xref: /openbmc/linux/net/core/dev.c (revision 92a76f6d)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dst.h>
103 #include <net/dst_metadata.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/module.h>
110 #include <linux/netpoll.h>
111 #include <linux/rcupdate.h>
112 #include <linux/delay.h>
113 #include <net/iw_handler.h>
114 #include <asm/current.h>
115 #include <linux/audit.h>
116 #include <linux/dmaengine.h>
117 #include <linux/err.h>
118 #include <linux/ctype.h>
119 #include <linux/if_arp.h>
120 #include <linux/if_vlan.h>
121 #include <linux/ip.h>
122 #include <net/ip.h>
123 #include <net/mpls.h>
124 #include <linux/ipv6.h>
125 #include <linux/in.h>
126 #include <linux/jhash.h>
127 #include <linux/random.h>
128 #include <trace/events/napi.h>
129 #include <trace/events/net.h>
130 #include <trace/events/skb.h>
131 #include <linux/pci.h>
132 #include <linux/inetdevice.h>
133 #include <linux/cpu_rmap.h>
134 #include <linux/static_key.h>
135 #include <linux/hashtable.h>
136 #include <linux/vmalloc.h>
137 #include <linux/if_macvlan.h>
138 #include <linux/errqueue.h>
139 #include <linux/hrtimer.h>
140 #include <linux/netfilter_ingress.h>
141 #include <linux/sctp.h>
142 
143 #include "net-sysfs.h"
144 
145 /* Instead of increasing this, you should create a hash table. */
146 #define MAX_GRO_SKBS 8
147 
148 /* This should be increased if a protocol with a bigger head is added. */
149 #define GRO_MAX_HEAD (MAX_HEADER + 128)
150 
151 static DEFINE_SPINLOCK(ptype_lock);
152 static DEFINE_SPINLOCK(offload_lock);
153 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
154 struct list_head ptype_all __read_mostly;	/* Taps */
155 static struct list_head offload_base __read_mostly;
156 
157 static int netif_rx_internal(struct sk_buff *skb);
158 static int call_netdevice_notifiers_info(unsigned long val,
159 					 struct net_device *dev,
160 					 struct netdev_notifier_info *info);
161 
162 /*
163  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
164  * semaphore.
165  *
166  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
167  *
168  * Writers must hold the rtnl semaphore while they loop through the
169  * dev_base_head list, and hold dev_base_lock for writing when they do the
170  * actual updates.  This allows pure readers to access the list even
171  * while a writer is preparing to update it.
172  *
173  * To put it another way, dev_base_lock is held for writing only to
174  * protect against pure readers; the rtnl semaphore provides the
175  * protection against other writers.
176  *
177  * See, for example usages, register_netdevice() and
178  * unregister_netdevice(), which must be called with the rtnl
179  * semaphore held.
180  */
181 DEFINE_RWLOCK(dev_base_lock);
182 EXPORT_SYMBOL(dev_base_lock);
183 
184 /* protects napi_hash addition/deletion and napi_gen_id */
185 static DEFINE_SPINLOCK(napi_hash_lock);
186 
187 static unsigned int napi_gen_id = NR_CPUS;
188 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
189 
190 static seqcount_t devnet_rename_seq;
191 
192 static inline void dev_base_seq_inc(struct net *net)
193 {
194 	while (++net->dev_base_seq == 0);
195 }
196 
197 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
198 {
199 	unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
200 
201 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
202 }
203 
204 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
205 {
206 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
207 }
208 
209 static inline void rps_lock(struct softnet_data *sd)
210 {
211 #ifdef CONFIG_RPS
212 	spin_lock(&sd->input_pkt_queue.lock);
213 #endif
214 }
215 
216 static inline void rps_unlock(struct softnet_data *sd)
217 {
218 #ifdef CONFIG_RPS
219 	spin_unlock(&sd->input_pkt_queue.lock);
220 #endif
221 }
222 
223 /* Device list insertion */
224 static void list_netdevice(struct net_device *dev)
225 {
226 	struct net *net = dev_net(dev);
227 
228 	ASSERT_RTNL();
229 
230 	write_lock_bh(&dev_base_lock);
231 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
232 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
233 	hlist_add_head_rcu(&dev->index_hlist,
234 			   dev_index_hash(net, dev->ifindex));
235 	write_unlock_bh(&dev_base_lock);
236 
237 	dev_base_seq_inc(net);
238 }
239 
240 /* Device list removal
241  * caller must respect a RCU grace period before freeing/reusing dev
242  */
243 static void unlist_netdevice(struct net_device *dev)
244 {
245 	ASSERT_RTNL();
246 
247 	/* Unlink dev from the device chain */
248 	write_lock_bh(&dev_base_lock);
249 	list_del_rcu(&dev->dev_list);
250 	hlist_del_rcu(&dev->name_hlist);
251 	hlist_del_rcu(&dev->index_hlist);
252 	write_unlock_bh(&dev_base_lock);
253 
254 	dev_base_seq_inc(dev_net(dev));
255 }
256 
257 /*
258  *	Our notifier list
259  */
260 
261 static RAW_NOTIFIER_HEAD(netdev_chain);
262 
263 /*
264  *	Device drivers call our routines to queue packets here. We empty the
265  *	queue in the local softnet handler.
266  */
267 
268 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
269 EXPORT_PER_CPU_SYMBOL(softnet_data);
270 
271 #ifdef CONFIG_LOCKDEP
272 /*
273  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
274  * according to dev->type
275  */
276 static const unsigned short netdev_lock_type[] =
277 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
278 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
279 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
280 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
281 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
282 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
283 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
284 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
285 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
286 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
287 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
288 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
289 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
290 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
291 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
292 
293 static const char *const netdev_lock_name[] =
294 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
295 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
296 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
297 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
298 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
299 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
300 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
301 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
302 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
303 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
304 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
305 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
306 	 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
307 	 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
308 	 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
309 
310 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
311 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
312 
313 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
314 {
315 	int i;
316 
317 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
318 		if (netdev_lock_type[i] == dev_type)
319 			return i;
320 	/* the last key is used by default */
321 	return ARRAY_SIZE(netdev_lock_type) - 1;
322 }
323 
324 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
325 						 unsigned short dev_type)
326 {
327 	int i;
328 
329 	i = netdev_lock_pos(dev_type);
330 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
331 				   netdev_lock_name[i]);
332 }
333 
334 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
335 {
336 	int i;
337 
338 	i = netdev_lock_pos(dev->type);
339 	lockdep_set_class_and_name(&dev->addr_list_lock,
340 				   &netdev_addr_lock_key[i],
341 				   netdev_lock_name[i]);
342 }
343 #else
344 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
345 						 unsigned short dev_type)
346 {
347 }
348 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
349 {
350 }
351 #endif
352 
353 /*******************************************************************************
354 
355 		Protocol management and registration routines
356 
357 *******************************************************************************/
358 
359 /*
360  *	Add a protocol ID to the list. Now that the input handler is
361  *	smarter we can dispense with all the messy stuff that used to be
362  *	here.
363  *
364  *	BEWARE!!! Protocol handlers, mangling input packets,
365  *	MUST BE last in hash buckets and checking protocol handlers
366  *	MUST start from promiscuous ptype_all chain in net_bh.
367  *	It is true now, do not change it.
368  *	Explanation follows: if protocol handler, mangling packet, will
369  *	be the first on list, it is not able to sense, that packet
370  *	is cloned and should be copied-on-write, so that it will
371  *	change it and subsequent readers will get broken packet.
372  *							--ANK (980803)
373  */
374 
375 static inline struct list_head *ptype_head(const struct packet_type *pt)
376 {
377 	if (pt->type == htons(ETH_P_ALL))
378 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
379 	else
380 		return pt->dev ? &pt->dev->ptype_specific :
381 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
382 }
383 
384 /**
385  *	dev_add_pack - add packet handler
386  *	@pt: packet type declaration
387  *
388  *	Add a protocol handler to the networking stack. The passed &packet_type
389  *	is linked into kernel lists and may not be freed until it has been
390  *	removed from the kernel lists.
391  *
392  *	This call does not sleep therefore it can not
393  *	guarantee all CPU's that are in middle of receiving packets
394  *	will see the new packet type (until the next received packet).
395  */
396 
397 void dev_add_pack(struct packet_type *pt)
398 {
399 	struct list_head *head = ptype_head(pt);
400 
401 	spin_lock(&ptype_lock);
402 	list_add_rcu(&pt->list, head);
403 	spin_unlock(&ptype_lock);
404 }
405 EXPORT_SYMBOL(dev_add_pack);
406 
407 /**
408  *	__dev_remove_pack	 - remove packet handler
409  *	@pt: packet type declaration
410  *
411  *	Remove a protocol handler that was previously added to the kernel
412  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
413  *	from the kernel lists and can be freed or reused once this function
414  *	returns.
415  *
416  *      The packet type might still be in use by receivers
417  *	and must not be freed until after all the CPU's have gone
418  *	through a quiescent state.
419  */
420 void __dev_remove_pack(struct packet_type *pt)
421 {
422 	struct list_head *head = ptype_head(pt);
423 	struct packet_type *pt1;
424 
425 	spin_lock(&ptype_lock);
426 
427 	list_for_each_entry(pt1, head, list) {
428 		if (pt == pt1) {
429 			list_del_rcu(&pt->list);
430 			goto out;
431 		}
432 	}
433 
434 	pr_warn("dev_remove_pack: %p not found\n", pt);
435 out:
436 	spin_unlock(&ptype_lock);
437 }
438 EXPORT_SYMBOL(__dev_remove_pack);
439 
440 /**
441  *	dev_remove_pack	 - remove packet handler
442  *	@pt: packet type declaration
443  *
444  *	Remove a protocol handler that was previously added to the kernel
445  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
446  *	from the kernel lists and can be freed or reused once this function
447  *	returns.
448  *
449  *	This call sleeps to guarantee that no CPU is looking at the packet
450  *	type after return.
451  */
452 void dev_remove_pack(struct packet_type *pt)
453 {
454 	__dev_remove_pack(pt);
455 
456 	synchronize_net();
457 }
458 EXPORT_SYMBOL(dev_remove_pack);
459 
460 
461 /**
462  *	dev_add_offload - register offload handlers
463  *	@po: protocol offload declaration
464  *
465  *	Add protocol offload handlers to the networking stack. The passed
466  *	&proto_offload is linked into kernel lists and may not be freed until
467  *	it has been removed from the kernel lists.
468  *
469  *	This call does not sleep therefore it can not
470  *	guarantee all CPU's that are in middle of receiving packets
471  *	will see the new offload handlers (until the next received packet).
472  */
473 void dev_add_offload(struct packet_offload *po)
474 {
475 	struct packet_offload *elem;
476 
477 	spin_lock(&offload_lock);
478 	list_for_each_entry(elem, &offload_base, list) {
479 		if (po->priority < elem->priority)
480 			break;
481 	}
482 	list_add_rcu(&po->list, elem->list.prev);
483 	spin_unlock(&offload_lock);
484 }
485 EXPORT_SYMBOL(dev_add_offload);
486 
487 /**
488  *	__dev_remove_offload	 - remove offload handler
489  *	@po: packet offload declaration
490  *
491  *	Remove a protocol offload handler that was previously added to the
492  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
493  *	is removed from the kernel lists and can be freed or reused once this
494  *	function returns.
495  *
496  *      The packet type might still be in use by receivers
497  *	and must not be freed until after all the CPU's have gone
498  *	through a quiescent state.
499  */
500 static void __dev_remove_offload(struct packet_offload *po)
501 {
502 	struct list_head *head = &offload_base;
503 	struct packet_offload *po1;
504 
505 	spin_lock(&offload_lock);
506 
507 	list_for_each_entry(po1, head, list) {
508 		if (po == po1) {
509 			list_del_rcu(&po->list);
510 			goto out;
511 		}
512 	}
513 
514 	pr_warn("dev_remove_offload: %p not found\n", po);
515 out:
516 	spin_unlock(&offload_lock);
517 }
518 
519 /**
520  *	dev_remove_offload	 - remove packet offload handler
521  *	@po: packet offload declaration
522  *
523  *	Remove a packet offload handler that was previously added to the kernel
524  *	offload handlers by dev_add_offload(). The passed &offload_type is
525  *	removed from the kernel lists and can be freed or reused once this
526  *	function returns.
527  *
528  *	This call sleeps to guarantee that no CPU is looking at the packet
529  *	type after return.
530  */
531 void dev_remove_offload(struct packet_offload *po)
532 {
533 	__dev_remove_offload(po);
534 
535 	synchronize_net();
536 }
537 EXPORT_SYMBOL(dev_remove_offload);
538 
539 /******************************************************************************
540 
541 		      Device Boot-time Settings Routines
542 
543 *******************************************************************************/
544 
545 /* Boot time configuration table */
546 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
547 
548 /**
549  *	netdev_boot_setup_add	- add new setup entry
550  *	@name: name of the device
551  *	@map: configured settings for the device
552  *
553  *	Adds new setup entry to the dev_boot_setup list.  The function
554  *	returns 0 on error and 1 on success.  This is a generic routine to
555  *	all netdevices.
556  */
557 static int netdev_boot_setup_add(char *name, struct ifmap *map)
558 {
559 	struct netdev_boot_setup *s;
560 	int i;
561 
562 	s = dev_boot_setup;
563 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
564 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
565 			memset(s[i].name, 0, sizeof(s[i].name));
566 			strlcpy(s[i].name, name, IFNAMSIZ);
567 			memcpy(&s[i].map, map, sizeof(s[i].map));
568 			break;
569 		}
570 	}
571 
572 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
573 }
574 
575 /**
576  *	netdev_boot_setup_check	- check boot time settings
577  *	@dev: the netdevice
578  *
579  * 	Check boot time settings for the device.
580  *	The found settings are set for the device to be used
581  *	later in the device probing.
582  *	Returns 0 if no settings found, 1 if they are.
583  */
584 int netdev_boot_setup_check(struct net_device *dev)
585 {
586 	struct netdev_boot_setup *s = dev_boot_setup;
587 	int i;
588 
589 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
590 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
591 		    !strcmp(dev->name, s[i].name)) {
592 			dev->irq 	= s[i].map.irq;
593 			dev->base_addr 	= s[i].map.base_addr;
594 			dev->mem_start 	= s[i].map.mem_start;
595 			dev->mem_end 	= s[i].map.mem_end;
596 			return 1;
597 		}
598 	}
599 	return 0;
600 }
601 EXPORT_SYMBOL(netdev_boot_setup_check);
602 
603 
604 /**
605  *	netdev_boot_base	- get address from boot time settings
606  *	@prefix: prefix for network device
607  *	@unit: id for network device
608  *
609  * 	Check boot time settings for the base address of device.
610  *	The found settings are set for the device to be used
611  *	later in the device probing.
612  *	Returns 0 if no settings found.
613  */
614 unsigned long netdev_boot_base(const char *prefix, int unit)
615 {
616 	const struct netdev_boot_setup *s = dev_boot_setup;
617 	char name[IFNAMSIZ];
618 	int i;
619 
620 	sprintf(name, "%s%d", prefix, unit);
621 
622 	/*
623 	 * If device already registered then return base of 1
624 	 * to indicate not to probe for this interface
625 	 */
626 	if (__dev_get_by_name(&init_net, name))
627 		return 1;
628 
629 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
630 		if (!strcmp(name, s[i].name))
631 			return s[i].map.base_addr;
632 	return 0;
633 }
634 
635 /*
636  * Saves at boot time configured settings for any netdevice.
637  */
638 int __init netdev_boot_setup(char *str)
639 {
640 	int ints[5];
641 	struct ifmap map;
642 
643 	str = get_options(str, ARRAY_SIZE(ints), ints);
644 	if (!str || !*str)
645 		return 0;
646 
647 	/* Save settings */
648 	memset(&map, 0, sizeof(map));
649 	if (ints[0] > 0)
650 		map.irq = ints[1];
651 	if (ints[0] > 1)
652 		map.base_addr = ints[2];
653 	if (ints[0] > 2)
654 		map.mem_start = ints[3];
655 	if (ints[0] > 3)
656 		map.mem_end = ints[4];
657 
658 	/* Add new entry to the list */
659 	return netdev_boot_setup_add(str, &map);
660 }
661 
662 __setup("netdev=", netdev_boot_setup);
663 
664 /*******************************************************************************
665 
666 			    Device Interface Subroutines
667 
668 *******************************************************************************/
669 
670 /**
671  *	dev_get_iflink	- get 'iflink' value of a interface
672  *	@dev: targeted interface
673  *
674  *	Indicates the ifindex the interface is linked to.
675  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
676  */
677 
678 int dev_get_iflink(const struct net_device *dev)
679 {
680 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
681 		return dev->netdev_ops->ndo_get_iflink(dev);
682 
683 	return dev->ifindex;
684 }
685 EXPORT_SYMBOL(dev_get_iflink);
686 
687 /**
688  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
689  *	@dev: targeted interface
690  *	@skb: The packet.
691  *
692  *	For better visibility of tunnel traffic OVS needs to retrieve
693  *	egress tunnel information for a packet. Following API allows
694  *	user to get this info.
695  */
696 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
697 {
698 	struct ip_tunnel_info *info;
699 
700 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
701 		return -EINVAL;
702 
703 	info = skb_tunnel_info_unclone(skb);
704 	if (!info)
705 		return -ENOMEM;
706 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
707 		return -EINVAL;
708 
709 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
710 }
711 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
712 
713 /**
714  *	__dev_get_by_name	- find a device by its name
715  *	@net: the applicable net namespace
716  *	@name: name to find
717  *
718  *	Find an interface by name. Must be called under RTNL semaphore
719  *	or @dev_base_lock. If the name is found a pointer to the device
720  *	is returned. If the name is not found then %NULL is returned. The
721  *	reference counters are not incremented so the caller must be
722  *	careful with locks.
723  */
724 
725 struct net_device *__dev_get_by_name(struct net *net, const char *name)
726 {
727 	struct net_device *dev;
728 	struct hlist_head *head = dev_name_hash(net, name);
729 
730 	hlist_for_each_entry(dev, head, name_hlist)
731 		if (!strncmp(dev->name, name, IFNAMSIZ))
732 			return dev;
733 
734 	return NULL;
735 }
736 EXPORT_SYMBOL(__dev_get_by_name);
737 
738 /**
739  *	dev_get_by_name_rcu	- find a device by its name
740  *	@net: the applicable net namespace
741  *	@name: name to find
742  *
743  *	Find an interface by name.
744  *	If the name is found a pointer to the device is returned.
745  * 	If the name is not found then %NULL is returned.
746  *	The reference counters are not incremented so the caller must be
747  *	careful with locks. The caller must hold RCU lock.
748  */
749 
750 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
751 {
752 	struct net_device *dev;
753 	struct hlist_head *head = dev_name_hash(net, name);
754 
755 	hlist_for_each_entry_rcu(dev, head, name_hlist)
756 		if (!strncmp(dev->name, name, IFNAMSIZ))
757 			return dev;
758 
759 	return NULL;
760 }
761 EXPORT_SYMBOL(dev_get_by_name_rcu);
762 
763 /**
764  *	dev_get_by_name		- find a device by its name
765  *	@net: the applicable net namespace
766  *	@name: name to find
767  *
768  *	Find an interface by name. This can be called from any
769  *	context and does its own locking. The returned handle has
770  *	the usage count incremented and the caller must use dev_put() to
771  *	release it when it is no longer needed. %NULL is returned if no
772  *	matching device is found.
773  */
774 
775 struct net_device *dev_get_by_name(struct net *net, const char *name)
776 {
777 	struct net_device *dev;
778 
779 	rcu_read_lock();
780 	dev = dev_get_by_name_rcu(net, name);
781 	if (dev)
782 		dev_hold(dev);
783 	rcu_read_unlock();
784 	return dev;
785 }
786 EXPORT_SYMBOL(dev_get_by_name);
787 
788 /**
789  *	__dev_get_by_index - find a device by its ifindex
790  *	@net: the applicable net namespace
791  *	@ifindex: index of device
792  *
793  *	Search for an interface by index. Returns %NULL if the device
794  *	is not found or a pointer to the device. The device has not
795  *	had its reference counter increased so the caller must be careful
796  *	about locking. The caller must hold either the RTNL semaphore
797  *	or @dev_base_lock.
798  */
799 
800 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
801 {
802 	struct net_device *dev;
803 	struct hlist_head *head = dev_index_hash(net, ifindex);
804 
805 	hlist_for_each_entry(dev, head, index_hlist)
806 		if (dev->ifindex == ifindex)
807 			return dev;
808 
809 	return NULL;
810 }
811 EXPORT_SYMBOL(__dev_get_by_index);
812 
813 /**
814  *	dev_get_by_index_rcu - find a device by its ifindex
815  *	@net: the applicable net namespace
816  *	@ifindex: index of device
817  *
818  *	Search for an interface by index. Returns %NULL if the device
819  *	is not found or a pointer to the device. The device has not
820  *	had its reference counter increased so the caller must be careful
821  *	about locking. The caller must hold RCU lock.
822  */
823 
824 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
825 {
826 	struct net_device *dev;
827 	struct hlist_head *head = dev_index_hash(net, ifindex);
828 
829 	hlist_for_each_entry_rcu(dev, head, index_hlist)
830 		if (dev->ifindex == ifindex)
831 			return dev;
832 
833 	return NULL;
834 }
835 EXPORT_SYMBOL(dev_get_by_index_rcu);
836 
837 
838 /**
839  *	dev_get_by_index - find a device by its ifindex
840  *	@net: the applicable net namespace
841  *	@ifindex: index of device
842  *
843  *	Search for an interface by index. Returns NULL if the device
844  *	is not found or a pointer to the device. The device returned has
845  *	had a reference added and the pointer is safe until the user calls
846  *	dev_put to indicate they have finished with it.
847  */
848 
849 struct net_device *dev_get_by_index(struct net *net, int ifindex)
850 {
851 	struct net_device *dev;
852 
853 	rcu_read_lock();
854 	dev = dev_get_by_index_rcu(net, ifindex);
855 	if (dev)
856 		dev_hold(dev);
857 	rcu_read_unlock();
858 	return dev;
859 }
860 EXPORT_SYMBOL(dev_get_by_index);
861 
862 /**
863  *	netdev_get_name - get a netdevice name, knowing its ifindex.
864  *	@net: network namespace
865  *	@name: a pointer to the buffer where the name will be stored.
866  *	@ifindex: the ifindex of the interface to get the name from.
867  *
868  *	The use of raw_seqcount_begin() and cond_resched() before
869  *	retrying is required as we want to give the writers a chance
870  *	to complete when CONFIG_PREEMPT is not set.
871  */
872 int netdev_get_name(struct net *net, char *name, int ifindex)
873 {
874 	struct net_device *dev;
875 	unsigned int seq;
876 
877 retry:
878 	seq = raw_seqcount_begin(&devnet_rename_seq);
879 	rcu_read_lock();
880 	dev = dev_get_by_index_rcu(net, ifindex);
881 	if (!dev) {
882 		rcu_read_unlock();
883 		return -ENODEV;
884 	}
885 
886 	strcpy(name, dev->name);
887 	rcu_read_unlock();
888 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
889 		cond_resched();
890 		goto retry;
891 	}
892 
893 	return 0;
894 }
895 
896 /**
897  *	dev_getbyhwaddr_rcu - find a device by its hardware address
898  *	@net: the applicable net namespace
899  *	@type: media type of device
900  *	@ha: hardware address
901  *
902  *	Search for an interface by MAC address. Returns NULL if the device
903  *	is not found or a pointer to the device.
904  *	The caller must hold RCU or RTNL.
905  *	The returned device has not had its ref count increased
906  *	and the caller must therefore be careful about locking
907  *
908  */
909 
910 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
911 				       const char *ha)
912 {
913 	struct net_device *dev;
914 
915 	for_each_netdev_rcu(net, dev)
916 		if (dev->type == type &&
917 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
918 			return dev;
919 
920 	return NULL;
921 }
922 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
923 
924 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
925 {
926 	struct net_device *dev;
927 
928 	ASSERT_RTNL();
929 	for_each_netdev(net, dev)
930 		if (dev->type == type)
931 			return dev;
932 
933 	return NULL;
934 }
935 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
936 
937 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
938 {
939 	struct net_device *dev, *ret = NULL;
940 
941 	rcu_read_lock();
942 	for_each_netdev_rcu(net, dev)
943 		if (dev->type == type) {
944 			dev_hold(dev);
945 			ret = dev;
946 			break;
947 		}
948 	rcu_read_unlock();
949 	return ret;
950 }
951 EXPORT_SYMBOL(dev_getfirstbyhwtype);
952 
953 /**
954  *	__dev_get_by_flags - find any device with given flags
955  *	@net: the applicable net namespace
956  *	@if_flags: IFF_* values
957  *	@mask: bitmask of bits in if_flags to check
958  *
959  *	Search for any interface with the given flags. Returns NULL if a device
960  *	is not found or a pointer to the device. Must be called inside
961  *	rtnl_lock(), and result refcount is unchanged.
962  */
963 
964 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
965 				      unsigned short mask)
966 {
967 	struct net_device *dev, *ret;
968 
969 	ASSERT_RTNL();
970 
971 	ret = NULL;
972 	for_each_netdev(net, dev) {
973 		if (((dev->flags ^ if_flags) & mask) == 0) {
974 			ret = dev;
975 			break;
976 		}
977 	}
978 	return ret;
979 }
980 EXPORT_SYMBOL(__dev_get_by_flags);
981 
982 /**
983  *	dev_valid_name - check if name is okay for network device
984  *	@name: name string
985  *
986  *	Network device names need to be valid file names to
987  *	to allow sysfs to work.  We also disallow any kind of
988  *	whitespace.
989  */
990 bool dev_valid_name(const char *name)
991 {
992 	if (*name == '\0')
993 		return false;
994 	if (strlen(name) >= IFNAMSIZ)
995 		return false;
996 	if (!strcmp(name, ".") || !strcmp(name, ".."))
997 		return false;
998 
999 	while (*name) {
1000 		if (*name == '/' || *name == ':' || isspace(*name))
1001 			return false;
1002 		name++;
1003 	}
1004 	return true;
1005 }
1006 EXPORT_SYMBOL(dev_valid_name);
1007 
1008 /**
1009  *	__dev_alloc_name - allocate a name for a device
1010  *	@net: network namespace to allocate the device name in
1011  *	@name: name format string
1012  *	@buf:  scratch buffer and result name string
1013  *
1014  *	Passed a format string - eg "lt%d" it will try and find a suitable
1015  *	id. It scans list of devices to build up a free map, then chooses
1016  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1017  *	while allocating the name and adding the device in order to avoid
1018  *	duplicates.
1019  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1020  *	Returns the number of the unit assigned or a negative errno code.
1021  */
1022 
1023 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1024 {
1025 	int i = 0;
1026 	const char *p;
1027 	const int max_netdevices = 8*PAGE_SIZE;
1028 	unsigned long *inuse;
1029 	struct net_device *d;
1030 
1031 	p = strnchr(name, IFNAMSIZ-1, '%');
1032 	if (p) {
1033 		/*
1034 		 * Verify the string as this thing may have come from
1035 		 * the user.  There must be either one "%d" and no other "%"
1036 		 * characters.
1037 		 */
1038 		if (p[1] != 'd' || strchr(p + 2, '%'))
1039 			return -EINVAL;
1040 
1041 		/* Use one page as a bit array of possible slots */
1042 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1043 		if (!inuse)
1044 			return -ENOMEM;
1045 
1046 		for_each_netdev(net, d) {
1047 			if (!sscanf(d->name, name, &i))
1048 				continue;
1049 			if (i < 0 || i >= max_netdevices)
1050 				continue;
1051 
1052 			/*  avoid cases where sscanf is not exact inverse of printf */
1053 			snprintf(buf, IFNAMSIZ, name, i);
1054 			if (!strncmp(buf, d->name, IFNAMSIZ))
1055 				set_bit(i, inuse);
1056 		}
1057 
1058 		i = find_first_zero_bit(inuse, max_netdevices);
1059 		free_page((unsigned long) inuse);
1060 	}
1061 
1062 	if (buf != name)
1063 		snprintf(buf, IFNAMSIZ, name, i);
1064 	if (!__dev_get_by_name(net, buf))
1065 		return i;
1066 
1067 	/* It is possible to run out of possible slots
1068 	 * when the name is long and there isn't enough space left
1069 	 * for the digits, or if all bits are used.
1070 	 */
1071 	return -ENFILE;
1072 }
1073 
1074 /**
1075  *	dev_alloc_name - allocate a name for a device
1076  *	@dev: device
1077  *	@name: name format string
1078  *
1079  *	Passed a format string - eg "lt%d" it will try and find a suitable
1080  *	id. It scans list of devices to build up a free map, then chooses
1081  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1082  *	while allocating the name and adding the device in order to avoid
1083  *	duplicates.
1084  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1085  *	Returns the number of the unit assigned or a negative errno code.
1086  */
1087 
1088 int dev_alloc_name(struct net_device *dev, const char *name)
1089 {
1090 	char buf[IFNAMSIZ];
1091 	struct net *net;
1092 	int ret;
1093 
1094 	BUG_ON(!dev_net(dev));
1095 	net = dev_net(dev);
1096 	ret = __dev_alloc_name(net, name, buf);
1097 	if (ret >= 0)
1098 		strlcpy(dev->name, buf, IFNAMSIZ);
1099 	return ret;
1100 }
1101 EXPORT_SYMBOL(dev_alloc_name);
1102 
1103 static int dev_alloc_name_ns(struct net *net,
1104 			     struct net_device *dev,
1105 			     const char *name)
1106 {
1107 	char buf[IFNAMSIZ];
1108 	int ret;
1109 
1110 	ret = __dev_alloc_name(net, name, buf);
1111 	if (ret >= 0)
1112 		strlcpy(dev->name, buf, IFNAMSIZ);
1113 	return ret;
1114 }
1115 
1116 static int dev_get_valid_name(struct net *net,
1117 			      struct net_device *dev,
1118 			      const char *name)
1119 {
1120 	BUG_ON(!net);
1121 
1122 	if (!dev_valid_name(name))
1123 		return -EINVAL;
1124 
1125 	if (strchr(name, '%'))
1126 		return dev_alloc_name_ns(net, dev, name);
1127 	else if (__dev_get_by_name(net, name))
1128 		return -EEXIST;
1129 	else if (dev->name != name)
1130 		strlcpy(dev->name, name, IFNAMSIZ);
1131 
1132 	return 0;
1133 }
1134 
1135 /**
1136  *	dev_change_name - change name of a device
1137  *	@dev: device
1138  *	@newname: name (or format string) must be at least IFNAMSIZ
1139  *
1140  *	Change name of a device, can pass format strings "eth%d".
1141  *	for wildcarding.
1142  */
1143 int dev_change_name(struct net_device *dev, const char *newname)
1144 {
1145 	unsigned char old_assign_type;
1146 	char oldname[IFNAMSIZ];
1147 	int err = 0;
1148 	int ret;
1149 	struct net *net;
1150 
1151 	ASSERT_RTNL();
1152 	BUG_ON(!dev_net(dev));
1153 
1154 	net = dev_net(dev);
1155 	if (dev->flags & IFF_UP)
1156 		return -EBUSY;
1157 
1158 	write_seqcount_begin(&devnet_rename_seq);
1159 
1160 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1161 		write_seqcount_end(&devnet_rename_seq);
1162 		return 0;
1163 	}
1164 
1165 	memcpy(oldname, dev->name, IFNAMSIZ);
1166 
1167 	err = dev_get_valid_name(net, dev, newname);
1168 	if (err < 0) {
1169 		write_seqcount_end(&devnet_rename_seq);
1170 		return err;
1171 	}
1172 
1173 	if (oldname[0] && !strchr(oldname, '%'))
1174 		netdev_info(dev, "renamed from %s\n", oldname);
1175 
1176 	old_assign_type = dev->name_assign_type;
1177 	dev->name_assign_type = NET_NAME_RENAMED;
1178 
1179 rollback:
1180 	ret = device_rename(&dev->dev, dev->name);
1181 	if (ret) {
1182 		memcpy(dev->name, oldname, IFNAMSIZ);
1183 		dev->name_assign_type = old_assign_type;
1184 		write_seqcount_end(&devnet_rename_seq);
1185 		return ret;
1186 	}
1187 
1188 	write_seqcount_end(&devnet_rename_seq);
1189 
1190 	netdev_adjacent_rename_links(dev, oldname);
1191 
1192 	write_lock_bh(&dev_base_lock);
1193 	hlist_del_rcu(&dev->name_hlist);
1194 	write_unlock_bh(&dev_base_lock);
1195 
1196 	synchronize_rcu();
1197 
1198 	write_lock_bh(&dev_base_lock);
1199 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1200 	write_unlock_bh(&dev_base_lock);
1201 
1202 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1203 	ret = notifier_to_errno(ret);
1204 
1205 	if (ret) {
1206 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1207 		if (err >= 0) {
1208 			err = ret;
1209 			write_seqcount_begin(&devnet_rename_seq);
1210 			memcpy(dev->name, oldname, IFNAMSIZ);
1211 			memcpy(oldname, newname, IFNAMSIZ);
1212 			dev->name_assign_type = old_assign_type;
1213 			old_assign_type = NET_NAME_RENAMED;
1214 			goto rollback;
1215 		} else {
1216 			pr_err("%s: name change rollback failed: %d\n",
1217 			       dev->name, ret);
1218 		}
1219 	}
1220 
1221 	return err;
1222 }
1223 
1224 /**
1225  *	dev_set_alias - change ifalias of a device
1226  *	@dev: device
1227  *	@alias: name up to IFALIASZ
1228  *	@len: limit of bytes to copy from info
1229  *
1230  *	Set ifalias for a device,
1231  */
1232 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1233 {
1234 	char *new_ifalias;
1235 
1236 	ASSERT_RTNL();
1237 
1238 	if (len >= IFALIASZ)
1239 		return -EINVAL;
1240 
1241 	if (!len) {
1242 		kfree(dev->ifalias);
1243 		dev->ifalias = NULL;
1244 		return 0;
1245 	}
1246 
1247 	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1248 	if (!new_ifalias)
1249 		return -ENOMEM;
1250 	dev->ifalias = new_ifalias;
1251 
1252 	strlcpy(dev->ifalias, alias, len+1);
1253 	return len;
1254 }
1255 
1256 
1257 /**
1258  *	netdev_features_change - device changes features
1259  *	@dev: device to cause notification
1260  *
1261  *	Called to indicate a device has changed features.
1262  */
1263 void netdev_features_change(struct net_device *dev)
1264 {
1265 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1266 }
1267 EXPORT_SYMBOL(netdev_features_change);
1268 
1269 /**
1270  *	netdev_state_change - device changes state
1271  *	@dev: device to cause notification
1272  *
1273  *	Called to indicate a device has changed state. This function calls
1274  *	the notifier chains for netdev_chain and sends a NEWLINK message
1275  *	to the routing socket.
1276  */
1277 void netdev_state_change(struct net_device *dev)
1278 {
1279 	if (dev->flags & IFF_UP) {
1280 		struct netdev_notifier_change_info change_info;
1281 
1282 		change_info.flags_changed = 0;
1283 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1284 					      &change_info.info);
1285 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1286 	}
1287 }
1288 EXPORT_SYMBOL(netdev_state_change);
1289 
1290 /**
1291  * 	netdev_notify_peers - notify network peers about existence of @dev
1292  * 	@dev: network device
1293  *
1294  * Generate traffic such that interested network peers are aware of
1295  * @dev, such as by generating a gratuitous ARP. This may be used when
1296  * a device wants to inform the rest of the network about some sort of
1297  * reconfiguration such as a failover event or virtual machine
1298  * migration.
1299  */
1300 void netdev_notify_peers(struct net_device *dev)
1301 {
1302 	rtnl_lock();
1303 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1304 	rtnl_unlock();
1305 }
1306 EXPORT_SYMBOL(netdev_notify_peers);
1307 
1308 static int __dev_open(struct net_device *dev)
1309 {
1310 	const struct net_device_ops *ops = dev->netdev_ops;
1311 	int ret;
1312 
1313 	ASSERT_RTNL();
1314 
1315 	if (!netif_device_present(dev))
1316 		return -ENODEV;
1317 
1318 	/* Block netpoll from trying to do any rx path servicing.
1319 	 * If we don't do this there is a chance ndo_poll_controller
1320 	 * or ndo_poll may be running while we open the device
1321 	 */
1322 	netpoll_poll_disable(dev);
1323 
1324 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1325 	ret = notifier_to_errno(ret);
1326 	if (ret)
1327 		return ret;
1328 
1329 	set_bit(__LINK_STATE_START, &dev->state);
1330 
1331 	if (ops->ndo_validate_addr)
1332 		ret = ops->ndo_validate_addr(dev);
1333 
1334 	if (!ret && ops->ndo_open)
1335 		ret = ops->ndo_open(dev);
1336 
1337 	netpoll_poll_enable(dev);
1338 
1339 	if (ret)
1340 		clear_bit(__LINK_STATE_START, &dev->state);
1341 	else {
1342 		dev->flags |= IFF_UP;
1343 		dev_set_rx_mode(dev);
1344 		dev_activate(dev);
1345 		add_device_randomness(dev->dev_addr, dev->addr_len);
1346 	}
1347 
1348 	return ret;
1349 }
1350 
1351 /**
1352  *	dev_open	- prepare an interface for use.
1353  *	@dev:	device to open
1354  *
1355  *	Takes a device from down to up state. The device's private open
1356  *	function is invoked and then the multicast lists are loaded. Finally
1357  *	the device is moved into the up state and a %NETDEV_UP message is
1358  *	sent to the netdev notifier chain.
1359  *
1360  *	Calling this function on an active interface is a nop. On a failure
1361  *	a negative errno code is returned.
1362  */
1363 int dev_open(struct net_device *dev)
1364 {
1365 	int ret;
1366 
1367 	if (dev->flags & IFF_UP)
1368 		return 0;
1369 
1370 	ret = __dev_open(dev);
1371 	if (ret < 0)
1372 		return ret;
1373 
1374 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1375 	call_netdevice_notifiers(NETDEV_UP, dev);
1376 
1377 	return ret;
1378 }
1379 EXPORT_SYMBOL(dev_open);
1380 
1381 static int __dev_close_many(struct list_head *head)
1382 {
1383 	struct net_device *dev;
1384 
1385 	ASSERT_RTNL();
1386 	might_sleep();
1387 
1388 	list_for_each_entry(dev, head, close_list) {
1389 		/* Temporarily disable netpoll until the interface is down */
1390 		netpoll_poll_disable(dev);
1391 
1392 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1393 
1394 		clear_bit(__LINK_STATE_START, &dev->state);
1395 
1396 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1397 		 * can be even on different cpu. So just clear netif_running().
1398 		 *
1399 		 * dev->stop() will invoke napi_disable() on all of it's
1400 		 * napi_struct instances on this device.
1401 		 */
1402 		smp_mb__after_atomic(); /* Commit netif_running(). */
1403 	}
1404 
1405 	dev_deactivate_many(head);
1406 
1407 	list_for_each_entry(dev, head, close_list) {
1408 		const struct net_device_ops *ops = dev->netdev_ops;
1409 
1410 		/*
1411 		 *	Call the device specific close. This cannot fail.
1412 		 *	Only if device is UP
1413 		 *
1414 		 *	We allow it to be called even after a DETACH hot-plug
1415 		 *	event.
1416 		 */
1417 		if (ops->ndo_stop)
1418 			ops->ndo_stop(dev);
1419 
1420 		dev->flags &= ~IFF_UP;
1421 		netpoll_poll_enable(dev);
1422 	}
1423 
1424 	return 0;
1425 }
1426 
1427 static int __dev_close(struct net_device *dev)
1428 {
1429 	int retval;
1430 	LIST_HEAD(single);
1431 
1432 	list_add(&dev->close_list, &single);
1433 	retval = __dev_close_many(&single);
1434 	list_del(&single);
1435 
1436 	return retval;
1437 }
1438 
1439 int dev_close_many(struct list_head *head, bool unlink)
1440 {
1441 	struct net_device *dev, *tmp;
1442 
1443 	/* Remove the devices that don't need to be closed */
1444 	list_for_each_entry_safe(dev, tmp, head, close_list)
1445 		if (!(dev->flags & IFF_UP))
1446 			list_del_init(&dev->close_list);
1447 
1448 	__dev_close_many(head);
1449 
1450 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1451 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1452 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1453 		if (unlink)
1454 			list_del_init(&dev->close_list);
1455 	}
1456 
1457 	return 0;
1458 }
1459 EXPORT_SYMBOL(dev_close_many);
1460 
1461 /**
1462  *	dev_close - shutdown an interface.
1463  *	@dev: device to shutdown
1464  *
1465  *	This function moves an active device into down state. A
1466  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1467  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1468  *	chain.
1469  */
1470 int dev_close(struct net_device *dev)
1471 {
1472 	if (dev->flags & IFF_UP) {
1473 		LIST_HEAD(single);
1474 
1475 		list_add(&dev->close_list, &single);
1476 		dev_close_many(&single, true);
1477 		list_del(&single);
1478 	}
1479 	return 0;
1480 }
1481 EXPORT_SYMBOL(dev_close);
1482 
1483 
1484 /**
1485  *	dev_disable_lro - disable Large Receive Offload on a device
1486  *	@dev: device
1487  *
1488  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1489  *	called under RTNL.  This is needed if received packets may be
1490  *	forwarded to another interface.
1491  */
1492 void dev_disable_lro(struct net_device *dev)
1493 {
1494 	struct net_device *lower_dev;
1495 	struct list_head *iter;
1496 
1497 	dev->wanted_features &= ~NETIF_F_LRO;
1498 	netdev_update_features(dev);
1499 
1500 	if (unlikely(dev->features & NETIF_F_LRO))
1501 		netdev_WARN(dev, "failed to disable LRO!\n");
1502 
1503 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1504 		dev_disable_lro(lower_dev);
1505 }
1506 EXPORT_SYMBOL(dev_disable_lro);
1507 
1508 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1509 				   struct net_device *dev)
1510 {
1511 	struct netdev_notifier_info info;
1512 
1513 	netdev_notifier_info_init(&info, dev);
1514 	return nb->notifier_call(nb, val, &info);
1515 }
1516 
1517 static int dev_boot_phase = 1;
1518 
1519 /**
1520  *	register_netdevice_notifier - register a network notifier block
1521  *	@nb: notifier
1522  *
1523  *	Register a notifier to be called when network device events occur.
1524  *	The notifier passed is linked into the kernel structures and must
1525  *	not be reused until it has been unregistered. A negative errno code
1526  *	is returned on a failure.
1527  *
1528  * 	When registered all registration and up events are replayed
1529  *	to the new notifier to allow device to have a race free
1530  *	view of the network device list.
1531  */
1532 
1533 int register_netdevice_notifier(struct notifier_block *nb)
1534 {
1535 	struct net_device *dev;
1536 	struct net_device *last;
1537 	struct net *net;
1538 	int err;
1539 
1540 	rtnl_lock();
1541 	err = raw_notifier_chain_register(&netdev_chain, nb);
1542 	if (err)
1543 		goto unlock;
1544 	if (dev_boot_phase)
1545 		goto unlock;
1546 	for_each_net(net) {
1547 		for_each_netdev(net, dev) {
1548 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1549 			err = notifier_to_errno(err);
1550 			if (err)
1551 				goto rollback;
1552 
1553 			if (!(dev->flags & IFF_UP))
1554 				continue;
1555 
1556 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1557 		}
1558 	}
1559 
1560 unlock:
1561 	rtnl_unlock();
1562 	return err;
1563 
1564 rollback:
1565 	last = dev;
1566 	for_each_net(net) {
1567 		for_each_netdev(net, dev) {
1568 			if (dev == last)
1569 				goto outroll;
1570 
1571 			if (dev->flags & IFF_UP) {
1572 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1573 							dev);
1574 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1575 			}
1576 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1577 		}
1578 	}
1579 
1580 outroll:
1581 	raw_notifier_chain_unregister(&netdev_chain, nb);
1582 	goto unlock;
1583 }
1584 EXPORT_SYMBOL(register_netdevice_notifier);
1585 
1586 /**
1587  *	unregister_netdevice_notifier - unregister a network notifier block
1588  *	@nb: notifier
1589  *
1590  *	Unregister a notifier previously registered by
1591  *	register_netdevice_notifier(). The notifier is unlinked into the
1592  *	kernel structures and may then be reused. A negative errno code
1593  *	is returned on a failure.
1594  *
1595  * 	After unregistering unregister and down device events are synthesized
1596  *	for all devices on the device list to the removed notifier to remove
1597  *	the need for special case cleanup code.
1598  */
1599 
1600 int unregister_netdevice_notifier(struct notifier_block *nb)
1601 {
1602 	struct net_device *dev;
1603 	struct net *net;
1604 	int err;
1605 
1606 	rtnl_lock();
1607 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1608 	if (err)
1609 		goto unlock;
1610 
1611 	for_each_net(net) {
1612 		for_each_netdev(net, dev) {
1613 			if (dev->flags & IFF_UP) {
1614 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1615 							dev);
1616 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1617 			}
1618 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1619 		}
1620 	}
1621 unlock:
1622 	rtnl_unlock();
1623 	return err;
1624 }
1625 EXPORT_SYMBOL(unregister_netdevice_notifier);
1626 
1627 /**
1628  *	call_netdevice_notifiers_info - call all network notifier blocks
1629  *	@val: value passed unmodified to notifier function
1630  *	@dev: net_device pointer passed unmodified to notifier function
1631  *	@info: notifier information data
1632  *
1633  *	Call all network notifier blocks.  Parameters and return value
1634  *	are as for raw_notifier_call_chain().
1635  */
1636 
1637 static int call_netdevice_notifiers_info(unsigned long val,
1638 					 struct net_device *dev,
1639 					 struct netdev_notifier_info *info)
1640 {
1641 	ASSERT_RTNL();
1642 	netdev_notifier_info_init(info, dev);
1643 	return raw_notifier_call_chain(&netdev_chain, val, info);
1644 }
1645 
1646 /**
1647  *	call_netdevice_notifiers - call all network notifier blocks
1648  *      @val: value passed unmodified to notifier function
1649  *      @dev: net_device pointer passed unmodified to notifier function
1650  *
1651  *	Call all network notifier blocks.  Parameters and return value
1652  *	are as for raw_notifier_call_chain().
1653  */
1654 
1655 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1656 {
1657 	struct netdev_notifier_info info;
1658 
1659 	return call_netdevice_notifiers_info(val, dev, &info);
1660 }
1661 EXPORT_SYMBOL(call_netdevice_notifiers);
1662 
1663 #ifdef CONFIG_NET_INGRESS
1664 static struct static_key ingress_needed __read_mostly;
1665 
1666 void net_inc_ingress_queue(void)
1667 {
1668 	static_key_slow_inc(&ingress_needed);
1669 }
1670 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1671 
1672 void net_dec_ingress_queue(void)
1673 {
1674 	static_key_slow_dec(&ingress_needed);
1675 }
1676 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1677 #endif
1678 
1679 #ifdef CONFIG_NET_EGRESS
1680 static struct static_key egress_needed __read_mostly;
1681 
1682 void net_inc_egress_queue(void)
1683 {
1684 	static_key_slow_inc(&egress_needed);
1685 }
1686 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1687 
1688 void net_dec_egress_queue(void)
1689 {
1690 	static_key_slow_dec(&egress_needed);
1691 }
1692 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1693 #endif
1694 
1695 static struct static_key netstamp_needed __read_mostly;
1696 #ifdef HAVE_JUMP_LABEL
1697 /* We are not allowed to call static_key_slow_dec() from irq context
1698  * If net_disable_timestamp() is called from irq context, defer the
1699  * static_key_slow_dec() calls.
1700  */
1701 static atomic_t netstamp_needed_deferred;
1702 #endif
1703 
1704 void net_enable_timestamp(void)
1705 {
1706 #ifdef HAVE_JUMP_LABEL
1707 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1708 
1709 	if (deferred) {
1710 		while (--deferred)
1711 			static_key_slow_dec(&netstamp_needed);
1712 		return;
1713 	}
1714 #endif
1715 	static_key_slow_inc(&netstamp_needed);
1716 }
1717 EXPORT_SYMBOL(net_enable_timestamp);
1718 
1719 void net_disable_timestamp(void)
1720 {
1721 #ifdef HAVE_JUMP_LABEL
1722 	if (in_interrupt()) {
1723 		atomic_inc(&netstamp_needed_deferred);
1724 		return;
1725 	}
1726 #endif
1727 	static_key_slow_dec(&netstamp_needed);
1728 }
1729 EXPORT_SYMBOL(net_disable_timestamp);
1730 
1731 static inline void net_timestamp_set(struct sk_buff *skb)
1732 {
1733 	skb->tstamp.tv64 = 0;
1734 	if (static_key_false(&netstamp_needed))
1735 		__net_timestamp(skb);
1736 }
1737 
1738 #define net_timestamp_check(COND, SKB)			\
1739 	if (static_key_false(&netstamp_needed)) {		\
1740 		if ((COND) && !(SKB)->tstamp.tv64)	\
1741 			__net_timestamp(SKB);		\
1742 	}						\
1743 
1744 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1745 {
1746 	unsigned int len;
1747 
1748 	if (!(dev->flags & IFF_UP))
1749 		return false;
1750 
1751 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1752 	if (skb->len <= len)
1753 		return true;
1754 
1755 	/* if TSO is enabled, we don't care about the length as the packet
1756 	 * could be forwarded without being segmented before
1757 	 */
1758 	if (skb_is_gso(skb))
1759 		return true;
1760 
1761 	return false;
1762 }
1763 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1764 
1765 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1766 {
1767 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1768 	    unlikely(!is_skb_forwardable(dev, skb))) {
1769 		atomic_long_inc(&dev->rx_dropped);
1770 		kfree_skb(skb);
1771 		return NET_RX_DROP;
1772 	}
1773 
1774 	skb_scrub_packet(skb, true);
1775 	skb->priority = 0;
1776 	skb->protocol = eth_type_trans(skb, dev);
1777 	skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1778 
1779 	return 0;
1780 }
1781 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1782 
1783 /**
1784  * dev_forward_skb - loopback an skb to another netif
1785  *
1786  * @dev: destination network device
1787  * @skb: buffer to forward
1788  *
1789  * return values:
1790  *	NET_RX_SUCCESS	(no congestion)
1791  *	NET_RX_DROP     (packet was dropped, but freed)
1792  *
1793  * dev_forward_skb can be used for injecting an skb from the
1794  * start_xmit function of one device into the receive queue
1795  * of another device.
1796  *
1797  * The receiving device may be in another namespace, so
1798  * we have to clear all information in the skb that could
1799  * impact namespace isolation.
1800  */
1801 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1802 {
1803 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1804 }
1805 EXPORT_SYMBOL_GPL(dev_forward_skb);
1806 
1807 static inline int deliver_skb(struct sk_buff *skb,
1808 			      struct packet_type *pt_prev,
1809 			      struct net_device *orig_dev)
1810 {
1811 	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1812 		return -ENOMEM;
1813 	atomic_inc(&skb->users);
1814 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1815 }
1816 
1817 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1818 					  struct packet_type **pt,
1819 					  struct net_device *orig_dev,
1820 					  __be16 type,
1821 					  struct list_head *ptype_list)
1822 {
1823 	struct packet_type *ptype, *pt_prev = *pt;
1824 
1825 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1826 		if (ptype->type != type)
1827 			continue;
1828 		if (pt_prev)
1829 			deliver_skb(skb, pt_prev, orig_dev);
1830 		pt_prev = ptype;
1831 	}
1832 	*pt = pt_prev;
1833 }
1834 
1835 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1836 {
1837 	if (!ptype->af_packet_priv || !skb->sk)
1838 		return false;
1839 
1840 	if (ptype->id_match)
1841 		return ptype->id_match(ptype, skb->sk);
1842 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1843 		return true;
1844 
1845 	return false;
1846 }
1847 
1848 /*
1849  *	Support routine. Sends outgoing frames to any network
1850  *	taps currently in use.
1851  */
1852 
1853 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1854 {
1855 	struct packet_type *ptype;
1856 	struct sk_buff *skb2 = NULL;
1857 	struct packet_type *pt_prev = NULL;
1858 	struct list_head *ptype_list = &ptype_all;
1859 
1860 	rcu_read_lock();
1861 again:
1862 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1863 		/* Never send packets back to the socket
1864 		 * they originated from - MvS (miquels@drinkel.ow.org)
1865 		 */
1866 		if (skb_loop_sk(ptype, skb))
1867 			continue;
1868 
1869 		if (pt_prev) {
1870 			deliver_skb(skb2, pt_prev, skb->dev);
1871 			pt_prev = ptype;
1872 			continue;
1873 		}
1874 
1875 		/* need to clone skb, done only once */
1876 		skb2 = skb_clone(skb, GFP_ATOMIC);
1877 		if (!skb2)
1878 			goto out_unlock;
1879 
1880 		net_timestamp_set(skb2);
1881 
1882 		/* skb->nh should be correctly
1883 		 * set by sender, so that the second statement is
1884 		 * just protection against buggy protocols.
1885 		 */
1886 		skb_reset_mac_header(skb2);
1887 
1888 		if (skb_network_header(skb2) < skb2->data ||
1889 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1890 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1891 					     ntohs(skb2->protocol),
1892 					     dev->name);
1893 			skb_reset_network_header(skb2);
1894 		}
1895 
1896 		skb2->transport_header = skb2->network_header;
1897 		skb2->pkt_type = PACKET_OUTGOING;
1898 		pt_prev = ptype;
1899 	}
1900 
1901 	if (ptype_list == &ptype_all) {
1902 		ptype_list = &dev->ptype_all;
1903 		goto again;
1904 	}
1905 out_unlock:
1906 	if (pt_prev)
1907 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1908 	rcu_read_unlock();
1909 }
1910 
1911 /**
1912  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1913  * @dev: Network device
1914  * @txq: number of queues available
1915  *
1916  * If real_num_tx_queues is changed the tc mappings may no longer be
1917  * valid. To resolve this verify the tc mapping remains valid and if
1918  * not NULL the mapping. With no priorities mapping to this
1919  * offset/count pair it will no longer be used. In the worst case TC0
1920  * is invalid nothing can be done so disable priority mappings. If is
1921  * expected that drivers will fix this mapping if they can before
1922  * calling netif_set_real_num_tx_queues.
1923  */
1924 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1925 {
1926 	int i;
1927 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1928 
1929 	/* If TC0 is invalidated disable TC mapping */
1930 	if (tc->offset + tc->count > txq) {
1931 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1932 		dev->num_tc = 0;
1933 		return;
1934 	}
1935 
1936 	/* Invalidated prio to tc mappings set to TC0 */
1937 	for (i = 1; i < TC_BITMASK + 1; i++) {
1938 		int q = netdev_get_prio_tc_map(dev, i);
1939 
1940 		tc = &dev->tc_to_txq[q];
1941 		if (tc->offset + tc->count > txq) {
1942 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1943 				i, q);
1944 			netdev_set_prio_tc_map(dev, i, 0);
1945 		}
1946 	}
1947 }
1948 
1949 #ifdef CONFIG_XPS
1950 static DEFINE_MUTEX(xps_map_mutex);
1951 #define xmap_dereference(P)		\
1952 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1953 
1954 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1955 					int cpu, u16 index)
1956 {
1957 	struct xps_map *map = NULL;
1958 	int pos;
1959 
1960 	if (dev_maps)
1961 		map = xmap_dereference(dev_maps->cpu_map[cpu]);
1962 
1963 	for (pos = 0; map && pos < map->len; pos++) {
1964 		if (map->queues[pos] == index) {
1965 			if (map->len > 1) {
1966 				map->queues[pos] = map->queues[--map->len];
1967 			} else {
1968 				RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1969 				kfree_rcu(map, rcu);
1970 				map = NULL;
1971 			}
1972 			break;
1973 		}
1974 	}
1975 
1976 	return map;
1977 }
1978 
1979 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1980 {
1981 	struct xps_dev_maps *dev_maps;
1982 	int cpu, i;
1983 	bool active = false;
1984 
1985 	mutex_lock(&xps_map_mutex);
1986 	dev_maps = xmap_dereference(dev->xps_maps);
1987 
1988 	if (!dev_maps)
1989 		goto out_no_maps;
1990 
1991 	for_each_possible_cpu(cpu) {
1992 		for (i = index; i < dev->num_tx_queues; i++) {
1993 			if (!remove_xps_queue(dev_maps, cpu, i))
1994 				break;
1995 		}
1996 		if (i == dev->num_tx_queues)
1997 			active = true;
1998 	}
1999 
2000 	if (!active) {
2001 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2002 		kfree_rcu(dev_maps, rcu);
2003 	}
2004 
2005 	for (i = index; i < dev->num_tx_queues; i++)
2006 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2007 					     NUMA_NO_NODE);
2008 
2009 out_no_maps:
2010 	mutex_unlock(&xps_map_mutex);
2011 }
2012 
2013 static struct xps_map *expand_xps_map(struct xps_map *map,
2014 				      int cpu, u16 index)
2015 {
2016 	struct xps_map *new_map;
2017 	int alloc_len = XPS_MIN_MAP_ALLOC;
2018 	int i, pos;
2019 
2020 	for (pos = 0; map && pos < map->len; pos++) {
2021 		if (map->queues[pos] != index)
2022 			continue;
2023 		return map;
2024 	}
2025 
2026 	/* Need to add queue to this CPU's existing map */
2027 	if (map) {
2028 		if (pos < map->alloc_len)
2029 			return map;
2030 
2031 		alloc_len = map->alloc_len * 2;
2032 	}
2033 
2034 	/* Need to allocate new map to store queue on this CPU's map */
2035 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2036 			       cpu_to_node(cpu));
2037 	if (!new_map)
2038 		return NULL;
2039 
2040 	for (i = 0; i < pos; i++)
2041 		new_map->queues[i] = map->queues[i];
2042 	new_map->alloc_len = alloc_len;
2043 	new_map->len = pos;
2044 
2045 	return new_map;
2046 }
2047 
2048 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2049 			u16 index)
2050 {
2051 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2052 	struct xps_map *map, *new_map;
2053 	int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2054 	int cpu, numa_node_id = -2;
2055 	bool active = false;
2056 
2057 	mutex_lock(&xps_map_mutex);
2058 
2059 	dev_maps = xmap_dereference(dev->xps_maps);
2060 
2061 	/* allocate memory for queue storage */
2062 	for_each_online_cpu(cpu) {
2063 		if (!cpumask_test_cpu(cpu, mask))
2064 			continue;
2065 
2066 		if (!new_dev_maps)
2067 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2068 		if (!new_dev_maps) {
2069 			mutex_unlock(&xps_map_mutex);
2070 			return -ENOMEM;
2071 		}
2072 
2073 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2074 				 NULL;
2075 
2076 		map = expand_xps_map(map, cpu, index);
2077 		if (!map)
2078 			goto error;
2079 
2080 		RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2081 	}
2082 
2083 	if (!new_dev_maps)
2084 		goto out_no_new_maps;
2085 
2086 	for_each_possible_cpu(cpu) {
2087 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2088 			/* add queue to CPU maps */
2089 			int pos = 0;
2090 
2091 			map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2092 			while ((pos < map->len) && (map->queues[pos] != index))
2093 				pos++;
2094 
2095 			if (pos == map->len)
2096 				map->queues[map->len++] = index;
2097 #ifdef CONFIG_NUMA
2098 			if (numa_node_id == -2)
2099 				numa_node_id = cpu_to_node(cpu);
2100 			else if (numa_node_id != cpu_to_node(cpu))
2101 				numa_node_id = -1;
2102 #endif
2103 		} else if (dev_maps) {
2104 			/* fill in the new device map from the old device map */
2105 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
2106 			RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2107 		}
2108 
2109 	}
2110 
2111 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2112 
2113 	/* Cleanup old maps */
2114 	if (dev_maps) {
2115 		for_each_possible_cpu(cpu) {
2116 			new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2117 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
2118 			if (map && map != new_map)
2119 				kfree_rcu(map, rcu);
2120 		}
2121 
2122 		kfree_rcu(dev_maps, rcu);
2123 	}
2124 
2125 	dev_maps = new_dev_maps;
2126 	active = true;
2127 
2128 out_no_new_maps:
2129 	/* update Tx queue numa node */
2130 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2131 				     (numa_node_id >= 0) ? numa_node_id :
2132 				     NUMA_NO_NODE);
2133 
2134 	if (!dev_maps)
2135 		goto out_no_maps;
2136 
2137 	/* removes queue from unused CPUs */
2138 	for_each_possible_cpu(cpu) {
2139 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2140 			continue;
2141 
2142 		if (remove_xps_queue(dev_maps, cpu, index))
2143 			active = true;
2144 	}
2145 
2146 	/* free map if not active */
2147 	if (!active) {
2148 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2149 		kfree_rcu(dev_maps, rcu);
2150 	}
2151 
2152 out_no_maps:
2153 	mutex_unlock(&xps_map_mutex);
2154 
2155 	return 0;
2156 error:
2157 	/* remove any maps that we added */
2158 	for_each_possible_cpu(cpu) {
2159 		new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2160 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2161 				 NULL;
2162 		if (new_map && new_map != map)
2163 			kfree(new_map);
2164 	}
2165 
2166 	mutex_unlock(&xps_map_mutex);
2167 
2168 	kfree(new_dev_maps);
2169 	return -ENOMEM;
2170 }
2171 EXPORT_SYMBOL(netif_set_xps_queue);
2172 
2173 #endif
2174 /*
2175  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2176  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2177  */
2178 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2179 {
2180 	int rc;
2181 
2182 	if (txq < 1 || txq > dev->num_tx_queues)
2183 		return -EINVAL;
2184 
2185 	if (dev->reg_state == NETREG_REGISTERED ||
2186 	    dev->reg_state == NETREG_UNREGISTERING) {
2187 		ASSERT_RTNL();
2188 
2189 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2190 						  txq);
2191 		if (rc)
2192 			return rc;
2193 
2194 		if (dev->num_tc)
2195 			netif_setup_tc(dev, txq);
2196 
2197 		if (txq < dev->real_num_tx_queues) {
2198 			qdisc_reset_all_tx_gt(dev, txq);
2199 #ifdef CONFIG_XPS
2200 			netif_reset_xps_queues_gt(dev, txq);
2201 #endif
2202 		}
2203 	}
2204 
2205 	dev->real_num_tx_queues = txq;
2206 	return 0;
2207 }
2208 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2209 
2210 #ifdef CONFIG_SYSFS
2211 /**
2212  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2213  *	@dev: Network device
2214  *	@rxq: Actual number of RX queues
2215  *
2216  *	This must be called either with the rtnl_lock held or before
2217  *	registration of the net device.  Returns 0 on success, or a
2218  *	negative error code.  If called before registration, it always
2219  *	succeeds.
2220  */
2221 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2222 {
2223 	int rc;
2224 
2225 	if (rxq < 1 || rxq > dev->num_rx_queues)
2226 		return -EINVAL;
2227 
2228 	if (dev->reg_state == NETREG_REGISTERED) {
2229 		ASSERT_RTNL();
2230 
2231 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2232 						  rxq);
2233 		if (rc)
2234 			return rc;
2235 	}
2236 
2237 	dev->real_num_rx_queues = rxq;
2238 	return 0;
2239 }
2240 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2241 #endif
2242 
2243 /**
2244  * netif_get_num_default_rss_queues - default number of RSS queues
2245  *
2246  * This routine should set an upper limit on the number of RSS queues
2247  * used by default by multiqueue devices.
2248  */
2249 int netif_get_num_default_rss_queues(void)
2250 {
2251 	return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2252 }
2253 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2254 
2255 static inline void __netif_reschedule(struct Qdisc *q)
2256 {
2257 	struct softnet_data *sd;
2258 	unsigned long flags;
2259 
2260 	local_irq_save(flags);
2261 	sd = this_cpu_ptr(&softnet_data);
2262 	q->next_sched = NULL;
2263 	*sd->output_queue_tailp = q;
2264 	sd->output_queue_tailp = &q->next_sched;
2265 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2266 	local_irq_restore(flags);
2267 }
2268 
2269 void __netif_schedule(struct Qdisc *q)
2270 {
2271 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2272 		__netif_reschedule(q);
2273 }
2274 EXPORT_SYMBOL(__netif_schedule);
2275 
2276 struct dev_kfree_skb_cb {
2277 	enum skb_free_reason reason;
2278 };
2279 
2280 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2281 {
2282 	return (struct dev_kfree_skb_cb *)skb->cb;
2283 }
2284 
2285 void netif_schedule_queue(struct netdev_queue *txq)
2286 {
2287 	rcu_read_lock();
2288 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2289 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2290 
2291 		__netif_schedule(q);
2292 	}
2293 	rcu_read_unlock();
2294 }
2295 EXPORT_SYMBOL(netif_schedule_queue);
2296 
2297 /**
2298  *	netif_wake_subqueue - allow sending packets on subqueue
2299  *	@dev: network device
2300  *	@queue_index: sub queue index
2301  *
2302  * Resume individual transmit queue of a device with multiple transmit queues.
2303  */
2304 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2305 {
2306 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2307 
2308 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2309 		struct Qdisc *q;
2310 
2311 		rcu_read_lock();
2312 		q = rcu_dereference(txq->qdisc);
2313 		__netif_schedule(q);
2314 		rcu_read_unlock();
2315 	}
2316 }
2317 EXPORT_SYMBOL(netif_wake_subqueue);
2318 
2319 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2320 {
2321 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2322 		struct Qdisc *q;
2323 
2324 		rcu_read_lock();
2325 		q = rcu_dereference(dev_queue->qdisc);
2326 		__netif_schedule(q);
2327 		rcu_read_unlock();
2328 	}
2329 }
2330 EXPORT_SYMBOL(netif_tx_wake_queue);
2331 
2332 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2333 {
2334 	unsigned long flags;
2335 
2336 	if (likely(atomic_read(&skb->users) == 1)) {
2337 		smp_rmb();
2338 		atomic_set(&skb->users, 0);
2339 	} else if (likely(!atomic_dec_and_test(&skb->users))) {
2340 		return;
2341 	}
2342 	get_kfree_skb_cb(skb)->reason = reason;
2343 	local_irq_save(flags);
2344 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2345 	__this_cpu_write(softnet_data.completion_queue, skb);
2346 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2347 	local_irq_restore(flags);
2348 }
2349 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2350 
2351 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2352 {
2353 	if (in_irq() || irqs_disabled())
2354 		__dev_kfree_skb_irq(skb, reason);
2355 	else
2356 		dev_kfree_skb(skb);
2357 }
2358 EXPORT_SYMBOL(__dev_kfree_skb_any);
2359 
2360 
2361 /**
2362  * netif_device_detach - mark device as removed
2363  * @dev: network device
2364  *
2365  * Mark device as removed from system and therefore no longer available.
2366  */
2367 void netif_device_detach(struct net_device *dev)
2368 {
2369 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2370 	    netif_running(dev)) {
2371 		netif_tx_stop_all_queues(dev);
2372 	}
2373 }
2374 EXPORT_SYMBOL(netif_device_detach);
2375 
2376 /**
2377  * netif_device_attach - mark device as attached
2378  * @dev: network device
2379  *
2380  * Mark device as attached from system and restart if needed.
2381  */
2382 void netif_device_attach(struct net_device *dev)
2383 {
2384 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2385 	    netif_running(dev)) {
2386 		netif_tx_wake_all_queues(dev);
2387 		__netdev_watchdog_up(dev);
2388 	}
2389 }
2390 EXPORT_SYMBOL(netif_device_attach);
2391 
2392 /*
2393  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2394  * to be used as a distribution range.
2395  */
2396 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2397 		  unsigned int num_tx_queues)
2398 {
2399 	u32 hash;
2400 	u16 qoffset = 0;
2401 	u16 qcount = num_tx_queues;
2402 
2403 	if (skb_rx_queue_recorded(skb)) {
2404 		hash = skb_get_rx_queue(skb);
2405 		while (unlikely(hash >= num_tx_queues))
2406 			hash -= num_tx_queues;
2407 		return hash;
2408 	}
2409 
2410 	if (dev->num_tc) {
2411 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2412 		qoffset = dev->tc_to_txq[tc].offset;
2413 		qcount = dev->tc_to_txq[tc].count;
2414 	}
2415 
2416 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2417 }
2418 EXPORT_SYMBOL(__skb_tx_hash);
2419 
2420 static void skb_warn_bad_offload(const struct sk_buff *skb)
2421 {
2422 	static const netdev_features_t null_features = 0;
2423 	struct net_device *dev = skb->dev;
2424 	const char *name = "";
2425 
2426 	if (!net_ratelimit())
2427 		return;
2428 
2429 	if (dev) {
2430 		if (dev->dev.parent)
2431 			name = dev_driver_string(dev->dev.parent);
2432 		else
2433 			name = netdev_name(dev);
2434 	}
2435 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2436 	     "gso_type=%d ip_summed=%d\n",
2437 	     name, dev ? &dev->features : &null_features,
2438 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2439 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2440 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2441 }
2442 
2443 /*
2444  * Invalidate hardware checksum when packet is to be mangled, and
2445  * complete checksum manually on outgoing path.
2446  */
2447 int skb_checksum_help(struct sk_buff *skb)
2448 {
2449 	__wsum csum;
2450 	int ret = 0, offset;
2451 
2452 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2453 		goto out_set_summed;
2454 
2455 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2456 		skb_warn_bad_offload(skb);
2457 		return -EINVAL;
2458 	}
2459 
2460 	/* Before computing a checksum, we should make sure no frag could
2461 	 * be modified by an external entity : checksum could be wrong.
2462 	 */
2463 	if (skb_has_shared_frag(skb)) {
2464 		ret = __skb_linearize(skb);
2465 		if (ret)
2466 			goto out;
2467 	}
2468 
2469 	offset = skb_checksum_start_offset(skb);
2470 	BUG_ON(offset >= skb_headlen(skb));
2471 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2472 
2473 	offset += skb->csum_offset;
2474 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2475 
2476 	if (skb_cloned(skb) &&
2477 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2478 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2479 		if (ret)
2480 			goto out;
2481 	}
2482 
2483 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
2484 out_set_summed:
2485 	skb->ip_summed = CHECKSUM_NONE;
2486 out:
2487 	return ret;
2488 }
2489 EXPORT_SYMBOL(skb_checksum_help);
2490 
2491 /* skb_csum_offload_check - Driver helper function to determine if a device
2492  * with limited checksum offload capabilities is able to offload the checksum
2493  * for a given packet.
2494  *
2495  * Arguments:
2496  *   skb - sk_buff for the packet in question
2497  *   spec - contains the description of what device can offload
2498  *   csum_encapped - returns true if the checksum being offloaded is
2499  *	      encpasulated. That is it is checksum for the transport header
2500  *	      in the inner headers.
2501  *   checksum_help - when set indicates that helper function should
2502  *	      call skb_checksum_help if offload checks fail
2503  *
2504  * Returns:
2505  *   true: Packet has passed the checksum checks and should be offloadable to
2506  *	   the device (a driver may still need to check for additional
2507  *	   restrictions of its device)
2508  *   false: Checksum is not offloadable. If checksum_help was set then
2509  *	   skb_checksum_help was called to resolve checksum for non-GSO
2510  *	   packets and when IP protocol is not SCTP
2511  */
2512 bool __skb_csum_offload_chk(struct sk_buff *skb,
2513 			    const struct skb_csum_offl_spec *spec,
2514 			    bool *csum_encapped,
2515 			    bool csum_help)
2516 {
2517 	struct iphdr *iph;
2518 	struct ipv6hdr *ipv6;
2519 	void *nhdr;
2520 	int protocol;
2521 	u8 ip_proto;
2522 
2523 	if (skb->protocol == htons(ETH_P_8021Q) ||
2524 	    skb->protocol == htons(ETH_P_8021AD)) {
2525 		if (!spec->vlan_okay)
2526 			goto need_help;
2527 	}
2528 
2529 	/* We check whether the checksum refers to a transport layer checksum in
2530 	 * the outermost header or an encapsulated transport layer checksum that
2531 	 * corresponds to the inner headers of the skb. If the checksum is for
2532 	 * something else in the packet we need help.
2533 	 */
2534 	if (skb_checksum_start_offset(skb) == skb_transport_offset(skb)) {
2535 		/* Non-encapsulated checksum */
2536 		protocol = eproto_to_ipproto(vlan_get_protocol(skb));
2537 		nhdr = skb_network_header(skb);
2538 		*csum_encapped = false;
2539 		if (spec->no_not_encapped)
2540 			goto need_help;
2541 	} else if (skb->encapsulation && spec->encap_okay &&
2542 		   skb_checksum_start_offset(skb) ==
2543 		   skb_inner_transport_offset(skb)) {
2544 		/* Encapsulated checksum */
2545 		*csum_encapped = true;
2546 		switch (skb->inner_protocol_type) {
2547 		case ENCAP_TYPE_ETHER:
2548 			protocol = eproto_to_ipproto(skb->inner_protocol);
2549 			break;
2550 		case ENCAP_TYPE_IPPROTO:
2551 			protocol = skb->inner_protocol;
2552 			break;
2553 		}
2554 		nhdr = skb_inner_network_header(skb);
2555 	} else {
2556 		goto need_help;
2557 	}
2558 
2559 	switch (protocol) {
2560 	case IPPROTO_IP:
2561 		if (!spec->ipv4_okay)
2562 			goto need_help;
2563 		iph = nhdr;
2564 		ip_proto = iph->protocol;
2565 		if (iph->ihl != 5 && !spec->ip_options_okay)
2566 			goto need_help;
2567 		break;
2568 	case IPPROTO_IPV6:
2569 		if (!spec->ipv6_okay)
2570 			goto need_help;
2571 		if (spec->no_encapped_ipv6 && *csum_encapped)
2572 			goto need_help;
2573 		ipv6 = nhdr;
2574 		nhdr += sizeof(*ipv6);
2575 		ip_proto = ipv6->nexthdr;
2576 		break;
2577 	default:
2578 		goto need_help;
2579 	}
2580 
2581 ip_proto_again:
2582 	switch (ip_proto) {
2583 	case IPPROTO_TCP:
2584 		if (!spec->tcp_okay ||
2585 		    skb->csum_offset != offsetof(struct tcphdr, check))
2586 			goto need_help;
2587 		break;
2588 	case IPPROTO_UDP:
2589 		if (!spec->udp_okay ||
2590 		    skb->csum_offset != offsetof(struct udphdr, check))
2591 			goto need_help;
2592 		break;
2593 	case IPPROTO_SCTP:
2594 		if (!spec->sctp_okay ||
2595 		    skb->csum_offset != offsetof(struct sctphdr, checksum))
2596 			goto cant_help;
2597 		break;
2598 	case NEXTHDR_HOP:
2599 	case NEXTHDR_ROUTING:
2600 	case NEXTHDR_DEST: {
2601 		u8 *opthdr = nhdr;
2602 
2603 		if (protocol != IPPROTO_IPV6 || !spec->ext_hdrs_okay)
2604 			goto need_help;
2605 
2606 		ip_proto = opthdr[0];
2607 		nhdr += (opthdr[1] + 1) << 3;
2608 
2609 		goto ip_proto_again;
2610 	}
2611 	default:
2612 		goto need_help;
2613 	}
2614 
2615 	/* Passed the tests for offloading checksum */
2616 	return true;
2617 
2618 need_help:
2619 	if (csum_help && !skb_shinfo(skb)->gso_size)
2620 		skb_checksum_help(skb);
2621 cant_help:
2622 	return false;
2623 }
2624 EXPORT_SYMBOL(__skb_csum_offload_chk);
2625 
2626 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2627 {
2628 	__be16 type = skb->protocol;
2629 
2630 	/* Tunnel gso handlers can set protocol to ethernet. */
2631 	if (type == htons(ETH_P_TEB)) {
2632 		struct ethhdr *eth;
2633 
2634 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2635 			return 0;
2636 
2637 		eth = (struct ethhdr *)skb_mac_header(skb);
2638 		type = eth->h_proto;
2639 	}
2640 
2641 	return __vlan_get_protocol(skb, type, depth);
2642 }
2643 
2644 /**
2645  *	skb_mac_gso_segment - mac layer segmentation handler.
2646  *	@skb: buffer to segment
2647  *	@features: features for the output path (see dev->features)
2648  */
2649 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2650 				    netdev_features_t features)
2651 {
2652 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2653 	struct packet_offload *ptype;
2654 	int vlan_depth = skb->mac_len;
2655 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2656 
2657 	if (unlikely(!type))
2658 		return ERR_PTR(-EINVAL);
2659 
2660 	__skb_pull(skb, vlan_depth);
2661 
2662 	rcu_read_lock();
2663 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2664 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2665 			segs = ptype->callbacks.gso_segment(skb, features);
2666 			break;
2667 		}
2668 	}
2669 	rcu_read_unlock();
2670 
2671 	__skb_push(skb, skb->data - skb_mac_header(skb));
2672 
2673 	return segs;
2674 }
2675 EXPORT_SYMBOL(skb_mac_gso_segment);
2676 
2677 
2678 /* openvswitch calls this on rx path, so we need a different check.
2679  */
2680 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2681 {
2682 	if (tx_path)
2683 		return skb->ip_summed != CHECKSUM_PARTIAL;
2684 	else
2685 		return skb->ip_summed == CHECKSUM_NONE;
2686 }
2687 
2688 /**
2689  *	__skb_gso_segment - Perform segmentation on skb.
2690  *	@skb: buffer to segment
2691  *	@features: features for the output path (see dev->features)
2692  *	@tx_path: whether it is called in TX path
2693  *
2694  *	This function segments the given skb and returns a list of segments.
2695  *
2696  *	It may return NULL if the skb requires no segmentation.  This is
2697  *	only possible when GSO is used for verifying header integrity.
2698  *
2699  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2700  */
2701 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2702 				  netdev_features_t features, bool tx_path)
2703 {
2704 	if (unlikely(skb_needs_check(skb, tx_path))) {
2705 		int err;
2706 
2707 		skb_warn_bad_offload(skb);
2708 
2709 		err = skb_cow_head(skb, 0);
2710 		if (err < 0)
2711 			return ERR_PTR(err);
2712 	}
2713 
2714 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2715 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2716 
2717 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2718 	SKB_GSO_CB(skb)->encap_level = 0;
2719 
2720 	skb_reset_mac_header(skb);
2721 	skb_reset_mac_len(skb);
2722 
2723 	return skb_mac_gso_segment(skb, features);
2724 }
2725 EXPORT_SYMBOL(__skb_gso_segment);
2726 
2727 /* Take action when hardware reception checksum errors are detected. */
2728 #ifdef CONFIG_BUG
2729 void netdev_rx_csum_fault(struct net_device *dev)
2730 {
2731 	if (net_ratelimit()) {
2732 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2733 		dump_stack();
2734 	}
2735 }
2736 EXPORT_SYMBOL(netdev_rx_csum_fault);
2737 #endif
2738 
2739 /* Actually, we should eliminate this check as soon as we know, that:
2740  * 1. IOMMU is present and allows to map all the memory.
2741  * 2. No high memory really exists on this machine.
2742  */
2743 
2744 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2745 {
2746 #ifdef CONFIG_HIGHMEM
2747 	int i;
2748 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2749 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2750 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2751 			if (PageHighMem(skb_frag_page(frag)))
2752 				return 1;
2753 		}
2754 	}
2755 
2756 	if (PCI_DMA_BUS_IS_PHYS) {
2757 		struct device *pdev = dev->dev.parent;
2758 
2759 		if (!pdev)
2760 			return 0;
2761 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2762 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2763 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2764 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2765 				return 1;
2766 		}
2767 	}
2768 #endif
2769 	return 0;
2770 }
2771 
2772 /* If MPLS offload request, verify we are testing hardware MPLS features
2773  * instead of standard features for the netdev.
2774  */
2775 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2776 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2777 					   netdev_features_t features,
2778 					   __be16 type)
2779 {
2780 	if (eth_p_mpls(type))
2781 		features &= skb->dev->mpls_features;
2782 
2783 	return features;
2784 }
2785 #else
2786 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2787 					   netdev_features_t features,
2788 					   __be16 type)
2789 {
2790 	return features;
2791 }
2792 #endif
2793 
2794 static netdev_features_t harmonize_features(struct sk_buff *skb,
2795 	netdev_features_t features)
2796 {
2797 	int tmp;
2798 	__be16 type;
2799 
2800 	type = skb_network_protocol(skb, &tmp);
2801 	features = net_mpls_features(skb, features, type);
2802 
2803 	if (skb->ip_summed != CHECKSUM_NONE &&
2804 	    !can_checksum_protocol(features, type)) {
2805 		features &= ~NETIF_F_CSUM_MASK;
2806 	} else if (illegal_highdma(skb->dev, skb)) {
2807 		features &= ~NETIF_F_SG;
2808 	}
2809 
2810 	return features;
2811 }
2812 
2813 netdev_features_t passthru_features_check(struct sk_buff *skb,
2814 					  struct net_device *dev,
2815 					  netdev_features_t features)
2816 {
2817 	return features;
2818 }
2819 EXPORT_SYMBOL(passthru_features_check);
2820 
2821 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2822 					     struct net_device *dev,
2823 					     netdev_features_t features)
2824 {
2825 	return vlan_features_check(skb, features);
2826 }
2827 
2828 netdev_features_t netif_skb_features(struct sk_buff *skb)
2829 {
2830 	struct net_device *dev = skb->dev;
2831 	netdev_features_t features = dev->features;
2832 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
2833 
2834 	if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2835 		features &= ~NETIF_F_GSO_MASK;
2836 
2837 	/* If encapsulation offload request, verify we are testing
2838 	 * hardware encapsulation features instead of standard
2839 	 * features for the netdev
2840 	 */
2841 	if (skb->encapsulation)
2842 		features &= dev->hw_enc_features;
2843 
2844 	if (skb_vlan_tagged(skb))
2845 		features = netdev_intersect_features(features,
2846 						     dev->vlan_features |
2847 						     NETIF_F_HW_VLAN_CTAG_TX |
2848 						     NETIF_F_HW_VLAN_STAG_TX);
2849 
2850 	if (dev->netdev_ops->ndo_features_check)
2851 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
2852 								features);
2853 	else
2854 		features &= dflt_features_check(skb, dev, features);
2855 
2856 	return harmonize_features(skb, features);
2857 }
2858 EXPORT_SYMBOL(netif_skb_features);
2859 
2860 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2861 		    struct netdev_queue *txq, bool more)
2862 {
2863 	unsigned int len;
2864 	int rc;
2865 
2866 	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2867 		dev_queue_xmit_nit(skb, dev);
2868 
2869 	len = skb->len;
2870 	trace_net_dev_start_xmit(skb, dev);
2871 	rc = netdev_start_xmit(skb, dev, txq, more);
2872 	trace_net_dev_xmit(skb, rc, dev, len);
2873 
2874 	return rc;
2875 }
2876 
2877 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2878 				    struct netdev_queue *txq, int *ret)
2879 {
2880 	struct sk_buff *skb = first;
2881 	int rc = NETDEV_TX_OK;
2882 
2883 	while (skb) {
2884 		struct sk_buff *next = skb->next;
2885 
2886 		skb->next = NULL;
2887 		rc = xmit_one(skb, dev, txq, next != NULL);
2888 		if (unlikely(!dev_xmit_complete(rc))) {
2889 			skb->next = next;
2890 			goto out;
2891 		}
2892 
2893 		skb = next;
2894 		if (netif_xmit_stopped(txq) && skb) {
2895 			rc = NETDEV_TX_BUSY;
2896 			break;
2897 		}
2898 	}
2899 
2900 out:
2901 	*ret = rc;
2902 	return skb;
2903 }
2904 
2905 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2906 					  netdev_features_t features)
2907 {
2908 	if (skb_vlan_tag_present(skb) &&
2909 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
2910 		skb = __vlan_hwaccel_push_inside(skb);
2911 	return skb;
2912 }
2913 
2914 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2915 {
2916 	netdev_features_t features;
2917 
2918 	if (skb->next)
2919 		return skb;
2920 
2921 	features = netif_skb_features(skb);
2922 	skb = validate_xmit_vlan(skb, features);
2923 	if (unlikely(!skb))
2924 		goto out_null;
2925 
2926 	if (netif_needs_gso(skb, features)) {
2927 		struct sk_buff *segs;
2928 
2929 		segs = skb_gso_segment(skb, features);
2930 		if (IS_ERR(segs)) {
2931 			goto out_kfree_skb;
2932 		} else if (segs) {
2933 			consume_skb(skb);
2934 			skb = segs;
2935 		}
2936 	} else {
2937 		if (skb_needs_linearize(skb, features) &&
2938 		    __skb_linearize(skb))
2939 			goto out_kfree_skb;
2940 
2941 		/* If packet is not checksummed and device does not
2942 		 * support checksumming for this protocol, complete
2943 		 * checksumming here.
2944 		 */
2945 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2946 			if (skb->encapsulation)
2947 				skb_set_inner_transport_header(skb,
2948 							       skb_checksum_start_offset(skb));
2949 			else
2950 				skb_set_transport_header(skb,
2951 							 skb_checksum_start_offset(skb));
2952 			if (!(features & NETIF_F_CSUM_MASK) &&
2953 			    skb_checksum_help(skb))
2954 				goto out_kfree_skb;
2955 		}
2956 	}
2957 
2958 	return skb;
2959 
2960 out_kfree_skb:
2961 	kfree_skb(skb);
2962 out_null:
2963 	return NULL;
2964 }
2965 
2966 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2967 {
2968 	struct sk_buff *next, *head = NULL, *tail;
2969 
2970 	for (; skb != NULL; skb = next) {
2971 		next = skb->next;
2972 		skb->next = NULL;
2973 
2974 		/* in case skb wont be segmented, point to itself */
2975 		skb->prev = skb;
2976 
2977 		skb = validate_xmit_skb(skb, dev);
2978 		if (!skb)
2979 			continue;
2980 
2981 		if (!head)
2982 			head = skb;
2983 		else
2984 			tail->next = skb;
2985 		/* If skb was segmented, skb->prev points to
2986 		 * the last segment. If not, it still contains skb.
2987 		 */
2988 		tail = skb->prev;
2989 	}
2990 	return head;
2991 }
2992 
2993 static void qdisc_pkt_len_init(struct sk_buff *skb)
2994 {
2995 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
2996 
2997 	qdisc_skb_cb(skb)->pkt_len = skb->len;
2998 
2999 	/* To get more precise estimation of bytes sent on wire,
3000 	 * we add to pkt_len the headers size of all segments
3001 	 */
3002 	if (shinfo->gso_size)  {
3003 		unsigned int hdr_len;
3004 		u16 gso_segs = shinfo->gso_segs;
3005 
3006 		/* mac layer + network layer */
3007 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3008 
3009 		/* + transport layer */
3010 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3011 			hdr_len += tcp_hdrlen(skb);
3012 		else
3013 			hdr_len += sizeof(struct udphdr);
3014 
3015 		if (shinfo->gso_type & SKB_GSO_DODGY)
3016 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3017 						shinfo->gso_size);
3018 
3019 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3020 	}
3021 }
3022 
3023 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3024 				 struct net_device *dev,
3025 				 struct netdev_queue *txq)
3026 {
3027 	spinlock_t *root_lock = qdisc_lock(q);
3028 	bool contended;
3029 	int rc;
3030 
3031 	qdisc_calculate_pkt_len(skb, q);
3032 	/*
3033 	 * Heuristic to force contended enqueues to serialize on a
3034 	 * separate lock before trying to get qdisc main lock.
3035 	 * This permits __QDISC___STATE_RUNNING owner to get the lock more
3036 	 * often and dequeue packets faster.
3037 	 */
3038 	contended = qdisc_is_running(q);
3039 	if (unlikely(contended))
3040 		spin_lock(&q->busylock);
3041 
3042 	spin_lock(root_lock);
3043 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3044 		kfree_skb(skb);
3045 		rc = NET_XMIT_DROP;
3046 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3047 		   qdisc_run_begin(q)) {
3048 		/*
3049 		 * This is a work-conserving queue; there are no old skbs
3050 		 * waiting to be sent out; and the qdisc is not running -
3051 		 * xmit the skb directly.
3052 		 */
3053 
3054 		qdisc_bstats_update(q, skb);
3055 
3056 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3057 			if (unlikely(contended)) {
3058 				spin_unlock(&q->busylock);
3059 				contended = false;
3060 			}
3061 			__qdisc_run(q);
3062 		} else
3063 			qdisc_run_end(q);
3064 
3065 		rc = NET_XMIT_SUCCESS;
3066 	} else {
3067 		rc = q->enqueue(skb, q) & NET_XMIT_MASK;
3068 		if (qdisc_run_begin(q)) {
3069 			if (unlikely(contended)) {
3070 				spin_unlock(&q->busylock);
3071 				contended = false;
3072 			}
3073 			__qdisc_run(q);
3074 		}
3075 	}
3076 	spin_unlock(root_lock);
3077 	if (unlikely(contended))
3078 		spin_unlock(&q->busylock);
3079 	return rc;
3080 }
3081 
3082 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3083 static void skb_update_prio(struct sk_buff *skb)
3084 {
3085 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3086 
3087 	if (!skb->priority && skb->sk && map) {
3088 		unsigned int prioidx =
3089 			sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3090 
3091 		if (prioidx < map->priomap_len)
3092 			skb->priority = map->priomap[prioidx];
3093 	}
3094 }
3095 #else
3096 #define skb_update_prio(skb)
3097 #endif
3098 
3099 DEFINE_PER_CPU(int, xmit_recursion);
3100 EXPORT_SYMBOL(xmit_recursion);
3101 
3102 #define RECURSION_LIMIT 10
3103 
3104 /**
3105  *	dev_loopback_xmit - loop back @skb
3106  *	@net: network namespace this loopback is happening in
3107  *	@sk:  sk needed to be a netfilter okfn
3108  *	@skb: buffer to transmit
3109  */
3110 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3111 {
3112 	skb_reset_mac_header(skb);
3113 	__skb_pull(skb, skb_network_offset(skb));
3114 	skb->pkt_type = PACKET_LOOPBACK;
3115 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3116 	WARN_ON(!skb_dst(skb));
3117 	skb_dst_force(skb);
3118 	netif_rx_ni(skb);
3119 	return 0;
3120 }
3121 EXPORT_SYMBOL(dev_loopback_xmit);
3122 
3123 #ifdef CONFIG_NET_EGRESS
3124 static struct sk_buff *
3125 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3126 {
3127 	struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3128 	struct tcf_result cl_res;
3129 
3130 	if (!cl)
3131 		return skb;
3132 
3133 	/* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3134 	 * earlier by the caller.
3135 	 */
3136 	qdisc_bstats_cpu_update(cl->q, skb);
3137 
3138 	switch (tc_classify(skb, cl, &cl_res, false)) {
3139 	case TC_ACT_OK:
3140 	case TC_ACT_RECLASSIFY:
3141 		skb->tc_index = TC_H_MIN(cl_res.classid);
3142 		break;
3143 	case TC_ACT_SHOT:
3144 		qdisc_qstats_cpu_drop(cl->q);
3145 		*ret = NET_XMIT_DROP;
3146 		goto drop;
3147 	case TC_ACT_STOLEN:
3148 	case TC_ACT_QUEUED:
3149 		*ret = NET_XMIT_SUCCESS;
3150 drop:
3151 		kfree_skb(skb);
3152 		return NULL;
3153 	case TC_ACT_REDIRECT:
3154 		/* No need to push/pop skb's mac_header here on egress! */
3155 		skb_do_redirect(skb);
3156 		*ret = NET_XMIT_SUCCESS;
3157 		return NULL;
3158 	default:
3159 		break;
3160 	}
3161 
3162 	return skb;
3163 }
3164 #endif /* CONFIG_NET_EGRESS */
3165 
3166 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3167 {
3168 #ifdef CONFIG_XPS
3169 	struct xps_dev_maps *dev_maps;
3170 	struct xps_map *map;
3171 	int queue_index = -1;
3172 
3173 	rcu_read_lock();
3174 	dev_maps = rcu_dereference(dev->xps_maps);
3175 	if (dev_maps) {
3176 		map = rcu_dereference(
3177 		    dev_maps->cpu_map[skb->sender_cpu - 1]);
3178 		if (map) {
3179 			if (map->len == 1)
3180 				queue_index = map->queues[0];
3181 			else
3182 				queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3183 									   map->len)];
3184 			if (unlikely(queue_index >= dev->real_num_tx_queues))
3185 				queue_index = -1;
3186 		}
3187 	}
3188 	rcu_read_unlock();
3189 
3190 	return queue_index;
3191 #else
3192 	return -1;
3193 #endif
3194 }
3195 
3196 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3197 {
3198 	struct sock *sk = skb->sk;
3199 	int queue_index = sk_tx_queue_get(sk);
3200 
3201 	if (queue_index < 0 || skb->ooo_okay ||
3202 	    queue_index >= dev->real_num_tx_queues) {
3203 		int new_index = get_xps_queue(dev, skb);
3204 		if (new_index < 0)
3205 			new_index = skb_tx_hash(dev, skb);
3206 
3207 		if (queue_index != new_index && sk &&
3208 		    sk_fullsock(sk) &&
3209 		    rcu_access_pointer(sk->sk_dst_cache))
3210 			sk_tx_queue_set(sk, new_index);
3211 
3212 		queue_index = new_index;
3213 	}
3214 
3215 	return queue_index;
3216 }
3217 
3218 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3219 				    struct sk_buff *skb,
3220 				    void *accel_priv)
3221 {
3222 	int queue_index = 0;
3223 
3224 #ifdef CONFIG_XPS
3225 	u32 sender_cpu = skb->sender_cpu - 1;
3226 
3227 	if (sender_cpu >= (u32)NR_CPUS)
3228 		skb->sender_cpu = raw_smp_processor_id() + 1;
3229 #endif
3230 
3231 	if (dev->real_num_tx_queues != 1) {
3232 		const struct net_device_ops *ops = dev->netdev_ops;
3233 		if (ops->ndo_select_queue)
3234 			queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3235 							    __netdev_pick_tx);
3236 		else
3237 			queue_index = __netdev_pick_tx(dev, skb);
3238 
3239 		if (!accel_priv)
3240 			queue_index = netdev_cap_txqueue(dev, queue_index);
3241 	}
3242 
3243 	skb_set_queue_mapping(skb, queue_index);
3244 	return netdev_get_tx_queue(dev, queue_index);
3245 }
3246 
3247 /**
3248  *	__dev_queue_xmit - transmit a buffer
3249  *	@skb: buffer to transmit
3250  *	@accel_priv: private data used for L2 forwarding offload
3251  *
3252  *	Queue a buffer for transmission to a network device. The caller must
3253  *	have set the device and priority and built the buffer before calling
3254  *	this function. The function can be called from an interrupt.
3255  *
3256  *	A negative errno code is returned on a failure. A success does not
3257  *	guarantee the frame will be transmitted as it may be dropped due
3258  *	to congestion or traffic shaping.
3259  *
3260  * -----------------------------------------------------------------------------------
3261  *      I notice this method can also return errors from the queue disciplines,
3262  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3263  *      be positive.
3264  *
3265  *      Regardless of the return value, the skb is consumed, so it is currently
3266  *      difficult to retry a send to this method.  (You can bump the ref count
3267  *      before sending to hold a reference for retry if you are careful.)
3268  *
3269  *      When calling this method, interrupts MUST be enabled.  This is because
3270  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3271  *          --BLG
3272  */
3273 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3274 {
3275 	struct net_device *dev = skb->dev;
3276 	struct netdev_queue *txq;
3277 	struct Qdisc *q;
3278 	int rc = -ENOMEM;
3279 
3280 	skb_reset_mac_header(skb);
3281 
3282 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3283 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3284 
3285 	/* Disable soft irqs for various locks below. Also
3286 	 * stops preemption for RCU.
3287 	 */
3288 	rcu_read_lock_bh();
3289 
3290 	skb_update_prio(skb);
3291 
3292 	qdisc_pkt_len_init(skb);
3293 #ifdef CONFIG_NET_CLS_ACT
3294 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3295 # ifdef CONFIG_NET_EGRESS
3296 	if (static_key_false(&egress_needed)) {
3297 		skb = sch_handle_egress(skb, &rc, dev);
3298 		if (!skb)
3299 			goto out;
3300 	}
3301 # endif
3302 #endif
3303 	/* If device/qdisc don't need skb->dst, release it right now while
3304 	 * its hot in this cpu cache.
3305 	 */
3306 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3307 		skb_dst_drop(skb);
3308 	else
3309 		skb_dst_force(skb);
3310 
3311 #ifdef CONFIG_NET_SWITCHDEV
3312 	/* Don't forward if offload device already forwarded */
3313 	if (skb->offload_fwd_mark &&
3314 	    skb->offload_fwd_mark == dev->offload_fwd_mark) {
3315 		consume_skb(skb);
3316 		rc = NET_XMIT_SUCCESS;
3317 		goto out;
3318 	}
3319 #endif
3320 
3321 	txq = netdev_pick_tx(dev, skb, accel_priv);
3322 	q = rcu_dereference_bh(txq->qdisc);
3323 
3324 	trace_net_dev_queue(skb);
3325 	if (q->enqueue) {
3326 		rc = __dev_xmit_skb(skb, q, dev, txq);
3327 		goto out;
3328 	}
3329 
3330 	/* The device has no queue. Common case for software devices:
3331 	   loopback, all the sorts of tunnels...
3332 
3333 	   Really, it is unlikely that netif_tx_lock protection is necessary
3334 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3335 	   counters.)
3336 	   However, it is possible, that they rely on protection
3337 	   made by us here.
3338 
3339 	   Check this and shot the lock. It is not prone from deadlocks.
3340 	   Either shot noqueue qdisc, it is even simpler 8)
3341 	 */
3342 	if (dev->flags & IFF_UP) {
3343 		int cpu = smp_processor_id(); /* ok because BHs are off */
3344 
3345 		if (txq->xmit_lock_owner != cpu) {
3346 
3347 			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
3348 				goto recursion_alert;
3349 
3350 			skb = validate_xmit_skb(skb, dev);
3351 			if (!skb)
3352 				goto drop;
3353 
3354 			HARD_TX_LOCK(dev, txq, cpu);
3355 
3356 			if (!netif_xmit_stopped(txq)) {
3357 				__this_cpu_inc(xmit_recursion);
3358 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3359 				__this_cpu_dec(xmit_recursion);
3360 				if (dev_xmit_complete(rc)) {
3361 					HARD_TX_UNLOCK(dev, txq);
3362 					goto out;
3363 				}
3364 			}
3365 			HARD_TX_UNLOCK(dev, txq);
3366 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3367 					     dev->name);
3368 		} else {
3369 			/* Recursion is detected! It is possible,
3370 			 * unfortunately
3371 			 */
3372 recursion_alert:
3373 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3374 					     dev->name);
3375 		}
3376 	}
3377 
3378 	rc = -ENETDOWN;
3379 drop:
3380 	rcu_read_unlock_bh();
3381 
3382 	atomic_long_inc(&dev->tx_dropped);
3383 	kfree_skb_list(skb);
3384 	return rc;
3385 out:
3386 	rcu_read_unlock_bh();
3387 	return rc;
3388 }
3389 
3390 int dev_queue_xmit(struct sk_buff *skb)
3391 {
3392 	return __dev_queue_xmit(skb, NULL);
3393 }
3394 EXPORT_SYMBOL(dev_queue_xmit);
3395 
3396 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3397 {
3398 	return __dev_queue_xmit(skb, accel_priv);
3399 }
3400 EXPORT_SYMBOL(dev_queue_xmit_accel);
3401 
3402 
3403 /*=======================================================================
3404 			Receiver routines
3405   =======================================================================*/
3406 
3407 int netdev_max_backlog __read_mostly = 1000;
3408 EXPORT_SYMBOL(netdev_max_backlog);
3409 
3410 int netdev_tstamp_prequeue __read_mostly = 1;
3411 int netdev_budget __read_mostly = 300;
3412 int weight_p __read_mostly = 64;            /* old backlog weight */
3413 
3414 /* Called with irq disabled */
3415 static inline void ____napi_schedule(struct softnet_data *sd,
3416 				     struct napi_struct *napi)
3417 {
3418 	list_add_tail(&napi->poll_list, &sd->poll_list);
3419 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3420 }
3421 
3422 #ifdef CONFIG_RPS
3423 
3424 /* One global table that all flow-based protocols share. */
3425 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3426 EXPORT_SYMBOL(rps_sock_flow_table);
3427 u32 rps_cpu_mask __read_mostly;
3428 EXPORT_SYMBOL(rps_cpu_mask);
3429 
3430 struct static_key rps_needed __read_mostly;
3431 
3432 static struct rps_dev_flow *
3433 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3434 	    struct rps_dev_flow *rflow, u16 next_cpu)
3435 {
3436 	if (next_cpu < nr_cpu_ids) {
3437 #ifdef CONFIG_RFS_ACCEL
3438 		struct netdev_rx_queue *rxqueue;
3439 		struct rps_dev_flow_table *flow_table;
3440 		struct rps_dev_flow *old_rflow;
3441 		u32 flow_id;
3442 		u16 rxq_index;
3443 		int rc;
3444 
3445 		/* Should we steer this flow to a different hardware queue? */
3446 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3447 		    !(dev->features & NETIF_F_NTUPLE))
3448 			goto out;
3449 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3450 		if (rxq_index == skb_get_rx_queue(skb))
3451 			goto out;
3452 
3453 		rxqueue = dev->_rx + rxq_index;
3454 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3455 		if (!flow_table)
3456 			goto out;
3457 		flow_id = skb_get_hash(skb) & flow_table->mask;
3458 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3459 							rxq_index, flow_id);
3460 		if (rc < 0)
3461 			goto out;
3462 		old_rflow = rflow;
3463 		rflow = &flow_table->flows[flow_id];
3464 		rflow->filter = rc;
3465 		if (old_rflow->filter == rflow->filter)
3466 			old_rflow->filter = RPS_NO_FILTER;
3467 	out:
3468 #endif
3469 		rflow->last_qtail =
3470 			per_cpu(softnet_data, next_cpu).input_queue_head;
3471 	}
3472 
3473 	rflow->cpu = next_cpu;
3474 	return rflow;
3475 }
3476 
3477 /*
3478  * get_rps_cpu is called from netif_receive_skb and returns the target
3479  * CPU from the RPS map of the receiving queue for a given skb.
3480  * rcu_read_lock must be held on entry.
3481  */
3482 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3483 		       struct rps_dev_flow **rflowp)
3484 {
3485 	const struct rps_sock_flow_table *sock_flow_table;
3486 	struct netdev_rx_queue *rxqueue = dev->_rx;
3487 	struct rps_dev_flow_table *flow_table;
3488 	struct rps_map *map;
3489 	int cpu = -1;
3490 	u32 tcpu;
3491 	u32 hash;
3492 
3493 	if (skb_rx_queue_recorded(skb)) {
3494 		u16 index = skb_get_rx_queue(skb);
3495 
3496 		if (unlikely(index >= dev->real_num_rx_queues)) {
3497 			WARN_ONCE(dev->real_num_rx_queues > 1,
3498 				  "%s received packet on queue %u, but number "
3499 				  "of RX queues is %u\n",
3500 				  dev->name, index, dev->real_num_rx_queues);
3501 			goto done;
3502 		}
3503 		rxqueue += index;
3504 	}
3505 
3506 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3507 
3508 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3509 	map = rcu_dereference(rxqueue->rps_map);
3510 	if (!flow_table && !map)
3511 		goto done;
3512 
3513 	skb_reset_network_header(skb);
3514 	hash = skb_get_hash(skb);
3515 	if (!hash)
3516 		goto done;
3517 
3518 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3519 	if (flow_table && sock_flow_table) {
3520 		struct rps_dev_flow *rflow;
3521 		u32 next_cpu;
3522 		u32 ident;
3523 
3524 		/* First check into global flow table if there is a match */
3525 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3526 		if ((ident ^ hash) & ~rps_cpu_mask)
3527 			goto try_rps;
3528 
3529 		next_cpu = ident & rps_cpu_mask;
3530 
3531 		/* OK, now we know there is a match,
3532 		 * we can look at the local (per receive queue) flow table
3533 		 */
3534 		rflow = &flow_table->flows[hash & flow_table->mask];
3535 		tcpu = rflow->cpu;
3536 
3537 		/*
3538 		 * If the desired CPU (where last recvmsg was done) is
3539 		 * different from current CPU (one in the rx-queue flow
3540 		 * table entry), switch if one of the following holds:
3541 		 *   - Current CPU is unset (>= nr_cpu_ids).
3542 		 *   - Current CPU is offline.
3543 		 *   - The current CPU's queue tail has advanced beyond the
3544 		 *     last packet that was enqueued using this table entry.
3545 		 *     This guarantees that all previous packets for the flow
3546 		 *     have been dequeued, thus preserving in order delivery.
3547 		 */
3548 		if (unlikely(tcpu != next_cpu) &&
3549 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3550 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3551 		      rflow->last_qtail)) >= 0)) {
3552 			tcpu = next_cpu;
3553 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3554 		}
3555 
3556 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3557 			*rflowp = rflow;
3558 			cpu = tcpu;
3559 			goto done;
3560 		}
3561 	}
3562 
3563 try_rps:
3564 
3565 	if (map) {
3566 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3567 		if (cpu_online(tcpu)) {
3568 			cpu = tcpu;
3569 			goto done;
3570 		}
3571 	}
3572 
3573 done:
3574 	return cpu;
3575 }
3576 
3577 #ifdef CONFIG_RFS_ACCEL
3578 
3579 /**
3580  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3581  * @dev: Device on which the filter was set
3582  * @rxq_index: RX queue index
3583  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3584  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3585  *
3586  * Drivers that implement ndo_rx_flow_steer() should periodically call
3587  * this function for each installed filter and remove the filters for
3588  * which it returns %true.
3589  */
3590 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3591 			 u32 flow_id, u16 filter_id)
3592 {
3593 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3594 	struct rps_dev_flow_table *flow_table;
3595 	struct rps_dev_flow *rflow;
3596 	bool expire = true;
3597 	unsigned int cpu;
3598 
3599 	rcu_read_lock();
3600 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3601 	if (flow_table && flow_id <= flow_table->mask) {
3602 		rflow = &flow_table->flows[flow_id];
3603 		cpu = ACCESS_ONCE(rflow->cpu);
3604 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3605 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3606 			   rflow->last_qtail) <
3607 		     (int)(10 * flow_table->mask)))
3608 			expire = false;
3609 	}
3610 	rcu_read_unlock();
3611 	return expire;
3612 }
3613 EXPORT_SYMBOL(rps_may_expire_flow);
3614 
3615 #endif /* CONFIG_RFS_ACCEL */
3616 
3617 /* Called from hardirq (IPI) context */
3618 static void rps_trigger_softirq(void *data)
3619 {
3620 	struct softnet_data *sd = data;
3621 
3622 	____napi_schedule(sd, &sd->backlog);
3623 	sd->received_rps++;
3624 }
3625 
3626 #endif /* CONFIG_RPS */
3627 
3628 /*
3629  * Check if this softnet_data structure is another cpu one
3630  * If yes, queue it to our IPI list and return 1
3631  * If no, return 0
3632  */
3633 static int rps_ipi_queued(struct softnet_data *sd)
3634 {
3635 #ifdef CONFIG_RPS
3636 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3637 
3638 	if (sd != mysd) {
3639 		sd->rps_ipi_next = mysd->rps_ipi_list;
3640 		mysd->rps_ipi_list = sd;
3641 
3642 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3643 		return 1;
3644 	}
3645 #endif /* CONFIG_RPS */
3646 	return 0;
3647 }
3648 
3649 #ifdef CONFIG_NET_FLOW_LIMIT
3650 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3651 #endif
3652 
3653 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3654 {
3655 #ifdef CONFIG_NET_FLOW_LIMIT
3656 	struct sd_flow_limit *fl;
3657 	struct softnet_data *sd;
3658 	unsigned int old_flow, new_flow;
3659 
3660 	if (qlen < (netdev_max_backlog >> 1))
3661 		return false;
3662 
3663 	sd = this_cpu_ptr(&softnet_data);
3664 
3665 	rcu_read_lock();
3666 	fl = rcu_dereference(sd->flow_limit);
3667 	if (fl) {
3668 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3669 		old_flow = fl->history[fl->history_head];
3670 		fl->history[fl->history_head] = new_flow;
3671 
3672 		fl->history_head++;
3673 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3674 
3675 		if (likely(fl->buckets[old_flow]))
3676 			fl->buckets[old_flow]--;
3677 
3678 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3679 			fl->count++;
3680 			rcu_read_unlock();
3681 			return true;
3682 		}
3683 	}
3684 	rcu_read_unlock();
3685 #endif
3686 	return false;
3687 }
3688 
3689 /*
3690  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3691  * queue (may be a remote CPU queue).
3692  */
3693 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3694 			      unsigned int *qtail)
3695 {
3696 	struct softnet_data *sd;
3697 	unsigned long flags;
3698 	unsigned int qlen;
3699 
3700 	sd = &per_cpu(softnet_data, cpu);
3701 
3702 	local_irq_save(flags);
3703 
3704 	rps_lock(sd);
3705 	if (!netif_running(skb->dev))
3706 		goto drop;
3707 	qlen = skb_queue_len(&sd->input_pkt_queue);
3708 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3709 		if (qlen) {
3710 enqueue:
3711 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3712 			input_queue_tail_incr_save(sd, qtail);
3713 			rps_unlock(sd);
3714 			local_irq_restore(flags);
3715 			return NET_RX_SUCCESS;
3716 		}
3717 
3718 		/* Schedule NAPI for backlog device
3719 		 * We can use non atomic operation since we own the queue lock
3720 		 */
3721 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3722 			if (!rps_ipi_queued(sd))
3723 				____napi_schedule(sd, &sd->backlog);
3724 		}
3725 		goto enqueue;
3726 	}
3727 
3728 drop:
3729 	sd->dropped++;
3730 	rps_unlock(sd);
3731 
3732 	local_irq_restore(flags);
3733 
3734 	atomic_long_inc(&skb->dev->rx_dropped);
3735 	kfree_skb(skb);
3736 	return NET_RX_DROP;
3737 }
3738 
3739 static int netif_rx_internal(struct sk_buff *skb)
3740 {
3741 	int ret;
3742 
3743 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3744 
3745 	trace_netif_rx(skb);
3746 #ifdef CONFIG_RPS
3747 	if (static_key_false(&rps_needed)) {
3748 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3749 		int cpu;
3750 
3751 		preempt_disable();
3752 		rcu_read_lock();
3753 
3754 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3755 		if (cpu < 0)
3756 			cpu = smp_processor_id();
3757 
3758 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3759 
3760 		rcu_read_unlock();
3761 		preempt_enable();
3762 	} else
3763 #endif
3764 	{
3765 		unsigned int qtail;
3766 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3767 		put_cpu();
3768 	}
3769 	return ret;
3770 }
3771 
3772 /**
3773  *	netif_rx	-	post buffer to the network code
3774  *	@skb: buffer to post
3775  *
3776  *	This function receives a packet from a device driver and queues it for
3777  *	the upper (protocol) levels to process.  It always succeeds. The buffer
3778  *	may be dropped during processing for congestion control or by the
3779  *	protocol layers.
3780  *
3781  *	return values:
3782  *	NET_RX_SUCCESS	(no congestion)
3783  *	NET_RX_DROP     (packet was dropped)
3784  *
3785  */
3786 
3787 int netif_rx(struct sk_buff *skb)
3788 {
3789 	trace_netif_rx_entry(skb);
3790 
3791 	return netif_rx_internal(skb);
3792 }
3793 EXPORT_SYMBOL(netif_rx);
3794 
3795 int netif_rx_ni(struct sk_buff *skb)
3796 {
3797 	int err;
3798 
3799 	trace_netif_rx_ni_entry(skb);
3800 
3801 	preempt_disable();
3802 	err = netif_rx_internal(skb);
3803 	if (local_softirq_pending())
3804 		do_softirq();
3805 	preempt_enable();
3806 
3807 	return err;
3808 }
3809 EXPORT_SYMBOL(netif_rx_ni);
3810 
3811 static void net_tx_action(struct softirq_action *h)
3812 {
3813 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3814 
3815 	if (sd->completion_queue) {
3816 		struct sk_buff *clist;
3817 
3818 		local_irq_disable();
3819 		clist = sd->completion_queue;
3820 		sd->completion_queue = NULL;
3821 		local_irq_enable();
3822 
3823 		while (clist) {
3824 			struct sk_buff *skb = clist;
3825 			clist = clist->next;
3826 
3827 			WARN_ON(atomic_read(&skb->users));
3828 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3829 				trace_consume_skb(skb);
3830 			else
3831 				trace_kfree_skb(skb, net_tx_action);
3832 
3833 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3834 				__kfree_skb(skb);
3835 			else
3836 				__kfree_skb_defer(skb);
3837 		}
3838 
3839 		__kfree_skb_flush();
3840 	}
3841 
3842 	if (sd->output_queue) {
3843 		struct Qdisc *head;
3844 
3845 		local_irq_disable();
3846 		head = sd->output_queue;
3847 		sd->output_queue = NULL;
3848 		sd->output_queue_tailp = &sd->output_queue;
3849 		local_irq_enable();
3850 
3851 		while (head) {
3852 			struct Qdisc *q = head;
3853 			spinlock_t *root_lock;
3854 
3855 			head = head->next_sched;
3856 
3857 			root_lock = qdisc_lock(q);
3858 			if (spin_trylock(root_lock)) {
3859 				smp_mb__before_atomic();
3860 				clear_bit(__QDISC_STATE_SCHED,
3861 					  &q->state);
3862 				qdisc_run(q);
3863 				spin_unlock(root_lock);
3864 			} else {
3865 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
3866 					      &q->state)) {
3867 					__netif_reschedule(q);
3868 				} else {
3869 					smp_mb__before_atomic();
3870 					clear_bit(__QDISC_STATE_SCHED,
3871 						  &q->state);
3872 				}
3873 			}
3874 		}
3875 	}
3876 }
3877 
3878 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3879     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3880 /* This hook is defined here for ATM LANE */
3881 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3882 			     unsigned char *addr) __read_mostly;
3883 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3884 #endif
3885 
3886 static inline struct sk_buff *
3887 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3888 		   struct net_device *orig_dev)
3889 {
3890 #ifdef CONFIG_NET_CLS_ACT
3891 	struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3892 	struct tcf_result cl_res;
3893 
3894 	/* If there's at least one ingress present somewhere (so
3895 	 * we get here via enabled static key), remaining devices
3896 	 * that are not configured with an ingress qdisc will bail
3897 	 * out here.
3898 	 */
3899 	if (!cl)
3900 		return skb;
3901 	if (*pt_prev) {
3902 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3903 		*pt_prev = NULL;
3904 	}
3905 
3906 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3907 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3908 	qdisc_bstats_cpu_update(cl->q, skb);
3909 
3910 	switch (tc_classify(skb, cl, &cl_res, false)) {
3911 	case TC_ACT_OK:
3912 	case TC_ACT_RECLASSIFY:
3913 		skb->tc_index = TC_H_MIN(cl_res.classid);
3914 		break;
3915 	case TC_ACT_SHOT:
3916 		qdisc_qstats_cpu_drop(cl->q);
3917 	case TC_ACT_STOLEN:
3918 	case TC_ACT_QUEUED:
3919 		kfree_skb(skb);
3920 		return NULL;
3921 	case TC_ACT_REDIRECT:
3922 		/* skb_mac_header check was done by cls/act_bpf, so
3923 		 * we can safely push the L2 header back before
3924 		 * redirecting to another netdev
3925 		 */
3926 		__skb_push(skb, skb->mac_len);
3927 		skb_do_redirect(skb);
3928 		return NULL;
3929 	default:
3930 		break;
3931 	}
3932 #endif /* CONFIG_NET_CLS_ACT */
3933 	return skb;
3934 }
3935 
3936 /**
3937  *	netdev_rx_handler_register - register receive handler
3938  *	@dev: device to register a handler for
3939  *	@rx_handler: receive handler to register
3940  *	@rx_handler_data: data pointer that is used by rx handler
3941  *
3942  *	Register a receive handler for a device. This handler will then be
3943  *	called from __netif_receive_skb. A negative errno code is returned
3944  *	on a failure.
3945  *
3946  *	The caller must hold the rtnl_mutex.
3947  *
3948  *	For a general description of rx_handler, see enum rx_handler_result.
3949  */
3950 int netdev_rx_handler_register(struct net_device *dev,
3951 			       rx_handler_func_t *rx_handler,
3952 			       void *rx_handler_data)
3953 {
3954 	ASSERT_RTNL();
3955 
3956 	if (dev->rx_handler)
3957 		return -EBUSY;
3958 
3959 	/* Note: rx_handler_data must be set before rx_handler */
3960 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3961 	rcu_assign_pointer(dev->rx_handler, rx_handler);
3962 
3963 	return 0;
3964 }
3965 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3966 
3967 /**
3968  *	netdev_rx_handler_unregister - unregister receive handler
3969  *	@dev: device to unregister a handler from
3970  *
3971  *	Unregister a receive handler from a device.
3972  *
3973  *	The caller must hold the rtnl_mutex.
3974  */
3975 void netdev_rx_handler_unregister(struct net_device *dev)
3976 {
3977 
3978 	ASSERT_RTNL();
3979 	RCU_INIT_POINTER(dev->rx_handler, NULL);
3980 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3981 	 * section has a guarantee to see a non NULL rx_handler_data
3982 	 * as well.
3983 	 */
3984 	synchronize_net();
3985 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3986 }
3987 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3988 
3989 /*
3990  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3991  * the special handling of PFMEMALLOC skbs.
3992  */
3993 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3994 {
3995 	switch (skb->protocol) {
3996 	case htons(ETH_P_ARP):
3997 	case htons(ETH_P_IP):
3998 	case htons(ETH_P_IPV6):
3999 	case htons(ETH_P_8021Q):
4000 	case htons(ETH_P_8021AD):
4001 		return true;
4002 	default:
4003 		return false;
4004 	}
4005 }
4006 
4007 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4008 			     int *ret, struct net_device *orig_dev)
4009 {
4010 #ifdef CONFIG_NETFILTER_INGRESS
4011 	if (nf_hook_ingress_active(skb)) {
4012 		if (*pt_prev) {
4013 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4014 			*pt_prev = NULL;
4015 		}
4016 
4017 		return nf_hook_ingress(skb);
4018 	}
4019 #endif /* CONFIG_NETFILTER_INGRESS */
4020 	return 0;
4021 }
4022 
4023 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4024 {
4025 	struct packet_type *ptype, *pt_prev;
4026 	rx_handler_func_t *rx_handler;
4027 	struct net_device *orig_dev;
4028 	bool deliver_exact = false;
4029 	int ret = NET_RX_DROP;
4030 	__be16 type;
4031 
4032 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4033 
4034 	trace_netif_receive_skb(skb);
4035 
4036 	orig_dev = skb->dev;
4037 
4038 	skb_reset_network_header(skb);
4039 	if (!skb_transport_header_was_set(skb))
4040 		skb_reset_transport_header(skb);
4041 	skb_reset_mac_len(skb);
4042 
4043 	pt_prev = NULL;
4044 
4045 another_round:
4046 	skb->skb_iif = skb->dev->ifindex;
4047 
4048 	__this_cpu_inc(softnet_data.processed);
4049 
4050 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4051 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4052 		skb = skb_vlan_untag(skb);
4053 		if (unlikely(!skb))
4054 			goto out;
4055 	}
4056 
4057 #ifdef CONFIG_NET_CLS_ACT
4058 	if (skb->tc_verd & TC_NCLS) {
4059 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4060 		goto ncls;
4061 	}
4062 #endif
4063 
4064 	if (pfmemalloc)
4065 		goto skip_taps;
4066 
4067 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
4068 		if (pt_prev)
4069 			ret = deliver_skb(skb, pt_prev, orig_dev);
4070 		pt_prev = ptype;
4071 	}
4072 
4073 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4074 		if (pt_prev)
4075 			ret = deliver_skb(skb, pt_prev, orig_dev);
4076 		pt_prev = ptype;
4077 	}
4078 
4079 skip_taps:
4080 #ifdef CONFIG_NET_INGRESS
4081 	if (static_key_false(&ingress_needed)) {
4082 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4083 		if (!skb)
4084 			goto out;
4085 
4086 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4087 			goto out;
4088 	}
4089 #endif
4090 #ifdef CONFIG_NET_CLS_ACT
4091 	skb->tc_verd = 0;
4092 ncls:
4093 #endif
4094 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4095 		goto drop;
4096 
4097 	if (skb_vlan_tag_present(skb)) {
4098 		if (pt_prev) {
4099 			ret = deliver_skb(skb, pt_prev, orig_dev);
4100 			pt_prev = NULL;
4101 		}
4102 		if (vlan_do_receive(&skb))
4103 			goto another_round;
4104 		else if (unlikely(!skb))
4105 			goto out;
4106 	}
4107 
4108 	rx_handler = rcu_dereference(skb->dev->rx_handler);
4109 	if (rx_handler) {
4110 		if (pt_prev) {
4111 			ret = deliver_skb(skb, pt_prev, orig_dev);
4112 			pt_prev = NULL;
4113 		}
4114 		switch (rx_handler(&skb)) {
4115 		case RX_HANDLER_CONSUMED:
4116 			ret = NET_RX_SUCCESS;
4117 			goto out;
4118 		case RX_HANDLER_ANOTHER:
4119 			goto another_round;
4120 		case RX_HANDLER_EXACT:
4121 			deliver_exact = true;
4122 		case RX_HANDLER_PASS:
4123 			break;
4124 		default:
4125 			BUG();
4126 		}
4127 	}
4128 
4129 	if (unlikely(skb_vlan_tag_present(skb))) {
4130 		if (skb_vlan_tag_get_id(skb))
4131 			skb->pkt_type = PACKET_OTHERHOST;
4132 		/* Note: we might in the future use prio bits
4133 		 * and set skb->priority like in vlan_do_receive()
4134 		 * For the time being, just ignore Priority Code Point
4135 		 */
4136 		skb->vlan_tci = 0;
4137 	}
4138 
4139 	type = skb->protocol;
4140 
4141 	/* deliver only exact match when indicated */
4142 	if (likely(!deliver_exact)) {
4143 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4144 				       &ptype_base[ntohs(type) &
4145 						   PTYPE_HASH_MASK]);
4146 	}
4147 
4148 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4149 			       &orig_dev->ptype_specific);
4150 
4151 	if (unlikely(skb->dev != orig_dev)) {
4152 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4153 				       &skb->dev->ptype_specific);
4154 	}
4155 
4156 	if (pt_prev) {
4157 		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4158 			goto drop;
4159 		else
4160 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4161 	} else {
4162 drop:
4163 		if (!deliver_exact)
4164 			atomic_long_inc(&skb->dev->rx_dropped);
4165 		else
4166 			atomic_long_inc(&skb->dev->rx_nohandler);
4167 		kfree_skb(skb);
4168 		/* Jamal, now you will not able to escape explaining
4169 		 * me how you were going to use this. :-)
4170 		 */
4171 		ret = NET_RX_DROP;
4172 	}
4173 
4174 out:
4175 	return ret;
4176 }
4177 
4178 static int __netif_receive_skb(struct sk_buff *skb)
4179 {
4180 	int ret;
4181 
4182 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4183 		unsigned long pflags = current->flags;
4184 
4185 		/*
4186 		 * PFMEMALLOC skbs are special, they should
4187 		 * - be delivered to SOCK_MEMALLOC sockets only
4188 		 * - stay away from userspace
4189 		 * - have bounded memory usage
4190 		 *
4191 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
4192 		 * context down to all allocation sites.
4193 		 */
4194 		current->flags |= PF_MEMALLOC;
4195 		ret = __netif_receive_skb_core(skb, true);
4196 		tsk_restore_flags(current, pflags, PF_MEMALLOC);
4197 	} else
4198 		ret = __netif_receive_skb_core(skb, false);
4199 
4200 	return ret;
4201 }
4202 
4203 static int netif_receive_skb_internal(struct sk_buff *skb)
4204 {
4205 	int ret;
4206 
4207 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4208 
4209 	if (skb_defer_rx_timestamp(skb))
4210 		return NET_RX_SUCCESS;
4211 
4212 	rcu_read_lock();
4213 
4214 #ifdef CONFIG_RPS
4215 	if (static_key_false(&rps_needed)) {
4216 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4217 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4218 
4219 		if (cpu >= 0) {
4220 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4221 			rcu_read_unlock();
4222 			return ret;
4223 		}
4224 	}
4225 #endif
4226 	ret = __netif_receive_skb(skb);
4227 	rcu_read_unlock();
4228 	return ret;
4229 }
4230 
4231 /**
4232  *	netif_receive_skb - process receive buffer from network
4233  *	@skb: buffer to process
4234  *
4235  *	netif_receive_skb() is the main receive data processing function.
4236  *	It always succeeds. The buffer may be dropped during processing
4237  *	for congestion control or by the protocol layers.
4238  *
4239  *	This function may only be called from softirq context and interrupts
4240  *	should be enabled.
4241  *
4242  *	Return values (usually ignored):
4243  *	NET_RX_SUCCESS: no congestion
4244  *	NET_RX_DROP: packet was dropped
4245  */
4246 int netif_receive_skb(struct sk_buff *skb)
4247 {
4248 	trace_netif_receive_skb_entry(skb);
4249 
4250 	return netif_receive_skb_internal(skb);
4251 }
4252 EXPORT_SYMBOL(netif_receive_skb);
4253 
4254 /* Network device is going away, flush any packets still pending
4255  * Called with irqs disabled.
4256  */
4257 static void flush_backlog(void *arg)
4258 {
4259 	struct net_device *dev = arg;
4260 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4261 	struct sk_buff *skb, *tmp;
4262 
4263 	rps_lock(sd);
4264 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4265 		if (skb->dev == dev) {
4266 			__skb_unlink(skb, &sd->input_pkt_queue);
4267 			kfree_skb(skb);
4268 			input_queue_head_incr(sd);
4269 		}
4270 	}
4271 	rps_unlock(sd);
4272 
4273 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4274 		if (skb->dev == dev) {
4275 			__skb_unlink(skb, &sd->process_queue);
4276 			kfree_skb(skb);
4277 			input_queue_head_incr(sd);
4278 		}
4279 	}
4280 }
4281 
4282 static int napi_gro_complete(struct sk_buff *skb)
4283 {
4284 	struct packet_offload *ptype;
4285 	__be16 type = skb->protocol;
4286 	struct list_head *head = &offload_base;
4287 	int err = -ENOENT;
4288 
4289 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4290 
4291 	if (NAPI_GRO_CB(skb)->count == 1) {
4292 		skb_shinfo(skb)->gso_size = 0;
4293 		goto out;
4294 	}
4295 
4296 	rcu_read_lock();
4297 	list_for_each_entry_rcu(ptype, head, list) {
4298 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4299 			continue;
4300 
4301 		err = ptype->callbacks.gro_complete(skb, 0);
4302 		break;
4303 	}
4304 	rcu_read_unlock();
4305 
4306 	if (err) {
4307 		WARN_ON(&ptype->list == head);
4308 		kfree_skb(skb);
4309 		return NET_RX_SUCCESS;
4310 	}
4311 
4312 out:
4313 	return netif_receive_skb_internal(skb);
4314 }
4315 
4316 /* napi->gro_list contains packets ordered by age.
4317  * youngest packets at the head of it.
4318  * Complete skbs in reverse order to reduce latencies.
4319  */
4320 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4321 {
4322 	struct sk_buff *skb, *prev = NULL;
4323 
4324 	/* scan list and build reverse chain */
4325 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4326 		skb->prev = prev;
4327 		prev = skb;
4328 	}
4329 
4330 	for (skb = prev; skb; skb = prev) {
4331 		skb->next = NULL;
4332 
4333 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4334 			return;
4335 
4336 		prev = skb->prev;
4337 		napi_gro_complete(skb);
4338 		napi->gro_count--;
4339 	}
4340 
4341 	napi->gro_list = NULL;
4342 }
4343 EXPORT_SYMBOL(napi_gro_flush);
4344 
4345 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4346 {
4347 	struct sk_buff *p;
4348 	unsigned int maclen = skb->dev->hard_header_len;
4349 	u32 hash = skb_get_hash_raw(skb);
4350 
4351 	for (p = napi->gro_list; p; p = p->next) {
4352 		unsigned long diffs;
4353 
4354 		NAPI_GRO_CB(p)->flush = 0;
4355 
4356 		if (hash != skb_get_hash_raw(p)) {
4357 			NAPI_GRO_CB(p)->same_flow = 0;
4358 			continue;
4359 		}
4360 
4361 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4362 		diffs |= p->vlan_tci ^ skb->vlan_tci;
4363 		diffs |= skb_metadata_dst_cmp(p, skb);
4364 		if (maclen == ETH_HLEN)
4365 			diffs |= compare_ether_header(skb_mac_header(p),
4366 						      skb_mac_header(skb));
4367 		else if (!diffs)
4368 			diffs = memcmp(skb_mac_header(p),
4369 				       skb_mac_header(skb),
4370 				       maclen);
4371 		NAPI_GRO_CB(p)->same_flow = !diffs;
4372 	}
4373 }
4374 
4375 static void skb_gro_reset_offset(struct sk_buff *skb)
4376 {
4377 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
4378 	const skb_frag_t *frag0 = &pinfo->frags[0];
4379 
4380 	NAPI_GRO_CB(skb)->data_offset = 0;
4381 	NAPI_GRO_CB(skb)->frag0 = NULL;
4382 	NAPI_GRO_CB(skb)->frag0_len = 0;
4383 
4384 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4385 	    pinfo->nr_frags &&
4386 	    !PageHighMem(skb_frag_page(frag0))) {
4387 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4388 		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4389 	}
4390 }
4391 
4392 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4393 {
4394 	struct skb_shared_info *pinfo = skb_shinfo(skb);
4395 
4396 	BUG_ON(skb->end - skb->tail < grow);
4397 
4398 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4399 
4400 	skb->data_len -= grow;
4401 	skb->tail += grow;
4402 
4403 	pinfo->frags[0].page_offset += grow;
4404 	skb_frag_size_sub(&pinfo->frags[0], grow);
4405 
4406 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4407 		skb_frag_unref(skb, 0);
4408 		memmove(pinfo->frags, pinfo->frags + 1,
4409 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
4410 	}
4411 }
4412 
4413 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4414 {
4415 	struct sk_buff **pp = NULL;
4416 	struct packet_offload *ptype;
4417 	__be16 type = skb->protocol;
4418 	struct list_head *head = &offload_base;
4419 	int same_flow;
4420 	enum gro_result ret;
4421 	int grow;
4422 
4423 	if (!(skb->dev->features & NETIF_F_GRO))
4424 		goto normal;
4425 
4426 	if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4427 		goto normal;
4428 
4429 	gro_list_prepare(napi, skb);
4430 
4431 	rcu_read_lock();
4432 	list_for_each_entry_rcu(ptype, head, list) {
4433 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4434 			continue;
4435 
4436 		skb_set_network_header(skb, skb_gro_offset(skb));
4437 		skb_reset_mac_len(skb);
4438 		NAPI_GRO_CB(skb)->same_flow = 0;
4439 		NAPI_GRO_CB(skb)->flush = 0;
4440 		NAPI_GRO_CB(skb)->free = 0;
4441 		NAPI_GRO_CB(skb)->encap_mark = 0;
4442 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4443 
4444 		/* Setup for GRO checksum validation */
4445 		switch (skb->ip_summed) {
4446 		case CHECKSUM_COMPLETE:
4447 			NAPI_GRO_CB(skb)->csum = skb->csum;
4448 			NAPI_GRO_CB(skb)->csum_valid = 1;
4449 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4450 			break;
4451 		case CHECKSUM_UNNECESSARY:
4452 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4453 			NAPI_GRO_CB(skb)->csum_valid = 0;
4454 			break;
4455 		default:
4456 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4457 			NAPI_GRO_CB(skb)->csum_valid = 0;
4458 		}
4459 
4460 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4461 		break;
4462 	}
4463 	rcu_read_unlock();
4464 
4465 	if (&ptype->list == head)
4466 		goto normal;
4467 
4468 	same_flow = NAPI_GRO_CB(skb)->same_flow;
4469 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4470 
4471 	if (pp) {
4472 		struct sk_buff *nskb = *pp;
4473 
4474 		*pp = nskb->next;
4475 		nskb->next = NULL;
4476 		napi_gro_complete(nskb);
4477 		napi->gro_count--;
4478 	}
4479 
4480 	if (same_flow)
4481 		goto ok;
4482 
4483 	if (NAPI_GRO_CB(skb)->flush)
4484 		goto normal;
4485 
4486 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4487 		struct sk_buff *nskb = napi->gro_list;
4488 
4489 		/* locate the end of the list to select the 'oldest' flow */
4490 		while (nskb->next) {
4491 			pp = &nskb->next;
4492 			nskb = *pp;
4493 		}
4494 		*pp = NULL;
4495 		nskb->next = NULL;
4496 		napi_gro_complete(nskb);
4497 	} else {
4498 		napi->gro_count++;
4499 	}
4500 	NAPI_GRO_CB(skb)->count = 1;
4501 	NAPI_GRO_CB(skb)->age = jiffies;
4502 	NAPI_GRO_CB(skb)->last = skb;
4503 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4504 	skb->next = napi->gro_list;
4505 	napi->gro_list = skb;
4506 	ret = GRO_HELD;
4507 
4508 pull:
4509 	grow = skb_gro_offset(skb) - skb_headlen(skb);
4510 	if (grow > 0)
4511 		gro_pull_from_frag0(skb, grow);
4512 ok:
4513 	return ret;
4514 
4515 normal:
4516 	ret = GRO_NORMAL;
4517 	goto pull;
4518 }
4519 
4520 struct packet_offload *gro_find_receive_by_type(__be16 type)
4521 {
4522 	struct list_head *offload_head = &offload_base;
4523 	struct packet_offload *ptype;
4524 
4525 	list_for_each_entry_rcu(ptype, offload_head, list) {
4526 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4527 			continue;
4528 		return ptype;
4529 	}
4530 	return NULL;
4531 }
4532 EXPORT_SYMBOL(gro_find_receive_by_type);
4533 
4534 struct packet_offload *gro_find_complete_by_type(__be16 type)
4535 {
4536 	struct list_head *offload_head = &offload_base;
4537 	struct packet_offload *ptype;
4538 
4539 	list_for_each_entry_rcu(ptype, offload_head, list) {
4540 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4541 			continue;
4542 		return ptype;
4543 	}
4544 	return NULL;
4545 }
4546 EXPORT_SYMBOL(gro_find_complete_by_type);
4547 
4548 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4549 {
4550 	switch (ret) {
4551 	case GRO_NORMAL:
4552 		if (netif_receive_skb_internal(skb))
4553 			ret = GRO_DROP;
4554 		break;
4555 
4556 	case GRO_DROP:
4557 		kfree_skb(skb);
4558 		break;
4559 
4560 	case GRO_MERGED_FREE:
4561 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4562 			skb_dst_drop(skb);
4563 			kmem_cache_free(skbuff_head_cache, skb);
4564 		} else {
4565 			__kfree_skb(skb);
4566 		}
4567 		break;
4568 
4569 	case GRO_HELD:
4570 	case GRO_MERGED:
4571 		break;
4572 	}
4573 
4574 	return ret;
4575 }
4576 
4577 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4578 {
4579 	skb_mark_napi_id(skb, napi);
4580 	trace_napi_gro_receive_entry(skb);
4581 
4582 	skb_gro_reset_offset(skb);
4583 
4584 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4585 }
4586 EXPORT_SYMBOL(napi_gro_receive);
4587 
4588 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4589 {
4590 	if (unlikely(skb->pfmemalloc)) {
4591 		consume_skb(skb);
4592 		return;
4593 	}
4594 	__skb_pull(skb, skb_headlen(skb));
4595 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
4596 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4597 	skb->vlan_tci = 0;
4598 	skb->dev = napi->dev;
4599 	skb->skb_iif = 0;
4600 	skb->encapsulation = 0;
4601 	skb_shinfo(skb)->gso_type = 0;
4602 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4603 
4604 	napi->skb = skb;
4605 }
4606 
4607 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4608 {
4609 	struct sk_buff *skb = napi->skb;
4610 
4611 	if (!skb) {
4612 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4613 		if (skb) {
4614 			napi->skb = skb;
4615 			skb_mark_napi_id(skb, napi);
4616 		}
4617 	}
4618 	return skb;
4619 }
4620 EXPORT_SYMBOL(napi_get_frags);
4621 
4622 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4623 				      struct sk_buff *skb,
4624 				      gro_result_t ret)
4625 {
4626 	switch (ret) {
4627 	case GRO_NORMAL:
4628 	case GRO_HELD:
4629 		__skb_push(skb, ETH_HLEN);
4630 		skb->protocol = eth_type_trans(skb, skb->dev);
4631 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4632 			ret = GRO_DROP;
4633 		break;
4634 
4635 	case GRO_DROP:
4636 	case GRO_MERGED_FREE:
4637 		napi_reuse_skb(napi, skb);
4638 		break;
4639 
4640 	case GRO_MERGED:
4641 		break;
4642 	}
4643 
4644 	return ret;
4645 }
4646 
4647 /* Upper GRO stack assumes network header starts at gro_offset=0
4648  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4649  * We copy ethernet header into skb->data to have a common layout.
4650  */
4651 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4652 {
4653 	struct sk_buff *skb = napi->skb;
4654 	const struct ethhdr *eth;
4655 	unsigned int hlen = sizeof(*eth);
4656 
4657 	napi->skb = NULL;
4658 
4659 	skb_reset_mac_header(skb);
4660 	skb_gro_reset_offset(skb);
4661 
4662 	eth = skb_gro_header_fast(skb, 0);
4663 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
4664 		eth = skb_gro_header_slow(skb, hlen, 0);
4665 		if (unlikely(!eth)) {
4666 			napi_reuse_skb(napi, skb);
4667 			return NULL;
4668 		}
4669 	} else {
4670 		gro_pull_from_frag0(skb, hlen);
4671 		NAPI_GRO_CB(skb)->frag0 += hlen;
4672 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
4673 	}
4674 	__skb_pull(skb, hlen);
4675 
4676 	/*
4677 	 * This works because the only protocols we care about don't require
4678 	 * special handling.
4679 	 * We'll fix it up properly in napi_frags_finish()
4680 	 */
4681 	skb->protocol = eth->h_proto;
4682 
4683 	return skb;
4684 }
4685 
4686 gro_result_t napi_gro_frags(struct napi_struct *napi)
4687 {
4688 	struct sk_buff *skb = napi_frags_skb(napi);
4689 
4690 	if (!skb)
4691 		return GRO_DROP;
4692 
4693 	trace_napi_gro_frags_entry(skb);
4694 
4695 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4696 }
4697 EXPORT_SYMBOL(napi_gro_frags);
4698 
4699 /* Compute the checksum from gro_offset and return the folded value
4700  * after adding in any pseudo checksum.
4701  */
4702 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4703 {
4704 	__wsum wsum;
4705 	__sum16 sum;
4706 
4707 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4708 
4709 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4710 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4711 	if (likely(!sum)) {
4712 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4713 		    !skb->csum_complete_sw)
4714 			netdev_rx_csum_fault(skb->dev);
4715 	}
4716 
4717 	NAPI_GRO_CB(skb)->csum = wsum;
4718 	NAPI_GRO_CB(skb)->csum_valid = 1;
4719 
4720 	return sum;
4721 }
4722 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4723 
4724 /*
4725  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4726  * Note: called with local irq disabled, but exits with local irq enabled.
4727  */
4728 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4729 {
4730 #ifdef CONFIG_RPS
4731 	struct softnet_data *remsd = sd->rps_ipi_list;
4732 
4733 	if (remsd) {
4734 		sd->rps_ipi_list = NULL;
4735 
4736 		local_irq_enable();
4737 
4738 		/* Send pending IPI's to kick RPS processing on remote cpus. */
4739 		while (remsd) {
4740 			struct softnet_data *next = remsd->rps_ipi_next;
4741 
4742 			if (cpu_online(remsd->cpu))
4743 				smp_call_function_single_async(remsd->cpu,
4744 							   &remsd->csd);
4745 			remsd = next;
4746 		}
4747 	} else
4748 #endif
4749 		local_irq_enable();
4750 }
4751 
4752 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4753 {
4754 #ifdef CONFIG_RPS
4755 	return sd->rps_ipi_list != NULL;
4756 #else
4757 	return false;
4758 #endif
4759 }
4760 
4761 static int process_backlog(struct napi_struct *napi, int quota)
4762 {
4763 	int work = 0;
4764 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4765 
4766 	/* Check if we have pending ipi, its better to send them now,
4767 	 * not waiting net_rx_action() end.
4768 	 */
4769 	if (sd_has_rps_ipi_waiting(sd)) {
4770 		local_irq_disable();
4771 		net_rps_action_and_irq_enable(sd);
4772 	}
4773 
4774 	napi->weight = weight_p;
4775 	local_irq_disable();
4776 	while (1) {
4777 		struct sk_buff *skb;
4778 
4779 		while ((skb = __skb_dequeue(&sd->process_queue))) {
4780 			rcu_read_lock();
4781 			local_irq_enable();
4782 			__netif_receive_skb(skb);
4783 			rcu_read_unlock();
4784 			local_irq_disable();
4785 			input_queue_head_incr(sd);
4786 			if (++work >= quota) {
4787 				local_irq_enable();
4788 				return work;
4789 			}
4790 		}
4791 
4792 		rps_lock(sd);
4793 		if (skb_queue_empty(&sd->input_pkt_queue)) {
4794 			/*
4795 			 * Inline a custom version of __napi_complete().
4796 			 * only current cpu owns and manipulates this napi,
4797 			 * and NAPI_STATE_SCHED is the only possible flag set
4798 			 * on backlog.
4799 			 * We can use a plain write instead of clear_bit(),
4800 			 * and we dont need an smp_mb() memory barrier.
4801 			 */
4802 			napi->state = 0;
4803 			rps_unlock(sd);
4804 
4805 			break;
4806 		}
4807 
4808 		skb_queue_splice_tail_init(&sd->input_pkt_queue,
4809 					   &sd->process_queue);
4810 		rps_unlock(sd);
4811 	}
4812 	local_irq_enable();
4813 
4814 	return work;
4815 }
4816 
4817 /**
4818  * __napi_schedule - schedule for receive
4819  * @n: entry to schedule
4820  *
4821  * The entry's receive function will be scheduled to run.
4822  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4823  */
4824 void __napi_schedule(struct napi_struct *n)
4825 {
4826 	unsigned long flags;
4827 
4828 	local_irq_save(flags);
4829 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4830 	local_irq_restore(flags);
4831 }
4832 EXPORT_SYMBOL(__napi_schedule);
4833 
4834 /**
4835  * __napi_schedule_irqoff - schedule for receive
4836  * @n: entry to schedule
4837  *
4838  * Variant of __napi_schedule() assuming hard irqs are masked
4839  */
4840 void __napi_schedule_irqoff(struct napi_struct *n)
4841 {
4842 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4843 }
4844 EXPORT_SYMBOL(__napi_schedule_irqoff);
4845 
4846 void __napi_complete(struct napi_struct *n)
4847 {
4848 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4849 
4850 	list_del_init(&n->poll_list);
4851 	smp_mb__before_atomic();
4852 	clear_bit(NAPI_STATE_SCHED, &n->state);
4853 }
4854 EXPORT_SYMBOL(__napi_complete);
4855 
4856 void napi_complete_done(struct napi_struct *n, int work_done)
4857 {
4858 	unsigned long flags;
4859 
4860 	/*
4861 	 * don't let napi dequeue from the cpu poll list
4862 	 * just in case its running on a different cpu
4863 	 */
4864 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4865 		return;
4866 
4867 	if (n->gro_list) {
4868 		unsigned long timeout = 0;
4869 
4870 		if (work_done)
4871 			timeout = n->dev->gro_flush_timeout;
4872 
4873 		if (timeout)
4874 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
4875 				      HRTIMER_MODE_REL_PINNED);
4876 		else
4877 			napi_gro_flush(n, false);
4878 	}
4879 	if (likely(list_empty(&n->poll_list))) {
4880 		WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4881 	} else {
4882 		/* If n->poll_list is not empty, we need to mask irqs */
4883 		local_irq_save(flags);
4884 		__napi_complete(n);
4885 		local_irq_restore(flags);
4886 	}
4887 }
4888 EXPORT_SYMBOL(napi_complete_done);
4889 
4890 /* must be called under rcu_read_lock(), as we dont take a reference */
4891 static struct napi_struct *napi_by_id(unsigned int napi_id)
4892 {
4893 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4894 	struct napi_struct *napi;
4895 
4896 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4897 		if (napi->napi_id == napi_id)
4898 			return napi;
4899 
4900 	return NULL;
4901 }
4902 
4903 #if defined(CONFIG_NET_RX_BUSY_POLL)
4904 #define BUSY_POLL_BUDGET 8
4905 bool sk_busy_loop(struct sock *sk, int nonblock)
4906 {
4907 	unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
4908 	int (*busy_poll)(struct napi_struct *dev);
4909 	struct napi_struct *napi;
4910 	int rc = false;
4911 
4912 	rcu_read_lock();
4913 
4914 	napi = napi_by_id(sk->sk_napi_id);
4915 	if (!napi)
4916 		goto out;
4917 
4918 	/* Note: ndo_busy_poll method is optional in linux-4.5 */
4919 	busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
4920 
4921 	do {
4922 		rc = 0;
4923 		local_bh_disable();
4924 		if (busy_poll) {
4925 			rc = busy_poll(napi);
4926 		} else if (napi_schedule_prep(napi)) {
4927 			void *have = netpoll_poll_lock(napi);
4928 
4929 			if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
4930 				rc = napi->poll(napi, BUSY_POLL_BUDGET);
4931 				trace_napi_poll(napi);
4932 				if (rc == BUSY_POLL_BUDGET) {
4933 					napi_complete_done(napi, rc);
4934 					napi_schedule(napi);
4935 				}
4936 			}
4937 			netpoll_poll_unlock(have);
4938 		}
4939 		if (rc > 0)
4940 			NET_ADD_STATS_BH(sock_net(sk),
4941 					 LINUX_MIB_BUSYPOLLRXPACKETS, rc);
4942 		local_bh_enable();
4943 
4944 		if (rc == LL_FLUSH_FAILED)
4945 			break; /* permanent failure */
4946 
4947 		cpu_relax();
4948 	} while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) &&
4949 		 !need_resched() && !busy_loop_timeout(end_time));
4950 
4951 	rc = !skb_queue_empty(&sk->sk_receive_queue);
4952 out:
4953 	rcu_read_unlock();
4954 	return rc;
4955 }
4956 EXPORT_SYMBOL(sk_busy_loop);
4957 
4958 #endif /* CONFIG_NET_RX_BUSY_POLL */
4959 
4960 void napi_hash_add(struct napi_struct *napi)
4961 {
4962 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
4963 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
4964 		return;
4965 
4966 	spin_lock(&napi_hash_lock);
4967 
4968 	/* 0..NR_CPUS+1 range is reserved for sender_cpu use */
4969 	do {
4970 		if (unlikely(++napi_gen_id < NR_CPUS + 1))
4971 			napi_gen_id = NR_CPUS + 1;
4972 	} while (napi_by_id(napi_gen_id));
4973 	napi->napi_id = napi_gen_id;
4974 
4975 	hlist_add_head_rcu(&napi->napi_hash_node,
4976 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4977 
4978 	spin_unlock(&napi_hash_lock);
4979 }
4980 EXPORT_SYMBOL_GPL(napi_hash_add);
4981 
4982 /* Warning : caller is responsible to make sure rcu grace period
4983  * is respected before freeing memory containing @napi
4984  */
4985 bool napi_hash_del(struct napi_struct *napi)
4986 {
4987 	bool rcu_sync_needed = false;
4988 
4989 	spin_lock(&napi_hash_lock);
4990 
4991 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
4992 		rcu_sync_needed = true;
4993 		hlist_del_rcu(&napi->napi_hash_node);
4994 	}
4995 	spin_unlock(&napi_hash_lock);
4996 	return rcu_sync_needed;
4997 }
4998 EXPORT_SYMBOL_GPL(napi_hash_del);
4999 
5000 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5001 {
5002 	struct napi_struct *napi;
5003 
5004 	napi = container_of(timer, struct napi_struct, timer);
5005 	if (napi->gro_list)
5006 		napi_schedule(napi);
5007 
5008 	return HRTIMER_NORESTART;
5009 }
5010 
5011 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5012 		    int (*poll)(struct napi_struct *, int), int weight)
5013 {
5014 	INIT_LIST_HEAD(&napi->poll_list);
5015 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5016 	napi->timer.function = napi_watchdog;
5017 	napi->gro_count = 0;
5018 	napi->gro_list = NULL;
5019 	napi->skb = NULL;
5020 	napi->poll = poll;
5021 	if (weight > NAPI_POLL_WEIGHT)
5022 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5023 			    weight, dev->name);
5024 	napi->weight = weight;
5025 	list_add(&napi->dev_list, &dev->napi_list);
5026 	napi->dev = dev;
5027 #ifdef CONFIG_NETPOLL
5028 	spin_lock_init(&napi->poll_lock);
5029 	napi->poll_owner = -1;
5030 #endif
5031 	set_bit(NAPI_STATE_SCHED, &napi->state);
5032 	napi_hash_add(napi);
5033 }
5034 EXPORT_SYMBOL(netif_napi_add);
5035 
5036 void napi_disable(struct napi_struct *n)
5037 {
5038 	might_sleep();
5039 	set_bit(NAPI_STATE_DISABLE, &n->state);
5040 
5041 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5042 		msleep(1);
5043 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5044 		msleep(1);
5045 
5046 	hrtimer_cancel(&n->timer);
5047 
5048 	clear_bit(NAPI_STATE_DISABLE, &n->state);
5049 }
5050 EXPORT_SYMBOL(napi_disable);
5051 
5052 /* Must be called in process context */
5053 void netif_napi_del(struct napi_struct *napi)
5054 {
5055 	might_sleep();
5056 	if (napi_hash_del(napi))
5057 		synchronize_net();
5058 	list_del_init(&napi->dev_list);
5059 	napi_free_frags(napi);
5060 
5061 	kfree_skb_list(napi->gro_list);
5062 	napi->gro_list = NULL;
5063 	napi->gro_count = 0;
5064 }
5065 EXPORT_SYMBOL(netif_napi_del);
5066 
5067 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5068 {
5069 	void *have;
5070 	int work, weight;
5071 
5072 	list_del_init(&n->poll_list);
5073 
5074 	have = netpoll_poll_lock(n);
5075 
5076 	weight = n->weight;
5077 
5078 	/* This NAPI_STATE_SCHED test is for avoiding a race
5079 	 * with netpoll's poll_napi().  Only the entity which
5080 	 * obtains the lock and sees NAPI_STATE_SCHED set will
5081 	 * actually make the ->poll() call.  Therefore we avoid
5082 	 * accidentally calling ->poll() when NAPI is not scheduled.
5083 	 */
5084 	work = 0;
5085 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5086 		work = n->poll(n, weight);
5087 		trace_napi_poll(n);
5088 	}
5089 
5090 	WARN_ON_ONCE(work > weight);
5091 
5092 	if (likely(work < weight))
5093 		goto out_unlock;
5094 
5095 	/* Drivers must not modify the NAPI state if they
5096 	 * consume the entire weight.  In such cases this code
5097 	 * still "owns" the NAPI instance and therefore can
5098 	 * move the instance around on the list at-will.
5099 	 */
5100 	if (unlikely(napi_disable_pending(n))) {
5101 		napi_complete(n);
5102 		goto out_unlock;
5103 	}
5104 
5105 	if (n->gro_list) {
5106 		/* flush too old packets
5107 		 * If HZ < 1000, flush all packets.
5108 		 */
5109 		napi_gro_flush(n, HZ >= 1000);
5110 	}
5111 
5112 	/* Some drivers may have called napi_schedule
5113 	 * prior to exhausting their budget.
5114 	 */
5115 	if (unlikely(!list_empty(&n->poll_list))) {
5116 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5117 			     n->dev ? n->dev->name : "backlog");
5118 		goto out_unlock;
5119 	}
5120 
5121 	list_add_tail(&n->poll_list, repoll);
5122 
5123 out_unlock:
5124 	netpoll_poll_unlock(have);
5125 
5126 	return work;
5127 }
5128 
5129 static void net_rx_action(struct softirq_action *h)
5130 {
5131 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5132 	unsigned long time_limit = jiffies + 2;
5133 	int budget = netdev_budget;
5134 	LIST_HEAD(list);
5135 	LIST_HEAD(repoll);
5136 
5137 	local_irq_disable();
5138 	list_splice_init(&sd->poll_list, &list);
5139 	local_irq_enable();
5140 
5141 	for (;;) {
5142 		struct napi_struct *n;
5143 
5144 		if (list_empty(&list)) {
5145 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5146 				return;
5147 			break;
5148 		}
5149 
5150 		n = list_first_entry(&list, struct napi_struct, poll_list);
5151 		budget -= napi_poll(n, &repoll);
5152 
5153 		/* If softirq window is exhausted then punt.
5154 		 * Allow this to run for 2 jiffies since which will allow
5155 		 * an average latency of 1.5/HZ.
5156 		 */
5157 		if (unlikely(budget <= 0 ||
5158 			     time_after_eq(jiffies, time_limit))) {
5159 			sd->time_squeeze++;
5160 			break;
5161 		}
5162 	}
5163 
5164 	__kfree_skb_flush();
5165 	local_irq_disable();
5166 
5167 	list_splice_tail_init(&sd->poll_list, &list);
5168 	list_splice_tail(&repoll, &list);
5169 	list_splice(&list, &sd->poll_list);
5170 	if (!list_empty(&sd->poll_list))
5171 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5172 
5173 	net_rps_action_and_irq_enable(sd);
5174 }
5175 
5176 struct netdev_adjacent {
5177 	struct net_device *dev;
5178 
5179 	/* upper master flag, there can only be one master device per list */
5180 	bool master;
5181 
5182 	/* counter for the number of times this device was added to us */
5183 	u16 ref_nr;
5184 
5185 	/* private field for the users */
5186 	void *private;
5187 
5188 	struct list_head list;
5189 	struct rcu_head rcu;
5190 };
5191 
5192 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5193 						 struct list_head *adj_list)
5194 {
5195 	struct netdev_adjacent *adj;
5196 
5197 	list_for_each_entry(adj, adj_list, list) {
5198 		if (adj->dev == adj_dev)
5199 			return adj;
5200 	}
5201 	return NULL;
5202 }
5203 
5204 /**
5205  * netdev_has_upper_dev - Check if device is linked to an upper device
5206  * @dev: device
5207  * @upper_dev: upper device to check
5208  *
5209  * Find out if a device is linked to specified upper device and return true
5210  * in case it is. Note that this checks only immediate upper device,
5211  * not through a complete stack of devices. The caller must hold the RTNL lock.
5212  */
5213 bool netdev_has_upper_dev(struct net_device *dev,
5214 			  struct net_device *upper_dev)
5215 {
5216 	ASSERT_RTNL();
5217 
5218 	return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
5219 }
5220 EXPORT_SYMBOL(netdev_has_upper_dev);
5221 
5222 /**
5223  * netdev_has_any_upper_dev - Check if device is linked to some device
5224  * @dev: device
5225  *
5226  * Find out if a device is linked to an upper device and return true in case
5227  * it is. The caller must hold the RTNL lock.
5228  */
5229 static bool netdev_has_any_upper_dev(struct net_device *dev)
5230 {
5231 	ASSERT_RTNL();
5232 
5233 	return !list_empty(&dev->all_adj_list.upper);
5234 }
5235 
5236 /**
5237  * netdev_master_upper_dev_get - Get master upper device
5238  * @dev: device
5239  *
5240  * Find a master upper device and return pointer to it or NULL in case
5241  * it's not there. The caller must hold the RTNL lock.
5242  */
5243 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5244 {
5245 	struct netdev_adjacent *upper;
5246 
5247 	ASSERT_RTNL();
5248 
5249 	if (list_empty(&dev->adj_list.upper))
5250 		return NULL;
5251 
5252 	upper = list_first_entry(&dev->adj_list.upper,
5253 				 struct netdev_adjacent, list);
5254 	if (likely(upper->master))
5255 		return upper->dev;
5256 	return NULL;
5257 }
5258 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5259 
5260 void *netdev_adjacent_get_private(struct list_head *adj_list)
5261 {
5262 	struct netdev_adjacent *adj;
5263 
5264 	adj = list_entry(adj_list, struct netdev_adjacent, list);
5265 
5266 	return adj->private;
5267 }
5268 EXPORT_SYMBOL(netdev_adjacent_get_private);
5269 
5270 /**
5271  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5272  * @dev: device
5273  * @iter: list_head ** of the current position
5274  *
5275  * Gets the next device from the dev's upper list, starting from iter
5276  * position. The caller must hold RCU read lock.
5277  */
5278 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5279 						 struct list_head **iter)
5280 {
5281 	struct netdev_adjacent *upper;
5282 
5283 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5284 
5285 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5286 
5287 	if (&upper->list == &dev->adj_list.upper)
5288 		return NULL;
5289 
5290 	*iter = &upper->list;
5291 
5292 	return upper->dev;
5293 }
5294 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5295 
5296 /**
5297  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
5298  * @dev: device
5299  * @iter: list_head ** of the current position
5300  *
5301  * Gets the next device from the dev's upper list, starting from iter
5302  * position. The caller must hold RCU read lock.
5303  */
5304 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5305 						     struct list_head **iter)
5306 {
5307 	struct netdev_adjacent *upper;
5308 
5309 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5310 
5311 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5312 
5313 	if (&upper->list == &dev->all_adj_list.upper)
5314 		return NULL;
5315 
5316 	*iter = &upper->list;
5317 
5318 	return upper->dev;
5319 }
5320 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
5321 
5322 /**
5323  * netdev_lower_get_next_private - Get the next ->private from the
5324  *				   lower neighbour list
5325  * @dev: device
5326  * @iter: list_head ** of the current position
5327  *
5328  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5329  * list, starting from iter position. The caller must hold either hold the
5330  * RTNL lock or its own locking that guarantees that the neighbour lower
5331  * list will remain unchanged.
5332  */
5333 void *netdev_lower_get_next_private(struct net_device *dev,
5334 				    struct list_head **iter)
5335 {
5336 	struct netdev_adjacent *lower;
5337 
5338 	lower = list_entry(*iter, struct netdev_adjacent, list);
5339 
5340 	if (&lower->list == &dev->adj_list.lower)
5341 		return NULL;
5342 
5343 	*iter = lower->list.next;
5344 
5345 	return lower->private;
5346 }
5347 EXPORT_SYMBOL(netdev_lower_get_next_private);
5348 
5349 /**
5350  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5351  *				       lower neighbour list, RCU
5352  *				       variant
5353  * @dev: device
5354  * @iter: list_head ** of the current position
5355  *
5356  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5357  * list, starting from iter position. The caller must hold RCU read lock.
5358  */
5359 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5360 					struct list_head **iter)
5361 {
5362 	struct netdev_adjacent *lower;
5363 
5364 	WARN_ON_ONCE(!rcu_read_lock_held());
5365 
5366 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5367 
5368 	if (&lower->list == &dev->adj_list.lower)
5369 		return NULL;
5370 
5371 	*iter = &lower->list;
5372 
5373 	return lower->private;
5374 }
5375 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5376 
5377 /**
5378  * netdev_lower_get_next - Get the next device from the lower neighbour
5379  *                         list
5380  * @dev: device
5381  * @iter: list_head ** of the current position
5382  *
5383  * Gets the next netdev_adjacent from the dev's lower neighbour
5384  * list, starting from iter position. The caller must hold RTNL lock or
5385  * its own locking that guarantees that the neighbour lower
5386  * list will remain unchanged.
5387  */
5388 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5389 {
5390 	struct netdev_adjacent *lower;
5391 
5392 	lower = list_entry(*iter, struct netdev_adjacent, list);
5393 
5394 	if (&lower->list == &dev->adj_list.lower)
5395 		return NULL;
5396 
5397 	*iter = lower->list.next;
5398 
5399 	return lower->dev;
5400 }
5401 EXPORT_SYMBOL(netdev_lower_get_next);
5402 
5403 /**
5404  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5405  *				       lower neighbour list, RCU
5406  *				       variant
5407  * @dev: device
5408  *
5409  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5410  * list. The caller must hold RCU read lock.
5411  */
5412 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5413 {
5414 	struct netdev_adjacent *lower;
5415 
5416 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
5417 			struct netdev_adjacent, list);
5418 	if (lower)
5419 		return lower->private;
5420 	return NULL;
5421 }
5422 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5423 
5424 /**
5425  * netdev_master_upper_dev_get_rcu - Get master upper device
5426  * @dev: device
5427  *
5428  * Find a master upper device and return pointer to it or NULL in case
5429  * it's not there. The caller must hold the RCU read lock.
5430  */
5431 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5432 {
5433 	struct netdev_adjacent *upper;
5434 
5435 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
5436 				       struct netdev_adjacent, list);
5437 	if (upper && likely(upper->master))
5438 		return upper->dev;
5439 	return NULL;
5440 }
5441 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5442 
5443 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5444 			      struct net_device *adj_dev,
5445 			      struct list_head *dev_list)
5446 {
5447 	char linkname[IFNAMSIZ+7];
5448 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
5449 		"upper_%s" : "lower_%s", adj_dev->name);
5450 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5451 				 linkname);
5452 }
5453 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5454 			       char *name,
5455 			       struct list_head *dev_list)
5456 {
5457 	char linkname[IFNAMSIZ+7];
5458 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
5459 		"upper_%s" : "lower_%s", name);
5460 	sysfs_remove_link(&(dev->dev.kobj), linkname);
5461 }
5462 
5463 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5464 						 struct net_device *adj_dev,
5465 						 struct list_head *dev_list)
5466 {
5467 	return (dev_list == &dev->adj_list.upper ||
5468 		dev_list == &dev->adj_list.lower) &&
5469 		net_eq(dev_net(dev), dev_net(adj_dev));
5470 }
5471 
5472 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5473 					struct net_device *adj_dev,
5474 					struct list_head *dev_list,
5475 					void *private, bool master)
5476 {
5477 	struct netdev_adjacent *adj;
5478 	int ret;
5479 
5480 	adj = __netdev_find_adj(adj_dev, dev_list);
5481 
5482 	if (adj) {
5483 		adj->ref_nr++;
5484 		return 0;
5485 	}
5486 
5487 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5488 	if (!adj)
5489 		return -ENOMEM;
5490 
5491 	adj->dev = adj_dev;
5492 	adj->master = master;
5493 	adj->ref_nr = 1;
5494 	adj->private = private;
5495 	dev_hold(adj_dev);
5496 
5497 	pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5498 		 adj_dev->name, dev->name, adj_dev->name);
5499 
5500 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5501 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5502 		if (ret)
5503 			goto free_adj;
5504 	}
5505 
5506 	/* Ensure that master link is always the first item in list. */
5507 	if (master) {
5508 		ret = sysfs_create_link(&(dev->dev.kobj),
5509 					&(adj_dev->dev.kobj), "master");
5510 		if (ret)
5511 			goto remove_symlinks;
5512 
5513 		list_add_rcu(&adj->list, dev_list);
5514 	} else {
5515 		list_add_tail_rcu(&adj->list, dev_list);
5516 	}
5517 
5518 	return 0;
5519 
5520 remove_symlinks:
5521 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5522 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5523 free_adj:
5524 	kfree(adj);
5525 	dev_put(adj_dev);
5526 
5527 	return ret;
5528 }
5529 
5530 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5531 					 struct net_device *adj_dev,
5532 					 struct list_head *dev_list)
5533 {
5534 	struct netdev_adjacent *adj;
5535 
5536 	adj = __netdev_find_adj(adj_dev, dev_list);
5537 
5538 	if (!adj) {
5539 		pr_err("tried to remove device %s from %s\n",
5540 		       dev->name, adj_dev->name);
5541 		BUG();
5542 	}
5543 
5544 	if (adj->ref_nr > 1) {
5545 		pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5546 			 adj->ref_nr-1);
5547 		adj->ref_nr--;
5548 		return;
5549 	}
5550 
5551 	if (adj->master)
5552 		sysfs_remove_link(&(dev->dev.kobj), "master");
5553 
5554 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5555 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5556 
5557 	list_del_rcu(&adj->list);
5558 	pr_debug("dev_put for %s, because link removed from %s to %s\n",
5559 		 adj_dev->name, dev->name, adj_dev->name);
5560 	dev_put(adj_dev);
5561 	kfree_rcu(adj, rcu);
5562 }
5563 
5564 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5565 					    struct net_device *upper_dev,
5566 					    struct list_head *up_list,
5567 					    struct list_head *down_list,
5568 					    void *private, bool master)
5569 {
5570 	int ret;
5571 
5572 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5573 					   master);
5574 	if (ret)
5575 		return ret;
5576 
5577 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5578 					   false);
5579 	if (ret) {
5580 		__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5581 		return ret;
5582 	}
5583 
5584 	return 0;
5585 }
5586 
5587 static int __netdev_adjacent_dev_link(struct net_device *dev,
5588 				      struct net_device *upper_dev)
5589 {
5590 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5591 						&dev->all_adj_list.upper,
5592 						&upper_dev->all_adj_list.lower,
5593 						NULL, false);
5594 }
5595 
5596 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5597 					       struct net_device *upper_dev,
5598 					       struct list_head *up_list,
5599 					       struct list_head *down_list)
5600 {
5601 	__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5602 	__netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5603 }
5604 
5605 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5606 					 struct net_device *upper_dev)
5607 {
5608 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5609 					   &dev->all_adj_list.upper,
5610 					   &upper_dev->all_adj_list.lower);
5611 }
5612 
5613 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5614 						struct net_device *upper_dev,
5615 						void *private, bool master)
5616 {
5617 	int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5618 
5619 	if (ret)
5620 		return ret;
5621 
5622 	ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5623 					       &dev->adj_list.upper,
5624 					       &upper_dev->adj_list.lower,
5625 					       private, master);
5626 	if (ret) {
5627 		__netdev_adjacent_dev_unlink(dev, upper_dev);
5628 		return ret;
5629 	}
5630 
5631 	return 0;
5632 }
5633 
5634 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5635 						   struct net_device *upper_dev)
5636 {
5637 	__netdev_adjacent_dev_unlink(dev, upper_dev);
5638 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5639 					   &dev->adj_list.upper,
5640 					   &upper_dev->adj_list.lower);
5641 }
5642 
5643 static int __netdev_upper_dev_link(struct net_device *dev,
5644 				   struct net_device *upper_dev, bool master,
5645 				   void *upper_priv, void *upper_info)
5646 {
5647 	struct netdev_notifier_changeupper_info changeupper_info;
5648 	struct netdev_adjacent *i, *j, *to_i, *to_j;
5649 	int ret = 0;
5650 
5651 	ASSERT_RTNL();
5652 
5653 	if (dev == upper_dev)
5654 		return -EBUSY;
5655 
5656 	/* To prevent loops, check if dev is not upper device to upper_dev. */
5657 	if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
5658 		return -EBUSY;
5659 
5660 	if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
5661 		return -EEXIST;
5662 
5663 	if (master && netdev_master_upper_dev_get(dev))
5664 		return -EBUSY;
5665 
5666 	changeupper_info.upper_dev = upper_dev;
5667 	changeupper_info.master = master;
5668 	changeupper_info.linking = true;
5669 	changeupper_info.upper_info = upper_info;
5670 
5671 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5672 					    &changeupper_info.info);
5673 	ret = notifier_to_errno(ret);
5674 	if (ret)
5675 		return ret;
5676 
5677 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5678 						   master);
5679 	if (ret)
5680 		return ret;
5681 
5682 	/* Now that we linked these devs, make all the upper_dev's
5683 	 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5684 	 * versa, and don't forget the devices itself. All of these
5685 	 * links are non-neighbours.
5686 	 */
5687 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5688 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5689 			pr_debug("Interlinking %s with %s, non-neighbour\n",
5690 				 i->dev->name, j->dev->name);
5691 			ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5692 			if (ret)
5693 				goto rollback_mesh;
5694 		}
5695 	}
5696 
5697 	/* add dev to every upper_dev's upper device */
5698 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5699 		pr_debug("linking %s's upper device %s with %s\n",
5700 			 upper_dev->name, i->dev->name, dev->name);
5701 		ret = __netdev_adjacent_dev_link(dev, i->dev);
5702 		if (ret)
5703 			goto rollback_upper_mesh;
5704 	}
5705 
5706 	/* add upper_dev to every dev's lower device */
5707 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5708 		pr_debug("linking %s's lower device %s with %s\n", dev->name,
5709 			 i->dev->name, upper_dev->name);
5710 		ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5711 		if (ret)
5712 			goto rollback_lower_mesh;
5713 	}
5714 
5715 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5716 					    &changeupper_info.info);
5717 	ret = notifier_to_errno(ret);
5718 	if (ret)
5719 		goto rollback_lower_mesh;
5720 
5721 	return 0;
5722 
5723 rollback_lower_mesh:
5724 	to_i = i;
5725 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5726 		if (i == to_i)
5727 			break;
5728 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
5729 	}
5730 
5731 	i = NULL;
5732 
5733 rollback_upper_mesh:
5734 	to_i = i;
5735 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5736 		if (i == to_i)
5737 			break;
5738 		__netdev_adjacent_dev_unlink(dev, i->dev);
5739 	}
5740 
5741 	i = j = NULL;
5742 
5743 rollback_mesh:
5744 	to_i = i;
5745 	to_j = j;
5746 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5747 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5748 			if (i == to_i && j == to_j)
5749 				break;
5750 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5751 		}
5752 		if (i == to_i)
5753 			break;
5754 	}
5755 
5756 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5757 
5758 	return ret;
5759 }
5760 
5761 /**
5762  * netdev_upper_dev_link - Add a link to the upper device
5763  * @dev: device
5764  * @upper_dev: new upper device
5765  *
5766  * Adds a link to device which is upper to this one. The caller must hold
5767  * the RTNL lock. On a failure a negative errno code is returned.
5768  * On success the reference counts are adjusted and the function
5769  * returns zero.
5770  */
5771 int netdev_upper_dev_link(struct net_device *dev,
5772 			  struct net_device *upper_dev)
5773 {
5774 	return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
5775 }
5776 EXPORT_SYMBOL(netdev_upper_dev_link);
5777 
5778 /**
5779  * netdev_master_upper_dev_link - Add a master link to the upper device
5780  * @dev: device
5781  * @upper_dev: new upper device
5782  * @upper_priv: upper device private
5783  * @upper_info: upper info to be passed down via notifier
5784  *
5785  * Adds a link to device which is upper to this one. In this case, only
5786  * one master upper device can be linked, although other non-master devices
5787  * might be linked as well. The caller must hold the RTNL lock.
5788  * On a failure a negative errno code is returned. On success the reference
5789  * counts are adjusted and the function returns zero.
5790  */
5791 int netdev_master_upper_dev_link(struct net_device *dev,
5792 				 struct net_device *upper_dev,
5793 				 void *upper_priv, void *upper_info)
5794 {
5795 	return __netdev_upper_dev_link(dev, upper_dev, true,
5796 				       upper_priv, upper_info);
5797 }
5798 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5799 
5800 /**
5801  * netdev_upper_dev_unlink - Removes a link to upper device
5802  * @dev: device
5803  * @upper_dev: new upper device
5804  *
5805  * Removes a link to device which is upper to this one. The caller must hold
5806  * the RTNL lock.
5807  */
5808 void netdev_upper_dev_unlink(struct net_device *dev,
5809 			     struct net_device *upper_dev)
5810 {
5811 	struct netdev_notifier_changeupper_info changeupper_info;
5812 	struct netdev_adjacent *i, *j;
5813 	ASSERT_RTNL();
5814 
5815 	changeupper_info.upper_dev = upper_dev;
5816 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5817 	changeupper_info.linking = false;
5818 
5819 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5820 				      &changeupper_info.info);
5821 
5822 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5823 
5824 	/* Here is the tricky part. We must remove all dev's lower
5825 	 * devices from all upper_dev's upper devices and vice
5826 	 * versa, to maintain the graph relationship.
5827 	 */
5828 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5829 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5830 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5831 
5832 	/* remove also the devices itself from lower/upper device
5833 	 * list
5834 	 */
5835 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5836 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
5837 
5838 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5839 		__netdev_adjacent_dev_unlink(dev, i->dev);
5840 
5841 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5842 				      &changeupper_info.info);
5843 }
5844 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5845 
5846 /**
5847  * netdev_bonding_info_change - Dispatch event about slave change
5848  * @dev: device
5849  * @bonding_info: info to dispatch
5850  *
5851  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5852  * The caller must hold the RTNL lock.
5853  */
5854 void netdev_bonding_info_change(struct net_device *dev,
5855 				struct netdev_bonding_info *bonding_info)
5856 {
5857 	struct netdev_notifier_bonding_info	info;
5858 
5859 	memcpy(&info.bonding_info, bonding_info,
5860 	       sizeof(struct netdev_bonding_info));
5861 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5862 				      &info.info);
5863 }
5864 EXPORT_SYMBOL(netdev_bonding_info_change);
5865 
5866 static void netdev_adjacent_add_links(struct net_device *dev)
5867 {
5868 	struct netdev_adjacent *iter;
5869 
5870 	struct net *net = dev_net(dev);
5871 
5872 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5873 		if (!net_eq(net,dev_net(iter->dev)))
5874 			continue;
5875 		netdev_adjacent_sysfs_add(iter->dev, dev,
5876 					  &iter->dev->adj_list.lower);
5877 		netdev_adjacent_sysfs_add(dev, iter->dev,
5878 					  &dev->adj_list.upper);
5879 	}
5880 
5881 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5882 		if (!net_eq(net,dev_net(iter->dev)))
5883 			continue;
5884 		netdev_adjacent_sysfs_add(iter->dev, dev,
5885 					  &iter->dev->adj_list.upper);
5886 		netdev_adjacent_sysfs_add(dev, iter->dev,
5887 					  &dev->adj_list.lower);
5888 	}
5889 }
5890 
5891 static void netdev_adjacent_del_links(struct net_device *dev)
5892 {
5893 	struct netdev_adjacent *iter;
5894 
5895 	struct net *net = dev_net(dev);
5896 
5897 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5898 		if (!net_eq(net,dev_net(iter->dev)))
5899 			continue;
5900 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
5901 					  &iter->dev->adj_list.lower);
5902 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
5903 					  &dev->adj_list.upper);
5904 	}
5905 
5906 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5907 		if (!net_eq(net,dev_net(iter->dev)))
5908 			continue;
5909 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
5910 					  &iter->dev->adj_list.upper);
5911 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
5912 					  &dev->adj_list.lower);
5913 	}
5914 }
5915 
5916 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5917 {
5918 	struct netdev_adjacent *iter;
5919 
5920 	struct net *net = dev_net(dev);
5921 
5922 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5923 		if (!net_eq(net,dev_net(iter->dev)))
5924 			continue;
5925 		netdev_adjacent_sysfs_del(iter->dev, oldname,
5926 					  &iter->dev->adj_list.lower);
5927 		netdev_adjacent_sysfs_add(iter->dev, dev,
5928 					  &iter->dev->adj_list.lower);
5929 	}
5930 
5931 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5932 		if (!net_eq(net,dev_net(iter->dev)))
5933 			continue;
5934 		netdev_adjacent_sysfs_del(iter->dev, oldname,
5935 					  &iter->dev->adj_list.upper);
5936 		netdev_adjacent_sysfs_add(iter->dev, dev,
5937 					  &iter->dev->adj_list.upper);
5938 	}
5939 }
5940 
5941 void *netdev_lower_dev_get_private(struct net_device *dev,
5942 				   struct net_device *lower_dev)
5943 {
5944 	struct netdev_adjacent *lower;
5945 
5946 	if (!lower_dev)
5947 		return NULL;
5948 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
5949 	if (!lower)
5950 		return NULL;
5951 
5952 	return lower->private;
5953 }
5954 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5955 
5956 
5957 int dev_get_nest_level(struct net_device *dev,
5958 		       bool (*type_check)(const struct net_device *dev))
5959 {
5960 	struct net_device *lower = NULL;
5961 	struct list_head *iter;
5962 	int max_nest = -1;
5963 	int nest;
5964 
5965 	ASSERT_RTNL();
5966 
5967 	netdev_for_each_lower_dev(dev, lower, iter) {
5968 		nest = dev_get_nest_level(lower, type_check);
5969 		if (max_nest < nest)
5970 			max_nest = nest;
5971 	}
5972 
5973 	if (type_check(dev))
5974 		max_nest++;
5975 
5976 	return max_nest;
5977 }
5978 EXPORT_SYMBOL(dev_get_nest_level);
5979 
5980 /**
5981  * netdev_lower_change - Dispatch event about lower device state change
5982  * @lower_dev: device
5983  * @lower_state_info: state to dispatch
5984  *
5985  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
5986  * The caller must hold the RTNL lock.
5987  */
5988 void netdev_lower_state_changed(struct net_device *lower_dev,
5989 				void *lower_state_info)
5990 {
5991 	struct netdev_notifier_changelowerstate_info changelowerstate_info;
5992 
5993 	ASSERT_RTNL();
5994 	changelowerstate_info.lower_state_info = lower_state_info;
5995 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
5996 				      &changelowerstate_info.info);
5997 }
5998 EXPORT_SYMBOL(netdev_lower_state_changed);
5999 
6000 static void dev_change_rx_flags(struct net_device *dev, int flags)
6001 {
6002 	const struct net_device_ops *ops = dev->netdev_ops;
6003 
6004 	if (ops->ndo_change_rx_flags)
6005 		ops->ndo_change_rx_flags(dev, flags);
6006 }
6007 
6008 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6009 {
6010 	unsigned int old_flags = dev->flags;
6011 	kuid_t uid;
6012 	kgid_t gid;
6013 
6014 	ASSERT_RTNL();
6015 
6016 	dev->flags |= IFF_PROMISC;
6017 	dev->promiscuity += inc;
6018 	if (dev->promiscuity == 0) {
6019 		/*
6020 		 * Avoid overflow.
6021 		 * If inc causes overflow, untouch promisc and return error.
6022 		 */
6023 		if (inc < 0)
6024 			dev->flags &= ~IFF_PROMISC;
6025 		else {
6026 			dev->promiscuity -= inc;
6027 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6028 				dev->name);
6029 			return -EOVERFLOW;
6030 		}
6031 	}
6032 	if (dev->flags != old_flags) {
6033 		pr_info("device %s %s promiscuous mode\n",
6034 			dev->name,
6035 			dev->flags & IFF_PROMISC ? "entered" : "left");
6036 		if (audit_enabled) {
6037 			current_uid_gid(&uid, &gid);
6038 			audit_log(current->audit_context, GFP_ATOMIC,
6039 				AUDIT_ANOM_PROMISCUOUS,
6040 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6041 				dev->name, (dev->flags & IFF_PROMISC),
6042 				(old_flags & IFF_PROMISC),
6043 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
6044 				from_kuid(&init_user_ns, uid),
6045 				from_kgid(&init_user_ns, gid),
6046 				audit_get_sessionid(current));
6047 		}
6048 
6049 		dev_change_rx_flags(dev, IFF_PROMISC);
6050 	}
6051 	if (notify)
6052 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
6053 	return 0;
6054 }
6055 
6056 /**
6057  *	dev_set_promiscuity	- update promiscuity count on a device
6058  *	@dev: device
6059  *	@inc: modifier
6060  *
6061  *	Add or remove promiscuity from a device. While the count in the device
6062  *	remains above zero the interface remains promiscuous. Once it hits zero
6063  *	the device reverts back to normal filtering operation. A negative inc
6064  *	value is used to drop promiscuity on the device.
6065  *	Return 0 if successful or a negative errno code on error.
6066  */
6067 int dev_set_promiscuity(struct net_device *dev, int inc)
6068 {
6069 	unsigned int old_flags = dev->flags;
6070 	int err;
6071 
6072 	err = __dev_set_promiscuity(dev, inc, true);
6073 	if (err < 0)
6074 		return err;
6075 	if (dev->flags != old_flags)
6076 		dev_set_rx_mode(dev);
6077 	return err;
6078 }
6079 EXPORT_SYMBOL(dev_set_promiscuity);
6080 
6081 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6082 {
6083 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6084 
6085 	ASSERT_RTNL();
6086 
6087 	dev->flags |= IFF_ALLMULTI;
6088 	dev->allmulti += inc;
6089 	if (dev->allmulti == 0) {
6090 		/*
6091 		 * Avoid overflow.
6092 		 * If inc causes overflow, untouch allmulti and return error.
6093 		 */
6094 		if (inc < 0)
6095 			dev->flags &= ~IFF_ALLMULTI;
6096 		else {
6097 			dev->allmulti -= inc;
6098 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6099 				dev->name);
6100 			return -EOVERFLOW;
6101 		}
6102 	}
6103 	if (dev->flags ^ old_flags) {
6104 		dev_change_rx_flags(dev, IFF_ALLMULTI);
6105 		dev_set_rx_mode(dev);
6106 		if (notify)
6107 			__dev_notify_flags(dev, old_flags,
6108 					   dev->gflags ^ old_gflags);
6109 	}
6110 	return 0;
6111 }
6112 
6113 /**
6114  *	dev_set_allmulti	- update allmulti count on a device
6115  *	@dev: device
6116  *	@inc: modifier
6117  *
6118  *	Add or remove reception of all multicast frames to a device. While the
6119  *	count in the device remains above zero the interface remains listening
6120  *	to all interfaces. Once it hits zero the device reverts back to normal
6121  *	filtering operation. A negative @inc value is used to drop the counter
6122  *	when releasing a resource needing all multicasts.
6123  *	Return 0 if successful or a negative errno code on error.
6124  */
6125 
6126 int dev_set_allmulti(struct net_device *dev, int inc)
6127 {
6128 	return __dev_set_allmulti(dev, inc, true);
6129 }
6130 EXPORT_SYMBOL(dev_set_allmulti);
6131 
6132 /*
6133  *	Upload unicast and multicast address lists to device and
6134  *	configure RX filtering. When the device doesn't support unicast
6135  *	filtering it is put in promiscuous mode while unicast addresses
6136  *	are present.
6137  */
6138 void __dev_set_rx_mode(struct net_device *dev)
6139 {
6140 	const struct net_device_ops *ops = dev->netdev_ops;
6141 
6142 	/* dev_open will call this function so the list will stay sane. */
6143 	if (!(dev->flags&IFF_UP))
6144 		return;
6145 
6146 	if (!netif_device_present(dev))
6147 		return;
6148 
6149 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6150 		/* Unicast addresses changes may only happen under the rtnl,
6151 		 * therefore calling __dev_set_promiscuity here is safe.
6152 		 */
6153 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6154 			__dev_set_promiscuity(dev, 1, false);
6155 			dev->uc_promisc = true;
6156 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6157 			__dev_set_promiscuity(dev, -1, false);
6158 			dev->uc_promisc = false;
6159 		}
6160 	}
6161 
6162 	if (ops->ndo_set_rx_mode)
6163 		ops->ndo_set_rx_mode(dev);
6164 }
6165 
6166 void dev_set_rx_mode(struct net_device *dev)
6167 {
6168 	netif_addr_lock_bh(dev);
6169 	__dev_set_rx_mode(dev);
6170 	netif_addr_unlock_bh(dev);
6171 }
6172 
6173 /**
6174  *	dev_get_flags - get flags reported to userspace
6175  *	@dev: device
6176  *
6177  *	Get the combination of flag bits exported through APIs to userspace.
6178  */
6179 unsigned int dev_get_flags(const struct net_device *dev)
6180 {
6181 	unsigned int flags;
6182 
6183 	flags = (dev->flags & ~(IFF_PROMISC |
6184 				IFF_ALLMULTI |
6185 				IFF_RUNNING |
6186 				IFF_LOWER_UP |
6187 				IFF_DORMANT)) |
6188 		(dev->gflags & (IFF_PROMISC |
6189 				IFF_ALLMULTI));
6190 
6191 	if (netif_running(dev)) {
6192 		if (netif_oper_up(dev))
6193 			flags |= IFF_RUNNING;
6194 		if (netif_carrier_ok(dev))
6195 			flags |= IFF_LOWER_UP;
6196 		if (netif_dormant(dev))
6197 			flags |= IFF_DORMANT;
6198 	}
6199 
6200 	return flags;
6201 }
6202 EXPORT_SYMBOL(dev_get_flags);
6203 
6204 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6205 {
6206 	unsigned int old_flags = dev->flags;
6207 	int ret;
6208 
6209 	ASSERT_RTNL();
6210 
6211 	/*
6212 	 *	Set the flags on our device.
6213 	 */
6214 
6215 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6216 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6217 			       IFF_AUTOMEDIA)) |
6218 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6219 				    IFF_ALLMULTI));
6220 
6221 	/*
6222 	 *	Load in the correct multicast list now the flags have changed.
6223 	 */
6224 
6225 	if ((old_flags ^ flags) & IFF_MULTICAST)
6226 		dev_change_rx_flags(dev, IFF_MULTICAST);
6227 
6228 	dev_set_rx_mode(dev);
6229 
6230 	/*
6231 	 *	Have we downed the interface. We handle IFF_UP ourselves
6232 	 *	according to user attempts to set it, rather than blindly
6233 	 *	setting it.
6234 	 */
6235 
6236 	ret = 0;
6237 	if ((old_flags ^ flags) & IFF_UP)
6238 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6239 
6240 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
6241 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
6242 		unsigned int old_flags = dev->flags;
6243 
6244 		dev->gflags ^= IFF_PROMISC;
6245 
6246 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
6247 			if (dev->flags != old_flags)
6248 				dev_set_rx_mode(dev);
6249 	}
6250 
6251 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6252 	   is important. Some (broken) drivers set IFF_PROMISC, when
6253 	   IFF_ALLMULTI is requested not asking us and not reporting.
6254 	 */
6255 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6256 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6257 
6258 		dev->gflags ^= IFF_ALLMULTI;
6259 		__dev_set_allmulti(dev, inc, false);
6260 	}
6261 
6262 	return ret;
6263 }
6264 
6265 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6266 			unsigned int gchanges)
6267 {
6268 	unsigned int changes = dev->flags ^ old_flags;
6269 
6270 	if (gchanges)
6271 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6272 
6273 	if (changes & IFF_UP) {
6274 		if (dev->flags & IFF_UP)
6275 			call_netdevice_notifiers(NETDEV_UP, dev);
6276 		else
6277 			call_netdevice_notifiers(NETDEV_DOWN, dev);
6278 	}
6279 
6280 	if (dev->flags & IFF_UP &&
6281 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6282 		struct netdev_notifier_change_info change_info;
6283 
6284 		change_info.flags_changed = changes;
6285 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6286 					      &change_info.info);
6287 	}
6288 }
6289 
6290 /**
6291  *	dev_change_flags - change device settings
6292  *	@dev: device
6293  *	@flags: device state flags
6294  *
6295  *	Change settings on device based state flags. The flags are
6296  *	in the userspace exported format.
6297  */
6298 int dev_change_flags(struct net_device *dev, unsigned int flags)
6299 {
6300 	int ret;
6301 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6302 
6303 	ret = __dev_change_flags(dev, flags);
6304 	if (ret < 0)
6305 		return ret;
6306 
6307 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6308 	__dev_notify_flags(dev, old_flags, changes);
6309 	return ret;
6310 }
6311 EXPORT_SYMBOL(dev_change_flags);
6312 
6313 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6314 {
6315 	const struct net_device_ops *ops = dev->netdev_ops;
6316 
6317 	if (ops->ndo_change_mtu)
6318 		return ops->ndo_change_mtu(dev, new_mtu);
6319 
6320 	dev->mtu = new_mtu;
6321 	return 0;
6322 }
6323 
6324 /**
6325  *	dev_set_mtu - Change maximum transfer unit
6326  *	@dev: device
6327  *	@new_mtu: new transfer unit
6328  *
6329  *	Change the maximum transfer size of the network device.
6330  */
6331 int dev_set_mtu(struct net_device *dev, int new_mtu)
6332 {
6333 	int err, orig_mtu;
6334 
6335 	if (new_mtu == dev->mtu)
6336 		return 0;
6337 
6338 	/*	MTU must be positive.	 */
6339 	if (new_mtu < 0)
6340 		return -EINVAL;
6341 
6342 	if (!netif_device_present(dev))
6343 		return -ENODEV;
6344 
6345 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6346 	err = notifier_to_errno(err);
6347 	if (err)
6348 		return err;
6349 
6350 	orig_mtu = dev->mtu;
6351 	err = __dev_set_mtu(dev, new_mtu);
6352 
6353 	if (!err) {
6354 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6355 		err = notifier_to_errno(err);
6356 		if (err) {
6357 			/* setting mtu back and notifying everyone again,
6358 			 * so that they have a chance to revert changes.
6359 			 */
6360 			__dev_set_mtu(dev, orig_mtu);
6361 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6362 		}
6363 	}
6364 	return err;
6365 }
6366 EXPORT_SYMBOL(dev_set_mtu);
6367 
6368 /**
6369  *	dev_set_group - Change group this device belongs to
6370  *	@dev: device
6371  *	@new_group: group this device should belong to
6372  */
6373 void dev_set_group(struct net_device *dev, int new_group)
6374 {
6375 	dev->group = new_group;
6376 }
6377 EXPORT_SYMBOL(dev_set_group);
6378 
6379 /**
6380  *	dev_set_mac_address - Change Media Access Control Address
6381  *	@dev: device
6382  *	@sa: new address
6383  *
6384  *	Change the hardware (MAC) address of the device
6385  */
6386 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6387 {
6388 	const struct net_device_ops *ops = dev->netdev_ops;
6389 	int err;
6390 
6391 	if (!ops->ndo_set_mac_address)
6392 		return -EOPNOTSUPP;
6393 	if (sa->sa_family != dev->type)
6394 		return -EINVAL;
6395 	if (!netif_device_present(dev))
6396 		return -ENODEV;
6397 	err = ops->ndo_set_mac_address(dev, sa);
6398 	if (err)
6399 		return err;
6400 	dev->addr_assign_type = NET_ADDR_SET;
6401 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6402 	add_device_randomness(dev->dev_addr, dev->addr_len);
6403 	return 0;
6404 }
6405 EXPORT_SYMBOL(dev_set_mac_address);
6406 
6407 /**
6408  *	dev_change_carrier - Change device carrier
6409  *	@dev: device
6410  *	@new_carrier: new value
6411  *
6412  *	Change device carrier
6413  */
6414 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6415 {
6416 	const struct net_device_ops *ops = dev->netdev_ops;
6417 
6418 	if (!ops->ndo_change_carrier)
6419 		return -EOPNOTSUPP;
6420 	if (!netif_device_present(dev))
6421 		return -ENODEV;
6422 	return ops->ndo_change_carrier(dev, new_carrier);
6423 }
6424 EXPORT_SYMBOL(dev_change_carrier);
6425 
6426 /**
6427  *	dev_get_phys_port_id - Get device physical port ID
6428  *	@dev: device
6429  *	@ppid: port ID
6430  *
6431  *	Get device physical port ID
6432  */
6433 int dev_get_phys_port_id(struct net_device *dev,
6434 			 struct netdev_phys_item_id *ppid)
6435 {
6436 	const struct net_device_ops *ops = dev->netdev_ops;
6437 
6438 	if (!ops->ndo_get_phys_port_id)
6439 		return -EOPNOTSUPP;
6440 	return ops->ndo_get_phys_port_id(dev, ppid);
6441 }
6442 EXPORT_SYMBOL(dev_get_phys_port_id);
6443 
6444 /**
6445  *	dev_get_phys_port_name - Get device physical port name
6446  *	@dev: device
6447  *	@name: port name
6448  *	@len: limit of bytes to copy to name
6449  *
6450  *	Get device physical port name
6451  */
6452 int dev_get_phys_port_name(struct net_device *dev,
6453 			   char *name, size_t len)
6454 {
6455 	const struct net_device_ops *ops = dev->netdev_ops;
6456 
6457 	if (!ops->ndo_get_phys_port_name)
6458 		return -EOPNOTSUPP;
6459 	return ops->ndo_get_phys_port_name(dev, name, len);
6460 }
6461 EXPORT_SYMBOL(dev_get_phys_port_name);
6462 
6463 /**
6464  *	dev_change_proto_down - update protocol port state information
6465  *	@dev: device
6466  *	@proto_down: new value
6467  *
6468  *	This info can be used by switch drivers to set the phys state of the
6469  *	port.
6470  */
6471 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6472 {
6473 	const struct net_device_ops *ops = dev->netdev_ops;
6474 
6475 	if (!ops->ndo_change_proto_down)
6476 		return -EOPNOTSUPP;
6477 	if (!netif_device_present(dev))
6478 		return -ENODEV;
6479 	return ops->ndo_change_proto_down(dev, proto_down);
6480 }
6481 EXPORT_SYMBOL(dev_change_proto_down);
6482 
6483 /**
6484  *	dev_new_index	-	allocate an ifindex
6485  *	@net: the applicable net namespace
6486  *
6487  *	Returns a suitable unique value for a new device interface
6488  *	number.  The caller must hold the rtnl semaphore or the
6489  *	dev_base_lock to be sure it remains unique.
6490  */
6491 static int dev_new_index(struct net *net)
6492 {
6493 	int ifindex = net->ifindex;
6494 	for (;;) {
6495 		if (++ifindex <= 0)
6496 			ifindex = 1;
6497 		if (!__dev_get_by_index(net, ifindex))
6498 			return net->ifindex = ifindex;
6499 	}
6500 }
6501 
6502 /* Delayed registration/unregisteration */
6503 static LIST_HEAD(net_todo_list);
6504 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6505 
6506 static void net_set_todo(struct net_device *dev)
6507 {
6508 	list_add_tail(&dev->todo_list, &net_todo_list);
6509 	dev_net(dev)->dev_unreg_count++;
6510 }
6511 
6512 static void rollback_registered_many(struct list_head *head)
6513 {
6514 	struct net_device *dev, *tmp;
6515 	LIST_HEAD(close_head);
6516 
6517 	BUG_ON(dev_boot_phase);
6518 	ASSERT_RTNL();
6519 
6520 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6521 		/* Some devices call without registering
6522 		 * for initialization unwind. Remove those
6523 		 * devices and proceed with the remaining.
6524 		 */
6525 		if (dev->reg_state == NETREG_UNINITIALIZED) {
6526 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6527 				 dev->name, dev);
6528 
6529 			WARN_ON(1);
6530 			list_del(&dev->unreg_list);
6531 			continue;
6532 		}
6533 		dev->dismantle = true;
6534 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
6535 	}
6536 
6537 	/* If device is running, close it first. */
6538 	list_for_each_entry(dev, head, unreg_list)
6539 		list_add_tail(&dev->close_list, &close_head);
6540 	dev_close_many(&close_head, true);
6541 
6542 	list_for_each_entry(dev, head, unreg_list) {
6543 		/* And unlink it from device chain. */
6544 		unlist_netdevice(dev);
6545 
6546 		dev->reg_state = NETREG_UNREGISTERING;
6547 		on_each_cpu(flush_backlog, dev, 1);
6548 	}
6549 
6550 	synchronize_net();
6551 
6552 	list_for_each_entry(dev, head, unreg_list) {
6553 		struct sk_buff *skb = NULL;
6554 
6555 		/* Shutdown queueing discipline. */
6556 		dev_shutdown(dev);
6557 
6558 
6559 		/* Notify protocols, that we are about to destroy
6560 		   this device. They should clean all the things.
6561 		*/
6562 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6563 
6564 		if (!dev->rtnl_link_ops ||
6565 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6566 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6567 						     GFP_KERNEL);
6568 
6569 		/*
6570 		 *	Flush the unicast and multicast chains
6571 		 */
6572 		dev_uc_flush(dev);
6573 		dev_mc_flush(dev);
6574 
6575 		if (dev->netdev_ops->ndo_uninit)
6576 			dev->netdev_ops->ndo_uninit(dev);
6577 
6578 		if (skb)
6579 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6580 
6581 		/* Notifier chain MUST detach us all upper devices. */
6582 		WARN_ON(netdev_has_any_upper_dev(dev));
6583 
6584 		/* Remove entries from kobject tree */
6585 		netdev_unregister_kobject(dev);
6586 #ifdef CONFIG_XPS
6587 		/* Remove XPS queueing entries */
6588 		netif_reset_xps_queues_gt(dev, 0);
6589 #endif
6590 	}
6591 
6592 	synchronize_net();
6593 
6594 	list_for_each_entry(dev, head, unreg_list)
6595 		dev_put(dev);
6596 }
6597 
6598 static void rollback_registered(struct net_device *dev)
6599 {
6600 	LIST_HEAD(single);
6601 
6602 	list_add(&dev->unreg_list, &single);
6603 	rollback_registered_many(&single);
6604 	list_del(&single);
6605 }
6606 
6607 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6608 	struct net_device *upper, netdev_features_t features)
6609 {
6610 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6611 	netdev_features_t feature;
6612 	int feature_bit;
6613 
6614 	for_each_netdev_feature(&upper_disables, feature_bit) {
6615 		feature = __NETIF_F_BIT(feature_bit);
6616 		if (!(upper->wanted_features & feature)
6617 		    && (features & feature)) {
6618 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6619 				   &feature, upper->name);
6620 			features &= ~feature;
6621 		}
6622 	}
6623 
6624 	return features;
6625 }
6626 
6627 static void netdev_sync_lower_features(struct net_device *upper,
6628 	struct net_device *lower, netdev_features_t features)
6629 {
6630 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6631 	netdev_features_t feature;
6632 	int feature_bit;
6633 
6634 	for_each_netdev_feature(&upper_disables, feature_bit) {
6635 		feature = __NETIF_F_BIT(feature_bit);
6636 		if (!(features & feature) && (lower->features & feature)) {
6637 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6638 				   &feature, lower->name);
6639 			lower->wanted_features &= ~feature;
6640 			netdev_update_features(lower);
6641 
6642 			if (unlikely(lower->features & feature))
6643 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6644 					    &feature, lower->name);
6645 		}
6646 	}
6647 }
6648 
6649 static netdev_features_t netdev_fix_features(struct net_device *dev,
6650 	netdev_features_t features)
6651 {
6652 	/* Fix illegal checksum combinations */
6653 	if ((features & NETIF_F_HW_CSUM) &&
6654 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6655 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6656 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6657 	}
6658 
6659 	/* TSO requires that SG is present as well. */
6660 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6661 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6662 		features &= ~NETIF_F_ALL_TSO;
6663 	}
6664 
6665 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6666 					!(features & NETIF_F_IP_CSUM)) {
6667 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6668 		features &= ~NETIF_F_TSO;
6669 		features &= ~NETIF_F_TSO_ECN;
6670 	}
6671 
6672 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6673 					 !(features & NETIF_F_IPV6_CSUM)) {
6674 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6675 		features &= ~NETIF_F_TSO6;
6676 	}
6677 
6678 	/* TSO ECN requires that TSO is present as well. */
6679 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6680 		features &= ~NETIF_F_TSO_ECN;
6681 
6682 	/* Software GSO depends on SG. */
6683 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6684 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6685 		features &= ~NETIF_F_GSO;
6686 	}
6687 
6688 	/* UFO needs SG and checksumming */
6689 	if (features & NETIF_F_UFO) {
6690 		/* maybe split UFO into V4 and V6? */
6691 		if (!(features & NETIF_F_HW_CSUM) &&
6692 		    ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6693 		     (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6694 			netdev_dbg(dev,
6695 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
6696 			features &= ~NETIF_F_UFO;
6697 		}
6698 
6699 		if (!(features & NETIF_F_SG)) {
6700 			netdev_dbg(dev,
6701 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6702 			features &= ~NETIF_F_UFO;
6703 		}
6704 	}
6705 
6706 #ifdef CONFIG_NET_RX_BUSY_POLL
6707 	if (dev->netdev_ops->ndo_busy_poll)
6708 		features |= NETIF_F_BUSY_POLL;
6709 	else
6710 #endif
6711 		features &= ~NETIF_F_BUSY_POLL;
6712 
6713 	return features;
6714 }
6715 
6716 int __netdev_update_features(struct net_device *dev)
6717 {
6718 	struct net_device *upper, *lower;
6719 	netdev_features_t features;
6720 	struct list_head *iter;
6721 	int err = -1;
6722 
6723 	ASSERT_RTNL();
6724 
6725 	features = netdev_get_wanted_features(dev);
6726 
6727 	if (dev->netdev_ops->ndo_fix_features)
6728 		features = dev->netdev_ops->ndo_fix_features(dev, features);
6729 
6730 	/* driver might be less strict about feature dependencies */
6731 	features = netdev_fix_features(dev, features);
6732 
6733 	/* some features can't be enabled if they're off an an upper device */
6734 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
6735 		features = netdev_sync_upper_features(dev, upper, features);
6736 
6737 	if (dev->features == features)
6738 		goto sync_lower;
6739 
6740 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6741 		&dev->features, &features);
6742 
6743 	if (dev->netdev_ops->ndo_set_features)
6744 		err = dev->netdev_ops->ndo_set_features(dev, features);
6745 	else
6746 		err = 0;
6747 
6748 	if (unlikely(err < 0)) {
6749 		netdev_err(dev,
6750 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
6751 			err, &features, &dev->features);
6752 		/* return non-0 since some features might have changed and
6753 		 * it's better to fire a spurious notification than miss it
6754 		 */
6755 		return -1;
6756 	}
6757 
6758 sync_lower:
6759 	/* some features must be disabled on lower devices when disabled
6760 	 * on an upper device (think: bonding master or bridge)
6761 	 */
6762 	netdev_for_each_lower_dev(dev, lower, iter)
6763 		netdev_sync_lower_features(dev, lower, features);
6764 
6765 	if (!err)
6766 		dev->features = features;
6767 
6768 	return err < 0 ? 0 : 1;
6769 }
6770 
6771 /**
6772  *	netdev_update_features - recalculate device features
6773  *	@dev: the device to check
6774  *
6775  *	Recalculate dev->features set and send notifications if it
6776  *	has changed. Should be called after driver or hardware dependent
6777  *	conditions might have changed that influence the features.
6778  */
6779 void netdev_update_features(struct net_device *dev)
6780 {
6781 	if (__netdev_update_features(dev))
6782 		netdev_features_change(dev);
6783 }
6784 EXPORT_SYMBOL(netdev_update_features);
6785 
6786 /**
6787  *	netdev_change_features - recalculate device features
6788  *	@dev: the device to check
6789  *
6790  *	Recalculate dev->features set and send notifications even
6791  *	if they have not changed. Should be called instead of
6792  *	netdev_update_features() if also dev->vlan_features might
6793  *	have changed to allow the changes to be propagated to stacked
6794  *	VLAN devices.
6795  */
6796 void netdev_change_features(struct net_device *dev)
6797 {
6798 	__netdev_update_features(dev);
6799 	netdev_features_change(dev);
6800 }
6801 EXPORT_SYMBOL(netdev_change_features);
6802 
6803 /**
6804  *	netif_stacked_transfer_operstate -	transfer operstate
6805  *	@rootdev: the root or lower level device to transfer state from
6806  *	@dev: the device to transfer operstate to
6807  *
6808  *	Transfer operational state from root to device. This is normally
6809  *	called when a stacking relationship exists between the root
6810  *	device and the device(a leaf device).
6811  */
6812 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6813 					struct net_device *dev)
6814 {
6815 	if (rootdev->operstate == IF_OPER_DORMANT)
6816 		netif_dormant_on(dev);
6817 	else
6818 		netif_dormant_off(dev);
6819 
6820 	if (netif_carrier_ok(rootdev)) {
6821 		if (!netif_carrier_ok(dev))
6822 			netif_carrier_on(dev);
6823 	} else {
6824 		if (netif_carrier_ok(dev))
6825 			netif_carrier_off(dev);
6826 	}
6827 }
6828 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6829 
6830 #ifdef CONFIG_SYSFS
6831 static int netif_alloc_rx_queues(struct net_device *dev)
6832 {
6833 	unsigned int i, count = dev->num_rx_queues;
6834 	struct netdev_rx_queue *rx;
6835 	size_t sz = count * sizeof(*rx);
6836 
6837 	BUG_ON(count < 1);
6838 
6839 	rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6840 	if (!rx) {
6841 		rx = vzalloc(sz);
6842 		if (!rx)
6843 			return -ENOMEM;
6844 	}
6845 	dev->_rx = rx;
6846 
6847 	for (i = 0; i < count; i++)
6848 		rx[i].dev = dev;
6849 	return 0;
6850 }
6851 #endif
6852 
6853 static void netdev_init_one_queue(struct net_device *dev,
6854 				  struct netdev_queue *queue, void *_unused)
6855 {
6856 	/* Initialize queue lock */
6857 	spin_lock_init(&queue->_xmit_lock);
6858 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6859 	queue->xmit_lock_owner = -1;
6860 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6861 	queue->dev = dev;
6862 #ifdef CONFIG_BQL
6863 	dql_init(&queue->dql, HZ);
6864 #endif
6865 }
6866 
6867 static void netif_free_tx_queues(struct net_device *dev)
6868 {
6869 	kvfree(dev->_tx);
6870 }
6871 
6872 static int netif_alloc_netdev_queues(struct net_device *dev)
6873 {
6874 	unsigned int count = dev->num_tx_queues;
6875 	struct netdev_queue *tx;
6876 	size_t sz = count * sizeof(*tx);
6877 
6878 	if (count < 1 || count > 0xffff)
6879 		return -EINVAL;
6880 
6881 	tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6882 	if (!tx) {
6883 		tx = vzalloc(sz);
6884 		if (!tx)
6885 			return -ENOMEM;
6886 	}
6887 	dev->_tx = tx;
6888 
6889 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6890 	spin_lock_init(&dev->tx_global_lock);
6891 
6892 	return 0;
6893 }
6894 
6895 void netif_tx_stop_all_queues(struct net_device *dev)
6896 {
6897 	unsigned int i;
6898 
6899 	for (i = 0; i < dev->num_tx_queues; i++) {
6900 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6901 		netif_tx_stop_queue(txq);
6902 	}
6903 }
6904 EXPORT_SYMBOL(netif_tx_stop_all_queues);
6905 
6906 /**
6907  *	register_netdevice	- register a network device
6908  *	@dev: device to register
6909  *
6910  *	Take a completed network device structure and add it to the kernel
6911  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6912  *	chain. 0 is returned on success. A negative errno code is returned
6913  *	on a failure to set up the device, or if the name is a duplicate.
6914  *
6915  *	Callers must hold the rtnl semaphore. You may want
6916  *	register_netdev() instead of this.
6917  *
6918  *	BUGS:
6919  *	The locking appears insufficient to guarantee two parallel registers
6920  *	will not get the same name.
6921  */
6922 
6923 int register_netdevice(struct net_device *dev)
6924 {
6925 	int ret;
6926 	struct net *net = dev_net(dev);
6927 
6928 	BUG_ON(dev_boot_phase);
6929 	ASSERT_RTNL();
6930 
6931 	might_sleep();
6932 
6933 	/* When net_device's are persistent, this will be fatal. */
6934 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6935 	BUG_ON(!net);
6936 
6937 	spin_lock_init(&dev->addr_list_lock);
6938 	netdev_set_addr_lockdep_class(dev);
6939 
6940 	ret = dev_get_valid_name(net, dev, dev->name);
6941 	if (ret < 0)
6942 		goto out;
6943 
6944 	/* Init, if this function is available */
6945 	if (dev->netdev_ops->ndo_init) {
6946 		ret = dev->netdev_ops->ndo_init(dev);
6947 		if (ret) {
6948 			if (ret > 0)
6949 				ret = -EIO;
6950 			goto out;
6951 		}
6952 	}
6953 
6954 	if (((dev->hw_features | dev->features) &
6955 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
6956 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6957 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6958 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6959 		ret = -EINVAL;
6960 		goto err_uninit;
6961 	}
6962 
6963 	ret = -EBUSY;
6964 	if (!dev->ifindex)
6965 		dev->ifindex = dev_new_index(net);
6966 	else if (__dev_get_by_index(net, dev->ifindex))
6967 		goto err_uninit;
6968 
6969 	/* Transfer changeable features to wanted_features and enable
6970 	 * software offloads (GSO and GRO).
6971 	 */
6972 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
6973 	dev->features |= NETIF_F_SOFT_FEATURES;
6974 	dev->wanted_features = dev->features & dev->hw_features;
6975 
6976 	if (!(dev->flags & IFF_LOOPBACK)) {
6977 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
6978 	}
6979 
6980 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6981 	 */
6982 	dev->vlan_features |= NETIF_F_HIGHDMA;
6983 
6984 	/* Make NETIF_F_SG inheritable to tunnel devices.
6985 	 */
6986 	dev->hw_enc_features |= NETIF_F_SG;
6987 
6988 	/* Make NETIF_F_SG inheritable to MPLS.
6989 	 */
6990 	dev->mpls_features |= NETIF_F_SG;
6991 
6992 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6993 	ret = notifier_to_errno(ret);
6994 	if (ret)
6995 		goto err_uninit;
6996 
6997 	ret = netdev_register_kobject(dev);
6998 	if (ret)
6999 		goto err_uninit;
7000 	dev->reg_state = NETREG_REGISTERED;
7001 
7002 	__netdev_update_features(dev);
7003 
7004 	/*
7005 	 *	Default initial state at registry is that the
7006 	 *	device is present.
7007 	 */
7008 
7009 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7010 
7011 	linkwatch_init_dev(dev);
7012 
7013 	dev_init_scheduler(dev);
7014 	dev_hold(dev);
7015 	list_netdevice(dev);
7016 	add_device_randomness(dev->dev_addr, dev->addr_len);
7017 
7018 	/* If the device has permanent device address, driver should
7019 	 * set dev_addr and also addr_assign_type should be set to
7020 	 * NET_ADDR_PERM (default value).
7021 	 */
7022 	if (dev->addr_assign_type == NET_ADDR_PERM)
7023 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7024 
7025 	/* Notify protocols, that a new device appeared. */
7026 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7027 	ret = notifier_to_errno(ret);
7028 	if (ret) {
7029 		rollback_registered(dev);
7030 		dev->reg_state = NETREG_UNREGISTERED;
7031 	}
7032 	/*
7033 	 *	Prevent userspace races by waiting until the network
7034 	 *	device is fully setup before sending notifications.
7035 	 */
7036 	if (!dev->rtnl_link_ops ||
7037 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7038 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7039 
7040 out:
7041 	return ret;
7042 
7043 err_uninit:
7044 	if (dev->netdev_ops->ndo_uninit)
7045 		dev->netdev_ops->ndo_uninit(dev);
7046 	goto out;
7047 }
7048 EXPORT_SYMBOL(register_netdevice);
7049 
7050 /**
7051  *	init_dummy_netdev	- init a dummy network device for NAPI
7052  *	@dev: device to init
7053  *
7054  *	This takes a network device structure and initialize the minimum
7055  *	amount of fields so it can be used to schedule NAPI polls without
7056  *	registering a full blown interface. This is to be used by drivers
7057  *	that need to tie several hardware interfaces to a single NAPI
7058  *	poll scheduler due to HW limitations.
7059  */
7060 int init_dummy_netdev(struct net_device *dev)
7061 {
7062 	/* Clear everything. Note we don't initialize spinlocks
7063 	 * are they aren't supposed to be taken by any of the
7064 	 * NAPI code and this dummy netdev is supposed to be
7065 	 * only ever used for NAPI polls
7066 	 */
7067 	memset(dev, 0, sizeof(struct net_device));
7068 
7069 	/* make sure we BUG if trying to hit standard
7070 	 * register/unregister code path
7071 	 */
7072 	dev->reg_state = NETREG_DUMMY;
7073 
7074 	/* NAPI wants this */
7075 	INIT_LIST_HEAD(&dev->napi_list);
7076 
7077 	/* a dummy interface is started by default */
7078 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7079 	set_bit(__LINK_STATE_START, &dev->state);
7080 
7081 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
7082 	 * because users of this 'device' dont need to change
7083 	 * its refcount.
7084 	 */
7085 
7086 	return 0;
7087 }
7088 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7089 
7090 
7091 /**
7092  *	register_netdev	- register a network device
7093  *	@dev: device to register
7094  *
7095  *	Take a completed network device structure and add it to the kernel
7096  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7097  *	chain. 0 is returned on success. A negative errno code is returned
7098  *	on a failure to set up the device, or if the name is a duplicate.
7099  *
7100  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
7101  *	and expands the device name if you passed a format string to
7102  *	alloc_netdev.
7103  */
7104 int register_netdev(struct net_device *dev)
7105 {
7106 	int err;
7107 
7108 	rtnl_lock();
7109 	err = register_netdevice(dev);
7110 	rtnl_unlock();
7111 	return err;
7112 }
7113 EXPORT_SYMBOL(register_netdev);
7114 
7115 int netdev_refcnt_read(const struct net_device *dev)
7116 {
7117 	int i, refcnt = 0;
7118 
7119 	for_each_possible_cpu(i)
7120 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7121 	return refcnt;
7122 }
7123 EXPORT_SYMBOL(netdev_refcnt_read);
7124 
7125 /**
7126  * netdev_wait_allrefs - wait until all references are gone.
7127  * @dev: target net_device
7128  *
7129  * This is called when unregistering network devices.
7130  *
7131  * Any protocol or device that holds a reference should register
7132  * for netdevice notification, and cleanup and put back the
7133  * reference if they receive an UNREGISTER event.
7134  * We can get stuck here if buggy protocols don't correctly
7135  * call dev_put.
7136  */
7137 static void netdev_wait_allrefs(struct net_device *dev)
7138 {
7139 	unsigned long rebroadcast_time, warning_time;
7140 	int refcnt;
7141 
7142 	linkwatch_forget_dev(dev);
7143 
7144 	rebroadcast_time = warning_time = jiffies;
7145 	refcnt = netdev_refcnt_read(dev);
7146 
7147 	while (refcnt != 0) {
7148 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7149 			rtnl_lock();
7150 
7151 			/* Rebroadcast unregister notification */
7152 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7153 
7154 			__rtnl_unlock();
7155 			rcu_barrier();
7156 			rtnl_lock();
7157 
7158 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7159 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7160 				     &dev->state)) {
7161 				/* We must not have linkwatch events
7162 				 * pending on unregister. If this
7163 				 * happens, we simply run the queue
7164 				 * unscheduled, resulting in a noop
7165 				 * for this device.
7166 				 */
7167 				linkwatch_run_queue();
7168 			}
7169 
7170 			__rtnl_unlock();
7171 
7172 			rebroadcast_time = jiffies;
7173 		}
7174 
7175 		msleep(250);
7176 
7177 		refcnt = netdev_refcnt_read(dev);
7178 
7179 		if (time_after(jiffies, warning_time + 10 * HZ)) {
7180 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7181 				 dev->name, refcnt);
7182 			warning_time = jiffies;
7183 		}
7184 	}
7185 }
7186 
7187 /* The sequence is:
7188  *
7189  *	rtnl_lock();
7190  *	...
7191  *	register_netdevice(x1);
7192  *	register_netdevice(x2);
7193  *	...
7194  *	unregister_netdevice(y1);
7195  *	unregister_netdevice(y2);
7196  *      ...
7197  *	rtnl_unlock();
7198  *	free_netdev(y1);
7199  *	free_netdev(y2);
7200  *
7201  * We are invoked by rtnl_unlock().
7202  * This allows us to deal with problems:
7203  * 1) We can delete sysfs objects which invoke hotplug
7204  *    without deadlocking with linkwatch via keventd.
7205  * 2) Since we run with the RTNL semaphore not held, we can sleep
7206  *    safely in order to wait for the netdev refcnt to drop to zero.
7207  *
7208  * We must not return until all unregister events added during
7209  * the interval the lock was held have been completed.
7210  */
7211 void netdev_run_todo(void)
7212 {
7213 	struct list_head list;
7214 
7215 	/* Snapshot list, allow later requests */
7216 	list_replace_init(&net_todo_list, &list);
7217 
7218 	__rtnl_unlock();
7219 
7220 
7221 	/* Wait for rcu callbacks to finish before next phase */
7222 	if (!list_empty(&list))
7223 		rcu_barrier();
7224 
7225 	while (!list_empty(&list)) {
7226 		struct net_device *dev
7227 			= list_first_entry(&list, struct net_device, todo_list);
7228 		list_del(&dev->todo_list);
7229 
7230 		rtnl_lock();
7231 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7232 		__rtnl_unlock();
7233 
7234 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7235 			pr_err("network todo '%s' but state %d\n",
7236 			       dev->name, dev->reg_state);
7237 			dump_stack();
7238 			continue;
7239 		}
7240 
7241 		dev->reg_state = NETREG_UNREGISTERED;
7242 
7243 		netdev_wait_allrefs(dev);
7244 
7245 		/* paranoia */
7246 		BUG_ON(netdev_refcnt_read(dev));
7247 		BUG_ON(!list_empty(&dev->ptype_all));
7248 		BUG_ON(!list_empty(&dev->ptype_specific));
7249 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
7250 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7251 		WARN_ON(dev->dn_ptr);
7252 
7253 		if (dev->destructor)
7254 			dev->destructor(dev);
7255 
7256 		/* Report a network device has been unregistered */
7257 		rtnl_lock();
7258 		dev_net(dev)->dev_unreg_count--;
7259 		__rtnl_unlock();
7260 		wake_up(&netdev_unregistering_wq);
7261 
7262 		/* Free network device */
7263 		kobject_put(&dev->dev.kobj);
7264 	}
7265 }
7266 
7267 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7268  * all the same fields in the same order as net_device_stats, with only
7269  * the type differing, but rtnl_link_stats64 may have additional fields
7270  * at the end for newer counters.
7271  */
7272 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7273 			     const struct net_device_stats *netdev_stats)
7274 {
7275 #if BITS_PER_LONG == 64
7276 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7277 	memcpy(stats64, netdev_stats, sizeof(*stats64));
7278 	/* zero out counters that only exist in rtnl_link_stats64 */
7279 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
7280 	       sizeof(*stats64) - sizeof(*netdev_stats));
7281 #else
7282 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7283 	const unsigned long *src = (const unsigned long *)netdev_stats;
7284 	u64 *dst = (u64 *)stats64;
7285 
7286 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7287 	for (i = 0; i < n; i++)
7288 		dst[i] = src[i];
7289 	/* zero out counters that only exist in rtnl_link_stats64 */
7290 	memset((char *)stats64 + n * sizeof(u64), 0,
7291 	       sizeof(*stats64) - n * sizeof(u64));
7292 #endif
7293 }
7294 EXPORT_SYMBOL(netdev_stats_to_stats64);
7295 
7296 /**
7297  *	dev_get_stats	- get network device statistics
7298  *	@dev: device to get statistics from
7299  *	@storage: place to store stats
7300  *
7301  *	Get network statistics from device. Return @storage.
7302  *	The device driver may provide its own method by setting
7303  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7304  *	otherwise the internal statistics structure is used.
7305  */
7306 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7307 					struct rtnl_link_stats64 *storage)
7308 {
7309 	const struct net_device_ops *ops = dev->netdev_ops;
7310 
7311 	if (ops->ndo_get_stats64) {
7312 		memset(storage, 0, sizeof(*storage));
7313 		ops->ndo_get_stats64(dev, storage);
7314 	} else if (ops->ndo_get_stats) {
7315 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7316 	} else {
7317 		netdev_stats_to_stats64(storage, &dev->stats);
7318 	}
7319 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7320 	storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7321 	storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7322 	return storage;
7323 }
7324 EXPORT_SYMBOL(dev_get_stats);
7325 
7326 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7327 {
7328 	struct netdev_queue *queue = dev_ingress_queue(dev);
7329 
7330 #ifdef CONFIG_NET_CLS_ACT
7331 	if (queue)
7332 		return queue;
7333 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7334 	if (!queue)
7335 		return NULL;
7336 	netdev_init_one_queue(dev, queue, NULL);
7337 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7338 	queue->qdisc_sleeping = &noop_qdisc;
7339 	rcu_assign_pointer(dev->ingress_queue, queue);
7340 #endif
7341 	return queue;
7342 }
7343 
7344 static const struct ethtool_ops default_ethtool_ops;
7345 
7346 void netdev_set_default_ethtool_ops(struct net_device *dev,
7347 				    const struct ethtool_ops *ops)
7348 {
7349 	if (dev->ethtool_ops == &default_ethtool_ops)
7350 		dev->ethtool_ops = ops;
7351 }
7352 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7353 
7354 void netdev_freemem(struct net_device *dev)
7355 {
7356 	char *addr = (char *)dev - dev->padded;
7357 
7358 	kvfree(addr);
7359 }
7360 
7361 /**
7362  *	alloc_netdev_mqs - allocate network device
7363  *	@sizeof_priv:		size of private data to allocate space for
7364  *	@name:			device name format string
7365  *	@name_assign_type: 	origin of device name
7366  *	@setup:			callback to initialize device
7367  *	@txqs:			the number of TX subqueues to allocate
7368  *	@rxqs:			the number of RX subqueues to allocate
7369  *
7370  *	Allocates a struct net_device with private data area for driver use
7371  *	and performs basic initialization.  Also allocates subqueue structs
7372  *	for each queue on the device.
7373  */
7374 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7375 		unsigned char name_assign_type,
7376 		void (*setup)(struct net_device *),
7377 		unsigned int txqs, unsigned int rxqs)
7378 {
7379 	struct net_device *dev;
7380 	size_t alloc_size;
7381 	struct net_device *p;
7382 
7383 	BUG_ON(strlen(name) >= sizeof(dev->name));
7384 
7385 	if (txqs < 1) {
7386 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7387 		return NULL;
7388 	}
7389 
7390 #ifdef CONFIG_SYSFS
7391 	if (rxqs < 1) {
7392 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7393 		return NULL;
7394 	}
7395 #endif
7396 
7397 	alloc_size = sizeof(struct net_device);
7398 	if (sizeof_priv) {
7399 		/* ensure 32-byte alignment of private area */
7400 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7401 		alloc_size += sizeof_priv;
7402 	}
7403 	/* ensure 32-byte alignment of whole construct */
7404 	alloc_size += NETDEV_ALIGN - 1;
7405 
7406 	p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7407 	if (!p)
7408 		p = vzalloc(alloc_size);
7409 	if (!p)
7410 		return NULL;
7411 
7412 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
7413 	dev->padded = (char *)dev - (char *)p;
7414 
7415 	dev->pcpu_refcnt = alloc_percpu(int);
7416 	if (!dev->pcpu_refcnt)
7417 		goto free_dev;
7418 
7419 	if (dev_addr_init(dev))
7420 		goto free_pcpu;
7421 
7422 	dev_mc_init(dev);
7423 	dev_uc_init(dev);
7424 
7425 	dev_net_set(dev, &init_net);
7426 
7427 	dev->gso_max_size = GSO_MAX_SIZE;
7428 	dev->gso_max_segs = GSO_MAX_SEGS;
7429 	dev->gso_min_segs = 0;
7430 
7431 	INIT_LIST_HEAD(&dev->napi_list);
7432 	INIT_LIST_HEAD(&dev->unreg_list);
7433 	INIT_LIST_HEAD(&dev->close_list);
7434 	INIT_LIST_HEAD(&dev->link_watch_list);
7435 	INIT_LIST_HEAD(&dev->adj_list.upper);
7436 	INIT_LIST_HEAD(&dev->adj_list.lower);
7437 	INIT_LIST_HEAD(&dev->all_adj_list.upper);
7438 	INIT_LIST_HEAD(&dev->all_adj_list.lower);
7439 	INIT_LIST_HEAD(&dev->ptype_all);
7440 	INIT_LIST_HEAD(&dev->ptype_specific);
7441 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7442 	setup(dev);
7443 
7444 	if (!dev->tx_queue_len) {
7445 		dev->priv_flags |= IFF_NO_QUEUE;
7446 		dev->tx_queue_len = 1;
7447 	}
7448 
7449 	dev->num_tx_queues = txqs;
7450 	dev->real_num_tx_queues = txqs;
7451 	if (netif_alloc_netdev_queues(dev))
7452 		goto free_all;
7453 
7454 #ifdef CONFIG_SYSFS
7455 	dev->num_rx_queues = rxqs;
7456 	dev->real_num_rx_queues = rxqs;
7457 	if (netif_alloc_rx_queues(dev))
7458 		goto free_all;
7459 #endif
7460 
7461 	strcpy(dev->name, name);
7462 	dev->name_assign_type = name_assign_type;
7463 	dev->group = INIT_NETDEV_GROUP;
7464 	if (!dev->ethtool_ops)
7465 		dev->ethtool_ops = &default_ethtool_ops;
7466 
7467 	nf_hook_ingress_init(dev);
7468 
7469 	return dev;
7470 
7471 free_all:
7472 	free_netdev(dev);
7473 	return NULL;
7474 
7475 free_pcpu:
7476 	free_percpu(dev->pcpu_refcnt);
7477 free_dev:
7478 	netdev_freemem(dev);
7479 	return NULL;
7480 }
7481 EXPORT_SYMBOL(alloc_netdev_mqs);
7482 
7483 /**
7484  *	free_netdev - free network device
7485  *	@dev: device
7486  *
7487  *	This function does the last stage of destroying an allocated device
7488  * 	interface. The reference to the device object is released.
7489  *	If this is the last reference then it will be freed.
7490  *	Must be called in process context.
7491  */
7492 void free_netdev(struct net_device *dev)
7493 {
7494 	struct napi_struct *p, *n;
7495 
7496 	might_sleep();
7497 	netif_free_tx_queues(dev);
7498 #ifdef CONFIG_SYSFS
7499 	kvfree(dev->_rx);
7500 #endif
7501 
7502 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7503 
7504 	/* Flush device addresses */
7505 	dev_addr_flush(dev);
7506 
7507 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7508 		netif_napi_del(p);
7509 
7510 	free_percpu(dev->pcpu_refcnt);
7511 	dev->pcpu_refcnt = NULL;
7512 
7513 	/*  Compatibility with error handling in drivers */
7514 	if (dev->reg_state == NETREG_UNINITIALIZED) {
7515 		netdev_freemem(dev);
7516 		return;
7517 	}
7518 
7519 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7520 	dev->reg_state = NETREG_RELEASED;
7521 
7522 	/* will free via device release */
7523 	put_device(&dev->dev);
7524 }
7525 EXPORT_SYMBOL(free_netdev);
7526 
7527 /**
7528  *	synchronize_net -  Synchronize with packet receive processing
7529  *
7530  *	Wait for packets currently being received to be done.
7531  *	Does not block later packets from starting.
7532  */
7533 void synchronize_net(void)
7534 {
7535 	might_sleep();
7536 	if (rtnl_is_locked())
7537 		synchronize_rcu_expedited();
7538 	else
7539 		synchronize_rcu();
7540 }
7541 EXPORT_SYMBOL(synchronize_net);
7542 
7543 /**
7544  *	unregister_netdevice_queue - remove device from the kernel
7545  *	@dev: device
7546  *	@head: list
7547  *
7548  *	This function shuts down a device interface and removes it
7549  *	from the kernel tables.
7550  *	If head not NULL, device is queued to be unregistered later.
7551  *
7552  *	Callers must hold the rtnl semaphore.  You may want
7553  *	unregister_netdev() instead of this.
7554  */
7555 
7556 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7557 {
7558 	ASSERT_RTNL();
7559 
7560 	if (head) {
7561 		list_move_tail(&dev->unreg_list, head);
7562 	} else {
7563 		rollback_registered(dev);
7564 		/* Finish processing unregister after unlock */
7565 		net_set_todo(dev);
7566 	}
7567 }
7568 EXPORT_SYMBOL(unregister_netdevice_queue);
7569 
7570 /**
7571  *	unregister_netdevice_many - unregister many devices
7572  *	@head: list of devices
7573  *
7574  *  Note: As most callers use a stack allocated list_head,
7575  *  we force a list_del() to make sure stack wont be corrupted later.
7576  */
7577 void unregister_netdevice_many(struct list_head *head)
7578 {
7579 	struct net_device *dev;
7580 
7581 	if (!list_empty(head)) {
7582 		rollback_registered_many(head);
7583 		list_for_each_entry(dev, head, unreg_list)
7584 			net_set_todo(dev);
7585 		list_del(head);
7586 	}
7587 }
7588 EXPORT_SYMBOL(unregister_netdevice_many);
7589 
7590 /**
7591  *	unregister_netdev - remove device from the kernel
7592  *	@dev: device
7593  *
7594  *	This function shuts down a device interface and removes it
7595  *	from the kernel tables.
7596  *
7597  *	This is just a wrapper for unregister_netdevice that takes
7598  *	the rtnl semaphore.  In general you want to use this and not
7599  *	unregister_netdevice.
7600  */
7601 void unregister_netdev(struct net_device *dev)
7602 {
7603 	rtnl_lock();
7604 	unregister_netdevice(dev);
7605 	rtnl_unlock();
7606 }
7607 EXPORT_SYMBOL(unregister_netdev);
7608 
7609 /**
7610  *	dev_change_net_namespace - move device to different nethost namespace
7611  *	@dev: device
7612  *	@net: network namespace
7613  *	@pat: If not NULL name pattern to try if the current device name
7614  *	      is already taken in the destination network namespace.
7615  *
7616  *	This function shuts down a device interface and moves it
7617  *	to a new network namespace. On success 0 is returned, on
7618  *	a failure a netagive errno code is returned.
7619  *
7620  *	Callers must hold the rtnl semaphore.
7621  */
7622 
7623 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7624 {
7625 	int err;
7626 
7627 	ASSERT_RTNL();
7628 
7629 	/* Don't allow namespace local devices to be moved. */
7630 	err = -EINVAL;
7631 	if (dev->features & NETIF_F_NETNS_LOCAL)
7632 		goto out;
7633 
7634 	/* Ensure the device has been registrered */
7635 	if (dev->reg_state != NETREG_REGISTERED)
7636 		goto out;
7637 
7638 	/* Get out if there is nothing todo */
7639 	err = 0;
7640 	if (net_eq(dev_net(dev), net))
7641 		goto out;
7642 
7643 	/* Pick the destination device name, and ensure
7644 	 * we can use it in the destination network namespace.
7645 	 */
7646 	err = -EEXIST;
7647 	if (__dev_get_by_name(net, dev->name)) {
7648 		/* We get here if we can't use the current device name */
7649 		if (!pat)
7650 			goto out;
7651 		if (dev_get_valid_name(net, dev, pat) < 0)
7652 			goto out;
7653 	}
7654 
7655 	/*
7656 	 * And now a mini version of register_netdevice unregister_netdevice.
7657 	 */
7658 
7659 	/* If device is running close it first. */
7660 	dev_close(dev);
7661 
7662 	/* And unlink it from device chain */
7663 	err = -ENODEV;
7664 	unlist_netdevice(dev);
7665 
7666 	synchronize_net();
7667 
7668 	/* Shutdown queueing discipline. */
7669 	dev_shutdown(dev);
7670 
7671 	/* Notify protocols, that we are about to destroy
7672 	   this device. They should clean all the things.
7673 
7674 	   Note that dev->reg_state stays at NETREG_REGISTERED.
7675 	   This is wanted because this way 8021q and macvlan know
7676 	   the device is just moving and can keep their slaves up.
7677 	*/
7678 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7679 	rcu_barrier();
7680 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7681 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7682 
7683 	/*
7684 	 *	Flush the unicast and multicast chains
7685 	 */
7686 	dev_uc_flush(dev);
7687 	dev_mc_flush(dev);
7688 
7689 	/* Send a netdev-removed uevent to the old namespace */
7690 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7691 	netdev_adjacent_del_links(dev);
7692 
7693 	/* Actually switch the network namespace */
7694 	dev_net_set(dev, net);
7695 
7696 	/* If there is an ifindex conflict assign a new one */
7697 	if (__dev_get_by_index(net, dev->ifindex))
7698 		dev->ifindex = dev_new_index(net);
7699 
7700 	/* Send a netdev-add uevent to the new namespace */
7701 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7702 	netdev_adjacent_add_links(dev);
7703 
7704 	/* Fixup kobjects */
7705 	err = device_rename(&dev->dev, dev->name);
7706 	WARN_ON(err);
7707 
7708 	/* Add the device back in the hashes */
7709 	list_netdevice(dev);
7710 
7711 	/* Notify protocols, that a new device appeared. */
7712 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
7713 
7714 	/*
7715 	 *	Prevent userspace races by waiting until the network
7716 	 *	device is fully setup before sending notifications.
7717 	 */
7718 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7719 
7720 	synchronize_net();
7721 	err = 0;
7722 out:
7723 	return err;
7724 }
7725 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7726 
7727 static int dev_cpu_callback(struct notifier_block *nfb,
7728 			    unsigned long action,
7729 			    void *ocpu)
7730 {
7731 	struct sk_buff **list_skb;
7732 	struct sk_buff *skb;
7733 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
7734 	struct softnet_data *sd, *oldsd;
7735 
7736 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7737 		return NOTIFY_OK;
7738 
7739 	local_irq_disable();
7740 	cpu = smp_processor_id();
7741 	sd = &per_cpu(softnet_data, cpu);
7742 	oldsd = &per_cpu(softnet_data, oldcpu);
7743 
7744 	/* Find end of our completion_queue. */
7745 	list_skb = &sd->completion_queue;
7746 	while (*list_skb)
7747 		list_skb = &(*list_skb)->next;
7748 	/* Append completion queue from offline CPU. */
7749 	*list_skb = oldsd->completion_queue;
7750 	oldsd->completion_queue = NULL;
7751 
7752 	/* Append output queue from offline CPU. */
7753 	if (oldsd->output_queue) {
7754 		*sd->output_queue_tailp = oldsd->output_queue;
7755 		sd->output_queue_tailp = oldsd->output_queue_tailp;
7756 		oldsd->output_queue = NULL;
7757 		oldsd->output_queue_tailp = &oldsd->output_queue;
7758 	}
7759 	/* Append NAPI poll list from offline CPU, with one exception :
7760 	 * process_backlog() must be called by cpu owning percpu backlog.
7761 	 * We properly handle process_queue & input_pkt_queue later.
7762 	 */
7763 	while (!list_empty(&oldsd->poll_list)) {
7764 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7765 							    struct napi_struct,
7766 							    poll_list);
7767 
7768 		list_del_init(&napi->poll_list);
7769 		if (napi->poll == process_backlog)
7770 			napi->state = 0;
7771 		else
7772 			____napi_schedule(sd, napi);
7773 	}
7774 
7775 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
7776 	local_irq_enable();
7777 
7778 	/* Process offline CPU's input_pkt_queue */
7779 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7780 		netif_rx_ni(skb);
7781 		input_queue_head_incr(oldsd);
7782 	}
7783 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7784 		netif_rx_ni(skb);
7785 		input_queue_head_incr(oldsd);
7786 	}
7787 
7788 	return NOTIFY_OK;
7789 }
7790 
7791 
7792 /**
7793  *	netdev_increment_features - increment feature set by one
7794  *	@all: current feature set
7795  *	@one: new feature set
7796  *	@mask: mask feature set
7797  *
7798  *	Computes a new feature set after adding a device with feature set
7799  *	@one to the master device with current feature set @all.  Will not
7800  *	enable anything that is off in @mask. Returns the new feature set.
7801  */
7802 netdev_features_t netdev_increment_features(netdev_features_t all,
7803 	netdev_features_t one, netdev_features_t mask)
7804 {
7805 	if (mask & NETIF_F_HW_CSUM)
7806 		mask |= NETIF_F_CSUM_MASK;
7807 	mask |= NETIF_F_VLAN_CHALLENGED;
7808 
7809 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
7810 	all &= one | ~NETIF_F_ALL_FOR_ALL;
7811 
7812 	/* If one device supports hw checksumming, set for all. */
7813 	if (all & NETIF_F_HW_CSUM)
7814 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7815 
7816 	return all;
7817 }
7818 EXPORT_SYMBOL(netdev_increment_features);
7819 
7820 static struct hlist_head * __net_init netdev_create_hash(void)
7821 {
7822 	int i;
7823 	struct hlist_head *hash;
7824 
7825 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7826 	if (hash != NULL)
7827 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
7828 			INIT_HLIST_HEAD(&hash[i]);
7829 
7830 	return hash;
7831 }
7832 
7833 /* Initialize per network namespace state */
7834 static int __net_init netdev_init(struct net *net)
7835 {
7836 	if (net != &init_net)
7837 		INIT_LIST_HEAD(&net->dev_base_head);
7838 
7839 	net->dev_name_head = netdev_create_hash();
7840 	if (net->dev_name_head == NULL)
7841 		goto err_name;
7842 
7843 	net->dev_index_head = netdev_create_hash();
7844 	if (net->dev_index_head == NULL)
7845 		goto err_idx;
7846 
7847 	return 0;
7848 
7849 err_idx:
7850 	kfree(net->dev_name_head);
7851 err_name:
7852 	return -ENOMEM;
7853 }
7854 
7855 /**
7856  *	netdev_drivername - network driver for the device
7857  *	@dev: network device
7858  *
7859  *	Determine network driver for device.
7860  */
7861 const char *netdev_drivername(const struct net_device *dev)
7862 {
7863 	const struct device_driver *driver;
7864 	const struct device *parent;
7865 	const char *empty = "";
7866 
7867 	parent = dev->dev.parent;
7868 	if (!parent)
7869 		return empty;
7870 
7871 	driver = parent->driver;
7872 	if (driver && driver->name)
7873 		return driver->name;
7874 	return empty;
7875 }
7876 
7877 static void __netdev_printk(const char *level, const struct net_device *dev,
7878 			    struct va_format *vaf)
7879 {
7880 	if (dev && dev->dev.parent) {
7881 		dev_printk_emit(level[1] - '0',
7882 				dev->dev.parent,
7883 				"%s %s %s%s: %pV",
7884 				dev_driver_string(dev->dev.parent),
7885 				dev_name(dev->dev.parent),
7886 				netdev_name(dev), netdev_reg_state(dev),
7887 				vaf);
7888 	} else if (dev) {
7889 		printk("%s%s%s: %pV",
7890 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
7891 	} else {
7892 		printk("%s(NULL net_device): %pV", level, vaf);
7893 	}
7894 }
7895 
7896 void netdev_printk(const char *level, const struct net_device *dev,
7897 		   const char *format, ...)
7898 {
7899 	struct va_format vaf;
7900 	va_list args;
7901 
7902 	va_start(args, format);
7903 
7904 	vaf.fmt = format;
7905 	vaf.va = &args;
7906 
7907 	__netdev_printk(level, dev, &vaf);
7908 
7909 	va_end(args);
7910 }
7911 EXPORT_SYMBOL(netdev_printk);
7912 
7913 #define define_netdev_printk_level(func, level)			\
7914 void func(const struct net_device *dev, const char *fmt, ...)	\
7915 {								\
7916 	struct va_format vaf;					\
7917 	va_list args;						\
7918 								\
7919 	va_start(args, fmt);					\
7920 								\
7921 	vaf.fmt = fmt;						\
7922 	vaf.va = &args;						\
7923 								\
7924 	__netdev_printk(level, dev, &vaf);			\
7925 								\
7926 	va_end(args);						\
7927 }								\
7928 EXPORT_SYMBOL(func);
7929 
7930 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7931 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7932 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7933 define_netdev_printk_level(netdev_err, KERN_ERR);
7934 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7935 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7936 define_netdev_printk_level(netdev_info, KERN_INFO);
7937 
7938 static void __net_exit netdev_exit(struct net *net)
7939 {
7940 	kfree(net->dev_name_head);
7941 	kfree(net->dev_index_head);
7942 }
7943 
7944 static struct pernet_operations __net_initdata netdev_net_ops = {
7945 	.init = netdev_init,
7946 	.exit = netdev_exit,
7947 };
7948 
7949 static void __net_exit default_device_exit(struct net *net)
7950 {
7951 	struct net_device *dev, *aux;
7952 	/*
7953 	 * Push all migratable network devices back to the
7954 	 * initial network namespace
7955 	 */
7956 	rtnl_lock();
7957 	for_each_netdev_safe(net, dev, aux) {
7958 		int err;
7959 		char fb_name[IFNAMSIZ];
7960 
7961 		/* Ignore unmoveable devices (i.e. loopback) */
7962 		if (dev->features & NETIF_F_NETNS_LOCAL)
7963 			continue;
7964 
7965 		/* Leave virtual devices for the generic cleanup */
7966 		if (dev->rtnl_link_ops)
7967 			continue;
7968 
7969 		/* Push remaining network devices to init_net */
7970 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7971 		err = dev_change_net_namespace(dev, &init_net, fb_name);
7972 		if (err) {
7973 			pr_emerg("%s: failed to move %s to init_net: %d\n",
7974 				 __func__, dev->name, err);
7975 			BUG();
7976 		}
7977 	}
7978 	rtnl_unlock();
7979 }
7980 
7981 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7982 {
7983 	/* Return with the rtnl_lock held when there are no network
7984 	 * devices unregistering in any network namespace in net_list.
7985 	 */
7986 	struct net *net;
7987 	bool unregistering;
7988 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
7989 
7990 	add_wait_queue(&netdev_unregistering_wq, &wait);
7991 	for (;;) {
7992 		unregistering = false;
7993 		rtnl_lock();
7994 		list_for_each_entry(net, net_list, exit_list) {
7995 			if (net->dev_unreg_count > 0) {
7996 				unregistering = true;
7997 				break;
7998 			}
7999 		}
8000 		if (!unregistering)
8001 			break;
8002 		__rtnl_unlock();
8003 
8004 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8005 	}
8006 	remove_wait_queue(&netdev_unregistering_wq, &wait);
8007 }
8008 
8009 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8010 {
8011 	/* At exit all network devices most be removed from a network
8012 	 * namespace.  Do this in the reverse order of registration.
8013 	 * Do this across as many network namespaces as possible to
8014 	 * improve batching efficiency.
8015 	 */
8016 	struct net_device *dev;
8017 	struct net *net;
8018 	LIST_HEAD(dev_kill_list);
8019 
8020 	/* To prevent network device cleanup code from dereferencing
8021 	 * loopback devices or network devices that have been freed
8022 	 * wait here for all pending unregistrations to complete,
8023 	 * before unregistring the loopback device and allowing the
8024 	 * network namespace be freed.
8025 	 *
8026 	 * The netdev todo list containing all network devices
8027 	 * unregistrations that happen in default_device_exit_batch
8028 	 * will run in the rtnl_unlock() at the end of
8029 	 * default_device_exit_batch.
8030 	 */
8031 	rtnl_lock_unregistering(net_list);
8032 	list_for_each_entry(net, net_list, exit_list) {
8033 		for_each_netdev_reverse(net, dev) {
8034 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8035 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8036 			else
8037 				unregister_netdevice_queue(dev, &dev_kill_list);
8038 		}
8039 	}
8040 	unregister_netdevice_many(&dev_kill_list);
8041 	rtnl_unlock();
8042 }
8043 
8044 static struct pernet_operations __net_initdata default_device_ops = {
8045 	.exit = default_device_exit,
8046 	.exit_batch = default_device_exit_batch,
8047 };
8048 
8049 /*
8050  *	Initialize the DEV module. At boot time this walks the device list and
8051  *	unhooks any devices that fail to initialise (normally hardware not
8052  *	present) and leaves us with a valid list of present and active devices.
8053  *
8054  */
8055 
8056 /*
8057  *       This is called single threaded during boot, so no need
8058  *       to take the rtnl semaphore.
8059  */
8060 static int __init net_dev_init(void)
8061 {
8062 	int i, rc = -ENOMEM;
8063 
8064 	BUG_ON(!dev_boot_phase);
8065 
8066 	if (dev_proc_init())
8067 		goto out;
8068 
8069 	if (netdev_kobject_init())
8070 		goto out;
8071 
8072 	INIT_LIST_HEAD(&ptype_all);
8073 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
8074 		INIT_LIST_HEAD(&ptype_base[i]);
8075 
8076 	INIT_LIST_HEAD(&offload_base);
8077 
8078 	if (register_pernet_subsys(&netdev_net_ops))
8079 		goto out;
8080 
8081 	/*
8082 	 *	Initialise the packet receive queues.
8083 	 */
8084 
8085 	for_each_possible_cpu(i) {
8086 		struct softnet_data *sd = &per_cpu(softnet_data, i);
8087 
8088 		skb_queue_head_init(&sd->input_pkt_queue);
8089 		skb_queue_head_init(&sd->process_queue);
8090 		INIT_LIST_HEAD(&sd->poll_list);
8091 		sd->output_queue_tailp = &sd->output_queue;
8092 #ifdef CONFIG_RPS
8093 		sd->csd.func = rps_trigger_softirq;
8094 		sd->csd.info = sd;
8095 		sd->cpu = i;
8096 #endif
8097 
8098 		sd->backlog.poll = process_backlog;
8099 		sd->backlog.weight = weight_p;
8100 	}
8101 
8102 	dev_boot_phase = 0;
8103 
8104 	/* The loopback device is special if any other network devices
8105 	 * is present in a network namespace the loopback device must
8106 	 * be present. Since we now dynamically allocate and free the
8107 	 * loopback device ensure this invariant is maintained by
8108 	 * keeping the loopback device as the first device on the
8109 	 * list of network devices.  Ensuring the loopback devices
8110 	 * is the first device that appears and the last network device
8111 	 * that disappears.
8112 	 */
8113 	if (register_pernet_device(&loopback_net_ops))
8114 		goto out;
8115 
8116 	if (register_pernet_device(&default_device_ops))
8117 		goto out;
8118 
8119 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8120 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8121 
8122 	hotcpu_notifier(dev_cpu_callback, 0);
8123 	dst_subsys_init();
8124 	rc = 0;
8125 out:
8126 	return rc;
8127 }
8128 
8129 subsys_initcall(net_dev_init);
8130