1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <linux/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/sched/mm.h> 85 #include <linux/mutex.h> 86 #include <linux/string.h> 87 #include <linux/mm.h> 88 #include <linux/socket.h> 89 #include <linux/sockios.h> 90 #include <linux/errno.h> 91 #include <linux/interrupt.h> 92 #include <linux/if_ether.h> 93 #include <linux/netdevice.h> 94 #include <linux/etherdevice.h> 95 #include <linux/ethtool.h> 96 #include <linux/notifier.h> 97 #include <linux/skbuff.h> 98 #include <linux/bpf.h> 99 #include <linux/bpf_trace.h> 100 #include <net/net_namespace.h> 101 #include <net/sock.h> 102 #include <net/busy_poll.h> 103 #include <linux/rtnetlink.h> 104 #include <linux/stat.h> 105 #include <net/dst.h> 106 #include <net/dst_metadata.h> 107 #include <net/pkt_sched.h> 108 #include <net/pkt_cls.h> 109 #include <net/checksum.h> 110 #include <net/xfrm.h> 111 #include <linux/highmem.h> 112 #include <linux/init.h> 113 #include <linux/module.h> 114 #include <linux/netpoll.h> 115 #include <linux/rcupdate.h> 116 #include <linux/delay.h> 117 #include <net/iw_handler.h> 118 #include <asm/current.h> 119 #include <linux/audit.h> 120 #include <linux/dmaengine.h> 121 #include <linux/err.h> 122 #include <linux/ctype.h> 123 #include <linux/if_arp.h> 124 #include <linux/if_vlan.h> 125 #include <linux/ip.h> 126 #include <net/ip.h> 127 #include <net/mpls.h> 128 #include <linux/ipv6.h> 129 #include <linux/in.h> 130 #include <linux/jhash.h> 131 #include <linux/random.h> 132 #include <trace/events/napi.h> 133 #include <trace/events/net.h> 134 #include <trace/events/skb.h> 135 #include <linux/pci.h> 136 #include <linux/inetdevice.h> 137 #include <linux/cpu_rmap.h> 138 #include <linux/static_key.h> 139 #include <linux/hashtable.h> 140 #include <linux/vmalloc.h> 141 #include <linux/if_macvlan.h> 142 #include <linux/errqueue.h> 143 #include <linux/hrtimer.h> 144 #include <linux/netfilter_ingress.h> 145 #include <linux/crash_dump.h> 146 #include <linux/sctp.h> 147 #include <net/udp_tunnel.h> 148 #include <linux/net_namespace.h> 149 150 #include "net-sysfs.h" 151 152 /* Instead of increasing this, you should create a hash table. */ 153 #define MAX_GRO_SKBS 8 154 155 /* This should be increased if a protocol with a bigger head is added. */ 156 #define GRO_MAX_HEAD (MAX_HEADER + 128) 157 158 static DEFINE_SPINLOCK(ptype_lock); 159 static DEFINE_SPINLOCK(offload_lock); 160 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 161 struct list_head ptype_all __read_mostly; /* Taps */ 162 static struct list_head offload_base __read_mostly; 163 164 static int netif_rx_internal(struct sk_buff *skb); 165 static int call_netdevice_notifiers_info(unsigned long val, 166 struct netdev_notifier_info *info); 167 static struct napi_struct *napi_by_id(unsigned int napi_id); 168 169 /* 170 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 171 * semaphore. 172 * 173 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 174 * 175 * Writers must hold the rtnl semaphore while they loop through the 176 * dev_base_head list, and hold dev_base_lock for writing when they do the 177 * actual updates. This allows pure readers to access the list even 178 * while a writer is preparing to update it. 179 * 180 * To put it another way, dev_base_lock is held for writing only to 181 * protect against pure readers; the rtnl semaphore provides the 182 * protection against other writers. 183 * 184 * See, for example usages, register_netdevice() and 185 * unregister_netdevice(), which must be called with the rtnl 186 * semaphore held. 187 */ 188 DEFINE_RWLOCK(dev_base_lock); 189 EXPORT_SYMBOL(dev_base_lock); 190 191 static DEFINE_MUTEX(ifalias_mutex); 192 193 /* protects napi_hash addition/deletion and napi_gen_id */ 194 static DEFINE_SPINLOCK(napi_hash_lock); 195 196 static unsigned int napi_gen_id = NR_CPUS; 197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 198 199 static seqcount_t devnet_rename_seq; 200 201 static inline void dev_base_seq_inc(struct net *net) 202 { 203 while (++net->dev_base_seq == 0) 204 ; 205 } 206 207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 208 { 209 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 210 211 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 212 } 213 214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 215 { 216 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 217 } 218 219 static inline void rps_lock(struct softnet_data *sd) 220 { 221 #ifdef CONFIG_RPS 222 spin_lock(&sd->input_pkt_queue.lock); 223 #endif 224 } 225 226 static inline void rps_unlock(struct softnet_data *sd) 227 { 228 #ifdef CONFIG_RPS 229 spin_unlock(&sd->input_pkt_queue.lock); 230 #endif 231 } 232 233 /* Device list insertion */ 234 static void list_netdevice(struct net_device *dev) 235 { 236 struct net *net = dev_net(dev); 237 238 ASSERT_RTNL(); 239 240 write_lock_bh(&dev_base_lock); 241 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 242 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 243 hlist_add_head_rcu(&dev->index_hlist, 244 dev_index_hash(net, dev->ifindex)); 245 write_unlock_bh(&dev_base_lock); 246 247 dev_base_seq_inc(net); 248 } 249 250 /* Device list removal 251 * caller must respect a RCU grace period before freeing/reusing dev 252 */ 253 static void unlist_netdevice(struct net_device *dev) 254 { 255 ASSERT_RTNL(); 256 257 /* Unlink dev from the device chain */ 258 write_lock_bh(&dev_base_lock); 259 list_del_rcu(&dev->dev_list); 260 hlist_del_rcu(&dev->name_hlist); 261 hlist_del_rcu(&dev->index_hlist); 262 write_unlock_bh(&dev_base_lock); 263 264 dev_base_seq_inc(dev_net(dev)); 265 } 266 267 /* 268 * Our notifier list 269 */ 270 271 static RAW_NOTIFIER_HEAD(netdev_chain); 272 273 /* 274 * Device drivers call our routines to queue packets here. We empty the 275 * queue in the local softnet handler. 276 */ 277 278 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 279 EXPORT_PER_CPU_SYMBOL(softnet_data); 280 281 #ifdef CONFIG_LOCKDEP 282 /* 283 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 284 * according to dev->type 285 */ 286 static const unsigned short netdev_lock_type[] = { 287 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 288 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 289 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 290 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 291 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 292 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 293 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 294 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 295 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 296 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 297 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 298 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 299 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 300 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 301 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 302 303 static const char *const netdev_lock_name[] = { 304 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 305 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 306 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 307 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 308 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 309 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 310 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 311 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 312 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 313 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 314 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 315 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 316 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 317 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 318 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 319 320 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 321 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 322 323 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 324 { 325 int i; 326 327 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 328 if (netdev_lock_type[i] == dev_type) 329 return i; 330 /* the last key is used by default */ 331 return ARRAY_SIZE(netdev_lock_type) - 1; 332 } 333 334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 335 unsigned short dev_type) 336 { 337 int i; 338 339 i = netdev_lock_pos(dev_type); 340 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 341 netdev_lock_name[i]); 342 } 343 344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 345 { 346 int i; 347 348 i = netdev_lock_pos(dev->type); 349 lockdep_set_class_and_name(&dev->addr_list_lock, 350 &netdev_addr_lock_key[i], 351 netdev_lock_name[i]); 352 } 353 #else 354 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 355 unsigned short dev_type) 356 { 357 } 358 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 359 { 360 } 361 #endif 362 363 /******************************************************************************* 364 * 365 * Protocol management and registration routines 366 * 367 *******************************************************************************/ 368 369 370 /* 371 * Add a protocol ID to the list. Now that the input handler is 372 * smarter we can dispense with all the messy stuff that used to be 373 * here. 374 * 375 * BEWARE!!! Protocol handlers, mangling input packets, 376 * MUST BE last in hash buckets and checking protocol handlers 377 * MUST start from promiscuous ptype_all chain in net_bh. 378 * It is true now, do not change it. 379 * Explanation follows: if protocol handler, mangling packet, will 380 * be the first on list, it is not able to sense, that packet 381 * is cloned and should be copied-on-write, so that it will 382 * change it and subsequent readers will get broken packet. 383 * --ANK (980803) 384 */ 385 386 static inline struct list_head *ptype_head(const struct packet_type *pt) 387 { 388 if (pt->type == htons(ETH_P_ALL)) 389 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 390 else 391 return pt->dev ? &pt->dev->ptype_specific : 392 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 393 } 394 395 /** 396 * dev_add_pack - add packet handler 397 * @pt: packet type declaration 398 * 399 * Add a protocol handler to the networking stack. The passed &packet_type 400 * is linked into kernel lists and may not be freed until it has been 401 * removed from the kernel lists. 402 * 403 * This call does not sleep therefore it can not 404 * guarantee all CPU's that are in middle of receiving packets 405 * will see the new packet type (until the next received packet). 406 */ 407 408 void dev_add_pack(struct packet_type *pt) 409 { 410 struct list_head *head = ptype_head(pt); 411 412 spin_lock(&ptype_lock); 413 list_add_rcu(&pt->list, head); 414 spin_unlock(&ptype_lock); 415 } 416 EXPORT_SYMBOL(dev_add_pack); 417 418 /** 419 * __dev_remove_pack - remove packet handler 420 * @pt: packet type declaration 421 * 422 * Remove a protocol handler that was previously added to the kernel 423 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 424 * from the kernel lists and can be freed or reused once this function 425 * returns. 426 * 427 * The packet type might still be in use by receivers 428 * and must not be freed until after all the CPU's have gone 429 * through a quiescent state. 430 */ 431 void __dev_remove_pack(struct packet_type *pt) 432 { 433 struct list_head *head = ptype_head(pt); 434 struct packet_type *pt1; 435 436 spin_lock(&ptype_lock); 437 438 list_for_each_entry(pt1, head, list) { 439 if (pt == pt1) { 440 list_del_rcu(&pt->list); 441 goto out; 442 } 443 } 444 445 pr_warn("dev_remove_pack: %p not found\n", pt); 446 out: 447 spin_unlock(&ptype_lock); 448 } 449 EXPORT_SYMBOL(__dev_remove_pack); 450 451 /** 452 * dev_remove_pack - remove packet handler 453 * @pt: packet type declaration 454 * 455 * Remove a protocol handler that was previously added to the kernel 456 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 457 * from the kernel lists and can be freed or reused once this function 458 * returns. 459 * 460 * This call sleeps to guarantee that no CPU is looking at the packet 461 * type after return. 462 */ 463 void dev_remove_pack(struct packet_type *pt) 464 { 465 __dev_remove_pack(pt); 466 467 synchronize_net(); 468 } 469 EXPORT_SYMBOL(dev_remove_pack); 470 471 472 /** 473 * dev_add_offload - register offload handlers 474 * @po: protocol offload declaration 475 * 476 * Add protocol offload handlers to the networking stack. The passed 477 * &proto_offload is linked into kernel lists and may not be freed until 478 * it has been removed from the kernel lists. 479 * 480 * This call does not sleep therefore it can not 481 * guarantee all CPU's that are in middle of receiving packets 482 * will see the new offload handlers (until the next received packet). 483 */ 484 void dev_add_offload(struct packet_offload *po) 485 { 486 struct packet_offload *elem; 487 488 spin_lock(&offload_lock); 489 list_for_each_entry(elem, &offload_base, list) { 490 if (po->priority < elem->priority) 491 break; 492 } 493 list_add_rcu(&po->list, elem->list.prev); 494 spin_unlock(&offload_lock); 495 } 496 EXPORT_SYMBOL(dev_add_offload); 497 498 /** 499 * __dev_remove_offload - remove offload handler 500 * @po: packet offload declaration 501 * 502 * Remove a protocol offload handler that was previously added to the 503 * kernel offload handlers by dev_add_offload(). The passed &offload_type 504 * is removed from the kernel lists and can be freed or reused once this 505 * function returns. 506 * 507 * The packet type might still be in use by receivers 508 * and must not be freed until after all the CPU's have gone 509 * through a quiescent state. 510 */ 511 static void __dev_remove_offload(struct packet_offload *po) 512 { 513 struct list_head *head = &offload_base; 514 struct packet_offload *po1; 515 516 spin_lock(&offload_lock); 517 518 list_for_each_entry(po1, head, list) { 519 if (po == po1) { 520 list_del_rcu(&po->list); 521 goto out; 522 } 523 } 524 525 pr_warn("dev_remove_offload: %p not found\n", po); 526 out: 527 spin_unlock(&offload_lock); 528 } 529 530 /** 531 * dev_remove_offload - remove packet offload handler 532 * @po: packet offload declaration 533 * 534 * Remove a packet offload handler that was previously added to the kernel 535 * offload handlers by dev_add_offload(). The passed &offload_type is 536 * removed from the kernel lists and can be freed or reused once this 537 * function returns. 538 * 539 * This call sleeps to guarantee that no CPU is looking at the packet 540 * type after return. 541 */ 542 void dev_remove_offload(struct packet_offload *po) 543 { 544 __dev_remove_offload(po); 545 546 synchronize_net(); 547 } 548 EXPORT_SYMBOL(dev_remove_offload); 549 550 /****************************************************************************** 551 * 552 * Device Boot-time Settings Routines 553 * 554 ******************************************************************************/ 555 556 /* Boot time configuration table */ 557 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 558 559 /** 560 * netdev_boot_setup_add - add new setup entry 561 * @name: name of the device 562 * @map: configured settings for the device 563 * 564 * Adds new setup entry to the dev_boot_setup list. The function 565 * returns 0 on error and 1 on success. This is a generic routine to 566 * all netdevices. 567 */ 568 static int netdev_boot_setup_add(char *name, struct ifmap *map) 569 { 570 struct netdev_boot_setup *s; 571 int i; 572 573 s = dev_boot_setup; 574 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 575 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 576 memset(s[i].name, 0, sizeof(s[i].name)); 577 strlcpy(s[i].name, name, IFNAMSIZ); 578 memcpy(&s[i].map, map, sizeof(s[i].map)); 579 break; 580 } 581 } 582 583 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 584 } 585 586 /** 587 * netdev_boot_setup_check - check boot time settings 588 * @dev: the netdevice 589 * 590 * Check boot time settings for the device. 591 * The found settings are set for the device to be used 592 * later in the device probing. 593 * Returns 0 if no settings found, 1 if they are. 594 */ 595 int netdev_boot_setup_check(struct net_device *dev) 596 { 597 struct netdev_boot_setup *s = dev_boot_setup; 598 int i; 599 600 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 601 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 602 !strcmp(dev->name, s[i].name)) { 603 dev->irq = s[i].map.irq; 604 dev->base_addr = s[i].map.base_addr; 605 dev->mem_start = s[i].map.mem_start; 606 dev->mem_end = s[i].map.mem_end; 607 return 1; 608 } 609 } 610 return 0; 611 } 612 EXPORT_SYMBOL(netdev_boot_setup_check); 613 614 615 /** 616 * netdev_boot_base - get address from boot time settings 617 * @prefix: prefix for network device 618 * @unit: id for network device 619 * 620 * Check boot time settings for the base address of device. 621 * The found settings are set for the device to be used 622 * later in the device probing. 623 * Returns 0 if no settings found. 624 */ 625 unsigned long netdev_boot_base(const char *prefix, int unit) 626 { 627 const struct netdev_boot_setup *s = dev_boot_setup; 628 char name[IFNAMSIZ]; 629 int i; 630 631 sprintf(name, "%s%d", prefix, unit); 632 633 /* 634 * If device already registered then return base of 1 635 * to indicate not to probe for this interface 636 */ 637 if (__dev_get_by_name(&init_net, name)) 638 return 1; 639 640 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 641 if (!strcmp(name, s[i].name)) 642 return s[i].map.base_addr; 643 return 0; 644 } 645 646 /* 647 * Saves at boot time configured settings for any netdevice. 648 */ 649 int __init netdev_boot_setup(char *str) 650 { 651 int ints[5]; 652 struct ifmap map; 653 654 str = get_options(str, ARRAY_SIZE(ints), ints); 655 if (!str || !*str) 656 return 0; 657 658 /* Save settings */ 659 memset(&map, 0, sizeof(map)); 660 if (ints[0] > 0) 661 map.irq = ints[1]; 662 if (ints[0] > 1) 663 map.base_addr = ints[2]; 664 if (ints[0] > 2) 665 map.mem_start = ints[3]; 666 if (ints[0] > 3) 667 map.mem_end = ints[4]; 668 669 /* Add new entry to the list */ 670 return netdev_boot_setup_add(str, &map); 671 } 672 673 __setup("netdev=", netdev_boot_setup); 674 675 /******************************************************************************* 676 * 677 * Device Interface Subroutines 678 * 679 *******************************************************************************/ 680 681 /** 682 * dev_get_iflink - get 'iflink' value of a interface 683 * @dev: targeted interface 684 * 685 * Indicates the ifindex the interface is linked to. 686 * Physical interfaces have the same 'ifindex' and 'iflink' values. 687 */ 688 689 int dev_get_iflink(const struct net_device *dev) 690 { 691 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 692 return dev->netdev_ops->ndo_get_iflink(dev); 693 694 return dev->ifindex; 695 } 696 EXPORT_SYMBOL(dev_get_iflink); 697 698 /** 699 * dev_fill_metadata_dst - Retrieve tunnel egress information. 700 * @dev: targeted interface 701 * @skb: The packet. 702 * 703 * For better visibility of tunnel traffic OVS needs to retrieve 704 * egress tunnel information for a packet. Following API allows 705 * user to get this info. 706 */ 707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 708 { 709 struct ip_tunnel_info *info; 710 711 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 712 return -EINVAL; 713 714 info = skb_tunnel_info_unclone(skb); 715 if (!info) 716 return -ENOMEM; 717 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 718 return -EINVAL; 719 720 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 721 } 722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 723 724 /** 725 * __dev_get_by_name - find a device by its name 726 * @net: the applicable net namespace 727 * @name: name to find 728 * 729 * Find an interface by name. Must be called under RTNL semaphore 730 * or @dev_base_lock. If the name is found a pointer to the device 731 * is returned. If the name is not found then %NULL is returned. The 732 * reference counters are not incremented so the caller must be 733 * careful with locks. 734 */ 735 736 struct net_device *__dev_get_by_name(struct net *net, const char *name) 737 { 738 struct net_device *dev; 739 struct hlist_head *head = dev_name_hash(net, name); 740 741 hlist_for_each_entry(dev, head, name_hlist) 742 if (!strncmp(dev->name, name, IFNAMSIZ)) 743 return dev; 744 745 return NULL; 746 } 747 EXPORT_SYMBOL(__dev_get_by_name); 748 749 /** 750 * dev_get_by_name_rcu - find a device by its name 751 * @net: the applicable net namespace 752 * @name: name to find 753 * 754 * Find an interface by name. 755 * If the name is found a pointer to the device is returned. 756 * If the name is not found then %NULL is returned. 757 * The reference counters are not incremented so the caller must be 758 * careful with locks. The caller must hold RCU lock. 759 */ 760 761 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 762 { 763 struct net_device *dev; 764 struct hlist_head *head = dev_name_hash(net, name); 765 766 hlist_for_each_entry_rcu(dev, head, name_hlist) 767 if (!strncmp(dev->name, name, IFNAMSIZ)) 768 return dev; 769 770 return NULL; 771 } 772 EXPORT_SYMBOL(dev_get_by_name_rcu); 773 774 /** 775 * dev_get_by_name - find a device by its name 776 * @net: the applicable net namespace 777 * @name: name to find 778 * 779 * Find an interface by name. This can be called from any 780 * context and does its own locking. The returned handle has 781 * the usage count incremented and the caller must use dev_put() to 782 * release it when it is no longer needed. %NULL is returned if no 783 * matching device is found. 784 */ 785 786 struct net_device *dev_get_by_name(struct net *net, const char *name) 787 { 788 struct net_device *dev; 789 790 rcu_read_lock(); 791 dev = dev_get_by_name_rcu(net, name); 792 if (dev) 793 dev_hold(dev); 794 rcu_read_unlock(); 795 return dev; 796 } 797 EXPORT_SYMBOL(dev_get_by_name); 798 799 /** 800 * __dev_get_by_index - find a device by its ifindex 801 * @net: the applicable net namespace 802 * @ifindex: index of device 803 * 804 * Search for an interface by index. Returns %NULL if the device 805 * is not found or a pointer to the device. The device has not 806 * had its reference counter increased so the caller must be careful 807 * about locking. The caller must hold either the RTNL semaphore 808 * or @dev_base_lock. 809 */ 810 811 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 812 { 813 struct net_device *dev; 814 struct hlist_head *head = dev_index_hash(net, ifindex); 815 816 hlist_for_each_entry(dev, head, index_hlist) 817 if (dev->ifindex == ifindex) 818 return dev; 819 820 return NULL; 821 } 822 EXPORT_SYMBOL(__dev_get_by_index); 823 824 /** 825 * dev_get_by_index_rcu - find a device by its ifindex 826 * @net: the applicable net namespace 827 * @ifindex: index of device 828 * 829 * Search for an interface by index. Returns %NULL if the device 830 * is not found or a pointer to the device. The device has not 831 * had its reference counter increased so the caller must be careful 832 * about locking. The caller must hold RCU lock. 833 */ 834 835 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 836 { 837 struct net_device *dev; 838 struct hlist_head *head = dev_index_hash(net, ifindex); 839 840 hlist_for_each_entry_rcu(dev, head, index_hlist) 841 if (dev->ifindex == ifindex) 842 return dev; 843 844 return NULL; 845 } 846 EXPORT_SYMBOL(dev_get_by_index_rcu); 847 848 849 /** 850 * dev_get_by_index - find a device by its ifindex 851 * @net: the applicable net namespace 852 * @ifindex: index of device 853 * 854 * Search for an interface by index. Returns NULL if the device 855 * is not found or a pointer to the device. The device returned has 856 * had a reference added and the pointer is safe until the user calls 857 * dev_put to indicate they have finished with it. 858 */ 859 860 struct net_device *dev_get_by_index(struct net *net, int ifindex) 861 { 862 struct net_device *dev; 863 864 rcu_read_lock(); 865 dev = dev_get_by_index_rcu(net, ifindex); 866 if (dev) 867 dev_hold(dev); 868 rcu_read_unlock(); 869 return dev; 870 } 871 EXPORT_SYMBOL(dev_get_by_index); 872 873 /** 874 * dev_get_by_napi_id - find a device by napi_id 875 * @napi_id: ID of the NAPI struct 876 * 877 * Search for an interface by NAPI ID. Returns %NULL if the device 878 * is not found or a pointer to the device. The device has not had 879 * its reference counter increased so the caller must be careful 880 * about locking. The caller must hold RCU lock. 881 */ 882 883 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 884 { 885 struct napi_struct *napi; 886 887 WARN_ON_ONCE(!rcu_read_lock_held()); 888 889 if (napi_id < MIN_NAPI_ID) 890 return NULL; 891 892 napi = napi_by_id(napi_id); 893 894 return napi ? napi->dev : NULL; 895 } 896 EXPORT_SYMBOL(dev_get_by_napi_id); 897 898 /** 899 * netdev_get_name - get a netdevice name, knowing its ifindex. 900 * @net: network namespace 901 * @name: a pointer to the buffer where the name will be stored. 902 * @ifindex: the ifindex of the interface to get the name from. 903 * 904 * The use of raw_seqcount_begin() and cond_resched() before 905 * retrying is required as we want to give the writers a chance 906 * to complete when CONFIG_PREEMPT is not set. 907 */ 908 int netdev_get_name(struct net *net, char *name, int ifindex) 909 { 910 struct net_device *dev; 911 unsigned int seq; 912 913 retry: 914 seq = raw_seqcount_begin(&devnet_rename_seq); 915 rcu_read_lock(); 916 dev = dev_get_by_index_rcu(net, ifindex); 917 if (!dev) { 918 rcu_read_unlock(); 919 return -ENODEV; 920 } 921 922 strcpy(name, dev->name); 923 rcu_read_unlock(); 924 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 925 cond_resched(); 926 goto retry; 927 } 928 929 return 0; 930 } 931 932 /** 933 * dev_getbyhwaddr_rcu - find a device by its hardware address 934 * @net: the applicable net namespace 935 * @type: media type of device 936 * @ha: hardware address 937 * 938 * Search for an interface by MAC address. Returns NULL if the device 939 * is not found or a pointer to the device. 940 * The caller must hold RCU or RTNL. 941 * The returned device has not had its ref count increased 942 * and the caller must therefore be careful about locking 943 * 944 */ 945 946 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 947 const char *ha) 948 { 949 struct net_device *dev; 950 951 for_each_netdev_rcu(net, dev) 952 if (dev->type == type && 953 !memcmp(dev->dev_addr, ha, dev->addr_len)) 954 return dev; 955 956 return NULL; 957 } 958 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 959 960 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 961 { 962 struct net_device *dev; 963 964 ASSERT_RTNL(); 965 for_each_netdev(net, dev) 966 if (dev->type == type) 967 return dev; 968 969 return NULL; 970 } 971 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 972 973 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 974 { 975 struct net_device *dev, *ret = NULL; 976 977 rcu_read_lock(); 978 for_each_netdev_rcu(net, dev) 979 if (dev->type == type) { 980 dev_hold(dev); 981 ret = dev; 982 break; 983 } 984 rcu_read_unlock(); 985 return ret; 986 } 987 EXPORT_SYMBOL(dev_getfirstbyhwtype); 988 989 /** 990 * __dev_get_by_flags - find any device with given flags 991 * @net: the applicable net namespace 992 * @if_flags: IFF_* values 993 * @mask: bitmask of bits in if_flags to check 994 * 995 * Search for any interface with the given flags. Returns NULL if a device 996 * is not found or a pointer to the device. Must be called inside 997 * rtnl_lock(), and result refcount is unchanged. 998 */ 999 1000 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 1001 unsigned short mask) 1002 { 1003 struct net_device *dev, *ret; 1004 1005 ASSERT_RTNL(); 1006 1007 ret = NULL; 1008 for_each_netdev(net, dev) { 1009 if (((dev->flags ^ if_flags) & mask) == 0) { 1010 ret = dev; 1011 break; 1012 } 1013 } 1014 return ret; 1015 } 1016 EXPORT_SYMBOL(__dev_get_by_flags); 1017 1018 /** 1019 * dev_valid_name - check if name is okay for network device 1020 * @name: name string 1021 * 1022 * Network device names need to be valid file names to 1023 * to allow sysfs to work. We also disallow any kind of 1024 * whitespace. 1025 */ 1026 bool dev_valid_name(const char *name) 1027 { 1028 if (*name == '\0') 1029 return false; 1030 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1031 return false; 1032 if (!strcmp(name, ".") || !strcmp(name, "..")) 1033 return false; 1034 1035 while (*name) { 1036 if (*name == '/' || *name == ':' || isspace(*name)) 1037 return false; 1038 name++; 1039 } 1040 return true; 1041 } 1042 EXPORT_SYMBOL(dev_valid_name); 1043 1044 /** 1045 * __dev_alloc_name - allocate a name for a device 1046 * @net: network namespace to allocate the device name in 1047 * @name: name format string 1048 * @buf: scratch buffer and result name string 1049 * 1050 * Passed a format string - eg "lt%d" it will try and find a suitable 1051 * id. It scans list of devices to build up a free map, then chooses 1052 * the first empty slot. The caller must hold the dev_base or rtnl lock 1053 * while allocating the name and adding the device in order to avoid 1054 * duplicates. 1055 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1056 * Returns the number of the unit assigned or a negative errno code. 1057 */ 1058 1059 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1060 { 1061 int i = 0; 1062 const char *p; 1063 const int max_netdevices = 8*PAGE_SIZE; 1064 unsigned long *inuse; 1065 struct net_device *d; 1066 1067 if (!dev_valid_name(name)) 1068 return -EINVAL; 1069 1070 p = strchr(name, '%'); 1071 if (p) { 1072 /* 1073 * Verify the string as this thing may have come from 1074 * the user. There must be either one "%d" and no other "%" 1075 * characters. 1076 */ 1077 if (p[1] != 'd' || strchr(p + 2, '%')) 1078 return -EINVAL; 1079 1080 /* Use one page as a bit array of possible slots */ 1081 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1082 if (!inuse) 1083 return -ENOMEM; 1084 1085 for_each_netdev(net, d) { 1086 if (!sscanf(d->name, name, &i)) 1087 continue; 1088 if (i < 0 || i >= max_netdevices) 1089 continue; 1090 1091 /* avoid cases where sscanf is not exact inverse of printf */ 1092 snprintf(buf, IFNAMSIZ, name, i); 1093 if (!strncmp(buf, d->name, IFNAMSIZ)) 1094 set_bit(i, inuse); 1095 } 1096 1097 i = find_first_zero_bit(inuse, max_netdevices); 1098 free_page((unsigned long) inuse); 1099 } 1100 1101 snprintf(buf, IFNAMSIZ, name, i); 1102 if (!__dev_get_by_name(net, buf)) 1103 return i; 1104 1105 /* It is possible to run out of possible slots 1106 * when the name is long and there isn't enough space left 1107 * for the digits, or if all bits are used. 1108 */ 1109 return -ENFILE; 1110 } 1111 1112 static int dev_alloc_name_ns(struct net *net, 1113 struct net_device *dev, 1114 const char *name) 1115 { 1116 char buf[IFNAMSIZ]; 1117 int ret; 1118 1119 BUG_ON(!net); 1120 ret = __dev_alloc_name(net, name, buf); 1121 if (ret >= 0) 1122 strlcpy(dev->name, buf, IFNAMSIZ); 1123 return ret; 1124 } 1125 1126 /** 1127 * dev_alloc_name - allocate a name for a device 1128 * @dev: device 1129 * @name: name format string 1130 * 1131 * Passed a format string - eg "lt%d" it will try and find a suitable 1132 * id. It scans list of devices to build up a free map, then chooses 1133 * the first empty slot. The caller must hold the dev_base or rtnl lock 1134 * while allocating the name and adding the device in order to avoid 1135 * duplicates. 1136 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1137 * Returns the number of the unit assigned or a negative errno code. 1138 */ 1139 1140 int dev_alloc_name(struct net_device *dev, const char *name) 1141 { 1142 return dev_alloc_name_ns(dev_net(dev), dev, name); 1143 } 1144 EXPORT_SYMBOL(dev_alloc_name); 1145 1146 int dev_get_valid_name(struct net *net, struct net_device *dev, 1147 const char *name) 1148 { 1149 BUG_ON(!net); 1150 1151 if (!dev_valid_name(name)) 1152 return -EINVAL; 1153 1154 if (strchr(name, '%')) 1155 return dev_alloc_name_ns(net, dev, name); 1156 else if (__dev_get_by_name(net, name)) 1157 return -EEXIST; 1158 else if (dev->name != name) 1159 strlcpy(dev->name, name, IFNAMSIZ); 1160 1161 return 0; 1162 } 1163 EXPORT_SYMBOL(dev_get_valid_name); 1164 1165 /** 1166 * dev_change_name - change name of a device 1167 * @dev: device 1168 * @newname: name (or format string) must be at least IFNAMSIZ 1169 * 1170 * Change name of a device, can pass format strings "eth%d". 1171 * for wildcarding. 1172 */ 1173 int dev_change_name(struct net_device *dev, const char *newname) 1174 { 1175 unsigned char old_assign_type; 1176 char oldname[IFNAMSIZ]; 1177 int err = 0; 1178 int ret; 1179 struct net *net; 1180 1181 ASSERT_RTNL(); 1182 BUG_ON(!dev_net(dev)); 1183 1184 net = dev_net(dev); 1185 if (dev->flags & IFF_UP) 1186 return -EBUSY; 1187 1188 write_seqcount_begin(&devnet_rename_seq); 1189 1190 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1191 write_seqcount_end(&devnet_rename_seq); 1192 return 0; 1193 } 1194 1195 memcpy(oldname, dev->name, IFNAMSIZ); 1196 1197 err = dev_get_valid_name(net, dev, newname); 1198 if (err < 0) { 1199 write_seqcount_end(&devnet_rename_seq); 1200 return err; 1201 } 1202 1203 if (oldname[0] && !strchr(oldname, '%')) 1204 netdev_info(dev, "renamed from %s\n", oldname); 1205 1206 old_assign_type = dev->name_assign_type; 1207 dev->name_assign_type = NET_NAME_RENAMED; 1208 1209 rollback: 1210 ret = device_rename(&dev->dev, dev->name); 1211 if (ret) { 1212 memcpy(dev->name, oldname, IFNAMSIZ); 1213 dev->name_assign_type = old_assign_type; 1214 write_seqcount_end(&devnet_rename_seq); 1215 return ret; 1216 } 1217 1218 write_seqcount_end(&devnet_rename_seq); 1219 1220 netdev_adjacent_rename_links(dev, oldname); 1221 1222 write_lock_bh(&dev_base_lock); 1223 hlist_del_rcu(&dev->name_hlist); 1224 write_unlock_bh(&dev_base_lock); 1225 1226 synchronize_rcu(); 1227 1228 write_lock_bh(&dev_base_lock); 1229 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1230 write_unlock_bh(&dev_base_lock); 1231 1232 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1233 ret = notifier_to_errno(ret); 1234 1235 if (ret) { 1236 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1237 if (err >= 0) { 1238 err = ret; 1239 write_seqcount_begin(&devnet_rename_seq); 1240 memcpy(dev->name, oldname, IFNAMSIZ); 1241 memcpy(oldname, newname, IFNAMSIZ); 1242 dev->name_assign_type = old_assign_type; 1243 old_assign_type = NET_NAME_RENAMED; 1244 goto rollback; 1245 } else { 1246 pr_err("%s: name change rollback failed: %d\n", 1247 dev->name, ret); 1248 } 1249 } 1250 1251 return err; 1252 } 1253 1254 /** 1255 * dev_set_alias - change ifalias of a device 1256 * @dev: device 1257 * @alias: name up to IFALIASZ 1258 * @len: limit of bytes to copy from info 1259 * 1260 * Set ifalias for a device, 1261 */ 1262 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1263 { 1264 struct dev_ifalias *new_alias = NULL; 1265 1266 if (len >= IFALIASZ) 1267 return -EINVAL; 1268 1269 if (len) { 1270 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1271 if (!new_alias) 1272 return -ENOMEM; 1273 1274 memcpy(new_alias->ifalias, alias, len); 1275 new_alias->ifalias[len] = 0; 1276 } 1277 1278 mutex_lock(&ifalias_mutex); 1279 rcu_swap_protected(dev->ifalias, new_alias, 1280 mutex_is_locked(&ifalias_mutex)); 1281 mutex_unlock(&ifalias_mutex); 1282 1283 if (new_alias) 1284 kfree_rcu(new_alias, rcuhead); 1285 1286 return len; 1287 } 1288 EXPORT_SYMBOL(dev_set_alias); 1289 1290 /** 1291 * dev_get_alias - get ifalias of a device 1292 * @dev: device 1293 * @name: buffer to store name of ifalias 1294 * @len: size of buffer 1295 * 1296 * get ifalias for a device. Caller must make sure dev cannot go 1297 * away, e.g. rcu read lock or own a reference count to device. 1298 */ 1299 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1300 { 1301 const struct dev_ifalias *alias; 1302 int ret = 0; 1303 1304 rcu_read_lock(); 1305 alias = rcu_dereference(dev->ifalias); 1306 if (alias) 1307 ret = snprintf(name, len, "%s", alias->ifalias); 1308 rcu_read_unlock(); 1309 1310 return ret; 1311 } 1312 1313 /** 1314 * netdev_features_change - device changes features 1315 * @dev: device to cause notification 1316 * 1317 * Called to indicate a device has changed features. 1318 */ 1319 void netdev_features_change(struct net_device *dev) 1320 { 1321 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1322 } 1323 EXPORT_SYMBOL(netdev_features_change); 1324 1325 /** 1326 * netdev_state_change - device changes state 1327 * @dev: device to cause notification 1328 * 1329 * Called to indicate a device has changed state. This function calls 1330 * the notifier chains for netdev_chain and sends a NEWLINK message 1331 * to the routing socket. 1332 */ 1333 void netdev_state_change(struct net_device *dev) 1334 { 1335 if (dev->flags & IFF_UP) { 1336 struct netdev_notifier_change_info change_info = { 1337 .info.dev = dev, 1338 }; 1339 1340 call_netdevice_notifiers_info(NETDEV_CHANGE, 1341 &change_info.info); 1342 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1343 } 1344 } 1345 EXPORT_SYMBOL(netdev_state_change); 1346 1347 /** 1348 * netdev_notify_peers - notify network peers about existence of @dev 1349 * @dev: network device 1350 * 1351 * Generate traffic such that interested network peers are aware of 1352 * @dev, such as by generating a gratuitous ARP. This may be used when 1353 * a device wants to inform the rest of the network about some sort of 1354 * reconfiguration such as a failover event or virtual machine 1355 * migration. 1356 */ 1357 void netdev_notify_peers(struct net_device *dev) 1358 { 1359 rtnl_lock(); 1360 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1361 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1362 rtnl_unlock(); 1363 } 1364 EXPORT_SYMBOL(netdev_notify_peers); 1365 1366 static int __dev_open(struct net_device *dev) 1367 { 1368 const struct net_device_ops *ops = dev->netdev_ops; 1369 int ret; 1370 1371 ASSERT_RTNL(); 1372 1373 if (!netif_device_present(dev)) 1374 return -ENODEV; 1375 1376 /* Block netpoll from trying to do any rx path servicing. 1377 * If we don't do this there is a chance ndo_poll_controller 1378 * or ndo_poll may be running while we open the device 1379 */ 1380 netpoll_poll_disable(dev); 1381 1382 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1383 ret = notifier_to_errno(ret); 1384 if (ret) 1385 return ret; 1386 1387 set_bit(__LINK_STATE_START, &dev->state); 1388 1389 if (ops->ndo_validate_addr) 1390 ret = ops->ndo_validate_addr(dev); 1391 1392 if (!ret && ops->ndo_open) 1393 ret = ops->ndo_open(dev); 1394 1395 netpoll_poll_enable(dev); 1396 1397 if (ret) 1398 clear_bit(__LINK_STATE_START, &dev->state); 1399 else { 1400 dev->flags |= IFF_UP; 1401 dev_set_rx_mode(dev); 1402 dev_activate(dev); 1403 add_device_randomness(dev->dev_addr, dev->addr_len); 1404 } 1405 1406 return ret; 1407 } 1408 1409 /** 1410 * dev_open - prepare an interface for use. 1411 * @dev: device to open 1412 * 1413 * Takes a device from down to up state. The device's private open 1414 * function is invoked and then the multicast lists are loaded. Finally 1415 * the device is moved into the up state and a %NETDEV_UP message is 1416 * sent to the netdev notifier chain. 1417 * 1418 * Calling this function on an active interface is a nop. On a failure 1419 * a negative errno code is returned. 1420 */ 1421 int dev_open(struct net_device *dev) 1422 { 1423 int ret; 1424 1425 if (dev->flags & IFF_UP) 1426 return 0; 1427 1428 ret = __dev_open(dev); 1429 if (ret < 0) 1430 return ret; 1431 1432 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1433 call_netdevice_notifiers(NETDEV_UP, dev); 1434 1435 return ret; 1436 } 1437 EXPORT_SYMBOL(dev_open); 1438 1439 static void __dev_close_many(struct list_head *head) 1440 { 1441 struct net_device *dev; 1442 1443 ASSERT_RTNL(); 1444 might_sleep(); 1445 1446 list_for_each_entry(dev, head, close_list) { 1447 /* Temporarily disable netpoll until the interface is down */ 1448 netpoll_poll_disable(dev); 1449 1450 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1451 1452 clear_bit(__LINK_STATE_START, &dev->state); 1453 1454 /* Synchronize to scheduled poll. We cannot touch poll list, it 1455 * can be even on different cpu. So just clear netif_running(). 1456 * 1457 * dev->stop() will invoke napi_disable() on all of it's 1458 * napi_struct instances on this device. 1459 */ 1460 smp_mb__after_atomic(); /* Commit netif_running(). */ 1461 } 1462 1463 dev_deactivate_many(head); 1464 1465 list_for_each_entry(dev, head, close_list) { 1466 const struct net_device_ops *ops = dev->netdev_ops; 1467 1468 /* 1469 * Call the device specific close. This cannot fail. 1470 * Only if device is UP 1471 * 1472 * We allow it to be called even after a DETACH hot-plug 1473 * event. 1474 */ 1475 if (ops->ndo_stop) 1476 ops->ndo_stop(dev); 1477 1478 dev->flags &= ~IFF_UP; 1479 netpoll_poll_enable(dev); 1480 } 1481 } 1482 1483 static void __dev_close(struct net_device *dev) 1484 { 1485 LIST_HEAD(single); 1486 1487 list_add(&dev->close_list, &single); 1488 __dev_close_many(&single); 1489 list_del(&single); 1490 } 1491 1492 void dev_close_many(struct list_head *head, bool unlink) 1493 { 1494 struct net_device *dev, *tmp; 1495 1496 /* Remove the devices that don't need to be closed */ 1497 list_for_each_entry_safe(dev, tmp, head, close_list) 1498 if (!(dev->flags & IFF_UP)) 1499 list_del_init(&dev->close_list); 1500 1501 __dev_close_many(head); 1502 1503 list_for_each_entry_safe(dev, tmp, head, close_list) { 1504 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1505 call_netdevice_notifiers(NETDEV_DOWN, dev); 1506 if (unlink) 1507 list_del_init(&dev->close_list); 1508 } 1509 } 1510 EXPORT_SYMBOL(dev_close_many); 1511 1512 /** 1513 * dev_close - shutdown an interface. 1514 * @dev: device to shutdown 1515 * 1516 * This function moves an active device into down state. A 1517 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1518 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1519 * chain. 1520 */ 1521 void dev_close(struct net_device *dev) 1522 { 1523 if (dev->flags & IFF_UP) { 1524 LIST_HEAD(single); 1525 1526 list_add(&dev->close_list, &single); 1527 dev_close_many(&single, true); 1528 list_del(&single); 1529 } 1530 } 1531 EXPORT_SYMBOL(dev_close); 1532 1533 1534 /** 1535 * dev_disable_lro - disable Large Receive Offload on a device 1536 * @dev: device 1537 * 1538 * Disable Large Receive Offload (LRO) on a net device. Must be 1539 * called under RTNL. This is needed if received packets may be 1540 * forwarded to another interface. 1541 */ 1542 void dev_disable_lro(struct net_device *dev) 1543 { 1544 struct net_device *lower_dev; 1545 struct list_head *iter; 1546 1547 dev->wanted_features &= ~NETIF_F_LRO; 1548 netdev_update_features(dev); 1549 1550 if (unlikely(dev->features & NETIF_F_LRO)) 1551 netdev_WARN(dev, "failed to disable LRO!\n"); 1552 1553 netdev_for_each_lower_dev(dev, lower_dev, iter) 1554 dev_disable_lro(lower_dev); 1555 } 1556 EXPORT_SYMBOL(dev_disable_lro); 1557 1558 /** 1559 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1560 * @dev: device 1561 * 1562 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1563 * called under RTNL. This is needed if Generic XDP is installed on 1564 * the device. 1565 */ 1566 static void dev_disable_gro_hw(struct net_device *dev) 1567 { 1568 dev->wanted_features &= ~NETIF_F_GRO_HW; 1569 netdev_update_features(dev); 1570 1571 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1572 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1573 } 1574 1575 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1576 { 1577 #define N(val) \ 1578 case NETDEV_##val: \ 1579 return "NETDEV_" __stringify(val); 1580 switch (cmd) { 1581 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1582 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1583 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1584 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER) 1585 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO) 1586 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO) 1587 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1588 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1589 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1590 } 1591 #undef N 1592 return "UNKNOWN_NETDEV_EVENT"; 1593 } 1594 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1595 1596 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1597 struct net_device *dev) 1598 { 1599 struct netdev_notifier_info info = { 1600 .dev = dev, 1601 }; 1602 1603 return nb->notifier_call(nb, val, &info); 1604 } 1605 1606 static int dev_boot_phase = 1; 1607 1608 /** 1609 * register_netdevice_notifier - register a network notifier block 1610 * @nb: notifier 1611 * 1612 * Register a notifier to be called when network device events occur. 1613 * The notifier passed is linked into the kernel structures and must 1614 * not be reused until it has been unregistered. A negative errno code 1615 * is returned on a failure. 1616 * 1617 * When registered all registration and up events are replayed 1618 * to the new notifier to allow device to have a race free 1619 * view of the network device list. 1620 */ 1621 1622 int register_netdevice_notifier(struct notifier_block *nb) 1623 { 1624 struct net_device *dev; 1625 struct net_device *last; 1626 struct net *net; 1627 int err; 1628 1629 /* Close race with setup_net() and cleanup_net() */ 1630 down_write(&pernet_ops_rwsem); 1631 rtnl_lock(); 1632 err = raw_notifier_chain_register(&netdev_chain, nb); 1633 if (err) 1634 goto unlock; 1635 if (dev_boot_phase) 1636 goto unlock; 1637 for_each_net(net) { 1638 for_each_netdev(net, dev) { 1639 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1640 err = notifier_to_errno(err); 1641 if (err) 1642 goto rollback; 1643 1644 if (!(dev->flags & IFF_UP)) 1645 continue; 1646 1647 call_netdevice_notifier(nb, NETDEV_UP, dev); 1648 } 1649 } 1650 1651 unlock: 1652 rtnl_unlock(); 1653 up_write(&pernet_ops_rwsem); 1654 return err; 1655 1656 rollback: 1657 last = dev; 1658 for_each_net(net) { 1659 for_each_netdev(net, dev) { 1660 if (dev == last) 1661 goto outroll; 1662 1663 if (dev->flags & IFF_UP) { 1664 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1665 dev); 1666 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1667 } 1668 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1669 } 1670 } 1671 1672 outroll: 1673 raw_notifier_chain_unregister(&netdev_chain, nb); 1674 goto unlock; 1675 } 1676 EXPORT_SYMBOL(register_netdevice_notifier); 1677 1678 /** 1679 * unregister_netdevice_notifier - unregister a network notifier block 1680 * @nb: notifier 1681 * 1682 * Unregister a notifier previously registered by 1683 * register_netdevice_notifier(). The notifier is unlinked into the 1684 * kernel structures and may then be reused. A negative errno code 1685 * is returned on a failure. 1686 * 1687 * After unregistering unregister and down device events are synthesized 1688 * for all devices on the device list to the removed notifier to remove 1689 * the need for special case cleanup code. 1690 */ 1691 1692 int unregister_netdevice_notifier(struct notifier_block *nb) 1693 { 1694 struct net_device *dev; 1695 struct net *net; 1696 int err; 1697 1698 /* Close race with setup_net() and cleanup_net() */ 1699 down_write(&pernet_ops_rwsem); 1700 rtnl_lock(); 1701 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1702 if (err) 1703 goto unlock; 1704 1705 for_each_net(net) { 1706 for_each_netdev(net, dev) { 1707 if (dev->flags & IFF_UP) { 1708 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1709 dev); 1710 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1711 } 1712 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1713 } 1714 } 1715 unlock: 1716 rtnl_unlock(); 1717 up_write(&pernet_ops_rwsem); 1718 return err; 1719 } 1720 EXPORT_SYMBOL(unregister_netdevice_notifier); 1721 1722 /** 1723 * call_netdevice_notifiers_info - call all network notifier blocks 1724 * @val: value passed unmodified to notifier function 1725 * @info: notifier information data 1726 * 1727 * Call all network notifier blocks. Parameters and return value 1728 * are as for raw_notifier_call_chain(). 1729 */ 1730 1731 static int call_netdevice_notifiers_info(unsigned long val, 1732 struct netdev_notifier_info *info) 1733 { 1734 ASSERT_RTNL(); 1735 return raw_notifier_call_chain(&netdev_chain, val, info); 1736 } 1737 1738 /** 1739 * call_netdevice_notifiers - call all network notifier blocks 1740 * @val: value passed unmodified to notifier function 1741 * @dev: net_device pointer passed unmodified to notifier function 1742 * 1743 * Call all network notifier blocks. Parameters and return value 1744 * are as for raw_notifier_call_chain(). 1745 */ 1746 1747 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1748 { 1749 struct netdev_notifier_info info = { 1750 .dev = dev, 1751 }; 1752 1753 return call_netdevice_notifiers_info(val, &info); 1754 } 1755 EXPORT_SYMBOL(call_netdevice_notifiers); 1756 1757 #ifdef CONFIG_NET_INGRESS 1758 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 1759 1760 void net_inc_ingress_queue(void) 1761 { 1762 static_branch_inc(&ingress_needed_key); 1763 } 1764 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 1765 1766 void net_dec_ingress_queue(void) 1767 { 1768 static_branch_dec(&ingress_needed_key); 1769 } 1770 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 1771 #endif 1772 1773 #ifdef CONFIG_NET_EGRESS 1774 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 1775 1776 void net_inc_egress_queue(void) 1777 { 1778 static_branch_inc(&egress_needed_key); 1779 } 1780 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 1781 1782 void net_dec_egress_queue(void) 1783 { 1784 static_branch_dec(&egress_needed_key); 1785 } 1786 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 1787 #endif 1788 1789 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 1790 #ifdef HAVE_JUMP_LABEL 1791 static atomic_t netstamp_needed_deferred; 1792 static atomic_t netstamp_wanted; 1793 static void netstamp_clear(struct work_struct *work) 1794 { 1795 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1796 int wanted; 1797 1798 wanted = atomic_add_return(deferred, &netstamp_wanted); 1799 if (wanted > 0) 1800 static_branch_enable(&netstamp_needed_key); 1801 else 1802 static_branch_disable(&netstamp_needed_key); 1803 } 1804 static DECLARE_WORK(netstamp_work, netstamp_clear); 1805 #endif 1806 1807 void net_enable_timestamp(void) 1808 { 1809 #ifdef HAVE_JUMP_LABEL 1810 int wanted; 1811 1812 while (1) { 1813 wanted = atomic_read(&netstamp_wanted); 1814 if (wanted <= 0) 1815 break; 1816 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 1817 return; 1818 } 1819 atomic_inc(&netstamp_needed_deferred); 1820 schedule_work(&netstamp_work); 1821 #else 1822 static_branch_inc(&netstamp_needed_key); 1823 #endif 1824 } 1825 EXPORT_SYMBOL(net_enable_timestamp); 1826 1827 void net_disable_timestamp(void) 1828 { 1829 #ifdef HAVE_JUMP_LABEL 1830 int wanted; 1831 1832 while (1) { 1833 wanted = atomic_read(&netstamp_wanted); 1834 if (wanted <= 1) 1835 break; 1836 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 1837 return; 1838 } 1839 atomic_dec(&netstamp_needed_deferred); 1840 schedule_work(&netstamp_work); 1841 #else 1842 static_branch_dec(&netstamp_needed_key); 1843 #endif 1844 } 1845 EXPORT_SYMBOL(net_disable_timestamp); 1846 1847 static inline void net_timestamp_set(struct sk_buff *skb) 1848 { 1849 skb->tstamp = 0; 1850 if (static_branch_unlikely(&netstamp_needed_key)) 1851 __net_timestamp(skb); 1852 } 1853 1854 #define net_timestamp_check(COND, SKB) \ 1855 if (static_branch_unlikely(&netstamp_needed_key)) { \ 1856 if ((COND) && !(SKB)->tstamp) \ 1857 __net_timestamp(SKB); \ 1858 } \ 1859 1860 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 1861 { 1862 unsigned int len; 1863 1864 if (!(dev->flags & IFF_UP)) 1865 return false; 1866 1867 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1868 if (skb->len <= len) 1869 return true; 1870 1871 /* if TSO is enabled, we don't care about the length as the packet 1872 * could be forwarded without being segmented before 1873 */ 1874 if (skb_is_gso(skb)) 1875 return true; 1876 1877 return false; 1878 } 1879 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1880 1881 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1882 { 1883 int ret = ____dev_forward_skb(dev, skb); 1884 1885 if (likely(!ret)) { 1886 skb->protocol = eth_type_trans(skb, dev); 1887 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 1888 } 1889 1890 return ret; 1891 } 1892 EXPORT_SYMBOL_GPL(__dev_forward_skb); 1893 1894 /** 1895 * dev_forward_skb - loopback an skb to another netif 1896 * 1897 * @dev: destination network device 1898 * @skb: buffer to forward 1899 * 1900 * return values: 1901 * NET_RX_SUCCESS (no congestion) 1902 * NET_RX_DROP (packet was dropped, but freed) 1903 * 1904 * dev_forward_skb can be used for injecting an skb from the 1905 * start_xmit function of one device into the receive queue 1906 * of another device. 1907 * 1908 * The receiving device may be in another namespace, so 1909 * we have to clear all information in the skb that could 1910 * impact namespace isolation. 1911 */ 1912 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1913 { 1914 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1915 } 1916 EXPORT_SYMBOL_GPL(dev_forward_skb); 1917 1918 static inline int deliver_skb(struct sk_buff *skb, 1919 struct packet_type *pt_prev, 1920 struct net_device *orig_dev) 1921 { 1922 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 1923 return -ENOMEM; 1924 refcount_inc(&skb->users); 1925 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1926 } 1927 1928 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 1929 struct packet_type **pt, 1930 struct net_device *orig_dev, 1931 __be16 type, 1932 struct list_head *ptype_list) 1933 { 1934 struct packet_type *ptype, *pt_prev = *pt; 1935 1936 list_for_each_entry_rcu(ptype, ptype_list, list) { 1937 if (ptype->type != type) 1938 continue; 1939 if (pt_prev) 1940 deliver_skb(skb, pt_prev, orig_dev); 1941 pt_prev = ptype; 1942 } 1943 *pt = pt_prev; 1944 } 1945 1946 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1947 { 1948 if (!ptype->af_packet_priv || !skb->sk) 1949 return false; 1950 1951 if (ptype->id_match) 1952 return ptype->id_match(ptype, skb->sk); 1953 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1954 return true; 1955 1956 return false; 1957 } 1958 1959 /* 1960 * Support routine. Sends outgoing frames to any network 1961 * taps currently in use. 1962 */ 1963 1964 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1965 { 1966 struct packet_type *ptype; 1967 struct sk_buff *skb2 = NULL; 1968 struct packet_type *pt_prev = NULL; 1969 struct list_head *ptype_list = &ptype_all; 1970 1971 rcu_read_lock(); 1972 again: 1973 list_for_each_entry_rcu(ptype, ptype_list, list) { 1974 /* Never send packets back to the socket 1975 * they originated from - MvS (miquels@drinkel.ow.org) 1976 */ 1977 if (skb_loop_sk(ptype, skb)) 1978 continue; 1979 1980 if (pt_prev) { 1981 deliver_skb(skb2, pt_prev, skb->dev); 1982 pt_prev = ptype; 1983 continue; 1984 } 1985 1986 /* need to clone skb, done only once */ 1987 skb2 = skb_clone(skb, GFP_ATOMIC); 1988 if (!skb2) 1989 goto out_unlock; 1990 1991 net_timestamp_set(skb2); 1992 1993 /* skb->nh should be correctly 1994 * set by sender, so that the second statement is 1995 * just protection against buggy protocols. 1996 */ 1997 skb_reset_mac_header(skb2); 1998 1999 if (skb_network_header(skb2) < skb2->data || 2000 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2001 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2002 ntohs(skb2->protocol), 2003 dev->name); 2004 skb_reset_network_header(skb2); 2005 } 2006 2007 skb2->transport_header = skb2->network_header; 2008 skb2->pkt_type = PACKET_OUTGOING; 2009 pt_prev = ptype; 2010 } 2011 2012 if (ptype_list == &ptype_all) { 2013 ptype_list = &dev->ptype_all; 2014 goto again; 2015 } 2016 out_unlock: 2017 if (pt_prev) { 2018 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2019 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2020 else 2021 kfree_skb(skb2); 2022 } 2023 rcu_read_unlock(); 2024 } 2025 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2026 2027 /** 2028 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2029 * @dev: Network device 2030 * @txq: number of queues available 2031 * 2032 * If real_num_tx_queues is changed the tc mappings may no longer be 2033 * valid. To resolve this verify the tc mapping remains valid and if 2034 * not NULL the mapping. With no priorities mapping to this 2035 * offset/count pair it will no longer be used. In the worst case TC0 2036 * is invalid nothing can be done so disable priority mappings. If is 2037 * expected that drivers will fix this mapping if they can before 2038 * calling netif_set_real_num_tx_queues. 2039 */ 2040 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2041 { 2042 int i; 2043 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2044 2045 /* If TC0 is invalidated disable TC mapping */ 2046 if (tc->offset + tc->count > txq) { 2047 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2048 dev->num_tc = 0; 2049 return; 2050 } 2051 2052 /* Invalidated prio to tc mappings set to TC0 */ 2053 for (i = 1; i < TC_BITMASK + 1; i++) { 2054 int q = netdev_get_prio_tc_map(dev, i); 2055 2056 tc = &dev->tc_to_txq[q]; 2057 if (tc->offset + tc->count > txq) { 2058 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2059 i, q); 2060 netdev_set_prio_tc_map(dev, i, 0); 2061 } 2062 } 2063 } 2064 2065 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2066 { 2067 if (dev->num_tc) { 2068 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2069 int i; 2070 2071 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2072 if ((txq - tc->offset) < tc->count) 2073 return i; 2074 } 2075 2076 return -1; 2077 } 2078 2079 return 0; 2080 } 2081 EXPORT_SYMBOL(netdev_txq_to_tc); 2082 2083 #ifdef CONFIG_XPS 2084 static DEFINE_MUTEX(xps_map_mutex); 2085 #define xmap_dereference(P) \ 2086 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2087 2088 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2089 int tci, u16 index) 2090 { 2091 struct xps_map *map = NULL; 2092 int pos; 2093 2094 if (dev_maps) 2095 map = xmap_dereference(dev_maps->cpu_map[tci]); 2096 if (!map) 2097 return false; 2098 2099 for (pos = map->len; pos--;) { 2100 if (map->queues[pos] != index) 2101 continue; 2102 2103 if (map->len > 1) { 2104 map->queues[pos] = map->queues[--map->len]; 2105 break; 2106 } 2107 2108 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL); 2109 kfree_rcu(map, rcu); 2110 return false; 2111 } 2112 2113 return true; 2114 } 2115 2116 static bool remove_xps_queue_cpu(struct net_device *dev, 2117 struct xps_dev_maps *dev_maps, 2118 int cpu, u16 offset, u16 count) 2119 { 2120 int num_tc = dev->num_tc ? : 1; 2121 bool active = false; 2122 int tci; 2123 2124 for (tci = cpu * num_tc; num_tc--; tci++) { 2125 int i, j; 2126 2127 for (i = count, j = offset; i--; j++) { 2128 if (!remove_xps_queue(dev_maps, tci, j)) 2129 break; 2130 } 2131 2132 active |= i < 0; 2133 } 2134 2135 return active; 2136 } 2137 2138 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2139 u16 count) 2140 { 2141 struct xps_dev_maps *dev_maps; 2142 int cpu, i; 2143 bool active = false; 2144 2145 mutex_lock(&xps_map_mutex); 2146 dev_maps = xmap_dereference(dev->xps_maps); 2147 2148 if (!dev_maps) 2149 goto out_no_maps; 2150 2151 for_each_possible_cpu(cpu) 2152 active |= remove_xps_queue_cpu(dev, dev_maps, cpu, 2153 offset, count); 2154 2155 if (!active) { 2156 RCU_INIT_POINTER(dev->xps_maps, NULL); 2157 kfree_rcu(dev_maps, rcu); 2158 } 2159 2160 for (i = offset + (count - 1); count--; i--) 2161 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 2162 NUMA_NO_NODE); 2163 2164 out_no_maps: 2165 mutex_unlock(&xps_map_mutex); 2166 } 2167 2168 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2169 { 2170 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2171 } 2172 2173 static struct xps_map *expand_xps_map(struct xps_map *map, 2174 int cpu, u16 index) 2175 { 2176 struct xps_map *new_map; 2177 int alloc_len = XPS_MIN_MAP_ALLOC; 2178 int i, pos; 2179 2180 for (pos = 0; map && pos < map->len; pos++) { 2181 if (map->queues[pos] != index) 2182 continue; 2183 return map; 2184 } 2185 2186 /* Need to add queue to this CPU's existing map */ 2187 if (map) { 2188 if (pos < map->alloc_len) 2189 return map; 2190 2191 alloc_len = map->alloc_len * 2; 2192 } 2193 2194 /* Need to allocate new map to store queue on this CPU's map */ 2195 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2196 cpu_to_node(cpu)); 2197 if (!new_map) 2198 return NULL; 2199 2200 for (i = 0; i < pos; i++) 2201 new_map->queues[i] = map->queues[i]; 2202 new_map->alloc_len = alloc_len; 2203 new_map->len = pos; 2204 2205 return new_map; 2206 } 2207 2208 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2209 u16 index) 2210 { 2211 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2212 int i, cpu, tci, numa_node_id = -2; 2213 int maps_sz, num_tc = 1, tc = 0; 2214 struct xps_map *map, *new_map; 2215 bool active = false; 2216 2217 if (dev->num_tc) { 2218 num_tc = dev->num_tc; 2219 tc = netdev_txq_to_tc(dev, index); 2220 if (tc < 0) 2221 return -EINVAL; 2222 } 2223 2224 maps_sz = XPS_DEV_MAPS_SIZE(num_tc); 2225 if (maps_sz < L1_CACHE_BYTES) 2226 maps_sz = L1_CACHE_BYTES; 2227 2228 mutex_lock(&xps_map_mutex); 2229 2230 dev_maps = xmap_dereference(dev->xps_maps); 2231 2232 /* allocate memory for queue storage */ 2233 for_each_cpu_and(cpu, cpu_online_mask, mask) { 2234 if (!new_dev_maps) 2235 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2236 if (!new_dev_maps) { 2237 mutex_unlock(&xps_map_mutex); 2238 return -ENOMEM; 2239 } 2240 2241 tci = cpu * num_tc + tc; 2242 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) : 2243 NULL; 2244 2245 map = expand_xps_map(map, cpu, index); 2246 if (!map) 2247 goto error; 2248 2249 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2250 } 2251 2252 if (!new_dev_maps) 2253 goto out_no_new_maps; 2254 2255 for_each_possible_cpu(cpu) { 2256 /* copy maps belonging to foreign traffic classes */ 2257 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) { 2258 /* fill in the new device map from the old device map */ 2259 map = xmap_dereference(dev_maps->cpu_map[tci]); 2260 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2261 } 2262 2263 /* We need to explicitly update tci as prevous loop 2264 * could break out early if dev_maps is NULL. 2265 */ 2266 tci = cpu * num_tc + tc; 2267 2268 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 2269 /* add queue to CPU maps */ 2270 int pos = 0; 2271 2272 map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2273 while ((pos < map->len) && (map->queues[pos] != index)) 2274 pos++; 2275 2276 if (pos == map->len) 2277 map->queues[map->len++] = index; 2278 #ifdef CONFIG_NUMA 2279 if (numa_node_id == -2) 2280 numa_node_id = cpu_to_node(cpu); 2281 else if (numa_node_id != cpu_to_node(cpu)) 2282 numa_node_id = -1; 2283 #endif 2284 } else if (dev_maps) { 2285 /* fill in the new device map from the old device map */ 2286 map = xmap_dereference(dev_maps->cpu_map[tci]); 2287 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2288 } 2289 2290 /* copy maps belonging to foreign traffic classes */ 2291 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { 2292 /* fill in the new device map from the old device map */ 2293 map = xmap_dereference(dev_maps->cpu_map[tci]); 2294 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2295 } 2296 } 2297 2298 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 2299 2300 /* Cleanup old maps */ 2301 if (!dev_maps) 2302 goto out_no_old_maps; 2303 2304 for_each_possible_cpu(cpu) { 2305 for (i = num_tc, tci = cpu * num_tc; i--; tci++) { 2306 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2307 map = xmap_dereference(dev_maps->cpu_map[tci]); 2308 if (map && map != new_map) 2309 kfree_rcu(map, rcu); 2310 } 2311 } 2312 2313 kfree_rcu(dev_maps, rcu); 2314 2315 out_no_old_maps: 2316 dev_maps = new_dev_maps; 2317 active = true; 2318 2319 out_no_new_maps: 2320 /* update Tx queue numa node */ 2321 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2322 (numa_node_id >= 0) ? numa_node_id : 2323 NUMA_NO_NODE); 2324 2325 if (!dev_maps) 2326 goto out_no_maps; 2327 2328 /* removes queue from unused CPUs */ 2329 for_each_possible_cpu(cpu) { 2330 for (i = tc, tci = cpu * num_tc; i--; tci++) 2331 active |= remove_xps_queue(dev_maps, tci, index); 2332 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu)) 2333 active |= remove_xps_queue(dev_maps, tci, index); 2334 for (i = num_tc - tc, tci++; --i; tci++) 2335 active |= remove_xps_queue(dev_maps, tci, index); 2336 } 2337 2338 /* free map if not active */ 2339 if (!active) { 2340 RCU_INIT_POINTER(dev->xps_maps, NULL); 2341 kfree_rcu(dev_maps, rcu); 2342 } 2343 2344 out_no_maps: 2345 mutex_unlock(&xps_map_mutex); 2346 2347 return 0; 2348 error: 2349 /* remove any maps that we added */ 2350 for_each_possible_cpu(cpu) { 2351 for (i = num_tc, tci = cpu * num_tc; i--; tci++) { 2352 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2353 map = dev_maps ? 2354 xmap_dereference(dev_maps->cpu_map[tci]) : 2355 NULL; 2356 if (new_map && new_map != map) 2357 kfree(new_map); 2358 } 2359 } 2360 2361 mutex_unlock(&xps_map_mutex); 2362 2363 kfree(new_dev_maps); 2364 return -ENOMEM; 2365 } 2366 EXPORT_SYMBOL(netif_set_xps_queue); 2367 2368 #endif 2369 void netdev_reset_tc(struct net_device *dev) 2370 { 2371 #ifdef CONFIG_XPS 2372 netif_reset_xps_queues_gt(dev, 0); 2373 #endif 2374 dev->num_tc = 0; 2375 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2376 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2377 } 2378 EXPORT_SYMBOL(netdev_reset_tc); 2379 2380 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2381 { 2382 if (tc >= dev->num_tc) 2383 return -EINVAL; 2384 2385 #ifdef CONFIG_XPS 2386 netif_reset_xps_queues(dev, offset, count); 2387 #endif 2388 dev->tc_to_txq[tc].count = count; 2389 dev->tc_to_txq[tc].offset = offset; 2390 return 0; 2391 } 2392 EXPORT_SYMBOL(netdev_set_tc_queue); 2393 2394 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2395 { 2396 if (num_tc > TC_MAX_QUEUE) 2397 return -EINVAL; 2398 2399 #ifdef CONFIG_XPS 2400 netif_reset_xps_queues_gt(dev, 0); 2401 #endif 2402 dev->num_tc = num_tc; 2403 return 0; 2404 } 2405 EXPORT_SYMBOL(netdev_set_num_tc); 2406 2407 /* 2408 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2409 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 2410 */ 2411 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2412 { 2413 bool disabling; 2414 int rc; 2415 2416 disabling = txq < dev->real_num_tx_queues; 2417 2418 if (txq < 1 || txq > dev->num_tx_queues) 2419 return -EINVAL; 2420 2421 if (dev->reg_state == NETREG_REGISTERED || 2422 dev->reg_state == NETREG_UNREGISTERING) { 2423 ASSERT_RTNL(); 2424 2425 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2426 txq); 2427 if (rc) 2428 return rc; 2429 2430 if (dev->num_tc) 2431 netif_setup_tc(dev, txq); 2432 2433 dev->real_num_tx_queues = txq; 2434 2435 if (disabling) { 2436 synchronize_net(); 2437 qdisc_reset_all_tx_gt(dev, txq); 2438 #ifdef CONFIG_XPS 2439 netif_reset_xps_queues_gt(dev, txq); 2440 #endif 2441 } 2442 } else { 2443 dev->real_num_tx_queues = txq; 2444 } 2445 2446 return 0; 2447 } 2448 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2449 2450 #ifdef CONFIG_SYSFS 2451 /** 2452 * netif_set_real_num_rx_queues - set actual number of RX queues used 2453 * @dev: Network device 2454 * @rxq: Actual number of RX queues 2455 * 2456 * This must be called either with the rtnl_lock held or before 2457 * registration of the net device. Returns 0 on success, or a 2458 * negative error code. If called before registration, it always 2459 * succeeds. 2460 */ 2461 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2462 { 2463 int rc; 2464 2465 if (rxq < 1 || rxq > dev->num_rx_queues) 2466 return -EINVAL; 2467 2468 if (dev->reg_state == NETREG_REGISTERED) { 2469 ASSERT_RTNL(); 2470 2471 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2472 rxq); 2473 if (rc) 2474 return rc; 2475 } 2476 2477 dev->real_num_rx_queues = rxq; 2478 return 0; 2479 } 2480 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2481 #endif 2482 2483 /** 2484 * netif_get_num_default_rss_queues - default number of RSS queues 2485 * 2486 * This routine should set an upper limit on the number of RSS queues 2487 * used by default by multiqueue devices. 2488 */ 2489 int netif_get_num_default_rss_queues(void) 2490 { 2491 return is_kdump_kernel() ? 2492 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2493 } 2494 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2495 2496 static void __netif_reschedule(struct Qdisc *q) 2497 { 2498 struct softnet_data *sd; 2499 unsigned long flags; 2500 2501 local_irq_save(flags); 2502 sd = this_cpu_ptr(&softnet_data); 2503 q->next_sched = NULL; 2504 *sd->output_queue_tailp = q; 2505 sd->output_queue_tailp = &q->next_sched; 2506 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2507 local_irq_restore(flags); 2508 } 2509 2510 void __netif_schedule(struct Qdisc *q) 2511 { 2512 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2513 __netif_reschedule(q); 2514 } 2515 EXPORT_SYMBOL(__netif_schedule); 2516 2517 struct dev_kfree_skb_cb { 2518 enum skb_free_reason reason; 2519 }; 2520 2521 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2522 { 2523 return (struct dev_kfree_skb_cb *)skb->cb; 2524 } 2525 2526 void netif_schedule_queue(struct netdev_queue *txq) 2527 { 2528 rcu_read_lock(); 2529 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2530 struct Qdisc *q = rcu_dereference(txq->qdisc); 2531 2532 __netif_schedule(q); 2533 } 2534 rcu_read_unlock(); 2535 } 2536 EXPORT_SYMBOL(netif_schedule_queue); 2537 2538 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2539 { 2540 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2541 struct Qdisc *q; 2542 2543 rcu_read_lock(); 2544 q = rcu_dereference(dev_queue->qdisc); 2545 __netif_schedule(q); 2546 rcu_read_unlock(); 2547 } 2548 } 2549 EXPORT_SYMBOL(netif_tx_wake_queue); 2550 2551 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2552 { 2553 unsigned long flags; 2554 2555 if (unlikely(!skb)) 2556 return; 2557 2558 if (likely(refcount_read(&skb->users) == 1)) { 2559 smp_rmb(); 2560 refcount_set(&skb->users, 0); 2561 } else if (likely(!refcount_dec_and_test(&skb->users))) { 2562 return; 2563 } 2564 get_kfree_skb_cb(skb)->reason = reason; 2565 local_irq_save(flags); 2566 skb->next = __this_cpu_read(softnet_data.completion_queue); 2567 __this_cpu_write(softnet_data.completion_queue, skb); 2568 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2569 local_irq_restore(flags); 2570 } 2571 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2572 2573 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2574 { 2575 if (in_irq() || irqs_disabled()) 2576 __dev_kfree_skb_irq(skb, reason); 2577 else 2578 dev_kfree_skb(skb); 2579 } 2580 EXPORT_SYMBOL(__dev_kfree_skb_any); 2581 2582 2583 /** 2584 * netif_device_detach - mark device as removed 2585 * @dev: network device 2586 * 2587 * Mark device as removed from system and therefore no longer available. 2588 */ 2589 void netif_device_detach(struct net_device *dev) 2590 { 2591 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2592 netif_running(dev)) { 2593 netif_tx_stop_all_queues(dev); 2594 } 2595 } 2596 EXPORT_SYMBOL(netif_device_detach); 2597 2598 /** 2599 * netif_device_attach - mark device as attached 2600 * @dev: network device 2601 * 2602 * Mark device as attached from system and restart if needed. 2603 */ 2604 void netif_device_attach(struct net_device *dev) 2605 { 2606 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2607 netif_running(dev)) { 2608 netif_tx_wake_all_queues(dev); 2609 __netdev_watchdog_up(dev); 2610 } 2611 } 2612 EXPORT_SYMBOL(netif_device_attach); 2613 2614 /* 2615 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2616 * to be used as a distribution range. 2617 */ 2618 static u16 skb_tx_hash(const struct net_device *dev, struct sk_buff *skb) 2619 { 2620 u32 hash; 2621 u16 qoffset = 0; 2622 u16 qcount = dev->real_num_tx_queues; 2623 2624 if (skb_rx_queue_recorded(skb)) { 2625 hash = skb_get_rx_queue(skb); 2626 while (unlikely(hash >= qcount)) 2627 hash -= qcount; 2628 return hash; 2629 } 2630 2631 if (dev->num_tc) { 2632 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2633 2634 qoffset = dev->tc_to_txq[tc].offset; 2635 qcount = dev->tc_to_txq[tc].count; 2636 } 2637 2638 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 2639 } 2640 2641 static void skb_warn_bad_offload(const struct sk_buff *skb) 2642 { 2643 static const netdev_features_t null_features; 2644 struct net_device *dev = skb->dev; 2645 const char *name = ""; 2646 2647 if (!net_ratelimit()) 2648 return; 2649 2650 if (dev) { 2651 if (dev->dev.parent) 2652 name = dev_driver_string(dev->dev.parent); 2653 else 2654 name = netdev_name(dev); 2655 } 2656 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2657 "gso_type=%d ip_summed=%d\n", 2658 name, dev ? &dev->features : &null_features, 2659 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2660 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2661 skb_shinfo(skb)->gso_type, skb->ip_summed); 2662 } 2663 2664 /* 2665 * Invalidate hardware checksum when packet is to be mangled, and 2666 * complete checksum manually on outgoing path. 2667 */ 2668 int skb_checksum_help(struct sk_buff *skb) 2669 { 2670 __wsum csum; 2671 int ret = 0, offset; 2672 2673 if (skb->ip_summed == CHECKSUM_COMPLETE) 2674 goto out_set_summed; 2675 2676 if (unlikely(skb_shinfo(skb)->gso_size)) { 2677 skb_warn_bad_offload(skb); 2678 return -EINVAL; 2679 } 2680 2681 /* Before computing a checksum, we should make sure no frag could 2682 * be modified by an external entity : checksum could be wrong. 2683 */ 2684 if (skb_has_shared_frag(skb)) { 2685 ret = __skb_linearize(skb); 2686 if (ret) 2687 goto out; 2688 } 2689 2690 offset = skb_checksum_start_offset(skb); 2691 BUG_ON(offset >= skb_headlen(skb)); 2692 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2693 2694 offset += skb->csum_offset; 2695 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2696 2697 if (skb_cloned(skb) && 2698 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2699 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2700 if (ret) 2701 goto out; 2702 } 2703 2704 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 2705 out_set_summed: 2706 skb->ip_summed = CHECKSUM_NONE; 2707 out: 2708 return ret; 2709 } 2710 EXPORT_SYMBOL(skb_checksum_help); 2711 2712 int skb_crc32c_csum_help(struct sk_buff *skb) 2713 { 2714 __le32 crc32c_csum; 2715 int ret = 0, offset, start; 2716 2717 if (skb->ip_summed != CHECKSUM_PARTIAL) 2718 goto out; 2719 2720 if (unlikely(skb_is_gso(skb))) 2721 goto out; 2722 2723 /* Before computing a checksum, we should make sure no frag could 2724 * be modified by an external entity : checksum could be wrong. 2725 */ 2726 if (unlikely(skb_has_shared_frag(skb))) { 2727 ret = __skb_linearize(skb); 2728 if (ret) 2729 goto out; 2730 } 2731 start = skb_checksum_start_offset(skb); 2732 offset = start + offsetof(struct sctphdr, checksum); 2733 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 2734 ret = -EINVAL; 2735 goto out; 2736 } 2737 if (skb_cloned(skb) && 2738 !skb_clone_writable(skb, offset + sizeof(__le32))) { 2739 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2740 if (ret) 2741 goto out; 2742 } 2743 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 2744 skb->len - start, ~(__u32)0, 2745 crc32c_csum_stub)); 2746 *(__le32 *)(skb->data + offset) = crc32c_csum; 2747 skb->ip_summed = CHECKSUM_NONE; 2748 skb->csum_not_inet = 0; 2749 out: 2750 return ret; 2751 } 2752 2753 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2754 { 2755 __be16 type = skb->protocol; 2756 2757 /* Tunnel gso handlers can set protocol to ethernet. */ 2758 if (type == htons(ETH_P_TEB)) { 2759 struct ethhdr *eth; 2760 2761 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2762 return 0; 2763 2764 eth = (struct ethhdr *)skb->data; 2765 type = eth->h_proto; 2766 } 2767 2768 return __vlan_get_protocol(skb, type, depth); 2769 } 2770 2771 /** 2772 * skb_mac_gso_segment - mac layer segmentation handler. 2773 * @skb: buffer to segment 2774 * @features: features for the output path (see dev->features) 2775 */ 2776 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2777 netdev_features_t features) 2778 { 2779 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2780 struct packet_offload *ptype; 2781 int vlan_depth = skb->mac_len; 2782 __be16 type = skb_network_protocol(skb, &vlan_depth); 2783 2784 if (unlikely(!type)) 2785 return ERR_PTR(-EINVAL); 2786 2787 __skb_pull(skb, vlan_depth); 2788 2789 rcu_read_lock(); 2790 list_for_each_entry_rcu(ptype, &offload_base, list) { 2791 if (ptype->type == type && ptype->callbacks.gso_segment) { 2792 segs = ptype->callbacks.gso_segment(skb, features); 2793 break; 2794 } 2795 } 2796 rcu_read_unlock(); 2797 2798 __skb_push(skb, skb->data - skb_mac_header(skb)); 2799 2800 return segs; 2801 } 2802 EXPORT_SYMBOL(skb_mac_gso_segment); 2803 2804 2805 /* openvswitch calls this on rx path, so we need a different check. 2806 */ 2807 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2808 { 2809 if (tx_path) 2810 return skb->ip_summed != CHECKSUM_PARTIAL && 2811 skb->ip_summed != CHECKSUM_UNNECESSARY; 2812 2813 return skb->ip_summed == CHECKSUM_NONE; 2814 } 2815 2816 /** 2817 * __skb_gso_segment - Perform segmentation on skb. 2818 * @skb: buffer to segment 2819 * @features: features for the output path (see dev->features) 2820 * @tx_path: whether it is called in TX path 2821 * 2822 * This function segments the given skb and returns a list of segments. 2823 * 2824 * It may return NULL if the skb requires no segmentation. This is 2825 * only possible when GSO is used for verifying header integrity. 2826 * 2827 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb. 2828 */ 2829 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2830 netdev_features_t features, bool tx_path) 2831 { 2832 struct sk_buff *segs; 2833 2834 if (unlikely(skb_needs_check(skb, tx_path))) { 2835 int err; 2836 2837 /* We're going to init ->check field in TCP or UDP header */ 2838 err = skb_cow_head(skb, 0); 2839 if (err < 0) 2840 return ERR_PTR(err); 2841 } 2842 2843 /* Only report GSO partial support if it will enable us to 2844 * support segmentation on this frame without needing additional 2845 * work. 2846 */ 2847 if (features & NETIF_F_GSO_PARTIAL) { 2848 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 2849 struct net_device *dev = skb->dev; 2850 2851 partial_features |= dev->features & dev->gso_partial_features; 2852 if (!skb_gso_ok(skb, features | partial_features)) 2853 features &= ~NETIF_F_GSO_PARTIAL; 2854 } 2855 2856 BUILD_BUG_ON(SKB_SGO_CB_OFFSET + 2857 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 2858 2859 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2860 SKB_GSO_CB(skb)->encap_level = 0; 2861 2862 skb_reset_mac_header(skb); 2863 skb_reset_mac_len(skb); 2864 2865 segs = skb_mac_gso_segment(skb, features); 2866 2867 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs))) 2868 skb_warn_bad_offload(skb); 2869 2870 return segs; 2871 } 2872 EXPORT_SYMBOL(__skb_gso_segment); 2873 2874 /* Take action when hardware reception checksum errors are detected. */ 2875 #ifdef CONFIG_BUG 2876 void netdev_rx_csum_fault(struct net_device *dev) 2877 { 2878 if (net_ratelimit()) { 2879 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2880 dump_stack(); 2881 } 2882 } 2883 EXPORT_SYMBOL(netdev_rx_csum_fault); 2884 #endif 2885 2886 /* XXX: check that highmem exists at all on the given machine. */ 2887 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2888 { 2889 #ifdef CONFIG_HIGHMEM 2890 int i; 2891 2892 if (!(dev->features & NETIF_F_HIGHDMA)) { 2893 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2894 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2895 2896 if (PageHighMem(skb_frag_page(frag))) 2897 return 1; 2898 } 2899 } 2900 #endif 2901 return 0; 2902 } 2903 2904 /* If MPLS offload request, verify we are testing hardware MPLS features 2905 * instead of standard features for the netdev. 2906 */ 2907 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 2908 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2909 netdev_features_t features, 2910 __be16 type) 2911 { 2912 if (eth_p_mpls(type)) 2913 features &= skb->dev->mpls_features; 2914 2915 return features; 2916 } 2917 #else 2918 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2919 netdev_features_t features, 2920 __be16 type) 2921 { 2922 return features; 2923 } 2924 #endif 2925 2926 static netdev_features_t harmonize_features(struct sk_buff *skb, 2927 netdev_features_t features) 2928 { 2929 int tmp; 2930 __be16 type; 2931 2932 type = skb_network_protocol(skb, &tmp); 2933 features = net_mpls_features(skb, features, type); 2934 2935 if (skb->ip_summed != CHECKSUM_NONE && 2936 !can_checksum_protocol(features, type)) { 2937 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 2938 } 2939 if (illegal_highdma(skb->dev, skb)) 2940 features &= ~NETIF_F_SG; 2941 2942 return features; 2943 } 2944 2945 netdev_features_t passthru_features_check(struct sk_buff *skb, 2946 struct net_device *dev, 2947 netdev_features_t features) 2948 { 2949 return features; 2950 } 2951 EXPORT_SYMBOL(passthru_features_check); 2952 2953 static netdev_features_t dflt_features_check(struct sk_buff *skb, 2954 struct net_device *dev, 2955 netdev_features_t features) 2956 { 2957 return vlan_features_check(skb, features); 2958 } 2959 2960 static netdev_features_t gso_features_check(const struct sk_buff *skb, 2961 struct net_device *dev, 2962 netdev_features_t features) 2963 { 2964 u16 gso_segs = skb_shinfo(skb)->gso_segs; 2965 2966 if (gso_segs > dev->gso_max_segs) 2967 return features & ~NETIF_F_GSO_MASK; 2968 2969 /* Support for GSO partial features requires software 2970 * intervention before we can actually process the packets 2971 * so we need to strip support for any partial features now 2972 * and we can pull them back in after we have partially 2973 * segmented the frame. 2974 */ 2975 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 2976 features &= ~dev->gso_partial_features; 2977 2978 /* Make sure to clear the IPv4 ID mangling feature if the 2979 * IPv4 header has the potential to be fragmented. 2980 */ 2981 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 2982 struct iphdr *iph = skb->encapsulation ? 2983 inner_ip_hdr(skb) : ip_hdr(skb); 2984 2985 if (!(iph->frag_off & htons(IP_DF))) 2986 features &= ~NETIF_F_TSO_MANGLEID; 2987 } 2988 2989 return features; 2990 } 2991 2992 netdev_features_t netif_skb_features(struct sk_buff *skb) 2993 { 2994 struct net_device *dev = skb->dev; 2995 netdev_features_t features = dev->features; 2996 2997 if (skb_is_gso(skb)) 2998 features = gso_features_check(skb, dev, features); 2999 3000 /* If encapsulation offload request, verify we are testing 3001 * hardware encapsulation features instead of standard 3002 * features for the netdev 3003 */ 3004 if (skb->encapsulation) 3005 features &= dev->hw_enc_features; 3006 3007 if (skb_vlan_tagged(skb)) 3008 features = netdev_intersect_features(features, 3009 dev->vlan_features | 3010 NETIF_F_HW_VLAN_CTAG_TX | 3011 NETIF_F_HW_VLAN_STAG_TX); 3012 3013 if (dev->netdev_ops->ndo_features_check) 3014 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3015 features); 3016 else 3017 features &= dflt_features_check(skb, dev, features); 3018 3019 return harmonize_features(skb, features); 3020 } 3021 EXPORT_SYMBOL(netif_skb_features); 3022 3023 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3024 struct netdev_queue *txq, bool more) 3025 { 3026 unsigned int len; 3027 int rc; 3028 3029 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all)) 3030 dev_queue_xmit_nit(skb, dev); 3031 3032 len = skb->len; 3033 trace_net_dev_start_xmit(skb, dev); 3034 rc = netdev_start_xmit(skb, dev, txq, more); 3035 trace_net_dev_xmit(skb, rc, dev, len); 3036 3037 return rc; 3038 } 3039 3040 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3041 struct netdev_queue *txq, int *ret) 3042 { 3043 struct sk_buff *skb = first; 3044 int rc = NETDEV_TX_OK; 3045 3046 while (skb) { 3047 struct sk_buff *next = skb->next; 3048 3049 skb->next = NULL; 3050 rc = xmit_one(skb, dev, txq, next != NULL); 3051 if (unlikely(!dev_xmit_complete(rc))) { 3052 skb->next = next; 3053 goto out; 3054 } 3055 3056 skb = next; 3057 if (netif_xmit_stopped(txq) && skb) { 3058 rc = NETDEV_TX_BUSY; 3059 break; 3060 } 3061 } 3062 3063 out: 3064 *ret = rc; 3065 return skb; 3066 } 3067 3068 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3069 netdev_features_t features) 3070 { 3071 if (skb_vlan_tag_present(skb) && 3072 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3073 skb = __vlan_hwaccel_push_inside(skb); 3074 return skb; 3075 } 3076 3077 int skb_csum_hwoffload_help(struct sk_buff *skb, 3078 const netdev_features_t features) 3079 { 3080 if (unlikely(skb->csum_not_inet)) 3081 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3082 skb_crc32c_csum_help(skb); 3083 3084 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb); 3085 } 3086 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3087 3088 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3089 { 3090 netdev_features_t features; 3091 3092 features = netif_skb_features(skb); 3093 skb = validate_xmit_vlan(skb, features); 3094 if (unlikely(!skb)) 3095 goto out_null; 3096 3097 skb = sk_validate_xmit_skb(skb, dev); 3098 if (unlikely(!skb)) 3099 goto out_null; 3100 3101 if (netif_needs_gso(skb, features)) { 3102 struct sk_buff *segs; 3103 3104 segs = skb_gso_segment(skb, features); 3105 if (IS_ERR(segs)) { 3106 goto out_kfree_skb; 3107 } else if (segs) { 3108 consume_skb(skb); 3109 skb = segs; 3110 } 3111 } else { 3112 if (skb_needs_linearize(skb, features) && 3113 __skb_linearize(skb)) 3114 goto out_kfree_skb; 3115 3116 /* If packet is not checksummed and device does not 3117 * support checksumming for this protocol, complete 3118 * checksumming here. 3119 */ 3120 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3121 if (skb->encapsulation) 3122 skb_set_inner_transport_header(skb, 3123 skb_checksum_start_offset(skb)); 3124 else 3125 skb_set_transport_header(skb, 3126 skb_checksum_start_offset(skb)); 3127 if (skb_csum_hwoffload_help(skb, features)) 3128 goto out_kfree_skb; 3129 } 3130 } 3131 3132 skb = validate_xmit_xfrm(skb, features, again); 3133 3134 return skb; 3135 3136 out_kfree_skb: 3137 kfree_skb(skb); 3138 out_null: 3139 atomic_long_inc(&dev->tx_dropped); 3140 return NULL; 3141 } 3142 3143 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3144 { 3145 struct sk_buff *next, *head = NULL, *tail; 3146 3147 for (; skb != NULL; skb = next) { 3148 next = skb->next; 3149 skb->next = NULL; 3150 3151 /* in case skb wont be segmented, point to itself */ 3152 skb->prev = skb; 3153 3154 skb = validate_xmit_skb(skb, dev, again); 3155 if (!skb) 3156 continue; 3157 3158 if (!head) 3159 head = skb; 3160 else 3161 tail->next = skb; 3162 /* If skb was segmented, skb->prev points to 3163 * the last segment. If not, it still contains skb. 3164 */ 3165 tail = skb->prev; 3166 } 3167 return head; 3168 } 3169 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3170 3171 static void qdisc_pkt_len_init(struct sk_buff *skb) 3172 { 3173 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3174 3175 qdisc_skb_cb(skb)->pkt_len = skb->len; 3176 3177 /* To get more precise estimation of bytes sent on wire, 3178 * we add to pkt_len the headers size of all segments 3179 */ 3180 if (shinfo->gso_size) { 3181 unsigned int hdr_len; 3182 u16 gso_segs = shinfo->gso_segs; 3183 3184 /* mac layer + network layer */ 3185 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3186 3187 /* + transport layer */ 3188 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3189 const struct tcphdr *th; 3190 struct tcphdr _tcphdr; 3191 3192 th = skb_header_pointer(skb, skb_transport_offset(skb), 3193 sizeof(_tcphdr), &_tcphdr); 3194 if (likely(th)) 3195 hdr_len += __tcp_hdrlen(th); 3196 } else { 3197 struct udphdr _udphdr; 3198 3199 if (skb_header_pointer(skb, skb_transport_offset(skb), 3200 sizeof(_udphdr), &_udphdr)) 3201 hdr_len += sizeof(struct udphdr); 3202 } 3203 3204 if (shinfo->gso_type & SKB_GSO_DODGY) 3205 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3206 shinfo->gso_size); 3207 3208 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3209 } 3210 } 3211 3212 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3213 struct net_device *dev, 3214 struct netdev_queue *txq) 3215 { 3216 spinlock_t *root_lock = qdisc_lock(q); 3217 struct sk_buff *to_free = NULL; 3218 bool contended; 3219 int rc; 3220 3221 qdisc_calculate_pkt_len(skb, q); 3222 3223 if (q->flags & TCQ_F_NOLOCK) { 3224 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3225 __qdisc_drop(skb, &to_free); 3226 rc = NET_XMIT_DROP; 3227 } else { 3228 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3229 qdisc_run(q); 3230 } 3231 3232 if (unlikely(to_free)) 3233 kfree_skb_list(to_free); 3234 return rc; 3235 } 3236 3237 /* 3238 * Heuristic to force contended enqueues to serialize on a 3239 * separate lock before trying to get qdisc main lock. 3240 * This permits qdisc->running owner to get the lock more 3241 * often and dequeue packets faster. 3242 */ 3243 contended = qdisc_is_running(q); 3244 if (unlikely(contended)) 3245 spin_lock(&q->busylock); 3246 3247 spin_lock(root_lock); 3248 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3249 __qdisc_drop(skb, &to_free); 3250 rc = NET_XMIT_DROP; 3251 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3252 qdisc_run_begin(q)) { 3253 /* 3254 * This is a work-conserving queue; there are no old skbs 3255 * waiting to be sent out; and the qdisc is not running - 3256 * xmit the skb directly. 3257 */ 3258 3259 qdisc_bstats_update(q, skb); 3260 3261 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3262 if (unlikely(contended)) { 3263 spin_unlock(&q->busylock); 3264 contended = false; 3265 } 3266 __qdisc_run(q); 3267 } 3268 3269 qdisc_run_end(q); 3270 rc = NET_XMIT_SUCCESS; 3271 } else { 3272 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3273 if (qdisc_run_begin(q)) { 3274 if (unlikely(contended)) { 3275 spin_unlock(&q->busylock); 3276 contended = false; 3277 } 3278 __qdisc_run(q); 3279 qdisc_run_end(q); 3280 } 3281 } 3282 spin_unlock(root_lock); 3283 if (unlikely(to_free)) 3284 kfree_skb_list(to_free); 3285 if (unlikely(contended)) 3286 spin_unlock(&q->busylock); 3287 return rc; 3288 } 3289 3290 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3291 static void skb_update_prio(struct sk_buff *skb) 3292 { 3293 const struct netprio_map *map; 3294 const struct sock *sk; 3295 unsigned int prioidx; 3296 3297 if (skb->priority) 3298 return; 3299 map = rcu_dereference_bh(skb->dev->priomap); 3300 if (!map) 3301 return; 3302 sk = skb_to_full_sk(skb); 3303 if (!sk) 3304 return; 3305 3306 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 3307 3308 if (prioidx < map->priomap_len) 3309 skb->priority = map->priomap[prioidx]; 3310 } 3311 #else 3312 #define skb_update_prio(skb) 3313 #endif 3314 3315 DEFINE_PER_CPU(int, xmit_recursion); 3316 EXPORT_SYMBOL(xmit_recursion); 3317 3318 /** 3319 * dev_loopback_xmit - loop back @skb 3320 * @net: network namespace this loopback is happening in 3321 * @sk: sk needed to be a netfilter okfn 3322 * @skb: buffer to transmit 3323 */ 3324 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3325 { 3326 skb_reset_mac_header(skb); 3327 __skb_pull(skb, skb_network_offset(skb)); 3328 skb->pkt_type = PACKET_LOOPBACK; 3329 skb->ip_summed = CHECKSUM_UNNECESSARY; 3330 WARN_ON(!skb_dst(skb)); 3331 skb_dst_force(skb); 3332 netif_rx_ni(skb); 3333 return 0; 3334 } 3335 EXPORT_SYMBOL(dev_loopback_xmit); 3336 3337 #ifdef CONFIG_NET_EGRESS 3338 static struct sk_buff * 3339 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3340 { 3341 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress); 3342 struct tcf_result cl_res; 3343 3344 if (!miniq) 3345 return skb; 3346 3347 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3348 mini_qdisc_bstats_cpu_update(miniq, skb); 3349 3350 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 3351 case TC_ACT_OK: 3352 case TC_ACT_RECLASSIFY: 3353 skb->tc_index = TC_H_MIN(cl_res.classid); 3354 break; 3355 case TC_ACT_SHOT: 3356 mini_qdisc_qstats_cpu_drop(miniq); 3357 *ret = NET_XMIT_DROP; 3358 kfree_skb(skb); 3359 return NULL; 3360 case TC_ACT_STOLEN: 3361 case TC_ACT_QUEUED: 3362 case TC_ACT_TRAP: 3363 *ret = NET_XMIT_SUCCESS; 3364 consume_skb(skb); 3365 return NULL; 3366 case TC_ACT_REDIRECT: 3367 /* No need to push/pop skb's mac_header here on egress! */ 3368 skb_do_redirect(skb); 3369 *ret = NET_XMIT_SUCCESS; 3370 return NULL; 3371 default: 3372 break; 3373 } 3374 3375 return skb; 3376 } 3377 #endif /* CONFIG_NET_EGRESS */ 3378 3379 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 3380 { 3381 #ifdef CONFIG_XPS 3382 struct xps_dev_maps *dev_maps; 3383 struct xps_map *map; 3384 int queue_index = -1; 3385 3386 rcu_read_lock(); 3387 dev_maps = rcu_dereference(dev->xps_maps); 3388 if (dev_maps) { 3389 unsigned int tci = skb->sender_cpu - 1; 3390 3391 if (dev->num_tc) { 3392 tci *= dev->num_tc; 3393 tci += netdev_get_prio_tc_map(dev, skb->priority); 3394 } 3395 3396 map = rcu_dereference(dev_maps->cpu_map[tci]); 3397 if (map) { 3398 if (map->len == 1) 3399 queue_index = map->queues[0]; 3400 else 3401 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb), 3402 map->len)]; 3403 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3404 queue_index = -1; 3405 } 3406 } 3407 rcu_read_unlock(); 3408 3409 return queue_index; 3410 #else 3411 return -1; 3412 #endif 3413 } 3414 3415 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb) 3416 { 3417 struct sock *sk = skb->sk; 3418 int queue_index = sk_tx_queue_get(sk); 3419 3420 if (queue_index < 0 || skb->ooo_okay || 3421 queue_index >= dev->real_num_tx_queues) { 3422 int new_index = get_xps_queue(dev, skb); 3423 3424 if (new_index < 0) 3425 new_index = skb_tx_hash(dev, skb); 3426 3427 if (queue_index != new_index && sk && 3428 sk_fullsock(sk) && 3429 rcu_access_pointer(sk->sk_dst_cache)) 3430 sk_tx_queue_set(sk, new_index); 3431 3432 queue_index = new_index; 3433 } 3434 3435 return queue_index; 3436 } 3437 3438 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 3439 struct sk_buff *skb, 3440 void *accel_priv) 3441 { 3442 int queue_index = 0; 3443 3444 #ifdef CONFIG_XPS 3445 u32 sender_cpu = skb->sender_cpu - 1; 3446 3447 if (sender_cpu >= (u32)NR_CPUS) 3448 skb->sender_cpu = raw_smp_processor_id() + 1; 3449 #endif 3450 3451 if (dev->real_num_tx_queues != 1) { 3452 const struct net_device_ops *ops = dev->netdev_ops; 3453 3454 if (ops->ndo_select_queue) 3455 queue_index = ops->ndo_select_queue(dev, skb, accel_priv, 3456 __netdev_pick_tx); 3457 else 3458 queue_index = __netdev_pick_tx(dev, skb); 3459 3460 queue_index = netdev_cap_txqueue(dev, queue_index); 3461 } 3462 3463 skb_set_queue_mapping(skb, queue_index); 3464 return netdev_get_tx_queue(dev, queue_index); 3465 } 3466 3467 /** 3468 * __dev_queue_xmit - transmit a buffer 3469 * @skb: buffer to transmit 3470 * @accel_priv: private data used for L2 forwarding offload 3471 * 3472 * Queue a buffer for transmission to a network device. The caller must 3473 * have set the device and priority and built the buffer before calling 3474 * this function. The function can be called from an interrupt. 3475 * 3476 * A negative errno code is returned on a failure. A success does not 3477 * guarantee the frame will be transmitted as it may be dropped due 3478 * to congestion or traffic shaping. 3479 * 3480 * ----------------------------------------------------------------------------------- 3481 * I notice this method can also return errors from the queue disciplines, 3482 * including NET_XMIT_DROP, which is a positive value. So, errors can also 3483 * be positive. 3484 * 3485 * Regardless of the return value, the skb is consumed, so it is currently 3486 * difficult to retry a send to this method. (You can bump the ref count 3487 * before sending to hold a reference for retry if you are careful.) 3488 * 3489 * When calling this method, interrupts MUST be enabled. This is because 3490 * the BH enable code must have IRQs enabled so that it will not deadlock. 3491 * --BLG 3492 */ 3493 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv) 3494 { 3495 struct net_device *dev = skb->dev; 3496 struct netdev_queue *txq; 3497 struct Qdisc *q; 3498 int rc = -ENOMEM; 3499 bool again = false; 3500 3501 skb_reset_mac_header(skb); 3502 3503 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 3504 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 3505 3506 /* Disable soft irqs for various locks below. Also 3507 * stops preemption for RCU. 3508 */ 3509 rcu_read_lock_bh(); 3510 3511 skb_update_prio(skb); 3512 3513 qdisc_pkt_len_init(skb); 3514 #ifdef CONFIG_NET_CLS_ACT 3515 skb->tc_at_ingress = 0; 3516 # ifdef CONFIG_NET_EGRESS 3517 if (static_branch_unlikely(&egress_needed_key)) { 3518 skb = sch_handle_egress(skb, &rc, dev); 3519 if (!skb) 3520 goto out; 3521 } 3522 # endif 3523 #endif 3524 /* If device/qdisc don't need skb->dst, release it right now while 3525 * its hot in this cpu cache. 3526 */ 3527 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 3528 skb_dst_drop(skb); 3529 else 3530 skb_dst_force(skb); 3531 3532 txq = netdev_pick_tx(dev, skb, accel_priv); 3533 q = rcu_dereference_bh(txq->qdisc); 3534 3535 trace_net_dev_queue(skb); 3536 if (q->enqueue) { 3537 rc = __dev_xmit_skb(skb, q, dev, txq); 3538 goto out; 3539 } 3540 3541 /* The device has no queue. Common case for software devices: 3542 * loopback, all the sorts of tunnels... 3543 3544 * Really, it is unlikely that netif_tx_lock protection is necessary 3545 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 3546 * counters.) 3547 * However, it is possible, that they rely on protection 3548 * made by us here. 3549 3550 * Check this and shot the lock. It is not prone from deadlocks. 3551 *Either shot noqueue qdisc, it is even simpler 8) 3552 */ 3553 if (dev->flags & IFF_UP) { 3554 int cpu = smp_processor_id(); /* ok because BHs are off */ 3555 3556 if (txq->xmit_lock_owner != cpu) { 3557 if (unlikely(__this_cpu_read(xmit_recursion) > 3558 XMIT_RECURSION_LIMIT)) 3559 goto recursion_alert; 3560 3561 skb = validate_xmit_skb(skb, dev, &again); 3562 if (!skb) 3563 goto out; 3564 3565 HARD_TX_LOCK(dev, txq, cpu); 3566 3567 if (!netif_xmit_stopped(txq)) { 3568 __this_cpu_inc(xmit_recursion); 3569 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 3570 __this_cpu_dec(xmit_recursion); 3571 if (dev_xmit_complete(rc)) { 3572 HARD_TX_UNLOCK(dev, txq); 3573 goto out; 3574 } 3575 } 3576 HARD_TX_UNLOCK(dev, txq); 3577 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 3578 dev->name); 3579 } else { 3580 /* Recursion is detected! It is possible, 3581 * unfortunately 3582 */ 3583 recursion_alert: 3584 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 3585 dev->name); 3586 } 3587 } 3588 3589 rc = -ENETDOWN; 3590 rcu_read_unlock_bh(); 3591 3592 atomic_long_inc(&dev->tx_dropped); 3593 kfree_skb_list(skb); 3594 return rc; 3595 out: 3596 rcu_read_unlock_bh(); 3597 return rc; 3598 } 3599 3600 int dev_queue_xmit(struct sk_buff *skb) 3601 { 3602 return __dev_queue_xmit(skb, NULL); 3603 } 3604 EXPORT_SYMBOL(dev_queue_xmit); 3605 3606 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv) 3607 { 3608 return __dev_queue_xmit(skb, accel_priv); 3609 } 3610 EXPORT_SYMBOL(dev_queue_xmit_accel); 3611 3612 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 3613 { 3614 struct net_device *dev = skb->dev; 3615 struct sk_buff *orig_skb = skb; 3616 struct netdev_queue *txq; 3617 int ret = NETDEV_TX_BUSY; 3618 bool again = false; 3619 3620 if (unlikely(!netif_running(dev) || 3621 !netif_carrier_ok(dev))) 3622 goto drop; 3623 3624 skb = validate_xmit_skb_list(skb, dev, &again); 3625 if (skb != orig_skb) 3626 goto drop; 3627 3628 skb_set_queue_mapping(skb, queue_id); 3629 txq = skb_get_tx_queue(dev, skb); 3630 3631 local_bh_disable(); 3632 3633 HARD_TX_LOCK(dev, txq, smp_processor_id()); 3634 if (!netif_xmit_frozen_or_drv_stopped(txq)) 3635 ret = netdev_start_xmit(skb, dev, txq, false); 3636 HARD_TX_UNLOCK(dev, txq); 3637 3638 local_bh_enable(); 3639 3640 if (!dev_xmit_complete(ret)) 3641 kfree_skb(skb); 3642 3643 return ret; 3644 drop: 3645 atomic_long_inc(&dev->tx_dropped); 3646 kfree_skb_list(skb); 3647 return NET_XMIT_DROP; 3648 } 3649 EXPORT_SYMBOL(dev_direct_xmit); 3650 3651 /************************************************************************* 3652 * Receiver routines 3653 *************************************************************************/ 3654 3655 int netdev_max_backlog __read_mostly = 1000; 3656 EXPORT_SYMBOL(netdev_max_backlog); 3657 3658 int netdev_tstamp_prequeue __read_mostly = 1; 3659 int netdev_budget __read_mostly = 300; 3660 unsigned int __read_mostly netdev_budget_usecs = 2000; 3661 int weight_p __read_mostly = 64; /* old backlog weight */ 3662 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 3663 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 3664 int dev_rx_weight __read_mostly = 64; 3665 int dev_tx_weight __read_mostly = 64; 3666 3667 /* Called with irq disabled */ 3668 static inline void ____napi_schedule(struct softnet_data *sd, 3669 struct napi_struct *napi) 3670 { 3671 list_add_tail(&napi->poll_list, &sd->poll_list); 3672 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3673 } 3674 3675 #ifdef CONFIG_RPS 3676 3677 /* One global table that all flow-based protocols share. */ 3678 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3679 EXPORT_SYMBOL(rps_sock_flow_table); 3680 u32 rps_cpu_mask __read_mostly; 3681 EXPORT_SYMBOL(rps_cpu_mask); 3682 3683 struct static_key rps_needed __read_mostly; 3684 EXPORT_SYMBOL(rps_needed); 3685 struct static_key rfs_needed __read_mostly; 3686 EXPORT_SYMBOL(rfs_needed); 3687 3688 static struct rps_dev_flow * 3689 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3690 struct rps_dev_flow *rflow, u16 next_cpu) 3691 { 3692 if (next_cpu < nr_cpu_ids) { 3693 #ifdef CONFIG_RFS_ACCEL 3694 struct netdev_rx_queue *rxqueue; 3695 struct rps_dev_flow_table *flow_table; 3696 struct rps_dev_flow *old_rflow; 3697 u32 flow_id; 3698 u16 rxq_index; 3699 int rc; 3700 3701 /* Should we steer this flow to a different hardware queue? */ 3702 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 3703 !(dev->features & NETIF_F_NTUPLE)) 3704 goto out; 3705 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 3706 if (rxq_index == skb_get_rx_queue(skb)) 3707 goto out; 3708 3709 rxqueue = dev->_rx + rxq_index; 3710 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3711 if (!flow_table) 3712 goto out; 3713 flow_id = skb_get_hash(skb) & flow_table->mask; 3714 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 3715 rxq_index, flow_id); 3716 if (rc < 0) 3717 goto out; 3718 old_rflow = rflow; 3719 rflow = &flow_table->flows[flow_id]; 3720 rflow->filter = rc; 3721 if (old_rflow->filter == rflow->filter) 3722 old_rflow->filter = RPS_NO_FILTER; 3723 out: 3724 #endif 3725 rflow->last_qtail = 3726 per_cpu(softnet_data, next_cpu).input_queue_head; 3727 } 3728 3729 rflow->cpu = next_cpu; 3730 return rflow; 3731 } 3732 3733 /* 3734 * get_rps_cpu is called from netif_receive_skb and returns the target 3735 * CPU from the RPS map of the receiving queue for a given skb. 3736 * rcu_read_lock must be held on entry. 3737 */ 3738 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3739 struct rps_dev_flow **rflowp) 3740 { 3741 const struct rps_sock_flow_table *sock_flow_table; 3742 struct netdev_rx_queue *rxqueue = dev->_rx; 3743 struct rps_dev_flow_table *flow_table; 3744 struct rps_map *map; 3745 int cpu = -1; 3746 u32 tcpu; 3747 u32 hash; 3748 3749 if (skb_rx_queue_recorded(skb)) { 3750 u16 index = skb_get_rx_queue(skb); 3751 3752 if (unlikely(index >= dev->real_num_rx_queues)) { 3753 WARN_ONCE(dev->real_num_rx_queues > 1, 3754 "%s received packet on queue %u, but number " 3755 "of RX queues is %u\n", 3756 dev->name, index, dev->real_num_rx_queues); 3757 goto done; 3758 } 3759 rxqueue += index; 3760 } 3761 3762 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 3763 3764 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3765 map = rcu_dereference(rxqueue->rps_map); 3766 if (!flow_table && !map) 3767 goto done; 3768 3769 skb_reset_network_header(skb); 3770 hash = skb_get_hash(skb); 3771 if (!hash) 3772 goto done; 3773 3774 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3775 if (flow_table && sock_flow_table) { 3776 struct rps_dev_flow *rflow; 3777 u32 next_cpu; 3778 u32 ident; 3779 3780 /* First check into global flow table if there is a match */ 3781 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 3782 if ((ident ^ hash) & ~rps_cpu_mask) 3783 goto try_rps; 3784 3785 next_cpu = ident & rps_cpu_mask; 3786 3787 /* OK, now we know there is a match, 3788 * we can look at the local (per receive queue) flow table 3789 */ 3790 rflow = &flow_table->flows[hash & flow_table->mask]; 3791 tcpu = rflow->cpu; 3792 3793 /* 3794 * If the desired CPU (where last recvmsg was done) is 3795 * different from current CPU (one in the rx-queue flow 3796 * table entry), switch if one of the following holds: 3797 * - Current CPU is unset (>= nr_cpu_ids). 3798 * - Current CPU is offline. 3799 * - The current CPU's queue tail has advanced beyond the 3800 * last packet that was enqueued using this table entry. 3801 * This guarantees that all previous packets for the flow 3802 * have been dequeued, thus preserving in order delivery. 3803 */ 3804 if (unlikely(tcpu != next_cpu) && 3805 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 3806 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3807 rflow->last_qtail)) >= 0)) { 3808 tcpu = next_cpu; 3809 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3810 } 3811 3812 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 3813 *rflowp = rflow; 3814 cpu = tcpu; 3815 goto done; 3816 } 3817 } 3818 3819 try_rps: 3820 3821 if (map) { 3822 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 3823 if (cpu_online(tcpu)) { 3824 cpu = tcpu; 3825 goto done; 3826 } 3827 } 3828 3829 done: 3830 return cpu; 3831 } 3832 3833 #ifdef CONFIG_RFS_ACCEL 3834 3835 /** 3836 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3837 * @dev: Device on which the filter was set 3838 * @rxq_index: RX queue index 3839 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3840 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3841 * 3842 * Drivers that implement ndo_rx_flow_steer() should periodically call 3843 * this function for each installed filter and remove the filters for 3844 * which it returns %true. 3845 */ 3846 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3847 u32 flow_id, u16 filter_id) 3848 { 3849 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3850 struct rps_dev_flow_table *flow_table; 3851 struct rps_dev_flow *rflow; 3852 bool expire = true; 3853 unsigned int cpu; 3854 3855 rcu_read_lock(); 3856 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3857 if (flow_table && flow_id <= flow_table->mask) { 3858 rflow = &flow_table->flows[flow_id]; 3859 cpu = READ_ONCE(rflow->cpu); 3860 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 3861 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3862 rflow->last_qtail) < 3863 (int)(10 * flow_table->mask))) 3864 expire = false; 3865 } 3866 rcu_read_unlock(); 3867 return expire; 3868 } 3869 EXPORT_SYMBOL(rps_may_expire_flow); 3870 3871 #endif /* CONFIG_RFS_ACCEL */ 3872 3873 /* Called from hardirq (IPI) context */ 3874 static void rps_trigger_softirq(void *data) 3875 { 3876 struct softnet_data *sd = data; 3877 3878 ____napi_schedule(sd, &sd->backlog); 3879 sd->received_rps++; 3880 } 3881 3882 #endif /* CONFIG_RPS */ 3883 3884 /* 3885 * Check if this softnet_data structure is another cpu one 3886 * If yes, queue it to our IPI list and return 1 3887 * If no, return 0 3888 */ 3889 static int rps_ipi_queued(struct softnet_data *sd) 3890 { 3891 #ifdef CONFIG_RPS 3892 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 3893 3894 if (sd != mysd) { 3895 sd->rps_ipi_next = mysd->rps_ipi_list; 3896 mysd->rps_ipi_list = sd; 3897 3898 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3899 return 1; 3900 } 3901 #endif /* CONFIG_RPS */ 3902 return 0; 3903 } 3904 3905 #ifdef CONFIG_NET_FLOW_LIMIT 3906 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3907 #endif 3908 3909 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3910 { 3911 #ifdef CONFIG_NET_FLOW_LIMIT 3912 struct sd_flow_limit *fl; 3913 struct softnet_data *sd; 3914 unsigned int old_flow, new_flow; 3915 3916 if (qlen < (netdev_max_backlog >> 1)) 3917 return false; 3918 3919 sd = this_cpu_ptr(&softnet_data); 3920 3921 rcu_read_lock(); 3922 fl = rcu_dereference(sd->flow_limit); 3923 if (fl) { 3924 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 3925 old_flow = fl->history[fl->history_head]; 3926 fl->history[fl->history_head] = new_flow; 3927 3928 fl->history_head++; 3929 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3930 3931 if (likely(fl->buckets[old_flow])) 3932 fl->buckets[old_flow]--; 3933 3934 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3935 fl->count++; 3936 rcu_read_unlock(); 3937 return true; 3938 } 3939 } 3940 rcu_read_unlock(); 3941 #endif 3942 return false; 3943 } 3944 3945 /* 3946 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3947 * queue (may be a remote CPU queue). 3948 */ 3949 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3950 unsigned int *qtail) 3951 { 3952 struct softnet_data *sd; 3953 unsigned long flags; 3954 unsigned int qlen; 3955 3956 sd = &per_cpu(softnet_data, cpu); 3957 3958 local_irq_save(flags); 3959 3960 rps_lock(sd); 3961 if (!netif_running(skb->dev)) 3962 goto drop; 3963 qlen = skb_queue_len(&sd->input_pkt_queue); 3964 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3965 if (qlen) { 3966 enqueue: 3967 __skb_queue_tail(&sd->input_pkt_queue, skb); 3968 input_queue_tail_incr_save(sd, qtail); 3969 rps_unlock(sd); 3970 local_irq_restore(flags); 3971 return NET_RX_SUCCESS; 3972 } 3973 3974 /* Schedule NAPI for backlog device 3975 * We can use non atomic operation since we own the queue lock 3976 */ 3977 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3978 if (!rps_ipi_queued(sd)) 3979 ____napi_schedule(sd, &sd->backlog); 3980 } 3981 goto enqueue; 3982 } 3983 3984 drop: 3985 sd->dropped++; 3986 rps_unlock(sd); 3987 3988 local_irq_restore(flags); 3989 3990 atomic_long_inc(&skb->dev->rx_dropped); 3991 kfree_skb(skb); 3992 return NET_RX_DROP; 3993 } 3994 3995 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 3996 { 3997 struct net_device *dev = skb->dev; 3998 struct netdev_rx_queue *rxqueue; 3999 4000 rxqueue = dev->_rx; 4001 4002 if (skb_rx_queue_recorded(skb)) { 4003 u16 index = skb_get_rx_queue(skb); 4004 4005 if (unlikely(index >= dev->real_num_rx_queues)) { 4006 WARN_ONCE(dev->real_num_rx_queues > 1, 4007 "%s received packet on queue %u, but number " 4008 "of RX queues is %u\n", 4009 dev->name, index, dev->real_num_rx_queues); 4010 4011 return rxqueue; /* Return first rxqueue */ 4012 } 4013 rxqueue += index; 4014 } 4015 return rxqueue; 4016 } 4017 4018 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 4019 struct xdp_buff *xdp, 4020 struct bpf_prog *xdp_prog) 4021 { 4022 struct netdev_rx_queue *rxqueue; 4023 void *orig_data, *orig_data_end; 4024 u32 metalen, act = XDP_DROP; 4025 int hlen, off; 4026 u32 mac_len; 4027 4028 /* Reinjected packets coming from act_mirred or similar should 4029 * not get XDP generic processing. 4030 */ 4031 if (skb_cloned(skb)) 4032 return XDP_PASS; 4033 4034 /* XDP packets must be linear and must have sufficient headroom 4035 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also 4036 * native XDP provides, thus we need to do it here as well. 4037 */ 4038 if (skb_is_nonlinear(skb) || 4039 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 4040 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 4041 int troom = skb->tail + skb->data_len - skb->end; 4042 4043 /* In case we have to go down the path and also linearize, 4044 * then lets do the pskb_expand_head() work just once here. 4045 */ 4046 if (pskb_expand_head(skb, 4047 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 4048 troom > 0 ? troom + 128 : 0, GFP_ATOMIC)) 4049 goto do_drop; 4050 if (skb_linearize(skb)) 4051 goto do_drop; 4052 } 4053 4054 /* The XDP program wants to see the packet starting at the MAC 4055 * header. 4056 */ 4057 mac_len = skb->data - skb_mac_header(skb); 4058 hlen = skb_headlen(skb) + mac_len; 4059 xdp->data = skb->data - mac_len; 4060 xdp->data_meta = xdp->data; 4061 xdp->data_end = xdp->data + hlen; 4062 xdp->data_hard_start = skb->data - skb_headroom(skb); 4063 orig_data_end = xdp->data_end; 4064 orig_data = xdp->data; 4065 4066 rxqueue = netif_get_rxqueue(skb); 4067 xdp->rxq = &rxqueue->xdp_rxq; 4068 4069 act = bpf_prog_run_xdp(xdp_prog, xdp); 4070 4071 off = xdp->data - orig_data; 4072 if (off > 0) 4073 __skb_pull(skb, off); 4074 else if (off < 0) 4075 __skb_push(skb, -off); 4076 skb->mac_header += off; 4077 4078 /* check if bpf_xdp_adjust_tail was used. it can only "shrink" 4079 * pckt. 4080 */ 4081 off = orig_data_end - xdp->data_end; 4082 if (off != 0) { 4083 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 4084 skb->len -= off; 4085 4086 } 4087 4088 switch (act) { 4089 case XDP_REDIRECT: 4090 case XDP_TX: 4091 __skb_push(skb, mac_len); 4092 break; 4093 case XDP_PASS: 4094 metalen = xdp->data - xdp->data_meta; 4095 if (metalen) 4096 skb_metadata_set(skb, metalen); 4097 break; 4098 default: 4099 bpf_warn_invalid_xdp_action(act); 4100 /* fall through */ 4101 case XDP_ABORTED: 4102 trace_xdp_exception(skb->dev, xdp_prog, act); 4103 /* fall through */ 4104 case XDP_DROP: 4105 do_drop: 4106 kfree_skb(skb); 4107 break; 4108 } 4109 4110 return act; 4111 } 4112 4113 /* When doing generic XDP we have to bypass the qdisc layer and the 4114 * network taps in order to match in-driver-XDP behavior. 4115 */ 4116 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 4117 { 4118 struct net_device *dev = skb->dev; 4119 struct netdev_queue *txq; 4120 bool free_skb = true; 4121 int cpu, rc; 4122 4123 txq = netdev_pick_tx(dev, skb, NULL); 4124 cpu = smp_processor_id(); 4125 HARD_TX_LOCK(dev, txq, cpu); 4126 if (!netif_xmit_stopped(txq)) { 4127 rc = netdev_start_xmit(skb, dev, txq, 0); 4128 if (dev_xmit_complete(rc)) 4129 free_skb = false; 4130 } 4131 HARD_TX_UNLOCK(dev, txq); 4132 if (free_skb) { 4133 trace_xdp_exception(dev, xdp_prog, XDP_TX); 4134 kfree_skb(skb); 4135 } 4136 } 4137 EXPORT_SYMBOL_GPL(generic_xdp_tx); 4138 4139 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 4140 4141 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 4142 { 4143 if (xdp_prog) { 4144 struct xdp_buff xdp; 4145 u32 act; 4146 int err; 4147 4148 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog); 4149 if (act != XDP_PASS) { 4150 switch (act) { 4151 case XDP_REDIRECT: 4152 err = xdp_do_generic_redirect(skb->dev, skb, 4153 &xdp, xdp_prog); 4154 if (err) 4155 goto out_redir; 4156 break; 4157 case XDP_TX: 4158 generic_xdp_tx(skb, xdp_prog); 4159 break; 4160 } 4161 return XDP_DROP; 4162 } 4163 } 4164 return XDP_PASS; 4165 out_redir: 4166 kfree_skb(skb); 4167 return XDP_DROP; 4168 } 4169 EXPORT_SYMBOL_GPL(do_xdp_generic); 4170 4171 static int netif_rx_internal(struct sk_buff *skb) 4172 { 4173 int ret; 4174 4175 net_timestamp_check(netdev_tstamp_prequeue, skb); 4176 4177 trace_netif_rx(skb); 4178 4179 if (static_branch_unlikely(&generic_xdp_needed_key)) { 4180 int ret; 4181 4182 preempt_disable(); 4183 rcu_read_lock(); 4184 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 4185 rcu_read_unlock(); 4186 preempt_enable(); 4187 4188 /* Consider XDP consuming the packet a success from 4189 * the netdev point of view we do not want to count 4190 * this as an error. 4191 */ 4192 if (ret != XDP_PASS) 4193 return NET_RX_SUCCESS; 4194 } 4195 4196 #ifdef CONFIG_RPS 4197 if (static_key_false(&rps_needed)) { 4198 struct rps_dev_flow voidflow, *rflow = &voidflow; 4199 int cpu; 4200 4201 preempt_disable(); 4202 rcu_read_lock(); 4203 4204 cpu = get_rps_cpu(skb->dev, skb, &rflow); 4205 if (cpu < 0) 4206 cpu = smp_processor_id(); 4207 4208 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4209 4210 rcu_read_unlock(); 4211 preempt_enable(); 4212 } else 4213 #endif 4214 { 4215 unsigned int qtail; 4216 4217 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 4218 put_cpu(); 4219 } 4220 return ret; 4221 } 4222 4223 /** 4224 * netif_rx - post buffer to the network code 4225 * @skb: buffer to post 4226 * 4227 * This function receives a packet from a device driver and queues it for 4228 * the upper (protocol) levels to process. It always succeeds. The buffer 4229 * may be dropped during processing for congestion control or by the 4230 * protocol layers. 4231 * 4232 * return values: 4233 * NET_RX_SUCCESS (no congestion) 4234 * NET_RX_DROP (packet was dropped) 4235 * 4236 */ 4237 4238 int netif_rx(struct sk_buff *skb) 4239 { 4240 trace_netif_rx_entry(skb); 4241 4242 return netif_rx_internal(skb); 4243 } 4244 EXPORT_SYMBOL(netif_rx); 4245 4246 int netif_rx_ni(struct sk_buff *skb) 4247 { 4248 int err; 4249 4250 trace_netif_rx_ni_entry(skb); 4251 4252 preempt_disable(); 4253 err = netif_rx_internal(skb); 4254 if (local_softirq_pending()) 4255 do_softirq(); 4256 preempt_enable(); 4257 4258 return err; 4259 } 4260 EXPORT_SYMBOL(netif_rx_ni); 4261 4262 static __latent_entropy void net_tx_action(struct softirq_action *h) 4263 { 4264 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4265 4266 if (sd->completion_queue) { 4267 struct sk_buff *clist; 4268 4269 local_irq_disable(); 4270 clist = sd->completion_queue; 4271 sd->completion_queue = NULL; 4272 local_irq_enable(); 4273 4274 while (clist) { 4275 struct sk_buff *skb = clist; 4276 4277 clist = clist->next; 4278 4279 WARN_ON(refcount_read(&skb->users)); 4280 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 4281 trace_consume_skb(skb); 4282 else 4283 trace_kfree_skb(skb, net_tx_action); 4284 4285 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 4286 __kfree_skb(skb); 4287 else 4288 __kfree_skb_defer(skb); 4289 } 4290 4291 __kfree_skb_flush(); 4292 } 4293 4294 if (sd->output_queue) { 4295 struct Qdisc *head; 4296 4297 local_irq_disable(); 4298 head = sd->output_queue; 4299 sd->output_queue = NULL; 4300 sd->output_queue_tailp = &sd->output_queue; 4301 local_irq_enable(); 4302 4303 while (head) { 4304 struct Qdisc *q = head; 4305 spinlock_t *root_lock = NULL; 4306 4307 head = head->next_sched; 4308 4309 if (!(q->flags & TCQ_F_NOLOCK)) { 4310 root_lock = qdisc_lock(q); 4311 spin_lock(root_lock); 4312 } 4313 /* We need to make sure head->next_sched is read 4314 * before clearing __QDISC_STATE_SCHED 4315 */ 4316 smp_mb__before_atomic(); 4317 clear_bit(__QDISC_STATE_SCHED, &q->state); 4318 qdisc_run(q); 4319 if (root_lock) 4320 spin_unlock(root_lock); 4321 } 4322 } 4323 4324 xfrm_dev_backlog(sd); 4325 } 4326 4327 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 4328 /* This hook is defined here for ATM LANE */ 4329 int (*br_fdb_test_addr_hook)(struct net_device *dev, 4330 unsigned char *addr) __read_mostly; 4331 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 4332 #endif 4333 4334 static inline struct sk_buff * 4335 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4336 struct net_device *orig_dev) 4337 { 4338 #ifdef CONFIG_NET_CLS_ACT 4339 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress); 4340 struct tcf_result cl_res; 4341 4342 /* If there's at least one ingress present somewhere (so 4343 * we get here via enabled static key), remaining devices 4344 * that are not configured with an ingress qdisc will bail 4345 * out here. 4346 */ 4347 if (!miniq) 4348 return skb; 4349 4350 if (*pt_prev) { 4351 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4352 *pt_prev = NULL; 4353 } 4354 4355 qdisc_skb_cb(skb)->pkt_len = skb->len; 4356 skb->tc_at_ingress = 1; 4357 mini_qdisc_bstats_cpu_update(miniq, skb); 4358 4359 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 4360 case TC_ACT_OK: 4361 case TC_ACT_RECLASSIFY: 4362 skb->tc_index = TC_H_MIN(cl_res.classid); 4363 break; 4364 case TC_ACT_SHOT: 4365 mini_qdisc_qstats_cpu_drop(miniq); 4366 kfree_skb(skb); 4367 return NULL; 4368 case TC_ACT_STOLEN: 4369 case TC_ACT_QUEUED: 4370 case TC_ACT_TRAP: 4371 consume_skb(skb); 4372 return NULL; 4373 case TC_ACT_REDIRECT: 4374 /* skb_mac_header check was done by cls/act_bpf, so 4375 * we can safely push the L2 header back before 4376 * redirecting to another netdev 4377 */ 4378 __skb_push(skb, skb->mac_len); 4379 skb_do_redirect(skb); 4380 return NULL; 4381 default: 4382 break; 4383 } 4384 #endif /* CONFIG_NET_CLS_ACT */ 4385 return skb; 4386 } 4387 4388 /** 4389 * netdev_is_rx_handler_busy - check if receive handler is registered 4390 * @dev: device to check 4391 * 4392 * Check if a receive handler is already registered for a given device. 4393 * Return true if there one. 4394 * 4395 * The caller must hold the rtnl_mutex. 4396 */ 4397 bool netdev_is_rx_handler_busy(struct net_device *dev) 4398 { 4399 ASSERT_RTNL(); 4400 return dev && rtnl_dereference(dev->rx_handler); 4401 } 4402 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 4403 4404 /** 4405 * netdev_rx_handler_register - register receive handler 4406 * @dev: device to register a handler for 4407 * @rx_handler: receive handler to register 4408 * @rx_handler_data: data pointer that is used by rx handler 4409 * 4410 * Register a receive handler for a device. This handler will then be 4411 * called from __netif_receive_skb. A negative errno code is returned 4412 * on a failure. 4413 * 4414 * The caller must hold the rtnl_mutex. 4415 * 4416 * For a general description of rx_handler, see enum rx_handler_result. 4417 */ 4418 int netdev_rx_handler_register(struct net_device *dev, 4419 rx_handler_func_t *rx_handler, 4420 void *rx_handler_data) 4421 { 4422 if (netdev_is_rx_handler_busy(dev)) 4423 return -EBUSY; 4424 4425 if (dev->priv_flags & IFF_NO_RX_HANDLER) 4426 return -EINVAL; 4427 4428 /* Note: rx_handler_data must be set before rx_handler */ 4429 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 4430 rcu_assign_pointer(dev->rx_handler, rx_handler); 4431 4432 return 0; 4433 } 4434 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 4435 4436 /** 4437 * netdev_rx_handler_unregister - unregister receive handler 4438 * @dev: device to unregister a handler from 4439 * 4440 * Unregister a receive handler from a device. 4441 * 4442 * The caller must hold the rtnl_mutex. 4443 */ 4444 void netdev_rx_handler_unregister(struct net_device *dev) 4445 { 4446 4447 ASSERT_RTNL(); 4448 RCU_INIT_POINTER(dev->rx_handler, NULL); 4449 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 4450 * section has a guarantee to see a non NULL rx_handler_data 4451 * as well. 4452 */ 4453 synchronize_net(); 4454 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 4455 } 4456 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 4457 4458 /* 4459 * Limit the use of PFMEMALLOC reserves to those protocols that implement 4460 * the special handling of PFMEMALLOC skbs. 4461 */ 4462 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 4463 { 4464 switch (skb->protocol) { 4465 case htons(ETH_P_ARP): 4466 case htons(ETH_P_IP): 4467 case htons(ETH_P_IPV6): 4468 case htons(ETH_P_8021Q): 4469 case htons(ETH_P_8021AD): 4470 return true; 4471 default: 4472 return false; 4473 } 4474 } 4475 4476 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 4477 int *ret, struct net_device *orig_dev) 4478 { 4479 #ifdef CONFIG_NETFILTER_INGRESS 4480 if (nf_hook_ingress_active(skb)) { 4481 int ingress_retval; 4482 4483 if (*pt_prev) { 4484 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4485 *pt_prev = NULL; 4486 } 4487 4488 rcu_read_lock(); 4489 ingress_retval = nf_hook_ingress(skb); 4490 rcu_read_unlock(); 4491 return ingress_retval; 4492 } 4493 #endif /* CONFIG_NETFILTER_INGRESS */ 4494 return 0; 4495 } 4496 4497 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 4498 { 4499 struct packet_type *ptype, *pt_prev; 4500 rx_handler_func_t *rx_handler; 4501 struct net_device *orig_dev; 4502 bool deliver_exact = false; 4503 int ret = NET_RX_DROP; 4504 __be16 type; 4505 4506 net_timestamp_check(!netdev_tstamp_prequeue, skb); 4507 4508 trace_netif_receive_skb(skb); 4509 4510 orig_dev = skb->dev; 4511 4512 skb_reset_network_header(skb); 4513 if (!skb_transport_header_was_set(skb)) 4514 skb_reset_transport_header(skb); 4515 skb_reset_mac_len(skb); 4516 4517 pt_prev = NULL; 4518 4519 another_round: 4520 skb->skb_iif = skb->dev->ifindex; 4521 4522 __this_cpu_inc(softnet_data.processed); 4523 4524 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 4525 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 4526 skb = skb_vlan_untag(skb); 4527 if (unlikely(!skb)) 4528 goto out; 4529 } 4530 4531 if (skb_skip_tc_classify(skb)) 4532 goto skip_classify; 4533 4534 if (pfmemalloc) 4535 goto skip_taps; 4536 4537 list_for_each_entry_rcu(ptype, &ptype_all, list) { 4538 if (pt_prev) 4539 ret = deliver_skb(skb, pt_prev, orig_dev); 4540 pt_prev = ptype; 4541 } 4542 4543 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 4544 if (pt_prev) 4545 ret = deliver_skb(skb, pt_prev, orig_dev); 4546 pt_prev = ptype; 4547 } 4548 4549 skip_taps: 4550 #ifdef CONFIG_NET_INGRESS 4551 if (static_branch_unlikely(&ingress_needed_key)) { 4552 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev); 4553 if (!skb) 4554 goto out; 4555 4556 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 4557 goto out; 4558 } 4559 #endif 4560 skb_reset_tc(skb); 4561 skip_classify: 4562 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 4563 goto drop; 4564 4565 if (skb_vlan_tag_present(skb)) { 4566 if (pt_prev) { 4567 ret = deliver_skb(skb, pt_prev, orig_dev); 4568 pt_prev = NULL; 4569 } 4570 if (vlan_do_receive(&skb)) 4571 goto another_round; 4572 else if (unlikely(!skb)) 4573 goto out; 4574 } 4575 4576 rx_handler = rcu_dereference(skb->dev->rx_handler); 4577 if (rx_handler) { 4578 if (pt_prev) { 4579 ret = deliver_skb(skb, pt_prev, orig_dev); 4580 pt_prev = NULL; 4581 } 4582 switch (rx_handler(&skb)) { 4583 case RX_HANDLER_CONSUMED: 4584 ret = NET_RX_SUCCESS; 4585 goto out; 4586 case RX_HANDLER_ANOTHER: 4587 goto another_round; 4588 case RX_HANDLER_EXACT: 4589 deliver_exact = true; 4590 case RX_HANDLER_PASS: 4591 break; 4592 default: 4593 BUG(); 4594 } 4595 } 4596 4597 if (unlikely(skb_vlan_tag_present(skb))) { 4598 if (skb_vlan_tag_get_id(skb)) 4599 skb->pkt_type = PACKET_OTHERHOST; 4600 /* Note: we might in the future use prio bits 4601 * and set skb->priority like in vlan_do_receive() 4602 * For the time being, just ignore Priority Code Point 4603 */ 4604 skb->vlan_tci = 0; 4605 } 4606 4607 type = skb->protocol; 4608 4609 /* deliver only exact match when indicated */ 4610 if (likely(!deliver_exact)) { 4611 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4612 &ptype_base[ntohs(type) & 4613 PTYPE_HASH_MASK]); 4614 } 4615 4616 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4617 &orig_dev->ptype_specific); 4618 4619 if (unlikely(skb->dev != orig_dev)) { 4620 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4621 &skb->dev->ptype_specific); 4622 } 4623 4624 if (pt_prev) { 4625 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 4626 goto drop; 4627 else 4628 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 4629 } else { 4630 drop: 4631 if (!deliver_exact) 4632 atomic_long_inc(&skb->dev->rx_dropped); 4633 else 4634 atomic_long_inc(&skb->dev->rx_nohandler); 4635 kfree_skb(skb); 4636 /* Jamal, now you will not able to escape explaining 4637 * me how you were going to use this. :-) 4638 */ 4639 ret = NET_RX_DROP; 4640 } 4641 4642 out: 4643 return ret; 4644 } 4645 4646 /** 4647 * netif_receive_skb_core - special purpose version of netif_receive_skb 4648 * @skb: buffer to process 4649 * 4650 * More direct receive version of netif_receive_skb(). It should 4651 * only be used by callers that have a need to skip RPS and Generic XDP. 4652 * Caller must also take care of handling if (page_is_)pfmemalloc. 4653 * 4654 * This function may only be called from softirq context and interrupts 4655 * should be enabled. 4656 * 4657 * Return values (usually ignored): 4658 * NET_RX_SUCCESS: no congestion 4659 * NET_RX_DROP: packet was dropped 4660 */ 4661 int netif_receive_skb_core(struct sk_buff *skb) 4662 { 4663 int ret; 4664 4665 rcu_read_lock(); 4666 ret = __netif_receive_skb_core(skb, false); 4667 rcu_read_unlock(); 4668 4669 return ret; 4670 } 4671 EXPORT_SYMBOL(netif_receive_skb_core); 4672 4673 static int __netif_receive_skb(struct sk_buff *skb) 4674 { 4675 int ret; 4676 4677 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 4678 unsigned int noreclaim_flag; 4679 4680 /* 4681 * PFMEMALLOC skbs are special, they should 4682 * - be delivered to SOCK_MEMALLOC sockets only 4683 * - stay away from userspace 4684 * - have bounded memory usage 4685 * 4686 * Use PF_MEMALLOC as this saves us from propagating the allocation 4687 * context down to all allocation sites. 4688 */ 4689 noreclaim_flag = memalloc_noreclaim_save(); 4690 ret = __netif_receive_skb_core(skb, true); 4691 memalloc_noreclaim_restore(noreclaim_flag); 4692 } else 4693 ret = __netif_receive_skb_core(skb, false); 4694 4695 return ret; 4696 } 4697 4698 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 4699 { 4700 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 4701 struct bpf_prog *new = xdp->prog; 4702 int ret = 0; 4703 4704 switch (xdp->command) { 4705 case XDP_SETUP_PROG: 4706 rcu_assign_pointer(dev->xdp_prog, new); 4707 if (old) 4708 bpf_prog_put(old); 4709 4710 if (old && !new) { 4711 static_branch_dec(&generic_xdp_needed_key); 4712 } else if (new && !old) { 4713 static_branch_inc(&generic_xdp_needed_key); 4714 dev_disable_lro(dev); 4715 dev_disable_gro_hw(dev); 4716 } 4717 break; 4718 4719 case XDP_QUERY_PROG: 4720 xdp->prog_attached = !!old; 4721 xdp->prog_id = old ? old->aux->id : 0; 4722 break; 4723 4724 default: 4725 ret = -EINVAL; 4726 break; 4727 } 4728 4729 return ret; 4730 } 4731 4732 static int netif_receive_skb_internal(struct sk_buff *skb) 4733 { 4734 int ret; 4735 4736 net_timestamp_check(netdev_tstamp_prequeue, skb); 4737 4738 if (skb_defer_rx_timestamp(skb)) 4739 return NET_RX_SUCCESS; 4740 4741 if (static_branch_unlikely(&generic_xdp_needed_key)) { 4742 int ret; 4743 4744 preempt_disable(); 4745 rcu_read_lock(); 4746 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 4747 rcu_read_unlock(); 4748 preempt_enable(); 4749 4750 if (ret != XDP_PASS) 4751 return NET_RX_DROP; 4752 } 4753 4754 rcu_read_lock(); 4755 #ifdef CONFIG_RPS 4756 if (static_key_false(&rps_needed)) { 4757 struct rps_dev_flow voidflow, *rflow = &voidflow; 4758 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 4759 4760 if (cpu >= 0) { 4761 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4762 rcu_read_unlock(); 4763 return ret; 4764 } 4765 } 4766 #endif 4767 ret = __netif_receive_skb(skb); 4768 rcu_read_unlock(); 4769 return ret; 4770 } 4771 4772 /** 4773 * netif_receive_skb - process receive buffer from network 4774 * @skb: buffer to process 4775 * 4776 * netif_receive_skb() is the main receive data processing function. 4777 * It always succeeds. The buffer may be dropped during processing 4778 * for congestion control or by the protocol layers. 4779 * 4780 * This function may only be called from softirq context and interrupts 4781 * should be enabled. 4782 * 4783 * Return values (usually ignored): 4784 * NET_RX_SUCCESS: no congestion 4785 * NET_RX_DROP: packet was dropped 4786 */ 4787 int netif_receive_skb(struct sk_buff *skb) 4788 { 4789 trace_netif_receive_skb_entry(skb); 4790 4791 return netif_receive_skb_internal(skb); 4792 } 4793 EXPORT_SYMBOL(netif_receive_skb); 4794 4795 DEFINE_PER_CPU(struct work_struct, flush_works); 4796 4797 /* Network device is going away, flush any packets still pending */ 4798 static void flush_backlog(struct work_struct *work) 4799 { 4800 struct sk_buff *skb, *tmp; 4801 struct softnet_data *sd; 4802 4803 local_bh_disable(); 4804 sd = this_cpu_ptr(&softnet_data); 4805 4806 local_irq_disable(); 4807 rps_lock(sd); 4808 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 4809 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 4810 __skb_unlink(skb, &sd->input_pkt_queue); 4811 kfree_skb(skb); 4812 input_queue_head_incr(sd); 4813 } 4814 } 4815 rps_unlock(sd); 4816 local_irq_enable(); 4817 4818 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 4819 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 4820 __skb_unlink(skb, &sd->process_queue); 4821 kfree_skb(skb); 4822 input_queue_head_incr(sd); 4823 } 4824 } 4825 local_bh_enable(); 4826 } 4827 4828 static void flush_all_backlogs(void) 4829 { 4830 unsigned int cpu; 4831 4832 get_online_cpus(); 4833 4834 for_each_online_cpu(cpu) 4835 queue_work_on(cpu, system_highpri_wq, 4836 per_cpu_ptr(&flush_works, cpu)); 4837 4838 for_each_online_cpu(cpu) 4839 flush_work(per_cpu_ptr(&flush_works, cpu)); 4840 4841 put_online_cpus(); 4842 } 4843 4844 static int napi_gro_complete(struct sk_buff *skb) 4845 { 4846 struct packet_offload *ptype; 4847 __be16 type = skb->protocol; 4848 struct list_head *head = &offload_base; 4849 int err = -ENOENT; 4850 4851 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 4852 4853 if (NAPI_GRO_CB(skb)->count == 1) { 4854 skb_shinfo(skb)->gso_size = 0; 4855 goto out; 4856 } 4857 4858 rcu_read_lock(); 4859 list_for_each_entry_rcu(ptype, head, list) { 4860 if (ptype->type != type || !ptype->callbacks.gro_complete) 4861 continue; 4862 4863 err = ptype->callbacks.gro_complete(skb, 0); 4864 break; 4865 } 4866 rcu_read_unlock(); 4867 4868 if (err) { 4869 WARN_ON(&ptype->list == head); 4870 kfree_skb(skb); 4871 return NET_RX_SUCCESS; 4872 } 4873 4874 out: 4875 return netif_receive_skb_internal(skb); 4876 } 4877 4878 /* napi->gro_list contains packets ordered by age. 4879 * youngest packets at the head of it. 4880 * Complete skbs in reverse order to reduce latencies. 4881 */ 4882 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 4883 { 4884 struct sk_buff *skb, *prev = NULL; 4885 4886 /* scan list and build reverse chain */ 4887 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 4888 skb->prev = prev; 4889 prev = skb; 4890 } 4891 4892 for (skb = prev; skb; skb = prev) { 4893 skb->next = NULL; 4894 4895 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 4896 return; 4897 4898 prev = skb->prev; 4899 napi_gro_complete(skb); 4900 napi->gro_count--; 4901 } 4902 4903 napi->gro_list = NULL; 4904 } 4905 EXPORT_SYMBOL(napi_gro_flush); 4906 4907 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 4908 { 4909 struct sk_buff *p; 4910 unsigned int maclen = skb->dev->hard_header_len; 4911 u32 hash = skb_get_hash_raw(skb); 4912 4913 for (p = napi->gro_list; p; p = p->next) { 4914 unsigned long diffs; 4915 4916 NAPI_GRO_CB(p)->flush = 0; 4917 4918 if (hash != skb_get_hash_raw(p)) { 4919 NAPI_GRO_CB(p)->same_flow = 0; 4920 continue; 4921 } 4922 4923 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 4924 diffs |= p->vlan_tci ^ skb->vlan_tci; 4925 diffs |= skb_metadata_dst_cmp(p, skb); 4926 diffs |= skb_metadata_differs(p, skb); 4927 if (maclen == ETH_HLEN) 4928 diffs |= compare_ether_header(skb_mac_header(p), 4929 skb_mac_header(skb)); 4930 else if (!diffs) 4931 diffs = memcmp(skb_mac_header(p), 4932 skb_mac_header(skb), 4933 maclen); 4934 NAPI_GRO_CB(p)->same_flow = !diffs; 4935 } 4936 } 4937 4938 static void skb_gro_reset_offset(struct sk_buff *skb) 4939 { 4940 const struct skb_shared_info *pinfo = skb_shinfo(skb); 4941 const skb_frag_t *frag0 = &pinfo->frags[0]; 4942 4943 NAPI_GRO_CB(skb)->data_offset = 0; 4944 NAPI_GRO_CB(skb)->frag0 = NULL; 4945 NAPI_GRO_CB(skb)->frag0_len = 0; 4946 4947 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 4948 pinfo->nr_frags && 4949 !PageHighMem(skb_frag_page(frag0))) { 4950 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 4951 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 4952 skb_frag_size(frag0), 4953 skb->end - skb->tail); 4954 } 4955 } 4956 4957 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 4958 { 4959 struct skb_shared_info *pinfo = skb_shinfo(skb); 4960 4961 BUG_ON(skb->end - skb->tail < grow); 4962 4963 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 4964 4965 skb->data_len -= grow; 4966 skb->tail += grow; 4967 4968 pinfo->frags[0].page_offset += grow; 4969 skb_frag_size_sub(&pinfo->frags[0], grow); 4970 4971 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 4972 skb_frag_unref(skb, 0); 4973 memmove(pinfo->frags, pinfo->frags + 1, 4974 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 4975 } 4976 } 4977 4978 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4979 { 4980 struct sk_buff **pp = NULL; 4981 struct packet_offload *ptype; 4982 __be16 type = skb->protocol; 4983 struct list_head *head = &offload_base; 4984 int same_flow; 4985 enum gro_result ret; 4986 int grow; 4987 4988 if (netif_elide_gro(skb->dev)) 4989 goto normal; 4990 4991 gro_list_prepare(napi, skb); 4992 4993 rcu_read_lock(); 4994 list_for_each_entry_rcu(ptype, head, list) { 4995 if (ptype->type != type || !ptype->callbacks.gro_receive) 4996 continue; 4997 4998 skb_set_network_header(skb, skb_gro_offset(skb)); 4999 skb_reset_mac_len(skb); 5000 NAPI_GRO_CB(skb)->same_flow = 0; 5001 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 5002 NAPI_GRO_CB(skb)->free = 0; 5003 NAPI_GRO_CB(skb)->encap_mark = 0; 5004 NAPI_GRO_CB(skb)->recursion_counter = 0; 5005 NAPI_GRO_CB(skb)->is_fou = 0; 5006 NAPI_GRO_CB(skb)->is_atomic = 1; 5007 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 5008 5009 /* Setup for GRO checksum validation */ 5010 switch (skb->ip_summed) { 5011 case CHECKSUM_COMPLETE: 5012 NAPI_GRO_CB(skb)->csum = skb->csum; 5013 NAPI_GRO_CB(skb)->csum_valid = 1; 5014 NAPI_GRO_CB(skb)->csum_cnt = 0; 5015 break; 5016 case CHECKSUM_UNNECESSARY: 5017 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 5018 NAPI_GRO_CB(skb)->csum_valid = 0; 5019 break; 5020 default: 5021 NAPI_GRO_CB(skb)->csum_cnt = 0; 5022 NAPI_GRO_CB(skb)->csum_valid = 0; 5023 } 5024 5025 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 5026 break; 5027 } 5028 rcu_read_unlock(); 5029 5030 if (&ptype->list == head) 5031 goto normal; 5032 5033 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) { 5034 ret = GRO_CONSUMED; 5035 goto ok; 5036 } 5037 5038 same_flow = NAPI_GRO_CB(skb)->same_flow; 5039 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 5040 5041 if (pp) { 5042 struct sk_buff *nskb = *pp; 5043 5044 *pp = nskb->next; 5045 nskb->next = NULL; 5046 napi_gro_complete(nskb); 5047 napi->gro_count--; 5048 } 5049 5050 if (same_flow) 5051 goto ok; 5052 5053 if (NAPI_GRO_CB(skb)->flush) 5054 goto normal; 5055 5056 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) { 5057 struct sk_buff *nskb = napi->gro_list; 5058 5059 /* locate the end of the list to select the 'oldest' flow */ 5060 while (nskb->next) { 5061 pp = &nskb->next; 5062 nskb = *pp; 5063 } 5064 *pp = NULL; 5065 nskb->next = NULL; 5066 napi_gro_complete(nskb); 5067 } else { 5068 napi->gro_count++; 5069 } 5070 NAPI_GRO_CB(skb)->count = 1; 5071 NAPI_GRO_CB(skb)->age = jiffies; 5072 NAPI_GRO_CB(skb)->last = skb; 5073 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 5074 skb->next = napi->gro_list; 5075 napi->gro_list = skb; 5076 ret = GRO_HELD; 5077 5078 pull: 5079 grow = skb_gro_offset(skb) - skb_headlen(skb); 5080 if (grow > 0) 5081 gro_pull_from_frag0(skb, grow); 5082 ok: 5083 return ret; 5084 5085 normal: 5086 ret = GRO_NORMAL; 5087 goto pull; 5088 } 5089 5090 struct packet_offload *gro_find_receive_by_type(__be16 type) 5091 { 5092 struct list_head *offload_head = &offload_base; 5093 struct packet_offload *ptype; 5094 5095 list_for_each_entry_rcu(ptype, offload_head, list) { 5096 if (ptype->type != type || !ptype->callbacks.gro_receive) 5097 continue; 5098 return ptype; 5099 } 5100 return NULL; 5101 } 5102 EXPORT_SYMBOL(gro_find_receive_by_type); 5103 5104 struct packet_offload *gro_find_complete_by_type(__be16 type) 5105 { 5106 struct list_head *offload_head = &offload_base; 5107 struct packet_offload *ptype; 5108 5109 list_for_each_entry_rcu(ptype, offload_head, list) { 5110 if (ptype->type != type || !ptype->callbacks.gro_complete) 5111 continue; 5112 return ptype; 5113 } 5114 return NULL; 5115 } 5116 EXPORT_SYMBOL(gro_find_complete_by_type); 5117 5118 static void napi_skb_free_stolen_head(struct sk_buff *skb) 5119 { 5120 skb_dst_drop(skb); 5121 secpath_reset(skb); 5122 kmem_cache_free(skbuff_head_cache, skb); 5123 } 5124 5125 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 5126 { 5127 switch (ret) { 5128 case GRO_NORMAL: 5129 if (netif_receive_skb_internal(skb)) 5130 ret = GRO_DROP; 5131 break; 5132 5133 case GRO_DROP: 5134 kfree_skb(skb); 5135 break; 5136 5137 case GRO_MERGED_FREE: 5138 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5139 napi_skb_free_stolen_head(skb); 5140 else 5141 __kfree_skb(skb); 5142 break; 5143 5144 case GRO_HELD: 5145 case GRO_MERGED: 5146 case GRO_CONSUMED: 5147 break; 5148 } 5149 5150 return ret; 5151 } 5152 5153 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5154 { 5155 skb_mark_napi_id(skb, napi); 5156 trace_napi_gro_receive_entry(skb); 5157 5158 skb_gro_reset_offset(skb); 5159 5160 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 5161 } 5162 EXPORT_SYMBOL(napi_gro_receive); 5163 5164 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 5165 { 5166 if (unlikely(skb->pfmemalloc)) { 5167 consume_skb(skb); 5168 return; 5169 } 5170 __skb_pull(skb, skb_headlen(skb)); 5171 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 5172 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 5173 skb->vlan_tci = 0; 5174 skb->dev = napi->dev; 5175 skb->skb_iif = 0; 5176 skb->encapsulation = 0; 5177 skb_shinfo(skb)->gso_type = 0; 5178 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 5179 secpath_reset(skb); 5180 5181 napi->skb = skb; 5182 } 5183 5184 struct sk_buff *napi_get_frags(struct napi_struct *napi) 5185 { 5186 struct sk_buff *skb = napi->skb; 5187 5188 if (!skb) { 5189 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 5190 if (skb) { 5191 napi->skb = skb; 5192 skb_mark_napi_id(skb, napi); 5193 } 5194 } 5195 return skb; 5196 } 5197 EXPORT_SYMBOL(napi_get_frags); 5198 5199 static gro_result_t napi_frags_finish(struct napi_struct *napi, 5200 struct sk_buff *skb, 5201 gro_result_t ret) 5202 { 5203 switch (ret) { 5204 case GRO_NORMAL: 5205 case GRO_HELD: 5206 __skb_push(skb, ETH_HLEN); 5207 skb->protocol = eth_type_trans(skb, skb->dev); 5208 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 5209 ret = GRO_DROP; 5210 break; 5211 5212 case GRO_DROP: 5213 napi_reuse_skb(napi, skb); 5214 break; 5215 5216 case GRO_MERGED_FREE: 5217 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5218 napi_skb_free_stolen_head(skb); 5219 else 5220 napi_reuse_skb(napi, skb); 5221 break; 5222 5223 case GRO_MERGED: 5224 case GRO_CONSUMED: 5225 break; 5226 } 5227 5228 return ret; 5229 } 5230 5231 /* Upper GRO stack assumes network header starts at gro_offset=0 5232 * Drivers could call both napi_gro_frags() and napi_gro_receive() 5233 * We copy ethernet header into skb->data to have a common layout. 5234 */ 5235 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 5236 { 5237 struct sk_buff *skb = napi->skb; 5238 const struct ethhdr *eth; 5239 unsigned int hlen = sizeof(*eth); 5240 5241 napi->skb = NULL; 5242 5243 skb_reset_mac_header(skb); 5244 skb_gro_reset_offset(skb); 5245 5246 eth = skb_gro_header_fast(skb, 0); 5247 if (unlikely(skb_gro_header_hard(skb, hlen))) { 5248 eth = skb_gro_header_slow(skb, hlen, 0); 5249 if (unlikely(!eth)) { 5250 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 5251 __func__, napi->dev->name); 5252 napi_reuse_skb(napi, skb); 5253 return NULL; 5254 } 5255 } else { 5256 gro_pull_from_frag0(skb, hlen); 5257 NAPI_GRO_CB(skb)->frag0 += hlen; 5258 NAPI_GRO_CB(skb)->frag0_len -= hlen; 5259 } 5260 __skb_pull(skb, hlen); 5261 5262 /* 5263 * This works because the only protocols we care about don't require 5264 * special handling. 5265 * We'll fix it up properly in napi_frags_finish() 5266 */ 5267 skb->protocol = eth->h_proto; 5268 5269 return skb; 5270 } 5271 5272 gro_result_t napi_gro_frags(struct napi_struct *napi) 5273 { 5274 struct sk_buff *skb = napi_frags_skb(napi); 5275 5276 if (!skb) 5277 return GRO_DROP; 5278 5279 trace_napi_gro_frags_entry(skb); 5280 5281 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 5282 } 5283 EXPORT_SYMBOL(napi_gro_frags); 5284 5285 /* Compute the checksum from gro_offset and return the folded value 5286 * after adding in any pseudo checksum. 5287 */ 5288 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 5289 { 5290 __wsum wsum; 5291 __sum16 sum; 5292 5293 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 5294 5295 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 5296 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 5297 if (likely(!sum)) { 5298 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 5299 !skb->csum_complete_sw) 5300 netdev_rx_csum_fault(skb->dev); 5301 } 5302 5303 NAPI_GRO_CB(skb)->csum = wsum; 5304 NAPI_GRO_CB(skb)->csum_valid = 1; 5305 5306 return sum; 5307 } 5308 EXPORT_SYMBOL(__skb_gro_checksum_complete); 5309 5310 static void net_rps_send_ipi(struct softnet_data *remsd) 5311 { 5312 #ifdef CONFIG_RPS 5313 while (remsd) { 5314 struct softnet_data *next = remsd->rps_ipi_next; 5315 5316 if (cpu_online(remsd->cpu)) 5317 smp_call_function_single_async(remsd->cpu, &remsd->csd); 5318 remsd = next; 5319 } 5320 #endif 5321 } 5322 5323 /* 5324 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 5325 * Note: called with local irq disabled, but exits with local irq enabled. 5326 */ 5327 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 5328 { 5329 #ifdef CONFIG_RPS 5330 struct softnet_data *remsd = sd->rps_ipi_list; 5331 5332 if (remsd) { 5333 sd->rps_ipi_list = NULL; 5334 5335 local_irq_enable(); 5336 5337 /* Send pending IPI's to kick RPS processing on remote cpus. */ 5338 net_rps_send_ipi(remsd); 5339 } else 5340 #endif 5341 local_irq_enable(); 5342 } 5343 5344 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 5345 { 5346 #ifdef CONFIG_RPS 5347 return sd->rps_ipi_list != NULL; 5348 #else 5349 return false; 5350 #endif 5351 } 5352 5353 static int process_backlog(struct napi_struct *napi, int quota) 5354 { 5355 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 5356 bool again = true; 5357 int work = 0; 5358 5359 /* Check if we have pending ipi, its better to send them now, 5360 * not waiting net_rx_action() end. 5361 */ 5362 if (sd_has_rps_ipi_waiting(sd)) { 5363 local_irq_disable(); 5364 net_rps_action_and_irq_enable(sd); 5365 } 5366 5367 napi->weight = dev_rx_weight; 5368 while (again) { 5369 struct sk_buff *skb; 5370 5371 while ((skb = __skb_dequeue(&sd->process_queue))) { 5372 rcu_read_lock(); 5373 __netif_receive_skb(skb); 5374 rcu_read_unlock(); 5375 input_queue_head_incr(sd); 5376 if (++work >= quota) 5377 return work; 5378 5379 } 5380 5381 local_irq_disable(); 5382 rps_lock(sd); 5383 if (skb_queue_empty(&sd->input_pkt_queue)) { 5384 /* 5385 * Inline a custom version of __napi_complete(). 5386 * only current cpu owns and manipulates this napi, 5387 * and NAPI_STATE_SCHED is the only possible flag set 5388 * on backlog. 5389 * We can use a plain write instead of clear_bit(), 5390 * and we dont need an smp_mb() memory barrier. 5391 */ 5392 napi->state = 0; 5393 again = false; 5394 } else { 5395 skb_queue_splice_tail_init(&sd->input_pkt_queue, 5396 &sd->process_queue); 5397 } 5398 rps_unlock(sd); 5399 local_irq_enable(); 5400 } 5401 5402 return work; 5403 } 5404 5405 /** 5406 * __napi_schedule - schedule for receive 5407 * @n: entry to schedule 5408 * 5409 * The entry's receive function will be scheduled to run. 5410 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 5411 */ 5412 void __napi_schedule(struct napi_struct *n) 5413 { 5414 unsigned long flags; 5415 5416 local_irq_save(flags); 5417 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5418 local_irq_restore(flags); 5419 } 5420 EXPORT_SYMBOL(__napi_schedule); 5421 5422 /** 5423 * napi_schedule_prep - check if napi can be scheduled 5424 * @n: napi context 5425 * 5426 * Test if NAPI routine is already running, and if not mark 5427 * it as running. This is used as a condition variable 5428 * insure only one NAPI poll instance runs. We also make 5429 * sure there is no pending NAPI disable. 5430 */ 5431 bool napi_schedule_prep(struct napi_struct *n) 5432 { 5433 unsigned long val, new; 5434 5435 do { 5436 val = READ_ONCE(n->state); 5437 if (unlikely(val & NAPIF_STATE_DISABLE)) 5438 return false; 5439 new = val | NAPIF_STATE_SCHED; 5440 5441 /* Sets STATE_MISSED bit if STATE_SCHED was already set 5442 * This was suggested by Alexander Duyck, as compiler 5443 * emits better code than : 5444 * if (val & NAPIF_STATE_SCHED) 5445 * new |= NAPIF_STATE_MISSED; 5446 */ 5447 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 5448 NAPIF_STATE_MISSED; 5449 } while (cmpxchg(&n->state, val, new) != val); 5450 5451 return !(val & NAPIF_STATE_SCHED); 5452 } 5453 EXPORT_SYMBOL(napi_schedule_prep); 5454 5455 /** 5456 * __napi_schedule_irqoff - schedule for receive 5457 * @n: entry to schedule 5458 * 5459 * Variant of __napi_schedule() assuming hard irqs are masked 5460 */ 5461 void __napi_schedule_irqoff(struct napi_struct *n) 5462 { 5463 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5464 } 5465 EXPORT_SYMBOL(__napi_schedule_irqoff); 5466 5467 bool napi_complete_done(struct napi_struct *n, int work_done) 5468 { 5469 unsigned long flags, val, new; 5470 5471 /* 5472 * 1) Don't let napi dequeue from the cpu poll list 5473 * just in case its running on a different cpu. 5474 * 2) If we are busy polling, do nothing here, we have 5475 * the guarantee we will be called later. 5476 */ 5477 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 5478 NAPIF_STATE_IN_BUSY_POLL))) 5479 return false; 5480 5481 if (n->gro_list) { 5482 unsigned long timeout = 0; 5483 5484 if (work_done) 5485 timeout = n->dev->gro_flush_timeout; 5486 5487 if (timeout) 5488 hrtimer_start(&n->timer, ns_to_ktime(timeout), 5489 HRTIMER_MODE_REL_PINNED); 5490 else 5491 napi_gro_flush(n, false); 5492 } 5493 if (unlikely(!list_empty(&n->poll_list))) { 5494 /* If n->poll_list is not empty, we need to mask irqs */ 5495 local_irq_save(flags); 5496 list_del_init(&n->poll_list); 5497 local_irq_restore(flags); 5498 } 5499 5500 do { 5501 val = READ_ONCE(n->state); 5502 5503 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 5504 5505 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED); 5506 5507 /* If STATE_MISSED was set, leave STATE_SCHED set, 5508 * because we will call napi->poll() one more time. 5509 * This C code was suggested by Alexander Duyck to help gcc. 5510 */ 5511 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 5512 NAPIF_STATE_SCHED; 5513 } while (cmpxchg(&n->state, val, new) != val); 5514 5515 if (unlikely(val & NAPIF_STATE_MISSED)) { 5516 __napi_schedule(n); 5517 return false; 5518 } 5519 5520 return true; 5521 } 5522 EXPORT_SYMBOL(napi_complete_done); 5523 5524 /* must be called under rcu_read_lock(), as we dont take a reference */ 5525 static struct napi_struct *napi_by_id(unsigned int napi_id) 5526 { 5527 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 5528 struct napi_struct *napi; 5529 5530 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 5531 if (napi->napi_id == napi_id) 5532 return napi; 5533 5534 return NULL; 5535 } 5536 5537 #if defined(CONFIG_NET_RX_BUSY_POLL) 5538 5539 #define BUSY_POLL_BUDGET 8 5540 5541 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock) 5542 { 5543 int rc; 5544 5545 /* Busy polling means there is a high chance device driver hard irq 5546 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 5547 * set in napi_schedule_prep(). 5548 * Since we are about to call napi->poll() once more, we can safely 5549 * clear NAPI_STATE_MISSED. 5550 * 5551 * Note: x86 could use a single "lock and ..." instruction 5552 * to perform these two clear_bit() 5553 */ 5554 clear_bit(NAPI_STATE_MISSED, &napi->state); 5555 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 5556 5557 local_bh_disable(); 5558 5559 /* All we really want here is to re-enable device interrupts. 5560 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 5561 */ 5562 rc = napi->poll(napi, BUSY_POLL_BUDGET); 5563 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET); 5564 netpoll_poll_unlock(have_poll_lock); 5565 if (rc == BUSY_POLL_BUDGET) 5566 __napi_schedule(napi); 5567 local_bh_enable(); 5568 } 5569 5570 void napi_busy_loop(unsigned int napi_id, 5571 bool (*loop_end)(void *, unsigned long), 5572 void *loop_end_arg) 5573 { 5574 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 5575 int (*napi_poll)(struct napi_struct *napi, int budget); 5576 void *have_poll_lock = NULL; 5577 struct napi_struct *napi; 5578 5579 restart: 5580 napi_poll = NULL; 5581 5582 rcu_read_lock(); 5583 5584 napi = napi_by_id(napi_id); 5585 if (!napi) 5586 goto out; 5587 5588 preempt_disable(); 5589 for (;;) { 5590 int work = 0; 5591 5592 local_bh_disable(); 5593 if (!napi_poll) { 5594 unsigned long val = READ_ONCE(napi->state); 5595 5596 /* If multiple threads are competing for this napi, 5597 * we avoid dirtying napi->state as much as we can. 5598 */ 5599 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 5600 NAPIF_STATE_IN_BUSY_POLL)) 5601 goto count; 5602 if (cmpxchg(&napi->state, val, 5603 val | NAPIF_STATE_IN_BUSY_POLL | 5604 NAPIF_STATE_SCHED) != val) 5605 goto count; 5606 have_poll_lock = netpoll_poll_lock(napi); 5607 napi_poll = napi->poll; 5608 } 5609 work = napi_poll(napi, BUSY_POLL_BUDGET); 5610 trace_napi_poll(napi, work, BUSY_POLL_BUDGET); 5611 count: 5612 if (work > 0) 5613 __NET_ADD_STATS(dev_net(napi->dev), 5614 LINUX_MIB_BUSYPOLLRXPACKETS, work); 5615 local_bh_enable(); 5616 5617 if (!loop_end || loop_end(loop_end_arg, start_time)) 5618 break; 5619 5620 if (unlikely(need_resched())) { 5621 if (napi_poll) 5622 busy_poll_stop(napi, have_poll_lock); 5623 preempt_enable(); 5624 rcu_read_unlock(); 5625 cond_resched(); 5626 if (loop_end(loop_end_arg, start_time)) 5627 return; 5628 goto restart; 5629 } 5630 cpu_relax(); 5631 } 5632 if (napi_poll) 5633 busy_poll_stop(napi, have_poll_lock); 5634 preempt_enable(); 5635 out: 5636 rcu_read_unlock(); 5637 } 5638 EXPORT_SYMBOL(napi_busy_loop); 5639 5640 #endif /* CONFIG_NET_RX_BUSY_POLL */ 5641 5642 static void napi_hash_add(struct napi_struct *napi) 5643 { 5644 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) || 5645 test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) 5646 return; 5647 5648 spin_lock(&napi_hash_lock); 5649 5650 /* 0..NR_CPUS range is reserved for sender_cpu use */ 5651 do { 5652 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 5653 napi_gen_id = MIN_NAPI_ID; 5654 } while (napi_by_id(napi_gen_id)); 5655 napi->napi_id = napi_gen_id; 5656 5657 hlist_add_head_rcu(&napi->napi_hash_node, 5658 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 5659 5660 spin_unlock(&napi_hash_lock); 5661 } 5662 5663 /* Warning : caller is responsible to make sure rcu grace period 5664 * is respected before freeing memory containing @napi 5665 */ 5666 bool napi_hash_del(struct napi_struct *napi) 5667 { 5668 bool rcu_sync_needed = false; 5669 5670 spin_lock(&napi_hash_lock); 5671 5672 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) { 5673 rcu_sync_needed = true; 5674 hlist_del_rcu(&napi->napi_hash_node); 5675 } 5676 spin_unlock(&napi_hash_lock); 5677 return rcu_sync_needed; 5678 } 5679 EXPORT_SYMBOL_GPL(napi_hash_del); 5680 5681 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 5682 { 5683 struct napi_struct *napi; 5684 5685 napi = container_of(timer, struct napi_struct, timer); 5686 5687 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 5688 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 5689 */ 5690 if (napi->gro_list && !napi_disable_pending(napi) && 5691 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) 5692 __napi_schedule_irqoff(napi); 5693 5694 return HRTIMER_NORESTART; 5695 } 5696 5697 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 5698 int (*poll)(struct napi_struct *, int), int weight) 5699 { 5700 INIT_LIST_HEAD(&napi->poll_list); 5701 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 5702 napi->timer.function = napi_watchdog; 5703 napi->gro_count = 0; 5704 napi->gro_list = NULL; 5705 napi->skb = NULL; 5706 napi->poll = poll; 5707 if (weight > NAPI_POLL_WEIGHT) 5708 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 5709 weight, dev->name); 5710 napi->weight = weight; 5711 list_add(&napi->dev_list, &dev->napi_list); 5712 napi->dev = dev; 5713 #ifdef CONFIG_NETPOLL 5714 napi->poll_owner = -1; 5715 #endif 5716 set_bit(NAPI_STATE_SCHED, &napi->state); 5717 napi_hash_add(napi); 5718 } 5719 EXPORT_SYMBOL(netif_napi_add); 5720 5721 void napi_disable(struct napi_struct *n) 5722 { 5723 might_sleep(); 5724 set_bit(NAPI_STATE_DISABLE, &n->state); 5725 5726 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 5727 msleep(1); 5728 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 5729 msleep(1); 5730 5731 hrtimer_cancel(&n->timer); 5732 5733 clear_bit(NAPI_STATE_DISABLE, &n->state); 5734 } 5735 EXPORT_SYMBOL(napi_disable); 5736 5737 /* Must be called in process context */ 5738 void netif_napi_del(struct napi_struct *napi) 5739 { 5740 might_sleep(); 5741 if (napi_hash_del(napi)) 5742 synchronize_net(); 5743 list_del_init(&napi->dev_list); 5744 napi_free_frags(napi); 5745 5746 kfree_skb_list(napi->gro_list); 5747 napi->gro_list = NULL; 5748 napi->gro_count = 0; 5749 } 5750 EXPORT_SYMBOL(netif_napi_del); 5751 5752 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 5753 { 5754 void *have; 5755 int work, weight; 5756 5757 list_del_init(&n->poll_list); 5758 5759 have = netpoll_poll_lock(n); 5760 5761 weight = n->weight; 5762 5763 /* This NAPI_STATE_SCHED test is for avoiding a race 5764 * with netpoll's poll_napi(). Only the entity which 5765 * obtains the lock and sees NAPI_STATE_SCHED set will 5766 * actually make the ->poll() call. Therefore we avoid 5767 * accidentally calling ->poll() when NAPI is not scheduled. 5768 */ 5769 work = 0; 5770 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 5771 work = n->poll(n, weight); 5772 trace_napi_poll(n, work, weight); 5773 } 5774 5775 WARN_ON_ONCE(work > weight); 5776 5777 if (likely(work < weight)) 5778 goto out_unlock; 5779 5780 /* Drivers must not modify the NAPI state if they 5781 * consume the entire weight. In such cases this code 5782 * still "owns" the NAPI instance and therefore can 5783 * move the instance around on the list at-will. 5784 */ 5785 if (unlikely(napi_disable_pending(n))) { 5786 napi_complete(n); 5787 goto out_unlock; 5788 } 5789 5790 if (n->gro_list) { 5791 /* flush too old packets 5792 * If HZ < 1000, flush all packets. 5793 */ 5794 napi_gro_flush(n, HZ >= 1000); 5795 } 5796 5797 /* Some drivers may have called napi_schedule 5798 * prior to exhausting their budget. 5799 */ 5800 if (unlikely(!list_empty(&n->poll_list))) { 5801 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 5802 n->dev ? n->dev->name : "backlog"); 5803 goto out_unlock; 5804 } 5805 5806 list_add_tail(&n->poll_list, repoll); 5807 5808 out_unlock: 5809 netpoll_poll_unlock(have); 5810 5811 return work; 5812 } 5813 5814 static __latent_entropy void net_rx_action(struct softirq_action *h) 5815 { 5816 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5817 unsigned long time_limit = jiffies + 5818 usecs_to_jiffies(netdev_budget_usecs); 5819 int budget = netdev_budget; 5820 LIST_HEAD(list); 5821 LIST_HEAD(repoll); 5822 5823 local_irq_disable(); 5824 list_splice_init(&sd->poll_list, &list); 5825 local_irq_enable(); 5826 5827 for (;;) { 5828 struct napi_struct *n; 5829 5830 if (list_empty(&list)) { 5831 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 5832 goto out; 5833 break; 5834 } 5835 5836 n = list_first_entry(&list, struct napi_struct, poll_list); 5837 budget -= napi_poll(n, &repoll); 5838 5839 /* If softirq window is exhausted then punt. 5840 * Allow this to run for 2 jiffies since which will allow 5841 * an average latency of 1.5/HZ. 5842 */ 5843 if (unlikely(budget <= 0 || 5844 time_after_eq(jiffies, time_limit))) { 5845 sd->time_squeeze++; 5846 break; 5847 } 5848 } 5849 5850 local_irq_disable(); 5851 5852 list_splice_tail_init(&sd->poll_list, &list); 5853 list_splice_tail(&repoll, &list); 5854 list_splice(&list, &sd->poll_list); 5855 if (!list_empty(&sd->poll_list)) 5856 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5857 5858 net_rps_action_and_irq_enable(sd); 5859 out: 5860 __kfree_skb_flush(); 5861 } 5862 5863 struct netdev_adjacent { 5864 struct net_device *dev; 5865 5866 /* upper master flag, there can only be one master device per list */ 5867 bool master; 5868 5869 /* counter for the number of times this device was added to us */ 5870 u16 ref_nr; 5871 5872 /* private field for the users */ 5873 void *private; 5874 5875 struct list_head list; 5876 struct rcu_head rcu; 5877 }; 5878 5879 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 5880 struct list_head *adj_list) 5881 { 5882 struct netdev_adjacent *adj; 5883 5884 list_for_each_entry(adj, adj_list, list) { 5885 if (adj->dev == adj_dev) 5886 return adj; 5887 } 5888 return NULL; 5889 } 5890 5891 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data) 5892 { 5893 struct net_device *dev = data; 5894 5895 return upper_dev == dev; 5896 } 5897 5898 /** 5899 * netdev_has_upper_dev - Check if device is linked to an upper device 5900 * @dev: device 5901 * @upper_dev: upper device to check 5902 * 5903 * Find out if a device is linked to specified upper device and return true 5904 * in case it is. Note that this checks only immediate upper device, 5905 * not through a complete stack of devices. The caller must hold the RTNL lock. 5906 */ 5907 bool netdev_has_upper_dev(struct net_device *dev, 5908 struct net_device *upper_dev) 5909 { 5910 ASSERT_RTNL(); 5911 5912 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 5913 upper_dev); 5914 } 5915 EXPORT_SYMBOL(netdev_has_upper_dev); 5916 5917 /** 5918 * netdev_has_upper_dev_all - Check if device is linked to an upper device 5919 * @dev: device 5920 * @upper_dev: upper device to check 5921 * 5922 * Find out if a device is linked to specified upper device and return true 5923 * in case it is. Note that this checks the entire upper device chain. 5924 * The caller must hold rcu lock. 5925 */ 5926 5927 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 5928 struct net_device *upper_dev) 5929 { 5930 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 5931 upper_dev); 5932 } 5933 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 5934 5935 /** 5936 * netdev_has_any_upper_dev - Check if device is linked to some device 5937 * @dev: device 5938 * 5939 * Find out if a device is linked to an upper device and return true in case 5940 * it is. The caller must hold the RTNL lock. 5941 */ 5942 bool netdev_has_any_upper_dev(struct net_device *dev) 5943 { 5944 ASSERT_RTNL(); 5945 5946 return !list_empty(&dev->adj_list.upper); 5947 } 5948 EXPORT_SYMBOL(netdev_has_any_upper_dev); 5949 5950 /** 5951 * netdev_master_upper_dev_get - Get master upper device 5952 * @dev: device 5953 * 5954 * Find a master upper device and return pointer to it or NULL in case 5955 * it's not there. The caller must hold the RTNL lock. 5956 */ 5957 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 5958 { 5959 struct netdev_adjacent *upper; 5960 5961 ASSERT_RTNL(); 5962 5963 if (list_empty(&dev->adj_list.upper)) 5964 return NULL; 5965 5966 upper = list_first_entry(&dev->adj_list.upper, 5967 struct netdev_adjacent, list); 5968 if (likely(upper->master)) 5969 return upper->dev; 5970 return NULL; 5971 } 5972 EXPORT_SYMBOL(netdev_master_upper_dev_get); 5973 5974 /** 5975 * netdev_has_any_lower_dev - Check if device is linked to some device 5976 * @dev: device 5977 * 5978 * Find out if a device is linked to a lower device and return true in case 5979 * it is. The caller must hold the RTNL lock. 5980 */ 5981 static bool netdev_has_any_lower_dev(struct net_device *dev) 5982 { 5983 ASSERT_RTNL(); 5984 5985 return !list_empty(&dev->adj_list.lower); 5986 } 5987 5988 void *netdev_adjacent_get_private(struct list_head *adj_list) 5989 { 5990 struct netdev_adjacent *adj; 5991 5992 adj = list_entry(adj_list, struct netdev_adjacent, list); 5993 5994 return adj->private; 5995 } 5996 EXPORT_SYMBOL(netdev_adjacent_get_private); 5997 5998 /** 5999 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 6000 * @dev: device 6001 * @iter: list_head ** of the current position 6002 * 6003 * Gets the next device from the dev's upper list, starting from iter 6004 * position. The caller must hold RCU read lock. 6005 */ 6006 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 6007 struct list_head **iter) 6008 { 6009 struct netdev_adjacent *upper; 6010 6011 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6012 6013 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6014 6015 if (&upper->list == &dev->adj_list.upper) 6016 return NULL; 6017 6018 *iter = &upper->list; 6019 6020 return upper->dev; 6021 } 6022 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 6023 6024 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 6025 struct list_head **iter) 6026 { 6027 struct netdev_adjacent *upper; 6028 6029 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6030 6031 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6032 6033 if (&upper->list == &dev->adj_list.upper) 6034 return NULL; 6035 6036 *iter = &upper->list; 6037 6038 return upper->dev; 6039 } 6040 6041 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 6042 int (*fn)(struct net_device *dev, 6043 void *data), 6044 void *data) 6045 { 6046 struct net_device *udev; 6047 struct list_head *iter; 6048 int ret; 6049 6050 for (iter = &dev->adj_list.upper, 6051 udev = netdev_next_upper_dev_rcu(dev, &iter); 6052 udev; 6053 udev = netdev_next_upper_dev_rcu(dev, &iter)) { 6054 /* first is the upper device itself */ 6055 ret = fn(udev, data); 6056 if (ret) 6057 return ret; 6058 6059 /* then look at all of its upper devices */ 6060 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data); 6061 if (ret) 6062 return ret; 6063 } 6064 6065 return 0; 6066 } 6067 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 6068 6069 /** 6070 * netdev_lower_get_next_private - Get the next ->private from the 6071 * lower neighbour list 6072 * @dev: device 6073 * @iter: list_head ** of the current position 6074 * 6075 * Gets the next netdev_adjacent->private from the dev's lower neighbour 6076 * list, starting from iter position. The caller must hold either hold the 6077 * RTNL lock or its own locking that guarantees that the neighbour lower 6078 * list will remain unchanged. 6079 */ 6080 void *netdev_lower_get_next_private(struct net_device *dev, 6081 struct list_head **iter) 6082 { 6083 struct netdev_adjacent *lower; 6084 6085 lower = list_entry(*iter, struct netdev_adjacent, list); 6086 6087 if (&lower->list == &dev->adj_list.lower) 6088 return NULL; 6089 6090 *iter = lower->list.next; 6091 6092 return lower->private; 6093 } 6094 EXPORT_SYMBOL(netdev_lower_get_next_private); 6095 6096 /** 6097 * netdev_lower_get_next_private_rcu - Get the next ->private from the 6098 * lower neighbour list, RCU 6099 * variant 6100 * @dev: device 6101 * @iter: list_head ** of the current position 6102 * 6103 * Gets the next netdev_adjacent->private from the dev's lower neighbour 6104 * list, starting from iter position. The caller must hold RCU read lock. 6105 */ 6106 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 6107 struct list_head **iter) 6108 { 6109 struct netdev_adjacent *lower; 6110 6111 WARN_ON_ONCE(!rcu_read_lock_held()); 6112 6113 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6114 6115 if (&lower->list == &dev->adj_list.lower) 6116 return NULL; 6117 6118 *iter = &lower->list; 6119 6120 return lower->private; 6121 } 6122 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 6123 6124 /** 6125 * netdev_lower_get_next - Get the next device from the lower neighbour 6126 * list 6127 * @dev: device 6128 * @iter: list_head ** of the current position 6129 * 6130 * Gets the next netdev_adjacent from the dev's lower neighbour 6131 * list, starting from iter position. The caller must hold RTNL lock or 6132 * its own locking that guarantees that the neighbour lower 6133 * list will remain unchanged. 6134 */ 6135 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 6136 { 6137 struct netdev_adjacent *lower; 6138 6139 lower = list_entry(*iter, struct netdev_adjacent, list); 6140 6141 if (&lower->list == &dev->adj_list.lower) 6142 return NULL; 6143 6144 *iter = lower->list.next; 6145 6146 return lower->dev; 6147 } 6148 EXPORT_SYMBOL(netdev_lower_get_next); 6149 6150 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 6151 struct list_head **iter) 6152 { 6153 struct netdev_adjacent *lower; 6154 6155 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 6156 6157 if (&lower->list == &dev->adj_list.lower) 6158 return NULL; 6159 6160 *iter = &lower->list; 6161 6162 return lower->dev; 6163 } 6164 6165 int netdev_walk_all_lower_dev(struct net_device *dev, 6166 int (*fn)(struct net_device *dev, 6167 void *data), 6168 void *data) 6169 { 6170 struct net_device *ldev; 6171 struct list_head *iter; 6172 int ret; 6173 6174 for (iter = &dev->adj_list.lower, 6175 ldev = netdev_next_lower_dev(dev, &iter); 6176 ldev; 6177 ldev = netdev_next_lower_dev(dev, &iter)) { 6178 /* first is the lower device itself */ 6179 ret = fn(ldev, data); 6180 if (ret) 6181 return ret; 6182 6183 /* then look at all of its lower devices */ 6184 ret = netdev_walk_all_lower_dev(ldev, fn, data); 6185 if (ret) 6186 return ret; 6187 } 6188 6189 return 0; 6190 } 6191 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 6192 6193 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 6194 struct list_head **iter) 6195 { 6196 struct netdev_adjacent *lower; 6197 6198 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6199 if (&lower->list == &dev->adj_list.lower) 6200 return NULL; 6201 6202 *iter = &lower->list; 6203 6204 return lower->dev; 6205 } 6206 6207 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 6208 int (*fn)(struct net_device *dev, 6209 void *data), 6210 void *data) 6211 { 6212 struct net_device *ldev; 6213 struct list_head *iter; 6214 int ret; 6215 6216 for (iter = &dev->adj_list.lower, 6217 ldev = netdev_next_lower_dev_rcu(dev, &iter); 6218 ldev; 6219 ldev = netdev_next_lower_dev_rcu(dev, &iter)) { 6220 /* first is the lower device itself */ 6221 ret = fn(ldev, data); 6222 if (ret) 6223 return ret; 6224 6225 /* then look at all of its lower devices */ 6226 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data); 6227 if (ret) 6228 return ret; 6229 } 6230 6231 return 0; 6232 } 6233 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 6234 6235 /** 6236 * netdev_lower_get_first_private_rcu - Get the first ->private from the 6237 * lower neighbour list, RCU 6238 * variant 6239 * @dev: device 6240 * 6241 * Gets the first netdev_adjacent->private from the dev's lower neighbour 6242 * list. The caller must hold RCU read lock. 6243 */ 6244 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 6245 { 6246 struct netdev_adjacent *lower; 6247 6248 lower = list_first_or_null_rcu(&dev->adj_list.lower, 6249 struct netdev_adjacent, list); 6250 if (lower) 6251 return lower->private; 6252 return NULL; 6253 } 6254 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 6255 6256 /** 6257 * netdev_master_upper_dev_get_rcu - Get master upper device 6258 * @dev: device 6259 * 6260 * Find a master upper device and return pointer to it or NULL in case 6261 * it's not there. The caller must hold the RCU read lock. 6262 */ 6263 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 6264 { 6265 struct netdev_adjacent *upper; 6266 6267 upper = list_first_or_null_rcu(&dev->adj_list.upper, 6268 struct netdev_adjacent, list); 6269 if (upper && likely(upper->master)) 6270 return upper->dev; 6271 return NULL; 6272 } 6273 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 6274 6275 static int netdev_adjacent_sysfs_add(struct net_device *dev, 6276 struct net_device *adj_dev, 6277 struct list_head *dev_list) 6278 { 6279 char linkname[IFNAMSIZ+7]; 6280 6281 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6282 "upper_%s" : "lower_%s", adj_dev->name); 6283 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 6284 linkname); 6285 } 6286 static void netdev_adjacent_sysfs_del(struct net_device *dev, 6287 char *name, 6288 struct list_head *dev_list) 6289 { 6290 char linkname[IFNAMSIZ+7]; 6291 6292 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6293 "upper_%s" : "lower_%s", name); 6294 sysfs_remove_link(&(dev->dev.kobj), linkname); 6295 } 6296 6297 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 6298 struct net_device *adj_dev, 6299 struct list_head *dev_list) 6300 { 6301 return (dev_list == &dev->adj_list.upper || 6302 dev_list == &dev->adj_list.lower) && 6303 net_eq(dev_net(dev), dev_net(adj_dev)); 6304 } 6305 6306 static int __netdev_adjacent_dev_insert(struct net_device *dev, 6307 struct net_device *adj_dev, 6308 struct list_head *dev_list, 6309 void *private, bool master) 6310 { 6311 struct netdev_adjacent *adj; 6312 int ret; 6313 6314 adj = __netdev_find_adj(adj_dev, dev_list); 6315 6316 if (adj) { 6317 adj->ref_nr += 1; 6318 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 6319 dev->name, adj_dev->name, adj->ref_nr); 6320 6321 return 0; 6322 } 6323 6324 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 6325 if (!adj) 6326 return -ENOMEM; 6327 6328 adj->dev = adj_dev; 6329 adj->master = master; 6330 adj->ref_nr = 1; 6331 adj->private = private; 6332 dev_hold(adj_dev); 6333 6334 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 6335 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 6336 6337 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 6338 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 6339 if (ret) 6340 goto free_adj; 6341 } 6342 6343 /* Ensure that master link is always the first item in list. */ 6344 if (master) { 6345 ret = sysfs_create_link(&(dev->dev.kobj), 6346 &(adj_dev->dev.kobj), "master"); 6347 if (ret) 6348 goto remove_symlinks; 6349 6350 list_add_rcu(&adj->list, dev_list); 6351 } else { 6352 list_add_tail_rcu(&adj->list, dev_list); 6353 } 6354 6355 return 0; 6356 6357 remove_symlinks: 6358 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6359 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6360 free_adj: 6361 kfree(adj); 6362 dev_put(adj_dev); 6363 6364 return ret; 6365 } 6366 6367 static void __netdev_adjacent_dev_remove(struct net_device *dev, 6368 struct net_device *adj_dev, 6369 u16 ref_nr, 6370 struct list_head *dev_list) 6371 { 6372 struct netdev_adjacent *adj; 6373 6374 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 6375 dev->name, adj_dev->name, ref_nr); 6376 6377 adj = __netdev_find_adj(adj_dev, dev_list); 6378 6379 if (!adj) { 6380 pr_err("Adjacency does not exist for device %s from %s\n", 6381 dev->name, adj_dev->name); 6382 WARN_ON(1); 6383 return; 6384 } 6385 6386 if (adj->ref_nr > ref_nr) { 6387 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 6388 dev->name, adj_dev->name, ref_nr, 6389 adj->ref_nr - ref_nr); 6390 adj->ref_nr -= ref_nr; 6391 return; 6392 } 6393 6394 if (adj->master) 6395 sysfs_remove_link(&(dev->dev.kobj), "master"); 6396 6397 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6398 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6399 6400 list_del_rcu(&adj->list); 6401 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 6402 adj_dev->name, dev->name, adj_dev->name); 6403 dev_put(adj_dev); 6404 kfree_rcu(adj, rcu); 6405 } 6406 6407 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 6408 struct net_device *upper_dev, 6409 struct list_head *up_list, 6410 struct list_head *down_list, 6411 void *private, bool master) 6412 { 6413 int ret; 6414 6415 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 6416 private, master); 6417 if (ret) 6418 return ret; 6419 6420 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 6421 private, false); 6422 if (ret) { 6423 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 6424 return ret; 6425 } 6426 6427 return 0; 6428 } 6429 6430 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 6431 struct net_device *upper_dev, 6432 u16 ref_nr, 6433 struct list_head *up_list, 6434 struct list_head *down_list) 6435 { 6436 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 6437 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 6438 } 6439 6440 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 6441 struct net_device *upper_dev, 6442 void *private, bool master) 6443 { 6444 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 6445 &dev->adj_list.upper, 6446 &upper_dev->adj_list.lower, 6447 private, master); 6448 } 6449 6450 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 6451 struct net_device *upper_dev) 6452 { 6453 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 6454 &dev->adj_list.upper, 6455 &upper_dev->adj_list.lower); 6456 } 6457 6458 static int __netdev_upper_dev_link(struct net_device *dev, 6459 struct net_device *upper_dev, bool master, 6460 void *upper_priv, void *upper_info, 6461 struct netlink_ext_ack *extack) 6462 { 6463 struct netdev_notifier_changeupper_info changeupper_info = { 6464 .info = { 6465 .dev = dev, 6466 .extack = extack, 6467 }, 6468 .upper_dev = upper_dev, 6469 .master = master, 6470 .linking = true, 6471 .upper_info = upper_info, 6472 }; 6473 struct net_device *master_dev; 6474 int ret = 0; 6475 6476 ASSERT_RTNL(); 6477 6478 if (dev == upper_dev) 6479 return -EBUSY; 6480 6481 /* To prevent loops, check if dev is not upper device to upper_dev. */ 6482 if (netdev_has_upper_dev(upper_dev, dev)) 6483 return -EBUSY; 6484 6485 if (!master) { 6486 if (netdev_has_upper_dev(dev, upper_dev)) 6487 return -EEXIST; 6488 } else { 6489 master_dev = netdev_master_upper_dev_get(dev); 6490 if (master_dev) 6491 return master_dev == upper_dev ? -EEXIST : -EBUSY; 6492 } 6493 6494 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 6495 &changeupper_info.info); 6496 ret = notifier_to_errno(ret); 6497 if (ret) 6498 return ret; 6499 6500 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 6501 master); 6502 if (ret) 6503 return ret; 6504 6505 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 6506 &changeupper_info.info); 6507 ret = notifier_to_errno(ret); 6508 if (ret) 6509 goto rollback; 6510 6511 return 0; 6512 6513 rollback: 6514 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 6515 6516 return ret; 6517 } 6518 6519 /** 6520 * netdev_upper_dev_link - Add a link to the upper device 6521 * @dev: device 6522 * @upper_dev: new upper device 6523 * @extack: netlink extended ack 6524 * 6525 * Adds a link to device which is upper to this one. The caller must hold 6526 * the RTNL lock. On a failure a negative errno code is returned. 6527 * On success the reference counts are adjusted and the function 6528 * returns zero. 6529 */ 6530 int netdev_upper_dev_link(struct net_device *dev, 6531 struct net_device *upper_dev, 6532 struct netlink_ext_ack *extack) 6533 { 6534 return __netdev_upper_dev_link(dev, upper_dev, false, 6535 NULL, NULL, extack); 6536 } 6537 EXPORT_SYMBOL(netdev_upper_dev_link); 6538 6539 /** 6540 * netdev_master_upper_dev_link - Add a master link to the upper device 6541 * @dev: device 6542 * @upper_dev: new upper device 6543 * @upper_priv: upper device private 6544 * @upper_info: upper info to be passed down via notifier 6545 * @extack: netlink extended ack 6546 * 6547 * Adds a link to device which is upper to this one. In this case, only 6548 * one master upper device can be linked, although other non-master devices 6549 * might be linked as well. The caller must hold the RTNL lock. 6550 * On a failure a negative errno code is returned. On success the reference 6551 * counts are adjusted and the function returns zero. 6552 */ 6553 int netdev_master_upper_dev_link(struct net_device *dev, 6554 struct net_device *upper_dev, 6555 void *upper_priv, void *upper_info, 6556 struct netlink_ext_ack *extack) 6557 { 6558 return __netdev_upper_dev_link(dev, upper_dev, true, 6559 upper_priv, upper_info, extack); 6560 } 6561 EXPORT_SYMBOL(netdev_master_upper_dev_link); 6562 6563 /** 6564 * netdev_upper_dev_unlink - Removes a link to upper device 6565 * @dev: device 6566 * @upper_dev: new upper device 6567 * 6568 * Removes a link to device which is upper to this one. The caller must hold 6569 * the RTNL lock. 6570 */ 6571 void netdev_upper_dev_unlink(struct net_device *dev, 6572 struct net_device *upper_dev) 6573 { 6574 struct netdev_notifier_changeupper_info changeupper_info = { 6575 .info = { 6576 .dev = dev, 6577 }, 6578 .upper_dev = upper_dev, 6579 .linking = false, 6580 }; 6581 6582 ASSERT_RTNL(); 6583 6584 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 6585 6586 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 6587 &changeupper_info.info); 6588 6589 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 6590 6591 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 6592 &changeupper_info.info); 6593 } 6594 EXPORT_SYMBOL(netdev_upper_dev_unlink); 6595 6596 /** 6597 * netdev_bonding_info_change - Dispatch event about slave change 6598 * @dev: device 6599 * @bonding_info: info to dispatch 6600 * 6601 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 6602 * The caller must hold the RTNL lock. 6603 */ 6604 void netdev_bonding_info_change(struct net_device *dev, 6605 struct netdev_bonding_info *bonding_info) 6606 { 6607 struct netdev_notifier_bonding_info info = { 6608 .info.dev = dev, 6609 }; 6610 6611 memcpy(&info.bonding_info, bonding_info, 6612 sizeof(struct netdev_bonding_info)); 6613 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 6614 &info.info); 6615 } 6616 EXPORT_SYMBOL(netdev_bonding_info_change); 6617 6618 static void netdev_adjacent_add_links(struct net_device *dev) 6619 { 6620 struct netdev_adjacent *iter; 6621 6622 struct net *net = dev_net(dev); 6623 6624 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6625 if (!net_eq(net, dev_net(iter->dev))) 6626 continue; 6627 netdev_adjacent_sysfs_add(iter->dev, dev, 6628 &iter->dev->adj_list.lower); 6629 netdev_adjacent_sysfs_add(dev, iter->dev, 6630 &dev->adj_list.upper); 6631 } 6632 6633 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6634 if (!net_eq(net, dev_net(iter->dev))) 6635 continue; 6636 netdev_adjacent_sysfs_add(iter->dev, dev, 6637 &iter->dev->adj_list.upper); 6638 netdev_adjacent_sysfs_add(dev, iter->dev, 6639 &dev->adj_list.lower); 6640 } 6641 } 6642 6643 static void netdev_adjacent_del_links(struct net_device *dev) 6644 { 6645 struct netdev_adjacent *iter; 6646 6647 struct net *net = dev_net(dev); 6648 6649 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6650 if (!net_eq(net, dev_net(iter->dev))) 6651 continue; 6652 netdev_adjacent_sysfs_del(iter->dev, dev->name, 6653 &iter->dev->adj_list.lower); 6654 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6655 &dev->adj_list.upper); 6656 } 6657 6658 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6659 if (!net_eq(net, dev_net(iter->dev))) 6660 continue; 6661 netdev_adjacent_sysfs_del(iter->dev, dev->name, 6662 &iter->dev->adj_list.upper); 6663 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6664 &dev->adj_list.lower); 6665 } 6666 } 6667 6668 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 6669 { 6670 struct netdev_adjacent *iter; 6671 6672 struct net *net = dev_net(dev); 6673 6674 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6675 if (!net_eq(net, dev_net(iter->dev))) 6676 continue; 6677 netdev_adjacent_sysfs_del(iter->dev, oldname, 6678 &iter->dev->adj_list.lower); 6679 netdev_adjacent_sysfs_add(iter->dev, dev, 6680 &iter->dev->adj_list.lower); 6681 } 6682 6683 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6684 if (!net_eq(net, dev_net(iter->dev))) 6685 continue; 6686 netdev_adjacent_sysfs_del(iter->dev, oldname, 6687 &iter->dev->adj_list.upper); 6688 netdev_adjacent_sysfs_add(iter->dev, dev, 6689 &iter->dev->adj_list.upper); 6690 } 6691 } 6692 6693 void *netdev_lower_dev_get_private(struct net_device *dev, 6694 struct net_device *lower_dev) 6695 { 6696 struct netdev_adjacent *lower; 6697 6698 if (!lower_dev) 6699 return NULL; 6700 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 6701 if (!lower) 6702 return NULL; 6703 6704 return lower->private; 6705 } 6706 EXPORT_SYMBOL(netdev_lower_dev_get_private); 6707 6708 6709 int dev_get_nest_level(struct net_device *dev) 6710 { 6711 struct net_device *lower = NULL; 6712 struct list_head *iter; 6713 int max_nest = -1; 6714 int nest; 6715 6716 ASSERT_RTNL(); 6717 6718 netdev_for_each_lower_dev(dev, lower, iter) { 6719 nest = dev_get_nest_level(lower); 6720 if (max_nest < nest) 6721 max_nest = nest; 6722 } 6723 6724 return max_nest + 1; 6725 } 6726 EXPORT_SYMBOL(dev_get_nest_level); 6727 6728 /** 6729 * netdev_lower_change - Dispatch event about lower device state change 6730 * @lower_dev: device 6731 * @lower_state_info: state to dispatch 6732 * 6733 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 6734 * The caller must hold the RTNL lock. 6735 */ 6736 void netdev_lower_state_changed(struct net_device *lower_dev, 6737 void *lower_state_info) 6738 { 6739 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 6740 .info.dev = lower_dev, 6741 }; 6742 6743 ASSERT_RTNL(); 6744 changelowerstate_info.lower_state_info = lower_state_info; 6745 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 6746 &changelowerstate_info.info); 6747 } 6748 EXPORT_SYMBOL(netdev_lower_state_changed); 6749 6750 static void dev_change_rx_flags(struct net_device *dev, int flags) 6751 { 6752 const struct net_device_ops *ops = dev->netdev_ops; 6753 6754 if (ops->ndo_change_rx_flags) 6755 ops->ndo_change_rx_flags(dev, flags); 6756 } 6757 6758 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 6759 { 6760 unsigned int old_flags = dev->flags; 6761 kuid_t uid; 6762 kgid_t gid; 6763 6764 ASSERT_RTNL(); 6765 6766 dev->flags |= IFF_PROMISC; 6767 dev->promiscuity += inc; 6768 if (dev->promiscuity == 0) { 6769 /* 6770 * Avoid overflow. 6771 * If inc causes overflow, untouch promisc and return error. 6772 */ 6773 if (inc < 0) 6774 dev->flags &= ~IFF_PROMISC; 6775 else { 6776 dev->promiscuity -= inc; 6777 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 6778 dev->name); 6779 return -EOVERFLOW; 6780 } 6781 } 6782 if (dev->flags != old_flags) { 6783 pr_info("device %s %s promiscuous mode\n", 6784 dev->name, 6785 dev->flags & IFF_PROMISC ? "entered" : "left"); 6786 if (audit_enabled) { 6787 current_uid_gid(&uid, &gid); 6788 audit_log(audit_context(), GFP_ATOMIC, 6789 AUDIT_ANOM_PROMISCUOUS, 6790 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 6791 dev->name, (dev->flags & IFF_PROMISC), 6792 (old_flags & IFF_PROMISC), 6793 from_kuid(&init_user_ns, audit_get_loginuid(current)), 6794 from_kuid(&init_user_ns, uid), 6795 from_kgid(&init_user_ns, gid), 6796 audit_get_sessionid(current)); 6797 } 6798 6799 dev_change_rx_flags(dev, IFF_PROMISC); 6800 } 6801 if (notify) 6802 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 6803 return 0; 6804 } 6805 6806 /** 6807 * dev_set_promiscuity - update promiscuity count on a device 6808 * @dev: device 6809 * @inc: modifier 6810 * 6811 * Add or remove promiscuity from a device. While the count in the device 6812 * remains above zero the interface remains promiscuous. Once it hits zero 6813 * the device reverts back to normal filtering operation. A negative inc 6814 * value is used to drop promiscuity on the device. 6815 * Return 0 if successful or a negative errno code on error. 6816 */ 6817 int dev_set_promiscuity(struct net_device *dev, int inc) 6818 { 6819 unsigned int old_flags = dev->flags; 6820 int err; 6821 6822 err = __dev_set_promiscuity(dev, inc, true); 6823 if (err < 0) 6824 return err; 6825 if (dev->flags != old_flags) 6826 dev_set_rx_mode(dev); 6827 return err; 6828 } 6829 EXPORT_SYMBOL(dev_set_promiscuity); 6830 6831 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 6832 { 6833 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 6834 6835 ASSERT_RTNL(); 6836 6837 dev->flags |= IFF_ALLMULTI; 6838 dev->allmulti += inc; 6839 if (dev->allmulti == 0) { 6840 /* 6841 * Avoid overflow. 6842 * If inc causes overflow, untouch allmulti and return error. 6843 */ 6844 if (inc < 0) 6845 dev->flags &= ~IFF_ALLMULTI; 6846 else { 6847 dev->allmulti -= inc; 6848 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 6849 dev->name); 6850 return -EOVERFLOW; 6851 } 6852 } 6853 if (dev->flags ^ old_flags) { 6854 dev_change_rx_flags(dev, IFF_ALLMULTI); 6855 dev_set_rx_mode(dev); 6856 if (notify) 6857 __dev_notify_flags(dev, old_flags, 6858 dev->gflags ^ old_gflags); 6859 } 6860 return 0; 6861 } 6862 6863 /** 6864 * dev_set_allmulti - update allmulti count on a device 6865 * @dev: device 6866 * @inc: modifier 6867 * 6868 * Add or remove reception of all multicast frames to a device. While the 6869 * count in the device remains above zero the interface remains listening 6870 * to all interfaces. Once it hits zero the device reverts back to normal 6871 * filtering operation. A negative @inc value is used to drop the counter 6872 * when releasing a resource needing all multicasts. 6873 * Return 0 if successful or a negative errno code on error. 6874 */ 6875 6876 int dev_set_allmulti(struct net_device *dev, int inc) 6877 { 6878 return __dev_set_allmulti(dev, inc, true); 6879 } 6880 EXPORT_SYMBOL(dev_set_allmulti); 6881 6882 /* 6883 * Upload unicast and multicast address lists to device and 6884 * configure RX filtering. When the device doesn't support unicast 6885 * filtering it is put in promiscuous mode while unicast addresses 6886 * are present. 6887 */ 6888 void __dev_set_rx_mode(struct net_device *dev) 6889 { 6890 const struct net_device_ops *ops = dev->netdev_ops; 6891 6892 /* dev_open will call this function so the list will stay sane. */ 6893 if (!(dev->flags&IFF_UP)) 6894 return; 6895 6896 if (!netif_device_present(dev)) 6897 return; 6898 6899 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 6900 /* Unicast addresses changes may only happen under the rtnl, 6901 * therefore calling __dev_set_promiscuity here is safe. 6902 */ 6903 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 6904 __dev_set_promiscuity(dev, 1, false); 6905 dev->uc_promisc = true; 6906 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 6907 __dev_set_promiscuity(dev, -1, false); 6908 dev->uc_promisc = false; 6909 } 6910 } 6911 6912 if (ops->ndo_set_rx_mode) 6913 ops->ndo_set_rx_mode(dev); 6914 } 6915 6916 void dev_set_rx_mode(struct net_device *dev) 6917 { 6918 netif_addr_lock_bh(dev); 6919 __dev_set_rx_mode(dev); 6920 netif_addr_unlock_bh(dev); 6921 } 6922 6923 /** 6924 * dev_get_flags - get flags reported to userspace 6925 * @dev: device 6926 * 6927 * Get the combination of flag bits exported through APIs to userspace. 6928 */ 6929 unsigned int dev_get_flags(const struct net_device *dev) 6930 { 6931 unsigned int flags; 6932 6933 flags = (dev->flags & ~(IFF_PROMISC | 6934 IFF_ALLMULTI | 6935 IFF_RUNNING | 6936 IFF_LOWER_UP | 6937 IFF_DORMANT)) | 6938 (dev->gflags & (IFF_PROMISC | 6939 IFF_ALLMULTI)); 6940 6941 if (netif_running(dev)) { 6942 if (netif_oper_up(dev)) 6943 flags |= IFF_RUNNING; 6944 if (netif_carrier_ok(dev)) 6945 flags |= IFF_LOWER_UP; 6946 if (netif_dormant(dev)) 6947 flags |= IFF_DORMANT; 6948 } 6949 6950 return flags; 6951 } 6952 EXPORT_SYMBOL(dev_get_flags); 6953 6954 int __dev_change_flags(struct net_device *dev, unsigned int flags) 6955 { 6956 unsigned int old_flags = dev->flags; 6957 int ret; 6958 6959 ASSERT_RTNL(); 6960 6961 /* 6962 * Set the flags on our device. 6963 */ 6964 6965 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 6966 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 6967 IFF_AUTOMEDIA)) | 6968 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 6969 IFF_ALLMULTI)); 6970 6971 /* 6972 * Load in the correct multicast list now the flags have changed. 6973 */ 6974 6975 if ((old_flags ^ flags) & IFF_MULTICAST) 6976 dev_change_rx_flags(dev, IFF_MULTICAST); 6977 6978 dev_set_rx_mode(dev); 6979 6980 /* 6981 * Have we downed the interface. We handle IFF_UP ourselves 6982 * according to user attempts to set it, rather than blindly 6983 * setting it. 6984 */ 6985 6986 ret = 0; 6987 if ((old_flags ^ flags) & IFF_UP) { 6988 if (old_flags & IFF_UP) 6989 __dev_close(dev); 6990 else 6991 ret = __dev_open(dev); 6992 } 6993 6994 if ((flags ^ dev->gflags) & IFF_PROMISC) { 6995 int inc = (flags & IFF_PROMISC) ? 1 : -1; 6996 unsigned int old_flags = dev->flags; 6997 6998 dev->gflags ^= IFF_PROMISC; 6999 7000 if (__dev_set_promiscuity(dev, inc, false) >= 0) 7001 if (dev->flags != old_flags) 7002 dev_set_rx_mode(dev); 7003 } 7004 7005 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 7006 * is important. Some (broken) drivers set IFF_PROMISC, when 7007 * IFF_ALLMULTI is requested not asking us and not reporting. 7008 */ 7009 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 7010 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 7011 7012 dev->gflags ^= IFF_ALLMULTI; 7013 __dev_set_allmulti(dev, inc, false); 7014 } 7015 7016 return ret; 7017 } 7018 7019 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 7020 unsigned int gchanges) 7021 { 7022 unsigned int changes = dev->flags ^ old_flags; 7023 7024 if (gchanges) 7025 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 7026 7027 if (changes & IFF_UP) { 7028 if (dev->flags & IFF_UP) 7029 call_netdevice_notifiers(NETDEV_UP, dev); 7030 else 7031 call_netdevice_notifiers(NETDEV_DOWN, dev); 7032 } 7033 7034 if (dev->flags & IFF_UP && 7035 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 7036 struct netdev_notifier_change_info change_info = { 7037 .info = { 7038 .dev = dev, 7039 }, 7040 .flags_changed = changes, 7041 }; 7042 7043 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 7044 } 7045 } 7046 7047 /** 7048 * dev_change_flags - change device settings 7049 * @dev: device 7050 * @flags: device state flags 7051 * 7052 * Change settings on device based state flags. The flags are 7053 * in the userspace exported format. 7054 */ 7055 int dev_change_flags(struct net_device *dev, unsigned int flags) 7056 { 7057 int ret; 7058 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 7059 7060 ret = __dev_change_flags(dev, flags); 7061 if (ret < 0) 7062 return ret; 7063 7064 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 7065 __dev_notify_flags(dev, old_flags, changes); 7066 return ret; 7067 } 7068 EXPORT_SYMBOL(dev_change_flags); 7069 7070 int __dev_set_mtu(struct net_device *dev, int new_mtu) 7071 { 7072 const struct net_device_ops *ops = dev->netdev_ops; 7073 7074 if (ops->ndo_change_mtu) 7075 return ops->ndo_change_mtu(dev, new_mtu); 7076 7077 dev->mtu = new_mtu; 7078 return 0; 7079 } 7080 EXPORT_SYMBOL(__dev_set_mtu); 7081 7082 /** 7083 * dev_set_mtu - Change maximum transfer unit 7084 * @dev: device 7085 * @new_mtu: new transfer unit 7086 * 7087 * Change the maximum transfer size of the network device. 7088 */ 7089 int dev_set_mtu(struct net_device *dev, int new_mtu) 7090 { 7091 int err, orig_mtu; 7092 7093 if (new_mtu == dev->mtu) 7094 return 0; 7095 7096 /* MTU must be positive, and in range */ 7097 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 7098 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n", 7099 dev->name, new_mtu, dev->min_mtu); 7100 return -EINVAL; 7101 } 7102 7103 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 7104 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n", 7105 dev->name, new_mtu, dev->max_mtu); 7106 return -EINVAL; 7107 } 7108 7109 if (!netif_device_present(dev)) 7110 return -ENODEV; 7111 7112 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 7113 err = notifier_to_errno(err); 7114 if (err) 7115 return err; 7116 7117 orig_mtu = dev->mtu; 7118 err = __dev_set_mtu(dev, new_mtu); 7119 7120 if (!err) { 7121 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 7122 err = notifier_to_errno(err); 7123 if (err) { 7124 /* setting mtu back and notifying everyone again, 7125 * so that they have a chance to revert changes. 7126 */ 7127 __dev_set_mtu(dev, orig_mtu); 7128 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 7129 } 7130 } 7131 return err; 7132 } 7133 EXPORT_SYMBOL(dev_set_mtu); 7134 7135 /** 7136 * dev_change_tx_queue_len - Change TX queue length of a netdevice 7137 * @dev: device 7138 * @new_len: new tx queue length 7139 */ 7140 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 7141 { 7142 unsigned int orig_len = dev->tx_queue_len; 7143 int res; 7144 7145 if (new_len != (unsigned int)new_len) 7146 return -ERANGE; 7147 7148 if (new_len != orig_len) { 7149 dev->tx_queue_len = new_len; 7150 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 7151 res = notifier_to_errno(res); 7152 if (res) { 7153 netdev_err(dev, 7154 "refused to change device tx_queue_len\n"); 7155 dev->tx_queue_len = orig_len; 7156 return res; 7157 } 7158 return dev_qdisc_change_tx_queue_len(dev); 7159 } 7160 7161 return 0; 7162 } 7163 7164 /** 7165 * dev_set_group - Change group this device belongs to 7166 * @dev: device 7167 * @new_group: group this device should belong to 7168 */ 7169 void dev_set_group(struct net_device *dev, int new_group) 7170 { 7171 dev->group = new_group; 7172 } 7173 EXPORT_SYMBOL(dev_set_group); 7174 7175 /** 7176 * dev_set_mac_address - Change Media Access Control Address 7177 * @dev: device 7178 * @sa: new address 7179 * 7180 * Change the hardware (MAC) address of the device 7181 */ 7182 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 7183 { 7184 const struct net_device_ops *ops = dev->netdev_ops; 7185 int err; 7186 7187 if (!ops->ndo_set_mac_address) 7188 return -EOPNOTSUPP; 7189 if (sa->sa_family != dev->type) 7190 return -EINVAL; 7191 if (!netif_device_present(dev)) 7192 return -ENODEV; 7193 err = ops->ndo_set_mac_address(dev, sa); 7194 if (err) 7195 return err; 7196 dev->addr_assign_type = NET_ADDR_SET; 7197 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 7198 add_device_randomness(dev->dev_addr, dev->addr_len); 7199 return 0; 7200 } 7201 EXPORT_SYMBOL(dev_set_mac_address); 7202 7203 /** 7204 * dev_change_carrier - Change device carrier 7205 * @dev: device 7206 * @new_carrier: new value 7207 * 7208 * Change device carrier 7209 */ 7210 int dev_change_carrier(struct net_device *dev, bool new_carrier) 7211 { 7212 const struct net_device_ops *ops = dev->netdev_ops; 7213 7214 if (!ops->ndo_change_carrier) 7215 return -EOPNOTSUPP; 7216 if (!netif_device_present(dev)) 7217 return -ENODEV; 7218 return ops->ndo_change_carrier(dev, new_carrier); 7219 } 7220 EXPORT_SYMBOL(dev_change_carrier); 7221 7222 /** 7223 * dev_get_phys_port_id - Get device physical port ID 7224 * @dev: device 7225 * @ppid: port ID 7226 * 7227 * Get device physical port ID 7228 */ 7229 int dev_get_phys_port_id(struct net_device *dev, 7230 struct netdev_phys_item_id *ppid) 7231 { 7232 const struct net_device_ops *ops = dev->netdev_ops; 7233 7234 if (!ops->ndo_get_phys_port_id) 7235 return -EOPNOTSUPP; 7236 return ops->ndo_get_phys_port_id(dev, ppid); 7237 } 7238 EXPORT_SYMBOL(dev_get_phys_port_id); 7239 7240 /** 7241 * dev_get_phys_port_name - Get device physical port name 7242 * @dev: device 7243 * @name: port name 7244 * @len: limit of bytes to copy to name 7245 * 7246 * Get device physical port name 7247 */ 7248 int dev_get_phys_port_name(struct net_device *dev, 7249 char *name, size_t len) 7250 { 7251 const struct net_device_ops *ops = dev->netdev_ops; 7252 7253 if (!ops->ndo_get_phys_port_name) 7254 return -EOPNOTSUPP; 7255 return ops->ndo_get_phys_port_name(dev, name, len); 7256 } 7257 EXPORT_SYMBOL(dev_get_phys_port_name); 7258 7259 /** 7260 * dev_change_proto_down - update protocol port state information 7261 * @dev: device 7262 * @proto_down: new value 7263 * 7264 * This info can be used by switch drivers to set the phys state of the 7265 * port. 7266 */ 7267 int dev_change_proto_down(struct net_device *dev, bool proto_down) 7268 { 7269 const struct net_device_ops *ops = dev->netdev_ops; 7270 7271 if (!ops->ndo_change_proto_down) 7272 return -EOPNOTSUPP; 7273 if (!netif_device_present(dev)) 7274 return -ENODEV; 7275 return ops->ndo_change_proto_down(dev, proto_down); 7276 } 7277 EXPORT_SYMBOL(dev_change_proto_down); 7278 7279 void __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op, 7280 struct netdev_bpf *xdp) 7281 { 7282 memset(xdp, 0, sizeof(*xdp)); 7283 xdp->command = XDP_QUERY_PROG; 7284 7285 /* Query must always succeed. */ 7286 WARN_ON(bpf_op(dev, xdp) < 0); 7287 } 7288 7289 static u8 __dev_xdp_attached(struct net_device *dev, bpf_op_t bpf_op) 7290 { 7291 struct netdev_bpf xdp; 7292 7293 __dev_xdp_query(dev, bpf_op, &xdp); 7294 7295 return xdp.prog_attached; 7296 } 7297 7298 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op, 7299 struct netlink_ext_ack *extack, u32 flags, 7300 struct bpf_prog *prog) 7301 { 7302 struct netdev_bpf xdp; 7303 7304 memset(&xdp, 0, sizeof(xdp)); 7305 if (flags & XDP_FLAGS_HW_MODE) 7306 xdp.command = XDP_SETUP_PROG_HW; 7307 else 7308 xdp.command = XDP_SETUP_PROG; 7309 xdp.extack = extack; 7310 xdp.flags = flags; 7311 xdp.prog = prog; 7312 7313 return bpf_op(dev, &xdp); 7314 } 7315 7316 static void dev_xdp_uninstall(struct net_device *dev) 7317 { 7318 struct netdev_bpf xdp; 7319 bpf_op_t ndo_bpf; 7320 7321 /* Remove generic XDP */ 7322 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL)); 7323 7324 /* Remove from the driver */ 7325 ndo_bpf = dev->netdev_ops->ndo_bpf; 7326 if (!ndo_bpf) 7327 return; 7328 7329 __dev_xdp_query(dev, ndo_bpf, &xdp); 7330 if (xdp.prog_attached == XDP_ATTACHED_NONE) 7331 return; 7332 7333 /* Program removal should always succeed */ 7334 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, NULL)); 7335 } 7336 7337 /** 7338 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 7339 * @dev: device 7340 * @extack: netlink extended ack 7341 * @fd: new program fd or negative value to clear 7342 * @flags: xdp-related flags 7343 * 7344 * Set or clear a bpf program for a device 7345 */ 7346 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 7347 int fd, u32 flags) 7348 { 7349 const struct net_device_ops *ops = dev->netdev_ops; 7350 struct bpf_prog *prog = NULL; 7351 bpf_op_t bpf_op, bpf_chk; 7352 int err; 7353 7354 ASSERT_RTNL(); 7355 7356 bpf_op = bpf_chk = ops->ndo_bpf; 7357 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) 7358 return -EOPNOTSUPP; 7359 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE)) 7360 bpf_op = generic_xdp_install; 7361 if (bpf_op == bpf_chk) 7362 bpf_chk = generic_xdp_install; 7363 7364 if (fd >= 0) { 7365 if (bpf_chk && __dev_xdp_attached(dev, bpf_chk)) 7366 return -EEXIST; 7367 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && 7368 __dev_xdp_attached(dev, bpf_op)) 7369 return -EBUSY; 7370 7371 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 7372 bpf_op == ops->ndo_bpf); 7373 if (IS_ERR(prog)) 7374 return PTR_ERR(prog); 7375 7376 if (!(flags & XDP_FLAGS_HW_MODE) && 7377 bpf_prog_is_dev_bound(prog->aux)) { 7378 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported"); 7379 bpf_prog_put(prog); 7380 return -EINVAL; 7381 } 7382 } 7383 7384 err = dev_xdp_install(dev, bpf_op, extack, flags, prog); 7385 if (err < 0 && prog) 7386 bpf_prog_put(prog); 7387 7388 return err; 7389 } 7390 7391 /** 7392 * dev_new_index - allocate an ifindex 7393 * @net: the applicable net namespace 7394 * 7395 * Returns a suitable unique value for a new device interface 7396 * number. The caller must hold the rtnl semaphore or the 7397 * dev_base_lock to be sure it remains unique. 7398 */ 7399 static int dev_new_index(struct net *net) 7400 { 7401 int ifindex = net->ifindex; 7402 7403 for (;;) { 7404 if (++ifindex <= 0) 7405 ifindex = 1; 7406 if (!__dev_get_by_index(net, ifindex)) 7407 return net->ifindex = ifindex; 7408 } 7409 } 7410 7411 /* Delayed registration/unregisteration */ 7412 static LIST_HEAD(net_todo_list); 7413 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 7414 7415 static void net_set_todo(struct net_device *dev) 7416 { 7417 list_add_tail(&dev->todo_list, &net_todo_list); 7418 dev_net(dev)->dev_unreg_count++; 7419 } 7420 7421 static void rollback_registered_many(struct list_head *head) 7422 { 7423 struct net_device *dev, *tmp; 7424 LIST_HEAD(close_head); 7425 7426 BUG_ON(dev_boot_phase); 7427 ASSERT_RTNL(); 7428 7429 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 7430 /* Some devices call without registering 7431 * for initialization unwind. Remove those 7432 * devices and proceed with the remaining. 7433 */ 7434 if (dev->reg_state == NETREG_UNINITIALIZED) { 7435 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 7436 dev->name, dev); 7437 7438 WARN_ON(1); 7439 list_del(&dev->unreg_list); 7440 continue; 7441 } 7442 dev->dismantle = true; 7443 BUG_ON(dev->reg_state != NETREG_REGISTERED); 7444 } 7445 7446 /* If device is running, close it first. */ 7447 list_for_each_entry(dev, head, unreg_list) 7448 list_add_tail(&dev->close_list, &close_head); 7449 dev_close_many(&close_head, true); 7450 7451 list_for_each_entry(dev, head, unreg_list) { 7452 /* And unlink it from device chain. */ 7453 unlist_netdevice(dev); 7454 7455 dev->reg_state = NETREG_UNREGISTERING; 7456 } 7457 flush_all_backlogs(); 7458 7459 synchronize_net(); 7460 7461 list_for_each_entry(dev, head, unreg_list) { 7462 struct sk_buff *skb = NULL; 7463 7464 /* Shutdown queueing discipline. */ 7465 dev_shutdown(dev); 7466 7467 dev_xdp_uninstall(dev); 7468 7469 /* Notify protocols, that we are about to destroy 7470 * this device. They should clean all the things. 7471 */ 7472 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7473 7474 if (!dev->rtnl_link_ops || 7475 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 7476 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 7477 GFP_KERNEL, NULL, 0); 7478 7479 /* 7480 * Flush the unicast and multicast chains 7481 */ 7482 dev_uc_flush(dev); 7483 dev_mc_flush(dev); 7484 7485 if (dev->netdev_ops->ndo_uninit) 7486 dev->netdev_ops->ndo_uninit(dev); 7487 7488 if (skb) 7489 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 7490 7491 /* Notifier chain MUST detach us all upper devices. */ 7492 WARN_ON(netdev_has_any_upper_dev(dev)); 7493 WARN_ON(netdev_has_any_lower_dev(dev)); 7494 7495 /* Remove entries from kobject tree */ 7496 netdev_unregister_kobject(dev); 7497 #ifdef CONFIG_XPS 7498 /* Remove XPS queueing entries */ 7499 netif_reset_xps_queues_gt(dev, 0); 7500 #endif 7501 } 7502 7503 synchronize_net(); 7504 7505 list_for_each_entry(dev, head, unreg_list) 7506 dev_put(dev); 7507 } 7508 7509 static void rollback_registered(struct net_device *dev) 7510 { 7511 LIST_HEAD(single); 7512 7513 list_add(&dev->unreg_list, &single); 7514 rollback_registered_many(&single); 7515 list_del(&single); 7516 } 7517 7518 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 7519 struct net_device *upper, netdev_features_t features) 7520 { 7521 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 7522 netdev_features_t feature; 7523 int feature_bit; 7524 7525 for_each_netdev_feature(&upper_disables, feature_bit) { 7526 feature = __NETIF_F_BIT(feature_bit); 7527 if (!(upper->wanted_features & feature) 7528 && (features & feature)) { 7529 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 7530 &feature, upper->name); 7531 features &= ~feature; 7532 } 7533 } 7534 7535 return features; 7536 } 7537 7538 static void netdev_sync_lower_features(struct net_device *upper, 7539 struct net_device *lower, netdev_features_t features) 7540 { 7541 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 7542 netdev_features_t feature; 7543 int feature_bit; 7544 7545 for_each_netdev_feature(&upper_disables, feature_bit) { 7546 feature = __NETIF_F_BIT(feature_bit); 7547 if (!(features & feature) && (lower->features & feature)) { 7548 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 7549 &feature, lower->name); 7550 lower->wanted_features &= ~feature; 7551 netdev_update_features(lower); 7552 7553 if (unlikely(lower->features & feature)) 7554 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 7555 &feature, lower->name); 7556 } 7557 } 7558 } 7559 7560 static netdev_features_t netdev_fix_features(struct net_device *dev, 7561 netdev_features_t features) 7562 { 7563 /* Fix illegal checksum combinations */ 7564 if ((features & NETIF_F_HW_CSUM) && 7565 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 7566 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 7567 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 7568 } 7569 7570 /* TSO requires that SG is present as well. */ 7571 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 7572 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 7573 features &= ~NETIF_F_ALL_TSO; 7574 } 7575 7576 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 7577 !(features & NETIF_F_IP_CSUM)) { 7578 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 7579 features &= ~NETIF_F_TSO; 7580 features &= ~NETIF_F_TSO_ECN; 7581 } 7582 7583 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 7584 !(features & NETIF_F_IPV6_CSUM)) { 7585 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 7586 features &= ~NETIF_F_TSO6; 7587 } 7588 7589 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 7590 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 7591 features &= ~NETIF_F_TSO_MANGLEID; 7592 7593 /* TSO ECN requires that TSO is present as well. */ 7594 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 7595 features &= ~NETIF_F_TSO_ECN; 7596 7597 /* Software GSO depends on SG. */ 7598 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 7599 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 7600 features &= ~NETIF_F_GSO; 7601 } 7602 7603 /* GSO partial features require GSO partial be set */ 7604 if ((features & dev->gso_partial_features) && 7605 !(features & NETIF_F_GSO_PARTIAL)) { 7606 netdev_dbg(dev, 7607 "Dropping partially supported GSO features since no GSO partial.\n"); 7608 features &= ~dev->gso_partial_features; 7609 } 7610 7611 if (!(features & NETIF_F_RXCSUM)) { 7612 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 7613 * successfully merged by hardware must also have the 7614 * checksum verified by hardware. If the user does not 7615 * want to enable RXCSUM, logically, we should disable GRO_HW. 7616 */ 7617 if (features & NETIF_F_GRO_HW) { 7618 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 7619 features &= ~NETIF_F_GRO_HW; 7620 } 7621 } 7622 7623 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 7624 if (features & NETIF_F_RXFCS) { 7625 if (features & NETIF_F_LRO) { 7626 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 7627 features &= ~NETIF_F_LRO; 7628 } 7629 7630 if (features & NETIF_F_GRO_HW) { 7631 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 7632 features &= ~NETIF_F_GRO_HW; 7633 } 7634 } 7635 7636 return features; 7637 } 7638 7639 int __netdev_update_features(struct net_device *dev) 7640 { 7641 struct net_device *upper, *lower; 7642 netdev_features_t features; 7643 struct list_head *iter; 7644 int err = -1; 7645 7646 ASSERT_RTNL(); 7647 7648 features = netdev_get_wanted_features(dev); 7649 7650 if (dev->netdev_ops->ndo_fix_features) 7651 features = dev->netdev_ops->ndo_fix_features(dev, features); 7652 7653 /* driver might be less strict about feature dependencies */ 7654 features = netdev_fix_features(dev, features); 7655 7656 /* some features can't be enabled if they're off an an upper device */ 7657 netdev_for_each_upper_dev_rcu(dev, upper, iter) 7658 features = netdev_sync_upper_features(dev, upper, features); 7659 7660 if (dev->features == features) 7661 goto sync_lower; 7662 7663 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 7664 &dev->features, &features); 7665 7666 if (dev->netdev_ops->ndo_set_features) 7667 err = dev->netdev_ops->ndo_set_features(dev, features); 7668 else 7669 err = 0; 7670 7671 if (unlikely(err < 0)) { 7672 netdev_err(dev, 7673 "set_features() failed (%d); wanted %pNF, left %pNF\n", 7674 err, &features, &dev->features); 7675 /* return non-0 since some features might have changed and 7676 * it's better to fire a spurious notification than miss it 7677 */ 7678 return -1; 7679 } 7680 7681 sync_lower: 7682 /* some features must be disabled on lower devices when disabled 7683 * on an upper device (think: bonding master or bridge) 7684 */ 7685 netdev_for_each_lower_dev(dev, lower, iter) 7686 netdev_sync_lower_features(dev, lower, features); 7687 7688 if (!err) { 7689 netdev_features_t diff = features ^ dev->features; 7690 7691 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 7692 /* udp_tunnel_{get,drop}_rx_info both need 7693 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 7694 * device, or they won't do anything. 7695 * Thus we need to update dev->features 7696 * *before* calling udp_tunnel_get_rx_info, 7697 * but *after* calling udp_tunnel_drop_rx_info. 7698 */ 7699 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 7700 dev->features = features; 7701 udp_tunnel_get_rx_info(dev); 7702 } else { 7703 udp_tunnel_drop_rx_info(dev); 7704 } 7705 } 7706 7707 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 7708 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 7709 dev->features = features; 7710 err |= vlan_get_rx_ctag_filter_info(dev); 7711 } else { 7712 vlan_drop_rx_ctag_filter_info(dev); 7713 } 7714 } 7715 7716 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 7717 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 7718 dev->features = features; 7719 err |= vlan_get_rx_stag_filter_info(dev); 7720 } else { 7721 vlan_drop_rx_stag_filter_info(dev); 7722 } 7723 } 7724 7725 dev->features = features; 7726 } 7727 7728 return err < 0 ? 0 : 1; 7729 } 7730 7731 /** 7732 * netdev_update_features - recalculate device features 7733 * @dev: the device to check 7734 * 7735 * Recalculate dev->features set and send notifications if it 7736 * has changed. Should be called after driver or hardware dependent 7737 * conditions might have changed that influence the features. 7738 */ 7739 void netdev_update_features(struct net_device *dev) 7740 { 7741 if (__netdev_update_features(dev)) 7742 netdev_features_change(dev); 7743 } 7744 EXPORT_SYMBOL(netdev_update_features); 7745 7746 /** 7747 * netdev_change_features - recalculate device features 7748 * @dev: the device to check 7749 * 7750 * Recalculate dev->features set and send notifications even 7751 * if they have not changed. Should be called instead of 7752 * netdev_update_features() if also dev->vlan_features might 7753 * have changed to allow the changes to be propagated to stacked 7754 * VLAN devices. 7755 */ 7756 void netdev_change_features(struct net_device *dev) 7757 { 7758 __netdev_update_features(dev); 7759 netdev_features_change(dev); 7760 } 7761 EXPORT_SYMBOL(netdev_change_features); 7762 7763 /** 7764 * netif_stacked_transfer_operstate - transfer operstate 7765 * @rootdev: the root or lower level device to transfer state from 7766 * @dev: the device to transfer operstate to 7767 * 7768 * Transfer operational state from root to device. This is normally 7769 * called when a stacking relationship exists between the root 7770 * device and the device(a leaf device). 7771 */ 7772 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 7773 struct net_device *dev) 7774 { 7775 if (rootdev->operstate == IF_OPER_DORMANT) 7776 netif_dormant_on(dev); 7777 else 7778 netif_dormant_off(dev); 7779 7780 if (netif_carrier_ok(rootdev)) 7781 netif_carrier_on(dev); 7782 else 7783 netif_carrier_off(dev); 7784 } 7785 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 7786 7787 static int netif_alloc_rx_queues(struct net_device *dev) 7788 { 7789 unsigned int i, count = dev->num_rx_queues; 7790 struct netdev_rx_queue *rx; 7791 size_t sz = count * sizeof(*rx); 7792 int err = 0; 7793 7794 BUG_ON(count < 1); 7795 7796 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 7797 if (!rx) 7798 return -ENOMEM; 7799 7800 dev->_rx = rx; 7801 7802 for (i = 0; i < count; i++) { 7803 rx[i].dev = dev; 7804 7805 /* XDP RX-queue setup */ 7806 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i); 7807 if (err < 0) 7808 goto err_rxq_info; 7809 } 7810 return 0; 7811 7812 err_rxq_info: 7813 /* Rollback successful reg's and free other resources */ 7814 while (i--) 7815 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 7816 kvfree(dev->_rx); 7817 dev->_rx = NULL; 7818 return err; 7819 } 7820 7821 static void netif_free_rx_queues(struct net_device *dev) 7822 { 7823 unsigned int i, count = dev->num_rx_queues; 7824 7825 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 7826 if (!dev->_rx) 7827 return; 7828 7829 for (i = 0; i < count; i++) 7830 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 7831 7832 kvfree(dev->_rx); 7833 } 7834 7835 static void netdev_init_one_queue(struct net_device *dev, 7836 struct netdev_queue *queue, void *_unused) 7837 { 7838 /* Initialize queue lock */ 7839 spin_lock_init(&queue->_xmit_lock); 7840 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 7841 queue->xmit_lock_owner = -1; 7842 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 7843 queue->dev = dev; 7844 #ifdef CONFIG_BQL 7845 dql_init(&queue->dql, HZ); 7846 #endif 7847 } 7848 7849 static void netif_free_tx_queues(struct net_device *dev) 7850 { 7851 kvfree(dev->_tx); 7852 } 7853 7854 static int netif_alloc_netdev_queues(struct net_device *dev) 7855 { 7856 unsigned int count = dev->num_tx_queues; 7857 struct netdev_queue *tx; 7858 size_t sz = count * sizeof(*tx); 7859 7860 if (count < 1 || count > 0xffff) 7861 return -EINVAL; 7862 7863 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 7864 if (!tx) 7865 return -ENOMEM; 7866 7867 dev->_tx = tx; 7868 7869 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 7870 spin_lock_init(&dev->tx_global_lock); 7871 7872 return 0; 7873 } 7874 7875 void netif_tx_stop_all_queues(struct net_device *dev) 7876 { 7877 unsigned int i; 7878 7879 for (i = 0; i < dev->num_tx_queues; i++) { 7880 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 7881 7882 netif_tx_stop_queue(txq); 7883 } 7884 } 7885 EXPORT_SYMBOL(netif_tx_stop_all_queues); 7886 7887 /** 7888 * register_netdevice - register a network device 7889 * @dev: device to register 7890 * 7891 * Take a completed network device structure and add it to the kernel 7892 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 7893 * chain. 0 is returned on success. A negative errno code is returned 7894 * on a failure to set up the device, or if the name is a duplicate. 7895 * 7896 * Callers must hold the rtnl semaphore. You may want 7897 * register_netdev() instead of this. 7898 * 7899 * BUGS: 7900 * The locking appears insufficient to guarantee two parallel registers 7901 * will not get the same name. 7902 */ 7903 7904 int register_netdevice(struct net_device *dev) 7905 { 7906 int ret; 7907 struct net *net = dev_net(dev); 7908 7909 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 7910 NETDEV_FEATURE_COUNT); 7911 BUG_ON(dev_boot_phase); 7912 ASSERT_RTNL(); 7913 7914 might_sleep(); 7915 7916 /* When net_device's are persistent, this will be fatal. */ 7917 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 7918 BUG_ON(!net); 7919 7920 spin_lock_init(&dev->addr_list_lock); 7921 netdev_set_addr_lockdep_class(dev); 7922 7923 ret = dev_get_valid_name(net, dev, dev->name); 7924 if (ret < 0) 7925 goto out; 7926 7927 /* Init, if this function is available */ 7928 if (dev->netdev_ops->ndo_init) { 7929 ret = dev->netdev_ops->ndo_init(dev); 7930 if (ret) { 7931 if (ret > 0) 7932 ret = -EIO; 7933 goto out; 7934 } 7935 } 7936 7937 if (((dev->hw_features | dev->features) & 7938 NETIF_F_HW_VLAN_CTAG_FILTER) && 7939 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 7940 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 7941 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 7942 ret = -EINVAL; 7943 goto err_uninit; 7944 } 7945 7946 ret = -EBUSY; 7947 if (!dev->ifindex) 7948 dev->ifindex = dev_new_index(net); 7949 else if (__dev_get_by_index(net, dev->ifindex)) 7950 goto err_uninit; 7951 7952 /* Transfer changeable features to wanted_features and enable 7953 * software offloads (GSO and GRO). 7954 */ 7955 dev->hw_features |= NETIF_F_SOFT_FEATURES; 7956 dev->features |= NETIF_F_SOFT_FEATURES; 7957 7958 if (dev->netdev_ops->ndo_udp_tunnel_add) { 7959 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 7960 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 7961 } 7962 7963 dev->wanted_features = dev->features & dev->hw_features; 7964 7965 if (!(dev->flags & IFF_LOOPBACK)) 7966 dev->hw_features |= NETIF_F_NOCACHE_COPY; 7967 7968 /* If IPv4 TCP segmentation offload is supported we should also 7969 * allow the device to enable segmenting the frame with the option 7970 * of ignoring a static IP ID value. This doesn't enable the 7971 * feature itself but allows the user to enable it later. 7972 */ 7973 if (dev->hw_features & NETIF_F_TSO) 7974 dev->hw_features |= NETIF_F_TSO_MANGLEID; 7975 if (dev->vlan_features & NETIF_F_TSO) 7976 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 7977 if (dev->mpls_features & NETIF_F_TSO) 7978 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 7979 if (dev->hw_enc_features & NETIF_F_TSO) 7980 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 7981 7982 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 7983 */ 7984 dev->vlan_features |= NETIF_F_HIGHDMA; 7985 7986 /* Make NETIF_F_SG inheritable to tunnel devices. 7987 */ 7988 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 7989 7990 /* Make NETIF_F_SG inheritable to MPLS. 7991 */ 7992 dev->mpls_features |= NETIF_F_SG; 7993 7994 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 7995 ret = notifier_to_errno(ret); 7996 if (ret) 7997 goto err_uninit; 7998 7999 ret = netdev_register_kobject(dev); 8000 if (ret) 8001 goto err_uninit; 8002 dev->reg_state = NETREG_REGISTERED; 8003 8004 __netdev_update_features(dev); 8005 8006 /* 8007 * Default initial state at registry is that the 8008 * device is present. 8009 */ 8010 8011 set_bit(__LINK_STATE_PRESENT, &dev->state); 8012 8013 linkwatch_init_dev(dev); 8014 8015 dev_init_scheduler(dev); 8016 dev_hold(dev); 8017 list_netdevice(dev); 8018 add_device_randomness(dev->dev_addr, dev->addr_len); 8019 8020 /* If the device has permanent device address, driver should 8021 * set dev_addr and also addr_assign_type should be set to 8022 * NET_ADDR_PERM (default value). 8023 */ 8024 if (dev->addr_assign_type == NET_ADDR_PERM) 8025 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 8026 8027 /* Notify protocols, that a new device appeared. */ 8028 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 8029 ret = notifier_to_errno(ret); 8030 if (ret) { 8031 rollback_registered(dev); 8032 dev->reg_state = NETREG_UNREGISTERED; 8033 } 8034 /* 8035 * Prevent userspace races by waiting until the network 8036 * device is fully setup before sending notifications. 8037 */ 8038 if (!dev->rtnl_link_ops || 8039 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 8040 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 8041 8042 out: 8043 return ret; 8044 8045 err_uninit: 8046 if (dev->netdev_ops->ndo_uninit) 8047 dev->netdev_ops->ndo_uninit(dev); 8048 if (dev->priv_destructor) 8049 dev->priv_destructor(dev); 8050 goto out; 8051 } 8052 EXPORT_SYMBOL(register_netdevice); 8053 8054 /** 8055 * init_dummy_netdev - init a dummy network device for NAPI 8056 * @dev: device to init 8057 * 8058 * This takes a network device structure and initialize the minimum 8059 * amount of fields so it can be used to schedule NAPI polls without 8060 * registering a full blown interface. This is to be used by drivers 8061 * that need to tie several hardware interfaces to a single NAPI 8062 * poll scheduler due to HW limitations. 8063 */ 8064 int init_dummy_netdev(struct net_device *dev) 8065 { 8066 /* Clear everything. Note we don't initialize spinlocks 8067 * are they aren't supposed to be taken by any of the 8068 * NAPI code and this dummy netdev is supposed to be 8069 * only ever used for NAPI polls 8070 */ 8071 memset(dev, 0, sizeof(struct net_device)); 8072 8073 /* make sure we BUG if trying to hit standard 8074 * register/unregister code path 8075 */ 8076 dev->reg_state = NETREG_DUMMY; 8077 8078 /* NAPI wants this */ 8079 INIT_LIST_HEAD(&dev->napi_list); 8080 8081 /* a dummy interface is started by default */ 8082 set_bit(__LINK_STATE_PRESENT, &dev->state); 8083 set_bit(__LINK_STATE_START, &dev->state); 8084 8085 /* Note : We dont allocate pcpu_refcnt for dummy devices, 8086 * because users of this 'device' dont need to change 8087 * its refcount. 8088 */ 8089 8090 return 0; 8091 } 8092 EXPORT_SYMBOL_GPL(init_dummy_netdev); 8093 8094 8095 /** 8096 * register_netdev - register a network device 8097 * @dev: device to register 8098 * 8099 * Take a completed network device structure and add it to the kernel 8100 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 8101 * chain. 0 is returned on success. A negative errno code is returned 8102 * on a failure to set up the device, or if the name is a duplicate. 8103 * 8104 * This is a wrapper around register_netdevice that takes the rtnl semaphore 8105 * and expands the device name if you passed a format string to 8106 * alloc_netdev. 8107 */ 8108 int register_netdev(struct net_device *dev) 8109 { 8110 int err; 8111 8112 if (rtnl_lock_killable()) 8113 return -EINTR; 8114 err = register_netdevice(dev); 8115 rtnl_unlock(); 8116 return err; 8117 } 8118 EXPORT_SYMBOL(register_netdev); 8119 8120 int netdev_refcnt_read(const struct net_device *dev) 8121 { 8122 int i, refcnt = 0; 8123 8124 for_each_possible_cpu(i) 8125 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 8126 return refcnt; 8127 } 8128 EXPORT_SYMBOL(netdev_refcnt_read); 8129 8130 /** 8131 * netdev_wait_allrefs - wait until all references are gone. 8132 * @dev: target net_device 8133 * 8134 * This is called when unregistering network devices. 8135 * 8136 * Any protocol or device that holds a reference should register 8137 * for netdevice notification, and cleanup and put back the 8138 * reference if they receive an UNREGISTER event. 8139 * We can get stuck here if buggy protocols don't correctly 8140 * call dev_put. 8141 */ 8142 static void netdev_wait_allrefs(struct net_device *dev) 8143 { 8144 unsigned long rebroadcast_time, warning_time; 8145 int refcnt; 8146 8147 linkwatch_forget_dev(dev); 8148 8149 rebroadcast_time = warning_time = jiffies; 8150 refcnt = netdev_refcnt_read(dev); 8151 8152 while (refcnt != 0) { 8153 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 8154 rtnl_lock(); 8155 8156 /* Rebroadcast unregister notification */ 8157 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8158 8159 __rtnl_unlock(); 8160 rcu_barrier(); 8161 rtnl_lock(); 8162 8163 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 8164 &dev->state)) { 8165 /* We must not have linkwatch events 8166 * pending on unregister. If this 8167 * happens, we simply run the queue 8168 * unscheduled, resulting in a noop 8169 * for this device. 8170 */ 8171 linkwatch_run_queue(); 8172 } 8173 8174 __rtnl_unlock(); 8175 8176 rebroadcast_time = jiffies; 8177 } 8178 8179 msleep(250); 8180 8181 refcnt = netdev_refcnt_read(dev); 8182 8183 if (time_after(jiffies, warning_time + 10 * HZ)) { 8184 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 8185 dev->name, refcnt); 8186 warning_time = jiffies; 8187 } 8188 } 8189 } 8190 8191 /* The sequence is: 8192 * 8193 * rtnl_lock(); 8194 * ... 8195 * register_netdevice(x1); 8196 * register_netdevice(x2); 8197 * ... 8198 * unregister_netdevice(y1); 8199 * unregister_netdevice(y2); 8200 * ... 8201 * rtnl_unlock(); 8202 * free_netdev(y1); 8203 * free_netdev(y2); 8204 * 8205 * We are invoked by rtnl_unlock(). 8206 * This allows us to deal with problems: 8207 * 1) We can delete sysfs objects which invoke hotplug 8208 * without deadlocking with linkwatch via keventd. 8209 * 2) Since we run with the RTNL semaphore not held, we can sleep 8210 * safely in order to wait for the netdev refcnt to drop to zero. 8211 * 8212 * We must not return until all unregister events added during 8213 * the interval the lock was held have been completed. 8214 */ 8215 void netdev_run_todo(void) 8216 { 8217 struct list_head list; 8218 8219 /* Snapshot list, allow later requests */ 8220 list_replace_init(&net_todo_list, &list); 8221 8222 __rtnl_unlock(); 8223 8224 8225 /* Wait for rcu callbacks to finish before next phase */ 8226 if (!list_empty(&list)) 8227 rcu_barrier(); 8228 8229 while (!list_empty(&list)) { 8230 struct net_device *dev 8231 = list_first_entry(&list, struct net_device, todo_list); 8232 list_del(&dev->todo_list); 8233 8234 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 8235 pr_err("network todo '%s' but state %d\n", 8236 dev->name, dev->reg_state); 8237 dump_stack(); 8238 continue; 8239 } 8240 8241 dev->reg_state = NETREG_UNREGISTERED; 8242 8243 netdev_wait_allrefs(dev); 8244 8245 /* paranoia */ 8246 BUG_ON(netdev_refcnt_read(dev)); 8247 BUG_ON(!list_empty(&dev->ptype_all)); 8248 BUG_ON(!list_empty(&dev->ptype_specific)); 8249 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 8250 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 8251 #if IS_ENABLED(CONFIG_DECNET) 8252 WARN_ON(dev->dn_ptr); 8253 #endif 8254 if (dev->priv_destructor) 8255 dev->priv_destructor(dev); 8256 if (dev->needs_free_netdev) 8257 free_netdev(dev); 8258 8259 /* Report a network device has been unregistered */ 8260 rtnl_lock(); 8261 dev_net(dev)->dev_unreg_count--; 8262 __rtnl_unlock(); 8263 wake_up(&netdev_unregistering_wq); 8264 8265 /* Free network device */ 8266 kobject_put(&dev->dev.kobj); 8267 } 8268 } 8269 8270 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 8271 * all the same fields in the same order as net_device_stats, with only 8272 * the type differing, but rtnl_link_stats64 may have additional fields 8273 * at the end for newer counters. 8274 */ 8275 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 8276 const struct net_device_stats *netdev_stats) 8277 { 8278 #if BITS_PER_LONG == 64 8279 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 8280 memcpy(stats64, netdev_stats, sizeof(*netdev_stats)); 8281 /* zero out counters that only exist in rtnl_link_stats64 */ 8282 memset((char *)stats64 + sizeof(*netdev_stats), 0, 8283 sizeof(*stats64) - sizeof(*netdev_stats)); 8284 #else 8285 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 8286 const unsigned long *src = (const unsigned long *)netdev_stats; 8287 u64 *dst = (u64 *)stats64; 8288 8289 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 8290 for (i = 0; i < n; i++) 8291 dst[i] = src[i]; 8292 /* zero out counters that only exist in rtnl_link_stats64 */ 8293 memset((char *)stats64 + n * sizeof(u64), 0, 8294 sizeof(*stats64) - n * sizeof(u64)); 8295 #endif 8296 } 8297 EXPORT_SYMBOL(netdev_stats_to_stats64); 8298 8299 /** 8300 * dev_get_stats - get network device statistics 8301 * @dev: device to get statistics from 8302 * @storage: place to store stats 8303 * 8304 * Get network statistics from device. Return @storage. 8305 * The device driver may provide its own method by setting 8306 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 8307 * otherwise the internal statistics structure is used. 8308 */ 8309 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 8310 struct rtnl_link_stats64 *storage) 8311 { 8312 const struct net_device_ops *ops = dev->netdev_ops; 8313 8314 if (ops->ndo_get_stats64) { 8315 memset(storage, 0, sizeof(*storage)); 8316 ops->ndo_get_stats64(dev, storage); 8317 } else if (ops->ndo_get_stats) { 8318 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 8319 } else { 8320 netdev_stats_to_stats64(storage, &dev->stats); 8321 } 8322 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped); 8323 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped); 8324 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler); 8325 return storage; 8326 } 8327 EXPORT_SYMBOL(dev_get_stats); 8328 8329 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 8330 { 8331 struct netdev_queue *queue = dev_ingress_queue(dev); 8332 8333 #ifdef CONFIG_NET_CLS_ACT 8334 if (queue) 8335 return queue; 8336 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 8337 if (!queue) 8338 return NULL; 8339 netdev_init_one_queue(dev, queue, NULL); 8340 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 8341 queue->qdisc_sleeping = &noop_qdisc; 8342 rcu_assign_pointer(dev->ingress_queue, queue); 8343 #endif 8344 return queue; 8345 } 8346 8347 static const struct ethtool_ops default_ethtool_ops; 8348 8349 void netdev_set_default_ethtool_ops(struct net_device *dev, 8350 const struct ethtool_ops *ops) 8351 { 8352 if (dev->ethtool_ops == &default_ethtool_ops) 8353 dev->ethtool_ops = ops; 8354 } 8355 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 8356 8357 void netdev_freemem(struct net_device *dev) 8358 { 8359 char *addr = (char *)dev - dev->padded; 8360 8361 kvfree(addr); 8362 } 8363 8364 /** 8365 * alloc_netdev_mqs - allocate network device 8366 * @sizeof_priv: size of private data to allocate space for 8367 * @name: device name format string 8368 * @name_assign_type: origin of device name 8369 * @setup: callback to initialize device 8370 * @txqs: the number of TX subqueues to allocate 8371 * @rxqs: the number of RX subqueues to allocate 8372 * 8373 * Allocates a struct net_device with private data area for driver use 8374 * and performs basic initialization. Also allocates subqueue structs 8375 * for each queue on the device. 8376 */ 8377 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 8378 unsigned char name_assign_type, 8379 void (*setup)(struct net_device *), 8380 unsigned int txqs, unsigned int rxqs) 8381 { 8382 struct net_device *dev; 8383 unsigned int alloc_size; 8384 struct net_device *p; 8385 8386 BUG_ON(strlen(name) >= sizeof(dev->name)); 8387 8388 if (txqs < 1) { 8389 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 8390 return NULL; 8391 } 8392 8393 if (rxqs < 1) { 8394 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 8395 return NULL; 8396 } 8397 8398 alloc_size = sizeof(struct net_device); 8399 if (sizeof_priv) { 8400 /* ensure 32-byte alignment of private area */ 8401 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 8402 alloc_size += sizeof_priv; 8403 } 8404 /* ensure 32-byte alignment of whole construct */ 8405 alloc_size += NETDEV_ALIGN - 1; 8406 8407 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 8408 if (!p) 8409 return NULL; 8410 8411 dev = PTR_ALIGN(p, NETDEV_ALIGN); 8412 dev->padded = (char *)dev - (char *)p; 8413 8414 dev->pcpu_refcnt = alloc_percpu(int); 8415 if (!dev->pcpu_refcnt) 8416 goto free_dev; 8417 8418 if (dev_addr_init(dev)) 8419 goto free_pcpu; 8420 8421 dev_mc_init(dev); 8422 dev_uc_init(dev); 8423 8424 dev_net_set(dev, &init_net); 8425 8426 dev->gso_max_size = GSO_MAX_SIZE; 8427 dev->gso_max_segs = GSO_MAX_SEGS; 8428 8429 INIT_LIST_HEAD(&dev->napi_list); 8430 INIT_LIST_HEAD(&dev->unreg_list); 8431 INIT_LIST_HEAD(&dev->close_list); 8432 INIT_LIST_HEAD(&dev->link_watch_list); 8433 INIT_LIST_HEAD(&dev->adj_list.upper); 8434 INIT_LIST_HEAD(&dev->adj_list.lower); 8435 INIT_LIST_HEAD(&dev->ptype_all); 8436 INIT_LIST_HEAD(&dev->ptype_specific); 8437 #ifdef CONFIG_NET_SCHED 8438 hash_init(dev->qdisc_hash); 8439 #endif 8440 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 8441 setup(dev); 8442 8443 if (!dev->tx_queue_len) { 8444 dev->priv_flags |= IFF_NO_QUEUE; 8445 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 8446 } 8447 8448 dev->num_tx_queues = txqs; 8449 dev->real_num_tx_queues = txqs; 8450 if (netif_alloc_netdev_queues(dev)) 8451 goto free_all; 8452 8453 dev->num_rx_queues = rxqs; 8454 dev->real_num_rx_queues = rxqs; 8455 if (netif_alloc_rx_queues(dev)) 8456 goto free_all; 8457 8458 strcpy(dev->name, name); 8459 dev->name_assign_type = name_assign_type; 8460 dev->group = INIT_NETDEV_GROUP; 8461 if (!dev->ethtool_ops) 8462 dev->ethtool_ops = &default_ethtool_ops; 8463 8464 nf_hook_ingress_init(dev); 8465 8466 return dev; 8467 8468 free_all: 8469 free_netdev(dev); 8470 return NULL; 8471 8472 free_pcpu: 8473 free_percpu(dev->pcpu_refcnt); 8474 free_dev: 8475 netdev_freemem(dev); 8476 return NULL; 8477 } 8478 EXPORT_SYMBOL(alloc_netdev_mqs); 8479 8480 /** 8481 * free_netdev - free network device 8482 * @dev: device 8483 * 8484 * This function does the last stage of destroying an allocated device 8485 * interface. The reference to the device object is released. If this 8486 * is the last reference then it will be freed.Must be called in process 8487 * context. 8488 */ 8489 void free_netdev(struct net_device *dev) 8490 { 8491 struct napi_struct *p, *n; 8492 8493 might_sleep(); 8494 netif_free_tx_queues(dev); 8495 netif_free_rx_queues(dev); 8496 8497 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 8498 8499 /* Flush device addresses */ 8500 dev_addr_flush(dev); 8501 8502 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 8503 netif_napi_del(p); 8504 8505 free_percpu(dev->pcpu_refcnt); 8506 dev->pcpu_refcnt = NULL; 8507 8508 /* Compatibility with error handling in drivers */ 8509 if (dev->reg_state == NETREG_UNINITIALIZED) { 8510 netdev_freemem(dev); 8511 return; 8512 } 8513 8514 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 8515 dev->reg_state = NETREG_RELEASED; 8516 8517 /* will free via device release */ 8518 put_device(&dev->dev); 8519 } 8520 EXPORT_SYMBOL(free_netdev); 8521 8522 /** 8523 * synchronize_net - Synchronize with packet receive processing 8524 * 8525 * Wait for packets currently being received to be done. 8526 * Does not block later packets from starting. 8527 */ 8528 void synchronize_net(void) 8529 { 8530 might_sleep(); 8531 if (rtnl_is_locked()) 8532 synchronize_rcu_expedited(); 8533 else 8534 synchronize_rcu(); 8535 } 8536 EXPORT_SYMBOL(synchronize_net); 8537 8538 /** 8539 * unregister_netdevice_queue - remove device from the kernel 8540 * @dev: device 8541 * @head: list 8542 * 8543 * This function shuts down a device interface and removes it 8544 * from the kernel tables. 8545 * If head not NULL, device is queued to be unregistered later. 8546 * 8547 * Callers must hold the rtnl semaphore. You may want 8548 * unregister_netdev() instead of this. 8549 */ 8550 8551 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 8552 { 8553 ASSERT_RTNL(); 8554 8555 if (head) { 8556 list_move_tail(&dev->unreg_list, head); 8557 } else { 8558 rollback_registered(dev); 8559 /* Finish processing unregister after unlock */ 8560 net_set_todo(dev); 8561 } 8562 } 8563 EXPORT_SYMBOL(unregister_netdevice_queue); 8564 8565 /** 8566 * unregister_netdevice_many - unregister many devices 8567 * @head: list of devices 8568 * 8569 * Note: As most callers use a stack allocated list_head, 8570 * we force a list_del() to make sure stack wont be corrupted later. 8571 */ 8572 void unregister_netdevice_many(struct list_head *head) 8573 { 8574 struct net_device *dev; 8575 8576 if (!list_empty(head)) { 8577 rollback_registered_many(head); 8578 list_for_each_entry(dev, head, unreg_list) 8579 net_set_todo(dev); 8580 list_del(head); 8581 } 8582 } 8583 EXPORT_SYMBOL(unregister_netdevice_many); 8584 8585 /** 8586 * unregister_netdev - remove device from the kernel 8587 * @dev: device 8588 * 8589 * This function shuts down a device interface and removes it 8590 * from the kernel tables. 8591 * 8592 * This is just a wrapper for unregister_netdevice that takes 8593 * the rtnl semaphore. In general you want to use this and not 8594 * unregister_netdevice. 8595 */ 8596 void unregister_netdev(struct net_device *dev) 8597 { 8598 rtnl_lock(); 8599 unregister_netdevice(dev); 8600 rtnl_unlock(); 8601 } 8602 EXPORT_SYMBOL(unregister_netdev); 8603 8604 /** 8605 * dev_change_net_namespace - move device to different nethost namespace 8606 * @dev: device 8607 * @net: network namespace 8608 * @pat: If not NULL name pattern to try if the current device name 8609 * is already taken in the destination network namespace. 8610 * 8611 * This function shuts down a device interface and moves it 8612 * to a new network namespace. On success 0 is returned, on 8613 * a failure a netagive errno code is returned. 8614 * 8615 * Callers must hold the rtnl semaphore. 8616 */ 8617 8618 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 8619 { 8620 int err, new_nsid, new_ifindex; 8621 8622 ASSERT_RTNL(); 8623 8624 /* Don't allow namespace local devices to be moved. */ 8625 err = -EINVAL; 8626 if (dev->features & NETIF_F_NETNS_LOCAL) 8627 goto out; 8628 8629 /* Ensure the device has been registrered */ 8630 if (dev->reg_state != NETREG_REGISTERED) 8631 goto out; 8632 8633 /* Get out if there is nothing todo */ 8634 err = 0; 8635 if (net_eq(dev_net(dev), net)) 8636 goto out; 8637 8638 /* Pick the destination device name, and ensure 8639 * we can use it in the destination network namespace. 8640 */ 8641 err = -EEXIST; 8642 if (__dev_get_by_name(net, dev->name)) { 8643 /* We get here if we can't use the current device name */ 8644 if (!pat) 8645 goto out; 8646 err = dev_get_valid_name(net, dev, pat); 8647 if (err < 0) 8648 goto out; 8649 } 8650 8651 /* 8652 * And now a mini version of register_netdevice unregister_netdevice. 8653 */ 8654 8655 /* If device is running close it first. */ 8656 dev_close(dev); 8657 8658 /* And unlink it from device chain */ 8659 unlist_netdevice(dev); 8660 8661 synchronize_net(); 8662 8663 /* Shutdown queueing discipline. */ 8664 dev_shutdown(dev); 8665 8666 /* Notify protocols, that we are about to destroy 8667 * this device. They should clean all the things. 8668 * 8669 * Note that dev->reg_state stays at NETREG_REGISTERED. 8670 * This is wanted because this way 8021q and macvlan know 8671 * the device is just moving and can keep their slaves up. 8672 */ 8673 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8674 rcu_barrier(); 8675 8676 new_nsid = peernet2id_alloc(dev_net(dev), net); 8677 /* If there is an ifindex conflict assign a new one */ 8678 if (__dev_get_by_index(net, dev->ifindex)) 8679 new_ifindex = dev_new_index(net); 8680 else 8681 new_ifindex = dev->ifindex; 8682 8683 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 8684 new_ifindex); 8685 8686 /* 8687 * Flush the unicast and multicast chains 8688 */ 8689 dev_uc_flush(dev); 8690 dev_mc_flush(dev); 8691 8692 /* Send a netdev-removed uevent to the old namespace */ 8693 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 8694 netdev_adjacent_del_links(dev); 8695 8696 /* Actually switch the network namespace */ 8697 dev_net_set(dev, net); 8698 dev->ifindex = new_ifindex; 8699 8700 /* Send a netdev-add uevent to the new namespace */ 8701 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 8702 netdev_adjacent_add_links(dev); 8703 8704 /* Fixup kobjects */ 8705 err = device_rename(&dev->dev, dev->name); 8706 WARN_ON(err); 8707 8708 /* Add the device back in the hashes */ 8709 list_netdevice(dev); 8710 8711 /* Notify protocols, that a new device appeared. */ 8712 call_netdevice_notifiers(NETDEV_REGISTER, dev); 8713 8714 /* 8715 * Prevent userspace races by waiting until the network 8716 * device is fully setup before sending notifications. 8717 */ 8718 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 8719 8720 synchronize_net(); 8721 err = 0; 8722 out: 8723 return err; 8724 } 8725 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 8726 8727 static int dev_cpu_dead(unsigned int oldcpu) 8728 { 8729 struct sk_buff **list_skb; 8730 struct sk_buff *skb; 8731 unsigned int cpu; 8732 struct softnet_data *sd, *oldsd, *remsd = NULL; 8733 8734 local_irq_disable(); 8735 cpu = smp_processor_id(); 8736 sd = &per_cpu(softnet_data, cpu); 8737 oldsd = &per_cpu(softnet_data, oldcpu); 8738 8739 /* Find end of our completion_queue. */ 8740 list_skb = &sd->completion_queue; 8741 while (*list_skb) 8742 list_skb = &(*list_skb)->next; 8743 /* Append completion queue from offline CPU. */ 8744 *list_skb = oldsd->completion_queue; 8745 oldsd->completion_queue = NULL; 8746 8747 /* Append output queue from offline CPU. */ 8748 if (oldsd->output_queue) { 8749 *sd->output_queue_tailp = oldsd->output_queue; 8750 sd->output_queue_tailp = oldsd->output_queue_tailp; 8751 oldsd->output_queue = NULL; 8752 oldsd->output_queue_tailp = &oldsd->output_queue; 8753 } 8754 /* Append NAPI poll list from offline CPU, with one exception : 8755 * process_backlog() must be called by cpu owning percpu backlog. 8756 * We properly handle process_queue & input_pkt_queue later. 8757 */ 8758 while (!list_empty(&oldsd->poll_list)) { 8759 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 8760 struct napi_struct, 8761 poll_list); 8762 8763 list_del_init(&napi->poll_list); 8764 if (napi->poll == process_backlog) 8765 napi->state = 0; 8766 else 8767 ____napi_schedule(sd, napi); 8768 } 8769 8770 raise_softirq_irqoff(NET_TX_SOFTIRQ); 8771 local_irq_enable(); 8772 8773 #ifdef CONFIG_RPS 8774 remsd = oldsd->rps_ipi_list; 8775 oldsd->rps_ipi_list = NULL; 8776 #endif 8777 /* send out pending IPI's on offline CPU */ 8778 net_rps_send_ipi(remsd); 8779 8780 /* Process offline CPU's input_pkt_queue */ 8781 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 8782 netif_rx_ni(skb); 8783 input_queue_head_incr(oldsd); 8784 } 8785 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 8786 netif_rx_ni(skb); 8787 input_queue_head_incr(oldsd); 8788 } 8789 8790 return 0; 8791 } 8792 8793 /** 8794 * netdev_increment_features - increment feature set by one 8795 * @all: current feature set 8796 * @one: new feature set 8797 * @mask: mask feature set 8798 * 8799 * Computes a new feature set after adding a device with feature set 8800 * @one to the master device with current feature set @all. Will not 8801 * enable anything that is off in @mask. Returns the new feature set. 8802 */ 8803 netdev_features_t netdev_increment_features(netdev_features_t all, 8804 netdev_features_t one, netdev_features_t mask) 8805 { 8806 if (mask & NETIF_F_HW_CSUM) 8807 mask |= NETIF_F_CSUM_MASK; 8808 mask |= NETIF_F_VLAN_CHALLENGED; 8809 8810 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 8811 all &= one | ~NETIF_F_ALL_FOR_ALL; 8812 8813 /* If one device supports hw checksumming, set for all. */ 8814 if (all & NETIF_F_HW_CSUM) 8815 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 8816 8817 return all; 8818 } 8819 EXPORT_SYMBOL(netdev_increment_features); 8820 8821 static struct hlist_head * __net_init netdev_create_hash(void) 8822 { 8823 int i; 8824 struct hlist_head *hash; 8825 8826 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 8827 if (hash != NULL) 8828 for (i = 0; i < NETDEV_HASHENTRIES; i++) 8829 INIT_HLIST_HEAD(&hash[i]); 8830 8831 return hash; 8832 } 8833 8834 /* Initialize per network namespace state */ 8835 static int __net_init netdev_init(struct net *net) 8836 { 8837 if (net != &init_net) 8838 INIT_LIST_HEAD(&net->dev_base_head); 8839 8840 net->dev_name_head = netdev_create_hash(); 8841 if (net->dev_name_head == NULL) 8842 goto err_name; 8843 8844 net->dev_index_head = netdev_create_hash(); 8845 if (net->dev_index_head == NULL) 8846 goto err_idx; 8847 8848 return 0; 8849 8850 err_idx: 8851 kfree(net->dev_name_head); 8852 err_name: 8853 return -ENOMEM; 8854 } 8855 8856 /** 8857 * netdev_drivername - network driver for the device 8858 * @dev: network device 8859 * 8860 * Determine network driver for device. 8861 */ 8862 const char *netdev_drivername(const struct net_device *dev) 8863 { 8864 const struct device_driver *driver; 8865 const struct device *parent; 8866 const char *empty = ""; 8867 8868 parent = dev->dev.parent; 8869 if (!parent) 8870 return empty; 8871 8872 driver = parent->driver; 8873 if (driver && driver->name) 8874 return driver->name; 8875 return empty; 8876 } 8877 8878 static void __netdev_printk(const char *level, const struct net_device *dev, 8879 struct va_format *vaf) 8880 { 8881 if (dev && dev->dev.parent) { 8882 dev_printk_emit(level[1] - '0', 8883 dev->dev.parent, 8884 "%s %s %s%s: %pV", 8885 dev_driver_string(dev->dev.parent), 8886 dev_name(dev->dev.parent), 8887 netdev_name(dev), netdev_reg_state(dev), 8888 vaf); 8889 } else if (dev) { 8890 printk("%s%s%s: %pV", 8891 level, netdev_name(dev), netdev_reg_state(dev), vaf); 8892 } else { 8893 printk("%s(NULL net_device): %pV", level, vaf); 8894 } 8895 } 8896 8897 void netdev_printk(const char *level, const struct net_device *dev, 8898 const char *format, ...) 8899 { 8900 struct va_format vaf; 8901 va_list args; 8902 8903 va_start(args, format); 8904 8905 vaf.fmt = format; 8906 vaf.va = &args; 8907 8908 __netdev_printk(level, dev, &vaf); 8909 8910 va_end(args); 8911 } 8912 EXPORT_SYMBOL(netdev_printk); 8913 8914 #define define_netdev_printk_level(func, level) \ 8915 void func(const struct net_device *dev, const char *fmt, ...) \ 8916 { \ 8917 struct va_format vaf; \ 8918 va_list args; \ 8919 \ 8920 va_start(args, fmt); \ 8921 \ 8922 vaf.fmt = fmt; \ 8923 vaf.va = &args; \ 8924 \ 8925 __netdev_printk(level, dev, &vaf); \ 8926 \ 8927 va_end(args); \ 8928 } \ 8929 EXPORT_SYMBOL(func); 8930 8931 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 8932 define_netdev_printk_level(netdev_alert, KERN_ALERT); 8933 define_netdev_printk_level(netdev_crit, KERN_CRIT); 8934 define_netdev_printk_level(netdev_err, KERN_ERR); 8935 define_netdev_printk_level(netdev_warn, KERN_WARNING); 8936 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 8937 define_netdev_printk_level(netdev_info, KERN_INFO); 8938 8939 static void __net_exit netdev_exit(struct net *net) 8940 { 8941 kfree(net->dev_name_head); 8942 kfree(net->dev_index_head); 8943 if (net != &init_net) 8944 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 8945 } 8946 8947 static struct pernet_operations __net_initdata netdev_net_ops = { 8948 .init = netdev_init, 8949 .exit = netdev_exit, 8950 }; 8951 8952 static void __net_exit default_device_exit(struct net *net) 8953 { 8954 struct net_device *dev, *aux; 8955 /* 8956 * Push all migratable network devices back to the 8957 * initial network namespace 8958 */ 8959 rtnl_lock(); 8960 for_each_netdev_safe(net, dev, aux) { 8961 int err; 8962 char fb_name[IFNAMSIZ]; 8963 8964 /* Ignore unmoveable devices (i.e. loopback) */ 8965 if (dev->features & NETIF_F_NETNS_LOCAL) 8966 continue; 8967 8968 /* Leave virtual devices for the generic cleanup */ 8969 if (dev->rtnl_link_ops) 8970 continue; 8971 8972 /* Push remaining network devices to init_net */ 8973 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 8974 err = dev_change_net_namespace(dev, &init_net, fb_name); 8975 if (err) { 8976 pr_emerg("%s: failed to move %s to init_net: %d\n", 8977 __func__, dev->name, err); 8978 BUG(); 8979 } 8980 } 8981 rtnl_unlock(); 8982 } 8983 8984 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 8985 { 8986 /* Return with the rtnl_lock held when there are no network 8987 * devices unregistering in any network namespace in net_list. 8988 */ 8989 struct net *net; 8990 bool unregistering; 8991 DEFINE_WAIT_FUNC(wait, woken_wake_function); 8992 8993 add_wait_queue(&netdev_unregistering_wq, &wait); 8994 for (;;) { 8995 unregistering = false; 8996 rtnl_lock(); 8997 list_for_each_entry(net, net_list, exit_list) { 8998 if (net->dev_unreg_count > 0) { 8999 unregistering = true; 9000 break; 9001 } 9002 } 9003 if (!unregistering) 9004 break; 9005 __rtnl_unlock(); 9006 9007 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 9008 } 9009 remove_wait_queue(&netdev_unregistering_wq, &wait); 9010 } 9011 9012 static void __net_exit default_device_exit_batch(struct list_head *net_list) 9013 { 9014 /* At exit all network devices most be removed from a network 9015 * namespace. Do this in the reverse order of registration. 9016 * Do this across as many network namespaces as possible to 9017 * improve batching efficiency. 9018 */ 9019 struct net_device *dev; 9020 struct net *net; 9021 LIST_HEAD(dev_kill_list); 9022 9023 /* To prevent network device cleanup code from dereferencing 9024 * loopback devices or network devices that have been freed 9025 * wait here for all pending unregistrations to complete, 9026 * before unregistring the loopback device and allowing the 9027 * network namespace be freed. 9028 * 9029 * The netdev todo list containing all network devices 9030 * unregistrations that happen in default_device_exit_batch 9031 * will run in the rtnl_unlock() at the end of 9032 * default_device_exit_batch. 9033 */ 9034 rtnl_lock_unregistering(net_list); 9035 list_for_each_entry(net, net_list, exit_list) { 9036 for_each_netdev_reverse(net, dev) { 9037 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 9038 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 9039 else 9040 unregister_netdevice_queue(dev, &dev_kill_list); 9041 } 9042 } 9043 unregister_netdevice_many(&dev_kill_list); 9044 rtnl_unlock(); 9045 } 9046 9047 static struct pernet_operations __net_initdata default_device_ops = { 9048 .exit = default_device_exit, 9049 .exit_batch = default_device_exit_batch, 9050 }; 9051 9052 /* 9053 * Initialize the DEV module. At boot time this walks the device list and 9054 * unhooks any devices that fail to initialise (normally hardware not 9055 * present) and leaves us with a valid list of present and active devices. 9056 * 9057 */ 9058 9059 /* 9060 * This is called single threaded during boot, so no need 9061 * to take the rtnl semaphore. 9062 */ 9063 static int __init net_dev_init(void) 9064 { 9065 int i, rc = -ENOMEM; 9066 9067 BUG_ON(!dev_boot_phase); 9068 9069 if (dev_proc_init()) 9070 goto out; 9071 9072 if (netdev_kobject_init()) 9073 goto out; 9074 9075 INIT_LIST_HEAD(&ptype_all); 9076 for (i = 0; i < PTYPE_HASH_SIZE; i++) 9077 INIT_LIST_HEAD(&ptype_base[i]); 9078 9079 INIT_LIST_HEAD(&offload_base); 9080 9081 if (register_pernet_subsys(&netdev_net_ops)) 9082 goto out; 9083 9084 /* 9085 * Initialise the packet receive queues. 9086 */ 9087 9088 for_each_possible_cpu(i) { 9089 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 9090 struct softnet_data *sd = &per_cpu(softnet_data, i); 9091 9092 INIT_WORK(flush, flush_backlog); 9093 9094 skb_queue_head_init(&sd->input_pkt_queue); 9095 skb_queue_head_init(&sd->process_queue); 9096 #ifdef CONFIG_XFRM_OFFLOAD 9097 skb_queue_head_init(&sd->xfrm_backlog); 9098 #endif 9099 INIT_LIST_HEAD(&sd->poll_list); 9100 sd->output_queue_tailp = &sd->output_queue; 9101 #ifdef CONFIG_RPS 9102 sd->csd.func = rps_trigger_softirq; 9103 sd->csd.info = sd; 9104 sd->cpu = i; 9105 #endif 9106 9107 sd->backlog.poll = process_backlog; 9108 sd->backlog.weight = weight_p; 9109 } 9110 9111 dev_boot_phase = 0; 9112 9113 /* The loopback device is special if any other network devices 9114 * is present in a network namespace the loopback device must 9115 * be present. Since we now dynamically allocate and free the 9116 * loopback device ensure this invariant is maintained by 9117 * keeping the loopback device as the first device on the 9118 * list of network devices. Ensuring the loopback devices 9119 * is the first device that appears and the last network device 9120 * that disappears. 9121 */ 9122 if (register_pernet_device(&loopback_net_ops)) 9123 goto out; 9124 9125 if (register_pernet_device(&default_device_ops)) 9126 goto out; 9127 9128 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 9129 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 9130 9131 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 9132 NULL, dev_cpu_dead); 9133 WARN_ON(rc < 0); 9134 rc = 0; 9135 out: 9136 return rc; 9137 } 9138 9139 subsys_initcall(net_dev_init); 9140