1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET3 Protocol independent device support routines. 4 * 5 * Derived from the non IP parts of dev.c 1.0.19 6 * Authors: Ross Biro 7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 8 * Mark Evans, <evansmp@uhura.aston.ac.uk> 9 * 10 * Additional Authors: 11 * Florian la Roche <rzsfl@rz.uni-sb.de> 12 * Alan Cox <gw4pts@gw4pts.ampr.org> 13 * David Hinds <dahinds@users.sourceforge.net> 14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 15 * Adam Sulmicki <adam@cfar.umd.edu> 16 * Pekka Riikonen <priikone@poesidon.pspt.fi> 17 * 18 * Changes: 19 * D.J. Barrow : Fixed bug where dev->refcnt gets set 20 * to 2 if register_netdev gets called 21 * before net_dev_init & also removed a 22 * few lines of code in the process. 23 * Alan Cox : device private ioctl copies fields back. 24 * Alan Cox : Transmit queue code does relevant 25 * stunts to keep the queue safe. 26 * Alan Cox : Fixed double lock. 27 * Alan Cox : Fixed promisc NULL pointer trap 28 * ???????? : Support the full private ioctl range 29 * Alan Cox : Moved ioctl permission check into 30 * drivers 31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 32 * Alan Cox : 100 backlog just doesn't cut it when 33 * you start doing multicast video 8) 34 * Alan Cox : Rewrote net_bh and list manager. 35 * Alan Cox : Fix ETH_P_ALL echoback lengths. 36 * Alan Cox : Took out transmit every packet pass 37 * Saved a few bytes in the ioctl handler 38 * Alan Cox : Network driver sets packet type before 39 * calling netif_rx. Saves a function 40 * call a packet. 41 * Alan Cox : Hashed net_bh() 42 * Richard Kooijman: Timestamp fixes. 43 * Alan Cox : Wrong field in SIOCGIFDSTADDR 44 * Alan Cox : Device lock protection. 45 * Alan Cox : Fixed nasty side effect of device close 46 * changes. 47 * Rudi Cilibrasi : Pass the right thing to 48 * set_mac_address() 49 * Dave Miller : 32bit quantity for the device lock to 50 * make it work out on a Sparc. 51 * Bjorn Ekwall : Added KERNELD hack. 52 * Alan Cox : Cleaned up the backlog initialise. 53 * Craig Metz : SIOCGIFCONF fix if space for under 54 * 1 device. 55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 56 * is no device open function. 57 * Andi Kleen : Fix error reporting for SIOCGIFCONF 58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 59 * Cyrus Durgin : Cleaned for KMOD 60 * Adam Sulmicki : Bug Fix : Network Device Unload 61 * A network device unload needs to purge 62 * the backlog queue. 63 * Paul Rusty Russell : SIOCSIFNAME 64 * Pekka Riikonen : Netdev boot-time settings code 65 * Andrew Morton : Make unregister_netdevice wait 66 * indefinitely on dev->refcnt 67 * J Hadi Salim : - Backlog queue sampling 68 * - netif_rx() feedback 69 */ 70 71 #include <linux/uaccess.h> 72 #include <linux/bitops.h> 73 #include <linux/capability.h> 74 #include <linux/cpu.h> 75 #include <linux/types.h> 76 #include <linux/kernel.h> 77 #include <linux/hash.h> 78 #include <linux/slab.h> 79 #include <linux/sched.h> 80 #include <linux/sched/mm.h> 81 #include <linux/mutex.h> 82 #include <linux/rwsem.h> 83 #include <linux/string.h> 84 #include <linux/mm.h> 85 #include <linux/socket.h> 86 #include <linux/sockios.h> 87 #include <linux/errno.h> 88 #include <linux/interrupt.h> 89 #include <linux/if_ether.h> 90 #include <linux/netdevice.h> 91 #include <linux/etherdevice.h> 92 #include <linux/ethtool.h> 93 #include <linux/skbuff.h> 94 #include <linux/kthread.h> 95 #include <linux/bpf.h> 96 #include <linux/bpf_trace.h> 97 #include <net/net_namespace.h> 98 #include <net/sock.h> 99 #include <net/busy_poll.h> 100 #include <linux/rtnetlink.h> 101 #include <linux/stat.h> 102 #include <net/dsa.h> 103 #include <net/dst.h> 104 #include <net/dst_metadata.h> 105 #include <net/gro.h> 106 #include <net/pkt_sched.h> 107 #include <net/pkt_cls.h> 108 #include <net/checksum.h> 109 #include <net/xfrm.h> 110 #include <linux/highmem.h> 111 #include <linux/init.h> 112 #include <linux/module.h> 113 #include <linux/netpoll.h> 114 #include <linux/rcupdate.h> 115 #include <linux/delay.h> 116 #include <net/iw_handler.h> 117 #include <asm/current.h> 118 #include <linux/audit.h> 119 #include <linux/dmaengine.h> 120 #include <linux/err.h> 121 #include <linux/ctype.h> 122 #include <linux/if_arp.h> 123 #include <linux/if_vlan.h> 124 #include <linux/ip.h> 125 #include <net/ip.h> 126 #include <net/mpls.h> 127 #include <linux/ipv6.h> 128 #include <linux/in.h> 129 #include <linux/jhash.h> 130 #include <linux/random.h> 131 #include <trace/events/napi.h> 132 #include <trace/events/net.h> 133 #include <trace/events/skb.h> 134 #include <linux/inetdevice.h> 135 #include <linux/cpu_rmap.h> 136 #include <linux/static_key.h> 137 #include <linux/hashtable.h> 138 #include <linux/vmalloc.h> 139 #include <linux/if_macvlan.h> 140 #include <linux/errqueue.h> 141 #include <linux/hrtimer.h> 142 #include <linux/netfilter_ingress.h> 143 #include <linux/crash_dump.h> 144 #include <linux/sctp.h> 145 #include <net/udp_tunnel.h> 146 #include <linux/net_namespace.h> 147 #include <linux/indirect_call_wrapper.h> 148 #include <net/devlink.h> 149 #include <linux/pm_runtime.h> 150 #include <linux/prandom.h> 151 152 #include "net-sysfs.h" 153 154 #define MAX_GRO_SKBS 8 155 156 /* This should be increased if a protocol with a bigger head is added. */ 157 #define GRO_MAX_HEAD (MAX_HEADER + 128) 158 159 static DEFINE_SPINLOCK(ptype_lock); 160 static DEFINE_SPINLOCK(offload_lock); 161 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 162 struct list_head ptype_all __read_mostly; /* Taps */ 163 static struct list_head offload_base __read_mostly; 164 165 static int netif_rx_internal(struct sk_buff *skb); 166 static int call_netdevice_notifiers_info(unsigned long val, 167 struct netdev_notifier_info *info); 168 static int call_netdevice_notifiers_extack(unsigned long val, 169 struct net_device *dev, 170 struct netlink_ext_ack *extack); 171 static struct napi_struct *napi_by_id(unsigned int napi_id); 172 173 /* 174 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 175 * semaphore. 176 * 177 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 178 * 179 * Writers must hold the rtnl semaphore while they loop through the 180 * dev_base_head list, and hold dev_base_lock for writing when they do the 181 * actual updates. This allows pure readers to access the list even 182 * while a writer is preparing to update it. 183 * 184 * To put it another way, dev_base_lock is held for writing only to 185 * protect against pure readers; the rtnl semaphore provides the 186 * protection against other writers. 187 * 188 * See, for example usages, register_netdevice() and 189 * unregister_netdevice(), which must be called with the rtnl 190 * semaphore held. 191 */ 192 DEFINE_RWLOCK(dev_base_lock); 193 EXPORT_SYMBOL(dev_base_lock); 194 195 static DEFINE_MUTEX(ifalias_mutex); 196 197 /* protects napi_hash addition/deletion and napi_gen_id */ 198 static DEFINE_SPINLOCK(napi_hash_lock); 199 200 static unsigned int napi_gen_id = NR_CPUS; 201 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 202 203 static DECLARE_RWSEM(devnet_rename_sem); 204 205 static inline void dev_base_seq_inc(struct net *net) 206 { 207 while (++net->dev_base_seq == 0) 208 ; 209 } 210 211 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 212 { 213 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 214 215 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 216 } 217 218 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 219 { 220 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 221 } 222 223 static inline void rps_lock(struct softnet_data *sd) 224 { 225 #ifdef CONFIG_RPS 226 spin_lock(&sd->input_pkt_queue.lock); 227 #endif 228 } 229 230 static inline void rps_unlock(struct softnet_data *sd) 231 { 232 #ifdef CONFIG_RPS 233 spin_unlock(&sd->input_pkt_queue.lock); 234 #endif 235 } 236 237 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev, 238 const char *name) 239 { 240 struct netdev_name_node *name_node; 241 242 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL); 243 if (!name_node) 244 return NULL; 245 INIT_HLIST_NODE(&name_node->hlist); 246 name_node->dev = dev; 247 name_node->name = name; 248 return name_node; 249 } 250 251 static struct netdev_name_node * 252 netdev_name_node_head_alloc(struct net_device *dev) 253 { 254 struct netdev_name_node *name_node; 255 256 name_node = netdev_name_node_alloc(dev, dev->name); 257 if (!name_node) 258 return NULL; 259 INIT_LIST_HEAD(&name_node->list); 260 return name_node; 261 } 262 263 static void netdev_name_node_free(struct netdev_name_node *name_node) 264 { 265 kfree(name_node); 266 } 267 268 static void netdev_name_node_add(struct net *net, 269 struct netdev_name_node *name_node) 270 { 271 hlist_add_head_rcu(&name_node->hlist, 272 dev_name_hash(net, name_node->name)); 273 } 274 275 static void netdev_name_node_del(struct netdev_name_node *name_node) 276 { 277 hlist_del_rcu(&name_node->hlist); 278 } 279 280 static struct netdev_name_node *netdev_name_node_lookup(struct net *net, 281 const char *name) 282 { 283 struct hlist_head *head = dev_name_hash(net, name); 284 struct netdev_name_node *name_node; 285 286 hlist_for_each_entry(name_node, head, hlist) 287 if (!strcmp(name_node->name, name)) 288 return name_node; 289 return NULL; 290 } 291 292 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net, 293 const char *name) 294 { 295 struct hlist_head *head = dev_name_hash(net, name); 296 struct netdev_name_node *name_node; 297 298 hlist_for_each_entry_rcu(name_node, head, hlist) 299 if (!strcmp(name_node->name, name)) 300 return name_node; 301 return NULL; 302 } 303 304 int netdev_name_node_alt_create(struct net_device *dev, const char *name) 305 { 306 struct netdev_name_node *name_node; 307 struct net *net = dev_net(dev); 308 309 name_node = netdev_name_node_lookup(net, name); 310 if (name_node) 311 return -EEXIST; 312 name_node = netdev_name_node_alloc(dev, name); 313 if (!name_node) 314 return -ENOMEM; 315 netdev_name_node_add(net, name_node); 316 /* The node that holds dev->name acts as a head of per-device list. */ 317 list_add_tail(&name_node->list, &dev->name_node->list); 318 319 return 0; 320 } 321 EXPORT_SYMBOL(netdev_name_node_alt_create); 322 323 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node) 324 { 325 list_del(&name_node->list); 326 netdev_name_node_del(name_node); 327 kfree(name_node->name); 328 netdev_name_node_free(name_node); 329 } 330 331 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name) 332 { 333 struct netdev_name_node *name_node; 334 struct net *net = dev_net(dev); 335 336 name_node = netdev_name_node_lookup(net, name); 337 if (!name_node) 338 return -ENOENT; 339 /* lookup might have found our primary name or a name belonging 340 * to another device. 341 */ 342 if (name_node == dev->name_node || name_node->dev != dev) 343 return -EINVAL; 344 345 __netdev_name_node_alt_destroy(name_node); 346 347 return 0; 348 } 349 EXPORT_SYMBOL(netdev_name_node_alt_destroy); 350 351 static void netdev_name_node_alt_flush(struct net_device *dev) 352 { 353 struct netdev_name_node *name_node, *tmp; 354 355 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) 356 __netdev_name_node_alt_destroy(name_node); 357 } 358 359 /* Device list insertion */ 360 static void list_netdevice(struct net_device *dev) 361 { 362 struct net *net = dev_net(dev); 363 364 ASSERT_RTNL(); 365 366 write_lock_bh(&dev_base_lock); 367 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 368 netdev_name_node_add(net, dev->name_node); 369 hlist_add_head_rcu(&dev->index_hlist, 370 dev_index_hash(net, dev->ifindex)); 371 write_unlock_bh(&dev_base_lock); 372 373 dev_base_seq_inc(net); 374 } 375 376 /* Device list removal 377 * caller must respect a RCU grace period before freeing/reusing dev 378 */ 379 static void unlist_netdevice(struct net_device *dev) 380 { 381 ASSERT_RTNL(); 382 383 /* Unlink dev from the device chain */ 384 write_lock_bh(&dev_base_lock); 385 list_del_rcu(&dev->dev_list); 386 netdev_name_node_del(dev->name_node); 387 hlist_del_rcu(&dev->index_hlist); 388 write_unlock_bh(&dev_base_lock); 389 390 dev_base_seq_inc(dev_net(dev)); 391 } 392 393 /* 394 * Our notifier list 395 */ 396 397 static RAW_NOTIFIER_HEAD(netdev_chain); 398 399 /* 400 * Device drivers call our routines to queue packets here. We empty the 401 * queue in the local softnet handler. 402 */ 403 404 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 405 EXPORT_PER_CPU_SYMBOL(softnet_data); 406 407 #ifdef CONFIG_LOCKDEP 408 /* 409 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 410 * according to dev->type 411 */ 412 static const unsigned short netdev_lock_type[] = { 413 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 414 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 415 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 416 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 417 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 418 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 419 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 420 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 421 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 422 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 423 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 424 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 425 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 426 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 427 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 428 429 static const char *const netdev_lock_name[] = { 430 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 431 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 432 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 433 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 434 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 435 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 436 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 437 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 438 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 439 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 440 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 441 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 442 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 443 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 444 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 445 446 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 447 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 448 449 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 450 { 451 int i; 452 453 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 454 if (netdev_lock_type[i] == dev_type) 455 return i; 456 /* the last key is used by default */ 457 return ARRAY_SIZE(netdev_lock_type) - 1; 458 } 459 460 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 461 unsigned short dev_type) 462 { 463 int i; 464 465 i = netdev_lock_pos(dev_type); 466 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 467 netdev_lock_name[i]); 468 } 469 470 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 471 { 472 int i; 473 474 i = netdev_lock_pos(dev->type); 475 lockdep_set_class_and_name(&dev->addr_list_lock, 476 &netdev_addr_lock_key[i], 477 netdev_lock_name[i]); 478 } 479 #else 480 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 481 unsigned short dev_type) 482 { 483 } 484 485 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 486 { 487 } 488 #endif 489 490 /******************************************************************************* 491 * 492 * Protocol management and registration routines 493 * 494 *******************************************************************************/ 495 496 497 /* 498 * Add a protocol ID to the list. Now that the input handler is 499 * smarter we can dispense with all the messy stuff that used to be 500 * here. 501 * 502 * BEWARE!!! Protocol handlers, mangling input packets, 503 * MUST BE last in hash buckets and checking protocol handlers 504 * MUST start from promiscuous ptype_all chain in net_bh. 505 * It is true now, do not change it. 506 * Explanation follows: if protocol handler, mangling packet, will 507 * be the first on list, it is not able to sense, that packet 508 * is cloned and should be copied-on-write, so that it will 509 * change it and subsequent readers will get broken packet. 510 * --ANK (980803) 511 */ 512 513 static inline struct list_head *ptype_head(const struct packet_type *pt) 514 { 515 if (pt->type == htons(ETH_P_ALL)) 516 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 517 else 518 return pt->dev ? &pt->dev->ptype_specific : 519 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 520 } 521 522 /** 523 * dev_add_pack - add packet handler 524 * @pt: packet type declaration 525 * 526 * Add a protocol handler to the networking stack. The passed &packet_type 527 * is linked into kernel lists and may not be freed until it has been 528 * removed from the kernel lists. 529 * 530 * This call does not sleep therefore it can not 531 * guarantee all CPU's that are in middle of receiving packets 532 * will see the new packet type (until the next received packet). 533 */ 534 535 void dev_add_pack(struct packet_type *pt) 536 { 537 struct list_head *head = ptype_head(pt); 538 539 spin_lock(&ptype_lock); 540 list_add_rcu(&pt->list, head); 541 spin_unlock(&ptype_lock); 542 } 543 EXPORT_SYMBOL(dev_add_pack); 544 545 /** 546 * __dev_remove_pack - remove packet handler 547 * @pt: packet type declaration 548 * 549 * Remove a protocol handler that was previously added to the kernel 550 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 551 * from the kernel lists and can be freed or reused once this function 552 * returns. 553 * 554 * The packet type might still be in use by receivers 555 * and must not be freed until after all the CPU's have gone 556 * through a quiescent state. 557 */ 558 void __dev_remove_pack(struct packet_type *pt) 559 { 560 struct list_head *head = ptype_head(pt); 561 struct packet_type *pt1; 562 563 spin_lock(&ptype_lock); 564 565 list_for_each_entry(pt1, head, list) { 566 if (pt == pt1) { 567 list_del_rcu(&pt->list); 568 goto out; 569 } 570 } 571 572 pr_warn("dev_remove_pack: %p not found\n", pt); 573 out: 574 spin_unlock(&ptype_lock); 575 } 576 EXPORT_SYMBOL(__dev_remove_pack); 577 578 /** 579 * dev_remove_pack - remove packet handler 580 * @pt: packet type declaration 581 * 582 * Remove a protocol handler that was previously added to the kernel 583 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 584 * from the kernel lists and can be freed or reused once this function 585 * returns. 586 * 587 * This call sleeps to guarantee that no CPU is looking at the packet 588 * type after return. 589 */ 590 void dev_remove_pack(struct packet_type *pt) 591 { 592 __dev_remove_pack(pt); 593 594 synchronize_net(); 595 } 596 EXPORT_SYMBOL(dev_remove_pack); 597 598 599 /** 600 * dev_add_offload - register offload handlers 601 * @po: protocol offload declaration 602 * 603 * Add protocol offload handlers to the networking stack. The passed 604 * &proto_offload is linked into kernel lists and may not be freed until 605 * it has been removed from the kernel lists. 606 * 607 * This call does not sleep therefore it can not 608 * guarantee all CPU's that are in middle of receiving packets 609 * will see the new offload handlers (until the next received packet). 610 */ 611 void dev_add_offload(struct packet_offload *po) 612 { 613 struct packet_offload *elem; 614 615 spin_lock(&offload_lock); 616 list_for_each_entry(elem, &offload_base, list) { 617 if (po->priority < elem->priority) 618 break; 619 } 620 list_add_rcu(&po->list, elem->list.prev); 621 spin_unlock(&offload_lock); 622 } 623 EXPORT_SYMBOL(dev_add_offload); 624 625 /** 626 * __dev_remove_offload - remove offload handler 627 * @po: packet offload declaration 628 * 629 * Remove a protocol offload handler that was previously added to the 630 * kernel offload handlers by dev_add_offload(). The passed &offload_type 631 * is removed from the kernel lists and can be freed or reused once this 632 * function returns. 633 * 634 * The packet type might still be in use by receivers 635 * and must not be freed until after all the CPU's have gone 636 * through a quiescent state. 637 */ 638 static void __dev_remove_offload(struct packet_offload *po) 639 { 640 struct list_head *head = &offload_base; 641 struct packet_offload *po1; 642 643 spin_lock(&offload_lock); 644 645 list_for_each_entry(po1, head, list) { 646 if (po == po1) { 647 list_del_rcu(&po->list); 648 goto out; 649 } 650 } 651 652 pr_warn("dev_remove_offload: %p not found\n", po); 653 out: 654 spin_unlock(&offload_lock); 655 } 656 657 /** 658 * dev_remove_offload - remove packet offload handler 659 * @po: packet offload declaration 660 * 661 * Remove a packet offload handler that was previously added to the kernel 662 * offload handlers by dev_add_offload(). The passed &offload_type is 663 * removed from the kernel lists and can be freed or reused once this 664 * function returns. 665 * 666 * This call sleeps to guarantee that no CPU is looking at the packet 667 * type after return. 668 */ 669 void dev_remove_offload(struct packet_offload *po) 670 { 671 __dev_remove_offload(po); 672 673 synchronize_net(); 674 } 675 EXPORT_SYMBOL(dev_remove_offload); 676 677 /****************************************************************************** 678 * 679 * Device Boot-time Settings Routines 680 * 681 ******************************************************************************/ 682 683 /* Boot time configuration table */ 684 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 685 686 /** 687 * netdev_boot_setup_add - add new setup entry 688 * @name: name of the device 689 * @map: configured settings for the device 690 * 691 * Adds new setup entry to the dev_boot_setup list. The function 692 * returns 0 on error and 1 on success. This is a generic routine to 693 * all netdevices. 694 */ 695 static int netdev_boot_setup_add(char *name, struct ifmap *map) 696 { 697 struct netdev_boot_setup *s; 698 int i; 699 700 s = dev_boot_setup; 701 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 702 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 703 memset(s[i].name, 0, sizeof(s[i].name)); 704 strlcpy(s[i].name, name, IFNAMSIZ); 705 memcpy(&s[i].map, map, sizeof(s[i].map)); 706 break; 707 } 708 } 709 710 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 711 } 712 713 /** 714 * netdev_boot_setup_check - check boot time settings 715 * @dev: the netdevice 716 * 717 * Check boot time settings for the device. 718 * The found settings are set for the device to be used 719 * later in the device probing. 720 * Returns 0 if no settings found, 1 if they are. 721 */ 722 int netdev_boot_setup_check(struct net_device *dev) 723 { 724 struct netdev_boot_setup *s = dev_boot_setup; 725 int i; 726 727 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 728 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 729 !strcmp(dev->name, s[i].name)) { 730 dev->irq = s[i].map.irq; 731 dev->base_addr = s[i].map.base_addr; 732 dev->mem_start = s[i].map.mem_start; 733 dev->mem_end = s[i].map.mem_end; 734 return 1; 735 } 736 } 737 return 0; 738 } 739 EXPORT_SYMBOL(netdev_boot_setup_check); 740 741 742 /** 743 * netdev_boot_base - get address from boot time settings 744 * @prefix: prefix for network device 745 * @unit: id for network device 746 * 747 * Check boot time settings for the base address of device. 748 * The found settings are set for the device to be used 749 * later in the device probing. 750 * Returns 0 if no settings found. 751 */ 752 unsigned long netdev_boot_base(const char *prefix, int unit) 753 { 754 const struct netdev_boot_setup *s = dev_boot_setup; 755 char name[IFNAMSIZ]; 756 int i; 757 758 sprintf(name, "%s%d", prefix, unit); 759 760 /* 761 * If device already registered then return base of 1 762 * to indicate not to probe for this interface 763 */ 764 if (__dev_get_by_name(&init_net, name)) 765 return 1; 766 767 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 768 if (!strcmp(name, s[i].name)) 769 return s[i].map.base_addr; 770 return 0; 771 } 772 773 /* 774 * Saves at boot time configured settings for any netdevice. 775 */ 776 int __init netdev_boot_setup(char *str) 777 { 778 int ints[5]; 779 struct ifmap map; 780 781 str = get_options(str, ARRAY_SIZE(ints), ints); 782 if (!str || !*str) 783 return 0; 784 785 /* Save settings */ 786 memset(&map, 0, sizeof(map)); 787 if (ints[0] > 0) 788 map.irq = ints[1]; 789 if (ints[0] > 1) 790 map.base_addr = ints[2]; 791 if (ints[0] > 2) 792 map.mem_start = ints[3]; 793 if (ints[0] > 3) 794 map.mem_end = ints[4]; 795 796 /* Add new entry to the list */ 797 return netdev_boot_setup_add(str, &map); 798 } 799 800 __setup("netdev=", netdev_boot_setup); 801 802 /******************************************************************************* 803 * 804 * Device Interface Subroutines 805 * 806 *******************************************************************************/ 807 808 /** 809 * dev_get_iflink - get 'iflink' value of a interface 810 * @dev: targeted interface 811 * 812 * Indicates the ifindex the interface is linked to. 813 * Physical interfaces have the same 'ifindex' and 'iflink' values. 814 */ 815 816 int dev_get_iflink(const struct net_device *dev) 817 { 818 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 819 return dev->netdev_ops->ndo_get_iflink(dev); 820 821 return dev->ifindex; 822 } 823 EXPORT_SYMBOL(dev_get_iflink); 824 825 /** 826 * dev_fill_metadata_dst - Retrieve tunnel egress information. 827 * @dev: targeted interface 828 * @skb: The packet. 829 * 830 * For better visibility of tunnel traffic OVS needs to retrieve 831 * egress tunnel information for a packet. Following API allows 832 * user to get this info. 833 */ 834 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 835 { 836 struct ip_tunnel_info *info; 837 838 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 839 return -EINVAL; 840 841 info = skb_tunnel_info_unclone(skb); 842 if (!info) 843 return -ENOMEM; 844 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 845 return -EINVAL; 846 847 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 848 } 849 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 850 851 /** 852 * __dev_get_by_name - find a device by its name 853 * @net: the applicable net namespace 854 * @name: name to find 855 * 856 * Find an interface by name. Must be called under RTNL semaphore 857 * or @dev_base_lock. If the name is found a pointer to the device 858 * is returned. If the name is not found then %NULL is returned. The 859 * reference counters are not incremented so the caller must be 860 * careful with locks. 861 */ 862 863 struct net_device *__dev_get_by_name(struct net *net, const char *name) 864 { 865 struct netdev_name_node *node_name; 866 867 node_name = netdev_name_node_lookup(net, name); 868 return node_name ? node_name->dev : NULL; 869 } 870 EXPORT_SYMBOL(__dev_get_by_name); 871 872 /** 873 * dev_get_by_name_rcu - find a device by its name 874 * @net: the applicable net namespace 875 * @name: name to find 876 * 877 * Find an interface by name. 878 * If the name is found a pointer to the device is returned. 879 * If the name is not found then %NULL is returned. 880 * The reference counters are not incremented so the caller must be 881 * careful with locks. The caller must hold RCU lock. 882 */ 883 884 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 885 { 886 struct netdev_name_node *node_name; 887 888 node_name = netdev_name_node_lookup_rcu(net, name); 889 return node_name ? node_name->dev : NULL; 890 } 891 EXPORT_SYMBOL(dev_get_by_name_rcu); 892 893 /** 894 * dev_get_by_name - find a device by its name 895 * @net: the applicable net namespace 896 * @name: name to find 897 * 898 * Find an interface by name. This can be called from any 899 * context and does its own locking. The returned handle has 900 * the usage count incremented and the caller must use dev_put() to 901 * release it when it is no longer needed. %NULL is returned if no 902 * matching device is found. 903 */ 904 905 struct net_device *dev_get_by_name(struct net *net, const char *name) 906 { 907 struct net_device *dev; 908 909 rcu_read_lock(); 910 dev = dev_get_by_name_rcu(net, name); 911 if (dev) 912 dev_hold(dev); 913 rcu_read_unlock(); 914 return dev; 915 } 916 EXPORT_SYMBOL(dev_get_by_name); 917 918 /** 919 * __dev_get_by_index - find a device by its ifindex 920 * @net: the applicable net namespace 921 * @ifindex: index of device 922 * 923 * Search for an interface by index. Returns %NULL if the device 924 * is not found or a pointer to the device. The device has not 925 * had its reference counter increased so the caller must be careful 926 * about locking. The caller must hold either the RTNL semaphore 927 * or @dev_base_lock. 928 */ 929 930 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 931 { 932 struct net_device *dev; 933 struct hlist_head *head = dev_index_hash(net, ifindex); 934 935 hlist_for_each_entry(dev, head, index_hlist) 936 if (dev->ifindex == ifindex) 937 return dev; 938 939 return NULL; 940 } 941 EXPORT_SYMBOL(__dev_get_by_index); 942 943 /** 944 * dev_get_by_index_rcu - find a device by its ifindex 945 * @net: the applicable net namespace 946 * @ifindex: index of device 947 * 948 * Search for an interface by index. Returns %NULL if the device 949 * is not found or a pointer to the device. The device has not 950 * had its reference counter increased so the caller must be careful 951 * about locking. The caller must hold RCU lock. 952 */ 953 954 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 955 { 956 struct net_device *dev; 957 struct hlist_head *head = dev_index_hash(net, ifindex); 958 959 hlist_for_each_entry_rcu(dev, head, index_hlist) 960 if (dev->ifindex == ifindex) 961 return dev; 962 963 return NULL; 964 } 965 EXPORT_SYMBOL(dev_get_by_index_rcu); 966 967 968 /** 969 * dev_get_by_index - find a device by its ifindex 970 * @net: the applicable net namespace 971 * @ifindex: index of device 972 * 973 * Search for an interface by index. Returns NULL if the device 974 * is not found or a pointer to the device. The device returned has 975 * had a reference added and the pointer is safe until the user calls 976 * dev_put to indicate they have finished with it. 977 */ 978 979 struct net_device *dev_get_by_index(struct net *net, int ifindex) 980 { 981 struct net_device *dev; 982 983 rcu_read_lock(); 984 dev = dev_get_by_index_rcu(net, ifindex); 985 if (dev) 986 dev_hold(dev); 987 rcu_read_unlock(); 988 return dev; 989 } 990 EXPORT_SYMBOL(dev_get_by_index); 991 992 /** 993 * dev_get_by_napi_id - find a device by napi_id 994 * @napi_id: ID of the NAPI struct 995 * 996 * Search for an interface by NAPI ID. Returns %NULL if the device 997 * is not found or a pointer to the device. The device has not had 998 * its reference counter increased so the caller must be careful 999 * about locking. The caller must hold RCU lock. 1000 */ 1001 1002 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 1003 { 1004 struct napi_struct *napi; 1005 1006 WARN_ON_ONCE(!rcu_read_lock_held()); 1007 1008 if (napi_id < MIN_NAPI_ID) 1009 return NULL; 1010 1011 napi = napi_by_id(napi_id); 1012 1013 return napi ? napi->dev : NULL; 1014 } 1015 EXPORT_SYMBOL(dev_get_by_napi_id); 1016 1017 /** 1018 * netdev_get_name - get a netdevice name, knowing its ifindex. 1019 * @net: network namespace 1020 * @name: a pointer to the buffer where the name will be stored. 1021 * @ifindex: the ifindex of the interface to get the name from. 1022 */ 1023 int netdev_get_name(struct net *net, char *name, int ifindex) 1024 { 1025 struct net_device *dev; 1026 int ret; 1027 1028 down_read(&devnet_rename_sem); 1029 rcu_read_lock(); 1030 1031 dev = dev_get_by_index_rcu(net, ifindex); 1032 if (!dev) { 1033 ret = -ENODEV; 1034 goto out; 1035 } 1036 1037 strcpy(name, dev->name); 1038 1039 ret = 0; 1040 out: 1041 rcu_read_unlock(); 1042 up_read(&devnet_rename_sem); 1043 return ret; 1044 } 1045 1046 /** 1047 * dev_getbyhwaddr_rcu - find a device by its hardware address 1048 * @net: the applicable net namespace 1049 * @type: media type of device 1050 * @ha: hardware address 1051 * 1052 * Search for an interface by MAC address. Returns NULL if the device 1053 * is not found or a pointer to the device. 1054 * The caller must hold RCU or RTNL. 1055 * The returned device has not had its ref count increased 1056 * and the caller must therefore be careful about locking 1057 * 1058 */ 1059 1060 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 1061 const char *ha) 1062 { 1063 struct net_device *dev; 1064 1065 for_each_netdev_rcu(net, dev) 1066 if (dev->type == type && 1067 !memcmp(dev->dev_addr, ha, dev->addr_len)) 1068 return dev; 1069 1070 return NULL; 1071 } 1072 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 1073 1074 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 1075 { 1076 struct net_device *dev, *ret = NULL; 1077 1078 rcu_read_lock(); 1079 for_each_netdev_rcu(net, dev) 1080 if (dev->type == type) { 1081 dev_hold(dev); 1082 ret = dev; 1083 break; 1084 } 1085 rcu_read_unlock(); 1086 return ret; 1087 } 1088 EXPORT_SYMBOL(dev_getfirstbyhwtype); 1089 1090 /** 1091 * __dev_get_by_flags - find any device with given flags 1092 * @net: the applicable net namespace 1093 * @if_flags: IFF_* values 1094 * @mask: bitmask of bits in if_flags to check 1095 * 1096 * Search for any interface with the given flags. Returns NULL if a device 1097 * is not found or a pointer to the device. Must be called inside 1098 * rtnl_lock(), and result refcount is unchanged. 1099 */ 1100 1101 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 1102 unsigned short mask) 1103 { 1104 struct net_device *dev, *ret; 1105 1106 ASSERT_RTNL(); 1107 1108 ret = NULL; 1109 for_each_netdev(net, dev) { 1110 if (((dev->flags ^ if_flags) & mask) == 0) { 1111 ret = dev; 1112 break; 1113 } 1114 } 1115 return ret; 1116 } 1117 EXPORT_SYMBOL(__dev_get_by_flags); 1118 1119 /** 1120 * dev_valid_name - check if name is okay for network device 1121 * @name: name string 1122 * 1123 * Network device names need to be valid file names to 1124 * allow sysfs to work. We also disallow any kind of 1125 * whitespace. 1126 */ 1127 bool dev_valid_name(const char *name) 1128 { 1129 if (*name == '\0') 1130 return false; 1131 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1132 return false; 1133 if (!strcmp(name, ".") || !strcmp(name, "..")) 1134 return false; 1135 1136 while (*name) { 1137 if (*name == '/' || *name == ':' || isspace(*name)) 1138 return false; 1139 name++; 1140 } 1141 return true; 1142 } 1143 EXPORT_SYMBOL(dev_valid_name); 1144 1145 /** 1146 * __dev_alloc_name - allocate a name for a device 1147 * @net: network namespace to allocate the device name in 1148 * @name: name format string 1149 * @buf: scratch buffer and result name string 1150 * 1151 * Passed a format string - eg "lt%d" it will try and find a suitable 1152 * id. It scans list of devices to build up a free map, then chooses 1153 * the first empty slot. The caller must hold the dev_base or rtnl lock 1154 * while allocating the name and adding the device in order to avoid 1155 * duplicates. 1156 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1157 * Returns the number of the unit assigned or a negative errno code. 1158 */ 1159 1160 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1161 { 1162 int i = 0; 1163 const char *p; 1164 const int max_netdevices = 8*PAGE_SIZE; 1165 unsigned long *inuse; 1166 struct net_device *d; 1167 1168 if (!dev_valid_name(name)) 1169 return -EINVAL; 1170 1171 p = strchr(name, '%'); 1172 if (p) { 1173 /* 1174 * Verify the string as this thing may have come from 1175 * the user. There must be either one "%d" and no other "%" 1176 * characters. 1177 */ 1178 if (p[1] != 'd' || strchr(p + 2, '%')) 1179 return -EINVAL; 1180 1181 /* Use one page as a bit array of possible slots */ 1182 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1183 if (!inuse) 1184 return -ENOMEM; 1185 1186 for_each_netdev(net, d) { 1187 struct netdev_name_node *name_node; 1188 list_for_each_entry(name_node, &d->name_node->list, list) { 1189 if (!sscanf(name_node->name, name, &i)) 1190 continue; 1191 if (i < 0 || i >= max_netdevices) 1192 continue; 1193 1194 /* avoid cases where sscanf is not exact inverse of printf */ 1195 snprintf(buf, IFNAMSIZ, name, i); 1196 if (!strncmp(buf, name_node->name, IFNAMSIZ)) 1197 set_bit(i, inuse); 1198 } 1199 if (!sscanf(d->name, name, &i)) 1200 continue; 1201 if (i < 0 || i >= max_netdevices) 1202 continue; 1203 1204 /* avoid cases where sscanf is not exact inverse of printf */ 1205 snprintf(buf, IFNAMSIZ, name, i); 1206 if (!strncmp(buf, d->name, IFNAMSIZ)) 1207 set_bit(i, inuse); 1208 } 1209 1210 i = find_first_zero_bit(inuse, max_netdevices); 1211 free_page((unsigned long) inuse); 1212 } 1213 1214 snprintf(buf, IFNAMSIZ, name, i); 1215 if (!__dev_get_by_name(net, buf)) 1216 return i; 1217 1218 /* It is possible to run out of possible slots 1219 * when the name is long and there isn't enough space left 1220 * for the digits, or if all bits are used. 1221 */ 1222 return -ENFILE; 1223 } 1224 1225 static int dev_alloc_name_ns(struct net *net, 1226 struct net_device *dev, 1227 const char *name) 1228 { 1229 char buf[IFNAMSIZ]; 1230 int ret; 1231 1232 BUG_ON(!net); 1233 ret = __dev_alloc_name(net, name, buf); 1234 if (ret >= 0) 1235 strlcpy(dev->name, buf, IFNAMSIZ); 1236 return ret; 1237 } 1238 1239 /** 1240 * dev_alloc_name - allocate a name for a device 1241 * @dev: device 1242 * @name: name format string 1243 * 1244 * Passed a format string - eg "lt%d" it will try and find a suitable 1245 * id. It scans list of devices to build up a free map, then chooses 1246 * the first empty slot. The caller must hold the dev_base or rtnl lock 1247 * while allocating the name and adding the device in order to avoid 1248 * duplicates. 1249 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1250 * Returns the number of the unit assigned or a negative errno code. 1251 */ 1252 1253 int dev_alloc_name(struct net_device *dev, const char *name) 1254 { 1255 return dev_alloc_name_ns(dev_net(dev), dev, name); 1256 } 1257 EXPORT_SYMBOL(dev_alloc_name); 1258 1259 static int dev_get_valid_name(struct net *net, struct net_device *dev, 1260 const char *name) 1261 { 1262 BUG_ON(!net); 1263 1264 if (!dev_valid_name(name)) 1265 return -EINVAL; 1266 1267 if (strchr(name, '%')) 1268 return dev_alloc_name_ns(net, dev, name); 1269 else if (__dev_get_by_name(net, name)) 1270 return -EEXIST; 1271 else if (dev->name != name) 1272 strlcpy(dev->name, name, IFNAMSIZ); 1273 1274 return 0; 1275 } 1276 1277 /** 1278 * dev_change_name - change name of a device 1279 * @dev: device 1280 * @newname: name (or format string) must be at least IFNAMSIZ 1281 * 1282 * Change name of a device, can pass format strings "eth%d". 1283 * for wildcarding. 1284 */ 1285 int dev_change_name(struct net_device *dev, const char *newname) 1286 { 1287 unsigned char old_assign_type; 1288 char oldname[IFNAMSIZ]; 1289 int err = 0; 1290 int ret; 1291 struct net *net; 1292 1293 ASSERT_RTNL(); 1294 BUG_ON(!dev_net(dev)); 1295 1296 net = dev_net(dev); 1297 1298 /* Some auto-enslaved devices e.g. failover slaves are 1299 * special, as userspace might rename the device after 1300 * the interface had been brought up and running since 1301 * the point kernel initiated auto-enslavement. Allow 1302 * live name change even when these slave devices are 1303 * up and running. 1304 * 1305 * Typically, users of these auto-enslaving devices 1306 * don't actually care about slave name change, as 1307 * they are supposed to operate on master interface 1308 * directly. 1309 */ 1310 if (dev->flags & IFF_UP && 1311 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK))) 1312 return -EBUSY; 1313 1314 down_write(&devnet_rename_sem); 1315 1316 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1317 up_write(&devnet_rename_sem); 1318 return 0; 1319 } 1320 1321 memcpy(oldname, dev->name, IFNAMSIZ); 1322 1323 err = dev_get_valid_name(net, dev, newname); 1324 if (err < 0) { 1325 up_write(&devnet_rename_sem); 1326 return err; 1327 } 1328 1329 if (oldname[0] && !strchr(oldname, '%')) 1330 netdev_info(dev, "renamed from %s\n", oldname); 1331 1332 old_assign_type = dev->name_assign_type; 1333 dev->name_assign_type = NET_NAME_RENAMED; 1334 1335 rollback: 1336 ret = device_rename(&dev->dev, dev->name); 1337 if (ret) { 1338 memcpy(dev->name, oldname, IFNAMSIZ); 1339 dev->name_assign_type = old_assign_type; 1340 up_write(&devnet_rename_sem); 1341 return ret; 1342 } 1343 1344 up_write(&devnet_rename_sem); 1345 1346 netdev_adjacent_rename_links(dev, oldname); 1347 1348 write_lock_bh(&dev_base_lock); 1349 netdev_name_node_del(dev->name_node); 1350 write_unlock_bh(&dev_base_lock); 1351 1352 synchronize_rcu(); 1353 1354 write_lock_bh(&dev_base_lock); 1355 netdev_name_node_add(net, dev->name_node); 1356 write_unlock_bh(&dev_base_lock); 1357 1358 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1359 ret = notifier_to_errno(ret); 1360 1361 if (ret) { 1362 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1363 if (err >= 0) { 1364 err = ret; 1365 down_write(&devnet_rename_sem); 1366 memcpy(dev->name, oldname, IFNAMSIZ); 1367 memcpy(oldname, newname, IFNAMSIZ); 1368 dev->name_assign_type = old_assign_type; 1369 old_assign_type = NET_NAME_RENAMED; 1370 goto rollback; 1371 } else { 1372 pr_err("%s: name change rollback failed: %d\n", 1373 dev->name, ret); 1374 } 1375 } 1376 1377 return err; 1378 } 1379 1380 /** 1381 * dev_set_alias - change ifalias of a device 1382 * @dev: device 1383 * @alias: name up to IFALIASZ 1384 * @len: limit of bytes to copy from info 1385 * 1386 * Set ifalias for a device, 1387 */ 1388 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1389 { 1390 struct dev_ifalias *new_alias = NULL; 1391 1392 if (len >= IFALIASZ) 1393 return -EINVAL; 1394 1395 if (len) { 1396 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1397 if (!new_alias) 1398 return -ENOMEM; 1399 1400 memcpy(new_alias->ifalias, alias, len); 1401 new_alias->ifalias[len] = 0; 1402 } 1403 1404 mutex_lock(&ifalias_mutex); 1405 new_alias = rcu_replace_pointer(dev->ifalias, new_alias, 1406 mutex_is_locked(&ifalias_mutex)); 1407 mutex_unlock(&ifalias_mutex); 1408 1409 if (new_alias) 1410 kfree_rcu(new_alias, rcuhead); 1411 1412 return len; 1413 } 1414 EXPORT_SYMBOL(dev_set_alias); 1415 1416 /** 1417 * dev_get_alias - get ifalias of a device 1418 * @dev: device 1419 * @name: buffer to store name of ifalias 1420 * @len: size of buffer 1421 * 1422 * get ifalias for a device. Caller must make sure dev cannot go 1423 * away, e.g. rcu read lock or own a reference count to device. 1424 */ 1425 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1426 { 1427 const struct dev_ifalias *alias; 1428 int ret = 0; 1429 1430 rcu_read_lock(); 1431 alias = rcu_dereference(dev->ifalias); 1432 if (alias) 1433 ret = snprintf(name, len, "%s", alias->ifalias); 1434 rcu_read_unlock(); 1435 1436 return ret; 1437 } 1438 1439 /** 1440 * netdev_features_change - device changes features 1441 * @dev: device to cause notification 1442 * 1443 * Called to indicate a device has changed features. 1444 */ 1445 void netdev_features_change(struct net_device *dev) 1446 { 1447 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1448 } 1449 EXPORT_SYMBOL(netdev_features_change); 1450 1451 /** 1452 * netdev_state_change - device changes state 1453 * @dev: device to cause notification 1454 * 1455 * Called to indicate a device has changed state. This function calls 1456 * the notifier chains for netdev_chain and sends a NEWLINK message 1457 * to the routing socket. 1458 */ 1459 void netdev_state_change(struct net_device *dev) 1460 { 1461 if (dev->flags & IFF_UP) { 1462 struct netdev_notifier_change_info change_info = { 1463 .info.dev = dev, 1464 }; 1465 1466 call_netdevice_notifiers_info(NETDEV_CHANGE, 1467 &change_info.info); 1468 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1469 } 1470 } 1471 EXPORT_SYMBOL(netdev_state_change); 1472 1473 /** 1474 * __netdev_notify_peers - notify network peers about existence of @dev, 1475 * to be called when rtnl lock is already held. 1476 * @dev: network device 1477 * 1478 * Generate traffic such that interested network peers are aware of 1479 * @dev, such as by generating a gratuitous ARP. This may be used when 1480 * a device wants to inform the rest of the network about some sort of 1481 * reconfiguration such as a failover event or virtual machine 1482 * migration. 1483 */ 1484 void __netdev_notify_peers(struct net_device *dev) 1485 { 1486 ASSERT_RTNL(); 1487 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1488 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1489 } 1490 EXPORT_SYMBOL(__netdev_notify_peers); 1491 1492 /** 1493 * netdev_notify_peers - notify network peers about existence of @dev 1494 * @dev: network device 1495 * 1496 * Generate traffic such that interested network peers are aware of 1497 * @dev, such as by generating a gratuitous ARP. This may be used when 1498 * a device wants to inform the rest of the network about some sort of 1499 * reconfiguration such as a failover event or virtual machine 1500 * migration. 1501 */ 1502 void netdev_notify_peers(struct net_device *dev) 1503 { 1504 rtnl_lock(); 1505 __netdev_notify_peers(dev); 1506 rtnl_unlock(); 1507 } 1508 EXPORT_SYMBOL(netdev_notify_peers); 1509 1510 static int napi_threaded_poll(void *data); 1511 1512 static int napi_kthread_create(struct napi_struct *n) 1513 { 1514 int err = 0; 1515 1516 /* Create and wake up the kthread once to put it in 1517 * TASK_INTERRUPTIBLE mode to avoid the blocked task 1518 * warning and work with loadavg. 1519 */ 1520 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d", 1521 n->dev->name, n->napi_id); 1522 if (IS_ERR(n->thread)) { 1523 err = PTR_ERR(n->thread); 1524 pr_err("kthread_run failed with err %d\n", err); 1525 n->thread = NULL; 1526 } 1527 1528 return err; 1529 } 1530 1531 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1532 { 1533 const struct net_device_ops *ops = dev->netdev_ops; 1534 int ret; 1535 1536 ASSERT_RTNL(); 1537 1538 if (!netif_device_present(dev)) { 1539 /* may be detached because parent is runtime-suspended */ 1540 if (dev->dev.parent) 1541 pm_runtime_resume(dev->dev.parent); 1542 if (!netif_device_present(dev)) 1543 return -ENODEV; 1544 } 1545 1546 /* Block netpoll from trying to do any rx path servicing. 1547 * If we don't do this there is a chance ndo_poll_controller 1548 * or ndo_poll may be running while we open the device 1549 */ 1550 netpoll_poll_disable(dev); 1551 1552 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1553 ret = notifier_to_errno(ret); 1554 if (ret) 1555 return ret; 1556 1557 set_bit(__LINK_STATE_START, &dev->state); 1558 1559 if (ops->ndo_validate_addr) 1560 ret = ops->ndo_validate_addr(dev); 1561 1562 if (!ret && ops->ndo_open) 1563 ret = ops->ndo_open(dev); 1564 1565 netpoll_poll_enable(dev); 1566 1567 if (ret) 1568 clear_bit(__LINK_STATE_START, &dev->state); 1569 else { 1570 dev->flags |= IFF_UP; 1571 dev_set_rx_mode(dev); 1572 dev_activate(dev); 1573 add_device_randomness(dev->dev_addr, dev->addr_len); 1574 } 1575 1576 return ret; 1577 } 1578 1579 /** 1580 * dev_open - prepare an interface for use. 1581 * @dev: device to open 1582 * @extack: netlink extended ack 1583 * 1584 * Takes a device from down to up state. The device's private open 1585 * function is invoked and then the multicast lists are loaded. Finally 1586 * the device is moved into the up state and a %NETDEV_UP message is 1587 * sent to the netdev notifier chain. 1588 * 1589 * Calling this function on an active interface is a nop. On a failure 1590 * a negative errno code is returned. 1591 */ 1592 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1593 { 1594 int ret; 1595 1596 if (dev->flags & IFF_UP) 1597 return 0; 1598 1599 ret = __dev_open(dev, extack); 1600 if (ret < 0) 1601 return ret; 1602 1603 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1604 call_netdevice_notifiers(NETDEV_UP, dev); 1605 1606 return ret; 1607 } 1608 EXPORT_SYMBOL(dev_open); 1609 1610 static void __dev_close_many(struct list_head *head) 1611 { 1612 struct net_device *dev; 1613 1614 ASSERT_RTNL(); 1615 might_sleep(); 1616 1617 list_for_each_entry(dev, head, close_list) { 1618 /* Temporarily disable netpoll until the interface is down */ 1619 netpoll_poll_disable(dev); 1620 1621 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1622 1623 clear_bit(__LINK_STATE_START, &dev->state); 1624 1625 /* Synchronize to scheduled poll. We cannot touch poll list, it 1626 * can be even on different cpu. So just clear netif_running(). 1627 * 1628 * dev->stop() will invoke napi_disable() on all of it's 1629 * napi_struct instances on this device. 1630 */ 1631 smp_mb__after_atomic(); /* Commit netif_running(). */ 1632 } 1633 1634 dev_deactivate_many(head); 1635 1636 list_for_each_entry(dev, head, close_list) { 1637 const struct net_device_ops *ops = dev->netdev_ops; 1638 1639 /* 1640 * Call the device specific close. This cannot fail. 1641 * Only if device is UP 1642 * 1643 * We allow it to be called even after a DETACH hot-plug 1644 * event. 1645 */ 1646 if (ops->ndo_stop) 1647 ops->ndo_stop(dev); 1648 1649 dev->flags &= ~IFF_UP; 1650 netpoll_poll_enable(dev); 1651 } 1652 } 1653 1654 static void __dev_close(struct net_device *dev) 1655 { 1656 LIST_HEAD(single); 1657 1658 list_add(&dev->close_list, &single); 1659 __dev_close_many(&single); 1660 list_del(&single); 1661 } 1662 1663 void dev_close_many(struct list_head *head, bool unlink) 1664 { 1665 struct net_device *dev, *tmp; 1666 1667 /* Remove the devices that don't need to be closed */ 1668 list_for_each_entry_safe(dev, tmp, head, close_list) 1669 if (!(dev->flags & IFF_UP)) 1670 list_del_init(&dev->close_list); 1671 1672 __dev_close_many(head); 1673 1674 list_for_each_entry_safe(dev, tmp, head, close_list) { 1675 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1676 call_netdevice_notifiers(NETDEV_DOWN, dev); 1677 if (unlink) 1678 list_del_init(&dev->close_list); 1679 } 1680 } 1681 EXPORT_SYMBOL(dev_close_many); 1682 1683 /** 1684 * dev_close - shutdown an interface. 1685 * @dev: device to shutdown 1686 * 1687 * This function moves an active device into down state. A 1688 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1689 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1690 * chain. 1691 */ 1692 void dev_close(struct net_device *dev) 1693 { 1694 if (dev->flags & IFF_UP) { 1695 LIST_HEAD(single); 1696 1697 list_add(&dev->close_list, &single); 1698 dev_close_many(&single, true); 1699 list_del(&single); 1700 } 1701 } 1702 EXPORT_SYMBOL(dev_close); 1703 1704 1705 /** 1706 * dev_disable_lro - disable Large Receive Offload on a device 1707 * @dev: device 1708 * 1709 * Disable Large Receive Offload (LRO) on a net device. Must be 1710 * called under RTNL. This is needed if received packets may be 1711 * forwarded to another interface. 1712 */ 1713 void dev_disable_lro(struct net_device *dev) 1714 { 1715 struct net_device *lower_dev; 1716 struct list_head *iter; 1717 1718 dev->wanted_features &= ~NETIF_F_LRO; 1719 netdev_update_features(dev); 1720 1721 if (unlikely(dev->features & NETIF_F_LRO)) 1722 netdev_WARN(dev, "failed to disable LRO!\n"); 1723 1724 netdev_for_each_lower_dev(dev, lower_dev, iter) 1725 dev_disable_lro(lower_dev); 1726 } 1727 EXPORT_SYMBOL(dev_disable_lro); 1728 1729 /** 1730 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1731 * @dev: device 1732 * 1733 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1734 * called under RTNL. This is needed if Generic XDP is installed on 1735 * the device. 1736 */ 1737 static void dev_disable_gro_hw(struct net_device *dev) 1738 { 1739 dev->wanted_features &= ~NETIF_F_GRO_HW; 1740 netdev_update_features(dev); 1741 1742 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1743 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1744 } 1745 1746 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1747 { 1748 #define N(val) \ 1749 case NETDEV_##val: \ 1750 return "NETDEV_" __stringify(val); 1751 switch (cmd) { 1752 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1753 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1754 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1755 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER) 1756 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO) 1757 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO) 1758 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1759 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1760 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1761 N(PRE_CHANGEADDR) 1762 } 1763 #undef N 1764 return "UNKNOWN_NETDEV_EVENT"; 1765 } 1766 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1767 1768 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1769 struct net_device *dev) 1770 { 1771 struct netdev_notifier_info info = { 1772 .dev = dev, 1773 }; 1774 1775 return nb->notifier_call(nb, val, &info); 1776 } 1777 1778 static int call_netdevice_register_notifiers(struct notifier_block *nb, 1779 struct net_device *dev) 1780 { 1781 int err; 1782 1783 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1784 err = notifier_to_errno(err); 1785 if (err) 1786 return err; 1787 1788 if (!(dev->flags & IFF_UP)) 1789 return 0; 1790 1791 call_netdevice_notifier(nb, NETDEV_UP, dev); 1792 return 0; 1793 } 1794 1795 static void call_netdevice_unregister_notifiers(struct notifier_block *nb, 1796 struct net_device *dev) 1797 { 1798 if (dev->flags & IFF_UP) { 1799 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1800 dev); 1801 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1802 } 1803 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1804 } 1805 1806 static int call_netdevice_register_net_notifiers(struct notifier_block *nb, 1807 struct net *net) 1808 { 1809 struct net_device *dev; 1810 int err; 1811 1812 for_each_netdev(net, dev) { 1813 err = call_netdevice_register_notifiers(nb, dev); 1814 if (err) 1815 goto rollback; 1816 } 1817 return 0; 1818 1819 rollback: 1820 for_each_netdev_continue_reverse(net, dev) 1821 call_netdevice_unregister_notifiers(nb, dev); 1822 return err; 1823 } 1824 1825 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb, 1826 struct net *net) 1827 { 1828 struct net_device *dev; 1829 1830 for_each_netdev(net, dev) 1831 call_netdevice_unregister_notifiers(nb, dev); 1832 } 1833 1834 static int dev_boot_phase = 1; 1835 1836 /** 1837 * register_netdevice_notifier - register a network notifier block 1838 * @nb: notifier 1839 * 1840 * Register a notifier to be called when network device events occur. 1841 * The notifier passed is linked into the kernel structures and must 1842 * not be reused until it has been unregistered. A negative errno code 1843 * is returned on a failure. 1844 * 1845 * When registered all registration and up events are replayed 1846 * to the new notifier to allow device to have a race free 1847 * view of the network device list. 1848 */ 1849 1850 int register_netdevice_notifier(struct notifier_block *nb) 1851 { 1852 struct net *net; 1853 int err; 1854 1855 /* Close race with setup_net() and cleanup_net() */ 1856 down_write(&pernet_ops_rwsem); 1857 rtnl_lock(); 1858 err = raw_notifier_chain_register(&netdev_chain, nb); 1859 if (err) 1860 goto unlock; 1861 if (dev_boot_phase) 1862 goto unlock; 1863 for_each_net(net) { 1864 err = call_netdevice_register_net_notifiers(nb, net); 1865 if (err) 1866 goto rollback; 1867 } 1868 1869 unlock: 1870 rtnl_unlock(); 1871 up_write(&pernet_ops_rwsem); 1872 return err; 1873 1874 rollback: 1875 for_each_net_continue_reverse(net) 1876 call_netdevice_unregister_net_notifiers(nb, net); 1877 1878 raw_notifier_chain_unregister(&netdev_chain, nb); 1879 goto unlock; 1880 } 1881 EXPORT_SYMBOL(register_netdevice_notifier); 1882 1883 /** 1884 * unregister_netdevice_notifier - unregister a network notifier block 1885 * @nb: notifier 1886 * 1887 * Unregister a notifier previously registered by 1888 * register_netdevice_notifier(). The notifier is unlinked into the 1889 * kernel structures and may then be reused. A negative errno code 1890 * is returned on a failure. 1891 * 1892 * After unregistering unregister and down device events are synthesized 1893 * for all devices on the device list to the removed notifier to remove 1894 * the need for special case cleanup code. 1895 */ 1896 1897 int unregister_netdevice_notifier(struct notifier_block *nb) 1898 { 1899 struct net *net; 1900 int err; 1901 1902 /* Close race with setup_net() and cleanup_net() */ 1903 down_write(&pernet_ops_rwsem); 1904 rtnl_lock(); 1905 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1906 if (err) 1907 goto unlock; 1908 1909 for_each_net(net) 1910 call_netdevice_unregister_net_notifiers(nb, net); 1911 1912 unlock: 1913 rtnl_unlock(); 1914 up_write(&pernet_ops_rwsem); 1915 return err; 1916 } 1917 EXPORT_SYMBOL(unregister_netdevice_notifier); 1918 1919 static int __register_netdevice_notifier_net(struct net *net, 1920 struct notifier_block *nb, 1921 bool ignore_call_fail) 1922 { 1923 int err; 1924 1925 err = raw_notifier_chain_register(&net->netdev_chain, nb); 1926 if (err) 1927 return err; 1928 if (dev_boot_phase) 1929 return 0; 1930 1931 err = call_netdevice_register_net_notifiers(nb, net); 1932 if (err && !ignore_call_fail) 1933 goto chain_unregister; 1934 1935 return 0; 1936 1937 chain_unregister: 1938 raw_notifier_chain_unregister(&net->netdev_chain, nb); 1939 return err; 1940 } 1941 1942 static int __unregister_netdevice_notifier_net(struct net *net, 1943 struct notifier_block *nb) 1944 { 1945 int err; 1946 1947 err = raw_notifier_chain_unregister(&net->netdev_chain, nb); 1948 if (err) 1949 return err; 1950 1951 call_netdevice_unregister_net_notifiers(nb, net); 1952 return 0; 1953 } 1954 1955 /** 1956 * register_netdevice_notifier_net - register a per-netns network notifier block 1957 * @net: network namespace 1958 * @nb: notifier 1959 * 1960 * Register a notifier to be called when network device events occur. 1961 * The notifier passed is linked into the kernel structures and must 1962 * not be reused until it has been unregistered. A negative errno code 1963 * is returned on a failure. 1964 * 1965 * When registered all registration and up events are replayed 1966 * to the new notifier to allow device to have a race free 1967 * view of the network device list. 1968 */ 1969 1970 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb) 1971 { 1972 int err; 1973 1974 rtnl_lock(); 1975 err = __register_netdevice_notifier_net(net, nb, false); 1976 rtnl_unlock(); 1977 return err; 1978 } 1979 EXPORT_SYMBOL(register_netdevice_notifier_net); 1980 1981 /** 1982 * unregister_netdevice_notifier_net - unregister a per-netns 1983 * network notifier block 1984 * @net: network namespace 1985 * @nb: notifier 1986 * 1987 * Unregister a notifier previously registered by 1988 * register_netdevice_notifier(). The notifier is unlinked into the 1989 * kernel structures and may then be reused. A negative errno code 1990 * is returned on a failure. 1991 * 1992 * After unregistering unregister and down device events are synthesized 1993 * for all devices on the device list to the removed notifier to remove 1994 * the need for special case cleanup code. 1995 */ 1996 1997 int unregister_netdevice_notifier_net(struct net *net, 1998 struct notifier_block *nb) 1999 { 2000 int err; 2001 2002 rtnl_lock(); 2003 err = __unregister_netdevice_notifier_net(net, nb); 2004 rtnl_unlock(); 2005 return err; 2006 } 2007 EXPORT_SYMBOL(unregister_netdevice_notifier_net); 2008 2009 int register_netdevice_notifier_dev_net(struct net_device *dev, 2010 struct notifier_block *nb, 2011 struct netdev_net_notifier *nn) 2012 { 2013 int err; 2014 2015 rtnl_lock(); 2016 err = __register_netdevice_notifier_net(dev_net(dev), nb, false); 2017 if (!err) { 2018 nn->nb = nb; 2019 list_add(&nn->list, &dev->net_notifier_list); 2020 } 2021 rtnl_unlock(); 2022 return err; 2023 } 2024 EXPORT_SYMBOL(register_netdevice_notifier_dev_net); 2025 2026 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 2027 struct notifier_block *nb, 2028 struct netdev_net_notifier *nn) 2029 { 2030 int err; 2031 2032 rtnl_lock(); 2033 list_del(&nn->list); 2034 err = __unregister_netdevice_notifier_net(dev_net(dev), nb); 2035 rtnl_unlock(); 2036 return err; 2037 } 2038 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net); 2039 2040 static void move_netdevice_notifiers_dev_net(struct net_device *dev, 2041 struct net *net) 2042 { 2043 struct netdev_net_notifier *nn; 2044 2045 list_for_each_entry(nn, &dev->net_notifier_list, list) { 2046 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb); 2047 __register_netdevice_notifier_net(net, nn->nb, true); 2048 } 2049 } 2050 2051 /** 2052 * call_netdevice_notifiers_info - call all network notifier blocks 2053 * @val: value passed unmodified to notifier function 2054 * @info: notifier information data 2055 * 2056 * Call all network notifier blocks. Parameters and return value 2057 * are as for raw_notifier_call_chain(). 2058 */ 2059 2060 static int call_netdevice_notifiers_info(unsigned long val, 2061 struct netdev_notifier_info *info) 2062 { 2063 struct net *net = dev_net(info->dev); 2064 int ret; 2065 2066 ASSERT_RTNL(); 2067 2068 /* Run per-netns notifier block chain first, then run the global one. 2069 * Hopefully, one day, the global one is going to be removed after 2070 * all notifier block registrators get converted to be per-netns. 2071 */ 2072 ret = raw_notifier_call_chain(&net->netdev_chain, val, info); 2073 if (ret & NOTIFY_STOP_MASK) 2074 return ret; 2075 return raw_notifier_call_chain(&netdev_chain, val, info); 2076 } 2077 2078 static int call_netdevice_notifiers_extack(unsigned long val, 2079 struct net_device *dev, 2080 struct netlink_ext_ack *extack) 2081 { 2082 struct netdev_notifier_info info = { 2083 .dev = dev, 2084 .extack = extack, 2085 }; 2086 2087 return call_netdevice_notifiers_info(val, &info); 2088 } 2089 2090 /** 2091 * call_netdevice_notifiers - call all network notifier blocks 2092 * @val: value passed unmodified to notifier function 2093 * @dev: net_device pointer passed unmodified to notifier function 2094 * 2095 * Call all network notifier blocks. Parameters and return value 2096 * are as for raw_notifier_call_chain(). 2097 */ 2098 2099 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 2100 { 2101 return call_netdevice_notifiers_extack(val, dev, NULL); 2102 } 2103 EXPORT_SYMBOL(call_netdevice_notifiers); 2104 2105 /** 2106 * call_netdevice_notifiers_mtu - call all network notifier blocks 2107 * @val: value passed unmodified to notifier function 2108 * @dev: net_device pointer passed unmodified to notifier function 2109 * @arg: additional u32 argument passed to the notifier function 2110 * 2111 * Call all network notifier blocks. Parameters and return value 2112 * are as for raw_notifier_call_chain(). 2113 */ 2114 static int call_netdevice_notifiers_mtu(unsigned long val, 2115 struct net_device *dev, u32 arg) 2116 { 2117 struct netdev_notifier_info_ext info = { 2118 .info.dev = dev, 2119 .ext.mtu = arg, 2120 }; 2121 2122 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 2123 2124 return call_netdevice_notifiers_info(val, &info.info); 2125 } 2126 2127 #ifdef CONFIG_NET_INGRESS 2128 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 2129 2130 void net_inc_ingress_queue(void) 2131 { 2132 static_branch_inc(&ingress_needed_key); 2133 } 2134 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 2135 2136 void net_dec_ingress_queue(void) 2137 { 2138 static_branch_dec(&ingress_needed_key); 2139 } 2140 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 2141 #endif 2142 2143 #ifdef CONFIG_NET_EGRESS 2144 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 2145 2146 void net_inc_egress_queue(void) 2147 { 2148 static_branch_inc(&egress_needed_key); 2149 } 2150 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 2151 2152 void net_dec_egress_queue(void) 2153 { 2154 static_branch_dec(&egress_needed_key); 2155 } 2156 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 2157 #endif 2158 2159 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 2160 #ifdef CONFIG_JUMP_LABEL 2161 static atomic_t netstamp_needed_deferred; 2162 static atomic_t netstamp_wanted; 2163 static void netstamp_clear(struct work_struct *work) 2164 { 2165 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 2166 int wanted; 2167 2168 wanted = atomic_add_return(deferred, &netstamp_wanted); 2169 if (wanted > 0) 2170 static_branch_enable(&netstamp_needed_key); 2171 else 2172 static_branch_disable(&netstamp_needed_key); 2173 } 2174 static DECLARE_WORK(netstamp_work, netstamp_clear); 2175 #endif 2176 2177 void net_enable_timestamp(void) 2178 { 2179 #ifdef CONFIG_JUMP_LABEL 2180 int wanted; 2181 2182 while (1) { 2183 wanted = atomic_read(&netstamp_wanted); 2184 if (wanted <= 0) 2185 break; 2186 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 2187 return; 2188 } 2189 atomic_inc(&netstamp_needed_deferred); 2190 schedule_work(&netstamp_work); 2191 #else 2192 static_branch_inc(&netstamp_needed_key); 2193 #endif 2194 } 2195 EXPORT_SYMBOL(net_enable_timestamp); 2196 2197 void net_disable_timestamp(void) 2198 { 2199 #ifdef CONFIG_JUMP_LABEL 2200 int wanted; 2201 2202 while (1) { 2203 wanted = atomic_read(&netstamp_wanted); 2204 if (wanted <= 1) 2205 break; 2206 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 2207 return; 2208 } 2209 atomic_dec(&netstamp_needed_deferred); 2210 schedule_work(&netstamp_work); 2211 #else 2212 static_branch_dec(&netstamp_needed_key); 2213 #endif 2214 } 2215 EXPORT_SYMBOL(net_disable_timestamp); 2216 2217 static inline void net_timestamp_set(struct sk_buff *skb) 2218 { 2219 skb->tstamp = 0; 2220 if (static_branch_unlikely(&netstamp_needed_key)) 2221 __net_timestamp(skb); 2222 } 2223 2224 #define net_timestamp_check(COND, SKB) \ 2225 if (static_branch_unlikely(&netstamp_needed_key)) { \ 2226 if ((COND) && !(SKB)->tstamp) \ 2227 __net_timestamp(SKB); \ 2228 } \ 2229 2230 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 2231 { 2232 return __is_skb_forwardable(dev, skb, true); 2233 } 2234 EXPORT_SYMBOL_GPL(is_skb_forwardable); 2235 2236 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb, 2237 bool check_mtu) 2238 { 2239 int ret = ____dev_forward_skb(dev, skb, check_mtu); 2240 2241 if (likely(!ret)) { 2242 skb->protocol = eth_type_trans(skb, dev); 2243 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 2244 } 2245 2246 return ret; 2247 } 2248 2249 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2250 { 2251 return __dev_forward_skb2(dev, skb, true); 2252 } 2253 EXPORT_SYMBOL_GPL(__dev_forward_skb); 2254 2255 /** 2256 * dev_forward_skb - loopback an skb to another netif 2257 * 2258 * @dev: destination network device 2259 * @skb: buffer to forward 2260 * 2261 * return values: 2262 * NET_RX_SUCCESS (no congestion) 2263 * NET_RX_DROP (packet was dropped, but freed) 2264 * 2265 * dev_forward_skb can be used for injecting an skb from the 2266 * start_xmit function of one device into the receive queue 2267 * of another device. 2268 * 2269 * The receiving device may be in another namespace, so 2270 * we have to clear all information in the skb that could 2271 * impact namespace isolation. 2272 */ 2273 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2274 { 2275 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 2276 } 2277 EXPORT_SYMBOL_GPL(dev_forward_skb); 2278 2279 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb) 2280 { 2281 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb); 2282 } 2283 2284 static inline int deliver_skb(struct sk_buff *skb, 2285 struct packet_type *pt_prev, 2286 struct net_device *orig_dev) 2287 { 2288 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 2289 return -ENOMEM; 2290 refcount_inc(&skb->users); 2291 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2292 } 2293 2294 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 2295 struct packet_type **pt, 2296 struct net_device *orig_dev, 2297 __be16 type, 2298 struct list_head *ptype_list) 2299 { 2300 struct packet_type *ptype, *pt_prev = *pt; 2301 2302 list_for_each_entry_rcu(ptype, ptype_list, list) { 2303 if (ptype->type != type) 2304 continue; 2305 if (pt_prev) 2306 deliver_skb(skb, pt_prev, orig_dev); 2307 pt_prev = ptype; 2308 } 2309 *pt = pt_prev; 2310 } 2311 2312 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 2313 { 2314 if (!ptype->af_packet_priv || !skb->sk) 2315 return false; 2316 2317 if (ptype->id_match) 2318 return ptype->id_match(ptype, skb->sk); 2319 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 2320 return true; 2321 2322 return false; 2323 } 2324 2325 /** 2326 * dev_nit_active - return true if any network interface taps are in use 2327 * 2328 * @dev: network device to check for the presence of taps 2329 */ 2330 bool dev_nit_active(struct net_device *dev) 2331 { 2332 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all); 2333 } 2334 EXPORT_SYMBOL_GPL(dev_nit_active); 2335 2336 /* 2337 * Support routine. Sends outgoing frames to any network 2338 * taps currently in use. 2339 */ 2340 2341 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 2342 { 2343 struct packet_type *ptype; 2344 struct sk_buff *skb2 = NULL; 2345 struct packet_type *pt_prev = NULL; 2346 struct list_head *ptype_list = &ptype_all; 2347 2348 rcu_read_lock(); 2349 again: 2350 list_for_each_entry_rcu(ptype, ptype_list, list) { 2351 if (ptype->ignore_outgoing) 2352 continue; 2353 2354 /* Never send packets back to the socket 2355 * they originated from - MvS (miquels@drinkel.ow.org) 2356 */ 2357 if (skb_loop_sk(ptype, skb)) 2358 continue; 2359 2360 if (pt_prev) { 2361 deliver_skb(skb2, pt_prev, skb->dev); 2362 pt_prev = ptype; 2363 continue; 2364 } 2365 2366 /* need to clone skb, done only once */ 2367 skb2 = skb_clone(skb, GFP_ATOMIC); 2368 if (!skb2) 2369 goto out_unlock; 2370 2371 net_timestamp_set(skb2); 2372 2373 /* skb->nh should be correctly 2374 * set by sender, so that the second statement is 2375 * just protection against buggy protocols. 2376 */ 2377 skb_reset_mac_header(skb2); 2378 2379 if (skb_network_header(skb2) < skb2->data || 2380 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2381 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2382 ntohs(skb2->protocol), 2383 dev->name); 2384 skb_reset_network_header(skb2); 2385 } 2386 2387 skb2->transport_header = skb2->network_header; 2388 skb2->pkt_type = PACKET_OUTGOING; 2389 pt_prev = ptype; 2390 } 2391 2392 if (ptype_list == &ptype_all) { 2393 ptype_list = &dev->ptype_all; 2394 goto again; 2395 } 2396 out_unlock: 2397 if (pt_prev) { 2398 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2399 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2400 else 2401 kfree_skb(skb2); 2402 } 2403 rcu_read_unlock(); 2404 } 2405 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2406 2407 /** 2408 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2409 * @dev: Network device 2410 * @txq: number of queues available 2411 * 2412 * If real_num_tx_queues is changed the tc mappings may no longer be 2413 * valid. To resolve this verify the tc mapping remains valid and if 2414 * not NULL the mapping. With no priorities mapping to this 2415 * offset/count pair it will no longer be used. In the worst case TC0 2416 * is invalid nothing can be done so disable priority mappings. If is 2417 * expected that drivers will fix this mapping if they can before 2418 * calling netif_set_real_num_tx_queues. 2419 */ 2420 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2421 { 2422 int i; 2423 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2424 2425 /* If TC0 is invalidated disable TC mapping */ 2426 if (tc->offset + tc->count > txq) { 2427 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2428 dev->num_tc = 0; 2429 return; 2430 } 2431 2432 /* Invalidated prio to tc mappings set to TC0 */ 2433 for (i = 1; i < TC_BITMASK + 1; i++) { 2434 int q = netdev_get_prio_tc_map(dev, i); 2435 2436 tc = &dev->tc_to_txq[q]; 2437 if (tc->offset + tc->count > txq) { 2438 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2439 i, q); 2440 netdev_set_prio_tc_map(dev, i, 0); 2441 } 2442 } 2443 } 2444 2445 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2446 { 2447 if (dev->num_tc) { 2448 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2449 int i; 2450 2451 /* walk through the TCs and see if it falls into any of them */ 2452 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2453 if ((txq - tc->offset) < tc->count) 2454 return i; 2455 } 2456 2457 /* didn't find it, just return -1 to indicate no match */ 2458 return -1; 2459 } 2460 2461 return 0; 2462 } 2463 EXPORT_SYMBOL(netdev_txq_to_tc); 2464 2465 #ifdef CONFIG_XPS 2466 struct static_key xps_needed __read_mostly; 2467 EXPORT_SYMBOL(xps_needed); 2468 struct static_key xps_rxqs_needed __read_mostly; 2469 EXPORT_SYMBOL(xps_rxqs_needed); 2470 static DEFINE_MUTEX(xps_map_mutex); 2471 #define xmap_dereference(P) \ 2472 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2473 2474 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2475 int tci, u16 index) 2476 { 2477 struct xps_map *map = NULL; 2478 int pos; 2479 2480 if (dev_maps) 2481 map = xmap_dereference(dev_maps->attr_map[tci]); 2482 if (!map) 2483 return false; 2484 2485 for (pos = map->len; pos--;) { 2486 if (map->queues[pos] != index) 2487 continue; 2488 2489 if (map->len > 1) { 2490 map->queues[pos] = map->queues[--map->len]; 2491 break; 2492 } 2493 2494 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2495 kfree_rcu(map, rcu); 2496 return false; 2497 } 2498 2499 return true; 2500 } 2501 2502 static bool remove_xps_queue_cpu(struct net_device *dev, 2503 struct xps_dev_maps *dev_maps, 2504 int cpu, u16 offset, u16 count) 2505 { 2506 int num_tc = dev->num_tc ? : 1; 2507 bool active = false; 2508 int tci; 2509 2510 for (tci = cpu * num_tc; num_tc--; tci++) { 2511 int i, j; 2512 2513 for (i = count, j = offset; i--; j++) { 2514 if (!remove_xps_queue(dev_maps, tci, j)) 2515 break; 2516 } 2517 2518 active |= i < 0; 2519 } 2520 2521 return active; 2522 } 2523 2524 static void reset_xps_maps(struct net_device *dev, 2525 struct xps_dev_maps *dev_maps, 2526 bool is_rxqs_map) 2527 { 2528 if (is_rxqs_map) { 2529 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2530 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL); 2531 } else { 2532 RCU_INIT_POINTER(dev->xps_cpus_map, NULL); 2533 } 2534 static_key_slow_dec_cpuslocked(&xps_needed); 2535 kfree_rcu(dev_maps, rcu); 2536 } 2537 2538 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask, 2539 struct xps_dev_maps *dev_maps, unsigned int nr_ids, 2540 u16 offset, u16 count, bool is_rxqs_map) 2541 { 2542 bool active = false; 2543 int i, j; 2544 2545 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids), 2546 j < nr_ids;) 2547 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, 2548 count); 2549 if (!active) 2550 reset_xps_maps(dev, dev_maps, is_rxqs_map); 2551 2552 if (!is_rxqs_map) { 2553 for (i = offset + (count - 1); count--; i--) { 2554 netdev_queue_numa_node_write( 2555 netdev_get_tx_queue(dev, i), 2556 NUMA_NO_NODE); 2557 } 2558 } 2559 } 2560 2561 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2562 u16 count) 2563 { 2564 const unsigned long *possible_mask = NULL; 2565 struct xps_dev_maps *dev_maps; 2566 unsigned int nr_ids; 2567 2568 if (!static_key_false(&xps_needed)) 2569 return; 2570 2571 cpus_read_lock(); 2572 mutex_lock(&xps_map_mutex); 2573 2574 if (static_key_false(&xps_rxqs_needed)) { 2575 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2576 if (dev_maps) { 2577 nr_ids = dev->num_rx_queues; 2578 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, 2579 offset, count, true); 2580 } 2581 } 2582 2583 dev_maps = xmap_dereference(dev->xps_cpus_map); 2584 if (!dev_maps) 2585 goto out_no_maps; 2586 2587 if (num_possible_cpus() > 1) 2588 possible_mask = cpumask_bits(cpu_possible_mask); 2589 nr_ids = nr_cpu_ids; 2590 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count, 2591 false); 2592 2593 out_no_maps: 2594 mutex_unlock(&xps_map_mutex); 2595 cpus_read_unlock(); 2596 } 2597 2598 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2599 { 2600 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2601 } 2602 2603 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2604 u16 index, bool is_rxqs_map) 2605 { 2606 struct xps_map *new_map; 2607 int alloc_len = XPS_MIN_MAP_ALLOC; 2608 int i, pos; 2609 2610 for (pos = 0; map && pos < map->len; pos++) { 2611 if (map->queues[pos] != index) 2612 continue; 2613 return map; 2614 } 2615 2616 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2617 if (map) { 2618 if (pos < map->alloc_len) 2619 return map; 2620 2621 alloc_len = map->alloc_len * 2; 2622 } 2623 2624 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2625 * map 2626 */ 2627 if (is_rxqs_map) 2628 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2629 else 2630 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2631 cpu_to_node(attr_index)); 2632 if (!new_map) 2633 return NULL; 2634 2635 for (i = 0; i < pos; i++) 2636 new_map->queues[i] = map->queues[i]; 2637 new_map->alloc_len = alloc_len; 2638 new_map->len = pos; 2639 2640 return new_map; 2641 } 2642 2643 /* Must be called under cpus_read_lock */ 2644 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2645 u16 index, bool is_rxqs_map) 2646 { 2647 const unsigned long *online_mask = NULL, *possible_mask = NULL; 2648 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2649 int i, j, tci, numa_node_id = -2; 2650 int maps_sz, num_tc = 1, tc = 0; 2651 struct xps_map *map, *new_map; 2652 bool active = false; 2653 unsigned int nr_ids; 2654 2655 if (dev->num_tc) { 2656 /* Do not allow XPS on subordinate device directly */ 2657 num_tc = dev->num_tc; 2658 if (num_tc < 0) 2659 return -EINVAL; 2660 2661 /* If queue belongs to subordinate dev use its map */ 2662 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2663 2664 tc = netdev_txq_to_tc(dev, index); 2665 if (tc < 0) 2666 return -EINVAL; 2667 } 2668 2669 mutex_lock(&xps_map_mutex); 2670 if (is_rxqs_map) { 2671 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2672 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2673 nr_ids = dev->num_rx_queues; 2674 } else { 2675 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2676 if (num_possible_cpus() > 1) { 2677 online_mask = cpumask_bits(cpu_online_mask); 2678 possible_mask = cpumask_bits(cpu_possible_mask); 2679 } 2680 dev_maps = xmap_dereference(dev->xps_cpus_map); 2681 nr_ids = nr_cpu_ids; 2682 } 2683 2684 if (maps_sz < L1_CACHE_BYTES) 2685 maps_sz = L1_CACHE_BYTES; 2686 2687 /* allocate memory for queue storage */ 2688 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2689 j < nr_ids;) { 2690 if (!new_dev_maps) 2691 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2692 if (!new_dev_maps) { 2693 mutex_unlock(&xps_map_mutex); 2694 return -ENOMEM; 2695 } 2696 2697 tci = j * num_tc + tc; 2698 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) : 2699 NULL; 2700 2701 map = expand_xps_map(map, j, index, is_rxqs_map); 2702 if (!map) 2703 goto error; 2704 2705 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2706 } 2707 2708 if (!new_dev_maps) 2709 goto out_no_new_maps; 2710 2711 if (!dev_maps) { 2712 /* Increment static keys at most once per type */ 2713 static_key_slow_inc_cpuslocked(&xps_needed); 2714 if (is_rxqs_map) 2715 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2716 } 2717 2718 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2719 j < nr_ids;) { 2720 /* copy maps belonging to foreign traffic classes */ 2721 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) { 2722 /* fill in the new device map from the old device map */ 2723 map = xmap_dereference(dev_maps->attr_map[tci]); 2724 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2725 } 2726 2727 /* We need to explicitly update tci as prevous loop 2728 * could break out early if dev_maps is NULL. 2729 */ 2730 tci = j * num_tc + tc; 2731 2732 if (netif_attr_test_mask(j, mask, nr_ids) && 2733 netif_attr_test_online(j, online_mask, nr_ids)) { 2734 /* add tx-queue to CPU/rx-queue maps */ 2735 int pos = 0; 2736 2737 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2738 while ((pos < map->len) && (map->queues[pos] != index)) 2739 pos++; 2740 2741 if (pos == map->len) 2742 map->queues[map->len++] = index; 2743 #ifdef CONFIG_NUMA 2744 if (!is_rxqs_map) { 2745 if (numa_node_id == -2) 2746 numa_node_id = cpu_to_node(j); 2747 else if (numa_node_id != cpu_to_node(j)) 2748 numa_node_id = -1; 2749 } 2750 #endif 2751 } else if (dev_maps) { 2752 /* fill in the new device map from the old device map */ 2753 map = xmap_dereference(dev_maps->attr_map[tci]); 2754 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2755 } 2756 2757 /* copy maps belonging to foreign traffic classes */ 2758 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { 2759 /* fill in the new device map from the old device map */ 2760 map = xmap_dereference(dev_maps->attr_map[tci]); 2761 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2762 } 2763 } 2764 2765 if (is_rxqs_map) 2766 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps); 2767 else 2768 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps); 2769 2770 /* Cleanup old maps */ 2771 if (!dev_maps) 2772 goto out_no_old_maps; 2773 2774 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2775 j < nr_ids;) { 2776 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2777 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2778 map = xmap_dereference(dev_maps->attr_map[tci]); 2779 if (map && map != new_map) 2780 kfree_rcu(map, rcu); 2781 } 2782 } 2783 2784 kfree_rcu(dev_maps, rcu); 2785 2786 out_no_old_maps: 2787 dev_maps = new_dev_maps; 2788 active = true; 2789 2790 out_no_new_maps: 2791 if (!is_rxqs_map) { 2792 /* update Tx queue numa node */ 2793 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2794 (numa_node_id >= 0) ? 2795 numa_node_id : NUMA_NO_NODE); 2796 } 2797 2798 if (!dev_maps) 2799 goto out_no_maps; 2800 2801 /* removes tx-queue from unused CPUs/rx-queues */ 2802 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2803 j < nr_ids;) { 2804 for (i = tc, tci = j * num_tc; i--; tci++) 2805 active |= remove_xps_queue(dev_maps, tci, index); 2806 if (!netif_attr_test_mask(j, mask, nr_ids) || 2807 !netif_attr_test_online(j, online_mask, nr_ids)) 2808 active |= remove_xps_queue(dev_maps, tci, index); 2809 for (i = num_tc - tc, tci++; --i; tci++) 2810 active |= remove_xps_queue(dev_maps, tci, index); 2811 } 2812 2813 /* free map if not active */ 2814 if (!active) 2815 reset_xps_maps(dev, dev_maps, is_rxqs_map); 2816 2817 out_no_maps: 2818 mutex_unlock(&xps_map_mutex); 2819 2820 return 0; 2821 error: 2822 /* remove any maps that we added */ 2823 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2824 j < nr_ids;) { 2825 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2826 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2827 map = dev_maps ? 2828 xmap_dereference(dev_maps->attr_map[tci]) : 2829 NULL; 2830 if (new_map && new_map != map) 2831 kfree(new_map); 2832 } 2833 } 2834 2835 mutex_unlock(&xps_map_mutex); 2836 2837 kfree(new_dev_maps); 2838 return -ENOMEM; 2839 } 2840 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 2841 2842 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2843 u16 index) 2844 { 2845 int ret; 2846 2847 cpus_read_lock(); 2848 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false); 2849 cpus_read_unlock(); 2850 2851 return ret; 2852 } 2853 EXPORT_SYMBOL(netif_set_xps_queue); 2854 2855 #endif 2856 static void netdev_unbind_all_sb_channels(struct net_device *dev) 2857 { 2858 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2859 2860 /* Unbind any subordinate channels */ 2861 while (txq-- != &dev->_tx[0]) { 2862 if (txq->sb_dev) 2863 netdev_unbind_sb_channel(dev, txq->sb_dev); 2864 } 2865 } 2866 2867 void netdev_reset_tc(struct net_device *dev) 2868 { 2869 #ifdef CONFIG_XPS 2870 netif_reset_xps_queues_gt(dev, 0); 2871 #endif 2872 netdev_unbind_all_sb_channels(dev); 2873 2874 /* Reset TC configuration of device */ 2875 dev->num_tc = 0; 2876 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2877 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2878 } 2879 EXPORT_SYMBOL(netdev_reset_tc); 2880 2881 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2882 { 2883 if (tc >= dev->num_tc) 2884 return -EINVAL; 2885 2886 #ifdef CONFIG_XPS 2887 netif_reset_xps_queues(dev, offset, count); 2888 #endif 2889 dev->tc_to_txq[tc].count = count; 2890 dev->tc_to_txq[tc].offset = offset; 2891 return 0; 2892 } 2893 EXPORT_SYMBOL(netdev_set_tc_queue); 2894 2895 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2896 { 2897 if (num_tc > TC_MAX_QUEUE) 2898 return -EINVAL; 2899 2900 #ifdef CONFIG_XPS 2901 netif_reset_xps_queues_gt(dev, 0); 2902 #endif 2903 netdev_unbind_all_sb_channels(dev); 2904 2905 dev->num_tc = num_tc; 2906 return 0; 2907 } 2908 EXPORT_SYMBOL(netdev_set_num_tc); 2909 2910 void netdev_unbind_sb_channel(struct net_device *dev, 2911 struct net_device *sb_dev) 2912 { 2913 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2914 2915 #ifdef CONFIG_XPS 2916 netif_reset_xps_queues_gt(sb_dev, 0); 2917 #endif 2918 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 2919 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 2920 2921 while (txq-- != &dev->_tx[0]) { 2922 if (txq->sb_dev == sb_dev) 2923 txq->sb_dev = NULL; 2924 } 2925 } 2926 EXPORT_SYMBOL(netdev_unbind_sb_channel); 2927 2928 int netdev_bind_sb_channel_queue(struct net_device *dev, 2929 struct net_device *sb_dev, 2930 u8 tc, u16 count, u16 offset) 2931 { 2932 /* Make certain the sb_dev and dev are already configured */ 2933 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 2934 return -EINVAL; 2935 2936 /* We cannot hand out queues we don't have */ 2937 if ((offset + count) > dev->real_num_tx_queues) 2938 return -EINVAL; 2939 2940 /* Record the mapping */ 2941 sb_dev->tc_to_txq[tc].count = count; 2942 sb_dev->tc_to_txq[tc].offset = offset; 2943 2944 /* Provide a way for Tx queue to find the tc_to_txq map or 2945 * XPS map for itself. 2946 */ 2947 while (count--) 2948 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 2949 2950 return 0; 2951 } 2952 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 2953 2954 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 2955 { 2956 /* Do not use a multiqueue device to represent a subordinate channel */ 2957 if (netif_is_multiqueue(dev)) 2958 return -ENODEV; 2959 2960 /* We allow channels 1 - 32767 to be used for subordinate channels. 2961 * Channel 0 is meant to be "native" mode and used only to represent 2962 * the main root device. We allow writing 0 to reset the device back 2963 * to normal mode after being used as a subordinate channel. 2964 */ 2965 if (channel > S16_MAX) 2966 return -EINVAL; 2967 2968 dev->num_tc = -channel; 2969 2970 return 0; 2971 } 2972 EXPORT_SYMBOL(netdev_set_sb_channel); 2973 2974 /* 2975 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2976 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 2977 */ 2978 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2979 { 2980 bool disabling; 2981 int rc; 2982 2983 disabling = txq < dev->real_num_tx_queues; 2984 2985 if (txq < 1 || txq > dev->num_tx_queues) 2986 return -EINVAL; 2987 2988 if (dev->reg_state == NETREG_REGISTERED || 2989 dev->reg_state == NETREG_UNREGISTERING) { 2990 ASSERT_RTNL(); 2991 2992 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2993 txq); 2994 if (rc) 2995 return rc; 2996 2997 if (dev->num_tc) 2998 netif_setup_tc(dev, txq); 2999 3000 dev->real_num_tx_queues = txq; 3001 3002 if (disabling) { 3003 synchronize_net(); 3004 qdisc_reset_all_tx_gt(dev, txq); 3005 #ifdef CONFIG_XPS 3006 netif_reset_xps_queues_gt(dev, txq); 3007 #endif 3008 } 3009 } else { 3010 dev->real_num_tx_queues = txq; 3011 } 3012 3013 return 0; 3014 } 3015 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 3016 3017 #ifdef CONFIG_SYSFS 3018 /** 3019 * netif_set_real_num_rx_queues - set actual number of RX queues used 3020 * @dev: Network device 3021 * @rxq: Actual number of RX queues 3022 * 3023 * This must be called either with the rtnl_lock held or before 3024 * registration of the net device. Returns 0 on success, or a 3025 * negative error code. If called before registration, it always 3026 * succeeds. 3027 */ 3028 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 3029 { 3030 int rc; 3031 3032 if (rxq < 1 || rxq > dev->num_rx_queues) 3033 return -EINVAL; 3034 3035 if (dev->reg_state == NETREG_REGISTERED) { 3036 ASSERT_RTNL(); 3037 3038 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 3039 rxq); 3040 if (rc) 3041 return rc; 3042 } 3043 3044 dev->real_num_rx_queues = rxq; 3045 return 0; 3046 } 3047 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 3048 #endif 3049 3050 /** 3051 * netif_get_num_default_rss_queues - default number of RSS queues 3052 * 3053 * This routine should set an upper limit on the number of RSS queues 3054 * used by default by multiqueue devices. 3055 */ 3056 int netif_get_num_default_rss_queues(void) 3057 { 3058 return is_kdump_kernel() ? 3059 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 3060 } 3061 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 3062 3063 static void __netif_reschedule(struct Qdisc *q) 3064 { 3065 struct softnet_data *sd; 3066 unsigned long flags; 3067 3068 local_irq_save(flags); 3069 sd = this_cpu_ptr(&softnet_data); 3070 q->next_sched = NULL; 3071 *sd->output_queue_tailp = q; 3072 sd->output_queue_tailp = &q->next_sched; 3073 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3074 local_irq_restore(flags); 3075 } 3076 3077 void __netif_schedule(struct Qdisc *q) 3078 { 3079 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 3080 __netif_reschedule(q); 3081 } 3082 EXPORT_SYMBOL(__netif_schedule); 3083 3084 struct dev_kfree_skb_cb { 3085 enum skb_free_reason reason; 3086 }; 3087 3088 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 3089 { 3090 return (struct dev_kfree_skb_cb *)skb->cb; 3091 } 3092 3093 void netif_schedule_queue(struct netdev_queue *txq) 3094 { 3095 rcu_read_lock(); 3096 if (!netif_xmit_stopped(txq)) { 3097 struct Qdisc *q = rcu_dereference(txq->qdisc); 3098 3099 __netif_schedule(q); 3100 } 3101 rcu_read_unlock(); 3102 } 3103 EXPORT_SYMBOL(netif_schedule_queue); 3104 3105 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 3106 { 3107 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 3108 struct Qdisc *q; 3109 3110 rcu_read_lock(); 3111 q = rcu_dereference(dev_queue->qdisc); 3112 __netif_schedule(q); 3113 rcu_read_unlock(); 3114 } 3115 } 3116 EXPORT_SYMBOL(netif_tx_wake_queue); 3117 3118 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 3119 { 3120 unsigned long flags; 3121 3122 if (unlikely(!skb)) 3123 return; 3124 3125 if (likely(refcount_read(&skb->users) == 1)) { 3126 smp_rmb(); 3127 refcount_set(&skb->users, 0); 3128 } else if (likely(!refcount_dec_and_test(&skb->users))) { 3129 return; 3130 } 3131 get_kfree_skb_cb(skb)->reason = reason; 3132 local_irq_save(flags); 3133 skb->next = __this_cpu_read(softnet_data.completion_queue); 3134 __this_cpu_write(softnet_data.completion_queue, skb); 3135 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3136 local_irq_restore(flags); 3137 } 3138 EXPORT_SYMBOL(__dev_kfree_skb_irq); 3139 3140 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 3141 { 3142 if (in_irq() || irqs_disabled()) 3143 __dev_kfree_skb_irq(skb, reason); 3144 else 3145 dev_kfree_skb(skb); 3146 } 3147 EXPORT_SYMBOL(__dev_kfree_skb_any); 3148 3149 3150 /** 3151 * netif_device_detach - mark device as removed 3152 * @dev: network device 3153 * 3154 * Mark device as removed from system and therefore no longer available. 3155 */ 3156 void netif_device_detach(struct net_device *dev) 3157 { 3158 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 3159 netif_running(dev)) { 3160 netif_tx_stop_all_queues(dev); 3161 } 3162 } 3163 EXPORT_SYMBOL(netif_device_detach); 3164 3165 /** 3166 * netif_device_attach - mark device as attached 3167 * @dev: network device 3168 * 3169 * Mark device as attached from system and restart if needed. 3170 */ 3171 void netif_device_attach(struct net_device *dev) 3172 { 3173 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 3174 netif_running(dev)) { 3175 netif_tx_wake_all_queues(dev); 3176 __netdev_watchdog_up(dev); 3177 } 3178 } 3179 EXPORT_SYMBOL(netif_device_attach); 3180 3181 /* 3182 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 3183 * to be used as a distribution range. 3184 */ 3185 static u16 skb_tx_hash(const struct net_device *dev, 3186 const struct net_device *sb_dev, 3187 struct sk_buff *skb) 3188 { 3189 u32 hash; 3190 u16 qoffset = 0; 3191 u16 qcount = dev->real_num_tx_queues; 3192 3193 if (dev->num_tc) { 3194 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 3195 3196 qoffset = sb_dev->tc_to_txq[tc].offset; 3197 qcount = sb_dev->tc_to_txq[tc].count; 3198 } 3199 3200 if (skb_rx_queue_recorded(skb)) { 3201 hash = skb_get_rx_queue(skb); 3202 if (hash >= qoffset) 3203 hash -= qoffset; 3204 while (unlikely(hash >= qcount)) 3205 hash -= qcount; 3206 return hash + qoffset; 3207 } 3208 3209 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 3210 } 3211 3212 static void skb_warn_bad_offload(const struct sk_buff *skb) 3213 { 3214 static const netdev_features_t null_features; 3215 struct net_device *dev = skb->dev; 3216 const char *name = ""; 3217 3218 if (!net_ratelimit()) 3219 return; 3220 3221 if (dev) { 3222 if (dev->dev.parent) 3223 name = dev_driver_string(dev->dev.parent); 3224 else 3225 name = netdev_name(dev); 3226 } 3227 skb_dump(KERN_WARNING, skb, false); 3228 WARN(1, "%s: caps=(%pNF, %pNF)\n", 3229 name, dev ? &dev->features : &null_features, 3230 skb->sk ? &skb->sk->sk_route_caps : &null_features); 3231 } 3232 3233 /* 3234 * Invalidate hardware checksum when packet is to be mangled, and 3235 * complete checksum manually on outgoing path. 3236 */ 3237 int skb_checksum_help(struct sk_buff *skb) 3238 { 3239 __wsum csum; 3240 int ret = 0, offset; 3241 3242 if (skb->ip_summed == CHECKSUM_COMPLETE) 3243 goto out_set_summed; 3244 3245 if (unlikely(skb_is_gso(skb))) { 3246 skb_warn_bad_offload(skb); 3247 return -EINVAL; 3248 } 3249 3250 /* Before computing a checksum, we should make sure no frag could 3251 * be modified by an external entity : checksum could be wrong. 3252 */ 3253 if (skb_has_shared_frag(skb)) { 3254 ret = __skb_linearize(skb); 3255 if (ret) 3256 goto out; 3257 } 3258 3259 offset = skb_checksum_start_offset(skb); 3260 BUG_ON(offset >= skb_headlen(skb)); 3261 csum = skb_checksum(skb, offset, skb->len - offset, 0); 3262 3263 offset += skb->csum_offset; 3264 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 3265 3266 ret = skb_ensure_writable(skb, offset + sizeof(__sum16)); 3267 if (ret) 3268 goto out; 3269 3270 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 3271 out_set_summed: 3272 skb->ip_summed = CHECKSUM_NONE; 3273 out: 3274 return ret; 3275 } 3276 EXPORT_SYMBOL(skb_checksum_help); 3277 3278 int skb_crc32c_csum_help(struct sk_buff *skb) 3279 { 3280 __le32 crc32c_csum; 3281 int ret = 0, offset, start; 3282 3283 if (skb->ip_summed != CHECKSUM_PARTIAL) 3284 goto out; 3285 3286 if (unlikely(skb_is_gso(skb))) 3287 goto out; 3288 3289 /* Before computing a checksum, we should make sure no frag could 3290 * be modified by an external entity : checksum could be wrong. 3291 */ 3292 if (unlikely(skb_has_shared_frag(skb))) { 3293 ret = __skb_linearize(skb); 3294 if (ret) 3295 goto out; 3296 } 3297 start = skb_checksum_start_offset(skb); 3298 offset = start + offsetof(struct sctphdr, checksum); 3299 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 3300 ret = -EINVAL; 3301 goto out; 3302 } 3303 3304 ret = skb_ensure_writable(skb, offset + sizeof(__le32)); 3305 if (ret) 3306 goto out; 3307 3308 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 3309 skb->len - start, ~(__u32)0, 3310 crc32c_csum_stub)); 3311 *(__le32 *)(skb->data + offset) = crc32c_csum; 3312 skb->ip_summed = CHECKSUM_NONE; 3313 skb->csum_not_inet = 0; 3314 out: 3315 return ret; 3316 } 3317 3318 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 3319 { 3320 __be16 type = skb->protocol; 3321 3322 /* Tunnel gso handlers can set protocol to ethernet. */ 3323 if (type == htons(ETH_P_TEB)) { 3324 struct ethhdr *eth; 3325 3326 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 3327 return 0; 3328 3329 eth = (struct ethhdr *)skb->data; 3330 type = eth->h_proto; 3331 } 3332 3333 return __vlan_get_protocol(skb, type, depth); 3334 } 3335 3336 /** 3337 * skb_mac_gso_segment - mac layer segmentation handler. 3338 * @skb: buffer to segment 3339 * @features: features for the output path (see dev->features) 3340 */ 3341 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 3342 netdev_features_t features) 3343 { 3344 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 3345 struct packet_offload *ptype; 3346 int vlan_depth = skb->mac_len; 3347 __be16 type = skb_network_protocol(skb, &vlan_depth); 3348 3349 if (unlikely(!type)) 3350 return ERR_PTR(-EINVAL); 3351 3352 __skb_pull(skb, vlan_depth); 3353 3354 rcu_read_lock(); 3355 list_for_each_entry_rcu(ptype, &offload_base, list) { 3356 if (ptype->type == type && ptype->callbacks.gso_segment) { 3357 segs = ptype->callbacks.gso_segment(skb, features); 3358 break; 3359 } 3360 } 3361 rcu_read_unlock(); 3362 3363 __skb_push(skb, skb->data - skb_mac_header(skb)); 3364 3365 return segs; 3366 } 3367 EXPORT_SYMBOL(skb_mac_gso_segment); 3368 3369 3370 /* openvswitch calls this on rx path, so we need a different check. 3371 */ 3372 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 3373 { 3374 if (tx_path) 3375 return skb->ip_summed != CHECKSUM_PARTIAL && 3376 skb->ip_summed != CHECKSUM_UNNECESSARY; 3377 3378 return skb->ip_summed == CHECKSUM_NONE; 3379 } 3380 3381 /** 3382 * __skb_gso_segment - Perform segmentation on skb. 3383 * @skb: buffer to segment 3384 * @features: features for the output path (see dev->features) 3385 * @tx_path: whether it is called in TX path 3386 * 3387 * This function segments the given skb and returns a list of segments. 3388 * 3389 * It may return NULL if the skb requires no segmentation. This is 3390 * only possible when GSO is used for verifying header integrity. 3391 * 3392 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb. 3393 */ 3394 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3395 netdev_features_t features, bool tx_path) 3396 { 3397 struct sk_buff *segs; 3398 3399 if (unlikely(skb_needs_check(skb, tx_path))) { 3400 int err; 3401 3402 /* We're going to init ->check field in TCP or UDP header */ 3403 err = skb_cow_head(skb, 0); 3404 if (err < 0) 3405 return ERR_PTR(err); 3406 } 3407 3408 /* Only report GSO partial support if it will enable us to 3409 * support segmentation on this frame without needing additional 3410 * work. 3411 */ 3412 if (features & NETIF_F_GSO_PARTIAL) { 3413 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 3414 struct net_device *dev = skb->dev; 3415 3416 partial_features |= dev->features & dev->gso_partial_features; 3417 if (!skb_gso_ok(skb, features | partial_features)) 3418 features &= ~NETIF_F_GSO_PARTIAL; 3419 } 3420 3421 BUILD_BUG_ON(SKB_GSO_CB_OFFSET + 3422 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 3423 3424 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 3425 SKB_GSO_CB(skb)->encap_level = 0; 3426 3427 skb_reset_mac_header(skb); 3428 skb_reset_mac_len(skb); 3429 3430 segs = skb_mac_gso_segment(skb, features); 3431 3432 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs))) 3433 skb_warn_bad_offload(skb); 3434 3435 return segs; 3436 } 3437 EXPORT_SYMBOL(__skb_gso_segment); 3438 3439 /* Take action when hardware reception checksum errors are detected. */ 3440 #ifdef CONFIG_BUG 3441 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3442 { 3443 if (net_ratelimit()) { 3444 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 3445 skb_dump(KERN_ERR, skb, true); 3446 dump_stack(); 3447 } 3448 } 3449 EXPORT_SYMBOL(netdev_rx_csum_fault); 3450 #endif 3451 3452 /* XXX: check that highmem exists at all on the given machine. */ 3453 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3454 { 3455 #ifdef CONFIG_HIGHMEM 3456 int i; 3457 3458 if (!(dev->features & NETIF_F_HIGHDMA)) { 3459 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3460 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3461 3462 if (PageHighMem(skb_frag_page(frag))) 3463 return 1; 3464 } 3465 } 3466 #endif 3467 return 0; 3468 } 3469 3470 /* If MPLS offload request, verify we are testing hardware MPLS features 3471 * instead of standard features for the netdev. 3472 */ 3473 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3474 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3475 netdev_features_t features, 3476 __be16 type) 3477 { 3478 if (eth_p_mpls(type)) 3479 features &= skb->dev->mpls_features; 3480 3481 return features; 3482 } 3483 #else 3484 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3485 netdev_features_t features, 3486 __be16 type) 3487 { 3488 return features; 3489 } 3490 #endif 3491 3492 static netdev_features_t harmonize_features(struct sk_buff *skb, 3493 netdev_features_t features) 3494 { 3495 __be16 type; 3496 3497 type = skb_network_protocol(skb, NULL); 3498 features = net_mpls_features(skb, features, type); 3499 3500 if (skb->ip_summed != CHECKSUM_NONE && 3501 !can_checksum_protocol(features, type)) { 3502 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3503 } 3504 if (illegal_highdma(skb->dev, skb)) 3505 features &= ~NETIF_F_SG; 3506 3507 return features; 3508 } 3509 3510 netdev_features_t passthru_features_check(struct sk_buff *skb, 3511 struct net_device *dev, 3512 netdev_features_t features) 3513 { 3514 return features; 3515 } 3516 EXPORT_SYMBOL(passthru_features_check); 3517 3518 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3519 struct net_device *dev, 3520 netdev_features_t features) 3521 { 3522 return vlan_features_check(skb, features); 3523 } 3524 3525 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3526 struct net_device *dev, 3527 netdev_features_t features) 3528 { 3529 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3530 3531 if (gso_segs > dev->gso_max_segs) 3532 return features & ~NETIF_F_GSO_MASK; 3533 3534 if (!skb_shinfo(skb)->gso_type) { 3535 skb_warn_bad_offload(skb); 3536 return features & ~NETIF_F_GSO_MASK; 3537 } 3538 3539 /* Support for GSO partial features requires software 3540 * intervention before we can actually process the packets 3541 * so we need to strip support for any partial features now 3542 * and we can pull them back in after we have partially 3543 * segmented the frame. 3544 */ 3545 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3546 features &= ~dev->gso_partial_features; 3547 3548 /* Make sure to clear the IPv4 ID mangling feature if the 3549 * IPv4 header has the potential to be fragmented. 3550 */ 3551 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3552 struct iphdr *iph = skb->encapsulation ? 3553 inner_ip_hdr(skb) : ip_hdr(skb); 3554 3555 if (!(iph->frag_off & htons(IP_DF))) 3556 features &= ~NETIF_F_TSO_MANGLEID; 3557 } 3558 3559 return features; 3560 } 3561 3562 netdev_features_t netif_skb_features(struct sk_buff *skb) 3563 { 3564 struct net_device *dev = skb->dev; 3565 netdev_features_t features = dev->features; 3566 3567 if (skb_is_gso(skb)) 3568 features = gso_features_check(skb, dev, features); 3569 3570 /* If encapsulation offload request, verify we are testing 3571 * hardware encapsulation features instead of standard 3572 * features for the netdev 3573 */ 3574 if (skb->encapsulation) 3575 features &= dev->hw_enc_features; 3576 3577 if (skb_vlan_tagged(skb)) 3578 features = netdev_intersect_features(features, 3579 dev->vlan_features | 3580 NETIF_F_HW_VLAN_CTAG_TX | 3581 NETIF_F_HW_VLAN_STAG_TX); 3582 3583 if (dev->netdev_ops->ndo_features_check) 3584 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3585 features); 3586 else 3587 features &= dflt_features_check(skb, dev, features); 3588 3589 return harmonize_features(skb, features); 3590 } 3591 EXPORT_SYMBOL(netif_skb_features); 3592 3593 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3594 struct netdev_queue *txq, bool more) 3595 { 3596 unsigned int len; 3597 int rc; 3598 3599 if (dev_nit_active(dev)) 3600 dev_queue_xmit_nit(skb, dev); 3601 3602 len = skb->len; 3603 PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies); 3604 trace_net_dev_start_xmit(skb, dev); 3605 rc = netdev_start_xmit(skb, dev, txq, more); 3606 trace_net_dev_xmit(skb, rc, dev, len); 3607 3608 return rc; 3609 } 3610 3611 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3612 struct netdev_queue *txq, int *ret) 3613 { 3614 struct sk_buff *skb = first; 3615 int rc = NETDEV_TX_OK; 3616 3617 while (skb) { 3618 struct sk_buff *next = skb->next; 3619 3620 skb_mark_not_on_list(skb); 3621 rc = xmit_one(skb, dev, txq, next != NULL); 3622 if (unlikely(!dev_xmit_complete(rc))) { 3623 skb->next = next; 3624 goto out; 3625 } 3626 3627 skb = next; 3628 if (netif_tx_queue_stopped(txq) && skb) { 3629 rc = NETDEV_TX_BUSY; 3630 break; 3631 } 3632 } 3633 3634 out: 3635 *ret = rc; 3636 return skb; 3637 } 3638 3639 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3640 netdev_features_t features) 3641 { 3642 if (skb_vlan_tag_present(skb) && 3643 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3644 skb = __vlan_hwaccel_push_inside(skb); 3645 return skb; 3646 } 3647 3648 int skb_csum_hwoffload_help(struct sk_buff *skb, 3649 const netdev_features_t features) 3650 { 3651 if (unlikely(skb_csum_is_sctp(skb))) 3652 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3653 skb_crc32c_csum_help(skb); 3654 3655 if (features & NETIF_F_HW_CSUM) 3656 return 0; 3657 3658 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 3659 switch (skb->csum_offset) { 3660 case offsetof(struct tcphdr, check): 3661 case offsetof(struct udphdr, check): 3662 return 0; 3663 } 3664 } 3665 3666 return skb_checksum_help(skb); 3667 } 3668 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3669 3670 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3671 { 3672 netdev_features_t features; 3673 3674 features = netif_skb_features(skb); 3675 skb = validate_xmit_vlan(skb, features); 3676 if (unlikely(!skb)) 3677 goto out_null; 3678 3679 skb = sk_validate_xmit_skb(skb, dev); 3680 if (unlikely(!skb)) 3681 goto out_null; 3682 3683 if (netif_needs_gso(skb, features)) { 3684 struct sk_buff *segs; 3685 3686 segs = skb_gso_segment(skb, features); 3687 if (IS_ERR(segs)) { 3688 goto out_kfree_skb; 3689 } else if (segs) { 3690 consume_skb(skb); 3691 skb = segs; 3692 } 3693 } else { 3694 if (skb_needs_linearize(skb, features) && 3695 __skb_linearize(skb)) 3696 goto out_kfree_skb; 3697 3698 /* If packet is not checksummed and device does not 3699 * support checksumming for this protocol, complete 3700 * checksumming here. 3701 */ 3702 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3703 if (skb->encapsulation) 3704 skb_set_inner_transport_header(skb, 3705 skb_checksum_start_offset(skb)); 3706 else 3707 skb_set_transport_header(skb, 3708 skb_checksum_start_offset(skb)); 3709 if (skb_csum_hwoffload_help(skb, features)) 3710 goto out_kfree_skb; 3711 } 3712 } 3713 3714 skb = validate_xmit_xfrm(skb, features, again); 3715 3716 return skb; 3717 3718 out_kfree_skb: 3719 kfree_skb(skb); 3720 out_null: 3721 atomic_long_inc(&dev->tx_dropped); 3722 return NULL; 3723 } 3724 3725 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3726 { 3727 struct sk_buff *next, *head = NULL, *tail; 3728 3729 for (; skb != NULL; skb = next) { 3730 next = skb->next; 3731 skb_mark_not_on_list(skb); 3732 3733 /* in case skb wont be segmented, point to itself */ 3734 skb->prev = skb; 3735 3736 skb = validate_xmit_skb(skb, dev, again); 3737 if (!skb) 3738 continue; 3739 3740 if (!head) 3741 head = skb; 3742 else 3743 tail->next = skb; 3744 /* If skb was segmented, skb->prev points to 3745 * the last segment. If not, it still contains skb. 3746 */ 3747 tail = skb->prev; 3748 } 3749 return head; 3750 } 3751 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3752 3753 static void qdisc_pkt_len_init(struct sk_buff *skb) 3754 { 3755 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3756 3757 qdisc_skb_cb(skb)->pkt_len = skb->len; 3758 3759 /* To get more precise estimation of bytes sent on wire, 3760 * we add to pkt_len the headers size of all segments 3761 */ 3762 if (shinfo->gso_size && skb_transport_header_was_set(skb)) { 3763 unsigned int hdr_len; 3764 u16 gso_segs = shinfo->gso_segs; 3765 3766 /* mac layer + network layer */ 3767 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3768 3769 /* + transport layer */ 3770 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3771 const struct tcphdr *th; 3772 struct tcphdr _tcphdr; 3773 3774 th = skb_header_pointer(skb, skb_transport_offset(skb), 3775 sizeof(_tcphdr), &_tcphdr); 3776 if (likely(th)) 3777 hdr_len += __tcp_hdrlen(th); 3778 } else { 3779 struct udphdr _udphdr; 3780 3781 if (skb_header_pointer(skb, skb_transport_offset(skb), 3782 sizeof(_udphdr), &_udphdr)) 3783 hdr_len += sizeof(struct udphdr); 3784 } 3785 3786 if (shinfo->gso_type & SKB_GSO_DODGY) 3787 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3788 shinfo->gso_size); 3789 3790 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3791 } 3792 } 3793 3794 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3795 struct net_device *dev, 3796 struct netdev_queue *txq) 3797 { 3798 spinlock_t *root_lock = qdisc_lock(q); 3799 struct sk_buff *to_free = NULL; 3800 bool contended; 3801 int rc; 3802 3803 qdisc_calculate_pkt_len(skb, q); 3804 3805 if (q->flags & TCQ_F_NOLOCK) { 3806 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3807 qdisc_run(q); 3808 3809 if (unlikely(to_free)) 3810 kfree_skb_list(to_free); 3811 return rc; 3812 } 3813 3814 /* 3815 * Heuristic to force contended enqueues to serialize on a 3816 * separate lock before trying to get qdisc main lock. 3817 * This permits qdisc->running owner to get the lock more 3818 * often and dequeue packets faster. 3819 */ 3820 contended = qdisc_is_running(q); 3821 if (unlikely(contended)) 3822 spin_lock(&q->busylock); 3823 3824 spin_lock(root_lock); 3825 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3826 __qdisc_drop(skb, &to_free); 3827 rc = NET_XMIT_DROP; 3828 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3829 qdisc_run_begin(q)) { 3830 /* 3831 * This is a work-conserving queue; there are no old skbs 3832 * waiting to be sent out; and the qdisc is not running - 3833 * xmit the skb directly. 3834 */ 3835 3836 qdisc_bstats_update(q, skb); 3837 3838 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3839 if (unlikely(contended)) { 3840 spin_unlock(&q->busylock); 3841 contended = false; 3842 } 3843 __qdisc_run(q); 3844 } 3845 3846 qdisc_run_end(q); 3847 rc = NET_XMIT_SUCCESS; 3848 } else { 3849 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3850 if (qdisc_run_begin(q)) { 3851 if (unlikely(contended)) { 3852 spin_unlock(&q->busylock); 3853 contended = false; 3854 } 3855 __qdisc_run(q); 3856 qdisc_run_end(q); 3857 } 3858 } 3859 spin_unlock(root_lock); 3860 if (unlikely(to_free)) 3861 kfree_skb_list(to_free); 3862 if (unlikely(contended)) 3863 spin_unlock(&q->busylock); 3864 return rc; 3865 } 3866 3867 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3868 static void skb_update_prio(struct sk_buff *skb) 3869 { 3870 const struct netprio_map *map; 3871 const struct sock *sk; 3872 unsigned int prioidx; 3873 3874 if (skb->priority) 3875 return; 3876 map = rcu_dereference_bh(skb->dev->priomap); 3877 if (!map) 3878 return; 3879 sk = skb_to_full_sk(skb); 3880 if (!sk) 3881 return; 3882 3883 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 3884 3885 if (prioidx < map->priomap_len) 3886 skb->priority = map->priomap[prioidx]; 3887 } 3888 #else 3889 #define skb_update_prio(skb) 3890 #endif 3891 3892 /** 3893 * dev_loopback_xmit - loop back @skb 3894 * @net: network namespace this loopback is happening in 3895 * @sk: sk needed to be a netfilter okfn 3896 * @skb: buffer to transmit 3897 */ 3898 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3899 { 3900 skb_reset_mac_header(skb); 3901 __skb_pull(skb, skb_network_offset(skb)); 3902 skb->pkt_type = PACKET_LOOPBACK; 3903 skb->ip_summed = CHECKSUM_UNNECESSARY; 3904 WARN_ON(!skb_dst(skb)); 3905 skb_dst_force(skb); 3906 netif_rx_ni(skb); 3907 return 0; 3908 } 3909 EXPORT_SYMBOL(dev_loopback_xmit); 3910 3911 #ifdef CONFIG_NET_EGRESS 3912 static struct sk_buff * 3913 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3914 { 3915 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress); 3916 struct tcf_result cl_res; 3917 3918 if (!miniq) 3919 return skb; 3920 3921 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3922 qdisc_skb_cb(skb)->mru = 0; 3923 qdisc_skb_cb(skb)->post_ct = false; 3924 mini_qdisc_bstats_cpu_update(miniq, skb); 3925 3926 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 3927 case TC_ACT_OK: 3928 case TC_ACT_RECLASSIFY: 3929 skb->tc_index = TC_H_MIN(cl_res.classid); 3930 break; 3931 case TC_ACT_SHOT: 3932 mini_qdisc_qstats_cpu_drop(miniq); 3933 *ret = NET_XMIT_DROP; 3934 kfree_skb(skb); 3935 return NULL; 3936 case TC_ACT_STOLEN: 3937 case TC_ACT_QUEUED: 3938 case TC_ACT_TRAP: 3939 *ret = NET_XMIT_SUCCESS; 3940 consume_skb(skb); 3941 return NULL; 3942 case TC_ACT_REDIRECT: 3943 /* No need to push/pop skb's mac_header here on egress! */ 3944 skb_do_redirect(skb); 3945 *ret = NET_XMIT_SUCCESS; 3946 return NULL; 3947 default: 3948 break; 3949 } 3950 3951 return skb; 3952 } 3953 #endif /* CONFIG_NET_EGRESS */ 3954 3955 #ifdef CONFIG_XPS 3956 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 3957 struct xps_dev_maps *dev_maps, unsigned int tci) 3958 { 3959 struct xps_map *map; 3960 int queue_index = -1; 3961 3962 if (dev->num_tc) { 3963 tci *= dev->num_tc; 3964 tci += netdev_get_prio_tc_map(dev, skb->priority); 3965 } 3966 3967 map = rcu_dereference(dev_maps->attr_map[tci]); 3968 if (map) { 3969 if (map->len == 1) 3970 queue_index = map->queues[0]; 3971 else 3972 queue_index = map->queues[reciprocal_scale( 3973 skb_get_hash(skb), map->len)]; 3974 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3975 queue_index = -1; 3976 } 3977 return queue_index; 3978 } 3979 #endif 3980 3981 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 3982 struct sk_buff *skb) 3983 { 3984 #ifdef CONFIG_XPS 3985 struct xps_dev_maps *dev_maps; 3986 struct sock *sk = skb->sk; 3987 int queue_index = -1; 3988 3989 if (!static_key_false(&xps_needed)) 3990 return -1; 3991 3992 rcu_read_lock(); 3993 if (!static_key_false(&xps_rxqs_needed)) 3994 goto get_cpus_map; 3995 3996 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map); 3997 if (dev_maps) { 3998 int tci = sk_rx_queue_get(sk); 3999 4000 if (tci >= 0 && tci < dev->num_rx_queues) 4001 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4002 tci); 4003 } 4004 4005 get_cpus_map: 4006 if (queue_index < 0) { 4007 dev_maps = rcu_dereference(sb_dev->xps_cpus_map); 4008 if (dev_maps) { 4009 unsigned int tci = skb->sender_cpu - 1; 4010 4011 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4012 tci); 4013 } 4014 } 4015 rcu_read_unlock(); 4016 4017 return queue_index; 4018 #else 4019 return -1; 4020 #endif 4021 } 4022 4023 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 4024 struct net_device *sb_dev) 4025 { 4026 return 0; 4027 } 4028 EXPORT_SYMBOL(dev_pick_tx_zero); 4029 4030 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 4031 struct net_device *sb_dev) 4032 { 4033 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues; 4034 } 4035 EXPORT_SYMBOL(dev_pick_tx_cpu_id); 4036 4037 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 4038 struct net_device *sb_dev) 4039 { 4040 struct sock *sk = skb->sk; 4041 int queue_index = sk_tx_queue_get(sk); 4042 4043 sb_dev = sb_dev ? : dev; 4044 4045 if (queue_index < 0 || skb->ooo_okay || 4046 queue_index >= dev->real_num_tx_queues) { 4047 int new_index = get_xps_queue(dev, sb_dev, skb); 4048 4049 if (new_index < 0) 4050 new_index = skb_tx_hash(dev, sb_dev, skb); 4051 4052 if (queue_index != new_index && sk && 4053 sk_fullsock(sk) && 4054 rcu_access_pointer(sk->sk_dst_cache)) 4055 sk_tx_queue_set(sk, new_index); 4056 4057 queue_index = new_index; 4058 } 4059 4060 return queue_index; 4061 } 4062 EXPORT_SYMBOL(netdev_pick_tx); 4063 4064 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 4065 struct sk_buff *skb, 4066 struct net_device *sb_dev) 4067 { 4068 int queue_index = 0; 4069 4070 #ifdef CONFIG_XPS 4071 u32 sender_cpu = skb->sender_cpu - 1; 4072 4073 if (sender_cpu >= (u32)NR_CPUS) 4074 skb->sender_cpu = raw_smp_processor_id() + 1; 4075 #endif 4076 4077 if (dev->real_num_tx_queues != 1) { 4078 const struct net_device_ops *ops = dev->netdev_ops; 4079 4080 if (ops->ndo_select_queue) 4081 queue_index = ops->ndo_select_queue(dev, skb, sb_dev); 4082 else 4083 queue_index = netdev_pick_tx(dev, skb, sb_dev); 4084 4085 queue_index = netdev_cap_txqueue(dev, queue_index); 4086 } 4087 4088 skb_set_queue_mapping(skb, queue_index); 4089 return netdev_get_tx_queue(dev, queue_index); 4090 } 4091 4092 /** 4093 * __dev_queue_xmit - transmit a buffer 4094 * @skb: buffer to transmit 4095 * @sb_dev: suboordinate device used for L2 forwarding offload 4096 * 4097 * Queue a buffer for transmission to a network device. The caller must 4098 * have set the device and priority and built the buffer before calling 4099 * this function. The function can be called from an interrupt. 4100 * 4101 * A negative errno code is returned on a failure. A success does not 4102 * guarantee the frame will be transmitted as it may be dropped due 4103 * to congestion or traffic shaping. 4104 * 4105 * ----------------------------------------------------------------------------------- 4106 * I notice this method can also return errors from the queue disciplines, 4107 * including NET_XMIT_DROP, which is a positive value. So, errors can also 4108 * be positive. 4109 * 4110 * Regardless of the return value, the skb is consumed, so it is currently 4111 * difficult to retry a send to this method. (You can bump the ref count 4112 * before sending to hold a reference for retry if you are careful.) 4113 * 4114 * When calling this method, interrupts MUST be enabled. This is because 4115 * the BH enable code must have IRQs enabled so that it will not deadlock. 4116 * --BLG 4117 */ 4118 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 4119 { 4120 struct net_device *dev = skb->dev; 4121 struct netdev_queue *txq; 4122 struct Qdisc *q; 4123 int rc = -ENOMEM; 4124 bool again = false; 4125 4126 skb_reset_mac_header(skb); 4127 4128 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 4129 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED); 4130 4131 /* Disable soft irqs for various locks below. Also 4132 * stops preemption for RCU. 4133 */ 4134 rcu_read_lock_bh(); 4135 4136 skb_update_prio(skb); 4137 4138 qdisc_pkt_len_init(skb); 4139 #ifdef CONFIG_NET_CLS_ACT 4140 skb->tc_at_ingress = 0; 4141 # ifdef CONFIG_NET_EGRESS 4142 if (static_branch_unlikely(&egress_needed_key)) { 4143 skb = sch_handle_egress(skb, &rc, dev); 4144 if (!skb) 4145 goto out; 4146 } 4147 # endif 4148 #endif 4149 /* If device/qdisc don't need skb->dst, release it right now while 4150 * its hot in this cpu cache. 4151 */ 4152 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 4153 skb_dst_drop(skb); 4154 else 4155 skb_dst_force(skb); 4156 4157 txq = netdev_core_pick_tx(dev, skb, sb_dev); 4158 q = rcu_dereference_bh(txq->qdisc); 4159 4160 trace_net_dev_queue(skb); 4161 if (q->enqueue) { 4162 rc = __dev_xmit_skb(skb, q, dev, txq); 4163 goto out; 4164 } 4165 4166 /* The device has no queue. Common case for software devices: 4167 * loopback, all the sorts of tunnels... 4168 4169 * Really, it is unlikely that netif_tx_lock protection is necessary 4170 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 4171 * counters.) 4172 * However, it is possible, that they rely on protection 4173 * made by us here. 4174 4175 * Check this and shot the lock. It is not prone from deadlocks. 4176 *Either shot noqueue qdisc, it is even simpler 8) 4177 */ 4178 if (dev->flags & IFF_UP) { 4179 int cpu = smp_processor_id(); /* ok because BHs are off */ 4180 4181 if (txq->xmit_lock_owner != cpu) { 4182 if (dev_xmit_recursion()) 4183 goto recursion_alert; 4184 4185 skb = validate_xmit_skb(skb, dev, &again); 4186 if (!skb) 4187 goto out; 4188 4189 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies); 4190 HARD_TX_LOCK(dev, txq, cpu); 4191 4192 if (!netif_xmit_stopped(txq)) { 4193 dev_xmit_recursion_inc(); 4194 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 4195 dev_xmit_recursion_dec(); 4196 if (dev_xmit_complete(rc)) { 4197 HARD_TX_UNLOCK(dev, txq); 4198 goto out; 4199 } 4200 } 4201 HARD_TX_UNLOCK(dev, txq); 4202 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 4203 dev->name); 4204 } else { 4205 /* Recursion is detected! It is possible, 4206 * unfortunately 4207 */ 4208 recursion_alert: 4209 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 4210 dev->name); 4211 } 4212 } 4213 4214 rc = -ENETDOWN; 4215 rcu_read_unlock_bh(); 4216 4217 atomic_long_inc(&dev->tx_dropped); 4218 kfree_skb_list(skb); 4219 return rc; 4220 out: 4221 rcu_read_unlock_bh(); 4222 return rc; 4223 } 4224 4225 int dev_queue_xmit(struct sk_buff *skb) 4226 { 4227 return __dev_queue_xmit(skb, NULL); 4228 } 4229 EXPORT_SYMBOL(dev_queue_xmit); 4230 4231 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev) 4232 { 4233 return __dev_queue_xmit(skb, sb_dev); 4234 } 4235 EXPORT_SYMBOL(dev_queue_xmit_accel); 4236 4237 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 4238 { 4239 struct net_device *dev = skb->dev; 4240 struct sk_buff *orig_skb = skb; 4241 struct netdev_queue *txq; 4242 int ret = NETDEV_TX_BUSY; 4243 bool again = false; 4244 4245 if (unlikely(!netif_running(dev) || 4246 !netif_carrier_ok(dev))) 4247 goto drop; 4248 4249 skb = validate_xmit_skb_list(skb, dev, &again); 4250 if (skb != orig_skb) 4251 goto drop; 4252 4253 skb_set_queue_mapping(skb, queue_id); 4254 txq = skb_get_tx_queue(dev, skb); 4255 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies); 4256 4257 local_bh_disable(); 4258 4259 dev_xmit_recursion_inc(); 4260 HARD_TX_LOCK(dev, txq, smp_processor_id()); 4261 if (!netif_xmit_frozen_or_drv_stopped(txq)) 4262 ret = netdev_start_xmit(skb, dev, txq, false); 4263 HARD_TX_UNLOCK(dev, txq); 4264 dev_xmit_recursion_dec(); 4265 4266 local_bh_enable(); 4267 return ret; 4268 drop: 4269 atomic_long_inc(&dev->tx_dropped); 4270 kfree_skb_list(skb); 4271 return NET_XMIT_DROP; 4272 } 4273 EXPORT_SYMBOL(__dev_direct_xmit); 4274 4275 /************************************************************************* 4276 * Receiver routines 4277 *************************************************************************/ 4278 4279 int netdev_max_backlog __read_mostly = 1000; 4280 EXPORT_SYMBOL(netdev_max_backlog); 4281 4282 int netdev_tstamp_prequeue __read_mostly = 1; 4283 int netdev_budget __read_mostly = 300; 4284 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */ 4285 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ; 4286 int weight_p __read_mostly = 64; /* old backlog weight */ 4287 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 4288 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 4289 int dev_rx_weight __read_mostly = 64; 4290 int dev_tx_weight __read_mostly = 64; 4291 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */ 4292 int gro_normal_batch __read_mostly = 8; 4293 4294 /* Called with irq disabled */ 4295 static inline void ____napi_schedule(struct softnet_data *sd, 4296 struct napi_struct *napi) 4297 { 4298 struct task_struct *thread; 4299 4300 if (test_bit(NAPI_STATE_THREADED, &napi->state)) { 4301 /* Paired with smp_mb__before_atomic() in 4302 * napi_enable()/dev_set_threaded(). 4303 * Use READ_ONCE() to guarantee a complete 4304 * read on napi->thread. Only call 4305 * wake_up_process() when it's not NULL. 4306 */ 4307 thread = READ_ONCE(napi->thread); 4308 if (thread) { 4309 /* Avoid doing set_bit() if the thread is in 4310 * INTERRUPTIBLE state, cause napi_thread_wait() 4311 * makes sure to proceed with napi polling 4312 * if the thread is explicitly woken from here. 4313 */ 4314 if (READ_ONCE(thread->state) != TASK_INTERRUPTIBLE) 4315 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state); 4316 wake_up_process(thread); 4317 return; 4318 } 4319 } 4320 4321 list_add_tail(&napi->poll_list, &sd->poll_list); 4322 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4323 } 4324 4325 #ifdef CONFIG_RPS 4326 4327 /* One global table that all flow-based protocols share. */ 4328 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 4329 EXPORT_SYMBOL(rps_sock_flow_table); 4330 u32 rps_cpu_mask __read_mostly; 4331 EXPORT_SYMBOL(rps_cpu_mask); 4332 4333 struct static_key_false rps_needed __read_mostly; 4334 EXPORT_SYMBOL(rps_needed); 4335 struct static_key_false rfs_needed __read_mostly; 4336 EXPORT_SYMBOL(rfs_needed); 4337 4338 static struct rps_dev_flow * 4339 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4340 struct rps_dev_flow *rflow, u16 next_cpu) 4341 { 4342 if (next_cpu < nr_cpu_ids) { 4343 #ifdef CONFIG_RFS_ACCEL 4344 struct netdev_rx_queue *rxqueue; 4345 struct rps_dev_flow_table *flow_table; 4346 struct rps_dev_flow *old_rflow; 4347 u32 flow_id; 4348 u16 rxq_index; 4349 int rc; 4350 4351 /* Should we steer this flow to a different hardware queue? */ 4352 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 4353 !(dev->features & NETIF_F_NTUPLE)) 4354 goto out; 4355 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 4356 if (rxq_index == skb_get_rx_queue(skb)) 4357 goto out; 4358 4359 rxqueue = dev->_rx + rxq_index; 4360 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4361 if (!flow_table) 4362 goto out; 4363 flow_id = skb_get_hash(skb) & flow_table->mask; 4364 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 4365 rxq_index, flow_id); 4366 if (rc < 0) 4367 goto out; 4368 old_rflow = rflow; 4369 rflow = &flow_table->flows[flow_id]; 4370 rflow->filter = rc; 4371 if (old_rflow->filter == rflow->filter) 4372 old_rflow->filter = RPS_NO_FILTER; 4373 out: 4374 #endif 4375 rflow->last_qtail = 4376 per_cpu(softnet_data, next_cpu).input_queue_head; 4377 } 4378 4379 rflow->cpu = next_cpu; 4380 return rflow; 4381 } 4382 4383 /* 4384 * get_rps_cpu is called from netif_receive_skb and returns the target 4385 * CPU from the RPS map of the receiving queue for a given skb. 4386 * rcu_read_lock must be held on entry. 4387 */ 4388 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4389 struct rps_dev_flow **rflowp) 4390 { 4391 const struct rps_sock_flow_table *sock_flow_table; 4392 struct netdev_rx_queue *rxqueue = dev->_rx; 4393 struct rps_dev_flow_table *flow_table; 4394 struct rps_map *map; 4395 int cpu = -1; 4396 u32 tcpu; 4397 u32 hash; 4398 4399 if (skb_rx_queue_recorded(skb)) { 4400 u16 index = skb_get_rx_queue(skb); 4401 4402 if (unlikely(index >= dev->real_num_rx_queues)) { 4403 WARN_ONCE(dev->real_num_rx_queues > 1, 4404 "%s received packet on queue %u, but number " 4405 "of RX queues is %u\n", 4406 dev->name, index, dev->real_num_rx_queues); 4407 goto done; 4408 } 4409 rxqueue += index; 4410 } 4411 4412 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 4413 4414 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4415 map = rcu_dereference(rxqueue->rps_map); 4416 if (!flow_table && !map) 4417 goto done; 4418 4419 skb_reset_network_header(skb); 4420 hash = skb_get_hash(skb); 4421 if (!hash) 4422 goto done; 4423 4424 sock_flow_table = rcu_dereference(rps_sock_flow_table); 4425 if (flow_table && sock_flow_table) { 4426 struct rps_dev_flow *rflow; 4427 u32 next_cpu; 4428 u32 ident; 4429 4430 /* First check into global flow table if there is a match */ 4431 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 4432 if ((ident ^ hash) & ~rps_cpu_mask) 4433 goto try_rps; 4434 4435 next_cpu = ident & rps_cpu_mask; 4436 4437 /* OK, now we know there is a match, 4438 * we can look at the local (per receive queue) flow table 4439 */ 4440 rflow = &flow_table->flows[hash & flow_table->mask]; 4441 tcpu = rflow->cpu; 4442 4443 /* 4444 * If the desired CPU (where last recvmsg was done) is 4445 * different from current CPU (one in the rx-queue flow 4446 * table entry), switch if one of the following holds: 4447 * - Current CPU is unset (>= nr_cpu_ids). 4448 * - Current CPU is offline. 4449 * - The current CPU's queue tail has advanced beyond the 4450 * last packet that was enqueued using this table entry. 4451 * This guarantees that all previous packets for the flow 4452 * have been dequeued, thus preserving in order delivery. 4453 */ 4454 if (unlikely(tcpu != next_cpu) && 4455 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 4456 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 4457 rflow->last_qtail)) >= 0)) { 4458 tcpu = next_cpu; 4459 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 4460 } 4461 4462 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 4463 *rflowp = rflow; 4464 cpu = tcpu; 4465 goto done; 4466 } 4467 } 4468 4469 try_rps: 4470 4471 if (map) { 4472 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 4473 if (cpu_online(tcpu)) { 4474 cpu = tcpu; 4475 goto done; 4476 } 4477 } 4478 4479 done: 4480 return cpu; 4481 } 4482 4483 #ifdef CONFIG_RFS_ACCEL 4484 4485 /** 4486 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 4487 * @dev: Device on which the filter was set 4488 * @rxq_index: RX queue index 4489 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 4490 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 4491 * 4492 * Drivers that implement ndo_rx_flow_steer() should periodically call 4493 * this function for each installed filter and remove the filters for 4494 * which it returns %true. 4495 */ 4496 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 4497 u32 flow_id, u16 filter_id) 4498 { 4499 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 4500 struct rps_dev_flow_table *flow_table; 4501 struct rps_dev_flow *rflow; 4502 bool expire = true; 4503 unsigned int cpu; 4504 4505 rcu_read_lock(); 4506 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4507 if (flow_table && flow_id <= flow_table->mask) { 4508 rflow = &flow_table->flows[flow_id]; 4509 cpu = READ_ONCE(rflow->cpu); 4510 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 4511 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 4512 rflow->last_qtail) < 4513 (int)(10 * flow_table->mask))) 4514 expire = false; 4515 } 4516 rcu_read_unlock(); 4517 return expire; 4518 } 4519 EXPORT_SYMBOL(rps_may_expire_flow); 4520 4521 #endif /* CONFIG_RFS_ACCEL */ 4522 4523 /* Called from hardirq (IPI) context */ 4524 static void rps_trigger_softirq(void *data) 4525 { 4526 struct softnet_data *sd = data; 4527 4528 ____napi_schedule(sd, &sd->backlog); 4529 sd->received_rps++; 4530 } 4531 4532 #endif /* CONFIG_RPS */ 4533 4534 /* 4535 * Check if this softnet_data structure is another cpu one 4536 * If yes, queue it to our IPI list and return 1 4537 * If no, return 0 4538 */ 4539 static int rps_ipi_queued(struct softnet_data *sd) 4540 { 4541 #ifdef CONFIG_RPS 4542 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 4543 4544 if (sd != mysd) { 4545 sd->rps_ipi_next = mysd->rps_ipi_list; 4546 mysd->rps_ipi_list = sd; 4547 4548 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4549 return 1; 4550 } 4551 #endif /* CONFIG_RPS */ 4552 return 0; 4553 } 4554 4555 #ifdef CONFIG_NET_FLOW_LIMIT 4556 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 4557 #endif 4558 4559 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 4560 { 4561 #ifdef CONFIG_NET_FLOW_LIMIT 4562 struct sd_flow_limit *fl; 4563 struct softnet_data *sd; 4564 unsigned int old_flow, new_flow; 4565 4566 if (qlen < (netdev_max_backlog >> 1)) 4567 return false; 4568 4569 sd = this_cpu_ptr(&softnet_data); 4570 4571 rcu_read_lock(); 4572 fl = rcu_dereference(sd->flow_limit); 4573 if (fl) { 4574 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 4575 old_flow = fl->history[fl->history_head]; 4576 fl->history[fl->history_head] = new_flow; 4577 4578 fl->history_head++; 4579 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 4580 4581 if (likely(fl->buckets[old_flow])) 4582 fl->buckets[old_flow]--; 4583 4584 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 4585 fl->count++; 4586 rcu_read_unlock(); 4587 return true; 4588 } 4589 } 4590 rcu_read_unlock(); 4591 #endif 4592 return false; 4593 } 4594 4595 /* 4596 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 4597 * queue (may be a remote CPU queue). 4598 */ 4599 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 4600 unsigned int *qtail) 4601 { 4602 struct softnet_data *sd; 4603 unsigned long flags; 4604 unsigned int qlen; 4605 4606 sd = &per_cpu(softnet_data, cpu); 4607 4608 local_irq_save(flags); 4609 4610 rps_lock(sd); 4611 if (!netif_running(skb->dev)) 4612 goto drop; 4613 qlen = skb_queue_len(&sd->input_pkt_queue); 4614 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 4615 if (qlen) { 4616 enqueue: 4617 __skb_queue_tail(&sd->input_pkt_queue, skb); 4618 input_queue_tail_incr_save(sd, qtail); 4619 rps_unlock(sd); 4620 local_irq_restore(flags); 4621 return NET_RX_SUCCESS; 4622 } 4623 4624 /* Schedule NAPI for backlog device 4625 * We can use non atomic operation since we own the queue lock 4626 */ 4627 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 4628 if (!rps_ipi_queued(sd)) 4629 ____napi_schedule(sd, &sd->backlog); 4630 } 4631 goto enqueue; 4632 } 4633 4634 drop: 4635 sd->dropped++; 4636 rps_unlock(sd); 4637 4638 local_irq_restore(flags); 4639 4640 atomic_long_inc(&skb->dev->rx_dropped); 4641 kfree_skb(skb); 4642 return NET_RX_DROP; 4643 } 4644 4645 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 4646 { 4647 struct net_device *dev = skb->dev; 4648 struct netdev_rx_queue *rxqueue; 4649 4650 rxqueue = dev->_rx; 4651 4652 if (skb_rx_queue_recorded(skb)) { 4653 u16 index = skb_get_rx_queue(skb); 4654 4655 if (unlikely(index >= dev->real_num_rx_queues)) { 4656 WARN_ONCE(dev->real_num_rx_queues > 1, 4657 "%s received packet on queue %u, but number " 4658 "of RX queues is %u\n", 4659 dev->name, index, dev->real_num_rx_queues); 4660 4661 return rxqueue; /* Return first rxqueue */ 4662 } 4663 rxqueue += index; 4664 } 4665 return rxqueue; 4666 } 4667 4668 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 4669 struct xdp_buff *xdp, 4670 struct bpf_prog *xdp_prog) 4671 { 4672 void *orig_data, *orig_data_end, *hard_start; 4673 struct netdev_rx_queue *rxqueue; 4674 u32 metalen, act = XDP_DROP; 4675 u32 mac_len, frame_sz; 4676 __be16 orig_eth_type; 4677 struct ethhdr *eth; 4678 bool orig_bcast; 4679 int off; 4680 4681 /* Reinjected packets coming from act_mirred or similar should 4682 * not get XDP generic processing. 4683 */ 4684 if (skb_is_redirected(skb)) 4685 return XDP_PASS; 4686 4687 /* XDP packets must be linear and must have sufficient headroom 4688 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also 4689 * native XDP provides, thus we need to do it here as well. 4690 */ 4691 if (skb_cloned(skb) || skb_is_nonlinear(skb) || 4692 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 4693 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 4694 int troom = skb->tail + skb->data_len - skb->end; 4695 4696 /* In case we have to go down the path and also linearize, 4697 * then lets do the pskb_expand_head() work just once here. 4698 */ 4699 if (pskb_expand_head(skb, 4700 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 4701 troom > 0 ? troom + 128 : 0, GFP_ATOMIC)) 4702 goto do_drop; 4703 if (skb_linearize(skb)) 4704 goto do_drop; 4705 } 4706 4707 /* The XDP program wants to see the packet starting at the MAC 4708 * header. 4709 */ 4710 mac_len = skb->data - skb_mac_header(skb); 4711 hard_start = skb->data - skb_headroom(skb); 4712 4713 /* SKB "head" area always have tailroom for skb_shared_info */ 4714 frame_sz = (void *)skb_end_pointer(skb) - hard_start; 4715 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4716 4717 rxqueue = netif_get_rxqueue(skb); 4718 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq); 4719 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len, 4720 skb_headlen(skb) + mac_len, true); 4721 4722 orig_data_end = xdp->data_end; 4723 orig_data = xdp->data; 4724 eth = (struct ethhdr *)xdp->data; 4725 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 4726 orig_eth_type = eth->h_proto; 4727 4728 act = bpf_prog_run_xdp(xdp_prog, xdp); 4729 4730 /* check if bpf_xdp_adjust_head was used */ 4731 off = xdp->data - orig_data; 4732 if (off) { 4733 if (off > 0) 4734 __skb_pull(skb, off); 4735 else if (off < 0) 4736 __skb_push(skb, -off); 4737 4738 skb->mac_header += off; 4739 skb_reset_network_header(skb); 4740 } 4741 4742 /* check if bpf_xdp_adjust_tail was used */ 4743 off = xdp->data_end - orig_data_end; 4744 if (off != 0) { 4745 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 4746 skb->len += off; /* positive on grow, negative on shrink */ 4747 } 4748 4749 /* check if XDP changed eth hdr such SKB needs update */ 4750 eth = (struct ethhdr *)xdp->data; 4751 if ((orig_eth_type != eth->h_proto) || 4752 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 4753 __skb_push(skb, ETH_HLEN); 4754 skb->protocol = eth_type_trans(skb, skb->dev); 4755 } 4756 4757 switch (act) { 4758 case XDP_REDIRECT: 4759 case XDP_TX: 4760 __skb_push(skb, mac_len); 4761 break; 4762 case XDP_PASS: 4763 metalen = xdp->data - xdp->data_meta; 4764 if (metalen) 4765 skb_metadata_set(skb, metalen); 4766 break; 4767 default: 4768 bpf_warn_invalid_xdp_action(act); 4769 fallthrough; 4770 case XDP_ABORTED: 4771 trace_xdp_exception(skb->dev, xdp_prog, act); 4772 fallthrough; 4773 case XDP_DROP: 4774 do_drop: 4775 kfree_skb(skb); 4776 break; 4777 } 4778 4779 return act; 4780 } 4781 4782 /* When doing generic XDP we have to bypass the qdisc layer and the 4783 * network taps in order to match in-driver-XDP behavior. 4784 */ 4785 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 4786 { 4787 struct net_device *dev = skb->dev; 4788 struct netdev_queue *txq; 4789 bool free_skb = true; 4790 int cpu, rc; 4791 4792 txq = netdev_core_pick_tx(dev, skb, NULL); 4793 cpu = smp_processor_id(); 4794 HARD_TX_LOCK(dev, txq, cpu); 4795 if (!netif_xmit_stopped(txq)) { 4796 rc = netdev_start_xmit(skb, dev, txq, 0); 4797 if (dev_xmit_complete(rc)) 4798 free_skb = false; 4799 } 4800 HARD_TX_UNLOCK(dev, txq); 4801 if (free_skb) { 4802 trace_xdp_exception(dev, xdp_prog, XDP_TX); 4803 kfree_skb(skb); 4804 } 4805 } 4806 4807 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 4808 4809 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 4810 { 4811 if (xdp_prog) { 4812 struct xdp_buff xdp; 4813 u32 act; 4814 int err; 4815 4816 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog); 4817 if (act != XDP_PASS) { 4818 switch (act) { 4819 case XDP_REDIRECT: 4820 err = xdp_do_generic_redirect(skb->dev, skb, 4821 &xdp, xdp_prog); 4822 if (err) 4823 goto out_redir; 4824 break; 4825 case XDP_TX: 4826 generic_xdp_tx(skb, xdp_prog); 4827 break; 4828 } 4829 return XDP_DROP; 4830 } 4831 } 4832 return XDP_PASS; 4833 out_redir: 4834 kfree_skb(skb); 4835 return XDP_DROP; 4836 } 4837 EXPORT_SYMBOL_GPL(do_xdp_generic); 4838 4839 static int netif_rx_internal(struct sk_buff *skb) 4840 { 4841 int ret; 4842 4843 net_timestamp_check(netdev_tstamp_prequeue, skb); 4844 4845 trace_netif_rx(skb); 4846 4847 #ifdef CONFIG_RPS 4848 if (static_branch_unlikely(&rps_needed)) { 4849 struct rps_dev_flow voidflow, *rflow = &voidflow; 4850 int cpu; 4851 4852 preempt_disable(); 4853 rcu_read_lock(); 4854 4855 cpu = get_rps_cpu(skb->dev, skb, &rflow); 4856 if (cpu < 0) 4857 cpu = smp_processor_id(); 4858 4859 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4860 4861 rcu_read_unlock(); 4862 preempt_enable(); 4863 } else 4864 #endif 4865 { 4866 unsigned int qtail; 4867 4868 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 4869 put_cpu(); 4870 } 4871 return ret; 4872 } 4873 4874 /** 4875 * netif_rx - post buffer to the network code 4876 * @skb: buffer to post 4877 * 4878 * This function receives a packet from a device driver and queues it for 4879 * the upper (protocol) levels to process. It always succeeds. The buffer 4880 * may be dropped during processing for congestion control or by the 4881 * protocol layers. 4882 * 4883 * return values: 4884 * NET_RX_SUCCESS (no congestion) 4885 * NET_RX_DROP (packet was dropped) 4886 * 4887 */ 4888 4889 int netif_rx(struct sk_buff *skb) 4890 { 4891 int ret; 4892 4893 trace_netif_rx_entry(skb); 4894 4895 ret = netif_rx_internal(skb); 4896 trace_netif_rx_exit(ret); 4897 4898 return ret; 4899 } 4900 EXPORT_SYMBOL(netif_rx); 4901 4902 int netif_rx_ni(struct sk_buff *skb) 4903 { 4904 int err; 4905 4906 trace_netif_rx_ni_entry(skb); 4907 4908 preempt_disable(); 4909 err = netif_rx_internal(skb); 4910 if (local_softirq_pending()) 4911 do_softirq(); 4912 preempt_enable(); 4913 trace_netif_rx_ni_exit(err); 4914 4915 return err; 4916 } 4917 EXPORT_SYMBOL(netif_rx_ni); 4918 4919 int netif_rx_any_context(struct sk_buff *skb) 4920 { 4921 /* 4922 * If invoked from contexts which do not invoke bottom half 4923 * processing either at return from interrupt or when softrqs are 4924 * reenabled, use netif_rx_ni() which invokes bottomhalf processing 4925 * directly. 4926 */ 4927 if (in_interrupt()) 4928 return netif_rx(skb); 4929 else 4930 return netif_rx_ni(skb); 4931 } 4932 EXPORT_SYMBOL(netif_rx_any_context); 4933 4934 static __latent_entropy void net_tx_action(struct softirq_action *h) 4935 { 4936 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4937 4938 if (sd->completion_queue) { 4939 struct sk_buff *clist; 4940 4941 local_irq_disable(); 4942 clist = sd->completion_queue; 4943 sd->completion_queue = NULL; 4944 local_irq_enable(); 4945 4946 while (clist) { 4947 struct sk_buff *skb = clist; 4948 4949 clist = clist->next; 4950 4951 WARN_ON(refcount_read(&skb->users)); 4952 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 4953 trace_consume_skb(skb); 4954 else 4955 trace_kfree_skb(skb, net_tx_action); 4956 4957 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 4958 __kfree_skb(skb); 4959 else 4960 __kfree_skb_defer(skb); 4961 } 4962 } 4963 4964 if (sd->output_queue) { 4965 struct Qdisc *head; 4966 4967 local_irq_disable(); 4968 head = sd->output_queue; 4969 sd->output_queue = NULL; 4970 sd->output_queue_tailp = &sd->output_queue; 4971 local_irq_enable(); 4972 4973 while (head) { 4974 struct Qdisc *q = head; 4975 spinlock_t *root_lock = NULL; 4976 4977 head = head->next_sched; 4978 4979 if (!(q->flags & TCQ_F_NOLOCK)) { 4980 root_lock = qdisc_lock(q); 4981 spin_lock(root_lock); 4982 } 4983 /* We need to make sure head->next_sched is read 4984 * before clearing __QDISC_STATE_SCHED 4985 */ 4986 smp_mb__before_atomic(); 4987 clear_bit(__QDISC_STATE_SCHED, &q->state); 4988 qdisc_run(q); 4989 if (root_lock) 4990 spin_unlock(root_lock); 4991 } 4992 } 4993 4994 xfrm_dev_backlog(sd); 4995 } 4996 4997 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 4998 /* This hook is defined here for ATM LANE */ 4999 int (*br_fdb_test_addr_hook)(struct net_device *dev, 5000 unsigned char *addr) __read_mostly; 5001 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 5002 #endif 5003 5004 static inline struct sk_buff * 5005 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 5006 struct net_device *orig_dev, bool *another) 5007 { 5008 #ifdef CONFIG_NET_CLS_ACT 5009 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress); 5010 struct tcf_result cl_res; 5011 5012 /* If there's at least one ingress present somewhere (so 5013 * we get here via enabled static key), remaining devices 5014 * that are not configured with an ingress qdisc will bail 5015 * out here. 5016 */ 5017 if (!miniq) 5018 return skb; 5019 5020 if (*pt_prev) { 5021 *ret = deliver_skb(skb, *pt_prev, orig_dev); 5022 *pt_prev = NULL; 5023 } 5024 5025 qdisc_skb_cb(skb)->pkt_len = skb->len; 5026 qdisc_skb_cb(skb)->mru = 0; 5027 qdisc_skb_cb(skb)->post_ct = false; 5028 skb->tc_at_ingress = 1; 5029 mini_qdisc_bstats_cpu_update(miniq, skb); 5030 5031 switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list, 5032 &cl_res, false)) { 5033 case TC_ACT_OK: 5034 case TC_ACT_RECLASSIFY: 5035 skb->tc_index = TC_H_MIN(cl_res.classid); 5036 break; 5037 case TC_ACT_SHOT: 5038 mini_qdisc_qstats_cpu_drop(miniq); 5039 kfree_skb(skb); 5040 return NULL; 5041 case TC_ACT_STOLEN: 5042 case TC_ACT_QUEUED: 5043 case TC_ACT_TRAP: 5044 consume_skb(skb); 5045 return NULL; 5046 case TC_ACT_REDIRECT: 5047 /* skb_mac_header check was done by cls/act_bpf, so 5048 * we can safely push the L2 header back before 5049 * redirecting to another netdev 5050 */ 5051 __skb_push(skb, skb->mac_len); 5052 if (skb_do_redirect(skb) == -EAGAIN) { 5053 __skb_pull(skb, skb->mac_len); 5054 *another = true; 5055 break; 5056 } 5057 return NULL; 5058 case TC_ACT_CONSUMED: 5059 return NULL; 5060 default: 5061 break; 5062 } 5063 #endif /* CONFIG_NET_CLS_ACT */ 5064 return skb; 5065 } 5066 5067 /** 5068 * netdev_is_rx_handler_busy - check if receive handler is registered 5069 * @dev: device to check 5070 * 5071 * Check if a receive handler is already registered for a given device. 5072 * Return true if there one. 5073 * 5074 * The caller must hold the rtnl_mutex. 5075 */ 5076 bool netdev_is_rx_handler_busy(struct net_device *dev) 5077 { 5078 ASSERT_RTNL(); 5079 return dev && rtnl_dereference(dev->rx_handler); 5080 } 5081 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 5082 5083 /** 5084 * netdev_rx_handler_register - register receive handler 5085 * @dev: device to register a handler for 5086 * @rx_handler: receive handler to register 5087 * @rx_handler_data: data pointer that is used by rx handler 5088 * 5089 * Register a receive handler for a device. This handler will then be 5090 * called from __netif_receive_skb. A negative errno code is returned 5091 * on a failure. 5092 * 5093 * The caller must hold the rtnl_mutex. 5094 * 5095 * For a general description of rx_handler, see enum rx_handler_result. 5096 */ 5097 int netdev_rx_handler_register(struct net_device *dev, 5098 rx_handler_func_t *rx_handler, 5099 void *rx_handler_data) 5100 { 5101 if (netdev_is_rx_handler_busy(dev)) 5102 return -EBUSY; 5103 5104 if (dev->priv_flags & IFF_NO_RX_HANDLER) 5105 return -EINVAL; 5106 5107 /* Note: rx_handler_data must be set before rx_handler */ 5108 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 5109 rcu_assign_pointer(dev->rx_handler, rx_handler); 5110 5111 return 0; 5112 } 5113 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 5114 5115 /** 5116 * netdev_rx_handler_unregister - unregister receive handler 5117 * @dev: device to unregister a handler from 5118 * 5119 * Unregister a receive handler from a device. 5120 * 5121 * The caller must hold the rtnl_mutex. 5122 */ 5123 void netdev_rx_handler_unregister(struct net_device *dev) 5124 { 5125 5126 ASSERT_RTNL(); 5127 RCU_INIT_POINTER(dev->rx_handler, NULL); 5128 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 5129 * section has a guarantee to see a non NULL rx_handler_data 5130 * as well. 5131 */ 5132 synchronize_net(); 5133 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 5134 } 5135 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 5136 5137 /* 5138 * Limit the use of PFMEMALLOC reserves to those protocols that implement 5139 * the special handling of PFMEMALLOC skbs. 5140 */ 5141 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 5142 { 5143 switch (skb->protocol) { 5144 case htons(ETH_P_ARP): 5145 case htons(ETH_P_IP): 5146 case htons(ETH_P_IPV6): 5147 case htons(ETH_P_8021Q): 5148 case htons(ETH_P_8021AD): 5149 return true; 5150 default: 5151 return false; 5152 } 5153 } 5154 5155 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 5156 int *ret, struct net_device *orig_dev) 5157 { 5158 if (nf_hook_ingress_active(skb)) { 5159 int ingress_retval; 5160 5161 if (*pt_prev) { 5162 *ret = deliver_skb(skb, *pt_prev, orig_dev); 5163 *pt_prev = NULL; 5164 } 5165 5166 rcu_read_lock(); 5167 ingress_retval = nf_hook_ingress(skb); 5168 rcu_read_unlock(); 5169 return ingress_retval; 5170 } 5171 return 0; 5172 } 5173 5174 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc, 5175 struct packet_type **ppt_prev) 5176 { 5177 struct packet_type *ptype, *pt_prev; 5178 rx_handler_func_t *rx_handler; 5179 struct sk_buff *skb = *pskb; 5180 struct net_device *orig_dev; 5181 bool deliver_exact = false; 5182 int ret = NET_RX_DROP; 5183 __be16 type; 5184 5185 net_timestamp_check(!netdev_tstamp_prequeue, skb); 5186 5187 trace_netif_receive_skb(skb); 5188 5189 orig_dev = skb->dev; 5190 5191 skb_reset_network_header(skb); 5192 if (!skb_transport_header_was_set(skb)) 5193 skb_reset_transport_header(skb); 5194 skb_reset_mac_len(skb); 5195 5196 pt_prev = NULL; 5197 5198 another_round: 5199 skb->skb_iif = skb->dev->ifindex; 5200 5201 __this_cpu_inc(softnet_data.processed); 5202 5203 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5204 int ret2; 5205 5206 preempt_disable(); 5207 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 5208 preempt_enable(); 5209 5210 if (ret2 != XDP_PASS) { 5211 ret = NET_RX_DROP; 5212 goto out; 5213 } 5214 skb_reset_mac_len(skb); 5215 } 5216 5217 if (eth_type_vlan(skb->protocol)) { 5218 skb = skb_vlan_untag(skb); 5219 if (unlikely(!skb)) 5220 goto out; 5221 } 5222 5223 if (skb_skip_tc_classify(skb)) 5224 goto skip_classify; 5225 5226 if (pfmemalloc) 5227 goto skip_taps; 5228 5229 list_for_each_entry_rcu(ptype, &ptype_all, list) { 5230 if (pt_prev) 5231 ret = deliver_skb(skb, pt_prev, orig_dev); 5232 pt_prev = ptype; 5233 } 5234 5235 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 5236 if (pt_prev) 5237 ret = deliver_skb(skb, pt_prev, orig_dev); 5238 pt_prev = ptype; 5239 } 5240 5241 skip_taps: 5242 #ifdef CONFIG_NET_INGRESS 5243 if (static_branch_unlikely(&ingress_needed_key)) { 5244 bool another = false; 5245 5246 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev, 5247 &another); 5248 if (another) 5249 goto another_round; 5250 if (!skb) 5251 goto out; 5252 5253 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 5254 goto out; 5255 } 5256 #endif 5257 skb_reset_redirect(skb); 5258 skip_classify: 5259 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 5260 goto drop; 5261 5262 if (skb_vlan_tag_present(skb)) { 5263 if (pt_prev) { 5264 ret = deliver_skb(skb, pt_prev, orig_dev); 5265 pt_prev = NULL; 5266 } 5267 if (vlan_do_receive(&skb)) 5268 goto another_round; 5269 else if (unlikely(!skb)) 5270 goto out; 5271 } 5272 5273 rx_handler = rcu_dereference(skb->dev->rx_handler); 5274 if (rx_handler) { 5275 if (pt_prev) { 5276 ret = deliver_skb(skb, pt_prev, orig_dev); 5277 pt_prev = NULL; 5278 } 5279 switch (rx_handler(&skb)) { 5280 case RX_HANDLER_CONSUMED: 5281 ret = NET_RX_SUCCESS; 5282 goto out; 5283 case RX_HANDLER_ANOTHER: 5284 goto another_round; 5285 case RX_HANDLER_EXACT: 5286 deliver_exact = true; 5287 case RX_HANDLER_PASS: 5288 break; 5289 default: 5290 BUG(); 5291 } 5292 } 5293 5294 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) { 5295 check_vlan_id: 5296 if (skb_vlan_tag_get_id(skb)) { 5297 /* Vlan id is non 0 and vlan_do_receive() above couldn't 5298 * find vlan device. 5299 */ 5300 skb->pkt_type = PACKET_OTHERHOST; 5301 } else if (eth_type_vlan(skb->protocol)) { 5302 /* Outer header is 802.1P with vlan 0, inner header is 5303 * 802.1Q or 802.1AD and vlan_do_receive() above could 5304 * not find vlan dev for vlan id 0. 5305 */ 5306 __vlan_hwaccel_clear_tag(skb); 5307 skb = skb_vlan_untag(skb); 5308 if (unlikely(!skb)) 5309 goto out; 5310 if (vlan_do_receive(&skb)) 5311 /* After stripping off 802.1P header with vlan 0 5312 * vlan dev is found for inner header. 5313 */ 5314 goto another_round; 5315 else if (unlikely(!skb)) 5316 goto out; 5317 else 5318 /* We have stripped outer 802.1P vlan 0 header. 5319 * But could not find vlan dev. 5320 * check again for vlan id to set OTHERHOST. 5321 */ 5322 goto check_vlan_id; 5323 } 5324 /* Note: we might in the future use prio bits 5325 * and set skb->priority like in vlan_do_receive() 5326 * For the time being, just ignore Priority Code Point 5327 */ 5328 __vlan_hwaccel_clear_tag(skb); 5329 } 5330 5331 type = skb->protocol; 5332 5333 /* deliver only exact match when indicated */ 5334 if (likely(!deliver_exact)) { 5335 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5336 &ptype_base[ntohs(type) & 5337 PTYPE_HASH_MASK]); 5338 } 5339 5340 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5341 &orig_dev->ptype_specific); 5342 5343 if (unlikely(skb->dev != orig_dev)) { 5344 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5345 &skb->dev->ptype_specific); 5346 } 5347 5348 if (pt_prev) { 5349 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 5350 goto drop; 5351 *ppt_prev = pt_prev; 5352 } else { 5353 drop: 5354 if (!deliver_exact) 5355 atomic_long_inc(&skb->dev->rx_dropped); 5356 else 5357 atomic_long_inc(&skb->dev->rx_nohandler); 5358 kfree_skb(skb); 5359 /* Jamal, now you will not able to escape explaining 5360 * me how you were going to use this. :-) 5361 */ 5362 ret = NET_RX_DROP; 5363 } 5364 5365 out: 5366 /* The invariant here is that if *ppt_prev is not NULL 5367 * then skb should also be non-NULL. 5368 * 5369 * Apparently *ppt_prev assignment above holds this invariant due to 5370 * skb dereferencing near it. 5371 */ 5372 *pskb = skb; 5373 return ret; 5374 } 5375 5376 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 5377 { 5378 struct net_device *orig_dev = skb->dev; 5379 struct packet_type *pt_prev = NULL; 5380 int ret; 5381 5382 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5383 if (pt_prev) 5384 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, 5385 skb->dev, pt_prev, orig_dev); 5386 return ret; 5387 } 5388 5389 /** 5390 * netif_receive_skb_core - special purpose version of netif_receive_skb 5391 * @skb: buffer to process 5392 * 5393 * More direct receive version of netif_receive_skb(). It should 5394 * only be used by callers that have a need to skip RPS and Generic XDP. 5395 * Caller must also take care of handling if ``(page_is_)pfmemalloc``. 5396 * 5397 * This function may only be called from softirq context and interrupts 5398 * should be enabled. 5399 * 5400 * Return values (usually ignored): 5401 * NET_RX_SUCCESS: no congestion 5402 * NET_RX_DROP: packet was dropped 5403 */ 5404 int netif_receive_skb_core(struct sk_buff *skb) 5405 { 5406 int ret; 5407 5408 rcu_read_lock(); 5409 ret = __netif_receive_skb_one_core(skb, false); 5410 rcu_read_unlock(); 5411 5412 return ret; 5413 } 5414 EXPORT_SYMBOL(netif_receive_skb_core); 5415 5416 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 5417 struct packet_type *pt_prev, 5418 struct net_device *orig_dev) 5419 { 5420 struct sk_buff *skb, *next; 5421 5422 if (!pt_prev) 5423 return; 5424 if (list_empty(head)) 5425 return; 5426 if (pt_prev->list_func != NULL) 5427 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv, 5428 ip_list_rcv, head, pt_prev, orig_dev); 5429 else 5430 list_for_each_entry_safe(skb, next, head, list) { 5431 skb_list_del_init(skb); 5432 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 5433 } 5434 } 5435 5436 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 5437 { 5438 /* Fast-path assumptions: 5439 * - There is no RX handler. 5440 * - Only one packet_type matches. 5441 * If either of these fails, we will end up doing some per-packet 5442 * processing in-line, then handling the 'last ptype' for the whole 5443 * sublist. This can't cause out-of-order delivery to any single ptype, 5444 * because the 'last ptype' must be constant across the sublist, and all 5445 * other ptypes are handled per-packet. 5446 */ 5447 /* Current (common) ptype of sublist */ 5448 struct packet_type *pt_curr = NULL; 5449 /* Current (common) orig_dev of sublist */ 5450 struct net_device *od_curr = NULL; 5451 struct list_head sublist; 5452 struct sk_buff *skb, *next; 5453 5454 INIT_LIST_HEAD(&sublist); 5455 list_for_each_entry_safe(skb, next, head, list) { 5456 struct net_device *orig_dev = skb->dev; 5457 struct packet_type *pt_prev = NULL; 5458 5459 skb_list_del_init(skb); 5460 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5461 if (!pt_prev) 5462 continue; 5463 if (pt_curr != pt_prev || od_curr != orig_dev) { 5464 /* dispatch old sublist */ 5465 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5466 /* start new sublist */ 5467 INIT_LIST_HEAD(&sublist); 5468 pt_curr = pt_prev; 5469 od_curr = orig_dev; 5470 } 5471 list_add_tail(&skb->list, &sublist); 5472 } 5473 5474 /* dispatch final sublist */ 5475 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5476 } 5477 5478 static int __netif_receive_skb(struct sk_buff *skb) 5479 { 5480 int ret; 5481 5482 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 5483 unsigned int noreclaim_flag; 5484 5485 /* 5486 * PFMEMALLOC skbs are special, they should 5487 * - be delivered to SOCK_MEMALLOC sockets only 5488 * - stay away from userspace 5489 * - have bounded memory usage 5490 * 5491 * Use PF_MEMALLOC as this saves us from propagating the allocation 5492 * context down to all allocation sites. 5493 */ 5494 noreclaim_flag = memalloc_noreclaim_save(); 5495 ret = __netif_receive_skb_one_core(skb, true); 5496 memalloc_noreclaim_restore(noreclaim_flag); 5497 } else 5498 ret = __netif_receive_skb_one_core(skb, false); 5499 5500 return ret; 5501 } 5502 5503 static void __netif_receive_skb_list(struct list_head *head) 5504 { 5505 unsigned long noreclaim_flag = 0; 5506 struct sk_buff *skb, *next; 5507 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 5508 5509 list_for_each_entry_safe(skb, next, head, list) { 5510 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 5511 struct list_head sublist; 5512 5513 /* Handle the previous sublist */ 5514 list_cut_before(&sublist, head, &skb->list); 5515 if (!list_empty(&sublist)) 5516 __netif_receive_skb_list_core(&sublist, pfmemalloc); 5517 pfmemalloc = !pfmemalloc; 5518 /* See comments in __netif_receive_skb */ 5519 if (pfmemalloc) 5520 noreclaim_flag = memalloc_noreclaim_save(); 5521 else 5522 memalloc_noreclaim_restore(noreclaim_flag); 5523 } 5524 } 5525 /* Handle the remaining sublist */ 5526 if (!list_empty(head)) 5527 __netif_receive_skb_list_core(head, pfmemalloc); 5528 /* Restore pflags */ 5529 if (pfmemalloc) 5530 memalloc_noreclaim_restore(noreclaim_flag); 5531 } 5532 5533 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 5534 { 5535 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 5536 struct bpf_prog *new = xdp->prog; 5537 int ret = 0; 5538 5539 if (new) { 5540 u32 i; 5541 5542 mutex_lock(&new->aux->used_maps_mutex); 5543 5544 /* generic XDP does not work with DEVMAPs that can 5545 * have a bpf_prog installed on an entry 5546 */ 5547 for (i = 0; i < new->aux->used_map_cnt; i++) { 5548 if (dev_map_can_have_prog(new->aux->used_maps[i]) || 5549 cpu_map_prog_allowed(new->aux->used_maps[i])) { 5550 mutex_unlock(&new->aux->used_maps_mutex); 5551 return -EINVAL; 5552 } 5553 } 5554 5555 mutex_unlock(&new->aux->used_maps_mutex); 5556 } 5557 5558 switch (xdp->command) { 5559 case XDP_SETUP_PROG: 5560 rcu_assign_pointer(dev->xdp_prog, new); 5561 if (old) 5562 bpf_prog_put(old); 5563 5564 if (old && !new) { 5565 static_branch_dec(&generic_xdp_needed_key); 5566 } else if (new && !old) { 5567 static_branch_inc(&generic_xdp_needed_key); 5568 dev_disable_lro(dev); 5569 dev_disable_gro_hw(dev); 5570 } 5571 break; 5572 5573 default: 5574 ret = -EINVAL; 5575 break; 5576 } 5577 5578 return ret; 5579 } 5580 5581 static int netif_receive_skb_internal(struct sk_buff *skb) 5582 { 5583 int ret; 5584 5585 net_timestamp_check(netdev_tstamp_prequeue, skb); 5586 5587 if (skb_defer_rx_timestamp(skb)) 5588 return NET_RX_SUCCESS; 5589 5590 rcu_read_lock(); 5591 #ifdef CONFIG_RPS 5592 if (static_branch_unlikely(&rps_needed)) { 5593 struct rps_dev_flow voidflow, *rflow = &voidflow; 5594 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5595 5596 if (cpu >= 0) { 5597 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5598 rcu_read_unlock(); 5599 return ret; 5600 } 5601 } 5602 #endif 5603 ret = __netif_receive_skb(skb); 5604 rcu_read_unlock(); 5605 return ret; 5606 } 5607 5608 static void netif_receive_skb_list_internal(struct list_head *head) 5609 { 5610 struct sk_buff *skb, *next; 5611 struct list_head sublist; 5612 5613 INIT_LIST_HEAD(&sublist); 5614 list_for_each_entry_safe(skb, next, head, list) { 5615 net_timestamp_check(netdev_tstamp_prequeue, skb); 5616 skb_list_del_init(skb); 5617 if (!skb_defer_rx_timestamp(skb)) 5618 list_add_tail(&skb->list, &sublist); 5619 } 5620 list_splice_init(&sublist, head); 5621 5622 rcu_read_lock(); 5623 #ifdef CONFIG_RPS 5624 if (static_branch_unlikely(&rps_needed)) { 5625 list_for_each_entry_safe(skb, next, head, list) { 5626 struct rps_dev_flow voidflow, *rflow = &voidflow; 5627 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5628 5629 if (cpu >= 0) { 5630 /* Will be handled, remove from list */ 5631 skb_list_del_init(skb); 5632 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5633 } 5634 } 5635 } 5636 #endif 5637 __netif_receive_skb_list(head); 5638 rcu_read_unlock(); 5639 } 5640 5641 /** 5642 * netif_receive_skb - process receive buffer from network 5643 * @skb: buffer to process 5644 * 5645 * netif_receive_skb() is the main receive data processing function. 5646 * It always succeeds. The buffer may be dropped during processing 5647 * for congestion control or by the protocol layers. 5648 * 5649 * This function may only be called from softirq context and interrupts 5650 * should be enabled. 5651 * 5652 * Return values (usually ignored): 5653 * NET_RX_SUCCESS: no congestion 5654 * NET_RX_DROP: packet was dropped 5655 */ 5656 int netif_receive_skb(struct sk_buff *skb) 5657 { 5658 int ret; 5659 5660 trace_netif_receive_skb_entry(skb); 5661 5662 ret = netif_receive_skb_internal(skb); 5663 trace_netif_receive_skb_exit(ret); 5664 5665 return ret; 5666 } 5667 EXPORT_SYMBOL(netif_receive_skb); 5668 5669 /** 5670 * netif_receive_skb_list - process many receive buffers from network 5671 * @head: list of skbs to process. 5672 * 5673 * Since return value of netif_receive_skb() is normally ignored, and 5674 * wouldn't be meaningful for a list, this function returns void. 5675 * 5676 * This function may only be called from softirq context and interrupts 5677 * should be enabled. 5678 */ 5679 void netif_receive_skb_list(struct list_head *head) 5680 { 5681 struct sk_buff *skb; 5682 5683 if (list_empty(head)) 5684 return; 5685 if (trace_netif_receive_skb_list_entry_enabled()) { 5686 list_for_each_entry(skb, head, list) 5687 trace_netif_receive_skb_list_entry(skb); 5688 } 5689 netif_receive_skb_list_internal(head); 5690 trace_netif_receive_skb_list_exit(0); 5691 } 5692 EXPORT_SYMBOL(netif_receive_skb_list); 5693 5694 static DEFINE_PER_CPU(struct work_struct, flush_works); 5695 5696 /* Network device is going away, flush any packets still pending */ 5697 static void flush_backlog(struct work_struct *work) 5698 { 5699 struct sk_buff *skb, *tmp; 5700 struct softnet_data *sd; 5701 5702 local_bh_disable(); 5703 sd = this_cpu_ptr(&softnet_data); 5704 5705 local_irq_disable(); 5706 rps_lock(sd); 5707 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 5708 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5709 __skb_unlink(skb, &sd->input_pkt_queue); 5710 dev_kfree_skb_irq(skb); 5711 input_queue_head_incr(sd); 5712 } 5713 } 5714 rps_unlock(sd); 5715 local_irq_enable(); 5716 5717 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 5718 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5719 __skb_unlink(skb, &sd->process_queue); 5720 kfree_skb(skb); 5721 input_queue_head_incr(sd); 5722 } 5723 } 5724 local_bh_enable(); 5725 } 5726 5727 static bool flush_required(int cpu) 5728 { 5729 #if IS_ENABLED(CONFIG_RPS) 5730 struct softnet_data *sd = &per_cpu(softnet_data, cpu); 5731 bool do_flush; 5732 5733 local_irq_disable(); 5734 rps_lock(sd); 5735 5736 /* as insertion into process_queue happens with the rps lock held, 5737 * process_queue access may race only with dequeue 5738 */ 5739 do_flush = !skb_queue_empty(&sd->input_pkt_queue) || 5740 !skb_queue_empty_lockless(&sd->process_queue); 5741 rps_unlock(sd); 5742 local_irq_enable(); 5743 5744 return do_flush; 5745 #endif 5746 /* without RPS we can't safely check input_pkt_queue: during a 5747 * concurrent remote skb_queue_splice() we can detect as empty both 5748 * input_pkt_queue and process_queue even if the latter could end-up 5749 * containing a lot of packets. 5750 */ 5751 return true; 5752 } 5753 5754 static void flush_all_backlogs(void) 5755 { 5756 static cpumask_t flush_cpus; 5757 unsigned int cpu; 5758 5759 /* since we are under rtnl lock protection we can use static data 5760 * for the cpumask and avoid allocating on stack the possibly 5761 * large mask 5762 */ 5763 ASSERT_RTNL(); 5764 5765 get_online_cpus(); 5766 5767 cpumask_clear(&flush_cpus); 5768 for_each_online_cpu(cpu) { 5769 if (flush_required(cpu)) { 5770 queue_work_on(cpu, system_highpri_wq, 5771 per_cpu_ptr(&flush_works, cpu)); 5772 cpumask_set_cpu(cpu, &flush_cpus); 5773 } 5774 } 5775 5776 /* we can have in flight packet[s] on the cpus we are not flushing, 5777 * synchronize_net() in unregister_netdevice_many() will take care of 5778 * them 5779 */ 5780 for_each_cpu(cpu, &flush_cpus) 5781 flush_work(per_cpu_ptr(&flush_works, cpu)); 5782 5783 put_online_cpus(); 5784 } 5785 5786 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */ 5787 static void gro_normal_list(struct napi_struct *napi) 5788 { 5789 if (!napi->rx_count) 5790 return; 5791 netif_receive_skb_list_internal(&napi->rx_list); 5792 INIT_LIST_HEAD(&napi->rx_list); 5793 napi->rx_count = 0; 5794 } 5795 5796 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded, 5797 * pass the whole batch up to the stack. 5798 */ 5799 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs) 5800 { 5801 list_add_tail(&skb->list, &napi->rx_list); 5802 napi->rx_count += segs; 5803 if (napi->rx_count >= gro_normal_batch) 5804 gro_normal_list(napi); 5805 } 5806 5807 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb) 5808 { 5809 struct packet_offload *ptype; 5810 __be16 type = skb->protocol; 5811 struct list_head *head = &offload_base; 5812 int err = -ENOENT; 5813 5814 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 5815 5816 if (NAPI_GRO_CB(skb)->count == 1) { 5817 skb_shinfo(skb)->gso_size = 0; 5818 goto out; 5819 } 5820 5821 rcu_read_lock(); 5822 list_for_each_entry_rcu(ptype, head, list) { 5823 if (ptype->type != type || !ptype->callbacks.gro_complete) 5824 continue; 5825 5826 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete, 5827 ipv6_gro_complete, inet_gro_complete, 5828 skb, 0); 5829 break; 5830 } 5831 rcu_read_unlock(); 5832 5833 if (err) { 5834 WARN_ON(&ptype->list == head); 5835 kfree_skb(skb); 5836 return NET_RX_SUCCESS; 5837 } 5838 5839 out: 5840 gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count); 5841 return NET_RX_SUCCESS; 5842 } 5843 5844 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index, 5845 bool flush_old) 5846 { 5847 struct list_head *head = &napi->gro_hash[index].list; 5848 struct sk_buff *skb, *p; 5849 5850 list_for_each_entry_safe_reverse(skb, p, head, list) { 5851 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 5852 return; 5853 skb_list_del_init(skb); 5854 napi_gro_complete(napi, skb); 5855 napi->gro_hash[index].count--; 5856 } 5857 5858 if (!napi->gro_hash[index].count) 5859 __clear_bit(index, &napi->gro_bitmask); 5860 } 5861 5862 /* napi->gro_hash[].list contains packets ordered by age. 5863 * youngest packets at the head of it. 5864 * Complete skbs in reverse order to reduce latencies. 5865 */ 5866 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 5867 { 5868 unsigned long bitmask = napi->gro_bitmask; 5869 unsigned int i, base = ~0U; 5870 5871 while ((i = ffs(bitmask)) != 0) { 5872 bitmask >>= i; 5873 base += i; 5874 __napi_gro_flush_chain(napi, base, flush_old); 5875 } 5876 } 5877 EXPORT_SYMBOL(napi_gro_flush); 5878 5879 static struct list_head *gro_list_prepare(struct napi_struct *napi, 5880 struct sk_buff *skb) 5881 { 5882 unsigned int maclen = skb->dev->hard_header_len; 5883 u32 hash = skb_get_hash_raw(skb); 5884 struct list_head *head; 5885 struct sk_buff *p; 5886 5887 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list; 5888 list_for_each_entry(p, head, list) { 5889 unsigned long diffs; 5890 5891 NAPI_GRO_CB(p)->flush = 0; 5892 5893 if (hash != skb_get_hash_raw(p)) { 5894 NAPI_GRO_CB(p)->same_flow = 0; 5895 continue; 5896 } 5897 5898 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 5899 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb); 5900 if (skb_vlan_tag_present(p)) 5901 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb); 5902 diffs |= skb_metadata_dst_cmp(p, skb); 5903 diffs |= skb_metadata_differs(p, skb); 5904 if (maclen == ETH_HLEN) 5905 diffs |= compare_ether_header(skb_mac_header(p), 5906 skb_mac_header(skb)); 5907 else if (!diffs) 5908 diffs = memcmp(skb_mac_header(p), 5909 skb_mac_header(skb), 5910 maclen); 5911 NAPI_GRO_CB(p)->same_flow = !diffs; 5912 } 5913 5914 return head; 5915 } 5916 5917 static void skb_gro_reset_offset(struct sk_buff *skb) 5918 { 5919 const struct skb_shared_info *pinfo = skb_shinfo(skb); 5920 const skb_frag_t *frag0 = &pinfo->frags[0]; 5921 5922 NAPI_GRO_CB(skb)->data_offset = 0; 5923 NAPI_GRO_CB(skb)->frag0 = NULL; 5924 NAPI_GRO_CB(skb)->frag0_len = 0; 5925 5926 if (!skb_headlen(skb) && pinfo->nr_frags && 5927 !PageHighMem(skb_frag_page(frag0))) { 5928 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 5929 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 5930 skb_frag_size(frag0), 5931 skb->end - skb->tail); 5932 } 5933 } 5934 5935 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 5936 { 5937 struct skb_shared_info *pinfo = skb_shinfo(skb); 5938 5939 BUG_ON(skb->end - skb->tail < grow); 5940 5941 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 5942 5943 skb->data_len -= grow; 5944 skb->tail += grow; 5945 5946 skb_frag_off_add(&pinfo->frags[0], grow); 5947 skb_frag_size_sub(&pinfo->frags[0], grow); 5948 5949 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 5950 skb_frag_unref(skb, 0); 5951 memmove(pinfo->frags, pinfo->frags + 1, 5952 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 5953 } 5954 } 5955 5956 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head) 5957 { 5958 struct sk_buff *oldest; 5959 5960 oldest = list_last_entry(head, struct sk_buff, list); 5961 5962 /* We are called with head length >= MAX_GRO_SKBS, so this is 5963 * impossible. 5964 */ 5965 if (WARN_ON_ONCE(!oldest)) 5966 return; 5967 5968 /* Do not adjust napi->gro_hash[].count, caller is adding a new 5969 * SKB to the chain. 5970 */ 5971 skb_list_del_init(oldest); 5972 napi_gro_complete(napi, oldest); 5973 } 5974 5975 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5976 { 5977 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1); 5978 struct list_head *head = &offload_base; 5979 struct packet_offload *ptype; 5980 __be16 type = skb->protocol; 5981 struct list_head *gro_head; 5982 struct sk_buff *pp = NULL; 5983 enum gro_result ret; 5984 int same_flow; 5985 int grow; 5986 5987 if (netif_elide_gro(skb->dev)) 5988 goto normal; 5989 5990 gro_head = gro_list_prepare(napi, skb); 5991 5992 rcu_read_lock(); 5993 list_for_each_entry_rcu(ptype, head, list) { 5994 if (ptype->type != type || !ptype->callbacks.gro_receive) 5995 continue; 5996 5997 skb_set_network_header(skb, skb_gro_offset(skb)); 5998 skb_reset_mac_len(skb); 5999 NAPI_GRO_CB(skb)->same_flow = 0; 6000 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 6001 NAPI_GRO_CB(skb)->free = 0; 6002 NAPI_GRO_CB(skb)->encap_mark = 0; 6003 NAPI_GRO_CB(skb)->recursion_counter = 0; 6004 NAPI_GRO_CB(skb)->is_fou = 0; 6005 NAPI_GRO_CB(skb)->is_atomic = 1; 6006 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 6007 6008 /* Setup for GRO checksum validation */ 6009 switch (skb->ip_summed) { 6010 case CHECKSUM_COMPLETE: 6011 NAPI_GRO_CB(skb)->csum = skb->csum; 6012 NAPI_GRO_CB(skb)->csum_valid = 1; 6013 NAPI_GRO_CB(skb)->csum_cnt = 0; 6014 break; 6015 case CHECKSUM_UNNECESSARY: 6016 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 6017 NAPI_GRO_CB(skb)->csum_valid = 0; 6018 break; 6019 default: 6020 NAPI_GRO_CB(skb)->csum_cnt = 0; 6021 NAPI_GRO_CB(skb)->csum_valid = 0; 6022 } 6023 6024 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive, 6025 ipv6_gro_receive, inet_gro_receive, 6026 gro_head, skb); 6027 break; 6028 } 6029 rcu_read_unlock(); 6030 6031 if (&ptype->list == head) 6032 goto normal; 6033 6034 if (PTR_ERR(pp) == -EINPROGRESS) { 6035 ret = GRO_CONSUMED; 6036 goto ok; 6037 } 6038 6039 same_flow = NAPI_GRO_CB(skb)->same_flow; 6040 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 6041 6042 if (pp) { 6043 skb_list_del_init(pp); 6044 napi_gro_complete(napi, pp); 6045 napi->gro_hash[hash].count--; 6046 } 6047 6048 if (same_flow) 6049 goto ok; 6050 6051 if (NAPI_GRO_CB(skb)->flush) 6052 goto normal; 6053 6054 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) { 6055 gro_flush_oldest(napi, gro_head); 6056 } else { 6057 napi->gro_hash[hash].count++; 6058 } 6059 NAPI_GRO_CB(skb)->count = 1; 6060 NAPI_GRO_CB(skb)->age = jiffies; 6061 NAPI_GRO_CB(skb)->last = skb; 6062 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 6063 list_add(&skb->list, gro_head); 6064 ret = GRO_HELD; 6065 6066 pull: 6067 grow = skb_gro_offset(skb) - skb_headlen(skb); 6068 if (grow > 0) 6069 gro_pull_from_frag0(skb, grow); 6070 ok: 6071 if (napi->gro_hash[hash].count) { 6072 if (!test_bit(hash, &napi->gro_bitmask)) 6073 __set_bit(hash, &napi->gro_bitmask); 6074 } else if (test_bit(hash, &napi->gro_bitmask)) { 6075 __clear_bit(hash, &napi->gro_bitmask); 6076 } 6077 6078 return ret; 6079 6080 normal: 6081 ret = GRO_NORMAL; 6082 goto pull; 6083 } 6084 6085 struct packet_offload *gro_find_receive_by_type(__be16 type) 6086 { 6087 struct list_head *offload_head = &offload_base; 6088 struct packet_offload *ptype; 6089 6090 list_for_each_entry_rcu(ptype, offload_head, list) { 6091 if (ptype->type != type || !ptype->callbacks.gro_receive) 6092 continue; 6093 return ptype; 6094 } 6095 return NULL; 6096 } 6097 EXPORT_SYMBOL(gro_find_receive_by_type); 6098 6099 struct packet_offload *gro_find_complete_by_type(__be16 type) 6100 { 6101 struct list_head *offload_head = &offload_base; 6102 struct packet_offload *ptype; 6103 6104 list_for_each_entry_rcu(ptype, offload_head, list) { 6105 if (ptype->type != type || !ptype->callbacks.gro_complete) 6106 continue; 6107 return ptype; 6108 } 6109 return NULL; 6110 } 6111 EXPORT_SYMBOL(gro_find_complete_by_type); 6112 6113 static gro_result_t napi_skb_finish(struct napi_struct *napi, 6114 struct sk_buff *skb, 6115 gro_result_t ret) 6116 { 6117 switch (ret) { 6118 case GRO_NORMAL: 6119 gro_normal_one(napi, skb, 1); 6120 break; 6121 6122 case GRO_MERGED_FREE: 6123 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 6124 napi_skb_free_stolen_head(skb); 6125 else 6126 __kfree_skb_defer(skb); 6127 break; 6128 6129 case GRO_HELD: 6130 case GRO_MERGED: 6131 case GRO_CONSUMED: 6132 break; 6133 } 6134 6135 return ret; 6136 } 6137 6138 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 6139 { 6140 gro_result_t ret; 6141 6142 skb_mark_napi_id(skb, napi); 6143 trace_napi_gro_receive_entry(skb); 6144 6145 skb_gro_reset_offset(skb); 6146 6147 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb)); 6148 trace_napi_gro_receive_exit(ret); 6149 6150 return ret; 6151 } 6152 EXPORT_SYMBOL(napi_gro_receive); 6153 6154 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 6155 { 6156 if (unlikely(skb->pfmemalloc)) { 6157 consume_skb(skb); 6158 return; 6159 } 6160 __skb_pull(skb, skb_headlen(skb)); 6161 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 6162 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 6163 __vlan_hwaccel_clear_tag(skb); 6164 skb->dev = napi->dev; 6165 skb->skb_iif = 0; 6166 6167 /* eth_type_trans() assumes pkt_type is PACKET_HOST */ 6168 skb->pkt_type = PACKET_HOST; 6169 6170 skb->encapsulation = 0; 6171 skb_shinfo(skb)->gso_type = 0; 6172 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6173 skb_ext_reset(skb); 6174 6175 napi->skb = skb; 6176 } 6177 6178 struct sk_buff *napi_get_frags(struct napi_struct *napi) 6179 { 6180 struct sk_buff *skb = napi->skb; 6181 6182 if (!skb) { 6183 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 6184 if (skb) { 6185 napi->skb = skb; 6186 skb_mark_napi_id(skb, napi); 6187 } 6188 } 6189 return skb; 6190 } 6191 EXPORT_SYMBOL(napi_get_frags); 6192 6193 static gro_result_t napi_frags_finish(struct napi_struct *napi, 6194 struct sk_buff *skb, 6195 gro_result_t ret) 6196 { 6197 switch (ret) { 6198 case GRO_NORMAL: 6199 case GRO_HELD: 6200 __skb_push(skb, ETH_HLEN); 6201 skb->protocol = eth_type_trans(skb, skb->dev); 6202 if (ret == GRO_NORMAL) 6203 gro_normal_one(napi, skb, 1); 6204 break; 6205 6206 case GRO_MERGED_FREE: 6207 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 6208 napi_skb_free_stolen_head(skb); 6209 else 6210 napi_reuse_skb(napi, skb); 6211 break; 6212 6213 case GRO_MERGED: 6214 case GRO_CONSUMED: 6215 break; 6216 } 6217 6218 return ret; 6219 } 6220 6221 /* Upper GRO stack assumes network header starts at gro_offset=0 6222 * Drivers could call both napi_gro_frags() and napi_gro_receive() 6223 * We copy ethernet header into skb->data to have a common layout. 6224 */ 6225 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 6226 { 6227 struct sk_buff *skb = napi->skb; 6228 const struct ethhdr *eth; 6229 unsigned int hlen = sizeof(*eth); 6230 6231 napi->skb = NULL; 6232 6233 skb_reset_mac_header(skb); 6234 skb_gro_reset_offset(skb); 6235 6236 if (unlikely(skb_gro_header_hard(skb, hlen))) { 6237 eth = skb_gro_header_slow(skb, hlen, 0); 6238 if (unlikely(!eth)) { 6239 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 6240 __func__, napi->dev->name); 6241 napi_reuse_skb(napi, skb); 6242 return NULL; 6243 } 6244 } else { 6245 eth = (const struct ethhdr *)skb->data; 6246 gro_pull_from_frag0(skb, hlen); 6247 NAPI_GRO_CB(skb)->frag0 += hlen; 6248 NAPI_GRO_CB(skb)->frag0_len -= hlen; 6249 } 6250 __skb_pull(skb, hlen); 6251 6252 /* 6253 * This works because the only protocols we care about don't require 6254 * special handling. 6255 * We'll fix it up properly in napi_frags_finish() 6256 */ 6257 skb->protocol = eth->h_proto; 6258 6259 return skb; 6260 } 6261 6262 gro_result_t napi_gro_frags(struct napi_struct *napi) 6263 { 6264 gro_result_t ret; 6265 struct sk_buff *skb = napi_frags_skb(napi); 6266 6267 trace_napi_gro_frags_entry(skb); 6268 6269 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 6270 trace_napi_gro_frags_exit(ret); 6271 6272 return ret; 6273 } 6274 EXPORT_SYMBOL(napi_gro_frags); 6275 6276 /* Compute the checksum from gro_offset and return the folded value 6277 * after adding in any pseudo checksum. 6278 */ 6279 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 6280 { 6281 __wsum wsum; 6282 __sum16 sum; 6283 6284 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 6285 6286 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 6287 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 6288 /* See comments in __skb_checksum_complete(). */ 6289 if (likely(!sum)) { 6290 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 6291 !skb->csum_complete_sw) 6292 netdev_rx_csum_fault(skb->dev, skb); 6293 } 6294 6295 NAPI_GRO_CB(skb)->csum = wsum; 6296 NAPI_GRO_CB(skb)->csum_valid = 1; 6297 6298 return sum; 6299 } 6300 EXPORT_SYMBOL(__skb_gro_checksum_complete); 6301 6302 static void net_rps_send_ipi(struct softnet_data *remsd) 6303 { 6304 #ifdef CONFIG_RPS 6305 while (remsd) { 6306 struct softnet_data *next = remsd->rps_ipi_next; 6307 6308 if (cpu_online(remsd->cpu)) 6309 smp_call_function_single_async(remsd->cpu, &remsd->csd); 6310 remsd = next; 6311 } 6312 #endif 6313 } 6314 6315 /* 6316 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 6317 * Note: called with local irq disabled, but exits with local irq enabled. 6318 */ 6319 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 6320 { 6321 #ifdef CONFIG_RPS 6322 struct softnet_data *remsd = sd->rps_ipi_list; 6323 6324 if (remsd) { 6325 sd->rps_ipi_list = NULL; 6326 6327 local_irq_enable(); 6328 6329 /* Send pending IPI's to kick RPS processing on remote cpus. */ 6330 net_rps_send_ipi(remsd); 6331 } else 6332 #endif 6333 local_irq_enable(); 6334 } 6335 6336 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 6337 { 6338 #ifdef CONFIG_RPS 6339 return sd->rps_ipi_list != NULL; 6340 #else 6341 return false; 6342 #endif 6343 } 6344 6345 static int process_backlog(struct napi_struct *napi, int quota) 6346 { 6347 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 6348 bool again = true; 6349 int work = 0; 6350 6351 /* Check if we have pending ipi, its better to send them now, 6352 * not waiting net_rx_action() end. 6353 */ 6354 if (sd_has_rps_ipi_waiting(sd)) { 6355 local_irq_disable(); 6356 net_rps_action_and_irq_enable(sd); 6357 } 6358 6359 napi->weight = dev_rx_weight; 6360 while (again) { 6361 struct sk_buff *skb; 6362 6363 while ((skb = __skb_dequeue(&sd->process_queue))) { 6364 rcu_read_lock(); 6365 __netif_receive_skb(skb); 6366 rcu_read_unlock(); 6367 input_queue_head_incr(sd); 6368 if (++work >= quota) 6369 return work; 6370 6371 } 6372 6373 local_irq_disable(); 6374 rps_lock(sd); 6375 if (skb_queue_empty(&sd->input_pkt_queue)) { 6376 /* 6377 * Inline a custom version of __napi_complete(). 6378 * only current cpu owns and manipulates this napi, 6379 * and NAPI_STATE_SCHED is the only possible flag set 6380 * on backlog. 6381 * We can use a plain write instead of clear_bit(), 6382 * and we dont need an smp_mb() memory barrier. 6383 */ 6384 napi->state = 0; 6385 again = false; 6386 } else { 6387 skb_queue_splice_tail_init(&sd->input_pkt_queue, 6388 &sd->process_queue); 6389 } 6390 rps_unlock(sd); 6391 local_irq_enable(); 6392 } 6393 6394 return work; 6395 } 6396 6397 /** 6398 * __napi_schedule - schedule for receive 6399 * @n: entry to schedule 6400 * 6401 * The entry's receive function will be scheduled to run. 6402 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 6403 */ 6404 void __napi_schedule(struct napi_struct *n) 6405 { 6406 unsigned long flags; 6407 6408 local_irq_save(flags); 6409 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6410 local_irq_restore(flags); 6411 } 6412 EXPORT_SYMBOL(__napi_schedule); 6413 6414 /** 6415 * napi_schedule_prep - check if napi can be scheduled 6416 * @n: napi context 6417 * 6418 * Test if NAPI routine is already running, and if not mark 6419 * it as running. This is used as a condition variable to 6420 * insure only one NAPI poll instance runs. We also make 6421 * sure there is no pending NAPI disable. 6422 */ 6423 bool napi_schedule_prep(struct napi_struct *n) 6424 { 6425 unsigned long val, new; 6426 6427 do { 6428 val = READ_ONCE(n->state); 6429 if (unlikely(val & NAPIF_STATE_DISABLE)) 6430 return false; 6431 new = val | NAPIF_STATE_SCHED; 6432 6433 /* Sets STATE_MISSED bit if STATE_SCHED was already set 6434 * This was suggested by Alexander Duyck, as compiler 6435 * emits better code than : 6436 * if (val & NAPIF_STATE_SCHED) 6437 * new |= NAPIF_STATE_MISSED; 6438 */ 6439 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 6440 NAPIF_STATE_MISSED; 6441 } while (cmpxchg(&n->state, val, new) != val); 6442 6443 return !(val & NAPIF_STATE_SCHED); 6444 } 6445 EXPORT_SYMBOL(napi_schedule_prep); 6446 6447 /** 6448 * __napi_schedule_irqoff - schedule for receive 6449 * @n: entry to schedule 6450 * 6451 * Variant of __napi_schedule() assuming hard irqs are masked 6452 */ 6453 void __napi_schedule_irqoff(struct napi_struct *n) 6454 { 6455 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6456 } 6457 EXPORT_SYMBOL(__napi_schedule_irqoff); 6458 6459 bool napi_complete_done(struct napi_struct *n, int work_done) 6460 { 6461 unsigned long flags, val, new, timeout = 0; 6462 bool ret = true; 6463 6464 /* 6465 * 1) Don't let napi dequeue from the cpu poll list 6466 * just in case its running on a different cpu. 6467 * 2) If we are busy polling, do nothing here, we have 6468 * the guarantee we will be called later. 6469 */ 6470 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 6471 NAPIF_STATE_IN_BUSY_POLL))) 6472 return false; 6473 6474 if (work_done) { 6475 if (n->gro_bitmask) 6476 timeout = READ_ONCE(n->dev->gro_flush_timeout); 6477 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs); 6478 } 6479 if (n->defer_hard_irqs_count > 0) { 6480 n->defer_hard_irqs_count--; 6481 timeout = READ_ONCE(n->dev->gro_flush_timeout); 6482 if (timeout) 6483 ret = false; 6484 } 6485 if (n->gro_bitmask) { 6486 /* When the NAPI instance uses a timeout and keeps postponing 6487 * it, we need to bound somehow the time packets are kept in 6488 * the GRO layer 6489 */ 6490 napi_gro_flush(n, !!timeout); 6491 } 6492 6493 gro_normal_list(n); 6494 6495 if (unlikely(!list_empty(&n->poll_list))) { 6496 /* If n->poll_list is not empty, we need to mask irqs */ 6497 local_irq_save(flags); 6498 list_del_init(&n->poll_list); 6499 local_irq_restore(flags); 6500 } 6501 6502 do { 6503 val = READ_ONCE(n->state); 6504 6505 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 6506 6507 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED | 6508 NAPIF_STATE_SCHED_THREADED | 6509 NAPIF_STATE_PREFER_BUSY_POLL); 6510 6511 /* If STATE_MISSED was set, leave STATE_SCHED set, 6512 * because we will call napi->poll() one more time. 6513 * This C code was suggested by Alexander Duyck to help gcc. 6514 */ 6515 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6516 NAPIF_STATE_SCHED; 6517 } while (cmpxchg(&n->state, val, new) != val); 6518 6519 if (unlikely(val & NAPIF_STATE_MISSED)) { 6520 __napi_schedule(n); 6521 return false; 6522 } 6523 6524 if (timeout) 6525 hrtimer_start(&n->timer, ns_to_ktime(timeout), 6526 HRTIMER_MODE_REL_PINNED); 6527 return ret; 6528 } 6529 EXPORT_SYMBOL(napi_complete_done); 6530 6531 /* must be called under rcu_read_lock(), as we dont take a reference */ 6532 static struct napi_struct *napi_by_id(unsigned int napi_id) 6533 { 6534 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 6535 struct napi_struct *napi; 6536 6537 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 6538 if (napi->napi_id == napi_id) 6539 return napi; 6540 6541 return NULL; 6542 } 6543 6544 #if defined(CONFIG_NET_RX_BUSY_POLL) 6545 6546 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule) 6547 { 6548 if (!skip_schedule) { 6549 gro_normal_list(napi); 6550 __napi_schedule(napi); 6551 return; 6552 } 6553 6554 if (napi->gro_bitmask) { 6555 /* flush too old packets 6556 * If HZ < 1000, flush all packets. 6557 */ 6558 napi_gro_flush(napi, HZ >= 1000); 6559 } 6560 6561 gro_normal_list(napi); 6562 clear_bit(NAPI_STATE_SCHED, &napi->state); 6563 } 6564 6565 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll, 6566 u16 budget) 6567 { 6568 bool skip_schedule = false; 6569 unsigned long timeout; 6570 int rc; 6571 6572 /* Busy polling means there is a high chance device driver hard irq 6573 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6574 * set in napi_schedule_prep(). 6575 * Since we are about to call napi->poll() once more, we can safely 6576 * clear NAPI_STATE_MISSED. 6577 * 6578 * Note: x86 could use a single "lock and ..." instruction 6579 * to perform these two clear_bit() 6580 */ 6581 clear_bit(NAPI_STATE_MISSED, &napi->state); 6582 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6583 6584 local_bh_disable(); 6585 6586 if (prefer_busy_poll) { 6587 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs); 6588 timeout = READ_ONCE(napi->dev->gro_flush_timeout); 6589 if (napi->defer_hard_irqs_count && timeout) { 6590 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED); 6591 skip_schedule = true; 6592 } 6593 } 6594 6595 /* All we really want here is to re-enable device interrupts. 6596 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6597 */ 6598 rc = napi->poll(napi, budget); 6599 /* We can't gro_normal_list() here, because napi->poll() might have 6600 * rearmed the napi (napi_complete_done()) in which case it could 6601 * already be running on another CPU. 6602 */ 6603 trace_napi_poll(napi, rc, budget); 6604 netpoll_poll_unlock(have_poll_lock); 6605 if (rc == budget) 6606 __busy_poll_stop(napi, skip_schedule); 6607 local_bh_enable(); 6608 } 6609 6610 void napi_busy_loop(unsigned int napi_id, 6611 bool (*loop_end)(void *, unsigned long), 6612 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6613 { 6614 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6615 int (*napi_poll)(struct napi_struct *napi, int budget); 6616 void *have_poll_lock = NULL; 6617 struct napi_struct *napi; 6618 6619 restart: 6620 napi_poll = NULL; 6621 6622 rcu_read_lock(); 6623 6624 napi = napi_by_id(napi_id); 6625 if (!napi) 6626 goto out; 6627 6628 preempt_disable(); 6629 for (;;) { 6630 int work = 0; 6631 6632 local_bh_disable(); 6633 if (!napi_poll) { 6634 unsigned long val = READ_ONCE(napi->state); 6635 6636 /* If multiple threads are competing for this napi, 6637 * we avoid dirtying napi->state as much as we can. 6638 */ 6639 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6640 NAPIF_STATE_IN_BUSY_POLL)) { 6641 if (prefer_busy_poll) 6642 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6643 goto count; 6644 } 6645 if (cmpxchg(&napi->state, val, 6646 val | NAPIF_STATE_IN_BUSY_POLL | 6647 NAPIF_STATE_SCHED) != val) { 6648 if (prefer_busy_poll) 6649 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6650 goto count; 6651 } 6652 have_poll_lock = netpoll_poll_lock(napi); 6653 napi_poll = napi->poll; 6654 } 6655 work = napi_poll(napi, budget); 6656 trace_napi_poll(napi, work, budget); 6657 gro_normal_list(napi); 6658 count: 6659 if (work > 0) 6660 __NET_ADD_STATS(dev_net(napi->dev), 6661 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6662 local_bh_enable(); 6663 6664 if (!loop_end || loop_end(loop_end_arg, start_time)) 6665 break; 6666 6667 if (unlikely(need_resched())) { 6668 if (napi_poll) 6669 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget); 6670 preempt_enable(); 6671 rcu_read_unlock(); 6672 cond_resched(); 6673 if (loop_end(loop_end_arg, start_time)) 6674 return; 6675 goto restart; 6676 } 6677 cpu_relax(); 6678 } 6679 if (napi_poll) 6680 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget); 6681 preempt_enable(); 6682 out: 6683 rcu_read_unlock(); 6684 } 6685 EXPORT_SYMBOL(napi_busy_loop); 6686 6687 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6688 6689 static void napi_hash_add(struct napi_struct *napi) 6690 { 6691 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state)) 6692 return; 6693 6694 spin_lock(&napi_hash_lock); 6695 6696 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6697 do { 6698 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 6699 napi_gen_id = MIN_NAPI_ID; 6700 } while (napi_by_id(napi_gen_id)); 6701 napi->napi_id = napi_gen_id; 6702 6703 hlist_add_head_rcu(&napi->napi_hash_node, 6704 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6705 6706 spin_unlock(&napi_hash_lock); 6707 } 6708 6709 /* Warning : caller is responsible to make sure rcu grace period 6710 * is respected before freeing memory containing @napi 6711 */ 6712 static void napi_hash_del(struct napi_struct *napi) 6713 { 6714 spin_lock(&napi_hash_lock); 6715 6716 hlist_del_init_rcu(&napi->napi_hash_node); 6717 6718 spin_unlock(&napi_hash_lock); 6719 } 6720 6721 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 6722 { 6723 struct napi_struct *napi; 6724 6725 napi = container_of(timer, struct napi_struct, timer); 6726 6727 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 6728 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 6729 */ 6730 if (!napi_disable_pending(napi) && 6731 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) { 6732 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6733 __napi_schedule_irqoff(napi); 6734 } 6735 6736 return HRTIMER_NORESTART; 6737 } 6738 6739 static void init_gro_hash(struct napi_struct *napi) 6740 { 6741 int i; 6742 6743 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6744 INIT_LIST_HEAD(&napi->gro_hash[i].list); 6745 napi->gro_hash[i].count = 0; 6746 } 6747 napi->gro_bitmask = 0; 6748 } 6749 6750 int dev_set_threaded(struct net_device *dev, bool threaded) 6751 { 6752 struct napi_struct *napi; 6753 int err = 0; 6754 6755 if (dev->threaded == threaded) 6756 return 0; 6757 6758 if (threaded) { 6759 list_for_each_entry(napi, &dev->napi_list, dev_list) { 6760 if (!napi->thread) { 6761 err = napi_kthread_create(napi); 6762 if (err) { 6763 threaded = false; 6764 break; 6765 } 6766 } 6767 } 6768 } 6769 6770 dev->threaded = threaded; 6771 6772 /* Make sure kthread is created before THREADED bit 6773 * is set. 6774 */ 6775 smp_mb__before_atomic(); 6776 6777 /* Setting/unsetting threaded mode on a napi might not immediately 6778 * take effect, if the current napi instance is actively being 6779 * polled. In this case, the switch between threaded mode and 6780 * softirq mode will happen in the next round of napi_schedule(). 6781 * This should not cause hiccups/stalls to the live traffic. 6782 */ 6783 list_for_each_entry(napi, &dev->napi_list, dev_list) { 6784 if (threaded) 6785 set_bit(NAPI_STATE_THREADED, &napi->state); 6786 else 6787 clear_bit(NAPI_STATE_THREADED, &napi->state); 6788 } 6789 6790 return err; 6791 } 6792 6793 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 6794 int (*poll)(struct napi_struct *, int), int weight) 6795 { 6796 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state))) 6797 return; 6798 6799 INIT_LIST_HEAD(&napi->poll_list); 6800 INIT_HLIST_NODE(&napi->napi_hash_node); 6801 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 6802 napi->timer.function = napi_watchdog; 6803 init_gro_hash(napi); 6804 napi->skb = NULL; 6805 INIT_LIST_HEAD(&napi->rx_list); 6806 napi->rx_count = 0; 6807 napi->poll = poll; 6808 if (weight > NAPI_POLL_WEIGHT) 6809 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 6810 weight); 6811 napi->weight = weight; 6812 napi->dev = dev; 6813 #ifdef CONFIG_NETPOLL 6814 napi->poll_owner = -1; 6815 #endif 6816 set_bit(NAPI_STATE_SCHED, &napi->state); 6817 set_bit(NAPI_STATE_NPSVC, &napi->state); 6818 list_add_rcu(&napi->dev_list, &dev->napi_list); 6819 napi_hash_add(napi); 6820 /* Create kthread for this napi if dev->threaded is set. 6821 * Clear dev->threaded if kthread creation failed so that 6822 * threaded mode will not be enabled in napi_enable(). 6823 */ 6824 if (dev->threaded && napi_kthread_create(napi)) 6825 dev->threaded = 0; 6826 } 6827 EXPORT_SYMBOL(netif_napi_add); 6828 6829 void napi_disable(struct napi_struct *n) 6830 { 6831 might_sleep(); 6832 set_bit(NAPI_STATE_DISABLE, &n->state); 6833 6834 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 6835 msleep(1); 6836 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 6837 msleep(1); 6838 6839 hrtimer_cancel(&n->timer); 6840 6841 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state); 6842 clear_bit(NAPI_STATE_DISABLE, &n->state); 6843 clear_bit(NAPI_STATE_THREADED, &n->state); 6844 } 6845 EXPORT_SYMBOL(napi_disable); 6846 6847 /** 6848 * napi_enable - enable NAPI scheduling 6849 * @n: NAPI context 6850 * 6851 * Resume NAPI from being scheduled on this context. 6852 * Must be paired with napi_disable. 6853 */ 6854 void napi_enable(struct napi_struct *n) 6855 { 6856 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 6857 smp_mb__before_atomic(); 6858 clear_bit(NAPI_STATE_SCHED, &n->state); 6859 clear_bit(NAPI_STATE_NPSVC, &n->state); 6860 if (n->dev->threaded && n->thread) 6861 set_bit(NAPI_STATE_THREADED, &n->state); 6862 } 6863 EXPORT_SYMBOL(napi_enable); 6864 6865 static void flush_gro_hash(struct napi_struct *napi) 6866 { 6867 int i; 6868 6869 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6870 struct sk_buff *skb, *n; 6871 6872 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list) 6873 kfree_skb(skb); 6874 napi->gro_hash[i].count = 0; 6875 } 6876 } 6877 6878 /* Must be called in process context */ 6879 void __netif_napi_del(struct napi_struct *napi) 6880 { 6881 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state)) 6882 return; 6883 6884 napi_hash_del(napi); 6885 list_del_rcu(&napi->dev_list); 6886 napi_free_frags(napi); 6887 6888 flush_gro_hash(napi); 6889 napi->gro_bitmask = 0; 6890 6891 if (napi->thread) { 6892 kthread_stop(napi->thread); 6893 napi->thread = NULL; 6894 } 6895 } 6896 EXPORT_SYMBOL(__netif_napi_del); 6897 6898 static int __napi_poll(struct napi_struct *n, bool *repoll) 6899 { 6900 int work, weight; 6901 6902 weight = n->weight; 6903 6904 /* This NAPI_STATE_SCHED test is for avoiding a race 6905 * with netpoll's poll_napi(). Only the entity which 6906 * obtains the lock and sees NAPI_STATE_SCHED set will 6907 * actually make the ->poll() call. Therefore we avoid 6908 * accidentally calling ->poll() when NAPI is not scheduled. 6909 */ 6910 work = 0; 6911 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 6912 work = n->poll(n, weight); 6913 trace_napi_poll(n, work, weight); 6914 } 6915 6916 if (unlikely(work > weight)) 6917 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n", 6918 n->poll, work, weight); 6919 6920 if (likely(work < weight)) 6921 return work; 6922 6923 /* Drivers must not modify the NAPI state if they 6924 * consume the entire weight. In such cases this code 6925 * still "owns" the NAPI instance and therefore can 6926 * move the instance around on the list at-will. 6927 */ 6928 if (unlikely(napi_disable_pending(n))) { 6929 napi_complete(n); 6930 return work; 6931 } 6932 6933 /* The NAPI context has more processing work, but busy-polling 6934 * is preferred. Exit early. 6935 */ 6936 if (napi_prefer_busy_poll(n)) { 6937 if (napi_complete_done(n, work)) { 6938 /* If timeout is not set, we need to make sure 6939 * that the NAPI is re-scheduled. 6940 */ 6941 napi_schedule(n); 6942 } 6943 return work; 6944 } 6945 6946 if (n->gro_bitmask) { 6947 /* flush too old packets 6948 * If HZ < 1000, flush all packets. 6949 */ 6950 napi_gro_flush(n, HZ >= 1000); 6951 } 6952 6953 gro_normal_list(n); 6954 6955 /* Some drivers may have called napi_schedule 6956 * prior to exhausting their budget. 6957 */ 6958 if (unlikely(!list_empty(&n->poll_list))) { 6959 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 6960 n->dev ? n->dev->name : "backlog"); 6961 return work; 6962 } 6963 6964 *repoll = true; 6965 6966 return work; 6967 } 6968 6969 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 6970 { 6971 bool do_repoll = false; 6972 void *have; 6973 int work; 6974 6975 list_del_init(&n->poll_list); 6976 6977 have = netpoll_poll_lock(n); 6978 6979 work = __napi_poll(n, &do_repoll); 6980 6981 if (do_repoll) 6982 list_add_tail(&n->poll_list, repoll); 6983 6984 netpoll_poll_unlock(have); 6985 6986 return work; 6987 } 6988 6989 static int napi_thread_wait(struct napi_struct *napi) 6990 { 6991 bool woken = false; 6992 6993 set_current_state(TASK_INTERRUPTIBLE); 6994 6995 while (!kthread_should_stop() && !napi_disable_pending(napi)) { 6996 /* Testing SCHED_THREADED bit here to make sure the current 6997 * kthread owns this napi and could poll on this napi. 6998 * Testing SCHED bit is not enough because SCHED bit might be 6999 * set by some other busy poll thread or by napi_disable(). 7000 */ 7001 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) { 7002 WARN_ON(!list_empty(&napi->poll_list)); 7003 __set_current_state(TASK_RUNNING); 7004 return 0; 7005 } 7006 7007 schedule(); 7008 /* woken being true indicates this thread owns this napi. */ 7009 woken = true; 7010 set_current_state(TASK_INTERRUPTIBLE); 7011 } 7012 __set_current_state(TASK_RUNNING); 7013 return -1; 7014 } 7015 7016 static int napi_threaded_poll(void *data) 7017 { 7018 struct napi_struct *napi = data; 7019 void *have; 7020 7021 while (!napi_thread_wait(napi)) { 7022 for (;;) { 7023 bool repoll = false; 7024 7025 local_bh_disable(); 7026 7027 have = netpoll_poll_lock(napi); 7028 __napi_poll(napi, &repoll); 7029 netpoll_poll_unlock(have); 7030 7031 local_bh_enable(); 7032 7033 if (!repoll) 7034 break; 7035 7036 cond_resched(); 7037 } 7038 } 7039 return 0; 7040 } 7041 7042 static __latent_entropy void net_rx_action(struct softirq_action *h) 7043 { 7044 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 7045 unsigned long time_limit = jiffies + 7046 usecs_to_jiffies(netdev_budget_usecs); 7047 int budget = netdev_budget; 7048 LIST_HEAD(list); 7049 LIST_HEAD(repoll); 7050 7051 local_irq_disable(); 7052 list_splice_init(&sd->poll_list, &list); 7053 local_irq_enable(); 7054 7055 for (;;) { 7056 struct napi_struct *n; 7057 7058 if (list_empty(&list)) { 7059 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 7060 return; 7061 break; 7062 } 7063 7064 n = list_first_entry(&list, struct napi_struct, poll_list); 7065 budget -= napi_poll(n, &repoll); 7066 7067 /* If softirq window is exhausted then punt. 7068 * Allow this to run for 2 jiffies since which will allow 7069 * an average latency of 1.5/HZ. 7070 */ 7071 if (unlikely(budget <= 0 || 7072 time_after_eq(jiffies, time_limit))) { 7073 sd->time_squeeze++; 7074 break; 7075 } 7076 } 7077 7078 local_irq_disable(); 7079 7080 list_splice_tail_init(&sd->poll_list, &list); 7081 list_splice_tail(&repoll, &list); 7082 list_splice(&list, &sd->poll_list); 7083 if (!list_empty(&sd->poll_list)) 7084 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 7085 7086 net_rps_action_and_irq_enable(sd); 7087 } 7088 7089 struct netdev_adjacent { 7090 struct net_device *dev; 7091 7092 /* upper master flag, there can only be one master device per list */ 7093 bool master; 7094 7095 /* lookup ignore flag */ 7096 bool ignore; 7097 7098 /* counter for the number of times this device was added to us */ 7099 u16 ref_nr; 7100 7101 /* private field for the users */ 7102 void *private; 7103 7104 struct list_head list; 7105 struct rcu_head rcu; 7106 }; 7107 7108 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 7109 struct list_head *adj_list) 7110 { 7111 struct netdev_adjacent *adj; 7112 7113 list_for_each_entry(adj, adj_list, list) { 7114 if (adj->dev == adj_dev) 7115 return adj; 7116 } 7117 return NULL; 7118 } 7119 7120 static int ____netdev_has_upper_dev(struct net_device *upper_dev, 7121 struct netdev_nested_priv *priv) 7122 { 7123 struct net_device *dev = (struct net_device *)priv->data; 7124 7125 return upper_dev == dev; 7126 } 7127 7128 /** 7129 * netdev_has_upper_dev - Check if device is linked to an upper device 7130 * @dev: device 7131 * @upper_dev: upper device to check 7132 * 7133 * Find out if a device is linked to specified upper device and return true 7134 * in case it is. Note that this checks only immediate upper device, 7135 * not through a complete stack of devices. The caller must hold the RTNL lock. 7136 */ 7137 bool netdev_has_upper_dev(struct net_device *dev, 7138 struct net_device *upper_dev) 7139 { 7140 struct netdev_nested_priv priv = { 7141 .data = (void *)upper_dev, 7142 }; 7143 7144 ASSERT_RTNL(); 7145 7146 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 7147 &priv); 7148 } 7149 EXPORT_SYMBOL(netdev_has_upper_dev); 7150 7151 /** 7152 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device 7153 * @dev: device 7154 * @upper_dev: upper device to check 7155 * 7156 * Find out if a device is linked to specified upper device and return true 7157 * in case it is. Note that this checks the entire upper device chain. 7158 * The caller must hold rcu lock. 7159 */ 7160 7161 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 7162 struct net_device *upper_dev) 7163 { 7164 struct netdev_nested_priv priv = { 7165 .data = (void *)upper_dev, 7166 }; 7167 7168 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 7169 &priv); 7170 } 7171 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 7172 7173 /** 7174 * netdev_has_any_upper_dev - Check if device is linked to some device 7175 * @dev: device 7176 * 7177 * Find out if a device is linked to an upper device and return true in case 7178 * it is. The caller must hold the RTNL lock. 7179 */ 7180 bool netdev_has_any_upper_dev(struct net_device *dev) 7181 { 7182 ASSERT_RTNL(); 7183 7184 return !list_empty(&dev->adj_list.upper); 7185 } 7186 EXPORT_SYMBOL(netdev_has_any_upper_dev); 7187 7188 /** 7189 * netdev_master_upper_dev_get - Get master upper device 7190 * @dev: device 7191 * 7192 * Find a master upper device and return pointer to it or NULL in case 7193 * it's not there. The caller must hold the RTNL lock. 7194 */ 7195 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 7196 { 7197 struct netdev_adjacent *upper; 7198 7199 ASSERT_RTNL(); 7200 7201 if (list_empty(&dev->adj_list.upper)) 7202 return NULL; 7203 7204 upper = list_first_entry(&dev->adj_list.upper, 7205 struct netdev_adjacent, list); 7206 if (likely(upper->master)) 7207 return upper->dev; 7208 return NULL; 7209 } 7210 EXPORT_SYMBOL(netdev_master_upper_dev_get); 7211 7212 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev) 7213 { 7214 struct netdev_adjacent *upper; 7215 7216 ASSERT_RTNL(); 7217 7218 if (list_empty(&dev->adj_list.upper)) 7219 return NULL; 7220 7221 upper = list_first_entry(&dev->adj_list.upper, 7222 struct netdev_adjacent, list); 7223 if (likely(upper->master) && !upper->ignore) 7224 return upper->dev; 7225 return NULL; 7226 } 7227 7228 /** 7229 * netdev_has_any_lower_dev - Check if device is linked to some device 7230 * @dev: device 7231 * 7232 * Find out if a device is linked to a lower device and return true in case 7233 * it is. The caller must hold the RTNL lock. 7234 */ 7235 static bool netdev_has_any_lower_dev(struct net_device *dev) 7236 { 7237 ASSERT_RTNL(); 7238 7239 return !list_empty(&dev->adj_list.lower); 7240 } 7241 7242 void *netdev_adjacent_get_private(struct list_head *adj_list) 7243 { 7244 struct netdev_adjacent *adj; 7245 7246 adj = list_entry(adj_list, struct netdev_adjacent, list); 7247 7248 return adj->private; 7249 } 7250 EXPORT_SYMBOL(netdev_adjacent_get_private); 7251 7252 /** 7253 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 7254 * @dev: device 7255 * @iter: list_head ** of the current position 7256 * 7257 * Gets the next device from the dev's upper list, starting from iter 7258 * position. The caller must hold RCU read lock. 7259 */ 7260 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 7261 struct list_head **iter) 7262 { 7263 struct netdev_adjacent *upper; 7264 7265 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7266 7267 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7268 7269 if (&upper->list == &dev->adj_list.upper) 7270 return NULL; 7271 7272 *iter = &upper->list; 7273 7274 return upper->dev; 7275 } 7276 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 7277 7278 static struct net_device *__netdev_next_upper_dev(struct net_device *dev, 7279 struct list_head **iter, 7280 bool *ignore) 7281 { 7282 struct netdev_adjacent *upper; 7283 7284 upper = list_entry((*iter)->next, struct netdev_adjacent, list); 7285 7286 if (&upper->list == &dev->adj_list.upper) 7287 return NULL; 7288 7289 *iter = &upper->list; 7290 *ignore = upper->ignore; 7291 7292 return upper->dev; 7293 } 7294 7295 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 7296 struct list_head **iter) 7297 { 7298 struct netdev_adjacent *upper; 7299 7300 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7301 7302 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7303 7304 if (&upper->list == &dev->adj_list.upper) 7305 return NULL; 7306 7307 *iter = &upper->list; 7308 7309 return upper->dev; 7310 } 7311 7312 static int __netdev_walk_all_upper_dev(struct net_device *dev, 7313 int (*fn)(struct net_device *dev, 7314 struct netdev_nested_priv *priv), 7315 struct netdev_nested_priv *priv) 7316 { 7317 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7318 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7319 int ret, cur = 0; 7320 bool ignore; 7321 7322 now = dev; 7323 iter = &dev->adj_list.upper; 7324 7325 while (1) { 7326 if (now != dev) { 7327 ret = fn(now, priv); 7328 if (ret) 7329 return ret; 7330 } 7331 7332 next = NULL; 7333 while (1) { 7334 udev = __netdev_next_upper_dev(now, &iter, &ignore); 7335 if (!udev) 7336 break; 7337 if (ignore) 7338 continue; 7339 7340 next = udev; 7341 niter = &udev->adj_list.upper; 7342 dev_stack[cur] = now; 7343 iter_stack[cur++] = iter; 7344 break; 7345 } 7346 7347 if (!next) { 7348 if (!cur) 7349 return 0; 7350 next = dev_stack[--cur]; 7351 niter = iter_stack[cur]; 7352 } 7353 7354 now = next; 7355 iter = niter; 7356 } 7357 7358 return 0; 7359 } 7360 7361 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 7362 int (*fn)(struct net_device *dev, 7363 struct netdev_nested_priv *priv), 7364 struct netdev_nested_priv *priv) 7365 { 7366 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7367 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7368 int ret, cur = 0; 7369 7370 now = dev; 7371 iter = &dev->adj_list.upper; 7372 7373 while (1) { 7374 if (now != dev) { 7375 ret = fn(now, priv); 7376 if (ret) 7377 return ret; 7378 } 7379 7380 next = NULL; 7381 while (1) { 7382 udev = netdev_next_upper_dev_rcu(now, &iter); 7383 if (!udev) 7384 break; 7385 7386 next = udev; 7387 niter = &udev->adj_list.upper; 7388 dev_stack[cur] = now; 7389 iter_stack[cur++] = iter; 7390 break; 7391 } 7392 7393 if (!next) { 7394 if (!cur) 7395 return 0; 7396 next = dev_stack[--cur]; 7397 niter = iter_stack[cur]; 7398 } 7399 7400 now = next; 7401 iter = niter; 7402 } 7403 7404 return 0; 7405 } 7406 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 7407 7408 static bool __netdev_has_upper_dev(struct net_device *dev, 7409 struct net_device *upper_dev) 7410 { 7411 struct netdev_nested_priv priv = { 7412 .flags = 0, 7413 .data = (void *)upper_dev, 7414 }; 7415 7416 ASSERT_RTNL(); 7417 7418 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev, 7419 &priv); 7420 } 7421 7422 /** 7423 * netdev_lower_get_next_private - Get the next ->private from the 7424 * lower neighbour list 7425 * @dev: device 7426 * @iter: list_head ** of the current position 7427 * 7428 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7429 * list, starting from iter position. The caller must hold either hold the 7430 * RTNL lock or its own locking that guarantees that the neighbour lower 7431 * list will remain unchanged. 7432 */ 7433 void *netdev_lower_get_next_private(struct net_device *dev, 7434 struct list_head **iter) 7435 { 7436 struct netdev_adjacent *lower; 7437 7438 lower = list_entry(*iter, struct netdev_adjacent, list); 7439 7440 if (&lower->list == &dev->adj_list.lower) 7441 return NULL; 7442 7443 *iter = lower->list.next; 7444 7445 return lower->private; 7446 } 7447 EXPORT_SYMBOL(netdev_lower_get_next_private); 7448 7449 /** 7450 * netdev_lower_get_next_private_rcu - Get the next ->private from the 7451 * lower neighbour list, RCU 7452 * variant 7453 * @dev: device 7454 * @iter: list_head ** of the current position 7455 * 7456 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7457 * list, starting from iter position. The caller must hold RCU read lock. 7458 */ 7459 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 7460 struct list_head **iter) 7461 { 7462 struct netdev_adjacent *lower; 7463 7464 WARN_ON_ONCE(!rcu_read_lock_held()); 7465 7466 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7467 7468 if (&lower->list == &dev->adj_list.lower) 7469 return NULL; 7470 7471 *iter = &lower->list; 7472 7473 return lower->private; 7474 } 7475 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 7476 7477 /** 7478 * netdev_lower_get_next - Get the next device from the lower neighbour 7479 * list 7480 * @dev: device 7481 * @iter: list_head ** of the current position 7482 * 7483 * Gets the next netdev_adjacent from the dev's lower neighbour 7484 * list, starting from iter position. The caller must hold RTNL lock or 7485 * its own locking that guarantees that the neighbour lower 7486 * list will remain unchanged. 7487 */ 7488 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 7489 { 7490 struct netdev_adjacent *lower; 7491 7492 lower = list_entry(*iter, struct netdev_adjacent, list); 7493 7494 if (&lower->list == &dev->adj_list.lower) 7495 return NULL; 7496 7497 *iter = lower->list.next; 7498 7499 return lower->dev; 7500 } 7501 EXPORT_SYMBOL(netdev_lower_get_next); 7502 7503 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 7504 struct list_head **iter) 7505 { 7506 struct netdev_adjacent *lower; 7507 7508 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7509 7510 if (&lower->list == &dev->adj_list.lower) 7511 return NULL; 7512 7513 *iter = &lower->list; 7514 7515 return lower->dev; 7516 } 7517 7518 static struct net_device *__netdev_next_lower_dev(struct net_device *dev, 7519 struct list_head **iter, 7520 bool *ignore) 7521 { 7522 struct netdev_adjacent *lower; 7523 7524 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7525 7526 if (&lower->list == &dev->adj_list.lower) 7527 return NULL; 7528 7529 *iter = &lower->list; 7530 *ignore = lower->ignore; 7531 7532 return lower->dev; 7533 } 7534 7535 int netdev_walk_all_lower_dev(struct net_device *dev, 7536 int (*fn)(struct net_device *dev, 7537 struct netdev_nested_priv *priv), 7538 struct netdev_nested_priv *priv) 7539 { 7540 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7541 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7542 int ret, cur = 0; 7543 7544 now = dev; 7545 iter = &dev->adj_list.lower; 7546 7547 while (1) { 7548 if (now != dev) { 7549 ret = fn(now, priv); 7550 if (ret) 7551 return ret; 7552 } 7553 7554 next = NULL; 7555 while (1) { 7556 ldev = netdev_next_lower_dev(now, &iter); 7557 if (!ldev) 7558 break; 7559 7560 next = ldev; 7561 niter = &ldev->adj_list.lower; 7562 dev_stack[cur] = now; 7563 iter_stack[cur++] = iter; 7564 break; 7565 } 7566 7567 if (!next) { 7568 if (!cur) 7569 return 0; 7570 next = dev_stack[--cur]; 7571 niter = iter_stack[cur]; 7572 } 7573 7574 now = next; 7575 iter = niter; 7576 } 7577 7578 return 0; 7579 } 7580 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 7581 7582 static int __netdev_walk_all_lower_dev(struct net_device *dev, 7583 int (*fn)(struct net_device *dev, 7584 struct netdev_nested_priv *priv), 7585 struct netdev_nested_priv *priv) 7586 { 7587 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7588 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7589 int ret, cur = 0; 7590 bool ignore; 7591 7592 now = dev; 7593 iter = &dev->adj_list.lower; 7594 7595 while (1) { 7596 if (now != dev) { 7597 ret = fn(now, priv); 7598 if (ret) 7599 return ret; 7600 } 7601 7602 next = NULL; 7603 while (1) { 7604 ldev = __netdev_next_lower_dev(now, &iter, &ignore); 7605 if (!ldev) 7606 break; 7607 if (ignore) 7608 continue; 7609 7610 next = ldev; 7611 niter = &ldev->adj_list.lower; 7612 dev_stack[cur] = now; 7613 iter_stack[cur++] = iter; 7614 break; 7615 } 7616 7617 if (!next) { 7618 if (!cur) 7619 return 0; 7620 next = dev_stack[--cur]; 7621 niter = iter_stack[cur]; 7622 } 7623 7624 now = next; 7625 iter = niter; 7626 } 7627 7628 return 0; 7629 } 7630 7631 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 7632 struct list_head **iter) 7633 { 7634 struct netdev_adjacent *lower; 7635 7636 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7637 if (&lower->list == &dev->adj_list.lower) 7638 return NULL; 7639 7640 *iter = &lower->list; 7641 7642 return lower->dev; 7643 } 7644 EXPORT_SYMBOL(netdev_next_lower_dev_rcu); 7645 7646 static u8 __netdev_upper_depth(struct net_device *dev) 7647 { 7648 struct net_device *udev; 7649 struct list_head *iter; 7650 u8 max_depth = 0; 7651 bool ignore; 7652 7653 for (iter = &dev->adj_list.upper, 7654 udev = __netdev_next_upper_dev(dev, &iter, &ignore); 7655 udev; 7656 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) { 7657 if (ignore) 7658 continue; 7659 if (max_depth < udev->upper_level) 7660 max_depth = udev->upper_level; 7661 } 7662 7663 return max_depth; 7664 } 7665 7666 static u8 __netdev_lower_depth(struct net_device *dev) 7667 { 7668 struct net_device *ldev; 7669 struct list_head *iter; 7670 u8 max_depth = 0; 7671 bool ignore; 7672 7673 for (iter = &dev->adj_list.lower, 7674 ldev = __netdev_next_lower_dev(dev, &iter, &ignore); 7675 ldev; 7676 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) { 7677 if (ignore) 7678 continue; 7679 if (max_depth < ldev->lower_level) 7680 max_depth = ldev->lower_level; 7681 } 7682 7683 return max_depth; 7684 } 7685 7686 static int __netdev_update_upper_level(struct net_device *dev, 7687 struct netdev_nested_priv *__unused) 7688 { 7689 dev->upper_level = __netdev_upper_depth(dev) + 1; 7690 return 0; 7691 } 7692 7693 static int __netdev_update_lower_level(struct net_device *dev, 7694 struct netdev_nested_priv *priv) 7695 { 7696 dev->lower_level = __netdev_lower_depth(dev) + 1; 7697 7698 #ifdef CONFIG_LOCKDEP 7699 if (!priv) 7700 return 0; 7701 7702 if (priv->flags & NESTED_SYNC_IMM) 7703 dev->nested_level = dev->lower_level - 1; 7704 if (priv->flags & NESTED_SYNC_TODO) 7705 net_unlink_todo(dev); 7706 #endif 7707 return 0; 7708 } 7709 7710 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 7711 int (*fn)(struct net_device *dev, 7712 struct netdev_nested_priv *priv), 7713 struct netdev_nested_priv *priv) 7714 { 7715 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7716 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7717 int ret, cur = 0; 7718 7719 now = dev; 7720 iter = &dev->adj_list.lower; 7721 7722 while (1) { 7723 if (now != dev) { 7724 ret = fn(now, priv); 7725 if (ret) 7726 return ret; 7727 } 7728 7729 next = NULL; 7730 while (1) { 7731 ldev = netdev_next_lower_dev_rcu(now, &iter); 7732 if (!ldev) 7733 break; 7734 7735 next = ldev; 7736 niter = &ldev->adj_list.lower; 7737 dev_stack[cur] = now; 7738 iter_stack[cur++] = iter; 7739 break; 7740 } 7741 7742 if (!next) { 7743 if (!cur) 7744 return 0; 7745 next = dev_stack[--cur]; 7746 niter = iter_stack[cur]; 7747 } 7748 7749 now = next; 7750 iter = niter; 7751 } 7752 7753 return 0; 7754 } 7755 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 7756 7757 /** 7758 * netdev_lower_get_first_private_rcu - Get the first ->private from the 7759 * lower neighbour list, RCU 7760 * variant 7761 * @dev: device 7762 * 7763 * Gets the first netdev_adjacent->private from the dev's lower neighbour 7764 * list. The caller must hold RCU read lock. 7765 */ 7766 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 7767 { 7768 struct netdev_adjacent *lower; 7769 7770 lower = list_first_or_null_rcu(&dev->adj_list.lower, 7771 struct netdev_adjacent, list); 7772 if (lower) 7773 return lower->private; 7774 return NULL; 7775 } 7776 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 7777 7778 /** 7779 * netdev_master_upper_dev_get_rcu - Get master upper device 7780 * @dev: device 7781 * 7782 * Find a master upper device and return pointer to it or NULL in case 7783 * it's not there. The caller must hold the RCU read lock. 7784 */ 7785 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 7786 { 7787 struct netdev_adjacent *upper; 7788 7789 upper = list_first_or_null_rcu(&dev->adj_list.upper, 7790 struct netdev_adjacent, list); 7791 if (upper && likely(upper->master)) 7792 return upper->dev; 7793 return NULL; 7794 } 7795 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 7796 7797 static int netdev_adjacent_sysfs_add(struct net_device *dev, 7798 struct net_device *adj_dev, 7799 struct list_head *dev_list) 7800 { 7801 char linkname[IFNAMSIZ+7]; 7802 7803 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7804 "upper_%s" : "lower_%s", adj_dev->name); 7805 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 7806 linkname); 7807 } 7808 static void netdev_adjacent_sysfs_del(struct net_device *dev, 7809 char *name, 7810 struct list_head *dev_list) 7811 { 7812 char linkname[IFNAMSIZ+7]; 7813 7814 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7815 "upper_%s" : "lower_%s", name); 7816 sysfs_remove_link(&(dev->dev.kobj), linkname); 7817 } 7818 7819 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 7820 struct net_device *adj_dev, 7821 struct list_head *dev_list) 7822 { 7823 return (dev_list == &dev->adj_list.upper || 7824 dev_list == &dev->adj_list.lower) && 7825 net_eq(dev_net(dev), dev_net(adj_dev)); 7826 } 7827 7828 static int __netdev_adjacent_dev_insert(struct net_device *dev, 7829 struct net_device *adj_dev, 7830 struct list_head *dev_list, 7831 void *private, bool master) 7832 { 7833 struct netdev_adjacent *adj; 7834 int ret; 7835 7836 adj = __netdev_find_adj(adj_dev, dev_list); 7837 7838 if (adj) { 7839 adj->ref_nr += 1; 7840 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 7841 dev->name, adj_dev->name, adj->ref_nr); 7842 7843 return 0; 7844 } 7845 7846 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 7847 if (!adj) 7848 return -ENOMEM; 7849 7850 adj->dev = adj_dev; 7851 adj->master = master; 7852 adj->ref_nr = 1; 7853 adj->private = private; 7854 adj->ignore = false; 7855 dev_hold(adj_dev); 7856 7857 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 7858 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 7859 7860 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 7861 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 7862 if (ret) 7863 goto free_adj; 7864 } 7865 7866 /* Ensure that master link is always the first item in list. */ 7867 if (master) { 7868 ret = sysfs_create_link(&(dev->dev.kobj), 7869 &(adj_dev->dev.kobj), "master"); 7870 if (ret) 7871 goto remove_symlinks; 7872 7873 list_add_rcu(&adj->list, dev_list); 7874 } else { 7875 list_add_tail_rcu(&adj->list, dev_list); 7876 } 7877 7878 return 0; 7879 7880 remove_symlinks: 7881 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7882 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7883 free_adj: 7884 kfree(adj); 7885 dev_put(adj_dev); 7886 7887 return ret; 7888 } 7889 7890 static void __netdev_adjacent_dev_remove(struct net_device *dev, 7891 struct net_device *adj_dev, 7892 u16 ref_nr, 7893 struct list_head *dev_list) 7894 { 7895 struct netdev_adjacent *adj; 7896 7897 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 7898 dev->name, adj_dev->name, ref_nr); 7899 7900 adj = __netdev_find_adj(adj_dev, dev_list); 7901 7902 if (!adj) { 7903 pr_err("Adjacency does not exist for device %s from %s\n", 7904 dev->name, adj_dev->name); 7905 WARN_ON(1); 7906 return; 7907 } 7908 7909 if (adj->ref_nr > ref_nr) { 7910 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 7911 dev->name, adj_dev->name, ref_nr, 7912 adj->ref_nr - ref_nr); 7913 adj->ref_nr -= ref_nr; 7914 return; 7915 } 7916 7917 if (adj->master) 7918 sysfs_remove_link(&(dev->dev.kobj), "master"); 7919 7920 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7921 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7922 7923 list_del_rcu(&adj->list); 7924 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 7925 adj_dev->name, dev->name, adj_dev->name); 7926 dev_put(adj_dev); 7927 kfree_rcu(adj, rcu); 7928 } 7929 7930 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 7931 struct net_device *upper_dev, 7932 struct list_head *up_list, 7933 struct list_head *down_list, 7934 void *private, bool master) 7935 { 7936 int ret; 7937 7938 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 7939 private, master); 7940 if (ret) 7941 return ret; 7942 7943 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 7944 private, false); 7945 if (ret) { 7946 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 7947 return ret; 7948 } 7949 7950 return 0; 7951 } 7952 7953 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 7954 struct net_device *upper_dev, 7955 u16 ref_nr, 7956 struct list_head *up_list, 7957 struct list_head *down_list) 7958 { 7959 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 7960 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 7961 } 7962 7963 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 7964 struct net_device *upper_dev, 7965 void *private, bool master) 7966 { 7967 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 7968 &dev->adj_list.upper, 7969 &upper_dev->adj_list.lower, 7970 private, master); 7971 } 7972 7973 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 7974 struct net_device *upper_dev) 7975 { 7976 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 7977 &dev->adj_list.upper, 7978 &upper_dev->adj_list.lower); 7979 } 7980 7981 static int __netdev_upper_dev_link(struct net_device *dev, 7982 struct net_device *upper_dev, bool master, 7983 void *upper_priv, void *upper_info, 7984 struct netdev_nested_priv *priv, 7985 struct netlink_ext_ack *extack) 7986 { 7987 struct netdev_notifier_changeupper_info changeupper_info = { 7988 .info = { 7989 .dev = dev, 7990 .extack = extack, 7991 }, 7992 .upper_dev = upper_dev, 7993 .master = master, 7994 .linking = true, 7995 .upper_info = upper_info, 7996 }; 7997 struct net_device *master_dev; 7998 int ret = 0; 7999 8000 ASSERT_RTNL(); 8001 8002 if (dev == upper_dev) 8003 return -EBUSY; 8004 8005 /* To prevent loops, check if dev is not upper device to upper_dev. */ 8006 if (__netdev_has_upper_dev(upper_dev, dev)) 8007 return -EBUSY; 8008 8009 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV) 8010 return -EMLINK; 8011 8012 if (!master) { 8013 if (__netdev_has_upper_dev(dev, upper_dev)) 8014 return -EEXIST; 8015 } else { 8016 master_dev = __netdev_master_upper_dev_get(dev); 8017 if (master_dev) 8018 return master_dev == upper_dev ? -EEXIST : -EBUSY; 8019 } 8020 8021 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 8022 &changeupper_info.info); 8023 ret = notifier_to_errno(ret); 8024 if (ret) 8025 return ret; 8026 8027 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 8028 master); 8029 if (ret) 8030 return ret; 8031 8032 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 8033 &changeupper_info.info); 8034 ret = notifier_to_errno(ret); 8035 if (ret) 8036 goto rollback; 8037 8038 __netdev_update_upper_level(dev, NULL); 8039 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 8040 8041 __netdev_update_lower_level(upper_dev, priv); 8042 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 8043 priv); 8044 8045 return 0; 8046 8047 rollback: 8048 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 8049 8050 return ret; 8051 } 8052 8053 /** 8054 * netdev_upper_dev_link - Add a link to the upper device 8055 * @dev: device 8056 * @upper_dev: new upper device 8057 * @extack: netlink extended ack 8058 * 8059 * Adds a link to device which is upper to this one. The caller must hold 8060 * the RTNL lock. On a failure a negative errno code is returned. 8061 * On success the reference counts are adjusted and the function 8062 * returns zero. 8063 */ 8064 int netdev_upper_dev_link(struct net_device *dev, 8065 struct net_device *upper_dev, 8066 struct netlink_ext_ack *extack) 8067 { 8068 struct netdev_nested_priv priv = { 8069 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8070 .data = NULL, 8071 }; 8072 8073 return __netdev_upper_dev_link(dev, upper_dev, false, 8074 NULL, NULL, &priv, extack); 8075 } 8076 EXPORT_SYMBOL(netdev_upper_dev_link); 8077 8078 /** 8079 * netdev_master_upper_dev_link - Add a master link to the upper device 8080 * @dev: device 8081 * @upper_dev: new upper device 8082 * @upper_priv: upper device private 8083 * @upper_info: upper info to be passed down via notifier 8084 * @extack: netlink extended ack 8085 * 8086 * Adds a link to device which is upper to this one. In this case, only 8087 * one master upper device can be linked, although other non-master devices 8088 * might be linked as well. The caller must hold the RTNL lock. 8089 * On a failure a negative errno code is returned. On success the reference 8090 * counts are adjusted and the function returns zero. 8091 */ 8092 int netdev_master_upper_dev_link(struct net_device *dev, 8093 struct net_device *upper_dev, 8094 void *upper_priv, void *upper_info, 8095 struct netlink_ext_ack *extack) 8096 { 8097 struct netdev_nested_priv priv = { 8098 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8099 .data = NULL, 8100 }; 8101 8102 return __netdev_upper_dev_link(dev, upper_dev, true, 8103 upper_priv, upper_info, &priv, extack); 8104 } 8105 EXPORT_SYMBOL(netdev_master_upper_dev_link); 8106 8107 static void __netdev_upper_dev_unlink(struct net_device *dev, 8108 struct net_device *upper_dev, 8109 struct netdev_nested_priv *priv) 8110 { 8111 struct netdev_notifier_changeupper_info changeupper_info = { 8112 .info = { 8113 .dev = dev, 8114 }, 8115 .upper_dev = upper_dev, 8116 .linking = false, 8117 }; 8118 8119 ASSERT_RTNL(); 8120 8121 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 8122 8123 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 8124 &changeupper_info.info); 8125 8126 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 8127 8128 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 8129 &changeupper_info.info); 8130 8131 __netdev_update_upper_level(dev, NULL); 8132 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 8133 8134 __netdev_update_lower_level(upper_dev, priv); 8135 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 8136 priv); 8137 } 8138 8139 /** 8140 * netdev_upper_dev_unlink - Removes a link to upper device 8141 * @dev: device 8142 * @upper_dev: new upper device 8143 * 8144 * Removes a link to device which is upper to this one. The caller must hold 8145 * the RTNL lock. 8146 */ 8147 void netdev_upper_dev_unlink(struct net_device *dev, 8148 struct net_device *upper_dev) 8149 { 8150 struct netdev_nested_priv priv = { 8151 .flags = NESTED_SYNC_TODO, 8152 .data = NULL, 8153 }; 8154 8155 __netdev_upper_dev_unlink(dev, upper_dev, &priv); 8156 } 8157 EXPORT_SYMBOL(netdev_upper_dev_unlink); 8158 8159 static void __netdev_adjacent_dev_set(struct net_device *upper_dev, 8160 struct net_device *lower_dev, 8161 bool val) 8162 { 8163 struct netdev_adjacent *adj; 8164 8165 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower); 8166 if (adj) 8167 adj->ignore = val; 8168 8169 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper); 8170 if (adj) 8171 adj->ignore = val; 8172 } 8173 8174 static void netdev_adjacent_dev_disable(struct net_device *upper_dev, 8175 struct net_device *lower_dev) 8176 { 8177 __netdev_adjacent_dev_set(upper_dev, lower_dev, true); 8178 } 8179 8180 static void netdev_adjacent_dev_enable(struct net_device *upper_dev, 8181 struct net_device *lower_dev) 8182 { 8183 __netdev_adjacent_dev_set(upper_dev, lower_dev, false); 8184 } 8185 8186 int netdev_adjacent_change_prepare(struct net_device *old_dev, 8187 struct net_device *new_dev, 8188 struct net_device *dev, 8189 struct netlink_ext_ack *extack) 8190 { 8191 struct netdev_nested_priv priv = { 8192 .flags = 0, 8193 .data = NULL, 8194 }; 8195 int err; 8196 8197 if (!new_dev) 8198 return 0; 8199 8200 if (old_dev && new_dev != old_dev) 8201 netdev_adjacent_dev_disable(dev, old_dev); 8202 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv, 8203 extack); 8204 if (err) { 8205 if (old_dev && new_dev != old_dev) 8206 netdev_adjacent_dev_enable(dev, old_dev); 8207 return err; 8208 } 8209 8210 return 0; 8211 } 8212 EXPORT_SYMBOL(netdev_adjacent_change_prepare); 8213 8214 void netdev_adjacent_change_commit(struct net_device *old_dev, 8215 struct net_device *new_dev, 8216 struct net_device *dev) 8217 { 8218 struct netdev_nested_priv priv = { 8219 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8220 .data = NULL, 8221 }; 8222 8223 if (!new_dev || !old_dev) 8224 return; 8225 8226 if (new_dev == old_dev) 8227 return; 8228 8229 netdev_adjacent_dev_enable(dev, old_dev); 8230 __netdev_upper_dev_unlink(old_dev, dev, &priv); 8231 } 8232 EXPORT_SYMBOL(netdev_adjacent_change_commit); 8233 8234 void netdev_adjacent_change_abort(struct net_device *old_dev, 8235 struct net_device *new_dev, 8236 struct net_device *dev) 8237 { 8238 struct netdev_nested_priv priv = { 8239 .flags = 0, 8240 .data = NULL, 8241 }; 8242 8243 if (!new_dev) 8244 return; 8245 8246 if (old_dev && new_dev != old_dev) 8247 netdev_adjacent_dev_enable(dev, old_dev); 8248 8249 __netdev_upper_dev_unlink(new_dev, dev, &priv); 8250 } 8251 EXPORT_SYMBOL(netdev_adjacent_change_abort); 8252 8253 /** 8254 * netdev_bonding_info_change - Dispatch event about slave change 8255 * @dev: device 8256 * @bonding_info: info to dispatch 8257 * 8258 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 8259 * The caller must hold the RTNL lock. 8260 */ 8261 void netdev_bonding_info_change(struct net_device *dev, 8262 struct netdev_bonding_info *bonding_info) 8263 { 8264 struct netdev_notifier_bonding_info info = { 8265 .info.dev = dev, 8266 }; 8267 8268 memcpy(&info.bonding_info, bonding_info, 8269 sizeof(struct netdev_bonding_info)); 8270 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 8271 &info.info); 8272 } 8273 EXPORT_SYMBOL(netdev_bonding_info_change); 8274 8275 /** 8276 * netdev_get_xmit_slave - Get the xmit slave of master device 8277 * @dev: device 8278 * @skb: The packet 8279 * @all_slaves: assume all the slaves are active 8280 * 8281 * The reference counters are not incremented so the caller must be 8282 * careful with locks. The caller must hold RCU lock. 8283 * %NULL is returned if no slave is found. 8284 */ 8285 8286 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 8287 struct sk_buff *skb, 8288 bool all_slaves) 8289 { 8290 const struct net_device_ops *ops = dev->netdev_ops; 8291 8292 if (!ops->ndo_get_xmit_slave) 8293 return NULL; 8294 return ops->ndo_get_xmit_slave(dev, skb, all_slaves); 8295 } 8296 EXPORT_SYMBOL(netdev_get_xmit_slave); 8297 8298 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev, 8299 struct sock *sk) 8300 { 8301 const struct net_device_ops *ops = dev->netdev_ops; 8302 8303 if (!ops->ndo_sk_get_lower_dev) 8304 return NULL; 8305 return ops->ndo_sk_get_lower_dev(dev, sk); 8306 } 8307 8308 /** 8309 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket 8310 * @dev: device 8311 * @sk: the socket 8312 * 8313 * %NULL is returned if no lower device is found. 8314 */ 8315 8316 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 8317 struct sock *sk) 8318 { 8319 struct net_device *lower; 8320 8321 lower = netdev_sk_get_lower_dev(dev, sk); 8322 while (lower) { 8323 dev = lower; 8324 lower = netdev_sk_get_lower_dev(dev, sk); 8325 } 8326 8327 return dev; 8328 } 8329 EXPORT_SYMBOL(netdev_sk_get_lowest_dev); 8330 8331 static void netdev_adjacent_add_links(struct net_device *dev) 8332 { 8333 struct netdev_adjacent *iter; 8334 8335 struct net *net = dev_net(dev); 8336 8337 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8338 if (!net_eq(net, dev_net(iter->dev))) 8339 continue; 8340 netdev_adjacent_sysfs_add(iter->dev, dev, 8341 &iter->dev->adj_list.lower); 8342 netdev_adjacent_sysfs_add(dev, iter->dev, 8343 &dev->adj_list.upper); 8344 } 8345 8346 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8347 if (!net_eq(net, dev_net(iter->dev))) 8348 continue; 8349 netdev_adjacent_sysfs_add(iter->dev, dev, 8350 &iter->dev->adj_list.upper); 8351 netdev_adjacent_sysfs_add(dev, iter->dev, 8352 &dev->adj_list.lower); 8353 } 8354 } 8355 8356 static void netdev_adjacent_del_links(struct net_device *dev) 8357 { 8358 struct netdev_adjacent *iter; 8359 8360 struct net *net = dev_net(dev); 8361 8362 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8363 if (!net_eq(net, dev_net(iter->dev))) 8364 continue; 8365 netdev_adjacent_sysfs_del(iter->dev, dev->name, 8366 &iter->dev->adj_list.lower); 8367 netdev_adjacent_sysfs_del(dev, iter->dev->name, 8368 &dev->adj_list.upper); 8369 } 8370 8371 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8372 if (!net_eq(net, dev_net(iter->dev))) 8373 continue; 8374 netdev_adjacent_sysfs_del(iter->dev, dev->name, 8375 &iter->dev->adj_list.upper); 8376 netdev_adjacent_sysfs_del(dev, iter->dev->name, 8377 &dev->adj_list.lower); 8378 } 8379 } 8380 8381 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 8382 { 8383 struct netdev_adjacent *iter; 8384 8385 struct net *net = dev_net(dev); 8386 8387 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8388 if (!net_eq(net, dev_net(iter->dev))) 8389 continue; 8390 netdev_adjacent_sysfs_del(iter->dev, oldname, 8391 &iter->dev->adj_list.lower); 8392 netdev_adjacent_sysfs_add(iter->dev, dev, 8393 &iter->dev->adj_list.lower); 8394 } 8395 8396 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8397 if (!net_eq(net, dev_net(iter->dev))) 8398 continue; 8399 netdev_adjacent_sysfs_del(iter->dev, oldname, 8400 &iter->dev->adj_list.upper); 8401 netdev_adjacent_sysfs_add(iter->dev, dev, 8402 &iter->dev->adj_list.upper); 8403 } 8404 } 8405 8406 void *netdev_lower_dev_get_private(struct net_device *dev, 8407 struct net_device *lower_dev) 8408 { 8409 struct netdev_adjacent *lower; 8410 8411 if (!lower_dev) 8412 return NULL; 8413 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 8414 if (!lower) 8415 return NULL; 8416 8417 return lower->private; 8418 } 8419 EXPORT_SYMBOL(netdev_lower_dev_get_private); 8420 8421 8422 /** 8423 * netdev_lower_state_changed - Dispatch event about lower device state change 8424 * @lower_dev: device 8425 * @lower_state_info: state to dispatch 8426 * 8427 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 8428 * The caller must hold the RTNL lock. 8429 */ 8430 void netdev_lower_state_changed(struct net_device *lower_dev, 8431 void *lower_state_info) 8432 { 8433 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 8434 .info.dev = lower_dev, 8435 }; 8436 8437 ASSERT_RTNL(); 8438 changelowerstate_info.lower_state_info = lower_state_info; 8439 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 8440 &changelowerstate_info.info); 8441 } 8442 EXPORT_SYMBOL(netdev_lower_state_changed); 8443 8444 static void dev_change_rx_flags(struct net_device *dev, int flags) 8445 { 8446 const struct net_device_ops *ops = dev->netdev_ops; 8447 8448 if (ops->ndo_change_rx_flags) 8449 ops->ndo_change_rx_flags(dev, flags); 8450 } 8451 8452 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 8453 { 8454 unsigned int old_flags = dev->flags; 8455 kuid_t uid; 8456 kgid_t gid; 8457 8458 ASSERT_RTNL(); 8459 8460 dev->flags |= IFF_PROMISC; 8461 dev->promiscuity += inc; 8462 if (dev->promiscuity == 0) { 8463 /* 8464 * Avoid overflow. 8465 * If inc causes overflow, untouch promisc and return error. 8466 */ 8467 if (inc < 0) 8468 dev->flags &= ~IFF_PROMISC; 8469 else { 8470 dev->promiscuity -= inc; 8471 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 8472 dev->name); 8473 return -EOVERFLOW; 8474 } 8475 } 8476 if (dev->flags != old_flags) { 8477 pr_info("device %s %s promiscuous mode\n", 8478 dev->name, 8479 dev->flags & IFF_PROMISC ? "entered" : "left"); 8480 if (audit_enabled) { 8481 current_uid_gid(&uid, &gid); 8482 audit_log(audit_context(), GFP_ATOMIC, 8483 AUDIT_ANOM_PROMISCUOUS, 8484 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 8485 dev->name, (dev->flags & IFF_PROMISC), 8486 (old_flags & IFF_PROMISC), 8487 from_kuid(&init_user_ns, audit_get_loginuid(current)), 8488 from_kuid(&init_user_ns, uid), 8489 from_kgid(&init_user_ns, gid), 8490 audit_get_sessionid(current)); 8491 } 8492 8493 dev_change_rx_flags(dev, IFF_PROMISC); 8494 } 8495 if (notify) 8496 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 8497 return 0; 8498 } 8499 8500 /** 8501 * dev_set_promiscuity - update promiscuity count on a device 8502 * @dev: device 8503 * @inc: modifier 8504 * 8505 * Add or remove promiscuity from a device. While the count in the device 8506 * remains above zero the interface remains promiscuous. Once it hits zero 8507 * the device reverts back to normal filtering operation. A negative inc 8508 * value is used to drop promiscuity on the device. 8509 * Return 0 if successful or a negative errno code on error. 8510 */ 8511 int dev_set_promiscuity(struct net_device *dev, int inc) 8512 { 8513 unsigned int old_flags = dev->flags; 8514 int err; 8515 8516 err = __dev_set_promiscuity(dev, inc, true); 8517 if (err < 0) 8518 return err; 8519 if (dev->flags != old_flags) 8520 dev_set_rx_mode(dev); 8521 return err; 8522 } 8523 EXPORT_SYMBOL(dev_set_promiscuity); 8524 8525 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 8526 { 8527 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 8528 8529 ASSERT_RTNL(); 8530 8531 dev->flags |= IFF_ALLMULTI; 8532 dev->allmulti += inc; 8533 if (dev->allmulti == 0) { 8534 /* 8535 * Avoid overflow. 8536 * If inc causes overflow, untouch allmulti and return error. 8537 */ 8538 if (inc < 0) 8539 dev->flags &= ~IFF_ALLMULTI; 8540 else { 8541 dev->allmulti -= inc; 8542 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 8543 dev->name); 8544 return -EOVERFLOW; 8545 } 8546 } 8547 if (dev->flags ^ old_flags) { 8548 dev_change_rx_flags(dev, IFF_ALLMULTI); 8549 dev_set_rx_mode(dev); 8550 if (notify) 8551 __dev_notify_flags(dev, old_flags, 8552 dev->gflags ^ old_gflags); 8553 } 8554 return 0; 8555 } 8556 8557 /** 8558 * dev_set_allmulti - update allmulti count on a device 8559 * @dev: device 8560 * @inc: modifier 8561 * 8562 * Add or remove reception of all multicast frames to a device. While the 8563 * count in the device remains above zero the interface remains listening 8564 * to all interfaces. Once it hits zero the device reverts back to normal 8565 * filtering operation. A negative @inc value is used to drop the counter 8566 * when releasing a resource needing all multicasts. 8567 * Return 0 if successful or a negative errno code on error. 8568 */ 8569 8570 int dev_set_allmulti(struct net_device *dev, int inc) 8571 { 8572 return __dev_set_allmulti(dev, inc, true); 8573 } 8574 EXPORT_SYMBOL(dev_set_allmulti); 8575 8576 /* 8577 * Upload unicast and multicast address lists to device and 8578 * configure RX filtering. When the device doesn't support unicast 8579 * filtering it is put in promiscuous mode while unicast addresses 8580 * are present. 8581 */ 8582 void __dev_set_rx_mode(struct net_device *dev) 8583 { 8584 const struct net_device_ops *ops = dev->netdev_ops; 8585 8586 /* dev_open will call this function so the list will stay sane. */ 8587 if (!(dev->flags&IFF_UP)) 8588 return; 8589 8590 if (!netif_device_present(dev)) 8591 return; 8592 8593 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 8594 /* Unicast addresses changes may only happen under the rtnl, 8595 * therefore calling __dev_set_promiscuity here is safe. 8596 */ 8597 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 8598 __dev_set_promiscuity(dev, 1, false); 8599 dev->uc_promisc = true; 8600 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 8601 __dev_set_promiscuity(dev, -1, false); 8602 dev->uc_promisc = false; 8603 } 8604 } 8605 8606 if (ops->ndo_set_rx_mode) 8607 ops->ndo_set_rx_mode(dev); 8608 } 8609 8610 void dev_set_rx_mode(struct net_device *dev) 8611 { 8612 netif_addr_lock_bh(dev); 8613 __dev_set_rx_mode(dev); 8614 netif_addr_unlock_bh(dev); 8615 } 8616 8617 /** 8618 * dev_get_flags - get flags reported to userspace 8619 * @dev: device 8620 * 8621 * Get the combination of flag bits exported through APIs to userspace. 8622 */ 8623 unsigned int dev_get_flags(const struct net_device *dev) 8624 { 8625 unsigned int flags; 8626 8627 flags = (dev->flags & ~(IFF_PROMISC | 8628 IFF_ALLMULTI | 8629 IFF_RUNNING | 8630 IFF_LOWER_UP | 8631 IFF_DORMANT)) | 8632 (dev->gflags & (IFF_PROMISC | 8633 IFF_ALLMULTI)); 8634 8635 if (netif_running(dev)) { 8636 if (netif_oper_up(dev)) 8637 flags |= IFF_RUNNING; 8638 if (netif_carrier_ok(dev)) 8639 flags |= IFF_LOWER_UP; 8640 if (netif_dormant(dev)) 8641 flags |= IFF_DORMANT; 8642 } 8643 8644 return flags; 8645 } 8646 EXPORT_SYMBOL(dev_get_flags); 8647 8648 int __dev_change_flags(struct net_device *dev, unsigned int flags, 8649 struct netlink_ext_ack *extack) 8650 { 8651 unsigned int old_flags = dev->flags; 8652 int ret; 8653 8654 ASSERT_RTNL(); 8655 8656 /* 8657 * Set the flags on our device. 8658 */ 8659 8660 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 8661 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 8662 IFF_AUTOMEDIA)) | 8663 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 8664 IFF_ALLMULTI)); 8665 8666 /* 8667 * Load in the correct multicast list now the flags have changed. 8668 */ 8669 8670 if ((old_flags ^ flags) & IFF_MULTICAST) 8671 dev_change_rx_flags(dev, IFF_MULTICAST); 8672 8673 dev_set_rx_mode(dev); 8674 8675 /* 8676 * Have we downed the interface. We handle IFF_UP ourselves 8677 * according to user attempts to set it, rather than blindly 8678 * setting it. 8679 */ 8680 8681 ret = 0; 8682 if ((old_flags ^ flags) & IFF_UP) { 8683 if (old_flags & IFF_UP) 8684 __dev_close(dev); 8685 else 8686 ret = __dev_open(dev, extack); 8687 } 8688 8689 if ((flags ^ dev->gflags) & IFF_PROMISC) { 8690 int inc = (flags & IFF_PROMISC) ? 1 : -1; 8691 unsigned int old_flags = dev->flags; 8692 8693 dev->gflags ^= IFF_PROMISC; 8694 8695 if (__dev_set_promiscuity(dev, inc, false) >= 0) 8696 if (dev->flags != old_flags) 8697 dev_set_rx_mode(dev); 8698 } 8699 8700 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 8701 * is important. Some (broken) drivers set IFF_PROMISC, when 8702 * IFF_ALLMULTI is requested not asking us and not reporting. 8703 */ 8704 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 8705 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 8706 8707 dev->gflags ^= IFF_ALLMULTI; 8708 __dev_set_allmulti(dev, inc, false); 8709 } 8710 8711 return ret; 8712 } 8713 8714 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 8715 unsigned int gchanges) 8716 { 8717 unsigned int changes = dev->flags ^ old_flags; 8718 8719 if (gchanges) 8720 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 8721 8722 if (changes & IFF_UP) { 8723 if (dev->flags & IFF_UP) 8724 call_netdevice_notifiers(NETDEV_UP, dev); 8725 else 8726 call_netdevice_notifiers(NETDEV_DOWN, dev); 8727 } 8728 8729 if (dev->flags & IFF_UP && 8730 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 8731 struct netdev_notifier_change_info change_info = { 8732 .info = { 8733 .dev = dev, 8734 }, 8735 .flags_changed = changes, 8736 }; 8737 8738 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 8739 } 8740 } 8741 8742 /** 8743 * dev_change_flags - change device settings 8744 * @dev: device 8745 * @flags: device state flags 8746 * @extack: netlink extended ack 8747 * 8748 * Change settings on device based state flags. The flags are 8749 * in the userspace exported format. 8750 */ 8751 int dev_change_flags(struct net_device *dev, unsigned int flags, 8752 struct netlink_ext_ack *extack) 8753 { 8754 int ret; 8755 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 8756 8757 ret = __dev_change_flags(dev, flags, extack); 8758 if (ret < 0) 8759 return ret; 8760 8761 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 8762 __dev_notify_flags(dev, old_flags, changes); 8763 return ret; 8764 } 8765 EXPORT_SYMBOL(dev_change_flags); 8766 8767 int __dev_set_mtu(struct net_device *dev, int new_mtu) 8768 { 8769 const struct net_device_ops *ops = dev->netdev_ops; 8770 8771 if (ops->ndo_change_mtu) 8772 return ops->ndo_change_mtu(dev, new_mtu); 8773 8774 /* Pairs with all the lockless reads of dev->mtu in the stack */ 8775 WRITE_ONCE(dev->mtu, new_mtu); 8776 return 0; 8777 } 8778 EXPORT_SYMBOL(__dev_set_mtu); 8779 8780 int dev_validate_mtu(struct net_device *dev, int new_mtu, 8781 struct netlink_ext_ack *extack) 8782 { 8783 /* MTU must be positive, and in range */ 8784 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 8785 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 8786 return -EINVAL; 8787 } 8788 8789 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 8790 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 8791 return -EINVAL; 8792 } 8793 return 0; 8794 } 8795 8796 /** 8797 * dev_set_mtu_ext - Change maximum transfer unit 8798 * @dev: device 8799 * @new_mtu: new transfer unit 8800 * @extack: netlink extended ack 8801 * 8802 * Change the maximum transfer size of the network device. 8803 */ 8804 int dev_set_mtu_ext(struct net_device *dev, int new_mtu, 8805 struct netlink_ext_ack *extack) 8806 { 8807 int err, orig_mtu; 8808 8809 if (new_mtu == dev->mtu) 8810 return 0; 8811 8812 err = dev_validate_mtu(dev, new_mtu, extack); 8813 if (err) 8814 return err; 8815 8816 if (!netif_device_present(dev)) 8817 return -ENODEV; 8818 8819 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 8820 err = notifier_to_errno(err); 8821 if (err) 8822 return err; 8823 8824 orig_mtu = dev->mtu; 8825 err = __dev_set_mtu(dev, new_mtu); 8826 8827 if (!err) { 8828 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8829 orig_mtu); 8830 err = notifier_to_errno(err); 8831 if (err) { 8832 /* setting mtu back and notifying everyone again, 8833 * so that they have a chance to revert changes. 8834 */ 8835 __dev_set_mtu(dev, orig_mtu); 8836 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8837 new_mtu); 8838 } 8839 } 8840 return err; 8841 } 8842 8843 int dev_set_mtu(struct net_device *dev, int new_mtu) 8844 { 8845 struct netlink_ext_ack extack; 8846 int err; 8847 8848 memset(&extack, 0, sizeof(extack)); 8849 err = dev_set_mtu_ext(dev, new_mtu, &extack); 8850 if (err && extack._msg) 8851 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 8852 return err; 8853 } 8854 EXPORT_SYMBOL(dev_set_mtu); 8855 8856 /** 8857 * dev_change_tx_queue_len - Change TX queue length of a netdevice 8858 * @dev: device 8859 * @new_len: new tx queue length 8860 */ 8861 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 8862 { 8863 unsigned int orig_len = dev->tx_queue_len; 8864 int res; 8865 8866 if (new_len != (unsigned int)new_len) 8867 return -ERANGE; 8868 8869 if (new_len != orig_len) { 8870 dev->tx_queue_len = new_len; 8871 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 8872 res = notifier_to_errno(res); 8873 if (res) 8874 goto err_rollback; 8875 res = dev_qdisc_change_tx_queue_len(dev); 8876 if (res) 8877 goto err_rollback; 8878 } 8879 8880 return 0; 8881 8882 err_rollback: 8883 netdev_err(dev, "refused to change device tx_queue_len\n"); 8884 dev->tx_queue_len = orig_len; 8885 return res; 8886 } 8887 8888 /** 8889 * dev_set_group - Change group this device belongs to 8890 * @dev: device 8891 * @new_group: group this device should belong to 8892 */ 8893 void dev_set_group(struct net_device *dev, int new_group) 8894 { 8895 dev->group = new_group; 8896 } 8897 EXPORT_SYMBOL(dev_set_group); 8898 8899 /** 8900 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR. 8901 * @dev: device 8902 * @addr: new address 8903 * @extack: netlink extended ack 8904 */ 8905 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 8906 struct netlink_ext_ack *extack) 8907 { 8908 struct netdev_notifier_pre_changeaddr_info info = { 8909 .info.dev = dev, 8910 .info.extack = extack, 8911 .dev_addr = addr, 8912 }; 8913 int rc; 8914 8915 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); 8916 return notifier_to_errno(rc); 8917 } 8918 EXPORT_SYMBOL(dev_pre_changeaddr_notify); 8919 8920 /** 8921 * dev_set_mac_address - Change Media Access Control Address 8922 * @dev: device 8923 * @sa: new address 8924 * @extack: netlink extended ack 8925 * 8926 * Change the hardware (MAC) address of the device 8927 */ 8928 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 8929 struct netlink_ext_ack *extack) 8930 { 8931 const struct net_device_ops *ops = dev->netdev_ops; 8932 int err; 8933 8934 if (!ops->ndo_set_mac_address) 8935 return -EOPNOTSUPP; 8936 if (sa->sa_family != dev->type) 8937 return -EINVAL; 8938 if (!netif_device_present(dev)) 8939 return -ENODEV; 8940 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack); 8941 if (err) 8942 return err; 8943 err = ops->ndo_set_mac_address(dev, sa); 8944 if (err) 8945 return err; 8946 dev->addr_assign_type = NET_ADDR_SET; 8947 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 8948 add_device_randomness(dev->dev_addr, dev->addr_len); 8949 return 0; 8950 } 8951 EXPORT_SYMBOL(dev_set_mac_address); 8952 8953 static DECLARE_RWSEM(dev_addr_sem); 8954 8955 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa, 8956 struct netlink_ext_ack *extack) 8957 { 8958 int ret; 8959 8960 down_write(&dev_addr_sem); 8961 ret = dev_set_mac_address(dev, sa, extack); 8962 up_write(&dev_addr_sem); 8963 return ret; 8964 } 8965 EXPORT_SYMBOL(dev_set_mac_address_user); 8966 8967 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name) 8968 { 8969 size_t size = sizeof(sa->sa_data); 8970 struct net_device *dev; 8971 int ret = 0; 8972 8973 down_read(&dev_addr_sem); 8974 rcu_read_lock(); 8975 8976 dev = dev_get_by_name_rcu(net, dev_name); 8977 if (!dev) { 8978 ret = -ENODEV; 8979 goto unlock; 8980 } 8981 if (!dev->addr_len) 8982 memset(sa->sa_data, 0, size); 8983 else 8984 memcpy(sa->sa_data, dev->dev_addr, 8985 min_t(size_t, size, dev->addr_len)); 8986 sa->sa_family = dev->type; 8987 8988 unlock: 8989 rcu_read_unlock(); 8990 up_read(&dev_addr_sem); 8991 return ret; 8992 } 8993 EXPORT_SYMBOL(dev_get_mac_address); 8994 8995 /** 8996 * dev_change_carrier - Change device carrier 8997 * @dev: device 8998 * @new_carrier: new value 8999 * 9000 * Change device carrier 9001 */ 9002 int dev_change_carrier(struct net_device *dev, bool new_carrier) 9003 { 9004 const struct net_device_ops *ops = dev->netdev_ops; 9005 9006 if (!ops->ndo_change_carrier) 9007 return -EOPNOTSUPP; 9008 if (!netif_device_present(dev)) 9009 return -ENODEV; 9010 return ops->ndo_change_carrier(dev, new_carrier); 9011 } 9012 EXPORT_SYMBOL(dev_change_carrier); 9013 9014 /** 9015 * dev_get_phys_port_id - Get device physical port ID 9016 * @dev: device 9017 * @ppid: port ID 9018 * 9019 * Get device physical port ID 9020 */ 9021 int dev_get_phys_port_id(struct net_device *dev, 9022 struct netdev_phys_item_id *ppid) 9023 { 9024 const struct net_device_ops *ops = dev->netdev_ops; 9025 9026 if (!ops->ndo_get_phys_port_id) 9027 return -EOPNOTSUPP; 9028 return ops->ndo_get_phys_port_id(dev, ppid); 9029 } 9030 EXPORT_SYMBOL(dev_get_phys_port_id); 9031 9032 /** 9033 * dev_get_phys_port_name - Get device physical port name 9034 * @dev: device 9035 * @name: port name 9036 * @len: limit of bytes to copy to name 9037 * 9038 * Get device physical port name 9039 */ 9040 int dev_get_phys_port_name(struct net_device *dev, 9041 char *name, size_t len) 9042 { 9043 const struct net_device_ops *ops = dev->netdev_ops; 9044 int err; 9045 9046 if (ops->ndo_get_phys_port_name) { 9047 err = ops->ndo_get_phys_port_name(dev, name, len); 9048 if (err != -EOPNOTSUPP) 9049 return err; 9050 } 9051 return devlink_compat_phys_port_name_get(dev, name, len); 9052 } 9053 EXPORT_SYMBOL(dev_get_phys_port_name); 9054 9055 /** 9056 * dev_get_port_parent_id - Get the device's port parent identifier 9057 * @dev: network device 9058 * @ppid: pointer to a storage for the port's parent identifier 9059 * @recurse: allow/disallow recursion to lower devices 9060 * 9061 * Get the devices's port parent identifier 9062 */ 9063 int dev_get_port_parent_id(struct net_device *dev, 9064 struct netdev_phys_item_id *ppid, 9065 bool recurse) 9066 { 9067 const struct net_device_ops *ops = dev->netdev_ops; 9068 struct netdev_phys_item_id first = { }; 9069 struct net_device *lower_dev; 9070 struct list_head *iter; 9071 int err; 9072 9073 if (ops->ndo_get_port_parent_id) { 9074 err = ops->ndo_get_port_parent_id(dev, ppid); 9075 if (err != -EOPNOTSUPP) 9076 return err; 9077 } 9078 9079 err = devlink_compat_switch_id_get(dev, ppid); 9080 if (!err || err != -EOPNOTSUPP) 9081 return err; 9082 9083 if (!recurse) 9084 return -EOPNOTSUPP; 9085 9086 netdev_for_each_lower_dev(dev, lower_dev, iter) { 9087 err = dev_get_port_parent_id(lower_dev, ppid, recurse); 9088 if (err) 9089 break; 9090 if (!first.id_len) 9091 first = *ppid; 9092 else if (memcmp(&first, ppid, sizeof(*ppid))) 9093 return -EOPNOTSUPP; 9094 } 9095 9096 return err; 9097 } 9098 EXPORT_SYMBOL(dev_get_port_parent_id); 9099 9100 /** 9101 * netdev_port_same_parent_id - Indicate if two network devices have 9102 * the same port parent identifier 9103 * @a: first network device 9104 * @b: second network device 9105 */ 9106 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) 9107 { 9108 struct netdev_phys_item_id a_id = { }; 9109 struct netdev_phys_item_id b_id = { }; 9110 9111 if (dev_get_port_parent_id(a, &a_id, true) || 9112 dev_get_port_parent_id(b, &b_id, true)) 9113 return false; 9114 9115 return netdev_phys_item_id_same(&a_id, &b_id); 9116 } 9117 EXPORT_SYMBOL(netdev_port_same_parent_id); 9118 9119 /** 9120 * dev_change_proto_down - update protocol port state information 9121 * @dev: device 9122 * @proto_down: new value 9123 * 9124 * This info can be used by switch drivers to set the phys state of the 9125 * port. 9126 */ 9127 int dev_change_proto_down(struct net_device *dev, bool proto_down) 9128 { 9129 const struct net_device_ops *ops = dev->netdev_ops; 9130 9131 if (!ops->ndo_change_proto_down) 9132 return -EOPNOTSUPP; 9133 if (!netif_device_present(dev)) 9134 return -ENODEV; 9135 return ops->ndo_change_proto_down(dev, proto_down); 9136 } 9137 EXPORT_SYMBOL(dev_change_proto_down); 9138 9139 /** 9140 * dev_change_proto_down_generic - generic implementation for 9141 * ndo_change_proto_down that sets carrier according to 9142 * proto_down. 9143 * 9144 * @dev: device 9145 * @proto_down: new value 9146 */ 9147 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down) 9148 { 9149 if (proto_down) 9150 netif_carrier_off(dev); 9151 else 9152 netif_carrier_on(dev); 9153 dev->proto_down = proto_down; 9154 return 0; 9155 } 9156 EXPORT_SYMBOL(dev_change_proto_down_generic); 9157 9158 /** 9159 * dev_change_proto_down_reason - proto down reason 9160 * 9161 * @dev: device 9162 * @mask: proto down mask 9163 * @value: proto down value 9164 */ 9165 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask, 9166 u32 value) 9167 { 9168 int b; 9169 9170 if (!mask) { 9171 dev->proto_down_reason = value; 9172 } else { 9173 for_each_set_bit(b, &mask, 32) { 9174 if (value & (1 << b)) 9175 dev->proto_down_reason |= BIT(b); 9176 else 9177 dev->proto_down_reason &= ~BIT(b); 9178 } 9179 } 9180 } 9181 EXPORT_SYMBOL(dev_change_proto_down_reason); 9182 9183 struct bpf_xdp_link { 9184 struct bpf_link link; 9185 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */ 9186 int flags; 9187 }; 9188 9189 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags) 9190 { 9191 if (flags & XDP_FLAGS_HW_MODE) 9192 return XDP_MODE_HW; 9193 if (flags & XDP_FLAGS_DRV_MODE) 9194 return XDP_MODE_DRV; 9195 if (flags & XDP_FLAGS_SKB_MODE) 9196 return XDP_MODE_SKB; 9197 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB; 9198 } 9199 9200 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode) 9201 { 9202 switch (mode) { 9203 case XDP_MODE_SKB: 9204 return generic_xdp_install; 9205 case XDP_MODE_DRV: 9206 case XDP_MODE_HW: 9207 return dev->netdev_ops->ndo_bpf; 9208 default: 9209 return NULL; 9210 } 9211 } 9212 9213 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev, 9214 enum bpf_xdp_mode mode) 9215 { 9216 return dev->xdp_state[mode].link; 9217 } 9218 9219 static struct bpf_prog *dev_xdp_prog(struct net_device *dev, 9220 enum bpf_xdp_mode mode) 9221 { 9222 struct bpf_xdp_link *link = dev_xdp_link(dev, mode); 9223 9224 if (link) 9225 return link->link.prog; 9226 return dev->xdp_state[mode].prog; 9227 } 9228 9229 static u8 dev_xdp_prog_count(struct net_device *dev) 9230 { 9231 u8 count = 0; 9232 int i; 9233 9234 for (i = 0; i < __MAX_XDP_MODE; i++) 9235 if (dev->xdp_state[i].prog || dev->xdp_state[i].link) 9236 count++; 9237 return count; 9238 } 9239 9240 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode) 9241 { 9242 struct bpf_prog *prog = dev_xdp_prog(dev, mode); 9243 9244 return prog ? prog->aux->id : 0; 9245 } 9246 9247 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode, 9248 struct bpf_xdp_link *link) 9249 { 9250 dev->xdp_state[mode].link = link; 9251 dev->xdp_state[mode].prog = NULL; 9252 } 9253 9254 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode, 9255 struct bpf_prog *prog) 9256 { 9257 dev->xdp_state[mode].link = NULL; 9258 dev->xdp_state[mode].prog = prog; 9259 } 9260 9261 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode, 9262 bpf_op_t bpf_op, struct netlink_ext_ack *extack, 9263 u32 flags, struct bpf_prog *prog) 9264 { 9265 struct netdev_bpf xdp; 9266 int err; 9267 9268 memset(&xdp, 0, sizeof(xdp)); 9269 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG; 9270 xdp.extack = extack; 9271 xdp.flags = flags; 9272 xdp.prog = prog; 9273 9274 /* Drivers assume refcnt is already incremented (i.e, prog pointer is 9275 * "moved" into driver), so they don't increment it on their own, but 9276 * they do decrement refcnt when program is detached or replaced. 9277 * Given net_device also owns link/prog, we need to bump refcnt here 9278 * to prevent drivers from underflowing it. 9279 */ 9280 if (prog) 9281 bpf_prog_inc(prog); 9282 err = bpf_op(dev, &xdp); 9283 if (err) { 9284 if (prog) 9285 bpf_prog_put(prog); 9286 return err; 9287 } 9288 9289 if (mode != XDP_MODE_HW) 9290 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog); 9291 9292 return 0; 9293 } 9294 9295 static void dev_xdp_uninstall(struct net_device *dev) 9296 { 9297 struct bpf_xdp_link *link; 9298 struct bpf_prog *prog; 9299 enum bpf_xdp_mode mode; 9300 bpf_op_t bpf_op; 9301 9302 ASSERT_RTNL(); 9303 9304 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) { 9305 prog = dev_xdp_prog(dev, mode); 9306 if (!prog) 9307 continue; 9308 9309 bpf_op = dev_xdp_bpf_op(dev, mode); 9310 if (!bpf_op) 9311 continue; 9312 9313 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 9314 9315 /* auto-detach link from net device */ 9316 link = dev_xdp_link(dev, mode); 9317 if (link) 9318 link->dev = NULL; 9319 else 9320 bpf_prog_put(prog); 9321 9322 dev_xdp_set_link(dev, mode, NULL); 9323 } 9324 } 9325 9326 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack, 9327 struct bpf_xdp_link *link, struct bpf_prog *new_prog, 9328 struct bpf_prog *old_prog, u32 flags) 9329 { 9330 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES); 9331 struct bpf_prog *cur_prog; 9332 enum bpf_xdp_mode mode; 9333 bpf_op_t bpf_op; 9334 int err; 9335 9336 ASSERT_RTNL(); 9337 9338 /* either link or prog attachment, never both */ 9339 if (link && (new_prog || old_prog)) 9340 return -EINVAL; 9341 /* link supports only XDP mode flags */ 9342 if (link && (flags & ~XDP_FLAGS_MODES)) { 9343 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment"); 9344 return -EINVAL; 9345 } 9346 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */ 9347 if (num_modes > 1) { 9348 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set"); 9349 return -EINVAL; 9350 } 9351 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */ 9352 if (!num_modes && dev_xdp_prog_count(dev) > 1) { 9353 NL_SET_ERR_MSG(extack, 9354 "More than one program loaded, unset mode is ambiguous"); 9355 return -EINVAL; 9356 } 9357 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */ 9358 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) { 9359 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified"); 9360 return -EINVAL; 9361 } 9362 9363 mode = dev_xdp_mode(dev, flags); 9364 /* can't replace attached link */ 9365 if (dev_xdp_link(dev, mode)) { 9366 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link"); 9367 return -EBUSY; 9368 } 9369 9370 cur_prog = dev_xdp_prog(dev, mode); 9371 /* can't replace attached prog with link */ 9372 if (link && cur_prog) { 9373 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link"); 9374 return -EBUSY; 9375 } 9376 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) { 9377 NL_SET_ERR_MSG(extack, "Active program does not match expected"); 9378 return -EEXIST; 9379 } 9380 9381 /* put effective new program into new_prog */ 9382 if (link) 9383 new_prog = link->link.prog; 9384 9385 if (new_prog) { 9386 bool offload = mode == XDP_MODE_HW; 9387 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB 9388 ? XDP_MODE_DRV : XDP_MODE_SKB; 9389 9390 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) { 9391 NL_SET_ERR_MSG(extack, "XDP program already attached"); 9392 return -EBUSY; 9393 } 9394 if (!offload && dev_xdp_prog(dev, other_mode)) { 9395 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time"); 9396 return -EEXIST; 9397 } 9398 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) { 9399 NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported"); 9400 return -EINVAL; 9401 } 9402 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) { 9403 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device"); 9404 return -EINVAL; 9405 } 9406 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) { 9407 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device"); 9408 return -EINVAL; 9409 } 9410 } 9411 9412 /* don't call drivers if the effective program didn't change */ 9413 if (new_prog != cur_prog) { 9414 bpf_op = dev_xdp_bpf_op(dev, mode); 9415 if (!bpf_op) { 9416 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode"); 9417 return -EOPNOTSUPP; 9418 } 9419 9420 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog); 9421 if (err) 9422 return err; 9423 } 9424 9425 if (link) 9426 dev_xdp_set_link(dev, mode, link); 9427 else 9428 dev_xdp_set_prog(dev, mode, new_prog); 9429 if (cur_prog) 9430 bpf_prog_put(cur_prog); 9431 9432 return 0; 9433 } 9434 9435 static int dev_xdp_attach_link(struct net_device *dev, 9436 struct netlink_ext_ack *extack, 9437 struct bpf_xdp_link *link) 9438 { 9439 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags); 9440 } 9441 9442 static int dev_xdp_detach_link(struct net_device *dev, 9443 struct netlink_ext_ack *extack, 9444 struct bpf_xdp_link *link) 9445 { 9446 enum bpf_xdp_mode mode; 9447 bpf_op_t bpf_op; 9448 9449 ASSERT_RTNL(); 9450 9451 mode = dev_xdp_mode(dev, link->flags); 9452 if (dev_xdp_link(dev, mode) != link) 9453 return -EINVAL; 9454 9455 bpf_op = dev_xdp_bpf_op(dev, mode); 9456 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 9457 dev_xdp_set_link(dev, mode, NULL); 9458 return 0; 9459 } 9460 9461 static void bpf_xdp_link_release(struct bpf_link *link) 9462 { 9463 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9464 9465 rtnl_lock(); 9466 9467 /* if racing with net_device's tear down, xdp_link->dev might be 9468 * already NULL, in which case link was already auto-detached 9469 */ 9470 if (xdp_link->dev) { 9471 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link)); 9472 xdp_link->dev = NULL; 9473 } 9474 9475 rtnl_unlock(); 9476 } 9477 9478 static int bpf_xdp_link_detach(struct bpf_link *link) 9479 { 9480 bpf_xdp_link_release(link); 9481 return 0; 9482 } 9483 9484 static void bpf_xdp_link_dealloc(struct bpf_link *link) 9485 { 9486 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9487 9488 kfree(xdp_link); 9489 } 9490 9491 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link, 9492 struct seq_file *seq) 9493 { 9494 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9495 u32 ifindex = 0; 9496 9497 rtnl_lock(); 9498 if (xdp_link->dev) 9499 ifindex = xdp_link->dev->ifindex; 9500 rtnl_unlock(); 9501 9502 seq_printf(seq, "ifindex:\t%u\n", ifindex); 9503 } 9504 9505 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link, 9506 struct bpf_link_info *info) 9507 { 9508 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9509 u32 ifindex = 0; 9510 9511 rtnl_lock(); 9512 if (xdp_link->dev) 9513 ifindex = xdp_link->dev->ifindex; 9514 rtnl_unlock(); 9515 9516 info->xdp.ifindex = ifindex; 9517 return 0; 9518 } 9519 9520 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog, 9521 struct bpf_prog *old_prog) 9522 { 9523 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9524 enum bpf_xdp_mode mode; 9525 bpf_op_t bpf_op; 9526 int err = 0; 9527 9528 rtnl_lock(); 9529 9530 /* link might have been auto-released already, so fail */ 9531 if (!xdp_link->dev) { 9532 err = -ENOLINK; 9533 goto out_unlock; 9534 } 9535 9536 if (old_prog && link->prog != old_prog) { 9537 err = -EPERM; 9538 goto out_unlock; 9539 } 9540 old_prog = link->prog; 9541 if (old_prog == new_prog) { 9542 /* no-op, don't disturb drivers */ 9543 bpf_prog_put(new_prog); 9544 goto out_unlock; 9545 } 9546 9547 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags); 9548 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode); 9549 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL, 9550 xdp_link->flags, new_prog); 9551 if (err) 9552 goto out_unlock; 9553 9554 old_prog = xchg(&link->prog, new_prog); 9555 bpf_prog_put(old_prog); 9556 9557 out_unlock: 9558 rtnl_unlock(); 9559 return err; 9560 } 9561 9562 static const struct bpf_link_ops bpf_xdp_link_lops = { 9563 .release = bpf_xdp_link_release, 9564 .dealloc = bpf_xdp_link_dealloc, 9565 .detach = bpf_xdp_link_detach, 9566 .show_fdinfo = bpf_xdp_link_show_fdinfo, 9567 .fill_link_info = bpf_xdp_link_fill_link_info, 9568 .update_prog = bpf_xdp_link_update, 9569 }; 9570 9571 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 9572 { 9573 struct net *net = current->nsproxy->net_ns; 9574 struct bpf_link_primer link_primer; 9575 struct bpf_xdp_link *link; 9576 struct net_device *dev; 9577 int err, fd; 9578 9579 dev = dev_get_by_index(net, attr->link_create.target_ifindex); 9580 if (!dev) 9581 return -EINVAL; 9582 9583 link = kzalloc(sizeof(*link), GFP_USER); 9584 if (!link) { 9585 err = -ENOMEM; 9586 goto out_put_dev; 9587 } 9588 9589 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog); 9590 link->dev = dev; 9591 link->flags = attr->link_create.flags; 9592 9593 err = bpf_link_prime(&link->link, &link_primer); 9594 if (err) { 9595 kfree(link); 9596 goto out_put_dev; 9597 } 9598 9599 rtnl_lock(); 9600 err = dev_xdp_attach_link(dev, NULL, link); 9601 rtnl_unlock(); 9602 9603 if (err) { 9604 bpf_link_cleanup(&link_primer); 9605 goto out_put_dev; 9606 } 9607 9608 fd = bpf_link_settle(&link_primer); 9609 /* link itself doesn't hold dev's refcnt to not complicate shutdown */ 9610 dev_put(dev); 9611 return fd; 9612 9613 out_put_dev: 9614 dev_put(dev); 9615 return err; 9616 } 9617 9618 /** 9619 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 9620 * @dev: device 9621 * @extack: netlink extended ack 9622 * @fd: new program fd or negative value to clear 9623 * @expected_fd: old program fd that userspace expects to replace or clear 9624 * @flags: xdp-related flags 9625 * 9626 * Set or clear a bpf program for a device 9627 */ 9628 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 9629 int fd, int expected_fd, u32 flags) 9630 { 9631 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags); 9632 struct bpf_prog *new_prog = NULL, *old_prog = NULL; 9633 int err; 9634 9635 ASSERT_RTNL(); 9636 9637 if (fd >= 0) { 9638 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 9639 mode != XDP_MODE_SKB); 9640 if (IS_ERR(new_prog)) 9641 return PTR_ERR(new_prog); 9642 } 9643 9644 if (expected_fd >= 0) { 9645 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP, 9646 mode != XDP_MODE_SKB); 9647 if (IS_ERR(old_prog)) { 9648 err = PTR_ERR(old_prog); 9649 old_prog = NULL; 9650 goto err_out; 9651 } 9652 } 9653 9654 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags); 9655 9656 err_out: 9657 if (err && new_prog) 9658 bpf_prog_put(new_prog); 9659 if (old_prog) 9660 bpf_prog_put(old_prog); 9661 return err; 9662 } 9663 9664 /** 9665 * dev_new_index - allocate an ifindex 9666 * @net: the applicable net namespace 9667 * 9668 * Returns a suitable unique value for a new device interface 9669 * number. The caller must hold the rtnl semaphore or the 9670 * dev_base_lock to be sure it remains unique. 9671 */ 9672 static int dev_new_index(struct net *net) 9673 { 9674 int ifindex = net->ifindex; 9675 9676 for (;;) { 9677 if (++ifindex <= 0) 9678 ifindex = 1; 9679 if (!__dev_get_by_index(net, ifindex)) 9680 return net->ifindex = ifindex; 9681 } 9682 } 9683 9684 /* Delayed registration/unregisteration */ 9685 static LIST_HEAD(net_todo_list); 9686 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 9687 9688 static void net_set_todo(struct net_device *dev) 9689 { 9690 list_add_tail(&dev->todo_list, &net_todo_list); 9691 dev_net(dev)->dev_unreg_count++; 9692 } 9693 9694 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 9695 struct net_device *upper, netdev_features_t features) 9696 { 9697 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 9698 netdev_features_t feature; 9699 int feature_bit; 9700 9701 for_each_netdev_feature(upper_disables, feature_bit) { 9702 feature = __NETIF_F_BIT(feature_bit); 9703 if (!(upper->wanted_features & feature) 9704 && (features & feature)) { 9705 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 9706 &feature, upper->name); 9707 features &= ~feature; 9708 } 9709 } 9710 9711 return features; 9712 } 9713 9714 static void netdev_sync_lower_features(struct net_device *upper, 9715 struct net_device *lower, netdev_features_t features) 9716 { 9717 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 9718 netdev_features_t feature; 9719 int feature_bit; 9720 9721 for_each_netdev_feature(upper_disables, feature_bit) { 9722 feature = __NETIF_F_BIT(feature_bit); 9723 if (!(features & feature) && (lower->features & feature)) { 9724 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 9725 &feature, lower->name); 9726 lower->wanted_features &= ~feature; 9727 __netdev_update_features(lower); 9728 9729 if (unlikely(lower->features & feature)) 9730 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 9731 &feature, lower->name); 9732 else 9733 netdev_features_change(lower); 9734 } 9735 } 9736 } 9737 9738 static netdev_features_t netdev_fix_features(struct net_device *dev, 9739 netdev_features_t features) 9740 { 9741 /* Fix illegal checksum combinations */ 9742 if ((features & NETIF_F_HW_CSUM) && 9743 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 9744 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 9745 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 9746 } 9747 9748 /* TSO requires that SG is present as well. */ 9749 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 9750 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 9751 features &= ~NETIF_F_ALL_TSO; 9752 } 9753 9754 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 9755 !(features & NETIF_F_IP_CSUM)) { 9756 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 9757 features &= ~NETIF_F_TSO; 9758 features &= ~NETIF_F_TSO_ECN; 9759 } 9760 9761 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 9762 !(features & NETIF_F_IPV6_CSUM)) { 9763 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 9764 features &= ~NETIF_F_TSO6; 9765 } 9766 9767 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 9768 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 9769 features &= ~NETIF_F_TSO_MANGLEID; 9770 9771 /* TSO ECN requires that TSO is present as well. */ 9772 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 9773 features &= ~NETIF_F_TSO_ECN; 9774 9775 /* Software GSO depends on SG. */ 9776 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 9777 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 9778 features &= ~NETIF_F_GSO; 9779 } 9780 9781 /* GSO partial features require GSO partial be set */ 9782 if ((features & dev->gso_partial_features) && 9783 !(features & NETIF_F_GSO_PARTIAL)) { 9784 netdev_dbg(dev, 9785 "Dropping partially supported GSO features since no GSO partial.\n"); 9786 features &= ~dev->gso_partial_features; 9787 } 9788 9789 if (!(features & NETIF_F_RXCSUM)) { 9790 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 9791 * successfully merged by hardware must also have the 9792 * checksum verified by hardware. If the user does not 9793 * want to enable RXCSUM, logically, we should disable GRO_HW. 9794 */ 9795 if (features & NETIF_F_GRO_HW) { 9796 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 9797 features &= ~NETIF_F_GRO_HW; 9798 } 9799 } 9800 9801 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 9802 if (features & NETIF_F_RXFCS) { 9803 if (features & NETIF_F_LRO) { 9804 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 9805 features &= ~NETIF_F_LRO; 9806 } 9807 9808 if (features & NETIF_F_GRO_HW) { 9809 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 9810 features &= ~NETIF_F_GRO_HW; 9811 } 9812 } 9813 9814 if (features & NETIF_F_HW_TLS_TX) { 9815 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) == 9816 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM); 9817 bool hw_csum = features & NETIF_F_HW_CSUM; 9818 9819 if (!ip_csum && !hw_csum) { 9820 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n"); 9821 features &= ~NETIF_F_HW_TLS_TX; 9822 } 9823 } 9824 9825 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) { 9826 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n"); 9827 features &= ~NETIF_F_HW_TLS_RX; 9828 } 9829 9830 return features; 9831 } 9832 9833 int __netdev_update_features(struct net_device *dev) 9834 { 9835 struct net_device *upper, *lower; 9836 netdev_features_t features; 9837 struct list_head *iter; 9838 int err = -1; 9839 9840 ASSERT_RTNL(); 9841 9842 features = netdev_get_wanted_features(dev); 9843 9844 if (dev->netdev_ops->ndo_fix_features) 9845 features = dev->netdev_ops->ndo_fix_features(dev, features); 9846 9847 /* driver might be less strict about feature dependencies */ 9848 features = netdev_fix_features(dev, features); 9849 9850 /* some features can't be enabled if they're off on an upper device */ 9851 netdev_for_each_upper_dev_rcu(dev, upper, iter) 9852 features = netdev_sync_upper_features(dev, upper, features); 9853 9854 if (dev->features == features) 9855 goto sync_lower; 9856 9857 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 9858 &dev->features, &features); 9859 9860 if (dev->netdev_ops->ndo_set_features) 9861 err = dev->netdev_ops->ndo_set_features(dev, features); 9862 else 9863 err = 0; 9864 9865 if (unlikely(err < 0)) { 9866 netdev_err(dev, 9867 "set_features() failed (%d); wanted %pNF, left %pNF\n", 9868 err, &features, &dev->features); 9869 /* return non-0 since some features might have changed and 9870 * it's better to fire a spurious notification than miss it 9871 */ 9872 return -1; 9873 } 9874 9875 sync_lower: 9876 /* some features must be disabled on lower devices when disabled 9877 * on an upper device (think: bonding master or bridge) 9878 */ 9879 netdev_for_each_lower_dev(dev, lower, iter) 9880 netdev_sync_lower_features(dev, lower, features); 9881 9882 if (!err) { 9883 netdev_features_t diff = features ^ dev->features; 9884 9885 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 9886 /* udp_tunnel_{get,drop}_rx_info both need 9887 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 9888 * device, or they won't do anything. 9889 * Thus we need to update dev->features 9890 * *before* calling udp_tunnel_get_rx_info, 9891 * but *after* calling udp_tunnel_drop_rx_info. 9892 */ 9893 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 9894 dev->features = features; 9895 udp_tunnel_get_rx_info(dev); 9896 } else { 9897 udp_tunnel_drop_rx_info(dev); 9898 } 9899 } 9900 9901 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 9902 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 9903 dev->features = features; 9904 err |= vlan_get_rx_ctag_filter_info(dev); 9905 } else { 9906 vlan_drop_rx_ctag_filter_info(dev); 9907 } 9908 } 9909 9910 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 9911 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 9912 dev->features = features; 9913 err |= vlan_get_rx_stag_filter_info(dev); 9914 } else { 9915 vlan_drop_rx_stag_filter_info(dev); 9916 } 9917 } 9918 9919 dev->features = features; 9920 } 9921 9922 return err < 0 ? 0 : 1; 9923 } 9924 9925 /** 9926 * netdev_update_features - recalculate device features 9927 * @dev: the device to check 9928 * 9929 * Recalculate dev->features set and send notifications if it 9930 * has changed. Should be called after driver or hardware dependent 9931 * conditions might have changed that influence the features. 9932 */ 9933 void netdev_update_features(struct net_device *dev) 9934 { 9935 if (__netdev_update_features(dev)) 9936 netdev_features_change(dev); 9937 } 9938 EXPORT_SYMBOL(netdev_update_features); 9939 9940 /** 9941 * netdev_change_features - recalculate device features 9942 * @dev: the device to check 9943 * 9944 * Recalculate dev->features set and send notifications even 9945 * if they have not changed. Should be called instead of 9946 * netdev_update_features() if also dev->vlan_features might 9947 * have changed to allow the changes to be propagated to stacked 9948 * VLAN devices. 9949 */ 9950 void netdev_change_features(struct net_device *dev) 9951 { 9952 __netdev_update_features(dev); 9953 netdev_features_change(dev); 9954 } 9955 EXPORT_SYMBOL(netdev_change_features); 9956 9957 /** 9958 * netif_stacked_transfer_operstate - transfer operstate 9959 * @rootdev: the root or lower level device to transfer state from 9960 * @dev: the device to transfer operstate to 9961 * 9962 * Transfer operational state from root to device. This is normally 9963 * called when a stacking relationship exists between the root 9964 * device and the device(a leaf device). 9965 */ 9966 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 9967 struct net_device *dev) 9968 { 9969 if (rootdev->operstate == IF_OPER_DORMANT) 9970 netif_dormant_on(dev); 9971 else 9972 netif_dormant_off(dev); 9973 9974 if (rootdev->operstate == IF_OPER_TESTING) 9975 netif_testing_on(dev); 9976 else 9977 netif_testing_off(dev); 9978 9979 if (netif_carrier_ok(rootdev)) 9980 netif_carrier_on(dev); 9981 else 9982 netif_carrier_off(dev); 9983 } 9984 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 9985 9986 static int netif_alloc_rx_queues(struct net_device *dev) 9987 { 9988 unsigned int i, count = dev->num_rx_queues; 9989 struct netdev_rx_queue *rx; 9990 size_t sz = count * sizeof(*rx); 9991 int err = 0; 9992 9993 BUG_ON(count < 1); 9994 9995 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 9996 if (!rx) 9997 return -ENOMEM; 9998 9999 dev->_rx = rx; 10000 10001 for (i = 0; i < count; i++) { 10002 rx[i].dev = dev; 10003 10004 /* XDP RX-queue setup */ 10005 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0); 10006 if (err < 0) 10007 goto err_rxq_info; 10008 } 10009 return 0; 10010 10011 err_rxq_info: 10012 /* Rollback successful reg's and free other resources */ 10013 while (i--) 10014 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 10015 kvfree(dev->_rx); 10016 dev->_rx = NULL; 10017 return err; 10018 } 10019 10020 static void netif_free_rx_queues(struct net_device *dev) 10021 { 10022 unsigned int i, count = dev->num_rx_queues; 10023 10024 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 10025 if (!dev->_rx) 10026 return; 10027 10028 for (i = 0; i < count; i++) 10029 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 10030 10031 kvfree(dev->_rx); 10032 } 10033 10034 static void netdev_init_one_queue(struct net_device *dev, 10035 struct netdev_queue *queue, void *_unused) 10036 { 10037 /* Initialize queue lock */ 10038 spin_lock_init(&queue->_xmit_lock); 10039 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 10040 queue->xmit_lock_owner = -1; 10041 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 10042 queue->dev = dev; 10043 #ifdef CONFIG_BQL 10044 dql_init(&queue->dql, HZ); 10045 #endif 10046 } 10047 10048 static void netif_free_tx_queues(struct net_device *dev) 10049 { 10050 kvfree(dev->_tx); 10051 } 10052 10053 static int netif_alloc_netdev_queues(struct net_device *dev) 10054 { 10055 unsigned int count = dev->num_tx_queues; 10056 struct netdev_queue *tx; 10057 size_t sz = count * sizeof(*tx); 10058 10059 if (count < 1 || count > 0xffff) 10060 return -EINVAL; 10061 10062 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 10063 if (!tx) 10064 return -ENOMEM; 10065 10066 dev->_tx = tx; 10067 10068 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 10069 spin_lock_init(&dev->tx_global_lock); 10070 10071 return 0; 10072 } 10073 10074 void netif_tx_stop_all_queues(struct net_device *dev) 10075 { 10076 unsigned int i; 10077 10078 for (i = 0; i < dev->num_tx_queues; i++) { 10079 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 10080 10081 netif_tx_stop_queue(txq); 10082 } 10083 } 10084 EXPORT_SYMBOL(netif_tx_stop_all_queues); 10085 10086 /** 10087 * register_netdevice - register a network device 10088 * @dev: device to register 10089 * 10090 * Take a completed network device structure and add it to the kernel 10091 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 10092 * chain. 0 is returned on success. A negative errno code is returned 10093 * on a failure to set up the device, or if the name is a duplicate. 10094 * 10095 * Callers must hold the rtnl semaphore. You may want 10096 * register_netdev() instead of this. 10097 * 10098 * BUGS: 10099 * The locking appears insufficient to guarantee two parallel registers 10100 * will not get the same name. 10101 */ 10102 10103 int register_netdevice(struct net_device *dev) 10104 { 10105 int ret; 10106 struct net *net = dev_net(dev); 10107 10108 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 10109 NETDEV_FEATURE_COUNT); 10110 BUG_ON(dev_boot_phase); 10111 ASSERT_RTNL(); 10112 10113 might_sleep(); 10114 10115 /* When net_device's are persistent, this will be fatal. */ 10116 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 10117 BUG_ON(!net); 10118 10119 ret = ethtool_check_ops(dev->ethtool_ops); 10120 if (ret) 10121 return ret; 10122 10123 spin_lock_init(&dev->addr_list_lock); 10124 netdev_set_addr_lockdep_class(dev); 10125 10126 ret = dev_get_valid_name(net, dev, dev->name); 10127 if (ret < 0) 10128 goto out; 10129 10130 ret = -ENOMEM; 10131 dev->name_node = netdev_name_node_head_alloc(dev); 10132 if (!dev->name_node) 10133 goto out; 10134 10135 /* Init, if this function is available */ 10136 if (dev->netdev_ops->ndo_init) { 10137 ret = dev->netdev_ops->ndo_init(dev); 10138 if (ret) { 10139 if (ret > 0) 10140 ret = -EIO; 10141 goto err_free_name; 10142 } 10143 } 10144 10145 if (((dev->hw_features | dev->features) & 10146 NETIF_F_HW_VLAN_CTAG_FILTER) && 10147 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 10148 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 10149 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 10150 ret = -EINVAL; 10151 goto err_uninit; 10152 } 10153 10154 ret = -EBUSY; 10155 if (!dev->ifindex) 10156 dev->ifindex = dev_new_index(net); 10157 else if (__dev_get_by_index(net, dev->ifindex)) 10158 goto err_uninit; 10159 10160 /* Transfer changeable features to wanted_features and enable 10161 * software offloads (GSO and GRO). 10162 */ 10163 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF); 10164 dev->features |= NETIF_F_SOFT_FEATURES; 10165 10166 if (dev->udp_tunnel_nic_info) { 10167 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 10168 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 10169 } 10170 10171 dev->wanted_features = dev->features & dev->hw_features; 10172 10173 if (!(dev->flags & IFF_LOOPBACK)) 10174 dev->hw_features |= NETIF_F_NOCACHE_COPY; 10175 10176 /* If IPv4 TCP segmentation offload is supported we should also 10177 * allow the device to enable segmenting the frame with the option 10178 * of ignoring a static IP ID value. This doesn't enable the 10179 * feature itself but allows the user to enable it later. 10180 */ 10181 if (dev->hw_features & NETIF_F_TSO) 10182 dev->hw_features |= NETIF_F_TSO_MANGLEID; 10183 if (dev->vlan_features & NETIF_F_TSO) 10184 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 10185 if (dev->mpls_features & NETIF_F_TSO) 10186 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 10187 if (dev->hw_enc_features & NETIF_F_TSO) 10188 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 10189 10190 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 10191 */ 10192 dev->vlan_features |= NETIF_F_HIGHDMA; 10193 10194 /* Make NETIF_F_SG inheritable to tunnel devices. 10195 */ 10196 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 10197 10198 /* Make NETIF_F_SG inheritable to MPLS. 10199 */ 10200 dev->mpls_features |= NETIF_F_SG; 10201 10202 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 10203 ret = notifier_to_errno(ret); 10204 if (ret) 10205 goto err_uninit; 10206 10207 ret = netdev_register_kobject(dev); 10208 if (ret) { 10209 dev->reg_state = NETREG_UNREGISTERED; 10210 goto err_uninit; 10211 } 10212 dev->reg_state = NETREG_REGISTERED; 10213 10214 __netdev_update_features(dev); 10215 10216 /* 10217 * Default initial state at registry is that the 10218 * device is present. 10219 */ 10220 10221 set_bit(__LINK_STATE_PRESENT, &dev->state); 10222 10223 linkwatch_init_dev(dev); 10224 10225 dev_init_scheduler(dev); 10226 dev_hold(dev); 10227 list_netdevice(dev); 10228 add_device_randomness(dev->dev_addr, dev->addr_len); 10229 10230 /* If the device has permanent device address, driver should 10231 * set dev_addr and also addr_assign_type should be set to 10232 * NET_ADDR_PERM (default value). 10233 */ 10234 if (dev->addr_assign_type == NET_ADDR_PERM) 10235 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 10236 10237 /* Notify protocols, that a new device appeared. */ 10238 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 10239 ret = notifier_to_errno(ret); 10240 if (ret) { 10241 /* Expect explicit free_netdev() on failure */ 10242 dev->needs_free_netdev = false; 10243 unregister_netdevice_queue(dev, NULL); 10244 goto out; 10245 } 10246 /* 10247 * Prevent userspace races by waiting until the network 10248 * device is fully setup before sending notifications. 10249 */ 10250 if (!dev->rtnl_link_ops || 10251 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 10252 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 10253 10254 out: 10255 return ret; 10256 10257 err_uninit: 10258 if (dev->netdev_ops->ndo_uninit) 10259 dev->netdev_ops->ndo_uninit(dev); 10260 if (dev->priv_destructor) 10261 dev->priv_destructor(dev); 10262 err_free_name: 10263 netdev_name_node_free(dev->name_node); 10264 goto out; 10265 } 10266 EXPORT_SYMBOL(register_netdevice); 10267 10268 /** 10269 * init_dummy_netdev - init a dummy network device for NAPI 10270 * @dev: device to init 10271 * 10272 * This takes a network device structure and initialize the minimum 10273 * amount of fields so it can be used to schedule NAPI polls without 10274 * registering a full blown interface. This is to be used by drivers 10275 * that need to tie several hardware interfaces to a single NAPI 10276 * poll scheduler due to HW limitations. 10277 */ 10278 int init_dummy_netdev(struct net_device *dev) 10279 { 10280 /* Clear everything. Note we don't initialize spinlocks 10281 * are they aren't supposed to be taken by any of the 10282 * NAPI code and this dummy netdev is supposed to be 10283 * only ever used for NAPI polls 10284 */ 10285 memset(dev, 0, sizeof(struct net_device)); 10286 10287 /* make sure we BUG if trying to hit standard 10288 * register/unregister code path 10289 */ 10290 dev->reg_state = NETREG_DUMMY; 10291 10292 /* NAPI wants this */ 10293 INIT_LIST_HEAD(&dev->napi_list); 10294 10295 /* a dummy interface is started by default */ 10296 set_bit(__LINK_STATE_PRESENT, &dev->state); 10297 set_bit(__LINK_STATE_START, &dev->state); 10298 10299 /* napi_busy_loop stats accounting wants this */ 10300 dev_net_set(dev, &init_net); 10301 10302 /* Note : We dont allocate pcpu_refcnt for dummy devices, 10303 * because users of this 'device' dont need to change 10304 * its refcount. 10305 */ 10306 10307 return 0; 10308 } 10309 EXPORT_SYMBOL_GPL(init_dummy_netdev); 10310 10311 10312 /** 10313 * register_netdev - register a network device 10314 * @dev: device to register 10315 * 10316 * Take a completed network device structure and add it to the kernel 10317 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 10318 * chain. 0 is returned on success. A negative errno code is returned 10319 * on a failure to set up the device, or if the name is a duplicate. 10320 * 10321 * This is a wrapper around register_netdevice that takes the rtnl semaphore 10322 * and expands the device name if you passed a format string to 10323 * alloc_netdev. 10324 */ 10325 int register_netdev(struct net_device *dev) 10326 { 10327 int err; 10328 10329 if (rtnl_lock_killable()) 10330 return -EINTR; 10331 err = register_netdevice(dev); 10332 rtnl_unlock(); 10333 return err; 10334 } 10335 EXPORT_SYMBOL(register_netdev); 10336 10337 int netdev_refcnt_read(const struct net_device *dev) 10338 { 10339 int i, refcnt = 0; 10340 10341 for_each_possible_cpu(i) 10342 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 10343 return refcnt; 10344 } 10345 EXPORT_SYMBOL(netdev_refcnt_read); 10346 10347 #define WAIT_REFS_MIN_MSECS 1 10348 #define WAIT_REFS_MAX_MSECS 250 10349 /** 10350 * netdev_wait_allrefs - wait until all references are gone. 10351 * @dev: target net_device 10352 * 10353 * This is called when unregistering network devices. 10354 * 10355 * Any protocol or device that holds a reference should register 10356 * for netdevice notification, and cleanup and put back the 10357 * reference if they receive an UNREGISTER event. 10358 * We can get stuck here if buggy protocols don't correctly 10359 * call dev_put. 10360 */ 10361 static void netdev_wait_allrefs(struct net_device *dev) 10362 { 10363 unsigned long rebroadcast_time, warning_time; 10364 int wait = 0, refcnt; 10365 10366 linkwatch_forget_dev(dev); 10367 10368 rebroadcast_time = warning_time = jiffies; 10369 refcnt = netdev_refcnt_read(dev); 10370 10371 while (refcnt != 0) { 10372 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 10373 rtnl_lock(); 10374 10375 /* Rebroadcast unregister notification */ 10376 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 10377 10378 __rtnl_unlock(); 10379 rcu_barrier(); 10380 rtnl_lock(); 10381 10382 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 10383 &dev->state)) { 10384 /* We must not have linkwatch events 10385 * pending on unregister. If this 10386 * happens, we simply run the queue 10387 * unscheduled, resulting in a noop 10388 * for this device. 10389 */ 10390 linkwatch_run_queue(); 10391 } 10392 10393 __rtnl_unlock(); 10394 10395 rebroadcast_time = jiffies; 10396 } 10397 10398 if (!wait) { 10399 rcu_barrier(); 10400 wait = WAIT_REFS_MIN_MSECS; 10401 } else { 10402 msleep(wait); 10403 wait = min(wait << 1, WAIT_REFS_MAX_MSECS); 10404 } 10405 10406 refcnt = netdev_refcnt_read(dev); 10407 10408 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) { 10409 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 10410 dev->name, refcnt); 10411 warning_time = jiffies; 10412 } 10413 } 10414 } 10415 10416 /* The sequence is: 10417 * 10418 * rtnl_lock(); 10419 * ... 10420 * register_netdevice(x1); 10421 * register_netdevice(x2); 10422 * ... 10423 * unregister_netdevice(y1); 10424 * unregister_netdevice(y2); 10425 * ... 10426 * rtnl_unlock(); 10427 * free_netdev(y1); 10428 * free_netdev(y2); 10429 * 10430 * We are invoked by rtnl_unlock(). 10431 * This allows us to deal with problems: 10432 * 1) We can delete sysfs objects which invoke hotplug 10433 * without deadlocking with linkwatch via keventd. 10434 * 2) Since we run with the RTNL semaphore not held, we can sleep 10435 * safely in order to wait for the netdev refcnt to drop to zero. 10436 * 10437 * We must not return until all unregister events added during 10438 * the interval the lock was held have been completed. 10439 */ 10440 void netdev_run_todo(void) 10441 { 10442 struct list_head list; 10443 #ifdef CONFIG_LOCKDEP 10444 struct list_head unlink_list; 10445 10446 list_replace_init(&net_unlink_list, &unlink_list); 10447 10448 while (!list_empty(&unlink_list)) { 10449 struct net_device *dev = list_first_entry(&unlink_list, 10450 struct net_device, 10451 unlink_list); 10452 list_del_init(&dev->unlink_list); 10453 dev->nested_level = dev->lower_level - 1; 10454 } 10455 #endif 10456 10457 /* Snapshot list, allow later requests */ 10458 list_replace_init(&net_todo_list, &list); 10459 10460 __rtnl_unlock(); 10461 10462 10463 /* Wait for rcu callbacks to finish before next phase */ 10464 if (!list_empty(&list)) 10465 rcu_barrier(); 10466 10467 while (!list_empty(&list)) { 10468 struct net_device *dev 10469 = list_first_entry(&list, struct net_device, todo_list); 10470 list_del(&dev->todo_list); 10471 10472 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 10473 pr_err("network todo '%s' but state %d\n", 10474 dev->name, dev->reg_state); 10475 dump_stack(); 10476 continue; 10477 } 10478 10479 dev->reg_state = NETREG_UNREGISTERED; 10480 10481 netdev_wait_allrefs(dev); 10482 10483 /* paranoia */ 10484 BUG_ON(netdev_refcnt_read(dev)); 10485 BUG_ON(!list_empty(&dev->ptype_all)); 10486 BUG_ON(!list_empty(&dev->ptype_specific)); 10487 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 10488 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 10489 #if IS_ENABLED(CONFIG_DECNET) 10490 WARN_ON(dev->dn_ptr); 10491 #endif 10492 if (dev->priv_destructor) 10493 dev->priv_destructor(dev); 10494 if (dev->needs_free_netdev) 10495 free_netdev(dev); 10496 10497 /* Report a network device has been unregistered */ 10498 rtnl_lock(); 10499 dev_net(dev)->dev_unreg_count--; 10500 __rtnl_unlock(); 10501 wake_up(&netdev_unregistering_wq); 10502 10503 /* Free network device */ 10504 kobject_put(&dev->dev.kobj); 10505 } 10506 } 10507 10508 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 10509 * all the same fields in the same order as net_device_stats, with only 10510 * the type differing, but rtnl_link_stats64 may have additional fields 10511 * at the end for newer counters. 10512 */ 10513 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 10514 const struct net_device_stats *netdev_stats) 10515 { 10516 #if BITS_PER_LONG == 64 10517 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 10518 memcpy(stats64, netdev_stats, sizeof(*netdev_stats)); 10519 /* zero out counters that only exist in rtnl_link_stats64 */ 10520 memset((char *)stats64 + sizeof(*netdev_stats), 0, 10521 sizeof(*stats64) - sizeof(*netdev_stats)); 10522 #else 10523 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 10524 const unsigned long *src = (const unsigned long *)netdev_stats; 10525 u64 *dst = (u64 *)stats64; 10526 10527 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 10528 for (i = 0; i < n; i++) 10529 dst[i] = src[i]; 10530 /* zero out counters that only exist in rtnl_link_stats64 */ 10531 memset((char *)stats64 + n * sizeof(u64), 0, 10532 sizeof(*stats64) - n * sizeof(u64)); 10533 #endif 10534 } 10535 EXPORT_SYMBOL(netdev_stats_to_stats64); 10536 10537 /** 10538 * dev_get_stats - get network device statistics 10539 * @dev: device to get statistics from 10540 * @storage: place to store stats 10541 * 10542 * Get network statistics from device. Return @storage. 10543 * The device driver may provide its own method by setting 10544 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 10545 * otherwise the internal statistics structure is used. 10546 */ 10547 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 10548 struct rtnl_link_stats64 *storage) 10549 { 10550 const struct net_device_ops *ops = dev->netdev_ops; 10551 10552 if (ops->ndo_get_stats64) { 10553 memset(storage, 0, sizeof(*storage)); 10554 ops->ndo_get_stats64(dev, storage); 10555 } else if (ops->ndo_get_stats) { 10556 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 10557 } else { 10558 netdev_stats_to_stats64(storage, &dev->stats); 10559 } 10560 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped); 10561 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped); 10562 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler); 10563 return storage; 10564 } 10565 EXPORT_SYMBOL(dev_get_stats); 10566 10567 /** 10568 * dev_fetch_sw_netstats - get per-cpu network device statistics 10569 * @s: place to store stats 10570 * @netstats: per-cpu network stats to read from 10571 * 10572 * Read per-cpu network statistics and populate the related fields in @s. 10573 */ 10574 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 10575 const struct pcpu_sw_netstats __percpu *netstats) 10576 { 10577 int cpu; 10578 10579 for_each_possible_cpu(cpu) { 10580 const struct pcpu_sw_netstats *stats; 10581 struct pcpu_sw_netstats tmp; 10582 unsigned int start; 10583 10584 stats = per_cpu_ptr(netstats, cpu); 10585 do { 10586 start = u64_stats_fetch_begin_irq(&stats->syncp); 10587 tmp.rx_packets = stats->rx_packets; 10588 tmp.rx_bytes = stats->rx_bytes; 10589 tmp.tx_packets = stats->tx_packets; 10590 tmp.tx_bytes = stats->tx_bytes; 10591 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 10592 10593 s->rx_packets += tmp.rx_packets; 10594 s->rx_bytes += tmp.rx_bytes; 10595 s->tx_packets += tmp.tx_packets; 10596 s->tx_bytes += tmp.tx_bytes; 10597 } 10598 } 10599 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats); 10600 10601 /** 10602 * dev_get_tstats64 - ndo_get_stats64 implementation 10603 * @dev: device to get statistics from 10604 * @s: place to store stats 10605 * 10606 * Populate @s from dev->stats and dev->tstats. Can be used as 10607 * ndo_get_stats64() callback. 10608 */ 10609 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s) 10610 { 10611 netdev_stats_to_stats64(s, &dev->stats); 10612 dev_fetch_sw_netstats(s, dev->tstats); 10613 } 10614 EXPORT_SYMBOL_GPL(dev_get_tstats64); 10615 10616 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 10617 { 10618 struct netdev_queue *queue = dev_ingress_queue(dev); 10619 10620 #ifdef CONFIG_NET_CLS_ACT 10621 if (queue) 10622 return queue; 10623 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 10624 if (!queue) 10625 return NULL; 10626 netdev_init_one_queue(dev, queue, NULL); 10627 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 10628 queue->qdisc_sleeping = &noop_qdisc; 10629 rcu_assign_pointer(dev->ingress_queue, queue); 10630 #endif 10631 return queue; 10632 } 10633 10634 static const struct ethtool_ops default_ethtool_ops; 10635 10636 void netdev_set_default_ethtool_ops(struct net_device *dev, 10637 const struct ethtool_ops *ops) 10638 { 10639 if (dev->ethtool_ops == &default_ethtool_ops) 10640 dev->ethtool_ops = ops; 10641 } 10642 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 10643 10644 void netdev_freemem(struct net_device *dev) 10645 { 10646 char *addr = (char *)dev - dev->padded; 10647 10648 kvfree(addr); 10649 } 10650 10651 /** 10652 * alloc_netdev_mqs - allocate network device 10653 * @sizeof_priv: size of private data to allocate space for 10654 * @name: device name format string 10655 * @name_assign_type: origin of device name 10656 * @setup: callback to initialize device 10657 * @txqs: the number of TX subqueues to allocate 10658 * @rxqs: the number of RX subqueues to allocate 10659 * 10660 * Allocates a struct net_device with private data area for driver use 10661 * and performs basic initialization. Also allocates subqueue structs 10662 * for each queue on the device. 10663 */ 10664 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 10665 unsigned char name_assign_type, 10666 void (*setup)(struct net_device *), 10667 unsigned int txqs, unsigned int rxqs) 10668 { 10669 struct net_device *dev; 10670 unsigned int alloc_size; 10671 struct net_device *p; 10672 10673 BUG_ON(strlen(name) >= sizeof(dev->name)); 10674 10675 if (txqs < 1) { 10676 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 10677 return NULL; 10678 } 10679 10680 if (rxqs < 1) { 10681 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 10682 return NULL; 10683 } 10684 10685 alloc_size = sizeof(struct net_device); 10686 if (sizeof_priv) { 10687 /* ensure 32-byte alignment of private area */ 10688 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 10689 alloc_size += sizeof_priv; 10690 } 10691 /* ensure 32-byte alignment of whole construct */ 10692 alloc_size += NETDEV_ALIGN - 1; 10693 10694 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 10695 if (!p) 10696 return NULL; 10697 10698 dev = PTR_ALIGN(p, NETDEV_ALIGN); 10699 dev->padded = (char *)dev - (char *)p; 10700 10701 dev->pcpu_refcnt = alloc_percpu(int); 10702 if (!dev->pcpu_refcnt) 10703 goto free_dev; 10704 10705 if (dev_addr_init(dev)) 10706 goto free_pcpu; 10707 10708 dev_mc_init(dev); 10709 dev_uc_init(dev); 10710 10711 dev_net_set(dev, &init_net); 10712 10713 dev->gso_max_size = GSO_MAX_SIZE; 10714 dev->gso_max_segs = GSO_MAX_SEGS; 10715 dev->upper_level = 1; 10716 dev->lower_level = 1; 10717 #ifdef CONFIG_LOCKDEP 10718 dev->nested_level = 0; 10719 INIT_LIST_HEAD(&dev->unlink_list); 10720 #endif 10721 10722 INIT_LIST_HEAD(&dev->napi_list); 10723 INIT_LIST_HEAD(&dev->unreg_list); 10724 INIT_LIST_HEAD(&dev->close_list); 10725 INIT_LIST_HEAD(&dev->link_watch_list); 10726 INIT_LIST_HEAD(&dev->adj_list.upper); 10727 INIT_LIST_HEAD(&dev->adj_list.lower); 10728 INIT_LIST_HEAD(&dev->ptype_all); 10729 INIT_LIST_HEAD(&dev->ptype_specific); 10730 INIT_LIST_HEAD(&dev->net_notifier_list); 10731 #ifdef CONFIG_NET_SCHED 10732 hash_init(dev->qdisc_hash); 10733 #endif 10734 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 10735 setup(dev); 10736 10737 if (!dev->tx_queue_len) { 10738 dev->priv_flags |= IFF_NO_QUEUE; 10739 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 10740 } 10741 10742 dev->num_tx_queues = txqs; 10743 dev->real_num_tx_queues = txqs; 10744 if (netif_alloc_netdev_queues(dev)) 10745 goto free_all; 10746 10747 dev->num_rx_queues = rxqs; 10748 dev->real_num_rx_queues = rxqs; 10749 if (netif_alloc_rx_queues(dev)) 10750 goto free_all; 10751 10752 strcpy(dev->name, name); 10753 dev->name_assign_type = name_assign_type; 10754 dev->group = INIT_NETDEV_GROUP; 10755 if (!dev->ethtool_ops) 10756 dev->ethtool_ops = &default_ethtool_ops; 10757 10758 nf_hook_ingress_init(dev); 10759 10760 return dev; 10761 10762 free_all: 10763 free_netdev(dev); 10764 return NULL; 10765 10766 free_pcpu: 10767 free_percpu(dev->pcpu_refcnt); 10768 free_dev: 10769 netdev_freemem(dev); 10770 return NULL; 10771 } 10772 EXPORT_SYMBOL(alloc_netdev_mqs); 10773 10774 /** 10775 * free_netdev - free network device 10776 * @dev: device 10777 * 10778 * This function does the last stage of destroying an allocated device 10779 * interface. The reference to the device object is released. If this 10780 * is the last reference then it will be freed.Must be called in process 10781 * context. 10782 */ 10783 void free_netdev(struct net_device *dev) 10784 { 10785 struct napi_struct *p, *n; 10786 10787 might_sleep(); 10788 10789 /* When called immediately after register_netdevice() failed the unwind 10790 * handling may still be dismantling the device. Handle that case by 10791 * deferring the free. 10792 */ 10793 if (dev->reg_state == NETREG_UNREGISTERING) { 10794 ASSERT_RTNL(); 10795 dev->needs_free_netdev = true; 10796 return; 10797 } 10798 10799 netif_free_tx_queues(dev); 10800 netif_free_rx_queues(dev); 10801 10802 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 10803 10804 /* Flush device addresses */ 10805 dev_addr_flush(dev); 10806 10807 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 10808 netif_napi_del(p); 10809 10810 free_percpu(dev->pcpu_refcnt); 10811 dev->pcpu_refcnt = NULL; 10812 free_percpu(dev->xdp_bulkq); 10813 dev->xdp_bulkq = NULL; 10814 10815 /* Compatibility with error handling in drivers */ 10816 if (dev->reg_state == NETREG_UNINITIALIZED) { 10817 netdev_freemem(dev); 10818 return; 10819 } 10820 10821 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 10822 dev->reg_state = NETREG_RELEASED; 10823 10824 /* will free via device release */ 10825 put_device(&dev->dev); 10826 } 10827 EXPORT_SYMBOL(free_netdev); 10828 10829 /** 10830 * synchronize_net - Synchronize with packet receive processing 10831 * 10832 * Wait for packets currently being received to be done. 10833 * Does not block later packets from starting. 10834 */ 10835 void synchronize_net(void) 10836 { 10837 might_sleep(); 10838 if (rtnl_is_locked()) 10839 synchronize_rcu_expedited(); 10840 else 10841 synchronize_rcu(); 10842 } 10843 EXPORT_SYMBOL(synchronize_net); 10844 10845 /** 10846 * unregister_netdevice_queue - remove device from the kernel 10847 * @dev: device 10848 * @head: list 10849 * 10850 * This function shuts down a device interface and removes it 10851 * from the kernel tables. 10852 * If head not NULL, device is queued to be unregistered later. 10853 * 10854 * Callers must hold the rtnl semaphore. You may want 10855 * unregister_netdev() instead of this. 10856 */ 10857 10858 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 10859 { 10860 ASSERT_RTNL(); 10861 10862 if (head) { 10863 list_move_tail(&dev->unreg_list, head); 10864 } else { 10865 LIST_HEAD(single); 10866 10867 list_add(&dev->unreg_list, &single); 10868 unregister_netdevice_many(&single); 10869 } 10870 } 10871 EXPORT_SYMBOL(unregister_netdevice_queue); 10872 10873 /** 10874 * unregister_netdevice_many - unregister many devices 10875 * @head: list of devices 10876 * 10877 * Note: As most callers use a stack allocated list_head, 10878 * we force a list_del() to make sure stack wont be corrupted later. 10879 */ 10880 void unregister_netdevice_many(struct list_head *head) 10881 { 10882 struct net_device *dev, *tmp; 10883 LIST_HEAD(close_head); 10884 10885 BUG_ON(dev_boot_phase); 10886 ASSERT_RTNL(); 10887 10888 if (list_empty(head)) 10889 return; 10890 10891 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 10892 /* Some devices call without registering 10893 * for initialization unwind. Remove those 10894 * devices and proceed with the remaining. 10895 */ 10896 if (dev->reg_state == NETREG_UNINITIALIZED) { 10897 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 10898 dev->name, dev); 10899 10900 WARN_ON(1); 10901 list_del(&dev->unreg_list); 10902 continue; 10903 } 10904 dev->dismantle = true; 10905 BUG_ON(dev->reg_state != NETREG_REGISTERED); 10906 } 10907 10908 /* If device is running, close it first. */ 10909 list_for_each_entry(dev, head, unreg_list) 10910 list_add_tail(&dev->close_list, &close_head); 10911 dev_close_many(&close_head, true); 10912 10913 list_for_each_entry(dev, head, unreg_list) { 10914 /* And unlink it from device chain. */ 10915 unlist_netdevice(dev); 10916 10917 dev->reg_state = NETREG_UNREGISTERING; 10918 } 10919 flush_all_backlogs(); 10920 10921 synchronize_net(); 10922 10923 list_for_each_entry(dev, head, unreg_list) { 10924 struct sk_buff *skb = NULL; 10925 10926 /* Shutdown queueing discipline. */ 10927 dev_shutdown(dev); 10928 10929 dev_xdp_uninstall(dev); 10930 10931 /* Notify protocols, that we are about to destroy 10932 * this device. They should clean all the things. 10933 */ 10934 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 10935 10936 if (!dev->rtnl_link_ops || 10937 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 10938 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 10939 GFP_KERNEL, NULL, 0); 10940 10941 /* 10942 * Flush the unicast and multicast chains 10943 */ 10944 dev_uc_flush(dev); 10945 dev_mc_flush(dev); 10946 10947 netdev_name_node_alt_flush(dev); 10948 netdev_name_node_free(dev->name_node); 10949 10950 if (dev->netdev_ops->ndo_uninit) 10951 dev->netdev_ops->ndo_uninit(dev); 10952 10953 if (skb) 10954 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 10955 10956 /* Notifier chain MUST detach us all upper devices. */ 10957 WARN_ON(netdev_has_any_upper_dev(dev)); 10958 WARN_ON(netdev_has_any_lower_dev(dev)); 10959 10960 /* Remove entries from kobject tree */ 10961 netdev_unregister_kobject(dev); 10962 #ifdef CONFIG_XPS 10963 /* Remove XPS queueing entries */ 10964 netif_reset_xps_queues_gt(dev, 0); 10965 #endif 10966 } 10967 10968 synchronize_net(); 10969 10970 list_for_each_entry(dev, head, unreg_list) { 10971 dev_put(dev); 10972 net_set_todo(dev); 10973 } 10974 10975 list_del(head); 10976 } 10977 EXPORT_SYMBOL(unregister_netdevice_many); 10978 10979 /** 10980 * unregister_netdev - remove device from the kernel 10981 * @dev: device 10982 * 10983 * This function shuts down a device interface and removes it 10984 * from the kernel tables. 10985 * 10986 * This is just a wrapper for unregister_netdevice that takes 10987 * the rtnl semaphore. In general you want to use this and not 10988 * unregister_netdevice. 10989 */ 10990 void unregister_netdev(struct net_device *dev) 10991 { 10992 rtnl_lock(); 10993 unregister_netdevice(dev); 10994 rtnl_unlock(); 10995 } 10996 EXPORT_SYMBOL(unregister_netdev); 10997 10998 /** 10999 * dev_change_net_namespace - move device to different nethost namespace 11000 * @dev: device 11001 * @net: network namespace 11002 * @pat: If not NULL name pattern to try if the current device name 11003 * is already taken in the destination network namespace. 11004 * 11005 * This function shuts down a device interface and moves it 11006 * to a new network namespace. On success 0 is returned, on 11007 * a failure a netagive errno code is returned. 11008 * 11009 * Callers must hold the rtnl semaphore. 11010 */ 11011 11012 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 11013 { 11014 struct net *net_old = dev_net(dev); 11015 int err, new_nsid, new_ifindex; 11016 11017 ASSERT_RTNL(); 11018 11019 /* Don't allow namespace local devices to be moved. */ 11020 err = -EINVAL; 11021 if (dev->features & NETIF_F_NETNS_LOCAL) 11022 goto out; 11023 11024 /* Ensure the device has been registrered */ 11025 if (dev->reg_state != NETREG_REGISTERED) 11026 goto out; 11027 11028 /* Get out if there is nothing todo */ 11029 err = 0; 11030 if (net_eq(net_old, net)) 11031 goto out; 11032 11033 /* Pick the destination device name, and ensure 11034 * we can use it in the destination network namespace. 11035 */ 11036 err = -EEXIST; 11037 if (__dev_get_by_name(net, dev->name)) { 11038 /* We get here if we can't use the current device name */ 11039 if (!pat) 11040 goto out; 11041 err = dev_get_valid_name(net, dev, pat); 11042 if (err < 0) 11043 goto out; 11044 } 11045 11046 /* 11047 * And now a mini version of register_netdevice unregister_netdevice. 11048 */ 11049 11050 /* If device is running close it first. */ 11051 dev_close(dev); 11052 11053 /* And unlink it from device chain */ 11054 unlist_netdevice(dev); 11055 11056 synchronize_net(); 11057 11058 /* Shutdown queueing discipline. */ 11059 dev_shutdown(dev); 11060 11061 /* Notify protocols, that we are about to destroy 11062 * this device. They should clean all the things. 11063 * 11064 * Note that dev->reg_state stays at NETREG_REGISTERED. 11065 * This is wanted because this way 8021q and macvlan know 11066 * the device is just moving and can keep their slaves up. 11067 */ 11068 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 11069 rcu_barrier(); 11070 11071 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL); 11072 /* If there is an ifindex conflict assign a new one */ 11073 if (__dev_get_by_index(net, dev->ifindex)) 11074 new_ifindex = dev_new_index(net); 11075 else 11076 new_ifindex = dev->ifindex; 11077 11078 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 11079 new_ifindex); 11080 11081 /* 11082 * Flush the unicast and multicast chains 11083 */ 11084 dev_uc_flush(dev); 11085 dev_mc_flush(dev); 11086 11087 /* Send a netdev-removed uevent to the old namespace */ 11088 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 11089 netdev_adjacent_del_links(dev); 11090 11091 /* Move per-net netdevice notifiers that are following the netdevice */ 11092 move_netdevice_notifiers_dev_net(dev, net); 11093 11094 /* Actually switch the network namespace */ 11095 dev_net_set(dev, net); 11096 dev->ifindex = new_ifindex; 11097 11098 /* Send a netdev-add uevent to the new namespace */ 11099 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 11100 netdev_adjacent_add_links(dev); 11101 11102 /* Fixup kobjects */ 11103 err = device_rename(&dev->dev, dev->name); 11104 WARN_ON(err); 11105 11106 /* Adapt owner in case owning user namespace of target network 11107 * namespace is different from the original one. 11108 */ 11109 err = netdev_change_owner(dev, net_old, net); 11110 WARN_ON(err); 11111 11112 /* Add the device back in the hashes */ 11113 list_netdevice(dev); 11114 11115 /* Notify protocols, that a new device appeared. */ 11116 call_netdevice_notifiers(NETDEV_REGISTER, dev); 11117 11118 /* 11119 * Prevent userspace races by waiting until the network 11120 * device is fully setup before sending notifications. 11121 */ 11122 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 11123 11124 synchronize_net(); 11125 err = 0; 11126 out: 11127 return err; 11128 } 11129 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 11130 11131 static int dev_cpu_dead(unsigned int oldcpu) 11132 { 11133 struct sk_buff **list_skb; 11134 struct sk_buff *skb; 11135 unsigned int cpu; 11136 struct softnet_data *sd, *oldsd, *remsd = NULL; 11137 11138 local_irq_disable(); 11139 cpu = smp_processor_id(); 11140 sd = &per_cpu(softnet_data, cpu); 11141 oldsd = &per_cpu(softnet_data, oldcpu); 11142 11143 /* Find end of our completion_queue. */ 11144 list_skb = &sd->completion_queue; 11145 while (*list_skb) 11146 list_skb = &(*list_skb)->next; 11147 /* Append completion queue from offline CPU. */ 11148 *list_skb = oldsd->completion_queue; 11149 oldsd->completion_queue = NULL; 11150 11151 /* Append output queue from offline CPU. */ 11152 if (oldsd->output_queue) { 11153 *sd->output_queue_tailp = oldsd->output_queue; 11154 sd->output_queue_tailp = oldsd->output_queue_tailp; 11155 oldsd->output_queue = NULL; 11156 oldsd->output_queue_tailp = &oldsd->output_queue; 11157 } 11158 /* Append NAPI poll list from offline CPU, with one exception : 11159 * process_backlog() must be called by cpu owning percpu backlog. 11160 * We properly handle process_queue & input_pkt_queue later. 11161 */ 11162 while (!list_empty(&oldsd->poll_list)) { 11163 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 11164 struct napi_struct, 11165 poll_list); 11166 11167 list_del_init(&napi->poll_list); 11168 if (napi->poll == process_backlog) 11169 napi->state = 0; 11170 else 11171 ____napi_schedule(sd, napi); 11172 } 11173 11174 raise_softirq_irqoff(NET_TX_SOFTIRQ); 11175 local_irq_enable(); 11176 11177 #ifdef CONFIG_RPS 11178 remsd = oldsd->rps_ipi_list; 11179 oldsd->rps_ipi_list = NULL; 11180 #endif 11181 /* send out pending IPI's on offline CPU */ 11182 net_rps_send_ipi(remsd); 11183 11184 /* Process offline CPU's input_pkt_queue */ 11185 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 11186 netif_rx_ni(skb); 11187 input_queue_head_incr(oldsd); 11188 } 11189 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 11190 netif_rx_ni(skb); 11191 input_queue_head_incr(oldsd); 11192 } 11193 11194 return 0; 11195 } 11196 11197 /** 11198 * netdev_increment_features - increment feature set by one 11199 * @all: current feature set 11200 * @one: new feature set 11201 * @mask: mask feature set 11202 * 11203 * Computes a new feature set after adding a device with feature set 11204 * @one to the master device with current feature set @all. Will not 11205 * enable anything that is off in @mask. Returns the new feature set. 11206 */ 11207 netdev_features_t netdev_increment_features(netdev_features_t all, 11208 netdev_features_t one, netdev_features_t mask) 11209 { 11210 if (mask & NETIF_F_HW_CSUM) 11211 mask |= NETIF_F_CSUM_MASK; 11212 mask |= NETIF_F_VLAN_CHALLENGED; 11213 11214 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 11215 all &= one | ~NETIF_F_ALL_FOR_ALL; 11216 11217 /* If one device supports hw checksumming, set for all. */ 11218 if (all & NETIF_F_HW_CSUM) 11219 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 11220 11221 return all; 11222 } 11223 EXPORT_SYMBOL(netdev_increment_features); 11224 11225 static struct hlist_head * __net_init netdev_create_hash(void) 11226 { 11227 int i; 11228 struct hlist_head *hash; 11229 11230 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 11231 if (hash != NULL) 11232 for (i = 0; i < NETDEV_HASHENTRIES; i++) 11233 INIT_HLIST_HEAD(&hash[i]); 11234 11235 return hash; 11236 } 11237 11238 /* Initialize per network namespace state */ 11239 static int __net_init netdev_init(struct net *net) 11240 { 11241 BUILD_BUG_ON(GRO_HASH_BUCKETS > 11242 8 * sizeof_field(struct napi_struct, gro_bitmask)); 11243 11244 if (net != &init_net) 11245 INIT_LIST_HEAD(&net->dev_base_head); 11246 11247 net->dev_name_head = netdev_create_hash(); 11248 if (net->dev_name_head == NULL) 11249 goto err_name; 11250 11251 net->dev_index_head = netdev_create_hash(); 11252 if (net->dev_index_head == NULL) 11253 goto err_idx; 11254 11255 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain); 11256 11257 return 0; 11258 11259 err_idx: 11260 kfree(net->dev_name_head); 11261 err_name: 11262 return -ENOMEM; 11263 } 11264 11265 /** 11266 * netdev_drivername - network driver for the device 11267 * @dev: network device 11268 * 11269 * Determine network driver for device. 11270 */ 11271 const char *netdev_drivername(const struct net_device *dev) 11272 { 11273 const struct device_driver *driver; 11274 const struct device *parent; 11275 const char *empty = ""; 11276 11277 parent = dev->dev.parent; 11278 if (!parent) 11279 return empty; 11280 11281 driver = parent->driver; 11282 if (driver && driver->name) 11283 return driver->name; 11284 return empty; 11285 } 11286 11287 static void __netdev_printk(const char *level, const struct net_device *dev, 11288 struct va_format *vaf) 11289 { 11290 if (dev && dev->dev.parent) { 11291 dev_printk_emit(level[1] - '0', 11292 dev->dev.parent, 11293 "%s %s %s%s: %pV", 11294 dev_driver_string(dev->dev.parent), 11295 dev_name(dev->dev.parent), 11296 netdev_name(dev), netdev_reg_state(dev), 11297 vaf); 11298 } else if (dev) { 11299 printk("%s%s%s: %pV", 11300 level, netdev_name(dev), netdev_reg_state(dev), vaf); 11301 } else { 11302 printk("%s(NULL net_device): %pV", level, vaf); 11303 } 11304 } 11305 11306 void netdev_printk(const char *level, const struct net_device *dev, 11307 const char *format, ...) 11308 { 11309 struct va_format vaf; 11310 va_list args; 11311 11312 va_start(args, format); 11313 11314 vaf.fmt = format; 11315 vaf.va = &args; 11316 11317 __netdev_printk(level, dev, &vaf); 11318 11319 va_end(args); 11320 } 11321 EXPORT_SYMBOL(netdev_printk); 11322 11323 #define define_netdev_printk_level(func, level) \ 11324 void func(const struct net_device *dev, const char *fmt, ...) \ 11325 { \ 11326 struct va_format vaf; \ 11327 va_list args; \ 11328 \ 11329 va_start(args, fmt); \ 11330 \ 11331 vaf.fmt = fmt; \ 11332 vaf.va = &args; \ 11333 \ 11334 __netdev_printk(level, dev, &vaf); \ 11335 \ 11336 va_end(args); \ 11337 } \ 11338 EXPORT_SYMBOL(func); 11339 11340 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 11341 define_netdev_printk_level(netdev_alert, KERN_ALERT); 11342 define_netdev_printk_level(netdev_crit, KERN_CRIT); 11343 define_netdev_printk_level(netdev_err, KERN_ERR); 11344 define_netdev_printk_level(netdev_warn, KERN_WARNING); 11345 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 11346 define_netdev_printk_level(netdev_info, KERN_INFO); 11347 11348 static void __net_exit netdev_exit(struct net *net) 11349 { 11350 kfree(net->dev_name_head); 11351 kfree(net->dev_index_head); 11352 if (net != &init_net) 11353 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 11354 } 11355 11356 static struct pernet_operations __net_initdata netdev_net_ops = { 11357 .init = netdev_init, 11358 .exit = netdev_exit, 11359 }; 11360 11361 static void __net_exit default_device_exit(struct net *net) 11362 { 11363 struct net_device *dev, *aux; 11364 /* 11365 * Push all migratable network devices back to the 11366 * initial network namespace 11367 */ 11368 rtnl_lock(); 11369 for_each_netdev_safe(net, dev, aux) { 11370 int err; 11371 char fb_name[IFNAMSIZ]; 11372 11373 /* Ignore unmoveable devices (i.e. loopback) */ 11374 if (dev->features & NETIF_F_NETNS_LOCAL) 11375 continue; 11376 11377 /* Leave virtual devices for the generic cleanup */ 11378 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund) 11379 continue; 11380 11381 /* Push remaining network devices to init_net */ 11382 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 11383 if (__dev_get_by_name(&init_net, fb_name)) 11384 snprintf(fb_name, IFNAMSIZ, "dev%%d"); 11385 err = dev_change_net_namespace(dev, &init_net, fb_name); 11386 if (err) { 11387 pr_emerg("%s: failed to move %s to init_net: %d\n", 11388 __func__, dev->name, err); 11389 BUG(); 11390 } 11391 } 11392 rtnl_unlock(); 11393 } 11394 11395 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 11396 { 11397 /* Return with the rtnl_lock held when there are no network 11398 * devices unregistering in any network namespace in net_list. 11399 */ 11400 struct net *net; 11401 bool unregistering; 11402 DEFINE_WAIT_FUNC(wait, woken_wake_function); 11403 11404 add_wait_queue(&netdev_unregistering_wq, &wait); 11405 for (;;) { 11406 unregistering = false; 11407 rtnl_lock(); 11408 list_for_each_entry(net, net_list, exit_list) { 11409 if (net->dev_unreg_count > 0) { 11410 unregistering = true; 11411 break; 11412 } 11413 } 11414 if (!unregistering) 11415 break; 11416 __rtnl_unlock(); 11417 11418 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 11419 } 11420 remove_wait_queue(&netdev_unregistering_wq, &wait); 11421 } 11422 11423 static void __net_exit default_device_exit_batch(struct list_head *net_list) 11424 { 11425 /* At exit all network devices most be removed from a network 11426 * namespace. Do this in the reverse order of registration. 11427 * Do this across as many network namespaces as possible to 11428 * improve batching efficiency. 11429 */ 11430 struct net_device *dev; 11431 struct net *net; 11432 LIST_HEAD(dev_kill_list); 11433 11434 /* To prevent network device cleanup code from dereferencing 11435 * loopback devices or network devices that have been freed 11436 * wait here for all pending unregistrations to complete, 11437 * before unregistring the loopback device and allowing the 11438 * network namespace be freed. 11439 * 11440 * The netdev todo list containing all network devices 11441 * unregistrations that happen in default_device_exit_batch 11442 * will run in the rtnl_unlock() at the end of 11443 * default_device_exit_batch. 11444 */ 11445 rtnl_lock_unregistering(net_list); 11446 list_for_each_entry(net, net_list, exit_list) { 11447 for_each_netdev_reverse(net, dev) { 11448 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 11449 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 11450 else 11451 unregister_netdevice_queue(dev, &dev_kill_list); 11452 } 11453 } 11454 unregister_netdevice_many(&dev_kill_list); 11455 rtnl_unlock(); 11456 } 11457 11458 static struct pernet_operations __net_initdata default_device_ops = { 11459 .exit = default_device_exit, 11460 .exit_batch = default_device_exit_batch, 11461 }; 11462 11463 /* 11464 * Initialize the DEV module. At boot time this walks the device list and 11465 * unhooks any devices that fail to initialise (normally hardware not 11466 * present) and leaves us with a valid list of present and active devices. 11467 * 11468 */ 11469 11470 /* 11471 * This is called single threaded during boot, so no need 11472 * to take the rtnl semaphore. 11473 */ 11474 static int __init net_dev_init(void) 11475 { 11476 int i, rc = -ENOMEM; 11477 11478 BUG_ON(!dev_boot_phase); 11479 11480 if (dev_proc_init()) 11481 goto out; 11482 11483 if (netdev_kobject_init()) 11484 goto out; 11485 11486 INIT_LIST_HEAD(&ptype_all); 11487 for (i = 0; i < PTYPE_HASH_SIZE; i++) 11488 INIT_LIST_HEAD(&ptype_base[i]); 11489 11490 INIT_LIST_HEAD(&offload_base); 11491 11492 if (register_pernet_subsys(&netdev_net_ops)) 11493 goto out; 11494 11495 /* 11496 * Initialise the packet receive queues. 11497 */ 11498 11499 for_each_possible_cpu(i) { 11500 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 11501 struct softnet_data *sd = &per_cpu(softnet_data, i); 11502 11503 INIT_WORK(flush, flush_backlog); 11504 11505 skb_queue_head_init(&sd->input_pkt_queue); 11506 skb_queue_head_init(&sd->process_queue); 11507 #ifdef CONFIG_XFRM_OFFLOAD 11508 skb_queue_head_init(&sd->xfrm_backlog); 11509 #endif 11510 INIT_LIST_HEAD(&sd->poll_list); 11511 sd->output_queue_tailp = &sd->output_queue; 11512 #ifdef CONFIG_RPS 11513 INIT_CSD(&sd->csd, rps_trigger_softirq, sd); 11514 sd->cpu = i; 11515 #endif 11516 11517 init_gro_hash(&sd->backlog); 11518 sd->backlog.poll = process_backlog; 11519 sd->backlog.weight = weight_p; 11520 } 11521 11522 dev_boot_phase = 0; 11523 11524 /* The loopback device is special if any other network devices 11525 * is present in a network namespace the loopback device must 11526 * be present. Since we now dynamically allocate and free the 11527 * loopback device ensure this invariant is maintained by 11528 * keeping the loopback device as the first device on the 11529 * list of network devices. Ensuring the loopback devices 11530 * is the first device that appears and the last network device 11531 * that disappears. 11532 */ 11533 if (register_pernet_device(&loopback_net_ops)) 11534 goto out; 11535 11536 if (register_pernet_device(&default_device_ops)) 11537 goto out; 11538 11539 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 11540 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 11541 11542 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 11543 NULL, dev_cpu_dead); 11544 WARN_ON(rc < 0); 11545 rc = 0; 11546 out: 11547 return rc; 11548 } 11549 11550 subsys_initcall(net_dev_init); 11551