1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <linux/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/mutex.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/notifier.h> 96 #include <linux/skbuff.h> 97 #include <linux/bpf.h> 98 #include <net/net_namespace.h> 99 #include <net/sock.h> 100 #include <net/busy_poll.h> 101 #include <linux/rtnetlink.h> 102 #include <linux/stat.h> 103 #include <net/dst.h> 104 #include <net/dst_metadata.h> 105 #include <net/pkt_sched.h> 106 #include <net/checksum.h> 107 #include <net/xfrm.h> 108 #include <linux/highmem.h> 109 #include <linux/init.h> 110 #include <linux/module.h> 111 #include <linux/netpoll.h> 112 #include <linux/rcupdate.h> 113 #include <linux/delay.h> 114 #include <net/iw_handler.h> 115 #include <asm/current.h> 116 #include <linux/audit.h> 117 #include <linux/dmaengine.h> 118 #include <linux/err.h> 119 #include <linux/ctype.h> 120 #include <linux/if_arp.h> 121 #include <linux/if_vlan.h> 122 #include <linux/ip.h> 123 #include <net/ip.h> 124 #include <net/mpls.h> 125 #include <linux/ipv6.h> 126 #include <linux/in.h> 127 #include <linux/jhash.h> 128 #include <linux/random.h> 129 #include <trace/events/napi.h> 130 #include <trace/events/net.h> 131 #include <trace/events/skb.h> 132 #include <linux/pci.h> 133 #include <linux/inetdevice.h> 134 #include <linux/cpu_rmap.h> 135 #include <linux/static_key.h> 136 #include <linux/hashtable.h> 137 #include <linux/vmalloc.h> 138 #include <linux/if_macvlan.h> 139 #include <linux/errqueue.h> 140 #include <linux/hrtimer.h> 141 #include <linux/netfilter_ingress.h> 142 #include <linux/crash_dump.h> 143 144 #include "net-sysfs.h" 145 146 /* Instead of increasing this, you should create a hash table. */ 147 #define MAX_GRO_SKBS 8 148 149 /* This should be increased if a protocol with a bigger head is added. */ 150 #define GRO_MAX_HEAD (MAX_HEADER + 128) 151 152 static DEFINE_SPINLOCK(ptype_lock); 153 static DEFINE_SPINLOCK(offload_lock); 154 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 155 struct list_head ptype_all __read_mostly; /* Taps */ 156 static struct list_head offload_base __read_mostly; 157 158 static int netif_rx_internal(struct sk_buff *skb); 159 static int call_netdevice_notifiers_info(unsigned long val, 160 struct net_device *dev, 161 struct netdev_notifier_info *info); 162 163 /* 164 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 165 * semaphore. 166 * 167 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 168 * 169 * Writers must hold the rtnl semaphore while they loop through the 170 * dev_base_head list, and hold dev_base_lock for writing when they do the 171 * actual updates. This allows pure readers to access the list even 172 * while a writer is preparing to update it. 173 * 174 * To put it another way, dev_base_lock is held for writing only to 175 * protect against pure readers; the rtnl semaphore provides the 176 * protection against other writers. 177 * 178 * See, for example usages, register_netdevice() and 179 * unregister_netdevice(), which must be called with the rtnl 180 * semaphore held. 181 */ 182 DEFINE_RWLOCK(dev_base_lock); 183 EXPORT_SYMBOL(dev_base_lock); 184 185 /* protects napi_hash addition/deletion and napi_gen_id */ 186 static DEFINE_SPINLOCK(napi_hash_lock); 187 188 static unsigned int napi_gen_id = NR_CPUS; 189 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 190 191 static seqcount_t devnet_rename_seq; 192 193 static inline void dev_base_seq_inc(struct net *net) 194 { 195 while (++net->dev_base_seq == 0); 196 } 197 198 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 199 { 200 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 201 202 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 203 } 204 205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 206 { 207 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 208 } 209 210 static inline void rps_lock(struct softnet_data *sd) 211 { 212 #ifdef CONFIG_RPS 213 spin_lock(&sd->input_pkt_queue.lock); 214 #endif 215 } 216 217 static inline void rps_unlock(struct softnet_data *sd) 218 { 219 #ifdef CONFIG_RPS 220 spin_unlock(&sd->input_pkt_queue.lock); 221 #endif 222 } 223 224 /* Device list insertion */ 225 static void list_netdevice(struct net_device *dev) 226 { 227 struct net *net = dev_net(dev); 228 229 ASSERT_RTNL(); 230 231 write_lock_bh(&dev_base_lock); 232 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 233 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 234 hlist_add_head_rcu(&dev->index_hlist, 235 dev_index_hash(net, dev->ifindex)); 236 write_unlock_bh(&dev_base_lock); 237 238 dev_base_seq_inc(net); 239 } 240 241 /* Device list removal 242 * caller must respect a RCU grace period before freeing/reusing dev 243 */ 244 static void unlist_netdevice(struct net_device *dev) 245 { 246 ASSERT_RTNL(); 247 248 /* Unlink dev from the device chain */ 249 write_lock_bh(&dev_base_lock); 250 list_del_rcu(&dev->dev_list); 251 hlist_del_rcu(&dev->name_hlist); 252 hlist_del_rcu(&dev->index_hlist); 253 write_unlock_bh(&dev_base_lock); 254 255 dev_base_seq_inc(dev_net(dev)); 256 } 257 258 /* 259 * Our notifier list 260 */ 261 262 static RAW_NOTIFIER_HEAD(netdev_chain); 263 264 /* 265 * Device drivers call our routines to queue packets here. We empty the 266 * queue in the local softnet handler. 267 */ 268 269 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 270 EXPORT_PER_CPU_SYMBOL(softnet_data); 271 272 #ifdef CONFIG_LOCKDEP 273 /* 274 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 275 * according to dev->type 276 */ 277 static const unsigned short netdev_lock_type[] = 278 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 279 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 280 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 281 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 282 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 283 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 284 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 285 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 286 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 287 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 288 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 289 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 290 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 291 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 292 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 293 294 static const char *const netdev_lock_name[] = 295 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 296 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 297 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 298 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 299 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 300 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 301 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 302 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 303 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 304 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 305 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 306 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 307 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 308 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 309 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 310 311 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 312 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 313 314 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 315 { 316 int i; 317 318 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 319 if (netdev_lock_type[i] == dev_type) 320 return i; 321 /* the last key is used by default */ 322 return ARRAY_SIZE(netdev_lock_type) - 1; 323 } 324 325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 326 unsigned short dev_type) 327 { 328 int i; 329 330 i = netdev_lock_pos(dev_type); 331 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 332 netdev_lock_name[i]); 333 } 334 335 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 336 { 337 int i; 338 339 i = netdev_lock_pos(dev->type); 340 lockdep_set_class_and_name(&dev->addr_list_lock, 341 &netdev_addr_lock_key[i], 342 netdev_lock_name[i]); 343 } 344 #else 345 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 346 unsigned short dev_type) 347 { 348 } 349 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 350 { 351 } 352 #endif 353 354 /******************************************************************************* 355 356 Protocol management and registration routines 357 358 *******************************************************************************/ 359 360 /* 361 * Add a protocol ID to the list. Now that the input handler is 362 * smarter we can dispense with all the messy stuff that used to be 363 * here. 364 * 365 * BEWARE!!! Protocol handlers, mangling input packets, 366 * MUST BE last in hash buckets and checking protocol handlers 367 * MUST start from promiscuous ptype_all chain in net_bh. 368 * It is true now, do not change it. 369 * Explanation follows: if protocol handler, mangling packet, will 370 * be the first on list, it is not able to sense, that packet 371 * is cloned and should be copied-on-write, so that it will 372 * change it and subsequent readers will get broken packet. 373 * --ANK (980803) 374 */ 375 376 static inline struct list_head *ptype_head(const struct packet_type *pt) 377 { 378 if (pt->type == htons(ETH_P_ALL)) 379 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 380 else 381 return pt->dev ? &pt->dev->ptype_specific : 382 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 383 } 384 385 /** 386 * dev_add_pack - add packet handler 387 * @pt: packet type declaration 388 * 389 * Add a protocol handler to the networking stack. The passed &packet_type 390 * is linked into kernel lists and may not be freed until it has been 391 * removed from the kernel lists. 392 * 393 * This call does not sleep therefore it can not 394 * guarantee all CPU's that are in middle of receiving packets 395 * will see the new packet type (until the next received packet). 396 */ 397 398 void dev_add_pack(struct packet_type *pt) 399 { 400 struct list_head *head = ptype_head(pt); 401 402 spin_lock(&ptype_lock); 403 list_add_rcu(&pt->list, head); 404 spin_unlock(&ptype_lock); 405 } 406 EXPORT_SYMBOL(dev_add_pack); 407 408 /** 409 * __dev_remove_pack - remove packet handler 410 * @pt: packet type declaration 411 * 412 * Remove a protocol handler that was previously added to the kernel 413 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 414 * from the kernel lists and can be freed or reused once this function 415 * returns. 416 * 417 * The packet type might still be in use by receivers 418 * and must not be freed until after all the CPU's have gone 419 * through a quiescent state. 420 */ 421 void __dev_remove_pack(struct packet_type *pt) 422 { 423 struct list_head *head = ptype_head(pt); 424 struct packet_type *pt1; 425 426 spin_lock(&ptype_lock); 427 428 list_for_each_entry(pt1, head, list) { 429 if (pt == pt1) { 430 list_del_rcu(&pt->list); 431 goto out; 432 } 433 } 434 435 pr_warn("dev_remove_pack: %p not found\n", pt); 436 out: 437 spin_unlock(&ptype_lock); 438 } 439 EXPORT_SYMBOL(__dev_remove_pack); 440 441 /** 442 * dev_remove_pack - remove packet handler 443 * @pt: packet type declaration 444 * 445 * Remove a protocol handler that was previously added to the kernel 446 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 447 * from the kernel lists and can be freed or reused once this function 448 * returns. 449 * 450 * This call sleeps to guarantee that no CPU is looking at the packet 451 * type after return. 452 */ 453 void dev_remove_pack(struct packet_type *pt) 454 { 455 __dev_remove_pack(pt); 456 457 synchronize_net(); 458 } 459 EXPORT_SYMBOL(dev_remove_pack); 460 461 462 /** 463 * dev_add_offload - register offload handlers 464 * @po: protocol offload declaration 465 * 466 * Add protocol offload handlers to the networking stack. The passed 467 * &proto_offload is linked into kernel lists and may not be freed until 468 * it has been removed from the kernel lists. 469 * 470 * This call does not sleep therefore it can not 471 * guarantee all CPU's that are in middle of receiving packets 472 * will see the new offload handlers (until the next received packet). 473 */ 474 void dev_add_offload(struct packet_offload *po) 475 { 476 struct packet_offload *elem; 477 478 spin_lock(&offload_lock); 479 list_for_each_entry(elem, &offload_base, list) { 480 if (po->priority < elem->priority) 481 break; 482 } 483 list_add_rcu(&po->list, elem->list.prev); 484 spin_unlock(&offload_lock); 485 } 486 EXPORT_SYMBOL(dev_add_offload); 487 488 /** 489 * __dev_remove_offload - remove offload handler 490 * @po: packet offload declaration 491 * 492 * Remove a protocol offload handler that was previously added to the 493 * kernel offload handlers by dev_add_offload(). The passed &offload_type 494 * is removed from the kernel lists and can be freed or reused once this 495 * function returns. 496 * 497 * The packet type might still be in use by receivers 498 * and must not be freed until after all the CPU's have gone 499 * through a quiescent state. 500 */ 501 static void __dev_remove_offload(struct packet_offload *po) 502 { 503 struct list_head *head = &offload_base; 504 struct packet_offload *po1; 505 506 spin_lock(&offload_lock); 507 508 list_for_each_entry(po1, head, list) { 509 if (po == po1) { 510 list_del_rcu(&po->list); 511 goto out; 512 } 513 } 514 515 pr_warn("dev_remove_offload: %p not found\n", po); 516 out: 517 spin_unlock(&offload_lock); 518 } 519 520 /** 521 * dev_remove_offload - remove packet offload handler 522 * @po: packet offload declaration 523 * 524 * Remove a packet offload handler that was previously added to the kernel 525 * offload handlers by dev_add_offload(). The passed &offload_type is 526 * removed from the kernel lists and can be freed or reused once this 527 * function returns. 528 * 529 * This call sleeps to guarantee that no CPU is looking at the packet 530 * type after return. 531 */ 532 void dev_remove_offload(struct packet_offload *po) 533 { 534 __dev_remove_offload(po); 535 536 synchronize_net(); 537 } 538 EXPORT_SYMBOL(dev_remove_offload); 539 540 /****************************************************************************** 541 542 Device Boot-time Settings Routines 543 544 *******************************************************************************/ 545 546 /* Boot time configuration table */ 547 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 548 549 /** 550 * netdev_boot_setup_add - add new setup entry 551 * @name: name of the device 552 * @map: configured settings for the device 553 * 554 * Adds new setup entry to the dev_boot_setup list. The function 555 * returns 0 on error and 1 on success. This is a generic routine to 556 * all netdevices. 557 */ 558 static int netdev_boot_setup_add(char *name, struct ifmap *map) 559 { 560 struct netdev_boot_setup *s; 561 int i; 562 563 s = dev_boot_setup; 564 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 565 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 566 memset(s[i].name, 0, sizeof(s[i].name)); 567 strlcpy(s[i].name, name, IFNAMSIZ); 568 memcpy(&s[i].map, map, sizeof(s[i].map)); 569 break; 570 } 571 } 572 573 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 574 } 575 576 /** 577 * netdev_boot_setup_check - check boot time settings 578 * @dev: the netdevice 579 * 580 * Check boot time settings for the device. 581 * The found settings are set for the device to be used 582 * later in the device probing. 583 * Returns 0 if no settings found, 1 if they are. 584 */ 585 int netdev_boot_setup_check(struct net_device *dev) 586 { 587 struct netdev_boot_setup *s = dev_boot_setup; 588 int i; 589 590 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 591 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 592 !strcmp(dev->name, s[i].name)) { 593 dev->irq = s[i].map.irq; 594 dev->base_addr = s[i].map.base_addr; 595 dev->mem_start = s[i].map.mem_start; 596 dev->mem_end = s[i].map.mem_end; 597 return 1; 598 } 599 } 600 return 0; 601 } 602 EXPORT_SYMBOL(netdev_boot_setup_check); 603 604 605 /** 606 * netdev_boot_base - get address from boot time settings 607 * @prefix: prefix for network device 608 * @unit: id for network device 609 * 610 * Check boot time settings for the base address of device. 611 * The found settings are set for the device to be used 612 * later in the device probing. 613 * Returns 0 if no settings found. 614 */ 615 unsigned long netdev_boot_base(const char *prefix, int unit) 616 { 617 const struct netdev_boot_setup *s = dev_boot_setup; 618 char name[IFNAMSIZ]; 619 int i; 620 621 sprintf(name, "%s%d", prefix, unit); 622 623 /* 624 * If device already registered then return base of 1 625 * to indicate not to probe for this interface 626 */ 627 if (__dev_get_by_name(&init_net, name)) 628 return 1; 629 630 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 631 if (!strcmp(name, s[i].name)) 632 return s[i].map.base_addr; 633 return 0; 634 } 635 636 /* 637 * Saves at boot time configured settings for any netdevice. 638 */ 639 int __init netdev_boot_setup(char *str) 640 { 641 int ints[5]; 642 struct ifmap map; 643 644 str = get_options(str, ARRAY_SIZE(ints), ints); 645 if (!str || !*str) 646 return 0; 647 648 /* Save settings */ 649 memset(&map, 0, sizeof(map)); 650 if (ints[0] > 0) 651 map.irq = ints[1]; 652 if (ints[0] > 1) 653 map.base_addr = ints[2]; 654 if (ints[0] > 2) 655 map.mem_start = ints[3]; 656 if (ints[0] > 3) 657 map.mem_end = ints[4]; 658 659 /* Add new entry to the list */ 660 return netdev_boot_setup_add(str, &map); 661 } 662 663 __setup("netdev=", netdev_boot_setup); 664 665 /******************************************************************************* 666 667 Device Interface Subroutines 668 669 *******************************************************************************/ 670 671 /** 672 * dev_get_iflink - get 'iflink' value of a interface 673 * @dev: targeted interface 674 * 675 * Indicates the ifindex the interface is linked to. 676 * Physical interfaces have the same 'ifindex' and 'iflink' values. 677 */ 678 679 int dev_get_iflink(const struct net_device *dev) 680 { 681 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 682 return dev->netdev_ops->ndo_get_iflink(dev); 683 684 return dev->ifindex; 685 } 686 EXPORT_SYMBOL(dev_get_iflink); 687 688 /** 689 * dev_fill_metadata_dst - Retrieve tunnel egress information. 690 * @dev: targeted interface 691 * @skb: The packet. 692 * 693 * For better visibility of tunnel traffic OVS needs to retrieve 694 * egress tunnel information for a packet. Following API allows 695 * user to get this info. 696 */ 697 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 698 { 699 struct ip_tunnel_info *info; 700 701 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 702 return -EINVAL; 703 704 info = skb_tunnel_info_unclone(skb); 705 if (!info) 706 return -ENOMEM; 707 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 708 return -EINVAL; 709 710 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 711 } 712 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 713 714 /** 715 * __dev_get_by_name - find a device by its name 716 * @net: the applicable net namespace 717 * @name: name to find 718 * 719 * Find an interface by name. Must be called under RTNL semaphore 720 * or @dev_base_lock. If the name is found a pointer to the device 721 * is returned. If the name is not found then %NULL is returned. The 722 * reference counters are not incremented so the caller must be 723 * careful with locks. 724 */ 725 726 struct net_device *__dev_get_by_name(struct net *net, const char *name) 727 { 728 struct net_device *dev; 729 struct hlist_head *head = dev_name_hash(net, name); 730 731 hlist_for_each_entry(dev, head, name_hlist) 732 if (!strncmp(dev->name, name, IFNAMSIZ)) 733 return dev; 734 735 return NULL; 736 } 737 EXPORT_SYMBOL(__dev_get_by_name); 738 739 /** 740 * dev_get_by_name_rcu - find a device by its name 741 * @net: the applicable net namespace 742 * @name: name to find 743 * 744 * Find an interface by name. 745 * If the name is found a pointer to the device is returned. 746 * If the name is not found then %NULL is returned. 747 * The reference counters are not incremented so the caller must be 748 * careful with locks. The caller must hold RCU lock. 749 */ 750 751 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 752 { 753 struct net_device *dev; 754 struct hlist_head *head = dev_name_hash(net, name); 755 756 hlist_for_each_entry_rcu(dev, head, name_hlist) 757 if (!strncmp(dev->name, name, IFNAMSIZ)) 758 return dev; 759 760 return NULL; 761 } 762 EXPORT_SYMBOL(dev_get_by_name_rcu); 763 764 /** 765 * dev_get_by_name - find a device by its name 766 * @net: the applicable net namespace 767 * @name: name to find 768 * 769 * Find an interface by name. This can be called from any 770 * context and does its own locking. The returned handle has 771 * the usage count incremented and the caller must use dev_put() to 772 * release it when it is no longer needed. %NULL is returned if no 773 * matching device is found. 774 */ 775 776 struct net_device *dev_get_by_name(struct net *net, const char *name) 777 { 778 struct net_device *dev; 779 780 rcu_read_lock(); 781 dev = dev_get_by_name_rcu(net, name); 782 if (dev) 783 dev_hold(dev); 784 rcu_read_unlock(); 785 return dev; 786 } 787 EXPORT_SYMBOL(dev_get_by_name); 788 789 /** 790 * __dev_get_by_index - find a device by its ifindex 791 * @net: the applicable net namespace 792 * @ifindex: index of device 793 * 794 * Search for an interface by index. Returns %NULL if the device 795 * is not found or a pointer to the device. The device has not 796 * had its reference counter increased so the caller must be careful 797 * about locking. The caller must hold either the RTNL semaphore 798 * or @dev_base_lock. 799 */ 800 801 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 802 { 803 struct net_device *dev; 804 struct hlist_head *head = dev_index_hash(net, ifindex); 805 806 hlist_for_each_entry(dev, head, index_hlist) 807 if (dev->ifindex == ifindex) 808 return dev; 809 810 return NULL; 811 } 812 EXPORT_SYMBOL(__dev_get_by_index); 813 814 /** 815 * dev_get_by_index_rcu - find a device by its ifindex 816 * @net: the applicable net namespace 817 * @ifindex: index of device 818 * 819 * Search for an interface by index. Returns %NULL if the device 820 * is not found or a pointer to the device. The device has not 821 * had its reference counter increased so the caller must be careful 822 * about locking. The caller must hold RCU lock. 823 */ 824 825 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 826 { 827 struct net_device *dev; 828 struct hlist_head *head = dev_index_hash(net, ifindex); 829 830 hlist_for_each_entry_rcu(dev, head, index_hlist) 831 if (dev->ifindex == ifindex) 832 return dev; 833 834 return NULL; 835 } 836 EXPORT_SYMBOL(dev_get_by_index_rcu); 837 838 839 /** 840 * dev_get_by_index - find a device by its ifindex 841 * @net: the applicable net namespace 842 * @ifindex: index of device 843 * 844 * Search for an interface by index. Returns NULL if the device 845 * is not found or a pointer to the device. The device returned has 846 * had a reference added and the pointer is safe until the user calls 847 * dev_put to indicate they have finished with it. 848 */ 849 850 struct net_device *dev_get_by_index(struct net *net, int ifindex) 851 { 852 struct net_device *dev; 853 854 rcu_read_lock(); 855 dev = dev_get_by_index_rcu(net, ifindex); 856 if (dev) 857 dev_hold(dev); 858 rcu_read_unlock(); 859 return dev; 860 } 861 EXPORT_SYMBOL(dev_get_by_index); 862 863 /** 864 * netdev_get_name - get a netdevice name, knowing its ifindex. 865 * @net: network namespace 866 * @name: a pointer to the buffer where the name will be stored. 867 * @ifindex: the ifindex of the interface to get the name from. 868 * 869 * The use of raw_seqcount_begin() and cond_resched() before 870 * retrying is required as we want to give the writers a chance 871 * to complete when CONFIG_PREEMPT is not set. 872 */ 873 int netdev_get_name(struct net *net, char *name, int ifindex) 874 { 875 struct net_device *dev; 876 unsigned int seq; 877 878 retry: 879 seq = raw_seqcount_begin(&devnet_rename_seq); 880 rcu_read_lock(); 881 dev = dev_get_by_index_rcu(net, ifindex); 882 if (!dev) { 883 rcu_read_unlock(); 884 return -ENODEV; 885 } 886 887 strcpy(name, dev->name); 888 rcu_read_unlock(); 889 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 890 cond_resched(); 891 goto retry; 892 } 893 894 return 0; 895 } 896 897 /** 898 * dev_getbyhwaddr_rcu - find a device by its hardware address 899 * @net: the applicable net namespace 900 * @type: media type of device 901 * @ha: hardware address 902 * 903 * Search for an interface by MAC address. Returns NULL if the device 904 * is not found or a pointer to the device. 905 * The caller must hold RCU or RTNL. 906 * The returned device has not had its ref count increased 907 * and the caller must therefore be careful about locking 908 * 909 */ 910 911 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 912 const char *ha) 913 { 914 struct net_device *dev; 915 916 for_each_netdev_rcu(net, dev) 917 if (dev->type == type && 918 !memcmp(dev->dev_addr, ha, dev->addr_len)) 919 return dev; 920 921 return NULL; 922 } 923 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 924 925 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 926 { 927 struct net_device *dev; 928 929 ASSERT_RTNL(); 930 for_each_netdev(net, dev) 931 if (dev->type == type) 932 return dev; 933 934 return NULL; 935 } 936 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 937 938 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 939 { 940 struct net_device *dev, *ret = NULL; 941 942 rcu_read_lock(); 943 for_each_netdev_rcu(net, dev) 944 if (dev->type == type) { 945 dev_hold(dev); 946 ret = dev; 947 break; 948 } 949 rcu_read_unlock(); 950 return ret; 951 } 952 EXPORT_SYMBOL(dev_getfirstbyhwtype); 953 954 /** 955 * __dev_get_by_flags - find any device with given flags 956 * @net: the applicable net namespace 957 * @if_flags: IFF_* values 958 * @mask: bitmask of bits in if_flags to check 959 * 960 * Search for any interface with the given flags. Returns NULL if a device 961 * is not found or a pointer to the device. Must be called inside 962 * rtnl_lock(), and result refcount is unchanged. 963 */ 964 965 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 966 unsigned short mask) 967 { 968 struct net_device *dev, *ret; 969 970 ASSERT_RTNL(); 971 972 ret = NULL; 973 for_each_netdev(net, dev) { 974 if (((dev->flags ^ if_flags) & mask) == 0) { 975 ret = dev; 976 break; 977 } 978 } 979 return ret; 980 } 981 EXPORT_SYMBOL(__dev_get_by_flags); 982 983 /** 984 * dev_valid_name - check if name is okay for network device 985 * @name: name string 986 * 987 * Network device names need to be valid file names to 988 * to allow sysfs to work. We also disallow any kind of 989 * whitespace. 990 */ 991 bool dev_valid_name(const char *name) 992 { 993 if (*name == '\0') 994 return false; 995 if (strlen(name) >= IFNAMSIZ) 996 return false; 997 if (!strcmp(name, ".") || !strcmp(name, "..")) 998 return false; 999 1000 while (*name) { 1001 if (*name == '/' || *name == ':' || isspace(*name)) 1002 return false; 1003 name++; 1004 } 1005 return true; 1006 } 1007 EXPORT_SYMBOL(dev_valid_name); 1008 1009 /** 1010 * __dev_alloc_name - allocate a name for a device 1011 * @net: network namespace to allocate the device name in 1012 * @name: name format string 1013 * @buf: scratch buffer and result name string 1014 * 1015 * Passed a format string - eg "lt%d" it will try and find a suitable 1016 * id. It scans list of devices to build up a free map, then chooses 1017 * the first empty slot. The caller must hold the dev_base or rtnl lock 1018 * while allocating the name and adding the device in order to avoid 1019 * duplicates. 1020 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1021 * Returns the number of the unit assigned or a negative errno code. 1022 */ 1023 1024 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1025 { 1026 int i = 0; 1027 const char *p; 1028 const int max_netdevices = 8*PAGE_SIZE; 1029 unsigned long *inuse; 1030 struct net_device *d; 1031 1032 p = strnchr(name, IFNAMSIZ-1, '%'); 1033 if (p) { 1034 /* 1035 * Verify the string as this thing may have come from 1036 * the user. There must be either one "%d" and no other "%" 1037 * characters. 1038 */ 1039 if (p[1] != 'd' || strchr(p + 2, '%')) 1040 return -EINVAL; 1041 1042 /* Use one page as a bit array of possible slots */ 1043 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1044 if (!inuse) 1045 return -ENOMEM; 1046 1047 for_each_netdev(net, d) { 1048 if (!sscanf(d->name, name, &i)) 1049 continue; 1050 if (i < 0 || i >= max_netdevices) 1051 continue; 1052 1053 /* avoid cases where sscanf is not exact inverse of printf */ 1054 snprintf(buf, IFNAMSIZ, name, i); 1055 if (!strncmp(buf, d->name, IFNAMSIZ)) 1056 set_bit(i, inuse); 1057 } 1058 1059 i = find_first_zero_bit(inuse, max_netdevices); 1060 free_page((unsigned long) inuse); 1061 } 1062 1063 if (buf != name) 1064 snprintf(buf, IFNAMSIZ, name, i); 1065 if (!__dev_get_by_name(net, buf)) 1066 return i; 1067 1068 /* It is possible to run out of possible slots 1069 * when the name is long and there isn't enough space left 1070 * for the digits, or if all bits are used. 1071 */ 1072 return -ENFILE; 1073 } 1074 1075 /** 1076 * dev_alloc_name - allocate a name for a device 1077 * @dev: device 1078 * @name: name format string 1079 * 1080 * Passed a format string - eg "lt%d" it will try and find a suitable 1081 * id. It scans list of devices to build up a free map, then chooses 1082 * the first empty slot. The caller must hold the dev_base or rtnl lock 1083 * while allocating the name and adding the device in order to avoid 1084 * duplicates. 1085 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1086 * Returns the number of the unit assigned or a negative errno code. 1087 */ 1088 1089 int dev_alloc_name(struct net_device *dev, const char *name) 1090 { 1091 char buf[IFNAMSIZ]; 1092 struct net *net; 1093 int ret; 1094 1095 BUG_ON(!dev_net(dev)); 1096 net = dev_net(dev); 1097 ret = __dev_alloc_name(net, name, buf); 1098 if (ret >= 0) 1099 strlcpy(dev->name, buf, IFNAMSIZ); 1100 return ret; 1101 } 1102 EXPORT_SYMBOL(dev_alloc_name); 1103 1104 static int dev_alloc_name_ns(struct net *net, 1105 struct net_device *dev, 1106 const char *name) 1107 { 1108 char buf[IFNAMSIZ]; 1109 int ret; 1110 1111 ret = __dev_alloc_name(net, name, buf); 1112 if (ret >= 0) 1113 strlcpy(dev->name, buf, IFNAMSIZ); 1114 return ret; 1115 } 1116 1117 static int dev_get_valid_name(struct net *net, 1118 struct net_device *dev, 1119 const char *name) 1120 { 1121 BUG_ON(!net); 1122 1123 if (!dev_valid_name(name)) 1124 return -EINVAL; 1125 1126 if (strchr(name, '%')) 1127 return dev_alloc_name_ns(net, dev, name); 1128 else if (__dev_get_by_name(net, name)) 1129 return -EEXIST; 1130 else if (dev->name != name) 1131 strlcpy(dev->name, name, IFNAMSIZ); 1132 1133 return 0; 1134 } 1135 1136 /** 1137 * dev_change_name - change name of a device 1138 * @dev: device 1139 * @newname: name (or format string) must be at least IFNAMSIZ 1140 * 1141 * Change name of a device, can pass format strings "eth%d". 1142 * for wildcarding. 1143 */ 1144 int dev_change_name(struct net_device *dev, const char *newname) 1145 { 1146 unsigned char old_assign_type; 1147 char oldname[IFNAMSIZ]; 1148 int err = 0; 1149 int ret; 1150 struct net *net; 1151 1152 ASSERT_RTNL(); 1153 BUG_ON(!dev_net(dev)); 1154 1155 net = dev_net(dev); 1156 if (dev->flags & IFF_UP) 1157 return -EBUSY; 1158 1159 write_seqcount_begin(&devnet_rename_seq); 1160 1161 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1162 write_seqcount_end(&devnet_rename_seq); 1163 return 0; 1164 } 1165 1166 memcpy(oldname, dev->name, IFNAMSIZ); 1167 1168 err = dev_get_valid_name(net, dev, newname); 1169 if (err < 0) { 1170 write_seqcount_end(&devnet_rename_seq); 1171 return err; 1172 } 1173 1174 if (oldname[0] && !strchr(oldname, '%')) 1175 netdev_info(dev, "renamed from %s\n", oldname); 1176 1177 old_assign_type = dev->name_assign_type; 1178 dev->name_assign_type = NET_NAME_RENAMED; 1179 1180 rollback: 1181 ret = device_rename(&dev->dev, dev->name); 1182 if (ret) { 1183 memcpy(dev->name, oldname, IFNAMSIZ); 1184 dev->name_assign_type = old_assign_type; 1185 write_seqcount_end(&devnet_rename_seq); 1186 return ret; 1187 } 1188 1189 write_seqcount_end(&devnet_rename_seq); 1190 1191 netdev_adjacent_rename_links(dev, oldname); 1192 1193 write_lock_bh(&dev_base_lock); 1194 hlist_del_rcu(&dev->name_hlist); 1195 write_unlock_bh(&dev_base_lock); 1196 1197 synchronize_rcu(); 1198 1199 write_lock_bh(&dev_base_lock); 1200 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1201 write_unlock_bh(&dev_base_lock); 1202 1203 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1204 ret = notifier_to_errno(ret); 1205 1206 if (ret) { 1207 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1208 if (err >= 0) { 1209 err = ret; 1210 write_seqcount_begin(&devnet_rename_seq); 1211 memcpy(dev->name, oldname, IFNAMSIZ); 1212 memcpy(oldname, newname, IFNAMSIZ); 1213 dev->name_assign_type = old_assign_type; 1214 old_assign_type = NET_NAME_RENAMED; 1215 goto rollback; 1216 } else { 1217 pr_err("%s: name change rollback failed: %d\n", 1218 dev->name, ret); 1219 } 1220 } 1221 1222 return err; 1223 } 1224 1225 /** 1226 * dev_set_alias - change ifalias of a device 1227 * @dev: device 1228 * @alias: name up to IFALIASZ 1229 * @len: limit of bytes to copy from info 1230 * 1231 * Set ifalias for a device, 1232 */ 1233 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1234 { 1235 char *new_ifalias; 1236 1237 ASSERT_RTNL(); 1238 1239 if (len >= IFALIASZ) 1240 return -EINVAL; 1241 1242 if (!len) { 1243 kfree(dev->ifalias); 1244 dev->ifalias = NULL; 1245 return 0; 1246 } 1247 1248 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1249 if (!new_ifalias) 1250 return -ENOMEM; 1251 dev->ifalias = new_ifalias; 1252 1253 strlcpy(dev->ifalias, alias, len+1); 1254 return len; 1255 } 1256 1257 1258 /** 1259 * netdev_features_change - device changes features 1260 * @dev: device to cause notification 1261 * 1262 * Called to indicate a device has changed features. 1263 */ 1264 void netdev_features_change(struct net_device *dev) 1265 { 1266 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1267 } 1268 EXPORT_SYMBOL(netdev_features_change); 1269 1270 /** 1271 * netdev_state_change - device changes state 1272 * @dev: device to cause notification 1273 * 1274 * Called to indicate a device has changed state. This function calls 1275 * the notifier chains for netdev_chain and sends a NEWLINK message 1276 * to the routing socket. 1277 */ 1278 void netdev_state_change(struct net_device *dev) 1279 { 1280 if (dev->flags & IFF_UP) { 1281 struct netdev_notifier_change_info change_info; 1282 1283 change_info.flags_changed = 0; 1284 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 1285 &change_info.info); 1286 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1287 } 1288 } 1289 EXPORT_SYMBOL(netdev_state_change); 1290 1291 /** 1292 * netdev_notify_peers - notify network peers about existence of @dev 1293 * @dev: network device 1294 * 1295 * Generate traffic such that interested network peers are aware of 1296 * @dev, such as by generating a gratuitous ARP. This may be used when 1297 * a device wants to inform the rest of the network about some sort of 1298 * reconfiguration such as a failover event or virtual machine 1299 * migration. 1300 */ 1301 void netdev_notify_peers(struct net_device *dev) 1302 { 1303 rtnl_lock(); 1304 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1305 rtnl_unlock(); 1306 } 1307 EXPORT_SYMBOL(netdev_notify_peers); 1308 1309 static int __dev_open(struct net_device *dev) 1310 { 1311 const struct net_device_ops *ops = dev->netdev_ops; 1312 int ret; 1313 1314 ASSERT_RTNL(); 1315 1316 if (!netif_device_present(dev)) 1317 return -ENODEV; 1318 1319 /* Block netpoll from trying to do any rx path servicing. 1320 * If we don't do this there is a chance ndo_poll_controller 1321 * or ndo_poll may be running while we open the device 1322 */ 1323 netpoll_poll_disable(dev); 1324 1325 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1326 ret = notifier_to_errno(ret); 1327 if (ret) 1328 return ret; 1329 1330 set_bit(__LINK_STATE_START, &dev->state); 1331 1332 if (ops->ndo_validate_addr) 1333 ret = ops->ndo_validate_addr(dev); 1334 1335 if (!ret && ops->ndo_open) 1336 ret = ops->ndo_open(dev); 1337 1338 netpoll_poll_enable(dev); 1339 1340 if (ret) 1341 clear_bit(__LINK_STATE_START, &dev->state); 1342 else { 1343 dev->flags |= IFF_UP; 1344 dev_set_rx_mode(dev); 1345 dev_activate(dev); 1346 add_device_randomness(dev->dev_addr, dev->addr_len); 1347 } 1348 1349 return ret; 1350 } 1351 1352 /** 1353 * dev_open - prepare an interface for use. 1354 * @dev: device to open 1355 * 1356 * Takes a device from down to up state. The device's private open 1357 * function is invoked and then the multicast lists are loaded. Finally 1358 * the device is moved into the up state and a %NETDEV_UP message is 1359 * sent to the netdev notifier chain. 1360 * 1361 * Calling this function on an active interface is a nop. On a failure 1362 * a negative errno code is returned. 1363 */ 1364 int dev_open(struct net_device *dev) 1365 { 1366 int ret; 1367 1368 if (dev->flags & IFF_UP) 1369 return 0; 1370 1371 ret = __dev_open(dev); 1372 if (ret < 0) 1373 return ret; 1374 1375 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1376 call_netdevice_notifiers(NETDEV_UP, dev); 1377 1378 return ret; 1379 } 1380 EXPORT_SYMBOL(dev_open); 1381 1382 static int __dev_close_many(struct list_head *head) 1383 { 1384 struct net_device *dev; 1385 1386 ASSERT_RTNL(); 1387 might_sleep(); 1388 1389 list_for_each_entry(dev, head, close_list) { 1390 /* Temporarily disable netpoll until the interface is down */ 1391 netpoll_poll_disable(dev); 1392 1393 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1394 1395 clear_bit(__LINK_STATE_START, &dev->state); 1396 1397 /* Synchronize to scheduled poll. We cannot touch poll list, it 1398 * can be even on different cpu. So just clear netif_running(). 1399 * 1400 * dev->stop() will invoke napi_disable() on all of it's 1401 * napi_struct instances on this device. 1402 */ 1403 smp_mb__after_atomic(); /* Commit netif_running(). */ 1404 } 1405 1406 dev_deactivate_many(head); 1407 1408 list_for_each_entry(dev, head, close_list) { 1409 const struct net_device_ops *ops = dev->netdev_ops; 1410 1411 /* 1412 * Call the device specific close. This cannot fail. 1413 * Only if device is UP 1414 * 1415 * We allow it to be called even after a DETACH hot-plug 1416 * event. 1417 */ 1418 if (ops->ndo_stop) 1419 ops->ndo_stop(dev); 1420 1421 dev->flags &= ~IFF_UP; 1422 netpoll_poll_enable(dev); 1423 } 1424 1425 return 0; 1426 } 1427 1428 static int __dev_close(struct net_device *dev) 1429 { 1430 int retval; 1431 LIST_HEAD(single); 1432 1433 list_add(&dev->close_list, &single); 1434 retval = __dev_close_many(&single); 1435 list_del(&single); 1436 1437 return retval; 1438 } 1439 1440 int dev_close_many(struct list_head *head, bool unlink) 1441 { 1442 struct net_device *dev, *tmp; 1443 1444 /* Remove the devices that don't need to be closed */ 1445 list_for_each_entry_safe(dev, tmp, head, close_list) 1446 if (!(dev->flags & IFF_UP)) 1447 list_del_init(&dev->close_list); 1448 1449 __dev_close_many(head); 1450 1451 list_for_each_entry_safe(dev, tmp, head, close_list) { 1452 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1453 call_netdevice_notifiers(NETDEV_DOWN, dev); 1454 if (unlink) 1455 list_del_init(&dev->close_list); 1456 } 1457 1458 return 0; 1459 } 1460 EXPORT_SYMBOL(dev_close_many); 1461 1462 /** 1463 * dev_close - shutdown an interface. 1464 * @dev: device to shutdown 1465 * 1466 * This function moves an active device into down state. A 1467 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1468 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1469 * chain. 1470 */ 1471 int dev_close(struct net_device *dev) 1472 { 1473 if (dev->flags & IFF_UP) { 1474 LIST_HEAD(single); 1475 1476 list_add(&dev->close_list, &single); 1477 dev_close_many(&single, true); 1478 list_del(&single); 1479 } 1480 return 0; 1481 } 1482 EXPORT_SYMBOL(dev_close); 1483 1484 1485 /** 1486 * dev_disable_lro - disable Large Receive Offload on a device 1487 * @dev: device 1488 * 1489 * Disable Large Receive Offload (LRO) on a net device. Must be 1490 * called under RTNL. This is needed if received packets may be 1491 * forwarded to another interface. 1492 */ 1493 void dev_disable_lro(struct net_device *dev) 1494 { 1495 struct net_device *lower_dev; 1496 struct list_head *iter; 1497 1498 dev->wanted_features &= ~NETIF_F_LRO; 1499 netdev_update_features(dev); 1500 1501 if (unlikely(dev->features & NETIF_F_LRO)) 1502 netdev_WARN(dev, "failed to disable LRO!\n"); 1503 1504 netdev_for_each_lower_dev(dev, lower_dev, iter) 1505 dev_disable_lro(lower_dev); 1506 } 1507 EXPORT_SYMBOL(dev_disable_lro); 1508 1509 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1510 struct net_device *dev) 1511 { 1512 struct netdev_notifier_info info; 1513 1514 netdev_notifier_info_init(&info, dev); 1515 return nb->notifier_call(nb, val, &info); 1516 } 1517 1518 static int dev_boot_phase = 1; 1519 1520 /** 1521 * register_netdevice_notifier - register a network notifier block 1522 * @nb: notifier 1523 * 1524 * Register a notifier to be called when network device events occur. 1525 * The notifier passed is linked into the kernel structures and must 1526 * not be reused until it has been unregistered. A negative errno code 1527 * is returned on a failure. 1528 * 1529 * When registered all registration and up events are replayed 1530 * to the new notifier to allow device to have a race free 1531 * view of the network device list. 1532 */ 1533 1534 int register_netdevice_notifier(struct notifier_block *nb) 1535 { 1536 struct net_device *dev; 1537 struct net_device *last; 1538 struct net *net; 1539 int err; 1540 1541 rtnl_lock(); 1542 err = raw_notifier_chain_register(&netdev_chain, nb); 1543 if (err) 1544 goto unlock; 1545 if (dev_boot_phase) 1546 goto unlock; 1547 for_each_net(net) { 1548 for_each_netdev(net, dev) { 1549 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1550 err = notifier_to_errno(err); 1551 if (err) 1552 goto rollback; 1553 1554 if (!(dev->flags & IFF_UP)) 1555 continue; 1556 1557 call_netdevice_notifier(nb, NETDEV_UP, dev); 1558 } 1559 } 1560 1561 unlock: 1562 rtnl_unlock(); 1563 return err; 1564 1565 rollback: 1566 last = dev; 1567 for_each_net(net) { 1568 for_each_netdev(net, dev) { 1569 if (dev == last) 1570 goto outroll; 1571 1572 if (dev->flags & IFF_UP) { 1573 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1574 dev); 1575 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1576 } 1577 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1578 } 1579 } 1580 1581 outroll: 1582 raw_notifier_chain_unregister(&netdev_chain, nb); 1583 goto unlock; 1584 } 1585 EXPORT_SYMBOL(register_netdevice_notifier); 1586 1587 /** 1588 * unregister_netdevice_notifier - unregister a network notifier block 1589 * @nb: notifier 1590 * 1591 * Unregister a notifier previously registered by 1592 * register_netdevice_notifier(). The notifier is unlinked into the 1593 * kernel structures and may then be reused. A negative errno code 1594 * is returned on a failure. 1595 * 1596 * After unregistering unregister and down device events are synthesized 1597 * for all devices on the device list to the removed notifier to remove 1598 * the need for special case cleanup code. 1599 */ 1600 1601 int unregister_netdevice_notifier(struct notifier_block *nb) 1602 { 1603 struct net_device *dev; 1604 struct net *net; 1605 int err; 1606 1607 rtnl_lock(); 1608 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1609 if (err) 1610 goto unlock; 1611 1612 for_each_net(net) { 1613 for_each_netdev(net, dev) { 1614 if (dev->flags & IFF_UP) { 1615 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1616 dev); 1617 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1618 } 1619 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1620 } 1621 } 1622 unlock: 1623 rtnl_unlock(); 1624 return err; 1625 } 1626 EXPORT_SYMBOL(unregister_netdevice_notifier); 1627 1628 /** 1629 * call_netdevice_notifiers_info - call all network notifier blocks 1630 * @val: value passed unmodified to notifier function 1631 * @dev: net_device pointer passed unmodified to notifier function 1632 * @info: notifier information data 1633 * 1634 * Call all network notifier blocks. Parameters and return value 1635 * are as for raw_notifier_call_chain(). 1636 */ 1637 1638 static int call_netdevice_notifiers_info(unsigned long val, 1639 struct net_device *dev, 1640 struct netdev_notifier_info *info) 1641 { 1642 ASSERT_RTNL(); 1643 netdev_notifier_info_init(info, dev); 1644 return raw_notifier_call_chain(&netdev_chain, val, info); 1645 } 1646 1647 /** 1648 * call_netdevice_notifiers - call all network notifier blocks 1649 * @val: value passed unmodified to notifier function 1650 * @dev: net_device pointer passed unmodified to notifier function 1651 * 1652 * Call all network notifier blocks. Parameters and return value 1653 * are as for raw_notifier_call_chain(). 1654 */ 1655 1656 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1657 { 1658 struct netdev_notifier_info info; 1659 1660 return call_netdevice_notifiers_info(val, dev, &info); 1661 } 1662 EXPORT_SYMBOL(call_netdevice_notifiers); 1663 1664 #ifdef CONFIG_NET_INGRESS 1665 static struct static_key ingress_needed __read_mostly; 1666 1667 void net_inc_ingress_queue(void) 1668 { 1669 static_key_slow_inc(&ingress_needed); 1670 } 1671 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 1672 1673 void net_dec_ingress_queue(void) 1674 { 1675 static_key_slow_dec(&ingress_needed); 1676 } 1677 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 1678 #endif 1679 1680 #ifdef CONFIG_NET_EGRESS 1681 static struct static_key egress_needed __read_mostly; 1682 1683 void net_inc_egress_queue(void) 1684 { 1685 static_key_slow_inc(&egress_needed); 1686 } 1687 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 1688 1689 void net_dec_egress_queue(void) 1690 { 1691 static_key_slow_dec(&egress_needed); 1692 } 1693 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 1694 #endif 1695 1696 static struct static_key netstamp_needed __read_mostly; 1697 #ifdef HAVE_JUMP_LABEL 1698 /* We are not allowed to call static_key_slow_dec() from irq context 1699 * If net_disable_timestamp() is called from irq context, defer the 1700 * static_key_slow_dec() calls. 1701 */ 1702 static atomic_t netstamp_needed_deferred; 1703 #endif 1704 1705 void net_enable_timestamp(void) 1706 { 1707 #ifdef HAVE_JUMP_LABEL 1708 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1709 1710 if (deferred) { 1711 while (--deferred) 1712 static_key_slow_dec(&netstamp_needed); 1713 return; 1714 } 1715 #endif 1716 static_key_slow_inc(&netstamp_needed); 1717 } 1718 EXPORT_SYMBOL(net_enable_timestamp); 1719 1720 void net_disable_timestamp(void) 1721 { 1722 #ifdef HAVE_JUMP_LABEL 1723 if (in_interrupt()) { 1724 atomic_inc(&netstamp_needed_deferred); 1725 return; 1726 } 1727 #endif 1728 static_key_slow_dec(&netstamp_needed); 1729 } 1730 EXPORT_SYMBOL(net_disable_timestamp); 1731 1732 static inline void net_timestamp_set(struct sk_buff *skb) 1733 { 1734 skb->tstamp = 0; 1735 if (static_key_false(&netstamp_needed)) 1736 __net_timestamp(skb); 1737 } 1738 1739 #define net_timestamp_check(COND, SKB) \ 1740 if (static_key_false(&netstamp_needed)) { \ 1741 if ((COND) && !(SKB)->tstamp) \ 1742 __net_timestamp(SKB); \ 1743 } \ 1744 1745 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 1746 { 1747 unsigned int len; 1748 1749 if (!(dev->flags & IFF_UP)) 1750 return false; 1751 1752 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1753 if (skb->len <= len) 1754 return true; 1755 1756 /* if TSO is enabled, we don't care about the length as the packet 1757 * could be forwarded without being segmented before 1758 */ 1759 if (skb_is_gso(skb)) 1760 return true; 1761 1762 return false; 1763 } 1764 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1765 1766 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1767 { 1768 int ret = ____dev_forward_skb(dev, skb); 1769 1770 if (likely(!ret)) { 1771 skb->protocol = eth_type_trans(skb, dev); 1772 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 1773 } 1774 1775 return ret; 1776 } 1777 EXPORT_SYMBOL_GPL(__dev_forward_skb); 1778 1779 /** 1780 * dev_forward_skb - loopback an skb to another netif 1781 * 1782 * @dev: destination network device 1783 * @skb: buffer to forward 1784 * 1785 * return values: 1786 * NET_RX_SUCCESS (no congestion) 1787 * NET_RX_DROP (packet was dropped, but freed) 1788 * 1789 * dev_forward_skb can be used for injecting an skb from the 1790 * start_xmit function of one device into the receive queue 1791 * of another device. 1792 * 1793 * The receiving device may be in another namespace, so 1794 * we have to clear all information in the skb that could 1795 * impact namespace isolation. 1796 */ 1797 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1798 { 1799 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1800 } 1801 EXPORT_SYMBOL_GPL(dev_forward_skb); 1802 1803 static inline int deliver_skb(struct sk_buff *skb, 1804 struct packet_type *pt_prev, 1805 struct net_device *orig_dev) 1806 { 1807 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 1808 return -ENOMEM; 1809 atomic_inc(&skb->users); 1810 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1811 } 1812 1813 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 1814 struct packet_type **pt, 1815 struct net_device *orig_dev, 1816 __be16 type, 1817 struct list_head *ptype_list) 1818 { 1819 struct packet_type *ptype, *pt_prev = *pt; 1820 1821 list_for_each_entry_rcu(ptype, ptype_list, list) { 1822 if (ptype->type != type) 1823 continue; 1824 if (pt_prev) 1825 deliver_skb(skb, pt_prev, orig_dev); 1826 pt_prev = ptype; 1827 } 1828 *pt = pt_prev; 1829 } 1830 1831 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1832 { 1833 if (!ptype->af_packet_priv || !skb->sk) 1834 return false; 1835 1836 if (ptype->id_match) 1837 return ptype->id_match(ptype, skb->sk); 1838 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1839 return true; 1840 1841 return false; 1842 } 1843 1844 /* 1845 * Support routine. Sends outgoing frames to any network 1846 * taps currently in use. 1847 */ 1848 1849 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1850 { 1851 struct packet_type *ptype; 1852 struct sk_buff *skb2 = NULL; 1853 struct packet_type *pt_prev = NULL; 1854 struct list_head *ptype_list = &ptype_all; 1855 1856 rcu_read_lock(); 1857 again: 1858 list_for_each_entry_rcu(ptype, ptype_list, list) { 1859 /* Never send packets back to the socket 1860 * they originated from - MvS (miquels@drinkel.ow.org) 1861 */ 1862 if (skb_loop_sk(ptype, skb)) 1863 continue; 1864 1865 if (pt_prev) { 1866 deliver_skb(skb2, pt_prev, skb->dev); 1867 pt_prev = ptype; 1868 continue; 1869 } 1870 1871 /* need to clone skb, done only once */ 1872 skb2 = skb_clone(skb, GFP_ATOMIC); 1873 if (!skb2) 1874 goto out_unlock; 1875 1876 net_timestamp_set(skb2); 1877 1878 /* skb->nh should be correctly 1879 * set by sender, so that the second statement is 1880 * just protection against buggy protocols. 1881 */ 1882 skb_reset_mac_header(skb2); 1883 1884 if (skb_network_header(skb2) < skb2->data || 1885 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 1886 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1887 ntohs(skb2->protocol), 1888 dev->name); 1889 skb_reset_network_header(skb2); 1890 } 1891 1892 skb2->transport_header = skb2->network_header; 1893 skb2->pkt_type = PACKET_OUTGOING; 1894 pt_prev = ptype; 1895 } 1896 1897 if (ptype_list == &ptype_all) { 1898 ptype_list = &dev->ptype_all; 1899 goto again; 1900 } 1901 out_unlock: 1902 if (pt_prev) 1903 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1904 rcu_read_unlock(); 1905 } 1906 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 1907 1908 /** 1909 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1910 * @dev: Network device 1911 * @txq: number of queues available 1912 * 1913 * If real_num_tx_queues is changed the tc mappings may no longer be 1914 * valid. To resolve this verify the tc mapping remains valid and if 1915 * not NULL the mapping. With no priorities mapping to this 1916 * offset/count pair it will no longer be used. In the worst case TC0 1917 * is invalid nothing can be done so disable priority mappings. If is 1918 * expected that drivers will fix this mapping if they can before 1919 * calling netif_set_real_num_tx_queues. 1920 */ 1921 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1922 { 1923 int i; 1924 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1925 1926 /* If TC0 is invalidated disable TC mapping */ 1927 if (tc->offset + tc->count > txq) { 1928 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1929 dev->num_tc = 0; 1930 return; 1931 } 1932 1933 /* Invalidated prio to tc mappings set to TC0 */ 1934 for (i = 1; i < TC_BITMASK + 1; i++) { 1935 int q = netdev_get_prio_tc_map(dev, i); 1936 1937 tc = &dev->tc_to_txq[q]; 1938 if (tc->offset + tc->count > txq) { 1939 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1940 i, q); 1941 netdev_set_prio_tc_map(dev, i, 0); 1942 } 1943 } 1944 } 1945 1946 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 1947 { 1948 if (dev->num_tc) { 1949 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1950 int i; 1951 1952 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 1953 if ((txq - tc->offset) < tc->count) 1954 return i; 1955 } 1956 1957 return -1; 1958 } 1959 1960 return 0; 1961 } 1962 1963 #ifdef CONFIG_XPS 1964 static DEFINE_MUTEX(xps_map_mutex); 1965 #define xmap_dereference(P) \ 1966 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 1967 1968 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 1969 int tci, u16 index) 1970 { 1971 struct xps_map *map = NULL; 1972 int pos; 1973 1974 if (dev_maps) 1975 map = xmap_dereference(dev_maps->cpu_map[tci]); 1976 if (!map) 1977 return false; 1978 1979 for (pos = map->len; pos--;) { 1980 if (map->queues[pos] != index) 1981 continue; 1982 1983 if (map->len > 1) { 1984 map->queues[pos] = map->queues[--map->len]; 1985 break; 1986 } 1987 1988 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL); 1989 kfree_rcu(map, rcu); 1990 return false; 1991 } 1992 1993 return true; 1994 } 1995 1996 static bool remove_xps_queue_cpu(struct net_device *dev, 1997 struct xps_dev_maps *dev_maps, 1998 int cpu, u16 offset, u16 count) 1999 { 2000 int num_tc = dev->num_tc ? : 1; 2001 bool active = false; 2002 int tci; 2003 2004 for (tci = cpu * num_tc; num_tc--; tci++) { 2005 int i, j; 2006 2007 for (i = count, j = offset; i--; j++) { 2008 if (!remove_xps_queue(dev_maps, cpu, j)) 2009 break; 2010 } 2011 2012 active |= i < 0; 2013 } 2014 2015 return active; 2016 } 2017 2018 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2019 u16 count) 2020 { 2021 struct xps_dev_maps *dev_maps; 2022 int cpu, i; 2023 bool active = false; 2024 2025 mutex_lock(&xps_map_mutex); 2026 dev_maps = xmap_dereference(dev->xps_maps); 2027 2028 if (!dev_maps) 2029 goto out_no_maps; 2030 2031 for_each_possible_cpu(cpu) 2032 active |= remove_xps_queue_cpu(dev, dev_maps, cpu, 2033 offset, count); 2034 2035 if (!active) { 2036 RCU_INIT_POINTER(dev->xps_maps, NULL); 2037 kfree_rcu(dev_maps, rcu); 2038 } 2039 2040 for (i = offset + (count - 1); count--; i--) 2041 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 2042 NUMA_NO_NODE); 2043 2044 out_no_maps: 2045 mutex_unlock(&xps_map_mutex); 2046 } 2047 2048 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2049 { 2050 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2051 } 2052 2053 static struct xps_map *expand_xps_map(struct xps_map *map, 2054 int cpu, u16 index) 2055 { 2056 struct xps_map *new_map; 2057 int alloc_len = XPS_MIN_MAP_ALLOC; 2058 int i, pos; 2059 2060 for (pos = 0; map && pos < map->len; pos++) { 2061 if (map->queues[pos] != index) 2062 continue; 2063 return map; 2064 } 2065 2066 /* Need to add queue to this CPU's existing map */ 2067 if (map) { 2068 if (pos < map->alloc_len) 2069 return map; 2070 2071 alloc_len = map->alloc_len * 2; 2072 } 2073 2074 /* Need to allocate new map to store queue on this CPU's map */ 2075 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2076 cpu_to_node(cpu)); 2077 if (!new_map) 2078 return NULL; 2079 2080 for (i = 0; i < pos; i++) 2081 new_map->queues[i] = map->queues[i]; 2082 new_map->alloc_len = alloc_len; 2083 new_map->len = pos; 2084 2085 return new_map; 2086 } 2087 2088 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2089 u16 index) 2090 { 2091 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2092 int i, cpu, tci, numa_node_id = -2; 2093 int maps_sz, num_tc = 1, tc = 0; 2094 struct xps_map *map, *new_map; 2095 bool active = false; 2096 2097 if (dev->num_tc) { 2098 num_tc = dev->num_tc; 2099 tc = netdev_txq_to_tc(dev, index); 2100 if (tc < 0) 2101 return -EINVAL; 2102 } 2103 2104 maps_sz = XPS_DEV_MAPS_SIZE(num_tc); 2105 if (maps_sz < L1_CACHE_BYTES) 2106 maps_sz = L1_CACHE_BYTES; 2107 2108 mutex_lock(&xps_map_mutex); 2109 2110 dev_maps = xmap_dereference(dev->xps_maps); 2111 2112 /* allocate memory for queue storage */ 2113 for_each_cpu_and(cpu, cpu_online_mask, mask) { 2114 if (!new_dev_maps) 2115 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2116 if (!new_dev_maps) { 2117 mutex_unlock(&xps_map_mutex); 2118 return -ENOMEM; 2119 } 2120 2121 tci = cpu * num_tc + tc; 2122 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) : 2123 NULL; 2124 2125 map = expand_xps_map(map, cpu, index); 2126 if (!map) 2127 goto error; 2128 2129 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2130 } 2131 2132 if (!new_dev_maps) 2133 goto out_no_new_maps; 2134 2135 for_each_possible_cpu(cpu) { 2136 /* copy maps belonging to foreign traffic classes */ 2137 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) { 2138 /* fill in the new device map from the old device map */ 2139 map = xmap_dereference(dev_maps->cpu_map[tci]); 2140 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2141 } 2142 2143 /* We need to explicitly update tci as prevous loop 2144 * could break out early if dev_maps is NULL. 2145 */ 2146 tci = cpu * num_tc + tc; 2147 2148 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 2149 /* add queue to CPU maps */ 2150 int pos = 0; 2151 2152 map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2153 while ((pos < map->len) && (map->queues[pos] != index)) 2154 pos++; 2155 2156 if (pos == map->len) 2157 map->queues[map->len++] = index; 2158 #ifdef CONFIG_NUMA 2159 if (numa_node_id == -2) 2160 numa_node_id = cpu_to_node(cpu); 2161 else if (numa_node_id != cpu_to_node(cpu)) 2162 numa_node_id = -1; 2163 #endif 2164 } else if (dev_maps) { 2165 /* fill in the new device map from the old device map */ 2166 map = xmap_dereference(dev_maps->cpu_map[tci]); 2167 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2168 } 2169 2170 /* copy maps belonging to foreign traffic classes */ 2171 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { 2172 /* fill in the new device map from the old device map */ 2173 map = xmap_dereference(dev_maps->cpu_map[tci]); 2174 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2175 } 2176 } 2177 2178 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 2179 2180 /* Cleanup old maps */ 2181 if (!dev_maps) 2182 goto out_no_old_maps; 2183 2184 for_each_possible_cpu(cpu) { 2185 for (i = num_tc, tci = cpu * num_tc; i--; tci++) { 2186 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2187 map = xmap_dereference(dev_maps->cpu_map[tci]); 2188 if (map && map != new_map) 2189 kfree_rcu(map, rcu); 2190 } 2191 } 2192 2193 kfree_rcu(dev_maps, rcu); 2194 2195 out_no_old_maps: 2196 dev_maps = new_dev_maps; 2197 active = true; 2198 2199 out_no_new_maps: 2200 /* update Tx queue numa node */ 2201 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2202 (numa_node_id >= 0) ? numa_node_id : 2203 NUMA_NO_NODE); 2204 2205 if (!dev_maps) 2206 goto out_no_maps; 2207 2208 /* removes queue from unused CPUs */ 2209 for_each_possible_cpu(cpu) { 2210 for (i = tc, tci = cpu * num_tc; i--; tci++) 2211 active |= remove_xps_queue(dev_maps, tci, index); 2212 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu)) 2213 active |= remove_xps_queue(dev_maps, tci, index); 2214 for (i = num_tc - tc, tci++; --i; tci++) 2215 active |= remove_xps_queue(dev_maps, tci, index); 2216 } 2217 2218 /* free map if not active */ 2219 if (!active) { 2220 RCU_INIT_POINTER(dev->xps_maps, NULL); 2221 kfree_rcu(dev_maps, rcu); 2222 } 2223 2224 out_no_maps: 2225 mutex_unlock(&xps_map_mutex); 2226 2227 return 0; 2228 error: 2229 /* remove any maps that we added */ 2230 for_each_possible_cpu(cpu) { 2231 for (i = num_tc, tci = cpu * num_tc; i--; tci++) { 2232 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2233 map = dev_maps ? 2234 xmap_dereference(dev_maps->cpu_map[tci]) : 2235 NULL; 2236 if (new_map && new_map != map) 2237 kfree(new_map); 2238 } 2239 } 2240 2241 mutex_unlock(&xps_map_mutex); 2242 2243 kfree(new_dev_maps); 2244 return -ENOMEM; 2245 } 2246 EXPORT_SYMBOL(netif_set_xps_queue); 2247 2248 #endif 2249 void netdev_reset_tc(struct net_device *dev) 2250 { 2251 #ifdef CONFIG_XPS 2252 netif_reset_xps_queues_gt(dev, 0); 2253 #endif 2254 dev->num_tc = 0; 2255 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2256 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2257 } 2258 EXPORT_SYMBOL(netdev_reset_tc); 2259 2260 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2261 { 2262 if (tc >= dev->num_tc) 2263 return -EINVAL; 2264 2265 #ifdef CONFIG_XPS 2266 netif_reset_xps_queues(dev, offset, count); 2267 #endif 2268 dev->tc_to_txq[tc].count = count; 2269 dev->tc_to_txq[tc].offset = offset; 2270 return 0; 2271 } 2272 EXPORT_SYMBOL(netdev_set_tc_queue); 2273 2274 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2275 { 2276 if (num_tc > TC_MAX_QUEUE) 2277 return -EINVAL; 2278 2279 #ifdef CONFIG_XPS 2280 netif_reset_xps_queues_gt(dev, 0); 2281 #endif 2282 dev->num_tc = num_tc; 2283 return 0; 2284 } 2285 EXPORT_SYMBOL(netdev_set_num_tc); 2286 2287 /* 2288 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2289 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 2290 */ 2291 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2292 { 2293 int rc; 2294 2295 if (txq < 1 || txq > dev->num_tx_queues) 2296 return -EINVAL; 2297 2298 if (dev->reg_state == NETREG_REGISTERED || 2299 dev->reg_state == NETREG_UNREGISTERING) { 2300 ASSERT_RTNL(); 2301 2302 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2303 txq); 2304 if (rc) 2305 return rc; 2306 2307 if (dev->num_tc) 2308 netif_setup_tc(dev, txq); 2309 2310 if (txq < dev->real_num_tx_queues) { 2311 qdisc_reset_all_tx_gt(dev, txq); 2312 #ifdef CONFIG_XPS 2313 netif_reset_xps_queues_gt(dev, txq); 2314 #endif 2315 } 2316 } 2317 2318 dev->real_num_tx_queues = txq; 2319 return 0; 2320 } 2321 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2322 2323 #ifdef CONFIG_SYSFS 2324 /** 2325 * netif_set_real_num_rx_queues - set actual number of RX queues used 2326 * @dev: Network device 2327 * @rxq: Actual number of RX queues 2328 * 2329 * This must be called either with the rtnl_lock held or before 2330 * registration of the net device. Returns 0 on success, or a 2331 * negative error code. If called before registration, it always 2332 * succeeds. 2333 */ 2334 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2335 { 2336 int rc; 2337 2338 if (rxq < 1 || rxq > dev->num_rx_queues) 2339 return -EINVAL; 2340 2341 if (dev->reg_state == NETREG_REGISTERED) { 2342 ASSERT_RTNL(); 2343 2344 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2345 rxq); 2346 if (rc) 2347 return rc; 2348 } 2349 2350 dev->real_num_rx_queues = rxq; 2351 return 0; 2352 } 2353 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2354 #endif 2355 2356 /** 2357 * netif_get_num_default_rss_queues - default number of RSS queues 2358 * 2359 * This routine should set an upper limit on the number of RSS queues 2360 * used by default by multiqueue devices. 2361 */ 2362 int netif_get_num_default_rss_queues(void) 2363 { 2364 return is_kdump_kernel() ? 2365 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2366 } 2367 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2368 2369 static void __netif_reschedule(struct Qdisc *q) 2370 { 2371 struct softnet_data *sd; 2372 unsigned long flags; 2373 2374 local_irq_save(flags); 2375 sd = this_cpu_ptr(&softnet_data); 2376 q->next_sched = NULL; 2377 *sd->output_queue_tailp = q; 2378 sd->output_queue_tailp = &q->next_sched; 2379 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2380 local_irq_restore(flags); 2381 } 2382 2383 void __netif_schedule(struct Qdisc *q) 2384 { 2385 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2386 __netif_reschedule(q); 2387 } 2388 EXPORT_SYMBOL(__netif_schedule); 2389 2390 struct dev_kfree_skb_cb { 2391 enum skb_free_reason reason; 2392 }; 2393 2394 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2395 { 2396 return (struct dev_kfree_skb_cb *)skb->cb; 2397 } 2398 2399 void netif_schedule_queue(struct netdev_queue *txq) 2400 { 2401 rcu_read_lock(); 2402 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2403 struct Qdisc *q = rcu_dereference(txq->qdisc); 2404 2405 __netif_schedule(q); 2406 } 2407 rcu_read_unlock(); 2408 } 2409 EXPORT_SYMBOL(netif_schedule_queue); 2410 2411 /** 2412 * netif_wake_subqueue - allow sending packets on subqueue 2413 * @dev: network device 2414 * @queue_index: sub queue index 2415 * 2416 * Resume individual transmit queue of a device with multiple transmit queues. 2417 */ 2418 void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 2419 { 2420 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2421 2422 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) { 2423 struct Qdisc *q; 2424 2425 rcu_read_lock(); 2426 q = rcu_dereference(txq->qdisc); 2427 __netif_schedule(q); 2428 rcu_read_unlock(); 2429 } 2430 } 2431 EXPORT_SYMBOL(netif_wake_subqueue); 2432 2433 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2434 { 2435 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2436 struct Qdisc *q; 2437 2438 rcu_read_lock(); 2439 q = rcu_dereference(dev_queue->qdisc); 2440 __netif_schedule(q); 2441 rcu_read_unlock(); 2442 } 2443 } 2444 EXPORT_SYMBOL(netif_tx_wake_queue); 2445 2446 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2447 { 2448 unsigned long flags; 2449 2450 if (likely(atomic_read(&skb->users) == 1)) { 2451 smp_rmb(); 2452 atomic_set(&skb->users, 0); 2453 } else if (likely(!atomic_dec_and_test(&skb->users))) { 2454 return; 2455 } 2456 get_kfree_skb_cb(skb)->reason = reason; 2457 local_irq_save(flags); 2458 skb->next = __this_cpu_read(softnet_data.completion_queue); 2459 __this_cpu_write(softnet_data.completion_queue, skb); 2460 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2461 local_irq_restore(flags); 2462 } 2463 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2464 2465 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2466 { 2467 if (in_irq() || irqs_disabled()) 2468 __dev_kfree_skb_irq(skb, reason); 2469 else 2470 dev_kfree_skb(skb); 2471 } 2472 EXPORT_SYMBOL(__dev_kfree_skb_any); 2473 2474 2475 /** 2476 * netif_device_detach - mark device as removed 2477 * @dev: network device 2478 * 2479 * Mark device as removed from system and therefore no longer available. 2480 */ 2481 void netif_device_detach(struct net_device *dev) 2482 { 2483 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2484 netif_running(dev)) { 2485 netif_tx_stop_all_queues(dev); 2486 } 2487 } 2488 EXPORT_SYMBOL(netif_device_detach); 2489 2490 /** 2491 * netif_device_attach - mark device as attached 2492 * @dev: network device 2493 * 2494 * Mark device as attached from system and restart if needed. 2495 */ 2496 void netif_device_attach(struct net_device *dev) 2497 { 2498 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2499 netif_running(dev)) { 2500 netif_tx_wake_all_queues(dev); 2501 __netdev_watchdog_up(dev); 2502 } 2503 } 2504 EXPORT_SYMBOL(netif_device_attach); 2505 2506 /* 2507 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2508 * to be used as a distribution range. 2509 */ 2510 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 2511 unsigned int num_tx_queues) 2512 { 2513 u32 hash; 2514 u16 qoffset = 0; 2515 u16 qcount = num_tx_queues; 2516 2517 if (skb_rx_queue_recorded(skb)) { 2518 hash = skb_get_rx_queue(skb); 2519 while (unlikely(hash >= num_tx_queues)) 2520 hash -= num_tx_queues; 2521 return hash; 2522 } 2523 2524 if (dev->num_tc) { 2525 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2526 qoffset = dev->tc_to_txq[tc].offset; 2527 qcount = dev->tc_to_txq[tc].count; 2528 } 2529 2530 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 2531 } 2532 EXPORT_SYMBOL(__skb_tx_hash); 2533 2534 static void skb_warn_bad_offload(const struct sk_buff *skb) 2535 { 2536 static const netdev_features_t null_features; 2537 struct net_device *dev = skb->dev; 2538 const char *name = ""; 2539 2540 if (!net_ratelimit()) 2541 return; 2542 2543 if (dev) { 2544 if (dev->dev.parent) 2545 name = dev_driver_string(dev->dev.parent); 2546 else 2547 name = netdev_name(dev); 2548 } 2549 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2550 "gso_type=%d ip_summed=%d\n", 2551 name, dev ? &dev->features : &null_features, 2552 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2553 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2554 skb_shinfo(skb)->gso_type, skb->ip_summed); 2555 } 2556 2557 /* 2558 * Invalidate hardware checksum when packet is to be mangled, and 2559 * complete checksum manually on outgoing path. 2560 */ 2561 int skb_checksum_help(struct sk_buff *skb) 2562 { 2563 __wsum csum; 2564 int ret = 0, offset; 2565 2566 if (skb->ip_summed == CHECKSUM_COMPLETE) 2567 goto out_set_summed; 2568 2569 if (unlikely(skb_shinfo(skb)->gso_size)) { 2570 skb_warn_bad_offload(skb); 2571 return -EINVAL; 2572 } 2573 2574 /* Before computing a checksum, we should make sure no frag could 2575 * be modified by an external entity : checksum could be wrong. 2576 */ 2577 if (skb_has_shared_frag(skb)) { 2578 ret = __skb_linearize(skb); 2579 if (ret) 2580 goto out; 2581 } 2582 2583 offset = skb_checksum_start_offset(skb); 2584 BUG_ON(offset >= skb_headlen(skb)); 2585 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2586 2587 offset += skb->csum_offset; 2588 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2589 2590 if (skb_cloned(skb) && 2591 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2592 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2593 if (ret) 2594 goto out; 2595 } 2596 2597 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 2598 out_set_summed: 2599 skb->ip_summed = CHECKSUM_NONE; 2600 out: 2601 return ret; 2602 } 2603 EXPORT_SYMBOL(skb_checksum_help); 2604 2605 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2606 { 2607 __be16 type = skb->protocol; 2608 2609 /* Tunnel gso handlers can set protocol to ethernet. */ 2610 if (type == htons(ETH_P_TEB)) { 2611 struct ethhdr *eth; 2612 2613 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2614 return 0; 2615 2616 eth = (struct ethhdr *)skb_mac_header(skb); 2617 type = eth->h_proto; 2618 } 2619 2620 return __vlan_get_protocol(skb, type, depth); 2621 } 2622 2623 /** 2624 * skb_mac_gso_segment - mac layer segmentation handler. 2625 * @skb: buffer to segment 2626 * @features: features for the output path (see dev->features) 2627 */ 2628 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2629 netdev_features_t features) 2630 { 2631 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2632 struct packet_offload *ptype; 2633 int vlan_depth = skb->mac_len; 2634 __be16 type = skb_network_protocol(skb, &vlan_depth); 2635 2636 if (unlikely(!type)) 2637 return ERR_PTR(-EINVAL); 2638 2639 __skb_pull(skb, vlan_depth); 2640 2641 rcu_read_lock(); 2642 list_for_each_entry_rcu(ptype, &offload_base, list) { 2643 if (ptype->type == type && ptype->callbacks.gso_segment) { 2644 segs = ptype->callbacks.gso_segment(skb, features); 2645 break; 2646 } 2647 } 2648 rcu_read_unlock(); 2649 2650 __skb_push(skb, skb->data - skb_mac_header(skb)); 2651 2652 return segs; 2653 } 2654 EXPORT_SYMBOL(skb_mac_gso_segment); 2655 2656 2657 /* openvswitch calls this on rx path, so we need a different check. 2658 */ 2659 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2660 { 2661 if (tx_path) 2662 return skb->ip_summed != CHECKSUM_PARTIAL; 2663 else 2664 return skb->ip_summed == CHECKSUM_NONE; 2665 } 2666 2667 /** 2668 * __skb_gso_segment - Perform segmentation on skb. 2669 * @skb: buffer to segment 2670 * @features: features for the output path (see dev->features) 2671 * @tx_path: whether it is called in TX path 2672 * 2673 * This function segments the given skb and returns a list of segments. 2674 * 2675 * It may return NULL if the skb requires no segmentation. This is 2676 * only possible when GSO is used for verifying header integrity. 2677 * 2678 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb. 2679 */ 2680 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2681 netdev_features_t features, bool tx_path) 2682 { 2683 if (unlikely(skb_needs_check(skb, tx_path))) { 2684 int err; 2685 2686 skb_warn_bad_offload(skb); 2687 2688 err = skb_cow_head(skb, 0); 2689 if (err < 0) 2690 return ERR_PTR(err); 2691 } 2692 2693 /* Only report GSO partial support if it will enable us to 2694 * support segmentation on this frame without needing additional 2695 * work. 2696 */ 2697 if (features & NETIF_F_GSO_PARTIAL) { 2698 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 2699 struct net_device *dev = skb->dev; 2700 2701 partial_features |= dev->features & dev->gso_partial_features; 2702 if (!skb_gso_ok(skb, features | partial_features)) 2703 features &= ~NETIF_F_GSO_PARTIAL; 2704 } 2705 2706 BUILD_BUG_ON(SKB_SGO_CB_OFFSET + 2707 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 2708 2709 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2710 SKB_GSO_CB(skb)->encap_level = 0; 2711 2712 skb_reset_mac_header(skb); 2713 skb_reset_mac_len(skb); 2714 2715 return skb_mac_gso_segment(skb, features); 2716 } 2717 EXPORT_SYMBOL(__skb_gso_segment); 2718 2719 /* Take action when hardware reception checksum errors are detected. */ 2720 #ifdef CONFIG_BUG 2721 void netdev_rx_csum_fault(struct net_device *dev) 2722 { 2723 if (net_ratelimit()) { 2724 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2725 dump_stack(); 2726 } 2727 } 2728 EXPORT_SYMBOL(netdev_rx_csum_fault); 2729 #endif 2730 2731 /* Actually, we should eliminate this check as soon as we know, that: 2732 * 1. IOMMU is present and allows to map all the memory. 2733 * 2. No high memory really exists on this machine. 2734 */ 2735 2736 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2737 { 2738 #ifdef CONFIG_HIGHMEM 2739 int i; 2740 if (!(dev->features & NETIF_F_HIGHDMA)) { 2741 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2742 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2743 if (PageHighMem(skb_frag_page(frag))) 2744 return 1; 2745 } 2746 } 2747 2748 if (PCI_DMA_BUS_IS_PHYS) { 2749 struct device *pdev = dev->dev.parent; 2750 2751 if (!pdev) 2752 return 0; 2753 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2754 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2755 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2756 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2757 return 1; 2758 } 2759 } 2760 #endif 2761 return 0; 2762 } 2763 2764 /* If MPLS offload request, verify we are testing hardware MPLS features 2765 * instead of standard features for the netdev. 2766 */ 2767 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 2768 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2769 netdev_features_t features, 2770 __be16 type) 2771 { 2772 if (eth_p_mpls(type)) 2773 features &= skb->dev->mpls_features; 2774 2775 return features; 2776 } 2777 #else 2778 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2779 netdev_features_t features, 2780 __be16 type) 2781 { 2782 return features; 2783 } 2784 #endif 2785 2786 static netdev_features_t harmonize_features(struct sk_buff *skb, 2787 netdev_features_t features) 2788 { 2789 int tmp; 2790 __be16 type; 2791 2792 type = skb_network_protocol(skb, &tmp); 2793 features = net_mpls_features(skb, features, type); 2794 2795 if (skb->ip_summed != CHECKSUM_NONE && 2796 !can_checksum_protocol(features, type)) { 2797 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 2798 } else if (illegal_highdma(skb->dev, skb)) { 2799 features &= ~NETIF_F_SG; 2800 } 2801 2802 return features; 2803 } 2804 2805 netdev_features_t passthru_features_check(struct sk_buff *skb, 2806 struct net_device *dev, 2807 netdev_features_t features) 2808 { 2809 return features; 2810 } 2811 EXPORT_SYMBOL(passthru_features_check); 2812 2813 static netdev_features_t dflt_features_check(const struct sk_buff *skb, 2814 struct net_device *dev, 2815 netdev_features_t features) 2816 { 2817 return vlan_features_check(skb, features); 2818 } 2819 2820 static netdev_features_t gso_features_check(const struct sk_buff *skb, 2821 struct net_device *dev, 2822 netdev_features_t features) 2823 { 2824 u16 gso_segs = skb_shinfo(skb)->gso_segs; 2825 2826 if (gso_segs > dev->gso_max_segs) 2827 return features & ~NETIF_F_GSO_MASK; 2828 2829 /* Support for GSO partial features requires software 2830 * intervention before we can actually process the packets 2831 * so we need to strip support for any partial features now 2832 * and we can pull them back in after we have partially 2833 * segmented the frame. 2834 */ 2835 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 2836 features &= ~dev->gso_partial_features; 2837 2838 /* Make sure to clear the IPv4 ID mangling feature if the 2839 * IPv4 header has the potential to be fragmented. 2840 */ 2841 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 2842 struct iphdr *iph = skb->encapsulation ? 2843 inner_ip_hdr(skb) : ip_hdr(skb); 2844 2845 if (!(iph->frag_off & htons(IP_DF))) 2846 features &= ~NETIF_F_TSO_MANGLEID; 2847 } 2848 2849 return features; 2850 } 2851 2852 netdev_features_t netif_skb_features(struct sk_buff *skb) 2853 { 2854 struct net_device *dev = skb->dev; 2855 netdev_features_t features = dev->features; 2856 2857 if (skb_is_gso(skb)) 2858 features = gso_features_check(skb, dev, features); 2859 2860 /* If encapsulation offload request, verify we are testing 2861 * hardware encapsulation features instead of standard 2862 * features for the netdev 2863 */ 2864 if (skb->encapsulation) 2865 features &= dev->hw_enc_features; 2866 2867 if (skb_vlan_tagged(skb)) 2868 features = netdev_intersect_features(features, 2869 dev->vlan_features | 2870 NETIF_F_HW_VLAN_CTAG_TX | 2871 NETIF_F_HW_VLAN_STAG_TX); 2872 2873 if (dev->netdev_ops->ndo_features_check) 2874 features &= dev->netdev_ops->ndo_features_check(skb, dev, 2875 features); 2876 else 2877 features &= dflt_features_check(skb, dev, features); 2878 2879 return harmonize_features(skb, features); 2880 } 2881 EXPORT_SYMBOL(netif_skb_features); 2882 2883 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 2884 struct netdev_queue *txq, bool more) 2885 { 2886 unsigned int len; 2887 int rc; 2888 2889 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all)) 2890 dev_queue_xmit_nit(skb, dev); 2891 2892 len = skb->len; 2893 trace_net_dev_start_xmit(skb, dev); 2894 rc = netdev_start_xmit(skb, dev, txq, more); 2895 trace_net_dev_xmit(skb, rc, dev, len); 2896 2897 return rc; 2898 } 2899 2900 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 2901 struct netdev_queue *txq, int *ret) 2902 { 2903 struct sk_buff *skb = first; 2904 int rc = NETDEV_TX_OK; 2905 2906 while (skb) { 2907 struct sk_buff *next = skb->next; 2908 2909 skb->next = NULL; 2910 rc = xmit_one(skb, dev, txq, next != NULL); 2911 if (unlikely(!dev_xmit_complete(rc))) { 2912 skb->next = next; 2913 goto out; 2914 } 2915 2916 skb = next; 2917 if (netif_xmit_stopped(txq) && skb) { 2918 rc = NETDEV_TX_BUSY; 2919 break; 2920 } 2921 } 2922 2923 out: 2924 *ret = rc; 2925 return skb; 2926 } 2927 2928 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 2929 netdev_features_t features) 2930 { 2931 if (skb_vlan_tag_present(skb) && 2932 !vlan_hw_offload_capable(features, skb->vlan_proto)) 2933 skb = __vlan_hwaccel_push_inside(skb); 2934 return skb; 2935 } 2936 2937 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev) 2938 { 2939 netdev_features_t features; 2940 2941 features = netif_skb_features(skb); 2942 skb = validate_xmit_vlan(skb, features); 2943 if (unlikely(!skb)) 2944 goto out_null; 2945 2946 if (netif_needs_gso(skb, features)) { 2947 struct sk_buff *segs; 2948 2949 segs = skb_gso_segment(skb, features); 2950 if (IS_ERR(segs)) { 2951 goto out_kfree_skb; 2952 } else if (segs) { 2953 consume_skb(skb); 2954 skb = segs; 2955 } 2956 } else { 2957 if (skb_needs_linearize(skb, features) && 2958 __skb_linearize(skb)) 2959 goto out_kfree_skb; 2960 2961 /* If packet is not checksummed and device does not 2962 * support checksumming for this protocol, complete 2963 * checksumming here. 2964 */ 2965 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2966 if (skb->encapsulation) 2967 skb_set_inner_transport_header(skb, 2968 skb_checksum_start_offset(skb)); 2969 else 2970 skb_set_transport_header(skb, 2971 skb_checksum_start_offset(skb)); 2972 if (!(features & NETIF_F_CSUM_MASK) && 2973 skb_checksum_help(skb)) 2974 goto out_kfree_skb; 2975 } 2976 } 2977 2978 return skb; 2979 2980 out_kfree_skb: 2981 kfree_skb(skb); 2982 out_null: 2983 atomic_long_inc(&dev->tx_dropped); 2984 return NULL; 2985 } 2986 2987 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev) 2988 { 2989 struct sk_buff *next, *head = NULL, *tail; 2990 2991 for (; skb != NULL; skb = next) { 2992 next = skb->next; 2993 skb->next = NULL; 2994 2995 /* in case skb wont be segmented, point to itself */ 2996 skb->prev = skb; 2997 2998 skb = validate_xmit_skb(skb, dev); 2999 if (!skb) 3000 continue; 3001 3002 if (!head) 3003 head = skb; 3004 else 3005 tail->next = skb; 3006 /* If skb was segmented, skb->prev points to 3007 * the last segment. If not, it still contains skb. 3008 */ 3009 tail = skb->prev; 3010 } 3011 return head; 3012 } 3013 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3014 3015 static void qdisc_pkt_len_init(struct sk_buff *skb) 3016 { 3017 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3018 3019 qdisc_skb_cb(skb)->pkt_len = skb->len; 3020 3021 /* To get more precise estimation of bytes sent on wire, 3022 * we add to pkt_len the headers size of all segments 3023 */ 3024 if (shinfo->gso_size) { 3025 unsigned int hdr_len; 3026 u16 gso_segs = shinfo->gso_segs; 3027 3028 /* mac layer + network layer */ 3029 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3030 3031 /* + transport layer */ 3032 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 3033 hdr_len += tcp_hdrlen(skb); 3034 else 3035 hdr_len += sizeof(struct udphdr); 3036 3037 if (shinfo->gso_type & SKB_GSO_DODGY) 3038 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3039 shinfo->gso_size); 3040 3041 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3042 } 3043 } 3044 3045 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3046 struct net_device *dev, 3047 struct netdev_queue *txq) 3048 { 3049 spinlock_t *root_lock = qdisc_lock(q); 3050 struct sk_buff *to_free = NULL; 3051 bool contended; 3052 int rc; 3053 3054 qdisc_calculate_pkt_len(skb, q); 3055 /* 3056 * Heuristic to force contended enqueues to serialize on a 3057 * separate lock before trying to get qdisc main lock. 3058 * This permits qdisc->running owner to get the lock more 3059 * often and dequeue packets faster. 3060 */ 3061 contended = qdisc_is_running(q); 3062 if (unlikely(contended)) 3063 spin_lock(&q->busylock); 3064 3065 spin_lock(root_lock); 3066 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3067 __qdisc_drop(skb, &to_free); 3068 rc = NET_XMIT_DROP; 3069 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3070 qdisc_run_begin(q)) { 3071 /* 3072 * This is a work-conserving queue; there are no old skbs 3073 * waiting to be sent out; and the qdisc is not running - 3074 * xmit the skb directly. 3075 */ 3076 3077 qdisc_bstats_update(q, skb); 3078 3079 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3080 if (unlikely(contended)) { 3081 spin_unlock(&q->busylock); 3082 contended = false; 3083 } 3084 __qdisc_run(q); 3085 } else 3086 qdisc_run_end(q); 3087 3088 rc = NET_XMIT_SUCCESS; 3089 } else { 3090 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3091 if (qdisc_run_begin(q)) { 3092 if (unlikely(contended)) { 3093 spin_unlock(&q->busylock); 3094 contended = false; 3095 } 3096 __qdisc_run(q); 3097 } 3098 } 3099 spin_unlock(root_lock); 3100 if (unlikely(to_free)) 3101 kfree_skb_list(to_free); 3102 if (unlikely(contended)) 3103 spin_unlock(&q->busylock); 3104 return rc; 3105 } 3106 3107 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3108 static void skb_update_prio(struct sk_buff *skb) 3109 { 3110 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 3111 3112 if (!skb->priority && skb->sk && map) { 3113 unsigned int prioidx = 3114 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data); 3115 3116 if (prioidx < map->priomap_len) 3117 skb->priority = map->priomap[prioidx]; 3118 } 3119 } 3120 #else 3121 #define skb_update_prio(skb) 3122 #endif 3123 3124 DEFINE_PER_CPU(int, xmit_recursion); 3125 EXPORT_SYMBOL(xmit_recursion); 3126 3127 /** 3128 * dev_loopback_xmit - loop back @skb 3129 * @net: network namespace this loopback is happening in 3130 * @sk: sk needed to be a netfilter okfn 3131 * @skb: buffer to transmit 3132 */ 3133 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3134 { 3135 skb_reset_mac_header(skb); 3136 __skb_pull(skb, skb_network_offset(skb)); 3137 skb->pkt_type = PACKET_LOOPBACK; 3138 skb->ip_summed = CHECKSUM_UNNECESSARY; 3139 WARN_ON(!skb_dst(skb)); 3140 skb_dst_force(skb); 3141 netif_rx_ni(skb); 3142 return 0; 3143 } 3144 EXPORT_SYMBOL(dev_loopback_xmit); 3145 3146 #ifdef CONFIG_NET_EGRESS 3147 static struct sk_buff * 3148 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3149 { 3150 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list); 3151 struct tcf_result cl_res; 3152 3153 if (!cl) 3154 return skb; 3155 3156 /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set 3157 * earlier by the caller. 3158 */ 3159 qdisc_bstats_cpu_update(cl->q, skb); 3160 3161 switch (tc_classify(skb, cl, &cl_res, false)) { 3162 case TC_ACT_OK: 3163 case TC_ACT_RECLASSIFY: 3164 skb->tc_index = TC_H_MIN(cl_res.classid); 3165 break; 3166 case TC_ACT_SHOT: 3167 qdisc_qstats_cpu_drop(cl->q); 3168 *ret = NET_XMIT_DROP; 3169 kfree_skb(skb); 3170 return NULL; 3171 case TC_ACT_STOLEN: 3172 case TC_ACT_QUEUED: 3173 *ret = NET_XMIT_SUCCESS; 3174 consume_skb(skb); 3175 return NULL; 3176 case TC_ACT_REDIRECT: 3177 /* No need to push/pop skb's mac_header here on egress! */ 3178 skb_do_redirect(skb); 3179 *ret = NET_XMIT_SUCCESS; 3180 return NULL; 3181 default: 3182 break; 3183 } 3184 3185 return skb; 3186 } 3187 #endif /* CONFIG_NET_EGRESS */ 3188 3189 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 3190 { 3191 #ifdef CONFIG_XPS 3192 struct xps_dev_maps *dev_maps; 3193 struct xps_map *map; 3194 int queue_index = -1; 3195 3196 rcu_read_lock(); 3197 dev_maps = rcu_dereference(dev->xps_maps); 3198 if (dev_maps) { 3199 unsigned int tci = skb->sender_cpu - 1; 3200 3201 if (dev->num_tc) { 3202 tci *= dev->num_tc; 3203 tci += netdev_get_prio_tc_map(dev, skb->priority); 3204 } 3205 3206 map = rcu_dereference(dev_maps->cpu_map[tci]); 3207 if (map) { 3208 if (map->len == 1) 3209 queue_index = map->queues[0]; 3210 else 3211 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb), 3212 map->len)]; 3213 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3214 queue_index = -1; 3215 } 3216 } 3217 rcu_read_unlock(); 3218 3219 return queue_index; 3220 #else 3221 return -1; 3222 #endif 3223 } 3224 3225 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb) 3226 { 3227 struct sock *sk = skb->sk; 3228 int queue_index = sk_tx_queue_get(sk); 3229 3230 if (queue_index < 0 || skb->ooo_okay || 3231 queue_index >= dev->real_num_tx_queues) { 3232 int new_index = get_xps_queue(dev, skb); 3233 if (new_index < 0) 3234 new_index = skb_tx_hash(dev, skb); 3235 3236 if (queue_index != new_index && sk && 3237 sk_fullsock(sk) && 3238 rcu_access_pointer(sk->sk_dst_cache)) 3239 sk_tx_queue_set(sk, new_index); 3240 3241 queue_index = new_index; 3242 } 3243 3244 return queue_index; 3245 } 3246 3247 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 3248 struct sk_buff *skb, 3249 void *accel_priv) 3250 { 3251 int queue_index = 0; 3252 3253 #ifdef CONFIG_XPS 3254 u32 sender_cpu = skb->sender_cpu - 1; 3255 3256 if (sender_cpu >= (u32)NR_CPUS) 3257 skb->sender_cpu = raw_smp_processor_id() + 1; 3258 #endif 3259 3260 if (dev->real_num_tx_queues != 1) { 3261 const struct net_device_ops *ops = dev->netdev_ops; 3262 if (ops->ndo_select_queue) 3263 queue_index = ops->ndo_select_queue(dev, skb, accel_priv, 3264 __netdev_pick_tx); 3265 else 3266 queue_index = __netdev_pick_tx(dev, skb); 3267 3268 if (!accel_priv) 3269 queue_index = netdev_cap_txqueue(dev, queue_index); 3270 } 3271 3272 skb_set_queue_mapping(skb, queue_index); 3273 return netdev_get_tx_queue(dev, queue_index); 3274 } 3275 3276 /** 3277 * __dev_queue_xmit - transmit a buffer 3278 * @skb: buffer to transmit 3279 * @accel_priv: private data used for L2 forwarding offload 3280 * 3281 * Queue a buffer for transmission to a network device. The caller must 3282 * have set the device and priority and built the buffer before calling 3283 * this function. The function can be called from an interrupt. 3284 * 3285 * A negative errno code is returned on a failure. A success does not 3286 * guarantee the frame will be transmitted as it may be dropped due 3287 * to congestion or traffic shaping. 3288 * 3289 * ----------------------------------------------------------------------------------- 3290 * I notice this method can also return errors from the queue disciplines, 3291 * including NET_XMIT_DROP, which is a positive value. So, errors can also 3292 * be positive. 3293 * 3294 * Regardless of the return value, the skb is consumed, so it is currently 3295 * difficult to retry a send to this method. (You can bump the ref count 3296 * before sending to hold a reference for retry if you are careful.) 3297 * 3298 * When calling this method, interrupts MUST be enabled. This is because 3299 * the BH enable code must have IRQs enabled so that it will not deadlock. 3300 * --BLG 3301 */ 3302 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv) 3303 { 3304 struct net_device *dev = skb->dev; 3305 struct netdev_queue *txq; 3306 struct Qdisc *q; 3307 int rc = -ENOMEM; 3308 3309 skb_reset_mac_header(skb); 3310 3311 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 3312 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 3313 3314 /* Disable soft irqs for various locks below. Also 3315 * stops preemption for RCU. 3316 */ 3317 rcu_read_lock_bh(); 3318 3319 skb_update_prio(skb); 3320 3321 qdisc_pkt_len_init(skb); 3322 #ifdef CONFIG_NET_CLS_ACT 3323 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 3324 # ifdef CONFIG_NET_EGRESS 3325 if (static_key_false(&egress_needed)) { 3326 skb = sch_handle_egress(skb, &rc, dev); 3327 if (!skb) 3328 goto out; 3329 } 3330 # endif 3331 #endif 3332 /* If device/qdisc don't need skb->dst, release it right now while 3333 * its hot in this cpu cache. 3334 */ 3335 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 3336 skb_dst_drop(skb); 3337 else 3338 skb_dst_force(skb); 3339 3340 txq = netdev_pick_tx(dev, skb, accel_priv); 3341 q = rcu_dereference_bh(txq->qdisc); 3342 3343 trace_net_dev_queue(skb); 3344 if (q->enqueue) { 3345 rc = __dev_xmit_skb(skb, q, dev, txq); 3346 goto out; 3347 } 3348 3349 /* The device has no queue. Common case for software devices: 3350 loopback, all the sorts of tunnels... 3351 3352 Really, it is unlikely that netif_tx_lock protection is necessary 3353 here. (f.e. loopback and IP tunnels are clean ignoring statistics 3354 counters.) 3355 However, it is possible, that they rely on protection 3356 made by us here. 3357 3358 Check this and shot the lock. It is not prone from deadlocks. 3359 Either shot noqueue qdisc, it is even simpler 8) 3360 */ 3361 if (dev->flags & IFF_UP) { 3362 int cpu = smp_processor_id(); /* ok because BHs are off */ 3363 3364 if (txq->xmit_lock_owner != cpu) { 3365 if (unlikely(__this_cpu_read(xmit_recursion) > 3366 XMIT_RECURSION_LIMIT)) 3367 goto recursion_alert; 3368 3369 skb = validate_xmit_skb(skb, dev); 3370 if (!skb) 3371 goto out; 3372 3373 HARD_TX_LOCK(dev, txq, cpu); 3374 3375 if (!netif_xmit_stopped(txq)) { 3376 __this_cpu_inc(xmit_recursion); 3377 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 3378 __this_cpu_dec(xmit_recursion); 3379 if (dev_xmit_complete(rc)) { 3380 HARD_TX_UNLOCK(dev, txq); 3381 goto out; 3382 } 3383 } 3384 HARD_TX_UNLOCK(dev, txq); 3385 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 3386 dev->name); 3387 } else { 3388 /* Recursion is detected! It is possible, 3389 * unfortunately 3390 */ 3391 recursion_alert: 3392 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 3393 dev->name); 3394 } 3395 } 3396 3397 rc = -ENETDOWN; 3398 rcu_read_unlock_bh(); 3399 3400 atomic_long_inc(&dev->tx_dropped); 3401 kfree_skb_list(skb); 3402 return rc; 3403 out: 3404 rcu_read_unlock_bh(); 3405 return rc; 3406 } 3407 3408 int dev_queue_xmit(struct sk_buff *skb) 3409 { 3410 return __dev_queue_xmit(skb, NULL); 3411 } 3412 EXPORT_SYMBOL(dev_queue_xmit); 3413 3414 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv) 3415 { 3416 return __dev_queue_xmit(skb, accel_priv); 3417 } 3418 EXPORT_SYMBOL(dev_queue_xmit_accel); 3419 3420 3421 /*======================================================================= 3422 Receiver routines 3423 =======================================================================*/ 3424 3425 int netdev_max_backlog __read_mostly = 1000; 3426 EXPORT_SYMBOL(netdev_max_backlog); 3427 3428 int netdev_tstamp_prequeue __read_mostly = 1; 3429 int netdev_budget __read_mostly = 300; 3430 int weight_p __read_mostly = 64; /* old backlog weight */ 3431 3432 /* Called with irq disabled */ 3433 static inline void ____napi_schedule(struct softnet_data *sd, 3434 struct napi_struct *napi) 3435 { 3436 list_add_tail(&napi->poll_list, &sd->poll_list); 3437 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3438 } 3439 3440 #ifdef CONFIG_RPS 3441 3442 /* One global table that all flow-based protocols share. */ 3443 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3444 EXPORT_SYMBOL(rps_sock_flow_table); 3445 u32 rps_cpu_mask __read_mostly; 3446 EXPORT_SYMBOL(rps_cpu_mask); 3447 3448 struct static_key rps_needed __read_mostly; 3449 EXPORT_SYMBOL(rps_needed); 3450 struct static_key rfs_needed __read_mostly; 3451 EXPORT_SYMBOL(rfs_needed); 3452 3453 static struct rps_dev_flow * 3454 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3455 struct rps_dev_flow *rflow, u16 next_cpu) 3456 { 3457 if (next_cpu < nr_cpu_ids) { 3458 #ifdef CONFIG_RFS_ACCEL 3459 struct netdev_rx_queue *rxqueue; 3460 struct rps_dev_flow_table *flow_table; 3461 struct rps_dev_flow *old_rflow; 3462 u32 flow_id; 3463 u16 rxq_index; 3464 int rc; 3465 3466 /* Should we steer this flow to a different hardware queue? */ 3467 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 3468 !(dev->features & NETIF_F_NTUPLE)) 3469 goto out; 3470 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 3471 if (rxq_index == skb_get_rx_queue(skb)) 3472 goto out; 3473 3474 rxqueue = dev->_rx + rxq_index; 3475 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3476 if (!flow_table) 3477 goto out; 3478 flow_id = skb_get_hash(skb) & flow_table->mask; 3479 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 3480 rxq_index, flow_id); 3481 if (rc < 0) 3482 goto out; 3483 old_rflow = rflow; 3484 rflow = &flow_table->flows[flow_id]; 3485 rflow->filter = rc; 3486 if (old_rflow->filter == rflow->filter) 3487 old_rflow->filter = RPS_NO_FILTER; 3488 out: 3489 #endif 3490 rflow->last_qtail = 3491 per_cpu(softnet_data, next_cpu).input_queue_head; 3492 } 3493 3494 rflow->cpu = next_cpu; 3495 return rflow; 3496 } 3497 3498 /* 3499 * get_rps_cpu is called from netif_receive_skb and returns the target 3500 * CPU from the RPS map of the receiving queue for a given skb. 3501 * rcu_read_lock must be held on entry. 3502 */ 3503 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3504 struct rps_dev_flow **rflowp) 3505 { 3506 const struct rps_sock_flow_table *sock_flow_table; 3507 struct netdev_rx_queue *rxqueue = dev->_rx; 3508 struct rps_dev_flow_table *flow_table; 3509 struct rps_map *map; 3510 int cpu = -1; 3511 u32 tcpu; 3512 u32 hash; 3513 3514 if (skb_rx_queue_recorded(skb)) { 3515 u16 index = skb_get_rx_queue(skb); 3516 3517 if (unlikely(index >= dev->real_num_rx_queues)) { 3518 WARN_ONCE(dev->real_num_rx_queues > 1, 3519 "%s received packet on queue %u, but number " 3520 "of RX queues is %u\n", 3521 dev->name, index, dev->real_num_rx_queues); 3522 goto done; 3523 } 3524 rxqueue += index; 3525 } 3526 3527 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 3528 3529 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3530 map = rcu_dereference(rxqueue->rps_map); 3531 if (!flow_table && !map) 3532 goto done; 3533 3534 skb_reset_network_header(skb); 3535 hash = skb_get_hash(skb); 3536 if (!hash) 3537 goto done; 3538 3539 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3540 if (flow_table && sock_flow_table) { 3541 struct rps_dev_flow *rflow; 3542 u32 next_cpu; 3543 u32 ident; 3544 3545 /* First check into global flow table if there is a match */ 3546 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 3547 if ((ident ^ hash) & ~rps_cpu_mask) 3548 goto try_rps; 3549 3550 next_cpu = ident & rps_cpu_mask; 3551 3552 /* OK, now we know there is a match, 3553 * we can look at the local (per receive queue) flow table 3554 */ 3555 rflow = &flow_table->flows[hash & flow_table->mask]; 3556 tcpu = rflow->cpu; 3557 3558 /* 3559 * If the desired CPU (where last recvmsg was done) is 3560 * different from current CPU (one in the rx-queue flow 3561 * table entry), switch if one of the following holds: 3562 * - Current CPU is unset (>= nr_cpu_ids). 3563 * - Current CPU is offline. 3564 * - The current CPU's queue tail has advanced beyond the 3565 * last packet that was enqueued using this table entry. 3566 * This guarantees that all previous packets for the flow 3567 * have been dequeued, thus preserving in order delivery. 3568 */ 3569 if (unlikely(tcpu != next_cpu) && 3570 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 3571 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3572 rflow->last_qtail)) >= 0)) { 3573 tcpu = next_cpu; 3574 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3575 } 3576 3577 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 3578 *rflowp = rflow; 3579 cpu = tcpu; 3580 goto done; 3581 } 3582 } 3583 3584 try_rps: 3585 3586 if (map) { 3587 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 3588 if (cpu_online(tcpu)) { 3589 cpu = tcpu; 3590 goto done; 3591 } 3592 } 3593 3594 done: 3595 return cpu; 3596 } 3597 3598 #ifdef CONFIG_RFS_ACCEL 3599 3600 /** 3601 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3602 * @dev: Device on which the filter was set 3603 * @rxq_index: RX queue index 3604 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3605 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3606 * 3607 * Drivers that implement ndo_rx_flow_steer() should periodically call 3608 * this function for each installed filter and remove the filters for 3609 * which it returns %true. 3610 */ 3611 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3612 u32 flow_id, u16 filter_id) 3613 { 3614 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3615 struct rps_dev_flow_table *flow_table; 3616 struct rps_dev_flow *rflow; 3617 bool expire = true; 3618 unsigned int cpu; 3619 3620 rcu_read_lock(); 3621 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3622 if (flow_table && flow_id <= flow_table->mask) { 3623 rflow = &flow_table->flows[flow_id]; 3624 cpu = ACCESS_ONCE(rflow->cpu); 3625 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 3626 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3627 rflow->last_qtail) < 3628 (int)(10 * flow_table->mask))) 3629 expire = false; 3630 } 3631 rcu_read_unlock(); 3632 return expire; 3633 } 3634 EXPORT_SYMBOL(rps_may_expire_flow); 3635 3636 #endif /* CONFIG_RFS_ACCEL */ 3637 3638 /* Called from hardirq (IPI) context */ 3639 static void rps_trigger_softirq(void *data) 3640 { 3641 struct softnet_data *sd = data; 3642 3643 ____napi_schedule(sd, &sd->backlog); 3644 sd->received_rps++; 3645 } 3646 3647 #endif /* CONFIG_RPS */ 3648 3649 /* 3650 * Check if this softnet_data structure is another cpu one 3651 * If yes, queue it to our IPI list and return 1 3652 * If no, return 0 3653 */ 3654 static int rps_ipi_queued(struct softnet_data *sd) 3655 { 3656 #ifdef CONFIG_RPS 3657 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 3658 3659 if (sd != mysd) { 3660 sd->rps_ipi_next = mysd->rps_ipi_list; 3661 mysd->rps_ipi_list = sd; 3662 3663 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3664 return 1; 3665 } 3666 #endif /* CONFIG_RPS */ 3667 return 0; 3668 } 3669 3670 #ifdef CONFIG_NET_FLOW_LIMIT 3671 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3672 #endif 3673 3674 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3675 { 3676 #ifdef CONFIG_NET_FLOW_LIMIT 3677 struct sd_flow_limit *fl; 3678 struct softnet_data *sd; 3679 unsigned int old_flow, new_flow; 3680 3681 if (qlen < (netdev_max_backlog >> 1)) 3682 return false; 3683 3684 sd = this_cpu_ptr(&softnet_data); 3685 3686 rcu_read_lock(); 3687 fl = rcu_dereference(sd->flow_limit); 3688 if (fl) { 3689 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 3690 old_flow = fl->history[fl->history_head]; 3691 fl->history[fl->history_head] = new_flow; 3692 3693 fl->history_head++; 3694 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3695 3696 if (likely(fl->buckets[old_flow])) 3697 fl->buckets[old_flow]--; 3698 3699 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3700 fl->count++; 3701 rcu_read_unlock(); 3702 return true; 3703 } 3704 } 3705 rcu_read_unlock(); 3706 #endif 3707 return false; 3708 } 3709 3710 /* 3711 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3712 * queue (may be a remote CPU queue). 3713 */ 3714 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3715 unsigned int *qtail) 3716 { 3717 struct softnet_data *sd; 3718 unsigned long flags; 3719 unsigned int qlen; 3720 3721 sd = &per_cpu(softnet_data, cpu); 3722 3723 local_irq_save(flags); 3724 3725 rps_lock(sd); 3726 if (!netif_running(skb->dev)) 3727 goto drop; 3728 qlen = skb_queue_len(&sd->input_pkt_queue); 3729 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3730 if (qlen) { 3731 enqueue: 3732 __skb_queue_tail(&sd->input_pkt_queue, skb); 3733 input_queue_tail_incr_save(sd, qtail); 3734 rps_unlock(sd); 3735 local_irq_restore(flags); 3736 return NET_RX_SUCCESS; 3737 } 3738 3739 /* Schedule NAPI for backlog device 3740 * We can use non atomic operation since we own the queue lock 3741 */ 3742 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3743 if (!rps_ipi_queued(sd)) 3744 ____napi_schedule(sd, &sd->backlog); 3745 } 3746 goto enqueue; 3747 } 3748 3749 drop: 3750 sd->dropped++; 3751 rps_unlock(sd); 3752 3753 local_irq_restore(flags); 3754 3755 atomic_long_inc(&skb->dev->rx_dropped); 3756 kfree_skb(skb); 3757 return NET_RX_DROP; 3758 } 3759 3760 static int netif_rx_internal(struct sk_buff *skb) 3761 { 3762 int ret; 3763 3764 net_timestamp_check(netdev_tstamp_prequeue, skb); 3765 3766 trace_netif_rx(skb); 3767 #ifdef CONFIG_RPS 3768 if (static_key_false(&rps_needed)) { 3769 struct rps_dev_flow voidflow, *rflow = &voidflow; 3770 int cpu; 3771 3772 preempt_disable(); 3773 rcu_read_lock(); 3774 3775 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3776 if (cpu < 0) 3777 cpu = smp_processor_id(); 3778 3779 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3780 3781 rcu_read_unlock(); 3782 preempt_enable(); 3783 } else 3784 #endif 3785 { 3786 unsigned int qtail; 3787 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 3788 put_cpu(); 3789 } 3790 return ret; 3791 } 3792 3793 /** 3794 * netif_rx - post buffer to the network code 3795 * @skb: buffer to post 3796 * 3797 * This function receives a packet from a device driver and queues it for 3798 * the upper (protocol) levels to process. It always succeeds. The buffer 3799 * may be dropped during processing for congestion control or by the 3800 * protocol layers. 3801 * 3802 * return values: 3803 * NET_RX_SUCCESS (no congestion) 3804 * NET_RX_DROP (packet was dropped) 3805 * 3806 */ 3807 3808 int netif_rx(struct sk_buff *skb) 3809 { 3810 trace_netif_rx_entry(skb); 3811 3812 return netif_rx_internal(skb); 3813 } 3814 EXPORT_SYMBOL(netif_rx); 3815 3816 int netif_rx_ni(struct sk_buff *skb) 3817 { 3818 int err; 3819 3820 trace_netif_rx_ni_entry(skb); 3821 3822 preempt_disable(); 3823 err = netif_rx_internal(skb); 3824 if (local_softirq_pending()) 3825 do_softirq(); 3826 preempt_enable(); 3827 3828 return err; 3829 } 3830 EXPORT_SYMBOL(netif_rx_ni); 3831 3832 static __latent_entropy void net_tx_action(struct softirq_action *h) 3833 { 3834 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 3835 3836 if (sd->completion_queue) { 3837 struct sk_buff *clist; 3838 3839 local_irq_disable(); 3840 clist = sd->completion_queue; 3841 sd->completion_queue = NULL; 3842 local_irq_enable(); 3843 3844 while (clist) { 3845 struct sk_buff *skb = clist; 3846 clist = clist->next; 3847 3848 WARN_ON(atomic_read(&skb->users)); 3849 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 3850 trace_consume_skb(skb); 3851 else 3852 trace_kfree_skb(skb, net_tx_action); 3853 3854 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 3855 __kfree_skb(skb); 3856 else 3857 __kfree_skb_defer(skb); 3858 } 3859 3860 __kfree_skb_flush(); 3861 } 3862 3863 if (sd->output_queue) { 3864 struct Qdisc *head; 3865 3866 local_irq_disable(); 3867 head = sd->output_queue; 3868 sd->output_queue = NULL; 3869 sd->output_queue_tailp = &sd->output_queue; 3870 local_irq_enable(); 3871 3872 while (head) { 3873 struct Qdisc *q = head; 3874 spinlock_t *root_lock; 3875 3876 head = head->next_sched; 3877 3878 root_lock = qdisc_lock(q); 3879 spin_lock(root_lock); 3880 /* We need to make sure head->next_sched is read 3881 * before clearing __QDISC_STATE_SCHED 3882 */ 3883 smp_mb__before_atomic(); 3884 clear_bit(__QDISC_STATE_SCHED, &q->state); 3885 qdisc_run(q); 3886 spin_unlock(root_lock); 3887 } 3888 } 3889 } 3890 3891 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 3892 /* This hook is defined here for ATM LANE */ 3893 int (*br_fdb_test_addr_hook)(struct net_device *dev, 3894 unsigned char *addr) __read_mostly; 3895 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3896 #endif 3897 3898 static inline struct sk_buff * 3899 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 3900 struct net_device *orig_dev) 3901 { 3902 #ifdef CONFIG_NET_CLS_ACT 3903 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list); 3904 struct tcf_result cl_res; 3905 3906 /* If there's at least one ingress present somewhere (so 3907 * we get here via enabled static key), remaining devices 3908 * that are not configured with an ingress qdisc will bail 3909 * out here. 3910 */ 3911 if (!cl) 3912 return skb; 3913 if (*pt_prev) { 3914 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3915 *pt_prev = NULL; 3916 } 3917 3918 qdisc_skb_cb(skb)->pkt_len = skb->len; 3919 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3920 qdisc_bstats_cpu_update(cl->q, skb); 3921 3922 switch (tc_classify(skb, cl, &cl_res, false)) { 3923 case TC_ACT_OK: 3924 case TC_ACT_RECLASSIFY: 3925 skb->tc_index = TC_H_MIN(cl_res.classid); 3926 break; 3927 case TC_ACT_SHOT: 3928 qdisc_qstats_cpu_drop(cl->q); 3929 kfree_skb(skb); 3930 return NULL; 3931 case TC_ACT_STOLEN: 3932 case TC_ACT_QUEUED: 3933 consume_skb(skb); 3934 return NULL; 3935 case TC_ACT_REDIRECT: 3936 /* skb_mac_header check was done by cls/act_bpf, so 3937 * we can safely push the L2 header back before 3938 * redirecting to another netdev 3939 */ 3940 __skb_push(skb, skb->mac_len); 3941 skb_do_redirect(skb); 3942 return NULL; 3943 default: 3944 break; 3945 } 3946 #endif /* CONFIG_NET_CLS_ACT */ 3947 return skb; 3948 } 3949 3950 /** 3951 * netdev_is_rx_handler_busy - check if receive handler is registered 3952 * @dev: device to check 3953 * 3954 * Check if a receive handler is already registered for a given device. 3955 * Return true if there one. 3956 * 3957 * The caller must hold the rtnl_mutex. 3958 */ 3959 bool netdev_is_rx_handler_busy(struct net_device *dev) 3960 { 3961 ASSERT_RTNL(); 3962 return dev && rtnl_dereference(dev->rx_handler); 3963 } 3964 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 3965 3966 /** 3967 * netdev_rx_handler_register - register receive handler 3968 * @dev: device to register a handler for 3969 * @rx_handler: receive handler to register 3970 * @rx_handler_data: data pointer that is used by rx handler 3971 * 3972 * Register a receive handler for a device. This handler will then be 3973 * called from __netif_receive_skb. A negative errno code is returned 3974 * on a failure. 3975 * 3976 * The caller must hold the rtnl_mutex. 3977 * 3978 * For a general description of rx_handler, see enum rx_handler_result. 3979 */ 3980 int netdev_rx_handler_register(struct net_device *dev, 3981 rx_handler_func_t *rx_handler, 3982 void *rx_handler_data) 3983 { 3984 ASSERT_RTNL(); 3985 3986 if (dev->rx_handler) 3987 return -EBUSY; 3988 3989 /* Note: rx_handler_data must be set before rx_handler */ 3990 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3991 rcu_assign_pointer(dev->rx_handler, rx_handler); 3992 3993 return 0; 3994 } 3995 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3996 3997 /** 3998 * netdev_rx_handler_unregister - unregister receive handler 3999 * @dev: device to unregister a handler from 4000 * 4001 * Unregister a receive handler from a device. 4002 * 4003 * The caller must hold the rtnl_mutex. 4004 */ 4005 void netdev_rx_handler_unregister(struct net_device *dev) 4006 { 4007 4008 ASSERT_RTNL(); 4009 RCU_INIT_POINTER(dev->rx_handler, NULL); 4010 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 4011 * section has a guarantee to see a non NULL rx_handler_data 4012 * as well. 4013 */ 4014 synchronize_net(); 4015 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 4016 } 4017 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 4018 4019 /* 4020 * Limit the use of PFMEMALLOC reserves to those protocols that implement 4021 * the special handling of PFMEMALLOC skbs. 4022 */ 4023 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 4024 { 4025 switch (skb->protocol) { 4026 case htons(ETH_P_ARP): 4027 case htons(ETH_P_IP): 4028 case htons(ETH_P_IPV6): 4029 case htons(ETH_P_8021Q): 4030 case htons(ETH_P_8021AD): 4031 return true; 4032 default: 4033 return false; 4034 } 4035 } 4036 4037 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 4038 int *ret, struct net_device *orig_dev) 4039 { 4040 #ifdef CONFIG_NETFILTER_INGRESS 4041 if (nf_hook_ingress_active(skb)) { 4042 int ingress_retval; 4043 4044 if (*pt_prev) { 4045 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4046 *pt_prev = NULL; 4047 } 4048 4049 rcu_read_lock(); 4050 ingress_retval = nf_hook_ingress(skb); 4051 rcu_read_unlock(); 4052 return ingress_retval; 4053 } 4054 #endif /* CONFIG_NETFILTER_INGRESS */ 4055 return 0; 4056 } 4057 4058 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 4059 { 4060 struct packet_type *ptype, *pt_prev; 4061 rx_handler_func_t *rx_handler; 4062 struct net_device *orig_dev; 4063 bool deliver_exact = false; 4064 int ret = NET_RX_DROP; 4065 __be16 type; 4066 4067 net_timestamp_check(!netdev_tstamp_prequeue, skb); 4068 4069 trace_netif_receive_skb(skb); 4070 4071 orig_dev = skb->dev; 4072 4073 skb_reset_network_header(skb); 4074 if (!skb_transport_header_was_set(skb)) 4075 skb_reset_transport_header(skb); 4076 skb_reset_mac_len(skb); 4077 4078 pt_prev = NULL; 4079 4080 another_round: 4081 skb->skb_iif = skb->dev->ifindex; 4082 4083 __this_cpu_inc(softnet_data.processed); 4084 4085 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 4086 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 4087 skb = skb_vlan_untag(skb); 4088 if (unlikely(!skb)) 4089 goto out; 4090 } 4091 4092 #ifdef CONFIG_NET_CLS_ACT 4093 if (skb->tc_verd & TC_NCLS) { 4094 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 4095 goto ncls; 4096 } 4097 #endif 4098 4099 if (pfmemalloc) 4100 goto skip_taps; 4101 4102 list_for_each_entry_rcu(ptype, &ptype_all, list) { 4103 if (pt_prev) 4104 ret = deliver_skb(skb, pt_prev, orig_dev); 4105 pt_prev = ptype; 4106 } 4107 4108 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 4109 if (pt_prev) 4110 ret = deliver_skb(skb, pt_prev, orig_dev); 4111 pt_prev = ptype; 4112 } 4113 4114 skip_taps: 4115 #ifdef CONFIG_NET_INGRESS 4116 if (static_key_false(&ingress_needed)) { 4117 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev); 4118 if (!skb) 4119 goto out; 4120 4121 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 4122 goto out; 4123 } 4124 #endif 4125 #ifdef CONFIG_NET_CLS_ACT 4126 skb->tc_verd = 0; 4127 ncls: 4128 #endif 4129 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 4130 goto drop; 4131 4132 if (skb_vlan_tag_present(skb)) { 4133 if (pt_prev) { 4134 ret = deliver_skb(skb, pt_prev, orig_dev); 4135 pt_prev = NULL; 4136 } 4137 if (vlan_do_receive(&skb)) 4138 goto another_round; 4139 else if (unlikely(!skb)) 4140 goto out; 4141 } 4142 4143 rx_handler = rcu_dereference(skb->dev->rx_handler); 4144 if (rx_handler) { 4145 if (pt_prev) { 4146 ret = deliver_skb(skb, pt_prev, orig_dev); 4147 pt_prev = NULL; 4148 } 4149 switch (rx_handler(&skb)) { 4150 case RX_HANDLER_CONSUMED: 4151 ret = NET_RX_SUCCESS; 4152 goto out; 4153 case RX_HANDLER_ANOTHER: 4154 goto another_round; 4155 case RX_HANDLER_EXACT: 4156 deliver_exact = true; 4157 case RX_HANDLER_PASS: 4158 break; 4159 default: 4160 BUG(); 4161 } 4162 } 4163 4164 if (unlikely(skb_vlan_tag_present(skb))) { 4165 if (skb_vlan_tag_get_id(skb)) 4166 skb->pkt_type = PACKET_OTHERHOST; 4167 /* Note: we might in the future use prio bits 4168 * and set skb->priority like in vlan_do_receive() 4169 * For the time being, just ignore Priority Code Point 4170 */ 4171 skb->vlan_tci = 0; 4172 } 4173 4174 type = skb->protocol; 4175 4176 /* deliver only exact match when indicated */ 4177 if (likely(!deliver_exact)) { 4178 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4179 &ptype_base[ntohs(type) & 4180 PTYPE_HASH_MASK]); 4181 } 4182 4183 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4184 &orig_dev->ptype_specific); 4185 4186 if (unlikely(skb->dev != orig_dev)) { 4187 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4188 &skb->dev->ptype_specific); 4189 } 4190 4191 if (pt_prev) { 4192 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 4193 goto drop; 4194 else 4195 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 4196 } else { 4197 drop: 4198 if (!deliver_exact) 4199 atomic_long_inc(&skb->dev->rx_dropped); 4200 else 4201 atomic_long_inc(&skb->dev->rx_nohandler); 4202 kfree_skb(skb); 4203 /* Jamal, now you will not able to escape explaining 4204 * me how you were going to use this. :-) 4205 */ 4206 ret = NET_RX_DROP; 4207 } 4208 4209 out: 4210 return ret; 4211 } 4212 4213 static int __netif_receive_skb(struct sk_buff *skb) 4214 { 4215 int ret; 4216 4217 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 4218 unsigned long pflags = current->flags; 4219 4220 /* 4221 * PFMEMALLOC skbs are special, they should 4222 * - be delivered to SOCK_MEMALLOC sockets only 4223 * - stay away from userspace 4224 * - have bounded memory usage 4225 * 4226 * Use PF_MEMALLOC as this saves us from propagating the allocation 4227 * context down to all allocation sites. 4228 */ 4229 current->flags |= PF_MEMALLOC; 4230 ret = __netif_receive_skb_core(skb, true); 4231 tsk_restore_flags(current, pflags, PF_MEMALLOC); 4232 } else 4233 ret = __netif_receive_skb_core(skb, false); 4234 4235 return ret; 4236 } 4237 4238 static int netif_receive_skb_internal(struct sk_buff *skb) 4239 { 4240 int ret; 4241 4242 net_timestamp_check(netdev_tstamp_prequeue, skb); 4243 4244 if (skb_defer_rx_timestamp(skb)) 4245 return NET_RX_SUCCESS; 4246 4247 rcu_read_lock(); 4248 4249 #ifdef CONFIG_RPS 4250 if (static_key_false(&rps_needed)) { 4251 struct rps_dev_flow voidflow, *rflow = &voidflow; 4252 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 4253 4254 if (cpu >= 0) { 4255 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4256 rcu_read_unlock(); 4257 return ret; 4258 } 4259 } 4260 #endif 4261 ret = __netif_receive_skb(skb); 4262 rcu_read_unlock(); 4263 return ret; 4264 } 4265 4266 /** 4267 * netif_receive_skb - process receive buffer from network 4268 * @skb: buffer to process 4269 * 4270 * netif_receive_skb() is the main receive data processing function. 4271 * It always succeeds. The buffer may be dropped during processing 4272 * for congestion control or by the protocol layers. 4273 * 4274 * This function may only be called from softirq context and interrupts 4275 * should be enabled. 4276 * 4277 * Return values (usually ignored): 4278 * NET_RX_SUCCESS: no congestion 4279 * NET_RX_DROP: packet was dropped 4280 */ 4281 int netif_receive_skb(struct sk_buff *skb) 4282 { 4283 trace_netif_receive_skb_entry(skb); 4284 4285 return netif_receive_skb_internal(skb); 4286 } 4287 EXPORT_SYMBOL(netif_receive_skb); 4288 4289 DEFINE_PER_CPU(struct work_struct, flush_works); 4290 4291 /* Network device is going away, flush any packets still pending */ 4292 static void flush_backlog(struct work_struct *work) 4293 { 4294 struct sk_buff *skb, *tmp; 4295 struct softnet_data *sd; 4296 4297 local_bh_disable(); 4298 sd = this_cpu_ptr(&softnet_data); 4299 4300 local_irq_disable(); 4301 rps_lock(sd); 4302 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 4303 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 4304 __skb_unlink(skb, &sd->input_pkt_queue); 4305 kfree_skb(skb); 4306 input_queue_head_incr(sd); 4307 } 4308 } 4309 rps_unlock(sd); 4310 local_irq_enable(); 4311 4312 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 4313 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 4314 __skb_unlink(skb, &sd->process_queue); 4315 kfree_skb(skb); 4316 input_queue_head_incr(sd); 4317 } 4318 } 4319 local_bh_enable(); 4320 } 4321 4322 static void flush_all_backlogs(void) 4323 { 4324 unsigned int cpu; 4325 4326 get_online_cpus(); 4327 4328 for_each_online_cpu(cpu) 4329 queue_work_on(cpu, system_highpri_wq, 4330 per_cpu_ptr(&flush_works, cpu)); 4331 4332 for_each_online_cpu(cpu) 4333 flush_work(per_cpu_ptr(&flush_works, cpu)); 4334 4335 put_online_cpus(); 4336 } 4337 4338 static int napi_gro_complete(struct sk_buff *skb) 4339 { 4340 struct packet_offload *ptype; 4341 __be16 type = skb->protocol; 4342 struct list_head *head = &offload_base; 4343 int err = -ENOENT; 4344 4345 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 4346 4347 if (NAPI_GRO_CB(skb)->count == 1) { 4348 skb_shinfo(skb)->gso_size = 0; 4349 goto out; 4350 } 4351 4352 rcu_read_lock(); 4353 list_for_each_entry_rcu(ptype, head, list) { 4354 if (ptype->type != type || !ptype->callbacks.gro_complete) 4355 continue; 4356 4357 err = ptype->callbacks.gro_complete(skb, 0); 4358 break; 4359 } 4360 rcu_read_unlock(); 4361 4362 if (err) { 4363 WARN_ON(&ptype->list == head); 4364 kfree_skb(skb); 4365 return NET_RX_SUCCESS; 4366 } 4367 4368 out: 4369 return netif_receive_skb_internal(skb); 4370 } 4371 4372 /* napi->gro_list contains packets ordered by age. 4373 * youngest packets at the head of it. 4374 * Complete skbs in reverse order to reduce latencies. 4375 */ 4376 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 4377 { 4378 struct sk_buff *skb, *prev = NULL; 4379 4380 /* scan list and build reverse chain */ 4381 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 4382 skb->prev = prev; 4383 prev = skb; 4384 } 4385 4386 for (skb = prev; skb; skb = prev) { 4387 skb->next = NULL; 4388 4389 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 4390 return; 4391 4392 prev = skb->prev; 4393 napi_gro_complete(skb); 4394 napi->gro_count--; 4395 } 4396 4397 napi->gro_list = NULL; 4398 } 4399 EXPORT_SYMBOL(napi_gro_flush); 4400 4401 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 4402 { 4403 struct sk_buff *p; 4404 unsigned int maclen = skb->dev->hard_header_len; 4405 u32 hash = skb_get_hash_raw(skb); 4406 4407 for (p = napi->gro_list; p; p = p->next) { 4408 unsigned long diffs; 4409 4410 NAPI_GRO_CB(p)->flush = 0; 4411 4412 if (hash != skb_get_hash_raw(p)) { 4413 NAPI_GRO_CB(p)->same_flow = 0; 4414 continue; 4415 } 4416 4417 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 4418 diffs |= p->vlan_tci ^ skb->vlan_tci; 4419 diffs |= skb_metadata_dst_cmp(p, skb); 4420 if (maclen == ETH_HLEN) 4421 diffs |= compare_ether_header(skb_mac_header(p), 4422 skb_mac_header(skb)); 4423 else if (!diffs) 4424 diffs = memcmp(skb_mac_header(p), 4425 skb_mac_header(skb), 4426 maclen); 4427 NAPI_GRO_CB(p)->same_flow = !diffs; 4428 } 4429 } 4430 4431 static void skb_gro_reset_offset(struct sk_buff *skb) 4432 { 4433 const struct skb_shared_info *pinfo = skb_shinfo(skb); 4434 const skb_frag_t *frag0 = &pinfo->frags[0]; 4435 4436 NAPI_GRO_CB(skb)->data_offset = 0; 4437 NAPI_GRO_CB(skb)->frag0 = NULL; 4438 NAPI_GRO_CB(skb)->frag0_len = 0; 4439 4440 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 4441 pinfo->nr_frags && 4442 !PageHighMem(skb_frag_page(frag0))) { 4443 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 4444 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 4445 skb_frag_size(frag0), 4446 skb->end - skb->tail); 4447 } 4448 } 4449 4450 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 4451 { 4452 struct skb_shared_info *pinfo = skb_shinfo(skb); 4453 4454 BUG_ON(skb->end - skb->tail < grow); 4455 4456 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 4457 4458 skb->data_len -= grow; 4459 skb->tail += grow; 4460 4461 pinfo->frags[0].page_offset += grow; 4462 skb_frag_size_sub(&pinfo->frags[0], grow); 4463 4464 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 4465 skb_frag_unref(skb, 0); 4466 memmove(pinfo->frags, pinfo->frags + 1, 4467 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 4468 } 4469 } 4470 4471 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4472 { 4473 struct sk_buff **pp = NULL; 4474 struct packet_offload *ptype; 4475 __be16 type = skb->protocol; 4476 struct list_head *head = &offload_base; 4477 int same_flow; 4478 enum gro_result ret; 4479 int grow; 4480 4481 if (!(skb->dev->features & NETIF_F_GRO)) 4482 goto normal; 4483 4484 if (skb->csum_bad) 4485 goto normal; 4486 4487 gro_list_prepare(napi, skb); 4488 4489 rcu_read_lock(); 4490 list_for_each_entry_rcu(ptype, head, list) { 4491 if (ptype->type != type || !ptype->callbacks.gro_receive) 4492 continue; 4493 4494 skb_set_network_header(skb, skb_gro_offset(skb)); 4495 skb_reset_mac_len(skb); 4496 NAPI_GRO_CB(skb)->same_flow = 0; 4497 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 4498 NAPI_GRO_CB(skb)->free = 0; 4499 NAPI_GRO_CB(skb)->encap_mark = 0; 4500 NAPI_GRO_CB(skb)->recursion_counter = 0; 4501 NAPI_GRO_CB(skb)->is_fou = 0; 4502 NAPI_GRO_CB(skb)->is_atomic = 1; 4503 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 4504 4505 /* Setup for GRO checksum validation */ 4506 switch (skb->ip_summed) { 4507 case CHECKSUM_COMPLETE: 4508 NAPI_GRO_CB(skb)->csum = skb->csum; 4509 NAPI_GRO_CB(skb)->csum_valid = 1; 4510 NAPI_GRO_CB(skb)->csum_cnt = 0; 4511 break; 4512 case CHECKSUM_UNNECESSARY: 4513 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 4514 NAPI_GRO_CB(skb)->csum_valid = 0; 4515 break; 4516 default: 4517 NAPI_GRO_CB(skb)->csum_cnt = 0; 4518 NAPI_GRO_CB(skb)->csum_valid = 0; 4519 } 4520 4521 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 4522 break; 4523 } 4524 rcu_read_unlock(); 4525 4526 if (&ptype->list == head) 4527 goto normal; 4528 4529 same_flow = NAPI_GRO_CB(skb)->same_flow; 4530 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 4531 4532 if (pp) { 4533 struct sk_buff *nskb = *pp; 4534 4535 *pp = nskb->next; 4536 nskb->next = NULL; 4537 napi_gro_complete(nskb); 4538 napi->gro_count--; 4539 } 4540 4541 if (same_flow) 4542 goto ok; 4543 4544 if (NAPI_GRO_CB(skb)->flush) 4545 goto normal; 4546 4547 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) { 4548 struct sk_buff *nskb = napi->gro_list; 4549 4550 /* locate the end of the list to select the 'oldest' flow */ 4551 while (nskb->next) { 4552 pp = &nskb->next; 4553 nskb = *pp; 4554 } 4555 *pp = NULL; 4556 nskb->next = NULL; 4557 napi_gro_complete(nskb); 4558 } else { 4559 napi->gro_count++; 4560 } 4561 NAPI_GRO_CB(skb)->count = 1; 4562 NAPI_GRO_CB(skb)->age = jiffies; 4563 NAPI_GRO_CB(skb)->last = skb; 4564 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 4565 skb->next = napi->gro_list; 4566 napi->gro_list = skb; 4567 ret = GRO_HELD; 4568 4569 pull: 4570 grow = skb_gro_offset(skb) - skb_headlen(skb); 4571 if (grow > 0) 4572 gro_pull_from_frag0(skb, grow); 4573 ok: 4574 return ret; 4575 4576 normal: 4577 ret = GRO_NORMAL; 4578 goto pull; 4579 } 4580 4581 struct packet_offload *gro_find_receive_by_type(__be16 type) 4582 { 4583 struct list_head *offload_head = &offload_base; 4584 struct packet_offload *ptype; 4585 4586 list_for_each_entry_rcu(ptype, offload_head, list) { 4587 if (ptype->type != type || !ptype->callbacks.gro_receive) 4588 continue; 4589 return ptype; 4590 } 4591 return NULL; 4592 } 4593 EXPORT_SYMBOL(gro_find_receive_by_type); 4594 4595 struct packet_offload *gro_find_complete_by_type(__be16 type) 4596 { 4597 struct list_head *offload_head = &offload_base; 4598 struct packet_offload *ptype; 4599 4600 list_for_each_entry_rcu(ptype, offload_head, list) { 4601 if (ptype->type != type || !ptype->callbacks.gro_complete) 4602 continue; 4603 return ptype; 4604 } 4605 return NULL; 4606 } 4607 EXPORT_SYMBOL(gro_find_complete_by_type); 4608 4609 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 4610 { 4611 switch (ret) { 4612 case GRO_NORMAL: 4613 if (netif_receive_skb_internal(skb)) 4614 ret = GRO_DROP; 4615 break; 4616 4617 case GRO_DROP: 4618 kfree_skb(skb); 4619 break; 4620 4621 case GRO_MERGED_FREE: 4622 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) { 4623 skb_dst_drop(skb); 4624 kmem_cache_free(skbuff_head_cache, skb); 4625 } else { 4626 __kfree_skb(skb); 4627 } 4628 break; 4629 4630 case GRO_HELD: 4631 case GRO_MERGED: 4632 break; 4633 } 4634 4635 return ret; 4636 } 4637 4638 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4639 { 4640 skb_mark_napi_id(skb, napi); 4641 trace_napi_gro_receive_entry(skb); 4642 4643 skb_gro_reset_offset(skb); 4644 4645 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 4646 } 4647 EXPORT_SYMBOL(napi_gro_receive); 4648 4649 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 4650 { 4651 if (unlikely(skb->pfmemalloc)) { 4652 consume_skb(skb); 4653 return; 4654 } 4655 __skb_pull(skb, skb_headlen(skb)); 4656 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 4657 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 4658 skb->vlan_tci = 0; 4659 skb->dev = napi->dev; 4660 skb->skb_iif = 0; 4661 skb->encapsulation = 0; 4662 skb_shinfo(skb)->gso_type = 0; 4663 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 4664 4665 napi->skb = skb; 4666 } 4667 4668 struct sk_buff *napi_get_frags(struct napi_struct *napi) 4669 { 4670 struct sk_buff *skb = napi->skb; 4671 4672 if (!skb) { 4673 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 4674 if (skb) { 4675 napi->skb = skb; 4676 skb_mark_napi_id(skb, napi); 4677 } 4678 } 4679 return skb; 4680 } 4681 EXPORT_SYMBOL(napi_get_frags); 4682 4683 static gro_result_t napi_frags_finish(struct napi_struct *napi, 4684 struct sk_buff *skb, 4685 gro_result_t ret) 4686 { 4687 switch (ret) { 4688 case GRO_NORMAL: 4689 case GRO_HELD: 4690 __skb_push(skb, ETH_HLEN); 4691 skb->protocol = eth_type_trans(skb, skb->dev); 4692 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 4693 ret = GRO_DROP; 4694 break; 4695 4696 case GRO_DROP: 4697 case GRO_MERGED_FREE: 4698 napi_reuse_skb(napi, skb); 4699 break; 4700 4701 case GRO_MERGED: 4702 break; 4703 } 4704 4705 return ret; 4706 } 4707 4708 /* Upper GRO stack assumes network header starts at gro_offset=0 4709 * Drivers could call both napi_gro_frags() and napi_gro_receive() 4710 * We copy ethernet header into skb->data to have a common layout. 4711 */ 4712 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 4713 { 4714 struct sk_buff *skb = napi->skb; 4715 const struct ethhdr *eth; 4716 unsigned int hlen = sizeof(*eth); 4717 4718 napi->skb = NULL; 4719 4720 skb_reset_mac_header(skb); 4721 skb_gro_reset_offset(skb); 4722 4723 eth = skb_gro_header_fast(skb, 0); 4724 if (unlikely(skb_gro_header_hard(skb, hlen))) { 4725 eth = skb_gro_header_slow(skb, hlen, 0); 4726 if (unlikely(!eth)) { 4727 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 4728 __func__, napi->dev->name); 4729 napi_reuse_skb(napi, skb); 4730 return NULL; 4731 } 4732 } else { 4733 gro_pull_from_frag0(skb, hlen); 4734 NAPI_GRO_CB(skb)->frag0 += hlen; 4735 NAPI_GRO_CB(skb)->frag0_len -= hlen; 4736 } 4737 __skb_pull(skb, hlen); 4738 4739 /* 4740 * This works because the only protocols we care about don't require 4741 * special handling. 4742 * We'll fix it up properly in napi_frags_finish() 4743 */ 4744 skb->protocol = eth->h_proto; 4745 4746 return skb; 4747 } 4748 4749 gro_result_t napi_gro_frags(struct napi_struct *napi) 4750 { 4751 struct sk_buff *skb = napi_frags_skb(napi); 4752 4753 if (!skb) 4754 return GRO_DROP; 4755 4756 trace_napi_gro_frags_entry(skb); 4757 4758 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 4759 } 4760 EXPORT_SYMBOL(napi_gro_frags); 4761 4762 /* Compute the checksum from gro_offset and return the folded value 4763 * after adding in any pseudo checksum. 4764 */ 4765 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 4766 { 4767 __wsum wsum; 4768 __sum16 sum; 4769 4770 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 4771 4772 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 4773 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 4774 if (likely(!sum)) { 4775 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 4776 !skb->csum_complete_sw) 4777 netdev_rx_csum_fault(skb->dev); 4778 } 4779 4780 NAPI_GRO_CB(skb)->csum = wsum; 4781 NAPI_GRO_CB(skb)->csum_valid = 1; 4782 4783 return sum; 4784 } 4785 EXPORT_SYMBOL(__skb_gro_checksum_complete); 4786 4787 /* 4788 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 4789 * Note: called with local irq disabled, but exits with local irq enabled. 4790 */ 4791 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 4792 { 4793 #ifdef CONFIG_RPS 4794 struct softnet_data *remsd = sd->rps_ipi_list; 4795 4796 if (remsd) { 4797 sd->rps_ipi_list = NULL; 4798 4799 local_irq_enable(); 4800 4801 /* Send pending IPI's to kick RPS processing on remote cpus. */ 4802 while (remsd) { 4803 struct softnet_data *next = remsd->rps_ipi_next; 4804 4805 if (cpu_online(remsd->cpu)) 4806 smp_call_function_single_async(remsd->cpu, 4807 &remsd->csd); 4808 remsd = next; 4809 } 4810 } else 4811 #endif 4812 local_irq_enable(); 4813 } 4814 4815 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 4816 { 4817 #ifdef CONFIG_RPS 4818 return sd->rps_ipi_list != NULL; 4819 #else 4820 return false; 4821 #endif 4822 } 4823 4824 static int process_backlog(struct napi_struct *napi, int quota) 4825 { 4826 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 4827 bool again = true; 4828 int work = 0; 4829 4830 /* Check if we have pending ipi, its better to send them now, 4831 * not waiting net_rx_action() end. 4832 */ 4833 if (sd_has_rps_ipi_waiting(sd)) { 4834 local_irq_disable(); 4835 net_rps_action_and_irq_enable(sd); 4836 } 4837 4838 napi->weight = weight_p; 4839 while (again) { 4840 struct sk_buff *skb; 4841 4842 while ((skb = __skb_dequeue(&sd->process_queue))) { 4843 rcu_read_lock(); 4844 __netif_receive_skb(skb); 4845 rcu_read_unlock(); 4846 input_queue_head_incr(sd); 4847 if (++work >= quota) 4848 return work; 4849 4850 } 4851 4852 local_irq_disable(); 4853 rps_lock(sd); 4854 if (skb_queue_empty(&sd->input_pkt_queue)) { 4855 /* 4856 * Inline a custom version of __napi_complete(). 4857 * only current cpu owns and manipulates this napi, 4858 * and NAPI_STATE_SCHED is the only possible flag set 4859 * on backlog. 4860 * We can use a plain write instead of clear_bit(), 4861 * and we dont need an smp_mb() memory barrier. 4862 */ 4863 napi->state = 0; 4864 again = false; 4865 } else { 4866 skb_queue_splice_tail_init(&sd->input_pkt_queue, 4867 &sd->process_queue); 4868 } 4869 rps_unlock(sd); 4870 local_irq_enable(); 4871 } 4872 4873 return work; 4874 } 4875 4876 /** 4877 * __napi_schedule - schedule for receive 4878 * @n: entry to schedule 4879 * 4880 * The entry's receive function will be scheduled to run. 4881 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 4882 */ 4883 void __napi_schedule(struct napi_struct *n) 4884 { 4885 unsigned long flags; 4886 4887 local_irq_save(flags); 4888 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 4889 local_irq_restore(flags); 4890 } 4891 EXPORT_SYMBOL(__napi_schedule); 4892 4893 /** 4894 * __napi_schedule_irqoff - schedule for receive 4895 * @n: entry to schedule 4896 * 4897 * Variant of __napi_schedule() assuming hard irqs are masked 4898 */ 4899 void __napi_schedule_irqoff(struct napi_struct *n) 4900 { 4901 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 4902 } 4903 EXPORT_SYMBOL(__napi_schedule_irqoff); 4904 4905 bool __napi_complete(struct napi_struct *n) 4906 { 4907 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 4908 4909 /* Some drivers call us directly, instead of calling 4910 * napi_complete_done(). 4911 */ 4912 if (unlikely(test_bit(NAPI_STATE_IN_BUSY_POLL, &n->state))) 4913 return false; 4914 4915 list_del_init(&n->poll_list); 4916 smp_mb__before_atomic(); 4917 clear_bit(NAPI_STATE_SCHED, &n->state); 4918 return true; 4919 } 4920 EXPORT_SYMBOL(__napi_complete); 4921 4922 bool napi_complete_done(struct napi_struct *n, int work_done) 4923 { 4924 unsigned long flags; 4925 4926 /* 4927 * 1) Don't let napi dequeue from the cpu poll list 4928 * just in case its running on a different cpu. 4929 * 2) If we are busy polling, do nothing here, we have 4930 * the guarantee we will be called later. 4931 */ 4932 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 4933 NAPIF_STATE_IN_BUSY_POLL))) 4934 return false; 4935 4936 if (n->gro_list) { 4937 unsigned long timeout = 0; 4938 4939 if (work_done) 4940 timeout = n->dev->gro_flush_timeout; 4941 4942 if (timeout) 4943 hrtimer_start(&n->timer, ns_to_ktime(timeout), 4944 HRTIMER_MODE_REL_PINNED); 4945 else 4946 napi_gro_flush(n, false); 4947 } 4948 if (likely(list_empty(&n->poll_list))) { 4949 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state)); 4950 } else { 4951 /* If n->poll_list is not empty, we need to mask irqs */ 4952 local_irq_save(flags); 4953 __napi_complete(n); 4954 local_irq_restore(flags); 4955 } 4956 return true; 4957 } 4958 EXPORT_SYMBOL(napi_complete_done); 4959 4960 /* must be called under rcu_read_lock(), as we dont take a reference */ 4961 static struct napi_struct *napi_by_id(unsigned int napi_id) 4962 { 4963 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 4964 struct napi_struct *napi; 4965 4966 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 4967 if (napi->napi_id == napi_id) 4968 return napi; 4969 4970 return NULL; 4971 } 4972 4973 #if defined(CONFIG_NET_RX_BUSY_POLL) 4974 4975 #define BUSY_POLL_BUDGET 8 4976 4977 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock) 4978 { 4979 int rc; 4980 4981 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 4982 4983 local_bh_disable(); 4984 4985 /* All we really want here is to re-enable device interrupts. 4986 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 4987 */ 4988 rc = napi->poll(napi, BUSY_POLL_BUDGET); 4989 netpoll_poll_unlock(have_poll_lock); 4990 if (rc == BUSY_POLL_BUDGET) 4991 __napi_schedule(napi); 4992 local_bh_enable(); 4993 if (local_softirq_pending()) 4994 do_softirq(); 4995 } 4996 4997 bool sk_busy_loop(struct sock *sk, int nonblock) 4998 { 4999 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0; 5000 int (*napi_poll)(struct napi_struct *napi, int budget); 5001 int (*busy_poll)(struct napi_struct *dev); 5002 void *have_poll_lock = NULL; 5003 struct napi_struct *napi; 5004 int rc; 5005 5006 restart: 5007 rc = false; 5008 napi_poll = NULL; 5009 5010 rcu_read_lock(); 5011 5012 napi = napi_by_id(sk->sk_napi_id); 5013 if (!napi) 5014 goto out; 5015 5016 /* Note: ndo_busy_poll method is optional in linux-4.5 */ 5017 busy_poll = napi->dev->netdev_ops->ndo_busy_poll; 5018 5019 preempt_disable(); 5020 for (;;) { 5021 rc = 0; 5022 local_bh_disable(); 5023 if (busy_poll) { 5024 rc = busy_poll(napi); 5025 goto count; 5026 } 5027 if (!napi_poll) { 5028 unsigned long val = READ_ONCE(napi->state); 5029 5030 /* If multiple threads are competing for this napi, 5031 * we avoid dirtying napi->state as much as we can. 5032 */ 5033 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 5034 NAPIF_STATE_IN_BUSY_POLL)) 5035 goto count; 5036 if (cmpxchg(&napi->state, val, 5037 val | NAPIF_STATE_IN_BUSY_POLL | 5038 NAPIF_STATE_SCHED) != val) 5039 goto count; 5040 have_poll_lock = netpoll_poll_lock(napi); 5041 napi_poll = napi->poll; 5042 } 5043 rc = napi_poll(napi, BUSY_POLL_BUDGET); 5044 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET); 5045 count: 5046 if (rc > 0) 5047 __NET_ADD_STATS(sock_net(sk), 5048 LINUX_MIB_BUSYPOLLRXPACKETS, rc); 5049 local_bh_enable(); 5050 5051 if (rc == LL_FLUSH_FAILED) 5052 break; /* permanent failure */ 5053 5054 if (nonblock || !skb_queue_empty(&sk->sk_receive_queue) || 5055 busy_loop_timeout(end_time)) 5056 break; 5057 5058 if (unlikely(need_resched())) { 5059 if (napi_poll) 5060 busy_poll_stop(napi, have_poll_lock); 5061 preempt_enable(); 5062 rcu_read_unlock(); 5063 cond_resched(); 5064 rc = !skb_queue_empty(&sk->sk_receive_queue); 5065 if (rc || busy_loop_timeout(end_time)) 5066 return rc; 5067 goto restart; 5068 } 5069 cpu_relax(); 5070 } 5071 if (napi_poll) 5072 busy_poll_stop(napi, have_poll_lock); 5073 preempt_enable(); 5074 rc = !skb_queue_empty(&sk->sk_receive_queue); 5075 out: 5076 rcu_read_unlock(); 5077 return rc; 5078 } 5079 EXPORT_SYMBOL(sk_busy_loop); 5080 5081 #endif /* CONFIG_NET_RX_BUSY_POLL */ 5082 5083 static void napi_hash_add(struct napi_struct *napi) 5084 { 5085 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) || 5086 test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) 5087 return; 5088 5089 spin_lock(&napi_hash_lock); 5090 5091 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */ 5092 do { 5093 if (unlikely(++napi_gen_id < NR_CPUS + 1)) 5094 napi_gen_id = NR_CPUS + 1; 5095 } while (napi_by_id(napi_gen_id)); 5096 napi->napi_id = napi_gen_id; 5097 5098 hlist_add_head_rcu(&napi->napi_hash_node, 5099 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 5100 5101 spin_unlock(&napi_hash_lock); 5102 } 5103 5104 /* Warning : caller is responsible to make sure rcu grace period 5105 * is respected before freeing memory containing @napi 5106 */ 5107 bool napi_hash_del(struct napi_struct *napi) 5108 { 5109 bool rcu_sync_needed = false; 5110 5111 spin_lock(&napi_hash_lock); 5112 5113 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) { 5114 rcu_sync_needed = true; 5115 hlist_del_rcu(&napi->napi_hash_node); 5116 } 5117 spin_unlock(&napi_hash_lock); 5118 return rcu_sync_needed; 5119 } 5120 EXPORT_SYMBOL_GPL(napi_hash_del); 5121 5122 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 5123 { 5124 struct napi_struct *napi; 5125 5126 napi = container_of(timer, struct napi_struct, timer); 5127 if (napi->gro_list) 5128 napi_schedule(napi); 5129 5130 return HRTIMER_NORESTART; 5131 } 5132 5133 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 5134 int (*poll)(struct napi_struct *, int), int weight) 5135 { 5136 INIT_LIST_HEAD(&napi->poll_list); 5137 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 5138 napi->timer.function = napi_watchdog; 5139 napi->gro_count = 0; 5140 napi->gro_list = NULL; 5141 napi->skb = NULL; 5142 napi->poll = poll; 5143 if (weight > NAPI_POLL_WEIGHT) 5144 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 5145 weight, dev->name); 5146 napi->weight = weight; 5147 list_add(&napi->dev_list, &dev->napi_list); 5148 napi->dev = dev; 5149 #ifdef CONFIG_NETPOLL 5150 napi->poll_owner = -1; 5151 #endif 5152 set_bit(NAPI_STATE_SCHED, &napi->state); 5153 napi_hash_add(napi); 5154 } 5155 EXPORT_SYMBOL(netif_napi_add); 5156 5157 void napi_disable(struct napi_struct *n) 5158 { 5159 might_sleep(); 5160 set_bit(NAPI_STATE_DISABLE, &n->state); 5161 5162 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 5163 msleep(1); 5164 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 5165 msleep(1); 5166 5167 hrtimer_cancel(&n->timer); 5168 5169 clear_bit(NAPI_STATE_DISABLE, &n->state); 5170 } 5171 EXPORT_SYMBOL(napi_disable); 5172 5173 /* Must be called in process context */ 5174 void netif_napi_del(struct napi_struct *napi) 5175 { 5176 might_sleep(); 5177 if (napi_hash_del(napi)) 5178 synchronize_net(); 5179 list_del_init(&napi->dev_list); 5180 napi_free_frags(napi); 5181 5182 kfree_skb_list(napi->gro_list); 5183 napi->gro_list = NULL; 5184 napi->gro_count = 0; 5185 } 5186 EXPORT_SYMBOL(netif_napi_del); 5187 5188 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 5189 { 5190 void *have; 5191 int work, weight; 5192 5193 list_del_init(&n->poll_list); 5194 5195 have = netpoll_poll_lock(n); 5196 5197 weight = n->weight; 5198 5199 /* This NAPI_STATE_SCHED test is for avoiding a race 5200 * with netpoll's poll_napi(). Only the entity which 5201 * obtains the lock and sees NAPI_STATE_SCHED set will 5202 * actually make the ->poll() call. Therefore we avoid 5203 * accidentally calling ->poll() when NAPI is not scheduled. 5204 */ 5205 work = 0; 5206 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 5207 work = n->poll(n, weight); 5208 trace_napi_poll(n, work, weight); 5209 } 5210 5211 WARN_ON_ONCE(work > weight); 5212 5213 if (likely(work < weight)) 5214 goto out_unlock; 5215 5216 /* Drivers must not modify the NAPI state if they 5217 * consume the entire weight. In such cases this code 5218 * still "owns" the NAPI instance and therefore can 5219 * move the instance around on the list at-will. 5220 */ 5221 if (unlikely(napi_disable_pending(n))) { 5222 napi_complete(n); 5223 goto out_unlock; 5224 } 5225 5226 if (n->gro_list) { 5227 /* flush too old packets 5228 * If HZ < 1000, flush all packets. 5229 */ 5230 napi_gro_flush(n, HZ >= 1000); 5231 } 5232 5233 /* Some drivers may have called napi_schedule 5234 * prior to exhausting their budget. 5235 */ 5236 if (unlikely(!list_empty(&n->poll_list))) { 5237 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 5238 n->dev ? n->dev->name : "backlog"); 5239 goto out_unlock; 5240 } 5241 5242 list_add_tail(&n->poll_list, repoll); 5243 5244 out_unlock: 5245 netpoll_poll_unlock(have); 5246 5247 return work; 5248 } 5249 5250 static __latent_entropy void net_rx_action(struct softirq_action *h) 5251 { 5252 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5253 unsigned long time_limit = jiffies + 2; 5254 int budget = netdev_budget; 5255 LIST_HEAD(list); 5256 LIST_HEAD(repoll); 5257 5258 local_irq_disable(); 5259 list_splice_init(&sd->poll_list, &list); 5260 local_irq_enable(); 5261 5262 for (;;) { 5263 struct napi_struct *n; 5264 5265 if (list_empty(&list)) { 5266 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 5267 goto out; 5268 break; 5269 } 5270 5271 n = list_first_entry(&list, struct napi_struct, poll_list); 5272 budget -= napi_poll(n, &repoll); 5273 5274 /* If softirq window is exhausted then punt. 5275 * Allow this to run for 2 jiffies since which will allow 5276 * an average latency of 1.5/HZ. 5277 */ 5278 if (unlikely(budget <= 0 || 5279 time_after_eq(jiffies, time_limit))) { 5280 sd->time_squeeze++; 5281 break; 5282 } 5283 } 5284 5285 local_irq_disable(); 5286 5287 list_splice_tail_init(&sd->poll_list, &list); 5288 list_splice_tail(&repoll, &list); 5289 list_splice(&list, &sd->poll_list); 5290 if (!list_empty(&sd->poll_list)) 5291 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5292 5293 net_rps_action_and_irq_enable(sd); 5294 out: 5295 __kfree_skb_flush(); 5296 } 5297 5298 struct netdev_adjacent { 5299 struct net_device *dev; 5300 5301 /* upper master flag, there can only be one master device per list */ 5302 bool master; 5303 5304 /* counter for the number of times this device was added to us */ 5305 u16 ref_nr; 5306 5307 /* private field for the users */ 5308 void *private; 5309 5310 struct list_head list; 5311 struct rcu_head rcu; 5312 }; 5313 5314 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 5315 struct list_head *adj_list) 5316 { 5317 struct netdev_adjacent *adj; 5318 5319 list_for_each_entry(adj, adj_list, list) { 5320 if (adj->dev == adj_dev) 5321 return adj; 5322 } 5323 return NULL; 5324 } 5325 5326 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data) 5327 { 5328 struct net_device *dev = data; 5329 5330 return upper_dev == dev; 5331 } 5332 5333 /** 5334 * netdev_has_upper_dev - Check if device is linked to an upper device 5335 * @dev: device 5336 * @upper_dev: upper device to check 5337 * 5338 * Find out if a device is linked to specified upper device and return true 5339 * in case it is. Note that this checks only immediate upper device, 5340 * not through a complete stack of devices. The caller must hold the RTNL lock. 5341 */ 5342 bool netdev_has_upper_dev(struct net_device *dev, 5343 struct net_device *upper_dev) 5344 { 5345 ASSERT_RTNL(); 5346 5347 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 5348 upper_dev); 5349 } 5350 EXPORT_SYMBOL(netdev_has_upper_dev); 5351 5352 /** 5353 * netdev_has_upper_dev_all - Check if device is linked to an upper device 5354 * @dev: device 5355 * @upper_dev: upper device to check 5356 * 5357 * Find out if a device is linked to specified upper device and return true 5358 * in case it is. Note that this checks the entire upper device chain. 5359 * The caller must hold rcu lock. 5360 */ 5361 5362 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 5363 struct net_device *upper_dev) 5364 { 5365 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 5366 upper_dev); 5367 } 5368 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 5369 5370 /** 5371 * netdev_has_any_upper_dev - Check if device is linked to some device 5372 * @dev: device 5373 * 5374 * Find out if a device is linked to an upper device and return true in case 5375 * it is. The caller must hold the RTNL lock. 5376 */ 5377 static bool netdev_has_any_upper_dev(struct net_device *dev) 5378 { 5379 ASSERT_RTNL(); 5380 5381 return !list_empty(&dev->adj_list.upper); 5382 } 5383 5384 /** 5385 * netdev_master_upper_dev_get - Get master upper device 5386 * @dev: device 5387 * 5388 * Find a master upper device and return pointer to it or NULL in case 5389 * it's not there. The caller must hold the RTNL lock. 5390 */ 5391 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 5392 { 5393 struct netdev_adjacent *upper; 5394 5395 ASSERT_RTNL(); 5396 5397 if (list_empty(&dev->adj_list.upper)) 5398 return NULL; 5399 5400 upper = list_first_entry(&dev->adj_list.upper, 5401 struct netdev_adjacent, list); 5402 if (likely(upper->master)) 5403 return upper->dev; 5404 return NULL; 5405 } 5406 EXPORT_SYMBOL(netdev_master_upper_dev_get); 5407 5408 /** 5409 * netdev_has_any_lower_dev - Check if device is linked to some device 5410 * @dev: device 5411 * 5412 * Find out if a device is linked to a lower device and return true in case 5413 * it is. The caller must hold the RTNL lock. 5414 */ 5415 static bool netdev_has_any_lower_dev(struct net_device *dev) 5416 { 5417 ASSERT_RTNL(); 5418 5419 return !list_empty(&dev->adj_list.lower); 5420 } 5421 5422 void *netdev_adjacent_get_private(struct list_head *adj_list) 5423 { 5424 struct netdev_adjacent *adj; 5425 5426 adj = list_entry(adj_list, struct netdev_adjacent, list); 5427 5428 return adj->private; 5429 } 5430 EXPORT_SYMBOL(netdev_adjacent_get_private); 5431 5432 /** 5433 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 5434 * @dev: device 5435 * @iter: list_head ** of the current position 5436 * 5437 * Gets the next device from the dev's upper list, starting from iter 5438 * position. The caller must hold RCU read lock. 5439 */ 5440 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 5441 struct list_head **iter) 5442 { 5443 struct netdev_adjacent *upper; 5444 5445 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5446 5447 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5448 5449 if (&upper->list == &dev->adj_list.upper) 5450 return NULL; 5451 5452 *iter = &upper->list; 5453 5454 return upper->dev; 5455 } 5456 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 5457 5458 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 5459 struct list_head **iter) 5460 { 5461 struct netdev_adjacent *upper; 5462 5463 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5464 5465 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5466 5467 if (&upper->list == &dev->adj_list.upper) 5468 return NULL; 5469 5470 *iter = &upper->list; 5471 5472 return upper->dev; 5473 } 5474 5475 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 5476 int (*fn)(struct net_device *dev, 5477 void *data), 5478 void *data) 5479 { 5480 struct net_device *udev; 5481 struct list_head *iter; 5482 int ret; 5483 5484 for (iter = &dev->adj_list.upper, 5485 udev = netdev_next_upper_dev_rcu(dev, &iter); 5486 udev; 5487 udev = netdev_next_upper_dev_rcu(dev, &iter)) { 5488 /* first is the upper device itself */ 5489 ret = fn(udev, data); 5490 if (ret) 5491 return ret; 5492 5493 /* then look at all of its upper devices */ 5494 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data); 5495 if (ret) 5496 return ret; 5497 } 5498 5499 return 0; 5500 } 5501 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 5502 5503 /** 5504 * netdev_lower_get_next_private - Get the next ->private from the 5505 * lower neighbour list 5506 * @dev: device 5507 * @iter: list_head ** of the current position 5508 * 5509 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5510 * list, starting from iter position. The caller must hold either hold the 5511 * RTNL lock or its own locking that guarantees that the neighbour lower 5512 * list will remain unchanged. 5513 */ 5514 void *netdev_lower_get_next_private(struct net_device *dev, 5515 struct list_head **iter) 5516 { 5517 struct netdev_adjacent *lower; 5518 5519 lower = list_entry(*iter, struct netdev_adjacent, list); 5520 5521 if (&lower->list == &dev->adj_list.lower) 5522 return NULL; 5523 5524 *iter = lower->list.next; 5525 5526 return lower->private; 5527 } 5528 EXPORT_SYMBOL(netdev_lower_get_next_private); 5529 5530 /** 5531 * netdev_lower_get_next_private_rcu - Get the next ->private from the 5532 * lower neighbour list, RCU 5533 * variant 5534 * @dev: device 5535 * @iter: list_head ** of the current position 5536 * 5537 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5538 * list, starting from iter position. The caller must hold RCU read lock. 5539 */ 5540 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 5541 struct list_head **iter) 5542 { 5543 struct netdev_adjacent *lower; 5544 5545 WARN_ON_ONCE(!rcu_read_lock_held()); 5546 5547 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5548 5549 if (&lower->list == &dev->adj_list.lower) 5550 return NULL; 5551 5552 *iter = &lower->list; 5553 5554 return lower->private; 5555 } 5556 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 5557 5558 /** 5559 * netdev_lower_get_next - Get the next device from the lower neighbour 5560 * list 5561 * @dev: device 5562 * @iter: list_head ** of the current position 5563 * 5564 * Gets the next netdev_adjacent from the dev's lower neighbour 5565 * list, starting from iter position. The caller must hold RTNL lock or 5566 * its own locking that guarantees that the neighbour lower 5567 * list will remain unchanged. 5568 */ 5569 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 5570 { 5571 struct netdev_adjacent *lower; 5572 5573 lower = list_entry(*iter, struct netdev_adjacent, list); 5574 5575 if (&lower->list == &dev->adj_list.lower) 5576 return NULL; 5577 5578 *iter = lower->list.next; 5579 5580 return lower->dev; 5581 } 5582 EXPORT_SYMBOL(netdev_lower_get_next); 5583 5584 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 5585 struct list_head **iter) 5586 { 5587 struct netdev_adjacent *lower; 5588 5589 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 5590 5591 if (&lower->list == &dev->adj_list.lower) 5592 return NULL; 5593 5594 *iter = &lower->list; 5595 5596 return lower->dev; 5597 } 5598 5599 int netdev_walk_all_lower_dev(struct net_device *dev, 5600 int (*fn)(struct net_device *dev, 5601 void *data), 5602 void *data) 5603 { 5604 struct net_device *ldev; 5605 struct list_head *iter; 5606 int ret; 5607 5608 for (iter = &dev->adj_list.lower, 5609 ldev = netdev_next_lower_dev(dev, &iter); 5610 ldev; 5611 ldev = netdev_next_lower_dev(dev, &iter)) { 5612 /* first is the lower device itself */ 5613 ret = fn(ldev, data); 5614 if (ret) 5615 return ret; 5616 5617 /* then look at all of its lower devices */ 5618 ret = netdev_walk_all_lower_dev(ldev, fn, data); 5619 if (ret) 5620 return ret; 5621 } 5622 5623 return 0; 5624 } 5625 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 5626 5627 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 5628 struct list_head **iter) 5629 { 5630 struct netdev_adjacent *lower; 5631 5632 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5633 if (&lower->list == &dev->adj_list.lower) 5634 return NULL; 5635 5636 *iter = &lower->list; 5637 5638 return lower->dev; 5639 } 5640 5641 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 5642 int (*fn)(struct net_device *dev, 5643 void *data), 5644 void *data) 5645 { 5646 struct net_device *ldev; 5647 struct list_head *iter; 5648 int ret; 5649 5650 for (iter = &dev->adj_list.lower, 5651 ldev = netdev_next_lower_dev_rcu(dev, &iter); 5652 ldev; 5653 ldev = netdev_next_lower_dev_rcu(dev, &iter)) { 5654 /* first is the lower device itself */ 5655 ret = fn(ldev, data); 5656 if (ret) 5657 return ret; 5658 5659 /* then look at all of its lower devices */ 5660 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data); 5661 if (ret) 5662 return ret; 5663 } 5664 5665 return 0; 5666 } 5667 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 5668 5669 /** 5670 * netdev_lower_get_first_private_rcu - Get the first ->private from the 5671 * lower neighbour list, RCU 5672 * variant 5673 * @dev: device 5674 * 5675 * Gets the first netdev_adjacent->private from the dev's lower neighbour 5676 * list. The caller must hold RCU read lock. 5677 */ 5678 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 5679 { 5680 struct netdev_adjacent *lower; 5681 5682 lower = list_first_or_null_rcu(&dev->adj_list.lower, 5683 struct netdev_adjacent, list); 5684 if (lower) 5685 return lower->private; 5686 return NULL; 5687 } 5688 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 5689 5690 /** 5691 * netdev_master_upper_dev_get_rcu - Get master upper device 5692 * @dev: device 5693 * 5694 * Find a master upper device and return pointer to it or NULL in case 5695 * it's not there. The caller must hold the RCU read lock. 5696 */ 5697 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 5698 { 5699 struct netdev_adjacent *upper; 5700 5701 upper = list_first_or_null_rcu(&dev->adj_list.upper, 5702 struct netdev_adjacent, list); 5703 if (upper && likely(upper->master)) 5704 return upper->dev; 5705 return NULL; 5706 } 5707 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 5708 5709 static int netdev_adjacent_sysfs_add(struct net_device *dev, 5710 struct net_device *adj_dev, 5711 struct list_head *dev_list) 5712 { 5713 char linkname[IFNAMSIZ+7]; 5714 sprintf(linkname, dev_list == &dev->adj_list.upper ? 5715 "upper_%s" : "lower_%s", adj_dev->name); 5716 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 5717 linkname); 5718 } 5719 static void netdev_adjacent_sysfs_del(struct net_device *dev, 5720 char *name, 5721 struct list_head *dev_list) 5722 { 5723 char linkname[IFNAMSIZ+7]; 5724 sprintf(linkname, dev_list == &dev->adj_list.upper ? 5725 "upper_%s" : "lower_%s", name); 5726 sysfs_remove_link(&(dev->dev.kobj), linkname); 5727 } 5728 5729 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 5730 struct net_device *adj_dev, 5731 struct list_head *dev_list) 5732 { 5733 return (dev_list == &dev->adj_list.upper || 5734 dev_list == &dev->adj_list.lower) && 5735 net_eq(dev_net(dev), dev_net(adj_dev)); 5736 } 5737 5738 static int __netdev_adjacent_dev_insert(struct net_device *dev, 5739 struct net_device *adj_dev, 5740 struct list_head *dev_list, 5741 void *private, bool master) 5742 { 5743 struct netdev_adjacent *adj; 5744 int ret; 5745 5746 adj = __netdev_find_adj(adj_dev, dev_list); 5747 5748 if (adj) { 5749 adj->ref_nr += 1; 5750 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 5751 dev->name, adj_dev->name, adj->ref_nr); 5752 5753 return 0; 5754 } 5755 5756 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 5757 if (!adj) 5758 return -ENOMEM; 5759 5760 adj->dev = adj_dev; 5761 adj->master = master; 5762 adj->ref_nr = 1; 5763 adj->private = private; 5764 dev_hold(adj_dev); 5765 5766 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 5767 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 5768 5769 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 5770 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 5771 if (ret) 5772 goto free_adj; 5773 } 5774 5775 /* Ensure that master link is always the first item in list. */ 5776 if (master) { 5777 ret = sysfs_create_link(&(dev->dev.kobj), 5778 &(adj_dev->dev.kobj), "master"); 5779 if (ret) 5780 goto remove_symlinks; 5781 5782 list_add_rcu(&adj->list, dev_list); 5783 } else { 5784 list_add_tail_rcu(&adj->list, dev_list); 5785 } 5786 5787 return 0; 5788 5789 remove_symlinks: 5790 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 5791 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 5792 free_adj: 5793 kfree(adj); 5794 dev_put(adj_dev); 5795 5796 return ret; 5797 } 5798 5799 static void __netdev_adjacent_dev_remove(struct net_device *dev, 5800 struct net_device *adj_dev, 5801 u16 ref_nr, 5802 struct list_head *dev_list) 5803 { 5804 struct netdev_adjacent *adj; 5805 5806 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 5807 dev->name, adj_dev->name, ref_nr); 5808 5809 adj = __netdev_find_adj(adj_dev, dev_list); 5810 5811 if (!adj) { 5812 pr_err("Adjacency does not exist for device %s from %s\n", 5813 dev->name, adj_dev->name); 5814 WARN_ON(1); 5815 return; 5816 } 5817 5818 if (adj->ref_nr > ref_nr) { 5819 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 5820 dev->name, adj_dev->name, ref_nr, 5821 adj->ref_nr - ref_nr); 5822 adj->ref_nr -= ref_nr; 5823 return; 5824 } 5825 5826 if (adj->master) 5827 sysfs_remove_link(&(dev->dev.kobj), "master"); 5828 5829 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 5830 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 5831 5832 list_del_rcu(&adj->list); 5833 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 5834 adj_dev->name, dev->name, adj_dev->name); 5835 dev_put(adj_dev); 5836 kfree_rcu(adj, rcu); 5837 } 5838 5839 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 5840 struct net_device *upper_dev, 5841 struct list_head *up_list, 5842 struct list_head *down_list, 5843 void *private, bool master) 5844 { 5845 int ret; 5846 5847 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 5848 private, master); 5849 if (ret) 5850 return ret; 5851 5852 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 5853 private, false); 5854 if (ret) { 5855 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 5856 return ret; 5857 } 5858 5859 return 0; 5860 } 5861 5862 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 5863 struct net_device *upper_dev, 5864 u16 ref_nr, 5865 struct list_head *up_list, 5866 struct list_head *down_list) 5867 { 5868 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 5869 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 5870 } 5871 5872 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 5873 struct net_device *upper_dev, 5874 void *private, bool master) 5875 { 5876 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 5877 &dev->adj_list.upper, 5878 &upper_dev->adj_list.lower, 5879 private, master); 5880 } 5881 5882 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 5883 struct net_device *upper_dev) 5884 { 5885 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 5886 &dev->adj_list.upper, 5887 &upper_dev->adj_list.lower); 5888 } 5889 5890 static int __netdev_upper_dev_link(struct net_device *dev, 5891 struct net_device *upper_dev, bool master, 5892 void *upper_priv, void *upper_info) 5893 { 5894 struct netdev_notifier_changeupper_info changeupper_info; 5895 int ret = 0; 5896 5897 ASSERT_RTNL(); 5898 5899 if (dev == upper_dev) 5900 return -EBUSY; 5901 5902 /* To prevent loops, check if dev is not upper device to upper_dev. */ 5903 if (netdev_has_upper_dev(upper_dev, dev)) 5904 return -EBUSY; 5905 5906 if (netdev_has_upper_dev(dev, upper_dev)) 5907 return -EEXIST; 5908 5909 if (master && netdev_master_upper_dev_get(dev)) 5910 return -EBUSY; 5911 5912 changeupper_info.upper_dev = upper_dev; 5913 changeupper_info.master = master; 5914 changeupper_info.linking = true; 5915 changeupper_info.upper_info = upper_info; 5916 5917 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev, 5918 &changeupper_info.info); 5919 ret = notifier_to_errno(ret); 5920 if (ret) 5921 return ret; 5922 5923 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 5924 master); 5925 if (ret) 5926 return ret; 5927 5928 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev, 5929 &changeupper_info.info); 5930 ret = notifier_to_errno(ret); 5931 if (ret) 5932 goto rollback; 5933 5934 return 0; 5935 5936 rollback: 5937 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 5938 5939 return ret; 5940 } 5941 5942 /** 5943 * netdev_upper_dev_link - Add a link to the upper device 5944 * @dev: device 5945 * @upper_dev: new upper device 5946 * 5947 * Adds a link to device which is upper to this one. The caller must hold 5948 * the RTNL lock. On a failure a negative errno code is returned. 5949 * On success the reference counts are adjusted and the function 5950 * returns zero. 5951 */ 5952 int netdev_upper_dev_link(struct net_device *dev, 5953 struct net_device *upper_dev) 5954 { 5955 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL); 5956 } 5957 EXPORT_SYMBOL(netdev_upper_dev_link); 5958 5959 /** 5960 * netdev_master_upper_dev_link - Add a master link to the upper device 5961 * @dev: device 5962 * @upper_dev: new upper device 5963 * @upper_priv: upper device private 5964 * @upper_info: upper info to be passed down via notifier 5965 * 5966 * Adds a link to device which is upper to this one. In this case, only 5967 * one master upper device can be linked, although other non-master devices 5968 * might be linked as well. The caller must hold the RTNL lock. 5969 * On a failure a negative errno code is returned. On success the reference 5970 * counts are adjusted and the function returns zero. 5971 */ 5972 int netdev_master_upper_dev_link(struct net_device *dev, 5973 struct net_device *upper_dev, 5974 void *upper_priv, void *upper_info) 5975 { 5976 return __netdev_upper_dev_link(dev, upper_dev, true, 5977 upper_priv, upper_info); 5978 } 5979 EXPORT_SYMBOL(netdev_master_upper_dev_link); 5980 5981 /** 5982 * netdev_upper_dev_unlink - Removes a link to upper device 5983 * @dev: device 5984 * @upper_dev: new upper device 5985 * 5986 * Removes a link to device which is upper to this one. The caller must hold 5987 * the RTNL lock. 5988 */ 5989 void netdev_upper_dev_unlink(struct net_device *dev, 5990 struct net_device *upper_dev) 5991 { 5992 struct netdev_notifier_changeupper_info changeupper_info; 5993 ASSERT_RTNL(); 5994 5995 changeupper_info.upper_dev = upper_dev; 5996 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 5997 changeupper_info.linking = false; 5998 5999 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev, 6000 &changeupper_info.info); 6001 6002 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 6003 6004 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev, 6005 &changeupper_info.info); 6006 } 6007 EXPORT_SYMBOL(netdev_upper_dev_unlink); 6008 6009 /** 6010 * netdev_bonding_info_change - Dispatch event about slave change 6011 * @dev: device 6012 * @bonding_info: info to dispatch 6013 * 6014 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 6015 * The caller must hold the RTNL lock. 6016 */ 6017 void netdev_bonding_info_change(struct net_device *dev, 6018 struct netdev_bonding_info *bonding_info) 6019 { 6020 struct netdev_notifier_bonding_info info; 6021 6022 memcpy(&info.bonding_info, bonding_info, 6023 sizeof(struct netdev_bonding_info)); 6024 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev, 6025 &info.info); 6026 } 6027 EXPORT_SYMBOL(netdev_bonding_info_change); 6028 6029 static void netdev_adjacent_add_links(struct net_device *dev) 6030 { 6031 struct netdev_adjacent *iter; 6032 6033 struct net *net = dev_net(dev); 6034 6035 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6036 if (!net_eq(net, dev_net(iter->dev))) 6037 continue; 6038 netdev_adjacent_sysfs_add(iter->dev, dev, 6039 &iter->dev->adj_list.lower); 6040 netdev_adjacent_sysfs_add(dev, iter->dev, 6041 &dev->adj_list.upper); 6042 } 6043 6044 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6045 if (!net_eq(net, dev_net(iter->dev))) 6046 continue; 6047 netdev_adjacent_sysfs_add(iter->dev, dev, 6048 &iter->dev->adj_list.upper); 6049 netdev_adjacent_sysfs_add(dev, iter->dev, 6050 &dev->adj_list.lower); 6051 } 6052 } 6053 6054 static void netdev_adjacent_del_links(struct net_device *dev) 6055 { 6056 struct netdev_adjacent *iter; 6057 6058 struct net *net = dev_net(dev); 6059 6060 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6061 if (!net_eq(net, dev_net(iter->dev))) 6062 continue; 6063 netdev_adjacent_sysfs_del(iter->dev, dev->name, 6064 &iter->dev->adj_list.lower); 6065 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6066 &dev->adj_list.upper); 6067 } 6068 6069 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6070 if (!net_eq(net, dev_net(iter->dev))) 6071 continue; 6072 netdev_adjacent_sysfs_del(iter->dev, dev->name, 6073 &iter->dev->adj_list.upper); 6074 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6075 &dev->adj_list.lower); 6076 } 6077 } 6078 6079 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 6080 { 6081 struct netdev_adjacent *iter; 6082 6083 struct net *net = dev_net(dev); 6084 6085 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6086 if (!net_eq(net, dev_net(iter->dev))) 6087 continue; 6088 netdev_adjacent_sysfs_del(iter->dev, oldname, 6089 &iter->dev->adj_list.lower); 6090 netdev_adjacent_sysfs_add(iter->dev, dev, 6091 &iter->dev->adj_list.lower); 6092 } 6093 6094 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6095 if (!net_eq(net, dev_net(iter->dev))) 6096 continue; 6097 netdev_adjacent_sysfs_del(iter->dev, oldname, 6098 &iter->dev->adj_list.upper); 6099 netdev_adjacent_sysfs_add(iter->dev, dev, 6100 &iter->dev->adj_list.upper); 6101 } 6102 } 6103 6104 void *netdev_lower_dev_get_private(struct net_device *dev, 6105 struct net_device *lower_dev) 6106 { 6107 struct netdev_adjacent *lower; 6108 6109 if (!lower_dev) 6110 return NULL; 6111 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 6112 if (!lower) 6113 return NULL; 6114 6115 return lower->private; 6116 } 6117 EXPORT_SYMBOL(netdev_lower_dev_get_private); 6118 6119 6120 int dev_get_nest_level(struct net_device *dev) 6121 { 6122 struct net_device *lower = NULL; 6123 struct list_head *iter; 6124 int max_nest = -1; 6125 int nest; 6126 6127 ASSERT_RTNL(); 6128 6129 netdev_for_each_lower_dev(dev, lower, iter) { 6130 nest = dev_get_nest_level(lower); 6131 if (max_nest < nest) 6132 max_nest = nest; 6133 } 6134 6135 return max_nest + 1; 6136 } 6137 EXPORT_SYMBOL(dev_get_nest_level); 6138 6139 /** 6140 * netdev_lower_change - Dispatch event about lower device state change 6141 * @lower_dev: device 6142 * @lower_state_info: state to dispatch 6143 * 6144 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 6145 * The caller must hold the RTNL lock. 6146 */ 6147 void netdev_lower_state_changed(struct net_device *lower_dev, 6148 void *lower_state_info) 6149 { 6150 struct netdev_notifier_changelowerstate_info changelowerstate_info; 6151 6152 ASSERT_RTNL(); 6153 changelowerstate_info.lower_state_info = lower_state_info; 6154 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev, 6155 &changelowerstate_info.info); 6156 } 6157 EXPORT_SYMBOL(netdev_lower_state_changed); 6158 6159 int netdev_default_l2upper_neigh_construct(struct net_device *dev, 6160 struct neighbour *n) 6161 { 6162 struct net_device *lower_dev, *stop_dev; 6163 struct list_head *iter; 6164 int err; 6165 6166 netdev_for_each_lower_dev(dev, lower_dev, iter) { 6167 if (!lower_dev->netdev_ops->ndo_neigh_construct) 6168 continue; 6169 err = lower_dev->netdev_ops->ndo_neigh_construct(lower_dev, n); 6170 if (err) { 6171 stop_dev = lower_dev; 6172 goto rollback; 6173 } 6174 } 6175 return 0; 6176 6177 rollback: 6178 netdev_for_each_lower_dev(dev, lower_dev, iter) { 6179 if (lower_dev == stop_dev) 6180 break; 6181 if (!lower_dev->netdev_ops->ndo_neigh_destroy) 6182 continue; 6183 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n); 6184 } 6185 return err; 6186 } 6187 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_construct); 6188 6189 void netdev_default_l2upper_neigh_destroy(struct net_device *dev, 6190 struct neighbour *n) 6191 { 6192 struct net_device *lower_dev; 6193 struct list_head *iter; 6194 6195 netdev_for_each_lower_dev(dev, lower_dev, iter) { 6196 if (!lower_dev->netdev_ops->ndo_neigh_destroy) 6197 continue; 6198 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n); 6199 } 6200 } 6201 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_destroy); 6202 6203 static void dev_change_rx_flags(struct net_device *dev, int flags) 6204 { 6205 const struct net_device_ops *ops = dev->netdev_ops; 6206 6207 if (ops->ndo_change_rx_flags) 6208 ops->ndo_change_rx_flags(dev, flags); 6209 } 6210 6211 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 6212 { 6213 unsigned int old_flags = dev->flags; 6214 kuid_t uid; 6215 kgid_t gid; 6216 6217 ASSERT_RTNL(); 6218 6219 dev->flags |= IFF_PROMISC; 6220 dev->promiscuity += inc; 6221 if (dev->promiscuity == 0) { 6222 /* 6223 * Avoid overflow. 6224 * If inc causes overflow, untouch promisc and return error. 6225 */ 6226 if (inc < 0) 6227 dev->flags &= ~IFF_PROMISC; 6228 else { 6229 dev->promiscuity -= inc; 6230 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 6231 dev->name); 6232 return -EOVERFLOW; 6233 } 6234 } 6235 if (dev->flags != old_flags) { 6236 pr_info("device %s %s promiscuous mode\n", 6237 dev->name, 6238 dev->flags & IFF_PROMISC ? "entered" : "left"); 6239 if (audit_enabled) { 6240 current_uid_gid(&uid, &gid); 6241 audit_log(current->audit_context, GFP_ATOMIC, 6242 AUDIT_ANOM_PROMISCUOUS, 6243 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 6244 dev->name, (dev->flags & IFF_PROMISC), 6245 (old_flags & IFF_PROMISC), 6246 from_kuid(&init_user_ns, audit_get_loginuid(current)), 6247 from_kuid(&init_user_ns, uid), 6248 from_kgid(&init_user_ns, gid), 6249 audit_get_sessionid(current)); 6250 } 6251 6252 dev_change_rx_flags(dev, IFF_PROMISC); 6253 } 6254 if (notify) 6255 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 6256 return 0; 6257 } 6258 6259 /** 6260 * dev_set_promiscuity - update promiscuity count on a device 6261 * @dev: device 6262 * @inc: modifier 6263 * 6264 * Add or remove promiscuity from a device. While the count in the device 6265 * remains above zero the interface remains promiscuous. Once it hits zero 6266 * the device reverts back to normal filtering operation. A negative inc 6267 * value is used to drop promiscuity on the device. 6268 * Return 0 if successful or a negative errno code on error. 6269 */ 6270 int dev_set_promiscuity(struct net_device *dev, int inc) 6271 { 6272 unsigned int old_flags = dev->flags; 6273 int err; 6274 6275 err = __dev_set_promiscuity(dev, inc, true); 6276 if (err < 0) 6277 return err; 6278 if (dev->flags != old_flags) 6279 dev_set_rx_mode(dev); 6280 return err; 6281 } 6282 EXPORT_SYMBOL(dev_set_promiscuity); 6283 6284 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 6285 { 6286 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 6287 6288 ASSERT_RTNL(); 6289 6290 dev->flags |= IFF_ALLMULTI; 6291 dev->allmulti += inc; 6292 if (dev->allmulti == 0) { 6293 /* 6294 * Avoid overflow. 6295 * If inc causes overflow, untouch allmulti and return error. 6296 */ 6297 if (inc < 0) 6298 dev->flags &= ~IFF_ALLMULTI; 6299 else { 6300 dev->allmulti -= inc; 6301 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 6302 dev->name); 6303 return -EOVERFLOW; 6304 } 6305 } 6306 if (dev->flags ^ old_flags) { 6307 dev_change_rx_flags(dev, IFF_ALLMULTI); 6308 dev_set_rx_mode(dev); 6309 if (notify) 6310 __dev_notify_flags(dev, old_flags, 6311 dev->gflags ^ old_gflags); 6312 } 6313 return 0; 6314 } 6315 6316 /** 6317 * dev_set_allmulti - update allmulti count on a device 6318 * @dev: device 6319 * @inc: modifier 6320 * 6321 * Add or remove reception of all multicast frames to a device. While the 6322 * count in the device remains above zero the interface remains listening 6323 * to all interfaces. Once it hits zero the device reverts back to normal 6324 * filtering operation. A negative @inc value is used to drop the counter 6325 * when releasing a resource needing all multicasts. 6326 * Return 0 if successful or a negative errno code on error. 6327 */ 6328 6329 int dev_set_allmulti(struct net_device *dev, int inc) 6330 { 6331 return __dev_set_allmulti(dev, inc, true); 6332 } 6333 EXPORT_SYMBOL(dev_set_allmulti); 6334 6335 /* 6336 * Upload unicast and multicast address lists to device and 6337 * configure RX filtering. When the device doesn't support unicast 6338 * filtering it is put in promiscuous mode while unicast addresses 6339 * are present. 6340 */ 6341 void __dev_set_rx_mode(struct net_device *dev) 6342 { 6343 const struct net_device_ops *ops = dev->netdev_ops; 6344 6345 /* dev_open will call this function so the list will stay sane. */ 6346 if (!(dev->flags&IFF_UP)) 6347 return; 6348 6349 if (!netif_device_present(dev)) 6350 return; 6351 6352 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 6353 /* Unicast addresses changes may only happen under the rtnl, 6354 * therefore calling __dev_set_promiscuity here is safe. 6355 */ 6356 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 6357 __dev_set_promiscuity(dev, 1, false); 6358 dev->uc_promisc = true; 6359 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 6360 __dev_set_promiscuity(dev, -1, false); 6361 dev->uc_promisc = false; 6362 } 6363 } 6364 6365 if (ops->ndo_set_rx_mode) 6366 ops->ndo_set_rx_mode(dev); 6367 } 6368 6369 void dev_set_rx_mode(struct net_device *dev) 6370 { 6371 netif_addr_lock_bh(dev); 6372 __dev_set_rx_mode(dev); 6373 netif_addr_unlock_bh(dev); 6374 } 6375 6376 /** 6377 * dev_get_flags - get flags reported to userspace 6378 * @dev: device 6379 * 6380 * Get the combination of flag bits exported through APIs to userspace. 6381 */ 6382 unsigned int dev_get_flags(const struct net_device *dev) 6383 { 6384 unsigned int flags; 6385 6386 flags = (dev->flags & ~(IFF_PROMISC | 6387 IFF_ALLMULTI | 6388 IFF_RUNNING | 6389 IFF_LOWER_UP | 6390 IFF_DORMANT)) | 6391 (dev->gflags & (IFF_PROMISC | 6392 IFF_ALLMULTI)); 6393 6394 if (netif_running(dev)) { 6395 if (netif_oper_up(dev)) 6396 flags |= IFF_RUNNING; 6397 if (netif_carrier_ok(dev)) 6398 flags |= IFF_LOWER_UP; 6399 if (netif_dormant(dev)) 6400 flags |= IFF_DORMANT; 6401 } 6402 6403 return flags; 6404 } 6405 EXPORT_SYMBOL(dev_get_flags); 6406 6407 int __dev_change_flags(struct net_device *dev, unsigned int flags) 6408 { 6409 unsigned int old_flags = dev->flags; 6410 int ret; 6411 6412 ASSERT_RTNL(); 6413 6414 /* 6415 * Set the flags on our device. 6416 */ 6417 6418 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 6419 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 6420 IFF_AUTOMEDIA)) | 6421 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 6422 IFF_ALLMULTI)); 6423 6424 /* 6425 * Load in the correct multicast list now the flags have changed. 6426 */ 6427 6428 if ((old_flags ^ flags) & IFF_MULTICAST) 6429 dev_change_rx_flags(dev, IFF_MULTICAST); 6430 6431 dev_set_rx_mode(dev); 6432 6433 /* 6434 * Have we downed the interface. We handle IFF_UP ourselves 6435 * according to user attempts to set it, rather than blindly 6436 * setting it. 6437 */ 6438 6439 ret = 0; 6440 if ((old_flags ^ flags) & IFF_UP) 6441 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 6442 6443 if ((flags ^ dev->gflags) & IFF_PROMISC) { 6444 int inc = (flags & IFF_PROMISC) ? 1 : -1; 6445 unsigned int old_flags = dev->flags; 6446 6447 dev->gflags ^= IFF_PROMISC; 6448 6449 if (__dev_set_promiscuity(dev, inc, false) >= 0) 6450 if (dev->flags != old_flags) 6451 dev_set_rx_mode(dev); 6452 } 6453 6454 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 6455 is important. Some (broken) drivers set IFF_PROMISC, when 6456 IFF_ALLMULTI is requested not asking us and not reporting. 6457 */ 6458 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 6459 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 6460 6461 dev->gflags ^= IFF_ALLMULTI; 6462 __dev_set_allmulti(dev, inc, false); 6463 } 6464 6465 return ret; 6466 } 6467 6468 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 6469 unsigned int gchanges) 6470 { 6471 unsigned int changes = dev->flags ^ old_flags; 6472 6473 if (gchanges) 6474 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 6475 6476 if (changes & IFF_UP) { 6477 if (dev->flags & IFF_UP) 6478 call_netdevice_notifiers(NETDEV_UP, dev); 6479 else 6480 call_netdevice_notifiers(NETDEV_DOWN, dev); 6481 } 6482 6483 if (dev->flags & IFF_UP && 6484 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 6485 struct netdev_notifier_change_info change_info; 6486 6487 change_info.flags_changed = changes; 6488 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 6489 &change_info.info); 6490 } 6491 } 6492 6493 /** 6494 * dev_change_flags - change device settings 6495 * @dev: device 6496 * @flags: device state flags 6497 * 6498 * Change settings on device based state flags. The flags are 6499 * in the userspace exported format. 6500 */ 6501 int dev_change_flags(struct net_device *dev, unsigned int flags) 6502 { 6503 int ret; 6504 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 6505 6506 ret = __dev_change_flags(dev, flags); 6507 if (ret < 0) 6508 return ret; 6509 6510 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 6511 __dev_notify_flags(dev, old_flags, changes); 6512 return ret; 6513 } 6514 EXPORT_SYMBOL(dev_change_flags); 6515 6516 static int __dev_set_mtu(struct net_device *dev, int new_mtu) 6517 { 6518 const struct net_device_ops *ops = dev->netdev_ops; 6519 6520 if (ops->ndo_change_mtu) 6521 return ops->ndo_change_mtu(dev, new_mtu); 6522 6523 dev->mtu = new_mtu; 6524 return 0; 6525 } 6526 6527 /** 6528 * dev_set_mtu - Change maximum transfer unit 6529 * @dev: device 6530 * @new_mtu: new transfer unit 6531 * 6532 * Change the maximum transfer size of the network device. 6533 */ 6534 int dev_set_mtu(struct net_device *dev, int new_mtu) 6535 { 6536 int err, orig_mtu; 6537 6538 if (new_mtu == dev->mtu) 6539 return 0; 6540 6541 /* MTU must be positive, and in range */ 6542 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 6543 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n", 6544 dev->name, new_mtu, dev->min_mtu); 6545 return -EINVAL; 6546 } 6547 6548 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 6549 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n", 6550 dev->name, new_mtu, dev->max_mtu); 6551 return -EINVAL; 6552 } 6553 6554 if (!netif_device_present(dev)) 6555 return -ENODEV; 6556 6557 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 6558 err = notifier_to_errno(err); 6559 if (err) 6560 return err; 6561 6562 orig_mtu = dev->mtu; 6563 err = __dev_set_mtu(dev, new_mtu); 6564 6565 if (!err) { 6566 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 6567 err = notifier_to_errno(err); 6568 if (err) { 6569 /* setting mtu back and notifying everyone again, 6570 * so that they have a chance to revert changes. 6571 */ 6572 __dev_set_mtu(dev, orig_mtu); 6573 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 6574 } 6575 } 6576 return err; 6577 } 6578 EXPORT_SYMBOL(dev_set_mtu); 6579 6580 /** 6581 * dev_set_group - Change group this device belongs to 6582 * @dev: device 6583 * @new_group: group this device should belong to 6584 */ 6585 void dev_set_group(struct net_device *dev, int new_group) 6586 { 6587 dev->group = new_group; 6588 } 6589 EXPORT_SYMBOL(dev_set_group); 6590 6591 /** 6592 * dev_set_mac_address - Change Media Access Control Address 6593 * @dev: device 6594 * @sa: new address 6595 * 6596 * Change the hardware (MAC) address of the device 6597 */ 6598 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 6599 { 6600 const struct net_device_ops *ops = dev->netdev_ops; 6601 int err; 6602 6603 if (!ops->ndo_set_mac_address) 6604 return -EOPNOTSUPP; 6605 if (sa->sa_family != dev->type) 6606 return -EINVAL; 6607 if (!netif_device_present(dev)) 6608 return -ENODEV; 6609 err = ops->ndo_set_mac_address(dev, sa); 6610 if (err) 6611 return err; 6612 dev->addr_assign_type = NET_ADDR_SET; 6613 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 6614 add_device_randomness(dev->dev_addr, dev->addr_len); 6615 return 0; 6616 } 6617 EXPORT_SYMBOL(dev_set_mac_address); 6618 6619 /** 6620 * dev_change_carrier - Change device carrier 6621 * @dev: device 6622 * @new_carrier: new value 6623 * 6624 * Change device carrier 6625 */ 6626 int dev_change_carrier(struct net_device *dev, bool new_carrier) 6627 { 6628 const struct net_device_ops *ops = dev->netdev_ops; 6629 6630 if (!ops->ndo_change_carrier) 6631 return -EOPNOTSUPP; 6632 if (!netif_device_present(dev)) 6633 return -ENODEV; 6634 return ops->ndo_change_carrier(dev, new_carrier); 6635 } 6636 EXPORT_SYMBOL(dev_change_carrier); 6637 6638 /** 6639 * dev_get_phys_port_id - Get device physical port ID 6640 * @dev: device 6641 * @ppid: port ID 6642 * 6643 * Get device physical port ID 6644 */ 6645 int dev_get_phys_port_id(struct net_device *dev, 6646 struct netdev_phys_item_id *ppid) 6647 { 6648 const struct net_device_ops *ops = dev->netdev_ops; 6649 6650 if (!ops->ndo_get_phys_port_id) 6651 return -EOPNOTSUPP; 6652 return ops->ndo_get_phys_port_id(dev, ppid); 6653 } 6654 EXPORT_SYMBOL(dev_get_phys_port_id); 6655 6656 /** 6657 * dev_get_phys_port_name - Get device physical port name 6658 * @dev: device 6659 * @name: port name 6660 * @len: limit of bytes to copy to name 6661 * 6662 * Get device physical port name 6663 */ 6664 int dev_get_phys_port_name(struct net_device *dev, 6665 char *name, size_t len) 6666 { 6667 const struct net_device_ops *ops = dev->netdev_ops; 6668 6669 if (!ops->ndo_get_phys_port_name) 6670 return -EOPNOTSUPP; 6671 return ops->ndo_get_phys_port_name(dev, name, len); 6672 } 6673 EXPORT_SYMBOL(dev_get_phys_port_name); 6674 6675 /** 6676 * dev_change_proto_down - update protocol port state information 6677 * @dev: device 6678 * @proto_down: new value 6679 * 6680 * This info can be used by switch drivers to set the phys state of the 6681 * port. 6682 */ 6683 int dev_change_proto_down(struct net_device *dev, bool proto_down) 6684 { 6685 const struct net_device_ops *ops = dev->netdev_ops; 6686 6687 if (!ops->ndo_change_proto_down) 6688 return -EOPNOTSUPP; 6689 if (!netif_device_present(dev)) 6690 return -ENODEV; 6691 return ops->ndo_change_proto_down(dev, proto_down); 6692 } 6693 EXPORT_SYMBOL(dev_change_proto_down); 6694 6695 /** 6696 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 6697 * @dev: device 6698 * @fd: new program fd or negative value to clear 6699 * @flags: xdp-related flags 6700 * 6701 * Set or clear a bpf program for a device 6702 */ 6703 int dev_change_xdp_fd(struct net_device *dev, int fd, u32 flags) 6704 { 6705 const struct net_device_ops *ops = dev->netdev_ops; 6706 struct bpf_prog *prog = NULL; 6707 struct netdev_xdp xdp; 6708 int err; 6709 6710 ASSERT_RTNL(); 6711 6712 if (!ops->ndo_xdp) 6713 return -EOPNOTSUPP; 6714 if (fd >= 0) { 6715 if (flags & XDP_FLAGS_UPDATE_IF_NOEXIST) { 6716 memset(&xdp, 0, sizeof(xdp)); 6717 xdp.command = XDP_QUERY_PROG; 6718 6719 err = ops->ndo_xdp(dev, &xdp); 6720 if (err < 0) 6721 return err; 6722 if (xdp.prog_attached) 6723 return -EBUSY; 6724 } 6725 6726 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP); 6727 if (IS_ERR(prog)) 6728 return PTR_ERR(prog); 6729 } 6730 6731 memset(&xdp, 0, sizeof(xdp)); 6732 xdp.command = XDP_SETUP_PROG; 6733 xdp.prog = prog; 6734 6735 err = ops->ndo_xdp(dev, &xdp); 6736 if (err < 0 && prog) 6737 bpf_prog_put(prog); 6738 6739 return err; 6740 } 6741 EXPORT_SYMBOL(dev_change_xdp_fd); 6742 6743 /** 6744 * dev_new_index - allocate an ifindex 6745 * @net: the applicable net namespace 6746 * 6747 * Returns a suitable unique value for a new device interface 6748 * number. The caller must hold the rtnl semaphore or the 6749 * dev_base_lock to be sure it remains unique. 6750 */ 6751 static int dev_new_index(struct net *net) 6752 { 6753 int ifindex = net->ifindex; 6754 for (;;) { 6755 if (++ifindex <= 0) 6756 ifindex = 1; 6757 if (!__dev_get_by_index(net, ifindex)) 6758 return net->ifindex = ifindex; 6759 } 6760 } 6761 6762 /* Delayed registration/unregisteration */ 6763 static LIST_HEAD(net_todo_list); 6764 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 6765 6766 static void net_set_todo(struct net_device *dev) 6767 { 6768 list_add_tail(&dev->todo_list, &net_todo_list); 6769 dev_net(dev)->dev_unreg_count++; 6770 } 6771 6772 static void rollback_registered_many(struct list_head *head) 6773 { 6774 struct net_device *dev, *tmp; 6775 LIST_HEAD(close_head); 6776 6777 BUG_ON(dev_boot_phase); 6778 ASSERT_RTNL(); 6779 6780 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 6781 /* Some devices call without registering 6782 * for initialization unwind. Remove those 6783 * devices and proceed with the remaining. 6784 */ 6785 if (dev->reg_state == NETREG_UNINITIALIZED) { 6786 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 6787 dev->name, dev); 6788 6789 WARN_ON(1); 6790 list_del(&dev->unreg_list); 6791 continue; 6792 } 6793 dev->dismantle = true; 6794 BUG_ON(dev->reg_state != NETREG_REGISTERED); 6795 } 6796 6797 /* If device is running, close it first. */ 6798 list_for_each_entry(dev, head, unreg_list) 6799 list_add_tail(&dev->close_list, &close_head); 6800 dev_close_many(&close_head, true); 6801 6802 list_for_each_entry(dev, head, unreg_list) { 6803 /* And unlink it from device chain. */ 6804 unlist_netdevice(dev); 6805 6806 dev->reg_state = NETREG_UNREGISTERING; 6807 } 6808 flush_all_backlogs(); 6809 6810 synchronize_net(); 6811 6812 list_for_each_entry(dev, head, unreg_list) { 6813 struct sk_buff *skb = NULL; 6814 6815 /* Shutdown queueing discipline. */ 6816 dev_shutdown(dev); 6817 6818 6819 /* Notify protocols, that we are about to destroy 6820 this device. They should clean all the things. 6821 */ 6822 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6823 6824 if (!dev->rtnl_link_ops || 6825 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 6826 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 6827 GFP_KERNEL); 6828 6829 /* 6830 * Flush the unicast and multicast chains 6831 */ 6832 dev_uc_flush(dev); 6833 dev_mc_flush(dev); 6834 6835 if (dev->netdev_ops->ndo_uninit) 6836 dev->netdev_ops->ndo_uninit(dev); 6837 6838 if (skb) 6839 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 6840 6841 /* Notifier chain MUST detach us all upper devices. */ 6842 WARN_ON(netdev_has_any_upper_dev(dev)); 6843 WARN_ON(netdev_has_any_lower_dev(dev)); 6844 6845 /* Remove entries from kobject tree */ 6846 netdev_unregister_kobject(dev); 6847 #ifdef CONFIG_XPS 6848 /* Remove XPS queueing entries */ 6849 netif_reset_xps_queues_gt(dev, 0); 6850 #endif 6851 } 6852 6853 synchronize_net(); 6854 6855 list_for_each_entry(dev, head, unreg_list) 6856 dev_put(dev); 6857 } 6858 6859 static void rollback_registered(struct net_device *dev) 6860 { 6861 LIST_HEAD(single); 6862 6863 list_add(&dev->unreg_list, &single); 6864 rollback_registered_many(&single); 6865 list_del(&single); 6866 } 6867 6868 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 6869 struct net_device *upper, netdev_features_t features) 6870 { 6871 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 6872 netdev_features_t feature; 6873 int feature_bit; 6874 6875 for_each_netdev_feature(&upper_disables, feature_bit) { 6876 feature = __NETIF_F_BIT(feature_bit); 6877 if (!(upper->wanted_features & feature) 6878 && (features & feature)) { 6879 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 6880 &feature, upper->name); 6881 features &= ~feature; 6882 } 6883 } 6884 6885 return features; 6886 } 6887 6888 static void netdev_sync_lower_features(struct net_device *upper, 6889 struct net_device *lower, netdev_features_t features) 6890 { 6891 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 6892 netdev_features_t feature; 6893 int feature_bit; 6894 6895 for_each_netdev_feature(&upper_disables, feature_bit) { 6896 feature = __NETIF_F_BIT(feature_bit); 6897 if (!(features & feature) && (lower->features & feature)) { 6898 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 6899 &feature, lower->name); 6900 lower->wanted_features &= ~feature; 6901 netdev_update_features(lower); 6902 6903 if (unlikely(lower->features & feature)) 6904 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 6905 &feature, lower->name); 6906 } 6907 } 6908 } 6909 6910 static netdev_features_t netdev_fix_features(struct net_device *dev, 6911 netdev_features_t features) 6912 { 6913 /* Fix illegal checksum combinations */ 6914 if ((features & NETIF_F_HW_CSUM) && 6915 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 6916 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 6917 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 6918 } 6919 6920 /* TSO requires that SG is present as well. */ 6921 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 6922 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 6923 features &= ~NETIF_F_ALL_TSO; 6924 } 6925 6926 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 6927 !(features & NETIF_F_IP_CSUM)) { 6928 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 6929 features &= ~NETIF_F_TSO; 6930 features &= ~NETIF_F_TSO_ECN; 6931 } 6932 6933 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 6934 !(features & NETIF_F_IPV6_CSUM)) { 6935 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 6936 features &= ~NETIF_F_TSO6; 6937 } 6938 6939 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 6940 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 6941 features &= ~NETIF_F_TSO_MANGLEID; 6942 6943 /* TSO ECN requires that TSO is present as well. */ 6944 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 6945 features &= ~NETIF_F_TSO_ECN; 6946 6947 /* Software GSO depends on SG. */ 6948 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 6949 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 6950 features &= ~NETIF_F_GSO; 6951 } 6952 6953 /* UFO needs SG and checksumming */ 6954 if (features & NETIF_F_UFO) { 6955 /* maybe split UFO into V4 and V6? */ 6956 if (!(features & NETIF_F_HW_CSUM) && 6957 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) != 6958 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) { 6959 netdev_dbg(dev, 6960 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 6961 features &= ~NETIF_F_UFO; 6962 } 6963 6964 if (!(features & NETIF_F_SG)) { 6965 netdev_dbg(dev, 6966 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 6967 features &= ~NETIF_F_UFO; 6968 } 6969 } 6970 6971 /* GSO partial features require GSO partial be set */ 6972 if ((features & dev->gso_partial_features) && 6973 !(features & NETIF_F_GSO_PARTIAL)) { 6974 netdev_dbg(dev, 6975 "Dropping partially supported GSO features since no GSO partial.\n"); 6976 features &= ~dev->gso_partial_features; 6977 } 6978 6979 #ifdef CONFIG_NET_RX_BUSY_POLL 6980 if (dev->netdev_ops->ndo_busy_poll) 6981 features |= NETIF_F_BUSY_POLL; 6982 else 6983 #endif 6984 features &= ~NETIF_F_BUSY_POLL; 6985 6986 return features; 6987 } 6988 6989 int __netdev_update_features(struct net_device *dev) 6990 { 6991 struct net_device *upper, *lower; 6992 netdev_features_t features; 6993 struct list_head *iter; 6994 int err = -1; 6995 6996 ASSERT_RTNL(); 6997 6998 features = netdev_get_wanted_features(dev); 6999 7000 if (dev->netdev_ops->ndo_fix_features) 7001 features = dev->netdev_ops->ndo_fix_features(dev, features); 7002 7003 /* driver might be less strict about feature dependencies */ 7004 features = netdev_fix_features(dev, features); 7005 7006 /* some features can't be enabled if they're off an an upper device */ 7007 netdev_for_each_upper_dev_rcu(dev, upper, iter) 7008 features = netdev_sync_upper_features(dev, upper, features); 7009 7010 if (dev->features == features) 7011 goto sync_lower; 7012 7013 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 7014 &dev->features, &features); 7015 7016 if (dev->netdev_ops->ndo_set_features) 7017 err = dev->netdev_ops->ndo_set_features(dev, features); 7018 else 7019 err = 0; 7020 7021 if (unlikely(err < 0)) { 7022 netdev_err(dev, 7023 "set_features() failed (%d); wanted %pNF, left %pNF\n", 7024 err, &features, &dev->features); 7025 /* return non-0 since some features might have changed and 7026 * it's better to fire a spurious notification than miss it 7027 */ 7028 return -1; 7029 } 7030 7031 sync_lower: 7032 /* some features must be disabled on lower devices when disabled 7033 * on an upper device (think: bonding master or bridge) 7034 */ 7035 netdev_for_each_lower_dev(dev, lower, iter) 7036 netdev_sync_lower_features(dev, lower, features); 7037 7038 if (!err) 7039 dev->features = features; 7040 7041 return err < 0 ? 0 : 1; 7042 } 7043 7044 /** 7045 * netdev_update_features - recalculate device features 7046 * @dev: the device to check 7047 * 7048 * Recalculate dev->features set and send notifications if it 7049 * has changed. Should be called after driver or hardware dependent 7050 * conditions might have changed that influence the features. 7051 */ 7052 void netdev_update_features(struct net_device *dev) 7053 { 7054 if (__netdev_update_features(dev)) 7055 netdev_features_change(dev); 7056 } 7057 EXPORT_SYMBOL(netdev_update_features); 7058 7059 /** 7060 * netdev_change_features - recalculate device features 7061 * @dev: the device to check 7062 * 7063 * Recalculate dev->features set and send notifications even 7064 * if they have not changed. Should be called instead of 7065 * netdev_update_features() if also dev->vlan_features might 7066 * have changed to allow the changes to be propagated to stacked 7067 * VLAN devices. 7068 */ 7069 void netdev_change_features(struct net_device *dev) 7070 { 7071 __netdev_update_features(dev); 7072 netdev_features_change(dev); 7073 } 7074 EXPORT_SYMBOL(netdev_change_features); 7075 7076 /** 7077 * netif_stacked_transfer_operstate - transfer operstate 7078 * @rootdev: the root or lower level device to transfer state from 7079 * @dev: the device to transfer operstate to 7080 * 7081 * Transfer operational state from root to device. This is normally 7082 * called when a stacking relationship exists between the root 7083 * device and the device(a leaf device). 7084 */ 7085 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 7086 struct net_device *dev) 7087 { 7088 if (rootdev->operstate == IF_OPER_DORMANT) 7089 netif_dormant_on(dev); 7090 else 7091 netif_dormant_off(dev); 7092 7093 if (netif_carrier_ok(rootdev)) { 7094 if (!netif_carrier_ok(dev)) 7095 netif_carrier_on(dev); 7096 } else { 7097 if (netif_carrier_ok(dev)) 7098 netif_carrier_off(dev); 7099 } 7100 } 7101 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 7102 7103 #ifdef CONFIG_SYSFS 7104 static int netif_alloc_rx_queues(struct net_device *dev) 7105 { 7106 unsigned int i, count = dev->num_rx_queues; 7107 struct netdev_rx_queue *rx; 7108 size_t sz = count * sizeof(*rx); 7109 7110 BUG_ON(count < 1); 7111 7112 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 7113 if (!rx) { 7114 rx = vzalloc(sz); 7115 if (!rx) 7116 return -ENOMEM; 7117 } 7118 dev->_rx = rx; 7119 7120 for (i = 0; i < count; i++) 7121 rx[i].dev = dev; 7122 return 0; 7123 } 7124 #endif 7125 7126 static void netdev_init_one_queue(struct net_device *dev, 7127 struct netdev_queue *queue, void *_unused) 7128 { 7129 /* Initialize queue lock */ 7130 spin_lock_init(&queue->_xmit_lock); 7131 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 7132 queue->xmit_lock_owner = -1; 7133 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 7134 queue->dev = dev; 7135 #ifdef CONFIG_BQL 7136 dql_init(&queue->dql, HZ); 7137 #endif 7138 } 7139 7140 static void netif_free_tx_queues(struct net_device *dev) 7141 { 7142 kvfree(dev->_tx); 7143 } 7144 7145 static int netif_alloc_netdev_queues(struct net_device *dev) 7146 { 7147 unsigned int count = dev->num_tx_queues; 7148 struct netdev_queue *tx; 7149 size_t sz = count * sizeof(*tx); 7150 7151 if (count < 1 || count > 0xffff) 7152 return -EINVAL; 7153 7154 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 7155 if (!tx) { 7156 tx = vzalloc(sz); 7157 if (!tx) 7158 return -ENOMEM; 7159 } 7160 dev->_tx = tx; 7161 7162 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 7163 spin_lock_init(&dev->tx_global_lock); 7164 7165 return 0; 7166 } 7167 7168 void netif_tx_stop_all_queues(struct net_device *dev) 7169 { 7170 unsigned int i; 7171 7172 for (i = 0; i < dev->num_tx_queues; i++) { 7173 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 7174 netif_tx_stop_queue(txq); 7175 } 7176 } 7177 EXPORT_SYMBOL(netif_tx_stop_all_queues); 7178 7179 /** 7180 * register_netdevice - register a network device 7181 * @dev: device to register 7182 * 7183 * Take a completed network device structure and add it to the kernel 7184 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 7185 * chain. 0 is returned on success. A negative errno code is returned 7186 * on a failure to set up the device, or if the name is a duplicate. 7187 * 7188 * Callers must hold the rtnl semaphore. You may want 7189 * register_netdev() instead of this. 7190 * 7191 * BUGS: 7192 * The locking appears insufficient to guarantee two parallel registers 7193 * will not get the same name. 7194 */ 7195 7196 int register_netdevice(struct net_device *dev) 7197 { 7198 int ret; 7199 struct net *net = dev_net(dev); 7200 7201 BUG_ON(dev_boot_phase); 7202 ASSERT_RTNL(); 7203 7204 might_sleep(); 7205 7206 /* When net_device's are persistent, this will be fatal. */ 7207 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 7208 BUG_ON(!net); 7209 7210 spin_lock_init(&dev->addr_list_lock); 7211 netdev_set_addr_lockdep_class(dev); 7212 7213 ret = dev_get_valid_name(net, dev, dev->name); 7214 if (ret < 0) 7215 goto out; 7216 7217 /* Init, if this function is available */ 7218 if (dev->netdev_ops->ndo_init) { 7219 ret = dev->netdev_ops->ndo_init(dev); 7220 if (ret) { 7221 if (ret > 0) 7222 ret = -EIO; 7223 goto out; 7224 } 7225 } 7226 7227 if (((dev->hw_features | dev->features) & 7228 NETIF_F_HW_VLAN_CTAG_FILTER) && 7229 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 7230 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 7231 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 7232 ret = -EINVAL; 7233 goto err_uninit; 7234 } 7235 7236 ret = -EBUSY; 7237 if (!dev->ifindex) 7238 dev->ifindex = dev_new_index(net); 7239 else if (__dev_get_by_index(net, dev->ifindex)) 7240 goto err_uninit; 7241 7242 /* Transfer changeable features to wanted_features and enable 7243 * software offloads (GSO and GRO). 7244 */ 7245 dev->hw_features |= NETIF_F_SOFT_FEATURES; 7246 dev->features |= NETIF_F_SOFT_FEATURES; 7247 dev->wanted_features = dev->features & dev->hw_features; 7248 7249 if (!(dev->flags & IFF_LOOPBACK)) 7250 dev->hw_features |= NETIF_F_NOCACHE_COPY; 7251 7252 /* If IPv4 TCP segmentation offload is supported we should also 7253 * allow the device to enable segmenting the frame with the option 7254 * of ignoring a static IP ID value. This doesn't enable the 7255 * feature itself but allows the user to enable it later. 7256 */ 7257 if (dev->hw_features & NETIF_F_TSO) 7258 dev->hw_features |= NETIF_F_TSO_MANGLEID; 7259 if (dev->vlan_features & NETIF_F_TSO) 7260 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 7261 if (dev->mpls_features & NETIF_F_TSO) 7262 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 7263 if (dev->hw_enc_features & NETIF_F_TSO) 7264 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 7265 7266 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 7267 */ 7268 dev->vlan_features |= NETIF_F_HIGHDMA; 7269 7270 /* Make NETIF_F_SG inheritable to tunnel devices. 7271 */ 7272 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 7273 7274 /* Make NETIF_F_SG inheritable to MPLS. 7275 */ 7276 dev->mpls_features |= NETIF_F_SG; 7277 7278 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 7279 ret = notifier_to_errno(ret); 7280 if (ret) 7281 goto err_uninit; 7282 7283 ret = netdev_register_kobject(dev); 7284 if (ret) 7285 goto err_uninit; 7286 dev->reg_state = NETREG_REGISTERED; 7287 7288 __netdev_update_features(dev); 7289 7290 /* 7291 * Default initial state at registry is that the 7292 * device is present. 7293 */ 7294 7295 set_bit(__LINK_STATE_PRESENT, &dev->state); 7296 7297 linkwatch_init_dev(dev); 7298 7299 dev_init_scheduler(dev); 7300 dev_hold(dev); 7301 list_netdevice(dev); 7302 add_device_randomness(dev->dev_addr, dev->addr_len); 7303 7304 /* If the device has permanent device address, driver should 7305 * set dev_addr and also addr_assign_type should be set to 7306 * NET_ADDR_PERM (default value). 7307 */ 7308 if (dev->addr_assign_type == NET_ADDR_PERM) 7309 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 7310 7311 /* Notify protocols, that a new device appeared. */ 7312 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 7313 ret = notifier_to_errno(ret); 7314 if (ret) { 7315 rollback_registered(dev); 7316 dev->reg_state = NETREG_UNREGISTERED; 7317 } 7318 /* 7319 * Prevent userspace races by waiting until the network 7320 * device is fully setup before sending notifications. 7321 */ 7322 if (!dev->rtnl_link_ops || 7323 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 7324 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 7325 7326 out: 7327 return ret; 7328 7329 err_uninit: 7330 if (dev->netdev_ops->ndo_uninit) 7331 dev->netdev_ops->ndo_uninit(dev); 7332 goto out; 7333 } 7334 EXPORT_SYMBOL(register_netdevice); 7335 7336 /** 7337 * init_dummy_netdev - init a dummy network device for NAPI 7338 * @dev: device to init 7339 * 7340 * This takes a network device structure and initialize the minimum 7341 * amount of fields so it can be used to schedule NAPI polls without 7342 * registering a full blown interface. This is to be used by drivers 7343 * that need to tie several hardware interfaces to a single NAPI 7344 * poll scheduler due to HW limitations. 7345 */ 7346 int init_dummy_netdev(struct net_device *dev) 7347 { 7348 /* Clear everything. Note we don't initialize spinlocks 7349 * are they aren't supposed to be taken by any of the 7350 * NAPI code and this dummy netdev is supposed to be 7351 * only ever used for NAPI polls 7352 */ 7353 memset(dev, 0, sizeof(struct net_device)); 7354 7355 /* make sure we BUG if trying to hit standard 7356 * register/unregister code path 7357 */ 7358 dev->reg_state = NETREG_DUMMY; 7359 7360 /* NAPI wants this */ 7361 INIT_LIST_HEAD(&dev->napi_list); 7362 7363 /* a dummy interface is started by default */ 7364 set_bit(__LINK_STATE_PRESENT, &dev->state); 7365 set_bit(__LINK_STATE_START, &dev->state); 7366 7367 /* Note : We dont allocate pcpu_refcnt for dummy devices, 7368 * because users of this 'device' dont need to change 7369 * its refcount. 7370 */ 7371 7372 return 0; 7373 } 7374 EXPORT_SYMBOL_GPL(init_dummy_netdev); 7375 7376 7377 /** 7378 * register_netdev - register a network device 7379 * @dev: device to register 7380 * 7381 * Take a completed network device structure and add it to the kernel 7382 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 7383 * chain. 0 is returned on success. A negative errno code is returned 7384 * on a failure to set up the device, or if the name is a duplicate. 7385 * 7386 * This is a wrapper around register_netdevice that takes the rtnl semaphore 7387 * and expands the device name if you passed a format string to 7388 * alloc_netdev. 7389 */ 7390 int register_netdev(struct net_device *dev) 7391 { 7392 int err; 7393 7394 rtnl_lock(); 7395 err = register_netdevice(dev); 7396 rtnl_unlock(); 7397 return err; 7398 } 7399 EXPORT_SYMBOL(register_netdev); 7400 7401 int netdev_refcnt_read(const struct net_device *dev) 7402 { 7403 int i, refcnt = 0; 7404 7405 for_each_possible_cpu(i) 7406 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 7407 return refcnt; 7408 } 7409 EXPORT_SYMBOL(netdev_refcnt_read); 7410 7411 /** 7412 * netdev_wait_allrefs - wait until all references are gone. 7413 * @dev: target net_device 7414 * 7415 * This is called when unregistering network devices. 7416 * 7417 * Any protocol or device that holds a reference should register 7418 * for netdevice notification, and cleanup and put back the 7419 * reference if they receive an UNREGISTER event. 7420 * We can get stuck here if buggy protocols don't correctly 7421 * call dev_put. 7422 */ 7423 static void netdev_wait_allrefs(struct net_device *dev) 7424 { 7425 unsigned long rebroadcast_time, warning_time; 7426 int refcnt; 7427 7428 linkwatch_forget_dev(dev); 7429 7430 rebroadcast_time = warning_time = jiffies; 7431 refcnt = netdev_refcnt_read(dev); 7432 7433 while (refcnt != 0) { 7434 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 7435 rtnl_lock(); 7436 7437 /* Rebroadcast unregister notification */ 7438 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7439 7440 __rtnl_unlock(); 7441 rcu_barrier(); 7442 rtnl_lock(); 7443 7444 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7445 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 7446 &dev->state)) { 7447 /* We must not have linkwatch events 7448 * pending on unregister. If this 7449 * happens, we simply run the queue 7450 * unscheduled, resulting in a noop 7451 * for this device. 7452 */ 7453 linkwatch_run_queue(); 7454 } 7455 7456 __rtnl_unlock(); 7457 7458 rebroadcast_time = jiffies; 7459 } 7460 7461 msleep(250); 7462 7463 refcnt = netdev_refcnt_read(dev); 7464 7465 if (time_after(jiffies, warning_time + 10 * HZ)) { 7466 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 7467 dev->name, refcnt); 7468 warning_time = jiffies; 7469 } 7470 } 7471 } 7472 7473 /* The sequence is: 7474 * 7475 * rtnl_lock(); 7476 * ... 7477 * register_netdevice(x1); 7478 * register_netdevice(x2); 7479 * ... 7480 * unregister_netdevice(y1); 7481 * unregister_netdevice(y2); 7482 * ... 7483 * rtnl_unlock(); 7484 * free_netdev(y1); 7485 * free_netdev(y2); 7486 * 7487 * We are invoked by rtnl_unlock(). 7488 * This allows us to deal with problems: 7489 * 1) We can delete sysfs objects which invoke hotplug 7490 * without deadlocking with linkwatch via keventd. 7491 * 2) Since we run with the RTNL semaphore not held, we can sleep 7492 * safely in order to wait for the netdev refcnt to drop to zero. 7493 * 7494 * We must not return until all unregister events added during 7495 * the interval the lock was held have been completed. 7496 */ 7497 void netdev_run_todo(void) 7498 { 7499 struct list_head list; 7500 7501 /* Snapshot list, allow later requests */ 7502 list_replace_init(&net_todo_list, &list); 7503 7504 __rtnl_unlock(); 7505 7506 7507 /* Wait for rcu callbacks to finish before next phase */ 7508 if (!list_empty(&list)) 7509 rcu_barrier(); 7510 7511 while (!list_empty(&list)) { 7512 struct net_device *dev 7513 = list_first_entry(&list, struct net_device, todo_list); 7514 list_del(&dev->todo_list); 7515 7516 rtnl_lock(); 7517 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7518 __rtnl_unlock(); 7519 7520 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 7521 pr_err("network todo '%s' but state %d\n", 7522 dev->name, dev->reg_state); 7523 dump_stack(); 7524 continue; 7525 } 7526 7527 dev->reg_state = NETREG_UNREGISTERED; 7528 7529 netdev_wait_allrefs(dev); 7530 7531 /* paranoia */ 7532 BUG_ON(netdev_refcnt_read(dev)); 7533 BUG_ON(!list_empty(&dev->ptype_all)); 7534 BUG_ON(!list_empty(&dev->ptype_specific)); 7535 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 7536 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 7537 WARN_ON(dev->dn_ptr); 7538 7539 if (dev->destructor) 7540 dev->destructor(dev); 7541 7542 /* Report a network device has been unregistered */ 7543 rtnl_lock(); 7544 dev_net(dev)->dev_unreg_count--; 7545 __rtnl_unlock(); 7546 wake_up(&netdev_unregistering_wq); 7547 7548 /* Free network device */ 7549 kobject_put(&dev->dev.kobj); 7550 } 7551 } 7552 7553 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 7554 * all the same fields in the same order as net_device_stats, with only 7555 * the type differing, but rtnl_link_stats64 may have additional fields 7556 * at the end for newer counters. 7557 */ 7558 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 7559 const struct net_device_stats *netdev_stats) 7560 { 7561 #if BITS_PER_LONG == 64 7562 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 7563 memcpy(stats64, netdev_stats, sizeof(*stats64)); 7564 /* zero out counters that only exist in rtnl_link_stats64 */ 7565 memset((char *)stats64 + sizeof(*netdev_stats), 0, 7566 sizeof(*stats64) - sizeof(*netdev_stats)); 7567 #else 7568 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 7569 const unsigned long *src = (const unsigned long *)netdev_stats; 7570 u64 *dst = (u64 *)stats64; 7571 7572 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 7573 for (i = 0; i < n; i++) 7574 dst[i] = src[i]; 7575 /* zero out counters that only exist in rtnl_link_stats64 */ 7576 memset((char *)stats64 + n * sizeof(u64), 0, 7577 sizeof(*stats64) - n * sizeof(u64)); 7578 #endif 7579 } 7580 EXPORT_SYMBOL(netdev_stats_to_stats64); 7581 7582 /** 7583 * dev_get_stats - get network device statistics 7584 * @dev: device to get statistics from 7585 * @storage: place to store stats 7586 * 7587 * Get network statistics from device. Return @storage. 7588 * The device driver may provide its own method by setting 7589 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 7590 * otherwise the internal statistics structure is used. 7591 */ 7592 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 7593 struct rtnl_link_stats64 *storage) 7594 { 7595 const struct net_device_ops *ops = dev->netdev_ops; 7596 7597 if (ops->ndo_get_stats64) { 7598 memset(storage, 0, sizeof(*storage)); 7599 ops->ndo_get_stats64(dev, storage); 7600 } else if (ops->ndo_get_stats) { 7601 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 7602 } else { 7603 netdev_stats_to_stats64(storage, &dev->stats); 7604 } 7605 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 7606 storage->tx_dropped += atomic_long_read(&dev->tx_dropped); 7607 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler); 7608 return storage; 7609 } 7610 EXPORT_SYMBOL(dev_get_stats); 7611 7612 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 7613 { 7614 struct netdev_queue *queue = dev_ingress_queue(dev); 7615 7616 #ifdef CONFIG_NET_CLS_ACT 7617 if (queue) 7618 return queue; 7619 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 7620 if (!queue) 7621 return NULL; 7622 netdev_init_one_queue(dev, queue, NULL); 7623 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 7624 queue->qdisc_sleeping = &noop_qdisc; 7625 rcu_assign_pointer(dev->ingress_queue, queue); 7626 #endif 7627 return queue; 7628 } 7629 7630 static const struct ethtool_ops default_ethtool_ops; 7631 7632 void netdev_set_default_ethtool_ops(struct net_device *dev, 7633 const struct ethtool_ops *ops) 7634 { 7635 if (dev->ethtool_ops == &default_ethtool_ops) 7636 dev->ethtool_ops = ops; 7637 } 7638 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 7639 7640 void netdev_freemem(struct net_device *dev) 7641 { 7642 char *addr = (char *)dev - dev->padded; 7643 7644 kvfree(addr); 7645 } 7646 7647 /** 7648 * alloc_netdev_mqs - allocate network device 7649 * @sizeof_priv: size of private data to allocate space for 7650 * @name: device name format string 7651 * @name_assign_type: origin of device name 7652 * @setup: callback to initialize device 7653 * @txqs: the number of TX subqueues to allocate 7654 * @rxqs: the number of RX subqueues to allocate 7655 * 7656 * Allocates a struct net_device with private data area for driver use 7657 * and performs basic initialization. Also allocates subqueue structs 7658 * for each queue on the device. 7659 */ 7660 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 7661 unsigned char name_assign_type, 7662 void (*setup)(struct net_device *), 7663 unsigned int txqs, unsigned int rxqs) 7664 { 7665 struct net_device *dev; 7666 size_t alloc_size; 7667 struct net_device *p; 7668 7669 BUG_ON(strlen(name) >= sizeof(dev->name)); 7670 7671 if (txqs < 1) { 7672 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 7673 return NULL; 7674 } 7675 7676 #ifdef CONFIG_SYSFS 7677 if (rxqs < 1) { 7678 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 7679 return NULL; 7680 } 7681 #endif 7682 7683 alloc_size = sizeof(struct net_device); 7684 if (sizeof_priv) { 7685 /* ensure 32-byte alignment of private area */ 7686 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 7687 alloc_size += sizeof_priv; 7688 } 7689 /* ensure 32-byte alignment of whole construct */ 7690 alloc_size += NETDEV_ALIGN - 1; 7691 7692 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 7693 if (!p) 7694 p = vzalloc(alloc_size); 7695 if (!p) 7696 return NULL; 7697 7698 dev = PTR_ALIGN(p, NETDEV_ALIGN); 7699 dev->padded = (char *)dev - (char *)p; 7700 7701 dev->pcpu_refcnt = alloc_percpu(int); 7702 if (!dev->pcpu_refcnt) 7703 goto free_dev; 7704 7705 if (dev_addr_init(dev)) 7706 goto free_pcpu; 7707 7708 dev_mc_init(dev); 7709 dev_uc_init(dev); 7710 7711 dev_net_set(dev, &init_net); 7712 7713 dev->gso_max_size = GSO_MAX_SIZE; 7714 dev->gso_max_segs = GSO_MAX_SEGS; 7715 7716 INIT_LIST_HEAD(&dev->napi_list); 7717 INIT_LIST_HEAD(&dev->unreg_list); 7718 INIT_LIST_HEAD(&dev->close_list); 7719 INIT_LIST_HEAD(&dev->link_watch_list); 7720 INIT_LIST_HEAD(&dev->adj_list.upper); 7721 INIT_LIST_HEAD(&dev->adj_list.lower); 7722 INIT_LIST_HEAD(&dev->ptype_all); 7723 INIT_LIST_HEAD(&dev->ptype_specific); 7724 #ifdef CONFIG_NET_SCHED 7725 hash_init(dev->qdisc_hash); 7726 #endif 7727 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 7728 setup(dev); 7729 7730 if (!dev->tx_queue_len) { 7731 dev->priv_flags |= IFF_NO_QUEUE; 7732 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 7733 } 7734 7735 dev->num_tx_queues = txqs; 7736 dev->real_num_tx_queues = txqs; 7737 if (netif_alloc_netdev_queues(dev)) 7738 goto free_all; 7739 7740 #ifdef CONFIG_SYSFS 7741 dev->num_rx_queues = rxqs; 7742 dev->real_num_rx_queues = rxqs; 7743 if (netif_alloc_rx_queues(dev)) 7744 goto free_all; 7745 #endif 7746 7747 strcpy(dev->name, name); 7748 dev->name_assign_type = name_assign_type; 7749 dev->group = INIT_NETDEV_GROUP; 7750 if (!dev->ethtool_ops) 7751 dev->ethtool_ops = &default_ethtool_ops; 7752 7753 nf_hook_ingress_init(dev); 7754 7755 return dev; 7756 7757 free_all: 7758 free_netdev(dev); 7759 return NULL; 7760 7761 free_pcpu: 7762 free_percpu(dev->pcpu_refcnt); 7763 free_dev: 7764 netdev_freemem(dev); 7765 return NULL; 7766 } 7767 EXPORT_SYMBOL(alloc_netdev_mqs); 7768 7769 /** 7770 * free_netdev - free network device 7771 * @dev: device 7772 * 7773 * This function does the last stage of destroying an allocated device 7774 * interface. The reference to the device object is released. 7775 * If this is the last reference then it will be freed. 7776 * Must be called in process context. 7777 */ 7778 void free_netdev(struct net_device *dev) 7779 { 7780 struct napi_struct *p, *n; 7781 7782 might_sleep(); 7783 netif_free_tx_queues(dev); 7784 #ifdef CONFIG_SYSFS 7785 kvfree(dev->_rx); 7786 #endif 7787 7788 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 7789 7790 /* Flush device addresses */ 7791 dev_addr_flush(dev); 7792 7793 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 7794 netif_napi_del(p); 7795 7796 free_percpu(dev->pcpu_refcnt); 7797 dev->pcpu_refcnt = NULL; 7798 7799 /* Compatibility with error handling in drivers */ 7800 if (dev->reg_state == NETREG_UNINITIALIZED) { 7801 netdev_freemem(dev); 7802 return; 7803 } 7804 7805 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 7806 dev->reg_state = NETREG_RELEASED; 7807 7808 /* will free via device release */ 7809 put_device(&dev->dev); 7810 } 7811 EXPORT_SYMBOL(free_netdev); 7812 7813 /** 7814 * synchronize_net - Synchronize with packet receive processing 7815 * 7816 * Wait for packets currently being received to be done. 7817 * Does not block later packets from starting. 7818 */ 7819 void synchronize_net(void) 7820 { 7821 might_sleep(); 7822 if (rtnl_is_locked()) 7823 synchronize_rcu_expedited(); 7824 else 7825 synchronize_rcu(); 7826 } 7827 EXPORT_SYMBOL(synchronize_net); 7828 7829 /** 7830 * unregister_netdevice_queue - remove device from the kernel 7831 * @dev: device 7832 * @head: list 7833 * 7834 * This function shuts down a device interface and removes it 7835 * from the kernel tables. 7836 * If head not NULL, device is queued to be unregistered later. 7837 * 7838 * Callers must hold the rtnl semaphore. You may want 7839 * unregister_netdev() instead of this. 7840 */ 7841 7842 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 7843 { 7844 ASSERT_RTNL(); 7845 7846 if (head) { 7847 list_move_tail(&dev->unreg_list, head); 7848 } else { 7849 rollback_registered(dev); 7850 /* Finish processing unregister after unlock */ 7851 net_set_todo(dev); 7852 } 7853 } 7854 EXPORT_SYMBOL(unregister_netdevice_queue); 7855 7856 /** 7857 * unregister_netdevice_many - unregister many devices 7858 * @head: list of devices 7859 * 7860 * Note: As most callers use a stack allocated list_head, 7861 * we force a list_del() to make sure stack wont be corrupted later. 7862 */ 7863 void unregister_netdevice_many(struct list_head *head) 7864 { 7865 struct net_device *dev; 7866 7867 if (!list_empty(head)) { 7868 rollback_registered_many(head); 7869 list_for_each_entry(dev, head, unreg_list) 7870 net_set_todo(dev); 7871 list_del(head); 7872 } 7873 } 7874 EXPORT_SYMBOL(unregister_netdevice_many); 7875 7876 /** 7877 * unregister_netdev - remove device from the kernel 7878 * @dev: device 7879 * 7880 * This function shuts down a device interface and removes it 7881 * from the kernel tables. 7882 * 7883 * This is just a wrapper for unregister_netdevice that takes 7884 * the rtnl semaphore. In general you want to use this and not 7885 * unregister_netdevice. 7886 */ 7887 void unregister_netdev(struct net_device *dev) 7888 { 7889 rtnl_lock(); 7890 unregister_netdevice(dev); 7891 rtnl_unlock(); 7892 } 7893 EXPORT_SYMBOL(unregister_netdev); 7894 7895 /** 7896 * dev_change_net_namespace - move device to different nethost namespace 7897 * @dev: device 7898 * @net: network namespace 7899 * @pat: If not NULL name pattern to try if the current device name 7900 * is already taken in the destination network namespace. 7901 * 7902 * This function shuts down a device interface and moves it 7903 * to a new network namespace. On success 0 is returned, on 7904 * a failure a netagive errno code is returned. 7905 * 7906 * Callers must hold the rtnl semaphore. 7907 */ 7908 7909 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 7910 { 7911 int err; 7912 7913 ASSERT_RTNL(); 7914 7915 /* Don't allow namespace local devices to be moved. */ 7916 err = -EINVAL; 7917 if (dev->features & NETIF_F_NETNS_LOCAL) 7918 goto out; 7919 7920 /* Ensure the device has been registrered */ 7921 if (dev->reg_state != NETREG_REGISTERED) 7922 goto out; 7923 7924 /* Get out if there is nothing todo */ 7925 err = 0; 7926 if (net_eq(dev_net(dev), net)) 7927 goto out; 7928 7929 /* Pick the destination device name, and ensure 7930 * we can use it in the destination network namespace. 7931 */ 7932 err = -EEXIST; 7933 if (__dev_get_by_name(net, dev->name)) { 7934 /* We get here if we can't use the current device name */ 7935 if (!pat) 7936 goto out; 7937 if (dev_get_valid_name(net, dev, pat) < 0) 7938 goto out; 7939 } 7940 7941 /* 7942 * And now a mini version of register_netdevice unregister_netdevice. 7943 */ 7944 7945 /* If device is running close it first. */ 7946 dev_close(dev); 7947 7948 /* And unlink it from device chain */ 7949 err = -ENODEV; 7950 unlist_netdevice(dev); 7951 7952 synchronize_net(); 7953 7954 /* Shutdown queueing discipline. */ 7955 dev_shutdown(dev); 7956 7957 /* Notify protocols, that we are about to destroy 7958 this device. They should clean all the things. 7959 7960 Note that dev->reg_state stays at NETREG_REGISTERED. 7961 This is wanted because this way 8021q and macvlan know 7962 the device is just moving and can keep their slaves up. 7963 */ 7964 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7965 rcu_barrier(); 7966 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7967 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL); 7968 7969 /* 7970 * Flush the unicast and multicast chains 7971 */ 7972 dev_uc_flush(dev); 7973 dev_mc_flush(dev); 7974 7975 /* Send a netdev-removed uevent to the old namespace */ 7976 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 7977 netdev_adjacent_del_links(dev); 7978 7979 /* Actually switch the network namespace */ 7980 dev_net_set(dev, net); 7981 7982 /* If there is an ifindex conflict assign a new one */ 7983 if (__dev_get_by_index(net, dev->ifindex)) 7984 dev->ifindex = dev_new_index(net); 7985 7986 /* Send a netdev-add uevent to the new namespace */ 7987 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 7988 netdev_adjacent_add_links(dev); 7989 7990 /* Fixup kobjects */ 7991 err = device_rename(&dev->dev, dev->name); 7992 WARN_ON(err); 7993 7994 /* Add the device back in the hashes */ 7995 list_netdevice(dev); 7996 7997 /* Notify protocols, that a new device appeared. */ 7998 call_netdevice_notifiers(NETDEV_REGISTER, dev); 7999 8000 /* 8001 * Prevent userspace races by waiting until the network 8002 * device is fully setup before sending notifications. 8003 */ 8004 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 8005 8006 synchronize_net(); 8007 err = 0; 8008 out: 8009 return err; 8010 } 8011 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 8012 8013 static int dev_cpu_dead(unsigned int oldcpu) 8014 { 8015 struct sk_buff **list_skb; 8016 struct sk_buff *skb; 8017 unsigned int cpu; 8018 struct softnet_data *sd, *oldsd; 8019 8020 local_irq_disable(); 8021 cpu = smp_processor_id(); 8022 sd = &per_cpu(softnet_data, cpu); 8023 oldsd = &per_cpu(softnet_data, oldcpu); 8024 8025 /* Find end of our completion_queue. */ 8026 list_skb = &sd->completion_queue; 8027 while (*list_skb) 8028 list_skb = &(*list_skb)->next; 8029 /* Append completion queue from offline CPU. */ 8030 *list_skb = oldsd->completion_queue; 8031 oldsd->completion_queue = NULL; 8032 8033 /* Append output queue from offline CPU. */ 8034 if (oldsd->output_queue) { 8035 *sd->output_queue_tailp = oldsd->output_queue; 8036 sd->output_queue_tailp = oldsd->output_queue_tailp; 8037 oldsd->output_queue = NULL; 8038 oldsd->output_queue_tailp = &oldsd->output_queue; 8039 } 8040 /* Append NAPI poll list from offline CPU, with one exception : 8041 * process_backlog() must be called by cpu owning percpu backlog. 8042 * We properly handle process_queue & input_pkt_queue later. 8043 */ 8044 while (!list_empty(&oldsd->poll_list)) { 8045 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 8046 struct napi_struct, 8047 poll_list); 8048 8049 list_del_init(&napi->poll_list); 8050 if (napi->poll == process_backlog) 8051 napi->state = 0; 8052 else 8053 ____napi_schedule(sd, napi); 8054 } 8055 8056 raise_softirq_irqoff(NET_TX_SOFTIRQ); 8057 local_irq_enable(); 8058 8059 /* Process offline CPU's input_pkt_queue */ 8060 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 8061 netif_rx_ni(skb); 8062 input_queue_head_incr(oldsd); 8063 } 8064 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 8065 netif_rx_ni(skb); 8066 input_queue_head_incr(oldsd); 8067 } 8068 8069 return 0; 8070 } 8071 8072 /** 8073 * netdev_increment_features - increment feature set by one 8074 * @all: current feature set 8075 * @one: new feature set 8076 * @mask: mask feature set 8077 * 8078 * Computes a new feature set after adding a device with feature set 8079 * @one to the master device with current feature set @all. Will not 8080 * enable anything that is off in @mask. Returns the new feature set. 8081 */ 8082 netdev_features_t netdev_increment_features(netdev_features_t all, 8083 netdev_features_t one, netdev_features_t mask) 8084 { 8085 if (mask & NETIF_F_HW_CSUM) 8086 mask |= NETIF_F_CSUM_MASK; 8087 mask |= NETIF_F_VLAN_CHALLENGED; 8088 8089 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 8090 all &= one | ~NETIF_F_ALL_FOR_ALL; 8091 8092 /* If one device supports hw checksumming, set for all. */ 8093 if (all & NETIF_F_HW_CSUM) 8094 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 8095 8096 return all; 8097 } 8098 EXPORT_SYMBOL(netdev_increment_features); 8099 8100 static struct hlist_head * __net_init netdev_create_hash(void) 8101 { 8102 int i; 8103 struct hlist_head *hash; 8104 8105 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 8106 if (hash != NULL) 8107 for (i = 0; i < NETDEV_HASHENTRIES; i++) 8108 INIT_HLIST_HEAD(&hash[i]); 8109 8110 return hash; 8111 } 8112 8113 /* Initialize per network namespace state */ 8114 static int __net_init netdev_init(struct net *net) 8115 { 8116 if (net != &init_net) 8117 INIT_LIST_HEAD(&net->dev_base_head); 8118 8119 net->dev_name_head = netdev_create_hash(); 8120 if (net->dev_name_head == NULL) 8121 goto err_name; 8122 8123 net->dev_index_head = netdev_create_hash(); 8124 if (net->dev_index_head == NULL) 8125 goto err_idx; 8126 8127 return 0; 8128 8129 err_idx: 8130 kfree(net->dev_name_head); 8131 err_name: 8132 return -ENOMEM; 8133 } 8134 8135 /** 8136 * netdev_drivername - network driver for the device 8137 * @dev: network device 8138 * 8139 * Determine network driver for device. 8140 */ 8141 const char *netdev_drivername(const struct net_device *dev) 8142 { 8143 const struct device_driver *driver; 8144 const struct device *parent; 8145 const char *empty = ""; 8146 8147 parent = dev->dev.parent; 8148 if (!parent) 8149 return empty; 8150 8151 driver = parent->driver; 8152 if (driver && driver->name) 8153 return driver->name; 8154 return empty; 8155 } 8156 8157 static void __netdev_printk(const char *level, const struct net_device *dev, 8158 struct va_format *vaf) 8159 { 8160 if (dev && dev->dev.parent) { 8161 dev_printk_emit(level[1] - '0', 8162 dev->dev.parent, 8163 "%s %s %s%s: %pV", 8164 dev_driver_string(dev->dev.parent), 8165 dev_name(dev->dev.parent), 8166 netdev_name(dev), netdev_reg_state(dev), 8167 vaf); 8168 } else if (dev) { 8169 printk("%s%s%s: %pV", 8170 level, netdev_name(dev), netdev_reg_state(dev), vaf); 8171 } else { 8172 printk("%s(NULL net_device): %pV", level, vaf); 8173 } 8174 } 8175 8176 void netdev_printk(const char *level, const struct net_device *dev, 8177 const char *format, ...) 8178 { 8179 struct va_format vaf; 8180 va_list args; 8181 8182 va_start(args, format); 8183 8184 vaf.fmt = format; 8185 vaf.va = &args; 8186 8187 __netdev_printk(level, dev, &vaf); 8188 8189 va_end(args); 8190 } 8191 EXPORT_SYMBOL(netdev_printk); 8192 8193 #define define_netdev_printk_level(func, level) \ 8194 void func(const struct net_device *dev, const char *fmt, ...) \ 8195 { \ 8196 struct va_format vaf; \ 8197 va_list args; \ 8198 \ 8199 va_start(args, fmt); \ 8200 \ 8201 vaf.fmt = fmt; \ 8202 vaf.va = &args; \ 8203 \ 8204 __netdev_printk(level, dev, &vaf); \ 8205 \ 8206 va_end(args); \ 8207 } \ 8208 EXPORT_SYMBOL(func); 8209 8210 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 8211 define_netdev_printk_level(netdev_alert, KERN_ALERT); 8212 define_netdev_printk_level(netdev_crit, KERN_CRIT); 8213 define_netdev_printk_level(netdev_err, KERN_ERR); 8214 define_netdev_printk_level(netdev_warn, KERN_WARNING); 8215 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 8216 define_netdev_printk_level(netdev_info, KERN_INFO); 8217 8218 static void __net_exit netdev_exit(struct net *net) 8219 { 8220 kfree(net->dev_name_head); 8221 kfree(net->dev_index_head); 8222 } 8223 8224 static struct pernet_operations __net_initdata netdev_net_ops = { 8225 .init = netdev_init, 8226 .exit = netdev_exit, 8227 }; 8228 8229 static void __net_exit default_device_exit(struct net *net) 8230 { 8231 struct net_device *dev, *aux; 8232 /* 8233 * Push all migratable network devices back to the 8234 * initial network namespace 8235 */ 8236 rtnl_lock(); 8237 for_each_netdev_safe(net, dev, aux) { 8238 int err; 8239 char fb_name[IFNAMSIZ]; 8240 8241 /* Ignore unmoveable devices (i.e. loopback) */ 8242 if (dev->features & NETIF_F_NETNS_LOCAL) 8243 continue; 8244 8245 /* Leave virtual devices for the generic cleanup */ 8246 if (dev->rtnl_link_ops) 8247 continue; 8248 8249 /* Push remaining network devices to init_net */ 8250 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 8251 err = dev_change_net_namespace(dev, &init_net, fb_name); 8252 if (err) { 8253 pr_emerg("%s: failed to move %s to init_net: %d\n", 8254 __func__, dev->name, err); 8255 BUG(); 8256 } 8257 } 8258 rtnl_unlock(); 8259 } 8260 8261 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 8262 { 8263 /* Return with the rtnl_lock held when there are no network 8264 * devices unregistering in any network namespace in net_list. 8265 */ 8266 struct net *net; 8267 bool unregistering; 8268 DEFINE_WAIT_FUNC(wait, woken_wake_function); 8269 8270 add_wait_queue(&netdev_unregistering_wq, &wait); 8271 for (;;) { 8272 unregistering = false; 8273 rtnl_lock(); 8274 list_for_each_entry(net, net_list, exit_list) { 8275 if (net->dev_unreg_count > 0) { 8276 unregistering = true; 8277 break; 8278 } 8279 } 8280 if (!unregistering) 8281 break; 8282 __rtnl_unlock(); 8283 8284 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 8285 } 8286 remove_wait_queue(&netdev_unregistering_wq, &wait); 8287 } 8288 8289 static void __net_exit default_device_exit_batch(struct list_head *net_list) 8290 { 8291 /* At exit all network devices most be removed from a network 8292 * namespace. Do this in the reverse order of registration. 8293 * Do this across as many network namespaces as possible to 8294 * improve batching efficiency. 8295 */ 8296 struct net_device *dev; 8297 struct net *net; 8298 LIST_HEAD(dev_kill_list); 8299 8300 /* To prevent network device cleanup code from dereferencing 8301 * loopback devices or network devices that have been freed 8302 * wait here for all pending unregistrations to complete, 8303 * before unregistring the loopback device and allowing the 8304 * network namespace be freed. 8305 * 8306 * The netdev todo list containing all network devices 8307 * unregistrations that happen in default_device_exit_batch 8308 * will run in the rtnl_unlock() at the end of 8309 * default_device_exit_batch. 8310 */ 8311 rtnl_lock_unregistering(net_list); 8312 list_for_each_entry(net, net_list, exit_list) { 8313 for_each_netdev_reverse(net, dev) { 8314 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 8315 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 8316 else 8317 unregister_netdevice_queue(dev, &dev_kill_list); 8318 } 8319 } 8320 unregister_netdevice_many(&dev_kill_list); 8321 rtnl_unlock(); 8322 } 8323 8324 static struct pernet_operations __net_initdata default_device_ops = { 8325 .exit = default_device_exit, 8326 .exit_batch = default_device_exit_batch, 8327 }; 8328 8329 /* 8330 * Initialize the DEV module. At boot time this walks the device list and 8331 * unhooks any devices that fail to initialise (normally hardware not 8332 * present) and leaves us with a valid list of present and active devices. 8333 * 8334 */ 8335 8336 /* 8337 * This is called single threaded during boot, so no need 8338 * to take the rtnl semaphore. 8339 */ 8340 static int __init net_dev_init(void) 8341 { 8342 int i, rc = -ENOMEM; 8343 8344 BUG_ON(!dev_boot_phase); 8345 8346 if (dev_proc_init()) 8347 goto out; 8348 8349 if (netdev_kobject_init()) 8350 goto out; 8351 8352 INIT_LIST_HEAD(&ptype_all); 8353 for (i = 0; i < PTYPE_HASH_SIZE; i++) 8354 INIT_LIST_HEAD(&ptype_base[i]); 8355 8356 INIT_LIST_HEAD(&offload_base); 8357 8358 if (register_pernet_subsys(&netdev_net_ops)) 8359 goto out; 8360 8361 /* 8362 * Initialise the packet receive queues. 8363 */ 8364 8365 for_each_possible_cpu(i) { 8366 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 8367 struct softnet_data *sd = &per_cpu(softnet_data, i); 8368 8369 INIT_WORK(flush, flush_backlog); 8370 8371 skb_queue_head_init(&sd->input_pkt_queue); 8372 skb_queue_head_init(&sd->process_queue); 8373 INIT_LIST_HEAD(&sd->poll_list); 8374 sd->output_queue_tailp = &sd->output_queue; 8375 #ifdef CONFIG_RPS 8376 sd->csd.func = rps_trigger_softirq; 8377 sd->csd.info = sd; 8378 sd->cpu = i; 8379 #endif 8380 8381 sd->backlog.poll = process_backlog; 8382 sd->backlog.weight = weight_p; 8383 } 8384 8385 dev_boot_phase = 0; 8386 8387 /* The loopback device is special if any other network devices 8388 * is present in a network namespace the loopback device must 8389 * be present. Since we now dynamically allocate and free the 8390 * loopback device ensure this invariant is maintained by 8391 * keeping the loopback device as the first device on the 8392 * list of network devices. Ensuring the loopback devices 8393 * is the first device that appears and the last network device 8394 * that disappears. 8395 */ 8396 if (register_pernet_device(&loopback_net_ops)) 8397 goto out; 8398 8399 if (register_pernet_device(&default_device_ops)) 8400 goto out; 8401 8402 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 8403 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 8404 8405 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 8406 NULL, dev_cpu_dead); 8407 WARN_ON(rc < 0); 8408 dst_subsys_init(); 8409 rc = 0; 8410 out: 8411 return rc; 8412 } 8413 8414 subsys_initcall(net_dev_init); 8415