1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/mutex.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/notifier.h> 96 #include <linux/skbuff.h> 97 #include <net/net_namespace.h> 98 #include <net/sock.h> 99 #include <linux/rtnetlink.h> 100 #include <linux/stat.h> 101 #include <net/dst.h> 102 #include <net/pkt_sched.h> 103 #include <net/checksum.h> 104 #include <net/xfrm.h> 105 #include <linux/highmem.h> 106 #include <linux/init.h> 107 #include <linux/module.h> 108 #include <linux/netpoll.h> 109 #include <linux/rcupdate.h> 110 #include <linux/delay.h> 111 #include <net/iw_handler.h> 112 #include <asm/current.h> 113 #include <linux/audit.h> 114 #include <linux/dmaengine.h> 115 #include <linux/err.h> 116 #include <linux/ctype.h> 117 #include <linux/if_arp.h> 118 #include <linux/if_vlan.h> 119 #include <linux/ip.h> 120 #include <net/ip.h> 121 #include <net/mpls.h> 122 #include <linux/ipv6.h> 123 #include <linux/in.h> 124 #include <linux/jhash.h> 125 #include <linux/random.h> 126 #include <trace/events/napi.h> 127 #include <trace/events/net.h> 128 #include <trace/events/skb.h> 129 #include <linux/pci.h> 130 #include <linux/inetdevice.h> 131 #include <linux/cpu_rmap.h> 132 #include <linux/static_key.h> 133 #include <linux/hashtable.h> 134 #include <linux/vmalloc.h> 135 #include <linux/if_macvlan.h> 136 #include <linux/errqueue.h> 137 #include <linux/hrtimer.h> 138 139 #include "net-sysfs.h" 140 141 /* Instead of increasing this, you should create a hash table. */ 142 #define MAX_GRO_SKBS 8 143 144 /* This should be increased if a protocol with a bigger head is added. */ 145 #define GRO_MAX_HEAD (MAX_HEADER + 128) 146 147 static DEFINE_SPINLOCK(ptype_lock); 148 static DEFINE_SPINLOCK(offload_lock); 149 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 150 struct list_head ptype_all __read_mostly; /* Taps */ 151 static struct list_head offload_base __read_mostly; 152 153 static int netif_rx_internal(struct sk_buff *skb); 154 static int call_netdevice_notifiers_info(unsigned long val, 155 struct net_device *dev, 156 struct netdev_notifier_info *info); 157 158 /* 159 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 160 * semaphore. 161 * 162 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 163 * 164 * Writers must hold the rtnl semaphore while they loop through the 165 * dev_base_head list, and hold dev_base_lock for writing when they do the 166 * actual updates. This allows pure readers to access the list even 167 * while a writer is preparing to update it. 168 * 169 * To put it another way, dev_base_lock is held for writing only to 170 * protect against pure readers; the rtnl semaphore provides the 171 * protection against other writers. 172 * 173 * See, for example usages, register_netdevice() and 174 * unregister_netdevice(), which must be called with the rtnl 175 * semaphore held. 176 */ 177 DEFINE_RWLOCK(dev_base_lock); 178 EXPORT_SYMBOL(dev_base_lock); 179 180 /* protects napi_hash addition/deletion and napi_gen_id */ 181 static DEFINE_SPINLOCK(napi_hash_lock); 182 183 static unsigned int napi_gen_id; 184 static DEFINE_HASHTABLE(napi_hash, 8); 185 186 static seqcount_t devnet_rename_seq; 187 188 static inline void dev_base_seq_inc(struct net *net) 189 { 190 while (++net->dev_base_seq == 0); 191 } 192 193 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 194 { 195 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 196 197 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 198 } 199 200 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 201 { 202 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 203 } 204 205 static inline void rps_lock(struct softnet_data *sd) 206 { 207 #ifdef CONFIG_RPS 208 spin_lock(&sd->input_pkt_queue.lock); 209 #endif 210 } 211 212 static inline void rps_unlock(struct softnet_data *sd) 213 { 214 #ifdef CONFIG_RPS 215 spin_unlock(&sd->input_pkt_queue.lock); 216 #endif 217 } 218 219 /* Device list insertion */ 220 static void list_netdevice(struct net_device *dev) 221 { 222 struct net *net = dev_net(dev); 223 224 ASSERT_RTNL(); 225 226 write_lock_bh(&dev_base_lock); 227 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 228 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 229 hlist_add_head_rcu(&dev->index_hlist, 230 dev_index_hash(net, dev->ifindex)); 231 write_unlock_bh(&dev_base_lock); 232 233 dev_base_seq_inc(net); 234 } 235 236 /* Device list removal 237 * caller must respect a RCU grace period before freeing/reusing dev 238 */ 239 static void unlist_netdevice(struct net_device *dev) 240 { 241 ASSERT_RTNL(); 242 243 /* Unlink dev from the device chain */ 244 write_lock_bh(&dev_base_lock); 245 list_del_rcu(&dev->dev_list); 246 hlist_del_rcu(&dev->name_hlist); 247 hlist_del_rcu(&dev->index_hlist); 248 write_unlock_bh(&dev_base_lock); 249 250 dev_base_seq_inc(dev_net(dev)); 251 } 252 253 /* 254 * Our notifier list 255 */ 256 257 static RAW_NOTIFIER_HEAD(netdev_chain); 258 259 /* 260 * Device drivers call our routines to queue packets here. We empty the 261 * queue in the local softnet handler. 262 */ 263 264 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 265 EXPORT_PER_CPU_SYMBOL(softnet_data); 266 267 #ifdef CONFIG_LOCKDEP 268 /* 269 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 270 * according to dev->type 271 */ 272 static const unsigned short netdev_lock_type[] = 273 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 274 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 275 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 276 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 277 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 278 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 279 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 280 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 281 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 282 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 283 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 284 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 285 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 286 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 287 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 288 289 static const char *const netdev_lock_name[] = 290 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 291 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 292 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 293 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 294 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 295 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 296 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 297 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 298 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 299 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 300 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 301 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 302 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 303 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 304 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 305 306 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 307 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 308 309 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 310 { 311 int i; 312 313 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 314 if (netdev_lock_type[i] == dev_type) 315 return i; 316 /* the last key is used by default */ 317 return ARRAY_SIZE(netdev_lock_type) - 1; 318 } 319 320 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 321 unsigned short dev_type) 322 { 323 int i; 324 325 i = netdev_lock_pos(dev_type); 326 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 327 netdev_lock_name[i]); 328 } 329 330 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 331 { 332 int i; 333 334 i = netdev_lock_pos(dev->type); 335 lockdep_set_class_and_name(&dev->addr_list_lock, 336 &netdev_addr_lock_key[i], 337 netdev_lock_name[i]); 338 } 339 #else 340 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 341 unsigned short dev_type) 342 { 343 } 344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 345 { 346 } 347 #endif 348 349 /******************************************************************************* 350 351 Protocol management and registration routines 352 353 *******************************************************************************/ 354 355 /* 356 * Add a protocol ID to the list. Now that the input handler is 357 * smarter we can dispense with all the messy stuff that used to be 358 * here. 359 * 360 * BEWARE!!! Protocol handlers, mangling input packets, 361 * MUST BE last in hash buckets and checking protocol handlers 362 * MUST start from promiscuous ptype_all chain in net_bh. 363 * It is true now, do not change it. 364 * Explanation follows: if protocol handler, mangling packet, will 365 * be the first on list, it is not able to sense, that packet 366 * is cloned and should be copied-on-write, so that it will 367 * change it and subsequent readers will get broken packet. 368 * --ANK (980803) 369 */ 370 371 static inline struct list_head *ptype_head(const struct packet_type *pt) 372 { 373 if (pt->type == htons(ETH_P_ALL)) 374 return &ptype_all; 375 else 376 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 377 } 378 379 /** 380 * dev_add_pack - add packet handler 381 * @pt: packet type declaration 382 * 383 * Add a protocol handler to the networking stack. The passed &packet_type 384 * is linked into kernel lists and may not be freed until it has been 385 * removed from the kernel lists. 386 * 387 * This call does not sleep therefore it can not 388 * guarantee all CPU's that are in middle of receiving packets 389 * will see the new packet type (until the next received packet). 390 */ 391 392 void dev_add_pack(struct packet_type *pt) 393 { 394 struct list_head *head = ptype_head(pt); 395 396 spin_lock(&ptype_lock); 397 list_add_rcu(&pt->list, head); 398 spin_unlock(&ptype_lock); 399 } 400 EXPORT_SYMBOL(dev_add_pack); 401 402 /** 403 * __dev_remove_pack - remove packet handler 404 * @pt: packet type declaration 405 * 406 * Remove a protocol handler that was previously added to the kernel 407 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 408 * from the kernel lists and can be freed or reused once this function 409 * returns. 410 * 411 * The packet type might still be in use by receivers 412 * and must not be freed until after all the CPU's have gone 413 * through a quiescent state. 414 */ 415 void __dev_remove_pack(struct packet_type *pt) 416 { 417 struct list_head *head = ptype_head(pt); 418 struct packet_type *pt1; 419 420 spin_lock(&ptype_lock); 421 422 list_for_each_entry(pt1, head, list) { 423 if (pt == pt1) { 424 list_del_rcu(&pt->list); 425 goto out; 426 } 427 } 428 429 pr_warn("dev_remove_pack: %p not found\n", pt); 430 out: 431 spin_unlock(&ptype_lock); 432 } 433 EXPORT_SYMBOL(__dev_remove_pack); 434 435 /** 436 * dev_remove_pack - remove packet handler 437 * @pt: packet type declaration 438 * 439 * Remove a protocol handler that was previously added to the kernel 440 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 441 * from the kernel lists and can be freed or reused once this function 442 * returns. 443 * 444 * This call sleeps to guarantee that no CPU is looking at the packet 445 * type after return. 446 */ 447 void dev_remove_pack(struct packet_type *pt) 448 { 449 __dev_remove_pack(pt); 450 451 synchronize_net(); 452 } 453 EXPORT_SYMBOL(dev_remove_pack); 454 455 456 /** 457 * dev_add_offload - register offload handlers 458 * @po: protocol offload declaration 459 * 460 * Add protocol offload handlers to the networking stack. The passed 461 * &proto_offload is linked into kernel lists and may not be freed until 462 * it has been removed from the kernel lists. 463 * 464 * This call does not sleep therefore it can not 465 * guarantee all CPU's that are in middle of receiving packets 466 * will see the new offload handlers (until the next received packet). 467 */ 468 void dev_add_offload(struct packet_offload *po) 469 { 470 struct list_head *head = &offload_base; 471 472 spin_lock(&offload_lock); 473 list_add_rcu(&po->list, head); 474 spin_unlock(&offload_lock); 475 } 476 EXPORT_SYMBOL(dev_add_offload); 477 478 /** 479 * __dev_remove_offload - remove offload handler 480 * @po: packet offload declaration 481 * 482 * Remove a protocol offload handler that was previously added to the 483 * kernel offload handlers by dev_add_offload(). The passed &offload_type 484 * is removed from the kernel lists and can be freed or reused once this 485 * function returns. 486 * 487 * The packet type might still be in use by receivers 488 * and must not be freed until after all the CPU's have gone 489 * through a quiescent state. 490 */ 491 static void __dev_remove_offload(struct packet_offload *po) 492 { 493 struct list_head *head = &offload_base; 494 struct packet_offload *po1; 495 496 spin_lock(&offload_lock); 497 498 list_for_each_entry(po1, head, list) { 499 if (po == po1) { 500 list_del_rcu(&po->list); 501 goto out; 502 } 503 } 504 505 pr_warn("dev_remove_offload: %p not found\n", po); 506 out: 507 spin_unlock(&offload_lock); 508 } 509 510 /** 511 * dev_remove_offload - remove packet offload handler 512 * @po: packet offload declaration 513 * 514 * Remove a packet offload handler that was previously added to the kernel 515 * offload handlers by dev_add_offload(). The passed &offload_type is 516 * removed from the kernel lists and can be freed or reused once this 517 * function returns. 518 * 519 * This call sleeps to guarantee that no CPU is looking at the packet 520 * type after return. 521 */ 522 void dev_remove_offload(struct packet_offload *po) 523 { 524 __dev_remove_offload(po); 525 526 synchronize_net(); 527 } 528 EXPORT_SYMBOL(dev_remove_offload); 529 530 /****************************************************************************** 531 532 Device Boot-time Settings Routines 533 534 *******************************************************************************/ 535 536 /* Boot time configuration table */ 537 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 538 539 /** 540 * netdev_boot_setup_add - add new setup entry 541 * @name: name of the device 542 * @map: configured settings for the device 543 * 544 * Adds new setup entry to the dev_boot_setup list. The function 545 * returns 0 on error and 1 on success. This is a generic routine to 546 * all netdevices. 547 */ 548 static int netdev_boot_setup_add(char *name, struct ifmap *map) 549 { 550 struct netdev_boot_setup *s; 551 int i; 552 553 s = dev_boot_setup; 554 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 555 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 556 memset(s[i].name, 0, sizeof(s[i].name)); 557 strlcpy(s[i].name, name, IFNAMSIZ); 558 memcpy(&s[i].map, map, sizeof(s[i].map)); 559 break; 560 } 561 } 562 563 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 564 } 565 566 /** 567 * netdev_boot_setup_check - check boot time settings 568 * @dev: the netdevice 569 * 570 * Check boot time settings for the device. 571 * The found settings are set for the device to be used 572 * later in the device probing. 573 * Returns 0 if no settings found, 1 if they are. 574 */ 575 int netdev_boot_setup_check(struct net_device *dev) 576 { 577 struct netdev_boot_setup *s = dev_boot_setup; 578 int i; 579 580 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 581 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 582 !strcmp(dev->name, s[i].name)) { 583 dev->irq = s[i].map.irq; 584 dev->base_addr = s[i].map.base_addr; 585 dev->mem_start = s[i].map.mem_start; 586 dev->mem_end = s[i].map.mem_end; 587 return 1; 588 } 589 } 590 return 0; 591 } 592 EXPORT_SYMBOL(netdev_boot_setup_check); 593 594 595 /** 596 * netdev_boot_base - get address from boot time settings 597 * @prefix: prefix for network device 598 * @unit: id for network device 599 * 600 * Check boot time settings for the base address of device. 601 * The found settings are set for the device to be used 602 * later in the device probing. 603 * Returns 0 if no settings found. 604 */ 605 unsigned long netdev_boot_base(const char *prefix, int unit) 606 { 607 const struct netdev_boot_setup *s = dev_boot_setup; 608 char name[IFNAMSIZ]; 609 int i; 610 611 sprintf(name, "%s%d", prefix, unit); 612 613 /* 614 * If device already registered then return base of 1 615 * to indicate not to probe for this interface 616 */ 617 if (__dev_get_by_name(&init_net, name)) 618 return 1; 619 620 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 621 if (!strcmp(name, s[i].name)) 622 return s[i].map.base_addr; 623 return 0; 624 } 625 626 /* 627 * Saves at boot time configured settings for any netdevice. 628 */ 629 int __init netdev_boot_setup(char *str) 630 { 631 int ints[5]; 632 struct ifmap map; 633 634 str = get_options(str, ARRAY_SIZE(ints), ints); 635 if (!str || !*str) 636 return 0; 637 638 /* Save settings */ 639 memset(&map, 0, sizeof(map)); 640 if (ints[0] > 0) 641 map.irq = ints[1]; 642 if (ints[0] > 1) 643 map.base_addr = ints[2]; 644 if (ints[0] > 2) 645 map.mem_start = ints[3]; 646 if (ints[0] > 3) 647 map.mem_end = ints[4]; 648 649 /* Add new entry to the list */ 650 return netdev_boot_setup_add(str, &map); 651 } 652 653 __setup("netdev=", netdev_boot_setup); 654 655 /******************************************************************************* 656 657 Device Interface Subroutines 658 659 *******************************************************************************/ 660 661 /** 662 * __dev_get_by_name - find a device by its name 663 * @net: the applicable net namespace 664 * @name: name to find 665 * 666 * Find an interface by name. Must be called under RTNL semaphore 667 * or @dev_base_lock. If the name is found a pointer to the device 668 * is returned. If the name is not found then %NULL is returned. The 669 * reference counters are not incremented so the caller must be 670 * careful with locks. 671 */ 672 673 struct net_device *__dev_get_by_name(struct net *net, const char *name) 674 { 675 struct net_device *dev; 676 struct hlist_head *head = dev_name_hash(net, name); 677 678 hlist_for_each_entry(dev, head, name_hlist) 679 if (!strncmp(dev->name, name, IFNAMSIZ)) 680 return dev; 681 682 return NULL; 683 } 684 EXPORT_SYMBOL(__dev_get_by_name); 685 686 /** 687 * dev_get_by_name_rcu - find a device by its name 688 * @net: the applicable net namespace 689 * @name: name to find 690 * 691 * Find an interface by name. 692 * If the name is found a pointer to the device is returned. 693 * If the name is not found then %NULL is returned. 694 * The reference counters are not incremented so the caller must be 695 * careful with locks. The caller must hold RCU lock. 696 */ 697 698 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 699 { 700 struct net_device *dev; 701 struct hlist_head *head = dev_name_hash(net, name); 702 703 hlist_for_each_entry_rcu(dev, head, name_hlist) 704 if (!strncmp(dev->name, name, IFNAMSIZ)) 705 return dev; 706 707 return NULL; 708 } 709 EXPORT_SYMBOL(dev_get_by_name_rcu); 710 711 /** 712 * dev_get_by_name - find a device by its name 713 * @net: the applicable net namespace 714 * @name: name to find 715 * 716 * Find an interface by name. This can be called from any 717 * context and does its own locking. The returned handle has 718 * the usage count incremented and the caller must use dev_put() to 719 * release it when it is no longer needed. %NULL is returned if no 720 * matching device is found. 721 */ 722 723 struct net_device *dev_get_by_name(struct net *net, const char *name) 724 { 725 struct net_device *dev; 726 727 rcu_read_lock(); 728 dev = dev_get_by_name_rcu(net, name); 729 if (dev) 730 dev_hold(dev); 731 rcu_read_unlock(); 732 return dev; 733 } 734 EXPORT_SYMBOL(dev_get_by_name); 735 736 /** 737 * __dev_get_by_index - find a device by its ifindex 738 * @net: the applicable net namespace 739 * @ifindex: index of device 740 * 741 * Search for an interface by index. Returns %NULL if the device 742 * is not found or a pointer to the device. The device has not 743 * had its reference counter increased so the caller must be careful 744 * about locking. The caller must hold either the RTNL semaphore 745 * or @dev_base_lock. 746 */ 747 748 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 749 { 750 struct net_device *dev; 751 struct hlist_head *head = dev_index_hash(net, ifindex); 752 753 hlist_for_each_entry(dev, head, index_hlist) 754 if (dev->ifindex == ifindex) 755 return dev; 756 757 return NULL; 758 } 759 EXPORT_SYMBOL(__dev_get_by_index); 760 761 /** 762 * dev_get_by_index_rcu - find a device by its ifindex 763 * @net: the applicable net namespace 764 * @ifindex: index of device 765 * 766 * Search for an interface by index. Returns %NULL if the device 767 * is not found or a pointer to the device. The device has not 768 * had its reference counter increased so the caller must be careful 769 * about locking. The caller must hold RCU lock. 770 */ 771 772 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 773 { 774 struct net_device *dev; 775 struct hlist_head *head = dev_index_hash(net, ifindex); 776 777 hlist_for_each_entry_rcu(dev, head, index_hlist) 778 if (dev->ifindex == ifindex) 779 return dev; 780 781 return NULL; 782 } 783 EXPORT_SYMBOL(dev_get_by_index_rcu); 784 785 786 /** 787 * dev_get_by_index - find a device by its ifindex 788 * @net: the applicable net namespace 789 * @ifindex: index of device 790 * 791 * Search for an interface by index. Returns NULL if the device 792 * is not found or a pointer to the device. The device returned has 793 * had a reference added and the pointer is safe until the user calls 794 * dev_put to indicate they have finished with it. 795 */ 796 797 struct net_device *dev_get_by_index(struct net *net, int ifindex) 798 { 799 struct net_device *dev; 800 801 rcu_read_lock(); 802 dev = dev_get_by_index_rcu(net, ifindex); 803 if (dev) 804 dev_hold(dev); 805 rcu_read_unlock(); 806 return dev; 807 } 808 EXPORT_SYMBOL(dev_get_by_index); 809 810 /** 811 * netdev_get_name - get a netdevice name, knowing its ifindex. 812 * @net: network namespace 813 * @name: a pointer to the buffer where the name will be stored. 814 * @ifindex: the ifindex of the interface to get the name from. 815 * 816 * The use of raw_seqcount_begin() and cond_resched() before 817 * retrying is required as we want to give the writers a chance 818 * to complete when CONFIG_PREEMPT is not set. 819 */ 820 int netdev_get_name(struct net *net, char *name, int ifindex) 821 { 822 struct net_device *dev; 823 unsigned int seq; 824 825 retry: 826 seq = raw_seqcount_begin(&devnet_rename_seq); 827 rcu_read_lock(); 828 dev = dev_get_by_index_rcu(net, ifindex); 829 if (!dev) { 830 rcu_read_unlock(); 831 return -ENODEV; 832 } 833 834 strcpy(name, dev->name); 835 rcu_read_unlock(); 836 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 837 cond_resched(); 838 goto retry; 839 } 840 841 return 0; 842 } 843 844 /** 845 * dev_getbyhwaddr_rcu - find a device by its hardware address 846 * @net: the applicable net namespace 847 * @type: media type of device 848 * @ha: hardware address 849 * 850 * Search for an interface by MAC address. Returns NULL if the device 851 * is not found or a pointer to the device. 852 * The caller must hold RCU or RTNL. 853 * The returned device has not had its ref count increased 854 * and the caller must therefore be careful about locking 855 * 856 */ 857 858 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 859 const char *ha) 860 { 861 struct net_device *dev; 862 863 for_each_netdev_rcu(net, dev) 864 if (dev->type == type && 865 !memcmp(dev->dev_addr, ha, dev->addr_len)) 866 return dev; 867 868 return NULL; 869 } 870 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 871 872 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 873 { 874 struct net_device *dev; 875 876 ASSERT_RTNL(); 877 for_each_netdev(net, dev) 878 if (dev->type == type) 879 return dev; 880 881 return NULL; 882 } 883 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 884 885 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 886 { 887 struct net_device *dev, *ret = NULL; 888 889 rcu_read_lock(); 890 for_each_netdev_rcu(net, dev) 891 if (dev->type == type) { 892 dev_hold(dev); 893 ret = dev; 894 break; 895 } 896 rcu_read_unlock(); 897 return ret; 898 } 899 EXPORT_SYMBOL(dev_getfirstbyhwtype); 900 901 /** 902 * __dev_get_by_flags - find any device with given flags 903 * @net: the applicable net namespace 904 * @if_flags: IFF_* values 905 * @mask: bitmask of bits in if_flags to check 906 * 907 * Search for any interface with the given flags. Returns NULL if a device 908 * is not found or a pointer to the device. Must be called inside 909 * rtnl_lock(), and result refcount is unchanged. 910 */ 911 912 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 913 unsigned short mask) 914 { 915 struct net_device *dev, *ret; 916 917 ASSERT_RTNL(); 918 919 ret = NULL; 920 for_each_netdev(net, dev) { 921 if (((dev->flags ^ if_flags) & mask) == 0) { 922 ret = dev; 923 break; 924 } 925 } 926 return ret; 927 } 928 EXPORT_SYMBOL(__dev_get_by_flags); 929 930 /** 931 * dev_valid_name - check if name is okay for network device 932 * @name: name string 933 * 934 * Network device names need to be valid file names to 935 * to allow sysfs to work. We also disallow any kind of 936 * whitespace. 937 */ 938 bool dev_valid_name(const char *name) 939 { 940 if (*name == '\0') 941 return false; 942 if (strlen(name) >= IFNAMSIZ) 943 return false; 944 if (!strcmp(name, ".") || !strcmp(name, "..")) 945 return false; 946 947 while (*name) { 948 if (*name == '/' || isspace(*name)) 949 return false; 950 name++; 951 } 952 return true; 953 } 954 EXPORT_SYMBOL(dev_valid_name); 955 956 /** 957 * __dev_alloc_name - allocate a name for a device 958 * @net: network namespace to allocate the device name in 959 * @name: name format string 960 * @buf: scratch buffer and result name string 961 * 962 * Passed a format string - eg "lt%d" it will try and find a suitable 963 * id. It scans list of devices to build up a free map, then chooses 964 * the first empty slot. The caller must hold the dev_base or rtnl lock 965 * while allocating the name and adding the device in order to avoid 966 * duplicates. 967 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 968 * Returns the number of the unit assigned or a negative errno code. 969 */ 970 971 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 972 { 973 int i = 0; 974 const char *p; 975 const int max_netdevices = 8*PAGE_SIZE; 976 unsigned long *inuse; 977 struct net_device *d; 978 979 p = strnchr(name, IFNAMSIZ-1, '%'); 980 if (p) { 981 /* 982 * Verify the string as this thing may have come from 983 * the user. There must be either one "%d" and no other "%" 984 * characters. 985 */ 986 if (p[1] != 'd' || strchr(p + 2, '%')) 987 return -EINVAL; 988 989 /* Use one page as a bit array of possible slots */ 990 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 991 if (!inuse) 992 return -ENOMEM; 993 994 for_each_netdev(net, d) { 995 if (!sscanf(d->name, name, &i)) 996 continue; 997 if (i < 0 || i >= max_netdevices) 998 continue; 999 1000 /* avoid cases where sscanf is not exact inverse of printf */ 1001 snprintf(buf, IFNAMSIZ, name, i); 1002 if (!strncmp(buf, d->name, IFNAMSIZ)) 1003 set_bit(i, inuse); 1004 } 1005 1006 i = find_first_zero_bit(inuse, max_netdevices); 1007 free_page((unsigned long) inuse); 1008 } 1009 1010 if (buf != name) 1011 snprintf(buf, IFNAMSIZ, name, i); 1012 if (!__dev_get_by_name(net, buf)) 1013 return i; 1014 1015 /* It is possible to run out of possible slots 1016 * when the name is long and there isn't enough space left 1017 * for the digits, or if all bits are used. 1018 */ 1019 return -ENFILE; 1020 } 1021 1022 /** 1023 * dev_alloc_name - allocate a name for a device 1024 * @dev: device 1025 * @name: name format string 1026 * 1027 * Passed a format string - eg "lt%d" it will try and find a suitable 1028 * id. It scans list of devices to build up a free map, then chooses 1029 * the first empty slot. The caller must hold the dev_base or rtnl lock 1030 * while allocating the name and adding the device in order to avoid 1031 * duplicates. 1032 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1033 * Returns the number of the unit assigned or a negative errno code. 1034 */ 1035 1036 int dev_alloc_name(struct net_device *dev, const char *name) 1037 { 1038 char buf[IFNAMSIZ]; 1039 struct net *net; 1040 int ret; 1041 1042 BUG_ON(!dev_net(dev)); 1043 net = dev_net(dev); 1044 ret = __dev_alloc_name(net, name, buf); 1045 if (ret >= 0) 1046 strlcpy(dev->name, buf, IFNAMSIZ); 1047 return ret; 1048 } 1049 EXPORT_SYMBOL(dev_alloc_name); 1050 1051 static int dev_alloc_name_ns(struct net *net, 1052 struct net_device *dev, 1053 const char *name) 1054 { 1055 char buf[IFNAMSIZ]; 1056 int ret; 1057 1058 ret = __dev_alloc_name(net, name, buf); 1059 if (ret >= 0) 1060 strlcpy(dev->name, buf, IFNAMSIZ); 1061 return ret; 1062 } 1063 1064 static int dev_get_valid_name(struct net *net, 1065 struct net_device *dev, 1066 const char *name) 1067 { 1068 BUG_ON(!net); 1069 1070 if (!dev_valid_name(name)) 1071 return -EINVAL; 1072 1073 if (strchr(name, '%')) 1074 return dev_alloc_name_ns(net, dev, name); 1075 else if (__dev_get_by_name(net, name)) 1076 return -EEXIST; 1077 else if (dev->name != name) 1078 strlcpy(dev->name, name, IFNAMSIZ); 1079 1080 return 0; 1081 } 1082 1083 /** 1084 * dev_change_name - change name of a device 1085 * @dev: device 1086 * @newname: name (or format string) must be at least IFNAMSIZ 1087 * 1088 * Change name of a device, can pass format strings "eth%d". 1089 * for wildcarding. 1090 */ 1091 int dev_change_name(struct net_device *dev, const char *newname) 1092 { 1093 unsigned char old_assign_type; 1094 char oldname[IFNAMSIZ]; 1095 int err = 0; 1096 int ret; 1097 struct net *net; 1098 1099 ASSERT_RTNL(); 1100 BUG_ON(!dev_net(dev)); 1101 1102 net = dev_net(dev); 1103 if (dev->flags & IFF_UP) 1104 return -EBUSY; 1105 1106 write_seqcount_begin(&devnet_rename_seq); 1107 1108 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1109 write_seqcount_end(&devnet_rename_seq); 1110 return 0; 1111 } 1112 1113 memcpy(oldname, dev->name, IFNAMSIZ); 1114 1115 err = dev_get_valid_name(net, dev, newname); 1116 if (err < 0) { 1117 write_seqcount_end(&devnet_rename_seq); 1118 return err; 1119 } 1120 1121 if (oldname[0] && !strchr(oldname, '%')) 1122 netdev_info(dev, "renamed from %s\n", oldname); 1123 1124 old_assign_type = dev->name_assign_type; 1125 dev->name_assign_type = NET_NAME_RENAMED; 1126 1127 rollback: 1128 ret = device_rename(&dev->dev, dev->name); 1129 if (ret) { 1130 memcpy(dev->name, oldname, IFNAMSIZ); 1131 dev->name_assign_type = old_assign_type; 1132 write_seqcount_end(&devnet_rename_seq); 1133 return ret; 1134 } 1135 1136 write_seqcount_end(&devnet_rename_seq); 1137 1138 netdev_adjacent_rename_links(dev, oldname); 1139 1140 write_lock_bh(&dev_base_lock); 1141 hlist_del_rcu(&dev->name_hlist); 1142 write_unlock_bh(&dev_base_lock); 1143 1144 synchronize_rcu(); 1145 1146 write_lock_bh(&dev_base_lock); 1147 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1148 write_unlock_bh(&dev_base_lock); 1149 1150 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1151 ret = notifier_to_errno(ret); 1152 1153 if (ret) { 1154 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1155 if (err >= 0) { 1156 err = ret; 1157 write_seqcount_begin(&devnet_rename_seq); 1158 memcpy(dev->name, oldname, IFNAMSIZ); 1159 memcpy(oldname, newname, IFNAMSIZ); 1160 dev->name_assign_type = old_assign_type; 1161 old_assign_type = NET_NAME_RENAMED; 1162 goto rollback; 1163 } else { 1164 pr_err("%s: name change rollback failed: %d\n", 1165 dev->name, ret); 1166 } 1167 } 1168 1169 return err; 1170 } 1171 1172 /** 1173 * dev_set_alias - change ifalias of a device 1174 * @dev: device 1175 * @alias: name up to IFALIASZ 1176 * @len: limit of bytes to copy from info 1177 * 1178 * Set ifalias for a device, 1179 */ 1180 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1181 { 1182 char *new_ifalias; 1183 1184 ASSERT_RTNL(); 1185 1186 if (len >= IFALIASZ) 1187 return -EINVAL; 1188 1189 if (!len) { 1190 kfree(dev->ifalias); 1191 dev->ifalias = NULL; 1192 return 0; 1193 } 1194 1195 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1196 if (!new_ifalias) 1197 return -ENOMEM; 1198 dev->ifalias = new_ifalias; 1199 1200 strlcpy(dev->ifalias, alias, len+1); 1201 return len; 1202 } 1203 1204 1205 /** 1206 * netdev_features_change - device changes features 1207 * @dev: device to cause notification 1208 * 1209 * Called to indicate a device has changed features. 1210 */ 1211 void netdev_features_change(struct net_device *dev) 1212 { 1213 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1214 } 1215 EXPORT_SYMBOL(netdev_features_change); 1216 1217 /** 1218 * netdev_state_change - device changes state 1219 * @dev: device to cause notification 1220 * 1221 * Called to indicate a device has changed state. This function calls 1222 * the notifier chains for netdev_chain and sends a NEWLINK message 1223 * to the routing socket. 1224 */ 1225 void netdev_state_change(struct net_device *dev) 1226 { 1227 if (dev->flags & IFF_UP) { 1228 struct netdev_notifier_change_info change_info; 1229 1230 change_info.flags_changed = 0; 1231 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 1232 &change_info.info); 1233 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1234 } 1235 } 1236 EXPORT_SYMBOL(netdev_state_change); 1237 1238 /** 1239 * netdev_notify_peers - notify network peers about existence of @dev 1240 * @dev: network device 1241 * 1242 * Generate traffic such that interested network peers are aware of 1243 * @dev, such as by generating a gratuitous ARP. This may be used when 1244 * a device wants to inform the rest of the network about some sort of 1245 * reconfiguration such as a failover event or virtual machine 1246 * migration. 1247 */ 1248 void netdev_notify_peers(struct net_device *dev) 1249 { 1250 rtnl_lock(); 1251 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1252 rtnl_unlock(); 1253 } 1254 EXPORT_SYMBOL(netdev_notify_peers); 1255 1256 static int __dev_open(struct net_device *dev) 1257 { 1258 const struct net_device_ops *ops = dev->netdev_ops; 1259 int ret; 1260 1261 ASSERT_RTNL(); 1262 1263 if (!netif_device_present(dev)) 1264 return -ENODEV; 1265 1266 /* Block netpoll from trying to do any rx path servicing. 1267 * If we don't do this there is a chance ndo_poll_controller 1268 * or ndo_poll may be running while we open the device 1269 */ 1270 netpoll_poll_disable(dev); 1271 1272 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1273 ret = notifier_to_errno(ret); 1274 if (ret) 1275 return ret; 1276 1277 set_bit(__LINK_STATE_START, &dev->state); 1278 1279 if (ops->ndo_validate_addr) 1280 ret = ops->ndo_validate_addr(dev); 1281 1282 if (!ret && ops->ndo_open) 1283 ret = ops->ndo_open(dev); 1284 1285 netpoll_poll_enable(dev); 1286 1287 if (ret) 1288 clear_bit(__LINK_STATE_START, &dev->state); 1289 else { 1290 dev->flags |= IFF_UP; 1291 dev_set_rx_mode(dev); 1292 dev_activate(dev); 1293 add_device_randomness(dev->dev_addr, dev->addr_len); 1294 } 1295 1296 return ret; 1297 } 1298 1299 /** 1300 * dev_open - prepare an interface for use. 1301 * @dev: device to open 1302 * 1303 * Takes a device from down to up state. The device's private open 1304 * function is invoked and then the multicast lists are loaded. Finally 1305 * the device is moved into the up state and a %NETDEV_UP message is 1306 * sent to the netdev notifier chain. 1307 * 1308 * Calling this function on an active interface is a nop. On a failure 1309 * a negative errno code is returned. 1310 */ 1311 int dev_open(struct net_device *dev) 1312 { 1313 int ret; 1314 1315 if (dev->flags & IFF_UP) 1316 return 0; 1317 1318 ret = __dev_open(dev); 1319 if (ret < 0) 1320 return ret; 1321 1322 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1323 call_netdevice_notifiers(NETDEV_UP, dev); 1324 1325 return ret; 1326 } 1327 EXPORT_SYMBOL(dev_open); 1328 1329 static int __dev_close_many(struct list_head *head) 1330 { 1331 struct net_device *dev; 1332 1333 ASSERT_RTNL(); 1334 might_sleep(); 1335 1336 list_for_each_entry(dev, head, close_list) { 1337 /* Temporarily disable netpoll until the interface is down */ 1338 netpoll_poll_disable(dev); 1339 1340 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1341 1342 clear_bit(__LINK_STATE_START, &dev->state); 1343 1344 /* Synchronize to scheduled poll. We cannot touch poll list, it 1345 * can be even on different cpu. So just clear netif_running(). 1346 * 1347 * dev->stop() will invoke napi_disable() on all of it's 1348 * napi_struct instances on this device. 1349 */ 1350 smp_mb__after_atomic(); /* Commit netif_running(). */ 1351 } 1352 1353 dev_deactivate_many(head); 1354 1355 list_for_each_entry(dev, head, close_list) { 1356 const struct net_device_ops *ops = dev->netdev_ops; 1357 1358 /* 1359 * Call the device specific close. This cannot fail. 1360 * Only if device is UP 1361 * 1362 * We allow it to be called even after a DETACH hot-plug 1363 * event. 1364 */ 1365 if (ops->ndo_stop) 1366 ops->ndo_stop(dev); 1367 1368 dev->flags &= ~IFF_UP; 1369 netpoll_poll_enable(dev); 1370 } 1371 1372 return 0; 1373 } 1374 1375 static int __dev_close(struct net_device *dev) 1376 { 1377 int retval; 1378 LIST_HEAD(single); 1379 1380 list_add(&dev->close_list, &single); 1381 retval = __dev_close_many(&single); 1382 list_del(&single); 1383 1384 return retval; 1385 } 1386 1387 static int dev_close_many(struct list_head *head) 1388 { 1389 struct net_device *dev, *tmp; 1390 1391 /* Remove the devices that don't need to be closed */ 1392 list_for_each_entry_safe(dev, tmp, head, close_list) 1393 if (!(dev->flags & IFF_UP)) 1394 list_del_init(&dev->close_list); 1395 1396 __dev_close_many(head); 1397 1398 list_for_each_entry_safe(dev, tmp, head, close_list) { 1399 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1400 call_netdevice_notifiers(NETDEV_DOWN, dev); 1401 list_del_init(&dev->close_list); 1402 } 1403 1404 return 0; 1405 } 1406 1407 /** 1408 * dev_close - shutdown an interface. 1409 * @dev: device to shutdown 1410 * 1411 * This function moves an active device into down state. A 1412 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1413 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1414 * chain. 1415 */ 1416 int dev_close(struct net_device *dev) 1417 { 1418 if (dev->flags & IFF_UP) { 1419 LIST_HEAD(single); 1420 1421 list_add(&dev->close_list, &single); 1422 dev_close_many(&single); 1423 list_del(&single); 1424 } 1425 return 0; 1426 } 1427 EXPORT_SYMBOL(dev_close); 1428 1429 1430 /** 1431 * dev_disable_lro - disable Large Receive Offload on a device 1432 * @dev: device 1433 * 1434 * Disable Large Receive Offload (LRO) on a net device. Must be 1435 * called under RTNL. This is needed if received packets may be 1436 * forwarded to another interface. 1437 */ 1438 void dev_disable_lro(struct net_device *dev) 1439 { 1440 struct net_device *lower_dev; 1441 struct list_head *iter; 1442 1443 dev->wanted_features &= ~NETIF_F_LRO; 1444 netdev_update_features(dev); 1445 1446 if (unlikely(dev->features & NETIF_F_LRO)) 1447 netdev_WARN(dev, "failed to disable LRO!\n"); 1448 1449 netdev_for_each_lower_dev(dev, lower_dev, iter) 1450 dev_disable_lro(lower_dev); 1451 } 1452 EXPORT_SYMBOL(dev_disable_lro); 1453 1454 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1455 struct net_device *dev) 1456 { 1457 struct netdev_notifier_info info; 1458 1459 netdev_notifier_info_init(&info, dev); 1460 return nb->notifier_call(nb, val, &info); 1461 } 1462 1463 static int dev_boot_phase = 1; 1464 1465 /** 1466 * register_netdevice_notifier - register a network notifier block 1467 * @nb: notifier 1468 * 1469 * Register a notifier to be called when network device events occur. 1470 * The notifier passed is linked into the kernel structures and must 1471 * not be reused until it has been unregistered. A negative errno code 1472 * is returned on a failure. 1473 * 1474 * When registered all registration and up events are replayed 1475 * to the new notifier to allow device to have a race free 1476 * view of the network device list. 1477 */ 1478 1479 int register_netdevice_notifier(struct notifier_block *nb) 1480 { 1481 struct net_device *dev; 1482 struct net_device *last; 1483 struct net *net; 1484 int err; 1485 1486 rtnl_lock(); 1487 err = raw_notifier_chain_register(&netdev_chain, nb); 1488 if (err) 1489 goto unlock; 1490 if (dev_boot_phase) 1491 goto unlock; 1492 for_each_net(net) { 1493 for_each_netdev(net, dev) { 1494 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1495 err = notifier_to_errno(err); 1496 if (err) 1497 goto rollback; 1498 1499 if (!(dev->flags & IFF_UP)) 1500 continue; 1501 1502 call_netdevice_notifier(nb, NETDEV_UP, dev); 1503 } 1504 } 1505 1506 unlock: 1507 rtnl_unlock(); 1508 return err; 1509 1510 rollback: 1511 last = dev; 1512 for_each_net(net) { 1513 for_each_netdev(net, dev) { 1514 if (dev == last) 1515 goto outroll; 1516 1517 if (dev->flags & IFF_UP) { 1518 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1519 dev); 1520 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1521 } 1522 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1523 } 1524 } 1525 1526 outroll: 1527 raw_notifier_chain_unregister(&netdev_chain, nb); 1528 goto unlock; 1529 } 1530 EXPORT_SYMBOL(register_netdevice_notifier); 1531 1532 /** 1533 * unregister_netdevice_notifier - unregister a network notifier block 1534 * @nb: notifier 1535 * 1536 * Unregister a notifier previously registered by 1537 * register_netdevice_notifier(). The notifier is unlinked into the 1538 * kernel structures and may then be reused. A negative errno code 1539 * is returned on a failure. 1540 * 1541 * After unregistering unregister and down device events are synthesized 1542 * for all devices on the device list to the removed notifier to remove 1543 * the need for special case cleanup code. 1544 */ 1545 1546 int unregister_netdevice_notifier(struct notifier_block *nb) 1547 { 1548 struct net_device *dev; 1549 struct net *net; 1550 int err; 1551 1552 rtnl_lock(); 1553 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1554 if (err) 1555 goto unlock; 1556 1557 for_each_net(net) { 1558 for_each_netdev(net, dev) { 1559 if (dev->flags & IFF_UP) { 1560 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1561 dev); 1562 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1563 } 1564 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1565 } 1566 } 1567 unlock: 1568 rtnl_unlock(); 1569 return err; 1570 } 1571 EXPORT_SYMBOL(unregister_netdevice_notifier); 1572 1573 /** 1574 * call_netdevice_notifiers_info - call all network notifier blocks 1575 * @val: value passed unmodified to notifier function 1576 * @dev: net_device pointer passed unmodified to notifier function 1577 * @info: notifier information data 1578 * 1579 * Call all network notifier blocks. Parameters and return value 1580 * are as for raw_notifier_call_chain(). 1581 */ 1582 1583 static int call_netdevice_notifiers_info(unsigned long val, 1584 struct net_device *dev, 1585 struct netdev_notifier_info *info) 1586 { 1587 ASSERT_RTNL(); 1588 netdev_notifier_info_init(info, dev); 1589 return raw_notifier_call_chain(&netdev_chain, val, info); 1590 } 1591 1592 /** 1593 * call_netdevice_notifiers - call all network notifier blocks 1594 * @val: value passed unmodified to notifier function 1595 * @dev: net_device pointer passed unmodified to notifier function 1596 * 1597 * Call all network notifier blocks. Parameters and return value 1598 * are as for raw_notifier_call_chain(). 1599 */ 1600 1601 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1602 { 1603 struct netdev_notifier_info info; 1604 1605 return call_netdevice_notifiers_info(val, dev, &info); 1606 } 1607 EXPORT_SYMBOL(call_netdevice_notifiers); 1608 1609 static struct static_key netstamp_needed __read_mostly; 1610 #ifdef HAVE_JUMP_LABEL 1611 /* We are not allowed to call static_key_slow_dec() from irq context 1612 * If net_disable_timestamp() is called from irq context, defer the 1613 * static_key_slow_dec() calls. 1614 */ 1615 static atomic_t netstamp_needed_deferred; 1616 #endif 1617 1618 void net_enable_timestamp(void) 1619 { 1620 #ifdef HAVE_JUMP_LABEL 1621 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1622 1623 if (deferred) { 1624 while (--deferred) 1625 static_key_slow_dec(&netstamp_needed); 1626 return; 1627 } 1628 #endif 1629 static_key_slow_inc(&netstamp_needed); 1630 } 1631 EXPORT_SYMBOL(net_enable_timestamp); 1632 1633 void net_disable_timestamp(void) 1634 { 1635 #ifdef HAVE_JUMP_LABEL 1636 if (in_interrupt()) { 1637 atomic_inc(&netstamp_needed_deferred); 1638 return; 1639 } 1640 #endif 1641 static_key_slow_dec(&netstamp_needed); 1642 } 1643 EXPORT_SYMBOL(net_disable_timestamp); 1644 1645 static inline void net_timestamp_set(struct sk_buff *skb) 1646 { 1647 skb->tstamp.tv64 = 0; 1648 if (static_key_false(&netstamp_needed)) 1649 __net_timestamp(skb); 1650 } 1651 1652 #define net_timestamp_check(COND, SKB) \ 1653 if (static_key_false(&netstamp_needed)) { \ 1654 if ((COND) && !(SKB)->tstamp.tv64) \ 1655 __net_timestamp(SKB); \ 1656 } \ 1657 1658 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb) 1659 { 1660 unsigned int len; 1661 1662 if (!(dev->flags & IFF_UP)) 1663 return false; 1664 1665 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1666 if (skb->len <= len) 1667 return true; 1668 1669 /* if TSO is enabled, we don't care about the length as the packet 1670 * could be forwarded without being segmented before 1671 */ 1672 if (skb_is_gso(skb)) 1673 return true; 1674 1675 return false; 1676 } 1677 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1678 1679 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1680 { 1681 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 1682 if (skb_copy_ubufs(skb, GFP_ATOMIC)) { 1683 atomic_long_inc(&dev->rx_dropped); 1684 kfree_skb(skb); 1685 return NET_RX_DROP; 1686 } 1687 } 1688 1689 if (unlikely(!is_skb_forwardable(dev, skb))) { 1690 atomic_long_inc(&dev->rx_dropped); 1691 kfree_skb(skb); 1692 return NET_RX_DROP; 1693 } 1694 1695 skb_scrub_packet(skb, true); 1696 skb->protocol = eth_type_trans(skb, dev); 1697 1698 return 0; 1699 } 1700 EXPORT_SYMBOL_GPL(__dev_forward_skb); 1701 1702 /** 1703 * dev_forward_skb - loopback an skb to another netif 1704 * 1705 * @dev: destination network device 1706 * @skb: buffer to forward 1707 * 1708 * return values: 1709 * NET_RX_SUCCESS (no congestion) 1710 * NET_RX_DROP (packet was dropped, but freed) 1711 * 1712 * dev_forward_skb can be used for injecting an skb from the 1713 * start_xmit function of one device into the receive queue 1714 * of another device. 1715 * 1716 * The receiving device may be in another namespace, so 1717 * we have to clear all information in the skb that could 1718 * impact namespace isolation. 1719 */ 1720 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1721 { 1722 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1723 } 1724 EXPORT_SYMBOL_GPL(dev_forward_skb); 1725 1726 static inline int deliver_skb(struct sk_buff *skb, 1727 struct packet_type *pt_prev, 1728 struct net_device *orig_dev) 1729 { 1730 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 1731 return -ENOMEM; 1732 atomic_inc(&skb->users); 1733 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1734 } 1735 1736 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1737 { 1738 if (!ptype->af_packet_priv || !skb->sk) 1739 return false; 1740 1741 if (ptype->id_match) 1742 return ptype->id_match(ptype, skb->sk); 1743 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1744 return true; 1745 1746 return false; 1747 } 1748 1749 /* 1750 * Support routine. Sends outgoing frames to any network 1751 * taps currently in use. 1752 */ 1753 1754 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1755 { 1756 struct packet_type *ptype; 1757 struct sk_buff *skb2 = NULL; 1758 struct packet_type *pt_prev = NULL; 1759 1760 rcu_read_lock(); 1761 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1762 /* Never send packets back to the socket 1763 * they originated from - MvS (miquels@drinkel.ow.org) 1764 */ 1765 if ((ptype->dev == dev || !ptype->dev) && 1766 (!skb_loop_sk(ptype, skb))) { 1767 if (pt_prev) { 1768 deliver_skb(skb2, pt_prev, skb->dev); 1769 pt_prev = ptype; 1770 continue; 1771 } 1772 1773 skb2 = skb_clone(skb, GFP_ATOMIC); 1774 if (!skb2) 1775 break; 1776 1777 net_timestamp_set(skb2); 1778 1779 /* skb->nh should be correctly 1780 set by sender, so that the second statement is 1781 just protection against buggy protocols. 1782 */ 1783 skb_reset_mac_header(skb2); 1784 1785 if (skb_network_header(skb2) < skb2->data || 1786 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 1787 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1788 ntohs(skb2->protocol), 1789 dev->name); 1790 skb_reset_network_header(skb2); 1791 } 1792 1793 skb2->transport_header = skb2->network_header; 1794 skb2->pkt_type = PACKET_OUTGOING; 1795 pt_prev = ptype; 1796 } 1797 } 1798 if (pt_prev) 1799 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1800 rcu_read_unlock(); 1801 } 1802 1803 /** 1804 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1805 * @dev: Network device 1806 * @txq: number of queues available 1807 * 1808 * If real_num_tx_queues is changed the tc mappings may no longer be 1809 * valid. To resolve this verify the tc mapping remains valid and if 1810 * not NULL the mapping. With no priorities mapping to this 1811 * offset/count pair it will no longer be used. In the worst case TC0 1812 * is invalid nothing can be done so disable priority mappings. If is 1813 * expected that drivers will fix this mapping if they can before 1814 * calling netif_set_real_num_tx_queues. 1815 */ 1816 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1817 { 1818 int i; 1819 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1820 1821 /* If TC0 is invalidated disable TC mapping */ 1822 if (tc->offset + tc->count > txq) { 1823 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1824 dev->num_tc = 0; 1825 return; 1826 } 1827 1828 /* Invalidated prio to tc mappings set to TC0 */ 1829 for (i = 1; i < TC_BITMASK + 1; i++) { 1830 int q = netdev_get_prio_tc_map(dev, i); 1831 1832 tc = &dev->tc_to_txq[q]; 1833 if (tc->offset + tc->count > txq) { 1834 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1835 i, q); 1836 netdev_set_prio_tc_map(dev, i, 0); 1837 } 1838 } 1839 } 1840 1841 #ifdef CONFIG_XPS 1842 static DEFINE_MUTEX(xps_map_mutex); 1843 #define xmap_dereference(P) \ 1844 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 1845 1846 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps, 1847 int cpu, u16 index) 1848 { 1849 struct xps_map *map = NULL; 1850 int pos; 1851 1852 if (dev_maps) 1853 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1854 1855 for (pos = 0; map && pos < map->len; pos++) { 1856 if (map->queues[pos] == index) { 1857 if (map->len > 1) { 1858 map->queues[pos] = map->queues[--map->len]; 1859 } else { 1860 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL); 1861 kfree_rcu(map, rcu); 1862 map = NULL; 1863 } 1864 break; 1865 } 1866 } 1867 1868 return map; 1869 } 1870 1871 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 1872 { 1873 struct xps_dev_maps *dev_maps; 1874 int cpu, i; 1875 bool active = false; 1876 1877 mutex_lock(&xps_map_mutex); 1878 dev_maps = xmap_dereference(dev->xps_maps); 1879 1880 if (!dev_maps) 1881 goto out_no_maps; 1882 1883 for_each_possible_cpu(cpu) { 1884 for (i = index; i < dev->num_tx_queues; i++) { 1885 if (!remove_xps_queue(dev_maps, cpu, i)) 1886 break; 1887 } 1888 if (i == dev->num_tx_queues) 1889 active = true; 1890 } 1891 1892 if (!active) { 1893 RCU_INIT_POINTER(dev->xps_maps, NULL); 1894 kfree_rcu(dev_maps, rcu); 1895 } 1896 1897 for (i = index; i < dev->num_tx_queues; i++) 1898 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 1899 NUMA_NO_NODE); 1900 1901 out_no_maps: 1902 mutex_unlock(&xps_map_mutex); 1903 } 1904 1905 static struct xps_map *expand_xps_map(struct xps_map *map, 1906 int cpu, u16 index) 1907 { 1908 struct xps_map *new_map; 1909 int alloc_len = XPS_MIN_MAP_ALLOC; 1910 int i, pos; 1911 1912 for (pos = 0; map && pos < map->len; pos++) { 1913 if (map->queues[pos] != index) 1914 continue; 1915 return map; 1916 } 1917 1918 /* Need to add queue to this CPU's existing map */ 1919 if (map) { 1920 if (pos < map->alloc_len) 1921 return map; 1922 1923 alloc_len = map->alloc_len * 2; 1924 } 1925 1926 /* Need to allocate new map to store queue on this CPU's map */ 1927 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 1928 cpu_to_node(cpu)); 1929 if (!new_map) 1930 return NULL; 1931 1932 for (i = 0; i < pos; i++) 1933 new_map->queues[i] = map->queues[i]; 1934 new_map->alloc_len = alloc_len; 1935 new_map->len = pos; 1936 1937 return new_map; 1938 } 1939 1940 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 1941 u16 index) 1942 { 1943 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 1944 struct xps_map *map, *new_map; 1945 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES); 1946 int cpu, numa_node_id = -2; 1947 bool active = false; 1948 1949 mutex_lock(&xps_map_mutex); 1950 1951 dev_maps = xmap_dereference(dev->xps_maps); 1952 1953 /* allocate memory for queue storage */ 1954 for_each_online_cpu(cpu) { 1955 if (!cpumask_test_cpu(cpu, mask)) 1956 continue; 1957 1958 if (!new_dev_maps) 1959 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 1960 if (!new_dev_maps) { 1961 mutex_unlock(&xps_map_mutex); 1962 return -ENOMEM; 1963 } 1964 1965 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 1966 NULL; 1967 1968 map = expand_xps_map(map, cpu, index); 1969 if (!map) 1970 goto error; 1971 1972 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 1973 } 1974 1975 if (!new_dev_maps) 1976 goto out_no_new_maps; 1977 1978 for_each_possible_cpu(cpu) { 1979 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 1980 /* add queue to CPU maps */ 1981 int pos = 0; 1982 1983 map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 1984 while ((pos < map->len) && (map->queues[pos] != index)) 1985 pos++; 1986 1987 if (pos == map->len) 1988 map->queues[map->len++] = index; 1989 #ifdef CONFIG_NUMA 1990 if (numa_node_id == -2) 1991 numa_node_id = cpu_to_node(cpu); 1992 else if (numa_node_id != cpu_to_node(cpu)) 1993 numa_node_id = -1; 1994 #endif 1995 } else if (dev_maps) { 1996 /* fill in the new device map from the old device map */ 1997 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1998 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 1999 } 2000 2001 } 2002 2003 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 2004 2005 /* Cleanup old maps */ 2006 if (dev_maps) { 2007 for_each_possible_cpu(cpu) { 2008 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2009 map = xmap_dereference(dev_maps->cpu_map[cpu]); 2010 if (map && map != new_map) 2011 kfree_rcu(map, rcu); 2012 } 2013 2014 kfree_rcu(dev_maps, rcu); 2015 } 2016 2017 dev_maps = new_dev_maps; 2018 active = true; 2019 2020 out_no_new_maps: 2021 /* update Tx queue numa node */ 2022 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2023 (numa_node_id >= 0) ? numa_node_id : 2024 NUMA_NO_NODE); 2025 2026 if (!dev_maps) 2027 goto out_no_maps; 2028 2029 /* removes queue from unused CPUs */ 2030 for_each_possible_cpu(cpu) { 2031 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) 2032 continue; 2033 2034 if (remove_xps_queue(dev_maps, cpu, index)) 2035 active = true; 2036 } 2037 2038 /* free map if not active */ 2039 if (!active) { 2040 RCU_INIT_POINTER(dev->xps_maps, NULL); 2041 kfree_rcu(dev_maps, rcu); 2042 } 2043 2044 out_no_maps: 2045 mutex_unlock(&xps_map_mutex); 2046 2047 return 0; 2048 error: 2049 /* remove any maps that we added */ 2050 for_each_possible_cpu(cpu) { 2051 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2052 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 2053 NULL; 2054 if (new_map && new_map != map) 2055 kfree(new_map); 2056 } 2057 2058 mutex_unlock(&xps_map_mutex); 2059 2060 kfree(new_dev_maps); 2061 return -ENOMEM; 2062 } 2063 EXPORT_SYMBOL(netif_set_xps_queue); 2064 2065 #endif 2066 /* 2067 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2068 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 2069 */ 2070 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2071 { 2072 int rc; 2073 2074 if (txq < 1 || txq > dev->num_tx_queues) 2075 return -EINVAL; 2076 2077 if (dev->reg_state == NETREG_REGISTERED || 2078 dev->reg_state == NETREG_UNREGISTERING) { 2079 ASSERT_RTNL(); 2080 2081 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2082 txq); 2083 if (rc) 2084 return rc; 2085 2086 if (dev->num_tc) 2087 netif_setup_tc(dev, txq); 2088 2089 if (txq < dev->real_num_tx_queues) { 2090 qdisc_reset_all_tx_gt(dev, txq); 2091 #ifdef CONFIG_XPS 2092 netif_reset_xps_queues_gt(dev, txq); 2093 #endif 2094 } 2095 } 2096 2097 dev->real_num_tx_queues = txq; 2098 return 0; 2099 } 2100 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2101 2102 #ifdef CONFIG_SYSFS 2103 /** 2104 * netif_set_real_num_rx_queues - set actual number of RX queues used 2105 * @dev: Network device 2106 * @rxq: Actual number of RX queues 2107 * 2108 * This must be called either with the rtnl_lock held or before 2109 * registration of the net device. Returns 0 on success, or a 2110 * negative error code. If called before registration, it always 2111 * succeeds. 2112 */ 2113 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2114 { 2115 int rc; 2116 2117 if (rxq < 1 || rxq > dev->num_rx_queues) 2118 return -EINVAL; 2119 2120 if (dev->reg_state == NETREG_REGISTERED) { 2121 ASSERT_RTNL(); 2122 2123 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2124 rxq); 2125 if (rc) 2126 return rc; 2127 } 2128 2129 dev->real_num_rx_queues = rxq; 2130 return 0; 2131 } 2132 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2133 #endif 2134 2135 /** 2136 * netif_get_num_default_rss_queues - default number of RSS queues 2137 * 2138 * This routine should set an upper limit on the number of RSS queues 2139 * used by default by multiqueue devices. 2140 */ 2141 int netif_get_num_default_rss_queues(void) 2142 { 2143 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2144 } 2145 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2146 2147 static inline void __netif_reschedule(struct Qdisc *q) 2148 { 2149 struct softnet_data *sd; 2150 unsigned long flags; 2151 2152 local_irq_save(flags); 2153 sd = this_cpu_ptr(&softnet_data); 2154 q->next_sched = NULL; 2155 *sd->output_queue_tailp = q; 2156 sd->output_queue_tailp = &q->next_sched; 2157 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2158 local_irq_restore(flags); 2159 } 2160 2161 void __netif_schedule(struct Qdisc *q) 2162 { 2163 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2164 __netif_reschedule(q); 2165 } 2166 EXPORT_SYMBOL(__netif_schedule); 2167 2168 struct dev_kfree_skb_cb { 2169 enum skb_free_reason reason; 2170 }; 2171 2172 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2173 { 2174 return (struct dev_kfree_skb_cb *)skb->cb; 2175 } 2176 2177 void netif_schedule_queue(struct netdev_queue *txq) 2178 { 2179 rcu_read_lock(); 2180 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2181 struct Qdisc *q = rcu_dereference(txq->qdisc); 2182 2183 __netif_schedule(q); 2184 } 2185 rcu_read_unlock(); 2186 } 2187 EXPORT_SYMBOL(netif_schedule_queue); 2188 2189 /** 2190 * netif_wake_subqueue - allow sending packets on subqueue 2191 * @dev: network device 2192 * @queue_index: sub queue index 2193 * 2194 * Resume individual transmit queue of a device with multiple transmit queues. 2195 */ 2196 void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 2197 { 2198 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2199 2200 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) { 2201 struct Qdisc *q; 2202 2203 rcu_read_lock(); 2204 q = rcu_dereference(txq->qdisc); 2205 __netif_schedule(q); 2206 rcu_read_unlock(); 2207 } 2208 } 2209 EXPORT_SYMBOL(netif_wake_subqueue); 2210 2211 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2212 { 2213 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2214 struct Qdisc *q; 2215 2216 rcu_read_lock(); 2217 q = rcu_dereference(dev_queue->qdisc); 2218 __netif_schedule(q); 2219 rcu_read_unlock(); 2220 } 2221 } 2222 EXPORT_SYMBOL(netif_tx_wake_queue); 2223 2224 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2225 { 2226 unsigned long flags; 2227 2228 if (likely(atomic_read(&skb->users) == 1)) { 2229 smp_rmb(); 2230 atomic_set(&skb->users, 0); 2231 } else if (likely(!atomic_dec_and_test(&skb->users))) { 2232 return; 2233 } 2234 get_kfree_skb_cb(skb)->reason = reason; 2235 local_irq_save(flags); 2236 skb->next = __this_cpu_read(softnet_data.completion_queue); 2237 __this_cpu_write(softnet_data.completion_queue, skb); 2238 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2239 local_irq_restore(flags); 2240 } 2241 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2242 2243 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2244 { 2245 if (in_irq() || irqs_disabled()) 2246 __dev_kfree_skb_irq(skb, reason); 2247 else 2248 dev_kfree_skb(skb); 2249 } 2250 EXPORT_SYMBOL(__dev_kfree_skb_any); 2251 2252 2253 /** 2254 * netif_device_detach - mark device as removed 2255 * @dev: network device 2256 * 2257 * Mark device as removed from system and therefore no longer available. 2258 */ 2259 void netif_device_detach(struct net_device *dev) 2260 { 2261 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2262 netif_running(dev)) { 2263 netif_tx_stop_all_queues(dev); 2264 } 2265 } 2266 EXPORT_SYMBOL(netif_device_detach); 2267 2268 /** 2269 * netif_device_attach - mark device as attached 2270 * @dev: network device 2271 * 2272 * Mark device as attached from system and restart if needed. 2273 */ 2274 void netif_device_attach(struct net_device *dev) 2275 { 2276 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2277 netif_running(dev)) { 2278 netif_tx_wake_all_queues(dev); 2279 __netdev_watchdog_up(dev); 2280 } 2281 } 2282 EXPORT_SYMBOL(netif_device_attach); 2283 2284 static void skb_warn_bad_offload(const struct sk_buff *skb) 2285 { 2286 static const netdev_features_t null_features = 0; 2287 struct net_device *dev = skb->dev; 2288 const char *driver = ""; 2289 2290 if (!net_ratelimit()) 2291 return; 2292 2293 if (dev && dev->dev.parent) 2294 driver = dev_driver_string(dev->dev.parent); 2295 2296 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2297 "gso_type=%d ip_summed=%d\n", 2298 driver, dev ? &dev->features : &null_features, 2299 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2300 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2301 skb_shinfo(skb)->gso_type, skb->ip_summed); 2302 } 2303 2304 /* 2305 * Invalidate hardware checksum when packet is to be mangled, and 2306 * complete checksum manually on outgoing path. 2307 */ 2308 int skb_checksum_help(struct sk_buff *skb) 2309 { 2310 __wsum csum; 2311 int ret = 0, offset; 2312 2313 if (skb->ip_summed == CHECKSUM_COMPLETE) 2314 goto out_set_summed; 2315 2316 if (unlikely(skb_shinfo(skb)->gso_size)) { 2317 skb_warn_bad_offload(skb); 2318 return -EINVAL; 2319 } 2320 2321 /* Before computing a checksum, we should make sure no frag could 2322 * be modified by an external entity : checksum could be wrong. 2323 */ 2324 if (skb_has_shared_frag(skb)) { 2325 ret = __skb_linearize(skb); 2326 if (ret) 2327 goto out; 2328 } 2329 2330 offset = skb_checksum_start_offset(skb); 2331 BUG_ON(offset >= skb_headlen(skb)); 2332 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2333 2334 offset += skb->csum_offset; 2335 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2336 2337 if (skb_cloned(skb) && 2338 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2339 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2340 if (ret) 2341 goto out; 2342 } 2343 2344 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 2345 out_set_summed: 2346 skb->ip_summed = CHECKSUM_NONE; 2347 out: 2348 return ret; 2349 } 2350 EXPORT_SYMBOL(skb_checksum_help); 2351 2352 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2353 { 2354 unsigned int vlan_depth = skb->mac_len; 2355 __be16 type = skb->protocol; 2356 2357 /* Tunnel gso handlers can set protocol to ethernet. */ 2358 if (type == htons(ETH_P_TEB)) { 2359 struct ethhdr *eth; 2360 2361 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2362 return 0; 2363 2364 eth = (struct ethhdr *)skb_mac_header(skb); 2365 type = eth->h_proto; 2366 } 2367 2368 /* if skb->protocol is 802.1Q/AD then the header should already be 2369 * present at mac_len - VLAN_HLEN (if mac_len > 0), or at 2370 * ETH_HLEN otherwise 2371 */ 2372 if (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) { 2373 if (vlan_depth) { 2374 if (WARN_ON(vlan_depth < VLAN_HLEN)) 2375 return 0; 2376 vlan_depth -= VLAN_HLEN; 2377 } else { 2378 vlan_depth = ETH_HLEN; 2379 } 2380 do { 2381 struct vlan_hdr *vh; 2382 2383 if (unlikely(!pskb_may_pull(skb, 2384 vlan_depth + VLAN_HLEN))) 2385 return 0; 2386 2387 vh = (struct vlan_hdr *)(skb->data + vlan_depth); 2388 type = vh->h_vlan_encapsulated_proto; 2389 vlan_depth += VLAN_HLEN; 2390 } while (type == htons(ETH_P_8021Q) || 2391 type == htons(ETH_P_8021AD)); 2392 } 2393 2394 *depth = vlan_depth; 2395 2396 return type; 2397 } 2398 2399 /** 2400 * skb_mac_gso_segment - mac layer segmentation handler. 2401 * @skb: buffer to segment 2402 * @features: features for the output path (see dev->features) 2403 */ 2404 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2405 netdev_features_t features) 2406 { 2407 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2408 struct packet_offload *ptype; 2409 int vlan_depth = skb->mac_len; 2410 __be16 type = skb_network_protocol(skb, &vlan_depth); 2411 2412 if (unlikely(!type)) 2413 return ERR_PTR(-EINVAL); 2414 2415 __skb_pull(skb, vlan_depth); 2416 2417 rcu_read_lock(); 2418 list_for_each_entry_rcu(ptype, &offload_base, list) { 2419 if (ptype->type == type && ptype->callbacks.gso_segment) { 2420 segs = ptype->callbacks.gso_segment(skb, features); 2421 break; 2422 } 2423 } 2424 rcu_read_unlock(); 2425 2426 __skb_push(skb, skb->data - skb_mac_header(skb)); 2427 2428 return segs; 2429 } 2430 EXPORT_SYMBOL(skb_mac_gso_segment); 2431 2432 2433 /* openvswitch calls this on rx path, so we need a different check. 2434 */ 2435 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2436 { 2437 if (tx_path) 2438 return skb->ip_summed != CHECKSUM_PARTIAL; 2439 else 2440 return skb->ip_summed == CHECKSUM_NONE; 2441 } 2442 2443 /** 2444 * __skb_gso_segment - Perform segmentation on skb. 2445 * @skb: buffer to segment 2446 * @features: features for the output path (see dev->features) 2447 * @tx_path: whether it is called in TX path 2448 * 2449 * This function segments the given skb and returns a list of segments. 2450 * 2451 * It may return NULL if the skb requires no segmentation. This is 2452 * only possible when GSO is used for verifying header integrity. 2453 */ 2454 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2455 netdev_features_t features, bool tx_path) 2456 { 2457 if (unlikely(skb_needs_check(skb, tx_path))) { 2458 int err; 2459 2460 skb_warn_bad_offload(skb); 2461 2462 err = skb_cow_head(skb, 0); 2463 if (err < 0) 2464 return ERR_PTR(err); 2465 } 2466 2467 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2468 SKB_GSO_CB(skb)->encap_level = 0; 2469 2470 skb_reset_mac_header(skb); 2471 skb_reset_mac_len(skb); 2472 2473 return skb_mac_gso_segment(skb, features); 2474 } 2475 EXPORT_SYMBOL(__skb_gso_segment); 2476 2477 /* Take action when hardware reception checksum errors are detected. */ 2478 #ifdef CONFIG_BUG 2479 void netdev_rx_csum_fault(struct net_device *dev) 2480 { 2481 if (net_ratelimit()) { 2482 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2483 dump_stack(); 2484 } 2485 } 2486 EXPORT_SYMBOL(netdev_rx_csum_fault); 2487 #endif 2488 2489 /* Actually, we should eliminate this check as soon as we know, that: 2490 * 1. IOMMU is present and allows to map all the memory. 2491 * 2. No high memory really exists on this machine. 2492 */ 2493 2494 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2495 { 2496 #ifdef CONFIG_HIGHMEM 2497 int i; 2498 if (!(dev->features & NETIF_F_HIGHDMA)) { 2499 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2500 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2501 if (PageHighMem(skb_frag_page(frag))) 2502 return 1; 2503 } 2504 } 2505 2506 if (PCI_DMA_BUS_IS_PHYS) { 2507 struct device *pdev = dev->dev.parent; 2508 2509 if (!pdev) 2510 return 0; 2511 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2512 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2513 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2514 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2515 return 1; 2516 } 2517 } 2518 #endif 2519 return 0; 2520 } 2521 2522 /* If MPLS offload request, verify we are testing hardware MPLS features 2523 * instead of standard features for the netdev. 2524 */ 2525 #ifdef CONFIG_NET_MPLS_GSO 2526 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2527 netdev_features_t features, 2528 __be16 type) 2529 { 2530 if (eth_p_mpls(type)) 2531 features &= skb->dev->mpls_features; 2532 2533 return features; 2534 } 2535 #else 2536 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2537 netdev_features_t features, 2538 __be16 type) 2539 { 2540 return features; 2541 } 2542 #endif 2543 2544 static netdev_features_t harmonize_features(struct sk_buff *skb, 2545 netdev_features_t features) 2546 { 2547 int tmp; 2548 __be16 type; 2549 2550 type = skb_network_protocol(skb, &tmp); 2551 features = net_mpls_features(skb, features, type); 2552 2553 if (skb->ip_summed != CHECKSUM_NONE && 2554 !can_checksum_protocol(features, type)) { 2555 features &= ~NETIF_F_ALL_CSUM; 2556 } else if (illegal_highdma(skb->dev, skb)) { 2557 features &= ~NETIF_F_SG; 2558 } 2559 2560 return features; 2561 } 2562 2563 netdev_features_t netif_skb_features(struct sk_buff *skb) 2564 { 2565 const struct net_device *dev = skb->dev; 2566 netdev_features_t features = dev->features; 2567 u16 gso_segs = skb_shinfo(skb)->gso_segs; 2568 __be16 protocol = skb->protocol; 2569 2570 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs) 2571 features &= ~NETIF_F_GSO_MASK; 2572 2573 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) { 2574 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 2575 protocol = veh->h_vlan_encapsulated_proto; 2576 } else if (!vlan_tx_tag_present(skb)) { 2577 return harmonize_features(skb, features); 2578 } 2579 2580 features = netdev_intersect_features(features, 2581 dev->vlan_features | 2582 NETIF_F_HW_VLAN_CTAG_TX | 2583 NETIF_F_HW_VLAN_STAG_TX); 2584 2585 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) 2586 features = netdev_intersect_features(features, 2587 NETIF_F_SG | 2588 NETIF_F_HIGHDMA | 2589 NETIF_F_FRAGLIST | 2590 NETIF_F_GEN_CSUM | 2591 NETIF_F_HW_VLAN_CTAG_TX | 2592 NETIF_F_HW_VLAN_STAG_TX); 2593 2594 return harmonize_features(skb, features); 2595 } 2596 EXPORT_SYMBOL(netif_skb_features); 2597 2598 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 2599 struct netdev_queue *txq, bool more) 2600 { 2601 unsigned int len; 2602 int rc; 2603 2604 if (!list_empty(&ptype_all)) 2605 dev_queue_xmit_nit(skb, dev); 2606 2607 len = skb->len; 2608 trace_net_dev_start_xmit(skb, dev); 2609 rc = netdev_start_xmit(skb, dev, txq, more); 2610 trace_net_dev_xmit(skb, rc, dev, len); 2611 2612 return rc; 2613 } 2614 2615 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 2616 struct netdev_queue *txq, int *ret) 2617 { 2618 struct sk_buff *skb = first; 2619 int rc = NETDEV_TX_OK; 2620 2621 while (skb) { 2622 struct sk_buff *next = skb->next; 2623 2624 skb->next = NULL; 2625 rc = xmit_one(skb, dev, txq, next != NULL); 2626 if (unlikely(!dev_xmit_complete(rc))) { 2627 skb->next = next; 2628 goto out; 2629 } 2630 2631 skb = next; 2632 if (netif_xmit_stopped(txq) && skb) { 2633 rc = NETDEV_TX_BUSY; 2634 break; 2635 } 2636 } 2637 2638 out: 2639 *ret = rc; 2640 return skb; 2641 } 2642 2643 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 2644 netdev_features_t features) 2645 { 2646 if (vlan_tx_tag_present(skb) && 2647 !vlan_hw_offload_capable(features, skb->vlan_proto)) 2648 skb = __vlan_hwaccel_push_inside(skb); 2649 return skb; 2650 } 2651 2652 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev) 2653 { 2654 netdev_features_t features; 2655 2656 if (skb->next) 2657 return skb; 2658 2659 features = netif_skb_features(skb); 2660 skb = validate_xmit_vlan(skb, features); 2661 if (unlikely(!skb)) 2662 goto out_null; 2663 2664 /* If encapsulation offload request, verify we are testing 2665 * hardware encapsulation features instead of standard 2666 * features for the netdev 2667 */ 2668 if (skb->encapsulation) 2669 features &= dev->hw_enc_features; 2670 2671 if (netif_needs_gso(dev, skb, features)) { 2672 struct sk_buff *segs; 2673 2674 segs = skb_gso_segment(skb, features); 2675 if (IS_ERR(segs)) { 2676 segs = NULL; 2677 } else if (segs) { 2678 consume_skb(skb); 2679 skb = segs; 2680 } 2681 } else { 2682 if (skb_needs_linearize(skb, features) && 2683 __skb_linearize(skb)) 2684 goto out_kfree_skb; 2685 2686 /* If packet is not checksummed and device does not 2687 * support checksumming for this protocol, complete 2688 * checksumming here. 2689 */ 2690 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2691 if (skb->encapsulation) 2692 skb_set_inner_transport_header(skb, 2693 skb_checksum_start_offset(skb)); 2694 else 2695 skb_set_transport_header(skb, 2696 skb_checksum_start_offset(skb)); 2697 if (!(features & NETIF_F_ALL_CSUM) && 2698 skb_checksum_help(skb)) 2699 goto out_kfree_skb; 2700 } 2701 } 2702 2703 return skb; 2704 2705 out_kfree_skb: 2706 kfree_skb(skb); 2707 out_null: 2708 return NULL; 2709 } 2710 2711 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev) 2712 { 2713 struct sk_buff *next, *head = NULL, *tail; 2714 2715 for (; skb != NULL; skb = next) { 2716 next = skb->next; 2717 skb->next = NULL; 2718 2719 /* in case skb wont be segmented, point to itself */ 2720 skb->prev = skb; 2721 2722 skb = validate_xmit_skb(skb, dev); 2723 if (!skb) 2724 continue; 2725 2726 if (!head) 2727 head = skb; 2728 else 2729 tail->next = skb; 2730 /* If skb was segmented, skb->prev points to 2731 * the last segment. If not, it still contains skb. 2732 */ 2733 tail = skb->prev; 2734 } 2735 return head; 2736 } 2737 2738 static void qdisc_pkt_len_init(struct sk_buff *skb) 2739 { 2740 const struct skb_shared_info *shinfo = skb_shinfo(skb); 2741 2742 qdisc_skb_cb(skb)->pkt_len = skb->len; 2743 2744 /* To get more precise estimation of bytes sent on wire, 2745 * we add to pkt_len the headers size of all segments 2746 */ 2747 if (shinfo->gso_size) { 2748 unsigned int hdr_len; 2749 u16 gso_segs = shinfo->gso_segs; 2750 2751 /* mac layer + network layer */ 2752 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 2753 2754 /* + transport layer */ 2755 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 2756 hdr_len += tcp_hdrlen(skb); 2757 else 2758 hdr_len += sizeof(struct udphdr); 2759 2760 if (shinfo->gso_type & SKB_GSO_DODGY) 2761 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 2762 shinfo->gso_size); 2763 2764 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 2765 } 2766 } 2767 2768 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2769 struct net_device *dev, 2770 struct netdev_queue *txq) 2771 { 2772 spinlock_t *root_lock = qdisc_lock(q); 2773 bool contended; 2774 int rc; 2775 2776 qdisc_pkt_len_init(skb); 2777 qdisc_calculate_pkt_len(skb, q); 2778 /* 2779 * Heuristic to force contended enqueues to serialize on a 2780 * separate lock before trying to get qdisc main lock. 2781 * This permits __QDISC___STATE_RUNNING owner to get the lock more 2782 * often and dequeue packets faster. 2783 */ 2784 contended = qdisc_is_running(q); 2785 if (unlikely(contended)) 2786 spin_lock(&q->busylock); 2787 2788 spin_lock(root_lock); 2789 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2790 kfree_skb(skb); 2791 rc = NET_XMIT_DROP; 2792 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2793 qdisc_run_begin(q)) { 2794 /* 2795 * This is a work-conserving queue; there are no old skbs 2796 * waiting to be sent out; and the qdisc is not running - 2797 * xmit the skb directly. 2798 */ 2799 2800 qdisc_bstats_update(q, skb); 2801 2802 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 2803 if (unlikely(contended)) { 2804 spin_unlock(&q->busylock); 2805 contended = false; 2806 } 2807 __qdisc_run(q); 2808 } else 2809 qdisc_run_end(q); 2810 2811 rc = NET_XMIT_SUCCESS; 2812 } else { 2813 rc = q->enqueue(skb, q) & NET_XMIT_MASK; 2814 if (qdisc_run_begin(q)) { 2815 if (unlikely(contended)) { 2816 spin_unlock(&q->busylock); 2817 contended = false; 2818 } 2819 __qdisc_run(q); 2820 } 2821 } 2822 spin_unlock(root_lock); 2823 if (unlikely(contended)) 2824 spin_unlock(&q->busylock); 2825 return rc; 2826 } 2827 2828 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2829 static void skb_update_prio(struct sk_buff *skb) 2830 { 2831 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 2832 2833 if (!skb->priority && skb->sk && map) { 2834 unsigned int prioidx = skb->sk->sk_cgrp_prioidx; 2835 2836 if (prioidx < map->priomap_len) 2837 skb->priority = map->priomap[prioidx]; 2838 } 2839 } 2840 #else 2841 #define skb_update_prio(skb) 2842 #endif 2843 2844 static DEFINE_PER_CPU(int, xmit_recursion); 2845 #define RECURSION_LIMIT 10 2846 2847 /** 2848 * dev_loopback_xmit - loop back @skb 2849 * @skb: buffer to transmit 2850 */ 2851 int dev_loopback_xmit(struct sk_buff *skb) 2852 { 2853 skb_reset_mac_header(skb); 2854 __skb_pull(skb, skb_network_offset(skb)); 2855 skb->pkt_type = PACKET_LOOPBACK; 2856 skb->ip_summed = CHECKSUM_UNNECESSARY; 2857 WARN_ON(!skb_dst(skb)); 2858 skb_dst_force(skb); 2859 netif_rx_ni(skb); 2860 return 0; 2861 } 2862 EXPORT_SYMBOL(dev_loopback_xmit); 2863 2864 /** 2865 * __dev_queue_xmit - transmit a buffer 2866 * @skb: buffer to transmit 2867 * @accel_priv: private data used for L2 forwarding offload 2868 * 2869 * Queue a buffer for transmission to a network device. The caller must 2870 * have set the device and priority and built the buffer before calling 2871 * this function. The function can be called from an interrupt. 2872 * 2873 * A negative errno code is returned on a failure. A success does not 2874 * guarantee the frame will be transmitted as it may be dropped due 2875 * to congestion or traffic shaping. 2876 * 2877 * ----------------------------------------------------------------------------------- 2878 * I notice this method can also return errors from the queue disciplines, 2879 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2880 * be positive. 2881 * 2882 * Regardless of the return value, the skb is consumed, so it is currently 2883 * difficult to retry a send to this method. (You can bump the ref count 2884 * before sending to hold a reference for retry if you are careful.) 2885 * 2886 * When calling this method, interrupts MUST be enabled. This is because 2887 * the BH enable code must have IRQs enabled so that it will not deadlock. 2888 * --BLG 2889 */ 2890 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv) 2891 { 2892 struct net_device *dev = skb->dev; 2893 struct netdev_queue *txq; 2894 struct Qdisc *q; 2895 int rc = -ENOMEM; 2896 2897 skb_reset_mac_header(skb); 2898 2899 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 2900 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 2901 2902 /* Disable soft irqs for various locks below. Also 2903 * stops preemption for RCU. 2904 */ 2905 rcu_read_lock_bh(); 2906 2907 skb_update_prio(skb); 2908 2909 /* If device/qdisc don't need skb->dst, release it right now while 2910 * its hot in this cpu cache. 2911 */ 2912 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2913 skb_dst_drop(skb); 2914 else 2915 skb_dst_force(skb); 2916 2917 txq = netdev_pick_tx(dev, skb, accel_priv); 2918 q = rcu_dereference_bh(txq->qdisc); 2919 2920 #ifdef CONFIG_NET_CLS_ACT 2921 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2922 #endif 2923 trace_net_dev_queue(skb); 2924 if (q->enqueue) { 2925 rc = __dev_xmit_skb(skb, q, dev, txq); 2926 goto out; 2927 } 2928 2929 /* The device has no queue. Common case for software devices: 2930 loopback, all the sorts of tunnels... 2931 2932 Really, it is unlikely that netif_tx_lock protection is necessary 2933 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2934 counters.) 2935 However, it is possible, that they rely on protection 2936 made by us here. 2937 2938 Check this and shot the lock. It is not prone from deadlocks. 2939 Either shot noqueue qdisc, it is even simpler 8) 2940 */ 2941 if (dev->flags & IFF_UP) { 2942 int cpu = smp_processor_id(); /* ok because BHs are off */ 2943 2944 if (txq->xmit_lock_owner != cpu) { 2945 2946 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 2947 goto recursion_alert; 2948 2949 skb = validate_xmit_skb(skb, dev); 2950 if (!skb) 2951 goto drop; 2952 2953 HARD_TX_LOCK(dev, txq, cpu); 2954 2955 if (!netif_xmit_stopped(txq)) { 2956 __this_cpu_inc(xmit_recursion); 2957 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 2958 __this_cpu_dec(xmit_recursion); 2959 if (dev_xmit_complete(rc)) { 2960 HARD_TX_UNLOCK(dev, txq); 2961 goto out; 2962 } 2963 } 2964 HARD_TX_UNLOCK(dev, txq); 2965 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 2966 dev->name); 2967 } else { 2968 /* Recursion is detected! It is possible, 2969 * unfortunately 2970 */ 2971 recursion_alert: 2972 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 2973 dev->name); 2974 } 2975 } 2976 2977 rc = -ENETDOWN; 2978 drop: 2979 rcu_read_unlock_bh(); 2980 2981 atomic_long_inc(&dev->tx_dropped); 2982 kfree_skb_list(skb); 2983 return rc; 2984 out: 2985 rcu_read_unlock_bh(); 2986 return rc; 2987 } 2988 2989 int dev_queue_xmit(struct sk_buff *skb) 2990 { 2991 return __dev_queue_xmit(skb, NULL); 2992 } 2993 EXPORT_SYMBOL(dev_queue_xmit); 2994 2995 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv) 2996 { 2997 return __dev_queue_xmit(skb, accel_priv); 2998 } 2999 EXPORT_SYMBOL(dev_queue_xmit_accel); 3000 3001 3002 /*======================================================================= 3003 Receiver routines 3004 =======================================================================*/ 3005 3006 int netdev_max_backlog __read_mostly = 1000; 3007 EXPORT_SYMBOL(netdev_max_backlog); 3008 3009 int netdev_tstamp_prequeue __read_mostly = 1; 3010 int netdev_budget __read_mostly = 300; 3011 int weight_p __read_mostly = 64; /* old backlog weight */ 3012 3013 /* Called with irq disabled */ 3014 static inline void ____napi_schedule(struct softnet_data *sd, 3015 struct napi_struct *napi) 3016 { 3017 list_add_tail(&napi->poll_list, &sd->poll_list); 3018 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3019 } 3020 3021 #ifdef CONFIG_RPS 3022 3023 /* One global table that all flow-based protocols share. */ 3024 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3025 EXPORT_SYMBOL(rps_sock_flow_table); 3026 3027 struct static_key rps_needed __read_mostly; 3028 3029 static struct rps_dev_flow * 3030 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3031 struct rps_dev_flow *rflow, u16 next_cpu) 3032 { 3033 if (next_cpu != RPS_NO_CPU) { 3034 #ifdef CONFIG_RFS_ACCEL 3035 struct netdev_rx_queue *rxqueue; 3036 struct rps_dev_flow_table *flow_table; 3037 struct rps_dev_flow *old_rflow; 3038 u32 flow_id; 3039 u16 rxq_index; 3040 int rc; 3041 3042 /* Should we steer this flow to a different hardware queue? */ 3043 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 3044 !(dev->features & NETIF_F_NTUPLE)) 3045 goto out; 3046 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 3047 if (rxq_index == skb_get_rx_queue(skb)) 3048 goto out; 3049 3050 rxqueue = dev->_rx + rxq_index; 3051 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3052 if (!flow_table) 3053 goto out; 3054 flow_id = skb_get_hash(skb) & flow_table->mask; 3055 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 3056 rxq_index, flow_id); 3057 if (rc < 0) 3058 goto out; 3059 old_rflow = rflow; 3060 rflow = &flow_table->flows[flow_id]; 3061 rflow->filter = rc; 3062 if (old_rflow->filter == rflow->filter) 3063 old_rflow->filter = RPS_NO_FILTER; 3064 out: 3065 #endif 3066 rflow->last_qtail = 3067 per_cpu(softnet_data, next_cpu).input_queue_head; 3068 } 3069 3070 rflow->cpu = next_cpu; 3071 return rflow; 3072 } 3073 3074 /* 3075 * get_rps_cpu is called from netif_receive_skb and returns the target 3076 * CPU from the RPS map of the receiving queue for a given skb. 3077 * rcu_read_lock must be held on entry. 3078 */ 3079 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3080 struct rps_dev_flow **rflowp) 3081 { 3082 struct netdev_rx_queue *rxqueue; 3083 struct rps_map *map; 3084 struct rps_dev_flow_table *flow_table; 3085 struct rps_sock_flow_table *sock_flow_table; 3086 int cpu = -1; 3087 u16 tcpu; 3088 u32 hash; 3089 3090 if (skb_rx_queue_recorded(skb)) { 3091 u16 index = skb_get_rx_queue(skb); 3092 if (unlikely(index >= dev->real_num_rx_queues)) { 3093 WARN_ONCE(dev->real_num_rx_queues > 1, 3094 "%s received packet on queue %u, but number " 3095 "of RX queues is %u\n", 3096 dev->name, index, dev->real_num_rx_queues); 3097 goto done; 3098 } 3099 rxqueue = dev->_rx + index; 3100 } else 3101 rxqueue = dev->_rx; 3102 3103 map = rcu_dereference(rxqueue->rps_map); 3104 if (map) { 3105 if (map->len == 1 && 3106 !rcu_access_pointer(rxqueue->rps_flow_table)) { 3107 tcpu = map->cpus[0]; 3108 if (cpu_online(tcpu)) 3109 cpu = tcpu; 3110 goto done; 3111 } 3112 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) { 3113 goto done; 3114 } 3115 3116 skb_reset_network_header(skb); 3117 hash = skb_get_hash(skb); 3118 if (!hash) 3119 goto done; 3120 3121 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3122 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3123 if (flow_table && sock_flow_table) { 3124 u16 next_cpu; 3125 struct rps_dev_flow *rflow; 3126 3127 rflow = &flow_table->flows[hash & flow_table->mask]; 3128 tcpu = rflow->cpu; 3129 3130 next_cpu = sock_flow_table->ents[hash & sock_flow_table->mask]; 3131 3132 /* 3133 * If the desired CPU (where last recvmsg was done) is 3134 * different from current CPU (one in the rx-queue flow 3135 * table entry), switch if one of the following holds: 3136 * - Current CPU is unset (equal to RPS_NO_CPU). 3137 * - Current CPU is offline. 3138 * - The current CPU's queue tail has advanced beyond the 3139 * last packet that was enqueued using this table entry. 3140 * This guarantees that all previous packets for the flow 3141 * have been dequeued, thus preserving in order delivery. 3142 */ 3143 if (unlikely(tcpu != next_cpu) && 3144 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) || 3145 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3146 rflow->last_qtail)) >= 0)) { 3147 tcpu = next_cpu; 3148 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3149 } 3150 3151 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) { 3152 *rflowp = rflow; 3153 cpu = tcpu; 3154 goto done; 3155 } 3156 } 3157 3158 if (map) { 3159 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 3160 if (cpu_online(tcpu)) { 3161 cpu = tcpu; 3162 goto done; 3163 } 3164 } 3165 3166 done: 3167 return cpu; 3168 } 3169 3170 #ifdef CONFIG_RFS_ACCEL 3171 3172 /** 3173 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3174 * @dev: Device on which the filter was set 3175 * @rxq_index: RX queue index 3176 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3177 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3178 * 3179 * Drivers that implement ndo_rx_flow_steer() should periodically call 3180 * this function for each installed filter and remove the filters for 3181 * which it returns %true. 3182 */ 3183 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3184 u32 flow_id, u16 filter_id) 3185 { 3186 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3187 struct rps_dev_flow_table *flow_table; 3188 struct rps_dev_flow *rflow; 3189 bool expire = true; 3190 int cpu; 3191 3192 rcu_read_lock(); 3193 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3194 if (flow_table && flow_id <= flow_table->mask) { 3195 rflow = &flow_table->flows[flow_id]; 3196 cpu = ACCESS_ONCE(rflow->cpu); 3197 if (rflow->filter == filter_id && cpu != RPS_NO_CPU && 3198 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3199 rflow->last_qtail) < 3200 (int)(10 * flow_table->mask))) 3201 expire = false; 3202 } 3203 rcu_read_unlock(); 3204 return expire; 3205 } 3206 EXPORT_SYMBOL(rps_may_expire_flow); 3207 3208 #endif /* CONFIG_RFS_ACCEL */ 3209 3210 /* Called from hardirq (IPI) context */ 3211 static void rps_trigger_softirq(void *data) 3212 { 3213 struct softnet_data *sd = data; 3214 3215 ____napi_schedule(sd, &sd->backlog); 3216 sd->received_rps++; 3217 } 3218 3219 #endif /* CONFIG_RPS */ 3220 3221 /* 3222 * Check if this softnet_data structure is another cpu one 3223 * If yes, queue it to our IPI list and return 1 3224 * If no, return 0 3225 */ 3226 static int rps_ipi_queued(struct softnet_data *sd) 3227 { 3228 #ifdef CONFIG_RPS 3229 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 3230 3231 if (sd != mysd) { 3232 sd->rps_ipi_next = mysd->rps_ipi_list; 3233 mysd->rps_ipi_list = sd; 3234 3235 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3236 return 1; 3237 } 3238 #endif /* CONFIG_RPS */ 3239 return 0; 3240 } 3241 3242 #ifdef CONFIG_NET_FLOW_LIMIT 3243 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3244 #endif 3245 3246 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3247 { 3248 #ifdef CONFIG_NET_FLOW_LIMIT 3249 struct sd_flow_limit *fl; 3250 struct softnet_data *sd; 3251 unsigned int old_flow, new_flow; 3252 3253 if (qlen < (netdev_max_backlog >> 1)) 3254 return false; 3255 3256 sd = this_cpu_ptr(&softnet_data); 3257 3258 rcu_read_lock(); 3259 fl = rcu_dereference(sd->flow_limit); 3260 if (fl) { 3261 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 3262 old_flow = fl->history[fl->history_head]; 3263 fl->history[fl->history_head] = new_flow; 3264 3265 fl->history_head++; 3266 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3267 3268 if (likely(fl->buckets[old_flow])) 3269 fl->buckets[old_flow]--; 3270 3271 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3272 fl->count++; 3273 rcu_read_unlock(); 3274 return true; 3275 } 3276 } 3277 rcu_read_unlock(); 3278 #endif 3279 return false; 3280 } 3281 3282 /* 3283 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3284 * queue (may be a remote CPU queue). 3285 */ 3286 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3287 unsigned int *qtail) 3288 { 3289 struct softnet_data *sd; 3290 unsigned long flags; 3291 unsigned int qlen; 3292 3293 sd = &per_cpu(softnet_data, cpu); 3294 3295 local_irq_save(flags); 3296 3297 rps_lock(sd); 3298 qlen = skb_queue_len(&sd->input_pkt_queue); 3299 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3300 if (qlen) { 3301 enqueue: 3302 __skb_queue_tail(&sd->input_pkt_queue, skb); 3303 input_queue_tail_incr_save(sd, qtail); 3304 rps_unlock(sd); 3305 local_irq_restore(flags); 3306 return NET_RX_SUCCESS; 3307 } 3308 3309 /* Schedule NAPI for backlog device 3310 * We can use non atomic operation since we own the queue lock 3311 */ 3312 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3313 if (!rps_ipi_queued(sd)) 3314 ____napi_schedule(sd, &sd->backlog); 3315 } 3316 goto enqueue; 3317 } 3318 3319 sd->dropped++; 3320 rps_unlock(sd); 3321 3322 local_irq_restore(flags); 3323 3324 atomic_long_inc(&skb->dev->rx_dropped); 3325 kfree_skb(skb); 3326 return NET_RX_DROP; 3327 } 3328 3329 static int netif_rx_internal(struct sk_buff *skb) 3330 { 3331 int ret; 3332 3333 net_timestamp_check(netdev_tstamp_prequeue, skb); 3334 3335 trace_netif_rx(skb); 3336 #ifdef CONFIG_RPS 3337 if (static_key_false(&rps_needed)) { 3338 struct rps_dev_flow voidflow, *rflow = &voidflow; 3339 int cpu; 3340 3341 preempt_disable(); 3342 rcu_read_lock(); 3343 3344 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3345 if (cpu < 0) 3346 cpu = smp_processor_id(); 3347 3348 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3349 3350 rcu_read_unlock(); 3351 preempt_enable(); 3352 } else 3353 #endif 3354 { 3355 unsigned int qtail; 3356 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 3357 put_cpu(); 3358 } 3359 return ret; 3360 } 3361 3362 /** 3363 * netif_rx - post buffer to the network code 3364 * @skb: buffer to post 3365 * 3366 * This function receives a packet from a device driver and queues it for 3367 * the upper (protocol) levels to process. It always succeeds. The buffer 3368 * may be dropped during processing for congestion control or by the 3369 * protocol layers. 3370 * 3371 * return values: 3372 * NET_RX_SUCCESS (no congestion) 3373 * NET_RX_DROP (packet was dropped) 3374 * 3375 */ 3376 3377 int netif_rx(struct sk_buff *skb) 3378 { 3379 trace_netif_rx_entry(skb); 3380 3381 return netif_rx_internal(skb); 3382 } 3383 EXPORT_SYMBOL(netif_rx); 3384 3385 int netif_rx_ni(struct sk_buff *skb) 3386 { 3387 int err; 3388 3389 trace_netif_rx_ni_entry(skb); 3390 3391 preempt_disable(); 3392 err = netif_rx_internal(skb); 3393 if (local_softirq_pending()) 3394 do_softirq(); 3395 preempt_enable(); 3396 3397 return err; 3398 } 3399 EXPORT_SYMBOL(netif_rx_ni); 3400 3401 static void net_tx_action(struct softirq_action *h) 3402 { 3403 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 3404 3405 if (sd->completion_queue) { 3406 struct sk_buff *clist; 3407 3408 local_irq_disable(); 3409 clist = sd->completion_queue; 3410 sd->completion_queue = NULL; 3411 local_irq_enable(); 3412 3413 while (clist) { 3414 struct sk_buff *skb = clist; 3415 clist = clist->next; 3416 3417 WARN_ON(atomic_read(&skb->users)); 3418 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 3419 trace_consume_skb(skb); 3420 else 3421 trace_kfree_skb(skb, net_tx_action); 3422 __kfree_skb(skb); 3423 } 3424 } 3425 3426 if (sd->output_queue) { 3427 struct Qdisc *head; 3428 3429 local_irq_disable(); 3430 head = sd->output_queue; 3431 sd->output_queue = NULL; 3432 sd->output_queue_tailp = &sd->output_queue; 3433 local_irq_enable(); 3434 3435 while (head) { 3436 struct Qdisc *q = head; 3437 spinlock_t *root_lock; 3438 3439 head = head->next_sched; 3440 3441 root_lock = qdisc_lock(q); 3442 if (spin_trylock(root_lock)) { 3443 smp_mb__before_atomic(); 3444 clear_bit(__QDISC_STATE_SCHED, 3445 &q->state); 3446 qdisc_run(q); 3447 spin_unlock(root_lock); 3448 } else { 3449 if (!test_bit(__QDISC_STATE_DEACTIVATED, 3450 &q->state)) { 3451 __netif_reschedule(q); 3452 } else { 3453 smp_mb__before_atomic(); 3454 clear_bit(__QDISC_STATE_SCHED, 3455 &q->state); 3456 } 3457 } 3458 } 3459 } 3460 } 3461 3462 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 3463 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 3464 /* This hook is defined here for ATM LANE */ 3465 int (*br_fdb_test_addr_hook)(struct net_device *dev, 3466 unsigned char *addr) __read_mostly; 3467 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3468 #endif 3469 3470 #ifdef CONFIG_NET_CLS_ACT 3471 /* TODO: Maybe we should just force sch_ingress to be compiled in 3472 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 3473 * a compare and 2 stores extra right now if we dont have it on 3474 * but have CONFIG_NET_CLS_ACT 3475 * NOTE: This doesn't stop any functionality; if you dont have 3476 * the ingress scheduler, you just can't add policies on ingress. 3477 * 3478 */ 3479 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq) 3480 { 3481 struct net_device *dev = skb->dev; 3482 u32 ttl = G_TC_RTTL(skb->tc_verd); 3483 int result = TC_ACT_OK; 3484 struct Qdisc *q; 3485 3486 if (unlikely(MAX_RED_LOOP < ttl++)) { 3487 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n", 3488 skb->skb_iif, dev->ifindex); 3489 return TC_ACT_SHOT; 3490 } 3491 3492 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 3493 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3494 3495 q = rcu_dereference(rxq->qdisc); 3496 if (q != &noop_qdisc) { 3497 spin_lock(qdisc_lock(q)); 3498 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 3499 result = qdisc_enqueue_root(skb, q); 3500 spin_unlock(qdisc_lock(q)); 3501 } 3502 3503 return result; 3504 } 3505 3506 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 3507 struct packet_type **pt_prev, 3508 int *ret, struct net_device *orig_dev) 3509 { 3510 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue); 3511 3512 if (!rxq || rcu_access_pointer(rxq->qdisc) == &noop_qdisc) 3513 goto out; 3514 3515 if (*pt_prev) { 3516 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3517 *pt_prev = NULL; 3518 } 3519 3520 switch (ing_filter(skb, rxq)) { 3521 case TC_ACT_SHOT: 3522 case TC_ACT_STOLEN: 3523 kfree_skb(skb); 3524 return NULL; 3525 } 3526 3527 out: 3528 skb->tc_verd = 0; 3529 return skb; 3530 } 3531 #endif 3532 3533 /** 3534 * netdev_rx_handler_register - register receive handler 3535 * @dev: device to register a handler for 3536 * @rx_handler: receive handler to register 3537 * @rx_handler_data: data pointer that is used by rx handler 3538 * 3539 * Register a receive handler for a device. This handler will then be 3540 * called from __netif_receive_skb. A negative errno code is returned 3541 * on a failure. 3542 * 3543 * The caller must hold the rtnl_mutex. 3544 * 3545 * For a general description of rx_handler, see enum rx_handler_result. 3546 */ 3547 int netdev_rx_handler_register(struct net_device *dev, 3548 rx_handler_func_t *rx_handler, 3549 void *rx_handler_data) 3550 { 3551 ASSERT_RTNL(); 3552 3553 if (dev->rx_handler) 3554 return -EBUSY; 3555 3556 /* Note: rx_handler_data must be set before rx_handler */ 3557 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3558 rcu_assign_pointer(dev->rx_handler, rx_handler); 3559 3560 return 0; 3561 } 3562 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3563 3564 /** 3565 * netdev_rx_handler_unregister - unregister receive handler 3566 * @dev: device to unregister a handler from 3567 * 3568 * Unregister a receive handler from a device. 3569 * 3570 * The caller must hold the rtnl_mutex. 3571 */ 3572 void netdev_rx_handler_unregister(struct net_device *dev) 3573 { 3574 3575 ASSERT_RTNL(); 3576 RCU_INIT_POINTER(dev->rx_handler, NULL); 3577 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 3578 * section has a guarantee to see a non NULL rx_handler_data 3579 * as well. 3580 */ 3581 synchronize_net(); 3582 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 3583 } 3584 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 3585 3586 /* 3587 * Limit the use of PFMEMALLOC reserves to those protocols that implement 3588 * the special handling of PFMEMALLOC skbs. 3589 */ 3590 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 3591 { 3592 switch (skb->protocol) { 3593 case htons(ETH_P_ARP): 3594 case htons(ETH_P_IP): 3595 case htons(ETH_P_IPV6): 3596 case htons(ETH_P_8021Q): 3597 case htons(ETH_P_8021AD): 3598 return true; 3599 default: 3600 return false; 3601 } 3602 } 3603 3604 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 3605 { 3606 struct packet_type *ptype, *pt_prev; 3607 rx_handler_func_t *rx_handler; 3608 struct net_device *orig_dev; 3609 struct net_device *null_or_dev; 3610 bool deliver_exact = false; 3611 int ret = NET_RX_DROP; 3612 __be16 type; 3613 3614 net_timestamp_check(!netdev_tstamp_prequeue, skb); 3615 3616 trace_netif_receive_skb(skb); 3617 3618 orig_dev = skb->dev; 3619 3620 skb_reset_network_header(skb); 3621 if (!skb_transport_header_was_set(skb)) 3622 skb_reset_transport_header(skb); 3623 skb_reset_mac_len(skb); 3624 3625 pt_prev = NULL; 3626 3627 rcu_read_lock(); 3628 3629 another_round: 3630 skb->skb_iif = skb->dev->ifindex; 3631 3632 __this_cpu_inc(softnet_data.processed); 3633 3634 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 3635 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 3636 skb = skb_vlan_untag(skb); 3637 if (unlikely(!skb)) 3638 goto unlock; 3639 } 3640 3641 #ifdef CONFIG_NET_CLS_ACT 3642 if (skb->tc_verd & TC_NCLS) { 3643 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3644 goto ncls; 3645 } 3646 #endif 3647 3648 if (pfmemalloc) 3649 goto skip_taps; 3650 3651 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3652 if (!ptype->dev || ptype->dev == skb->dev) { 3653 if (pt_prev) 3654 ret = deliver_skb(skb, pt_prev, orig_dev); 3655 pt_prev = ptype; 3656 } 3657 } 3658 3659 skip_taps: 3660 #ifdef CONFIG_NET_CLS_ACT 3661 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 3662 if (!skb) 3663 goto unlock; 3664 ncls: 3665 #endif 3666 3667 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 3668 goto drop; 3669 3670 if (vlan_tx_tag_present(skb)) { 3671 if (pt_prev) { 3672 ret = deliver_skb(skb, pt_prev, orig_dev); 3673 pt_prev = NULL; 3674 } 3675 if (vlan_do_receive(&skb)) 3676 goto another_round; 3677 else if (unlikely(!skb)) 3678 goto unlock; 3679 } 3680 3681 rx_handler = rcu_dereference(skb->dev->rx_handler); 3682 if (rx_handler) { 3683 if (pt_prev) { 3684 ret = deliver_skb(skb, pt_prev, orig_dev); 3685 pt_prev = NULL; 3686 } 3687 switch (rx_handler(&skb)) { 3688 case RX_HANDLER_CONSUMED: 3689 ret = NET_RX_SUCCESS; 3690 goto unlock; 3691 case RX_HANDLER_ANOTHER: 3692 goto another_round; 3693 case RX_HANDLER_EXACT: 3694 deliver_exact = true; 3695 case RX_HANDLER_PASS: 3696 break; 3697 default: 3698 BUG(); 3699 } 3700 } 3701 3702 if (unlikely(vlan_tx_tag_present(skb))) { 3703 if (vlan_tx_tag_get_id(skb)) 3704 skb->pkt_type = PACKET_OTHERHOST; 3705 /* Note: we might in the future use prio bits 3706 * and set skb->priority like in vlan_do_receive() 3707 * For the time being, just ignore Priority Code Point 3708 */ 3709 skb->vlan_tci = 0; 3710 } 3711 3712 /* deliver only exact match when indicated */ 3713 null_or_dev = deliver_exact ? skb->dev : NULL; 3714 3715 type = skb->protocol; 3716 list_for_each_entry_rcu(ptype, 3717 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 3718 if (ptype->type == type && 3719 (ptype->dev == null_or_dev || ptype->dev == skb->dev || 3720 ptype->dev == orig_dev)) { 3721 if (pt_prev) 3722 ret = deliver_skb(skb, pt_prev, orig_dev); 3723 pt_prev = ptype; 3724 } 3725 } 3726 3727 if (pt_prev) { 3728 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 3729 goto drop; 3730 else 3731 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 3732 } else { 3733 drop: 3734 atomic_long_inc(&skb->dev->rx_dropped); 3735 kfree_skb(skb); 3736 /* Jamal, now you will not able to escape explaining 3737 * me how you were going to use this. :-) 3738 */ 3739 ret = NET_RX_DROP; 3740 } 3741 3742 unlock: 3743 rcu_read_unlock(); 3744 return ret; 3745 } 3746 3747 static int __netif_receive_skb(struct sk_buff *skb) 3748 { 3749 int ret; 3750 3751 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 3752 unsigned long pflags = current->flags; 3753 3754 /* 3755 * PFMEMALLOC skbs are special, they should 3756 * - be delivered to SOCK_MEMALLOC sockets only 3757 * - stay away from userspace 3758 * - have bounded memory usage 3759 * 3760 * Use PF_MEMALLOC as this saves us from propagating the allocation 3761 * context down to all allocation sites. 3762 */ 3763 current->flags |= PF_MEMALLOC; 3764 ret = __netif_receive_skb_core(skb, true); 3765 tsk_restore_flags(current, pflags, PF_MEMALLOC); 3766 } else 3767 ret = __netif_receive_skb_core(skb, false); 3768 3769 return ret; 3770 } 3771 3772 static int netif_receive_skb_internal(struct sk_buff *skb) 3773 { 3774 net_timestamp_check(netdev_tstamp_prequeue, skb); 3775 3776 if (skb_defer_rx_timestamp(skb)) 3777 return NET_RX_SUCCESS; 3778 3779 #ifdef CONFIG_RPS 3780 if (static_key_false(&rps_needed)) { 3781 struct rps_dev_flow voidflow, *rflow = &voidflow; 3782 int cpu, ret; 3783 3784 rcu_read_lock(); 3785 3786 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3787 3788 if (cpu >= 0) { 3789 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3790 rcu_read_unlock(); 3791 return ret; 3792 } 3793 rcu_read_unlock(); 3794 } 3795 #endif 3796 return __netif_receive_skb(skb); 3797 } 3798 3799 /** 3800 * netif_receive_skb - process receive buffer from network 3801 * @skb: buffer to process 3802 * 3803 * netif_receive_skb() is the main receive data processing function. 3804 * It always succeeds. The buffer may be dropped during processing 3805 * for congestion control or by the protocol layers. 3806 * 3807 * This function may only be called from softirq context and interrupts 3808 * should be enabled. 3809 * 3810 * Return values (usually ignored): 3811 * NET_RX_SUCCESS: no congestion 3812 * NET_RX_DROP: packet was dropped 3813 */ 3814 int netif_receive_skb(struct sk_buff *skb) 3815 { 3816 trace_netif_receive_skb_entry(skb); 3817 3818 return netif_receive_skb_internal(skb); 3819 } 3820 EXPORT_SYMBOL(netif_receive_skb); 3821 3822 /* Network device is going away, flush any packets still pending 3823 * Called with irqs disabled. 3824 */ 3825 static void flush_backlog(void *arg) 3826 { 3827 struct net_device *dev = arg; 3828 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 3829 struct sk_buff *skb, *tmp; 3830 3831 rps_lock(sd); 3832 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 3833 if (skb->dev == dev) { 3834 __skb_unlink(skb, &sd->input_pkt_queue); 3835 kfree_skb(skb); 3836 input_queue_head_incr(sd); 3837 } 3838 } 3839 rps_unlock(sd); 3840 3841 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 3842 if (skb->dev == dev) { 3843 __skb_unlink(skb, &sd->process_queue); 3844 kfree_skb(skb); 3845 input_queue_head_incr(sd); 3846 } 3847 } 3848 } 3849 3850 static int napi_gro_complete(struct sk_buff *skb) 3851 { 3852 struct packet_offload *ptype; 3853 __be16 type = skb->protocol; 3854 struct list_head *head = &offload_base; 3855 int err = -ENOENT; 3856 3857 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 3858 3859 if (NAPI_GRO_CB(skb)->count == 1) { 3860 skb_shinfo(skb)->gso_size = 0; 3861 goto out; 3862 } 3863 3864 rcu_read_lock(); 3865 list_for_each_entry_rcu(ptype, head, list) { 3866 if (ptype->type != type || !ptype->callbacks.gro_complete) 3867 continue; 3868 3869 err = ptype->callbacks.gro_complete(skb, 0); 3870 break; 3871 } 3872 rcu_read_unlock(); 3873 3874 if (err) { 3875 WARN_ON(&ptype->list == head); 3876 kfree_skb(skb); 3877 return NET_RX_SUCCESS; 3878 } 3879 3880 out: 3881 return netif_receive_skb_internal(skb); 3882 } 3883 3884 /* napi->gro_list contains packets ordered by age. 3885 * youngest packets at the head of it. 3886 * Complete skbs in reverse order to reduce latencies. 3887 */ 3888 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 3889 { 3890 struct sk_buff *skb, *prev = NULL; 3891 3892 /* scan list and build reverse chain */ 3893 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 3894 skb->prev = prev; 3895 prev = skb; 3896 } 3897 3898 for (skb = prev; skb; skb = prev) { 3899 skb->next = NULL; 3900 3901 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 3902 return; 3903 3904 prev = skb->prev; 3905 napi_gro_complete(skb); 3906 napi->gro_count--; 3907 } 3908 3909 napi->gro_list = NULL; 3910 } 3911 EXPORT_SYMBOL(napi_gro_flush); 3912 3913 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 3914 { 3915 struct sk_buff *p; 3916 unsigned int maclen = skb->dev->hard_header_len; 3917 u32 hash = skb_get_hash_raw(skb); 3918 3919 for (p = napi->gro_list; p; p = p->next) { 3920 unsigned long diffs; 3921 3922 NAPI_GRO_CB(p)->flush = 0; 3923 3924 if (hash != skb_get_hash_raw(p)) { 3925 NAPI_GRO_CB(p)->same_flow = 0; 3926 continue; 3927 } 3928 3929 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 3930 diffs |= p->vlan_tci ^ skb->vlan_tci; 3931 if (maclen == ETH_HLEN) 3932 diffs |= compare_ether_header(skb_mac_header(p), 3933 skb_mac_header(skb)); 3934 else if (!diffs) 3935 diffs = memcmp(skb_mac_header(p), 3936 skb_mac_header(skb), 3937 maclen); 3938 NAPI_GRO_CB(p)->same_flow = !diffs; 3939 } 3940 } 3941 3942 static void skb_gro_reset_offset(struct sk_buff *skb) 3943 { 3944 const struct skb_shared_info *pinfo = skb_shinfo(skb); 3945 const skb_frag_t *frag0 = &pinfo->frags[0]; 3946 3947 NAPI_GRO_CB(skb)->data_offset = 0; 3948 NAPI_GRO_CB(skb)->frag0 = NULL; 3949 NAPI_GRO_CB(skb)->frag0_len = 0; 3950 3951 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 3952 pinfo->nr_frags && 3953 !PageHighMem(skb_frag_page(frag0))) { 3954 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 3955 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0); 3956 } 3957 } 3958 3959 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 3960 { 3961 struct skb_shared_info *pinfo = skb_shinfo(skb); 3962 3963 BUG_ON(skb->end - skb->tail < grow); 3964 3965 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 3966 3967 skb->data_len -= grow; 3968 skb->tail += grow; 3969 3970 pinfo->frags[0].page_offset += grow; 3971 skb_frag_size_sub(&pinfo->frags[0], grow); 3972 3973 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 3974 skb_frag_unref(skb, 0); 3975 memmove(pinfo->frags, pinfo->frags + 1, 3976 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 3977 } 3978 } 3979 3980 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3981 { 3982 struct sk_buff **pp = NULL; 3983 struct packet_offload *ptype; 3984 __be16 type = skb->protocol; 3985 struct list_head *head = &offload_base; 3986 int same_flow; 3987 enum gro_result ret; 3988 int grow; 3989 3990 if (!(skb->dev->features & NETIF_F_GRO)) 3991 goto normal; 3992 3993 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad) 3994 goto normal; 3995 3996 gro_list_prepare(napi, skb); 3997 3998 rcu_read_lock(); 3999 list_for_each_entry_rcu(ptype, head, list) { 4000 if (ptype->type != type || !ptype->callbacks.gro_receive) 4001 continue; 4002 4003 skb_set_network_header(skb, skb_gro_offset(skb)); 4004 skb_reset_mac_len(skb); 4005 NAPI_GRO_CB(skb)->same_flow = 0; 4006 NAPI_GRO_CB(skb)->flush = 0; 4007 NAPI_GRO_CB(skb)->free = 0; 4008 NAPI_GRO_CB(skb)->udp_mark = 0; 4009 4010 /* Setup for GRO checksum validation */ 4011 switch (skb->ip_summed) { 4012 case CHECKSUM_COMPLETE: 4013 NAPI_GRO_CB(skb)->csum = skb->csum; 4014 NAPI_GRO_CB(skb)->csum_valid = 1; 4015 NAPI_GRO_CB(skb)->csum_cnt = 0; 4016 break; 4017 case CHECKSUM_UNNECESSARY: 4018 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 4019 NAPI_GRO_CB(skb)->csum_valid = 0; 4020 break; 4021 default: 4022 NAPI_GRO_CB(skb)->csum_cnt = 0; 4023 NAPI_GRO_CB(skb)->csum_valid = 0; 4024 } 4025 4026 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 4027 break; 4028 } 4029 rcu_read_unlock(); 4030 4031 if (&ptype->list == head) 4032 goto normal; 4033 4034 same_flow = NAPI_GRO_CB(skb)->same_flow; 4035 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 4036 4037 if (pp) { 4038 struct sk_buff *nskb = *pp; 4039 4040 *pp = nskb->next; 4041 nskb->next = NULL; 4042 napi_gro_complete(nskb); 4043 napi->gro_count--; 4044 } 4045 4046 if (same_flow) 4047 goto ok; 4048 4049 if (NAPI_GRO_CB(skb)->flush) 4050 goto normal; 4051 4052 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) { 4053 struct sk_buff *nskb = napi->gro_list; 4054 4055 /* locate the end of the list to select the 'oldest' flow */ 4056 while (nskb->next) { 4057 pp = &nskb->next; 4058 nskb = *pp; 4059 } 4060 *pp = NULL; 4061 nskb->next = NULL; 4062 napi_gro_complete(nskb); 4063 } else { 4064 napi->gro_count++; 4065 } 4066 NAPI_GRO_CB(skb)->count = 1; 4067 NAPI_GRO_CB(skb)->age = jiffies; 4068 NAPI_GRO_CB(skb)->last = skb; 4069 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 4070 skb->next = napi->gro_list; 4071 napi->gro_list = skb; 4072 ret = GRO_HELD; 4073 4074 pull: 4075 grow = skb_gro_offset(skb) - skb_headlen(skb); 4076 if (grow > 0) 4077 gro_pull_from_frag0(skb, grow); 4078 ok: 4079 return ret; 4080 4081 normal: 4082 ret = GRO_NORMAL; 4083 goto pull; 4084 } 4085 4086 struct packet_offload *gro_find_receive_by_type(__be16 type) 4087 { 4088 struct list_head *offload_head = &offload_base; 4089 struct packet_offload *ptype; 4090 4091 list_for_each_entry_rcu(ptype, offload_head, list) { 4092 if (ptype->type != type || !ptype->callbacks.gro_receive) 4093 continue; 4094 return ptype; 4095 } 4096 return NULL; 4097 } 4098 EXPORT_SYMBOL(gro_find_receive_by_type); 4099 4100 struct packet_offload *gro_find_complete_by_type(__be16 type) 4101 { 4102 struct list_head *offload_head = &offload_base; 4103 struct packet_offload *ptype; 4104 4105 list_for_each_entry_rcu(ptype, offload_head, list) { 4106 if (ptype->type != type || !ptype->callbacks.gro_complete) 4107 continue; 4108 return ptype; 4109 } 4110 return NULL; 4111 } 4112 EXPORT_SYMBOL(gro_find_complete_by_type); 4113 4114 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 4115 { 4116 switch (ret) { 4117 case GRO_NORMAL: 4118 if (netif_receive_skb_internal(skb)) 4119 ret = GRO_DROP; 4120 break; 4121 4122 case GRO_DROP: 4123 kfree_skb(skb); 4124 break; 4125 4126 case GRO_MERGED_FREE: 4127 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 4128 kmem_cache_free(skbuff_head_cache, skb); 4129 else 4130 __kfree_skb(skb); 4131 break; 4132 4133 case GRO_HELD: 4134 case GRO_MERGED: 4135 break; 4136 } 4137 4138 return ret; 4139 } 4140 4141 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4142 { 4143 trace_napi_gro_receive_entry(skb); 4144 4145 skb_gro_reset_offset(skb); 4146 4147 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 4148 } 4149 EXPORT_SYMBOL(napi_gro_receive); 4150 4151 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 4152 { 4153 if (unlikely(skb->pfmemalloc)) { 4154 consume_skb(skb); 4155 return; 4156 } 4157 __skb_pull(skb, skb_headlen(skb)); 4158 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 4159 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 4160 skb->vlan_tci = 0; 4161 skb->dev = napi->dev; 4162 skb->skb_iif = 0; 4163 skb->encapsulation = 0; 4164 skb_shinfo(skb)->gso_type = 0; 4165 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 4166 4167 napi->skb = skb; 4168 } 4169 4170 struct sk_buff *napi_get_frags(struct napi_struct *napi) 4171 { 4172 struct sk_buff *skb = napi->skb; 4173 4174 if (!skb) { 4175 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 4176 napi->skb = skb; 4177 } 4178 return skb; 4179 } 4180 EXPORT_SYMBOL(napi_get_frags); 4181 4182 static gro_result_t napi_frags_finish(struct napi_struct *napi, 4183 struct sk_buff *skb, 4184 gro_result_t ret) 4185 { 4186 switch (ret) { 4187 case GRO_NORMAL: 4188 case GRO_HELD: 4189 __skb_push(skb, ETH_HLEN); 4190 skb->protocol = eth_type_trans(skb, skb->dev); 4191 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 4192 ret = GRO_DROP; 4193 break; 4194 4195 case GRO_DROP: 4196 case GRO_MERGED_FREE: 4197 napi_reuse_skb(napi, skb); 4198 break; 4199 4200 case GRO_MERGED: 4201 break; 4202 } 4203 4204 return ret; 4205 } 4206 4207 /* Upper GRO stack assumes network header starts at gro_offset=0 4208 * Drivers could call both napi_gro_frags() and napi_gro_receive() 4209 * We copy ethernet header into skb->data to have a common layout. 4210 */ 4211 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 4212 { 4213 struct sk_buff *skb = napi->skb; 4214 const struct ethhdr *eth; 4215 unsigned int hlen = sizeof(*eth); 4216 4217 napi->skb = NULL; 4218 4219 skb_reset_mac_header(skb); 4220 skb_gro_reset_offset(skb); 4221 4222 eth = skb_gro_header_fast(skb, 0); 4223 if (unlikely(skb_gro_header_hard(skb, hlen))) { 4224 eth = skb_gro_header_slow(skb, hlen, 0); 4225 if (unlikely(!eth)) { 4226 napi_reuse_skb(napi, skb); 4227 return NULL; 4228 } 4229 } else { 4230 gro_pull_from_frag0(skb, hlen); 4231 NAPI_GRO_CB(skb)->frag0 += hlen; 4232 NAPI_GRO_CB(skb)->frag0_len -= hlen; 4233 } 4234 __skb_pull(skb, hlen); 4235 4236 /* 4237 * This works because the only protocols we care about don't require 4238 * special handling. 4239 * We'll fix it up properly in napi_frags_finish() 4240 */ 4241 skb->protocol = eth->h_proto; 4242 4243 return skb; 4244 } 4245 4246 gro_result_t napi_gro_frags(struct napi_struct *napi) 4247 { 4248 struct sk_buff *skb = napi_frags_skb(napi); 4249 4250 if (!skb) 4251 return GRO_DROP; 4252 4253 trace_napi_gro_frags_entry(skb); 4254 4255 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 4256 } 4257 EXPORT_SYMBOL(napi_gro_frags); 4258 4259 /* Compute the checksum from gro_offset and return the folded value 4260 * after adding in any pseudo checksum. 4261 */ 4262 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 4263 { 4264 __wsum wsum; 4265 __sum16 sum; 4266 4267 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 4268 4269 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 4270 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 4271 if (likely(!sum)) { 4272 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 4273 !skb->csum_complete_sw) 4274 netdev_rx_csum_fault(skb->dev); 4275 } 4276 4277 NAPI_GRO_CB(skb)->csum = wsum; 4278 NAPI_GRO_CB(skb)->csum_valid = 1; 4279 4280 return sum; 4281 } 4282 EXPORT_SYMBOL(__skb_gro_checksum_complete); 4283 4284 /* 4285 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 4286 * Note: called with local irq disabled, but exits with local irq enabled. 4287 */ 4288 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 4289 { 4290 #ifdef CONFIG_RPS 4291 struct softnet_data *remsd = sd->rps_ipi_list; 4292 4293 if (remsd) { 4294 sd->rps_ipi_list = NULL; 4295 4296 local_irq_enable(); 4297 4298 /* Send pending IPI's to kick RPS processing on remote cpus. */ 4299 while (remsd) { 4300 struct softnet_data *next = remsd->rps_ipi_next; 4301 4302 if (cpu_online(remsd->cpu)) 4303 smp_call_function_single_async(remsd->cpu, 4304 &remsd->csd); 4305 remsd = next; 4306 } 4307 } else 4308 #endif 4309 local_irq_enable(); 4310 } 4311 4312 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 4313 { 4314 #ifdef CONFIG_RPS 4315 return sd->rps_ipi_list != NULL; 4316 #else 4317 return false; 4318 #endif 4319 } 4320 4321 static int process_backlog(struct napi_struct *napi, int quota) 4322 { 4323 int work = 0; 4324 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 4325 4326 /* Check if we have pending ipi, its better to send them now, 4327 * not waiting net_rx_action() end. 4328 */ 4329 if (sd_has_rps_ipi_waiting(sd)) { 4330 local_irq_disable(); 4331 net_rps_action_and_irq_enable(sd); 4332 } 4333 4334 napi->weight = weight_p; 4335 local_irq_disable(); 4336 while (1) { 4337 struct sk_buff *skb; 4338 4339 while ((skb = __skb_dequeue(&sd->process_queue))) { 4340 local_irq_enable(); 4341 __netif_receive_skb(skb); 4342 local_irq_disable(); 4343 input_queue_head_incr(sd); 4344 if (++work >= quota) { 4345 local_irq_enable(); 4346 return work; 4347 } 4348 } 4349 4350 rps_lock(sd); 4351 if (skb_queue_empty(&sd->input_pkt_queue)) { 4352 /* 4353 * Inline a custom version of __napi_complete(). 4354 * only current cpu owns and manipulates this napi, 4355 * and NAPI_STATE_SCHED is the only possible flag set 4356 * on backlog. 4357 * We can use a plain write instead of clear_bit(), 4358 * and we dont need an smp_mb() memory barrier. 4359 */ 4360 napi->state = 0; 4361 rps_unlock(sd); 4362 4363 break; 4364 } 4365 4366 skb_queue_splice_tail_init(&sd->input_pkt_queue, 4367 &sd->process_queue); 4368 rps_unlock(sd); 4369 } 4370 local_irq_enable(); 4371 4372 return work; 4373 } 4374 4375 /** 4376 * __napi_schedule - schedule for receive 4377 * @n: entry to schedule 4378 * 4379 * The entry's receive function will be scheduled to run. 4380 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 4381 */ 4382 void __napi_schedule(struct napi_struct *n) 4383 { 4384 unsigned long flags; 4385 4386 local_irq_save(flags); 4387 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 4388 local_irq_restore(flags); 4389 } 4390 EXPORT_SYMBOL(__napi_schedule); 4391 4392 /** 4393 * __napi_schedule_irqoff - schedule for receive 4394 * @n: entry to schedule 4395 * 4396 * Variant of __napi_schedule() assuming hard irqs are masked 4397 */ 4398 void __napi_schedule_irqoff(struct napi_struct *n) 4399 { 4400 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 4401 } 4402 EXPORT_SYMBOL(__napi_schedule_irqoff); 4403 4404 void __napi_complete(struct napi_struct *n) 4405 { 4406 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 4407 4408 list_del_init(&n->poll_list); 4409 smp_mb__before_atomic(); 4410 clear_bit(NAPI_STATE_SCHED, &n->state); 4411 } 4412 EXPORT_SYMBOL(__napi_complete); 4413 4414 void napi_complete_done(struct napi_struct *n, int work_done) 4415 { 4416 unsigned long flags; 4417 4418 /* 4419 * don't let napi dequeue from the cpu poll list 4420 * just in case its running on a different cpu 4421 */ 4422 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 4423 return; 4424 4425 if (n->gro_list) { 4426 unsigned long timeout = 0; 4427 4428 if (work_done) 4429 timeout = n->dev->gro_flush_timeout; 4430 4431 if (timeout) 4432 hrtimer_start(&n->timer, ns_to_ktime(timeout), 4433 HRTIMER_MODE_REL_PINNED); 4434 else 4435 napi_gro_flush(n, false); 4436 } 4437 if (likely(list_empty(&n->poll_list))) { 4438 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state)); 4439 } else { 4440 /* If n->poll_list is not empty, we need to mask irqs */ 4441 local_irq_save(flags); 4442 __napi_complete(n); 4443 local_irq_restore(flags); 4444 } 4445 } 4446 EXPORT_SYMBOL(napi_complete_done); 4447 4448 /* must be called under rcu_read_lock(), as we dont take a reference */ 4449 struct napi_struct *napi_by_id(unsigned int napi_id) 4450 { 4451 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 4452 struct napi_struct *napi; 4453 4454 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 4455 if (napi->napi_id == napi_id) 4456 return napi; 4457 4458 return NULL; 4459 } 4460 EXPORT_SYMBOL_GPL(napi_by_id); 4461 4462 void napi_hash_add(struct napi_struct *napi) 4463 { 4464 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) { 4465 4466 spin_lock(&napi_hash_lock); 4467 4468 /* 0 is not a valid id, we also skip an id that is taken 4469 * we expect both events to be extremely rare 4470 */ 4471 napi->napi_id = 0; 4472 while (!napi->napi_id) { 4473 napi->napi_id = ++napi_gen_id; 4474 if (napi_by_id(napi->napi_id)) 4475 napi->napi_id = 0; 4476 } 4477 4478 hlist_add_head_rcu(&napi->napi_hash_node, 4479 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 4480 4481 spin_unlock(&napi_hash_lock); 4482 } 4483 } 4484 EXPORT_SYMBOL_GPL(napi_hash_add); 4485 4486 /* Warning : caller is responsible to make sure rcu grace period 4487 * is respected before freeing memory containing @napi 4488 */ 4489 void napi_hash_del(struct napi_struct *napi) 4490 { 4491 spin_lock(&napi_hash_lock); 4492 4493 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) 4494 hlist_del_rcu(&napi->napi_hash_node); 4495 4496 spin_unlock(&napi_hash_lock); 4497 } 4498 EXPORT_SYMBOL_GPL(napi_hash_del); 4499 4500 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 4501 { 4502 struct napi_struct *napi; 4503 4504 napi = container_of(timer, struct napi_struct, timer); 4505 if (napi->gro_list) 4506 napi_schedule(napi); 4507 4508 return HRTIMER_NORESTART; 4509 } 4510 4511 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 4512 int (*poll)(struct napi_struct *, int), int weight) 4513 { 4514 INIT_LIST_HEAD(&napi->poll_list); 4515 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 4516 napi->timer.function = napi_watchdog; 4517 napi->gro_count = 0; 4518 napi->gro_list = NULL; 4519 napi->skb = NULL; 4520 napi->poll = poll; 4521 if (weight > NAPI_POLL_WEIGHT) 4522 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 4523 weight, dev->name); 4524 napi->weight = weight; 4525 list_add(&napi->dev_list, &dev->napi_list); 4526 napi->dev = dev; 4527 #ifdef CONFIG_NETPOLL 4528 spin_lock_init(&napi->poll_lock); 4529 napi->poll_owner = -1; 4530 #endif 4531 set_bit(NAPI_STATE_SCHED, &napi->state); 4532 } 4533 EXPORT_SYMBOL(netif_napi_add); 4534 4535 void napi_disable(struct napi_struct *n) 4536 { 4537 might_sleep(); 4538 set_bit(NAPI_STATE_DISABLE, &n->state); 4539 4540 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 4541 msleep(1); 4542 4543 hrtimer_cancel(&n->timer); 4544 4545 clear_bit(NAPI_STATE_DISABLE, &n->state); 4546 } 4547 EXPORT_SYMBOL(napi_disable); 4548 4549 void netif_napi_del(struct napi_struct *napi) 4550 { 4551 list_del_init(&napi->dev_list); 4552 napi_free_frags(napi); 4553 4554 kfree_skb_list(napi->gro_list); 4555 napi->gro_list = NULL; 4556 napi->gro_count = 0; 4557 } 4558 EXPORT_SYMBOL(netif_napi_del); 4559 4560 static void net_rx_action(struct softirq_action *h) 4561 { 4562 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4563 unsigned long time_limit = jiffies + 2; 4564 int budget = netdev_budget; 4565 LIST_HEAD(list); 4566 LIST_HEAD(repoll); 4567 void *have; 4568 4569 local_irq_disable(); 4570 list_splice_init(&sd->poll_list, &list); 4571 local_irq_enable(); 4572 4573 while (!list_empty(&list)) { 4574 struct napi_struct *n; 4575 int work, weight; 4576 4577 /* If softirq window is exhausted then punt. 4578 * Allow this to run for 2 jiffies since which will allow 4579 * an average latency of 1.5/HZ. 4580 */ 4581 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit))) 4582 goto softnet_break; 4583 4584 4585 n = list_first_entry(&list, struct napi_struct, poll_list); 4586 list_del_init(&n->poll_list); 4587 4588 have = netpoll_poll_lock(n); 4589 4590 weight = n->weight; 4591 4592 /* This NAPI_STATE_SCHED test is for avoiding a race 4593 * with netpoll's poll_napi(). Only the entity which 4594 * obtains the lock and sees NAPI_STATE_SCHED set will 4595 * actually make the ->poll() call. Therefore we avoid 4596 * accidentally calling ->poll() when NAPI is not scheduled. 4597 */ 4598 work = 0; 4599 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 4600 work = n->poll(n, weight); 4601 trace_napi_poll(n); 4602 } 4603 4604 WARN_ON_ONCE(work > weight); 4605 4606 budget -= work; 4607 4608 /* Drivers must not modify the NAPI state if they 4609 * consume the entire weight. In such cases this code 4610 * still "owns" the NAPI instance and therefore can 4611 * move the instance around on the list at-will. 4612 */ 4613 if (unlikely(work == weight)) { 4614 if (unlikely(napi_disable_pending(n))) { 4615 napi_complete(n); 4616 } else { 4617 if (n->gro_list) { 4618 /* flush too old packets 4619 * If HZ < 1000, flush all packets. 4620 */ 4621 napi_gro_flush(n, HZ >= 1000); 4622 } 4623 list_add_tail(&n->poll_list, &repoll); 4624 } 4625 } 4626 4627 netpoll_poll_unlock(have); 4628 } 4629 4630 if (!sd_has_rps_ipi_waiting(sd) && 4631 list_empty(&list) && 4632 list_empty(&repoll)) 4633 return; 4634 out: 4635 local_irq_disable(); 4636 4637 list_splice_tail_init(&sd->poll_list, &list); 4638 list_splice_tail(&repoll, &list); 4639 list_splice(&list, &sd->poll_list); 4640 if (!list_empty(&sd->poll_list)) 4641 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4642 4643 net_rps_action_and_irq_enable(sd); 4644 4645 return; 4646 4647 softnet_break: 4648 sd->time_squeeze++; 4649 goto out; 4650 } 4651 4652 struct netdev_adjacent { 4653 struct net_device *dev; 4654 4655 /* upper master flag, there can only be one master device per list */ 4656 bool master; 4657 4658 /* counter for the number of times this device was added to us */ 4659 u16 ref_nr; 4660 4661 /* private field for the users */ 4662 void *private; 4663 4664 struct list_head list; 4665 struct rcu_head rcu; 4666 }; 4667 4668 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev, 4669 struct net_device *adj_dev, 4670 struct list_head *adj_list) 4671 { 4672 struct netdev_adjacent *adj; 4673 4674 list_for_each_entry(adj, adj_list, list) { 4675 if (adj->dev == adj_dev) 4676 return adj; 4677 } 4678 return NULL; 4679 } 4680 4681 /** 4682 * netdev_has_upper_dev - Check if device is linked to an upper device 4683 * @dev: device 4684 * @upper_dev: upper device to check 4685 * 4686 * Find out if a device is linked to specified upper device and return true 4687 * in case it is. Note that this checks only immediate upper device, 4688 * not through a complete stack of devices. The caller must hold the RTNL lock. 4689 */ 4690 bool netdev_has_upper_dev(struct net_device *dev, 4691 struct net_device *upper_dev) 4692 { 4693 ASSERT_RTNL(); 4694 4695 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper); 4696 } 4697 EXPORT_SYMBOL(netdev_has_upper_dev); 4698 4699 /** 4700 * netdev_has_any_upper_dev - Check if device is linked to some device 4701 * @dev: device 4702 * 4703 * Find out if a device is linked to an upper device and return true in case 4704 * it is. The caller must hold the RTNL lock. 4705 */ 4706 static bool netdev_has_any_upper_dev(struct net_device *dev) 4707 { 4708 ASSERT_RTNL(); 4709 4710 return !list_empty(&dev->all_adj_list.upper); 4711 } 4712 4713 /** 4714 * netdev_master_upper_dev_get - Get master upper device 4715 * @dev: device 4716 * 4717 * Find a master upper device and return pointer to it or NULL in case 4718 * it's not there. The caller must hold the RTNL lock. 4719 */ 4720 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 4721 { 4722 struct netdev_adjacent *upper; 4723 4724 ASSERT_RTNL(); 4725 4726 if (list_empty(&dev->adj_list.upper)) 4727 return NULL; 4728 4729 upper = list_first_entry(&dev->adj_list.upper, 4730 struct netdev_adjacent, list); 4731 if (likely(upper->master)) 4732 return upper->dev; 4733 return NULL; 4734 } 4735 EXPORT_SYMBOL(netdev_master_upper_dev_get); 4736 4737 void *netdev_adjacent_get_private(struct list_head *adj_list) 4738 { 4739 struct netdev_adjacent *adj; 4740 4741 adj = list_entry(adj_list, struct netdev_adjacent, list); 4742 4743 return adj->private; 4744 } 4745 EXPORT_SYMBOL(netdev_adjacent_get_private); 4746 4747 /** 4748 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 4749 * @dev: device 4750 * @iter: list_head ** of the current position 4751 * 4752 * Gets the next device from the dev's upper list, starting from iter 4753 * position. The caller must hold RCU read lock. 4754 */ 4755 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4756 struct list_head **iter) 4757 { 4758 struct netdev_adjacent *upper; 4759 4760 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 4761 4762 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 4763 4764 if (&upper->list == &dev->adj_list.upper) 4765 return NULL; 4766 4767 *iter = &upper->list; 4768 4769 return upper->dev; 4770 } 4771 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 4772 4773 /** 4774 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list 4775 * @dev: device 4776 * @iter: list_head ** of the current position 4777 * 4778 * Gets the next device from the dev's upper list, starting from iter 4779 * position. The caller must hold RCU read lock. 4780 */ 4781 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 4782 struct list_head **iter) 4783 { 4784 struct netdev_adjacent *upper; 4785 4786 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 4787 4788 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 4789 4790 if (&upper->list == &dev->all_adj_list.upper) 4791 return NULL; 4792 4793 *iter = &upper->list; 4794 4795 return upper->dev; 4796 } 4797 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu); 4798 4799 /** 4800 * netdev_lower_get_next_private - Get the next ->private from the 4801 * lower neighbour list 4802 * @dev: device 4803 * @iter: list_head ** of the current position 4804 * 4805 * Gets the next netdev_adjacent->private from the dev's lower neighbour 4806 * list, starting from iter position. The caller must hold either hold the 4807 * RTNL lock or its own locking that guarantees that the neighbour lower 4808 * list will remain unchainged. 4809 */ 4810 void *netdev_lower_get_next_private(struct net_device *dev, 4811 struct list_head **iter) 4812 { 4813 struct netdev_adjacent *lower; 4814 4815 lower = list_entry(*iter, struct netdev_adjacent, list); 4816 4817 if (&lower->list == &dev->adj_list.lower) 4818 return NULL; 4819 4820 *iter = lower->list.next; 4821 4822 return lower->private; 4823 } 4824 EXPORT_SYMBOL(netdev_lower_get_next_private); 4825 4826 /** 4827 * netdev_lower_get_next_private_rcu - Get the next ->private from the 4828 * lower neighbour list, RCU 4829 * variant 4830 * @dev: device 4831 * @iter: list_head ** of the current position 4832 * 4833 * Gets the next netdev_adjacent->private from the dev's lower neighbour 4834 * list, starting from iter position. The caller must hold RCU read lock. 4835 */ 4836 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4837 struct list_head **iter) 4838 { 4839 struct netdev_adjacent *lower; 4840 4841 WARN_ON_ONCE(!rcu_read_lock_held()); 4842 4843 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 4844 4845 if (&lower->list == &dev->adj_list.lower) 4846 return NULL; 4847 4848 *iter = &lower->list; 4849 4850 return lower->private; 4851 } 4852 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 4853 4854 /** 4855 * netdev_lower_get_next - Get the next device from the lower neighbour 4856 * list 4857 * @dev: device 4858 * @iter: list_head ** of the current position 4859 * 4860 * Gets the next netdev_adjacent from the dev's lower neighbour 4861 * list, starting from iter position. The caller must hold RTNL lock or 4862 * its own locking that guarantees that the neighbour lower 4863 * list will remain unchainged. 4864 */ 4865 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 4866 { 4867 struct netdev_adjacent *lower; 4868 4869 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 4870 4871 if (&lower->list == &dev->adj_list.lower) 4872 return NULL; 4873 4874 *iter = &lower->list; 4875 4876 return lower->dev; 4877 } 4878 EXPORT_SYMBOL(netdev_lower_get_next); 4879 4880 /** 4881 * netdev_lower_get_first_private_rcu - Get the first ->private from the 4882 * lower neighbour list, RCU 4883 * variant 4884 * @dev: device 4885 * 4886 * Gets the first netdev_adjacent->private from the dev's lower neighbour 4887 * list. The caller must hold RCU read lock. 4888 */ 4889 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 4890 { 4891 struct netdev_adjacent *lower; 4892 4893 lower = list_first_or_null_rcu(&dev->adj_list.lower, 4894 struct netdev_adjacent, list); 4895 if (lower) 4896 return lower->private; 4897 return NULL; 4898 } 4899 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 4900 4901 /** 4902 * netdev_master_upper_dev_get_rcu - Get master upper device 4903 * @dev: device 4904 * 4905 * Find a master upper device and return pointer to it or NULL in case 4906 * it's not there. The caller must hold the RCU read lock. 4907 */ 4908 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 4909 { 4910 struct netdev_adjacent *upper; 4911 4912 upper = list_first_or_null_rcu(&dev->adj_list.upper, 4913 struct netdev_adjacent, list); 4914 if (upper && likely(upper->master)) 4915 return upper->dev; 4916 return NULL; 4917 } 4918 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 4919 4920 static int netdev_adjacent_sysfs_add(struct net_device *dev, 4921 struct net_device *adj_dev, 4922 struct list_head *dev_list) 4923 { 4924 char linkname[IFNAMSIZ+7]; 4925 sprintf(linkname, dev_list == &dev->adj_list.upper ? 4926 "upper_%s" : "lower_%s", adj_dev->name); 4927 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 4928 linkname); 4929 } 4930 static void netdev_adjacent_sysfs_del(struct net_device *dev, 4931 char *name, 4932 struct list_head *dev_list) 4933 { 4934 char linkname[IFNAMSIZ+7]; 4935 sprintf(linkname, dev_list == &dev->adj_list.upper ? 4936 "upper_%s" : "lower_%s", name); 4937 sysfs_remove_link(&(dev->dev.kobj), linkname); 4938 } 4939 4940 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 4941 struct net_device *adj_dev, 4942 struct list_head *dev_list) 4943 { 4944 return (dev_list == &dev->adj_list.upper || 4945 dev_list == &dev->adj_list.lower) && 4946 net_eq(dev_net(dev), dev_net(adj_dev)); 4947 } 4948 4949 static int __netdev_adjacent_dev_insert(struct net_device *dev, 4950 struct net_device *adj_dev, 4951 struct list_head *dev_list, 4952 void *private, bool master) 4953 { 4954 struct netdev_adjacent *adj; 4955 int ret; 4956 4957 adj = __netdev_find_adj(dev, adj_dev, dev_list); 4958 4959 if (adj) { 4960 adj->ref_nr++; 4961 return 0; 4962 } 4963 4964 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 4965 if (!adj) 4966 return -ENOMEM; 4967 4968 adj->dev = adj_dev; 4969 adj->master = master; 4970 adj->ref_nr = 1; 4971 adj->private = private; 4972 dev_hold(adj_dev); 4973 4974 pr_debug("dev_hold for %s, because of link added from %s to %s\n", 4975 adj_dev->name, dev->name, adj_dev->name); 4976 4977 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 4978 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 4979 if (ret) 4980 goto free_adj; 4981 } 4982 4983 /* Ensure that master link is always the first item in list. */ 4984 if (master) { 4985 ret = sysfs_create_link(&(dev->dev.kobj), 4986 &(adj_dev->dev.kobj), "master"); 4987 if (ret) 4988 goto remove_symlinks; 4989 4990 list_add_rcu(&adj->list, dev_list); 4991 } else { 4992 list_add_tail_rcu(&adj->list, dev_list); 4993 } 4994 4995 return 0; 4996 4997 remove_symlinks: 4998 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 4999 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 5000 free_adj: 5001 kfree(adj); 5002 dev_put(adj_dev); 5003 5004 return ret; 5005 } 5006 5007 static void __netdev_adjacent_dev_remove(struct net_device *dev, 5008 struct net_device *adj_dev, 5009 struct list_head *dev_list) 5010 { 5011 struct netdev_adjacent *adj; 5012 5013 adj = __netdev_find_adj(dev, adj_dev, dev_list); 5014 5015 if (!adj) { 5016 pr_err("tried to remove device %s from %s\n", 5017 dev->name, adj_dev->name); 5018 BUG(); 5019 } 5020 5021 if (adj->ref_nr > 1) { 5022 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name, 5023 adj->ref_nr-1); 5024 adj->ref_nr--; 5025 return; 5026 } 5027 5028 if (adj->master) 5029 sysfs_remove_link(&(dev->dev.kobj), "master"); 5030 5031 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 5032 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 5033 5034 list_del_rcu(&adj->list); 5035 pr_debug("dev_put for %s, because link removed from %s to %s\n", 5036 adj_dev->name, dev->name, adj_dev->name); 5037 dev_put(adj_dev); 5038 kfree_rcu(adj, rcu); 5039 } 5040 5041 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 5042 struct net_device *upper_dev, 5043 struct list_head *up_list, 5044 struct list_head *down_list, 5045 void *private, bool master) 5046 { 5047 int ret; 5048 5049 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private, 5050 master); 5051 if (ret) 5052 return ret; 5053 5054 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private, 5055 false); 5056 if (ret) { 5057 __netdev_adjacent_dev_remove(dev, upper_dev, up_list); 5058 return ret; 5059 } 5060 5061 return 0; 5062 } 5063 5064 static int __netdev_adjacent_dev_link(struct net_device *dev, 5065 struct net_device *upper_dev) 5066 { 5067 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 5068 &dev->all_adj_list.upper, 5069 &upper_dev->all_adj_list.lower, 5070 NULL, false); 5071 } 5072 5073 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 5074 struct net_device *upper_dev, 5075 struct list_head *up_list, 5076 struct list_head *down_list) 5077 { 5078 __netdev_adjacent_dev_remove(dev, upper_dev, up_list); 5079 __netdev_adjacent_dev_remove(upper_dev, dev, down_list); 5080 } 5081 5082 static void __netdev_adjacent_dev_unlink(struct net_device *dev, 5083 struct net_device *upper_dev) 5084 { 5085 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 5086 &dev->all_adj_list.upper, 5087 &upper_dev->all_adj_list.lower); 5088 } 5089 5090 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 5091 struct net_device *upper_dev, 5092 void *private, bool master) 5093 { 5094 int ret = __netdev_adjacent_dev_link(dev, upper_dev); 5095 5096 if (ret) 5097 return ret; 5098 5099 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev, 5100 &dev->adj_list.upper, 5101 &upper_dev->adj_list.lower, 5102 private, master); 5103 if (ret) { 5104 __netdev_adjacent_dev_unlink(dev, upper_dev); 5105 return ret; 5106 } 5107 5108 return 0; 5109 } 5110 5111 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 5112 struct net_device *upper_dev) 5113 { 5114 __netdev_adjacent_dev_unlink(dev, upper_dev); 5115 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 5116 &dev->adj_list.upper, 5117 &upper_dev->adj_list.lower); 5118 } 5119 5120 static int __netdev_upper_dev_link(struct net_device *dev, 5121 struct net_device *upper_dev, bool master, 5122 void *private) 5123 { 5124 struct netdev_adjacent *i, *j, *to_i, *to_j; 5125 int ret = 0; 5126 5127 ASSERT_RTNL(); 5128 5129 if (dev == upper_dev) 5130 return -EBUSY; 5131 5132 /* To prevent loops, check if dev is not upper device to upper_dev. */ 5133 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper)) 5134 return -EBUSY; 5135 5136 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper)) 5137 return -EEXIST; 5138 5139 if (master && netdev_master_upper_dev_get(dev)) 5140 return -EBUSY; 5141 5142 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private, 5143 master); 5144 if (ret) 5145 return ret; 5146 5147 /* Now that we linked these devs, make all the upper_dev's 5148 * all_adj_list.upper visible to every dev's all_adj_list.lower an 5149 * versa, and don't forget the devices itself. All of these 5150 * links are non-neighbours. 5151 */ 5152 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5153 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) { 5154 pr_debug("Interlinking %s with %s, non-neighbour\n", 5155 i->dev->name, j->dev->name); 5156 ret = __netdev_adjacent_dev_link(i->dev, j->dev); 5157 if (ret) 5158 goto rollback_mesh; 5159 } 5160 } 5161 5162 /* add dev to every upper_dev's upper device */ 5163 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) { 5164 pr_debug("linking %s's upper device %s with %s\n", 5165 upper_dev->name, i->dev->name, dev->name); 5166 ret = __netdev_adjacent_dev_link(dev, i->dev); 5167 if (ret) 5168 goto rollback_upper_mesh; 5169 } 5170 5171 /* add upper_dev to every dev's lower device */ 5172 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5173 pr_debug("linking %s's lower device %s with %s\n", dev->name, 5174 i->dev->name, upper_dev->name); 5175 ret = __netdev_adjacent_dev_link(i->dev, upper_dev); 5176 if (ret) 5177 goto rollback_lower_mesh; 5178 } 5179 5180 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev); 5181 return 0; 5182 5183 rollback_lower_mesh: 5184 to_i = i; 5185 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5186 if (i == to_i) 5187 break; 5188 __netdev_adjacent_dev_unlink(i->dev, upper_dev); 5189 } 5190 5191 i = NULL; 5192 5193 rollback_upper_mesh: 5194 to_i = i; 5195 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) { 5196 if (i == to_i) 5197 break; 5198 __netdev_adjacent_dev_unlink(dev, i->dev); 5199 } 5200 5201 i = j = NULL; 5202 5203 rollback_mesh: 5204 to_i = i; 5205 to_j = j; 5206 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5207 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) { 5208 if (i == to_i && j == to_j) 5209 break; 5210 __netdev_adjacent_dev_unlink(i->dev, j->dev); 5211 } 5212 if (i == to_i) 5213 break; 5214 } 5215 5216 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 5217 5218 return ret; 5219 } 5220 5221 /** 5222 * netdev_upper_dev_link - Add a link to the upper device 5223 * @dev: device 5224 * @upper_dev: new upper device 5225 * 5226 * Adds a link to device which is upper to this one. The caller must hold 5227 * the RTNL lock. On a failure a negative errno code is returned. 5228 * On success the reference counts are adjusted and the function 5229 * returns zero. 5230 */ 5231 int netdev_upper_dev_link(struct net_device *dev, 5232 struct net_device *upper_dev) 5233 { 5234 return __netdev_upper_dev_link(dev, upper_dev, false, NULL); 5235 } 5236 EXPORT_SYMBOL(netdev_upper_dev_link); 5237 5238 /** 5239 * netdev_master_upper_dev_link - Add a master link to the upper device 5240 * @dev: device 5241 * @upper_dev: new upper device 5242 * 5243 * Adds a link to device which is upper to this one. In this case, only 5244 * one master upper device can be linked, although other non-master devices 5245 * might be linked as well. The caller must hold the RTNL lock. 5246 * On a failure a negative errno code is returned. On success the reference 5247 * counts are adjusted and the function returns zero. 5248 */ 5249 int netdev_master_upper_dev_link(struct net_device *dev, 5250 struct net_device *upper_dev) 5251 { 5252 return __netdev_upper_dev_link(dev, upper_dev, true, NULL); 5253 } 5254 EXPORT_SYMBOL(netdev_master_upper_dev_link); 5255 5256 int netdev_master_upper_dev_link_private(struct net_device *dev, 5257 struct net_device *upper_dev, 5258 void *private) 5259 { 5260 return __netdev_upper_dev_link(dev, upper_dev, true, private); 5261 } 5262 EXPORT_SYMBOL(netdev_master_upper_dev_link_private); 5263 5264 /** 5265 * netdev_upper_dev_unlink - Removes a link to upper device 5266 * @dev: device 5267 * @upper_dev: new upper device 5268 * 5269 * Removes a link to device which is upper to this one. The caller must hold 5270 * the RTNL lock. 5271 */ 5272 void netdev_upper_dev_unlink(struct net_device *dev, 5273 struct net_device *upper_dev) 5274 { 5275 struct netdev_adjacent *i, *j; 5276 ASSERT_RTNL(); 5277 5278 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 5279 5280 /* Here is the tricky part. We must remove all dev's lower 5281 * devices from all upper_dev's upper devices and vice 5282 * versa, to maintain the graph relationship. 5283 */ 5284 list_for_each_entry(i, &dev->all_adj_list.lower, list) 5285 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) 5286 __netdev_adjacent_dev_unlink(i->dev, j->dev); 5287 5288 /* remove also the devices itself from lower/upper device 5289 * list 5290 */ 5291 list_for_each_entry(i, &dev->all_adj_list.lower, list) 5292 __netdev_adjacent_dev_unlink(i->dev, upper_dev); 5293 5294 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) 5295 __netdev_adjacent_dev_unlink(dev, i->dev); 5296 5297 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev); 5298 } 5299 EXPORT_SYMBOL(netdev_upper_dev_unlink); 5300 5301 void netdev_adjacent_add_links(struct net_device *dev) 5302 { 5303 struct netdev_adjacent *iter; 5304 5305 struct net *net = dev_net(dev); 5306 5307 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5308 if (!net_eq(net,dev_net(iter->dev))) 5309 continue; 5310 netdev_adjacent_sysfs_add(iter->dev, dev, 5311 &iter->dev->adj_list.lower); 5312 netdev_adjacent_sysfs_add(dev, iter->dev, 5313 &dev->adj_list.upper); 5314 } 5315 5316 list_for_each_entry(iter, &dev->adj_list.lower, list) { 5317 if (!net_eq(net,dev_net(iter->dev))) 5318 continue; 5319 netdev_adjacent_sysfs_add(iter->dev, dev, 5320 &iter->dev->adj_list.upper); 5321 netdev_adjacent_sysfs_add(dev, iter->dev, 5322 &dev->adj_list.lower); 5323 } 5324 } 5325 5326 void netdev_adjacent_del_links(struct net_device *dev) 5327 { 5328 struct netdev_adjacent *iter; 5329 5330 struct net *net = dev_net(dev); 5331 5332 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5333 if (!net_eq(net,dev_net(iter->dev))) 5334 continue; 5335 netdev_adjacent_sysfs_del(iter->dev, dev->name, 5336 &iter->dev->adj_list.lower); 5337 netdev_adjacent_sysfs_del(dev, iter->dev->name, 5338 &dev->adj_list.upper); 5339 } 5340 5341 list_for_each_entry(iter, &dev->adj_list.lower, list) { 5342 if (!net_eq(net,dev_net(iter->dev))) 5343 continue; 5344 netdev_adjacent_sysfs_del(iter->dev, dev->name, 5345 &iter->dev->adj_list.upper); 5346 netdev_adjacent_sysfs_del(dev, iter->dev->name, 5347 &dev->adj_list.lower); 5348 } 5349 } 5350 5351 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 5352 { 5353 struct netdev_adjacent *iter; 5354 5355 struct net *net = dev_net(dev); 5356 5357 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5358 if (!net_eq(net,dev_net(iter->dev))) 5359 continue; 5360 netdev_adjacent_sysfs_del(iter->dev, oldname, 5361 &iter->dev->adj_list.lower); 5362 netdev_adjacent_sysfs_add(iter->dev, dev, 5363 &iter->dev->adj_list.lower); 5364 } 5365 5366 list_for_each_entry(iter, &dev->adj_list.lower, list) { 5367 if (!net_eq(net,dev_net(iter->dev))) 5368 continue; 5369 netdev_adjacent_sysfs_del(iter->dev, oldname, 5370 &iter->dev->adj_list.upper); 5371 netdev_adjacent_sysfs_add(iter->dev, dev, 5372 &iter->dev->adj_list.upper); 5373 } 5374 } 5375 5376 void *netdev_lower_dev_get_private(struct net_device *dev, 5377 struct net_device *lower_dev) 5378 { 5379 struct netdev_adjacent *lower; 5380 5381 if (!lower_dev) 5382 return NULL; 5383 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower); 5384 if (!lower) 5385 return NULL; 5386 5387 return lower->private; 5388 } 5389 EXPORT_SYMBOL(netdev_lower_dev_get_private); 5390 5391 5392 int dev_get_nest_level(struct net_device *dev, 5393 bool (*type_check)(struct net_device *dev)) 5394 { 5395 struct net_device *lower = NULL; 5396 struct list_head *iter; 5397 int max_nest = -1; 5398 int nest; 5399 5400 ASSERT_RTNL(); 5401 5402 netdev_for_each_lower_dev(dev, lower, iter) { 5403 nest = dev_get_nest_level(lower, type_check); 5404 if (max_nest < nest) 5405 max_nest = nest; 5406 } 5407 5408 if (type_check(dev)) 5409 max_nest++; 5410 5411 return max_nest; 5412 } 5413 EXPORT_SYMBOL(dev_get_nest_level); 5414 5415 static void dev_change_rx_flags(struct net_device *dev, int flags) 5416 { 5417 const struct net_device_ops *ops = dev->netdev_ops; 5418 5419 if (ops->ndo_change_rx_flags) 5420 ops->ndo_change_rx_flags(dev, flags); 5421 } 5422 5423 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 5424 { 5425 unsigned int old_flags = dev->flags; 5426 kuid_t uid; 5427 kgid_t gid; 5428 5429 ASSERT_RTNL(); 5430 5431 dev->flags |= IFF_PROMISC; 5432 dev->promiscuity += inc; 5433 if (dev->promiscuity == 0) { 5434 /* 5435 * Avoid overflow. 5436 * If inc causes overflow, untouch promisc and return error. 5437 */ 5438 if (inc < 0) 5439 dev->flags &= ~IFF_PROMISC; 5440 else { 5441 dev->promiscuity -= inc; 5442 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 5443 dev->name); 5444 return -EOVERFLOW; 5445 } 5446 } 5447 if (dev->flags != old_flags) { 5448 pr_info("device %s %s promiscuous mode\n", 5449 dev->name, 5450 dev->flags & IFF_PROMISC ? "entered" : "left"); 5451 if (audit_enabled) { 5452 current_uid_gid(&uid, &gid); 5453 audit_log(current->audit_context, GFP_ATOMIC, 5454 AUDIT_ANOM_PROMISCUOUS, 5455 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 5456 dev->name, (dev->flags & IFF_PROMISC), 5457 (old_flags & IFF_PROMISC), 5458 from_kuid(&init_user_ns, audit_get_loginuid(current)), 5459 from_kuid(&init_user_ns, uid), 5460 from_kgid(&init_user_ns, gid), 5461 audit_get_sessionid(current)); 5462 } 5463 5464 dev_change_rx_flags(dev, IFF_PROMISC); 5465 } 5466 if (notify) 5467 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 5468 return 0; 5469 } 5470 5471 /** 5472 * dev_set_promiscuity - update promiscuity count on a device 5473 * @dev: device 5474 * @inc: modifier 5475 * 5476 * Add or remove promiscuity from a device. While the count in the device 5477 * remains above zero the interface remains promiscuous. Once it hits zero 5478 * the device reverts back to normal filtering operation. A negative inc 5479 * value is used to drop promiscuity on the device. 5480 * Return 0 if successful or a negative errno code on error. 5481 */ 5482 int dev_set_promiscuity(struct net_device *dev, int inc) 5483 { 5484 unsigned int old_flags = dev->flags; 5485 int err; 5486 5487 err = __dev_set_promiscuity(dev, inc, true); 5488 if (err < 0) 5489 return err; 5490 if (dev->flags != old_flags) 5491 dev_set_rx_mode(dev); 5492 return err; 5493 } 5494 EXPORT_SYMBOL(dev_set_promiscuity); 5495 5496 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 5497 { 5498 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 5499 5500 ASSERT_RTNL(); 5501 5502 dev->flags |= IFF_ALLMULTI; 5503 dev->allmulti += inc; 5504 if (dev->allmulti == 0) { 5505 /* 5506 * Avoid overflow. 5507 * If inc causes overflow, untouch allmulti and return error. 5508 */ 5509 if (inc < 0) 5510 dev->flags &= ~IFF_ALLMULTI; 5511 else { 5512 dev->allmulti -= inc; 5513 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 5514 dev->name); 5515 return -EOVERFLOW; 5516 } 5517 } 5518 if (dev->flags ^ old_flags) { 5519 dev_change_rx_flags(dev, IFF_ALLMULTI); 5520 dev_set_rx_mode(dev); 5521 if (notify) 5522 __dev_notify_flags(dev, old_flags, 5523 dev->gflags ^ old_gflags); 5524 } 5525 return 0; 5526 } 5527 5528 /** 5529 * dev_set_allmulti - update allmulti count on a device 5530 * @dev: device 5531 * @inc: modifier 5532 * 5533 * Add or remove reception of all multicast frames to a device. While the 5534 * count in the device remains above zero the interface remains listening 5535 * to all interfaces. Once it hits zero the device reverts back to normal 5536 * filtering operation. A negative @inc value is used to drop the counter 5537 * when releasing a resource needing all multicasts. 5538 * Return 0 if successful or a negative errno code on error. 5539 */ 5540 5541 int dev_set_allmulti(struct net_device *dev, int inc) 5542 { 5543 return __dev_set_allmulti(dev, inc, true); 5544 } 5545 EXPORT_SYMBOL(dev_set_allmulti); 5546 5547 /* 5548 * Upload unicast and multicast address lists to device and 5549 * configure RX filtering. When the device doesn't support unicast 5550 * filtering it is put in promiscuous mode while unicast addresses 5551 * are present. 5552 */ 5553 void __dev_set_rx_mode(struct net_device *dev) 5554 { 5555 const struct net_device_ops *ops = dev->netdev_ops; 5556 5557 /* dev_open will call this function so the list will stay sane. */ 5558 if (!(dev->flags&IFF_UP)) 5559 return; 5560 5561 if (!netif_device_present(dev)) 5562 return; 5563 5564 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 5565 /* Unicast addresses changes may only happen under the rtnl, 5566 * therefore calling __dev_set_promiscuity here is safe. 5567 */ 5568 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 5569 __dev_set_promiscuity(dev, 1, false); 5570 dev->uc_promisc = true; 5571 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 5572 __dev_set_promiscuity(dev, -1, false); 5573 dev->uc_promisc = false; 5574 } 5575 } 5576 5577 if (ops->ndo_set_rx_mode) 5578 ops->ndo_set_rx_mode(dev); 5579 } 5580 5581 void dev_set_rx_mode(struct net_device *dev) 5582 { 5583 netif_addr_lock_bh(dev); 5584 __dev_set_rx_mode(dev); 5585 netif_addr_unlock_bh(dev); 5586 } 5587 5588 /** 5589 * dev_get_flags - get flags reported to userspace 5590 * @dev: device 5591 * 5592 * Get the combination of flag bits exported through APIs to userspace. 5593 */ 5594 unsigned int dev_get_flags(const struct net_device *dev) 5595 { 5596 unsigned int flags; 5597 5598 flags = (dev->flags & ~(IFF_PROMISC | 5599 IFF_ALLMULTI | 5600 IFF_RUNNING | 5601 IFF_LOWER_UP | 5602 IFF_DORMANT)) | 5603 (dev->gflags & (IFF_PROMISC | 5604 IFF_ALLMULTI)); 5605 5606 if (netif_running(dev)) { 5607 if (netif_oper_up(dev)) 5608 flags |= IFF_RUNNING; 5609 if (netif_carrier_ok(dev)) 5610 flags |= IFF_LOWER_UP; 5611 if (netif_dormant(dev)) 5612 flags |= IFF_DORMANT; 5613 } 5614 5615 return flags; 5616 } 5617 EXPORT_SYMBOL(dev_get_flags); 5618 5619 int __dev_change_flags(struct net_device *dev, unsigned int flags) 5620 { 5621 unsigned int old_flags = dev->flags; 5622 int ret; 5623 5624 ASSERT_RTNL(); 5625 5626 /* 5627 * Set the flags on our device. 5628 */ 5629 5630 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 5631 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 5632 IFF_AUTOMEDIA)) | 5633 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 5634 IFF_ALLMULTI)); 5635 5636 /* 5637 * Load in the correct multicast list now the flags have changed. 5638 */ 5639 5640 if ((old_flags ^ flags) & IFF_MULTICAST) 5641 dev_change_rx_flags(dev, IFF_MULTICAST); 5642 5643 dev_set_rx_mode(dev); 5644 5645 /* 5646 * Have we downed the interface. We handle IFF_UP ourselves 5647 * according to user attempts to set it, rather than blindly 5648 * setting it. 5649 */ 5650 5651 ret = 0; 5652 if ((old_flags ^ flags) & IFF_UP) 5653 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 5654 5655 if ((flags ^ dev->gflags) & IFF_PROMISC) { 5656 int inc = (flags & IFF_PROMISC) ? 1 : -1; 5657 unsigned int old_flags = dev->flags; 5658 5659 dev->gflags ^= IFF_PROMISC; 5660 5661 if (__dev_set_promiscuity(dev, inc, false) >= 0) 5662 if (dev->flags != old_flags) 5663 dev_set_rx_mode(dev); 5664 } 5665 5666 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 5667 is important. Some (broken) drivers set IFF_PROMISC, when 5668 IFF_ALLMULTI is requested not asking us and not reporting. 5669 */ 5670 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 5671 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 5672 5673 dev->gflags ^= IFF_ALLMULTI; 5674 __dev_set_allmulti(dev, inc, false); 5675 } 5676 5677 return ret; 5678 } 5679 5680 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 5681 unsigned int gchanges) 5682 { 5683 unsigned int changes = dev->flags ^ old_flags; 5684 5685 if (gchanges) 5686 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 5687 5688 if (changes & IFF_UP) { 5689 if (dev->flags & IFF_UP) 5690 call_netdevice_notifiers(NETDEV_UP, dev); 5691 else 5692 call_netdevice_notifiers(NETDEV_DOWN, dev); 5693 } 5694 5695 if (dev->flags & IFF_UP && 5696 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 5697 struct netdev_notifier_change_info change_info; 5698 5699 change_info.flags_changed = changes; 5700 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 5701 &change_info.info); 5702 } 5703 } 5704 5705 /** 5706 * dev_change_flags - change device settings 5707 * @dev: device 5708 * @flags: device state flags 5709 * 5710 * Change settings on device based state flags. The flags are 5711 * in the userspace exported format. 5712 */ 5713 int dev_change_flags(struct net_device *dev, unsigned int flags) 5714 { 5715 int ret; 5716 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 5717 5718 ret = __dev_change_flags(dev, flags); 5719 if (ret < 0) 5720 return ret; 5721 5722 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 5723 __dev_notify_flags(dev, old_flags, changes); 5724 return ret; 5725 } 5726 EXPORT_SYMBOL(dev_change_flags); 5727 5728 static int __dev_set_mtu(struct net_device *dev, int new_mtu) 5729 { 5730 const struct net_device_ops *ops = dev->netdev_ops; 5731 5732 if (ops->ndo_change_mtu) 5733 return ops->ndo_change_mtu(dev, new_mtu); 5734 5735 dev->mtu = new_mtu; 5736 return 0; 5737 } 5738 5739 /** 5740 * dev_set_mtu - Change maximum transfer unit 5741 * @dev: device 5742 * @new_mtu: new transfer unit 5743 * 5744 * Change the maximum transfer size of the network device. 5745 */ 5746 int dev_set_mtu(struct net_device *dev, int new_mtu) 5747 { 5748 int err, orig_mtu; 5749 5750 if (new_mtu == dev->mtu) 5751 return 0; 5752 5753 /* MTU must be positive. */ 5754 if (new_mtu < 0) 5755 return -EINVAL; 5756 5757 if (!netif_device_present(dev)) 5758 return -ENODEV; 5759 5760 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 5761 err = notifier_to_errno(err); 5762 if (err) 5763 return err; 5764 5765 orig_mtu = dev->mtu; 5766 err = __dev_set_mtu(dev, new_mtu); 5767 5768 if (!err) { 5769 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 5770 err = notifier_to_errno(err); 5771 if (err) { 5772 /* setting mtu back and notifying everyone again, 5773 * so that they have a chance to revert changes. 5774 */ 5775 __dev_set_mtu(dev, orig_mtu); 5776 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 5777 } 5778 } 5779 return err; 5780 } 5781 EXPORT_SYMBOL(dev_set_mtu); 5782 5783 /** 5784 * dev_set_group - Change group this device belongs to 5785 * @dev: device 5786 * @new_group: group this device should belong to 5787 */ 5788 void dev_set_group(struct net_device *dev, int new_group) 5789 { 5790 dev->group = new_group; 5791 } 5792 EXPORT_SYMBOL(dev_set_group); 5793 5794 /** 5795 * dev_set_mac_address - Change Media Access Control Address 5796 * @dev: device 5797 * @sa: new address 5798 * 5799 * Change the hardware (MAC) address of the device 5800 */ 5801 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 5802 { 5803 const struct net_device_ops *ops = dev->netdev_ops; 5804 int err; 5805 5806 if (!ops->ndo_set_mac_address) 5807 return -EOPNOTSUPP; 5808 if (sa->sa_family != dev->type) 5809 return -EINVAL; 5810 if (!netif_device_present(dev)) 5811 return -ENODEV; 5812 err = ops->ndo_set_mac_address(dev, sa); 5813 if (err) 5814 return err; 5815 dev->addr_assign_type = NET_ADDR_SET; 5816 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 5817 add_device_randomness(dev->dev_addr, dev->addr_len); 5818 return 0; 5819 } 5820 EXPORT_SYMBOL(dev_set_mac_address); 5821 5822 /** 5823 * dev_change_carrier - Change device carrier 5824 * @dev: device 5825 * @new_carrier: new value 5826 * 5827 * Change device carrier 5828 */ 5829 int dev_change_carrier(struct net_device *dev, bool new_carrier) 5830 { 5831 const struct net_device_ops *ops = dev->netdev_ops; 5832 5833 if (!ops->ndo_change_carrier) 5834 return -EOPNOTSUPP; 5835 if (!netif_device_present(dev)) 5836 return -ENODEV; 5837 return ops->ndo_change_carrier(dev, new_carrier); 5838 } 5839 EXPORT_SYMBOL(dev_change_carrier); 5840 5841 /** 5842 * dev_get_phys_port_id - Get device physical port ID 5843 * @dev: device 5844 * @ppid: port ID 5845 * 5846 * Get device physical port ID 5847 */ 5848 int dev_get_phys_port_id(struct net_device *dev, 5849 struct netdev_phys_item_id *ppid) 5850 { 5851 const struct net_device_ops *ops = dev->netdev_ops; 5852 5853 if (!ops->ndo_get_phys_port_id) 5854 return -EOPNOTSUPP; 5855 return ops->ndo_get_phys_port_id(dev, ppid); 5856 } 5857 EXPORT_SYMBOL(dev_get_phys_port_id); 5858 5859 /** 5860 * dev_new_index - allocate an ifindex 5861 * @net: the applicable net namespace 5862 * 5863 * Returns a suitable unique value for a new device interface 5864 * number. The caller must hold the rtnl semaphore or the 5865 * dev_base_lock to be sure it remains unique. 5866 */ 5867 static int dev_new_index(struct net *net) 5868 { 5869 int ifindex = net->ifindex; 5870 for (;;) { 5871 if (++ifindex <= 0) 5872 ifindex = 1; 5873 if (!__dev_get_by_index(net, ifindex)) 5874 return net->ifindex = ifindex; 5875 } 5876 } 5877 5878 /* Delayed registration/unregisteration */ 5879 static LIST_HEAD(net_todo_list); 5880 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 5881 5882 static void net_set_todo(struct net_device *dev) 5883 { 5884 list_add_tail(&dev->todo_list, &net_todo_list); 5885 dev_net(dev)->dev_unreg_count++; 5886 } 5887 5888 static void rollback_registered_many(struct list_head *head) 5889 { 5890 struct net_device *dev, *tmp; 5891 LIST_HEAD(close_head); 5892 5893 BUG_ON(dev_boot_phase); 5894 ASSERT_RTNL(); 5895 5896 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 5897 /* Some devices call without registering 5898 * for initialization unwind. Remove those 5899 * devices and proceed with the remaining. 5900 */ 5901 if (dev->reg_state == NETREG_UNINITIALIZED) { 5902 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 5903 dev->name, dev); 5904 5905 WARN_ON(1); 5906 list_del(&dev->unreg_list); 5907 continue; 5908 } 5909 dev->dismantle = true; 5910 BUG_ON(dev->reg_state != NETREG_REGISTERED); 5911 } 5912 5913 /* If device is running, close it first. */ 5914 list_for_each_entry(dev, head, unreg_list) 5915 list_add_tail(&dev->close_list, &close_head); 5916 dev_close_many(&close_head); 5917 5918 list_for_each_entry(dev, head, unreg_list) { 5919 /* And unlink it from device chain. */ 5920 unlist_netdevice(dev); 5921 5922 dev->reg_state = NETREG_UNREGISTERING; 5923 } 5924 5925 synchronize_net(); 5926 5927 list_for_each_entry(dev, head, unreg_list) { 5928 struct sk_buff *skb = NULL; 5929 5930 /* Shutdown queueing discipline. */ 5931 dev_shutdown(dev); 5932 5933 5934 /* Notify protocols, that we are about to destroy 5935 this device. They should clean all the things. 5936 */ 5937 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5938 5939 if (!dev->rtnl_link_ops || 5940 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5941 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 5942 GFP_KERNEL); 5943 5944 /* 5945 * Flush the unicast and multicast chains 5946 */ 5947 dev_uc_flush(dev); 5948 dev_mc_flush(dev); 5949 5950 if (dev->netdev_ops->ndo_uninit) 5951 dev->netdev_ops->ndo_uninit(dev); 5952 5953 if (skb) 5954 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 5955 5956 /* Notifier chain MUST detach us all upper devices. */ 5957 WARN_ON(netdev_has_any_upper_dev(dev)); 5958 5959 /* Remove entries from kobject tree */ 5960 netdev_unregister_kobject(dev); 5961 #ifdef CONFIG_XPS 5962 /* Remove XPS queueing entries */ 5963 netif_reset_xps_queues_gt(dev, 0); 5964 #endif 5965 } 5966 5967 synchronize_net(); 5968 5969 list_for_each_entry(dev, head, unreg_list) 5970 dev_put(dev); 5971 } 5972 5973 static void rollback_registered(struct net_device *dev) 5974 { 5975 LIST_HEAD(single); 5976 5977 list_add(&dev->unreg_list, &single); 5978 rollback_registered_many(&single); 5979 list_del(&single); 5980 } 5981 5982 static netdev_features_t netdev_fix_features(struct net_device *dev, 5983 netdev_features_t features) 5984 { 5985 /* Fix illegal checksum combinations */ 5986 if ((features & NETIF_F_HW_CSUM) && 5987 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5988 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 5989 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5990 } 5991 5992 /* TSO requires that SG is present as well. */ 5993 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 5994 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 5995 features &= ~NETIF_F_ALL_TSO; 5996 } 5997 5998 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 5999 !(features & NETIF_F_IP_CSUM)) { 6000 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 6001 features &= ~NETIF_F_TSO; 6002 features &= ~NETIF_F_TSO_ECN; 6003 } 6004 6005 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 6006 !(features & NETIF_F_IPV6_CSUM)) { 6007 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 6008 features &= ~NETIF_F_TSO6; 6009 } 6010 6011 /* TSO ECN requires that TSO is present as well. */ 6012 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 6013 features &= ~NETIF_F_TSO_ECN; 6014 6015 /* Software GSO depends on SG. */ 6016 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 6017 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 6018 features &= ~NETIF_F_GSO; 6019 } 6020 6021 /* UFO needs SG and checksumming */ 6022 if (features & NETIF_F_UFO) { 6023 /* maybe split UFO into V4 and V6? */ 6024 if (!((features & NETIF_F_GEN_CSUM) || 6025 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM)) 6026 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 6027 netdev_dbg(dev, 6028 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 6029 features &= ~NETIF_F_UFO; 6030 } 6031 6032 if (!(features & NETIF_F_SG)) { 6033 netdev_dbg(dev, 6034 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 6035 features &= ~NETIF_F_UFO; 6036 } 6037 } 6038 6039 #ifdef CONFIG_NET_RX_BUSY_POLL 6040 if (dev->netdev_ops->ndo_busy_poll) 6041 features |= NETIF_F_BUSY_POLL; 6042 else 6043 #endif 6044 features &= ~NETIF_F_BUSY_POLL; 6045 6046 return features; 6047 } 6048 6049 int __netdev_update_features(struct net_device *dev) 6050 { 6051 netdev_features_t features; 6052 int err = 0; 6053 6054 ASSERT_RTNL(); 6055 6056 features = netdev_get_wanted_features(dev); 6057 6058 if (dev->netdev_ops->ndo_fix_features) 6059 features = dev->netdev_ops->ndo_fix_features(dev, features); 6060 6061 /* driver might be less strict about feature dependencies */ 6062 features = netdev_fix_features(dev, features); 6063 6064 if (dev->features == features) 6065 return 0; 6066 6067 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 6068 &dev->features, &features); 6069 6070 if (dev->netdev_ops->ndo_set_features) 6071 err = dev->netdev_ops->ndo_set_features(dev, features); 6072 6073 if (unlikely(err < 0)) { 6074 netdev_err(dev, 6075 "set_features() failed (%d); wanted %pNF, left %pNF\n", 6076 err, &features, &dev->features); 6077 return -1; 6078 } 6079 6080 if (!err) 6081 dev->features = features; 6082 6083 return 1; 6084 } 6085 6086 /** 6087 * netdev_update_features - recalculate device features 6088 * @dev: the device to check 6089 * 6090 * Recalculate dev->features set and send notifications if it 6091 * has changed. Should be called after driver or hardware dependent 6092 * conditions might have changed that influence the features. 6093 */ 6094 void netdev_update_features(struct net_device *dev) 6095 { 6096 if (__netdev_update_features(dev)) 6097 netdev_features_change(dev); 6098 } 6099 EXPORT_SYMBOL(netdev_update_features); 6100 6101 /** 6102 * netdev_change_features - recalculate device features 6103 * @dev: the device to check 6104 * 6105 * Recalculate dev->features set and send notifications even 6106 * if they have not changed. Should be called instead of 6107 * netdev_update_features() if also dev->vlan_features might 6108 * have changed to allow the changes to be propagated to stacked 6109 * VLAN devices. 6110 */ 6111 void netdev_change_features(struct net_device *dev) 6112 { 6113 __netdev_update_features(dev); 6114 netdev_features_change(dev); 6115 } 6116 EXPORT_SYMBOL(netdev_change_features); 6117 6118 /** 6119 * netif_stacked_transfer_operstate - transfer operstate 6120 * @rootdev: the root or lower level device to transfer state from 6121 * @dev: the device to transfer operstate to 6122 * 6123 * Transfer operational state from root to device. This is normally 6124 * called when a stacking relationship exists between the root 6125 * device and the device(a leaf device). 6126 */ 6127 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 6128 struct net_device *dev) 6129 { 6130 if (rootdev->operstate == IF_OPER_DORMANT) 6131 netif_dormant_on(dev); 6132 else 6133 netif_dormant_off(dev); 6134 6135 if (netif_carrier_ok(rootdev)) { 6136 if (!netif_carrier_ok(dev)) 6137 netif_carrier_on(dev); 6138 } else { 6139 if (netif_carrier_ok(dev)) 6140 netif_carrier_off(dev); 6141 } 6142 } 6143 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 6144 6145 #ifdef CONFIG_SYSFS 6146 static int netif_alloc_rx_queues(struct net_device *dev) 6147 { 6148 unsigned int i, count = dev->num_rx_queues; 6149 struct netdev_rx_queue *rx; 6150 6151 BUG_ON(count < 1); 6152 6153 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL); 6154 if (!rx) 6155 return -ENOMEM; 6156 6157 dev->_rx = rx; 6158 6159 for (i = 0; i < count; i++) 6160 rx[i].dev = dev; 6161 return 0; 6162 } 6163 #endif 6164 6165 static void netdev_init_one_queue(struct net_device *dev, 6166 struct netdev_queue *queue, void *_unused) 6167 { 6168 /* Initialize queue lock */ 6169 spin_lock_init(&queue->_xmit_lock); 6170 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 6171 queue->xmit_lock_owner = -1; 6172 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 6173 queue->dev = dev; 6174 #ifdef CONFIG_BQL 6175 dql_init(&queue->dql, HZ); 6176 #endif 6177 } 6178 6179 static void netif_free_tx_queues(struct net_device *dev) 6180 { 6181 kvfree(dev->_tx); 6182 } 6183 6184 static int netif_alloc_netdev_queues(struct net_device *dev) 6185 { 6186 unsigned int count = dev->num_tx_queues; 6187 struct netdev_queue *tx; 6188 size_t sz = count * sizeof(*tx); 6189 6190 BUG_ON(count < 1 || count > 0xffff); 6191 6192 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 6193 if (!tx) { 6194 tx = vzalloc(sz); 6195 if (!tx) 6196 return -ENOMEM; 6197 } 6198 dev->_tx = tx; 6199 6200 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 6201 spin_lock_init(&dev->tx_global_lock); 6202 6203 return 0; 6204 } 6205 6206 /** 6207 * register_netdevice - register a network device 6208 * @dev: device to register 6209 * 6210 * Take a completed network device structure and add it to the kernel 6211 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 6212 * chain. 0 is returned on success. A negative errno code is returned 6213 * on a failure to set up the device, or if the name is a duplicate. 6214 * 6215 * Callers must hold the rtnl semaphore. You may want 6216 * register_netdev() instead of this. 6217 * 6218 * BUGS: 6219 * The locking appears insufficient to guarantee two parallel registers 6220 * will not get the same name. 6221 */ 6222 6223 int register_netdevice(struct net_device *dev) 6224 { 6225 int ret; 6226 struct net *net = dev_net(dev); 6227 6228 BUG_ON(dev_boot_phase); 6229 ASSERT_RTNL(); 6230 6231 might_sleep(); 6232 6233 /* When net_device's are persistent, this will be fatal. */ 6234 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 6235 BUG_ON(!net); 6236 6237 spin_lock_init(&dev->addr_list_lock); 6238 netdev_set_addr_lockdep_class(dev); 6239 6240 dev->iflink = -1; 6241 6242 ret = dev_get_valid_name(net, dev, dev->name); 6243 if (ret < 0) 6244 goto out; 6245 6246 /* Init, if this function is available */ 6247 if (dev->netdev_ops->ndo_init) { 6248 ret = dev->netdev_ops->ndo_init(dev); 6249 if (ret) { 6250 if (ret > 0) 6251 ret = -EIO; 6252 goto out; 6253 } 6254 } 6255 6256 if (((dev->hw_features | dev->features) & 6257 NETIF_F_HW_VLAN_CTAG_FILTER) && 6258 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 6259 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 6260 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 6261 ret = -EINVAL; 6262 goto err_uninit; 6263 } 6264 6265 ret = -EBUSY; 6266 if (!dev->ifindex) 6267 dev->ifindex = dev_new_index(net); 6268 else if (__dev_get_by_index(net, dev->ifindex)) 6269 goto err_uninit; 6270 6271 if (dev->iflink == -1) 6272 dev->iflink = dev->ifindex; 6273 6274 /* Transfer changeable features to wanted_features and enable 6275 * software offloads (GSO and GRO). 6276 */ 6277 dev->hw_features |= NETIF_F_SOFT_FEATURES; 6278 dev->features |= NETIF_F_SOFT_FEATURES; 6279 dev->wanted_features = dev->features & dev->hw_features; 6280 6281 if (!(dev->flags & IFF_LOOPBACK)) { 6282 dev->hw_features |= NETIF_F_NOCACHE_COPY; 6283 } 6284 6285 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 6286 */ 6287 dev->vlan_features |= NETIF_F_HIGHDMA; 6288 6289 /* Make NETIF_F_SG inheritable to tunnel devices. 6290 */ 6291 dev->hw_enc_features |= NETIF_F_SG; 6292 6293 /* Make NETIF_F_SG inheritable to MPLS. 6294 */ 6295 dev->mpls_features |= NETIF_F_SG; 6296 6297 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 6298 ret = notifier_to_errno(ret); 6299 if (ret) 6300 goto err_uninit; 6301 6302 ret = netdev_register_kobject(dev); 6303 if (ret) 6304 goto err_uninit; 6305 dev->reg_state = NETREG_REGISTERED; 6306 6307 __netdev_update_features(dev); 6308 6309 /* 6310 * Default initial state at registry is that the 6311 * device is present. 6312 */ 6313 6314 set_bit(__LINK_STATE_PRESENT, &dev->state); 6315 6316 linkwatch_init_dev(dev); 6317 6318 dev_init_scheduler(dev); 6319 dev_hold(dev); 6320 list_netdevice(dev); 6321 add_device_randomness(dev->dev_addr, dev->addr_len); 6322 6323 /* If the device has permanent device address, driver should 6324 * set dev_addr and also addr_assign_type should be set to 6325 * NET_ADDR_PERM (default value). 6326 */ 6327 if (dev->addr_assign_type == NET_ADDR_PERM) 6328 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 6329 6330 /* Notify protocols, that a new device appeared. */ 6331 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 6332 ret = notifier_to_errno(ret); 6333 if (ret) { 6334 rollback_registered(dev); 6335 dev->reg_state = NETREG_UNREGISTERED; 6336 } 6337 /* 6338 * Prevent userspace races by waiting until the network 6339 * device is fully setup before sending notifications. 6340 */ 6341 if (!dev->rtnl_link_ops || 6342 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 6343 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 6344 6345 out: 6346 return ret; 6347 6348 err_uninit: 6349 if (dev->netdev_ops->ndo_uninit) 6350 dev->netdev_ops->ndo_uninit(dev); 6351 goto out; 6352 } 6353 EXPORT_SYMBOL(register_netdevice); 6354 6355 /** 6356 * init_dummy_netdev - init a dummy network device for NAPI 6357 * @dev: device to init 6358 * 6359 * This takes a network device structure and initialize the minimum 6360 * amount of fields so it can be used to schedule NAPI polls without 6361 * registering a full blown interface. This is to be used by drivers 6362 * that need to tie several hardware interfaces to a single NAPI 6363 * poll scheduler due to HW limitations. 6364 */ 6365 int init_dummy_netdev(struct net_device *dev) 6366 { 6367 /* Clear everything. Note we don't initialize spinlocks 6368 * are they aren't supposed to be taken by any of the 6369 * NAPI code and this dummy netdev is supposed to be 6370 * only ever used for NAPI polls 6371 */ 6372 memset(dev, 0, sizeof(struct net_device)); 6373 6374 /* make sure we BUG if trying to hit standard 6375 * register/unregister code path 6376 */ 6377 dev->reg_state = NETREG_DUMMY; 6378 6379 /* NAPI wants this */ 6380 INIT_LIST_HEAD(&dev->napi_list); 6381 6382 /* a dummy interface is started by default */ 6383 set_bit(__LINK_STATE_PRESENT, &dev->state); 6384 set_bit(__LINK_STATE_START, &dev->state); 6385 6386 /* Note : We dont allocate pcpu_refcnt for dummy devices, 6387 * because users of this 'device' dont need to change 6388 * its refcount. 6389 */ 6390 6391 return 0; 6392 } 6393 EXPORT_SYMBOL_GPL(init_dummy_netdev); 6394 6395 6396 /** 6397 * register_netdev - register a network device 6398 * @dev: device to register 6399 * 6400 * Take a completed network device structure and add it to the kernel 6401 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 6402 * chain. 0 is returned on success. A negative errno code is returned 6403 * on a failure to set up the device, or if the name is a duplicate. 6404 * 6405 * This is a wrapper around register_netdevice that takes the rtnl semaphore 6406 * and expands the device name if you passed a format string to 6407 * alloc_netdev. 6408 */ 6409 int register_netdev(struct net_device *dev) 6410 { 6411 int err; 6412 6413 rtnl_lock(); 6414 err = register_netdevice(dev); 6415 rtnl_unlock(); 6416 return err; 6417 } 6418 EXPORT_SYMBOL(register_netdev); 6419 6420 int netdev_refcnt_read(const struct net_device *dev) 6421 { 6422 int i, refcnt = 0; 6423 6424 for_each_possible_cpu(i) 6425 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 6426 return refcnt; 6427 } 6428 EXPORT_SYMBOL(netdev_refcnt_read); 6429 6430 /** 6431 * netdev_wait_allrefs - wait until all references are gone. 6432 * @dev: target net_device 6433 * 6434 * This is called when unregistering network devices. 6435 * 6436 * Any protocol or device that holds a reference should register 6437 * for netdevice notification, and cleanup and put back the 6438 * reference if they receive an UNREGISTER event. 6439 * We can get stuck here if buggy protocols don't correctly 6440 * call dev_put. 6441 */ 6442 static void netdev_wait_allrefs(struct net_device *dev) 6443 { 6444 unsigned long rebroadcast_time, warning_time; 6445 int refcnt; 6446 6447 linkwatch_forget_dev(dev); 6448 6449 rebroadcast_time = warning_time = jiffies; 6450 refcnt = netdev_refcnt_read(dev); 6451 6452 while (refcnt != 0) { 6453 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 6454 rtnl_lock(); 6455 6456 /* Rebroadcast unregister notification */ 6457 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6458 6459 __rtnl_unlock(); 6460 rcu_barrier(); 6461 rtnl_lock(); 6462 6463 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6464 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 6465 &dev->state)) { 6466 /* We must not have linkwatch events 6467 * pending on unregister. If this 6468 * happens, we simply run the queue 6469 * unscheduled, resulting in a noop 6470 * for this device. 6471 */ 6472 linkwatch_run_queue(); 6473 } 6474 6475 __rtnl_unlock(); 6476 6477 rebroadcast_time = jiffies; 6478 } 6479 6480 msleep(250); 6481 6482 refcnt = netdev_refcnt_read(dev); 6483 6484 if (time_after(jiffies, warning_time + 10 * HZ)) { 6485 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 6486 dev->name, refcnt); 6487 warning_time = jiffies; 6488 } 6489 } 6490 } 6491 6492 /* The sequence is: 6493 * 6494 * rtnl_lock(); 6495 * ... 6496 * register_netdevice(x1); 6497 * register_netdevice(x2); 6498 * ... 6499 * unregister_netdevice(y1); 6500 * unregister_netdevice(y2); 6501 * ... 6502 * rtnl_unlock(); 6503 * free_netdev(y1); 6504 * free_netdev(y2); 6505 * 6506 * We are invoked by rtnl_unlock(). 6507 * This allows us to deal with problems: 6508 * 1) We can delete sysfs objects which invoke hotplug 6509 * without deadlocking with linkwatch via keventd. 6510 * 2) Since we run with the RTNL semaphore not held, we can sleep 6511 * safely in order to wait for the netdev refcnt to drop to zero. 6512 * 6513 * We must not return until all unregister events added during 6514 * the interval the lock was held have been completed. 6515 */ 6516 void netdev_run_todo(void) 6517 { 6518 struct list_head list; 6519 6520 /* Snapshot list, allow later requests */ 6521 list_replace_init(&net_todo_list, &list); 6522 6523 __rtnl_unlock(); 6524 6525 6526 /* Wait for rcu callbacks to finish before next phase */ 6527 if (!list_empty(&list)) 6528 rcu_barrier(); 6529 6530 while (!list_empty(&list)) { 6531 struct net_device *dev 6532 = list_first_entry(&list, struct net_device, todo_list); 6533 list_del(&dev->todo_list); 6534 6535 rtnl_lock(); 6536 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6537 __rtnl_unlock(); 6538 6539 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 6540 pr_err("network todo '%s' but state %d\n", 6541 dev->name, dev->reg_state); 6542 dump_stack(); 6543 continue; 6544 } 6545 6546 dev->reg_state = NETREG_UNREGISTERED; 6547 6548 on_each_cpu(flush_backlog, dev, 1); 6549 6550 netdev_wait_allrefs(dev); 6551 6552 /* paranoia */ 6553 BUG_ON(netdev_refcnt_read(dev)); 6554 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 6555 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 6556 WARN_ON(dev->dn_ptr); 6557 6558 if (dev->destructor) 6559 dev->destructor(dev); 6560 6561 /* Report a network device has been unregistered */ 6562 rtnl_lock(); 6563 dev_net(dev)->dev_unreg_count--; 6564 __rtnl_unlock(); 6565 wake_up(&netdev_unregistering_wq); 6566 6567 /* Free network device */ 6568 kobject_put(&dev->dev.kobj); 6569 } 6570 } 6571 6572 /* Convert net_device_stats to rtnl_link_stats64. They have the same 6573 * fields in the same order, with only the type differing. 6574 */ 6575 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 6576 const struct net_device_stats *netdev_stats) 6577 { 6578 #if BITS_PER_LONG == 64 6579 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 6580 memcpy(stats64, netdev_stats, sizeof(*stats64)); 6581 #else 6582 size_t i, n = sizeof(*stats64) / sizeof(u64); 6583 const unsigned long *src = (const unsigned long *)netdev_stats; 6584 u64 *dst = (u64 *)stats64; 6585 6586 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 6587 sizeof(*stats64) / sizeof(u64)); 6588 for (i = 0; i < n; i++) 6589 dst[i] = src[i]; 6590 #endif 6591 } 6592 EXPORT_SYMBOL(netdev_stats_to_stats64); 6593 6594 /** 6595 * dev_get_stats - get network device statistics 6596 * @dev: device to get statistics from 6597 * @storage: place to store stats 6598 * 6599 * Get network statistics from device. Return @storage. 6600 * The device driver may provide its own method by setting 6601 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 6602 * otherwise the internal statistics structure is used. 6603 */ 6604 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 6605 struct rtnl_link_stats64 *storage) 6606 { 6607 const struct net_device_ops *ops = dev->netdev_ops; 6608 6609 if (ops->ndo_get_stats64) { 6610 memset(storage, 0, sizeof(*storage)); 6611 ops->ndo_get_stats64(dev, storage); 6612 } else if (ops->ndo_get_stats) { 6613 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 6614 } else { 6615 netdev_stats_to_stats64(storage, &dev->stats); 6616 } 6617 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 6618 storage->tx_dropped += atomic_long_read(&dev->tx_dropped); 6619 return storage; 6620 } 6621 EXPORT_SYMBOL(dev_get_stats); 6622 6623 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 6624 { 6625 struct netdev_queue *queue = dev_ingress_queue(dev); 6626 6627 #ifdef CONFIG_NET_CLS_ACT 6628 if (queue) 6629 return queue; 6630 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 6631 if (!queue) 6632 return NULL; 6633 netdev_init_one_queue(dev, queue, NULL); 6634 queue->qdisc = &noop_qdisc; 6635 queue->qdisc_sleeping = &noop_qdisc; 6636 rcu_assign_pointer(dev->ingress_queue, queue); 6637 #endif 6638 return queue; 6639 } 6640 6641 static const struct ethtool_ops default_ethtool_ops; 6642 6643 void netdev_set_default_ethtool_ops(struct net_device *dev, 6644 const struct ethtool_ops *ops) 6645 { 6646 if (dev->ethtool_ops == &default_ethtool_ops) 6647 dev->ethtool_ops = ops; 6648 } 6649 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 6650 6651 void netdev_freemem(struct net_device *dev) 6652 { 6653 char *addr = (char *)dev - dev->padded; 6654 6655 kvfree(addr); 6656 } 6657 6658 /** 6659 * alloc_netdev_mqs - allocate network device 6660 * @sizeof_priv: size of private data to allocate space for 6661 * @name: device name format string 6662 * @name_assign_type: origin of device name 6663 * @setup: callback to initialize device 6664 * @txqs: the number of TX subqueues to allocate 6665 * @rxqs: the number of RX subqueues to allocate 6666 * 6667 * Allocates a struct net_device with private data area for driver use 6668 * and performs basic initialization. Also allocates subqueue structs 6669 * for each queue on the device. 6670 */ 6671 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 6672 unsigned char name_assign_type, 6673 void (*setup)(struct net_device *), 6674 unsigned int txqs, unsigned int rxqs) 6675 { 6676 struct net_device *dev; 6677 size_t alloc_size; 6678 struct net_device *p; 6679 6680 BUG_ON(strlen(name) >= sizeof(dev->name)); 6681 6682 if (txqs < 1) { 6683 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 6684 return NULL; 6685 } 6686 6687 #ifdef CONFIG_SYSFS 6688 if (rxqs < 1) { 6689 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 6690 return NULL; 6691 } 6692 #endif 6693 6694 alloc_size = sizeof(struct net_device); 6695 if (sizeof_priv) { 6696 /* ensure 32-byte alignment of private area */ 6697 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 6698 alloc_size += sizeof_priv; 6699 } 6700 /* ensure 32-byte alignment of whole construct */ 6701 alloc_size += NETDEV_ALIGN - 1; 6702 6703 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 6704 if (!p) 6705 p = vzalloc(alloc_size); 6706 if (!p) 6707 return NULL; 6708 6709 dev = PTR_ALIGN(p, NETDEV_ALIGN); 6710 dev->padded = (char *)dev - (char *)p; 6711 6712 dev->pcpu_refcnt = alloc_percpu(int); 6713 if (!dev->pcpu_refcnt) 6714 goto free_dev; 6715 6716 if (dev_addr_init(dev)) 6717 goto free_pcpu; 6718 6719 dev_mc_init(dev); 6720 dev_uc_init(dev); 6721 6722 dev_net_set(dev, &init_net); 6723 6724 dev->gso_max_size = GSO_MAX_SIZE; 6725 dev->gso_max_segs = GSO_MAX_SEGS; 6726 dev->gso_min_segs = 0; 6727 6728 INIT_LIST_HEAD(&dev->napi_list); 6729 INIT_LIST_HEAD(&dev->unreg_list); 6730 INIT_LIST_HEAD(&dev->close_list); 6731 INIT_LIST_HEAD(&dev->link_watch_list); 6732 INIT_LIST_HEAD(&dev->adj_list.upper); 6733 INIT_LIST_HEAD(&dev->adj_list.lower); 6734 INIT_LIST_HEAD(&dev->all_adj_list.upper); 6735 INIT_LIST_HEAD(&dev->all_adj_list.lower); 6736 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 6737 setup(dev); 6738 6739 dev->num_tx_queues = txqs; 6740 dev->real_num_tx_queues = txqs; 6741 if (netif_alloc_netdev_queues(dev)) 6742 goto free_all; 6743 6744 #ifdef CONFIG_SYSFS 6745 dev->num_rx_queues = rxqs; 6746 dev->real_num_rx_queues = rxqs; 6747 if (netif_alloc_rx_queues(dev)) 6748 goto free_all; 6749 #endif 6750 6751 strcpy(dev->name, name); 6752 dev->name_assign_type = name_assign_type; 6753 dev->group = INIT_NETDEV_GROUP; 6754 if (!dev->ethtool_ops) 6755 dev->ethtool_ops = &default_ethtool_ops; 6756 return dev; 6757 6758 free_all: 6759 free_netdev(dev); 6760 return NULL; 6761 6762 free_pcpu: 6763 free_percpu(dev->pcpu_refcnt); 6764 free_dev: 6765 netdev_freemem(dev); 6766 return NULL; 6767 } 6768 EXPORT_SYMBOL(alloc_netdev_mqs); 6769 6770 /** 6771 * free_netdev - free network device 6772 * @dev: device 6773 * 6774 * This function does the last stage of destroying an allocated device 6775 * interface. The reference to the device object is released. 6776 * If this is the last reference then it will be freed. 6777 */ 6778 void free_netdev(struct net_device *dev) 6779 { 6780 struct napi_struct *p, *n; 6781 6782 release_net(dev_net(dev)); 6783 6784 netif_free_tx_queues(dev); 6785 #ifdef CONFIG_SYSFS 6786 kfree(dev->_rx); 6787 #endif 6788 6789 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 6790 6791 /* Flush device addresses */ 6792 dev_addr_flush(dev); 6793 6794 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 6795 netif_napi_del(p); 6796 6797 free_percpu(dev->pcpu_refcnt); 6798 dev->pcpu_refcnt = NULL; 6799 6800 /* Compatibility with error handling in drivers */ 6801 if (dev->reg_state == NETREG_UNINITIALIZED) { 6802 netdev_freemem(dev); 6803 return; 6804 } 6805 6806 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 6807 dev->reg_state = NETREG_RELEASED; 6808 6809 /* will free via device release */ 6810 put_device(&dev->dev); 6811 } 6812 EXPORT_SYMBOL(free_netdev); 6813 6814 /** 6815 * synchronize_net - Synchronize with packet receive processing 6816 * 6817 * Wait for packets currently being received to be done. 6818 * Does not block later packets from starting. 6819 */ 6820 void synchronize_net(void) 6821 { 6822 might_sleep(); 6823 if (rtnl_is_locked()) 6824 synchronize_rcu_expedited(); 6825 else 6826 synchronize_rcu(); 6827 } 6828 EXPORT_SYMBOL(synchronize_net); 6829 6830 /** 6831 * unregister_netdevice_queue - remove device from the kernel 6832 * @dev: device 6833 * @head: list 6834 * 6835 * This function shuts down a device interface and removes it 6836 * from the kernel tables. 6837 * If head not NULL, device is queued to be unregistered later. 6838 * 6839 * Callers must hold the rtnl semaphore. You may want 6840 * unregister_netdev() instead of this. 6841 */ 6842 6843 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 6844 { 6845 ASSERT_RTNL(); 6846 6847 if (head) { 6848 list_move_tail(&dev->unreg_list, head); 6849 } else { 6850 rollback_registered(dev); 6851 /* Finish processing unregister after unlock */ 6852 net_set_todo(dev); 6853 } 6854 } 6855 EXPORT_SYMBOL(unregister_netdevice_queue); 6856 6857 /** 6858 * unregister_netdevice_many - unregister many devices 6859 * @head: list of devices 6860 * 6861 * Note: As most callers use a stack allocated list_head, 6862 * we force a list_del() to make sure stack wont be corrupted later. 6863 */ 6864 void unregister_netdevice_many(struct list_head *head) 6865 { 6866 struct net_device *dev; 6867 6868 if (!list_empty(head)) { 6869 rollback_registered_many(head); 6870 list_for_each_entry(dev, head, unreg_list) 6871 net_set_todo(dev); 6872 list_del(head); 6873 } 6874 } 6875 EXPORT_SYMBOL(unregister_netdevice_many); 6876 6877 /** 6878 * unregister_netdev - remove device from the kernel 6879 * @dev: device 6880 * 6881 * This function shuts down a device interface and removes it 6882 * from the kernel tables. 6883 * 6884 * This is just a wrapper for unregister_netdevice that takes 6885 * the rtnl semaphore. In general you want to use this and not 6886 * unregister_netdevice. 6887 */ 6888 void unregister_netdev(struct net_device *dev) 6889 { 6890 rtnl_lock(); 6891 unregister_netdevice(dev); 6892 rtnl_unlock(); 6893 } 6894 EXPORT_SYMBOL(unregister_netdev); 6895 6896 /** 6897 * dev_change_net_namespace - move device to different nethost namespace 6898 * @dev: device 6899 * @net: network namespace 6900 * @pat: If not NULL name pattern to try if the current device name 6901 * is already taken in the destination network namespace. 6902 * 6903 * This function shuts down a device interface and moves it 6904 * to a new network namespace. On success 0 is returned, on 6905 * a failure a netagive errno code is returned. 6906 * 6907 * Callers must hold the rtnl semaphore. 6908 */ 6909 6910 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 6911 { 6912 int err; 6913 6914 ASSERT_RTNL(); 6915 6916 /* Don't allow namespace local devices to be moved. */ 6917 err = -EINVAL; 6918 if (dev->features & NETIF_F_NETNS_LOCAL) 6919 goto out; 6920 6921 /* Ensure the device has been registrered */ 6922 if (dev->reg_state != NETREG_REGISTERED) 6923 goto out; 6924 6925 /* Get out if there is nothing todo */ 6926 err = 0; 6927 if (net_eq(dev_net(dev), net)) 6928 goto out; 6929 6930 /* Pick the destination device name, and ensure 6931 * we can use it in the destination network namespace. 6932 */ 6933 err = -EEXIST; 6934 if (__dev_get_by_name(net, dev->name)) { 6935 /* We get here if we can't use the current device name */ 6936 if (!pat) 6937 goto out; 6938 if (dev_get_valid_name(net, dev, pat) < 0) 6939 goto out; 6940 } 6941 6942 /* 6943 * And now a mini version of register_netdevice unregister_netdevice. 6944 */ 6945 6946 /* If device is running close it first. */ 6947 dev_close(dev); 6948 6949 /* And unlink it from device chain */ 6950 err = -ENODEV; 6951 unlist_netdevice(dev); 6952 6953 synchronize_net(); 6954 6955 /* Shutdown queueing discipline. */ 6956 dev_shutdown(dev); 6957 6958 /* Notify protocols, that we are about to destroy 6959 this device. They should clean all the things. 6960 6961 Note that dev->reg_state stays at NETREG_REGISTERED. 6962 This is wanted because this way 8021q and macvlan know 6963 the device is just moving and can keep their slaves up. 6964 */ 6965 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6966 rcu_barrier(); 6967 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6968 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL); 6969 6970 /* 6971 * Flush the unicast and multicast chains 6972 */ 6973 dev_uc_flush(dev); 6974 dev_mc_flush(dev); 6975 6976 /* Send a netdev-removed uevent to the old namespace */ 6977 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 6978 netdev_adjacent_del_links(dev); 6979 6980 /* Actually switch the network namespace */ 6981 dev_net_set(dev, net); 6982 6983 /* If there is an ifindex conflict assign a new one */ 6984 if (__dev_get_by_index(net, dev->ifindex)) { 6985 int iflink = (dev->iflink == dev->ifindex); 6986 dev->ifindex = dev_new_index(net); 6987 if (iflink) 6988 dev->iflink = dev->ifindex; 6989 } 6990 6991 /* Send a netdev-add uevent to the new namespace */ 6992 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 6993 netdev_adjacent_add_links(dev); 6994 6995 /* Fixup kobjects */ 6996 err = device_rename(&dev->dev, dev->name); 6997 WARN_ON(err); 6998 6999 /* Add the device back in the hashes */ 7000 list_netdevice(dev); 7001 7002 /* Notify protocols, that a new device appeared. */ 7003 call_netdevice_notifiers(NETDEV_REGISTER, dev); 7004 7005 /* 7006 * Prevent userspace races by waiting until the network 7007 * device is fully setup before sending notifications. 7008 */ 7009 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 7010 7011 synchronize_net(); 7012 err = 0; 7013 out: 7014 return err; 7015 } 7016 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 7017 7018 static int dev_cpu_callback(struct notifier_block *nfb, 7019 unsigned long action, 7020 void *ocpu) 7021 { 7022 struct sk_buff **list_skb; 7023 struct sk_buff *skb; 7024 unsigned int cpu, oldcpu = (unsigned long)ocpu; 7025 struct softnet_data *sd, *oldsd; 7026 7027 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 7028 return NOTIFY_OK; 7029 7030 local_irq_disable(); 7031 cpu = smp_processor_id(); 7032 sd = &per_cpu(softnet_data, cpu); 7033 oldsd = &per_cpu(softnet_data, oldcpu); 7034 7035 /* Find end of our completion_queue. */ 7036 list_skb = &sd->completion_queue; 7037 while (*list_skb) 7038 list_skb = &(*list_skb)->next; 7039 /* Append completion queue from offline CPU. */ 7040 *list_skb = oldsd->completion_queue; 7041 oldsd->completion_queue = NULL; 7042 7043 /* Append output queue from offline CPU. */ 7044 if (oldsd->output_queue) { 7045 *sd->output_queue_tailp = oldsd->output_queue; 7046 sd->output_queue_tailp = oldsd->output_queue_tailp; 7047 oldsd->output_queue = NULL; 7048 oldsd->output_queue_tailp = &oldsd->output_queue; 7049 } 7050 /* Append NAPI poll list from offline CPU. */ 7051 if (!list_empty(&oldsd->poll_list)) { 7052 list_splice_init(&oldsd->poll_list, &sd->poll_list); 7053 raise_softirq_irqoff(NET_RX_SOFTIRQ); 7054 } 7055 7056 raise_softirq_irqoff(NET_TX_SOFTIRQ); 7057 local_irq_enable(); 7058 7059 /* Process offline CPU's input_pkt_queue */ 7060 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 7061 netif_rx_internal(skb); 7062 input_queue_head_incr(oldsd); 7063 } 7064 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) { 7065 netif_rx_internal(skb); 7066 input_queue_head_incr(oldsd); 7067 } 7068 7069 return NOTIFY_OK; 7070 } 7071 7072 7073 /** 7074 * netdev_increment_features - increment feature set by one 7075 * @all: current feature set 7076 * @one: new feature set 7077 * @mask: mask feature set 7078 * 7079 * Computes a new feature set after adding a device with feature set 7080 * @one to the master device with current feature set @all. Will not 7081 * enable anything that is off in @mask. Returns the new feature set. 7082 */ 7083 netdev_features_t netdev_increment_features(netdev_features_t all, 7084 netdev_features_t one, netdev_features_t mask) 7085 { 7086 if (mask & NETIF_F_GEN_CSUM) 7087 mask |= NETIF_F_ALL_CSUM; 7088 mask |= NETIF_F_VLAN_CHALLENGED; 7089 7090 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask; 7091 all &= one | ~NETIF_F_ALL_FOR_ALL; 7092 7093 /* If one device supports hw checksumming, set for all. */ 7094 if (all & NETIF_F_GEN_CSUM) 7095 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 7096 7097 return all; 7098 } 7099 EXPORT_SYMBOL(netdev_increment_features); 7100 7101 static struct hlist_head * __net_init netdev_create_hash(void) 7102 { 7103 int i; 7104 struct hlist_head *hash; 7105 7106 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 7107 if (hash != NULL) 7108 for (i = 0; i < NETDEV_HASHENTRIES; i++) 7109 INIT_HLIST_HEAD(&hash[i]); 7110 7111 return hash; 7112 } 7113 7114 /* Initialize per network namespace state */ 7115 static int __net_init netdev_init(struct net *net) 7116 { 7117 if (net != &init_net) 7118 INIT_LIST_HEAD(&net->dev_base_head); 7119 7120 net->dev_name_head = netdev_create_hash(); 7121 if (net->dev_name_head == NULL) 7122 goto err_name; 7123 7124 net->dev_index_head = netdev_create_hash(); 7125 if (net->dev_index_head == NULL) 7126 goto err_idx; 7127 7128 return 0; 7129 7130 err_idx: 7131 kfree(net->dev_name_head); 7132 err_name: 7133 return -ENOMEM; 7134 } 7135 7136 /** 7137 * netdev_drivername - network driver for the device 7138 * @dev: network device 7139 * 7140 * Determine network driver for device. 7141 */ 7142 const char *netdev_drivername(const struct net_device *dev) 7143 { 7144 const struct device_driver *driver; 7145 const struct device *parent; 7146 const char *empty = ""; 7147 7148 parent = dev->dev.parent; 7149 if (!parent) 7150 return empty; 7151 7152 driver = parent->driver; 7153 if (driver && driver->name) 7154 return driver->name; 7155 return empty; 7156 } 7157 7158 static void __netdev_printk(const char *level, const struct net_device *dev, 7159 struct va_format *vaf) 7160 { 7161 if (dev && dev->dev.parent) { 7162 dev_printk_emit(level[1] - '0', 7163 dev->dev.parent, 7164 "%s %s %s%s: %pV", 7165 dev_driver_string(dev->dev.parent), 7166 dev_name(dev->dev.parent), 7167 netdev_name(dev), netdev_reg_state(dev), 7168 vaf); 7169 } else if (dev) { 7170 printk("%s%s%s: %pV", 7171 level, netdev_name(dev), netdev_reg_state(dev), vaf); 7172 } else { 7173 printk("%s(NULL net_device): %pV", level, vaf); 7174 } 7175 } 7176 7177 void netdev_printk(const char *level, const struct net_device *dev, 7178 const char *format, ...) 7179 { 7180 struct va_format vaf; 7181 va_list args; 7182 7183 va_start(args, format); 7184 7185 vaf.fmt = format; 7186 vaf.va = &args; 7187 7188 __netdev_printk(level, dev, &vaf); 7189 7190 va_end(args); 7191 } 7192 EXPORT_SYMBOL(netdev_printk); 7193 7194 #define define_netdev_printk_level(func, level) \ 7195 void func(const struct net_device *dev, const char *fmt, ...) \ 7196 { \ 7197 struct va_format vaf; \ 7198 va_list args; \ 7199 \ 7200 va_start(args, fmt); \ 7201 \ 7202 vaf.fmt = fmt; \ 7203 vaf.va = &args; \ 7204 \ 7205 __netdev_printk(level, dev, &vaf); \ 7206 \ 7207 va_end(args); \ 7208 } \ 7209 EXPORT_SYMBOL(func); 7210 7211 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 7212 define_netdev_printk_level(netdev_alert, KERN_ALERT); 7213 define_netdev_printk_level(netdev_crit, KERN_CRIT); 7214 define_netdev_printk_level(netdev_err, KERN_ERR); 7215 define_netdev_printk_level(netdev_warn, KERN_WARNING); 7216 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 7217 define_netdev_printk_level(netdev_info, KERN_INFO); 7218 7219 static void __net_exit netdev_exit(struct net *net) 7220 { 7221 kfree(net->dev_name_head); 7222 kfree(net->dev_index_head); 7223 } 7224 7225 static struct pernet_operations __net_initdata netdev_net_ops = { 7226 .init = netdev_init, 7227 .exit = netdev_exit, 7228 }; 7229 7230 static void __net_exit default_device_exit(struct net *net) 7231 { 7232 struct net_device *dev, *aux; 7233 /* 7234 * Push all migratable network devices back to the 7235 * initial network namespace 7236 */ 7237 rtnl_lock(); 7238 for_each_netdev_safe(net, dev, aux) { 7239 int err; 7240 char fb_name[IFNAMSIZ]; 7241 7242 /* Ignore unmoveable devices (i.e. loopback) */ 7243 if (dev->features & NETIF_F_NETNS_LOCAL) 7244 continue; 7245 7246 /* Leave virtual devices for the generic cleanup */ 7247 if (dev->rtnl_link_ops) 7248 continue; 7249 7250 /* Push remaining network devices to init_net */ 7251 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 7252 err = dev_change_net_namespace(dev, &init_net, fb_name); 7253 if (err) { 7254 pr_emerg("%s: failed to move %s to init_net: %d\n", 7255 __func__, dev->name, err); 7256 BUG(); 7257 } 7258 } 7259 rtnl_unlock(); 7260 } 7261 7262 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 7263 { 7264 /* Return with the rtnl_lock held when there are no network 7265 * devices unregistering in any network namespace in net_list. 7266 */ 7267 struct net *net; 7268 bool unregistering; 7269 DEFINE_WAIT_FUNC(wait, woken_wake_function); 7270 7271 add_wait_queue(&netdev_unregistering_wq, &wait); 7272 for (;;) { 7273 unregistering = false; 7274 rtnl_lock(); 7275 list_for_each_entry(net, net_list, exit_list) { 7276 if (net->dev_unreg_count > 0) { 7277 unregistering = true; 7278 break; 7279 } 7280 } 7281 if (!unregistering) 7282 break; 7283 __rtnl_unlock(); 7284 7285 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 7286 } 7287 remove_wait_queue(&netdev_unregistering_wq, &wait); 7288 } 7289 7290 static void __net_exit default_device_exit_batch(struct list_head *net_list) 7291 { 7292 /* At exit all network devices most be removed from a network 7293 * namespace. Do this in the reverse order of registration. 7294 * Do this across as many network namespaces as possible to 7295 * improve batching efficiency. 7296 */ 7297 struct net_device *dev; 7298 struct net *net; 7299 LIST_HEAD(dev_kill_list); 7300 7301 /* To prevent network device cleanup code from dereferencing 7302 * loopback devices or network devices that have been freed 7303 * wait here for all pending unregistrations to complete, 7304 * before unregistring the loopback device and allowing the 7305 * network namespace be freed. 7306 * 7307 * The netdev todo list containing all network devices 7308 * unregistrations that happen in default_device_exit_batch 7309 * will run in the rtnl_unlock() at the end of 7310 * default_device_exit_batch. 7311 */ 7312 rtnl_lock_unregistering(net_list); 7313 list_for_each_entry(net, net_list, exit_list) { 7314 for_each_netdev_reverse(net, dev) { 7315 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 7316 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 7317 else 7318 unregister_netdevice_queue(dev, &dev_kill_list); 7319 } 7320 } 7321 unregister_netdevice_many(&dev_kill_list); 7322 rtnl_unlock(); 7323 } 7324 7325 static struct pernet_operations __net_initdata default_device_ops = { 7326 .exit = default_device_exit, 7327 .exit_batch = default_device_exit_batch, 7328 }; 7329 7330 /* 7331 * Initialize the DEV module. At boot time this walks the device list and 7332 * unhooks any devices that fail to initialise (normally hardware not 7333 * present) and leaves us with a valid list of present and active devices. 7334 * 7335 */ 7336 7337 /* 7338 * This is called single threaded during boot, so no need 7339 * to take the rtnl semaphore. 7340 */ 7341 static int __init net_dev_init(void) 7342 { 7343 int i, rc = -ENOMEM; 7344 7345 BUG_ON(!dev_boot_phase); 7346 7347 if (dev_proc_init()) 7348 goto out; 7349 7350 if (netdev_kobject_init()) 7351 goto out; 7352 7353 INIT_LIST_HEAD(&ptype_all); 7354 for (i = 0; i < PTYPE_HASH_SIZE; i++) 7355 INIT_LIST_HEAD(&ptype_base[i]); 7356 7357 INIT_LIST_HEAD(&offload_base); 7358 7359 if (register_pernet_subsys(&netdev_net_ops)) 7360 goto out; 7361 7362 /* 7363 * Initialise the packet receive queues. 7364 */ 7365 7366 for_each_possible_cpu(i) { 7367 struct softnet_data *sd = &per_cpu(softnet_data, i); 7368 7369 skb_queue_head_init(&sd->input_pkt_queue); 7370 skb_queue_head_init(&sd->process_queue); 7371 INIT_LIST_HEAD(&sd->poll_list); 7372 sd->output_queue_tailp = &sd->output_queue; 7373 #ifdef CONFIG_RPS 7374 sd->csd.func = rps_trigger_softirq; 7375 sd->csd.info = sd; 7376 sd->cpu = i; 7377 #endif 7378 7379 sd->backlog.poll = process_backlog; 7380 sd->backlog.weight = weight_p; 7381 } 7382 7383 dev_boot_phase = 0; 7384 7385 /* The loopback device is special if any other network devices 7386 * is present in a network namespace the loopback device must 7387 * be present. Since we now dynamically allocate and free the 7388 * loopback device ensure this invariant is maintained by 7389 * keeping the loopback device as the first device on the 7390 * list of network devices. Ensuring the loopback devices 7391 * is the first device that appears and the last network device 7392 * that disappears. 7393 */ 7394 if (register_pernet_device(&loopback_net_ops)) 7395 goto out; 7396 7397 if (register_pernet_device(&default_device_ops)) 7398 goto out; 7399 7400 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 7401 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 7402 7403 hotcpu_notifier(dev_cpu_callback, 0); 7404 dst_init(); 7405 rc = 0; 7406 out: 7407 return rc; 7408 } 7409 7410 subsys_initcall(net_dev_init); 7411