 * had a reference added and the pointer is safe until the user calls 787 * dev_put to indicate they have finished with it. 788 */ 789 790 struct net_device *dev_get_by_index(struct net *net, int ifindex) 791 { 792 struct net_device *dev; 793 794 rcu_read_lock(); 795 dev = dev_get_by_index_rcu(net, ifindex); 796 if (dev) 797 dev_hold(dev); 798 rcu_read_unlock(); 799 return dev; 800 } 801 EXPORT_SYMBOL(dev_get_by_index); 802 803 /** 804 * netdev_get_name - get a netdevice name, knowing its ifindex. 805 * @net: network namespace 806 * @name: a pointer to the buffer where the name will be stored. 807 * @ifindex: the ifindex of the interface to get the name from. 808 * 809 * The use of raw_seqcount_begin() and cond_resched() before 810 * retrying is required as we want to give the writers a chance 811 * to complete when CONFIG_PREEMPT is not set. 812 */ 813 int netdev_get_name(struct net *net, char *name, int ifindex) 814 { 815 struct net_device *dev; 816 unsigned int seq; 817 818 retry: 819 seq = raw_seqcount_begin(&devnet_rename_seq); 820 rcu_read_lock(); 821 dev = dev_get_by_index_rcu(net, ifindex); 822 if (!dev) { 823 rcu_read_unlock(); 824 return -ENODEV; 825 } 826 827 strcpy(name, dev->name); 828 rcu_read_unlock(); 829 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 830 cond_resched(); 831 goto retry; 832 } 833 834 return 0; 835 } 836 837 /** 838 * dev_getbyhwaddr_rcu - find a device by its hardware address 839 * @net: the applicable net namespace 840 * @type: media type of device 841 * @ha: hardware address 842 * 843 * Search for an interface by MAC address. Returns NULL if the device 844 * is not found or a pointer to the device. 845 * The caller must hold RCU or RTNL. 846 * The returned device has not had its ref count increased 847 * and the caller must therefore be careful about locking 848 * 849 */ 850 851 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 852 const char *ha) 853 { 854 struct net_device *dev; 855 856 for_each_netdev_rcu(net, dev) 857 if (dev->type == type && 858 !memcmp(dev->dev_addr, ha, dev->addr_len)) 859 return dev; 860 861 return NULL; 862 } 863 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 864 865 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 866 { 867 struct net_device *dev; 868 869 ASSERT_RTNL(); 870 for_each_netdev(net, dev) 871 if (dev->type == type) 872 return dev; 873 874 return NULL; 875 } 876 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 877 878 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 879 { 880 struct net_device *dev, *ret = NULL; 881 882 rcu_read_lock(); 883 for_each_netdev_rcu(net, dev) 884 if (dev->type == type) { 885 dev_hold(dev); 886 ret = dev; 887 break; 888 } 889 rcu_read_unlock(); 890 return ret; 891 } 892 EXPORT_SYMBOL(dev_getfirstbyhwtype); 893 894 /** 895 * dev_get_by_flags_rcu - find any device with given flags 896 * @net: the applicable net namespace 897 * @if_flags: IFF_* values 898 * @mask: bitmask of bits in if_flags to check 899 * 900 * Search for any interface with the given flags. Returns NULL if a device 901 * is not found or a pointer to the device. Must be called inside 902 * rcu_read_lock(), and result refcount is unchanged. 903 */ 904 905 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags, 906 unsigned short mask) 907 { 908 struct net_device *dev, *ret; 909 910 ret = NULL; 911 for_each_netdev_rcu(net, dev) { 912 if (((dev->flags ^ if_flags) & mask) == 0) { 913 ret = dev; 914 break; 915 } 916 } 917 return ret; 918 } 919 EXPORT_SYMBOL(dev_get_by_flags_rcu); 920 921 /** 922 * dev_valid_name - check if name is okay for network device 923 * @name: name string 924 * 925 * Network device names need to be valid file names to 926 * to allow sysfs to work. We also disallow any kind of 927 * whitespace. 928 */ 929 bool dev_valid_name(const char *name) 930 { 931 if (*name == '\0') 932 return false; 933 if (strlen(name) >= IFNAMSIZ) 934 return false; 935 if (!strcmp(name, ".") || !strcmp(name, "..")) 936 return false; 937 938 while (*name) { 939 if (*name == '/' || isspace(*name)) 940 return false; 941 name++; 942 } 943 return true; 944 } 945 EXPORT_SYMBOL(dev_valid_name); 946 947 /** 948 * __dev_alloc_name - allocate a name for a device 949 * @net: network namespace to allocate the device name in 950 * @name: name format string 951 * @buf: scratch buffer and result name string 952 * 953 * Passed a format string - eg "lt%d" it will try and find a suitable 954 * id. It scans list of devices to build up a free map, then chooses 955 * the first empty slot. The caller must hold the dev_base or rtnl lock 956 * while allocating the name and adding the device in order to avoid 957 * duplicates. 958 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 959 * Returns the number of the unit assigned or a negative errno code. 960 */ 961 962 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 963 { 964 int i = 0; 965 const char *p; 966 const int max_netdevices = 8*PAGE_SIZE; 967 unsigned long *inuse; 968 struct net_device *d; 969 970 p = strnchr(name, IFNAMSIZ-1, '%'); 971 if (p) { 972 /* 973 * Verify the string as this thing may have come from 974 * the user. There must be either one "%d" and no other "%" 975 * characters. 976 */ 977 if (p[1] != 'd' || strchr(p + 2, '%')) 978 return -EINVAL; 979 980 /* Use one page as a bit array of possible slots */ 981 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 982 if (!inuse) 983 return -ENOMEM; 984 985 for_each_netdev(net, d) { 986 if (!sscanf(d->name, name, &i)) 987 continue; 988 if (i < 0 || i >= max_netdevices) 989 continue; 990 991 /* avoid cases where sscanf is not exact inverse of printf */ 992 snprintf(buf, IFNAMSIZ, name, i); 993 if (!strncmp(buf, d->name, IFNAMSIZ)) 994 set_bit(i, inuse); 995 } 996 997 i = find_first_zero_bit(inuse, max_netdevices); 998 free_page((unsigned long) inuse); 999 } 1000 1001 if (buf != name) 1002 snprintf(buf, IFNAMSIZ, name, i); 1003 if (!__dev_get_by_name(net, buf)) 1004 return i; 1005 1006 /* It is possible to run out of possible slots 1007 * when the name is long and there isn't enough space left 1008 * for the digits, or if all bits are used. 1009 */ 1010 return -ENFILE; 1011 } 1012 1013 /** 1014 * dev_alloc_name - allocate a name for a device 1015 * @dev: device 1016 * @name: name format string 1017 * 1018 * Passed a format string - eg "lt%d" it will try and find a suitable 1019 * id. It scans list of devices to build up a free map, then chooses 1020 * the first empty slot. The caller must hold the dev_base or rtnl lock 1021 * while allocating the name and adding the device in order to avoid 1022 * duplicates. 1023 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1024 * Returns the number of the unit assigned or a negative errno code. 1025 */ 1026 1027 int dev_alloc_name(struct net_device *dev, const char *name) 1028 { 1029 char buf[IFNAMSIZ]; 1030 struct net *net; 1031 int ret; 1032 1033 BUG_ON(!dev_net(dev)); 1034 net = dev_net(dev); 1035 ret = __dev_alloc_name(net, name, buf); 1036 if (ret >= 0) 1037 strlcpy(dev->name, buf, IFNAMSIZ); 1038 return ret; 1039 } 1040 EXPORT_SYMBOL(dev_alloc_name); 1041 1042 static int dev_alloc_name_ns(struct net *net, 1043 struct net_device *dev, 1044 const char *name) 1045 { 1046 char buf[IFNAMSIZ]; 1047 int ret; 1048 1049 ret = __dev_alloc_name(net, name, buf); 1050 if (ret >= 0) 1051 strlcpy(dev->name, buf, IFNAMSIZ); 1052 return ret; 1053 } 1054 1055 static int dev_get_valid_name(struct net *net, 1056 struct net_device *dev, 1057 const char *name) 1058 { 1059 BUG_ON(!net); 1060 1061 if (!dev_valid_name(name)) 1062 return -EINVAL; 1063 1064 if (strchr(name, '%')) 1065 return dev_alloc_name_ns(net, dev, name); 1066 else if (__dev_get_by_name(net, name)) 1067 return -EEXIST; 1068 else if (dev->name != name) 1069 strlcpy(dev->name, name, IFNAMSIZ); 1070 1071 return 0; 1072 } 1073 1074 /** 1075 * dev_change_name - change name of a device 1076 * @dev: device 1077 * @newname: name (or format string) must be at least IFNAMSIZ 1078 * 1079 * Change name of a device, can pass format strings "eth%d". 1080 * for wildcarding. 1081 */ 1082 int dev_change_name(struct net_device *dev, const char *newname) 1083 { 1084 char oldname[IFNAMSIZ]; 1085 int err = 0; 1086 int ret; 1087 struct net *net; 1088 1089 ASSERT_RTNL(); 1090 BUG_ON(!dev_net(dev)); 1091 1092 net = dev_net(dev); 1093 if (dev->flags & IFF_UP) 1094 return -EBUSY; 1095 1096 write_seqcount_begin(&devnet_rename_seq); 1097 1098 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1099 write_seqcount_end(&devnet_rename_seq); 1100 return 0; 1101 } 1102 1103 memcpy(oldname, dev->name, IFNAMSIZ); 1104 1105 err = dev_get_valid_name(net, dev, newname); 1106 if (err < 0) { 1107 write_seqcount_end(&devnet_rename_seq); 1108 return err; 1109 } 1110 1111 rollback: 1112 ret = device_rename(&dev->dev, dev->name); 1113 if (ret) { 1114 memcpy(dev->name, oldname, IFNAMSIZ); 1115 write_seqcount_end(&devnet_rename_seq); 1116 return ret; 1117 } 1118 1119 write_seqcount_end(&devnet_rename_seq); 1120 1121 write_lock_bh(&dev_base_lock); 1122 hlist_del_rcu(&dev->name_hlist); 1123 write_unlock_bh(&dev_base_lock); 1124 1125 synchronize_rcu(); 1126 1127 write_lock_bh(&dev_base_lock); 1128 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1129 write_unlock_bh(&dev_base_lock); 1130 1131 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1132 ret = notifier_to_errno(ret); 1133 1134 if (ret) { 1135 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1136 if (err >= 0) { 1137 err = ret; 1138 write_seqcount_begin(&devnet_rename_seq); 1139 memcpy(dev->name, oldname, IFNAMSIZ); 1140 goto rollback; 1141 } else { 1142 pr_err("%s: name change rollback failed: %d\n", 1143 dev->name, ret); 1144 } 1145 } 1146 1147 return err; 1148 } 1149 1150 /** 1151 * dev_set_alias - change ifalias of a device 1152 * @dev: device 1153 * @alias: name up to IFALIASZ 1154 * @len: limit of bytes to copy from info 1155 * 1156 * Set ifalias for a device, 1157 */ 1158 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1159 { 1160 char *new_ifalias; 1161 1162 ASSERT_RTNL(); 1163 1164 if (len >= IFALIASZ) 1165 return -EINVAL; 1166 1167 if (!len) { 1168 kfree(dev->ifalias); 1169 dev->ifalias = NULL; 1170 return 0; 1171 } 1172 1173 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1174 if (!new_ifalias) 1175 return -ENOMEM; 1176 dev->ifalias = new_ifalias; 1177 1178 strlcpy(dev->ifalias, alias, len+1); 1179 return len; 1180 } 1181 1182 1183 /** 1184 * netdev_features_change - device changes features 1185 * @dev: device to cause notification 1186 * 1187 * Called to indicate a device has changed features. 1188 */ 1189 void netdev_features_change(struct net_device *dev) 1190 { 1191 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1192 } 1193 EXPORT_SYMBOL(netdev_features_change); 1194 1195 /** 1196 * netdev_state_change - device changes state 1197 * @dev: device to cause notification 1198 * 1199 * Called to indicate a device has changed state. This function calls 1200 * the notifier chains for netdev_chain and sends a NEWLINK message 1201 * to the routing socket. 1202 */ 1203 void netdev_state_change(struct net_device *dev) 1204 { 1205 if (dev->flags & IFF_UP) { 1206 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1207 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1208 } 1209 } 1210 EXPORT_SYMBOL(netdev_state_change); 1211 1212 /** 1213 * netdev_notify_peers - notify network peers about existence of @dev 1214 * @dev: network device 1215 * 1216 * Generate traffic such that interested network peers are aware of 1217 * @dev, such as by generating a gratuitous ARP. This may be used when 1218 * a device wants to inform the rest of the network about some sort of 1219 * reconfiguration such as a failover event or virtual machine 1220 * migration. 1221 */ 1222 void netdev_notify_peers(struct net_device *dev) 1223 { 1224 rtnl_lock(); 1225 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1226 rtnl_unlock(); 1227 } 1228 EXPORT_SYMBOL(netdev_notify_peers); 1229 1230 static int __dev_open(struct net_device *dev) 1231 { 1232 const struct net_device_ops *ops = dev->netdev_ops; 1233 int ret; 1234 1235 ASSERT_RTNL(); 1236 1237 if (!netif_device_present(dev)) 1238 return -ENODEV; 1239 1240 /* Block netpoll from trying to do any rx path servicing. 1241 * If we don't do this there is a chance ndo_poll_controller 1242 * or ndo_poll may be running while we open the device 1243 */ 1244 netpoll_rx_disable(dev); 1245 1246 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1247 ret = notifier_to_errno(ret); 1248 if (ret) 1249 return ret; 1250 1251 set_bit(__LINK_STATE_START, &dev->state); 1252 1253 if (ops->ndo_validate_addr) 1254 ret = ops->ndo_validate_addr(dev); 1255 1256 if (!ret && ops->ndo_open) 1257 ret = ops->ndo_open(dev); 1258 1259 netpoll_rx_enable(dev); 1260 1261 if (ret) 1262 clear_bit(__LINK_STATE_START, &dev->state); 1263 else { 1264 dev->flags |= IFF_UP; 1265 net_dmaengine_get(); 1266 dev_set_rx_mode(dev); 1267 dev_activate(dev); 1268 add_device_randomness(dev->dev_addr, dev->addr_len); 1269 } 1270 1271 return ret; 1272 } 1273 1274 /** 1275 * dev_open - prepare an interface for use. 1276 * @dev: device to open 1277 * 1278 * Takes a device from down to up state. The device's private open 1279 * function is invoked and then the multicast lists are loaded. Finally 1280 * the device is moved into the up state and a %NETDEV_UP message is 1281 * sent to the netdev notifier chain. 1282 * 1283 * Calling this function on an active interface is a nop. On a failure 1284 * a negative errno code is returned. 1285 */ 1286 int dev_open(struct net_device *dev) 1287 { 1288 int ret; 1289 1290 if (dev->flags & IFF_UP) 1291 return 0; 1292 1293 ret = __dev_open(dev); 1294 if (ret < 0) 1295 return ret; 1296 1297 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1298 call_netdevice_notifiers(NETDEV_UP, dev); 1299 1300 return ret; 1301 } 1302 EXPORT_SYMBOL(dev_open); 1303 1304 static int __dev_close_many(struct list_head *head) 1305 { 1306 struct net_device *dev; 1307 1308 ASSERT_RTNL(); 1309 might_sleep(); 1310 1311 list_for_each_entry(dev, head, close_list) { 1312 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1313 1314 clear_bit(__LINK_STATE_START, &dev->state); 1315 1316 /* Synchronize to scheduled poll. We cannot touch poll list, it 1317 * can be even on different cpu. So just clear netif_running(). 1318 * 1319 * dev->stop() will invoke napi_disable() on all of it's 1320 * napi_struct instances on this device. 1321 */ 1322 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1323 } 1324 1325 dev_deactivate_many(head); 1326 1327 list_for_each_entry(dev, head, close_list) { 1328 const struct net_device_ops *ops = dev->netdev_ops; 1329 1330 /* 1331 * Call the device specific close. This cannot fail. 1332 * Only if device is UP 1333 * 1334 * We allow it to be called even after a DETACH hot-plug 1335 * event. 1336 */ 1337 if (ops->ndo_stop) 1338 ops->ndo_stop(dev); 1339 1340 dev->flags &= ~IFF_UP; 1341 net_dmaengine_put(); 1342 } 1343 1344 return 0; 1345 } 1346 1347 static int __dev_close(struct net_device *dev) 1348 { 1349 int retval; 1350 LIST_HEAD(single); 1351 1352 /* Temporarily disable netpoll until the interface is down */ 1353 netpoll_rx_disable(dev); 1354 1355 list_add(&dev->close_list, &single); 1356 retval = __dev_close_many(&single); 1357 list_del(&single); 1358 1359 netpoll_rx_enable(dev); 1360 return retval; 1361 } 1362 1363 static int dev_close_many(struct list_head *head) 1364 { 1365 struct net_device *dev, *tmp; 1366 1367 /* Remove the devices that don't need to be closed */ 1368 list_for_each_entry_safe(dev, tmp, head, close_list) 1369 if (!(dev->flags & IFF_UP)) 1370 list_del_init(&dev->close_list); 1371 1372 __dev_close_many(head); 1373 1374 list_for_each_entry_safe(dev, tmp, head, close_list) { 1375 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1376 call_netdevice_notifiers(NETDEV_DOWN, dev); 1377 list_del_init(&dev->close_list); 1378 } 1379 1380 return 0; 1381 } 1382 1383 /** 1384 * dev_close - shutdown an interface. 1385 * @dev: device to shutdown 1386 * 1387 * This function moves an active device into down state. A 1388 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1389 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1390 * chain. 1391 */ 1392 int dev_close(struct net_device *dev) 1393 { 1394 if (dev->flags & IFF_UP) { 1395 LIST_HEAD(single); 1396 1397 /* Block netpoll rx while the interface is going down */ 1398 netpoll_rx_disable(dev); 1399 1400 list_add(&dev->close_list, &single); 1401 dev_close_many(&single); 1402 list_del(&single); 1403 1404 netpoll_rx_enable(dev); 1405 } 1406 return 0; 1407 } 1408 EXPORT_SYMBOL(dev_close); 1409 1410 1411 /** 1412 * dev_disable_lro - disable Large Receive Offload on a device 1413 * @dev: device 1414 * 1415 * Disable Large Receive Offload (LRO) on a net device. Must be 1416 * called under RTNL. This is needed if received packets may be 1417 * forwarded to another interface. 1418 */ 1419 void dev_disable_lro(struct net_device *dev) 1420 { 1421 /* 1422 * If we're trying to disable lro on a vlan device 1423 * use the underlying physical device instead 1424 */ 1425 if (is_vlan_dev(dev)) 1426 dev = vlan_dev_real_dev(dev); 1427 1428 /* the same for macvlan devices */ 1429 if (netif_is_macvlan(dev)) 1430 dev = macvlan_dev_real_dev(dev); 1431 1432 dev->wanted_features &= ~NETIF_F_LRO; 1433 netdev_update_features(dev); 1434 1435 if (unlikely(dev->features & NETIF_F_LRO)) 1436 netdev_WARN(dev, "failed to disable LRO!\n"); 1437 } 1438 EXPORT_SYMBOL(dev_disable_lro); 1439 1440 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1441 struct net_device *dev) 1442 { 1443 struct netdev_notifier_info info; 1444 1445 netdev_notifier_info_init(&info, dev); 1446 return nb->notifier_call(nb, val, &info); 1447 } 1448 1449 static int dev_boot_phase = 1; 1450 1451 /** 1452 * register_netdevice_notifier - register a network notifier block 1453 * @nb: notifier 1454 * 1455 * Register a notifier to be called when network device events occur. 1456 * The notifier passed is linked into the kernel structures and must 1457 * not be reused until it has been unregistered. A negative errno code 1458 * is returned on a failure. 1459 * 1460 * When registered all registration and up events are replayed 1461 * to the new notifier to allow device to have a race free 1462 * view of the network device list. 1463 */ 1464 1465 int register_netdevice_notifier(struct notifier_block *nb) 1466 { 1467 struct net_device *dev; 1468 struct net_device *last; 1469 struct net *net; 1470 int err; 1471 1472 rtnl_lock(); 1473 err = raw_notifier_chain_register(&netdev_chain, nb); 1474 if (err) 1475 goto unlock; 1476 if (dev_boot_phase) 1477 goto unlock; 1478 for_each_net(net) { 1479 for_each_netdev(net, dev) { 1480 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1481 err = notifier_to_errno(err); 1482 if (err) 1483 goto rollback; 1484 1485 if (!(dev->flags & IFF_UP)) 1486 continue; 1487 1488 call_netdevice_notifier(nb, NETDEV_UP, dev); 1489 } 1490 } 1491 1492 unlock: 1493 rtnl_unlock(); 1494 return err; 1495 1496 rollback: 1497 last = dev; 1498 for_each_net(net) { 1499 for_each_netdev(net, dev) { 1500 if (dev == last) 1501 goto outroll; 1502 1503 if (dev->flags & IFF_UP) { 1504 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1505 dev); 1506 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1507 } 1508 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1509 } 1510 } 1511 1512 outroll: 1513 raw_notifier_chain_unregister(&netdev_chain, nb); 1514 goto unlock; 1515 } 1516 EXPORT_SYMBOL(register_netdevice_notifier); 1517 1518 /** 1519 * unregister_netdevice_notifier - unregister a network notifier block 1520 * @nb: notifier 1521 * 1522 * Unregister a notifier previously registered by 1523 * register_netdevice_notifier(). The notifier is unlinked into the 1524 * kernel structures and may then be reused. A negative errno code 1525 * is returned on a failure. 1526 * 1527 * After unregistering unregister and down device events are synthesized 1528 * for all devices on the device list to the removed notifier to remove 1529 * the need for special case cleanup code. 1530 */ 1531 1532 int unregister_netdevice_notifier(struct notifier_block *nb) 1533 { 1534 struct net_device *dev; 1535 struct net *net; 1536 int err; 1537 1538 rtnl_lock(); 1539 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1540 if (err) 1541 goto unlock; 1542 1543 for_each_net(net) { 1544 for_each_netdev(net, dev) { 1545 if (dev->flags & IFF_UP) { 1546 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1547 dev); 1548 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1549 } 1550 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1551 } 1552 } 1553 unlock: 1554 rtnl_unlock(); 1555 return err; 1556 } 1557 EXPORT_SYMBOL(unregister_netdevice_notifier); 1558 1559 /** 1560 * call_netdevice_notifiers_info - call all network notifier blocks 1561 * @val: value passed unmodified to notifier function 1562 * @dev: net_device pointer passed unmodified to notifier function 1563 * @info: notifier information data 1564 * 1565 * Call all network notifier blocks. Parameters and return value 1566 * are as for raw_notifier_call_chain(). 1567 */ 1568 1569 int call_netdevice_notifiers_info(unsigned long val, struct net_device *dev, 1570 struct netdev_notifier_info *info) 1571 { 1572 ASSERT_RTNL(); 1573 netdev_notifier_info_init(info, dev); 1574 return raw_notifier_call_chain(&netdev_chain, val, info); 1575 } 1576 EXPORT_SYMBOL(call_netdevice_notifiers_info); 1577 1578 /** 1579 * call_netdevice_notifiers - call all network notifier blocks 1580 * @val: value passed unmodified to notifier function 1581 * @dev: net_device pointer passed unmodified to notifier function 1582 * 1583 * Call all network notifier blocks. Parameters and return value 1584 * are as for raw_notifier_call_chain(). 1585 */ 1586 1587 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1588 { 1589 struct netdev_notifier_info info; 1590 1591 return call_netdevice_notifiers_info(val, dev, &info); 1592 } 1593 EXPORT_SYMBOL(call_netdevice_notifiers); 1594 1595 static struct static_key netstamp_needed __read_mostly; 1596 #ifdef HAVE_JUMP_LABEL 1597 /* We are not allowed to call static_key_slow_dec() from irq context 1598 * If net_disable_timestamp() is called from irq context, defer the 1599 * static_key_slow_dec() calls. 1600 */ 1601 static atomic_t netstamp_needed_deferred; 1602 #endif 1603 1604 void net_enable_timestamp(void) 1605 { 1606 #ifdef HAVE_JUMP_LABEL 1607 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1608 1609 if (deferred) { 1610 while (--deferred) 1611 static_key_slow_dec(&netstamp_needed); 1612 return; 1613 } 1614 #endif 1615 static_key_slow_inc(&netstamp_needed); 1616 } 1617 EXPORT_SYMBOL(net_enable_timestamp); 1618 1619 void net_disable_timestamp(void) 1620 { 1621 #ifdef HAVE_JUMP_LABEL 1622 if (in_interrupt()) { 1623 atomic_inc(&netstamp_needed_deferred); 1624 return; 1625 } 1626 #endif 1627 static_key_slow_dec(&netstamp_needed); 1628 } 1629 EXPORT_SYMBOL(net_disable_timestamp); 1630 1631 static inline void net_timestamp_set(struct sk_buff *skb) 1632 { 1633 skb->tstamp.tv64 = 0; 1634 if (static_key_false(&netstamp_needed)) 1635 __net_timestamp(skb); 1636 } 1637 1638 #define net_timestamp_check(COND, SKB) \ 1639 if (static_key_false(&netstamp_needed)) { \ 1640 if ((COND) && !(SKB)->tstamp.tv64) \ 1641 __net_timestamp(SKB); \ 1642 } \ 1643 1644 static inline bool is_skb_forwardable(struct net_device *dev, 1645 struct sk_buff *skb) 1646 { 1647 unsigned int len; 1648 1649 if (!(dev->flags & IFF_UP)) 1650 return false; 1651 1652 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1653 if (skb->len <= len) 1654 return true; 1655 1656 /* if TSO is enabled, we don't care about the length as the packet 1657 * could be forwarded without being segmented before 1658 */ 1659 if (skb_is_gso(skb)) 1660 return true; 1661 1662 return false; 1663 } 1664 1665 /** 1666 * dev_forward_skb - loopback an skb to another netif 1667 * 1668 * @dev: destination network device 1669 * @skb: buffer to forward 1670 * 1671 * return values: 1672 * NET_RX_SUCCESS (no congestion) 1673 * NET_RX_DROP (packet was dropped, but freed) 1674 * 1675 * dev_forward_skb can be used for injecting an skb from the 1676 * start_xmit function of one device into the receive queue 1677 * of another device. 1678 * 1679 * The receiving device may be in another namespace, so 1680 * we have to clear all information in the skb that could 1681 * impact namespace isolation. 1682 */ 1683 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1684 { 1685 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 1686 if (skb_copy_ubufs(skb, GFP_ATOMIC)) { 1687 atomic_long_inc(&dev->rx_dropped); 1688 kfree_skb(skb); 1689 return NET_RX_DROP; 1690 } 1691 } 1692 1693 if (unlikely(!is_skb_forwardable(dev, skb))) { 1694 atomic_long_inc(&dev->rx_dropped); 1695 kfree_skb(skb); 1696 return NET_RX_DROP; 1697 } 1698 1699 skb_scrub_packet(skb, true); 1700 skb->protocol = eth_type_trans(skb, dev); 1701 1702 return netif_rx(skb); 1703 } 1704 EXPORT_SYMBOL_GPL(dev_forward_skb); 1705 1706 static inline int deliver_skb(struct sk_buff *skb, 1707 struct packet_type *pt_prev, 1708 struct net_device *orig_dev) 1709 { 1710 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 1711 return -ENOMEM; 1712 atomic_inc(&skb->users); 1713 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1714 } 1715 1716 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1717 { 1718 if (!ptype->af_packet_priv || !skb->sk) 1719 return false; 1720 1721 if (ptype->id_match) 1722 return ptype->id_match(ptype, skb->sk); 1723 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1724 return true; 1725 1726 return false; 1727 } 1728 1729 /* 1730 * Support routine. Sends outgoing frames to any network 1731 * taps currently in use. 1732 */ 1733 1734 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1735 { 1736 struct packet_type *ptype; 1737 struct sk_buff *skb2 = NULL; 1738 struct packet_type *pt_prev = NULL; 1739 1740 rcu_read_lock(); 1741 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1742 /* Never send packets back to the socket 1743 * they originated from - MvS (miquels@drinkel.ow.org) 1744 */ 1745 if ((ptype->dev == dev || !ptype->dev) && 1746 (!skb_loop_sk(ptype, skb))) { 1747 if (pt_prev) { 1748 deliver_skb(skb2, pt_prev, skb->dev); 1749 pt_prev = ptype; 1750 continue; 1751 } 1752 1753 skb2 = skb_clone(skb, GFP_ATOMIC); 1754 if (!skb2) 1755 break; 1756 1757 net_timestamp_set(skb2); 1758 1759 /* skb->nh should be correctly 1760 set by sender, so that the second statement is 1761 just protection against buggy protocols. 1762 */ 1763 skb_reset_mac_header(skb2); 1764 1765 if (skb_network_header(skb2) < skb2->data || 1766 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 1767 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1768 ntohs(skb2->protocol), 1769 dev->name); 1770 skb_reset_network_header(skb2); 1771 } 1772 1773 skb2->transport_header = skb2->network_header; 1774 skb2->pkt_type = PACKET_OUTGOING; 1775 pt_prev = ptype; 1776 } 1777 } 1778 if (pt_prev) 1779 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1780 rcu_read_unlock(); 1781 } 1782 1783 /** 1784 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1785 * @dev: Network device 1786 * @txq: number of queues available 1787 * 1788 * If real_num_tx_queues is changed the tc mappings may no longer be 1789 * valid. To resolve this verify the tc mapping remains valid and if 1790 * not NULL the mapping. With no priorities mapping to this 1791 * offset/count pair it will no longer be used. In the worst case TC0 1792 * is invalid nothing can be done so disable priority mappings. If is 1793 * expected that drivers will fix this mapping if they can before 1794 * calling netif_set_real_num_tx_queues. 1795 */ 1796 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1797 { 1798 int i; 1799 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1800 1801 /* If TC0 is invalidated disable TC mapping */ 1802 if (tc->offset + tc->count > txq) { 1803 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1804 dev->num_tc = 0; 1805 return; 1806 } 1807 1808 /* Invalidated prio to tc mappings set to TC0 */ 1809 for (i = 1; i < TC_BITMASK + 1; i++) { 1810 int q = netdev_get_prio_tc_map(dev, i); 1811 1812 tc = &dev->tc_to_txq[q]; 1813 if (tc->offset + tc->count > txq) { 1814 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1815 i, q); 1816 netdev_set_prio_tc_map(dev, i, 0); 1817 } 1818 } 1819 } 1820 1821 #ifdef CONFIG_XPS 1822 static DEFINE_MUTEX(xps_map_mutex); 1823 #define xmap_dereference(P) \ 1824 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 1825 1826 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps, 1827 int cpu, u16 index) 1828 { 1829 struct xps_map *map = NULL; 1830 int pos; 1831 1832 if (dev_maps) 1833 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1834 1835 for (pos = 0; map && pos < map->len; pos++) { 1836 if (map->queues[pos] == index) { 1837 if (map->len > 1) { 1838 map->queues[pos] = map->queues[--map->len]; 1839 } else { 1840 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL); 1841 kfree_rcu(map, rcu); 1842 map = NULL; 1843 } 1844 break; 1845 } 1846 } 1847 1848 return map; 1849 } 1850 1851 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 1852 { 1853 struct xps_dev_maps *dev_maps; 1854 int cpu, i; 1855 bool active = false; 1856 1857 mutex_lock(&xps_map_mutex); 1858 dev_maps = xmap_dereference(dev->xps_maps); 1859 1860 if (!dev_maps) 1861 goto out_no_maps; 1862 1863 for_each_possible_cpu(cpu) { 1864 for (i = index; i < dev->num_tx_queues; i++) { 1865 if (!remove_xps_queue(dev_maps, cpu, i)) 1866 break; 1867 } 1868 if (i == dev->num_tx_queues) 1869 active = true; 1870 } 1871 1872 if (!active) { 1873 RCU_INIT_POINTER(dev->xps_maps, NULL); 1874 kfree_rcu(dev_maps, rcu); 1875 } 1876 1877 for (i = index; i < dev->num_tx_queues; i++) 1878 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 1879 NUMA_NO_NODE); 1880 1881 out_no_maps: 1882 mutex_unlock(&xps_map_mutex); 1883 } 1884 1885 static struct xps_map *expand_xps_map(struct xps_map *map, 1886 int cpu, u16 index) 1887 { 1888 struct xps_map *new_map; 1889 int alloc_len = XPS_MIN_MAP_ALLOC; 1890 int i, pos; 1891 1892 for (pos = 0; map && pos < map->len; pos++) { 1893 if (map->queues[pos] != index) 1894 continue; 1895 return map; 1896 } 1897 1898 /* Need to add queue to this CPU's existing map */ 1899 if (map) { 1900 if (pos < map->alloc_len) 1901 return map; 1902 1903 alloc_len = map->alloc_len * 2; 1904 } 1905 1906 /* Need to allocate new map to store queue on this CPU's map */ 1907 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 1908 cpu_to_node(cpu)); 1909 if (!new_map) 1910 return NULL; 1911 1912 for (i = 0; i < pos; i++) 1913 new_map->queues[i] = map->queues[i]; 1914 new_map->alloc_len = alloc_len; 1915 new_map->len = pos; 1916 1917 return new_map; 1918 } 1919 1920 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 1921 u16 index) 1922 { 1923 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 1924 struct xps_map *map, *new_map; 1925 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES); 1926 int cpu, numa_node_id = -2; 1927 bool active = false; 1928 1929 mutex_lock(&xps_map_mutex); 1930 1931 dev_maps = xmap_dereference(dev->xps_maps); 1932 1933 /* allocate memory for queue storage */ 1934 for_each_online_cpu(cpu) { 1935 if (!cpumask_test_cpu(cpu, mask)) 1936 continue; 1937 1938 if (!new_dev_maps) 1939 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 1940 if (!new_dev_maps) { 1941 mutex_unlock(&xps_map_mutex); 1942 return -ENOMEM; 1943 } 1944 1945 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 1946 NULL; 1947 1948 map = expand_xps_map(map, cpu, index); 1949 if (!map) 1950 goto error; 1951 1952 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 1953 } 1954 1955 if (!new_dev_maps) 1956 goto out_no_new_maps; 1957 1958 for_each_possible_cpu(cpu) { 1959 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 1960 /* add queue to CPU maps */ 1961 int pos = 0; 1962 1963 map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 1964 while ((pos < map->len) && (map->queues[pos] != index)) 1965 pos++; 1966 1967 if (pos == map->len) 1968 map->queues[map->len++] = index; 1969 #ifdef CONFIG_NUMA 1970 if (numa_node_id == -2) 1971 numa_node_id = cpu_to_node(cpu); 1972 else if (numa_node_id != cpu_to_node(cpu)) 1973 numa_node_id = -1; 1974 #endif 1975 } else if (dev_maps) { 1976 /* fill in the new device map from the old device map */ 1977 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1978 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 1979 } 1980 1981 } 1982 1983 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 1984 1985 /* Cleanup old maps */ 1986 if (dev_maps) { 1987 for_each_possible_cpu(cpu) { 1988 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 1989 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1990 if (map && map != new_map) 1991 kfree_rcu(map, rcu); 1992 } 1993 1994 kfree_rcu(dev_maps, rcu); 1995 } 1996 1997 dev_maps = new_dev_maps; 1998 active = true; 1999 2000 out_no_new_maps: 2001 /* update Tx queue numa node */ 2002 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2003 (numa_node_id >= 0) ? numa_node_id : 2004 NUMA_NO_NODE); 2005 2006 if (!dev_maps) 2007 goto out_no_maps; 2008 2009 /* removes queue from unused CPUs */ 2010 for_each_possible_cpu(cpu) { 2011 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) 2012 continue; 2013 2014 if (remove_xps_queue(dev_maps, cpu, index)) 2015 active = true; 2016 } 2017 2018 /* free map if not active */ 2019 if (!active) { 2020 RCU_INIT_POINTER(dev->xps_maps, NULL); 2021 kfree_rcu(dev_maps, rcu); 2022 } 2023 2024 out_no_maps: 2025 mutex_unlock(&xps_map_mutex); 2026 2027 return 0; 2028 error: 2029 /* remove any maps that we added */ 2030 for_each_possible_cpu(cpu) { 2031 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2032 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 2033 NULL; 2034 if (new_map && new_map != map) 2035 kfree(new_map); 2036 } 2037 2038 mutex_unlock(&xps_map_mutex); 2039 2040 kfree(new_dev_maps); 2041 return -ENOMEM; 2042 } 2043 EXPORT_SYMBOL(netif_set_xps_queue); 2044 2045 #endif 2046 /* 2047 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2048 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 2049 */ 2050 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2051 { 2052 int rc; 2053 2054 if (txq < 1 || txq > dev->num_tx_queues) 2055 return -EINVAL; 2056 2057 if (dev->reg_state == NETREG_REGISTERED || 2058 dev->reg_state == NETREG_UNREGISTERING) { 2059 ASSERT_RTNL(); 2060 2061 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2062 txq); 2063 if (rc) 2064 return rc; 2065 2066 if (dev->num_tc) 2067 netif_setup_tc(dev, txq); 2068 2069 if (txq < dev->real_num_tx_queues) { 2070 qdisc_reset_all_tx_gt(dev, txq); 2071 #ifdef CONFIG_XPS 2072 netif_reset_xps_queues_gt(dev, txq); 2073 #endif 2074 } 2075 } 2076 2077 dev->real_num_tx_queues = txq; 2078 return 0; 2079 } 2080 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2081 2082 #ifdef CONFIG_RPS 2083 /** 2084 * netif_set_real_num_rx_queues - set actual number of RX queues used 2085 * @dev: Network device 2086 * @rxq: Actual number of RX queues 2087 * 2088 * This must be called either with the rtnl_lock held or before 2089 * registration of the net device. Returns 0 on success, or a 2090 * negative error code. If called before registration, it always 2091 * succeeds. 2092 */ 2093 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2094 { 2095 int rc; 2096 2097 if (rxq < 1 || rxq > dev->num_rx_queues) 2098 return -EINVAL; 2099 2100 if (dev->reg_state == NETREG_REGISTERED) { 2101 ASSERT_RTNL(); 2102 2103 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2104 rxq); 2105 if (rc) 2106 return rc; 2107 } 2108 2109 dev->real_num_rx_queues = rxq; 2110 return 0; 2111 } 2112 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2113 #endif 2114 2115 /** 2116 * netif_get_num_default_rss_queues - default number of RSS queues 2117 * 2118 * This routine should set an upper limit on the number of RSS queues 2119 * used by default by multiqueue devices. 2120 */ 2121 int netif_get_num_default_rss_queues(void) 2122 { 2123 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2124 } 2125 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2126 2127 static inline void __netif_reschedule(struct Qdisc *q) 2128 { 2129 struct softnet_data *sd; 2130 unsigned long flags; 2131 2132 local_irq_save(flags); 2133 sd = &__get_cpu_var(softnet_data); 2134 q->next_sched = NULL; 2135 *sd->output_queue_tailp = q; 2136 sd->output_queue_tailp = &q->next_sched; 2137 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2138 local_irq_restore(flags); 2139 } 2140 2141 void __netif_schedule(struct Qdisc *q) 2142 { 2143 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2144 __netif_reschedule(q); 2145 } 2146 EXPORT_SYMBOL(__netif_schedule); 2147 2148 void dev_kfree_skb_irq(struct sk_buff *skb) 2149 { 2150 if (atomic_dec_and_test(&skb->users)) { 2151 struct softnet_data *sd; 2152 unsigned long flags; 2153 2154 local_irq_save(flags); 2155 sd = &__get_cpu_var(softnet_data); 2156 skb->next = sd->completion_queue; 2157 sd->completion_queue = skb; 2158 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2159 local_irq_restore(flags); 2160 } 2161 } 2162 EXPORT_SYMBOL(dev_kfree_skb_irq); 2163 2164 void dev_kfree_skb_any(struct sk_buff *skb) 2165 { 2166 if (in_irq() || irqs_disabled()) 2167 dev_kfree_skb_irq(skb); 2168 else 2169 dev_kfree_skb(skb); 2170 } 2171 EXPORT_SYMBOL(dev_kfree_skb_any); 2172 2173 2174 /** 2175 * netif_device_detach - mark device as removed 2176 * @dev: network device 2177 * 2178 * Mark device as removed from system and therefore no longer available. 2179 */ 2180 void netif_device_detach(struct net_device *dev) 2181 { 2182 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2183 netif_running(dev)) { 2184 netif_tx_stop_all_queues(dev); 2185 } 2186 } 2187 EXPORT_SYMBOL(netif_device_detach); 2188 2189 /** 2190 * netif_device_attach - mark device as attached 2191 * @dev: network device 2192 * 2193 * Mark device as attached from system and restart if needed. 2194 */ 2195 void netif_device_attach(struct net_device *dev) 2196 { 2197 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2198 netif_running(dev)) { 2199 netif_tx_wake_all_queues(dev); 2200 __netdev_watchdog_up(dev); 2201 } 2202 } 2203 EXPORT_SYMBOL(netif_device_attach); 2204 2205 static void skb_warn_bad_offload(const struct sk_buff *skb) 2206 { 2207 static const netdev_features_t null_features = 0; 2208 struct net_device *dev = skb->dev; 2209 const char *driver = ""; 2210 2211 if (!net_ratelimit()) 2212 return; 2213 2214 if (dev && dev->dev.parent) 2215 driver = dev_driver_string(dev->dev.parent); 2216 2217 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2218 "gso_type=%d ip_summed=%d\n", 2219 driver, dev ? &dev->features : &null_features, 2220 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2221 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2222 skb_shinfo(skb)->gso_type, skb->ip_summed); 2223 } 2224 2225 /* 2226 * Invalidate hardware checksum when packet is to be mangled, and 2227 * complete checksum manually on outgoing path. 2228 */ 2229 int skb_checksum_help(struct sk_buff *skb) 2230 { 2231 __wsum csum; 2232 int ret = 0, offset; 2233 2234 if (skb->ip_summed == CHECKSUM_COMPLETE) 2235 goto out_set_summed; 2236 2237 if (unlikely(skb_shinfo(skb)->gso_size)) { 2238 skb_warn_bad_offload(skb); 2239 return -EINVAL; 2240 } 2241 2242 /* Before computing a checksum, we should make sure no frag could 2243 * be modified by an external entity : checksum could be wrong. 2244 */ 2245 if (skb_has_shared_frag(skb)) { 2246 ret = __skb_linearize(skb); 2247 if (ret) 2248 goto out; 2249 } 2250 2251 offset = skb_checksum_start_offset(skb); 2252 BUG_ON(offset >= skb_headlen(skb)); 2253 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2254 2255 offset += skb->csum_offset; 2256 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2257 2258 if (skb_cloned(skb) && 2259 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2260 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2261 if (ret) 2262 goto out; 2263 } 2264 2265 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 2266 out_set_summed: 2267 skb->ip_summed = CHECKSUM_NONE; 2268 out: 2269 return ret; 2270 } 2271 EXPORT_SYMBOL(skb_checksum_help); 2272 2273 __be16 skb_network_protocol(struct sk_buff *skb) 2274 { 2275 __be16 type = skb->protocol; 2276 int vlan_depth = ETH_HLEN; 2277 2278 /* Tunnel gso handlers can set protocol to ethernet. */ 2279 if (type == htons(ETH_P_TEB)) { 2280 struct ethhdr *eth; 2281 2282 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2283 return 0; 2284 2285 eth = (struct ethhdr *)skb_mac_header(skb); 2286 type = eth->h_proto; 2287 } 2288 2289 while (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) { 2290 struct vlan_hdr *vh; 2291 2292 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN))) 2293 return 0; 2294 2295 vh = (struct vlan_hdr *)(skb->data + vlan_depth); 2296 type = vh->h_vlan_encapsulated_proto; 2297 vlan_depth += VLAN_HLEN; 2298 } 2299 2300 return type; 2301 } 2302 2303 /** 2304 * skb_mac_gso_segment - mac layer segmentation handler. 2305 * @skb: buffer to segment 2306 * @features: features for the output path (see dev->features) 2307 */ 2308 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2309 netdev_features_t features) 2310 { 2311 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2312 struct packet_offload *ptype; 2313 __be16 type = skb_network_protocol(skb); 2314 2315 if (unlikely(!type)) 2316 return ERR_PTR(-EINVAL); 2317 2318 __skb_pull(skb, skb->mac_len); 2319 2320 rcu_read_lock(); 2321 list_for_each_entry_rcu(ptype, &offload_base, list) { 2322 if (ptype->type == type && ptype->callbacks.gso_segment) { 2323 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 2324 int err; 2325 2326 err = ptype->callbacks.gso_send_check(skb); 2327 segs = ERR_PTR(err); 2328 if (err || skb_gso_ok(skb, features)) 2329 break; 2330 __skb_push(skb, (skb->data - 2331 skb_network_header(skb))); 2332 } 2333 segs = ptype->callbacks.gso_segment(skb, features); 2334 break; 2335 } 2336 } 2337 rcu_read_unlock(); 2338 2339 __skb_push(skb, skb->data - skb_mac_header(skb)); 2340 2341 return segs; 2342 } 2343 EXPORT_SYMBOL(skb_mac_gso_segment); 2344 2345 2346 /* openvswitch calls this on rx path, so we need a different check. 2347 */ 2348 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2349 { 2350 if (tx_path) 2351 return skb->ip_summed != CHECKSUM_PARTIAL; 2352 else 2353 return skb->ip_summed == CHECKSUM_NONE; 2354 } 2355 2356 /** 2357 * __skb_gso_segment - Perform segmentation on skb. 2358 * @skb: buffer to segment 2359 * @features: features for the output path (see dev->features) 2360 * @tx_path: whether it is called in TX path 2361 * 2362 * This function segments the given skb and returns a list of segments. 2363 * 2364 * It may return NULL if the skb requires no segmentation. This is 2365 * only possible when GSO is used for verifying header integrity. 2366 */ 2367 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2368 netdev_features_t features, bool tx_path) 2369 { 2370 if (unlikely(skb_needs_check(skb, tx_path))) { 2371 int err; 2372 2373 skb_warn_bad_offload(skb); 2374 2375 if (skb_header_cloned(skb) && 2376 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 2377 return ERR_PTR(err); 2378 } 2379 2380 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2381 SKB_GSO_CB(skb)->encap_level = 0; 2382 2383 skb_reset_mac_header(skb); 2384 skb_reset_mac_len(skb); 2385 2386 return skb_mac_gso_segment(skb, features); 2387 } 2388 EXPORT_SYMBOL(__skb_gso_segment); 2389 2390 /* Take action when hardware reception checksum errors are detected. */ 2391 #ifdef CONFIG_BUG 2392 void netdev_rx_csum_fault(struct net_device *dev) 2393 { 2394 if (net_ratelimit()) { 2395 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2396 dump_stack(); 2397 } 2398 } 2399 EXPORT_SYMBOL(netdev_rx_csum_fault); 2400 #endif 2401 2402 /* Actually, we should eliminate this check as soon as we know, that: 2403 * 1. IOMMU is present and allows to map all the memory. 2404 * 2. No high memory really exists on this machine. 2405 */ 2406 2407 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2408 { 2409 #ifdef CONFIG_HIGHMEM 2410 int i; 2411 if (!(dev->features & NETIF_F_HIGHDMA)) { 2412 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2413 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2414 if (PageHighMem(skb_frag_page(frag))) 2415 return 1; 2416 } 2417 } 2418 2419 if (PCI_DMA_BUS_IS_PHYS) { 2420 struct device *pdev = dev->dev.parent; 2421 2422 if (!pdev) 2423 return 0; 2424 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2425 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2426 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2427 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2428 return 1; 2429 } 2430 } 2431 #endif 2432 return 0; 2433 } 2434 2435 struct dev_gso_cb { 2436 void (*destructor)(struct sk_buff *skb); 2437 }; 2438 2439 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 2440 2441 static void dev_gso_skb_destructor(struct sk_buff *skb) 2442 { 2443 struct dev_gso_cb *cb; 2444 2445 do { 2446 struct sk_buff *nskb = skb->next; 2447 2448 skb->next = nskb->next; 2449 nskb->next = NULL; 2450 kfree_skb(nskb); 2451 } while (skb->next); 2452 2453 cb = DEV_GSO_CB(skb); 2454 if (cb->destructor) 2455 cb->destructor(skb); 2456 } 2457 2458 /** 2459 * dev_gso_segment - Perform emulated hardware segmentation on skb. 2460 * @skb: buffer to segment 2461 * @features: device features as applicable to this skb 2462 * 2463 * This function segments the given skb and stores the list of segments 2464 * in skb->next. 2465 */ 2466 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features) 2467 { 2468 struct sk_buff *segs; 2469 2470 segs = skb_gso_segment(skb, features); 2471 2472 /* Verifying header integrity only. */ 2473 if (!segs) 2474 return 0; 2475 2476 if (IS_ERR(segs)) 2477 return PTR_ERR(segs); 2478 2479 skb->next = segs; 2480 DEV_GSO_CB(skb)->destructor = skb->destructor; 2481 skb->destructor = dev_gso_skb_destructor; 2482 2483 return 0; 2484 } 2485 2486 static netdev_features_t harmonize_features(struct sk_buff *skb, 2487 netdev_features_t features) 2488 { 2489 if (skb->ip_summed != CHECKSUM_NONE && 2490 !can_checksum_protocol(features, skb_network_protocol(skb))) { 2491 features &= ~NETIF_F_ALL_CSUM; 2492 } else if (illegal_highdma(skb->dev, skb)) { 2493 features &= ~NETIF_F_SG; 2494 } 2495 2496 return features; 2497 } 2498 2499 netdev_features_t netif_skb_features(struct sk_buff *skb) 2500 { 2501 __be16 protocol = skb->protocol; 2502 netdev_features_t features = skb->dev->features; 2503 2504 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs) 2505 features &= ~NETIF_F_GSO_MASK; 2506 2507 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) { 2508 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 2509 protocol = veh->h_vlan_encapsulated_proto; 2510 } else if (!vlan_tx_tag_present(skb)) { 2511 return harmonize_features(skb, features); 2512 } 2513 2514 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX | 2515 NETIF_F_HW_VLAN_STAG_TX); 2516 2517 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) 2518 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST | 2519 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX | 2520 NETIF_F_HW_VLAN_STAG_TX; 2521 2522 return harmonize_features(skb, features); 2523 } 2524 EXPORT_SYMBOL(netif_skb_features); 2525 2526 /* 2527 * Returns true if either: 2528 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 2529 * 2. skb is fragmented and the device does not support SG. 2530 */ 2531 static inline int skb_needs_linearize(struct sk_buff *skb, 2532 netdev_features_t features) 2533 { 2534 return skb_is_nonlinear(skb) && 2535 ((skb_has_frag_list(skb) && 2536 !(features & NETIF_F_FRAGLIST)) || 2537 (skb_shinfo(skb)->nr_frags && 2538 !(features & NETIF_F_SG))); 2539 } 2540 2541 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 2542 struct netdev_queue *txq) 2543 { 2544 const struct net_device_ops *ops = dev->netdev_ops; 2545 int rc = NETDEV_TX_OK; 2546 unsigned int skb_len; 2547 2548 if (likely(!skb->next)) { 2549 netdev_features_t features; 2550 2551 /* 2552 * If device doesn't need skb->dst, release it right now while 2553 * its hot in this cpu cache 2554 */ 2555 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2556 skb_dst_drop(skb); 2557 2558 features = netif_skb_features(skb); 2559 2560 if (vlan_tx_tag_present(skb) && 2561 !vlan_hw_offload_capable(features, skb->vlan_proto)) { 2562 skb = __vlan_put_tag(skb, skb->vlan_proto, 2563 vlan_tx_tag_get(skb)); 2564 if (unlikely(!skb)) 2565 goto out; 2566 2567 skb->vlan_tci = 0; 2568 } 2569 2570 /* If encapsulation offload request, verify we are testing 2571 * hardware encapsulation features instead of standard 2572 * features for the netdev 2573 */ 2574 if (skb->encapsulation) 2575 features &= dev->hw_enc_features; 2576 2577 if (netif_needs_gso(skb, features)) { 2578 if (unlikely(dev_gso_segment(skb, features))) 2579 goto out_kfree_skb; 2580 if (skb->next) 2581 goto gso; 2582 } else { 2583 if (skb_needs_linearize(skb, features) && 2584 __skb_linearize(skb)) 2585 goto out_kfree_skb; 2586 2587 /* If packet is not checksummed and device does not 2588 * support checksumming for this protocol, complete 2589 * checksumming here. 2590 */ 2591 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2592 if (skb->encapsulation) 2593 skb_set_inner_transport_header(skb, 2594 skb_checksum_start_offset(skb)); 2595 else 2596 skb_set_transport_header(skb, 2597 skb_checksum_start_offset(skb)); 2598 if (!(features & NETIF_F_ALL_CSUM) && 2599 skb_checksum_help(skb)) 2600 goto out_kfree_skb; 2601 } 2602 } 2603 2604 if (!list_empty(&ptype_all)) 2605 dev_queue_xmit_nit(skb, dev); 2606 2607 skb_len = skb->len; 2608 rc = ops->ndo_start_xmit(skb, dev); 2609 2610 trace_net_dev_xmit(skb, rc, dev, skb_len); 2611 if (rc == NETDEV_TX_OK) 2612 txq_trans_update(txq); 2613 return rc; 2614 } 2615 2616 gso: 2617 do { 2618 struct sk_buff *nskb = skb->next; 2619 2620 skb->next = nskb->next; 2621 nskb->next = NULL; 2622 2623 if (!list_empty(&ptype_all)) 2624 dev_queue_xmit_nit(nskb, dev); 2625 2626 skb_len = nskb->len; 2627 rc = ops->ndo_start_xmit(nskb, dev); 2628 trace_net_dev_xmit(nskb, rc, dev, skb_len); 2629 if (unlikely(rc != NETDEV_TX_OK)) { 2630 if (rc & ~NETDEV_TX_MASK) 2631 goto out_kfree_gso_skb; 2632 nskb->next = skb->next; 2633 skb->next = nskb; 2634 return rc; 2635 } 2636 txq_trans_update(txq); 2637 if (unlikely(netif_xmit_stopped(txq) && skb->next)) 2638 return NETDEV_TX_BUSY; 2639 } while (skb->next); 2640 2641 out_kfree_gso_skb: 2642 if (likely(skb->next == NULL)) { 2643 skb->destructor = DEV_GSO_CB(skb)->destructor; 2644 consume_skb(skb); 2645 return rc; 2646 } 2647 out_kfree_skb: 2648 kfree_skb(skb); 2649 out: 2650 return rc; 2651 } 2652 EXPORT_SYMBOL_GPL(dev_hard_start_xmit); 2653 2654 static void qdisc_pkt_len_init(struct sk_buff *skb) 2655 { 2656 const struct skb_shared_info *shinfo = skb_shinfo(skb); 2657 2658 qdisc_skb_cb(skb)->pkt_len = skb->len; 2659 2660 /* To get more precise estimation of bytes sent on wire, 2661 * we add to pkt_len the headers size of all segments 2662 */ 2663 if (shinfo->gso_size) { 2664 unsigned int hdr_len; 2665 u16 gso_segs = shinfo->gso_segs; 2666 2667 /* mac layer + network layer */ 2668 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 2669 2670 /* + transport layer */ 2671 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 2672 hdr_len += tcp_hdrlen(skb); 2673 else 2674 hdr_len += sizeof(struct udphdr); 2675 2676 if (shinfo->gso_type & SKB_GSO_DODGY) 2677 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 2678 shinfo->gso_size); 2679 2680 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 2681 } 2682 } 2683 2684 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2685 struct net_device *dev, 2686 struct netdev_queue *txq) 2687 { 2688 spinlock_t *root_lock = qdisc_lock(q); 2689 bool contended; 2690 int rc; 2691 2692 qdisc_pkt_len_init(skb); 2693 qdisc_calculate_pkt_len(skb, q); 2694 /* 2695 * Heuristic to force contended enqueues to serialize on a 2696 * separate lock before trying to get qdisc main lock. 2697 * This permits __QDISC_STATE_RUNNING owner to get the lock more often 2698 * and dequeue packets faster. 2699 */ 2700 contended = qdisc_is_running(q); 2701 if (unlikely(contended)) 2702 spin_lock(&q->busylock); 2703 2704 spin_lock(root_lock); 2705 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2706 kfree_skb(skb); 2707 rc = NET_XMIT_DROP; 2708 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2709 qdisc_run_begin(q)) { 2710 /* 2711 * This is a work-conserving queue; there are no old skbs 2712 * waiting to be sent out; and the qdisc is not running - 2713 * xmit the skb directly. 2714 */ 2715 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE)) 2716 skb_dst_force(skb); 2717 2718 qdisc_bstats_update(q, skb); 2719 2720 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) { 2721 if (unlikely(contended)) { 2722 spin_unlock(&q->busylock); 2723 contended = false; 2724 } 2725 __qdisc_run(q); 2726 } else 2727 qdisc_run_end(q); 2728 2729 rc = NET_XMIT_SUCCESS; 2730 } else { 2731 skb_dst_force(skb); 2732 rc = q->enqueue(skb, q) & NET_XMIT_MASK; 2733 if (qdisc_run_begin(q)) { 2734 if (unlikely(contended)) { 2735 spin_unlock(&q->busylock); 2736 contended = false; 2737 } 2738 __qdisc_run(q); 2739 } 2740 } 2741 spin_unlock(root_lock); 2742 if (unlikely(contended)) 2743 spin_unlock(&q->busylock); 2744 return rc; 2745 } 2746 2747 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP) 2748 static void skb_update_prio(struct sk_buff *skb) 2749 { 2750 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 2751 2752 if (!skb->priority && skb->sk && map) { 2753 unsigned int prioidx = skb->sk->sk_cgrp_prioidx; 2754 2755 if (prioidx < map->priomap_len) 2756 skb->priority = map->priomap[prioidx]; 2757 } 2758 } 2759 #else 2760 #define skb_update_prio(skb) 2761 #endif 2762 2763 static DEFINE_PER_CPU(int, xmit_recursion); 2764 #define RECURSION_LIMIT 10 2765 2766 /** 2767 * dev_loopback_xmit - loop back @skb 2768 * @skb: buffer to transmit 2769 */ 2770 int dev_loopback_xmit(struct sk_buff *skb) 2771 { 2772 skb_reset_mac_header(skb); 2773 __skb_pull(skb, skb_network_offset(skb)); 2774 skb->pkt_type = PACKET_LOOPBACK; 2775 skb->ip_summed = CHECKSUM_UNNECESSARY; 2776 WARN_ON(!skb_dst(skb)); 2777 skb_dst_force(skb); 2778 netif_rx_ni(skb); 2779 return 0; 2780 } 2781 EXPORT_SYMBOL(dev_loopback_xmit); 2782 2783 /** 2784 * dev_queue_xmit - transmit a buffer 2785 * @skb: buffer to transmit 2786 * 2787 * Queue a buffer for transmission to a network device. The caller must 2788 * have set the device and priority and built the buffer before calling 2789 * this function. The function can be called from an interrupt. 2790 * 2791 * A negative errno code is returned on a failure. A success does not 2792 * guarantee the frame will be transmitted as it may be dropped due 2793 * to congestion or traffic shaping. 2794 * 2795 * ----------------------------------------------------------------------------------- 2796 * I notice this method can also return errors from the queue disciplines, 2797 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2798 * be positive. 2799 * 2800 * Regardless of the return value, the skb is consumed, so it is currently 2801 * difficult to retry a send to this method. (You can bump the ref count 2802 * before sending to hold a reference for retry if you are careful.) 2803 * 2804 * When calling this method, interrupts MUST be enabled. This is because 2805 * the BH enable code must have IRQs enabled so that it will not deadlock. 2806 * --BLG 2807 */ 2808 int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv) 2809 { 2810 struct net_device *dev = skb->dev; 2811 struct netdev_queue *txq; 2812 struct Qdisc *q; 2813 int rc = -ENOMEM; 2814 2815 skb_reset_mac_header(skb); 2816 2817 /* Disable soft irqs for various locks below. Also 2818 * stops preemption for RCU. 2819 */ 2820 rcu_read_lock_bh(); 2821 2822 skb_update_prio(skb); 2823 2824 txq = netdev_pick_tx(dev, skb, accel_priv); 2825 q = rcu_dereference_bh(txq->qdisc); 2826 2827 #ifdef CONFIG_NET_CLS_ACT 2828 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2829 #endif 2830 trace_net_dev_queue(skb); 2831 if (q->enqueue) { 2832 rc = __dev_xmit_skb(skb, q, dev, txq); 2833 goto out; 2834 } 2835 2836 /* The device has no queue. Common case for software devices: 2837 loopback, all the sorts of tunnels... 2838 2839 Really, it is unlikely that netif_tx_lock protection is necessary 2840 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2841 counters.) 2842 However, it is possible, that they rely on protection 2843 made by us here. 2844 2845 Check this and shot the lock. It is not prone from deadlocks. 2846 Either shot noqueue qdisc, it is even simpler 8) 2847 */ 2848 if (dev->flags & IFF_UP) { 2849 int cpu = smp_processor_id(); /* ok because BHs are off */ 2850 2851 if (txq->xmit_lock_owner != cpu) { 2852 2853 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 2854 goto recursion_alert; 2855 2856 HARD_TX_LOCK(dev, txq, cpu); 2857 2858 if (!netif_xmit_stopped(txq)) { 2859 __this_cpu_inc(xmit_recursion); 2860 rc = dev_hard_start_xmit(skb, dev, txq); 2861 __this_cpu_dec(xmit_recursion); 2862 if (dev_xmit_complete(rc)) { 2863 HARD_TX_UNLOCK(dev, txq); 2864 goto out; 2865 } 2866 } 2867 HARD_TX_UNLOCK(dev, txq); 2868 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 2869 dev->name); 2870 } else { 2871 /* Recursion is detected! It is possible, 2872 * unfortunately 2873 */ 2874 recursion_alert: 2875 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 2876 dev->name); 2877 } 2878 } 2879 2880 rc = -ENETDOWN; 2881 rcu_read_unlock_bh(); 2882 2883 kfree_skb(skb); 2884 return rc; 2885 out: 2886 rcu_read_unlock_bh(); 2887 return rc; 2888 } 2889 2890 int dev_queue_xmit(struct sk_buff *skb) 2891 { 2892 return __dev_queue_xmit(skb, NULL); 2893 } 2894 EXPORT_SYMBOL(dev_queue_xmit); 2895 2896 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv) 2897 { 2898 return __dev_queue_xmit(skb, accel_priv); 2899 } 2900 EXPORT_SYMBOL(dev_queue_xmit_accel); 2901 2902 2903 /*======================================================================= 2904 Receiver routines 2905 =======================================================================*/ 2906 2907 int netdev_max_backlog __read_mostly = 1000; 2908 EXPORT_SYMBOL(netdev_max_backlog); 2909 2910 int netdev_tstamp_prequeue __read_mostly = 1; 2911 int netdev_budget __read_mostly = 300; 2912 int weight_p __read_mostly = 64; /* old backlog weight */ 2913 2914 /* Called with irq disabled */ 2915 static inline void ____napi_schedule(struct softnet_data *sd, 2916 struct napi_struct *napi) 2917 { 2918 list_add_tail(&napi->poll_list, &sd->poll_list); 2919 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2920 } 2921 2922 #ifdef CONFIG_RPS 2923 2924 /* One global table that all flow-based protocols share. */ 2925 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 2926 EXPORT_SYMBOL(rps_sock_flow_table); 2927 2928 struct static_key rps_needed __read_mostly; 2929 2930 static struct rps_dev_flow * 2931 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2932 struct rps_dev_flow *rflow, u16 next_cpu) 2933 { 2934 if (next_cpu != RPS_NO_CPU) { 2935 #ifdef CONFIG_RFS_ACCEL 2936 struct netdev_rx_queue *rxqueue; 2937 struct rps_dev_flow_table *flow_table; 2938 struct rps_dev_flow *old_rflow; 2939 u32 flow_id; 2940 u16 rxq_index; 2941 int rc; 2942 2943 /* Should we steer this flow to a different hardware queue? */ 2944 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 2945 !(dev->features & NETIF_F_NTUPLE)) 2946 goto out; 2947 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 2948 if (rxq_index == skb_get_rx_queue(skb)) 2949 goto out; 2950 2951 rxqueue = dev->_rx + rxq_index; 2952 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2953 if (!flow_table) 2954 goto out; 2955 flow_id = skb->rxhash & flow_table->mask; 2956 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 2957 rxq_index, flow_id); 2958 if (rc < 0) 2959 goto out; 2960 old_rflow = rflow; 2961 rflow = &flow_table->flows[flow_id]; 2962 rflow->filter = rc; 2963 if (old_rflow->filter == rflow->filter) 2964 old_rflow->filter = RPS_NO_FILTER; 2965 out: 2966 #endif 2967 rflow->last_qtail = 2968 per_cpu(softnet_data, next_cpu).input_queue_head; 2969 } 2970 2971 rflow->cpu = next_cpu; 2972 return rflow; 2973 } 2974 2975 /* 2976 * get_rps_cpu is called from netif_receive_skb and returns the target 2977 * CPU from the RPS map of the receiving queue for a given skb. 2978 * rcu_read_lock must be held on entry. 2979 */ 2980 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2981 struct rps_dev_flow **rflowp) 2982 { 2983 struct netdev_rx_queue *rxqueue; 2984 struct rps_map *map; 2985 struct rps_dev_flow_table *flow_table; 2986 struct rps_sock_flow_table *sock_flow_table; 2987 int cpu = -1; 2988 u16 tcpu; 2989 2990 if (skb_rx_queue_recorded(skb)) { 2991 u16 index = skb_get_rx_queue(skb); 2992 if (unlikely(index >= dev->real_num_rx_queues)) { 2993 WARN_ONCE(dev->real_num_rx_queues > 1, 2994 "%s received packet on queue %u, but number " 2995 "of RX queues is %u\n", 2996 dev->name, index, dev->real_num_rx_queues); 2997 goto done; 2998 } 2999 rxqueue = dev->_rx + index; 3000 } else 3001 rxqueue = dev->_rx; 3002 3003 map = rcu_dereference(rxqueue->rps_map); 3004 if (map) { 3005 if (map->len == 1 && 3006 !rcu_access_pointer(rxqueue->rps_flow_table)) { 3007 tcpu = map->cpus[0]; 3008 if (cpu_online(tcpu)) 3009 cpu = tcpu; 3010 goto done; 3011 } 3012 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) { 3013 goto done; 3014 } 3015 3016 skb_reset_network_header(skb); 3017 if (!skb_get_rxhash(skb)) 3018 goto done; 3019 3020 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3021 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3022 if (flow_table && sock_flow_table) { 3023 u16 next_cpu; 3024 struct rps_dev_flow *rflow; 3025 3026 rflow = &flow_table->flows[skb->rxhash & flow_table->mask]; 3027 tcpu = rflow->cpu; 3028 3029 next_cpu = sock_flow_table->ents[skb->rxhash & 3030 sock_flow_table->mask]; 3031 3032 /* 3033 * If the desired CPU (where last recvmsg was done) is 3034 * different from current CPU (one in the rx-queue flow 3035 * table entry), switch if one of the following holds: 3036 * - Current CPU is unset (equal to RPS_NO_CPU). 3037 * - Current CPU is offline. 3038 * - The current CPU's queue tail has advanced beyond the 3039 * last packet that was enqueued using this table entry. 3040 * This guarantees that all previous packets for the flow 3041 * have been dequeued, thus preserving in order delivery. 3042 */ 3043 if (unlikely(tcpu != next_cpu) && 3044 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) || 3045 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3046 rflow->last_qtail)) >= 0)) { 3047 tcpu = next_cpu; 3048 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3049 } 3050 3051 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) { 3052 *rflowp = rflow; 3053 cpu = tcpu; 3054 goto done; 3055 } 3056 } 3057 3058 if (map) { 3059 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32]; 3060 3061 if (cpu_online(tcpu)) { 3062 cpu = tcpu; 3063 goto done; 3064 } 3065 } 3066 3067 done: 3068 return cpu; 3069 } 3070 3071 #ifdef CONFIG_RFS_ACCEL 3072 3073 /** 3074 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3075 * @dev: Device on which the filter was set 3076 * @rxq_index: RX queue index 3077 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3078 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3079 * 3080 * Drivers that implement ndo_rx_flow_steer() should periodically call 3081 * this function for each installed filter and remove the filters for 3082 * which it returns %true. 3083 */ 3084 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3085 u32 flow_id, u16 filter_id) 3086 { 3087 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3088 struct rps_dev_flow_table *flow_table; 3089 struct rps_dev_flow *rflow; 3090 bool expire = true; 3091 int cpu; 3092 3093 rcu_read_lock(); 3094 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3095 if (flow_table && flow_id <= flow_table->mask) { 3096 rflow = &flow_table->flows[flow_id]; 3097 cpu = ACCESS_ONCE(rflow->cpu); 3098 if (rflow->filter == filter_id && cpu != RPS_NO_CPU && 3099 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3100 rflow->last_qtail) < 3101 (int)(10 * flow_table->mask))) 3102 expire = false; 3103 } 3104 rcu_read_unlock(); 3105 return expire; 3106 } 3107 EXPORT_SYMBOL(rps_may_expire_flow); 3108 3109 #endif /* CONFIG_RFS_ACCEL */ 3110 3111 /* Called from hardirq (IPI) context */ 3112 static void rps_trigger_softirq(void *data) 3113 { 3114 struct softnet_data *sd = data; 3115 3116 ____napi_schedule(sd, &sd->backlog); 3117 sd->received_rps++; 3118 } 3119 3120 #endif /* CONFIG_RPS */ 3121 3122 /* 3123 * Check if this softnet_data structure is another cpu one 3124 * If yes, queue it to our IPI list and return 1 3125 * If no, return 0 3126 */ 3127 static int rps_ipi_queued(struct softnet_data *sd) 3128 { 3129 #ifdef CONFIG_RPS 3130 struct softnet_data *mysd = &__get_cpu_var(softnet_data); 3131 3132 if (sd != mysd) { 3133 sd->rps_ipi_next = mysd->rps_ipi_list; 3134 mysd->rps_ipi_list = sd; 3135 3136 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3137 return 1; 3138 } 3139 #endif /* CONFIG_RPS */ 3140 return 0; 3141 } 3142 3143 #ifdef CONFIG_NET_FLOW_LIMIT 3144 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3145 #endif 3146 3147 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3148 { 3149 #ifdef CONFIG_NET_FLOW_LIMIT 3150 struct sd_flow_limit *fl; 3151 struct softnet_data *sd; 3152 unsigned int old_flow, new_flow; 3153 3154 if (qlen < (netdev_max_backlog >> 1)) 3155 return false; 3156 3157 sd = &__get_cpu_var(softnet_data); 3158 3159 rcu_read_lock(); 3160 fl = rcu_dereference(sd->flow_limit); 3161 if (fl) { 3162 new_flow = skb_get_rxhash(skb) & (fl->num_buckets - 1); 3163 old_flow = fl->history[fl->history_head]; 3164 fl->history[fl->history_head] = new_flow; 3165 3166 fl->history_head++; 3167 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3168 3169 if (likely(fl->buckets[old_flow])) 3170 fl->buckets[old_flow]--; 3171 3172 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3173 fl->count++; 3174 rcu_read_unlock(); 3175 return true; 3176 } 3177 } 3178 rcu_read_unlock(); 3179 #endif 3180 return false; 3181 } 3182 3183 /* 3184 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3185 * queue (may be a remote CPU queue). 3186 */ 3187 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3188 unsigned int *qtail) 3189 { 3190 struct softnet_data *sd; 3191 unsigned long flags; 3192 unsigned int qlen; 3193 3194 sd = &per_cpu(softnet_data, cpu); 3195 3196 local_irq_save(flags); 3197 3198 rps_lock(sd); 3199 qlen = skb_queue_len(&sd->input_pkt_queue); 3200 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3201 if (skb_queue_len(&sd->input_pkt_queue)) { 3202 enqueue: 3203 __skb_queue_tail(&sd->input_pkt_queue, skb); 3204 input_queue_tail_incr_save(sd, qtail); 3205 rps_unlock(sd); 3206 local_irq_restore(flags); 3207 return NET_RX_SUCCESS; 3208 } 3209 3210 /* Schedule NAPI for backlog device 3211 * We can use non atomic operation since we own the queue lock 3212 */ 3213 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3214 if (!rps_ipi_queued(sd)) 3215 ____napi_schedule(sd, &sd->backlog); 3216 } 3217 goto enqueue; 3218 } 3219 3220 sd->dropped++; 3221 rps_unlock(sd); 3222 3223 local_irq_restore(flags); 3224 3225 atomic_long_inc(&skb->dev->rx_dropped); 3226 kfree_skb(skb); 3227 return NET_RX_DROP; 3228 } 3229 3230 /** 3231 * netif_rx - post buffer to the network code 3232 * @skb: buffer to post 3233 * 3234 * This function receives a packet from a device driver and queues it for 3235 * the upper (protocol) levels to process. It always succeeds. The buffer 3236 * may be dropped during processing for congestion control or by the 3237 * protocol layers. 3238 * 3239 * return values: 3240 * NET_RX_SUCCESS (no congestion) 3241 * NET_RX_DROP (packet was dropped) 3242 * 3243 */ 3244 3245 int netif_rx(struct sk_buff *skb) 3246 { 3247 int ret; 3248 3249 /* if netpoll wants it, pretend we never saw it */ 3250 if (netpoll_rx(skb)) 3251 return NET_RX_DROP; 3252 3253 net_timestamp_check(netdev_tstamp_prequeue, skb); 3254 3255 trace_netif_rx(skb); 3256 #ifdef CONFIG_RPS 3257 if (static_key_false(&rps_needed)) { 3258 struct rps_dev_flow voidflow, *rflow = &voidflow; 3259 int cpu; 3260 3261 preempt_disable(); 3262 rcu_read_lock(); 3263 3264 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3265 if (cpu < 0) 3266 cpu = smp_processor_id(); 3267 3268 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3269 3270 rcu_read_unlock(); 3271 preempt_enable(); 3272 } else 3273 #endif 3274 { 3275 unsigned int qtail; 3276 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 3277 put_cpu(); 3278 } 3279 return ret; 3280 } 3281 EXPORT_SYMBOL(netif_rx); 3282 3283 int netif_rx_ni(struct sk_buff *skb) 3284 { 3285 int err; 3286 3287 preempt_disable(); 3288 err = netif_rx(skb); 3289 if (local_softirq_pending()) 3290 do_softirq(); 3291 preempt_enable(); 3292 3293 return err; 3294 } 3295 EXPORT_SYMBOL(netif_rx_ni); 3296 3297 static void net_tx_action(struct softirq_action *h) 3298 { 3299 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3300 3301 if (sd->completion_queue) { 3302 struct sk_buff *clist; 3303 3304 local_irq_disable(); 3305 clist = sd->completion_queue; 3306 sd->completion_queue = NULL; 3307 local_irq_enable(); 3308 3309 while (clist) { 3310 struct sk_buff *skb = clist; 3311 clist = clist->next; 3312 3313 WARN_ON(atomic_read(&skb->users)); 3314 trace_kfree_skb(skb, net_tx_action); 3315 __kfree_skb(skb); 3316 } 3317 } 3318 3319 if (sd->output_queue) { 3320 struct Qdisc *head; 3321 3322 local_irq_disable(); 3323 head = sd->output_queue; 3324 sd->output_queue = NULL; 3325 sd->output_queue_tailp = &sd->output_queue; 3326 local_irq_enable(); 3327 3328 while (head) { 3329 struct Qdisc *q = head; 3330 spinlock_t *root_lock; 3331 3332 head = head->next_sched; 3333 3334 root_lock = qdisc_lock(q); 3335 if (spin_trylock(root_lock)) { 3336 smp_mb__before_clear_bit(); 3337 clear_bit(__QDISC_STATE_SCHED, 3338 &q->state); 3339 qdisc_run(q); 3340 spin_unlock(root_lock); 3341 } else { 3342 if (!test_bit(__QDISC_STATE_DEACTIVATED, 3343 &q->state)) { 3344 __netif_reschedule(q); 3345 } else { 3346 smp_mb__before_clear_bit(); 3347 clear_bit(__QDISC_STATE_SCHED, 3348 &q->state); 3349 } 3350 } 3351 } 3352 } 3353 } 3354 3355 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 3356 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 3357 /* This hook is defined here for ATM LANE */ 3358 int (*br_fdb_test_addr_hook)(struct net_device *dev, 3359 unsigned char *addr) __read_mostly; 3360 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3361 #endif 3362 3363 #ifdef CONFIG_NET_CLS_ACT 3364 /* TODO: Maybe we should just force sch_ingress to be compiled in 3365 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 3366 * a compare and 2 stores extra right now if we dont have it on 3367 * but have CONFIG_NET_CLS_ACT 3368 * NOTE: This doesn't stop any functionality; if you dont have 3369 * the ingress scheduler, you just can't add policies on ingress. 3370 * 3371 */ 3372 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq) 3373 { 3374 struct net_device *dev = skb->dev; 3375 u32 ttl = G_TC_RTTL(skb->tc_verd); 3376 int result = TC_ACT_OK; 3377 struct Qdisc *q; 3378 3379 if (unlikely(MAX_RED_LOOP < ttl++)) { 3380 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n", 3381 skb->skb_iif, dev->ifindex); 3382 return TC_ACT_SHOT; 3383 } 3384 3385 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 3386 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3387 3388 q = rxq->qdisc; 3389 if (q != &noop_qdisc) { 3390 spin_lock(qdisc_lock(q)); 3391 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 3392 result = qdisc_enqueue_root(skb, q); 3393 spin_unlock(qdisc_lock(q)); 3394 } 3395 3396 return result; 3397 } 3398 3399 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 3400 struct packet_type **pt_prev, 3401 int *ret, struct net_device *orig_dev) 3402 { 3403 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue); 3404 3405 if (!rxq || rxq->qdisc == &noop_qdisc) 3406 goto out; 3407 3408 if (*pt_prev) { 3409 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3410 *pt_prev = NULL; 3411 } 3412 3413 switch (ing_filter(skb, rxq)) { 3414 case TC_ACT_SHOT: 3415 case TC_ACT_STOLEN: 3416 kfree_skb(skb); 3417 return NULL; 3418 } 3419 3420 out: 3421 skb->tc_verd = 0; 3422 return skb; 3423 } 3424 #endif 3425 3426 /** 3427 * netdev_rx_handler_register - register receive handler 3428 * @dev: device to register a handler for 3429 * @rx_handler: receive handler to register 3430 * @rx_handler_data: data pointer that is used by rx handler 3431 * 3432 * Register a receive hander for a device. This handler will then be 3433 * called from __netif_receive_skb. A negative errno code is returned 3434 * on a failure. 3435 * 3436 * The caller must hold the rtnl_mutex. 3437 * 3438 * For a general description of rx_handler, see enum rx_handler_result. 3439 */ 3440 int netdev_rx_handler_register(struct net_device *dev, 3441 rx_handler_func_t *rx_handler, 3442 void *rx_handler_data) 3443 { 3444 ASSERT_RTNL(); 3445 3446 if (dev->rx_handler) 3447 return -EBUSY; 3448 3449 /* Note: rx_handler_data must be set before rx_handler */ 3450 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3451 rcu_assign_pointer(dev->rx_handler, rx_handler); 3452 3453 return 0; 3454 } 3455 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3456 3457 /** 3458 * netdev_rx_handler_unregister - unregister receive handler 3459 * @dev: device to unregister a handler from 3460 * 3461 * Unregister a receive handler from a device. 3462 * 3463 * The caller must hold the rtnl_mutex. 3464 */ 3465 void netdev_rx_handler_unregister(struct net_device *dev) 3466 { 3467 3468 ASSERT_RTNL(); 3469 RCU_INIT_POINTER(dev->rx_handler, NULL); 3470 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 3471 * section has a guarantee to see a non NULL rx_handler_data 3472 * as well. 3473 */ 3474 synchronize_net(); 3475 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 3476 } 3477 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 3478 3479 /* 3480 * Limit the use of PFMEMALLOC reserves to those protocols that implement 3481 * the special handling of PFMEMALLOC skbs. 3482 */ 3483 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 3484 { 3485 switch (skb->protocol) { 3486 case __constant_htons(ETH_P_ARP): 3487 case __constant_htons(ETH_P_IP): 3488 case __constant_htons(ETH_P_IPV6): 3489 case __constant_htons(ETH_P_8021Q): 3490 case __constant_htons(ETH_P_8021AD): 3491 return true; 3492 default: 3493 return false; 3494 } 3495 } 3496 3497 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 3498 { 3499 struct packet_type *ptype, *pt_prev; 3500 rx_handler_func_t *rx_handler; 3501 struct net_device *orig_dev; 3502 struct net_device *null_or_dev; 3503 bool deliver_exact = false; 3504 int ret = NET_RX_DROP; 3505 __be16 type; 3506 3507 net_timestamp_check(!netdev_tstamp_prequeue, skb); 3508 3509 trace_netif_receive_skb(skb); 3510 3511 /* if we've gotten here through NAPI, check netpoll */ 3512 if (netpoll_receive_skb(skb)) 3513 goto out; 3514 3515 orig_dev = skb->dev; 3516 3517 skb_reset_network_header(skb); 3518 if (!skb_transport_header_was_set(skb)) 3519 skb_reset_transport_header(skb); 3520 skb_reset_mac_len(skb); 3521 3522 pt_prev = NULL; 3523 3524 rcu_read_lock(); 3525 3526 another_round: 3527 skb->skb_iif = skb->dev->ifindex; 3528 3529 __this_cpu_inc(softnet_data.processed); 3530 3531 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 3532 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 3533 skb = vlan_untag(skb); 3534 if (unlikely(!skb)) 3535 goto unlock; 3536 } 3537 3538 #ifdef CONFIG_NET_CLS_ACT 3539 if (skb->tc_verd & TC_NCLS) { 3540 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3541 goto ncls; 3542 } 3543 #endif 3544 3545 if (pfmemalloc) 3546 goto skip_taps; 3547 3548 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3549 if (!ptype->dev || ptype->dev == skb->dev) { 3550 if (pt_prev) 3551 ret = deliver_skb(skb, pt_prev, orig_dev); 3552 pt_prev = ptype; 3553 } 3554 } 3555 3556 skip_taps: 3557 #ifdef CONFIG_NET_CLS_ACT 3558 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 3559 if (!skb) 3560 goto unlock; 3561 ncls: 3562 #endif 3563 3564 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 3565 goto drop; 3566 3567 if (vlan_tx_tag_present(skb)) { 3568 if (pt_prev) { 3569 ret = deliver_skb(skb, pt_prev, orig_dev); 3570 pt_prev = NULL; 3571 } 3572 if (vlan_do_receive(&skb)) 3573 goto another_round; 3574 else if (unlikely(!skb)) 3575 goto unlock; 3576 } 3577 3578 rx_handler = rcu_dereference(skb->dev->rx_handler); 3579 if (rx_handler) { 3580 if (pt_prev) { 3581 ret = deliver_skb(skb, pt_prev, orig_dev); 3582 pt_prev = NULL; 3583 } 3584 switch (rx_handler(&skb)) { 3585 case RX_HANDLER_CONSUMED: 3586 ret = NET_RX_SUCCESS; 3587 goto unlock; 3588 case RX_HANDLER_ANOTHER: 3589 goto another_round; 3590 case RX_HANDLER_EXACT: 3591 deliver_exact = true; 3592 case RX_HANDLER_PASS: 3593 break; 3594 default: 3595 BUG(); 3596 } 3597 } 3598 3599 if (unlikely(vlan_tx_tag_present(skb))) { 3600 if (vlan_tx_tag_get_id(skb)) 3601 skb->pkt_type = PACKET_OTHERHOST; 3602 /* Note: we might in the future use prio bits 3603 * and set skb->priority like in vlan_do_receive() 3604 * For the time being, just ignore Priority Code Point 3605 */ 3606 skb->vlan_tci = 0; 3607 } 3608 3609 /* deliver only exact match when indicated */ 3610 null_or_dev = deliver_exact ? skb->dev : NULL; 3611 3612 type = skb->protocol; 3613 list_for_each_entry_rcu(ptype, 3614 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 3615 if (ptype->type == type && 3616 (ptype->dev == null_or_dev || ptype->dev == skb->dev || 3617 ptype->dev == orig_dev)) { 3618 if (pt_prev) 3619 ret = deliver_skb(skb, pt_prev, orig_dev); 3620 pt_prev = ptype; 3621 } 3622 } 3623 3624 if (pt_prev) { 3625 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 3626 goto drop; 3627 else 3628 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 3629 } else { 3630 drop: 3631 atomic_long_inc(&skb->dev->rx_dropped); 3632 kfree_skb(skb); 3633 /* Jamal, now you will not able to escape explaining 3634 * me how you were going to use this. :-) 3635 */ 3636 ret = NET_RX_DROP; 3637 } 3638 3639 unlock: 3640 rcu_read_unlock(); 3641 out: 3642 return ret; 3643 } 3644 3645 static int __netif_receive_skb(struct sk_buff *skb) 3646 { 3647 int ret; 3648 3649 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 3650 unsigned long pflags = current->flags; 3651 3652 /* 3653 * PFMEMALLOC skbs are special, they should 3654 * - be delivered to SOCK_MEMALLOC sockets only 3655 * - stay away from userspace 3656 * - have bounded memory usage 3657 * 3658 * Use PF_MEMALLOC as this saves us from propagating the allocation 3659 * context down to all allocation sites. 3660 */ 3661 current->flags |= PF_MEMALLOC; 3662 ret = __netif_receive_skb_core(skb, true); 3663 tsk_restore_flags(current, pflags, PF_MEMALLOC); 3664 } else 3665 ret = __netif_receive_skb_core(skb, false); 3666 3667 return ret; 3668 } 3669 3670 /** 3671 * netif_receive_skb - process receive buffer from network 3672 * @skb: buffer to process 3673 * 3674 * netif_receive_skb() is the main receive data processing function. 3675 * It always succeeds. The buffer may be dropped during processing 3676 * for congestion control or by the protocol layers. 3677 * 3678 * This function may only be called from softirq context and interrupts 3679 * should be enabled. 3680 * 3681 * Return values (usually ignored): 3682 * NET_RX_SUCCESS: no congestion 3683 * NET_RX_DROP: packet was dropped 3684 */ 3685 int netif_receive_skb(struct sk_buff *skb) 3686 { 3687 net_timestamp_check(netdev_tstamp_prequeue, skb); 3688 3689 if (skb_defer_rx_timestamp(skb)) 3690 return NET_RX_SUCCESS; 3691 3692 #ifdef CONFIG_RPS 3693 if (static_key_false(&rps_needed)) { 3694 struct rps_dev_flow voidflow, *rflow = &voidflow; 3695 int cpu, ret; 3696 3697 rcu_read_lock(); 3698 3699 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3700 3701 if (cpu >= 0) { 3702 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3703 rcu_read_unlock(); 3704 return ret; 3705 } 3706 rcu_read_unlock(); 3707 } 3708 #endif 3709 return __netif_receive_skb(skb); 3710 } 3711 EXPORT_SYMBOL(netif_receive_skb); 3712 3713 /* Network device is going away, flush any packets still pending 3714 * Called with irqs disabled. 3715 */ 3716 static void flush_backlog(void *arg) 3717 { 3718 struct net_device *dev = arg; 3719 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3720 struct sk_buff *skb, *tmp; 3721 3722 rps_lock(sd); 3723 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 3724 if (skb->dev == dev) { 3725 __skb_unlink(skb, &sd->input_pkt_queue); 3726 kfree_skb(skb); 3727 input_queue_head_incr(sd); 3728 } 3729 } 3730 rps_unlock(sd); 3731 3732 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 3733 if (skb->dev == dev) { 3734 __skb_unlink(skb, &sd->process_queue); 3735 kfree_skb(skb); 3736 input_queue_head_incr(sd); 3737 } 3738 } 3739 } 3740 3741 static int napi_gro_complete(struct sk_buff *skb) 3742 { 3743 struct packet_offload *ptype; 3744 __be16 type = skb->protocol; 3745 struct list_head *head = &offload_base; 3746 int err = -ENOENT; 3747 3748 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 3749 3750 if (NAPI_GRO_CB(skb)->count == 1) { 3751 skb_shinfo(skb)->gso_size = 0; 3752 goto out; 3753 } 3754 3755 rcu_read_lock(); 3756 list_for_each_entry_rcu(ptype, head, list) { 3757 if (ptype->type != type || !ptype->callbacks.gro_complete) 3758 continue; 3759 3760 err = ptype->callbacks.gro_complete(skb); 3761 break; 3762 } 3763 rcu_read_unlock(); 3764 3765 if (err) { 3766 WARN_ON(&ptype->list == head); 3767 kfree_skb(skb); 3768 return NET_RX_SUCCESS; 3769 } 3770 3771 out: 3772 return netif_receive_skb(skb); 3773 } 3774 3775 /* napi->gro_list contains packets ordered by age. 3776 * youngest packets at the head of it. 3777 * Complete skbs in reverse order to reduce latencies. 3778 */ 3779 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 3780 { 3781 struct sk_buff *skb, *prev = NULL; 3782 3783 /* scan list and build reverse chain */ 3784 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 3785 skb->prev = prev; 3786 prev = skb; 3787 } 3788 3789 for (skb = prev; skb; skb = prev) { 3790 skb->next = NULL; 3791 3792 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 3793 return; 3794 3795 prev = skb->prev; 3796 napi_gro_complete(skb); 3797 napi->gro_count--; 3798 } 3799 3800 napi->gro_list = NULL; 3801 } 3802 EXPORT_SYMBOL(napi_gro_flush); 3803 3804 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 3805 { 3806 struct sk_buff *p; 3807 unsigned int maclen = skb->dev->hard_header_len; 3808 3809 for (p = napi->gro_list; p; p = p->next) { 3810 unsigned long diffs; 3811 3812 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 3813 diffs |= p->vlan_tci ^ skb->vlan_tci; 3814 if (maclen == ETH_HLEN) 3815 diffs |= compare_ether_header(skb_mac_header(p), 3816 skb_gro_mac_header(skb)); 3817 else if (!diffs) 3818 diffs = memcmp(skb_mac_header(p), 3819 skb_gro_mac_header(skb), 3820 maclen); 3821 NAPI_GRO_CB(p)->same_flow = !diffs; 3822 NAPI_GRO_CB(p)->flush = 0; 3823 } 3824 } 3825 3826 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3827 { 3828 struct sk_buff **pp = NULL; 3829 struct packet_offload *ptype; 3830 __be16 type = skb->protocol; 3831 struct list_head *head = &offload_base; 3832 int same_flow; 3833 enum gro_result ret; 3834 3835 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb)) 3836 goto normal; 3837 3838 if (skb_is_gso(skb) || skb_has_frag_list(skb)) 3839 goto normal; 3840 3841 gro_list_prepare(napi, skb); 3842 3843 rcu_read_lock(); 3844 list_for_each_entry_rcu(ptype, head, list) { 3845 if (ptype->type != type || !ptype->callbacks.gro_receive) 3846 continue; 3847 3848 skb_set_network_header(skb, skb_gro_offset(skb)); 3849 skb_reset_mac_len(skb); 3850 NAPI_GRO_CB(skb)->same_flow = 0; 3851 NAPI_GRO_CB(skb)->flush = 0; 3852 NAPI_GRO_CB(skb)->free = 0; 3853 3854 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 3855 break; 3856 } 3857 rcu_read_unlock(); 3858 3859 if (&ptype->list == head) 3860 goto normal; 3861 3862 same_flow = NAPI_GRO_CB(skb)->same_flow; 3863 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 3864 3865 if (pp) { 3866 struct sk_buff *nskb = *pp; 3867 3868 *pp = nskb->next; 3869 nskb->next = NULL; 3870 napi_gro_complete(nskb); 3871 napi->gro_count--; 3872 } 3873 3874 if (same_flow) 3875 goto ok; 3876 3877 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS) 3878 goto normal; 3879 3880 napi->gro_count++; 3881 NAPI_GRO_CB(skb)->count = 1; 3882 NAPI_GRO_CB(skb)->age = jiffies; 3883 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 3884 skb->next = napi->gro_list; 3885 napi->gro_list = skb; 3886 ret = GRO_HELD; 3887 3888 pull: 3889 if (skb_headlen(skb) < skb_gro_offset(skb)) { 3890 int grow = skb_gro_offset(skb) - skb_headlen(skb); 3891 3892 BUG_ON(skb->end - skb->tail < grow); 3893 3894 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 3895 3896 skb->tail += grow; 3897 skb->data_len -= grow; 3898 3899 skb_shinfo(skb)->frags[0].page_offset += grow; 3900 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow); 3901 3902 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) { 3903 skb_frag_unref(skb, 0); 3904 memmove(skb_shinfo(skb)->frags, 3905 skb_shinfo(skb)->frags + 1, 3906 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t)); 3907 } 3908 } 3909 3910 ok: 3911 return ret; 3912 3913 normal: 3914 ret = GRO_NORMAL; 3915 goto pull; 3916 } 3917 3918 3919 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 3920 { 3921 switch (ret) { 3922 case GRO_NORMAL: 3923 if (netif_receive_skb(skb)) 3924 ret = GRO_DROP; 3925 break; 3926 3927 case GRO_DROP: 3928 kfree_skb(skb); 3929 break; 3930 3931 case GRO_MERGED_FREE: 3932 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 3933 kmem_cache_free(skbuff_head_cache, skb); 3934 else 3935 __kfree_skb(skb); 3936 break; 3937 3938 case GRO_HELD: 3939 case GRO_MERGED: 3940 break; 3941 } 3942 3943 return ret; 3944 } 3945 3946 static void skb_gro_reset_offset(struct sk_buff *skb) 3947 { 3948 const struct skb_shared_info *pinfo = skb_shinfo(skb); 3949 const skb_frag_t *frag0 = &pinfo->frags[0]; 3950 3951 NAPI_GRO_CB(skb)->data_offset = 0; 3952 NAPI_GRO_CB(skb)->frag0 = NULL; 3953 NAPI_GRO_CB(skb)->frag0_len = 0; 3954 3955 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 3956 pinfo->nr_frags && 3957 !PageHighMem(skb_frag_page(frag0))) { 3958 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 3959 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0); 3960 } 3961 } 3962 3963 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3964 { 3965 skb_gro_reset_offset(skb); 3966 3967 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 3968 } 3969 EXPORT_SYMBOL(napi_gro_receive); 3970 3971 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 3972 { 3973 __skb_pull(skb, skb_headlen(skb)); 3974 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 3975 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 3976 skb->vlan_tci = 0; 3977 skb->dev = napi->dev; 3978 skb->skb_iif = 0; 3979 3980 napi->skb = skb; 3981 } 3982 3983 struct sk_buff *napi_get_frags(struct napi_struct *napi) 3984 { 3985 struct sk_buff *skb = napi->skb; 3986 3987 if (!skb) { 3988 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD); 3989 if (skb) 3990 napi->skb = skb; 3991 } 3992 return skb; 3993 } 3994 EXPORT_SYMBOL(napi_get_frags); 3995 3996 static gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, 3997 gro_result_t ret) 3998 { 3999 switch (ret) { 4000 case GRO_NORMAL: 4001 case GRO_HELD: 4002 skb->protocol = eth_type_trans(skb, skb->dev); 4003 4004 if (ret == GRO_HELD) 4005 skb_gro_pull(skb, -ETH_HLEN); 4006 else if (netif_receive_skb(skb)) 4007 ret = GRO_DROP; 4008 break; 4009 4010 case GRO_DROP: 4011 case GRO_MERGED_FREE: 4012 napi_reuse_skb(napi, skb); 4013 break; 4014 4015 case GRO_MERGED: 4016 break; 4017 } 4018 4019 return ret; 4020 } 4021 4022 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 4023 { 4024 struct sk_buff *skb = napi->skb; 4025 struct ethhdr *eth; 4026 unsigned int hlen; 4027 unsigned int off; 4028 4029 napi->skb = NULL; 4030 4031 skb_reset_mac_header(skb); 4032 skb_gro_reset_offset(skb); 4033 4034 off = skb_gro_offset(skb); 4035 hlen = off + sizeof(*eth); 4036 eth = skb_gro_header_fast(skb, off); 4037 if (skb_gro_header_hard(skb, hlen)) { 4038 eth = skb_gro_header_slow(skb, hlen, off); 4039 if (unlikely(!eth)) { 4040 napi_reuse_skb(napi, skb); 4041 skb = NULL; 4042 goto out; 4043 } 4044 } 4045 4046 skb_gro_pull(skb, sizeof(*eth)); 4047 4048 /* 4049 * This works because the only protocols we care about don't require 4050 * special handling. We'll fix it up properly at the end. 4051 */ 4052 skb->protocol = eth->h_proto; 4053 4054 out: 4055 return skb; 4056 } 4057 4058 gro_result_t napi_gro_frags(struct napi_struct *napi) 4059 { 4060 struct sk_buff *skb = napi_frags_skb(napi); 4061 4062 if (!skb) 4063 return GRO_DROP; 4064 4065 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 4066 } 4067 EXPORT_SYMBOL(napi_gro_frags); 4068 4069 /* 4070 * net_rps_action sends any pending IPI's for rps. 4071 * Note: called with local irq disabled, but exits with local irq enabled. 4072 */ 4073 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 4074 { 4075 #ifdef CONFIG_RPS 4076 struct softnet_data *remsd = sd->rps_ipi_list; 4077 4078 if (remsd) { 4079 sd->rps_ipi_list = NULL; 4080 4081 local_irq_enable(); 4082 4083 /* Send pending IPI's to kick RPS processing on remote cpus. */ 4084 while (remsd) { 4085 struct softnet_data *next = remsd->rps_ipi_next; 4086 4087 if (cpu_online(remsd->cpu)) 4088 __smp_call_function_single(remsd->cpu, 4089 &remsd->csd, 0); 4090 remsd = next; 4091 } 4092 } else 4093 #endif 4094 local_irq_enable(); 4095 } 4096 4097 static int process_backlog(struct napi_struct *napi, int quota) 4098 { 4099 int work = 0; 4100 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 4101 4102 #ifdef CONFIG_RPS 4103 /* Check if we have pending ipi, its better to send them now, 4104 * not waiting net_rx_action() end. 4105 */ 4106 if (sd->rps_ipi_list) { 4107 local_irq_disable(); 4108 net_rps_action_and_irq_enable(sd); 4109 } 4110 #endif 4111 napi->weight = weight_p; 4112 local_irq_disable(); 4113 while (work < quota) { 4114 struct sk_buff *skb; 4115 unsigned int qlen; 4116 4117 while ((skb = __skb_dequeue(&sd->process_queue))) { 4118 local_irq_enable(); 4119 __netif_receive_skb(skb); 4120 local_irq_disable(); 4121 input_queue_head_incr(sd); 4122 if (++work >= quota) { 4123 local_irq_enable(); 4124 return work; 4125 } 4126 } 4127 4128 rps_lock(sd); 4129 qlen = skb_queue_len(&sd->input_pkt_queue); 4130 if (qlen) 4131 skb_queue_splice_tail_init(&sd->input_pkt_queue, 4132 &sd->process_queue); 4133 4134 if (qlen < quota - work) { 4135 /* 4136 * Inline a custom version of __napi_complete(). 4137 * only current cpu owns and manipulates this napi, 4138 * and NAPI_STATE_SCHED is the only possible flag set on backlog. 4139 * we can use a plain write instead of clear_bit(), 4140 * and we dont need an smp_mb() memory barrier. 4141 */ 4142 list_del(&napi->poll_list); 4143 napi->state = 0; 4144 4145 quota = work + qlen; 4146 } 4147 rps_unlock(sd); 4148 } 4149 local_irq_enable(); 4150 4151 return work; 4152 } 4153 4154 /** 4155 * __napi_schedule - schedule for receive 4156 * @n: entry to schedule 4157 * 4158 * The entry's receive function will be scheduled to run 4159 */ 4160 void __napi_schedule(struct napi_struct *n) 4161 { 4162 unsigned long flags; 4163 4164 local_irq_save(flags); 4165 ____napi_schedule(&__get_cpu_var(softnet_data), n); 4166 local_irq_restore(flags); 4167 } 4168 EXPORT_SYMBOL(__napi_schedule); 4169 4170 void __napi_complete(struct napi_struct *n) 4171 { 4172 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 4173 BUG_ON(n->gro_list); 4174 4175 list_del(&n->poll_list); 4176 smp_mb__before_clear_bit(); 4177 clear_bit(NAPI_STATE_SCHED, &n->state); 4178 } 4179 EXPORT_SYMBOL(__napi_complete); 4180 4181 void napi_complete(struct napi_struct *n) 4182 { 4183 unsigned long flags; 4184 4185 /* 4186 * don't let napi dequeue from the cpu poll list 4187 * just in case its running on a different cpu 4188 */ 4189 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 4190 return; 4191 4192 napi_gro_flush(n, false); 4193 local_irq_save(flags); 4194 __napi_complete(n); 4195 local_irq_restore(flags); 4196 } 4197 EXPORT_SYMBOL(napi_complete); 4198 4199 /* must be called under rcu_read_lock(), as we dont take a reference */ 4200 struct napi_struct *napi_by_id(unsigned int napi_id) 4201 { 4202 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 4203 struct napi_struct *napi; 4204 4205 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 4206 if (napi->napi_id == napi_id) 4207 return napi; 4208 4209 return NULL; 4210 } 4211 EXPORT_SYMBOL_GPL(napi_by_id); 4212 4213 void napi_hash_add(struct napi_struct *napi) 4214 { 4215 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) { 4216 4217 spin_lock(&napi_hash_lock); 4218 4219 /* 0 is not a valid id, we also skip an id that is taken 4220 * we expect both events to be extremely rare 4221 */ 4222 napi->napi_id = 0; 4223 while (!napi->napi_id) { 4224 napi->napi_id = ++napi_gen_id; 4225 if (napi_by_id(napi->napi_id)) 4226 napi->napi_id = 0; 4227 } 4228 4229 hlist_add_head_rcu(&napi->napi_hash_node, 4230 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 4231 4232 spin_unlock(&napi_hash_lock); 4233 } 4234 } 4235 EXPORT_SYMBOL_GPL(napi_hash_add); 4236 4237 /* Warning : caller is responsible to make sure rcu grace period 4238 * is respected before freeing memory containing @napi 4239 */ 4240 void napi_hash_del(struct napi_struct *napi) 4241 { 4242 spin_lock(&napi_hash_lock); 4243 4244 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) 4245 hlist_del_rcu(&napi->napi_hash_node); 4246 4247 spin_unlock(&napi_hash_lock); 4248 } 4249 EXPORT_SYMBOL_GPL(napi_hash_del); 4250 4251 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 4252 int (*poll)(struct napi_struct *, int), int weight) 4253 { 4254 INIT_LIST_HEAD(&napi->poll_list); 4255 napi->gro_count = 0; 4256 napi->gro_list = NULL; 4257 napi->skb = NULL; 4258 napi->poll = poll; 4259 if (weight > NAPI_POLL_WEIGHT) 4260 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 4261 weight, dev->name); 4262 napi->weight = weight; 4263 list_add(&napi->dev_list, &dev->napi_list); 4264 napi->dev = dev; 4265 #ifdef CONFIG_NETPOLL 4266 spin_lock_init(&napi->poll_lock); 4267 napi->poll_owner = -1; 4268 #endif 4269 set_bit(NAPI_STATE_SCHED, &napi->state); 4270 } 4271 EXPORT_SYMBOL(netif_napi_add); 4272 4273 void netif_napi_del(struct napi_struct *napi) 4274 { 4275 struct sk_buff *skb, *next; 4276 4277 list_del_init(&napi->dev_list); 4278 napi_free_frags(napi); 4279 4280 for (skb = napi->gro_list; skb; skb = next) { 4281 next = skb->next; 4282 skb->next = NULL; 4283 kfree_skb(skb); 4284 } 4285 4286 napi->gro_list = NULL; 4287 napi->gro_count = 0; 4288 } 4289 EXPORT_SYMBOL(netif_napi_del); 4290 4291 static void net_rx_action(struct softirq_action *h) 4292 { 4293 struct softnet_data *sd = &__get_cpu_var(softnet_data); 4294 unsigned long time_limit = jiffies + 2; 4295 int budget = netdev_budget; 4296 void *have; 4297 4298 local_irq_disable(); 4299 4300 while (!list_empty(&sd->poll_list)) { 4301 struct napi_struct *n; 4302 int work, weight; 4303 4304 /* If softirq window is exhuasted then punt. 4305 * Allow this to run for 2 jiffies since which will allow 4306 * an average latency of 1.5/HZ. 4307 */ 4308 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit))) 4309 goto softnet_break; 4310 4311 local_irq_enable(); 4312 4313 /* Even though interrupts have been re-enabled, this 4314 * access is safe because interrupts can only add new 4315 * entries to the tail of this list, and only ->poll() 4316 * calls can remove this head entry from the list. 4317 */ 4318 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list); 4319 4320 have = netpoll_poll_lock(n); 4321 4322 weight = n->weight; 4323 4324 /* This NAPI_STATE_SCHED test is for avoiding a race 4325 * with netpoll's poll_napi(). Only the entity which 4326 * obtains the lock and sees NAPI_STATE_SCHED set will 4327 * actually make the ->poll() call. Therefore we avoid 4328 * accidentally calling ->poll() when NAPI is not scheduled. 4329 */ 4330 work = 0; 4331 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 4332 work = n->poll(n, weight); 4333 trace_napi_poll(n); 4334 } 4335 4336 WARN_ON_ONCE(work > weight); 4337 4338 budget -= work; 4339 4340 local_irq_disable(); 4341 4342 /* Drivers must not modify the NAPI state if they 4343 * consume the entire weight. In such cases this code 4344 * still "owns" the NAPI instance and therefore can 4345 * move the instance around on the list at-will. 4346 */ 4347 if (unlikely(work == weight)) { 4348 if (unlikely(napi_disable_pending(n))) { 4349 local_irq_enable(); 4350 napi_complete(n); 4351 local_irq_disable(); 4352 } else { 4353 if (n->gro_list) { 4354 /* flush too old packets 4355 * If HZ < 1000, flush all packets. 4356 */ 4357 local_irq_enable(); 4358 napi_gro_flush(n, HZ >= 1000); 4359 local_irq_disable(); 4360 } 4361 list_move_tail(&n->poll_list, &sd->poll_list); 4362 } 4363 } 4364 4365 netpoll_poll_unlock(have); 4366 } 4367 out: 4368 net_rps_action_and_irq_enable(sd); 4369 4370 #ifdef CONFIG_NET_DMA 4371 /* 4372 * There may not be any more sk_buffs coming right now, so push 4373 * any pending DMA copies to hardware 4374 */ 4375 dma_issue_pending_all(); 4376 #endif 4377 4378 return; 4379 4380 softnet_break: 4381 sd->time_squeeze++; 4382 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4383 goto out; 4384 } 4385 4386 struct netdev_adjacent { 4387 struct net_device *dev; 4388 4389 /* upper master flag, there can only be one master device per list */ 4390 bool master; 4391 4392 /* counter for the number of times this device was added to us */ 4393 u16 ref_nr; 4394 4395 /* private field for the users */ 4396 void *private; 4397 4398 struct list_head list; 4399 struct rcu_head rcu; 4400 }; 4401 4402 static struct netdev_adjacent *__netdev_find_adj_rcu(struct net_device *dev, 4403 struct net_device *adj_dev, 4404 struct list_head *adj_list) 4405 { 4406 struct netdev_adjacent *adj; 4407 4408 list_for_each_entry_rcu(adj, adj_list, list) { 4409 if (adj->dev == adj_dev) 4410 return adj; 4411 } 4412 return NULL; 4413 } 4414 4415 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev, 4416 struct net_device *adj_dev, 4417 struct list_head *adj_list) 4418 { 4419 struct netdev_adjacent *adj; 4420 4421 list_for_each_entry(adj, adj_list, list) { 4422 if (adj->dev == adj_dev) 4423 return adj; 4424 } 4425 return NULL; 4426 } 4427 4428 /** 4429 * netdev_has_upper_dev - Check if device is linked to an upper device 4430 * @dev: device 4431 * @upper_dev: upper device to check 4432 * 4433 * Find out if a device is linked to specified upper device and return true 4434 * in case it is. Note that this checks only immediate upper device, 4435 * not through a complete stack of devices. The caller must hold the RTNL lock. 4436 */ 4437 bool netdev_has_upper_dev(struct net_device *dev, 4438 struct net_device *upper_dev) 4439 { 4440 ASSERT_RTNL(); 4441 4442 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper); 4443 } 4444 EXPORT_SYMBOL(netdev_has_upper_dev); 4445 4446 /** 4447 * netdev_has_any_upper_dev - Check if device is linked to some device 4448 * @dev: device 4449 * 4450 * Find out if a device is linked to an upper device and return true in case 4451 * it is. The caller must hold the RTNL lock. 4452 */ 4453 bool netdev_has_any_upper_dev(struct net_device *dev) 4454 { 4455 ASSERT_RTNL(); 4456 4457 return !list_empty(&dev->all_adj_list.upper); 4458 } 4459 EXPORT_SYMBOL(netdev_has_any_upper_dev); 4460 4461 /** 4462 * netdev_master_upper_dev_get - Get master upper device 4463 * @dev: device 4464 * 4465 * Find a master upper device and return pointer to it or NULL in case 4466 * it's not there. The caller must hold the RTNL lock. 4467 */ 4468 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 4469 { 4470 struct netdev_adjacent *upper; 4471 4472 ASSERT_RTNL(); 4473 4474 if (list_empty(&dev->adj_list.upper)) 4475 return NULL; 4476 4477 upper = list_first_entry(&dev->adj_list.upper, 4478 struct netdev_adjacent, list); 4479 if (likely(upper->master)) 4480 return upper->dev; 4481 return NULL; 4482 } 4483 EXPORT_SYMBOL(netdev_master_upper_dev_get); 4484 4485 void *netdev_adjacent_get_private(struct list_head *adj_list) 4486 { 4487 struct netdev_adjacent *adj; 4488 4489 adj = list_entry(adj_list, struct netdev_adjacent, list); 4490 4491 return adj->private; 4492 } 4493 EXPORT_SYMBOL(netdev_adjacent_get_private); 4494 4495 /** 4496 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list 4497 * @dev: device 4498 * @iter: list_head ** of the current position 4499 * 4500 * Gets the next device from the dev's upper list, starting from iter 4501 * position. The caller must hold RCU read lock. 4502 */ 4503 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 4504 struct list_head **iter) 4505 { 4506 struct netdev_adjacent *upper; 4507 4508 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 4509 4510 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 4511 4512 if (&upper->list == &dev->all_adj_list.upper) 4513 return NULL; 4514 4515 *iter = &upper->list; 4516 4517 return upper->dev; 4518 } 4519 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu); 4520 4521 /** 4522 * netdev_lower_get_next_private - Get the next ->private from the 4523 * lower neighbour list 4524 * @dev: device 4525 * @iter: list_head ** of the current position 4526 * 4527 * Gets the next netdev_adjacent->private from the dev's lower neighbour 4528 * list, starting from iter position. The caller must hold either hold the 4529 * RTNL lock or its own locking that guarantees that the neighbour lower 4530 * list will remain unchainged. 4531 */ 4532 void *netdev_lower_get_next_private(struct net_device *dev, 4533 struct list_head **iter) 4534 { 4535 struct netdev_adjacent *lower; 4536 4537 lower = list_entry(*iter, struct netdev_adjacent, list); 4538 4539 if (&lower->list == &dev->adj_list.lower) 4540 return NULL; 4541 4542 if (iter) 4543 *iter = lower->list.next; 4544 4545 return lower->private; 4546 } 4547 EXPORT_SYMBOL(netdev_lower_get_next_private); 4548 4549 /** 4550 * netdev_lower_get_next_private_rcu - Get the next ->private from the 4551 * lower neighbour list, RCU 4552 * variant 4553 * @dev: device 4554 * @iter: list_head ** of the current position 4555 * 4556 * Gets the next netdev_adjacent->private from the dev's lower neighbour 4557 * list, starting from iter position. The caller must hold RCU read lock. 4558 */ 4559 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4560 struct list_head **iter) 4561 { 4562 struct netdev_adjacent *lower; 4563 4564 WARN_ON_ONCE(!rcu_read_lock_held()); 4565 4566 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 4567 4568 if (&lower->list == &dev->adj_list.lower) 4569 return NULL; 4570 4571 if (iter) 4572 *iter = &lower->list; 4573 4574 return lower->private; 4575 } 4576 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 4577 4578 /** 4579 * netdev_master_upper_dev_get_rcu - Get master upper device 4580 * @dev: device 4581 * 4582 * Find a master upper device and return pointer to it or NULL in case 4583 * it's not there. The caller must hold the RCU read lock. 4584 */ 4585 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 4586 { 4587 struct netdev_adjacent *upper; 4588 4589 upper = list_first_or_null_rcu(&dev->adj_list.upper, 4590 struct netdev_adjacent, list); 4591 if (upper && likely(upper->master)) 4592 return upper->dev; 4593 return NULL; 4594 } 4595 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 4596 4597 static int __netdev_adjacent_dev_insert(struct net_device *dev, 4598 struct net_device *adj_dev, 4599 struct list_head *dev_list, 4600 void *private, bool master) 4601 { 4602 struct netdev_adjacent *adj; 4603 char linkname[IFNAMSIZ+7]; 4604 int ret; 4605 4606 adj = __netdev_find_adj(dev, adj_dev, dev_list); 4607 4608 if (adj) { 4609 adj->ref_nr++; 4610 return 0; 4611 } 4612 4613 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 4614 if (!adj) 4615 return -ENOMEM; 4616 4617 adj->dev = adj_dev; 4618 adj->master = master; 4619 adj->ref_nr = 1; 4620 adj->private = private; 4621 dev_hold(adj_dev); 4622 4623 pr_debug("dev_hold for %s, because of link added from %s to %s\n", 4624 adj_dev->name, dev->name, adj_dev->name); 4625 4626 if (dev_list == &dev->adj_list.lower) { 4627 sprintf(linkname, "lower_%s", adj_dev->name); 4628 ret = sysfs_create_link(&(dev->dev.kobj), 4629 &(adj_dev->dev.kobj), linkname); 4630 if (ret) 4631 goto free_adj; 4632 } else if (dev_list == &dev->adj_list.upper) { 4633 sprintf(linkname, "upper_%s", adj_dev->name); 4634 ret = sysfs_create_link(&(dev->dev.kobj), 4635 &(adj_dev->dev.kobj), linkname); 4636 if (ret) 4637 goto free_adj; 4638 } 4639 4640 /* Ensure that master link is always the first item in list. */ 4641 if (master) { 4642 ret = sysfs_create_link(&(dev->dev.kobj), 4643 &(adj_dev->dev.kobj), "master"); 4644 if (ret) 4645 goto remove_symlinks; 4646 4647 list_add_rcu(&adj->list, dev_list); 4648 } else { 4649 list_add_tail_rcu(&adj->list, dev_list); 4650 } 4651 4652 return 0; 4653 4654 remove_symlinks: 4655 if (dev_list == &dev->adj_list.lower) { 4656 sprintf(linkname, "lower_%s", adj_dev->name); 4657 sysfs_remove_link(&(dev->dev.kobj), linkname); 4658 } else if (dev_list == &dev->adj_list.upper) { 4659 sprintf(linkname, "upper_%s", adj_dev->name); 4660 sysfs_remove_link(&(dev->dev.kobj), linkname); 4661 } 4662 4663 free_adj: 4664 kfree(adj); 4665 dev_put(adj_dev); 4666 4667 return ret; 4668 } 4669 4670 void __netdev_adjacent_dev_remove(struct net_device *dev, 4671 struct net_device *adj_dev, 4672 struct list_head *dev_list) 4673 { 4674 struct netdev_adjacent *adj; 4675 char linkname[IFNAMSIZ+7]; 4676 4677 adj = __netdev_find_adj(dev, adj_dev, dev_list); 4678 4679 if (!adj) { 4680 pr_err("tried to remove device %s from %s\n", 4681 dev->name, adj_dev->name); 4682 BUG(); 4683 } 4684 4685 if (adj->ref_nr > 1) { 4686 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name, 4687 adj->ref_nr-1); 4688 adj->ref_nr--; 4689 return; 4690 } 4691 4692 if (adj->master) 4693 sysfs_remove_link(&(dev->dev.kobj), "master"); 4694 4695 if (dev_list == &dev->adj_list.lower) { 4696 sprintf(linkname, "lower_%s", adj_dev->name); 4697 sysfs_remove_link(&(dev->dev.kobj), linkname); 4698 } else if (dev_list == &dev->adj_list.upper) { 4699 sprintf(linkname, "upper_%s", adj_dev->name); 4700 sysfs_remove_link(&(dev->dev.kobj), linkname); 4701 } 4702 4703 list_del_rcu(&adj->list); 4704 pr_debug("dev_put for %s, because link removed from %s to %s\n", 4705 adj_dev->name, dev->name, adj_dev->name); 4706 dev_put(adj_dev); 4707 kfree_rcu(adj, rcu); 4708 } 4709 4710 int __netdev_adjacent_dev_link_lists(struct net_device *dev, 4711 struct net_device *upper_dev, 4712 struct list_head *up_list, 4713 struct list_head *down_list, 4714 void *private, bool master) 4715 { 4716 int ret; 4717 4718 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private, 4719 master); 4720 if (ret) 4721 return ret; 4722 4723 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private, 4724 false); 4725 if (ret) { 4726 __netdev_adjacent_dev_remove(dev, upper_dev, up_list); 4727 return ret; 4728 } 4729 4730 return 0; 4731 } 4732 4733 int __netdev_adjacent_dev_link(struct net_device *dev, 4734 struct net_device *upper_dev) 4735 { 4736 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 4737 &dev->all_adj_list.upper, 4738 &upper_dev->all_adj_list.lower, 4739 NULL, false); 4740 } 4741 4742 void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 4743 struct net_device *upper_dev, 4744 struct list_head *up_list, 4745 struct list_head *down_list) 4746 { 4747 __netdev_adjacent_dev_remove(dev, upper_dev, up_list); 4748 __netdev_adjacent_dev_remove(upper_dev, dev, down_list); 4749 } 4750 4751 void __netdev_adjacent_dev_unlink(struct net_device *dev, 4752 struct net_device *upper_dev) 4753 { 4754 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 4755 &dev->all_adj_list.upper, 4756 &upper_dev->all_adj_list.lower); 4757 } 4758 4759 int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 4760 struct net_device *upper_dev, 4761 void *private, bool master) 4762 { 4763 int ret = __netdev_adjacent_dev_link(dev, upper_dev); 4764 4765 if (ret) 4766 return ret; 4767 4768 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev, 4769 &dev->adj_list.upper, 4770 &upper_dev->adj_list.lower, 4771 private, master); 4772 if (ret) { 4773 __netdev_adjacent_dev_unlink(dev, upper_dev); 4774 return ret; 4775 } 4776 4777 return 0; 4778 } 4779 4780 void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 4781 struct net_device *upper_dev) 4782 { 4783 __netdev_adjacent_dev_unlink(dev, upper_dev); 4784 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 4785 &dev->adj_list.upper, 4786 &upper_dev->adj_list.lower); 4787 } 4788 4789 static int __netdev_upper_dev_link(struct net_device *dev, 4790 struct net_device *upper_dev, bool master, 4791 void *private) 4792 { 4793 struct netdev_adjacent *i, *j, *to_i, *to_j; 4794 int ret = 0; 4795 4796 ASSERT_RTNL(); 4797 4798 if (dev == upper_dev) 4799 return -EBUSY; 4800 4801 /* To prevent loops, check if dev is not upper device to upper_dev. */ 4802 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper)) 4803 return -EBUSY; 4804 4805 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper)) 4806 return -EEXIST; 4807 4808 if (master && netdev_master_upper_dev_get(dev)) 4809 return -EBUSY; 4810 4811 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private, 4812 master); 4813 if (ret) 4814 return ret; 4815 4816 /* Now that we linked these devs, make all the upper_dev's 4817 * all_adj_list.upper visible to every dev's all_adj_list.lower an 4818 * versa, and don't forget the devices itself. All of these 4819 * links are non-neighbours. 4820 */ 4821 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 4822 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) { 4823 pr_debug("Interlinking %s with %s, non-neighbour\n", 4824 i->dev->name, j->dev->name); 4825 ret = __netdev_adjacent_dev_link(i->dev, j->dev); 4826 if (ret) 4827 goto rollback_mesh; 4828 } 4829 } 4830 4831 /* add dev to every upper_dev's upper device */ 4832 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) { 4833 pr_debug("linking %s's upper device %s with %s\n", 4834 upper_dev->name, i->dev->name, dev->name); 4835 ret = __netdev_adjacent_dev_link(dev, i->dev); 4836 if (ret) 4837 goto rollback_upper_mesh; 4838 } 4839 4840 /* add upper_dev to every dev's lower device */ 4841 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 4842 pr_debug("linking %s's lower device %s with %s\n", dev->name, 4843 i->dev->name, upper_dev->name); 4844 ret = __netdev_adjacent_dev_link(i->dev, upper_dev); 4845 if (ret) 4846 goto rollback_lower_mesh; 4847 } 4848 4849 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev); 4850 return 0; 4851 4852 rollback_lower_mesh: 4853 to_i = i; 4854 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 4855 if (i == to_i) 4856 break; 4857 __netdev_adjacent_dev_unlink(i->dev, upper_dev); 4858 } 4859 4860 i = NULL; 4861 4862 rollback_upper_mesh: 4863 to_i = i; 4864 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) { 4865 if (i == to_i) 4866 break; 4867 __netdev_adjacent_dev_unlink(dev, i->dev); 4868 } 4869 4870 i = j = NULL; 4871 4872 rollback_mesh: 4873 to_i = i; 4874 to_j = j; 4875 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 4876 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) { 4877 if (i == to_i && j == to_j) 4878 break; 4879 __netdev_adjacent_dev_unlink(i->dev, j->dev); 4880 } 4881 if (i == to_i) 4882 break; 4883 } 4884 4885 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 4886 4887 return ret; 4888 } 4889 4890 /** 4891 * netdev_upper_dev_link - Add a link to the upper device 4892 * @dev: device 4893 * @upper_dev: new upper device 4894 * 4895 * Adds a link to device which is upper to this one. The caller must hold 4896 * the RTNL lock. On a failure a negative errno code is returned. 4897 * On success the reference counts are adjusted and the function 4898 * returns zero. 4899 */ 4900 int netdev_upper_dev_link(struct net_device *dev, 4901 struct net_device *upper_dev) 4902 { 4903 return __netdev_upper_dev_link(dev, upper_dev, false, NULL); 4904 } 4905 EXPORT_SYMBOL(netdev_upper_dev_link); 4906 4907 /** 4908 * netdev_master_upper_dev_link - Add a master link to the upper device 4909 * @dev: device 4910 * @upper_dev: new upper device 4911 * 4912 * Adds a link to device which is upper to this one. In this case, only 4913 * one master upper device can be linked, although other non-master devices 4914 * might be linked as well. The caller must hold the RTNL lock. 4915 * On a failure a negative errno code is returned. On success the reference 4916 * counts are adjusted and the function returns zero. 4917 */ 4918 int netdev_master_upper_dev_link(struct net_device *dev, 4919 struct net_device *upper_dev) 4920 { 4921 return __netdev_upper_dev_link(dev, upper_dev, true, NULL); 4922 } 4923 EXPORT_SYMBOL(netdev_master_upper_dev_link); 4924 4925 int netdev_master_upper_dev_link_private(struct net_device *dev, 4926 struct net_device *upper_dev, 4927 void *private) 4928 { 4929 return __netdev_upper_dev_link(dev, upper_dev, true, private); 4930 } 4931 EXPORT_SYMBOL(netdev_master_upper_dev_link_private); 4932 4933 /** 4934 * netdev_upper_dev_unlink - Removes a link to upper device 4935 * @dev: device 4936 * @upper_dev: new upper device 4937 * 4938 * Removes a link to device which is upper to this one. The caller must hold 4939 * the RTNL lock. 4940 */ 4941 void netdev_upper_dev_unlink(struct net_device *dev, 4942 struct net_device *upper_dev) 4943 { 4944 struct netdev_adjacent *i, *j; 4945 ASSERT_RTNL(); 4946 4947 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 4948 4949 /* Here is the tricky part. We must remove all dev's lower 4950 * devices from all upper_dev's upper devices and vice 4951 * versa, to maintain the graph relationship. 4952 */ 4953 list_for_each_entry(i, &dev->all_adj_list.lower, list) 4954 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) 4955 __netdev_adjacent_dev_unlink(i->dev, j->dev); 4956 4957 /* remove also the devices itself from lower/upper device 4958 * list 4959 */ 4960 list_for_each_entry(i, &dev->all_adj_list.lower, list) 4961 __netdev_adjacent_dev_unlink(i->dev, upper_dev); 4962 4963 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) 4964 __netdev_adjacent_dev_unlink(dev, i->dev); 4965 4966 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev); 4967 } 4968 EXPORT_SYMBOL(netdev_upper_dev_unlink); 4969 4970 void *netdev_lower_dev_get_private_rcu(struct net_device *dev, 4971 struct net_device *lower_dev) 4972 { 4973 struct netdev_adjacent *lower; 4974 4975 if (!lower_dev) 4976 return NULL; 4977 lower = __netdev_find_adj_rcu(dev, lower_dev, &dev->adj_list.lower); 4978 if (!lower) 4979 return NULL; 4980 4981 return lower->private; 4982 } 4983 EXPORT_SYMBOL(netdev_lower_dev_get_private_rcu); 4984 4985 void *netdev_lower_dev_get_private(struct net_device *dev, 4986 struct net_device *lower_dev) 4987 { 4988 struct netdev_adjacent *lower; 4989 4990 if (!lower_dev) 4991 return NULL; 4992 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower); 4993 if (!lower) 4994 return NULL; 4995 4996 return lower->private; 4997 } 4998 EXPORT_SYMBOL(netdev_lower_dev_get_private); 4999 5000 static void dev_change_rx_flags(struct net_device *dev, int flags) 5001 { 5002 const struct net_device_ops *ops = dev->netdev_ops; 5003 5004 if (ops->ndo_change_rx_flags) 5005 ops->ndo_change_rx_flags(dev, flags); 5006 } 5007 5008 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 5009 { 5010 unsigned int old_flags = dev->flags; 5011 kuid_t uid; 5012 kgid_t gid; 5013 5014 ASSERT_RTNL(); 5015 5016 dev->flags |= IFF_PROMISC; 5017 dev->promiscuity += inc; 5018 if (dev->promiscuity == 0) { 5019 /* 5020 * Avoid overflow. 5021 * If inc causes overflow, untouch promisc and return error. 5022 */ 5023 if (inc < 0) 5024 dev->flags &= ~IFF_PROMISC; 5025 else { 5026 dev->promiscuity -= inc; 5027 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 5028 dev->name); 5029 return -EOVERFLOW; 5030 } 5031 } 5032 if (dev->flags != old_flags) { 5033 pr_info("device %s %s promiscuous mode\n", 5034 dev->name, 5035 dev->flags & IFF_PROMISC ? "entered" : "left"); 5036 if (audit_enabled) { 5037 current_uid_gid(&uid, &gid); 5038 audit_log(current->audit_context, GFP_ATOMIC, 5039 AUDIT_ANOM_PROMISCUOUS, 5040 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 5041 dev->name, (dev->flags & IFF_PROMISC), 5042 (old_flags & IFF_PROMISC), 5043 from_kuid(&init_user_ns, audit_get_loginuid(current)), 5044 from_kuid(&init_user_ns, uid), 5045 from_kgid(&init_user_ns, gid), 5046 audit_get_sessionid(current)); 5047 } 5048 5049 dev_change_rx_flags(dev, IFF_PROMISC); 5050 } 5051 if (notify) 5052 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 5053 return 0; 5054 } 5055 5056 /** 5057 * dev_set_promiscuity - update promiscuity count on a device 5058 * @dev: device 5059 * @inc: modifier 5060 * 5061 * Add or remove promiscuity from a device. While the count in the device 5062 * remains above zero the interface remains promiscuous. Once it hits zero 5063 * the device reverts back to normal filtering operation. A negative inc 5064 * value is used to drop promiscuity on the device. 5065 * Return 0 if successful or a negative errno code on error. 5066 */ 5067 int dev_set_promiscuity(struct net_device *dev, int inc) 5068 { 5069 unsigned int old_flags = dev->flags; 5070 int err; 5071 5072 err = __dev_set_promiscuity(dev, inc, true); 5073 if (err < 0) 5074 return err; 5075 if (dev->flags != old_flags) 5076 dev_set_rx_mode(dev); 5077 return err; 5078 } 5079 EXPORT_SYMBOL(dev_set_promiscuity); 5080 5081 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 5082 { 5083 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 5084 5085 ASSERT_RTNL(); 5086 5087 dev->flags |= IFF_ALLMULTI; 5088 dev->allmulti += inc; 5089 if (dev->allmulti == 0) { 5090 /* 5091 * Avoid overflow. 5092 * If inc causes overflow, untouch allmulti and return error. 5093 */ 5094 if (inc < 0) 5095 dev->flags &= ~IFF_ALLMULTI; 5096 else { 5097 dev->allmulti -= inc; 5098 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 5099 dev->name); 5100 return -EOVERFLOW; 5101 } 5102 } 5103 if (dev->flags ^ old_flags) { 5104 dev_change_rx_flags(dev, IFF_ALLMULTI); 5105 dev_set_rx_mode(dev); 5106 if (notify) 5107 __dev_notify_flags(dev, old_flags, 5108 dev->gflags ^ old_gflags); 5109 } 5110 return 0; 5111 } 5112 5113 /** 5114 * dev_set_allmulti - update allmulti count on a device 5115 * @dev: device 5116 * @inc: modifier 5117 * 5118 * Add or remove reception of all multicast frames to a device. While the 5119 * count in the device remains above zero the interface remains listening 5120 * to all interfaces. Once it hits zero the device reverts back to normal 5121 * filtering operation. A negative @inc value is used to drop the counter 5122 * when releasing a resource needing all multicasts. 5123 * Return 0 if successful or a negative errno code on error. 5124 */ 5125 5126 int dev_set_allmulti(struct net_device *dev, int inc) 5127 { 5128 return __dev_set_allmulti(dev, inc, true); 5129 } 5130 EXPORT_SYMBOL(dev_set_allmulti); 5131 5132 /* 5133 * Upload unicast and multicast address lists to device and 5134 * configure RX filtering. When the device doesn't support unicast 5135 * filtering it is put in promiscuous mode while unicast addresses 5136 * are present. 5137 */ 5138 void __dev_set_rx_mode(struct net_device *dev) 5139 { 5140 const struct net_device_ops *ops = dev->netdev_ops; 5141 5142 /* dev_open will call this function so the list will stay sane. */ 5143 if (!(dev->flags&IFF_UP)) 5144 return; 5145 5146 if (!netif_device_present(dev)) 5147 return; 5148 5149 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 5150 /* Unicast addresses changes may only happen under the rtnl, 5151 * therefore calling __dev_set_promiscuity here is safe. 5152 */ 5153 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 5154 __dev_set_promiscuity(dev, 1, false); 5155 dev->uc_promisc = true; 5156 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 5157 __dev_set_promiscuity(dev, -1, false); 5158 dev->uc_promisc = false; 5159 } 5160 } 5161 5162 if (ops->ndo_set_rx_mode) 5163 ops->ndo_set_rx_mode(dev); 5164 } 5165 5166 void dev_set_rx_mode(struct net_device *dev) 5167 { 5168 netif_addr_lock_bh(dev); 5169 __dev_set_rx_mode(dev); 5170 netif_addr_unlock_bh(dev); 5171 } 5172 5173 /** 5174 * dev_get_flags - get flags reported to userspace 5175 * @dev: device 5176 * 5177 * Get the combination of flag bits exported through APIs to userspace. 5178 */ 5179 unsigned int dev_get_flags(const struct net_device *dev) 5180 { 5181 unsigned int flags; 5182 5183 flags = (dev->flags & ~(IFF_PROMISC | 5184 IFF_ALLMULTI | 5185 IFF_RUNNING | 5186 IFF_LOWER_UP | 5187 IFF_DORMANT)) | 5188 (dev->gflags & (IFF_PROMISC | 5189 IFF_ALLMULTI)); 5190 5191 if (netif_running(dev)) { 5192 if (netif_oper_up(dev)) 5193 flags |= IFF_RUNNING; 5194 if (netif_carrier_ok(dev)) 5195 flags |= IFF_LOWER_UP; 5196 if (netif_dormant(dev)) 5197 flags |= IFF_DORMANT; 5198 } 5199 5200 return flags; 5201 } 5202 EXPORT_SYMBOL(dev_get_flags); 5203 5204 int __dev_change_flags(struct net_device *dev, unsigned int flags) 5205 { 5206 unsigned int old_flags = dev->flags; 5207 int ret; 5208 5209 ASSERT_RTNL(); 5210 5211 /* 5212 * Set the flags on our device. 5213 */ 5214 5215 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 5216 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 5217 IFF_AUTOMEDIA)) | 5218 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 5219 IFF_ALLMULTI)); 5220 5221 /* 5222 * Load in the correct multicast list now the flags have changed. 5223 */ 5224 5225 if ((old_flags ^ flags) & IFF_MULTICAST) 5226 dev_change_rx_flags(dev, IFF_MULTICAST); 5227 5228 dev_set_rx_mode(dev); 5229 5230 /* 5231 * Have we downed the interface. We handle IFF_UP ourselves 5232 * according to user attempts to set it, rather than blindly 5233 * setting it. 5234 */ 5235 5236 ret = 0; 5237 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 5238 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 5239 5240 if (!ret) 5241 dev_set_rx_mode(dev); 5242 } 5243 5244 if ((flags ^ dev->gflags) & IFF_PROMISC) { 5245 int inc = (flags & IFF_PROMISC) ? 1 : -1; 5246 unsigned int old_flags = dev->flags; 5247 5248 dev->gflags ^= IFF_PROMISC; 5249 5250 if (__dev_set_promiscuity(dev, inc, false) >= 0) 5251 if (dev->flags != old_flags) 5252 dev_set_rx_mode(dev); 5253 } 5254 5255 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 5256 is important. Some (broken) drivers set IFF_PROMISC, when 5257 IFF_ALLMULTI is requested not asking us and not reporting. 5258 */ 5259 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 5260 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 5261 5262 dev->gflags ^= IFF_ALLMULTI; 5263 __dev_set_allmulti(dev, inc, false); 5264 } 5265 5266 return ret; 5267 } 5268 5269 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 5270 unsigned int gchanges) 5271 { 5272 unsigned int changes = dev->flags ^ old_flags; 5273 5274 if (gchanges) 5275 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 5276 5277 if (changes & IFF_UP) { 5278 if (dev->flags & IFF_UP) 5279 call_netdevice_notifiers(NETDEV_UP, dev); 5280 else 5281 call_netdevice_notifiers(NETDEV_DOWN, dev); 5282 } 5283 5284 if (dev->flags & IFF_UP && 5285 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 5286 struct netdev_notifier_change_info change_info; 5287 5288 change_info.flags_changed = changes; 5289 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 5290 &change_info.info); 5291 } 5292 } 5293 5294 /** 5295 * dev_change_flags - change device settings 5296 * @dev: device 5297 * @flags: device state flags 5298 * 5299 * Change settings on device based state flags. The flags are 5300 * in the userspace exported format. 5301 */ 5302 int dev_change_flags(struct net_device *dev, unsigned int flags) 5303 { 5304 int ret; 5305 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 5306 5307 ret = __dev_change_flags(dev, flags); 5308 if (ret < 0) 5309 return ret; 5310 5311 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 5312 __dev_notify_flags(dev, old_flags, changes); 5313 return ret; 5314 } 5315 EXPORT_SYMBOL(dev_change_flags); 5316 5317 /** 5318 * dev_set_mtu - Change maximum transfer unit 5319 * @dev: device 5320 * @new_mtu: new transfer unit 5321 * 5322 * Change the maximum transfer size of the network device. 5323 */ 5324 int dev_set_mtu(struct net_device *dev, int new_mtu) 5325 { 5326 const struct net_device_ops *ops = dev->netdev_ops; 5327 int err; 5328 5329 if (new_mtu == dev->mtu) 5330 return 0; 5331 5332 /* MTU must be positive. */ 5333 if (new_mtu < 0) 5334 return -EINVAL; 5335 5336 if (!netif_device_present(dev)) 5337 return -ENODEV; 5338 5339 err = 0; 5340 if (ops->ndo_change_mtu) 5341 err = ops->ndo_change_mtu(dev, new_mtu); 5342 else 5343 dev->mtu = new_mtu; 5344 5345 if (!err) 5346 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 5347 return err; 5348 } 5349 EXPORT_SYMBOL(dev_set_mtu); 5350 5351 /** 5352 * dev_set_group - Change group this device belongs to 5353 * @dev: device 5354 * @new_group: group this device should belong to 5355 */ 5356 void dev_set_group(struct net_device *dev, int new_group) 5357 { 5358 dev->group = new_group; 5359 } 5360 EXPORT_SYMBOL(dev_set_group); 5361 5362 /** 5363 * dev_set_mac_address - Change Media Access Control Address 5364 * @dev: device 5365 * @sa: new address 5366 * 5367 * Change the hardware (MAC) address of the device 5368 */ 5369 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 5370 { 5371 const struct net_device_ops *ops = dev->netdev_ops; 5372 int err; 5373 5374 if (!ops->ndo_set_mac_address) 5375 return -EOPNOTSUPP; 5376 if (sa->sa_family != dev->type) 5377 return -EINVAL; 5378 if (!netif_device_present(dev)) 5379 return -ENODEV; 5380 err = ops->ndo_set_mac_address(dev, sa); 5381 if (err) 5382 return err; 5383 dev->addr_assign_type = NET_ADDR_SET; 5384 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 5385 add_device_randomness(dev->dev_addr, dev->addr_len); 5386 return 0; 5387 } 5388 EXPORT_SYMBOL(dev_set_mac_address); 5389 5390 /** 5391 * dev_change_carrier - Change device carrier 5392 * @dev: device 5393 * @new_carrier: new value 5394 * 5395 * Change device carrier 5396 */ 5397 int dev_change_carrier(struct net_device *dev, bool new_carrier) 5398 { 5399 const struct net_device_ops *ops = dev->netdev_ops; 5400 5401 if (!ops->ndo_change_carrier) 5402 return -EOPNOTSUPP; 5403 if (!netif_device_present(dev)) 5404 return -ENODEV; 5405 return ops->ndo_change_carrier(dev, new_carrier); 5406 } 5407 EXPORT_SYMBOL(dev_change_carrier); 5408 5409 /** 5410 * dev_get_phys_port_id - Get device physical port ID 5411 * @dev: device 5412 * @ppid: port ID 5413 * 5414 * Get device physical port ID 5415 */ 5416 int dev_get_phys_port_id(struct net_device *dev, 5417 struct netdev_phys_port_id *ppid) 5418 { 5419 const struct net_device_ops *ops = dev->netdev_ops; 5420 5421 if (!ops->ndo_get_phys_port_id) 5422 return -EOPNOTSUPP; 5423 return ops->ndo_get_phys_port_id(dev, ppid); 5424 } 5425 EXPORT_SYMBOL(dev_get_phys_port_id); 5426 5427 /** 5428 * dev_new_index - allocate an ifindex 5429 * @net: the applicable net namespace 5430 * 5431 * Returns a suitable unique value for a new device interface 5432 * number. The caller must hold the rtnl semaphore or the 5433 * dev_base_lock to be sure it remains unique. 5434 */ 5435 static int dev_new_index(struct net *net) 5436 { 5437 int ifindex = net->ifindex; 5438 for (;;) { 5439 if (++ifindex <= 0) 5440 ifindex = 1; 5441 if (!__dev_get_by_index(net, ifindex)) 5442 return net->ifindex = ifindex; 5443 } 5444 } 5445 5446 /* Delayed registration/unregisteration */ 5447 static LIST_HEAD(net_todo_list); 5448 static DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 5449 5450 static void net_set_todo(struct net_device *dev) 5451 { 5452 list_add_tail(&dev->todo_list, &net_todo_list); 5453 dev_net(dev)->dev_unreg_count++; 5454 } 5455 5456 static void rollback_registered_many(struct list_head *head) 5457 { 5458 struct net_device *dev, *tmp; 5459 LIST_HEAD(close_head); 5460 5461 BUG_ON(dev_boot_phase); 5462 ASSERT_RTNL(); 5463 5464 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 5465 /* Some devices call without registering 5466 * for initialization unwind. Remove those 5467 * devices and proceed with the remaining. 5468 */ 5469 if (dev->reg_state == NETREG_UNINITIALIZED) { 5470 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 5471 dev->name, dev); 5472 5473 WARN_ON(1); 5474 list_del(&dev->unreg_list); 5475 continue; 5476 } 5477 dev->dismantle = true; 5478 BUG_ON(dev->reg_state != NETREG_REGISTERED); 5479 } 5480 5481 /* If device is running, close it first. */ 5482 list_for_each_entry(dev, head, unreg_list) 5483 list_add_tail(&dev->close_list, &close_head); 5484 dev_close_many(&close_head); 5485 5486 list_for_each_entry(dev, head, unreg_list) { 5487 /* And unlink it from device chain. */ 5488 unlist_netdevice(dev); 5489 5490 dev->reg_state = NETREG_UNREGISTERING; 5491 } 5492 5493 synchronize_net(); 5494 5495 list_for_each_entry(dev, head, unreg_list) { 5496 /* Shutdown queueing discipline. */ 5497 dev_shutdown(dev); 5498 5499 5500 /* Notify protocols, that we are about to destroy 5501 this device. They should clean all the things. 5502 */ 5503 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5504 5505 if (!dev->rtnl_link_ops || 5506 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5507 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL); 5508 5509 /* 5510 * Flush the unicast and multicast chains 5511 */ 5512 dev_uc_flush(dev); 5513 dev_mc_flush(dev); 5514 5515 if (dev->netdev_ops->ndo_uninit) 5516 dev->netdev_ops->ndo_uninit(dev); 5517 5518 /* Notifier chain MUST detach us all upper devices. */ 5519 WARN_ON(netdev_has_any_upper_dev(dev)); 5520 5521 /* Remove entries from kobject tree */ 5522 netdev_unregister_kobject(dev); 5523 #ifdef CONFIG_XPS 5524 /* Remove XPS queueing entries */ 5525 netif_reset_xps_queues_gt(dev, 0); 5526 #endif 5527 } 5528 5529 synchronize_net(); 5530 5531 list_for_each_entry(dev, head, unreg_list) 5532 dev_put(dev); 5533 } 5534 5535 static void rollback_registered(struct net_device *dev) 5536 { 5537 LIST_HEAD(single); 5538 5539 list_add(&dev->unreg_list, &single); 5540 rollback_registered_many(&single); 5541 list_del(&single); 5542 } 5543 5544 static netdev_features_t netdev_fix_features(struct net_device *dev, 5545 netdev_features_t features) 5546 { 5547 /* Fix illegal checksum combinations */ 5548 if ((features & NETIF_F_HW_CSUM) && 5549 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5550 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 5551 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5552 } 5553 5554 /* TSO requires that SG is present as well. */ 5555 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 5556 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 5557 features &= ~NETIF_F_ALL_TSO; 5558 } 5559 5560 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 5561 !(features & NETIF_F_IP_CSUM)) { 5562 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 5563 features &= ~NETIF_F_TSO; 5564 features &= ~NETIF_F_TSO_ECN; 5565 } 5566 5567 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 5568 !(features & NETIF_F_IPV6_CSUM)) { 5569 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 5570 features &= ~NETIF_F_TSO6; 5571 } 5572 5573 /* TSO ECN requires that TSO is present as well. */ 5574 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 5575 features &= ~NETIF_F_TSO_ECN; 5576 5577 /* Software GSO depends on SG. */ 5578 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 5579 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 5580 features &= ~NETIF_F_GSO; 5581 } 5582 5583 /* UFO needs SG and checksumming */ 5584 if (features & NETIF_F_UFO) { 5585 /* maybe split UFO into V4 and V6? */ 5586 if (!((features & NETIF_F_GEN_CSUM) || 5587 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM)) 5588 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5589 netdev_dbg(dev, 5590 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 5591 features &= ~NETIF_F_UFO; 5592 } 5593 5594 if (!(features & NETIF_F_SG)) { 5595 netdev_dbg(dev, 5596 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 5597 features &= ~NETIF_F_UFO; 5598 } 5599 } 5600 5601 return features; 5602 } 5603 5604 int __netdev_update_features(struct net_device *dev) 5605 { 5606 netdev_features_t features; 5607 int err = 0; 5608 5609 ASSERT_RTNL(); 5610 5611 features = netdev_get_wanted_features(dev); 5612 5613 if (dev->netdev_ops->ndo_fix_features) 5614 features = dev->netdev_ops->ndo_fix_features(dev, features); 5615 5616 /* driver might be less strict about feature dependencies */ 5617 features = netdev_fix_features(dev, features); 5618 5619 if (dev->features == features) 5620 return 0; 5621 5622 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 5623 &dev->features, &features); 5624 5625 if (dev->netdev_ops->ndo_set_features) 5626 err = dev->netdev_ops->ndo_set_features(dev, features); 5627 5628 if (unlikely(err < 0)) { 5629 netdev_err(dev, 5630 "set_features() failed (%d); wanted %pNF, left %pNF\n", 5631 err, &features, &dev->features); 5632 return -1; 5633 } 5634 5635 if (!err) 5636 dev->features = features; 5637 5638 return 1; 5639 } 5640 5641 /** 5642 * netdev_update_features - recalculate device features 5643 * @dev: the device to check 5644 * 5645 * Recalculate dev->features set and send notifications if it 5646 * has changed. Should be called after driver or hardware dependent 5647 * conditions might have changed that influence the features. 5648 */ 5649 void netdev_update_features(struct net_device *dev) 5650 { 5651 if (__netdev_update_features(dev)) 5652 netdev_features_change(dev); 5653 } 5654 EXPORT_SYMBOL(netdev_update_features); 5655 5656 /** 5657 * netdev_change_features - recalculate device features 5658 * @dev: the device to check 5659 * 5660 * Recalculate dev->features set and send notifications even 5661 * if they have not changed. Should be called instead of 5662 * netdev_update_features() if also dev->vlan_features might 5663 * have changed to allow the changes to be propagated to stacked 5664 * VLAN devices. 5665 */ 5666 void netdev_change_features(struct net_device *dev) 5667 { 5668 __netdev_update_features(dev); 5669 netdev_features_change(dev); 5670 } 5671 EXPORT_SYMBOL(netdev_change_features); 5672 5673 /** 5674 * netif_stacked_transfer_operstate - transfer operstate 5675 * @rootdev: the root or lower level device to transfer state from 5676 * @dev: the device to transfer operstate to 5677 * 5678 * Transfer operational state from root to device. This is normally 5679 * called when a stacking relationship exists between the root 5680 * device and the device(a leaf device). 5681 */ 5682 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5683 struct net_device *dev) 5684 { 5685 if (rootdev->operstate == IF_OPER_DORMANT) 5686 netif_dormant_on(dev); 5687 else 5688 netif_dormant_off(dev); 5689 5690 if (netif_carrier_ok(rootdev)) { 5691 if (!netif_carrier_ok(dev)) 5692 netif_carrier_on(dev); 5693 } else { 5694 if (netif_carrier_ok(dev)) 5695 netif_carrier_off(dev); 5696 } 5697 } 5698 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 5699 5700 #ifdef CONFIG_RPS 5701 static int netif_alloc_rx_queues(struct net_device *dev) 5702 { 5703 unsigned int i, count = dev->num_rx_queues; 5704 struct netdev_rx_queue *rx; 5705 5706 BUG_ON(count < 1); 5707 5708 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL); 5709 if (!rx) 5710 return -ENOMEM; 5711 5712 dev->_rx = rx; 5713 5714 for (i = 0; i < count; i++) 5715 rx[i].dev = dev; 5716 return 0; 5717 } 5718 #endif 5719 5720 static void netdev_init_one_queue(struct net_device *dev, 5721 struct netdev_queue *queue, void *_unused) 5722 { 5723 /* Initialize queue lock */ 5724 spin_lock_init(&queue->_xmit_lock); 5725 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 5726 queue->xmit_lock_owner = -1; 5727 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 5728 queue->dev = dev; 5729 #ifdef CONFIG_BQL 5730 dql_init(&queue->dql, HZ); 5731 #endif 5732 } 5733 5734 static void netif_free_tx_queues(struct net_device *dev) 5735 { 5736 if (is_vmalloc_addr(dev->_tx)) 5737 vfree(dev->_tx); 5738 else 5739 kfree(dev->_tx); 5740 } 5741 5742 static int netif_alloc_netdev_queues(struct net_device *dev) 5743 { 5744 unsigned int count = dev->num_tx_queues; 5745 struct netdev_queue *tx; 5746 size_t sz = count * sizeof(*tx); 5747 5748 BUG_ON(count < 1 || count > 0xffff); 5749 5750 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 5751 if (!tx) { 5752 tx = vzalloc(sz); 5753 if (!tx) 5754 return -ENOMEM; 5755 } 5756 dev->_tx = tx; 5757 5758 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 5759 spin_lock_init(&dev->tx_global_lock); 5760 5761 return 0; 5762 } 5763 5764 /** 5765 * register_netdevice - register a network device 5766 * @dev: device to register 5767 * 5768 * Take a completed network device structure and add it to the kernel 5769 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5770 * chain. 0 is returned on success. A negative errno code is returned 5771 * on a failure to set up the device, or if the name is a duplicate. 5772 * 5773 * Callers must hold the rtnl semaphore. You may want 5774 * register_netdev() instead of this. 5775 * 5776 * BUGS: 5777 * The locking appears insufficient to guarantee two parallel registers 5778 * will not get the same name. 5779 */ 5780 5781 int register_netdevice(struct net_device *dev) 5782 { 5783 int ret; 5784 struct net *net = dev_net(dev); 5785 5786 BUG_ON(dev_boot_phase); 5787 ASSERT_RTNL(); 5788 5789 might_sleep(); 5790 5791 /* When net_device's are persistent, this will be fatal. */ 5792 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 5793 BUG_ON(!net); 5794 5795 spin_lock_init(&dev->addr_list_lock); 5796 netdev_set_addr_lockdep_class(dev); 5797 5798 dev->iflink = -1; 5799 5800 ret = dev_get_valid_name(net, dev, dev->name); 5801 if (ret < 0) 5802 goto out; 5803 5804 /* Init, if this function is available */ 5805 if (dev->netdev_ops->ndo_init) { 5806 ret = dev->netdev_ops->ndo_init(dev); 5807 if (ret) { 5808 if (ret > 0) 5809 ret = -EIO; 5810 goto out; 5811 } 5812 } 5813 5814 if (((dev->hw_features | dev->features) & 5815 NETIF_F_HW_VLAN_CTAG_FILTER) && 5816 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 5817 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 5818 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 5819 ret = -EINVAL; 5820 goto err_uninit; 5821 } 5822 5823 ret = -EBUSY; 5824 if (!dev->ifindex) 5825 dev->ifindex = dev_new_index(net); 5826 else if (__dev_get_by_index(net, dev->ifindex)) 5827 goto err_uninit; 5828 5829 if (dev->iflink == -1) 5830 dev->iflink = dev->ifindex; 5831 5832 /* Transfer changeable features to wanted_features and enable 5833 * software offloads (GSO and GRO). 5834 */ 5835 dev->hw_features |= NETIF_F_SOFT_FEATURES; 5836 dev->features |= NETIF_F_SOFT_FEATURES; 5837 dev->wanted_features = dev->features & dev->hw_features; 5838 5839 /* Turn on no cache copy if HW is doing checksum */ 5840 if (!(dev->flags & IFF_LOOPBACK)) { 5841 dev->hw_features |= NETIF_F_NOCACHE_COPY; 5842 if (dev->features & NETIF_F_ALL_CSUM) { 5843 dev->wanted_features |= NETIF_F_NOCACHE_COPY; 5844 dev->features |= NETIF_F_NOCACHE_COPY; 5845 } 5846 } 5847 5848 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 5849 */ 5850 dev->vlan_features |= NETIF_F_HIGHDMA; 5851 5852 /* Make NETIF_F_SG inheritable to tunnel devices. 5853 */ 5854 dev->hw_enc_features |= NETIF_F_SG; 5855 5856 /* Make NETIF_F_SG inheritable to MPLS. 5857 */ 5858 dev->mpls_features |= NETIF_F_SG; 5859 5860 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 5861 ret = notifier_to_errno(ret); 5862 if (ret) 5863 goto err_uninit; 5864 5865 ret = netdev_register_kobject(dev); 5866 if (ret) 5867 goto err_uninit; 5868 dev->reg_state = NETREG_REGISTERED; 5869 5870 __netdev_update_features(dev); 5871 5872 /* 5873 * Default initial state at registry is that the 5874 * device is present. 5875 */ 5876 5877 set_bit(__LINK_STATE_PRESENT, &dev->state); 5878 5879 linkwatch_init_dev(dev); 5880 5881 dev_init_scheduler(dev); 5882 dev_hold(dev); 5883 list_netdevice(dev); 5884 add_device_randomness(dev->dev_addr, dev->addr_len); 5885 5886 /* If the device has permanent device address, driver should 5887 * set dev_addr and also addr_assign_type should be set to 5888 * NET_ADDR_PERM (default value). 5889 */ 5890 if (dev->addr_assign_type == NET_ADDR_PERM) 5891 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 5892 5893 /* Notify protocols, that a new device appeared. */ 5894 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 5895 ret = notifier_to_errno(ret); 5896 if (ret) { 5897 rollback_registered(dev); 5898 dev->reg_state = NETREG_UNREGISTERED; 5899 } 5900 /* 5901 * Prevent userspace races by waiting until the network 5902 * device is fully setup before sending notifications. 5903 */ 5904 if (!dev->rtnl_link_ops || 5905 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5906 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 5907 5908 out: 5909 return ret; 5910 5911 err_uninit: 5912 if (dev->netdev_ops->ndo_uninit) 5913 dev->netdev_ops->ndo_uninit(dev); 5914 goto out; 5915 } 5916 EXPORT_SYMBOL(register_netdevice); 5917 5918 /** 5919 * init_dummy_netdev - init a dummy network device for NAPI 5920 * @dev: device to init 5921 * 5922 * This takes a network device structure and initialize the minimum 5923 * amount of fields so it can be used to schedule NAPI polls without 5924 * registering a full blown interface. This is to be used by drivers 5925 * that need to tie several hardware interfaces to a single NAPI 5926 * poll scheduler due to HW limitations. 5927 */ 5928 int init_dummy_netdev(struct net_device *dev) 5929 { 5930 /* Clear everything. Note we don't initialize spinlocks 5931 * are they aren't supposed to be taken by any of the 5932 * NAPI code and this dummy netdev is supposed to be 5933 * only ever used for NAPI polls 5934 */ 5935 memset(dev, 0, sizeof(struct net_device)); 5936 5937 /* make sure we BUG if trying to hit standard 5938 * register/unregister code path 5939 */ 5940 dev->reg_state = NETREG_DUMMY; 5941 5942 /* NAPI wants this */ 5943 INIT_LIST_HEAD(&dev->napi_list); 5944 5945 /* a dummy interface is started by default */ 5946 set_bit(__LINK_STATE_PRESENT, &dev->state); 5947 set_bit(__LINK_STATE_START, &dev->state); 5948 5949 /* Note : We dont allocate pcpu_refcnt for dummy devices, 5950 * because users of this 'device' dont need to change 5951 * its refcount. 5952 */ 5953 5954 return 0; 5955 } 5956 EXPORT_SYMBOL_GPL(init_dummy_netdev); 5957 5958 5959 /** 5960 * register_netdev - register a network device 5961 * @dev: device to register 5962 * 5963 * Take a completed network device structure and add it to the kernel 5964 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5965 * chain. 0 is returned on success. A negative errno code is returned 5966 * on a failure to set up the device, or if the name is a duplicate. 5967 * 5968 * This is a wrapper around register_netdevice that takes the rtnl semaphore 5969 * and expands the device name if you passed a format string to 5970 * alloc_netdev. 5971 */ 5972 int register_netdev(struct net_device *dev) 5973 { 5974 int err; 5975 5976 rtnl_lock(); 5977 err = register_netdevice(dev); 5978 rtnl_unlock(); 5979 return err; 5980 } 5981 EXPORT_SYMBOL(register_netdev); 5982 5983 int netdev_refcnt_read(const struct net_device *dev) 5984 { 5985 int i, refcnt = 0; 5986 5987 for_each_possible_cpu(i) 5988 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 5989 return refcnt; 5990 } 5991 EXPORT_SYMBOL(netdev_refcnt_read); 5992 5993 /** 5994 * netdev_wait_allrefs - wait until all references are gone. 5995 * @dev: target net_device 5996 * 5997 * This is called when unregistering network devices. 5998 * 5999 * Any protocol or device that holds a reference should register 6000 * for netdevice notification, and cleanup and put back the 6001 * reference if they receive an UNREGISTER event. 6002 * We can get stuck here if buggy protocols don't correctly 6003 * call dev_put. 6004 */ 6005 static void netdev_wait_allrefs(struct net_device *dev) 6006 { 6007 unsigned long rebroadcast_time, warning_time; 6008 int refcnt; 6009 6010 linkwatch_forget_dev(dev); 6011 6012 rebroadcast_time = warning_time = jiffies; 6013 refcnt = netdev_refcnt_read(dev); 6014 6015 while (refcnt != 0) { 6016 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 6017 rtnl_lock(); 6018 6019 /* Rebroadcast unregister notification */ 6020 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6021 6022 __rtnl_unlock(); 6023 rcu_barrier(); 6024 rtnl_lock(); 6025 6026 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6027 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 6028 &dev->state)) { 6029 /* We must not have linkwatch events 6030 * pending on unregister. If this 6031 * happens, we simply run the queue 6032 * unscheduled, resulting in a noop 6033 * for this device. 6034 */ 6035 linkwatch_run_queue(); 6036 } 6037 6038 __rtnl_unlock(); 6039 6040 rebroadcast_time = jiffies; 6041 } 6042 6043 msleep(250); 6044 6045 refcnt = netdev_refcnt_read(dev); 6046 6047 if (time_after(jiffies, warning_time + 10 * HZ)) { 6048 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 6049 dev->name, refcnt); 6050 warning_time = jiffies; 6051 } 6052 } 6053 } 6054 6055 /* The sequence is: 6056 * 6057 * rtnl_lock(); 6058 * ... 6059 * register_netdevice(x1); 6060 * register_netdevice(x2); 6061 * ... 6062 * unregister_netdevice(y1); 6063 * unregister_netdevice(y2); 6064 * ... 6065 * rtnl_unlock(); 6066 * free_netdev(y1); 6067 * free_netdev(y2); 6068 * 6069 * We are invoked by rtnl_unlock(). 6070 * This allows us to deal with problems: 6071 * 1) We can delete sysfs objects which invoke hotplug 6072 * without deadlocking with linkwatch via keventd. 6073 * 2) Since we run with the RTNL semaphore not held, we can sleep 6074 * safely in order to wait for the netdev refcnt to drop to zero. 6075 * 6076 * We must not return until all unregister events added during 6077 * the interval the lock was held have been completed. 6078 */ 6079 void netdev_run_todo(void) 6080 { 6081 struct list_head list; 6082 6083 /* Snapshot list, allow later requests */ 6084 list_replace_init(&net_todo_list, &list); 6085 6086 __rtnl_unlock(); 6087 6088 6089 /* Wait for rcu callbacks to finish before next phase */ 6090 if (!list_empty(&list)) 6091 rcu_barrier(); 6092 6093 while (!list_empty(&list)) { 6094 struct net_device *dev 6095 = list_first_entry(&list, struct net_device, todo_list); 6096 list_del(&dev->todo_list); 6097 6098 rtnl_lock(); 6099 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6100 __rtnl_unlock(); 6101 6102 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 6103 pr_err("network todo '%s' but state %d\n", 6104 dev->name, dev->reg_state); 6105 dump_stack(); 6106 continue; 6107 } 6108 6109 dev->reg_state = NETREG_UNREGISTERED; 6110 6111 on_each_cpu(flush_backlog, dev, 1); 6112 6113 netdev_wait_allrefs(dev); 6114 6115 /* paranoia */ 6116 BUG_ON(netdev_refcnt_read(dev)); 6117 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 6118 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 6119 WARN_ON(dev->dn_ptr); 6120 6121 if (dev->destructor) 6122 dev->destructor(dev); 6123 6124 /* Report a network device has been unregistered */ 6125 rtnl_lock(); 6126 dev_net(dev)->dev_unreg_count--; 6127 __rtnl_unlock(); 6128 wake_up(&netdev_unregistering_wq); 6129 6130 /* Free network device */ 6131 kobject_put(&dev->dev.kobj); 6132 } 6133 } 6134 6135 /* Convert net_device_stats to rtnl_link_stats64. They have the same 6136 * fields in the same order, with only the type differing. 6137 */ 6138 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 6139 const struct net_device_stats *netdev_stats) 6140 { 6141 #if BITS_PER_LONG == 64 6142 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 6143 memcpy(stats64, netdev_stats, sizeof(*stats64)); 6144 #else 6145 size_t i, n = sizeof(*stats64) / sizeof(u64); 6146 const unsigned long *src = (const unsigned long *)netdev_stats; 6147 u64 *dst = (u64 *)stats64; 6148 6149 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 6150 sizeof(*stats64) / sizeof(u64)); 6151 for (i = 0; i < n; i++) 6152 dst[i] = src[i]; 6153 #endif 6154 } 6155 EXPORT_SYMBOL(netdev_stats_to_stats64); 6156 6157 /** 6158 * dev_get_stats - get network device statistics 6159 * @dev: device to get statistics from 6160 * @storage: place to store stats 6161 * 6162 * Get network statistics from device. Return @storage. 6163 * The device driver may provide its own method by setting 6164 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 6165 * otherwise the internal statistics structure is used. 6166 */ 6167 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 6168 struct rtnl_link_stats64 *storage) 6169 { 6170 const struct net_device_ops *ops = dev->netdev_ops; 6171 6172 if (ops->ndo_get_stats64) { 6173 memset(storage, 0, sizeof(*storage)); 6174 ops->ndo_get_stats64(dev, storage); 6175 } else if (ops->ndo_get_stats) { 6176 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 6177 } else { 6178 netdev_stats_to_stats64(storage, &dev->stats); 6179 } 6180 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 6181 return storage; 6182 } 6183 EXPORT_SYMBOL(dev_get_stats); 6184 6185 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 6186 { 6187 struct netdev_queue *queue = dev_ingress_queue(dev); 6188 6189 #ifdef CONFIG_NET_CLS_ACT 6190 if (queue) 6191 return queue; 6192 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 6193 if (!queue) 6194 return NULL; 6195 netdev_init_one_queue(dev, queue, NULL); 6196 queue->qdisc = &noop_qdisc; 6197 queue->qdisc_sleeping = &noop_qdisc; 6198 rcu_assign_pointer(dev->ingress_queue, queue); 6199 #endif 6200 return queue; 6201 } 6202 6203 static const struct ethtool_ops default_ethtool_ops; 6204 6205 void netdev_set_default_ethtool_ops(struct net_device *dev, 6206 const struct ethtool_ops *ops) 6207 { 6208 if (dev->ethtool_ops == &default_ethtool_ops) 6209 dev->ethtool_ops = ops; 6210 } 6211 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 6212 6213 void netdev_freemem(struct net_device *dev) 6214 { 6215 char *addr = (char *)dev - dev->padded; 6216 6217 if (is_vmalloc_addr(addr)) 6218 vfree(addr); 6219 else 6220 kfree(addr); 6221 } 6222 6223 /** 6224 * alloc_netdev_mqs - allocate network device 6225 * @sizeof_priv: size of private data to allocate space for 6226 * @name: device name format string 6227 * @setup: callback to initialize device 6228 * @txqs: the number of TX subqueues to allocate 6229 * @rxqs: the number of RX subqueues to allocate 6230 * 6231 * Allocates a struct net_device with private data area for driver use 6232 * and performs basic initialization. Also allocates subquue structs 6233 * for each queue on the device. 6234 */ 6235 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 6236 void (*setup)(struct net_device *), 6237 unsigned int txqs, unsigned int rxqs) 6238 { 6239 struct net_device *dev; 6240 size_t alloc_size; 6241 struct net_device *p; 6242 6243 BUG_ON(strlen(name) >= sizeof(dev->name)); 6244 6245 if (txqs < 1) { 6246 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 6247 return NULL; 6248 } 6249 6250 #ifdef CONFIG_RPS 6251 if (rxqs < 1) { 6252 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 6253 return NULL; 6254 } 6255 #endif 6256 6257 alloc_size = sizeof(struct net_device); 6258 if (sizeof_priv) { 6259 /* ensure 32-byte alignment of private area */ 6260 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 6261 alloc_size += sizeof_priv; 6262 } 6263 /* ensure 32-byte alignment of whole construct */ 6264 alloc_size += NETDEV_ALIGN - 1; 6265 6266 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 6267 if (!p) 6268 p = vzalloc(alloc_size); 6269 if (!p) 6270 return NULL; 6271 6272 dev = PTR_ALIGN(p, NETDEV_ALIGN); 6273 dev->padded = (char *)dev - (char *)p; 6274 6275 dev->pcpu_refcnt = alloc_percpu(int); 6276 if (!dev->pcpu_refcnt) 6277 goto free_dev; 6278 6279 if (dev_addr_init(dev)) 6280 goto free_pcpu; 6281 6282 dev_mc_init(dev); 6283 dev_uc_init(dev); 6284 6285 dev_net_set(dev, &init_net); 6286 6287 dev->gso_max_size = GSO_MAX_SIZE; 6288 dev->gso_max_segs = GSO_MAX_SEGS; 6289 6290 INIT_LIST_HEAD(&dev->napi_list); 6291 INIT_LIST_HEAD(&dev->unreg_list); 6292 INIT_LIST_HEAD(&dev->close_list); 6293 INIT_LIST_HEAD(&dev->link_watch_list); 6294 INIT_LIST_HEAD(&dev->adj_list.upper); 6295 INIT_LIST_HEAD(&dev->adj_list.lower); 6296 INIT_LIST_HEAD(&dev->all_adj_list.upper); 6297 INIT_LIST_HEAD(&dev->all_adj_list.lower); 6298 dev->priv_flags = IFF_XMIT_DST_RELEASE; 6299 setup(dev); 6300 6301 dev->num_tx_queues = txqs; 6302 dev->real_num_tx_queues = txqs; 6303 if (netif_alloc_netdev_queues(dev)) 6304 goto free_all; 6305 6306 #ifdef CONFIG_RPS 6307 dev->num_rx_queues = rxqs; 6308 dev->real_num_rx_queues = rxqs; 6309 if (netif_alloc_rx_queues(dev)) 6310 goto free_all; 6311 #endif 6312 6313 strcpy(dev->name, name); 6314 dev->group = INIT_NETDEV_GROUP; 6315 if (!dev->ethtool_ops) 6316 dev->ethtool_ops = &default_ethtool_ops; 6317 return dev; 6318 6319 free_all: 6320 free_netdev(dev); 6321 return NULL; 6322 6323 free_pcpu: 6324 free_percpu(dev->pcpu_refcnt); 6325 netif_free_tx_queues(dev); 6326 #ifdef CONFIG_RPS 6327 kfree(dev->_rx); 6328 #endif 6329 6330 free_dev: 6331 netdev_freemem(dev); 6332 return NULL; 6333 } 6334 EXPORT_SYMBOL(alloc_netdev_mqs); 6335 6336 /** 6337 * free_netdev - free network device 6338 * @dev: device 6339 * 6340 * This function does the last stage of destroying an allocated device 6341 * interface. The reference to the device object is released. 6342 * If this is the last reference then it will be freed. 6343 */ 6344 void free_netdev(struct net_device *dev) 6345 { 6346 struct napi_struct *p, *n; 6347 6348 release_net(dev_net(dev)); 6349 6350 netif_free_tx_queues(dev); 6351 #ifdef CONFIG_RPS 6352 kfree(dev->_rx); 6353 #endif 6354 6355 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 6356 6357 /* Flush device addresses */ 6358 dev_addr_flush(dev); 6359 6360 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 6361 netif_napi_del(p); 6362 6363 free_percpu(dev->pcpu_refcnt); 6364 dev->pcpu_refcnt = NULL; 6365 6366 /* Compatibility with error handling in drivers */ 6367 if (dev->reg_state == NETREG_UNINITIALIZED) { 6368 netdev_freemem(dev); 6369 return; 6370 } 6371 6372 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 6373 dev->reg_state = NETREG_RELEASED; 6374 6375 /* will free via device release */ 6376 put_device(&dev->dev); 6377 } 6378 EXPORT_SYMBOL(free_netdev); 6379 6380 /** 6381 * synchronize_net - Synchronize with packet receive processing 6382 * 6383 * Wait for packets currently being received to be done. 6384 * Does not block later packets from starting. 6385 */ 6386 void synchronize_net(void) 6387 { 6388 might_sleep(); 6389 if (rtnl_is_locked()) 6390 synchronize_rcu_expedited(); 6391 else 6392 synchronize_rcu(); 6393 } 6394 EXPORT_SYMBOL(synchronize_net); 6395 6396 /** 6397 * unregister_netdevice_queue - remove device from the kernel 6398 * @dev: device 6399 * @head: list 6400 * 6401 * This function shuts down a device interface and removes it 6402 * from the kernel tables. 6403 * If head not NULL, device is queued to be unregistered later. 6404 * 6405 * Callers must hold the rtnl semaphore. You may want 6406 * unregister_netdev() instead of this. 6407 */ 6408 6409 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 6410 { 6411 ASSERT_RTNL(); 6412 6413 if (head) { 6414 list_move_tail(&dev->unreg_list, head); 6415 } else { 6416 rollback_registered(dev); 6417 /* Finish processing unregister after unlock */ 6418 net_set_todo(dev); 6419 } 6420 } 6421 EXPORT_SYMBOL(unregister_netdevice_queue); 6422 6423 /** 6424 * unregister_netdevice_many - unregister many devices 6425 * @head: list of devices 6426 */ 6427 void unregister_netdevice_many(struct list_head *head) 6428 { 6429 struct net_device *dev; 6430 6431 if (!list_empty(head)) { 6432 rollback_registered_many(head); 6433 list_for_each_entry(dev, head, unreg_list) 6434 net_set_todo(dev); 6435 } 6436 } 6437 EXPORT_SYMBOL(unregister_netdevice_many); 6438 6439 /** 6440 * unregister_netdev - remove device from the kernel 6441 * @dev: device 6442 * 6443 * This function shuts down a device interface and removes it 6444 * from the kernel tables. 6445 * 6446 * This is just a wrapper for unregister_netdevice that takes 6447 * the rtnl semaphore. In general you want to use this and not 6448 * unregister_netdevice. 6449 */ 6450 void unregister_netdev(struct net_device *dev) 6451 { 6452 rtnl_lock(); 6453 unregister_netdevice(dev); 6454 rtnl_unlock(); 6455 } 6456 EXPORT_SYMBOL(unregister_netdev); 6457 6458 /** 6459 * dev_change_net_namespace - move device to different nethost namespace 6460 * @dev: device 6461 * @net: network namespace 6462 * @pat: If not NULL name pattern to try if the current device name 6463 * is already taken in the destination network namespace. 6464 * 6465 * This function shuts down a device interface and moves it 6466 * to a new network namespace. On success 0 is returned, on 6467 * a failure a netagive errno code is returned. 6468 * 6469 * Callers must hold the rtnl semaphore. 6470 */ 6471 6472 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 6473 { 6474 int err; 6475 6476 ASSERT_RTNL(); 6477 6478 /* Don't allow namespace local devices to be moved. */ 6479 err = -EINVAL; 6480 if (dev->features & NETIF_F_NETNS_LOCAL) 6481 goto out; 6482 6483 /* Ensure the device has been registrered */ 6484 if (dev->reg_state != NETREG_REGISTERED) 6485 goto out; 6486 6487 /* Get out if there is nothing todo */ 6488 err = 0; 6489 if (net_eq(dev_net(dev), net)) 6490 goto out; 6491 6492 /* Pick the destination device name, and ensure 6493 * we can use it in the destination network namespace. 6494 */ 6495 err = -EEXIST; 6496 if (__dev_get_by_name(net, dev->name)) { 6497 /* We get here if we can't use the current device name */ 6498 if (!pat) 6499 goto out; 6500 if (dev_get_valid_name(net, dev, pat) < 0) 6501 goto out; 6502 } 6503 6504 /* 6505 * And now a mini version of register_netdevice unregister_netdevice. 6506 */ 6507 6508 /* If device is running close it first. */ 6509 dev_close(dev); 6510 6511 /* And unlink it from device chain */ 6512 err = -ENODEV; 6513 unlist_netdevice(dev); 6514 6515 synchronize_net(); 6516 6517 /* Shutdown queueing discipline. */ 6518 dev_shutdown(dev); 6519 6520 /* Notify protocols, that we are about to destroy 6521 this device. They should clean all the things. 6522 6523 Note that dev->reg_state stays at NETREG_REGISTERED. 6524 This is wanted because this way 8021q and macvlan know 6525 the device is just moving and can keep their slaves up. 6526 */ 6527 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6528 rcu_barrier(); 6529 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6530 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL); 6531 6532 /* 6533 * Flush the unicast and multicast chains 6534 */ 6535 dev_uc_flush(dev); 6536 dev_mc_flush(dev); 6537 6538 /* Send a netdev-removed uevent to the old namespace */ 6539 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 6540 6541 /* Actually switch the network namespace */ 6542 dev_net_set(dev, net); 6543 6544 /* If there is an ifindex conflict assign a new one */ 6545 if (__dev_get_by_index(net, dev->ifindex)) { 6546 int iflink = (dev->iflink == dev->ifindex); 6547 dev->ifindex = dev_new_index(net); 6548 if (iflink) 6549 dev->iflink = dev->ifindex; 6550 } 6551 6552 /* Send a netdev-add uevent to the new namespace */ 6553 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 6554 6555 /* Fixup kobjects */ 6556 err = device_rename(&dev->dev, dev->name); 6557 WARN_ON(err); 6558 6559 /* Add the device back in the hashes */ 6560 list_netdevice(dev); 6561 6562 /* Notify protocols, that a new device appeared. */ 6563 call_netdevice_notifiers(NETDEV_REGISTER, dev); 6564 6565 /* 6566 * Prevent userspace races by waiting until the network 6567 * device is fully setup before sending notifications. 6568 */ 6569 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 6570 6571 synchronize_net(); 6572 err = 0; 6573 out: 6574 return err; 6575 } 6576 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 6577 6578 static int dev_cpu_callback(struct notifier_block *nfb, 6579 unsigned long action, 6580 void *ocpu) 6581 { 6582 struct sk_buff **list_skb; 6583 struct sk_buff *skb; 6584 unsigned int cpu, oldcpu = (unsigned long)ocpu; 6585 struct softnet_data *sd, *oldsd; 6586 6587 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 6588 return NOTIFY_OK; 6589 6590 local_irq_disable(); 6591 cpu = smp_processor_id(); 6592 sd = &per_cpu(softnet_data, cpu); 6593 oldsd = &per_cpu(softnet_data, oldcpu); 6594 6595 /* Find end of our completion_queue. */ 6596 list_skb = &sd->completion_queue; 6597 while (*list_skb) 6598 list_skb = &(*list_skb)->next; 6599 /* Append completion queue from offline CPU. */ 6600 *list_skb = oldsd->completion_queue; 6601 oldsd->completion_queue = NULL; 6602 6603 /* Append output queue from offline CPU. */ 6604 if (oldsd->output_queue) { 6605 *sd->output_queue_tailp = oldsd->output_queue; 6606 sd->output_queue_tailp = oldsd->output_queue_tailp; 6607 oldsd->output_queue = NULL; 6608 oldsd->output_queue_tailp = &oldsd->output_queue; 6609 } 6610 /* Append NAPI poll list from offline CPU. */ 6611 if (!list_empty(&oldsd->poll_list)) { 6612 list_splice_init(&oldsd->poll_list, &sd->poll_list); 6613 raise_softirq_irqoff(NET_RX_SOFTIRQ); 6614 } 6615 6616 raise_softirq_irqoff(NET_TX_SOFTIRQ); 6617 local_irq_enable(); 6618 6619 /* Process offline CPU's input_pkt_queue */ 6620 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 6621 netif_rx(skb); 6622 input_queue_head_incr(oldsd); 6623 } 6624 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) { 6625 netif_rx(skb); 6626 input_queue_head_incr(oldsd); 6627 } 6628 6629 return NOTIFY_OK; 6630 } 6631 6632 6633 /** 6634 * netdev_increment_features - increment feature set by one 6635 * @all: current feature set 6636 * @one: new feature set 6637 * @mask: mask feature set 6638 * 6639 * Computes a new feature set after adding a device with feature set 6640 * @one to the master device with current feature set @all. Will not 6641 * enable anything that is off in @mask. Returns the new feature set. 6642 */ 6643 netdev_features_t netdev_increment_features(netdev_features_t all, 6644 netdev_features_t one, netdev_features_t mask) 6645 { 6646 if (mask & NETIF_F_GEN_CSUM) 6647 mask |= NETIF_F_ALL_CSUM; 6648 mask |= NETIF_F_VLAN_CHALLENGED; 6649 6650 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask; 6651 all &= one | ~NETIF_F_ALL_FOR_ALL; 6652 6653 /* If one device supports hw checksumming, set for all. */ 6654 if (all & NETIF_F_GEN_CSUM) 6655 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 6656 6657 return all; 6658 } 6659 EXPORT_SYMBOL(netdev_increment_features); 6660 6661 static struct hlist_head * __net_init netdev_create_hash(void) 6662 { 6663 int i; 6664 struct hlist_head *hash; 6665 6666 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 6667 if (hash != NULL) 6668 for (i = 0; i < NETDEV_HASHENTRIES; i++) 6669 INIT_HLIST_HEAD(&hash[i]); 6670 6671 return hash; 6672 } 6673 6674 /* Initialize per network namespace state */ 6675 static int __net_init netdev_init(struct net *net) 6676 { 6677 if (net != &init_net) 6678 INIT_LIST_HEAD(&net->dev_base_head); 6679 6680 net->dev_name_head = netdev_create_hash(); 6681 if (net->dev_name_head == NULL) 6682 goto err_name; 6683 6684 net->dev_index_head = netdev_create_hash(); 6685 if (net->dev_index_head == NULL) 6686 goto err_idx; 6687 6688 return 0; 6689 6690 err_idx: 6691 kfree(net->dev_name_head); 6692 err_name: 6693 return -ENOMEM; 6694 } 6695 6696 /** 6697 * netdev_drivername - network driver for the device 6698 * @dev: network device 6699 * 6700 * Determine network driver for device. 6701 */ 6702 const char *netdev_drivername(const struct net_device *dev) 6703 { 6704 const struct device_driver *driver; 6705 const struct device *parent; 6706 const char *empty = ""; 6707 6708 parent = dev->dev.parent; 6709 if (!parent) 6710 return empty; 6711 6712 driver = parent->driver; 6713 if (driver && driver->name) 6714 return driver->name; 6715 return empty; 6716 } 6717 6718 static int __netdev_printk(const char *level, const struct net_device *dev, 6719 struct va_format *vaf) 6720 { 6721 int r; 6722 6723 if (dev && dev->dev.parent) { 6724 r = dev_printk_emit(level[1] - '0', 6725 dev->dev.parent, 6726 "%s %s %s: %pV", 6727 dev_driver_string(dev->dev.parent), 6728 dev_name(dev->dev.parent), 6729 netdev_name(dev), vaf); 6730 } else if (dev) { 6731 r = printk("%s%s: %pV", level, netdev_name(dev), vaf); 6732 } else { 6733 r = printk("%s(NULL net_device): %pV", level, vaf); 6734 } 6735 6736 return r; 6737 } 6738 6739 int netdev_printk(const char *level, const struct net_device *dev, 6740 const char *format, ...) 6741 { 6742 struct va_format vaf; 6743 va_list args; 6744 int r; 6745 6746 va_start(args, format); 6747 6748 vaf.fmt = format; 6749 vaf.va = &args; 6750 6751 r = __netdev_printk(level, dev, &vaf); 6752 6753 va_end(args); 6754 6755 return r; 6756 } 6757 EXPORT_SYMBOL(netdev_printk); 6758 6759 #define define_netdev_printk_level(func, level) \ 6760 int func(const struct net_device *dev, const char *fmt, ...) \ 6761 { \ 6762 int r; \ 6763 struct va_format vaf; \ 6764 va_list args; \ 6765 \ 6766 va_start(args, fmt); \ 6767 \ 6768 vaf.fmt = fmt; \ 6769 vaf.va = &args; \ 6770 \ 6771 r = __netdev_printk(level, dev, &vaf); \ 6772 \ 6773 va_end(args); \ 6774 \ 6775 return r; \ 6776 } \ 6777 EXPORT_SYMBOL(func); 6778 6779 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 6780 define_netdev_printk_level(netdev_alert, KERN_ALERT); 6781 define_netdev_printk_level(netdev_crit, KERN_CRIT); 6782 define_netdev_printk_level(netdev_err, KERN_ERR); 6783 define_netdev_printk_level(netdev_warn, KERN_WARNING); 6784 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 6785 define_netdev_printk_level(netdev_info, KERN_INFO); 6786 6787 static void __net_exit netdev_exit(struct net *net) 6788 { 6789 kfree(net->dev_name_head); 6790 kfree(net->dev_index_head); 6791 } 6792 6793 static struct pernet_operations __net_initdata netdev_net_ops = { 6794 .init = netdev_init, 6795 .exit = netdev_exit, 6796 }; 6797 6798 static void __net_exit default_device_exit(struct net *net) 6799 { 6800 struct net_device *dev, *aux; 6801 /* 6802 * Push all migratable network devices back to the 6803 * initial network namespace 6804 */ 6805 rtnl_lock(); 6806 for_each_netdev_safe(net, dev, aux) { 6807 int err; 6808 char fb_name[IFNAMSIZ]; 6809 6810 /* Ignore unmoveable devices (i.e. loopback) */ 6811 if (dev->features & NETIF_F_NETNS_LOCAL) 6812 continue; 6813 6814 /* Leave virtual devices for the generic cleanup */ 6815 if (dev->rtnl_link_ops) 6816 continue; 6817 6818 /* Push remaining network devices to init_net */ 6819 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 6820 err = dev_change_net_namespace(dev, &init_net, fb_name); 6821 if (err) { 6822 pr_emerg("%s: failed to move %s to init_net: %d\n", 6823 __func__, dev->name, err); 6824 BUG(); 6825 } 6826 } 6827 rtnl_unlock(); 6828 } 6829 6830 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 6831 { 6832 /* Return with the rtnl_lock held when there are no network 6833 * devices unregistering in any network namespace in net_list. 6834 */ 6835 struct net *net; 6836 bool unregistering; 6837 DEFINE_WAIT(wait); 6838 6839 for (;;) { 6840 prepare_to_wait(&netdev_unregistering_wq, &wait, 6841 TASK_UNINTERRUPTIBLE); 6842 unregistering = false; 6843 rtnl_lock(); 6844 list_for_each_entry(net, net_list, exit_list) { 6845 if (net->dev_unreg_count > 0) { 6846 unregistering = true; 6847 break; 6848 } 6849 } 6850 if (!unregistering) 6851 break; 6852 __rtnl_unlock(); 6853 schedule(); 6854 } 6855 finish_wait(&netdev_unregistering_wq, &wait); 6856 } 6857 6858 static void __net_exit default_device_exit_batch(struct list_head *net_list) 6859 { 6860 /* At exit all network devices most be removed from a network 6861 * namespace. Do this in the reverse order of registration. 6862 * Do this across as many network namespaces as possible to 6863 * improve batching efficiency. 6864 */ 6865 struct net_device *dev; 6866 struct net *net; 6867 LIST_HEAD(dev_kill_list); 6868 6869 /* To prevent network device cleanup code from dereferencing 6870 * loopback devices or network devices that have been freed 6871 * wait here for all pending unregistrations to complete, 6872 * before unregistring the loopback device and allowing the 6873 * network namespace be freed. 6874 * 6875 * The netdev todo list containing all network devices 6876 * unregistrations that happen in default_device_exit_batch 6877 * will run in the rtnl_unlock() at the end of 6878 * default_device_exit_batch. 6879 */ 6880 rtnl_lock_unregistering(net_list); 6881 list_for_each_entry(net, net_list, exit_list) { 6882 for_each_netdev_reverse(net, dev) { 6883 if (dev->rtnl_link_ops) 6884 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 6885 else 6886 unregister_netdevice_queue(dev, &dev_kill_list); 6887 } 6888 } 6889 unregister_netdevice_many(&dev_kill_list); 6890 list_del(&dev_kill_list); 6891 rtnl_unlock(); 6892 } 6893 6894 static struct pernet_operations __net_initdata default_device_ops = { 6895 .exit = default_device_exit, 6896 .exit_batch = default_device_exit_batch, 6897 }; 6898 6899 /* 6900 * Initialize the DEV module. At boot time this walks the device list and 6901 * unhooks any devices that fail to initialise (normally hardware not 6902 * present) and leaves us with a valid list of present and active devices. 6903 * 6904 */ 6905 6906 /* 6907 * This is called single threaded during boot, so no need 6908 * to take the rtnl semaphore. 6909 */ 6910 static int __init net_dev_init(void) 6911 { 6912 int i, rc = -ENOMEM; 6913 6914 BUG_ON(!dev_boot_phase); 6915 6916 if (dev_proc_init()) 6917 goto out; 6918 6919 if (netdev_kobject_init()) 6920 goto out; 6921 6922 INIT_LIST_HEAD(&ptype_all); 6923 for (i = 0; i < PTYPE_HASH_SIZE; i++) 6924 INIT_LIST_HEAD(&ptype_base[i]); 6925 6926 INIT_LIST_HEAD(&offload_base); 6927 6928 if (register_pernet_subsys(&netdev_net_ops)) 6929 goto out; 6930 6931 /* 6932 * Initialise the packet receive queues. 6933 */ 6934 6935 for_each_possible_cpu(i) { 6936 struct softnet_data *sd = &per_cpu(softnet_data, i); 6937 6938 memset(sd, 0, sizeof(*sd)); 6939 skb_queue_head_init(&sd->input_pkt_queue); 6940 skb_queue_head_init(&sd->process_queue); 6941 sd->completion_queue = NULL; 6942 INIT_LIST_HEAD(&sd->poll_list); 6943 sd->output_queue = NULL; 6944 sd->output_queue_tailp = &sd->output_queue; 6945 #ifdef CONFIG_RPS 6946 sd->csd.func = rps_trigger_softirq; 6947 sd->csd.info = sd; 6948 sd->csd.flags = 0; 6949 sd->cpu = i; 6950 #endif 6951 6952 sd->backlog.poll = process_backlog; 6953 sd->backlog.weight = weight_p; 6954 sd->backlog.gro_list = NULL; 6955 sd->backlog.gro_count = 0; 6956 6957 #ifdef CONFIG_NET_FLOW_LIMIT 6958 sd->flow_limit = NULL; 6959 #endif 6960 } 6961 6962 dev_boot_phase = 0; 6963 6964 /* The loopback device is special if any other network devices 6965 * is present in a network namespace the loopback device must 6966 * be present. Since we now dynamically allocate and free the 6967 * loopback device ensure this invariant is maintained by 6968 * keeping the loopback device as the first device on the 6969 * list of network devices. Ensuring the loopback devices 6970 * is the first device that appears and the last network device 6971 * that disappears. 6972 */ 6973 if (register_pernet_device(&loopback_net_ops)) 6974 goto out; 6975 6976 if (register_pernet_device(&default_device_ops)) 6977 goto out; 6978 6979 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 6980 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 6981 6982 hotcpu_notifier(dev_cpu_callback, 0); 6983 dst_init(); 6984 rc = 0; 6985 out: 6986 return rc; 6987 } 6988 6989 subsys_initcall(net_dev_init); 6990