xref: /openbmc/linux/net/core/dev.c (revision 911b8eac)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/bpf.h>
95 #include <linux/bpf_trace.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <net/busy_poll.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dsa.h>
102 #include <net/dst.h>
103 #include <net/dst_metadata.h>
104 #include <net/pkt_sched.h>
105 #include <net/pkt_cls.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
123 #include <net/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/inetdevice.h>
133 #include <linux/cpu_rmap.h>
134 #include <linux/static_key.h>
135 #include <linux/hashtable.h>
136 #include <linux/vmalloc.h>
137 #include <linux/if_macvlan.h>
138 #include <linux/errqueue.h>
139 #include <linux/hrtimer.h>
140 #include <linux/netfilter_ingress.h>
141 #include <linux/crash_dump.h>
142 #include <linux/sctp.h>
143 #include <net/udp_tunnel.h>
144 #include <linux/net_namespace.h>
145 #include <linux/indirect_call_wrapper.h>
146 #include <net/devlink.h>
147 #include <linux/pm_runtime.h>
148 
149 #include "net-sysfs.h"
150 
151 #define MAX_GRO_SKBS 8
152 
153 /* This should be increased if a protocol with a bigger head is added. */
154 #define GRO_MAX_HEAD (MAX_HEADER + 128)
155 
156 static DEFINE_SPINLOCK(ptype_lock);
157 static DEFINE_SPINLOCK(offload_lock);
158 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
159 struct list_head ptype_all __read_mostly;	/* Taps */
160 static struct list_head offload_base __read_mostly;
161 
162 static int netif_rx_internal(struct sk_buff *skb);
163 static int call_netdevice_notifiers_info(unsigned long val,
164 					 struct netdev_notifier_info *info);
165 static int call_netdevice_notifiers_extack(unsigned long val,
166 					   struct net_device *dev,
167 					   struct netlink_ext_ack *extack);
168 static struct napi_struct *napi_by_id(unsigned int napi_id);
169 
170 /*
171  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
172  * semaphore.
173  *
174  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175  *
176  * Writers must hold the rtnl semaphore while they loop through the
177  * dev_base_head list, and hold dev_base_lock for writing when they do the
178  * actual updates.  This allows pure readers to access the list even
179  * while a writer is preparing to update it.
180  *
181  * To put it another way, dev_base_lock is held for writing only to
182  * protect against pure readers; the rtnl semaphore provides the
183  * protection against other writers.
184  *
185  * See, for example usages, register_netdevice() and
186  * unregister_netdevice(), which must be called with the rtnl
187  * semaphore held.
188  */
189 DEFINE_RWLOCK(dev_base_lock);
190 EXPORT_SYMBOL(dev_base_lock);
191 
192 static DEFINE_MUTEX(ifalias_mutex);
193 
194 /* protects napi_hash addition/deletion and napi_gen_id */
195 static DEFINE_SPINLOCK(napi_hash_lock);
196 
197 static unsigned int napi_gen_id = NR_CPUS;
198 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
199 
200 static DECLARE_RWSEM(devnet_rename_sem);
201 
202 static inline void dev_base_seq_inc(struct net *net)
203 {
204 	while (++net->dev_base_seq == 0)
205 		;
206 }
207 
208 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
209 {
210 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
211 
212 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213 }
214 
215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216 {
217 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218 }
219 
220 static inline void rps_lock(struct softnet_data *sd)
221 {
222 #ifdef CONFIG_RPS
223 	spin_lock(&sd->input_pkt_queue.lock);
224 #endif
225 }
226 
227 static inline void rps_unlock(struct softnet_data *sd)
228 {
229 #ifdef CONFIG_RPS
230 	spin_unlock(&sd->input_pkt_queue.lock);
231 #endif
232 }
233 
234 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
235 						       const char *name)
236 {
237 	struct netdev_name_node *name_node;
238 
239 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
240 	if (!name_node)
241 		return NULL;
242 	INIT_HLIST_NODE(&name_node->hlist);
243 	name_node->dev = dev;
244 	name_node->name = name;
245 	return name_node;
246 }
247 
248 static struct netdev_name_node *
249 netdev_name_node_head_alloc(struct net_device *dev)
250 {
251 	struct netdev_name_node *name_node;
252 
253 	name_node = netdev_name_node_alloc(dev, dev->name);
254 	if (!name_node)
255 		return NULL;
256 	INIT_LIST_HEAD(&name_node->list);
257 	return name_node;
258 }
259 
260 static void netdev_name_node_free(struct netdev_name_node *name_node)
261 {
262 	kfree(name_node);
263 }
264 
265 static void netdev_name_node_add(struct net *net,
266 				 struct netdev_name_node *name_node)
267 {
268 	hlist_add_head_rcu(&name_node->hlist,
269 			   dev_name_hash(net, name_node->name));
270 }
271 
272 static void netdev_name_node_del(struct netdev_name_node *name_node)
273 {
274 	hlist_del_rcu(&name_node->hlist);
275 }
276 
277 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
278 							const char *name)
279 {
280 	struct hlist_head *head = dev_name_hash(net, name);
281 	struct netdev_name_node *name_node;
282 
283 	hlist_for_each_entry(name_node, head, hlist)
284 		if (!strcmp(name_node->name, name))
285 			return name_node;
286 	return NULL;
287 }
288 
289 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
290 							    const char *name)
291 {
292 	struct hlist_head *head = dev_name_hash(net, name);
293 	struct netdev_name_node *name_node;
294 
295 	hlist_for_each_entry_rcu(name_node, head, hlist)
296 		if (!strcmp(name_node->name, name))
297 			return name_node;
298 	return NULL;
299 }
300 
301 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
302 {
303 	struct netdev_name_node *name_node;
304 	struct net *net = dev_net(dev);
305 
306 	name_node = netdev_name_node_lookup(net, name);
307 	if (name_node)
308 		return -EEXIST;
309 	name_node = netdev_name_node_alloc(dev, name);
310 	if (!name_node)
311 		return -ENOMEM;
312 	netdev_name_node_add(net, name_node);
313 	/* The node that holds dev->name acts as a head of per-device list. */
314 	list_add_tail(&name_node->list, &dev->name_node->list);
315 
316 	return 0;
317 }
318 EXPORT_SYMBOL(netdev_name_node_alt_create);
319 
320 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
321 {
322 	list_del(&name_node->list);
323 	netdev_name_node_del(name_node);
324 	kfree(name_node->name);
325 	netdev_name_node_free(name_node);
326 }
327 
328 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
329 {
330 	struct netdev_name_node *name_node;
331 	struct net *net = dev_net(dev);
332 
333 	name_node = netdev_name_node_lookup(net, name);
334 	if (!name_node)
335 		return -ENOENT;
336 	/* lookup might have found our primary name or a name belonging
337 	 * to another device.
338 	 */
339 	if (name_node == dev->name_node || name_node->dev != dev)
340 		return -EINVAL;
341 
342 	__netdev_name_node_alt_destroy(name_node);
343 
344 	return 0;
345 }
346 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
347 
348 static void netdev_name_node_alt_flush(struct net_device *dev)
349 {
350 	struct netdev_name_node *name_node, *tmp;
351 
352 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
353 		__netdev_name_node_alt_destroy(name_node);
354 }
355 
356 /* Device list insertion */
357 static void list_netdevice(struct net_device *dev)
358 {
359 	struct net *net = dev_net(dev);
360 
361 	ASSERT_RTNL();
362 
363 	write_lock_bh(&dev_base_lock);
364 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
365 	netdev_name_node_add(net, dev->name_node);
366 	hlist_add_head_rcu(&dev->index_hlist,
367 			   dev_index_hash(net, dev->ifindex));
368 	write_unlock_bh(&dev_base_lock);
369 
370 	dev_base_seq_inc(net);
371 }
372 
373 /* Device list removal
374  * caller must respect a RCU grace period before freeing/reusing dev
375  */
376 static void unlist_netdevice(struct net_device *dev)
377 {
378 	ASSERT_RTNL();
379 
380 	/* Unlink dev from the device chain */
381 	write_lock_bh(&dev_base_lock);
382 	list_del_rcu(&dev->dev_list);
383 	netdev_name_node_del(dev->name_node);
384 	hlist_del_rcu(&dev->index_hlist);
385 	write_unlock_bh(&dev_base_lock);
386 
387 	dev_base_seq_inc(dev_net(dev));
388 }
389 
390 /*
391  *	Our notifier list
392  */
393 
394 static RAW_NOTIFIER_HEAD(netdev_chain);
395 
396 /*
397  *	Device drivers call our routines to queue packets here. We empty the
398  *	queue in the local softnet handler.
399  */
400 
401 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
402 EXPORT_PER_CPU_SYMBOL(softnet_data);
403 
404 #ifdef CONFIG_LOCKDEP
405 /*
406  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
407  * according to dev->type
408  */
409 static const unsigned short netdev_lock_type[] = {
410 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
411 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
412 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
413 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
414 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
415 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
416 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
417 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
418 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
419 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
420 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
421 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
422 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
423 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
424 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
425 
426 static const char *const netdev_lock_name[] = {
427 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
428 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
429 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
430 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
431 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
432 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
433 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
434 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
435 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
436 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
437 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
438 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
439 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
440 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
441 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
442 
443 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
444 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
445 
446 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
447 {
448 	int i;
449 
450 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
451 		if (netdev_lock_type[i] == dev_type)
452 			return i;
453 	/* the last key is used by default */
454 	return ARRAY_SIZE(netdev_lock_type) - 1;
455 }
456 
457 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
458 						 unsigned short dev_type)
459 {
460 	int i;
461 
462 	i = netdev_lock_pos(dev_type);
463 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
464 				   netdev_lock_name[i]);
465 }
466 
467 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
468 {
469 	int i;
470 
471 	i = netdev_lock_pos(dev->type);
472 	lockdep_set_class_and_name(&dev->addr_list_lock,
473 				   &netdev_addr_lock_key[i],
474 				   netdev_lock_name[i]);
475 }
476 #else
477 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
478 						 unsigned short dev_type)
479 {
480 }
481 
482 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
483 {
484 }
485 #endif
486 
487 /*******************************************************************************
488  *
489  *		Protocol management and registration routines
490  *
491  *******************************************************************************/
492 
493 
494 /*
495  *	Add a protocol ID to the list. Now that the input handler is
496  *	smarter we can dispense with all the messy stuff that used to be
497  *	here.
498  *
499  *	BEWARE!!! Protocol handlers, mangling input packets,
500  *	MUST BE last in hash buckets and checking protocol handlers
501  *	MUST start from promiscuous ptype_all chain in net_bh.
502  *	It is true now, do not change it.
503  *	Explanation follows: if protocol handler, mangling packet, will
504  *	be the first on list, it is not able to sense, that packet
505  *	is cloned and should be copied-on-write, so that it will
506  *	change it and subsequent readers will get broken packet.
507  *							--ANK (980803)
508  */
509 
510 static inline struct list_head *ptype_head(const struct packet_type *pt)
511 {
512 	if (pt->type == htons(ETH_P_ALL))
513 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
514 	else
515 		return pt->dev ? &pt->dev->ptype_specific :
516 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
517 }
518 
519 /**
520  *	dev_add_pack - add packet handler
521  *	@pt: packet type declaration
522  *
523  *	Add a protocol handler to the networking stack. The passed &packet_type
524  *	is linked into kernel lists and may not be freed until it has been
525  *	removed from the kernel lists.
526  *
527  *	This call does not sleep therefore it can not
528  *	guarantee all CPU's that are in middle of receiving packets
529  *	will see the new packet type (until the next received packet).
530  */
531 
532 void dev_add_pack(struct packet_type *pt)
533 {
534 	struct list_head *head = ptype_head(pt);
535 
536 	spin_lock(&ptype_lock);
537 	list_add_rcu(&pt->list, head);
538 	spin_unlock(&ptype_lock);
539 }
540 EXPORT_SYMBOL(dev_add_pack);
541 
542 /**
543  *	__dev_remove_pack	 - remove packet handler
544  *	@pt: packet type declaration
545  *
546  *	Remove a protocol handler that was previously added to the kernel
547  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
548  *	from the kernel lists and can be freed or reused once this function
549  *	returns.
550  *
551  *      The packet type might still be in use by receivers
552  *	and must not be freed until after all the CPU's have gone
553  *	through a quiescent state.
554  */
555 void __dev_remove_pack(struct packet_type *pt)
556 {
557 	struct list_head *head = ptype_head(pt);
558 	struct packet_type *pt1;
559 
560 	spin_lock(&ptype_lock);
561 
562 	list_for_each_entry(pt1, head, list) {
563 		if (pt == pt1) {
564 			list_del_rcu(&pt->list);
565 			goto out;
566 		}
567 	}
568 
569 	pr_warn("dev_remove_pack: %p not found\n", pt);
570 out:
571 	spin_unlock(&ptype_lock);
572 }
573 EXPORT_SYMBOL(__dev_remove_pack);
574 
575 /**
576  *	dev_remove_pack	 - remove packet handler
577  *	@pt: packet type declaration
578  *
579  *	Remove a protocol handler that was previously added to the kernel
580  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
581  *	from the kernel lists and can be freed or reused once this function
582  *	returns.
583  *
584  *	This call sleeps to guarantee that no CPU is looking at the packet
585  *	type after return.
586  */
587 void dev_remove_pack(struct packet_type *pt)
588 {
589 	__dev_remove_pack(pt);
590 
591 	synchronize_net();
592 }
593 EXPORT_SYMBOL(dev_remove_pack);
594 
595 
596 /**
597  *	dev_add_offload - register offload handlers
598  *	@po: protocol offload declaration
599  *
600  *	Add protocol offload handlers to the networking stack. The passed
601  *	&proto_offload is linked into kernel lists and may not be freed until
602  *	it has been removed from the kernel lists.
603  *
604  *	This call does not sleep therefore it can not
605  *	guarantee all CPU's that are in middle of receiving packets
606  *	will see the new offload handlers (until the next received packet).
607  */
608 void dev_add_offload(struct packet_offload *po)
609 {
610 	struct packet_offload *elem;
611 
612 	spin_lock(&offload_lock);
613 	list_for_each_entry(elem, &offload_base, list) {
614 		if (po->priority < elem->priority)
615 			break;
616 	}
617 	list_add_rcu(&po->list, elem->list.prev);
618 	spin_unlock(&offload_lock);
619 }
620 EXPORT_SYMBOL(dev_add_offload);
621 
622 /**
623  *	__dev_remove_offload	 - remove offload handler
624  *	@po: packet offload declaration
625  *
626  *	Remove a protocol offload handler that was previously added to the
627  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
628  *	is removed from the kernel lists and can be freed or reused once this
629  *	function returns.
630  *
631  *      The packet type might still be in use by receivers
632  *	and must not be freed until after all the CPU's have gone
633  *	through a quiescent state.
634  */
635 static void __dev_remove_offload(struct packet_offload *po)
636 {
637 	struct list_head *head = &offload_base;
638 	struct packet_offload *po1;
639 
640 	spin_lock(&offload_lock);
641 
642 	list_for_each_entry(po1, head, list) {
643 		if (po == po1) {
644 			list_del_rcu(&po->list);
645 			goto out;
646 		}
647 	}
648 
649 	pr_warn("dev_remove_offload: %p not found\n", po);
650 out:
651 	spin_unlock(&offload_lock);
652 }
653 
654 /**
655  *	dev_remove_offload	 - remove packet offload handler
656  *	@po: packet offload declaration
657  *
658  *	Remove a packet offload handler that was previously added to the kernel
659  *	offload handlers by dev_add_offload(). The passed &offload_type is
660  *	removed from the kernel lists and can be freed or reused once this
661  *	function returns.
662  *
663  *	This call sleeps to guarantee that no CPU is looking at the packet
664  *	type after return.
665  */
666 void dev_remove_offload(struct packet_offload *po)
667 {
668 	__dev_remove_offload(po);
669 
670 	synchronize_net();
671 }
672 EXPORT_SYMBOL(dev_remove_offload);
673 
674 /******************************************************************************
675  *
676  *		      Device Boot-time Settings Routines
677  *
678  ******************************************************************************/
679 
680 /* Boot time configuration table */
681 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
682 
683 /**
684  *	netdev_boot_setup_add	- add new setup entry
685  *	@name: name of the device
686  *	@map: configured settings for the device
687  *
688  *	Adds new setup entry to the dev_boot_setup list.  The function
689  *	returns 0 on error and 1 on success.  This is a generic routine to
690  *	all netdevices.
691  */
692 static int netdev_boot_setup_add(char *name, struct ifmap *map)
693 {
694 	struct netdev_boot_setup *s;
695 	int i;
696 
697 	s = dev_boot_setup;
698 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
699 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
700 			memset(s[i].name, 0, sizeof(s[i].name));
701 			strlcpy(s[i].name, name, IFNAMSIZ);
702 			memcpy(&s[i].map, map, sizeof(s[i].map));
703 			break;
704 		}
705 	}
706 
707 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
708 }
709 
710 /**
711  * netdev_boot_setup_check	- check boot time settings
712  * @dev: the netdevice
713  *
714  * Check boot time settings for the device.
715  * The found settings are set for the device to be used
716  * later in the device probing.
717  * Returns 0 if no settings found, 1 if they are.
718  */
719 int netdev_boot_setup_check(struct net_device *dev)
720 {
721 	struct netdev_boot_setup *s = dev_boot_setup;
722 	int i;
723 
724 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
725 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
726 		    !strcmp(dev->name, s[i].name)) {
727 			dev->irq = s[i].map.irq;
728 			dev->base_addr = s[i].map.base_addr;
729 			dev->mem_start = s[i].map.mem_start;
730 			dev->mem_end = s[i].map.mem_end;
731 			return 1;
732 		}
733 	}
734 	return 0;
735 }
736 EXPORT_SYMBOL(netdev_boot_setup_check);
737 
738 
739 /**
740  * netdev_boot_base	- get address from boot time settings
741  * @prefix: prefix for network device
742  * @unit: id for network device
743  *
744  * Check boot time settings for the base address of device.
745  * The found settings are set for the device to be used
746  * later in the device probing.
747  * Returns 0 if no settings found.
748  */
749 unsigned long netdev_boot_base(const char *prefix, int unit)
750 {
751 	const struct netdev_boot_setup *s = dev_boot_setup;
752 	char name[IFNAMSIZ];
753 	int i;
754 
755 	sprintf(name, "%s%d", prefix, unit);
756 
757 	/*
758 	 * If device already registered then return base of 1
759 	 * to indicate not to probe for this interface
760 	 */
761 	if (__dev_get_by_name(&init_net, name))
762 		return 1;
763 
764 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
765 		if (!strcmp(name, s[i].name))
766 			return s[i].map.base_addr;
767 	return 0;
768 }
769 
770 /*
771  * Saves at boot time configured settings for any netdevice.
772  */
773 int __init netdev_boot_setup(char *str)
774 {
775 	int ints[5];
776 	struct ifmap map;
777 
778 	str = get_options(str, ARRAY_SIZE(ints), ints);
779 	if (!str || !*str)
780 		return 0;
781 
782 	/* Save settings */
783 	memset(&map, 0, sizeof(map));
784 	if (ints[0] > 0)
785 		map.irq = ints[1];
786 	if (ints[0] > 1)
787 		map.base_addr = ints[2];
788 	if (ints[0] > 2)
789 		map.mem_start = ints[3];
790 	if (ints[0] > 3)
791 		map.mem_end = ints[4];
792 
793 	/* Add new entry to the list */
794 	return netdev_boot_setup_add(str, &map);
795 }
796 
797 __setup("netdev=", netdev_boot_setup);
798 
799 /*******************************************************************************
800  *
801  *			    Device Interface Subroutines
802  *
803  *******************************************************************************/
804 
805 /**
806  *	dev_get_iflink	- get 'iflink' value of a interface
807  *	@dev: targeted interface
808  *
809  *	Indicates the ifindex the interface is linked to.
810  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
811  */
812 
813 int dev_get_iflink(const struct net_device *dev)
814 {
815 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
816 		return dev->netdev_ops->ndo_get_iflink(dev);
817 
818 	return dev->ifindex;
819 }
820 EXPORT_SYMBOL(dev_get_iflink);
821 
822 /**
823  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
824  *	@dev: targeted interface
825  *	@skb: The packet.
826  *
827  *	For better visibility of tunnel traffic OVS needs to retrieve
828  *	egress tunnel information for a packet. Following API allows
829  *	user to get this info.
830  */
831 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
832 {
833 	struct ip_tunnel_info *info;
834 
835 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
836 		return -EINVAL;
837 
838 	info = skb_tunnel_info_unclone(skb);
839 	if (!info)
840 		return -ENOMEM;
841 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
842 		return -EINVAL;
843 
844 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
845 }
846 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
847 
848 /**
849  *	__dev_get_by_name	- find a device by its name
850  *	@net: the applicable net namespace
851  *	@name: name to find
852  *
853  *	Find an interface by name. Must be called under RTNL semaphore
854  *	or @dev_base_lock. If the name is found a pointer to the device
855  *	is returned. If the name is not found then %NULL is returned. The
856  *	reference counters are not incremented so the caller must be
857  *	careful with locks.
858  */
859 
860 struct net_device *__dev_get_by_name(struct net *net, const char *name)
861 {
862 	struct netdev_name_node *node_name;
863 
864 	node_name = netdev_name_node_lookup(net, name);
865 	return node_name ? node_name->dev : NULL;
866 }
867 EXPORT_SYMBOL(__dev_get_by_name);
868 
869 /**
870  * dev_get_by_name_rcu	- find a device by its name
871  * @net: the applicable net namespace
872  * @name: name to find
873  *
874  * Find an interface by name.
875  * If the name is found a pointer to the device is returned.
876  * If the name is not found then %NULL is returned.
877  * The reference counters are not incremented so the caller must be
878  * careful with locks. The caller must hold RCU lock.
879  */
880 
881 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
882 {
883 	struct netdev_name_node *node_name;
884 
885 	node_name = netdev_name_node_lookup_rcu(net, name);
886 	return node_name ? node_name->dev : NULL;
887 }
888 EXPORT_SYMBOL(dev_get_by_name_rcu);
889 
890 /**
891  *	dev_get_by_name		- find a device by its name
892  *	@net: the applicable net namespace
893  *	@name: name to find
894  *
895  *	Find an interface by name. This can be called from any
896  *	context and does its own locking. The returned handle has
897  *	the usage count incremented and the caller must use dev_put() to
898  *	release it when it is no longer needed. %NULL is returned if no
899  *	matching device is found.
900  */
901 
902 struct net_device *dev_get_by_name(struct net *net, const char *name)
903 {
904 	struct net_device *dev;
905 
906 	rcu_read_lock();
907 	dev = dev_get_by_name_rcu(net, name);
908 	if (dev)
909 		dev_hold(dev);
910 	rcu_read_unlock();
911 	return dev;
912 }
913 EXPORT_SYMBOL(dev_get_by_name);
914 
915 /**
916  *	__dev_get_by_index - find a device by its ifindex
917  *	@net: the applicable net namespace
918  *	@ifindex: index of device
919  *
920  *	Search for an interface by index. Returns %NULL if the device
921  *	is not found or a pointer to the device. The device has not
922  *	had its reference counter increased so the caller must be careful
923  *	about locking. The caller must hold either the RTNL semaphore
924  *	or @dev_base_lock.
925  */
926 
927 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
928 {
929 	struct net_device *dev;
930 	struct hlist_head *head = dev_index_hash(net, ifindex);
931 
932 	hlist_for_each_entry(dev, head, index_hlist)
933 		if (dev->ifindex == ifindex)
934 			return dev;
935 
936 	return NULL;
937 }
938 EXPORT_SYMBOL(__dev_get_by_index);
939 
940 /**
941  *	dev_get_by_index_rcu - find a device by its ifindex
942  *	@net: the applicable net namespace
943  *	@ifindex: index of device
944  *
945  *	Search for an interface by index. Returns %NULL if the device
946  *	is not found or a pointer to the device. The device has not
947  *	had its reference counter increased so the caller must be careful
948  *	about locking. The caller must hold RCU lock.
949  */
950 
951 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
952 {
953 	struct net_device *dev;
954 	struct hlist_head *head = dev_index_hash(net, ifindex);
955 
956 	hlist_for_each_entry_rcu(dev, head, index_hlist)
957 		if (dev->ifindex == ifindex)
958 			return dev;
959 
960 	return NULL;
961 }
962 EXPORT_SYMBOL(dev_get_by_index_rcu);
963 
964 
965 /**
966  *	dev_get_by_index - find a device by its ifindex
967  *	@net: the applicable net namespace
968  *	@ifindex: index of device
969  *
970  *	Search for an interface by index. Returns NULL if the device
971  *	is not found or a pointer to the device. The device returned has
972  *	had a reference added and the pointer is safe until the user calls
973  *	dev_put to indicate they have finished with it.
974  */
975 
976 struct net_device *dev_get_by_index(struct net *net, int ifindex)
977 {
978 	struct net_device *dev;
979 
980 	rcu_read_lock();
981 	dev = dev_get_by_index_rcu(net, ifindex);
982 	if (dev)
983 		dev_hold(dev);
984 	rcu_read_unlock();
985 	return dev;
986 }
987 EXPORT_SYMBOL(dev_get_by_index);
988 
989 /**
990  *	dev_get_by_napi_id - find a device by napi_id
991  *	@napi_id: ID of the NAPI struct
992  *
993  *	Search for an interface by NAPI ID. Returns %NULL if the device
994  *	is not found or a pointer to the device. The device has not had
995  *	its reference counter increased so the caller must be careful
996  *	about locking. The caller must hold RCU lock.
997  */
998 
999 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1000 {
1001 	struct napi_struct *napi;
1002 
1003 	WARN_ON_ONCE(!rcu_read_lock_held());
1004 
1005 	if (napi_id < MIN_NAPI_ID)
1006 		return NULL;
1007 
1008 	napi = napi_by_id(napi_id);
1009 
1010 	return napi ? napi->dev : NULL;
1011 }
1012 EXPORT_SYMBOL(dev_get_by_napi_id);
1013 
1014 /**
1015  *	netdev_get_name - get a netdevice name, knowing its ifindex.
1016  *	@net: network namespace
1017  *	@name: a pointer to the buffer where the name will be stored.
1018  *	@ifindex: the ifindex of the interface to get the name from.
1019  */
1020 int netdev_get_name(struct net *net, char *name, int ifindex)
1021 {
1022 	struct net_device *dev;
1023 	int ret;
1024 
1025 	down_read(&devnet_rename_sem);
1026 	rcu_read_lock();
1027 
1028 	dev = dev_get_by_index_rcu(net, ifindex);
1029 	if (!dev) {
1030 		ret = -ENODEV;
1031 		goto out;
1032 	}
1033 
1034 	strcpy(name, dev->name);
1035 
1036 	ret = 0;
1037 out:
1038 	rcu_read_unlock();
1039 	up_read(&devnet_rename_sem);
1040 	return ret;
1041 }
1042 
1043 /**
1044  *	dev_getbyhwaddr_rcu - find a device by its hardware address
1045  *	@net: the applicable net namespace
1046  *	@type: media type of device
1047  *	@ha: hardware address
1048  *
1049  *	Search for an interface by MAC address. Returns NULL if the device
1050  *	is not found or a pointer to the device.
1051  *	The caller must hold RCU or RTNL.
1052  *	The returned device has not had its ref count increased
1053  *	and the caller must therefore be careful about locking
1054  *
1055  */
1056 
1057 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1058 				       const char *ha)
1059 {
1060 	struct net_device *dev;
1061 
1062 	for_each_netdev_rcu(net, dev)
1063 		if (dev->type == type &&
1064 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
1065 			return dev;
1066 
1067 	return NULL;
1068 }
1069 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1070 
1071 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1072 {
1073 	struct net_device *dev;
1074 
1075 	ASSERT_RTNL();
1076 	for_each_netdev(net, dev)
1077 		if (dev->type == type)
1078 			return dev;
1079 
1080 	return NULL;
1081 }
1082 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
1083 
1084 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1085 {
1086 	struct net_device *dev, *ret = NULL;
1087 
1088 	rcu_read_lock();
1089 	for_each_netdev_rcu(net, dev)
1090 		if (dev->type == type) {
1091 			dev_hold(dev);
1092 			ret = dev;
1093 			break;
1094 		}
1095 	rcu_read_unlock();
1096 	return ret;
1097 }
1098 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1099 
1100 /**
1101  *	__dev_get_by_flags - find any device with given flags
1102  *	@net: the applicable net namespace
1103  *	@if_flags: IFF_* values
1104  *	@mask: bitmask of bits in if_flags to check
1105  *
1106  *	Search for any interface with the given flags. Returns NULL if a device
1107  *	is not found or a pointer to the device. Must be called inside
1108  *	rtnl_lock(), and result refcount is unchanged.
1109  */
1110 
1111 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1112 				      unsigned short mask)
1113 {
1114 	struct net_device *dev, *ret;
1115 
1116 	ASSERT_RTNL();
1117 
1118 	ret = NULL;
1119 	for_each_netdev(net, dev) {
1120 		if (((dev->flags ^ if_flags) & mask) == 0) {
1121 			ret = dev;
1122 			break;
1123 		}
1124 	}
1125 	return ret;
1126 }
1127 EXPORT_SYMBOL(__dev_get_by_flags);
1128 
1129 /**
1130  *	dev_valid_name - check if name is okay for network device
1131  *	@name: name string
1132  *
1133  *	Network device names need to be valid file names to
1134  *	allow sysfs to work.  We also disallow any kind of
1135  *	whitespace.
1136  */
1137 bool dev_valid_name(const char *name)
1138 {
1139 	if (*name == '\0')
1140 		return false;
1141 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1142 		return false;
1143 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1144 		return false;
1145 
1146 	while (*name) {
1147 		if (*name == '/' || *name == ':' || isspace(*name))
1148 			return false;
1149 		name++;
1150 	}
1151 	return true;
1152 }
1153 EXPORT_SYMBOL(dev_valid_name);
1154 
1155 /**
1156  *	__dev_alloc_name - allocate a name for a device
1157  *	@net: network namespace to allocate the device name in
1158  *	@name: name format string
1159  *	@buf:  scratch buffer and result name string
1160  *
1161  *	Passed a format string - eg "lt%d" it will try and find a suitable
1162  *	id. It scans list of devices to build up a free map, then chooses
1163  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1164  *	while allocating the name and adding the device in order to avoid
1165  *	duplicates.
1166  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1167  *	Returns the number of the unit assigned or a negative errno code.
1168  */
1169 
1170 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1171 {
1172 	int i = 0;
1173 	const char *p;
1174 	const int max_netdevices = 8*PAGE_SIZE;
1175 	unsigned long *inuse;
1176 	struct net_device *d;
1177 
1178 	if (!dev_valid_name(name))
1179 		return -EINVAL;
1180 
1181 	p = strchr(name, '%');
1182 	if (p) {
1183 		/*
1184 		 * Verify the string as this thing may have come from
1185 		 * the user.  There must be either one "%d" and no other "%"
1186 		 * characters.
1187 		 */
1188 		if (p[1] != 'd' || strchr(p + 2, '%'))
1189 			return -EINVAL;
1190 
1191 		/* Use one page as a bit array of possible slots */
1192 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1193 		if (!inuse)
1194 			return -ENOMEM;
1195 
1196 		for_each_netdev(net, d) {
1197 			if (!sscanf(d->name, name, &i))
1198 				continue;
1199 			if (i < 0 || i >= max_netdevices)
1200 				continue;
1201 
1202 			/*  avoid cases where sscanf is not exact inverse of printf */
1203 			snprintf(buf, IFNAMSIZ, name, i);
1204 			if (!strncmp(buf, d->name, IFNAMSIZ))
1205 				set_bit(i, inuse);
1206 		}
1207 
1208 		i = find_first_zero_bit(inuse, max_netdevices);
1209 		free_page((unsigned long) inuse);
1210 	}
1211 
1212 	snprintf(buf, IFNAMSIZ, name, i);
1213 	if (!__dev_get_by_name(net, buf))
1214 		return i;
1215 
1216 	/* It is possible to run out of possible slots
1217 	 * when the name is long and there isn't enough space left
1218 	 * for the digits, or if all bits are used.
1219 	 */
1220 	return -ENFILE;
1221 }
1222 
1223 static int dev_alloc_name_ns(struct net *net,
1224 			     struct net_device *dev,
1225 			     const char *name)
1226 {
1227 	char buf[IFNAMSIZ];
1228 	int ret;
1229 
1230 	BUG_ON(!net);
1231 	ret = __dev_alloc_name(net, name, buf);
1232 	if (ret >= 0)
1233 		strlcpy(dev->name, buf, IFNAMSIZ);
1234 	return ret;
1235 }
1236 
1237 /**
1238  *	dev_alloc_name - allocate a name for a device
1239  *	@dev: device
1240  *	@name: name format string
1241  *
1242  *	Passed a format string - eg "lt%d" it will try and find a suitable
1243  *	id. It scans list of devices to build up a free map, then chooses
1244  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1245  *	while allocating the name and adding the device in order to avoid
1246  *	duplicates.
1247  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1248  *	Returns the number of the unit assigned or a negative errno code.
1249  */
1250 
1251 int dev_alloc_name(struct net_device *dev, const char *name)
1252 {
1253 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1254 }
1255 EXPORT_SYMBOL(dev_alloc_name);
1256 
1257 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1258 			      const char *name)
1259 {
1260 	BUG_ON(!net);
1261 
1262 	if (!dev_valid_name(name))
1263 		return -EINVAL;
1264 
1265 	if (strchr(name, '%'))
1266 		return dev_alloc_name_ns(net, dev, name);
1267 	else if (__dev_get_by_name(net, name))
1268 		return -EEXIST;
1269 	else if (dev->name != name)
1270 		strlcpy(dev->name, name, IFNAMSIZ);
1271 
1272 	return 0;
1273 }
1274 
1275 /**
1276  *	dev_change_name - change name of a device
1277  *	@dev: device
1278  *	@newname: name (or format string) must be at least IFNAMSIZ
1279  *
1280  *	Change name of a device, can pass format strings "eth%d".
1281  *	for wildcarding.
1282  */
1283 int dev_change_name(struct net_device *dev, const char *newname)
1284 {
1285 	unsigned char old_assign_type;
1286 	char oldname[IFNAMSIZ];
1287 	int err = 0;
1288 	int ret;
1289 	struct net *net;
1290 
1291 	ASSERT_RTNL();
1292 	BUG_ON(!dev_net(dev));
1293 
1294 	net = dev_net(dev);
1295 
1296 	/* Some auto-enslaved devices e.g. failover slaves are
1297 	 * special, as userspace might rename the device after
1298 	 * the interface had been brought up and running since
1299 	 * the point kernel initiated auto-enslavement. Allow
1300 	 * live name change even when these slave devices are
1301 	 * up and running.
1302 	 *
1303 	 * Typically, users of these auto-enslaving devices
1304 	 * don't actually care about slave name change, as
1305 	 * they are supposed to operate on master interface
1306 	 * directly.
1307 	 */
1308 	if (dev->flags & IFF_UP &&
1309 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1310 		return -EBUSY;
1311 
1312 	down_write(&devnet_rename_sem);
1313 
1314 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1315 		up_write(&devnet_rename_sem);
1316 		return 0;
1317 	}
1318 
1319 	memcpy(oldname, dev->name, IFNAMSIZ);
1320 
1321 	err = dev_get_valid_name(net, dev, newname);
1322 	if (err < 0) {
1323 		up_write(&devnet_rename_sem);
1324 		return err;
1325 	}
1326 
1327 	if (oldname[0] && !strchr(oldname, '%'))
1328 		netdev_info(dev, "renamed from %s\n", oldname);
1329 
1330 	old_assign_type = dev->name_assign_type;
1331 	dev->name_assign_type = NET_NAME_RENAMED;
1332 
1333 rollback:
1334 	ret = device_rename(&dev->dev, dev->name);
1335 	if (ret) {
1336 		memcpy(dev->name, oldname, IFNAMSIZ);
1337 		dev->name_assign_type = old_assign_type;
1338 		up_write(&devnet_rename_sem);
1339 		return ret;
1340 	}
1341 
1342 	up_write(&devnet_rename_sem);
1343 
1344 	netdev_adjacent_rename_links(dev, oldname);
1345 
1346 	write_lock_bh(&dev_base_lock);
1347 	netdev_name_node_del(dev->name_node);
1348 	write_unlock_bh(&dev_base_lock);
1349 
1350 	synchronize_rcu();
1351 
1352 	write_lock_bh(&dev_base_lock);
1353 	netdev_name_node_add(net, dev->name_node);
1354 	write_unlock_bh(&dev_base_lock);
1355 
1356 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1357 	ret = notifier_to_errno(ret);
1358 
1359 	if (ret) {
1360 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1361 		if (err >= 0) {
1362 			err = ret;
1363 			down_write(&devnet_rename_sem);
1364 			memcpy(dev->name, oldname, IFNAMSIZ);
1365 			memcpy(oldname, newname, IFNAMSIZ);
1366 			dev->name_assign_type = old_assign_type;
1367 			old_assign_type = NET_NAME_RENAMED;
1368 			goto rollback;
1369 		} else {
1370 			pr_err("%s: name change rollback failed: %d\n",
1371 			       dev->name, ret);
1372 		}
1373 	}
1374 
1375 	return err;
1376 }
1377 
1378 /**
1379  *	dev_set_alias - change ifalias of a device
1380  *	@dev: device
1381  *	@alias: name up to IFALIASZ
1382  *	@len: limit of bytes to copy from info
1383  *
1384  *	Set ifalias for a device,
1385  */
1386 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1387 {
1388 	struct dev_ifalias *new_alias = NULL;
1389 
1390 	if (len >= IFALIASZ)
1391 		return -EINVAL;
1392 
1393 	if (len) {
1394 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1395 		if (!new_alias)
1396 			return -ENOMEM;
1397 
1398 		memcpy(new_alias->ifalias, alias, len);
1399 		new_alias->ifalias[len] = 0;
1400 	}
1401 
1402 	mutex_lock(&ifalias_mutex);
1403 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1404 					mutex_is_locked(&ifalias_mutex));
1405 	mutex_unlock(&ifalias_mutex);
1406 
1407 	if (new_alias)
1408 		kfree_rcu(new_alias, rcuhead);
1409 
1410 	return len;
1411 }
1412 EXPORT_SYMBOL(dev_set_alias);
1413 
1414 /**
1415  *	dev_get_alias - get ifalias of a device
1416  *	@dev: device
1417  *	@name: buffer to store name of ifalias
1418  *	@len: size of buffer
1419  *
1420  *	get ifalias for a device.  Caller must make sure dev cannot go
1421  *	away,  e.g. rcu read lock or own a reference count to device.
1422  */
1423 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1424 {
1425 	const struct dev_ifalias *alias;
1426 	int ret = 0;
1427 
1428 	rcu_read_lock();
1429 	alias = rcu_dereference(dev->ifalias);
1430 	if (alias)
1431 		ret = snprintf(name, len, "%s", alias->ifalias);
1432 	rcu_read_unlock();
1433 
1434 	return ret;
1435 }
1436 
1437 /**
1438  *	netdev_features_change - device changes features
1439  *	@dev: device to cause notification
1440  *
1441  *	Called to indicate a device has changed features.
1442  */
1443 void netdev_features_change(struct net_device *dev)
1444 {
1445 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1446 }
1447 EXPORT_SYMBOL(netdev_features_change);
1448 
1449 /**
1450  *	netdev_state_change - device changes state
1451  *	@dev: device to cause notification
1452  *
1453  *	Called to indicate a device has changed state. This function calls
1454  *	the notifier chains for netdev_chain and sends a NEWLINK message
1455  *	to the routing socket.
1456  */
1457 void netdev_state_change(struct net_device *dev)
1458 {
1459 	if (dev->flags & IFF_UP) {
1460 		struct netdev_notifier_change_info change_info = {
1461 			.info.dev = dev,
1462 		};
1463 
1464 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1465 					      &change_info.info);
1466 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1467 	}
1468 }
1469 EXPORT_SYMBOL(netdev_state_change);
1470 
1471 /**
1472  * netdev_notify_peers - notify network peers about existence of @dev
1473  * @dev: network device
1474  *
1475  * Generate traffic such that interested network peers are aware of
1476  * @dev, such as by generating a gratuitous ARP. This may be used when
1477  * a device wants to inform the rest of the network about some sort of
1478  * reconfiguration such as a failover event or virtual machine
1479  * migration.
1480  */
1481 void netdev_notify_peers(struct net_device *dev)
1482 {
1483 	rtnl_lock();
1484 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1485 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1486 	rtnl_unlock();
1487 }
1488 EXPORT_SYMBOL(netdev_notify_peers);
1489 
1490 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1491 {
1492 	const struct net_device_ops *ops = dev->netdev_ops;
1493 	int ret;
1494 
1495 	ASSERT_RTNL();
1496 
1497 	if (!netif_device_present(dev)) {
1498 		/* may be detached because parent is runtime-suspended */
1499 		if (dev->dev.parent)
1500 			pm_runtime_resume(dev->dev.parent);
1501 		if (!netif_device_present(dev))
1502 			return -ENODEV;
1503 	}
1504 
1505 	/* Block netpoll from trying to do any rx path servicing.
1506 	 * If we don't do this there is a chance ndo_poll_controller
1507 	 * or ndo_poll may be running while we open the device
1508 	 */
1509 	netpoll_poll_disable(dev);
1510 
1511 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1512 	ret = notifier_to_errno(ret);
1513 	if (ret)
1514 		return ret;
1515 
1516 	set_bit(__LINK_STATE_START, &dev->state);
1517 
1518 	if (ops->ndo_validate_addr)
1519 		ret = ops->ndo_validate_addr(dev);
1520 
1521 	if (!ret && ops->ndo_open)
1522 		ret = ops->ndo_open(dev);
1523 
1524 	netpoll_poll_enable(dev);
1525 
1526 	if (ret)
1527 		clear_bit(__LINK_STATE_START, &dev->state);
1528 	else {
1529 		dev->flags |= IFF_UP;
1530 		dev_set_rx_mode(dev);
1531 		dev_activate(dev);
1532 		add_device_randomness(dev->dev_addr, dev->addr_len);
1533 	}
1534 
1535 	return ret;
1536 }
1537 
1538 /**
1539  *	dev_open	- prepare an interface for use.
1540  *	@dev: device to open
1541  *	@extack: netlink extended ack
1542  *
1543  *	Takes a device from down to up state. The device's private open
1544  *	function is invoked and then the multicast lists are loaded. Finally
1545  *	the device is moved into the up state and a %NETDEV_UP message is
1546  *	sent to the netdev notifier chain.
1547  *
1548  *	Calling this function on an active interface is a nop. On a failure
1549  *	a negative errno code is returned.
1550  */
1551 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1552 {
1553 	int ret;
1554 
1555 	if (dev->flags & IFF_UP)
1556 		return 0;
1557 
1558 	ret = __dev_open(dev, extack);
1559 	if (ret < 0)
1560 		return ret;
1561 
1562 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1563 	call_netdevice_notifiers(NETDEV_UP, dev);
1564 
1565 	return ret;
1566 }
1567 EXPORT_SYMBOL(dev_open);
1568 
1569 static void __dev_close_many(struct list_head *head)
1570 {
1571 	struct net_device *dev;
1572 
1573 	ASSERT_RTNL();
1574 	might_sleep();
1575 
1576 	list_for_each_entry(dev, head, close_list) {
1577 		/* Temporarily disable netpoll until the interface is down */
1578 		netpoll_poll_disable(dev);
1579 
1580 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1581 
1582 		clear_bit(__LINK_STATE_START, &dev->state);
1583 
1584 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1585 		 * can be even on different cpu. So just clear netif_running().
1586 		 *
1587 		 * dev->stop() will invoke napi_disable() on all of it's
1588 		 * napi_struct instances on this device.
1589 		 */
1590 		smp_mb__after_atomic(); /* Commit netif_running(). */
1591 	}
1592 
1593 	dev_deactivate_many(head);
1594 
1595 	list_for_each_entry(dev, head, close_list) {
1596 		const struct net_device_ops *ops = dev->netdev_ops;
1597 
1598 		/*
1599 		 *	Call the device specific close. This cannot fail.
1600 		 *	Only if device is UP
1601 		 *
1602 		 *	We allow it to be called even after a DETACH hot-plug
1603 		 *	event.
1604 		 */
1605 		if (ops->ndo_stop)
1606 			ops->ndo_stop(dev);
1607 
1608 		dev->flags &= ~IFF_UP;
1609 		netpoll_poll_enable(dev);
1610 	}
1611 }
1612 
1613 static void __dev_close(struct net_device *dev)
1614 {
1615 	LIST_HEAD(single);
1616 
1617 	list_add(&dev->close_list, &single);
1618 	__dev_close_many(&single);
1619 	list_del(&single);
1620 }
1621 
1622 void dev_close_many(struct list_head *head, bool unlink)
1623 {
1624 	struct net_device *dev, *tmp;
1625 
1626 	/* Remove the devices that don't need to be closed */
1627 	list_for_each_entry_safe(dev, tmp, head, close_list)
1628 		if (!(dev->flags & IFF_UP))
1629 			list_del_init(&dev->close_list);
1630 
1631 	__dev_close_many(head);
1632 
1633 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1634 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1635 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1636 		if (unlink)
1637 			list_del_init(&dev->close_list);
1638 	}
1639 }
1640 EXPORT_SYMBOL(dev_close_many);
1641 
1642 /**
1643  *	dev_close - shutdown an interface.
1644  *	@dev: device to shutdown
1645  *
1646  *	This function moves an active device into down state. A
1647  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1648  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1649  *	chain.
1650  */
1651 void dev_close(struct net_device *dev)
1652 {
1653 	if (dev->flags & IFF_UP) {
1654 		LIST_HEAD(single);
1655 
1656 		list_add(&dev->close_list, &single);
1657 		dev_close_many(&single, true);
1658 		list_del(&single);
1659 	}
1660 }
1661 EXPORT_SYMBOL(dev_close);
1662 
1663 
1664 /**
1665  *	dev_disable_lro - disable Large Receive Offload on a device
1666  *	@dev: device
1667  *
1668  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1669  *	called under RTNL.  This is needed if received packets may be
1670  *	forwarded to another interface.
1671  */
1672 void dev_disable_lro(struct net_device *dev)
1673 {
1674 	struct net_device *lower_dev;
1675 	struct list_head *iter;
1676 
1677 	dev->wanted_features &= ~NETIF_F_LRO;
1678 	netdev_update_features(dev);
1679 
1680 	if (unlikely(dev->features & NETIF_F_LRO))
1681 		netdev_WARN(dev, "failed to disable LRO!\n");
1682 
1683 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1684 		dev_disable_lro(lower_dev);
1685 }
1686 EXPORT_SYMBOL(dev_disable_lro);
1687 
1688 /**
1689  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1690  *	@dev: device
1691  *
1692  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1693  *	called under RTNL.  This is needed if Generic XDP is installed on
1694  *	the device.
1695  */
1696 static void dev_disable_gro_hw(struct net_device *dev)
1697 {
1698 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1699 	netdev_update_features(dev);
1700 
1701 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1702 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1703 }
1704 
1705 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1706 {
1707 #define N(val) 						\
1708 	case NETDEV_##val:				\
1709 		return "NETDEV_" __stringify(val);
1710 	switch (cmd) {
1711 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1712 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1713 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1714 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1715 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1716 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1717 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1718 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1719 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1720 	N(PRE_CHANGEADDR)
1721 	}
1722 #undef N
1723 	return "UNKNOWN_NETDEV_EVENT";
1724 }
1725 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1726 
1727 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1728 				   struct net_device *dev)
1729 {
1730 	struct netdev_notifier_info info = {
1731 		.dev = dev,
1732 	};
1733 
1734 	return nb->notifier_call(nb, val, &info);
1735 }
1736 
1737 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1738 					     struct net_device *dev)
1739 {
1740 	int err;
1741 
1742 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1743 	err = notifier_to_errno(err);
1744 	if (err)
1745 		return err;
1746 
1747 	if (!(dev->flags & IFF_UP))
1748 		return 0;
1749 
1750 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1751 	return 0;
1752 }
1753 
1754 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1755 						struct net_device *dev)
1756 {
1757 	if (dev->flags & IFF_UP) {
1758 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1759 					dev);
1760 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1761 	}
1762 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1763 }
1764 
1765 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1766 						 struct net *net)
1767 {
1768 	struct net_device *dev;
1769 	int err;
1770 
1771 	for_each_netdev(net, dev) {
1772 		err = call_netdevice_register_notifiers(nb, dev);
1773 		if (err)
1774 			goto rollback;
1775 	}
1776 	return 0;
1777 
1778 rollback:
1779 	for_each_netdev_continue_reverse(net, dev)
1780 		call_netdevice_unregister_notifiers(nb, dev);
1781 	return err;
1782 }
1783 
1784 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1785 						    struct net *net)
1786 {
1787 	struct net_device *dev;
1788 
1789 	for_each_netdev(net, dev)
1790 		call_netdevice_unregister_notifiers(nb, dev);
1791 }
1792 
1793 static int dev_boot_phase = 1;
1794 
1795 /**
1796  * register_netdevice_notifier - register a network notifier block
1797  * @nb: notifier
1798  *
1799  * Register a notifier to be called when network device events occur.
1800  * The notifier passed is linked into the kernel structures and must
1801  * not be reused until it has been unregistered. A negative errno code
1802  * is returned on a failure.
1803  *
1804  * When registered all registration and up events are replayed
1805  * to the new notifier to allow device to have a race free
1806  * view of the network device list.
1807  */
1808 
1809 int register_netdevice_notifier(struct notifier_block *nb)
1810 {
1811 	struct net *net;
1812 	int err;
1813 
1814 	/* Close race with setup_net() and cleanup_net() */
1815 	down_write(&pernet_ops_rwsem);
1816 	rtnl_lock();
1817 	err = raw_notifier_chain_register(&netdev_chain, nb);
1818 	if (err)
1819 		goto unlock;
1820 	if (dev_boot_phase)
1821 		goto unlock;
1822 	for_each_net(net) {
1823 		err = call_netdevice_register_net_notifiers(nb, net);
1824 		if (err)
1825 			goto rollback;
1826 	}
1827 
1828 unlock:
1829 	rtnl_unlock();
1830 	up_write(&pernet_ops_rwsem);
1831 	return err;
1832 
1833 rollback:
1834 	for_each_net_continue_reverse(net)
1835 		call_netdevice_unregister_net_notifiers(nb, net);
1836 
1837 	raw_notifier_chain_unregister(&netdev_chain, nb);
1838 	goto unlock;
1839 }
1840 EXPORT_SYMBOL(register_netdevice_notifier);
1841 
1842 /**
1843  * unregister_netdevice_notifier - unregister a network notifier block
1844  * @nb: notifier
1845  *
1846  * Unregister a notifier previously registered by
1847  * register_netdevice_notifier(). The notifier is unlinked into the
1848  * kernel structures and may then be reused. A negative errno code
1849  * is returned on a failure.
1850  *
1851  * After unregistering unregister and down device events are synthesized
1852  * for all devices on the device list to the removed notifier to remove
1853  * the need for special case cleanup code.
1854  */
1855 
1856 int unregister_netdevice_notifier(struct notifier_block *nb)
1857 {
1858 	struct net *net;
1859 	int err;
1860 
1861 	/* Close race with setup_net() and cleanup_net() */
1862 	down_write(&pernet_ops_rwsem);
1863 	rtnl_lock();
1864 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1865 	if (err)
1866 		goto unlock;
1867 
1868 	for_each_net(net)
1869 		call_netdevice_unregister_net_notifiers(nb, net);
1870 
1871 unlock:
1872 	rtnl_unlock();
1873 	up_write(&pernet_ops_rwsem);
1874 	return err;
1875 }
1876 EXPORT_SYMBOL(unregister_netdevice_notifier);
1877 
1878 static int __register_netdevice_notifier_net(struct net *net,
1879 					     struct notifier_block *nb,
1880 					     bool ignore_call_fail)
1881 {
1882 	int err;
1883 
1884 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1885 	if (err)
1886 		return err;
1887 	if (dev_boot_phase)
1888 		return 0;
1889 
1890 	err = call_netdevice_register_net_notifiers(nb, net);
1891 	if (err && !ignore_call_fail)
1892 		goto chain_unregister;
1893 
1894 	return 0;
1895 
1896 chain_unregister:
1897 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1898 	return err;
1899 }
1900 
1901 static int __unregister_netdevice_notifier_net(struct net *net,
1902 					       struct notifier_block *nb)
1903 {
1904 	int err;
1905 
1906 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1907 	if (err)
1908 		return err;
1909 
1910 	call_netdevice_unregister_net_notifiers(nb, net);
1911 	return 0;
1912 }
1913 
1914 /**
1915  * register_netdevice_notifier_net - register a per-netns network notifier block
1916  * @net: network namespace
1917  * @nb: notifier
1918  *
1919  * Register a notifier to be called when network device events occur.
1920  * The notifier passed is linked into the kernel structures and must
1921  * not be reused until it has been unregistered. A negative errno code
1922  * is returned on a failure.
1923  *
1924  * When registered all registration and up events are replayed
1925  * to the new notifier to allow device to have a race free
1926  * view of the network device list.
1927  */
1928 
1929 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1930 {
1931 	int err;
1932 
1933 	rtnl_lock();
1934 	err = __register_netdevice_notifier_net(net, nb, false);
1935 	rtnl_unlock();
1936 	return err;
1937 }
1938 EXPORT_SYMBOL(register_netdevice_notifier_net);
1939 
1940 /**
1941  * unregister_netdevice_notifier_net - unregister a per-netns
1942  *                                     network notifier block
1943  * @net: network namespace
1944  * @nb: notifier
1945  *
1946  * Unregister a notifier previously registered by
1947  * register_netdevice_notifier(). The notifier is unlinked into the
1948  * kernel structures and may then be reused. A negative errno code
1949  * is returned on a failure.
1950  *
1951  * After unregistering unregister and down device events are synthesized
1952  * for all devices on the device list to the removed notifier to remove
1953  * the need for special case cleanup code.
1954  */
1955 
1956 int unregister_netdevice_notifier_net(struct net *net,
1957 				      struct notifier_block *nb)
1958 {
1959 	int err;
1960 
1961 	rtnl_lock();
1962 	err = __unregister_netdevice_notifier_net(net, nb);
1963 	rtnl_unlock();
1964 	return err;
1965 }
1966 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1967 
1968 int register_netdevice_notifier_dev_net(struct net_device *dev,
1969 					struct notifier_block *nb,
1970 					struct netdev_net_notifier *nn)
1971 {
1972 	int err;
1973 
1974 	rtnl_lock();
1975 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1976 	if (!err) {
1977 		nn->nb = nb;
1978 		list_add(&nn->list, &dev->net_notifier_list);
1979 	}
1980 	rtnl_unlock();
1981 	return err;
1982 }
1983 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1984 
1985 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1986 					  struct notifier_block *nb,
1987 					  struct netdev_net_notifier *nn)
1988 {
1989 	int err;
1990 
1991 	rtnl_lock();
1992 	list_del(&nn->list);
1993 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1994 	rtnl_unlock();
1995 	return err;
1996 }
1997 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1998 
1999 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2000 					     struct net *net)
2001 {
2002 	struct netdev_net_notifier *nn;
2003 
2004 	list_for_each_entry(nn, &dev->net_notifier_list, list) {
2005 		__unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2006 		__register_netdevice_notifier_net(net, nn->nb, true);
2007 	}
2008 }
2009 
2010 /**
2011  *	call_netdevice_notifiers_info - call all network notifier blocks
2012  *	@val: value passed unmodified to notifier function
2013  *	@info: notifier information data
2014  *
2015  *	Call all network notifier blocks.  Parameters and return value
2016  *	are as for raw_notifier_call_chain().
2017  */
2018 
2019 static int call_netdevice_notifiers_info(unsigned long val,
2020 					 struct netdev_notifier_info *info)
2021 {
2022 	struct net *net = dev_net(info->dev);
2023 	int ret;
2024 
2025 	ASSERT_RTNL();
2026 
2027 	/* Run per-netns notifier block chain first, then run the global one.
2028 	 * Hopefully, one day, the global one is going to be removed after
2029 	 * all notifier block registrators get converted to be per-netns.
2030 	 */
2031 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2032 	if (ret & NOTIFY_STOP_MASK)
2033 		return ret;
2034 	return raw_notifier_call_chain(&netdev_chain, val, info);
2035 }
2036 
2037 static int call_netdevice_notifiers_extack(unsigned long val,
2038 					   struct net_device *dev,
2039 					   struct netlink_ext_ack *extack)
2040 {
2041 	struct netdev_notifier_info info = {
2042 		.dev = dev,
2043 		.extack = extack,
2044 	};
2045 
2046 	return call_netdevice_notifiers_info(val, &info);
2047 }
2048 
2049 /**
2050  *	call_netdevice_notifiers - call all network notifier blocks
2051  *      @val: value passed unmodified to notifier function
2052  *      @dev: net_device pointer passed unmodified to notifier function
2053  *
2054  *	Call all network notifier blocks.  Parameters and return value
2055  *	are as for raw_notifier_call_chain().
2056  */
2057 
2058 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2059 {
2060 	return call_netdevice_notifiers_extack(val, dev, NULL);
2061 }
2062 EXPORT_SYMBOL(call_netdevice_notifiers);
2063 
2064 /**
2065  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2066  *	@val: value passed unmodified to notifier function
2067  *	@dev: net_device pointer passed unmodified to notifier function
2068  *	@arg: additional u32 argument passed to the notifier function
2069  *
2070  *	Call all network notifier blocks.  Parameters and return value
2071  *	are as for raw_notifier_call_chain().
2072  */
2073 static int call_netdevice_notifiers_mtu(unsigned long val,
2074 					struct net_device *dev, u32 arg)
2075 {
2076 	struct netdev_notifier_info_ext info = {
2077 		.info.dev = dev,
2078 		.ext.mtu = arg,
2079 	};
2080 
2081 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2082 
2083 	return call_netdevice_notifiers_info(val, &info.info);
2084 }
2085 
2086 #ifdef CONFIG_NET_INGRESS
2087 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2088 
2089 void net_inc_ingress_queue(void)
2090 {
2091 	static_branch_inc(&ingress_needed_key);
2092 }
2093 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2094 
2095 void net_dec_ingress_queue(void)
2096 {
2097 	static_branch_dec(&ingress_needed_key);
2098 }
2099 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2100 #endif
2101 
2102 #ifdef CONFIG_NET_EGRESS
2103 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2104 
2105 void net_inc_egress_queue(void)
2106 {
2107 	static_branch_inc(&egress_needed_key);
2108 }
2109 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2110 
2111 void net_dec_egress_queue(void)
2112 {
2113 	static_branch_dec(&egress_needed_key);
2114 }
2115 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2116 #endif
2117 
2118 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2119 #ifdef CONFIG_JUMP_LABEL
2120 static atomic_t netstamp_needed_deferred;
2121 static atomic_t netstamp_wanted;
2122 static void netstamp_clear(struct work_struct *work)
2123 {
2124 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2125 	int wanted;
2126 
2127 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2128 	if (wanted > 0)
2129 		static_branch_enable(&netstamp_needed_key);
2130 	else
2131 		static_branch_disable(&netstamp_needed_key);
2132 }
2133 static DECLARE_WORK(netstamp_work, netstamp_clear);
2134 #endif
2135 
2136 void net_enable_timestamp(void)
2137 {
2138 #ifdef CONFIG_JUMP_LABEL
2139 	int wanted;
2140 
2141 	while (1) {
2142 		wanted = atomic_read(&netstamp_wanted);
2143 		if (wanted <= 0)
2144 			break;
2145 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2146 			return;
2147 	}
2148 	atomic_inc(&netstamp_needed_deferred);
2149 	schedule_work(&netstamp_work);
2150 #else
2151 	static_branch_inc(&netstamp_needed_key);
2152 #endif
2153 }
2154 EXPORT_SYMBOL(net_enable_timestamp);
2155 
2156 void net_disable_timestamp(void)
2157 {
2158 #ifdef CONFIG_JUMP_LABEL
2159 	int wanted;
2160 
2161 	while (1) {
2162 		wanted = atomic_read(&netstamp_wanted);
2163 		if (wanted <= 1)
2164 			break;
2165 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2166 			return;
2167 	}
2168 	atomic_dec(&netstamp_needed_deferred);
2169 	schedule_work(&netstamp_work);
2170 #else
2171 	static_branch_dec(&netstamp_needed_key);
2172 #endif
2173 }
2174 EXPORT_SYMBOL(net_disable_timestamp);
2175 
2176 static inline void net_timestamp_set(struct sk_buff *skb)
2177 {
2178 	skb->tstamp = 0;
2179 	if (static_branch_unlikely(&netstamp_needed_key))
2180 		__net_timestamp(skb);
2181 }
2182 
2183 #define net_timestamp_check(COND, SKB)				\
2184 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2185 		if ((COND) && !(SKB)->tstamp)			\
2186 			__net_timestamp(SKB);			\
2187 	}							\
2188 
2189 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2190 {
2191 	unsigned int len;
2192 
2193 	if (!(dev->flags & IFF_UP))
2194 		return false;
2195 
2196 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2197 	if (skb->len <= len)
2198 		return true;
2199 
2200 	/* if TSO is enabled, we don't care about the length as the packet
2201 	 * could be forwarded without being segmented before
2202 	 */
2203 	if (skb_is_gso(skb))
2204 		return true;
2205 
2206 	return false;
2207 }
2208 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2209 
2210 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2211 {
2212 	int ret = ____dev_forward_skb(dev, skb);
2213 
2214 	if (likely(!ret)) {
2215 		skb->protocol = eth_type_trans(skb, dev);
2216 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2217 	}
2218 
2219 	return ret;
2220 }
2221 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2222 
2223 /**
2224  * dev_forward_skb - loopback an skb to another netif
2225  *
2226  * @dev: destination network device
2227  * @skb: buffer to forward
2228  *
2229  * return values:
2230  *	NET_RX_SUCCESS	(no congestion)
2231  *	NET_RX_DROP     (packet was dropped, but freed)
2232  *
2233  * dev_forward_skb can be used for injecting an skb from the
2234  * start_xmit function of one device into the receive queue
2235  * of another device.
2236  *
2237  * The receiving device may be in another namespace, so
2238  * we have to clear all information in the skb that could
2239  * impact namespace isolation.
2240  */
2241 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2242 {
2243 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2244 }
2245 EXPORT_SYMBOL_GPL(dev_forward_skb);
2246 
2247 static inline int deliver_skb(struct sk_buff *skb,
2248 			      struct packet_type *pt_prev,
2249 			      struct net_device *orig_dev)
2250 {
2251 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2252 		return -ENOMEM;
2253 	refcount_inc(&skb->users);
2254 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2255 }
2256 
2257 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2258 					  struct packet_type **pt,
2259 					  struct net_device *orig_dev,
2260 					  __be16 type,
2261 					  struct list_head *ptype_list)
2262 {
2263 	struct packet_type *ptype, *pt_prev = *pt;
2264 
2265 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2266 		if (ptype->type != type)
2267 			continue;
2268 		if (pt_prev)
2269 			deliver_skb(skb, pt_prev, orig_dev);
2270 		pt_prev = ptype;
2271 	}
2272 	*pt = pt_prev;
2273 }
2274 
2275 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2276 {
2277 	if (!ptype->af_packet_priv || !skb->sk)
2278 		return false;
2279 
2280 	if (ptype->id_match)
2281 		return ptype->id_match(ptype, skb->sk);
2282 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2283 		return true;
2284 
2285 	return false;
2286 }
2287 
2288 /**
2289  * dev_nit_active - return true if any network interface taps are in use
2290  *
2291  * @dev: network device to check for the presence of taps
2292  */
2293 bool dev_nit_active(struct net_device *dev)
2294 {
2295 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2296 }
2297 EXPORT_SYMBOL_GPL(dev_nit_active);
2298 
2299 /*
2300  *	Support routine. Sends outgoing frames to any network
2301  *	taps currently in use.
2302  */
2303 
2304 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2305 {
2306 	struct packet_type *ptype;
2307 	struct sk_buff *skb2 = NULL;
2308 	struct packet_type *pt_prev = NULL;
2309 	struct list_head *ptype_list = &ptype_all;
2310 
2311 	rcu_read_lock();
2312 again:
2313 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2314 		if (ptype->ignore_outgoing)
2315 			continue;
2316 
2317 		/* Never send packets back to the socket
2318 		 * they originated from - MvS (miquels@drinkel.ow.org)
2319 		 */
2320 		if (skb_loop_sk(ptype, skb))
2321 			continue;
2322 
2323 		if (pt_prev) {
2324 			deliver_skb(skb2, pt_prev, skb->dev);
2325 			pt_prev = ptype;
2326 			continue;
2327 		}
2328 
2329 		/* need to clone skb, done only once */
2330 		skb2 = skb_clone(skb, GFP_ATOMIC);
2331 		if (!skb2)
2332 			goto out_unlock;
2333 
2334 		net_timestamp_set(skb2);
2335 
2336 		/* skb->nh should be correctly
2337 		 * set by sender, so that the second statement is
2338 		 * just protection against buggy protocols.
2339 		 */
2340 		skb_reset_mac_header(skb2);
2341 
2342 		if (skb_network_header(skb2) < skb2->data ||
2343 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2344 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2345 					     ntohs(skb2->protocol),
2346 					     dev->name);
2347 			skb_reset_network_header(skb2);
2348 		}
2349 
2350 		skb2->transport_header = skb2->network_header;
2351 		skb2->pkt_type = PACKET_OUTGOING;
2352 		pt_prev = ptype;
2353 	}
2354 
2355 	if (ptype_list == &ptype_all) {
2356 		ptype_list = &dev->ptype_all;
2357 		goto again;
2358 	}
2359 out_unlock:
2360 	if (pt_prev) {
2361 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2362 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2363 		else
2364 			kfree_skb(skb2);
2365 	}
2366 	rcu_read_unlock();
2367 }
2368 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2369 
2370 /**
2371  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2372  * @dev: Network device
2373  * @txq: number of queues available
2374  *
2375  * If real_num_tx_queues is changed the tc mappings may no longer be
2376  * valid. To resolve this verify the tc mapping remains valid and if
2377  * not NULL the mapping. With no priorities mapping to this
2378  * offset/count pair it will no longer be used. In the worst case TC0
2379  * is invalid nothing can be done so disable priority mappings. If is
2380  * expected that drivers will fix this mapping if they can before
2381  * calling netif_set_real_num_tx_queues.
2382  */
2383 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2384 {
2385 	int i;
2386 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2387 
2388 	/* If TC0 is invalidated disable TC mapping */
2389 	if (tc->offset + tc->count > txq) {
2390 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2391 		dev->num_tc = 0;
2392 		return;
2393 	}
2394 
2395 	/* Invalidated prio to tc mappings set to TC0 */
2396 	for (i = 1; i < TC_BITMASK + 1; i++) {
2397 		int q = netdev_get_prio_tc_map(dev, i);
2398 
2399 		tc = &dev->tc_to_txq[q];
2400 		if (tc->offset + tc->count > txq) {
2401 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2402 				i, q);
2403 			netdev_set_prio_tc_map(dev, i, 0);
2404 		}
2405 	}
2406 }
2407 
2408 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2409 {
2410 	if (dev->num_tc) {
2411 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2412 		int i;
2413 
2414 		/* walk through the TCs and see if it falls into any of them */
2415 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2416 			if ((txq - tc->offset) < tc->count)
2417 				return i;
2418 		}
2419 
2420 		/* didn't find it, just return -1 to indicate no match */
2421 		return -1;
2422 	}
2423 
2424 	return 0;
2425 }
2426 EXPORT_SYMBOL(netdev_txq_to_tc);
2427 
2428 #ifdef CONFIG_XPS
2429 struct static_key xps_needed __read_mostly;
2430 EXPORT_SYMBOL(xps_needed);
2431 struct static_key xps_rxqs_needed __read_mostly;
2432 EXPORT_SYMBOL(xps_rxqs_needed);
2433 static DEFINE_MUTEX(xps_map_mutex);
2434 #define xmap_dereference(P)		\
2435 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2436 
2437 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2438 			     int tci, u16 index)
2439 {
2440 	struct xps_map *map = NULL;
2441 	int pos;
2442 
2443 	if (dev_maps)
2444 		map = xmap_dereference(dev_maps->attr_map[tci]);
2445 	if (!map)
2446 		return false;
2447 
2448 	for (pos = map->len; pos--;) {
2449 		if (map->queues[pos] != index)
2450 			continue;
2451 
2452 		if (map->len > 1) {
2453 			map->queues[pos] = map->queues[--map->len];
2454 			break;
2455 		}
2456 
2457 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2458 		kfree_rcu(map, rcu);
2459 		return false;
2460 	}
2461 
2462 	return true;
2463 }
2464 
2465 static bool remove_xps_queue_cpu(struct net_device *dev,
2466 				 struct xps_dev_maps *dev_maps,
2467 				 int cpu, u16 offset, u16 count)
2468 {
2469 	int num_tc = dev->num_tc ? : 1;
2470 	bool active = false;
2471 	int tci;
2472 
2473 	for (tci = cpu * num_tc; num_tc--; tci++) {
2474 		int i, j;
2475 
2476 		for (i = count, j = offset; i--; j++) {
2477 			if (!remove_xps_queue(dev_maps, tci, j))
2478 				break;
2479 		}
2480 
2481 		active |= i < 0;
2482 	}
2483 
2484 	return active;
2485 }
2486 
2487 static void reset_xps_maps(struct net_device *dev,
2488 			   struct xps_dev_maps *dev_maps,
2489 			   bool is_rxqs_map)
2490 {
2491 	if (is_rxqs_map) {
2492 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2493 		RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2494 	} else {
2495 		RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2496 	}
2497 	static_key_slow_dec_cpuslocked(&xps_needed);
2498 	kfree_rcu(dev_maps, rcu);
2499 }
2500 
2501 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2502 			   struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2503 			   u16 offset, u16 count, bool is_rxqs_map)
2504 {
2505 	bool active = false;
2506 	int i, j;
2507 
2508 	for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2509 	     j < nr_ids;)
2510 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2511 					       count);
2512 	if (!active)
2513 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2514 
2515 	if (!is_rxqs_map) {
2516 		for (i = offset + (count - 1); count--; i--) {
2517 			netdev_queue_numa_node_write(
2518 				netdev_get_tx_queue(dev, i),
2519 				NUMA_NO_NODE);
2520 		}
2521 	}
2522 }
2523 
2524 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2525 				   u16 count)
2526 {
2527 	const unsigned long *possible_mask = NULL;
2528 	struct xps_dev_maps *dev_maps;
2529 	unsigned int nr_ids;
2530 
2531 	if (!static_key_false(&xps_needed))
2532 		return;
2533 
2534 	cpus_read_lock();
2535 	mutex_lock(&xps_map_mutex);
2536 
2537 	if (static_key_false(&xps_rxqs_needed)) {
2538 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2539 		if (dev_maps) {
2540 			nr_ids = dev->num_rx_queues;
2541 			clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2542 				       offset, count, true);
2543 		}
2544 	}
2545 
2546 	dev_maps = xmap_dereference(dev->xps_cpus_map);
2547 	if (!dev_maps)
2548 		goto out_no_maps;
2549 
2550 	if (num_possible_cpus() > 1)
2551 		possible_mask = cpumask_bits(cpu_possible_mask);
2552 	nr_ids = nr_cpu_ids;
2553 	clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2554 		       false);
2555 
2556 out_no_maps:
2557 	mutex_unlock(&xps_map_mutex);
2558 	cpus_read_unlock();
2559 }
2560 
2561 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2562 {
2563 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2564 }
2565 
2566 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2567 				      u16 index, bool is_rxqs_map)
2568 {
2569 	struct xps_map *new_map;
2570 	int alloc_len = XPS_MIN_MAP_ALLOC;
2571 	int i, pos;
2572 
2573 	for (pos = 0; map && pos < map->len; pos++) {
2574 		if (map->queues[pos] != index)
2575 			continue;
2576 		return map;
2577 	}
2578 
2579 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2580 	if (map) {
2581 		if (pos < map->alloc_len)
2582 			return map;
2583 
2584 		alloc_len = map->alloc_len * 2;
2585 	}
2586 
2587 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2588 	 *  map
2589 	 */
2590 	if (is_rxqs_map)
2591 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2592 	else
2593 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2594 				       cpu_to_node(attr_index));
2595 	if (!new_map)
2596 		return NULL;
2597 
2598 	for (i = 0; i < pos; i++)
2599 		new_map->queues[i] = map->queues[i];
2600 	new_map->alloc_len = alloc_len;
2601 	new_map->len = pos;
2602 
2603 	return new_map;
2604 }
2605 
2606 /* Must be called under cpus_read_lock */
2607 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2608 			  u16 index, bool is_rxqs_map)
2609 {
2610 	const unsigned long *online_mask = NULL, *possible_mask = NULL;
2611 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2612 	int i, j, tci, numa_node_id = -2;
2613 	int maps_sz, num_tc = 1, tc = 0;
2614 	struct xps_map *map, *new_map;
2615 	bool active = false;
2616 	unsigned int nr_ids;
2617 
2618 	if (dev->num_tc) {
2619 		/* Do not allow XPS on subordinate device directly */
2620 		num_tc = dev->num_tc;
2621 		if (num_tc < 0)
2622 			return -EINVAL;
2623 
2624 		/* If queue belongs to subordinate dev use its map */
2625 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2626 
2627 		tc = netdev_txq_to_tc(dev, index);
2628 		if (tc < 0)
2629 			return -EINVAL;
2630 	}
2631 
2632 	mutex_lock(&xps_map_mutex);
2633 	if (is_rxqs_map) {
2634 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2635 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2636 		nr_ids = dev->num_rx_queues;
2637 	} else {
2638 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2639 		if (num_possible_cpus() > 1) {
2640 			online_mask = cpumask_bits(cpu_online_mask);
2641 			possible_mask = cpumask_bits(cpu_possible_mask);
2642 		}
2643 		dev_maps = xmap_dereference(dev->xps_cpus_map);
2644 		nr_ids = nr_cpu_ids;
2645 	}
2646 
2647 	if (maps_sz < L1_CACHE_BYTES)
2648 		maps_sz = L1_CACHE_BYTES;
2649 
2650 	/* allocate memory for queue storage */
2651 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2652 	     j < nr_ids;) {
2653 		if (!new_dev_maps)
2654 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2655 		if (!new_dev_maps) {
2656 			mutex_unlock(&xps_map_mutex);
2657 			return -ENOMEM;
2658 		}
2659 
2660 		tci = j * num_tc + tc;
2661 		map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2662 				 NULL;
2663 
2664 		map = expand_xps_map(map, j, index, is_rxqs_map);
2665 		if (!map)
2666 			goto error;
2667 
2668 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2669 	}
2670 
2671 	if (!new_dev_maps)
2672 		goto out_no_new_maps;
2673 
2674 	if (!dev_maps) {
2675 		/* Increment static keys at most once per type */
2676 		static_key_slow_inc_cpuslocked(&xps_needed);
2677 		if (is_rxqs_map)
2678 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2679 	}
2680 
2681 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2682 	     j < nr_ids;) {
2683 		/* copy maps belonging to foreign traffic classes */
2684 		for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2685 			/* fill in the new device map from the old device map */
2686 			map = xmap_dereference(dev_maps->attr_map[tci]);
2687 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2688 		}
2689 
2690 		/* We need to explicitly update tci as prevous loop
2691 		 * could break out early if dev_maps is NULL.
2692 		 */
2693 		tci = j * num_tc + tc;
2694 
2695 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2696 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2697 			/* add tx-queue to CPU/rx-queue maps */
2698 			int pos = 0;
2699 
2700 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2701 			while ((pos < map->len) && (map->queues[pos] != index))
2702 				pos++;
2703 
2704 			if (pos == map->len)
2705 				map->queues[map->len++] = index;
2706 #ifdef CONFIG_NUMA
2707 			if (!is_rxqs_map) {
2708 				if (numa_node_id == -2)
2709 					numa_node_id = cpu_to_node(j);
2710 				else if (numa_node_id != cpu_to_node(j))
2711 					numa_node_id = -1;
2712 			}
2713 #endif
2714 		} else if (dev_maps) {
2715 			/* fill in the new device map from the old device map */
2716 			map = xmap_dereference(dev_maps->attr_map[tci]);
2717 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2718 		}
2719 
2720 		/* copy maps belonging to foreign traffic classes */
2721 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2722 			/* fill in the new device map from the old device map */
2723 			map = xmap_dereference(dev_maps->attr_map[tci]);
2724 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2725 		}
2726 	}
2727 
2728 	if (is_rxqs_map)
2729 		rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2730 	else
2731 		rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2732 
2733 	/* Cleanup old maps */
2734 	if (!dev_maps)
2735 		goto out_no_old_maps;
2736 
2737 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2738 	     j < nr_ids;) {
2739 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2740 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2741 			map = xmap_dereference(dev_maps->attr_map[tci]);
2742 			if (map && map != new_map)
2743 				kfree_rcu(map, rcu);
2744 		}
2745 	}
2746 
2747 	kfree_rcu(dev_maps, rcu);
2748 
2749 out_no_old_maps:
2750 	dev_maps = new_dev_maps;
2751 	active = true;
2752 
2753 out_no_new_maps:
2754 	if (!is_rxqs_map) {
2755 		/* update Tx queue numa node */
2756 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2757 					     (numa_node_id >= 0) ?
2758 					     numa_node_id : NUMA_NO_NODE);
2759 	}
2760 
2761 	if (!dev_maps)
2762 		goto out_no_maps;
2763 
2764 	/* removes tx-queue from unused CPUs/rx-queues */
2765 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2766 	     j < nr_ids;) {
2767 		for (i = tc, tci = j * num_tc; i--; tci++)
2768 			active |= remove_xps_queue(dev_maps, tci, index);
2769 		if (!netif_attr_test_mask(j, mask, nr_ids) ||
2770 		    !netif_attr_test_online(j, online_mask, nr_ids))
2771 			active |= remove_xps_queue(dev_maps, tci, index);
2772 		for (i = num_tc - tc, tci++; --i; tci++)
2773 			active |= remove_xps_queue(dev_maps, tci, index);
2774 	}
2775 
2776 	/* free map if not active */
2777 	if (!active)
2778 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2779 
2780 out_no_maps:
2781 	mutex_unlock(&xps_map_mutex);
2782 
2783 	return 0;
2784 error:
2785 	/* remove any maps that we added */
2786 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2787 	     j < nr_ids;) {
2788 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2789 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2790 			map = dev_maps ?
2791 			      xmap_dereference(dev_maps->attr_map[tci]) :
2792 			      NULL;
2793 			if (new_map && new_map != map)
2794 				kfree(new_map);
2795 		}
2796 	}
2797 
2798 	mutex_unlock(&xps_map_mutex);
2799 
2800 	kfree(new_dev_maps);
2801 	return -ENOMEM;
2802 }
2803 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2804 
2805 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2806 			u16 index)
2807 {
2808 	int ret;
2809 
2810 	cpus_read_lock();
2811 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2812 	cpus_read_unlock();
2813 
2814 	return ret;
2815 }
2816 EXPORT_SYMBOL(netif_set_xps_queue);
2817 
2818 #endif
2819 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2820 {
2821 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2822 
2823 	/* Unbind any subordinate channels */
2824 	while (txq-- != &dev->_tx[0]) {
2825 		if (txq->sb_dev)
2826 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2827 	}
2828 }
2829 
2830 void netdev_reset_tc(struct net_device *dev)
2831 {
2832 #ifdef CONFIG_XPS
2833 	netif_reset_xps_queues_gt(dev, 0);
2834 #endif
2835 	netdev_unbind_all_sb_channels(dev);
2836 
2837 	/* Reset TC configuration of device */
2838 	dev->num_tc = 0;
2839 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2840 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2841 }
2842 EXPORT_SYMBOL(netdev_reset_tc);
2843 
2844 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2845 {
2846 	if (tc >= dev->num_tc)
2847 		return -EINVAL;
2848 
2849 #ifdef CONFIG_XPS
2850 	netif_reset_xps_queues(dev, offset, count);
2851 #endif
2852 	dev->tc_to_txq[tc].count = count;
2853 	dev->tc_to_txq[tc].offset = offset;
2854 	return 0;
2855 }
2856 EXPORT_SYMBOL(netdev_set_tc_queue);
2857 
2858 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2859 {
2860 	if (num_tc > TC_MAX_QUEUE)
2861 		return -EINVAL;
2862 
2863 #ifdef CONFIG_XPS
2864 	netif_reset_xps_queues_gt(dev, 0);
2865 #endif
2866 	netdev_unbind_all_sb_channels(dev);
2867 
2868 	dev->num_tc = num_tc;
2869 	return 0;
2870 }
2871 EXPORT_SYMBOL(netdev_set_num_tc);
2872 
2873 void netdev_unbind_sb_channel(struct net_device *dev,
2874 			      struct net_device *sb_dev)
2875 {
2876 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2877 
2878 #ifdef CONFIG_XPS
2879 	netif_reset_xps_queues_gt(sb_dev, 0);
2880 #endif
2881 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2882 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2883 
2884 	while (txq-- != &dev->_tx[0]) {
2885 		if (txq->sb_dev == sb_dev)
2886 			txq->sb_dev = NULL;
2887 	}
2888 }
2889 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2890 
2891 int netdev_bind_sb_channel_queue(struct net_device *dev,
2892 				 struct net_device *sb_dev,
2893 				 u8 tc, u16 count, u16 offset)
2894 {
2895 	/* Make certain the sb_dev and dev are already configured */
2896 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2897 		return -EINVAL;
2898 
2899 	/* We cannot hand out queues we don't have */
2900 	if ((offset + count) > dev->real_num_tx_queues)
2901 		return -EINVAL;
2902 
2903 	/* Record the mapping */
2904 	sb_dev->tc_to_txq[tc].count = count;
2905 	sb_dev->tc_to_txq[tc].offset = offset;
2906 
2907 	/* Provide a way for Tx queue to find the tc_to_txq map or
2908 	 * XPS map for itself.
2909 	 */
2910 	while (count--)
2911 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2912 
2913 	return 0;
2914 }
2915 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2916 
2917 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2918 {
2919 	/* Do not use a multiqueue device to represent a subordinate channel */
2920 	if (netif_is_multiqueue(dev))
2921 		return -ENODEV;
2922 
2923 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2924 	 * Channel 0 is meant to be "native" mode and used only to represent
2925 	 * the main root device. We allow writing 0 to reset the device back
2926 	 * to normal mode after being used as a subordinate channel.
2927 	 */
2928 	if (channel > S16_MAX)
2929 		return -EINVAL;
2930 
2931 	dev->num_tc = -channel;
2932 
2933 	return 0;
2934 }
2935 EXPORT_SYMBOL(netdev_set_sb_channel);
2936 
2937 /*
2938  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2939  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2940  */
2941 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2942 {
2943 	bool disabling;
2944 	int rc;
2945 
2946 	disabling = txq < dev->real_num_tx_queues;
2947 
2948 	if (txq < 1 || txq > dev->num_tx_queues)
2949 		return -EINVAL;
2950 
2951 	if (dev->reg_state == NETREG_REGISTERED ||
2952 	    dev->reg_state == NETREG_UNREGISTERING) {
2953 		ASSERT_RTNL();
2954 
2955 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2956 						  txq);
2957 		if (rc)
2958 			return rc;
2959 
2960 		if (dev->num_tc)
2961 			netif_setup_tc(dev, txq);
2962 
2963 		dev->real_num_tx_queues = txq;
2964 
2965 		if (disabling) {
2966 			synchronize_net();
2967 			qdisc_reset_all_tx_gt(dev, txq);
2968 #ifdef CONFIG_XPS
2969 			netif_reset_xps_queues_gt(dev, txq);
2970 #endif
2971 		}
2972 	} else {
2973 		dev->real_num_tx_queues = txq;
2974 	}
2975 
2976 	return 0;
2977 }
2978 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2979 
2980 #ifdef CONFIG_SYSFS
2981 /**
2982  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2983  *	@dev: Network device
2984  *	@rxq: Actual number of RX queues
2985  *
2986  *	This must be called either with the rtnl_lock held or before
2987  *	registration of the net device.  Returns 0 on success, or a
2988  *	negative error code.  If called before registration, it always
2989  *	succeeds.
2990  */
2991 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2992 {
2993 	int rc;
2994 
2995 	if (rxq < 1 || rxq > dev->num_rx_queues)
2996 		return -EINVAL;
2997 
2998 	if (dev->reg_state == NETREG_REGISTERED) {
2999 		ASSERT_RTNL();
3000 
3001 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3002 						  rxq);
3003 		if (rc)
3004 			return rc;
3005 	}
3006 
3007 	dev->real_num_rx_queues = rxq;
3008 	return 0;
3009 }
3010 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3011 #endif
3012 
3013 /**
3014  * netif_get_num_default_rss_queues - default number of RSS queues
3015  *
3016  * This routine should set an upper limit on the number of RSS queues
3017  * used by default by multiqueue devices.
3018  */
3019 int netif_get_num_default_rss_queues(void)
3020 {
3021 	return is_kdump_kernel() ?
3022 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3023 }
3024 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3025 
3026 static void __netif_reschedule(struct Qdisc *q)
3027 {
3028 	struct softnet_data *sd;
3029 	unsigned long flags;
3030 
3031 	local_irq_save(flags);
3032 	sd = this_cpu_ptr(&softnet_data);
3033 	q->next_sched = NULL;
3034 	*sd->output_queue_tailp = q;
3035 	sd->output_queue_tailp = &q->next_sched;
3036 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3037 	local_irq_restore(flags);
3038 }
3039 
3040 void __netif_schedule(struct Qdisc *q)
3041 {
3042 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3043 		__netif_reschedule(q);
3044 }
3045 EXPORT_SYMBOL(__netif_schedule);
3046 
3047 struct dev_kfree_skb_cb {
3048 	enum skb_free_reason reason;
3049 };
3050 
3051 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3052 {
3053 	return (struct dev_kfree_skb_cb *)skb->cb;
3054 }
3055 
3056 void netif_schedule_queue(struct netdev_queue *txq)
3057 {
3058 	rcu_read_lock();
3059 	if (!netif_xmit_stopped(txq)) {
3060 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3061 
3062 		__netif_schedule(q);
3063 	}
3064 	rcu_read_unlock();
3065 }
3066 EXPORT_SYMBOL(netif_schedule_queue);
3067 
3068 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3069 {
3070 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3071 		struct Qdisc *q;
3072 
3073 		rcu_read_lock();
3074 		q = rcu_dereference(dev_queue->qdisc);
3075 		__netif_schedule(q);
3076 		rcu_read_unlock();
3077 	}
3078 }
3079 EXPORT_SYMBOL(netif_tx_wake_queue);
3080 
3081 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3082 {
3083 	unsigned long flags;
3084 
3085 	if (unlikely(!skb))
3086 		return;
3087 
3088 	if (likely(refcount_read(&skb->users) == 1)) {
3089 		smp_rmb();
3090 		refcount_set(&skb->users, 0);
3091 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3092 		return;
3093 	}
3094 	get_kfree_skb_cb(skb)->reason = reason;
3095 	local_irq_save(flags);
3096 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3097 	__this_cpu_write(softnet_data.completion_queue, skb);
3098 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3099 	local_irq_restore(flags);
3100 }
3101 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3102 
3103 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3104 {
3105 	if (in_irq() || irqs_disabled())
3106 		__dev_kfree_skb_irq(skb, reason);
3107 	else
3108 		dev_kfree_skb(skb);
3109 }
3110 EXPORT_SYMBOL(__dev_kfree_skb_any);
3111 
3112 
3113 /**
3114  * netif_device_detach - mark device as removed
3115  * @dev: network device
3116  *
3117  * Mark device as removed from system and therefore no longer available.
3118  */
3119 void netif_device_detach(struct net_device *dev)
3120 {
3121 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3122 	    netif_running(dev)) {
3123 		netif_tx_stop_all_queues(dev);
3124 	}
3125 }
3126 EXPORT_SYMBOL(netif_device_detach);
3127 
3128 /**
3129  * netif_device_attach - mark device as attached
3130  * @dev: network device
3131  *
3132  * Mark device as attached from system and restart if needed.
3133  */
3134 void netif_device_attach(struct net_device *dev)
3135 {
3136 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3137 	    netif_running(dev)) {
3138 		netif_tx_wake_all_queues(dev);
3139 		__netdev_watchdog_up(dev);
3140 	}
3141 }
3142 EXPORT_SYMBOL(netif_device_attach);
3143 
3144 /*
3145  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3146  * to be used as a distribution range.
3147  */
3148 static u16 skb_tx_hash(const struct net_device *dev,
3149 		       const struct net_device *sb_dev,
3150 		       struct sk_buff *skb)
3151 {
3152 	u32 hash;
3153 	u16 qoffset = 0;
3154 	u16 qcount = dev->real_num_tx_queues;
3155 
3156 	if (dev->num_tc) {
3157 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3158 
3159 		qoffset = sb_dev->tc_to_txq[tc].offset;
3160 		qcount = sb_dev->tc_to_txq[tc].count;
3161 	}
3162 
3163 	if (skb_rx_queue_recorded(skb)) {
3164 		hash = skb_get_rx_queue(skb);
3165 		if (hash >= qoffset)
3166 			hash -= qoffset;
3167 		while (unlikely(hash >= qcount))
3168 			hash -= qcount;
3169 		return hash + qoffset;
3170 	}
3171 
3172 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3173 }
3174 
3175 static void skb_warn_bad_offload(const struct sk_buff *skb)
3176 {
3177 	static const netdev_features_t null_features;
3178 	struct net_device *dev = skb->dev;
3179 	const char *name = "";
3180 
3181 	if (!net_ratelimit())
3182 		return;
3183 
3184 	if (dev) {
3185 		if (dev->dev.parent)
3186 			name = dev_driver_string(dev->dev.parent);
3187 		else
3188 			name = netdev_name(dev);
3189 	}
3190 	skb_dump(KERN_WARNING, skb, false);
3191 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3192 	     name, dev ? &dev->features : &null_features,
3193 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3194 }
3195 
3196 /*
3197  * Invalidate hardware checksum when packet is to be mangled, and
3198  * complete checksum manually on outgoing path.
3199  */
3200 int skb_checksum_help(struct sk_buff *skb)
3201 {
3202 	__wsum csum;
3203 	int ret = 0, offset;
3204 
3205 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3206 		goto out_set_summed;
3207 
3208 	if (unlikely(skb_shinfo(skb)->gso_size)) {
3209 		skb_warn_bad_offload(skb);
3210 		return -EINVAL;
3211 	}
3212 
3213 	/* Before computing a checksum, we should make sure no frag could
3214 	 * be modified by an external entity : checksum could be wrong.
3215 	 */
3216 	if (skb_has_shared_frag(skb)) {
3217 		ret = __skb_linearize(skb);
3218 		if (ret)
3219 			goto out;
3220 	}
3221 
3222 	offset = skb_checksum_start_offset(skb);
3223 	BUG_ON(offset >= skb_headlen(skb));
3224 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3225 
3226 	offset += skb->csum_offset;
3227 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3228 
3229 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3230 	if (ret)
3231 		goto out;
3232 
3233 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3234 out_set_summed:
3235 	skb->ip_summed = CHECKSUM_NONE;
3236 out:
3237 	return ret;
3238 }
3239 EXPORT_SYMBOL(skb_checksum_help);
3240 
3241 int skb_crc32c_csum_help(struct sk_buff *skb)
3242 {
3243 	__le32 crc32c_csum;
3244 	int ret = 0, offset, start;
3245 
3246 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3247 		goto out;
3248 
3249 	if (unlikely(skb_is_gso(skb)))
3250 		goto out;
3251 
3252 	/* Before computing a checksum, we should make sure no frag could
3253 	 * be modified by an external entity : checksum could be wrong.
3254 	 */
3255 	if (unlikely(skb_has_shared_frag(skb))) {
3256 		ret = __skb_linearize(skb);
3257 		if (ret)
3258 			goto out;
3259 	}
3260 	start = skb_checksum_start_offset(skb);
3261 	offset = start + offsetof(struct sctphdr, checksum);
3262 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3263 		ret = -EINVAL;
3264 		goto out;
3265 	}
3266 
3267 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3268 	if (ret)
3269 		goto out;
3270 
3271 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3272 						  skb->len - start, ~(__u32)0,
3273 						  crc32c_csum_stub));
3274 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3275 	skb->ip_summed = CHECKSUM_NONE;
3276 	skb->csum_not_inet = 0;
3277 out:
3278 	return ret;
3279 }
3280 
3281 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3282 {
3283 	__be16 type = skb->protocol;
3284 
3285 	/* Tunnel gso handlers can set protocol to ethernet. */
3286 	if (type == htons(ETH_P_TEB)) {
3287 		struct ethhdr *eth;
3288 
3289 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3290 			return 0;
3291 
3292 		eth = (struct ethhdr *)skb->data;
3293 		type = eth->h_proto;
3294 	}
3295 
3296 	return __vlan_get_protocol(skb, type, depth);
3297 }
3298 
3299 /**
3300  *	skb_mac_gso_segment - mac layer segmentation handler.
3301  *	@skb: buffer to segment
3302  *	@features: features for the output path (see dev->features)
3303  */
3304 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3305 				    netdev_features_t features)
3306 {
3307 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3308 	struct packet_offload *ptype;
3309 	int vlan_depth = skb->mac_len;
3310 	__be16 type = skb_network_protocol(skb, &vlan_depth);
3311 
3312 	if (unlikely(!type))
3313 		return ERR_PTR(-EINVAL);
3314 
3315 	__skb_pull(skb, vlan_depth);
3316 
3317 	rcu_read_lock();
3318 	list_for_each_entry_rcu(ptype, &offload_base, list) {
3319 		if (ptype->type == type && ptype->callbacks.gso_segment) {
3320 			segs = ptype->callbacks.gso_segment(skb, features);
3321 			break;
3322 		}
3323 	}
3324 	rcu_read_unlock();
3325 
3326 	__skb_push(skb, skb->data - skb_mac_header(skb));
3327 
3328 	return segs;
3329 }
3330 EXPORT_SYMBOL(skb_mac_gso_segment);
3331 
3332 
3333 /* openvswitch calls this on rx path, so we need a different check.
3334  */
3335 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3336 {
3337 	if (tx_path)
3338 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3339 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3340 
3341 	return skb->ip_summed == CHECKSUM_NONE;
3342 }
3343 
3344 /**
3345  *	__skb_gso_segment - Perform segmentation on skb.
3346  *	@skb: buffer to segment
3347  *	@features: features for the output path (see dev->features)
3348  *	@tx_path: whether it is called in TX path
3349  *
3350  *	This function segments the given skb and returns a list of segments.
3351  *
3352  *	It may return NULL if the skb requires no segmentation.  This is
3353  *	only possible when GSO is used for verifying header integrity.
3354  *
3355  *	Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3356  */
3357 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3358 				  netdev_features_t features, bool tx_path)
3359 {
3360 	struct sk_buff *segs;
3361 
3362 	if (unlikely(skb_needs_check(skb, tx_path))) {
3363 		int err;
3364 
3365 		/* We're going to init ->check field in TCP or UDP header */
3366 		err = skb_cow_head(skb, 0);
3367 		if (err < 0)
3368 			return ERR_PTR(err);
3369 	}
3370 
3371 	/* Only report GSO partial support if it will enable us to
3372 	 * support segmentation on this frame without needing additional
3373 	 * work.
3374 	 */
3375 	if (features & NETIF_F_GSO_PARTIAL) {
3376 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3377 		struct net_device *dev = skb->dev;
3378 
3379 		partial_features |= dev->features & dev->gso_partial_features;
3380 		if (!skb_gso_ok(skb, features | partial_features))
3381 			features &= ~NETIF_F_GSO_PARTIAL;
3382 	}
3383 
3384 	BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3385 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3386 
3387 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3388 	SKB_GSO_CB(skb)->encap_level = 0;
3389 
3390 	skb_reset_mac_header(skb);
3391 	skb_reset_mac_len(skb);
3392 
3393 	segs = skb_mac_gso_segment(skb, features);
3394 
3395 	if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3396 		skb_warn_bad_offload(skb);
3397 
3398 	return segs;
3399 }
3400 EXPORT_SYMBOL(__skb_gso_segment);
3401 
3402 /* Take action when hardware reception checksum errors are detected. */
3403 #ifdef CONFIG_BUG
3404 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3405 {
3406 	if (net_ratelimit()) {
3407 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3408 		skb_dump(KERN_ERR, skb, true);
3409 		dump_stack();
3410 	}
3411 }
3412 EXPORT_SYMBOL(netdev_rx_csum_fault);
3413 #endif
3414 
3415 /* XXX: check that highmem exists at all on the given machine. */
3416 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3417 {
3418 #ifdef CONFIG_HIGHMEM
3419 	int i;
3420 
3421 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3422 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3423 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3424 
3425 			if (PageHighMem(skb_frag_page(frag)))
3426 				return 1;
3427 		}
3428 	}
3429 #endif
3430 	return 0;
3431 }
3432 
3433 /* If MPLS offload request, verify we are testing hardware MPLS features
3434  * instead of standard features for the netdev.
3435  */
3436 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3437 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3438 					   netdev_features_t features,
3439 					   __be16 type)
3440 {
3441 	if (eth_p_mpls(type))
3442 		features &= skb->dev->mpls_features;
3443 
3444 	return features;
3445 }
3446 #else
3447 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3448 					   netdev_features_t features,
3449 					   __be16 type)
3450 {
3451 	return features;
3452 }
3453 #endif
3454 
3455 static netdev_features_t harmonize_features(struct sk_buff *skb,
3456 	netdev_features_t features)
3457 {
3458 	__be16 type;
3459 
3460 	type = skb_network_protocol(skb, NULL);
3461 	features = net_mpls_features(skb, features, type);
3462 
3463 	if (skb->ip_summed != CHECKSUM_NONE &&
3464 	    !can_checksum_protocol(features, type)) {
3465 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3466 	}
3467 	if (illegal_highdma(skb->dev, skb))
3468 		features &= ~NETIF_F_SG;
3469 
3470 	return features;
3471 }
3472 
3473 netdev_features_t passthru_features_check(struct sk_buff *skb,
3474 					  struct net_device *dev,
3475 					  netdev_features_t features)
3476 {
3477 	return features;
3478 }
3479 EXPORT_SYMBOL(passthru_features_check);
3480 
3481 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3482 					     struct net_device *dev,
3483 					     netdev_features_t features)
3484 {
3485 	return vlan_features_check(skb, features);
3486 }
3487 
3488 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3489 					    struct net_device *dev,
3490 					    netdev_features_t features)
3491 {
3492 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3493 
3494 	if (gso_segs > dev->gso_max_segs)
3495 		return features & ~NETIF_F_GSO_MASK;
3496 
3497 	/* Support for GSO partial features requires software
3498 	 * intervention before we can actually process the packets
3499 	 * so we need to strip support for any partial features now
3500 	 * and we can pull them back in after we have partially
3501 	 * segmented the frame.
3502 	 */
3503 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3504 		features &= ~dev->gso_partial_features;
3505 
3506 	/* Make sure to clear the IPv4 ID mangling feature if the
3507 	 * IPv4 header has the potential to be fragmented.
3508 	 */
3509 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3510 		struct iphdr *iph = skb->encapsulation ?
3511 				    inner_ip_hdr(skb) : ip_hdr(skb);
3512 
3513 		if (!(iph->frag_off & htons(IP_DF)))
3514 			features &= ~NETIF_F_TSO_MANGLEID;
3515 	}
3516 
3517 	return features;
3518 }
3519 
3520 netdev_features_t netif_skb_features(struct sk_buff *skb)
3521 {
3522 	struct net_device *dev = skb->dev;
3523 	netdev_features_t features = dev->features;
3524 
3525 	if (skb_is_gso(skb))
3526 		features = gso_features_check(skb, dev, features);
3527 
3528 	/* If encapsulation offload request, verify we are testing
3529 	 * hardware encapsulation features instead of standard
3530 	 * features for the netdev
3531 	 */
3532 	if (skb->encapsulation)
3533 		features &= dev->hw_enc_features;
3534 
3535 	if (skb_vlan_tagged(skb))
3536 		features = netdev_intersect_features(features,
3537 						     dev->vlan_features |
3538 						     NETIF_F_HW_VLAN_CTAG_TX |
3539 						     NETIF_F_HW_VLAN_STAG_TX);
3540 
3541 	if (dev->netdev_ops->ndo_features_check)
3542 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3543 								features);
3544 	else
3545 		features &= dflt_features_check(skb, dev, features);
3546 
3547 	return harmonize_features(skb, features);
3548 }
3549 EXPORT_SYMBOL(netif_skb_features);
3550 
3551 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3552 		    struct netdev_queue *txq, bool more)
3553 {
3554 	unsigned int len;
3555 	int rc;
3556 
3557 	if (dev_nit_active(dev))
3558 		dev_queue_xmit_nit(skb, dev);
3559 
3560 	len = skb->len;
3561 	trace_net_dev_start_xmit(skb, dev);
3562 	rc = netdev_start_xmit(skb, dev, txq, more);
3563 	trace_net_dev_xmit(skb, rc, dev, len);
3564 
3565 	return rc;
3566 }
3567 
3568 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3569 				    struct netdev_queue *txq, int *ret)
3570 {
3571 	struct sk_buff *skb = first;
3572 	int rc = NETDEV_TX_OK;
3573 
3574 	while (skb) {
3575 		struct sk_buff *next = skb->next;
3576 
3577 		skb_mark_not_on_list(skb);
3578 		rc = xmit_one(skb, dev, txq, next != NULL);
3579 		if (unlikely(!dev_xmit_complete(rc))) {
3580 			skb->next = next;
3581 			goto out;
3582 		}
3583 
3584 		skb = next;
3585 		if (netif_tx_queue_stopped(txq) && skb) {
3586 			rc = NETDEV_TX_BUSY;
3587 			break;
3588 		}
3589 	}
3590 
3591 out:
3592 	*ret = rc;
3593 	return skb;
3594 }
3595 
3596 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3597 					  netdev_features_t features)
3598 {
3599 	if (skb_vlan_tag_present(skb) &&
3600 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3601 		skb = __vlan_hwaccel_push_inside(skb);
3602 	return skb;
3603 }
3604 
3605 int skb_csum_hwoffload_help(struct sk_buff *skb,
3606 			    const netdev_features_t features)
3607 {
3608 	if (unlikely(skb->csum_not_inet))
3609 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3610 			skb_crc32c_csum_help(skb);
3611 
3612 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3613 }
3614 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3615 
3616 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3617 {
3618 	netdev_features_t features;
3619 
3620 	features = netif_skb_features(skb);
3621 	skb = validate_xmit_vlan(skb, features);
3622 	if (unlikely(!skb))
3623 		goto out_null;
3624 
3625 	skb = sk_validate_xmit_skb(skb, dev);
3626 	if (unlikely(!skb))
3627 		goto out_null;
3628 
3629 	if (netif_needs_gso(skb, features)) {
3630 		struct sk_buff *segs;
3631 
3632 		segs = skb_gso_segment(skb, features);
3633 		if (IS_ERR(segs)) {
3634 			goto out_kfree_skb;
3635 		} else if (segs) {
3636 			consume_skb(skb);
3637 			skb = segs;
3638 		}
3639 	} else {
3640 		if (skb_needs_linearize(skb, features) &&
3641 		    __skb_linearize(skb))
3642 			goto out_kfree_skb;
3643 
3644 		/* If packet is not checksummed and device does not
3645 		 * support checksumming for this protocol, complete
3646 		 * checksumming here.
3647 		 */
3648 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3649 			if (skb->encapsulation)
3650 				skb_set_inner_transport_header(skb,
3651 							       skb_checksum_start_offset(skb));
3652 			else
3653 				skb_set_transport_header(skb,
3654 							 skb_checksum_start_offset(skb));
3655 			if (skb_csum_hwoffload_help(skb, features))
3656 				goto out_kfree_skb;
3657 		}
3658 	}
3659 
3660 	skb = validate_xmit_xfrm(skb, features, again);
3661 
3662 	return skb;
3663 
3664 out_kfree_skb:
3665 	kfree_skb(skb);
3666 out_null:
3667 	atomic_long_inc(&dev->tx_dropped);
3668 	return NULL;
3669 }
3670 
3671 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3672 {
3673 	struct sk_buff *next, *head = NULL, *tail;
3674 
3675 	for (; skb != NULL; skb = next) {
3676 		next = skb->next;
3677 		skb_mark_not_on_list(skb);
3678 
3679 		/* in case skb wont be segmented, point to itself */
3680 		skb->prev = skb;
3681 
3682 		skb = validate_xmit_skb(skb, dev, again);
3683 		if (!skb)
3684 			continue;
3685 
3686 		if (!head)
3687 			head = skb;
3688 		else
3689 			tail->next = skb;
3690 		/* If skb was segmented, skb->prev points to
3691 		 * the last segment. If not, it still contains skb.
3692 		 */
3693 		tail = skb->prev;
3694 	}
3695 	return head;
3696 }
3697 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3698 
3699 static void qdisc_pkt_len_init(struct sk_buff *skb)
3700 {
3701 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3702 
3703 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3704 
3705 	/* To get more precise estimation of bytes sent on wire,
3706 	 * we add to pkt_len the headers size of all segments
3707 	 */
3708 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3709 		unsigned int hdr_len;
3710 		u16 gso_segs = shinfo->gso_segs;
3711 
3712 		/* mac layer + network layer */
3713 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3714 
3715 		/* + transport layer */
3716 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3717 			const struct tcphdr *th;
3718 			struct tcphdr _tcphdr;
3719 
3720 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3721 						sizeof(_tcphdr), &_tcphdr);
3722 			if (likely(th))
3723 				hdr_len += __tcp_hdrlen(th);
3724 		} else {
3725 			struct udphdr _udphdr;
3726 
3727 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3728 					       sizeof(_udphdr), &_udphdr))
3729 				hdr_len += sizeof(struct udphdr);
3730 		}
3731 
3732 		if (shinfo->gso_type & SKB_GSO_DODGY)
3733 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3734 						shinfo->gso_size);
3735 
3736 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3737 	}
3738 }
3739 
3740 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3741 				 struct net_device *dev,
3742 				 struct netdev_queue *txq)
3743 {
3744 	spinlock_t *root_lock = qdisc_lock(q);
3745 	struct sk_buff *to_free = NULL;
3746 	bool contended;
3747 	int rc;
3748 
3749 	qdisc_calculate_pkt_len(skb, q);
3750 
3751 	if (q->flags & TCQ_F_NOLOCK) {
3752 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3753 		qdisc_run(q);
3754 
3755 		if (unlikely(to_free))
3756 			kfree_skb_list(to_free);
3757 		return rc;
3758 	}
3759 
3760 	/*
3761 	 * Heuristic to force contended enqueues to serialize on a
3762 	 * separate lock before trying to get qdisc main lock.
3763 	 * This permits qdisc->running owner to get the lock more
3764 	 * often and dequeue packets faster.
3765 	 */
3766 	contended = qdisc_is_running(q);
3767 	if (unlikely(contended))
3768 		spin_lock(&q->busylock);
3769 
3770 	spin_lock(root_lock);
3771 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3772 		__qdisc_drop(skb, &to_free);
3773 		rc = NET_XMIT_DROP;
3774 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3775 		   qdisc_run_begin(q)) {
3776 		/*
3777 		 * This is a work-conserving queue; there are no old skbs
3778 		 * waiting to be sent out; and the qdisc is not running -
3779 		 * xmit the skb directly.
3780 		 */
3781 
3782 		qdisc_bstats_update(q, skb);
3783 
3784 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3785 			if (unlikely(contended)) {
3786 				spin_unlock(&q->busylock);
3787 				contended = false;
3788 			}
3789 			__qdisc_run(q);
3790 		}
3791 
3792 		qdisc_run_end(q);
3793 		rc = NET_XMIT_SUCCESS;
3794 	} else {
3795 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3796 		if (qdisc_run_begin(q)) {
3797 			if (unlikely(contended)) {
3798 				spin_unlock(&q->busylock);
3799 				contended = false;
3800 			}
3801 			__qdisc_run(q);
3802 			qdisc_run_end(q);
3803 		}
3804 	}
3805 	spin_unlock(root_lock);
3806 	if (unlikely(to_free))
3807 		kfree_skb_list(to_free);
3808 	if (unlikely(contended))
3809 		spin_unlock(&q->busylock);
3810 	return rc;
3811 }
3812 
3813 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3814 static void skb_update_prio(struct sk_buff *skb)
3815 {
3816 	const struct netprio_map *map;
3817 	const struct sock *sk;
3818 	unsigned int prioidx;
3819 
3820 	if (skb->priority)
3821 		return;
3822 	map = rcu_dereference_bh(skb->dev->priomap);
3823 	if (!map)
3824 		return;
3825 	sk = skb_to_full_sk(skb);
3826 	if (!sk)
3827 		return;
3828 
3829 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3830 
3831 	if (prioidx < map->priomap_len)
3832 		skb->priority = map->priomap[prioidx];
3833 }
3834 #else
3835 #define skb_update_prio(skb)
3836 #endif
3837 
3838 /**
3839  *	dev_loopback_xmit - loop back @skb
3840  *	@net: network namespace this loopback is happening in
3841  *	@sk:  sk needed to be a netfilter okfn
3842  *	@skb: buffer to transmit
3843  */
3844 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3845 {
3846 	skb_reset_mac_header(skb);
3847 	__skb_pull(skb, skb_network_offset(skb));
3848 	skb->pkt_type = PACKET_LOOPBACK;
3849 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3850 	WARN_ON(!skb_dst(skb));
3851 	skb_dst_force(skb);
3852 	netif_rx_ni(skb);
3853 	return 0;
3854 }
3855 EXPORT_SYMBOL(dev_loopback_xmit);
3856 
3857 #ifdef CONFIG_NET_EGRESS
3858 static struct sk_buff *
3859 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3860 {
3861 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3862 	struct tcf_result cl_res;
3863 
3864 	if (!miniq)
3865 		return skb;
3866 
3867 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3868 	mini_qdisc_bstats_cpu_update(miniq, skb);
3869 
3870 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3871 	case TC_ACT_OK:
3872 	case TC_ACT_RECLASSIFY:
3873 		skb->tc_index = TC_H_MIN(cl_res.classid);
3874 		break;
3875 	case TC_ACT_SHOT:
3876 		mini_qdisc_qstats_cpu_drop(miniq);
3877 		*ret = NET_XMIT_DROP;
3878 		kfree_skb(skb);
3879 		return NULL;
3880 	case TC_ACT_STOLEN:
3881 	case TC_ACT_QUEUED:
3882 	case TC_ACT_TRAP:
3883 		*ret = NET_XMIT_SUCCESS;
3884 		consume_skb(skb);
3885 		return NULL;
3886 	case TC_ACT_REDIRECT:
3887 		/* No need to push/pop skb's mac_header here on egress! */
3888 		skb_do_redirect(skb);
3889 		*ret = NET_XMIT_SUCCESS;
3890 		return NULL;
3891 	default:
3892 		break;
3893 	}
3894 
3895 	return skb;
3896 }
3897 #endif /* CONFIG_NET_EGRESS */
3898 
3899 #ifdef CONFIG_XPS
3900 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3901 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3902 {
3903 	struct xps_map *map;
3904 	int queue_index = -1;
3905 
3906 	if (dev->num_tc) {
3907 		tci *= dev->num_tc;
3908 		tci += netdev_get_prio_tc_map(dev, skb->priority);
3909 	}
3910 
3911 	map = rcu_dereference(dev_maps->attr_map[tci]);
3912 	if (map) {
3913 		if (map->len == 1)
3914 			queue_index = map->queues[0];
3915 		else
3916 			queue_index = map->queues[reciprocal_scale(
3917 						skb_get_hash(skb), map->len)];
3918 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3919 			queue_index = -1;
3920 	}
3921 	return queue_index;
3922 }
3923 #endif
3924 
3925 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3926 			 struct sk_buff *skb)
3927 {
3928 #ifdef CONFIG_XPS
3929 	struct xps_dev_maps *dev_maps;
3930 	struct sock *sk = skb->sk;
3931 	int queue_index = -1;
3932 
3933 	if (!static_key_false(&xps_needed))
3934 		return -1;
3935 
3936 	rcu_read_lock();
3937 	if (!static_key_false(&xps_rxqs_needed))
3938 		goto get_cpus_map;
3939 
3940 	dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3941 	if (dev_maps) {
3942 		int tci = sk_rx_queue_get(sk);
3943 
3944 		if (tci >= 0 && tci < dev->num_rx_queues)
3945 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3946 							  tci);
3947 	}
3948 
3949 get_cpus_map:
3950 	if (queue_index < 0) {
3951 		dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3952 		if (dev_maps) {
3953 			unsigned int tci = skb->sender_cpu - 1;
3954 
3955 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3956 							  tci);
3957 		}
3958 	}
3959 	rcu_read_unlock();
3960 
3961 	return queue_index;
3962 #else
3963 	return -1;
3964 #endif
3965 }
3966 
3967 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3968 		     struct net_device *sb_dev)
3969 {
3970 	return 0;
3971 }
3972 EXPORT_SYMBOL(dev_pick_tx_zero);
3973 
3974 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3975 		       struct net_device *sb_dev)
3976 {
3977 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3978 }
3979 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3980 
3981 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3982 		     struct net_device *sb_dev)
3983 {
3984 	struct sock *sk = skb->sk;
3985 	int queue_index = sk_tx_queue_get(sk);
3986 
3987 	sb_dev = sb_dev ? : dev;
3988 
3989 	if (queue_index < 0 || skb->ooo_okay ||
3990 	    queue_index >= dev->real_num_tx_queues) {
3991 		int new_index = get_xps_queue(dev, sb_dev, skb);
3992 
3993 		if (new_index < 0)
3994 			new_index = skb_tx_hash(dev, sb_dev, skb);
3995 
3996 		if (queue_index != new_index && sk &&
3997 		    sk_fullsock(sk) &&
3998 		    rcu_access_pointer(sk->sk_dst_cache))
3999 			sk_tx_queue_set(sk, new_index);
4000 
4001 		queue_index = new_index;
4002 	}
4003 
4004 	return queue_index;
4005 }
4006 EXPORT_SYMBOL(netdev_pick_tx);
4007 
4008 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4009 					 struct sk_buff *skb,
4010 					 struct net_device *sb_dev)
4011 {
4012 	int queue_index = 0;
4013 
4014 #ifdef CONFIG_XPS
4015 	u32 sender_cpu = skb->sender_cpu - 1;
4016 
4017 	if (sender_cpu >= (u32)NR_CPUS)
4018 		skb->sender_cpu = raw_smp_processor_id() + 1;
4019 #endif
4020 
4021 	if (dev->real_num_tx_queues != 1) {
4022 		const struct net_device_ops *ops = dev->netdev_ops;
4023 
4024 		if (ops->ndo_select_queue)
4025 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4026 		else
4027 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4028 
4029 		queue_index = netdev_cap_txqueue(dev, queue_index);
4030 	}
4031 
4032 	skb_set_queue_mapping(skb, queue_index);
4033 	return netdev_get_tx_queue(dev, queue_index);
4034 }
4035 
4036 /**
4037  *	__dev_queue_xmit - transmit a buffer
4038  *	@skb: buffer to transmit
4039  *	@sb_dev: suboordinate device used for L2 forwarding offload
4040  *
4041  *	Queue a buffer for transmission to a network device. The caller must
4042  *	have set the device and priority and built the buffer before calling
4043  *	this function. The function can be called from an interrupt.
4044  *
4045  *	A negative errno code is returned on a failure. A success does not
4046  *	guarantee the frame will be transmitted as it may be dropped due
4047  *	to congestion or traffic shaping.
4048  *
4049  * -----------------------------------------------------------------------------------
4050  *      I notice this method can also return errors from the queue disciplines,
4051  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4052  *      be positive.
4053  *
4054  *      Regardless of the return value, the skb is consumed, so it is currently
4055  *      difficult to retry a send to this method.  (You can bump the ref count
4056  *      before sending to hold a reference for retry if you are careful.)
4057  *
4058  *      When calling this method, interrupts MUST be enabled.  This is because
4059  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4060  *          --BLG
4061  */
4062 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4063 {
4064 	struct net_device *dev = skb->dev;
4065 	struct netdev_queue *txq;
4066 	struct Qdisc *q;
4067 	int rc = -ENOMEM;
4068 	bool again = false;
4069 
4070 	skb_reset_mac_header(skb);
4071 
4072 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4073 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
4074 
4075 	/* Disable soft irqs for various locks below. Also
4076 	 * stops preemption for RCU.
4077 	 */
4078 	rcu_read_lock_bh();
4079 
4080 	skb_update_prio(skb);
4081 
4082 	qdisc_pkt_len_init(skb);
4083 #ifdef CONFIG_NET_CLS_ACT
4084 	skb->tc_at_ingress = 0;
4085 # ifdef CONFIG_NET_EGRESS
4086 	if (static_branch_unlikely(&egress_needed_key)) {
4087 		skb = sch_handle_egress(skb, &rc, dev);
4088 		if (!skb)
4089 			goto out;
4090 	}
4091 # endif
4092 #endif
4093 	/* If device/qdisc don't need skb->dst, release it right now while
4094 	 * its hot in this cpu cache.
4095 	 */
4096 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4097 		skb_dst_drop(skb);
4098 	else
4099 		skb_dst_force(skb);
4100 
4101 	txq = netdev_core_pick_tx(dev, skb, sb_dev);
4102 	q = rcu_dereference_bh(txq->qdisc);
4103 
4104 	trace_net_dev_queue(skb);
4105 	if (q->enqueue) {
4106 		rc = __dev_xmit_skb(skb, q, dev, txq);
4107 		goto out;
4108 	}
4109 
4110 	/* The device has no queue. Common case for software devices:
4111 	 * loopback, all the sorts of tunnels...
4112 
4113 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4114 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4115 	 * counters.)
4116 	 * However, it is possible, that they rely on protection
4117 	 * made by us here.
4118 
4119 	 * Check this and shot the lock. It is not prone from deadlocks.
4120 	 *Either shot noqueue qdisc, it is even simpler 8)
4121 	 */
4122 	if (dev->flags & IFF_UP) {
4123 		int cpu = smp_processor_id(); /* ok because BHs are off */
4124 
4125 		if (txq->xmit_lock_owner != cpu) {
4126 			if (dev_xmit_recursion())
4127 				goto recursion_alert;
4128 
4129 			skb = validate_xmit_skb(skb, dev, &again);
4130 			if (!skb)
4131 				goto out;
4132 
4133 			HARD_TX_LOCK(dev, txq, cpu);
4134 
4135 			if (!netif_xmit_stopped(txq)) {
4136 				dev_xmit_recursion_inc();
4137 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4138 				dev_xmit_recursion_dec();
4139 				if (dev_xmit_complete(rc)) {
4140 					HARD_TX_UNLOCK(dev, txq);
4141 					goto out;
4142 				}
4143 			}
4144 			HARD_TX_UNLOCK(dev, txq);
4145 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4146 					     dev->name);
4147 		} else {
4148 			/* Recursion is detected! It is possible,
4149 			 * unfortunately
4150 			 */
4151 recursion_alert:
4152 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4153 					     dev->name);
4154 		}
4155 	}
4156 
4157 	rc = -ENETDOWN;
4158 	rcu_read_unlock_bh();
4159 
4160 	atomic_long_inc(&dev->tx_dropped);
4161 	kfree_skb_list(skb);
4162 	return rc;
4163 out:
4164 	rcu_read_unlock_bh();
4165 	return rc;
4166 }
4167 
4168 int dev_queue_xmit(struct sk_buff *skb)
4169 {
4170 	return __dev_queue_xmit(skb, NULL);
4171 }
4172 EXPORT_SYMBOL(dev_queue_xmit);
4173 
4174 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4175 {
4176 	return __dev_queue_xmit(skb, sb_dev);
4177 }
4178 EXPORT_SYMBOL(dev_queue_xmit_accel);
4179 
4180 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4181 {
4182 	struct net_device *dev = skb->dev;
4183 	struct sk_buff *orig_skb = skb;
4184 	struct netdev_queue *txq;
4185 	int ret = NETDEV_TX_BUSY;
4186 	bool again = false;
4187 
4188 	if (unlikely(!netif_running(dev) ||
4189 		     !netif_carrier_ok(dev)))
4190 		goto drop;
4191 
4192 	skb = validate_xmit_skb_list(skb, dev, &again);
4193 	if (skb != orig_skb)
4194 		goto drop;
4195 
4196 	skb_set_queue_mapping(skb, queue_id);
4197 	txq = skb_get_tx_queue(dev, skb);
4198 
4199 	local_bh_disable();
4200 
4201 	dev_xmit_recursion_inc();
4202 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4203 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4204 		ret = netdev_start_xmit(skb, dev, txq, false);
4205 	HARD_TX_UNLOCK(dev, txq);
4206 	dev_xmit_recursion_dec();
4207 
4208 	local_bh_enable();
4209 
4210 	if (!dev_xmit_complete(ret))
4211 		kfree_skb(skb);
4212 
4213 	return ret;
4214 drop:
4215 	atomic_long_inc(&dev->tx_dropped);
4216 	kfree_skb_list(skb);
4217 	return NET_XMIT_DROP;
4218 }
4219 EXPORT_SYMBOL(dev_direct_xmit);
4220 
4221 /*************************************************************************
4222  *			Receiver routines
4223  *************************************************************************/
4224 
4225 int netdev_max_backlog __read_mostly = 1000;
4226 EXPORT_SYMBOL(netdev_max_backlog);
4227 
4228 int netdev_tstamp_prequeue __read_mostly = 1;
4229 int netdev_budget __read_mostly = 300;
4230 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4231 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4232 int weight_p __read_mostly = 64;           /* old backlog weight */
4233 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4234 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4235 int dev_rx_weight __read_mostly = 64;
4236 int dev_tx_weight __read_mostly = 64;
4237 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4238 int gro_normal_batch __read_mostly = 8;
4239 
4240 /* Called with irq disabled */
4241 static inline void ____napi_schedule(struct softnet_data *sd,
4242 				     struct napi_struct *napi)
4243 {
4244 	list_add_tail(&napi->poll_list, &sd->poll_list);
4245 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4246 }
4247 
4248 #ifdef CONFIG_RPS
4249 
4250 /* One global table that all flow-based protocols share. */
4251 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4252 EXPORT_SYMBOL(rps_sock_flow_table);
4253 u32 rps_cpu_mask __read_mostly;
4254 EXPORT_SYMBOL(rps_cpu_mask);
4255 
4256 struct static_key_false rps_needed __read_mostly;
4257 EXPORT_SYMBOL(rps_needed);
4258 struct static_key_false rfs_needed __read_mostly;
4259 EXPORT_SYMBOL(rfs_needed);
4260 
4261 static struct rps_dev_flow *
4262 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4263 	    struct rps_dev_flow *rflow, u16 next_cpu)
4264 {
4265 	if (next_cpu < nr_cpu_ids) {
4266 #ifdef CONFIG_RFS_ACCEL
4267 		struct netdev_rx_queue *rxqueue;
4268 		struct rps_dev_flow_table *flow_table;
4269 		struct rps_dev_flow *old_rflow;
4270 		u32 flow_id;
4271 		u16 rxq_index;
4272 		int rc;
4273 
4274 		/* Should we steer this flow to a different hardware queue? */
4275 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4276 		    !(dev->features & NETIF_F_NTUPLE))
4277 			goto out;
4278 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4279 		if (rxq_index == skb_get_rx_queue(skb))
4280 			goto out;
4281 
4282 		rxqueue = dev->_rx + rxq_index;
4283 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4284 		if (!flow_table)
4285 			goto out;
4286 		flow_id = skb_get_hash(skb) & flow_table->mask;
4287 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4288 							rxq_index, flow_id);
4289 		if (rc < 0)
4290 			goto out;
4291 		old_rflow = rflow;
4292 		rflow = &flow_table->flows[flow_id];
4293 		rflow->filter = rc;
4294 		if (old_rflow->filter == rflow->filter)
4295 			old_rflow->filter = RPS_NO_FILTER;
4296 	out:
4297 #endif
4298 		rflow->last_qtail =
4299 			per_cpu(softnet_data, next_cpu).input_queue_head;
4300 	}
4301 
4302 	rflow->cpu = next_cpu;
4303 	return rflow;
4304 }
4305 
4306 /*
4307  * get_rps_cpu is called from netif_receive_skb and returns the target
4308  * CPU from the RPS map of the receiving queue for a given skb.
4309  * rcu_read_lock must be held on entry.
4310  */
4311 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4312 		       struct rps_dev_flow **rflowp)
4313 {
4314 	const struct rps_sock_flow_table *sock_flow_table;
4315 	struct netdev_rx_queue *rxqueue = dev->_rx;
4316 	struct rps_dev_flow_table *flow_table;
4317 	struct rps_map *map;
4318 	int cpu = -1;
4319 	u32 tcpu;
4320 	u32 hash;
4321 
4322 	if (skb_rx_queue_recorded(skb)) {
4323 		u16 index = skb_get_rx_queue(skb);
4324 
4325 		if (unlikely(index >= dev->real_num_rx_queues)) {
4326 			WARN_ONCE(dev->real_num_rx_queues > 1,
4327 				  "%s received packet on queue %u, but number "
4328 				  "of RX queues is %u\n",
4329 				  dev->name, index, dev->real_num_rx_queues);
4330 			goto done;
4331 		}
4332 		rxqueue += index;
4333 	}
4334 
4335 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4336 
4337 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4338 	map = rcu_dereference(rxqueue->rps_map);
4339 	if (!flow_table && !map)
4340 		goto done;
4341 
4342 	skb_reset_network_header(skb);
4343 	hash = skb_get_hash(skb);
4344 	if (!hash)
4345 		goto done;
4346 
4347 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4348 	if (flow_table && sock_flow_table) {
4349 		struct rps_dev_flow *rflow;
4350 		u32 next_cpu;
4351 		u32 ident;
4352 
4353 		/* First check into global flow table if there is a match */
4354 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4355 		if ((ident ^ hash) & ~rps_cpu_mask)
4356 			goto try_rps;
4357 
4358 		next_cpu = ident & rps_cpu_mask;
4359 
4360 		/* OK, now we know there is a match,
4361 		 * we can look at the local (per receive queue) flow table
4362 		 */
4363 		rflow = &flow_table->flows[hash & flow_table->mask];
4364 		tcpu = rflow->cpu;
4365 
4366 		/*
4367 		 * If the desired CPU (where last recvmsg was done) is
4368 		 * different from current CPU (one in the rx-queue flow
4369 		 * table entry), switch if one of the following holds:
4370 		 *   - Current CPU is unset (>= nr_cpu_ids).
4371 		 *   - Current CPU is offline.
4372 		 *   - The current CPU's queue tail has advanced beyond the
4373 		 *     last packet that was enqueued using this table entry.
4374 		 *     This guarantees that all previous packets for the flow
4375 		 *     have been dequeued, thus preserving in order delivery.
4376 		 */
4377 		if (unlikely(tcpu != next_cpu) &&
4378 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4379 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4380 		      rflow->last_qtail)) >= 0)) {
4381 			tcpu = next_cpu;
4382 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4383 		}
4384 
4385 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4386 			*rflowp = rflow;
4387 			cpu = tcpu;
4388 			goto done;
4389 		}
4390 	}
4391 
4392 try_rps:
4393 
4394 	if (map) {
4395 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4396 		if (cpu_online(tcpu)) {
4397 			cpu = tcpu;
4398 			goto done;
4399 		}
4400 	}
4401 
4402 done:
4403 	return cpu;
4404 }
4405 
4406 #ifdef CONFIG_RFS_ACCEL
4407 
4408 /**
4409  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4410  * @dev: Device on which the filter was set
4411  * @rxq_index: RX queue index
4412  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4413  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4414  *
4415  * Drivers that implement ndo_rx_flow_steer() should periodically call
4416  * this function for each installed filter and remove the filters for
4417  * which it returns %true.
4418  */
4419 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4420 			 u32 flow_id, u16 filter_id)
4421 {
4422 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4423 	struct rps_dev_flow_table *flow_table;
4424 	struct rps_dev_flow *rflow;
4425 	bool expire = true;
4426 	unsigned int cpu;
4427 
4428 	rcu_read_lock();
4429 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4430 	if (flow_table && flow_id <= flow_table->mask) {
4431 		rflow = &flow_table->flows[flow_id];
4432 		cpu = READ_ONCE(rflow->cpu);
4433 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4434 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4435 			   rflow->last_qtail) <
4436 		     (int)(10 * flow_table->mask)))
4437 			expire = false;
4438 	}
4439 	rcu_read_unlock();
4440 	return expire;
4441 }
4442 EXPORT_SYMBOL(rps_may_expire_flow);
4443 
4444 #endif /* CONFIG_RFS_ACCEL */
4445 
4446 /* Called from hardirq (IPI) context */
4447 static void rps_trigger_softirq(void *data)
4448 {
4449 	struct softnet_data *sd = data;
4450 
4451 	____napi_schedule(sd, &sd->backlog);
4452 	sd->received_rps++;
4453 }
4454 
4455 #endif /* CONFIG_RPS */
4456 
4457 /*
4458  * Check if this softnet_data structure is another cpu one
4459  * If yes, queue it to our IPI list and return 1
4460  * If no, return 0
4461  */
4462 static int rps_ipi_queued(struct softnet_data *sd)
4463 {
4464 #ifdef CONFIG_RPS
4465 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4466 
4467 	if (sd != mysd) {
4468 		sd->rps_ipi_next = mysd->rps_ipi_list;
4469 		mysd->rps_ipi_list = sd;
4470 
4471 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4472 		return 1;
4473 	}
4474 #endif /* CONFIG_RPS */
4475 	return 0;
4476 }
4477 
4478 #ifdef CONFIG_NET_FLOW_LIMIT
4479 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4480 #endif
4481 
4482 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4483 {
4484 #ifdef CONFIG_NET_FLOW_LIMIT
4485 	struct sd_flow_limit *fl;
4486 	struct softnet_data *sd;
4487 	unsigned int old_flow, new_flow;
4488 
4489 	if (qlen < (netdev_max_backlog >> 1))
4490 		return false;
4491 
4492 	sd = this_cpu_ptr(&softnet_data);
4493 
4494 	rcu_read_lock();
4495 	fl = rcu_dereference(sd->flow_limit);
4496 	if (fl) {
4497 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4498 		old_flow = fl->history[fl->history_head];
4499 		fl->history[fl->history_head] = new_flow;
4500 
4501 		fl->history_head++;
4502 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4503 
4504 		if (likely(fl->buckets[old_flow]))
4505 			fl->buckets[old_flow]--;
4506 
4507 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4508 			fl->count++;
4509 			rcu_read_unlock();
4510 			return true;
4511 		}
4512 	}
4513 	rcu_read_unlock();
4514 #endif
4515 	return false;
4516 }
4517 
4518 /*
4519  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4520  * queue (may be a remote CPU queue).
4521  */
4522 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4523 			      unsigned int *qtail)
4524 {
4525 	struct softnet_data *sd;
4526 	unsigned long flags;
4527 	unsigned int qlen;
4528 
4529 	sd = &per_cpu(softnet_data, cpu);
4530 
4531 	local_irq_save(flags);
4532 
4533 	rps_lock(sd);
4534 	if (!netif_running(skb->dev))
4535 		goto drop;
4536 	qlen = skb_queue_len(&sd->input_pkt_queue);
4537 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4538 		if (qlen) {
4539 enqueue:
4540 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4541 			input_queue_tail_incr_save(sd, qtail);
4542 			rps_unlock(sd);
4543 			local_irq_restore(flags);
4544 			return NET_RX_SUCCESS;
4545 		}
4546 
4547 		/* Schedule NAPI for backlog device
4548 		 * We can use non atomic operation since we own the queue lock
4549 		 */
4550 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4551 			if (!rps_ipi_queued(sd))
4552 				____napi_schedule(sd, &sd->backlog);
4553 		}
4554 		goto enqueue;
4555 	}
4556 
4557 drop:
4558 	sd->dropped++;
4559 	rps_unlock(sd);
4560 
4561 	local_irq_restore(flags);
4562 
4563 	atomic_long_inc(&skb->dev->rx_dropped);
4564 	kfree_skb(skb);
4565 	return NET_RX_DROP;
4566 }
4567 
4568 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4569 {
4570 	struct net_device *dev = skb->dev;
4571 	struct netdev_rx_queue *rxqueue;
4572 
4573 	rxqueue = dev->_rx;
4574 
4575 	if (skb_rx_queue_recorded(skb)) {
4576 		u16 index = skb_get_rx_queue(skb);
4577 
4578 		if (unlikely(index >= dev->real_num_rx_queues)) {
4579 			WARN_ONCE(dev->real_num_rx_queues > 1,
4580 				  "%s received packet on queue %u, but number "
4581 				  "of RX queues is %u\n",
4582 				  dev->name, index, dev->real_num_rx_queues);
4583 
4584 			return rxqueue; /* Return first rxqueue */
4585 		}
4586 		rxqueue += index;
4587 	}
4588 	return rxqueue;
4589 }
4590 
4591 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4592 				     struct xdp_buff *xdp,
4593 				     struct bpf_prog *xdp_prog)
4594 {
4595 	struct netdev_rx_queue *rxqueue;
4596 	void *orig_data, *orig_data_end;
4597 	u32 metalen, act = XDP_DROP;
4598 	__be16 orig_eth_type;
4599 	struct ethhdr *eth;
4600 	bool orig_bcast;
4601 	int hlen, off;
4602 	u32 mac_len;
4603 
4604 	/* Reinjected packets coming from act_mirred or similar should
4605 	 * not get XDP generic processing.
4606 	 */
4607 	if (skb_is_redirected(skb))
4608 		return XDP_PASS;
4609 
4610 	/* XDP packets must be linear and must have sufficient headroom
4611 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4612 	 * native XDP provides, thus we need to do it here as well.
4613 	 */
4614 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4615 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4616 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4617 		int troom = skb->tail + skb->data_len - skb->end;
4618 
4619 		/* In case we have to go down the path and also linearize,
4620 		 * then lets do the pskb_expand_head() work just once here.
4621 		 */
4622 		if (pskb_expand_head(skb,
4623 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4624 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4625 			goto do_drop;
4626 		if (skb_linearize(skb))
4627 			goto do_drop;
4628 	}
4629 
4630 	/* The XDP program wants to see the packet starting at the MAC
4631 	 * header.
4632 	 */
4633 	mac_len = skb->data - skb_mac_header(skb);
4634 	hlen = skb_headlen(skb) + mac_len;
4635 	xdp->data = skb->data - mac_len;
4636 	xdp->data_meta = xdp->data;
4637 	xdp->data_end = xdp->data + hlen;
4638 	xdp->data_hard_start = skb->data - skb_headroom(skb);
4639 
4640 	/* SKB "head" area always have tailroom for skb_shared_info */
4641 	xdp->frame_sz  = (void *)skb_end_pointer(skb) - xdp->data_hard_start;
4642 	xdp->frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4643 
4644 	orig_data_end = xdp->data_end;
4645 	orig_data = xdp->data;
4646 	eth = (struct ethhdr *)xdp->data;
4647 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4648 	orig_eth_type = eth->h_proto;
4649 
4650 	rxqueue = netif_get_rxqueue(skb);
4651 	xdp->rxq = &rxqueue->xdp_rxq;
4652 
4653 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4654 
4655 	/* check if bpf_xdp_adjust_head was used */
4656 	off = xdp->data - orig_data;
4657 	if (off) {
4658 		if (off > 0)
4659 			__skb_pull(skb, off);
4660 		else if (off < 0)
4661 			__skb_push(skb, -off);
4662 
4663 		skb->mac_header += off;
4664 		skb_reset_network_header(skb);
4665 	}
4666 
4667 	/* check if bpf_xdp_adjust_tail was used */
4668 	off = xdp->data_end - orig_data_end;
4669 	if (off != 0) {
4670 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4671 		skb->len += off; /* positive on grow, negative on shrink */
4672 	}
4673 
4674 	/* check if XDP changed eth hdr such SKB needs update */
4675 	eth = (struct ethhdr *)xdp->data;
4676 	if ((orig_eth_type != eth->h_proto) ||
4677 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4678 		__skb_push(skb, ETH_HLEN);
4679 		skb->protocol = eth_type_trans(skb, skb->dev);
4680 	}
4681 
4682 	switch (act) {
4683 	case XDP_REDIRECT:
4684 	case XDP_TX:
4685 		__skb_push(skb, mac_len);
4686 		break;
4687 	case XDP_PASS:
4688 		metalen = xdp->data - xdp->data_meta;
4689 		if (metalen)
4690 			skb_metadata_set(skb, metalen);
4691 		break;
4692 	default:
4693 		bpf_warn_invalid_xdp_action(act);
4694 		fallthrough;
4695 	case XDP_ABORTED:
4696 		trace_xdp_exception(skb->dev, xdp_prog, act);
4697 		fallthrough;
4698 	case XDP_DROP:
4699 	do_drop:
4700 		kfree_skb(skb);
4701 		break;
4702 	}
4703 
4704 	return act;
4705 }
4706 
4707 /* When doing generic XDP we have to bypass the qdisc layer and the
4708  * network taps in order to match in-driver-XDP behavior.
4709  */
4710 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4711 {
4712 	struct net_device *dev = skb->dev;
4713 	struct netdev_queue *txq;
4714 	bool free_skb = true;
4715 	int cpu, rc;
4716 
4717 	txq = netdev_core_pick_tx(dev, skb, NULL);
4718 	cpu = smp_processor_id();
4719 	HARD_TX_LOCK(dev, txq, cpu);
4720 	if (!netif_xmit_stopped(txq)) {
4721 		rc = netdev_start_xmit(skb, dev, txq, 0);
4722 		if (dev_xmit_complete(rc))
4723 			free_skb = false;
4724 	}
4725 	HARD_TX_UNLOCK(dev, txq);
4726 	if (free_skb) {
4727 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4728 		kfree_skb(skb);
4729 	}
4730 }
4731 
4732 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4733 
4734 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4735 {
4736 	if (xdp_prog) {
4737 		struct xdp_buff xdp;
4738 		u32 act;
4739 		int err;
4740 
4741 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4742 		if (act != XDP_PASS) {
4743 			switch (act) {
4744 			case XDP_REDIRECT:
4745 				err = xdp_do_generic_redirect(skb->dev, skb,
4746 							      &xdp, xdp_prog);
4747 				if (err)
4748 					goto out_redir;
4749 				break;
4750 			case XDP_TX:
4751 				generic_xdp_tx(skb, xdp_prog);
4752 				break;
4753 			}
4754 			return XDP_DROP;
4755 		}
4756 	}
4757 	return XDP_PASS;
4758 out_redir:
4759 	kfree_skb(skb);
4760 	return XDP_DROP;
4761 }
4762 EXPORT_SYMBOL_GPL(do_xdp_generic);
4763 
4764 static int netif_rx_internal(struct sk_buff *skb)
4765 {
4766 	int ret;
4767 
4768 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4769 
4770 	trace_netif_rx(skb);
4771 
4772 #ifdef CONFIG_RPS
4773 	if (static_branch_unlikely(&rps_needed)) {
4774 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4775 		int cpu;
4776 
4777 		preempt_disable();
4778 		rcu_read_lock();
4779 
4780 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4781 		if (cpu < 0)
4782 			cpu = smp_processor_id();
4783 
4784 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4785 
4786 		rcu_read_unlock();
4787 		preempt_enable();
4788 	} else
4789 #endif
4790 	{
4791 		unsigned int qtail;
4792 
4793 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4794 		put_cpu();
4795 	}
4796 	return ret;
4797 }
4798 
4799 /**
4800  *	netif_rx	-	post buffer to the network code
4801  *	@skb: buffer to post
4802  *
4803  *	This function receives a packet from a device driver and queues it for
4804  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4805  *	may be dropped during processing for congestion control or by the
4806  *	protocol layers.
4807  *
4808  *	return values:
4809  *	NET_RX_SUCCESS	(no congestion)
4810  *	NET_RX_DROP     (packet was dropped)
4811  *
4812  */
4813 
4814 int netif_rx(struct sk_buff *skb)
4815 {
4816 	int ret;
4817 
4818 	trace_netif_rx_entry(skb);
4819 
4820 	ret = netif_rx_internal(skb);
4821 	trace_netif_rx_exit(ret);
4822 
4823 	return ret;
4824 }
4825 EXPORT_SYMBOL(netif_rx);
4826 
4827 int netif_rx_ni(struct sk_buff *skb)
4828 {
4829 	int err;
4830 
4831 	trace_netif_rx_ni_entry(skb);
4832 
4833 	preempt_disable();
4834 	err = netif_rx_internal(skb);
4835 	if (local_softirq_pending())
4836 		do_softirq();
4837 	preempt_enable();
4838 	trace_netif_rx_ni_exit(err);
4839 
4840 	return err;
4841 }
4842 EXPORT_SYMBOL(netif_rx_ni);
4843 
4844 int netif_rx_any_context(struct sk_buff *skb)
4845 {
4846 	/*
4847 	 * If invoked from contexts which do not invoke bottom half
4848 	 * processing either at return from interrupt or when softrqs are
4849 	 * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4850 	 * directly.
4851 	 */
4852 	if (in_interrupt())
4853 		return netif_rx(skb);
4854 	else
4855 		return netif_rx_ni(skb);
4856 }
4857 EXPORT_SYMBOL(netif_rx_any_context);
4858 
4859 static __latent_entropy void net_tx_action(struct softirq_action *h)
4860 {
4861 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4862 
4863 	if (sd->completion_queue) {
4864 		struct sk_buff *clist;
4865 
4866 		local_irq_disable();
4867 		clist = sd->completion_queue;
4868 		sd->completion_queue = NULL;
4869 		local_irq_enable();
4870 
4871 		while (clist) {
4872 			struct sk_buff *skb = clist;
4873 
4874 			clist = clist->next;
4875 
4876 			WARN_ON(refcount_read(&skb->users));
4877 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4878 				trace_consume_skb(skb);
4879 			else
4880 				trace_kfree_skb(skb, net_tx_action);
4881 
4882 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4883 				__kfree_skb(skb);
4884 			else
4885 				__kfree_skb_defer(skb);
4886 		}
4887 
4888 		__kfree_skb_flush();
4889 	}
4890 
4891 	if (sd->output_queue) {
4892 		struct Qdisc *head;
4893 
4894 		local_irq_disable();
4895 		head = sd->output_queue;
4896 		sd->output_queue = NULL;
4897 		sd->output_queue_tailp = &sd->output_queue;
4898 		local_irq_enable();
4899 
4900 		while (head) {
4901 			struct Qdisc *q = head;
4902 			spinlock_t *root_lock = NULL;
4903 
4904 			head = head->next_sched;
4905 
4906 			if (!(q->flags & TCQ_F_NOLOCK)) {
4907 				root_lock = qdisc_lock(q);
4908 				spin_lock(root_lock);
4909 			}
4910 			/* We need to make sure head->next_sched is read
4911 			 * before clearing __QDISC_STATE_SCHED
4912 			 */
4913 			smp_mb__before_atomic();
4914 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4915 			qdisc_run(q);
4916 			if (root_lock)
4917 				spin_unlock(root_lock);
4918 		}
4919 	}
4920 
4921 	xfrm_dev_backlog(sd);
4922 }
4923 
4924 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4925 /* This hook is defined here for ATM LANE */
4926 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4927 			     unsigned char *addr) __read_mostly;
4928 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4929 #endif
4930 
4931 static inline struct sk_buff *
4932 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4933 		   struct net_device *orig_dev)
4934 {
4935 #ifdef CONFIG_NET_CLS_ACT
4936 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4937 	struct tcf_result cl_res;
4938 
4939 	/* If there's at least one ingress present somewhere (so
4940 	 * we get here via enabled static key), remaining devices
4941 	 * that are not configured with an ingress qdisc will bail
4942 	 * out here.
4943 	 */
4944 	if (!miniq)
4945 		return skb;
4946 
4947 	if (*pt_prev) {
4948 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4949 		*pt_prev = NULL;
4950 	}
4951 
4952 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4953 	skb->tc_at_ingress = 1;
4954 	mini_qdisc_bstats_cpu_update(miniq, skb);
4955 
4956 	switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
4957 				     &cl_res, false)) {
4958 	case TC_ACT_OK:
4959 	case TC_ACT_RECLASSIFY:
4960 		skb->tc_index = TC_H_MIN(cl_res.classid);
4961 		break;
4962 	case TC_ACT_SHOT:
4963 		mini_qdisc_qstats_cpu_drop(miniq);
4964 		kfree_skb(skb);
4965 		return NULL;
4966 	case TC_ACT_STOLEN:
4967 	case TC_ACT_QUEUED:
4968 	case TC_ACT_TRAP:
4969 		consume_skb(skb);
4970 		return NULL;
4971 	case TC_ACT_REDIRECT:
4972 		/* skb_mac_header check was done by cls/act_bpf, so
4973 		 * we can safely push the L2 header back before
4974 		 * redirecting to another netdev
4975 		 */
4976 		__skb_push(skb, skb->mac_len);
4977 		skb_do_redirect(skb);
4978 		return NULL;
4979 	case TC_ACT_CONSUMED:
4980 		return NULL;
4981 	default:
4982 		break;
4983 	}
4984 #endif /* CONFIG_NET_CLS_ACT */
4985 	return skb;
4986 }
4987 
4988 /**
4989  *	netdev_is_rx_handler_busy - check if receive handler is registered
4990  *	@dev: device to check
4991  *
4992  *	Check if a receive handler is already registered for a given device.
4993  *	Return true if there one.
4994  *
4995  *	The caller must hold the rtnl_mutex.
4996  */
4997 bool netdev_is_rx_handler_busy(struct net_device *dev)
4998 {
4999 	ASSERT_RTNL();
5000 	return dev && rtnl_dereference(dev->rx_handler);
5001 }
5002 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5003 
5004 /**
5005  *	netdev_rx_handler_register - register receive handler
5006  *	@dev: device to register a handler for
5007  *	@rx_handler: receive handler to register
5008  *	@rx_handler_data: data pointer that is used by rx handler
5009  *
5010  *	Register a receive handler for a device. This handler will then be
5011  *	called from __netif_receive_skb. A negative errno code is returned
5012  *	on a failure.
5013  *
5014  *	The caller must hold the rtnl_mutex.
5015  *
5016  *	For a general description of rx_handler, see enum rx_handler_result.
5017  */
5018 int netdev_rx_handler_register(struct net_device *dev,
5019 			       rx_handler_func_t *rx_handler,
5020 			       void *rx_handler_data)
5021 {
5022 	if (netdev_is_rx_handler_busy(dev))
5023 		return -EBUSY;
5024 
5025 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5026 		return -EINVAL;
5027 
5028 	/* Note: rx_handler_data must be set before rx_handler */
5029 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5030 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5031 
5032 	return 0;
5033 }
5034 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5035 
5036 /**
5037  *	netdev_rx_handler_unregister - unregister receive handler
5038  *	@dev: device to unregister a handler from
5039  *
5040  *	Unregister a receive handler from a device.
5041  *
5042  *	The caller must hold the rtnl_mutex.
5043  */
5044 void netdev_rx_handler_unregister(struct net_device *dev)
5045 {
5046 
5047 	ASSERT_RTNL();
5048 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5049 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5050 	 * section has a guarantee to see a non NULL rx_handler_data
5051 	 * as well.
5052 	 */
5053 	synchronize_net();
5054 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5055 }
5056 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5057 
5058 /*
5059  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5060  * the special handling of PFMEMALLOC skbs.
5061  */
5062 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5063 {
5064 	switch (skb->protocol) {
5065 	case htons(ETH_P_ARP):
5066 	case htons(ETH_P_IP):
5067 	case htons(ETH_P_IPV6):
5068 	case htons(ETH_P_8021Q):
5069 	case htons(ETH_P_8021AD):
5070 		return true;
5071 	default:
5072 		return false;
5073 	}
5074 }
5075 
5076 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5077 			     int *ret, struct net_device *orig_dev)
5078 {
5079 	if (nf_hook_ingress_active(skb)) {
5080 		int ingress_retval;
5081 
5082 		if (*pt_prev) {
5083 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5084 			*pt_prev = NULL;
5085 		}
5086 
5087 		rcu_read_lock();
5088 		ingress_retval = nf_hook_ingress(skb);
5089 		rcu_read_unlock();
5090 		return ingress_retval;
5091 	}
5092 	return 0;
5093 }
5094 
5095 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5096 				    struct packet_type **ppt_prev)
5097 {
5098 	struct packet_type *ptype, *pt_prev;
5099 	rx_handler_func_t *rx_handler;
5100 	struct sk_buff *skb = *pskb;
5101 	struct net_device *orig_dev;
5102 	bool deliver_exact = false;
5103 	int ret = NET_RX_DROP;
5104 	__be16 type;
5105 
5106 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
5107 
5108 	trace_netif_receive_skb(skb);
5109 
5110 	orig_dev = skb->dev;
5111 
5112 	skb_reset_network_header(skb);
5113 	if (!skb_transport_header_was_set(skb))
5114 		skb_reset_transport_header(skb);
5115 	skb_reset_mac_len(skb);
5116 
5117 	pt_prev = NULL;
5118 
5119 another_round:
5120 	skb->skb_iif = skb->dev->ifindex;
5121 
5122 	__this_cpu_inc(softnet_data.processed);
5123 
5124 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5125 		int ret2;
5126 
5127 		preempt_disable();
5128 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5129 		preempt_enable();
5130 
5131 		if (ret2 != XDP_PASS) {
5132 			ret = NET_RX_DROP;
5133 			goto out;
5134 		}
5135 		skb_reset_mac_len(skb);
5136 	}
5137 
5138 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5139 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5140 		skb = skb_vlan_untag(skb);
5141 		if (unlikely(!skb))
5142 			goto out;
5143 	}
5144 
5145 	if (skb_skip_tc_classify(skb))
5146 		goto skip_classify;
5147 
5148 	if (pfmemalloc)
5149 		goto skip_taps;
5150 
5151 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5152 		if (pt_prev)
5153 			ret = deliver_skb(skb, pt_prev, orig_dev);
5154 		pt_prev = ptype;
5155 	}
5156 
5157 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5158 		if (pt_prev)
5159 			ret = deliver_skb(skb, pt_prev, orig_dev);
5160 		pt_prev = ptype;
5161 	}
5162 
5163 skip_taps:
5164 #ifdef CONFIG_NET_INGRESS
5165 	if (static_branch_unlikely(&ingress_needed_key)) {
5166 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
5167 		if (!skb)
5168 			goto out;
5169 
5170 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5171 			goto out;
5172 	}
5173 #endif
5174 	skb_reset_redirect(skb);
5175 skip_classify:
5176 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5177 		goto drop;
5178 
5179 	if (skb_vlan_tag_present(skb)) {
5180 		if (pt_prev) {
5181 			ret = deliver_skb(skb, pt_prev, orig_dev);
5182 			pt_prev = NULL;
5183 		}
5184 		if (vlan_do_receive(&skb))
5185 			goto another_round;
5186 		else if (unlikely(!skb))
5187 			goto out;
5188 	}
5189 
5190 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5191 	if (rx_handler) {
5192 		if (pt_prev) {
5193 			ret = deliver_skb(skb, pt_prev, orig_dev);
5194 			pt_prev = NULL;
5195 		}
5196 		switch (rx_handler(&skb)) {
5197 		case RX_HANDLER_CONSUMED:
5198 			ret = NET_RX_SUCCESS;
5199 			goto out;
5200 		case RX_HANDLER_ANOTHER:
5201 			goto another_round;
5202 		case RX_HANDLER_EXACT:
5203 			deliver_exact = true;
5204 		case RX_HANDLER_PASS:
5205 			break;
5206 		default:
5207 			BUG();
5208 		}
5209 	}
5210 
5211 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5212 check_vlan_id:
5213 		if (skb_vlan_tag_get_id(skb)) {
5214 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5215 			 * find vlan device.
5216 			 */
5217 			skb->pkt_type = PACKET_OTHERHOST;
5218 		} else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5219 			   skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5220 			/* Outer header is 802.1P with vlan 0, inner header is
5221 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5222 			 * not find vlan dev for vlan id 0.
5223 			 */
5224 			__vlan_hwaccel_clear_tag(skb);
5225 			skb = skb_vlan_untag(skb);
5226 			if (unlikely(!skb))
5227 				goto out;
5228 			if (vlan_do_receive(&skb))
5229 				/* After stripping off 802.1P header with vlan 0
5230 				 * vlan dev is found for inner header.
5231 				 */
5232 				goto another_round;
5233 			else if (unlikely(!skb))
5234 				goto out;
5235 			else
5236 				/* We have stripped outer 802.1P vlan 0 header.
5237 				 * But could not find vlan dev.
5238 				 * check again for vlan id to set OTHERHOST.
5239 				 */
5240 				goto check_vlan_id;
5241 		}
5242 		/* Note: we might in the future use prio bits
5243 		 * and set skb->priority like in vlan_do_receive()
5244 		 * For the time being, just ignore Priority Code Point
5245 		 */
5246 		__vlan_hwaccel_clear_tag(skb);
5247 	}
5248 
5249 	type = skb->protocol;
5250 
5251 	/* deliver only exact match when indicated */
5252 	if (likely(!deliver_exact)) {
5253 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5254 				       &ptype_base[ntohs(type) &
5255 						   PTYPE_HASH_MASK]);
5256 	}
5257 
5258 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5259 			       &orig_dev->ptype_specific);
5260 
5261 	if (unlikely(skb->dev != orig_dev)) {
5262 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5263 				       &skb->dev->ptype_specific);
5264 	}
5265 
5266 	if (pt_prev) {
5267 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5268 			goto drop;
5269 		*ppt_prev = pt_prev;
5270 	} else {
5271 drop:
5272 		if (!deliver_exact)
5273 			atomic_long_inc(&skb->dev->rx_dropped);
5274 		else
5275 			atomic_long_inc(&skb->dev->rx_nohandler);
5276 		kfree_skb(skb);
5277 		/* Jamal, now you will not able to escape explaining
5278 		 * me how you were going to use this. :-)
5279 		 */
5280 		ret = NET_RX_DROP;
5281 	}
5282 
5283 out:
5284 	/* The invariant here is that if *ppt_prev is not NULL
5285 	 * then skb should also be non-NULL.
5286 	 *
5287 	 * Apparently *ppt_prev assignment above holds this invariant due to
5288 	 * skb dereferencing near it.
5289 	 */
5290 	*pskb = skb;
5291 	return ret;
5292 }
5293 
5294 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5295 {
5296 	struct net_device *orig_dev = skb->dev;
5297 	struct packet_type *pt_prev = NULL;
5298 	int ret;
5299 
5300 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5301 	if (pt_prev)
5302 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5303 					 skb->dev, pt_prev, orig_dev);
5304 	return ret;
5305 }
5306 
5307 /**
5308  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5309  *	@skb: buffer to process
5310  *
5311  *	More direct receive version of netif_receive_skb().  It should
5312  *	only be used by callers that have a need to skip RPS and Generic XDP.
5313  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5314  *
5315  *	This function may only be called from softirq context and interrupts
5316  *	should be enabled.
5317  *
5318  *	Return values (usually ignored):
5319  *	NET_RX_SUCCESS: no congestion
5320  *	NET_RX_DROP: packet was dropped
5321  */
5322 int netif_receive_skb_core(struct sk_buff *skb)
5323 {
5324 	int ret;
5325 
5326 	rcu_read_lock();
5327 	ret = __netif_receive_skb_one_core(skb, false);
5328 	rcu_read_unlock();
5329 
5330 	return ret;
5331 }
5332 EXPORT_SYMBOL(netif_receive_skb_core);
5333 
5334 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5335 						  struct packet_type *pt_prev,
5336 						  struct net_device *orig_dev)
5337 {
5338 	struct sk_buff *skb, *next;
5339 
5340 	if (!pt_prev)
5341 		return;
5342 	if (list_empty(head))
5343 		return;
5344 	if (pt_prev->list_func != NULL)
5345 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5346 				   ip_list_rcv, head, pt_prev, orig_dev);
5347 	else
5348 		list_for_each_entry_safe(skb, next, head, list) {
5349 			skb_list_del_init(skb);
5350 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5351 		}
5352 }
5353 
5354 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5355 {
5356 	/* Fast-path assumptions:
5357 	 * - There is no RX handler.
5358 	 * - Only one packet_type matches.
5359 	 * If either of these fails, we will end up doing some per-packet
5360 	 * processing in-line, then handling the 'last ptype' for the whole
5361 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5362 	 * because the 'last ptype' must be constant across the sublist, and all
5363 	 * other ptypes are handled per-packet.
5364 	 */
5365 	/* Current (common) ptype of sublist */
5366 	struct packet_type *pt_curr = NULL;
5367 	/* Current (common) orig_dev of sublist */
5368 	struct net_device *od_curr = NULL;
5369 	struct list_head sublist;
5370 	struct sk_buff *skb, *next;
5371 
5372 	INIT_LIST_HEAD(&sublist);
5373 	list_for_each_entry_safe(skb, next, head, list) {
5374 		struct net_device *orig_dev = skb->dev;
5375 		struct packet_type *pt_prev = NULL;
5376 
5377 		skb_list_del_init(skb);
5378 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5379 		if (!pt_prev)
5380 			continue;
5381 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5382 			/* dispatch old sublist */
5383 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5384 			/* start new sublist */
5385 			INIT_LIST_HEAD(&sublist);
5386 			pt_curr = pt_prev;
5387 			od_curr = orig_dev;
5388 		}
5389 		list_add_tail(&skb->list, &sublist);
5390 	}
5391 
5392 	/* dispatch final sublist */
5393 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5394 }
5395 
5396 static int __netif_receive_skb(struct sk_buff *skb)
5397 {
5398 	int ret;
5399 
5400 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5401 		unsigned int noreclaim_flag;
5402 
5403 		/*
5404 		 * PFMEMALLOC skbs are special, they should
5405 		 * - be delivered to SOCK_MEMALLOC sockets only
5406 		 * - stay away from userspace
5407 		 * - have bounded memory usage
5408 		 *
5409 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5410 		 * context down to all allocation sites.
5411 		 */
5412 		noreclaim_flag = memalloc_noreclaim_save();
5413 		ret = __netif_receive_skb_one_core(skb, true);
5414 		memalloc_noreclaim_restore(noreclaim_flag);
5415 	} else
5416 		ret = __netif_receive_skb_one_core(skb, false);
5417 
5418 	return ret;
5419 }
5420 
5421 static void __netif_receive_skb_list(struct list_head *head)
5422 {
5423 	unsigned long noreclaim_flag = 0;
5424 	struct sk_buff *skb, *next;
5425 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5426 
5427 	list_for_each_entry_safe(skb, next, head, list) {
5428 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5429 			struct list_head sublist;
5430 
5431 			/* Handle the previous sublist */
5432 			list_cut_before(&sublist, head, &skb->list);
5433 			if (!list_empty(&sublist))
5434 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5435 			pfmemalloc = !pfmemalloc;
5436 			/* See comments in __netif_receive_skb */
5437 			if (pfmemalloc)
5438 				noreclaim_flag = memalloc_noreclaim_save();
5439 			else
5440 				memalloc_noreclaim_restore(noreclaim_flag);
5441 		}
5442 	}
5443 	/* Handle the remaining sublist */
5444 	if (!list_empty(head))
5445 		__netif_receive_skb_list_core(head, pfmemalloc);
5446 	/* Restore pflags */
5447 	if (pfmemalloc)
5448 		memalloc_noreclaim_restore(noreclaim_flag);
5449 }
5450 
5451 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5452 {
5453 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5454 	struct bpf_prog *new = xdp->prog;
5455 	int ret = 0;
5456 
5457 	if (new) {
5458 		u32 i;
5459 
5460 		mutex_lock(&new->aux->used_maps_mutex);
5461 
5462 		/* generic XDP does not work with DEVMAPs that can
5463 		 * have a bpf_prog installed on an entry
5464 		 */
5465 		for (i = 0; i < new->aux->used_map_cnt; i++) {
5466 			if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5467 			    cpu_map_prog_allowed(new->aux->used_maps[i])) {
5468 				mutex_unlock(&new->aux->used_maps_mutex);
5469 				return -EINVAL;
5470 			}
5471 		}
5472 
5473 		mutex_unlock(&new->aux->used_maps_mutex);
5474 	}
5475 
5476 	switch (xdp->command) {
5477 	case XDP_SETUP_PROG:
5478 		rcu_assign_pointer(dev->xdp_prog, new);
5479 		if (old)
5480 			bpf_prog_put(old);
5481 
5482 		if (old && !new) {
5483 			static_branch_dec(&generic_xdp_needed_key);
5484 		} else if (new && !old) {
5485 			static_branch_inc(&generic_xdp_needed_key);
5486 			dev_disable_lro(dev);
5487 			dev_disable_gro_hw(dev);
5488 		}
5489 		break;
5490 
5491 	default:
5492 		ret = -EINVAL;
5493 		break;
5494 	}
5495 
5496 	return ret;
5497 }
5498 
5499 static int netif_receive_skb_internal(struct sk_buff *skb)
5500 {
5501 	int ret;
5502 
5503 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5504 
5505 	if (skb_defer_rx_timestamp(skb))
5506 		return NET_RX_SUCCESS;
5507 
5508 	rcu_read_lock();
5509 #ifdef CONFIG_RPS
5510 	if (static_branch_unlikely(&rps_needed)) {
5511 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5512 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5513 
5514 		if (cpu >= 0) {
5515 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5516 			rcu_read_unlock();
5517 			return ret;
5518 		}
5519 	}
5520 #endif
5521 	ret = __netif_receive_skb(skb);
5522 	rcu_read_unlock();
5523 	return ret;
5524 }
5525 
5526 static void netif_receive_skb_list_internal(struct list_head *head)
5527 {
5528 	struct sk_buff *skb, *next;
5529 	struct list_head sublist;
5530 
5531 	INIT_LIST_HEAD(&sublist);
5532 	list_for_each_entry_safe(skb, next, head, list) {
5533 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5534 		skb_list_del_init(skb);
5535 		if (!skb_defer_rx_timestamp(skb))
5536 			list_add_tail(&skb->list, &sublist);
5537 	}
5538 	list_splice_init(&sublist, head);
5539 
5540 	rcu_read_lock();
5541 #ifdef CONFIG_RPS
5542 	if (static_branch_unlikely(&rps_needed)) {
5543 		list_for_each_entry_safe(skb, next, head, list) {
5544 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5545 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5546 
5547 			if (cpu >= 0) {
5548 				/* Will be handled, remove from list */
5549 				skb_list_del_init(skb);
5550 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5551 			}
5552 		}
5553 	}
5554 #endif
5555 	__netif_receive_skb_list(head);
5556 	rcu_read_unlock();
5557 }
5558 
5559 /**
5560  *	netif_receive_skb - process receive buffer from network
5561  *	@skb: buffer to process
5562  *
5563  *	netif_receive_skb() is the main receive data processing function.
5564  *	It always succeeds. The buffer may be dropped during processing
5565  *	for congestion control or by the protocol layers.
5566  *
5567  *	This function may only be called from softirq context and interrupts
5568  *	should be enabled.
5569  *
5570  *	Return values (usually ignored):
5571  *	NET_RX_SUCCESS: no congestion
5572  *	NET_RX_DROP: packet was dropped
5573  */
5574 int netif_receive_skb(struct sk_buff *skb)
5575 {
5576 	int ret;
5577 
5578 	trace_netif_receive_skb_entry(skb);
5579 
5580 	ret = netif_receive_skb_internal(skb);
5581 	trace_netif_receive_skb_exit(ret);
5582 
5583 	return ret;
5584 }
5585 EXPORT_SYMBOL(netif_receive_skb);
5586 
5587 /**
5588  *	netif_receive_skb_list - process many receive buffers from network
5589  *	@head: list of skbs to process.
5590  *
5591  *	Since return value of netif_receive_skb() is normally ignored, and
5592  *	wouldn't be meaningful for a list, this function returns void.
5593  *
5594  *	This function may only be called from softirq context and interrupts
5595  *	should be enabled.
5596  */
5597 void netif_receive_skb_list(struct list_head *head)
5598 {
5599 	struct sk_buff *skb;
5600 
5601 	if (list_empty(head))
5602 		return;
5603 	if (trace_netif_receive_skb_list_entry_enabled()) {
5604 		list_for_each_entry(skb, head, list)
5605 			trace_netif_receive_skb_list_entry(skb);
5606 	}
5607 	netif_receive_skb_list_internal(head);
5608 	trace_netif_receive_skb_list_exit(0);
5609 }
5610 EXPORT_SYMBOL(netif_receive_skb_list);
5611 
5612 static DEFINE_PER_CPU(struct work_struct, flush_works);
5613 
5614 /* Network device is going away, flush any packets still pending */
5615 static void flush_backlog(struct work_struct *work)
5616 {
5617 	struct sk_buff *skb, *tmp;
5618 	struct softnet_data *sd;
5619 
5620 	local_bh_disable();
5621 	sd = this_cpu_ptr(&softnet_data);
5622 
5623 	local_irq_disable();
5624 	rps_lock(sd);
5625 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5626 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5627 			__skb_unlink(skb, &sd->input_pkt_queue);
5628 			dev_kfree_skb_irq(skb);
5629 			input_queue_head_incr(sd);
5630 		}
5631 	}
5632 	rps_unlock(sd);
5633 	local_irq_enable();
5634 
5635 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5636 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5637 			__skb_unlink(skb, &sd->process_queue);
5638 			kfree_skb(skb);
5639 			input_queue_head_incr(sd);
5640 		}
5641 	}
5642 	local_bh_enable();
5643 }
5644 
5645 static bool flush_required(int cpu)
5646 {
5647 #if IS_ENABLED(CONFIG_RPS)
5648 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5649 	bool do_flush;
5650 
5651 	local_irq_disable();
5652 	rps_lock(sd);
5653 
5654 	/* as insertion into process_queue happens with the rps lock held,
5655 	 * process_queue access may race only with dequeue
5656 	 */
5657 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5658 		   !skb_queue_empty_lockless(&sd->process_queue);
5659 	rps_unlock(sd);
5660 	local_irq_enable();
5661 
5662 	return do_flush;
5663 #endif
5664 	/* without RPS we can't safely check input_pkt_queue: during a
5665 	 * concurrent remote skb_queue_splice() we can detect as empty both
5666 	 * input_pkt_queue and process_queue even if the latter could end-up
5667 	 * containing a lot of packets.
5668 	 */
5669 	return true;
5670 }
5671 
5672 static void flush_all_backlogs(void)
5673 {
5674 	static cpumask_t flush_cpus;
5675 	unsigned int cpu;
5676 
5677 	/* since we are under rtnl lock protection we can use static data
5678 	 * for the cpumask and avoid allocating on stack the possibly
5679 	 * large mask
5680 	 */
5681 	ASSERT_RTNL();
5682 
5683 	get_online_cpus();
5684 
5685 	cpumask_clear(&flush_cpus);
5686 	for_each_online_cpu(cpu) {
5687 		if (flush_required(cpu)) {
5688 			queue_work_on(cpu, system_highpri_wq,
5689 				      per_cpu_ptr(&flush_works, cpu));
5690 			cpumask_set_cpu(cpu, &flush_cpus);
5691 		}
5692 	}
5693 
5694 	/* we can have in flight packet[s] on the cpus we are not flushing,
5695 	 * synchronize_net() in rollback_registered_many() will take care of
5696 	 * them
5697 	 */
5698 	for_each_cpu(cpu, &flush_cpus)
5699 		flush_work(per_cpu_ptr(&flush_works, cpu));
5700 
5701 	put_online_cpus();
5702 }
5703 
5704 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5705 static void gro_normal_list(struct napi_struct *napi)
5706 {
5707 	if (!napi->rx_count)
5708 		return;
5709 	netif_receive_skb_list_internal(&napi->rx_list);
5710 	INIT_LIST_HEAD(&napi->rx_list);
5711 	napi->rx_count = 0;
5712 }
5713 
5714 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5715  * pass the whole batch up to the stack.
5716  */
5717 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5718 {
5719 	list_add_tail(&skb->list, &napi->rx_list);
5720 	if (++napi->rx_count >= gro_normal_batch)
5721 		gro_normal_list(napi);
5722 }
5723 
5724 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5725 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5726 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5727 {
5728 	struct packet_offload *ptype;
5729 	__be16 type = skb->protocol;
5730 	struct list_head *head = &offload_base;
5731 	int err = -ENOENT;
5732 
5733 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5734 
5735 	if (NAPI_GRO_CB(skb)->count == 1) {
5736 		skb_shinfo(skb)->gso_size = 0;
5737 		goto out;
5738 	}
5739 
5740 	rcu_read_lock();
5741 	list_for_each_entry_rcu(ptype, head, list) {
5742 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5743 			continue;
5744 
5745 		err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5746 					 ipv6_gro_complete, inet_gro_complete,
5747 					 skb, 0);
5748 		break;
5749 	}
5750 	rcu_read_unlock();
5751 
5752 	if (err) {
5753 		WARN_ON(&ptype->list == head);
5754 		kfree_skb(skb);
5755 		return NET_RX_SUCCESS;
5756 	}
5757 
5758 out:
5759 	gro_normal_one(napi, skb);
5760 	return NET_RX_SUCCESS;
5761 }
5762 
5763 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5764 				   bool flush_old)
5765 {
5766 	struct list_head *head = &napi->gro_hash[index].list;
5767 	struct sk_buff *skb, *p;
5768 
5769 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5770 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5771 			return;
5772 		skb_list_del_init(skb);
5773 		napi_gro_complete(napi, skb);
5774 		napi->gro_hash[index].count--;
5775 	}
5776 
5777 	if (!napi->gro_hash[index].count)
5778 		__clear_bit(index, &napi->gro_bitmask);
5779 }
5780 
5781 /* napi->gro_hash[].list contains packets ordered by age.
5782  * youngest packets at the head of it.
5783  * Complete skbs in reverse order to reduce latencies.
5784  */
5785 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5786 {
5787 	unsigned long bitmask = napi->gro_bitmask;
5788 	unsigned int i, base = ~0U;
5789 
5790 	while ((i = ffs(bitmask)) != 0) {
5791 		bitmask >>= i;
5792 		base += i;
5793 		__napi_gro_flush_chain(napi, base, flush_old);
5794 	}
5795 }
5796 EXPORT_SYMBOL(napi_gro_flush);
5797 
5798 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5799 					  struct sk_buff *skb)
5800 {
5801 	unsigned int maclen = skb->dev->hard_header_len;
5802 	u32 hash = skb_get_hash_raw(skb);
5803 	struct list_head *head;
5804 	struct sk_buff *p;
5805 
5806 	head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5807 	list_for_each_entry(p, head, list) {
5808 		unsigned long diffs;
5809 
5810 		NAPI_GRO_CB(p)->flush = 0;
5811 
5812 		if (hash != skb_get_hash_raw(p)) {
5813 			NAPI_GRO_CB(p)->same_flow = 0;
5814 			continue;
5815 		}
5816 
5817 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5818 		diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5819 		if (skb_vlan_tag_present(p))
5820 			diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5821 		diffs |= skb_metadata_dst_cmp(p, skb);
5822 		diffs |= skb_metadata_differs(p, skb);
5823 		if (maclen == ETH_HLEN)
5824 			diffs |= compare_ether_header(skb_mac_header(p),
5825 						      skb_mac_header(skb));
5826 		else if (!diffs)
5827 			diffs = memcmp(skb_mac_header(p),
5828 				       skb_mac_header(skb),
5829 				       maclen);
5830 		NAPI_GRO_CB(p)->same_flow = !diffs;
5831 	}
5832 
5833 	return head;
5834 }
5835 
5836 static void skb_gro_reset_offset(struct sk_buff *skb)
5837 {
5838 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
5839 	const skb_frag_t *frag0 = &pinfo->frags[0];
5840 
5841 	NAPI_GRO_CB(skb)->data_offset = 0;
5842 	NAPI_GRO_CB(skb)->frag0 = NULL;
5843 	NAPI_GRO_CB(skb)->frag0_len = 0;
5844 
5845 	if (!skb_headlen(skb) && pinfo->nr_frags &&
5846 	    !PageHighMem(skb_frag_page(frag0))) {
5847 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5848 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5849 						    skb_frag_size(frag0),
5850 						    skb->end - skb->tail);
5851 	}
5852 }
5853 
5854 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5855 {
5856 	struct skb_shared_info *pinfo = skb_shinfo(skb);
5857 
5858 	BUG_ON(skb->end - skb->tail < grow);
5859 
5860 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5861 
5862 	skb->data_len -= grow;
5863 	skb->tail += grow;
5864 
5865 	skb_frag_off_add(&pinfo->frags[0], grow);
5866 	skb_frag_size_sub(&pinfo->frags[0], grow);
5867 
5868 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5869 		skb_frag_unref(skb, 0);
5870 		memmove(pinfo->frags, pinfo->frags + 1,
5871 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
5872 	}
5873 }
5874 
5875 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5876 {
5877 	struct sk_buff *oldest;
5878 
5879 	oldest = list_last_entry(head, struct sk_buff, list);
5880 
5881 	/* We are called with head length >= MAX_GRO_SKBS, so this is
5882 	 * impossible.
5883 	 */
5884 	if (WARN_ON_ONCE(!oldest))
5885 		return;
5886 
5887 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
5888 	 * SKB to the chain.
5889 	 */
5890 	skb_list_del_init(oldest);
5891 	napi_gro_complete(napi, oldest);
5892 }
5893 
5894 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5895 							   struct sk_buff *));
5896 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5897 							   struct sk_buff *));
5898 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5899 {
5900 	u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5901 	struct list_head *head = &offload_base;
5902 	struct packet_offload *ptype;
5903 	__be16 type = skb->protocol;
5904 	struct list_head *gro_head;
5905 	struct sk_buff *pp = NULL;
5906 	enum gro_result ret;
5907 	int same_flow;
5908 	int grow;
5909 
5910 	if (netif_elide_gro(skb->dev))
5911 		goto normal;
5912 
5913 	gro_head = gro_list_prepare(napi, skb);
5914 
5915 	rcu_read_lock();
5916 	list_for_each_entry_rcu(ptype, head, list) {
5917 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5918 			continue;
5919 
5920 		skb_set_network_header(skb, skb_gro_offset(skb));
5921 		skb_reset_mac_len(skb);
5922 		NAPI_GRO_CB(skb)->same_flow = 0;
5923 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5924 		NAPI_GRO_CB(skb)->free = 0;
5925 		NAPI_GRO_CB(skb)->encap_mark = 0;
5926 		NAPI_GRO_CB(skb)->recursion_counter = 0;
5927 		NAPI_GRO_CB(skb)->is_fou = 0;
5928 		NAPI_GRO_CB(skb)->is_atomic = 1;
5929 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5930 
5931 		/* Setup for GRO checksum validation */
5932 		switch (skb->ip_summed) {
5933 		case CHECKSUM_COMPLETE:
5934 			NAPI_GRO_CB(skb)->csum = skb->csum;
5935 			NAPI_GRO_CB(skb)->csum_valid = 1;
5936 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5937 			break;
5938 		case CHECKSUM_UNNECESSARY:
5939 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5940 			NAPI_GRO_CB(skb)->csum_valid = 0;
5941 			break;
5942 		default:
5943 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5944 			NAPI_GRO_CB(skb)->csum_valid = 0;
5945 		}
5946 
5947 		pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5948 					ipv6_gro_receive, inet_gro_receive,
5949 					gro_head, skb);
5950 		break;
5951 	}
5952 	rcu_read_unlock();
5953 
5954 	if (&ptype->list == head)
5955 		goto normal;
5956 
5957 	if (PTR_ERR(pp) == -EINPROGRESS) {
5958 		ret = GRO_CONSUMED;
5959 		goto ok;
5960 	}
5961 
5962 	same_flow = NAPI_GRO_CB(skb)->same_flow;
5963 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5964 
5965 	if (pp) {
5966 		skb_list_del_init(pp);
5967 		napi_gro_complete(napi, pp);
5968 		napi->gro_hash[hash].count--;
5969 	}
5970 
5971 	if (same_flow)
5972 		goto ok;
5973 
5974 	if (NAPI_GRO_CB(skb)->flush)
5975 		goto normal;
5976 
5977 	if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5978 		gro_flush_oldest(napi, gro_head);
5979 	} else {
5980 		napi->gro_hash[hash].count++;
5981 	}
5982 	NAPI_GRO_CB(skb)->count = 1;
5983 	NAPI_GRO_CB(skb)->age = jiffies;
5984 	NAPI_GRO_CB(skb)->last = skb;
5985 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5986 	list_add(&skb->list, gro_head);
5987 	ret = GRO_HELD;
5988 
5989 pull:
5990 	grow = skb_gro_offset(skb) - skb_headlen(skb);
5991 	if (grow > 0)
5992 		gro_pull_from_frag0(skb, grow);
5993 ok:
5994 	if (napi->gro_hash[hash].count) {
5995 		if (!test_bit(hash, &napi->gro_bitmask))
5996 			__set_bit(hash, &napi->gro_bitmask);
5997 	} else if (test_bit(hash, &napi->gro_bitmask)) {
5998 		__clear_bit(hash, &napi->gro_bitmask);
5999 	}
6000 
6001 	return ret;
6002 
6003 normal:
6004 	ret = GRO_NORMAL;
6005 	goto pull;
6006 }
6007 
6008 struct packet_offload *gro_find_receive_by_type(__be16 type)
6009 {
6010 	struct list_head *offload_head = &offload_base;
6011 	struct packet_offload *ptype;
6012 
6013 	list_for_each_entry_rcu(ptype, offload_head, list) {
6014 		if (ptype->type != type || !ptype->callbacks.gro_receive)
6015 			continue;
6016 		return ptype;
6017 	}
6018 	return NULL;
6019 }
6020 EXPORT_SYMBOL(gro_find_receive_by_type);
6021 
6022 struct packet_offload *gro_find_complete_by_type(__be16 type)
6023 {
6024 	struct list_head *offload_head = &offload_base;
6025 	struct packet_offload *ptype;
6026 
6027 	list_for_each_entry_rcu(ptype, offload_head, list) {
6028 		if (ptype->type != type || !ptype->callbacks.gro_complete)
6029 			continue;
6030 		return ptype;
6031 	}
6032 	return NULL;
6033 }
6034 EXPORT_SYMBOL(gro_find_complete_by_type);
6035 
6036 static void napi_skb_free_stolen_head(struct sk_buff *skb)
6037 {
6038 	skb_dst_drop(skb);
6039 	skb_ext_put(skb);
6040 	kmem_cache_free(skbuff_head_cache, skb);
6041 }
6042 
6043 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6044 				    struct sk_buff *skb,
6045 				    gro_result_t ret)
6046 {
6047 	switch (ret) {
6048 	case GRO_NORMAL:
6049 		gro_normal_one(napi, skb);
6050 		break;
6051 
6052 	case GRO_DROP:
6053 		kfree_skb(skb);
6054 		break;
6055 
6056 	case GRO_MERGED_FREE:
6057 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6058 			napi_skb_free_stolen_head(skb);
6059 		else
6060 			__kfree_skb(skb);
6061 		break;
6062 
6063 	case GRO_HELD:
6064 	case GRO_MERGED:
6065 	case GRO_CONSUMED:
6066 		break;
6067 	}
6068 
6069 	return ret;
6070 }
6071 
6072 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6073 {
6074 	gro_result_t ret;
6075 
6076 	skb_mark_napi_id(skb, napi);
6077 	trace_napi_gro_receive_entry(skb);
6078 
6079 	skb_gro_reset_offset(skb);
6080 
6081 	ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6082 	trace_napi_gro_receive_exit(ret);
6083 
6084 	return ret;
6085 }
6086 EXPORT_SYMBOL(napi_gro_receive);
6087 
6088 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6089 {
6090 	if (unlikely(skb->pfmemalloc)) {
6091 		consume_skb(skb);
6092 		return;
6093 	}
6094 	__skb_pull(skb, skb_headlen(skb));
6095 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
6096 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6097 	__vlan_hwaccel_clear_tag(skb);
6098 	skb->dev = napi->dev;
6099 	skb->skb_iif = 0;
6100 
6101 	/* eth_type_trans() assumes pkt_type is PACKET_HOST */
6102 	skb->pkt_type = PACKET_HOST;
6103 
6104 	skb->encapsulation = 0;
6105 	skb_shinfo(skb)->gso_type = 0;
6106 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6107 	skb_ext_reset(skb);
6108 
6109 	napi->skb = skb;
6110 }
6111 
6112 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6113 {
6114 	struct sk_buff *skb = napi->skb;
6115 
6116 	if (!skb) {
6117 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6118 		if (skb) {
6119 			napi->skb = skb;
6120 			skb_mark_napi_id(skb, napi);
6121 		}
6122 	}
6123 	return skb;
6124 }
6125 EXPORT_SYMBOL(napi_get_frags);
6126 
6127 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6128 				      struct sk_buff *skb,
6129 				      gro_result_t ret)
6130 {
6131 	switch (ret) {
6132 	case GRO_NORMAL:
6133 	case GRO_HELD:
6134 		__skb_push(skb, ETH_HLEN);
6135 		skb->protocol = eth_type_trans(skb, skb->dev);
6136 		if (ret == GRO_NORMAL)
6137 			gro_normal_one(napi, skb);
6138 		break;
6139 
6140 	case GRO_DROP:
6141 		napi_reuse_skb(napi, skb);
6142 		break;
6143 
6144 	case GRO_MERGED_FREE:
6145 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6146 			napi_skb_free_stolen_head(skb);
6147 		else
6148 			napi_reuse_skb(napi, skb);
6149 		break;
6150 
6151 	case GRO_MERGED:
6152 	case GRO_CONSUMED:
6153 		break;
6154 	}
6155 
6156 	return ret;
6157 }
6158 
6159 /* Upper GRO stack assumes network header starts at gro_offset=0
6160  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6161  * We copy ethernet header into skb->data to have a common layout.
6162  */
6163 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6164 {
6165 	struct sk_buff *skb = napi->skb;
6166 	const struct ethhdr *eth;
6167 	unsigned int hlen = sizeof(*eth);
6168 
6169 	napi->skb = NULL;
6170 
6171 	skb_reset_mac_header(skb);
6172 	skb_gro_reset_offset(skb);
6173 
6174 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
6175 		eth = skb_gro_header_slow(skb, hlen, 0);
6176 		if (unlikely(!eth)) {
6177 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6178 					     __func__, napi->dev->name);
6179 			napi_reuse_skb(napi, skb);
6180 			return NULL;
6181 		}
6182 	} else {
6183 		eth = (const struct ethhdr *)skb->data;
6184 		gro_pull_from_frag0(skb, hlen);
6185 		NAPI_GRO_CB(skb)->frag0 += hlen;
6186 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
6187 	}
6188 	__skb_pull(skb, hlen);
6189 
6190 	/*
6191 	 * This works because the only protocols we care about don't require
6192 	 * special handling.
6193 	 * We'll fix it up properly in napi_frags_finish()
6194 	 */
6195 	skb->protocol = eth->h_proto;
6196 
6197 	return skb;
6198 }
6199 
6200 gro_result_t napi_gro_frags(struct napi_struct *napi)
6201 {
6202 	gro_result_t ret;
6203 	struct sk_buff *skb = napi_frags_skb(napi);
6204 
6205 	if (!skb)
6206 		return GRO_DROP;
6207 
6208 	trace_napi_gro_frags_entry(skb);
6209 
6210 	ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6211 	trace_napi_gro_frags_exit(ret);
6212 
6213 	return ret;
6214 }
6215 EXPORT_SYMBOL(napi_gro_frags);
6216 
6217 /* Compute the checksum from gro_offset and return the folded value
6218  * after adding in any pseudo checksum.
6219  */
6220 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6221 {
6222 	__wsum wsum;
6223 	__sum16 sum;
6224 
6225 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6226 
6227 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6228 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6229 	/* See comments in __skb_checksum_complete(). */
6230 	if (likely(!sum)) {
6231 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6232 		    !skb->csum_complete_sw)
6233 			netdev_rx_csum_fault(skb->dev, skb);
6234 	}
6235 
6236 	NAPI_GRO_CB(skb)->csum = wsum;
6237 	NAPI_GRO_CB(skb)->csum_valid = 1;
6238 
6239 	return sum;
6240 }
6241 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6242 
6243 static void net_rps_send_ipi(struct softnet_data *remsd)
6244 {
6245 #ifdef CONFIG_RPS
6246 	while (remsd) {
6247 		struct softnet_data *next = remsd->rps_ipi_next;
6248 
6249 		if (cpu_online(remsd->cpu))
6250 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6251 		remsd = next;
6252 	}
6253 #endif
6254 }
6255 
6256 /*
6257  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6258  * Note: called with local irq disabled, but exits with local irq enabled.
6259  */
6260 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6261 {
6262 #ifdef CONFIG_RPS
6263 	struct softnet_data *remsd = sd->rps_ipi_list;
6264 
6265 	if (remsd) {
6266 		sd->rps_ipi_list = NULL;
6267 
6268 		local_irq_enable();
6269 
6270 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6271 		net_rps_send_ipi(remsd);
6272 	} else
6273 #endif
6274 		local_irq_enable();
6275 }
6276 
6277 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6278 {
6279 #ifdef CONFIG_RPS
6280 	return sd->rps_ipi_list != NULL;
6281 #else
6282 	return false;
6283 #endif
6284 }
6285 
6286 static int process_backlog(struct napi_struct *napi, int quota)
6287 {
6288 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6289 	bool again = true;
6290 	int work = 0;
6291 
6292 	/* Check if we have pending ipi, its better to send them now,
6293 	 * not waiting net_rx_action() end.
6294 	 */
6295 	if (sd_has_rps_ipi_waiting(sd)) {
6296 		local_irq_disable();
6297 		net_rps_action_and_irq_enable(sd);
6298 	}
6299 
6300 	napi->weight = dev_rx_weight;
6301 	while (again) {
6302 		struct sk_buff *skb;
6303 
6304 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6305 			rcu_read_lock();
6306 			__netif_receive_skb(skb);
6307 			rcu_read_unlock();
6308 			input_queue_head_incr(sd);
6309 			if (++work >= quota)
6310 				return work;
6311 
6312 		}
6313 
6314 		local_irq_disable();
6315 		rps_lock(sd);
6316 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6317 			/*
6318 			 * Inline a custom version of __napi_complete().
6319 			 * only current cpu owns and manipulates this napi,
6320 			 * and NAPI_STATE_SCHED is the only possible flag set
6321 			 * on backlog.
6322 			 * We can use a plain write instead of clear_bit(),
6323 			 * and we dont need an smp_mb() memory barrier.
6324 			 */
6325 			napi->state = 0;
6326 			again = false;
6327 		} else {
6328 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6329 						   &sd->process_queue);
6330 		}
6331 		rps_unlock(sd);
6332 		local_irq_enable();
6333 	}
6334 
6335 	return work;
6336 }
6337 
6338 /**
6339  * __napi_schedule - schedule for receive
6340  * @n: entry to schedule
6341  *
6342  * The entry's receive function will be scheduled to run.
6343  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6344  */
6345 void __napi_schedule(struct napi_struct *n)
6346 {
6347 	unsigned long flags;
6348 
6349 	local_irq_save(flags);
6350 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6351 	local_irq_restore(flags);
6352 }
6353 EXPORT_SYMBOL(__napi_schedule);
6354 
6355 /**
6356  *	napi_schedule_prep - check if napi can be scheduled
6357  *	@n: napi context
6358  *
6359  * Test if NAPI routine is already running, and if not mark
6360  * it as running.  This is used as a condition variable to
6361  * insure only one NAPI poll instance runs.  We also make
6362  * sure there is no pending NAPI disable.
6363  */
6364 bool napi_schedule_prep(struct napi_struct *n)
6365 {
6366 	unsigned long val, new;
6367 
6368 	do {
6369 		val = READ_ONCE(n->state);
6370 		if (unlikely(val & NAPIF_STATE_DISABLE))
6371 			return false;
6372 		new = val | NAPIF_STATE_SCHED;
6373 
6374 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6375 		 * This was suggested by Alexander Duyck, as compiler
6376 		 * emits better code than :
6377 		 * if (val & NAPIF_STATE_SCHED)
6378 		 *     new |= NAPIF_STATE_MISSED;
6379 		 */
6380 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6381 						   NAPIF_STATE_MISSED;
6382 	} while (cmpxchg(&n->state, val, new) != val);
6383 
6384 	return !(val & NAPIF_STATE_SCHED);
6385 }
6386 EXPORT_SYMBOL(napi_schedule_prep);
6387 
6388 /**
6389  * __napi_schedule_irqoff - schedule for receive
6390  * @n: entry to schedule
6391  *
6392  * Variant of __napi_schedule() assuming hard irqs are masked
6393  */
6394 void __napi_schedule_irqoff(struct napi_struct *n)
6395 {
6396 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6397 }
6398 EXPORT_SYMBOL(__napi_schedule_irqoff);
6399 
6400 bool napi_complete_done(struct napi_struct *n, int work_done)
6401 {
6402 	unsigned long flags, val, new, timeout = 0;
6403 	bool ret = true;
6404 
6405 	/*
6406 	 * 1) Don't let napi dequeue from the cpu poll list
6407 	 *    just in case its running on a different cpu.
6408 	 * 2) If we are busy polling, do nothing here, we have
6409 	 *    the guarantee we will be called later.
6410 	 */
6411 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6412 				 NAPIF_STATE_IN_BUSY_POLL)))
6413 		return false;
6414 
6415 	if (work_done) {
6416 		if (n->gro_bitmask)
6417 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6418 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6419 	}
6420 	if (n->defer_hard_irqs_count > 0) {
6421 		n->defer_hard_irqs_count--;
6422 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6423 		if (timeout)
6424 			ret = false;
6425 	}
6426 	if (n->gro_bitmask) {
6427 		/* When the NAPI instance uses a timeout and keeps postponing
6428 		 * it, we need to bound somehow the time packets are kept in
6429 		 * the GRO layer
6430 		 */
6431 		napi_gro_flush(n, !!timeout);
6432 	}
6433 
6434 	gro_normal_list(n);
6435 
6436 	if (unlikely(!list_empty(&n->poll_list))) {
6437 		/* If n->poll_list is not empty, we need to mask irqs */
6438 		local_irq_save(flags);
6439 		list_del_init(&n->poll_list);
6440 		local_irq_restore(flags);
6441 	}
6442 
6443 	do {
6444 		val = READ_ONCE(n->state);
6445 
6446 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6447 
6448 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6449 
6450 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6451 		 * because we will call napi->poll() one more time.
6452 		 * This C code was suggested by Alexander Duyck to help gcc.
6453 		 */
6454 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6455 						    NAPIF_STATE_SCHED;
6456 	} while (cmpxchg(&n->state, val, new) != val);
6457 
6458 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6459 		__napi_schedule(n);
6460 		return false;
6461 	}
6462 
6463 	if (timeout)
6464 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6465 			      HRTIMER_MODE_REL_PINNED);
6466 	return ret;
6467 }
6468 EXPORT_SYMBOL(napi_complete_done);
6469 
6470 /* must be called under rcu_read_lock(), as we dont take a reference */
6471 static struct napi_struct *napi_by_id(unsigned int napi_id)
6472 {
6473 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6474 	struct napi_struct *napi;
6475 
6476 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6477 		if (napi->napi_id == napi_id)
6478 			return napi;
6479 
6480 	return NULL;
6481 }
6482 
6483 #if defined(CONFIG_NET_RX_BUSY_POLL)
6484 
6485 #define BUSY_POLL_BUDGET 8
6486 
6487 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6488 {
6489 	int rc;
6490 
6491 	/* Busy polling means there is a high chance device driver hard irq
6492 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6493 	 * set in napi_schedule_prep().
6494 	 * Since we are about to call napi->poll() once more, we can safely
6495 	 * clear NAPI_STATE_MISSED.
6496 	 *
6497 	 * Note: x86 could use a single "lock and ..." instruction
6498 	 * to perform these two clear_bit()
6499 	 */
6500 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6501 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6502 
6503 	local_bh_disable();
6504 
6505 	/* All we really want here is to re-enable device interrupts.
6506 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6507 	 */
6508 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
6509 	/* We can't gro_normal_list() here, because napi->poll() might have
6510 	 * rearmed the napi (napi_complete_done()) in which case it could
6511 	 * already be running on another CPU.
6512 	 */
6513 	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6514 	netpoll_poll_unlock(have_poll_lock);
6515 	if (rc == BUSY_POLL_BUDGET) {
6516 		/* As the whole budget was spent, we still own the napi so can
6517 		 * safely handle the rx_list.
6518 		 */
6519 		gro_normal_list(napi);
6520 		__napi_schedule(napi);
6521 	}
6522 	local_bh_enable();
6523 }
6524 
6525 void napi_busy_loop(unsigned int napi_id,
6526 		    bool (*loop_end)(void *, unsigned long),
6527 		    void *loop_end_arg)
6528 {
6529 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6530 	int (*napi_poll)(struct napi_struct *napi, int budget);
6531 	void *have_poll_lock = NULL;
6532 	struct napi_struct *napi;
6533 
6534 restart:
6535 	napi_poll = NULL;
6536 
6537 	rcu_read_lock();
6538 
6539 	napi = napi_by_id(napi_id);
6540 	if (!napi)
6541 		goto out;
6542 
6543 	preempt_disable();
6544 	for (;;) {
6545 		int work = 0;
6546 
6547 		local_bh_disable();
6548 		if (!napi_poll) {
6549 			unsigned long val = READ_ONCE(napi->state);
6550 
6551 			/* If multiple threads are competing for this napi,
6552 			 * we avoid dirtying napi->state as much as we can.
6553 			 */
6554 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6555 				   NAPIF_STATE_IN_BUSY_POLL))
6556 				goto count;
6557 			if (cmpxchg(&napi->state, val,
6558 				    val | NAPIF_STATE_IN_BUSY_POLL |
6559 					  NAPIF_STATE_SCHED) != val)
6560 				goto count;
6561 			have_poll_lock = netpoll_poll_lock(napi);
6562 			napi_poll = napi->poll;
6563 		}
6564 		work = napi_poll(napi, BUSY_POLL_BUDGET);
6565 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6566 		gro_normal_list(napi);
6567 count:
6568 		if (work > 0)
6569 			__NET_ADD_STATS(dev_net(napi->dev),
6570 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6571 		local_bh_enable();
6572 
6573 		if (!loop_end || loop_end(loop_end_arg, start_time))
6574 			break;
6575 
6576 		if (unlikely(need_resched())) {
6577 			if (napi_poll)
6578 				busy_poll_stop(napi, have_poll_lock);
6579 			preempt_enable();
6580 			rcu_read_unlock();
6581 			cond_resched();
6582 			if (loop_end(loop_end_arg, start_time))
6583 				return;
6584 			goto restart;
6585 		}
6586 		cpu_relax();
6587 	}
6588 	if (napi_poll)
6589 		busy_poll_stop(napi, have_poll_lock);
6590 	preempt_enable();
6591 out:
6592 	rcu_read_unlock();
6593 }
6594 EXPORT_SYMBOL(napi_busy_loop);
6595 
6596 #endif /* CONFIG_NET_RX_BUSY_POLL */
6597 
6598 static void napi_hash_add(struct napi_struct *napi)
6599 {
6600 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6601 		return;
6602 
6603 	spin_lock(&napi_hash_lock);
6604 
6605 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6606 	do {
6607 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6608 			napi_gen_id = MIN_NAPI_ID;
6609 	} while (napi_by_id(napi_gen_id));
6610 	napi->napi_id = napi_gen_id;
6611 
6612 	hlist_add_head_rcu(&napi->napi_hash_node,
6613 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6614 
6615 	spin_unlock(&napi_hash_lock);
6616 }
6617 
6618 /* Warning : caller is responsible to make sure rcu grace period
6619  * is respected before freeing memory containing @napi
6620  */
6621 static void napi_hash_del(struct napi_struct *napi)
6622 {
6623 	spin_lock(&napi_hash_lock);
6624 
6625 	hlist_del_init_rcu(&napi->napi_hash_node);
6626 
6627 	spin_unlock(&napi_hash_lock);
6628 }
6629 
6630 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6631 {
6632 	struct napi_struct *napi;
6633 
6634 	napi = container_of(timer, struct napi_struct, timer);
6635 
6636 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6637 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6638 	 */
6639 	if (!napi_disable_pending(napi) &&
6640 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6641 		__napi_schedule_irqoff(napi);
6642 
6643 	return HRTIMER_NORESTART;
6644 }
6645 
6646 static void init_gro_hash(struct napi_struct *napi)
6647 {
6648 	int i;
6649 
6650 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6651 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6652 		napi->gro_hash[i].count = 0;
6653 	}
6654 	napi->gro_bitmask = 0;
6655 }
6656 
6657 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6658 		    int (*poll)(struct napi_struct *, int), int weight)
6659 {
6660 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6661 		return;
6662 
6663 	INIT_LIST_HEAD(&napi->poll_list);
6664 	INIT_HLIST_NODE(&napi->napi_hash_node);
6665 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6666 	napi->timer.function = napi_watchdog;
6667 	init_gro_hash(napi);
6668 	napi->skb = NULL;
6669 	INIT_LIST_HEAD(&napi->rx_list);
6670 	napi->rx_count = 0;
6671 	napi->poll = poll;
6672 	if (weight > NAPI_POLL_WEIGHT)
6673 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6674 				weight);
6675 	napi->weight = weight;
6676 	napi->dev = dev;
6677 #ifdef CONFIG_NETPOLL
6678 	napi->poll_owner = -1;
6679 #endif
6680 	set_bit(NAPI_STATE_SCHED, &napi->state);
6681 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6682 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6683 	napi_hash_add(napi);
6684 }
6685 EXPORT_SYMBOL(netif_napi_add);
6686 
6687 void napi_disable(struct napi_struct *n)
6688 {
6689 	might_sleep();
6690 	set_bit(NAPI_STATE_DISABLE, &n->state);
6691 
6692 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6693 		msleep(1);
6694 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6695 		msleep(1);
6696 
6697 	hrtimer_cancel(&n->timer);
6698 
6699 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6700 }
6701 EXPORT_SYMBOL(napi_disable);
6702 
6703 static void flush_gro_hash(struct napi_struct *napi)
6704 {
6705 	int i;
6706 
6707 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6708 		struct sk_buff *skb, *n;
6709 
6710 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6711 			kfree_skb(skb);
6712 		napi->gro_hash[i].count = 0;
6713 	}
6714 }
6715 
6716 /* Must be called in process context */
6717 void __netif_napi_del(struct napi_struct *napi)
6718 {
6719 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6720 		return;
6721 
6722 	napi_hash_del(napi);
6723 	list_del_rcu(&napi->dev_list);
6724 	napi_free_frags(napi);
6725 
6726 	flush_gro_hash(napi);
6727 	napi->gro_bitmask = 0;
6728 }
6729 EXPORT_SYMBOL(__netif_napi_del);
6730 
6731 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6732 {
6733 	void *have;
6734 	int work, weight;
6735 
6736 	list_del_init(&n->poll_list);
6737 
6738 	have = netpoll_poll_lock(n);
6739 
6740 	weight = n->weight;
6741 
6742 	/* This NAPI_STATE_SCHED test is for avoiding a race
6743 	 * with netpoll's poll_napi().  Only the entity which
6744 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6745 	 * actually make the ->poll() call.  Therefore we avoid
6746 	 * accidentally calling ->poll() when NAPI is not scheduled.
6747 	 */
6748 	work = 0;
6749 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6750 		work = n->poll(n, weight);
6751 		trace_napi_poll(n, work, weight);
6752 	}
6753 
6754 	if (unlikely(work > weight))
6755 		pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6756 			    n->poll, work, weight);
6757 
6758 	if (likely(work < weight))
6759 		goto out_unlock;
6760 
6761 	/* Drivers must not modify the NAPI state if they
6762 	 * consume the entire weight.  In such cases this code
6763 	 * still "owns" the NAPI instance and therefore can
6764 	 * move the instance around on the list at-will.
6765 	 */
6766 	if (unlikely(napi_disable_pending(n))) {
6767 		napi_complete(n);
6768 		goto out_unlock;
6769 	}
6770 
6771 	if (n->gro_bitmask) {
6772 		/* flush too old packets
6773 		 * If HZ < 1000, flush all packets.
6774 		 */
6775 		napi_gro_flush(n, HZ >= 1000);
6776 	}
6777 
6778 	gro_normal_list(n);
6779 
6780 	/* Some drivers may have called napi_schedule
6781 	 * prior to exhausting their budget.
6782 	 */
6783 	if (unlikely(!list_empty(&n->poll_list))) {
6784 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6785 			     n->dev ? n->dev->name : "backlog");
6786 		goto out_unlock;
6787 	}
6788 
6789 	list_add_tail(&n->poll_list, repoll);
6790 
6791 out_unlock:
6792 	netpoll_poll_unlock(have);
6793 
6794 	return work;
6795 }
6796 
6797 static __latent_entropy void net_rx_action(struct softirq_action *h)
6798 {
6799 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6800 	unsigned long time_limit = jiffies +
6801 		usecs_to_jiffies(netdev_budget_usecs);
6802 	int budget = netdev_budget;
6803 	LIST_HEAD(list);
6804 	LIST_HEAD(repoll);
6805 
6806 	local_irq_disable();
6807 	list_splice_init(&sd->poll_list, &list);
6808 	local_irq_enable();
6809 
6810 	for (;;) {
6811 		struct napi_struct *n;
6812 
6813 		if (list_empty(&list)) {
6814 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6815 				goto out;
6816 			break;
6817 		}
6818 
6819 		n = list_first_entry(&list, struct napi_struct, poll_list);
6820 		budget -= napi_poll(n, &repoll);
6821 
6822 		/* If softirq window is exhausted then punt.
6823 		 * Allow this to run for 2 jiffies since which will allow
6824 		 * an average latency of 1.5/HZ.
6825 		 */
6826 		if (unlikely(budget <= 0 ||
6827 			     time_after_eq(jiffies, time_limit))) {
6828 			sd->time_squeeze++;
6829 			break;
6830 		}
6831 	}
6832 
6833 	local_irq_disable();
6834 
6835 	list_splice_tail_init(&sd->poll_list, &list);
6836 	list_splice_tail(&repoll, &list);
6837 	list_splice(&list, &sd->poll_list);
6838 	if (!list_empty(&sd->poll_list))
6839 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6840 
6841 	net_rps_action_and_irq_enable(sd);
6842 out:
6843 	__kfree_skb_flush();
6844 }
6845 
6846 struct netdev_adjacent {
6847 	struct net_device *dev;
6848 
6849 	/* upper master flag, there can only be one master device per list */
6850 	bool master;
6851 
6852 	/* lookup ignore flag */
6853 	bool ignore;
6854 
6855 	/* counter for the number of times this device was added to us */
6856 	u16 ref_nr;
6857 
6858 	/* private field for the users */
6859 	void *private;
6860 
6861 	struct list_head list;
6862 	struct rcu_head rcu;
6863 };
6864 
6865 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6866 						 struct list_head *adj_list)
6867 {
6868 	struct netdev_adjacent *adj;
6869 
6870 	list_for_each_entry(adj, adj_list, list) {
6871 		if (adj->dev == adj_dev)
6872 			return adj;
6873 	}
6874 	return NULL;
6875 }
6876 
6877 static int ____netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6878 {
6879 	struct net_device *dev = data;
6880 
6881 	return upper_dev == dev;
6882 }
6883 
6884 /**
6885  * netdev_has_upper_dev - Check if device is linked to an upper device
6886  * @dev: device
6887  * @upper_dev: upper device to check
6888  *
6889  * Find out if a device is linked to specified upper device and return true
6890  * in case it is. Note that this checks only immediate upper device,
6891  * not through a complete stack of devices. The caller must hold the RTNL lock.
6892  */
6893 bool netdev_has_upper_dev(struct net_device *dev,
6894 			  struct net_device *upper_dev)
6895 {
6896 	ASSERT_RTNL();
6897 
6898 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6899 					     upper_dev);
6900 }
6901 EXPORT_SYMBOL(netdev_has_upper_dev);
6902 
6903 /**
6904  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6905  * @dev: device
6906  * @upper_dev: upper device to check
6907  *
6908  * Find out if a device is linked to specified upper device and return true
6909  * in case it is. Note that this checks the entire upper device chain.
6910  * The caller must hold rcu lock.
6911  */
6912 
6913 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6914 				  struct net_device *upper_dev)
6915 {
6916 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6917 					       upper_dev);
6918 }
6919 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6920 
6921 /**
6922  * netdev_has_any_upper_dev - Check if device is linked to some device
6923  * @dev: device
6924  *
6925  * Find out if a device is linked to an upper device and return true in case
6926  * it is. The caller must hold the RTNL lock.
6927  */
6928 bool netdev_has_any_upper_dev(struct net_device *dev)
6929 {
6930 	ASSERT_RTNL();
6931 
6932 	return !list_empty(&dev->adj_list.upper);
6933 }
6934 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6935 
6936 /**
6937  * netdev_master_upper_dev_get - Get master upper device
6938  * @dev: device
6939  *
6940  * Find a master upper device and return pointer to it or NULL in case
6941  * it's not there. The caller must hold the RTNL lock.
6942  */
6943 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6944 {
6945 	struct netdev_adjacent *upper;
6946 
6947 	ASSERT_RTNL();
6948 
6949 	if (list_empty(&dev->adj_list.upper))
6950 		return NULL;
6951 
6952 	upper = list_first_entry(&dev->adj_list.upper,
6953 				 struct netdev_adjacent, list);
6954 	if (likely(upper->master))
6955 		return upper->dev;
6956 	return NULL;
6957 }
6958 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6959 
6960 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6961 {
6962 	struct netdev_adjacent *upper;
6963 
6964 	ASSERT_RTNL();
6965 
6966 	if (list_empty(&dev->adj_list.upper))
6967 		return NULL;
6968 
6969 	upper = list_first_entry(&dev->adj_list.upper,
6970 				 struct netdev_adjacent, list);
6971 	if (likely(upper->master) && !upper->ignore)
6972 		return upper->dev;
6973 	return NULL;
6974 }
6975 
6976 /**
6977  * netdev_has_any_lower_dev - Check if device is linked to some device
6978  * @dev: device
6979  *
6980  * Find out if a device is linked to a lower device and return true in case
6981  * it is. The caller must hold the RTNL lock.
6982  */
6983 static bool netdev_has_any_lower_dev(struct net_device *dev)
6984 {
6985 	ASSERT_RTNL();
6986 
6987 	return !list_empty(&dev->adj_list.lower);
6988 }
6989 
6990 void *netdev_adjacent_get_private(struct list_head *adj_list)
6991 {
6992 	struct netdev_adjacent *adj;
6993 
6994 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6995 
6996 	return adj->private;
6997 }
6998 EXPORT_SYMBOL(netdev_adjacent_get_private);
6999 
7000 /**
7001  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7002  * @dev: device
7003  * @iter: list_head ** of the current position
7004  *
7005  * Gets the next device from the dev's upper list, starting from iter
7006  * position. The caller must hold RCU read lock.
7007  */
7008 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7009 						 struct list_head **iter)
7010 {
7011 	struct netdev_adjacent *upper;
7012 
7013 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7014 
7015 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7016 
7017 	if (&upper->list == &dev->adj_list.upper)
7018 		return NULL;
7019 
7020 	*iter = &upper->list;
7021 
7022 	return upper->dev;
7023 }
7024 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7025 
7026 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7027 						  struct list_head **iter,
7028 						  bool *ignore)
7029 {
7030 	struct netdev_adjacent *upper;
7031 
7032 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7033 
7034 	if (&upper->list == &dev->adj_list.upper)
7035 		return NULL;
7036 
7037 	*iter = &upper->list;
7038 	*ignore = upper->ignore;
7039 
7040 	return upper->dev;
7041 }
7042 
7043 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7044 						    struct list_head **iter)
7045 {
7046 	struct netdev_adjacent *upper;
7047 
7048 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7049 
7050 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7051 
7052 	if (&upper->list == &dev->adj_list.upper)
7053 		return NULL;
7054 
7055 	*iter = &upper->list;
7056 
7057 	return upper->dev;
7058 }
7059 
7060 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7061 				       int (*fn)(struct net_device *dev,
7062 						 void *data),
7063 				       void *data)
7064 {
7065 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7066 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7067 	int ret, cur = 0;
7068 	bool ignore;
7069 
7070 	now = dev;
7071 	iter = &dev->adj_list.upper;
7072 
7073 	while (1) {
7074 		if (now != dev) {
7075 			ret = fn(now, data);
7076 			if (ret)
7077 				return ret;
7078 		}
7079 
7080 		next = NULL;
7081 		while (1) {
7082 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7083 			if (!udev)
7084 				break;
7085 			if (ignore)
7086 				continue;
7087 
7088 			next = udev;
7089 			niter = &udev->adj_list.upper;
7090 			dev_stack[cur] = now;
7091 			iter_stack[cur++] = iter;
7092 			break;
7093 		}
7094 
7095 		if (!next) {
7096 			if (!cur)
7097 				return 0;
7098 			next = dev_stack[--cur];
7099 			niter = iter_stack[cur];
7100 		}
7101 
7102 		now = next;
7103 		iter = niter;
7104 	}
7105 
7106 	return 0;
7107 }
7108 
7109 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7110 				  int (*fn)(struct net_device *dev,
7111 					    void *data),
7112 				  void *data)
7113 {
7114 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7115 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7116 	int ret, cur = 0;
7117 
7118 	now = dev;
7119 	iter = &dev->adj_list.upper;
7120 
7121 	while (1) {
7122 		if (now != dev) {
7123 			ret = fn(now, data);
7124 			if (ret)
7125 				return ret;
7126 		}
7127 
7128 		next = NULL;
7129 		while (1) {
7130 			udev = netdev_next_upper_dev_rcu(now, &iter);
7131 			if (!udev)
7132 				break;
7133 
7134 			next = udev;
7135 			niter = &udev->adj_list.upper;
7136 			dev_stack[cur] = now;
7137 			iter_stack[cur++] = iter;
7138 			break;
7139 		}
7140 
7141 		if (!next) {
7142 			if (!cur)
7143 				return 0;
7144 			next = dev_stack[--cur];
7145 			niter = iter_stack[cur];
7146 		}
7147 
7148 		now = next;
7149 		iter = niter;
7150 	}
7151 
7152 	return 0;
7153 }
7154 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7155 
7156 static bool __netdev_has_upper_dev(struct net_device *dev,
7157 				   struct net_device *upper_dev)
7158 {
7159 	ASSERT_RTNL();
7160 
7161 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7162 					   upper_dev);
7163 }
7164 
7165 /**
7166  * netdev_lower_get_next_private - Get the next ->private from the
7167  *				   lower neighbour list
7168  * @dev: device
7169  * @iter: list_head ** of the current position
7170  *
7171  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7172  * list, starting from iter position. The caller must hold either hold the
7173  * RTNL lock or its own locking that guarantees that the neighbour lower
7174  * list will remain unchanged.
7175  */
7176 void *netdev_lower_get_next_private(struct net_device *dev,
7177 				    struct list_head **iter)
7178 {
7179 	struct netdev_adjacent *lower;
7180 
7181 	lower = list_entry(*iter, struct netdev_adjacent, list);
7182 
7183 	if (&lower->list == &dev->adj_list.lower)
7184 		return NULL;
7185 
7186 	*iter = lower->list.next;
7187 
7188 	return lower->private;
7189 }
7190 EXPORT_SYMBOL(netdev_lower_get_next_private);
7191 
7192 /**
7193  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7194  *				       lower neighbour list, RCU
7195  *				       variant
7196  * @dev: device
7197  * @iter: list_head ** of the current position
7198  *
7199  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7200  * list, starting from iter position. The caller must hold RCU read lock.
7201  */
7202 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7203 					struct list_head **iter)
7204 {
7205 	struct netdev_adjacent *lower;
7206 
7207 	WARN_ON_ONCE(!rcu_read_lock_held());
7208 
7209 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7210 
7211 	if (&lower->list == &dev->adj_list.lower)
7212 		return NULL;
7213 
7214 	*iter = &lower->list;
7215 
7216 	return lower->private;
7217 }
7218 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7219 
7220 /**
7221  * netdev_lower_get_next - Get the next device from the lower neighbour
7222  *                         list
7223  * @dev: device
7224  * @iter: list_head ** of the current position
7225  *
7226  * Gets the next netdev_adjacent from the dev's lower neighbour
7227  * list, starting from iter position. The caller must hold RTNL lock or
7228  * its own locking that guarantees that the neighbour lower
7229  * list will remain unchanged.
7230  */
7231 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7232 {
7233 	struct netdev_adjacent *lower;
7234 
7235 	lower = list_entry(*iter, struct netdev_adjacent, list);
7236 
7237 	if (&lower->list == &dev->adj_list.lower)
7238 		return NULL;
7239 
7240 	*iter = lower->list.next;
7241 
7242 	return lower->dev;
7243 }
7244 EXPORT_SYMBOL(netdev_lower_get_next);
7245 
7246 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7247 						struct list_head **iter)
7248 {
7249 	struct netdev_adjacent *lower;
7250 
7251 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7252 
7253 	if (&lower->list == &dev->adj_list.lower)
7254 		return NULL;
7255 
7256 	*iter = &lower->list;
7257 
7258 	return lower->dev;
7259 }
7260 
7261 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7262 						  struct list_head **iter,
7263 						  bool *ignore)
7264 {
7265 	struct netdev_adjacent *lower;
7266 
7267 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7268 
7269 	if (&lower->list == &dev->adj_list.lower)
7270 		return NULL;
7271 
7272 	*iter = &lower->list;
7273 	*ignore = lower->ignore;
7274 
7275 	return lower->dev;
7276 }
7277 
7278 int netdev_walk_all_lower_dev(struct net_device *dev,
7279 			      int (*fn)(struct net_device *dev,
7280 					void *data),
7281 			      void *data)
7282 {
7283 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7284 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7285 	int ret, cur = 0;
7286 
7287 	now = dev;
7288 	iter = &dev->adj_list.lower;
7289 
7290 	while (1) {
7291 		if (now != dev) {
7292 			ret = fn(now, data);
7293 			if (ret)
7294 				return ret;
7295 		}
7296 
7297 		next = NULL;
7298 		while (1) {
7299 			ldev = netdev_next_lower_dev(now, &iter);
7300 			if (!ldev)
7301 				break;
7302 
7303 			next = ldev;
7304 			niter = &ldev->adj_list.lower;
7305 			dev_stack[cur] = now;
7306 			iter_stack[cur++] = iter;
7307 			break;
7308 		}
7309 
7310 		if (!next) {
7311 			if (!cur)
7312 				return 0;
7313 			next = dev_stack[--cur];
7314 			niter = iter_stack[cur];
7315 		}
7316 
7317 		now = next;
7318 		iter = niter;
7319 	}
7320 
7321 	return 0;
7322 }
7323 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7324 
7325 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7326 				       int (*fn)(struct net_device *dev,
7327 						 void *data),
7328 				       void *data)
7329 {
7330 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7331 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7332 	int ret, cur = 0;
7333 	bool ignore;
7334 
7335 	now = dev;
7336 	iter = &dev->adj_list.lower;
7337 
7338 	while (1) {
7339 		if (now != dev) {
7340 			ret = fn(now, data);
7341 			if (ret)
7342 				return ret;
7343 		}
7344 
7345 		next = NULL;
7346 		while (1) {
7347 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7348 			if (!ldev)
7349 				break;
7350 			if (ignore)
7351 				continue;
7352 
7353 			next = ldev;
7354 			niter = &ldev->adj_list.lower;
7355 			dev_stack[cur] = now;
7356 			iter_stack[cur++] = iter;
7357 			break;
7358 		}
7359 
7360 		if (!next) {
7361 			if (!cur)
7362 				return 0;
7363 			next = dev_stack[--cur];
7364 			niter = iter_stack[cur];
7365 		}
7366 
7367 		now = next;
7368 		iter = niter;
7369 	}
7370 
7371 	return 0;
7372 }
7373 
7374 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7375 					     struct list_head **iter)
7376 {
7377 	struct netdev_adjacent *lower;
7378 
7379 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7380 	if (&lower->list == &dev->adj_list.lower)
7381 		return NULL;
7382 
7383 	*iter = &lower->list;
7384 
7385 	return lower->dev;
7386 }
7387 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7388 
7389 static u8 __netdev_upper_depth(struct net_device *dev)
7390 {
7391 	struct net_device *udev;
7392 	struct list_head *iter;
7393 	u8 max_depth = 0;
7394 	bool ignore;
7395 
7396 	for (iter = &dev->adj_list.upper,
7397 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7398 	     udev;
7399 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7400 		if (ignore)
7401 			continue;
7402 		if (max_depth < udev->upper_level)
7403 			max_depth = udev->upper_level;
7404 	}
7405 
7406 	return max_depth;
7407 }
7408 
7409 static u8 __netdev_lower_depth(struct net_device *dev)
7410 {
7411 	struct net_device *ldev;
7412 	struct list_head *iter;
7413 	u8 max_depth = 0;
7414 	bool ignore;
7415 
7416 	for (iter = &dev->adj_list.lower,
7417 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7418 	     ldev;
7419 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7420 		if (ignore)
7421 			continue;
7422 		if (max_depth < ldev->lower_level)
7423 			max_depth = ldev->lower_level;
7424 	}
7425 
7426 	return max_depth;
7427 }
7428 
7429 static int __netdev_update_upper_level(struct net_device *dev, void *data)
7430 {
7431 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7432 	return 0;
7433 }
7434 
7435 static int __netdev_update_lower_level(struct net_device *dev, void *data)
7436 {
7437 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7438 	return 0;
7439 }
7440 
7441 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7442 				  int (*fn)(struct net_device *dev,
7443 					    void *data),
7444 				  void *data)
7445 {
7446 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7447 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7448 	int ret, cur = 0;
7449 
7450 	now = dev;
7451 	iter = &dev->adj_list.lower;
7452 
7453 	while (1) {
7454 		if (now != dev) {
7455 			ret = fn(now, data);
7456 			if (ret)
7457 				return ret;
7458 		}
7459 
7460 		next = NULL;
7461 		while (1) {
7462 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7463 			if (!ldev)
7464 				break;
7465 
7466 			next = ldev;
7467 			niter = &ldev->adj_list.lower;
7468 			dev_stack[cur] = now;
7469 			iter_stack[cur++] = iter;
7470 			break;
7471 		}
7472 
7473 		if (!next) {
7474 			if (!cur)
7475 				return 0;
7476 			next = dev_stack[--cur];
7477 			niter = iter_stack[cur];
7478 		}
7479 
7480 		now = next;
7481 		iter = niter;
7482 	}
7483 
7484 	return 0;
7485 }
7486 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7487 
7488 /**
7489  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7490  *				       lower neighbour list, RCU
7491  *				       variant
7492  * @dev: device
7493  *
7494  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7495  * list. The caller must hold RCU read lock.
7496  */
7497 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7498 {
7499 	struct netdev_adjacent *lower;
7500 
7501 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7502 			struct netdev_adjacent, list);
7503 	if (lower)
7504 		return lower->private;
7505 	return NULL;
7506 }
7507 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7508 
7509 /**
7510  * netdev_master_upper_dev_get_rcu - Get master upper device
7511  * @dev: device
7512  *
7513  * Find a master upper device and return pointer to it or NULL in case
7514  * it's not there. The caller must hold the RCU read lock.
7515  */
7516 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7517 {
7518 	struct netdev_adjacent *upper;
7519 
7520 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7521 				       struct netdev_adjacent, list);
7522 	if (upper && likely(upper->master))
7523 		return upper->dev;
7524 	return NULL;
7525 }
7526 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7527 
7528 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7529 			      struct net_device *adj_dev,
7530 			      struct list_head *dev_list)
7531 {
7532 	char linkname[IFNAMSIZ+7];
7533 
7534 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7535 		"upper_%s" : "lower_%s", adj_dev->name);
7536 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7537 				 linkname);
7538 }
7539 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7540 			       char *name,
7541 			       struct list_head *dev_list)
7542 {
7543 	char linkname[IFNAMSIZ+7];
7544 
7545 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7546 		"upper_%s" : "lower_%s", name);
7547 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7548 }
7549 
7550 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7551 						 struct net_device *adj_dev,
7552 						 struct list_head *dev_list)
7553 {
7554 	return (dev_list == &dev->adj_list.upper ||
7555 		dev_list == &dev->adj_list.lower) &&
7556 		net_eq(dev_net(dev), dev_net(adj_dev));
7557 }
7558 
7559 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7560 					struct net_device *adj_dev,
7561 					struct list_head *dev_list,
7562 					void *private, bool master)
7563 {
7564 	struct netdev_adjacent *adj;
7565 	int ret;
7566 
7567 	adj = __netdev_find_adj(adj_dev, dev_list);
7568 
7569 	if (adj) {
7570 		adj->ref_nr += 1;
7571 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7572 			 dev->name, adj_dev->name, adj->ref_nr);
7573 
7574 		return 0;
7575 	}
7576 
7577 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7578 	if (!adj)
7579 		return -ENOMEM;
7580 
7581 	adj->dev = adj_dev;
7582 	adj->master = master;
7583 	adj->ref_nr = 1;
7584 	adj->private = private;
7585 	adj->ignore = false;
7586 	dev_hold(adj_dev);
7587 
7588 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7589 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7590 
7591 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7592 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7593 		if (ret)
7594 			goto free_adj;
7595 	}
7596 
7597 	/* Ensure that master link is always the first item in list. */
7598 	if (master) {
7599 		ret = sysfs_create_link(&(dev->dev.kobj),
7600 					&(adj_dev->dev.kobj), "master");
7601 		if (ret)
7602 			goto remove_symlinks;
7603 
7604 		list_add_rcu(&adj->list, dev_list);
7605 	} else {
7606 		list_add_tail_rcu(&adj->list, dev_list);
7607 	}
7608 
7609 	return 0;
7610 
7611 remove_symlinks:
7612 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7613 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7614 free_adj:
7615 	kfree(adj);
7616 	dev_put(adj_dev);
7617 
7618 	return ret;
7619 }
7620 
7621 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7622 					 struct net_device *adj_dev,
7623 					 u16 ref_nr,
7624 					 struct list_head *dev_list)
7625 {
7626 	struct netdev_adjacent *adj;
7627 
7628 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7629 		 dev->name, adj_dev->name, ref_nr);
7630 
7631 	adj = __netdev_find_adj(adj_dev, dev_list);
7632 
7633 	if (!adj) {
7634 		pr_err("Adjacency does not exist for device %s from %s\n",
7635 		       dev->name, adj_dev->name);
7636 		WARN_ON(1);
7637 		return;
7638 	}
7639 
7640 	if (adj->ref_nr > ref_nr) {
7641 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7642 			 dev->name, adj_dev->name, ref_nr,
7643 			 adj->ref_nr - ref_nr);
7644 		adj->ref_nr -= ref_nr;
7645 		return;
7646 	}
7647 
7648 	if (adj->master)
7649 		sysfs_remove_link(&(dev->dev.kobj), "master");
7650 
7651 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7652 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7653 
7654 	list_del_rcu(&adj->list);
7655 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7656 		 adj_dev->name, dev->name, adj_dev->name);
7657 	dev_put(adj_dev);
7658 	kfree_rcu(adj, rcu);
7659 }
7660 
7661 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7662 					    struct net_device *upper_dev,
7663 					    struct list_head *up_list,
7664 					    struct list_head *down_list,
7665 					    void *private, bool master)
7666 {
7667 	int ret;
7668 
7669 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7670 					   private, master);
7671 	if (ret)
7672 		return ret;
7673 
7674 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7675 					   private, false);
7676 	if (ret) {
7677 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7678 		return ret;
7679 	}
7680 
7681 	return 0;
7682 }
7683 
7684 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7685 					       struct net_device *upper_dev,
7686 					       u16 ref_nr,
7687 					       struct list_head *up_list,
7688 					       struct list_head *down_list)
7689 {
7690 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7691 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7692 }
7693 
7694 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7695 						struct net_device *upper_dev,
7696 						void *private, bool master)
7697 {
7698 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7699 						&dev->adj_list.upper,
7700 						&upper_dev->adj_list.lower,
7701 						private, master);
7702 }
7703 
7704 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7705 						   struct net_device *upper_dev)
7706 {
7707 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7708 					   &dev->adj_list.upper,
7709 					   &upper_dev->adj_list.lower);
7710 }
7711 
7712 static int __netdev_upper_dev_link(struct net_device *dev,
7713 				   struct net_device *upper_dev, bool master,
7714 				   void *upper_priv, void *upper_info,
7715 				   struct netlink_ext_ack *extack)
7716 {
7717 	struct netdev_notifier_changeupper_info changeupper_info = {
7718 		.info = {
7719 			.dev = dev,
7720 			.extack = extack,
7721 		},
7722 		.upper_dev = upper_dev,
7723 		.master = master,
7724 		.linking = true,
7725 		.upper_info = upper_info,
7726 	};
7727 	struct net_device *master_dev;
7728 	int ret = 0;
7729 
7730 	ASSERT_RTNL();
7731 
7732 	if (dev == upper_dev)
7733 		return -EBUSY;
7734 
7735 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7736 	if (__netdev_has_upper_dev(upper_dev, dev))
7737 		return -EBUSY;
7738 
7739 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7740 		return -EMLINK;
7741 
7742 	if (!master) {
7743 		if (__netdev_has_upper_dev(dev, upper_dev))
7744 			return -EEXIST;
7745 	} else {
7746 		master_dev = __netdev_master_upper_dev_get(dev);
7747 		if (master_dev)
7748 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7749 	}
7750 
7751 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7752 					    &changeupper_info.info);
7753 	ret = notifier_to_errno(ret);
7754 	if (ret)
7755 		return ret;
7756 
7757 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7758 						   master);
7759 	if (ret)
7760 		return ret;
7761 
7762 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7763 					    &changeupper_info.info);
7764 	ret = notifier_to_errno(ret);
7765 	if (ret)
7766 		goto rollback;
7767 
7768 	__netdev_update_upper_level(dev, NULL);
7769 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7770 
7771 	__netdev_update_lower_level(upper_dev, NULL);
7772 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7773 				    NULL);
7774 
7775 	return 0;
7776 
7777 rollback:
7778 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7779 
7780 	return ret;
7781 }
7782 
7783 /**
7784  * netdev_upper_dev_link - Add a link to the upper device
7785  * @dev: device
7786  * @upper_dev: new upper device
7787  * @extack: netlink extended ack
7788  *
7789  * Adds a link to device which is upper to this one. The caller must hold
7790  * the RTNL lock. On a failure a negative errno code is returned.
7791  * On success the reference counts are adjusted and the function
7792  * returns zero.
7793  */
7794 int netdev_upper_dev_link(struct net_device *dev,
7795 			  struct net_device *upper_dev,
7796 			  struct netlink_ext_ack *extack)
7797 {
7798 	return __netdev_upper_dev_link(dev, upper_dev, false,
7799 				       NULL, NULL, extack);
7800 }
7801 EXPORT_SYMBOL(netdev_upper_dev_link);
7802 
7803 /**
7804  * netdev_master_upper_dev_link - Add a master link to the upper device
7805  * @dev: device
7806  * @upper_dev: new upper device
7807  * @upper_priv: upper device private
7808  * @upper_info: upper info to be passed down via notifier
7809  * @extack: netlink extended ack
7810  *
7811  * Adds a link to device which is upper to this one. In this case, only
7812  * one master upper device can be linked, although other non-master devices
7813  * might be linked as well. The caller must hold the RTNL lock.
7814  * On a failure a negative errno code is returned. On success the reference
7815  * counts are adjusted and the function returns zero.
7816  */
7817 int netdev_master_upper_dev_link(struct net_device *dev,
7818 				 struct net_device *upper_dev,
7819 				 void *upper_priv, void *upper_info,
7820 				 struct netlink_ext_ack *extack)
7821 {
7822 	return __netdev_upper_dev_link(dev, upper_dev, true,
7823 				       upper_priv, upper_info, extack);
7824 }
7825 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7826 
7827 /**
7828  * netdev_upper_dev_unlink - Removes a link to upper device
7829  * @dev: device
7830  * @upper_dev: new upper device
7831  *
7832  * Removes a link to device which is upper to this one. The caller must hold
7833  * the RTNL lock.
7834  */
7835 void netdev_upper_dev_unlink(struct net_device *dev,
7836 			     struct net_device *upper_dev)
7837 {
7838 	struct netdev_notifier_changeupper_info changeupper_info = {
7839 		.info = {
7840 			.dev = dev,
7841 		},
7842 		.upper_dev = upper_dev,
7843 		.linking = false,
7844 	};
7845 
7846 	ASSERT_RTNL();
7847 
7848 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7849 
7850 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7851 				      &changeupper_info.info);
7852 
7853 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7854 
7855 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7856 				      &changeupper_info.info);
7857 
7858 	__netdev_update_upper_level(dev, NULL);
7859 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7860 
7861 	__netdev_update_lower_level(upper_dev, NULL);
7862 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7863 				    NULL);
7864 }
7865 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7866 
7867 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7868 				      struct net_device *lower_dev,
7869 				      bool val)
7870 {
7871 	struct netdev_adjacent *adj;
7872 
7873 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7874 	if (adj)
7875 		adj->ignore = val;
7876 
7877 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7878 	if (adj)
7879 		adj->ignore = val;
7880 }
7881 
7882 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7883 					struct net_device *lower_dev)
7884 {
7885 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7886 }
7887 
7888 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7889 				       struct net_device *lower_dev)
7890 {
7891 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7892 }
7893 
7894 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7895 				   struct net_device *new_dev,
7896 				   struct net_device *dev,
7897 				   struct netlink_ext_ack *extack)
7898 {
7899 	int err;
7900 
7901 	if (!new_dev)
7902 		return 0;
7903 
7904 	if (old_dev && new_dev != old_dev)
7905 		netdev_adjacent_dev_disable(dev, old_dev);
7906 
7907 	err = netdev_upper_dev_link(new_dev, dev, extack);
7908 	if (err) {
7909 		if (old_dev && new_dev != old_dev)
7910 			netdev_adjacent_dev_enable(dev, old_dev);
7911 		return err;
7912 	}
7913 
7914 	return 0;
7915 }
7916 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7917 
7918 void netdev_adjacent_change_commit(struct net_device *old_dev,
7919 				   struct net_device *new_dev,
7920 				   struct net_device *dev)
7921 {
7922 	if (!new_dev || !old_dev)
7923 		return;
7924 
7925 	if (new_dev == old_dev)
7926 		return;
7927 
7928 	netdev_adjacent_dev_enable(dev, old_dev);
7929 	netdev_upper_dev_unlink(old_dev, dev);
7930 }
7931 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7932 
7933 void netdev_adjacent_change_abort(struct net_device *old_dev,
7934 				  struct net_device *new_dev,
7935 				  struct net_device *dev)
7936 {
7937 	if (!new_dev)
7938 		return;
7939 
7940 	if (old_dev && new_dev != old_dev)
7941 		netdev_adjacent_dev_enable(dev, old_dev);
7942 
7943 	netdev_upper_dev_unlink(new_dev, dev);
7944 }
7945 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7946 
7947 /**
7948  * netdev_bonding_info_change - Dispatch event about slave change
7949  * @dev: device
7950  * @bonding_info: info to dispatch
7951  *
7952  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7953  * The caller must hold the RTNL lock.
7954  */
7955 void netdev_bonding_info_change(struct net_device *dev,
7956 				struct netdev_bonding_info *bonding_info)
7957 {
7958 	struct netdev_notifier_bonding_info info = {
7959 		.info.dev = dev,
7960 	};
7961 
7962 	memcpy(&info.bonding_info, bonding_info,
7963 	       sizeof(struct netdev_bonding_info));
7964 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7965 				      &info.info);
7966 }
7967 EXPORT_SYMBOL(netdev_bonding_info_change);
7968 
7969 /**
7970  * netdev_get_xmit_slave - Get the xmit slave of master device
7971  * @dev: device
7972  * @skb: The packet
7973  * @all_slaves: assume all the slaves are active
7974  *
7975  * The reference counters are not incremented so the caller must be
7976  * careful with locks. The caller must hold RCU lock.
7977  * %NULL is returned if no slave is found.
7978  */
7979 
7980 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
7981 					 struct sk_buff *skb,
7982 					 bool all_slaves)
7983 {
7984 	const struct net_device_ops *ops = dev->netdev_ops;
7985 
7986 	if (!ops->ndo_get_xmit_slave)
7987 		return NULL;
7988 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
7989 }
7990 EXPORT_SYMBOL(netdev_get_xmit_slave);
7991 
7992 static void netdev_adjacent_add_links(struct net_device *dev)
7993 {
7994 	struct netdev_adjacent *iter;
7995 
7996 	struct net *net = dev_net(dev);
7997 
7998 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7999 		if (!net_eq(net, dev_net(iter->dev)))
8000 			continue;
8001 		netdev_adjacent_sysfs_add(iter->dev, dev,
8002 					  &iter->dev->adj_list.lower);
8003 		netdev_adjacent_sysfs_add(dev, iter->dev,
8004 					  &dev->adj_list.upper);
8005 	}
8006 
8007 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8008 		if (!net_eq(net, dev_net(iter->dev)))
8009 			continue;
8010 		netdev_adjacent_sysfs_add(iter->dev, dev,
8011 					  &iter->dev->adj_list.upper);
8012 		netdev_adjacent_sysfs_add(dev, iter->dev,
8013 					  &dev->adj_list.lower);
8014 	}
8015 }
8016 
8017 static void netdev_adjacent_del_links(struct net_device *dev)
8018 {
8019 	struct netdev_adjacent *iter;
8020 
8021 	struct net *net = dev_net(dev);
8022 
8023 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8024 		if (!net_eq(net, dev_net(iter->dev)))
8025 			continue;
8026 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8027 					  &iter->dev->adj_list.lower);
8028 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8029 					  &dev->adj_list.upper);
8030 	}
8031 
8032 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8033 		if (!net_eq(net, dev_net(iter->dev)))
8034 			continue;
8035 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8036 					  &iter->dev->adj_list.upper);
8037 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8038 					  &dev->adj_list.lower);
8039 	}
8040 }
8041 
8042 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8043 {
8044 	struct netdev_adjacent *iter;
8045 
8046 	struct net *net = dev_net(dev);
8047 
8048 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8049 		if (!net_eq(net, dev_net(iter->dev)))
8050 			continue;
8051 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8052 					  &iter->dev->adj_list.lower);
8053 		netdev_adjacent_sysfs_add(iter->dev, dev,
8054 					  &iter->dev->adj_list.lower);
8055 	}
8056 
8057 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8058 		if (!net_eq(net, dev_net(iter->dev)))
8059 			continue;
8060 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8061 					  &iter->dev->adj_list.upper);
8062 		netdev_adjacent_sysfs_add(iter->dev, dev,
8063 					  &iter->dev->adj_list.upper);
8064 	}
8065 }
8066 
8067 void *netdev_lower_dev_get_private(struct net_device *dev,
8068 				   struct net_device *lower_dev)
8069 {
8070 	struct netdev_adjacent *lower;
8071 
8072 	if (!lower_dev)
8073 		return NULL;
8074 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8075 	if (!lower)
8076 		return NULL;
8077 
8078 	return lower->private;
8079 }
8080 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8081 
8082 
8083 /**
8084  * netdev_lower_change - Dispatch event about lower device state change
8085  * @lower_dev: device
8086  * @lower_state_info: state to dispatch
8087  *
8088  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8089  * The caller must hold the RTNL lock.
8090  */
8091 void netdev_lower_state_changed(struct net_device *lower_dev,
8092 				void *lower_state_info)
8093 {
8094 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8095 		.info.dev = lower_dev,
8096 	};
8097 
8098 	ASSERT_RTNL();
8099 	changelowerstate_info.lower_state_info = lower_state_info;
8100 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8101 				      &changelowerstate_info.info);
8102 }
8103 EXPORT_SYMBOL(netdev_lower_state_changed);
8104 
8105 static void dev_change_rx_flags(struct net_device *dev, int flags)
8106 {
8107 	const struct net_device_ops *ops = dev->netdev_ops;
8108 
8109 	if (ops->ndo_change_rx_flags)
8110 		ops->ndo_change_rx_flags(dev, flags);
8111 }
8112 
8113 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8114 {
8115 	unsigned int old_flags = dev->flags;
8116 	kuid_t uid;
8117 	kgid_t gid;
8118 
8119 	ASSERT_RTNL();
8120 
8121 	dev->flags |= IFF_PROMISC;
8122 	dev->promiscuity += inc;
8123 	if (dev->promiscuity == 0) {
8124 		/*
8125 		 * Avoid overflow.
8126 		 * If inc causes overflow, untouch promisc and return error.
8127 		 */
8128 		if (inc < 0)
8129 			dev->flags &= ~IFF_PROMISC;
8130 		else {
8131 			dev->promiscuity -= inc;
8132 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8133 				dev->name);
8134 			return -EOVERFLOW;
8135 		}
8136 	}
8137 	if (dev->flags != old_flags) {
8138 		pr_info("device %s %s promiscuous mode\n",
8139 			dev->name,
8140 			dev->flags & IFF_PROMISC ? "entered" : "left");
8141 		if (audit_enabled) {
8142 			current_uid_gid(&uid, &gid);
8143 			audit_log(audit_context(), GFP_ATOMIC,
8144 				  AUDIT_ANOM_PROMISCUOUS,
8145 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8146 				  dev->name, (dev->flags & IFF_PROMISC),
8147 				  (old_flags & IFF_PROMISC),
8148 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8149 				  from_kuid(&init_user_ns, uid),
8150 				  from_kgid(&init_user_ns, gid),
8151 				  audit_get_sessionid(current));
8152 		}
8153 
8154 		dev_change_rx_flags(dev, IFF_PROMISC);
8155 	}
8156 	if (notify)
8157 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
8158 	return 0;
8159 }
8160 
8161 /**
8162  *	dev_set_promiscuity	- update promiscuity count on a device
8163  *	@dev: device
8164  *	@inc: modifier
8165  *
8166  *	Add or remove promiscuity from a device. While the count in the device
8167  *	remains above zero the interface remains promiscuous. Once it hits zero
8168  *	the device reverts back to normal filtering operation. A negative inc
8169  *	value is used to drop promiscuity on the device.
8170  *	Return 0 if successful or a negative errno code on error.
8171  */
8172 int dev_set_promiscuity(struct net_device *dev, int inc)
8173 {
8174 	unsigned int old_flags = dev->flags;
8175 	int err;
8176 
8177 	err = __dev_set_promiscuity(dev, inc, true);
8178 	if (err < 0)
8179 		return err;
8180 	if (dev->flags != old_flags)
8181 		dev_set_rx_mode(dev);
8182 	return err;
8183 }
8184 EXPORT_SYMBOL(dev_set_promiscuity);
8185 
8186 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8187 {
8188 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8189 
8190 	ASSERT_RTNL();
8191 
8192 	dev->flags |= IFF_ALLMULTI;
8193 	dev->allmulti += inc;
8194 	if (dev->allmulti == 0) {
8195 		/*
8196 		 * Avoid overflow.
8197 		 * If inc causes overflow, untouch allmulti and return error.
8198 		 */
8199 		if (inc < 0)
8200 			dev->flags &= ~IFF_ALLMULTI;
8201 		else {
8202 			dev->allmulti -= inc;
8203 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8204 				dev->name);
8205 			return -EOVERFLOW;
8206 		}
8207 	}
8208 	if (dev->flags ^ old_flags) {
8209 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8210 		dev_set_rx_mode(dev);
8211 		if (notify)
8212 			__dev_notify_flags(dev, old_flags,
8213 					   dev->gflags ^ old_gflags);
8214 	}
8215 	return 0;
8216 }
8217 
8218 /**
8219  *	dev_set_allmulti	- update allmulti count on a device
8220  *	@dev: device
8221  *	@inc: modifier
8222  *
8223  *	Add or remove reception of all multicast frames to a device. While the
8224  *	count in the device remains above zero the interface remains listening
8225  *	to all interfaces. Once it hits zero the device reverts back to normal
8226  *	filtering operation. A negative @inc value is used to drop the counter
8227  *	when releasing a resource needing all multicasts.
8228  *	Return 0 if successful or a negative errno code on error.
8229  */
8230 
8231 int dev_set_allmulti(struct net_device *dev, int inc)
8232 {
8233 	return __dev_set_allmulti(dev, inc, true);
8234 }
8235 EXPORT_SYMBOL(dev_set_allmulti);
8236 
8237 /*
8238  *	Upload unicast and multicast address lists to device and
8239  *	configure RX filtering. When the device doesn't support unicast
8240  *	filtering it is put in promiscuous mode while unicast addresses
8241  *	are present.
8242  */
8243 void __dev_set_rx_mode(struct net_device *dev)
8244 {
8245 	const struct net_device_ops *ops = dev->netdev_ops;
8246 
8247 	/* dev_open will call this function so the list will stay sane. */
8248 	if (!(dev->flags&IFF_UP))
8249 		return;
8250 
8251 	if (!netif_device_present(dev))
8252 		return;
8253 
8254 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8255 		/* Unicast addresses changes may only happen under the rtnl,
8256 		 * therefore calling __dev_set_promiscuity here is safe.
8257 		 */
8258 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8259 			__dev_set_promiscuity(dev, 1, false);
8260 			dev->uc_promisc = true;
8261 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8262 			__dev_set_promiscuity(dev, -1, false);
8263 			dev->uc_promisc = false;
8264 		}
8265 	}
8266 
8267 	if (ops->ndo_set_rx_mode)
8268 		ops->ndo_set_rx_mode(dev);
8269 }
8270 
8271 void dev_set_rx_mode(struct net_device *dev)
8272 {
8273 	netif_addr_lock_bh(dev);
8274 	__dev_set_rx_mode(dev);
8275 	netif_addr_unlock_bh(dev);
8276 }
8277 
8278 /**
8279  *	dev_get_flags - get flags reported to userspace
8280  *	@dev: device
8281  *
8282  *	Get the combination of flag bits exported through APIs to userspace.
8283  */
8284 unsigned int dev_get_flags(const struct net_device *dev)
8285 {
8286 	unsigned int flags;
8287 
8288 	flags = (dev->flags & ~(IFF_PROMISC |
8289 				IFF_ALLMULTI |
8290 				IFF_RUNNING |
8291 				IFF_LOWER_UP |
8292 				IFF_DORMANT)) |
8293 		(dev->gflags & (IFF_PROMISC |
8294 				IFF_ALLMULTI));
8295 
8296 	if (netif_running(dev)) {
8297 		if (netif_oper_up(dev))
8298 			flags |= IFF_RUNNING;
8299 		if (netif_carrier_ok(dev))
8300 			flags |= IFF_LOWER_UP;
8301 		if (netif_dormant(dev))
8302 			flags |= IFF_DORMANT;
8303 	}
8304 
8305 	return flags;
8306 }
8307 EXPORT_SYMBOL(dev_get_flags);
8308 
8309 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8310 		       struct netlink_ext_ack *extack)
8311 {
8312 	unsigned int old_flags = dev->flags;
8313 	int ret;
8314 
8315 	ASSERT_RTNL();
8316 
8317 	/*
8318 	 *	Set the flags on our device.
8319 	 */
8320 
8321 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8322 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8323 			       IFF_AUTOMEDIA)) |
8324 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8325 				    IFF_ALLMULTI));
8326 
8327 	/*
8328 	 *	Load in the correct multicast list now the flags have changed.
8329 	 */
8330 
8331 	if ((old_flags ^ flags) & IFF_MULTICAST)
8332 		dev_change_rx_flags(dev, IFF_MULTICAST);
8333 
8334 	dev_set_rx_mode(dev);
8335 
8336 	/*
8337 	 *	Have we downed the interface. We handle IFF_UP ourselves
8338 	 *	according to user attempts to set it, rather than blindly
8339 	 *	setting it.
8340 	 */
8341 
8342 	ret = 0;
8343 	if ((old_flags ^ flags) & IFF_UP) {
8344 		if (old_flags & IFF_UP)
8345 			__dev_close(dev);
8346 		else
8347 			ret = __dev_open(dev, extack);
8348 	}
8349 
8350 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8351 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8352 		unsigned int old_flags = dev->flags;
8353 
8354 		dev->gflags ^= IFF_PROMISC;
8355 
8356 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8357 			if (dev->flags != old_flags)
8358 				dev_set_rx_mode(dev);
8359 	}
8360 
8361 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8362 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8363 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8364 	 */
8365 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8366 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8367 
8368 		dev->gflags ^= IFF_ALLMULTI;
8369 		__dev_set_allmulti(dev, inc, false);
8370 	}
8371 
8372 	return ret;
8373 }
8374 
8375 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8376 			unsigned int gchanges)
8377 {
8378 	unsigned int changes = dev->flags ^ old_flags;
8379 
8380 	if (gchanges)
8381 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8382 
8383 	if (changes & IFF_UP) {
8384 		if (dev->flags & IFF_UP)
8385 			call_netdevice_notifiers(NETDEV_UP, dev);
8386 		else
8387 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8388 	}
8389 
8390 	if (dev->flags & IFF_UP &&
8391 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8392 		struct netdev_notifier_change_info change_info = {
8393 			.info = {
8394 				.dev = dev,
8395 			},
8396 			.flags_changed = changes,
8397 		};
8398 
8399 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8400 	}
8401 }
8402 
8403 /**
8404  *	dev_change_flags - change device settings
8405  *	@dev: device
8406  *	@flags: device state flags
8407  *	@extack: netlink extended ack
8408  *
8409  *	Change settings on device based state flags. The flags are
8410  *	in the userspace exported format.
8411  */
8412 int dev_change_flags(struct net_device *dev, unsigned int flags,
8413 		     struct netlink_ext_ack *extack)
8414 {
8415 	int ret;
8416 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8417 
8418 	ret = __dev_change_flags(dev, flags, extack);
8419 	if (ret < 0)
8420 		return ret;
8421 
8422 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8423 	__dev_notify_flags(dev, old_flags, changes);
8424 	return ret;
8425 }
8426 EXPORT_SYMBOL(dev_change_flags);
8427 
8428 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8429 {
8430 	const struct net_device_ops *ops = dev->netdev_ops;
8431 
8432 	if (ops->ndo_change_mtu)
8433 		return ops->ndo_change_mtu(dev, new_mtu);
8434 
8435 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8436 	WRITE_ONCE(dev->mtu, new_mtu);
8437 	return 0;
8438 }
8439 EXPORT_SYMBOL(__dev_set_mtu);
8440 
8441 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8442 		     struct netlink_ext_ack *extack)
8443 {
8444 	/* MTU must be positive, and in range */
8445 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8446 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8447 		return -EINVAL;
8448 	}
8449 
8450 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8451 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8452 		return -EINVAL;
8453 	}
8454 	return 0;
8455 }
8456 
8457 /**
8458  *	dev_set_mtu_ext - Change maximum transfer unit
8459  *	@dev: device
8460  *	@new_mtu: new transfer unit
8461  *	@extack: netlink extended ack
8462  *
8463  *	Change the maximum transfer size of the network device.
8464  */
8465 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8466 		    struct netlink_ext_ack *extack)
8467 {
8468 	int err, orig_mtu;
8469 
8470 	if (new_mtu == dev->mtu)
8471 		return 0;
8472 
8473 	err = dev_validate_mtu(dev, new_mtu, extack);
8474 	if (err)
8475 		return err;
8476 
8477 	if (!netif_device_present(dev))
8478 		return -ENODEV;
8479 
8480 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8481 	err = notifier_to_errno(err);
8482 	if (err)
8483 		return err;
8484 
8485 	orig_mtu = dev->mtu;
8486 	err = __dev_set_mtu(dev, new_mtu);
8487 
8488 	if (!err) {
8489 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8490 						   orig_mtu);
8491 		err = notifier_to_errno(err);
8492 		if (err) {
8493 			/* setting mtu back and notifying everyone again,
8494 			 * so that they have a chance to revert changes.
8495 			 */
8496 			__dev_set_mtu(dev, orig_mtu);
8497 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8498 						     new_mtu);
8499 		}
8500 	}
8501 	return err;
8502 }
8503 
8504 int dev_set_mtu(struct net_device *dev, int new_mtu)
8505 {
8506 	struct netlink_ext_ack extack;
8507 	int err;
8508 
8509 	memset(&extack, 0, sizeof(extack));
8510 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8511 	if (err && extack._msg)
8512 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8513 	return err;
8514 }
8515 EXPORT_SYMBOL(dev_set_mtu);
8516 
8517 /**
8518  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8519  *	@dev: device
8520  *	@new_len: new tx queue length
8521  */
8522 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8523 {
8524 	unsigned int orig_len = dev->tx_queue_len;
8525 	int res;
8526 
8527 	if (new_len != (unsigned int)new_len)
8528 		return -ERANGE;
8529 
8530 	if (new_len != orig_len) {
8531 		dev->tx_queue_len = new_len;
8532 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8533 		res = notifier_to_errno(res);
8534 		if (res)
8535 			goto err_rollback;
8536 		res = dev_qdisc_change_tx_queue_len(dev);
8537 		if (res)
8538 			goto err_rollback;
8539 	}
8540 
8541 	return 0;
8542 
8543 err_rollback:
8544 	netdev_err(dev, "refused to change device tx_queue_len\n");
8545 	dev->tx_queue_len = orig_len;
8546 	return res;
8547 }
8548 
8549 /**
8550  *	dev_set_group - Change group this device belongs to
8551  *	@dev: device
8552  *	@new_group: group this device should belong to
8553  */
8554 void dev_set_group(struct net_device *dev, int new_group)
8555 {
8556 	dev->group = new_group;
8557 }
8558 EXPORT_SYMBOL(dev_set_group);
8559 
8560 /**
8561  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8562  *	@dev: device
8563  *	@addr: new address
8564  *	@extack: netlink extended ack
8565  */
8566 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8567 			      struct netlink_ext_ack *extack)
8568 {
8569 	struct netdev_notifier_pre_changeaddr_info info = {
8570 		.info.dev = dev,
8571 		.info.extack = extack,
8572 		.dev_addr = addr,
8573 	};
8574 	int rc;
8575 
8576 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8577 	return notifier_to_errno(rc);
8578 }
8579 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8580 
8581 /**
8582  *	dev_set_mac_address - Change Media Access Control Address
8583  *	@dev: device
8584  *	@sa: new address
8585  *	@extack: netlink extended ack
8586  *
8587  *	Change the hardware (MAC) address of the device
8588  */
8589 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8590 			struct netlink_ext_ack *extack)
8591 {
8592 	const struct net_device_ops *ops = dev->netdev_ops;
8593 	int err;
8594 
8595 	if (!ops->ndo_set_mac_address)
8596 		return -EOPNOTSUPP;
8597 	if (sa->sa_family != dev->type)
8598 		return -EINVAL;
8599 	if (!netif_device_present(dev))
8600 		return -ENODEV;
8601 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8602 	if (err)
8603 		return err;
8604 	err = ops->ndo_set_mac_address(dev, sa);
8605 	if (err)
8606 		return err;
8607 	dev->addr_assign_type = NET_ADDR_SET;
8608 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8609 	add_device_randomness(dev->dev_addr, dev->addr_len);
8610 	return 0;
8611 }
8612 EXPORT_SYMBOL(dev_set_mac_address);
8613 
8614 /**
8615  *	dev_change_carrier - Change device carrier
8616  *	@dev: device
8617  *	@new_carrier: new value
8618  *
8619  *	Change device carrier
8620  */
8621 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8622 {
8623 	const struct net_device_ops *ops = dev->netdev_ops;
8624 
8625 	if (!ops->ndo_change_carrier)
8626 		return -EOPNOTSUPP;
8627 	if (!netif_device_present(dev))
8628 		return -ENODEV;
8629 	return ops->ndo_change_carrier(dev, new_carrier);
8630 }
8631 EXPORT_SYMBOL(dev_change_carrier);
8632 
8633 /**
8634  *	dev_get_phys_port_id - Get device physical port ID
8635  *	@dev: device
8636  *	@ppid: port ID
8637  *
8638  *	Get device physical port ID
8639  */
8640 int dev_get_phys_port_id(struct net_device *dev,
8641 			 struct netdev_phys_item_id *ppid)
8642 {
8643 	const struct net_device_ops *ops = dev->netdev_ops;
8644 
8645 	if (!ops->ndo_get_phys_port_id)
8646 		return -EOPNOTSUPP;
8647 	return ops->ndo_get_phys_port_id(dev, ppid);
8648 }
8649 EXPORT_SYMBOL(dev_get_phys_port_id);
8650 
8651 /**
8652  *	dev_get_phys_port_name - Get device physical port name
8653  *	@dev: device
8654  *	@name: port name
8655  *	@len: limit of bytes to copy to name
8656  *
8657  *	Get device physical port name
8658  */
8659 int dev_get_phys_port_name(struct net_device *dev,
8660 			   char *name, size_t len)
8661 {
8662 	const struct net_device_ops *ops = dev->netdev_ops;
8663 	int err;
8664 
8665 	if (ops->ndo_get_phys_port_name) {
8666 		err = ops->ndo_get_phys_port_name(dev, name, len);
8667 		if (err != -EOPNOTSUPP)
8668 			return err;
8669 	}
8670 	return devlink_compat_phys_port_name_get(dev, name, len);
8671 }
8672 EXPORT_SYMBOL(dev_get_phys_port_name);
8673 
8674 /**
8675  *	dev_get_port_parent_id - Get the device's port parent identifier
8676  *	@dev: network device
8677  *	@ppid: pointer to a storage for the port's parent identifier
8678  *	@recurse: allow/disallow recursion to lower devices
8679  *
8680  *	Get the devices's port parent identifier
8681  */
8682 int dev_get_port_parent_id(struct net_device *dev,
8683 			   struct netdev_phys_item_id *ppid,
8684 			   bool recurse)
8685 {
8686 	const struct net_device_ops *ops = dev->netdev_ops;
8687 	struct netdev_phys_item_id first = { };
8688 	struct net_device *lower_dev;
8689 	struct list_head *iter;
8690 	int err;
8691 
8692 	if (ops->ndo_get_port_parent_id) {
8693 		err = ops->ndo_get_port_parent_id(dev, ppid);
8694 		if (err != -EOPNOTSUPP)
8695 			return err;
8696 	}
8697 
8698 	err = devlink_compat_switch_id_get(dev, ppid);
8699 	if (!err || err != -EOPNOTSUPP)
8700 		return err;
8701 
8702 	if (!recurse)
8703 		return -EOPNOTSUPP;
8704 
8705 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
8706 		err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8707 		if (err)
8708 			break;
8709 		if (!first.id_len)
8710 			first = *ppid;
8711 		else if (memcmp(&first, ppid, sizeof(*ppid)))
8712 			return -EOPNOTSUPP;
8713 	}
8714 
8715 	return err;
8716 }
8717 EXPORT_SYMBOL(dev_get_port_parent_id);
8718 
8719 /**
8720  *	netdev_port_same_parent_id - Indicate if two network devices have
8721  *	the same port parent identifier
8722  *	@a: first network device
8723  *	@b: second network device
8724  */
8725 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8726 {
8727 	struct netdev_phys_item_id a_id = { };
8728 	struct netdev_phys_item_id b_id = { };
8729 
8730 	if (dev_get_port_parent_id(a, &a_id, true) ||
8731 	    dev_get_port_parent_id(b, &b_id, true))
8732 		return false;
8733 
8734 	return netdev_phys_item_id_same(&a_id, &b_id);
8735 }
8736 EXPORT_SYMBOL(netdev_port_same_parent_id);
8737 
8738 /**
8739  *	dev_change_proto_down - update protocol port state information
8740  *	@dev: device
8741  *	@proto_down: new value
8742  *
8743  *	This info can be used by switch drivers to set the phys state of the
8744  *	port.
8745  */
8746 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8747 {
8748 	const struct net_device_ops *ops = dev->netdev_ops;
8749 
8750 	if (!ops->ndo_change_proto_down)
8751 		return -EOPNOTSUPP;
8752 	if (!netif_device_present(dev))
8753 		return -ENODEV;
8754 	return ops->ndo_change_proto_down(dev, proto_down);
8755 }
8756 EXPORT_SYMBOL(dev_change_proto_down);
8757 
8758 /**
8759  *	dev_change_proto_down_generic - generic implementation for
8760  * 	ndo_change_proto_down that sets carrier according to
8761  * 	proto_down.
8762  *
8763  *	@dev: device
8764  *	@proto_down: new value
8765  */
8766 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8767 {
8768 	if (proto_down)
8769 		netif_carrier_off(dev);
8770 	else
8771 		netif_carrier_on(dev);
8772 	dev->proto_down = proto_down;
8773 	return 0;
8774 }
8775 EXPORT_SYMBOL(dev_change_proto_down_generic);
8776 
8777 /**
8778  *	dev_change_proto_down_reason - proto down reason
8779  *
8780  *	@dev: device
8781  *	@mask: proto down mask
8782  *	@value: proto down value
8783  */
8784 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8785 				  u32 value)
8786 {
8787 	int b;
8788 
8789 	if (!mask) {
8790 		dev->proto_down_reason = value;
8791 	} else {
8792 		for_each_set_bit(b, &mask, 32) {
8793 			if (value & (1 << b))
8794 				dev->proto_down_reason |= BIT(b);
8795 			else
8796 				dev->proto_down_reason &= ~BIT(b);
8797 		}
8798 	}
8799 }
8800 EXPORT_SYMBOL(dev_change_proto_down_reason);
8801 
8802 struct bpf_xdp_link {
8803 	struct bpf_link link;
8804 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
8805 	int flags;
8806 };
8807 
8808 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
8809 {
8810 	if (flags & XDP_FLAGS_HW_MODE)
8811 		return XDP_MODE_HW;
8812 	if (flags & XDP_FLAGS_DRV_MODE)
8813 		return XDP_MODE_DRV;
8814 	if (flags & XDP_FLAGS_SKB_MODE)
8815 		return XDP_MODE_SKB;
8816 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
8817 }
8818 
8819 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
8820 {
8821 	switch (mode) {
8822 	case XDP_MODE_SKB:
8823 		return generic_xdp_install;
8824 	case XDP_MODE_DRV:
8825 	case XDP_MODE_HW:
8826 		return dev->netdev_ops->ndo_bpf;
8827 	default:
8828 		return NULL;
8829 	};
8830 }
8831 
8832 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
8833 					 enum bpf_xdp_mode mode)
8834 {
8835 	return dev->xdp_state[mode].link;
8836 }
8837 
8838 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
8839 				     enum bpf_xdp_mode mode)
8840 {
8841 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
8842 
8843 	if (link)
8844 		return link->link.prog;
8845 	return dev->xdp_state[mode].prog;
8846 }
8847 
8848 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
8849 {
8850 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
8851 
8852 	return prog ? prog->aux->id : 0;
8853 }
8854 
8855 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
8856 			     struct bpf_xdp_link *link)
8857 {
8858 	dev->xdp_state[mode].link = link;
8859 	dev->xdp_state[mode].prog = NULL;
8860 }
8861 
8862 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
8863 			     struct bpf_prog *prog)
8864 {
8865 	dev->xdp_state[mode].link = NULL;
8866 	dev->xdp_state[mode].prog = prog;
8867 }
8868 
8869 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
8870 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
8871 			   u32 flags, struct bpf_prog *prog)
8872 {
8873 	struct netdev_bpf xdp;
8874 	int err;
8875 
8876 	memset(&xdp, 0, sizeof(xdp));
8877 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
8878 	xdp.extack = extack;
8879 	xdp.flags = flags;
8880 	xdp.prog = prog;
8881 
8882 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
8883 	 * "moved" into driver), so they don't increment it on their own, but
8884 	 * they do decrement refcnt when program is detached or replaced.
8885 	 * Given net_device also owns link/prog, we need to bump refcnt here
8886 	 * to prevent drivers from underflowing it.
8887 	 */
8888 	if (prog)
8889 		bpf_prog_inc(prog);
8890 	err = bpf_op(dev, &xdp);
8891 	if (err) {
8892 		if (prog)
8893 			bpf_prog_put(prog);
8894 		return err;
8895 	}
8896 
8897 	if (mode != XDP_MODE_HW)
8898 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
8899 
8900 	return 0;
8901 }
8902 
8903 static void dev_xdp_uninstall(struct net_device *dev)
8904 {
8905 	struct bpf_xdp_link *link;
8906 	struct bpf_prog *prog;
8907 	enum bpf_xdp_mode mode;
8908 	bpf_op_t bpf_op;
8909 
8910 	ASSERT_RTNL();
8911 
8912 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
8913 		prog = dev_xdp_prog(dev, mode);
8914 		if (!prog)
8915 			continue;
8916 
8917 		bpf_op = dev_xdp_bpf_op(dev, mode);
8918 		if (!bpf_op)
8919 			continue;
8920 
8921 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
8922 
8923 		/* auto-detach link from net device */
8924 		link = dev_xdp_link(dev, mode);
8925 		if (link)
8926 			link->dev = NULL;
8927 		else
8928 			bpf_prog_put(prog);
8929 
8930 		dev_xdp_set_link(dev, mode, NULL);
8931 	}
8932 }
8933 
8934 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
8935 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
8936 			  struct bpf_prog *old_prog, u32 flags)
8937 {
8938 	struct bpf_prog *cur_prog;
8939 	enum bpf_xdp_mode mode;
8940 	bpf_op_t bpf_op;
8941 	int err;
8942 
8943 	ASSERT_RTNL();
8944 
8945 	/* either link or prog attachment, never both */
8946 	if (link && (new_prog || old_prog))
8947 		return -EINVAL;
8948 	/* link supports only XDP mode flags */
8949 	if (link && (flags & ~XDP_FLAGS_MODES)) {
8950 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
8951 		return -EINVAL;
8952 	}
8953 	/* just one XDP mode bit should be set, zero defaults to SKB mode */
8954 	if (hweight32(flags & XDP_FLAGS_MODES) > 1) {
8955 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
8956 		return -EINVAL;
8957 	}
8958 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
8959 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
8960 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
8961 		return -EINVAL;
8962 	}
8963 
8964 	mode = dev_xdp_mode(dev, flags);
8965 	/* can't replace attached link */
8966 	if (dev_xdp_link(dev, mode)) {
8967 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
8968 		return -EBUSY;
8969 	}
8970 
8971 	cur_prog = dev_xdp_prog(dev, mode);
8972 	/* can't replace attached prog with link */
8973 	if (link && cur_prog) {
8974 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
8975 		return -EBUSY;
8976 	}
8977 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
8978 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
8979 		return -EEXIST;
8980 	}
8981 
8982 	/* put effective new program into new_prog */
8983 	if (link)
8984 		new_prog = link->link.prog;
8985 
8986 	if (new_prog) {
8987 		bool offload = mode == XDP_MODE_HW;
8988 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
8989 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
8990 
8991 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
8992 			NL_SET_ERR_MSG(extack, "XDP program already attached");
8993 			return -EBUSY;
8994 		}
8995 		if (!offload && dev_xdp_prog(dev, other_mode)) {
8996 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
8997 			return -EEXIST;
8998 		}
8999 		if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9000 			NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9001 			return -EINVAL;
9002 		}
9003 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9004 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9005 			return -EINVAL;
9006 		}
9007 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9008 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9009 			return -EINVAL;
9010 		}
9011 	}
9012 
9013 	/* don't call drivers if the effective program didn't change */
9014 	if (new_prog != cur_prog) {
9015 		bpf_op = dev_xdp_bpf_op(dev, mode);
9016 		if (!bpf_op) {
9017 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9018 			return -EOPNOTSUPP;
9019 		}
9020 
9021 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9022 		if (err)
9023 			return err;
9024 	}
9025 
9026 	if (link)
9027 		dev_xdp_set_link(dev, mode, link);
9028 	else
9029 		dev_xdp_set_prog(dev, mode, new_prog);
9030 	if (cur_prog)
9031 		bpf_prog_put(cur_prog);
9032 
9033 	return 0;
9034 }
9035 
9036 static int dev_xdp_attach_link(struct net_device *dev,
9037 			       struct netlink_ext_ack *extack,
9038 			       struct bpf_xdp_link *link)
9039 {
9040 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9041 }
9042 
9043 static int dev_xdp_detach_link(struct net_device *dev,
9044 			       struct netlink_ext_ack *extack,
9045 			       struct bpf_xdp_link *link)
9046 {
9047 	enum bpf_xdp_mode mode;
9048 	bpf_op_t bpf_op;
9049 
9050 	ASSERT_RTNL();
9051 
9052 	mode = dev_xdp_mode(dev, link->flags);
9053 	if (dev_xdp_link(dev, mode) != link)
9054 		return -EINVAL;
9055 
9056 	bpf_op = dev_xdp_bpf_op(dev, mode);
9057 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9058 	dev_xdp_set_link(dev, mode, NULL);
9059 	return 0;
9060 }
9061 
9062 static void bpf_xdp_link_release(struct bpf_link *link)
9063 {
9064 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9065 
9066 	rtnl_lock();
9067 
9068 	/* if racing with net_device's tear down, xdp_link->dev might be
9069 	 * already NULL, in which case link was already auto-detached
9070 	 */
9071 	if (xdp_link->dev) {
9072 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9073 		xdp_link->dev = NULL;
9074 	}
9075 
9076 	rtnl_unlock();
9077 }
9078 
9079 static int bpf_xdp_link_detach(struct bpf_link *link)
9080 {
9081 	bpf_xdp_link_release(link);
9082 	return 0;
9083 }
9084 
9085 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9086 {
9087 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9088 
9089 	kfree(xdp_link);
9090 }
9091 
9092 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9093 				     struct seq_file *seq)
9094 {
9095 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9096 	u32 ifindex = 0;
9097 
9098 	rtnl_lock();
9099 	if (xdp_link->dev)
9100 		ifindex = xdp_link->dev->ifindex;
9101 	rtnl_unlock();
9102 
9103 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9104 }
9105 
9106 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9107 				       struct bpf_link_info *info)
9108 {
9109 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9110 	u32 ifindex = 0;
9111 
9112 	rtnl_lock();
9113 	if (xdp_link->dev)
9114 		ifindex = xdp_link->dev->ifindex;
9115 	rtnl_unlock();
9116 
9117 	info->xdp.ifindex = ifindex;
9118 	return 0;
9119 }
9120 
9121 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9122 			       struct bpf_prog *old_prog)
9123 {
9124 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9125 	enum bpf_xdp_mode mode;
9126 	bpf_op_t bpf_op;
9127 	int err = 0;
9128 
9129 	rtnl_lock();
9130 
9131 	/* link might have been auto-released already, so fail */
9132 	if (!xdp_link->dev) {
9133 		err = -ENOLINK;
9134 		goto out_unlock;
9135 	}
9136 
9137 	if (old_prog && link->prog != old_prog) {
9138 		err = -EPERM;
9139 		goto out_unlock;
9140 	}
9141 	old_prog = link->prog;
9142 	if (old_prog == new_prog) {
9143 		/* no-op, don't disturb drivers */
9144 		bpf_prog_put(new_prog);
9145 		goto out_unlock;
9146 	}
9147 
9148 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9149 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9150 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9151 			      xdp_link->flags, new_prog);
9152 	if (err)
9153 		goto out_unlock;
9154 
9155 	old_prog = xchg(&link->prog, new_prog);
9156 	bpf_prog_put(old_prog);
9157 
9158 out_unlock:
9159 	rtnl_unlock();
9160 	return err;
9161 }
9162 
9163 static const struct bpf_link_ops bpf_xdp_link_lops = {
9164 	.release = bpf_xdp_link_release,
9165 	.dealloc = bpf_xdp_link_dealloc,
9166 	.detach = bpf_xdp_link_detach,
9167 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9168 	.fill_link_info = bpf_xdp_link_fill_link_info,
9169 	.update_prog = bpf_xdp_link_update,
9170 };
9171 
9172 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9173 {
9174 	struct net *net = current->nsproxy->net_ns;
9175 	struct bpf_link_primer link_primer;
9176 	struct bpf_xdp_link *link;
9177 	struct net_device *dev;
9178 	int err, fd;
9179 
9180 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9181 	if (!dev)
9182 		return -EINVAL;
9183 
9184 	link = kzalloc(sizeof(*link), GFP_USER);
9185 	if (!link) {
9186 		err = -ENOMEM;
9187 		goto out_put_dev;
9188 	}
9189 
9190 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9191 	link->dev = dev;
9192 	link->flags = attr->link_create.flags;
9193 
9194 	err = bpf_link_prime(&link->link, &link_primer);
9195 	if (err) {
9196 		kfree(link);
9197 		goto out_put_dev;
9198 	}
9199 
9200 	rtnl_lock();
9201 	err = dev_xdp_attach_link(dev, NULL, link);
9202 	rtnl_unlock();
9203 
9204 	if (err) {
9205 		bpf_link_cleanup(&link_primer);
9206 		goto out_put_dev;
9207 	}
9208 
9209 	fd = bpf_link_settle(&link_primer);
9210 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9211 	dev_put(dev);
9212 	return fd;
9213 
9214 out_put_dev:
9215 	dev_put(dev);
9216 	return err;
9217 }
9218 
9219 /**
9220  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9221  *	@dev: device
9222  *	@extack: netlink extended ack
9223  *	@fd: new program fd or negative value to clear
9224  *	@expected_fd: old program fd that userspace expects to replace or clear
9225  *	@flags: xdp-related flags
9226  *
9227  *	Set or clear a bpf program for a device
9228  */
9229 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9230 		      int fd, int expected_fd, u32 flags)
9231 {
9232 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9233 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9234 	int err;
9235 
9236 	ASSERT_RTNL();
9237 
9238 	if (fd >= 0) {
9239 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9240 						 mode != XDP_MODE_SKB);
9241 		if (IS_ERR(new_prog))
9242 			return PTR_ERR(new_prog);
9243 	}
9244 
9245 	if (expected_fd >= 0) {
9246 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9247 						 mode != XDP_MODE_SKB);
9248 		if (IS_ERR(old_prog)) {
9249 			err = PTR_ERR(old_prog);
9250 			old_prog = NULL;
9251 			goto err_out;
9252 		}
9253 	}
9254 
9255 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9256 
9257 err_out:
9258 	if (err && new_prog)
9259 		bpf_prog_put(new_prog);
9260 	if (old_prog)
9261 		bpf_prog_put(old_prog);
9262 	return err;
9263 }
9264 
9265 /**
9266  *	dev_new_index	-	allocate an ifindex
9267  *	@net: the applicable net namespace
9268  *
9269  *	Returns a suitable unique value for a new device interface
9270  *	number.  The caller must hold the rtnl semaphore or the
9271  *	dev_base_lock to be sure it remains unique.
9272  */
9273 static int dev_new_index(struct net *net)
9274 {
9275 	int ifindex = net->ifindex;
9276 
9277 	for (;;) {
9278 		if (++ifindex <= 0)
9279 			ifindex = 1;
9280 		if (!__dev_get_by_index(net, ifindex))
9281 			return net->ifindex = ifindex;
9282 	}
9283 }
9284 
9285 /* Delayed registration/unregisteration */
9286 static LIST_HEAD(net_todo_list);
9287 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9288 
9289 static void net_set_todo(struct net_device *dev)
9290 {
9291 	list_add_tail(&dev->todo_list, &net_todo_list);
9292 	dev_net(dev)->dev_unreg_count++;
9293 }
9294 
9295 static void rollback_registered_many(struct list_head *head)
9296 {
9297 	struct net_device *dev, *tmp;
9298 	LIST_HEAD(close_head);
9299 
9300 	BUG_ON(dev_boot_phase);
9301 	ASSERT_RTNL();
9302 
9303 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9304 		/* Some devices call without registering
9305 		 * for initialization unwind. Remove those
9306 		 * devices and proceed with the remaining.
9307 		 */
9308 		if (dev->reg_state == NETREG_UNINITIALIZED) {
9309 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
9310 				 dev->name, dev);
9311 
9312 			WARN_ON(1);
9313 			list_del(&dev->unreg_list);
9314 			continue;
9315 		}
9316 		dev->dismantle = true;
9317 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
9318 	}
9319 
9320 	/* If device is running, close it first. */
9321 	list_for_each_entry(dev, head, unreg_list)
9322 		list_add_tail(&dev->close_list, &close_head);
9323 	dev_close_many(&close_head, true);
9324 
9325 	list_for_each_entry(dev, head, unreg_list) {
9326 		/* And unlink it from device chain. */
9327 		unlist_netdevice(dev);
9328 
9329 		dev->reg_state = NETREG_UNREGISTERING;
9330 	}
9331 	flush_all_backlogs();
9332 
9333 	synchronize_net();
9334 
9335 	list_for_each_entry(dev, head, unreg_list) {
9336 		struct sk_buff *skb = NULL;
9337 
9338 		/* Shutdown queueing discipline. */
9339 		dev_shutdown(dev);
9340 
9341 		dev_xdp_uninstall(dev);
9342 
9343 		/* Notify protocols, that we are about to destroy
9344 		 * this device. They should clean all the things.
9345 		 */
9346 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9347 
9348 		if (!dev->rtnl_link_ops ||
9349 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9350 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
9351 						     GFP_KERNEL, NULL, 0);
9352 
9353 		/*
9354 		 *	Flush the unicast and multicast chains
9355 		 */
9356 		dev_uc_flush(dev);
9357 		dev_mc_flush(dev);
9358 
9359 		netdev_name_node_alt_flush(dev);
9360 		netdev_name_node_free(dev->name_node);
9361 
9362 		if (dev->netdev_ops->ndo_uninit)
9363 			dev->netdev_ops->ndo_uninit(dev);
9364 
9365 		if (skb)
9366 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
9367 
9368 		/* Notifier chain MUST detach us all upper devices. */
9369 		WARN_ON(netdev_has_any_upper_dev(dev));
9370 		WARN_ON(netdev_has_any_lower_dev(dev));
9371 
9372 		/* Remove entries from kobject tree */
9373 		netdev_unregister_kobject(dev);
9374 #ifdef CONFIG_XPS
9375 		/* Remove XPS queueing entries */
9376 		netif_reset_xps_queues_gt(dev, 0);
9377 #endif
9378 	}
9379 
9380 	synchronize_net();
9381 
9382 	list_for_each_entry(dev, head, unreg_list)
9383 		dev_put(dev);
9384 }
9385 
9386 static void rollback_registered(struct net_device *dev)
9387 {
9388 	LIST_HEAD(single);
9389 
9390 	list_add(&dev->unreg_list, &single);
9391 	rollback_registered_many(&single);
9392 	list_del(&single);
9393 }
9394 
9395 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9396 	struct net_device *upper, netdev_features_t features)
9397 {
9398 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9399 	netdev_features_t feature;
9400 	int feature_bit;
9401 
9402 	for_each_netdev_feature(upper_disables, feature_bit) {
9403 		feature = __NETIF_F_BIT(feature_bit);
9404 		if (!(upper->wanted_features & feature)
9405 		    && (features & feature)) {
9406 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9407 				   &feature, upper->name);
9408 			features &= ~feature;
9409 		}
9410 	}
9411 
9412 	return features;
9413 }
9414 
9415 static void netdev_sync_lower_features(struct net_device *upper,
9416 	struct net_device *lower, netdev_features_t features)
9417 {
9418 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9419 	netdev_features_t feature;
9420 	int feature_bit;
9421 
9422 	for_each_netdev_feature(upper_disables, feature_bit) {
9423 		feature = __NETIF_F_BIT(feature_bit);
9424 		if (!(features & feature) && (lower->features & feature)) {
9425 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9426 				   &feature, lower->name);
9427 			lower->wanted_features &= ~feature;
9428 			__netdev_update_features(lower);
9429 
9430 			if (unlikely(lower->features & feature))
9431 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9432 					    &feature, lower->name);
9433 			else
9434 				netdev_features_change(lower);
9435 		}
9436 	}
9437 }
9438 
9439 static netdev_features_t netdev_fix_features(struct net_device *dev,
9440 	netdev_features_t features)
9441 {
9442 	/* Fix illegal checksum combinations */
9443 	if ((features & NETIF_F_HW_CSUM) &&
9444 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9445 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9446 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9447 	}
9448 
9449 	/* TSO requires that SG is present as well. */
9450 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9451 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9452 		features &= ~NETIF_F_ALL_TSO;
9453 	}
9454 
9455 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9456 					!(features & NETIF_F_IP_CSUM)) {
9457 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9458 		features &= ~NETIF_F_TSO;
9459 		features &= ~NETIF_F_TSO_ECN;
9460 	}
9461 
9462 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9463 					 !(features & NETIF_F_IPV6_CSUM)) {
9464 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9465 		features &= ~NETIF_F_TSO6;
9466 	}
9467 
9468 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9469 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9470 		features &= ~NETIF_F_TSO_MANGLEID;
9471 
9472 	/* TSO ECN requires that TSO is present as well. */
9473 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9474 		features &= ~NETIF_F_TSO_ECN;
9475 
9476 	/* Software GSO depends on SG. */
9477 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9478 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9479 		features &= ~NETIF_F_GSO;
9480 	}
9481 
9482 	/* GSO partial features require GSO partial be set */
9483 	if ((features & dev->gso_partial_features) &&
9484 	    !(features & NETIF_F_GSO_PARTIAL)) {
9485 		netdev_dbg(dev,
9486 			   "Dropping partially supported GSO features since no GSO partial.\n");
9487 		features &= ~dev->gso_partial_features;
9488 	}
9489 
9490 	if (!(features & NETIF_F_RXCSUM)) {
9491 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9492 		 * successfully merged by hardware must also have the
9493 		 * checksum verified by hardware.  If the user does not
9494 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9495 		 */
9496 		if (features & NETIF_F_GRO_HW) {
9497 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9498 			features &= ~NETIF_F_GRO_HW;
9499 		}
9500 	}
9501 
9502 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9503 	if (features & NETIF_F_RXFCS) {
9504 		if (features & NETIF_F_LRO) {
9505 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9506 			features &= ~NETIF_F_LRO;
9507 		}
9508 
9509 		if (features & NETIF_F_GRO_HW) {
9510 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9511 			features &= ~NETIF_F_GRO_HW;
9512 		}
9513 	}
9514 
9515 	return features;
9516 }
9517 
9518 int __netdev_update_features(struct net_device *dev)
9519 {
9520 	struct net_device *upper, *lower;
9521 	netdev_features_t features;
9522 	struct list_head *iter;
9523 	int err = -1;
9524 
9525 	ASSERT_RTNL();
9526 
9527 	features = netdev_get_wanted_features(dev);
9528 
9529 	if (dev->netdev_ops->ndo_fix_features)
9530 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9531 
9532 	/* driver might be less strict about feature dependencies */
9533 	features = netdev_fix_features(dev, features);
9534 
9535 	/* some features can't be enabled if they're off on an upper device */
9536 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9537 		features = netdev_sync_upper_features(dev, upper, features);
9538 
9539 	if (dev->features == features)
9540 		goto sync_lower;
9541 
9542 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9543 		&dev->features, &features);
9544 
9545 	if (dev->netdev_ops->ndo_set_features)
9546 		err = dev->netdev_ops->ndo_set_features(dev, features);
9547 	else
9548 		err = 0;
9549 
9550 	if (unlikely(err < 0)) {
9551 		netdev_err(dev,
9552 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9553 			err, &features, &dev->features);
9554 		/* return non-0 since some features might have changed and
9555 		 * it's better to fire a spurious notification than miss it
9556 		 */
9557 		return -1;
9558 	}
9559 
9560 sync_lower:
9561 	/* some features must be disabled on lower devices when disabled
9562 	 * on an upper device (think: bonding master or bridge)
9563 	 */
9564 	netdev_for_each_lower_dev(dev, lower, iter)
9565 		netdev_sync_lower_features(dev, lower, features);
9566 
9567 	if (!err) {
9568 		netdev_features_t diff = features ^ dev->features;
9569 
9570 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9571 			/* udp_tunnel_{get,drop}_rx_info both need
9572 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9573 			 * device, or they won't do anything.
9574 			 * Thus we need to update dev->features
9575 			 * *before* calling udp_tunnel_get_rx_info,
9576 			 * but *after* calling udp_tunnel_drop_rx_info.
9577 			 */
9578 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9579 				dev->features = features;
9580 				udp_tunnel_get_rx_info(dev);
9581 			} else {
9582 				udp_tunnel_drop_rx_info(dev);
9583 			}
9584 		}
9585 
9586 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9587 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9588 				dev->features = features;
9589 				err |= vlan_get_rx_ctag_filter_info(dev);
9590 			} else {
9591 				vlan_drop_rx_ctag_filter_info(dev);
9592 			}
9593 		}
9594 
9595 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9596 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9597 				dev->features = features;
9598 				err |= vlan_get_rx_stag_filter_info(dev);
9599 			} else {
9600 				vlan_drop_rx_stag_filter_info(dev);
9601 			}
9602 		}
9603 
9604 		dev->features = features;
9605 	}
9606 
9607 	return err < 0 ? 0 : 1;
9608 }
9609 
9610 /**
9611  *	netdev_update_features - recalculate device features
9612  *	@dev: the device to check
9613  *
9614  *	Recalculate dev->features set and send notifications if it
9615  *	has changed. Should be called after driver or hardware dependent
9616  *	conditions might have changed that influence the features.
9617  */
9618 void netdev_update_features(struct net_device *dev)
9619 {
9620 	if (__netdev_update_features(dev))
9621 		netdev_features_change(dev);
9622 }
9623 EXPORT_SYMBOL(netdev_update_features);
9624 
9625 /**
9626  *	netdev_change_features - recalculate device features
9627  *	@dev: the device to check
9628  *
9629  *	Recalculate dev->features set and send notifications even
9630  *	if they have not changed. Should be called instead of
9631  *	netdev_update_features() if also dev->vlan_features might
9632  *	have changed to allow the changes to be propagated to stacked
9633  *	VLAN devices.
9634  */
9635 void netdev_change_features(struct net_device *dev)
9636 {
9637 	__netdev_update_features(dev);
9638 	netdev_features_change(dev);
9639 }
9640 EXPORT_SYMBOL(netdev_change_features);
9641 
9642 /**
9643  *	netif_stacked_transfer_operstate -	transfer operstate
9644  *	@rootdev: the root or lower level device to transfer state from
9645  *	@dev: the device to transfer operstate to
9646  *
9647  *	Transfer operational state from root to device. This is normally
9648  *	called when a stacking relationship exists between the root
9649  *	device and the device(a leaf device).
9650  */
9651 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9652 					struct net_device *dev)
9653 {
9654 	if (rootdev->operstate == IF_OPER_DORMANT)
9655 		netif_dormant_on(dev);
9656 	else
9657 		netif_dormant_off(dev);
9658 
9659 	if (rootdev->operstate == IF_OPER_TESTING)
9660 		netif_testing_on(dev);
9661 	else
9662 		netif_testing_off(dev);
9663 
9664 	if (netif_carrier_ok(rootdev))
9665 		netif_carrier_on(dev);
9666 	else
9667 		netif_carrier_off(dev);
9668 }
9669 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9670 
9671 static int netif_alloc_rx_queues(struct net_device *dev)
9672 {
9673 	unsigned int i, count = dev->num_rx_queues;
9674 	struct netdev_rx_queue *rx;
9675 	size_t sz = count * sizeof(*rx);
9676 	int err = 0;
9677 
9678 	BUG_ON(count < 1);
9679 
9680 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9681 	if (!rx)
9682 		return -ENOMEM;
9683 
9684 	dev->_rx = rx;
9685 
9686 	for (i = 0; i < count; i++) {
9687 		rx[i].dev = dev;
9688 
9689 		/* XDP RX-queue setup */
9690 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
9691 		if (err < 0)
9692 			goto err_rxq_info;
9693 	}
9694 	return 0;
9695 
9696 err_rxq_info:
9697 	/* Rollback successful reg's and free other resources */
9698 	while (i--)
9699 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9700 	kvfree(dev->_rx);
9701 	dev->_rx = NULL;
9702 	return err;
9703 }
9704 
9705 static void netif_free_rx_queues(struct net_device *dev)
9706 {
9707 	unsigned int i, count = dev->num_rx_queues;
9708 
9709 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9710 	if (!dev->_rx)
9711 		return;
9712 
9713 	for (i = 0; i < count; i++)
9714 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9715 
9716 	kvfree(dev->_rx);
9717 }
9718 
9719 static void netdev_init_one_queue(struct net_device *dev,
9720 				  struct netdev_queue *queue, void *_unused)
9721 {
9722 	/* Initialize queue lock */
9723 	spin_lock_init(&queue->_xmit_lock);
9724 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9725 	queue->xmit_lock_owner = -1;
9726 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9727 	queue->dev = dev;
9728 #ifdef CONFIG_BQL
9729 	dql_init(&queue->dql, HZ);
9730 #endif
9731 }
9732 
9733 static void netif_free_tx_queues(struct net_device *dev)
9734 {
9735 	kvfree(dev->_tx);
9736 }
9737 
9738 static int netif_alloc_netdev_queues(struct net_device *dev)
9739 {
9740 	unsigned int count = dev->num_tx_queues;
9741 	struct netdev_queue *tx;
9742 	size_t sz = count * sizeof(*tx);
9743 
9744 	if (count < 1 || count > 0xffff)
9745 		return -EINVAL;
9746 
9747 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9748 	if (!tx)
9749 		return -ENOMEM;
9750 
9751 	dev->_tx = tx;
9752 
9753 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9754 	spin_lock_init(&dev->tx_global_lock);
9755 
9756 	return 0;
9757 }
9758 
9759 void netif_tx_stop_all_queues(struct net_device *dev)
9760 {
9761 	unsigned int i;
9762 
9763 	for (i = 0; i < dev->num_tx_queues; i++) {
9764 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9765 
9766 		netif_tx_stop_queue(txq);
9767 	}
9768 }
9769 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9770 
9771 /**
9772  *	register_netdevice	- register a network device
9773  *	@dev: device to register
9774  *
9775  *	Take a completed network device structure and add it to the kernel
9776  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9777  *	chain. 0 is returned on success. A negative errno code is returned
9778  *	on a failure to set up the device, or if the name is a duplicate.
9779  *
9780  *	Callers must hold the rtnl semaphore. You may want
9781  *	register_netdev() instead of this.
9782  *
9783  *	BUGS:
9784  *	The locking appears insufficient to guarantee two parallel registers
9785  *	will not get the same name.
9786  */
9787 
9788 int register_netdevice(struct net_device *dev)
9789 {
9790 	int ret;
9791 	struct net *net = dev_net(dev);
9792 
9793 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9794 		     NETDEV_FEATURE_COUNT);
9795 	BUG_ON(dev_boot_phase);
9796 	ASSERT_RTNL();
9797 
9798 	might_sleep();
9799 
9800 	/* When net_device's are persistent, this will be fatal. */
9801 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9802 	BUG_ON(!net);
9803 
9804 	ret = ethtool_check_ops(dev->ethtool_ops);
9805 	if (ret)
9806 		return ret;
9807 
9808 	spin_lock_init(&dev->addr_list_lock);
9809 	netdev_set_addr_lockdep_class(dev);
9810 
9811 	ret = dev_get_valid_name(net, dev, dev->name);
9812 	if (ret < 0)
9813 		goto out;
9814 
9815 	ret = -ENOMEM;
9816 	dev->name_node = netdev_name_node_head_alloc(dev);
9817 	if (!dev->name_node)
9818 		goto out;
9819 
9820 	/* Init, if this function is available */
9821 	if (dev->netdev_ops->ndo_init) {
9822 		ret = dev->netdev_ops->ndo_init(dev);
9823 		if (ret) {
9824 			if (ret > 0)
9825 				ret = -EIO;
9826 			goto err_free_name;
9827 		}
9828 	}
9829 
9830 	if (((dev->hw_features | dev->features) &
9831 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
9832 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9833 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9834 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9835 		ret = -EINVAL;
9836 		goto err_uninit;
9837 	}
9838 
9839 	ret = -EBUSY;
9840 	if (!dev->ifindex)
9841 		dev->ifindex = dev_new_index(net);
9842 	else if (__dev_get_by_index(net, dev->ifindex))
9843 		goto err_uninit;
9844 
9845 	/* Transfer changeable features to wanted_features and enable
9846 	 * software offloads (GSO and GRO).
9847 	 */
9848 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9849 	dev->features |= NETIF_F_SOFT_FEATURES;
9850 
9851 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
9852 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9853 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9854 	}
9855 
9856 	dev->wanted_features = dev->features & dev->hw_features;
9857 
9858 	if (!(dev->flags & IFF_LOOPBACK))
9859 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
9860 
9861 	/* If IPv4 TCP segmentation offload is supported we should also
9862 	 * allow the device to enable segmenting the frame with the option
9863 	 * of ignoring a static IP ID value.  This doesn't enable the
9864 	 * feature itself but allows the user to enable it later.
9865 	 */
9866 	if (dev->hw_features & NETIF_F_TSO)
9867 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
9868 	if (dev->vlan_features & NETIF_F_TSO)
9869 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9870 	if (dev->mpls_features & NETIF_F_TSO)
9871 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9872 	if (dev->hw_enc_features & NETIF_F_TSO)
9873 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9874 
9875 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9876 	 */
9877 	dev->vlan_features |= NETIF_F_HIGHDMA;
9878 
9879 	/* Make NETIF_F_SG inheritable to tunnel devices.
9880 	 */
9881 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9882 
9883 	/* Make NETIF_F_SG inheritable to MPLS.
9884 	 */
9885 	dev->mpls_features |= NETIF_F_SG;
9886 
9887 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9888 	ret = notifier_to_errno(ret);
9889 	if (ret)
9890 		goto err_uninit;
9891 
9892 	ret = netdev_register_kobject(dev);
9893 	if (ret) {
9894 		dev->reg_state = NETREG_UNREGISTERED;
9895 		goto err_uninit;
9896 	}
9897 	dev->reg_state = NETREG_REGISTERED;
9898 
9899 	__netdev_update_features(dev);
9900 
9901 	/*
9902 	 *	Default initial state at registry is that the
9903 	 *	device is present.
9904 	 */
9905 
9906 	set_bit(__LINK_STATE_PRESENT, &dev->state);
9907 
9908 	linkwatch_init_dev(dev);
9909 
9910 	dev_init_scheduler(dev);
9911 	dev_hold(dev);
9912 	list_netdevice(dev);
9913 	add_device_randomness(dev->dev_addr, dev->addr_len);
9914 
9915 	/* If the device has permanent device address, driver should
9916 	 * set dev_addr and also addr_assign_type should be set to
9917 	 * NET_ADDR_PERM (default value).
9918 	 */
9919 	if (dev->addr_assign_type == NET_ADDR_PERM)
9920 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9921 
9922 	/* Notify protocols, that a new device appeared. */
9923 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
9924 	ret = notifier_to_errno(ret);
9925 	if (ret) {
9926 		rollback_registered(dev);
9927 		rcu_barrier();
9928 
9929 		dev->reg_state = NETREG_UNREGISTERED;
9930 		/* We should put the kobject that hold in
9931 		 * netdev_unregister_kobject(), otherwise
9932 		 * the net device cannot be freed when
9933 		 * driver calls free_netdev(), because the
9934 		 * kobject is being hold.
9935 		 */
9936 		kobject_put(&dev->dev.kobj);
9937 	}
9938 	/*
9939 	 *	Prevent userspace races by waiting until the network
9940 	 *	device is fully setup before sending notifications.
9941 	 */
9942 	if (!dev->rtnl_link_ops ||
9943 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9944 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9945 
9946 out:
9947 	return ret;
9948 
9949 err_uninit:
9950 	if (dev->netdev_ops->ndo_uninit)
9951 		dev->netdev_ops->ndo_uninit(dev);
9952 	if (dev->priv_destructor)
9953 		dev->priv_destructor(dev);
9954 err_free_name:
9955 	netdev_name_node_free(dev->name_node);
9956 	goto out;
9957 }
9958 EXPORT_SYMBOL(register_netdevice);
9959 
9960 /**
9961  *	init_dummy_netdev	- init a dummy network device for NAPI
9962  *	@dev: device to init
9963  *
9964  *	This takes a network device structure and initialize the minimum
9965  *	amount of fields so it can be used to schedule NAPI polls without
9966  *	registering a full blown interface. This is to be used by drivers
9967  *	that need to tie several hardware interfaces to a single NAPI
9968  *	poll scheduler due to HW limitations.
9969  */
9970 int init_dummy_netdev(struct net_device *dev)
9971 {
9972 	/* Clear everything. Note we don't initialize spinlocks
9973 	 * are they aren't supposed to be taken by any of the
9974 	 * NAPI code and this dummy netdev is supposed to be
9975 	 * only ever used for NAPI polls
9976 	 */
9977 	memset(dev, 0, sizeof(struct net_device));
9978 
9979 	/* make sure we BUG if trying to hit standard
9980 	 * register/unregister code path
9981 	 */
9982 	dev->reg_state = NETREG_DUMMY;
9983 
9984 	/* NAPI wants this */
9985 	INIT_LIST_HEAD(&dev->napi_list);
9986 
9987 	/* a dummy interface is started by default */
9988 	set_bit(__LINK_STATE_PRESENT, &dev->state);
9989 	set_bit(__LINK_STATE_START, &dev->state);
9990 
9991 	/* napi_busy_loop stats accounting wants this */
9992 	dev_net_set(dev, &init_net);
9993 
9994 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
9995 	 * because users of this 'device' dont need to change
9996 	 * its refcount.
9997 	 */
9998 
9999 	return 0;
10000 }
10001 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10002 
10003 
10004 /**
10005  *	register_netdev	- register a network device
10006  *	@dev: device to register
10007  *
10008  *	Take a completed network device structure and add it to the kernel
10009  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10010  *	chain. 0 is returned on success. A negative errno code is returned
10011  *	on a failure to set up the device, or if the name is a duplicate.
10012  *
10013  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10014  *	and expands the device name if you passed a format string to
10015  *	alloc_netdev.
10016  */
10017 int register_netdev(struct net_device *dev)
10018 {
10019 	int err;
10020 
10021 	if (rtnl_lock_killable())
10022 		return -EINTR;
10023 	err = register_netdevice(dev);
10024 	rtnl_unlock();
10025 	return err;
10026 }
10027 EXPORT_SYMBOL(register_netdev);
10028 
10029 int netdev_refcnt_read(const struct net_device *dev)
10030 {
10031 	int i, refcnt = 0;
10032 
10033 	for_each_possible_cpu(i)
10034 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10035 	return refcnt;
10036 }
10037 EXPORT_SYMBOL(netdev_refcnt_read);
10038 
10039 #define WAIT_REFS_MIN_MSECS 1
10040 #define WAIT_REFS_MAX_MSECS 250
10041 /**
10042  * netdev_wait_allrefs - wait until all references are gone.
10043  * @dev: target net_device
10044  *
10045  * This is called when unregistering network devices.
10046  *
10047  * Any protocol or device that holds a reference should register
10048  * for netdevice notification, and cleanup and put back the
10049  * reference if they receive an UNREGISTER event.
10050  * We can get stuck here if buggy protocols don't correctly
10051  * call dev_put.
10052  */
10053 static void netdev_wait_allrefs(struct net_device *dev)
10054 {
10055 	unsigned long rebroadcast_time, warning_time;
10056 	int wait = 0, refcnt;
10057 
10058 	linkwatch_forget_dev(dev);
10059 
10060 	rebroadcast_time = warning_time = jiffies;
10061 	refcnt = netdev_refcnt_read(dev);
10062 
10063 	while (refcnt != 0) {
10064 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10065 			rtnl_lock();
10066 
10067 			/* Rebroadcast unregister notification */
10068 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10069 
10070 			__rtnl_unlock();
10071 			rcu_barrier();
10072 			rtnl_lock();
10073 
10074 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10075 				     &dev->state)) {
10076 				/* We must not have linkwatch events
10077 				 * pending on unregister. If this
10078 				 * happens, we simply run the queue
10079 				 * unscheduled, resulting in a noop
10080 				 * for this device.
10081 				 */
10082 				linkwatch_run_queue();
10083 			}
10084 
10085 			__rtnl_unlock();
10086 
10087 			rebroadcast_time = jiffies;
10088 		}
10089 
10090 		if (!wait) {
10091 			rcu_barrier();
10092 			wait = WAIT_REFS_MIN_MSECS;
10093 		} else {
10094 			msleep(wait);
10095 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10096 		}
10097 
10098 		refcnt = netdev_refcnt_read(dev);
10099 
10100 		if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
10101 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10102 				 dev->name, refcnt);
10103 			warning_time = jiffies;
10104 		}
10105 	}
10106 }
10107 
10108 /* The sequence is:
10109  *
10110  *	rtnl_lock();
10111  *	...
10112  *	register_netdevice(x1);
10113  *	register_netdevice(x2);
10114  *	...
10115  *	unregister_netdevice(y1);
10116  *	unregister_netdevice(y2);
10117  *      ...
10118  *	rtnl_unlock();
10119  *	free_netdev(y1);
10120  *	free_netdev(y2);
10121  *
10122  * We are invoked by rtnl_unlock().
10123  * This allows us to deal with problems:
10124  * 1) We can delete sysfs objects which invoke hotplug
10125  *    without deadlocking with linkwatch via keventd.
10126  * 2) Since we run with the RTNL semaphore not held, we can sleep
10127  *    safely in order to wait for the netdev refcnt to drop to zero.
10128  *
10129  * We must not return until all unregister events added during
10130  * the interval the lock was held have been completed.
10131  */
10132 void netdev_run_todo(void)
10133 {
10134 	struct list_head list;
10135 
10136 	/* Snapshot list, allow later requests */
10137 	list_replace_init(&net_todo_list, &list);
10138 
10139 	__rtnl_unlock();
10140 
10141 
10142 	/* Wait for rcu callbacks to finish before next phase */
10143 	if (!list_empty(&list))
10144 		rcu_barrier();
10145 
10146 	while (!list_empty(&list)) {
10147 		struct net_device *dev
10148 			= list_first_entry(&list, struct net_device, todo_list);
10149 		list_del(&dev->todo_list);
10150 
10151 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10152 			pr_err("network todo '%s' but state %d\n",
10153 			       dev->name, dev->reg_state);
10154 			dump_stack();
10155 			continue;
10156 		}
10157 
10158 		dev->reg_state = NETREG_UNREGISTERED;
10159 
10160 		netdev_wait_allrefs(dev);
10161 
10162 		/* paranoia */
10163 		BUG_ON(netdev_refcnt_read(dev));
10164 		BUG_ON(!list_empty(&dev->ptype_all));
10165 		BUG_ON(!list_empty(&dev->ptype_specific));
10166 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10167 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10168 #if IS_ENABLED(CONFIG_DECNET)
10169 		WARN_ON(dev->dn_ptr);
10170 #endif
10171 		if (dev->priv_destructor)
10172 			dev->priv_destructor(dev);
10173 		if (dev->needs_free_netdev)
10174 			free_netdev(dev);
10175 
10176 		/* Report a network device has been unregistered */
10177 		rtnl_lock();
10178 		dev_net(dev)->dev_unreg_count--;
10179 		__rtnl_unlock();
10180 		wake_up(&netdev_unregistering_wq);
10181 
10182 		/* Free network device */
10183 		kobject_put(&dev->dev.kobj);
10184 	}
10185 }
10186 
10187 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10188  * all the same fields in the same order as net_device_stats, with only
10189  * the type differing, but rtnl_link_stats64 may have additional fields
10190  * at the end for newer counters.
10191  */
10192 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10193 			     const struct net_device_stats *netdev_stats)
10194 {
10195 #if BITS_PER_LONG == 64
10196 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10197 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10198 	/* zero out counters that only exist in rtnl_link_stats64 */
10199 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
10200 	       sizeof(*stats64) - sizeof(*netdev_stats));
10201 #else
10202 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10203 	const unsigned long *src = (const unsigned long *)netdev_stats;
10204 	u64 *dst = (u64 *)stats64;
10205 
10206 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10207 	for (i = 0; i < n; i++)
10208 		dst[i] = src[i];
10209 	/* zero out counters that only exist in rtnl_link_stats64 */
10210 	memset((char *)stats64 + n * sizeof(u64), 0,
10211 	       sizeof(*stats64) - n * sizeof(u64));
10212 #endif
10213 }
10214 EXPORT_SYMBOL(netdev_stats_to_stats64);
10215 
10216 /**
10217  *	dev_get_stats	- get network device statistics
10218  *	@dev: device to get statistics from
10219  *	@storage: place to store stats
10220  *
10221  *	Get network statistics from device. Return @storage.
10222  *	The device driver may provide its own method by setting
10223  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10224  *	otherwise the internal statistics structure is used.
10225  */
10226 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10227 					struct rtnl_link_stats64 *storage)
10228 {
10229 	const struct net_device_ops *ops = dev->netdev_ops;
10230 
10231 	if (ops->ndo_get_stats64) {
10232 		memset(storage, 0, sizeof(*storage));
10233 		ops->ndo_get_stats64(dev, storage);
10234 	} else if (ops->ndo_get_stats) {
10235 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10236 	} else {
10237 		netdev_stats_to_stats64(storage, &dev->stats);
10238 	}
10239 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10240 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10241 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10242 	return storage;
10243 }
10244 EXPORT_SYMBOL(dev_get_stats);
10245 
10246 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10247 {
10248 	struct netdev_queue *queue = dev_ingress_queue(dev);
10249 
10250 #ifdef CONFIG_NET_CLS_ACT
10251 	if (queue)
10252 		return queue;
10253 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10254 	if (!queue)
10255 		return NULL;
10256 	netdev_init_one_queue(dev, queue, NULL);
10257 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10258 	queue->qdisc_sleeping = &noop_qdisc;
10259 	rcu_assign_pointer(dev->ingress_queue, queue);
10260 #endif
10261 	return queue;
10262 }
10263 
10264 static const struct ethtool_ops default_ethtool_ops;
10265 
10266 void netdev_set_default_ethtool_ops(struct net_device *dev,
10267 				    const struct ethtool_ops *ops)
10268 {
10269 	if (dev->ethtool_ops == &default_ethtool_ops)
10270 		dev->ethtool_ops = ops;
10271 }
10272 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10273 
10274 void netdev_freemem(struct net_device *dev)
10275 {
10276 	char *addr = (char *)dev - dev->padded;
10277 
10278 	kvfree(addr);
10279 }
10280 
10281 /**
10282  * alloc_netdev_mqs - allocate network device
10283  * @sizeof_priv: size of private data to allocate space for
10284  * @name: device name format string
10285  * @name_assign_type: origin of device name
10286  * @setup: callback to initialize device
10287  * @txqs: the number of TX subqueues to allocate
10288  * @rxqs: the number of RX subqueues to allocate
10289  *
10290  * Allocates a struct net_device with private data area for driver use
10291  * and performs basic initialization.  Also allocates subqueue structs
10292  * for each queue on the device.
10293  */
10294 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10295 		unsigned char name_assign_type,
10296 		void (*setup)(struct net_device *),
10297 		unsigned int txqs, unsigned int rxqs)
10298 {
10299 	struct net_device *dev;
10300 	unsigned int alloc_size;
10301 	struct net_device *p;
10302 
10303 	BUG_ON(strlen(name) >= sizeof(dev->name));
10304 
10305 	if (txqs < 1) {
10306 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10307 		return NULL;
10308 	}
10309 
10310 	if (rxqs < 1) {
10311 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10312 		return NULL;
10313 	}
10314 
10315 	alloc_size = sizeof(struct net_device);
10316 	if (sizeof_priv) {
10317 		/* ensure 32-byte alignment of private area */
10318 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10319 		alloc_size += sizeof_priv;
10320 	}
10321 	/* ensure 32-byte alignment of whole construct */
10322 	alloc_size += NETDEV_ALIGN - 1;
10323 
10324 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10325 	if (!p)
10326 		return NULL;
10327 
10328 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10329 	dev->padded = (char *)dev - (char *)p;
10330 
10331 	dev->pcpu_refcnt = alloc_percpu(int);
10332 	if (!dev->pcpu_refcnt)
10333 		goto free_dev;
10334 
10335 	if (dev_addr_init(dev))
10336 		goto free_pcpu;
10337 
10338 	dev_mc_init(dev);
10339 	dev_uc_init(dev);
10340 
10341 	dev_net_set(dev, &init_net);
10342 
10343 	dev->gso_max_size = GSO_MAX_SIZE;
10344 	dev->gso_max_segs = GSO_MAX_SEGS;
10345 	dev->upper_level = 1;
10346 	dev->lower_level = 1;
10347 
10348 	INIT_LIST_HEAD(&dev->napi_list);
10349 	INIT_LIST_HEAD(&dev->unreg_list);
10350 	INIT_LIST_HEAD(&dev->close_list);
10351 	INIT_LIST_HEAD(&dev->link_watch_list);
10352 	INIT_LIST_HEAD(&dev->adj_list.upper);
10353 	INIT_LIST_HEAD(&dev->adj_list.lower);
10354 	INIT_LIST_HEAD(&dev->ptype_all);
10355 	INIT_LIST_HEAD(&dev->ptype_specific);
10356 	INIT_LIST_HEAD(&dev->net_notifier_list);
10357 #ifdef CONFIG_NET_SCHED
10358 	hash_init(dev->qdisc_hash);
10359 #endif
10360 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10361 	setup(dev);
10362 
10363 	if (!dev->tx_queue_len) {
10364 		dev->priv_flags |= IFF_NO_QUEUE;
10365 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10366 	}
10367 
10368 	dev->num_tx_queues = txqs;
10369 	dev->real_num_tx_queues = txqs;
10370 	if (netif_alloc_netdev_queues(dev))
10371 		goto free_all;
10372 
10373 	dev->num_rx_queues = rxqs;
10374 	dev->real_num_rx_queues = rxqs;
10375 	if (netif_alloc_rx_queues(dev))
10376 		goto free_all;
10377 
10378 	strcpy(dev->name, name);
10379 	dev->name_assign_type = name_assign_type;
10380 	dev->group = INIT_NETDEV_GROUP;
10381 	if (!dev->ethtool_ops)
10382 		dev->ethtool_ops = &default_ethtool_ops;
10383 
10384 	nf_hook_ingress_init(dev);
10385 
10386 	return dev;
10387 
10388 free_all:
10389 	free_netdev(dev);
10390 	return NULL;
10391 
10392 free_pcpu:
10393 	free_percpu(dev->pcpu_refcnt);
10394 free_dev:
10395 	netdev_freemem(dev);
10396 	return NULL;
10397 }
10398 EXPORT_SYMBOL(alloc_netdev_mqs);
10399 
10400 /**
10401  * free_netdev - free network device
10402  * @dev: device
10403  *
10404  * This function does the last stage of destroying an allocated device
10405  * interface. The reference to the device object is released. If this
10406  * is the last reference then it will be freed.Must be called in process
10407  * context.
10408  */
10409 void free_netdev(struct net_device *dev)
10410 {
10411 	struct napi_struct *p, *n;
10412 
10413 	might_sleep();
10414 	netif_free_tx_queues(dev);
10415 	netif_free_rx_queues(dev);
10416 
10417 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10418 
10419 	/* Flush device addresses */
10420 	dev_addr_flush(dev);
10421 
10422 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10423 		netif_napi_del(p);
10424 
10425 	free_percpu(dev->pcpu_refcnt);
10426 	dev->pcpu_refcnt = NULL;
10427 	free_percpu(dev->xdp_bulkq);
10428 	dev->xdp_bulkq = NULL;
10429 
10430 	/*  Compatibility with error handling in drivers */
10431 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10432 		netdev_freemem(dev);
10433 		return;
10434 	}
10435 
10436 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10437 	dev->reg_state = NETREG_RELEASED;
10438 
10439 	/* will free via device release */
10440 	put_device(&dev->dev);
10441 }
10442 EXPORT_SYMBOL(free_netdev);
10443 
10444 /**
10445  *	synchronize_net -  Synchronize with packet receive processing
10446  *
10447  *	Wait for packets currently being received to be done.
10448  *	Does not block later packets from starting.
10449  */
10450 void synchronize_net(void)
10451 {
10452 	might_sleep();
10453 	if (rtnl_is_locked())
10454 		synchronize_rcu_expedited();
10455 	else
10456 		synchronize_rcu();
10457 }
10458 EXPORT_SYMBOL(synchronize_net);
10459 
10460 /**
10461  *	unregister_netdevice_queue - remove device from the kernel
10462  *	@dev: device
10463  *	@head: list
10464  *
10465  *	This function shuts down a device interface and removes it
10466  *	from the kernel tables.
10467  *	If head not NULL, device is queued to be unregistered later.
10468  *
10469  *	Callers must hold the rtnl semaphore.  You may want
10470  *	unregister_netdev() instead of this.
10471  */
10472 
10473 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10474 {
10475 	ASSERT_RTNL();
10476 
10477 	if (head) {
10478 		list_move_tail(&dev->unreg_list, head);
10479 	} else {
10480 		rollback_registered(dev);
10481 		/* Finish processing unregister after unlock */
10482 		net_set_todo(dev);
10483 	}
10484 }
10485 EXPORT_SYMBOL(unregister_netdevice_queue);
10486 
10487 /**
10488  *	unregister_netdevice_many - unregister many devices
10489  *	@head: list of devices
10490  *
10491  *  Note: As most callers use a stack allocated list_head,
10492  *  we force a list_del() to make sure stack wont be corrupted later.
10493  */
10494 void unregister_netdevice_many(struct list_head *head)
10495 {
10496 	struct net_device *dev;
10497 
10498 	if (!list_empty(head)) {
10499 		rollback_registered_many(head);
10500 		list_for_each_entry(dev, head, unreg_list)
10501 			net_set_todo(dev);
10502 		list_del(head);
10503 	}
10504 }
10505 EXPORT_SYMBOL(unregister_netdevice_many);
10506 
10507 /**
10508  *	unregister_netdev - remove device from the kernel
10509  *	@dev: device
10510  *
10511  *	This function shuts down a device interface and removes it
10512  *	from the kernel tables.
10513  *
10514  *	This is just a wrapper for unregister_netdevice that takes
10515  *	the rtnl semaphore.  In general you want to use this and not
10516  *	unregister_netdevice.
10517  */
10518 void unregister_netdev(struct net_device *dev)
10519 {
10520 	rtnl_lock();
10521 	unregister_netdevice(dev);
10522 	rtnl_unlock();
10523 }
10524 EXPORT_SYMBOL(unregister_netdev);
10525 
10526 /**
10527  *	dev_change_net_namespace - move device to different nethost namespace
10528  *	@dev: device
10529  *	@net: network namespace
10530  *	@pat: If not NULL name pattern to try if the current device name
10531  *	      is already taken in the destination network namespace.
10532  *
10533  *	This function shuts down a device interface and moves it
10534  *	to a new network namespace. On success 0 is returned, on
10535  *	a failure a netagive errno code is returned.
10536  *
10537  *	Callers must hold the rtnl semaphore.
10538  */
10539 
10540 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10541 {
10542 	struct net *net_old = dev_net(dev);
10543 	int err, new_nsid, new_ifindex;
10544 
10545 	ASSERT_RTNL();
10546 
10547 	/* Don't allow namespace local devices to be moved. */
10548 	err = -EINVAL;
10549 	if (dev->features & NETIF_F_NETNS_LOCAL)
10550 		goto out;
10551 
10552 	/* Ensure the device has been registrered */
10553 	if (dev->reg_state != NETREG_REGISTERED)
10554 		goto out;
10555 
10556 	/* Get out if there is nothing todo */
10557 	err = 0;
10558 	if (net_eq(net_old, net))
10559 		goto out;
10560 
10561 	/* Pick the destination device name, and ensure
10562 	 * we can use it in the destination network namespace.
10563 	 */
10564 	err = -EEXIST;
10565 	if (__dev_get_by_name(net, dev->name)) {
10566 		/* We get here if we can't use the current device name */
10567 		if (!pat)
10568 			goto out;
10569 		err = dev_get_valid_name(net, dev, pat);
10570 		if (err < 0)
10571 			goto out;
10572 	}
10573 
10574 	/*
10575 	 * And now a mini version of register_netdevice unregister_netdevice.
10576 	 */
10577 
10578 	/* If device is running close it first. */
10579 	dev_close(dev);
10580 
10581 	/* And unlink it from device chain */
10582 	unlist_netdevice(dev);
10583 
10584 	synchronize_net();
10585 
10586 	/* Shutdown queueing discipline. */
10587 	dev_shutdown(dev);
10588 
10589 	/* Notify protocols, that we are about to destroy
10590 	 * this device. They should clean all the things.
10591 	 *
10592 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
10593 	 * This is wanted because this way 8021q and macvlan know
10594 	 * the device is just moving and can keep their slaves up.
10595 	 */
10596 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10597 	rcu_barrier();
10598 
10599 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10600 	/* If there is an ifindex conflict assign a new one */
10601 	if (__dev_get_by_index(net, dev->ifindex))
10602 		new_ifindex = dev_new_index(net);
10603 	else
10604 		new_ifindex = dev->ifindex;
10605 
10606 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10607 			    new_ifindex);
10608 
10609 	/*
10610 	 *	Flush the unicast and multicast chains
10611 	 */
10612 	dev_uc_flush(dev);
10613 	dev_mc_flush(dev);
10614 
10615 	/* Send a netdev-removed uevent to the old namespace */
10616 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10617 	netdev_adjacent_del_links(dev);
10618 
10619 	/* Move per-net netdevice notifiers that are following the netdevice */
10620 	move_netdevice_notifiers_dev_net(dev, net);
10621 
10622 	/* Actually switch the network namespace */
10623 	dev_net_set(dev, net);
10624 	dev->ifindex = new_ifindex;
10625 
10626 	/* Send a netdev-add uevent to the new namespace */
10627 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10628 	netdev_adjacent_add_links(dev);
10629 
10630 	/* Fixup kobjects */
10631 	err = device_rename(&dev->dev, dev->name);
10632 	WARN_ON(err);
10633 
10634 	/* Adapt owner in case owning user namespace of target network
10635 	 * namespace is different from the original one.
10636 	 */
10637 	err = netdev_change_owner(dev, net_old, net);
10638 	WARN_ON(err);
10639 
10640 	/* Add the device back in the hashes */
10641 	list_netdevice(dev);
10642 
10643 	/* Notify protocols, that a new device appeared. */
10644 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
10645 
10646 	/*
10647 	 *	Prevent userspace races by waiting until the network
10648 	 *	device is fully setup before sending notifications.
10649 	 */
10650 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10651 
10652 	synchronize_net();
10653 	err = 0;
10654 out:
10655 	return err;
10656 }
10657 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
10658 
10659 static int dev_cpu_dead(unsigned int oldcpu)
10660 {
10661 	struct sk_buff **list_skb;
10662 	struct sk_buff *skb;
10663 	unsigned int cpu;
10664 	struct softnet_data *sd, *oldsd, *remsd = NULL;
10665 
10666 	local_irq_disable();
10667 	cpu = smp_processor_id();
10668 	sd = &per_cpu(softnet_data, cpu);
10669 	oldsd = &per_cpu(softnet_data, oldcpu);
10670 
10671 	/* Find end of our completion_queue. */
10672 	list_skb = &sd->completion_queue;
10673 	while (*list_skb)
10674 		list_skb = &(*list_skb)->next;
10675 	/* Append completion queue from offline CPU. */
10676 	*list_skb = oldsd->completion_queue;
10677 	oldsd->completion_queue = NULL;
10678 
10679 	/* Append output queue from offline CPU. */
10680 	if (oldsd->output_queue) {
10681 		*sd->output_queue_tailp = oldsd->output_queue;
10682 		sd->output_queue_tailp = oldsd->output_queue_tailp;
10683 		oldsd->output_queue = NULL;
10684 		oldsd->output_queue_tailp = &oldsd->output_queue;
10685 	}
10686 	/* Append NAPI poll list from offline CPU, with one exception :
10687 	 * process_backlog() must be called by cpu owning percpu backlog.
10688 	 * We properly handle process_queue & input_pkt_queue later.
10689 	 */
10690 	while (!list_empty(&oldsd->poll_list)) {
10691 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10692 							    struct napi_struct,
10693 							    poll_list);
10694 
10695 		list_del_init(&napi->poll_list);
10696 		if (napi->poll == process_backlog)
10697 			napi->state = 0;
10698 		else
10699 			____napi_schedule(sd, napi);
10700 	}
10701 
10702 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
10703 	local_irq_enable();
10704 
10705 #ifdef CONFIG_RPS
10706 	remsd = oldsd->rps_ipi_list;
10707 	oldsd->rps_ipi_list = NULL;
10708 #endif
10709 	/* send out pending IPI's on offline CPU */
10710 	net_rps_send_ipi(remsd);
10711 
10712 	/* Process offline CPU's input_pkt_queue */
10713 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10714 		netif_rx_ni(skb);
10715 		input_queue_head_incr(oldsd);
10716 	}
10717 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10718 		netif_rx_ni(skb);
10719 		input_queue_head_incr(oldsd);
10720 	}
10721 
10722 	return 0;
10723 }
10724 
10725 /**
10726  *	netdev_increment_features - increment feature set by one
10727  *	@all: current feature set
10728  *	@one: new feature set
10729  *	@mask: mask feature set
10730  *
10731  *	Computes a new feature set after adding a device with feature set
10732  *	@one to the master device with current feature set @all.  Will not
10733  *	enable anything that is off in @mask. Returns the new feature set.
10734  */
10735 netdev_features_t netdev_increment_features(netdev_features_t all,
10736 	netdev_features_t one, netdev_features_t mask)
10737 {
10738 	if (mask & NETIF_F_HW_CSUM)
10739 		mask |= NETIF_F_CSUM_MASK;
10740 	mask |= NETIF_F_VLAN_CHALLENGED;
10741 
10742 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10743 	all &= one | ~NETIF_F_ALL_FOR_ALL;
10744 
10745 	/* If one device supports hw checksumming, set for all. */
10746 	if (all & NETIF_F_HW_CSUM)
10747 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
10748 
10749 	return all;
10750 }
10751 EXPORT_SYMBOL(netdev_increment_features);
10752 
10753 static struct hlist_head * __net_init netdev_create_hash(void)
10754 {
10755 	int i;
10756 	struct hlist_head *hash;
10757 
10758 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
10759 	if (hash != NULL)
10760 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
10761 			INIT_HLIST_HEAD(&hash[i]);
10762 
10763 	return hash;
10764 }
10765 
10766 /* Initialize per network namespace state */
10767 static int __net_init netdev_init(struct net *net)
10768 {
10769 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
10770 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
10771 
10772 	if (net != &init_net)
10773 		INIT_LIST_HEAD(&net->dev_base_head);
10774 
10775 	net->dev_name_head = netdev_create_hash();
10776 	if (net->dev_name_head == NULL)
10777 		goto err_name;
10778 
10779 	net->dev_index_head = netdev_create_hash();
10780 	if (net->dev_index_head == NULL)
10781 		goto err_idx;
10782 
10783 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
10784 
10785 	return 0;
10786 
10787 err_idx:
10788 	kfree(net->dev_name_head);
10789 err_name:
10790 	return -ENOMEM;
10791 }
10792 
10793 /**
10794  *	netdev_drivername - network driver for the device
10795  *	@dev: network device
10796  *
10797  *	Determine network driver for device.
10798  */
10799 const char *netdev_drivername(const struct net_device *dev)
10800 {
10801 	const struct device_driver *driver;
10802 	const struct device *parent;
10803 	const char *empty = "";
10804 
10805 	parent = dev->dev.parent;
10806 	if (!parent)
10807 		return empty;
10808 
10809 	driver = parent->driver;
10810 	if (driver && driver->name)
10811 		return driver->name;
10812 	return empty;
10813 }
10814 
10815 static void __netdev_printk(const char *level, const struct net_device *dev,
10816 			    struct va_format *vaf)
10817 {
10818 	if (dev && dev->dev.parent) {
10819 		dev_printk_emit(level[1] - '0',
10820 				dev->dev.parent,
10821 				"%s %s %s%s: %pV",
10822 				dev_driver_string(dev->dev.parent),
10823 				dev_name(dev->dev.parent),
10824 				netdev_name(dev), netdev_reg_state(dev),
10825 				vaf);
10826 	} else if (dev) {
10827 		printk("%s%s%s: %pV",
10828 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
10829 	} else {
10830 		printk("%s(NULL net_device): %pV", level, vaf);
10831 	}
10832 }
10833 
10834 void netdev_printk(const char *level, const struct net_device *dev,
10835 		   const char *format, ...)
10836 {
10837 	struct va_format vaf;
10838 	va_list args;
10839 
10840 	va_start(args, format);
10841 
10842 	vaf.fmt = format;
10843 	vaf.va = &args;
10844 
10845 	__netdev_printk(level, dev, &vaf);
10846 
10847 	va_end(args);
10848 }
10849 EXPORT_SYMBOL(netdev_printk);
10850 
10851 #define define_netdev_printk_level(func, level)			\
10852 void func(const struct net_device *dev, const char *fmt, ...)	\
10853 {								\
10854 	struct va_format vaf;					\
10855 	va_list args;						\
10856 								\
10857 	va_start(args, fmt);					\
10858 								\
10859 	vaf.fmt = fmt;						\
10860 	vaf.va = &args;						\
10861 								\
10862 	__netdev_printk(level, dev, &vaf);			\
10863 								\
10864 	va_end(args);						\
10865 }								\
10866 EXPORT_SYMBOL(func);
10867 
10868 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10869 define_netdev_printk_level(netdev_alert, KERN_ALERT);
10870 define_netdev_printk_level(netdev_crit, KERN_CRIT);
10871 define_netdev_printk_level(netdev_err, KERN_ERR);
10872 define_netdev_printk_level(netdev_warn, KERN_WARNING);
10873 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
10874 define_netdev_printk_level(netdev_info, KERN_INFO);
10875 
10876 static void __net_exit netdev_exit(struct net *net)
10877 {
10878 	kfree(net->dev_name_head);
10879 	kfree(net->dev_index_head);
10880 	if (net != &init_net)
10881 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
10882 }
10883 
10884 static struct pernet_operations __net_initdata netdev_net_ops = {
10885 	.init = netdev_init,
10886 	.exit = netdev_exit,
10887 };
10888 
10889 static void __net_exit default_device_exit(struct net *net)
10890 {
10891 	struct net_device *dev, *aux;
10892 	/*
10893 	 * Push all migratable network devices back to the
10894 	 * initial network namespace
10895 	 */
10896 	rtnl_lock();
10897 	for_each_netdev_safe(net, dev, aux) {
10898 		int err;
10899 		char fb_name[IFNAMSIZ];
10900 
10901 		/* Ignore unmoveable devices (i.e. loopback) */
10902 		if (dev->features & NETIF_F_NETNS_LOCAL)
10903 			continue;
10904 
10905 		/* Leave virtual devices for the generic cleanup */
10906 		if (dev->rtnl_link_ops)
10907 			continue;
10908 
10909 		/* Push remaining network devices to init_net */
10910 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
10911 		if (__dev_get_by_name(&init_net, fb_name))
10912 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
10913 		err = dev_change_net_namespace(dev, &init_net, fb_name);
10914 		if (err) {
10915 			pr_emerg("%s: failed to move %s to init_net: %d\n",
10916 				 __func__, dev->name, err);
10917 			BUG();
10918 		}
10919 	}
10920 	rtnl_unlock();
10921 }
10922 
10923 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
10924 {
10925 	/* Return with the rtnl_lock held when there are no network
10926 	 * devices unregistering in any network namespace in net_list.
10927 	 */
10928 	struct net *net;
10929 	bool unregistering;
10930 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
10931 
10932 	add_wait_queue(&netdev_unregistering_wq, &wait);
10933 	for (;;) {
10934 		unregistering = false;
10935 		rtnl_lock();
10936 		list_for_each_entry(net, net_list, exit_list) {
10937 			if (net->dev_unreg_count > 0) {
10938 				unregistering = true;
10939 				break;
10940 			}
10941 		}
10942 		if (!unregistering)
10943 			break;
10944 		__rtnl_unlock();
10945 
10946 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
10947 	}
10948 	remove_wait_queue(&netdev_unregistering_wq, &wait);
10949 }
10950 
10951 static void __net_exit default_device_exit_batch(struct list_head *net_list)
10952 {
10953 	/* At exit all network devices most be removed from a network
10954 	 * namespace.  Do this in the reverse order of registration.
10955 	 * Do this across as many network namespaces as possible to
10956 	 * improve batching efficiency.
10957 	 */
10958 	struct net_device *dev;
10959 	struct net *net;
10960 	LIST_HEAD(dev_kill_list);
10961 
10962 	/* To prevent network device cleanup code from dereferencing
10963 	 * loopback devices or network devices that have been freed
10964 	 * wait here for all pending unregistrations to complete,
10965 	 * before unregistring the loopback device and allowing the
10966 	 * network namespace be freed.
10967 	 *
10968 	 * The netdev todo list containing all network devices
10969 	 * unregistrations that happen in default_device_exit_batch
10970 	 * will run in the rtnl_unlock() at the end of
10971 	 * default_device_exit_batch.
10972 	 */
10973 	rtnl_lock_unregistering(net_list);
10974 	list_for_each_entry(net, net_list, exit_list) {
10975 		for_each_netdev_reverse(net, dev) {
10976 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
10977 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
10978 			else
10979 				unregister_netdevice_queue(dev, &dev_kill_list);
10980 		}
10981 	}
10982 	unregister_netdevice_many(&dev_kill_list);
10983 	rtnl_unlock();
10984 }
10985 
10986 static struct pernet_operations __net_initdata default_device_ops = {
10987 	.exit = default_device_exit,
10988 	.exit_batch = default_device_exit_batch,
10989 };
10990 
10991 /*
10992  *	Initialize the DEV module. At boot time this walks the device list and
10993  *	unhooks any devices that fail to initialise (normally hardware not
10994  *	present) and leaves us with a valid list of present and active devices.
10995  *
10996  */
10997 
10998 /*
10999  *       This is called single threaded during boot, so no need
11000  *       to take the rtnl semaphore.
11001  */
11002 static int __init net_dev_init(void)
11003 {
11004 	int i, rc = -ENOMEM;
11005 
11006 	BUG_ON(!dev_boot_phase);
11007 
11008 	if (dev_proc_init())
11009 		goto out;
11010 
11011 	if (netdev_kobject_init())
11012 		goto out;
11013 
11014 	INIT_LIST_HEAD(&ptype_all);
11015 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11016 		INIT_LIST_HEAD(&ptype_base[i]);
11017 
11018 	INIT_LIST_HEAD(&offload_base);
11019 
11020 	if (register_pernet_subsys(&netdev_net_ops))
11021 		goto out;
11022 
11023 	/*
11024 	 *	Initialise the packet receive queues.
11025 	 */
11026 
11027 	for_each_possible_cpu(i) {
11028 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11029 		struct softnet_data *sd = &per_cpu(softnet_data, i);
11030 
11031 		INIT_WORK(flush, flush_backlog);
11032 
11033 		skb_queue_head_init(&sd->input_pkt_queue);
11034 		skb_queue_head_init(&sd->process_queue);
11035 #ifdef CONFIG_XFRM_OFFLOAD
11036 		skb_queue_head_init(&sd->xfrm_backlog);
11037 #endif
11038 		INIT_LIST_HEAD(&sd->poll_list);
11039 		sd->output_queue_tailp = &sd->output_queue;
11040 #ifdef CONFIG_RPS
11041 		sd->csd.func = rps_trigger_softirq;
11042 		sd->csd.info = sd;
11043 		sd->cpu = i;
11044 #endif
11045 
11046 		init_gro_hash(&sd->backlog);
11047 		sd->backlog.poll = process_backlog;
11048 		sd->backlog.weight = weight_p;
11049 	}
11050 
11051 	dev_boot_phase = 0;
11052 
11053 	/* The loopback device is special if any other network devices
11054 	 * is present in a network namespace the loopback device must
11055 	 * be present. Since we now dynamically allocate and free the
11056 	 * loopback device ensure this invariant is maintained by
11057 	 * keeping the loopback device as the first device on the
11058 	 * list of network devices.  Ensuring the loopback devices
11059 	 * is the first device that appears and the last network device
11060 	 * that disappears.
11061 	 */
11062 	if (register_pernet_device(&loopback_net_ops))
11063 		goto out;
11064 
11065 	if (register_pernet_device(&default_device_ops))
11066 		goto out;
11067 
11068 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11069 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11070 
11071 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11072 				       NULL, dev_cpu_dead);
11073 	WARN_ON(rc < 0);
11074 	rc = 0;
11075 out:
11076 	return rc;
11077 }
11078 
11079 subsys_initcall(net_dev_init);
11080