1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/mutex.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/notifier.h> 96 #include <linux/skbuff.h> 97 #include <net/net_namespace.h> 98 #include <net/sock.h> 99 #include <linux/rtnetlink.h> 100 #include <linux/stat.h> 101 #include <net/dst.h> 102 #include <net/pkt_sched.h> 103 #include <net/checksum.h> 104 #include <net/xfrm.h> 105 #include <linux/highmem.h> 106 #include <linux/init.h> 107 #include <linux/module.h> 108 #include <linux/netpoll.h> 109 #include <linux/rcupdate.h> 110 #include <linux/delay.h> 111 #include <net/iw_handler.h> 112 #include <asm/current.h> 113 #include <linux/audit.h> 114 #include <linux/dmaengine.h> 115 #include <linux/err.h> 116 #include <linux/ctype.h> 117 #include <linux/if_arp.h> 118 #include <linux/if_vlan.h> 119 #include <linux/ip.h> 120 #include <net/ip.h> 121 #include <linux/ipv6.h> 122 #include <linux/in.h> 123 #include <linux/jhash.h> 124 #include <linux/random.h> 125 #include <trace/events/napi.h> 126 #include <trace/events/net.h> 127 #include <trace/events/skb.h> 128 #include <linux/pci.h> 129 #include <linux/inetdevice.h> 130 #include <linux/cpu_rmap.h> 131 #include <linux/static_key.h> 132 #include <linux/hashtable.h> 133 #include <linux/vmalloc.h> 134 #include <linux/if_macvlan.h> 135 136 #include "net-sysfs.h" 137 138 /* Instead of increasing this, you should create a hash table. */ 139 #define MAX_GRO_SKBS 8 140 141 /* This should be increased if a protocol with a bigger head is added. */ 142 #define GRO_MAX_HEAD (MAX_HEADER + 128) 143 144 static DEFINE_SPINLOCK(ptype_lock); 145 static DEFINE_SPINLOCK(offload_lock); 146 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 147 struct list_head ptype_all __read_mostly; /* Taps */ 148 static struct list_head offload_base __read_mostly; 149 150 static int netif_rx_internal(struct sk_buff *skb); 151 152 /* 153 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 154 * semaphore. 155 * 156 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 157 * 158 * Writers must hold the rtnl semaphore while they loop through the 159 * dev_base_head list, and hold dev_base_lock for writing when they do the 160 * actual updates. This allows pure readers to access the list even 161 * while a writer is preparing to update it. 162 * 163 * To put it another way, dev_base_lock is held for writing only to 164 * protect against pure readers; the rtnl semaphore provides the 165 * protection against other writers. 166 * 167 * See, for example usages, register_netdevice() and 168 * unregister_netdevice(), which must be called with the rtnl 169 * semaphore held. 170 */ 171 DEFINE_RWLOCK(dev_base_lock); 172 EXPORT_SYMBOL(dev_base_lock); 173 174 /* protects napi_hash addition/deletion and napi_gen_id */ 175 static DEFINE_SPINLOCK(napi_hash_lock); 176 177 static unsigned int napi_gen_id; 178 static DEFINE_HASHTABLE(napi_hash, 8); 179 180 static seqcount_t devnet_rename_seq; 181 182 static inline void dev_base_seq_inc(struct net *net) 183 { 184 while (++net->dev_base_seq == 0); 185 } 186 187 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 188 { 189 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 190 191 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 192 } 193 194 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 195 { 196 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 197 } 198 199 static inline void rps_lock(struct softnet_data *sd) 200 { 201 #ifdef CONFIG_RPS 202 spin_lock(&sd->input_pkt_queue.lock); 203 #endif 204 } 205 206 static inline void rps_unlock(struct softnet_data *sd) 207 { 208 #ifdef CONFIG_RPS 209 spin_unlock(&sd->input_pkt_queue.lock); 210 #endif 211 } 212 213 /* Device list insertion */ 214 static void list_netdevice(struct net_device *dev) 215 { 216 struct net *net = dev_net(dev); 217 218 ASSERT_RTNL(); 219 220 write_lock_bh(&dev_base_lock); 221 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 222 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 223 hlist_add_head_rcu(&dev->index_hlist, 224 dev_index_hash(net, dev->ifindex)); 225 write_unlock_bh(&dev_base_lock); 226 227 dev_base_seq_inc(net); 228 } 229 230 /* Device list removal 231 * caller must respect a RCU grace period before freeing/reusing dev 232 */ 233 static void unlist_netdevice(struct net_device *dev) 234 { 235 ASSERT_RTNL(); 236 237 /* Unlink dev from the device chain */ 238 write_lock_bh(&dev_base_lock); 239 list_del_rcu(&dev->dev_list); 240 hlist_del_rcu(&dev->name_hlist); 241 hlist_del_rcu(&dev->index_hlist); 242 write_unlock_bh(&dev_base_lock); 243 244 dev_base_seq_inc(dev_net(dev)); 245 } 246 247 /* 248 * Our notifier list 249 */ 250 251 static RAW_NOTIFIER_HEAD(netdev_chain); 252 253 /* 254 * Device drivers call our routines to queue packets here. We empty the 255 * queue in the local softnet handler. 256 */ 257 258 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 259 EXPORT_PER_CPU_SYMBOL(softnet_data); 260 261 #ifdef CONFIG_LOCKDEP 262 /* 263 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 264 * according to dev->type 265 */ 266 static const unsigned short netdev_lock_type[] = 267 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 268 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 269 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 270 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 271 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 272 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 273 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 274 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 275 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 276 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 277 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 278 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 279 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 280 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 281 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 282 283 static const char *const netdev_lock_name[] = 284 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 285 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 286 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 287 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 288 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 289 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 290 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 291 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 292 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 293 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 294 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 295 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 296 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 297 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 298 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 299 300 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 301 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 302 303 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 304 { 305 int i; 306 307 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 308 if (netdev_lock_type[i] == dev_type) 309 return i; 310 /* the last key is used by default */ 311 return ARRAY_SIZE(netdev_lock_type) - 1; 312 } 313 314 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 315 unsigned short dev_type) 316 { 317 int i; 318 319 i = netdev_lock_pos(dev_type); 320 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 321 netdev_lock_name[i]); 322 } 323 324 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 325 { 326 int i; 327 328 i = netdev_lock_pos(dev->type); 329 lockdep_set_class_and_name(&dev->addr_list_lock, 330 &netdev_addr_lock_key[i], 331 netdev_lock_name[i]); 332 } 333 #else 334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 335 unsigned short dev_type) 336 { 337 } 338 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 339 { 340 } 341 #endif 342 343 /******************************************************************************* 344 345 Protocol management and registration routines 346 347 *******************************************************************************/ 348 349 /* 350 * Add a protocol ID to the list. Now that the input handler is 351 * smarter we can dispense with all the messy stuff that used to be 352 * here. 353 * 354 * BEWARE!!! Protocol handlers, mangling input packets, 355 * MUST BE last in hash buckets and checking protocol handlers 356 * MUST start from promiscuous ptype_all chain in net_bh. 357 * It is true now, do not change it. 358 * Explanation follows: if protocol handler, mangling packet, will 359 * be the first on list, it is not able to sense, that packet 360 * is cloned and should be copied-on-write, so that it will 361 * change it and subsequent readers will get broken packet. 362 * --ANK (980803) 363 */ 364 365 static inline struct list_head *ptype_head(const struct packet_type *pt) 366 { 367 if (pt->type == htons(ETH_P_ALL)) 368 return &ptype_all; 369 else 370 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 371 } 372 373 /** 374 * dev_add_pack - add packet handler 375 * @pt: packet type declaration 376 * 377 * Add a protocol handler to the networking stack. The passed &packet_type 378 * is linked into kernel lists and may not be freed until it has been 379 * removed from the kernel lists. 380 * 381 * This call does not sleep therefore it can not 382 * guarantee all CPU's that are in middle of receiving packets 383 * will see the new packet type (until the next received packet). 384 */ 385 386 void dev_add_pack(struct packet_type *pt) 387 { 388 struct list_head *head = ptype_head(pt); 389 390 spin_lock(&ptype_lock); 391 list_add_rcu(&pt->list, head); 392 spin_unlock(&ptype_lock); 393 } 394 EXPORT_SYMBOL(dev_add_pack); 395 396 /** 397 * __dev_remove_pack - remove packet handler 398 * @pt: packet type declaration 399 * 400 * Remove a protocol handler that was previously added to the kernel 401 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 402 * from the kernel lists and can be freed or reused once this function 403 * returns. 404 * 405 * The packet type might still be in use by receivers 406 * and must not be freed until after all the CPU's have gone 407 * through a quiescent state. 408 */ 409 void __dev_remove_pack(struct packet_type *pt) 410 { 411 struct list_head *head = ptype_head(pt); 412 struct packet_type *pt1; 413 414 spin_lock(&ptype_lock); 415 416 list_for_each_entry(pt1, head, list) { 417 if (pt == pt1) { 418 list_del_rcu(&pt->list); 419 goto out; 420 } 421 } 422 423 pr_warn("dev_remove_pack: %p not found\n", pt); 424 out: 425 spin_unlock(&ptype_lock); 426 } 427 EXPORT_SYMBOL(__dev_remove_pack); 428 429 /** 430 * dev_remove_pack - remove packet handler 431 * @pt: packet type declaration 432 * 433 * Remove a protocol handler that was previously added to the kernel 434 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 435 * from the kernel lists and can be freed or reused once this function 436 * returns. 437 * 438 * This call sleeps to guarantee that no CPU is looking at the packet 439 * type after return. 440 */ 441 void dev_remove_pack(struct packet_type *pt) 442 { 443 __dev_remove_pack(pt); 444 445 synchronize_net(); 446 } 447 EXPORT_SYMBOL(dev_remove_pack); 448 449 450 /** 451 * dev_add_offload - register offload handlers 452 * @po: protocol offload declaration 453 * 454 * Add protocol offload handlers to the networking stack. The passed 455 * &proto_offload is linked into kernel lists and may not be freed until 456 * it has been removed from the kernel lists. 457 * 458 * This call does not sleep therefore it can not 459 * guarantee all CPU's that are in middle of receiving packets 460 * will see the new offload handlers (until the next received packet). 461 */ 462 void dev_add_offload(struct packet_offload *po) 463 { 464 struct list_head *head = &offload_base; 465 466 spin_lock(&offload_lock); 467 list_add_rcu(&po->list, head); 468 spin_unlock(&offload_lock); 469 } 470 EXPORT_SYMBOL(dev_add_offload); 471 472 /** 473 * __dev_remove_offload - remove offload handler 474 * @po: packet offload declaration 475 * 476 * Remove a protocol offload handler that was previously added to the 477 * kernel offload handlers by dev_add_offload(). The passed &offload_type 478 * is removed from the kernel lists and can be freed or reused once this 479 * function returns. 480 * 481 * The packet type might still be in use by receivers 482 * and must not be freed until after all the CPU's have gone 483 * through a quiescent state. 484 */ 485 static void __dev_remove_offload(struct packet_offload *po) 486 { 487 struct list_head *head = &offload_base; 488 struct packet_offload *po1; 489 490 spin_lock(&offload_lock); 491 492 list_for_each_entry(po1, head, list) { 493 if (po == po1) { 494 list_del_rcu(&po->list); 495 goto out; 496 } 497 } 498 499 pr_warn("dev_remove_offload: %p not found\n", po); 500 out: 501 spin_unlock(&offload_lock); 502 } 503 504 /** 505 * dev_remove_offload - remove packet offload handler 506 * @po: packet offload declaration 507 * 508 * Remove a packet offload handler that was previously added to the kernel 509 * offload handlers by dev_add_offload(). The passed &offload_type is 510 * removed from the kernel lists and can be freed or reused once this 511 * function returns. 512 * 513 * This call sleeps to guarantee that no CPU is looking at the packet 514 * type after return. 515 */ 516 void dev_remove_offload(struct packet_offload *po) 517 { 518 __dev_remove_offload(po); 519 520 synchronize_net(); 521 } 522 EXPORT_SYMBOL(dev_remove_offload); 523 524 /****************************************************************************** 525 526 Device Boot-time Settings Routines 527 528 *******************************************************************************/ 529 530 /* Boot time configuration table */ 531 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 532 533 /** 534 * netdev_boot_setup_add - add new setup entry 535 * @name: name of the device 536 * @map: configured settings for the device 537 * 538 * Adds new setup entry to the dev_boot_setup list. The function 539 * returns 0 on error and 1 on success. This is a generic routine to 540 * all netdevices. 541 */ 542 static int netdev_boot_setup_add(char *name, struct ifmap *map) 543 { 544 struct netdev_boot_setup *s; 545 int i; 546 547 s = dev_boot_setup; 548 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 549 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 550 memset(s[i].name, 0, sizeof(s[i].name)); 551 strlcpy(s[i].name, name, IFNAMSIZ); 552 memcpy(&s[i].map, map, sizeof(s[i].map)); 553 break; 554 } 555 } 556 557 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 558 } 559 560 /** 561 * netdev_boot_setup_check - check boot time settings 562 * @dev: the netdevice 563 * 564 * Check boot time settings for the device. 565 * The found settings are set for the device to be used 566 * later in the device probing. 567 * Returns 0 if no settings found, 1 if they are. 568 */ 569 int netdev_boot_setup_check(struct net_device *dev) 570 { 571 struct netdev_boot_setup *s = dev_boot_setup; 572 int i; 573 574 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 575 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 576 !strcmp(dev->name, s[i].name)) { 577 dev->irq = s[i].map.irq; 578 dev->base_addr = s[i].map.base_addr; 579 dev->mem_start = s[i].map.mem_start; 580 dev->mem_end = s[i].map.mem_end; 581 return 1; 582 } 583 } 584 return 0; 585 } 586 EXPORT_SYMBOL(netdev_boot_setup_check); 587 588 589 /** 590 * netdev_boot_base - get address from boot time settings 591 * @prefix: prefix for network device 592 * @unit: id for network device 593 * 594 * Check boot time settings for the base address of device. 595 * The found settings are set for the device to be used 596 * later in the device probing. 597 * Returns 0 if no settings found. 598 */ 599 unsigned long netdev_boot_base(const char *prefix, int unit) 600 { 601 const struct netdev_boot_setup *s = dev_boot_setup; 602 char name[IFNAMSIZ]; 603 int i; 604 605 sprintf(name, "%s%d", prefix, unit); 606 607 /* 608 * If device already registered then return base of 1 609 * to indicate not to probe for this interface 610 */ 611 if (__dev_get_by_name(&init_net, name)) 612 return 1; 613 614 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 615 if (!strcmp(name, s[i].name)) 616 return s[i].map.base_addr; 617 return 0; 618 } 619 620 /* 621 * Saves at boot time configured settings for any netdevice. 622 */ 623 int __init netdev_boot_setup(char *str) 624 { 625 int ints[5]; 626 struct ifmap map; 627 628 str = get_options(str, ARRAY_SIZE(ints), ints); 629 if (!str || !*str) 630 return 0; 631 632 /* Save settings */ 633 memset(&map, 0, sizeof(map)); 634 if (ints[0] > 0) 635 map.irq = ints[1]; 636 if (ints[0] > 1) 637 map.base_addr = ints[2]; 638 if (ints[0] > 2) 639 map.mem_start = ints[3]; 640 if (ints[0] > 3) 641 map.mem_end = ints[4]; 642 643 /* Add new entry to the list */ 644 return netdev_boot_setup_add(str, &map); 645 } 646 647 __setup("netdev=", netdev_boot_setup); 648 649 /******************************************************************************* 650 651 Device Interface Subroutines 652 653 *******************************************************************************/ 654 655 /** 656 * __dev_get_by_name - find a device by its name 657 * @net: the applicable net namespace 658 * @name: name to find 659 * 660 * Find an interface by name. Must be called under RTNL semaphore 661 * or @dev_base_lock. If the name is found a pointer to the device 662 * is returned. If the name is not found then %NULL is returned. The 663 * reference counters are not incremented so the caller must be 664 * careful with locks. 665 */ 666 667 struct net_device *__dev_get_by_name(struct net *net, const char *name) 668 { 669 struct net_device *dev; 670 struct hlist_head *head = dev_name_hash(net, name); 671 672 hlist_for_each_entry(dev, head, name_hlist) 673 if (!strncmp(dev->name, name, IFNAMSIZ)) 674 return dev; 675 676 return NULL; 677 } 678 EXPORT_SYMBOL(__dev_get_by_name); 679 680 /** 681 * dev_get_by_name_rcu - find a device by its name 682 * @net: the applicable net namespace 683 * @name: name to find 684 * 685 * Find an interface by name. 686 * If the name is found a pointer to the device is returned. 687 * If the name is not found then %NULL is returned. 688 * The reference counters are not incremented so the caller must be 689 * careful with locks. The caller must hold RCU lock. 690 */ 691 692 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 693 { 694 struct net_device *dev; 695 struct hlist_head *head = dev_name_hash(net, name); 696 697 hlist_for_each_entry_rcu(dev, head, name_hlist) 698 if (!strncmp(dev->name, name, IFNAMSIZ)) 699 return dev; 700 701 return NULL; 702 } 703 EXPORT_SYMBOL(dev_get_by_name_rcu); 704 705 /** 706 * dev_get_by_name - find a device by its name 707 * @net: the applicable net namespace 708 * @name: name to find 709 * 710 * Find an interface by name. This can be called from any 711 * context and does its own locking. The returned handle has 712 * the usage count incremented and the caller must use dev_put() to 713 * release it when it is no longer needed. %NULL is returned if no 714 * matching device is found. 715 */ 716 717 struct net_device *dev_get_by_name(struct net *net, const char *name) 718 { 719 struct net_device *dev; 720 721 rcu_read_lock(); 722 dev = dev_get_by_name_rcu(net, name); 723 if (dev) 724 dev_hold(dev); 725 rcu_read_unlock(); 726 return dev; 727 } 728 EXPORT_SYMBOL(dev_get_by_name); 729 730 /** 731 * __dev_get_by_index - find a device by its ifindex 732 * @net: the applicable net namespace 733 * @ifindex: index of device 734 * 735 * Search for an interface by index. Returns %NULL if the device 736 * is not found or a pointer to the device. The device has not 737 * had its reference counter increased so the caller must be careful 738 * about locking. The caller must hold either the RTNL semaphore 739 * or @dev_base_lock. 740 */ 741 742 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 743 { 744 struct net_device *dev; 745 struct hlist_head *head = dev_index_hash(net, ifindex); 746 747 hlist_for_each_entry(dev, head, index_hlist) 748 if (dev->ifindex == ifindex) 749 return dev; 750 751 return NULL; 752 } 753 EXPORT_SYMBOL(__dev_get_by_index); 754 755 /** 756 * dev_get_by_index_rcu - find a device by its ifindex 757 * @net: the applicable net namespace 758 * @ifindex: index of device 759 * 760 * Search for an interface by index. Returns %NULL if the device 761 * is not found or a pointer to the device. The device has not 762 * had its reference counter increased so the caller must be careful 763 * about locking. The caller must hold RCU lock. 764 */ 765 766 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 767 { 768 struct net_device *dev; 769 struct hlist_head *head = dev_index_hash(net, ifindex); 770 771 hlist_for_each_entry_rcu(dev, head, index_hlist) 772 if (dev->ifindex == ifindex) 773 return dev; 774 775 return NULL; 776 } 777 EXPORT_SYMBOL(dev_get_by_index_rcu); 778 779 780 /** 781 * dev_get_by_index - find a device by its ifindex 782 * @net: the applicable net namespace 783 * @ifindex: index of device 784 * 785 * Search for an interface by index. Returns NULL if the device 786 * is not found or a pointer to the device. The device returned has 787 * had a reference added and the pointer is safe until the user calls 788 * dev_put to indicate they have finished with it. 789 */ 790 791 struct net_device *dev_get_by_index(struct net *net, int ifindex) 792 { 793 struct net_device *dev; 794 795 rcu_read_lock(); 796 dev = dev_get_by_index_rcu(net, ifindex); 797 if (dev) 798 dev_hold(dev); 799 rcu_read_unlock(); 800 return dev; 801 } 802 EXPORT_SYMBOL(dev_get_by_index); 803 804 /** 805 * netdev_get_name - get a netdevice name, knowing its ifindex. 806 * @net: network namespace 807 * @name: a pointer to the buffer where the name will be stored. 808 * @ifindex: the ifindex of the interface to get the name from. 809 * 810 * The use of raw_seqcount_begin() and cond_resched() before 811 * retrying is required as we want to give the writers a chance 812 * to complete when CONFIG_PREEMPT is not set. 813 */ 814 int netdev_get_name(struct net *net, char *name, int ifindex) 815 { 816 struct net_device *dev; 817 unsigned int seq; 818 819 retry: 820 seq = raw_seqcount_begin(&devnet_rename_seq); 821 rcu_read_lock(); 822 dev = dev_get_by_index_rcu(net, ifindex); 823 if (!dev) { 824 rcu_read_unlock(); 825 return -ENODEV; 826 } 827 828 strcpy(name, dev->name); 829 rcu_read_unlock(); 830 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 831 cond_resched(); 832 goto retry; 833 } 834 835 return 0; 836 } 837 838 /** 839 * dev_getbyhwaddr_rcu - find a device by its hardware address 840 * @net: the applicable net namespace 841 * @type: media type of device 842 * @ha: hardware address 843 * 844 * Search for an interface by MAC address. Returns NULL if the device 845 * is not found or a pointer to the device. 846 * The caller must hold RCU or RTNL. 847 * The returned device has not had its ref count increased 848 * and the caller must therefore be careful about locking 849 * 850 */ 851 852 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 853 const char *ha) 854 { 855 struct net_device *dev; 856 857 for_each_netdev_rcu(net, dev) 858 if (dev->type == type && 859 !memcmp(dev->dev_addr, ha, dev->addr_len)) 860 return dev; 861 862 return NULL; 863 } 864 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 865 866 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 867 { 868 struct net_device *dev; 869 870 ASSERT_RTNL(); 871 for_each_netdev(net, dev) 872 if (dev->type == type) 873 return dev; 874 875 return NULL; 876 } 877 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 878 879 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 880 { 881 struct net_device *dev, *ret = NULL; 882 883 rcu_read_lock(); 884 for_each_netdev_rcu(net, dev) 885 if (dev->type == type) { 886 dev_hold(dev); 887 ret = dev; 888 break; 889 } 890 rcu_read_unlock(); 891 return ret; 892 } 893 EXPORT_SYMBOL(dev_getfirstbyhwtype); 894 895 /** 896 * dev_get_by_flags_rcu - find any device with given flags 897 * @net: the applicable net namespace 898 * @if_flags: IFF_* values 899 * @mask: bitmask of bits in if_flags to check 900 * 901 * Search for any interface with the given flags. Returns NULL if a device 902 * is not found or a pointer to the device. Must be called inside 903 * rcu_read_lock(), and result refcount is unchanged. 904 */ 905 906 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags, 907 unsigned short mask) 908 { 909 struct net_device *dev, *ret; 910 911 ret = NULL; 912 for_each_netdev_rcu(net, dev) { 913 if (((dev->flags ^ if_flags) & mask) == 0) { 914 ret = dev; 915 break; 916 } 917 } 918 return ret; 919 } 920 EXPORT_SYMBOL(dev_get_by_flags_rcu); 921 922 /** 923 * dev_valid_name - check if name is okay for network device 924 * @name: name string 925 * 926 * Network device names need to be valid file names to 927 * to allow sysfs to work. We also disallow any kind of 928 * whitespace. 929 */ 930 bool dev_valid_name(const char *name) 931 { 932 if (*name == '\0') 933 return false; 934 if (strlen(name) >= IFNAMSIZ) 935 return false; 936 if (!strcmp(name, ".") || !strcmp(name, "..")) 937 return false; 938 939 while (*name) { 940 if (*name == '/' || isspace(*name)) 941 return false; 942 name++; 943 } 944 return true; 945 } 946 EXPORT_SYMBOL(dev_valid_name); 947 948 /** 949 * __dev_alloc_name - allocate a name for a device 950 * @net: network namespace to allocate the device name in 951 * @name: name format string 952 * @buf: scratch buffer and result name string 953 * 954 * Passed a format string - eg "lt%d" it will try and find a suitable 955 * id. It scans list of devices to build up a free map, then chooses 956 * the first empty slot. The caller must hold the dev_base or rtnl lock 957 * while allocating the name and adding the device in order to avoid 958 * duplicates. 959 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 960 * Returns the number of the unit assigned or a negative errno code. 961 */ 962 963 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 964 { 965 int i = 0; 966 const char *p; 967 const int max_netdevices = 8*PAGE_SIZE; 968 unsigned long *inuse; 969 struct net_device *d; 970 971 p = strnchr(name, IFNAMSIZ-1, '%'); 972 if (p) { 973 /* 974 * Verify the string as this thing may have come from 975 * the user. There must be either one "%d" and no other "%" 976 * characters. 977 */ 978 if (p[1] != 'd' || strchr(p + 2, '%')) 979 return -EINVAL; 980 981 /* Use one page as a bit array of possible slots */ 982 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 983 if (!inuse) 984 return -ENOMEM; 985 986 for_each_netdev(net, d) { 987 if (!sscanf(d->name, name, &i)) 988 continue; 989 if (i < 0 || i >= max_netdevices) 990 continue; 991 992 /* avoid cases where sscanf is not exact inverse of printf */ 993 snprintf(buf, IFNAMSIZ, name, i); 994 if (!strncmp(buf, d->name, IFNAMSIZ)) 995 set_bit(i, inuse); 996 } 997 998 i = find_first_zero_bit(inuse, max_netdevices); 999 free_page((unsigned long) inuse); 1000 } 1001 1002 if (buf != name) 1003 snprintf(buf, IFNAMSIZ, name, i); 1004 if (!__dev_get_by_name(net, buf)) 1005 return i; 1006 1007 /* It is possible to run out of possible slots 1008 * when the name is long and there isn't enough space left 1009 * for the digits, or if all bits are used. 1010 */ 1011 return -ENFILE; 1012 } 1013 1014 /** 1015 * dev_alloc_name - allocate a name for a device 1016 * @dev: device 1017 * @name: name format string 1018 * 1019 * Passed a format string - eg "lt%d" it will try and find a suitable 1020 * id. It scans list of devices to build up a free map, then chooses 1021 * the first empty slot. The caller must hold the dev_base or rtnl lock 1022 * while allocating the name and adding the device in order to avoid 1023 * duplicates. 1024 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1025 * Returns the number of the unit assigned or a negative errno code. 1026 */ 1027 1028 int dev_alloc_name(struct net_device *dev, const char *name) 1029 { 1030 char buf[IFNAMSIZ]; 1031 struct net *net; 1032 int ret; 1033 1034 BUG_ON(!dev_net(dev)); 1035 net = dev_net(dev); 1036 ret = __dev_alloc_name(net, name, buf); 1037 if (ret >= 0) 1038 strlcpy(dev->name, buf, IFNAMSIZ); 1039 return ret; 1040 } 1041 EXPORT_SYMBOL(dev_alloc_name); 1042 1043 static int dev_alloc_name_ns(struct net *net, 1044 struct net_device *dev, 1045 const char *name) 1046 { 1047 char buf[IFNAMSIZ]; 1048 int ret; 1049 1050 ret = __dev_alloc_name(net, name, buf); 1051 if (ret >= 0) 1052 strlcpy(dev->name, buf, IFNAMSIZ); 1053 return ret; 1054 } 1055 1056 static int dev_get_valid_name(struct net *net, 1057 struct net_device *dev, 1058 const char *name) 1059 { 1060 BUG_ON(!net); 1061 1062 if (!dev_valid_name(name)) 1063 return -EINVAL; 1064 1065 if (strchr(name, '%')) 1066 return dev_alloc_name_ns(net, dev, name); 1067 else if (__dev_get_by_name(net, name)) 1068 return -EEXIST; 1069 else if (dev->name != name) 1070 strlcpy(dev->name, name, IFNAMSIZ); 1071 1072 return 0; 1073 } 1074 1075 /** 1076 * dev_change_name - change name of a device 1077 * @dev: device 1078 * @newname: name (or format string) must be at least IFNAMSIZ 1079 * 1080 * Change name of a device, can pass format strings "eth%d". 1081 * for wildcarding. 1082 */ 1083 int dev_change_name(struct net_device *dev, const char *newname) 1084 { 1085 char oldname[IFNAMSIZ]; 1086 int err = 0; 1087 int ret; 1088 struct net *net; 1089 1090 ASSERT_RTNL(); 1091 BUG_ON(!dev_net(dev)); 1092 1093 net = dev_net(dev); 1094 if (dev->flags & IFF_UP) 1095 return -EBUSY; 1096 1097 write_seqcount_begin(&devnet_rename_seq); 1098 1099 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1100 write_seqcount_end(&devnet_rename_seq); 1101 return 0; 1102 } 1103 1104 memcpy(oldname, dev->name, IFNAMSIZ); 1105 1106 err = dev_get_valid_name(net, dev, newname); 1107 if (err < 0) { 1108 write_seqcount_end(&devnet_rename_seq); 1109 return err; 1110 } 1111 1112 rollback: 1113 ret = device_rename(&dev->dev, dev->name); 1114 if (ret) { 1115 memcpy(dev->name, oldname, IFNAMSIZ); 1116 write_seqcount_end(&devnet_rename_seq); 1117 return ret; 1118 } 1119 1120 write_seqcount_end(&devnet_rename_seq); 1121 1122 netdev_adjacent_rename_links(dev, oldname); 1123 1124 write_lock_bh(&dev_base_lock); 1125 hlist_del_rcu(&dev->name_hlist); 1126 write_unlock_bh(&dev_base_lock); 1127 1128 synchronize_rcu(); 1129 1130 write_lock_bh(&dev_base_lock); 1131 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1132 write_unlock_bh(&dev_base_lock); 1133 1134 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1135 ret = notifier_to_errno(ret); 1136 1137 if (ret) { 1138 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1139 if (err >= 0) { 1140 err = ret; 1141 write_seqcount_begin(&devnet_rename_seq); 1142 memcpy(dev->name, oldname, IFNAMSIZ); 1143 memcpy(oldname, newname, IFNAMSIZ); 1144 goto rollback; 1145 } else { 1146 pr_err("%s: name change rollback failed: %d\n", 1147 dev->name, ret); 1148 } 1149 } 1150 1151 return err; 1152 } 1153 1154 /** 1155 * dev_set_alias - change ifalias of a device 1156 * @dev: device 1157 * @alias: name up to IFALIASZ 1158 * @len: limit of bytes to copy from info 1159 * 1160 * Set ifalias for a device, 1161 */ 1162 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1163 { 1164 char *new_ifalias; 1165 1166 ASSERT_RTNL(); 1167 1168 if (len >= IFALIASZ) 1169 return -EINVAL; 1170 1171 if (!len) { 1172 kfree(dev->ifalias); 1173 dev->ifalias = NULL; 1174 return 0; 1175 } 1176 1177 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1178 if (!new_ifalias) 1179 return -ENOMEM; 1180 dev->ifalias = new_ifalias; 1181 1182 strlcpy(dev->ifalias, alias, len+1); 1183 return len; 1184 } 1185 1186 1187 /** 1188 * netdev_features_change - device changes features 1189 * @dev: device to cause notification 1190 * 1191 * Called to indicate a device has changed features. 1192 */ 1193 void netdev_features_change(struct net_device *dev) 1194 { 1195 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1196 } 1197 EXPORT_SYMBOL(netdev_features_change); 1198 1199 /** 1200 * netdev_state_change - device changes state 1201 * @dev: device to cause notification 1202 * 1203 * Called to indicate a device has changed state. This function calls 1204 * the notifier chains for netdev_chain and sends a NEWLINK message 1205 * to the routing socket. 1206 */ 1207 void netdev_state_change(struct net_device *dev) 1208 { 1209 if (dev->flags & IFF_UP) { 1210 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1211 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1212 } 1213 } 1214 EXPORT_SYMBOL(netdev_state_change); 1215 1216 /** 1217 * netdev_notify_peers - notify network peers about existence of @dev 1218 * @dev: network device 1219 * 1220 * Generate traffic such that interested network peers are aware of 1221 * @dev, such as by generating a gratuitous ARP. This may be used when 1222 * a device wants to inform the rest of the network about some sort of 1223 * reconfiguration such as a failover event or virtual machine 1224 * migration. 1225 */ 1226 void netdev_notify_peers(struct net_device *dev) 1227 { 1228 rtnl_lock(); 1229 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1230 rtnl_unlock(); 1231 } 1232 EXPORT_SYMBOL(netdev_notify_peers); 1233 1234 static int __dev_open(struct net_device *dev) 1235 { 1236 const struct net_device_ops *ops = dev->netdev_ops; 1237 int ret; 1238 1239 ASSERT_RTNL(); 1240 1241 if (!netif_device_present(dev)) 1242 return -ENODEV; 1243 1244 /* Block netpoll from trying to do any rx path servicing. 1245 * If we don't do this there is a chance ndo_poll_controller 1246 * or ndo_poll may be running while we open the device 1247 */ 1248 netpoll_poll_disable(dev); 1249 1250 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1251 ret = notifier_to_errno(ret); 1252 if (ret) 1253 return ret; 1254 1255 set_bit(__LINK_STATE_START, &dev->state); 1256 1257 if (ops->ndo_validate_addr) 1258 ret = ops->ndo_validate_addr(dev); 1259 1260 if (!ret && ops->ndo_open) 1261 ret = ops->ndo_open(dev); 1262 1263 netpoll_poll_enable(dev); 1264 1265 if (ret) 1266 clear_bit(__LINK_STATE_START, &dev->state); 1267 else { 1268 dev->flags |= IFF_UP; 1269 net_dmaengine_get(); 1270 dev_set_rx_mode(dev); 1271 dev_activate(dev); 1272 add_device_randomness(dev->dev_addr, dev->addr_len); 1273 } 1274 1275 return ret; 1276 } 1277 1278 /** 1279 * dev_open - prepare an interface for use. 1280 * @dev: device to open 1281 * 1282 * Takes a device from down to up state. The device's private open 1283 * function is invoked and then the multicast lists are loaded. Finally 1284 * the device is moved into the up state and a %NETDEV_UP message is 1285 * sent to the netdev notifier chain. 1286 * 1287 * Calling this function on an active interface is a nop. On a failure 1288 * a negative errno code is returned. 1289 */ 1290 int dev_open(struct net_device *dev) 1291 { 1292 int ret; 1293 1294 if (dev->flags & IFF_UP) 1295 return 0; 1296 1297 ret = __dev_open(dev); 1298 if (ret < 0) 1299 return ret; 1300 1301 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1302 call_netdevice_notifiers(NETDEV_UP, dev); 1303 1304 return ret; 1305 } 1306 EXPORT_SYMBOL(dev_open); 1307 1308 static int __dev_close_many(struct list_head *head) 1309 { 1310 struct net_device *dev; 1311 1312 ASSERT_RTNL(); 1313 might_sleep(); 1314 1315 list_for_each_entry(dev, head, close_list) { 1316 /* Temporarily disable netpoll until the interface is down */ 1317 netpoll_poll_disable(dev); 1318 1319 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1320 1321 clear_bit(__LINK_STATE_START, &dev->state); 1322 1323 /* Synchronize to scheduled poll. We cannot touch poll list, it 1324 * can be even on different cpu. So just clear netif_running(). 1325 * 1326 * dev->stop() will invoke napi_disable() on all of it's 1327 * napi_struct instances on this device. 1328 */ 1329 smp_mb__after_atomic(); /* Commit netif_running(). */ 1330 } 1331 1332 dev_deactivate_many(head); 1333 1334 list_for_each_entry(dev, head, close_list) { 1335 const struct net_device_ops *ops = dev->netdev_ops; 1336 1337 /* 1338 * Call the device specific close. This cannot fail. 1339 * Only if device is UP 1340 * 1341 * We allow it to be called even after a DETACH hot-plug 1342 * event. 1343 */ 1344 if (ops->ndo_stop) 1345 ops->ndo_stop(dev); 1346 1347 dev->flags &= ~IFF_UP; 1348 net_dmaengine_put(); 1349 netpoll_poll_enable(dev); 1350 } 1351 1352 return 0; 1353 } 1354 1355 static int __dev_close(struct net_device *dev) 1356 { 1357 int retval; 1358 LIST_HEAD(single); 1359 1360 list_add(&dev->close_list, &single); 1361 retval = __dev_close_many(&single); 1362 list_del(&single); 1363 1364 return retval; 1365 } 1366 1367 static int dev_close_many(struct list_head *head) 1368 { 1369 struct net_device *dev, *tmp; 1370 1371 /* Remove the devices that don't need to be closed */ 1372 list_for_each_entry_safe(dev, tmp, head, close_list) 1373 if (!(dev->flags & IFF_UP)) 1374 list_del_init(&dev->close_list); 1375 1376 __dev_close_many(head); 1377 1378 list_for_each_entry_safe(dev, tmp, head, close_list) { 1379 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1380 call_netdevice_notifiers(NETDEV_DOWN, dev); 1381 list_del_init(&dev->close_list); 1382 } 1383 1384 return 0; 1385 } 1386 1387 /** 1388 * dev_close - shutdown an interface. 1389 * @dev: device to shutdown 1390 * 1391 * This function moves an active device into down state. A 1392 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1393 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1394 * chain. 1395 */ 1396 int dev_close(struct net_device *dev) 1397 { 1398 if (dev->flags & IFF_UP) { 1399 LIST_HEAD(single); 1400 1401 list_add(&dev->close_list, &single); 1402 dev_close_many(&single); 1403 list_del(&single); 1404 } 1405 return 0; 1406 } 1407 EXPORT_SYMBOL(dev_close); 1408 1409 1410 /** 1411 * dev_disable_lro - disable Large Receive Offload on a device 1412 * @dev: device 1413 * 1414 * Disable Large Receive Offload (LRO) on a net device. Must be 1415 * called under RTNL. This is needed if received packets may be 1416 * forwarded to another interface. 1417 */ 1418 void dev_disable_lro(struct net_device *dev) 1419 { 1420 /* 1421 * If we're trying to disable lro on a vlan device 1422 * use the underlying physical device instead 1423 */ 1424 if (is_vlan_dev(dev)) 1425 dev = vlan_dev_real_dev(dev); 1426 1427 /* the same for macvlan devices */ 1428 if (netif_is_macvlan(dev)) 1429 dev = macvlan_dev_real_dev(dev); 1430 1431 dev->wanted_features &= ~NETIF_F_LRO; 1432 netdev_update_features(dev); 1433 1434 if (unlikely(dev->features & NETIF_F_LRO)) 1435 netdev_WARN(dev, "failed to disable LRO!\n"); 1436 } 1437 EXPORT_SYMBOL(dev_disable_lro); 1438 1439 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1440 struct net_device *dev) 1441 { 1442 struct netdev_notifier_info info; 1443 1444 netdev_notifier_info_init(&info, dev); 1445 return nb->notifier_call(nb, val, &info); 1446 } 1447 1448 static int dev_boot_phase = 1; 1449 1450 /** 1451 * register_netdevice_notifier - register a network notifier block 1452 * @nb: notifier 1453 * 1454 * Register a notifier to be called when network device events occur. 1455 * The notifier passed is linked into the kernel structures and must 1456 * not be reused until it has been unregistered. A negative errno code 1457 * is returned on a failure. 1458 * 1459 * When registered all registration and up events are replayed 1460 * to the new notifier to allow device to have a race free 1461 * view of the network device list. 1462 */ 1463 1464 int register_netdevice_notifier(struct notifier_block *nb) 1465 { 1466 struct net_device *dev; 1467 struct net_device *last; 1468 struct net *net; 1469 int err; 1470 1471 rtnl_lock(); 1472 err = raw_notifier_chain_register(&netdev_chain, nb); 1473 if (err) 1474 goto unlock; 1475 if (dev_boot_phase) 1476 goto unlock; 1477 for_each_net(net) { 1478 for_each_netdev(net, dev) { 1479 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1480 err = notifier_to_errno(err); 1481 if (err) 1482 goto rollback; 1483 1484 if (!(dev->flags & IFF_UP)) 1485 continue; 1486 1487 call_netdevice_notifier(nb, NETDEV_UP, dev); 1488 } 1489 } 1490 1491 unlock: 1492 rtnl_unlock(); 1493 return err; 1494 1495 rollback: 1496 last = dev; 1497 for_each_net(net) { 1498 for_each_netdev(net, dev) { 1499 if (dev == last) 1500 goto outroll; 1501 1502 if (dev->flags & IFF_UP) { 1503 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1504 dev); 1505 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1506 } 1507 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1508 } 1509 } 1510 1511 outroll: 1512 raw_notifier_chain_unregister(&netdev_chain, nb); 1513 goto unlock; 1514 } 1515 EXPORT_SYMBOL(register_netdevice_notifier); 1516 1517 /** 1518 * unregister_netdevice_notifier - unregister a network notifier block 1519 * @nb: notifier 1520 * 1521 * Unregister a notifier previously registered by 1522 * register_netdevice_notifier(). The notifier is unlinked into the 1523 * kernel structures and may then be reused. A negative errno code 1524 * is returned on a failure. 1525 * 1526 * After unregistering unregister and down device events are synthesized 1527 * for all devices on the device list to the removed notifier to remove 1528 * the need for special case cleanup code. 1529 */ 1530 1531 int unregister_netdevice_notifier(struct notifier_block *nb) 1532 { 1533 struct net_device *dev; 1534 struct net *net; 1535 int err; 1536 1537 rtnl_lock(); 1538 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1539 if (err) 1540 goto unlock; 1541 1542 for_each_net(net) { 1543 for_each_netdev(net, dev) { 1544 if (dev->flags & IFF_UP) { 1545 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1546 dev); 1547 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1548 } 1549 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1550 } 1551 } 1552 unlock: 1553 rtnl_unlock(); 1554 return err; 1555 } 1556 EXPORT_SYMBOL(unregister_netdevice_notifier); 1557 1558 /** 1559 * call_netdevice_notifiers_info - call all network notifier blocks 1560 * @val: value passed unmodified to notifier function 1561 * @dev: net_device pointer passed unmodified to notifier function 1562 * @info: notifier information data 1563 * 1564 * Call all network notifier blocks. Parameters and return value 1565 * are as for raw_notifier_call_chain(). 1566 */ 1567 1568 static int call_netdevice_notifiers_info(unsigned long val, 1569 struct net_device *dev, 1570 struct netdev_notifier_info *info) 1571 { 1572 ASSERT_RTNL(); 1573 netdev_notifier_info_init(info, dev); 1574 return raw_notifier_call_chain(&netdev_chain, val, info); 1575 } 1576 1577 /** 1578 * call_netdevice_notifiers - call all network notifier blocks 1579 * @val: value passed unmodified to notifier function 1580 * @dev: net_device pointer passed unmodified to notifier function 1581 * 1582 * Call all network notifier blocks. Parameters and return value 1583 * are as for raw_notifier_call_chain(). 1584 */ 1585 1586 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1587 { 1588 struct netdev_notifier_info info; 1589 1590 return call_netdevice_notifiers_info(val, dev, &info); 1591 } 1592 EXPORT_SYMBOL(call_netdevice_notifiers); 1593 1594 static struct static_key netstamp_needed __read_mostly; 1595 #ifdef HAVE_JUMP_LABEL 1596 /* We are not allowed to call static_key_slow_dec() from irq context 1597 * If net_disable_timestamp() is called from irq context, defer the 1598 * static_key_slow_dec() calls. 1599 */ 1600 static atomic_t netstamp_needed_deferred; 1601 #endif 1602 1603 void net_enable_timestamp(void) 1604 { 1605 #ifdef HAVE_JUMP_LABEL 1606 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1607 1608 if (deferred) { 1609 while (--deferred) 1610 static_key_slow_dec(&netstamp_needed); 1611 return; 1612 } 1613 #endif 1614 static_key_slow_inc(&netstamp_needed); 1615 } 1616 EXPORT_SYMBOL(net_enable_timestamp); 1617 1618 void net_disable_timestamp(void) 1619 { 1620 #ifdef HAVE_JUMP_LABEL 1621 if (in_interrupt()) { 1622 atomic_inc(&netstamp_needed_deferred); 1623 return; 1624 } 1625 #endif 1626 static_key_slow_dec(&netstamp_needed); 1627 } 1628 EXPORT_SYMBOL(net_disable_timestamp); 1629 1630 static inline void net_timestamp_set(struct sk_buff *skb) 1631 { 1632 skb->tstamp.tv64 = 0; 1633 if (static_key_false(&netstamp_needed)) 1634 __net_timestamp(skb); 1635 } 1636 1637 #define net_timestamp_check(COND, SKB) \ 1638 if (static_key_false(&netstamp_needed)) { \ 1639 if ((COND) && !(SKB)->tstamp.tv64) \ 1640 __net_timestamp(SKB); \ 1641 } \ 1642 1643 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb) 1644 { 1645 unsigned int len; 1646 1647 if (!(dev->flags & IFF_UP)) 1648 return false; 1649 1650 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1651 if (skb->len <= len) 1652 return true; 1653 1654 /* if TSO is enabled, we don't care about the length as the packet 1655 * could be forwarded without being segmented before 1656 */ 1657 if (skb_is_gso(skb)) 1658 return true; 1659 1660 return false; 1661 } 1662 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1663 1664 /** 1665 * dev_forward_skb - loopback an skb to another netif 1666 * 1667 * @dev: destination network device 1668 * @skb: buffer to forward 1669 * 1670 * return values: 1671 * NET_RX_SUCCESS (no congestion) 1672 * NET_RX_DROP (packet was dropped, but freed) 1673 * 1674 * dev_forward_skb can be used for injecting an skb from the 1675 * start_xmit function of one device into the receive queue 1676 * of another device. 1677 * 1678 * The receiving device may be in another namespace, so 1679 * we have to clear all information in the skb that could 1680 * impact namespace isolation. 1681 */ 1682 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1683 { 1684 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 1685 if (skb_copy_ubufs(skb, GFP_ATOMIC)) { 1686 atomic_long_inc(&dev->rx_dropped); 1687 kfree_skb(skb); 1688 return NET_RX_DROP; 1689 } 1690 } 1691 1692 if (unlikely(!is_skb_forwardable(dev, skb))) { 1693 atomic_long_inc(&dev->rx_dropped); 1694 kfree_skb(skb); 1695 return NET_RX_DROP; 1696 } 1697 1698 skb_scrub_packet(skb, true); 1699 skb->protocol = eth_type_trans(skb, dev); 1700 1701 return netif_rx_internal(skb); 1702 } 1703 EXPORT_SYMBOL_GPL(dev_forward_skb); 1704 1705 static inline int deliver_skb(struct sk_buff *skb, 1706 struct packet_type *pt_prev, 1707 struct net_device *orig_dev) 1708 { 1709 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 1710 return -ENOMEM; 1711 atomic_inc(&skb->users); 1712 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1713 } 1714 1715 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1716 { 1717 if (!ptype->af_packet_priv || !skb->sk) 1718 return false; 1719 1720 if (ptype->id_match) 1721 return ptype->id_match(ptype, skb->sk); 1722 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1723 return true; 1724 1725 return false; 1726 } 1727 1728 /* 1729 * Support routine. Sends outgoing frames to any network 1730 * taps currently in use. 1731 */ 1732 1733 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1734 { 1735 struct packet_type *ptype; 1736 struct sk_buff *skb2 = NULL; 1737 struct packet_type *pt_prev = NULL; 1738 1739 rcu_read_lock(); 1740 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1741 /* Never send packets back to the socket 1742 * they originated from - MvS (miquels@drinkel.ow.org) 1743 */ 1744 if ((ptype->dev == dev || !ptype->dev) && 1745 (!skb_loop_sk(ptype, skb))) { 1746 if (pt_prev) { 1747 deliver_skb(skb2, pt_prev, skb->dev); 1748 pt_prev = ptype; 1749 continue; 1750 } 1751 1752 skb2 = skb_clone(skb, GFP_ATOMIC); 1753 if (!skb2) 1754 break; 1755 1756 net_timestamp_set(skb2); 1757 1758 /* skb->nh should be correctly 1759 set by sender, so that the second statement is 1760 just protection against buggy protocols. 1761 */ 1762 skb_reset_mac_header(skb2); 1763 1764 if (skb_network_header(skb2) < skb2->data || 1765 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 1766 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1767 ntohs(skb2->protocol), 1768 dev->name); 1769 skb_reset_network_header(skb2); 1770 } 1771 1772 skb2->transport_header = skb2->network_header; 1773 skb2->pkt_type = PACKET_OUTGOING; 1774 pt_prev = ptype; 1775 } 1776 } 1777 if (pt_prev) 1778 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1779 rcu_read_unlock(); 1780 } 1781 1782 /** 1783 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1784 * @dev: Network device 1785 * @txq: number of queues available 1786 * 1787 * If real_num_tx_queues is changed the tc mappings may no longer be 1788 * valid. To resolve this verify the tc mapping remains valid and if 1789 * not NULL the mapping. With no priorities mapping to this 1790 * offset/count pair it will no longer be used. In the worst case TC0 1791 * is invalid nothing can be done so disable priority mappings. If is 1792 * expected that drivers will fix this mapping if they can before 1793 * calling netif_set_real_num_tx_queues. 1794 */ 1795 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1796 { 1797 int i; 1798 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1799 1800 /* If TC0 is invalidated disable TC mapping */ 1801 if (tc->offset + tc->count > txq) { 1802 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1803 dev->num_tc = 0; 1804 return; 1805 } 1806 1807 /* Invalidated prio to tc mappings set to TC0 */ 1808 for (i = 1; i < TC_BITMASK + 1; i++) { 1809 int q = netdev_get_prio_tc_map(dev, i); 1810 1811 tc = &dev->tc_to_txq[q]; 1812 if (tc->offset + tc->count > txq) { 1813 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1814 i, q); 1815 netdev_set_prio_tc_map(dev, i, 0); 1816 } 1817 } 1818 } 1819 1820 #ifdef CONFIG_XPS 1821 static DEFINE_MUTEX(xps_map_mutex); 1822 #define xmap_dereference(P) \ 1823 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 1824 1825 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps, 1826 int cpu, u16 index) 1827 { 1828 struct xps_map *map = NULL; 1829 int pos; 1830 1831 if (dev_maps) 1832 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1833 1834 for (pos = 0; map && pos < map->len; pos++) { 1835 if (map->queues[pos] == index) { 1836 if (map->len > 1) { 1837 map->queues[pos] = map->queues[--map->len]; 1838 } else { 1839 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL); 1840 kfree_rcu(map, rcu); 1841 map = NULL; 1842 } 1843 break; 1844 } 1845 } 1846 1847 return map; 1848 } 1849 1850 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 1851 { 1852 struct xps_dev_maps *dev_maps; 1853 int cpu, i; 1854 bool active = false; 1855 1856 mutex_lock(&xps_map_mutex); 1857 dev_maps = xmap_dereference(dev->xps_maps); 1858 1859 if (!dev_maps) 1860 goto out_no_maps; 1861 1862 for_each_possible_cpu(cpu) { 1863 for (i = index; i < dev->num_tx_queues; i++) { 1864 if (!remove_xps_queue(dev_maps, cpu, i)) 1865 break; 1866 } 1867 if (i == dev->num_tx_queues) 1868 active = true; 1869 } 1870 1871 if (!active) { 1872 RCU_INIT_POINTER(dev->xps_maps, NULL); 1873 kfree_rcu(dev_maps, rcu); 1874 } 1875 1876 for (i = index; i < dev->num_tx_queues; i++) 1877 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 1878 NUMA_NO_NODE); 1879 1880 out_no_maps: 1881 mutex_unlock(&xps_map_mutex); 1882 } 1883 1884 static struct xps_map *expand_xps_map(struct xps_map *map, 1885 int cpu, u16 index) 1886 { 1887 struct xps_map *new_map; 1888 int alloc_len = XPS_MIN_MAP_ALLOC; 1889 int i, pos; 1890 1891 for (pos = 0; map && pos < map->len; pos++) { 1892 if (map->queues[pos] != index) 1893 continue; 1894 return map; 1895 } 1896 1897 /* Need to add queue to this CPU's existing map */ 1898 if (map) { 1899 if (pos < map->alloc_len) 1900 return map; 1901 1902 alloc_len = map->alloc_len * 2; 1903 } 1904 1905 /* Need to allocate new map to store queue on this CPU's map */ 1906 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 1907 cpu_to_node(cpu)); 1908 if (!new_map) 1909 return NULL; 1910 1911 for (i = 0; i < pos; i++) 1912 new_map->queues[i] = map->queues[i]; 1913 new_map->alloc_len = alloc_len; 1914 new_map->len = pos; 1915 1916 return new_map; 1917 } 1918 1919 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 1920 u16 index) 1921 { 1922 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 1923 struct xps_map *map, *new_map; 1924 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES); 1925 int cpu, numa_node_id = -2; 1926 bool active = false; 1927 1928 mutex_lock(&xps_map_mutex); 1929 1930 dev_maps = xmap_dereference(dev->xps_maps); 1931 1932 /* allocate memory for queue storage */ 1933 for_each_online_cpu(cpu) { 1934 if (!cpumask_test_cpu(cpu, mask)) 1935 continue; 1936 1937 if (!new_dev_maps) 1938 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 1939 if (!new_dev_maps) { 1940 mutex_unlock(&xps_map_mutex); 1941 return -ENOMEM; 1942 } 1943 1944 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 1945 NULL; 1946 1947 map = expand_xps_map(map, cpu, index); 1948 if (!map) 1949 goto error; 1950 1951 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 1952 } 1953 1954 if (!new_dev_maps) 1955 goto out_no_new_maps; 1956 1957 for_each_possible_cpu(cpu) { 1958 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 1959 /* add queue to CPU maps */ 1960 int pos = 0; 1961 1962 map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 1963 while ((pos < map->len) && (map->queues[pos] != index)) 1964 pos++; 1965 1966 if (pos == map->len) 1967 map->queues[map->len++] = index; 1968 #ifdef CONFIG_NUMA 1969 if (numa_node_id == -2) 1970 numa_node_id = cpu_to_node(cpu); 1971 else if (numa_node_id != cpu_to_node(cpu)) 1972 numa_node_id = -1; 1973 #endif 1974 } else if (dev_maps) { 1975 /* fill in the new device map from the old device map */ 1976 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1977 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 1978 } 1979 1980 } 1981 1982 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 1983 1984 /* Cleanup old maps */ 1985 if (dev_maps) { 1986 for_each_possible_cpu(cpu) { 1987 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 1988 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1989 if (map && map != new_map) 1990 kfree_rcu(map, rcu); 1991 } 1992 1993 kfree_rcu(dev_maps, rcu); 1994 } 1995 1996 dev_maps = new_dev_maps; 1997 active = true; 1998 1999 out_no_new_maps: 2000 /* update Tx queue numa node */ 2001 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2002 (numa_node_id >= 0) ? numa_node_id : 2003 NUMA_NO_NODE); 2004 2005 if (!dev_maps) 2006 goto out_no_maps; 2007 2008 /* removes queue from unused CPUs */ 2009 for_each_possible_cpu(cpu) { 2010 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) 2011 continue; 2012 2013 if (remove_xps_queue(dev_maps, cpu, index)) 2014 active = true; 2015 } 2016 2017 /* free map if not active */ 2018 if (!active) { 2019 RCU_INIT_POINTER(dev->xps_maps, NULL); 2020 kfree_rcu(dev_maps, rcu); 2021 } 2022 2023 out_no_maps: 2024 mutex_unlock(&xps_map_mutex); 2025 2026 return 0; 2027 error: 2028 /* remove any maps that we added */ 2029 for_each_possible_cpu(cpu) { 2030 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2031 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 2032 NULL; 2033 if (new_map && new_map != map) 2034 kfree(new_map); 2035 } 2036 2037 mutex_unlock(&xps_map_mutex); 2038 2039 kfree(new_dev_maps); 2040 return -ENOMEM; 2041 } 2042 EXPORT_SYMBOL(netif_set_xps_queue); 2043 2044 #endif 2045 /* 2046 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2047 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 2048 */ 2049 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2050 { 2051 int rc; 2052 2053 if (txq < 1 || txq > dev->num_tx_queues) 2054 return -EINVAL; 2055 2056 if (dev->reg_state == NETREG_REGISTERED || 2057 dev->reg_state == NETREG_UNREGISTERING) { 2058 ASSERT_RTNL(); 2059 2060 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2061 txq); 2062 if (rc) 2063 return rc; 2064 2065 if (dev->num_tc) 2066 netif_setup_tc(dev, txq); 2067 2068 if (txq < dev->real_num_tx_queues) { 2069 qdisc_reset_all_tx_gt(dev, txq); 2070 #ifdef CONFIG_XPS 2071 netif_reset_xps_queues_gt(dev, txq); 2072 #endif 2073 } 2074 } 2075 2076 dev->real_num_tx_queues = txq; 2077 return 0; 2078 } 2079 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2080 2081 #ifdef CONFIG_SYSFS 2082 /** 2083 * netif_set_real_num_rx_queues - set actual number of RX queues used 2084 * @dev: Network device 2085 * @rxq: Actual number of RX queues 2086 * 2087 * This must be called either with the rtnl_lock held or before 2088 * registration of the net device. Returns 0 on success, or a 2089 * negative error code. If called before registration, it always 2090 * succeeds. 2091 */ 2092 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2093 { 2094 int rc; 2095 2096 if (rxq < 1 || rxq > dev->num_rx_queues) 2097 return -EINVAL; 2098 2099 if (dev->reg_state == NETREG_REGISTERED) { 2100 ASSERT_RTNL(); 2101 2102 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2103 rxq); 2104 if (rc) 2105 return rc; 2106 } 2107 2108 dev->real_num_rx_queues = rxq; 2109 return 0; 2110 } 2111 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2112 #endif 2113 2114 /** 2115 * netif_get_num_default_rss_queues - default number of RSS queues 2116 * 2117 * This routine should set an upper limit on the number of RSS queues 2118 * used by default by multiqueue devices. 2119 */ 2120 int netif_get_num_default_rss_queues(void) 2121 { 2122 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2123 } 2124 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2125 2126 static inline void __netif_reschedule(struct Qdisc *q) 2127 { 2128 struct softnet_data *sd; 2129 unsigned long flags; 2130 2131 local_irq_save(flags); 2132 sd = &__get_cpu_var(softnet_data); 2133 q->next_sched = NULL; 2134 *sd->output_queue_tailp = q; 2135 sd->output_queue_tailp = &q->next_sched; 2136 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2137 local_irq_restore(flags); 2138 } 2139 2140 void __netif_schedule(struct Qdisc *q) 2141 { 2142 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2143 __netif_reschedule(q); 2144 } 2145 EXPORT_SYMBOL(__netif_schedule); 2146 2147 struct dev_kfree_skb_cb { 2148 enum skb_free_reason reason; 2149 }; 2150 2151 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2152 { 2153 return (struct dev_kfree_skb_cb *)skb->cb; 2154 } 2155 2156 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2157 { 2158 unsigned long flags; 2159 2160 if (likely(atomic_read(&skb->users) == 1)) { 2161 smp_rmb(); 2162 atomic_set(&skb->users, 0); 2163 } else if (likely(!atomic_dec_and_test(&skb->users))) { 2164 return; 2165 } 2166 get_kfree_skb_cb(skb)->reason = reason; 2167 local_irq_save(flags); 2168 skb->next = __this_cpu_read(softnet_data.completion_queue); 2169 __this_cpu_write(softnet_data.completion_queue, skb); 2170 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2171 local_irq_restore(flags); 2172 } 2173 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2174 2175 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2176 { 2177 if (in_irq() || irqs_disabled()) 2178 __dev_kfree_skb_irq(skb, reason); 2179 else 2180 dev_kfree_skb(skb); 2181 } 2182 EXPORT_SYMBOL(__dev_kfree_skb_any); 2183 2184 2185 /** 2186 * netif_device_detach - mark device as removed 2187 * @dev: network device 2188 * 2189 * Mark device as removed from system and therefore no longer available. 2190 */ 2191 void netif_device_detach(struct net_device *dev) 2192 { 2193 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2194 netif_running(dev)) { 2195 netif_tx_stop_all_queues(dev); 2196 } 2197 } 2198 EXPORT_SYMBOL(netif_device_detach); 2199 2200 /** 2201 * netif_device_attach - mark device as attached 2202 * @dev: network device 2203 * 2204 * Mark device as attached from system and restart if needed. 2205 */ 2206 void netif_device_attach(struct net_device *dev) 2207 { 2208 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2209 netif_running(dev)) { 2210 netif_tx_wake_all_queues(dev); 2211 __netdev_watchdog_up(dev); 2212 } 2213 } 2214 EXPORT_SYMBOL(netif_device_attach); 2215 2216 static void skb_warn_bad_offload(const struct sk_buff *skb) 2217 { 2218 static const netdev_features_t null_features = 0; 2219 struct net_device *dev = skb->dev; 2220 const char *driver = ""; 2221 2222 if (!net_ratelimit()) 2223 return; 2224 2225 if (dev && dev->dev.parent) 2226 driver = dev_driver_string(dev->dev.parent); 2227 2228 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2229 "gso_type=%d ip_summed=%d\n", 2230 driver, dev ? &dev->features : &null_features, 2231 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2232 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2233 skb_shinfo(skb)->gso_type, skb->ip_summed); 2234 } 2235 2236 /* 2237 * Invalidate hardware checksum when packet is to be mangled, and 2238 * complete checksum manually on outgoing path. 2239 */ 2240 int skb_checksum_help(struct sk_buff *skb) 2241 { 2242 __wsum csum; 2243 int ret = 0, offset; 2244 2245 if (skb->ip_summed == CHECKSUM_COMPLETE) 2246 goto out_set_summed; 2247 2248 if (unlikely(skb_shinfo(skb)->gso_size)) { 2249 skb_warn_bad_offload(skb); 2250 return -EINVAL; 2251 } 2252 2253 /* Before computing a checksum, we should make sure no frag could 2254 * be modified by an external entity : checksum could be wrong. 2255 */ 2256 if (skb_has_shared_frag(skb)) { 2257 ret = __skb_linearize(skb); 2258 if (ret) 2259 goto out; 2260 } 2261 2262 offset = skb_checksum_start_offset(skb); 2263 BUG_ON(offset >= skb_headlen(skb)); 2264 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2265 2266 offset += skb->csum_offset; 2267 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2268 2269 if (skb_cloned(skb) && 2270 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2271 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2272 if (ret) 2273 goto out; 2274 } 2275 2276 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 2277 out_set_summed: 2278 skb->ip_summed = CHECKSUM_NONE; 2279 out: 2280 return ret; 2281 } 2282 EXPORT_SYMBOL(skb_checksum_help); 2283 2284 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2285 { 2286 __be16 type = skb->protocol; 2287 int vlan_depth = skb->mac_len; 2288 2289 /* Tunnel gso handlers can set protocol to ethernet. */ 2290 if (type == htons(ETH_P_TEB)) { 2291 struct ethhdr *eth; 2292 2293 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2294 return 0; 2295 2296 eth = (struct ethhdr *)skb_mac_header(skb); 2297 type = eth->h_proto; 2298 } 2299 2300 while (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) { 2301 struct vlan_hdr *vh; 2302 2303 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN))) 2304 return 0; 2305 2306 vh = (struct vlan_hdr *)(skb->data + vlan_depth); 2307 type = vh->h_vlan_encapsulated_proto; 2308 vlan_depth += VLAN_HLEN; 2309 } 2310 2311 *depth = vlan_depth; 2312 2313 return type; 2314 } 2315 2316 /** 2317 * skb_mac_gso_segment - mac layer segmentation handler. 2318 * @skb: buffer to segment 2319 * @features: features for the output path (see dev->features) 2320 */ 2321 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2322 netdev_features_t features) 2323 { 2324 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2325 struct packet_offload *ptype; 2326 int vlan_depth = skb->mac_len; 2327 __be16 type = skb_network_protocol(skb, &vlan_depth); 2328 2329 if (unlikely(!type)) 2330 return ERR_PTR(-EINVAL); 2331 2332 __skb_pull(skb, vlan_depth); 2333 2334 rcu_read_lock(); 2335 list_for_each_entry_rcu(ptype, &offload_base, list) { 2336 if (ptype->type == type && ptype->callbacks.gso_segment) { 2337 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 2338 int err; 2339 2340 err = ptype->callbacks.gso_send_check(skb); 2341 segs = ERR_PTR(err); 2342 if (err || skb_gso_ok(skb, features)) 2343 break; 2344 __skb_push(skb, (skb->data - 2345 skb_network_header(skb))); 2346 } 2347 segs = ptype->callbacks.gso_segment(skb, features); 2348 break; 2349 } 2350 } 2351 rcu_read_unlock(); 2352 2353 __skb_push(skb, skb->data - skb_mac_header(skb)); 2354 2355 return segs; 2356 } 2357 EXPORT_SYMBOL(skb_mac_gso_segment); 2358 2359 2360 /* openvswitch calls this on rx path, so we need a different check. 2361 */ 2362 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2363 { 2364 if (tx_path) 2365 return skb->ip_summed != CHECKSUM_PARTIAL; 2366 else 2367 return skb->ip_summed == CHECKSUM_NONE; 2368 } 2369 2370 /** 2371 * __skb_gso_segment - Perform segmentation on skb. 2372 * @skb: buffer to segment 2373 * @features: features for the output path (see dev->features) 2374 * @tx_path: whether it is called in TX path 2375 * 2376 * This function segments the given skb and returns a list of segments. 2377 * 2378 * It may return NULL if the skb requires no segmentation. This is 2379 * only possible when GSO is used for verifying header integrity. 2380 */ 2381 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2382 netdev_features_t features, bool tx_path) 2383 { 2384 if (unlikely(skb_needs_check(skb, tx_path))) { 2385 int err; 2386 2387 skb_warn_bad_offload(skb); 2388 2389 if (skb_header_cloned(skb) && 2390 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 2391 return ERR_PTR(err); 2392 } 2393 2394 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2395 SKB_GSO_CB(skb)->encap_level = 0; 2396 2397 skb_reset_mac_header(skb); 2398 skb_reset_mac_len(skb); 2399 2400 return skb_mac_gso_segment(skb, features); 2401 } 2402 EXPORT_SYMBOL(__skb_gso_segment); 2403 2404 /* Take action when hardware reception checksum errors are detected. */ 2405 #ifdef CONFIG_BUG 2406 void netdev_rx_csum_fault(struct net_device *dev) 2407 { 2408 if (net_ratelimit()) { 2409 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2410 dump_stack(); 2411 } 2412 } 2413 EXPORT_SYMBOL(netdev_rx_csum_fault); 2414 #endif 2415 2416 /* Actually, we should eliminate this check as soon as we know, that: 2417 * 1. IOMMU is present and allows to map all the memory. 2418 * 2. No high memory really exists on this machine. 2419 */ 2420 2421 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2422 { 2423 #ifdef CONFIG_HIGHMEM 2424 int i; 2425 if (!(dev->features & NETIF_F_HIGHDMA)) { 2426 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2427 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2428 if (PageHighMem(skb_frag_page(frag))) 2429 return 1; 2430 } 2431 } 2432 2433 if (PCI_DMA_BUS_IS_PHYS) { 2434 struct device *pdev = dev->dev.parent; 2435 2436 if (!pdev) 2437 return 0; 2438 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2439 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2440 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2441 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2442 return 1; 2443 } 2444 } 2445 #endif 2446 return 0; 2447 } 2448 2449 struct dev_gso_cb { 2450 void (*destructor)(struct sk_buff *skb); 2451 }; 2452 2453 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 2454 2455 static void dev_gso_skb_destructor(struct sk_buff *skb) 2456 { 2457 struct dev_gso_cb *cb; 2458 2459 kfree_skb_list(skb->next); 2460 skb->next = NULL; 2461 2462 cb = DEV_GSO_CB(skb); 2463 if (cb->destructor) 2464 cb->destructor(skb); 2465 } 2466 2467 /** 2468 * dev_gso_segment - Perform emulated hardware segmentation on skb. 2469 * @skb: buffer to segment 2470 * @features: device features as applicable to this skb 2471 * 2472 * This function segments the given skb and stores the list of segments 2473 * in skb->next. 2474 */ 2475 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features) 2476 { 2477 struct sk_buff *segs; 2478 2479 segs = skb_gso_segment(skb, features); 2480 2481 /* Verifying header integrity only. */ 2482 if (!segs) 2483 return 0; 2484 2485 if (IS_ERR(segs)) 2486 return PTR_ERR(segs); 2487 2488 skb->next = segs; 2489 DEV_GSO_CB(skb)->destructor = skb->destructor; 2490 skb->destructor = dev_gso_skb_destructor; 2491 2492 return 0; 2493 } 2494 2495 static netdev_features_t harmonize_features(struct sk_buff *skb, 2496 netdev_features_t features) 2497 { 2498 int tmp; 2499 2500 if (skb->ip_summed != CHECKSUM_NONE && 2501 !can_checksum_protocol(features, skb_network_protocol(skb, &tmp))) { 2502 features &= ~NETIF_F_ALL_CSUM; 2503 } else if (illegal_highdma(skb->dev, skb)) { 2504 features &= ~NETIF_F_SG; 2505 } 2506 2507 return features; 2508 } 2509 2510 netdev_features_t netif_skb_features(struct sk_buff *skb) 2511 { 2512 __be16 protocol = skb->protocol; 2513 netdev_features_t features = skb->dev->features; 2514 2515 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs) 2516 features &= ~NETIF_F_GSO_MASK; 2517 2518 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) { 2519 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 2520 protocol = veh->h_vlan_encapsulated_proto; 2521 } else if (!vlan_tx_tag_present(skb)) { 2522 return harmonize_features(skb, features); 2523 } 2524 2525 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX | 2526 NETIF_F_HW_VLAN_STAG_TX); 2527 2528 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) 2529 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST | 2530 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX | 2531 NETIF_F_HW_VLAN_STAG_TX; 2532 2533 return harmonize_features(skb, features); 2534 } 2535 EXPORT_SYMBOL(netif_skb_features); 2536 2537 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 2538 struct netdev_queue *txq) 2539 { 2540 const struct net_device_ops *ops = dev->netdev_ops; 2541 int rc = NETDEV_TX_OK; 2542 unsigned int skb_len; 2543 2544 if (likely(!skb->next)) { 2545 netdev_features_t features; 2546 2547 /* 2548 * If device doesn't need skb->dst, release it right now while 2549 * its hot in this cpu cache 2550 */ 2551 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2552 skb_dst_drop(skb); 2553 2554 features = netif_skb_features(skb); 2555 2556 if (vlan_tx_tag_present(skb) && 2557 !vlan_hw_offload_capable(features, skb->vlan_proto)) { 2558 skb = __vlan_put_tag(skb, skb->vlan_proto, 2559 vlan_tx_tag_get(skb)); 2560 if (unlikely(!skb)) 2561 goto out; 2562 2563 skb->vlan_tci = 0; 2564 } 2565 2566 /* If encapsulation offload request, verify we are testing 2567 * hardware encapsulation features instead of standard 2568 * features for the netdev 2569 */ 2570 if (skb->encapsulation) 2571 features &= dev->hw_enc_features; 2572 2573 if (netif_needs_gso(skb, features)) { 2574 if (unlikely(dev_gso_segment(skb, features))) 2575 goto out_kfree_skb; 2576 if (skb->next) 2577 goto gso; 2578 } else { 2579 if (skb_needs_linearize(skb, features) && 2580 __skb_linearize(skb)) 2581 goto out_kfree_skb; 2582 2583 /* If packet is not checksummed and device does not 2584 * support checksumming for this protocol, complete 2585 * checksumming here. 2586 */ 2587 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2588 if (skb->encapsulation) 2589 skb_set_inner_transport_header(skb, 2590 skb_checksum_start_offset(skb)); 2591 else 2592 skb_set_transport_header(skb, 2593 skb_checksum_start_offset(skb)); 2594 if (!(features & NETIF_F_ALL_CSUM) && 2595 skb_checksum_help(skb)) 2596 goto out_kfree_skb; 2597 } 2598 } 2599 2600 if (!list_empty(&ptype_all)) 2601 dev_queue_xmit_nit(skb, dev); 2602 2603 skb_len = skb->len; 2604 trace_net_dev_start_xmit(skb, dev); 2605 rc = ops->ndo_start_xmit(skb, dev); 2606 trace_net_dev_xmit(skb, rc, dev, skb_len); 2607 if (rc == NETDEV_TX_OK) 2608 txq_trans_update(txq); 2609 return rc; 2610 } 2611 2612 gso: 2613 do { 2614 struct sk_buff *nskb = skb->next; 2615 2616 skb->next = nskb->next; 2617 nskb->next = NULL; 2618 2619 if (!list_empty(&ptype_all)) 2620 dev_queue_xmit_nit(nskb, dev); 2621 2622 skb_len = nskb->len; 2623 trace_net_dev_start_xmit(nskb, dev); 2624 rc = ops->ndo_start_xmit(nskb, dev); 2625 trace_net_dev_xmit(nskb, rc, dev, skb_len); 2626 if (unlikely(rc != NETDEV_TX_OK)) { 2627 if (rc & ~NETDEV_TX_MASK) 2628 goto out_kfree_gso_skb; 2629 nskb->next = skb->next; 2630 skb->next = nskb; 2631 return rc; 2632 } 2633 txq_trans_update(txq); 2634 if (unlikely(netif_xmit_stopped(txq) && skb->next)) 2635 return NETDEV_TX_BUSY; 2636 } while (skb->next); 2637 2638 out_kfree_gso_skb: 2639 if (likely(skb->next == NULL)) { 2640 skb->destructor = DEV_GSO_CB(skb)->destructor; 2641 consume_skb(skb); 2642 return rc; 2643 } 2644 out_kfree_skb: 2645 kfree_skb(skb); 2646 out: 2647 return rc; 2648 } 2649 EXPORT_SYMBOL_GPL(dev_hard_start_xmit); 2650 2651 static void qdisc_pkt_len_init(struct sk_buff *skb) 2652 { 2653 const struct skb_shared_info *shinfo = skb_shinfo(skb); 2654 2655 qdisc_skb_cb(skb)->pkt_len = skb->len; 2656 2657 /* To get more precise estimation of bytes sent on wire, 2658 * we add to pkt_len the headers size of all segments 2659 */ 2660 if (shinfo->gso_size) { 2661 unsigned int hdr_len; 2662 u16 gso_segs = shinfo->gso_segs; 2663 2664 /* mac layer + network layer */ 2665 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 2666 2667 /* + transport layer */ 2668 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 2669 hdr_len += tcp_hdrlen(skb); 2670 else 2671 hdr_len += sizeof(struct udphdr); 2672 2673 if (shinfo->gso_type & SKB_GSO_DODGY) 2674 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 2675 shinfo->gso_size); 2676 2677 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 2678 } 2679 } 2680 2681 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2682 struct net_device *dev, 2683 struct netdev_queue *txq) 2684 { 2685 spinlock_t *root_lock = qdisc_lock(q); 2686 bool contended; 2687 int rc; 2688 2689 qdisc_pkt_len_init(skb); 2690 qdisc_calculate_pkt_len(skb, q); 2691 /* 2692 * Heuristic to force contended enqueues to serialize on a 2693 * separate lock before trying to get qdisc main lock. 2694 * This permits __QDISC_STATE_RUNNING owner to get the lock more often 2695 * and dequeue packets faster. 2696 */ 2697 contended = qdisc_is_running(q); 2698 if (unlikely(contended)) 2699 spin_lock(&q->busylock); 2700 2701 spin_lock(root_lock); 2702 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2703 kfree_skb(skb); 2704 rc = NET_XMIT_DROP; 2705 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2706 qdisc_run_begin(q)) { 2707 /* 2708 * This is a work-conserving queue; there are no old skbs 2709 * waiting to be sent out; and the qdisc is not running - 2710 * xmit the skb directly. 2711 */ 2712 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE)) 2713 skb_dst_force(skb); 2714 2715 qdisc_bstats_update(q, skb); 2716 2717 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) { 2718 if (unlikely(contended)) { 2719 spin_unlock(&q->busylock); 2720 contended = false; 2721 } 2722 __qdisc_run(q); 2723 } else 2724 qdisc_run_end(q); 2725 2726 rc = NET_XMIT_SUCCESS; 2727 } else { 2728 skb_dst_force(skb); 2729 rc = q->enqueue(skb, q) & NET_XMIT_MASK; 2730 if (qdisc_run_begin(q)) { 2731 if (unlikely(contended)) { 2732 spin_unlock(&q->busylock); 2733 contended = false; 2734 } 2735 __qdisc_run(q); 2736 } 2737 } 2738 spin_unlock(root_lock); 2739 if (unlikely(contended)) 2740 spin_unlock(&q->busylock); 2741 return rc; 2742 } 2743 2744 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2745 static void skb_update_prio(struct sk_buff *skb) 2746 { 2747 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 2748 2749 if (!skb->priority && skb->sk && map) { 2750 unsigned int prioidx = skb->sk->sk_cgrp_prioidx; 2751 2752 if (prioidx < map->priomap_len) 2753 skb->priority = map->priomap[prioidx]; 2754 } 2755 } 2756 #else 2757 #define skb_update_prio(skb) 2758 #endif 2759 2760 static DEFINE_PER_CPU(int, xmit_recursion); 2761 #define RECURSION_LIMIT 10 2762 2763 /** 2764 * dev_loopback_xmit - loop back @skb 2765 * @skb: buffer to transmit 2766 */ 2767 int dev_loopback_xmit(struct sk_buff *skb) 2768 { 2769 skb_reset_mac_header(skb); 2770 __skb_pull(skb, skb_network_offset(skb)); 2771 skb->pkt_type = PACKET_LOOPBACK; 2772 skb->ip_summed = CHECKSUM_UNNECESSARY; 2773 WARN_ON(!skb_dst(skb)); 2774 skb_dst_force(skb); 2775 netif_rx_ni(skb); 2776 return 0; 2777 } 2778 EXPORT_SYMBOL(dev_loopback_xmit); 2779 2780 /** 2781 * __dev_queue_xmit - transmit a buffer 2782 * @skb: buffer to transmit 2783 * @accel_priv: private data used for L2 forwarding offload 2784 * 2785 * Queue a buffer for transmission to a network device. The caller must 2786 * have set the device and priority and built the buffer before calling 2787 * this function. The function can be called from an interrupt. 2788 * 2789 * A negative errno code is returned on a failure. A success does not 2790 * guarantee the frame will be transmitted as it may be dropped due 2791 * to congestion or traffic shaping. 2792 * 2793 * ----------------------------------------------------------------------------------- 2794 * I notice this method can also return errors from the queue disciplines, 2795 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2796 * be positive. 2797 * 2798 * Regardless of the return value, the skb is consumed, so it is currently 2799 * difficult to retry a send to this method. (You can bump the ref count 2800 * before sending to hold a reference for retry if you are careful.) 2801 * 2802 * When calling this method, interrupts MUST be enabled. This is because 2803 * the BH enable code must have IRQs enabled so that it will not deadlock. 2804 * --BLG 2805 */ 2806 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv) 2807 { 2808 struct net_device *dev = skb->dev; 2809 struct netdev_queue *txq; 2810 struct Qdisc *q; 2811 int rc = -ENOMEM; 2812 2813 skb_reset_mac_header(skb); 2814 2815 /* Disable soft irqs for various locks below. Also 2816 * stops preemption for RCU. 2817 */ 2818 rcu_read_lock_bh(); 2819 2820 skb_update_prio(skb); 2821 2822 txq = netdev_pick_tx(dev, skb, accel_priv); 2823 q = rcu_dereference_bh(txq->qdisc); 2824 2825 #ifdef CONFIG_NET_CLS_ACT 2826 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2827 #endif 2828 trace_net_dev_queue(skb); 2829 if (q->enqueue) { 2830 rc = __dev_xmit_skb(skb, q, dev, txq); 2831 goto out; 2832 } 2833 2834 /* The device has no queue. Common case for software devices: 2835 loopback, all the sorts of tunnels... 2836 2837 Really, it is unlikely that netif_tx_lock protection is necessary 2838 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2839 counters.) 2840 However, it is possible, that they rely on protection 2841 made by us here. 2842 2843 Check this and shot the lock. It is not prone from deadlocks. 2844 Either shot noqueue qdisc, it is even simpler 8) 2845 */ 2846 if (dev->flags & IFF_UP) { 2847 int cpu = smp_processor_id(); /* ok because BHs are off */ 2848 2849 if (txq->xmit_lock_owner != cpu) { 2850 2851 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 2852 goto recursion_alert; 2853 2854 HARD_TX_LOCK(dev, txq, cpu); 2855 2856 if (!netif_xmit_stopped(txq)) { 2857 __this_cpu_inc(xmit_recursion); 2858 rc = dev_hard_start_xmit(skb, dev, txq); 2859 __this_cpu_dec(xmit_recursion); 2860 if (dev_xmit_complete(rc)) { 2861 HARD_TX_UNLOCK(dev, txq); 2862 goto out; 2863 } 2864 } 2865 HARD_TX_UNLOCK(dev, txq); 2866 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 2867 dev->name); 2868 } else { 2869 /* Recursion is detected! It is possible, 2870 * unfortunately 2871 */ 2872 recursion_alert: 2873 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 2874 dev->name); 2875 } 2876 } 2877 2878 rc = -ENETDOWN; 2879 rcu_read_unlock_bh(); 2880 2881 atomic_long_inc(&dev->tx_dropped); 2882 kfree_skb(skb); 2883 return rc; 2884 out: 2885 rcu_read_unlock_bh(); 2886 return rc; 2887 } 2888 2889 int dev_queue_xmit(struct sk_buff *skb) 2890 { 2891 return __dev_queue_xmit(skb, NULL); 2892 } 2893 EXPORT_SYMBOL(dev_queue_xmit); 2894 2895 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv) 2896 { 2897 return __dev_queue_xmit(skb, accel_priv); 2898 } 2899 EXPORT_SYMBOL(dev_queue_xmit_accel); 2900 2901 2902 /*======================================================================= 2903 Receiver routines 2904 =======================================================================*/ 2905 2906 int netdev_max_backlog __read_mostly = 1000; 2907 EXPORT_SYMBOL(netdev_max_backlog); 2908 2909 int netdev_tstamp_prequeue __read_mostly = 1; 2910 int netdev_budget __read_mostly = 300; 2911 int weight_p __read_mostly = 64; /* old backlog weight */ 2912 2913 /* Called with irq disabled */ 2914 static inline void ____napi_schedule(struct softnet_data *sd, 2915 struct napi_struct *napi) 2916 { 2917 list_add_tail(&napi->poll_list, &sd->poll_list); 2918 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2919 } 2920 2921 #ifdef CONFIG_RPS 2922 2923 /* One global table that all flow-based protocols share. */ 2924 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 2925 EXPORT_SYMBOL(rps_sock_flow_table); 2926 2927 struct static_key rps_needed __read_mostly; 2928 2929 static struct rps_dev_flow * 2930 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2931 struct rps_dev_flow *rflow, u16 next_cpu) 2932 { 2933 if (next_cpu != RPS_NO_CPU) { 2934 #ifdef CONFIG_RFS_ACCEL 2935 struct netdev_rx_queue *rxqueue; 2936 struct rps_dev_flow_table *flow_table; 2937 struct rps_dev_flow *old_rflow; 2938 u32 flow_id; 2939 u16 rxq_index; 2940 int rc; 2941 2942 /* Should we steer this flow to a different hardware queue? */ 2943 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 2944 !(dev->features & NETIF_F_NTUPLE)) 2945 goto out; 2946 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 2947 if (rxq_index == skb_get_rx_queue(skb)) 2948 goto out; 2949 2950 rxqueue = dev->_rx + rxq_index; 2951 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2952 if (!flow_table) 2953 goto out; 2954 flow_id = skb_get_hash(skb) & flow_table->mask; 2955 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 2956 rxq_index, flow_id); 2957 if (rc < 0) 2958 goto out; 2959 old_rflow = rflow; 2960 rflow = &flow_table->flows[flow_id]; 2961 rflow->filter = rc; 2962 if (old_rflow->filter == rflow->filter) 2963 old_rflow->filter = RPS_NO_FILTER; 2964 out: 2965 #endif 2966 rflow->last_qtail = 2967 per_cpu(softnet_data, next_cpu).input_queue_head; 2968 } 2969 2970 rflow->cpu = next_cpu; 2971 return rflow; 2972 } 2973 2974 /* 2975 * get_rps_cpu is called from netif_receive_skb and returns the target 2976 * CPU from the RPS map of the receiving queue for a given skb. 2977 * rcu_read_lock must be held on entry. 2978 */ 2979 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2980 struct rps_dev_flow **rflowp) 2981 { 2982 struct netdev_rx_queue *rxqueue; 2983 struct rps_map *map; 2984 struct rps_dev_flow_table *flow_table; 2985 struct rps_sock_flow_table *sock_flow_table; 2986 int cpu = -1; 2987 u16 tcpu; 2988 u32 hash; 2989 2990 if (skb_rx_queue_recorded(skb)) { 2991 u16 index = skb_get_rx_queue(skb); 2992 if (unlikely(index >= dev->real_num_rx_queues)) { 2993 WARN_ONCE(dev->real_num_rx_queues > 1, 2994 "%s received packet on queue %u, but number " 2995 "of RX queues is %u\n", 2996 dev->name, index, dev->real_num_rx_queues); 2997 goto done; 2998 } 2999 rxqueue = dev->_rx + index; 3000 } else 3001 rxqueue = dev->_rx; 3002 3003 map = rcu_dereference(rxqueue->rps_map); 3004 if (map) { 3005 if (map->len == 1 && 3006 !rcu_access_pointer(rxqueue->rps_flow_table)) { 3007 tcpu = map->cpus[0]; 3008 if (cpu_online(tcpu)) 3009 cpu = tcpu; 3010 goto done; 3011 } 3012 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) { 3013 goto done; 3014 } 3015 3016 skb_reset_network_header(skb); 3017 hash = skb_get_hash(skb); 3018 if (!hash) 3019 goto done; 3020 3021 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3022 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3023 if (flow_table && sock_flow_table) { 3024 u16 next_cpu; 3025 struct rps_dev_flow *rflow; 3026 3027 rflow = &flow_table->flows[hash & flow_table->mask]; 3028 tcpu = rflow->cpu; 3029 3030 next_cpu = sock_flow_table->ents[hash & sock_flow_table->mask]; 3031 3032 /* 3033 * If the desired CPU (where last recvmsg was done) is 3034 * different from current CPU (one in the rx-queue flow 3035 * table entry), switch if one of the following holds: 3036 * - Current CPU is unset (equal to RPS_NO_CPU). 3037 * - Current CPU is offline. 3038 * - The current CPU's queue tail has advanced beyond the 3039 * last packet that was enqueued using this table entry. 3040 * This guarantees that all previous packets for the flow 3041 * have been dequeued, thus preserving in order delivery. 3042 */ 3043 if (unlikely(tcpu != next_cpu) && 3044 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) || 3045 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3046 rflow->last_qtail)) >= 0)) { 3047 tcpu = next_cpu; 3048 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3049 } 3050 3051 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) { 3052 *rflowp = rflow; 3053 cpu = tcpu; 3054 goto done; 3055 } 3056 } 3057 3058 if (map) { 3059 tcpu = map->cpus[((u64) hash * map->len) >> 32]; 3060 3061 if (cpu_online(tcpu)) { 3062 cpu = tcpu; 3063 goto done; 3064 } 3065 } 3066 3067 done: 3068 return cpu; 3069 } 3070 3071 #ifdef CONFIG_RFS_ACCEL 3072 3073 /** 3074 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3075 * @dev: Device on which the filter was set 3076 * @rxq_index: RX queue index 3077 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3078 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3079 * 3080 * Drivers that implement ndo_rx_flow_steer() should periodically call 3081 * this function for each installed filter and remove the filters for 3082 * which it returns %true. 3083 */ 3084 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3085 u32 flow_id, u16 filter_id) 3086 { 3087 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3088 struct rps_dev_flow_table *flow_table; 3089 struct rps_dev_flow *rflow; 3090 bool expire = true; 3091 int cpu; 3092 3093 rcu_read_lock(); 3094 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3095 if (flow_table && flow_id <= flow_table->mask) { 3096 rflow = &flow_table->flows[flow_id]; 3097 cpu = ACCESS_ONCE(rflow->cpu); 3098 if (rflow->filter == filter_id && cpu != RPS_NO_CPU && 3099 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3100 rflow->last_qtail) < 3101 (int)(10 * flow_table->mask))) 3102 expire = false; 3103 } 3104 rcu_read_unlock(); 3105 return expire; 3106 } 3107 EXPORT_SYMBOL(rps_may_expire_flow); 3108 3109 #endif /* CONFIG_RFS_ACCEL */ 3110 3111 /* Called from hardirq (IPI) context */ 3112 static void rps_trigger_softirq(void *data) 3113 { 3114 struct softnet_data *sd = data; 3115 3116 ____napi_schedule(sd, &sd->backlog); 3117 sd->received_rps++; 3118 } 3119 3120 #endif /* CONFIG_RPS */ 3121 3122 /* 3123 * Check if this softnet_data structure is another cpu one 3124 * If yes, queue it to our IPI list and return 1 3125 * If no, return 0 3126 */ 3127 static int rps_ipi_queued(struct softnet_data *sd) 3128 { 3129 #ifdef CONFIG_RPS 3130 struct softnet_data *mysd = &__get_cpu_var(softnet_data); 3131 3132 if (sd != mysd) { 3133 sd->rps_ipi_next = mysd->rps_ipi_list; 3134 mysd->rps_ipi_list = sd; 3135 3136 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3137 return 1; 3138 } 3139 #endif /* CONFIG_RPS */ 3140 return 0; 3141 } 3142 3143 #ifdef CONFIG_NET_FLOW_LIMIT 3144 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3145 #endif 3146 3147 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3148 { 3149 #ifdef CONFIG_NET_FLOW_LIMIT 3150 struct sd_flow_limit *fl; 3151 struct softnet_data *sd; 3152 unsigned int old_flow, new_flow; 3153 3154 if (qlen < (netdev_max_backlog >> 1)) 3155 return false; 3156 3157 sd = &__get_cpu_var(softnet_data); 3158 3159 rcu_read_lock(); 3160 fl = rcu_dereference(sd->flow_limit); 3161 if (fl) { 3162 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 3163 old_flow = fl->history[fl->history_head]; 3164 fl->history[fl->history_head] = new_flow; 3165 3166 fl->history_head++; 3167 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3168 3169 if (likely(fl->buckets[old_flow])) 3170 fl->buckets[old_flow]--; 3171 3172 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3173 fl->count++; 3174 rcu_read_unlock(); 3175 return true; 3176 } 3177 } 3178 rcu_read_unlock(); 3179 #endif 3180 return false; 3181 } 3182 3183 /* 3184 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3185 * queue (may be a remote CPU queue). 3186 */ 3187 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3188 unsigned int *qtail) 3189 { 3190 struct softnet_data *sd; 3191 unsigned long flags; 3192 unsigned int qlen; 3193 3194 sd = &per_cpu(softnet_data, cpu); 3195 3196 local_irq_save(flags); 3197 3198 rps_lock(sd); 3199 qlen = skb_queue_len(&sd->input_pkt_queue); 3200 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3201 if (skb_queue_len(&sd->input_pkt_queue)) { 3202 enqueue: 3203 __skb_queue_tail(&sd->input_pkt_queue, skb); 3204 input_queue_tail_incr_save(sd, qtail); 3205 rps_unlock(sd); 3206 local_irq_restore(flags); 3207 return NET_RX_SUCCESS; 3208 } 3209 3210 /* Schedule NAPI for backlog device 3211 * We can use non atomic operation since we own the queue lock 3212 */ 3213 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3214 if (!rps_ipi_queued(sd)) 3215 ____napi_schedule(sd, &sd->backlog); 3216 } 3217 goto enqueue; 3218 } 3219 3220 sd->dropped++; 3221 rps_unlock(sd); 3222 3223 local_irq_restore(flags); 3224 3225 atomic_long_inc(&skb->dev->rx_dropped); 3226 kfree_skb(skb); 3227 return NET_RX_DROP; 3228 } 3229 3230 static int netif_rx_internal(struct sk_buff *skb) 3231 { 3232 int ret; 3233 3234 net_timestamp_check(netdev_tstamp_prequeue, skb); 3235 3236 trace_netif_rx(skb); 3237 #ifdef CONFIG_RPS 3238 if (static_key_false(&rps_needed)) { 3239 struct rps_dev_flow voidflow, *rflow = &voidflow; 3240 int cpu; 3241 3242 preempt_disable(); 3243 rcu_read_lock(); 3244 3245 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3246 if (cpu < 0) 3247 cpu = smp_processor_id(); 3248 3249 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3250 3251 rcu_read_unlock(); 3252 preempt_enable(); 3253 } else 3254 #endif 3255 { 3256 unsigned int qtail; 3257 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 3258 put_cpu(); 3259 } 3260 return ret; 3261 } 3262 3263 /** 3264 * netif_rx - post buffer to the network code 3265 * @skb: buffer to post 3266 * 3267 * This function receives a packet from a device driver and queues it for 3268 * the upper (protocol) levels to process. It always succeeds. The buffer 3269 * may be dropped during processing for congestion control or by the 3270 * protocol layers. 3271 * 3272 * return values: 3273 * NET_RX_SUCCESS (no congestion) 3274 * NET_RX_DROP (packet was dropped) 3275 * 3276 */ 3277 3278 int netif_rx(struct sk_buff *skb) 3279 { 3280 trace_netif_rx_entry(skb); 3281 3282 return netif_rx_internal(skb); 3283 } 3284 EXPORT_SYMBOL(netif_rx); 3285 3286 int netif_rx_ni(struct sk_buff *skb) 3287 { 3288 int err; 3289 3290 trace_netif_rx_ni_entry(skb); 3291 3292 preempt_disable(); 3293 err = netif_rx_internal(skb); 3294 if (local_softirq_pending()) 3295 do_softirq(); 3296 preempt_enable(); 3297 3298 return err; 3299 } 3300 EXPORT_SYMBOL(netif_rx_ni); 3301 3302 static void net_tx_action(struct softirq_action *h) 3303 { 3304 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3305 3306 if (sd->completion_queue) { 3307 struct sk_buff *clist; 3308 3309 local_irq_disable(); 3310 clist = sd->completion_queue; 3311 sd->completion_queue = NULL; 3312 local_irq_enable(); 3313 3314 while (clist) { 3315 struct sk_buff *skb = clist; 3316 clist = clist->next; 3317 3318 WARN_ON(atomic_read(&skb->users)); 3319 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 3320 trace_consume_skb(skb); 3321 else 3322 trace_kfree_skb(skb, net_tx_action); 3323 __kfree_skb(skb); 3324 } 3325 } 3326 3327 if (sd->output_queue) { 3328 struct Qdisc *head; 3329 3330 local_irq_disable(); 3331 head = sd->output_queue; 3332 sd->output_queue = NULL; 3333 sd->output_queue_tailp = &sd->output_queue; 3334 local_irq_enable(); 3335 3336 while (head) { 3337 struct Qdisc *q = head; 3338 spinlock_t *root_lock; 3339 3340 head = head->next_sched; 3341 3342 root_lock = qdisc_lock(q); 3343 if (spin_trylock(root_lock)) { 3344 smp_mb__before_atomic(); 3345 clear_bit(__QDISC_STATE_SCHED, 3346 &q->state); 3347 qdisc_run(q); 3348 spin_unlock(root_lock); 3349 } else { 3350 if (!test_bit(__QDISC_STATE_DEACTIVATED, 3351 &q->state)) { 3352 __netif_reschedule(q); 3353 } else { 3354 smp_mb__before_atomic(); 3355 clear_bit(__QDISC_STATE_SCHED, 3356 &q->state); 3357 } 3358 } 3359 } 3360 } 3361 } 3362 3363 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 3364 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 3365 /* This hook is defined here for ATM LANE */ 3366 int (*br_fdb_test_addr_hook)(struct net_device *dev, 3367 unsigned char *addr) __read_mostly; 3368 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3369 #endif 3370 3371 #ifdef CONFIG_NET_CLS_ACT 3372 /* TODO: Maybe we should just force sch_ingress to be compiled in 3373 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 3374 * a compare and 2 stores extra right now if we dont have it on 3375 * but have CONFIG_NET_CLS_ACT 3376 * NOTE: This doesn't stop any functionality; if you dont have 3377 * the ingress scheduler, you just can't add policies on ingress. 3378 * 3379 */ 3380 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq) 3381 { 3382 struct net_device *dev = skb->dev; 3383 u32 ttl = G_TC_RTTL(skb->tc_verd); 3384 int result = TC_ACT_OK; 3385 struct Qdisc *q; 3386 3387 if (unlikely(MAX_RED_LOOP < ttl++)) { 3388 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n", 3389 skb->skb_iif, dev->ifindex); 3390 return TC_ACT_SHOT; 3391 } 3392 3393 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 3394 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3395 3396 q = rxq->qdisc; 3397 if (q != &noop_qdisc) { 3398 spin_lock(qdisc_lock(q)); 3399 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 3400 result = qdisc_enqueue_root(skb, q); 3401 spin_unlock(qdisc_lock(q)); 3402 } 3403 3404 return result; 3405 } 3406 3407 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 3408 struct packet_type **pt_prev, 3409 int *ret, struct net_device *orig_dev) 3410 { 3411 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue); 3412 3413 if (!rxq || rxq->qdisc == &noop_qdisc) 3414 goto out; 3415 3416 if (*pt_prev) { 3417 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3418 *pt_prev = NULL; 3419 } 3420 3421 switch (ing_filter(skb, rxq)) { 3422 case TC_ACT_SHOT: 3423 case TC_ACT_STOLEN: 3424 kfree_skb(skb); 3425 return NULL; 3426 } 3427 3428 out: 3429 skb->tc_verd = 0; 3430 return skb; 3431 } 3432 #endif 3433 3434 /** 3435 * netdev_rx_handler_register - register receive handler 3436 * @dev: device to register a handler for 3437 * @rx_handler: receive handler to register 3438 * @rx_handler_data: data pointer that is used by rx handler 3439 * 3440 * Register a receive handler for a device. This handler will then be 3441 * called from __netif_receive_skb. A negative errno code is returned 3442 * on a failure. 3443 * 3444 * The caller must hold the rtnl_mutex. 3445 * 3446 * For a general description of rx_handler, see enum rx_handler_result. 3447 */ 3448 int netdev_rx_handler_register(struct net_device *dev, 3449 rx_handler_func_t *rx_handler, 3450 void *rx_handler_data) 3451 { 3452 ASSERT_RTNL(); 3453 3454 if (dev->rx_handler) 3455 return -EBUSY; 3456 3457 /* Note: rx_handler_data must be set before rx_handler */ 3458 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3459 rcu_assign_pointer(dev->rx_handler, rx_handler); 3460 3461 return 0; 3462 } 3463 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3464 3465 /** 3466 * netdev_rx_handler_unregister - unregister receive handler 3467 * @dev: device to unregister a handler from 3468 * 3469 * Unregister a receive handler from a device. 3470 * 3471 * The caller must hold the rtnl_mutex. 3472 */ 3473 void netdev_rx_handler_unregister(struct net_device *dev) 3474 { 3475 3476 ASSERT_RTNL(); 3477 RCU_INIT_POINTER(dev->rx_handler, NULL); 3478 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 3479 * section has a guarantee to see a non NULL rx_handler_data 3480 * as well. 3481 */ 3482 synchronize_net(); 3483 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 3484 } 3485 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 3486 3487 /* 3488 * Limit the use of PFMEMALLOC reserves to those protocols that implement 3489 * the special handling of PFMEMALLOC skbs. 3490 */ 3491 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 3492 { 3493 switch (skb->protocol) { 3494 case htons(ETH_P_ARP): 3495 case htons(ETH_P_IP): 3496 case htons(ETH_P_IPV6): 3497 case htons(ETH_P_8021Q): 3498 case htons(ETH_P_8021AD): 3499 return true; 3500 default: 3501 return false; 3502 } 3503 } 3504 3505 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 3506 { 3507 struct packet_type *ptype, *pt_prev; 3508 rx_handler_func_t *rx_handler; 3509 struct net_device *orig_dev; 3510 struct net_device *null_or_dev; 3511 bool deliver_exact = false; 3512 int ret = NET_RX_DROP; 3513 __be16 type; 3514 3515 net_timestamp_check(!netdev_tstamp_prequeue, skb); 3516 3517 trace_netif_receive_skb(skb); 3518 3519 orig_dev = skb->dev; 3520 3521 skb_reset_network_header(skb); 3522 if (!skb_transport_header_was_set(skb)) 3523 skb_reset_transport_header(skb); 3524 skb_reset_mac_len(skb); 3525 3526 pt_prev = NULL; 3527 3528 rcu_read_lock(); 3529 3530 another_round: 3531 skb->skb_iif = skb->dev->ifindex; 3532 3533 __this_cpu_inc(softnet_data.processed); 3534 3535 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 3536 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 3537 skb = vlan_untag(skb); 3538 if (unlikely(!skb)) 3539 goto unlock; 3540 } 3541 3542 #ifdef CONFIG_NET_CLS_ACT 3543 if (skb->tc_verd & TC_NCLS) { 3544 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3545 goto ncls; 3546 } 3547 #endif 3548 3549 if (pfmemalloc) 3550 goto skip_taps; 3551 3552 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3553 if (!ptype->dev || ptype->dev == skb->dev) { 3554 if (pt_prev) 3555 ret = deliver_skb(skb, pt_prev, orig_dev); 3556 pt_prev = ptype; 3557 } 3558 } 3559 3560 skip_taps: 3561 #ifdef CONFIG_NET_CLS_ACT 3562 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 3563 if (!skb) 3564 goto unlock; 3565 ncls: 3566 #endif 3567 3568 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 3569 goto drop; 3570 3571 if (vlan_tx_tag_present(skb)) { 3572 if (pt_prev) { 3573 ret = deliver_skb(skb, pt_prev, orig_dev); 3574 pt_prev = NULL; 3575 } 3576 if (vlan_do_receive(&skb)) 3577 goto another_round; 3578 else if (unlikely(!skb)) 3579 goto unlock; 3580 } 3581 3582 rx_handler = rcu_dereference(skb->dev->rx_handler); 3583 if (rx_handler) { 3584 if (pt_prev) { 3585 ret = deliver_skb(skb, pt_prev, orig_dev); 3586 pt_prev = NULL; 3587 } 3588 switch (rx_handler(&skb)) { 3589 case RX_HANDLER_CONSUMED: 3590 ret = NET_RX_SUCCESS; 3591 goto unlock; 3592 case RX_HANDLER_ANOTHER: 3593 goto another_round; 3594 case RX_HANDLER_EXACT: 3595 deliver_exact = true; 3596 case RX_HANDLER_PASS: 3597 break; 3598 default: 3599 BUG(); 3600 } 3601 } 3602 3603 if (unlikely(vlan_tx_tag_present(skb))) { 3604 if (vlan_tx_tag_get_id(skb)) 3605 skb->pkt_type = PACKET_OTHERHOST; 3606 /* Note: we might in the future use prio bits 3607 * and set skb->priority like in vlan_do_receive() 3608 * For the time being, just ignore Priority Code Point 3609 */ 3610 skb->vlan_tci = 0; 3611 } 3612 3613 /* deliver only exact match when indicated */ 3614 null_or_dev = deliver_exact ? skb->dev : NULL; 3615 3616 type = skb->protocol; 3617 list_for_each_entry_rcu(ptype, 3618 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 3619 if (ptype->type == type && 3620 (ptype->dev == null_or_dev || ptype->dev == skb->dev || 3621 ptype->dev == orig_dev)) { 3622 if (pt_prev) 3623 ret = deliver_skb(skb, pt_prev, orig_dev); 3624 pt_prev = ptype; 3625 } 3626 } 3627 3628 if (pt_prev) { 3629 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 3630 goto drop; 3631 else 3632 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 3633 } else { 3634 drop: 3635 atomic_long_inc(&skb->dev->rx_dropped); 3636 kfree_skb(skb); 3637 /* Jamal, now you will not able to escape explaining 3638 * me how you were going to use this. :-) 3639 */ 3640 ret = NET_RX_DROP; 3641 } 3642 3643 unlock: 3644 rcu_read_unlock(); 3645 return ret; 3646 } 3647 3648 static int __netif_receive_skb(struct sk_buff *skb) 3649 { 3650 int ret; 3651 3652 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 3653 unsigned long pflags = current->flags; 3654 3655 /* 3656 * PFMEMALLOC skbs are special, they should 3657 * - be delivered to SOCK_MEMALLOC sockets only 3658 * - stay away from userspace 3659 * - have bounded memory usage 3660 * 3661 * Use PF_MEMALLOC as this saves us from propagating the allocation 3662 * context down to all allocation sites. 3663 */ 3664 current->flags |= PF_MEMALLOC; 3665 ret = __netif_receive_skb_core(skb, true); 3666 tsk_restore_flags(current, pflags, PF_MEMALLOC); 3667 } else 3668 ret = __netif_receive_skb_core(skb, false); 3669 3670 return ret; 3671 } 3672 3673 static int netif_receive_skb_internal(struct sk_buff *skb) 3674 { 3675 net_timestamp_check(netdev_tstamp_prequeue, skb); 3676 3677 if (skb_defer_rx_timestamp(skb)) 3678 return NET_RX_SUCCESS; 3679 3680 #ifdef CONFIG_RPS 3681 if (static_key_false(&rps_needed)) { 3682 struct rps_dev_flow voidflow, *rflow = &voidflow; 3683 int cpu, ret; 3684 3685 rcu_read_lock(); 3686 3687 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3688 3689 if (cpu >= 0) { 3690 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3691 rcu_read_unlock(); 3692 return ret; 3693 } 3694 rcu_read_unlock(); 3695 } 3696 #endif 3697 return __netif_receive_skb(skb); 3698 } 3699 3700 /** 3701 * netif_receive_skb - process receive buffer from network 3702 * @skb: buffer to process 3703 * 3704 * netif_receive_skb() is the main receive data processing function. 3705 * It always succeeds. The buffer may be dropped during processing 3706 * for congestion control or by the protocol layers. 3707 * 3708 * This function may only be called from softirq context and interrupts 3709 * should be enabled. 3710 * 3711 * Return values (usually ignored): 3712 * NET_RX_SUCCESS: no congestion 3713 * NET_RX_DROP: packet was dropped 3714 */ 3715 int netif_receive_skb(struct sk_buff *skb) 3716 { 3717 trace_netif_receive_skb_entry(skb); 3718 3719 return netif_receive_skb_internal(skb); 3720 } 3721 EXPORT_SYMBOL(netif_receive_skb); 3722 3723 /* Network device is going away, flush any packets still pending 3724 * Called with irqs disabled. 3725 */ 3726 static void flush_backlog(void *arg) 3727 { 3728 struct net_device *dev = arg; 3729 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3730 struct sk_buff *skb, *tmp; 3731 3732 rps_lock(sd); 3733 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 3734 if (skb->dev == dev) { 3735 __skb_unlink(skb, &sd->input_pkt_queue); 3736 kfree_skb(skb); 3737 input_queue_head_incr(sd); 3738 } 3739 } 3740 rps_unlock(sd); 3741 3742 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 3743 if (skb->dev == dev) { 3744 __skb_unlink(skb, &sd->process_queue); 3745 kfree_skb(skb); 3746 input_queue_head_incr(sd); 3747 } 3748 } 3749 } 3750 3751 static int napi_gro_complete(struct sk_buff *skb) 3752 { 3753 struct packet_offload *ptype; 3754 __be16 type = skb->protocol; 3755 struct list_head *head = &offload_base; 3756 int err = -ENOENT; 3757 3758 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 3759 3760 if (NAPI_GRO_CB(skb)->count == 1) { 3761 skb_shinfo(skb)->gso_size = 0; 3762 goto out; 3763 } 3764 3765 rcu_read_lock(); 3766 list_for_each_entry_rcu(ptype, head, list) { 3767 if (ptype->type != type || !ptype->callbacks.gro_complete) 3768 continue; 3769 3770 err = ptype->callbacks.gro_complete(skb, 0); 3771 break; 3772 } 3773 rcu_read_unlock(); 3774 3775 if (err) { 3776 WARN_ON(&ptype->list == head); 3777 kfree_skb(skb); 3778 return NET_RX_SUCCESS; 3779 } 3780 3781 out: 3782 return netif_receive_skb_internal(skb); 3783 } 3784 3785 /* napi->gro_list contains packets ordered by age. 3786 * youngest packets at the head of it. 3787 * Complete skbs in reverse order to reduce latencies. 3788 */ 3789 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 3790 { 3791 struct sk_buff *skb, *prev = NULL; 3792 3793 /* scan list and build reverse chain */ 3794 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 3795 skb->prev = prev; 3796 prev = skb; 3797 } 3798 3799 for (skb = prev; skb; skb = prev) { 3800 skb->next = NULL; 3801 3802 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 3803 return; 3804 3805 prev = skb->prev; 3806 napi_gro_complete(skb); 3807 napi->gro_count--; 3808 } 3809 3810 napi->gro_list = NULL; 3811 } 3812 EXPORT_SYMBOL(napi_gro_flush); 3813 3814 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 3815 { 3816 struct sk_buff *p; 3817 unsigned int maclen = skb->dev->hard_header_len; 3818 u32 hash = skb_get_hash_raw(skb); 3819 3820 for (p = napi->gro_list; p; p = p->next) { 3821 unsigned long diffs; 3822 3823 NAPI_GRO_CB(p)->flush = 0; 3824 3825 if (hash != skb_get_hash_raw(p)) { 3826 NAPI_GRO_CB(p)->same_flow = 0; 3827 continue; 3828 } 3829 3830 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 3831 diffs |= p->vlan_tci ^ skb->vlan_tci; 3832 if (maclen == ETH_HLEN) 3833 diffs |= compare_ether_header(skb_mac_header(p), 3834 skb_mac_header(skb)); 3835 else if (!diffs) 3836 diffs = memcmp(skb_mac_header(p), 3837 skb_mac_header(skb), 3838 maclen); 3839 NAPI_GRO_CB(p)->same_flow = !diffs; 3840 } 3841 } 3842 3843 static void skb_gro_reset_offset(struct sk_buff *skb) 3844 { 3845 const struct skb_shared_info *pinfo = skb_shinfo(skb); 3846 const skb_frag_t *frag0 = &pinfo->frags[0]; 3847 3848 NAPI_GRO_CB(skb)->data_offset = 0; 3849 NAPI_GRO_CB(skb)->frag0 = NULL; 3850 NAPI_GRO_CB(skb)->frag0_len = 0; 3851 3852 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 3853 pinfo->nr_frags && 3854 !PageHighMem(skb_frag_page(frag0))) { 3855 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 3856 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0); 3857 } 3858 } 3859 3860 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 3861 { 3862 struct skb_shared_info *pinfo = skb_shinfo(skb); 3863 3864 BUG_ON(skb->end - skb->tail < grow); 3865 3866 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 3867 3868 skb->data_len -= grow; 3869 skb->tail += grow; 3870 3871 pinfo->frags[0].page_offset += grow; 3872 skb_frag_size_sub(&pinfo->frags[0], grow); 3873 3874 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 3875 skb_frag_unref(skb, 0); 3876 memmove(pinfo->frags, pinfo->frags + 1, 3877 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 3878 } 3879 } 3880 3881 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3882 { 3883 struct sk_buff **pp = NULL; 3884 struct packet_offload *ptype; 3885 __be16 type = skb->protocol; 3886 struct list_head *head = &offload_base; 3887 int same_flow; 3888 enum gro_result ret; 3889 int grow; 3890 3891 if (!(skb->dev->features & NETIF_F_GRO)) 3892 goto normal; 3893 3894 if (skb_is_gso(skb) || skb_has_frag_list(skb)) 3895 goto normal; 3896 3897 gro_list_prepare(napi, skb); 3898 NAPI_GRO_CB(skb)->csum = skb->csum; /* Needed for CHECKSUM_COMPLETE */ 3899 3900 rcu_read_lock(); 3901 list_for_each_entry_rcu(ptype, head, list) { 3902 if (ptype->type != type || !ptype->callbacks.gro_receive) 3903 continue; 3904 3905 skb_set_network_header(skb, skb_gro_offset(skb)); 3906 skb_reset_mac_len(skb); 3907 NAPI_GRO_CB(skb)->same_flow = 0; 3908 NAPI_GRO_CB(skb)->flush = 0; 3909 NAPI_GRO_CB(skb)->free = 0; 3910 NAPI_GRO_CB(skb)->udp_mark = 0; 3911 3912 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 3913 break; 3914 } 3915 rcu_read_unlock(); 3916 3917 if (&ptype->list == head) 3918 goto normal; 3919 3920 same_flow = NAPI_GRO_CB(skb)->same_flow; 3921 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 3922 3923 if (pp) { 3924 struct sk_buff *nskb = *pp; 3925 3926 *pp = nskb->next; 3927 nskb->next = NULL; 3928 napi_gro_complete(nskb); 3929 napi->gro_count--; 3930 } 3931 3932 if (same_flow) 3933 goto ok; 3934 3935 if (NAPI_GRO_CB(skb)->flush) 3936 goto normal; 3937 3938 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) { 3939 struct sk_buff *nskb = napi->gro_list; 3940 3941 /* locate the end of the list to select the 'oldest' flow */ 3942 while (nskb->next) { 3943 pp = &nskb->next; 3944 nskb = *pp; 3945 } 3946 *pp = NULL; 3947 nskb->next = NULL; 3948 napi_gro_complete(nskb); 3949 } else { 3950 napi->gro_count++; 3951 } 3952 NAPI_GRO_CB(skb)->count = 1; 3953 NAPI_GRO_CB(skb)->age = jiffies; 3954 NAPI_GRO_CB(skb)->last = skb; 3955 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 3956 skb->next = napi->gro_list; 3957 napi->gro_list = skb; 3958 ret = GRO_HELD; 3959 3960 pull: 3961 grow = skb_gro_offset(skb) - skb_headlen(skb); 3962 if (grow > 0) 3963 gro_pull_from_frag0(skb, grow); 3964 ok: 3965 return ret; 3966 3967 normal: 3968 ret = GRO_NORMAL; 3969 goto pull; 3970 } 3971 3972 struct packet_offload *gro_find_receive_by_type(__be16 type) 3973 { 3974 struct list_head *offload_head = &offload_base; 3975 struct packet_offload *ptype; 3976 3977 list_for_each_entry_rcu(ptype, offload_head, list) { 3978 if (ptype->type != type || !ptype->callbacks.gro_receive) 3979 continue; 3980 return ptype; 3981 } 3982 return NULL; 3983 } 3984 EXPORT_SYMBOL(gro_find_receive_by_type); 3985 3986 struct packet_offload *gro_find_complete_by_type(__be16 type) 3987 { 3988 struct list_head *offload_head = &offload_base; 3989 struct packet_offload *ptype; 3990 3991 list_for_each_entry_rcu(ptype, offload_head, list) { 3992 if (ptype->type != type || !ptype->callbacks.gro_complete) 3993 continue; 3994 return ptype; 3995 } 3996 return NULL; 3997 } 3998 EXPORT_SYMBOL(gro_find_complete_by_type); 3999 4000 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 4001 { 4002 switch (ret) { 4003 case GRO_NORMAL: 4004 if (netif_receive_skb_internal(skb)) 4005 ret = GRO_DROP; 4006 break; 4007 4008 case GRO_DROP: 4009 kfree_skb(skb); 4010 break; 4011 4012 case GRO_MERGED_FREE: 4013 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 4014 kmem_cache_free(skbuff_head_cache, skb); 4015 else 4016 __kfree_skb(skb); 4017 break; 4018 4019 case GRO_HELD: 4020 case GRO_MERGED: 4021 break; 4022 } 4023 4024 return ret; 4025 } 4026 4027 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4028 { 4029 trace_napi_gro_receive_entry(skb); 4030 4031 skb_gro_reset_offset(skb); 4032 4033 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 4034 } 4035 EXPORT_SYMBOL(napi_gro_receive); 4036 4037 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 4038 { 4039 __skb_pull(skb, skb_headlen(skb)); 4040 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 4041 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 4042 skb->vlan_tci = 0; 4043 skb->dev = napi->dev; 4044 skb->skb_iif = 0; 4045 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 4046 4047 napi->skb = skb; 4048 } 4049 4050 struct sk_buff *napi_get_frags(struct napi_struct *napi) 4051 { 4052 struct sk_buff *skb = napi->skb; 4053 4054 if (!skb) { 4055 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD); 4056 napi->skb = skb; 4057 } 4058 return skb; 4059 } 4060 EXPORT_SYMBOL(napi_get_frags); 4061 4062 static gro_result_t napi_frags_finish(struct napi_struct *napi, 4063 struct sk_buff *skb, 4064 gro_result_t ret) 4065 { 4066 switch (ret) { 4067 case GRO_NORMAL: 4068 case GRO_HELD: 4069 __skb_push(skb, ETH_HLEN); 4070 skb->protocol = eth_type_trans(skb, skb->dev); 4071 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 4072 ret = GRO_DROP; 4073 break; 4074 4075 case GRO_DROP: 4076 case GRO_MERGED_FREE: 4077 napi_reuse_skb(napi, skb); 4078 break; 4079 4080 case GRO_MERGED: 4081 break; 4082 } 4083 4084 return ret; 4085 } 4086 4087 /* Upper GRO stack assumes network header starts at gro_offset=0 4088 * Drivers could call both napi_gro_frags() and napi_gro_receive() 4089 * We copy ethernet header into skb->data to have a common layout. 4090 */ 4091 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 4092 { 4093 struct sk_buff *skb = napi->skb; 4094 const struct ethhdr *eth; 4095 unsigned int hlen = sizeof(*eth); 4096 4097 napi->skb = NULL; 4098 4099 skb_reset_mac_header(skb); 4100 skb_gro_reset_offset(skb); 4101 4102 eth = skb_gro_header_fast(skb, 0); 4103 if (unlikely(skb_gro_header_hard(skb, hlen))) { 4104 eth = skb_gro_header_slow(skb, hlen, 0); 4105 if (unlikely(!eth)) { 4106 napi_reuse_skb(napi, skb); 4107 return NULL; 4108 } 4109 } else { 4110 gro_pull_from_frag0(skb, hlen); 4111 NAPI_GRO_CB(skb)->frag0 += hlen; 4112 NAPI_GRO_CB(skb)->frag0_len -= hlen; 4113 } 4114 __skb_pull(skb, hlen); 4115 4116 /* 4117 * This works because the only protocols we care about don't require 4118 * special handling. 4119 * We'll fix it up properly in napi_frags_finish() 4120 */ 4121 skb->protocol = eth->h_proto; 4122 4123 return skb; 4124 } 4125 4126 gro_result_t napi_gro_frags(struct napi_struct *napi) 4127 { 4128 struct sk_buff *skb = napi_frags_skb(napi); 4129 4130 if (!skb) 4131 return GRO_DROP; 4132 4133 trace_napi_gro_frags_entry(skb); 4134 4135 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 4136 } 4137 EXPORT_SYMBOL(napi_gro_frags); 4138 4139 /* 4140 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 4141 * Note: called with local irq disabled, but exits with local irq enabled. 4142 */ 4143 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 4144 { 4145 #ifdef CONFIG_RPS 4146 struct softnet_data *remsd = sd->rps_ipi_list; 4147 4148 if (remsd) { 4149 sd->rps_ipi_list = NULL; 4150 4151 local_irq_enable(); 4152 4153 /* Send pending IPI's to kick RPS processing on remote cpus. */ 4154 while (remsd) { 4155 struct softnet_data *next = remsd->rps_ipi_next; 4156 4157 if (cpu_online(remsd->cpu)) 4158 smp_call_function_single_async(remsd->cpu, 4159 &remsd->csd); 4160 remsd = next; 4161 } 4162 } else 4163 #endif 4164 local_irq_enable(); 4165 } 4166 4167 static int process_backlog(struct napi_struct *napi, int quota) 4168 { 4169 int work = 0; 4170 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 4171 4172 #ifdef CONFIG_RPS 4173 /* Check if we have pending ipi, its better to send them now, 4174 * not waiting net_rx_action() end. 4175 */ 4176 if (sd->rps_ipi_list) { 4177 local_irq_disable(); 4178 net_rps_action_and_irq_enable(sd); 4179 } 4180 #endif 4181 napi->weight = weight_p; 4182 local_irq_disable(); 4183 while (work < quota) { 4184 struct sk_buff *skb; 4185 unsigned int qlen; 4186 4187 while ((skb = __skb_dequeue(&sd->process_queue))) { 4188 local_irq_enable(); 4189 __netif_receive_skb(skb); 4190 local_irq_disable(); 4191 input_queue_head_incr(sd); 4192 if (++work >= quota) { 4193 local_irq_enable(); 4194 return work; 4195 } 4196 } 4197 4198 rps_lock(sd); 4199 qlen = skb_queue_len(&sd->input_pkt_queue); 4200 if (qlen) 4201 skb_queue_splice_tail_init(&sd->input_pkt_queue, 4202 &sd->process_queue); 4203 4204 if (qlen < quota - work) { 4205 /* 4206 * Inline a custom version of __napi_complete(). 4207 * only current cpu owns and manipulates this napi, 4208 * and NAPI_STATE_SCHED is the only possible flag set on backlog. 4209 * we can use a plain write instead of clear_bit(), 4210 * and we dont need an smp_mb() memory barrier. 4211 */ 4212 list_del(&napi->poll_list); 4213 napi->state = 0; 4214 4215 quota = work + qlen; 4216 } 4217 rps_unlock(sd); 4218 } 4219 local_irq_enable(); 4220 4221 return work; 4222 } 4223 4224 /** 4225 * __napi_schedule - schedule for receive 4226 * @n: entry to schedule 4227 * 4228 * The entry's receive function will be scheduled to run 4229 */ 4230 void __napi_schedule(struct napi_struct *n) 4231 { 4232 unsigned long flags; 4233 4234 local_irq_save(flags); 4235 ____napi_schedule(&__get_cpu_var(softnet_data), n); 4236 local_irq_restore(flags); 4237 } 4238 EXPORT_SYMBOL(__napi_schedule); 4239 4240 void __napi_complete(struct napi_struct *n) 4241 { 4242 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 4243 BUG_ON(n->gro_list); 4244 4245 list_del(&n->poll_list); 4246 smp_mb__before_atomic(); 4247 clear_bit(NAPI_STATE_SCHED, &n->state); 4248 } 4249 EXPORT_SYMBOL(__napi_complete); 4250 4251 void napi_complete(struct napi_struct *n) 4252 { 4253 unsigned long flags; 4254 4255 /* 4256 * don't let napi dequeue from the cpu poll list 4257 * just in case its running on a different cpu 4258 */ 4259 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 4260 return; 4261 4262 napi_gro_flush(n, false); 4263 local_irq_save(flags); 4264 __napi_complete(n); 4265 local_irq_restore(flags); 4266 } 4267 EXPORT_SYMBOL(napi_complete); 4268 4269 /* must be called under rcu_read_lock(), as we dont take a reference */ 4270 struct napi_struct *napi_by_id(unsigned int napi_id) 4271 { 4272 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 4273 struct napi_struct *napi; 4274 4275 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 4276 if (napi->napi_id == napi_id) 4277 return napi; 4278 4279 return NULL; 4280 } 4281 EXPORT_SYMBOL_GPL(napi_by_id); 4282 4283 void napi_hash_add(struct napi_struct *napi) 4284 { 4285 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) { 4286 4287 spin_lock(&napi_hash_lock); 4288 4289 /* 0 is not a valid id, we also skip an id that is taken 4290 * we expect both events to be extremely rare 4291 */ 4292 napi->napi_id = 0; 4293 while (!napi->napi_id) { 4294 napi->napi_id = ++napi_gen_id; 4295 if (napi_by_id(napi->napi_id)) 4296 napi->napi_id = 0; 4297 } 4298 4299 hlist_add_head_rcu(&napi->napi_hash_node, 4300 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 4301 4302 spin_unlock(&napi_hash_lock); 4303 } 4304 } 4305 EXPORT_SYMBOL_GPL(napi_hash_add); 4306 4307 /* Warning : caller is responsible to make sure rcu grace period 4308 * is respected before freeing memory containing @napi 4309 */ 4310 void napi_hash_del(struct napi_struct *napi) 4311 { 4312 spin_lock(&napi_hash_lock); 4313 4314 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) 4315 hlist_del_rcu(&napi->napi_hash_node); 4316 4317 spin_unlock(&napi_hash_lock); 4318 } 4319 EXPORT_SYMBOL_GPL(napi_hash_del); 4320 4321 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 4322 int (*poll)(struct napi_struct *, int), int weight) 4323 { 4324 INIT_LIST_HEAD(&napi->poll_list); 4325 napi->gro_count = 0; 4326 napi->gro_list = NULL; 4327 napi->skb = NULL; 4328 napi->poll = poll; 4329 if (weight > NAPI_POLL_WEIGHT) 4330 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 4331 weight, dev->name); 4332 napi->weight = weight; 4333 list_add(&napi->dev_list, &dev->napi_list); 4334 napi->dev = dev; 4335 #ifdef CONFIG_NETPOLL 4336 spin_lock_init(&napi->poll_lock); 4337 napi->poll_owner = -1; 4338 #endif 4339 set_bit(NAPI_STATE_SCHED, &napi->state); 4340 } 4341 EXPORT_SYMBOL(netif_napi_add); 4342 4343 void netif_napi_del(struct napi_struct *napi) 4344 { 4345 list_del_init(&napi->dev_list); 4346 napi_free_frags(napi); 4347 4348 kfree_skb_list(napi->gro_list); 4349 napi->gro_list = NULL; 4350 napi->gro_count = 0; 4351 } 4352 EXPORT_SYMBOL(netif_napi_del); 4353 4354 static void net_rx_action(struct softirq_action *h) 4355 { 4356 struct softnet_data *sd = &__get_cpu_var(softnet_data); 4357 unsigned long time_limit = jiffies + 2; 4358 int budget = netdev_budget; 4359 void *have; 4360 4361 local_irq_disable(); 4362 4363 while (!list_empty(&sd->poll_list)) { 4364 struct napi_struct *n; 4365 int work, weight; 4366 4367 /* If softirq window is exhuasted then punt. 4368 * Allow this to run for 2 jiffies since which will allow 4369 * an average latency of 1.5/HZ. 4370 */ 4371 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit))) 4372 goto softnet_break; 4373 4374 local_irq_enable(); 4375 4376 /* Even though interrupts have been re-enabled, this 4377 * access is safe because interrupts can only add new 4378 * entries to the tail of this list, and only ->poll() 4379 * calls can remove this head entry from the list. 4380 */ 4381 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list); 4382 4383 have = netpoll_poll_lock(n); 4384 4385 weight = n->weight; 4386 4387 /* This NAPI_STATE_SCHED test is for avoiding a race 4388 * with netpoll's poll_napi(). Only the entity which 4389 * obtains the lock and sees NAPI_STATE_SCHED set will 4390 * actually make the ->poll() call. Therefore we avoid 4391 * accidentally calling ->poll() when NAPI is not scheduled. 4392 */ 4393 work = 0; 4394 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 4395 work = n->poll(n, weight); 4396 trace_napi_poll(n); 4397 } 4398 4399 WARN_ON_ONCE(work > weight); 4400 4401 budget -= work; 4402 4403 local_irq_disable(); 4404 4405 /* Drivers must not modify the NAPI state if they 4406 * consume the entire weight. In such cases this code 4407 * still "owns" the NAPI instance and therefore can 4408 * move the instance around on the list at-will. 4409 */ 4410 if (unlikely(work == weight)) { 4411 if (unlikely(napi_disable_pending(n))) { 4412 local_irq_enable(); 4413 napi_complete(n); 4414 local_irq_disable(); 4415 } else { 4416 if (n->gro_list) { 4417 /* flush too old packets 4418 * If HZ < 1000, flush all packets. 4419 */ 4420 local_irq_enable(); 4421 napi_gro_flush(n, HZ >= 1000); 4422 local_irq_disable(); 4423 } 4424 list_move_tail(&n->poll_list, &sd->poll_list); 4425 } 4426 } 4427 4428 netpoll_poll_unlock(have); 4429 } 4430 out: 4431 net_rps_action_and_irq_enable(sd); 4432 4433 #ifdef CONFIG_NET_DMA 4434 /* 4435 * There may not be any more sk_buffs coming right now, so push 4436 * any pending DMA copies to hardware 4437 */ 4438 dma_issue_pending_all(); 4439 #endif 4440 4441 return; 4442 4443 softnet_break: 4444 sd->time_squeeze++; 4445 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4446 goto out; 4447 } 4448 4449 struct netdev_adjacent { 4450 struct net_device *dev; 4451 4452 /* upper master flag, there can only be one master device per list */ 4453 bool master; 4454 4455 /* counter for the number of times this device was added to us */ 4456 u16 ref_nr; 4457 4458 /* private field for the users */ 4459 void *private; 4460 4461 struct list_head list; 4462 struct rcu_head rcu; 4463 }; 4464 4465 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev, 4466 struct net_device *adj_dev, 4467 struct list_head *adj_list) 4468 { 4469 struct netdev_adjacent *adj; 4470 4471 list_for_each_entry(adj, adj_list, list) { 4472 if (adj->dev == adj_dev) 4473 return adj; 4474 } 4475 return NULL; 4476 } 4477 4478 /** 4479 * netdev_has_upper_dev - Check if device is linked to an upper device 4480 * @dev: device 4481 * @upper_dev: upper device to check 4482 * 4483 * Find out if a device is linked to specified upper device and return true 4484 * in case it is. Note that this checks only immediate upper device, 4485 * not through a complete stack of devices. The caller must hold the RTNL lock. 4486 */ 4487 bool netdev_has_upper_dev(struct net_device *dev, 4488 struct net_device *upper_dev) 4489 { 4490 ASSERT_RTNL(); 4491 4492 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper); 4493 } 4494 EXPORT_SYMBOL(netdev_has_upper_dev); 4495 4496 /** 4497 * netdev_has_any_upper_dev - Check if device is linked to some device 4498 * @dev: device 4499 * 4500 * Find out if a device is linked to an upper device and return true in case 4501 * it is. The caller must hold the RTNL lock. 4502 */ 4503 static bool netdev_has_any_upper_dev(struct net_device *dev) 4504 { 4505 ASSERT_RTNL(); 4506 4507 return !list_empty(&dev->all_adj_list.upper); 4508 } 4509 4510 /** 4511 * netdev_master_upper_dev_get - Get master upper device 4512 * @dev: device 4513 * 4514 * Find a master upper device and return pointer to it or NULL in case 4515 * it's not there. The caller must hold the RTNL lock. 4516 */ 4517 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 4518 { 4519 struct netdev_adjacent *upper; 4520 4521 ASSERT_RTNL(); 4522 4523 if (list_empty(&dev->adj_list.upper)) 4524 return NULL; 4525 4526 upper = list_first_entry(&dev->adj_list.upper, 4527 struct netdev_adjacent, list); 4528 if (likely(upper->master)) 4529 return upper->dev; 4530 return NULL; 4531 } 4532 EXPORT_SYMBOL(netdev_master_upper_dev_get); 4533 4534 void *netdev_adjacent_get_private(struct list_head *adj_list) 4535 { 4536 struct netdev_adjacent *adj; 4537 4538 adj = list_entry(adj_list, struct netdev_adjacent, list); 4539 4540 return adj->private; 4541 } 4542 EXPORT_SYMBOL(netdev_adjacent_get_private); 4543 4544 /** 4545 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 4546 * @dev: device 4547 * @iter: list_head ** of the current position 4548 * 4549 * Gets the next device from the dev's upper list, starting from iter 4550 * position. The caller must hold RCU read lock. 4551 */ 4552 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4553 struct list_head **iter) 4554 { 4555 struct netdev_adjacent *upper; 4556 4557 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 4558 4559 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 4560 4561 if (&upper->list == &dev->adj_list.upper) 4562 return NULL; 4563 4564 *iter = &upper->list; 4565 4566 return upper->dev; 4567 } 4568 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 4569 4570 /** 4571 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list 4572 * @dev: device 4573 * @iter: list_head ** of the current position 4574 * 4575 * Gets the next device from the dev's upper list, starting from iter 4576 * position. The caller must hold RCU read lock. 4577 */ 4578 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 4579 struct list_head **iter) 4580 { 4581 struct netdev_adjacent *upper; 4582 4583 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 4584 4585 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 4586 4587 if (&upper->list == &dev->all_adj_list.upper) 4588 return NULL; 4589 4590 *iter = &upper->list; 4591 4592 return upper->dev; 4593 } 4594 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu); 4595 4596 /** 4597 * netdev_lower_get_next_private - Get the next ->private from the 4598 * lower neighbour list 4599 * @dev: device 4600 * @iter: list_head ** of the current position 4601 * 4602 * Gets the next netdev_adjacent->private from the dev's lower neighbour 4603 * list, starting from iter position. The caller must hold either hold the 4604 * RTNL lock or its own locking that guarantees that the neighbour lower 4605 * list will remain unchainged. 4606 */ 4607 void *netdev_lower_get_next_private(struct net_device *dev, 4608 struct list_head **iter) 4609 { 4610 struct netdev_adjacent *lower; 4611 4612 lower = list_entry(*iter, struct netdev_adjacent, list); 4613 4614 if (&lower->list == &dev->adj_list.lower) 4615 return NULL; 4616 4617 *iter = lower->list.next; 4618 4619 return lower->private; 4620 } 4621 EXPORT_SYMBOL(netdev_lower_get_next_private); 4622 4623 /** 4624 * netdev_lower_get_next_private_rcu - Get the next ->private from the 4625 * lower neighbour list, RCU 4626 * variant 4627 * @dev: device 4628 * @iter: list_head ** of the current position 4629 * 4630 * Gets the next netdev_adjacent->private from the dev's lower neighbour 4631 * list, starting from iter position. The caller must hold RCU read lock. 4632 */ 4633 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4634 struct list_head **iter) 4635 { 4636 struct netdev_adjacent *lower; 4637 4638 WARN_ON_ONCE(!rcu_read_lock_held()); 4639 4640 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 4641 4642 if (&lower->list == &dev->adj_list.lower) 4643 return NULL; 4644 4645 *iter = &lower->list; 4646 4647 return lower->private; 4648 } 4649 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 4650 4651 /** 4652 * netdev_lower_get_next - Get the next device from the lower neighbour 4653 * list 4654 * @dev: device 4655 * @iter: list_head ** of the current position 4656 * 4657 * Gets the next netdev_adjacent from the dev's lower neighbour 4658 * list, starting from iter position. The caller must hold RTNL lock or 4659 * its own locking that guarantees that the neighbour lower 4660 * list will remain unchainged. 4661 */ 4662 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 4663 { 4664 struct netdev_adjacent *lower; 4665 4666 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 4667 4668 if (&lower->list == &dev->adj_list.lower) 4669 return NULL; 4670 4671 *iter = &lower->list; 4672 4673 return lower->dev; 4674 } 4675 EXPORT_SYMBOL(netdev_lower_get_next); 4676 4677 /** 4678 * netdev_lower_get_first_private_rcu - Get the first ->private from the 4679 * lower neighbour list, RCU 4680 * variant 4681 * @dev: device 4682 * 4683 * Gets the first netdev_adjacent->private from the dev's lower neighbour 4684 * list. The caller must hold RCU read lock. 4685 */ 4686 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 4687 { 4688 struct netdev_adjacent *lower; 4689 4690 lower = list_first_or_null_rcu(&dev->adj_list.lower, 4691 struct netdev_adjacent, list); 4692 if (lower) 4693 return lower->private; 4694 return NULL; 4695 } 4696 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 4697 4698 /** 4699 * netdev_master_upper_dev_get_rcu - Get master upper device 4700 * @dev: device 4701 * 4702 * Find a master upper device and return pointer to it or NULL in case 4703 * it's not there. The caller must hold the RCU read lock. 4704 */ 4705 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 4706 { 4707 struct netdev_adjacent *upper; 4708 4709 upper = list_first_or_null_rcu(&dev->adj_list.upper, 4710 struct netdev_adjacent, list); 4711 if (upper && likely(upper->master)) 4712 return upper->dev; 4713 return NULL; 4714 } 4715 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 4716 4717 static int netdev_adjacent_sysfs_add(struct net_device *dev, 4718 struct net_device *adj_dev, 4719 struct list_head *dev_list) 4720 { 4721 char linkname[IFNAMSIZ+7]; 4722 sprintf(linkname, dev_list == &dev->adj_list.upper ? 4723 "upper_%s" : "lower_%s", adj_dev->name); 4724 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 4725 linkname); 4726 } 4727 static void netdev_adjacent_sysfs_del(struct net_device *dev, 4728 char *name, 4729 struct list_head *dev_list) 4730 { 4731 char linkname[IFNAMSIZ+7]; 4732 sprintf(linkname, dev_list == &dev->adj_list.upper ? 4733 "upper_%s" : "lower_%s", name); 4734 sysfs_remove_link(&(dev->dev.kobj), linkname); 4735 } 4736 4737 #define netdev_adjacent_is_neigh_list(dev, dev_list) \ 4738 (dev_list == &dev->adj_list.upper || \ 4739 dev_list == &dev->adj_list.lower) 4740 4741 static int __netdev_adjacent_dev_insert(struct net_device *dev, 4742 struct net_device *adj_dev, 4743 struct list_head *dev_list, 4744 void *private, bool master) 4745 { 4746 struct netdev_adjacent *adj; 4747 int ret; 4748 4749 adj = __netdev_find_adj(dev, adj_dev, dev_list); 4750 4751 if (adj) { 4752 adj->ref_nr++; 4753 return 0; 4754 } 4755 4756 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 4757 if (!adj) 4758 return -ENOMEM; 4759 4760 adj->dev = adj_dev; 4761 adj->master = master; 4762 adj->ref_nr = 1; 4763 adj->private = private; 4764 dev_hold(adj_dev); 4765 4766 pr_debug("dev_hold for %s, because of link added from %s to %s\n", 4767 adj_dev->name, dev->name, adj_dev->name); 4768 4769 if (netdev_adjacent_is_neigh_list(dev, dev_list)) { 4770 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 4771 if (ret) 4772 goto free_adj; 4773 } 4774 4775 /* Ensure that master link is always the first item in list. */ 4776 if (master) { 4777 ret = sysfs_create_link(&(dev->dev.kobj), 4778 &(adj_dev->dev.kobj), "master"); 4779 if (ret) 4780 goto remove_symlinks; 4781 4782 list_add_rcu(&adj->list, dev_list); 4783 } else { 4784 list_add_tail_rcu(&adj->list, dev_list); 4785 } 4786 4787 return 0; 4788 4789 remove_symlinks: 4790 if (netdev_adjacent_is_neigh_list(dev, dev_list)) 4791 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 4792 free_adj: 4793 kfree(adj); 4794 dev_put(adj_dev); 4795 4796 return ret; 4797 } 4798 4799 static void __netdev_adjacent_dev_remove(struct net_device *dev, 4800 struct net_device *adj_dev, 4801 struct list_head *dev_list) 4802 { 4803 struct netdev_adjacent *adj; 4804 4805 adj = __netdev_find_adj(dev, adj_dev, dev_list); 4806 4807 if (!adj) { 4808 pr_err("tried to remove device %s from %s\n", 4809 dev->name, adj_dev->name); 4810 BUG(); 4811 } 4812 4813 if (adj->ref_nr > 1) { 4814 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name, 4815 adj->ref_nr-1); 4816 adj->ref_nr--; 4817 return; 4818 } 4819 4820 if (adj->master) 4821 sysfs_remove_link(&(dev->dev.kobj), "master"); 4822 4823 if (netdev_adjacent_is_neigh_list(dev, dev_list)) 4824 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 4825 4826 list_del_rcu(&adj->list); 4827 pr_debug("dev_put for %s, because link removed from %s to %s\n", 4828 adj_dev->name, dev->name, adj_dev->name); 4829 dev_put(adj_dev); 4830 kfree_rcu(adj, rcu); 4831 } 4832 4833 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 4834 struct net_device *upper_dev, 4835 struct list_head *up_list, 4836 struct list_head *down_list, 4837 void *private, bool master) 4838 { 4839 int ret; 4840 4841 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private, 4842 master); 4843 if (ret) 4844 return ret; 4845 4846 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private, 4847 false); 4848 if (ret) { 4849 __netdev_adjacent_dev_remove(dev, upper_dev, up_list); 4850 return ret; 4851 } 4852 4853 return 0; 4854 } 4855 4856 static int __netdev_adjacent_dev_link(struct net_device *dev, 4857 struct net_device *upper_dev) 4858 { 4859 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 4860 &dev->all_adj_list.upper, 4861 &upper_dev->all_adj_list.lower, 4862 NULL, false); 4863 } 4864 4865 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 4866 struct net_device *upper_dev, 4867 struct list_head *up_list, 4868 struct list_head *down_list) 4869 { 4870 __netdev_adjacent_dev_remove(dev, upper_dev, up_list); 4871 __netdev_adjacent_dev_remove(upper_dev, dev, down_list); 4872 } 4873 4874 static void __netdev_adjacent_dev_unlink(struct net_device *dev, 4875 struct net_device *upper_dev) 4876 { 4877 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 4878 &dev->all_adj_list.upper, 4879 &upper_dev->all_adj_list.lower); 4880 } 4881 4882 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 4883 struct net_device *upper_dev, 4884 void *private, bool master) 4885 { 4886 int ret = __netdev_adjacent_dev_link(dev, upper_dev); 4887 4888 if (ret) 4889 return ret; 4890 4891 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev, 4892 &dev->adj_list.upper, 4893 &upper_dev->adj_list.lower, 4894 private, master); 4895 if (ret) { 4896 __netdev_adjacent_dev_unlink(dev, upper_dev); 4897 return ret; 4898 } 4899 4900 return 0; 4901 } 4902 4903 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 4904 struct net_device *upper_dev) 4905 { 4906 __netdev_adjacent_dev_unlink(dev, upper_dev); 4907 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 4908 &dev->adj_list.upper, 4909 &upper_dev->adj_list.lower); 4910 } 4911 4912 static int __netdev_upper_dev_link(struct net_device *dev, 4913 struct net_device *upper_dev, bool master, 4914 void *private) 4915 { 4916 struct netdev_adjacent *i, *j, *to_i, *to_j; 4917 int ret = 0; 4918 4919 ASSERT_RTNL(); 4920 4921 if (dev == upper_dev) 4922 return -EBUSY; 4923 4924 /* To prevent loops, check if dev is not upper device to upper_dev. */ 4925 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper)) 4926 return -EBUSY; 4927 4928 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper)) 4929 return -EEXIST; 4930 4931 if (master && netdev_master_upper_dev_get(dev)) 4932 return -EBUSY; 4933 4934 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private, 4935 master); 4936 if (ret) 4937 return ret; 4938 4939 /* Now that we linked these devs, make all the upper_dev's 4940 * all_adj_list.upper visible to every dev's all_adj_list.lower an 4941 * versa, and don't forget the devices itself. All of these 4942 * links are non-neighbours. 4943 */ 4944 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 4945 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) { 4946 pr_debug("Interlinking %s with %s, non-neighbour\n", 4947 i->dev->name, j->dev->name); 4948 ret = __netdev_adjacent_dev_link(i->dev, j->dev); 4949 if (ret) 4950 goto rollback_mesh; 4951 } 4952 } 4953 4954 /* add dev to every upper_dev's upper device */ 4955 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) { 4956 pr_debug("linking %s's upper device %s with %s\n", 4957 upper_dev->name, i->dev->name, dev->name); 4958 ret = __netdev_adjacent_dev_link(dev, i->dev); 4959 if (ret) 4960 goto rollback_upper_mesh; 4961 } 4962 4963 /* add upper_dev to every dev's lower device */ 4964 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 4965 pr_debug("linking %s's lower device %s with %s\n", dev->name, 4966 i->dev->name, upper_dev->name); 4967 ret = __netdev_adjacent_dev_link(i->dev, upper_dev); 4968 if (ret) 4969 goto rollback_lower_mesh; 4970 } 4971 4972 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev); 4973 return 0; 4974 4975 rollback_lower_mesh: 4976 to_i = i; 4977 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 4978 if (i == to_i) 4979 break; 4980 __netdev_adjacent_dev_unlink(i->dev, upper_dev); 4981 } 4982 4983 i = NULL; 4984 4985 rollback_upper_mesh: 4986 to_i = i; 4987 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) { 4988 if (i == to_i) 4989 break; 4990 __netdev_adjacent_dev_unlink(dev, i->dev); 4991 } 4992 4993 i = j = NULL; 4994 4995 rollback_mesh: 4996 to_i = i; 4997 to_j = j; 4998 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 4999 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) { 5000 if (i == to_i && j == to_j) 5001 break; 5002 __netdev_adjacent_dev_unlink(i->dev, j->dev); 5003 } 5004 if (i == to_i) 5005 break; 5006 } 5007 5008 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 5009 5010 return ret; 5011 } 5012 5013 /** 5014 * netdev_upper_dev_link - Add a link to the upper device 5015 * @dev: device 5016 * @upper_dev: new upper device 5017 * 5018 * Adds a link to device which is upper to this one. The caller must hold 5019 * the RTNL lock. On a failure a negative errno code is returned. 5020 * On success the reference counts are adjusted and the function 5021 * returns zero. 5022 */ 5023 int netdev_upper_dev_link(struct net_device *dev, 5024 struct net_device *upper_dev) 5025 { 5026 return __netdev_upper_dev_link(dev, upper_dev, false, NULL); 5027 } 5028 EXPORT_SYMBOL(netdev_upper_dev_link); 5029 5030 /** 5031 * netdev_master_upper_dev_link - Add a master link to the upper device 5032 * @dev: device 5033 * @upper_dev: new upper device 5034 * 5035 * Adds a link to device which is upper to this one. In this case, only 5036 * one master upper device can be linked, although other non-master devices 5037 * might be linked as well. The caller must hold the RTNL lock. 5038 * On a failure a negative errno code is returned. On success the reference 5039 * counts are adjusted and the function returns zero. 5040 */ 5041 int netdev_master_upper_dev_link(struct net_device *dev, 5042 struct net_device *upper_dev) 5043 { 5044 return __netdev_upper_dev_link(dev, upper_dev, true, NULL); 5045 } 5046 EXPORT_SYMBOL(netdev_master_upper_dev_link); 5047 5048 int netdev_master_upper_dev_link_private(struct net_device *dev, 5049 struct net_device *upper_dev, 5050 void *private) 5051 { 5052 return __netdev_upper_dev_link(dev, upper_dev, true, private); 5053 } 5054 EXPORT_SYMBOL(netdev_master_upper_dev_link_private); 5055 5056 /** 5057 * netdev_upper_dev_unlink - Removes a link to upper device 5058 * @dev: device 5059 * @upper_dev: new upper device 5060 * 5061 * Removes a link to device which is upper to this one. The caller must hold 5062 * the RTNL lock. 5063 */ 5064 void netdev_upper_dev_unlink(struct net_device *dev, 5065 struct net_device *upper_dev) 5066 { 5067 struct netdev_adjacent *i, *j; 5068 ASSERT_RTNL(); 5069 5070 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 5071 5072 /* Here is the tricky part. We must remove all dev's lower 5073 * devices from all upper_dev's upper devices and vice 5074 * versa, to maintain the graph relationship. 5075 */ 5076 list_for_each_entry(i, &dev->all_adj_list.lower, list) 5077 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) 5078 __netdev_adjacent_dev_unlink(i->dev, j->dev); 5079 5080 /* remove also the devices itself from lower/upper device 5081 * list 5082 */ 5083 list_for_each_entry(i, &dev->all_adj_list.lower, list) 5084 __netdev_adjacent_dev_unlink(i->dev, upper_dev); 5085 5086 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) 5087 __netdev_adjacent_dev_unlink(dev, i->dev); 5088 5089 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev); 5090 } 5091 EXPORT_SYMBOL(netdev_upper_dev_unlink); 5092 5093 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 5094 { 5095 struct netdev_adjacent *iter; 5096 5097 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5098 netdev_adjacent_sysfs_del(iter->dev, oldname, 5099 &iter->dev->adj_list.lower); 5100 netdev_adjacent_sysfs_add(iter->dev, dev, 5101 &iter->dev->adj_list.lower); 5102 } 5103 5104 list_for_each_entry(iter, &dev->adj_list.lower, list) { 5105 netdev_adjacent_sysfs_del(iter->dev, oldname, 5106 &iter->dev->adj_list.upper); 5107 netdev_adjacent_sysfs_add(iter->dev, dev, 5108 &iter->dev->adj_list.upper); 5109 } 5110 } 5111 5112 void *netdev_lower_dev_get_private(struct net_device *dev, 5113 struct net_device *lower_dev) 5114 { 5115 struct netdev_adjacent *lower; 5116 5117 if (!lower_dev) 5118 return NULL; 5119 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower); 5120 if (!lower) 5121 return NULL; 5122 5123 return lower->private; 5124 } 5125 EXPORT_SYMBOL(netdev_lower_dev_get_private); 5126 5127 5128 int dev_get_nest_level(struct net_device *dev, 5129 bool (*type_check)(struct net_device *dev)) 5130 { 5131 struct net_device *lower = NULL; 5132 struct list_head *iter; 5133 int max_nest = -1; 5134 int nest; 5135 5136 ASSERT_RTNL(); 5137 5138 netdev_for_each_lower_dev(dev, lower, iter) { 5139 nest = dev_get_nest_level(lower, type_check); 5140 if (max_nest < nest) 5141 max_nest = nest; 5142 } 5143 5144 if (type_check(dev)) 5145 max_nest++; 5146 5147 return max_nest; 5148 } 5149 EXPORT_SYMBOL(dev_get_nest_level); 5150 5151 static void dev_change_rx_flags(struct net_device *dev, int flags) 5152 { 5153 const struct net_device_ops *ops = dev->netdev_ops; 5154 5155 if (ops->ndo_change_rx_flags) 5156 ops->ndo_change_rx_flags(dev, flags); 5157 } 5158 5159 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 5160 { 5161 unsigned int old_flags = dev->flags; 5162 kuid_t uid; 5163 kgid_t gid; 5164 5165 ASSERT_RTNL(); 5166 5167 dev->flags |= IFF_PROMISC; 5168 dev->promiscuity += inc; 5169 if (dev->promiscuity == 0) { 5170 /* 5171 * Avoid overflow. 5172 * If inc causes overflow, untouch promisc and return error. 5173 */ 5174 if (inc < 0) 5175 dev->flags &= ~IFF_PROMISC; 5176 else { 5177 dev->promiscuity -= inc; 5178 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 5179 dev->name); 5180 return -EOVERFLOW; 5181 } 5182 } 5183 if (dev->flags != old_flags) { 5184 pr_info("device %s %s promiscuous mode\n", 5185 dev->name, 5186 dev->flags & IFF_PROMISC ? "entered" : "left"); 5187 if (audit_enabled) { 5188 current_uid_gid(&uid, &gid); 5189 audit_log(current->audit_context, GFP_ATOMIC, 5190 AUDIT_ANOM_PROMISCUOUS, 5191 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 5192 dev->name, (dev->flags & IFF_PROMISC), 5193 (old_flags & IFF_PROMISC), 5194 from_kuid(&init_user_ns, audit_get_loginuid(current)), 5195 from_kuid(&init_user_ns, uid), 5196 from_kgid(&init_user_ns, gid), 5197 audit_get_sessionid(current)); 5198 } 5199 5200 dev_change_rx_flags(dev, IFF_PROMISC); 5201 } 5202 if (notify) 5203 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 5204 return 0; 5205 } 5206 5207 /** 5208 * dev_set_promiscuity - update promiscuity count on a device 5209 * @dev: device 5210 * @inc: modifier 5211 * 5212 * Add or remove promiscuity from a device. While the count in the device 5213 * remains above zero the interface remains promiscuous. Once it hits zero 5214 * the device reverts back to normal filtering operation. A negative inc 5215 * value is used to drop promiscuity on the device. 5216 * Return 0 if successful or a negative errno code on error. 5217 */ 5218 int dev_set_promiscuity(struct net_device *dev, int inc) 5219 { 5220 unsigned int old_flags = dev->flags; 5221 int err; 5222 5223 err = __dev_set_promiscuity(dev, inc, true); 5224 if (err < 0) 5225 return err; 5226 if (dev->flags != old_flags) 5227 dev_set_rx_mode(dev); 5228 return err; 5229 } 5230 EXPORT_SYMBOL(dev_set_promiscuity); 5231 5232 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 5233 { 5234 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 5235 5236 ASSERT_RTNL(); 5237 5238 dev->flags |= IFF_ALLMULTI; 5239 dev->allmulti += inc; 5240 if (dev->allmulti == 0) { 5241 /* 5242 * Avoid overflow. 5243 * If inc causes overflow, untouch allmulti and return error. 5244 */ 5245 if (inc < 0) 5246 dev->flags &= ~IFF_ALLMULTI; 5247 else { 5248 dev->allmulti -= inc; 5249 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 5250 dev->name); 5251 return -EOVERFLOW; 5252 } 5253 } 5254 if (dev->flags ^ old_flags) { 5255 dev_change_rx_flags(dev, IFF_ALLMULTI); 5256 dev_set_rx_mode(dev); 5257 if (notify) 5258 __dev_notify_flags(dev, old_flags, 5259 dev->gflags ^ old_gflags); 5260 } 5261 return 0; 5262 } 5263 5264 /** 5265 * dev_set_allmulti - update allmulti count on a device 5266 * @dev: device 5267 * @inc: modifier 5268 * 5269 * Add or remove reception of all multicast frames to a device. While the 5270 * count in the device remains above zero the interface remains listening 5271 * to all interfaces. Once it hits zero the device reverts back to normal 5272 * filtering operation. A negative @inc value is used to drop the counter 5273 * when releasing a resource needing all multicasts. 5274 * Return 0 if successful or a negative errno code on error. 5275 */ 5276 5277 int dev_set_allmulti(struct net_device *dev, int inc) 5278 { 5279 return __dev_set_allmulti(dev, inc, true); 5280 } 5281 EXPORT_SYMBOL(dev_set_allmulti); 5282 5283 /* 5284 * Upload unicast and multicast address lists to device and 5285 * configure RX filtering. When the device doesn't support unicast 5286 * filtering it is put in promiscuous mode while unicast addresses 5287 * are present. 5288 */ 5289 void __dev_set_rx_mode(struct net_device *dev) 5290 { 5291 const struct net_device_ops *ops = dev->netdev_ops; 5292 5293 /* dev_open will call this function so the list will stay sane. */ 5294 if (!(dev->flags&IFF_UP)) 5295 return; 5296 5297 if (!netif_device_present(dev)) 5298 return; 5299 5300 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 5301 /* Unicast addresses changes may only happen under the rtnl, 5302 * therefore calling __dev_set_promiscuity here is safe. 5303 */ 5304 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 5305 __dev_set_promiscuity(dev, 1, false); 5306 dev->uc_promisc = true; 5307 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 5308 __dev_set_promiscuity(dev, -1, false); 5309 dev->uc_promisc = false; 5310 } 5311 } 5312 5313 if (ops->ndo_set_rx_mode) 5314 ops->ndo_set_rx_mode(dev); 5315 } 5316 5317 void dev_set_rx_mode(struct net_device *dev) 5318 { 5319 netif_addr_lock_bh(dev); 5320 __dev_set_rx_mode(dev); 5321 netif_addr_unlock_bh(dev); 5322 } 5323 5324 /** 5325 * dev_get_flags - get flags reported to userspace 5326 * @dev: device 5327 * 5328 * Get the combination of flag bits exported through APIs to userspace. 5329 */ 5330 unsigned int dev_get_flags(const struct net_device *dev) 5331 { 5332 unsigned int flags; 5333 5334 flags = (dev->flags & ~(IFF_PROMISC | 5335 IFF_ALLMULTI | 5336 IFF_RUNNING | 5337 IFF_LOWER_UP | 5338 IFF_DORMANT)) | 5339 (dev->gflags & (IFF_PROMISC | 5340 IFF_ALLMULTI)); 5341 5342 if (netif_running(dev)) { 5343 if (netif_oper_up(dev)) 5344 flags |= IFF_RUNNING; 5345 if (netif_carrier_ok(dev)) 5346 flags |= IFF_LOWER_UP; 5347 if (netif_dormant(dev)) 5348 flags |= IFF_DORMANT; 5349 } 5350 5351 return flags; 5352 } 5353 EXPORT_SYMBOL(dev_get_flags); 5354 5355 int __dev_change_flags(struct net_device *dev, unsigned int flags) 5356 { 5357 unsigned int old_flags = dev->flags; 5358 int ret; 5359 5360 ASSERT_RTNL(); 5361 5362 /* 5363 * Set the flags on our device. 5364 */ 5365 5366 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 5367 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 5368 IFF_AUTOMEDIA)) | 5369 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 5370 IFF_ALLMULTI)); 5371 5372 /* 5373 * Load in the correct multicast list now the flags have changed. 5374 */ 5375 5376 if ((old_flags ^ flags) & IFF_MULTICAST) 5377 dev_change_rx_flags(dev, IFF_MULTICAST); 5378 5379 dev_set_rx_mode(dev); 5380 5381 /* 5382 * Have we downed the interface. We handle IFF_UP ourselves 5383 * according to user attempts to set it, rather than blindly 5384 * setting it. 5385 */ 5386 5387 ret = 0; 5388 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 5389 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 5390 5391 if (!ret) 5392 dev_set_rx_mode(dev); 5393 } 5394 5395 if ((flags ^ dev->gflags) & IFF_PROMISC) { 5396 int inc = (flags & IFF_PROMISC) ? 1 : -1; 5397 unsigned int old_flags = dev->flags; 5398 5399 dev->gflags ^= IFF_PROMISC; 5400 5401 if (__dev_set_promiscuity(dev, inc, false) >= 0) 5402 if (dev->flags != old_flags) 5403 dev_set_rx_mode(dev); 5404 } 5405 5406 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 5407 is important. Some (broken) drivers set IFF_PROMISC, when 5408 IFF_ALLMULTI is requested not asking us and not reporting. 5409 */ 5410 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 5411 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 5412 5413 dev->gflags ^= IFF_ALLMULTI; 5414 __dev_set_allmulti(dev, inc, false); 5415 } 5416 5417 return ret; 5418 } 5419 5420 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 5421 unsigned int gchanges) 5422 { 5423 unsigned int changes = dev->flags ^ old_flags; 5424 5425 if (gchanges) 5426 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 5427 5428 if (changes & IFF_UP) { 5429 if (dev->flags & IFF_UP) 5430 call_netdevice_notifiers(NETDEV_UP, dev); 5431 else 5432 call_netdevice_notifiers(NETDEV_DOWN, dev); 5433 } 5434 5435 if (dev->flags & IFF_UP && 5436 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 5437 struct netdev_notifier_change_info change_info; 5438 5439 change_info.flags_changed = changes; 5440 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 5441 &change_info.info); 5442 } 5443 } 5444 5445 /** 5446 * dev_change_flags - change device settings 5447 * @dev: device 5448 * @flags: device state flags 5449 * 5450 * Change settings on device based state flags. The flags are 5451 * in the userspace exported format. 5452 */ 5453 int dev_change_flags(struct net_device *dev, unsigned int flags) 5454 { 5455 int ret; 5456 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 5457 5458 ret = __dev_change_flags(dev, flags); 5459 if (ret < 0) 5460 return ret; 5461 5462 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 5463 __dev_notify_flags(dev, old_flags, changes); 5464 return ret; 5465 } 5466 EXPORT_SYMBOL(dev_change_flags); 5467 5468 static int __dev_set_mtu(struct net_device *dev, int new_mtu) 5469 { 5470 const struct net_device_ops *ops = dev->netdev_ops; 5471 5472 if (ops->ndo_change_mtu) 5473 return ops->ndo_change_mtu(dev, new_mtu); 5474 5475 dev->mtu = new_mtu; 5476 return 0; 5477 } 5478 5479 /** 5480 * dev_set_mtu - Change maximum transfer unit 5481 * @dev: device 5482 * @new_mtu: new transfer unit 5483 * 5484 * Change the maximum transfer size of the network device. 5485 */ 5486 int dev_set_mtu(struct net_device *dev, int new_mtu) 5487 { 5488 int err, orig_mtu; 5489 5490 if (new_mtu == dev->mtu) 5491 return 0; 5492 5493 /* MTU must be positive. */ 5494 if (new_mtu < 0) 5495 return -EINVAL; 5496 5497 if (!netif_device_present(dev)) 5498 return -ENODEV; 5499 5500 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 5501 err = notifier_to_errno(err); 5502 if (err) 5503 return err; 5504 5505 orig_mtu = dev->mtu; 5506 err = __dev_set_mtu(dev, new_mtu); 5507 5508 if (!err) { 5509 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 5510 err = notifier_to_errno(err); 5511 if (err) { 5512 /* setting mtu back and notifying everyone again, 5513 * so that they have a chance to revert changes. 5514 */ 5515 __dev_set_mtu(dev, orig_mtu); 5516 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 5517 } 5518 } 5519 return err; 5520 } 5521 EXPORT_SYMBOL(dev_set_mtu); 5522 5523 /** 5524 * dev_set_group - Change group this device belongs to 5525 * @dev: device 5526 * @new_group: group this device should belong to 5527 */ 5528 void dev_set_group(struct net_device *dev, int new_group) 5529 { 5530 dev->group = new_group; 5531 } 5532 EXPORT_SYMBOL(dev_set_group); 5533 5534 /** 5535 * dev_set_mac_address - Change Media Access Control Address 5536 * @dev: device 5537 * @sa: new address 5538 * 5539 * Change the hardware (MAC) address of the device 5540 */ 5541 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 5542 { 5543 const struct net_device_ops *ops = dev->netdev_ops; 5544 int err; 5545 5546 if (!ops->ndo_set_mac_address) 5547 return -EOPNOTSUPP; 5548 if (sa->sa_family != dev->type) 5549 return -EINVAL; 5550 if (!netif_device_present(dev)) 5551 return -ENODEV; 5552 err = ops->ndo_set_mac_address(dev, sa); 5553 if (err) 5554 return err; 5555 dev->addr_assign_type = NET_ADDR_SET; 5556 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 5557 add_device_randomness(dev->dev_addr, dev->addr_len); 5558 return 0; 5559 } 5560 EXPORT_SYMBOL(dev_set_mac_address); 5561 5562 /** 5563 * dev_change_carrier - Change device carrier 5564 * @dev: device 5565 * @new_carrier: new value 5566 * 5567 * Change device carrier 5568 */ 5569 int dev_change_carrier(struct net_device *dev, bool new_carrier) 5570 { 5571 const struct net_device_ops *ops = dev->netdev_ops; 5572 5573 if (!ops->ndo_change_carrier) 5574 return -EOPNOTSUPP; 5575 if (!netif_device_present(dev)) 5576 return -ENODEV; 5577 return ops->ndo_change_carrier(dev, new_carrier); 5578 } 5579 EXPORT_SYMBOL(dev_change_carrier); 5580 5581 /** 5582 * dev_get_phys_port_id - Get device physical port ID 5583 * @dev: device 5584 * @ppid: port ID 5585 * 5586 * Get device physical port ID 5587 */ 5588 int dev_get_phys_port_id(struct net_device *dev, 5589 struct netdev_phys_port_id *ppid) 5590 { 5591 const struct net_device_ops *ops = dev->netdev_ops; 5592 5593 if (!ops->ndo_get_phys_port_id) 5594 return -EOPNOTSUPP; 5595 return ops->ndo_get_phys_port_id(dev, ppid); 5596 } 5597 EXPORT_SYMBOL(dev_get_phys_port_id); 5598 5599 /** 5600 * dev_new_index - allocate an ifindex 5601 * @net: the applicable net namespace 5602 * 5603 * Returns a suitable unique value for a new device interface 5604 * number. The caller must hold the rtnl semaphore or the 5605 * dev_base_lock to be sure it remains unique. 5606 */ 5607 static int dev_new_index(struct net *net) 5608 { 5609 int ifindex = net->ifindex; 5610 for (;;) { 5611 if (++ifindex <= 0) 5612 ifindex = 1; 5613 if (!__dev_get_by_index(net, ifindex)) 5614 return net->ifindex = ifindex; 5615 } 5616 } 5617 5618 /* Delayed registration/unregisteration */ 5619 static LIST_HEAD(net_todo_list); 5620 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 5621 5622 static void net_set_todo(struct net_device *dev) 5623 { 5624 list_add_tail(&dev->todo_list, &net_todo_list); 5625 dev_net(dev)->dev_unreg_count++; 5626 } 5627 5628 static void rollback_registered_many(struct list_head *head) 5629 { 5630 struct net_device *dev, *tmp; 5631 LIST_HEAD(close_head); 5632 5633 BUG_ON(dev_boot_phase); 5634 ASSERT_RTNL(); 5635 5636 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 5637 /* Some devices call without registering 5638 * for initialization unwind. Remove those 5639 * devices and proceed with the remaining. 5640 */ 5641 if (dev->reg_state == NETREG_UNINITIALIZED) { 5642 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 5643 dev->name, dev); 5644 5645 WARN_ON(1); 5646 list_del(&dev->unreg_list); 5647 continue; 5648 } 5649 dev->dismantle = true; 5650 BUG_ON(dev->reg_state != NETREG_REGISTERED); 5651 } 5652 5653 /* If device is running, close it first. */ 5654 list_for_each_entry(dev, head, unreg_list) 5655 list_add_tail(&dev->close_list, &close_head); 5656 dev_close_many(&close_head); 5657 5658 list_for_each_entry(dev, head, unreg_list) { 5659 /* And unlink it from device chain. */ 5660 unlist_netdevice(dev); 5661 5662 dev->reg_state = NETREG_UNREGISTERING; 5663 } 5664 5665 synchronize_net(); 5666 5667 list_for_each_entry(dev, head, unreg_list) { 5668 /* Shutdown queueing discipline. */ 5669 dev_shutdown(dev); 5670 5671 5672 /* Notify protocols, that we are about to destroy 5673 this device. They should clean all the things. 5674 */ 5675 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5676 5677 if (!dev->rtnl_link_ops || 5678 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5679 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL); 5680 5681 /* 5682 * Flush the unicast and multicast chains 5683 */ 5684 dev_uc_flush(dev); 5685 dev_mc_flush(dev); 5686 5687 if (dev->netdev_ops->ndo_uninit) 5688 dev->netdev_ops->ndo_uninit(dev); 5689 5690 /* Notifier chain MUST detach us all upper devices. */ 5691 WARN_ON(netdev_has_any_upper_dev(dev)); 5692 5693 /* Remove entries from kobject tree */ 5694 netdev_unregister_kobject(dev); 5695 #ifdef CONFIG_XPS 5696 /* Remove XPS queueing entries */ 5697 netif_reset_xps_queues_gt(dev, 0); 5698 #endif 5699 } 5700 5701 synchronize_net(); 5702 5703 list_for_each_entry(dev, head, unreg_list) 5704 dev_put(dev); 5705 } 5706 5707 static void rollback_registered(struct net_device *dev) 5708 { 5709 LIST_HEAD(single); 5710 5711 list_add(&dev->unreg_list, &single); 5712 rollback_registered_many(&single); 5713 list_del(&single); 5714 } 5715 5716 static netdev_features_t netdev_fix_features(struct net_device *dev, 5717 netdev_features_t features) 5718 { 5719 /* Fix illegal checksum combinations */ 5720 if ((features & NETIF_F_HW_CSUM) && 5721 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5722 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 5723 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5724 } 5725 5726 /* TSO requires that SG is present as well. */ 5727 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 5728 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 5729 features &= ~NETIF_F_ALL_TSO; 5730 } 5731 5732 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 5733 !(features & NETIF_F_IP_CSUM)) { 5734 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 5735 features &= ~NETIF_F_TSO; 5736 features &= ~NETIF_F_TSO_ECN; 5737 } 5738 5739 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 5740 !(features & NETIF_F_IPV6_CSUM)) { 5741 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 5742 features &= ~NETIF_F_TSO6; 5743 } 5744 5745 /* TSO ECN requires that TSO is present as well. */ 5746 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 5747 features &= ~NETIF_F_TSO_ECN; 5748 5749 /* Software GSO depends on SG. */ 5750 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 5751 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 5752 features &= ~NETIF_F_GSO; 5753 } 5754 5755 /* UFO needs SG and checksumming */ 5756 if (features & NETIF_F_UFO) { 5757 /* maybe split UFO into V4 and V6? */ 5758 if (!((features & NETIF_F_GEN_CSUM) || 5759 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM)) 5760 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5761 netdev_dbg(dev, 5762 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 5763 features &= ~NETIF_F_UFO; 5764 } 5765 5766 if (!(features & NETIF_F_SG)) { 5767 netdev_dbg(dev, 5768 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 5769 features &= ~NETIF_F_UFO; 5770 } 5771 } 5772 5773 #ifdef CONFIG_NET_RX_BUSY_POLL 5774 if (dev->netdev_ops->ndo_busy_poll) 5775 features |= NETIF_F_BUSY_POLL; 5776 else 5777 #endif 5778 features &= ~NETIF_F_BUSY_POLL; 5779 5780 return features; 5781 } 5782 5783 int __netdev_update_features(struct net_device *dev) 5784 { 5785 netdev_features_t features; 5786 int err = 0; 5787 5788 ASSERT_RTNL(); 5789 5790 features = netdev_get_wanted_features(dev); 5791 5792 if (dev->netdev_ops->ndo_fix_features) 5793 features = dev->netdev_ops->ndo_fix_features(dev, features); 5794 5795 /* driver might be less strict about feature dependencies */ 5796 features = netdev_fix_features(dev, features); 5797 5798 if (dev->features == features) 5799 return 0; 5800 5801 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 5802 &dev->features, &features); 5803 5804 if (dev->netdev_ops->ndo_set_features) 5805 err = dev->netdev_ops->ndo_set_features(dev, features); 5806 5807 if (unlikely(err < 0)) { 5808 netdev_err(dev, 5809 "set_features() failed (%d); wanted %pNF, left %pNF\n", 5810 err, &features, &dev->features); 5811 return -1; 5812 } 5813 5814 if (!err) 5815 dev->features = features; 5816 5817 return 1; 5818 } 5819 5820 /** 5821 * netdev_update_features - recalculate device features 5822 * @dev: the device to check 5823 * 5824 * Recalculate dev->features set and send notifications if it 5825 * has changed. Should be called after driver or hardware dependent 5826 * conditions might have changed that influence the features. 5827 */ 5828 void netdev_update_features(struct net_device *dev) 5829 { 5830 if (__netdev_update_features(dev)) 5831 netdev_features_change(dev); 5832 } 5833 EXPORT_SYMBOL(netdev_update_features); 5834 5835 /** 5836 * netdev_change_features - recalculate device features 5837 * @dev: the device to check 5838 * 5839 * Recalculate dev->features set and send notifications even 5840 * if they have not changed. Should be called instead of 5841 * netdev_update_features() if also dev->vlan_features might 5842 * have changed to allow the changes to be propagated to stacked 5843 * VLAN devices. 5844 */ 5845 void netdev_change_features(struct net_device *dev) 5846 { 5847 __netdev_update_features(dev); 5848 netdev_features_change(dev); 5849 } 5850 EXPORT_SYMBOL(netdev_change_features); 5851 5852 /** 5853 * netif_stacked_transfer_operstate - transfer operstate 5854 * @rootdev: the root or lower level device to transfer state from 5855 * @dev: the device to transfer operstate to 5856 * 5857 * Transfer operational state from root to device. This is normally 5858 * called when a stacking relationship exists between the root 5859 * device and the device(a leaf device). 5860 */ 5861 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5862 struct net_device *dev) 5863 { 5864 if (rootdev->operstate == IF_OPER_DORMANT) 5865 netif_dormant_on(dev); 5866 else 5867 netif_dormant_off(dev); 5868 5869 if (netif_carrier_ok(rootdev)) { 5870 if (!netif_carrier_ok(dev)) 5871 netif_carrier_on(dev); 5872 } else { 5873 if (netif_carrier_ok(dev)) 5874 netif_carrier_off(dev); 5875 } 5876 } 5877 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 5878 5879 #ifdef CONFIG_SYSFS 5880 static int netif_alloc_rx_queues(struct net_device *dev) 5881 { 5882 unsigned int i, count = dev->num_rx_queues; 5883 struct netdev_rx_queue *rx; 5884 5885 BUG_ON(count < 1); 5886 5887 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL); 5888 if (!rx) 5889 return -ENOMEM; 5890 5891 dev->_rx = rx; 5892 5893 for (i = 0; i < count; i++) 5894 rx[i].dev = dev; 5895 return 0; 5896 } 5897 #endif 5898 5899 static void netdev_init_one_queue(struct net_device *dev, 5900 struct netdev_queue *queue, void *_unused) 5901 { 5902 /* Initialize queue lock */ 5903 spin_lock_init(&queue->_xmit_lock); 5904 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 5905 queue->xmit_lock_owner = -1; 5906 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 5907 queue->dev = dev; 5908 #ifdef CONFIG_BQL 5909 dql_init(&queue->dql, HZ); 5910 #endif 5911 } 5912 5913 static void netif_free_tx_queues(struct net_device *dev) 5914 { 5915 if (is_vmalloc_addr(dev->_tx)) 5916 vfree(dev->_tx); 5917 else 5918 kfree(dev->_tx); 5919 } 5920 5921 static int netif_alloc_netdev_queues(struct net_device *dev) 5922 { 5923 unsigned int count = dev->num_tx_queues; 5924 struct netdev_queue *tx; 5925 size_t sz = count * sizeof(*tx); 5926 5927 BUG_ON(count < 1 || count > 0xffff); 5928 5929 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 5930 if (!tx) { 5931 tx = vzalloc(sz); 5932 if (!tx) 5933 return -ENOMEM; 5934 } 5935 dev->_tx = tx; 5936 5937 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 5938 spin_lock_init(&dev->tx_global_lock); 5939 5940 return 0; 5941 } 5942 5943 /** 5944 * register_netdevice - register a network device 5945 * @dev: device to register 5946 * 5947 * Take a completed network device structure and add it to the kernel 5948 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5949 * chain. 0 is returned on success. A negative errno code is returned 5950 * on a failure to set up the device, or if the name is a duplicate. 5951 * 5952 * Callers must hold the rtnl semaphore. You may want 5953 * register_netdev() instead of this. 5954 * 5955 * BUGS: 5956 * The locking appears insufficient to guarantee two parallel registers 5957 * will not get the same name. 5958 */ 5959 5960 int register_netdevice(struct net_device *dev) 5961 { 5962 int ret; 5963 struct net *net = dev_net(dev); 5964 5965 BUG_ON(dev_boot_phase); 5966 ASSERT_RTNL(); 5967 5968 might_sleep(); 5969 5970 /* When net_device's are persistent, this will be fatal. */ 5971 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 5972 BUG_ON(!net); 5973 5974 spin_lock_init(&dev->addr_list_lock); 5975 netdev_set_addr_lockdep_class(dev); 5976 5977 dev->iflink = -1; 5978 5979 ret = dev_get_valid_name(net, dev, dev->name); 5980 if (ret < 0) 5981 goto out; 5982 5983 /* Init, if this function is available */ 5984 if (dev->netdev_ops->ndo_init) { 5985 ret = dev->netdev_ops->ndo_init(dev); 5986 if (ret) { 5987 if (ret > 0) 5988 ret = -EIO; 5989 goto out; 5990 } 5991 } 5992 5993 if (((dev->hw_features | dev->features) & 5994 NETIF_F_HW_VLAN_CTAG_FILTER) && 5995 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 5996 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 5997 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 5998 ret = -EINVAL; 5999 goto err_uninit; 6000 } 6001 6002 ret = -EBUSY; 6003 if (!dev->ifindex) 6004 dev->ifindex = dev_new_index(net); 6005 else if (__dev_get_by_index(net, dev->ifindex)) 6006 goto err_uninit; 6007 6008 if (dev->iflink == -1) 6009 dev->iflink = dev->ifindex; 6010 6011 /* Transfer changeable features to wanted_features and enable 6012 * software offloads (GSO and GRO). 6013 */ 6014 dev->hw_features |= NETIF_F_SOFT_FEATURES; 6015 dev->features |= NETIF_F_SOFT_FEATURES; 6016 dev->wanted_features = dev->features & dev->hw_features; 6017 6018 if (!(dev->flags & IFF_LOOPBACK)) { 6019 dev->hw_features |= NETIF_F_NOCACHE_COPY; 6020 } 6021 6022 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 6023 */ 6024 dev->vlan_features |= NETIF_F_HIGHDMA; 6025 6026 /* Make NETIF_F_SG inheritable to tunnel devices. 6027 */ 6028 dev->hw_enc_features |= NETIF_F_SG; 6029 6030 /* Make NETIF_F_SG inheritable to MPLS. 6031 */ 6032 dev->mpls_features |= NETIF_F_SG; 6033 6034 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 6035 ret = notifier_to_errno(ret); 6036 if (ret) 6037 goto err_uninit; 6038 6039 ret = netdev_register_kobject(dev); 6040 if (ret) 6041 goto err_uninit; 6042 dev->reg_state = NETREG_REGISTERED; 6043 6044 __netdev_update_features(dev); 6045 6046 /* 6047 * Default initial state at registry is that the 6048 * device is present. 6049 */ 6050 6051 set_bit(__LINK_STATE_PRESENT, &dev->state); 6052 6053 linkwatch_init_dev(dev); 6054 6055 dev_init_scheduler(dev); 6056 dev_hold(dev); 6057 list_netdevice(dev); 6058 add_device_randomness(dev->dev_addr, dev->addr_len); 6059 6060 /* If the device has permanent device address, driver should 6061 * set dev_addr and also addr_assign_type should be set to 6062 * NET_ADDR_PERM (default value). 6063 */ 6064 if (dev->addr_assign_type == NET_ADDR_PERM) 6065 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 6066 6067 /* Notify protocols, that a new device appeared. */ 6068 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 6069 ret = notifier_to_errno(ret); 6070 if (ret) { 6071 rollback_registered(dev); 6072 dev->reg_state = NETREG_UNREGISTERED; 6073 } 6074 /* 6075 * Prevent userspace races by waiting until the network 6076 * device is fully setup before sending notifications. 6077 */ 6078 if (!dev->rtnl_link_ops || 6079 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 6080 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 6081 6082 out: 6083 return ret; 6084 6085 err_uninit: 6086 if (dev->netdev_ops->ndo_uninit) 6087 dev->netdev_ops->ndo_uninit(dev); 6088 goto out; 6089 } 6090 EXPORT_SYMBOL(register_netdevice); 6091 6092 /** 6093 * init_dummy_netdev - init a dummy network device for NAPI 6094 * @dev: device to init 6095 * 6096 * This takes a network device structure and initialize the minimum 6097 * amount of fields so it can be used to schedule NAPI polls without 6098 * registering a full blown interface. This is to be used by drivers 6099 * that need to tie several hardware interfaces to a single NAPI 6100 * poll scheduler due to HW limitations. 6101 */ 6102 int init_dummy_netdev(struct net_device *dev) 6103 { 6104 /* Clear everything. Note we don't initialize spinlocks 6105 * are they aren't supposed to be taken by any of the 6106 * NAPI code and this dummy netdev is supposed to be 6107 * only ever used for NAPI polls 6108 */ 6109 memset(dev, 0, sizeof(struct net_device)); 6110 6111 /* make sure we BUG if trying to hit standard 6112 * register/unregister code path 6113 */ 6114 dev->reg_state = NETREG_DUMMY; 6115 6116 /* NAPI wants this */ 6117 INIT_LIST_HEAD(&dev->napi_list); 6118 6119 /* a dummy interface is started by default */ 6120 set_bit(__LINK_STATE_PRESENT, &dev->state); 6121 set_bit(__LINK_STATE_START, &dev->state); 6122 6123 /* Note : We dont allocate pcpu_refcnt for dummy devices, 6124 * because users of this 'device' dont need to change 6125 * its refcount. 6126 */ 6127 6128 return 0; 6129 } 6130 EXPORT_SYMBOL_GPL(init_dummy_netdev); 6131 6132 6133 /** 6134 * register_netdev - register a network device 6135 * @dev: device to register 6136 * 6137 * Take a completed network device structure and add it to the kernel 6138 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 6139 * chain. 0 is returned on success. A negative errno code is returned 6140 * on a failure to set up the device, or if the name is a duplicate. 6141 * 6142 * This is a wrapper around register_netdevice that takes the rtnl semaphore 6143 * and expands the device name if you passed a format string to 6144 * alloc_netdev. 6145 */ 6146 int register_netdev(struct net_device *dev) 6147 { 6148 int err; 6149 6150 rtnl_lock(); 6151 err = register_netdevice(dev); 6152 rtnl_unlock(); 6153 return err; 6154 } 6155 EXPORT_SYMBOL(register_netdev); 6156 6157 int netdev_refcnt_read(const struct net_device *dev) 6158 { 6159 int i, refcnt = 0; 6160 6161 for_each_possible_cpu(i) 6162 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 6163 return refcnt; 6164 } 6165 EXPORT_SYMBOL(netdev_refcnt_read); 6166 6167 /** 6168 * netdev_wait_allrefs - wait until all references are gone. 6169 * @dev: target net_device 6170 * 6171 * This is called when unregistering network devices. 6172 * 6173 * Any protocol or device that holds a reference should register 6174 * for netdevice notification, and cleanup and put back the 6175 * reference if they receive an UNREGISTER event. 6176 * We can get stuck here if buggy protocols don't correctly 6177 * call dev_put. 6178 */ 6179 static void netdev_wait_allrefs(struct net_device *dev) 6180 { 6181 unsigned long rebroadcast_time, warning_time; 6182 int refcnt; 6183 6184 linkwatch_forget_dev(dev); 6185 6186 rebroadcast_time = warning_time = jiffies; 6187 refcnt = netdev_refcnt_read(dev); 6188 6189 while (refcnt != 0) { 6190 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 6191 rtnl_lock(); 6192 6193 /* Rebroadcast unregister notification */ 6194 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6195 6196 __rtnl_unlock(); 6197 rcu_barrier(); 6198 rtnl_lock(); 6199 6200 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6201 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 6202 &dev->state)) { 6203 /* We must not have linkwatch events 6204 * pending on unregister. If this 6205 * happens, we simply run the queue 6206 * unscheduled, resulting in a noop 6207 * for this device. 6208 */ 6209 linkwatch_run_queue(); 6210 } 6211 6212 __rtnl_unlock(); 6213 6214 rebroadcast_time = jiffies; 6215 } 6216 6217 msleep(250); 6218 6219 refcnt = netdev_refcnt_read(dev); 6220 6221 if (time_after(jiffies, warning_time + 10 * HZ)) { 6222 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 6223 dev->name, refcnt); 6224 warning_time = jiffies; 6225 } 6226 } 6227 } 6228 6229 /* The sequence is: 6230 * 6231 * rtnl_lock(); 6232 * ... 6233 * register_netdevice(x1); 6234 * register_netdevice(x2); 6235 * ... 6236 * unregister_netdevice(y1); 6237 * unregister_netdevice(y2); 6238 * ... 6239 * rtnl_unlock(); 6240 * free_netdev(y1); 6241 * free_netdev(y2); 6242 * 6243 * We are invoked by rtnl_unlock(). 6244 * This allows us to deal with problems: 6245 * 1) We can delete sysfs objects which invoke hotplug 6246 * without deadlocking with linkwatch via keventd. 6247 * 2) Since we run with the RTNL semaphore not held, we can sleep 6248 * safely in order to wait for the netdev refcnt to drop to zero. 6249 * 6250 * We must not return until all unregister events added during 6251 * the interval the lock was held have been completed. 6252 */ 6253 void netdev_run_todo(void) 6254 { 6255 struct list_head list; 6256 6257 /* Snapshot list, allow later requests */ 6258 list_replace_init(&net_todo_list, &list); 6259 6260 __rtnl_unlock(); 6261 6262 6263 /* Wait for rcu callbacks to finish before next phase */ 6264 if (!list_empty(&list)) 6265 rcu_barrier(); 6266 6267 while (!list_empty(&list)) { 6268 struct net_device *dev 6269 = list_first_entry(&list, struct net_device, todo_list); 6270 list_del(&dev->todo_list); 6271 6272 rtnl_lock(); 6273 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6274 __rtnl_unlock(); 6275 6276 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 6277 pr_err("network todo '%s' but state %d\n", 6278 dev->name, dev->reg_state); 6279 dump_stack(); 6280 continue; 6281 } 6282 6283 dev->reg_state = NETREG_UNREGISTERED; 6284 6285 on_each_cpu(flush_backlog, dev, 1); 6286 6287 netdev_wait_allrefs(dev); 6288 6289 /* paranoia */ 6290 BUG_ON(netdev_refcnt_read(dev)); 6291 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 6292 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 6293 WARN_ON(dev->dn_ptr); 6294 6295 if (dev->destructor) 6296 dev->destructor(dev); 6297 6298 /* Report a network device has been unregistered */ 6299 rtnl_lock(); 6300 dev_net(dev)->dev_unreg_count--; 6301 __rtnl_unlock(); 6302 wake_up(&netdev_unregistering_wq); 6303 6304 /* Free network device */ 6305 kobject_put(&dev->dev.kobj); 6306 } 6307 } 6308 6309 /* Convert net_device_stats to rtnl_link_stats64. They have the same 6310 * fields in the same order, with only the type differing. 6311 */ 6312 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 6313 const struct net_device_stats *netdev_stats) 6314 { 6315 #if BITS_PER_LONG == 64 6316 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 6317 memcpy(stats64, netdev_stats, sizeof(*stats64)); 6318 #else 6319 size_t i, n = sizeof(*stats64) / sizeof(u64); 6320 const unsigned long *src = (const unsigned long *)netdev_stats; 6321 u64 *dst = (u64 *)stats64; 6322 6323 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 6324 sizeof(*stats64) / sizeof(u64)); 6325 for (i = 0; i < n; i++) 6326 dst[i] = src[i]; 6327 #endif 6328 } 6329 EXPORT_SYMBOL(netdev_stats_to_stats64); 6330 6331 /** 6332 * dev_get_stats - get network device statistics 6333 * @dev: device to get statistics from 6334 * @storage: place to store stats 6335 * 6336 * Get network statistics from device. Return @storage. 6337 * The device driver may provide its own method by setting 6338 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 6339 * otherwise the internal statistics structure is used. 6340 */ 6341 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 6342 struct rtnl_link_stats64 *storage) 6343 { 6344 const struct net_device_ops *ops = dev->netdev_ops; 6345 6346 if (ops->ndo_get_stats64) { 6347 memset(storage, 0, sizeof(*storage)); 6348 ops->ndo_get_stats64(dev, storage); 6349 } else if (ops->ndo_get_stats) { 6350 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 6351 } else { 6352 netdev_stats_to_stats64(storage, &dev->stats); 6353 } 6354 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 6355 storage->tx_dropped += atomic_long_read(&dev->tx_dropped); 6356 return storage; 6357 } 6358 EXPORT_SYMBOL(dev_get_stats); 6359 6360 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 6361 { 6362 struct netdev_queue *queue = dev_ingress_queue(dev); 6363 6364 #ifdef CONFIG_NET_CLS_ACT 6365 if (queue) 6366 return queue; 6367 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 6368 if (!queue) 6369 return NULL; 6370 netdev_init_one_queue(dev, queue, NULL); 6371 queue->qdisc = &noop_qdisc; 6372 queue->qdisc_sleeping = &noop_qdisc; 6373 rcu_assign_pointer(dev->ingress_queue, queue); 6374 #endif 6375 return queue; 6376 } 6377 6378 static const struct ethtool_ops default_ethtool_ops; 6379 6380 void netdev_set_default_ethtool_ops(struct net_device *dev, 6381 const struct ethtool_ops *ops) 6382 { 6383 if (dev->ethtool_ops == &default_ethtool_ops) 6384 dev->ethtool_ops = ops; 6385 } 6386 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 6387 6388 void netdev_freemem(struct net_device *dev) 6389 { 6390 char *addr = (char *)dev - dev->padded; 6391 6392 if (is_vmalloc_addr(addr)) 6393 vfree(addr); 6394 else 6395 kfree(addr); 6396 } 6397 6398 /** 6399 * alloc_netdev_mqs - allocate network device 6400 * @sizeof_priv: size of private data to allocate space for 6401 * @name: device name format string 6402 * @setup: callback to initialize device 6403 * @txqs: the number of TX subqueues to allocate 6404 * @rxqs: the number of RX subqueues to allocate 6405 * 6406 * Allocates a struct net_device with private data area for driver use 6407 * and performs basic initialization. Also allocates subqueue structs 6408 * for each queue on the device. 6409 */ 6410 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 6411 void (*setup)(struct net_device *), 6412 unsigned int txqs, unsigned int rxqs) 6413 { 6414 struct net_device *dev; 6415 size_t alloc_size; 6416 struct net_device *p; 6417 6418 BUG_ON(strlen(name) >= sizeof(dev->name)); 6419 6420 if (txqs < 1) { 6421 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 6422 return NULL; 6423 } 6424 6425 #ifdef CONFIG_SYSFS 6426 if (rxqs < 1) { 6427 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 6428 return NULL; 6429 } 6430 #endif 6431 6432 alloc_size = sizeof(struct net_device); 6433 if (sizeof_priv) { 6434 /* ensure 32-byte alignment of private area */ 6435 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 6436 alloc_size += sizeof_priv; 6437 } 6438 /* ensure 32-byte alignment of whole construct */ 6439 alloc_size += NETDEV_ALIGN - 1; 6440 6441 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 6442 if (!p) 6443 p = vzalloc(alloc_size); 6444 if (!p) 6445 return NULL; 6446 6447 dev = PTR_ALIGN(p, NETDEV_ALIGN); 6448 dev->padded = (char *)dev - (char *)p; 6449 6450 dev->pcpu_refcnt = alloc_percpu(int); 6451 if (!dev->pcpu_refcnt) 6452 goto free_dev; 6453 6454 if (dev_addr_init(dev)) 6455 goto free_pcpu; 6456 6457 dev_mc_init(dev); 6458 dev_uc_init(dev); 6459 6460 dev_net_set(dev, &init_net); 6461 6462 dev->gso_max_size = GSO_MAX_SIZE; 6463 dev->gso_max_segs = GSO_MAX_SEGS; 6464 6465 INIT_LIST_HEAD(&dev->napi_list); 6466 INIT_LIST_HEAD(&dev->unreg_list); 6467 INIT_LIST_HEAD(&dev->close_list); 6468 INIT_LIST_HEAD(&dev->link_watch_list); 6469 INIT_LIST_HEAD(&dev->adj_list.upper); 6470 INIT_LIST_HEAD(&dev->adj_list.lower); 6471 INIT_LIST_HEAD(&dev->all_adj_list.upper); 6472 INIT_LIST_HEAD(&dev->all_adj_list.lower); 6473 dev->priv_flags = IFF_XMIT_DST_RELEASE; 6474 setup(dev); 6475 6476 dev->num_tx_queues = txqs; 6477 dev->real_num_tx_queues = txqs; 6478 if (netif_alloc_netdev_queues(dev)) 6479 goto free_all; 6480 6481 #ifdef CONFIG_SYSFS 6482 dev->num_rx_queues = rxqs; 6483 dev->real_num_rx_queues = rxqs; 6484 if (netif_alloc_rx_queues(dev)) 6485 goto free_all; 6486 #endif 6487 6488 strcpy(dev->name, name); 6489 dev->group = INIT_NETDEV_GROUP; 6490 if (!dev->ethtool_ops) 6491 dev->ethtool_ops = &default_ethtool_ops; 6492 return dev; 6493 6494 free_all: 6495 free_netdev(dev); 6496 return NULL; 6497 6498 free_pcpu: 6499 free_percpu(dev->pcpu_refcnt); 6500 netif_free_tx_queues(dev); 6501 #ifdef CONFIG_SYSFS 6502 kfree(dev->_rx); 6503 #endif 6504 6505 free_dev: 6506 netdev_freemem(dev); 6507 return NULL; 6508 } 6509 EXPORT_SYMBOL(alloc_netdev_mqs); 6510 6511 /** 6512 * free_netdev - free network device 6513 * @dev: device 6514 * 6515 * This function does the last stage of destroying an allocated device 6516 * interface. The reference to the device object is released. 6517 * If this is the last reference then it will be freed. 6518 */ 6519 void free_netdev(struct net_device *dev) 6520 { 6521 struct napi_struct *p, *n; 6522 6523 release_net(dev_net(dev)); 6524 6525 netif_free_tx_queues(dev); 6526 #ifdef CONFIG_SYSFS 6527 kfree(dev->_rx); 6528 #endif 6529 6530 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 6531 6532 /* Flush device addresses */ 6533 dev_addr_flush(dev); 6534 6535 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 6536 netif_napi_del(p); 6537 6538 free_percpu(dev->pcpu_refcnt); 6539 dev->pcpu_refcnt = NULL; 6540 6541 /* Compatibility with error handling in drivers */ 6542 if (dev->reg_state == NETREG_UNINITIALIZED) { 6543 netdev_freemem(dev); 6544 return; 6545 } 6546 6547 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 6548 dev->reg_state = NETREG_RELEASED; 6549 6550 /* will free via device release */ 6551 put_device(&dev->dev); 6552 } 6553 EXPORT_SYMBOL(free_netdev); 6554 6555 /** 6556 * synchronize_net - Synchronize with packet receive processing 6557 * 6558 * Wait for packets currently being received to be done. 6559 * Does not block later packets from starting. 6560 */ 6561 void synchronize_net(void) 6562 { 6563 might_sleep(); 6564 if (rtnl_is_locked()) 6565 synchronize_rcu_expedited(); 6566 else 6567 synchronize_rcu(); 6568 } 6569 EXPORT_SYMBOL(synchronize_net); 6570 6571 /** 6572 * unregister_netdevice_queue - remove device from the kernel 6573 * @dev: device 6574 * @head: list 6575 * 6576 * This function shuts down a device interface and removes it 6577 * from the kernel tables. 6578 * If head not NULL, device is queued to be unregistered later. 6579 * 6580 * Callers must hold the rtnl semaphore. You may want 6581 * unregister_netdev() instead of this. 6582 */ 6583 6584 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 6585 { 6586 ASSERT_RTNL(); 6587 6588 if (head) { 6589 list_move_tail(&dev->unreg_list, head); 6590 } else { 6591 rollback_registered(dev); 6592 /* Finish processing unregister after unlock */ 6593 net_set_todo(dev); 6594 } 6595 } 6596 EXPORT_SYMBOL(unregister_netdevice_queue); 6597 6598 /** 6599 * unregister_netdevice_many - unregister many devices 6600 * @head: list of devices 6601 */ 6602 void unregister_netdevice_many(struct list_head *head) 6603 { 6604 struct net_device *dev; 6605 6606 if (!list_empty(head)) { 6607 rollback_registered_many(head); 6608 list_for_each_entry(dev, head, unreg_list) 6609 net_set_todo(dev); 6610 } 6611 } 6612 EXPORT_SYMBOL(unregister_netdevice_many); 6613 6614 /** 6615 * unregister_netdev - remove device from the kernel 6616 * @dev: device 6617 * 6618 * This function shuts down a device interface and removes it 6619 * from the kernel tables. 6620 * 6621 * This is just a wrapper for unregister_netdevice that takes 6622 * the rtnl semaphore. In general you want to use this and not 6623 * unregister_netdevice. 6624 */ 6625 void unregister_netdev(struct net_device *dev) 6626 { 6627 rtnl_lock(); 6628 unregister_netdevice(dev); 6629 rtnl_unlock(); 6630 } 6631 EXPORT_SYMBOL(unregister_netdev); 6632 6633 /** 6634 * dev_change_net_namespace - move device to different nethost namespace 6635 * @dev: device 6636 * @net: network namespace 6637 * @pat: If not NULL name pattern to try if the current device name 6638 * is already taken in the destination network namespace. 6639 * 6640 * This function shuts down a device interface and moves it 6641 * to a new network namespace. On success 0 is returned, on 6642 * a failure a netagive errno code is returned. 6643 * 6644 * Callers must hold the rtnl semaphore. 6645 */ 6646 6647 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 6648 { 6649 int err; 6650 6651 ASSERT_RTNL(); 6652 6653 /* Don't allow namespace local devices to be moved. */ 6654 err = -EINVAL; 6655 if (dev->features & NETIF_F_NETNS_LOCAL) 6656 goto out; 6657 6658 /* Ensure the device has been registrered */ 6659 if (dev->reg_state != NETREG_REGISTERED) 6660 goto out; 6661 6662 /* Get out if there is nothing todo */ 6663 err = 0; 6664 if (net_eq(dev_net(dev), net)) 6665 goto out; 6666 6667 /* Pick the destination device name, and ensure 6668 * we can use it in the destination network namespace. 6669 */ 6670 err = -EEXIST; 6671 if (__dev_get_by_name(net, dev->name)) { 6672 /* We get here if we can't use the current device name */ 6673 if (!pat) 6674 goto out; 6675 if (dev_get_valid_name(net, dev, pat) < 0) 6676 goto out; 6677 } 6678 6679 /* 6680 * And now a mini version of register_netdevice unregister_netdevice. 6681 */ 6682 6683 /* If device is running close it first. */ 6684 dev_close(dev); 6685 6686 /* And unlink it from device chain */ 6687 err = -ENODEV; 6688 unlist_netdevice(dev); 6689 6690 synchronize_net(); 6691 6692 /* Shutdown queueing discipline. */ 6693 dev_shutdown(dev); 6694 6695 /* Notify protocols, that we are about to destroy 6696 this device. They should clean all the things. 6697 6698 Note that dev->reg_state stays at NETREG_REGISTERED. 6699 This is wanted because this way 8021q and macvlan know 6700 the device is just moving and can keep their slaves up. 6701 */ 6702 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6703 rcu_barrier(); 6704 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6705 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL); 6706 6707 /* 6708 * Flush the unicast and multicast chains 6709 */ 6710 dev_uc_flush(dev); 6711 dev_mc_flush(dev); 6712 6713 /* Send a netdev-removed uevent to the old namespace */ 6714 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 6715 6716 /* Actually switch the network namespace */ 6717 dev_net_set(dev, net); 6718 6719 /* If there is an ifindex conflict assign a new one */ 6720 if (__dev_get_by_index(net, dev->ifindex)) { 6721 int iflink = (dev->iflink == dev->ifindex); 6722 dev->ifindex = dev_new_index(net); 6723 if (iflink) 6724 dev->iflink = dev->ifindex; 6725 } 6726 6727 /* Send a netdev-add uevent to the new namespace */ 6728 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 6729 6730 /* Fixup kobjects */ 6731 err = device_rename(&dev->dev, dev->name); 6732 WARN_ON(err); 6733 6734 /* Add the device back in the hashes */ 6735 list_netdevice(dev); 6736 6737 /* Notify protocols, that a new device appeared. */ 6738 call_netdevice_notifiers(NETDEV_REGISTER, dev); 6739 6740 /* 6741 * Prevent userspace races by waiting until the network 6742 * device is fully setup before sending notifications. 6743 */ 6744 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 6745 6746 synchronize_net(); 6747 err = 0; 6748 out: 6749 return err; 6750 } 6751 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 6752 6753 static int dev_cpu_callback(struct notifier_block *nfb, 6754 unsigned long action, 6755 void *ocpu) 6756 { 6757 struct sk_buff **list_skb; 6758 struct sk_buff *skb; 6759 unsigned int cpu, oldcpu = (unsigned long)ocpu; 6760 struct softnet_data *sd, *oldsd; 6761 6762 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 6763 return NOTIFY_OK; 6764 6765 local_irq_disable(); 6766 cpu = smp_processor_id(); 6767 sd = &per_cpu(softnet_data, cpu); 6768 oldsd = &per_cpu(softnet_data, oldcpu); 6769 6770 /* Find end of our completion_queue. */ 6771 list_skb = &sd->completion_queue; 6772 while (*list_skb) 6773 list_skb = &(*list_skb)->next; 6774 /* Append completion queue from offline CPU. */ 6775 *list_skb = oldsd->completion_queue; 6776 oldsd->completion_queue = NULL; 6777 6778 /* Append output queue from offline CPU. */ 6779 if (oldsd->output_queue) { 6780 *sd->output_queue_tailp = oldsd->output_queue; 6781 sd->output_queue_tailp = oldsd->output_queue_tailp; 6782 oldsd->output_queue = NULL; 6783 oldsd->output_queue_tailp = &oldsd->output_queue; 6784 } 6785 /* Append NAPI poll list from offline CPU. */ 6786 if (!list_empty(&oldsd->poll_list)) { 6787 list_splice_init(&oldsd->poll_list, &sd->poll_list); 6788 raise_softirq_irqoff(NET_RX_SOFTIRQ); 6789 } 6790 6791 raise_softirq_irqoff(NET_TX_SOFTIRQ); 6792 local_irq_enable(); 6793 6794 /* Process offline CPU's input_pkt_queue */ 6795 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 6796 netif_rx_internal(skb); 6797 input_queue_head_incr(oldsd); 6798 } 6799 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) { 6800 netif_rx_internal(skb); 6801 input_queue_head_incr(oldsd); 6802 } 6803 6804 return NOTIFY_OK; 6805 } 6806 6807 6808 /** 6809 * netdev_increment_features - increment feature set by one 6810 * @all: current feature set 6811 * @one: new feature set 6812 * @mask: mask feature set 6813 * 6814 * Computes a new feature set after adding a device with feature set 6815 * @one to the master device with current feature set @all. Will not 6816 * enable anything that is off in @mask. Returns the new feature set. 6817 */ 6818 netdev_features_t netdev_increment_features(netdev_features_t all, 6819 netdev_features_t one, netdev_features_t mask) 6820 { 6821 if (mask & NETIF_F_GEN_CSUM) 6822 mask |= NETIF_F_ALL_CSUM; 6823 mask |= NETIF_F_VLAN_CHALLENGED; 6824 6825 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask; 6826 all &= one | ~NETIF_F_ALL_FOR_ALL; 6827 6828 /* If one device supports hw checksumming, set for all. */ 6829 if (all & NETIF_F_GEN_CSUM) 6830 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 6831 6832 return all; 6833 } 6834 EXPORT_SYMBOL(netdev_increment_features); 6835 6836 static struct hlist_head * __net_init netdev_create_hash(void) 6837 { 6838 int i; 6839 struct hlist_head *hash; 6840 6841 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 6842 if (hash != NULL) 6843 for (i = 0; i < NETDEV_HASHENTRIES; i++) 6844 INIT_HLIST_HEAD(&hash[i]); 6845 6846 return hash; 6847 } 6848 6849 /* Initialize per network namespace state */ 6850 static int __net_init netdev_init(struct net *net) 6851 { 6852 if (net != &init_net) 6853 INIT_LIST_HEAD(&net->dev_base_head); 6854 6855 net->dev_name_head = netdev_create_hash(); 6856 if (net->dev_name_head == NULL) 6857 goto err_name; 6858 6859 net->dev_index_head = netdev_create_hash(); 6860 if (net->dev_index_head == NULL) 6861 goto err_idx; 6862 6863 return 0; 6864 6865 err_idx: 6866 kfree(net->dev_name_head); 6867 err_name: 6868 return -ENOMEM; 6869 } 6870 6871 /** 6872 * netdev_drivername - network driver for the device 6873 * @dev: network device 6874 * 6875 * Determine network driver for device. 6876 */ 6877 const char *netdev_drivername(const struct net_device *dev) 6878 { 6879 const struct device_driver *driver; 6880 const struct device *parent; 6881 const char *empty = ""; 6882 6883 parent = dev->dev.parent; 6884 if (!parent) 6885 return empty; 6886 6887 driver = parent->driver; 6888 if (driver && driver->name) 6889 return driver->name; 6890 return empty; 6891 } 6892 6893 static int __netdev_printk(const char *level, const struct net_device *dev, 6894 struct va_format *vaf) 6895 { 6896 int r; 6897 6898 if (dev && dev->dev.parent) { 6899 r = dev_printk_emit(level[1] - '0', 6900 dev->dev.parent, 6901 "%s %s %s: %pV", 6902 dev_driver_string(dev->dev.parent), 6903 dev_name(dev->dev.parent), 6904 netdev_name(dev), vaf); 6905 } else if (dev) { 6906 r = printk("%s%s: %pV", level, netdev_name(dev), vaf); 6907 } else { 6908 r = printk("%s(NULL net_device): %pV", level, vaf); 6909 } 6910 6911 return r; 6912 } 6913 6914 int netdev_printk(const char *level, const struct net_device *dev, 6915 const char *format, ...) 6916 { 6917 struct va_format vaf; 6918 va_list args; 6919 int r; 6920 6921 va_start(args, format); 6922 6923 vaf.fmt = format; 6924 vaf.va = &args; 6925 6926 r = __netdev_printk(level, dev, &vaf); 6927 6928 va_end(args); 6929 6930 return r; 6931 } 6932 EXPORT_SYMBOL(netdev_printk); 6933 6934 #define define_netdev_printk_level(func, level) \ 6935 int func(const struct net_device *dev, const char *fmt, ...) \ 6936 { \ 6937 int r; \ 6938 struct va_format vaf; \ 6939 va_list args; \ 6940 \ 6941 va_start(args, fmt); \ 6942 \ 6943 vaf.fmt = fmt; \ 6944 vaf.va = &args; \ 6945 \ 6946 r = __netdev_printk(level, dev, &vaf); \ 6947 \ 6948 va_end(args); \ 6949 \ 6950 return r; \ 6951 } \ 6952 EXPORT_SYMBOL(func); 6953 6954 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 6955 define_netdev_printk_level(netdev_alert, KERN_ALERT); 6956 define_netdev_printk_level(netdev_crit, KERN_CRIT); 6957 define_netdev_printk_level(netdev_err, KERN_ERR); 6958 define_netdev_printk_level(netdev_warn, KERN_WARNING); 6959 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 6960 define_netdev_printk_level(netdev_info, KERN_INFO); 6961 6962 static void __net_exit netdev_exit(struct net *net) 6963 { 6964 kfree(net->dev_name_head); 6965 kfree(net->dev_index_head); 6966 } 6967 6968 static struct pernet_operations __net_initdata netdev_net_ops = { 6969 .init = netdev_init, 6970 .exit = netdev_exit, 6971 }; 6972 6973 static void __net_exit default_device_exit(struct net *net) 6974 { 6975 struct net_device *dev, *aux; 6976 /* 6977 * Push all migratable network devices back to the 6978 * initial network namespace 6979 */ 6980 rtnl_lock(); 6981 for_each_netdev_safe(net, dev, aux) { 6982 int err; 6983 char fb_name[IFNAMSIZ]; 6984 6985 /* Ignore unmoveable devices (i.e. loopback) */ 6986 if (dev->features & NETIF_F_NETNS_LOCAL) 6987 continue; 6988 6989 /* Leave virtual devices for the generic cleanup */ 6990 if (dev->rtnl_link_ops) 6991 continue; 6992 6993 /* Push remaining network devices to init_net */ 6994 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 6995 err = dev_change_net_namespace(dev, &init_net, fb_name); 6996 if (err) { 6997 pr_emerg("%s: failed to move %s to init_net: %d\n", 6998 __func__, dev->name, err); 6999 BUG(); 7000 } 7001 } 7002 rtnl_unlock(); 7003 } 7004 7005 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 7006 { 7007 /* Return with the rtnl_lock held when there are no network 7008 * devices unregistering in any network namespace in net_list. 7009 */ 7010 struct net *net; 7011 bool unregistering; 7012 DEFINE_WAIT(wait); 7013 7014 for (;;) { 7015 prepare_to_wait(&netdev_unregistering_wq, &wait, 7016 TASK_UNINTERRUPTIBLE); 7017 unregistering = false; 7018 rtnl_lock(); 7019 list_for_each_entry(net, net_list, exit_list) { 7020 if (net->dev_unreg_count > 0) { 7021 unregistering = true; 7022 break; 7023 } 7024 } 7025 if (!unregistering) 7026 break; 7027 __rtnl_unlock(); 7028 schedule(); 7029 } 7030 finish_wait(&netdev_unregistering_wq, &wait); 7031 } 7032 7033 static void __net_exit default_device_exit_batch(struct list_head *net_list) 7034 { 7035 /* At exit all network devices most be removed from a network 7036 * namespace. Do this in the reverse order of registration. 7037 * Do this across as many network namespaces as possible to 7038 * improve batching efficiency. 7039 */ 7040 struct net_device *dev; 7041 struct net *net; 7042 LIST_HEAD(dev_kill_list); 7043 7044 /* To prevent network device cleanup code from dereferencing 7045 * loopback devices or network devices that have been freed 7046 * wait here for all pending unregistrations to complete, 7047 * before unregistring the loopback device and allowing the 7048 * network namespace be freed. 7049 * 7050 * The netdev todo list containing all network devices 7051 * unregistrations that happen in default_device_exit_batch 7052 * will run in the rtnl_unlock() at the end of 7053 * default_device_exit_batch. 7054 */ 7055 rtnl_lock_unregistering(net_list); 7056 list_for_each_entry(net, net_list, exit_list) { 7057 for_each_netdev_reverse(net, dev) { 7058 if (dev->rtnl_link_ops) 7059 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 7060 else 7061 unregister_netdevice_queue(dev, &dev_kill_list); 7062 } 7063 } 7064 unregister_netdevice_many(&dev_kill_list); 7065 list_del(&dev_kill_list); 7066 rtnl_unlock(); 7067 } 7068 7069 static struct pernet_operations __net_initdata default_device_ops = { 7070 .exit = default_device_exit, 7071 .exit_batch = default_device_exit_batch, 7072 }; 7073 7074 /* 7075 * Initialize the DEV module. At boot time this walks the device list and 7076 * unhooks any devices that fail to initialise (normally hardware not 7077 * present) and leaves us with a valid list of present and active devices. 7078 * 7079 */ 7080 7081 /* 7082 * This is called single threaded during boot, so no need 7083 * to take the rtnl semaphore. 7084 */ 7085 static int __init net_dev_init(void) 7086 { 7087 int i, rc = -ENOMEM; 7088 7089 BUG_ON(!dev_boot_phase); 7090 7091 if (dev_proc_init()) 7092 goto out; 7093 7094 if (netdev_kobject_init()) 7095 goto out; 7096 7097 INIT_LIST_HEAD(&ptype_all); 7098 for (i = 0; i < PTYPE_HASH_SIZE; i++) 7099 INIT_LIST_HEAD(&ptype_base[i]); 7100 7101 INIT_LIST_HEAD(&offload_base); 7102 7103 if (register_pernet_subsys(&netdev_net_ops)) 7104 goto out; 7105 7106 /* 7107 * Initialise the packet receive queues. 7108 */ 7109 7110 for_each_possible_cpu(i) { 7111 struct softnet_data *sd = &per_cpu(softnet_data, i); 7112 7113 skb_queue_head_init(&sd->input_pkt_queue); 7114 skb_queue_head_init(&sd->process_queue); 7115 INIT_LIST_HEAD(&sd->poll_list); 7116 sd->output_queue_tailp = &sd->output_queue; 7117 #ifdef CONFIG_RPS 7118 sd->csd.func = rps_trigger_softirq; 7119 sd->csd.info = sd; 7120 sd->cpu = i; 7121 #endif 7122 7123 sd->backlog.poll = process_backlog; 7124 sd->backlog.weight = weight_p; 7125 } 7126 7127 dev_boot_phase = 0; 7128 7129 /* The loopback device is special if any other network devices 7130 * is present in a network namespace the loopback device must 7131 * be present. Since we now dynamically allocate and free the 7132 * loopback device ensure this invariant is maintained by 7133 * keeping the loopback device as the first device on the 7134 * list of network devices. Ensuring the loopback devices 7135 * is the first device that appears and the last network device 7136 * that disappears. 7137 */ 7138 if (register_pernet_device(&loopback_net_ops)) 7139 goto out; 7140 7141 if (register_pernet_device(&default_device_ops)) 7142 goto out; 7143 7144 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 7145 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 7146 7147 hotcpu_notifier(dev_cpu_callback, 0); 7148 dst_init(); 7149 rc = 0; 7150 out: 7151 return rc; 7152 } 7153 7154 subsys_initcall(net_dev_init); 7155