xref: /openbmc/linux/net/core/dev.c (revision 88baa78d)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <net/busy_poll.h>
101 #include <linux/rtnetlink.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
123 #include <net/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/static_key.h>
136 #include <linux/hashtable.h>
137 #include <linux/vmalloc.h>
138 #include <linux/if_macvlan.h>
139 #include <linux/errqueue.h>
140 #include <linux/hrtimer.h>
141 #include <linux/netfilter_ingress.h>
142 #include <linux/crash_dump.h>
143 
144 #include "net-sysfs.h"
145 
146 /* Instead of increasing this, you should create a hash table. */
147 #define MAX_GRO_SKBS 8
148 
149 /* This should be increased if a protocol with a bigger head is added. */
150 #define GRO_MAX_HEAD (MAX_HEADER + 128)
151 
152 static DEFINE_SPINLOCK(ptype_lock);
153 static DEFINE_SPINLOCK(offload_lock);
154 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
155 struct list_head ptype_all __read_mostly;	/* Taps */
156 static struct list_head offload_base __read_mostly;
157 
158 static int netif_rx_internal(struct sk_buff *skb);
159 static int call_netdevice_notifiers_info(unsigned long val,
160 					 struct net_device *dev,
161 					 struct netdev_notifier_info *info);
162 
163 /*
164  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
165  * semaphore.
166  *
167  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
168  *
169  * Writers must hold the rtnl semaphore while they loop through the
170  * dev_base_head list, and hold dev_base_lock for writing when they do the
171  * actual updates.  This allows pure readers to access the list even
172  * while a writer is preparing to update it.
173  *
174  * To put it another way, dev_base_lock is held for writing only to
175  * protect against pure readers; the rtnl semaphore provides the
176  * protection against other writers.
177  *
178  * See, for example usages, register_netdevice() and
179  * unregister_netdevice(), which must be called with the rtnl
180  * semaphore held.
181  */
182 DEFINE_RWLOCK(dev_base_lock);
183 EXPORT_SYMBOL(dev_base_lock);
184 
185 /* protects napi_hash addition/deletion and napi_gen_id */
186 static DEFINE_SPINLOCK(napi_hash_lock);
187 
188 static unsigned int napi_gen_id = NR_CPUS;
189 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
190 
191 static seqcount_t devnet_rename_seq;
192 
193 static inline void dev_base_seq_inc(struct net *net)
194 {
195 	while (++net->dev_base_seq == 0);
196 }
197 
198 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
199 {
200 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
201 
202 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
203 }
204 
205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
206 {
207 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
208 }
209 
210 static inline void rps_lock(struct softnet_data *sd)
211 {
212 #ifdef CONFIG_RPS
213 	spin_lock(&sd->input_pkt_queue.lock);
214 #endif
215 }
216 
217 static inline void rps_unlock(struct softnet_data *sd)
218 {
219 #ifdef CONFIG_RPS
220 	spin_unlock(&sd->input_pkt_queue.lock);
221 #endif
222 }
223 
224 /* Device list insertion */
225 static void list_netdevice(struct net_device *dev)
226 {
227 	struct net *net = dev_net(dev);
228 
229 	ASSERT_RTNL();
230 
231 	write_lock_bh(&dev_base_lock);
232 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
233 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
234 	hlist_add_head_rcu(&dev->index_hlist,
235 			   dev_index_hash(net, dev->ifindex));
236 	write_unlock_bh(&dev_base_lock);
237 
238 	dev_base_seq_inc(net);
239 }
240 
241 /* Device list removal
242  * caller must respect a RCU grace period before freeing/reusing dev
243  */
244 static void unlist_netdevice(struct net_device *dev)
245 {
246 	ASSERT_RTNL();
247 
248 	/* Unlink dev from the device chain */
249 	write_lock_bh(&dev_base_lock);
250 	list_del_rcu(&dev->dev_list);
251 	hlist_del_rcu(&dev->name_hlist);
252 	hlist_del_rcu(&dev->index_hlist);
253 	write_unlock_bh(&dev_base_lock);
254 
255 	dev_base_seq_inc(dev_net(dev));
256 }
257 
258 /*
259  *	Our notifier list
260  */
261 
262 static RAW_NOTIFIER_HEAD(netdev_chain);
263 
264 /*
265  *	Device drivers call our routines to queue packets here. We empty the
266  *	queue in the local softnet handler.
267  */
268 
269 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
270 EXPORT_PER_CPU_SYMBOL(softnet_data);
271 
272 #ifdef CONFIG_LOCKDEP
273 /*
274  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
275  * according to dev->type
276  */
277 static const unsigned short netdev_lock_type[] =
278 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
279 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
280 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
281 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
282 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
283 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
284 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
285 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
286 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
287 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
288 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
289 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
290 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
291 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
292 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
293 
294 static const char *const netdev_lock_name[] =
295 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
296 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
297 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
298 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
299 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
300 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
301 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
302 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
303 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
304 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
305 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
306 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
307 	 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
308 	 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
309 	 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
310 
311 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
312 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
313 
314 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
315 {
316 	int i;
317 
318 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
319 		if (netdev_lock_type[i] == dev_type)
320 			return i;
321 	/* the last key is used by default */
322 	return ARRAY_SIZE(netdev_lock_type) - 1;
323 }
324 
325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 						 unsigned short dev_type)
327 {
328 	int i;
329 
330 	i = netdev_lock_pos(dev_type);
331 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
332 				   netdev_lock_name[i]);
333 }
334 
335 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
336 {
337 	int i;
338 
339 	i = netdev_lock_pos(dev->type);
340 	lockdep_set_class_and_name(&dev->addr_list_lock,
341 				   &netdev_addr_lock_key[i],
342 				   netdev_lock_name[i]);
343 }
344 #else
345 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
346 						 unsigned short dev_type)
347 {
348 }
349 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
350 {
351 }
352 #endif
353 
354 /*******************************************************************************
355 
356 		Protocol management and registration routines
357 
358 *******************************************************************************/
359 
360 /*
361  *	Add a protocol ID to the list. Now that the input handler is
362  *	smarter we can dispense with all the messy stuff that used to be
363  *	here.
364  *
365  *	BEWARE!!! Protocol handlers, mangling input packets,
366  *	MUST BE last in hash buckets and checking protocol handlers
367  *	MUST start from promiscuous ptype_all chain in net_bh.
368  *	It is true now, do not change it.
369  *	Explanation follows: if protocol handler, mangling packet, will
370  *	be the first on list, it is not able to sense, that packet
371  *	is cloned and should be copied-on-write, so that it will
372  *	change it and subsequent readers will get broken packet.
373  *							--ANK (980803)
374  */
375 
376 static inline struct list_head *ptype_head(const struct packet_type *pt)
377 {
378 	if (pt->type == htons(ETH_P_ALL))
379 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
380 	else
381 		return pt->dev ? &pt->dev->ptype_specific :
382 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
383 }
384 
385 /**
386  *	dev_add_pack - add packet handler
387  *	@pt: packet type declaration
388  *
389  *	Add a protocol handler to the networking stack. The passed &packet_type
390  *	is linked into kernel lists and may not be freed until it has been
391  *	removed from the kernel lists.
392  *
393  *	This call does not sleep therefore it can not
394  *	guarantee all CPU's that are in middle of receiving packets
395  *	will see the new packet type (until the next received packet).
396  */
397 
398 void dev_add_pack(struct packet_type *pt)
399 {
400 	struct list_head *head = ptype_head(pt);
401 
402 	spin_lock(&ptype_lock);
403 	list_add_rcu(&pt->list, head);
404 	spin_unlock(&ptype_lock);
405 }
406 EXPORT_SYMBOL(dev_add_pack);
407 
408 /**
409  *	__dev_remove_pack	 - remove packet handler
410  *	@pt: packet type declaration
411  *
412  *	Remove a protocol handler that was previously added to the kernel
413  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
414  *	from the kernel lists and can be freed or reused once this function
415  *	returns.
416  *
417  *      The packet type might still be in use by receivers
418  *	and must not be freed until after all the CPU's have gone
419  *	through a quiescent state.
420  */
421 void __dev_remove_pack(struct packet_type *pt)
422 {
423 	struct list_head *head = ptype_head(pt);
424 	struct packet_type *pt1;
425 
426 	spin_lock(&ptype_lock);
427 
428 	list_for_each_entry(pt1, head, list) {
429 		if (pt == pt1) {
430 			list_del_rcu(&pt->list);
431 			goto out;
432 		}
433 	}
434 
435 	pr_warn("dev_remove_pack: %p not found\n", pt);
436 out:
437 	spin_unlock(&ptype_lock);
438 }
439 EXPORT_SYMBOL(__dev_remove_pack);
440 
441 /**
442  *	dev_remove_pack	 - remove packet handler
443  *	@pt: packet type declaration
444  *
445  *	Remove a protocol handler that was previously added to the kernel
446  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
447  *	from the kernel lists and can be freed or reused once this function
448  *	returns.
449  *
450  *	This call sleeps to guarantee that no CPU is looking at the packet
451  *	type after return.
452  */
453 void dev_remove_pack(struct packet_type *pt)
454 {
455 	__dev_remove_pack(pt);
456 
457 	synchronize_net();
458 }
459 EXPORT_SYMBOL(dev_remove_pack);
460 
461 
462 /**
463  *	dev_add_offload - register offload handlers
464  *	@po: protocol offload declaration
465  *
466  *	Add protocol offload handlers to the networking stack. The passed
467  *	&proto_offload is linked into kernel lists and may not be freed until
468  *	it has been removed from the kernel lists.
469  *
470  *	This call does not sleep therefore it can not
471  *	guarantee all CPU's that are in middle of receiving packets
472  *	will see the new offload handlers (until the next received packet).
473  */
474 void dev_add_offload(struct packet_offload *po)
475 {
476 	struct packet_offload *elem;
477 
478 	spin_lock(&offload_lock);
479 	list_for_each_entry(elem, &offload_base, list) {
480 		if (po->priority < elem->priority)
481 			break;
482 	}
483 	list_add_rcu(&po->list, elem->list.prev);
484 	spin_unlock(&offload_lock);
485 }
486 EXPORT_SYMBOL(dev_add_offload);
487 
488 /**
489  *	__dev_remove_offload	 - remove offload handler
490  *	@po: packet offload declaration
491  *
492  *	Remove a protocol offload handler that was previously added to the
493  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
494  *	is removed from the kernel lists and can be freed or reused once this
495  *	function returns.
496  *
497  *      The packet type might still be in use by receivers
498  *	and must not be freed until after all the CPU's have gone
499  *	through a quiescent state.
500  */
501 static void __dev_remove_offload(struct packet_offload *po)
502 {
503 	struct list_head *head = &offload_base;
504 	struct packet_offload *po1;
505 
506 	spin_lock(&offload_lock);
507 
508 	list_for_each_entry(po1, head, list) {
509 		if (po == po1) {
510 			list_del_rcu(&po->list);
511 			goto out;
512 		}
513 	}
514 
515 	pr_warn("dev_remove_offload: %p not found\n", po);
516 out:
517 	spin_unlock(&offload_lock);
518 }
519 
520 /**
521  *	dev_remove_offload	 - remove packet offload handler
522  *	@po: packet offload declaration
523  *
524  *	Remove a packet offload handler that was previously added to the kernel
525  *	offload handlers by dev_add_offload(). The passed &offload_type is
526  *	removed from the kernel lists and can be freed or reused once this
527  *	function returns.
528  *
529  *	This call sleeps to guarantee that no CPU is looking at the packet
530  *	type after return.
531  */
532 void dev_remove_offload(struct packet_offload *po)
533 {
534 	__dev_remove_offload(po);
535 
536 	synchronize_net();
537 }
538 EXPORT_SYMBOL(dev_remove_offload);
539 
540 /******************************************************************************
541 
542 		      Device Boot-time Settings Routines
543 
544 *******************************************************************************/
545 
546 /* Boot time configuration table */
547 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
548 
549 /**
550  *	netdev_boot_setup_add	- add new setup entry
551  *	@name: name of the device
552  *	@map: configured settings for the device
553  *
554  *	Adds new setup entry to the dev_boot_setup list.  The function
555  *	returns 0 on error and 1 on success.  This is a generic routine to
556  *	all netdevices.
557  */
558 static int netdev_boot_setup_add(char *name, struct ifmap *map)
559 {
560 	struct netdev_boot_setup *s;
561 	int i;
562 
563 	s = dev_boot_setup;
564 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
565 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
566 			memset(s[i].name, 0, sizeof(s[i].name));
567 			strlcpy(s[i].name, name, IFNAMSIZ);
568 			memcpy(&s[i].map, map, sizeof(s[i].map));
569 			break;
570 		}
571 	}
572 
573 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
574 }
575 
576 /**
577  *	netdev_boot_setup_check	- check boot time settings
578  *	@dev: the netdevice
579  *
580  * 	Check boot time settings for the device.
581  *	The found settings are set for the device to be used
582  *	later in the device probing.
583  *	Returns 0 if no settings found, 1 if they are.
584  */
585 int netdev_boot_setup_check(struct net_device *dev)
586 {
587 	struct netdev_boot_setup *s = dev_boot_setup;
588 	int i;
589 
590 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
591 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
592 		    !strcmp(dev->name, s[i].name)) {
593 			dev->irq 	= s[i].map.irq;
594 			dev->base_addr 	= s[i].map.base_addr;
595 			dev->mem_start 	= s[i].map.mem_start;
596 			dev->mem_end 	= s[i].map.mem_end;
597 			return 1;
598 		}
599 	}
600 	return 0;
601 }
602 EXPORT_SYMBOL(netdev_boot_setup_check);
603 
604 
605 /**
606  *	netdev_boot_base	- get address from boot time settings
607  *	@prefix: prefix for network device
608  *	@unit: id for network device
609  *
610  * 	Check boot time settings for the base address of device.
611  *	The found settings are set for the device to be used
612  *	later in the device probing.
613  *	Returns 0 if no settings found.
614  */
615 unsigned long netdev_boot_base(const char *prefix, int unit)
616 {
617 	const struct netdev_boot_setup *s = dev_boot_setup;
618 	char name[IFNAMSIZ];
619 	int i;
620 
621 	sprintf(name, "%s%d", prefix, unit);
622 
623 	/*
624 	 * If device already registered then return base of 1
625 	 * to indicate not to probe for this interface
626 	 */
627 	if (__dev_get_by_name(&init_net, name))
628 		return 1;
629 
630 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
631 		if (!strcmp(name, s[i].name))
632 			return s[i].map.base_addr;
633 	return 0;
634 }
635 
636 /*
637  * Saves at boot time configured settings for any netdevice.
638  */
639 int __init netdev_boot_setup(char *str)
640 {
641 	int ints[5];
642 	struct ifmap map;
643 
644 	str = get_options(str, ARRAY_SIZE(ints), ints);
645 	if (!str || !*str)
646 		return 0;
647 
648 	/* Save settings */
649 	memset(&map, 0, sizeof(map));
650 	if (ints[0] > 0)
651 		map.irq = ints[1];
652 	if (ints[0] > 1)
653 		map.base_addr = ints[2];
654 	if (ints[0] > 2)
655 		map.mem_start = ints[3];
656 	if (ints[0] > 3)
657 		map.mem_end = ints[4];
658 
659 	/* Add new entry to the list */
660 	return netdev_boot_setup_add(str, &map);
661 }
662 
663 __setup("netdev=", netdev_boot_setup);
664 
665 /*******************************************************************************
666 
667 			    Device Interface Subroutines
668 
669 *******************************************************************************/
670 
671 /**
672  *	dev_get_iflink	- get 'iflink' value of a interface
673  *	@dev: targeted interface
674  *
675  *	Indicates the ifindex the interface is linked to.
676  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
677  */
678 
679 int dev_get_iflink(const struct net_device *dev)
680 {
681 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
682 		return dev->netdev_ops->ndo_get_iflink(dev);
683 
684 	return dev->ifindex;
685 }
686 EXPORT_SYMBOL(dev_get_iflink);
687 
688 /**
689  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
690  *	@dev: targeted interface
691  *	@skb: The packet.
692  *
693  *	For better visibility of tunnel traffic OVS needs to retrieve
694  *	egress tunnel information for a packet. Following API allows
695  *	user to get this info.
696  */
697 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
698 {
699 	struct ip_tunnel_info *info;
700 
701 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
702 		return -EINVAL;
703 
704 	info = skb_tunnel_info_unclone(skb);
705 	if (!info)
706 		return -ENOMEM;
707 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
708 		return -EINVAL;
709 
710 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
711 }
712 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
713 
714 /**
715  *	__dev_get_by_name	- find a device by its name
716  *	@net: the applicable net namespace
717  *	@name: name to find
718  *
719  *	Find an interface by name. Must be called under RTNL semaphore
720  *	or @dev_base_lock. If the name is found a pointer to the device
721  *	is returned. If the name is not found then %NULL is returned. The
722  *	reference counters are not incremented so the caller must be
723  *	careful with locks.
724  */
725 
726 struct net_device *__dev_get_by_name(struct net *net, const char *name)
727 {
728 	struct net_device *dev;
729 	struct hlist_head *head = dev_name_hash(net, name);
730 
731 	hlist_for_each_entry(dev, head, name_hlist)
732 		if (!strncmp(dev->name, name, IFNAMSIZ))
733 			return dev;
734 
735 	return NULL;
736 }
737 EXPORT_SYMBOL(__dev_get_by_name);
738 
739 /**
740  *	dev_get_by_name_rcu	- find a device by its name
741  *	@net: the applicable net namespace
742  *	@name: name to find
743  *
744  *	Find an interface by name.
745  *	If the name is found a pointer to the device is returned.
746  * 	If the name is not found then %NULL is returned.
747  *	The reference counters are not incremented so the caller must be
748  *	careful with locks. The caller must hold RCU lock.
749  */
750 
751 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
752 {
753 	struct net_device *dev;
754 	struct hlist_head *head = dev_name_hash(net, name);
755 
756 	hlist_for_each_entry_rcu(dev, head, name_hlist)
757 		if (!strncmp(dev->name, name, IFNAMSIZ))
758 			return dev;
759 
760 	return NULL;
761 }
762 EXPORT_SYMBOL(dev_get_by_name_rcu);
763 
764 /**
765  *	dev_get_by_name		- find a device by its name
766  *	@net: the applicable net namespace
767  *	@name: name to find
768  *
769  *	Find an interface by name. This can be called from any
770  *	context and does its own locking. The returned handle has
771  *	the usage count incremented and the caller must use dev_put() to
772  *	release it when it is no longer needed. %NULL is returned if no
773  *	matching device is found.
774  */
775 
776 struct net_device *dev_get_by_name(struct net *net, const char *name)
777 {
778 	struct net_device *dev;
779 
780 	rcu_read_lock();
781 	dev = dev_get_by_name_rcu(net, name);
782 	if (dev)
783 		dev_hold(dev);
784 	rcu_read_unlock();
785 	return dev;
786 }
787 EXPORT_SYMBOL(dev_get_by_name);
788 
789 /**
790  *	__dev_get_by_index - find a device by its ifindex
791  *	@net: the applicable net namespace
792  *	@ifindex: index of device
793  *
794  *	Search for an interface by index. Returns %NULL if the device
795  *	is not found or a pointer to the device. The device has not
796  *	had its reference counter increased so the caller must be careful
797  *	about locking. The caller must hold either the RTNL semaphore
798  *	or @dev_base_lock.
799  */
800 
801 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
802 {
803 	struct net_device *dev;
804 	struct hlist_head *head = dev_index_hash(net, ifindex);
805 
806 	hlist_for_each_entry(dev, head, index_hlist)
807 		if (dev->ifindex == ifindex)
808 			return dev;
809 
810 	return NULL;
811 }
812 EXPORT_SYMBOL(__dev_get_by_index);
813 
814 /**
815  *	dev_get_by_index_rcu - find a device by its ifindex
816  *	@net: the applicable net namespace
817  *	@ifindex: index of device
818  *
819  *	Search for an interface by index. Returns %NULL if the device
820  *	is not found or a pointer to the device. The device has not
821  *	had its reference counter increased so the caller must be careful
822  *	about locking. The caller must hold RCU lock.
823  */
824 
825 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
826 {
827 	struct net_device *dev;
828 	struct hlist_head *head = dev_index_hash(net, ifindex);
829 
830 	hlist_for_each_entry_rcu(dev, head, index_hlist)
831 		if (dev->ifindex == ifindex)
832 			return dev;
833 
834 	return NULL;
835 }
836 EXPORT_SYMBOL(dev_get_by_index_rcu);
837 
838 
839 /**
840  *	dev_get_by_index - find a device by its ifindex
841  *	@net: the applicable net namespace
842  *	@ifindex: index of device
843  *
844  *	Search for an interface by index. Returns NULL if the device
845  *	is not found or a pointer to the device. The device returned has
846  *	had a reference added and the pointer is safe until the user calls
847  *	dev_put to indicate they have finished with it.
848  */
849 
850 struct net_device *dev_get_by_index(struct net *net, int ifindex)
851 {
852 	struct net_device *dev;
853 
854 	rcu_read_lock();
855 	dev = dev_get_by_index_rcu(net, ifindex);
856 	if (dev)
857 		dev_hold(dev);
858 	rcu_read_unlock();
859 	return dev;
860 }
861 EXPORT_SYMBOL(dev_get_by_index);
862 
863 /**
864  *	netdev_get_name - get a netdevice name, knowing its ifindex.
865  *	@net: network namespace
866  *	@name: a pointer to the buffer where the name will be stored.
867  *	@ifindex: the ifindex of the interface to get the name from.
868  *
869  *	The use of raw_seqcount_begin() and cond_resched() before
870  *	retrying is required as we want to give the writers a chance
871  *	to complete when CONFIG_PREEMPT is not set.
872  */
873 int netdev_get_name(struct net *net, char *name, int ifindex)
874 {
875 	struct net_device *dev;
876 	unsigned int seq;
877 
878 retry:
879 	seq = raw_seqcount_begin(&devnet_rename_seq);
880 	rcu_read_lock();
881 	dev = dev_get_by_index_rcu(net, ifindex);
882 	if (!dev) {
883 		rcu_read_unlock();
884 		return -ENODEV;
885 	}
886 
887 	strcpy(name, dev->name);
888 	rcu_read_unlock();
889 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
890 		cond_resched();
891 		goto retry;
892 	}
893 
894 	return 0;
895 }
896 
897 /**
898  *	dev_getbyhwaddr_rcu - find a device by its hardware address
899  *	@net: the applicable net namespace
900  *	@type: media type of device
901  *	@ha: hardware address
902  *
903  *	Search for an interface by MAC address. Returns NULL if the device
904  *	is not found or a pointer to the device.
905  *	The caller must hold RCU or RTNL.
906  *	The returned device has not had its ref count increased
907  *	and the caller must therefore be careful about locking
908  *
909  */
910 
911 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
912 				       const char *ha)
913 {
914 	struct net_device *dev;
915 
916 	for_each_netdev_rcu(net, dev)
917 		if (dev->type == type &&
918 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
919 			return dev;
920 
921 	return NULL;
922 }
923 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
924 
925 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
926 {
927 	struct net_device *dev;
928 
929 	ASSERT_RTNL();
930 	for_each_netdev(net, dev)
931 		if (dev->type == type)
932 			return dev;
933 
934 	return NULL;
935 }
936 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
937 
938 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
939 {
940 	struct net_device *dev, *ret = NULL;
941 
942 	rcu_read_lock();
943 	for_each_netdev_rcu(net, dev)
944 		if (dev->type == type) {
945 			dev_hold(dev);
946 			ret = dev;
947 			break;
948 		}
949 	rcu_read_unlock();
950 	return ret;
951 }
952 EXPORT_SYMBOL(dev_getfirstbyhwtype);
953 
954 /**
955  *	__dev_get_by_flags - find any device with given flags
956  *	@net: the applicable net namespace
957  *	@if_flags: IFF_* values
958  *	@mask: bitmask of bits in if_flags to check
959  *
960  *	Search for any interface with the given flags. Returns NULL if a device
961  *	is not found or a pointer to the device. Must be called inside
962  *	rtnl_lock(), and result refcount is unchanged.
963  */
964 
965 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
966 				      unsigned short mask)
967 {
968 	struct net_device *dev, *ret;
969 
970 	ASSERT_RTNL();
971 
972 	ret = NULL;
973 	for_each_netdev(net, dev) {
974 		if (((dev->flags ^ if_flags) & mask) == 0) {
975 			ret = dev;
976 			break;
977 		}
978 	}
979 	return ret;
980 }
981 EXPORT_SYMBOL(__dev_get_by_flags);
982 
983 /**
984  *	dev_valid_name - check if name is okay for network device
985  *	@name: name string
986  *
987  *	Network device names need to be valid file names to
988  *	to allow sysfs to work.  We also disallow any kind of
989  *	whitespace.
990  */
991 bool dev_valid_name(const char *name)
992 {
993 	if (*name == '\0')
994 		return false;
995 	if (strlen(name) >= IFNAMSIZ)
996 		return false;
997 	if (!strcmp(name, ".") || !strcmp(name, ".."))
998 		return false;
999 
1000 	while (*name) {
1001 		if (*name == '/' || *name == ':' || isspace(*name))
1002 			return false;
1003 		name++;
1004 	}
1005 	return true;
1006 }
1007 EXPORT_SYMBOL(dev_valid_name);
1008 
1009 /**
1010  *	__dev_alloc_name - allocate a name for a device
1011  *	@net: network namespace to allocate the device name in
1012  *	@name: name format string
1013  *	@buf:  scratch buffer and result name string
1014  *
1015  *	Passed a format string - eg "lt%d" it will try and find a suitable
1016  *	id. It scans list of devices to build up a free map, then chooses
1017  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1018  *	while allocating the name and adding the device in order to avoid
1019  *	duplicates.
1020  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1021  *	Returns the number of the unit assigned or a negative errno code.
1022  */
1023 
1024 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1025 {
1026 	int i = 0;
1027 	const char *p;
1028 	const int max_netdevices = 8*PAGE_SIZE;
1029 	unsigned long *inuse;
1030 	struct net_device *d;
1031 
1032 	p = strnchr(name, IFNAMSIZ-1, '%');
1033 	if (p) {
1034 		/*
1035 		 * Verify the string as this thing may have come from
1036 		 * the user.  There must be either one "%d" and no other "%"
1037 		 * characters.
1038 		 */
1039 		if (p[1] != 'd' || strchr(p + 2, '%'))
1040 			return -EINVAL;
1041 
1042 		/* Use one page as a bit array of possible slots */
1043 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1044 		if (!inuse)
1045 			return -ENOMEM;
1046 
1047 		for_each_netdev(net, d) {
1048 			if (!sscanf(d->name, name, &i))
1049 				continue;
1050 			if (i < 0 || i >= max_netdevices)
1051 				continue;
1052 
1053 			/*  avoid cases where sscanf is not exact inverse of printf */
1054 			snprintf(buf, IFNAMSIZ, name, i);
1055 			if (!strncmp(buf, d->name, IFNAMSIZ))
1056 				set_bit(i, inuse);
1057 		}
1058 
1059 		i = find_first_zero_bit(inuse, max_netdevices);
1060 		free_page((unsigned long) inuse);
1061 	}
1062 
1063 	if (buf != name)
1064 		snprintf(buf, IFNAMSIZ, name, i);
1065 	if (!__dev_get_by_name(net, buf))
1066 		return i;
1067 
1068 	/* It is possible to run out of possible slots
1069 	 * when the name is long and there isn't enough space left
1070 	 * for the digits, or if all bits are used.
1071 	 */
1072 	return -ENFILE;
1073 }
1074 
1075 /**
1076  *	dev_alloc_name - allocate a name for a device
1077  *	@dev: device
1078  *	@name: name format string
1079  *
1080  *	Passed a format string - eg "lt%d" it will try and find a suitable
1081  *	id. It scans list of devices to build up a free map, then chooses
1082  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1083  *	while allocating the name and adding the device in order to avoid
1084  *	duplicates.
1085  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1086  *	Returns the number of the unit assigned or a negative errno code.
1087  */
1088 
1089 int dev_alloc_name(struct net_device *dev, const char *name)
1090 {
1091 	char buf[IFNAMSIZ];
1092 	struct net *net;
1093 	int ret;
1094 
1095 	BUG_ON(!dev_net(dev));
1096 	net = dev_net(dev);
1097 	ret = __dev_alloc_name(net, name, buf);
1098 	if (ret >= 0)
1099 		strlcpy(dev->name, buf, IFNAMSIZ);
1100 	return ret;
1101 }
1102 EXPORT_SYMBOL(dev_alloc_name);
1103 
1104 static int dev_alloc_name_ns(struct net *net,
1105 			     struct net_device *dev,
1106 			     const char *name)
1107 {
1108 	char buf[IFNAMSIZ];
1109 	int ret;
1110 
1111 	ret = __dev_alloc_name(net, name, buf);
1112 	if (ret >= 0)
1113 		strlcpy(dev->name, buf, IFNAMSIZ);
1114 	return ret;
1115 }
1116 
1117 static int dev_get_valid_name(struct net *net,
1118 			      struct net_device *dev,
1119 			      const char *name)
1120 {
1121 	BUG_ON(!net);
1122 
1123 	if (!dev_valid_name(name))
1124 		return -EINVAL;
1125 
1126 	if (strchr(name, '%'))
1127 		return dev_alloc_name_ns(net, dev, name);
1128 	else if (__dev_get_by_name(net, name))
1129 		return -EEXIST;
1130 	else if (dev->name != name)
1131 		strlcpy(dev->name, name, IFNAMSIZ);
1132 
1133 	return 0;
1134 }
1135 
1136 /**
1137  *	dev_change_name - change name of a device
1138  *	@dev: device
1139  *	@newname: name (or format string) must be at least IFNAMSIZ
1140  *
1141  *	Change name of a device, can pass format strings "eth%d".
1142  *	for wildcarding.
1143  */
1144 int dev_change_name(struct net_device *dev, const char *newname)
1145 {
1146 	unsigned char old_assign_type;
1147 	char oldname[IFNAMSIZ];
1148 	int err = 0;
1149 	int ret;
1150 	struct net *net;
1151 
1152 	ASSERT_RTNL();
1153 	BUG_ON(!dev_net(dev));
1154 
1155 	net = dev_net(dev);
1156 	if (dev->flags & IFF_UP)
1157 		return -EBUSY;
1158 
1159 	write_seqcount_begin(&devnet_rename_seq);
1160 
1161 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1162 		write_seqcount_end(&devnet_rename_seq);
1163 		return 0;
1164 	}
1165 
1166 	memcpy(oldname, dev->name, IFNAMSIZ);
1167 
1168 	err = dev_get_valid_name(net, dev, newname);
1169 	if (err < 0) {
1170 		write_seqcount_end(&devnet_rename_seq);
1171 		return err;
1172 	}
1173 
1174 	if (oldname[0] && !strchr(oldname, '%'))
1175 		netdev_info(dev, "renamed from %s\n", oldname);
1176 
1177 	old_assign_type = dev->name_assign_type;
1178 	dev->name_assign_type = NET_NAME_RENAMED;
1179 
1180 rollback:
1181 	ret = device_rename(&dev->dev, dev->name);
1182 	if (ret) {
1183 		memcpy(dev->name, oldname, IFNAMSIZ);
1184 		dev->name_assign_type = old_assign_type;
1185 		write_seqcount_end(&devnet_rename_seq);
1186 		return ret;
1187 	}
1188 
1189 	write_seqcount_end(&devnet_rename_seq);
1190 
1191 	netdev_adjacent_rename_links(dev, oldname);
1192 
1193 	write_lock_bh(&dev_base_lock);
1194 	hlist_del_rcu(&dev->name_hlist);
1195 	write_unlock_bh(&dev_base_lock);
1196 
1197 	synchronize_rcu();
1198 
1199 	write_lock_bh(&dev_base_lock);
1200 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1201 	write_unlock_bh(&dev_base_lock);
1202 
1203 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1204 	ret = notifier_to_errno(ret);
1205 
1206 	if (ret) {
1207 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1208 		if (err >= 0) {
1209 			err = ret;
1210 			write_seqcount_begin(&devnet_rename_seq);
1211 			memcpy(dev->name, oldname, IFNAMSIZ);
1212 			memcpy(oldname, newname, IFNAMSIZ);
1213 			dev->name_assign_type = old_assign_type;
1214 			old_assign_type = NET_NAME_RENAMED;
1215 			goto rollback;
1216 		} else {
1217 			pr_err("%s: name change rollback failed: %d\n",
1218 			       dev->name, ret);
1219 		}
1220 	}
1221 
1222 	return err;
1223 }
1224 
1225 /**
1226  *	dev_set_alias - change ifalias of a device
1227  *	@dev: device
1228  *	@alias: name up to IFALIASZ
1229  *	@len: limit of bytes to copy from info
1230  *
1231  *	Set ifalias for a device,
1232  */
1233 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1234 {
1235 	char *new_ifalias;
1236 
1237 	ASSERT_RTNL();
1238 
1239 	if (len >= IFALIASZ)
1240 		return -EINVAL;
1241 
1242 	if (!len) {
1243 		kfree(dev->ifalias);
1244 		dev->ifalias = NULL;
1245 		return 0;
1246 	}
1247 
1248 	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1249 	if (!new_ifalias)
1250 		return -ENOMEM;
1251 	dev->ifalias = new_ifalias;
1252 
1253 	strlcpy(dev->ifalias, alias, len+1);
1254 	return len;
1255 }
1256 
1257 
1258 /**
1259  *	netdev_features_change - device changes features
1260  *	@dev: device to cause notification
1261  *
1262  *	Called to indicate a device has changed features.
1263  */
1264 void netdev_features_change(struct net_device *dev)
1265 {
1266 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1267 }
1268 EXPORT_SYMBOL(netdev_features_change);
1269 
1270 /**
1271  *	netdev_state_change - device changes state
1272  *	@dev: device to cause notification
1273  *
1274  *	Called to indicate a device has changed state. This function calls
1275  *	the notifier chains for netdev_chain and sends a NEWLINK message
1276  *	to the routing socket.
1277  */
1278 void netdev_state_change(struct net_device *dev)
1279 {
1280 	if (dev->flags & IFF_UP) {
1281 		struct netdev_notifier_change_info change_info;
1282 
1283 		change_info.flags_changed = 0;
1284 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1285 					      &change_info.info);
1286 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1287 	}
1288 }
1289 EXPORT_SYMBOL(netdev_state_change);
1290 
1291 /**
1292  * 	netdev_notify_peers - notify network peers about existence of @dev
1293  * 	@dev: network device
1294  *
1295  * Generate traffic such that interested network peers are aware of
1296  * @dev, such as by generating a gratuitous ARP. This may be used when
1297  * a device wants to inform the rest of the network about some sort of
1298  * reconfiguration such as a failover event or virtual machine
1299  * migration.
1300  */
1301 void netdev_notify_peers(struct net_device *dev)
1302 {
1303 	rtnl_lock();
1304 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1305 	rtnl_unlock();
1306 }
1307 EXPORT_SYMBOL(netdev_notify_peers);
1308 
1309 static int __dev_open(struct net_device *dev)
1310 {
1311 	const struct net_device_ops *ops = dev->netdev_ops;
1312 	int ret;
1313 
1314 	ASSERT_RTNL();
1315 
1316 	if (!netif_device_present(dev))
1317 		return -ENODEV;
1318 
1319 	/* Block netpoll from trying to do any rx path servicing.
1320 	 * If we don't do this there is a chance ndo_poll_controller
1321 	 * or ndo_poll may be running while we open the device
1322 	 */
1323 	netpoll_poll_disable(dev);
1324 
1325 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1326 	ret = notifier_to_errno(ret);
1327 	if (ret)
1328 		return ret;
1329 
1330 	set_bit(__LINK_STATE_START, &dev->state);
1331 
1332 	if (ops->ndo_validate_addr)
1333 		ret = ops->ndo_validate_addr(dev);
1334 
1335 	if (!ret && ops->ndo_open)
1336 		ret = ops->ndo_open(dev);
1337 
1338 	netpoll_poll_enable(dev);
1339 
1340 	if (ret)
1341 		clear_bit(__LINK_STATE_START, &dev->state);
1342 	else {
1343 		dev->flags |= IFF_UP;
1344 		dev_set_rx_mode(dev);
1345 		dev_activate(dev);
1346 		add_device_randomness(dev->dev_addr, dev->addr_len);
1347 	}
1348 
1349 	return ret;
1350 }
1351 
1352 /**
1353  *	dev_open	- prepare an interface for use.
1354  *	@dev:	device to open
1355  *
1356  *	Takes a device from down to up state. The device's private open
1357  *	function is invoked and then the multicast lists are loaded. Finally
1358  *	the device is moved into the up state and a %NETDEV_UP message is
1359  *	sent to the netdev notifier chain.
1360  *
1361  *	Calling this function on an active interface is a nop. On a failure
1362  *	a negative errno code is returned.
1363  */
1364 int dev_open(struct net_device *dev)
1365 {
1366 	int ret;
1367 
1368 	if (dev->flags & IFF_UP)
1369 		return 0;
1370 
1371 	ret = __dev_open(dev);
1372 	if (ret < 0)
1373 		return ret;
1374 
1375 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1376 	call_netdevice_notifiers(NETDEV_UP, dev);
1377 
1378 	return ret;
1379 }
1380 EXPORT_SYMBOL(dev_open);
1381 
1382 static int __dev_close_many(struct list_head *head)
1383 {
1384 	struct net_device *dev;
1385 
1386 	ASSERT_RTNL();
1387 	might_sleep();
1388 
1389 	list_for_each_entry(dev, head, close_list) {
1390 		/* Temporarily disable netpoll until the interface is down */
1391 		netpoll_poll_disable(dev);
1392 
1393 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1394 
1395 		clear_bit(__LINK_STATE_START, &dev->state);
1396 
1397 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1398 		 * can be even on different cpu. So just clear netif_running().
1399 		 *
1400 		 * dev->stop() will invoke napi_disable() on all of it's
1401 		 * napi_struct instances on this device.
1402 		 */
1403 		smp_mb__after_atomic(); /* Commit netif_running(). */
1404 	}
1405 
1406 	dev_deactivate_many(head);
1407 
1408 	list_for_each_entry(dev, head, close_list) {
1409 		const struct net_device_ops *ops = dev->netdev_ops;
1410 
1411 		/*
1412 		 *	Call the device specific close. This cannot fail.
1413 		 *	Only if device is UP
1414 		 *
1415 		 *	We allow it to be called even after a DETACH hot-plug
1416 		 *	event.
1417 		 */
1418 		if (ops->ndo_stop)
1419 			ops->ndo_stop(dev);
1420 
1421 		dev->flags &= ~IFF_UP;
1422 		netpoll_poll_enable(dev);
1423 	}
1424 
1425 	return 0;
1426 }
1427 
1428 static int __dev_close(struct net_device *dev)
1429 {
1430 	int retval;
1431 	LIST_HEAD(single);
1432 
1433 	list_add(&dev->close_list, &single);
1434 	retval = __dev_close_many(&single);
1435 	list_del(&single);
1436 
1437 	return retval;
1438 }
1439 
1440 int dev_close_many(struct list_head *head, bool unlink)
1441 {
1442 	struct net_device *dev, *tmp;
1443 
1444 	/* Remove the devices that don't need to be closed */
1445 	list_for_each_entry_safe(dev, tmp, head, close_list)
1446 		if (!(dev->flags & IFF_UP))
1447 			list_del_init(&dev->close_list);
1448 
1449 	__dev_close_many(head);
1450 
1451 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1452 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1453 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1454 		if (unlink)
1455 			list_del_init(&dev->close_list);
1456 	}
1457 
1458 	return 0;
1459 }
1460 EXPORT_SYMBOL(dev_close_many);
1461 
1462 /**
1463  *	dev_close - shutdown an interface.
1464  *	@dev: device to shutdown
1465  *
1466  *	This function moves an active device into down state. A
1467  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1468  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1469  *	chain.
1470  */
1471 int dev_close(struct net_device *dev)
1472 {
1473 	if (dev->flags & IFF_UP) {
1474 		LIST_HEAD(single);
1475 
1476 		list_add(&dev->close_list, &single);
1477 		dev_close_many(&single, true);
1478 		list_del(&single);
1479 	}
1480 	return 0;
1481 }
1482 EXPORT_SYMBOL(dev_close);
1483 
1484 
1485 /**
1486  *	dev_disable_lro - disable Large Receive Offload on a device
1487  *	@dev: device
1488  *
1489  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1490  *	called under RTNL.  This is needed if received packets may be
1491  *	forwarded to another interface.
1492  */
1493 void dev_disable_lro(struct net_device *dev)
1494 {
1495 	struct net_device *lower_dev;
1496 	struct list_head *iter;
1497 
1498 	dev->wanted_features &= ~NETIF_F_LRO;
1499 	netdev_update_features(dev);
1500 
1501 	if (unlikely(dev->features & NETIF_F_LRO))
1502 		netdev_WARN(dev, "failed to disable LRO!\n");
1503 
1504 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1505 		dev_disable_lro(lower_dev);
1506 }
1507 EXPORT_SYMBOL(dev_disable_lro);
1508 
1509 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1510 				   struct net_device *dev)
1511 {
1512 	struct netdev_notifier_info info;
1513 
1514 	netdev_notifier_info_init(&info, dev);
1515 	return nb->notifier_call(nb, val, &info);
1516 }
1517 
1518 static int dev_boot_phase = 1;
1519 
1520 /**
1521  *	register_netdevice_notifier - register a network notifier block
1522  *	@nb: notifier
1523  *
1524  *	Register a notifier to be called when network device events occur.
1525  *	The notifier passed is linked into the kernel structures and must
1526  *	not be reused until it has been unregistered. A negative errno code
1527  *	is returned on a failure.
1528  *
1529  * 	When registered all registration and up events are replayed
1530  *	to the new notifier to allow device to have a race free
1531  *	view of the network device list.
1532  */
1533 
1534 int register_netdevice_notifier(struct notifier_block *nb)
1535 {
1536 	struct net_device *dev;
1537 	struct net_device *last;
1538 	struct net *net;
1539 	int err;
1540 
1541 	rtnl_lock();
1542 	err = raw_notifier_chain_register(&netdev_chain, nb);
1543 	if (err)
1544 		goto unlock;
1545 	if (dev_boot_phase)
1546 		goto unlock;
1547 	for_each_net(net) {
1548 		for_each_netdev(net, dev) {
1549 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1550 			err = notifier_to_errno(err);
1551 			if (err)
1552 				goto rollback;
1553 
1554 			if (!(dev->flags & IFF_UP))
1555 				continue;
1556 
1557 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1558 		}
1559 	}
1560 
1561 unlock:
1562 	rtnl_unlock();
1563 	return err;
1564 
1565 rollback:
1566 	last = dev;
1567 	for_each_net(net) {
1568 		for_each_netdev(net, dev) {
1569 			if (dev == last)
1570 				goto outroll;
1571 
1572 			if (dev->flags & IFF_UP) {
1573 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1574 							dev);
1575 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1576 			}
1577 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1578 		}
1579 	}
1580 
1581 outroll:
1582 	raw_notifier_chain_unregister(&netdev_chain, nb);
1583 	goto unlock;
1584 }
1585 EXPORT_SYMBOL(register_netdevice_notifier);
1586 
1587 /**
1588  *	unregister_netdevice_notifier - unregister a network notifier block
1589  *	@nb: notifier
1590  *
1591  *	Unregister a notifier previously registered by
1592  *	register_netdevice_notifier(). The notifier is unlinked into the
1593  *	kernel structures and may then be reused. A negative errno code
1594  *	is returned on a failure.
1595  *
1596  * 	After unregistering unregister and down device events are synthesized
1597  *	for all devices on the device list to the removed notifier to remove
1598  *	the need for special case cleanup code.
1599  */
1600 
1601 int unregister_netdevice_notifier(struct notifier_block *nb)
1602 {
1603 	struct net_device *dev;
1604 	struct net *net;
1605 	int err;
1606 
1607 	rtnl_lock();
1608 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1609 	if (err)
1610 		goto unlock;
1611 
1612 	for_each_net(net) {
1613 		for_each_netdev(net, dev) {
1614 			if (dev->flags & IFF_UP) {
1615 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1616 							dev);
1617 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1618 			}
1619 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1620 		}
1621 	}
1622 unlock:
1623 	rtnl_unlock();
1624 	return err;
1625 }
1626 EXPORT_SYMBOL(unregister_netdevice_notifier);
1627 
1628 /**
1629  *	call_netdevice_notifiers_info - call all network notifier blocks
1630  *	@val: value passed unmodified to notifier function
1631  *	@dev: net_device pointer passed unmodified to notifier function
1632  *	@info: notifier information data
1633  *
1634  *	Call all network notifier blocks.  Parameters and return value
1635  *	are as for raw_notifier_call_chain().
1636  */
1637 
1638 static int call_netdevice_notifiers_info(unsigned long val,
1639 					 struct net_device *dev,
1640 					 struct netdev_notifier_info *info)
1641 {
1642 	ASSERT_RTNL();
1643 	netdev_notifier_info_init(info, dev);
1644 	return raw_notifier_call_chain(&netdev_chain, val, info);
1645 }
1646 
1647 /**
1648  *	call_netdevice_notifiers - call all network notifier blocks
1649  *      @val: value passed unmodified to notifier function
1650  *      @dev: net_device pointer passed unmodified to notifier function
1651  *
1652  *	Call all network notifier blocks.  Parameters and return value
1653  *	are as for raw_notifier_call_chain().
1654  */
1655 
1656 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1657 {
1658 	struct netdev_notifier_info info;
1659 
1660 	return call_netdevice_notifiers_info(val, dev, &info);
1661 }
1662 EXPORT_SYMBOL(call_netdevice_notifiers);
1663 
1664 #ifdef CONFIG_NET_INGRESS
1665 static struct static_key ingress_needed __read_mostly;
1666 
1667 void net_inc_ingress_queue(void)
1668 {
1669 	static_key_slow_inc(&ingress_needed);
1670 }
1671 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1672 
1673 void net_dec_ingress_queue(void)
1674 {
1675 	static_key_slow_dec(&ingress_needed);
1676 }
1677 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1678 #endif
1679 
1680 #ifdef CONFIG_NET_EGRESS
1681 static struct static_key egress_needed __read_mostly;
1682 
1683 void net_inc_egress_queue(void)
1684 {
1685 	static_key_slow_inc(&egress_needed);
1686 }
1687 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1688 
1689 void net_dec_egress_queue(void)
1690 {
1691 	static_key_slow_dec(&egress_needed);
1692 }
1693 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1694 #endif
1695 
1696 static struct static_key netstamp_needed __read_mostly;
1697 #ifdef HAVE_JUMP_LABEL
1698 /* We are not allowed to call static_key_slow_dec() from irq context
1699  * If net_disable_timestamp() is called from irq context, defer the
1700  * static_key_slow_dec() calls.
1701  */
1702 static atomic_t netstamp_needed_deferred;
1703 #endif
1704 
1705 void net_enable_timestamp(void)
1706 {
1707 #ifdef HAVE_JUMP_LABEL
1708 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1709 
1710 	if (deferred) {
1711 		while (--deferred)
1712 			static_key_slow_dec(&netstamp_needed);
1713 		return;
1714 	}
1715 #endif
1716 	static_key_slow_inc(&netstamp_needed);
1717 }
1718 EXPORT_SYMBOL(net_enable_timestamp);
1719 
1720 void net_disable_timestamp(void)
1721 {
1722 #ifdef HAVE_JUMP_LABEL
1723 	if (in_interrupt()) {
1724 		atomic_inc(&netstamp_needed_deferred);
1725 		return;
1726 	}
1727 #endif
1728 	static_key_slow_dec(&netstamp_needed);
1729 }
1730 EXPORT_SYMBOL(net_disable_timestamp);
1731 
1732 static inline void net_timestamp_set(struct sk_buff *skb)
1733 {
1734 	skb->tstamp = 0;
1735 	if (static_key_false(&netstamp_needed))
1736 		__net_timestamp(skb);
1737 }
1738 
1739 #define net_timestamp_check(COND, SKB)			\
1740 	if (static_key_false(&netstamp_needed)) {		\
1741 		if ((COND) && !(SKB)->tstamp)	\
1742 			__net_timestamp(SKB);		\
1743 	}						\
1744 
1745 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1746 {
1747 	unsigned int len;
1748 
1749 	if (!(dev->flags & IFF_UP))
1750 		return false;
1751 
1752 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1753 	if (skb->len <= len)
1754 		return true;
1755 
1756 	/* if TSO is enabled, we don't care about the length as the packet
1757 	 * could be forwarded without being segmented before
1758 	 */
1759 	if (skb_is_gso(skb))
1760 		return true;
1761 
1762 	return false;
1763 }
1764 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1765 
1766 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1767 {
1768 	int ret = ____dev_forward_skb(dev, skb);
1769 
1770 	if (likely(!ret)) {
1771 		skb->protocol = eth_type_trans(skb, dev);
1772 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1773 	}
1774 
1775 	return ret;
1776 }
1777 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1778 
1779 /**
1780  * dev_forward_skb - loopback an skb to another netif
1781  *
1782  * @dev: destination network device
1783  * @skb: buffer to forward
1784  *
1785  * return values:
1786  *	NET_RX_SUCCESS	(no congestion)
1787  *	NET_RX_DROP     (packet was dropped, but freed)
1788  *
1789  * dev_forward_skb can be used for injecting an skb from the
1790  * start_xmit function of one device into the receive queue
1791  * of another device.
1792  *
1793  * The receiving device may be in another namespace, so
1794  * we have to clear all information in the skb that could
1795  * impact namespace isolation.
1796  */
1797 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1798 {
1799 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1800 }
1801 EXPORT_SYMBOL_GPL(dev_forward_skb);
1802 
1803 static inline int deliver_skb(struct sk_buff *skb,
1804 			      struct packet_type *pt_prev,
1805 			      struct net_device *orig_dev)
1806 {
1807 	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1808 		return -ENOMEM;
1809 	atomic_inc(&skb->users);
1810 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1811 }
1812 
1813 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1814 					  struct packet_type **pt,
1815 					  struct net_device *orig_dev,
1816 					  __be16 type,
1817 					  struct list_head *ptype_list)
1818 {
1819 	struct packet_type *ptype, *pt_prev = *pt;
1820 
1821 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1822 		if (ptype->type != type)
1823 			continue;
1824 		if (pt_prev)
1825 			deliver_skb(skb, pt_prev, orig_dev);
1826 		pt_prev = ptype;
1827 	}
1828 	*pt = pt_prev;
1829 }
1830 
1831 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1832 {
1833 	if (!ptype->af_packet_priv || !skb->sk)
1834 		return false;
1835 
1836 	if (ptype->id_match)
1837 		return ptype->id_match(ptype, skb->sk);
1838 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1839 		return true;
1840 
1841 	return false;
1842 }
1843 
1844 /*
1845  *	Support routine. Sends outgoing frames to any network
1846  *	taps currently in use.
1847  */
1848 
1849 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1850 {
1851 	struct packet_type *ptype;
1852 	struct sk_buff *skb2 = NULL;
1853 	struct packet_type *pt_prev = NULL;
1854 	struct list_head *ptype_list = &ptype_all;
1855 
1856 	rcu_read_lock();
1857 again:
1858 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1859 		/* Never send packets back to the socket
1860 		 * they originated from - MvS (miquels@drinkel.ow.org)
1861 		 */
1862 		if (skb_loop_sk(ptype, skb))
1863 			continue;
1864 
1865 		if (pt_prev) {
1866 			deliver_skb(skb2, pt_prev, skb->dev);
1867 			pt_prev = ptype;
1868 			continue;
1869 		}
1870 
1871 		/* need to clone skb, done only once */
1872 		skb2 = skb_clone(skb, GFP_ATOMIC);
1873 		if (!skb2)
1874 			goto out_unlock;
1875 
1876 		net_timestamp_set(skb2);
1877 
1878 		/* skb->nh should be correctly
1879 		 * set by sender, so that the second statement is
1880 		 * just protection against buggy protocols.
1881 		 */
1882 		skb_reset_mac_header(skb2);
1883 
1884 		if (skb_network_header(skb2) < skb2->data ||
1885 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1886 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1887 					     ntohs(skb2->protocol),
1888 					     dev->name);
1889 			skb_reset_network_header(skb2);
1890 		}
1891 
1892 		skb2->transport_header = skb2->network_header;
1893 		skb2->pkt_type = PACKET_OUTGOING;
1894 		pt_prev = ptype;
1895 	}
1896 
1897 	if (ptype_list == &ptype_all) {
1898 		ptype_list = &dev->ptype_all;
1899 		goto again;
1900 	}
1901 out_unlock:
1902 	if (pt_prev)
1903 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1904 	rcu_read_unlock();
1905 }
1906 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1907 
1908 /**
1909  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1910  * @dev: Network device
1911  * @txq: number of queues available
1912  *
1913  * If real_num_tx_queues is changed the tc mappings may no longer be
1914  * valid. To resolve this verify the tc mapping remains valid and if
1915  * not NULL the mapping. With no priorities mapping to this
1916  * offset/count pair it will no longer be used. In the worst case TC0
1917  * is invalid nothing can be done so disable priority mappings. If is
1918  * expected that drivers will fix this mapping if they can before
1919  * calling netif_set_real_num_tx_queues.
1920  */
1921 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1922 {
1923 	int i;
1924 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1925 
1926 	/* If TC0 is invalidated disable TC mapping */
1927 	if (tc->offset + tc->count > txq) {
1928 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1929 		dev->num_tc = 0;
1930 		return;
1931 	}
1932 
1933 	/* Invalidated prio to tc mappings set to TC0 */
1934 	for (i = 1; i < TC_BITMASK + 1; i++) {
1935 		int q = netdev_get_prio_tc_map(dev, i);
1936 
1937 		tc = &dev->tc_to_txq[q];
1938 		if (tc->offset + tc->count > txq) {
1939 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1940 				i, q);
1941 			netdev_set_prio_tc_map(dev, i, 0);
1942 		}
1943 	}
1944 }
1945 
1946 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
1947 {
1948 	if (dev->num_tc) {
1949 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1950 		int i;
1951 
1952 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
1953 			if ((txq - tc->offset) < tc->count)
1954 				return i;
1955 		}
1956 
1957 		return -1;
1958 	}
1959 
1960 	return 0;
1961 }
1962 
1963 #ifdef CONFIG_XPS
1964 static DEFINE_MUTEX(xps_map_mutex);
1965 #define xmap_dereference(P)		\
1966 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1967 
1968 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
1969 			     int tci, u16 index)
1970 {
1971 	struct xps_map *map = NULL;
1972 	int pos;
1973 
1974 	if (dev_maps)
1975 		map = xmap_dereference(dev_maps->cpu_map[tci]);
1976 	if (!map)
1977 		return false;
1978 
1979 	for (pos = map->len; pos--;) {
1980 		if (map->queues[pos] != index)
1981 			continue;
1982 
1983 		if (map->len > 1) {
1984 			map->queues[pos] = map->queues[--map->len];
1985 			break;
1986 		}
1987 
1988 		RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
1989 		kfree_rcu(map, rcu);
1990 		return false;
1991 	}
1992 
1993 	return true;
1994 }
1995 
1996 static bool remove_xps_queue_cpu(struct net_device *dev,
1997 				 struct xps_dev_maps *dev_maps,
1998 				 int cpu, u16 offset, u16 count)
1999 {
2000 	int num_tc = dev->num_tc ? : 1;
2001 	bool active = false;
2002 	int tci;
2003 
2004 	for (tci = cpu * num_tc; num_tc--; tci++) {
2005 		int i, j;
2006 
2007 		for (i = count, j = offset; i--; j++) {
2008 			if (!remove_xps_queue(dev_maps, cpu, j))
2009 				break;
2010 		}
2011 
2012 		active |= i < 0;
2013 	}
2014 
2015 	return active;
2016 }
2017 
2018 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2019 				   u16 count)
2020 {
2021 	struct xps_dev_maps *dev_maps;
2022 	int cpu, i;
2023 	bool active = false;
2024 
2025 	mutex_lock(&xps_map_mutex);
2026 	dev_maps = xmap_dereference(dev->xps_maps);
2027 
2028 	if (!dev_maps)
2029 		goto out_no_maps;
2030 
2031 	for_each_possible_cpu(cpu)
2032 		active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2033 					       offset, count);
2034 
2035 	if (!active) {
2036 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2037 		kfree_rcu(dev_maps, rcu);
2038 	}
2039 
2040 	for (i = offset + (count - 1); count--; i--)
2041 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2042 					     NUMA_NO_NODE);
2043 
2044 out_no_maps:
2045 	mutex_unlock(&xps_map_mutex);
2046 }
2047 
2048 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2049 {
2050 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2051 }
2052 
2053 static struct xps_map *expand_xps_map(struct xps_map *map,
2054 				      int cpu, u16 index)
2055 {
2056 	struct xps_map *new_map;
2057 	int alloc_len = XPS_MIN_MAP_ALLOC;
2058 	int i, pos;
2059 
2060 	for (pos = 0; map && pos < map->len; pos++) {
2061 		if (map->queues[pos] != index)
2062 			continue;
2063 		return map;
2064 	}
2065 
2066 	/* Need to add queue to this CPU's existing map */
2067 	if (map) {
2068 		if (pos < map->alloc_len)
2069 			return map;
2070 
2071 		alloc_len = map->alloc_len * 2;
2072 	}
2073 
2074 	/* Need to allocate new map to store queue on this CPU's map */
2075 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2076 			       cpu_to_node(cpu));
2077 	if (!new_map)
2078 		return NULL;
2079 
2080 	for (i = 0; i < pos; i++)
2081 		new_map->queues[i] = map->queues[i];
2082 	new_map->alloc_len = alloc_len;
2083 	new_map->len = pos;
2084 
2085 	return new_map;
2086 }
2087 
2088 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2089 			u16 index)
2090 {
2091 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2092 	int i, cpu, tci, numa_node_id = -2;
2093 	int maps_sz, num_tc = 1, tc = 0;
2094 	struct xps_map *map, *new_map;
2095 	bool active = false;
2096 
2097 	if (dev->num_tc) {
2098 		num_tc = dev->num_tc;
2099 		tc = netdev_txq_to_tc(dev, index);
2100 		if (tc < 0)
2101 			return -EINVAL;
2102 	}
2103 
2104 	maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2105 	if (maps_sz < L1_CACHE_BYTES)
2106 		maps_sz = L1_CACHE_BYTES;
2107 
2108 	mutex_lock(&xps_map_mutex);
2109 
2110 	dev_maps = xmap_dereference(dev->xps_maps);
2111 
2112 	/* allocate memory for queue storage */
2113 	for_each_cpu_and(cpu, cpu_online_mask, mask) {
2114 		if (!new_dev_maps)
2115 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2116 		if (!new_dev_maps) {
2117 			mutex_unlock(&xps_map_mutex);
2118 			return -ENOMEM;
2119 		}
2120 
2121 		tci = cpu * num_tc + tc;
2122 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2123 				 NULL;
2124 
2125 		map = expand_xps_map(map, cpu, index);
2126 		if (!map)
2127 			goto error;
2128 
2129 		RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2130 	}
2131 
2132 	if (!new_dev_maps)
2133 		goto out_no_new_maps;
2134 
2135 	for_each_possible_cpu(cpu) {
2136 		/* copy maps belonging to foreign traffic classes */
2137 		for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2138 			/* fill in the new device map from the old device map */
2139 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2140 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2141 		}
2142 
2143 		/* We need to explicitly update tci as prevous loop
2144 		 * could break out early if dev_maps is NULL.
2145 		 */
2146 		tci = cpu * num_tc + tc;
2147 
2148 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2149 			/* add queue to CPU maps */
2150 			int pos = 0;
2151 
2152 			map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2153 			while ((pos < map->len) && (map->queues[pos] != index))
2154 				pos++;
2155 
2156 			if (pos == map->len)
2157 				map->queues[map->len++] = index;
2158 #ifdef CONFIG_NUMA
2159 			if (numa_node_id == -2)
2160 				numa_node_id = cpu_to_node(cpu);
2161 			else if (numa_node_id != cpu_to_node(cpu))
2162 				numa_node_id = -1;
2163 #endif
2164 		} else if (dev_maps) {
2165 			/* fill in the new device map from the old device map */
2166 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2167 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2168 		}
2169 
2170 		/* copy maps belonging to foreign traffic classes */
2171 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2172 			/* fill in the new device map from the old device map */
2173 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2174 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2175 		}
2176 	}
2177 
2178 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2179 
2180 	/* Cleanup old maps */
2181 	if (!dev_maps)
2182 		goto out_no_old_maps;
2183 
2184 	for_each_possible_cpu(cpu) {
2185 		for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2186 			new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2187 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2188 			if (map && map != new_map)
2189 				kfree_rcu(map, rcu);
2190 		}
2191 	}
2192 
2193 	kfree_rcu(dev_maps, rcu);
2194 
2195 out_no_old_maps:
2196 	dev_maps = new_dev_maps;
2197 	active = true;
2198 
2199 out_no_new_maps:
2200 	/* update Tx queue numa node */
2201 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2202 				     (numa_node_id >= 0) ? numa_node_id :
2203 				     NUMA_NO_NODE);
2204 
2205 	if (!dev_maps)
2206 		goto out_no_maps;
2207 
2208 	/* removes queue from unused CPUs */
2209 	for_each_possible_cpu(cpu) {
2210 		for (i = tc, tci = cpu * num_tc; i--; tci++)
2211 			active |= remove_xps_queue(dev_maps, tci, index);
2212 		if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2213 			active |= remove_xps_queue(dev_maps, tci, index);
2214 		for (i = num_tc - tc, tci++; --i; tci++)
2215 			active |= remove_xps_queue(dev_maps, tci, index);
2216 	}
2217 
2218 	/* free map if not active */
2219 	if (!active) {
2220 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2221 		kfree_rcu(dev_maps, rcu);
2222 	}
2223 
2224 out_no_maps:
2225 	mutex_unlock(&xps_map_mutex);
2226 
2227 	return 0;
2228 error:
2229 	/* remove any maps that we added */
2230 	for_each_possible_cpu(cpu) {
2231 		for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2232 			new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2233 			map = dev_maps ?
2234 			      xmap_dereference(dev_maps->cpu_map[tci]) :
2235 			      NULL;
2236 			if (new_map && new_map != map)
2237 				kfree(new_map);
2238 		}
2239 	}
2240 
2241 	mutex_unlock(&xps_map_mutex);
2242 
2243 	kfree(new_dev_maps);
2244 	return -ENOMEM;
2245 }
2246 EXPORT_SYMBOL(netif_set_xps_queue);
2247 
2248 #endif
2249 void netdev_reset_tc(struct net_device *dev)
2250 {
2251 #ifdef CONFIG_XPS
2252 	netif_reset_xps_queues_gt(dev, 0);
2253 #endif
2254 	dev->num_tc = 0;
2255 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2256 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2257 }
2258 EXPORT_SYMBOL(netdev_reset_tc);
2259 
2260 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2261 {
2262 	if (tc >= dev->num_tc)
2263 		return -EINVAL;
2264 
2265 #ifdef CONFIG_XPS
2266 	netif_reset_xps_queues(dev, offset, count);
2267 #endif
2268 	dev->tc_to_txq[tc].count = count;
2269 	dev->tc_to_txq[tc].offset = offset;
2270 	return 0;
2271 }
2272 EXPORT_SYMBOL(netdev_set_tc_queue);
2273 
2274 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2275 {
2276 	if (num_tc > TC_MAX_QUEUE)
2277 		return -EINVAL;
2278 
2279 #ifdef CONFIG_XPS
2280 	netif_reset_xps_queues_gt(dev, 0);
2281 #endif
2282 	dev->num_tc = num_tc;
2283 	return 0;
2284 }
2285 EXPORT_SYMBOL(netdev_set_num_tc);
2286 
2287 /*
2288  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2289  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2290  */
2291 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2292 {
2293 	int rc;
2294 
2295 	if (txq < 1 || txq > dev->num_tx_queues)
2296 		return -EINVAL;
2297 
2298 	if (dev->reg_state == NETREG_REGISTERED ||
2299 	    dev->reg_state == NETREG_UNREGISTERING) {
2300 		ASSERT_RTNL();
2301 
2302 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2303 						  txq);
2304 		if (rc)
2305 			return rc;
2306 
2307 		if (dev->num_tc)
2308 			netif_setup_tc(dev, txq);
2309 
2310 		if (txq < dev->real_num_tx_queues) {
2311 			qdisc_reset_all_tx_gt(dev, txq);
2312 #ifdef CONFIG_XPS
2313 			netif_reset_xps_queues_gt(dev, txq);
2314 #endif
2315 		}
2316 	}
2317 
2318 	dev->real_num_tx_queues = txq;
2319 	return 0;
2320 }
2321 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2322 
2323 #ifdef CONFIG_SYSFS
2324 /**
2325  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2326  *	@dev: Network device
2327  *	@rxq: Actual number of RX queues
2328  *
2329  *	This must be called either with the rtnl_lock held or before
2330  *	registration of the net device.  Returns 0 on success, or a
2331  *	negative error code.  If called before registration, it always
2332  *	succeeds.
2333  */
2334 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2335 {
2336 	int rc;
2337 
2338 	if (rxq < 1 || rxq > dev->num_rx_queues)
2339 		return -EINVAL;
2340 
2341 	if (dev->reg_state == NETREG_REGISTERED) {
2342 		ASSERT_RTNL();
2343 
2344 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2345 						  rxq);
2346 		if (rc)
2347 			return rc;
2348 	}
2349 
2350 	dev->real_num_rx_queues = rxq;
2351 	return 0;
2352 }
2353 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2354 #endif
2355 
2356 /**
2357  * netif_get_num_default_rss_queues - default number of RSS queues
2358  *
2359  * This routine should set an upper limit on the number of RSS queues
2360  * used by default by multiqueue devices.
2361  */
2362 int netif_get_num_default_rss_queues(void)
2363 {
2364 	return is_kdump_kernel() ?
2365 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2366 }
2367 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2368 
2369 static void __netif_reschedule(struct Qdisc *q)
2370 {
2371 	struct softnet_data *sd;
2372 	unsigned long flags;
2373 
2374 	local_irq_save(flags);
2375 	sd = this_cpu_ptr(&softnet_data);
2376 	q->next_sched = NULL;
2377 	*sd->output_queue_tailp = q;
2378 	sd->output_queue_tailp = &q->next_sched;
2379 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2380 	local_irq_restore(flags);
2381 }
2382 
2383 void __netif_schedule(struct Qdisc *q)
2384 {
2385 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2386 		__netif_reschedule(q);
2387 }
2388 EXPORT_SYMBOL(__netif_schedule);
2389 
2390 struct dev_kfree_skb_cb {
2391 	enum skb_free_reason reason;
2392 };
2393 
2394 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2395 {
2396 	return (struct dev_kfree_skb_cb *)skb->cb;
2397 }
2398 
2399 void netif_schedule_queue(struct netdev_queue *txq)
2400 {
2401 	rcu_read_lock();
2402 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2403 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2404 
2405 		__netif_schedule(q);
2406 	}
2407 	rcu_read_unlock();
2408 }
2409 EXPORT_SYMBOL(netif_schedule_queue);
2410 
2411 /**
2412  *	netif_wake_subqueue - allow sending packets on subqueue
2413  *	@dev: network device
2414  *	@queue_index: sub queue index
2415  *
2416  * Resume individual transmit queue of a device with multiple transmit queues.
2417  */
2418 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2419 {
2420 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2421 
2422 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2423 		struct Qdisc *q;
2424 
2425 		rcu_read_lock();
2426 		q = rcu_dereference(txq->qdisc);
2427 		__netif_schedule(q);
2428 		rcu_read_unlock();
2429 	}
2430 }
2431 EXPORT_SYMBOL(netif_wake_subqueue);
2432 
2433 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2434 {
2435 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2436 		struct Qdisc *q;
2437 
2438 		rcu_read_lock();
2439 		q = rcu_dereference(dev_queue->qdisc);
2440 		__netif_schedule(q);
2441 		rcu_read_unlock();
2442 	}
2443 }
2444 EXPORT_SYMBOL(netif_tx_wake_queue);
2445 
2446 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2447 {
2448 	unsigned long flags;
2449 
2450 	if (likely(atomic_read(&skb->users) == 1)) {
2451 		smp_rmb();
2452 		atomic_set(&skb->users, 0);
2453 	} else if (likely(!atomic_dec_and_test(&skb->users))) {
2454 		return;
2455 	}
2456 	get_kfree_skb_cb(skb)->reason = reason;
2457 	local_irq_save(flags);
2458 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2459 	__this_cpu_write(softnet_data.completion_queue, skb);
2460 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2461 	local_irq_restore(flags);
2462 }
2463 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2464 
2465 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2466 {
2467 	if (in_irq() || irqs_disabled())
2468 		__dev_kfree_skb_irq(skb, reason);
2469 	else
2470 		dev_kfree_skb(skb);
2471 }
2472 EXPORT_SYMBOL(__dev_kfree_skb_any);
2473 
2474 
2475 /**
2476  * netif_device_detach - mark device as removed
2477  * @dev: network device
2478  *
2479  * Mark device as removed from system and therefore no longer available.
2480  */
2481 void netif_device_detach(struct net_device *dev)
2482 {
2483 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2484 	    netif_running(dev)) {
2485 		netif_tx_stop_all_queues(dev);
2486 	}
2487 }
2488 EXPORT_SYMBOL(netif_device_detach);
2489 
2490 /**
2491  * netif_device_attach - mark device as attached
2492  * @dev: network device
2493  *
2494  * Mark device as attached from system and restart if needed.
2495  */
2496 void netif_device_attach(struct net_device *dev)
2497 {
2498 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2499 	    netif_running(dev)) {
2500 		netif_tx_wake_all_queues(dev);
2501 		__netdev_watchdog_up(dev);
2502 	}
2503 }
2504 EXPORT_SYMBOL(netif_device_attach);
2505 
2506 /*
2507  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2508  * to be used as a distribution range.
2509  */
2510 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2511 		  unsigned int num_tx_queues)
2512 {
2513 	u32 hash;
2514 	u16 qoffset = 0;
2515 	u16 qcount = num_tx_queues;
2516 
2517 	if (skb_rx_queue_recorded(skb)) {
2518 		hash = skb_get_rx_queue(skb);
2519 		while (unlikely(hash >= num_tx_queues))
2520 			hash -= num_tx_queues;
2521 		return hash;
2522 	}
2523 
2524 	if (dev->num_tc) {
2525 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2526 		qoffset = dev->tc_to_txq[tc].offset;
2527 		qcount = dev->tc_to_txq[tc].count;
2528 	}
2529 
2530 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2531 }
2532 EXPORT_SYMBOL(__skb_tx_hash);
2533 
2534 static void skb_warn_bad_offload(const struct sk_buff *skb)
2535 {
2536 	static const netdev_features_t null_features;
2537 	struct net_device *dev = skb->dev;
2538 	const char *name = "";
2539 
2540 	if (!net_ratelimit())
2541 		return;
2542 
2543 	if (dev) {
2544 		if (dev->dev.parent)
2545 			name = dev_driver_string(dev->dev.parent);
2546 		else
2547 			name = netdev_name(dev);
2548 	}
2549 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2550 	     "gso_type=%d ip_summed=%d\n",
2551 	     name, dev ? &dev->features : &null_features,
2552 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2553 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2554 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2555 }
2556 
2557 /*
2558  * Invalidate hardware checksum when packet is to be mangled, and
2559  * complete checksum manually on outgoing path.
2560  */
2561 int skb_checksum_help(struct sk_buff *skb)
2562 {
2563 	__wsum csum;
2564 	int ret = 0, offset;
2565 
2566 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2567 		goto out_set_summed;
2568 
2569 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2570 		skb_warn_bad_offload(skb);
2571 		return -EINVAL;
2572 	}
2573 
2574 	/* Before computing a checksum, we should make sure no frag could
2575 	 * be modified by an external entity : checksum could be wrong.
2576 	 */
2577 	if (skb_has_shared_frag(skb)) {
2578 		ret = __skb_linearize(skb);
2579 		if (ret)
2580 			goto out;
2581 	}
2582 
2583 	offset = skb_checksum_start_offset(skb);
2584 	BUG_ON(offset >= skb_headlen(skb));
2585 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2586 
2587 	offset += skb->csum_offset;
2588 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2589 
2590 	if (skb_cloned(skb) &&
2591 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2592 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2593 		if (ret)
2594 			goto out;
2595 	}
2596 
2597 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2598 out_set_summed:
2599 	skb->ip_summed = CHECKSUM_NONE;
2600 out:
2601 	return ret;
2602 }
2603 EXPORT_SYMBOL(skb_checksum_help);
2604 
2605 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2606 {
2607 	__be16 type = skb->protocol;
2608 
2609 	/* Tunnel gso handlers can set protocol to ethernet. */
2610 	if (type == htons(ETH_P_TEB)) {
2611 		struct ethhdr *eth;
2612 
2613 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2614 			return 0;
2615 
2616 		eth = (struct ethhdr *)skb_mac_header(skb);
2617 		type = eth->h_proto;
2618 	}
2619 
2620 	return __vlan_get_protocol(skb, type, depth);
2621 }
2622 
2623 /**
2624  *	skb_mac_gso_segment - mac layer segmentation handler.
2625  *	@skb: buffer to segment
2626  *	@features: features for the output path (see dev->features)
2627  */
2628 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2629 				    netdev_features_t features)
2630 {
2631 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2632 	struct packet_offload *ptype;
2633 	int vlan_depth = skb->mac_len;
2634 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2635 
2636 	if (unlikely(!type))
2637 		return ERR_PTR(-EINVAL);
2638 
2639 	__skb_pull(skb, vlan_depth);
2640 
2641 	rcu_read_lock();
2642 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2643 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2644 			segs = ptype->callbacks.gso_segment(skb, features);
2645 			break;
2646 		}
2647 	}
2648 	rcu_read_unlock();
2649 
2650 	__skb_push(skb, skb->data - skb_mac_header(skb));
2651 
2652 	return segs;
2653 }
2654 EXPORT_SYMBOL(skb_mac_gso_segment);
2655 
2656 
2657 /* openvswitch calls this on rx path, so we need a different check.
2658  */
2659 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2660 {
2661 	if (tx_path)
2662 		return skb->ip_summed != CHECKSUM_PARTIAL;
2663 	else
2664 		return skb->ip_summed == CHECKSUM_NONE;
2665 }
2666 
2667 /**
2668  *	__skb_gso_segment - Perform segmentation on skb.
2669  *	@skb: buffer to segment
2670  *	@features: features for the output path (see dev->features)
2671  *	@tx_path: whether it is called in TX path
2672  *
2673  *	This function segments the given skb and returns a list of segments.
2674  *
2675  *	It may return NULL if the skb requires no segmentation.  This is
2676  *	only possible when GSO is used for verifying header integrity.
2677  *
2678  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2679  */
2680 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2681 				  netdev_features_t features, bool tx_path)
2682 {
2683 	if (unlikely(skb_needs_check(skb, tx_path))) {
2684 		int err;
2685 
2686 		skb_warn_bad_offload(skb);
2687 
2688 		err = skb_cow_head(skb, 0);
2689 		if (err < 0)
2690 			return ERR_PTR(err);
2691 	}
2692 
2693 	/* Only report GSO partial support if it will enable us to
2694 	 * support segmentation on this frame without needing additional
2695 	 * work.
2696 	 */
2697 	if (features & NETIF_F_GSO_PARTIAL) {
2698 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2699 		struct net_device *dev = skb->dev;
2700 
2701 		partial_features |= dev->features & dev->gso_partial_features;
2702 		if (!skb_gso_ok(skb, features | partial_features))
2703 			features &= ~NETIF_F_GSO_PARTIAL;
2704 	}
2705 
2706 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2707 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2708 
2709 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2710 	SKB_GSO_CB(skb)->encap_level = 0;
2711 
2712 	skb_reset_mac_header(skb);
2713 	skb_reset_mac_len(skb);
2714 
2715 	return skb_mac_gso_segment(skb, features);
2716 }
2717 EXPORT_SYMBOL(__skb_gso_segment);
2718 
2719 /* Take action when hardware reception checksum errors are detected. */
2720 #ifdef CONFIG_BUG
2721 void netdev_rx_csum_fault(struct net_device *dev)
2722 {
2723 	if (net_ratelimit()) {
2724 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2725 		dump_stack();
2726 	}
2727 }
2728 EXPORT_SYMBOL(netdev_rx_csum_fault);
2729 #endif
2730 
2731 /* Actually, we should eliminate this check as soon as we know, that:
2732  * 1. IOMMU is present and allows to map all the memory.
2733  * 2. No high memory really exists on this machine.
2734  */
2735 
2736 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2737 {
2738 #ifdef CONFIG_HIGHMEM
2739 	int i;
2740 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2741 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2742 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2743 			if (PageHighMem(skb_frag_page(frag)))
2744 				return 1;
2745 		}
2746 	}
2747 
2748 	if (PCI_DMA_BUS_IS_PHYS) {
2749 		struct device *pdev = dev->dev.parent;
2750 
2751 		if (!pdev)
2752 			return 0;
2753 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2754 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2755 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2756 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2757 				return 1;
2758 		}
2759 	}
2760 #endif
2761 	return 0;
2762 }
2763 
2764 /* If MPLS offload request, verify we are testing hardware MPLS features
2765  * instead of standard features for the netdev.
2766  */
2767 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2768 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2769 					   netdev_features_t features,
2770 					   __be16 type)
2771 {
2772 	if (eth_p_mpls(type))
2773 		features &= skb->dev->mpls_features;
2774 
2775 	return features;
2776 }
2777 #else
2778 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2779 					   netdev_features_t features,
2780 					   __be16 type)
2781 {
2782 	return features;
2783 }
2784 #endif
2785 
2786 static netdev_features_t harmonize_features(struct sk_buff *skb,
2787 	netdev_features_t features)
2788 {
2789 	int tmp;
2790 	__be16 type;
2791 
2792 	type = skb_network_protocol(skb, &tmp);
2793 	features = net_mpls_features(skb, features, type);
2794 
2795 	if (skb->ip_summed != CHECKSUM_NONE &&
2796 	    !can_checksum_protocol(features, type)) {
2797 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2798 	} else if (illegal_highdma(skb->dev, skb)) {
2799 		features &= ~NETIF_F_SG;
2800 	}
2801 
2802 	return features;
2803 }
2804 
2805 netdev_features_t passthru_features_check(struct sk_buff *skb,
2806 					  struct net_device *dev,
2807 					  netdev_features_t features)
2808 {
2809 	return features;
2810 }
2811 EXPORT_SYMBOL(passthru_features_check);
2812 
2813 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2814 					     struct net_device *dev,
2815 					     netdev_features_t features)
2816 {
2817 	return vlan_features_check(skb, features);
2818 }
2819 
2820 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2821 					    struct net_device *dev,
2822 					    netdev_features_t features)
2823 {
2824 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
2825 
2826 	if (gso_segs > dev->gso_max_segs)
2827 		return features & ~NETIF_F_GSO_MASK;
2828 
2829 	/* Support for GSO partial features requires software
2830 	 * intervention before we can actually process the packets
2831 	 * so we need to strip support for any partial features now
2832 	 * and we can pull them back in after we have partially
2833 	 * segmented the frame.
2834 	 */
2835 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2836 		features &= ~dev->gso_partial_features;
2837 
2838 	/* Make sure to clear the IPv4 ID mangling feature if the
2839 	 * IPv4 header has the potential to be fragmented.
2840 	 */
2841 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2842 		struct iphdr *iph = skb->encapsulation ?
2843 				    inner_ip_hdr(skb) : ip_hdr(skb);
2844 
2845 		if (!(iph->frag_off & htons(IP_DF)))
2846 			features &= ~NETIF_F_TSO_MANGLEID;
2847 	}
2848 
2849 	return features;
2850 }
2851 
2852 netdev_features_t netif_skb_features(struct sk_buff *skb)
2853 {
2854 	struct net_device *dev = skb->dev;
2855 	netdev_features_t features = dev->features;
2856 
2857 	if (skb_is_gso(skb))
2858 		features = gso_features_check(skb, dev, features);
2859 
2860 	/* If encapsulation offload request, verify we are testing
2861 	 * hardware encapsulation features instead of standard
2862 	 * features for the netdev
2863 	 */
2864 	if (skb->encapsulation)
2865 		features &= dev->hw_enc_features;
2866 
2867 	if (skb_vlan_tagged(skb))
2868 		features = netdev_intersect_features(features,
2869 						     dev->vlan_features |
2870 						     NETIF_F_HW_VLAN_CTAG_TX |
2871 						     NETIF_F_HW_VLAN_STAG_TX);
2872 
2873 	if (dev->netdev_ops->ndo_features_check)
2874 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
2875 								features);
2876 	else
2877 		features &= dflt_features_check(skb, dev, features);
2878 
2879 	return harmonize_features(skb, features);
2880 }
2881 EXPORT_SYMBOL(netif_skb_features);
2882 
2883 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2884 		    struct netdev_queue *txq, bool more)
2885 {
2886 	unsigned int len;
2887 	int rc;
2888 
2889 	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2890 		dev_queue_xmit_nit(skb, dev);
2891 
2892 	len = skb->len;
2893 	trace_net_dev_start_xmit(skb, dev);
2894 	rc = netdev_start_xmit(skb, dev, txq, more);
2895 	trace_net_dev_xmit(skb, rc, dev, len);
2896 
2897 	return rc;
2898 }
2899 
2900 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2901 				    struct netdev_queue *txq, int *ret)
2902 {
2903 	struct sk_buff *skb = first;
2904 	int rc = NETDEV_TX_OK;
2905 
2906 	while (skb) {
2907 		struct sk_buff *next = skb->next;
2908 
2909 		skb->next = NULL;
2910 		rc = xmit_one(skb, dev, txq, next != NULL);
2911 		if (unlikely(!dev_xmit_complete(rc))) {
2912 			skb->next = next;
2913 			goto out;
2914 		}
2915 
2916 		skb = next;
2917 		if (netif_xmit_stopped(txq) && skb) {
2918 			rc = NETDEV_TX_BUSY;
2919 			break;
2920 		}
2921 	}
2922 
2923 out:
2924 	*ret = rc;
2925 	return skb;
2926 }
2927 
2928 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2929 					  netdev_features_t features)
2930 {
2931 	if (skb_vlan_tag_present(skb) &&
2932 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
2933 		skb = __vlan_hwaccel_push_inside(skb);
2934 	return skb;
2935 }
2936 
2937 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2938 {
2939 	netdev_features_t features;
2940 
2941 	features = netif_skb_features(skb);
2942 	skb = validate_xmit_vlan(skb, features);
2943 	if (unlikely(!skb))
2944 		goto out_null;
2945 
2946 	if (netif_needs_gso(skb, features)) {
2947 		struct sk_buff *segs;
2948 
2949 		segs = skb_gso_segment(skb, features);
2950 		if (IS_ERR(segs)) {
2951 			goto out_kfree_skb;
2952 		} else if (segs) {
2953 			consume_skb(skb);
2954 			skb = segs;
2955 		}
2956 	} else {
2957 		if (skb_needs_linearize(skb, features) &&
2958 		    __skb_linearize(skb))
2959 			goto out_kfree_skb;
2960 
2961 		/* If packet is not checksummed and device does not
2962 		 * support checksumming for this protocol, complete
2963 		 * checksumming here.
2964 		 */
2965 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2966 			if (skb->encapsulation)
2967 				skb_set_inner_transport_header(skb,
2968 							       skb_checksum_start_offset(skb));
2969 			else
2970 				skb_set_transport_header(skb,
2971 							 skb_checksum_start_offset(skb));
2972 			if (!(features & NETIF_F_CSUM_MASK) &&
2973 			    skb_checksum_help(skb))
2974 				goto out_kfree_skb;
2975 		}
2976 	}
2977 
2978 	return skb;
2979 
2980 out_kfree_skb:
2981 	kfree_skb(skb);
2982 out_null:
2983 	atomic_long_inc(&dev->tx_dropped);
2984 	return NULL;
2985 }
2986 
2987 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2988 {
2989 	struct sk_buff *next, *head = NULL, *tail;
2990 
2991 	for (; skb != NULL; skb = next) {
2992 		next = skb->next;
2993 		skb->next = NULL;
2994 
2995 		/* in case skb wont be segmented, point to itself */
2996 		skb->prev = skb;
2997 
2998 		skb = validate_xmit_skb(skb, dev);
2999 		if (!skb)
3000 			continue;
3001 
3002 		if (!head)
3003 			head = skb;
3004 		else
3005 			tail->next = skb;
3006 		/* If skb was segmented, skb->prev points to
3007 		 * the last segment. If not, it still contains skb.
3008 		 */
3009 		tail = skb->prev;
3010 	}
3011 	return head;
3012 }
3013 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3014 
3015 static void qdisc_pkt_len_init(struct sk_buff *skb)
3016 {
3017 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3018 
3019 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3020 
3021 	/* To get more precise estimation of bytes sent on wire,
3022 	 * we add to pkt_len the headers size of all segments
3023 	 */
3024 	if (shinfo->gso_size)  {
3025 		unsigned int hdr_len;
3026 		u16 gso_segs = shinfo->gso_segs;
3027 
3028 		/* mac layer + network layer */
3029 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3030 
3031 		/* + transport layer */
3032 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3033 			hdr_len += tcp_hdrlen(skb);
3034 		else
3035 			hdr_len += sizeof(struct udphdr);
3036 
3037 		if (shinfo->gso_type & SKB_GSO_DODGY)
3038 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3039 						shinfo->gso_size);
3040 
3041 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3042 	}
3043 }
3044 
3045 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3046 				 struct net_device *dev,
3047 				 struct netdev_queue *txq)
3048 {
3049 	spinlock_t *root_lock = qdisc_lock(q);
3050 	struct sk_buff *to_free = NULL;
3051 	bool contended;
3052 	int rc;
3053 
3054 	qdisc_calculate_pkt_len(skb, q);
3055 	/*
3056 	 * Heuristic to force contended enqueues to serialize on a
3057 	 * separate lock before trying to get qdisc main lock.
3058 	 * This permits qdisc->running owner to get the lock more
3059 	 * often and dequeue packets faster.
3060 	 */
3061 	contended = qdisc_is_running(q);
3062 	if (unlikely(contended))
3063 		spin_lock(&q->busylock);
3064 
3065 	spin_lock(root_lock);
3066 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3067 		__qdisc_drop(skb, &to_free);
3068 		rc = NET_XMIT_DROP;
3069 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3070 		   qdisc_run_begin(q)) {
3071 		/*
3072 		 * This is a work-conserving queue; there are no old skbs
3073 		 * waiting to be sent out; and the qdisc is not running -
3074 		 * xmit the skb directly.
3075 		 */
3076 
3077 		qdisc_bstats_update(q, skb);
3078 
3079 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3080 			if (unlikely(contended)) {
3081 				spin_unlock(&q->busylock);
3082 				contended = false;
3083 			}
3084 			__qdisc_run(q);
3085 		} else
3086 			qdisc_run_end(q);
3087 
3088 		rc = NET_XMIT_SUCCESS;
3089 	} else {
3090 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3091 		if (qdisc_run_begin(q)) {
3092 			if (unlikely(contended)) {
3093 				spin_unlock(&q->busylock);
3094 				contended = false;
3095 			}
3096 			__qdisc_run(q);
3097 		}
3098 	}
3099 	spin_unlock(root_lock);
3100 	if (unlikely(to_free))
3101 		kfree_skb_list(to_free);
3102 	if (unlikely(contended))
3103 		spin_unlock(&q->busylock);
3104 	return rc;
3105 }
3106 
3107 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3108 static void skb_update_prio(struct sk_buff *skb)
3109 {
3110 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3111 
3112 	if (!skb->priority && skb->sk && map) {
3113 		unsigned int prioidx =
3114 			sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3115 
3116 		if (prioidx < map->priomap_len)
3117 			skb->priority = map->priomap[prioidx];
3118 	}
3119 }
3120 #else
3121 #define skb_update_prio(skb)
3122 #endif
3123 
3124 DEFINE_PER_CPU(int, xmit_recursion);
3125 EXPORT_SYMBOL(xmit_recursion);
3126 
3127 /**
3128  *	dev_loopback_xmit - loop back @skb
3129  *	@net: network namespace this loopback is happening in
3130  *	@sk:  sk needed to be a netfilter okfn
3131  *	@skb: buffer to transmit
3132  */
3133 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3134 {
3135 	skb_reset_mac_header(skb);
3136 	__skb_pull(skb, skb_network_offset(skb));
3137 	skb->pkt_type = PACKET_LOOPBACK;
3138 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3139 	WARN_ON(!skb_dst(skb));
3140 	skb_dst_force(skb);
3141 	netif_rx_ni(skb);
3142 	return 0;
3143 }
3144 EXPORT_SYMBOL(dev_loopback_xmit);
3145 
3146 #ifdef CONFIG_NET_EGRESS
3147 static struct sk_buff *
3148 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3149 {
3150 	struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3151 	struct tcf_result cl_res;
3152 
3153 	if (!cl)
3154 		return skb;
3155 
3156 	/* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3157 	 * earlier by the caller.
3158 	 */
3159 	qdisc_bstats_cpu_update(cl->q, skb);
3160 
3161 	switch (tc_classify(skb, cl, &cl_res, false)) {
3162 	case TC_ACT_OK:
3163 	case TC_ACT_RECLASSIFY:
3164 		skb->tc_index = TC_H_MIN(cl_res.classid);
3165 		break;
3166 	case TC_ACT_SHOT:
3167 		qdisc_qstats_cpu_drop(cl->q);
3168 		*ret = NET_XMIT_DROP;
3169 		kfree_skb(skb);
3170 		return NULL;
3171 	case TC_ACT_STOLEN:
3172 	case TC_ACT_QUEUED:
3173 		*ret = NET_XMIT_SUCCESS;
3174 		consume_skb(skb);
3175 		return NULL;
3176 	case TC_ACT_REDIRECT:
3177 		/* No need to push/pop skb's mac_header here on egress! */
3178 		skb_do_redirect(skb);
3179 		*ret = NET_XMIT_SUCCESS;
3180 		return NULL;
3181 	default:
3182 		break;
3183 	}
3184 
3185 	return skb;
3186 }
3187 #endif /* CONFIG_NET_EGRESS */
3188 
3189 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3190 {
3191 #ifdef CONFIG_XPS
3192 	struct xps_dev_maps *dev_maps;
3193 	struct xps_map *map;
3194 	int queue_index = -1;
3195 
3196 	rcu_read_lock();
3197 	dev_maps = rcu_dereference(dev->xps_maps);
3198 	if (dev_maps) {
3199 		unsigned int tci = skb->sender_cpu - 1;
3200 
3201 		if (dev->num_tc) {
3202 			tci *= dev->num_tc;
3203 			tci += netdev_get_prio_tc_map(dev, skb->priority);
3204 		}
3205 
3206 		map = rcu_dereference(dev_maps->cpu_map[tci]);
3207 		if (map) {
3208 			if (map->len == 1)
3209 				queue_index = map->queues[0];
3210 			else
3211 				queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3212 									   map->len)];
3213 			if (unlikely(queue_index >= dev->real_num_tx_queues))
3214 				queue_index = -1;
3215 		}
3216 	}
3217 	rcu_read_unlock();
3218 
3219 	return queue_index;
3220 #else
3221 	return -1;
3222 #endif
3223 }
3224 
3225 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3226 {
3227 	struct sock *sk = skb->sk;
3228 	int queue_index = sk_tx_queue_get(sk);
3229 
3230 	if (queue_index < 0 || skb->ooo_okay ||
3231 	    queue_index >= dev->real_num_tx_queues) {
3232 		int new_index = get_xps_queue(dev, skb);
3233 		if (new_index < 0)
3234 			new_index = skb_tx_hash(dev, skb);
3235 
3236 		if (queue_index != new_index && sk &&
3237 		    sk_fullsock(sk) &&
3238 		    rcu_access_pointer(sk->sk_dst_cache))
3239 			sk_tx_queue_set(sk, new_index);
3240 
3241 		queue_index = new_index;
3242 	}
3243 
3244 	return queue_index;
3245 }
3246 
3247 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3248 				    struct sk_buff *skb,
3249 				    void *accel_priv)
3250 {
3251 	int queue_index = 0;
3252 
3253 #ifdef CONFIG_XPS
3254 	u32 sender_cpu = skb->sender_cpu - 1;
3255 
3256 	if (sender_cpu >= (u32)NR_CPUS)
3257 		skb->sender_cpu = raw_smp_processor_id() + 1;
3258 #endif
3259 
3260 	if (dev->real_num_tx_queues != 1) {
3261 		const struct net_device_ops *ops = dev->netdev_ops;
3262 		if (ops->ndo_select_queue)
3263 			queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3264 							    __netdev_pick_tx);
3265 		else
3266 			queue_index = __netdev_pick_tx(dev, skb);
3267 
3268 		if (!accel_priv)
3269 			queue_index = netdev_cap_txqueue(dev, queue_index);
3270 	}
3271 
3272 	skb_set_queue_mapping(skb, queue_index);
3273 	return netdev_get_tx_queue(dev, queue_index);
3274 }
3275 
3276 /**
3277  *	__dev_queue_xmit - transmit a buffer
3278  *	@skb: buffer to transmit
3279  *	@accel_priv: private data used for L2 forwarding offload
3280  *
3281  *	Queue a buffer for transmission to a network device. The caller must
3282  *	have set the device and priority and built the buffer before calling
3283  *	this function. The function can be called from an interrupt.
3284  *
3285  *	A negative errno code is returned on a failure. A success does not
3286  *	guarantee the frame will be transmitted as it may be dropped due
3287  *	to congestion or traffic shaping.
3288  *
3289  * -----------------------------------------------------------------------------------
3290  *      I notice this method can also return errors from the queue disciplines,
3291  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3292  *      be positive.
3293  *
3294  *      Regardless of the return value, the skb is consumed, so it is currently
3295  *      difficult to retry a send to this method.  (You can bump the ref count
3296  *      before sending to hold a reference for retry if you are careful.)
3297  *
3298  *      When calling this method, interrupts MUST be enabled.  This is because
3299  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3300  *          --BLG
3301  */
3302 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3303 {
3304 	struct net_device *dev = skb->dev;
3305 	struct netdev_queue *txq;
3306 	struct Qdisc *q;
3307 	int rc = -ENOMEM;
3308 
3309 	skb_reset_mac_header(skb);
3310 
3311 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3312 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3313 
3314 	/* Disable soft irqs for various locks below. Also
3315 	 * stops preemption for RCU.
3316 	 */
3317 	rcu_read_lock_bh();
3318 
3319 	skb_update_prio(skb);
3320 
3321 	qdisc_pkt_len_init(skb);
3322 #ifdef CONFIG_NET_CLS_ACT
3323 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3324 # ifdef CONFIG_NET_EGRESS
3325 	if (static_key_false(&egress_needed)) {
3326 		skb = sch_handle_egress(skb, &rc, dev);
3327 		if (!skb)
3328 			goto out;
3329 	}
3330 # endif
3331 #endif
3332 	/* If device/qdisc don't need skb->dst, release it right now while
3333 	 * its hot in this cpu cache.
3334 	 */
3335 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3336 		skb_dst_drop(skb);
3337 	else
3338 		skb_dst_force(skb);
3339 
3340 	txq = netdev_pick_tx(dev, skb, accel_priv);
3341 	q = rcu_dereference_bh(txq->qdisc);
3342 
3343 	trace_net_dev_queue(skb);
3344 	if (q->enqueue) {
3345 		rc = __dev_xmit_skb(skb, q, dev, txq);
3346 		goto out;
3347 	}
3348 
3349 	/* The device has no queue. Common case for software devices:
3350 	   loopback, all the sorts of tunnels...
3351 
3352 	   Really, it is unlikely that netif_tx_lock protection is necessary
3353 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3354 	   counters.)
3355 	   However, it is possible, that they rely on protection
3356 	   made by us here.
3357 
3358 	   Check this and shot the lock. It is not prone from deadlocks.
3359 	   Either shot noqueue qdisc, it is even simpler 8)
3360 	 */
3361 	if (dev->flags & IFF_UP) {
3362 		int cpu = smp_processor_id(); /* ok because BHs are off */
3363 
3364 		if (txq->xmit_lock_owner != cpu) {
3365 			if (unlikely(__this_cpu_read(xmit_recursion) >
3366 				     XMIT_RECURSION_LIMIT))
3367 				goto recursion_alert;
3368 
3369 			skb = validate_xmit_skb(skb, dev);
3370 			if (!skb)
3371 				goto out;
3372 
3373 			HARD_TX_LOCK(dev, txq, cpu);
3374 
3375 			if (!netif_xmit_stopped(txq)) {
3376 				__this_cpu_inc(xmit_recursion);
3377 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3378 				__this_cpu_dec(xmit_recursion);
3379 				if (dev_xmit_complete(rc)) {
3380 					HARD_TX_UNLOCK(dev, txq);
3381 					goto out;
3382 				}
3383 			}
3384 			HARD_TX_UNLOCK(dev, txq);
3385 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3386 					     dev->name);
3387 		} else {
3388 			/* Recursion is detected! It is possible,
3389 			 * unfortunately
3390 			 */
3391 recursion_alert:
3392 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3393 					     dev->name);
3394 		}
3395 	}
3396 
3397 	rc = -ENETDOWN;
3398 	rcu_read_unlock_bh();
3399 
3400 	atomic_long_inc(&dev->tx_dropped);
3401 	kfree_skb_list(skb);
3402 	return rc;
3403 out:
3404 	rcu_read_unlock_bh();
3405 	return rc;
3406 }
3407 
3408 int dev_queue_xmit(struct sk_buff *skb)
3409 {
3410 	return __dev_queue_xmit(skb, NULL);
3411 }
3412 EXPORT_SYMBOL(dev_queue_xmit);
3413 
3414 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3415 {
3416 	return __dev_queue_xmit(skb, accel_priv);
3417 }
3418 EXPORT_SYMBOL(dev_queue_xmit_accel);
3419 
3420 
3421 /*=======================================================================
3422 			Receiver routines
3423   =======================================================================*/
3424 
3425 int netdev_max_backlog __read_mostly = 1000;
3426 EXPORT_SYMBOL(netdev_max_backlog);
3427 
3428 int netdev_tstamp_prequeue __read_mostly = 1;
3429 int netdev_budget __read_mostly = 300;
3430 int weight_p __read_mostly = 64;            /* old backlog weight */
3431 
3432 /* Called with irq disabled */
3433 static inline void ____napi_schedule(struct softnet_data *sd,
3434 				     struct napi_struct *napi)
3435 {
3436 	list_add_tail(&napi->poll_list, &sd->poll_list);
3437 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3438 }
3439 
3440 #ifdef CONFIG_RPS
3441 
3442 /* One global table that all flow-based protocols share. */
3443 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3444 EXPORT_SYMBOL(rps_sock_flow_table);
3445 u32 rps_cpu_mask __read_mostly;
3446 EXPORT_SYMBOL(rps_cpu_mask);
3447 
3448 struct static_key rps_needed __read_mostly;
3449 EXPORT_SYMBOL(rps_needed);
3450 struct static_key rfs_needed __read_mostly;
3451 EXPORT_SYMBOL(rfs_needed);
3452 
3453 static struct rps_dev_flow *
3454 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3455 	    struct rps_dev_flow *rflow, u16 next_cpu)
3456 {
3457 	if (next_cpu < nr_cpu_ids) {
3458 #ifdef CONFIG_RFS_ACCEL
3459 		struct netdev_rx_queue *rxqueue;
3460 		struct rps_dev_flow_table *flow_table;
3461 		struct rps_dev_flow *old_rflow;
3462 		u32 flow_id;
3463 		u16 rxq_index;
3464 		int rc;
3465 
3466 		/* Should we steer this flow to a different hardware queue? */
3467 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3468 		    !(dev->features & NETIF_F_NTUPLE))
3469 			goto out;
3470 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3471 		if (rxq_index == skb_get_rx_queue(skb))
3472 			goto out;
3473 
3474 		rxqueue = dev->_rx + rxq_index;
3475 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3476 		if (!flow_table)
3477 			goto out;
3478 		flow_id = skb_get_hash(skb) & flow_table->mask;
3479 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3480 							rxq_index, flow_id);
3481 		if (rc < 0)
3482 			goto out;
3483 		old_rflow = rflow;
3484 		rflow = &flow_table->flows[flow_id];
3485 		rflow->filter = rc;
3486 		if (old_rflow->filter == rflow->filter)
3487 			old_rflow->filter = RPS_NO_FILTER;
3488 	out:
3489 #endif
3490 		rflow->last_qtail =
3491 			per_cpu(softnet_data, next_cpu).input_queue_head;
3492 	}
3493 
3494 	rflow->cpu = next_cpu;
3495 	return rflow;
3496 }
3497 
3498 /*
3499  * get_rps_cpu is called from netif_receive_skb and returns the target
3500  * CPU from the RPS map of the receiving queue for a given skb.
3501  * rcu_read_lock must be held on entry.
3502  */
3503 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3504 		       struct rps_dev_flow **rflowp)
3505 {
3506 	const struct rps_sock_flow_table *sock_flow_table;
3507 	struct netdev_rx_queue *rxqueue = dev->_rx;
3508 	struct rps_dev_flow_table *flow_table;
3509 	struct rps_map *map;
3510 	int cpu = -1;
3511 	u32 tcpu;
3512 	u32 hash;
3513 
3514 	if (skb_rx_queue_recorded(skb)) {
3515 		u16 index = skb_get_rx_queue(skb);
3516 
3517 		if (unlikely(index >= dev->real_num_rx_queues)) {
3518 			WARN_ONCE(dev->real_num_rx_queues > 1,
3519 				  "%s received packet on queue %u, but number "
3520 				  "of RX queues is %u\n",
3521 				  dev->name, index, dev->real_num_rx_queues);
3522 			goto done;
3523 		}
3524 		rxqueue += index;
3525 	}
3526 
3527 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3528 
3529 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3530 	map = rcu_dereference(rxqueue->rps_map);
3531 	if (!flow_table && !map)
3532 		goto done;
3533 
3534 	skb_reset_network_header(skb);
3535 	hash = skb_get_hash(skb);
3536 	if (!hash)
3537 		goto done;
3538 
3539 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3540 	if (flow_table && sock_flow_table) {
3541 		struct rps_dev_flow *rflow;
3542 		u32 next_cpu;
3543 		u32 ident;
3544 
3545 		/* First check into global flow table if there is a match */
3546 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3547 		if ((ident ^ hash) & ~rps_cpu_mask)
3548 			goto try_rps;
3549 
3550 		next_cpu = ident & rps_cpu_mask;
3551 
3552 		/* OK, now we know there is a match,
3553 		 * we can look at the local (per receive queue) flow table
3554 		 */
3555 		rflow = &flow_table->flows[hash & flow_table->mask];
3556 		tcpu = rflow->cpu;
3557 
3558 		/*
3559 		 * If the desired CPU (where last recvmsg was done) is
3560 		 * different from current CPU (one in the rx-queue flow
3561 		 * table entry), switch if one of the following holds:
3562 		 *   - Current CPU is unset (>= nr_cpu_ids).
3563 		 *   - Current CPU is offline.
3564 		 *   - The current CPU's queue tail has advanced beyond the
3565 		 *     last packet that was enqueued using this table entry.
3566 		 *     This guarantees that all previous packets for the flow
3567 		 *     have been dequeued, thus preserving in order delivery.
3568 		 */
3569 		if (unlikely(tcpu != next_cpu) &&
3570 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3571 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3572 		      rflow->last_qtail)) >= 0)) {
3573 			tcpu = next_cpu;
3574 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3575 		}
3576 
3577 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3578 			*rflowp = rflow;
3579 			cpu = tcpu;
3580 			goto done;
3581 		}
3582 	}
3583 
3584 try_rps:
3585 
3586 	if (map) {
3587 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3588 		if (cpu_online(tcpu)) {
3589 			cpu = tcpu;
3590 			goto done;
3591 		}
3592 	}
3593 
3594 done:
3595 	return cpu;
3596 }
3597 
3598 #ifdef CONFIG_RFS_ACCEL
3599 
3600 /**
3601  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3602  * @dev: Device on which the filter was set
3603  * @rxq_index: RX queue index
3604  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3605  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3606  *
3607  * Drivers that implement ndo_rx_flow_steer() should periodically call
3608  * this function for each installed filter and remove the filters for
3609  * which it returns %true.
3610  */
3611 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3612 			 u32 flow_id, u16 filter_id)
3613 {
3614 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3615 	struct rps_dev_flow_table *flow_table;
3616 	struct rps_dev_flow *rflow;
3617 	bool expire = true;
3618 	unsigned int cpu;
3619 
3620 	rcu_read_lock();
3621 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3622 	if (flow_table && flow_id <= flow_table->mask) {
3623 		rflow = &flow_table->flows[flow_id];
3624 		cpu = ACCESS_ONCE(rflow->cpu);
3625 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3626 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3627 			   rflow->last_qtail) <
3628 		     (int)(10 * flow_table->mask)))
3629 			expire = false;
3630 	}
3631 	rcu_read_unlock();
3632 	return expire;
3633 }
3634 EXPORT_SYMBOL(rps_may_expire_flow);
3635 
3636 #endif /* CONFIG_RFS_ACCEL */
3637 
3638 /* Called from hardirq (IPI) context */
3639 static void rps_trigger_softirq(void *data)
3640 {
3641 	struct softnet_data *sd = data;
3642 
3643 	____napi_schedule(sd, &sd->backlog);
3644 	sd->received_rps++;
3645 }
3646 
3647 #endif /* CONFIG_RPS */
3648 
3649 /*
3650  * Check if this softnet_data structure is another cpu one
3651  * If yes, queue it to our IPI list and return 1
3652  * If no, return 0
3653  */
3654 static int rps_ipi_queued(struct softnet_data *sd)
3655 {
3656 #ifdef CONFIG_RPS
3657 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3658 
3659 	if (sd != mysd) {
3660 		sd->rps_ipi_next = mysd->rps_ipi_list;
3661 		mysd->rps_ipi_list = sd;
3662 
3663 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3664 		return 1;
3665 	}
3666 #endif /* CONFIG_RPS */
3667 	return 0;
3668 }
3669 
3670 #ifdef CONFIG_NET_FLOW_LIMIT
3671 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3672 #endif
3673 
3674 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3675 {
3676 #ifdef CONFIG_NET_FLOW_LIMIT
3677 	struct sd_flow_limit *fl;
3678 	struct softnet_data *sd;
3679 	unsigned int old_flow, new_flow;
3680 
3681 	if (qlen < (netdev_max_backlog >> 1))
3682 		return false;
3683 
3684 	sd = this_cpu_ptr(&softnet_data);
3685 
3686 	rcu_read_lock();
3687 	fl = rcu_dereference(sd->flow_limit);
3688 	if (fl) {
3689 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3690 		old_flow = fl->history[fl->history_head];
3691 		fl->history[fl->history_head] = new_flow;
3692 
3693 		fl->history_head++;
3694 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3695 
3696 		if (likely(fl->buckets[old_flow]))
3697 			fl->buckets[old_flow]--;
3698 
3699 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3700 			fl->count++;
3701 			rcu_read_unlock();
3702 			return true;
3703 		}
3704 	}
3705 	rcu_read_unlock();
3706 #endif
3707 	return false;
3708 }
3709 
3710 /*
3711  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3712  * queue (may be a remote CPU queue).
3713  */
3714 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3715 			      unsigned int *qtail)
3716 {
3717 	struct softnet_data *sd;
3718 	unsigned long flags;
3719 	unsigned int qlen;
3720 
3721 	sd = &per_cpu(softnet_data, cpu);
3722 
3723 	local_irq_save(flags);
3724 
3725 	rps_lock(sd);
3726 	if (!netif_running(skb->dev))
3727 		goto drop;
3728 	qlen = skb_queue_len(&sd->input_pkt_queue);
3729 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3730 		if (qlen) {
3731 enqueue:
3732 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3733 			input_queue_tail_incr_save(sd, qtail);
3734 			rps_unlock(sd);
3735 			local_irq_restore(flags);
3736 			return NET_RX_SUCCESS;
3737 		}
3738 
3739 		/* Schedule NAPI for backlog device
3740 		 * We can use non atomic operation since we own the queue lock
3741 		 */
3742 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3743 			if (!rps_ipi_queued(sd))
3744 				____napi_schedule(sd, &sd->backlog);
3745 		}
3746 		goto enqueue;
3747 	}
3748 
3749 drop:
3750 	sd->dropped++;
3751 	rps_unlock(sd);
3752 
3753 	local_irq_restore(flags);
3754 
3755 	atomic_long_inc(&skb->dev->rx_dropped);
3756 	kfree_skb(skb);
3757 	return NET_RX_DROP;
3758 }
3759 
3760 static int netif_rx_internal(struct sk_buff *skb)
3761 {
3762 	int ret;
3763 
3764 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3765 
3766 	trace_netif_rx(skb);
3767 #ifdef CONFIG_RPS
3768 	if (static_key_false(&rps_needed)) {
3769 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3770 		int cpu;
3771 
3772 		preempt_disable();
3773 		rcu_read_lock();
3774 
3775 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3776 		if (cpu < 0)
3777 			cpu = smp_processor_id();
3778 
3779 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3780 
3781 		rcu_read_unlock();
3782 		preempt_enable();
3783 	} else
3784 #endif
3785 	{
3786 		unsigned int qtail;
3787 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3788 		put_cpu();
3789 	}
3790 	return ret;
3791 }
3792 
3793 /**
3794  *	netif_rx	-	post buffer to the network code
3795  *	@skb: buffer to post
3796  *
3797  *	This function receives a packet from a device driver and queues it for
3798  *	the upper (protocol) levels to process.  It always succeeds. The buffer
3799  *	may be dropped during processing for congestion control or by the
3800  *	protocol layers.
3801  *
3802  *	return values:
3803  *	NET_RX_SUCCESS	(no congestion)
3804  *	NET_RX_DROP     (packet was dropped)
3805  *
3806  */
3807 
3808 int netif_rx(struct sk_buff *skb)
3809 {
3810 	trace_netif_rx_entry(skb);
3811 
3812 	return netif_rx_internal(skb);
3813 }
3814 EXPORT_SYMBOL(netif_rx);
3815 
3816 int netif_rx_ni(struct sk_buff *skb)
3817 {
3818 	int err;
3819 
3820 	trace_netif_rx_ni_entry(skb);
3821 
3822 	preempt_disable();
3823 	err = netif_rx_internal(skb);
3824 	if (local_softirq_pending())
3825 		do_softirq();
3826 	preempt_enable();
3827 
3828 	return err;
3829 }
3830 EXPORT_SYMBOL(netif_rx_ni);
3831 
3832 static __latent_entropy void net_tx_action(struct softirq_action *h)
3833 {
3834 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3835 
3836 	if (sd->completion_queue) {
3837 		struct sk_buff *clist;
3838 
3839 		local_irq_disable();
3840 		clist = sd->completion_queue;
3841 		sd->completion_queue = NULL;
3842 		local_irq_enable();
3843 
3844 		while (clist) {
3845 			struct sk_buff *skb = clist;
3846 			clist = clist->next;
3847 
3848 			WARN_ON(atomic_read(&skb->users));
3849 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3850 				trace_consume_skb(skb);
3851 			else
3852 				trace_kfree_skb(skb, net_tx_action);
3853 
3854 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3855 				__kfree_skb(skb);
3856 			else
3857 				__kfree_skb_defer(skb);
3858 		}
3859 
3860 		__kfree_skb_flush();
3861 	}
3862 
3863 	if (sd->output_queue) {
3864 		struct Qdisc *head;
3865 
3866 		local_irq_disable();
3867 		head = sd->output_queue;
3868 		sd->output_queue = NULL;
3869 		sd->output_queue_tailp = &sd->output_queue;
3870 		local_irq_enable();
3871 
3872 		while (head) {
3873 			struct Qdisc *q = head;
3874 			spinlock_t *root_lock;
3875 
3876 			head = head->next_sched;
3877 
3878 			root_lock = qdisc_lock(q);
3879 			spin_lock(root_lock);
3880 			/* We need to make sure head->next_sched is read
3881 			 * before clearing __QDISC_STATE_SCHED
3882 			 */
3883 			smp_mb__before_atomic();
3884 			clear_bit(__QDISC_STATE_SCHED, &q->state);
3885 			qdisc_run(q);
3886 			spin_unlock(root_lock);
3887 		}
3888 	}
3889 }
3890 
3891 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
3892 /* This hook is defined here for ATM LANE */
3893 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3894 			     unsigned char *addr) __read_mostly;
3895 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3896 #endif
3897 
3898 static inline struct sk_buff *
3899 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3900 		   struct net_device *orig_dev)
3901 {
3902 #ifdef CONFIG_NET_CLS_ACT
3903 	struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3904 	struct tcf_result cl_res;
3905 
3906 	/* If there's at least one ingress present somewhere (so
3907 	 * we get here via enabled static key), remaining devices
3908 	 * that are not configured with an ingress qdisc will bail
3909 	 * out here.
3910 	 */
3911 	if (!cl)
3912 		return skb;
3913 	if (*pt_prev) {
3914 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3915 		*pt_prev = NULL;
3916 	}
3917 
3918 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3919 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3920 	qdisc_bstats_cpu_update(cl->q, skb);
3921 
3922 	switch (tc_classify(skb, cl, &cl_res, false)) {
3923 	case TC_ACT_OK:
3924 	case TC_ACT_RECLASSIFY:
3925 		skb->tc_index = TC_H_MIN(cl_res.classid);
3926 		break;
3927 	case TC_ACT_SHOT:
3928 		qdisc_qstats_cpu_drop(cl->q);
3929 		kfree_skb(skb);
3930 		return NULL;
3931 	case TC_ACT_STOLEN:
3932 	case TC_ACT_QUEUED:
3933 		consume_skb(skb);
3934 		return NULL;
3935 	case TC_ACT_REDIRECT:
3936 		/* skb_mac_header check was done by cls/act_bpf, so
3937 		 * we can safely push the L2 header back before
3938 		 * redirecting to another netdev
3939 		 */
3940 		__skb_push(skb, skb->mac_len);
3941 		skb_do_redirect(skb);
3942 		return NULL;
3943 	default:
3944 		break;
3945 	}
3946 #endif /* CONFIG_NET_CLS_ACT */
3947 	return skb;
3948 }
3949 
3950 /**
3951  *	netdev_is_rx_handler_busy - check if receive handler is registered
3952  *	@dev: device to check
3953  *
3954  *	Check if a receive handler is already registered for a given device.
3955  *	Return true if there one.
3956  *
3957  *	The caller must hold the rtnl_mutex.
3958  */
3959 bool netdev_is_rx_handler_busy(struct net_device *dev)
3960 {
3961 	ASSERT_RTNL();
3962 	return dev && rtnl_dereference(dev->rx_handler);
3963 }
3964 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3965 
3966 /**
3967  *	netdev_rx_handler_register - register receive handler
3968  *	@dev: device to register a handler for
3969  *	@rx_handler: receive handler to register
3970  *	@rx_handler_data: data pointer that is used by rx handler
3971  *
3972  *	Register a receive handler for a device. This handler will then be
3973  *	called from __netif_receive_skb. A negative errno code is returned
3974  *	on a failure.
3975  *
3976  *	The caller must hold the rtnl_mutex.
3977  *
3978  *	For a general description of rx_handler, see enum rx_handler_result.
3979  */
3980 int netdev_rx_handler_register(struct net_device *dev,
3981 			       rx_handler_func_t *rx_handler,
3982 			       void *rx_handler_data)
3983 {
3984 	ASSERT_RTNL();
3985 
3986 	if (dev->rx_handler)
3987 		return -EBUSY;
3988 
3989 	/* Note: rx_handler_data must be set before rx_handler */
3990 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3991 	rcu_assign_pointer(dev->rx_handler, rx_handler);
3992 
3993 	return 0;
3994 }
3995 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3996 
3997 /**
3998  *	netdev_rx_handler_unregister - unregister receive handler
3999  *	@dev: device to unregister a handler from
4000  *
4001  *	Unregister a receive handler from a device.
4002  *
4003  *	The caller must hold the rtnl_mutex.
4004  */
4005 void netdev_rx_handler_unregister(struct net_device *dev)
4006 {
4007 
4008 	ASSERT_RTNL();
4009 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4010 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4011 	 * section has a guarantee to see a non NULL rx_handler_data
4012 	 * as well.
4013 	 */
4014 	synchronize_net();
4015 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4016 }
4017 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4018 
4019 /*
4020  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4021  * the special handling of PFMEMALLOC skbs.
4022  */
4023 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4024 {
4025 	switch (skb->protocol) {
4026 	case htons(ETH_P_ARP):
4027 	case htons(ETH_P_IP):
4028 	case htons(ETH_P_IPV6):
4029 	case htons(ETH_P_8021Q):
4030 	case htons(ETH_P_8021AD):
4031 		return true;
4032 	default:
4033 		return false;
4034 	}
4035 }
4036 
4037 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4038 			     int *ret, struct net_device *orig_dev)
4039 {
4040 #ifdef CONFIG_NETFILTER_INGRESS
4041 	if (nf_hook_ingress_active(skb)) {
4042 		int ingress_retval;
4043 
4044 		if (*pt_prev) {
4045 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4046 			*pt_prev = NULL;
4047 		}
4048 
4049 		rcu_read_lock();
4050 		ingress_retval = nf_hook_ingress(skb);
4051 		rcu_read_unlock();
4052 		return ingress_retval;
4053 	}
4054 #endif /* CONFIG_NETFILTER_INGRESS */
4055 	return 0;
4056 }
4057 
4058 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4059 {
4060 	struct packet_type *ptype, *pt_prev;
4061 	rx_handler_func_t *rx_handler;
4062 	struct net_device *orig_dev;
4063 	bool deliver_exact = false;
4064 	int ret = NET_RX_DROP;
4065 	__be16 type;
4066 
4067 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4068 
4069 	trace_netif_receive_skb(skb);
4070 
4071 	orig_dev = skb->dev;
4072 
4073 	skb_reset_network_header(skb);
4074 	if (!skb_transport_header_was_set(skb))
4075 		skb_reset_transport_header(skb);
4076 	skb_reset_mac_len(skb);
4077 
4078 	pt_prev = NULL;
4079 
4080 another_round:
4081 	skb->skb_iif = skb->dev->ifindex;
4082 
4083 	__this_cpu_inc(softnet_data.processed);
4084 
4085 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4086 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4087 		skb = skb_vlan_untag(skb);
4088 		if (unlikely(!skb))
4089 			goto out;
4090 	}
4091 
4092 #ifdef CONFIG_NET_CLS_ACT
4093 	if (skb->tc_verd & TC_NCLS) {
4094 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4095 		goto ncls;
4096 	}
4097 #endif
4098 
4099 	if (pfmemalloc)
4100 		goto skip_taps;
4101 
4102 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
4103 		if (pt_prev)
4104 			ret = deliver_skb(skb, pt_prev, orig_dev);
4105 		pt_prev = ptype;
4106 	}
4107 
4108 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4109 		if (pt_prev)
4110 			ret = deliver_skb(skb, pt_prev, orig_dev);
4111 		pt_prev = ptype;
4112 	}
4113 
4114 skip_taps:
4115 #ifdef CONFIG_NET_INGRESS
4116 	if (static_key_false(&ingress_needed)) {
4117 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4118 		if (!skb)
4119 			goto out;
4120 
4121 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4122 			goto out;
4123 	}
4124 #endif
4125 #ifdef CONFIG_NET_CLS_ACT
4126 	skb->tc_verd = 0;
4127 ncls:
4128 #endif
4129 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4130 		goto drop;
4131 
4132 	if (skb_vlan_tag_present(skb)) {
4133 		if (pt_prev) {
4134 			ret = deliver_skb(skb, pt_prev, orig_dev);
4135 			pt_prev = NULL;
4136 		}
4137 		if (vlan_do_receive(&skb))
4138 			goto another_round;
4139 		else if (unlikely(!skb))
4140 			goto out;
4141 	}
4142 
4143 	rx_handler = rcu_dereference(skb->dev->rx_handler);
4144 	if (rx_handler) {
4145 		if (pt_prev) {
4146 			ret = deliver_skb(skb, pt_prev, orig_dev);
4147 			pt_prev = NULL;
4148 		}
4149 		switch (rx_handler(&skb)) {
4150 		case RX_HANDLER_CONSUMED:
4151 			ret = NET_RX_SUCCESS;
4152 			goto out;
4153 		case RX_HANDLER_ANOTHER:
4154 			goto another_round;
4155 		case RX_HANDLER_EXACT:
4156 			deliver_exact = true;
4157 		case RX_HANDLER_PASS:
4158 			break;
4159 		default:
4160 			BUG();
4161 		}
4162 	}
4163 
4164 	if (unlikely(skb_vlan_tag_present(skb))) {
4165 		if (skb_vlan_tag_get_id(skb))
4166 			skb->pkt_type = PACKET_OTHERHOST;
4167 		/* Note: we might in the future use prio bits
4168 		 * and set skb->priority like in vlan_do_receive()
4169 		 * For the time being, just ignore Priority Code Point
4170 		 */
4171 		skb->vlan_tci = 0;
4172 	}
4173 
4174 	type = skb->protocol;
4175 
4176 	/* deliver only exact match when indicated */
4177 	if (likely(!deliver_exact)) {
4178 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4179 				       &ptype_base[ntohs(type) &
4180 						   PTYPE_HASH_MASK]);
4181 	}
4182 
4183 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4184 			       &orig_dev->ptype_specific);
4185 
4186 	if (unlikely(skb->dev != orig_dev)) {
4187 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4188 				       &skb->dev->ptype_specific);
4189 	}
4190 
4191 	if (pt_prev) {
4192 		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4193 			goto drop;
4194 		else
4195 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4196 	} else {
4197 drop:
4198 		if (!deliver_exact)
4199 			atomic_long_inc(&skb->dev->rx_dropped);
4200 		else
4201 			atomic_long_inc(&skb->dev->rx_nohandler);
4202 		kfree_skb(skb);
4203 		/* Jamal, now you will not able to escape explaining
4204 		 * me how you were going to use this. :-)
4205 		 */
4206 		ret = NET_RX_DROP;
4207 	}
4208 
4209 out:
4210 	return ret;
4211 }
4212 
4213 static int __netif_receive_skb(struct sk_buff *skb)
4214 {
4215 	int ret;
4216 
4217 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4218 		unsigned long pflags = current->flags;
4219 
4220 		/*
4221 		 * PFMEMALLOC skbs are special, they should
4222 		 * - be delivered to SOCK_MEMALLOC sockets only
4223 		 * - stay away from userspace
4224 		 * - have bounded memory usage
4225 		 *
4226 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
4227 		 * context down to all allocation sites.
4228 		 */
4229 		current->flags |= PF_MEMALLOC;
4230 		ret = __netif_receive_skb_core(skb, true);
4231 		tsk_restore_flags(current, pflags, PF_MEMALLOC);
4232 	} else
4233 		ret = __netif_receive_skb_core(skb, false);
4234 
4235 	return ret;
4236 }
4237 
4238 static int netif_receive_skb_internal(struct sk_buff *skb)
4239 {
4240 	int ret;
4241 
4242 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4243 
4244 	if (skb_defer_rx_timestamp(skb))
4245 		return NET_RX_SUCCESS;
4246 
4247 	rcu_read_lock();
4248 
4249 #ifdef CONFIG_RPS
4250 	if (static_key_false(&rps_needed)) {
4251 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4252 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4253 
4254 		if (cpu >= 0) {
4255 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4256 			rcu_read_unlock();
4257 			return ret;
4258 		}
4259 	}
4260 #endif
4261 	ret = __netif_receive_skb(skb);
4262 	rcu_read_unlock();
4263 	return ret;
4264 }
4265 
4266 /**
4267  *	netif_receive_skb - process receive buffer from network
4268  *	@skb: buffer to process
4269  *
4270  *	netif_receive_skb() is the main receive data processing function.
4271  *	It always succeeds. The buffer may be dropped during processing
4272  *	for congestion control or by the protocol layers.
4273  *
4274  *	This function may only be called from softirq context and interrupts
4275  *	should be enabled.
4276  *
4277  *	Return values (usually ignored):
4278  *	NET_RX_SUCCESS: no congestion
4279  *	NET_RX_DROP: packet was dropped
4280  */
4281 int netif_receive_skb(struct sk_buff *skb)
4282 {
4283 	trace_netif_receive_skb_entry(skb);
4284 
4285 	return netif_receive_skb_internal(skb);
4286 }
4287 EXPORT_SYMBOL(netif_receive_skb);
4288 
4289 DEFINE_PER_CPU(struct work_struct, flush_works);
4290 
4291 /* Network device is going away, flush any packets still pending */
4292 static void flush_backlog(struct work_struct *work)
4293 {
4294 	struct sk_buff *skb, *tmp;
4295 	struct softnet_data *sd;
4296 
4297 	local_bh_disable();
4298 	sd = this_cpu_ptr(&softnet_data);
4299 
4300 	local_irq_disable();
4301 	rps_lock(sd);
4302 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4303 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4304 			__skb_unlink(skb, &sd->input_pkt_queue);
4305 			kfree_skb(skb);
4306 			input_queue_head_incr(sd);
4307 		}
4308 	}
4309 	rps_unlock(sd);
4310 	local_irq_enable();
4311 
4312 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4313 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4314 			__skb_unlink(skb, &sd->process_queue);
4315 			kfree_skb(skb);
4316 			input_queue_head_incr(sd);
4317 		}
4318 	}
4319 	local_bh_enable();
4320 }
4321 
4322 static void flush_all_backlogs(void)
4323 {
4324 	unsigned int cpu;
4325 
4326 	get_online_cpus();
4327 
4328 	for_each_online_cpu(cpu)
4329 		queue_work_on(cpu, system_highpri_wq,
4330 			      per_cpu_ptr(&flush_works, cpu));
4331 
4332 	for_each_online_cpu(cpu)
4333 		flush_work(per_cpu_ptr(&flush_works, cpu));
4334 
4335 	put_online_cpus();
4336 }
4337 
4338 static int napi_gro_complete(struct sk_buff *skb)
4339 {
4340 	struct packet_offload *ptype;
4341 	__be16 type = skb->protocol;
4342 	struct list_head *head = &offload_base;
4343 	int err = -ENOENT;
4344 
4345 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4346 
4347 	if (NAPI_GRO_CB(skb)->count == 1) {
4348 		skb_shinfo(skb)->gso_size = 0;
4349 		goto out;
4350 	}
4351 
4352 	rcu_read_lock();
4353 	list_for_each_entry_rcu(ptype, head, list) {
4354 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4355 			continue;
4356 
4357 		err = ptype->callbacks.gro_complete(skb, 0);
4358 		break;
4359 	}
4360 	rcu_read_unlock();
4361 
4362 	if (err) {
4363 		WARN_ON(&ptype->list == head);
4364 		kfree_skb(skb);
4365 		return NET_RX_SUCCESS;
4366 	}
4367 
4368 out:
4369 	return netif_receive_skb_internal(skb);
4370 }
4371 
4372 /* napi->gro_list contains packets ordered by age.
4373  * youngest packets at the head of it.
4374  * Complete skbs in reverse order to reduce latencies.
4375  */
4376 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4377 {
4378 	struct sk_buff *skb, *prev = NULL;
4379 
4380 	/* scan list and build reverse chain */
4381 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4382 		skb->prev = prev;
4383 		prev = skb;
4384 	}
4385 
4386 	for (skb = prev; skb; skb = prev) {
4387 		skb->next = NULL;
4388 
4389 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4390 			return;
4391 
4392 		prev = skb->prev;
4393 		napi_gro_complete(skb);
4394 		napi->gro_count--;
4395 	}
4396 
4397 	napi->gro_list = NULL;
4398 }
4399 EXPORT_SYMBOL(napi_gro_flush);
4400 
4401 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4402 {
4403 	struct sk_buff *p;
4404 	unsigned int maclen = skb->dev->hard_header_len;
4405 	u32 hash = skb_get_hash_raw(skb);
4406 
4407 	for (p = napi->gro_list; p; p = p->next) {
4408 		unsigned long diffs;
4409 
4410 		NAPI_GRO_CB(p)->flush = 0;
4411 
4412 		if (hash != skb_get_hash_raw(p)) {
4413 			NAPI_GRO_CB(p)->same_flow = 0;
4414 			continue;
4415 		}
4416 
4417 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4418 		diffs |= p->vlan_tci ^ skb->vlan_tci;
4419 		diffs |= skb_metadata_dst_cmp(p, skb);
4420 		if (maclen == ETH_HLEN)
4421 			diffs |= compare_ether_header(skb_mac_header(p),
4422 						      skb_mac_header(skb));
4423 		else if (!diffs)
4424 			diffs = memcmp(skb_mac_header(p),
4425 				       skb_mac_header(skb),
4426 				       maclen);
4427 		NAPI_GRO_CB(p)->same_flow = !diffs;
4428 	}
4429 }
4430 
4431 static void skb_gro_reset_offset(struct sk_buff *skb)
4432 {
4433 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
4434 	const skb_frag_t *frag0 = &pinfo->frags[0];
4435 
4436 	NAPI_GRO_CB(skb)->data_offset = 0;
4437 	NAPI_GRO_CB(skb)->frag0 = NULL;
4438 	NAPI_GRO_CB(skb)->frag0_len = 0;
4439 
4440 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4441 	    pinfo->nr_frags &&
4442 	    !PageHighMem(skb_frag_page(frag0))) {
4443 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4444 		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4445 	}
4446 }
4447 
4448 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4449 {
4450 	struct skb_shared_info *pinfo = skb_shinfo(skb);
4451 
4452 	BUG_ON(skb->end - skb->tail < grow);
4453 
4454 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4455 
4456 	skb->data_len -= grow;
4457 	skb->tail += grow;
4458 
4459 	pinfo->frags[0].page_offset += grow;
4460 	skb_frag_size_sub(&pinfo->frags[0], grow);
4461 
4462 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4463 		skb_frag_unref(skb, 0);
4464 		memmove(pinfo->frags, pinfo->frags + 1,
4465 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
4466 	}
4467 }
4468 
4469 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4470 {
4471 	struct sk_buff **pp = NULL;
4472 	struct packet_offload *ptype;
4473 	__be16 type = skb->protocol;
4474 	struct list_head *head = &offload_base;
4475 	int same_flow;
4476 	enum gro_result ret;
4477 	int grow;
4478 
4479 	if (!(skb->dev->features & NETIF_F_GRO))
4480 		goto normal;
4481 
4482 	if (skb->csum_bad)
4483 		goto normal;
4484 
4485 	gro_list_prepare(napi, skb);
4486 
4487 	rcu_read_lock();
4488 	list_for_each_entry_rcu(ptype, head, list) {
4489 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4490 			continue;
4491 
4492 		skb_set_network_header(skb, skb_gro_offset(skb));
4493 		skb_reset_mac_len(skb);
4494 		NAPI_GRO_CB(skb)->same_flow = 0;
4495 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4496 		NAPI_GRO_CB(skb)->free = 0;
4497 		NAPI_GRO_CB(skb)->encap_mark = 0;
4498 		NAPI_GRO_CB(skb)->recursion_counter = 0;
4499 		NAPI_GRO_CB(skb)->is_fou = 0;
4500 		NAPI_GRO_CB(skb)->is_atomic = 1;
4501 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4502 
4503 		/* Setup for GRO checksum validation */
4504 		switch (skb->ip_summed) {
4505 		case CHECKSUM_COMPLETE:
4506 			NAPI_GRO_CB(skb)->csum = skb->csum;
4507 			NAPI_GRO_CB(skb)->csum_valid = 1;
4508 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4509 			break;
4510 		case CHECKSUM_UNNECESSARY:
4511 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4512 			NAPI_GRO_CB(skb)->csum_valid = 0;
4513 			break;
4514 		default:
4515 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4516 			NAPI_GRO_CB(skb)->csum_valid = 0;
4517 		}
4518 
4519 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4520 		break;
4521 	}
4522 	rcu_read_unlock();
4523 
4524 	if (&ptype->list == head)
4525 		goto normal;
4526 
4527 	same_flow = NAPI_GRO_CB(skb)->same_flow;
4528 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4529 
4530 	if (pp) {
4531 		struct sk_buff *nskb = *pp;
4532 
4533 		*pp = nskb->next;
4534 		nskb->next = NULL;
4535 		napi_gro_complete(nskb);
4536 		napi->gro_count--;
4537 	}
4538 
4539 	if (same_flow)
4540 		goto ok;
4541 
4542 	if (NAPI_GRO_CB(skb)->flush)
4543 		goto normal;
4544 
4545 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4546 		struct sk_buff *nskb = napi->gro_list;
4547 
4548 		/* locate the end of the list to select the 'oldest' flow */
4549 		while (nskb->next) {
4550 			pp = &nskb->next;
4551 			nskb = *pp;
4552 		}
4553 		*pp = NULL;
4554 		nskb->next = NULL;
4555 		napi_gro_complete(nskb);
4556 	} else {
4557 		napi->gro_count++;
4558 	}
4559 	NAPI_GRO_CB(skb)->count = 1;
4560 	NAPI_GRO_CB(skb)->age = jiffies;
4561 	NAPI_GRO_CB(skb)->last = skb;
4562 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4563 	skb->next = napi->gro_list;
4564 	napi->gro_list = skb;
4565 	ret = GRO_HELD;
4566 
4567 pull:
4568 	grow = skb_gro_offset(skb) - skb_headlen(skb);
4569 	if (grow > 0)
4570 		gro_pull_from_frag0(skb, grow);
4571 ok:
4572 	return ret;
4573 
4574 normal:
4575 	ret = GRO_NORMAL;
4576 	goto pull;
4577 }
4578 
4579 struct packet_offload *gro_find_receive_by_type(__be16 type)
4580 {
4581 	struct list_head *offload_head = &offload_base;
4582 	struct packet_offload *ptype;
4583 
4584 	list_for_each_entry_rcu(ptype, offload_head, list) {
4585 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4586 			continue;
4587 		return ptype;
4588 	}
4589 	return NULL;
4590 }
4591 EXPORT_SYMBOL(gro_find_receive_by_type);
4592 
4593 struct packet_offload *gro_find_complete_by_type(__be16 type)
4594 {
4595 	struct list_head *offload_head = &offload_base;
4596 	struct packet_offload *ptype;
4597 
4598 	list_for_each_entry_rcu(ptype, offload_head, list) {
4599 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4600 			continue;
4601 		return ptype;
4602 	}
4603 	return NULL;
4604 }
4605 EXPORT_SYMBOL(gro_find_complete_by_type);
4606 
4607 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4608 {
4609 	switch (ret) {
4610 	case GRO_NORMAL:
4611 		if (netif_receive_skb_internal(skb))
4612 			ret = GRO_DROP;
4613 		break;
4614 
4615 	case GRO_DROP:
4616 		kfree_skb(skb);
4617 		break;
4618 
4619 	case GRO_MERGED_FREE:
4620 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4621 			skb_dst_drop(skb);
4622 			kmem_cache_free(skbuff_head_cache, skb);
4623 		} else {
4624 			__kfree_skb(skb);
4625 		}
4626 		break;
4627 
4628 	case GRO_HELD:
4629 	case GRO_MERGED:
4630 		break;
4631 	}
4632 
4633 	return ret;
4634 }
4635 
4636 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4637 {
4638 	skb_mark_napi_id(skb, napi);
4639 	trace_napi_gro_receive_entry(skb);
4640 
4641 	skb_gro_reset_offset(skb);
4642 
4643 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4644 }
4645 EXPORT_SYMBOL(napi_gro_receive);
4646 
4647 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4648 {
4649 	if (unlikely(skb->pfmemalloc)) {
4650 		consume_skb(skb);
4651 		return;
4652 	}
4653 	__skb_pull(skb, skb_headlen(skb));
4654 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
4655 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4656 	skb->vlan_tci = 0;
4657 	skb->dev = napi->dev;
4658 	skb->skb_iif = 0;
4659 	skb->encapsulation = 0;
4660 	skb_shinfo(skb)->gso_type = 0;
4661 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4662 
4663 	napi->skb = skb;
4664 }
4665 
4666 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4667 {
4668 	struct sk_buff *skb = napi->skb;
4669 
4670 	if (!skb) {
4671 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4672 		if (skb) {
4673 			napi->skb = skb;
4674 			skb_mark_napi_id(skb, napi);
4675 		}
4676 	}
4677 	return skb;
4678 }
4679 EXPORT_SYMBOL(napi_get_frags);
4680 
4681 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4682 				      struct sk_buff *skb,
4683 				      gro_result_t ret)
4684 {
4685 	switch (ret) {
4686 	case GRO_NORMAL:
4687 	case GRO_HELD:
4688 		__skb_push(skb, ETH_HLEN);
4689 		skb->protocol = eth_type_trans(skb, skb->dev);
4690 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4691 			ret = GRO_DROP;
4692 		break;
4693 
4694 	case GRO_DROP:
4695 	case GRO_MERGED_FREE:
4696 		napi_reuse_skb(napi, skb);
4697 		break;
4698 
4699 	case GRO_MERGED:
4700 		break;
4701 	}
4702 
4703 	return ret;
4704 }
4705 
4706 /* Upper GRO stack assumes network header starts at gro_offset=0
4707  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4708  * We copy ethernet header into skb->data to have a common layout.
4709  */
4710 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4711 {
4712 	struct sk_buff *skb = napi->skb;
4713 	const struct ethhdr *eth;
4714 	unsigned int hlen = sizeof(*eth);
4715 
4716 	napi->skb = NULL;
4717 
4718 	skb_reset_mac_header(skb);
4719 	skb_gro_reset_offset(skb);
4720 
4721 	eth = skb_gro_header_fast(skb, 0);
4722 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
4723 		eth = skb_gro_header_slow(skb, hlen, 0);
4724 		if (unlikely(!eth)) {
4725 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4726 					     __func__, napi->dev->name);
4727 			napi_reuse_skb(napi, skb);
4728 			return NULL;
4729 		}
4730 	} else {
4731 		gro_pull_from_frag0(skb, hlen);
4732 		NAPI_GRO_CB(skb)->frag0 += hlen;
4733 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
4734 	}
4735 	__skb_pull(skb, hlen);
4736 
4737 	/*
4738 	 * This works because the only protocols we care about don't require
4739 	 * special handling.
4740 	 * We'll fix it up properly in napi_frags_finish()
4741 	 */
4742 	skb->protocol = eth->h_proto;
4743 
4744 	return skb;
4745 }
4746 
4747 gro_result_t napi_gro_frags(struct napi_struct *napi)
4748 {
4749 	struct sk_buff *skb = napi_frags_skb(napi);
4750 
4751 	if (!skb)
4752 		return GRO_DROP;
4753 
4754 	trace_napi_gro_frags_entry(skb);
4755 
4756 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4757 }
4758 EXPORT_SYMBOL(napi_gro_frags);
4759 
4760 /* Compute the checksum from gro_offset and return the folded value
4761  * after adding in any pseudo checksum.
4762  */
4763 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4764 {
4765 	__wsum wsum;
4766 	__sum16 sum;
4767 
4768 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4769 
4770 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4771 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4772 	if (likely(!sum)) {
4773 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4774 		    !skb->csum_complete_sw)
4775 			netdev_rx_csum_fault(skb->dev);
4776 	}
4777 
4778 	NAPI_GRO_CB(skb)->csum = wsum;
4779 	NAPI_GRO_CB(skb)->csum_valid = 1;
4780 
4781 	return sum;
4782 }
4783 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4784 
4785 /*
4786  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4787  * Note: called with local irq disabled, but exits with local irq enabled.
4788  */
4789 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4790 {
4791 #ifdef CONFIG_RPS
4792 	struct softnet_data *remsd = sd->rps_ipi_list;
4793 
4794 	if (remsd) {
4795 		sd->rps_ipi_list = NULL;
4796 
4797 		local_irq_enable();
4798 
4799 		/* Send pending IPI's to kick RPS processing on remote cpus. */
4800 		while (remsd) {
4801 			struct softnet_data *next = remsd->rps_ipi_next;
4802 
4803 			if (cpu_online(remsd->cpu))
4804 				smp_call_function_single_async(remsd->cpu,
4805 							   &remsd->csd);
4806 			remsd = next;
4807 		}
4808 	} else
4809 #endif
4810 		local_irq_enable();
4811 }
4812 
4813 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4814 {
4815 #ifdef CONFIG_RPS
4816 	return sd->rps_ipi_list != NULL;
4817 #else
4818 	return false;
4819 #endif
4820 }
4821 
4822 static int process_backlog(struct napi_struct *napi, int quota)
4823 {
4824 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4825 	bool again = true;
4826 	int work = 0;
4827 
4828 	/* Check if we have pending ipi, its better to send them now,
4829 	 * not waiting net_rx_action() end.
4830 	 */
4831 	if (sd_has_rps_ipi_waiting(sd)) {
4832 		local_irq_disable();
4833 		net_rps_action_and_irq_enable(sd);
4834 	}
4835 
4836 	napi->weight = weight_p;
4837 	while (again) {
4838 		struct sk_buff *skb;
4839 
4840 		while ((skb = __skb_dequeue(&sd->process_queue))) {
4841 			rcu_read_lock();
4842 			__netif_receive_skb(skb);
4843 			rcu_read_unlock();
4844 			input_queue_head_incr(sd);
4845 			if (++work >= quota)
4846 				return work;
4847 
4848 		}
4849 
4850 		local_irq_disable();
4851 		rps_lock(sd);
4852 		if (skb_queue_empty(&sd->input_pkt_queue)) {
4853 			/*
4854 			 * Inline a custom version of __napi_complete().
4855 			 * only current cpu owns and manipulates this napi,
4856 			 * and NAPI_STATE_SCHED is the only possible flag set
4857 			 * on backlog.
4858 			 * We can use a plain write instead of clear_bit(),
4859 			 * and we dont need an smp_mb() memory barrier.
4860 			 */
4861 			napi->state = 0;
4862 			again = false;
4863 		} else {
4864 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
4865 						   &sd->process_queue);
4866 		}
4867 		rps_unlock(sd);
4868 		local_irq_enable();
4869 	}
4870 
4871 	return work;
4872 }
4873 
4874 /**
4875  * __napi_schedule - schedule for receive
4876  * @n: entry to schedule
4877  *
4878  * The entry's receive function will be scheduled to run.
4879  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4880  */
4881 void __napi_schedule(struct napi_struct *n)
4882 {
4883 	unsigned long flags;
4884 
4885 	local_irq_save(flags);
4886 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4887 	local_irq_restore(flags);
4888 }
4889 EXPORT_SYMBOL(__napi_schedule);
4890 
4891 /**
4892  * __napi_schedule_irqoff - schedule for receive
4893  * @n: entry to schedule
4894  *
4895  * Variant of __napi_schedule() assuming hard irqs are masked
4896  */
4897 void __napi_schedule_irqoff(struct napi_struct *n)
4898 {
4899 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4900 }
4901 EXPORT_SYMBOL(__napi_schedule_irqoff);
4902 
4903 bool __napi_complete(struct napi_struct *n)
4904 {
4905 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4906 
4907 	/* Some drivers call us directly, instead of calling
4908 	 * napi_complete_done().
4909 	 */
4910 	if (unlikely(test_bit(NAPI_STATE_IN_BUSY_POLL, &n->state)))
4911 		return false;
4912 
4913 	list_del_init(&n->poll_list);
4914 	smp_mb__before_atomic();
4915 	clear_bit(NAPI_STATE_SCHED, &n->state);
4916 	return true;
4917 }
4918 EXPORT_SYMBOL(__napi_complete);
4919 
4920 bool napi_complete_done(struct napi_struct *n, int work_done)
4921 {
4922 	unsigned long flags;
4923 
4924 	/*
4925 	 * 1) Don't let napi dequeue from the cpu poll list
4926 	 *    just in case its running on a different cpu.
4927 	 * 2) If we are busy polling, do nothing here, we have
4928 	 *    the guarantee we will be called later.
4929 	 */
4930 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
4931 				 NAPIF_STATE_IN_BUSY_POLL)))
4932 		return false;
4933 
4934 	if (n->gro_list) {
4935 		unsigned long timeout = 0;
4936 
4937 		if (work_done)
4938 			timeout = n->dev->gro_flush_timeout;
4939 
4940 		if (timeout)
4941 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
4942 				      HRTIMER_MODE_REL_PINNED);
4943 		else
4944 			napi_gro_flush(n, false);
4945 	}
4946 	if (likely(list_empty(&n->poll_list))) {
4947 		WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4948 	} else {
4949 		/* If n->poll_list is not empty, we need to mask irqs */
4950 		local_irq_save(flags);
4951 		__napi_complete(n);
4952 		local_irq_restore(flags);
4953 	}
4954 	return true;
4955 }
4956 EXPORT_SYMBOL(napi_complete_done);
4957 
4958 /* must be called under rcu_read_lock(), as we dont take a reference */
4959 static struct napi_struct *napi_by_id(unsigned int napi_id)
4960 {
4961 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4962 	struct napi_struct *napi;
4963 
4964 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4965 		if (napi->napi_id == napi_id)
4966 			return napi;
4967 
4968 	return NULL;
4969 }
4970 
4971 #if defined(CONFIG_NET_RX_BUSY_POLL)
4972 
4973 #define BUSY_POLL_BUDGET 8
4974 
4975 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
4976 {
4977 	int rc;
4978 
4979 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
4980 
4981 	local_bh_disable();
4982 
4983 	/* All we really want here is to re-enable device interrupts.
4984 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
4985 	 */
4986 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
4987 	netpoll_poll_unlock(have_poll_lock);
4988 	if (rc == BUSY_POLL_BUDGET)
4989 		__napi_schedule(napi);
4990 	local_bh_enable();
4991 	if (local_softirq_pending())
4992 		do_softirq();
4993 }
4994 
4995 bool sk_busy_loop(struct sock *sk, int nonblock)
4996 {
4997 	unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
4998 	int (*napi_poll)(struct napi_struct *napi, int budget);
4999 	int (*busy_poll)(struct napi_struct *dev);
5000 	void *have_poll_lock = NULL;
5001 	struct napi_struct *napi;
5002 	int rc;
5003 
5004 restart:
5005 	rc = false;
5006 	napi_poll = NULL;
5007 
5008 	rcu_read_lock();
5009 
5010 	napi = napi_by_id(sk->sk_napi_id);
5011 	if (!napi)
5012 		goto out;
5013 
5014 	/* Note: ndo_busy_poll method is optional in linux-4.5 */
5015 	busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
5016 
5017 	preempt_disable();
5018 	for (;;) {
5019 		rc = 0;
5020 		local_bh_disable();
5021 		if (busy_poll) {
5022 			rc = busy_poll(napi);
5023 			goto count;
5024 		}
5025 		if (!napi_poll) {
5026 			unsigned long val = READ_ONCE(napi->state);
5027 
5028 			/* If multiple threads are competing for this napi,
5029 			 * we avoid dirtying napi->state as much as we can.
5030 			 */
5031 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5032 				   NAPIF_STATE_IN_BUSY_POLL))
5033 				goto count;
5034 			if (cmpxchg(&napi->state, val,
5035 				    val | NAPIF_STATE_IN_BUSY_POLL |
5036 					  NAPIF_STATE_SCHED) != val)
5037 				goto count;
5038 			have_poll_lock = netpoll_poll_lock(napi);
5039 			napi_poll = napi->poll;
5040 		}
5041 		rc = napi_poll(napi, BUSY_POLL_BUDGET);
5042 		trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5043 count:
5044 		if (rc > 0)
5045 			__NET_ADD_STATS(sock_net(sk),
5046 					LINUX_MIB_BUSYPOLLRXPACKETS, rc);
5047 		local_bh_enable();
5048 
5049 		if (rc == LL_FLUSH_FAILED)
5050 			break; /* permanent failure */
5051 
5052 		if (nonblock || !skb_queue_empty(&sk->sk_receive_queue) ||
5053 		    busy_loop_timeout(end_time))
5054 			break;
5055 
5056 		if (unlikely(need_resched())) {
5057 			if (napi_poll)
5058 				busy_poll_stop(napi, have_poll_lock);
5059 			preempt_enable();
5060 			rcu_read_unlock();
5061 			cond_resched();
5062 			rc = !skb_queue_empty(&sk->sk_receive_queue);
5063 			if (rc || busy_loop_timeout(end_time))
5064 				return rc;
5065 			goto restart;
5066 		}
5067 		cpu_relax();
5068 	}
5069 	if (napi_poll)
5070 		busy_poll_stop(napi, have_poll_lock);
5071 	preempt_enable();
5072 	rc = !skb_queue_empty(&sk->sk_receive_queue);
5073 out:
5074 	rcu_read_unlock();
5075 	return rc;
5076 }
5077 EXPORT_SYMBOL(sk_busy_loop);
5078 
5079 #endif /* CONFIG_NET_RX_BUSY_POLL */
5080 
5081 static void napi_hash_add(struct napi_struct *napi)
5082 {
5083 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5084 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5085 		return;
5086 
5087 	spin_lock(&napi_hash_lock);
5088 
5089 	/* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5090 	do {
5091 		if (unlikely(++napi_gen_id < NR_CPUS + 1))
5092 			napi_gen_id = NR_CPUS + 1;
5093 	} while (napi_by_id(napi_gen_id));
5094 	napi->napi_id = napi_gen_id;
5095 
5096 	hlist_add_head_rcu(&napi->napi_hash_node,
5097 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5098 
5099 	spin_unlock(&napi_hash_lock);
5100 }
5101 
5102 /* Warning : caller is responsible to make sure rcu grace period
5103  * is respected before freeing memory containing @napi
5104  */
5105 bool napi_hash_del(struct napi_struct *napi)
5106 {
5107 	bool rcu_sync_needed = false;
5108 
5109 	spin_lock(&napi_hash_lock);
5110 
5111 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5112 		rcu_sync_needed = true;
5113 		hlist_del_rcu(&napi->napi_hash_node);
5114 	}
5115 	spin_unlock(&napi_hash_lock);
5116 	return rcu_sync_needed;
5117 }
5118 EXPORT_SYMBOL_GPL(napi_hash_del);
5119 
5120 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5121 {
5122 	struct napi_struct *napi;
5123 
5124 	napi = container_of(timer, struct napi_struct, timer);
5125 	if (napi->gro_list)
5126 		napi_schedule(napi);
5127 
5128 	return HRTIMER_NORESTART;
5129 }
5130 
5131 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5132 		    int (*poll)(struct napi_struct *, int), int weight)
5133 {
5134 	INIT_LIST_HEAD(&napi->poll_list);
5135 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5136 	napi->timer.function = napi_watchdog;
5137 	napi->gro_count = 0;
5138 	napi->gro_list = NULL;
5139 	napi->skb = NULL;
5140 	napi->poll = poll;
5141 	if (weight > NAPI_POLL_WEIGHT)
5142 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5143 			    weight, dev->name);
5144 	napi->weight = weight;
5145 	list_add(&napi->dev_list, &dev->napi_list);
5146 	napi->dev = dev;
5147 #ifdef CONFIG_NETPOLL
5148 	napi->poll_owner = -1;
5149 #endif
5150 	set_bit(NAPI_STATE_SCHED, &napi->state);
5151 	napi_hash_add(napi);
5152 }
5153 EXPORT_SYMBOL(netif_napi_add);
5154 
5155 void napi_disable(struct napi_struct *n)
5156 {
5157 	might_sleep();
5158 	set_bit(NAPI_STATE_DISABLE, &n->state);
5159 
5160 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5161 		msleep(1);
5162 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5163 		msleep(1);
5164 
5165 	hrtimer_cancel(&n->timer);
5166 
5167 	clear_bit(NAPI_STATE_DISABLE, &n->state);
5168 }
5169 EXPORT_SYMBOL(napi_disable);
5170 
5171 /* Must be called in process context */
5172 void netif_napi_del(struct napi_struct *napi)
5173 {
5174 	might_sleep();
5175 	if (napi_hash_del(napi))
5176 		synchronize_net();
5177 	list_del_init(&napi->dev_list);
5178 	napi_free_frags(napi);
5179 
5180 	kfree_skb_list(napi->gro_list);
5181 	napi->gro_list = NULL;
5182 	napi->gro_count = 0;
5183 }
5184 EXPORT_SYMBOL(netif_napi_del);
5185 
5186 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5187 {
5188 	void *have;
5189 	int work, weight;
5190 
5191 	list_del_init(&n->poll_list);
5192 
5193 	have = netpoll_poll_lock(n);
5194 
5195 	weight = n->weight;
5196 
5197 	/* This NAPI_STATE_SCHED test is for avoiding a race
5198 	 * with netpoll's poll_napi().  Only the entity which
5199 	 * obtains the lock and sees NAPI_STATE_SCHED set will
5200 	 * actually make the ->poll() call.  Therefore we avoid
5201 	 * accidentally calling ->poll() when NAPI is not scheduled.
5202 	 */
5203 	work = 0;
5204 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5205 		work = n->poll(n, weight);
5206 		trace_napi_poll(n, work, weight);
5207 	}
5208 
5209 	WARN_ON_ONCE(work > weight);
5210 
5211 	if (likely(work < weight))
5212 		goto out_unlock;
5213 
5214 	/* Drivers must not modify the NAPI state if they
5215 	 * consume the entire weight.  In such cases this code
5216 	 * still "owns" the NAPI instance and therefore can
5217 	 * move the instance around on the list at-will.
5218 	 */
5219 	if (unlikely(napi_disable_pending(n))) {
5220 		napi_complete(n);
5221 		goto out_unlock;
5222 	}
5223 
5224 	if (n->gro_list) {
5225 		/* flush too old packets
5226 		 * If HZ < 1000, flush all packets.
5227 		 */
5228 		napi_gro_flush(n, HZ >= 1000);
5229 	}
5230 
5231 	/* Some drivers may have called napi_schedule
5232 	 * prior to exhausting their budget.
5233 	 */
5234 	if (unlikely(!list_empty(&n->poll_list))) {
5235 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5236 			     n->dev ? n->dev->name : "backlog");
5237 		goto out_unlock;
5238 	}
5239 
5240 	list_add_tail(&n->poll_list, repoll);
5241 
5242 out_unlock:
5243 	netpoll_poll_unlock(have);
5244 
5245 	return work;
5246 }
5247 
5248 static __latent_entropy void net_rx_action(struct softirq_action *h)
5249 {
5250 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5251 	unsigned long time_limit = jiffies + 2;
5252 	int budget = netdev_budget;
5253 	LIST_HEAD(list);
5254 	LIST_HEAD(repoll);
5255 
5256 	local_irq_disable();
5257 	list_splice_init(&sd->poll_list, &list);
5258 	local_irq_enable();
5259 
5260 	for (;;) {
5261 		struct napi_struct *n;
5262 
5263 		if (list_empty(&list)) {
5264 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5265 				goto out;
5266 			break;
5267 		}
5268 
5269 		n = list_first_entry(&list, struct napi_struct, poll_list);
5270 		budget -= napi_poll(n, &repoll);
5271 
5272 		/* If softirq window is exhausted then punt.
5273 		 * Allow this to run for 2 jiffies since which will allow
5274 		 * an average latency of 1.5/HZ.
5275 		 */
5276 		if (unlikely(budget <= 0 ||
5277 			     time_after_eq(jiffies, time_limit))) {
5278 			sd->time_squeeze++;
5279 			break;
5280 		}
5281 	}
5282 
5283 	local_irq_disable();
5284 
5285 	list_splice_tail_init(&sd->poll_list, &list);
5286 	list_splice_tail(&repoll, &list);
5287 	list_splice(&list, &sd->poll_list);
5288 	if (!list_empty(&sd->poll_list))
5289 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5290 
5291 	net_rps_action_and_irq_enable(sd);
5292 out:
5293 	__kfree_skb_flush();
5294 }
5295 
5296 struct netdev_adjacent {
5297 	struct net_device *dev;
5298 
5299 	/* upper master flag, there can only be one master device per list */
5300 	bool master;
5301 
5302 	/* counter for the number of times this device was added to us */
5303 	u16 ref_nr;
5304 
5305 	/* private field for the users */
5306 	void *private;
5307 
5308 	struct list_head list;
5309 	struct rcu_head rcu;
5310 };
5311 
5312 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5313 						 struct list_head *adj_list)
5314 {
5315 	struct netdev_adjacent *adj;
5316 
5317 	list_for_each_entry(adj, adj_list, list) {
5318 		if (adj->dev == adj_dev)
5319 			return adj;
5320 	}
5321 	return NULL;
5322 }
5323 
5324 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5325 {
5326 	struct net_device *dev = data;
5327 
5328 	return upper_dev == dev;
5329 }
5330 
5331 /**
5332  * netdev_has_upper_dev - Check if device is linked to an upper device
5333  * @dev: device
5334  * @upper_dev: upper device to check
5335  *
5336  * Find out if a device is linked to specified upper device and return true
5337  * in case it is. Note that this checks only immediate upper device,
5338  * not through a complete stack of devices. The caller must hold the RTNL lock.
5339  */
5340 bool netdev_has_upper_dev(struct net_device *dev,
5341 			  struct net_device *upper_dev)
5342 {
5343 	ASSERT_RTNL();
5344 
5345 	return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5346 					     upper_dev);
5347 }
5348 EXPORT_SYMBOL(netdev_has_upper_dev);
5349 
5350 /**
5351  * netdev_has_upper_dev_all - Check if device is linked to an upper device
5352  * @dev: device
5353  * @upper_dev: upper device to check
5354  *
5355  * Find out if a device is linked to specified upper device and return true
5356  * in case it is. Note that this checks the entire upper device chain.
5357  * The caller must hold rcu lock.
5358  */
5359 
5360 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5361 				  struct net_device *upper_dev)
5362 {
5363 	return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5364 					       upper_dev);
5365 }
5366 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5367 
5368 /**
5369  * netdev_has_any_upper_dev - Check if device is linked to some device
5370  * @dev: device
5371  *
5372  * Find out if a device is linked to an upper device and return true in case
5373  * it is. The caller must hold the RTNL lock.
5374  */
5375 static bool netdev_has_any_upper_dev(struct net_device *dev)
5376 {
5377 	ASSERT_RTNL();
5378 
5379 	return !list_empty(&dev->adj_list.upper);
5380 }
5381 
5382 /**
5383  * netdev_master_upper_dev_get - Get master upper device
5384  * @dev: device
5385  *
5386  * Find a master upper device and return pointer to it or NULL in case
5387  * it's not there. The caller must hold the RTNL lock.
5388  */
5389 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5390 {
5391 	struct netdev_adjacent *upper;
5392 
5393 	ASSERT_RTNL();
5394 
5395 	if (list_empty(&dev->adj_list.upper))
5396 		return NULL;
5397 
5398 	upper = list_first_entry(&dev->adj_list.upper,
5399 				 struct netdev_adjacent, list);
5400 	if (likely(upper->master))
5401 		return upper->dev;
5402 	return NULL;
5403 }
5404 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5405 
5406 /**
5407  * netdev_has_any_lower_dev - Check if device is linked to some device
5408  * @dev: device
5409  *
5410  * Find out if a device is linked to a lower device and return true in case
5411  * it is. The caller must hold the RTNL lock.
5412  */
5413 static bool netdev_has_any_lower_dev(struct net_device *dev)
5414 {
5415 	ASSERT_RTNL();
5416 
5417 	return !list_empty(&dev->adj_list.lower);
5418 }
5419 
5420 void *netdev_adjacent_get_private(struct list_head *adj_list)
5421 {
5422 	struct netdev_adjacent *adj;
5423 
5424 	adj = list_entry(adj_list, struct netdev_adjacent, list);
5425 
5426 	return adj->private;
5427 }
5428 EXPORT_SYMBOL(netdev_adjacent_get_private);
5429 
5430 /**
5431  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5432  * @dev: device
5433  * @iter: list_head ** of the current position
5434  *
5435  * Gets the next device from the dev's upper list, starting from iter
5436  * position. The caller must hold RCU read lock.
5437  */
5438 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5439 						 struct list_head **iter)
5440 {
5441 	struct netdev_adjacent *upper;
5442 
5443 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5444 
5445 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5446 
5447 	if (&upper->list == &dev->adj_list.upper)
5448 		return NULL;
5449 
5450 	*iter = &upper->list;
5451 
5452 	return upper->dev;
5453 }
5454 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5455 
5456 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5457 						    struct list_head **iter)
5458 {
5459 	struct netdev_adjacent *upper;
5460 
5461 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5462 
5463 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5464 
5465 	if (&upper->list == &dev->adj_list.upper)
5466 		return NULL;
5467 
5468 	*iter = &upper->list;
5469 
5470 	return upper->dev;
5471 }
5472 
5473 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5474 				  int (*fn)(struct net_device *dev,
5475 					    void *data),
5476 				  void *data)
5477 {
5478 	struct net_device *udev;
5479 	struct list_head *iter;
5480 	int ret;
5481 
5482 	for (iter = &dev->adj_list.upper,
5483 	     udev = netdev_next_upper_dev_rcu(dev, &iter);
5484 	     udev;
5485 	     udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5486 		/* first is the upper device itself */
5487 		ret = fn(udev, data);
5488 		if (ret)
5489 			return ret;
5490 
5491 		/* then look at all of its upper devices */
5492 		ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5493 		if (ret)
5494 			return ret;
5495 	}
5496 
5497 	return 0;
5498 }
5499 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5500 
5501 /**
5502  * netdev_lower_get_next_private - Get the next ->private from the
5503  *				   lower neighbour list
5504  * @dev: device
5505  * @iter: list_head ** of the current position
5506  *
5507  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5508  * list, starting from iter position. The caller must hold either hold the
5509  * RTNL lock or its own locking that guarantees that the neighbour lower
5510  * list will remain unchanged.
5511  */
5512 void *netdev_lower_get_next_private(struct net_device *dev,
5513 				    struct list_head **iter)
5514 {
5515 	struct netdev_adjacent *lower;
5516 
5517 	lower = list_entry(*iter, struct netdev_adjacent, list);
5518 
5519 	if (&lower->list == &dev->adj_list.lower)
5520 		return NULL;
5521 
5522 	*iter = lower->list.next;
5523 
5524 	return lower->private;
5525 }
5526 EXPORT_SYMBOL(netdev_lower_get_next_private);
5527 
5528 /**
5529  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5530  *				       lower neighbour list, RCU
5531  *				       variant
5532  * @dev: device
5533  * @iter: list_head ** of the current position
5534  *
5535  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5536  * list, starting from iter position. The caller must hold RCU read lock.
5537  */
5538 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5539 					struct list_head **iter)
5540 {
5541 	struct netdev_adjacent *lower;
5542 
5543 	WARN_ON_ONCE(!rcu_read_lock_held());
5544 
5545 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5546 
5547 	if (&lower->list == &dev->adj_list.lower)
5548 		return NULL;
5549 
5550 	*iter = &lower->list;
5551 
5552 	return lower->private;
5553 }
5554 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5555 
5556 /**
5557  * netdev_lower_get_next - Get the next device from the lower neighbour
5558  *                         list
5559  * @dev: device
5560  * @iter: list_head ** of the current position
5561  *
5562  * Gets the next netdev_adjacent from the dev's lower neighbour
5563  * list, starting from iter position. The caller must hold RTNL lock or
5564  * its own locking that guarantees that the neighbour lower
5565  * list will remain unchanged.
5566  */
5567 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5568 {
5569 	struct netdev_adjacent *lower;
5570 
5571 	lower = list_entry(*iter, struct netdev_adjacent, list);
5572 
5573 	if (&lower->list == &dev->adj_list.lower)
5574 		return NULL;
5575 
5576 	*iter = lower->list.next;
5577 
5578 	return lower->dev;
5579 }
5580 EXPORT_SYMBOL(netdev_lower_get_next);
5581 
5582 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5583 						struct list_head **iter)
5584 {
5585 	struct netdev_adjacent *lower;
5586 
5587 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5588 
5589 	if (&lower->list == &dev->adj_list.lower)
5590 		return NULL;
5591 
5592 	*iter = &lower->list;
5593 
5594 	return lower->dev;
5595 }
5596 
5597 int netdev_walk_all_lower_dev(struct net_device *dev,
5598 			      int (*fn)(struct net_device *dev,
5599 					void *data),
5600 			      void *data)
5601 {
5602 	struct net_device *ldev;
5603 	struct list_head *iter;
5604 	int ret;
5605 
5606 	for (iter = &dev->adj_list.lower,
5607 	     ldev = netdev_next_lower_dev(dev, &iter);
5608 	     ldev;
5609 	     ldev = netdev_next_lower_dev(dev, &iter)) {
5610 		/* first is the lower device itself */
5611 		ret = fn(ldev, data);
5612 		if (ret)
5613 			return ret;
5614 
5615 		/* then look at all of its lower devices */
5616 		ret = netdev_walk_all_lower_dev(ldev, fn, data);
5617 		if (ret)
5618 			return ret;
5619 	}
5620 
5621 	return 0;
5622 }
5623 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5624 
5625 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5626 						    struct list_head **iter)
5627 {
5628 	struct netdev_adjacent *lower;
5629 
5630 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5631 	if (&lower->list == &dev->adj_list.lower)
5632 		return NULL;
5633 
5634 	*iter = &lower->list;
5635 
5636 	return lower->dev;
5637 }
5638 
5639 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5640 				  int (*fn)(struct net_device *dev,
5641 					    void *data),
5642 				  void *data)
5643 {
5644 	struct net_device *ldev;
5645 	struct list_head *iter;
5646 	int ret;
5647 
5648 	for (iter = &dev->adj_list.lower,
5649 	     ldev = netdev_next_lower_dev_rcu(dev, &iter);
5650 	     ldev;
5651 	     ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5652 		/* first is the lower device itself */
5653 		ret = fn(ldev, data);
5654 		if (ret)
5655 			return ret;
5656 
5657 		/* then look at all of its lower devices */
5658 		ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5659 		if (ret)
5660 			return ret;
5661 	}
5662 
5663 	return 0;
5664 }
5665 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
5666 
5667 /**
5668  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5669  *				       lower neighbour list, RCU
5670  *				       variant
5671  * @dev: device
5672  *
5673  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5674  * list. The caller must hold RCU read lock.
5675  */
5676 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5677 {
5678 	struct netdev_adjacent *lower;
5679 
5680 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
5681 			struct netdev_adjacent, list);
5682 	if (lower)
5683 		return lower->private;
5684 	return NULL;
5685 }
5686 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5687 
5688 /**
5689  * netdev_master_upper_dev_get_rcu - Get master upper device
5690  * @dev: device
5691  *
5692  * Find a master upper device and return pointer to it or NULL in case
5693  * it's not there. The caller must hold the RCU read lock.
5694  */
5695 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5696 {
5697 	struct netdev_adjacent *upper;
5698 
5699 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
5700 				       struct netdev_adjacent, list);
5701 	if (upper && likely(upper->master))
5702 		return upper->dev;
5703 	return NULL;
5704 }
5705 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5706 
5707 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5708 			      struct net_device *adj_dev,
5709 			      struct list_head *dev_list)
5710 {
5711 	char linkname[IFNAMSIZ+7];
5712 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
5713 		"upper_%s" : "lower_%s", adj_dev->name);
5714 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5715 				 linkname);
5716 }
5717 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5718 			       char *name,
5719 			       struct list_head *dev_list)
5720 {
5721 	char linkname[IFNAMSIZ+7];
5722 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
5723 		"upper_%s" : "lower_%s", name);
5724 	sysfs_remove_link(&(dev->dev.kobj), linkname);
5725 }
5726 
5727 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5728 						 struct net_device *adj_dev,
5729 						 struct list_head *dev_list)
5730 {
5731 	return (dev_list == &dev->adj_list.upper ||
5732 		dev_list == &dev->adj_list.lower) &&
5733 		net_eq(dev_net(dev), dev_net(adj_dev));
5734 }
5735 
5736 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5737 					struct net_device *adj_dev,
5738 					struct list_head *dev_list,
5739 					void *private, bool master)
5740 {
5741 	struct netdev_adjacent *adj;
5742 	int ret;
5743 
5744 	adj = __netdev_find_adj(adj_dev, dev_list);
5745 
5746 	if (adj) {
5747 		adj->ref_nr += 1;
5748 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
5749 			 dev->name, adj_dev->name, adj->ref_nr);
5750 
5751 		return 0;
5752 	}
5753 
5754 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5755 	if (!adj)
5756 		return -ENOMEM;
5757 
5758 	adj->dev = adj_dev;
5759 	adj->master = master;
5760 	adj->ref_nr = 1;
5761 	adj->private = private;
5762 	dev_hold(adj_dev);
5763 
5764 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
5765 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5766 
5767 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5768 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5769 		if (ret)
5770 			goto free_adj;
5771 	}
5772 
5773 	/* Ensure that master link is always the first item in list. */
5774 	if (master) {
5775 		ret = sysfs_create_link(&(dev->dev.kobj),
5776 					&(adj_dev->dev.kobj), "master");
5777 		if (ret)
5778 			goto remove_symlinks;
5779 
5780 		list_add_rcu(&adj->list, dev_list);
5781 	} else {
5782 		list_add_tail_rcu(&adj->list, dev_list);
5783 	}
5784 
5785 	return 0;
5786 
5787 remove_symlinks:
5788 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5789 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5790 free_adj:
5791 	kfree(adj);
5792 	dev_put(adj_dev);
5793 
5794 	return ret;
5795 }
5796 
5797 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5798 					 struct net_device *adj_dev,
5799 					 u16 ref_nr,
5800 					 struct list_head *dev_list)
5801 {
5802 	struct netdev_adjacent *adj;
5803 
5804 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
5805 		 dev->name, adj_dev->name, ref_nr);
5806 
5807 	adj = __netdev_find_adj(adj_dev, dev_list);
5808 
5809 	if (!adj) {
5810 		pr_err("Adjacency does not exist for device %s from %s\n",
5811 		       dev->name, adj_dev->name);
5812 		WARN_ON(1);
5813 		return;
5814 	}
5815 
5816 	if (adj->ref_nr > ref_nr) {
5817 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
5818 			 dev->name, adj_dev->name, ref_nr,
5819 			 adj->ref_nr - ref_nr);
5820 		adj->ref_nr -= ref_nr;
5821 		return;
5822 	}
5823 
5824 	if (adj->master)
5825 		sysfs_remove_link(&(dev->dev.kobj), "master");
5826 
5827 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5828 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5829 
5830 	list_del_rcu(&adj->list);
5831 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
5832 		 adj_dev->name, dev->name, adj_dev->name);
5833 	dev_put(adj_dev);
5834 	kfree_rcu(adj, rcu);
5835 }
5836 
5837 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5838 					    struct net_device *upper_dev,
5839 					    struct list_head *up_list,
5840 					    struct list_head *down_list,
5841 					    void *private, bool master)
5842 {
5843 	int ret;
5844 
5845 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
5846 					   private, master);
5847 	if (ret)
5848 		return ret;
5849 
5850 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
5851 					   private, false);
5852 	if (ret) {
5853 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5854 		return ret;
5855 	}
5856 
5857 	return 0;
5858 }
5859 
5860 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5861 					       struct net_device *upper_dev,
5862 					       u16 ref_nr,
5863 					       struct list_head *up_list,
5864 					       struct list_head *down_list)
5865 {
5866 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5867 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5868 }
5869 
5870 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5871 						struct net_device *upper_dev,
5872 						void *private, bool master)
5873 {
5874 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5875 						&dev->adj_list.upper,
5876 						&upper_dev->adj_list.lower,
5877 						private, master);
5878 }
5879 
5880 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5881 						   struct net_device *upper_dev)
5882 {
5883 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
5884 					   &dev->adj_list.upper,
5885 					   &upper_dev->adj_list.lower);
5886 }
5887 
5888 static int __netdev_upper_dev_link(struct net_device *dev,
5889 				   struct net_device *upper_dev, bool master,
5890 				   void *upper_priv, void *upper_info)
5891 {
5892 	struct netdev_notifier_changeupper_info changeupper_info;
5893 	int ret = 0;
5894 
5895 	ASSERT_RTNL();
5896 
5897 	if (dev == upper_dev)
5898 		return -EBUSY;
5899 
5900 	/* To prevent loops, check if dev is not upper device to upper_dev. */
5901 	if (netdev_has_upper_dev(upper_dev, dev))
5902 		return -EBUSY;
5903 
5904 	if (netdev_has_upper_dev(dev, upper_dev))
5905 		return -EEXIST;
5906 
5907 	if (master && netdev_master_upper_dev_get(dev))
5908 		return -EBUSY;
5909 
5910 	changeupper_info.upper_dev = upper_dev;
5911 	changeupper_info.master = master;
5912 	changeupper_info.linking = true;
5913 	changeupper_info.upper_info = upper_info;
5914 
5915 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5916 					    &changeupper_info.info);
5917 	ret = notifier_to_errno(ret);
5918 	if (ret)
5919 		return ret;
5920 
5921 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5922 						   master);
5923 	if (ret)
5924 		return ret;
5925 
5926 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5927 					    &changeupper_info.info);
5928 	ret = notifier_to_errno(ret);
5929 	if (ret)
5930 		goto rollback;
5931 
5932 	return 0;
5933 
5934 rollback:
5935 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5936 
5937 	return ret;
5938 }
5939 
5940 /**
5941  * netdev_upper_dev_link - Add a link to the upper device
5942  * @dev: device
5943  * @upper_dev: new upper device
5944  *
5945  * Adds a link to device which is upper to this one. The caller must hold
5946  * the RTNL lock. On a failure a negative errno code is returned.
5947  * On success the reference counts are adjusted and the function
5948  * returns zero.
5949  */
5950 int netdev_upper_dev_link(struct net_device *dev,
5951 			  struct net_device *upper_dev)
5952 {
5953 	return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
5954 }
5955 EXPORT_SYMBOL(netdev_upper_dev_link);
5956 
5957 /**
5958  * netdev_master_upper_dev_link - Add a master link to the upper device
5959  * @dev: device
5960  * @upper_dev: new upper device
5961  * @upper_priv: upper device private
5962  * @upper_info: upper info to be passed down via notifier
5963  *
5964  * Adds a link to device which is upper to this one. In this case, only
5965  * one master upper device can be linked, although other non-master devices
5966  * might be linked as well. The caller must hold the RTNL lock.
5967  * On a failure a negative errno code is returned. On success the reference
5968  * counts are adjusted and the function returns zero.
5969  */
5970 int netdev_master_upper_dev_link(struct net_device *dev,
5971 				 struct net_device *upper_dev,
5972 				 void *upper_priv, void *upper_info)
5973 {
5974 	return __netdev_upper_dev_link(dev, upper_dev, true,
5975 				       upper_priv, upper_info);
5976 }
5977 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5978 
5979 /**
5980  * netdev_upper_dev_unlink - Removes a link to upper device
5981  * @dev: device
5982  * @upper_dev: new upper device
5983  *
5984  * Removes a link to device which is upper to this one. The caller must hold
5985  * the RTNL lock.
5986  */
5987 void netdev_upper_dev_unlink(struct net_device *dev,
5988 			     struct net_device *upper_dev)
5989 {
5990 	struct netdev_notifier_changeupper_info changeupper_info;
5991 	ASSERT_RTNL();
5992 
5993 	changeupper_info.upper_dev = upper_dev;
5994 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5995 	changeupper_info.linking = false;
5996 
5997 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5998 				      &changeupper_info.info);
5999 
6000 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6001 
6002 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6003 				      &changeupper_info.info);
6004 }
6005 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6006 
6007 /**
6008  * netdev_bonding_info_change - Dispatch event about slave change
6009  * @dev: device
6010  * @bonding_info: info to dispatch
6011  *
6012  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6013  * The caller must hold the RTNL lock.
6014  */
6015 void netdev_bonding_info_change(struct net_device *dev,
6016 				struct netdev_bonding_info *bonding_info)
6017 {
6018 	struct netdev_notifier_bonding_info	info;
6019 
6020 	memcpy(&info.bonding_info, bonding_info,
6021 	       sizeof(struct netdev_bonding_info));
6022 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
6023 				      &info.info);
6024 }
6025 EXPORT_SYMBOL(netdev_bonding_info_change);
6026 
6027 static void netdev_adjacent_add_links(struct net_device *dev)
6028 {
6029 	struct netdev_adjacent *iter;
6030 
6031 	struct net *net = dev_net(dev);
6032 
6033 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6034 		if (!net_eq(net, dev_net(iter->dev)))
6035 			continue;
6036 		netdev_adjacent_sysfs_add(iter->dev, dev,
6037 					  &iter->dev->adj_list.lower);
6038 		netdev_adjacent_sysfs_add(dev, iter->dev,
6039 					  &dev->adj_list.upper);
6040 	}
6041 
6042 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6043 		if (!net_eq(net, dev_net(iter->dev)))
6044 			continue;
6045 		netdev_adjacent_sysfs_add(iter->dev, dev,
6046 					  &iter->dev->adj_list.upper);
6047 		netdev_adjacent_sysfs_add(dev, iter->dev,
6048 					  &dev->adj_list.lower);
6049 	}
6050 }
6051 
6052 static void netdev_adjacent_del_links(struct net_device *dev)
6053 {
6054 	struct netdev_adjacent *iter;
6055 
6056 	struct net *net = dev_net(dev);
6057 
6058 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6059 		if (!net_eq(net, dev_net(iter->dev)))
6060 			continue;
6061 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6062 					  &iter->dev->adj_list.lower);
6063 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6064 					  &dev->adj_list.upper);
6065 	}
6066 
6067 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6068 		if (!net_eq(net, dev_net(iter->dev)))
6069 			continue;
6070 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6071 					  &iter->dev->adj_list.upper);
6072 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6073 					  &dev->adj_list.lower);
6074 	}
6075 }
6076 
6077 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6078 {
6079 	struct netdev_adjacent *iter;
6080 
6081 	struct net *net = dev_net(dev);
6082 
6083 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6084 		if (!net_eq(net, dev_net(iter->dev)))
6085 			continue;
6086 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6087 					  &iter->dev->adj_list.lower);
6088 		netdev_adjacent_sysfs_add(iter->dev, dev,
6089 					  &iter->dev->adj_list.lower);
6090 	}
6091 
6092 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6093 		if (!net_eq(net, dev_net(iter->dev)))
6094 			continue;
6095 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6096 					  &iter->dev->adj_list.upper);
6097 		netdev_adjacent_sysfs_add(iter->dev, dev,
6098 					  &iter->dev->adj_list.upper);
6099 	}
6100 }
6101 
6102 void *netdev_lower_dev_get_private(struct net_device *dev,
6103 				   struct net_device *lower_dev)
6104 {
6105 	struct netdev_adjacent *lower;
6106 
6107 	if (!lower_dev)
6108 		return NULL;
6109 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6110 	if (!lower)
6111 		return NULL;
6112 
6113 	return lower->private;
6114 }
6115 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6116 
6117 
6118 int dev_get_nest_level(struct net_device *dev)
6119 {
6120 	struct net_device *lower = NULL;
6121 	struct list_head *iter;
6122 	int max_nest = -1;
6123 	int nest;
6124 
6125 	ASSERT_RTNL();
6126 
6127 	netdev_for_each_lower_dev(dev, lower, iter) {
6128 		nest = dev_get_nest_level(lower);
6129 		if (max_nest < nest)
6130 			max_nest = nest;
6131 	}
6132 
6133 	return max_nest + 1;
6134 }
6135 EXPORT_SYMBOL(dev_get_nest_level);
6136 
6137 /**
6138  * netdev_lower_change - Dispatch event about lower device state change
6139  * @lower_dev: device
6140  * @lower_state_info: state to dispatch
6141  *
6142  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6143  * The caller must hold the RTNL lock.
6144  */
6145 void netdev_lower_state_changed(struct net_device *lower_dev,
6146 				void *lower_state_info)
6147 {
6148 	struct netdev_notifier_changelowerstate_info changelowerstate_info;
6149 
6150 	ASSERT_RTNL();
6151 	changelowerstate_info.lower_state_info = lower_state_info;
6152 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6153 				      &changelowerstate_info.info);
6154 }
6155 EXPORT_SYMBOL(netdev_lower_state_changed);
6156 
6157 int netdev_default_l2upper_neigh_construct(struct net_device *dev,
6158 					   struct neighbour *n)
6159 {
6160 	struct net_device *lower_dev, *stop_dev;
6161 	struct list_head *iter;
6162 	int err;
6163 
6164 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
6165 		if (!lower_dev->netdev_ops->ndo_neigh_construct)
6166 			continue;
6167 		err = lower_dev->netdev_ops->ndo_neigh_construct(lower_dev, n);
6168 		if (err) {
6169 			stop_dev = lower_dev;
6170 			goto rollback;
6171 		}
6172 	}
6173 	return 0;
6174 
6175 rollback:
6176 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
6177 		if (lower_dev == stop_dev)
6178 			break;
6179 		if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6180 			continue;
6181 		lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6182 	}
6183 	return err;
6184 }
6185 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_construct);
6186 
6187 void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
6188 					  struct neighbour *n)
6189 {
6190 	struct net_device *lower_dev;
6191 	struct list_head *iter;
6192 
6193 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
6194 		if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6195 			continue;
6196 		lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6197 	}
6198 }
6199 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_destroy);
6200 
6201 static void dev_change_rx_flags(struct net_device *dev, int flags)
6202 {
6203 	const struct net_device_ops *ops = dev->netdev_ops;
6204 
6205 	if (ops->ndo_change_rx_flags)
6206 		ops->ndo_change_rx_flags(dev, flags);
6207 }
6208 
6209 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6210 {
6211 	unsigned int old_flags = dev->flags;
6212 	kuid_t uid;
6213 	kgid_t gid;
6214 
6215 	ASSERT_RTNL();
6216 
6217 	dev->flags |= IFF_PROMISC;
6218 	dev->promiscuity += inc;
6219 	if (dev->promiscuity == 0) {
6220 		/*
6221 		 * Avoid overflow.
6222 		 * If inc causes overflow, untouch promisc and return error.
6223 		 */
6224 		if (inc < 0)
6225 			dev->flags &= ~IFF_PROMISC;
6226 		else {
6227 			dev->promiscuity -= inc;
6228 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6229 				dev->name);
6230 			return -EOVERFLOW;
6231 		}
6232 	}
6233 	if (dev->flags != old_flags) {
6234 		pr_info("device %s %s promiscuous mode\n",
6235 			dev->name,
6236 			dev->flags & IFF_PROMISC ? "entered" : "left");
6237 		if (audit_enabled) {
6238 			current_uid_gid(&uid, &gid);
6239 			audit_log(current->audit_context, GFP_ATOMIC,
6240 				AUDIT_ANOM_PROMISCUOUS,
6241 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6242 				dev->name, (dev->flags & IFF_PROMISC),
6243 				(old_flags & IFF_PROMISC),
6244 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
6245 				from_kuid(&init_user_ns, uid),
6246 				from_kgid(&init_user_ns, gid),
6247 				audit_get_sessionid(current));
6248 		}
6249 
6250 		dev_change_rx_flags(dev, IFF_PROMISC);
6251 	}
6252 	if (notify)
6253 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
6254 	return 0;
6255 }
6256 
6257 /**
6258  *	dev_set_promiscuity	- update promiscuity count on a device
6259  *	@dev: device
6260  *	@inc: modifier
6261  *
6262  *	Add or remove promiscuity from a device. While the count in the device
6263  *	remains above zero the interface remains promiscuous. Once it hits zero
6264  *	the device reverts back to normal filtering operation. A negative inc
6265  *	value is used to drop promiscuity on the device.
6266  *	Return 0 if successful or a negative errno code on error.
6267  */
6268 int dev_set_promiscuity(struct net_device *dev, int inc)
6269 {
6270 	unsigned int old_flags = dev->flags;
6271 	int err;
6272 
6273 	err = __dev_set_promiscuity(dev, inc, true);
6274 	if (err < 0)
6275 		return err;
6276 	if (dev->flags != old_flags)
6277 		dev_set_rx_mode(dev);
6278 	return err;
6279 }
6280 EXPORT_SYMBOL(dev_set_promiscuity);
6281 
6282 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6283 {
6284 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6285 
6286 	ASSERT_RTNL();
6287 
6288 	dev->flags |= IFF_ALLMULTI;
6289 	dev->allmulti += inc;
6290 	if (dev->allmulti == 0) {
6291 		/*
6292 		 * Avoid overflow.
6293 		 * If inc causes overflow, untouch allmulti and return error.
6294 		 */
6295 		if (inc < 0)
6296 			dev->flags &= ~IFF_ALLMULTI;
6297 		else {
6298 			dev->allmulti -= inc;
6299 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6300 				dev->name);
6301 			return -EOVERFLOW;
6302 		}
6303 	}
6304 	if (dev->flags ^ old_flags) {
6305 		dev_change_rx_flags(dev, IFF_ALLMULTI);
6306 		dev_set_rx_mode(dev);
6307 		if (notify)
6308 			__dev_notify_flags(dev, old_flags,
6309 					   dev->gflags ^ old_gflags);
6310 	}
6311 	return 0;
6312 }
6313 
6314 /**
6315  *	dev_set_allmulti	- update allmulti count on a device
6316  *	@dev: device
6317  *	@inc: modifier
6318  *
6319  *	Add or remove reception of all multicast frames to a device. While the
6320  *	count in the device remains above zero the interface remains listening
6321  *	to all interfaces. Once it hits zero the device reverts back to normal
6322  *	filtering operation. A negative @inc value is used to drop the counter
6323  *	when releasing a resource needing all multicasts.
6324  *	Return 0 if successful or a negative errno code on error.
6325  */
6326 
6327 int dev_set_allmulti(struct net_device *dev, int inc)
6328 {
6329 	return __dev_set_allmulti(dev, inc, true);
6330 }
6331 EXPORT_SYMBOL(dev_set_allmulti);
6332 
6333 /*
6334  *	Upload unicast and multicast address lists to device and
6335  *	configure RX filtering. When the device doesn't support unicast
6336  *	filtering it is put in promiscuous mode while unicast addresses
6337  *	are present.
6338  */
6339 void __dev_set_rx_mode(struct net_device *dev)
6340 {
6341 	const struct net_device_ops *ops = dev->netdev_ops;
6342 
6343 	/* dev_open will call this function so the list will stay sane. */
6344 	if (!(dev->flags&IFF_UP))
6345 		return;
6346 
6347 	if (!netif_device_present(dev))
6348 		return;
6349 
6350 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6351 		/* Unicast addresses changes may only happen under the rtnl,
6352 		 * therefore calling __dev_set_promiscuity here is safe.
6353 		 */
6354 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6355 			__dev_set_promiscuity(dev, 1, false);
6356 			dev->uc_promisc = true;
6357 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6358 			__dev_set_promiscuity(dev, -1, false);
6359 			dev->uc_promisc = false;
6360 		}
6361 	}
6362 
6363 	if (ops->ndo_set_rx_mode)
6364 		ops->ndo_set_rx_mode(dev);
6365 }
6366 
6367 void dev_set_rx_mode(struct net_device *dev)
6368 {
6369 	netif_addr_lock_bh(dev);
6370 	__dev_set_rx_mode(dev);
6371 	netif_addr_unlock_bh(dev);
6372 }
6373 
6374 /**
6375  *	dev_get_flags - get flags reported to userspace
6376  *	@dev: device
6377  *
6378  *	Get the combination of flag bits exported through APIs to userspace.
6379  */
6380 unsigned int dev_get_flags(const struct net_device *dev)
6381 {
6382 	unsigned int flags;
6383 
6384 	flags = (dev->flags & ~(IFF_PROMISC |
6385 				IFF_ALLMULTI |
6386 				IFF_RUNNING |
6387 				IFF_LOWER_UP |
6388 				IFF_DORMANT)) |
6389 		(dev->gflags & (IFF_PROMISC |
6390 				IFF_ALLMULTI));
6391 
6392 	if (netif_running(dev)) {
6393 		if (netif_oper_up(dev))
6394 			flags |= IFF_RUNNING;
6395 		if (netif_carrier_ok(dev))
6396 			flags |= IFF_LOWER_UP;
6397 		if (netif_dormant(dev))
6398 			flags |= IFF_DORMANT;
6399 	}
6400 
6401 	return flags;
6402 }
6403 EXPORT_SYMBOL(dev_get_flags);
6404 
6405 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6406 {
6407 	unsigned int old_flags = dev->flags;
6408 	int ret;
6409 
6410 	ASSERT_RTNL();
6411 
6412 	/*
6413 	 *	Set the flags on our device.
6414 	 */
6415 
6416 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6417 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6418 			       IFF_AUTOMEDIA)) |
6419 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6420 				    IFF_ALLMULTI));
6421 
6422 	/*
6423 	 *	Load in the correct multicast list now the flags have changed.
6424 	 */
6425 
6426 	if ((old_flags ^ flags) & IFF_MULTICAST)
6427 		dev_change_rx_flags(dev, IFF_MULTICAST);
6428 
6429 	dev_set_rx_mode(dev);
6430 
6431 	/*
6432 	 *	Have we downed the interface. We handle IFF_UP ourselves
6433 	 *	according to user attempts to set it, rather than blindly
6434 	 *	setting it.
6435 	 */
6436 
6437 	ret = 0;
6438 	if ((old_flags ^ flags) & IFF_UP)
6439 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6440 
6441 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
6442 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
6443 		unsigned int old_flags = dev->flags;
6444 
6445 		dev->gflags ^= IFF_PROMISC;
6446 
6447 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
6448 			if (dev->flags != old_flags)
6449 				dev_set_rx_mode(dev);
6450 	}
6451 
6452 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6453 	   is important. Some (broken) drivers set IFF_PROMISC, when
6454 	   IFF_ALLMULTI is requested not asking us and not reporting.
6455 	 */
6456 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6457 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6458 
6459 		dev->gflags ^= IFF_ALLMULTI;
6460 		__dev_set_allmulti(dev, inc, false);
6461 	}
6462 
6463 	return ret;
6464 }
6465 
6466 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6467 			unsigned int gchanges)
6468 {
6469 	unsigned int changes = dev->flags ^ old_flags;
6470 
6471 	if (gchanges)
6472 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6473 
6474 	if (changes & IFF_UP) {
6475 		if (dev->flags & IFF_UP)
6476 			call_netdevice_notifiers(NETDEV_UP, dev);
6477 		else
6478 			call_netdevice_notifiers(NETDEV_DOWN, dev);
6479 	}
6480 
6481 	if (dev->flags & IFF_UP &&
6482 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6483 		struct netdev_notifier_change_info change_info;
6484 
6485 		change_info.flags_changed = changes;
6486 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6487 					      &change_info.info);
6488 	}
6489 }
6490 
6491 /**
6492  *	dev_change_flags - change device settings
6493  *	@dev: device
6494  *	@flags: device state flags
6495  *
6496  *	Change settings on device based state flags. The flags are
6497  *	in the userspace exported format.
6498  */
6499 int dev_change_flags(struct net_device *dev, unsigned int flags)
6500 {
6501 	int ret;
6502 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6503 
6504 	ret = __dev_change_flags(dev, flags);
6505 	if (ret < 0)
6506 		return ret;
6507 
6508 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6509 	__dev_notify_flags(dev, old_flags, changes);
6510 	return ret;
6511 }
6512 EXPORT_SYMBOL(dev_change_flags);
6513 
6514 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6515 {
6516 	const struct net_device_ops *ops = dev->netdev_ops;
6517 
6518 	if (ops->ndo_change_mtu)
6519 		return ops->ndo_change_mtu(dev, new_mtu);
6520 
6521 	dev->mtu = new_mtu;
6522 	return 0;
6523 }
6524 
6525 /**
6526  *	dev_set_mtu - Change maximum transfer unit
6527  *	@dev: device
6528  *	@new_mtu: new transfer unit
6529  *
6530  *	Change the maximum transfer size of the network device.
6531  */
6532 int dev_set_mtu(struct net_device *dev, int new_mtu)
6533 {
6534 	int err, orig_mtu;
6535 
6536 	if (new_mtu == dev->mtu)
6537 		return 0;
6538 
6539 	/* MTU must be positive, and in range */
6540 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6541 		net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6542 				    dev->name, new_mtu, dev->min_mtu);
6543 		return -EINVAL;
6544 	}
6545 
6546 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6547 		net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6548 				    dev->name, new_mtu, dev->max_mtu);
6549 		return -EINVAL;
6550 	}
6551 
6552 	if (!netif_device_present(dev))
6553 		return -ENODEV;
6554 
6555 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6556 	err = notifier_to_errno(err);
6557 	if (err)
6558 		return err;
6559 
6560 	orig_mtu = dev->mtu;
6561 	err = __dev_set_mtu(dev, new_mtu);
6562 
6563 	if (!err) {
6564 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6565 		err = notifier_to_errno(err);
6566 		if (err) {
6567 			/* setting mtu back and notifying everyone again,
6568 			 * so that they have a chance to revert changes.
6569 			 */
6570 			__dev_set_mtu(dev, orig_mtu);
6571 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6572 		}
6573 	}
6574 	return err;
6575 }
6576 EXPORT_SYMBOL(dev_set_mtu);
6577 
6578 /**
6579  *	dev_set_group - Change group this device belongs to
6580  *	@dev: device
6581  *	@new_group: group this device should belong to
6582  */
6583 void dev_set_group(struct net_device *dev, int new_group)
6584 {
6585 	dev->group = new_group;
6586 }
6587 EXPORT_SYMBOL(dev_set_group);
6588 
6589 /**
6590  *	dev_set_mac_address - Change Media Access Control Address
6591  *	@dev: device
6592  *	@sa: new address
6593  *
6594  *	Change the hardware (MAC) address of the device
6595  */
6596 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6597 {
6598 	const struct net_device_ops *ops = dev->netdev_ops;
6599 	int err;
6600 
6601 	if (!ops->ndo_set_mac_address)
6602 		return -EOPNOTSUPP;
6603 	if (sa->sa_family != dev->type)
6604 		return -EINVAL;
6605 	if (!netif_device_present(dev))
6606 		return -ENODEV;
6607 	err = ops->ndo_set_mac_address(dev, sa);
6608 	if (err)
6609 		return err;
6610 	dev->addr_assign_type = NET_ADDR_SET;
6611 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6612 	add_device_randomness(dev->dev_addr, dev->addr_len);
6613 	return 0;
6614 }
6615 EXPORT_SYMBOL(dev_set_mac_address);
6616 
6617 /**
6618  *	dev_change_carrier - Change device carrier
6619  *	@dev: device
6620  *	@new_carrier: new value
6621  *
6622  *	Change device carrier
6623  */
6624 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6625 {
6626 	const struct net_device_ops *ops = dev->netdev_ops;
6627 
6628 	if (!ops->ndo_change_carrier)
6629 		return -EOPNOTSUPP;
6630 	if (!netif_device_present(dev))
6631 		return -ENODEV;
6632 	return ops->ndo_change_carrier(dev, new_carrier);
6633 }
6634 EXPORT_SYMBOL(dev_change_carrier);
6635 
6636 /**
6637  *	dev_get_phys_port_id - Get device physical port ID
6638  *	@dev: device
6639  *	@ppid: port ID
6640  *
6641  *	Get device physical port ID
6642  */
6643 int dev_get_phys_port_id(struct net_device *dev,
6644 			 struct netdev_phys_item_id *ppid)
6645 {
6646 	const struct net_device_ops *ops = dev->netdev_ops;
6647 
6648 	if (!ops->ndo_get_phys_port_id)
6649 		return -EOPNOTSUPP;
6650 	return ops->ndo_get_phys_port_id(dev, ppid);
6651 }
6652 EXPORT_SYMBOL(dev_get_phys_port_id);
6653 
6654 /**
6655  *	dev_get_phys_port_name - Get device physical port name
6656  *	@dev: device
6657  *	@name: port name
6658  *	@len: limit of bytes to copy to name
6659  *
6660  *	Get device physical port name
6661  */
6662 int dev_get_phys_port_name(struct net_device *dev,
6663 			   char *name, size_t len)
6664 {
6665 	const struct net_device_ops *ops = dev->netdev_ops;
6666 
6667 	if (!ops->ndo_get_phys_port_name)
6668 		return -EOPNOTSUPP;
6669 	return ops->ndo_get_phys_port_name(dev, name, len);
6670 }
6671 EXPORT_SYMBOL(dev_get_phys_port_name);
6672 
6673 /**
6674  *	dev_change_proto_down - update protocol port state information
6675  *	@dev: device
6676  *	@proto_down: new value
6677  *
6678  *	This info can be used by switch drivers to set the phys state of the
6679  *	port.
6680  */
6681 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6682 {
6683 	const struct net_device_ops *ops = dev->netdev_ops;
6684 
6685 	if (!ops->ndo_change_proto_down)
6686 		return -EOPNOTSUPP;
6687 	if (!netif_device_present(dev))
6688 		return -ENODEV;
6689 	return ops->ndo_change_proto_down(dev, proto_down);
6690 }
6691 EXPORT_SYMBOL(dev_change_proto_down);
6692 
6693 /**
6694  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
6695  *	@dev: device
6696  *	@fd: new program fd or negative value to clear
6697  *	@flags: xdp-related flags
6698  *
6699  *	Set or clear a bpf program for a device
6700  */
6701 int dev_change_xdp_fd(struct net_device *dev, int fd, u32 flags)
6702 {
6703 	const struct net_device_ops *ops = dev->netdev_ops;
6704 	struct bpf_prog *prog = NULL;
6705 	struct netdev_xdp xdp;
6706 	int err;
6707 
6708 	ASSERT_RTNL();
6709 
6710 	if (!ops->ndo_xdp)
6711 		return -EOPNOTSUPP;
6712 	if (fd >= 0) {
6713 		if (flags & XDP_FLAGS_UPDATE_IF_NOEXIST) {
6714 			memset(&xdp, 0, sizeof(xdp));
6715 			xdp.command = XDP_QUERY_PROG;
6716 
6717 			err = ops->ndo_xdp(dev, &xdp);
6718 			if (err < 0)
6719 				return err;
6720 			if (xdp.prog_attached)
6721 				return -EBUSY;
6722 		}
6723 
6724 		prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6725 		if (IS_ERR(prog))
6726 			return PTR_ERR(prog);
6727 	}
6728 
6729 	memset(&xdp, 0, sizeof(xdp));
6730 	xdp.command = XDP_SETUP_PROG;
6731 	xdp.prog = prog;
6732 
6733 	err = ops->ndo_xdp(dev, &xdp);
6734 	if (err < 0 && prog)
6735 		bpf_prog_put(prog);
6736 
6737 	return err;
6738 }
6739 EXPORT_SYMBOL(dev_change_xdp_fd);
6740 
6741 /**
6742  *	dev_new_index	-	allocate an ifindex
6743  *	@net: the applicable net namespace
6744  *
6745  *	Returns a suitable unique value for a new device interface
6746  *	number.  The caller must hold the rtnl semaphore or the
6747  *	dev_base_lock to be sure it remains unique.
6748  */
6749 static int dev_new_index(struct net *net)
6750 {
6751 	int ifindex = net->ifindex;
6752 	for (;;) {
6753 		if (++ifindex <= 0)
6754 			ifindex = 1;
6755 		if (!__dev_get_by_index(net, ifindex))
6756 			return net->ifindex = ifindex;
6757 	}
6758 }
6759 
6760 /* Delayed registration/unregisteration */
6761 static LIST_HEAD(net_todo_list);
6762 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6763 
6764 static void net_set_todo(struct net_device *dev)
6765 {
6766 	list_add_tail(&dev->todo_list, &net_todo_list);
6767 	dev_net(dev)->dev_unreg_count++;
6768 }
6769 
6770 static void rollback_registered_many(struct list_head *head)
6771 {
6772 	struct net_device *dev, *tmp;
6773 	LIST_HEAD(close_head);
6774 
6775 	BUG_ON(dev_boot_phase);
6776 	ASSERT_RTNL();
6777 
6778 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6779 		/* Some devices call without registering
6780 		 * for initialization unwind. Remove those
6781 		 * devices and proceed with the remaining.
6782 		 */
6783 		if (dev->reg_state == NETREG_UNINITIALIZED) {
6784 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6785 				 dev->name, dev);
6786 
6787 			WARN_ON(1);
6788 			list_del(&dev->unreg_list);
6789 			continue;
6790 		}
6791 		dev->dismantle = true;
6792 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
6793 	}
6794 
6795 	/* If device is running, close it first. */
6796 	list_for_each_entry(dev, head, unreg_list)
6797 		list_add_tail(&dev->close_list, &close_head);
6798 	dev_close_many(&close_head, true);
6799 
6800 	list_for_each_entry(dev, head, unreg_list) {
6801 		/* And unlink it from device chain. */
6802 		unlist_netdevice(dev);
6803 
6804 		dev->reg_state = NETREG_UNREGISTERING;
6805 	}
6806 	flush_all_backlogs();
6807 
6808 	synchronize_net();
6809 
6810 	list_for_each_entry(dev, head, unreg_list) {
6811 		struct sk_buff *skb = NULL;
6812 
6813 		/* Shutdown queueing discipline. */
6814 		dev_shutdown(dev);
6815 
6816 
6817 		/* Notify protocols, that we are about to destroy
6818 		   this device. They should clean all the things.
6819 		*/
6820 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6821 
6822 		if (!dev->rtnl_link_ops ||
6823 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6824 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6825 						     GFP_KERNEL);
6826 
6827 		/*
6828 		 *	Flush the unicast and multicast chains
6829 		 */
6830 		dev_uc_flush(dev);
6831 		dev_mc_flush(dev);
6832 
6833 		if (dev->netdev_ops->ndo_uninit)
6834 			dev->netdev_ops->ndo_uninit(dev);
6835 
6836 		if (skb)
6837 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6838 
6839 		/* Notifier chain MUST detach us all upper devices. */
6840 		WARN_ON(netdev_has_any_upper_dev(dev));
6841 		WARN_ON(netdev_has_any_lower_dev(dev));
6842 
6843 		/* Remove entries from kobject tree */
6844 		netdev_unregister_kobject(dev);
6845 #ifdef CONFIG_XPS
6846 		/* Remove XPS queueing entries */
6847 		netif_reset_xps_queues_gt(dev, 0);
6848 #endif
6849 	}
6850 
6851 	synchronize_net();
6852 
6853 	list_for_each_entry(dev, head, unreg_list)
6854 		dev_put(dev);
6855 }
6856 
6857 static void rollback_registered(struct net_device *dev)
6858 {
6859 	LIST_HEAD(single);
6860 
6861 	list_add(&dev->unreg_list, &single);
6862 	rollback_registered_many(&single);
6863 	list_del(&single);
6864 }
6865 
6866 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6867 	struct net_device *upper, netdev_features_t features)
6868 {
6869 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6870 	netdev_features_t feature;
6871 	int feature_bit;
6872 
6873 	for_each_netdev_feature(&upper_disables, feature_bit) {
6874 		feature = __NETIF_F_BIT(feature_bit);
6875 		if (!(upper->wanted_features & feature)
6876 		    && (features & feature)) {
6877 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6878 				   &feature, upper->name);
6879 			features &= ~feature;
6880 		}
6881 	}
6882 
6883 	return features;
6884 }
6885 
6886 static void netdev_sync_lower_features(struct net_device *upper,
6887 	struct net_device *lower, netdev_features_t features)
6888 {
6889 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6890 	netdev_features_t feature;
6891 	int feature_bit;
6892 
6893 	for_each_netdev_feature(&upper_disables, feature_bit) {
6894 		feature = __NETIF_F_BIT(feature_bit);
6895 		if (!(features & feature) && (lower->features & feature)) {
6896 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6897 				   &feature, lower->name);
6898 			lower->wanted_features &= ~feature;
6899 			netdev_update_features(lower);
6900 
6901 			if (unlikely(lower->features & feature))
6902 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6903 					    &feature, lower->name);
6904 		}
6905 	}
6906 }
6907 
6908 static netdev_features_t netdev_fix_features(struct net_device *dev,
6909 	netdev_features_t features)
6910 {
6911 	/* Fix illegal checksum combinations */
6912 	if ((features & NETIF_F_HW_CSUM) &&
6913 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6914 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6915 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6916 	}
6917 
6918 	/* TSO requires that SG is present as well. */
6919 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6920 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6921 		features &= ~NETIF_F_ALL_TSO;
6922 	}
6923 
6924 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6925 					!(features & NETIF_F_IP_CSUM)) {
6926 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6927 		features &= ~NETIF_F_TSO;
6928 		features &= ~NETIF_F_TSO_ECN;
6929 	}
6930 
6931 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6932 					 !(features & NETIF_F_IPV6_CSUM)) {
6933 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6934 		features &= ~NETIF_F_TSO6;
6935 	}
6936 
6937 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6938 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6939 		features &= ~NETIF_F_TSO_MANGLEID;
6940 
6941 	/* TSO ECN requires that TSO is present as well. */
6942 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6943 		features &= ~NETIF_F_TSO_ECN;
6944 
6945 	/* Software GSO depends on SG. */
6946 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6947 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6948 		features &= ~NETIF_F_GSO;
6949 	}
6950 
6951 	/* UFO needs SG and checksumming */
6952 	if (features & NETIF_F_UFO) {
6953 		/* maybe split UFO into V4 and V6? */
6954 		if (!(features & NETIF_F_HW_CSUM) &&
6955 		    ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6956 		     (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6957 			netdev_dbg(dev,
6958 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
6959 			features &= ~NETIF_F_UFO;
6960 		}
6961 
6962 		if (!(features & NETIF_F_SG)) {
6963 			netdev_dbg(dev,
6964 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6965 			features &= ~NETIF_F_UFO;
6966 		}
6967 	}
6968 
6969 	/* GSO partial features require GSO partial be set */
6970 	if ((features & dev->gso_partial_features) &&
6971 	    !(features & NETIF_F_GSO_PARTIAL)) {
6972 		netdev_dbg(dev,
6973 			   "Dropping partially supported GSO features since no GSO partial.\n");
6974 		features &= ~dev->gso_partial_features;
6975 	}
6976 
6977 #ifdef CONFIG_NET_RX_BUSY_POLL
6978 	if (dev->netdev_ops->ndo_busy_poll)
6979 		features |= NETIF_F_BUSY_POLL;
6980 	else
6981 #endif
6982 		features &= ~NETIF_F_BUSY_POLL;
6983 
6984 	return features;
6985 }
6986 
6987 int __netdev_update_features(struct net_device *dev)
6988 {
6989 	struct net_device *upper, *lower;
6990 	netdev_features_t features;
6991 	struct list_head *iter;
6992 	int err = -1;
6993 
6994 	ASSERT_RTNL();
6995 
6996 	features = netdev_get_wanted_features(dev);
6997 
6998 	if (dev->netdev_ops->ndo_fix_features)
6999 		features = dev->netdev_ops->ndo_fix_features(dev, features);
7000 
7001 	/* driver might be less strict about feature dependencies */
7002 	features = netdev_fix_features(dev, features);
7003 
7004 	/* some features can't be enabled if they're off an an upper device */
7005 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
7006 		features = netdev_sync_upper_features(dev, upper, features);
7007 
7008 	if (dev->features == features)
7009 		goto sync_lower;
7010 
7011 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7012 		&dev->features, &features);
7013 
7014 	if (dev->netdev_ops->ndo_set_features)
7015 		err = dev->netdev_ops->ndo_set_features(dev, features);
7016 	else
7017 		err = 0;
7018 
7019 	if (unlikely(err < 0)) {
7020 		netdev_err(dev,
7021 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
7022 			err, &features, &dev->features);
7023 		/* return non-0 since some features might have changed and
7024 		 * it's better to fire a spurious notification than miss it
7025 		 */
7026 		return -1;
7027 	}
7028 
7029 sync_lower:
7030 	/* some features must be disabled on lower devices when disabled
7031 	 * on an upper device (think: bonding master or bridge)
7032 	 */
7033 	netdev_for_each_lower_dev(dev, lower, iter)
7034 		netdev_sync_lower_features(dev, lower, features);
7035 
7036 	if (!err)
7037 		dev->features = features;
7038 
7039 	return err < 0 ? 0 : 1;
7040 }
7041 
7042 /**
7043  *	netdev_update_features - recalculate device features
7044  *	@dev: the device to check
7045  *
7046  *	Recalculate dev->features set and send notifications if it
7047  *	has changed. Should be called after driver or hardware dependent
7048  *	conditions might have changed that influence the features.
7049  */
7050 void netdev_update_features(struct net_device *dev)
7051 {
7052 	if (__netdev_update_features(dev))
7053 		netdev_features_change(dev);
7054 }
7055 EXPORT_SYMBOL(netdev_update_features);
7056 
7057 /**
7058  *	netdev_change_features - recalculate device features
7059  *	@dev: the device to check
7060  *
7061  *	Recalculate dev->features set and send notifications even
7062  *	if they have not changed. Should be called instead of
7063  *	netdev_update_features() if also dev->vlan_features might
7064  *	have changed to allow the changes to be propagated to stacked
7065  *	VLAN devices.
7066  */
7067 void netdev_change_features(struct net_device *dev)
7068 {
7069 	__netdev_update_features(dev);
7070 	netdev_features_change(dev);
7071 }
7072 EXPORT_SYMBOL(netdev_change_features);
7073 
7074 /**
7075  *	netif_stacked_transfer_operstate -	transfer operstate
7076  *	@rootdev: the root or lower level device to transfer state from
7077  *	@dev: the device to transfer operstate to
7078  *
7079  *	Transfer operational state from root to device. This is normally
7080  *	called when a stacking relationship exists between the root
7081  *	device and the device(a leaf device).
7082  */
7083 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7084 					struct net_device *dev)
7085 {
7086 	if (rootdev->operstate == IF_OPER_DORMANT)
7087 		netif_dormant_on(dev);
7088 	else
7089 		netif_dormant_off(dev);
7090 
7091 	if (netif_carrier_ok(rootdev)) {
7092 		if (!netif_carrier_ok(dev))
7093 			netif_carrier_on(dev);
7094 	} else {
7095 		if (netif_carrier_ok(dev))
7096 			netif_carrier_off(dev);
7097 	}
7098 }
7099 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7100 
7101 #ifdef CONFIG_SYSFS
7102 static int netif_alloc_rx_queues(struct net_device *dev)
7103 {
7104 	unsigned int i, count = dev->num_rx_queues;
7105 	struct netdev_rx_queue *rx;
7106 	size_t sz = count * sizeof(*rx);
7107 
7108 	BUG_ON(count < 1);
7109 
7110 	rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7111 	if (!rx) {
7112 		rx = vzalloc(sz);
7113 		if (!rx)
7114 			return -ENOMEM;
7115 	}
7116 	dev->_rx = rx;
7117 
7118 	for (i = 0; i < count; i++)
7119 		rx[i].dev = dev;
7120 	return 0;
7121 }
7122 #endif
7123 
7124 static void netdev_init_one_queue(struct net_device *dev,
7125 				  struct netdev_queue *queue, void *_unused)
7126 {
7127 	/* Initialize queue lock */
7128 	spin_lock_init(&queue->_xmit_lock);
7129 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7130 	queue->xmit_lock_owner = -1;
7131 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7132 	queue->dev = dev;
7133 #ifdef CONFIG_BQL
7134 	dql_init(&queue->dql, HZ);
7135 #endif
7136 }
7137 
7138 static void netif_free_tx_queues(struct net_device *dev)
7139 {
7140 	kvfree(dev->_tx);
7141 }
7142 
7143 static int netif_alloc_netdev_queues(struct net_device *dev)
7144 {
7145 	unsigned int count = dev->num_tx_queues;
7146 	struct netdev_queue *tx;
7147 	size_t sz = count * sizeof(*tx);
7148 
7149 	if (count < 1 || count > 0xffff)
7150 		return -EINVAL;
7151 
7152 	tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7153 	if (!tx) {
7154 		tx = vzalloc(sz);
7155 		if (!tx)
7156 			return -ENOMEM;
7157 	}
7158 	dev->_tx = tx;
7159 
7160 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7161 	spin_lock_init(&dev->tx_global_lock);
7162 
7163 	return 0;
7164 }
7165 
7166 void netif_tx_stop_all_queues(struct net_device *dev)
7167 {
7168 	unsigned int i;
7169 
7170 	for (i = 0; i < dev->num_tx_queues; i++) {
7171 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7172 		netif_tx_stop_queue(txq);
7173 	}
7174 }
7175 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7176 
7177 /**
7178  *	register_netdevice	- register a network device
7179  *	@dev: device to register
7180  *
7181  *	Take a completed network device structure and add it to the kernel
7182  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7183  *	chain. 0 is returned on success. A negative errno code is returned
7184  *	on a failure to set up the device, or if the name is a duplicate.
7185  *
7186  *	Callers must hold the rtnl semaphore. You may want
7187  *	register_netdev() instead of this.
7188  *
7189  *	BUGS:
7190  *	The locking appears insufficient to guarantee two parallel registers
7191  *	will not get the same name.
7192  */
7193 
7194 int register_netdevice(struct net_device *dev)
7195 {
7196 	int ret;
7197 	struct net *net = dev_net(dev);
7198 
7199 	BUG_ON(dev_boot_phase);
7200 	ASSERT_RTNL();
7201 
7202 	might_sleep();
7203 
7204 	/* When net_device's are persistent, this will be fatal. */
7205 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7206 	BUG_ON(!net);
7207 
7208 	spin_lock_init(&dev->addr_list_lock);
7209 	netdev_set_addr_lockdep_class(dev);
7210 
7211 	ret = dev_get_valid_name(net, dev, dev->name);
7212 	if (ret < 0)
7213 		goto out;
7214 
7215 	/* Init, if this function is available */
7216 	if (dev->netdev_ops->ndo_init) {
7217 		ret = dev->netdev_ops->ndo_init(dev);
7218 		if (ret) {
7219 			if (ret > 0)
7220 				ret = -EIO;
7221 			goto out;
7222 		}
7223 	}
7224 
7225 	if (((dev->hw_features | dev->features) &
7226 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
7227 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7228 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7229 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7230 		ret = -EINVAL;
7231 		goto err_uninit;
7232 	}
7233 
7234 	ret = -EBUSY;
7235 	if (!dev->ifindex)
7236 		dev->ifindex = dev_new_index(net);
7237 	else if (__dev_get_by_index(net, dev->ifindex))
7238 		goto err_uninit;
7239 
7240 	/* Transfer changeable features to wanted_features and enable
7241 	 * software offloads (GSO and GRO).
7242 	 */
7243 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
7244 	dev->features |= NETIF_F_SOFT_FEATURES;
7245 	dev->wanted_features = dev->features & dev->hw_features;
7246 
7247 	if (!(dev->flags & IFF_LOOPBACK))
7248 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
7249 
7250 	/* If IPv4 TCP segmentation offload is supported we should also
7251 	 * allow the device to enable segmenting the frame with the option
7252 	 * of ignoring a static IP ID value.  This doesn't enable the
7253 	 * feature itself but allows the user to enable it later.
7254 	 */
7255 	if (dev->hw_features & NETIF_F_TSO)
7256 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
7257 	if (dev->vlan_features & NETIF_F_TSO)
7258 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7259 	if (dev->mpls_features & NETIF_F_TSO)
7260 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7261 	if (dev->hw_enc_features & NETIF_F_TSO)
7262 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7263 
7264 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7265 	 */
7266 	dev->vlan_features |= NETIF_F_HIGHDMA;
7267 
7268 	/* Make NETIF_F_SG inheritable to tunnel devices.
7269 	 */
7270 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7271 
7272 	/* Make NETIF_F_SG inheritable to MPLS.
7273 	 */
7274 	dev->mpls_features |= NETIF_F_SG;
7275 
7276 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7277 	ret = notifier_to_errno(ret);
7278 	if (ret)
7279 		goto err_uninit;
7280 
7281 	ret = netdev_register_kobject(dev);
7282 	if (ret)
7283 		goto err_uninit;
7284 	dev->reg_state = NETREG_REGISTERED;
7285 
7286 	__netdev_update_features(dev);
7287 
7288 	/*
7289 	 *	Default initial state at registry is that the
7290 	 *	device is present.
7291 	 */
7292 
7293 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7294 
7295 	linkwatch_init_dev(dev);
7296 
7297 	dev_init_scheduler(dev);
7298 	dev_hold(dev);
7299 	list_netdevice(dev);
7300 	add_device_randomness(dev->dev_addr, dev->addr_len);
7301 
7302 	/* If the device has permanent device address, driver should
7303 	 * set dev_addr and also addr_assign_type should be set to
7304 	 * NET_ADDR_PERM (default value).
7305 	 */
7306 	if (dev->addr_assign_type == NET_ADDR_PERM)
7307 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7308 
7309 	/* Notify protocols, that a new device appeared. */
7310 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7311 	ret = notifier_to_errno(ret);
7312 	if (ret) {
7313 		rollback_registered(dev);
7314 		dev->reg_state = NETREG_UNREGISTERED;
7315 	}
7316 	/*
7317 	 *	Prevent userspace races by waiting until the network
7318 	 *	device is fully setup before sending notifications.
7319 	 */
7320 	if (!dev->rtnl_link_ops ||
7321 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7322 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7323 
7324 out:
7325 	return ret;
7326 
7327 err_uninit:
7328 	if (dev->netdev_ops->ndo_uninit)
7329 		dev->netdev_ops->ndo_uninit(dev);
7330 	goto out;
7331 }
7332 EXPORT_SYMBOL(register_netdevice);
7333 
7334 /**
7335  *	init_dummy_netdev	- init a dummy network device for NAPI
7336  *	@dev: device to init
7337  *
7338  *	This takes a network device structure and initialize the minimum
7339  *	amount of fields so it can be used to schedule NAPI polls without
7340  *	registering a full blown interface. This is to be used by drivers
7341  *	that need to tie several hardware interfaces to a single NAPI
7342  *	poll scheduler due to HW limitations.
7343  */
7344 int init_dummy_netdev(struct net_device *dev)
7345 {
7346 	/* Clear everything. Note we don't initialize spinlocks
7347 	 * are they aren't supposed to be taken by any of the
7348 	 * NAPI code and this dummy netdev is supposed to be
7349 	 * only ever used for NAPI polls
7350 	 */
7351 	memset(dev, 0, sizeof(struct net_device));
7352 
7353 	/* make sure we BUG if trying to hit standard
7354 	 * register/unregister code path
7355 	 */
7356 	dev->reg_state = NETREG_DUMMY;
7357 
7358 	/* NAPI wants this */
7359 	INIT_LIST_HEAD(&dev->napi_list);
7360 
7361 	/* a dummy interface is started by default */
7362 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7363 	set_bit(__LINK_STATE_START, &dev->state);
7364 
7365 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
7366 	 * because users of this 'device' dont need to change
7367 	 * its refcount.
7368 	 */
7369 
7370 	return 0;
7371 }
7372 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7373 
7374 
7375 /**
7376  *	register_netdev	- register a network device
7377  *	@dev: device to register
7378  *
7379  *	Take a completed network device structure and add it to the kernel
7380  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7381  *	chain. 0 is returned on success. A negative errno code is returned
7382  *	on a failure to set up the device, or if the name is a duplicate.
7383  *
7384  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
7385  *	and expands the device name if you passed a format string to
7386  *	alloc_netdev.
7387  */
7388 int register_netdev(struct net_device *dev)
7389 {
7390 	int err;
7391 
7392 	rtnl_lock();
7393 	err = register_netdevice(dev);
7394 	rtnl_unlock();
7395 	return err;
7396 }
7397 EXPORT_SYMBOL(register_netdev);
7398 
7399 int netdev_refcnt_read(const struct net_device *dev)
7400 {
7401 	int i, refcnt = 0;
7402 
7403 	for_each_possible_cpu(i)
7404 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7405 	return refcnt;
7406 }
7407 EXPORT_SYMBOL(netdev_refcnt_read);
7408 
7409 /**
7410  * netdev_wait_allrefs - wait until all references are gone.
7411  * @dev: target net_device
7412  *
7413  * This is called when unregistering network devices.
7414  *
7415  * Any protocol or device that holds a reference should register
7416  * for netdevice notification, and cleanup and put back the
7417  * reference if they receive an UNREGISTER event.
7418  * We can get stuck here if buggy protocols don't correctly
7419  * call dev_put.
7420  */
7421 static void netdev_wait_allrefs(struct net_device *dev)
7422 {
7423 	unsigned long rebroadcast_time, warning_time;
7424 	int refcnt;
7425 
7426 	linkwatch_forget_dev(dev);
7427 
7428 	rebroadcast_time = warning_time = jiffies;
7429 	refcnt = netdev_refcnt_read(dev);
7430 
7431 	while (refcnt != 0) {
7432 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7433 			rtnl_lock();
7434 
7435 			/* Rebroadcast unregister notification */
7436 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7437 
7438 			__rtnl_unlock();
7439 			rcu_barrier();
7440 			rtnl_lock();
7441 
7442 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7443 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7444 				     &dev->state)) {
7445 				/* We must not have linkwatch events
7446 				 * pending on unregister. If this
7447 				 * happens, we simply run the queue
7448 				 * unscheduled, resulting in a noop
7449 				 * for this device.
7450 				 */
7451 				linkwatch_run_queue();
7452 			}
7453 
7454 			__rtnl_unlock();
7455 
7456 			rebroadcast_time = jiffies;
7457 		}
7458 
7459 		msleep(250);
7460 
7461 		refcnt = netdev_refcnt_read(dev);
7462 
7463 		if (time_after(jiffies, warning_time + 10 * HZ)) {
7464 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7465 				 dev->name, refcnt);
7466 			warning_time = jiffies;
7467 		}
7468 	}
7469 }
7470 
7471 /* The sequence is:
7472  *
7473  *	rtnl_lock();
7474  *	...
7475  *	register_netdevice(x1);
7476  *	register_netdevice(x2);
7477  *	...
7478  *	unregister_netdevice(y1);
7479  *	unregister_netdevice(y2);
7480  *      ...
7481  *	rtnl_unlock();
7482  *	free_netdev(y1);
7483  *	free_netdev(y2);
7484  *
7485  * We are invoked by rtnl_unlock().
7486  * This allows us to deal with problems:
7487  * 1) We can delete sysfs objects which invoke hotplug
7488  *    without deadlocking with linkwatch via keventd.
7489  * 2) Since we run with the RTNL semaphore not held, we can sleep
7490  *    safely in order to wait for the netdev refcnt to drop to zero.
7491  *
7492  * We must not return until all unregister events added during
7493  * the interval the lock was held have been completed.
7494  */
7495 void netdev_run_todo(void)
7496 {
7497 	struct list_head list;
7498 
7499 	/* Snapshot list, allow later requests */
7500 	list_replace_init(&net_todo_list, &list);
7501 
7502 	__rtnl_unlock();
7503 
7504 
7505 	/* Wait for rcu callbacks to finish before next phase */
7506 	if (!list_empty(&list))
7507 		rcu_barrier();
7508 
7509 	while (!list_empty(&list)) {
7510 		struct net_device *dev
7511 			= list_first_entry(&list, struct net_device, todo_list);
7512 		list_del(&dev->todo_list);
7513 
7514 		rtnl_lock();
7515 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7516 		__rtnl_unlock();
7517 
7518 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7519 			pr_err("network todo '%s' but state %d\n",
7520 			       dev->name, dev->reg_state);
7521 			dump_stack();
7522 			continue;
7523 		}
7524 
7525 		dev->reg_state = NETREG_UNREGISTERED;
7526 
7527 		netdev_wait_allrefs(dev);
7528 
7529 		/* paranoia */
7530 		BUG_ON(netdev_refcnt_read(dev));
7531 		BUG_ON(!list_empty(&dev->ptype_all));
7532 		BUG_ON(!list_empty(&dev->ptype_specific));
7533 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
7534 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7535 		WARN_ON(dev->dn_ptr);
7536 
7537 		if (dev->destructor)
7538 			dev->destructor(dev);
7539 
7540 		/* Report a network device has been unregistered */
7541 		rtnl_lock();
7542 		dev_net(dev)->dev_unreg_count--;
7543 		__rtnl_unlock();
7544 		wake_up(&netdev_unregistering_wq);
7545 
7546 		/* Free network device */
7547 		kobject_put(&dev->dev.kobj);
7548 	}
7549 }
7550 
7551 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7552  * all the same fields in the same order as net_device_stats, with only
7553  * the type differing, but rtnl_link_stats64 may have additional fields
7554  * at the end for newer counters.
7555  */
7556 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7557 			     const struct net_device_stats *netdev_stats)
7558 {
7559 #if BITS_PER_LONG == 64
7560 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7561 	memcpy(stats64, netdev_stats, sizeof(*stats64));
7562 	/* zero out counters that only exist in rtnl_link_stats64 */
7563 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
7564 	       sizeof(*stats64) - sizeof(*netdev_stats));
7565 #else
7566 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7567 	const unsigned long *src = (const unsigned long *)netdev_stats;
7568 	u64 *dst = (u64 *)stats64;
7569 
7570 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7571 	for (i = 0; i < n; i++)
7572 		dst[i] = src[i];
7573 	/* zero out counters that only exist in rtnl_link_stats64 */
7574 	memset((char *)stats64 + n * sizeof(u64), 0,
7575 	       sizeof(*stats64) - n * sizeof(u64));
7576 #endif
7577 }
7578 EXPORT_SYMBOL(netdev_stats_to_stats64);
7579 
7580 /**
7581  *	dev_get_stats	- get network device statistics
7582  *	@dev: device to get statistics from
7583  *	@storage: place to store stats
7584  *
7585  *	Get network statistics from device. Return @storage.
7586  *	The device driver may provide its own method by setting
7587  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7588  *	otherwise the internal statistics structure is used.
7589  */
7590 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7591 					struct rtnl_link_stats64 *storage)
7592 {
7593 	const struct net_device_ops *ops = dev->netdev_ops;
7594 
7595 	if (ops->ndo_get_stats64) {
7596 		memset(storage, 0, sizeof(*storage));
7597 		ops->ndo_get_stats64(dev, storage);
7598 	} else if (ops->ndo_get_stats) {
7599 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7600 	} else {
7601 		netdev_stats_to_stats64(storage, &dev->stats);
7602 	}
7603 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7604 	storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7605 	storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7606 	return storage;
7607 }
7608 EXPORT_SYMBOL(dev_get_stats);
7609 
7610 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7611 {
7612 	struct netdev_queue *queue = dev_ingress_queue(dev);
7613 
7614 #ifdef CONFIG_NET_CLS_ACT
7615 	if (queue)
7616 		return queue;
7617 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7618 	if (!queue)
7619 		return NULL;
7620 	netdev_init_one_queue(dev, queue, NULL);
7621 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7622 	queue->qdisc_sleeping = &noop_qdisc;
7623 	rcu_assign_pointer(dev->ingress_queue, queue);
7624 #endif
7625 	return queue;
7626 }
7627 
7628 static const struct ethtool_ops default_ethtool_ops;
7629 
7630 void netdev_set_default_ethtool_ops(struct net_device *dev,
7631 				    const struct ethtool_ops *ops)
7632 {
7633 	if (dev->ethtool_ops == &default_ethtool_ops)
7634 		dev->ethtool_ops = ops;
7635 }
7636 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7637 
7638 void netdev_freemem(struct net_device *dev)
7639 {
7640 	char *addr = (char *)dev - dev->padded;
7641 
7642 	kvfree(addr);
7643 }
7644 
7645 /**
7646  *	alloc_netdev_mqs - allocate network device
7647  *	@sizeof_priv:		size of private data to allocate space for
7648  *	@name:			device name format string
7649  *	@name_assign_type: 	origin of device name
7650  *	@setup:			callback to initialize device
7651  *	@txqs:			the number of TX subqueues to allocate
7652  *	@rxqs:			the number of RX subqueues to allocate
7653  *
7654  *	Allocates a struct net_device with private data area for driver use
7655  *	and performs basic initialization.  Also allocates subqueue structs
7656  *	for each queue on the device.
7657  */
7658 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7659 		unsigned char name_assign_type,
7660 		void (*setup)(struct net_device *),
7661 		unsigned int txqs, unsigned int rxqs)
7662 {
7663 	struct net_device *dev;
7664 	size_t alloc_size;
7665 	struct net_device *p;
7666 
7667 	BUG_ON(strlen(name) >= sizeof(dev->name));
7668 
7669 	if (txqs < 1) {
7670 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7671 		return NULL;
7672 	}
7673 
7674 #ifdef CONFIG_SYSFS
7675 	if (rxqs < 1) {
7676 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7677 		return NULL;
7678 	}
7679 #endif
7680 
7681 	alloc_size = sizeof(struct net_device);
7682 	if (sizeof_priv) {
7683 		/* ensure 32-byte alignment of private area */
7684 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7685 		alloc_size += sizeof_priv;
7686 	}
7687 	/* ensure 32-byte alignment of whole construct */
7688 	alloc_size += NETDEV_ALIGN - 1;
7689 
7690 	p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7691 	if (!p)
7692 		p = vzalloc(alloc_size);
7693 	if (!p)
7694 		return NULL;
7695 
7696 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
7697 	dev->padded = (char *)dev - (char *)p;
7698 
7699 	dev->pcpu_refcnt = alloc_percpu(int);
7700 	if (!dev->pcpu_refcnt)
7701 		goto free_dev;
7702 
7703 	if (dev_addr_init(dev))
7704 		goto free_pcpu;
7705 
7706 	dev_mc_init(dev);
7707 	dev_uc_init(dev);
7708 
7709 	dev_net_set(dev, &init_net);
7710 
7711 	dev->gso_max_size = GSO_MAX_SIZE;
7712 	dev->gso_max_segs = GSO_MAX_SEGS;
7713 
7714 	INIT_LIST_HEAD(&dev->napi_list);
7715 	INIT_LIST_HEAD(&dev->unreg_list);
7716 	INIT_LIST_HEAD(&dev->close_list);
7717 	INIT_LIST_HEAD(&dev->link_watch_list);
7718 	INIT_LIST_HEAD(&dev->adj_list.upper);
7719 	INIT_LIST_HEAD(&dev->adj_list.lower);
7720 	INIT_LIST_HEAD(&dev->ptype_all);
7721 	INIT_LIST_HEAD(&dev->ptype_specific);
7722 #ifdef CONFIG_NET_SCHED
7723 	hash_init(dev->qdisc_hash);
7724 #endif
7725 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7726 	setup(dev);
7727 
7728 	if (!dev->tx_queue_len) {
7729 		dev->priv_flags |= IFF_NO_QUEUE;
7730 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
7731 	}
7732 
7733 	dev->num_tx_queues = txqs;
7734 	dev->real_num_tx_queues = txqs;
7735 	if (netif_alloc_netdev_queues(dev))
7736 		goto free_all;
7737 
7738 #ifdef CONFIG_SYSFS
7739 	dev->num_rx_queues = rxqs;
7740 	dev->real_num_rx_queues = rxqs;
7741 	if (netif_alloc_rx_queues(dev))
7742 		goto free_all;
7743 #endif
7744 
7745 	strcpy(dev->name, name);
7746 	dev->name_assign_type = name_assign_type;
7747 	dev->group = INIT_NETDEV_GROUP;
7748 	if (!dev->ethtool_ops)
7749 		dev->ethtool_ops = &default_ethtool_ops;
7750 
7751 	nf_hook_ingress_init(dev);
7752 
7753 	return dev;
7754 
7755 free_all:
7756 	free_netdev(dev);
7757 	return NULL;
7758 
7759 free_pcpu:
7760 	free_percpu(dev->pcpu_refcnt);
7761 free_dev:
7762 	netdev_freemem(dev);
7763 	return NULL;
7764 }
7765 EXPORT_SYMBOL(alloc_netdev_mqs);
7766 
7767 /**
7768  *	free_netdev - free network device
7769  *	@dev: device
7770  *
7771  *	This function does the last stage of destroying an allocated device
7772  * 	interface. The reference to the device object is released.
7773  *	If this is the last reference then it will be freed.
7774  *	Must be called in process context.
7775  */
7776 void free_netdev(struct net_device *dev)
7777 {
7778 	struct napi_struct *p, *n;
7779 
7780 	might_sleep();
7781 	netif_free_tx_queues(dev);
7782 #ifdef CONFIG_SYSFS
7783 	kvfree(dev->_rx);
7784 #endif
7785 
7786 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7787 
7788 	/* Flush device addresses */
7789 	dev_addr_flush(dev);
7790 
7791 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7792 		netif_napi_del(p);
7793 
7794 	free_percpu(dev->pcpu_refcnt);
7795 	dev->pcpu_refcnt = NULL;
7796 
7797 	/*  Compatibility with error handling in drivers */
7798 	if (dev->reg_state == NETREG_UNINITIALIZED) {
7799 		netdev_freemem(dev);
7800 		return;
7801 	}
7802 
7803 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7804 	dev->reg_state = NETREG_RELEASED;
7805 
7806 	/* will free via device release */
7807 	put_device(&dev->dev);
7808 }
7809 EXPORT_SYMBOL(free_netdev);
7810 
7811 /**
7812  *	synchronize_net -  Synchronize with packet receive processing
7813  *
7814  *	Wait for packets currently being received to be done.
7815  *	Does not block later packets from starting.
7816  */
7817 void synchronize_net(void)
7818 {
7819 	might_sleep();
7820 	if (rtnl_is_locked())
7821 		synchronize_rcu_expedited();
7822 	else
7823 		synchronize_rcu();
7824 }
7825 EXPORT_SYMBOL(synchronize_net);
7826 
7827 /**
7828  *	unregister_netdevice_queue - remove device from the kernel
7829  *	@dev: device
7830  *	@head: list
7831  *
7832  *	This function shuts down a device interface and removes it
7833  *	from the kernel tables.
7834  *	If head not NULL, device is queued to be unregistered later.
7835  *
7836  *	Callers must hold the rtnl semaphore.  You may want
7837  *	unregister_netdev() instead of this.
7838  */
7839 
7840 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7841 {
7842 	ASSERT_RTNL();
7843 
7844 	if (head) {
7845 		list_move_tail(&dev->unreg_list, head);
7846 	} else {
7847 		rollback_registered(dev);
7848 		/* Finish processing unregister after unlock */
7849 		net_set_todo(dev);
7850 	}
7851 }
7852 EXPORT_SYMBOL(unregister_netdevice_queue);
7853 
7854 /**
7855  *	unregister_netdevice_many - unregister many devices
7856  *	@head: list of devices
7857  *
7858  *  Note: As most callers use a stack allocated list_head,
7859  *  we force a list_del() to make sure stack wont be corrupted later.
7860  */
7861 void unregister_netdevice_many(struct list_head *head)
7862 {
7863 	struct net_device *dev;
7864 
7865 	if (!list_empty(head)) {
7866 		rollback_registered_many(head);
7867 		list_for_each_entry(dev, head, unreg_list)
7868 			net_set_todo(dev);
7869 		list_del(head);
7870 	}
7871 }
7872 EXPORT_SYMBOL(unregister_netdevice_many);
7873 
7874 /**
7875  *	unregister_netdev - remove device from the kernel
7876  *	@dev: device
7877  *
7878  *	This function shuts down a device interface and removes it
7879  *	from the kernel tables.
7880  *
7881  *	This is just a wrapper for unregister_netdevice that takes
7882  *	the rtnl semaphore.  In general you want to use this and not
7883  *	unregister_netdevice.
7884  */
7885 void unregister_netdev(struct net_device *dev)
7886 {
7887 	rtnl_lock();
7888 	unregister_netdevice(dev);
7889 	rtnl_unlock();
7890 }
7891 EXPORT_SYMBOL(unregister_netdev);
7892 
7893 /**
7894  *	dev_change_net_namespace - move device to different nethost namespace
7895  *	@dev: device
7896  *	@net: network namespace
7897  *	@pat: If not NULL name pattern to try if the current device name
7898  *	      is already taken in the destination network namespace.
7899  *
7900  *	This function shuts down a device interface and moves it
7901  *	to a new network namespace. On success 0 is returned, on
7902  *	a failure a netagive errno code is returned.
7903  *
7904  *	Callers must hold the rtnl semaphore.
7905  */
7906 
7907 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7908 {
7909 	int err;
7910 
7911 	ASSERT_RTNL();
7912 
7913 	/* Don't allow namespace local devices to be moved. */
7914 	err = -EINVAL;
7915 	if (dev->features & NETIF_F_NETNS_LOCAL)
7916 		goto out;
7917 
7918 	/* Ensure the device has been registrered */
7919 	if (dev->reg_state != NETREG_REGISTERED)
7920 		goto out;
7921 
7922 	/* Get out if there is nothing todo */
7923 	err = 0;
7924 	if (net_eq(dev_net(dev), net))
7925 		goto out;
7926 
7927 	/* Pick the destination device name, and ensure
7928 	 * we can use it in the destination network namespace.
7929 	 */
7930 	err = -EEXIST;
7931 	if (__dev_get_by_name(net, dev->name)) {
7932 		/* We get here if we can't use the current device name */
7933 		if (!pat)
7934 			goto out;
7935 		if (dev_get_valid_name(net, dev, pat) < 0)
7936 			goto out;
7937 	}
7938 
7939 	/*
7940 	 * And now a mini version of register_netdevice unregister_netdevice.
7941 	 */
7942 
7943 	/* If device is running close it first. */
7944 	dev_close(dev);
7945 
7946 	/* And unlink it from device chain */
7947 	err = -ENODEV;
7948 	unlist_netdevice(dev);
7949 
7950 	synchronize_net();
7951 
7952 	/* Shutdown queueing discipline. */
7953 	dev_shutdown(dev);
7954 
7955 	/* Notify protocols, that we are about to destroy
7956 	   this device. They should clean all the things.
7957 
7958 	   Note that dev->reg_state stays at NETREG_REGISTERED.
7959 	   This is wanted because this way 8021q and macvlan know
7960 	   the device is just moving and can keep their slaves up.
7961 	*/
7962 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7963 	rcu_barrier();
7964 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7965 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7966 
7967 	/*
7968 	 *	Flush the unicast and multicast chains
7969 	 */
7970 	dev_uc_flush(dev);
7971 	dev_mc_flush(dev);
7972 
7973 	/* Send a netdev-removed uevent to the old namespace */
7974 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7975 	netdev_adjacent_del_links(dev);
7976 
7977 	/* Actually switch the network namespace */
7978 	dev_net_set(dev, net);
7979 
7980 	/* If there is an ifindex conflict assign a new one */
7981 	if (__dev_get_by_index(net, dev->ifindex))
7982 		dev->ifindex = dev_new_index(net);
7983 
7984 	/* Send a netdev-add uevent to the new namespace */
7985 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7986 	netdev_adjacent_add_links(dev);
7987 
7988 	/* Fixup kobjects */
7989 	err = device_rename(&dev->dev, dev->name);
7990 	WARN_ON(err);
7991 
7992 	/* Add the device back in the hashes */
7993 	list_netdevice(dev);
7994 
7995 	/* Notify protocols, that a new device appeared. */
7996 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
7997 
7998 	/*
7999 	 *	Prevent userspace races by waiting until the network
8000 	 *	device is fully setup before sending notifications.
8001 	 */
8002 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8003 
8004 	synchronize_net();
8005 	err = 0;
8006 out:
8007 	return err;
8008 }
8009 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8010 
8011 static int dev_cpu_dead(unsigned int oldcpu)
8012 {
8013 	struct sk_buff **list_skb;
8014 	struct sk_buff *skb;
8015 	unsigned int cpu;
8016 	struct softnet_data *sd, *oldsd;
8017 
8018 	local_irq_disable();
8019 	cpu = smp_processor_id();
8020 	sd = &per_cpu(softnet_data, cpu);
8021 	oldsd = &per_cpu(softnet_data, oldcpu);
8022 
8023 	/* Find end of our completion_queue. */
8024 	list_skb = &sd->completion_queue;
8025 	while (*list_skb)
8026 		list_skb = &(*list_skb)->next;
8027 	/* Append completion queue from offline CPU. */
8028 	*list_skb = oldsd->completion_queue;
8029 	oldsd->completion_queue = NULL;
8030 
8031 	/* Append output queue from offline CPU. */
8032 	if (oldsd->output_queue) {
8033 		*sd->output_queue_tailp = oldsd->output_queue;
8034 		sd->output_queue_tailp = oldsd->output_queue_tailp;
8035 		oldsd->output_queue = NULL;
8036 		oldsd->output_queue_tailp = &oldsd->output_queue;
8037 	}
8038 	/* Append NAPI poll list from offline CPU, with one exception :
8039 	 * process_backlog() must be called by cpu owning percpu backlog.
8040 	 * We properly handle process_queue & input_pkt_queue later.
8041 	 */
8042 	while (!list_empty(&oldsd->poll_list)) {
8043 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8044 							    struct napi_struct,
8045 							    poll_list);
8046 
8047 		list_del_init(&napi->poll_list);
8048 		if (napi->poll == process_backlog)
8049 			napi->state = 0;
8050 		else
8051 			____napi_schedule(sd, napi);
8052 	}
8053 
8054 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
8055 	local_irq_enable();
8056 
8057 	/* Process offline CPU's input_pkt_queue */
8058 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8059 		netif_rx_ni(skb);
8060 		input_queue_head_incr(oldsd);
8061 	}
8062 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8063 		netif_rx_ni(skb);
8064 		input_queue_head_incr(oldsd);
8065 	}
8066 
8067 	return 0;
8068 }
8069 
8070 /**
8071  *	netdev_increment_features - increment feature set by one
8072  *	@all: current feature set
8073  *	@one: new feature set
8074  *	@mask: mask feature set
8075  *
8076  *	Computes a new feature set after adding a device with feature set
8077  *	@one to the master device with current feature set @all.  Will not
8078  *	enable anything that is off in @mask. Returns the new feature set.
8079  */
8080 netdev_features_t netdev_increment_features(netdev_features_t all,
8081 	netdev_features_t one, netdev_features_t mask)
8082 {
8083 	if (mask & NETIF_F_HW_CSUM)
8084 		mask |= NETIF_F_CSUM_MASK;
8085 	mask |= NETIF_F_VLAN_CHALLENGED;
8086 
8087 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8088 	all &= one | ~NETIF_F_ALL_FOR_ALL;
8089 
8090 	/* If one device supports hw checksumming, set for all. */
8091 	if (all & NETIF_F_HW_CSUM)
8092 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8093 
8094 	return all;
8095 }
8096 EXPORT_SYMBOL(netdev_increment_features);
8097 
8098 static struct hlist_head * __net_init netdev_create_hash(void)
8099 {
8100 	int i;
8101 	struct hlist_head *hash;
8102 
8103 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8104 	if (hash != NULL)
8105 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
8106 			INIT_HLIST_HEAD(&hash[i]);
8107 
8108 	return hash;
8109 }
8110 
8111 /* Initialize per network namespace state */
8112 static int __net_init netdev_init(struct net *net)
8113 {
8114 	if (net != &init_net)
8115 		INIT_LIST_HEAD(&net->dev_base_head);
8116 
8117 	net->dev_name_head = netdev_create_hash();
8118 	if (net->dev_name_head == NULL)
8119 		goto err_name;
8120 
8121 	net->dev_index_head = netdev_create_hash();
8122 	if (net->dev_index_head == NULL)
8123 		goto err_idx;
8124 
8125 	return 0;
8126 
8127 err_idx:
8128 	kfree(net->dev_name_head);
8129 err_name:
8130 	return -ENOMEM;
8131 }
8132 
8133 /**
8134  *	netdev_drivername - network driver for the device
8135  *	@dev: network device
8136  *
8137  *	Determine network driver for device.
8138  */
8139 const char *netdev_drivername(const struct net_device *dev)
8140 {
8141 	const struct device_driver *driver;
8142 	const struct device *parent;
8143 	const char *empty = "";
8144 
8145 	parent = dev->dev.parent;
8146 	if (!parent)
8147 		return empty;
8148 
8149 	driver = parent->driver;
8150 	if (driver && driver->name)
8151 		return driver->name;
8152 	return empty;
8153 }
8154 
8155 static void __netdev_printk(const char *level, const struct net_device *dev,
8156 			    struct va_format *vaf)
8157 {
8158 	if (dev && dev->dev.parent) {
8159 		dev_printk_emit(level[1] - '0',
8160 				dev->dev.parent,
8161 				"%s %s %s%s: %pV",
8162 				dev_driver_string(dev->dev.parent),
8163 				dev_name(dev->dev.parent),
8164 				netdev_name(dev), netdev_reg_state(dev),
8165 				vaf);
8166 	} else if (dev) {
8167 		printk("%s%s%s: %pV",
8168 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
8169 	} else {
8170 		printk("%s(NULL net_device): %pV", level, vaf);
8171 	}
8172 }
8173 
8174 void netdev_printk(const char *level, const struct net_device *dev,
8175 		   const char *format, ...)
8176 {
8177 	struct va_format vaf;
8178 	va_list args;
8179 
8180 	va_start(args, format);
8181 
8182 	vaf.fmt = format;
8183 	vaf.va = &args;
8184 
8185 	__netdev_printk(level, dev, &vaf);
8186 
8187 	va_end(args);
8188 }
8189 EXPORT_SYMBOL(netdev_printk);
8190 
8191 #define define_netdev_printk_level(func, level)			\
8192 void func(const struct net_device *dev, const char *fmt, ...)	\
8193 {								\
8194 	struct va_format vaf;					\
8195 	va_list args;						\
8196 								\
8197 	va_start(args, fmt);					\
8198 								\
8199 	vaf.fmt = fmt;						\
8200 	vaf.va = &args;						\
8201 								\
8202 	__netdev_printk(level, dev, &vaf);			\
8203 								\
8204 	va_end(args);						\
8205 }								\
8206 EXPORT_SYMBOL(func);
8207 
8208 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8209 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8210 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8211 define_netdev_printk_level(netdev_err, KERN_ERR);
8212 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8213 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8214 define_netdev_printk_level(netdev_info, KERN_INFO);
8215 
8216 static void __net_exit netdev_exit(struct net *net)
8217 {
8218 	kfree(net->dev_name_head);
8219 	kfree(net->dev_index_head);
8220 }
8221 
8222 static struct pernet_operations __net_initdata netdev_net_ops = {
8223 	.init = netdev_init,
8224 	.exit = netdev_exit,
8225 };
8226 
8227 static void __net_exit default_device_exit(struct net *net)
8228 {
8229 	struct net_device *dev, *aux;
8230 	/*
8231 	 * Push all migratable network devices back to the
8232 	 * initial network namespace
8233 	 */
8234 	rtnl_lock();
8235 	for_each_netdev_safe(net, dev, aux) {
8236 		int err;
8237 		char fb_name[IFNAMSIZ];
8238 
8239 		/* Ignore unmoveable devices (i.e. loopback) */
8240 		if (dev->features & NETIF_F_NETNS_LOCAL)
8241 			continue;
8242 
8243 		/* Leave virtual devices for the generic cleanup */
8244 		if (dev->rtnl_link_ops)
8245 			continue;
8246 
8247 		/* Push remaining network devices to init_net */
8248 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8249 		err = dev_change_net_namespace(dev, &init_net, fb_name);
8250 		if (err) {
8251 			pr_emerg("%s: failed to move %s to init_net: %d\n",
8252 				 __func__, dev->name, err);
8253 			BUG();
8254 		}
8255 	}
8256 	rtnl_unlock();
8257 }
8258 
8259 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8260 {
8261 	/* Return with the rtnl_lock held when there are no network
8262 	 * devices unregistering in any network namespace in net_list.
8263 	 */
8264 	struct net *net;
8265 	bool unregistering;
8266 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
8267 
8268 	add_wait_queue(&netdev_unregistering_wq, &wait);
8269 	for (;;) {
8270 		unregistering = false;
8271 		rtnl_lock();
8272 		list_for_each_entry(net, net_list, exit_list) {
8273 			if (net->dev_unreg_count > 0) {
8274 				unregistering = true;
8275 				break;
8276 			}
8277 		}
8278 		if (!unregistering)
8279 			break;
8280 		__rtnl_unlock();
8281 
8282 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8283 	}
8284 	remove_wait_queue(&netdev_unregistering_wq, &wait);
8285 }
8286 
8287 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8288 {
8289 	/* At exit all network devices most be removed from a network
8290 	 * namespace.  Do this in the reverse order of registration.
8291 	 * Do this across as many network namespaces as possible to
8292 	 * improve batching efficiency.
8293 	 */
8294 	struct net_device *dev;
8295 	struct net *net;
8296 	LIST_HEAD(dev_kill_list);
8297 
8298 	/* To prevent network device cleanup code from dereferencing
8299 	 * loopback devices or network devices that have been freed
8300 	 * wait here for all pending unregistrations to complete,
8301 	 * before unregistring the loopback device and allowing the
8302 	 * network namespace be freed.
8303 	 *
8304 	 * The netdev todo list containing all network devices
8305 	 * unregistrations that happen in default_device_exit_batch
8306 	 * will run in the rtnl_unlock() at the end of
8307 	 * default_device_exit_batch.
8308 	 */
8309 	rtnl_lock_unregistering(net_list);
8310 	list_for_each_entry(net, net_list, exit_list) {
8311 		for_each_netdev_reverse(net, dev) {
8312 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8313 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8314 			else
8315 				unregister_netdevice_queue(dev, &dev_kill_list);
8316 		}
8317 	}
8318 	unregister_netdevice_many(&dev_kill_list);
8319 	rtnl_unlock();
8320 }
8321 
8322 static struct pernet_operations __net_initdata default_device_ops = {
8323 	.exit = default_device_exit,
8324 	.exit_batch = default_device_exit_batch,
8325 };
8326 
8327 /*
8328  *	Initialize the DEV module. At boot time this walks the device list and
8329  *	unhooks any devices that fail to initialise (normally hardware not
8330  *	present) and leaves us with a valid list of present and active devices.
8331  *
8332  */
8333 
8334 /*
8335  *       This is called single threaded during boot, so no need
8336  *       to take the rtnl semaphore.
8337  */
8338 static int __init net_dev_init(void)
8339 {
8340 	int i, rc = -ENOMEM;
8341 
8342 	BUG_ON(!dev_boot_phase);
8343 
8344 	if (dev_proc_init())
8345 		goto out;
8346 
8347 	if (netdev_kobject_init())
8348 		goto out;
8349 
8350 	INIT_LIST_HEAD(&ptype_all);
8351 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
8352 		INIT_LIST_HEAD(&ptype_base[i]);
8353 
8354 	INIT_LIST_HEAD(&offload_base);
8355 
8356 	if (register_pernet_subsys(&netdev_net_ops))
8357 		goto out;
8358 
8359 	/*
8360 	 *	Initialise the packet receive queues.
8361 	 */
8362 
8363 	for_each_possible_cpu(i) {
8364 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8365 		struct softnet_data *sd = &per_cpu(softnet_data, i);
8366 
8367 		INIT_WORK(flush, flush_backlog);
8368 
8369 		skb_queue_head_init(&sd->input_pkt_queue);
8370 		skb_queue_head_init(&sd->process_queue);
8371 		INIT_LIST_HEAD(&sd->poll_list);
8372 		sd->output_queue_tailp = &sd->output_queue;
8373 #ifdef CONFIG_RPS
8374 		sd->csd.func = rps_trigger_softirq;
8375 		sd->csd.info = sd;
8376 		sd->cpu = i;
8377 #endif
8378 
8379 		sd->backlog.poll = process_backlog;
8380 		sd->backlog.weight = weight_p;
8381 	}
8382 
8383 	dev_boot_phase = 0;
8384 
8385 	/* The loopback device is special if any other network devices
8386 	 * is present in a network namespace the loopback device must
8387 	 * be present. Since we now dynamically allocate and free the
8388 	 * loopback device ensure this invariant is maintained by
8389 	 * keeping the loopback device as the first device on the
8390 	 * list of network devices.  Ensuring the loopback devices
8391 	 * is the first device that appears and the last network device
8392 	 * that disappears.
8393 	 */
8394 	if (register_pernet_device(&loopback_net_ops))
8395 		goto out;
8396 
8397 	if (register_pernet_device(&default_device_ops))
8398 		goto out;
8399 
8400 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8401 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8402 
8403 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8404 				       NULL, dev_cpu_dead);
8405 	WARN_ON(rc < 0);
8406 	dst_subsys_init();
8407 	rc = 0;
8408 out:
8409 	return rc;
8410 }
8411 
8412 subsys_initcall(net_dev_init);
8413