xref: /openbmc/linux/net/core/dev.c (revision 8b235f2f)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <net/mpls.h>
122 #include <linux/ipv6.h>
123 #include <linux/in.h>
124 #include <linux/jhash.h>
125 #include <linux/random.h>
126 #include <trace/events/napi.h>
127 #include <trace/events/net.h>
128 #include <trace/events/skb.h>
129 #include <linux/pci.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138 #include <linux/netfilter_ingress.h>
139 
140 #include "net-sysfs.h"
141 
142 /* Instead of increasing this, you should create a hash table. */
143 #define MAX_GRO_SKBS 8
144 
145 /* This should be increased if a protocol with a bigger head is added. */
146 #define GRO_MAX_HEAD (MAX_HEADER + 128)
147 
148 static DEFINE_SPINLOCK(ptype_lock);
149 static DEFINE_SPINLOCK(offload_lock);
150 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
151 struct list_head ptype_all __read_mostly;	/* Taps */
152 static struct list_head offload_base __read_mostly;
153 
154 static int netif_rx_internal(struct sk_buff *skb);
155 static int call_netdevice_notifiers_info(unsigned long val,
156 					 struct net_device *dev,
157 					 struct netdev_notifier_info *info);
158 
159 /*
160  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
161  * semaphore.
162  *
163  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
164  *
165  * Writers must hold the rtnl semaphore while they loop through the
166  * dev_base_head list, and hold dev_base_lock for writing when they do the
167  * actual updates.  This allows pure readers to access the list even
168  * while a writer is preparing to update it.
169  *
170  * To put it another way, dev_base_lock is held for writing only to
171  * protect against pure readers; the rtnl semaphore provides the
172  * protection against other writers.
173  *
174  * See, for example usages, register_netdevice() and
175  * unregister_netdevice(), which must be called with the rtnl
176  * semaphore held.
177  */
178 DEFINE_RWLOCK(dev_base_lock);
179 EXPORT_SYMBOL(dev_base_lock);
180 
181 /* protects napi_hash addition/deletion and napi_gen_id */
182 static DEFINE_SPINLOCK(napi_hash_lock);
183 
184 static unsigned int napi_gen_id;
185 static DEFINE_HASHTABLE(napi_hash, 8);
186 
187 static seqcount_t devnet_rename_seq;
188 
189 static inline void dev_base_seq_inc(struct net *net)
190 {
191 	while (++net->dev_base_seq == 0);
192 }
193 
194 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
195 {
196 	unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
197 
198 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
199 }
200 
201 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
202 {
203 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
204 }
205 
206 static inline void rps_lock(struct softnet_data *sd)
207 {
208 #ifdef CONFIG_RPS
209 	spin_lock(&sd->input_pkt_queue.lock);
210 #endif
211 }
212 
213 static inline void rps_unlock(struct softnet_data *sd)
214 {
215 #ifdef CONFIG_RPS
216 	spin_unlock(&sd->input_pkt_queue.lock);
217 #endif
218 }
219 
220 /* Device list insertion */
221 static void list_netdevice(struct net_device *dev)
222 {
223 	struct net *net = dev_net(dev);
224 
225 	ASSERT_RTNL();
226 
227 	write_lock_bh(&dev_base_lock);
228 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
229 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
230 	hlist_add_head_rcu(&dev->index_hlist,
231 			   dev_index_hash(net, dev->ifindex));
232 	write_unlock_bh(&dev_base_lock);
233 
234 	dev_base_seq_inc(net);
235 }
236 
237 /* Device list removal
238  * caller must respect a RCU grace period before freeing/reusing dev
239  */
240 static void unlist_netdevice(struct net_device *dev)
241 {
242 	ASSERT_RTNL();
243 
244 	/* Unlink dev from the device chain */
245 	write_lock_bh(&dev_base_lock);
246 	list_del_rcu(&dev->dev_list);
247 	hlist_del_rcu(&dev->name_hlist);
248 	hlist_del_rcu(&dev->index_hlist);
249 	write_unlock_bh(&dev_base_lock);
250 
251 	dev_base_seq_inc(dev_net(dev));
252 }
253 
254 /*
255  *	Our notifier list
256  */
257 
258 static RAW_NOTIFIER_HEAD(netdev_chain);
259 
260 /*
261  *	Device drivers call our routines to queue packets here. We empty the
262  *	queue in the local softnet handler.
263  */
264 
265 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
266 EXPORT_PER_CPU_SYMBOL(softnet_data);
267 
268 #ifdef CONFIG_LOCKDEP
269 /*
270  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
271  * according to dev->type
272  */
273 static const unsigned short netdev_lock_type[] =
274 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
275 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
276 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
277 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
278 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
279 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
280 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
281 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
282 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
283 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
284 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
285 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
286 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
287 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
288 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
289 
290 static const char *const netdev_lock_name[] =
291 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
292 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
293 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
294 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
295 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
296 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
297 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
298 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
299 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
300 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
301 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
302 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
303 	 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
304 	 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
305 	 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
306 
307 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
308 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
309 
310 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
311 {
312 	int i;
313 
314 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
315 		if (netdev_lock_type[i] == dev_type)
316 			return i;
317 	/* the last key is used by default */
318 	return ARRAY_SIZE(netdev_lock_type) - 1;
319 }
320 
321 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
322 						 unsigned short dev_type)
323 {
324 	int i;
325 
326 	i = netdev_lock_pos(dev_type);
327 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
328 				   netdev_lock_name[i]);
329 }
330 
331 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
332 {
333 	int i;
334 
335 	i = netdev_lock_pos(dev->type);
336 	lockdep_set_class_and_name(&dev->addr_list_lock,
337 				   &netdev_addr_lock_key[i],
338 				   netdev_lock_name[i]);
339 }
340 #else
341 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
342 						 unsigned short dev_type)
343 {
344 }
345 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
346 {
347 }
348 #endif
349 
350 /*******************************************************************************
351 
352 		Protocol management and registration routines
353 
354 *******************************************************************************/
355 
356 /*
357  *	Add a protocol ID to the list. Now that the input handler is
358  *	smarter we can dispense with all the messy stuff that used to be
359  *	here.
360  *
361  *	BEWARE!!! Protocol handlers, mangling input packets,
362  *	MUST BE last in hash buckets and checking protocol handlers
363  *	MUST start from promiscuous ptype_all chain in net_bh.
364  *	It is true now, do not change it.
365  *	Explanation follows: if protocol handler, mangling packet, will
366  *	be the first on list, it is not able to sense, that packet
367  *	is cloned and should be copied-on-write, so that it will
368  *	change it and subsequent readers will get broken packet.
369  *							--ANK (980803)
370  */
371 
372 static inline struct list_head *ptype_head(const struct packet_type *pt)
373 {
374 	if (pt->type == htons(ETH_P_ALL))
375 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
376 	else
377 		return pt->dev ? &pt->dev->ptype_specific :
378 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
379 }
380 
381 /**
382  *	dev_add_pack - add packet handler
383  *	@pt: packet type declaration
384  *
385  *	Add a protocol handler to the networking stack. The passed &packet_type
386  *	is linked into kernel lists and may not be freed until it has been
387  *	removed from the kernel lists.
388  *
389  *	This call does not sleep therefore it can not
390  *	guarantee all CPU's that are in middle of receiving packets
391  *	will see the new packet type (until the next received packet).
392  */
393 
394 void dev_add_pack(struct packet_type *pt)
395 {
396 	struct list_head *head = ptype_head(pt);
397 
398 	spin_lock(&ptype_lock);
399 	list_add_rcu(&pt->list, head);
400 	spin_unlock(&ptype_lock);
401 }
402 EXPORT_SYMBOL(dev_add_pack);
403 
404 /**
405  *	__dev_remove_pack	 - remove packet handler
406  *	@pt: packet type declaration
407  *
408  *	Remove a protocol handler that was previously added to the kernel
409  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
410  *	from the kernel lists and can be freed or reused once this function
411  *	returns.
412  *
413  *      The packet type might still be in use by receivers
414  *	and must not be freed until after all the CPU's have gone
415  *	through a quiescent state.
416  */
417 void __dev_remove_pack(struct packet_type *pt)
418 {
419 	struct list_head *head = ptype_head(pt);
420 	struct packet_type *pt1;
421 
422 	spin_lock(&ptype_lock);
423 
424 	list_for_each_entry(pt1, head, list) {
425 		if (pt == pt1) {
426 			list_del_rcu(&pt->list);
427 			goto out;
428 		}
429 	}
430 
431 	pr_warn("dev_remove_pack: %p not found\n", pt);
432 out:
433 	spin_unlock(&ptype_lock);
434 }
435 EXPORT_SYMBOL(__dev_remove_pack);
436 
437 /**
438  *	dev_remove_pack	 - remove packet handler
439  *	@pt: packet type declaration
440  *
441  *	Remove a protocol handler that was previously added to the kernel
442  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
443  *	from the kernel lists and can be freed or reused once this function
444  *	returns.
445  *
446  *	This call sleeps to guarantee that no CPU is looking at the packet
447  *	type after return.
448  */
449 void dev_remove_pack(struct packet_type *pt)
450 {
451 	__dev_remove_pack(pt);
452 
453 	synchronize_net();
454 }
455 EXPORT_SYMBOL(dev_remove_pack);
456 
457 
458 /**
459  *	dev_add_offload - register offload handlers
460  *	@po: protocol offload declaration
461  *
462  *	Add protocol offload handlers to the networking stack. The passed
463  *	&proto_offload is linked into kernel lists and may not be freed until
464  *	it has been removed from the kernel lists.
465  *
466  *	This call does not sleep therefore it can not
467  *	guarantee all CPU's that are in middle of receiving packets
468  *	will see the new offload handlers (until the next received packet).
469  */
470 void dev_add_offload(struct packet_offload *po)
471 {
472 	struct packet_offload *elem;
473 
474 	spin_lock(&offload_lock);
475 	list_for_each_entry(elem, &offload_base, list) {
476 		if (po->priority < elem->priority)
477 			break;
478 	}
479 	list_add_rcu(&po->list, elem->list.prev);
480 	spin_unlock(&offload_lock);
481 }
482 EXPORT_SYMBOL(dev_add_offload);
483 
484 /**
485  *	__dev_remove_offload	 - remove offload handler
486  *	@po: packet offload declaration
487  *
488  *	Remove a protocol offload handler that was previously added to the
489  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
490  *	is removed from the kernel lists and can be freed or reused once this
491  *	function returns.
492  *
493  *      The packet type might still be in use by receivers
494  *	and must not be freed until after all the CPU's have gone
495  *	through a quiescent state.
496  */
497 static void __dev_remove_offload(struct packet_offload *po)
498 {
499 	struct list_head *head = &offload_base;
500 	struct packet_offload *po1;
501 
502 	spin_lock(&offload_lock);
503 
504 	list_for_each_entry(po1, head, list) {
505 		if (po == po1) {
506 			list_del_rcu(&po->list);
507 			goto out;
508 		}
509 	}
510 
511 	pr_warn("dev_remove_offload: %p not found\n", po);
512 out:
513 	spin_unlock(&offload_lock);
514 }
515 
516 /**
517  *	dev_remove_offload	 - remove packet offload handler
518  *	@po: packet offload declaration
519  *
520  *	Remove a packet offload handler that was previously added to the kernel
521  *	offload handlers by dev_add_offload(). The passed &offload_type is
522  *	removed from the kernel lists and can be freed or reused once this
523  *	function returns.
524  *
525  *	This call sleeps to guarantee that no CPU is looking at the packet
526  *	type after return.
527  */
528 void dev_remove_offload(struct packet_offload *po)
529 {
530 	__dev_remove_offload(po);
531 
532 	synchronize_net();
533 }
534 EXPORT_SYMBOL(dev_remove_offload);
535 
536 /******************************************************************************
537 
538 		      Device Boot-time Settings Routines
539 
540 *******************************************************************************/
541 
542 /* Boot time configuration table */
543 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
544 
545 /**
546  *	netdev_boot_setup_add	- add new setup entry
547  *	@name: name of the device
548  *	@map: configured settings for the device
549  *
550  *	Adds new setup entry to the dev_boot_setup list.  The function
551  *	returns 0 on error and 1 on success.  This is a generic routine to
552  *	all netdevices.
553  */
554 static int netdev_boot_setup_add(char *name, struct ifmap *map)
555 {
556 	struct netdev_boot_setup *s;
557 	int i;
558 
559 	s = dev_boot_setup;
560 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
561 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
562 			memset(s[i].name, 0, sizeof(s[i].name));
563 			strlcpy(s[i].name, name, IFNAMSIZ);
564 			memcpy(&s[i].map, map, sizeof(s[i].map));
565 			break;
566 		}
567 	}
568 
569 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
570 }
571 
572 /**
573  *	netdev_boot_setup_check	- check boot time settings
574  *	@dev: the netdevice
575  *
576  * 	Check boot time settings for the device.
577  *	The found settings are set for the device to be used
578  *	later in the device probing.
579  *	Returns 0 if no settings found, 1 if they are.
580  */
581 int netdev_boot_setup_check(struct net_device *dev)
582 {
583 	struct netdev_boot_setup *s = dev_boot_setup;
584 	int i;
585 
586 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
587 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
588 		    !strcmp(dev->name, s[i].name)) {
589 			dev->irq 	= s[i].map.irq;
590 			dev->base_addr 	= s[i].map.base_addr;
591 			dev->mem_start 	= s[i].map.mem_start;
592 			dev->mem_end 	= s[i].map.mem_end;
593 			return 1;
594 		}
595 	}
596 	return 0;
597 }
598 EXPORT_SYMBOL(netdev_boot_setup_check);
599 
600 
601 /**
602  *	netdev_boot_base	- get address from boot time settings
603  *	@prefix: prefix for network device
604  *	@unit: id for network device
605  *
606  * 	Check boot time settings for the base address of device.
607  *	The found settings are set for the device to be used
608  *	later in the device probing.
609  *	Returns 0 if no settings found.
610  */
611 unsigned long netdev_boot_base(const char *prefix, int unit)
612 {
613 	const struct netdev_boot_setup *s = dev_boot_setup;
614 	char name[IFNAMSIZ];
615 	int i;
616 
617 	sprintf(name, "%s%d", prefix, unit);
618 
619 	/*
620 	 * If device already registered then return base of 1
621 	 * to indicate not to probe for this interface
622 	 */
623 	if (__dev_get_by_name(&init_net, name))
624 		return 1;
625 
626 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
627 		if (!strcmp(name, s[i].name))
628 			return s[i].map.base_addr;
629 	return 0;
630 }
631 
632 /*
633  * Saves at boot time configured settings for any netdevice.
634  */
635 int __init netdev_boot_setup(char *str)
636 {
637 	int ints[5];
638 	struct ifmap map;
639 
640 	str = get_options(str, ARRAY_SIZE(ints), ints);
641 	if (!str || !*str)
642 		return 0;
643 
644 	/* Save settings */
645 	memset(&map, 0, sizeof(map));
646 	if (ints[0] > 0)
647 		map.irq = ints[1];
648 	if (ints[0] > 1)
649 		map.base_addr = ints[2];
650 	if (ints[0] > 2)
651 		map.mem_start = ints[3];
652 	if (ints[0] > 3)
653 		map.mem_end = ints[4];
654 
655 	/* Add new entry to the list */
656 	return netdev_boot_setup_add(str, &map);
657 }
658 
659 __setup("netdev=", netdev_boot_setup);
660 
661 /*******************************************************************************
662 
663 			    Device Interface Subroutines
664 
665 *******************************************************************************/
666 
667 /**
668  *	dev_get_iflink	- get 'iflink' value of a interface
669  *	@dev: targeted interface
670  *
671  *	Indicates the ifindex the interface is linked to.
672  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
673  */
674 
675 int dev_get_iflink(const struct net_device *dev)
676 {
677 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
678 		return dev->netdev_ops->ndo_get_iflink(dev);
679 
680 	return dev->ifindex;
681 }
682 EXPORT_SYMBOL(dev_get_iflink);
683 
684 /**
685  *	__dev_get_by_name	- find a device by its name
686  *	@net: the applicable net namespace
687  *	@name: name to find
688  *
689  *	Find an interface by name. Must be called under RTNL semaphore
690  *	or @dev_base_lock. If the name is found a pointer to the device
691  *	is returned. If the name is not found then %NULL is returned. The
692  *	reference counters are not incremented so the caller must be
693  *	careful with locks.
694  */
695 
696 struct net_device *__dev_get_by_name(struct net *net, const char *name)
697 {
698 	struct net_device *dev;
699 	struct hlist_head *head = dev_name_hash(net, name);
700 
701 	hlist_for_each_entry(dev, head, name_hlist)
702 		if (!strncmp(dev->name, name, IFNAMSIZ))
703 			return dev;
704 
705 	return NULL;
706 }
707 EXPORT_SYMBOL(__dev_get_by_name);
708 
709 /**
710  *	dev_get_by_name_rcu	- find a device by its name
711  *	@net: the applicable net namespace
712  *	@name: name to find
713  *
714  *	Find an interface by name.
715  *	If the name is found a pointer to the device is returned.
716  * 	If the name is not found then %NULL is returned.
717  *	The reference counters are not incremented so the caller must be
718  *	careful with locks. The caller must hold RCU lock.
719  */
720 
721 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
722 {
723 	struct net_device *dev;
724 	struct hlist_head *head = dev_name_hash(net, name);
725 
726 	hlist_for_each_entry_rcu(dev, head, name_hlist)
727 		if (!strncmp(dev->name, name, IFNAMSIZ))
728 			return dev;
729 
730 	return NULL;
731 }
732 EXPORT_SYMBOL(dev_get_by_name_rcu);
733 
734 /**
735  *	dev_get_by_name		- find a device by its name
736  *	@net: the applicable net namespace
737  *	@name: name to find
738  *
739  *	Find an interface by name. This can be called from any
740  *	context and does its own locking. The returned handle has
741  *	the usage count incremented and the caller must use dev_put() to
742  *	release it when it is no longer needed. %NULL is returned if no
743  *	matching device is found.
744  */
745 
746 struct net_device *dev_get_by_name(struct net *net, const char *name)
747 {
748 	struct net_device *dev;
749 
750 	rcu_read_lock();
751 	dev = dev_get_by_name_rcu(net, name);
752 	if (dev)
753 		dev_hold(dev);
754 	rcu_read_unlock();
755 	return dev;
756 }
757 EXPORT_SYMBOL(dev_get_by_name);
758 
759 /**
760  *	__dev_get_by_index - find a device by its ifindex
761  *	@net: the applicable net namespace
762  *	@ifindex: index of device
763  *
764  *	Search for an interface by index. Returns %NULL if the device
765  *	is not found or a pointer to the device. The device has not
766  *	had its reference counter increased so the caller must be careful
767  *	about locking. The caller must hold either the RTNL semaphore
768  *	or @dev_base_lock.
769  */
770 
771 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
772 {
773 	struct net_device *dev;
774 	struct hlist_head *head = dev_index_hash(net, ifindex);
775 
776 	hlist_for_each_entry(dev, head, index_hlist)
777 		if (dev->ifindex == ifindex)
778 			return dev;
779 
780 	return NULL;
781 }
782 EXPORT_SYMBOL(__dev_get_by_index);
783 
784 /**
785  *	dev_get_by_index_rcu - find a device by its ifindex
786  *	@net: the applicable net namespace
787  *	@ifindex: index of device
788  *
789  *	Search for an interface by index. Returns %NULL if the device
790  *	is not found or a pointer to the device. The device has not
791  *	had its reference counter increased so the caller must be careful
792  *	about locking. The caller must hold RCU lock.
793  */
794 
795 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
796 {
797 	struct net_device *dev;
798 	struct hlist_head *head = dev_index_hash(net, ifindex);
799 
800 	hlist_for_each_entry_rcu(dev, head, index_hlist)
801 		if (dev->ifindex == ifindex)
802 			return dev;
803 
804 	return NULL;
805 }
806 EXPORT_SYMBOL(dev_get_by_index_rcu);
807 
808 
809 /**
810  *	dev_get_by_index - find a device by its ifindex
811  *	@net: the applicable net namespace
812  *	@ifindex: index of device
813  *
814  *	Search for an interface by index. Returns NULL if the device
815  *	is not found or a pointer to the device. The device returned has
816  *	had a reference added and the pointer is safe until the user calls
817  *	dev_put to indicate they have finished with it.
818  */
819 
820 struct net_device *dev_get_by_index(struct net *net, int ifindex)
821 {
822 	struct net_device *dev;
823 
824 	rcu_read_lock();
825 	dev = dev_get_by_index_rcu(net, ifindex);
826 	if (dev)
827 		dev_hold(dev);
828 	rcu_read_unlock();
829 	return dev;
830 }
831 EXPORT_SYMBOL(dev_get_by_index);
832 
833 /**
834  *	netdev_get_name - get a netdevice name, knowing its ifindex.
835  *	@net: network namespace
836  *	@name: a pointer to the buffer where the name will be stored.
837  *	@ifindex: the ifindex of the interface to get the name from.
838  *
839  *	The use of raw_seqcount_begin() and cond_resched() before
840  *	retrying is required as we want to give the writers a chance
841  *	to complete when CONFIG_PREEMPT is not set.
842  */
843 int netdev_get_name(struct net *net, char *name, int ifindex)
844 {
845 	struct net_device *dev;
846 	unsigned int seq;
847 
848 retry:
849 	seq = raw_seqcount_begin(&devnet_rename_seq);
850 	rcu_read_lock();
851 	dev = dev_get_by_index_rcu(net, ifindex);
852 	if (!dev) {
853 		rcu_read_unlock();
854 		return -ENODEV;
855 	}
856 
857 	strcpy(name, dev->name);
858 	rcu_read_unlock();
859 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
860 		cond_resched();
861 		goto retry;
862 	}
863 
864 	return 0;
865 }
866 
867 /**
868  *	dev_getbyhwaddr_rcu - find a device by its hardware address
869  *	@net: the applicable net namespace
870  *	@type: media type of device
871  *	@ha: hardware address
872  *
873  *	Search for an interface by MAC address. Returns NULL if the device
874  *	is not found or a pointer to the device.
875  *	The caller must hold RCU or RTNL.
876  *	The returned device has not had its ref count increased
877  *	and the caller must therefore be careful about locking
878  *
879  */
880 
881 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
882 				       const char *ha)
883 {
884 	struct net_device *dev;
885 
886 	for_each_netdev_rcu(net, dev)
887 		if (dev->type == type &&
888 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
889 			return dev;
890 
891 	return NULL;
892 }
893 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
894 
895 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
896 {
897 	struct net_device *dev;
898 
899 	ASSERT_RTNL();
900 	for_each_netdev(net, dev)
901 		if (dev->type == type)
902 			return dev;
903 
904 	return NULL;
905 }
906 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
907 
908 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
909 {
910 	struct net_device *dev, *ret = NULL;
911 
912 	rcu_read_lock();
913 	for_each_netdev_rcu(net, dev)
914 		if (dev->type == type) {
915 			dev_hold(dev);
916 			ret = dev;
917 			break;
918 		}
919 	rcu_read_unlock();
920 	return ret;
921 }
922 EXPORT_SYMBOL(dev_getfirstbyhwtype);
923 
924 /**
925  *	__dev_get_by_flags - find any device with given flags
926  *	@net: the applicable net namespace
927  *	@if_flags: IFF_* values
928  *	@mask: bitmask of bits in if_flags to check
929  *
930  *	Search for any interface with the given flags. Returns NULL if a device
931  *	is not found or a pointer to the device. Must be called inside
932  *	rtnl_lock(), and result refcount is unchanged.
933  */
934 
935 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
936 				      unsigned short mask)
937 {
938 	struct net_device *dev, *ret;
939 
940 	ASSERT_RTNL();
941 
942 	ret = NULL;
943 	for_each_netdev(net, dev) {
944 		if (((dev->flags ^ if_flags) & mask) == 0) {
945 			ret = dev;
946 			break;
947 		}
948 	}
949 	return ret;
950 }
951 EXPORT_SYMBOL(__dev_get_by_flags);
952 
953 /**
954  *	dev_valid_name - check if name is okay for network device
955  *	@name: name string
956  *
957  *	Network device names need to be valid file names to
958  *	to allow sysfs to work.  We also disallow any kind of
959  *	whitespace.
960  */
961 bool dev_valid_name(const char *name)
962 {
963 	if (*name == '\0')
964 		return false;
965 	if (strlen(name) >= IFNAMSIZ)
966 		return false;
967 	if (!strcmp(name, ".") || !strcmp(name, ".."))
968 		return false;
969 
970 	while (*name) {
971 		if (*name == '/' || *name == ':' || isspace(*name))
972 			return false;
973 		name++;
974 	}
975 	return true;
976 }
977 EXPORT_SYMBOL(dev_valid_name);
978 
979 /**
980  *	__dev_alloc_name - allocate a name for a device
981  *	@net: network namespace to allocate the device name in
982  *	@name: name format string
983  *	@buf:  scratch buffer and result name string
984  *
985  *	Passed a format string - eg "lt%d" it will try and find a suitable
986  *	id. It scans list of devices to build up a free map, then chooses
987  *	the first empty slot. The caller must hold the dev_base or rtnl lock
988  *	while allocating the name and adding the device in order to avoid
989  *	duplicates.
990  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
991  *	Returns the number of the unit assigned or a negative errno code.
992  */
993 
994 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
995 {
996 	int i = 0;
997 	const char *p;
998 	const int max_netdevices = 8*PAGE_SIZE;
999 	unsigned long *inuse;
1000 	struct net_device *d;
1001 
1002 	p = strnchr(name, IFNAMSIZ-1, '%');
1003 	if (p) {
1004 		/*
1005 		 * Verify the string as this thing may have come from
1006 		 * the user.  There must be either one "%d" and no other "%"
1007 		 * characters.
1008 		 */
1009 		if (p[1] != 'd' || strchr(p + 2, '%'))
1010 			return -EINVAL;
1011 
1012 		/* Use one page as a bit array of possible slots */
1013 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1014 		if (!inuse)
1015 			return -ENOMEM;
1016 
1017 		for_each_netdev(net, d) {
1018 			if (!sscanf(d->name, name, &i))
1019 				continue;
1020 			if (i < 0 || i >= max_netdevices)
1021 				continue;
1022 
1023 			/*  avoid cases where sscanf is not exact inverse of printf */
1024 			snprintf(buf, IFNAMSIZ, name, i);
1025 			if (!strncmp(buf, d->name, IFNAMSIZ))
1026 				set_bit(i, inuse);
1027 		}
1028 
1029 		i = find_first_zero_bit(inuse, max_netdevices);
1030 		free_page((unsigned long) inuse);
1031 	}
1032 
1033 	if (buf != name)
1034 		snprintf(buf, IFNAMSIZ, name, i);
1035 	if (!__dev_get_by_name(net, buf))
1036 		return i;
1037 
1038 	/* It is possible to run out of possible slots
1039 	 * when the name is long and there isn't enough space left
1040 	 * for the digits, or if all bits are used.
1041 	 */
1042 	return -ENFILE;
1043 }
1044 
1045 /**
1046  *	dev_alloc_name - allocate a name for a device
1047  *	@dev: device
1048  *	@name: name format string
1049  *
1050  *	Passed a format string - eg "lt%d" it will try and find a suitable
1051  *	id. It scans list of devices to build up a free map, then chooses
1052  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1053  *	while allocating the name and adding the device in order to avoid
1054  *	duplicates.
1055  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056  *	Returns the number of the unit assigned or a negative errno code.
1057  */
1058 
1059 int dev_alloc_name(struct net_device *dev, const char *name)
1060 {
1061 	char buf[IFNAMSIZ];
1062 	struct net *net;
1063 	int ret;
1064 
1065 	BUG_ON(!dev_net(dev));
1066 	net = dev_net(dev);
1067 	ret = __dev_alloc_name(net, name, buf);
1068 	if (ret >= 0)
1069 		strlcpy(dev->name, buf, IFNAMSIZ);
1070 	return ret;
1071 }
1072 EXPORT_SYMBOL(dev_alloc_name);
1073 
1074 static int dev_alloc_name_ns(struct net *net,
1075 			     struct net_device *dev,
1076 			     const char *name)
1077 {
1078 	char buf[IFNAMSIZ];
1079 	int ret;
1080 
1081 	ret = __dev_alloc_name(net, name, buf);
1082 	if (ret >= 0)
1083 		strlcpy(dev->name, buf, IFNAMSIZ);
1084 	return ret;
1085 }
1086 
1087 static int dev_get_valid_name(struct net *net,
1088 			      struct net_device *dev,
1089 			      const char *name)
1090 {
1091 	BUG_ON(!net);
1092 
1093 	if (!dev_valid_name(name))
1094 		return -EINVAL;
1095 
1096 	if (strchr(name, '%'))
1097 		return dev_alloc_name_ns(net, dev, name);
1098 	else if (__dev_get_by_name(net, name))
1099 		return -EEXIST;
1100 	else if (dev->name != name)
1101 		strlcpy(dev->name, name, IFNAMSIZ);
1102 
1103 	return 0;
1104 }
1105 
1106 /**
1107  *	dev_change_name - change name of a device
1108  *	@dev: device
1109  *	@newname: name (or format string) must be at least IFNAMSIZ
1110  *
1111  *	Change name of a device, can pass format strings "eth%d".
1112  *	for wildcarding.
1113  */
1114 int dev_change_name(struct net_device *dev, const char *newname)
1115 {
1116 	unsigned char old_assign_type;
1117 	char oldname[IFNAMSIZ];
1118 	int err = 0;
1119 	int ret;
1120 	struct net *net;
1121 
1122 	ASSERT_RTNL();
1123 	BUG_ON(!dev_net(dev));
1124 
1125 	net = dev_net(dev);
1126 	if (dev->flags & IFF_UP)
1127 		return -EBUSY;
1128 
1129 	write_seqcount_begin(&devnet_rename_seq);
1130 
1131 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1132 		write_seqcount_end(&devnet_rename_seq);
1133 		return 0;
1134 	}
1135 
1136 	memcpy(oldname, dev->name, IFNAMSIZ);
1137 
1138 	err = dev_get_valid_name(net, dev, newname);
1139 	if (err < 0) {
1140 		write_seqcount_end(&devnet_rename_seq);
1141 		return err;
1142 	}
1143 
1144 	if (oldname[0] && !strchr(oldname, '%'))
1145 		netdev_info(dev, "renamed from %s\n", oldname);
1146 
1147 	old_assign_type = dev->name_assign_type;
1148 	dev->name_assign_type = NET_NAME_RENAMED;
1149 
1150 rollback:
1151 	ret = device_rename(&dev->dev, dev->name);
1152 	if (ret) {
1153 		memcpy(dev->name, oldname, IFNAMSIZ);
1154 		dev->name_assign_type = old_assign_type;
1155 		write_seqcount_end(&devnet_rename_seq);
1156 		return ret;
1157 	}
1158 
1159 	write_seqcount_end(&devnet_rename_seq);
1160 
1161 	netdev_adjacent_rename_links(dev, oldname);
1162 
1163 	write_lock_bh(&dev_base_lock);
1164 	hlist_del_rcu(&dev->name_hlist);
1165 	write_unlock_bh(&dev_base_lock);
1166 
1167 	synchronize_rcu();
1168 
1169 	write_lock_bh(&dev_base_lock);
1170 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1171 	write_unlock_bh(&dev_base_lock);
1172 
1173 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1174 	ret = notifier_to_errno(ret);
1175 
1176 	if (ret) {
1177 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1178 		if (err >= 0) {
1179 			err = ret;
1180 			write_seqcount_begin(&devnet_rename_seq);
1181 			memcpy(dev->name, oldname, IFNAMSIZ);
1182 			memcpy(oldname, newname, IFNAMSIZ);
1183 			dev->name_assign_type = old_assign_type;
1184 			old_assign_type = NET_NAME_RENAMED;
1185 			goto rollback;
1186 		} else {
1187 			pr_err("%s: name change rollback failed: %d\n",
1188 			       dev->name, ret);
1189 		}
1190 	}
1191 
1192 	return err;
1193 }
1194 
1195 /**
1196  *	dev_set_alias - change ifalias of a device
1197  *	@dev: device
1198  *	@alias: name up to IFALIASZ
1199  *	@len: limit of bytes to copy from info
1200  *
1201  *	Set ifalias for a device,
1202  */
1203 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1204 {
1205 	char *new_ifalias;
1206 
1207 	ASSERT_RTNL();
1208 
1209 	if (len >= IFALIASZ)
1210 		return -EINVAL;
1211 
1212 	if (!len) {
1213 		kfree(dev->ifalias);
1214 		dev->ifalias = NULL;
1215 		return 0;
1216 	}
1217 
1218 	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1219 	if (!new_ifalias)
1220 		return -ENOMEM;
1221 	dev->ifalias = new_ifalias;
1222 
1223 	strlcpy(dev->ifalias, alias, len+1);
1224 	return len;
1225 }
1226 
1227 
1228 /**
1229  *	netdev_features_change - device changes features
1230  *	@dev: device to cause notification
1231  *
1232  *	Called to indicate a device has changed features.
1233  */
1234 void netdev_features_change(struct net_device *dev)
1235 {
1236 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1237 }
1238 EXPORT_SYMBOL(netdev_features_change);
1239 
1240 /**
1241  *	netdev_state_change - device changes state
1242  *	@dev: device to cause notification
1243  *
1244  *	Called to indicate a device has changed state. This function calls
1245  *	the notifier chains for netdev_chain and sends a NEWLINK message
1246  *	to the routing socket.
1247  */
1248 void netdev_state_change(struct net_device *dev)
1249 {
1250 	if (dev->flags & IFF_UP) {
1251 		struct netdev_notifier_change_info change_info;
1252 
1253 		change_info.flags_changed = 0;
1254 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1255 					      &change_info.info);
1256 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1257 	}
1258 }
1259 EXPORT_SYMBOL(netdev_state_change);
1260 
1261 /**
1262  * 	netdev_notify_peers - notify network peers about existence of @dev
1263  * 	@dev: network device
1264  *
1265  * Generate traffic such that interested network peers are aware of
1266  * @dev, such as by generating a gratuitous ARP. This may be used when
1267  * a device wants to inform the rest of the network about some sort of
1268  * reconfiguration such as a failover event or virtual machine
1269  * migration.
1270  */
1271 void netdev_notify_peers(struct net_device *dev)
1272 {
1273 	rtnl_lock();
1274 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1275 	rtnl_unlock();
1276 }
1277 EXPORT_SYMBOL(netdev_notify_peers);
1278 
1279 static int __dev_open(struct net_device *dev)
1280 {
1281 	const struct net_device_ops *ops = dev->netdev_ops;
1282 	int ret;
1283 
1284 	ASSERT_RTNL();
1285 
1286 	if (!netif_device_present(dev))
1287 		return -ENODEV;
1288 
1289 	/* Block netpoll from trying to do any rx path servicing.
1290 	 * If we don't do this there is a chance ndo_poll_controller
1291 	 * or ndo_poll may be running while we open the device
1292 	 */
1293 	netpoll_poll_disable(dev);
1294 
1295 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1296 	ret = notifier_to_errno(ret);
1297 	if (ret)
1298 		return ret;
1299 
1300 	set_bit(__LINK_STATE_START, &dev->state);
1301 
1302 	if (ops->ndo_validate_addr)
1303 		ret = ops->ndo_validate_addr(dev);
1304 
1305 	if (!ret && ops->ndo_open)
1306 		ret = ops->ndo_open(dev);
1307 
1308 	netpoll_poll_enable(dev);
1309 
1310 	if (ret)
1311 		clear_bit(__LINK_STATE_START, &dev->state);
1312 	else {
1313 		dev->flags |= IFF_UP;
1314 		dev_set_rx_mode(dev);
1315 		dev_activate(dev);
1316 		add_device_randomness(dev->dev_addr, dev->addr_len);
1317 	}
1318 
1319 	return ret;
1320 }
1321 
1322 /**
1323  *	dev_open	- prepare an interface for use.
1324  *	@dev:	device to open
1325  *
1326  *	Takes a device from down to up state. The device's private open
1327  *	function is invoked and then the multicast lists are loaded. Finally
1328  *	the device is moved into the up state and a %NETDEV_UP message is
1329  *	sent to the netdev notifier chain.
1330  *
1331  *	Calling this function on an active interface is a nop. On a failure
1332  *	a negative errno code is returned.
1333  */
1334 int dev_open(struct net_device *dev)
1335 {
1336 	int ret;
1337 
1338 	if (dev->flags & IFF_UP)
1339 		return 0;
1340 
1341 	ret = __dev_open(dev);
1342 	if (ret < 0)
1343 		return ret;
1344 
1345 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1346 	call_netdevice_notifiers(NETDEV_UP, dev);
1347 
1348 	return ret;
1349 }
1350 EXPORT_SYMBOL(dev_open);
1351 
1352 static int __dev_close_many(struct list_head *head)
1353 {
1354 	struct net_device *dev;
1355 
1356 	ASSERT_RTNL();
1357 	might_sleep();
1358 
1359 	list_for_each_entry(dev, head, close_list) {
1360 		/* Temporarily disable netpoll until the interface is down */
1361 		netpoll_poll_disable(dev);
1362 
1363 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1364 
1365 		clear_bit(__LINK_STATE_START, &dev->state);
1366 
1367 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1368 		 * can be even on different cpu. So just clear netif_running().
1369 		 *
1370 		 * dev->stop() will invoke napi_disable() on all of it's
1371 		 * napi_struct instances on this device.
1372 		 */
1373 		smp_mb__after_atomic(); /* Commit netif_running(). */
1374 	}
1375 
1376 	dev_deactivate_many(head);
1377 
1378 	list_for_each_entry(dev, head, close_list) {
1379 		const struct net_device_ops *ops = dev->netdev_ops;
1380 
1381 		/*
1382 		 *	Call the device specific close. This cannot fail.
1383 		 *	Only if device is UP
1384 		 *
1385 		 *	We allow it to be called even after a DETACH hot-plug
1386 		 *	event.
1387 		 */
1388 		if (ops->ndo_stop)
1389 			ops->ndo_stop(dev);
1390 
1391 		dev->flags &= ~IFF_UP;
1392 		netpoll_poll_enable(dev);
1393 	}
1394 
1395 	return 0;
1396 }
1397 
1398 static int __dev_close(struct net_device *dev)
1399 {
1400 	int retval;
1401 	LIST_HEAD(single);
1402 
1403 	list_add(&dev->close_list, &single);
1404 	retval = __dev_close_many(&single);
1405 	list_del(&single);
1406 
1407 	return retval;
1408 }
1409 
1410 int dev_close_many(struct list_head *head, bool unlink)
1411 {
1412 	struct net_device *dev, *tmp;
1413 
1414 	/* Remove the devices that don't need to be closed */
1415 	list_for_each_entry_safe(dev, tmp, head, close_list)
1416 		if (!(dev->flags & IFF_UP))
1417 			list_del_init(&dev->close_list);
1418 
1419 	__dev_close_many(head);
1420 
1421 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1422 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1423 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1424 		if (unlink)
1425 			list_del_init(&dev->close_list);
1426 	}
1427 
1428 	return 0;
1429 }
1430 EXPORT_SYMBOL(dev_close_many);
1431 
1432 /**
1433  *	dev_close - shutdown an interface.
1434  *	@dev: device to shutdown
1435  *
1436  *	This function moves an active device into down state. A
1437  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1438  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1439  *	chain.
1440  */
1441 int dev_close(struct net_device *dev)
1442 {
1443 	if (dev->flags & IFF_UP) {
1444 		LIST_HEAD(single);
1445 
1446 		list_add(&dev->close_list, &single);
1447 		dev_close_many(&single, true);
1448 		list_del(&single);
1449 	}
1450 	return 0;
1451 }
1452 EXPORT_SYMBOL(dev_close);
1453 
1454 
1455 /**
1456  *	dev_disable_lro - disable Large Receive Offload on a device
1457  *	@dev: device
1458  *
1459  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1460  *	called under RTNL.  This is needed if received packets may be
1461  *	forwarded to another interface.
1462  */
1463 void dev_disable_lro(struct net_device *dev)
1464 {
1465 	struct net_device *lower_dev;
1466 	struct list_head *iter;
1467 
1468 	dev->wanted_features &= ~NETIF_F_LRO;
1469 	netdev_update_features(dev);
1470 
1471 	if (unlikely(dev->features & NETIF_F_LRO))
1472 		netdev_WARN(dev, "failed to disable LRO!\n");
1473 
1474 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1475 		dev_disable_lro(lower_dev);
1476 }
1477 EXPORT_SYMBOL(dev_disable_lro);
1478 
1479 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1480 				   struct net_device *dev)
1481 {
1482 	struct netdev_notifier_info info;
1483 
1484 	netdev_notifier_info_init(&info, dev);
1485 	return nb->notifier_call(nb, val, &info);
1486 }
1487 
1488 static int dev_boot_phase = 1;
1489 
1490 /**
1491  *	register_netdevice_notifier - register a network notifier block
1492  *	@nb: notifier
1493  *
1494  *	Register a notifier to be called when network device events occur.
1495  *	The notifier passed is linked into the kernel structures and must
1496  *	not be reused until it has been unregistered. A negative errno code
1497  *	is returned on a failure.
1498  *
1499  * 	When registered all registration and up events are replayed
1500  *	to the new notifier to allow device to have a race free
1501  *	view of the network device list.
1502  */
1503 
1504 int register_netdevice_notifier(struct notifier_block *nb)
1505 {
1506 	struct net_device *dev;
1507 	struct net_device *last;
1508 	struct net *net;
1509 	int err;
1510 
1511 	rtnl_lock();
1512 	err = raw_notifier_chain_register(&netdev_chain, nb);
1513 	if (err)
1514 		goto unlock;
1515 	if (dev_boot_phase)
1516 		goto unlock;
1517 	for_each_net(net) {
1518 		for_each_netdev(net, dev) {
1519 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1520 			err = notifier_to_errno(err);
1521 			if (err)
1522 				goto rollback;
1523 
1524 			if (!(dev->flags & IFF_UP))
1525 				continue;
1526 
1527 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1528 		}
1529 	}
1530 
1531 unlock:
1532 	rtnl_unlock();
1533 	return err;
1534 
1535 rollback:
1536 	last = dev;
1537 	for_each_net(net) {
1538 		for_each_netdev(net, dev) {
1539 			if (dev == last)
1540 				goto outroll;
1541 
1542 			if (dev->flags & IFF_UP) {
1543 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1544 							dev);
1545 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1546 			}
1547 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1548 		}
1549 	}
1550 
1551 outroll:
1552 	raw_notifier_chain_unregister(&netdev_chain, nb);
1553 	goto unlock;
1554 }
1555 EXPORT_SYMBOL(register_netdevice_notifier);
1556 
1557 /**
1558  *	unregister_netdevice_notifier - unregister a network notifier block
1559  *	@nb: notifier
1560  *
1561  *	Unregister a notifier previously registered by
1562  *	register_netdevice_notifier(). The notifier is unlinked into the
1563  *	kernel structures and may then be reused. A negative errno code
1564  *	is returned on a failure.
1565  *
1566  * 	After unregistering unregister and down device events are synthesized
1567  *	for all devices on the device list to the removed notifier to remove
1568  *	the need for special case cleanup code.
1569  */
1570 
1571 int unregister_netdevice_notifier(struct notifier_block *nb)
1572 {
1573 	struct net_device *dev;
1574 	struct net *net;
1575 	int err;
1576 
1577 	rtnl_lock();
1578 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1579 	if (err)
1580 		goto unlock;
1581 
1582 	for_each_net(net) {
1583 		for_each_netdev(net, dev) {
1584 			if (dev->flags & IFF_UP) {
1585 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1586 							dev);
1587 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1588 			}
1589 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1590 		}
1591 	}
1592 unlock:
1593 	rtnl_unlock();
1594 	return err;
1595 }
1596 EXPORT_SYMBOL(unregister_netdevice_notifier);
1597 
1598 /**
1599  *	call_netdevice_notifiers_info - call all network notifier blocks
1600  *	@val: value passed unmodified to notifier function
1601  *	@dev: net_device pointer passed unmodified to notifier function
1602  *	@info: notifier information data
1603  *
1604  *	Call all network notifier blocks.  Parameters and return value
1605  *	are as for raw_notifier_call_chain().
1606  */
1607 
1608 static int call_netdevice_notifiers_info(unsigned long val,
1609 					 struct net_device *dev,
1610 					 struct netdev_notifier_info *info)
1611 {
1612 	ASSERT_RTNL();
1613 	netdev_notifier_info_init(info, dev);
1614 	return raw_notifier_call_chain(&netdev_chain, val, info);
1615 }
1616 
1617 /**
1618  *	call_netdevice_notifiers - call all network notifier blocks
1619  *      @val: value passed unmodified to notifier function
1620  *      @dev: net_device pointer passed unmodified to notifier function
1621  *
1622  *	Call all network notifier blocks.  Parameters and return value
1623  *	are as for raw_notifier_call_chain().
1624  */
1625 
1626 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1627 {
1628 	struct netdev_notifier_info info;
1629 
1630 	return call_netdevice_notifiers_info(val, dev, &info);
1631 }
1632 EXPORT_SYMBOL(call_netdevice_notifiers);
1633 
1634 #ifdef CONFIG_NET_INGRESS
1635 static struct static_key ingress_needed __read_mostly;
1636 
1637 void net_inc_ingress_queue(void)
1638 {
1639 	static_key_slow_inc(&ingress_needed);
1640 }
1641 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1642 
1643 void net_dec_ingress_queue(void)
1644 {
1645 	static_key_slow_dec(&ingress_needed);
1646 }
1647 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1648 #endif
1649 
1650 static struct static_key netstamp_needed __read_mostly;
1651 #ifdef HAVE_JUMP_LABEL
1652 /* We are not allowed to call static_key_slow_dec() from irq context
1653  * If net_disable_timestamp() is called from irq context, defer the
1654  * static_key_slow_dec() calls.
1655  */
1656 static atomic_t netstamp_needed_deferred;
1657 #endif
1658 
1659 void net_enable_timestamp(void)
1660 {
1661 #ifdef HAVE_JUMP_LABEL
1662 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1663 
1664 	if (deferred) {
1665 		while (--deferred)
1666 			static_key_slow_dec(&netstamp_needed);
1667 		return;
1668 	}
1669 #endif
1670 	static_key_slow_inc(&netstamp_needed);
1671 }
1672 EXPORT_SYMBOL(net_enable_timestamp);
1673 
1674 void net_disable_timestamp(void)
1675 {
1676 #ifdef HAVE_JUMP_LABEL
1677 	if (in_interrupt()) {
1678 		atomic_inc(&netstamp_needed_deferred);
1679 		return;
1680 	}
1681 #endif
1682 	static_key_slow_dec(&netstamp_needed);
1683 }
1684 EXPORT_SYMBOL(net_disable_timestamp);
1685 
1686 static inline void net_timestamp_set(struct sk_buff *skb)
1687 {
1688 	skb->tstamp.tv64 = 0;
1689 	if (static_key_false(&netstamp_needed))
1690 		__net_timestamp(skb);
1691 }
1692 
1693 #define net_timestamp_check(COND, SKB)			\
1694 	if (static_key_false(&netstamp_needed)) {		\
1695 		if ((COND) && !(SKB)->tstamp.tv64)	\
1696 			__net_timestamp(SKB);		\
1697 	}						\
1698 
1699 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1700 {
1701 	unsigned int len;
1702 
1703 	if (!(dev->flags & IFF_UP))
1704 		return false;
1705 
1706 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1707 	if (skb->len <= len)
1708 		return true;
1709 
1710 	/* if TSO is enabled, we don't care about the length as the packet
1711 	 * could be forwarded without being segmented before
1712 	 */
1713 	if (skb_is_gso(skb))
1714 		return true;
1715 
1716 	return false;
1717 }
1718 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1719 
1720 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1721 {
1722 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1723 	    unlikely(!is_skb_forwardable(dev, skb))) {
1724 		atomic_long_inc(&dev->rx_dropped);
1725 		kfree_skb(skb);
1726 		return NET_RX_DROP;
1727 	}
1728 
1729 	skb_scrub_packet(skb, true);
1730 	skb->priority = 0;
1731 	skb->protocol = eth_type_trans(skb, dev);
1732 	skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1733 
1734 	return 0;
1735 }
1736 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1737 
1738 /**
1739  * dev_forward_skb - loopback an skb to another netif
1740  *
1741  * @dev: destination network device
1742  * @skb: buffer to forward
1743  *
1744  * return values:
1745  *	NET_RX_SUCCESS	(no congestion)
1746  *	NET_RX_DROP     (packet was dropped, but freed)
1747  *
1748  * dev_forward_skb can be used for injecting an skb from the
1749  * start_xmit function of one device into the receive queue
1750  * of another device.
1751  *
1752  * The receiving device may be in another namespace, so
1753  * we have to clear all information in the skb that could
1754  * impact namespace isolation.
1755  */
1756 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1757 {
1758 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1759 }
1760 EXPORT_SYMBOL_GPL(dev_forward_skb);
1761 
1762 static inline int deliver_skb(struct sk_buff *skb,
1763 			      struct packet_type *pt_prev,
1764 			      struct net_device *orig_dev)
1765 {
1766 	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1767 		return -ENOMEM;
1768 	atomic_inc(&skb->users);
1769 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1770 }
1771 
1772 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1773 					  struct packet_type **pt,
1774 					  struct net_device *orig_dev,
1775 					  __be16 type,
1776 					  struct list_head *ptype_list)
1777 {
1778 	struct packet_type *ptype, *pt_prev = *pt;
1779 
1780 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1781 		if (ptype->type != type)
1782 			continue;
1783 		if (pt_prev)
1784 			deliver_skb(skb, pt_prev, orig_dev);
1785 		pt_prev = ptype;
1786 	}
1787 	*pt = pt_prev;
1788 }
1789 
1790 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1791 {
1792 	if (!ptype->af_packet_priv || !skb->sk)
1793 		return false;
1794 
1795 	if (ptype->id_match)
1796 		return ptype->id_match(ptype, skb->sk);
1797 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1798 		return true;
1799 
1800 	return false;
1801 }
1802 
1803 /*
1804  *	Support routine. Sends outgoing frames to any network
1805  *	taps currently in use.
1806  */
1807 
1808 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1809 {
1810 	struct packet_type *ptype;
1811 	struct sk_buff *skb2 = NULL;
1812 	struct packet_type *pt_prev = NULL;
1813 	struct list_head *ptype_list = &ptype_all;
1814 
1815 	rcu_read_lock();
1816 again:
1817 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1818 		/* Never send packets back to the socket
1819 		 * they originated from - MvS (miquels@drinkel.ow.org)
1820 		 */
1821 		if (skb_loop_sk(ptype, skb))
1822 			continue;
1823 
1824 		if (pt_prev) {
1825 			deliver_skb(skb2, pt_prev, skb->dev);
1826 			pt_prev = ptype;
1827 			continue;
1828 		}
1829 
1830 		/* need to clone skb, done only once */
1831 		skb2 = skb_clone(skb, GFP_ATOMIC);
1832 		if (!skb2)
1833 			goto out_unlock;
1834 
1835 		net_timestamp_set(skb2);
1836 
1837 		/* skb->nh should be correctly
1838 		 * set by sender, so that the second statement is
1839 		 * just protection against buggy protocols.
1840 		 */
1841 		skb_reset_mac_header(skb2);
1842 
1843 		if (skb_network_header(skb2) < skb2->data ||
1844 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1845 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1846 					     ntohs(skb2->protocol),
1847 					     dev->name);
1848 			skb_reset_network_header(skb2);
1849 		}
1850 
1851 		skb2->transport_header = skb2->network_header;
1852 		skb2->pkt_type = PACKET_OUTGOING;
1853 		pt_prev = ptype;
1854 	}
1855 
1856 	if (ptype_list == &ptype_all) {
1857 		ptype_list = &dev->ptype_all;
1858 		goto again;
1859 	}
1860 out_unlock:
1861 	if (pt_prev)
1862 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1863 	rcu_read_unlock();
1864 }
1865 
1866 /**
1867  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1868  * @dev: Network device
1869  * @txq: number of queues available
1870  *
1871  * If real_num_tx_queues is changed the tc mappings may no longer be
1872  * valid. To resolve this verify the tc mapping remains valid and if
1873  * not NULL the mapping. With no priorities mapping to this
1874  * offset/count pair it will no longer be used. In the worst case TC0
1875  * is invalid nothing can be done so disable priority mappings. If is
1876  * expected that drivers will fix this mapping if they can before
1877  * calling netif_set_real_num_tx_queues.
1878  */
1879 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1880 {
1881 	int i;
1882 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1883 
1884 	/* If TC0 is invalidated disable TC mapping */
1885 	if (tc->offset + tc->count > txq) {
1886 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1887 		dev->num_tc = 0;
1888 		return;
1889 	}
1890 
1891 	/* Invalidated prio to tc mappings set to TC0 */
1892 	for (i = 1; i < TC_BITMASK + 1; i++) {
1893 		int q = netdev_get_prio_tc_map(dev, i);
1894 
1895 		tc = &dev->tc_to_txq[q];
1896 		if (tc->offset + tc->count > txq) {
1897 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1898 				i, q);
1899 			netdev_set_prio_tc_map(dev, i, 0);
1900 		}
1901 	}
1902 }
1903 
1904 #ifdef CONFIG_XPS
1905 static DEFINE_MUTEX(xps_map_mutex);
1906 #define xmap_dereference(P)		\
1907 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1908 
1909 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1910 					int cpu, u16 index)
1911 {
1912 	struct xps_map *map = NULL;
1913 	int pos;
1914 
1915 	if (dev_maps)
1916 		map = xmap_dereference(dev_maps->cpu_map[cpu]);
1917 
1918 	for (pos = 0; map && pos < map->len; pos++) {
1919 		if (map->queues[pos] == index) {
1920 			if (map->len > 1) {
1921 				map->queues[pos] = map->queues[--map->len];
1922 			} else {
1923 				RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1924 				kfree_rcu(map, rcu);
1925 				map = NULL;
1926 			}
1927 			break;
1928 		}
1929 	}
1930 
1931 	return map;
1932 }
1933 
1934 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1935 {
1936 	struct xps_dev_maps *dev_maps;
1937 	int cpu, i;
1938 	bool active = false;
1939 
1940 	mutex_lock(&xps_map_mutex);
1941 	dev_maps = xmap_dereference(dev->xps_maps);
1942 
1943 	if (!dev_maps)
1944 		goto out_no_maps;
1945 
1946 	for_each_possible_cpu(cpu) {
1947 		for (i = index; i < dev->num_tx_queues; i++) {
1948 			if (!remove_xps_queue(dev_maps, cpu, i))
1949 				break;
1950 		}
1951 		if (i == dev->num_tx_queues)
1952 			active = true;
1953 	}
1954 
1955 	if (!active) {
1956 		RCU_INIT_POINTER(dev->xps_maps, NULL);
1957 		kfree_rcu(dev_maps, rcu);
1958 	}
1959 
1960 	for (i = index; i < dev->num_tx_queues; i++)
1961 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1962 					     NUMA_NO_NODE);
1963 
1964 out_no_maps:
1965 	mutex_unlock(&xps_map_mutex);
1966 }
1967 
1968 static struct xps_map *expand_xps_map(struct xps_map *map,
1969 				      int cpu, u16 index)
1970 {
1971 	struct xps_map *new_map;
1972 	int alloc_len = XPS_MIN_MAP_ALLOC;
1973 	int i, pos;
1974 
1975 	for (pos = 0; map && pos < map->len; pos++) {
1976 		if (map->queues[pos] != index)
1977 			continue;
1978 		return map;
1979 	}
1980 
1981 	/* Need to add queue to this CPU's existing map */
1982 	if (map) {
1983 		if (pos < map->alloc_len)
1984 			return map;
1985 
1986 		alloc_len = map->alloc_len * 2;
1987 	}
1988 
1989 	/* Need to allocate new map to store queue on this CPU's map */
1990 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1991 			       cpu_to_node(cpu));
1992 	if (!new_map)
1993 		return NULL;
1994 
1995 	for (i = 0; i < pos; i++)
1996 		new_map->queues[i] = map->queues[i];
1997 	new_map->alloc_len = alloc_len;
1998 	new_map->len = pos;
1999 
2000 	return new_map;
2001 }
2002 
2003 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2004 			u16 index)
2005 {
2006 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2007 	struct xps_map *map, *new_map;
2008 	int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2009 	int cpu, numa_node_id = -2;
2010 	bool active = false;
2011 
2012 	mutex_lock(&xps_map_mutex);
2013 
2014 	dev_maps = xmap_dereference(dev->xps_maps);
2015 
2016 	/* allocate memory for queue storage */
2017 	for_each_online_cpu(cpu) {
2018 		if (!cpumask_test_cpu(cpu, mask))
2019 			continue;
2020 
2021 		if (!new_dev_maps)
2022 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2023 		if (!new_dev_maps) {
2024 			mutex_unlock(&xps_map_mutex);
2025 			return -ENOMEM;
2026 		}
2027 
2028 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2029 				 NULL;
2030 
2031 		map = expand_xps_map(map, cpu, index);
2032 		if (!map)
2033 			goto error;
2034 
2035 		RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2036 	}
2037 
2038 	if (!new_dev_maps)
2039 		goto out_no_new_maps;
2040 
2041 	for_each_possible_cpu(cpu) {
2042 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2043 			/* add queue to CPU maps */
2044 			int pos = 0;
2045 
2046 			map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2047 			while ((pos < map->len) && (map->queues[pos] != index))
2048 				pos++;
2049 
2050 			if (pos == map->len)
2051 				map->queues[map->len++] = index;
2052 #ifdef CONFIG_NUMA
2053 			if (numa_node_id == -2)
2054 				numa_node_id = cpu_to_node(cpu);
2055 			else if (numa_node_id != cpu_to_node(cpu))
2056 				numa_node_id = -1;
2057 #endif
2058 		} else if (dev_maps) {
2059 			/* fill in the new device map from the old device map */
2060 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
2061 			RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2062 		}
2063 
2064 	}
2065 
2066 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2067 
2068 	/* Cleanup old maps */
2069 	if (dev_maps) {
2070 		for_each_possible_cpu(cpu) {
2071 			new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2072 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
2073 			if (map && map != new_map)
2074 				kfree_rcu(map, rcu);
2075 		}
2076 
2077 		kfree_rcu(dev_maps, rcu);
2078 	}
2079 
2080 	dev_maps = new_dev_maps;
2081 	active = true;
2082 
2083 out_no_new_maps:
2084 	/* update Tx queue numa node */
2085 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2086 				     (numa_node_id >= 0) ? numa_node_id :
2087 				     NUMA_NO_NODE);
2088 
2089 	if (!dev_maps)
2090 		goto out_no_maps;
2091 
2092 	/* removes queue from unused CPUs */
2093 	for_each_possible_cpu(cpu) {
2094 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2095 			continue;
2096 
2097 		if (remove_xps_queue(dev_maps, cpu, index))
2098 			active = true;
2099 	}
2100 
2101 	/* free map if not active */
2102 	if (!active) {
2103 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2104 		kfree_rcu(dev_maps, rcu);
2105 	}
2106 
2107 out_no_maps:
2108 	mutex_unlock(&xps_map_mutex);
2109 
2110 	return 0;
2111 error:
2112 	/* remove any maps that we added */
2113 	for_each_possible_cpu(cpu) {
2114 		new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2115 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2116 				 NULL;
2117 		if (new_map && new_map != map)
2118 			kfree(new_map);
2119 	}
2120 
2121 	mutex_unlock(&xps_map_mutex);
2122 
2123 	kfree(new_dev_maps);
2124 	return -ENOMEM;
2125 }
2126 EXPORT_SYMBOL(netif_set_xps_queue);
2127 
2128 #endif
2129 /*
2130  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2131  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2132  */
2133 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2134 {
2135 	int rc;
2136 
2137 	if (txq < 1 || txq > dev->num_tx_queues)
2138 		return -EINVAL;
2139 
2140 	if (dev->reg_state == NETREG_REGISTERED ||
2141 	    dev->reg_state == NETREG_UNREGISTERING) {
2142 		ASSERT_RTNL();
2143 
2144 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2145 						  txq);
2146 		if (rc)
2147 			return rc;
2148 
2149 		if (dev->num_tc)
2150 			netif_setup_tc(dev, txq);
2151 
2152 		if (txq < dev->real_num_tx_queues) {
2153 			qdisc_reset_all_tx_gt(dev, txq);
2154 #ifdef CONFIG_XPS
2155 			netif_reset_xps_queues_gt(dev, txq);
2156 #endif
2157 		}
2158 	}
2159 
2160 	dev->real_num_tx_queues = txq;
2161 	return 0;
2162 }
2163 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2164 
2165 #ifdef CONFIG_SYSFS
2166 /**
2167  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2168  *	@dev: Network device
2169  *	@rxq: Actual number of RX queues
2170  *
2171  *	This must be called either with the rtnl_lock held or before
2172  *	registration of the net device.  Returns 0 on success, or a
2173  *	negative error code.  If called before registration, it always
2174  *	succeeds.
2175  */
2176 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2177 {
2178 	int rc;
2179 
2180 	if (rxq < 1 || rxq > dev->num_rx_queues)
2181 		return -EINVAL;
2182 
2183 	if (dev->reg_state == NETREG_REGISTERED) {
2184 		ASSERT_RTNL();
2185 
2186 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2187 						  rxq);
2188 		if (rc)
2189 			return rc;
2190 	}
2191 
2192 	dev->real_num_rx_queues = rxq;
2193 	return 0;
2194 }
2195 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2196 #endif
2197 
2198 /**
2199  * netif_get_num_default_rss_queues - default number of RSS queues
2200  *
2201  * This routine should set an upper limit on the number of RSS queues
2202  * used by default by multiqueue devices.
2203  */
2204 int netif_get_num_default_rss_queues(void)
2205 {
2206 	return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2207 }
2208 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2209 
2210 static inline void __netif_reschedule(struct Qdisc *q)
2211 {
2212 	struct softnet_data *sd;
2213 	unsigned long flags;
2214 
2215 	local_irq_save(flags);
2216 	sd = this_cpu_ptr(&softnet_data);
2217 	q->next_sched = NULL;
2218 	*sd->output_queue_tailp = q;
2219 	sd->output_queue_tailp = &q->next_sched;
2220 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2221 	local_irq_restore(flags);
2222 }
2223 
2224 void __netif_schedule(struct Qdisc *q)
2225 {
2226 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2227 		__netif_reschedule(q);
2228 }
2229 EXPORT_SYMBOL(__netif_schedule);
2230 
2231 struct dev_kfree_skb_cb {
2232 	enum skb_free_reason reason;
2233 };
2234 
2235 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2236 {
2237 	return (struct dev_kfree_skb_cb *)skb->cb;
2238 }
2239 
2240 void netif_schedule_queue(struct netdev_queue *txq)
2241 {
2242 	rcu_read_lock();
2243 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2244 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2245 
2246 		__netif_schedule(q);
2247 	}
2248 	rcu_read_unlock();
2249 }
2250 EXPORT_SYMBOL(netif_schedule_queue);
2251 
2252 /**
2253  *	netif_wake_subqueue - allow sending packets on subqueue
2254  *	@dev: network device
2255  *	@queue_index: sub queue index
2256  *
2257  * Resume individual transmit queue of a device with multiple transmit queues.
2258  */
2259 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2260 {
2261 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2262 
2263 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2264 		struct Qdisc *q;
2265 
2266 		rcu_read_lock();
2267 		q = rcu_dereference(txq->qdisc);
2268 		__netif_schedule(q);
2269 		rcu_read_unlock();
2270 	}
2271 }
2272 EXPORT_SYMBOL(netif_wake_subqueue);
2273 
2274 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2275 {
2276 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2277 		struct Qdisc *q;
2278 
2279 		rcu_read_lock();
2280 		q = rcu_dereference(dev_queue->qdisc);
2281 		__netif_schedule(q);
2282 		rcu_read_unlock();
2283 	}
2284 }
2285 EXPORT_SYMBOL(netif_tx_wake_queue);
2286 
2287 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2288 {
2289 	unsigned long flags;
2290 
2291 	if (likely(atomic_read(&skb->users) == 1)) {
2292 		smp_rmb();
2293 		atomic_set(&skb->users, 0);
2294 	} else if (likely(!atomic_dec_and_test(&skb->users))) {
2295 		return;
2296 	}
2297 	get_kfree_skb_cb(skb)->reason = reason;
2298 	local_irq_save(flags);
2299 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2300 	__this_cpu_write(softnet_data.completion_queue, skb);
2301 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2302 	local_irq_restore(flags);
2303 }
2304 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2305 
2306 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2307 {
2308 	if (in_irq() || irqs_disabled())
2309 		__dev_kfree_skb_irq(skb, reason);
2310 	else
2311 		dev_kfree_skb(skb);
2312 }
2313 EXPORT_SYMBOL(__dev_kfree_skb_any);
2314 
2315 
2316 /**
2317  * netif_device_detach - mark device as removed
2318  * @dev: network device
2319  *
2320  * Mark device as removed from system and therefore no longer available.
2321  */
2322 void netif_device_detach(struct net_device *dev)
2323 {
2324 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2325 	    netif_running(dev)) {
2326 		netif_tx_stop_all_queues(dev);
2327 	}
2328 }
2329 EXPORT_SYMBOL(netif_device_detach);
2330 
2331 /**
2332  * netif_device_attach - mark device as attached
2333  * @dev: network device
2334  *
2335  * Mark device as attached from system and restart if needed.
2336  */
2337 void netif_device_attach(struct net_device *dev)
2338 {
2339 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2340 	    netif_running(dev)) {
2341 		netif_tx_wake_all_queues(dev);
2342 		__netdev_watchdog_up(dev);
2343 	}
2344 }
2345 EXPORT_SYMBOL(netif_device_attach);
2346 
2347 /*
2348  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2349  * to be used as a distribution range.
2350  */
2351 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2352 		  unsigned int num_tx_queues)
2353 {
2354 	u32 hash;
2355 	u16 qoffset = 0;
2356 	u16 qcount = num_tx_queues;
2357 
2358 	if (skb_rx_queue_recorded(skb)) {
2359 		hash = skb_get_rx_queue(skb);
2360 		while (unlikely(hash >= num_tx_queues))
2361 			hash -= num_tx_queues;
2362 		return hash;
2363 	}
2364 
2365 	if (dev->num_tc) {
2366 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2367 		qoffset = dev->tc_to_txq[tc].offset;
2368 		qcount = dev->tc_to_txq[tc].count;
2369 	}
2370 
2371 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2372 }
2373 EXPORT_SYMBOL(__skb_tx_hash);
2374 
2375 static void skb_warn_bad_offload(const struct sk_buff *skb)
2376 {
2377 	static const netdev_features_t null_features = 0;
2378 	struct net_device *dev = skb->dev;
2379 	const char *driver = "";
2380 
2381 	if (!net_ratelimit())
2382 		return;
2383 
2384 	if (dev && dev->dev.parent)
2385 		driver = dev_driver_string(dev->dev.parent);
2386 
2387 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2388 	     "gso_type=%d ip_summed=%d\n",
2389 	     driver, dev ? &dev->features : &null_features,
2390 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2391 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2392 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2393 }
2394 
2395 /*
2396  * Invalidate hardware checksum when packet is to be mangled, and
2397  * complete checksum manually on outgoing path.
2398  */
2399 int skb_checksum_help(struct sk_buff *skb)
2400 {
2401 	__wsum csum;
2402 	int ret = 0, offset;
2403 
2404 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2405 		goto out_set_summed;
2406 
2407 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2408 		skb_warn_bad_offload(skb);
2409 		return -EINVAL;
2410 	}
2411 
2412 	/* Before computing a checksum, we should make sure no frag could
2413 	 * be modified by an external entity : checksum could be wrong.
2414 	 */
2415 	if (skb_has_shared_frag(skb)) {
2416 		ret = __skb_linearize(skb);
2417 		if (ret)
2418 			goto out;
2419 	}
2420 
2421 	offset = skb_checksum_start_offset(skb);
2422 	BUG_ON(offset >= skb_headlen(skb));
2423 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2424 
2425 	offset += skb->csum_offset;
2426 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2427 
2428 	if (skb_cloned(skb) &&
2429 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2430 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2431 		if (ret)
2432 			goto out;
2433 	}
2434 
2435 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
2436 out_set_summed:
2437 	skb->ip_summed = CHECKSUM_NONE;
2438 out:
2439 	return ret;
2440 }
2441 EXPORT_SYMBOL(skb_checksum_help);
2442 
2443 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2444 {
2445 	__be16 type = skb->protocol;
2446 
2447 	/* Tunnel gso handlers can set protocol to ethernet. */
2448 	if (type == htons(ETH_P_TEB)) {
2449 		struct ethhdr *eth;
2450 
2451 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2452 			return 0;
2453 
2454 		eth = (struct ethhdr *)skb_mac_header(skb);
2455 		type = eth->h_proto;
2456 	}
2457 
2458 	return __vlan_get_protocol(skb, type, depth);
2459 }
2460 
2461 /**
2462  *	skb_mac_gso_segment - mac layer segmentation handler.
2463  *	@skb: buffer to segment
2464  *	@features: features for the output path (see dev->features)
2465  */
2466 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2467 				    netdev_features_t features)
2468 {
2469 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2470 	struct packet_offload *ptype;
2471 	int vlan_depth = skb->mac_len;
2472 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2473 
2474 	if (unlikely(!type))
2475 		return ERR_PTR(-EINVAL);
2476 
2477 	__skb_pull(skb, vlan_depth);
2478 
2479 	rcu_read_lock();
2480 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2481 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2482 			segs = ptype->callbacks.gso_segment(skb, features);
2483 			break;
2484 		}
2485 	}
2486 	rcu_read_unlock();
2487 
2488 	__skb_push(skb, skb->data - skb_mac_header(skb));
2489 
2490 	return segs;
2491 }
2492 EXPORT_SYMBOL(skb_mac_gso_segment);
2493 
2494 
2495 /* openvswitch calls this on rx path, so we need a different check.
2496  */
2497 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2498 {
2499 	if (tx_path)
2500 		return skb->ip_summed != CHECKSUM_PARTIAL;
2501 	else
2502 		return skb->ip_summed == CHECKSUM_NONE;
2503 }
2504 
2505 /**
2506  *	__skb_gso_segment - Perform segmentation on skb.
2507  *	@skb: buffer to segment
2508  *	@features: features for the output path (see dev->features)
2509  *	@tx_path: whether it is called in TX path
2510  *
2511  *	This function segments the given skb and returns a list of segments.
2512  *
2513  *	It may return NULL if the skb requires no segmentation.  This is
2514  *	only possible when GSO is used for verifying header integrity.
2515  */
2516 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2517 				  netdev_features_t features, bool tx_path)
2518 {
2519 	if (unlikely(skb_needs_check(skb, tx_path))) {
2520 		int err;
2521 
2522 		skb_warn_bad_offload(skb);
2523 
2524 		err = skb_cow_head(skb, 0);
2525 		if (err < 0)
2526 			return ERR_PTR(err);
2527 	}
2528 
2529 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2530 	SKB_GSO_CB(skb)->encap_level = 0;
2531 
2532 	skb_reset_mac_header(skb);
2533 	skb_reset_mac_len(skb);
2534 
2535 	return skb_mac_gso_segment(skb, features);
2536 }
2537 EXPORT_SYMBOL(__skb_gso_segment);
2538 
2539 /* Take action when hardware reception checksum errors are detected. */
2540 #ifdef CONFIG_BUG
2541 void netdev_rx_csum_fault(struct net_device *dev)
2542 {
2543 	if (net_ratelimit()) {
2544 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2545 		dump_stack();
2546 	}
2547 }
2548 EXPORT_SYMBOL(netdev_rx_csum_fault);
2549 #endif
2550 
2551 /* Actually, we should eliminate this check as soon as we know, that:
2552  * 1. IOMMU is present and allows to map all the memory.
2553  * 2. No high memory really exists on this machine.
2554  */
2555 
2556 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2557 {
2558 #ifdef CONFIG_HIGHMEM
2559 	int i;
2560 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2561 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2562 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2563 			if (PageHighMem(skb_frag_page(frag)))
2564 				return 1;
2565 		}
2566 	}
2567 
2568 	if (PCI_DMA_BUS_IS_PHYS) {
2569 		struct device *pdev = dev->dev.parent;
2570 
2571 		if (!pdev)
2572 			return 0;
2573 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2574 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2575 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2576 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2577 				return 1;
2578 		}
2579 	}
2580 #endif
2581 	return 0;
2582 }
2583 
2584 /* If MPLS offload request, verify we are testing hardware MPLS features
2585  * instead of standard features for the netdev.
2586  */
2587 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2588 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2589 					   netdev_features_t features,
2590 					   __be16 type)
2591 {
2592 	if (eth_p_mpls(type))
2593 		features &= skb->dev->mpls_features;
2594 
2595 	return features;
2596 }
2597 #else
2598 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2599 					   netdev_features_t features,
2600 					   __be16 type)
2601 {
2602 	return features;
2603 }
2604 #endif
2605 
2606 static netdev_features_t harmonize_features(struct sk_buff *skb,
2607 	netdev_features_t features)
2608 {
2609 	int tmp;
2610 	__be16 type;
2611 
2612 	type = skb_network_protocol(skb, &tmp);
2613 	features = net_mpls_features(skb, features, type);
2614 
2615 	if (skb->ip_summed != CHECKSUM_NONE &&
2616 	    !can_checksum_protocol(features, type)) {
2617 		features &= ~NETIF_F_ALL_CSUM;
2618 	} else if (illegal_highdma(skb->dev, skb)) {
2619 		features &= ~NETIF_F_SG;
2620 	}
2621 
2622 	return features;
2623 }
2624 
2625 netdev_features_t passthru_features_check(struct sk_buff *skb,
2626 					  struct net_device *dev,
2627 					  netdev_features_t features)
2628 {
2629 	return features;
2630 }
2631 EXPORT_SYMBOL(passthru_features_check);
2632 
2633 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2634 					     struct net_device *dev,
2635 					     netdev_features_t features)
2636 {
2637 	return vlan_features_check(skb, features);
2638 }
2639 
2640 netdev_features_t netif_skb_features(struct sk_buff *skb)
2641 {
2642 	struct net_device *dev = skb->dev;
2643 	netdev_features_t features = dev->features;
2644 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
2645 
2646 	if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2647 		features &= ~NETIF_F_GSO_MASK;
2648 
2649 	/* If encapsulation offload request, verify we are testing
2650 	 * hardware encapsulation features instead of standard
2651 	 * features for the netdev
2652 	 */
2653 	if (skb->encapsulation)
2654 		features &= dev->hw_enc_features;
2655 
2656 	if (skb_vlan_tagged(skb))
2657 		features = netdev_intersect_features(features,
2658 						     dev->vlan_features |
2659 						     NETIF_F_HW_VLAN_CTAG_TX |
2660 						     NETIF_F_HW_VLAN_STAG_TX);
2661 
2662 	if (dev->netdev_ops->ndo_features_check)
2663 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
2664 								features);
2665 	else
2666 		features &= dflt_features_check(skb, dev, features);
2667 
2668 	return harmonize_features(skb, features);
2669 }
2670 EXPORT_SYMBOL(netif_skb_features);
2671 
2672 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2673 		    struct netdev_queue *txq, bool more)
2674 {
2675 	unsigned int len;
2676 	int rc;
2677 
2678 	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2679 		dev_queue_xmit_nit(skb, dev);
2680 
2681 	len = skb->len;
2682 	trace_net_dev_start_xmit(skb, dev);
2683 	rc = netdev_start_xmit(skb, dev, txq, more);
2684 	trace_net_dev_xmit(skb, rc, dev, len);
2685 
2686 	return rc;
2687 }
2688 
2689 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2690 				    struct netdev_queue *txq, int *ret)
2691 {
2692 	struct sk_buff *skb = first;
2693 	int rc = NETDEV_TX_OK;
2694 
2695 	while (skb) {
2696 		struct sk_buff *next = skb->next;
2697 
2698 		skb->next = NULL;
2699 		rc = xmit_one(skb, dev, txq, next != NULL);
2700 		if (unlikely(!dev_xmit_complete(rc))) {
2701 			skb->next = next;
2702 			goto out;
2703 		}
2704 
2705 		skb = next;
2706 		if (netif_xmit_stopped(txq) && skb) {
2707 			rc = NETDEV_TX_BUSY;
2708 			break;
2709 		}
2710 	}
2711 
2712 out:
2713 	*ret = rc;
2714 	return skb;
2715 }
2716 
2717 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2718 					  netdev_features_t features)
2719 {
2720 	if (skb_vlan_tag_present(skb) &&
2721 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
2722 		skb = __vlan_hwaccel_push_inside(skb);
2723 	return skb;
2724 }
2725 
2726 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2727 {
2728 	netdev_features_t features;
2729 
2730 	if (skb->next)
2731 		return skb;
2732 
2733 	features = netif_skb_features(skb);
2734 	skb = validate_xmit_vlan(skb, features);
2735 	if (unlikely(!skb))
2736 		goto out_null;
2737 
2738 	if (netif_needs_gso(skb, features)) {
2739 		struct sk_buff *segs;
2740 
2741 		segs = skb_gso_segment(skb, features);
2742 		if (IS_ERR(segs)) {
2743 			goto out_kfree_skb;
2744 		} else if (segs) {
2745 			consume_skb(skb);
2746 			skb = segs;
2747 		}
2748 	} else {
2749 		if (skb_needs_linearize(skb, features) &&
2750 		    __skb_linearize(skb))
2751 			goto out_kfree_skb;
2752 
2753 		/* If packet is not checksummed and device does not
2754 		 * support checksumming for this protocol, complete
2755 		 * checksumming here.
2756 		 */
2757 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2758 			if (skb->encapsulation)
2759 				skb_set_inner_transport_header(skb,
2760 							       skb_checksum_start_offset(skb));
2761 			else
2762 				skb_set_transport_header(skb,
2763 							 skb_checksum_start_offset(skb));
2764 			if (!(features & NETIF_F_ALL_CSUM) &&
2765 			    skb_checksum_help(skb))
2766 				goto out_kfree_skb;
2767 		}
2768 	}
2769 
2770 	return skb;
2771 
2772 out_kfree_skb:
2773 	kfree_skb(skb);
2774 out_null:
2775 	return NULL;
2776 }
2777 
2778 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2779 {
2780 	struct sk_buff *next, *head = NULL, *tail;
2781 
2782 	for (; skb != NULL; skb = next) {
2783 		next = skb->next;
2784 		skb->next = NULL;
2785 
2786 		/* in case skb wont be segmented, point to itself */
2787 		skb->prev = skb;
2788 
2789 		skb = validate_xmit_skb(skb, dev);
2790 		if (!skb)
2791 			continue;
2792 
2793 		if (!head)
2794 			head = skb;
2795 		else
2796 			tail->next = skb;
2797 		/* If skb was segmented, skb->prev points to
2798 		 * the last segment. If not, it still contains skb.
2799 		 */
2800 		tail = skb->prev;
2801 	}
2802 	return head;
2803 }
2804 
2805 static void qdisc_pkt_len_init(struct sk_buff *skb)
2806 {
2807 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
2808 
2809 	qdisc_skb_cb(skb)->pkt_len = skb->len;
2810 
2811 	/* To get more precise estimation of bytes sent on wire,
2812 	 * we add to pkt_len the headers size of all segments
2813 	 */
2814 	if (shinfo->gso_size)  {
2815 		unsigned int hdr_len;
2816 		u16 gso_segs = shinfo->gso_segs;
2817 
2818 		/* mac layer + network layer */
2819 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2820 
2821 		/* + transport layer */
2822 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2823 			hdr_len += tcp_hdrlen(skb);
2824 		else
2825 			hdr_len += sizeof(struct udphdr);
2826 
2827 		if (shinfo->gso_type & SKB_GSO_DODGY)
2828 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2829 						shinfo->gso_size);
2830 
2831 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2832 	}
2833 }
2834 
2835 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2836 				 struct net_device *dev,
2837 				 struct netdev_queue *txq)
2838 {
2839 	spinlock_t *root_lock = qdisc_lock(q);
2840 	bool contended;
2841 	int rc;
2842 
2843 	qdisc_pkt_len_init(skb);
2844 	qdisc_calculate_pkt_len(skb, q);
2845 	/*
2846 	 * Heuristic to force contended enqueues to serialize on a
2847 	 * separate lock before trying to get qdisc main lock.
2848 	 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2849 	 * often and dequeue packets faster.
2850 	 */
2851 	contended = qdisc_is_running(q);
2852 	if (unlikely(contended))
2853 		spin_lock(&q->busylock);
2854 
2855 	spin_lock(root_lock);
2856 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2857 		kfree_skb(skb);
2858 		rc = NET_XMIT_DROP;
2859 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2860 		   qdisc_run_begin(q)) {
2861 		/*
2862 		 * This is a work-conserving queue; there are no old skbs
2863 		 * waiting to be sent out; and the qdisc is not running -
2864 		 * xmit the skb directly.
2865 		 */
2866 
2867 		qdisc_bstats_update(q, skb);
2868 
2869 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2870 			if (unlikely(contended)) {
2871 				spin_unlock(&q->busylock);
2872 				contended = false;
2873 			}
2874 			__qdisc_run(q);
2875 		} else
2876 			qdisc_run_end(q);
2877 
2878 		rc = NET_XMIT_SUCCESS;
2879 	} else {
2880 		rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2881 		if (qdisc_run_begin(q)) {
2882 			if (unlikely(contended)) {
2883 				spin_unlock(&q->busylock);
2884 				contended = false;
2885 			}
2886 			__qdisc_run(q);
2887 		}
2888 	}
2889 	spin_unlock(root_lock);
2890 	if (unlikely(contended))
2891 		spin_unlock(&q->busylock);
2892 	return rc;
2893 }
2894 
2895 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2896 static void skb_update_prio(struct sk_buff *skb)
2897 {
2898 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2899 
2900 	if (!skb->priority && skb->sk && map) {
2901 		unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2902 
2903 		if (prioidx < map->priomap_len)
2904 			skb->priority = map->priomap[prioidx];
2905 	}
2906 }
2907 #else
2908 #define skb_update_prio(skb)
2909 #endif
2910 
2911 DEFINE_PER_CPU(int, xmit_recursion);
2912 EXPORT_SYMBOL(xmit_recursion);
2913 
2914 #define RECURSION_LIMIT 10
2915 
2916 /**
2917  *	dev_loopback_xmit - loop back @skb
2918  *	@skb: buffer to transmit
2919  */
2920 int dev_loopback_xmit(struct sock *sk, struct sk_buff *skb)
2921 {
2922 	skb_reset_mac_header(skb);
2923 	__skb_pull(skb, skb_network_offset(skb));
2924 	skb->pkt_type = PACKET_LOOPBACK;
2925 	skb->ip_summed = CHECKSUM_UNNECESSARY;
2926 	WARN_ON(!skb_dst(skb));
2927 	skb_dst_force(skb);
2928 	netif_rx_ni(skb);
2929 	return 0;
2930 }
2931 EXPORT_SYMBOL(dev_loopback_xmit);
2932 
2933 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2934 {
2935 #ifdef CONFIG_XPS
2936 	struct xps_dev_maps *dev_maps;
2937 	struct xps_map *map;
2938 	int queue_index = -1;
2939 
2940 	rcu_read_lock();
2941 	dev_maps = rcu_dereference(dev->xps_maps);
2942 	if (dev_maps) {
2943 		map = rcu_dereference(
2944 		    dev_maps->cpu_map[skb->sender_cpu - 1]);
2945 		if (map) {
2946 			if (map->len == 1)
2947 				queue_index = map->queues[0];
2948 			else
2949 				queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
2950 									   map->len)];
2951 			if (unlikely(queue_index >= dev->real_num_tx_queues))
2952 				queue_index = -1;
2953 		}
2954 	}
2955 	rcu_read_unlock();
2956 
2957 	return queue_index;
2958 #else
2959 	return -1;
2960 #endif
2961 }
2962 
2963 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
2964 {
2965 	struct sock *sk = skb->sk;
2966 	int queue_index = sk_tx_queue_get(sk);
2967 
2968 	if (queue_index < 0 || skb->ooo_okay ||
2969 	    queue_index >= dev->real_num_tx_queues) {
2970 		int new_index = get_xps_queue(dev, skb);
2971 		if (new_index < 0)
2972 			new_index = skb_tx_hash(dev, skb);
2973 
2974 		if (queue_index != new_index && sk &&
2975 		    rcu_access_pointer(sk->sk_dst_cache))
2976 			sk_tx_queue_set(sk, new_index);
2977 
2978 		queue_index = new_index;
2979 	}
2980 
2981 	return queue_index;
2982 }
2983 
2984 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
2985 				    struct sk_buff *skb,
2986 				    void *accel_priv)
2987 {
2988 	int queue_index = 0;
2989 
2990 #ifdef CONFIG_XPS
2991 	if (skb->sender_cpu == 0)
2992 		skb->sender_cpu = raw_smp_processor_id() + 1;
2993 #endif
2994 
2995 	if (dev->real_num_tx_queues != 1) {
2996 		const struct net_device_ops *ops = dev->netdev_ops;
2997 		if (ops->ndo_select_queue)
2998 			queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
2999 							    __netdev_pick_tx);
3000 		else
3001 			queue_index = __netdev_pick_tx(dev, skb);
3002 
3003 		if (!accel_priv)
3004 			queue_index = netdev_cap_txqueue(dev, queue_index);
3005 	}
3006 
3007 	skb_set_queue_mapping(skb, queue_index);
3008 	return netdev_get_tx_queue(dev, queue_index);
3009 }
3010 
3011 /**
3012  *	__dev_queue_xmit - transmit a buffer
3013  *	@skb: buffer to transmit
3014  *	@accel_priv: private data used for L2 forwarding offload
3015  *
3016  *	Queue a buffer for transmission to a network device. The caller must
3017  *	have set the device and priority and built the buffer before calling
3018  *	this function. The function can be called from an interrupt.
3019  *
3020  *	A negative errno code is returned on a failure. A success does not
3021  *	guarantee the frame will be transmitted as it may be dropped due
3022  *	to congestion or traffic shaping.
3023  *
3024  * -----------------------------------------------------------------------------------
3025  *      I notice this method can also return errors from the queue disciplines,
3026  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3027  *      be positive.
3028  *
3029  *      Regardless of the return value, the skb is consumed, so it is currently
3030  *      difficult to retry a send to this method.  (You can bump the ref count
3031  *      before sending to hold a reference for retry if you are careful.)
3032  *
3033  *      When calling this method, interrupts MUST be enabled.  This is because
3034  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3035  *          --BLG
3036  */
3037 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3038 {
3039 	struct net_device *dev = skb->dev;
3040 	struct netdev_queue *txq;
3041 	struct Qdisc *q;
3042 	int rc = -ENOMEM;
3043 
3044 	skb_reset_mac_header(skb);
3045 
3046 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3047 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3048 
3049 	/* Disable soft irqs for various locks below. Also
3050 	 * stops preemption for RCU.
3051 	 */
3052 	rcu_read_lock_bh();
3053 
3054 	skb_update_prio(skb);
3055 
3056 	/* If device/qdisc don't need skb->dst, release it right now while
3057 	 * its hot in this cpu cache.
3058 	 */
3059 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3060 		skb_dst_drop(skb);
3061 	else
3062 		skb_dst_force(skb);
3063 
3064 #ifdef CONFIG_NET_SWITCHDEV
3065 	/* Don't forward if offload device already forwarded */
3066 	if (skb->offload_fwd_mark &&
3067 	    skb->offload_fwd_mark == dev->offload_fwd_mark) {
3068 		consume_skb(skb);
3069 		rc = NET_XMIT_SUCCESS;
3070 		goto out;
3071 	}
3072 #endif
3073 
3074 	txq = netdev_pick_tx(dev, skb, accel_priv);
3075 	q = rcu_dereference_bh(txq->qdisc);
3076 
3077 #ifdef CONFIG_NET_CLS_ACT
3078 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3079 #endif
3080 	trace_net_dev_queue(skb);
3081 	if (q->enqueue) {
3082 		rc = __dev_xmit_skb(skb, q, dev, txq);
3083 		goto out;
3084 	}
3085 
3086 	/* The device has no queue. Common case for software devices:
3087 	   loopback, all the sorts of tunnels...
3088 
3089 	   Really, it is unlikely that netif_tx_lock protection is necessary
3090 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3091 	   counters.)
3092 	   However, it is possible, that they rely on protection
3093 	   made by us here.
3094 
3095 	   Check this and shot the lock. It is not prone from deadlocks.
3096 	   Either shot noqueue qdisc, it is even simpler 8)
3097 	 */
3098 	if (dev->flags & IFF_UP) {
3099 		int cpu = smp_processor_id(); /* ok because BHs are off */
3100 
3101 		if (txq->xmit_lock_owner != cpu) {
3102 
3103 			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
3104 				goto recursion_alert;
3105 
3106 			skb = validate_xmit_skb(skb, dev);
3107 			if (!skb)
3108 				goto drop;
3109 
3110 			HARD_TX_LOCK(dev, txq, cpu);
3111 
3112 			if (!netif_xmit_stopped(txq)) {
3113 				__this_cpu_inc(xmit_recursion);
3114 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3115 				__this_cpu_dec(xmit_recursion);
3116 				if (dev_xmit_complete(rc)) {
3117 					HARD_TX_UNLOCK(dev, txq);
3118 					goto out;
3119 				}
3120 			}
3121 			HARD_TX_UNLOCK(dev, txq);
3122 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3123 					     dev->name);
3124 		} else {
3125 			/* Recursion is detected! It is possible,
3126 			 * unfortunately
3127 			 */
3128 recursion_alert:
3129 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3130 					     dev->name);
3131 		}
3132 	}
3133 
3134 	rc = -ENETDOWN;
3135 drop:
3136 	rcu_read_unlock_bh();
3137 
3138 	atomic_long_inc(&dev->tx_dropped);
3139 	kfree_skb_list(skb);
3140 	return rc;
3141 out:
3142 	rcu_read_unlock_bh();
3143 	return rc;
3144 }
3145 
3146 int dev_queue_xmit_sk(struct sock *sk, struct sk_buff *skb)
3147 {
3148 	return __dev_queue_xmit(skb, NULL);
3149 }
3150 EXPORT_SYMBOL(dev_queue_xmit_sk);
3151 
3152 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3153 {
3154 	return __dev_queue_xmit(skb, accel_priv);
3155 }
3156 EXPORT_SYMBOL(dev_queue_xmit_accel);
3157 
3158 
3159 /*=======================================================================
3160 			Receiver routines
3161   =======================================================================*/
3162 
3163 int netdev_max_backlog __read_mostly = 1000;
3164 EXPORT_SYMBOL(netdev_max_backlog);
3165 
3166 int netdev_tstamp_prequeue __read_mostly = 1;
3167 int netdev_budget __read_mostly = 300;
3168 int weight_p __read_mostly = 64;            /* old backlog weight */
3169 
3170 /* Called with irq disabled */
3171 static inline void ____napi_schedule(struct softnet_data *sd,
3172 				     struct napi_struct *napi)
3173 {
3174 	list_add_tail(&napi->poll_list, &sd->poll_list);
3175 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3176 }
3177 
3178 #ifdef CONFIG_RPS
3179 
3180 /* One global table that all flow-based protocols share. */
3181 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3182 EXPORT_SYMBOL(rps_sock_flow_table);
3183 u32 rps_cpu_mask __read_mostly;
3184 EXPORT_SYMBOL(rps_cpu_mask);
3185 
3186 struct static_key rps_needed __read_mostly;
3187 
3188 static struct rps_dev_flow *
3189 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3190 	    struct rps_dev_flow *rflow, u16 next_cpu)
3191 {
3192 	if (next_cpu < nr_cpu_ids) {
3193 #ifdef CONFIG_RFS_ACCEL
3194 		struct netdev_rx_queue *rxqueue;
3195 		struct rps_dev_flow_table *flow_table;
3196 		struct rps_dev_flow *old_rflow;
3197 		u32 flow_id;
3198 		u16 rxq_index;
3199 		int rc;
3200 
3201 		/* Should we steer this flow to a different hardware queue? */
3202 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3203 		    !(dev->features & NETIF_F_NTUPLE))
3204 			goto out;
3205 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3206 		if (rxq_index == skb_get_rx_queue(skb))
3207 			goto out;
3208 
3209 		rxqueue = dev->_rx + rxq_index;
3210 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3211 		if (!flow_table)
3212 			goto out;
3213 		flow_id = skb_get_hash(skb) & flow_table->mask;
3214 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3215 							rxq_index, flow_id);
3216 		if (rc < 0)
3217 			goto out;
3218 		old_rflow = rflow;
3219 		rflow = &flow_table->flows[flow_id];
3220 		rflow->filter = rc;
3221 		if (old_rflow->filter == rflow->filter)
3222 			old_rflow->filter = RPS_NO_FILTER;
3223 	out:
3224 #endif
3225 		rflow->last_qtail =
3226 			per_cpu(softnet_data, next_cpu).input_queue_head;
3227 	}
3228 
3229 	rflow->cpu = next_cpu;
3230 	return rflow;
3231 }
3232 
3233 /*
3234  * get_rps_cpu is called from netif_receive_skb and returns the target
3235  * CPU from the RPS map of the receiving queue for a given skb.
3236  * rcu_read_lock must be held on entry.
3237  */
3238 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3239 		       struct rps_dev_flow **rflowp)
3240 {
3241 	const struct rps_sock_flow_table *sock_flow_table;
3242 	struct netdev_rx_queue *rxqueue = dev->_rx;
3243 	struct rps_dev_flow_table *flow_table;
3244 	struct rps_map *map;
3245 	int cpu = -1;
3246 	u32 tcpu;
3247 	u32 hash;
3248 
3249 	if (skb_rx_queue_recorded(skb)) {
3250 		u16 index = skb_get_rx_queue(skb);
3251 
3252 		if (unlikely(index >= dev->real_num_rx_queues)) {
3253 			WARN_ONCE(dev->real_num_rx_queues > 1,
3254 				  "%s received packet on queue %u, but number "
3255 				  "of RX queues is %u\n",
3256 				  dev->name, index, dev->real_num_rx_queues);
3257 			goto done;
3258 		}
3259 		rxqueue += index;
3260 	}
3261 
3262 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3263 
3264 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3265 	map = rcu_dereference(rxqueue->rps_map);
3266 	if (!flow_table && !map)
3267 		goto done;
3268 
3269 	skb_reset_network_header(skb);
3270 	hash = skb_get_hash(skb);
3271 	if (!hash)
3272 		goto done;
3273 
3274 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3275 	if (flow_table && sock_flow_table) {
3276 		struct rps_dev_flow *rflow;
3277 		u32 next_cpu;
3278 		u32 ident;
3279 
3280 		/* First check into global flow table if there is a match */
3281 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3282 		if ((ident ^ hash) & ~rps_cpu_mask)
3283 			goto try_rps;
3284 
3285 		next_cpu = ident & rps_cpu_mask;
3286 
3287 		/* OK, now we know there is a match,
3288 		 * we can look at the local (per receive queue) flow table
3289 		 */
3290 		rflow = &flow_table->flows[hash & flow_table->mask];
3291 		tcpu = rflow->cpu;
3292 
3293 		/*
3294 		 * If the desired CPU (where last recvmsg was done) is
3295 		 * different from current CPU (one in the rx-queue flow
3296 		 * table entry), switch if one of the following holds:
3297 		 *   - Current CPU is unset (>= nr_cpu_ids).
3298 		 *   - Current CPU is offline.
3299 		 *   - The current CPU's queue tail has advanced beyond the
3300 		 *     last packet that was enqueued using this table entry.
3301 		 *     This guarantees that all previous packets for the flow
3302 		 *     have been dequeued, thus preserving in order delivery.
3303 		 */
3304 		if (unlikely(tcpu != next_cpu) &&
3305 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3306 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3307 		      rflow->last_qtail)) >= 0)) {
3308 			tcpu = next_cpu;
3309 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3310 		}
3311 
3312 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3313 			*rflowp = rflow;
3314 			cpu = tcpu;
3315 			goto done;
3316 		}
3317 	}
3318 
3319 try_rps:
3320 
3321 	if (map) {
3322 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3323 		if (cpu_online(tcpu)) {
3324 			cpu = tcpu;
3325 			goto done;
3326 		}
3327 	}
3328 
3329 done:
3330 	return cpu;
3331 }
3332 
3333 #ifdef CONFIG_RFS_ACCEL
3334 
3335 /**
3336  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3337  * @dev: Device on which the filter was set
3338  * @rxq_index: RX queue index
3339  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3340  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3341  *
3342  * Drivers that implement ndo_rx_flow_steer() should periodically call
3343  * this function for each installed filter and remove the filters for
3344  * which it returns %true.
3345  */
3346 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3347 			 u32 flow_id, u16 filter_id)
3348 {
3349 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3350 	struct rps_dev_flow_table *flow_table;
3351 	struct rps_dev_flow *rflow;
3352 	bool expire = true;
3353 	unsigned int cpu;
3354 
3355 	rcu_read_lock();
3356 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3357 	if (flow_table && flow_id <= flow_table->mask) {
3358 		rflow = &flow_table->flows[flow_id];
3359 		cpu = ACCESS_ONCE(rflow->cpu);
3360 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3361 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3362 			   rflow->last_qtail) <
3363 		     (int)(10 * flow_table->mask)))
3364 			expire = false;
3365 	}
3366 	rcu_read_unlock();
3367 	return expire;
3368 }
3369 EXPORT_SYMBOL(rps_may_expire_flow);
3370 
3371 #endif /* CONFIG_RFS_ACCEL */
3372 
3373 /* Called from hardirq (IPI) context */
3374 static void rps_trigger_softirq(void *data)
3375 {
3376 	struct softnet_data *sd = data;
3377 
3378 	____napi_schedule(sd, &sd->backlog);
3379 	sd->received_rps++;
3380 }
3381 
3382 #endif /* CONFIG_RPS */
3383 
3384 /*
3385  * Check if this softnet_data structure is another cpu one
3386  * If yes, queue it to our IPI list and return 1
3387  * If no, return 0
3388  */
3389 static int rps_ipi_queued(struct softnet_data *sd)
3390 {
3391 #ifdef CONFIG_RPS
3392 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3393 
3394 	if (sd != mysd) {
3395 		sd->rps_ipi_next = mysd->rps_ipi_list;
3396 		mysd->rps_ipi_list = sd;
3397 
3398 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3399 		return 1;
3400 	}
3401 #endif /* CONFIG_RPS */
3402 	return 0;
3403 }
3404 
3405 #ifdef CONFIG_NET_FLOW_LIMIT
3406 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3407 #endif
3408 
3409 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3410 {
3411 #ifdef CONFIG_NET_FLOW_LIMIT
3412 	struct sd_flow_limit *fl;
3413 	struct softnet_data *sd;
3414 	unsigned int old_flow, new_flow;
3415 
3416 	if (qlen < (netdev_max_backlog >> 1))
3417 		return false;
3418 
3419 	sd = this_cpu_ptr(&softnet_data);
3420 
3421 	rcu_read_lock();
3422 	fl = rcu_dereference(sd->flow_limit);
3423 	if (fl) {
3424 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3425 		old_flow = fl->history[fl->history_head];
3426 		fl->history[fl->history_head] = new_flow;
3427 
3428 		fl->history_head++;
3429 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3430 
3431 		if (likely(fl->buckets[old_flow]))
3432 			fl->buckets[old_flow]--;
3433 
3434 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3435 			fl->count++;
3436 			rcu_read_unlock();
3437 			return true;
3438 		}
3439 	}
3440 	rcu_read_unlock();
3441 #endif
3442 	return false;
3443 }
3444 
3445 /*
3446  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3447  * queue (may be a remote CPU queue).
3448  */
3449 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3450 			      unsigned int *qtail)
3451 {
3452 	struct softnet_data *sd;
3453 	unsigned long flags;
3454 	unsigned int qlen;
3455 
3456 	sd = &per_cpu(softnet_data, cpu);
3457 
3458 	local_irq_save(flags);
3459 
3460 	rps_lock(sd);
3461 	if (!netif_running(skb->dev))
3462 		goto drop;
3463 	qlen = skb_queue_len(&sd->input_pkt_queue);
3464 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3465 		if (qlen) {
3466 enqueue:
3467 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3468 			input_queue_tail_incr_save(sd, qtail);
3469 			rps_unlock(sd);
3470 			local_irq_restore(flags);
3471 			return NET_RX_SUCCESS;
3472 		}
3473 
3474 		/* Schedule NAPI for backlog device
3475 		 * We can use non atomic operation since we own the queue lock
3476 		 */
3477 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3478 			if (!rps_ipi_queued(sd))
3479 				____napi_schedule(sd, &sd->backlog);
3480 		}
3481 		goto enqueue;
3482 	}
3483 
3484 drop:
3485 	sd->dropped++;
3486 	rps_unlock(sd);
3487 
3488 	local_irq_restore(flags);
3489 
3490 	atomic_long_inc(&skb->dev->rx_dropped);
3491 	kfree_skb(skb);
3492 	return NET_RX_DROP;
3493 }
3494 
3495 static int netif_rx_internal(struct sk_buff *skb)
3496 {
3497 	int ret;
3498 
3499 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3500 
3501 	trace_netif_rx(skb);
3502 #ifdef CONFIG_RPS
3503 	if (static_key_false(&rps_needed)) {
3504 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3505 		int cpu;
3506 
3507 		preempt_disable();
3508 		rcu_read_lock();
3509 
3510 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3511 		if (cpu < 0)
3512 			cpu = smp_processor_id();
3513 
3514 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3515 
3516 		rcu_read_unlock();
3517 		preempt_enable();
3518 	} else
3519 #endif
3520 	{
3521 		unsigned int qtail;
3522 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3523 		put_cpu();
3524 	}
3525 	return ret;
3526 }
3527 
3528 /**
3529  *	netif_rx	-	post buffer to the network code
3530  *	@skb: buffer to post
3531  *
3532  *	This function receives a packet from a device driver and queues it for
3533  *	the upper (protocol) levels to process.  It always succeeds. The buffer
3534  *	may be dropped during processing for congestion control or by the
3535  *	protocol layers.
3536  *
3537  *	return values:
3538  *	NET_RX_SUCCESS	(no congestion)
3539  *	NET_RX_DROP     (packet was dropped)
3540  *
3541  */
3542 
3543 int netif_rx(struct sk_buff *skb)
3544 {
3545 	trace_netif_rx_entry(skb);
3546 
3547 	return netif_rx_internal(skb);
3548 }
3549 EXPORT_SYMBOL(netif_rx);
3550 
3551 int netif_rx_ni(struct sk_buff *skb)
3552 {
3553 	int err;
3554 
3555 	trace_netif_rx_ni_entry(skb);
3556 
3557 	preempt_disable();
3558 	err = netif_rx_internal(skb);
3559 	if (local_softirq_pending())
3560 		do_softirq();
3561 	preempt_enable();
3562 
3563 	return err;
3564 }
3565 EXPORT_SYMBOL(netif_rx_ni);
3566 
3567 static void net_tx_action(struct softirq_action *h)
3568 {
3569 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3570 
3571 	if (sd->completion_queue) {
3572 		struct sk_buff *clist;
3573 
3574 		local_irq_disable();
3575 		clist = sd->completion_queue;
3576 		sd->completion_queue = NULL;
3577 		local_irq_enable();
3578 
3579 		while (clist) {
3580 			struct sk_buff *skb = clist;
3581 			clist = clist->next;
3582 
3583 			WARN_ON(atomic_read(&skb->users));
3584 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3585 				trace_consume_skb(skb);
3586 			else
3587 				trace_kfree_skb(skb, net_tx_action);
3588 			__kfree_skb(skb);
3589 		}
3590 	}
3591 
3592 	if (sd->output_queue) {
3593 		struct Qdisc *head;
3594 
3595 		local_irq_disable();
3596 		head = sd->output_queue;
3597 		sd->output_queue = NULL;
3598 		sd->output_queue_tailp = &sd->output_queue;
3599 		local_irq_enable();
3600 
3601 		while (head) {
3602 			struct Qdisc *q = head;
3603 			spinlock_t *root_lock;
3604 
3605 			head = head->next_sched;
3606 
3607 			root_lock = qdisc_lock(q);
3608 			if (spin_trylock(root_lock)) {
3609 				smp_mb__before_atomic();
3610 				clear_bit(__QDISC_STATE_SCHED,
3611 					  &q->state);
3612 				qdisc_run(q);
3613 				spin_unlock(root_lock);
3614 			} else {
3615 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
3616 					      &q->state)) {
3617 					__netif_reschedule(q);
3618 				} else {
3619 					smp_mb__before_atomic();
3620 					clear_bit(__QDISC_STATE_SCHED,
3621 						  &q->state);
3622 				}
3623 			}
3624 		}
3625 	}
3626 }
3627 
3628 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3629     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3630 /* This hook is defined here for ATM LANE */
3631 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3632 			     unsigned char *addr) __read_mostly;
3633 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3634 #endif
3635 
3636 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3637 					 struct packet_type **pt_prev,
3638 					 int *ret, struct net_device *orig_dev)
3639 {
3640 #ifdef CONFIG_NET_CLS_ACT
3641 	struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3642 	struct tcf_result cl_res;
3643 
3644 	/* If there's at least one ingress present somewhere (so
3645 	 * we get here via enabled static key), remaining devices
3646 	 * that are not configured with an ingress qdisc will bail
3647 	 * out here.
3648 	 */
3649 	if (!cl)
3650 		return skb;
3651 	if (*pt_prev) {
3652 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3653 		*pt_prev = NULL;
3654 	}
3655 
3656 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3657 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3658 	qdisc_bstats_cpu_update(cl->q, skb);
3659 
3660 	switch (tc_classify(skb, cl, &cl_res, false)) {
3661 	case TC_ACT_OK:
3662 	case TC_ACT_RECLASSIFY:
3663 		skb->tc_index = TC_H_MIN(cl_res.classid);
3664 		break;
3665 	case TC_ACT_SHOT:
3666 		qdisc_qstats_cpu_drop(cl->q);
3667 	case TC_ACT_STOLEN:
3668 	case TC_ACT_QUEUED:
3669 		kfree_skb(skb);
3670 		return NULL;
3671 	default:
3672 		break;
3673 	}
3674 #endif /* CONFIG_NET_CLS_ACT */
3675 	return skb;
3676 }
3677 
3678 /**
3679  *	netdev_rx_handler_register - register receive handler
3680  *	@dev: device to register a handler for
3681  *	@rx_handler: receive handler to register
3682  *	@rx_handler_data: data pointer that is used by rx handler
3683  *
3684  *	Register a receive handler for a device. This handler will then be
3685  *	called from __netif_receive_skb. A negative errno code is returned
3686  *	on a failure.
3687  *
3688  *	The caller must hold the rtnl_mutex.
3689  *
3690  *	For a general description of rx_handler, see enum rx_handler_result.
3691  */
3692 int netdev_rx_handler_register(struct net_device *dev,
3693 			       rx_handler_func_t *rx_handler,
3694 			       void *rx_handler_data)
3695 {
3696 	ASSERT_RTNL();
3697 
3698 	if (dev->rx_handler)
3699 		return -EBUSY;
3700 
3701 	/* Note: rx_handler_data must be set before rx_handler */
3702 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3703 	rcu_assign_pointer(dev->rx_handler, rx_handler);
3704 
3705 	return 0;
3706 }
3707 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3708 
3709 /**
3710  *	netdev_rx_handler_unregister - unregister receive handler
3711  *	@dev: device to unregister a handler from
3712  *
3713  *	Unregister a receive handler from a device.
3714  *
3715  *	The caller must hold the rtnl_mutex.
3716  */
3717 void netdev_rx_handler_unregister(struct net_device *dev)
3718 {
3719 
3720 	ASSERT_RTNL();
3721 	RCU_INIT_POINTER(dev->rx_handler, NULL);
3722 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3723 	 * section has a guarantee to see a non NULL rx_handler_data
3724 	 * as well.
3725 	 */
3726 	synchronize_net();
3727 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3728 }
3729 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3730 
3731 /*
3732  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3733  * the special handling of PFMEMALLOC skbs.
3734  */
3735 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3736 {
3737 	switch (skb->protocol) {
3738 	case htons(ETH_P_ARP):
3739 	case htons(ETH_P_IP):
3740 	case htons(ETH_P_IPV6):
3741 	case htons(ETH_P_8021Q):
3742 	case htons(ETH_P_8021AD):
3743 		return true;
3744 	default:
3745 		return false;
3746 	}
3747 }
3748 
3749 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
3750 			     int *ret, struct net_device *orig_dev)
3751 {
3752 #ifdef CONFIG_NETFILTER_INGRESS
3753 	if (nf_hook_ingress_active(skb)) {
3754 		if (*pt_prev) {
3755 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
3756 			*pt_prev = NULL;
3757 		}
3758 
3759 		return nf_hook_ingress(skb);
3760 	}
3761 #endif /* CONFIG_NETFILTER_INGRESS */
3762 	return 0;
3763 }
3764 
3765 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3766 {
3767 	struct packet_type *ptype, *pt_prev;
3768 	rx_handler_func_t *rx_handler;
3769 	struct net_device *orig_dev;
3770 	bool deliver_exact = false;
3771 	int ret = NET_RX_DROP;
3772 	__be16 type;
3773 
3774 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
3775 
3776 	trace_netif_receive_skb(skb);
3777 
3778 	orig_dev = skb->dev;
3779 
3780 	skb_reset_network_header(skb);
3781 	if (!skb_transport_header_was_set(skb))
3782 		skb_reset_transport_header(skb);
3783 	skb_reset_mac_len(skb);
3784 
3785 	pt_prev = NULL;
3786 
3787 another_round:
3788 	skb->skb_iif = skb->dev->ifindex;
3789 
3790 	__this_cpu_inc(softnet_data.processed);
3791 
3792 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3793 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3794 		skb = skb_vlan_untag(skb);
3795 		if (unlikely(!skb))
3796 			goto out;
3797 	}
3798 
3799 #ifdef CONFIG_NET_CLS_ACT
3800 	if (skb->tc_verd & TC_NCLS) {
3801 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3802 		goto ncls;
3803 	}
3804 #endif
3805 
3806 	if (pfmemalloc)
3807 		goto skip_taps;
3808 
3809 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
3810 		if (pt_prev)
3811 			ret = deliver_skb(skb, pt_prev, orig_dev);
3812 		pt_prev = ptype;
3813 	}
3814 
3815 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3816 		if (pt_prev)
3817 			ret = deliver_skb(skb, pt_prev, orig_dev);
3818 		pt_prev = ptype;
3819 	}
3820 
3821 skip_taps:
3822 #ifdef CONFIG_NET_INGRESS
3823 	if (static_key_false(&ingress_needed)) {
3824 		skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3825 		if (!skb)
3826 			goto out;
3827 
3828 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
3829 			goto out;
3830 	}
3831 #endif
3832 #ifdef CONFIG_NET_CLS_ACT
3833 	skb->tc_verd = 0;
3834 ncls:
3835 #endif
3836 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3837 		goto drop;
3838 
3839 	if (skb_vlan_tag_present(skb)) {
3840 		if (pt_prev) {
3841 			ret = deliver_skb(skb, pt_prev, orig_dev);
3842 			pt_prev = NULL;
3843 		}
3844 		if (vlan_do_receive(&skb))
3845 			goto another_round;
3846 		else if (unlikely(!skb))
3847 			goto out;
3848 	}
3849 
3850 	rx_handler = rcu_dereference(skb->dev->rx_handler);
3851 	if (rx_handler) {
3852 		if (pt_prev) {
3853 			ret = deliver_skb(skb, pt_prev, orig_dev);
3854 			pt_prev = NULL;
3855 		}
3856 		switch (rx_handler(&skb)) {
3857 		case RX_HANDLER_CONSUMED:
3858 			ret = NET_RX_SUCCESS;
3859 			goto out;
3860 		case RX_HANDLER_ANOTHER:
3861 			goto another_round;
3862 		case RX_HANDLER_EXACT:
3863 			deliver_exact = true;
3864 		case RX_HANDLER_PASS:
3865 			break;
3866 		default:
3867 			BUG();
3868 		}
3869 	}
3870 
3871 	if (unlikely(skb_vlan_tag_present(skb))) {
3872 		if (skb_vlan_tag_get_id(skb))
3873 			skb->pkt_type = PACKET_OTHERHOST;
3874 		/* Note: we might in the future use prio bits
3875 		 * and set skb->priority like in vlan_do_receive()
3876 		 * For the time being, just ignore Priority Code Point
3877 		 */
3878 		skb->vlan_tci = 0;
3879 	}
3880 
3881 	type = skb->protocol;
3882 
3883 	/* deliver only exact match when indicated */
3884 	if (likely(!deliver_exact)) {
3885 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3886 				       &ptype_base[ntohs(type) &
3887 						   PTYPE_HASH_MASK]);
3888 	}
3889 
3890 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3891 			       &orig_dev->ptype_specific);
3892 
3893 	if (unlikely(skb->dev != orig_dev)) {
3894 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3895 				       &skb->dev->ptype_specific);
3896 	}
3897 
3898 	if (pt_prev) {
3899 		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3900 			goto drop;
3901 		else
3902 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3903 	} else {
3904 drop:
3905 		atomic_long_inc(&skb->dev->rx_dropped);
3906 		kfree_skb(skb);
3907 		/* Jamal, now you will not able to escape explaining
3908 		 * me how you were going to use this. :-)
3909 		 */
3910 		ret = NET_RX_DROP;
3911 	}
3912 
3913 out:
3914 	return ret;
3915 }
3916 
3917 static int __netif_receive_skb(struct sk_buff *skb)
3918 {
3919 	int ret;
3920 
3921 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3922 		unsigned long pflags = current->flags;
3923 
3924 		/*
3925 		 * PFMEMALLOC skbs are special, they should
3926 		 * - be delivered to SOCK_MEMALLOC sockets only
3927 		 * - stay away from userspace
3928 		 * - have bounded memory usage
3929 		 *
3930 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
3931 		 * context down to all allocation sites.
3932 		 */
3933 		current->flags |= PF_MEMALLOC;
3934 		ret = __netif_receive_skb_core(skb, true);
3935 		tsk_restore_flags(current, pflags, PF_MEMALLOC);
3936 	} else
3937 		ret = __netif_receive_skb_core(skb, false);
3938 
3939 	return ret;
3940 }
3941 
3942 static int netif_receive_skb_internal(struct sk_buff *skb)
3943 {
3944 	int ret;
3945 
3946 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3947 
3948 	if (skb_defer_rx_timestamp(skb))
3949 		return NET_RX_SUCCESS;
3950 
3951 	rcu_read_lock();
3952 
3953 #ifdef CONFIG_RPS
3954 	if (static_key_false(&rps_needed)) {
3955 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3956 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
3957 
3958 		if (cpu >= 0) {
3959 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3960 			rcu_read_unlock();
3961 			return ret;
3962 		}
3963 	}
3964 #endif
3965 	ret = __netif_receive_skb(skb);
3966 	rcu_read_unlock();
3967 	return ret;
3968 }
3969 
3970 /**
3971  *	netif_receive_skb - process receive buffer from network
3972  *	@skb: buffer to process
3973  *
3974  *	netif_receive_skb() is the main receive data processing function.
3975  *	It always succeeds. The buffer may be dropped during processing
3976  *	for congestion control or by the protocol layers.
3977  *
3978  *	This function may only be called from softirq context and interrupts
3979  *	should be enabled.
3980  *
3981  *	Return values (usually ignored):
3982  *	NET_RX_SUCCESS: no congestion
3983  *	NET_RX_DROP: packet was dropped
3984  */
3985 int netif_receive_skb_sk(struct sock *sk, struct sk_buff *skb)
3986 {
3987 	trace_netif_receive_skb_entry(skb);
3988 
3989 	return netif_receive_skb_internal(skb);
3990 }
3991 EXPORT_SYMBOL(netif_receive_skb_sk);
3992 
3993 /* Network device is going away, flush any packets still pending
3994  * Called with irqs disabled.
3995  */
3996 static void flush_backlog(void *arg)
3997 {
3998 	struct net_device *dev = arg;
3999 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4000 	struct sk_buff *skb, *tmp;
4001 
4002 	rps_lock(sd);
4003 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4004 		if (skb->dev == dev) {
4005 			__skb_unlink(skb, &sd->input_pkt_queue);
4006 			kfree_skb(skb);
4007 			input_queue_head_incr(sd);
4008 		}
4009 	}
4010 	rps_unlock(sd);
4011 
4012 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4013 		if (skb->dev == dev) {
4014 			__skb_unlink(skb, &sd->process_queue);
4015 			kfree_skb(skb);
4016 			input_queue_head_incr(sd);
4017 		}
4018 	}
4019 }
4020 
4021 static int napi_gro_complete(struct sk_buff *skb)
4022 {
4023 	struct packet_offload *ptype;
4024 	__be16 type = skb->protocol;
4025 	struct list_head *head = &offload_base;
4026 	int err = -ENOENT;
4027 
4028 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4029 
4030 	if (NAPI_GRO_CB(skb)->count == 1) {
4031 		skb_shinfo(skb)->gso_size = 0;
4032 		goto out;
4033 	}
4034 
4035 	rcu_read_lock();
4036 	list_for_each_entry_rcu(ptype, head, list) {
4037 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4038 			continue;
4039 
4040 		err = ptype->callbacks.gro_complete(skb, 0);
4041 		break;
4042 	}
4043 	rcu_read_unlock();
4044 
4045 	if (err) {
4046 		WARN_ON(&ptype->list == head);
4047 		kfree_skb(skb);
4048 		return NET_RX_SUCCESS;
4049 	}
4050 
4051 out:
4052 	return netif_receive_skb_internal(skb);
4053 }
4054 
4055 /* napi->gro_list contains packets ordered by age.
4056  * youngest packets at the head of it.
4057  * Complete skbs in reverse order to reduce latencies.
4058  */
4059 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4060 {
4061 	struct sk_buff *skb, *prev = NULL;
4062 
4063 	/* scan list and build reverse chain */
4064 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4065 		skb->prev = prev;
4066 		prev = skb;
4067 	}
4068 
4069 	for (skb = prev; skb; skb = prev) {
4070 		skb->next = NULL;
4071 
4072 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4073 			return;
4074 
4075 		prev = skb->prev;
4076 		napi_gro_complete(skb);
4077 		napi->gro_count--;
4078 	}
4079 
4080 	napi->gro_list = NULL;
4081 }
4082 EXPORT_SYMBOL(napi_gro_flush);
4083 
4084 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4085 {
4086 	struct sk_buff *p;
4087 	unsigned int maclen = skb->dev->hard_header_len;
4088 	u32 hash = skb_get_hash_raw(skb);
4089 
4090 	for (p = napi->gro_list; p; p = p->next) {
4091 		unsigned long diffs;
4092 
4093 		NAPI_GRO_CB(p)->flush = 0;
4094 
4095 		if (hash != skb_get_hash_raw(p)) {
4096 			NAPI_GRO_CB(p)->same_flow = 0;
4097 			continue;
4098 		}
4099 
4100 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4101 		diffs |= p->vlan_tci ^ skb->vlan_tci;
4102 		if (maclen == ETH_HLEN)
4103 			diffs |= compare_ether_header(skb_mac_header(p),
4104 						      skb_mac_header(skb));
4105 		else if (!diffs)
4106 			diffs = memcmp(skb_mac_header(p),
4107 				       skb_mac_header(skb),
4108 				       maclen);
4109 		NAPI_GRO_CB(p)->same_flow = !diffs;
4110 	}
4111 }
4112 
4113 static void skb_gro_reset_offset(struct sk_buff *skb)
4114 {
4115 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
4116 	const skb_frag_t *frag0 = &pinfo->frags[0];
4117 
4118 	NAPI_GRO_CB(skb)->data_offset = 0;
4119 	NAPI_GRO_CB(skb)->frag0 = NULL;
4120 	NAPI_GRO_CB(skb)->frag0_len = 0;
4121 
4122 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4123 	    pinfo->nr_frags &&
4124 	    !PageHighMem(skb_frag_page(frag0))) {
4125 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4126 		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4127 	}
4128 }
4129 
4130 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4131 {
4132 	struct skb_shared_info *pinfo = skb_shinfo(skb);
4133 
4134 	BUG_ON(skb->end - skb->tail < grow);
4135 
4136 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4137 
4138 	skb->data_len -= grow;
4139 	skb->tail += grow;
4140 
4141 	pinfo->frags[0].page_offset += grow;
4142 	skb_frag_size_sub(&pinfo->frags[0], grow);
4143 
4144 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4145 		skb_frag_unref(skb, 0);
4146 		memmove(pinfo->frags, pinfo->frags + 1,
4147 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
4148 	}
4149 }
4150 
4151 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4152 {
4153 	struct sk_buff **pp = NULL;
4154 	struct packet_offload *ptype;
4155 	__be16 type = skb->protocol;
4156 	struct list_head *head = &offload_base;
4157 	int same_flow;
4158 	enum gro_result ret;
4159 	int grow;
4160 
4161 	if (!(skb->dev->features & NETIF_F_GRO))
4162 		goto normal;
4163 
4164 	if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4165 		goto normal;
4166 
4167 	gro_list_prepare(napi, skb);
4168 
4169 	rcu_read_lock();
4170 	list_for_each_entry_rcu(ptype, head, list) {
4171 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4172 			continue;
4173 
4174 		skb_set_network_header(skb, skb_gro_offset(skb));
4175 		skb_reset_mac_len(skb);
4176 		NAPI_GRO_CB(skb)->same_flow = 0;
4177 		NAPI_GRO_CB(skb)->flush = 0;
4178 		NAPI_GRO_CB(skb)->free = 0;
4179 		NAPI_GRO_CB(skb)->udp_mark = 0;
4180 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4181 
4182 		/* Setup for GRO checksum validation */
4183 		switch (skb->ip_summed) {
4184 		case CHECKSUM_COMPLETE:
4185 			NAPI_GRO_CB(skb)->csum = skb->csum;
4186 			NAPI_GRO_CB(skb)->csum_valid = 1;
4187 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4188 			break;
4189 		case CHECKSUM_UNNECESSARY:
4190 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4191 			NAPI_GRO_CB(skb)->csum_valid = 0;
4192 			break;
4193 		default:
4194 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4195 			NAPI_GRO_CB(skb)->csum_valid = 0;
4196 		}
4197 
4198 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4199 		break;
4200 	}
4201 	rcu_read_unlock();
4202 
4203 	if (&ptype->list == head)
4204 		goto normal;
4205 
4206 	same_flow = NAPI_GRO_CB(skb)->same_flow;
4207 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4208 
4209 	if (pp) {
4210 		struct sk_buff *nskb = *pp;
4211 
4212 		*pp = nskb->next;
4213 		nskb->next = NULL;
4214 		napi_gro_complete(nskb);
4215 		napi->gro_count--;
4216 	}
4217 
4218 	if (same_flow)
4219 		goto ok;
4220 
4221 	if (NAPI_GRO_CB(skb)->flush)
4222 		goto normal;
4223 
4224 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4225 		struct sk_buff *nskb = napi->gro_list;
4226 
4227 		/* locate the end of the list to select the 'oldest' flow */
4228 		while (nskb->next) {
4229 			pp = &nskb->next;
4230 			nskb = *pp;
4231 		}
4232 		*pp = NULL;
4233 		nskb->next = NULL;
4234 		napi_gro_complete(nskb);
4235 	} else {
4236 		napi->gro_count++;
4237 	}
4238 	NAPI_GRO_CB(skb)->count = 1;
4239 	NAPI_GRO_CB(skb)->age = jiffies;
4240 	NAPI_GRO_CB(skb)->last = skb;
4241 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4242 	skb->next = napi->gro_list;
4243 	napi->gro_list = skb;
4244 	ret = GRO_HELD;
4245 
4246 pull:
4247 	grow = skb_gro_offset(skb) - skb_headlen(skb);
4248 	if (grow > 0)
4249 		gro_pull_from_frag0(skb, grow);
4250 ok:
4251 	return ret;
4252 
4253 normal:
4254 	ret = GRO_NORMAL;
4255 	goto pull;
4256 }
4257 
4258 struct packet_offload *gro_find_receive_by_type(__be16 type)
4259 {
4260 	struct list_head *offload_head = &offload_base;
4261 	struct packet_offload *ptype;
4262 
4263 	list_for_each_entry_rcu(ptype, offload_head, list) {
4264 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4265 			continue;
4266 		return ptype;
4267 	}
4268 	return NULL;
4269 }
4270 EXPORT_SYMBOL(gro_find_receive_by_type);
4271 
4272 struct packet_offload *gro_find_complete_by_type(__be16 type)
4273 {
4274 	struct list_head *offload_head = &offload_base;
4275 	struct packet_offload *ptype;
4276 
4277 	list_for_each_entry_rcu(ptype, offload_head, list) {
4278 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4279 			continue;
4280 		return ptype;
4281 	}
4282 	return NULL;
4283 }
4284 EXPORT_SYMBOL(gro_find_complete_by_type);
4285 
4286 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4287 {
4288 	switch (ret) {
4289 	case GRO_NORMAL:
4290 		if (netif_receive_skb_internal(skb))
4291 			ret = GRO_DROP;
4292 		break;
4293 
4294 	case GRO_DROP:
4295 		kfree_skb(skb);
4296 		break;
4297 
4298 	case GRO_MERGED_FREE:
4299 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4300 			kmem_cache_free(skbuff_head_cache, skb);
4301 		else
4302 			__kfree_skb(skb);
4303 		break;
4304 
4305 	case GRO_HELD:
4306 	case GRO_MERGED:
4307 		break;
4308 	}
4309 
4310 	return ret;
4311 }
4312 
4313 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4314 {
4315 	trace_napi_gro_receive_entry(skb);
4316 
4317 	skb_gro_reset_offset(skb);
4318 
4319 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4320 }
4321 EXPORT_SYMBOL(napi_gro_receive);
4322 
4323 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4324 {
4325 	if (unlikely(skb->pfmemalloc)) {
4326 		consume_skb(skb);
4327 		return;
4328 	}
4329 	__skb_pull(skb, skb_headlen(skb));
4330 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
4331 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4332 	skb->vlan_tci = 0;
4333 	skb->dev = napi->dev;
4334 	skb->skb_iif = 0;
4335 	skb->encapsulation = 0;
4336 	skb_shinfo(skb)->gso_type = 0;
4337 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4338 
4339 	napi->skb = skb;
4340 }
4341 
4342 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4343 {
4344 	struct sk_buff *skb = napi->skb;
4345 
4346 	if (!skb) {
4347 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4348 		napi->skb = skb;
4349 	}
4350 	return skb;
4351 }
4352 EXPORT_SYMBOL(napi_get_frags);
4353 
4354 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4355 				      struct sk_buff *skb,
4356 				      gro_result_t ret)
4357 {
4358 	switch (ret) {
4359 	case GRO_NORMAL:
4360 	case GRO_HELD:
4361 		__skb_push(skb, ETH_HLEN);
4362 		skb->protocol = eth_type_trans(skb, skb->dev);
4363 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4364 			ret = GRO_DROP;
4365 		break;
4366 
4367 	case GRO_DROP:
4368 	case GRO_MERGED_FREE:
4369 		napi_reuse_skb(napi, skb);
4370 		break;
4371 
4372 	case GRO_MERGED:
4373 		break;
4374 	}
4375 
4376 	return ret;
4377 }
4378 
4379 /* Upper GRO stack assumes network header starts at gro_offset=0
4380  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4381  * We copy ethernet header into skb->data to have a common layout.
4382  */
4383 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4384 {
4385 	struct sk_buff *skb = napi->skb;
4386 	const struct ethhdr *eth;
4387 	unsigned int hlen = sizeof(*eth);
4388 
4389 	napi->skb = NULL;
4390 
4391 	skb_reset_mac_header(skb);
4392 	skb_gro_reset_offset(skb);
4393 
4394 	eth = skb_gro_header_fast(skb, 0);
4395 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
4396 		eth = skb_gro_header_slow(skb, hlen, 0);
4397 		if (unlikely(!eth)) {
4398 			napi_reuse_skb(napi, skb);
4399 			return NULL;
4400 		}
4401 	} else {
4402 		gro_pull_from_frag0(skb, hlen);
4403 		NAPI_GRO_CB(skb)->frag0 += hlen;
4404 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
4405 	}
4406 	__skb_pull(skb, hlen);
4407 
4408 	/*
4409 	 * This works because the only protocols we care about don't require
4410 	 * special handling.
4411 	 * We'll fix it up properly in napi_frags_finish()
4412 	 */
4413 	skb->protocol = eth->h_proto;
4414 
4415 	return skb;
4416 }
4417 
4418 gro_result_t napi_gro_frags(struct napi_struct *napi)
4419 {
4420 	struct sk_buff *skb = napi_frags_skb(napi);
4421 
4422 	if (!skb)
4423 		return GRO_DROP;
4424 
4425 	trace_napi_gro_frags_entry(skb);
4426 
4427 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4428 }
4429 EXPORT_SYMBOL(napi_gro_frags);
4430 
4431 /* Compute the checksum from gro_offset and return the folded value
4432  * after adding in any pseudo checksum.
4433  */
4434 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4435 {
4436 	__wsum wsum;
4437 	__sum16 sum;
4438 
4439 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4440 
4441 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4442 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4443 	if (likely(!sum)) {
4444 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4445 		    !skb->csum_complete_sw)
4446 			netdev_rx_csum_fault(skb->dev);
4447 	}
4448 
4449 	NAPI_GRO_CB(skb)->csum = wsum;
4450 	NAPI_GRO_CB(skb)->csum_valid = 1;
4451 
4452 	return sum;
4453 }
4454 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4455 
4456 /*
4457  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4458  * Note: called with local irq disabled, but exits with local irq enabled.
4459  */
4460 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4461 {
4462 #ifdef CONFIG_RPS
4463 	struct softnet_data *remsd = sd->rps_ipi_list;
4464 
4465 	if (remsd) {
4466 		sd->rps_ipi_list = NULL;
4467 
4468 		local_irq_enable();
4469 
4470 		/* Send pending IPI's to kick RPS processing on remote cpus. */
4471 		while (remsd) {
4472 			struct softnet_data *next = remsd->rps_ipi_next;
4473 
4474 			if (cpu_online(remsd->cpu))
4475 				smp_call_function_single_async(remsd->cpu,
4476 							   &remsd->csd);
4477 			remsd = next;
4478 		}
4479 	} else
4480 #endif
4481 		local_irq_enable();
4482 }
4483 
4484 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4485 {
4486 #ifdef CONFIG_RPS
4487 	return sd->rps_ipi_list != NULL;
4488 #else
4489 	return false;
4490 #endif
4491 }
4492 
4493 static int process_backlog(struct napi_struct *napi, int quota)
4494 {
4495 	int work = 0;
4496 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4497 
4498 	/* Check if we have pending ipi, its better to send them now,
4499 	 * not waiting net_rx_action() end.
4500 	 */
4501 	if (sd_has_rps_ipi_waiting(sd)) {
4502 		local_irq_disable();
4503 		net_rps_action_and_irq_enable(sd);
4504 	}
4505 
4506 	napi->weight = weight_p;
4507 	local_irq_disable();
4508 	while (1) {
4509 		struct sk_buff *skb;
4510 
4511 		while ((skb = __skb_dequeue(&sd->process_queue))) {
4512 			rcu_read_lock();
4513 			local_irq_enable();
4514 			__netif_receive_skb(skb);
4515 			rcu_read_unlock();
4516 			local_irq_disable();
4517 			input_queue_head_incr(sd);
4518 			if (++work >= quota) {
4519 				local_irq_enable();
4520 				return work;
4521 			}
4522 		}
4523 
4524 		rps_lock(sd);
4525 		if (skb_queue_empty(&sd->input_pkt_queue)) {
4526 			/*
4527 			 * Inline a custom version of __napi_complete().
4528 			 * only current cpu owns and manipulates this napi,
4529 			 * and NAPI_STATE_SCHED is the only possible flag set
4530 			 * on backlog.
4531 			 * We can use a plain write instead of clear_bit(),
4532 			 * and we dont need an smp_mb() memory barrier.
4533 			 */
4534 			napi->state = 0;
4535 			rps_unlock(sd);
4536 
4537 			break;
4538 		}
4539 
4540 		skb_queue_splice_tail_init(&sd->input_pkt_queue,
4541 					   &sd->process_queue);
4542 		rps_unlock(sd);
4543 	}
4544 	local_irq_enable();
4545 
4546 	return work;
4547 }
4548 
4549 /**
4550  * __napi_schedule - schedule for receive
4551  * @n: entry to schedule
4552  *
4553  * The entry's receive function will be scheduled to run.
4554  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4555  */
4556 void __napi_schedule(struct napi_struct *n)
4557 {
4558 	unsigned long flags;
4559 
4560 	local_irq_save(flags);
4561 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4562 	local_irq_restore(flags);
4563 }
4564 EXPORT_SYMBOL(__napi_schedule);
4565 
4566 /**
4567  * __napi_schedule_irqoff - schedule for receive
4568  * @n: entry to schedule
4569  *
4570  * Variant of __napi_schedule() assuming hard irqs are masked
4571  */
4572 void __napi_schedule_irqoff(struct napi_struct *n)
4573 {
4574 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4575 }
4576 EXPORT_SYMBOL(__napi_schedule_irqoff);
4577 
4578 void __napi_complete(struct napi_struct *n)
4579 {
4580 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4581 
4582 	list_del_init(&n->poll_list);
4583 	smp_mb__before_atomic();
4584 	clear_bit(NAPI_STATE_SCHED, &n->state);
4585 }
4586 EXPORT_SYMBOL(__napi_complete);
4587 
4588 void napi_complete_done(struct napi_struct *n, int work_done)
4589 {
4590 	unsigned long flags;
4591 
4592 	/*
4593 	 * don't let napi dequeue from the cpu poll list
4594 	 * just in case its running on a different cpu
4595 	 */
4596 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4597 		return;
4598 
4599 	if (n->gro_list) {
4600 		unsigned long timeout = 0;
4601 
4602 		if (work_done)
4603 			timeout = n->dev->gro_flush_timeout;
4604 
4605 		if (timeout)
4606 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
4607 				      HRTIMER_MODE_REL_PINNED);
4608 		else
4609 			napi_gro_flush(n, false);
4610 	}
4611 	if (likely(list_empty(&n->poll_list))) {
4612 		WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4613 	} else {
4614 		/* If n->poll_list is not empty, we need to mask irqs */
4615 		local_irq_save(flags);
4616 		__napi_complete(n);
4617 		local_irq_restore(flags);
4618 	}
4619 }
4620 EXPORT_SYMBOL(napi_complete_done);
4621 
4622 /* must be called under rcu_read_lock(), as we dont take a reference */
4623 struct napi_struct *napi_by_id(unsigned int napi_id)
4624 {
4625 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4626 	struct napi_struct *napi;
4627 
4628 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4629 		if (napi->napi_id == napi_id)
4630 			return napi;
4631 
4632 	return NULL;
4633 }
4634 EXPORT_SYMBOL_GPL(napi_by_id);
4635 
4636 void napi_hash_add(struct napi_struct *napi)
4637 {
4638 	if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4639 
4640 		spin_lock(&napi_hash_lock);
4641 
4642 		/* 0 is not a valid id, we also skip an id that is taken
4643 		 * we expect both events to be extremely rare
4644 		 */
4645 		napi->napi_id = 0;
4646 		while (!napi->napi_id) {
4647 			napi->napi_id = ++napi_gen_id;
4648 			if (napi_by_id(napi->napi_id))
4649 				napi->napi_id = 0;
4650 		}
4651 
4652 		hlist_add_head_rcu(&napi->napi_hash_node,
4653 			&napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4654 
4655 		spin_unlock(&napi_hash_lock);
4656 	}
4657 }
4658 EXPORT_SYMBOL_GPL(napi_hash_add);
4659 
4660 /* Warning : caller is responsible to make sure rcu grace period
4661  * is respected before freeing memory containing @napi
4662  */
4663 void napi_hash_del(struct napi_struct *napi)
4664 {
4665 	spin_lock(&napi_hash_lock);
4666 
4667 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4668 		hlist_del_rcu(&napi->napi_hash_node);
4669 
4670 	spin_unlock(&napi_hash_lock);
4671 }
4672 EXPORT_SYMBOL_GPL(napi_hash_del);
4673 
4674 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4675 {
4676 	struct napi_struct *napi;
4677 
4678 	napi = container_of(timer, struct napi_struct, timer);
4679 	if (napi->gro_list)
4680 		napi_schedule(napi);
4681 
4682 	return HRTIMER_NORESTART;
4683 }
4684 
4685 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4686 		    int (*poll)(struct napi_struct *, int), int weight)
4687 {
4688 	INIT_LIST_HEAD(&napi->poll_list);
4689 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4690 	napi->timer.function = napi_watchdog;
4691 	napi->gro_count = 0;
4692 	napi->gro_list = NULL;
4693 	napi->skb = NULL;
4694 	napi->poll = poll;
4695 	if (weight > NAPI_POLL_WEIGHT)
4696 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4697 			    weight, dev->name);
4698 	napi->weight = weight;
4699 	list_add(&napi->dev_list, &dev->napi_list);
4700 	napi->dev = dev;
4701 #ifdef CONFIG_NETPOLL
4702 	spin_lock_init(&napi->poll_lock);
4703 	napi->poll_owner = -1;
4704 #endif
4705 	set_bit(NAPI_STATE_SCHED, &napi->state);
4706 }
4707 EXPORT_SYMBOL(netif_napi_add);
4708 
4709 void napi_disable(struct napi_struct *n)
4710 {
4711 	might_sleep();
4712 	set_bit(NAPI_STATE_DISABLE, &n->state);
4713 
4714 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4715 		msleep(1);
4716 
4717 	hrtimer_cancel(&n->timer);
4718 
4719 	clear_bit(NAPI_STATE_DISABLE, &n->state);
4720 }
4721 EXPORT_SYMBOL(napi_disable);
4722 
4723 void netif_napi_del(struct napi_struct *napi)
4724 {
4725 	list_del_init(&napi->dev_list);
4726 	napi_free_frags(napi);
4727 
4728 	kfree_skb_list(napi->gro_list);
4729 	napi->gro_list = NULL;
4730 	napi->gro_count = 0;
4731 }
4732 EXPORT_SYMBOL(netif_napi_del);
4733 
4734 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4735 {
4736 	void *have;
4737 	int work, weight;
4738 
4739 	list_del_init(&n->poll_list);
4740 
4741 	have = netpoll_poll_lock(n);
4742 
4743 	weight = n->weight;
4744 
4745 	/* This NAPI_STATE_SCHED test is for avoiding a race
4746 	 * with netpoll's poll_napi().  Only the entity which
4747 	 * obtains the lock and sees NAPI_STATE_SCHED set will
4748 	 * actually make the ->poll() call.  Therefore we avoid
4749 	 * accidentally calling ->poll() when NAPI is not scheduled.
4750 	 */
4751 	work = 0;
4752 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4753 		work = n->poll(n, weight);
4754 		trace_napi_poll(n);
4755 	}
4756 
4757 	WARN_ON_ONCE(work > weight);
4758 
4759 	if (likely(work < weight))
4760 		goto out_unlock;
4761 
4762 	/* Drivers must not modify the NAPI state if they
4763 	 * consume the entire weight.  In such cases this code
4764 	 * still "owns" the NAPI instance and therefore can
4765 	 * move the instance around on the list at-will.
4766 	 */
4767 	if (unlikely(napi_disable_pending(n))) {
4768 		napi_complete(n);
4769 		goto out_unlock;
4770 	}
4771 
4772 	if (n->gro_list) {
4773 		/* flush too old packets
4774 		 * If HZ < 1000, flush all packets.
4775 		 */
4776 		napi_gro_flush(n, HZ >= 1000);
4777 	}
4778 
4779 	/* Some drivers may have called napi_schedule
4780 	 * prior to exhausting their budget.
4781 	 */
4782 	if (unlikely(!list_empty(&n->poll_list))) {
4783 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4784 			     n->dev ? n->dev->name : "backlog");
4785 		goto out_unlock;
4786 	}
4787 
4788 	list_add_tail(&n->poll_list, repoll);
4789 
4790 out_unlock:
4791 	netpoll_poll_unlock(have);
4792 
4793 	return work;
4794 }
4795 
4796 static void net_rx_action(struct softirq_action *h)
4797 {
4798 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4799 	unsigned long time_limit = jiffies + 2;
4800 	int budget = netdev_budget;
4801 	LIST_HEAD(list);
4802 	LIST_HEAD(repoll);
4803 
4804 	local_irq_disable();
4805 	list_splice_init(&sd->poll_list, &list);
4806 	local_irq_enable();
4807 
4808 	for (;;) {
4809 		struct napi_struct *n;
4810 
4811 		if (list_empty(&list)) {
4812 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4813 				return;
4814 			break;
4815 		}
4816 
4817 		n = list_first_entry(&list, struct napi_struct, poll_list);
4818 		budget -= napi_poll(n, &repoll);
4819 
4820 		/* If softirq window is exhausted then punt.
4821 		 * Allow this to run for 2 jiffies since which will allow
4822 		 * an average latency of 1.5/HZ.
4823 		 */
4824 		if (unlikely(budget <= 0 ||
4825 			     time_after_eq(jiffies, time_limit))) {
4826 			sd->time_squeeze++;
4827 			break;
4828 		}
4829 	}
4830 
4831 	local_irq_disable();
4832 
4833 	list_splice_tail_init(&sd->poll_list, &list);
4834 	list_splice_tail(&repoll, &list);
4835 	list_splice(&list, &sd->poll_list);
4836 	if (!list_empty(&sd->poll_list))
4837 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4838 
4839 	net_rps_action_and_irq_enable(sd);
4840 }
4841 
4842 struct netdev_adjacent {
4843 	struct net_device *dev;
4844 
4845 	/* upper master flag, there can only be one master device per list */
4846 	bool master;
4847 
4848 	/* counter for the number of times this device was added to us */
4849 	u16 ref_nr;
4850 
4851 	/* private field for the users */
4852 	void *private;
4853 
4854 	struct list_head list;
4855 	struct rcu_head rcu;
4856 };
4857 
4858 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4859 						 struct net_device *adj_dev,
4860 						 struct list_head *adj_list)
4861 {
4862 	struct netdev_adjacent *adj;
4863 
4864 	list_for_each_entry(adj, adj_list, list) {
4865 		if (adj->dev == adj_dev)
4866 			return adj;
4867 	}
4868 	return NULL;
4869 }
4870 
4871 /**
4872  * netdev_has_upper_dev - Check if device is linked to an upper device
4873  * @dev: device
4874  * @upper_dev: upper device to check
4875  *
4876  * Find out if a device is linked to specified upper device and return true
4877  * in case it is. Note that this checks only immediate upper device,
4878  * not through a complete stack of devices. The caller must hold the RTNL lock.
4879  */
4880 bool netdev_has_upper_dev(struct net_device *dev,
4881 			  struct net_device *upper_dev)
4882 {
4883 	ASSERT_RTNL();
4884 
4885 	return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4886 }
4887 EXPORT_SYMBOL(netdev_has_upper_dev);
4888 
4889 /**
4890  * netdev_has_any_upper_dev - Check if device is linked to some device
4891  * @dev: device
4892  *
4893  * Find out if a device is linked to an upper device and return true in case
4894  * it is. The caller must hold the RTNL lock.
4895  */
4896 static bool netdev_has_any_upper_dev(struct net_device *dev)
4897 {
4898 	ASSERT_RTNL();
4899 
4900 	return !list_empty(&dev->all_adj_list.upper);
4901 }
4902 
4903 /**
4904  * netdev_master_upper_dev_get - Get master upper device
4905  * @dev: device
4906  *
4907  * Find a master upper device and return pointer to it or NULL in case
4908  * it's not there. The caller must hold the RTNL lock.
4909  */
4910 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4911 {
4912 	struct netdev_adjacent *upper;
4913 
4914 	ASSERT_RTNL();
4915 
4916 	if (list_empty(&dev->adj_list.upper))
4917 		return NULL;
4918 
4919 	upper = list_first_entry(&dev->adj_list.upper,
4920 				 struct netdev_adjacent, list);
4921 	if (likely(upper->master))
4922 		return upper->dev;
4923 	return NULL;
4924 }
4925 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4926 
4927 void *netdev_adjacent_get_private(struct list_head *adj_list)
4928 {
4929 	struct netdev_adjacent *adj;
4930 
4931 	adj = list_entry(adj_list, struct netdev_adjacent, list);
4932 
4933 	return adj->private;
4934 }
4935 EXPORT_SYMBOL(netdev_adjacent_get_private);
4936 
4937 /**
4938  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4939  * @dev: device
4940  * @iter: list_head ** of the current position
4941  *
4942  * Gets the next device from the dev's upper list, starting from iter
4943  * position. The caller must hold RCU read lock.
4944  */
4945 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4946 						 struct list_head **iter)
4947 {
4948 	struct netdev_adjacent *upper;
4949 
4950 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4951 
4952 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4953 
4954 	if (&upper->list == &dev->adj_list.upper)
4955 		return NULL;
4956 
4957 	*iter = &upper->list;
4958 
4959 	return upper->dev;
4960 }
4961 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4962 
4963 /**
4964  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4965  * @dev: device
4966  * @iter: list_head ** of the current position
4967  *
4968  * Gets the next device from the dev's upper list, starting from iter
4969  * position. The caller must hold RCU read lock.
4970  */
4971 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4972 						     struct list_head **iter)
4973 {
4974 	struct netdev_adjacent *upper;
4975 
4976 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4977 
4978 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4979 
4980 	if (&upper->list == &dev->all_adj_list.upper)
4981 		return NULL;
4982 
4983 	*iter = &upper->list;
4984 
4985 	return upper->dev;
4986 }
4987 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4988 
4989 /**
4990  * netdev_lower_get_next_private - Get the next ->private from the
4991  *				   lower neighbour list
4992  * @dev: device
4993  * @iter: list_head ** of the current position
4994  *
4995  * Gets the next netdev_adjacent->private from the dev's lower neighbour
4996  * list, starting from iter position. The caller must hold either hold the
4997  * RTNL lock or its own locking that guarantees that the neighbour lower
4998  * list will remain unchanged.
4999  */
5000 void *netdev_lower_get_next_private(struct net_device *dev,
5001 				    struct list_head **iter)
5002 {
5003 	struct netdev_adjacent *lower;
5004 
5005 	lower = list_entry(*iter, struct netdev_adjacent, list);
5006 
5007 	if (&lower->list == &dev->adj_list.lower)
5008 		return NULL;
5009 
5010 	*iter = lower->list.next;
5011 
5012 	return lower->private;
5013 }
5014 EXPORT_SYMBOL(netdev_lower_get_next_private);
5015 
5016 /**
5017  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5018  *				       lower neighbour list, RCU
5019  *				       variant
5020  * @dev: device
5021  * @iter: list_head ** of the current position
5022  *
5023  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5024  * list, starting from iter position. The caller must hold RCU read lock.
5025  */
5026 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5027 					struct list_head **iter)
5028 {
5029 	struct netdev_adjacent *lower;
5030 
5031 	WARN_ON_ONCE(!rcu_read_lock_held());
5032 
5033 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5034 
5035 	if (&lower->list == &dev->adj_list.lower)
5036 		return NULL;
5037 
5038 	*iter = &lower->list;
5039 
5040 	return lower->private;
5041 }
5042 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5043 
5044 /**
5045  * netdev_lower_get_next - Get the next device from the lower neighbour
5046  *                         list
5047  * @dev: device
5048  * @iter: list_head ** of the current position
5049  *
5050  * Gets the next netdev_adjacent from the dev's lower neighbour
5051  * list, starting from iter position. The caller must hold RTNL lock or
5052  * its own locking that guarantees that the neighbour lower
5053  * list will remain unchanged.
5054  */
5055 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5056 {
5057 	struct netdev_adjacent *lower;
5058 
5059 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5060 
5061 	if (&lower->list == &dev->adj_list.lower)
5062 		return NULL;
5063 
5064 	*iter = &lower->list;
5065 
5066 	return lower->dev;
5067 }
5068 EXPORT_SYMBOL(netdev_lower_get_next);
5069 
5070 /**
5071  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5072  *				       lower neighbour list, RCU
5073  *				       variant
5074  * @dev: device
5075  *
5076  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5077  * list. The caller must hold RCU read lock.
5078  */
5079 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5080 {
5081 	struct netdev_adjacent *lower;
5082 
5083 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
5084 			struct netdev_adjacent, list);
5085 	if (lower)
5086 		return lower->private;
5087 	return NULL;
5088 }
5089 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5090 
5091 /**
5092  * netdev_master_upper_dev_get_rcu - Get master upper device
5093  * @dev: device
5094  *
5095  * Find a master upper device and return pointer to it or NULL in case
5096  * it's not there. The caller must hold the RCU read lock.
5097  */
5098 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5099 {
5100 	struct netdev_adjacent *upper;
5101 
5102 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
5103 				       struct netdev_adjacent, list);
5104 	if (upper && likely(upper->master))
5105 		return upper->dev;
5106 	return NULL;
5107 }
5108 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5109 
5110 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5111 			      struct net_device *adj_dev,
5112 			      struct list_head *dev_list)
5113 {
5114 	char linkname[IFNAMSIZ+7];
5115 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
5116 		"upper_%s" : "lower_%s", adj_dev->name);
5117 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5118 				 linkname);
5119 }
5120 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5121 			       char *name,
5122 			       struct list_head *dev_list)
5123 {
5124 	char linkname[IFNAMSIZ+7];
5125 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
5126 		"upper_%s" : "lower_%s", name);
5127 	sysfs_remove_link(&(dev->dev.kobj), linkname);
5128 }
5129 
5130 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5131 						 struct net_device *adj_dev,
5132 						 struct list_head *dev_list)
5133 {
5134 	return (dev_list == &dev->adj_list.upper ||
5135 		dev_list == &dev->adj_list.lower) &&
5136 		net_eq(dev_net(dev), dev_net(adj_dev));
5137 }
5138 
5139 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5140 					struct net_device *adj_dev,
5141 					struct list_head *dev_list,
5142 					void *private, bool master)
5143 {
5144 	struct netdev_adjacent *adj;
5145 	int ret;
5146 
5147 	adj = __netdev_find_adj(dev, adj_dev, dev_list);
5148 
5149 	if (adj) {
5150 		adj->ref_nr++;
5151 		return 0;
5152 	}
5153 
5154 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5155 	if (!adj)
5156 		return -ENOMEM;
5157 
5158 	adj->dev = adj_dev;
5159 	adj->master = master;
5160 	adj->ref_nr = 1;
5161 	adj->private = private;
5162 	dev_hold(adj_dev);
5163 
5164 	pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5165 		 adj_dev->name, dev->name, adj_dev->name);
5166 
5167 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5168 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5169 		if (ret)
5170 			goto free_adj;
5171 	}
5172 
5173 	/* Ensure that master link is always the first item in list. */
5174 	if (master) {
5175 		ret = sysfs_create_link(&(dev->dev.kobj),
5176 					&(adj_dev->dev.kobj), "master");
5177 		if (ret)
5178 			goto remove_symlinks;
5179 
5180 		list_add_rcu(&adj->list, dev_list);
5181 	} else {
5182 		list_add_tail_rcu(&adj->list, dev_list);
5183 	}
5184 
5185 	return 0;
5186 
5187 remove_symlinks:
5188 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5189 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5190 free_adj:
5191 	kfree(adj);
5192 	dev_put(adj_dev);
5193 
5194 	return ret;
5195 }
5196 
5197 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5198 					 struct net_device *adj_dev,
5199 					 struct list_head *dev_list)
5200 {
5201 	struct netdev_adjacent *adj;
5202 
5203 	adj = __netdev_find_adj(dev, adj_dev, dev_list);
5204 
5205 	if (!adj) {
5206 		pr_err("tried to remove device %s from %s\n",
5207 		       dev->name, adj_dev->name);
5208 		BUG();
5209 	}
5210 
5211 	if (adj->ref_nr > 1) {
5212 		pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5213 			 adj->ref_nr-1);
5214 		adj->ref_nr--;
5215 		return;
5216 	}
5217 
5218 	if (adj->master)
5219 		sysfs_remove_link(&(dev->dev.kobj), "master");
5220 
5221 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5222 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5223 
5224 	list_del_rcu(&adj->list);
5225 	pr_debug("dev_put for %s, because link removed from %s to %s\n",
5226 		 adj_dev->name, dev->name, adj_dev->name);
5227 	dev_put(adj_dev);
5228 	kfree_rcu(adj, rcu);
5229 }
5230 
5231 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5232 					    struct net_device *upper_dev,
5233 					    struct list_head *up_list,
5234 					    struct list_head *down_list,
5235 					    void *private, bool master)
5236 {
5237 	int ret;
5238 
5239 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5240 					   master);
5241 	if (ret)
5242 		return ret;
5243 
5244 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5245 					   false);
5246 	if (ret) {
5247 		__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5248 		return ret;
5249 	}
5250 
5251 	return 0;
5252 }
5253 
5254 static int __netdev_adjacent_dev_link(struct net_device *dev,
5255 				      struct net_device *upper_dev)
5256 {
5257 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5258 						&dev->all_adj_list.upper,
5259 						&upper_dev->all_adj_list.lower,
5260 						NULL, false);
5261 }
5262 
5263 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5264 					       struct net_device *upper_dev,
5265 					       struct list_head *up_list,
5266 					       struct list_head *down_list)
5267 {
5268 	__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5269 	__netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5270 }
5271 
5272 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5273 					 struct net_device *upper_dev)
5274 {
5275 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5276 					   &dev->all_adj_list.upper,
5277 					   &upper_dev->all_adj_list.lower);
5278 }
5279 
5280 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5281 						struct net_device *upper_dev,
5282 						void *private, bool master)
5283 {
5284 	int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5285 
5286 	if (ret)
5287 		return ret;
5288 
5289 	ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5290 					       &dev->adj_list.upper,
5291 					       &upper_dev->adj_list.lower,
5292 					       private, master);
5293 	if (ret) {
5294 		__netdev_adjacent_dev_unlink(dev, upper_dev);
5295 		return ret;
5296 	}
5297 
5298 	return 0;
5299 }
5300 
5301 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5302 						   struct net_device *upper_dev)
5303 {
5304 	__netdev_adjacent_dev_unlink(dev, upper_dev);
5305 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5306 					   &dev->adj_list.upper,
5307 					   &upper_dev->adj_list.lower);
5308 }
5309 
5310 static int __netdev_upper_dev_link(struct net_device *dev,
5311 				   struct net_device *upper_dev, bool master,
5312 				   void *private)
5313 {
5314 	struct netdev_notifier_changeupper_info changeupper_info;
5315 	struct netdev_adjacent *i, *j, *to_i, *to_j;
5316 	int ret = 0;
5317 
5318 	ASSERT_RTNL();
5319 
5320 	if (dev == upper_dev)
5321 		return -EBUSY;
5322 
5323 	/* To prevent loops, check if dev is not upper device to upper_dev. */
5324 	if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
5325 		return -EBUSY;
5326 
5327 	if (__netdev_find_adj(dev, upper_dev, &dev->adj_list.upper))
5328 		return -EEXIST;
5329 
5330 	if (master && netdev_master_upper_dev_get(dev))
5331 		return -EBUSY;
5332 
5333 	changeupper_info.upper_dev = upper_dev;
5334 	changeupper_info.master = master;
5335 	changeupper_info.linking = true;
5336 
5337 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5338 						   master);
5339 	if (ret)
5340 		return ret;
5341 
5342 	/* Now that we linked these devs, make all the upper_dev's
5343 	 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5344 	 * versa, and don't forget the devices itself. All of these
5345 	 * links are non-neighbours.
5346 	 */
5347 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5348 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5349 			pr_debug("Interlinking %s with %s, non-neighbour\n",
5350 				 i->dev->name, j->dev->name);
5351 			ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5352 			if (ret)
5353 				goto rollback_mesh;
5354 		}
5355 	}
5356 
5357 	/* add dev to every upper_dev's upper device */
5358 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5359 		pr_debug("linking %s's upper device %s with %s\n",
5360 			 upper_dev->name, i->dev->name, dev->name);
5361 		ret = __netdev_adjacent_dev_link(dev, i->dev);
5362 		if (ret)
5363 			goto rollback_upper_mesh;
5364 	}
5365 
5366 	/* add upper_dev to every dev's lower device */
5367 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5368 		pr_debug("linking %s's lower device %s with %s\n", dev->name,
5369 			 i->dev->name, upper_dev->name);
5370 		ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5371 		if (ret)
5372 			goto rollback_lower_mesh;
5373 	}
5374 
5375 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5376 				      &changeupper_info.info);
5377 	return 0;
5378 
5379 rollback_lower_mesh:
5380 	to_i = i;
5381 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5382 		if (i == to_i)
5383 			break;
5384 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
5385 	}
5386 
5387 	i = NULL;
5388 
5389 rollback_upper_mesh:
5390 	to_i = i;
5391 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5392 		if (i == to_i)
5393 			break;
5394 		__netdev_adjacent_dev_unlink(dev, i->dev);
5395 	}
5396 
5397 	i = j = NULL;
5398 
5399 rollback_mesh:
5400 	to_i = i;
5401 	to_j = j;
5402 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5403 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5404 			if (i == to_i && j == to_j)
5405 				break;
5406 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5407 		}
5408 		if (i == to_i)
5409 			break;
5410 	}
5411 
5412 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5413 
5414 	return ret;
5415 }
5416 
5417 /**
5418  * netdev_upper_dev_link - Add a link to the upper device
5419  * @dev: device
5420  * @upper_dev: new upper device
5421  *
5422  * Adds a link to device which is upper to this one. The caller must hold
5423  * the RTNL lock. On a failure a negative errno code is returned.
5424  * On success the reference counts are adjusted and the function
5425  * returns zero.
5426  */
5427 int netdev_upper_dev_link(struct net_device *dev,
5428 			  struct net_device *upper_dev)
5429 {
5430 	return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5431 }
5432 EXPORT_SYMBOL(netdev_upper_dev_link);
5433 
5434 /**
5435  * netdev_master_upper_dev_link - Add a master link to the upper device
5436  * @dev: device
5437  * @upper_dev: new upper device
5438  *
5439  * Adds a link to device which is upper to this one. In this case, only
5440  * one master upper device can be linked, although other non-master devices
5441  * might be linked as well. The caller must hold the RTNL lock.
5442  * On a failure a negative errno code is returned. On success the reference
5443  * counts are adjusted and the function returns zero.
5444  */
5445 int netdev_master_upper_dev_link(struct net_device *dev,
5446 				 struct net_device *upper_dev)
5447 {
5448 	return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5449 }
5450 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5451 
5452 int netdev_master_upper_dev_link_private(struct net_device *dev,
5453 					 struct net_device *upper_dev,
5454 					 void *private)
5455 {
5456 	return __netdev_upper_dev_link(dev, upper_dev, true, private);
5457 }
5458 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5459 
5460 /**
5461  * netdev_upper_dev_unlink - Removes a link to upper device
5462  * @dev: device
5463  * @upper_dev: new upper device
5464  *
5465  * Removes a link to device which is upper to this one. The caller must hold
5466  * the RTNL lock.
5467  */
5468 void netdev_upper_dev_unlink(struct net_device *dev,
5469 			     struct net_device *upper_dev)
5470 {
5471 	struct netdev_notifier_changeupper_info changeupper_info;
5472 	struct netdev_adjacent *i, *j;
5473 	ASSERT_RTNL();
5474 
5475 	changeupper_info.upper_dev = upper_dev;
5476 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5477 	changeupper_info.linking = false;
5478 
5479 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5480 
5481 	/* Here is the tricky part. We must remove all dev's lower
5482 	 * devices from all upper_dev's upper devices and vice
5483 	 * versa, to maintain the graph relationship.
5484 	 */
5485 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5486 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5487 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5488 
5489 	/* remove also the devices itself from lower/upper device
5490 	 * list
5491 	 */
5492 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5493 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
5494 
5495 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5496 		__netdev_adjacent_dev_unlink(dev, i->dev);
5497 
5498 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5499 				      &changeupper_info.info);
5500 }
5501 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5502 
5503 /**
5504  * netdev_bonding_info_change - Dispatch event about slave change
5505  * @dev: device
5506  * @bonding_info: info to dispatch
5507  *
5508  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5509  * The caller must hold the RTNL lock.
5510  */
5511 void netdev_bonding_info_change(struct net_device *dev,
5512 				struct netdev_bonding_info *bonding_info)
5513 {
5514 	struct netdev_notifier_bonding_info	info;
5515 
5516 	memcpy(&info.bonding_info, bonding_info,
5517 	       sizeof(struct netdev_bonding_info));
5518 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5519 				      &info.info);
5520 }
5521 EXPORT_SYMBOL(netdev_bonding_info_change);
5522 
5523 static void netdev_adjacent_add_links(struct net_device *dev)
5524 {
5525 	struct netdev_adjacent *iter;
5526 
5527 	struct net *net = dev_net(dev);
5528 
5529 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5530 		if (!net_eq(net,dev_net(iter->dev)))
5531 			continue;
5532 		netdev_adjacent_sysfs_add(iter->dev, dev,
5533 					  &iter->dev->adj_list.lower);
5534 		netdev_adjacent_sysfs_add(dev, iter->dev,
5535 					  &dev->adj_list.upper);
5536 	}
5537 
5538 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5539 		if (!net_eq(net,dev_net(iter->dev)))
5540 			continue;
5541 		netdev_adjacent_sysfs_add(iter->dev, dev,
5542 					  &iter->dev->adj_list.upper);
5543 		netdev_adjacent_sysfs_add(dev, iter->dev,
5544 					  &dev->adj_list.lower);
5545 	}
5546 }
5547 
5548 static void netdev_adjacent_del_links(struct net_device *dev)
5549 {
5550 	struct netdev_adjacent *iter;
5551 
5552 	struct net *net = dev_net(dev);
5553 
5554 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5555 		if (!net_eq(net,dev_net(iter->dev)))
5556 			continue;
5557 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
5558 					  &iter->dev->adj_list.lower);
5559 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
5560 					  &dev->adj_list.upper);
5561 	}
5562 
5563 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5564 		if (!net_eq(net,dev_net(iter->dev)))
5565 			continue;
5566 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
5567 					  &iter->dev->adj_list.upper);
5568 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
5569 					  &dev->adj_list.lower);
5570 	}
5571 }
5572 
5573 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5574 {
5575 	struct netdev_adjacent *iter;
5576 
5577 	struct net *net = dev_net(dev);
5578 
5579 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5580 		if (!net_eq(net,dev_net(iter->dev)))
5581 			continue;
5582 		netdev_adjacent_sysfs_del(iter->dev, oldname,
5583 					  &iter->dev->adj_list.lower);
5584 		netdev_adjacent_sysfs_add(iter->dev, dev,
5585 					  &iter->dev->adj_list.lower);
5586 	}
5587 
5588 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5589 		if (!net_eq(net,dev_net(iter->dev)))
5590 			continue;
5591 		netdev_adjacent_sysfs_del(iter->dev, oldname,
5592 					  &iter->dev->adj_list.upper);
5593 		netdev_adjacent_sysfs_add(iter->dev, dev,
5594 					  &iter->dev->adj_list.upper);
5595 	}
5596 }
5597 
5598 void *netdev_lower_dev_get_private(struct net_device *dev,
5599 				   struct net_device *lower_dev)
5600 {
5601 	struct netdev_adjacent *lower;
5602 
5603 	if (!lower_dev)
5604 		return NULL;
5605 	lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5606 	if (!lower)
5607 		return NULL;
5608 
5609 	return lower->private;
5610 }
5611 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5612 
5613 
5614 int dev_get_nest_level(struct net_device *dev,
5615 		       bool (*type_check)(struct net_device *dev))
5616 {
5617 	struct net_device *lower = NULL;
5618 	struct list_head *iter;
5619 	int max_nest = -1;
5620 	int nest;
5621 
5622 	ASSERT_RTNL();
5623 
5624 	netdev_for_each_lower_dev(dev, lower, iter) {
5625 		nest = dev_get_nest_level(lower, type_check);
5626 		if (max_nest < nest)
5627 			max_nest = nest;
5628 	}
5629 
5630 	if (type_check(dev))
5631 		max_nest++;
5632 
5633 	return max_nest;
5634 }
5635 EXPORT_SYMBOL(dev_get_nest_level);
5636 
5637 static void dev_change_rx_flags(struct net_device *dev, int flags)
5638 {
5639 	const struct net_device_ops *ops = dev->netdev_ops;
5640 
5641 	if (ops->ndo_change_rx_flags)
5642 		ops->ndo_change_rx_flags(dev, flags);
5643 }
5644 
5645 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5646 {
5647 	unsigned int old_flags = dev->flags;
5648 	kuid_t uid;
5649 	kgid_t gid;
5650 
5651 	ASSERT_RTNL();
5652 
5653 	dev->flags |= IFF_PROMISC;
5654 	dev->promiscuity += inc;
5655 	if (dev->promiscuity == 0) {
5656 		/*
5657 		 * Avoid overflow.
5658 		 * If inc causes overflow, untouch promisc and return error.
5659 		 */
5660 		if (inc < 0)
5661 			dev->flags &= ~IFF_PROMISC;
5662 		else {
5663 			dev->promiscuity -= inc;
5664 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5665 				dev->name);
5666 			return -EOVERFLOW;
5667 		}
5668 	}
5669 	if (dev->flags != old_flags) {
5670 		pr_info("device %s %s promiscuous mode\n",
5671 			dev->name,
5672 			dev->flags & IFF_PROMISC ? "entered" : "left");
5673 		if (audit_enabled) {
5674 			current_uid_gid(&uid, &gid);
5675 			audit_log(current->audit_context, GFP_ATOMIC,
5676 				AUDIT_ANOM_PROMISCUOUS,
5677 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5678 				dev->name, (dev->flags & IFF_PROMISC),
5679 				(old_flags & IFF_PROMISC),
5680 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
5681 				from_kuid(&init_user_ns, uid),
5682 				from_kgid(&init_user_ns, gid),
5683 				audit_get_sessionid(current));
5684 		}
5685 
5686 		dev_change_rx_flags(dev, IFF_PROMISC);
5687 	}
5688 	if (notify)
5689 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
5690 	return 0;
5691 }
5692 
5693 /**
5694  *	dev_set_promiscuity	- update promiscuity count on a device
5695  *	@dev: device
5696  *	@inc: modifier
5697  *
5698  *	Add or remove promiscuity from a device. While the count in the device
5699  *	remains above zero the interface remains promiscuous. Once it hits zero
5700  *	the device reverts back to normal filtering operation. A negative inc
5701  *	value is used to drop promiscuity on the device.
5702  *	Return 0 if successful or a negative errno code on error.
5703  */
5704 int dev_set_promiscuity(struct net_device *dev, int inc)
5705 {
5706 	unsigned int old_flags = dev->flags;
5707 	int err;
5708 
5709 	err = __dev_set_promiscuity(dev, inc, true);
5710 	if (err < 0)
5711 		return err;
5712 	if (dev->flags != old_flags)
5713 		dev_set_rx_mode(dev);
5714 	return err;
5715 }
5716 EXPORT_SYMBOL(dev_set_promiscuity);
5717 
5718 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5719 {
5720 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5721 
5722 	ASSERT_RTNL();
5723 
5724 	dev->flags |= IFF_ALLMULTI;
5725 	dev->allmulti += inc;
5726 	if (dev->allmulti == 0) {
5727 		/*
5728 		 * Avoid overflow.
5729 		 * If inc causes overflow, untouch allmulti and return error.
5730 		 */
5731 		if (inc < 0)
5732 			dev->flags &= ~IFF_ALLMULTI;
5733 		else {
5734 			dev->allmulti -= inc;
5735 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5736 				dev->name);
5737 			return -EOVERFLOW;
5738 		}
5739 	}
5740 	if (dev->flags ^ old_flags) {
5741 		dev_change_rx_flags(dev, IFF_ALLMULTI);
5742 		dev_set_rx_mode(dev);
5743 		if (notify)
5744 			__dev_notify_flags(dev, old_flags,
5745 					   dev->gflags ^ old_gflags);
5746 	}
5747 	return 0;
5748 }
5749 
5750 /**
5751  *	dev_set_allmulti	- update allmulti count on a device
5752  *	@dev: device
5753  *	@inc: modifier
5754  *
5755  *	Add or remove reception of all multicast frames to a device. While the
5756  *	count in the device remains above zero the interface remains listening
5757  *	to all interfaces. Once it hits zero the device reverts back to normal
5758  *	filtering operation. A negative @inc value is used to drop the counter
5759  *	when releasing a resource needing all multicasts.
5760  *	Return 0 if successful or a negative errno code on error.
5761  */
5762 
5763 int dev_set_allmulti(struct net_device *dev, int inc)
5764 {
5765 	return __dev_set_allmulti(dev, inc, true);
5766 }
5767 EXPORT_SYMBOL(dev_set_allmulti);
5768 
5769 /*
5770  *	Upload unicast and multicast address lists to device and
5771  *	configure RX filtering. When the device doesn't support unicast
5772  *	filtering it is put in promiscuous mode while unicast addresses
5773  *	are present.
5774  */
5775 void __dev_set_rx_mode(struct net_device *dev)
5776 {
5777 	const struct net_device_ops *ops = dev->netdev_ops;
5778 
5779 	/* dev_open will call this function so the list will stay sane. */
5780 	if (!(dev->flags&IFF_UP))
5781 		return;
5782 
5783 	if (!netif_device_present(dev))
5784 		return;
5785 
5786 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5787 		/* Unicast addresses changes may only happen under the rtnl,
5788 		 * therefore calling __dev_set_promiscuity here is safe.
5789 		 */
5790 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5791 			__dev_set_promiscuity(dev, 1, false);
5792 			dev->uc_promisc = true;
5793 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5794 			__dev_set_promiscuity(dev, -1, false);
5795 			dev->uc_promisc = false;
5796 		}
5797 	}
5798 
5799 	if (ops->ndo_set_rx_mode)
5800 		ops->ndo_set_rx_mode(dev);
5801 }
5802 
5803 void dev_set_rx_mode(struct net_device *dev)
5804 {
5805 	netif_addr_lock_bh(dev);
5806 	__dev_set_rx_mode(dev);
5807 	netif_addr_unlock_bh(dev);
5808 }
5809 
5810 /**
5811  *	dev_get_flags - get flags reported to userspace
5812  *	@dev: device
5813  *
5814  *	Get the combination of flag bits exported through APIs to userspace.
5815  */
5816 unsigned int dev_get_flags(const struct net_device *dev)
5817 {
5818 	unsigned int flags;
5819 
5820 	flags = (dev->flags & ~(IFF_PROMISC |
5821 				IFF_ALLMULTI |
5822 				IFF_RUNNING |
5823 				IFF_LOWER_UP |
5824 				IFF_DORMANT)) |
5825 		(dev->gflags & (IFF_PROMISC |
5826 				IFF_ALLMULTI));
5827 
5828 	if (netif_running(dev)) {
5829 		if (netif_oper_up(dev))
5830 			flags |= IFF_RUNNING;
5831 		if (netif_carrier_ok(dev))
5832 			flags |= IFF_LOWER_UP;
5833 		if (netif_dormant(dev))
5834 			flags |= IFF_DORMANT;
5835 	}
5836 
5837 	return flags;
5838 }
5839 EXPORT_SYMBOL(dev_get_flags);
5840 
5841 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5842 {
5843 	unsigned int old_flags = dev->flags;
5844 	int ret;
5845 
5846 	ASSERT_RTNL();
5847 
5848 	/*
5849 	 *	Set the flags on our device.
5850 	 */
5851 
5852 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5853 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5854 			       IFF_AUTOMEDIA)) |
5855 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5856 				    IFF_ALLMULTI));
5857 
5858 	/*
5859 	 *	Load in the correct multicast list now the flags have changed.
5860 	 */
5861 
5862 	if ((old_flags ^ flags) & IFF_MULTICAST)
5863 		dev_change_rx_flags(dev, IFF_MULTICAST);
5864 
5865 	dev_set_rx_mode(dev);
5866 
5867 	/*
5868 	 *	Have we downed the interface. We handle IFF_UP ourselves
5869 	 *	according to user attempts to set it, rather than blindly
5870 	 *	setting it.
5871 	 */
5872 
5873 	ret = 0;
5874 	if ((old_flags ^ flags) & IFF_UP)
5875 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5876 
5877 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
5878 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
5879 		unsigned int old_flags = dev->flags;
5880 
5881 		dev->gflags ^= IFF_PROMISC;
5882 
5883 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
5884 			if (dev->flags != old_flags)
5885 				dev_set_rx_mode(dev);
5886 	}
5887 
5888 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5889 	   is important. Some (broken) drivers set IFF_PROMISC, when
5890 	   IFF_ALLMULTI is requested not asking us and not reporting.
5891 	 */
5892 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5893 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5894 
5895 		dev->gflags ^= IFF_ALLMULTI;
5896 		__dev_set_allmulti(dev, inc, false);
5897 	}
5898 
5899 	return ret;
5900 }
5901 
5902 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5903 			unsigned int gchanges)
5904 {
5905 	unsigned int changes = dev->flags ^ old_flags;
5906 
5907 	if (gchanges)
5908 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5909 
5910 	if (changes & IFF_UP) {
5911 		if (dev->flags & IFF_UP)
5912 			call_netdevice_notifiers(NETDEV_UP, dev);
5913 		else
5914 			call_netdevice_notifiers(NETDEV_DOWN, dev);
5915 	}
5916 
5917 	if (dev->flags & IFF_UP &&
5918 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5919 		struct netdev_notifier_change_info change_info;
5920 
5921 		change_info.flags_changed = changes;
5922 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5923 					      &change_info.info);
5924 	}
5925 }
5926 
5927 /**
5928  *	dev_change_flags - change device settings
5929  *	@dev: device
5930  *	@flags: device state flags
5931  *
5932  *	Change settings on device based state flags. The flags are
5933  *	in the userspace exported format.
5934  */
5935 int dev_change_flags(struct net_device *dev, unsigned int flags)
5936 {
5937 	int ret;
5938 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5939 
5940 	ret = __dev_change_flags(dev, flags);
5941 	if (ret < 0)
5942 		return ret;
5943 
5944 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5945 	__dev_notify_flags(dev, old_flags, changes);
5946 	return ret;
5947 }
5948 EXPORT_SYMBOL(dev_change_flags);
5949 
5950 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5951 {
5952 	const struct net_device_ops *ops = dev->netdev_ops;
5953 
5954 	if (ops->ndo_change_mtu)
5955 		return ops->ndo_change_mtu(dev, new_mtu);
5956 
5957 	dev->mtu = new_mtu;
5958 	return 0;
5959 }
5960 
5961 /**
5962  *	dev_set_mtu - Change maximum transfer unit
5963  *	@dev: device
5964  *	@new_mtu: new transfer unit
5965  *
5966  *	Change the maximum transfer size of the network device.
5967  */
5968 int dev_set_mtu(struct net_device *dev, int new_mtu)
5969 {
5970 	int err, orig_mtu;
5971 
5972 	if (new_mtu == dev->mtu)
5973 		return 0;
5974 
5975 	/*	MTU must be positive.	 */
5976 	if (new_mtu < 0)
5977 		return -EINVAL;
5978 
5979 	if (!netif_device_present(dev))
5980 		return -ENODEV;
5981 
5982 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5983 	err = notifier_to_errno(err);
5984 	if (err)
5985 		return err;
5986 
5987 	orig_mtu = dev->mtu;
5988 	err = __dev_set_mtu(dev, new_mtu);
5989 
5990 	if (!err) {
5991 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5992 		err = notifier_to_errno(err);
5993 		if (err) {
5994 			/* setting mtu back and notifying everyone again,
5995 			 * so that they have a chance to revert changes.
5996 			 */
5997 			__dev_set_mtu(dev, orig_mtu);
5998 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5999 		}
6000 	}
6001 	return err;
6002 }
6003 EXPORT_SYMBOL(dev_set_mtu);
6004 
6005 /**
6006  *	dev_set_group - Change group this device belongs to
6007  *	@dev: device
6008  *	@new_group: group this device should belong to
6009  */
6010 void dev_set_group(struct net_device *dev, int new_group)
6011 {
6012 	dev->group = new_group;
6013 }
6014 EXPORT_SYMBOL(dev_set_group);
6015 
6016 /**
6017  *	dev_set_mac_address - Change Media Access Control Address
6018  *	@dev: device
6019  *	@sa: new address
6020  *
6021  *	Change the hardware (MAC) address of the device
6022  */
6023 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6024 {
6025 	const struct net_device_ops *ops = dev->netdev_ops;
6026 	int err;
6027 
6028 	if (!ops->ndo_set_mac_address)
6029 		return -EOPNOTSUPP;
6030 	if (sa->sa_family != dev->type)
6031 		return -EINVAL;
6032 	if (!netif_device_present(dev))
6033 		return -ENODEV;
6034 	err = ops->ndo_set_mac_address(dev, sa);
6035 	if (err)
6036 		return err;
6037 	dev->addr_assign_type = NET_ADDR_SET;
6038 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6039 	add_device_randomness(dev->dev_addr, dev->addr_len);
6040 	return 0;
6041 }
6042 EXPORT_SYMBOL(dev_set_mac_address);
6043 
6044 /**
6045  *	dev_change_carrier - Change device carrier
6046  *	@dev: device
6047  *	@new_carrier: new value
6048  *
6049  *	Change device carrier
6050  */
6051 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6052 {
6053 	const struct net_device_ops *ops = dev->netdev_ops;
6054 
6055 	if (!ops->ndo_change_carrier)
6056 		return -EOPNOTSUPP;
6057 	if (!netif_device_present(dev))
6058 		return -ENODEV;
6059 	return ops->ndo_change_carrier(dev, new_carrier);
6060 }
6061 EXPORT_SYMBOL(dev_change_carrier);
6062 
6063 /**
6064  *	dev_get_phys_port_id - Get device physical port ID
6065  *	@dev: device
6066  *	@ppid: port ID
6067  *
6068  *	Get device physical port ID
6069  */
6070 int dev_get_phys_port_id(struct net_device *dev,
6071 			 struct netdev_phys_item_id *ppid)
6072 {
6073 	const struct net_device_ops *ops = dev->netdev_ops;
6074 
6075 	if (!ops->ndo_get_phys_port_id)
6076 		return -EOPNOTSUPP;
6077 	return ops->ndo_get_phys_port_id(dev, ppid);
6078 }
6079 EXPORT_SYMBOL(dev_get_phys_port_id);
6080 
6081 /**
6082  *	dev_get_phys_port_name - Get device physical port name
6083  *	@dev: device
6084  *	@name: port name
6085  *
6086  *	Get device physical port name
6087  */
6088 int dev_get_phys_port_name(struct net_device *dev,
6089 			   char *name, size_t len)
6090 {
6091 	const struct net_device_ops *ops = dev->netdev_ops;
6092 
6093 	if (!ops->ndo_get_phys_port_name)
6094 		return -EOPNOTSUPP;
6095 	return ops->ndo_get_phys_port_name(dev, name, len);
6096 }
6097 EXPORT_SYMBOL(dev_get_phys_port_name);
6098 
6099 /**
6100  *	dev_change_proto_down - update protocol port state information
6101  *	@dev: device
6102  *	@proto_down: new value
6103  *
6104  *	This info can be used by switch drivers to set the phys state of the
6105  *	port.
6106  */
6107 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6108 {
6109 	const struct net_device_ops *ops = dev->netdev_ops;
6110 
6111 	if (!ops->ndo_change_proto_down)
6112 		return -EOPNOTSUPP;
6113 	if (!netif_device_present(dev))
6114 		return -ENODEV;
6115 	return ops->ndo_change_proto_down(dev, proto_down);
6116 }
6117 EXPORT_SYMBOL(dev_change_proto_down);
6118 
6119 /**
6120  *	dev_new_index	-	allocate an ifindex
6121  *	@net: the applicable net namespace
6122  *
6123  *	Returns a suitable unique value for a new device interface
6124  *	number.  The caller must hold the rtnl semaphore or the
6125  *	dev_base_lock to be sure it remains unique.
6126  */
6127 static int dev_new_index(struct net *net)
6128 {
6129 	int ifindex = net->ifindex;
6130 	for (;;) {
6131 		if (++ifindex <= 0)
6132 			ifindex = 1;
6133 		if (!__dev_get_by_index(net, ifindex))
6134 			return net->ifindex = ifindex;
6135 	}
6136 }
6137 
6138 /* Delayed registration/unregisteration */
6139 static LIST_HEAD(net_todo_list);
6140 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6141 
6142 static void net_set_todo(struct net_device *dev)
6143 {
6144 	list_add_tail(&dev->todo_list, &net_todo_list);
6145 	dev_net(dev)->dev_unreg_count++;
6146 }
6147 
6148 static void rollback_registered_many(struct list_head *head)
6149 {
6150 	struct net_device *dev, *tmp;
6151 	LIST_HEAD(close_head);
6152 
6153 	BUG_ON(dev_boot_phase);
6154 	ASSERT_RTNL();
6155 
6156 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6157 		/* Some devices call without registering
6158 		 * for initialization unwind. Remove those
6159 		 * devices and proceed with the remaining.
6160 		 */
6161 		if (dev->reg_state == NETREG_UNINITIALIZED) {
6162 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6163 				 dev->name, dev);
6164 
6165 			WARN_ON(1);
6166 			list_del(&dev->unreg_list);
6167 			continue;
6168 		}
6169 		dev->dismantle = true;
6170 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
6171 	}
6172 
6173 	/* If device is running, close it first. */
6174 	list_for_each_entry(dev, head, unreg_list)
6175 		list_add_tail(&dev->close_list, &close_head);
6176 	dev_close_many(&close_head, true);
6177 
6178 	list_for_each_entry(dev, head, unreg_list) {
6179 		/* And unlink it from device chain. */
6180 		unlist_netdevice(dev);
6181 
6182 		dev->reg_state = NETREG_UNREGISTERING;
6183 		on_each_cpu(flush_backlog, dev, 1);
6184 	}
6185 
6186 	synchronize_net();
6187 
6188 	list_for_each_entry(dev, head, unreg_list) {
6189 		struct sk_buff *skb = NULL;
6190 
6191 		/* Shutdown queueing discipline. */
6192 		dev_shutdown(dev);
6193 
6194 
6195 		/* Notify protocols, that we are about to destroy
6196 		   this device. They should clean all the things.
6197 		*/
6198 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6199 
6200 		if (!dev->rtnl_link_ops ||
6201 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6202 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6203 						     GFP_KERNEL);
6204 
6205 		/*
6206 		 *	Flush the unicast and multicast chains
6207 		 */
6208 		dev_uc_flush(dev);
6209 		dev_mc_flush(dev);
6210 
6211 		if (dev->netdev_ops->ndo_uninit)
6212 			dev->netdev_ops->ndo_uninit(dev);
6213 
6214 		if (skb)
6215 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6216 
6217 		/* Notifier chain MUST detach us all upper devices. */
6218 		WARN_ON(netdev_has_any_upper_dev(dev));
6219 
6220 		/* Remove entries from kobject tree */
6221 		netdev_unregister_kobject(dev);
6222 #ifdef CONFIG_XPS
6223 		/* Remove XPS queueing entries */
6224 		netif_reset_xps_queues_gt(dev, 0);
6225 #endif
6226 	}
6227 
6228 	synchronize_net();
6229 
6230 	list_for_each_entry(dev, head, unreg_list)
6231 		dev_put(dev);
6232 }
6233 
6234 static void rollback_registered(struct net_device *dev)
6235 {
6236 	LIST_HEAD(single);
6237 
6238 	list_add(&dev->unreg_list, &single);
6239 	rollback_registered_many(&single);
6240 	list_del(&single);
6241 }
6242 
6243 static netdev_features_t netdev_fix_features(struct net_device *dev,
6244 	netdev_features_t features)
6245 {
6246 	/* Fix illegal checksum combinations */
6247 	if ((features & NETIF_F_HW_CSUM) &&
6248 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6249 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6250 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6251 	}
6252 
6253 	/* TSO requires that SG is present as well. */
6254 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6255 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6256 		features &= ~NETIF_F_ALL_TSO;
6257 	}
6258 
6259 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6260 					!(features & NETIF_F_IP_CSUM)) {
6261 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6262 		features &= ~NETIF_F_TSO;
6263 		features &= ~NETIF_F_TSO_ECN;
6264 	}
6265 
6266 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6267 					 !(features & NETIF_F_IPV6_CSUM)) {
6268 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6269 		features &= ~NETIF_F_TSO6;
6270 	}
6271 
6272 	/* TSO ECN requires that TSO is present as well. */
6273 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6274 		features &= ~NETIF_F_TSO_ECN;
6275 
6276 	/* Software GSO depends on SG. */
6277 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6278 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6279 		features &= ~NETIF_F_GSO;
6280 	}
6281 
6282 	/* UFO needs SG and checksumming */
6283 	if (features & NETIF_F_UFO) {
6284 		/* maybe split UFO into V4 and V6? */
6285 		if (!((features & NETIF_F_GEN_CSUM) ||
6286 		    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6287 			    == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6288 			netdev_dbg(dev,
6289 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
6290 			features &= ~NETIF_F_UFO;
6291 		}
6292 
6293 		if (!(features & NETIF_F_SG)) {
6294 			netdev_dbg(dev,
6295 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6296 			features &= ~NETIF_F_UFO;
6297 		}
6298 	}
6299 
6300 #ifdef CONFIG_NET_RX_BUSY_POLL
6301 	if (dev->netdev_ops->ndo_busy_poll)
6302 		features |= NETIF_F_BUSY_POLL;
6303 	else
6304 #endif
6305 		features &= ~NETIF_F_BUSY_POLL;
6306 
6307 	return features;
6308 }
6309 
6310 int __netdev_update_features(struct net_device *dev)
6311 {
6312 	netdev_features_t features;
6313 	int err = 0;
6314 
6315 	ASSERT_RTNL();
6316 
6317 	features = netdev_get_wanted_features(dev);
6318 
6319 	if (dev->netdev_ops->ndo_fix_features)
6320 		features = dev->netdev_ops->ndo_fix_features(dev, features);
6321 
6322 	/* driver might be less strict about feature dependencies */
6323 	features = netdev_fix_features(dev, features);
6324 
6325 	if (dev->features == features)
6326 		return 0;
6327 
6328 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6329 		&dev->features, &features);
6330 
6331 	if (dev->netdev_ops->ndo_set_features)
6332 		err = dev->netdev_ops->ndo_set_features(dev, features);
6333 
6334 	if (unlikely(err < 0)) {
6335 		netdev_err(dev,
6336 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
6337 			err, &features, &dev->features);
6338 		return -1;
6339 	}
6340 
6341 	if (!err)
6342 		dev->features = features;
6343 
6344 	return 1;
6345 }
6346 
6347 /**
6348  *	netdev_update_features - recalculate device features
6349  *	@dev: the device to check
6350  *
6351  *	Recalculate dev->features set and send notifications if it
6352  *	has changed. Should be called after driver or hardware dependent
6353  *	conditions might have changed that influence the features.
6354  */
6355 void netdev_update_features(struct net_device *dev)
6356 {
6357 	if (__netdev_update_features(dev))
6358 		netdev_features_change(dev);
6359 }
6360 EXPORT_SYMBOL(netdev_update_features);
6361 
6362 /**
6363  *	netdev_change_features - recalculate device features
6364  *	@dev: the device to check
6365  *
6366  *	Recalculate dev->features set and send notifications even
6367  *	if they have not changed. Should be called instead of
6368  *	netdev_update_features() if also dev->vlan_features might
6369  *	have changed to allow the changes to be propagated to stacked
6370  *	VLAN devices.
6371  */
6372 void netdev_change_features(struct net_device *dev)
6373 {
6374 	__netdev_update_features(dev);
6375 	netdev_features_change(dev);
6376 }
6377 EXPORT_SYMBOL(netdev_change_features);
6378 
6379 /**
6380  *	netif_stacked_transfer_operstate -	transfer operstate
6381  *	@rootdev: the root or lower level device to transfer state from
6382  *	@dev: the device to transfer operstate to
6383  *
6384  *	Transfer operational state from root to device. This is normally
6385  *	called when a stacking relationship exists between the root
6386  *	device and the device(a leaf device).
6387  */
6388 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6389 					struct net_device *dev)
6390 {
6391 	if (rootdev->operstate == IF_OPER_DORMANT)
6392 		netif_dormant_on(dev);
6393 	else
6394 		netif_dormant_off(dev);
6395 
6396 	if (netif_carrier_ok(rootdev)) {
6397 		if (!netif_carrier_ok(dev))
6398 			netif_carrier_on(dev);
6399 	} else {
6400 		if (netif_carrier_ok(dev))
6401 			netif_carrier_off(dev);
6402 	}
6403 }
6404 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6405 
6406 #ifdef CONFIG_SYSFS
6407 static int netif_alloc_rx_queues(struct net_device *dev)
6408 {
6409 	unsigned int i, count = dev->num_rx_queues;
6410 	struct netdev_rx_queue *rx;
6411 	size_t sz = count * sizeof(*rx);
6412 
6413 	BUG_ON(count < 1);
6414 
6415 	rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6416 	if (!rx) {
6417 		rx = vzalloc(sz);
6418 		if (!rx)
6419 			return -ENOMEM;
6420 	}
6421 	dev->_rx = rx;
6422 
6423 	for (i = 0; i < count; i++)
6424 		rx[i].dev = dev;
6425 	return 0;
6426 }
6427 #endif
6428 
6429 static void netdev_init_one_queue(struct net_device *dev,
6430 				  struct netdev_queue *queue, void *_unused)
6431 {
6432 	/* Initialize queue lock */
6433 	spin_lock_init(&queue->_xmit_lock);
6434 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6435 	queue->xmit_lock_owner = -1;
6436 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6437 	queue->dev = dev;
6438 #ifdef CONFIG_BQL
6439 	dql_init(&queue->dql, HZ);
6440 #endif
6441 }
6442 
6443 static void netif_free_tx_queues(struct net_device *dev)
6444 {
6445 	kvfree(dev->_tx);
6446 }
6447 
6448 static int netif_alloc_netdev_queues(struct net_device *dev)
6449 {
6450 	unsigned int count = dev->num_tx_queues;
6451 	struct netdev_queue *tx;
6452 	size_t sz = count * sizeof(*tx);
6453 
6454 	if (count < 1 || count > 0xffff)
6455 		return -EINVAL;
6456 
6457 	tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6458 	if (!tx) {
6459 		tx = vzalloc(sz);
6460 		if (!tx)
6461 			return -ENOMEM;
6462 	}
6463 	dev->_tx = tx;
6464 
6465 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6466 	spin_lock_init(&dev->tx_global_lock);
6467 
6468 	return 0;
6469 }
6470 
6471 void netif_tx_stop_all_queues(struct net_device *dev)
6472 {
6473 	unsigned int i;
6474 
6475 	for (i = 0; i < dev->num_tx_queues; i++) {
6476 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6477 		netif_tx_stop_queue(txq);
6478 	}
6479 }
6480 EXPORT_SYMBOL(netif_tx_stop_all_queues);
6481 
6482 /**
6483  *	register_netdevice	- register a network device
6484  *	@dev: device to register
6485  *
6486  *	Take a completed network device structure and add it to the kernel
6487  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6488  *	chain. 0 is returned on success. A negative errno code is returned
6489  *	on a failure to set up the device, or if the name is a duplicate.
6490  *
6491  *	Callers must hold the rtnl semaphore. You may want
6492  *	register_netdev() instead of this.
6493  *
6494  *	BUGS:
6495  *	The locking appears insufficient to guarantee two parallel registers
6496  *	will not get the same name.
6497  */
6498 
6499 int register_netdevice(struct net_device *dev)
6500 {
6501 	int ret;
6502 	struct net *net = dev_net(dev);
6503 
6504 	BUG_ON(dev_boot_phase);
6505 	ASSERT_RTNL();
6506 
6507 	might_sleep();
6508 
6509 	/* When net_device's are persistent, this will be fatal. */
6510 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6511 	BUG_ON(!net);
6512 
6513 	spin_lock_init(&dev->addr_list_lock);
6514 	netdev_set_addr_lockdep_class(dev);
6515 
6516 	ret = dev_get_valid_name(net, dev, dev->name);
6517 	if (ret < 0)
6518 		goto out;
6519 
6520 	/* Init, if this function is available */
6521 	if (dev->netdev_ops->ndo_init) {
6522 		ret = dev->netdev_ops->ndo_init(dev);
6523 		if (ret) {
6524 			if (ret > 0)
6525 				ret = -EIO;
6526 			goto out;
6527 		}
6528 	}
6529 
6530 	if (((dev->hw_features | dev->features) &
6531 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
6532 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6533 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6534 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6535 		ret = -EINVAL;
6536 		goto err_uninit;
6537 	}
6538 
6539 	ret = -EBUSY;
6540 	if (!dev->ifindex)
6541 		dev->ifindex = dev_new_index(net);
6542 	else if (__dev_get_by_index(net, dev->ifindex))
6543 		goto err_uninit;
6544 
6545 	/* Transfer changeable features to wanted_features and enable
6546 	 * software offloads (GSO and GRO).
6547 	 */
6548 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
6549 	dev->features |= NETIF_F_SOFT_FEATURES;
6550 	dev->wanted_features = dev->features & dev->hw_features;
6551 
6552 	if (!(dev->flags & IFF_LOOPBACK)) {
6553 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
6554 	}
6555 
6556 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6557 	 */
6558 	dev->vlan_features |= NETIF_F_HIGHDMA;
6559 
6560 	/* Make NETIF_F_SG inheritable to tunnel devices.
6561 	 */
6562 	dev->hw_enc_features |= NETIF_F_SG;
6563 
6564 	/* Make NETIF_F_SG inheritable to MPLS.
6565 	 */
6566 	dev->mpls_features |= NETIF_F_SG;
6567 
6568 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6569 	ret = notifier_to_errno(ret);
6570 	if (ret)
6571 		goto err_uninit;
6572 
6573 	ret = netdev_register_kobject(dev);
6574 	if (ret)
6575 		goto err_uninit;
6576 	dev->reg_state = NETREG_REGISTERED;
6577 
6578 	__netdev_update_features(dev);
6579 
6580 	/*
6581 	 *	Default initial state at registry is that the
6582 	 *	device is present.
6583 	 */
6584 
6585 	set_bit(__LINK_STATE_PRESENT, &dev->state);
6586 
6587 	linkwatch_init_dev(dev);
6588 
6589 	dev_init_scheduler(dev);
6590 	dev_hold(dev);
6591 	list_netdevice(dev);
6592 	add_device_randomness(dev->dev_addr, dev->addr_len);
6593 
6594 	/* If the device has permanent device address, driver should
6595 	 * set dev_addr and also addr_assign_type should be set to
6596 	 * NET_ADDR_PERM (default value).
6597 	 */
6598 	if (dev->addr_assign_type == NET_ADDR_PERM)
6599 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6600 
6601 	/* Notify protocols, that a new device appeared. */
6602 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6603 	ret = notifier_to_errno(ret);
6604 	if (ret) {
6605 		rollback_registered(dev);
6606 		dev->reg_state = NETREG_UNREGISTERED;
6607 	}
6608 	/*
6609 	 *	Prevent userspace races by waiting until the network
6610 	 *	device is fully setup before sending notifications.
6611 	 */
6612 	if (!dev->rtnl_link_ops ||
6613 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6614 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6615 
6616 out:
6617 	return ret;
6618 
6619 err_uninit:
6620 	if (dev->netdev_ops->ndo_uninit)
6621 		dev->netdev_ops->ndo_uninit(dev);
6622 	goto out;
6623 }
6624 EXPORT_SYMBOL(register_netdevice);
6625 
6626 /**
6627  *	init_dummy_netdev	- init a dummy network device for NAPI
6628  *	@dev: device to init
6629  *
6630  *	This takes a network device structure and initialize the minimum
6631  *	amount of fields so it can be used to schedule NAPI polls without
6632  *	registering a full blown interface. This is to be used by drivers
6633  *	that need to tie several hardware interfaces to a single NAPI
6634  *	poll scheduler due to HW limitations.
6635  */
6636 int init_dummy_netdev(struct net_device *dev)
6637 {
6638 	/* Clear everything. Note we don't initialize spinlocks
6639 	 * are they aren't supposed to be taken by any of the
6640 	 * NAPI code and this dummy netdev is supposed to be
6641 	 * only ever used for NAPI polls
6642 	 */
6643 	memset(dev, 0, sizeof(struct net_device));
6644 
6645 	/* make sure we BUG if trying to hit standard
6646 	 * register/unregister code path
6647 	 */
6648 	dev->reg_state = NETREG_DUMMY;
6649 
6650 	/* NAPI wants this */
6651 	INIT_LIST_HEAD(&dev->napi_list);
6652 
6653 	/* a dummy interface is started by default */
6654 	set_bit(__LINK_STATE_PRESENT, &dev->state);
6655 	set_bit(__LINK_STATE_START, &dev->state);
6656 
6657 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
6658 	 * because users of this 'device' dont need to change
6659 	 * its refcount.
6660 	 */
6661 
6662 	return 0;
6663 }
6664 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6665 
6666 
6667 /**
6668  *	register_netdev	- register a network device
6669  *	@dev: device to register
6670  *
6671  *	Take a completed network device structure and add it to the kernel
6672  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6673  *	chain. 0 is returned on success. A negative errno code is returned
6674  *	on a failure to set up the device, or if the name is a duplicate.
6675  *
6676  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
6677  *	and expands the device name if you passed a format string to
6678  *	alloc_netdev.
6679  */
6680 int register_netdev(struct net_device *dev)
6681 {
6682 	int err;
6683 
6684 	rtnl_lock();
6685 	err = register_netdevice(dev);
6686 	rtnl_unlock();
6687 	return err;
6688 }
6689 EXPORT_SYMBOL(register_netdev);
6690 
6691 int netdev_refcnt_read(const struct net_device *dev)
6692 {
6693 	int i, refcnt = 0;
6694 
6695 	for_each_possible_cpu(i)
6696 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6697 	return refcnt;
6698 }
6699 EXPORT_SYMBOL(netdev_refcnt_read);
6700 
6701 /**
6702  * netdev_wait_allrefs - wait until all references are gone.
6703  * @dev: target net_device
6704  *
6705  * This is called when unregistering network devices.
6706  *
6707  * Any protocol or device that holds a reference should register
6708  * for netdevice notification, and cleanup and put back the
6709  * reference if they receive an UNREGISTER event.
6710  * We can get stuck here if buggy protocols don't correctly
6711  * call dev_put.
6712  */
6713 static void netdev_wait_allrefs(struct net_device *dev)
6714 {
6715 	unsigned long rebroadcast_time, warning_time;
6716 	int refcnt;
6717 
6718 	linkwatch_forget_dev(dev);
6719 
6720 	rebroadcast_time = warning_time = jiffies;
6721 	refcnt = netdev_refcnt_read(dev);
6722 
6723 	while (refcnt != 0) {
6724 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6725 			rtnl_lock();
6726 
6727 			/* Rebroadcast unregister notification */
6728 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6729 
6730 			__rtnl_unlock();
6731 			rcu_barrier();
6732 			rtnl_lock();
6733 
6734 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6735 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6736 				     &dev->state)) {
6737 				/* We must not have linkwatch events
6738 				 * pending on unregister. If this
6739 				 * happens, we simply run the queue
6740 				 * unscheduled, resulting in a noop
6741 				 * for this device.
6742 				 */
6743 				linkwatch_run_queue();
6744 			}
6745 
6746 			__rtnl_unlock();
6747 
6748 			rebroadcast_time = jiffies;
6749 		}
6750 
6751 		msleep(250);
6752 
6753 		refcnt = netdev_refcnt_read(dev);
6754 
6755 		if (time_after(jiffies, warning_time + 10 * HZ)) {
6756 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6757 				 dev->name, refcnt);
6758 			warning_time = jiffies;
6759 		}
6760 	}
6761 }
6762 
6763 /* The sequence is:
6764  *
6765  *	rtnl_lock();
6766  *	...
6767  *	register_netdevice(x1);
6768  *	register_netdevice(x2);
6769  *	...
6770  *	unregister_netdevice(y1);
6771  *	unregister_netdevice(y2);
6772  *      ...
6773  *	rtnl_unlock();
6774  *	free_netdev(y1);
6775  *	free_netdev(y2);
6776  *
6777  * We are invoked by rtnl_unlock().
6778  * This allows us to deal with problems:
6779  * 1) We can delete sysfs objects which invoke hotplug
6780  *    without deadlocking with linkwatch via keventd.
6781  * 2) Since we run with the RTNL semaphore not held, we can sleep
6782  *    safely in order to wait for the netdev refcnt to drop to zero.
6783  *
6784  * We must not return until all unregister events added during
6785  * the interval the lock was held have been completed.
6786  */
6787 void netdev_run_todo(void)
6788 {
6789 	struct list_head list;
6790 
6791 	/* Snapshot list, allow later requests */
6792 	list_replace_init(&net_todo_list, &list);
6793 
6794 	__rtnl_unlock();
6795 
6796 
6797 	/* Wait for rcu callbacks to finish before next phase */
6798 	if (!list_empty(&list))
6799 		rcu_barrier();
6800 
6801 	while (!list_empty(&list)) {
6802 		struct net_device *dev
6803 			= list_first_entry(&list, struct net_device, todo_list);
6804 		list_del(&dev->todo_list);
6805 
6806 		rtnl_lock();
6807 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6808 		__rtnl_unlock();
6809 
6810 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6811 			pr_err("network todo '%s' but state %d\n",
6812 			       dev->name, dev->reg_state);
6813 			dump_stack();
6814 			continue;
6815 		}
6816 
6817 		dev->reg_state = NETREG_UNREGISTERED;
6818 
6819 		netdev_wait_allrefs(dev);
6820 
6821 		/* paranoia */
6822 		BUG_ON(netdev_refcnt_read(dev));
6823 		BUG_ON(!list_empty(&dev->ptype_all));
6824 		BUG_ON(!list_empty(&dev->ptype_specific));
6825 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
6826 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6827 		WARN_ON(dev->dn_ptr);
6828 
6829 		if (dev->destructor)
6830 			dev->destructor(dev);
6831 
6832 		/* Report a network device has been unregistered */
6833 		rtnl_lock();
6834 		dev_net(dev)->dev_unreg_count--;
6835 		__rtnl_unlock();
6836 		wake_up(&netdev_unregistering_wq);
6837 
6838 		/* Free network device */
6839 		kobject_put(&dev->dev.kobj);
6840 	}
6841 }
6842 
6843 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
6844  * fields in the same order, with only the type differing.
6845  */
6846 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6847 			     const struct net_device_stats *netdev_stats)
6848 {
6849 #if BITS_PER_LONG == 64
6850 	BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6851 	memcpy(stats64, netdev_stats, sizeof(*stats64));
6852 #else
6853 	size_t i, n = sizeof(*stats64) / sizeof(u64);
6854 	const unsigned long *src = (const unsigned long *)netdev_stats;
6855 	u64 *dst = (u64 *)stats64;
6856 
6857 	BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6858 		     sizeof(*stats64) / sizeof(u64));
6859 	for (i = 0; i < n; i++)
6860 		dst[i] = src[i];
6861 #endif
6862 }
6863 EXPORT_SYMBOL(netdev_stats_to_stats64);
6864 
6865 /**
6866  *	dev_get_stats	- get network device statistics
6867  *	@dev: device to get statistics from
6868  *	@storage: place to store stats
6869  *
6870  *	Get network statistics from device. Return @storage.
6871  *	The device driver may provide its own method by setting
6872  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6873  *	otherwise the internal statistics structure is used.
6874  */
6875 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6876 					struct rtnl_link_stats64 *storage)
6877 {
6878 	const struct net_device_ops *ops = dev->netdev_ops;
6879 
6880 	if (ops->ndo_get_stats64) {
6881 		memset(storage, 0, sizeof(*storage));
6882 		ops->ndo_get_stats64(dev, storage);
6883 	} else if (ops->ndo_get_stats) {
6884 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6885 	} else {
6886 		netdev_stats_to_stats64(storage, &dev->stats);
6887 	}
6888 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6889 	storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6890 	return storage;
6891 }
6892 EXPORT_SYMBOL(dev_get_stats);
6893 
6894 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6895 {
6896 	struct netdev_queue *queue = dev_ingress_queue(dev);
6897 
6898 #ifdef CONFIG_NET_CLS_ACT
6899 	if (queue)
6900 		return queue;
6901 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6902 	if (!queue)
6903 		return NULL;
6904 	netdev_init_one_queue(dev, queue, NULL);
6905 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
6906 	queue->qdisc_sleeping = &noop_qdisc;
6907 	rcu_assign_pointer(dev->ingress_queue, queue);
6908 #endif
6909 	return queue;
6910 }
6911 
6912 static const struct ethtool_ops default_ethtool_ops;
6913 
6914 void netdev_set_default_ethtool_ops(struct net_device *dev,
6915 				    const struct ethtool_ops *ops)
6916 {
6917 	if (dev->ethtool_ops == &default_ethtool_ops)
6918 		dev->ethtool_ops = ops;
6919 }
6920 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6921 
6922 void netdev_freemem(struct net_device *dev)
6923 {
6924 	char *addr = (char *)dev - dev->padded;
6925 
6926 	kvfree(addr);
6927 }
6928 
6929 /**
6930  *	alloc_netdev_mqs - allocate network device
6931  *	@sizeof_priv:		size of private data to allocate space for
6932  *	@name:			device name format string
6933  *	@name_assign_type: 	origin of device name
6934  *	@setup:			callback to initialize device
6935  *	@txqs:			the number of TX subqueues to allocate
6936  *	@rxqs:			the number of RX subqueues to allocate
6937  *
6938  *	Allocates a struct net_device with private data area for driver use
6939  *	and performs basic initialization.  Also allocates subqueue structs
6940  *	for each queue on the device.
6941  */
6942 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6943 		unsigned char name_assign_type,
6944 		void (*setup)(struct net_device *),
6945 		unsigned int txqs, unsigned int rxqs)
6946 {
6947 	struct net_device *dev;
6948 	size_t alloc_size;
6949 	struct net_device *p;
6950 
6951 	BUG_ON(strlen(name) >= sizeof(dev->name));
6952 
6953 	if (txqs < 1) {
6954 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6955 		return NULL;
6956 	}
6957 
6958 #ifdef CONFIG_SYSFS
6959 	if (rxqs < 1) {
6960 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6961 		return NULL;
6962 	}
6963 #endif
6964 
6965 	alloc_size = sizeof(struct net_device);
6966 	if (sizeof_priv) {
6967 		/* ensure 32-byte alignment of private area */
6968 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6969 		alloc_size += sizeof_priv;
6970 	}
6971 	/* ensure 32-byte alignment of whole construct */
6972 	alloc_size += NETDEV_ALIGN - 1;
6973 
6974 	p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6975 	if (!p)
6976 		p = vzalloc(alloc_size);
6977 	if (!p)
6978 		return NULL;
6979 
6980 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
6981 	dev->padded = (char *)dev - (char *)p;
6982 
6983 	dev->pcpu_refcnt = alloc_percpu(int);
6984 	if (!dev->pcpu_refcnt)
6985 		goto free_dev;
6986 
6987 	if (dev_addr_init(dev))
6988 		goto free_pcpu;
6989 
6990 	dev_mc_init(dev);
6991 	dev_uc_init(dev);
6992 
6993 	dev_net_set(dev, &init_net);
6994 
6995 	dev->gso_max_size = GSO_MAX_SIZE;
6996 	dev->gso_max_segs = GSO_MAX_SEGS;
6997 	dev->gso_min_segs = 0;
6998 
6999 	INIT_LIST_HEAD(&dev->napi_list);
7000 	INIT_LIST_HEAD(&dev->unreg_list);
7001 	INIT_LIST_HEAD(&dev->close_list);
7002 	INIT_LIST_HEAD(&dev->link_watch_list);
7003 	INIT_LIST_HEAD(&dev->adj_list.upper);
7004 	INIT_LIST_HEAD(&dev->adj_list.lower);
7005 	INIT_LIST_HEAD(&dev->all_adj_list.upper);
7006 	INIT_LIST_HEAD(&dev->all_adj_list.lower);
7007 	INIT_LIST_HEAD(&dev->ptype_all);
7008 	INIT_LIST_HEAD(&dev->ptype_specific);
7009 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7010 	setup(dev);
7011 
7012 	if (!dev->tx_queue_len)
7013 		dev->priv_flags |= IFF_NO_QUEUE;
7014 
7015 	dev->num_tx_queues = txqs;
7016 	dev->real_num_tx_queues = txqs;
7017 	if (netif_alloc_netdev_queues(dev))
7018 		goto free_all;
7019 
7020 #ifdef CONFIG_SYSFS
7021 	dev->num_rx_queues = rxqs;
7022 	dev->real_num_rx_queues = rxqs;
7023 	if (netif_alloc_rx_queues(dev))
7024 		goto free_all;
7025 #endif
7026 
7027 	strcpy(dev->name, name);
7028 	dev->name_assign_type = name_assign_type;
7029 	dev->group = INIT_NETDEV_GROUP;
7030 	if (!dev->ethtool_ops)
7031 		dev->ethtool_ops = &default_ethtool_ops;
7032 
7033 	nf_hook_ingress_init(dev);
7034 
7035 	return dev;
7036 
7037 free_all:
7038 	free_netdev(dev);
7039 	return NULL;
7040 
7041 free_pcpu:
7042 	free_percpu(dev->pcpu_refcnt);
7043 free_dev:
7044 	netdev_freemem(dev);
7045 	return NULL;
7046 }
7047 EXPORT_SYMBOL(alloc_netdev_mqs);
7048 
7049 /**
7050  *	free_netdev - free network device
7051  *	@dev: device
7052  *
7053  *	This function does the last stage of destroying an allocated device
7054  * 	interface. The reference to the device object is released.
7055  *	If this is the last reference then it will be freed.
7056  */
7057 void free_netdev(struct net_device *dev)
7058 {
7059 	struct napi_struct *p, *n;
7060 
7061 	netif_free_tx_queues(dev);
7062 #ifdef CONFIG_SYSFS
7063 	kvfree(dev->_rx);
7064 #endif
7065 
7066 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7067 
7068 	/* Flush device addresses */
7069 	dev_addr_flush(dev);
7070 
7071 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7072 		netif_napi_del(p);
7073 
7074 	free_percpu(dev->pcpu_refcnt);
7075 	dev->pcpu_refcnt = NULL;
7076 
7077 	/*  Compatibility with error handling in drivers */
7078 	if (dev->reg_state == NETREG_UNINITIALIZED) {
7079 		netdev_freemem(dev);
7080 		return;
7081 	}
7082 
7083 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7084 	dev->reg_state = NETREG_RELEASED;
7085 
7086 	/* will free via device release */
7087 	put_device(&dev->dev);
7088 }
7089 EXPORT_SYMBOL(free_netdev);
7090 
7091 /**
7092  *	synchronize_net -  Synchronize with packet receive processing
7093  *
7094  *	Wait for packets currently being received to be done.
7095  *	Does not block later packets from starting.
7096  */
7097 void synchronize_net(void)
7098 {
7099 	might_sleep();
7100 	if (rtnl_is_locked())
7101 		synchronize_rcu_expedited();
7102 	else
7103 		synchronize_rcu();
7104 }
7105 EXPORT_SYMBOL(synchronize_net);
7106 
7107 /**
7108  *	unregister_netdevice_queue - remove device from the kernel
7109  *	@dev: device
7110  *	@head: list
7111  *
7112  *	This function shuts down a device interface and removes it
7113  *	from the kernel tables.
7114  *	If head not NULL, device is queued to be unregistered later.
7115  *
7116  *	Callers must hold the rtnl semaphore.  You may want
7117  *	unregister_netdev() instead of this.
7118  */
7119 
7120 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7121 {
7122 	ASSERT_RTNL();
7123 
7124 	if (head) {
7125 		list_move_tail(&dev->unreg_list, head);
7126 	} else {
7127 		rollback_registered(dev);
7128 		/* Finish processing unregister after unlock */
7129 		net_set_todo(dev);
7130 	}
7131 }
7132 EXPORT_SYMBOL(unregister_netdevice_queue);
7133 
7134 /**
7135  *	unregister_netdevice_many - unregister many devices
7136  *	@head: list of devices
7137  *
7138  *  Note: As most callers use a stack allocated list_head,
7139  *  we force a list_del() to make sure stack wont be corrupted later.
7140  */
7141 void unregister_netdevice_many(struct list_head *head)
7142 {
7143 	struct net_device *dev;
7144 
7145 	if (!list_empty(head)) {
7146 		rollback_registered_many(head);
7147 		list_for_each_entry(dev, head, unreg_list)
7148 			net_set_todo(dev);
7149 		list_del(head);
7150 	}
7151 }
7152 EXPORT_SYMBOL(unregister_netdevice_many);
7153 
7154 /**
7155  *	unregister_netdev - remove device from the kernel
7156  *	@dev: device
7157  *
7158  *	This function shuts down a device interface and removes it
7159  *	from the kernel tables.
7160  *
7161  *	This is just a wrapper for unregister_netdevice that takes
7162  *	the rtnl semaphore.  In general you want to use this and not
7163  *	unregister_netdevice.
7164  */
7165 void unregister_netdev(struct net_device *dev)
7166 {
7167 	rtnl_lock();
7168 	unregister_netdevice(dev);
7169 	rtnl_unlock();
7170 }
7171 EXPORT_SYMBOL(unregister_netdev);
7172 
7173 /**
7174  *	dev_change_net_namespace - move device to different nethost namespace
7175  *	@dev: device
7176  *	@net: network namespace
7177  *	@pat: If not NULL name pattern to try if the current device name
7178  *	      is already taken in the destination network namespace.
7179  *
7180  *	This function shuts down a device interface and moves it
7181  *	to a new network namespace. On success 0 is returned, on
7182  *	a failure a netagive errno code is returned.
7183  *
7184  *	Callers must hold the rtnl semaphore.
7185  */
7186 
7187 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7188 {
7189 	int err;
7190 
7191 	ASSERT_RTNL();
7192 
7193 	/* Don't allow namespace local devices to be moved. */
7194 	err = -EINVAL;
7195 	if (dev->features & NETIF_F_NETNS_LOCAL)
7196 		goto out;
7197 
7198 	/* Ensure the device has been registrered */
7199 	if (dev->reg_state != NETREG_REGISTERED)
7200 		goto out;
7201 
7202 	/* Get out if there is nothing todo */
7203 	err = 0;
7204 	if (net_eq(dev_net(dev), net))
7205 		goto out;
7206 
7207 	/* Pick the destination device name, and ensure
7208 	 * we can use it in the destination network namespace.
7209 	 */
7210 	err = -EEXIST;
7211 	if (__dev_get_by_name(net, dev->name)) {
7212 		/* We get here if we can't use the current device name */
7213 		if (!pat)
7214 			goto out;
7215 		if (dev_get_valid_name(net, dev, pat) < 0)
7216 			goto out;
7217 	}
7218 
7219 	/*
7220 	 * And now a mini version of register_netdevice unregister_netdevice.
7221 	 */
7222 
7223 	/* If device is running close it first. */
7224 	dev_close(dev);
7225 
7226 	/* And unlink it from device chain */
7227 	err = -ENODEV;
7228 	unlist_netdevice(dev);
7229 
7230 	synchronize_net();
7231 
7232 	/* Shutdown queueing discipline. */
7233 	dev_shutdown(dev);
7234 
7235 	/* Notify protocols, that we are about to destroy
7236 	   this device. They should clean all the things.
7237 
7238 	   Note that dev->reg_state stays at NETREG_REGISTERED.
7239 	   This is wanted because this way 8021q and macvlan know
7240 	   the device is just moving and can keep their slaves up.
7241 	*/
7242 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7243 	rcu_barrier();
7244 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7245 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7246 
7247 	/*
7248 	 *	Flush the unicast and multicast chains
7249 	 */
7250 	dev_uc_flush(dev);
7251 	dev_mc_flush(dev);
7252 
7253 	/* Send a netdev-removed uevent to the old namespace */
7254 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7255 	netdev_adjacent_del_links(dev);
7256 
7257 	/* Actually switch the network namespace */
7258 	dev_net_set(dev, net);
7259 
7260 	/* If there is an ifindex conflict assign a new one */
7261 	if (__dev_get_by_index(net, dev->ifindex))
7262 		dev->ifindex = dev_new_index(net);
7263 
7264 	/* Send a netdev-add uevent to the new namespace */
7265 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7266 	netdev_adjacent_add_links(dev);
7267 
7268 	/* Fixup kobjects */
7269 	err = device_rename(&dev->dev, dev->name);
7270 	WARN_ON(err);
7271 
7272 	/* Add the device back in the hashes */
7273 	list_netdevice(dev);
7274 
7275 	/* Notify protocols, that a new device appeared. */
7276 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
7277 
7278 	/*
7279 	 *	Prevent userspace races by waiting until the network
7280 	 *	device is fully setup before sending notifications.
7281 	 */
7282 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7283 
7284 	synchronize_net();
7285 	err = 0;
7286 out:
7287 	return err;
7288 }
7289 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7290 
7291 static int dev_cpu_callback(struct notifier_block *nfb,
7292 			    unsigned long action,
7293 			    void *ocpu)
7294 {
7295 	struct sk_buff **list_skb;
7296 	struct sk_buff *skb;
7297 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
7298 	struct softnet_data *sd, *oldsd;
7299 
7300 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7301 		return NOTIFY_OK;
7302 
7303 	local_irq_disable();
7304 	cpu = smp_processor_id();
7305 	sd = &per_cpu(softnet_data, cpu);
7306 	oldsd = &per_cpu(softnet_data, oldcpu);
7307 
7308 	/* Find end of our completion_queue. */
7309 	list_skb = &sd->completion_queue;
7310 	while (*list_skb)
7311 		list_skb = &(*list_skb)->next;
7312 	/* Append completion queue from offline CPU. */
7313 	*list_skb = oldsd->completion_queue;
7314 	oldsd->completion_queue = NULL;
7315 
7316 	/* Append output queue from offline CPU. */
7317 	if (oldsd->output_queue) {
7318 		*sd->output_queue_tailp = oldsd->output_queue;
7319 		sd->output_queue_tailp = oldsd->output_queue_tailp;
7320 		oldsd->output_queue = NULL;
7321 		oldsd->output_queue_tailp = &oldsd->output_queue;
7322 	}
7323 	/* Append NAPI poll list from offline CPU, with one exception :
7324 	 * process_backlog() must be called by cpu owning percpu backlog.
7325 	 * We properly handle process_queue & input_pkt_queue later.
7326 	 */
7327 	while (!list_empty(&oldsd->poll_list)) {
7328 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7329 							    struct napi_struct,
7330 							    poll_list);
7331 
7332 		list_del_init(&napi->poll_list);
7333 		if (napi->poll == process_backlog)
7334 			napi->state = 0;
7335 		else
7336 			____napi_schedule(sd, napi);
7337 	}
7338 
7339 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
7340 	local_irq_enable();
7341 
7342 	/* Process offline CPU's input_pkt_queue */
7343 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7344 		netif_rx_ni(skb);
7345 		input_queue_head_incr(oldsd);
7346 	}
7347 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7348 		netif_rx_ni(skb);
7349 		input_queue_head_incr(oldsd);
7350 	}
7351 
7352 	return NOTIFY_OK;
7353 }
7354 
7355 
7356 /**
7357  *	netdev_increment_features - increment feature set by one
7358  *	@all: current feature set
7359  *	@one: new feature set
7360  *	@mask: mask feature set
7361  *
7362  *	Computes a new feature set after adding a device with feature set
7363  *	@one to the master device with current feature set @all.  Will not
7364  *	enable anything that is off in @mask. Returns the new feature set.
7365  */
7366 netdev_features_t netdev_increment_features(netdev_features_t all,
7367 	netdev_features_t one, netdev_features_t mask)
7368 {
7369 	if (mask & NETIF_F_GEN_CSUM)
7370 		mask |= NETIF_F_ALL_CSUM;
7371 	mask |= NETIF_F_VLAN_CHALLENGED;
7372 
7373 	all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7374 	all &= one | ~NETIF_F_ALL_FOR_ALL;
7375 
7376 	/* If one device supports hw checksumming, set for all. */
7377 	if (all & NETIF_F_GEN_CSUM)
7378 		all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7379 
7380 	return all;
7381 }
7382 EXPORT_SYMBOL(netdev_increment_features);
7383 
7384 static struct hlist_head * __net_init netdev_create_hash(void)
7385 {
7386 	int i;
7387 	struct hlist_head *hash;
7388 
7389 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7390 	if (hash != NULL)
7391 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
7392 			INIT_HLIST_HEAD(&hash[i]);
7393 
7394 	return hash;
7395 }
7396 
7397 /* Initialize per network namespace state */
7398 static int __net_init netdev_init(struct net *net)
7399 {
7400 	if (net != &init_net)
7401 		INIT_LIST_HEAD(&net->dev_base_head);
7402 
7403 	net->dev_name_head = netdev_create_hash();
7404 	if (net->dev_name_head == NULL)
7405 		goto err_name;
7406 
7407 	net->dev_index_head = netdev_create_hash();
7408 	if (net->dev_index_head == NULL)
7409 		goto err_idx;
7410 
7411 	return 0;
7412 
7413 err_idx:
7414 	kfree(net->dev_name_head);
7415 err_name:
7416 	return -ENOMEM;
7417 }
7418 
7419 /**
7420  *	netdev_drivername - network driver for the device
7421  *	@dev: network device
7422  *
7423  *	Determine network driver for device.
7424  */
7425 const char *netdev_drivername(const struct net_device *dev)
7426 {
7427 	const struct device_driver *driver;
7428 	const struct device *parent;
7429 	const char *empty = "";
7430 
7431 	parent = dev->dev.parent;
7432 	if (!parent)
7433 		return empty;
7434 
7435 	driver = parent->driver;
7436 	if (driver && driver->name)
7437 		return driver->name;
7438 	return empty;
7439 }
7440 
7441 static void __netdev_printk(const char *level, const struct net_device *dev,
7442 			    struct va_format *vaf)
7443 {
7444 	if (dev && dev->dev.parent) {
7445 		dev_printk_emit(level[1] - '0',
7446 				dev->dev.parent,
7447 				"%s %s %s%s: %pV",
7448 				dev_driver_string(dev->dev.parent),
7449 				dev_name(dev->dev.parent),
7450 				netdev_name(dev), netdev_reg_state(dev),
7451 				vaf);
7452 	} else if (dev) {
7453 		printk("%s%s%s: %pV",
7454 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
7455 	} else {
7456 		printk("%s(NULL net_device): %pV", level, vaf);
7457 	}
7458 }
7459 
7460 void netdev_printk(const char *level, const struct net_device *dev,
7461 		   const char *format, ...)
7462 {
7463 	struct va_format vaf;
7464 	va_list args;
7465 
7466 	va_start(args, format);
7467 
7468 	vaf.fmt = format;
7469 	vaf.va = &args;
7470 
7471 	__netdev_printk(level, dev, &vaf);
7472 
7473 	va_end(args);
7474 }
7475 EXPORT_SYMBOL(netdev_printk);
7476 
7477 #define define_netdev_printk_level(func, level)			\
7478 void func(const struct net_device *dev, const char *fmt, ...)	\
7479 {								\
7480 	struct va_format vaf;					\
7481 	va_list args;						\
7482 								\
7483 	va_start(args, fmt);					\
7484 								\
7485 	vaf.fmt = fmt;						\
7486 	vaf.va = &args;						\
7487 								\
7488 	__netdev_printk(level, dev, &vaf);			\
7489 								\
7490 	va_end(args);						\
7491 }								\
7492 EXPORT_SYMBOL(func);
7493 
7494 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7495 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7496 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7497 define_netdev_printk_level(netdev_err, KERN_ERR);
7498 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7499 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7500 define_netdev_printk_level(netdev_info, KERN_INFO);
7501 
7502 static void __net_exit netdev_exit(struct net *net)
7503 {
7504 	kfree(net->dev_name_head);
7505 	kfree(net->dev_index_head);
7506 }
7507 
7508 static struct pernet_operations __net_initdata netdev_net_ops = {
7509 	.init = netdev_init,
7510 	.exit = netdev_exit,
7511 };
7512 
7513 static void __net_exit default_device_exit(struct net *net)
7514 {
7515 	struct net_device *dev, *aux;
7516 	/*
7517 	 * Push all migratable network devices back to the
7518 	 * initial network namespace
7519 	 */
7520 	rtnl_lock();
7521 	for_each_netdev_safe(net, dev, aux) {
7522 		int err;
7523 		char fb_name[IFNAMSIZ];
7524 
7525 		/* Ignore unmoveable devices (i.e. loopback) */
7526 		if (dev->features & NETIF_F_NETNS_LOCAL)
7527 			continue;
7528 
7529 		/* Leave virtual devices for the generic cleanup */
7530 		if (dev->rtnl_link_ops)
7531 			continue;
7532 
7533 		/* Push remaining network devices to init_net */
7534 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7535 		err = dev_change_net_namespace(dev, &init_net, fb_name);
7536 		if (err) {
7537 			pr_emerg("%s: failed to move %s to init_net: %d\n",
7538 				 __func__, dev->name, err);
7539 			BUG();
7540 		}
7541 	}
7542 	rtnl_unlock();
7543 }
7544 
7545 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7546 {
7547 	/* Return with the rtnl_lock held when there are no network
7548 	 * devices unregistering in any network namespace in net_list.
7549 	 */
7550 	struct net *net;
7551 	bool unregistering;
7552 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
7553 
7554 	add_wait_queue(&netdev_unregistering_wq, &wait);
7555 	for (;;) {
7556 		unregistering = false;
7557 		rtnl_lock();
7558 		list_for_each_entry(net, net_list, exit_list) {
7559 			if (net->dev_unreg_count > 0) {
7560 				unregistering = true;
7561 				break;
7562 			}
7563 		}
7564 		if (!unregistering)
7565 			break;
7566 		__rtnl_unlock();
7567 
7568 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7569 	}
7570 	remove_wait_queue(&netdev_unregistering_wq, &wait);
7571 }
7572 
7573 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7574 {
7575 	/* At exit all network devices most be removed from a network
7576 	 * namespace.  Do this in the reverse order of registration.
7577 	 * Do this across as many network namespaces as possible to
7578 	 * improve batching efficiency.
7579 	 */
7580 	struct net_device *dev;
7581 	struct net *net;
7582 	LIST_HEAD(dev_kill_list);
7583 
7584 	/* To prevent network device cleanup code from dereferencing
7585 	 * loopback devices or network devices that have been freed
7586 	 * wait here for all pending unregistrations to complete,
7587 	 * before unregistring the loopback device and allowing the
7588 	 * network namespace be freed.
7589 	 *
7590 	 * The netdev todo list containing all network devices
7591 	 * unregistrations that happen in default_device_exit_batch
7592 	 * will run in the rtnl_unlock() at the end of
7593 	 * default_device_exit_batch.
7594 	 */
7595 	rtnl_lock_unregistering(net_list);
7596 	list_for_each_entry(net, net_list, exit_list) {
7597 		for_each_netdev_reverse(net, dev) {
7598 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7599 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7600 			else
7601 				unregister_netdevice_queue(dev, &dev_kill_list);
7602 		}
7603 	}
7604 	unregister_netdevice_many(&dev_kill_list);
7605 	rtnl_unlock();
7606 }
7607 
7608 static struct pernet_operations __net_initdata default_device_ops = {
7609 	.exit = default_device_exit,
7610 	.exit_batch = default_device_exit_batch,
7611 };
7612 
7613 /*
7614  *	Initialize the DEV module. At boot time this walks the device list and
7615  *	unhooks any devices that fail to initialise (normally hardware not
7616  *	present) and leaves us with a valid list of present and active devices.
7617  *
7618  */
7619 
7620 /*
7621  *       This is called single threaded during boot, so no need
7622  *       to take the rtnl semaphore.
7623  */
7624 static int __init net_dev_init(void)
7625 {
7626 	int i, rc = -ENOMEM;
7627 
7628 	BUG_ON(!dev_boot_phase);
7629 
7630 	if (dev_proc_init())
7631 		goto out;
7632 
7633 	if (netdev_kobject_init())
7634 		goto out;
7635 
7636 	INIT_LIST_HEAD(&ptype_all);
7637 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
7638 		INIT_LIST_HEAD(&ptype_base[i]);
7639 
7640 	INIT_LIST_HEAD(&offload_base);
7641 
7642 	if (register_pernet_subsys(&netdev_net_ops))
7643 		goto out;
7644 
7645 	/*
7646 	 *	Initialise the packet receive queues.
7647 	 */
7648 
7649 	for_each_possible_cpu(i) {
7650 		struct softnet_data *sd = &per_cpu(softnet_data, i);
7651 
7652 		skb_queue_head_init(&sd->input_pkt_queue);
7653 		skb_queue_head_init(&sd->process_queue);
7654 		INIT_LIST_HEAD(&sd->poll_list);
7655 		sd->output_queue_tailp = &sd->output_queue;
7656 #ifdef CONFIG_RPS
7657 		sd->csd.func = rps_trigger_softirq;
7658 		sd->csd.info = sd;
7659 		sd->cpu = i;
7660 #endif
7661 
7662 		sd->backlog.poll = process_backlog;
7663 		sd->backlog.weight = weight_p;
7664 	}
7665 
7666 	dev_boot_phase = 0;
7667 
7668 	/* The loopback device is special if any other network devices
7669 	 * is present in a network namespace the loopback device must
7670 	 * be present. Since we now dynamically allocate and free the
7671 	 * loopback device ensure this invariant is maintained by
7672 	 * keeping the loopback device as the first device on the
7673 	 * list of network devices.  Ensuring the loopback devices
7674 	 * is the first device that appears and the last network device
7675 	 * that disappears.
7676 	 */
7677 	if (register_pernet_device(&loopback_net_ops))
7678 		goto out;
7679 
7680 	if (register_pernet_device(&default_device_ops))
7681 		goto out;
7682 
7683 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7684 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7685 
7686 	hotcpu_notifier(dev_cpu_callback, 0);
7687 	dst_subsys_init();
7688 	rc = 0;
7689 out:
7690 	return rc;
7691 }
7692 
7693 subsys_initcall(net_dev_init);
7694