xref: /openbmc/linux/net/core/dev.c (revision 8c0b9ee8)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <net/mpls.h>
122 #include <linux/ipv6.h>
123 #include <linux/in.h>
124 #include <linux/jhash.h>
125 #include <linux/random.h>
126 #include <trace/events/napi.h>
127 #include <trace/events/net.h>
128 #include <trace/events/skb.h>
129 #include <linux/pci.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138 
139 #include "net-sysfs.h"
140 
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
143 
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
146 
147 static DEFINE_SPINLOCK(ptype_lock);
148 static DEFINE_SPINLOCK(offload_lock);
149 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
150 struct list_head ptype_all __read_mostly;	/* Taps */
151 static struct list_head offload_base __read_mostly;
152 
153 static int netif_rx_internal(struct sk_buff *skb);
154 static int call_netdevice_notifiers_info(unsigned long val,
155 					 struct net_device *dev,
156 					 struct netdev_notifier_info *info);
157 
158 /*
159  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
160  * semaphore.
161  *
162  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
163  *
164  * Writers must hold the rtnl semaphore while they loop through the
165  * dev_base_head list, and hold dev_base_lock for writing when they do the
166  * actual updates.  This allows pure readers to access the list even
167  * while a writer is preparing to update it.
168  *
169  * To put it another way, dev_base_lock is held for writing only to
170  * protect against pure readers; the rtnl semaphore provides the
171  * protection against other writers.
172  *
173  * See, for example usages, register_netdevice() and
174  * unregister_netdevice(), which must be called with the rtnl
175  * semaphore held.
176  */
177 DEFINE_RWLOCK(dev_base_lock);
178 EXPORT_SYMBOL(dev_base_lock);
179 
180 /* protects napi_hash addition/deletion and napi_gen_id */
181 static DEFINE_SPINLOCK(napi_hash_lock);
182 
183 static unsigned int napi_gen_id;
184 static DEFINE_HASHTABLE(napi_hash, 8);
185 
186 static seqcount_t devnet_rename_seq;
187 
188 static inline void dev_base_seq_inc(struct net *net)
189 {
190 	while (++net->dev_base_seq == 0);
191 }
192 
193 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
194 {
195 	unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
196 
197 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
198 }
199 
200 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
201 {
202 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
203 }
204 
205 static inline void rps_lock(struct softnet_data *sd)
206 {
207 #ifdef CONFIG_RPS
208 	spin_lock(&sd->input_pkt_queue.lock);
209 #endif
210 }
211 
212 static inline void rps_unlock(struct softnet_data *sd)
213 {
214 #ifdef CONFIG_RPS
215 	spin_unlock(&sd->input_pkt_queue.lock);
216 #endif
217 }
218 
219 /* Device list insertion */
220 static void list_netdevice(struct net_device *dev)
221 {
222 	struct net *net = dev_net(dev);
223 
224 	ASSERT_RTNL();
225 
226 	write_lock_bh(&dev_base_lock);
227 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
228 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
229 	hlist_add_head_rcu(&dev->index_hlist,
230 			   dev_index_hash(net, dev->ifindex));
231 	write_unlock_bh(&dev_base_lock);
232 
233 	dev_base_seq_inc(net);
234 }
235 
236 /* Device list removal
237  * caller must respect a RCU grace period before freeing/reusing dev
238  */
239 static void unlist_netdevice(struct net_device *dev)
240 {
241 	ASSERT_RTNL();
242 
243 	/* Unlink dev from the device chain */
244 	write_lock_bh(&dev_base_lock);
245 	list_del_rcu(&dev->dev_list);
246 	hlist_del_rcu(&dev->name_hlist);
247 	hlist_del_rcu(&dev->index_hlist);
248 	write_unlock_bh(&dev_base_lock);
249 
250 	dev_base_seq_inc(dev_net(dev));
251 }
252 
253 /*
254  *	Our notifier list
255  */
256 
257 static RAW_NOTIFIER_HEAD(netdev_chain);
258 
259 /*
260  *	Device drivers call our routines to queue packets here. We empty the
261  *	queue in the local softnet handler.
262  */
263 
264 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
265 EXPORT_PER_CPU_SYMBOL(softnet_data);
266 
267 #ifdef CONFIG_LOCKDEP
268 /*
269  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
270  * according to dev->type
271  */
272 static const unsigned short netdev_lock_type[] =
273 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
274 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
275 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
276 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
277 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
278 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
279 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
280 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
281 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
282 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
283 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
284 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
285 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
286 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
287 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
288 
289 static const char *const netdev_lock_name[] =
290 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
291 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
292 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
293 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
294 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
295 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
296 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
297 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
298 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
299 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
300 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
301 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
302 	 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
303 	 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
304 	 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
305 
306 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
307 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
308 
309 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
310 {
311 	int i;
312 
313 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
314 		if (netdev_lock_type[i] == dev_type)
315 			return i;
316 	/* the last key is used by default */
317 	return ARRAY_SIZE(netdev_lock_type) - 1;
318 }
319 
320 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
321 						 unsigned short dev_type)
322 {
323 	int i;
324 
325 	i = netdev_lock_pos(dev_type);
326 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
327 				   netdev_lock_name[i]);
328 }
329 
330 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
331 {
332 	int i;
333 
334 	i = netdev_lock_pos(dev->type);
335 	lockdep_set_class_and_name(&dev->addr_list_lock,
336 				   &netdev_addr_lock_key[i],
337 				   netdev_lock_name[i]);
338 }
339 #else
340 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
341 						 unsigned short dev_type)
342 {
343 }
344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345 {
346 }
347 #endif
348 
349 /*******************************************************************************
350 
351 		Protocol management and registration routines
352 
353 *******************************************************************************/
354 
355 /*
356  *	Add a protocol ID to the list. Now that the input handler is
357  *	smarter we can dispense with all the messy stuff that used to be
358  *	here.
359  *
360  *	BEWARE!!! Protocol handlers, mangling input packets,
361  *	MUST BE last in hash buckets and checking protocol handlers
362  *	MUST start from promiscuous ptype_all chain in net_bh.
363  *	It is true now, do not change it.
364  *	Explanation follows: if protocol handler, mangling packet, will
365  *	be the first on list, it is not able to sense, that packet
366  *	is cloned and should be copied-on-write, so that it will
367  *	change it and subsequent readers will get broken packet.
368  *							--ANK (980803)
369  */
370 
371 static inline struct list_head *ptype_head(const struct packet_type *pt)
372 {
373 	if (pt->type == htons(ETH_P_ALL))
374 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
375 	else
376 		return pt->dev ? &pt->dev->ptype_specific :
377 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
378 }
379 
380 /**
381  *	dev_add_pack - add packet handler
382  *	@pt: packet type declaration
383  *
384  *	Add a protocol handler to the networking stack. The passed &packet_type
385  *	is linked into kernel lists and may not be freed until it has been
386  *	removed from the kernel lists.
387  *
388  *	This call does not sleep therefore it can not
389  *	guarantee all CPU's that are in middle of receiving packets
390  *	will see the new packet type (until the next received packet).
391  */
392 
393 void dev_add_pack(struct packet_type *pt)
394 {
395 	struct list_head *head = ptype_head(pt);
396 
397 	spin_lock(&ptype_lock);
398 	list_add_rcu(&pt->list, head);
399 	spin_unlock(&ptype_lock);
400 }
401 EXPORT_SYMBOL(dev_add_pack);
402 
403 /**
404  *	__dev_remove_pack	 - remove packet handler
405  *	@pt: packet type declaration
406  *
407  *	Remove a protocol handler that was previously added to the kernel
408  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
409  *	from the kernel lists and can be freed or reused once this function
410  *	returns.
411  *
412  *      The packet type might still be in use by receivers
413  *	and must not be freed until after all the CPU's have gone
414  *	through a quiescent state.
415  */
416 void __dev_remove_pack(struct packet_type *pt)
417 {
418 	struct list_head *head = ptype_head(pt);
419 	struct packet_type *pt1;
420 
421 	spin_lock(&ptype_lock);
422 
423 	list_for_each_entry(pt1, head, list) {
424 		if (pt == pt1) {
425 			list_del_rcu(&pt->list);
426 			goto out;
427 		}
428 	}
429 
430 	pr_warn("dev_remove_pack: %p not found\n", pt);
431 out:
432 	spin_unlock(&ptype_lock);
433 }
434 EXPORT_SYMBOL(__dev_remove_pack);
435 
436 /**
437  *	dev_remove_pack	 - remove packet handler
438  *	@pt: packet type declaration
439  *
440  *	Remove a protocol handler that was previously added to the kernel
441  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
442  *	from the kernel lists and can be freed or reused once this function
443  *	returns.
444  *
445  *	This call sleeps to guarantee that no CPU is looking at the packet
446  *	type after return.
447  */
448 void dev_remove_pack(struct packet_type *pt)
449 {
450 	__dev_remove_pack(pt);
451 
452 	synchronize_net();
453 }
454 EXPORT_SYMBOL(dev_remove_pack);
455 
456 
457 /**
458  *	dev_add_offload - register offload handlers
459  *	@po: protocol offload declaration
460  *
461  *	Add protocol offload handlers to the networking stack. The passed
462  *	&proto_offload is linked into kernel lists and may not be freed until
463  *	it has been removed from the kernel lists.
464  *
465  *	This call does not sleep therefore it can not
466  *	guarantee all CPU's that are in middle of receiving packets
467  *	will see the new offload handlers (until the next received packet).
468  */
469 void dev_add_offload(struct packet_offload *po)
470 {
471 	struct list_head *head = &offload_base;
472 
473 	spin_lock(&offload_lock);
474 	list_add_rcu(&po->list, head);
475 	spin_unlock(&offload_lock);
476 }
477 EXPORT_SYMBOL(dev_add_offload);
478 
479 /**
480  *	__dev_remove_offload	 - remove offload handler
481  *	@po: packet offload declaration
482  *
483  *	Remove a protocol offload handler that was previously added to the
484  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
485  *	is removed from the kernel lists and can be freed or reused once this
486  *	function returns.
487  *
488  *      The packet type might still be in use by receivers
489  *	and must not be freed until after all the CPU's have gone
490  *	through a quiescent state.
491  */
492 static void __dev_remove_offload(struct packet_offload *po)
493 {
494 	struct list_head *head = &offload_base;
495 	struct packet_offload *po1;
496 
497 	spin_lock(&offload_lock);
498 
499 	list_for_each_entry(po1, head, list) {
500 		if (po == po1) {
501 			list_del_rcu(&po->list);
502 			goto out;
503 		}
504 	}
505 
506 	pr_warn("dev_remove_offload: %p not found\n", po);
507 out:
508 	spin_unlock(&offload_lock);
509 }
510 
511 /**
512  *	dev_remove_offload	 - remove packet offload handler
513  *	@po: packet offload declaration
514  *
515  *	Remove a packet offload handler that was previously added to the kernel
516  *	offload handlers by dev_add_offload(). The passed &offload_type is
517  *	removed from the kernel lists and can be freed or reused once this
518  *	function returns.
519  *
520  *	This call sleeps to guarantee that no CPU is looking at the packet
521  *	type after return.
522  */
523 void dev_remove_offload(struct packet_offload *po)
524 {
525 	__dev_remove_offload(po);
526 
527 	synchronize_net();
528 }
529 EXPORT_SYMBOL(dev_remove_offload);
530 
531 /******************************************************************************
532 
533 		      Device Boot-time Settings Routines
534 
535 *******************************************************************************/
536 
537 /* Boot time configuration table */
538 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
539 
540 /**
541  *	netdev_boot_setup_add	- add new setup entry
542  *	@name: name of the device
543  *	@map: configured settings for the device
544  *
545  *	Adds new setup entry to the dev_boot_setup list.  The function
546  *	returns 0 on error and 1 on success.  This is a generic routine to
547  *	all netdevices.
548  */
549 static int netdev_boot_setup_add(char *name, struct ifmap *map)
550 {
551 	struct netdev_boot_setup *s;
552 	int i;
553 
554 	s = dev_boot_setup;
555 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
556 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
557 			memset(s[i].name, 0, sizeof(s[i].name));
558 			strlcpy(s[i].name, name, IFNAMSIZ);
559 			memcpy(&s[i].map, map, sizeof(s[i].map));
560 			break;
561 		}
562 	}
563 
564 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
565 }
566 
567 /**
568  *	netdev_boot_setup_check	- check boot time settings
569  *	@dev: the netdevice
570  *
571  * 	Check boot time settings for the device.
572  *	The found settings are set for the device to be used
573  *	later in the device probing.
574  *	Returns 0 if no settings found, 1 if they are.
575  */
576 int netdev_boot_setup_check(struct net_device *dev)
577 {
578 	struct netdev_boot_setup *s = dev_boot_setup;
579 	int i;
580 
581 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
582 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
583 		    !strcmp(dev->name, s[i].name)) {
584 			dev->irq 	= s[i].map.irq;
585 			dev->base_addr 	= s[i].map.base_addr;
586 			dev->mem_start 	= s[i].map.mem_start;
587 			dev->mem_end 	= s[i].map.mem_end;
588 			return 1;
589 		}
590 	}
591 	return 0;
592 }
593 EXPORT_SYMBOL(netdev_boot_setup_check);
594 
595 
596 /**
597  *	netdev_boot_base	- get address from boot time settings
598  *	@prefix: prefix for network device
599  *	@unit: id for network device
600  *
601  * 	Check boot time settings for the base address of device.
602  *	The found settings are set for the device to be used
603  *	later in the device probing.
604  *	Returns 0 if no settings found.
605  */
606 unsigned long netdev_boot_base(const char *prefix, int unit)
607 {
608 	const struct netdev_boot_setup *s = dev_boot_setup;
609 	char name[IFNAMSIZ];
610 	int i;
611 
612 	sprintf(name, "%s%d", prefix, unit);
613 
614 	/*
615 	 * If device already registered then return base of 1
616 	 * to indicate not to probe for this interface
617 	 */
618 	if (__dev_get_by_name(&init_net, name))
619 		return 1;
620 
621 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
622 		if (!strcmp(name, s[i].name))
623 			return s[i].map.base_addr;
624 	return 0;
625 }
626 
627 /*
628  * Saves at boot time configured settings for any netdevice.
629  */
630 int __init netdev_boot_setup(char *str)
631 {
632 	int ints[5];
633 	struct ifmap map;
634 
635 	str = get_options(str, ARRAY_SIZE(ints), ints);
636 	if (!str || !*str)
637 		return 0;
638 
639 	/* Save settings */
640 	memset(&map, 0, sizeof(map));
641 	if (ints[0] > 0)
642 		map.irq = ints[1];
643 	if (ints[0] > 1)
644 		map.base_addr = ints[2];
645 	if (ints[0] > 2)
646 		map.mem_start = ints[3];
647 	if (ints[0] > 3)
648 		map.mem_end = ints[4];
649 
650 	/* Add new entry to the list */
651 	return netdev_boot_setup_add(str, &map);
652 }
653 
654 __setup("netdev=", netdev_boot_setup);
655 
656 /*******************************************************************************
657 
658 			    Device Interface Subroutines
659 
660 *******************************************************************************/
661 
662 /**
663  *	__dev_get_by_name	- find a device by its name
664  *	@net: the applicable net namespace
665  *	@name: name to find
666  *
667  *	Find an interface by name. Must be called under RTNL semaphore
668  *	or @dev_base_lock. If the name is found a pointer to the device
669  *	is returned. If the name is not found then %NULL is returned. The
670  *	reference counters are not incremented so the caller must be
671  *	careful with locks.
672  */
673 
674 struct net_device *__dev_get_by_name(struct net *net, const char *name)
675 {
676 	struct net_device *dev;
677 	struct hlist_head *head = dev_name_hash(net, name);
678 
679 	hlist_for_each_entry(dev, head, name_hlist)
680 		if (!strncmp(dev->name, name, IFNAMSIZ))
681 			return dev;
682 
683 	return NULL;
684 }
685 EXPORT_SYMBOL(__dev_get_by_name);
686 
687 /**
688  *	dev_get_by_name_rcu	- find a device by its name
689  *	@net: the applicable net namespace
690  *	@name: name to find
691  *
692  *	Find an interface by name.
693  *	If the name is found a pointer to the device is returned.
694  * 	If the name is not found then %NULL is returned.
695  *	The reference counters are not incremented so the caller must be
696  *	careful with locks. The caller must hold RCU lock.
697  */
698 
699 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
700 {
701 	struct net_device *dev;
702 	struct hlist_head *head = dev_name_hash(net, name);
703 
704 	hlist_for_each_entry_rcu(dev, head, name_hlist)
705 		if (!strncmp(dev->name, name, IFNAMSIZ))
706 			return dev;
707 
708 	return NULL;
709 }
710 EXPORT_SYMBOL(dev_get_by_name_rcu);
711 
712 /**
713  *	dev_get_by_name		- find a device by its name
714  *	@net: the applicable net namespace
715  *	@name: name to find
716  *
717  *	Find an interface by name. This can be called from any
718  *	context and does its own locking. The returned handle has
719  *	the usage count incremented and the caller must use dev_put() to
720  *	release it when it is no longer needed. %NULL is returned if no
721  *	matching device is found.
722  */
723 
724 struct net_device *dev_get_by_name(struct net *net, const char *name)
725 {
726 	struct net_device *dev;
727 
728 	rcu_read_lock();
729 	dev = dev_get_by_name_rcu(net, name);
730 	if (dev)
731 		dev_hold(dev);
732 	rcu_read_unlock();
733 	return dev;
734 }
735 EXPORT_SYMBOL(dev_get_by_name);
736 
737 /**
738  *	__dev_get_by_index - find a device by its ifindex
739  *	@net: the applicable net namespace
740  *	@ifindex: index of device
741  *
742  *	Search for an interface by index. Returns %NULL if the device
743  *	is not found or a pointer to the device. The device has not
744  *	had its reference counter increased so the caller must be careful
745  *	about locking. The caller must hold either the RTNL semaphore
746  *	or @dev_base_lock.
747  */
748 
749 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
750 {
751 	struct net_device *dev;
752 	struct hlist_head *head = dev_index_hash(net, ifindex);
753 
754 	hlist_for_each_entry(dev, head, index_hlist)
755 		if (dev->ifindex == ifindex)
756 			return dev;
757 
758 	return NULL;
759 }
760 EXPORT_SYMBOL(__dev_get_by_index);
761 
762 /**
763  *	dev_get_by_index_rcu - find a device by its ifindex
764  *	@net: the applicable net namespace
765  *	@ifindex: index of device
766  *
767  *	Search for an interface by index. Returns %NULL if the device
768  *	is not found or a pointer to the device. The device has not
769  *	had its reference counter increased so the caller must be careful
770  *	about locking. The caller must hold RCU lock.
771  */
772 
773 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
774 {
775 	struct net_device *dev;
776 	struct hlist_head *head = dev_index_hash(net, ifindex);
777 
778 	hlist_for_each_entry_rcu(dev, head, index_hlist)
779 		if (dev->ifindex == ifindex)
780 			return dev;
781 
782 	return NULL;
783 }
784 EXPORT_SYMBOL(dev_get_by_index_rcu);
785 
786 
787 /**
788  *	dev_get_by_index - find a device by its ifindex
789  *	@net: the applicable net namespace
790  *	@ifindex: index of device
791  *
792  *	Search for an interface by index. Returns NULL if the device
793  *	is not found or a pointer to the device. The device returned has
794  *	had a reference added and the pointer is safe until the user calls
795  *	dev_put to indicate they have finished with it.
796  */
797 
798 struct net_device *dev_get_by_index(struct net *net, int ifindex)
799 {
800 	struct net_device *dev;
801 
802 	rcu_read_lock();
803 	dev = dev_get_by_index_rcu(net, ifindex);
804 	if (dev)
805 		dev_hold(dev);
806 	rcu_read_unlock();
807 	return dev;
808 }
809 EXPORT_SYMBOL(dev_get_by_index);
810 
811 /**
812  *	netdev_get_name - get a netdevice name, knowing its ifindex.
813  *	@net: network namespace
814  *	@name: a pointer to the buffer where the name will be stored.
815  *	@ifindex: the ifindex of the interface to get the name from.
816  *
817  *	The use of raw_seqcount_begin() and cond_resched() before
818  *	retrying is required as we want to give the writers a chance
819  *	to complete when CONFIG_PREEMPT is not set.
820  */
821 int netdev_get_name(struct net *net, char *name, int ifindex)
822 {
823 	struct net_device *dev;
824 	unsigned int seq;
825 
826 retry:
827 	seq = raw_seqcount_begin(&devnet_rename_seq);
828 	rcu_read_lock();
829 	dev = dev_get_by_index_rcu(net, ifindex);
830 	if (!dev) {
831 		rcu_read_unlock();
832 		return -ENODEV;
833 	}
834 
835 	strcpy(name, dev->name);
836 	rcu_read_unlock();
837 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
838 		cond_resched();
839 		goto retry;
840 	}
841 
842 	return 0;
843 }
844 
845 /**
846  *	dev_getbyhwaddr_rcu - find a device by its hardware address
847  *	@net: the applicable net namespace
848  *	@type: media type of device
849  *	@ha: hardware address
850  *
851  *	Search for an interface by MAC address. Returns NULL if the device
852  *	is not found or a pointer to the device.
853  *	The caller must hold RCU or RTNL.
854  *	The returned device has not had its ref count increased
855  *	and the caller must therefore be careful about locking
856  *
857  */
858 
859 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
860 				       const char *ha)
861 {
862 	struct net_device *dev;
863 
864 	for_each_netdev_rcu(net, dev)
865 		if (dev->type == type &&
866 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
867 			return dev;
868 
869 	return NULL;
870 }
871 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
872 
873 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
874 {
875 	struct net_device *dev;
876 
877 	ASSERT_RTNL();
878 	for_each_netdev(net, dev)
879 		if (dev->type == type)
880 			return dev;
881 
882 	return NULL;
883 }
884 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
885 
886 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
887 {
888 	struct net_device *dev, *ret = NULL;
889 
890 	rcu_read_lock();
891 	for_each_netdev_rcu(net, dev)
892 		if (dev->type == type) {
893 			dev_hold(dev);
894 			ret = dev;
895 			break;
896 		}
897 	rcu_read_unlock();
898 	return ret;
899 }
900 EXPORT_SYMBOL(dev_getfirstbyhwtype);
901 
902 /**
903  *	__dev_get_by_flags - find any device with given flags
904  *	@net: the applicable net namespace
905  *	@if_flags: IFF_* values
906  *	@mask: bitmask of bits in if_flags to check
907  *
908  *	Search for any interface with the given flags. Returns NULL if a device
909  *	is not found or a pointer to the device. Must be called inside
910  *	rtnl_lock(), and result refcount is unchanged.
911  */
912 
913 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
914 				      unsigned short mask)
915 {
916 	struct net_device *dev, *ret;
917 
918 	ASSERT_RTNL();
919 
920 	ret = NULL;
921 	for_each_netdev(net, dev) {
922 		if (((dev->flags ^ if_flags) & mask) == 0) {
923 			ret = dev;
924 			break;
925 		}
926 	}
927 	return ret;
928 }
929 EXPORT_SYMBOL(__dev_get_by_flags);
930 
931 /**
932  *	dev_valid_name - check if name is okay for network device
933  *	@name: name string
934  *
935  *	Network device names need to be valid file names to
936  *	to allow sysfs to work.  We also disallow any kind of
937  *	whitespace.
938  */
939 bool dev_valid_name(const char *name)
940 {
941 	if (*name == '\0')
942 		return false;
943 	if (strlen(name) >= IFNAMSIZ)
944 		return false;
945 	if (!strcmp(name, ".") || !strcmp(name, ".."))
946 		return false;
947 
948 	while (*name) {
949 		if (*name == '/' || *name == ':' || isspace(*name))
950 			return false;
951 		name++;
952 	}
953 	return true;
954 }
955 EXPORT_SYMBOL(dev_valid_name);
956 
957 /**
958  *	__dev_alloc_name - allocate a name for a device
959  *	@net: network namespace to allocate the device name in
960  *	@name: name format string
961  *	@buf:  scratch buffer and result name string
962  *
963  *	Passed a format string - eg "lt%d" it will try and find a suitable
964  *	id. It scans list of devices to build up a free map, then chooses
965  *	the first empty slot. The caller must hold the dev_base or rtnl lock
966  *	while allocating the name and adding the device in order to avoid
967  *	duplicates.
968  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
969  *	Returns the number of the unit assigned or a negative errno code.
970  */
971 
972 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
973 {
974 	int i = 0;
975 	const char *p;
976 	const int max_netdevices = 8*PAGE_SIZE;
977 	unsigned long *inuse;
978 	struct net_device *d;
979 
980 	p = strnchr(name, IFNAMSIZ-1, '%');
981 	if (p) {
982 		/*
983 		 * Verify the string as this thing may have come from
984 		 * the user.  There must be either one "%d" and no other "%"
985 		 * characters.
986 		 */
987 		if (p[1] != 'd' || strchr(p + 2, '%'))
988 			return -EINVAL;
989 
990 		/* Use one page as a bit array of possible slots */
991 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
992 		if (!inuse)
993 			return -ENOMEM;
994 
995 		for_each_netdev(net, d) {
996 			if (!sscanf(d->name, name, &i))
997 				continue;
998 			if (i < 0 || i >= max_netdevices)
999 				continue;
1000 
1001 			/*  avoid cases where sscanf is not exact inverse of printf */
1002 			snprintf(buf, IFNAMSIZ, name, i);
1003 			if (!strncmp(buf, d->name, IFNAMSIZ))
1004 				set_bit(i, inuse);
1005 		}
1006 
1007 		i = find_first_zero_bit(inuse, max_netdevices);
1008 		free_page((unsigned long) inuse);
1009 	}
1010 
1011 	if (buf != name)
1012 		snprintf(buf, IFNAMSIZ, name, i);
1013 	if (!__dev_get_by_name(net, buf))
1014 		return i;
1015 
1016 	/* It is possible to run out of possible slots
1017 	 * when the name is long and there isn't enough space left
1018 	 * for the digits, or if all bits are used.
1019 	 */
1020 	return -ENFILE;
1021 }
1022 
1023 /**
1024  *	dev_alloc_name - allocate a name for a device
1025  *	@dev: device
1026  *	@name: name format string
1027  *
1028  *	Passed a format string - eg "lt%d" it will try and find a suitable
1029  *	id. It scans list of devices to build up a free map, then chooses
1030  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1031  *	while allocating the name and adding the device in order to avoid
1032  *	duplicates.
1033  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1034  *	Returns the number of the unit assigned or a negative errno code.
1035  */
1036 
1037 int dev_alloc_name(struct net_device *dev, const char *name)
1038 {
1039 	char buf[IFNAMSIZ];
1040 	struct net *net;
1041 	int ret;
1042 
1043 	BUG_ON(!dev_net(dev));
1044 	net = dev_net(dev);
1045 	ret = __dev_alloc_name(net, name, buf);
1046 	if (ret >= 0)
1047 		strlcpy(dev->name, buf, IFNAMSIZ);
1048 	return ret;
1049 }
1050 EXPORT_SYMBOL(dev_alloc_name);
1051 
1052 static int dev_alloc_name_ns(struct net *net,
1053 			     struct net_device *dev,
1054 			     const char *name)
1055 {
1056 	char buf[IFNAMSIZ];
1057 	int ret;
1058 
1059 	ret = __dev_alloc_name(net, name, buf);
1060 	if (ret >= 0)
1061 		strlcpy(dev->name, buf, IFNAMSIZ);
1062 	return ret;
1063 }
1064 
1065 static int dev_get_valid_name(struct net *net,
1066 			      struct net_device *dev,
1067 			      const char *name)
1068 {
1069 	BUG_ON(!net);
1070 
1071 	if (!dev_valid_name(name))
1072 		return -EINVAL;
1073 
1074 	if (strchr(name, '%'))
1075 		return dev_alloc_name_ns(net, dev, name);
1076 	else if (__dev_get_by_name(net, name))
1077 		return -EEXIST;
1078 	else if (dev->name != name)
1079 		strlcpy(dev->name, name, IFNAMSIZ);
1080 
1081 	return 0;
1082 }
1083 
1084 /**
1085  *	dev_change_name - change name of a device
1086  *	@dev: device
1087  *	@newname: name (or format string) must be at least IFNAMSIZ
1088  *
1089  *	Change name of a device, can pass format strings "eth%d".
1090  *	for wildcarding.
1091  */
1092 int dev_change_name(struct net_device *dev, const char *newname)
1093 {
1094 	unsigned char old_assign_type;
1095 	char oldname[IFNAMSIZ];
1096 	int err = 0;
1097 	int ret;
1098 	struct net *net;
1099 
1100 	ASSERT_RTNL();
1101 	BUG_ON(!dev_net(dev));
1102 
1103 	net = dev_net(dev);
1104 	if (dev->flags & IFF_UP)
1105 		return -EBUSY;
1106 
1107 	write_seqcount_begin(&devnet_rename_seq);
1108 
1109 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1110 		write_seqcount_end(&devnet_rename_seq);
1111 		return 0;
1112 	}
1113 
1114 	memcpy(oldname, dev->name, IFNAMSIZ);
1115 
1116 	err = dev_get_valid_name(net, dev, newname);
1117 	if (err < 0) {
1118 		write_seqcount_end(&devnet_rename_seq);
1119 		return err;
1120 	}
1121 
1122 	if (oldname[0] && !strchr(oldname, '%'))
1123 		netdev_info(dev, "renamed from %s\n", oldname);
1124 
1125 	old_assign_type = dev->name_assign_type;
1126 	dev->name_assign_type = NET_NAME_RENAMED;
1127 
1128 rollback:
1129 	ret = device_rename(&dev->dev, dev->name);
1130 	if (ret) {
1131 		memcpy(dev->name, oldname, IFNAMSIZ);
1132 		dev->name_assign_type = old_assign_type;
1133 		write_seqcount_end(&devnet_rename_seq);
1134 		return ret;
1135 	}
1136 
1137 	write_seqcount_end(&devnet_rename_seq);
1138 
1139 	netdev_adjacent_rename_links(dev, oldname);
1140 
1141 	write_lock_bh(&dev_base_lock);
1142 	hlist_del_rcu(&dev->name_hlist);
1143 	write_unlock_bh(&dev_base_lock);
1144 
1145 	synchronize_rcu();
1146 
1147 	write_lock_bh(&dev_base_lock);
1148 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1149 	write_unlock_bh(&dev_base_lock);
1150 
1151 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1152 	ret = notifier_to_errno(ret);
1153 
1154 	if (ret) {
1155 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1156 		if (err >= 0) {
1157 			err = ret;
1158 			write_seqcount_begin(&devnet_rename_seq);
1159 			memcpy(dev->name, oldname, IFNAMSIZ);
1160 			memcpy(oldname, newname, IFNAMSIZ);
1161 			dev->name_assign_type = old_assign_type;
1162 			old_assign_type = NET_NAME_RENAMED;
1163 			goto rollback;
1164 		} else {
1165 			pr_err("%s: name change rollback failed: %d\n",
1166 			       dev->name, ret);
1167 		}
1168 	}
1169 
1170 	return err;
1171 }
1172 
1173 /**
1174  *	dev_set_alias - change ifalias of a device
1175  *	@dev: device
1176  *	@alias: name up to IFALIASZ
1177  *	@len: limit of bytes to copy from info
1178  *
1179  *	Set ifalias for a device,
1180  */
1181 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1182 {
1183 	char *new_ifalias;
1184 
1185 	ASSERT_RTNL();
1186 
1187 	if (len >= IFALIASZ)
1188 		return -EINVAL;
1189 
1190 	if (!len) {
1191 		kfree(dev->ifalias);
1192 		dev->ifalias = NULL;
1193 		return 0;
1194 	}
1195 
1196 	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1197 	if (!new_ifalias)
1198 		return -ENOMEM;
1199 	dev->ifalias = new_ifalias;
1200 
1201 	strlcpy(dev->ifalias, alias, len+1);
1202 	return len;
1203 }
1204 
1205 
1206 /**
1207  *	netdev_features_change - device changes features
1208  *	@dev: device to cause notification
1209  *
1210  *	Called to indicate a device has changed features.
1211  */
1212 void netdev_features_change(struct net_device *dev)
1213 {
1214 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1215 }
1216 EXPORT_SYMBOL(netdev_features_change);
1217 
1218 /**
1219  *	netdev_state_change - device changes state
1220  *	@dev: device to cause notification
1221  *
1222  *	Called to indicate a device has changed state. This function calls
1223  *	the notifier chains for netdev_chain and sends a NEWLINK message
1224  *	to the routing socket.
1225  */
1226 void netdev_state_change(struct net_device *dev)
1227 {
1228 	if (dev->flags & IFF_UP) {
1229 		struct netdev_notifier_change_info change_info;
1230 
1231 		change_info.flags_changed = 0;
1232 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1233 					      &change_info.info);
1234 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1235 	}
1236 }
1237 EXPORT_SYMBOL(netdev_state_change);
1238 
1239 /**
1240  * 	netdev_notify_peers - notify network peers about existence of @dev
1241  * 	@dev: network device
1242  *
1243  * Generate traffic such that interested network peers are aware of
1244  * @dev, such as by generating a gratuitous ARP. This may be used when
1245  * a device wants to inform the rest of the network about some sort of
1246  * reconfiguration such as a failover event or virtual machine
1247  * migration.
1248  */
1249 void netdev_notify_peers(struct net_device *dev)
1250 {
1251 	rtnl_lock();
1252 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1253 	rtnl_unlock();
1254 }
1255 EXPORT_SYMBOL(netdev_notify_peers);
1256 
1257 static int __dev_open(struct net_device *dev)
1258 {
1259 	const struct net_device_ops *ops = dev->netdev_ops;
1260 	int ret;
1261 
1262 	ASSERT_RTNL();
1263 
1264 	if (!netif_device_present(dev))
1265 		return -ENODEV;
1266 
1267 	/* Block netpoll from trying to do any rx path servicing.
1268 	 * If we don't do this there is a chance ndo_poll_controller
1269 	 * or ndo_poll may be running while we open the device
1270 	 */
1271 	netpoll_poll_disable(dev);
1272 
1273 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1274 	ret = notifier_to_errno(ret);
1275 	if (ret)
1276 		return ret;
1277 
1278 	set_bit(__LINK_STATE_START, &dev->state);
1279 
1280 	if (ops->ndo_validate_addr)
1281 		ret = ops->ndo_validate_addr(dev);
1282 
1283 	if (!ret && ops->ndo_open)
1284 		ret = ops->ndo_open(dev);
1285 
1286 	netpoll_poll_enable(dev);
1287 
1288 	if (ret)
1289 		clear_bit(__LINK_STATE_START, &dev->state);
1290 	else {
1291 		dev->flags |= IFF_UP;
1292 		dev_set_rx_mode(dev);
1293 		dev_activate(dev);
1294 		add_device_randomness(dev->dev_addr, dev->addr_len);
1295 	}
1296 
1297 	return ret;
1298 }
1299 
1300 /**
1301  *	dev_open	- prepare an interface for use.
1302  *	@dev:	device to open
1303  *
1304  *	Takes a device from down to up state. The device's private open
1305  *	function is invoked and then the multicast lists are loaded. Finally
1306  *	the device is moved into the up state and a %NETDEV_UP message is
1307  *	sent to the netdev notifier chain.
1308  *
1309  *	Calling this function on an active interface is a nop. On a failure
1310  *	a negative errno code is returned.
1311  */
1312 int dev_open(struct net_device *dev)
1313 {
1314 	int ret;
1315 
1316 	if (dev->flags & IFF_UP)
1317 		return 0;
1318 
1319 	ret = __dev_open(dev);
1320 	if (ret < 0)
1321 		return ret;
1322 
1323 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1324 	call_netdevice_notifiers(NETDEV_UP, dev);
1325 
1326 	return ret;
1327 }
1328 EXPORT_SYMBOL(dev_open);
1329 
1330 static int __dev_close_many(struct list_head *head)
1331 {
1332 	struct net_device *dev;
1333 
1334 	ASSERT_RTNL();
1335 	might_sleep();
1336 
1337 	list_for_each_entry(dev, head, close_list) {
1338 		/* Temporarily disable netpoll until the interface is down */
1339 		netpoll_poll_disable(dev);
1340 
1341 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1342 
1343 		clear_bit(__LINK_STATE_START, &dev->state);
1344 
1345 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1346 		 * can be even on different cpu. So just clear netif_running().
1347 		 *
1348 		 * dev->stop() will invoke napi_disable() on all of it's
1349 		 * napi_struct instances on this device.
1350 		 */
1351 		smp_mb__after_atomic(); /* Commit netif_running(). */
1352 	}
1353 
1354 	dev_deactivate_many(head);
1355 
1356 	list_for_each_entry(dev, head, close_list) {
1357 		const struct net_device_ops *ops = dev->netdev_ops;
1358 
1359 		/*
1360 		 *	Call the device specific close. This cannot fail.
1361 		 *	Only if device is UP
1362 		 *
1363 		 *	We allow it to be called even after a DETACH hot-plug
1364 		 *	event.
1365 		 */
1366 		if (ops->ndo_stop)
1367 			ops->ndo_stop(dev);
1368 
1369 		dev->flags &= ~IFF_UP;
1370 		netpoll_poll_enable(dev);
1371 	}
1372 
1373 	return 0;
1374 }
1375 
1376 static int __dev_close(struct net_device *dev)
1377 {
1378 	int retval;
1379 	LIST_HEAD(single);
1380 
1381 	list_add(&dev->close_list, &single);
1382 	retval = __dev_close_many(&single);
1383 	list_del(&single);
1384 
1385 	return retval;
1386 }
1387 
1388 static int dev_close_many(struct list_head *head)
1389 {
1390 	struct net_device *dev, *tmp;
1391 
1392 	/* Remove the devices that don't need to be closed */
1393 	list_for_each_entry_safe(dev, tmp, head, close_list)
1394 		if (!(dev->flags & IFF_UP))
1395 			list_del_init(&dev->close_list);
1396 
1397 	__dev_close_many(head);
1398 
1399 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1400 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1401 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1402 		list_del_init(&dev->close_list);
1403 	}
1404 
1405 	return 0;
1406 }
1407 
1408 /**
1409  *	dev_close - shutdown an interface.
1410  *	@dev: device to shutdown
1411  *
1412  *	This function moves an active device into down state. A
1413  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1414  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1415  *	chain.
1416  */
1417 int dev_close(struct net_device *dev)
1418 {
1419 	if (dev->flags & IFF_UP) {
1420 		LIST_HEAD(single);
1421 
1422 		list_add(&dev->close_list, &single);
1423 		dev_close_many(&single);
1424 		list_del(&single);
1425 	}
1426 	return 0;
1427 }
1428 EXPORT_SYMBOL(dev_close);
1429 
1430 
1431 /**
1432  *	dev_disable_lro - disable Large Receive Offload on a device
1433  *	@dev: device
1434  *
1435  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1436  *	called under RTNL.  This is needed if received packets may be
1437  *	forwarded to another interface.
1438  */
1439 void dev_disable_lro(struct net_device *dev)
1440 {
1441 	struct net_device *lower_dev;
1442 	struct list_head *iter;
1443 
1444 	dev->wanted_features &= ~NETIF_F_LRO;
1445 	netdev_update_features(dev);
1446 
1447 	if (unlikely(dev->features & NETIF_F_LRO))
1448 		netdev_WARN(dev, "failed to disable LRO!\n");
1449 
1450 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1451 		dev_disable_lro(lower_dev);
1452 }
1453 EXPORT_SYMBOL(dev_disable_lro);
1454 
1455 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1456 				   struct net_device *dev)
1457 {
1458 	struct netdev_notifier_info info;
1459 
1460 	netdev_notifier_info_init(&info, dev);
1461 	return nb->notifier_call(nb, val, &info);
1462 }
1463 
1464 static int dev_boot_phase = 1;
1465 
1466 /**
1467  *	register_netdevice_notifier - register a network notifier block
1468  *	@nb: notifier
1469  *
1470  *	Register a notifier to be called when network device events occur.
1471  *	The notifier passed is linked into the kernel structures and must
1472  *	not be reused until it has been unregistered. A negative errno code
1473  *	is returned on a failure.
1474  *
1475  * 	When registered all registration and up events are replayed
1476  *	to the new notifier to allow device to have a race free
1477  *	view of the network device list.
1478  */
1479 
1480 int register_netdevice_notifier(struct notifier_block *nb)
1481 {
1482 	struct net_device *dev;
1483 	struct net_device *last;
1484 	struct net *net;
1485 	int err;
1486 
1487 	rtnl_lock();
1488 	err = raw_notifier_chain_register(&netdev_chain, nb);
1489 	if (err)
1490 		goto unlock;
1491 	if (dev_boot_phase)
1492 		goto unlock;
1493 	for_each_net(net) {
1494 		for_each_netdev(net, dev) {
1495 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1496 			err = notifier_to_errno(err);
1497 			if (err)
1498 				goto rollback;
1499 
1500 			if (!(dev->flags & IFF_UP))
1501 				continue;
1502 
1503 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1504 		}
1505 	}
1506 
1507 unlock:
1508 	rtnl_unlock();
1509 	return err;
1510 
1511 rollback:
1512 	last = dev;
1513 	for_each_net(net) {
1514 		for_each_netdev(net, dev) {
1515 			if (dev == last)
1516 				goto outroll;
1517 
1518 			if (dev->flags & IFF_UP) {
1519 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1520 							dev);
1521 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1522 			}
1523 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1524 		}
1525 	}
1526 
1527 outroll:
1528 	raw_notifier_chain_unregister(&netdev_chain, nb);
1529 	goto unlock;
1530 }
1531 EXPORT_SYMBOL(register_netdevice_notifier);
1532 
1533 /**
1534  *	unregister_netdevice_notifier - unregister a network notifier block
1535  *	@nb: notifier
1536  *
1537  *	Unregister a notifier previously registered by
1538  *	register_netdevice_notifier(). The notifier is unlinked into the
1539  *	kernel structures and may then be reused. A negative errno code
1540  *	is returned on a failure.
1541  *
1542  * 	After unregistering unregister and down device events are synthesized
1543  *	for all devices on the device list to the removed notifier to remove
1544  *	the need for special case cleanup code.
1545  */
1546 
1547 int unregister_netdevice_notifier(struct notifier_block *nb)
1548 {
1549 	struct net_device *dev;
1550 	struct net *net;
1551 	int err;
1552 
1553 	rtnl_lock();
1554 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1555 	if (err)
1556 		goto unlock;
1557 
1558 	for_each_net(net) {
1559 		for_each_netdev(net, dev) {
1560 			if (dev->flags & IFF_UP) {
1561 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1562 							dev);
1563 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1564 			}
1565 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1566 		}
1567 	}
1568 unlock:
1569 	rtnl_unlock();
1570 	return err;
1571 }
1572 EXPORT_SYMBOL(unregister_netdevice_notifier);
1573 
1574 /**
1575  *	call_netdevice_notifiers_info - call all network notifier blocks
1576  *	@val: value passed unmodified to notifier function
1577  *	@dev: net_device pointer passed unmodified to notifier function
1578  *	@info: notifier information data
1579  *
1580  *	Call all network notifier blocks.  Parameters and return value
1581  *	are as for raw_notifier_call_chain().
1582  */
1583 
1584 static int call_netdevice_notifiers_info(unsigned long val,
1585 					 struct net_device *dev,
1586 					 struct netdev_notifier_info *info)
1587 {
1588 	ASSERT_RTNL();
1589 	netdev_notifier_info_init(info, dev);
1590 	return raw_notifier_call_chain(&netdev_chain, val, info);
1591 }
1592 
1593 /**
1594  *	call_netdevice_notifiers - call all network notifier blocks
1595  *      @val: value passed unmodified to notifier function
1596  *      @dev: net_device pointer passed unmodified to notifier function
1597  *
1598  *	Call all network notifier blocks.  Parameters and return value
1599  *	are as for raw_notifier_call_chain().
1600  */
1601 
1602 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1603 {
1604 	struct netdev_notifier_info info;
1605 
1606 	return call_netdevice_notifiers_info(val, dev, &info);
1607 }
1608 EXPORT_SYMBOL(call_netdevice_notifiers);
1609 
1610 static struct static_key netstamp_needed __read_mostly;
1611 #ifdef HAVE_JUMP_LABEL
1612 /* We are not allowed to call static_key_slow_dec() from irq context
1613  * If net_disable_timestamp() is called from irq context, defer the
1614  * static_key_slow_dec() calls.
1615  */
1616 static atomic_t netstamp_needed_deferred;
1617 #endif
1618 
1619 void net_enable_timestamp(void)
1620 {
1621 #ifdef HAVE_JUMP_LABEL
1622 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1623 
1624 	if (deferred) {
1625 		while (--deferred)
1626 			static_key_slow_dec(&netstamp_needed);
1627 		return;
1628 	}
1629 #endif
1630 	static_key_slow_inc(&netstamp_needed);
1631 }
1632 EXPORT_SYMBOL(net_enable_timestamp);
1633 
1634 void net_disable_timestamp(void)
1635 {
1636 #ifdef HAVE_JUMP_LABEL
1637 	if (in_interrupt()) {
1638 		atomic_inc(&netstamp_needed_deferred);
1639 		return;
1640 	}
1641 #endif
1642 	static_key_slow_dec(&netstamp_needed);
1643 }
1644 EXPORT_SYMBOL(net_disable_timestamp);
1645 
1646 static inline void net_timestamp_set(struct sk_buff *skb)
1647 {
1648 	skb->tstamp.tv64 = 0;
1649 	if (static_key_false(&netstamp_needed))
1650 		__net_timestamp(skb);
1651 }
1652 
1653 #define net_timestamp_check(COND, SKB)			\
1654 	if (static_key_false(&netstamp_needed)) {		\
1655 		if ((COND) && !(SKB)->tstamp.tv64)	\
1656 			__net_timestamp(SKB);		\
1657 	}						\
1658 
1659 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1660 {
1661 	unsigned int len;
1662 
1663 	if (!(dev->flags & IFF_UP))
1664 		return false;
1665 
1666 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1667 	if (skb->len <= len)
1668 		return true;
1669 
1670 	/* if TSO is enabled, we don't care about the length as the packet
1671 	 * could be forwarded without being segmented before
1672 	 */
1673 	if (skb_is_gso(skb))
1674 		return true;
1675 
1676 	return false;
1677 }
1678 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1679 
1680 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1681 {
1682 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1683 		if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1684 			atomic_long_inc(&dev->rx_dropped);
1685 			kfree_skb(skb);
1686 			return NET_RX_DROP;
1687 		}
1688 	}
1689 
1690 	if (unlikely(!is_skb_forwardable(dev, skb))) {
1691 		atomic_long_inc(&dev->rx_dropped);
1692 		kfree_skb(skb);
1693 		return NET_RX_DROP;
1694 	}
1695 
1696 	skb_scrub_packet(skb, true);
1697 	skb->protocol = eth_type_trans(skb, dev);
1698 	skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1699 
1700 	return 0;
1701 }
1702 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1703 
1704 /**
1705  * dev_forward_skb - loopback an skb to another netif
1706  *
1707  * @dev: destination network device
1708  * @skb: buffer to forward
1709  *
1710  * return values:
1711  *	NET_RX_SUCCESS	(no congestion)
1712  *	NET_RX_DROP     (packet was dropped, but freed)
1713  *
1714  * dev_forward_skb can be used for injecting an skb from the
1715  * start_xmit function of one device into the receive queue
1716  * of another device.
1717  *
1718  * The receiving device may be in another namespace, so
1719  * we have to clear all information in the skb that could
1720  * impact namespace isolation.
1721  */
1722 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1723 {
1724 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1725 }
1726 EXPORT_SYMBOL_GPL(dev_forward_skb);
1727 
1728 static inline int deliver_skb(struct sk_buff *skb,
1729 			      struct packet_type *pt_prev,
1730 			      struct net_device *orig_dev)
1731 {
1732 	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1733 		return -ENOMEM;
1734 	atomic_inc(&skb->users);
1735 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1736 }
1737 
1738 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1739 					  struct packet_type **pt,
1740 					  struct net_device *dev, __be16 type,
1741 					  struct list_head *ptype_list)
1742 {
1743 	struct packet_type *ptype, *pt_prev = *pt;
1744 
1745 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1746 		if (ptype->type != type)
1747 			continue;
1748 		if (pt_prev)
1749 			deliver_skb(skb, pt_prev, dev);
1750 		pt_prev = ptype;
1751 	}
1752 	*pt = pt_prev;
1753 }
1754 
1755 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1756 {
1757 	if (!ptype->af_packet_priv || !skb->sk)
1758 		return false;
1759 
1760 	if (ptype->id_match)
1761 		return ptype->id_match(ptype, skb->sk);
1762 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1763 		return true;
1764 
1765 	return false;
1766 }
1767 
1768 /*
1769  *	Support routine. Sends outgoing frames to any network
1770  *	taps currently in use.
1771  */
1772 
1773 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1774 {
1775 	struct packet_type *ptype;
1776 	struct sk_buff *skb2 = NULL;
1777 	struct packet_type *pt_prev = NULL;
1778 	struct list_head *ptype_list = &ptype_all;
1779 
1780 	rcu_read_lock();
1781 again:
1782 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1783 		/* Never send packets back to the socket
1784 		 * they originated from - MvS (miquels@drinkel.ow.org)
1785 		 */
1786 		if (skb_loop_sk(ptype, skb))
1787 			continue;
1788 
1789 		if (pt_prev) {
1790 			deliver_skb(skb2, pt_prev, skb->dev);
1791 			pt_prev = ptype;
1792 			continue;
1793 		}
1794 
1795 		/* need to clone skb, done only once */
1796 		skb2 = skb_clone(skb, GFP_ATOMIC);
1797 		if (!skb2)
1798 			goto out_unlock;
1799 
1800 		net_timestamp_set(skb2);
1801 
1802 		/* skb->nh should be correctly
1803 		 * set by sender, so that the second statement is
1804 		 * just protection against buggy protocols.
1805 		 */
1806 		skb_reset_mac_header(skb2);
1807 
1808 		if (skb_network_header(skb2) < skb2->data ||
1809 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1810 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1811 					     ntohs(skb2->protocol),
1812 					     dev->name);
1813 			skb_reset_network_header(skb2);
1814 		}
1815 
1816 		skb2->transport_header = skb2->network_header;
1817 		skb2->pkt_type = PACKET_OUTGOING;
1818 		pt_prev = ptype;
1819 	}
1820 
1821 	if (ptype_list == &ptype_all) {
1822 		ptype_list = &dev->ptype_all;
1823 		goto again;
1824 	}
1825 out_unlock:
1826 	if (pt_prev)
1827 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1828 	rcu_read_unlock();
1829 }
1830 
1831 /**
1832  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1833  * @dev: Network device
1834  * @txq: number of queues available
1835  *
1836  * If real_num_tx_queues is changed the tc mappings may no longer be
1837  * valid. To resolve this verify the tc mapping remains valid and if
1838  * not NULL the mapping. With no priorities mapping to this
1839  * offset/count pair it will no longer be used. In the worst case TC0
1840  * is invalid nothing can be done so disable priority mappings. If is
1841  * expected that drivers will fix this mapping if they can before
1842  * calling netif_set_real_num_tx_queues.
1843  */
1844 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1845 {
1846 	int i;
1847 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1848 
1849 	/* If TC0 is invalidated disable TC mapping */
1850 	if (tc->offset + tc->count > txq) {
1851 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1852 		dev->num_tc = 0;
1853 		return;
1854 	}
1855 
1856 	/* Invalidated prio to tc mappings set to TC0 */
1857 	for (i = 1; i < TC_BITMASK + 1; i++) {
1858 		int q = netdev_get_prio_tc_map(dev, i);
1859 
1860 		tc = &dev->tc_to_txq[q];
1861 		if (tc->offset + tc->count > txq) {
1862 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1863 				i, q);
1864 			netdev_set_prio_tc_map(dev, i, 0);
1865 		}
1866 	}
1867 }
1868 
1869 #ifdef CONFIG_XPS
1870 static DEFINE_MUTEX(xps_map_mutex);
1871 #define xmap_dereference(P)		\
1872 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1873 
1874 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1875 					int cpu, u16 index)
1876 {
1877 	struct xps_map *map = NULL;
1878 	int pos;
1879 
1880 	if (dev_maps)
1881 		map = xmap_dereference(dev_maps->cpu_map[cpu]);
1882 
1883 	for (pos = 0; map && pos < map->len; pos++) {
1884 		if (map->queues[pos] == index) {
1885 			if (map->len > 1) {
1886 				map->queues[pos] = map->queues[--map->len];
1887 			} else {
1888 				RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1889 				kfree_rcu(map, rcu);
1890 				map = NULL;
1891 			}
1892 			break;
1893 		}
1894 	}
1895 
1896 	return map;
1897 }
1898 
1899 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1900 {
1901 	struct xps_dev_maps *dev_maps;
1902 	int cpu, i;
1903 	bool active = false;
1904 
1905 	mutex_lock(&xps_map_mutex);
1906 	dev_maps = xmap_dereference(dev->xps_maps);
1907 
1908 	if (!dev_maps)
1909 		goto out_no_maps;
1910 
1911 	for_each_possible_cpu(cpu) {
1912 		for (i = index; i < dev->num_tx_queues; i++) {
1913 			if (!remove_xps_queue(dev_maps, cpu, i))
1914 				break;
1915 		}
1916 		if (i == dev->num_tx_queues)
1917 			active = true;
1918 	}
1919 
1920 	if (!active) {
1921 		RCU_INIT_POINTER(dev->xps_maps, NULL);
1922 		kfree_rcu(dev_maps, rcu);
1923 	}
1924 
1925 	for (i = index; i < dev->num_tx_queues; i++)
1926 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1927 					     NUMA_NO_NODE);
1928 
1929 out_no_maps:
1930 	mutex_unlock(&xps_map_mutex);
1931 }
1932 
1933 static struct xps_map *expand_xps_map(struct xps_map *map,
1934 				      int cpu, u16 index)
1935 {
1936 	struct xps_map *new_map;
1937 	int alloc_len = XPS_MIN_MAP_ALLOC;
1938 	int i, pos;
1939 
1940 	for (pos = 0; map && pos < map->len; pos++) {
1941 		if (map->queues[pos] != index)
1942 			continue;
1943 		return map;
1944 	}
1945 
1946 	/* Need to add queue to this CPU's existing map */
1947 	if (map) {
1948 		if (pos < map->alloc_len)
1949 			return map;
1950 
1951 		alloc_len = map->alloc_len * 2;
1952 	}
1953 
1954 	/* Need to allocate new map to store queue on this CPU's map */
1955 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1956 			       cpu_to_node(cpu));
1957 	if (!new_map)
1958 		return NULL;
1959 
1960 	for (i = 0; i < pos; i++)
1961 		new_map->queues[i] = map->queues[i];
1962 	new_map->alloc_len = alloc_len;
1963 	new_map->len = pos;
1964 
1965 	return new_map;
1966 }
1967 
1968 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1969 			u16 index)
1970 {
1971 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1972 	struct xps_map *map, *new_map;
1973 	int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1974 	int cpu, numa_node_id = -2;
1975 	bool active = false;
1976 
1977 	mutex_lock(&xps_map_mutex);
1978 
1979 	dev_maps = xmap_dereference(dev->xps_maps);
1980 
1981 	/* allocate memory for queue storage */
1982 	for_each_online_cpu(cpu) {
1983 		if (!cpumask_test_cpu(cpu, mask))
1984 			continue;
1985 
1986 		if (!new_dev_maps)
1987 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1988 		if (!new_dev_maps) {
1989 			mutex_unlock(&xps_map_mutex);
1990 			return -ENOMEM;
1991 		}
1992 
1993 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1994 				 NULL;
1995 
1996 		map = expand_xps_map(map, cpu, index);
1997 		if (!map)
1998 			goto error;
1999 
2000 		RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2001 	}
2002 
2003 	if (!new_dev_maps)
2004 		goto out_no_new_maps;
2005 
2006 	for_each_possible_cpu(cpu) {
2007 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2008 			/* add queue to CPU maps */
2009 			int pos = 0;
2010 
2011 			map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2012 			while ((pos < map->len) && (map->queues[pos] != index))
2013 				pos++;
2014 
2015 			if (pos == map->len)
2016 				map->queues[map->len++] = index;
2017 #ifdef CONFIG_NUMA
2018 			if (numa_node_id == -2)
2019 				numa_node_id = cpu_to_node(cpu);
2020 			else if (numa_node_id != cpu_to_node(cpu))
2021 				numa_node_id = -1;
2022 #endif
2023 		} else if (dev_maps) {
2024 			/* fill in the new device map from the old device map */
2025 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
2026 			RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2027 		}
2028 
2029 	}
2030 
2031 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2032 
2033 	/* Cleanup old maps */
2034 	if (dev_maps) {
2035 		for_each_possible_cpu(cpu) {
2036 			new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2037 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
2038 			if (map && map != new_map)
2039 				kfree_rcu(map, rcu);
2040 		}
2041 
2042 		kfree_rcu(dev_maps, rcu);
2043 	}
2044 
2045 	dev_maps = new_dev_maps;
2046 	active = true;
2047 
2048 out_no_new_maps:
2049 	/* update Tx queue numa node */
2050 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2051 				     (numa_node_id >= 0) ? numa_node_id :
2052 				     NUMA_NO_NODE);
2053 
2054 	if (!dev_maps)
2055 		goto out_no_maps;
2056 
2057 	/* removes queue from unused CPUs */
2058 	for_each_possible_cpu(cpu) {
2059 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2060 			continue;
2061 
2062 		if (remove_xps_queue(dev_maps, cpu, index))
2063 			active = true;
2064 	}
2065 
2066 	/* free map if not active */
2067 	if (!active) {
2068 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2069 		kfree_rcu(dev_maps, rcu);
2070 	}
2071 
2072 out_no_maps:
2073 	mutex_unlock(&xps_map_mutex);
2074 
2075 	return 0;
2076 error:
2077 	/* remove any maps that we added */
2078 	for_each_possible_cpu(cpu) {
2079 		new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2080 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2081 				 NULL;
2082 		if (new_map && new_map != map)
2083 			kfree(new_map);
2084 	}
2085 
2086 	mutex_unlock(&xps_map_mutex);
2087 
2088 	kfree(new_dev_maps);
2089 	return -ENOMEM;
2090 }
2091 EXPORT_SYMBOL(netif_set_xps_queue);
2092 
2093 #endif
2094 /*
2095  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2096  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2097  */
2098 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2099 {
2100 	int rc;
2101 
2102 	if (txq < 1 || txq > dev->num_tx_queues)
2103 		return -EINVAL;
2104 
2105 	if (dev->reg_state == NETREG_REGISTERED ||
2106 	    dev->reg_state == NETREG_UNREGISTERING) {
2107 		ASSERT_RTNL();
2108 
2109 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2110 						  txq);
2111 		if (rc)
2112 			return rc;
2113 
2114 		if (dev->num_tc)
2115 			netif_setup_tc(dev, txq);
2116 
2117 		if (txq < dev->real_num_tx_queues) {
2118 			qdisc_reset_all_tx_gt(dev, txq);
2119 #ifdef CONFIG_XPS
2120 			netif_reset_xps_queues_gt(dev, txq);
2121 #endif
2122 		}
2123 	}
2124 
2125 	dev->real_num_tx_queues = txq;
2126 	return 0;
2127 }
2128 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2129 
2130 #ifdef CONFIG_SYSFS
2131 /**
2132  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2133  *	@dev: Network device
2134  *	@rxq: Actual number of RX queues
2135  *
2136  *	This must be called either with the rtnl_lock held or before
2137  *	registration of the net device.  Returns 0 on success, or a
2138  *	negative error code.  If called before registration, it always
2139  *	succeeds.
2140  */
2141 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2142 {
2143 	int rc;
2144 
2145 	if (rxq < 1 || rxq > dev->num_rx_queues)
2146 		return -EINVAL;
2147 
2148 	if (dev->reg_state == NETREG_REGISTERED) {
2149 		ASSERT_RTNL();
2150 
2151 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2152 						  rxq);
2153 		if (rc)
2154 			return rc;
2155 	}
2156 
2157 	dev->real_num_rx_queues = rxq;
2158 	return 0;
2159 }
2160 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2161 #endif
2162 
2163 /**
2164  * netif_get_num_default_rss_queues - default number of RSS queues
2165  *
2166  * This routine should set an upper limit on the number of RSS queues
2167  * used by default by multiqueue devices.
2168  */
2169 int netif_get_num_default_rss_queues(void)
2170 {
2171 	return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2172 }
2173 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2174 
2175 static inline void __netif_reschedule(struct Qdisc *q)
2176 {
2177 	struct softnet_data *sd;
2178 	unsigned long flags;
2179 
2180 	local_irq_save(flags);
2181 	sd = this_cpu_ptr(&softnet_data);
2182 	q->next_sched = NULL;
2183 	*sd->output_queue_tailp = q;
2184 	sd->output_queue_tailp = &q->next_sched;
2185 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2186 	local_irq_restore(flags);
2187 }
2188 
2189 void __netif_schedule(struct Qdisc *q)
2190 {
2191 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2192 		__netif_reschedule(q);
2193 }
2194 EXPORT_SYMBOL(__netif_schedule);
2195 
2196 struct dev_kfree_skb_cb {
2197 	enum skb_free_reason reason;
2198 };
2199 
2200 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2201 {
2202 	return (struct dev_kfree_skb_cb *)skb->cb;
2203 }
2204 
2205 void netif_schedule_queue(struct netdev_queue *txq)
2206 {
2207 	rcu_read_lock();
2208 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2209 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2210 
2211 		__netif_schedule(q);
2212 	}
2213 	rcu_read_unlock();
2214 }
2215 EXPORT_SYMBOL(netif_schedule_queue);
2216 
2217 /**
2218  *	netif_wake_subqueue - allow sending packets on subqueue
2219  *	@dev: network device
2220  *	@queue_index: sub queue index
2221  *
2222  * Resume individual transmit queue of a device with multiple transmit queues.
2223  */
2224 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2225 {
2226 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2227 
2228 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2229 		struct Qdisc *q;
2230 
2231 		rcu_read_lock();
2232 		q = rcu_dereference(txq->qdisc);
2233 		__netif_schedule(q);
2234 		rcu_read_unlock();
2235 	}
2236 }
2237 EXPORT_SYMBOL(netif_wake_subqueue);
2238 
2239 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2240 {
2241 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2242 		struct Qdisc *q;
2243 
2244 		rcu_read_lock();
2245 		q = rcu_dereference(dev_queue->qdisc);
2246 		__netif_schedule(q);
2247 		rcu_read_unlock();
2248 	}
2249 }
2250 EXPORT_SYMBOL(netif_tx_wake_queue);
2251 
2252 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2253 {
2254 	unsigned long flags;
2255 
2256 	if (likely(atomic_read(&skb->users) == 1)) {
2257 		smp_rmb();
2258 		atomic_set(&skb->users, 0);
2259 	} else if (likely(!atomic_dec_and_test(&skb->users))) {
2260 		return;
2261 	}
2262 	get_kfree_skb_cb(skb)->reason = reason;
2263 	local_irq_save(flags);
2264 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2265 	__this_cpu_write(softnet_data.completion_queue, skb);
2266 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2267 	local_irq_restore(flags);
2268 }
2269 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2270 
2271 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2272 {
2273 	if (in_irq() || irqs_disabled())
2274 		__dev_kfree_skb_irq(skb, reason);
2275 	else
2276 		dev_kfree_skb(skb);
2277 }
2278 EXPORT_SYMBOL(__dev_kfree_skb_any);
2279 
2280 
2281 /**
2282  * netif_device_detach - mark device as removed
2283  * @dev: network device
2284  *
2285  * Mark device as removed from system and therefore no longer available.
2286  */
2287 void netif_device_detach(struct net_device *dev)
2288 {
2289 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2290 	    netif_running(dev)) {
2291 		netif_tx_stop_all_queues(dev);
2292 	}
2293 }
2294 EXPORT_SYMBOL(netif_device_detach);
2295 
2296 /**
2297  * netif_device_attach - mark device as attached
2298  * @dev: network device
2299  *
2300  * Mark device as attached from system and restart if needed.
2301  */
2302 void netif_device_attach(struct net_device *dev)
2303 {
2304 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2305 	    netif_running(dev)) {
2306 		netif_tx_wake_all_queues(dev);
2307 		__netdev_watchdog_up(dev);
2308 	}
2309 }
2310 EXPORT_SYMBOL(netif_device_attach);
2311 
2312 static void skb_warn_bad_offload(const struct sk_buff *skb)
2313 {
2314 	static const netdev_features_t null_features = 0;
2315 	struct net_device *dev = skb->dev;
2316 	const char *driver = "";
2317 
2318 	if (!net_ratelimit())
2319 		return;
2320 
2321 	if (dev && dev->dev.parent)
2322 		driver = dev_driver_string(dev->dev.parent);
2323 
2324 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2325 	     "gso_type=%d ip_summed=%d\n",
2326 	     driver, dev ? &dev->features : &null_features,
2327 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2328 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2329 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2330 }
2331 
2332 /*
2333  * Invalidate hardware checksum when packet is to be mangled, and
2334  * complete checksum manually on outgoing path.
2335  */
2336 int skb_checksum_help(struct sk_buff *skb)
2337 {
2338 	__wsum csum;
2339 	int ret = 0, offset;
2340 
2341 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2342 		goto out_set_summed;
2343 
2344 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2345 		skb_warn_bad_offload(skb);
2346 		return -EINVAL;
2347 	}
2348 
2349 	/* Before computing a checksum, we should make sure no frag could
2350 	 * be modified by an external entity : checksum could be wrong.
2351 	 */
2352 	if (skb_has_shared_frag(skb)) {
2353 		ret = __skb_linearize(skb);
2354 		if (ret)
2355 			goto out;
2356 	}
2357 
2358 	offset = skb_checksum_start_offset(skb);
2359 	BUG_ON(offset >= skb_headlen(skb));
2360 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2361 
2362 	offset += skb->csum_offset;
2363 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2364 
2365 	if (skb_cloned(skb) &&
2366 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2367 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2368 		if (ret)
2369 			goto out;
2370 	}
2371 
2372 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
2373 out_set_summed:
2374 	skb->ip_summed = CHECKSUM_NONE;
2375 out:
2376 	return ret;
2377 }
2378 EXPORT_SYMBOL(skb_checksum_help);
2379 
2380 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2381 {
2382 	__be16 type = skb->protocol;
2383 
2384 	/* Tunnel gso handlers can set protocol to ethernet. */
2385 	if (type == htons(ETH_P_TEB)) {
2386 		struct ethhdr *eth;
2387 
2388 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2389 			return 0;
2390 
2391 		eth = (struct ethhdr *)skb_mac_header(skb);
2392 		type = eth->h_proto;
2393 	}
2394 
2395 	return __vlan_get_protocol(skb, type, depth);
2396 }
2397 
2398 /**
2399  *	skb_mac_gso_segment - mac layer segmentation handler.
2400  *	@skb: buffer to segment
2401  *	@features: features for the output path (see dev->features)
2402  */
2403 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2404 				    netdev_features_t features)
2405 {
2406 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2407 	struct packet_offload *ptype;
2408 	int vlan_depth = skb->mac_len;
2409 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2410 
2411 	if (unlikely(!type))
2412 		return ERR_PTR(-EINVAL);
2413 
2414 	__skb_pull(skb, vlan_depth);
2415 
2416 	rcu_read_lock();
2417 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2418 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2419 			segs = ptype->callbacks.gso_segment(skb, features);
2420 			break;
2421 		}
2422 	}
2423 	rcu_read_unlock();
2424 
2425 	__skb_push(skb, skb->data - skb_mac_header(skb));
2426 
2427 	return segs;
2428 }
2429 EXPORT_SYMBOL(skb_mac_gso_segment);
2430 
2431 
2432 /* openvswitch calls this on rx path, so we need a different check.
2433  */
2434 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2435 {
2436 	if (tx_path)
2437 		return skb->ip_summed != CHECKSUM_PARTIAL;
2438 	else
2439 		return skb->ip_summed == CHECKSUM_NONE;
2440 }
2441 
2442 /**
2443  *	__skb_gso_segment - Perform segmentation on skb.
2444  *	@skb: buffer to segment
2445  *	@features: features for the output path (see dev->features)
2446  *	@tx_path: whether it is called in TX path
2447  *
2448  *	This function segments the given skb and returns a list of segments.
2449  *
2450  *	It may return NULL if the skb requires no segmentation.  This is
2451  *	only possible when GSO is used for verifying header integrity.
2452  */
2453 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2454 				  netdev_features_t features, bool tx_path)
2455 {
2456 	if (unlikely(skb_needs_check(skb, tx_path))) {
2457 		int err;
2458 
2459 		skb_warn_bad_offload(skb);
2460 
2461 		err = skb_cow_head(skb, 0);
2462 		if (err < 0)
2463 			return ERR_PTR(err);
2464 	}
2465 
2466 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2467 	SKB_GSO_CB(skb)->encap_level = 0;
2468 
2469 	skb_reset_mac_header(skb);
2470 	skb_reset_mac_len(skb);
2471 
2472 	return skb_mac_gso_segment(skb, features);
2473 }
2474 EXPORT_SYMBOL(__skb_gso_segment);
2475 
2476 /* Take action when hardware reception checksum errors are detected. */
2477 #ifdef CONFIG_BUG
2478 void netdev_rx_csum_fault(struct net_device *dev)
2479 {
2480 	if (net_ratelimit()) {
2481 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2482 		dump_stack();
2483 	}
2484 }
2485 EXPORT_SYMBOL(netdev_rx_csum_fault);
2486 #endif
2487 
2488 /* Actually, we should eliminate this check as soon as we know, that:
2489  * 1. IOMMU is present and allows to map all the memory.
2490  * 2. No high memory really exists on this machine.
2491  */
2492 
2493 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2494 {
2495 #ifdef CONFIG_HIGHMEM
2496 	int i;
2497 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2498 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2499 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2500 			if (PageHighMem(skb_frag_page(frag)))
2501 				return 1;
2502 		}
2503 	}
2504 
2505 	if (PCI_DMA_BUS_IS_PHYS) {
2506 		struct device *pdev = dev->dev.parent;
2507 
2508 		if (!pdev)
2509 			return 0;
2510 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2511 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2512 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2513 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2514 				return 1;
2515 		}
2516 	}
2517 #endif
2518 	return 0;
2519 }
2520 
2521 /* If MPLS offload request, verify we are testing hardware MPLS features
2522  * instead of standard features for the netdev.
2523  */
2524 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2525 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2526 					   netdev_features_t features,
2527 					   __be16 type)
2528 {
2529 	if (eth_p_mpls(type))
2530 		features &= skb->dev->mpls_features;
2531 
2532 	return features;
2533 }
2534 #else
2535 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2536 					   netdev_features_t features,
2537 					   __be16 type)
2538 {
2539 	return features;
2540 }
2541 #endif
2542 
2543 static netdev_features_t harmonize_features(struct sk_buff *skb,
2544 	netdev_features_t features)
2545 {
2546 	int tmp;
2547 	__be16 type;
2548 
2549 	type = skb_network_protocol(skb, &tmp);
2550 	features = net_mpls_features(skb, features, type);
2551 
2552 	if (skb->ip_summed != CHECKSUM_NONE &&
2553 	    !can_checksum_protocol(features, type)) {
2554 		features &= ~NETIF_F_ALL_CSUM;
2555 	} else if (illegal_highdma(skb->dev, skb)) {
2556 		features &= ~NETIF_F_SG;
2557 	}
2558 
2559 	return features;
2560 }
2561 
2562 netdev_features_t netif_skb_features(struct sk_buff *skb)
2563 {
2564 	struct net_device *dev = skb->dev;
2565 	netdev_features_t features = dev->features;
2566 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
2567 	__be16 protocol = skb->protocol;
2568 
2569 	if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2570 		features &= ~NETIF_F_GSO_MASK;
2571 
2572 	/* If encapsulation offload request, verify we are testing
2573 	 * hardware encapsulation features instead of standard
2574 	 * features for the netdev
2575 	 */
2576 	if (skb->encapsulation)
2577 		features &= dev->hw_enc_features;
2578 
2579 	if (!skb_vlan_tag_present(skb)) {
2580 		if (unlikely(protocol == htons(ETH_P_8021Q) ||
2581 			     protocol == htons(ETH_P_8021AD))) {
2582 			struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2583 			protocol = veh->h_vlan_encapsulated_proto;
2584 		} else {
2585 			goto finalize;
2586 		}
2587 	}
2588 
2589 	features = netdev_intersect_features(features,
2590 					     dev->vlan_features |
2591 					     NETIF_F_HW_VLAN_CTAG_TX |
2592 					     NETIF_F_HW_VLAN_STAG_TX);
2593 
2594 	if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2595 		features = netdev_intersect_features(features,
2596 						     NETIF_F_SG |
2597 						     NETIF_F_HIGHDMA |
2598 						     NETIF_F_FRAGLIST |
2599 						     NETIF_F_GEN_CSUM |
2600 						     NETIF_F_HW_VLAN_CTAG_TX |
2601 						     NETIF_F_HW_VLAN_STAG_TX);
2602 
2603 finalize:
2604 	if (dev->netdev_ops->ndo_features_check)
2605 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
2606 								features);
2607 
2608 	return harmonize_features(skb, features);
2609 }
2610 EXPORT_SYMBOL(netif_skb_features);
2611 
2612 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2613 		    struct netdev_queue *txq, bool more)
2614 {
2615 	unsigned int len;
2616 	int rc;
2617 
2618 	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2619 		dev_queue_xmit_nit(skb, dev);
2620 
2621 	len = skb->len;
2622 	trace_net_dev_start_xmit(skb, dev);
2623 	rc = netdev_start_xmit(skb, dev, txq, more);
2624 	trace_net_dev_xmit(skb, rc, dev, len);
2625 
2626 	return rc;
2627 }
2628 
2629 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2630 				    struct netdev_queue *txq, int *ret)
2631 {
2632 	struct sk_buff *skb = first;
2633 	int rc = NETDEV_TX_OK;
2634 
2635 	while (skb) {
2636 		struct sk_buff *next = skb->next;
2637 
2638 		skb->next = NULL;
2639 		rc = xmit_one(skb, dev, txq, next != NULL);
2640 		if (unlikely(!dev_xmit_complete(rc))) {
2641 			skb->next = next;
2642 			goto out;
2643 		}
2644 
2645 		skb = next;
2646 		if (netif_xmit_stopped(txq) && skb) {
2647 			rc = NETDEV_TX_BUSY;
2648 			break;
2649 		}
2650 	}
2651 
2652 out:
2653 	*ret = rc;
2654 	return skb;
2655 }
2656 
2657 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2658 					  netdev_features_t features)
2659 {
2660 	if (skb_vlan_tag_present(skb) &&
2661 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
2662 		skb = __vlan_hwaccel_push_inside(skb);
2663 	return skb;
2664 }
2665 
2666 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2667 {
2668 	netdev_features_t features;
2669 
2670 	if (skb->next)
2671 		return skb;
2672 
2673 	features = netif_skb_features(skb);
2674 	skb = validate_xmit_vlan(skb, features);
2675 	if (unlikely(!skb))
2676 		goto out_null;
2677 
2678 	if (netif_needs_gso(dev, skb, features)) {
2679 		struct sk_buff *segs;
2680 
2681 		segs = skb_gso_segment(skb, features);
2682 		if (IS_ERR(segs)) {
2683 			goto out_kfree_skb;
2684 		} else if (segs) {
2685 			consume_skb(skb);
2686 			skb = segs;
2687 		}
2688 	} else {
2689 		if (skb_needs_linearize(skb, features) &&
2690 		    __skb_linearize(skb))
2691 			goto out_kfree_skb;
2692 
2693 		/* If packet is not checksummed and device does not
2694 		 * support checksumming for this protocol, complete
2695 		 * checksumming here.
2696 		 */
2697 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2698 			if (skb->encapsulation)
2699 				skb_set_inner_transport_header(skb,
2700 							       skb_checksum_start_offset(skb));
2701 			else
2702 				skb_set_transport_header(skb,
2703 							 skb_checksum_start_offset(skb));
2704 			if (!(features & NETIF_F_ALL_CSUM) &&
2705 			    skb_checksum_help(skb))
2706 				goto out_kfree_skb;
2707 		}
2708 	}
2709 
2710 	return skb;
2711 
2712 out_kfree_skb:
2713 	kfree_skb(skb);
2714 out_null:
2715 	return NULL;
2716 }
2717 
2718 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2719 {
2720 	struct sk_buff *next, *head = NULL, *tail;
2721 
2722 	for (; skb != NULL; skb = next) {
2723 		next = skb->next;
2724 		skb->next = NULL;
2725 
2726 		/* in case skb wont be segmented, point to itself */
2727 		skb->prev = skb;
2728 
2729 		skb = validate_xmit_skb(skb, dev);
2730 		if (!skb)
2731 			continue;
2732 
2733 		if (!head)
2734 			head = skb;
2735 		else
2736 			tail->next = skb;
2737 		/* If skb was segmented, skb->prev points to
2738 		 * the last segment. If not, it still contains skb.
2739 		 */
2740 		tail = skb->prev;
2741 	}
2742 	return head;
2743 }
2744 
2745 static void qdisc_pkt_len_init(struct sk_buff *skb)
2746 {
2747 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
2748 
2749 	qdisc_skb_cb(skb)->pkt_len = skb->len;
2750 
2751 	/* To get more precise estimation of bytes sent on wire,
2752 	 * we add to pkt_len the headers size of all segments
2753 	 */
2754 	if (shinfo->gso_size)  {
2755 		unsigned int hdr_len;
2756 		u16 gso_segs = shinfo->gso_segs;
2757 
2758 		/* mac layer + network layer */
2759 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2760 
2761 		/* + transport layer */
2762 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2763 			hdr_len += tcp_hdrlen(skb);
2764 		else
2765 			hdr_len += sizeof(struct udphdr);
2766 
2767 		if (shinfo->gso_type & SKB_GSO_DODGY)
2768 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2769 						shinfo->gso_size);
2770 
2771 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2772 	}
2773 }
2774 
2775 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2776 				 struct net_device *dev,
2777 				 struct netdev_queue *txq)
2778 {
2779 	spinlock_t *root_lock = qdisc_lock(q);
2780 	bool contended;
2781 	int rc;
2782 
2783 	qdisc_pkt_len_init(skb);
2784 	qdisc_calculate_pkt_len(skb, q);
2785 	/*
2786 	 * Heuristic to force contended enqueues to serialize on a
2787 	 * separate lock before trying to get qdisc main lock.
2788 	 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2789 	 * often and dequeue packets faster.
2790 	 */
2791 	contended = qdisc_is_running(q);
2792 	if (unlikely(contended))
2793 		spin_lock(&q->busylock);
2794 
2795 	spin_lock(root_lock);
2796 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2797 		kfree_skb(skb);
2798 		rc = NET_XMIT_DROP;
2799 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2800 		   qdisc_run_begin(q)) {
2801 		/*
2802 		 * This is a work-conserving queue; there are no old skbs
2803 		 * waiting to be sent out; and the qdisc is not running -
2804 		 * xmit the skb directly.
2805 		 */
2806 
2807 		qdisc_bstats_update(q, skb);
2808 
2809 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2810 			if (unlikely(contended)) {
2811 				spin_unlock(&q->busylock);
2812 				contended = false;
2813 			}
2814 			__qdisc_run(q);
2815 		} else
2816 			qdisc_run_end(q);
2817 
2818 		rc = NET_XMIT_SUCCESS;
2819 	} else {
2820 		rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2821 		if (qdisc_run_begin(q)) {
2822 			if (unlikely(contended)) {
2823 				spin_unlock(&q->busylock);
2824 				contended = false;
2825 			}
2826 			__qdisc_run(q);
2827 		}
2828 	}
2829 	spin_unlock(root_lock);
2830 	if (unlikely(contended))
2831 		spin_unlock(&q->busylock);
2832 	return rc;
2833 }
2834 
2835 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2836 static void skb_update_prio(struct sk_buff *skb)
2837 {
2838 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2839 
2840 	if (!skb->priority && skb->sk && map) {
2841 		unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2842 
2843 		if (prioidx < map->priomap_len)
2844 			skb->priority = map->priomap[prioidx];
2845 	}
2846 }
2847 #else
2848 #define skb_update_prio(skb)
2849 #endif
2850 
2851 static DEFINE_PER_CPU(int, xmit_recursion);
2852 #define RECURSION_LIMIT 10
2853 
2854 /**
2855  *	dev_loopback_xmit - loop back @skb
2856  *	@skb: buffer to transmit
2857  */
2858 int dev_loopback_xmit(struct sk_buff *skb)
2859 {
2860 	skb_reset_mac_header(skb);
2861 	__skb_pull(skb, skb_network_offset(skb));
2862 	skb->pkt_type = PACKET_LOOPBACK;
2863 	skb->ip_summed = CHECKSUM_UNNECESSARY;
2864 	WARN_ON(!skb_dst(skb));
2865 	skb_dst_force(skb);
2866 	netif_rx_ni(skb);
2867 	return 0;
2868 }
2869 EXPORT_SYMBOL(dev_loopback_xmit);
2870 
2871 /**
2872  *	__dev_queue_xmit - transmit a buffer
2873  *	@skb: buffer to transmit
2874  *	@accel_priv: private data used for L2 forwarding offload
2875  *
2876  *	Queue a buffer for transmission to a network device. The caller must
2877  *	have set the device and priority and built the buffer before calling
2878  *	this function. The function can be called from an interrupt.
2879  *
2880  *	A negative errno code is returned on a failure. A success does not
2881  *	guarantee the frame will be transmitted as it may be dropped due
2882  *	to congestion or traffic shaping.
2883  *
2884  * -----------------------------------------------------------------------------------
2885  *      I notice this method can also return errors from the queue disciplines,
2886  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2887  *      be positive.
2888  *
2889  *      Regardless of the return value, the skb is consumed, so it is currently
2890  *      difficult to retry a send to this method.  (You can bump the ref count
2891  *      before sending to hold a reference for retry if you are careful.)
2892  *
2893  *      When calling this method, interrupts MUST be enabled.  This is because
2894  *      the BH enable code must have IRQs enabled so that it will not deadlock.
2895  *          --BLG
2896  */
2897 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2898 {
2899 	struct net_device *dev = skb->dev;
2900 	struct netdev_queue *txq;
2901 	struct Qdisc *q;
2902 	int rc = -ENOMEM;
2903 
2904 	skb_reset_mac_header(skb);
2905 
2906 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
2907 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
2908 
2909 	/* Disable soft irqs for various locks below. Also
2910 	 * stops preemption for RCU.
2911 	 */
2912 	rcu_read_lock_bh();
2913 
2914 	skb_update_prio(skb);
2915 
2916 	/* If device/qdisc don't need skb->dst, release it right now while
2917 	 * its hot in this cpu cache.
2918 	 */
2919 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2920 		skb_dst_drop(skb);
2921 	else
2922 		skb_dst_force(skb);
2923 
2924 	txq = netdev_pick_tx(dev, skb, accel_priv);
2925 	q = rcu_dereference_bh(txq->qdisc);
2926 
2927 #ifdef CONFIG_NET_CLS_ACT
2928 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2929 #endif
2930 	trace_net_dev_queue(skb);
2931 	if (q->enqueue) {
2932 		rc = __dev_xmit_skb(skb, q, dev, txq);
2933 		goto out;
2934 	}
2935 
2936 	/* The device has no queue. Common case for software devices:
2937 	   loopback, all the sorts of tunnels...
2938 
2939 	   Really, it is unlikely that netif_tx_lock protection is necessary
2940 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2941 	   counters.)
2942 	   However, it is possible, that they rely on protection
2943 	   made by us here.
2944 
2945 	   Check this and shot the lock. It is not prone from deadlocks.
2946 	   Either shot noqueue qdisc, it is even simpler 8)
2947 	 */
2948 	if (dev->flags & IFF_UP) {
2949 		int cpu = smp_processor_id(); /* ok because BHs are off */
2950 
2951 		if (txq->xmit_lock_owner != cpu) {
2952 
2953 			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2954 				goto recursion_alert;
2955 
2956 			skb = validate_xmit_skb(skb, dev);
2957 			if (!skb)
2958 				goto drop;
2959 
2960 			HARD_TX_LOCK(dev, txq, cpu);
2961 
2962 			if (!netif_xmit_stopped(txq)) {
2963 				__this_cpu_inc(xmit_recursion);
2964 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
2965 				__this_cpu_dec(xmit_recursion);
2966 				if (dev_xmit_complete(rc)) {
2967 					HARD_TX_UNLOCK(dev, txq);
2968 					goto out;
2969 				}
2970 			}
2971 			HARD_TX_UNLOCK(dev, txq);
2972 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2973 					     dev->name);
2974 		} else {
2975 			/* Recursion is detected! It is possible,
2976 			 * unfortunately
2977 			 */
2978 recursion_alert:
2979 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2980 					     dev->name);
2981 		}
2982 	}
2983 
2984 	rc = -ENETDOWN;
2985 drop:
2986 	rcu_read_unlock_bh();
2987 
2988 	atomic_long_inc(&dev->tx_dropped);
2989 	kfree_skb_list(skb);
2990 	return rc;
2991 out:
2992 	rcu_read_unlock_bh();
2993 	return rc;
2994 }
2995 
2996 int dev_queue_xmit(struct sk_buff *skb)
2997 {
2998 	return __dev_queue_xmit(skb, NULL);
2999 }
3000 EXPORT_SYMBOL(dev_queue_xmit);
3001 
3002 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3003 {
3004 	return __dev_queue_xmit(skb, accel_priv);
3005 }
3006 EXPORT_SYMBOL(dev_queue_xmit_accel);
3007 
3008 
3009 /*=======================================================================
3010 			Receiver routines
3011   =======================================================================*/
3012 
3013 int netdev_max_backlog __read_mostly = 1000;
3014 EXPORT_SYMBOL(netdev_max_backlog);
3015 
3016 int netdev_tstamp_prequeue __read_mostly = 1;
3017 int netdev_budget __read_mostly = 300;
3018 int weight_p __read_mostly = 64;            /* old backlog weight */
3019 
3020 /* Called with irq disabled */
3021 static inline void ____napi_schedule(struct softnet_data *sd,
3022 				     struct napi_struct *napi)
3023 {
3024 	list_add_tail(&napi->poll_list, &sd->poll_list);
3025 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3026 }
3027 
3028 #ifdef CONFIG_RPS
3029 
3030 /* One global table that all flow-based protocols share. */
3031 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3032 EXPORT_SYMBOL(rps_sock_flow_table);
3033 u32 rps_cpu_mask __read_mostly;
3034 EXPORT_SYMBOL(rps_cpu_mask);
3035 
3036 struct static_key rps_needed __read_mostly;
3037 
3038 static struct rps_dev_flow *
3039 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3040 	    struct rps_dev_flow *rflow, u16 next_cpu)
3041 {
3042 	if (next_cpu != RPS_NO_CPU) {
3043 #ifdef CONFIG_RFS_ACCEL
3044 		struct netdev_rx_queue *rxqueue;
3045 		struct rps_dev_flow_table *flow_table;
3046 		struct rps_dev_flow *old_rflow;
3047 		u32 flow_id;
3048 		u16 rxq_index;
3049 		int rc;
3050 
3051 		/* Should we steer this flow to a different hardware queue? */
3052 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3053 		    !(dev->features & NETIF_F_NTUPLE))
3054 			goto out;
3055 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3056 		if (rxq_index == skb_get_rx_queue(skb))
3057 			goto out;
3058 
3059 		rxqueue = dev->_rx + rxq_index;
3060 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3061 		if (!flow_table)
3062 			goto out;
3063 		flow_id = skb_get_hash(skb) & flow_table->mask;
3064 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3065 							rxq_index, flow_id);
3066 		if (rc < 0)
3067 			goto out;
3068 		old_rflow = rflow;
3069 		rflow = &flow_table->flows[flow_id];
3070 		rflow->filter = rc;
3071 		if (old_rflow->filter == rflow->filter)
3072 			old_rflow->filter = RPS_NO_FILTER;
3073 	out:
3074 #endif
3075 		rflow->last_qtail =
3076 			per_cpu(softnet_data, next_cpu).input_queue_head;
3077 	}
3078 
3079 	rflow->cpu = next_cpu;
3080 	return rflow;
3081 }
3082 
3083 /*
3084  * get_rps_cpu is called from netif_receive_skb and returns the target
3085  * CPU from the RPS map of the receiving queue for a given skb.
3086  * rcu_read_lock must be held on entry.
3087  */
3088 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3089 		       struct rps_dev_flow **rflowp)
3090 {
3091 	const struct rps_sock_flow_table *sock_flow_table;
3092 	struct netdev_rx_queue *rxqueue = dev->_rx;
3093 	struct rps_dev_flow_table *flow_table;
3094 	struct rps_map *map;
3095 	int cpu = -1;
3096 	u32 tcpu;
3097 	u32 hash;
3098 
3099 	if (skb_rx_queue_recorded(skb)) {
3100 		u16 index = skb_get_rx_queue(skb);
3101 
3102 		if (unlikely(index >= dev->real_num_rx_queues)) {
3103 			WARN_ONCE(dev->real_num_rx_queues > 1,
3104 				  "%s received packet on queue %u, but number "
3105 				  "of RX queues is %u\n",
3106 				  dev->name, index, dev->real_num_rx_queues);
3107 			goto done;
3108 		}
3109 		rxqueue += index;
3110 	}
3111 
3112 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3113 
3114 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3115 	map = rcu_dereference(rxqueue->rps_map);
3116 	if (!flow_table && !map)
3117 		goto done;
3118 
3119 	skb_reset_network_header(skb);
3120 	hash = skb_get_hash(skb);
3121 	if (!hash)
3122 		goto done;
3123 
3124 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3125 	if (flow_table && sock_flow_table) {
3126 		struct rps_dev_flow *rflow;
3127 		u32 next_cpu;
3128 		u32 ident;
3129 
3130 		/* First check into global flow table if there is a match */
3131 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3132 		if ((ident ^ hash) & ~rps_cpu_mask)
3133 			goto try_rps;
3134 
3135 		next_cpu = ident & rps_cpu_mask;
3136 
3137 		/* OK, now we know there is a match,
3138 		 * we can look at the local (per receive queue) flow table
3139 		 */
3140 		rflow = &flow_table->flows[hash & flow_table->mask];
3141 		tcpu = rflow->cpu;
3142 
3143 		/*
3144 		 * If the desired CPU (where last recvmsg was done) is
3145 		 * different from current CPU (one in the rx-queue flow
3146 		 * table entry), switch if one of the following holds:
3147 		 *   - Current CPU is unset (equal to RPS_NO_CPU).
3148 		 *   - Current CPU is offline.
3149 		 *   - The current CPU's queue tail has advanced beyond the
3150 		 *     last packet that was enqueued using this table entry.
3151 		 *     This guarantees that all previous packets for the flow
3152 		 *     have been dequeued, thus preserving in order delivery.
3153 		 */
3154 		if (unlikely(tcpu != next_cpu) &&
3155 		    (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3156 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3157 		      rflow->last_qtail)) >= 0)) {
3158 			tcpu = next_cpu;
3159 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3160 		}
3161 
3162 		if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3163 			*rflowp = rflow;
3164 			cpu = tcpu;
3165 			goto done;
3166 		}
3167 	}
3168 
3169 try_rps:
3170 
3171 	if (map) {
3172 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3173 		if (cpu_online(tcpu)) {
3174 			cpu = tcpu;
3175 			goto done;
3176 		}
3177 	}
3178 
3179 done:
3180 	return cpu;
3181 }
3182 
3183 #ifdef CONFIG_RFS_ACCEL
3184 
3185 /**
3186  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3187  * @dev: Device on which the filter was set
3188  * @rxq_index: RX queue index
3189  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3190  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3191  *
3192  * Drivers that implement ndo_rx_flow_steer() should periodically call
3193  * this function for each installed filter and remove the filters for
3194  * which it returns %true.
3195  */
3196 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3197 			 u32 flow_id, u16 filter_id)
3198 {
3199 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3200 	struct rps_dev_flow_table *flow_table;
3201 	struct rps_dev_flow *rflow;
3202 	bool expire = true;
3203 	int cpu;
3204 
3205 	rcu_read_lock();
3206 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3207 	if (flow_table && flow_id <= flow_table->mask) {
3208 		rflow = &flow_table->flows[flow_id];
3209 		cpu = ACCESS_ONCE(rflow->cpu);
3210 		if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3211 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3212 			   rflow->last_qtail) <
3213 		     (int)(10 * flow_table->mask)))
3214 			expire = false;
3215 	}
3216 	rcu_read_unlock();
3217 	return expire;
3218 }
3219 EXPORT_SYMBOL(rps_may_expire_flow);
3220 
3221 #endif /* CONFIG_RFS_ACCEL */
3222 
3223 /* Called from hardirq (IPI) context */
3224 static void rps_trigger_softirq(void *data)
3225 {
3226 	struct softnet_data *sd = data;
3227 
3228 	____napi_schedule(sd, &sd->backlog);
3229 	sd->received_rps++;
3230 }
3231 
3232 #endif /* CONFIG_RPS */
3233 
3234 /*
3235  * Check if this softnet_data structure is another cpu one
3236  * If yes, queue it to our IPI list and return 1
3237  * If no, return 0
3238  */
3239 static int rps_ipi_queued(struct softnet_data *sd)
3240 {
3241 #ifdef CONFIG_RPS
3242 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3243 
3244 	if (sd != mysd) {
3245 		sd->rps_ipi_next = mysd->rps_ipi_list;
3246 		mysd->rps_ipi_list = sd;
3247 
3248 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3249 		return 1;
3250 	}
3251 #endif /* CONFIG_RPS */
3252 	return 0;
3253 }
3254 
3255 #ifdef CONFIG_NET_FLOW_LIMIT
3256 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3257 #endif
3258 
3259 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3260 {
3261 #ifdef CONFIG_NET_FLOW_LIMIT
3262 	struct sd_flow_limit *fl;
3263 	struct softnet_data *sd;
3264 	unsigned int old_flow, new_flow;
3265 
3266 	if (qlen < (netdev_max_backlog >> 1))
3267 		return false;
3268 
3269 	sd = this_cpu_ptr(&softnet_data);
3270 
3271 	rcu_read_lock();
3272 	fl = rcu_dereference(sd->flow_limit);
3273 	if (fl) {
3274 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3275 		old_flow = fl->history[fl->history_head];
3276 		fl->history[fl->history_head] = new_flow;
3277 
3278 		fl->history_head++;
3279 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3280 
3281 		if (likely(fl->buckets[old_flow]))
3282 			fl->buckets[old_flow]--;
3283 
3284 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3285 			fl->count++;
3286 			rcu_read_unlock();
3287 			return true;
3288 		}
3289 	}
3290 	rcu_read_unlock();
3291 #endif
3292 	return false;
3293 }
3294 
3295 /*
3296  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3297  * queue (may be a remote CPU queue).
3298  */
3299 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3300 			      unsigned int *qtail)
3301 {
3302 	struct softnet_data *sd;
3303 	unsigned long flags;
3304 	unsigned int qlen;
3305 
3306 	sd = &per_cpu(softnet_data, cpu);
3307 
3308 	local_irq_save(flags);
3309 
3310 	rps_lock(sd);
3311 	qlen = skb_queue_len(&sd->input_pkt_queue);
3312 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3313 		if (qlen) {
3314 enqueue:
3315 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3316 			input_queue_tail_incr_save(sd, qtail);
3317 			rps_unlock(sd);
3318 			local_irq_restore(flags);
3319 			return NET_RX_SUCCESS;
3320 		}
3321 
3322 		/* Schedule NAPI for backlog device
3323 		 * We can use non atomic operation since we own the queue lock
3324 		 */
3325 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3326 			if (!rps_ipi_queued(sd))
3327 				____napi_schedule(sd, &sd->backlog);
3328 		}
3329 		goto enqueue;
3330 	}
3331 
3332 	sd->dropped++;
3333 	rps_unlock(sd);
3334 
3335 	local_irq_restore(flags);
3336 
3337 	atomic_long_inc(&skb->dev->rx_dropped);
3338 	kfree_skb(skb);
3339 	return NET_RX_DROP;
3340 }
3341 
3342 static int netif_rx_internal(struct sk_buff *skb)
3343 {
3344 	int ret;
3345 
3346 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3347 
3348 	trace_netif_rx(skb);
3349 #ifdef CONFIG_RPS
3350 	if (static_key_false(&rps_needed)) {
3351 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3352 		int cpu;
3353 
3354 		preempt_disable();
3355 		rcu_read_lock();
3356 
3357 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3358 		if (cpu < 0)
3359 			cpu = smp_processor_id();
3360 
3361 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3362 
3363 		rcu_read_unlock();
3364 		preempt_enable();
3365 	} else
3366 #endif
3367 	{
3368 		unsigned int qtail;
3369 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3370 		put_cpu();
3371 	}
3372 	return ret;
3373 }
3374 
3375 /**
3376  *	netif_rx	-	post buffer to the network code
3377  *	@skb: buffer to post
3378  *
3379  *	This function receives a packet from a device driver and queues it for
3380  *	the upper (protocol) levels to process.  It always succeeds. The buffer
3381  *	may be dropped during processing for congestion control or by the
3382  *	protocol layers.
3383  *
3384  *	return values:
3385  *	NET_RX_SUCCESS	(no congestion)
3386  *	NET_RX_DROP     (packet was dropped)
3387  *
3388  */
3389 
3390 int netif_rx(struct sk_buff *skb)
3391 {
3392 	trace_netif_rx_entry(skb);
3393 
3394 	return netif_rx_internal(skb);
3395 }
3396 EXPORT_SYMBOL(netif_rx);
3397 
3398 int netif_rx_ni(struct sk_buff *skb)
3399 {
3400 	int err;
3401 
3402 	trace_netif_rx_ni_entry(skb);
3403 
3404 	preempt_disable();
3405 	err = netif_rx_internal(skb);
3406 	if (local_softirq_pending())
3407 		do_softirq();
3408 	preempt_enable();
3409 
3410 	return err;
3411 }
3412 EXPORT_SYMBOL(netif_rx_ni);
3413 
3414 static void net_tx_action(struct softirq_action *h)
3415 {
3416 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3417 
3418 	if (sd->completion_queue) {
3419 		struct sk_buff *clist;
3420 
3421 		local_irq_disable();
3422 		clist = sd->completion_queue;
3423 		sd->completion_queue = NULL;
3424 		local_irq_enable();
3425 
3426 		while (clist) {
3427 			struct sk_buff *skb = clist;
3428 			clist = clist->next;
3429 
3430 			WARN_ON(atomic_read(&skb->users));
3431 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3432 				trace_consume_skb(skb);
3433 			else
3434 				trace_kfree_skb(skb, net_tx_action);
3435 			__kfree_skb(skb);
3436 		}
3437 	}
3438 
3439 	if (sd->output_queue) {
3440 		struct Qdisc *head;
3441 
3442 		local_irq_disable();
3443 		head = sd->output_queue;
3444 		sd->output_queue = NULL;
3445 		sd->output_queue_tailp = &sd->output_queue;
3446 		local_irq_enable();
3447 
3448 		while (head) {
3449 			struct Qdisc *q = head;
3450 			spinlock_t *root_lock;
3451 
3452 			head = head->next_sched;
3453 
3454 			root_lock = qdisc_lock(q);
3455 			if (spin_trylock(root_lock)) {
3456 				smp_mb__before_atomic();
3457 				clear_bit(__QDISC_STATE_SCHED,
3458 					  &q->state);
3459 				qdisc_run(q);
3460 				spin_unlock(root_lock);
3461 			} else {
3462 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
3463 					      &q->state)) {
3464 					__netif_reschedule(q);
3465 				} else {
3466 					smp_mb__before_atomic();
3467 					clear_bit(__QDISC_STATE_SCHED,
3468 						  &q->state);
3469 				}
3470 			}
3471 		}
3472 	}
3473 }
3474 
3475 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3476     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3477 /* This hook is defined here for ATM LANE */
3478 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3479 			     unsigned char *addr) __read_mostly;
3480 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3481 #endif
3482 
3483 #ifdef CONFIG_NET_CLS_ACT
3484 /* TODO: Maybe we should just force sch_ingress to be compiled in
3485  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3486  * a compare and 2 stores extra right now if we dont have it on
3487  * but have CONFIG_NET_CLS_ACT
3488  * NOTE: This doesn't stop any functionality; if you dont have
3489  * the ingress scheduler, you just can't add policies on ingress.
3490  *
3491  */
3492 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3493 {
3494 	struct net_device *dev = skb->dev;
3495 	u32 ttl = G_TC_RTTL(skb->tc_verd);
3496 	int result = TC_ACT_OK;
3497 	struct Qdisc *q;
3498 
3499 	if (unlikely(MAX_RED_LOOP < ttl++)) {
3500 		net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3501 				     skb->skb_iif, dev->ifindex);
3502 		return TC_ACT_SHOT;
3503 	}
3504 
3505 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3506 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3507 
3508 	q = rcu_dereference(rxq->qdisc);
3509 	if (q != &noop_qdisc) {
3510 		spin_lock(qdisc_lock(q));
3511 		if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3512 			result = qdisc_enqueue_root(skb, q);
3513 		spin_unlock(qdisc_lock(q));
3514 	}
3515 
3516 	return result;
3517 }
3518 
3519 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3520 					 struct packet_type **pt_prev,
3521 					 int *ret, struct net_device *orig_dev)
3522 {
3523 	struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3524 
3525 	if (!rxq || rcu_access_pointer(rxq->qdisc) == &noop_qdisc)
3526 		goto out;
3527 
3528 	if (*pt_prev) {
3529 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3530 		*pt_prev = NULL;
3531 	}
3532 
3533 	switch (ing_filter(skb, rxq)) {
3534 	case TC_ACT_SHOT:
3535 	case TC_ACT_STOLEN:
3536 		kfree_skb(skb);
3537 		return NULL;
3538 	}
3539 
3540 out:
3541 	skb->tc_verd = 0;
3542 	return skb;
3543 }
3544 #endif
3545 
3546 /**
3547  *	netdev_rx_handler_register - register receive handler
3548  *	@dev: device to register a handler for
3549  *	@rx_handler: receive handler to register
3550  *	@rx_handler_data: data pointer that is used by rx handler
3551  *
3552  *	Register a receive handler for a device. This handler will then be
3553  *	called from __netif_receive_skb. A negative errno code is returned
3554  *	on a failure.
3555  *
3556  *	The caller must hold the rtnl_mutex.
3557  *
3558  *	For a general description of rx_handler, see enum rx_handler_result.
3559  */
3560 int netdev_rx_handler_register(struct net_device *dev,
3561 			       rx_handler_func_t *rx_handler,
3562 			       void *rx_handler_data)
3563 {
3564 	ASSERT_RTNL();
3565 
3566 	if (dev->rx_handler)
3567 		return -EBUSY;
3568 
3569 	/* Note: rx_handler_data must be set before rx_handler */
3570 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3571 	rcu_assign_pointer(dev->rx_handler, rx_handler);
3572 
3573 	return 0;
3574 }
3575 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3576 
3577 /**
3578  *	netdev_rx_handler_unregister - unregister receive handler
3579  *	@dev: device to unregister a handler from
3580  *
3581  *	Unregister a receive handler from a device.
3582  *
3583  *	The caller must hold the rtnl_mutex.
3584  */
3585 void netdev_rx_handler_unregister(struct net_device *dev)
3586 {
3587 
3588 	ASSERT_RTNL();
3589 	RCU_INIT_POINTER(dev->rx_handler, NULL);
3590 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3591 	 * section has a guarantee to see a non NULL rx_handler_data
3592 	 * as well.
3593 	 */
3594 	synchronize_net();
3595 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3596 }
3597 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3598 
3599 /*
3600  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3601  * the special handling of PFMEMALLOC skbs.
3602  */
3603 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3604 {
3605 	switch (skb->protocol) {
3606 	case htons(ETH_P_ARP):
3607 	case htons(ETH_P_IP):
3608 	case htons(ETH_P_IPV6):
3609 	case htons(ETH_P_8021Q):
3610 	case htons(ETH_P_8021AD):
3611 		return true;
3612 	default:
3613 		return false;
3614 	}
3615 }
3616 
3617 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3618 {
3619 	struct packet_type *ptype, *pt_prev;
3620 	rx_handler_func_t *rx_handler;
3621 	struct net_device *orig_dev;
3622 	bool deliver_exact = false;
3623 	int ret = NET_RX_DROP;
3624 	__be16 type;
3625 
3626 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
3627 
3628 	trace_netif_receive_skb(skb);
3629 
3630 	orig_dev = skb->dev;
3631 
3632 	skb_reset_network_header(skb);
3633 	if (!skb_transport_header_was_set(skb))
3634 		skb_reset_transport_header(skb);
3635 	skb_reset_mac_len(skb);
3636 
3637 	pt_prev = NULL;
3638 
3639 	rcu_read_lock();
3640 
3641 another_round:
3642 	skb->skb_iif = skb->dev->ifindex;
3643 
3644 	__this_cpu_inc(softnet_data.processed);
3645 
3646 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3647 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3648 		skb = skb_vlan_untag(skb);
3649 		if (unlikely(!skb))
3650 			goto unlock;
3651 	}
3652 
3653 #ifdef CONFIG_NET_CLS_ACT
3654 	if (skb->tc_verd & TC_NCLS) {
3655 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3656 		goto ncls;
3657 	}
3658 #endif
3659 
3660 	if (pfmemalloc)
3661 		goto skip_taps;
3662 
3663 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
3664 		if (pt_prev)
3665 			ret = deliver_skb(skb, pt_prev, orig_dev);
3666 		pt_prev = ptype;
3667 	}
3668 
3669 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3670 		if (pt_prev)
3671 			ret = deliver_skb(skb, pt_prev, orig_dev);
3672 		pt_prev = ptype;
3673 	}
3674 
3675 skip_taps:
3676 #ifdef CONFIG_NET_CLS_ACT
3677 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3678 	if (!skb)
3679 		goto unlock;
3680 ncls:
3681 #endif
3682 
3683 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3684 		goto drop;
3685 
3686 	if (skb_vlan_tag_present(skb)) {
3687 		if (pt_prev) {
3688 			ret = deliver_skb(skb, pt_prev, orig_dev);
3689 			pt_prev = NULL;
3690 		}
3691 		if (vlan_do_receive(&skb))
3692 			goto another_round;
3693 		else if (unlikely(!skb))
3694 			goto unlock;
3695 	}
3696 
3697 	rx_handler = rcu_dereference(skb->dev->rx_handler);
3698 	if (rx_handler) {
3699 		if (pt_prev) {
3700 			ret = deliver_skb(skb, pt_prev, orig_dev);
3701 			pt_prev = NULL;
3702 		}
3703 		switch (rx_handler(&skb)) {
3704 		case RX_HANDLER_CONSUMED:
3705 			ret = NET_RX_SUCCESS;
3706 			goto unlock;
3707 		case RX_HANDLER_ANOTHER:
3708 			goto another_round;
3709 		case RX_HANDLER_EXACT:
3710 			deliver_exact = true;
3711 		case RX_HANDLER_PASS:
3712 			break;
3713 		default:
3714 			BUG();
3715 		}
3716 	}
3717 
3718 	if (unlikely(skb_vlan_tag_present(skb))) {
3719 		if (skb_vlan_tag_get_id(skb))
3720 			skb->pkt_type = PACKET_OTHERHOST;
3721 		/* Note: we might in the future use prio bits
3722 		 * and set skb->priority like in vlan_do_receive()
3723 		 * For the time being, just ignore Priority Code Point
3724 		 */
3725 		skb->vlan_tci = 0;
3726 	}
3727 
3728 	type = skb->protocol;
3729 
3730 	/* deliver only exact match when indicated */
3731 	if (likely(!deliver_exact)) {
3732 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3733 				       &ptype_base[ntohs(type) &
3734 						   PTYPE_HASH_MASK]);
3735 	}
3736 
3737 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3738 			       &orig_dev->ptype_specific);
3739 
3740 	if (unlikely(skb->dev != orig_dev)) {
3741 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3742 				       &skb->dev->ptype_specific);
3743 	}
3744 
3745 	if (pt_prev) {
3746 		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3747 			goto drop;
3748 		else
3749 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3750 	} else {
3751 drop:
3752 		atomic_long_inc(&skb->dev->rx_dropped);
3753 		kfree_skb(skb);
3754 		/* Jamal, now you will not able to escape explaining
3755 		 * me how you were going to use this. :-)
3756 		 */
3757 		ret = NET_RX_DROP;
3758 	}
3759 
3760 unlock:
3761 	rcu_read_unlock();
3762 	return ret;
3763 }
3764 
3765 static int __netif_receive_skb(struct sk_buff *skb)
3766 {
3767 	int ret;
3768 
3769 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3770 		unsigned long pflags = current->flags;
3771 
3772 		/*
3773 		 * PFMEMALLOC skbs are special, they should
3774 		 * - be delivered to SOCK_MEMALLOC sockets only
3775 		 * - stay away from userspace
3776 		 * - have bounded memory usage
3777 		 *
3778 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
3779 		 * context down to all allocation sites.
3780 		 */
3781 		current->flags |= PF_MEMALLOC;
3782 		ret = __netif_receive_skb_core(skb, true);
3783 		tsk_restore_flags(current, pflags, PF_MEMALLOC);
3784 	} else
3785 		ret = __netif_receive_skb_core(skb, false);
3786 
3787 	return ret;
3788 }
3789 
3790 static int netif_receive_skb_internal(struct sk_buff *skb)
3791 {
3792 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3793 
3794 	if (skb_defer_rx_timestamp(skb))
3795 		return NET_RX_SUCCESS;
3796 
3797 #ifdef CONFIG_RPS
3798 	if (static_key_false(&rps_needed)) {
3799 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3800 		int cpu, ret;
3801 
3802 		rcu_read_lock();
3803 
3804 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3805 
3806 		if (cpu >= 0) {
3807 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3808 			rcu_read_unlock();
3809 			return ret;
3810 		}
3811 		rcu_read_unlock();
3812 	}
3813 #endif
3814 	return __netif_receive_skb(skb);
3815 }
3816 
3817 /**
3818  *	netif_receive_skb - process receive buffer from network
3819  *	@skb: buffer to process
3820  *
3821  *	netif_receive_skb() is the main receive data processing function.
3822  *	It always succeeds. The buffer may be dropped during processing
3823  *	for congestion control or by the protocol layers.
3824  *
3825  *	This function may only be called from softirq context and interrupts
3826  *	should be enabled.
3827  *
3828  *	Return values (usually ignored):
3829  *	NET_RX_SUCCESS: no congestion
3830  *	NET_RX_DROP: packet was dropped
3831  */
3832 int netif_receive_skb(struct sk_buff *skb)
3833 {
3834 	trace_netif_receive_skb_entry(skb);
3835 
3836 	return netif_receive_skb_internal(skb);
3837 }
3838 EXPORT_SYMBOL(netif_receive_skb);
3839 
3840 /* Network device is going away, flush any packets still pending
3841  * Called with irqs disabled.
3842  */
3843 static void flush_backlog(void *arg)
3844 {
3845 	struct net_device *dev = arg;
3846 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3847 	struct sk_buff *skb, *tmp;
3848 
3849 	rps_lock(sd);
3850 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3851 		if (skb->dev == dev) {
3852 			__skb_unlink(skb, &sd->input_pkt_queue);
3853 			kfree_skb(skb);
3854 			input_queue_head_incr(sd);
3855 		}
3856 	}
3857 	rps_unlock(sd);
3858 
3859 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3860 		if (skb->dev == dev) {
3861 			__skb_unlink(skb, &sd->process_queue);
3862 			kfree_skb(skb);
3863 			input_queue_head_incr(sd);
3864 		}
3865 	}
3866 }
3867 
3868 static int napi_gro_complete(struct sk_buff *skb)
3869 {
3870 	struct packet_offload *ptype;
3871 	__be16 type = skb->protocol;
3872 	struct list_head *head = &offload_base;
3873 	int err = -ENOENT;
3874 
3875 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3876 
3877 	if (NAPI_GRO_CB(skb)->count == 1) {
3878 		skb_shinfo(skb)->gso_size = 0;
3879 		goto out;
3880 	}
3881 
3882 	rcu_read_lock();
3883 	list_for_each_entry_rcu(ptype, head, list) {
3884 		if (ptype->type != type || !ptype->callbacks.gro_complete)
3885 			continue;
3886 
3887 		err = ptype->callbacks.gro_complete(skb, 0);
3888 		break;
3889 	}
3890 	rcu_read_unlock();
3891 
3892 	if (err) {
3893 		WARN_ON(&ptype->list == head);
3894 		kfree_skb(skb);
3895 		return NET_RX_SUCCESS;
3896 	}
3897 
3898 out:
3899 	return netif_receive_skb_internal(skb);
3900 }
3901 
3902 /* napi->gro_list contains packets ordered by age.
3903  * youngest packets at the head of it.
3904  * Complete skbs in reverse order to reduce latencies.
3905  */
3906 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3907 {
3908 	struct sk_buff *skb, *prev = NULL;
3909 
3910 	/* scan list and build reverse chain */
3911 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3912 		skb->prev = prev;
3913 		prev = skb;
3914 	}
3915 
3916 	for (skb = prev; skb; skb = prev) {
3917 		skb->next = NULL;
3918 
3919 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3920 			return;
3921 
3922 		prev = skb->prev;
3923 		napi_gro_complete(skb);
3924 		napi->gro_count--;
3925 	}
3926 
3927 	napi->gro_list = NULL;
3928 }
3929 EXPORT_SYMBOL(napi_gro_flush);
3930 
3931 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3932 {
3933 	struct sk_buff *p;
3934 	unsigned int maclen = skb->dev->hard_header_len;
3935 	u32 hash = skb_get_hash_raw(skb);
3936 
3937 	for (p = napi->gro_list; p; p = p->next) {
3938 		unsigned long diffs;
3939 
3940 		NAPI_GRO_CB(p)->flush = 0;
3941 
3942 		if (hash != skb_get_hash_raw(p)) {
3943 			NAPI_GRO_CB(p)->same_flow = 0;
3944 			continue;
3945 		}
3946 
3947 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3948 		diffs |= p->vlan_tci ^ skb->vlan_tci;
3949 		if (maclen == ETH_HLEN)
3950 			diffs |= compare_ether_header(skb_mac_header(p),
3951 						      skb_mac_header(skb));
3952 		else if (!diffs)
3953 			diffs = memcmp(skb_mac_header(p),
3954 				       skb_mac_header(skb),
3955 				       maclen);
3956 		NAPI_GRO_CB(p)->same_flow = !diffs;
3957 	}
3958 }
3959 
3960 static void skb_gro_reset_offset(struct sk_buff *skb)
3961 {
3962 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
3963 	const skb_frag_t *frag0 = &pinfo->frags[0];
3964 
3965 	NAPI_GRO_CB(skb)->data_offset = 0;
3966 	NAPI_GRO_CB(skb)->frag0 = NULL;
3967 	NAPI_GRO_CB(skb)->frag0_len = 0;
3968 
3969 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3970 	    pinfo->nr_frags &&
3971 	    !PageHighMem(skb_frag_page(frag0))) {
3972 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3973 		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3974 	}
3975 }
3976 
3977 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
3978 {
3979 	struct skb_shared_info *pinfo = skb_shinfo(skb);
3980 
3981 	BUG_ON(skb->end - skb->tail < grow);
3982 
3983 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3984 
3985 	skb->data_len -= grow;
3986 	skb->tail += grow;
3987 
3988 	pinfo->frags[0].page_offset += grow;
3989 	skb_frag_size_sub(&pinfo->frags[0], grow);
3990 
3991 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
3992 		skb_frag_unref(skb, 0);
3993 		memmove(pinfo->frags, pinfo->frags + 1,
3994 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
3995 	}
3996 }
3997 
3998 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3999 {
4000 	struct sk_buff **pp = NULL;
4001 	struct packet_offload *ptype;
4002 	__be16 type = skb->protocol;
4003 	struct list_head *head = &offload_base;
4004 	int same_flow;
4005 	enum gro_result ret;
4006 	int grow;
4007 
4008 	if (!(skb->dev->features & NETIF_F_GRO))
4009 		goto normal;
4010 
4011 	if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4012 		goto normal;
4013 
4014 	gro_list_prepare(napi, skb);
4015 
4016 	rcu_read_lock();
4017 	list_for_each_entry_rcu(ptype, head, list) {
4018 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4019 			continue;
4020 
4021 		skb_set_network_header(skb, skb_gro_offset(skb));
4022 		skb_reset_mac_len(skb);
4023 		NAPI_GRO_CB(skb)->same_flow = 0;
4024 		NAPI_GRO_CB(skb)->flush = 0;
4025 		NAPI_GRO_CB(skb)->free = 0;
4026 		NAPI_GRO_CB(skb)->udp_mark = 0;
4027 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4028 
4029 		/* Setup for GRO checksum validation */
4030 		switch (skb->ip_summed) {
4031 		case CHECKSUM_COMPLETE:
4032 			NAPI_GRO_CB(skb)->csum = skb->csum;
4033 			NAPI_GRO_CB(skb)->csum_valid = 1;
4034 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4035 			break;
4036 		case CHECKSUM_UNNECESSARY:
4037 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4038 			NAPI_GRO_CB(skb)->csum_valid = 0;
4039 			break;
4040 		default:
4041 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4042 			NAPI_GRO_CB(skb)->csum_valid = 0;
4043 		}
4044 
4045 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4046 		break;
4047 	}
4048 	rcu_read_unlock();
4049 
4050 	if (&ptype->list == head)
4051 		goto normal;
4052 
4053 	same_flow = NAPI_GRO_CB(skb)->same_flow;
4054 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4055 
4056 	if (pp) {
4057 		struct sk_buff *nskb = *pp;
4058 
4059 		*pp = nskb->next;
4060 		nskb->next = NULL;
4061 		napi_gro_complete(nskb);
4062 		napi->gro_count--;
4063 	}
4064 
4065 	if (same_flow)
4066 		goto ok;
4067 
4068 	if (NAPI_GRO_CB(skb)->flush)
4069 		goto normal;
4070 
4071 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4072 		struct sk_buff *nskb = napi->gro_list;
4073 
4074 		/* locate the end of the list to select the 'oldest' flow */
4075 		while (nskb->next) {
4076 			pp = &nskb->next;
4077 			nskb = *pp;
4078 		}
4079 		*pp = NULL;
4080 		nskb->next = NULL;
4081 		napi_gro_complete(nskb);
4082 	} else {
4083 		napi->gro_count++;
4084 	}
4085 	NAPI_GRO_CB(skb)->count = 1;
4086 	NAPI_GRO_CB(skb)->age = jiffies;
4087 	NAPI_GRO_CB(skb)->last = skb;
4088 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4089 	skb->next = napi->gro_list;
4090 	napi->gro_list = skb;
4091 	ret = GRO_HELD;
4092 
4093 pull:
4094 	grow = skb_gro_offset(skb) - skb_headlen(skb);
4095 	if (grow > 0)
4096 		gro_pull_from_frag0(skb, grow);
4097 ok:
4098 	return ret;
4099 
4100 normal:
4101 	ret = GRO_NORMAL;
4102 	goto pull;
4103 }
4104 
4105 struct packet_offload *gro_find_receive_by_type(__be16 type)
4106 {
4107 	struct list_head *offload_head = &offload_base;
4108 	struct packet_offload *ptype;
4109 
4110 	list_for_each_entry_rcu(ptype, offload_head, list) {
4111 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4112 			continue;
4113 		return ptype;
4114 	}
4115 	return NULL;
4116 }
4117 EXPORT_SYMBOL(gro_find_receive_by_type);
4118 
4119 struct packet_offload *gro_find_complete_by_type(__be16 type)
4120 {
4121 	struct list_head *offload_head = &offload_base;
4122 	struct packet_offload *ptype;
4123 
4124 	list_for_each_entry_rcu(ptype, offload_head, list) {
4125 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4126 			continue;
4127 		return ptype;
4128 	}
4129 	return NULL;
4130 }
4131 EXPORT_SYMBOL(gro_find_complete_by_type);
4132 
4133 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4134 {
4135 	switch (ret) {
4136 	case GRO_NORMAL:
4137 		if (netif_receive_skb_internal(skb))
4138 			ret = GRO_DROP;
4139 		break;
4140 
4141 	case GRO_DROP:
4142 		kfree_skb(skb);
4143 		break;
4144 
4145 	case GRO_MERGED_FREE:
4146 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4147 			kmem_cache_free(skbuff_head_cache, skb);
4148 		else
4149 			__kfree_skb(skb);
4150 		break;
4151 
4152 	case GRO_HELD:
4153 	case GRO_MERGED:
4154 		break;
4155 	}
4156 
4157 	return ret;
4158 }
4159 
4160 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4161 {
4162 	trace_napi_gro_receive_entry(skb);
4163 
4164 	skb_gro_reset_offset(skb);
4165 
4166 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4167 }
4168 EXPORT_SYMBOL(napi_gro_receive);
4169 
4170 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4171 {
4172 	if (unlikely(skb->pfmemalloc)) {
4173 		consume_skb(skb);
4174 		return;
4175 	}
4176 	__skb_pull(skb, skb_headlen(skb));
4177 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
4178 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4179 	skb->vlan_tci = 0;
4180 	skb->dev = napi->dev;
4181 	skb->skb_iif = 0;
4182 	skb->encapsulation = 0;
4183 	skb_shinfo(skb)->gso_type = 0;
4184 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4185 
4186 	napi->skb = skb;
4187 }
4188 
4189 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4190 {
4191 	struct sk_buff *skb = napi->skb;
4192 
4193 	if (!skb) {
4194 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4195 		napi->skb = skb;
4196 	}
4197 	return skb;
4198 }
4199 EXPORT_SYMBOL(napi_get_frags);
4200 
4201 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4202 				      struct sk_buff *skb,
4203 				      gro_result_t ret)
4204 {
4205 	switch (ret) {
4206 	case GRO_NORMAL:
4207 	case GRO_HELD:
4208 		__skb_push(skb, ETH_HLEN);
4209 		skb->protocol = eth_type_trans(skb, skb->dev);
4210 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4211 			ret = GRO_DROP;
4212 		break;
4213 
4214 	case GRO_DROP:
4215 	case GRO_MERGED_FREE:
4216 		napi_reuse_skb(napi, skb);
4217 		break;
4218 
4219 	case GRO_MERGED:
4220 		break;
4221 	}
4222 
4223 	return ret;
4224 }
4225 
4226 /* Upper GRO stack assumes network header starts at gro_offset=0
4227  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4228  * We copy ethernet header into skb->data to have a common layout.
4229  */
4230 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4231 {
4232 	struct sk_buff *skb = napi->skb;
4233 	const struct ethhdr *eth;
4234 	unsigned int hlen = sizeof(*eth);
4235 
4236 	napi->skb = NULL;
4237 
4238 	skb_reset_mac_header(skb);
4239 	skb_gro_reset_offset(skb);
4240 
4241 	eth = skb_gro_header_fast(skb, 0);
4242 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
4243 		eth = skb_gro_header_slow(skb, hlen, 0);
4244 		if (unlikely(!eth)) {
4245 			napi_reuse_skb(napi, skb);
4246 			return NULL;
4247 		}
4248 	} else {
4249 		gro_pull_from_frag0(skb, hlen);
4250 		NAPI_GRO_CB(skb)->frag0 += hlen;
4251 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
4252 	}
4253 	__skb_pull(skb, hlen);
4254 
4255 	/*
4256 	 * This works because the only protocols we care about don't require
4257 	 * special handling.
4258 	 * We'll fix it up properly in napi_frags_finish()
4259 	 */
4260 	skb->protocol = eth->h_proto;
4261 
4262 	return skb;
4263 }
4264 
4265 gro_result_t napi_gro_frags(struct napi_struct *napi)
4266 {
4267 	struct sk_buff *skb = napi_frags_skb(napi);
4268 
4269 	if (!skb)
4270 		return GRO_DROP;
4271 
4272 	trace_napi_gro_frags_entry(skb);
4273 
4274 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4275 }
4276 EXPORT_SYMBOL(napi_gro_frags);
4277 
4278 /* Compute the checksum from gro_offset and return the folded value
4279  * after adding in any pseudo checksum.
4280  */
4281 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4282 {
4283 	__wsum wsum;
4284 	__sum16 sum;
4285 
4286 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4287 
4288 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4289 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4290 	if (likely(!sum)) {
4291 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4292 		    !skb->csum_complete_sw)
4293 			netdev_rx_csum_fault(skb->dev);
4294 	}
4295 
4296 	NAPI_GRO_CB(skb)->csum = wsum;
4297 	NAPI_GRO_CB(skb)->csum_valid = 1;
4298 
4299 	return sum;
4300 }
4301 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4302 
4303 /*
4304  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4305  * Note: called with local irq disabled, but exits with local irq enabled.
4306  */
4307 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4308 {
4309 #ifdef CONFIG_RPS
4310 	struct softnet_data *remsd = sd->rps_ipi_list;
4311 
4312 	if (remsd) {
4313 		sd->rps_ipi_list = NULL;
4314 
4315 		local_irq_enable();
4316 
4317 		/* Send pending IPI's to kick RPS processing on remote cpus. */
4318 		while (remsd) {
4319 			struct softnet_data *next = remsd->rps_ipi_next;
4320 
4321 			if (cpu_online(remsd->cpu))
4322 				smp_call_function_single_async(remsd->cpu,
4323 							   &remsd->csd);
4324 			remsd = next;
4325 		}
4326 	} else
4327 #endif
4328 		local_irq_enable();
4329 }
4330 
4331 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4332 {
4333 #ifdef CONFIG_RPS
4334 	return sd->rps_ipi_list != NULL;
4335 #else
4336 	return false;
4337 #endif
4338 }
4339 
4340 static int process_backlog(struct napi_struct *napi, int quota)
4341 {
4342 	int work = 0;
4343 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4344 
4345 	/* Check if we have pending ipi, its better to send them now,
4346 	 * not waiting net_rx_action() end.
4347 	 */
4348 	if (sd_has_rps_ipi_waiting(sd)) {
4349 		local_irq_disable();
4350 		net_rps_action_and_irq_enable(sd);
4351 	}
4352 
4353 	napi->weight = weight_p;
4354 	local_irq_disable();
4355 	while (1) {
4356 		struct sk_buff *skb;
4357 
4358 		while ((skb = __skb_dequeue(&sd->process_queue))) {
4359 			local_irq_enable();
4360 			__netif_receive_skb(skb);
4361 			local_irq_disable();
4362 			input_queue_head_incr(sd);
4363 			if (++work >= quota) {
4364 				local_irq_enable();
4365 				return work;
4366 			}
4367 		}
4368 
4369 		rps_lock(sd);
4370 		if (skb_queue_empty(&sd->input_pkt_queue)) {
4371 			/*
4372 			 * Inline a custom version of __napi_complete().
4373 			 * only current cpu owns and manipulates this napi,
4374 			 * and NAPI_STATE_SCHED is the only possible flag set
4375 			 * on backlog.
4376 			 * We can use a plain write instead of clear_bit(),
4377 			 * and we dont need an smp_mb() memory barrier.
4378 			 */
4379 			napi->state = 0;
4380 			rps_unlock(sd);
4381 
4382 			break;
4383 		}
4384 
4385 		skb_queue_splice_tail_init(&sd->input_pkt_queue,
4386 					   &sd->process_queue);
4387 		rps_unlock(sd);
4388 	}
4389 	local_irq_enable();
4390 
4391 	return work;
4392 }
4393 
4394 /**
4395  * __napi_schedule - schedule for receive
4396  * @n: entry to schedule
4397  *
4398  * The entry's receive function will be scheduled to run.
4399  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4400  */
4401 void __napi_schedule(struct napi_struct *n)
4402 {
4403 	unsigned long flags;
4404 
4405 	local_irq_save(flags);
4406 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4407 	local_irq_restore(flags);
4408 }
4409 EXPORT_SYMBOL(__napi_schedule);
4410 
4411 /**
4412  * __napi_schedule_irqoff - schedule for receive
4413  * @n: entry to schedule
4414  *
4415  * Variant of __napi_schedule() assuming hard irqs are masked
4416  */
4417 void __napi_schedule_irqoff(struct napi_struct *n)
4418 {
4419 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4420 }
4421 EXPORT_SYMBOL(__napi_schedule_irqoff);
4422 
4423 void __napi_complete(struct napi_struct *n)
4424 {
4425 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4426 
4427 	list_del_init(&n->poll_list);
4428 	smp_mb__before_atomic();
4429 	clear_bit(NAPI_STATE_SCHED, &n->state);
4430 }
4431 EXPORT_SYMBOL(__napi_complete);
4432 
4433 void napi_complete_done(struct napi_struct *n, int work_done)
4434 {
4435 	unsigned long flags;
4436 
4437 	/*
4438 	 * don't let napi dequeue from the cpu poll list
4439 	 * just in case its running on a different cpu
4440 	 */
4441 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4442 		return;
4443 
4444 	if (n->gro_list) {
4445 		unsigned long timeout = 0;
4446 
4447 		if (work_done)
4448 			timeout = n->dev->gro_flush_timeout;
4449 
4450 		if (timeout)
4451 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
4452 				      HRTIMER_MODE_REL_PINNED);
4453 		else
4454 			napi_gro_flush(n, false);
4455 	}
4456 	if (likely(list_empty(&n->poll_list))) {
4457 		WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4458 	} else {
4459 		/* If n->poll_list is not empty, we need to mask irqs */
4460 		local_irq_save(flags);
4461 		__napi_complete(n);
4462 		local_irq_restore(flags);
4463 	}
4464 }
4465 EXPORT_SYMBOL(napi_complete_done);
4466 
4467 /* must be called under rcu_read_lock(), as we dont take a reference */
4468 struct napi_struct *napi_by_id(unsigned int napi_id)
4469 {
4470 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4471 	struct napi_struct *napi;
4472 
4473 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4474 		if (napi->napi_id == napi_id)
4475 			return napi;
4476 
4477 	return NULL;
4478 }
4479 EXPORT_SYMBOL_GPL(napi_by_id);
4480 
4481 void napi_hash_add(struct napi_struct *napi)
4482 {
4483 	if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4484 
4485 		spin_lock(&napi_hash_lock);
4486 
4487 		/* 0 is not a valid id, we also skip an id that is taken
4488 		 * we expect both events to be extremely rare
4489 		 */
4490 		napi->napi_id = 0;
4491 		while (!napi->napi_id) {
4492 			napi->napi_id = ++napi_gen_id;
4493 			if (napi_by_id(napi->napi_id))
4494 				napi->napi_id = 0;
4495 		}
4496 
4497 		hlist_add_head_rcu(&napi->napi_hash_node,
4498 			&napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4499 
4500 		spin_unlock(&napi_hash_lock);
4501 	}
4502 }
4503 EXPORT_SYMBOL_GPL(napi_hash_add);
4504 
4505 /* Warning : caller is responsible to make sure rcu grace period
4506  * is respected before freeing memory containing @napi
4507  */
4508 void napi_hash_del(struct napi_struct *napi)
4509 {
4510 	spin_lock(&napi_hash_lock);
4511 
4512 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4513 		hlist_del_rcu(&napi->napi_hash_node);
4514 
4515 	spin_unlock(&napi_hash_lock);
4516 }
4517 EXPORT_SYMBOL_GPL(napi_hash_del);
4518 
4519 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4520 {
4521 	struct napi_struct *napi;
4522 
4523 	napi = container_of(timer, struct napi_struct, timer);
4524 	if (napi->gro_list)
4525 		napi_schedule(napi);
4526 
4527 	return HRTIMER_NORESTART;
4528 }
4529 
4530 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4531 		    int (*poll)(struct napi_struct *, int), int weight)
4532 {
4533 	INIT_LIST_HEAD(&napi->poll_list);
4534 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4535 	napi->timer.function = napi_watchdog;
4536 	napi->gro_count = 0;
4537 	napi->gro_list = NULL;
4538 	napi->skb = NULL;
4539 	napi->poll = poll;
4540 	if (weight > NAPI_POLL_WEIGHT)
4541 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4542 			    weight, dev->name);
4543 	napi->weight = weight;
4544 	list_add(&napi->dev_list, &dev->napi_list);
4545 	napi->dev = dev;
4546 #ifdef CONFIG_NETPOLL
4547 	spin_lock_init(&napi->poll_lock);
4548 	napi->poll_owner = -1;
4549 #endif
4550 	set_bit(NAPI_STATE_SCHED, &napi->state);
4551 }
4552 EXPORT_SYMBOL(netif_napi_add);
4553 
4554 void napi_disable(struct napi_struct *n)
4555 {
4556 	might_sleep();
4557 	set_bit(NAPI_STATE_DISABLE, &n->state);
4558 
4559 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4560 		msleep(1);
4561 
4562 	hrtimer_cancel(&n->timer);
4563 
4564 	clear_bit(NAPI_STATE_DISABLE, &n->state);
4565 }
4566 EXPORT_SYMBOL(napi_disable);
4567 
4568 void netif_napi_del(struct napi_struct *napi)
4569 {
4570 	list_del_init(&napi->dev_list);
4571 	napi_free_frags(napi);
4572 
4573 	kfree_skb_list(napi->gro_list);
4574 	napi->gro_list = NULL;
4575 	napi->gro_count = 0;
4576 }
4577 EXPORT_SYMBOL(netif_napi_del);
4578 
4579 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4580 {
4581 	void *have;
4582 	int work, weight;
4583 
4584 	list_del_init(&n->poll_list);
4585 
4586 	have = netpoll_poll_lock(n);
4587 
4588 	weight = n->weight;
4589 
4590 	/* This NAPI_STATE_SCHED test is for avoiding a race
4591 	 * with netpoll's poll_napi().  Only the entity which
4592 	 * obtains the lock and sees NAPI_STATE_SCHED set will
4593 	 * actually make the ->poll() call.  Therefore we avoid
4594 	 * accidentally calling ->poll() when NAPI is not scheduled.
4595 	 */
4596 	work = 0;
4597 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4598 		work = n->poll(n, weight);
4599 		trace_napi_poll(n);
4600 	}
4601 
4602 	WARN_ON_ONCE(work > weight);
4603 
4604 	if (likely(work < weight))
4605 		goto out_unlock;
4606 
4607 	/* Drivers must not modify the NAPI state if they
4608 	 * consume the entire weight.  In such cases this code
4609 	 * still "owns" the NAPI instance and therefore can
4610 	 * move the instance around on the list at-will.
4611 	 */
4612 	if (unlikely(napi_disable_pending(n))) {
4613 		napi_complete(n);
4614 		goto out_unlock;
4615 	}
4616 
4617 	if (n->gro_list) {
4618 		/* flush too old packets
4619 		 * If HZ < 1000, flush all packets.
4620 		 */
4621 		napi_gro_flush(n, HZ >= 1000);
4622 	}
4623 
4624 	/* Some drivers may have called napi_schedule
4625 	 * prior to exhausting their budget.
4626 	 */
4627 	if (unlikely(!list_empty(&n->poll_list))) {
4628 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4629 			     n->dev ? n->dev->name : "backlog");
4630 		goto out_unlock;
4631 	}
4632 
4633 	list_add_tail(&n->poll_list, repoll);
4634 
4635 out_unlock:
4636 	netpoll_poll_unlock(have);
4637 
4638 	return work;
4639 }
4640 
4641 static void net_rx_action(struct softirq_action *h)
4642 {
4643 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4644 	unsigned long time_limit = jiffies + 2;
4645 	int budget = netdev_budget;
4646 	LIST_HEAD(list);
4647 	LIST_HEAD(repoll);
4648 
4649 	local_irq_disable();
4650 	list_splice_init(&sd->poll_list, &list);
4651 	local_irq_enable();
4652 
4653 	for (;;) {
4654 		struct napi_struct *n;
4655 
4656 		if (list_empty(&list)) {
4657 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4658 				return;
4659 			break;
4660 		}
4661 
4662 		n = list_first_entry(&list, struct napi_struct, poll_list);
4663 		budget -= napi_poll(n, &repoll);
4664 
4665 		/* If softirq window is exhausted then punt.
4666 		 * Allow this to run for 2 jiffies since which will allow
4667 		 * an average latency of 1.5/HZ.
4668 		 */
4669 		if (unlikely(budget <= 0 ||
4670 			     time_after_eq(jiffies, time_limit))) {
4671 			sd->time_squeeze++;
4672 			break;
4673 		}
4674 	}
4675 
4676 	local_irq_disable();
4677 
4678 	list_splice_tail_init(&sd->poll_list, &list);
4679 	list_splice_tail(&repoll, &list);
4680 	list_splice(&list, &sd->poll_list);
4681 	if (!list_empty(&sd->poll_list))
4682 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4683 
4684 	net_rps_action_and_irq_enable(sd);
4685 }
4686 
4687 struct netdev_adjacent {
4688 	struct net_device *dev;
4689 
4690 	/* upper master flag, there can only be one master device per list */
4691 	bool master;
4692 
4693 	/* counter for the number of times this device was added to us */
4694 	u16 ref_nr;
4695 
4696 	/* private field for the users */
4697 	void *private;
4698 
4699 	struct list_head list;
4700 	struct rcu_head rcu;
4701 };
4702 
4703 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4704 						 struct net_device *adj_dev,
4705 						 struct list_head *adj_list)
4706 {
4707 	struct netdev_adjacent *adj;
4708 
4709 	list_for_each_entry(adj, adj_list, list) {
4710 		if (adj->dev == adj_dev)
4711 			return adj;
4712 	}
4713 	return NULL;
4714 }
4715 
4716 /**
4717  * netdev_has_upper_dev - Check if device is linked to an upper device
4718  * @dev: device
4719  * @upper_dev: upper device to check
4720  *
4721  * Find out if a device is linked to specified upper device and return true
4722  * in case it is. Note that this checks only immediate upper device,
4723  * not through a complete stack of devices. The caller must hold the RTNL lock.
4724  */
4725 bool netdev_has_upper_dev(struct net_device *dev,
4726 			  struct net_device *upper_dev)
4727 {
4728 	ASSERT_RTNL();
4729 
4730 	return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4731 }
4732 EXPORT_SYMBOL(netdev_has_upper_dev);
4733 
4734 /**
4735  * netdev_has_any_upper_dev - Check if device is linked to some device
4736  * @dev: device
4737  *
4738  * Find out if a device is linked to an upper device and return true in case
4739  * it is. The caller must hold the RTNL lock.
4740  */
4741 static bool netdev_has_any_upper_dev(struct net_device *dev)
4742 {
4743 	ASSERT_RTNL();
4744 
4745 	return !list_empty(&dev->all_adj_list.upper);
4746 }
4747 
4748 /**
4749  * netdev_master_upper_dev_get - Get master upper device
4750  * @dev: device
4751  *
4752  * Find a master upper device and return pointer to it or NULL in case
4753  * it's not there. The caller must hold the RTNL lock.
4754  */
4755 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4756 {
4757 	struct netdev_adjacent *upper;
4758 
4759 	ASSERT_RTNL();
4760 
4761 	if (list_empty(&dev->adj_list.upper))
4762 		return NULL;
4763 
4764 	upper = list_first_entry(&dev->adj_list.upper,
4765 				 struct netdev_adjacent, list);
4766 	if (likely(upper->master))
4767 		return upper->dev;
4768 	return NULL;
4769 }
4770 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4771 
4772 void *netdev_adjacent_get_private(struct list_head *adj_list)
4773 {
4774 	struct netdev_adjacent *adj;
4775 
4776 	adj = list_entry(adj_list, struct netdev_adjacent, list);
4777 
4778 	return adj->private;
4779 }
4780 EXPORT_SYMBOL(netdev_adjacent_get_private);
4781 
4782 /**
4783  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4784  * @dev: device
4785  * @iter: list_head ** of the current position
4786  *
4787  * Gets the next device from the dev's upper list, starting from iter
4788  * position. The caller must hold RCU read lock.
4789  */
4790 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4791 						 struct list_head **iter)
4792 {
4793 	struct netdev_adjacent *upper;
4794 
4795 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4796 
4797 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4798 
4799 	if (&upper->list == &dev->adj_list.upper)
4800 		return NULL;
4801 
4802 	*iter = &upper->list;
4803 
4804 	return upper->dev;
4805 }
4806 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4807 
4808 /**
4809  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4810  * @dev: device
4811  * @iter: list_head ** of the current position
4812  *
4813  * Gets the next device from the dev's upper list, starting from iter
4814  * position. The caller must hold RCU read lock.
4815  */
4816 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4817 						     struct list_head **iter)
4818 {
4819 	struct netdev_adjacent *upper;
4820 
4821 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4822 
4823 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4824 
4825 	if (&upper->list == &dev->all_adj_list.upper)
4826 		return NULL;
4827 
4828 	*iter = &upper->list;
4829 
4830 	return upper->dev;
4831 }
4832 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4833 
4834 /**
4835  * netdev_lower_get_next_private - Get the next ->private from the
4836  *				   lower neighbour list
4837  * @dev: device
4838  * @iter: list_head ** of the current position
4839  *
4840  * Gets the next netdev_adjacent->private from the dev's lower neighbour
4841  * list, starting from iter position. The caller must hold either hold the
4842  * RTNL lock or its own locking that guarantees that the neighbour lower
4843  * list will remain unchainged.
4844  */
4845 void *netdev_lower_get_next_private(struct net_device *dev,
4846 				    struct list_head **iter)
4847 {
4848 	struct netdev_adjacent *lower;
4849 
4850 	lower = list_entry(*iter, struct netdev_adjacent, list);
4851 
4852 	if (&lower->list == &dev->adj_list.lower)
4853 		return NULL;
4854 
4855 	*iter = lower->list.next;
4856 
4857 	return lower->private;
4858 }
4859 EXPORT_SYMBOL(netdev_lower_get_next_private);
4860 
4861 /**
4862  * netdev_lower_get_next_private_rcu - Get the next ->private from the
4863  *				       lower neighbour list, RCU
4864  *				       variant
4865  * @dev: device
4866  * @iter: list_head ** of the current position
4867  *
4868  * Gets the next netdev_adjacent->private from the dev's lower neighbour
4869  * list, starting from iter position. The caller must hold RCU read lock.
4870  */
4871 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4872 					struct list_head **iter)
4873 {
4874 	struct netdev_adjacent *lower;
4875 
4876 	WARN_ON_ONCE(!rcu_read_lock_held());
4877 
4878 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4879 
4880 	if (&lower->list == &dev->adj_list.lower)
4881 		return NULL;
4882 
4883 	*iter = &lower->list;
4884 
4885 	return lower->private;
4886 }
4887 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4888 
4889 /**
4890  * netdev_lower_get_next - Get the next device from the lower neighbour
4891  *                         list
4892  * @dev: device
4893  * @iter: list_head ** of the current position
4894  *
4895  * Gets the next netdev_adjacent from the dev's lower neighbour
4896  * list, starting from iter position. The caller must hold RTNL lock or
4897  * its own locking that guarantees that the neighbour lower
4898  * list will remain unchainged.
4899  */
4900 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4901 {
4902 	struct netdev_adjacent *lower;
4903 
4904 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4905 
4906 	if (&lower->list == &dev->adj_list.lower)
4907 		return NULL;
4908 
4909 	*iter = &lower->list;
4910 
4911 	return lower->dev;
4912 }
4913 EXPORT_SYMBOL(netdev_lower_get_next);
4914 
4915 /**
4916  * netdev_lower_get_first_private_rcu - Get the first ->private from the
4917  *				       lower neighbour list, RCU
4918  *				       variant
4919  * @dev: device
4920  *
4921  * Gets the first netdev_adjacent->private from the dev's lower neighbour
4922  * list. The caller must hold RCU read lock.
4923  */
4924 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4925 {
4926 	struct netdev_adjacent *lower;
4927 
4928 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
4929 			struct netdev_adjacent, list);
4930 	if (lower)
4931 		return lower->private;
4932 	return NULL;
4933 }
4934 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4935 
4936 /**
4937  * netdev_master_upper_dev_get_rcu - Get master upper device
4938  * @dev: device
4939  *
4940  * Find a master upper device and return pointer to it or NULL in case
4941  * it's not there. The caller must hold the RCU read lock.
4942  */
4943 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4944 {
4945 	struct netdev_adjacent *upper;
4946 
4947 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
4948 				       struct netdev_adjacent, list);
4949 	if (upper && likely(upper->master))
4950 		return upper->dev;
4951 	return NULL;
4952 }
4953 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4954 
4955 static int netdev_adjacent_sysfs_add(struct net_device *dev,
4956 			      struct net_device *adj_dev,
4957 			      struct list_head *dev_list)
4958 {
4959 	char linkname[IFNAMSIZ+7];
4960 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
4961 		"upper_%s" : "lower_%s", adj_dev->name);
4962 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4963 				 linkname);
4964 }
4965 static void netdev_adjacent_sysfs_del(struct net_device *dev,
4966 			       char *name,
4967 			       struct list_head *dev_list)
4968 {
4969 	char linkname[IFNAMSIZ+7];
4970 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
4971 		"upper_%s" : "lower_%s", name);
4972 	sysfs_remove_link(&(dev->dev.kobj), linkname);
4973 }
4974 
4975 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
4976 						 struct net_device *adj_dev,
4977 						 struct list_head *dev_list)
4978 {
4979 	return (dev_list == &dev->adj_list.upper ||
4980 		dev_list == &dev->adj_list.lower) &&
4981 		net_eq(dev_net(dev), dev_net(adj_dev));
4982 }
4983 
4984 static int __netdev_adjacent_dev_insert(struct net_device *dev,
4985 					struct net_device *adj_dev,
4986 					struct list_head *dev_list,
4987 					void *private, bool master)
4988 {
4989 	struct netdev_adjacent *adj;
4990 	int ret;
4991 
4992 	adj = __netdev_find_adj(dev, adj_dev, dev_list);
4993 
4994 	if (adj) {
4995 		adj->ref_nr++;
4996 		return 0;
4997 	}
4998 
4999 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5000 	if (!adj)
5001 		return -ENOMEM;
5002 
5003 	adj->dev = adj_dev;
5004 	adj->master = master;
5005 	adj->ref_nr = 1;
5006 	adj->private = private;
5007 	dev_hold(adj_dev);
5008 
5009 	pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5010 		 adj_dev->name, dev->name, adj_dev->name);
5011 
5012 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5013 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5014 		if (ret)
5015 			goto free_adj;
5016 	}
5017 
5018 	/* Ensure that master link is always the first item in list. */
5019 	if (master) {
5020 		ret = sysfs_create_link(&(dev->dev.kobj),
5021 					&(adj_dev->dev.kobj), "master");
5022 		if (ret)
5023 			goto remove_symlinks;
5024 
5025 		list_add_rcu(&adj->list, dev_list);
5026 	} else {
5027 		list_add_tail_rcu(&adj->list, dev_list);
5028 	}
5029 
5030 	return 0;
5031 
5032 remove_symlinks:
5033 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5034 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5035 free_adj:
5036 	kfree(adj);
5037 	dev_put(adj_dev);
5038 
5039 	return ret;
5040 }
5041 
5042 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5043 					 struct net_device *adj_dev,
5044 					 struct list_head *dev_list)
5045 {
5046 	struct netdev_adjacent *adj;
5047 
5048 	adj = __netdev_find_adj(dev, adj_dev, dev_list);
5049 
5050 	if (!adj) {
5051 		pr_err("tried to remove device %s from %s\n",
5052 		       dev->name, adj_dev->name);
5053 		BUG();
5054 	}
5055 
5056 	if (adj->ref_nr > 1) {
5057 		pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5058 			 adj->ref_nr-1);
5059 		adj->ref_nr--;
5060 		return;
5061 	}
5062 
5063 	if (adj->master)
5064 		sysfs_remove_link(&(dev->dev.kobj), "master");
5065 
5066 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5067 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5068 
5069 	list_del_rcu(&adj->list);
5070 	pr_debug("dev_put for %s, because link removed from %s to %s\n",
5071 		 adj_dev->name, dev->name, adj_dev->name);
5072 	dev_put(adj_dev);
5073 	kfree_rcu(adj, rcu);
5074 }
5075 
5076 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5077 					    struct net_device *upper_dev,
5078 					    struct list_head *up_list,
5079 					    struct list_head *down_list,
5080 					    void *private, bool master)
5081 {
5082 	int ret;
5083 
5084 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5085 					   master);
5086 	if (ret)
5087 		return ret;
5088 
5089 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5090 					   false);
5091 	if (ret) {
5092 		__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5093 		return ret;
5094 	}
5095 
5096 	return 0;
5097 }
5098 
5099 static int __netdev_adjacent_dev_link(struct net_device *dev,
5100 				      struct net_device *upper_dev)
5101 {
5102 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5103 						&dev->all_adj_list.upper,
5104 						&upper_dev->all_adj_list.lower,
5105 						NULL, false);
5106 }
5107 
5108 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5109 					       struct net_device *upper_dev,
5110 					       struct list_head *up_list,
5111 					       struct list_head *down_list)
5112 {
5113 	__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5114 	__netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5115 }
5116 
5117 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5118 					 struct net_device *upper_dev)
5119 {
5120 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5121 					   &dev->all_adj_list.upper,
5122 					   &upper_dev->all_adj_list.lower);
5123 }
5124 
5125 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5126 						struct net_device *upper_dev,
5127 						void *private, bool master)
5128 {
5129 	int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5130 
5131 	if (ret)
5132 		return ret;
5133 
5134 	ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5135 					       &dev->adj_list.upper,
5136 					       &upper_dev->adj_list.lower,
5137 					       private, master);
5138 	if (ret) {
5139 		__netdev_adjacent_dev_unlink(dev, upper_dev);
5140 		return ret;
5141 	}
5142 
5143 	return 0;
5144 }
5145 
5146 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5147 						   struct net_device *upper_dev)
5148 {
5149 	__netdev_adjacent_dev_unlink(dev, upper_dev);
5150 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5151 					   &dev->adj_list.upper,
5152 					   &upper_dev->adj_list.lower);
5153 }
5154 
5155 static int __netdev_upper_dev_link(struct net_device *dev,
5156 				   struct net_device *upper_dev, bool master,
5157 				   void *private)
5158 {
5159 	struct netdev_adjacent *i, *j, *to_i, *to_j;
5160 	int ret = 0;
5161 
5162 	ASSERT_RTNL();
5163 
5164 	if (dev == upper_dev)
5165 		return -EBUSY;
5166 
5167 	/* To prevent loops, check if dev is not upper device to upper_dev. */
5168 	if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
5169 		return -EBUSY;
5170 
5171 	if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
5172 		return -EEXIST;
5173 
5174 	if (master && netdev_master_upper_dev_get(dev))
5175 		return -EBUSY;
5176 
5177 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5178 						   master);
5179 	if (ret)
5180 		return ret;
5181 
5182 	/* Now that we linked these devs, make all the upper_dev's
5183 	 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5184 	 * versa, and don't forget the devices itself. All of these
5185 	 * links are non-neighbours.
5186 	 */
5187 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5188 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5189 			pr_debug("Interlinking %s with %s, non-neighbour\n",
5190 				 i->dev->name, j->dev->name);
5191 			ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5192 			if (ret)
5193 				goto rollback_mesh;
5194 		}
5195 	}
5196 
5197 	/* add dev to every upper_dev's upper device */
5198 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5199 		pr_debug("linking %s's upper device %s with %s\n",
5200 			 upper_dev->name, i->dev->name, dev->name);
5201 		ret = __netdev_adjacent_dev_link(dev, i->dev);
5202 		if (ret)
5203 			goto rollback_upper_mesh;
5204 	}
5205 
5206 	/* add upper_dev to every dev's lower device */
5207 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5208 		pr_debug("linking %s's lower device %s with %s\n", dev->name,
5209 			 i->dev->name, upper_dev->name);
5210 		ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5211 		if (ret)
5212 			goto rollback_lower_mesh;
5213 	}
5214 
5215 	call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5216 	return 0;
5217 
5218 rollback_lower_mesh:
5219 	to_i = i;
5220 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5221 		if (i == to_i)
5222 			break;
5223 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
5224 	}
5225 
5226 	i = NULL;
5227 
5228 rollback_upper_mesh:
5229 	to_i = i;
5230 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5231 		if (i == to_i)
5232 			break;
5233 		__netdev_adjacent_dev_unlink(dev, i->dev);
5234 	}
5235 
5236 	i = j = NULL;
5237 
5238 rollback_mesh:
5239 	to_i = i;
5240 	to_j = j;
5241 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5242 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5243 			if (i == to_i && j == to_j)
5244 				break;
5245 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5246 		}
5247 		if (i == to_i)
5248 			break;
5249 	}
5250 
5251 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5252 
5253 	return ret;
5254 }
5255 
5256 /**
5257  * netdev_upper_dev_link - Add a link to the upper device
5258  * @dev: device
5259  * @upper_dev: new upper device
5260  *
5261  * Adds a link to device which is upper to this one. The caller must hold
5262  * the RTNL lock. On a failure a negative errno code is returned.
5263  * On success the reference counts are adjusted and the function
5264  * returns zero.
5265  */
5266 int netdev_upper_dev_link(struct net_device *dev,
5267 			  struct net_device *upper_dev)
5268 {
5269 	return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5270 }
5271 EXPORT_SYMBOL(netdev_upper_dev_link);
5272 
5273 /**
5274  * netdev_master_upper_dev_link - Add a master link to the upper device
5275  * @dev: device
5276  * @upper_dev: new upper device
5277  *
5278  * Adds a link to device which is upper to this one. In this case, only
5279  * one master upper device can be linked, although other non-master devices
5280  * might be linked as well. The caller must hold the RTNL lock.
5281  * On a failure a negative errno code is returned. On success the reference
5282  * counts are adjusted and the function returns zero.
5283  */
5284 int netdev_master_upper_dev_link(struct net_device *dev,
5285 				 struct net_device *upper_dev)
5286 {
5287 	return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5288 }
5289 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5290 
5291 int netdev_master_upper_dev_link_private(struct net_device *dev,
5292 					 struct net_device *upper_dev,
5293 					 void *private)
5294 {
5295 	return __netdev_upper_dev_link(dev, upper_dev, true, private);
5296 }
5297 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5298 
5299 /**
5300  * netdev_upper_dev_unlink - Removes a link to upper device
5301  * @dev: device
5302  * @upper_dev: new upper device
5303  *
5304  * Removes a link to device which is upper to this one. The caller must hold
5305  * the RTNL lock.
5306  */
5307 void netdev_upper_dev_unlink(struct net_device *dev,
5308 			     struct net_device *upper_dev)
5309 {
5310 	struct netdev_adjacent *i, *j;
5311 	ASSERT_RTNL();
5312 
5313 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5314 
5315 	/* Here is the tricky part. We must remove all dev's lower
5316 	 * devices from all upper_dev's upper devices and vice
5317 	 * versa, to maintain the graph relationship.
5318 	 */
5319 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5320 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5321 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5322 
5323 	/* remove also the devices itself from lower/upper device
5324 	 * list
5325 	 */
5326 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5327 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
5328 
5329 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5330 		__netdev_adjacent_dev_unlink(dev, i->dev);
5331 
5332 	call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5333 }
5334 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5335 
5336 /**
5337  * netdev_bonding_info_change - Dispatch event about slave change
5338  * @dev: device
5339  * @bonding_info: info to dispatch
5340  *
5341  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5342  * The caller must hold the RTNL lock.
5343  */
5344 void netdev_bonding_info_change(struct net_device *dev,
5345 				struct netdev_bonding_info *bonding_info)
5346 {
5347 	struct netdev_notifier_bonding_info	info;
5348 
5349 	memcpy(&info.bonding_info, bonding_info,
5350 	       sizeof(struct netdev_bonding_info));
5351 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5352 				      &info.info);
5353 }
5354 EXPORT_SYMBOL(netdev_bonding_info_change);
5355 
5356 static void netdev_adjacent_add_links(struct net_device *dev)
5357 {
5358 	struct netdev_adjacent *iter;
5359 
5360 	struct net *net = dev_net(dev);
5361 
5362 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5363 		if (!net_eq(net,dev_net(iter->dev)))
5364 			continue;
5365 		netdev_adjacent_sysfs_add(iter->dev, dev,
5366 					  &iter->dev->adj_list.lower);
5367 		netdev_adjacent_sysfs_add(dev, iter->dev,
5368 					  &dev->adj_list.upper);
5369 	}
5370 
5371 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5372 		if (!net_eq(net,dev_net(iter->dev)))
5373 			continue;
5374 		netdev_adjacent_sysfs_add(iter->dev, dev,
5375 					  &iter->dev->adj_list.upper);
5376 		netdev_adjacent_sysfs_add(dev, iter->dev,
5377 					  &dev->adj_list.lower);
5378 	}
5379 }
5380 
5381 static void netdev_adjacent_del_links(struct net_device *dev)
5382 {
5383 	struct netdev_adjacent *iter;
5384 
5385 	struct net *net = dev_net(dev);
5386 
5387 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5388 		if (!net_eq(net,dev_net(iter->dev)))
5389 			continue;
5390 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
5391 					  &iter->dev->adj_list.lower);
5392 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
5393 					  &dev->adj_list.upper);
5394 	}
5395 
5396 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5397 		if (!net_eq(net,dev_net(iter->dev)))
5398 			continue;
5399 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
5400 					  &iter->dev->adj_list.upper);
5401 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
5402 					  &dev->adj_list.lower);
5403 	}
5404 }
5405 
5406 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5407 {
5408 	struct netdev_adjacent *iter;
5409 
5410 	struct net *net = dev_net(dev);
5411 
5412 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5413 		if (!net_eq(net,dev_net(iter->dev)))
5414 			continue;
5415 		netdev_adjacent_sysfs_del(iter->dev, oldname,
5416 					  &iter->dev->adj_list.lower);
5417 		netdev_adjacent_sysfs_add(iter->dev, dev,
5418 					  &iter->dev->adj_list.lower);
5419 	}
5420 
5421 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5422 		if (!net_eq(net,dev_net(iter->dev)))
5423 			continue;
5424 		netdev_adjacent_sysfs_del(iter->dev, oldname,
5425 					  &iter->dev->adj_list.upper);
5426 		netdev_adjacent_sysfs_add(iter->dev, dev,
5427 					  &iter->dev->adj_list.upper);
5428 	}
5429 }
5430 
5431 void *netdev_lower_dev_get_private(struct net_device *dev,
5432 				   struct net_device *lower_dev)
5433 {
5434 	struct netdev_adjacent *lower;
5435 
5436 	if (!lower_dev)
5437 		return NULL;
5438 	lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5439 	if (!lower)
5440 		return NULL;
5441 
5442 	return lower->private;
5443 }
5444 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5445 
5446 
5447 int dev_get_nest_level(struct net_device *dev,
5448 		       bool (*type_check)(struct net_device *dev))
5449 {
5450 	struct net_device *lower = NULL;
5451 	struct list_head *iter;
5452 	int max_nest = -1;
5453 	int nest;
5454 
5455 	ASSERT_RTNL();
5456 
5457 	netdev_for_each_lower_dev(dev, lower, iter) {
5458 		nest = dev_get_nest_level(lower, type_check);
5459 		if (max_nest < nest)
5460 			max_nest = nest;
5461 	}
5462 
5463 	if (type_check(dev))
5464 		max_nest++;
5465 
5466 	return max_nest;
5467 }
5468 EXPORT_SYMBOL(dev_get_nest_level);
5469 
5470 static void dev_change_rx_flags(struct net_device *dev, int flags)
5471 {
5472 	const struct net_device_ops *ops = dev->netdev_ops;
5473 
5474 	if (ops->ndo_change_rx_flags)
5475 		ops->ndo_change_rx_flags(dev, flags);
5476 }
5477 
5478 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5479 {
5480 	unsigned int old_flags = dev->flags;
5481 	kuid_t uid;
5482 	kgid_t gid;
5483 
5484 	ASSERT_RTNL();
5485 
5486 	dev->flags |= IFF_PROMISC;
5487 	dev->promiscuity += inc;
5488 	if (dev->promiscuity == 0) {
5489 		/*
5490 		 * Avoid overflow.
5491 		 * If inc causes overflow, untouch promisc and return error.
5492 		 */
5493 		if (inc < 0)
5494 			dev->flags &= ~IFF_PROMISC;
5495 		else {
5496 			dev->promiscuity -= inc;
5497 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5498 				dev->name);
5499 			return -EOVERFLOW;
5500 		}
5501 	}
5502 	if (dev->flags != old_flags) {
5503 		pr_info("device %s %s promiscuous mode\n",
5504 			dev->name,
5505 			dev->flags & IFF_PROMISC ? "entered" : "left");
5506 		if (audit_enabled) {
5507 			current_uid_gid(&uid, &gid);
5508 			audit_log(current->audit_context, GFP_ATOMIC,
5509 				AUDIT_ANOM_PROMISCUOUS,
5510 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5511 				dev->name, (dev->flags & IFF_PROMISC),
5512 				(old_flags & IFF_PROMISC),
5513 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
5514 				from_kuid(&init_user_ns, uid),
5515 				from_kgid(&init_user_ns, gid),
5516 				audit_get_sessionid(current));
5517 		}
5518 
5519 		dev_change_rx_flags(dev, IFF_PROMISC);
5520 	}
5521 	if (notify)
5522 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
5523 	return 0;
5524 }
5525 
5526 /**
5527  *	dev_set_promiscuity	- update promiscuity count on a device
5528  *	@dev: device
5529  *	@inc: modifier
5530  *
5531  *	Add or remove promiscuity from a device. While the count in the device
5532  *	remains above zero the interface remains promiscuous. Once it hits zero
5533  *	the device reverts back to normal filtering operation. A negative inc
5534  *	value is used to drop promiscuity on the device.
5535  *	Return 0 if successful or a negative errno code on error.
5536  */
5537 int dev_set_promiscuity(struct net_device *dev, int inc)
5538 {
5539 	unsigned int old_flags = dev->flags;
5540 	int err;
5541 
5542 	err = __dev_set_promiscuity(dev, inc, true);
5543 	if (err < 0)
5544 		return err;
5545 	if (dev->flags != old_flags)
5546 		dev_set_rx_mode(dev);
5547 	return err;
5548 }
5549 EXPORT_SYMBOL(dev_set_promiscuity);
5550 
5551 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5552 {
5553 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5554 
5555 	ASSERT_RTNL();
5556 
5557 	dev->flags |= IFF_ALLMULTI;
5558 	dev->allmulti += inc;
5559 	if (dev->allmulti == 0) {
5560 		/*
5561 		 * Avoid overflow.
5562 		 * If inc causes overflow, untouch allmulti and return error.
5563 		 */
5564 		if (inc < 0)
5565 			dev->flags &= ~IFF_ALLMULTI;
5566 		else {
5567 			dev->allmulti -= inc;
5568 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5569 				dev->name);
5570 			return -EOVERFLOW;
5571 		}
5572 	}
5573 	if (dev->flags ^ old_flags) {
5574 		dev_change_rx_flags(dev, IFF_ALLMULTI);
5575 		dev_set_rx_mode(dev);
5576 		if (notify)
5577 			__dev_notify_flags(dev, old_flags,
5578 					   dev->gflags ^ old_gflags);
5579 	}
5580 	return 0;
5581 }
5582 
5583 /**
5584  *	dev_set_allmulti	- update allmulti count on a device
5585  *	@dev: device
5586  *	@inc: modifier
5587  *
5588  *	Add or remove reception of all multicast frames to a device. While the
5589  *	count in the device remains above zero the interface remains listening
5590  *	to all interfaces. Once it hits zero the device reverts back to normal
5591  *	filtering operation. A negative @inc value is used to drop the counter
5592  *	when releasing a resource needing all multicasts.
5593  *	Return 0 if successful or a negative errno code on error.
5594  */
5595 
5596 int dev_set_allmulti(struct net_device *dev, int inc)
5597 {
5598 	return __dev_set_allmulti(dev, inc, true);
5599 }
5600 EXPORT_SYMBOL(dev_set_allmulti);
5601 
5602 /*
5603  *	Upload unicast and multicast address lists to device and
5604  *	configure RX filtering. When the device doesn't support unicast
5605  *	filtering it is put in promiscuous mode while unicast addresses
5606  *	are present.
5607  */
5608 void __dev_set_rx_mode(struct net_device *dev)
5609 {
5610 	const struct net_device_ops *ops = dev->netdev_ops;
5611 
5612 	/* dev_open will call this function so the list will stay sane. */
5613 	if (!(dev->flags&IFF_UP))
5614 		return;
5615 
5616 	if (!netif_device_present(dev))
5617 		return;
5618 
5619 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5620 		/* Unicast addresses changes may only happen under the rtnl,
5621 		 * therefore calling __dev_set_promiscuity here is safe.
5622 		 */
5623 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5624 			__dev_set_promiscuity(dev, 1, false);
5625 			dev->uc_promisc = true;
5626 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5627 			__dev_set_promiscuity(dev, -1, false);
5628 			dev->uc_promisc = false;
5629 		}
5630 	}
5631 
5632 	if (ops->ndo_set_rx_mode)
5633 		ops->ndo_set_rx_mode(dev);
5634 }
5635 
5636 void dev_set_rx_mode(struct net_device *dev)
5637 {
5638 	netif_addr_lock_bh(dev);
5639 	__dev_set_rx_mode(dev);
5640 	netif_addr_unlock_bh(dev);
5641 }
5642 
5643 /**
5644  *	dev_get_flags - get flags reported to userspace
5645  *	@dev: device
5646  *
5647  *	Get the combination of flag bits exported through APIs to userspace.
5648  */
5649 unsigned int dev_get_flags(const struct net_device *dev)
5650 {
5651 	unsigned int flags;
5652 
5653 	flags = (dev->flags & ~(IFF_PROMISC |
5654 				IFF_ALLMULTI |
5655 				IFF_RUNNING |
5656 				IFF_LOWER_UP |
5657 				IFF_DORMANT)) |
5658 		(dev->gflags & (IFF_PROMISC |
5659 				IFF_ALLMULTI));
5660 
5661 	if (netif_running(dev)) {
5662 		if (netif_oper_up(dev))
5663 			flags |= IFF_RUNNING;
5664 		if (netif_carrier_ok(dev))
5665 			flags |= IFF_LOWER_UP;
5666 		if (netif_dormant(dev))
5667 			flags |= IFF_DORMANT;
5668 	}
5669 
5670 	return flags;
5671 }
5672 EXPORT_SYMBOL(dev_get_flags);
5673 
5674 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5675 {
5676 	unsigned int old_flags = dev->flags;
5677 	int ret;
5678 
5679 	ASSERT_RTNL();
5680 
5681 	/*
5682 	 *	Set the flags on our device.
5683 	 */
5684 
5685 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5686 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5687 			       IFF_AUTOMEDIA)) |
5688 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5689 				    IFF_ALLMULTI));
5690 
5691 	/*
5692 	 *	Load in the correct multicast list now the flags have changed.
5693 	 */
5694 
5695 	if ((old_flags ^ flags) & IFF_MULTICAST)
5696 		dev_change_rx_flags(dev, IFF_MULTICAST);
5697 
5698 	dev_set_rx_mode(dev);
5699 
5700 	/*
5701 	 *	Have we downed the interface. We handle IFF_UP ourselves
5702 	 *	according to user attempts to set it, rather than blindly
5703 	 *	setting it.
5704 	 */
5705 
5706 	ret = 0;
5707 	if ((old_flags ^ flags) & IFF_UP)
5708 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5709 
5710 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
5711 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
5712 		unsigned int old_flags = dev->flags;
5713 
5714 		dev->gflags ^= IFF_PROMISC;
5715 
5716 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
5717 			if (dev->flags != old_flags)
5718 				dev_set_rx_mode(dev);
5719 	}
5720 
5721 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5722 	   is important. Some (broken) drivers set IFF_PROMISC, when
5723 	   IFF_ALLMULTI is requested not asking us and not reporting.
5724 	 */
5725 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5726 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5727 
5728 		dev->gflags ^= IFF_ALLMULTI;
5729 		__dev_set_allmulti(dev, inc, false);
5730 	}
5731 
5732 	return ret;
5733 }
5734 
5735 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5736 			unsigned int gchanges)
5737 {
5738 	unsigned int changes = dev->flags ^ old_flags;
5739 
5740 	if (gchanges)
5741 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5742 
5743 	if (changes & IFF_UP) {
5744 		if (dev->flags & IFF_UP)
5745 			call_netdevice_notifiers(NETDEV_UP, dev);
5746 		else
5747 			call_netdevice_notifiers(NETDEV_DOWN, dev);
5748 	}
5749 
5750 	if (dev->flags & IFF_UP &&
5751 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5752 		struct netdev_notifier_change_info change_info;
5753 
5754 		change_info.flags_changed = changes;
5755 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5756 					      &change_info.info);
5757 	}
5758 }
5759 
5760 /**
5761  *	dev_change_flags - change device settings
5762  *	@dev: device
5763  *	@flags: device state flags
5764  *
5765  *	Change settings on device based state flags. The flags are
5766  *	in the userspace exported format.
5767  */
5768 int dev_change_flags(struct net_device *dev, unsigned int flags)
5769 {
5770 	int ret;
5771 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5772 
5773 	ret = __dev_change_flags(dev, flags);
5774 	if (ret < 0)
5775 		return ret;
5776 
5777 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5778 	__dev_notify_flags(dev, old_flags, changes);
5779 	return ret;
5780 }
5781 EXPORT_SYMBOL(dev_change_flags);
5782 
5783 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5784 {
5785 	const struct net_device_ops *ops = dev->netdev_ops;
5786 
5787 	if (ops->ndo_change_mtu)
5788 		return ops->ndo_change_mtu(dev, new_mtu);
5789 
5790 	dev->mtu = new_mtu;
5791 	return 0;
5792 }
5793 
5794 /**
5795  *	dev_set_mtu - Change maximum transfer unit
5796  *	@dev: device
5797  *	@new_mtu: new transfer unit
5798  *
5799  *	Change the maximum transfer size of the network device.
5800  */
5801 int dev_set_mtu(struct net_device *dev, int new_mtu)
5802 {
5803 	int err, orig_mtu;
5804 
5805 	if (new_mtu == dev->mtu)
5806 		return 0;
5807 
5808 	/*	MTU must be positive.	 */
5809 	if (new_mtu < 0)
5810 		return -EINVAL;
5811 
5812 	if (!netif_device_present(dev))
5813 		return -ENODEV;
5814 
5815 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5816 	err = notifier_to_errno(err);
5817 	if (err)
5818 		return err;
5819 
5820 	orig_mtu = dev->mtu;
5821 	err = __dev_set_mtu(dev, new_mtu);
5822 
5823 	if (!err) {
5824 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5825 		err = notifier_to_errno(err);
5826 		if (err) {
5827 			/* setting mtu back and notifying everyone again,
5828 			 * so that they have a chance to revert changes.
5829 			 */
5830 			__dev_set_mtu(dev, orig_mtu);
5831 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5832 		}
5833 	}
5834 	return err;
5835 }
5836 EXPORT_SYMBOL(dev_set_mtu);
5837 
5838 /**
5839  *	dev_set_group - Change group this device belongs to
5840  *	@dev: device
5841  *	@new_group: group this device should belong to
5842  */
5843 void dev_set_group(struct net_device *dev, int new_group)
5844 {
5845 	dev->group = new_group;
5846 }
5847 EXPORT_SYMBOL(dev_set_group);
5848 
5849 /**
5850  *	dev_set_mac_address - Change Media Access Control Address
5851  *	@dev: device
5852  *	@sa: new address
5853  *
5854  *	Change the hardware (MAC) address of the device
5855  */
5856 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5857 {
5858 	const struct net_device_ops *ops = dev->netdev_ops;
5859 	int err;
5860 
5861 	if (!ops->ndo_set_mac_address)
5862 		return -EOPNOTSUPP;
5863 	if (sa->sa_family != dev->type)
5864 		return -EINVAL;
5865 	if (!netif_device_present(dev))
5866 		return -ENODEV;
5867 	err = ops->ndo_set_mac_address(dev, sa);
5868 	if (err)
5869 		return err;
5870 	dev->addr_assign_type = NET_ADDR_SET;
5871 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5872 	add_device_randomness(dev->dev_addr, dev->addr_len);
5873 	return 0;
5874 }
5875 EXPORT_SYMBOL(dev_set_mac_address);
5876 
5877 /**
5878  *	dev_change_carrier - Change device carrier
5879  *	@dev: device
5880  *	@new_carrier: new value
5881  *
5882  *	Change device carrier
5883  */
5884 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5885 {
5886 	const struct net_device_ops *ops = dev->netdev_ops;
5887 
5888 	if (!ops->ndo_change_carrier)
5889 		return -EOPNOTSUPP;
5890 	if (!netif_device_present(dev))
5891 		return -ENODEV;
5892 	return ops->ndo_change_carrier(dev, new_carrier);
5893 }
5894 EXPORT_SYMBOL(dev_change_carrier);
5895 
5896 /**
5897  *	dev_get_phys_port_id - Get device physical port ID
5898  *	@dev: device
5899  *	@ppid: port ID
5900  *
5901  *	Get device physical port ID
5902  */
5903 int dev_get_phys_port_id(struct net_device *dev,
5904 			 struct netdev_phys_item_id *ppid)
5905 {
5906 	const struct net_device_ops *ops = dev->netdev_ops;
5907 
5908 	if (!ops->ndo_get_phys_port_id)
5909 		return -EOPNOTSUPP;
5910 	return ops->ndo_get_phys_port_id(dev, ppid);
5911 }
5912 EXPORT_SYMBOL(dev_get_phys_port_id);
5913 
5914 /**
5915  *	dev_new_index	-	allocate an ifindex
5916  *	@net: the applicable net namespace
5917  *
5918  *	Returns a suitable unique value for a new device interface
5919  *	number.  The caller must hold the rtnl semaphore or the
5920  *	dev_base_lock to be sure it remains unique.
5921  */
5922 static int dev_new_index(struct net *net)
5923 {
5924 	int ifindex = net->ifindex;
5925 	for (;;) {
5926 		if (++ifindex <= 0)
5927 			ifindex = 1;
5928 		if (!__dev_get_by_index(net, ifindex))
5929 			return net->ifindex = ifindex;
5930 	}
5931 }
5932 
5933 /* Delayed registration/unregisteration */
5934 static LIST_HEAD(net_todo_list);
5935 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5936 
5937 static void net_set_todo(struct net_device *dev)
5938 {
5939 	list_add_tail(&dev->todo_list, &net_todo_list);
5940 	dev_net(dev)->dev_unreg_count++;
5941 }
5942 
5943 static void rollback_registered_many(struct list_head *head)
5944 {
5945 	struct net_device *dev, *tmp;
5946 	LIST_HEAD(close_head);
5947 
5948 	BUG_ON(dev_boot_phase);
5949 	ASSERT_RTNL();
5950 
5951 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5952 		/* Some devices call without registering
5953 		 * for initialization unwind. Remove those
5954 		 * devices and proceed with the remaining.
5955 		 */
5956 		if (dev->reg_state == NETREG_UNINITIALIZED) {
5957 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5958 				 dev->name, dev);
5959 
5960 			WARN_ON(1);
5961 			list_del(&dev->unreg_list);
5962 			continue;
5963 		}
5964 		dev->dismantle = true;
5965 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
5966 	}
5967 
5968 	/* If device is running, close it first. */
5969 	list_for_each_entry(dev, head, unreg_list)
5970 		list_add_tail(&dev->close_list, &close_head);
5971 	dev_close_many(&close_head);
5972 
5973 	list_for_each_entry(dev, head, unreg_list) {
5974 		/* And unlink it from device chain. */
5975 		unlist_netdevice(dev);
5976 
5977 		dev->reg_state = NETREG_UNREGISTERING;
5978 	}
5979 
5980 	synchronize_net();
5981 
5982 	list_for_each_entry(dev, head, unreg_list) {
5983 		struct sk_buff *skb = NULL;
5984 
5985 		/* Shutdown queueing discipline. */
5986 		dev_shutdown(dev);
5987 
5988 
5989 		/* Notify protocols, that we are about to destroy
5990 		   this device. They should clean all the things.
5991 		*/
5992 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5993 
5994 		if (!dev->rtnl_link_ops ||
5995 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5996 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
5997 						     GFP_KERNEL);
5998 
5999 		/*
6000 		 *	Flush the unicast and multicast chains
6001 		 */
6002 		dev_uc_flush(dev);
6003 		dev_mc_flush(dev);
6004 
6005 		if (dev->netdev_ops->ndo_uninit)
6006 			dev->netdev_ops->ndo_uninit(dev);
6007 
6008 		if (skb)
6009 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6010 
6011 		/* Notifier chain MUST detach us all upper devices. */
6012 		WARN_ON(netdev_has_any_upper_dev(dev));
6013 
6014 		/* Remove entries from kobject tree */
6015 		netdev_unregister_kobject(dev);
6016 #ifdef CONFIG_XPS
6017 		/* Remove XPS queueing entries */
6018 		netif_reset_xps_queues_gt(dev, 0);
6019 #endif
6020 	}
6021 
6022 	synchronize_net();
6023 
6024 	list_for_each_entry(dev, head, unreg_list)
6025 		dev_put(dev);
6026 }
6027 
6028 static void rollback_registered(struct net_device *dev)
6029 {
6030 	LIST_HEAD(single);
6031 
6032 	list_add(&dev->unreg_list, &single);
6033 	rollback_registered_many(&single);
6034 	list_del(&single);
6035 }
6036 
6037 static netdev_features_t netdev_fix_features(struct net_device *dev,
6038 	netdev_features_t features)
6039 {
6040 	/* Fix illegal checksum combinations */
6041 	if ((features & NETIF_F_HW_CSUM) &&
6042 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6043 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6044 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6045 	}
6046 
6047 	/* TSO requires that SG is present as well. */
6048 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6049 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6050 		features &= ~NETIF_F_ALL_TSO;
6051 	}
6052 
6053 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6054 					!(features & NETIF_F_IP_CSUM)) {
6055 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6056 		features &= ~NETIF_F_TSO;
6057 		features &= ~NETIF_F_TSO_ECN;
6058 	}
6059 
6060 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6061 					 !(features & NETIF_F_IPV6_CSUM)) {
6062 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6063 		features &= ~NETIF_F_TSO6;
6064 	}
6065 
6066 	/* TSO ECN requires that TSO is present as well. */
6067 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6068 		features &= ~NETIF_F_TSO_ECN;
6069 
6070 	/* Software GSO depends on SG. */
6071 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6072 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6073 		features &= ~NETIF_F_GSO;
6074 	}
6075 
6076 	/* UFO needs SG and checksumming */
6077 	if (features & NETIF_F_UFO) {
6078 		/* maybe split UFO into V4 and V6? */
6079 		if (!((features & NETIF_F_GEN_CSUM) ||
6080 		    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6081 			    == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6082 			netdev_dbg(dev,
6083 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
6084 			features &= ~NETIF_F_UFO;
6085 		}
6086 
6087 		if (!(features & NETIF_F_SG)) {
6088 			netdev_dbg(dev,
6089 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6090 			features &= ~NETIF_F_UFO;
6091 		}
6092 	}
6093 
6094 #ifdef CONFIG_NET_RX_BUSY_POLL
6095 	if (dev->netdev_ops->ndo_busy_poll)
6096 		features |= NETIF_F_BUSY_POLL;
6097 	else
6098 #endif
6099 		features &= ~NETIF_F_BUSY_POLL;
6100 
6101 	return features;
6102 }
6103 
6104 int __netdev_update_features(struct net_device *dev)
6105 {
6106 	netdev_features_t features;
6107 	int err = 0;
6108 
6109 	ASSERT_RTNL();
6110 
6111 	features = netdev_get_wanted_features(dev);
6112 
6113 	if (dev->netdev_ops->ndo_fix_features)
6114 		features = dev->netdev_ops->ndo_fix_features(dev, features);
6115 
6116 	/* driver might be less strict about feature dependencies */
6117 	features = netdev_fix_features(dev, features);
6118 
6119 	if (dev->features == features)
6120 		return 0;
6121 
6122 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6123 		&dev->features, &features);
6124 
6125 	if (dev->netdev_ops->ndo_set_features)
6126 		err = dev->netdev_ops->ndo_set_features(dev, features);
6127 
6128 	if (unlikely(err < 0)) {
6129 		netdev_err(dev,
6130 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
6131 			err, &features, &dev->features);
6132 		return -1;
6133 	}
6134 
6135 	if (!err)
6136 		dev->features = features;
6137 
6138 	return 1;
6139 }
6140 
6141 /**
6142  *	netdev_update_features - recalculate device features
6143  *	@dev: the device to check
6144  *
6145  *	Recalculate dev->features set and send notifications if it
6146  *	has changed. Should be called after driver or hardware dependent
6147  *	conditions might have changed that influence the features.
6148  */
6149 void netdev_update_features(struct net_device *dev)
6150 {
6151 	if (__netdev_update_features(dev))
6152 		netdev_features_change(dev);
6153 }
6154 EXPORT_SYMBOL(netdev_update_features);
6155 
6156 /**
6157  *	netdev_change_features - recalculate device features
6158  *	@dev: the device to check
6159  *
6160  *	Recalculate dev->features set and send notifications even
6161  *	if they have not changed. Should be called instead of
6162  *	netdev_update_features() if also dev->vlan_features might
6163  *	have changed to allow the changes to be propagated to stacked
6164  *	VLAN devices.
6165  */
6166 void netdev_change_features(struct net_device *dev)
6167 {
6168 	__netdev_update_features(dev);
6169 	netdev_features_change(dev);
6170 }
6171 EXPORT_SYMBOL(netdev_change_features);
6172 
6173 /**
6174  *	netif_stacked_transfer_operstate -	transfer operstate
6175  *	@rootdev: the root or lower level device to transfer state from
6176  *	@dev: the device to transfer operstate to
6177  *
6178  *	Transfer operational state from root to device. This is normally
6179  *	called when a stacking relationship exists between the root
6180  *	device and the device(a leaf device).
6181  */
6182 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6183 					struct net_device *dev)
6184 {
6185 	if (rootdev->operstate == IF_OPER_DORMANT)
6186 		netif_dormant_on(dev);
6187 	else
6188 		netif_dormant_off(dev);
6189 
6190 	if (netif_carrier_ok(rootdev)) {
6191 		if (!netif_carrier_ok(dev))
6192 			netif_carrier_on(dev);
6193 	} else {
6194 		if (netif_carrier_ok(dev))
6195 			netif_carrier_off(dev);
6196 	}
6197 }
6198 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6199 
6200 #ifdef CONFIG_SYSFS
6201 static int netif_alloc_rx_queues(struct net_device *dev)
6202 {
6203 	unsigned int i, count = dev->num_rx_queues;
6204 	struct netdev_rx_queue *rx;
6205 	size_t sz = count * sizeof(*rx);
6206 
6207 	BUG_ON(count < 1);
6208 
6209 	rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6210 	if (!rx) {
6211 		rx = vzalloc(sz);
6212 		if (!rx)
6213 			return -ENOMEM;
6214 	}
6215 	dev->_rx = rx;
6216 
6217 	for (i = 0; i < count; i++)
6218 		rx[i].dev = dev;
6219 	return 0;
6220 }
6221 #endif
6222 
6223 static void netdev_init_one_queue(struct net_device *dev,
6224 				  struct netdev_queue *queue, void *_unused)
6225 {
6226 	/* Initialize queue lock */
6227 	spin_lock_init(&queue->_xmit_lock);
6228 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6229 	queue->xmit_lock_owner = -1;
6230 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6231 	queue->dev = dev;
6232 #ifdef CONFIG_BQL
6233 	dql_init(&queue->dql, HZ);
6234 #endif
6235 }
6236 
6237 static void netif_free_tx_queues(struct net_device *dev)
6238 {
6239 	kvfree(dev->_tx);
6240 }
6241 
6242 static int netif_alloc_netdev_queues(struct net_device *dev)
6243 {
6244 	unsigned int count = dev->num_tx_queues;
6245 	struct netdev_queue *tx;
6246 	size_t sz = count * sizeof(*tx);
6247 
6248 	BUG_ON(count < 1 || count > 0xffff);
6249 
6250 	tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6251 	if (!tx) {
6252 		tx = vzalloc(sz);
6253 		if (!tx)
6254 			return -ENOMEM;
6255 	}
6256 	dev->_tx = tx;
6257 
6258 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6259 	spin_lock_init(&dev->tx_global_lock);
6260 
6261 	return 0;
6262 }
6263 
6264 /**
6265  *	register_netdevice	- register a network device
6266  *	@dev: device to register
6267  *
6268  *	Take a completed network device structure and add it to the kernel
6269  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6270  *	chain. 0 is returned on success. A negative errno code is returned
6271  *	on a failure to set up the device, or if the name is a duplicate.
6272  *
6273  *	Callers must hold the rtnl semaphore. You may want
6274  *	register_netdev() instead of this.
6275  *
6276  *	BUGS:
6277  *	The locking appears insufficient to guarantee two parallel registers
6278  *	will not get the same name.
6279  */
6280 
6281 int register_netdevice(struct net_device *dev)
6282 {
6283 	int ret;
6284 	struct net *net = dev_net(dev);
6285 
6286 	BUG_ON(dev_boot_phase);
6287 	ASSERT_RTNL();
6288 
6289 	might_sleep();
6290 
6291 	/* When net_device's are persistent, this will be fatal. */
6292 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6293 	BUG_ON(!net);
6294 
6295 	spin_lock_init(&dev->addr_list_lock);
6296 	netdev_set_addr_lockdep_class(dev);
6297 
6298 	dev->iflink = -1;
6299 
6300 	ret = dev_get_valid_name(net, dev, dev->name);
6301 	if (ret < 0)
6302 		goto out;
6303 
6304 	/* Init, if this function is available */
6305 	if (dev->netdev_ops->ndo_init) {
6306 		ret = dev->netdev_ops->ndo_init(dev);
6307 		if (ret) {
6308 			if (ret > 0)
6309 				ret = -EIO;
6310 			goto out;
6311 		}
6312 	}
6313 
6314 	if (((dev->hw_features | dev->features) &
6315 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
6316 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6317 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6318 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6319 		ret = -EINVAL;
6320 		goto err_uninit;
6321 	}
6322 
6323 	ret = -EBUSY;
6324 	if (!dev->ifindex)
6325 		dev->ifindex = dev_new_index(net);
6326 	else if (__dev_get_by_index(net, dev->ifindex))
6327 		goto err_uninit;
6328 
6329 	if (dev->iflink == -1)
6330 		dev->iflink = dev->ifindex;
6331 
6332 	/* Transfer changeable features to wanted_features and enable
6333 	 * software offloads (GSO and GRO).
6334 	 */
6335 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
6336 	dev->features |= NETIF_F_SOFT_FEATURES;
6337 	dev->wanted_features = dev->features & dev->hw_features;
6338 
6339 	if (!(dev->flags & IFF_LOOPBACK)) {
6340 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
6341 	}
6342 
6343 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6344 	 */
6345 	dev->vlan_features |= NETIF_F_HIGHDMA;
6346 
6347 	/* Make NETIF_F_SG inheritable to tunnel devices.
6348 	 */
6349 	dev->hw_enc_features |= NETIF_F_SG;
6350 
6351 	/* Make NETIF_F_SG inheritable to MPLS.
6352 	 */
6353 	dev->mpls_features |= NETIF_F_SG;
6354 
6355 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6356 	ret = notifier_to_errno(ret);
6357 	if (ret)
6358 		goto err_uninit;
6359 
6360 	ret = netdev_register_kobject(dev);
6361 	if (ret)
6362 		goto err_uninit;
6363 	dev->reg_state = NETREG_REGISTERED;
6364 
6365 	__netdev_update_features(dev);
6366 
6367 	/*
6368 	 *	Default initial state at registry is that the
6369 	 *	device is present.
6370 	 */
6371 
6372 	set_bit(__LINK_STATE_PRESENT, &dev->state);
6373 
6374 	linkwatch_init_dev(dev);
6375 
6376 	dev_init_scheduler(dev);
6377 	dev_hold(dev);
6378 	list_netdevice(dev);
6379 	add_device_randomness(dev->dev_addr, dev->addr_len);
6380 
6381 	/* If the device has permanent device address, driver should
6382 	 * set dev_addr and also addr_assign_type should be set to
6383 	 * NET_ADDR_PERM (default value).
6384 	 */
6385 	if (dev->addr_assign_type == NET_ADDR_PERM)
6386 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6387 
6388 	/* Notify protocols, that a new device appeared. */
6389 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6390 	ret = notifier_to_errno(ret);
6391 	if (ret) {
6392 		rollback_registered(dev);
6393 		dev->reg_state = NETREG_UNREGISTERED;
6394 	}
6395 	/*
6396 	 *	Prevent userspace races by waiting until the network
6397 	 *	device is fully setup before sending notifications.
6398 	 */
6399 	if (!dev->rtnl_link_ops ||
6400 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6401 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6402 
6403 out:
6404 	return ret;
6405 
6406 err_uninit:
6407 	if (dev->netdev_ops->ndo_uninit)
6408 		dev->netdev_ops->ndo_uninit(dev);
6409 	goto out;
6410 }
6411 EXPORT_SYMBOL(register_netdevice);
6412 
6413 /**
6414  *	init_dummy_netdev	- init a dummy network device for NAPI
6415  *	@dev: device to init
6416  *
6417  *	This takes a network device structure and initialize the minimum
6418  *	amount of fields so it can be used to schedule NAPI polls without
6419  *	registering a full blown interface. This is to be used by drivers
6420  *	that need to tie several hardware interfaces to a single NAPI
6421  *	poll scheduler due to HW limitations.
6422  */
6423 int init_dummy_netdev(struct net_device *dev)
6424 {
6425 	/* Clear everything. Note we don't initialize spinlocks
6426 	 * are they aren't supposed to be taken by any of the
6427 	 * NAPI code and this dummy netdev is supposed to be
6428 	 * only ever used for NAPI polls
6429 	 */
6430 	memset(dev, 0, sizeof(struct net_device));
6431 
6432 	/* make sure we BUG if trying to hit standard
6433 	 * register/unregister code path
6434 	 */
6435 	dev->reg_state = NETREG_DUMMY;
6436 
6437 	/* NAPI wants this */
6438 	INIT_LIST_HEAD(&dev->napi_list);
6439 
6440 	/* a dummy interface is started by default */
6441 	set_bit(__LINK_STATE_PRESENT, &dev->state);
6442 	set_bit(__LINK_STATE_START, &dev->state);
6443 
6444 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
6445 	 * because users of this 'device' dont need to change
6446 	 * its refcount.
6447 	 */
6448 
6449 	return 0;
6450 }
6451 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6452 
6453 
6454 /**
6455  *	register_netdev	- register a network device
6456  *	@dev: device to register
6457  *
6458  *	Take a completed network device structure and add it to the kernel
6459  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6460  *	chain. 0 is returned on success. A negative errno code is returned
6461  *	on a failure to set up the device, or if the name is a duplicate.
6462  *
6463  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
6464  *	and expands the device name if you passed a format string to
6465  *	alloc_netdev.
6466  */
6467 int register_netdev(struct net_device *dev)
6468 {
6469 	int err;
6470 
6471 	rtnl_lock();
6472 	err = register_netdevice(dev);
6473 	rtnl_unlock();
6474 	return err;
6475 }
6476 EXPORT_SYMBOL(register_netdev);
6477 
6478 int netdev_refcnt_read(const struct net_device *dev)
6479 {
6480 	int i, refcnt = 0;
6481 
6482 	for_each_possible_cpu(i)
6483 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6484 	return refcnt;
6485 }
6486 EXPORT_SYMBOL(netdev_refcnt_read);
6487 
6488 /**
6489  * netdev_wait_allrefs - wait until all references are gone.
6490  * @dev: target net_device
6491  *
6492  * This is called when unregistering network devices.
6493  *
6494  * Any protocol or device that holds a reference should register
6495  * for netdevice notification, and cleanup and put back the
6496  * reference if they receive an UNREGISTER event.
6497  * We can get stuck here if buggy protocols don't correctly
6498  * call dev_put.
6499  */
6500 static void netdev_wait_allrefs(struct net_device *dev)
6501 {
6502 	unsigned long rebroadcast_time, warning_time;
6503 	int refcnt;
6504 
6505 	linkwatch_forget_dev(dev);
6506 
6507 	rebroadcast_time = warning_time = jiffies;
6508 	refcnt = netdev_refcnt_read(dev);
6509 
6510 	while (refcnt != 0) {
6511 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6512 			rtnl_lock();
6513 
6514 			/* Rebroadcast unregister notification */
6515 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6516 
6517 			__rtnl_unlock();
6518 			rcu_barrier();
6519 			rtnl_lock();
6520 
6521 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6522 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6523 				     &dev->state)) {
6524 				/* We must not have linkwatch events
6525 				 * pending on unregister. If this
6526 				 * happens, we simply run the queue
6527 				 * unscheduled, resulting in a noop
6528 				 * for this device.
6529 				 */
6530 				linkwatch_run_queue();
6531 			}
6532 
6533 			__rtnl_unlock();
6534 
6535 			rebroadcast_time = jiffies;
6536 		}
6537 
6538 		msleep(250);
6539 
6540 		refcnt = netdev_refcnt_read(dev);
6541 
6542 		if (time_after(jiffies, warning_time + 10 * HZ)) {
6543 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6544 				 dev->name, refcnt);
6545 			warning_time = jiffies;
6546 		}
6547 	}
6548 }
6549 
6550 /* The sequence is:
6551  *
6552  *	rtnl_lock();
6553  *	...
6554  *	register_netdevice(x1);
6555  *	register_netdevice(x2);
6556  *	...
6557  *	unregister_netdevice(y1);
6558  *	unregister_netdevice(y2);
6559  *      ...
6560  *	rtnl_unlock();
6561  *	free_netdev(y1);
6562  *	free_netdev(y2);
6563  *
6564  * We are invoked by rtnl_unlock().
6565  * This allows us to deal with problems:
6566  * 1) We can delete sysfs objects which invoke hotplug
6567  *    without deadlocking with linkwatch via keventd.
6568  * 2) Since we run with the RTNL semaphore not held, we can sleep
6569  *    safely in order to wait for the netdev refcnt to drop to zero.
6570  *
6571  * We must not return until all unregister events added during
6572  * the interval the lock was held have been completed.
6573  */
6574 void netdev_run_todo(void)
6575 {
6576 	struct list_head list;
6577 
6578 	/* Snapshot list, allow later requests */
6579 	list_replace_init(&net_todo_list, &list);
6580 
6581 	__rtnl_unlock();
6582 
6583 
6584 	/* Wait for rcu callbacks to finish before next phase */
6585 	if (!list_empty(&list))
6586 		rcu_barrier();
6587 
6588 	while (!list_empty(&list)) {
6589 		struct net_device *dev
6590 			= list_first_entry(&list, struct net_device, todo_list);
6591 		list_del(&dev->todo_list);
6592 
6593 		rtnl_lock();
6594 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6595 		__rtnl_unlock();
6596 
6597 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6598 			pr_err("network todo '%s' but state %d\n",
6599 			       dev->name, dev->reg_state);
6600 			dump_stack();
6601 			continue;
6602 		}
6603 
6604 		dev->reg_state = NETREG_UNREGISTERED;
6605 
6606 		on_each_cpu(flush_backlog, dev, 1);
6607 
6608 		netdev_wait_allrefs(dev);
6609 
6610 		/* paranoia */
6611 		BUG_ON(netdev_refcnt_read(dev));
6612 		BUG_ON(!list_empty(&dev->ptype_all));
6613 		BUG_ON(!list_empty(&dev->ptype_specific));
6614 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
6615 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6616 		WARN_ON(dev->dn_ptr);
6617 
6618 		if (dev->destructor)
6619 			dev->destructor(dev);
6620 
6621 		/* Report a network device has been unregistered */
6622 		rtnl_lock();
6623 		dev_net(dev)->dev_unreg_count--;
6624 		__rtnl_unlock();
6625 		wake_up(&netdev_unregistering_wq);
6626 
6627 		/* Free network device */
6628 		kobject_put(&dev->dev.kobj);
6629 	}
6630 }
6631 
6632 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
6633  * fields in the same order, with only the type differing.
6634  */
6635 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6636 			     const struct net_device_stats *netdev_stats)
6637 {
6638 #if BITS_PER_LONG == 64
6639 	BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6640 	memcpy(stats64, netdev_stats, sizeof(*stats64));
6641 #else
6642 	size_t i, n = sizeof(*stats64) / sizeof(u64);
6643 	const unsigned long *src = (const unsigned long *)netdev_stats;
6644 	u64 *dst = (u64 *)stats64;
6645 
6646 	BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6647 		     sizeof(*stats64) / sizeof(u64));
6648 	for (i = 0; i < n; i++)
6649 		dst[i] = src[i];
6650 #endif
6651 }
6652 EXPORT_SYMBOL(netdev_stats_to_stats64);
6653 
6654 /**
6655  *	dev_get_stats	- get network device statistics
6656  *	@dev: device to get statistics from
6657  *	@storage: place to store stats
6658  *
6659  *	Get network statistics from device. Return @storage.
6660  *	The device driver may provide its own method by setting
6661  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6662  *	otherwise the internal statistics structure is used.
6663  */
6664 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6665 					struct rtnl_link_stats64 *storage)
6666 {
6667 	const struct net_device_ops *ops = dev->netdev_ops;
6668 
6669 	if (ops->ndo_get_stats64) {
6670 		memset(storage, 0, sizeof(*storage));
6671 		ops->ndo_get_stats64(dev, storage);
6672 	} else if (ops->ndo_get_stats) {
6673 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6674 	} else {
6675 		netdev_stats_to_stats64(storage, &dev->stats);
6676 	}
6677 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6678 	storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6679 	return storage;
6680 }
6681 EXPORT_SYMBOL(dev_get_stats);
6682 
6683 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6684 {
6685 	struct netdev_queue *queue = dev_ingress_queue(dev);
6686 
6687 #ifdef CONFIG_NET_CLS_ACT
6688 	if (queue)
6689 		return queue;
6690 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6691 	if (!queue)
6692 		return NULL;
6693 	netdev_init_one_queue(dev, queue, NULL);
6694 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
6695 	queue->qdisc_sleeping = &noop_qdisc;
6696 	rcu_assign_pointer(dev->ingress_queue, queue);
6697 #endif
6698 	return queue;
6699 }
6700 
6701 static const struct ethtool_ops default_ethtool_ops;
6702 
6703 void netdev_set_default_ethtool_ops(struct net_device *dev,
6704 				    const struct ethtool_ops *ops)
6705 {
6706 	if (dev->ethtool_ops == &default_ethtool_ops)
6707 		dev->ethtool_ops = ops;
6708 }
6709 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6710 
6711 void netdev_freemem(struct net_device *dev)
6712 {
6713 	char *addr = (char *)dev - dev->padded;
6714 
6715 	kvfree(addr);
6716 }
6717 
6718 /**
6719  *	alloc_netdev_mqs - allocate network device
6720  *	@sizeof_priv:		size of private data to allocate space for
6721  *	@name:			device name format string
6722  *	@name_assign_type: 	origin of device name
6723  *	@setup:			callback to initialize device
6724  *	@txqs:			the number of TX subqueues to allocate
6725  *	@rxqs:			the number of RX subqueues to allocate
6726  *
6727  *	Allocates a struct net_device with private data area for driver use
6728  *	and performs basic initialization.  Also allocates subqueue structs
6729  *	for each queue on the device.
6730  */
6731 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6732 		unsigned char name_assign_type,
6733 		void (*setup)(struct net_device *),
6734 		unsigned int txqs, unsigned int rxqs)
6735 {
6736 	struct net_device *dev;
6737 	size_t alloc_size;
6738 	struct net_device *p;
6739 
6740 	BUG_ON(strlen(name) >= sizeof(dev->name));
6741 
6742 	if (txqs < 1) {
6743 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6744 		return NULL;
6745 	}
6746 
6747 #ifdef CONFIG_SYSFS
6748 	if (rxqs < 1) {
6749 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6750 		return NULL;
6751 	}
6752 #endif
6753 
6754 	alloc_size = sizeof(struct net_device);
6755 	if (sizeof_priv) {
6756 		/* ensure 32-byte alignment of private area */
6757 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6758 		alloc_size += sizeof_priv;
6759 	}
6760 	/* ensure 32-byte alignment of whole construct */
6761 	alloc_size += NETDEV_ALIGN - 1;
6762 
6763 	p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6764 	if (!p)
6765 		p = vzalloc(alloc_size);
6766 	if (!p)
6767 		return NULL;
6768 
6769 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
6770 	dev->padded = (char *)dev - (char *)p;
6771 
6772 	dev->pcpu_refcnt = alloc_percpu(int);
6773 	if (!dev->pcpu_refcnt)
6774 		goto free_dev;
6775 
6776 	if (dev_addr_init(dev))
6777 		goto free_pcpu;
6778 
6779 	dev_mc_init(dev);
6780 	dev_uc_init(dev);
6781 
6782 	dev_net_set(dev, &init_net);
6783 
6784 	dev->gso_max_size = GSO_MAX_SIZE;
6785 	dev->gso_max_segs = GSO_MAX_SEGS;
6786 	dev->gso_min_segs = 0;
6787 
6788 	INIT_LIST_HEAD(&dev->napi_list);
6789 	INIT_LIST_HEAD(&dev->unreg_list);
6790 	INIT_LIST_HEAD(&dev->close_list);
6791 	INIT_LIST_HEAD(&dev->link_watch_list);
6792 	INIT_LIST_HEAD(&dev->adj_list.upper);
6793 	INIT_LIST_HEAD(&dev->adj_list.lower);
6794 	INIT_LIST_HEAD(&dev->all_adj_list.upper);
6795 	INIT_LIST_HEAD(&dev->all_adj_list.lower);
6796 	INIT_LIST_HEAD(&dev->ptype_all);
6797 	INIT_LIST_HEAD(&dev->ptype_specific);
6798 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
6799 	setup(dev);
6800 
6801 	dev->num_tx_queues = txqs;
6802 	dev->real_num_tx_queues = txqs;
6803 	if (netif_alloc_netdev_queues(dev))
6804 		goto free_all;
6805 
6806 #ifdef CONFIG_SYSFS
6807 	dev->num_rx_queues = rxqs;
6808 	dev->real_num_rx_queues = rxqs;
6809 	if (netif_alloc_rx_queues(dev))
6810 		goto free_all;
6811 #endif
6812 
6813 	strcpy(dev->name, name);
6814 	dev->name_assign_type = name_assign_type;
6815 	dev->group = INIT_NETDEV_GROUP;
6816 	if (!dev->ethtool_ops)
6817 		dev->ethtool_ops = &default_ethtool_ops;
6818 	return dev;
6819 
6820 free_all:
6821 	free_netdev(dev);
6822 	return NULL;
6823 
6824 free_pcpu:
6825 	free_percpu(dev->pcpu_refcnt);
6826 free_dev:
6827 	netdev_freemem(dev);
6828 	return NULL;
6829 }
6830 EXPORT_SYMBOL(alloc_netdev_mqs);
6831 
6832 /**
6833  *	free_netdev - free network device
6834  *	@dev: device
6835  *
6836  *	This function does the last stage of destroying an allocated device
6837  * 	interface. The reference to the device object is released.
6838  *	If this is the last reference then it will be freed.
6839  */
6840 void free_netdev(struct net_device *dev)
6841 {
6842 	struct napi_struct *p, *n;
6843 
6844 	release_net(dev_net(dev));
6845 
6846 	netif_free_tx_queues(dev);
6847 #ifdef CONFIG_SYSFS
6848 	kvfree(dev->_rx);
6849 #endif
6850 
6851 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6852 
6853 	/* Flush device addresses */
6854 	dev_addr_flush(dev);
6855 
6856 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6857 		netif_napi_del(p);
6858 
6859 	free_percpu(dev->pcpu_refcnt);
6860 	dev->pcpu_refcnt = NULL;
6861 
6862 	/*  Compatibility with error handling in drivers */
6863 	if (dev->reg_state == NETREG_UNINITIALIZED) {
6864 		netdev_freemem(dev);
6865 		return;
6866 	}
6867 
6868 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6869 	dev->reg_state = NETREG_RELEASED;
6870 
6871 	/* will free via device release */
6872 	put_device(&dev->dev);
6873 }
6874 EXPORT_SYMBOL(free_netdev);
6875 
6876 /**
6877  *	synchronize_net -  Synchronize with packet receive processing
6878  *
6879  *	Wait for packets currently being received to be done.
6880  *	Does not block later packets from starting.
6881  */
6882 void synchronize_net(void)
6883 {
6884 	might_sleep();
6885 	if (rtnl_is_locked())
6886 		synchronize_rcu_expedited();
6887 	else
6888 		synchronize_rcu();
6889 }
6890 EXPORT_SYMBOL(synchronize_net);
6891 
6892 /**
6893  *	unregister_netdevice_queue - remove device from the kernel
6894  *	@dev: device
6895  *	@head: list
6896  *
6897  *	This function shuts down a device interface and removes it
6898  *	from the kernel tables.
6899  *	If head not NULL, device is queued to be unregistered later.
6900  *
6901  *	Callers must hold the rtnl semaphore.  You may want
6902  *	unregister_netdev() instead of this.
6903  */
6904 
6905 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6906 {
6907 	ASSERT_RTNL();
6908 
6909 	if (head) {
6910 		list_move_tail(&dev->unreg_list, head);
6911 	} else {
6912 		rollback_registered(dev);
6913 		/* Finish processing unregister after unlock */
6914 		net_set_todo(dev);
6915 	}
6916 }
6917 EXPORT_SYMBOL(unregister_netdevice_queue);
6918 
6919 /**
6920  *	unregister_netdevice_many - unregister many devices
6921  *	@head: list of devices
6922  *
6923  *  Note: As most callers use a stack allocated list_head,
6924  *  we force a list_del() to make sure stack wont be corrupted later.
6925  */
6926 void unregister_netdevice_many(struct list_head *head)
6927 {
6928 	struct net_device *dev;
6929 
6930 	if (!list_empty(head)) {
6931 		rollback_registered_many(head);
6932 		list_for_each_entry(dev, head, unreg_list)
6933 			net_set_todo(dev);
6934 		list_del(head);
6935 	}
6936 }
6937 EXPORT_SYMBOL(unregister_netdevice_many);
6938 
6939 /**
6940  *	unregister_netdev - remove device from the kernel
6941  *	@dev: device
6942  *
6943  *	This function shuts down a device interface and removes it
6944  *	from the kernel tables.
6945  *
6946  *	This is just a wrapper for unregister_netdevice that takes
6947  *	the rtnl semaphore.  In general you want to use this and not
6948  *	unregister_netdevice.
6949  */
6950 void unregister_netdev(struct net_device *dev)
6951 {
6952 	rtnl_lock();
6953 	unregister_netdevice(dev);
6954 	rtnl_unlock();
6955 }
6956 EXPORT_SYMBOL(unregister_netdev);
6957 
6958 /**
6959  *	dev_change_net_namespace - move device to different nethost namespace
6960  *	@dev: device
6961  *	@net: network namespace
6962  *	@pat: If not NULL name pattern to try if the current device name
6963  *	      is already taken in the destination network namespace.
6964  *
6965  *	This function shuts down a device interface and moves it
6966  *	to a new network namespace. On success 0 is returned, on
6967  *	a failure a netagive errno code is returned.
6968  *
6969  *	Callers must hold the rtnl semaphore.
6970  */
6971 
6972 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6973 {
6974 	int err;
6975 
6976 	ASSERT_RTNL();
6977 
6978 	/* Don't allow namespace local devices to be moved. */
6979 	err = -EINVAL;
6980 	if (dev->features & NETIF_F_NETNS_LOCAL)
6981 		goto out;
6982 
6983 	/* Ensure the device has been registrered */
6984 	if (dev->reg_state != NETREG_REGISTERED)
6985 		goto out;
6986 
6987 	/* Get out if there is nothing todo */
6988 	err = 0;
6989 	if (net_eq(dev_net(dev), net))
6990 		goto out;
6991 
6992 	/* Pick the destination device name, and ensure
6993 	 * we can use it in the destination network namespace.
6994 	 */
6995 	err = -EEXIST;
6996 	if (__dev_get_by_name(net, dev->name)) {
6997 		/* We get here if we can't use the current device name */
6998 		if (!pat)
6999 			goto out;
7000 		if (dev_get_valid_name(net, dev, pat) < 0)
7001 			goto out;
7002 	}
7003 
7004 	/*
7005 	 * And now a mini version of register_netdevice unregister_netdevice.
7006 	 */
7007 
7008 	/* If device is running close it first. */
7009 	dev_close(dev);
7010 
7011 	/* And unlink it from device chain */
7012 	err = -ENODEV;
7013 	unlist_netdevice(dev);
7014 
7015 	synchronize_net();
7016 
7017 	/* Shutdown queueing discipline. */
7018 	dev_shutdown(dev);
7019 
7020 	/* Notify protocols, that we are about to destroy
7021 	   this device. They should clean all the things.
7022 
7023 	   Note that dev->reg_state stays at NETREG_REGISTERED.
7024 	   This is wanted because this way 8021q and macvlan know
7025 	   the device is just moving and can keep their slaves up.
7026 	*/
7027 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7028 	rcu_barrier();
7029 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7030 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7031 
7032 	/*
7033 	 *	Flush the unicast and multicast chains
7034 	 */
7035 	dev_uc_flush(dev);
7036 	dev_mc_flush(dev);
7037 
7038 	/* Send a netdev-removed uevent to the old namespace */
7039 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7040 	netdev_adjacent_del_links(dev);
7041 
7042 	/* Actually switch the network namespace */
7043 	dev_net_set(dev, net);
7044 
7045 	/* If there is an ifindex conflict assign a new one */
7046 	if (__dev_get_by_index(net, dev->ifindex)) {
7047 		int iflink = (dev->iflink == dev->ifindex);
7048 		dev->ifindex = dev_new_index(net);
7049 		if (iflink)
7050 			dev->iflink = dev->ifindex;
7051 	}
7052 
7053 	/* Send a netdev-add uevent to the new namespace */
7054 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7055 	netdev_adjacent_add_links(dev);
7056 
7057 	/* Fixup kobjects */
7058 	err = device_rename(&dev->dev, dev->name);
7059 	WARN_ON(err);
7060 
7061 	/* Add the device back in the hashes */
7062 	list_netdevice(dev);
7063 
7064 	/* Notify protocols, that a new device appeared. */
7065 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
7066 
7067 	/*
7068 	 *	Prevent userspace races by waiting until the network
7069 	 *	device is fully setup before sending notifications.
7070 	 */
7071 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7072 
7073 	synchronize_net();
7074 	err = 0;
7075 out:
7076 	return err;
7077 }
7078 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7079 
7080 static int dev_cpu_callback(struct notifier_block *nfb,
7081 			    unsigned long action,
7082 			    void *ocpu)
7083 {
7084 	struct sk_buff **list_skb;
7085 	struct sk_buff *skb;
7086 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
7087 	struct softnet_data *sd, *oldsd;
7088 
7089 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7090 		return NOTIFY_OK;
7091 
7092 	local_irq_disable();
7093 	cpu = smp_processor_id();
7094 	sd = &per_cpu(softnet_data, cpu);
7095 	oldsd = &per_cpu(softnet_data, oldcpu);
7096 
7097 	/* Find end of our completion_queue. */
7098 	list_skb = &sd->completion_queue;
7099 	while (*list_skb)
7100 		list_skb = &(*list_skb)->next;
7101 	/* Append completion queue from offline CPU. */
7102 	*list_skb = oldsd->completion_queue;
7103 	oldsd->completion_queue = NULL;
7104 
7105 	/* Append output queue from offline CPU. */
7106 	if (oldsd->output_queue) {
7107 		*sd->output_queue_tailp = oldsd->output_queue;
7108 		sd->output_queue_tailp = oldsd->output_queue_tailp;
7109 		oldsd->output_queue = NULL;
7110 		oldsd->output_queue_tailp = &oldsd->output_queue;
7111 	}
7112 	/* Append NAPI poll list from offline CPU, with one exception :
7113 	 * process_backlog() must be called by cpu owning percpu backlog.
7114 	 * We properly handle process_queue & input_pkt_queue later.
7115 	 */
7116 	while (!list_empty(&oldsd->poll_list)) {
7117 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7118 							    struct napi_struct,
7119 							    poll_list);
7120 
7121 		list_del_init(&napi->poll_list);
7122 		if (napi->poll == process_backlog)
7123 			napi->state = 0;
7124 		else
7125 			____napi_schedule(sd, napi);
7126 	}
7127 
7128 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
7129 	local_irq_enable();
7130 
7131 	/* Process offline CPU's input_pkt_queue */
7132 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7133 		netif_rx_ni(skb);
7134 		input_queue_head_incr(oldsd);
7135 	}
7136 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7137 		netif_rx_ni(skb);
7138 		input_queue_head_incr(oldsd);
7139 	}
7140 
7141 	return NOTIFY_OK;
7142 }
7143 
7144 
7145 /**
7146  *	netdev_increment_features - increment feature set by one
7147  *	@all: current feature set
7148  *	@one: new feature set
7149  *	@mask: mask feature set
7150  *
7151  *	Computes a new feature set after adding a device with feature set
7152  *	@one to the master device with current feature set @all.  Will not
7153  *	enable anything that is off in @mask. Returns the new feature set.
7154  */
7155 netdev_features_t netdev_increment_features(netdev_features_t all,
7156 	netdev_features_t one, netdev_features_t mask)
7157 {
7158 	if (mask & NETIF_F_GEN_CSUM)
7159 		mask |= NETIF_F_ALL_CSUM;
7160 	mask |= NETIF_F_VLAN_CHALLENGED;
7161 
7162 	all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7163 	all &= one | ~NETIF_F_ALL_FOR_ALL;
7164 
7165 	/* If one device supports hw checksumming, set for all. */
7166 	if (all & NETIF_F_GEN_CSUM)
7167 		all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7168 
7169 	return all;
7170 }
7171 EXPORT_SYMBOL(netdev_increment_features);
7172 
7173 static struct hlist_head * __net_init netdev_create_hash(void)
7174 {
7175 	int i;
7176 	struct hlist_head *hash;
7177 
7178 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7179 	if (hash != NULL)
7180 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
7181 			INIT_HLIST_HEAD(&hash[i]);
7182 
7183 	return hash;
7184 }
7185 
7186 /* Initialize per network namespace state */
7187 static int __net_init netdev_init(struct net *net)
7188 {
7189 	if (net != &init_net)
7190 		INIT_LIST_HEAD(&net->dev_base_head);
7191 
7192 	net->dev_name_head = netdev_create_hash();
7193 	if (net->dev_name_head == NULL)
7194 		goto err_name;
7195 
7196 	net->dev_index_head = netdev_create_hash();
7197 	if (net->dev_index_head == NULL)
7198 		goto err_idx;
7199 
7200 	return 0;
7201 
7202 err_idx:
7203 	kfree(net->dev_name_head);
7204 err_name:
7205 	return -ENOMEM;
7206 }
7207 
7208 /**
7209  *	netdev_drivername - network driver for the device
7210  *	@dev: network device
7211  *
7212  *	Determine network driver for device.
7213  */
7214 const char *netdev_drivername(const struct net_device *dev)
7215 {
7216 	const struct device_driver *driver;
7217 	const struct device *parent;
7218 	const char *empty = "";
7219 
7220 	parent = dev->dev.parent;
7221 	if (!parent)
7222 		return empty;
7223 
7224 	driver = parent->driver;
7225 	if (driver && driver->name)
7226 		return driver->name;
7227 	return empty;
7228 }
7229 
7230 static void __netdev_printk(const char *level, const struct net_device *dev,
7231 			    struct va_format *vaf)
7232 {
7233 	if (dev && dev->dev.parent) {
7234 		dev_printk_emit(level[1] - '0',
7235 				dev->dev.parent,
7236 				"%s %s %s%s: %pV",
7237 				dev_driver_string(dev->dev.parent),
7238 				dev_name(dev->dev.parent),
7239 				netdev_name(dev), netdev_reg_state(dev),
7240 				vaf);
7241 	} else if (dev) {
7242 		printk("%s%s%s: %pV",
7243 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
7244 	} else {
7245 		printk("%s(NULL net_device): %pV", level, vaf);
7246 	}
7247 }
7248 
7249 void netdev_printk(const char *level, const struct net_device *dev,
7250 		   const char *format, ...)
7251 {
7252 	struct va_format vaf;
7253 	va_list args;
7254 
7255 	va_start(args, format);
7256 
7257 	vaf.fmt = format;
7258 	vaf.va = &args;
7259 
7260 	__netdev_printk(level, dev, &vaf);
7261 
7262 	va_end(args);
7263 }
7264 EXPORT_SYMBOL(netdev_printk);
7265 
7266 #define define_netdev_printk_level(func, level)			\
7267 void func(const struct net_device *dev, const char *fmt, ...)	\
7268 {								\
7269 	struct va_format vaf;					\
7270 	va_list args;						\
7271 								\
7272 	va_start(args, fmt);					\
7273 								\
7274 	vaf.fmt = fmt;						\
7275 	vaf.va = &args;						\
7276 								\
7277 	__netdev_printk(level, dev, &vaf);			\
7278 								\
7279 	va_end(args);						\
7280 }								\
7281 EXPORT_SYMBOL(func);
7282 
7283 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7284 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7285 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7286 define_netdev_printk_level(netdev_err, KERN_ERR);
7287 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7288 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7289 define_netdev_printk_level(netdev_info, KERN_INFO);
7290 
7291 static void __net_exit netdev_exit(struct net *net)
7292 {
7293 	kfree(net->dev_name_head);
7294 	kfree(net->dev_index_head);
7295 }
7296 
7297 static struct pernet_operations __net_initdata netdev_net_ops = {
7298 	.init = netdev_init,
7299 	.exit = netdev_exit,
7300 };
7301 
7302 static void __net_exit default_device_exit(struct net *net)
7303 {
7304 	struct net_device *dev, *aux;
7305 	/*
7306 	 * Push all migratable network devices back to the
7307 	 * initial network namespace
7308 	 */
7309 	rtnl_lock();
7310 	for_each_netdev_safe(net, dev, aux) {
7311 		int err;
7312 		char fb_name[IFNAMSIZ];
7313 
7314 		/* Ignore unmoveable devices (i.e. loopback) */
7315 		if (dev->features & NETIF_F_NETNS_LOCAL)
7316 			continue;
7317 
7318 		/* Leave virtual devices for the generic cleanup */
7319 		if (dev->rtnl_link_ops)
7320 			continue;
7321 
7322 		/* Push remaining network devices to init_net */
7323 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7324 		err = dev_change_net_namespace(dev, &init_net, fb_name);
7325 		if (err) {
7326 			pr_emerg("%s: failed to move %s to init_net: %d\n",
7327 				 __func__, dev->name, err);
7328 			BUG();
7329 		}
7330 	}
7331 	rtnl_unlock();
7332 }
7333 
7334 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7335 {
7336 	/* Return with the rtnl_lock held when there are no network
7337 	 * devices unregistering in any network namespace in net_list.
7338 	 */
7339 	struct net *net;
7340 	bool unregistering;
7341 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
7342 
7343 	add_wait_queue(&netdev_unregistering_wq, &wait);
7344 	for (;;) {
7345 		unregistering = false;
7346 		rtnl_lock();
7347 		list_for_each_entry(net, net_list, exit_list) {
7348 			if (net->dev_unreg_count > 0) {
7349 				unregistering = true;
7350 				break;
7351 			}
7352 		}
7353 		if (!unregistering)
7354 			break;
7355 		__rtnl_unlock();
7356 
7357 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7358 	}
7359 	remove_wait_queue(&netdev_unregistering_wq, &wait);
7360 }
7361 
7362 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7363 {
7364 	/* At exit all network devices most be removed from a network
7365 	 * namespace.  Do this in the reverse order of registration.
7366 	 * Do this across as many network namespaces as possible to
7367 	 * improve batching efficiency.
7368 	 */
7369 	struct net_device *dev;
7370 	struct net *net;
7371 	LIST_HEAD(dev_kill_list);
7372 
7373 	/* To prevent network device cleanup code from dereferencing
7374 	 * loopback devices or network devices that have been freed
7375 	 * wait here for all pending unregistrations to complete,
7376 	 * before unregistring the loopback device and allowing the
7377 	 * network namespace be freed.
7378 	 *
7379 	 * The netdev todo list containing all network devices
7380 	 * unregistrations that happen in default_device_exit_batch
7381 	 * will run in the rtnl_unlock() at the end of
7382 	 * default_device_exit_batch.
7383 	 */
7384 	rtnl_lock_unregistering(net_list);
7385 	list_for_each_entry(net, net_list, exit_list) {
7386 		for_each_netdev_reverse(net, dev) {
7387 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7388 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7389 			else
7390 				unregister_netdevice_queue(dev, &dev_kill_list);
7391 		}
7392 	}
7393 	unregister_netdevice_many(&dev_kill_list);
7394 	rtnl_unlock();
7395 }
7396 
7397 static struct pernet_operations __net_initdata default_device_ops = {
7398 	.exit = default_device_exit,
7399 	.exit_batch = default_device_exit_batch,
7400 };
7401 
7402 /*
7403  *	Initialize the DEV module. At boot time this walks the device list and
7404  *	unhooks any devices that fail to initialise (normally hardware not
7405  *	present) and leaves us with a valid list of present and active devices.
7406  *
7407  */
7408 
7409 /*
7410  *       This is called single threaded during boot, so no need
7411  *       to take the rtnl semaphore.
7412  */
7413 static int __init net_dev_init(void)
7414 {
7415 	int i, rc = -ENOMEM;
7416 
7417 	BUG_ON(!dev_boot_phase);
7418 
7419 	if (dev_proc_init())
7420 		goto out;
7421 
7422 	if (netdev_kobject_init())
7423 		goto out;
7424 
7425 	INIT_LIST_HEAD(&ptype_all);
7426 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
7427 		INIT_LIST_HEAD(&ptype_base[i]);
7428 
7429 	INIT_LIST_HEAD(&offload_base);
7430 
7431 	if (register_pernet_subsys(&netdev_net_ops))
7432 		goto out;
7433 
7434 	/*
7435 	 *	Initialise the packet receive queues.
7436 	 */
7437 
7438 	for_each_possible_cpu(i) {
7439 		struct softnet_data *sd = &per_cpu(softnet_data, i);
7440 
7441 		skb_queue_head_init(&sd->input_pkt_queue);
7442 		skb_queue_head_init(&sd->process_queue);
7443 		INIT_LIST_HEAD(&sd->poll_list);
7444 		sd->output_queue_tailp = &sd->output_queue;
7445 #ifdef CONFIG_RPS
7446 		sd->csd.func = rps_trigger_softirq;
7447 		sd->csd.info = sd;
7448 		sd->cpu = i;
7449 #endif
7450 
7451 		sd->backlog.poll = process_backlog;
7452 		sd->backlog.weight = weight_p;
7453 	}
7454 
7455 	dev_boot_phase = 0;
7456 
7457 	/* The loopback device is special if any other network devices
7458 	 * is present in a network namespace the loopback device must
7459 	 * be present. Since we now dynamically allocate and free the
7460 	 * loopback device ensure this invariant is maintained by
7461 	 * keeping the loopback device as the first device on the
7462 	 * list of network devices.  Ensuring the loopback devices
7463 	 * is the first device that appears and the last network device
7464 	 * that disappears.
7465 	 */
7466 	if (register_pernet_device(&loopback_net_ops))
7467 		goto out;
7468 
7469 	if (register_pernet_device(&default_device_ops))
7470 		goto out;
7471 
7472 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7473 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7474 
7475 	hotcpu_notifier(dev_cpu_callback, 0);
7476 	dst_init();
7477 	rc = 0;
7478 out:
7479 	return rc;
7480 }
7481 
7482 subsys_initcall(net_dev_init);
7483