xref: /openbmc/linux/net/core/dev.c (revision 8730046c)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <net/busy_poll.h>
101 #include <linux/rtnetlink.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
123 #include <net/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/static_key.h>
136 #include <linux/hashtable.h>
137 #include <linux/vmalloc.h>
138 #include <linux/if_macvlan.h>
139 #include <linux/errqueue.h>
140 #include <linux/hrtimer.h>
141 #include <linux/netfilter_ingress.h>
142 #include <linux/crash_dump.h>
143 
144 #include "net-sysfs.h"
145 
146 /* Instead of increasing this, you should create a hash table. */
147 #define MAX_GRO_SKBS 8
148 
149 /* This should be increased if a protocol with a bigger head is added. */
150 #define GRO_MAX_HEAD (MAX_HEADER + 128)
151 
152 static DEFINE_SPINLOCK(ptype_lock);
153 static DEFINE_SPINLOCK(offload_lock);
154 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
155 struct list_head ptype_all __read_mostly;	/* Taps */
156 static struct list_head offload_base __read_mostly;
157 
158 static int netif_rx_internal(struct sk_buff *skb);
159 static int call_netdevice_notifiers_info(unsigned long val,
160 					 struct net_device *dev,
161 					 struct netdev_notifier_info *info);
162 
163 /*
164  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
165  * semaphore.
166  *
167  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
168  *
169  * Writers must hold the rtnl semaphore while they loop through the
170  * dev_base_head list, and hold dev_base_lock for writing when they do the
171  * actual updates.  This allows pure readers to access the list even
172  * while a writer is preparing to update it.
173  *
174  * To put it another way, dev_base_lock is held for writing only to
175  * protect against pure readers; the rtnl semaphore provides the
176  * protection against other writers.
177  *
178  * See, for example usages, register_netdevice() and
179  * unregister_netdevice(), which must be called with the rtnl
180  * semaphore held.
181  */
182 DEFINE_RWLOCK(dev_base_lock);
183 EXPORT_SYMBOL(dev_base_lock);
184 
185 /* protects napi_hash addition/deletion and napi_gen_id */
186 static DEFINE_SPINLOCK(napi_hash_lock);
187 
188 static unsigned int napi_gen_id = NR_CPUS;
189 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
190 
191 static seqcount_t devnet_rename_seq;
192 
193 static inline void dev_base_seq_inc(struct net *net)
194 {
195 	while (++net->dev_base_seq == 0);
196 }
197 
198 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
199 {
200 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
201 
202 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
203 }
204 
205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
206 {
207 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
208 }
209 
210 static inline void rps_lock(struct softnet_data *sd)
211 {
212 #ifdef CONFIG_RPS
213 	spin_lock(&sd->input_pkt_queue.lock);
214 #endif
215 }
216 
217 static inline void rps_unlock(struct softnet_data *sd)
218 {
219 #ifdef CONFIG_RPS
220 	spin_unlock(&sd->input_pkt_queue.lock);
221 #endif
222 }
223 
224 /* Device list insertion */
225 static void list_netdevice(struct net_device *dev)
226 {
227 	struct net *net = dev_net(dev);
228 
229 	ASSERT_RTNL();
230 
231 	write_lock_bh(&dev_base_lock);
232 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
233 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
234 	hlist_add_head_rcu(&dev->index_hlist,
235 			   dev_index_hash(net, dev->ifindex));
236 	write_unlock_bh(&dev_base_lock);
237 
238 	dev_base_seq_inc(net);
239 }
240 
241 /* Device list removal
242  * caller must respect a RCU grace period before freeing/reusing dev
243  */
244 static void unlist_netdevice(struct net_device *dev)
245 {
246 	ASSERT_RTNL();
247 
248 	/* Unlink dev from the device chain */
249 	write_lock_bh(&dev_base_lock);
250 	list_del_rcu(&dev->dev_list);
251 	hlist_del_rcu(&dev->name_hlist);
252 	hlist_del_rcu(&dev->index_hlist);
253 	write_unlock_bh(&dev_base_lock);
254 
255 	dev_base_seq_inc(dev_net(dev));
256 }
257 
258 /*
259  *	Our notifier list
260  */
261 
262 static RAW_NOTIFIER_HEAD(netdev_chain);
263 
264 /*
265  *	Device drivers call our routines to queue packets here. We empty the
266  *	queue in the local softnet handler.
267  */
268 
269 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
270 EXPORT_PER_CPU_SYMBOL(softnet_data);
271 
272 #ifdef CONFIG_LOCKDEP
273 /*
274  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
275  * according to dev->type
276  */
277 static const unsigned short netdev_lock_type[] =
278 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
279 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
280 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
281 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
282 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
283 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
284 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
285 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
286 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
287 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
288 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
289 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
290 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
291 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
292 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
293 
294 static const char *const netdev_lock_name[] =
295 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
296 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
297 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
298 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
299 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
300 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
301 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
302 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
303 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
304 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
305 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
306 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
307 	 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
308 	 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
309 	 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
310 
311 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
312 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
313 
314 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
315 {
316 	int i;
317 
318 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
319 		if (netdev_lock_type[i] == dev_type)
320 			return i;
321 	/* the last key is used by default */
322 	return ARRAY_SIZE(netdev_lock_type) - 1;
323 }
324 
325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 						 unsigned short dev_type)
327 {
328 	int i;
329 
330 	i = netdev_lock_pos(dev_type);
331 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
332 				   netdev_lock_name[i]);
333 }
334 
335 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
336 {
337 	int i;
338 
339 	i = netdev_lock_pos(dev->type);
340 	lockdep_set_class_and_name(&dev->addr_list_lock,
341 				   &netdev_addr_lock_key[i],
342 				   netdev_lock_name[i]);
343 }
344 #else
345 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
346 						 unsigned short dev_type)
347 {
348 }
349 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
350 {
351 }
352 #endif
353 
354 /*******************************************************************************
355 
356 		Protocol management and registration routines
357 
358 *******************************************************************************/
359 
360 /*
361  *	Add a protocol ID to the list. Now that the input handler is
362  *	smarter we can dispense with all the messy stuff that used to be
363  *	here.
364  *
365  *	BEWARE!!! Protocol handlers, mangling input packets,
366  *	MUST BE last in hash buckets and checking protocol handlers
367  *	MUST start from promiscuous ptype_all chain in net_bh.
368  *	It is true now, do not change it.
369  *	Explanation follows: if protocol handler, mangling packet, will
370  *	be the first on list, it is not able to sense, that packet
371  *	is cloned and should be copied-on-write, so that it will
372  *	change it and subsequent readers will get broken packet.
373  *							--ANK (980803)
374  */
375 
376 static inline struct list_head *ptype_head(const struct packet_type *pt)
377 {
378 	if (pt->type == htons(ETH_P_ALL))
379 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
380 	else
381 		return pt->dev ? &pt->dev->ptype_specific :
382 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
383 }
384 
385 /**
386  *	dev_add_pack - add packet handler
387  *	@pt: packet type declaration
388  *
389  *	Add a protocol handler to the networking stack. The passed &packet_type
390  *	is linked into kernel lists and may not be freed until it has been
391  *	removed from the kernel lists.
392  *
393  *	This call does not sleep therefore it can not
394  *	guarantee all CPU's that are in middle of receiving packets
395  *	will see the new packet type (until the next received packet).
396  */
397 
398 void dev_add_pack(struct packet_type *pt)
399 {
400 	struct list_head *head = ptype_head(pt);
401 
402 	spin_lock(&ptype_lock);
403 	list_add_rcu(&pt->list, head);
404 	spin_unlock(&ptype_lock);
405 }
406 EXPORT_SYMBOL(dev_add_pack);
407 
408 /**
409  *	__dev_remove_pack	 - remove packet handler
410  *	@pt: packet type declaration
411  *
412  *	Remove a protocol handler that was previously added to the kernel
413  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
414  *	from the kernel lists and can be freed or reused once this function
415  *	returns.
416  *
417  *      The packet type might still be in use by receivers
418  *	and must not be freed until after all the CPU's have gone
419  *	through a quiescent state.
420  */
421 void __dev_remove_pack(struct packet_type *pt)
422 {
423 	struct list_head *head = ptype_head(pt);
424 	struct packet_type *pt1;
425 
426 	spin_lock(&ptype_lock);
427 
428 	list_for_each_entry(pt1, head, list) {
429 		if (pt == pt1) {
430 			list_del_rcu(&pt->list);
431 			goto out;
432 		}
433 	}
434 
435 	pr_warn("dev_remove_pack: %p not found\n", pt);
436 out:
437 	spin_unlock(&ptype_lock);
438 }
439 EXPORT_SYMBOL(__dev_remove_pack);
440 
441 /**
442  *	dev_remove_pack	 - remove packet handler
443  *	@pt: packet type declaration
444  *
445  *	Remove a protocol handler that was previously added to the kernel
446  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
447  *	from the kernel lists and can be freed or reused once this function
448  *	returns.
449  *
450  *	This call sleeps to guarantee that no CPU is looking at the packet
451  *	type after return.
452  */
453 void dev_remove_pack(struct packet_type *pt)
454 {
455 	__dev_remove_pack(pt);
456 
457 	synchronize_net();
458 }
459 EXPORT_SYMBOL(dev_remove_pack);
460 
461 
462 /**
463  *	dev_add_offload - register offload handlers
464  *	@po: protocol offload declaration
465  *
466  *	Add protocol offload handlers to the networking stack. The passed
467  *	&proto_offload is linked into kernel lists and may not be freed until
468  *	it has been removed from the kernel lists.
469  *
470  *	This call does not sleep therefore it can not
471  *	guarantee all CPU's that are in middle of receiving packets
472  *	will see the new offload handlers (until the next received packet).
473  */
474 void dev_add_offload(struct packet_offload *po)
475 {
476 	struct packet_offload *elem;
477 
478 	spin_lock(&offload_lock);
479 	list_for_each_entry(elem, &offload_base, list) {
480 		if (po->priority < elem->priority)
481 			break;
482 	}
483 	list_add_rcu(&po->list, elem->list.prev);
484 	spin_unlock(&offload_lock);
485 }
486 EXPORT_SYMBOL(dev_add_offload);
487 
488 /**
489  *	__dev_remove_offload	 - remove offload handler
490  *	@po: packet offload declaration
491  *
492  *	Remove a protocol offload handler that was previously added to the
493  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
494  *	is removed from the kernel lists and can be freed or reused once this
495  *	function returns.
496  *
497  *      The packet type might still be in use by receivers
498  *	and must not be freed until after all the CPU's have gone
499  *	through a quiescent state.
500  */
501 static void __dev_remove_offload(struct packet_offload *po)
502 {
503 	struct list_head *head = &offload_base;
504 	struct packet_offload *po1;
505 
506 	spin_lock(&offload_lock);
507 
508 	list_for_each_entry(po1, head, list) {
509 		if (po == po1) {
510 			list_del_rcu(&po->list);
511 			goto out;
512 		}
513 	}
514 
515 	pr_warn("dev_remove_offload: %p not found\n", po);
516 out:
517 	spin_unlock(&offload_lock);
518 }
519 
520 /**
521  *	dev_remove_offload	 - remove packet offload handler
522  *	@po: packet offload declaration
523  *
524  *	Remove a packet offload handler that was previously added to the kernel
525  *	offload handlers by dev_add_offload(). The passed &offload_type is
526  *	removed from the kernel lists and can be freed or reused once this
527  *	function returns.
528  *
529  *	This call sleeps to guarantee that no CPU is looking at the packet
530  *	type after return.
531  */
532 void dev_remove_offload(struct packet_offload *po)
533 {
534 	__dev_remove_offload(po);
535 
536 	synchronize_net();
537 }
538 EXPORT_SYMBOL(dev_remove_offload);
539 
540 /******************************************************************************
541 
542 		      Device Boot-time Settings Routines
543 
544 *******************************************************************************/
545 
546 /* Boot time configuration table */
547 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
548 
549 /**
550  *	netdev_boot_setup_add	- add new setup entry
551  *	@name: name of the device
552  *	@map: configured settings for the device
553  *
554  *	Adds new setup entry to the dev_boot_setup list.  The function
555  *	returns 0 on error and 1 on success.  This is a generic routine to
556  *	all netdevices.
557  */
558 static int netdev_boot_setup_add(char *name, struct ifmap *map)
559 {
560 	struct netdev_boot_setup *s;
561 	int i;
562 
563 	s = dev_boot_setup;
564 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
565 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
566 			memset(s[i].name, 0, sizeof(s[i].name));
567 			strlcpy(s[i].name, name, IFNAMSIZ);
568 			memcpy(&s[i].map, map, sizeof(s[i].map));
569 			break;
570 		}
571 	}
572 
573 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
574 }
575 
576 /**
577  *	netdev_boot_setup_check	- check boot time settings
578  *	@dev: the netdevice
579  *
580  * 	Check boot time settings for the device.
581  *	The found settings are set for the device to be used
582  *	later in the device probing.
583  *	Returns 0 if no settings found, 1 if they are.
584  */
585 int netdev_boot_setup_check(struct net_device *dev)
586 {
587 	struct netdev_boot_setup *s = dev_boot_setup;
588 	int i;
589 
590 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
591 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
592 		    !strcmp(dev->name, s[i].name)) {
593 			dev->irq 	= s[i].map.irq;
594 			dev->base_addr 	= s[i].map.base_addr;
595 			dev->mem_start 	= s[i].map.mem_start;
596 			dev->mem_end 	= s[i].map.mem_end;
597 			return 1;
598 		}
599 	}
600 	return 0;
601 }
602 EXPORT_SYMBOL(netdev_boot_setup_check);
603 
604 
605 /**
606  *	netdev_boot_base	- get address from boot time settings
607  *	@prefix: prefix for network device
608  *	@unit: id for network device
609  *
610  * 	Check boot time settings for the base address of device.
611  *	The found settings are set for the device to be used
612  *	later in the device probing.
613  *	Returns 0 if no settings found.
614  */
615 unsigned long netdev_boot_base(const char *prefix, int unit)
616 {
617 	const struct netdev_boot_setup *s = dev_boot_setup;
618 	char name[IFNAMSIZ];
619 	int i;
620 
621 	sprintf(name, "%s%d", prefix, unit);
622 
623 	/*
624 	 * If device already registered then return base of 1
625 	 * to indicate not to probe for this interface
626 	 */
627 	if (__dev_get_by_name(&init_net, name))
628 		return 1;
629 
630 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
631 		if (!strcmp(name, s[i].name))
632 			return s[i].map.base_addr;
633 	return 0;
634 }
635 
636 /*
637  * Saves at boot time configured settings for any netdevice.
638  */
639 int __init netdev_boot_setup(char *str)
640 {
641 	int ints[5];
642 	struct ifmap map;
643 
644 	str = get_options(str, ARRAY_SIZE(ints), ints);
645 	if (!str || !*str)
646 		return 0;
647 
648 	/* Save settings */
649 	memset(&map, 0, sizeof(map));
650 	if (ints[0] > 0)
651 		map.irq = ints[1];
652 	if (ints[0] > 1)
653 		map.base_addr = ints[2];
654 	if (ints[0] > 2)
655 		map.mem_start = ints[3];
656 	if (ints[0] > 3)
657 		map.mem_end = ints[4];
658 
659 	/* Add new entry to the list */
660 	return netdev_boot_setup_add(str, &map);
661 }
662 
663 __setup("netdev=", netdev_boot_setup);
664 
665 /*******************************************************************************
666 
667 			    Device Interface Subroutines
668 
669 *******************************************************************************/
670 
671 /**
672  *	dev_get_iflink	- get 'iflink' value of a interface
673  *	@dev: targeted interface
674  *
675  *	Indicates the ifindex the interface is linked to.
676  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
677  */
678 
679 int dev_get_iflink(const struct net_device *dev)
680 {
681 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
682 		return dev->netdev_ops->ndo_get_iflink(dev);
683 
684 	return dev->ifindex;
685 }
686 EXPORT_SYMBOL(dev_get_iflink);
687 
688 /**
689  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
690  *	@dev: targeted interface
691  *	@skb: The packet.
692  *
693  *	For better visibility of tunnel traffic OVS needs to retrieve
694  *	egress tunnel information for a packet. Following API allows
695  *	user to get this info.
696  */
697 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
698 {
699 	struct ip_tunnel_info *info;
700 
701 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
702 		return -EINVAL;
703 
704 	info = skb_tunnel_info_unclone(skb);
705 	if (!info)
706 		return -ENOMEM;
707 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
708 		return -EINVAL;
709 
710 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
711 }
712 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
713 
714 /**
715  *	__dev_get_by_name	- find a device by its name
716  *	@net: the applicable net namespace
717  *	@name: name to find
718  *
719  *	Find an interface by name. Must be called under RTNL semaphore
720  *	or @dev_base_lock. If the name is found a pointer to the device
721  *	is returned. If the name is not found then %NULL is returned. The
722  *	reference counters are not incremented so the caller must be
723  *	careful with locks.
724  */
725 
726 struct net_device *__dev_get_by_name(struct net *net, const char *name)
727 {
728 	struct net_device *dev;
729 	struct hlist_head *head = dev_name_hash(net, name);
730 
731 	hlist_for_each_entry(dev, head, name_hlist)
732 		if (!strncmp(dev->name, name, IFNAMSIZ))
733 			return dev;
734 
735 	return NULL;
736 }
737 EXPORT_SYMBOL(__dev_get_by_name);
738 
739 /**
740  *	dev_get_by_name_rcu	- find a device by its name
741  *	@net: the applicable net namespace
742  *	@name: name to find
743  *
744  *	Find an interface by name.
745  *	If the name is found a pointer to the device is returned.
746  * 	If the name is not found then %NULL is returned.
747  *	The reference counters are not incremented so the caller must be
748  *	careful with locks. The caller must hold RCU lock.
749  */
750 
751 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
752 {
753 	struct net_device *dev;
754 	struct hlist_head *head = dev_name_hash(net, name);
755 
756 	hlist_for_each_entry_rcu(dev, head, name_hlist)
757 		if (!strncmp(dev->name, name, IFNAMSIZ))
758 			return dev;
759 
760 	return NULL;
761 }
762 EXPORT_SYMBOL(dev_get_by_name_rcu);
763 
764 /**
765  *	dev_get_by_name		- find a device by its name
766  *	@net: the applicable net namespace
767  *	@name: name to find
768  *
769  *	Find an interface by name. This can be called from any
770  *	context and does its own locking. The returned handle has
771  *	the usage count incremented and the caller must use dev_put() to
772  *	release it when it is no longer needed. %NULL is returned if no
773  *	matching device is found.
774  */
775 
776 struct net_device *dev_get_by_name(struct net *net, const char *name)
777 {
778 	struct net_device *dev;
779 
780 	rcu_read_lock();
781 	dev = dev_get_by_name_rcu(net, name);
782 	if (dev)
783 		dev_hold(dev);
784 	rcu_read_unlock();
785 	return dev;
786 }
787 EXPORT_SYMBOL(dev_get_by_name);
788 
789 /**
790  *	__dev_get_by_index - find a device by its ifindex
791  *	@net: the applicable net namespace
792  *	@ifindex: index of device
793  *
794  *	Search for an interface by index. Returns %NULL if the device
795  *	is not found or a pointer to the device. The device has not
796  *	had its reference counter increased so the caller must be careful
797  *	about locking. The caller must hold either the RTNL semaphore
798  *	or @dev_base_lock.
799  */
800 
801 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
802 {
803 	struct net_device *dev;
804 	struct hlist_head *head = dev_index_hash(net, ifindex);
805 
806 	hlist_for_each_entry(dev, head, index_hlist)
807 		if (dev->ifindex == ifindex)
808 			return dev;
809 
810 	return NULL;
811 }
812 EXPORT_SYMBOL(__dev_get_by_index);
813 
814 /**
815  *	dev_get_by_index_rcu - find a device by its ifindex
816  *	@net: the applicable net namespace
817  *	@ifindex: index of device
818  *
819  *	Search for an interface by index. Returns %NULL if the device
820  *	is not found or a pointer to the device. The device has not
821  *	had its reference counter increased so the caller must be careful
822  *	about locking. The caller must hold RCU lock.
823  */
824 
825 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
826 {
827 	struct net_device *dev;
828 	struct hlist_head *head = dev_index_hash(net, ifindex);
829 
830 	hlist_for_each_entry_rcu(dev, head, index_hlist)
831 		if (dev->ifindex == ifindex)
832 			return dev;
833 
834 	return NULL;
835 }
836 EXPORT_SYMBOL(dev_get_by_index_rcu);
837 
838 
839 /**
840  *	dev_get_by_index - find a device by its ifindex
841  *	@net: the applicable net namespace
842  *	@ifindex: index of device
843  *
844  *	Search for an interface by index. Returns NULL if the device
845  *	is not found or a pointer to the device. The device returned has
846  *	had a reference added and the pointer is safe until the user calls
847  *	dev_put to indicate they have finished with it.
848  */
849 
850 struct net_device *dev_get_by_index(struct net *net, int ifindex)
851 {
852 	struct net_device *dev;
853 
854 	rcu_read_lock();
855 	dev = dev_get_by_index_rcu(net, ifindex);
856 	if (dev)
857 		dev_hold(dev);
858 	rcu_read_unlock();
859 	return dev;
860 }
861 EXPORT_SYMBOL(dev_get_by_index);
862 
863 /**
864  *	netdev_get_name - get a netdevice name, knowing its ifindex.
865  *	@net: network namespace
866  *	@name: a pointer to the buffer where the name will be stored.
867  *	@ifindex: the ifindex of the interface to get the name from.
868  *
869  *	The use of raw_seqcount_begin() and cond_resched() before
870  *	retrying is required as we want to give the writers a chance
871  *	to complete when CONFIG_PREEMPT is not set.
872  */
873 int netdev_get_name(struct net *net, char *name, int ifindex)
874 {
875 	struct net_device *dev;
876 	unsigned int seq;
877 
878 retry:
879 	seq = raw_seqcount_begin(&devnet_rename_seq);
880 	rcu_read_lock();
881 	dev = dev_get_by_index_rcu(net, ifindex);
882 	if (!dev) {
883 		rcu_read_unlock();
884 		return -ENODEV;
885 	}
886 
887 	strcpy(name, dev->name);
888 	rcu_read_unlock();
889 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
890 		cond_resched();
891 		goto retry;
892 	}
893 
894 	return 0;
895 }
896 
897 /**
898  *	dev_getbyhwaddr_rcu - find a device by its hardware address
899  *	@net: the applicable net namespace
900  *	@type: media type of device
901  *	@ha: hardware address
902  *
903  *	Search for an interface by MAC address. Returns NULL if the device
904  *	is not found or a pointer to the device.
905  *	The caller must hold RCU or RTNL.
906  *	The returned device has not had its ref count increased
907  *	and the caller must therefore be careful about locking
908  *
909  */
910 
911 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
912 				       const char *ha)
913 {
914 	struct net_device *dev;
915 
916 	for_each_netdev_rcu(net, dev)
917 		if (dev->type == type &&
918 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
919 			return dev;
920 
921 	return NULL;
922 }
923 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
924 
925 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
926 {
927 	struct net_device *dev;
928 
929 	ASSERT_RTNL();
930 	for_each_netdev(net, dev)
931 		if (dev->type == type)
932 			return dev;
933 
934 	return NULL;
935 }
936 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
937 
938 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
939 {
940 	struct net_device *dev, *ret = NULL;
941 
942 	rcu_read_lock();
943 	for_each_netdev_rcu(net, dev)
944 		if (dev->type == type) {
945 			dev_hold(dev);
946 			ret = dev;
947 			break;
948 		}
949 	rcu_read_unlock();
950 	return ret;
951 }
952 EXPORT_SYMBOL(dev_getfirstbyhwtype);
953 
954 /**
955  *	__dev_get_by_flags - find any device with given flags
956  *	@net: the applicable net namespace
957  *	@if_flags: IFF_* values
958  *	@mask: bitmask of bits in if_flags to check
959  *
960  *	Search for any interface with the given flags. Returns NULL if a device
961  *	is not found or a pointer to the device. Must be called inside
962  *	rtnl_lock(), and result refcount is unchanged.
963  */
964 
965 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
966 				      unsigned short mask)
967 {
968 	struct net_device *dev, *ret;
969 
970 	ASSERT_RTNL();
971 
972 	ret = NULL;
973 	for_each_netdev(net, dev) {
974 		if (((dev->flags ^ if_flags) & mask) == 0) {
975 			ret = dev;
976 			break;
977 		}
978 	}
979 	return ret;
980 }
981 EXPORT_SYMBOL(__dev_get_by_flags);
982 
983 /**
984  *	dev_valid_name - check if name is okay for network device
985  *	@name: name string
986  *
987  *	Network device names need to be valid file names to
988  *	to allow sysfs to work.  We also disallow any kind of
989  *	whitespace.
990  */
991 bool dev_valid_name(const char *name)
992 {
993 	if (*name == '\0')
994 		return false;
995 	if (strlen(name) >= IFNAMSIZ)
996 		return false;
997 	if (!strcmp(name, ".") || !strcmp(name, ".."))
998 		return false;
999 
1000 	while (*name) {
1001 		if (*name == '/' || *name == ':' || isspace(*name))
1002 			return false;
1003 		name++;
1004 	}
1005 	return true;
1006 }
1007 EXPORT_SYMBOL(dev_valid_name);
1008 
1009 /**
1010  *	__dev_alloc_name - allocate a name for a device
1011  *	@net: network namespace to allocate the device name in
1012  *	@name: name format string
1013  *	@buf:  scratch buffer and result name string
1014  *
1015  *	Passed a format string - eg "lt%d" it will try and find a suitable
1016  *	id. It scans list of devices to build up a free map, then chooses
1017  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1018  *	while allocating the name and adding the device in order to avoid
1019  *	duplicates.
1020  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1021  *	Returns the number of the unit assigned or a negative errno code.
1022  */
1023 
1024 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1025 {
1026 	int i = 0;
1027 	const char *p;
1028 	const int max_netdevices = 8*PAGE_SIZE;
1029 	unsigned long *inuse;
1030 	struct net_device *d;
1031 
1032 	p = strnchr(name, IFNAMSIZ-1, '%');
1033 	if (p) {
1034 		/*
1035 		 * Verify the string as this thing may have come from
1036 		 * the user.  There must be either one "%d" and no other "%"
1037 		 * characters.
1038 		 */
1039 		if (p[1] != 'd' || strchr(p + 2, '%'))
1040 			return -EINVAL;
1041 
1042 		/* Use one page as a bit array of possible slots */
1043 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1044 		if (!inuse)
1045 			return -ENOMEM;
1046 
1047 		for_each_netdev(net, d) {
1048 			if (!sscanf(d->name, name, &i))
1049 				continue;
1050 			if (i < 0 || i >= max_netdevices)
1051 				continue;
1052 
1053 			/*  avoid cases where sscanf is not exact inverse of printf */
1054 			snprintf(buf, IFNAMSIZ, name, i);
1055 			if (!strncmp(buf, d->name, IFNAMSIZ))
1056 				set_bit(i, inuse);
1057 		}
1058 
1059 		i = find_first_zero_bit(inuse, max_netdevices);
1060 		free_page((unsigned long) inuse);
1061 	}
1062 
1063 	if (buf != name)
1064 		snprintf(buf, IFNAMSIZ, name, i);
1065 	if (!__dev_get_by_name(net, buf))
1066 		return i;
1067 
1068 	/* It is possible to run out of possible slots
1069 	 * when the name is long and there isn't enough space left
1070 	 * for the digits, or if all bits are used.
1071 	 */
1072 	return -ENFILE;
1073 }
1074 
1075 /**
1076  *	dev_alloc_name - allocate a name for a device
1077  *	@dev: device
1078  *	@name: name format string
1079  *
1080  *	Passed a format string - eg "lt%d" it will try and find a suitable
1081  *	id. It scans list of devices to build up a free map, then chooses
1082  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1083  *	while allocating the name and adding the device in order to avoid
1084  *	duplicates.
1085  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1086  *	Returns the number of the unit assigned or a negative errno code.
1087  */
1088 
1089 int dev_alloc_name(struct net_device *dev, const char *name)
1090 {
1091 	char buf[IFNAMSIZ];
1092 	struct net *net;
1093 	int ret;
1094 
1095 	BUG_ON(!dev_net(dev));
1096 	net = dev_net(dev);
1097 	ret = __dev_alloc_name(net, name, buf);
1098 	if (ret >= 0)
1099 		strlcpy(dev->name, buf, IFNAMSIZ);
1100 	return ret;
1101 }
1102 EXPORT_SYMBOL(dev_alloc_name);
1103 
1104 static int dev_alloc_name_ns(struct net *net,
1105 			     struct net_device *dev,
1106 			     const char *name)
1107 {
1108 	char buf[IFNAMSIZ];
1109 	int ret;
1110 
1111 	ret = __dev_alloc_name(net, name, buf);
1112 	if (ret >= 0)
1113 		strlcpy(dev->name, buf, IFNAMSIZ);
1114 	return ret;
1115 }
1116 
1117 static int dev_get_valid_name(struct net *net,
1118 			      struct net_device *dev,
1119 			      const char *name)
1120 {
1121 	BUG_ON(!net);
1122 
1123 	if (!dev_valid_name(name))
1124 		return -EINVAL;
1125 
1126 	if (strchr(name, '%'))
1127 		return dev_alloc_name_ns(net, dev, name);
1128 	else if (__dev_get_by_name(net, name))
1129 		return -EEXIST;
1130 	else if (dev->name != name)
1131 		strlcpy(dev->name, name, IFNAMSIZ);
1132 
1133 	return 0;
1134 }
1135 
1136 /**
1137  *	dev_change_name - change name of a device
1138  *	@dev: device
1139  *	@newname: name (or format string) must be at least IFNAMSIZ
1140  *
1141  *	Change name of a device, can pass format strings "eth%d".
1142  *	for wildcarding.
1143  */
1144 int dev_change_name(struct net_device *dev, const char *newname)
1145 {
1146 	unsigned char old_assign_type;
1147 	char oldname[IFNAMSIZ];
1148 	int err = 0;
1149 	int ret;
1150 	struct net *net;
1151 
1152 	ASSERT_RTNL();
1153 	BUG_ON(!dev_net(dev));
1154 
1155 	net = dev_net(dev);
1156 	if (dev->flags & IFF_UP)
1157 		return -EBUSY;
1158 
1159 	write_seqcount_begin(&devnet_rename_seq);
1160 
1161 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1162 		write_seqcount_end(&devnet_rename_seq);
1163 		return 0;
1164 	}
1165 
1166 	memcpy(oldname, dev->name, IFNAMSIZ);
1167 
1168 	err = dev_get_valid_name(net, dev, newname);
1169 	if (err < 0) {
1170 		write_seqcount_end(&devnet_rename_seq);
1171 		return err;
1172 	}
1173 
1174 	if (oldname[0] && !strchr(oldname, '%'))
1175 		netdev_info(dev, "renamed from %s\n", oldname);
1176 
1177 	old_assign_type = dev->name_assign_type;
1178 	dev->name_assign_type = NET_NAME_RENAMED;
1179 
1180 rollback:
1181 	ret = device_rename(&dev->dev, dev->name);
1182 	if (ret) {
1183 		memcpy(dev->name, oldname, IFNAMSIZ);
1184 		dev->name_assign_type = old_assign_type;
1185 		write_seqcount_end(&devnet_rename_seq);
1186 		return ret;
1187 	}
1188 
1189 	write_seqcount_end(&devnet_rename_seq);
1190 
1191 	netdev_adjacent_rename_links(dev, oldname);
1192 
1193 	write_lock_bh(&dev_base_lock);
1194 	hlist_del_rcu(&dev->name_hlist);
1195 	write_unlock_bh(&dev_base_lock);
1196 
1197 	synchronize_rcu();
1198 
1199 	write_lock_bh(&dev_base_lock);
1200 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1201 	write_unlock_bh(&dev_base_lock);
1202 
1203 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1204 	ret = notifier_to_errno(ret);
1205 
1206 	if (ret) {
1207 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1208 		if (err >= 0) {
1209 			err = ret;
1210 			write_seqcount_begin(&devnet_rename_seq);
1211 			memcpy(dev->name, oldname, IFNAMSIZ);
1212 			memcpy(oldname, newname, IFNAMSIZ);
1213 			dev->name_assign_type = old_assign_type;
1214 			old_assign_type = NET_NAME_RENAMED;
1215 			goto rollback;
1216 		} else {
1217 			pr_err("%s: name change rollback failed: %d\n",
1218 			       dev->name, ret);
1219 		}
1220 	}
1221 
1222 	return err;
1223 }
1224 
1225 /**
1226  *	dev_set_alias - change ifalias of a device
1227  *	@dev: device
1228  *	@alias: name up to IFALIASZ
1229  *	@len: limit of bytes to copy from info
1230  *
1231  *	Set ifalias for a device,
1232  */
1233 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1234 {
1235 	char *new_ifalias;
1236 
1237 	ASSERT_RTNL();
1238 
1239 	if (len >= IFALIASZ)
1240 		return -EINVAL;
1241 
1242 	if (!len) {
1243 		kfree(dev->ifalias);
1244 		dev->ifalias = NULL;
1245 		return 0;
1246 	}
1247 
1248 	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1249 	if (!new_ifalias)
1250 		return -ENOMEM;
1251 	dev->ifalias = new_ifalias;
1252 
1253 	strlcpy(dev->ifalias, alias, len+1);
1254 	return len;
1255 }
1256 
1257 
1258 /**
1259  *	netdev_features_change - device changes features
1260  *	@dev: device to cause notification
1261  *
1262  *	Called to indicate a device has changed features.
1263  */
1264 void netdev_features_change(struct net_device *dev)
1265 {
1266 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1267 }
1268 EXPORT_SYMBOL(netdev_features_change);
1269 
1270 /**
1271  *	netdev_state_change - device changes state
1272  *	@dev: device to cause notification
1273  *
1274  *	Called to indicate a device has changed state. This function calls
1275  *	the notifier chains for netdev_chain and sends a NEWLINK message
1276  *	to the routing socket.
1277  */
1278 void netdev_state_change(struct net_device *dev)
1279 {
1280 	if (dev->flags & IFF_UP) {
1281 		struct netdev_notifier_change_info change_info;
1282 
1283 		change_info.flags_changed = 0;
1284 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1285 					      &change_info.info);
1286 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1287 	}
1288 }
1289 EXPORT_SYMBOL(netdev_state_change);
1290 
1291 /**
1292  * 	netdev_notify_peers - notify network peers about existence of @dev
1293  * 	@dev: network device
1294  *
1295  * Generate traffic such that interested network peers are aware of
1296  * @dev, such as by generating a gratuitous ARP. This may be used when
1297  * a device wants to inform the rest of the network about some sort of
1298  * reconfiguration such as a failover event or virtual machine
1299  * migration.
1300  */
1301 void netdev_notify_peers(struct net_device *dev)
1302 {
1303 	rtnl_lock();
1304 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1305 	rtnl_unlock();
1306 }
1307 EXPORT_SYMBOL(netdev_notify_peers);
1308 
1309 static int __dev_open(struct net_device *dev)
1310 {
1311 	const struct net_device_ops *ops = dev->netdev_ops;
1312 	int ret;
1313 
1314 	ASSERT_RTNL();
1315 
1316 	if (!netif_device_present(dev))
1317 		return -ENODEV;
1318 
1319 	/* Block netpoll from trying to do any rx path servicing.
1320 	 * If we don't do this there is a chance ndo_poll_controller
1321 	 * or ndo_poll may be running while we open the device
1322 	 */
1323 	netpoll_poll_disable(dev);
1324 
1325 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1326 	ret = notifier_to_errno(ret);
1327 	if (ret)
1328 		return ret;
1329 
1330 	set_bit(__LINK_STATE_START, &dev->state);
1331 
1332 	if (ops->ndo_validate_addr)
1333 		ret = ops->ndo_validate_addr(dev);
1334 
1335 	if (!ret && ops->ndo_open)
1336 		ret = ops->ndo_open(dev);
1337 
1338 	netpoll_poll_enable(dev);
1339 
1340 	if (ret)
1341 		clear_bit(__LINK_STATE_START, &dev->state);
1342 	else {
1343 		dev->flags |= IFF_UP;
1344 		dev_set_rx_mode(dev);
1345 		dev_activate(dev);
1346 		add_device_randomness(dev->dev_addr, dev->addr_len);
1347 	}
1348 
1349 	return ret;
1350 }
1351 
1352 /**
1353  *	dev_open	- prepare an interface for use.
1354  *	@dev:	device to open
1355  *
1356  *	Takes a device from down to up state. The device's private open
1357  *	function is invoked and then the multicast lists are loaded. Finally
1358  *	the device is moved into the up state and a %NETDEV_UP message is
1359  *	sent to the netdev notifier chain.
1360  *
1361  *	Calling this function on an active interface is a nop. On a failure
1362  *	a negative errno code is returned.
1363  */
1364 int dev_open(struct net_device *dev)
1365 {
1366 	int ret;
1367 
1368 	if (dev->flags & IFF_UP)
1369 		return 0;
1370 
1371 	ret = __dev_open(dev);
1372 	if (ret < 0)
1373 		return ret;
1374 
1375 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1376 	call_netdevice_notifiers(NETDEV_UP, dev);
1377 
1378 	return ret;
1379 }
1380 EXPORT_SYMBOL(dev_open);
1381 
1382 static int __dev_close_many(struct list_head *head)
1383 {
1384 	struct net_device *dev;
1385 
1386 	ASSERT_RTNL();
1387 	might_sleep();
1388 
1389 	list_for_each_entry(dev, head, close_list) {
1390 		/* Temporarily disable netpoll until the interface is down */
1391 		netpoll_poll_disable(dev);
1392 
1393 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1394 
1395 		clear_bit(__LINK_STATE_START, &dev->state);
1396 
1397 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1398 		 * can be even on different cpu. So just clear netif_running().
1399 		 *
1400 		 * dev->stop() will invoke napi_disable() on all of it's
1401 		 * napi_struct instances on this device.
1402 		 */
1403 		smp_mb__after_atomic(); /* Commit netif_running(). */
1404 	}
1405 
1406 	dev_deactivate_many(head);
1407 
1408 	list_for_each_entry(dev, head, close_list) {
1409 		const struct net_device_ops *ops = dev->netdev_ops;
1410 
1411 		/*
1412 		 *	Call the device specific close. This cannot fail.
1413 		 *	Only if device is UP
1414 		 *
1415 		 *	We allow it to be called even after a DETACH hot-plug
1416 		 *	event.
1417 		 */
1418 		if (ops->ndo_stop)
1419 			ops->ndo_stop(dev);
1420 
1421 		dev->flags &= ~IFF_UP;
1422 		netpoll_poll_enable(dev);
1423 	}
1424 
1425 	return 0;
1426 }
1427 
1428 static int __dev_close(struct net_device *dev)
1429 {
1430 	int retval;
1431 	LIST_HEAD(single);
1432 
1433 	list_add(&dev->close_list, &single);
1434 	retval = __dev_close_many(&single);
1435 	list_del(&single);
1436 
1437 	return retval;
1438 }
1439 
1440 int dev_close_many(struct list_head *head, bool unlink)
1441 {
1442 	struct net_device *dev, *tmp;
1443 
1444 	/* Remove the devices that don't need to be closed */
1445 	list_for_each_entry_safe(dev, tmp, head, close_list)
1446 		if (!(dev->flags & IFF_UP))
1447 			list_del_init(&dev->close_list);
1448 
1449 	__dev_close_many(head);
1450 
1451 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1452 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1453 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1454 		if (unlink)
1455 			list_del_init(&dev->close_list);
1456 	}
1457 
1458 	return 0;
1459 }
1460 EXPORT_SYMBOL(dev_close_many);
1461 
1462 /**
1463  *	dev_close - shutdown an interface.
1464  *	@dev: device to shutdown
1465  *
1466  *	This function moves an active device into down state. A
1467  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1468  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1469  *	chain.
1470  */
1471 int dev_close(struct net_device *dev)
1472 {
1473 	if (dev->flags & IFF_UP) {
1474 		LIST_HEAD(single);
1475 
1476 		list_add(&dev->close_list, &single);
1477 		dev_close_many(&single, true);
1478 		list_del(&single);
1479 	}
1480 	return 0;
1481 }
1482 EXPORT_SYMBOL(dev_close);
1483 
1484 
1485 /**
1486  *	dev_disable_lro - disable Large Receive Offload on a device
1487  *	@dev: device
1488  *
1489  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1490  *	called under RTNL.  This is needed if received packets may be
1491  *	forwarded to another interface.
1492  */
1493 void dev_disable_lro(struct net_device *dev)
1494 {
1495 	struct net_device *lower_dev;
1496 	struct list_head *iter;
1497 
1498 	dev->wanted_features &= ~NETIF_F_LRO;
1499 	netdev_update_features(dev);
1500 
1501 	if (unlikely(dev->features & NETIF_F_LRO))
1502 		netdev_WARN(dev, "failed to disable LRO!\n");
1503 
1504 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1505 		dev_disable_lro(lower_dev);
1506 }
1507 EXPORT_SYMBOL(dev_disable_lro);
1508 
1509 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1510 				   struct net_device *dev)
1511 {
1512 	struct netdev_notifier_info info;
1513 
1514 	netdev_notifier_info_init(&info, dev);
1515 	return nb->notifier_call(nb, val, &info);
1516 }
1517 
1518 static int dev_boot_phase = 1;
1519 
1520 /**
1521  *	register_netdevice_notifier - register a network notifier block
1522  *	@nb: notifier
1523  *
1524  *	Register a notifier to be called when network device events occur.
1525  *	The notifier passed is linked into the kernel structures and must
1526  *	not be reused until it has been unregistered. A negative errno code
1527  *	is returned on a failure.
1528  *
1529  * 	When registered all registration and up events are replayed
1530  *	to the new notifier to allow device to have a race free
1531  *	view of the network device list.
1532  */
1533 
1534 int register_netdevice_notifier(struct notifier_block *nb)
1535 {
1536 	struct net_device *dev;
1537 	struct net_device *last;
1538 	struct net *net;
1539 	int err;
1540 
1541 	rtnl_lock();
1542 	err = raw_notifier_chain_register(&netdev_chain, nb);
1543 	if (err)
1544 		goto unlock;
1545 	if (dev_boot_phase)
1546 		goto unlock;
1547 	for_each_net(net) {
1548 		for_each_netdev(net, dev) {
1549 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1550 			err = notifier_to_errno(err);
1551 			if (err)
1552 				goto rollback;
1553 
1554 			if (!(dev->flags & IFF_UP))
1555 				continue;
1556 
1557 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1558 		}
1559 	}
1560 
1561 unlock:
1562 	rtnl_unlock();
1563 	return err;
1564 
1565 rollback:
1566 	last = dev;
1567 	for_each_net(net) {
1568 		for_each_netdev(net, dev) {
1569 			if (dev == last)
1570 				goto outroll;
1571 
1572 			if (dev->flags & IFF_UP) {
1573 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1574 							dev);
1575 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1576 			}
1577 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1578 		}
1579 	}
1580 
1581 outroll:
1582 	raw_notifier_chain_unregister(&netdev_chain, nb);
1583 	goto unlock;
1584 }
1585 EXPORT_SYMBOL(register_netdevice_notifier);
1586 
1587 /**
1588  *	unregister_netdevice_notifier - unregister a network notifier block
1589  *	@nb: notifier
1590  *
1591  *	Unregister a notifier previously registered by
1592  *	register_netdevice_notifier(). The notifier is unlinked into the
1593  *	kernel structures and may then be reused. A negative errno code
1594  *	is returned on a failure.
1595  *
1596  * 	After unregistering unregister and down device events are synthesized
1597  *	for all devices on the device list to the removed notifier to remove
1598  *	the need for special case cleanup code.
1599  */
1600 
1601 int unregister_netdevice_notifier(struct notifier_block *nb)
1602 {
1603 	struct net_device *dev;
1604 	struct net *net;
1605 	int err;
1606 
1607 	rtnl_lock();
1608 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1609 	if (err)
1610 		goto unlock;
1611 
1612 	for_each_net(net) {
1613 		for_each_netdev(net, dev) {
1614 			if (dev->flags & IFF_UP) {
1615 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1616 							dev);
1617 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1618 			}
1619 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1620 		}
1621 	}
1622 unlock:
1623 	rtnl_unlock();
1624 	return err;
1625 }
1626 EXPORT_SYMBOL(unregister_netdevice_notifier);
1627 
1628 /**
1629  *	call_netdevice_notifiers_info - call all network notifier blocks
1630  *	@val: value passed unmodified to notifier function
1631  *	@dev: net_device pointer passed unmodified to notifier function
1632  *	@info: notifier information data
1633  *
1634  *	Call all network notifier blocks.  Parameters and return value
1635  *	are as for raw_notifier_call_chain().
1636  */
1637 
1638 static int call_netdevice_notifiers_info(unsigned long val,
1639 					 struct net_device *dev,
1640 					 struct netdev_notifier_info *info)
1641 {
1642 	ASSERT_RTNL();
1643 	netdev_notifier_info_init(info, dev);
1644 	return raw_notifier_call_chain(&netdev_chain, val, info);
1645 }
1646 
1647 /**
1648  *	call_netdevice_notifiers - call all network notifier blocks
1649  *      @val: value passed unmodified to notifier function
1650  *      @dev: net_device pointer passed unmodified to notifier function
1651  *
1652  *	Call all network notifier blocks.  Parameters and return value
1653  *	are as for raw_notifier_call_chain().
1654  */
1655 
1656 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1657 {
1658 	struct netdev_notifier_info info;
1659 
1660 	return call_netdevice_notifiers_info(val, dev, &info);
1661 }
1662 EXPORT_SYMBOL(call_netdevice_notifiers);
1663 
1664 #ifdef CONFIG_NET_INGRESS
1665 static struct static_key ingress_needed __read_mostly;
1666 
1667 void net_inc_ingress_queue(void)
1668 {
1669 	static_key_slow_inc(&ingress_needed);
1670 }
1671 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1672 
1673 void net_dec_ingress_queue(void)
1674 {
1675 	static_key_slow_dec(&ingress_needed);
1676 }
1677 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1678 #endif
1679 
1680 #ifdef CONFIG_NET_EGRESS
1681 static struct static_key egress_needed __read_mostly;
1682 
1683 void net_inc_egress_queue(void)
1684 {
1685 	static_key_slow_inc(&egress_needed);
1686 }
1687 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1688 
1689 void net_dec_egress_queue(void)
1690 {
1691 	static_key_slow_dec(&egress_needed);
1692 }
1693 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1694 #endif
1695 
1696 static struct static_key netstamp_needed __read_mostly;
1697 #ifdef HAVE_JUMP_LABEL
1698 /* We are not allowed to call static_key_slow_dec() from irq context
1699  * If net_disable_timestamp() is called from irq context, defer the
1700  * static_key_slow_dec() calls.
1701  */
1702 static atomic_t netstamp_needed_deferred;
1703 #endif
1704 
1705 void net_enable_timestamp(void)
1706 {
1707 #ifdef HAVE_JUMP_LABEL
1708 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1709 
1710 	if (deferred) {
1711 		while (--deferred)
1712 			static_key_slow_dec(&netstamp_needed);
1713 		return;
1714 	}
1715 #endif
1716 	static_key_slow_inc(&netstamp_needed);
1717 }
1718 EXPORT_SYMBOL(net_enable_timestamp);
1719 
1720 void net_disable_timestamp(void)
1721 {
1722 #ifdef HAVE_JUMP_LABEL
1723 	if (in_interrupt()) {
1724 		atomic_inc(&netstamp_needed_deferred);
1725 		return;
1726 	}
1727 #endif
1728 	static_key_slow_dec(&netstamp_needed);
1729 }
1730 EXPORT_SYMBOL(net_disable_timestamp);
1731 
1732 static inline void net_timestamp_set(struct sk_buff *skb)
1733 {
1734 	skb->tstamp = 0;
1735 	if (static_key_false(&netstamp_needed))
1736 		__net_timestamp(skb);
1737 }
1738 
1739 #define net_timestamp_check(COND, SKB)			\
1740 	if (static_key_false(&netstamp_needed)) {		\
1741 		if ((COND) && !(SKB)->tstamp)	\
1742 			__net_timestamp(SKB);		\
1743 	}						\
1744 
1745 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1746 {
1747 	unsigned int len;
1748 
1749 	if (!(dev->flags & IFF_UP))
1750 		return false;
1751 
1752 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1753 	if (skb->len <= len)
1754 		return true;
1755 
1756 	/* if TSO is enabled, we don't care about the length as the packet
1757 	 * could be forwarded without being segmented before
1758 	 */
1759 	if (skb_is_gso(skb))
1760 		return true;
1761 
1762 	return false;
1763 }
1764 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1765 
1766 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1767 {
1768 	int ret = ____dev_forward_skb(dev, skb);
1769 
1770 	if (likely(!ret)) {
1771 		skb->protocol = eth_type_trans(skb, dev);
1772 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1773 	}
1774 
1775 	return ret;
1776 }
1777 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1778 
1779 /**
1780  * dev_forward_skb - loopback an skb to another netif
1781  *
1782  * @dev: destination network device
1783  * @skb: buffer to forward
1784  *
1785  * return values:
1786  *	NET_RX_SUCCESS	(no congestion)
1787  *	NET_RX_DROP     (packet was dropped, but freed)
1788  *
1789  * dev_forward_skb can be used for injecting an skb from the
1790  * start_xmit function of one device into the receive queue
1791  * of another device.
1792  *
1793  * The receiving device may be in another namespace, so
1794  * we have to clear all information in the skb that could
1795  * impact namespace isolation.
1796  */
1797 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1798 {
1799 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1800 }
1801 EXPORT_SYMBOL_GPL(dev_forward_skb);
1802 
1803 static inline int deliver_skb(struct sk_buff *skb,
1804 			      struct packet_type *pt_prev,
1805 			      struct net_device *orig_dev)
1806 {
1807 	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1808 		return -ENOMEM;
1809 	atomic_inc(&skb->users);
1810 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1811 }
1812 
1813 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1814 					  struct packet_type **pt,
1815 					  struct net_device *orig_dev,
1816 					  __be16 type,
1817 					  struct list_head *ptype_list)
1818 {
1819 	struct packet_type *ptype, *pt_prev = *pt;
1820 
1821 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1822 		if (ptype->type != type)
1823 			continue;
1824 		if (pt_prev)
1825 			deliver_skb(skb, pt_prev, orig_dev);
1826 		pt_prev = ptype;
1827 	}
1828 	*pt = pt_prev;
1829 }
1830 
1831 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1832 {
1833 	if (!ptype->af_packet_priv || !skb->sk)
1834 		return false;
1835 
1836 	if (ptype->id_match)
1837 		return ptype->id_match(ptype, skb->sk);
1838 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1839 		return true;
1840 
1841 	return false;
1842 }
1843 
1844 /*
1845  *	Support routine. Sends outgoing frames to any network
1846  *	taps currently in use.
1847  */
1848 
1849 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1850 {
1851 	struct packet_type *ptype;
1852 	struct sk_buff *skb2 = NULL;
1853 	struct packet_type *pt_prev = NULL;
1854 	struct list_head *ptype_list = &ptype_all;
1855 
1856 	rcu_read_lock();
1857 again:
1858 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1859 		/* Never send packets back to the socket
1860 		 * they originated from - MvS (miquels@drinkel.ow.org)
1861 		 */
1862 		if (skb_loop_sk(ptype, skb))
1863 			continue;
1864 
1865 		if (pt_prev) {
1866 			deliver_skb(skb2, pt_prev, skb->dev);
1867 			pt_prev = ptype;
1868 			continue;
1869 		}
1870 
1871 		/* need to clone skb, done only once */
1872 		skb2 = skb_clone(skb, GFP_ATOMIC);
1873 		if (!skb2)
1874 			goto out_unlock;
1875 
1876 		net_timestamp_set(skb2);
1877 
1878 		/* skb->nh should be correctly
1879 		 * set by sender, so that the second statement is
1880 		 * just protection against buggy protocols.
1881 		 */
1882 		skb_reset_mac_header(skb2);
1883 
1884 		if (skb_network_header(skb2) < skb2->data ||
1885 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1886 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1887 					     ntohs(skb2->protocol),
1888 					     dev->name);
1889 			skb_reset_network_header(skb2);
1890 		}
1891 
1892 		skb2->transport_header = skb2->network_header;
1893 		skb2->pkt_type = PACKET_OUTGOING;
1894 		pt_prev = ptype;
1895 	}
1896 
1897 	if (ptype_list == &ptype_all) {
1898 		ptype_list = &dev->ptype_all;
1899 		goto again;
1900 	}
1901 out_unlock:
1902 	if (pt_prev)
1903 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1904 	rcu_read_unlock();
1905 }
1906 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1907 
1908 /**
1909  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1910  * @dev: Network device
1911  * @txq: number of queues available
1912  *
1913  * If real_num_tx_queues is changed the tc mappings may no longer be
1914  * valid. To resolve this verify the tc mapping remains valid and if
1915  * not NULL the mapping. With no priorities mapping to this
1916  * offset/count pair it will no longer be used. In the worst case TC0
1917  * is invalid nothing can be done so disable priority mappings. If is
1918  * expected that drivers will fix this mapping if they can before
1919  * calling netif_set_real_num_tx_queues.
1920  */
1921 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1922 {
1923 	int i;
1924 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1925 
1926 	/* If TC0 is invalidated disable TC mapping */
1927 	if (tc->offset + tc->count > txq) {
1928 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1929 		dev->num_tc = 0;
1930 		return;
1931 	}
1932 
1933 	/* Invalidated prio to tc mappings set to TC0 */
1934 	for (i = 1; i < TC_BITMASK + 1; i++) {
1935 		int q = netdev_get_prio_tc_map(dev, i);
1936 
1937 		tc = &dev->tc_to_txq[q];
1938 		if (tc->offset + tc->count > txq) {
1939 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1940 				i, q);
1941 			netdev_set_prio_tc_map(dev, i, 0);
1942 		}
1943 	}
1944 }
1945 
1946 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
1947 {
1948 	if (dev->num_tc) {
1949 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1950 		int i;
1951 
1952 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
1953 			if ((txq - tc->offset) < tc->count)
1954 				return i;
1955 		}
1956 
1957 		return -1;
1958 	}
1959 
1960 	return 0;
1961 }
1962 
1963 #ifdef CONFIG_XPS
1964 static DEFINE_MUTEX(xps_map_mutex);
1965 #define xmap_dereference(P)		\
1966 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1967 
1968 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
1969 			     int tci, u16 index)
1970 {
1971 	struct xps_map *map = NULL;
1972 	int pos;
1973 
1974 	if (dev_maps)
1975 		map = xmap_dereference(dev_maps->cpu_map[tci]);
1976 	if (!map)
1977 		return false;
1978 
1979 	for (pos = map->len; pos--;) {
1980 		if (map->queues[pos] != index)
1981 			continue;
1982 
1983 		if (map->len > 1) {
1984 			map->queues[pos] = map->queues[--map->len];
1985 			break;
1986 		}
1987 
1988 		RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
1989 		kfree_rcu(map, rcu);
1990 		return false;
1991 	}
1992 
1993 	return true;
1994 }
1995 
1996 static bool remove_xps_queue_cpu(struct net_device *dev,
1997 				 struct xps_dev_maps *dev_maps,
1998 				 int cpu, u16 offset, u16 count)
1999 {
2000 	int num_tc = dev->num_tc ? : 1;
2001 	bool active = false;
2002 	int tci;
2003 
2004 	for (tci = cpu * num_tc; num_tc--; tci++) {
2005 		int i, j;
2006 
2007 		for (i = count, j = offset; i--; j++) {
2008 			if (!remove_xps_queue(dev_maps, cpu, j))
2009 				break;
2010 		}
2011 
2012 		active |= i < 0;
2013 	}
2014 
2015 	return active;
2016 }
2017 
2018 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2019 				   u16 count)
2020 {
2021 	struct xps_dev_maps *dev_maps;
2022 	int cpu, i;
2023 	bool active = false;
2024 
2025 	mutex_lock(&xps_map_mutex);
2026 	dev_maps = xmap_dereference(dev->xps_maps);
2027 
2028 	if (!dev_maps)
2029 		goto out_no_maps;
2030 
2031 	for_each_possible_cpu(cpu)
2032 		active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2033 					       offset, count);
2034 
2035 	if (!active) {
2036 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2037 		kfree_rcu(dev_maps, rcu);
2038 	}
2039 
2040 	for (i = offset + (count - 1); count--; i--)
2041 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2042 					     NUMA_NO_NODE);
2043 
2044 out_no_maps:
2045 	mutex_unlock(&xps_map_mutex);
2046 }
2047 
2048 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2049 {
2050 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2051 }
2052 
2053 static struct xps_map *expand_xps_map(struct xps_map *map,
2054 				      int cpu, u16 index)
2055 {
2056 	struct xps_map *new_map;
2057 	int alloc_len = XPS_MIN_MAP_ALLOC;
2058 	int i, pos;
2059 
2060 	for (pos = 0; map && pos < map->len; pos++) {
2061 		if (map->queues[pos] != index)
2062 			continue;
2063 		return map;
2064 	}
2065 
2066 	/* Need to add queue to this CPU's existing map */
2067 	if (map) {
2068 		if (pos < map->alloc_len)
2069 			return map;
2070 
2071 		alloc_len = map->alloc_len * 2;
2072 	}
2073 
2074 	/* Need to allocate new map to store queue on this CPU's map */
2075 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2076 			       cpu_to_node(cpu));
2077 	if (!new_map)
2078 		return NULL;
2079 
2080 	for (i = 0; i < pos; i++)
2081 		new_map->queues[i] = map->queues[i];
2082 	new_map->alloc_len = alloc_len;
2083 	new_map->len = pos;
2084 
2085 	return new_map;
2086 }
2087 
2088 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2089 			u16 index)
2090 {
2091 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2092 	int i, cpu, tci, numa_node_id = -2;
2093 	int maps_sz, num_tc = 1, tc = 0;
2094 	struct xps_map *map, *new_map;
2095 	bool active = false;
2096 
2097 	if (dev->num_tc) {
2098 		num_tc = dev->num_tc;
2099 		tc = netdev_txq_to_tc(dev, index);
2100 		if (tc < 0)
2101 			return -EINVAL;
2102 	}
2103 
2104 	maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2105 	if (maps_sz < L1_CACHE_BYTES)
2106 		maps_sz = L1_CACHE_BYTES;
2107 
2108 	mutex_lock(&xps_map_mutex);
2109 
2110 	dev_maps = xmap_dereference(dev->xps_maps);
2111 
2112 	/* allocate memory for queue storage */
2113 	for_each_cpu_and(cpu, cpu_online_mask, mask) {
2114 		if (!new_dev_maps)
2115 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2116 		if (!new_dev_maps) {
2117 			mutex_unlock(&xps_map_mutex);
2118 			return -ENOMEM;
2119 		}
2120 
2121 		tci = cpu * num_tc + tc;
2122 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2123 				 NULL;
2124 
2125 		map = expand_xps_map(map, cpu, index);
2126 		if (!map)
2127 			goto error;
2128 
2129 		RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2130 	}
2131 
2132 	if (!new_dev_maps)
2133 		goto out_no_new_maps;
2134 
2135 	for_each_possible_cpu(cpu) {
2136 		/* copy maps belonging to foreign traffic classes */
2137 		for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2138 			/* fill in the new device map from the old device map */
2139 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2140 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2141 		}
2142 
2143 		/* We need to explicitly update tci as prevous loop
2144 		 * could break out early if dev_maps is NULL.
2145 		 */
2146 		tci = cpu * num_tc + tc;
2147 
2148 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2149 			/* add queue to CPU maps */
2150 			int pos = 0;
2151 
2152 			map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2153 			while ((pos < map->len) && (map->queues[pos] != index))
2154 				pos++;
2155 
2156 			if (pos == map->len)
2157 				map->queues[map->len++] = index;
2158 #ifdef CONFIG_NUMA
2159 			if (numa_node_id == -2)
2160 				numa_node_id = cpu_to_node(cpu);
2161 			else if (numa_node_id != cpu_to_node(cpu))
2162 				numa_node_id = -1;
2163 #endif
2164 		} else if (dev_maps) {
2165 			/* fill in the new device map from the old device map */
2166 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2167 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2168 		}
2169 
2170 		/* copy maps belonging to foreign traffic classes */
2171 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2172 			/* fill in the new device map from the old device map */
2173 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2174 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2175 		}
2176 	}
2177 
2178 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2179 
2180 	/* Cleanup old maps */
2181 	if (!dev_maps)
2182 		goto out_no_old_maps;
2183 
2184 	for_each_possible_cpu(cpu) {
2185 		for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2186 			new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2187 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2188 			if (map && map != new_map)
2189 				kfree_rcu(map, rcu);
2190 		}
2191 	}
2192 
2193 	kfree_rcu(dev_maps, rcu);
2194 
2195 out_no_old_maps:
2196 	dev_maps = new_dev_maps;
2197 	active = true;
2198 
2199 out_no_new_maps:
2200 	/* update Tx queue numa node */
2201 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2202 				     (numa_node_id >= 0) ? numa_node_id :
2203 				     NUMA_NO_NODE);
2204 
2205 	if (!dev_maps)
2206 		goto out_no_maps;
2207 
2208 	/* removes queue from unused CPUs */
2209 	for_each_possible_cpu(cpu) {
2210 		for (i = tc, tci = cpu * num_tc; i--; tci++)
2211 			active |= remove_xps_queue(dev_maps, tci, index);
2212 		if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2213 			active |= remove_xps_queue(dev_maps, tci, index);
2214 		for (i = num_tc - tc, tci++; --i; tci++)
2215 			active |= remove_xps_queue(dev_maps, tci, index);
2216 	}
2217 
2218 	/* free map if not active */
2219 	if (!active) {
2220 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2221 		kfree_rcu(dev_maps, rcu);
2222 	}
2223 
2224 out_no_maps:
2225 	mutex_unlock(&xps_map_mutex);
2226 
2227 	return 0;
2228 error:
2229 	/* remove any maps that we added */
2230 	for_each_possible_cpu(cpu) {
2231 		for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2232 			new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2233 			map = dev_maps ?
2234 			      xmap_dereference(dev_maps->cpu_map[tci]) :
2235 			      NULL;
2236 			if (new_map && new_map != map)
2237 				kfree(new_map);
2238 		}
2239 	}
2240 
2241 	mutex_unlock(&xps_map_mutex);
2242 
2243 	kfree(new_dev_maps);
2244 	return -ENOMEM;
2245 }
2246 EXPORT_SYMBOL(netif_set_xps_queue);
2247 
2248 #endif
2249 void netdev_reset_tc(struct net_device *dev)
2250 {
2251 #ifdef CONFIG_XPS
2252 	netif_reset_xps_queues_gt(dev, 0);
2253 #endif
2254 	dev->num_tc = 0;
2255 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2256 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2257 }
2258 EXPORT_SYMBOL(netdev_reset_tc);
2259 
2260 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2261 {
2262 	if (tc >= dev->num_tc)
2263 		return -EINVAL;
2264 
2265 #ifdef CONFIG_XPS
2266 	netif_reset_xps_queues(dev, offset, count);
2267 #endif
2268 	dev->tc_to_txq[tc].count = count;
2269 	dev->tc_to_txq[tc].offset = offset;
2270 	return 0;
2271 }
2272 EXPORT_SYMBOL(netdev_set_tc_queue);
2273 
2274 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2275 {
2276 	if (num_tc > TC_MAX_QUEUE)
2277 		return -EINVAL;
2278 
2279 #ifdef CONFIG_XPS
2280 	netif_reset_xps_queues_gt(dev, 0);
2281 #endif
2282 	dev->num_tc = num_tc;
2283 	return 0;
2284 }
2285 EXPORT_SYMBOL(netdev_set_num_tc);
2286 
2287 /*
2288  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2289  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2290  */
2291 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2292 {
2293 	int rc;
2294 
2295 	if (txq < 1 || txq > dev->num_tx_queues)
2296 		return -EINVAL;
2297 
2298 	if (dev->reg_state == NETREG_REGISTERED ||
2299 	    dev->reg_state == NETREG_UNREGISTERING) {
2300 		ASSERT_RTNL();
2301 
2302 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2303 						  txq);
2304 		if (rc)
2305 			return rc;
2306 
2307 		if (dev->num_tc)
2308 			netif_setup_tc(dev, txq);
2309 
2310 		if (txq < dev->real_num_tx_queues) {
2311 			qdisc_reset_all_tx_gt(dev, txq);
2312 #ifdef CONFIG_XPS
2313 			netif_reset_xps_queues_gt(dev, txq);
2314 #endif
2315 		}
2316 	}
2317 
2318 	dev->real_num_tx_queues = txq;
2319 	return 0;
2320 }
2321 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2322 
2323 #ifdef CONFIG_SYSFS
2324 /**
2325  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2326  *	@dev: Network device
2327  *	@rxq: Actual number of RX queues
2328  *
2329  *	This must be called either with the rtnl_lock held or before
2330  *	registration of the net device.  Returns 0 on success, or a
2331  *	negative error code.  If called before registration, it always
2332  *	succeeds.
2333  */
2334 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2335 {
2336 	int rc;
2337 
2338 	if (rxq < 1 || rxq > dev->num_rx_queues)
2339 		return -EINVAL;
2340 
2341 	if (dev->reg_state == NETREG_REGISTERED) {
2342 		ASSERT_RTNL();
2343 
2344 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2345 						  rxq);
2346 		if (rc)
2347 			return rc;
2348 	}
2349 
2350 	dev->real_num_rx_queues = rxq;
2351 	return 0;
2352 }
2353 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2354 #endif
2355 
2356 /**
2357  * netif_get_num_default_rss_queues - default number of RSS queues
2358  *
2359  * This routine should set an upper limit on the number of RSS queues
2360  * used by default by multiqueue devices.
2361  */
2362 int netif_get_num_default_rss_queues(void)
2363 {
2364 	return is_kdump_kernel() ?
2365 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2366 }
2367 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2368 
2369 static void __netif_reschedule(struct Qdisc *q)
2370 {
2371 	struct softnet_data *sd;
2372 	unsigned long flags;
2373 
2374 	local_irq_save(flags);
2375 	sd = this_cpu_ptr(&softnet_data);
2376 	q->next_sched = NULL;
2377 	*sd->output_queue_tailp = q;
2378 	sd->output_queue_tailp = &q->next_sched;
2379 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2380 	local_irq_restore(flags);
2381 }
2382 
2383 void __netif_schedule(struct Qdisc *q)
2384 {
2385 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2386 		__netif_reschedule(q);
2387 }
2388 EXPORT_SYMBOL(__netif_schedule);
2389 
2390 struct dev_kfree_skb_cb {
2391 	enum skb_free_reason reason;
2392 };
2393 
2394 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2395 {
2396 	return (struct dev_kfree_skb_cb *)skb->cb;
2397 }
2398 
2399 void netif_schedule_queue(struct netdev_queue *txq)
2400 {
2401 	rcu_read_lock();
2402 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2403 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2404 
2405 		__netif_schedule(q);
2406 	}
2407 	rcu_read_unlock();
2408 }
2409 EXPORT_SYMBOL(netif_schedule_queue);
2410 
2411 /**
2412  *	netif_wake_subqueue - allow sending packets on subqueue
2413  *	@dev: network device
2414  *	@queue_index: sub queue index
2415  *
2416  * Resume individual transmit queue of a device with multiple transmit queues.
2417  */
2418 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2419 {
2420 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2421 
2422 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2423 		struct Qdisc *q;
2424 
2425 		rcu_read_lock();
2426 		q = rcu_dereference(txq->qdisc);
2427 		__netif_schedule(q);
2428 		rcu_read_unlock();
2429 	}
2430 }
2431 EXPORT_SYMBOL(netif_wake_subqueue);
2432 
2433 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2434 {
2435 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2436 		struct Qdisc *q;
2437 
2438 		rcu_read_lock();
2439 		q = rcu_dereference(dev_queue->qdisc);
2440 		__netif_schedule(q);
2441 		rcu_read_unlock();
2442 	}
2443 }
2444 EXPORT_SYMBOL(netif_tx_wake_queue);
2445 
2446 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2447 {
2448 	unsigned long flags;
2449 
2450 	if (likely(atomic_read(&skb->users) == 1)) {
2451 		smp_rmb();
2452 		atomic_set(&skb->users, 0);
2453 	} else if (likely(!atomic_dec_and_test(&skb->users))) {
2454 		return;
2455 	}
2456 	get_kfree_skb_cb(skb)->reason = reason;
2457 	local_irq_save(flags);
2458 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2459 	__this_cpu_write(softnet_data.completion_queue, skb);
2460 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2461 	local_irq_restore(flags);
2462 }
2463 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2464 
2465 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2466 {
2467 	if (in_irq() || irqs_disabled())
2468 		__dev_kfree_skb_irq(skb, reason);
2469 	else
2470 		dev_kfree_skb(skb);
2471 }
2472 EXPORT_SYMBOL(__dev_kfree_skb_any);
2473 
2474 
2475 /**
2476  * netif_device_detach - mark device as removed
2477  * @dev: network device
2478  *
2479  * Mark device as removed from system and therefore no longer available.
2480  */
2481 void netif_device_detach(struct net_device *dev)
2482 {
2483 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2484 	    netif_running(dev)) {
2485 		netif_tx_stop_all_queues(dev);
2486 	}
2487 }
2488 EXPORT_SYMBOL(netif_device_detach);
2489 
2490 /**
2491  * netif_device_attach - mark device as attached
2492  * @dev: network device
2493  *
2494  * Mark device as attached from system and restart if needed.
2495  */
2496 void netif_device_attach(struct net_device *dev)
2497 {
2498 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2499 	    netif_running(dev)) {
2500 		netif_tx_wake_all_queues(dev);
2501 		__netdev_watchdog_up(dev);
2502 	}
2503 }
2504 EXPORT_SYMBOL(netif_device_attach);
2505 
2506 /*
2507  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2508  * to be used as a distribution range.
2509  */
2510 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2511 		  unsigned int num_tx_queues)
2512 {
2513 	u32 hash;
2514 	u16 qoffset = 0;
2515 	u16 qcount = num_tx_queues;
2516 
2517 	if (skb_rx_queue_recorded(skb)) {
2518 		hash = skb_get_rx_queue(skb);
2519 		while (unlikely(hash >= num_tx_queues))
2520 			hash -= num_tx_queues;
2521 		return hash;
2522 	}
2523 
2524 	if (dev->num_tc) {
2525 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2526 		qoffset = dev->tc_to_txq[tc].offset;
2527 		qcount = dev->tc_to_txq[tc].count;
2528 	}
2529 
2530 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2531 }
2532 EXPORT_SYMBOL(__skb_tx_hash);
2533 
2534 static void skb_warn_bad_offload(const struct sk_buff *skb)
2535 {
2536 	static const netdev_features_t null_features;
2537 	struct net_device *dev = skb->dev;
2538 	const char *name = "";
2539 
2540 	if (!net_ratelimit())
2541 		return;
2542 
2543 	if (dev) {
2544 		if (dev->dev.parent)
2545 			name = dev_driver_string(dev->dev.parent);
2546 		else
2547 			name = netdev_name(dev);
2548 	}
2549 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2550 	     "gso_type=%d ip_summed=%d\n",
2551 	     name, dev ? &dev->features : &null_features,
2552 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2553 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2554 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2555 }
2556 
2557 /*
2558  * Invalidate hardware checksum when packet is to be mangled, and
2559  * complete checksum manually on outgoing path.
2560  */
2561 int skb_checksum_help(struct sk_buff *skb)
2562 {
2563 	__wsum csum;
2564 	int ret = 0, offset;
2565 
2566 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2567 		goto out_set_summed;
2568 
2569 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2570 		skb_warn_bad_offload(skb);
2571 		return -EINVAL;
2572 	}
2573 
2574 	/* Before computing a checksum, we should make sure no frag could
2575 	 * be modified by an external entity : checksum could be wrong.
2576 	 */
2577 	if (skb_has_shared_frag(skb)) {
2578 		ret = __skb_linearize(skb);
2579 		if (ret)
2580 			goto out;
2581 	}
2582 
2583 	offset = skb_checksum_start_offset(skb);
2584 	BUG_ON(offset >= skb_headlen(skb));
2585 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2586 
2587 	offset += skb->csum_offset;
2588 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2589 
2590 	if (skb_cloned(skb) &&
2591 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2592 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2593 		if (ret)
2594 			goto out;
2595 	}
2596 
2597 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2598 out_set_summed:
2599 	skb->ip_summed = CHECKSUM_NONE;
2600 out:
2601 	return ret;
2602 }
2603 EXPORT_SYMBOL(skb_checksum_help);
2604 
2605 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2606 {
2607 	__be16 type = skb->protocol;
2608 
2609 	/* Tunnel gso handlers can set protocol to ethernet. */
2610 	if (type == htons(ETH_P_TEB)) {
2611 		struct ethhdr *eth;
2612 
2613 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2614 			return 0;
2615 
2616 		eth = (struct ethhdr *)skb_mac_header(skb);
2617 		type = eth->h_proto;
2618 	}
2619 
2620 	return __vlan_get_protocol(skb, type, depth);
2621 }
2622 
2623 /**
2624  *	skb_mac_gso_segment - mac layer segmentation handler.
2625  *	@skb: buffer to segment
2626  *	@features: features for the output path (see dev->features)
2627  */
2628 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2629 				    netdev_features_t features)
2630 {
2631 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2632 	struct packet_offload *ptype;
2633 	int vlan_depth = skb->mac_len;
2634 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2635 
2636 	if (unlikely(!type))
2637 		return ERR_PTR(-EINVAL);
2638 
2639 	__skb_pull(skb, vlan_depth);
2640 
2641 	rcu_read_lock();
2642 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2643 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2644 			segs = ptype->callbacks.gso_segment(skb, features);
2645 			break;
2646 		}
2647 	}
2648 	rcu_read_unlock();
2649 
2650 	__skb_push(skb, skb->data - skb_mac_header(skb));
2651 
2652 	return segs;
2653 }
2654 EXPORT_SYMBOL(skb_mac_gso_segment);
2655 
2656 
2657 /* openvswitch calls this on rx path, so we need a different check.
2658  */
2659 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2660 {
2661 	if (tx_path)
2662 		return skb->ip_summed != CHECKSUM_PARTIAL;
2663 	else
2664 		return skb->ip_summed == CHECKSUM_NONE;
2665 }
2666 
2667 /**
2668  *	__skb_gso_segment - Perform segmentation on skb.
2669  *	@skb: buffer to segment
2670  *	@features: features for the output path (see dev->features)
2671  *	@tx_path: whether it is called in TX path
2672  *
2673  *	This function segments the given skb and returns a list of segments.
2674  *
2675  *	It may return NULL if the skb requires no segmentation.  This is
2676  *	only possible when GSO is used for verifying header integrity.
2677  *
2678  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2679  */
2680 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2681 				  netdev_features_t features, bool tx_path)
2682 {
2683 	if (unlikely(skb_needs_check(skb, tx_path))) {
2684 		int err;
2685 
2686 		skb_warn_bad_offload(skb);
2687 
2688 		err = skb_cow_head(skb, 0);
2689 		if (err < 0)
2690 			return ERR_PTR(err);
2691 	}
2692 
2693 	/* Only report GSO partial support if it will enable us to
2694 	 * support segmentation on this frame without needing additional
2695 	 * work.
2696 	 */
2697 	if (features & NETIF_F_GSO_PARTIAL) {
2698 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2699 		struct net_device *dev = skb->dev;
2700 
2701 		partial_features |= dev->features & dev->gso_partial_features;
2702 		if (!skb_gso_ok(skb, features | partial_features))
2703 			features &= ~NETIF_F_GSO_PARTIAL;
2704 	}
2705 
2706 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2707 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2708 
2709 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2710 	SKB_GSO_CB(skb)->encap_level = 0;
2711 
2712 	skb_reset_mac_header(skb);
2713 	skb_reset_mac_len(skb);
2714 
2715 	return skb_mac_gso_segment(skb, features);
2716 }
2717 EXPORT_SYMBOL(__skb_gso_segment);
2718 
2719 /* Take action when hardware reception checksum errors are detected. */
2720 #ifdef CONFIG_BUG
2721 void netdev_rx_csum_fault(struct net_device *dev)
2722 {
2723 	if (net_ratelimit()) {
2724 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2725 		dump_stack();
2726 	}
2727 }
2728 EXPORT_SYMBOL(netdev_rx_csum_fault);
2729 #endif
2730 
2731 /* Actually, we should eliminate this check as soon as we know, that:
2732  * 1. IOMMU is present and allows to map all the memory.
2733  * 2. No high memory really exists on this machine.
2734  */
2735 
2736 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2737 {
2738 #ifdef CONFIG_HIGHMEM
2739 	int i;
2740 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2741 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2742 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2743 			if (PageHighMem(skb_frag_page(frag)))
2744 				return 1;
2745 		}
2746 	}
2747 
2748 	if (PCI_DMA_BUS_IS_PHYS) {
2749 		struct device *pdev = dev->dev.parent;
2750 
2751 		if (!pdev)
2752 			return 0;
2753 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2754 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2755 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2756 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2757 				return 1;
2758 		}
2759 	}
2760 #endif
2761 	return 0;
2762 }
2763 
2764 /* If MPLS offload request, verify we are testing hardware MPLS features
2765  * instead of standard features for the netdev.
2766  */
2767 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2768 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2769 					   netdev_features_t features,
2770 					   __be16 type)
2771 {
2772 	if (eth_p_mpls(type))
2773 		features &= skb->dev->mpls_features;
2774 
2775 	return features;
2776 }
2777 #else
2778 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2779 					   netdev_features_t features,
2780 					   __be16 type)
2781 {
2782 	return features;
2783 }
2784 #endif
2785 
2786 static netdev_features_t harmonize_features(struct sk_buff *skb,
2787 	netdev_features_t features)
2788 {
2789 	int tmp;
2790 	__be16 type;
2791 
2792 	type = skb_network_protocol(skb, &tmp);
2793 	features = net_mpls_features(skb, features, type);
2794 
2795 	if (skb->ip_summed != CHECKSUM_NONE &&
2796 	    !can_checksum_protocol(features, type)) {
2797 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2798 	} else if (illegal_highdma(skb->dev, skb)) {
2799 		features &= ~NETIF_F_SG;
2800 	}
2801 
2802 	return features;
2803 }
2804 
2805 netdev_features_t passthru_features_check(struct sk_buff *skb,
2806 					  struct net_device *dev,
2807 					  netdev_features_t features)
2808 {
2809 	return features;
2810 }
2811 EXPORT_SYMBOL(passthru_features_check);
2812 
2813 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2814 					     struct net_device *dev,
2815 					     netdev_features_t features)
2816 {
2817 	return vlan_features_check(skb, features);
2818 }
2819 
2820 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2821 					    struct net_device *dev,
2822 					    netdev_features_t features)
2823 {
2824 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
2825 
2826 	if (gso_segs > dev->gso_max_segs)
2827 		return features & ~NETIF_F_GSO_MASK;
2828 
2829 	/* Support for GSO partial features requires software
2830 	 * intervention before we can actually process the packets
2831 	 * so we need to strip support for any partial features now
2832 	 * and we can pull them back in after we have partially
2833 	 * segmented the frame.
2834 	 */
2835 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2836 		features &= ~dev->gso_partial_features;
2837 
2838 	/* Make sure to clear the IPv4 ID mangling feature if the
2839 	 * IPv4 header has the potential to be fragmented.
2840 	 */
2841 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2842 		struct iphdr *iph = skb->encapsulation ?
2843 				    inner_ip_hdr(skb) : ip_hdr(skb);
2844 
2845 		if (!(iph->frag_off & htons(IP_DF)))
2846 			features &= ~NETIF_F_TSO_MANGLEID;
2847 	}
2848 
2849 	return features;
2850 }
2851 
2852 netdev_features_t netif_skb_features(struct sk_buff *skb)
2853 {
2854 	struct net_device *dev = skb->dev;
2855 	netdev_features_t features = dev->features;
2856 
2857 	if (skb_is_gso(skb))
2858 		features = gso_features_check(skb, dev, features);
2859 
2860 	/* If encapsulation offload request, verify we are testing
2861 	 * hardware encapsulation features instead of standard
2862 	 * features for the netdev
2863 	 */
2864 	if (skb->encapsulation)
2865 		features &= dev->hw_enc_features;
2866 
2867 	if (skb_vlan_tagged(skb))
2868 		features = netdev_intersect_features(features,
2869 						     dev->vlan_features |
2870 						     NETIF_F_HW_VLAN_CTAG_TX |
2871 						     NETIF_F_HW_VLAN_STAG_TX);
2872 
2873 	if (dev->netdev_ops->ndo_features_check)
2874 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
2875 								features);
2876 	else
2877 		features &= dflt_features_check(skb, dev, features);
2878 
2879 	return harmonize_features(skb, features);
2880 }
2881 EXPORT_SYMBOL(netif_skb_features);
2882 
2883 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2884 		    struct netdev_queue *txq, bool more)
2885 {
2886 	unsigned int len;
2887 	int rc;
2888 
2889 	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2890 		dev_queue_xmit_nit(skb, dev);
2891 
2892 	len = skb->len;
2893 	trace_net_dev_start_xmit(skb, dev);
2894 	rc = netdev_start_xmit(skb, dev, txq, more);
2895 	trace_net_dev_xmit(skb, rc, dev, len);
2896 
2897 	return rc;
2898 }
2899 
2900 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2901 				    struct netdev_queue *txq, int *ret)
2902 {
2903 	struct sk_buff *skb = first;
2904 	int rc = NETDEV_TX_OK;
2905 
2906 	while (skb) {
2907 		struct sk_buff *next = skb->next;
2908 
2909 		skb->next = NULL;
2910 		rc = xmit_one(skb, dev, txq, next != NULL);
2911 		if (unlikely(!dev_xmit_complete(rc))) {
2912 			skb->next = next;
2913 			goto out;
2914 		}
2915 
2916 		skb = next;
2917 		if (netif_xmit_stopped(txq) && skb) {
2918 			rc = NETDEV_TX_BUSY;
2919 			break;
2920 		}
2921 	}
2922 
2923 out:
2924 	*ret = rc;
2925 	return skb;
2926 }
2927 
2928 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2929 					  netdev_features_t features)
2930 {
2931 	if (skb_vlan_tag_present(skb) &&
2932 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
2933 		skb = __vlan_hwaccel_push_inside(skb);
2934 	return skb;
2935 }
2936 
2937 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2938 {
2939 	netdev_features_t features;
2940 
2941 	features = netif_skb_features(skb);
2942 	skb = validate_xmit_vlan(skb, features);
2943 	if (unlikely(!skb))
2944 		goto out_null;
2945 
2946 	if (netif_needs_gso(skb, features)) {
2947 		struct sk_buff *segs;
2948 
2949 		segs = skb_gso_segment(skb, features);
2950 		if (IS_ERR(segs)) {
2951 			goto out_kfree_skb;
2952 		} else if (segs) {
2953 			consume_skb(skb);
2954 			skb = segs;
2955 		}
2956 	} else {
2957 		if (skb_needs_linearize(skb, features) &&
2958 		    __skb_linearize(skb))
2959 			goto out_kfree_skb;
2960 
2961 		/* If packet is not checksummed and device does not
2962 		 * support checksumming for this protocol, complete
2963 		 * checksumming here.
2964 		 */
2965 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2966 			if (skb->encapsulation)
2967 				skb_set_inner_transport_header(skb,
2968 							       skb_checksum_start_offset(skb));
2969 			else
2970 				skb_set_transport_header(skb,
2971 							 skb_checksum_start_offset(skb));
2972 			if (!(features & NETIF_F_CSUM_MASK) &&
2973 			    skb_checksum_help(skb))
2974 				goto out_kfree_skb;
2975 		}
2976 	}
2977 
2978 	return skb;
2979 
2980 out_kfree_skb:
2981 	kfree_skb(skb);
2982 out_null:
2983 	atomic_long_inc(&dev->tx_dropped);
2984 	return NULL;
2985 }
2986 
2987 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2988 {
2989 	struct sk_buff *next, *head = NULL, *tail;
2990 
2991 	for (; skb != NULL; skb = next) {
2992 		next = skb->next;
2993 		skb->next = NULL;
2994 
2995 		/* in case skb wont be segmented, point to itself */
2996 		skb->prev = skb;
2997 
2998 		skb = validate_xmit_skb(skb, dev);
2999 		if (!skb)
3000 			continue;
3001 
3002 		if (!head)
3003 			head = skb;
3004 		else
3005 			tail->next = skb;
3006 		/* If skb was segmented, skb->prev points to
3007 		 * the last segment. If not, it still contains skb.
3008 		 */
3009 		tail = skb->prev;
3010 	}
3011 	return head;
3012 }
3013 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3014 
3015 static void qdisc_pkt_len_init(struct sk_buff *skb)
3016 {
3017 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3018 
3019 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3020 
3021 	/* To get more precise estimation of bytes sent on wire,
3022 	 * we add to pkt_len the headers size of all segments
3023 	 */
3024 	if (shinfo->gso_size)  {
3025 		unsigned int hdr_len;
3026 		u16 gso_segs = shinfo->gso_segs;
3027 
3028 		/* mac layer + network layer */
3029 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3030 
3031 		/* + transport layer */
3032 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3033 			hdr_len += tcp_hdrlen(skb);
3034 		else
3035 			hdr_len += sizeof(struct udphdr);
3036 
3037 		if (shinfo->gso_type & SKB_GSO_DODGY)
3038 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3039 						shinfo->gso_size);
3040 
3041 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3042 	}
3043 }
3044 
3045 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3046 				 struct net_device *dev,
3047 				 struct netdev_queue *txq)
3048 {
3049 	spinlock_t *root_lock = qdisc_lock(q);
3050 	struct sk_buff *to_free = NULL;
3051 	bool contended;
3052 	int rc;
3053 
3054 	qdisc_calculate_pkt_len(skb, q);
3055 	/*
3056 	 * Heuristic to force contended enqueues to serialize on a
3057 	 * separate lock before trying to get qdisc main lock.
3058 	 * This permits qdisc->running owner to get the lock more
3059 	 * often and dequeue packets faster.
3060 	 */
3061 	contended = qdisc_is_running(q);
3062 	if (unlikely(contended))
3063 		spin_lock(&q->busylock);
3064 
3065 	spin_lock(root_lock);
3066 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3067 		__qdisc_drop(skb, &to_free);
3068 		rc = NET_XMIT_DROP;
3069 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3070 		   qdisc_run_begin(q)) {
3071 		/*
3072 		 * This is a work-conserving queue; there are no old skbs
3073 		 * waiting to be sent out; and the qdisc is not running -
3074 		 * xmit the skb directly.
3075 		 */
3076 
3077 		qdisc_bstats_update(q, skb);
3078 
3079 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3080 			if (unlikely(contended)) {
3081 				spin_unlock(&q->busylock);
3082 				contended = false;
3083 			}
3084 			__qdisc_run(q);
3085 		} else
3086 			qdisc_run_end(q);
3087 
3088 		rc = NET_XMIT_SUCCESS;
3089 	} else {
3090 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3091 		if (qdisc_run_begin(q)) {
3092 			if (unlikely(contended)) {
3093 				spin_unlock(&q->busylock);
3094 				contended = false;
3095 			}
3096 			__qdisc_run(q);
3097 		}
3098 	}
3099 	spin_unlock(root_lock);
3100 	if (unlikely(to_free))
3101 		kfree_skb_list(to_free);
3102 	if (unlikely(contended))
3103 		spin_unlock(&q->busylock);
3104 	return rc;
3105 }
3106 
3107 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3108 static void skb_update_prio(struct sk_buff *skb)
3109 {
3110 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3111 
3112 	if (!skb->priority && skb->sk && map) {
3113 		unsigned int prioidx =
3114 			sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3115 
3116 		if (prioidx < map->priomap_len)
3117 			skb->priority = map->priomap[prioidx];
3118 	}
3119 }
3120 #else
3121 #define skb_update_prio(skb)
3122 #endif
3123 
3124 DEFINE_PER_CPU(int, xmit_recursion);
3125 EXPORT_SYMBOL(xmit_recursion);
3126 
3127 /**
3128  *	dev_loopback_xmit - loop back @skb
3129  *	@net: network namespace this loopback is happening in
3130  *	@sk:  sk needed to be a netfilter okfn
3131  *	@skb: buffer to transmit
3132  */
3133 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3134 {
3135 	skb_reset_mac_header(skb);
3136 	__skb_pull(skb, skb_network_offset(skb));
3137 	skb->pkt_type = PACKET_LOOPBACK;
3138 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3139 	WARN_ON(!skb_dst(skb));
3140 	skb_dst_force(skb);
3141 	netif_rx_ni(skb);
3142 	return 0;
3143 }
3144 EXPORT_SYMBOL(dev_loopback_xmit);
3145 
3146 #ifdef CONFIG_NET_EGRESS
3147 static struct sk_buff *
3148 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3149 {
3150 	struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3151 	struct tcf_result cl_res;
3152 
3153 	if (!cl)
3154 		return skb;
3155 
3156 	/* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3157 	 * earlier by the caller.
3158 	 */
3159 	qdisc_bstats_cpu_update(cl->q, skb);
3160 
3161 	switch (tc_classify(skb, cl, &cl_res, false)) {
3162 	case TC_ACT_OK:
3163 	case TC_ACT_RECLASSIFY:
3164 		skb->tc_index = TC_H_MIN(cl_res.classid);
3165 		break;
3166 	case TC_ACT_SHOT:
3167 		qdisc_qstats_cpu_drop(cl->q);
3168 		*ret = NET_XMIT_DROP;
3169 		kfree_skb(skb);
3170 		return NULL;
3171 	case TC_ACT_STOLEN:
3172 	case TC_ACT_QUEUED:
3173 		*ret = NET_XMIT_SUCCESS;
3174 		consume_skb(skb);
3175 		return NULL;
3176 	case TC_ACT_REDIRECT:
3177 		/* No need to push/pop skb's mac_header here on egress! */
3178 		skb_do_redirect(skb);
3179 		*ret = NET_XMIT_SUCCESS;
3180 		return NULL;
3181 	default:
3182 		break;
3183 	}
3184 
3185 	return skb;
3186 }
3187 #endif /* CONFIG_NET_EGRESS */
3188 
3189 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3190 {
3191 #ifdef CONFIG_XPS
3192 	struct xps_dev_maps *dev_maps;
3193 	struct xps_map *map;
3194 	int queue_index = -1;
3195 
3196 	rcu_read_lock();
3197 	dev_maps = rcu_dereference(dev->xps_maps);
3198 	if (dev_maps) {
3199 		unsigned int tci = skb->sender_cpu - 1;
3200 
3201 		if (dev->num_tc) {
3202 			tci *= dev->num_tc;
3203 			tci += netdev_get_prio_tc_map(dev, skb->priority);
3204 		}
3205 
3206 		map = rcu_dereference(dev_maps->cpu_map[tci]);
3207 		if (map) {
3208 			if (map->len == 1)
3209 				queue_index = map->queues[0];
3210 			else
3211 				queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3212 									   map->len)];
3213 			if (unlikely(queue_index >= dev->real_num_tx_queues))
3214 				queue_index = -1;
3215 		}
3216 	}
3217 	rcu_read_unlock();
3218 
3219 	return queue_index;
3220 #else
3221 	return -1;
3222 #endif
3223 }
3224 
3225 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3226 {
3227 	struct sock *sk = skb->sk;
3228 	int queue_index = sk_tx_queue_get(sk);
3229 
3230 	if (queue_index < 0 || skb->ooo_okay ||
3231 	    queue_index >= dev->real_num_tx_queues) {
3232 		int new_index = get_xps_queue(dev, skb);
3233 		if (new_index < 0)
3234 			new_index = skb_tx_hash(dev, skb);
3235 
3236 		if (queue_index != new_index && sk &&
3237 		    sk_fullsock(sk) &&
3238 		    rcu_access_pointer(sk->sk_dst_cache))
3239 			sk_tx_queue_set(sk, new_index);
3240 
3241 		queue_index = new_index;
3242 	}
3243 
3244 	return queue_index;
3245 }
3246 
3247 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3248 				    struct sk_buff *skb,
3249 				    void *accel_priv)
3250 {
3251 	int queue_index = 0;
3252 
3253 #ifdef CONFIG_XPS
3254 	u32 sender_cpu = skb->sender_cpu - 1;
3255 
3256 	if (sender_cpu >= (u32)NR_CPUS)
3257 		skb->sender_cpu = raw_smp_processor_id() + 1;
3258 #endif
3259 
3260 	if (dev->real_num_tx_queues != 1) {
3261 		const struct net_device_ops *ops = dev->netdev_ops;
3262 		if (ops->ndo_select_queue)
3263 			queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3264 							    __netdev_pick_tx);
3265 		else
3266 			queue_index = __netdev_pick_tx(dev, skb);
3267 
3268 		if (!accel_priv)
3269 			queue_index = netdev_cap_txqueue(dev, queue_index);
3270 	}
3271 
3272 	skb_set_queue_mapping(skb, queue_index);
3273 	return netdev_get_tx_queue(dev, queue_index);
3274 }
3275 
3276 /**
3277  *	__dev_queue_xmit - transmit a buffer
3278  *	@skb: buffer to transmit
3279  *	@accel_priv: private data used for L2 forwarding offload
3280  *
3281  *	Queue a buffer for transmission to a network device. The caller must
3282  *	have set the device and priority and built the buffer before calling
3283  *	this function. The function can be called from an interrupt.
3284  *
3285  *	A negative errno code is returned on a failure. A success does not
3286  *	guarantee the frame will be transmitted as it may be dropped due
3287  *	to congestion or traffic shaping.
3288  *
3289  * -----------------------------------------------------------------------------------
3290  *      I notice this method can also return errors from the queue disciplines,
3291  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3292  *      be positive.
3293  *
3294  *      Regardless of the return value, the skb is consumed, so it is currently
3295  *      difficult to retry a send to this method.  (You can bump the ref count
3296  *      before sending to hold a reference for retry if you are careful.)
3297  *
3298  *      When calling this method, interrupts MUST be enabled.  This is because
3299  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3300  *          --BLG
3301  */
3302 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3303 {
3304 	struct net_device *dev = skb->dev;
3305 	struct netdev_queue *txq;
3306 	struct Qdisc *q;
3307 	int rc = -ENOMEM;
3308 
3309 	skb_reset_mac_header(skb);
3310 
3311 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3312 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3313 
3314 	/* Disable soft irqs for various locks below. Also
3315 	 * stops preemption for RCU.
3316 	 */
3317 	rcu_read_lock_bh();
3318 
3319 	skb_update_prio(skb);
3320 
3321 	qdisc_pkt_len_init(skb);
3322 #ifdef CONFIG_NET_CLS_ACT
3323 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3324 # ifdef CONFIG_NET_EGRESS
3325 	if (static_key_false(&egress_needed)) {
3326 		skb = sch_handle_egress(skb, &rc, dev);
3327 		if (!skb)
3328 			goto out;
3329 	}
3330 # endif
3331 #endif
3332 	/* If device/qdisc don't need skb->dst, release it right now while
3333 	 * its hot in this cpu cache.
3334 	 */
3335 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3336 		skb_dst_drop(skb);
3337 	else
3338 		skb_dst_force(skb);
3339 
3340 	txq = netdev_pick_tx(dev, skb, accel_priv);
3341 	q = rcu_dereference_bh(txq->qdisc);
3342 
3343 	trace_net_dev_queue(skb);
3344 	if (q->enqueue) {
3345 		rc = __dev_xmit_skb(skb, q, dev, txq);
3346 		goto out;
3347 	}
3348 
3349 	/* The device has no queue. Common case for software devices:
3350 	   loopback, all the sorts of tunnels...
3351 
3352 	   Really, it is unlikely that netif_tx_lock protection is necessary
3353 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3354 	   counters.)
3355 	   However, it is possible, that they rely on protection
3356 	   made by us here.
3357 
3358 	   Check this and shot the lock. It is not prone from deadlocks.
3359 	   Either shot noqueue qdisc, it is even simpler 8)
3360 	 */
3361 	if (dev->flags & IFF_UP) {
3362 		int cpu = smp_processor_id(); /* ok because BHs are off */
3363 
3364 		if (txq->xmit_lock_owner != cpu) {
3365 			if (unlikely(__this_cpu_read(xmit_recursion) >
3366 				     XMIT_RECURSION_LIMIT))
3367 				goto recursion_alert;
3368 
3369 			skb = validate_xmit_skb(skb, dev);
3370 			if (!skb)
3371 				goto out;
3372 
3373 			HARD_TX_LOCK(dev, txq, cpu);
3374 
3375 			if (!netif_xmit_stopped(txq)) {
3376 				__this_cpu_inc(xmit_recursion);
3377 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3378 				__this_cpu_dec(xmit_recursion);
3379 				if (dev_xmit_complete(rc)) {
3380 					HARD_TX_UNLOCK(dev, txq);
3381 					goto out;
3382 				}
3383 			}
3384 			HARD_TX_UNLOCK(dev, txq);
3385 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3386 					     dev->name);
3387 		} else {
3388 			/* Recursion is detected! It is possible,
3389 			 * unfortunately
3390 			 */
3391 recursion_alert:
3392 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3393 					     dev->name);
3394 		}
3395 	}
3396 
3397 	rc = -ENETDOWN;
3398 	rcu_read_unlock_bh();
3399 
3400 	atomic_long_inc(&dev->tx_dropped);
3401 	kfree_skb_list(skb);
3402 	return rc;
3403 out:
3404 	rcu_read_unlock_bh();
3405 	return rc;
3406 }
3407 
3408 int dev_queue_xmit(struct sk_buff *skb)
3409 {
3410 	return __dev_queue_xmit(skb, NULL);
3411 }
3412 EXPORT_SYMBOL(dev_queue_xmit);
3413 
3414 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3415 {
3416 	return __dev_queue_xmit(skb, accel_priv);
3417 }
3418 EXPORT_SYMBOL(dev_queue_xmit_accel);
3419 
3420 
3421 /*=======================================================================
3422 			Receiver routines
3423   =======================================================================*/
3424 
3425 int netdev_max_backlog __read_mostly = 1000;
3426 EXPORT_SYMBOL(netdev_max_backlog);
3427 
3428 int netdev_tstamp_prequeue __read_mostly = 1;
3429 int netdev_budget __read_mostly = 300;
3430 int weight_p __read_mostly = 64;            /* old backlog weight */
3431 
3432 /* Called with irq disabled */
3433 static inline void ____napi_schedule(struct softnet_data *sd,
3434 				     struct napi_struct *napi)
3435 {
3436 	list_add_tail(&napi->poll_list, &sd->poll_list);
3437 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3438 }
3439 
3440 #ifdef CONFIG_RPS
3441 
3442 /* One global table that all flow-based protocols share. */
3443 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3444 EXPORT_SYMBOL(rps_sock_flow_table);
3445 u32 rps_cpu_mask __read_mostly;
3446 EXPORT_SYMBOL(rps_cpu_mask);
3447 
3448 struct static_key rps_needed __read_mostly;
3449 EXPORT_SYMBOL(rps_needed);
3450 struct static_key rfs_needed __read_mostly;
3451 EXPORT_SYMBOL(rfs_needed);
3452 
3453 static struct rps_dev_flow *
3454 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3455 	    struct rps_dev_flow *rflow, u16 next_cpu)
3456 {
3457 	if (next_cpu < nr_cpu_ids) {
3458 #ifdef CONFIG_RFS_ACCEL
3459 		struct netdev_rx_queue *rxqueue;
3460 		struct rps_dev_flow_table *flow_table;
3461 		struct rps_dev_flow *old_rflow;
3462 		u32 flow_id;
3463 		u16 rxq_index;
3464 		int rc;
3465 
3466 		/* Should we steer this flow to a different hardware queue? */
3467 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3468 		    !(dev->features & NETIF_F_NTUPLE))
3469 			goto out;
3470 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3471 		if (rxq_index == skb_get_rx_queue(skb))
3472 			goto out;
3473 
3474 		rxqueue = dev->_rx + rxq_index;
3475 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3476 		if (!flow_table)
3477 			goto out;
3478 		flow_id = skb_get_hash(skb) & flow_table->mask;
3479 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3480 							rxq_index, flow_id);
3481 		if (rc < 0)
3482 			goto out;
3483 		old_rflow = rflow;
3484 		rflow = &flow_table->flows[flow_id];
3485 		rflow->filter = rc;
3486 		if (old_rflow->filter == rflow->filter)
3487 			old_rflow->filter = RPS_NO_FILTER;
3488 	out:
3489 #endif
3490 		rflow->last_qtail =
3491 			per_cpu(softnet_data, next_cpu).input_queue_head;
3492 	}
3493 
3494 	rflow->cpu = next_cpu;
3495 	return rflow;
3496 }
3497 
3498 /*
3499  * get_rps_cpu is called from netif_receive_skb and returns the target
3500  * CPU from the RPS map of the receiving queue for a given skb.
3501  * rcu_read_lock must be held on entry.
3502  */
3503 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3504 		       struct rps_dev_flow **rflowp)
3505 {
3506 	const struct rps_sock_flow_table *sock_flow_table;
3507 	struct netdev_rx_queue *rxqueue = dev->_rx;
3508 	struct rps_dev_flow_table *flow_table;
3509 	struct rps_map *map;
3510 	int cpu = -1;
3511 	u32 tcpu;
3512 	u32 hash;
3513 
3514 	if (skb_rx_queue_recorded(skb)) {
3515 		u16 index = skb_get_rx_queue(skb);
3516 
3517 		if (unlikely(index >= dev->real_num_rx_queues)) {
3518 			WARN_ONCE(dev->real_num_rx_queues > 1,
3519 				  "%s received packet on queue %u, but number "
3520 				  "of RX queues is %u\n",
3521 				  dev->name, index, dev->real_num_rx_queues);
3522 			goto done;
3523 		}
3524 		rxqueue += index;
3525 	}
3526 
3527 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3528 
3529 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3530 	map = rcu_dereference(rxqueue->rps_map);
3531 	if (!flow_table && !map)
3532 		goto done;
3533 
3534 	skb_reset_network_header(skb);
3535 	hash = skb_get_hash(skb);
3536 	if (!hash)
3537 		goto done;
3538 
3539 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3540 	if (flow_table && sock_flow_table) {
3541 		struct rps_dev_flow *rflow;
3542 		u32 next_cpu;
3543 		u32 ident;
3544 
3545 		/* First check into global flow table if there is a match */
3546 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3547 		if ((ident ^ hash) & ~rps_cpu_mask)
3548 			goto try_rps;
3549 
3550 		next_cpu = ident & rps_cpu_mask;
3551 
3552 		/* OK, now we know there is a match,
3553 		 * we can look at the local (per receive queue) flow table
3554 		 */
3555 		rflow = &flow_table->flows[hash & flow_table->mask];
3556 		tcpu = rflow->cpu;
3557 
3558 		/*
3559 		 * If the desired CPU (where last recvmsg was done) is
3560 		 * different from current CPU (one in the rx-queue flow
3561 		 * table entry), switch if one of the following holds:
3562 		 *   - Current CPU is unset (>= nr_cpu_ids).
3563 		 *   - Current CPU is offline.
3564 		 *   - The current CPU's queue tail has advanced beyond the
3565 		 *     last packet that was enqueued using this table entry.
3566 		 *     This guarantees that all previous packets for the flow
3567 		 *     have been dequeued, thus preserving in order delivery.
3568 		 */
3569 		if (unlikely(tcpu != next_cpu) &&
3570 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3571 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3572 		      rflow->last_qtail)) >= 0)) {
3573 			tcpu = next_cpu;
3574 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3575 		}
3576 
3577 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3578 			*rflowp = rflow;
3579 			cpu = tcpu;
3580 			goto done;
3581 		}
3582 	}
3583 
3584 try_rps:
3585 
3586 	if (map) {
3587 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3588 		if (cpu_online(tcpu)) {
3589 			cpu = tcpu;
3590 			goto done;
3591 		}
3592 	}
3593 
3594 done:
3595 	return cpu;
3596 }
3597 
3598 #ifdef CONFIG_RFS_ACCEL
3599 
3600 /**
3601  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3602  * @dev: Device on which the filter was set
3603  * @rxq_index: RX queue index
3604  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3605  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3606  *
3607  * Drivers that implement ndo_rx_flow_steer() should periodically call
3608  * this function for each installed filter and remove the filters for
3609  * which it returns %true.
3610  */
3611 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3612 			 u32 flow_id, u16 filter_id)
3613 {
3614 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3615 	struct rps_dev_flow_table *flow_table;
3616 	struct rps_dev_flow *rflow;
3617 	bool expire = true;
3618 	unsigned int cpu;
3619 
3620 	rcu_read_lock();
3621 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3622 	if (flow_table && flow_id <= flow_table->mask) {
3623 		rflow = &flow_table->flows[flow_id];
3624 		cpu = ACCESS_ONCE(rflow->cpu);
3625 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3626 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3627 			   rflow->last_qtail) <
3628 		     (int)(10 * flow_table->mask)))
3629 			expire = false;
3630 	}
3631 	rcu_read_unlock();
3632 	return expire;
3633 }
3634 EXPORT_SYMBOL(rps_may_expire_flow);
3635 
3636 #endif /* CONFIG_RFS_ACCEL */
3637 
3638 /* Called from hardirq (IPI) context */
3639 static void rps_trigger_softirq(void *data)
3640 {
3641 	struct softnet_data *sd = data;
3642 
3643 	____napi_schedule(sd, &sd->backlog);
3644 	sd->received_rps++;
3645 }
3646 
3647 #endif /* CONFIG_RPS */
3648 
3649 /*
3650  * Check if this softnet_data structure is another cpu one
3651  * If yes, queue it to our IPI list and return 1
3652  * If no, return 0
3653  */
3654 static int rps_ipi_queued(struct softnet_data *sd)
3655 {
3656 #ifdef CONFIG_RPS
3657 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3658 
3659 	if (sd != mysd) {
3660 		sd->rps_ipi_next = mysd->rps_ipi_list;
3661 		mysd->rps_ipi_list = sd;
3662 
3663 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3664 		return 1;
3665 	}
3666 #endif /* CONFIG_RPS */
3667 	return 0;
3668 }
3669 
3670 #ifdef CONFIG_NET_FLOW_LIMIT
3671 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3672 #endif
3673 
3674 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3675 {
3676 #ifdef CONFIG_NET_FLOW_LIMIT
3677 	struct sd_flow_limit *fl;
3678 	struct softnet_data *sd;
3679 	unsigned int old_flow, new_flow;
3680 
3681 	if (qlen < (netdev_max_backlog >> 1))
3682 		return false;
3683 
3684 	sd = this_cpu_ptr(&softnet_data);
3685 
3686 	rcu_read_lock();
3687 	fl = rcu_dereference(sd->flow_limit);
3688 	if (fl) {
3689 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3690 		old_flow = fl->history[fl->history_head];
3691 		fl->history[fl->history_head] = new_flow;
3692 
3693 		fl->history_head++;
3694 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3695 
3696 		if (likely(fl->buckets[old_flow]))
3697 			fl->buckets[old_flow]--;
3698 
3699 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3700 			fl->count++;
3701 			rcu_read_unlock();
3702 			return true;
3703 		}
3704 	}
3705 	rcu_read_unlock();
3706 #endif
3707 	return false;
3708 }
3709 
3710 /*
3711  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3712  * queue (may be a remote CPU queue).
3713  */
3714 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3715 			      unsigned int *qtail)
3716 {
3717 	struct softnet_data *sd;
3718 	unsigned long flags;
3719 	unsigned int qlen;
3720 
3721 	sd = &per_cpu(softnet_data, cpu);
3722 
3723 	local_irq_save(flags);
3724 
3725 	rps_lock(sd);
3726 	if (!netif_running(skb->dev))
3727 		goto drop;
3728 	qlen = skb_queue_len(&sd->input_pkt_queue);
3729 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3730 		if (qlen) {
3731 enqueue:
3732 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3733 			input_queue_tail_incr_save(sd, qtail);
3734 			rps_unlock(sd);
3735 			local_irq_restore(flags);
3736 			return NET_RX_SUCCESS;
3737 		}
3738 
3739 		/* Schedule NAPI for backlog device
3740 		 * We can use non atomic operation since we own the queue lock
3741 		 */
3742 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3743 			if (!rps_ipi_queued(sd))
3744 				____napi_schedule(sd, &sd->backlog);
3745 		}
3746 		goto enqueue;
3747 	}
3748 
3749 drop:
3750 	sd->dropped++;
3751 	rps_unlock(sd);
3752 
3753 	local_irq_restore(flags);
3754 
3755 	atomic_long_inc(&skb->dev->rx_dropped);
3756 	kfree_skb(skb);
3757 	return NET_RX_DROP;
3758 }
3759 
3760 static int netif_rx_internal(struct sk_buff *skb)
3761 {
3762 	int ret;
3763 
3764 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3765 
3766 	trace_netif_rx(skb);
3767 #ifdef CONFIG_RPS
3768 	if (static_key_false(&rps_needed)) {
3769 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3770 		int cpu;
3771 
3772 		preempt_disable();
3773 		rcu_read_lock();
3774 
3775 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3776 		if (cpu < 0)
3777 			cpu = smp_processor_id();
3778 
3779 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3780 
3781 		rcu_read_unlock();
3782 		preempt_enable();
3783 	} else
3784 #endif
3785 	{
3786 		unsigned int qtail;
3787 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3788 		put_cpu();
3789 	}
3790 	return ret;
3791 }
3792 
3793 /**
3794  *	netif_rx	-	post buffer to the network code
3795  *	@skb: buffer to post
3796  *
3797  *	This function receives a packet from a device driver and queues it for
3798  *	the upper (protocol) levels to process.  It always succeeds. The buffer
3799  *	may be dropped during processing for congestion control or by the
3800  *	protocol layers.
3801  *
3802  *	return values:
3803  *	NET_RX_SUCCESS	(no congestion)
3804  *	NET_RX_DROP     (packet was dropped)
3805  *
3806  */
3807 
3808 int netif_rx(struct sk_buff *skb)
3809 {
3810 	trace_netif_rx_entry(skb);
3811 
3812 	return netif_rx_internal(skb);
3813 }
3814 EXPORT_SYMBOL(netif_rx);
3815 
3816 int netif_rx_ni(struct sk_buff *skb)
3817 {
3818 	int err;
3819 
3820 	trace_netif_rx_ni_entry(skb);
3821 
3822 	preempt_disable();
3823 	err = netif_rx_internal(skb);
3824 	if (local_softirq_pending())
3825 		do_softirq();
3826 	preempt_enable();
3827 
3828 	return err;
3829 }
3830 EXPORT_SYMBOL(netif_rx_ni);
3831 
3832 static __latent_entropy void net_tx_action(struct softirq_action *h)
3833 {
3834 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3835 
3836 	if (sd->completion_queue) {
3837 		struct sk_buff *clist;
3838 
3839 		local_irq_disable();
3840 		clist = sd->completion_queue;
3841 		sd->completion_queue = NULL;
3842 		local_irq_enable();
3843 
3844 		while (clist) {
3845 			struct sk_buff *skb = clist;
3846 			clist = clist->next;
3847 
3848 			WARN_ON(atomic_read(&skb->users));
3849 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3850 				trace_consume_skb(skb);
3851 			else
3852 				trace_kfree_skb(skb, net_tx_action);
3853 
3854 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3855 				__kfree_skb(skb);
3856 			else
3857 				__kfree_skb_defer(skb);
3858 		}
3859 
3860 		__kfree_skb_flush();
3861 	}
3862 
3863 	if (sd->output_queue) {
3864 		struct Qdisc *head;
3865 
3866 		local_irq_disable();
3867 		head = sd->output_queue;
3868 		sd->output_queue = NULL;
3869 		sd->output_queue_tailp = &sd->output_queue;
3870 		local_irq_enable();
3871 
3872 		while (head) {
3873 			struct Qdisc *q = head;
3874 			spinlock_t *root_lock;
3875 
3876 			head = head->next_sched;
3877 
3878 			root_lock = qdisc_lock(q);
3879 			spin_lock(root_lock);
3880 			/* We need to make sure head->next_sched is read
3881 			 * before clearing __QDISC_STATE_SCHED
3882 			 */
3883 			smp_mb__before_atomic();
3884 			clear_bit(__QDISC_STATE_SCHED, &q->state);
3885 			qdisc_run(q);
3886 			spin_unlock(root_lock);
3887 		}
3888 	}
3889 }
3890 
3891 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
3892 /* This hook is defined here for ATM LANE */
3893 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3894 			     unsigned char *addr) __read_mostly;
3895 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3896 #endif
3897 
3898 static inline struct sk_buff *
3899 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3900 		   struct net_device *orig_dev)
3901 {
3902 #ifdef CONFIG_NET_CLS_ACT
3903 	struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3904 	struct tcf_result cl_res;
3905 
3906 	/* If there's at least one ingress present somewhere (so
3907 	 * we get here via enabled static key), remaining devices
3908 	 * that are not configured with an ingress qdisc will bail
3909 	 * out here.
3910 	 */
3911 	if (!cl)
3912 		return skb;
3913 	if (*pt_prev) {
3914 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3915 		*pt_prev = NULL;
3916 	}
3917 
3918 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3919 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3920 	qdisc_bstats_cpu_update(cl->q, skb);
3921 
3922 	switch (tc_classify(skb, cl, &cl_res, false)) {
3923 	case TC_ACT_OK:
3924 	case TC_ACT_RECLASSIFY:
3925 		skb->tc_index = TC_H_MIN(cl_res.classid);
3926 		break;
3927 	case TC_ACT_SHOT:
3928 		qdisc_qstats_cpu_drop(cl->q);
3929 		kfree_skb(skb);
3930 		return NULL;
3931 	case TC_ACT_STOLEN:
3932 	case TC_ACT_QUEUED:
3933 		consume_skb(skb);
3934 		return NULL;
3935 	case TC_ACT_REDIRECT:
3936 		/* skb_mac_header check was done by cls/act_bpf, so
3937 		 * we can safely push the L2 header back before
3938 		 * redirecting to another netdev
3939 		 */
3940 		__skb_push(skb, skb->mac_len);
3941 		skb_do_redirect(skb);
3942 		return NULL;
3943 	default:
3944 		break;
3945 	}
3946 #endif /* CONFIG_NET_CLS_ACT */
3947 	return skb;
3948 }
3949 
3950 /**
3951  *	netdev_is_rx_handler_busy - check if receive handler is registered
3952  *	@dev: device to check
3953  *
3954  *	Check if a receive handler is already registered for a given device.
3955  *	Return true if there one.
3956  *
3957  *	The caller must hold the rtnl_mutex.
3958  */
3959 bool netdev_is_rx_handler_busy(struct net_device *dev)
3960 {
3961 	ASSERT_RTNL();
3962 	return dev && rtnl_dereference(dev->rx_handler);
3963 }
3964 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3965 
3966 /**
3967  *	netdev_rx_handler_register - register receive handler
3968  *	@dev: device to register a handler for
3969  *	@rx_handler: receive handler to register
3970  *	@rx_handler_data: data pointer that is used by rx handler
3971  *
3972  *	Register a receive handler for a device. This handler will then be
3973  *	called from __netif_receive_skb. A negative errno code is returned
3974  *	on a failure.
3975  *
3976  *	The caller must hold the rtnl_mutex.
3977  *
3978  *	For a general description of rx_handler, see enum rx_handler_result.
3979  */
3980 int netdev_rx_handler_register(struct net_device *dev,
3981 			       rx_handler_func_t *rx_handler,
3982 			       void *rx_handler_data)
3983 {
3984 	ASSERT_RTNL();
3985 
3986 	if (dev->rx_handler)
3987 		return -EBUSY;
3988 
3989 	/* Note: rx_handler_data must be set before rx_handler */
3990 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3991 	rcu_assign_pointer(dev->rx_handler, rx_handler);
3992 
3993 	return 0;
3994 }
3995 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3996 
3997 /**
3998  *	netdev_rx_handler_unregister - unregister receive handler
3999  *	@dev: device to unregister a handler from
4000  *
4001  *	Unregister a receive handler from a device.
4002  *
4003  *	The caller must hold the rtnl_mutex.
4004  */
4005 void netdev_rx_handler_unregister(struct net_device *dev)
4006 {
4007 
4008 	ASSERT_RTNL();
4009 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4010 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4011 	 * section has a guarantee to see a non NULL rx_handler_data
4012 	 * as well.
4013 	 */
4014 	synchronize_net();
4015 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4016 }
4017 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4018 
4019 /*
4020  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4021  * the special handling of PFMEMALLOC skbs.
4022  */
4023 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4024 {
4025 	switch (skb->protocol) {
4026 	case htons(ETH_P_ARP):
4027 	case htons(ETH_P_IP):
4028 	case htons(ETH_P_IPV6):
4029 	case htons(ETH_P_8021Q):
4030 	case htons(ETH_P_8021AD):
4031 		return true;
4032 	default:
4033 		return false;
4034 	}
4035 }
4036 
4037 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4038 			     int *ret, struct net_device *orig_dev)
4039 {
4040 #ifdef CONFIG_NETFILTER_INGRESS
4041 	if (nf_hook_ingress_active(skb)) {
4042 		int ingress_retval;
4043 
4044 		if (*pt_prev) {
4045 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4046 			*pt_prev = NULL;
4047 		}
4048 
4049 		rcu_read_lock();
4050 		ingress_retval = nf_hook_ingress(skb);
4051 		rcu_read_unlock();
4052 		return ingress_retval;
4053 	}
4054 #endif /* CONFIG_NETFILTER_INGRESS */
4055 	return 0;
4056 }
4057 
4058 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4059 {
4060 	struct packet_type *ptype, *pt_prev;
4061 	rx_handler_func_t *rx_handler;
4062 	struct net_device *orig_dev;
4063 	bool deliver_exact = false;
4064 	int ret = NET_RX_DROP;
4065 	__be16 type;
4066 
4067 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4068 
4069 	trace_netif_receive_skb(skb);
4070 
4071 	orig_dev = skb->dev;
4072 
4073 	skb_reset_network_header(skb);
4074 	if (!skb_transport_header_was_set(skb))
4075 		skb_reset_transport_header(skb);
4076 	skb_reset_mac_len(skb);
4077 
4078 	pt_prev = NULL;
4079 
4080 another_round:
4081 	skb->skb_iif = skb->dev->ifindex;
4082 
4083 	__this_cpu_inc(softnet_data.processed);
4084 
4085 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4086 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4087 		skb = skb_vlan_untag(skb);
4088 		if (unlikely(!skb))
4089 			goto out;
4090 	}
4091 
4092 #ifdef CONFIG_NET_CLS_ACT
4093 	if (skb->tc_verd & TC_NCLS) {
4094 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4095 		goto ncls;
4096 	}
4097 #endif
4098 
4099 	if (pfmemalloc)
4100 		goto skip_taps;
4101 
4102 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
4103 		if (pt_prev)
4104 			ret = deliver_skb(skb, pt_prev, orig_dev);
4105 		pt_prev = ptype;
4106 	}
4107 
4108 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4109 		if (pt_prev)
4110 			ret = deliver_skb(skb, pt_prev, orig_dev);
4111 		pt_prev = ptype;
4112 	}
4113 
4114 skip_taps:
4115 #ifdef CONFIG_NET_INGRESS
4116 	if (static_key_false(&ingress_needed)) {
4117 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4118 		if (!skb)
4119 			goto out;
4120 
4121 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4122 			goto out;
4123 	}
4124 #endif
4125 #ifdef CONFIG_NET_CLS_ACT
4126 	skb->tc_verd = 0;
4127 ncls:
4128 #endif
4129 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4130 		goto drop;
4131 
4132 	if (skb_vlan_tag_present(skb)) {
4133 		if (pt_prev) {
4134 			ret = deliver_skb(skb, pt_prev, orig_dev);
4135 			pt_prev = NULL;
4136 		}
4137 		if (vlan_do_receive(&skb))
4138 			goto another_round;
4139 		else if (unlikely(!skb))
4140 			goto out;
4141 	}
4142 
4143 	rx_handler = rcu_dereference(skb->dev->rx_handler);
4144 	if (rx_handler) {
4145 		if (pt_prev) {
4146 			ret = deliver_skb(skb, pt_prev, orig_dev);
4147 			pt_prev = NULL;
4148 		}
4149 		switch (rx_handler(&skb)) {
4150 		case RX_HANDLER_CONSUMED:
4151 			ret = NET_RX_SUCCESS;
4152 			goto out;
4153 		case RX_HANDLER_ANOTHER:
4154 			goto another_round;
4155 		case RX_HANDLER_EXACT:
4156 			deliver_exact = true;
4157 		case RX_HANDLER_PASS:
4158 			break;
4159 		default:
4160 			BUG();
4161 		}
4162 	}
4163 
4164 	if (unlikely(skb_vlan_tag_present(skb))) {
4165 		if (skb_vlan_tag_get_id(skb))
4166 			skb->pkt_type = PACKET_OTHERHOST;
4167 		/* Note: we might in the future use prio bits
4168 		 * and set skb->priority like in vlan_do_receive()
4169 		 * For the time being, just ignore Priority Code Point
4170 		 */
4171 		skb->vlan_tci = 0;
4172 	}
4173 
4174 	type = skb->protocol;
4175 
4176 	/* deliver only exact match when indicated */
4177 	if (likely(!deliver_exact)) {
4178 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4179 				       &ptype_base[ntohs(type) &
4180 						   PTYPE_HASH_MASK]);
4181 	}
4182 
4183 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4184 			       &orig_dev->ptype_specific);
4185 
4186 	if (unlikely(skb->dev != orig_dev)) {
4187 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4188 				       &skb->dev->ptype_specific);
4189 	}
4190 
4191 	if (pt_prev) {
4192 		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4193 			goto drop;
4194 		else
4195 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4196 	} else {
4197 drop:
4198 		if (!deliver_exact)
4199 			atomic_long_inc(&skb->dev->rx_dropped);
4200 		else
4201 			atomic_long_inc(&skb->dev->rx_nohandler);
4202 		kfree_skb(skb);
4203 		/* Jamal, now you will not able to escape explaining
4204 		 * me how you were going to use this. :-)
4205 		 */
4206 		ret = NET_RX_DROP;
4207 	}
4208 
4209 out:
4210 	return ret;
4211 }
4212 
4213 static int __netif_receive_skb(struct sk_buff *skb)
4214 {
4215 	int ret;
4216 
4217 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4218 		unsigned long pflags = current->flags;
4219 
4220 		/*
4221 		 * PFMEMALLOC skbs are special, they should
4222 		 * - be delivered to SOCK_MEMALLOC sockets only
4223 		 * - stay away from userspace
4224 		 * - have bounded memory usage
4225 		 *
4226 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
4227 		 * context down to all allocation sites.
4228 		 */
4229 		current->flags |= PF_MEMALLOC;
4230 		ret = __netif_receive_skb_core(skb, true);
4231 		tsk_restore_flags(current, pflags, PF_MEMALLOC);
4232 	} else
4233 		ret = __netif_receive_skb_core(skb, false);
4234 
4235 	return ret;
4236 }
4237 
4238 static int netif_receive_skb_internal(struct sk_buff *skb)
4239 {
4240 	int ret;
4241 
4242 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4243 
4244 	if (skb_defer_rx_timestamp(skb))
4245 		return NET_RX_SUCCESS;
4246 
4247 	rcu_read_lock();
4248 
4249 #ifdef CONFIG_RPS
4250 	if (static_key_false(&rps_needed)) {
4251 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4252 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4253 
4254 		if (cpu >= 0) {
4255 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4256 			rcu_read_unlock();
4257 			return ret;
4258 		}
4259 	}
4260 #endif
4261 	ret = __netif_receive_skb(skb);
4262 	rcu_read_unlock();
4263 	return ret;
4264 }
4265 
4266 /**
4267  *	netif_receive_skb - process receive buffer from network
4268  *	@skb: buffer to process
4269  *
4270  *	netif_receive_skb() is the main receive data processing function.
4271  *	It always succeeds. The buffer may be dropped during processing
4272  *	for congestion control or by the protocol layers.
4273  *
4274  *	This function may only be called from softirq context and interrupts
4275  *	should be enabled.
4276  *
4277  *	Return values (usually ignored):
4278  *	NET_RX_SUCCESS: no congestion
4279  *	NET_RX_DROP: packet was dropped
4280  */
4281 int netif_receive_skb(struct sk_buff *skb)
4282 {
4283 	trace_netif_receive_skb_entry(skb);
4284 
4285 	return netif_receive_skb_internal(skb);
4286 }
4287 EXPORT_SYMBOL(netif_receive_skb);
4288 
4289 DEFINE_PER_CPU(struct work_struct, flush_works);
4290 
4291 /* Network device is going away, flush any packets still pending */
4292 static void flush_backlog(struct work_struct *work)
4293 {
4294 	struct sk_buff *skb, *tmp;
4295 	struct softnet_data *sd;
4296 
4297 	local_bh_disable();
4298 	sd = this_cpu_ptr(&softnet_data);
4299 
4300 	local_irq_disable();
4301 	rps_lock(sd);
4302 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4303 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4304 			__skb_unlink(skb, &sd->input_pkt_queue);
4305 			kfree_skb(skb);
4306 			input_queue_head_incr(sd);
4307 		}
4308 	}
4309 	rps_unlock(sd);
4310 	local_irq_enable();
4311 
4312 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4313 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4314 			__skb_unlink(skb, &sd->process_queue);
4315 			kfree_skb(skb);
4316 			input_queue_head_incr(sd);
4317 		}
4318 	}
4319 	local_bh_enable();
4320 }
4321 
4322 static void flush_all_backlogs(void)
4323 {
4324 	unsigned int cpu;
4325 
4326 	get_online_cpus();
4327 
4328 	for_each_online_cpu(cpu)
4329 		queue_work_on(cpu, system_highpri_wq,
4330 			      per_cpu_ptr(&flush_works, cpu));
4331 
4332 	for_each_online_cpu(cpu)
4333 		flush_work(per_cpu_ptr(&flush_works, cpu));
4334 
4335 	put_online_cpus();
4336 }
4337 
4338 static int napi_gro_complete(struct sk_buff *skb)
4339 {
4340 	struct packet_offload *ptype;
4341 	__be16 type = skb->protocol;
4342 	struct list_head *head = &offload_base;
4343 	int err = -ENOENT;
4344 
4345 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4346 
4347 	if (NAPI_GRO_CB(skb)->count == 1) {
4348 		skb_shinfo(skb)->gso_size = 0;
4349 		goto out;
4350 	}
4351 
4352 	rcu_read_lock();
4353 	list_for_each_entry_rcu(ptype, head, list) {
4354 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4355 			continue;
4356 
4357 		err = ptype->callbacks.gro_complete(skb, 0);
4358 		break;
4359 	}
4360 	rcu_read_unlock();
4361 
4362 	if (err) {
4363 		WARN_ON(&ptype->list == head);
4364 		kfree_skb(skb);
4365 		return NET_RX_SUCCESS;
4366 	}
4367 
4368 out:
4369 	return netif_receive_skb_internal(skb);
4370 }
4371 
4372 /* napi->gro_list contains packets ordered by age.
4373  * youngest packets at the head of it.
4374  * Complete skbs in reverse order to reduce latencies.
4375  */
4376 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4377 {
4378 	struct sk_buff *skb, *prev = NULL;
4379 
4380 	/* scan list and build reverse chain */
4381 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4382 		skb->prev = prev;
4383 		prev = skb;
4384 	}
4385 
4386 	for (skb = prev; skb; skb = prev) {
4387 		skb->next = NULL;
4388 
4389 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4390 			return;
4391 
4392 		prev = skb->prev;
4393 		napi_gro_complete(skb);
4394 		napi->gro_count--;
4395 	}
4396 
4397 	napi->gro_list = NULL;
4398 }
4399 EXPORT_SYMBOL(napi_gro_flush);
4400 
4401 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4402 {
4403 	struct sk_buff *p;
4404 	unsigned int maclen = skb->dev->hard_header_len;
4405 	u32 hash = skb_get_hash_raw(skb);
4406 
4407 	for (p = napi->gro_list; p; p = p->next) {
4408 		unsigned long diffs;
4409 
4410 		NAPI_GRO_CB(p)->flush = 0;
4411 
4412 		if (hash != skb_get_hash_raw(p)) {
4413 			NAPI_GRO_CB(p)->same_flow = 0;
4414 			continue;
4415 		}
4416 
4417 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4418 		diffs |= p->vlan_tci ^ skb->vlan_tci;
4419 		diffs |= skb_metadata_dst_cmp(p, skb);
4420 		if (maclen == ETH_HLEN)
4421 			diffs |= compare_ether_header(skb_mac_header(p),
4422 						      skb_mac_header(skb));
4423 		else if (!diffs)
4424 			diffs = memcmp(skb_mac_header(p),
4425 				       skb_mac_header(skb),
4426 				       maclen);
4427 		NAPI_GRO_CB(p)->same_flow = !diffs;
4428 	}
4429 }
4430 
4431 static void skb_gro_reset_offset(struct sk_buff *skb)
4432 {
4433 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
4434 	const skb_frag_t *frag0 = &pinfo->frags[0];
4435 
4436 	NAPI_GRO_CB(skb)->data_offset = 0;
4437 	NAPI_GRO_CB(skb)->frag0 = NULL;
4438 	NAPI_GRO_CB(skb)->frag0_len = 0;
4439 
4440 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4441 	    pinfo->nr_frags &&
4442 	    !PageHighMem(skb_frag_page(frag0))) {
4443 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4444 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4445 						    skb_frag_size(frag0),
4446 						    skb->end - skb->tail);
4447 	}
4448 }
4449 
4450 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4451 {
4452 	struct skb_shared_info *pinfo = skb_shinfo(skb);
4453 
4454 	BUG_ON(skb->end - skb->tail < grow);
4455 
4456 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4457 
4458 	skb->data_len -= grow;
4459 	skb->tail += grow;
4460 
4461 	pinfo->frags[0].page_offset += grow;
4462 	skb_frag_size_sub(&pinfo->frags[0], grow);
4463 
4464 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4465 		skb_frag_unref(skb, 0);
4466 		memmove(pinfo->frags, pinfo->frags + 1,
4467 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
4468 	}
4469 }
4470 
4471 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4472 {
4473 	struct sk_buff **pp = NULL;
4474 	struct packet_offload *ptype;
4475 	__be16 type = skb->protocol;
4476 	struct list_head *head = &offload_base;
4477 	int same_flow;
4478 	enum gro_result ret;
4479 	int grow;
4480 
4481 	if (!(skb->dev->features & NETIF_F_GRO))
4482 		goto normal;
4483 
4484 	if (skb->csum_bad)
4485 		goto normal;
4486 
4487 	gro_list_prepare(napi, skb);
4488 
4489 	rcu_read_lock();
4490 	list_for_each_entry_rcu(ptype, head, list) {
4491 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4492 			continue;
4493 
4494 		skb_set_network_header(skb, skb_gro_offset(skb));
4495 		skb_reset_mac_len(skb);
4496 		NAPI_GRO_CB(skb)->same_flow = 0;
4497 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4498 		NAPI_GRO_CB(skb)->free = 0;
4499 		NAPI_GRO_CB(skb)->encap_mark = 0;
4500 		NAPI_GRO_CB(skb)->recursion_counter = 0;
4501 		NAPI_GRO_CB(skb)->is_fou = 0;
4502 		NAPI_GRO_CB(skb)->is_atomic = 1;
4503 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4504 
4505 		/* Setup for GRO checksum validation */
4506 		switch (skb->ip_summed) {
4507 		case CHECKSUM_COMPLETE:
4508 			NAPI_GRO_CB(skb)->csum = skb->csum;
4509 			NAPI_GRO_CB(skb)->csum_valid = 1;
4510 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4511 			break;
4512 		case CHECKSUM_UNNECESSARY:
4513 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4514 			NAPI_GRO_CB(skb)->csum_valid = 0;
4515 			break;
4516 		default:
4517 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4518 			NAPI_GRO_CB(skb)->csum_valid = 0;
4519 		}
4520 
4521 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4522 		break;
4523 	}
4524 	rcu_read_unlock();
4525 
4526 	if (&ptype->list == head)
4527 		goto normal;
4528 
4529 	same_flow = NAPI_GRO_CB(skb)->same_flow;
4530 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4531 
4532 	if (pp) {
4533 		struct sk_buff *nskb = *pp;
4534 
4535 		*pp = nskb->next;
4536 		nskb->next = NULL;
4537 		napi_gro_complete(nskb);
4538 		napi->gro_count--;
4539 	}
4540 
4541 	if (same_flow)
4542 		goto ok;
4543 
4544 	if (NAPI_GRO_CB(skb)->flush)
4545 		goto normal;
4546 
4547 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4548 		struct sk_buff *nskb = napi->gro_list;
4549 
4550 		/* locate the end of the list to select the 'oldest' flow */
4551 		while (nskb->next) {
4552 			pp = &nskb->next;
4553 			nskb = *pp;
4554 		}
4555 		*pp = NULL;
4556 		nskb->next = NULL;
4557 		napi_gro_complete(nskb);
4558 	} else {
4559 		napi->gro_count++;
4560 	}
4561 	NAPI_GRO_CB(skb)->count = 1;
4562 	NAPI_GRO_CB(skb)->age = jiffies;
4563 	NAPI_GRO_CB(skb)->last = skb;
4564 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4565 	skb->next = napi->gro_list;
4566 	napi->gro_list = skb;
4567 	ret = GRO_HELD;
4568 
4569 pull:
4570 	grow = skb_gro_offset(skb) - skb_headlen(skb);
4571 	if (grow > 0)
4572 		gro_pull_from_frag0(skb, grow);
4573 ok:
4574 	return ret;
4575 
4576 normal:
4577 	ret = GRO_NORMAL;
4578 	goto pull;
4579 }
4580 
4581 struct packet_offload *gro_find_receive_by_type(__be16 type)
4582 {
4583 	struct list_head *offload_head = &offload_base;
4584 	struct packet_offload *ptype;
4585 
4586 	list_for_each_entry_rcu(ptype, offload_head, list) {
4587 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4588 			continue;
4589 		return ptype;
4590 	}
4591 	return NULL;
4592 }
4593 EXPORT_SYMBOL(gro_find_receive_by_type);
4594 
4595 struct packet_offload *gro_find_complete_by_type(__be16 type)
4596 {
4597 	struct list_head *offload_head = &offload_base;
4598 	struct packet_offload *ptype;
4599 
4600 	list_for_each_entry_rcu(ptype, offload_head, list) {
4601 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4602 			continue;
4603 		return ptype;
4604 	}
4605 	return NULL;
4606 }
4607 EXPORT_SYMBOL(gro_find_complete_by_type);
4608 
4609 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4610 {
4611 	switch (ret) {
4612 	case GRO_NORMAL:
4613 		if (netif_receive_skb_internal(skb))
4614 			ret = GRO_DROP;
4615 		break;
4616 
4617 	case GRO_DROP:
4618 		kfree_skb(skb);
4619 		break;
4620 
4621 	case GRO_MERGED_FREE:
4622 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4623 			skb_dst_drop(skb);
4624 			kmem_cache_free(skbuff_head_cache, skb);
4625 		} else {
4626 			__kfree_skb(skb);
4627 		}
4628 		break;
4629 
4630 	case GRO_HELD:
4631 	case GRO_MERGED:
4632 		break;
4633 	}
4634 
4635 	return ret;
4636 }
4637 
4638 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4639 {
4640 	skb_mark_napi_id(skb, napi);
4641 	trace_napi_gro_receive_entry(skb);
4642 
4643 	skb_gro_reset_offset(skb);
4644 
4645 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4646 }
4647 EXPORT_SYMBOL(napi_gro_receive);
4648 
4649 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4650 {
4651 	if (unlikely(skb->pfmemalloc)) {
4652 		consume_skb(skb);
4653 		return;
4654 	}
4655 	__skb_pull(skb, skb_headlen(skb));
4656 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
4657 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4658 	skb->vlan_tci = 0;
4659 	skb->dev = napi->dev;
4660 	skb->skb_iif = 0;
4661 	skb->encapsulation = 0;
4662 	skb_shinfo(skb)->gso_type = 0;
4663 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4664 
4665 	napi->skb = skb;
4666 }
4667 
4668 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4669 {
4670 	struct sk_buff *skb = napi->skb;
4671 
4672 	if (!skb) {
4673 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4674 		if (skb) {
4675 			napi->skb = skb;
4676 			skb_mark_napi_id(skb, napi);
4677 		}
4678 	}
4679 	return skb;
4680 }
4681 EXPORT_SYMBOL(napi_get_frags);
4682 
4683 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4684 				      struct sk_buff *skb,
4685 				      gro_result_t ret)
4686 {
4687 	switch (ret) {
4688 	case GRO_NORMAL:
4689 	case GRO_HELD:
4690 		__skb_push(skb, ETH_HLEN);
4691 		skb->protocol = eth_type_trans(skb, skb->dev);
4692 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4693 			ret = GRO_DROP;
4694 		break;
4695 
4696 	case GRO_DROP:
4697 	case GRO_MERGED_FREE:
4698 		napi_reuse_skb(napi, skb);
4699 		break;
4700 
4701 	case GRO_MERGED:
4702 		break;
4703 	}
4704 
4705 	return ret;
4706 }
4707 
4708 /* Upper GRO stack assumes network header starts at gro_offset=0
4709  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4710  * We copy ethernet header into skb->data to have a common layout.
4711  */
4712 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4713 {
4714 	struct sk_buff *skb = napi->skb;
4715 	const struct ethhdr *eth;
4716 	unsigned int hlen = sizeof(*eth);
4717 
4718 	napi->skb = NULL;
4719 
4720 	skb_reset_mac_header(skb);
4721 	skb_gro_reset_offset(skb);
4722 
4723 	eth = skb_gro_header_fast(skb, 0);
4724 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
4725 		eth = skb_gro_header_slow(skb, hlen, 0);
4726 		if (unlikely(!eth)) {
4727 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4728 					     __func__, napi->dev->name);
4729 			napi_reuse_skb(napi, skb);
4730 			return NULL;
4731 		}
4732 	} else {
4733 		gro_pull_from_frag0(skb, hlen);
4734 		NAPI_GRO_CB(skb)->frag0 += hlen;
4735 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
4736 	}
4737 	__skb_pull(skb, hlen);
4738 
4739 	/*
4740 	 * This works because the only protocols we care about don't require
4741 	 * special handling.
4742 	 * We'll fix it up properly in napi_frags_finish()
4743 	 */
4744 	skb->protocol = eth->h_proto;
4745 
4746 	return skb;
4747 }
4748 
4749 gro_result_t napi_gro_frags(struct napi_struct *napi)
4750 {
4751 	struct sk_buff *skb = napi_frags_skb(napi);
4752 
4753 	if (!skb)
4754 		return GRO_DROP;
4755 
4756 	trace_napi_gro_frags_entry(skb);
4757 
4758 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4759 }
4760 EXPORT_SYMBOL(napi_gro_frags);
4761 
4762 /* Compute the checksum from gro_offset and return the folded value
4763  * after adding in any pseudo checksum.
4764  */
4765 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4766 {
4767 	__wsum wsum;
4768 	__sum16 sum;
4769 
4770 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4771 
4772 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4773 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4774 	if (likely(!sum)) {
4775 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4776 		    !skb->csum_complete_sw)
4777 			netdev_rx_csum_fault(skb->dev);
4778 	}
4779 
4780 	NAPI_GRO_CB(skb)->csum = wsum;
4781 	NAPI_GRO_CB(skb)->csum_valid = 1;
4782 
4783 	return sum;
4784 }
4785 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4786 
4787 /*
4788  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4789  * Note: called with local irq disabled, but exits with local irq enabled.
4790  */
4791 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4792 {
4793 #ifdef CONFIG_RPS
4794 	struct softnet_data *remsd = sd->rps_ipi_list;
4795 
4796 	if (remsd) {
4797 		sd->rps_ipi_list = NULL;
4798 
4799 		local_irq_enable();
4800 
4801 		/* Send pending IPI's to kick RPS processing on remote cpus. */
4802 		while (remsd) {
4803 			struct softnet_data *next = remsd->rps_ipi_next;
4804 
4805 			if (cpu_online(remsd->cpu))
4806 				smp_call_function_single_async(remsd->cpu,
4807 							   &remsd->csd);
4808 			remsd = next;
4809 		}
4810 	} else
4811 #endif
4812 		local_irq_enable();
4813 }
4814 
4815 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4816 {
4817 #ifdef CONFIG_RPS
4818 	return sd->rps_ipi_list != NULL;
4819 #else
4820 	return false;
4821 #endif
4822 }
4823 
4824 static int process_backlog(struct napi_struct *napi, int quota)
4825 {
4826 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4827 	bool again = true;
4828 	int work = 0;
4829 
4830 	/* Check if we have pending ipi, its better to send them now,
4831 	 * not waiting net_rx_action() end.
4832 	 */
4833 	if (sd_has_rps_ipi_waiting(sd)) {
4834 		local_irq_disable();
4835 		net_rps_action_and_irq_enable(sd);
4836 	}
4837 
4838 	napi->weight = weight_p;
4839 	while (again) {
4840 		struct sk_buff *skb;
4841 
4842 		while ((skb = __skb_dequeue(&sd->process_queue))) {
4843 			rcu_read_lock();
4844 			__netif_receive_skb(skb);
4845 			rcu_read_unlock();
4846 			input_queue_head_incr(sd);
4847 			if (++work >= quota)
4848 				return work;
4849 
4850 		}
4851 
4852 		local_irq_disable();
4853 		rps_lock(sd);
4854 		if (skb_queue_empty(&sd->input_pkt_queue)) {
4855 			/*
4856 			 * Inline a custom version of __napi_complete().
4857 			 * only current cpu owns and manipulates this napi,
4858 			 * and NAPI_STATE_SCHED is the only possible flag set
4859 			 * on backlog.
4860 			 * We can use a plain write instead of clear_bit(),
4861 			 * and we dont need an smp_mb() memory barrier.
4862 			 */
4863 			napi->state = 0;
4864 			again = false;
4865 		} else {
4866 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
4867 						   &sd->process_queue);
4868 		}
4869 		rps_unlock(sd);
4870 		local_irq_enable();
4871 	}
4872 
4873 	return work;
4874 }
4875 
4876 /**
4877  * __napi_schedule - schedule for receive
4878  * @n: entry to schedule
4879  *
4880  * The entry's receive function will be scheduled to run.
4881  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4882  */
4883 void __napi_schedule(struct napi_struct *n)
4884 {
4885 	unsigned long flags;
4886 
4887 	local_irq_save(flags);
4888 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4889 	local_irq_restore(flags);
4890 }
4891 EXPORT_SYMBOL(__napi_schedule);
4892 
4893 /**
4894  * __napi_schedule_irqoff - schedule for receive
4895  * @n: entry to schedule
4896  *
4897  * Variant of __napi_schedule() assuming hard irqs are masked
4898  */
4899 void __napi_schedule_irqoff(struct napi_struct *n)
4900 {
4901 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4902 }
4903 EXPORT_SYMBOL(__napi_schedule_irqoff);
4904 
4905 bool __napi_complete(struct napi_struct *n)
4906 {
4907 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4908 
4909 	/* Some drivers call us directly, instead of calling
4910 	 * napi_complete_done().
4911 	 */
4912 	if (unlikely(test_bit(NAPI_STATE_IN_BUSY_POLL, &n->state)))
4913 		return false;
4914 
4915 	list_del_init(&n->poll_list);
4916 	smp_mb__before_atomic();
4917 	clear_bit(NAPI_STATE_SCHED, &n->state);
4918 	return true;
4919 }
4920 EXPORT_SYMBOL(__napi_complete);
4921 
4922 bool napi_complete_done(struct napi_struct *n, int work_done)
4923 {
4924 	unsigned long flags;
4925 
4926 	/*
4927 	 * 1) Don't let napi dequeue from the cpu poll list
4928 	 *    just in case its running on a different cpu.
4929 	 * 2) If we are busy polling, do nothing here, we have
4930 	 *    the guarantee we will be called later.
4931 	 */
4932 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
4933 				 NAPIF_STATE_IN_BUSY_POLL)))
4934 		return false;
4935 
4936 	if (n->gro_list) {
4937 		unsigned long timeout = 0;
4938 
4939 		if (work_done)
4940 			timeout = n->dev->gro_flush_timeout;
4941 
4942 		if (timeout)
4943 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
4944 				      HRTIMER_MODE_REL_PINNED);
4945 		else
4946 			napi_gro_flush(n, false);
4947 	}
4948 	if (likely(list_empty(&n->poll_list))) {
4949 		WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4950 	} else {
4951 		/* If n->poll_list is not empty, we need to mask irqs */
4952 		local_irq_save(flags);
4953 		__napi_complete(n);
4954 		local_irq_restore(flags);
4955 	}
4956 	return true;
4957 }
4958 EXPORT_SYMBOL(napi_complete_done);
4959 
4960 /* must be called under rcu_read_lock(), as we dont take a reference */
4961 static struct napi_struct *napi_by_id(unsigned int napi_id)
4962 {
4963 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4964 	struct napi_struct *napi;
4965 
4966 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4967 		if (napi->napi_id == napi_id)
4968 			return napi;
4969 
4970 	return NULL;
4971 }
4972 
4973 #if defined(CONFIG_NET_RX_BUSY_POLL)
4974 
4975 #define BUSY_POLL_BUDGET 8
4976 
4977 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
4978 {
4979 	int rc;
4980 
4981 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
4982 
4983 	local_bh_disable();
4984 
4985 	/* All we really want here is to re-enable device interrupts.
4986 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
4987 	 */
4988 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
4989 	netpoll_poll_unlock(have_poll_lock);
4990 	if (rc == BUSY_POLL_BUDGET)
4991 		__napi_schedule(napi);
4992 	local_bh_enable();
4993 	if (local_softirq_pending())
4994 		do_softirq();
4995 }
4996 
4997 bool sk_busy_loop(struct sock *sk, int nonblock)
4998 {
4999 	unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
5000 	int (*napi_poll)(struct napi_struct *napi, int budget);
5001 	int (*busy_poll)(struct napi_struct *dev);
5002 	void *have_poll_lock = NULL;
5003 	struct napi_struct *napi;
5004 	int rc;
5005 
5006 restart:
5007 	rc = false;
5008 	napi_poll = NULL;
5009 
5010 	rcu_read_lock();
5011 
5012 	napi = napi_by_id(sk->sk_napi_id);
5013 	if (!napi)
5014 		goto out;
5015 
5016 	/* Note: ndo_busy_poll method is optional in linux-4.5 */
5017 	busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
5018 
5019 	preempt_disable();
5020 	for (;;) {
5021 		rc = 0;
5022 		local_bh_disable();
5023 		if (busy_poll) {
5024 			rc = busy_poll(napi);
5025 			goto count;
5026 		}
5027 		if (!napi_poll) {
5028 			unsigned long val = READ_ONCE(napi->state);
5029 
5030 			/* If multiple threads are competing for this napi,
5031 			 * we avoid dirtying napi->state as much as we can.
5032 			 */
5033 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5034 				   NAPIF_STATE_IN_BUSY_POLL))
5035 				goto count;
5036 			if (cmpxchg(&napi->state, val,
5037 				    val | NAPIF_STATE_IN_BUSY_POLL |
5038 					  NAPIF_STATE_SCHED) != val)
5039 				goto count;
5040 			have_poll_lock = netpoll_poll_lock(napi);
5041 			napi_poll = napi->poll;
5042 		}
5043 		rc = napi_poll(napi, BUSY_POLL_BUDGET);
5044 		trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5045 count:
5046 		if (rc > 0)
5047 			__NET_ADD_STATS(sock_net(sk),
5048 					LINUX_MIB_BUSYPOLLRXPACKETS, rc);
5049 		local_bh_enable();
5050 
5051 		if (rc == LL_FLUSH_FAILED)
5052 			break; /* permanent failure */
5053 
5054 		if (nonblock || !skb_queue_empty(&sk->sk_receive_queue) ||
5055 		    busy_loop_timeout(end_time))
5056 			break;
5057 
5058 		if (unlikely(need_resched())) {
5059 			if (napi_poll)
5060 				busy_poll_stop(napi, have_poll_lock);
5061 			preempt_enable();
5062 			rcu_read_unlock();
5063 			cond_resched();
5064 			rc = !skb_queue_empty(&sk->sk_receive_queue);
5065 			if (rc || busy_loop_timeout(end_time))
5066 				return rc;
5067 			goto restart;
5068 		}
5069 		cpu_relax();
5070 	}
5071 	if (napi_poll)
5072 		busy_poll_stop(napi, have_poll_lock);
5073 	preempt_enable();
5074 	rc = !skb_queue_empty(&sk->sk_receive_queue);
5075 out:
5076 	rcu_read_unlock();
5077 	return rc;
5078 }
5079 EXPORT_SYMBOL(sk_busy_loop);
5080 
5081 #endif /* CONFIG_NET_RX_BUSY_POLL */
5082 
5083 static void napi_hash_add(struct napi_struct *napi)
5084 {
5085 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5086 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5087 		return;
5088 
5089 	spin_lock(&napi_hash_lock);
5090 
5091 	/* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5092 	do {
5093 		if (unlikely(++napi_gen_id < NR_CPUS + 1))
5094 			napi_gen_id = NR_CPUS + 1;
5095 	} while (napi_by_id(napi_gen_id));
5096 	napi->napi_id = napi_gen_id;
5097 
5098 	hlist_add_head_rcu(&napi->napi_hash_node,
5099 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5100 
5101 	spin_unlock(&napi_hash_lock);
5102 }
5103 
5104 /* Warning : caller is responsible to make sure rcu grace period
5105  * is respected before freeing memory containing @napi
5106  */
5107 bool napi_hash_del(struct napi_struct *napi)
5108 {
5109 	bool rcu_sync_needed = false;
5110 
5111 	spin_lock(&napi_hash_lock);
5112 
5113 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5114 		rcu_sync_needed = true;
5115 		hlist_del_rcu(&napi->napi_hash_node);
5116 	}
5117 	spin_unlock(&napi_hash_lock);
5118 	return rcu_sync_needed;
5119 }
5120 EXPORT_SYMBOL_GPL(napi_hash_del);
5121 
5122 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5123 {
5124 	struct napi_struct *napi;
5125 
5126 	napi = container_of(timer, struct napi_struct, timer);
5127 	if (napi->gro_list)
5128 		napi_schedule(napi);
5129 
5130 	return HRTIMER_NORESTART;
5131 }
5132 
5133 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5134 		    int (*poll)(struct napi_struct *, int), int weight)
5135 {
5136 	INIT_LIST_HEAD(&napi->poll_list);
5137 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5138 	napi->timer.function = napi_watchdog;
5139 	napi->gro_count = 0;
5140 	napi->gro_list = NULL;
5141 	napi->skb = NULL;
5142 	napi->poll = poll;
5143 	if (weight > NAPI_POLL_WEIGHT)
5144 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5145 			    weight, dev->name);
5146 	napi->weight = weight;
5147 	list_add(&napi->dev_list, &dev->napi_list);
5148 	napi->dev = dev;
5149 #ifdef CONFIG_NETPOLL
5150 	napi->poll_owner = -1;
5151 #endif
5152 	set_bit(NAPI_STATE_SCHED, &napi->state);
5153 	napi_hash_add(napi);
5154 }
5155 EXPORT_SYMBOL(netif_napi_add);
5156 
5157 void napi_disable(struct napi_struct *n)
5158 {
5159 	might_sleep();
5160 	set_bit(NAPI_STATE_DISABLE, &n->state);
5161 
5162 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5163 		msleep(1);
5164 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5165 		msleep(1);
5166 
5167 	hrtimer_cancel(&n->timer);
5168 
5169 	clear_bit(NAPI_STATE_DISABLE, &n->state);
5170 }
5171 EXPORT_SYMBOL(napi_disable);
5172 
5173 /* Must be called in process context */
5174 void netif_napi_del(struct napi_struct *napi)
5175 {
5176 	might_sleep();
5177 	if (napi_hash_del(napi))
5178 		synchronize_net();
5179 	list_del_init(&napi->dev_list);
5180 	napi_free_frags(napi);
5181 
5182 	kfree_skb_list(napi->gro_list);
5183 	napi->gro_list = NULL;
5184 	napi->gro_count = 0;
5185 }
5186 EXPORT_SYMBOL(netif_napi_del);
5187 
5188 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5189 {
5190 	void *have;
5191 	int work, weight;
5192 
5193 	list_del_init(&n->poll_list);
5194 
5195 	have = netpoll_poll_lock(n);
5196 
5197 	weight = n->weight;
5198 
5199 	/* This NAPI_STATE_SCHED test is for avoiding a race
5200 	 * with netpoll's poll_napi().  Only the entity which
5201 	 * obtains the lock and sees NAPI_STATE_SCHED set will
5202 	 * actually make the ->poll() call.  Therefore we avoid
5203 	 * accidentally calling ->poll() when NAPI is not scheduled.
5204 	 */
5205 	work = 0;
5206 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5207 		work = n->poll(n, weight);
5208 		trace_napi_poll(n, work, weight);
5209 	}
5210 
5211 	WARN_ON_ONCE(work > weight);
5212 
5213 	if (likely(work < weight))
5214 		goto out_unlock;
5215 
5216 	/* Drivers must not modify the NAPI state if they
5217 	 * consume the entire weight.  In such cases this code
5218 	 * still "owns" the NAPI instance and therefore can
5219 	 * move the instance around on the list at-will.
5220 	 */
5221 	if (unlikely(napi_disable_pending(n))) {
5222 		napi_complete(n);
5223 		goto out_unlock;
5224 	}
5225 
5226 	if (n->gro_list) {
5227 		/* flush too old packets
5228 		 * If HZ < 1000, flush all packets.
5229 		 */
5230 		napi_gro_flush(n, HZ >= 1000);
5231 	}
5232 
5233 	/* Some drivers may have called napi_schedule
5234 	 * prior to exhausting their budget.
5235 	 */
5236 	if (unlikely(!list_empty(&n->poll_list))) {
5237 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5238 			     n->dev ? n->dev->name : "backlog");
5239 		goto out_unlock;
5240 	}
5241 
5242 	list_add_tail(&n->poll_list, repoll);
5243 
5244 out_unlock:
5245 	netpoll_poll_unlock(have);
5246 
5247 	return work;
5248 }
5249 
5250 static __latent_entropy void net_rx_action(struct softirq_action *h)
5251 {
5252 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5253 	unsigned long time_limit = jiffies + 2;
5254 	int budget = netdev_budget;
5255 	LIST_HEAD(list);
5256 	LIST_HEAD(repoll);
5257 
5258 	local_irq_disable();
5259 	list_splice_init(&sd->poll_list, &list);
5260 	local_irq_enable();
5261 
5262 	for (;;) {
5263 		struct napi_struct *n;
5264 
5265 		if (list_empty(&list)) {
5266 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5267 				goto out;
5268 			break;
5269 		}
5270 
5271 		n = list_first_entry(&list, struct napi_struct, poll_list);
5272 		budget -= napi_poll(n, &repoll);
5273 
5274 		/* If softirq window is exhausted then punt.
5275 		 * Allow this to run for 2 jiffies since which will allow
5276 		 * an average latency of 1.5/HZ.
5277 		 */
5278 		if (unlikely(budget <= 0 ||
5279 			     time_after_eq(jiffies, time_limit))) {
5280 			sd->time_squeeze++;
5281 			break;
5282 		}
5283 	}
5284 
5285 	local_irq_disable();
5286 
5287 	list_splice_tail_init(&sd->poll_list, &list);
5288 	list_splice_tail(&repoll, &list);
5289 	list_splice(&list, &sd->poll_list);
5290 	if (!list_empty(&sd->poll_list))
5291 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5292 
5293 	net_rps_action_and_irq_enable(sd);
5294 out:
5295 	__kfree_skb_flush();
5296 }
5297 
5298 struct netdev_adjacent {
5299 	struct net_device *dev;
5300 
5301 	/* upper master flag, there can only be one master device per list */
5302 	bool master;
5303 
5304 	/* counter for the number of times this device was added to us */
5305 	u16 ref_nr;
5306 
5307 	/* private field for the users */
5308 	void *private;
5309 
5310 	struct list_head list;
5311 	struct rcu_head rcu;
5312 };
5313 
5314 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5315 						 struct list_head *adj_list)
5316 {
5317 	struct netdev_adjacent *adj;
5318 
5319 	list_for_each_entry(adj, adj_list, list) {
5320 		if (adj->dev == adj_dev)
5321 			return adj;
5322 	}
5323 	return NULL;
5324 }
5325 
5326 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5327 {
5328 	struct net_device *dev = data;
5329 
5330 	return upper_dev == dev;
5331 }
5332 
5333 /**
5334  * netdev_has_upper_dev - Check if device is linked to an upper device
5335  * @dev: device
5336  * @upper_dev: upper device to check
5337  *
5338  * Find out if a device is linked to specified upper device and return true
5339  * in case it is. Note that this checks only immediate upper device,
5340  * not through a complete stack of devices. The caller must hold the RTNL lock.
5341  */
5342 bool netdev_has_upper_dev(struct net_device *dev,
5343 			  struct net_device *upper_dev)
5344 {
5345 	ASSERT_RTNL();
5346 
5347 	return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5348 					     upper_dev);
5349 }
5350 EXPORT_SYMBOL(netdev_has_upper_dev);
5351 
5352 /**
5353  * netdev_has_upper_dev_all - Check if device is linked to an upper device
5354  * @dev: device
5355  * @upper_dev: upper device to check
5356  *
5357  * Find out if a device is linked to specified upper device and return true
5358  * in case it is. Note that this checks the entire upper device chain.
5359  * The caller must hold rcu lock.
5360  */
5361 
5362 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5363 				  struct net_device *upper_dev)
5364 {
5365 	return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5366 					       upper_dev);
5367 }
5368 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5369 
5370 /**
5371  * netdev_has_any_upper_dev - Check if device is linked to some device
5372  * @dev: device
5373  *
5374  * Find out if a device is linked to an upper device and return true in case
5375  * it is. The caller must hold the RTNL lock.
5376  */
5377 static bool netdev_has_any_upper_dev(struct net_device *dev)
5378 {
5379 	ASSERT_RTNL();
5380 
5381 	return !list_empty(&dev->adj_list.upper);
5382 }
5383 
5384 /**
5385  * netdev_master_upper_dev_get - Get master upper device
5386  * @dev: device
5387  *
5388  * Find a master upper device and return pointer to it or NULL in case
5389  * it's not there. The caller must hold the RTNL lock.
5390  */
5391 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5392 {
5393 	struct netdev_adjacent *upper;
5394 
5395 	ASSERT_RTNL();
5396 
5397 	if (list_empty(&dev->adj_list.upper))
5398 		return NULL;
5399 
5400 	upper = list_first_entry(&dev->adj_list.upper,
5401 				 struct netdev_adjacent, list);
5402 	if (likely(upper->master))
5403 		return upper->dev;
5404 	return NULL;
5405 }
5406 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5407 
5408 /**
5409  * netdev_has_any_lower_dev - Check if device is linked to some device
5410  * @dev: device
5411  *
5412  * Find out if a device is linked to a lower device and return true in case
5413  * it is. The caller must hold the RTNL lock.
5414  */
5415 static bool netdev_has_any_lower_dev(struct net_device *dev)
5416 {
5417 	ASSERT_RTNL();
5418 
5419 	return !list_empty(&dev->adj_list.lower);
5420 }
5421 
5422 void *netdev_adjacent_get_private(struct list_head *adj_list)
5423 {
5424 	struct netdev_adjacent *adj;
5425 
5426 	adj = list_entry(adj_list, struct netdev_adjacent, list);
5427 
5428 	return adj->private;
5429 }
5430 EXPORT_SYMBOL(netdev_adjacent_get_private);
5431 
5432 /**
5433  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5434  * @dev: device
5435  * @iter: list_head ** of the current position
5436  *
5437  * Gets the next device from the dev's upper list, starting from iter
5438  * position. The caller must hold RCU read lock.
5439  */
5440 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5441 						 struct list_head **iter)
5442 {
5443 	struct netdev_adjacent *upper;
5444 
5445 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5446 
5447 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5448 
5449 	if (&upper->list == &dev->adj_list.upper)
5450 		return NULL;
5451 
5452 	*iter = &upper->list;
5453 
5454 	return upper->dev;
5455 }
5456 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5457 
5458 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5459 						    struct list_head **iter)
5460 {
5461 	struct netdev_adjacent *upper;
5462 
5463 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5464 
5465 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5466 
5467 	if (&upper->list == &dev->adj_list.upper)
5468 		return NULL;
5469 
5470 	*iter = &upper->list;
5471 
5472 	return upper->dev;
5473 }
5474 
5475 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5476 				  int (*fn)(struct net_device *dev,
5477 					    void *data),
5478 				  void *data)
5479 {
5480 	struct net_device *udev;
5481 	struct list_head *iter;
5482 	int ret;
5483 
5484 	for (iter = &dev->adj_list.upper,
5485 	     udev = netdev_next_upper_dev_rcu(dev, &iter);
5486 	     udev;
5487 	     udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5488 		/* first is the upper device itself */
5489 		ret = fn(udev, data);
5490 		if (ret)
5491 			return ret;
5492 
5493 		/* then look at all of its upper devices */
5494 		ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5495 		if (ret)
5496 			return ret;
5497 	}
5498 
5499 	return 0;
5500 }
5501 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5502 
5503 /**
5504  * netdev_lower_get_next_private - Get the next ->private from the
5505  *				   lower neighbour list
5506  * @dev: device
5507  * @iter: list_head ** of the current position
5508  *
5509  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5510  * list, starting from iter position. The caller must hold either hold the
5511  * RTNL lock or its own locking that guarantees that the neighbour lower
5512  * list will remain unchanged.
5513  */
5514 void *netdev_lower_get_next_private(struct net_device *dev,
5515 				    struct list_head **iter)
5516 {
5517 	struct netdev_adjacent *lower;
5518 
5519 	lower = list_entry(*iter, struct netdev_adjacent, list);
5520 
5521 	if (&lower->list == &dev->adj_list.lower)
5522 		return NULL;
5523 
5524 	*iter = lower->list.next;
5525 
5526 	return lower->private;
5527 }
5528 EXPORT_SYMBOL(netdev_lower_get_next_private);
5529 
5530 /**
5531  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5532  *				       lower neighbour list, RCU
5533  *				       variant
5534  * @dev: device
5535  * @iter: list_head ** of the current position
5536  *
5537  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5538  * list, starting from iter position. The caller must hold RCU read lock.
5539  */
5540 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5541 					struct list_head **iter)
5542 {
5543 	struct netdev_adjacent *lower;
5544 
5545 	WARN_ON_ONCE(!rcu_read_lock_held());
5546 
5547 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5548 
5549 	if (&lower->list == &dev->adj_list.lower)
5550 		return NULL;
5551 
5552 	*iter = &lower->list;
5553 
5554 	return lower->private;
5555 }
5556 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5557 
5558 /**
5559  * netdev_lower_get_next - Get the next device from the lower neighbour
5560  *                         list
5561  * @dev: device
5562  * @iter: list_head ** of the current position
5563  *
5564  * Gets the next netdev_adjacent from the dev's lower neighbour
5565  * list, starting from iter position. The caller must hold RTNL lock or
5566  * its own locking that guarantees that the neighbour lower
5567  * list will remain unchanged.
5568  */
5569 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5570 {
5571 	struct netdev_adjacent *lower;
5572 
5573 	lower = list_entry(*iter, struct netdev_adjacent, list);
5574 
5575 	if (&lower->list == &dev->adj_list.lower)
5576 		return NULL;
5577 
5578 	*iter = lower->list.next;
5579 
5580 	return lower->dev;
5581 }
5582 EXPORT_SYMBOL(netdev_lower_get_next);
5583 
5584 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5585 						struct list_head **iter)
5586 {
5587 	struct netdev_adjacent *lower;
5588 
5589 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5590 
5591 	if (&lower->list == &dev->adj_list.lower)
5592 		return NULL;
5593 
5594 	*iter = &lower->list;
5595 
5596 	return lower->dev;
5597 }
5598 
5599 int netdev_walk_all_lower_dev(struct net_device *dev,
5600 			      int (*fn)(struct net_device *dev,
5601 					void *data),
5602 			      void *data)
5603 {
5604 	struct net_device *ldev;
5605 	struct list_head *iter;
5606 	int ret;
5607 
5608 	for (iter = &dev->adj_list.lower,
5609 	     ldev = netdev_next_lower_dev(dev, &iter);
5610 	     ldev;
5611 	     ldev = netdev_next_lower_dev(dev, &iter)) {
5612 		/* first is the lower device itself */
5613 		ret = fn(ldev, data);
5614 		if (ret)
5615 			return ret;
5616 
5617 		/* then look at all of its lower devices */
5618 		ret = netdev_walk_all_lower_dev(ldev, fn, data);
5619 		if (ret)
5620 			return ret;
5621 	}
5622 
5623 	return 0;
5624 }
5625 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5626 
5627 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5628 						    struct list_head **iter)
5629 {
5630 	struct netdev_adjacent *lower;
5631 
5632 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5633 	if (&lower->list == &dev->adj_list.lower)
5634 		return NULL;
5635 
5636 	*iter = &lower->list;
5637 
5638 	return lower->dev;
5639 }
5640 
5641 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5642 				  int (*fn)(struct net_device *dev,
5643 					    void *data),
5644 				  void *data)
5645 {
5646 	struct net_device *ldev;
5647 	struct list_head *iter;
5648 	int ret;
5649 
5650 	for (iter = &dev->adj_list.lower,
5651 	     ldev = netdev_next_lower_dev_rcu(dev, &iter);
5652 	     ldev;
5653 	     ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5654 		/* first is the lower device itself */
5655 		ret = fn(ldev, data);
5656 		if (ret)
5657 			return ret;
5658 
5659 		/* then look at all of its lower devices */
5660 		ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5661 		if (ret)
5662 			return ret;
5663 	}
5664 
5665 	return 0;
5666 }
5667 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
5668 
5669 /**
5670  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5671  *				       lower neighbour list, RCU
5672  *				       variant
5673  * @dev: device
5674  *
5675  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5676  * list. The caller must hold RCU read lock.
5677  */
5678 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5679 {
5680 	struct netdev_adjacent *lower;
5681 
5682 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
5683 			struct netdev_adjacent, list);
5684 	if (lower)
5685 		return lower->private;
5686 	return NULL;
5687 }
5688 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5689 
5690 /**
5691  * netdev_master_upper_dev_get_rcu - Get master upper device
5692  * @dev: device
5693  *
5694  * Find a master upper device and return pointer to it or NULL in case
5695  * it's not there. The caller must hold the RCU read lock.
5696  */
5697 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5698 {
5699 	struct netdev_adjacent *upper;
5700 
5701 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
5702 				       struct netdev_adjacent, list);
5703 	if (upper && likely(upper->master))
5704 		return upper->dev;
5705 	return NULL;
5706 }
5707 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5708 
5709 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5710 			      struct net_device *adj_dev,
5711 			      struct list_head *dev_list)
5712 {
5713 	char linkname[IFNAMSIZ+7];
5714 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
5715 		"upper_%s" : "lower_%s", adj_dev->name);
5716 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5717 				 linkname);
5718 }
5719 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5720 			       char *name,
5721 			       struct list_head *dev_list)
5722 {
5723 	char linkname[IFNAMSIZ+7];
5724 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
5725 		"upper_%s" : "lower_%s", name);
5726 	sysfs_remove_link(&(dev->dev.kobj), linkname);
5727 }
5728 
5729 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5730 						 struct net_device *adj_dev,
5731 						 struct list_head *dev_list)
5732 {
5733 	return (dev_list == &dev->adj_list.upper ||
5734 		dev_list == &dev->adj_list.lower) &&
5735 		net_eq(dev_net(dev), dev_net(adj_dev));
5736 }
5737 
5738 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5739 					struct net_device *adj_dev,
5740 					struct list_head *dev_list,
5741 					void *private, bool master)
5742 {
5743 	struct netdev_adjacent *adj;
5744 	int ret;
5745 
5746 	adj = __netdev_find_adj(adj_dev, dev_list);
5747 
5748 	if (adj) {
5749 		adj->ref_nr += 1;
5750 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
5751 			 dev->name, adj_dev->name, adj->ref_nr);
5752 
5753 		return 0;
5754 	}
5755 
5756 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5757 	if (!adj)
5758 		return -ENOMEM;
5759 
5760 	adj->dev = adj_dev;
5761 	adj->master = master;
5762 	adj->ref_nr = 1;
5763 	adj->private = private;
5764 	dev_hold(adj_dev);
5765 
5766 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
5767 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5768 
5769 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5770 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5771 		if (ret)
5772 			goto free_adj;
5773 	}
5774 
5775 	/* Ensure that master link is always the first item in list. */
5776 	if (master) {
5777 		ret = sysfs_create_link(&(dev->dev.kobj),
5778 					&(adj_dev->dev.kobj), "master");
5779 		if (ret)
5780 			goto remove_symlinks;
5781 
5782 		list_add_rcu(&adj->list, dev_list);
5783 	} else {
5784 		list_add_tail_rcu(&adj->list, dev_list);
5785 	}
5786 
5787 	return 0;
5788 
5789 remove_symlinks:
5790 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5791 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5792 free_adj:
5793 	kfree(adj);
5794 	dev_put(adj_dev);
5795 
5796 	return ret;
5797 }
5798 
5799 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5800 					 struct net_device *adj_dev,
5801 					 u16 ref_nr,
5802 					 struct list_head *dev_list)
5803 {
5804 	struct netdev_adjacent *adj;
5805 
5806 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
5807 		 dev->name, adj_dev->name, ref_nr);
5808 
5809 	adj = __netdev_find_adj(adj_dev, dev_list);
5810 
5811 	if (!adj) {
5812 		pr_err("Adjacency does not exist for device %s from %s\n",
5813 		       dev->name, adj_dev->name);
5814 		WARN_ON(1);
5815 		return;
5816 	}
5817 
5818 	if (adj->ref_nr > ref_nr) {
5819 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
5820 			 dev->name, adj_dev->name, ref_nr,
5821 			 adj->ref_nr - ref_nr);
5822 		adj->ref_nr -= ref_nr;
5823 		return;
5824 	}
5825 
5826 	if (adj->master)
5827 		sysfs_remove_link(&(dev->dev.kobj), "master");
5828 
5829 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5830 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831 
5832 	list_del_rcu(&adj->list);
5833 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
5834 		 adj_dev->name, dev->name, adj_dev->name);
5835 	dev_put(adj_dev);
5836 	kfree_rcu(adj, rcu);
5837 }
5838 
5839 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5840 					    struct net_device *upper_dev,
5841 					    struct list_head *up_list,
5842 					    struct list_head *down_list,
5843 					    void *private, bool master)
5844 {
5845 	int ret;
5846 
5847 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
5848 					   private, master);
5849 	if (ret)
5850 		return ret;
5851 
5852 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
5853 					   private, false);
5854 	if (ret) {
5855 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5856 		return ret;
5857 	}
5858 
5859 	return 0;
5860 }
5861 
5862 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5863 					       struct net_device *upper_dev,
5864 					       u16 ref_nr,
5865 					       struct list_head *up_list,
5866 					       struct list_head *down_list)
5867 {
5868 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5869 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5870 }
5871 
5872 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5873 						struct net_device *upper_dev,
5874 						void *private, bool master)
5875 {
5876 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5877 						&dev->adj_list.upper,
5878 						&upper_dev->adj_list.lower,
5879 						private, master);
5880 }
5881 
5882 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5883 						   struct net_device *upper_dev)
5884 {
5885 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
5886 					   &dev->adj_list.upper,
5887 					   &upper_dev->adj_list.lower);
5888 }
5889 
5890 static int __netdev_upper_dev_link(struct net_device *dev,
5891 				   struct net_device *upper_dev, bool master,
5892 				   void *upper_priv, void *upper_info)
5893 {
5894 	struct netdev_notifier_changeupper_info changeupper_info;
5895 	int ret = 0;
5896 
5897 	ASSERT_RTNL();
5898 
5899 	if (dev == upper_dev)
5900 		return -EBUSY;
5901 
5902 	/* To prevent loops, check if dev is not upper device to upper_dev. */
5903 	if (netdev_has_upper_dev(upper_dev, dev))
5904 		return -EBUSY;
5905 
5906 	if (netdev_has_upper_dev(dev, upper_dev))
5907 		return -EEXIST;
5908 
5909 	if (master && netdev_master_upper_dev_get(dev))
5910 		return -EBUSY;
5911 
5912 	changeupper_info.upper_dev = upper_dev;
5913 	changeupper_info.master = master;
5914 	changeupper_info.linking = true;
5915 	changeupper_info.upper_info = upper_info;
5916 
5917 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5918 					    &changeupper_info.info);
5919 	ret = notifier_to_errno(ret);
5920 	if (ret)
5921 		return ret;
5922 
5923 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5924 						   master);
5925 	if (ret)
5926 		return ret;
5927 
5928 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5929 					    &changeupper_info.info);
5930 	ret = notifier_to_errno(ret);
5931 	if (ret)
5932 		goto rollback;
5933 
5934 	return 0;
5935 
5936 rollback:
5937 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5938 
5939 	return ret;
5940 }
5941 
5942 /**
5943  * netdev_upper_dev_link - Add a link to the upper device
5944  * @dev: device
5945  * @upper_dev: new upper device
5946  *
5947  * Adds a link to device which is upper to this one. The caller must hold
5948  * the RTNL lock. On a failure a negative errno code is returned.
5949  * On success the reference counts are adjusted and the function
5950  * returns zero.
5951  */
5952 int netdev_upper_dev_link(struct net_device *dev,
5953 			  struct net_device *upper_dev)
5954 {
5955 	return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
5956 }
5957 EXPORT_SYMBOL(netdev_upper_dev_link);
5958 
5959 /**
5960  * netdev_master_upper_dev_link - Add a master link to the upper device
5961  * @dev: device
5962  * @upper_dev: new upper device
5963  * @upper_priv: upper device private
5964  * @upper_info: upper info to be passed down via notifier
5965  *
5966  * Adds a link to device which is upper to this one. In this case, only
5967  * one master upper device can be linked, although other non-master devices
5968  * might be linked as well. The caller must hold the RTNL lock.
5969  * On a failure a negative errno code is returned. On success the reference
5970  * counts are adjusted and the function returns zero.
5971  */
5972 int netdev_master_upper_dev_link(struct net_device *dev,
5973 				 struct net_device *upper_dev,
5974 				 void *upper_priv, void *upper_info)
5975 {
5976 	return __netdev_upper_dev_link(dev, upper_dev, true,
5977 				       upper_priv, upper_info);
5978 }
5979 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5980 
5981 /**
5982  * netdev_upper_dev_unlink - Removes a link to upper device
5983  * @dev: device
5984  * @upper_dev: new upper device
5985  *
5986  * Removes a link to device which is upper to this one. The caller must hold
5987  * the RTNL lock.
5988  */
5989 void netdev_upper_dev_unlink(struct net_device *dev,
5990 			     struct net_device *upper_dev)
5991 {
5992 	struct netdev_notifier_changeupper_info changeupper_info;
5993 	ASSERT_RTNL();
5994 
5995 	changeupper_info.upper_dev = upper_dev;
5996 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5997 	changeupper_info.linking = false;
5998 
5999 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6000 				      &changeupper_info.info);
6001 
6002 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6003 
6004 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6005 				      &changeupper_info.info);
6006 }
6007 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6008 
6009 /**
6010  * netdev_bonding_info_change - Dispatch event about slave change
6011  * @dev: device
6012  * @bonding_info: info to dispatch
6013  *
6014  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6015  * The caller must hold the RTNL lock.
6016  */
6017 void netdev_bonding_info_change(struct net_device *dev,
6018 				struct netdev_bonding_info *bonding_info)
6019 {
6020 	struct netdev_notifier_bonding_info	info;
6021 
6022 	memcpy(&info.bonding_info, bonding_info,
6023 	       sizeof(struct netdev_bonding_info));
6024 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
6025 				      &info.info);
6026 }
6027 EXPORT_SYMBOL(netdev_bonding_info_change);
6028 
6029 static void netdev_adjacent_add_links(struct net_device *dev)
6030 {
6031 	struct netdev_adjacent *iter;
6032 
6033 	struct net *net = dev_net(dev);
6034 
6035 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6036 		if (!net_eq(net, dev_net(iter->dev)))
6037 			continue;
6038 		netdev_adjacent_sysfs_add(iter->dev, dev,
6039 					  &iter->dev->adj_list.lower);
6040 		netdev_adjacent_sysfs_add(dev, iter->dev,
6041 					  &dev->adj_list.upper);
6042 	}
6043 
6044 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6045 		if (!net_eq(net, dev_net(iter->dev)))
6046 			continue;
6047 		netdev_adjacent_sysfs_add(iter->dev, dev,
6048 					  &iter->dev->adj_list.upper);
6049 		netdev_adjacent_sysfs_add(dev, iter->dev,
6050 					  &dev->adj_list.lower);
6051 	}
6052 }
6053 
6054 static void netdev_adjacent_del_links(struct net_device *dev)
6055 {
6056 	struct netdev_adjacent *iter;
6057 
6058 	struct net *net = dev_net(dev);
6059 
6060 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6061 		if (!net_eq(net, dev_net(iter->dev)))
6062 			continue;
6063 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6064 					  &iter->dev->adj_list.lower);
6065 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6066 					  &dev->adj_list.upper);
6067 	}
6068 
6069 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6070 		if (!net_eq(net, dev_net(iter->dev)))
6071 			continue;
6072 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6073 					  &iter->dev->adj_list.upper);
6074 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6075 					  &dev->adj_list.lower);
6076 	}
6077 }
6078 
6079 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6080 {
6081 	struct netdev_adjacent *iter;
6082 
6083 	struct net *net = dev_net(dev);
6084 
6085 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6086 		if (!net_eq(net, dev_net(iter->dev)))
6087 			continue;
6088 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6089 					  &iter->dev->adj_list.lower);
6090 		netdev_adjacent_sysfs_add(iter->dev, dev,
6091 					  &iter->dev->adj_list.lower);
6092 	}
6093 
6094 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6095 		if (!net_eq(net, dev_net(iter->dev)))
6096 			continue;
6097 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6098 					  &iter->dev->adj_list.upper);
6099 		netdev_adjacent_sysfs_add(iter->dev, dev,
6100 					  &iter->dev->adj_list.upper);
6101 	}
6102 }
6103 
6104 void *netdev_lower_dev_get_private(struct net_device *dev,
6105 				   struct net_device *lower_dev)
6106 {
6107 	struct netdev_adjacent *lower;
6108 
6109 	if (!lower_dev)
6110 		return NULL;
6111 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6112 	if (!lower)
6113 		return NULL;
6114 
6115 	return lower->private;
6116 }
6117 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6118 
6119 
6120 int dev_get_nest_level(struct net_device *dev)
6121 {
6122 	struct net_device *lower = NULL;
6123 	struct list_head *iter;
6124 	int max_nest = -1;
6125 	int nest;
6126 
6127 	ASSERT_RTNL();
6128 
6129 	netdev_for_each_lower_dev(dev, lower, iter) {
6130 		nest = dev_get_nest_level(lower);
6131 		if (max_nest < nest)
6132 			max_nest = nest;
6133 	}
6134 
6135 	return max_nest + 1;
6136 }
6137 EXPORT_SYMBOL(dev_get_nest_level);
6138 
6139 /**
6140  * netdev_lower_change - Dispatch event about lower device state change
6141  * @lower_dev: device
6142  * @lower_state_info: state to dispatch
6143  *
6144  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6145  * The caller must hold the RTNL lock.
6146  */
6147 void netdev_lower_state_changed(struct net_device *lower_dev,
6148 				void *lower_state_info)
6149 {
6150 	struct netdev_notifier_changelowerstate_info changelowerstate_info;
6151 
6152 	ASSERT_RTNL();
6153 	changelowerstate_info.lower_state_info = lower_state_info;
6154 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6155 				      &changelowerstate_info.info);
6156 }
6157 EXPORT_SYMBOL(netdev_lower_state_changed);
6158 
6159 int netdev_default_l2upper_neigh_construct(struct net_device *dev,
6160 					   struct neighbour *n)
6161 {
6162 	struct net_device *lower_dev, *stop_dev;
6163 	struct list_head *iter;
6164 	int err;
6165 
6166 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
6167 		if (!lower_dev->netdev_ops->ndo_neigh_construct)
6168 			continue;
6169 		err = lower_dev->netdev_ops->ndo_neigh_construct(lower_dev, n);
6170 		if (err) {
6171 			stop_dev = lower_dev;
6172 			goto rollback;
6173 		}
6174 	}
6175 	return 0;
6176 
6177 rollback:
6178 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
6179 		if (lower_dev == stop_dev)
6180 			break;
6181 		if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6182 			continue;
6183 		lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6184 	}
6185 	return err;
6186 }
6187 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_construct);
6188 
6189 void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
6190 					  struct neighbour *n)
6191 {
6192 	struct net_device *lower_dev;
6193 	struct list_head *iter;
6194 
6195 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
6196 		if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6197 			continue;
6198 		lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6199 	}
6200 }
6201 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_destroy);
6202 
6203 static void dev_change_rx_flags(struct net_device *dev, int flags)
6204 {
6205 	const struct net_device_ops *ops = dev->netdev_ops;
6206 
6207 	if (ops->ndo_change_rx_flags)
6208 		ops->ndo_change_rx_flags(dev, flags);
6209 }
6210 
6211 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6212 {
6213 	unsigned int old_flags = dev->flags;
6214 	kuid_t uid;
6215 	kgid_t gid;
6216 
6217 	ASSERT_RTNL();
6218 
6219 	dev->flags |= IFF_PROMISC;
6220 	dev->promiscuity += inc;
6221 	if (dev->promiscuity == 0) {
6222 		/*
6223 		 * Avoid overflow.
6224 		 * If inc causes overflow, untouch promisc and return error.
6225 		 */
6226 		if (inc < 0)
6227 			dev->flags &= ~IFF_PROMISC;
6228 		else {
6229 			dev->promiscuity -= inc;
6230 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6231 				dev->name);
6232 			return -EOVERFLOW;
6233 		}
6234 	}
6235 	if (dev->flags != old_flags) {
6236 		pr_info("device %s %s promiscuous mode\n",
6237 			dev->name,
6238 			dev->flags & IFF_PROMISC ? "entered" : "left");
6239 		if (audit_enabled) {
6240 			current_uid_gid(&uid, &gid);
6241 			audit_log(current->audit_context, GFP_ATOMIC,
6242 				AUDIT_ANOM_PROMISCUOUS,
6243 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6244 				dev->name, (dev->flags & IFF_PROMISC),
6245 				(old_flags & IFF_PROMISC),
6246 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
6247 				from_kuid(&init_user_ns, uid),
6248 				from_kgid(&init_user_ns, gid),
6249 				audit_get_sessionid(current));
6250 		}
6251 
6252 		dev_change_rx_flags(dev, IFF_PROMISC);
6253 	}
6254 	if (notify)
6255 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
6256 	return 0;
6257 }
6258 
6259 /**
6260  *	dev_set_promiscuity	- update promiscuity count on a device
6261  *	@dev: device
6262  *	@inc: modifier
6263  *
6264  *	Add or remove promiscuity from a device. While the count in the device
6265  *	remains above zero the interface remains promiscuous. Once it hits zero
6266  *	the device reverts back to normal filtering operation. A negative inc
6267  *	value is used to drop promiscuity on the device.
6268  *	Return 0 if successful or a negative errno code on error.
6269  */
6270 int dev_set_promiscuity(struct net_device *dev, int inc)
6271 {
6272 	unsigned int old_flags = dev->flags;
6273 	int err;
6274 
6275 	err = __dev_set_promiscuity(dev, inc, true);
6276 	if (err < 0)
6277 		return err;
6278 	if (dev->flags != old_flags)
6279 		dev_set_rx_mode(dev);
6280 	return err;
6281 }
6282 EXPORT_SYMBOL(dev_set_promiscuity);
6283 
6284 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6285 {
6286 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6287 
6288 	ASSERT_RTNL();
6289 
6290 	dev->flags |= IFF_ALLMULTI;
6291 	dev->allmulti += inc;
6292 	if (dev->allmulti == 0) {
6293 		/*
6294 		 * Avoid overflow.
6295 		 * If inc causes overflow, untouch allmulti and return error.
6296 		 */
6297 		if (inc < 0)
6298 			dev->flags &= ~IFF_ALLMULTI;
6299 		else {
6300 			dev->allmulti -= inc;
6301 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6302 				dev->name);
6303 			return -EOVERFLOW;
6304 		}
6305 	}
6306 	if (dev->flags ^ old_flags) {
6307 		dev_change_rx_flags(dev, IFF_ALLMULTI);
6308 		dev_set_rx_mode(dev);
6309 		if (notify)
6310 			__dev_notify_flags(dev, old_flags,
6311 					   dev->gflags ^ old_gflags);
6312 	}
6313 	return 0;
6314 }
6315 
6316 /**
6317  *	dev_set_allmulti	- update allmulti count on a device
6318  *	@dev: device
6319  *	@inc: modifier
6320  *
6321  *	Add or remove reception of all multicast frames to a device. While the
6322  *	count in the device remains above zero the interface remains listening
6323  *	to all interfaces. Once it hits zero the device reverts back to normal
6324  *	filtering operation. A negative @inc value is used to drop the counter
6325  *	when releasing a resource needing all multicasts.
6326  *	Return 0 if successful or a negative errno code on error.
6327  */
6328 
6329 int dev_set_allmulti(struct net_device *dev, int inc)
6330 {
6331 	return __dev_set_allmulti(dev, inc, true);
6332 }
6333 EXPORT_SYMBOL(dev_set_allmulti);
6334 
6335 /*
6336  *	Upload unicast and multicast address lists to device and
6337  *	configure RX filtering. When the device doesn't support unicast
6338  *	filtering it is put in promiscuous mode while unicast addresses
6339  *	are present.
6340  */
6341 void __dev_set_rx_mode(struct net_device *dev)
6342 {
6343 	const struct net_device_ops *ops = dev->netdev_ops;
6344 
6345 	/* dev_open will call this function so the list will stay sane. */
6346 	if (!(dev->flags&IFF_UP))
6347 		return;
6348 
6349 	if (!netif_device_present(dev))
6350 		return;
6351 
6352 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6353 		/* Unicast addresses changes may only happen under the rtnl,
6354 		 * therefore calling __dev_set_promiscuity here is safe.
6355 		 */
6356 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6357 			__dev_set_promiscuity(dev, 1, false);
6358 			dev->uc_promisc = true;
6359 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6360 			__dev_set_promiscuity(dev, -1, false);
6361 			dev->uc_promisc = false;
6362 		}
6363 	}
6364 
6365 	if (ops->ndo_set_rx_mode)
6366 		ops->ndo_set_rx_mode(dev);
6367 }
6368 
6369 void dev_set_rx_mode(struct net_device *dev)
6370 {
6371 	netif_addr_lock_bh(dev);
6372 	__dev_set_rx_mode(dev);
6373 	netif_addr_unlock_bh(dev);
6374 }
6375 
6376 /**
6377  *	dev_get_flags - get flags reported to userspace
6378  *	@dev: device
6379  *
6380  *	Get the combination of flag bits exported through APIs to userspace.
6381  */
6382 unsigned int dev_get_flags(const struct net_device *dev)
6383 {
6384 	unsigned int flags;
6385 
6386 	flags = (dev->flags & ~(IFF_PROMISC |
6387 				IFF_ALLMULTI |
6388 				IFF_RUNNING |
6389 				IFF_LOWER_UP |
6390 				IFF_DORMANT)) |
6391 		(dev->gflags & (IFF_PROMISC |
6392 				IFF_ALLMULTI));
6393 
6394 	if (netif_running(dev)) {
6395 		if (netif_oper_up(dev))
6396 			flags |= IFF_RUNNING;
6397 		if (netif_carrier_ok(dev))
6398 			flags |= IFF_LOWER_UP;
6399 		if (netif_dormant(dev))
6400 			flags |= IFF_DORMANT;
6401 	}
6402 
6403 	return flags;
6404 }
6405 EXPORT_SYMBOL(dev_get_flags);
6406 
6407 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6408 {
6409 	unsigned int old_flags = dev->flags;
6410 	int ret;
6411 
6412 	ASSERT_RTNL();
6413 
6414 	/*
6415 	 *	Set the flags on our device.
6416 	 */
6417 
6418 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6419 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6420 			       IFF_AUTOMEDIA)) |
6421 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6422 				    IFF_ALLMULTI));
6423 
6424 	/*
6425 	 *	Load in the correct multicast list now the flags have changed.
6426 	 */
6427 
6428 	if ((old_flags ^ flags) & IFF_MULTICAST)
6429 		dev_change_rx_flags(dev, IFF_MULTICAST);
6430 
6431 	dev_set_rx_mode(dev);
6432 
6433 	/*
6434 	 *	Have we downed the interface. We handle IFF_UP ourselves
6435 	 *	according to user attempts to set it, rather than blindly
6436 	 *	setting it.
6437 	 */
6438 
6439 	ret = 0;
6440 	if ((old_flags ^ flags) & IFF_UP)
6441 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6442 
6443 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
6444 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
6445 		unsigned int old_flags = dev->flags;
6446 
6447 		dev->gflags ^= IFF_PROMISC;
6448 
6449 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
6450 			if (dev->flags != old_flags)
6451 				dev_set_rx_mode(dev);
6452 	}
6453 
6454 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6455 	   is important. Some (broken) drivers set IFF_PROMISC, when
6456 	   IFF_ALLMULTI is requested not asking us and not reporting.
6457 	 */
6458 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6459 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6460 
6461 		dev->gflags ^= IFF_ALLMULTI;
6462 		__dev_set_allmulti(dev, inc, false);
6463 	}
6464 
6465 	return ret;
6466 }
6467 
6468 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6469 			unsigned int gchanges)
6470 {
6471 	unsigned int changes = dev->flags ^ old_flags;
6472 
6473 	if (gchanges)
6474 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6475 
6476 	if (changes & IFF_UP) {
6477 		if (dev->flags & IFF_UP)
6478 			call_netdevice_notifiers(NETDEV_UP, dev);
6479 		else
6480 			call_netdevice_notifiers(NETDEV_DOWN, dev);
6481 	}
6482 
6483 	if (dev->flags & IFF_UP &&
6484 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6485 		struct netdev_notifier_change_info change_info;
6486 
6487 		change_info.flags_changed = changes;
6488 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6489 					      &change_info.info);
6490 	}
6491 }
6492 
6493 /**
6494  *	dev_change_flags - change device settings
6495  *	@dev: device
6496  *	@flags: device state flags
6497  *
6498  *	Change settings on device based state flags. The flags are
6499  *	in the userspace exported format.
6500  */
6501 int dev_change_flags(struct net_device *dev, unsigned int flags)
6502 {
6503 	int ret;
6504 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6505 
6506 	ret = __dev_change_flags(dev, flags);
6507 	if (ret < 0)
6508 		return ret;
6509 
6510 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6511 	__dev_notify_flags(dev, old_flags, changes);
6512 	return ret;
6513 }
6514 EXPORT_SYMBOL(dev_change_flags);
6515 
6516 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6517 {
6518 	const struct net_device_ops *ops = dev->netdev_ops;
6519 
6520 	if (ops->ndo_change_mtu)
6521 		return ops->ndo_change_mtu(dev, new_mtu);
6522 
6523 	dev->mtu = new_mtu;
6524 	return 0;
6525 }
6526 
6527 /**
6528  *	dev_set_mtu - Change maximum transfer unit
6529  *	@dev: device
6530  *	@new_mtu: new transfer unit
6531  *
6532  *	Change the maximum transfer size of the network device.
6533  */
6534 int dev_set_mtu(struct net_device *dev, int new_mtu)
6535 {
6536 	int err, orig_mtu;
6537 
6538 	if (new_mtu == dev->mtu)
6539 		return 0;
6540 
6541 	/* MTU must be positive, and in range */
6542 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6543 		net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6544 				    dev->name, new_mtu, dev->min_mtu);
6545 		return -EINVAL;
6546 	}
6547 
6548 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6549 		net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6550 				    dev->name, new_mtu, dev->max_mtu);
6551 		return -EINVAL;
6552 	}
6553 
6554 	if (!netif_device_present(dev))
6555 		return -ENODEV;
6556 
6557 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6558 	err = notifier_to_errno(err);
6559 	if (err)
6560 		return err;
6561 
6562 	orig_mtu = dev->mtu;
6563 	err = __dev_set_mtu(dev, new_mtu);
6564 
6565 	if (!err) {
6566 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6567 		err = notifier_to_errno(err);
6568 		if (err) {
6569 			/* setting mtu back and notifying everyone again,
6570 			 * so that they have a chance to revert changes.
6571 			 */
6572 			__dev_set_mtu(dev, orig_mtu);
6573 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6574 		}
6575 	}
6576 	return err;
6577 }
6578 EXPORT_SYMBOL(dev_set_mtu);
6579 
6580 /**
6581  *	dev_set_group - Change group this device belongs to
6582  *	@dev: device
6583  *	@new_group: group this device should belong to
6584  */
6585 void dev_set_group(struct net_device *dev, int new_group)
6586 {
6587 	dev->group = new_group;
6588 }
6589 EXPORT_SYMBOL(dev_set_group);
6590 
6591 /**
6592  *	dev_set_mac_address - Change Media Access Control Address
6593  *	@dev: device
6594  *	@sa: new address
6595  *
6596  *	Change the hardware (MAC) address of the device
6597  */
6598 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6599 {
6600 	const struct net_device_ops *ops = dev->netdev_ops;
6601 	int err;
6602 
6603 	if (!ops->ndo_set_mac_address)
6604 		return -EOPNOTSUPP;
6605 	if (sa->sa_family != dev->type)
6606 		return -EINVAL;
6607 	if (!netif_device_present(dev))
6608 		return -ENODEV;
6609 	err = ops->ndo_set_mac_address(dev, sa);
6610 	if (err)
6611 		return err;
6612 	dev->addr_assign_type = NET_ADDR_SET;
6613 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6614 	add_device_randomness(dev->dev_addr, dev->addr_len);
6615 	return 0;
6616 }
6617 EXPORT_SYMBOL(dev_set_mac_address);
6618 
6619 /**
6620  *	dev_change_carrier - Change device carrier
6621  *	@dev: device
6622  *	@new_carrier: new value
6623  *
6624  *	Change device carrier
6625  */
6626 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6627 {
6628 	const struct net_device_ops *ops = dev->netdev_ops;
6629 
6630 	if (!ops->ndo_change_carrier)
6631 		return -EOPNOTSUPP;
6632 	if (!netif_device_present(dev))
6633 		return -ENODEV;
6634 	return ops->ndo_change_carrier(dev, new_carrier);
6635 }
6636 EXPORT_SYMBOL(dev_change_carrier);
6637 
6638 /**
6639  *	dev_get_phys_port_id - Get device physical port ID
6640  *	@dev: device
6641  *	@ppid: port ID
6642  *
6643  *	Get device physical port ID
6644  */
6645 int dev_get_phys_port_id(struct net_device *dev,
6646 			 struct netdev_phys_item_id *ppid)
6647 {
6648 	const struct net_device_ops *ops = dev->netdev_ops;
6649 
6650 	if (!ops->ndo_get_phys_port_id)
6651 		return -EOPNOTSUPP;
6652 	return ops->ndo_get_phys_port_id(dev, ppid);
6653 }
6654 EXPORT_SYMBOL(dev_get_phys_port_id);
6655 
6656 /**
6657  *	dev_get_phys_port_name - Get device physical port name
6658  *	@dev: device
6659  *	@name: port name
6660  *	@len: limit of bytes to copy to name
6661  *
6662  *	Get device physical port name
6663  */
6664 int dev_get_phys_port_name(struct net_device *dev,
6665 			   char *name, size_t len)
6666 {
6667 	const struct net_device_ops *ops = dev->netdev_ops;
6668 
6669 	if (!ops->ndo_get_phys_port_name)
6670 		return -EOPNOTSUPP;
6671 	return ops->ndo_get_phys_port_name(dev, name, len);
6672 }
6673 EXPORT_SYMBOL(dev_get_phys_port_name);
6674 
6675 /**
6676  *	dev_change_proto_down - update protocol port state information
6677  *	@dev: device
6678  *	@proto_down: new value
6679  *
6680  *	This info can be used by switch drivers to set the phys state of the
6681  *	port.
6682  */
6683 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6684 {
6685 	const struct net_device_ops *ops = dev->netdev_ops;
6686 
6687 	if (!ops->ndo_change_proto_down)
6688 		return -EOPNOTSUPP;
6689 	if (!netif_device_present(dev))
6690 		return -ENODEV;
6691 	return ops->ndo_change_proto_down(dev, proto_down);
6692 }
6693 EXPORT_SYMBOL(dev_change_proto_down);
6694 
6695 /**
6696  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
6697  *	@dev: device
6698  *	@fd: new program fd or negative value to clear
6699  *	@flags: xdp-related flags
6700  *
6701  *	Set or clear a bpf program for a device
6702  */
6703 int dev_change_xdp_fd(struct net_device *dev, int fd, u32 flags)
6704 {
6705 	const struct net_device_ops *ops = dev->netdev_ops;
6706 	struct bpf_prog *prog = NULL;
6707 	struct netdev_xdp xdp;
6708 	int err;
6709 
6710 	ASSERT_RTNL();
6711 
6712 	if (!ops->ndo_xdp)
6713 		return -EOPNOTSUPP;
6714 	if (fd >= 0) {
6715 		if (flags & XDP_FLAGS_UPDATE_IF_NOEXIST) {
6716 			memset(&xdp, 0, sizeof(xdp));
6717 			xdp.command = XDP_QUERY_PROG;
6718 
6719 			err = ops->ndo_xdp(dev, &xdp);
6720 			if (err < 0)
6721 				return err;
6722 			if (xdp.prog_attached)
6723 				return -EBUSY;
6724 		}
6725 
6726 		prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6727 		if (IS_ERR(prog))
6728 			return PTR_ERR(prog);
6729 	}
6730 
6731 	memset(&xdp, 0, sizeof(xdp));
6732 	xdp.command = XDP_SETUP_PROG;
6733 	xdp.prog = prog;
6734 
6735 	err = ops->ndo_xdp(dev, &xdp);
6736 	if (err < 0 && prog)
6737 		bpf_prog_put(prog);
6738 
6739 	return err;
6740 }
6741 EXPORT_SYMBOL(dev_change_xdp_fd);
6742 
6743 /**
6744  *	dev_new_index	-	allocate an ifindex
6745  *	@net: the applicable net namespace
6746  *
6747  *	Returns a suitable unique value for a new device interface
6748  *	number.  The caller must hold the rtnl semaphore or the
6749  *	dev_base_lock to be sure it remains unique.
6750  */
6751 static int dev_new_index(struct net *net)
6752 {
6753 	int ifindex = net->ifindex;
6754 	for (;;) {
6755 		if (++ifindex <= 0)
6756 			ifindex = 1;
6757 		if (!__dev_get_by_index(net, ifindex))
6758 			return net->ifindex = ifindex;
6759 	}
6760 }
6761 
6762 /* Delayed registration/unregisteration */
6763 static LIST_HEAD(net_todo_list);
6764 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6765 
6766 static void net_set_todo(struct net_device *dev)
6767 {
6768 	list_add_tail(&dev->todo_list, &net_todo_list);
6769 	dev_net(dev)->dev_unreg_count++;
6770 }
6771 
6772 static void rollback_registered_many(struct list_head *head)
6773 {
6774 	struct net_device *dev, *tmp;
6775 	LIST_HEAD(close_head);
6776 
6777 	BUG_ON(dev_boot_phase);
6778 	ASSERT_RTNL();
6779 
6780 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6781 		/* Some devices call without registering
6782 		 * for initialization unwind. Remove those
6783 		 * devices and proceed with the remaining.
6784 		 */
6785 		if (dev->reg_state == NETREG_UNINITIALIZED) {
6786 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6787 				 dev->name, dev);
6788 
6789 			WARN_ON(1);
6790 			list_del(&dev->unreg_list);
6791 			continue;
6792 		}
6793 		dev->dismantle = true;
6794 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
6795 	}
6796 
6797 	/* If device is running, close it first. */
6798 	list_for_each_entry(dev, head, unreg_list)
6799 		list_add_tail(&dev->close_list, &close_head);
6800 	dev_close_many(&close_head, true);
6801 
6802 	list_for_each_entry(dev, head, unreg_list) {
6803 		/* And unlink it from device chain. */
6804 		unlist_netdevice(dev);
6805 
6806 		dev->reg_state = NETREG_UNREGISTERING;
6807 	}
6808 	flush_all_backlogs();
6809 
6810 	synchronize_net();
6811 
6812 	list_for_each_entry(dev, head, unreg_list) {
6813 		struct sk_buff *skb = NULL;
6814 
6815 		/* Shutdown queueing discipline. */
6816 		dev_shutdown(dev);
6817 
6818 
6819 		/* Notify protocols, that we are about to destroy
6820 		   this device. They should clean all the things.
6821 		*/
6822 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6823 
6824 		if (!dev->rtnl_link_ops ||
6825 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6826 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6827 						     GFP_KERNEL);
6828 
6829 		/*
6830 		 *	Flush the unicast and multicast chains
6831 		 */
6832 		dev_uc_flush(dev);
6833 		dev_mc_flush(dev);
6834 
6835 		if (dev->netdev_ops->ndo_uninit)
6836 			dev->netdev_ops->ndo_uninit(dev);
6837 
6838 		if (skb)
6839 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6840 
6841 		/* Notifier chain MUST detach us all upper devices. */
6842 		WARN_ON(netdev_has_any_upper_dev(dev));
6843 		WARN_ON(netdev_has_any_lower_dev(dev));
6844 
6845 		/* Remove entries from kobject tree */
6846 		netdev_unregister_kobject(dev);
6847 #ifdef CONFIG_XPS
6848 		/* Remove XPS queueing entries */
6849 		netif_reset_xps_queues_gt(dev, 0);
6850 #endif
6851 	}
6852 
6853 	synchronize_net();
6854 
6855 	list_for_each_entry(dev, head, unreg_list)
6856 		dev_put(dev);
6857 }
6858 
6859 static void rollback_registered(struct net_device *dev)
6860 {
6861 	LIST_HEAD(single);
6862 
6863 	list_add(&dev->unreg_list, &single);
6864 	rollback_registered_many(&single);
6865 	list_del(&single);
6866 }
6867 
6868 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6869 	struct net_device *upper, netdev_features_t features)
6870 {
6871 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6872 	netdev_features_t feature;
6873 	int feature_bit;
6874 
6875 	for_each_netdev_feature(&upper_disables, feature_bit) {
6876 		feature = __NETIF_F_BIT(feature_bit);
6877 		if (!(upper->wanted_features & feature)
6878 		    && (features & feature)) {
6879 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6880 				   &feature, upper->name);
6881 			features &= ~feature;
6882 		}
6883 	}
6884 
6885 	return features;
6886 }
6887 
6888 static void netdev_sync_lower_features(struct net_device *upper,
6889 	struct net_device *lower, netdev_features_t features)
6890 {
6891 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6892 	netdev_features_t feature;
6893 	int feature_bit;
6894 
6895 	for_each_netdev_feature(&upper_disables, feature_bit) {
6896 		feature = __NETIF_F_BIT(feature_bit);
6897 		if (!(features & feature) && (lower->features & feature)) {
6898 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6899 				   &feature, lower->name);
6900 			lower->wanted_features &= ~feature;
6901 			netdev_update_features(lower);
6902 
6903 			if (unlikely(lower->features & feature))
6904 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6905 					    &feature, lower->name);
6906 		}
6907 	}
6908 }
6909 
6910 static netdev_features_t netdev_fix_features(struct net_device *dev,
6911 	netdev_features_t features)
6912 {
6913 	/* Fix illegal checksum combinations */
6914 	if ((features & NETIF_F_HW_CSUM) &&
6915 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6916 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6917 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6918 	}
6919 
6920 	/* TSO requires that SG is present as well. */
6921 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6922 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6923 		features &= ~NETIF_F_ALL_TSO;
6924 	}
6925 
6926 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6927 					!(features & NETIF_F_IP_CSUM)) {
6928 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6929 		features &= ~NETIF_F_TSO;
6930 		features &= ~NETIF_F_TSO_ECN;
6931 	}
6932 
6933 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6934 					 !(features & NETIF_F_IPV6_CSUM)) {
6935 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6936 		features &= ~NETIF_F_TSO6;
6937 	}
6938 
6939 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6940 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6941 		features &= ~NETIF_F_TSO_MANGLEID;
6942 
6943 	/* TSO ECN requires that TSO is present as well. */
6944 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6945 		features &= ~NETIF_F_TSO_ECN;
6946 
6947 	/* Software GSO depends on SG. */
6948 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6949 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6950 		features &= ~NETIF_F_GSO;
6951 	}
6952 
6953 	/* UFO needs SG and checksumming */
6954 	if (features & NETIF_F_UFO) {
6955 		/* maybe split UFO into V4 and V6? */
6956 		if (!(features & NETIF_F_HW_CSUM) &&
6957 		    ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6958 		     (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6959 			netdev_dbg(dev,
6960 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
6961 			features &= ~NETIF_F_UFO;
6962 		}
6963 
6964 		if (!(features & NETIF_F_SG)) {
6965 			netdev_dbg(dev,
6966 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6967 			features &= ~NETIF_F_UFO;
6968 		}
6969 	}
6970 
6971 	/* GSO partial features require GSO partial be set */
6972 	if ((features & dev->gso_partial_features) &&
6973 	    !(features & NETIF_F_GSO_PARTIAL)) {
6974 		netdev_dbg(dev,
6975 			   "Dropping partially supported GSO features since no GSO partial.\n");
6976 		features &= ~dev->gso_partial_features;
6977 	}
6978 
6979 #ifdef CONFIG_NET_RX_BUSY_POLL
6980 	if (dev->netdev_ops->ndo_busy_poll)
6981 		features |= NETIF_F_BUSY_POLL;
6982 	else
6983 #endif
6984 		features &= ~NETIF_F_BUSY_POLL;
6985 
6986 	return features;
6987 }
6988 
6989 int __netdev_update_features(struct net_device *dev)
6990 {
6991 	struct net_device *upper, *lower;
6992 	netdev_features_t features;
6993 	struct list_head *iter;
6994 	int err = -1;
6995 
6996 	ASSERT_RTNL();
6997 
6998 	features = netdev_get_wanted_features(dev);
6999 
7000 	if (dev->netdev_ops->ndo_fix_features)
7001 		features = dev->netdev_ops->ndo_fix_features(dev, features);
7002 
7003 	/* driver might be less strict about feature dependencies */
7004 	features = netdev_fix_features(dev, features);
7005 
7006 	/* some features can't be enabled if they're off an an upper device */
7007 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
7008 		features = netdev_sync_upper_features(dev, upper, features);
7009 
7010 	if (dev->features == features)
7011 		goto sync_lower;
7012 
7013 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7014 		&dev->features, &features);
7015 
7016 	if (dev->netdev_ops->ndo_set_features)
7017 		err = dev->netdev_ops->ndo_set_features(dev, features);
7018 	else
7019 		err = 0;
7020 
7021 	if (unlikely(err < 0)) {
7022 		netdev_err(dev,
7023 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
7024 			err, &features, &dev->features);
7025 		/* return non-0 since some features might have changed and
7026 		 * it's better to fire a spurious notification than miss it
7027 		 */
7028 		return -1;
7029 	}
7030 
7031 sync_lower:
7032 	/* some features must be disabled on lower devices when disabled
7033 	 * on an upper device (think: bonding master or bridge)
7034 	 */
7035 	netdev_for_each_lower_dev(dev, lower, iter)
7036 		netdev_sync_lower_features(dev, lower, features);
7037 
7038 	if (!err)
7039 		dev->features = features;
7040 
7041 	return err < 0 ? 0 : 1;
7042 }
7043 
7044 /**
7045  *	netdev_update_features - recalculate device features
7046  *	@dev: the device to check
7047  *
7048  *	Recalculate dev->features set and send notifications if it
7049  *	has changed. Should be called after driver or hardware dependent
7050  *	conditions might have changed that influence the features.
7051  */
7052 void netdev_update_features(struct net_device *dev)
7053 {
7054 	if (__netdev_update_features(dev))
7055 		netdev_features_change(dev);
7056 }
7057 EXPORT_SYMBOL(netdev_update_features);
7058 
7059 /**
7060  *	netdev_change_features - recalculate device features
7061  *	@dev: the device to check
7062  *
7063  *	Recalculate dev->features set and send notifications even
7064  *	if they have not changed. Should be called instead of
7065  *	netdev_update_features() if also dev->vlan_features might
7066  *	have changed to allow the changes to be propagated to stacked
7067  *	VLAN devices.
7068  */
7069 void netdev_change_features(struct net_device *dev)
7070 {
7071 	__netdev_update_features(dev);
7072 	netdev_features_change(dev);
7073 }
7074 EXPORT_SYMBOL(netdev_change_features);
7075 
7076 /**
7077  *	netif_stacked_transfer_operstate -	transfer operstate
7078  *	@rootdev: the root or lower level device to transfer state from
7079  *	@dev: the device to transfer operstate to
7080  *
7081  *	Transfer operational state from root to device. This is normally
7082  *	called when a stacking relationship exists between the root
7083  *	device and the device(a leaf device).
7084  */
7085 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7086 					struct net_device *dev)
7087 {
7088 	if (rootdev->operstate == IF_OPER_DORMANT)
7089 		netif_dormant_on(dev);
7090 	else
7091 		netif_dormant_off(dev);
7092 
7093 	if (netif_carrier_ok(rootdev)) {
7094 		if (!netif_carrier_ok(dev))
7095 			netif_carrier_on(dev);
7096 	} else {
7097 		if (netif_carrier_ok(dev))
7098 			netif_carrier_off(dev);
7099 	}
7100 }
7101 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7102 
7103 #ifdef CONFIG_SYSFS
7104 static int netif_alloc_rx_queues(struct net_device *dev)
7105 {
7106 	unsigned int i, count = dev->num_rx_queues;
7107 	struct netdev_rx_queue *rx;
7108 	size_t sz = count * sizeof(*rx);
7109 
7110 	BUG_ON(count < 1);
7111 
7112 	rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7113 	if (!rx) {
7114 		rx = vzalloc(sz);
7115 		if (!rx)
7116 			return -ENOMEM;
7117 	}
7118 	dev->_rx = rx;
7119 
7120 	for (i = 0; i < count; i++)
7121 		rx[i].dev = dev;
7122 	return 0;
7123 }
7124 #endif
7125 
7126 static void netdev_init_one_queue(struct net_device *dev,
7127 				  struct netdev_queue *queue, void *_unused)
7128 {
7129 	/* Initialize queue lock */
7130 	spin_lock_init(&queue->_xmit_lock);
7131 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7132 	queue->xmit_lock_owner = -1;
7133 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7134 	queue->dev = dev;
7135 #ifdef CONFIG_BQL
7136 	dql_init(&queue->dql, HZ);
7137 #endif
7138 }
7139 
7140 static void netif_free_tx_queues(struct net_device *dev)
7141 {
7142 	kvfree(dev->_tx);
7143 }
7144 
7145 static int netif_alloc_netdev_queues(struct net_device *dev)
7146 {
7147 	unsigned int count = dev->num_tx_queues;
7148 	struct netdev_queue *tx;
7149 	size_t sz = count * sizeof(*tx);
7150 
7151 	if (count < 1 || count > 0xffff)
7152 		return -EINVAL;
7153 
7154 	tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7155 	if (!tx) {
7156 		tx = vzalloc(sz);
7157 		if (!tx)
7158 			return -ENOMEM;
7159 	}
7160 	dev->_tx = tx;
7161 
7162 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7163 	spin_lock_init(&dev->tx_global_lock);
7164 
7165 	return 0;
7166 }
7167 
7168 void netif_tx_stop_all_queues(struct net_device *dev)
7169 {
7170 	unsigned int i;
7171 
7172 	for (i = 0; i < dev->num_tx_queues; i++) {
7173 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7174 		netif_tx_stop_queue(txq);
7175 	}
7176 }
7177 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7178 
7179 /**
7180  *	register_netdevice	- register a network device
7181  *	@dev: device to register
7182  *
7183  *	Take a completed network device structure and add it to the kernel
7184  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7185  *	chain. 0 is returned on success. A negative errno code is returned
7186  *	on a failure to set up the device, or if the name is a duplicate.
7187  *
7188  *	Callers must hold the rtnl semaphore. You may want
7189  *	register_netdev() instead of this.
7190  *
7191  *	BUGS:
7192  *	The locking appears insufficient to guarantee two parallel registers
7193  *	will not get the same name.
7194  */
7195 
7196 int register_netdevice(struct net_device *dev)
7197 {
7198 	int ret;
7199 	struct net *net = dev_net(dev);
7200 
7201 	BUG_ON(dev_boot_phase);
7202 	ASSERT_RTNL();
7203 
7204 	might_sleep();
7205 
7206 	/* When net_device's are persistent, this will be fatal. */
7207 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7208 	BUG_ON(!net);
7209 
7210 	spin_lock_init(&dev->addr_list_lock);
7211 	netdev_set_addr_lockdep_class(dev);
7212 
7213 	ret = dev_get_valid_name(net, dev, dev->name);
7214 	if (ret < 0)
7215 		goto out;
7216 
7217 	/* Init, if this function is available */
7218 	if (dev->netdev_ops->ndo_init) {
7219 		ret = dev->netdev_ops->ndo_init(dev);
7220 		if (ret) {
7221 			if (ret > 0)
7222 				ret = -EIO;
7223 			goto out;
7224 		}
7225 	}
7226 
7227 	if (((dev->hw_features | dev->features) &
7228 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
7229 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7230 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7231 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7232 		ret = -EINVAL;
7233 		goto err_uninit;
7234 	}
7235 
7236 	ret = -EBUSY;
7237 	if (!dev->ifindex)
7238 		dev->ifindex = dev_new_index(net);
7239 	else if (__dev_get_by_index(net, dev->ifindex))
7240 		goto err_uninit;
7241 
7242 	/* Transfer changeable features to wanted_features and enable
7243 	 * software offloads (GSO and GRO).
7244 	 */
7245 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
7246 	dev->features |= NETIF_F_SOFT_FEATURES;
7247 	dev->wanted_features = dev->features & dev->hw_features;
7248 
7249 	if (!(dev->flags & IFF_LOOPBACK))
7250 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
7251 
7252 	/* If IPv4 TCP segmentation offload is supported we should also
7253 	 * allow the device to enable segmenting the frame with the option
7254 	 * of ignoring a static IP ID value.  This doesn't enable the
7255 	 * feature itself but allows the user to enable it later.
7256 	 */
7257 	if (dev->hw_features & NETIF_F_TSO)
7258 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
7259 	if (dev->vlan_features & NETIF_F_TSO)
7260 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7261 	if (dev->mpls_features & NETIF_F_TSO)
7262 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7263 	if (dev->hw_enc_features & NETIF_F_TSO)
7264 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7265 
7266 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7267 	 */
7268 	dev->vlan_features |= NETIF_F_HIGHDMA;
7269 
7270 	/* Make NETIF_F_SG inheritable to tunnel devices.
7271 	 */
7272 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7273 
7274 	/* Make NETIF_F_SG inheritable to MPLS.
7275 	 */
7276 	dev->mpls_features |= NETIF_F_SG;
7277 
7278 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7279 	ret = notifier_to_errno(ret);
7280 	if (ret)
7281 		goto err_uninit;
7282 
7283 	ret = netdev_register_kobject(dev);
7284 	if (ret)
7285 		goto err_uninit;
7286 	dev->reg_state = NETREG_REGISTERED;
7287 
7288 	__netdev_update_features(dev);
7289 
7290 	/*
7291 	 *	Default initial state at registry is that the
7292 	 *	device is present.
7293 	 */
7294 
7295 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7296 
7297 	linkwatch_init_dev(dev);
7298 
7299 	dev_init_scheduler(dev);
7300 	dev_hold(dev);
7301 	list_netdevice(dev);
7302 	add_device_randomness(dev->dev_addr, dev->addr_len);
7303 
7304 	/* If the device has permanent device address, driver should
7305 	 * set dev_addr and also addr_assign_type should be set to
7306 	 * NET_ADDR_PERM (default value).
7307 	 */
7308 	if (dev->addr_assign_type == NET_ADDR_PERM)
7309 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7310 
7311 	/* Notify protocols, that a new device appeared. */
7312 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7313 	ret = notifier_to_errno(ret);
7314 	if (ret) {
7315 		rollback_registered(dev);
7316 		dev->reg_state = NETREG_UNREGISTERED;
7317 	}
7318 	/*
7319 	 *	Prevent userspace races by waiting until the network
7320 	 *	device is fully setup before sending notifications.
7321 	 */
7322 	if (!dev->rtnl_link_ops ||
7323 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7324 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7325 
7326 out:
7327 	return ret;
7328 
7329 err_uninit:
7330 	if (dev->netdev_ops->ndo_uninit)
7331 		dev->netdev_ops->ndo_uninit(dev);
7332 	goto out;
7333 }
7334 EXPORT_SYMBOL(register_netdevice);
7335 
7336 /**
7337  *	init_dummy_netdev	- init a dummy network device for NAPI
7338  *	@dev: device to init
7339  *
7340  *	This takes a network device structure and initialize the minimum
7341  *	amount of fields so it can be used to schedule NAPI polls without
7342  *	registering a full blown interface. This is to be used by drivers
7343  *	that need to tie several hardware interfaces to a single NAPI
7344  *	poll scheduler due to HW limitations.
7345  */
7346 int init_dummy_netdev(struct net_device *dev)
7347 {
7348 	/* Clear everything. Note we don't initialize spinlocks
7349 	 * are they aren't supposed to be taken by any of the
7350 	 * NAPI code and this dummy netdev is supposed to be
7351 	 * only ever used for NAPI polls
7352 	 */
7353 	memset(dev, 0, sizeof(struct net_device));
7354 
7355 	/* make sure we BUG if trying to hit standard
7356 	 * register/unregister code path
7357 	 */
7358 	dev->reg_state = NETREG_DUMMY;
7359 
7360 	/* NAPI wants this */
7361 	INIT_LIST_HEAD(&dev->napi_list);
7362 
7363 	/* a dummy interface is started by default */
7364 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7365 	set_bit(__LINK_STATE_START, &dev->state);
7366 
7367 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
7368 	 * because users of this 'device' dont need to change
7369 	 * its refcount.
7370 	 */
7371 
7372 	return 0;
7373 }
7374 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7375 
7376 
7377 /**
7378  *	register_netdev	- register a network device
7379  *	@dev: device to register
7380  *
7381  *	Take a completed network device structure and add it to the kernel
7382  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7383  *	chain. 0 is returned on success. A negative errno code is returned
7384  *	on a failure to set up the device, or if the name is a duplicate.
7385  *
7386  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
7387  *	and expands the device name if you passed a format string to
7388  *	alloc_netdev.
7389  */
7390 int register_netdev(struct net_device *dev)
7391 {
7392 	int err;
7393 
7394 	rtnl_lock();
7395 	err = register_netdevice(dev);
7396 	rtnl_unlock();
7397 	return err;
7398 }
7399 EXPORT_SYMBOL(register_netdev);
7400 
7401 int netdev_refcnt_read(const struct net_device *dev)
7402 {
7403 	int i, refcnt = 0;
7404 
7405 	for_each_possible_cpu(i)
7406 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7407 	return refcnt;
7408 }
7409 EXPORT_SYMBOL(netdev_refcnt_read);
7410 
7411 /**
7412  * netdev_wait_allrefs - wait until all references are gone.
7413  * @dev: target net_device
7414  *
7415  * This is called when unregistering network devices.
7416  *
7417  * Any protocol or device that holds a reference should register
7418  * for netdevice notification, and cleanup and put back the
7419  * reference if they receive an UNREGISTER event.
7420  * We can get stuck here if buggy protocols don't correctly
7421  * call dev_put.
7422  */
7423 static void netdev_wait_allrefs(struct net_device *dev)
7424 {
7425 	unsigned long rebroadcast_time, warning_time;
7426 	int refcnt;
7427 
7428 	linkwatch_forget_dev(dev);
7429 
7430 	rebroadcast_time = warning_time = jiffies;
7431 	refcnt = netdev_refcnt_read(dev);
7432 
7433 	while (refcnt != 0) {
7434 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7435 			rtnl_lock();
7436 
7437 			/* Rebroadcast unregister notification */
7438 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7439 
7440 			__rtnl_unlock();
7441 			rcu_barrier();
7442 			rtnl_lock();
7443 
7444 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7445 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7446 				     &dev->state)) {
7447 				/* We must not have linkwatch events
7448 				 * pending on unregister. If this
7449 				 * happens, we simply run the queue
7450 				 * unscheduled, resulting in a noop
7451 				 * for this device.
7452 				 */
7453 				linkwatch_run_queue();
7454 			}
7455 
7456 			__rtnl_unlock();
7457 
7458 			rebroadcast_time = jiffies;
7459 		}
7460 
7461 		msleep(250);
7462 
7463 		refcnt = netdev_refcnt_read(dev);
7464 
7465 		if (time_after(jiffies, warning_time + 10 * HZ)) {
7466 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7467 				 dev->name, refcnt);
7468 			warning_time = jiffies;
7469 		}
7470 	}
7471 }
7472 
7473 /* The sequence is:
7474  *
7475  *	rtnl_lock();
7476  *	...
7477  *	register_netdevice(x1);
7478  *	register_netdevice(x2);
7479  *	...
7480  *	unregister_netdevice(y1);
7481  *	unregister_netdevice(y2);
7482  *      ...
7483  *	rtnl_unlock();
7484  *	free_netdev(y1);
7485  *	free_netdev(y2);
7486  *
7487  * We are invoked by rtnl_unlock().
7488  * This allows us to deal with problems:
7489  * 1) We can delete sysfs objects which invoke hotplug
7490  *    without deadlocking with linkwatch via keventd.
7491  * 2) Since we run with the RTNL semaphore not held, we can sleep
7492  *    safely in order to wait for the netdev refcnt to drop to zero.
7493  *
7494  * We must not return until all unregister events added during
7495  * the interval the lock was held have been completed.
7496  */
7497 void netdev_run_todo(void)
7498 {
7499 	struct list_head list;
7500 
7501 	/* Snapshot list, allow later requests */
7502 	list_replace_init(&net_todo_list, &list);
7503 
7504 	__rtnl_unlock();
7505 
7506 
7507 	/* Wait for rcu callbacks to finish before next phase */
7508 	if (!list_empty(&list))
7509 		rcu_barrier();
7510 
7511 	while (!list_empty(&list)) {
7512 		struct net_device *dev
7513 			= list_first_entry(&list, struct net_device, todo_list);
7514 		list_del(&dev->todo_list);
7515 
7516 		rtnl_lock();
7517 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7518 		__rtnl_unlock();
7519 
7520 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7521 			pr_err("network todo '%s' but state %d\n",
7522 			       dev->name, dev->reg_state);
7523 			dump_stack();
7524 			continue;
7525 		}
7526 
7527 		dev->reg_state = NETREG_UNREGISTERED;
7528 
7529 		netdev_wait_allrefs(dev);
7530 
7531 		/* paranoia */
7532 		BUG_ON(netdev_refcnt_read(dev));
7533 		BUG_ON(!list_empty(&dev->ptype_all));
7534 		BUG_ON(!list_empty(&dev->ptype_specific));
7535 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
7536 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7537 		WARN_ON(dev->dn_ptr);
7538 
7539 		if (dev->destructor)
7540 			dev->destructor(dev);
7541 
7542 		/* Report a network device has been unregistered */
7543 		rtnl_lock();
7544 		dev_net(dev)->dev_unreg_count--;
7545 		__rtnl_unlock();
7546 		wake_up(&netdev_unregistering_wq);
7547 
7548 		/* Free network device */
7549 		kobject_put(&dev->dev.kobj);
7550 	}
7551 }
7552 
7553 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7554  * all the same fields in the same order as net_device_stats, with only
7555  * the type differing, but rtnl_link_stats64 may have additional fields
7556  * at the end for newer counters.
7557  */
7558 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7559 			     const struct net_device_stats *netdev_stats)
7560 {
7561 #if BITS_PER_LONG == 64
7562 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7563 	memcpy(stats64, netdev_stats, sizeof(*stats64));
7564 	/* zero out counters that only exist in rtnl_link_stats64 */
7565 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
7566 	       sizeof(*stats64) - sizeof(*netdev_stats));
7567 #else
7568 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7569 	const unsigned long *src = (const unsigned long *)netdev_stats;
7570 	u64 *dst = (u64 *)stats64;
7571 
7572 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7573 	for (i = 0; i < n; i++)
7574 		dst[i] = src[i];
7575 	/* zero out counters that only exist in rtnl_link_stats64 */
7576 	memset((char *)stats64 + n * sizeof(u64), 0,
7577 	       sizeof(*stats64) - n * sizeof(u64));
7578 #endif
7579 }
7580 EXPORT_SYMBOL(netdev_stats_to_stats64);
7581 
7582 /**
7583  *	dev_get_stats	- get network device statistics
7584  *	@dev: device to get statistics from
7585  *	@storage: place to store stats
7586  *
7587  *	Get network statistics from device. Return @storage.
7588  *	The device driver may provide its own method by setting
7589  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7590  *	otherwise the internal statistics structure is used.
7591  */
7592 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7593 					struct rtnl_link_stats64 *storage)
7594 {
7595 	const struct net_device_ops *ops = dev->netdev_ops;
7596 
7597 	if (ops->ndo_get_stats64) {
7598 		memset(storage, 0, sizeof(*storage));
7599 		ops->ndo_get_stats64(dev, storage);
7600 	} else if (ops->ndo_get_stats) {
7601 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7602 	} else {
7603 		netdev_stats_to_stats64(storage, &dev->stats);
7604 	}
7605 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7606 	storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7607 	storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7608 	return storage;
7609 }
7610 EXPORT_SYMBOL(dev_get_stats);
7611 
7612 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7613 {
7614 	struct netdev_queue *queue = dev_ingress_queue(dev);
7615 
7616 #ifdef CONFIG_NET_CLS_ACT
7617 	if (queue)
7618 		return queue;
7619 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7620 	if (!queue)
7621 		return NULL;
7622 	netdev_init_one_queue(dev, queue, NULL);
7623 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7624 	queue->qdisc_sleeping = &noop_qdisc;
7625 	rcu_assign_pointer(dev->ingress_queue, queue);
7626 #endif
7627 	return queue;
7628 }
7629 
7630 static const struct ethtool_ops default_ethtool_ops;
7631 
7632 void netdev_set_default_ethtool_ops(struct net_device *dev,
7633 				    const struct ethtool_ops *ops)
7634 {
7635 	if (dev->ethtool_ops == &default_ethtool_ops)
7636 		dev->ethtool_ops = ops;
7637 }
7638 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7639 
7640 void netdev_freemem(struct net_device *dev)
7641 {
7642 	char *addr = (char *)dev - dev->padded;
7643 
7644 	kvfree(addr);
7645 }
7646 
7647 /**
7648  *	alloc_netdev_mqs - allocate network device
7649  *	@sizeof_priv:		size of private data to allocate space for
7650  *	@name:			device name format string
7651  *	@name_assign_type: 	origin of device name
7652  *	@setup:			callback to initialize device
7653  *	@txqs:			the number of TX subqueues to allocate
7654  *	@rxqs:			the number of RX subqueues to allocate
7655  *
7656  *	Allocates a struct net_device with private data area for driver use
7657  *	and performs basic initialization.  Also allocates subqueue structs
7658  *	for each queue on the device.
7659  */
7660 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7661 		unsigned char name_assign_type,
7662 		void (*setup)(struct net_device *),
7663 		unsigned int txqs, unsigned int rxqs)
7664 {
7665 	struct net_device *dev;
7666 	size_t alloc_size;
7667 	struct net_device *p;
7668 
7669 	BUG_ON(strlen(name) >= sizeof(dev->name));
7670 
7671 	if (txqs < 1) {
7672 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7673 		return NULL;
7674 	}
7675 
7676 #ifdef CONFIG_SYSFS
7677 	if (rxqs < 1) {
7678 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7679 		return NULL;
7680 	}
7681 #endif
7682 
7683 	alloc_size = sizeof(struct net_device);
7684 	if (sizeof_priv) {
7685 		/* ensure 32-byte alignment of private area */
7686 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7687 		alloc_size += sizeof_priv;
7688 	}
7689 	/* ensure 32-byte alignment of whole construct */
7690 	alloc_size += NETDEV_ALIGN - 1;
7691 
7692 	p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7693 	if (!p)
7694 		p = vzalloc(alloc_size);
7695 	if (!p)
7696 		return NULL;
7697 
7698 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
7699 	dev->padded = (char *)dev - (char *)p;
7700 
7701 	dev->pcpu_refcnt = alloc_percpu(int);
7702 	if (!dev->pcpu_refcnt)
7703 		goto free_dev;
7704 
7705 	if (dev_addr_init(dev))
7706 		goto free_pcpu;
7707 
7708 	dev_mc_init(dev);
7709 	dev_uc_init(dev);
7710 
7711 	dev_net_set(dev, &init_net);
7712 
7713 	dev->gso_max_size = GSO_MAX_SIZE;
7714 	dev->gso_max_segs = GSO_MAX_SEGS;
7715 
7716 	INIT_LIST_HEAD(&dev->napi_list);
7717 	INIT_LIST_HEAD(&dev->unreg_list);
7718 	INIT_LIST_HEAD(&dev->close_list);
7719 	INIT_LIST_HEAD(&dev->link_watch_list);
7720 	INIT_LIST_HEAD(&dev->adj_list.upper);
7721 	INIT_LIST_HEAD(&dev->adj_list.lower);
7722 	INIT_LIST_HEAD(&dev->ptype_all);
7723 	INIT_LIST_HEAD(&dev->ptype_specific);
7724 #ifdef CONFIG_NET_SCHED
7725 	hash_init(dev->qdisc_hash);
7726 #endif
7727 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7728 	setup(dev);
7729 
7730 	if (!dev->tx_queue_len) {
7731 		dev->priv_flags |= IFF_NO_QUEUE;
7732 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
7733 	}
7734 
7735 	dev->num_tx_queues = txqs;
7736 	dev->real_num_tx_queues = txqs;
7737 	if (netif_alloc_netdev_queues(dev))
7738 		goto free_all;
7739 
7740 #ifdef CONFIG_SYSFS
7741 	dev->num_rx_queues = rxqs;
7742 	dev->real_num_rx_queues = rxqs;
7743 	if (netif_alloc_rx_queues(dev))
7744 		goto free_all;
7745 #endif
7746 
7747 	strcpy(dev->name, name);
7748 	dev->name_assign_type = name_assign_type;
7749 	dev->group = INIT_NETDEV_GROUP;
7750 	if (!dev->ethtool_ops)
7751 		dev->ethtool_ops = &default_ethtool_ops;
7752 
7753 	nf_hook_ingress_init(dev);
7754 
7755 	return dev;
7756 
7757 free_all:
7758 	free_netdev(dev);
7759 	return NULL;
7760 
7761 free_pcpu:
7762 	free_percpu(dev->pcpu_refcnt);
7763 free_dev:
7764 	netdev_freemem(dev);
7765 	return NULL;
7766 }
7767 EXPORT_SYMBOL(alloc_netdev_mqs);
7768 
7769 /**
7770  *	free_netdev - free network device
7771  *	@dev: device
7772  *
7773  *	This function does the last stage of destroying an allocated device
7774  * 	interface. The reference to the device object is released.
7775  *	If this is the last reference then it will be freed.
7776  *	Must be called in process context.
7777  */
7778 void free_netdev(struct net_device *dev)
7779 {
7780 	struct napi_struct *p, *n;
7781 
7782 	might_sleep();
7783 	netif_free_tx_queues(dev);
7784 #ifdef CONFIG_SYSFS
7785 	kvfree(dev->_rx);
7786 #endif
7787 
7788 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7789 
7790 	/* Flush device addresses */
7791 	dev_addr_flush(dev);
7792 
7793 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7794 		netif_napi_del(p);
7795 
7796 	free_percpu(dev->pcpu_refcnt);
7797 	dev->pcpu_refcnt = NULL;
7798 
7799 	/*  Compatibility with error handling in drivers */
7800 	if (dev->reg_state == NETREG_UNINITIALIZED) {
7801 		netdev_freemem(dev);
7802 		return;
7803 	}
7804 
7805 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7806 	dev->reg_state = NETREG_RELEASED;
7807 
7808 	/* will free via device release */
7809 	put_device(&dev->dev);
7810 }
7811 EXPORT_SYMBOL(free_netdev);
7812 
7813 /**
7814  *	synchronize_net -  Synchronize with packet receive processing
7815  *
7816  *	Wait for packets currently being received to be done.
7817  *	Does not block later packets from starting.
7818  */
7819 void synchronize_net(void)
7820 {
7821 	might_sleep();
7822 	if (rtnl_is_locked())
7823 		synchronize_rcu_expedited();
7824 	else
7825 		synchronize_rcu();
7826 }
7827 EXPORT_SYMBOL(synchronize_net);
7828 
7829 /**
7830  *	unregister_netdevice_queue - remove device from the kernel
7831  *	@dev: device
7832  *	@head: list
7833  *
7834  *	This function shuts down a device interface and removes it
7835  *	from the kernel tables.
7836  *	If head not NULL, device is queued to be unregistered later.
7837  *
7838  *	Callers must hold the rtnl semaphore.  You may want
7839  *	unregister_netdev() instead of this.
7840  */
7841 
7842 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7843 {
7844 	ASSERT_RTNL();
7845 
7846 	if (head) {
7847 		list_move_tail(&dev->unreg_list, head);
7848 	} else {
7849 		rollback_registered(dev);
7850 		/* Finish processing unregister after unlock */
7851 		net_set_todo(dev);
7852 	}
7853 }
7854 EXPORT_SYMBOL(unregister_netdevice_queue);
7855 
7856 /**
7857  *	unregister_netdevice_many - unregister many devices
7858  *	@head: list of devices
7859  *
7860  *  Note: As most callers use a stack allocated list_head,
7861  *  we force a list_del() to make sure stack wont be corrupted later.
7862  */
7863 void unregister_netdevice_many(struct list_head *head)
7864 {
7865 	struct net_device *dev;
7866 
7867 	if (!list_empty(head)) {
7868 		rollback_registered_many(head);
7869 		list_for_each_entry(dev, head, unreg_list)
7870 			net_set_todo(dev);
7871 		list_del(head);
7872 	}
7873 }
7874 EXPORT_SYMBOL(unregister_netdevice_many);
7875 
7876 /**
7877  *	unregister_netdev - remove device from the kernel
7878  *	@dev: device
7879  *
7880  *	This function shuts down a device interface and removes it
7881  *	from the kernel tables.
7882  *
7883  *	This is just a wrapper for unregister_netdevice that takes
7884  *	the rtnl semaphore.  In general you want to use this and not
7885  *	unregister_netdevice.
7886  */
7887 void unregister_netdev(struct net_device *dev)
7888 {
7889 	rtnl_lock();
7890 	unregister_netdevice(dev);
7891 	rtnl_unlock();
7892 }
7893 EXPORT_SYMBOL(unregister_netdev);
7894 
7895 /**
7896  *	dev_change_net_namespace - move device to different nethost namespace
7897  *	@dev: device
7898  *	@net: network namespace
7899  *	@pat: If not NULL name pattern to try if the current device name
7900  *	      is already taken in the destination network namespace.
7901  *
7902  *	This function shuts down a device interface and moves it
7903  *	to a new network namespace. On success 0 is returned, on
7904  *	a failure a netagive errno code is returned.
7905  *
7906  *	Callers must hold the rtnl semaphore.
7907  */
7908 
7909 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7910 {
7911 	int err;
7912 
7913 	ASSERT_RTNL();
7914 
7915 	/* Don't allow namespace local devices to be moved. */
7916 	err = -EINVAL;
7917 	if (dev->features & NETIF_F_NETNS_LOCAL)
7918 		goto out;
7919 
7920 	/* Ensure the device has been registrered */
7921 	if (dev->reg_state != NETREG_REGISTERED)
7922 		goto out;
7923 
7924 	/* Get out if there is nothing todo */
7925 	err = 0;
7926 	if (net_eq(dev_net(dev), net))
7927 		goto out;
7928 
7929 	/* Pick the destination device name, and ensure
7930 	 * we can use it in the destination network namespace.
7931 	 */
7932 	err = -EEXIST;
7933 	if (__dev_get_by_name(net, dev->name)) {
7934 		/* We get here if we can't use the current device name */
7935 		if (!pat)
7936 			goto out;
7937 		if (dev_get_valid_name(net, dev, pat) < 0)
7938 			goto out;
7939 	}
7940 
7941 	/*
7942 	 * And now a mini version of register_netdevice unregister_netdevice.
7943 	 */
7944 
7945 	/* If device is running close it first. */
7946 	dev_close(dev);
7947 
7948 	/* And unlink it from device chain */
7949 	err = -ENODEV;
7950 	unlist_netdevice(dev);
7951 
7952 	synchronize_net();
7953 
7954 	/* Shutdown queueing discipline. */
7955 	dev_shutdown(dev);
7956 
7957 	/* Notify protocols, that we are about to destroy
7958 	   this device. They should clean all the things.
7959 
7960 	   Note that dev->reg_state stays at NETREG_REGISTERED.
7961 	   This is wanted because this way 8021q and macvlan know
7962 	   the device is just moving and can keep their slaves up.
7963 	*/
7964 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7965 	rcu_barrier();
7966 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7967 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7968 
7969 	/*
7970 	 *	Flush the unicast and multicast chains
7971 	 */
7972 	dev_uc_flush(dev);
7973 	dev_mc_flush(dev);
7974 
7975 	/* Send a netdev-removed uevent to the old namespace */
7976 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7977 	netdev_adjacent_del_links(dev);
7978 
7979 	/* Actually switch the network namespace */
7980 	dev_net_set(dev, net);
7981 
7982 	/* If there is an ifindex conflict assign a new one */
7983 	if (__dev_get_by_index(net, dev->ifindex))
7984 		dev->ifindex = dev_new_index(net);
7985 
7986 	/* Send a netdev-add uevent to the new namespace */
7987 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7988 	netdev_adjacent_add_links(dev);
7989 
7990 	/* Fixup kobjects */
7991 	err = device_rename(&dev->dev, dev->name);
7992 	WARN_ON(err);
7993 
7994 	/* Add the device back in the hashes */
7995 	list_netdevice(dev);
7996 
7997 	/* Notify protocols, that a new device appeared. */
7998 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
7999 
8000 	/*
8001 	 *	Prevent userspace races by waiting until the network
8002 	 *	device is fully setup before sending notifications.
8003 	 */
8004 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8005 
8006 	synchronize_net();
8007 	err = 0;
8008 out:
8009 	return err;
8010 }
8011 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8012 
8013 static int dev_cpu_dead(unsigned int oldcpu)
8014 {
8015 	struct sk_buff **list_skb;
8016 	struct sk_buff *skb;
8017 	unsigned int cpu;
8018 	struct softnet_data *sd, *oldsd;
8019 
8020 	local_irq_disable();
8021 	cpu = smp_processor_id();
8022 	sd = &per_cpu(softnet_data, cpu);
8023 	oldsd = &per_cpu(softnet_data, oldcpu);
8024 
8025 	/* Find end of our completion_queue. */
8026 	list_skb = &sd->completion_queue;
8027 	while (*list_skb)
8028 		list_skb = &(*list_skb)->next;
8029 	/* Append completion queue from offline CPU. */
8030 	*list_skb = oldsd->completion_queue;
8031 	oldsd->completion_queue = NULL;
8032 
8033 	/* Append output queue from offline CPU. */
8034 	if (oldsd->output_queue) {
8035 		*sd->output_queue_tailp = oldsd->output_queue;
8036 		sd->output_queue_tailp = oldsd->output_queue_tailp;
8037 		oldsd->output_queue = NULL;
8038 		oldsd->output_queue_tailp = &oldsd->output_queue;
8039 	}
8040 	/* Append NAPI poll list from offline CPU, with one exception :
8041 	 * process_backlog() must be called by cpu owning percpu backlog.
8042 	 * We properly handle process_queue & input_pkt_queue later.
8043 	 */
8044 	while (!list_empty(&oldsd->poll_list)) {
8045 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8046 							    struct napi_struct,
8047 							    poll_list);
8048 
8049 		list_del_init(&napi->poll_list);
8050 		if (napi->poll == process_backlog)
8051 			napi->state = 0;
8052 		else
8053 			____napi_schedule(sd, napi);
8054 	}
8055 
8056 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
8057 	local_irq_enable();
8058 
8059 	/* Process offline CPU's input_pkt_queue */
8060 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8061 		netif_rx_ni(skb);
8062 		input_queue_head_incr(oldsd);
8063 	}
8064 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8065 		netif_rx_ni(skb);
8066 		input_queue_head_incr(oldsd);
8067 	}
8068 
8069 	return 0;
8070 }
8071 
8072 /**
8073  *	netdev_increment_features - increment feature set by one
8074  *	@all: current feature set
8075  *	@one: new feature set
8076  *	@mask: mask feature set
8077  *
8078  *	Computes a new feature set after adding a device with feature set
8079  *	@one to the master device with current feature set @all.  Will not
8080  *	enable anything that is off in @mask. Returns the new feature set.
8081  */
8082 netdev_features_t netdev_increment_features(netdev_features_t all,
8083 	netdev_features_t one, netdev_features_t mask)
8084 {
8085 	if (mask & NETIF_F_HW_CSUM)
8086 		mask |= NETIF_F_CSUM_MASK;
8087 	mask |= NETIF_F_VLAN_CHALLENGED;
8088 
8089 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8090 	all &= one | ~NETIF_F_ALL_FOR_ALL;
8091 
8092 	/* If one device supports hw checksumming, set for all. */
8093 	if (all & NETIF_F_HW_CSUM)
8094 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8095 
8096 	return all;
8097 }
8098 EXPORT_SYMBOL(netdev_increment_features);
8099 
8100 static struct hlist_head * __net_init netdev_create_hash(void)
8101 {
8102 	int i;
8103 	struct hlist_head *hash;
8104 
8105 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8106 	if (hash != NULL)
8107 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
8108 			INIT_HLIST_HEAD(&hash[i]);
8109 
8110 	return hash;
8111 }
8112 
8113 /* Initialize per network namespace state */
8114 static int __net_init netdev_init(struct net *net)
8115 {
8116 	if (net != &init_net)
8117 		INIT_LIST_HEAD(&net->dev_base_head);
8118 
8119 	net->dev_name_head = netdev_create_hash();
8120 	if (net->dev_name_head == NULL)
8121 		goto err_name;
8122 
8123 	net->dev_index_head = netdev_create_hash();
8124 	if (net->dev_index_head == NULL)
8125 		goto err_idx;
8126 
8127 	return 0;
8128 
8129 err_idx:
8130 	kfree(net->dev_name_head);
8131 err_name:
8132 	return -ENOMEM;
8133 }
8134 
8135 /**
8136  *	netdev_drivername - network driver for the device
8137  *	@dev: network device
8138  *
8139  *	Determine network driver for device.
8140  */
8141 const char *netdev_drivername(const struct net_device *dev)
8142 {
8143 	const struct device_driver *driver;
8144 	const struct device *parent;
8145 	const char *empty = "";
8146 
8147 	parent = dev->dev.parent;
8148 	if (!parent)
8149 		return empty;
8150 
8151 	driver = parent->driver;
8152 	if (driver && driver->name)
8153 		return driver->name;
8154 	return empty;
8155 }
8156 
8157 static void __netdev_printk(const char *level, const struct net_device *dev,
8158 			    struct va_format *vaf)
8159 {
8160 	if (dev && dev->dev.parent) {
8161 		dev_printk_emit(level[1] - '0',
8162 				dev->dev.parent,
8163 				"%s %s %s%s: %pV",
8164 				dev_driver_string(dev->dev.parent),
8165 				dev_name(dev->dev.parent),
8166 				netdev_name(dev), netdev_reg_state(dev),
8167 				vaf);
8168 	} else if (dev) {
8169 		printk("%s%s%s: %pV",
8170 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
8171 	} else {
8172 		printk("%s(NULL net_device): %pV", level, vaf);
8173 	}
8174 }
8175 
8176 void netdev_printk(const char *level, const struct net_device *dev,
8177 		   const char *format, ...)
8178 {
8179 	struct va_format vaf;
8180 	va_list args;
8181 
8182 	va_start(args, format);
8183 
8184 	vaf.fmt = format;
8185 	vaf.va = &args;
8186 
8187 	__netdev_printk(level, dev, &vaf);
8188 
8189 	va_end(args);
8190 }
8191 EXPORT_SYMBOL(netdev_printk);
8192 
8193 #define define_netdev_printk_level(func, level)			\
8194 void func(const struct net_device *dev, const char *fmt, ...)	\
8195 {								\
8196 	struct va_format vaf;					\
8197 	va_list args;						\
8198 								\
8199 	va_start(args, fmt);					\
8200 								\
8201 	vaf.fmt = fmt;						\
8202 	vaf.va = &args;						\
8203 								\
8204 	__netdev_printk(level, dev, &vaf);			\
8205 								\
8206 	va_end(args);						\
8207 }								\
8208 EXPORT_SYMBOL(func);
8209 
8210 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8211 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8212 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8213 define_netdev_printk_level(netdev_err, KERN_ERR);
8214 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8215 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8216 define_netdev_printk_level(netdev_info, KERN_INFO);
8217 
8218 static void __net_exit netdev_exit(struct net *net)
8219 {
8220 	kfree(net->dev_name_head);
8221 	kfree(net->dev_index_head);
8222 }
8223 
8224 static struct pernet_operations __net_initdata netdev_net_ops = {
8225 	.init = netdev_init,
8226 	.exit = netdev_exit,
8227 };
8228 
8229 static void __net_exit default_device_exit(struct net *net)
8230 {
8231 	struct net_device *dev, *aux;
8232 	/*
8233 	 * Push all migratable network devices back to the
8234 	 * initial network namespace
8235 	 */
8236 	rtnl_lock();
8237 	for_each_netdev_safe(net, dev, aux) {
8238 		int err;
8239 		char fb_name[IFNAMSIZ];
8240 
8241 		/* Ignore unmoveable devices (i.e. loopback) */
8242 		if (dev->features & NETIF_F_NETNS_LOCAL)
8243 			continue;
8244 
8245 		/* Leave virtual devices for the generic cleanup */
8246 		if (dev->rtnl_link_ops)
8247 			continue;
8248 
8249 		/* Push remaining network devices to init_net */
8250 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8251 		err = dev_change_net_namespace(dev, &init_net, fb_name);
8252 		if (err) {
8253 			pr_emerg("%s: failed to move %s to init_net: %d\n",
8254 				 __func__, dev->name, err);
8255 			BUG();
8256 		}
8257 	}
8258 	rtnl_unlock();
8259 }
8260 
8261 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8262 {
8263 	/* Return with the rtnl_lock held when there are no network
8264 	 * devices unregistering in any network namespace in net_list.
8265 	 */
8266 	struct net *net;
8267 	bool unregistering;
8268 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
8269 
8270 	add_wait_queue(&netdev_unregistering_wq, &wait);
8271 	for (;;) {
8272 		unregistering = false;
8273 		rtnl_lock();
8274 		list_for_each_entry(net, net_list, exit_list) {
8275 			if (net->dev_unreg_count > 0) {
8276 				unregistering = true;
8277 				break;
8278 			}
8279 		}
8280 		if (!unregistering)
8281 			break;
8282 		__rtnl_unlock();
8283 
8284 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8285 	}
8286 	remove_wait_queue(&netdev_unregistering_wq, &wait);
8287 }
8288 
8289 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8290 {
8291 	/* At exit all network devices most be removed from a network
8292 	 * namespace.  Do this in the reverse order of registration.
8293 	 * Do this across as many network namespaces as possible to
8294 	 * improve batching efficiency.
8295 	 */
8296 	struct net_device *dev;
8297 	struct net *net;
8298 	LIST_HEAD(dev_kill_list);
8299 
8300 	/* To prevent network device cleanup code from dereferencing
8301 	 * loopback devices or network devices that have been freed
8302 	 * wait here for all pending unregistrations to complete,
8303 	 * before unregistring the loopback device and allowing the
8304 	 * network namespace be freed.
8305 	 *
8306 	 * The netdev todo list containing all network devices
8307 	 * unregistrations that happen in default_device_exit_batch
8308 	 * will run in the rtnl_unlock() at the end of
8309 	 * default_device_exit_batch.
8310 	 */
8311 	rtnl_lock_unregistering(net_list);
8312 	list_for_each_entry(net, net_list, exit_list) {
8313 		for_each_netdev_reverse(net, dev) {
8314 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8315 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8316 			else
8317 				unregister_netdevice_queue(dev, &dev_kill_list);
8318 		}
8319 	}
8320 	unregister_netdevice_many(&dev_kill_list);
8321 	rtnl_unlock();
8322 }
8323 
8324 static struct pernet_operations __net_initdata default_device_ops = {
8325 	.exit = default_device_exit,
8326 	.exit_batch = default_device_exit_batch,
8327 };
8328 
8329 /*
8330  *	Initialize the DEV module. At boot time this walks the device list and
8331  *	unhooks any devices that fail to initialise (normally hardware not
8332  *	present) and leaves us with a valid list of present and active devices.
8333  *
8334  */
8335 
8336 /*
8337  *       This is called single threaded during boot, so no need
8338  *       to take the rtnl semaphore.
8339  */
8340 static int __init net_dev_init(void)
8341 {
8342 	int i, rc = -ENOMEM;
8343 
8344 	BUG_ON(!dev_boot_phase);
8345 
8346 	if (dev_proc_init())
8347 		goto out;
8348 
8349 	if (netdev_kobject_init())
8350 		goto out;
8351 
8352 	INIT_LIST_HEAD(&ptype_all);
8353 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
8354 		INIT_LIST_HEAD(&ptype_base[i]);
8355 
8356 	INIT_LIST_HEAD(&offload_base);
8357 
8358 	if (register_pernet_subsys(&netdev_net_ops))
8359 		goto out;
8360 
8361 	/*
8362 	 *	Initialise the packet receive queues.
8363 	 */
8364 
8365 	for_each_possible_cpu(i) {
8366 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8367 		struct softnet_data *sd = &per_cpu(softnet_data, i);
8368 
8369 		INIT_WORK(flush, flush_backlog);
8370 
8371 		skb_queue_head_init(&sd->input_pkt_queue);
8372 		skb_queue_head_init(&sd->process_queue);
8373 		INIT_LIST_HEAD(&sd->poll_list);
8374 		sd->output_queue_tailp = &sd->output_queue;
8375 #ifdef CONFIG_RPS
8376 		sd->csd.func = rps_trigger_softirq;
8377 		sd->csd.info = sd;
8378 		sd->cpu = i;
8379 #endif
8380 
8381 		sd->backlog.poll = process_backlog;
8382 		sd->backlog.weight = weight_p;
8383 	}
8384 
8385 	dev_boot_phase = 0;
8386 
8387 	/* The loopback device is special if any other network devices
8388 	 * is present in a network namespace the loopback device must
8389 	 * be present. Since we now dynamically allocate and free the
8390 	 * loopback device ensure this invariant is maintained by
8391 	 * keeping the loopback device as the first device on the
8392 	 * list of network devices.  Ensuring the loopback devices
8393 	 * is the first device that appears and the last network device
8394 	 * that disappears.
8395 	 */
8396 	if (register_pernet_device(&loopback_net_ops))
8397 		goto out;
8398 
8399 	if (register_pernet_device(&default_device_ops))
8400 		goto out;
8401 
8402 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8403 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8404 
8405 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8406 				       NULL, dev_cpu_dead);
8407 	WARN_ON(rc < 0);
8408 	dst_subsys_init();
8409 	rc = 0;
8410 out:
8411 	return rc;
8412 }
8413 
8414 subsys_initcall(net_dev_init);
8415