xref: /openbmc/linux/net/core/dev.c (revision 84d517f3)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
132 #include <linux/hashtable.h>
133 #include <linux/vmalloc.h>
134 #include <linux/if_macvlan.h>
135 
136 #include "net-sysfs.h"
137 
138 /* Instead of increasing this, you should create a hash table. */
139 #define MAX_GRO_SKBS 8
140 
141 /* This should be increased if a protocol with a bigger head is added. */
142 #define GRO_MAX_HEAD (MAX_HEADER + 128)
143 
144 static DEFINE_SPINLOCK(ptype_lock);
145 static DEFINE_SPINLOCK(offload_lock);
146 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
147 struct list_head ptype_all __read_mostly;	/* Taps */
148 static struct list_head offload_base __read_mostly;
149 
150 static int netif_rx_internal(struct sk_buff *skb);
151 
152 /*
153  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
154  * semaphore.
155  *
156  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
157  *
158  * Writers must hold the rtnl semaphore while they loop through the
159  * dev_base_head list, and hold dev_base_lock for writing when they do the
160  * actual updates.  This allows pure readers to access the list even
161  * while a writer is preparing to update it.
162  *
163  * To put it another way, dev_base_lock is held for writing only to
164  * protect against pure readers; the rtnl semaphore provides the
165  * protection against other writers.
166  *
167  * See, for example usages, register_netdevice() and
168  * unregister_netdevice(), which must be called with the rtnl
169  * semaphore held.
170  */
171 DEFINE_RWLOCK(dev_base_lock);
172 EXPORT_SYMBOL(dev_base_lock);
173 
174 /* protects napi_hash addition/deletion and napi_gen_id */
175 static DEFINE_SPINLOCK(napi_hash_lock);
176 
177 static unsigned int napi_gen_id;
178 static DEFINE_HASHTABLE(napi_hash, 8);
179 
180 static seqcount_t devnet_rename_seq;
181 
182 static inline void dev_base_seq_inc(struct net *net)
183 {
184 	while (++net->dev_base_seq == 0);
185 }
186 
187 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
188 {
189 	unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
190 
191 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
192 }
193 
194 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
195 {
196 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
197 }
198 
199 static inline void rps_lock(struct softnet_data *sd)
200 {
201 #ifdef CONFIG_RPS
202 	spin_lock(&sd->input_pkt_queue.lock);
203 #endif
204 }
205 
206 static inline void rps_unlock(struct softnet_data *sd)
207 {
208 #ifdef CONFIG_RPS
209 	spin_unlock(&sd->input_pkt_queue.lock);
210 #endif
211 }
212 
213 /* Device list insertion */
214 static void list_netdevice(struct net_device *dev)
215 {
216 	struct net *net = dev_net(dev);
217 
218 	ASSERT_RTNL();
219 
220 	write_lock_bh(&dev_base_lock);
221 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
222 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
223 	hlist_add_head_rcu(&dev->index_hlist,
224 			   dev_index_hash(net, dev->ifindex));
225 	write_unlock_bh(&dev_base_lock);
226 
227 	dev_base_seq_inc(net);
228 }
229 
230 /* Device list removal
231  * caller must respect a RCU grace period before freeing/reusing dev
232  */
233 static void unlist_netdevice(struct net_device *dev)
234 {
235 	ASSERT_RTNL();
236 
237 	/* Unlink dev from the device chain */
238 	write_lock_bh(&dev_base_lock);
239 	list_del_rcu(&dev->dev_list);
240 	hlist_del_rcu(&dev->name_hlist);
241 	hlist_del_rcu(&dev->index_hlist);
242 	write_unlock_bh(&dev_base_lock);
243 
244 	dev_base_seq_inc(dev_net(dev));
245 }
246 
247 /*
248  *	Our notifier list
249  */
250 
251 static RAW_NOTIFIER_HEAD(netdev_chain);
252 
253 /*
254  *	Device drivers call our routines to queue packets here. We empty the
255  *	queue in the local softnet handler.
256  */
257 
258 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
259 EXPORT_PER_CPU_SYMBOL(softnet_data);
260 
261 #ifdef CONFIG_LOCKDEP
262 /*
263  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
264  * according to dev->type
265  */
266 static const unsigned short netdev_lock_type[] =
267 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
268 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
269 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
270 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
271 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
272 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
273 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
274 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
275 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
276 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
277 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
278 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
279 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
280 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
281 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
282 
283 static const char *const netdev_lock_name[] =
284 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
285 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
286 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
287 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
288 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
289 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
290 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
291 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
292 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
293 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
294 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
295 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
296 	 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
297 	 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
298 	 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
299 
300 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
301 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
302 
303 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
304 {
305 	int i;
306 
307 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
308 		if (netdev_lock_type[i] == dev_type)
309 			return i;
310 	/* the last key is used by default */
311 	return ARRAY_SIZE(netdev_lock_type) - 1;
312 }
313 
314 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
315 						 unsigned short dev_type)
316 {
317 	int i;
318 
319 	i = netdev_lock_pos(dev_type);
320 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
321 				   netdev_lock_name[i]);
322 }
323 
324 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
325 {
326 	int i;
327 
328 	i = netdev_lock_pos(dev->type);
329 	lockdep_set_class_and_name(&dev->addr_list_lock,
330 				   &netdev_addr_lock_key[i],
331 				   netdev_lock_name[i]);
332 }
333 #else
334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335 						 unsigned short dev_type)
336 {
337 }
338 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
339 {
340 }
341 #endif
342 
343 /*******************************************************************************
344 
345 		Protocol management and registration routines
346 
347 *******************************************************************************/
348 
349 /*
350  *	Add a protocol ID to the list. Now that the input handler is
351  *	smarter we can dispense with all the messy stuff that used to be
352  *	here.
353  *
354  *	BEWARE!!! Protocol handlers, mangling input packets,
355  *	MUST BE last in hash buckets and checking protocol handlers
356  *	MUST start from promiscuous ptype_all chain in net_bh.
357  *	It is true now, do not change it.
358  *	Explanation follows: if protocol handler, mangling packet, will
359  *	be the first on list, it is not able to sense, that packet
360  *	is cloned and should be copied-on-write, so that it will
361  *	change it and subsequent readers will get broken packet.
362  *							--ANK (980803)
363  */
364 
365 static inline struct list_head *ptype_head(const struct packet_type *pt)
366 {
367 	if (pt->type == htons(ETH_P_ALL))
368 		return &ptype_all;
369 	else
370 		return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
371 }
372 
373 /**
374  *	dev_add_pack - add packet handler
375  *	@pt: packet type declaration
376  *
377  *	Add a protocol handler to the networking stack. The passed &packet_type
378  *	is linked into kernel lists and may not be freed until it has been
379  *	removed from the kernel lists.
380  *
381  *	This call does not sleep therefore it can not
382  *	guarantee all CPU's that are in middle of receiving packets
383  *	will see the new packet type (until the next received packet).
384  */
385 
386 void dev_add_pack(struct packet_type *pt)
387 {
388 	struct list_head *head = ptype_head(pt);
389 
390 	spin_lock(&ptype_lock);
391 	list_add_rcu(&pt->list, head);
392 	spin_unlock(&ptype_lock);
393 }
394 EXPORT_SYMBOL(dev_add_pack);
395 
396 /**
397  *	__dev_remove_pack	 - remove packet handler
398  *	@pt: packet type declaration
399  *
400  *	Remove a protocol handler that was previously added to the kernel
401  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
402  *	from the kernel lists and can be freed or reused once this function
403  *	returns.
404  *
405  *      The packet type might still be in use by receivers
406  *	and must not be freed until after all the CPU's have gone
407  *	through a quiescent state.
408  */
409 void __dev_remove_pack(struct packet_type *pt)
410 {
411 	struct list_head *head = ptype_head(pt);
412 	struct packet_type *pt1;
413 
414 	spin_lock(&ptype_lock);
415 
416 	list_for_each_entry(pt1, head, list) {
417 		if (pt == pt1) {
418 			list_del_rcu(&pt->list);
419 			goto out;
420 		}
421 	}
422 
423 	pr_warn("dev_remove_pack: %p not found\n", pt);
424 out:
425 	spin_unlock(&ptype_lock);
426 }
427 EXPORT_SYMBOL(__dev_remove_pack);
428 
429 /**
430  *	dev_remove_pack	 - remove packet handler
431  *	@pt: packet type declaration
432  *
433  *	Remove a protocol handler that was previously added to the kernel
434  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
435  *	from the kernel lists and can be freed or reused once this function
436  *	returns.
437  *
438  *	This call sleeps to guarantee that no CPU is looking at the packet
439  *	type after return.
440  */
441 void dev_remove_pack(struct packet_type *pt)
442 {
443 	__dev_remove_pack(pt);
444 
445 	synchronize_net();
446 }
447 EXPORT_SYMBOL(dev_remove_pack);
448 
449 
450 /**
451  *	dev_add_offload - register offload handlers
452  *	@po: protocol offload declaration
453  *
454  *	Add protocol offload handlers to the networking stack. The passed
455  *	&proto_offload is linked into kernel lists and may not be freed until
456  *	it has been removed from the kernel lists.
457  *
458  *	This call does not sleep therefore it can not
459  *	guarantee all CPU's that are in middle of receiving packets
460  *	will see the new offload handlers (until the next received packet).
461  */
462 void dev_add_offload(struct packet_offload *po)
463 {
464 	struct list_head *head = &offload_base;
465 
466 	spin_lock(&offload_lock);
467 	list_add_rcu(&po->list, head);
468 	spin_unlock(&offload_lock);
469 }
470 EXPORT_SYMBOL(dev_add_offload);
471 
472 /**
473  *	__dev_remove_offload	 - remove offload handler
474  *	@po: packet offload declaration
475  *
476  *	Remove a protocol offload handler that was previously added to the
477  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
478  *	is removed from the kernel lists and can be freed or reused once this
479  *	function returns.
480  *
481  *      The packet type might still be in use by receivers
482  *	and must not be freed until after all the CPU's have gone
483  *	through a quiescent state.
484  */
485 static void __dev_remove_offload(struct packet_offload *po)
486 {
487 	struct list_head *head = &offload_base;
488 	struct packet_offload *po1;
489 
490 	spin_lock(&offload_lock);
491 
492 	list_for_each_entry(po1, head, list) {
493 		if (po == po1) {
494 			list_del_rcu(&po->list);
495 			goto out;
496 		}
497 	}
498 
499 	pr_warn("dev_remove_offload: %p not found\n", po);
500 out:
501 	spin_unlock(&offload_lock);
502 }
503 
504 /**
505  *	dev_remove_offload	 - remove packet offload handler
506  *	@po: packet offload declaration
507  *
508  *	Remove a packet offload handler that was previously added to the kernel
509  *	offload handlers by dev_add_offload(). The passed &offload_type is
510  *	removed from the kernel lists and can be freed or reused once this
511  *	function returns.
512  *
513  *	This call sleeps to guarantee that no CPU is looking at the packet
514  *	type after return.
515  */
516 void dev_remove_offload(struct packet_offload *po)
517 {
518 	__dev_remove_offload(po);
519 
520 	synchronize_net();
521 }
522 EXPORT_SYMBOL(dev_remove_offload);
523 
524 /******************************************************************************
525 
526 		      Device Boot-time Settings Routines
527 
528 *******************************************************************************/
529 
530 /* Boot time configuration table */
531 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
532 
533 /**
534  *	netdev_boot_setup_add	- add new setup entry
535  *	@name: name of the device
536  *	@map: configured settings for the device
537  *
538  *	Adds new setup entry to the dev_boot_setup list.  The function
539  *	returns 0 on error and 1 on success.  This is a generic routine to
540  *	all netdevices.
541  */
542 static int netdev_boot_setup_add(char *name, struct ifmap *map)
543 {
544 	struct netdev_boot_setup *s;
545 	int i;
546 
547 	s = dev_boot_setup;
548 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
549 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
550 			memset(s[i].name, 0, sizeof(s[i].name));
551 			strlcpy(s[i].name, name, IFNAMSIZ);
552 			memcpy(&s[i].map, map, sizeof(s[i].map));
553 			break;
554 		}
555 	}
556 
557 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
558 }
559 
560 /**
561  *	netdev_boot_setup_check	- check boot time settings
562  *	@dev: the netdevice
563  *
564  * 	Check boot time settings for the device.
565  *	The found settings are set for the device to be used
566  *	later in the device probing.
567  *	Returns 0 if no settings found, 1 if they are.
568  */
569 int netdev_boot_setup_check(struct net_device *dev)
570 {
571 	struct netdev_boot_setup *s = dev_boot_setup;
572 	int i;
573 
574 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
576 		    !strcmp(dev->name, s[i].name)) {
577 			dev->irq 	= s[i].map.irq;
578 			dev->base_addr 	= s[i].map.base_addr;
579 			dev->mem_start 	= s[i].map.mem_start;
580 			dev->mem_end 	= s[i].map.mem_end;
581 			return 1;
582 		}
583 	}
584 	return 0;
585 }
586 EXPORT_SYMBOL(netdev_boot_setup_check);
587 
588 
589 /**
590  *	netdev_boot_base	- get address from boot time settings
591  *	@prefix: prefix for network device
592  *	@unit: id for network device
593  *
594  * 	Check boot time settings for the base address of device.
595  *	The found settings are set for the device to be used
596  *	later in the device probing.
597  *	Returns 0 if no settings found.
598  */
599 unsigned long netdev_boot_base(const char *prefix, int unit)
600 {
601 	const struct netdev_boot_setup *s = dev_boot_setup;
602 	char name[IFNAMSIZ];
603 	int i;
604 
605 	sprintf(name, "%s%d", prefix, unit);
606 
607 	/*
608 	 * If device already registered then return base of 1
609 	 * to indicate not to probe for this interface
610 	 */
611 	if (__dev_get_by_name(&init_net, name))
612 		return 1;
613 
614 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
615 		if (!strcmp(name, s[i].name))
616 			return s[i].map.base_addr;
617 	return 0;
618 }
619 
620 /*
621  * Saves at boot time configured settings for any netdevice.
622  */
623 int __init netdev_boot_setup(char *str)
624 {
625 	int ints[5];
626 	struct ifmap map;
627 
628 	str = get_options(str, ARRAY_SIZE(ints), ints);
629 	if (!str || !*str)
630 		return 0;
631 
632 	/* Save settings */
633 	memset(&map, 0, sizeof(map));
634 	if (ints[0] > 0)
635 		map.irq = ints[1];
636 	if (ints[0] > 1)
637 		map.base_addr = ints[2];
638 	if (ints[0] > 2)
639 		map.mem_start = ints[3];
640 	if (ints[0] > 3)
641 		map.mem_end = ints[4];
642 
643 	/* Add new entry to the list */
644 	return netdev_boot_setup_add(str, &map);
645 }
646 
647 __setup("netdev=", netdev_boot_setup);
648 
649 /*******************************************************************************
650 
651 			    Device Interface Subroutines
652 
653 *******************************************************************************/
654 
655 /**
656  *	__dev_get_by_name	- find a device by its name
657  *	@net: the applicable net namespace
658  *	@name: name to find
659  *
660  *	Find an interface by name. Must be called under RTNL semaphore
661  *	or @dev_base_lock. If the name is found a pointer to the device
662  *	is returned. If the name is not found then %NULL is returned. The
663  *	reference counters are not incremented so the caller must be
664  *	careful with locks.
665  */
666 
667 struct net_device *__dev_get_by_name(struct net *net, const char *name)
668 {
669 	struct net_device *dev;
670 	struct hlist_head *head = dev_name_hash(net, name);
671 
672 	hlist_for_each_entry(dev, head, name_hlist)
673 		if (!strncmp(dev->name, name, IFNAMSIZ))
674 			return dev;
675 
676 	return NULL;
677 }
678 EXPORT_SYMBOL(__dev_get_by_name);
679 
680 /**
681  *	dev_get_by_name_rcu	- find a device by its name
682  *	@net: the applicable net namespace
683  *	@name: name to find
684  *
685  *	Find an interface by name.
686  *	If the name is found a pointer to the device is returned.
687  * 	If the name is not found then %NULL is returned.
688  *	The reference counters are not incremented so the caller must be
689  *	careful with locks. The caller must hold RCU lock.
690  */
691 
692 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
693 {
694 	struct net_device *dev;
695 	struct hlist_head *head = dev_name_hash(net, name);
696 
697 	hlist_for_each_entry_rcu(dev, head, name_hlist)
698 		if (!strncmp(dev->name, name, IFNAMSIZ))
699 			return dev;
700 
701 	return NULL;
702 }
703 EXPORT_SYMBOL(dev_get_by_name_rcu);
704 
705 /**
706  *	dev_get_by_name		- find a device by its name
707  *	@net: the applicable net namespace
708  *	@name: name to find
709  *
710  *	Find an interface by name. This can be called from any
711  *	context and does its own locking. The returned handle has
712  *	the usage count incremented and the caller must use dev_put() to
713  *	release it when it is no longer needed. %NULL is returned if no
714  *	matching device is found.
715  */
716 
717 struct net_device *dev_get_by_name(struct net *net, const char *name)
718 {
719 	struct net_device *dev;
720 
721 	rcu_read_lock();
722 	dev = dev_get_by_name_rcu(net, name);
723 	if (dev)
724 		dev_hold(dev);
725 	rcu_read_unlock();
726 	return dev;
727 }
728 EXPORT_SYMBOL(dev_get_by_name);
729 
730 /**
731  *	__dev_get_by_index - find a device by its ifindex
732  *	@net: the applicable net namespace
733  *	@ifindex: index of device
734  *
735  *	Search for an interface by index. Returns %NULL if the device
736  *	is not found or a pointer to the device. The device has not
737  *	had its reference counter increased so the caller must be careful
738  *	about locking. The caller must hold either the RTNL semaphore
739  *	or @dev_base_lock.
740  */
741 
742 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
743 {
744 	struct net_device *dev;
745 	struct hlist_head *head = dev_index_hash(net, ifindex);
746 
747 	hlist_for_each_entry(dev, head, index_hlist)
748 		if (dev->ifindex == ifindex)
749 			return dev;
750 
751 	return NULL;
752 }
753 EXPORT_SYMBOL(__dev_get_by_index);
754 
755 /**
756  *	dev_get_by_index_rcu - find a device by its ifindex
757  *	@net: the applicable net namespace
758  *	@ifindex: index of device
759  *
760  *	Search for an interface by index. Returns %NULL if the device
761  *	is not found or a pointer to the device. The device has not
762  *	had its reference counter increased so the caller must be careful
763  *	about locking. The caller must hold RCU lock.
764  */
765 
766 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
767 {
768 	struct net_device *dev;
769 	struct hlist_head *head = dev_index_hash(net, ifindex);
770 
771 	hlist_for_each_entry_rcu(dev, head, index_hlist)
772 		if (dev->ifindex == ifindex)
773 			return dev;
774 
775 	return NULL;
776 }
777 EXPORT_SYMBOL(dev_get_by_index_rcu);
778 
779 
780 /**
781  *	dev_get_by_index - find a device by its ifindex
782  *	@net: the applicable net namespace
783  *	@ifindex: index of device
784  *
785  *	Search for an interface by index. Returns NULL if the device
786  *	is not found or a pointer to the device. The device returned has
787  *	had a reference added and the pointer is safe until the user calls
788  *	dev_put to indicate they have finished with it.
789  */
790 
791 struct net_device *dev_get_by_index(struct net *net, int ifindex)
792 {
793 	struct net_device *dev;
794 
795 	rcu_read_lock();
796 	dev = dev_get_by_index_rcu(net, ifindex);
797 	if (dev)
798 		dev_hold(dev);
799 	rcu_read_unlock();
800 	return dev;
801 }
802 EXPORT_SYMBOL(dev_get_by_index);
803 
804 /**
805  *	netdev_get_name - get a netdevice name, knowing its ifindex.
806  *	@net: network namespace
807  *	@name: a pointer to the buffer where the name will be stored.
808  *	@ifindex: the ifindex of the interface to get the name from.
809  *
810  *	The use of raw_seqcount_begin() and cond_resched() before
811  *	retrying is required as we want to give the writers a chance
812  *	to complete when CONFIG_PREEMPT is not set.
813  */
814 int netdev_get_name(struct net *net, char *name, int ifindex)
815 {
816 	struct net_device *dev;
817 	unsigned int seq;
818 
819 retry:
820 	seq = raw_seqcount_begin(&devnet_rename_seq);
821 	rcu_read_lock();
822 	dev = dev_get_by_index_rcu(net, ifindex);
823 	if (!dev) {
824 		rcu_read_unlock();
825 		return -ENODEV;
826 	}
827 
828 	strcpy(name, dev->name);
829 	rcu_read_unlock();
830 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
831 		cond_resched();
832 		goto retry;
833 	}
834 
835 	return 0;
836 }
837 
838 /**
839  *	dev_getbyhwaddr_rcu - find a device by its hardware address
840  *	@net: the applicable net namespace
841  *	@type: media type of device
842  *	@ha: hardware address
843  *
844  *	Search for an interface by MAC address. Returns NULL if the device
845  *	is not found or a pointer to the device.
846  *	The caller must hold RCU or RTNL.
847  *	The returned device has not had its ref count increased
848  *	and the caller must therefore be careful about locking
849  *
850  */
851 
852 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
853 				       const char *ha)
854 {
855 	struct net_device *dev;
856 
857 	for_each_netdev_rcu(net, dev)
858 		if (dev->type == type &&
859 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
860 			return dev;
861 
862 	return NULL;
863 }
864 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
865 
866 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
867 {
868 	struct net_device *dev;
869 
870 	ASSERT_RTNL();
871 	for_each_netdev(net, dev)
872 		if (dev->type == type)
873 			return dev;
874 
875 	return NULL;
876 }
877 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
878 
879 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
880 {
881 	struct net_device *dev, *ret = NULL;
882 
883 	rcu_read_lock();
884 	for_each_netdev_rcu(net, dev)
885 		if (dev->type == type) {
886 			dev_hold(dev);
887 			ret = dev;
888 			break;
889 		}
890 	rcu_read_unlock();
891 	return ret;
892 }
893 EXPORT_SYMBOL(dev_getfirstbyhwtype);
894 
895 /**
896  *	dev_get_by_flags_rcu - find any device with given flags
897  *	@net: the applicable net namespace
898  *	@if_flags: IFF_* values
899  *	@mask: bitmask of bits in if_flags to check
900  *
901  *	Search for any interface with the given flags. Returns NULL if a device
902  *	is not found or a pointer to the device. Must be called inside
903  *	rcu_read_lock(), and result refcount is unchanged.
904  */
905 
906 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
907 				    unsigned short mask)
908 {
909 	struct net_device *dev, *ret;
910 
911 	ret = NULL;
912 	for_each_netdev_rcu(net, dev) {
913 		if (((dev->flags ^ if_flags) & mask) == 0) {
914 			ret = dev;
915 			break;
916 		}
917 	}
918 	return ret;
919 }
920 EXPORT_SYMBOL(dev_get_by_flags_rcu);
921 
922 /**
923  *	dev_valid_name - check if name is okay for network device
924  *	@name: name string
925  *
926  *	Network device names need to be valid file names to
927  *	to allow sysfs to work.  We also disallow any kind of
928  *	whitespace.
929  */
930 bool dev_valid_name(const char *name)
931 {
932 	if (*name == '\0')
933 		return false;
934 	if (strlen(name) >= IFNAMSIZ)
935 		return false;
936 	if (!strcmp(name, ".") || !strcmp(name, ".."))
937 		return false;
938 
939 	while (*name) {
940 		if (*name == '/' || isspace(*name))
941 			return false;
942 		name++;
943 	}
944 	return true;
945 }
946 EXPORT_SYMBOL(dev_valid_name);
947 
948 /**
949  *	__dev_alloc_name - allocate a name for a device
950  *	@net: network namespace to allocate the device name in
951  *	@name: name format string
952  *	@buf:  scratch buffer and result name string
953  *
954  *	Passed a format string - eg "lt%d" it will try and find a suitable
955  *	id. It scans list of devices to build up a free map, then chooses
956  *	the first empty slot. The caller must hold the dev_base or rtnl lock
957  *	while allocating the name and adding the device in order to avoid
958  *	duplicates.
959  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
960  *	Returns the number of the unit assigned or a negative errno code.
961  */
962 
963 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
964 {
965 	int i = 0;
966 	const char *p;
967 	const int max_netdevices = 8*PAGE_SIZE;
968 	unsigned long *inuse;
969 	struct net_device *d;
970 
971 	p = strnchr(name, IFNAMSIZ-1, '%');
972 	if (p) {
973 		/*
974 		 * Verify the string as this thing may have come from
975 		 * the user.  There must be either one "%d" and no other "%"
976 		 * characters.
977 		 */
978 		if (p[1] != 'd' || strchr(p + 2, '%'))
979 			return -EINVAL;
980 
981 		/* Use one page as a bit array of possible slots */
982 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
983 		if (!inuse)
984 			return -ENOMEM;
985 
986 		for_each_netdev(net, d) {
987 			if (!sscanf(d->name, name, &i))
988 				continue;
989 			if (i < 0 || i >= max_netdevices)
990 				continue;
991 
992 			/*  avoid cases where sscanf is not exact inverse of printf */
993 			snprintf(buf, IFNAMSIZ, name, i);
994 			if (!strncmp(buf, d->name, IFNAMSIZ))
995 				set_bit(i, inuse);
996 		}
997 
998 		i = find_first_zero_bit(inuse, max_netdevices);
999 		free_page((unsigned long) inuse);
1000 	}
1001 
1002 	if (buf != name)
1003 		snprintf(buf, IFNAMSIZ, name, i);
1004 	if (!__dev_get_by_name(net, buf))
1005 		return i;
1006 
1007 	/* It is possible to run out of possible slots
1008 	 * when the name is long and there isn't enough space left
1009 	 * for the digits, or if all bits are used.
1010 	 */
1011 	return -ENFILE;
1012 }
1013 
1014 /**
1015  *	dev_alloc_name - allocate a name for a device
1016  *	@dev: device
1017  *	@name: name format string
1018  *
1019  *	Passed a format string - eg "lt%d" it will try and find a suitable
1020  *	id. It scans list of devices to build up a free map, then chooses
1021  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1022  *	while allocating the name and adding the device in order to avoid
1023  *	duplicates.
1024  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1025  *	Returns the number of the unit assigned or a negative errno code.
1026  */
1027 
1028 int dev_alloc_name(struct net_device *dev, const char *name)
1029 {
1030 	char buf[IFNAMSIZ];
1031 	struct net *net;
1032 	int ret;
1033 
1034 	BUG_ON(!dev_net(dev));
1035 	net = dev_net(dev);
1036 	ret = __dev_alloc_name(net, name, buf);
1037 	if (ret >= 0)
1038 		strlcpy(dev->name, buf, IFNAMSIZ);
1039 	return ret;
1040 }
1041 EXPORT_SYMBOL(dev_alloc_name);
1042 
1043 static int dev_alloc_name_ns(struct net *net,
1044 			     struct net_device *dev,
1045 			     const char *name)
1046 {
1047 	char buf[IFNAMSIZ];
1048 	int ret;
1049 
1050 	ret = __dev_alloc_name(net, name, buf);
1051 	if (ret >= 0)
1052 		strlcpy(dev->name, buf, IFNAMSIZ);
1053 	return ret;
1054 }
1055 
1056 static int dev_get_valid_name(struct net *net,
1057 			      struct net_device *dev,
1058 			      const char *name)
1059 {
1060 	BUG_ON(!net);
1061 
1062 	if (!dev_valid_name(name))
1063 		return -EINVAL;
1064 
1065 	if (strchr(name, '%'))
1066 		return dev_alloc_name_ns(net, dev, name);
1067 	else if (__dev_get_by_name(net, name))
1068 		return -EEXIST;
1069 	else if (dev->name != name)
1070 		strlcpy(dev->name, name, IFNAMSIZ);
1071 
1072 	return 0;
1073 }
1074 
1075 /**
1076  *	dev_change_name - change name of a device
1077  *	@dev: device
1078  *	@newname: name (or format string) must be at least IFNAMSIZ
1079  *
1080  *	Change name of a device, can pass format strings "eth%d".
1081  *	for wildcarding.
1082  */
1083 int dev_change_name(struct net_device *dev, const char *newname)
1084 {
1085 	char oldname[IFNAMSIZ];
1086 	int err = 0;
1087 	int ret;
1088 	struct net *net;
1089 
1090 	ASSERT_RTNL();
1091 	BUG_ON(!dev_net(dev));
1092 
1093 	net = dev_net(dev);
1094 	if (dev->flags & IFF_UP)
1095 		return -EBUSY;
1096 
1097 	write_seqcount_begin(&devnet_rename_seq);
1098 
1099 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1100 		write_seqcount_end(&devnet_rename_seq);
1101 		return 0;
1102 	}
1103 
1104 	memcpy(oldname, dev->name, IFNAMSIZ);
1105 
1106 	err = dev_get_valid_name(net, dev, newname);
1107 	if (err < 0) {
1108 		write_seqcount_end(&devnet_rename_seq);
1109 		return err;
1110 	}
1111 
1112 rollback:
1113 	ret = device_rename(&dev->dev, dev->name);
1114 	if (ret) {
1115 		memcpy(dev->name, oldname, IFNAMSIZ);
1116 		write_seqcount_end(&devnet_rename_seq);
1117 		return ret;
1118 	}
1119 
1120 	write_seqcount_end(&devnet_rename_seq);
1121 
1122 	netdev_adjacent_rename_links(dev, oldname);
1123 
1124 	write_lock_bh(&dev_base_lock);
1125 	hlist_del_rcu(&dev->name_hlist);
1126 	write_unlock_bh(&dev_base_lock);
1127 
1128 	synchronize_rcu();
1129 
1130 	write_lock_bh(&dev_base_lock);
1131 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1132 	write_unlock_bh(&dev_base_lock);
1133 
1134 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1135 	ret = notifier_to_errno(ret);
1136 
1137 	if (ret) {
1138 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1139 		if (err >= 0) {
1140 			err = ret;
1141 			write_seqcount_begin(&devnet_rename_seq);
1142 			memcpy(dev->name, oldname, IFNAMSIZ);
1143 			memcpy(oldname, newname, IFNAMSIZ);
1144 			goto rollback;
1145 		} else {
1146 			pr_err("%s: name change rollback failed: %d\n",
1147 			       dev->name, ret);
1148 		}
1149 	}
1150 
1151 	return err;
1152 }
1153 
1154 /**
1155  *	dev_set_alias - change ifalias of a device
1156  *	@dev: device
1157  *	@alias: name up to IFALIASZ
1158  *	@len: limit of bytes to copy from info
1159  *
1160  *	Set ifalias for a device,
1161  */
1162 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1163 {
1164 	char *new_ifalias;
1165 
1166 	ASSERT_RTNL();
1167 
1168 	if (len >= IFALIASZ)
1169 		return -EINVAL;
1170 
1171 	if (!len) {
1172 		kfree(dev->ifalias);
1173 		dev->ifalias = NULL;
1174 		return 0;
1175 	}
1176 
1177 	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1178 	if (!new_ifalias)
1179 		return -ENOMEM;
1180 	dev->ifalias = new_ifalias;
1181 
1182 	strlcpy(dev->ifalias, alias, len+1);
1183 	return len;
1184 }
1185 
1186 
1187 /**
1188  *	netdev_features_change - device changes features
1189  *	@dev: device to cause notification
1190  *
1191  *	Called to indicate a device has changed features.
1192  */
1193 void netdev_features_change(struct net_device *dev)
1194 {
1195 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1196 }
1197 EXPORT_SYMBOL(netdev_features_change);
1198 
1199 /**
1200  *	netdev_state_change - device changes state
1201  *	@dev: device to cause notification
1202  *
1203  *	Called to indicate a device has changed state. This function calls
1204  *	the notifier chains for netdev_chain and sends a NEWLINK message
1205  *	to the routing socket.
1206  */
1207 void netdev_state_change(struct net_device *dev)
1208 {
1209 	if (dev->flags & IFF_UP) {
1210 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
1211 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1212 	}
1213 }
1214 EXPORT_SYMBOL(netdev_state_change);
1215 
1216 /**
1217  * 	netdev_notify_peers - notify network peers about existence of @dev
1218  * 	@dev: network device
1219  *
1220  * Generate traffic such that interested network peers are aware of
1221  * @dev, such as by generating a gratuitous ARP. This may be used when
1222  * a device wants to inform the rest of the network about some sort of
1223  * reconfiguration such as a failover event or virtual machine
1224  * migration.
1225  */
1226 void netdev_notify_peers(struct net_device *dev)
1227 {
1228 	rtnl_lock();
1229 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1230 	rtnl_unlock();
1231 }
1232 EXPORT_SYMBOL(netdev_notify_peers);
1233 
1234 static int __dev_open(struct net_device *dev)
1235 {
1236 	const struct net_device_ops *ops = dev->netdev_ops;
1237 	int ret;
1238 
1239 	ASSERT_RTNL();
1240 
1241 	if (!netif_device_present(dev))
1242 		return -ENODEV;
1243 
1244 	/* Block netpoll from trying to do any rx path servicing.
1245 	 * If we don't do this there is a chance ndo_poll_controller
1246 	 * or ndo_poll may be running while we open the device
1247 	 */
1248 	netpoll_poll_disable(dev);
1249 
1250 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1251 	ret = notifier_to_errno(ret);
1252 	if (ret)
1253 		return ret;
1254 
1255 	set_bit(__LINK_STATE_START, &dev->state);
1256 
1257 	if (ops->ndo_validate_addr)
1258 		ret = ops->ndo_validate_addr(dev);
1259 
1260 	if (!ret && ops->ndo_open)
1261 		ret = ops->ndo_open(dev);
1262 
1263 	netpoll_poll_enable(dev);
1264 
1265 	if (ret)
1266 		clear_bit(__LINK_STATE_START, &dev->state);
1267 	else {
1268 		dev->flags |= IFF_UP;
1269 		net_dmaengine_get();
1270 		dev_set_rx_mode(dev);
1271 		dev_activate(dev);
1272 		add_device_randomness(dev->dev_addr, dev->addr_len);
1273 	}
1274 
1275 	return ret;
1276 }
1277 
1278 /**
1279  *	dev_open	- prepare an interface for use.
1280  *	@dev:	device to open
1281  *
1282  *	Takes a device from down to up state. The device's private open
1283  *	function is invoked and then the multicast lists are loaded. Finally
1284  *	the device is moved into the up state and a %NETDEV_UP message is
1285  *	sent to the netdev notifier chain.
1286  *
1287  *	Calling this function on an active interface is a nop. On a failure
1288  *	a negative errno code is returned.
1289  */
1290 int dev_open(struct net_device *dev)
1291 {
1292 	int ret;
1293 
1294 	if (dev->flags & IFF_UP)
1295 		return 0;
1296 
1297 	ret = __dev_open(dev);
1298 	if (ret < 0)
1299 		return ret;
1300 
1301 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1302 	call_netdevice_notifiers(NETDEV_UP, dev);
1303 
1304 	return ret;
1305 }
1306 EXPORT_SYMBOL(dev_open);
1307 
1308 static int __dev_close_many(struct list_head *head)
1309 {
1310 	struct net_device *dev;
1311 
1312 	ASSERT_RTNL();
1313 	might_sleep();
1314 
1315 	list_for_each_entry(dev, head, close_list) {
1316 		/* Temporarily disable netpoll until the interface is down */
1317 		netpoll_poll_disable(dev);
1318 
1319 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1320 
1321 		clear_bit(__LINK_STATE_START, &dev->state);
1322 
1323 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1324 		 * can be even on different cpu. So just clear netif_running().
1325 		 *
1326 		 * dev->stop() will invoke napi_disable() on all of it's
1327 		 * napi_struct instances on this device.
1328 		 */
1329 		smp_mb__after_atomic(); /* Commit netif_running(). */
1330 	}
1331 
1332 	dev_deactivate_many(head);
1333 
1334 	list_for_each_entry(dev, head, close_list) {
1335 		const struct net_device_ops *ops = dev->netdev_ops;
1336 
1337 		/*
1338 		 *	Call the device specific close. This cannot fail.
1339 		 *	Only if device is UP
1340 		 *
1341 		 *	We allow it to be called even after a DETACH hot-plug
1342 		 *	event.
1343 		 */
1344 		if (ops->ndo_stop)
1345 			ops->ndo_stop(dev);
1346 
1347 		dev->flags &= ~IFF_UP;
1348 		net_dmaengine_put();
1349 		netpoll_poll_enable(dev);
1350 	}
1351 
1352 	return 0;
1353 }
1354 
1355 static int __dev_close(struct net_device *dev)
1356 {
1357 	int retval;
1358 	LIST_HEAD(single);
1359 
1360 	list_add(&dev->close_list, &single);
1361 	retval = __dev_close_many(&single);
1362 	list_del(&single);
1363 
1364 	return retval;
1365 }
1366 
1367 static int dev_close_many(struct list_head *head)
1368 {
1369 	struct net_device *dev, *tmp;
1370 
1371 	/* Remove the devices that don't need to be closed */
1372 	list_for_each_entry_safe(dev, tmp, head, close_list)
1373 		if (!(dev->flags & IFF_UP))
1374 			list_del_init(&dev->close_list);
1375 
1376 	__dev_close_many(head);
1377 
1378 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1379 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1380 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1381 		list_del_init(&dev->close_list);
1382 	}
1383 
1384 	return 0;
1385 }
1386 
1387 /**
1388  *	dev_close - shutdown an interface.
1389  *	@dev: device to shutdown
1390  *
1391  *	This function moves an active device into down state. A
1392  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1393  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1394  *	chain.
1395  */
1396 int dev_close(struct net_device *dev)
1397 {
1398 	if (dev->flags & IFF_UP) {
1399 		LIST_HEAD(single);
1400 
1401 		list_add(&dev->close_list, &single);
1402 		dev_close_many(&single);
1403 		list_del(&single);
1404 	}
1405 	return 0;
1406 }
1407 EXPORT_SYMBOL(dev_close);
1408 
1409 
1410 /**
1411  *	dev_disable_lro - disable Large Receive Offload on a device
1412  *	@dev: device
1413  *
1414  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1415  *	called under RTNL.  This is needed if received packets may be
1416  *	forwarded to another interface.
1417  */
1418 void dev_disable_lro(struct net_device *dev)
1419 {
1420 	/*
1421 	 * If we're trying to disable lro on a vlan device
1422 	 * use the underlying physical device instead
1423 	 */
1424 	if (is_vlan_dev(dev))
1425 		dev = vlan_dev_real_dev(dev);
1426 
1427 	/* the same for macvlan devices */
1428 	if (netif_is_macvlan(dev))
1429 		dev = macvlan_dev_real_dev(dev);
1430 
1431 	dev->wanted_features &= ~NETIF_F_LRO;
1432 	netdev_update_features(dev);
1433 
1434 	if (unlikely(dev->features & NETIF_F_LRO))
1435 		netdev_WARN(dev, "failed to disable LRO!\n");
1436 }
1437 EXPORT_SYMBOL(dev_disable_lro);
1438 
1439 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1440 				   struct net_device *dev)
1441 {
1442 	struct netdev_notifier_info info;
1443 
1444 	netdev_notifier_info_init(&info, dev);
1445 	return nb->notifier_call(nb, val, &info);
1446 }
1447 
1448 static int dev_boot_phase = 1;
1449 
1450 /**
1451  *	register_netdevice_notifier - register a network notifier block
1452  *	@nb: notifier
1453  *
1454  *	Register a notifier to be called when network device events occur.
1455  *	The notifier passed is linked into the kernel structures and must
1456  *	not be reused until it has been unregistered. A negative errno code
1457  *	is returned on a failure.
1458  *
1459  * 	When registered all registration and up events are replayed
1460  *	to the new notifier to allow device to have a race free
1461  *	view of the network device list.
1462  */
1463 
1464 int register_netdevice_notifier(struct notifier_block *nb)
1465 {
1466 	struct net_device *dev;
1467 	struct net_device *last;
1468 	struct net *net;
1469 	int err;
1470 
1471 	rtnl_lock();
1472 	err = raw_notifier_chain_register(&netdev_chain, nb);
1473 	if (err)
1474 		goto unlock;
1475 	if (dev_boot_phase)
1476 		goto unlock;
1477 	for_each_net(net) {
1478 		for_each_netdev(net, dev) {
1479 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1480 			err = notifier_to_errno(err);
1481 			if (err)
1482 				goto rollback;
1483 
1484 			if (!(dev->flags & IFF_UP))
1485 				continue;
1486 
1487 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1488 		}
1489 	}
1490 
1491 unlock:
1492 	rtnl_unlock();
1493 	return err;
1494 
1495 rollback:
1496 	last = dev;
1497 	for_each_net(net) {
1498 		for_each_netdev(net, dev) {
1499 			if (dev == last)
1500 				goto outroll;
1501 
1502 			if (dev->flags & IFF_UP) {
1503 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1504 							dev);
1505 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1506 			}
1507 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1508 		}
1509 	}
1510 
1511 outroll:
1512 	raw_notifier_chain_unregister(&netdev_chain, nb);
1513 	goto unlock;
1514 }
1515 EXPORT_SYMBOL(register_netdevice_notifier);
1516 
1517 /**
1518  *	unregister_netdevice_notifier - unregister a network notifier block
1519  *	@nb: notifier
1520  *
1521  *	Unregister a notifier previously registered by
1522  *	register_netdevice_notifier(). The notifier is unlinked into the
1523  *	kernel structures and may then be reused. A negative errno code
1524  *	is returned on a failure.
1525  *
1526  * 	After unregistering unregister and down device events are synthesized
1527  *	for all devices on the device list to the removed notifier to remove
1528  *	the need for special case cleanup code.
1529  */
1530 
1531 int unregister_netdevice_notifier(struct notifier_block *nb)
1532 {
1533 	struct net_device *dev;
1534 	struct net *net;
1535 	int err;
1536 
1537 	rtnl_lock();
1538 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1539 	if (err)
1540 		goto unlock;
1541 
1542 	for_each_net(net) {
1543 		for_each_netdev(net, dev) {
1544 			if (dev->flags & IFF_UP) {
1545 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1546 							dev);
1547 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1548 			}
1549 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1550 		}
1551 	}
1552 unlock:
1553 	rtnl_unlock();
1554 	return err;
1555 }
1556 EXPORT_SYMBOL(unregister_netdevice_notifier);
1557 
1558 /**
1559  *	call_netdevice_notifiers_info - call all network notifier blocks
1560  *	@val: value passed unmodified to notifier function
1561  *	@dev: net_device pointer passed unmodified to notifier function
1562  *	@info: notifier information data
1563  *
1564  *	Call all network notifier blocks.  Parameters and return value
1565  *	are as for raw_notifier_call_chain().
1566  */
1567 
1568 static int call_netdevice_notifiers_info(unsigned long val,
1569 					 struct net_device *dev,
1570 					 struct netdev_notifier_info *info)
1571 {
1572 	ASSERT_RTNL();
1573 	netdev_notifier_info_init(info, dev);
1574 	return raw_notifier_call_chain(&netdev_chain, val, info);
1575 }
1576 
1577 /**
1578  *	call_netdevice_notifiers - call all network notifier blocks
1579  *      @val: value passed unmodified to notifier function
1580  *      @dev: net_device pointer passed unmodified to notifier function
1581  *
1582  *	Call all network notifier blocks.  Parameters and return value
1583  *	are as for raw_notifier_call_chain().
1584  */
1585 
1586 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1587 {
1588 	struct netdev_notifier_info info;
1589 
1590 	return call_netdevice_notifiers_info(val, dev, &info);
1591 }
1592 EXPORT_SYMBOL(call_netdevice_notifiers);
1593 
1594 static struct static_key netstamp_needed __read_mostly;
1595 #ifdef HAVE_JUMP_LABEL
1596 /* We are not allowed to call static_key_slow_dec() from irq context
1597  * If net_disable_timestamp() is called from irq context, defer the
1598  * static_key_slow_dec() calls.
1599  */
1600 static atomic_t netstamp_needed_deferred;
1601 #endif
1602 
1603 void net_enable_timestamp(void)
1604 {
1605 #ifdef HAVE_JUMP_LABEL
1606 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1607 
1608 	if (deferred) {
1609 		while (--deferred)
1610 			static_key_slow_dec(&netstamp_needed);
1611 		return;
1612 	}
1613 #endif
1614 	static_key_slow_inc(&netstamp_needed);
1615 }
1616 EXPORT_SYMBOL(net_enable_timestamp);
1617 
1618 void net_disable_timestamp(void)
1619 {
1620 #ifdef HAVE_JUMP_LABEL
1621 	if (in_interrupt()) {
1622 		atomic_inc(&netstamp_needed_deferred);
1623 		return;
1624 	}
1625 #endif
1626 	static_key_slow_dec(&netstamp_needed);
1627 }
1628 EXPORT_SYMBOL(net_disable_timestamp);
1629 
1630 static inline void net_timestamp_set(struct sk_buff *skb)
1631 {
1632 	skb->tstamp.tv64 = 0;
1633 	if (static_key_false(&netstamp_needed))
1634 		__net_timestamp(skb);
1635 }
1636 
1637 #define net_timestamp_check(COND, SKB)			\
1638 	if (static_key_false(&netstamp_needed)) {		\
1639 		if ((COND) && !(SKB)->tstamp.tv64)	\
1640 			__net_timestamp(SKB);		\
1641 	}						\
1642 
1643 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1644 {
1645 	unsigned int len;
1646 
1647 	if (!(dev->flags & IFF_UP))
1648 		return false;
1649 
1650 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1651 	if (skb->len <= len)
1652 		return true;
1653 
1654 	/* if TSO is enabled, we don't care about the length as the packet
1655 	 * could be forwarded without being segmented before
1656 	 */
1657 	if (skb_is_gso(skb))
1658 		return true;
1659 
1660 	return false;
1661 }
1662 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1663 
1664 /**
1665  * dev_forward_skb - loopback an skb to another netif
1666  *
1667  * @dev: destination network device
1668  * @skb: buffer to forward
1669  *
1670  * return values:
1671  *	NET_RX_SUCCESS	(no congestion)
1672  *	NET_RX_DROP     (packet was dropped, but freed)
1673  *
1674  * dev_forward_skb can be used for injecting an skb from the
1675  * start_xmit function of one device into the receive queue
1676  * of another device.
1677  *
1678  * The receiving device may be in another namespace, so
1679  * we have to clear all information in the skb that could
1680  * impact namespace isolation.
1681  */
1682 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1683 {
1684 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1685 		if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1686 			atomic_long_inc(&dev->rx_dropped);
1687 			kfree_skb(skb);
1688 			return NET_RX_DROP;
1689 		}
1690 	}
1691 
1692 	if (unlikely(!is_skb_forwardable(dev, skb))) {
1693 		atomic_long_inc(&dev->rx_dropped);
1694 		kfree_skb(skb);
1695 		return NET_RX_DROP;
1696 	}
1697 
1698 	skb_scrub_packet(skb, true);
1699 	skb->protocol = eth_type_trans(skb, dev);
1700 
1701 	return netif_rx_internal(skb);
1702 }
1703 EXPORT_SYMBOL_GPL(dev_forward_skb);
1704 
1705 static inline int deliver_skb(struct sk_buff *skb,
1706 			      struct packet_type *pt_prev,
1707 			      struct net_device *orig_dev)
1708 {
1709 	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1710 		return -ENOMEM;
1711 	atomic_inc(&skb->users);
1712 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1713 }
1714 
1715 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1716 {
1717 	if (!ptype->af_packet_priv || !skb->sk)
1718 		return false;
1719 
1720 	if (ptype->id_match)
1721 		return ptype->id_match(ptype, skb->sk);
1722 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1723 		return true;
1724 
1725 	return false;
1726 }
1727 
1728 /*
1729  *	Support routine. Sends outgoing frames to any network
1730  *	taps currently in use.
1731  */
1732 
1733 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1734 {
1735 	struct packet_type *ptype;
1736 	struct sk_buff *skb2 = NULL;
1737 	struct packet_type *pt_prev = NULL;
1738 
1739 	rcu_read_lock();
1740 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1741 		/* Never send packets back to the socket
1742 		 * they originated from - MvS (miquels@drinkel.ow.org)
1743 		 */
1744 		if ((ptype->dev == dev || !ptype->dev) &&
1745 		    (!skb_loop_sk(ptype, skb))) {
1746 			if (pt_prev) {
1747 				deliver_skb(skb2, pt_prev, skb->dev);
1748 				pt_prev = ptype;
1749 				continue;
1750 			}
1751 
1752 			skb2 = skb_clone(skb, GFP_ATOMIC);
1753 			if (!skb2)
1754 				break;
1755 
1756 			net_timestamp_set(skb2);
1757 
1758 			/* skb->nh should be correctly
1759 			   set by sender, so that the second statement is
1760 			   just protection against buggy protocols.
1761 			 */
1762 			skb_reset_mac_header(skb2);
1763 
1764 			if (skb_network_header(skb2) < skb2->data ||
1765 			    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1766 				net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1767 						     ntohs(skb2->protocol),
1768 						     dev->name);
1769 				skb_reset_network_header(skb2);
1770 			}
1771 
1772 			skb2->transport_header = skb2->network_header;
1773 			skb2->pkt_type = PACKET_OUTGOING;
1774 			pt_prev = ptype;
1775 		}
1776 	}
1777 	if (pt_prev)
1778 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1779 	rcu_read_unlock();
1780 }
1781 
1782 /**
1783  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1784  * @dev: Network device
1785  * @txq: number of queues available
1786  *
1787  * If real_num_tx_queues is changed the tc mappings may no longer be
1788  * valid. To resolve this verify the tc mapping remains valid and if
1789  * not NULL the mapping. With no priorities mapping to this
1790  * offset/count pair it will no longer be used. In the worst case TC0
1791  * is invalid nothing can be done so disable priority mappings. If is
1792  * expected that drivers will fix this mapping if they can before
1793  * calling netif_set_real_num_tx_queues.
1794  */
1795 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1796 {
1797 	int i;
1798 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1799 
1800 	/* If TC0 is invalidated disable TC mapping */
1801 	if (tc->offset + tc->count > txq) {
1802 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1803 		dev->num_tc = 0;
1804 		return;
1805 	}
1806 
1807 	/* Invalidated prio to tc mappings set to TC0 */
1808 	for (i = 1; i < TC_BITMASK + 1; i++) {
1809 		int q = netdev_get_prio_tc_map(dev, i);
1810 
1811 		tc = &dev->tc_to_txq[q];
1812 		if (tc->offset + tc->count > txq) {
1813 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1814 				i, q);
1815 			netdev_set_prio_tc_map(dev, i, 0);
1816 		}
1817 	}
1818 }
1819 
1820 #ifdef CONFIG_XPS
1821 static DEFINE_MUTEX(xps_map_mutex);
1822 #define xmap_dereference(P)		\
1823 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1824 
1825 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1826 					int cpu, u16 index)
1827 {
1828 	struct xps_map *map = NULL;
1829 	int pos;
1830 
1831 	if (dev_maps)
1832 		map = xmap_dereference(dev_maps->cpu_map[cpu]);
1833 
1834 	for (pos = 0; map && pos < map->len; pos++) {
1835 		if (map->queues[pos] == index) {
1836 			if (map->len > 1) {
1837 				map->queues[pos] = map->queues[--map->len];
1838 			} else {
1839 				RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1840 				kfree_rcu(map, rcu);
1841 				map = NULL;
1842 			}
1843 			break;
1844 		}
1845 	}
1846 
1847 	return map;
1848 }
1849 
1850 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1851 {
1852 	struct xps_dev_maps *dev_maps;
1853 	int cpu, i;
1854 	bool active = false;
1855 
1856 	mutex_lock(&xps_map_mutex);
1857 	dev_maps = xmap_dereference(dev->xps_maps);
1858 
1859 	if (!dev_maps)
1860 		goto out_no_maps;
1861 
1862 	for_each_possible_cpu(cpu) {
1863 		for (i = index; i < dev->num_tx_queues; i++) {
1864 			if (!remove_xps_queue(dev_maps, cpu, i))
1865 				break;
1866 		}
1867 		if (i == dev->num_tx_queues)
1868 			active = true;
1869 	}
1870 
1871 	if (!active) {
1872 		RCU_INIT_POINTER(dev->xps_maps, NULL);
1873 		kfree_rcu(dev_maps, rcu);
1874 	}
1875 
1876 	for (i = index; i < dev->num_tx_queues; i++)
1877 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1878 					     NUMA_NO_NODE);
1879 
1880 out_no_maps:
1881 	mutex_unlock(&xps_map_mutex);
1882 }
1883 
1884 static struct xps_map *expand_xps_map(struct xps_map *map,
1885 				      int cpu, u16 index)
1886 {
1887 	struct xps_map *new_map;
1888 	int alloc_len = XPS_MIN_MAP_ALLOC;
1889 	int i, pos;
1890 
1891 	for (pos = 0; map && pos < map->len; pos++) {
1892 		if (map->queues[pos] != index)
1893 			continue;
1894 		return map;
1895 	}
1896 
1897 	/* Need to add queue to this CPU's existing map */
1898 	if (map) {
1899 		if (pos < map->alloc_len)
1900 			return map;
1901 
1902 		alloc_len = map->alloc_len * 2;
1903 	}
1904 
1905 	/* Need to allocate new map to store queue on this CPU's map */
1906 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1907 			       cpu_to_node(cpu));
1908 	if (!new_map)
1909 		return NULL;
1910 
1911 	for (i = 0; i < pos; i++)
1912 		new_map->queues[i] = map->queues[i];
1913 	new_map->alloc_len = alloc_len;
1914 	new_map->len = pos;
1915 
1916 	return new_map;
1917 }
1918 
1919 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1920 			u16 index)
1921 {
1922 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1923 	struct xps_map *map, *new_map;
1924 	int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1925 	int cpu, numa_node_id = -2;
1926 	bool active = false;
1927 
1928 	mutex_lock(&xps_map_mutex);
1929 
1930 	dev_maps = xmap_dereference(dev->xps_maps);
1931 
1932 	/* allocate memory for queue storage */
1933 	for_each_online_cpu(cpu) {
1934 		if (!cpumask_test_cpu(cpu, mask))
1935 			continue;
1936 
1937 		if (!new_dev_maps)
1938 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1939 		if (!new_dev_maps) {
1940 			mutex_unlock(&xps_map_mutex);
1941 			return -ENOMEM;
1942 		}
1943 
1944 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1945 				 NULL;
1946 
1947 		map = expand_xps_map(map, cpu, index);
1948 		if (!map)
1949 			goto error;
1950 
1951 		RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1952 	}
1953 
1954 	if (!new_dev_maps)
1955 		goto out_no_new_maps;
1956 
1957 	for_each_possible_cpu(cpu) {
1958 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1959 			/* add queue to CPU maps */
1960 			int pos = 0;
1961 
1962 			map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1963 			while ((pos < map->len) && (map->queues[pos] != index))
1964 				pos++;
1965 
1966 			if (pos == map->len)
1967 				map->queues[map->len++] = index;
1968 #ifdef CONFIG_NUMA
1969 			if (numa_node_id == -2)
1970 				numa_node_id = cpu_to_node(cpu);
1971 			else if (numa_node_id != cpu_to_node(cpu))
1972 				numa_node_id = -1;
1973 #endif
1974 		} else if (dev_maps) {
1975 			/* fill in the new device map from the old device map */
1976 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
1977 			RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1978 		}
1979 
1980 	}
1981 
1982 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
1983 
1984 	/* Cleanup old maps */
1985 	if (dev_maps) {
1986 		for_each_possible_cpu(cpu) {
1987 			new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1988 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
1989 			if (map && map != new_map)
1990 				kfree_rcu(map, rcu);
1991 		}
1992 
1993 		kfree_rcu(dev_maps, rcu);
1994 	}
1995 
1996 	dev_maps = new_dev_maps;
1997 	active = true;
1998 
1999 out_no_new_maps:
2000 	/* update Tx queue numa node */
2001 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2002 				     (numa_node_id >= 0) ? numa_node_id :
2003 				     NUMA_NO_NODE);
2004 
2005 	if (!dev_maps)
2006 		goto out_no_maps;
2007 
2008 	/* removes queue from unused CPUs */
2009 	for_each_possible_cpu(cpu) {
2010 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2011 			continue;
2012 
2013 		if (remove_xps_queue(dev_maps, cpu, index))
2014 			active = true;
2015 	}
2016 
2017 	/* free map if not active */
2018 	if (!active) {
2019 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2020 		kfree_rcu(dev_maps, rcu);
2021 	}
2022 
2023 out_no_maps:
2024 	mutex_unlock(&xps_map_mutex);
2025 
2026 	return 0;
2027 error:
2028 	/* remove any maps that we added */
2029 	for_each_possible_cpu(cpu) {
2030 		new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2031 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2032 				 NULL;
2033 		if (new_map && new_map != map)
2034 			kfree(new_map);
2035 	}
2036 
2037 	mutex_unlock(&xps_map_mutex);
2038 
2039 	kfree(new_dev_maps);
2040 	return -ENOMEM;
2041 }
2042 EXPORT_SYMBOL(netif_set_xps_queue);
2043 
2044 #endif
2045 /*
2046  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2047  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2048  */
2049 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2050 {
2051 	int rc;
2052 
2053 	if (txq < 1 || txq > dev->num_tx_queues)
2054 		return -EINVAL;
2055 
2056 	if (dev->reg_state == NETREG_REGISTERED ||
2057 	    dev->reg_state == NETREG_UNREGISTERING) {
2058 		ASSERT_RTNL();
2059 
2060 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2061 						  txq);
2062 		if (rc)
2063 			return rc;
2064 
2065 		if (dev->num_tc)
2066 			netif_setup_tc(dev, txq);
2067 
2068 		if (txq < dev->real_num_tx_queues) {
2069 			qdisc_reset_all_tx_gt(dev, txq);
2070 #ifdef CONFIG_XPS
2071 			netif_reset_xps_queues_gt(dev, txq);
2072 #endif
2073 		}
2074 	}
2075 
2076 	dev->real_num_tx_queues = txq;
2077 	return 0;
2078 }
2079 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2080 
2081 #ifdef CONFIG_SYSFS
2082 /**
2083  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2084  *	@dev: Network device
2085  *	@rxq: Actual number of RX queues
2086  *
2087  *	This must be called either with the rtnl_lock held or before
2088  *	registration of the net device.  Returns 0 on success, or a
2089  *	negative error code.  If called before registration, it always
2090  *	succeeds.
2091  */
2092 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2093 {
2094 	int rc;
2095 
2096 	if (rxq < 1 || rxq > dev->num_rx_queues)
2097 		return -EINVAL;
2098 
2099 	if (dev->reg_state == NETREG_REGISTERED) {
2100 		ASSERT_RTNL();
2101 
2102 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2103 						  rxq);
2104 		if (rc)
2105 			return rc;
2106 	}
2107 
2108 	dev->real_num_rx_queues = rxq;
2109 	return 0;
2110 }
2111 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2112 #endif
2113 
2114 /**
2115  * netif_get_num_default_rss_queues - default number of RSS queues
2116  *
2117  * This routine should set an upper limit on the number of RSS queues
2118  * used by default by multiqueue devices.
2119  */
2120 int netif_get_num_default_rss_queues(void)
2121 {
2122 	return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2123 }
2124 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2125 
2126 static inline void __netif_reschedule(struct Qdisc *q)
2127 {
2128 	struct softnet_data *sd;
2129 	unsigned long flags;
2130 
2131 	local_irq_save(flags);
2132 	sd = &__get_cpu_var(softnet_data);
2133 	q->next_sched = NULL;
2134 	*sd->output_queue_tailp = q;
2135 	sd->output_queue_tailp = &q->next_sched;
2136 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2137 	local_irq_restore(flags);
2138 }
2139 
2140 void __netif_schedule(struct Qdisc *q)
2141 {
2142 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2143 		__netif_reschedule(q);
2144 }
2145 EXPORT_SYMBOL(__netif_schedule);
2146 
2147 struct dev_kfree_skb_cb {
2148 	enum skb_free_reason reason;
2149 };
2150 
2151 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2152 {
2153 	return (struct dev_kfree_skb_cb *)skb->cb;
2154 }
2155 
2156 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2157 {
2158 	unsigned long flags;
2159 
2160 	if (likely(atomic_read(&skb->users) == 1)) {
2161 		smp_rmb();
2162 		atomic_set(&skb->users, 0);
2163 	} else if (likely(!atomic_dec_and_test(&skb->users))) {
2164 		return;
2165 	}
2166 	get_kfree_skb_cb(skb)->reason = reason;
2167 	local_irq_save(flags);
2168 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2169 	__this_cpu_write(softnet_data.completion_queue, skb);
2170 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2171 	local_irq_restore(flags);
2172 }
2173 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2174 
2175 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2176 {
2177 	if (in_irq() || irqs_disabled())
2178 		__dev_kfree_skb_irq(skb, reason);
2179 	else
2180 		dev_kfree_skb(skb);
2181 }
2182 EXPORT_SYMBOL(__dev_kfree_skb_any);
2183 
2184 
2185 /**
2186  * netif_device_detach - mark device as removed
2187  * @dev: network device
2188  *
2189  * Mark device as removed from system and therefore no longer available.
2190  */
2191 void netif_device_detach(struct net_device *dev)
2192 {
2193 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2194 	    netif_running(dev)) {
2195 		netif_tx_stop_all_queues(dev);
2196 	}
2197 }
2198 EXPORT_SYMBOL(netif_device_detach);
2199 
2200 /**
2201  * netif_device_attach - mark device as attached
2202  * @dev: network device
2203  *
2204  * Mark device as attached from system and restart if needed.
2205  */
2206 void netif_device_attach(struct net_device *dev)
2207 {
2208 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2209 	    netif_running(dev)) {
2210 		netif_tx_wake_all_queues(dev);
2211 		__netdev_watchdog_up(dev);
2212 	}
2213 }
2214 EXPORT_SYMBOL(netif_device_attach);
2215 
2216 static void skb_warn_bad_offload(const struct sk_buff *skb)
2217 {
2218 	static const netdev_features_t null_features = 0;
2219 	struct net_device *dev = skb->dev;
2220 	const char *driver = "";
2221 
2222 	if (!net_ratelimit())
2223 		return;
2224 
2225 	if (dev && dev->dev.parent)
2226 		driver = dev_driver_string(dev->dev.parent);
2227 
2228 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2229 	     "gso_type=%d ip_summed=%d\n",
2230 	     driver, dev ? &dev->features : &null_features,
2231 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2232 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2233 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2234 }
2235 
2236 /*
2237  * Invalidate hardware checksum when packet is to be mangled, and
2238  * complete checksum manually on outgoing path.
2239  */
2240 int skb_checksum_help(struct sk_buff *skb)
2241 {
2242 	__wsum csum;
2243 	int ret = 0, offset;
2244 
2245 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2246 		goto out_set_summed;
2247 
2248 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2249 		skb_warn_bad_offload(skb);
2250 		return -EINVAL;
2251 	}
2252 
2253 	/* Before computing a checksum, we should make sure no frag could
2254 	 * be modified by an external entity : checksum could be wrong.
2255 	 */
2256 	if (skb_has_shared_frag(skb)) {
2257 		ret = __skb_linearize(skb);
2258 		if (ret)
2259 			goto out;
2260 	}
2261 
2262 	offset = skb_checksum_start_offset(skb);
2263 	BUG_ON(offset >= skb_headlen(skb));
2264 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2265 
2266 	offset += skb->csum_offset;
2267 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2268 
2269 	if (skb_cloned(skb) &&
2270 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2271 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2272 		if (ret)
2273 			goto out;
2274 	}
2275 
2276 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
2277 out_set_summed:
2278 	skb->ip_summed = CHECKSUM_NONE;
2279 out:
2280 	return ret;
2281 }
2282 EXPORT_SYMBOL(skb_checksum_help);
2283 
2284 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2285 {
2286 	__be16 type = skb->protocol;
2287 	int vlan_depth = skb->mac_len;
2288 
2289 	/* Tunnel gso handlers can set protocol to ethernet. */
2290 	if (type == htons(ETH_P_TEB)) {
2291 		struct ethhdr *eth;
2292 
2293 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2294 			return 0;
2295 
2296 		eth = (struct ethhdr *)skb_mac_header(skb);
2297 		type = eth->h_proto;
2298 	}
2299 
2300 	while (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2301 		struct vlan_hdr *vh;
2302 
2303 		if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
2304 			return 0;
2305 
2306 		vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2307 		type = vh->h_vlan_encapsulated_proto;
2308 		vlan_depth += VLAN_HLEN;
2309 	}
2310 
2311 	*depth = vlan_depth;
2312 
2313 	return type;
2314 }
2315 
2316 /**
2317  *	skb_mac_gso_segment - mac layer segmentation handler.
2318  *	@skb: buffer to segment
2319  *	@features: features for the output path (see dev->features)
2320  */
2321 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2322 				    netdev_features_t features)
2323 {
2324 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2325 	struct packet_offload *ptype;
2326 	int vlan_depth = skb->mac_len;
2327 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2328 
2329 	if (unlikely(!type))
2330 		return ERR_PTR(-EINVAL);
2331 
2332 	__skb_pull(skb, vlan_depth);
2333 
2334 	rcu_read_lock();
2335 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2336 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2337 			if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2338 				int err;
2339 
2340 				err = ptype->callbacks.gso_send_check(skb);
2341 				segs = ERR_PTR(err);
2342 				if (err || skb_gso_ok(skb, features))
2343 					break;
2344 				__skb_push(skb, (skb->data -
2345 						 skb_network_header(skb)));
2346 			}
2347 			segs = ptype->callbacks.gso_segment(skb, features);
2348 			break;
2349 		}
2350 	}
2351 	rcu_read_unlock();
2352 
2353 	__skb_push(skb, skb->data - skb_mac_header(skb));
2354 
2355 	return segs;
2356 }
2357 EXPORT_SYMBOL(skb_mac_gso_segment);
2358 
2359 
2360 /* openvswitch calls this on rx path, so we need a different check.
2361  */
2362 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2363 {
2364 	if (tx_path)
2365 		return skb->ip_summed != CHECKSUM_PARTIAL;
2366 	else
2367 		return skb->ip_summed == CHECKSUM_NONE;
2368 }
2369 
2370 /**
2371  *	__skb_gso_segment - Perform segmentation on skb.
2372  *	@skb: buffer to segment
2373  *	@features: features for the output path (see dev->features)
2374  *	@tx_path: whether it is called in TX path
2375  *
2376  *	This function segments the given skb and returns a list of segments.
2377  *
2378  *	It may return NULL if the skb requires no segmentation.  This is
2379  *	only possible when GSO is used for verifying header integrity.
2380  */
2381 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2382 				  netdev_features_t features, bool tx_path)
2383 {
2384 	if (unlikely(skb_needs_check(skb, tx_path))) {
2385 		int err;
2386 
2387 		skb_warn_bad_offload(skb);
2388 
2389 		if (skb_header_cloned(skb) &&
2390 		    (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2391 			return ERR_PTR(err);
2392 	}
2393 
2394 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2395 	SKB_GSO_CB(skb)->encap_level = 0;
2396 
2397 	skb_reset_mac_header(skb);
2398 	skb_reset_mac_len(skb);
2399 
2400 	return skb_mac_gso_segment(skb, features);
2401 }
2402 EXPORT_SYMBOL(__skb_gso_segment);
2403 
2404 /* Take action when hardware reception checksum errors are detected. */
2405 #ifdef CONFIG_BUG
2406 void netdev_rx_csum_fault(struct net_device *dev)
2407 {
2408 	if (net_ratelimit()) {
2409 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2410 		dump_stack();
2411 	}
2412 }
2413 EXPORT_SYMBOL(netdev_rx_csum_fault);
2414 #endif
2415 
2416 /* Actually, we should eliminate this check as soon as we know, that:
2417  * 1. IOMMU is present and allows to map all the memory.
2418  * 2. No high memory really exists on this machine.
2419  */
2420 
2421 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2422 {
2423 #ifdef CONFIG_HIGHMEM
2424 	int i;
2425 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2426 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2427 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2428 			if (PageHighMem(skb_frag_page(frag)))
2429 				return 1;
2430 		}
2431 	}
2432 
2433 	if (PCI_DMA_BUS_IS_PHYS) {
2434 		struct device *pdev = dev->dev.parent;
2435 
2436 		if (!pdev)
2437 			return 0;
2438 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2439 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2440 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2441 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2442 				return 1;
2443 		}
2444 	}
2445 #endif
2446 	return 0;
2447 }
2448 
2449 struct dev_gso_cb {
2450 	void (*destructor)(struct sk_buff *skb);
2451 };
2452 
2453 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2454 
2455 static void dev_gso_skb_destructor(struct sk_buff *skb)
2456 {
2457 	struct dev_gso_cb *cb;
2458 
2459 	kfree_skb_list(skb->next);
2460 	skb->next = NULL;
2461 
2462 	cb = DEV_GSO_CB(skb);
2463 	if (cb->destructor)
2464 		cb->destructor(skb);
2465 }
2466 
2467 /**
2468  *	dev_gso_segment - Perform emulated hardware segmentation on skb.
2469  *	@skb: buffer to segment
2470  *	@features: device features as applicable to this skb
2471  *
2472  *	This function segments the given skb and stores the list of segments
2473  *	in skb->next.
2474  */
2475 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2476 {
2477 	struct sk_buff *segs;
2478 
2479 	segs = skb_gso_segment(skb, features);
2480 
2481 	/* Verifying header integrity only. */
2482 	if (!segs)
2483 		return 0;
2484 
2485 	if (IS_ERR(segs))
2486 		return PTR_ERR(segs);
2487 
2488 	skb->next = segs;
2489 	DEV_GSO_CB(skb)->destructor = skb->destructor;
2490 	skb->destructor = dev_gso_skb_destructor;
2491 
2492 	return 0;
2493 }
2494 
2495 static netdev_features_t harmonize_features(struct sk_buff *skb,
2496 	netdev_features_t features)
2497 {
2498 	int tmp;
2499 
2500 	if (skb->ip_summed != CHECKSUM_NONE &&
2501 	    !can_checksum_protocol(features, skb_network_protocol(skb, &tmp))) {
2502 		features &= ~NETIF_F_ALL_CSUM;
2503 	} else if (illegal_highdma(skb->dev, skb)) {
2504 		features &= ~NETIF_F_SG;
2505 	}
2506 
2507 	return features;
2508 }
2509 
2510 netdev_features_t netif_skb_features(struct sk_buff *skb)
2511 {
2512 	__be16 protocol = skb->protocol;
2513 	netdev_features_t features = skb->dev->features;
2514 
2515 	if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2516 		features &= ~NETIF_F_GSO_MASK;
2517 
2518 	if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
2519 		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2520 		protocol = veh->h_vlan_encapsulated_proto;
2521 	} else if (!vlan_tx_tag_present(skb)) {
2522 		return harmonize_features(skb, features);
2523 	}
2524 
2525 	features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX |
2526 					       NETIF_F_HW_VLAN_STAG_TX);
2527 
2528 	if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2529 		features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2530 				NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX |
2531 				NETIF_F_HW_VLAN_STAG_TX;
2532 
2533 	return harmonize_features(skb, features);
2534 }
2535 EXPORT_SYMBOL(netif_skb_features);
2536 
2537 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2538 			struct netdev_queue *txq)
2539 {
2540 	const struct net_device_ops *ops = dev->netdev_ops;
2541 	int rc = NETDEV_TX_OK;
2542 	unsigned int skb_len;
2543 
2544 	if (likely(!skb->next)) {
2545 		netdev_features_t features;
2546 
2547 		/*
2548 		 * If device doesn't need skb->dst, release it right now while
2549 		 * its hot in this cpu cache
2550 		 */
2551 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2552 			skb_dst_drop(skb);
2553 
2554 		features = netif_skb_features(skb);
2555 
2556 		if (vlan_tx_tag_present(skb) &&
2557 		    !vlan_hw_offload_capable(features, skb->vlan_proto)) {
2558 			skb = __vlan_put_tag(skb, skb->vlan_proto,
2559 					     vlan_tx_tag_get(skb));
2560 			if (unlikely(!skb))
2561 				goto out;
2562 
2563 			skb->vlan_tci = 0;
2564 		}
2565 
2566 		/* If encapsulation offload request, verify we are testing
2567 		 * hardware encapsulation features instead of standard
2568 		 * features for the netdev
2569 		 */
2570 		if (skb->encapsulation)
2571 			features &= dev->hw_enc_features;
2572 
2573 		if (netif_needs_gso(skb, features)) {
2574 			if (unlikely(dev_gso_segment(skb, features)))
2575 				goto out_kfree_skb;
2576 			if (skb->next)
2577 				goto gso;
2578 		} else {
2579 			if (skb_needs_linearize(skb, features) &&
2580 			    __skb_linearize(skb))
2581 				goto out_kfree_skb;
2582 
2583 			/* If packet is not checksummed and device does not
2584 			 * support checksumming for this protocol, complete
2585 			 * checksumming here.
2586 			 */
2587 			if (skb->ip_summed == CHECKSUM_PARTIAL) {
2588 				if (skb->encapsulation)
2589 					skb_set_inner_transport_header(skb,
2590 						skb_checksum_start_offset(skb));
2591 				else
2592 					skb_set_transport_header(skb,
2593 						skb_checksum_start_offset(skb));
2594 				if (!(features & NETIF_F_ALL_CSUM) &&
2595 				     skb_checksum_help(skb))
2596 					goto out_kfree_skb;
2597 			}
2598 		}
2599 
2600 		if (!list_empty(&ptype_all))
2601 			dev_queue_xmit_nit(skb, dev);
2602 
2603 		skb_len = skb->len;
2604 		trace_net_dev_start_xmit(skb, dev);
2605 		rc = ops->ndo_start_xmit(skb, dev);
2606 		trace_net_dev_xmit(skb, rc, dev, skb_len);
2607 		if (rc == NETDEV_TX_OK)
2608 			txq_trans_update(txq);
2609 		return rc;
2610 	}
2611 
2612 gso:
2613 	do {
2614 		struct sk_buff *nskb = skb->next;
2615 
2616 		skb->next = nskb->next;
2617 		nskb->next = NULL;
2618 
2619 		if (!list_empty(&ptype_all))
2620 			dev_queue_xmit_nit(nskb, dev);
2621 
2622 		skb_len = nskb->len;
2623 		trace_net_dev_start_xmit(nskb, dev);
2624 		rc = ops->ndo_start_xmit(nskb, dev);
2625 		trace_net_dev_xmit(nskb, rc, dev, skb_len);
2626 		if (unlikely(rc != NETDEV_TX_OK)) {
2627 			if (rc & ~NETDEV_TX_MASK)
2628 				goto out_kfree_gso_skb;
2629 			nskb->next = skb->next;
2630 			skb->next = nskb;
2631 			return rc;
2632 		}
2633 		txq_trans_update(txq);
2634 		if (unlikely(netif_xmit_stopped(txq) && skb->next))
2635 			return NETDEV_TX_BUSY;
2636 	} while (skb->next);
2637 
2638 out_kfree_gso_skb:
2639 	if (likely(skb->next == NULL)) {
2640 		skb->destructor = DEV_GSO_CB(skb)->destructor;
2641 		consume_skb(skb);
2642 		return rc;
2643 	}
2644 out_kfree_skb:
2645 	kfree_skb(skb);
2646 out:
2647 	return rc;
2648 }
2649 EXPORT_SYMBOL_GPL(dev_hard_start_xmit);
2650 
2651 static void qdisc_pkt_len_init(struct sk_buff *skb)
2652 {
2653 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
2654 
2655 	qdisc_skb_cb(skb)->pkt_len = skb->len;
2656 
2657 	/* To get more precise estimation of bytes sent on wire,
2658 	 * we add to pkt_len the headers size of all segments
2659 	 */
2660 	if (shinfo->gso_size)  {
2661 		unsigned int hdr_len;
2662 		u16 gso_segs = shinfo->gso_segs;
2663 
2664 		/* mac layer + network layer */
2665 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2666 
2667 		/* + transport layer */
2668 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2669 			hdr_len += tcp_hdrlen(skb);
2670 		else
2671 			hdr_len += sizeof(struct udphdr);
2672 
2673 		if (shinfo->gso_type & SKB_GSO_DODGY)
2674 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2675 						shinfo->gso_size);
2676 
2677 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2678 	}
2679 }
2680 
2681 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2682 				 struct net_device *dev,
2683 				 struct netdev_queue *txq)
2684 {
2685 	spinlock_t *root_lock = qdisc_lock(q);
2686 	bool contended;
2687 	int rc;
2688 
2689 	qdisc_pkt_len_init(skb);
2690 	qdisc_calculate_pkt_len(skb, q);
2691 	/*
2692 	 * Heuristic to force contended enqueues to serialize on a
2693 	 * separate lock before trying to get qdisc main lock.
2694 	 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2695 	 * and dequeue packets faster.
2696 	 */
2697 	contended = qdisc_is_running(q);
2698 	if (unlikely(contended))
2699 		spin_lock(&q->busylock);
2700 
2701 	spin_lock(root_lock);
2702 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2703 		kfree_skb(skb);
2704 		rc = NET_XMIT_DROP;
2705 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2706 		   qdisc_run_begin(q)) {
2707 		/*
2708 		 * This is a work-conserving queue; there are no old skbs
2709 		 * waiting to be sent out; and the qdisc is not running -
2710 		 * xmit the skb directly.
2711 		 */
2712 		if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2713 			skb_dst_force(skb);
2714 
2715 		qdisc_bstats_update(q, skb);
2716 
2717 		if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2718 			if (unlikely(contended)) {
2719 				spin_unlock(&q->busylock);
2720 				contended = false;
2721 			}
2722 			__qdisc_run(q);
2723 		} else
2724 			qdisc_run_end(q);
2725 
2726 		rc = NET_XMIT_SUCCESS;
2727 	} else {
2728 		skb_dst_force(skb);
2729 		rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2730 		if (qdisc_run_begin(q)) {
2731 			if (unlikely(contended)) {
2732 				spin_unlock(&q->busylock);
2733 				contended = false;
2734 			}
2735 			__qdisc_run(q);
2736 		}
2737 	}
2738 	spin_unlock(root_lock);
2739 	if (unlikely(contended))
2740 		spin_unlock(&q->busylock);
2741 	return rc;
2742 }
2743 
2744 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2745 static void skb_update_prio(struct sk_buff *skb)
2746 {
2747 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2748 
2749 	if (!skb->priority && skb->sk && map) {
2750 		unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2751 
2752 		if (prioidx < map->priomap_len)
2753 			skb->priority = map->priomap[prioidx];
2754 	}
2755 }
2756 #else
2757 #define skb_update_prio(skb)
2758 #endif
2759 
2760 static DEFINE_PER_CPU(int, xmit_recursion);
2761 #define RECURSION_LIMIT 10
2762 
2763 /**
2764  *	dev_loopback_xmit - loop back @skb
2765  *	@skb: buffer to transmit
2766  */
2767 int dev_loopback_xmit(struct sk_buff *skb)
2768 {
2769 	skb_reset_mac_header(skb);
2770 	__skb_pull(skb, skb_network_offset(skb));
2771 	skb->pkt_type = PACKET_LOOPBACK;
2772 	skb->ip_summed = CHECKSUM_UNNECESSARY;
2773 	WARN_ON(!skb_dst(skb));
2774 	skb_dst_force(skb);
2775 	netif_rx_ni(skb);
2776 	return 0;
2777 }
2778 EXPORT_SYMBOL(dev_loopback_xmit);
2779 
2780 /**
2781  *	__dev_queue_xmit - transmit a buffer
2782  *	@skb: buffer to transmit
2783  *	@accel_priv: private data used for L2 forwarding offload
2784  *
2785  *	Queue a buffer for transmission to a network device. The caller must
2786  *	have set the device and priority and built the buffer before calling
2787  *	this function. The function can be called from an interrupt.
2788  *
2789  *	A negative errno code is returned on a failure. A success does not
2790  *	guarantee the frame will be transmitted as it may be dropped due
2791  *	to congestion or traffic shaping.
2792  *
2793  * -----------------------------------------------------------------------------------
2794  *      I notice this method can also return errors from the queue disciplines,
2795  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2796  *      be positive.
2797  *
2798  *      Regardless of the return value, the skb is consumed, so it is currently
2799  *      difficult to retry a send to this method.  (You can bump the ref count
2800  *      before sending to hold a reference for retry if you are careful.)
2801  *
2802  *      When calling this method, interrupts MUST be enabled.  This is because
2803  *      the BH enable code must have IRQs enabled so that it will not deadlock.
2804  *          --BLG
2805  */
2806 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2807 {
2808 	struct net_device *dev = skb->dev;
2809 	struct netdev_queue *txq;
2810 	struct Qdisc *q;
2811 	int rc = -ENOMEM;
2812 
2813 	skb_reset_mac_header(skb);
2814 
2815 	/* Disable soft irqs for various locks below. Also
2816 	 * stops preemption for RCU.
2817 	 */
2818 	rcu_read_lock_bh();
2819 
2820 	skb_update_prio(skb);
2821 
2822 	txq = netdev_pick_tx(dev, skb, accel_priv);
2823 	q = rcu_dereference_bh(txq->qdisc);
2824 
2825 #ifdef CONFIG_NET_CLS_ACT
2826 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2827 #endif
2828 	trace_net_dev_queue(skb);
2829 	if (q->enqueue) {
2830 		rc = __dev_xmit_skb(skb, q, dev, txq);
2831 		goto out;
2832 	}
2833 
2834 	/* The device has no queue. Common case for software devices:
2835 	   loopback, all the sorts of tunnels...
2836 
2837 	   Really, it is unlikely that netif_tx_lock protection is necessary
2838 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2839 	   counters.)
2840 	   However, it is possible, that they rely on protection
2841 	   made by us here.
2842 
2843 	   Check this and shot the lock. It is not prone from deadlocks.
2844 	   Either shot noqueue qdisc, it is even simpler 8)
2845 	 */
2846 	if (dev->flags & IFF_UP) {
2847 		int cpu = smp_processor_id(); /* ok because BHs are off */
2848 
2849 		if (txq->xmit_lock_owner != cpu) {
2850 
2851 			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2852 				goto recursion_alert;
2853 
2854 			HARD_TX_LOCK(dev, txq, cpu);
2855 
2856 			if (!netif_xmit_stopped(txq)) {
2857 				__this_cpu_inc(xmit_recursion);
2858 				rc = dev_hard_start_xmit(skb, dev, txq);
2859 				__this_cpu_dec(xmit_recursion);
2860 				if (dev_xmit_complete(rc)) {
2861 					HARD_TX_UNLOCK(dev, txq);
2862 					goto out;
2863 				}
2864 			}
2865 			HARD_TX_UNLOCK(dev, txq);
2866 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2867 					     dev->name);
2868 		} else {
2869 			/* Recursion is detected! It is possible,
2870 			 * unfortunately
2871 			 */
2872 recursion_alert:
2873 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2874 					     dev->name);
2875 		}
2876 	}
2877 
2878 	rc = -ENETDOWN;
2879 	rcu_read_unlock_bh();
2880 
2881 	atomic_long_inc(&dev->tx_dropped);
2882 	kfree_skb(skb);
2883 	return rc;
2884 out:
2885 	rcu_read_unlock_bh();
2886 	return rc;
2887 }
2888 
2889 int dev_queue_xmit(struct sk_buff *skb)
2890 {
2891 	return __dev_queue_xmit(skb, NULL);
2892 }
2893 EXPORT_SYMBOL(dev_queue_xmit);
2894 
2895 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
2896 {
2897 	return __dev_queue_xmit(skb, accel_priv);
2898 }
2899 EXPORT_SYMBOL(dev_queue_xmit_accel);
2900 
2901 
2902 /*=======================================================================
2903 			Receiver routines
2904   =======================================================================*/
2905 
2906 int netdev_max_backlog __read_mostly = 1000;
2907 EXPORT_SYMBOL(netdev_max_backlog);
2908 
2909 int netdev_tstamp_prequeue __read_mostly = 1;
2910 int netdev_budget __read_mostly = 300;
2911 int weight_p __read_mostly = 64;            /* old backlog weight */
2912 
2913 /* Called with irq disabled */
2914 static inline void ____napi_schedule(struct softnet_data *sd,
2915 				     struct napi_struct *napi)
2916 {
2917 	list_add_tail(&napi->poll_list, &sd->poll_list);
2918 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2919 }
2920 
2921 #ifdef CONFIG_RPS
2922 
2923 /* One global table that all flow-based protocols share. */
2924 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2925 EXPORT_SYMBOL(rps_sock_flow_table);
2926 
2927 struct static_key rps_needed __read_mostly;
2928 
2929 static struct rps_dev_flow *
2930 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2931 	    struct rps_dev_flow *rflow, u16 next_cpu)
2932 {
2933 	if (next_cpu != RPS_NO_CPU) {
2934 #ifdef CONFIG_RFS_ACCEL
2935 		struct netdev_rx_queue *rxqueue;
2936 		struct rps_dev_flow_table *flow_table;
2937 		struct rps_dev_flow *old_rflow;
2938 		u32 flow_id;
2939 		u16 rxq_index;
2940 		int rc;
2941 
2942 		/* Should we steer this flow to a different hardware queue? */
2943 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2944 		    !(dev->features & NETIF_F_NTUPLE))
2945 			goto out;
2946 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2947 		if (rxq_index == skb_get_rx_queue(skb))
2948 			goto out;
2949 
2950 		rxqueue = dev->_rx + rxq_index;
2951 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
2952 		if (!flow_table)
2953 			goto out;
2954 		flow_id = skb_get_hash(skb) & flow_table->mask;
2955 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2956 							rxq_index, flow_id);
2957 		if (rc < 0)
2958 			goto out;
2959 		old_rflow = rflow;
2960 		rflow = &flow_table->flows[flow_id];
2961 		rflow->filter = rc;
2962 		if (old_rflow->filter == rflow->filter)
2963 			old_rflow->filter = RPS_NO_FILTER;
2964 	out:
2965 #endif
2966 		rflow->last_qtail =
2967 			per_cpu(softnet_data, next_cpu).input_queue_head;
2968 	}
2969 
2970 	rflow->cpu = next_cpu;
2971 	return rflow;
2972 }
2973 
2974 /*
2975  * get_rps_cpu is called from netif_receive_skb and returns the target
2976  * CPU from the RPS map of the receiving queue for a given skb.
2977  * rcu_read_lock must be held on entry.
2978  */
2979 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2980 		       struct rps_dev_flow **rflowp)
2981 {
2982 	struct netdev_rx_queue *rxqueue;
2983 	struct rps_map *map;
2984 	struct rps_dev_flow_table *flow_table;
2985 	struct rps_sock_flow_table *sock_flow_table;
2986 	int cpu = -1;
2987 	u16 tcpu;
2988 	u32 hash;
2989 
2990 	if (skb_rx_queue_recorded(skb)) {
2991 		u16 index = skb_get_rx_queue(skb);
2992 		if (unlikely(index >= dev->real_num_rx_queues)) {
2993 			WARN_ONCE(dev->real_num_rx_queues > 1,
2994 				  "%s received packet on queue %u, but number "
2995 				  "of RX queues is %u\n",
2996 				  dev->name, index, dev->real_num_rx_queues);
2997 			goto done;
2998 		}
2999 		rxqueue = dev->_rx + index;
3000 	} else
3001 		rxqueue = dev->_rx;
3002 
3003 	map = rcu_dereference(rxqueue->rps_map);
3004 	if (map) {
3005 		if (map->len == 1 &&
3006 		    !rcu_access_pointer(rxqueue->rps_flow_table)) {
3007 			tcpu = map->cpus[0];
3008 			if (cpu_online(tcpu))
3009 				cpu = tcpu;
3010 			goto done;
3011 		}
3012 	} else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
3013 		goto done;
3014 	}
3015 
3016 	skb_reset_network_header(skb);
3017 	hash = skb_get_hash(skb);
3018 	if (!hash)
3019 		goto done;
3020 
3021 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3022 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3023 	if (flow_table && sock_flow_table) {
3024 		u16 next_cpu;
3025 		struct rps_dev_flow *rflow;
3026 
3027 		rflow = &flow_table->flows[hash & flow_table->mask];
3028 		tcpu = rflow->cpu;
3029 
3030 		next_cpu = sock_flow_table->ents[hash & sock_flow_table->mask];
3031 
3032 		/*
3033 		 * If the desired CPU (where last recvmsg was done) is
3034 		 * different from current CPU (one in the rx-queue flow
3035 		 * table entry), switch if one of the following holds:
3036 		 *   - Current CPU is unset (equal to RPS_NO_CPU).
3037 		 *   - Current CPU is offline.
3038 		 *   - The current CPU's queue tail has advanced beyond the
3039 		 *     last packet that was enqueued using this table entry.
3040 		 *     This guarantees that all previous packets for the flow
3041 		 *     have been dequeued, thus preserving in order delivery.
3042 		 */
3043 		if (unlikely(tcpu != next_cpu) &&
3044 		    (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3045 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3046 		      rflow->last_qtail)) >= 0)) {
3047 			tcpu = next_cpu;
3048 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3049 		}
3050 
3051 		if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3052 			*rflowp = rflow;
3053 			cpu = tcpu;
3054 			goto done;
3055 		}
3056 	}
3057 
3058 	if (map) {
3059 		tcpu = map->cpus[((u64) hash * map->len) >> 32];
3060 
3061 		if (cpu_online(tcpu)) {
3062 			cpu = tcpu;
3063 			goto done;
3064 		}
3065 	}
3066 
3067 done:
3068 	return cpu;
3069 }
3070 
3071 #ifdef CONFIG_RFS_ACCEL
3072 
3073 /**
3074  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3075  * @dev: Device on which the filter was set
3076  * @rxq_index: RX queue index
3077  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3078  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3079  *
3080  * Drivers that implement ndo_rx_flow_steer() should periodically call
3081  * this function for each installed filter and remove the filters for
3082  * which it returns %true.
3083  */
3084 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3085 			 u32 flow_id, u16 filter_id)
3086 {
3087 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3088 	struct rps_dev_flow_table *flow_table;
3089 	struct rps_dev_flow *rflow;
3090 	bool expire = true;
3091 	int cpu;
3092 
3093 	rcu_read_lock();
3094 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3095 	if (flow_table && flow_id <= flow_table->mask) {
3096 		rflow = &flow_table->flows[flow_id];
3097 		cpu = ACCESS_ONCE(rflow->cpu);
3098 		if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3099 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3100 			   rflow->last_qtail) <
3101 		     (int)(10 * flow_table->mask)))
3102 			expire = false;
3103 	}
3104 	rcu_read_unlock();
3105 	return expire;
3106 }
3107 EXPORT_SYMBOL(rps_may_expire_flow);
3108 
3109 #endif /* CONFIG_RFS_ACCEL */
3110 
3111 /* Called from hardirq (IPI) context */
3112 static void rps_trigger_softirq(void *data)
3113 {
3114 	struct softnet_data *sd = data;
3115 
3116 	____napi_schedule(sd, &sd->backlog);
3117 	sd->received_rps++;
3118 }
3119 
3120 #endif /* CONFIG_RPS */
3121 
3122 /*
3123  * Check if this softnet_data structure is another cpu one
3124  * If yes, queue it to our IPI list and return 1
3125  * If no, return 0
3126  */
3127 static int rps_ipi_queued(struct softnet_data *sd)
3128 {
3129 #ifdef CONFIG_RPS
3130 	struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3131 
3132 	if (sd != mysd) {
3133 		sd->rps_ipi_next = mysd->rps_ipi_list;
3134 		mysd->rps_ipi_list = sd;
3135 
3136 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3137 		return 1;
3138 	}
3139 #endif /* CONFIG_RPS */
3140 	return 0;
3141 }
3142 
3143 #ifdef CONFIG_NET_FLOW_LIMIT
3144 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3145 #endif
3146 
3147 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3148 {
3149 #ifdef CONFIG_NET_FLOW_LIMIT
3150 	struct sd_flow_limit *fl;
3151 	struct softnet_data *sd;
3152 	unsigned int old_flow, new_flow;
3153 
3154 	if (qlen < (netdev_max_backlog >> 1))
3155 		return false;
3156 
3157 	sd = &__get_cpu_var(softnet_data);
3158 
3159 	rcu_read_lock();
3160 	fl = rcu_dereference(sd->flow_limit);
3161 	if (fl) {
3162 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3163 		old_flow = fl->history[fl->history_head];
3164 		fl->history[fl->history_head] = new_flow;
3165 
3166 		fl->history_head++;
3167 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3168 
3169 		if (likely(fl->buckets[old_flow]))
3170 			fl->buckets[old_flow]--;
3171 
3172 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3173 			fl->count++;
3174 			rcu_read_unlock();
3175 			return true;
3176 		}
3177 	}
3178 	rcu_read_unlock();
3179 #endif
3180 	return false;
3181 }
3182 
3183 /*
3184  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3185  * queue (may be a remote CPU queue).
3186  */
3187 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3188 			      unsigned int *qtail)
3189 {
3190 	struct softnet_data *sd;
3191 	unsigned long flags;
3192 	unsigned int qlen;
3193 
3194 	sd = &per_cpu(softnet_data, cpu);
3195 
3196 	local_irq_save(flags);
3197 
3198 	rps_lock(sd);
3199 	qlen = skb_queue_len(&sd->input_pkt_queue);
3200 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3201 		if (skb_queue_len(&sd->input_pkt_queue)) {
3202 enqueue:
3203 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3204 			input_queue_tail_incr_save(sd, qtail);
3205 			rps_unlock(sd);
3206 			local_irq_restore(flags);
3207 			return NET_RX_SUCCESS;
3208 		}
3209 
3210 		/* Schedule NAPI for backlog device
3211 		 * We can use non atomic operation since we own the queue lock
3212 		 */
3213 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3214 			if (!rps_ipi_queued(sd))
3215 				____napi_schedule(sd, &sd->backlog);
3216 		}
3217 		goto enqueue;
3218 	}
3219 
3220 	sd->dropped++;
3221 	rps_unlock(sd);
3222 
3223 	local_irq_restore(flags);
3224 
3225 	atomic_long_inc(&skb->dev->rx_dropped);
3226 	kfree_skb(skb);
3227 	return NET_RX_DROP;
3228 }
3229 
3230 static int netif_rx_internal(struct sk_buff *skb)
3231 {
3232 	int ret;
3233 
3234 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3235 
3236 	trace_netif_rx(skb);
3237 #ifdef CONFIG_RPS
3238 	if (static_key_false(&rps_needed)) {
3239 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3240 		int cpu;
3241 
3242 		preempt_disable();
3243 		rcu_read_lock();
3244 
3245 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3246 		if (cpu < 0)
3247 			cpu = smp_processor_id();
3248 
3249 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3250 
3251 		rcu_read_unlock();
3252 		preempt_enable();
3253 	} else
3254 #endif
3255 	{
3256 		unsigned int qtail;
3257 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3258 		put_cpu();
3259 	}
3260 	return ret;
3261 }
3262 
3263 /**
3264  *	netif_rx	-	post buffer to the network code
3265  *	@skb: buffer to post
3266  *
3267  *	This function receives a packet from a device driver and queues it for
3268  *	the upper (protocol) levels to process.  It always succeeds. The buffer
3269  *	may be dropped during processing for congestion control or by the
3270  *	protocol layers.
3271  *
3272  *	return values:
3273  *	NET_RX_SUCCESS	(no congestion)
3274  *	NET_RX_DROP     (packet was dropped)
3275  *
3276  */
3277 
3278 int netif_rx(struct sk_buff *skb)
3279 {
3280 	trace_netif_rx_entry(skb);
3281 
3282 	return netif_rx_internal(skb);
3283 }
3284 EXPORT_SYMBOL(netif_rx);
3285 
3286 int netif_rx_ni(struct sk_buff *skb)
3287 {
3288 	int err;
3289 
3290 	trace_netif_rx_ni_entry(skb);
3291 
3292 	preempt_disable();
3293 	err = netif_rx_internal(skb);
3294 	if (local_softirq_pending())
3295 		do_softirq();
3296 	preempt_enable();
3297 
3298 	return err;
3299 }
3300 EXPORT_SYMBOL(netif_rx_ni);
3301 
3302 static void net_tx_action(struct softirq_action *h)
3303 {
3304 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3305 
3306 	if (sd->completion_queue) {
3307 		struct sk_buff *clist;
3308 
3309 		local_irq_disable();
3310 		clist = sd->completion_queue;
3311 		sd->completion_queue = NULL;
3312 		local_irq_enable();
3313 
3314 		while (clist) {
3315 			struct sk_buff *skb = clist;
3316 			clist = clist->next;
3317 
3318 			WARN_ON(atomic_read(&skb->users));
3319 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3320 				trace_consume_skb(skb);
3321 			else
3322 				trace_kfree_skb(skb, net_tx_action);
3323 			__kfree_skb(skb);
3324 		}
3325 	}
3326 
3327 	if (sd->output_queue) {
3328 		struct Qdisc *head;
3329 
3330 		local_irq_disable();
3331 		head = sd->output_queue;
3332 		sd->output_queue = NULL;
3333 		sd->output_queue_tailp = &sd->output_queue;
3334 		local_irq_enable();
3335 
3336 		while (head) {
3337 			struct Qdisc *q = head;
3338 			spinlock_t *root_lock;
3339 
3340 			head = head->next_sched;
3341 
3342 			root_lock = qdisc_lock(q);
3343 			if (spin_trylock(root_lock)) {
3344 				smp_mb__before_atomic();
3345 				clear_bit(__QDISC_STATE_SCHED,
3346 					  &q->state);
3347 				qdisc_run(q);
3348 				spin_unlock(root_lock);
3349 			} else {
3350 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
3351 					      &q->state)) {
3352 					__netif_reschedule(q);
3353 				} else {
3354 					smp_mb__before_atomic();
3355 					clear_bit(__QDISC_STATE_SCHED,
3356 						  &q->state);
3357 				}
3358 			}
3359 		}
3360 	}
3361 }
3362 
3363 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3364     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3365 /* This hook is defined here for ATM LANE */
3366 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3367 			     unsigned char *addr) __read_mostly;
3368 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3369 #endif
3370 
3371 #ifdef CONFIG_NET_CLS_ACT
3372 /* TODO: Maybe we should just force sch_ingress to be compiled in
3373  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3374  * a compare and 2 stores extra right now if we dont have it on
3375  * but have CONFIG_NET_CLS_ACT
3376  * NOTE: This doesn't stop any functionality; if you dont have
3377  * the ingress scheduler, you just can't add policies on ingress.
3378  *
3379  */
3380 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3381 {
3382 	struct net_device *dev = skb->dev;
3383 	u32 ttl = G_TC_RTTL(skb->tc_verd);
3384 	int result = TC_ACT_OK;
3385 	struct Qdisc *q;
3386 
3387 	if (unlikely(MAX_RED_LOOP < ttl++)) {
3388 		net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3389 				     skb->skb_iif, dev->ifindex);
3390 		return TC_ACT_SHOT;
3391 	}
3392 
3393 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3394 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3395 
3396 	q = rxq->qdisc;
3397 	if (q != &noop_qdisc) {
3398 		spin_lock(qdisc_lock(q));
3399 		if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3400 			result = qdisc_enqueue_root(skb, q);
3401 		spin_unlock(qdisc_lock(q));
3402 	}
3403 
3404 	return result;
3405 }
3406 
3407 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3408 					 struct packet_type **pt_prev,
3409 					 int *ret, struct net_device *orig_dev)
3410 {
3411 	struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3412 
3413 	if (!rxq || rxq->qdisc == &noop_qdisc)
3414 		goto out;
3415 
3416 	if (*pt_prev) {
3417 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3418 		*pt_prev = NULL;
3419 	}
3420 
3421 	switch (ing_filter(skb, rxq)) {
3422 	case TC_ACT_SHOT:
3423 	case TC_ACT_STOLEN:
3424 		kfree_skb(skb);
3425 		return NULL;
3426 	}
3427 
3428 out:
3429 	skb->tc_verd = 0;
3430 	return skb;
3431 }
3432 #endif
3433 
3434 /**
3435  *	netdev_rx_handler_register - register receive handler
3436  *	@dev: device to register a handler for
3437  *	@rx_handler: receive handler to register
3438  *	@rx_handler_data: data pointer that is used by rx handler
3439  *
3440  *	Register a receive handler for a device. This handler will then be
3441  *	called from __netif_receive_skb. A negative errno code is returned
3442  *	on a failure.
3443  *
3444  *	The caller must hold the rtnl_mutex.
3445  *
3446  *	For a general description of rx_handler, see enum rx_handler_result.
3447  */
3448 int netdev_rx_handler_register(struct net_device *dev,
3449 			       rx_handler_func_t *rx_handler,
3450 			       void *rx_handler_data)
3451 {
3452 	ASSERT_RTNL();
3453 
3454 	if (dev->rx_handler)
3455 		return -EBUSY;
3456 
3457 	/* Note: rx_handler_data must be set before rx_handler */
3458 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3459 	rcu_assign_pointer(dev->rx_handler, rx_handler);
3460 
3461 	return 0;
3462 }
3463 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3464 
3465 /**
3466  *	netdev_rx_handler_unregister - unregister receive handler
3467  *	@dev: device to unregister a handler from
3468  *
3469  *	Unregister a receive handler from a device.
3470  *
3471  *	The caller must hold the rtnl_mutex.
3472  */
3473 void netdev_rx_handler_unregister(struct net_device *dev)
3474 {
3475 
3476 	ASSERT_RTNL();
3477 	RCU_INIT_POINTER(dev->rx_handler, NULL);
3478 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3479 	 * section has a guarantee to see a non NULL rx_handler_data
3480 	 * as well.
3481 	 */
3482 	synchronize_net();
3483 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3484 }
3485 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3486 
3487 /*
3488  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3489  * the special handling of PFMEMALLOC skbs.
3490  */
3491 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3492 {
3493 	switch (skb->protocol) {
3494 	case htons(ETH_P_ARP):
3495 	case htons(ETH_P_IP):
3496 	case htons(ETH_P_IPV6):
3497 	case htons(ETH_P_8021Q):
3498 	case htons(ETH_P_8021AD):
3499 		return true;
3500 	default:
3501 		return false;
3502 	}
3503 }
3504 
3505 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3506 {
3507 	struct packet_type *ptype, *pt_prev;
3508 	rx_handler_func_t *rx_handler;
3509 	struct net_device *orig_dev;
3510 	struct net_device *null_or_dev;
3511 	bool deliver_exact = false;
3512 	int ret = NET_RX_DROP;
3513 	__be16 type;
3514 
3515 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
3516 
3517 	trace_netif_receive_skb(skb);
3518 
3519 	orig_dev = skb->dev;
3520 
3521 	skb_reset_network_header(skb);
3522 	if (!skb_transport_header_was_set(skb))
3523 		skb_reset_transport_header(skb);
3524 	skb_reset_mac_len(skb);
3525 
3526 	pt_prev = NULL;
3527 
3528 	rcu_read_lock();
3529 
3530 another_round:
3531 	skb->skb_iif = skb->dev->ifindex;
3532 
3533 	__this_cpu_inc(softnet_data.processed);
3534 
3535 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3536 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3537 		skb = vlan_untag(skb);
3538 		if (unlikely(!skb))
3539 			goto unlock;
3540 	}
3541 
3542 #ifdef CONFIG_NET_CLS_ACT
3543 	if (skb->tc_verd & TC_NCLS) {
3544 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3545 		goto ncls;
3546 	}
3547 #endif
3548 
3549 	if (pfmemalloc)
3550 		goto skip_taps;
3551 
3552 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
3553 		if (!ptype->dev || ptype->dev == skb->dev) {
3554 			if (pt_prev)
3555 				ret = deliver_skb(skb, pt_prev, orig_dev);
3556 			pt_prev = ptype;
3557 		}
3558 	}
3559 
3560 skip_taps:
3561 #ifdef CONFIG_NET_CLS_ACT
3562 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3563 	if (!skb)
3564 		goto unlock;
3565 ncls:
3566 #endif
3567 
3568 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3569 		goto drop;
3570 
3571 	if (vlan_tx_tag_present(skb)) {
3572 		if (pt_prev) {
3573 			ret = deliver_skb(skb, pt_prev, orig_dev);
3574 			pt_prev = NULL;
3575 		}
3576 		if (vlan_do_receive(&skb))
3577 			goto another_round;
3578 		else if (unlikely(!skb))
3579 			goto unlock;
3580 	}
3581 
3582 	rx_handler = rcu_dereference(skb->dev->rx_handler);
3583 	if (rx_handler) {
3584 		if (pt_prev) {
3585 			ret = deliver_skb(skb, pt_prev, orig_dev);
3586 			pt_prev = NULL;
3587 		}
3588 		switch (rx_handler(&skb)) {
3589 		case RX_HANDLER_CONSUMED:
3590 			ret = NET_RX_SUCCESS;
3591 			goto unlock;
3592 		case RX_HANDLER_ANOTHER:
3593 			goto another_round;
3594 		case RX_HANDLER_EXACT:
3595 			deliver_exact = true;
3596 		case RX_HANDLER_PASS:
3597 			break;
3598 		default:
3599 			BUG();
3600 		}
3601 	}
3602 
3603 	if (unlikely(vlan_tx_tag_present(skb))) {
3604 		if (vlan_tx_tag_get_id(skb))
3605 			skb->pkt_type = PACKET_OTHERHOST;
3606 		/* Note: we might in the future use prio bits
3607 		 * and set skb->priority like in vlan_do_receive()
3608 		 * For the time being, just ignore Priority Code Point
3609 		 */
3610 		skb->vlan_tci = 0;
3611 	}
3612 
3613 	/* deliver only exact match when indicated */
3614 	null_or_dev = deliver_exact ? skb->dev : NULL;
3615 
3616 	type = skb->protocol;
3617 	list_for_each_entry_rcu(ptype,
3618 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3619 		if (ptype->type == type &&
3620 		    (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3621 		     ptype->dev == orig_dev)) {
3622 			if (pt_prev)
3623 				ret = deliver_skb(skb, pt_prev, orig_dev);
3624 			pt_prev = ptype;
3625 		}
3626 	}
3627 
3628 	if (pt_prev) {
3629 		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3630 			goto drop;
3631 		else
3632 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3633 	} else {
3634 drop:
3635 		atomic_long_inc(&skb->dev->rx_dropped);
3636 		kfree_skb(skb);
3637 		/* Jamal, now you will not able to escape explaining
3638 		 * me how you were going to use this. :-)
3639 		 */
3640 		ret = NET_RX_DROP;
3641 	}
3642 
3643 unlock:
3644 	rcu_read_unlock();
3645 	return ret;
3646 }
3647 
3648 static int __netif_receive_skb(struct sk_buff *skb)
3649 {
3650 	int ret;
3651 
3652 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3653 		unsigned long pflags = current->flags;
3654 
3655 		/*
3656 		 * PFMEMALLOC skbs are special, they should
3657 		 * - be delivered to SOCK_MEMALLOC sockets only
3658 		 * - stay away from userspace
3659 		 * - have bounded memory usage
3660 		 *
3661 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
3662 		 * context down to all allocation sites.
3663 		 */
3664 		current->flags |= PF_MEMALLOC;
3665 		ret = __netif_receive_skb_core(skb, true);
3666 		tsk_restore_flags(current, pflags, PF_MEMALLOC);
3667 	} else
3668 		ret = __netif_receive_skb_core(skb, false);
3669 
3670 	return ret;
3671 }
3672 
3673 static int netif_receive_skb_internal(struct sk_buff *skb)
3674 {
3675 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3676 
3677 	if (skb_defer_rx_timestamp(skb))
3678 		return NET_RX_SUCCESS;
3679 
3680 #ifdef CONFIG_RPS
3681 	if (static_key_false(&rps_needed)) {
3682 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3683 		int cpu, ret;
3684 
3685 		rcu_read_lock();
3686 
3687 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3688 
3689 		if (cpu >= 0) {
3690 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3691 			rcu_read_unlock();
3692 			return ret;
3693 		}
3694 		rcu_read_unlock();
3695 	}
3696 #endif
3697 	return __netif_receive_skb(skb);
3698 }
3699 
3700 /**
3701  *	netif_receive_skb - process receive buffer from network
3702  *	@skb: buffer to process
3703  *
3704  *	netif_receive_skb() is the main receive data processing function.
3705  *	It always succeeds. The buffer may be dropped during processing
3706  *	for congestion control or by the protocol layers.
3707  *
3708  *	This function may only be called from softirq context and interrupts
3709  *	should be enabled.
3710  *
3711  *	Return values (usually ignored):
3712  *	NET_RX_SUCCESS: no congestion
3713  *	NET_RX_DROP: packet was dropped
3714  */
3715 int netif_receive_skb(struct sk_buff *skb)
3716 {
3717 	trace_netif_receive_skb_entry(skb);
3718 
3719 	return netif_receive_skb_internal(skb);
3720 }
3721 EXPORT_SYMBOL(netif_receive_skb);
3722 
3723 /* Network device is going away, flush any packets still pending
3724  * Called with irqs disabled.
3725  */
3726 static void flush_backlog(void *arg)
3727 {
3728 	struct net_device *dev = arg;
3729 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3730 	struct sk_buff *skb, *tmp;
3731 
3732 	rps_lock(sd);
3733 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3734 		if (skb->dev == dev) {
3735 			__skb_unlink(skb, &sd->input_pkt_queue);
3736 			kfree_skb(skb);
3737 			input_queue_head_incr(sd);
3738 		}
3739 	}
3740 	rps_unlock(sd);
3741 
3742 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3743 		if (skb->dev == dev) {
3744 			__skb_unlink(skb, &sd->process_queue);
3745 			kfree_skb(skb);
3746 			input_queue_head_incr(sd);
3747 		}
3748 	}
3749 }
3750 
3751 static int napi_gro_complete(struct sk_buff *skb)
3752 {
3753 	struct packet_offload *ptype;
3754 	__be16 type = skb->protocol;
3755 	struct list_head *head = &offload_base;
3756 	int err = -ENOENT;
3757 
3758 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3759 
3760 	if (NAPI_GRO_CB(skb)->count == 1) {
3761 		skb_shinfo(skb)->gso_size = 0;
3762 		goto out;
3763 	}
3764 
3765 	rcu_read_lock();
3766 	list_for_each_entry_rcu(ptype, head, list) {
3767 		if (ptype->type != type || !ptype->callbacks.gro_complete)
3768 			continue;
3769 
3770 		err = ptype->callbacks.gro_complete(skb, 0);
3771 		break;
3772 	}
3773 	rcu_read_unlock();
3774 
3775 	if (err) {
3776 		WARN_ON(&ptype->list == head);
3777 		kfree_skb(skb);
3778 		return NET_RX_SUCCESS;
3779 	}
3780 
3781 out:
3782 	return netif_receive_skb_internal(skb);
3783 }
3784 
3785 /* napi->gro_list contains packets ordered by age.
3786  * youngest packets at the head of it.
3787  * Complete skbs in reverse order to reduce latencies.
3788  */
3789 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3790 {
3791 	struct sk_buff *skb, *prev = NULL;
3792 
3793 	/* scan list and build reverse chain */
3794 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3795 		skb->prev = prev;
3796 		prev = skb;
3797 	}
3798 
3799 	for (skb = prev; skb; skb = prev) {
3800 		skb->next = NULL;
3801 
3802 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3803 			return;
3804 
3805 		prev = skb->prev;
3806 		napi_gro_complete(skb);
3807 		napi->gro_count--;
3808 	}
3809 
3810 	napi->gro_list = NULL;
3811 }
3812 EXPORT_SYMBOL(napi_gro_flush);
3813 
3814 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3815 {
3816 	struct sk_buff *p;
3817 	unsigned int maclen = skb->dev->hard_header_len;
3818 	u32 hash = skb_get_hash_raw(skb);
3819 
3820 	for (p = napi->gro_list; p; p = p->next) {
3821 		unsigned long diffs;
3822 
3823 		NAPI_GRO_CB(p)->flush = 0;
3824 
3825 		if (hash != skb_get_hash_raw(p)) {
3826 			NAPI_GRO_CB(p)->same_flow = 0;
3827 			continue;
3828 		}
3829 
3830 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3831 		diffs |= p->vlan_tci ^ skb->vlan_tci;
3832 		if (maclen == ETH_HLEN)
3833 			diffs |= compare_ether_header(skb_mac_header(p),
3834 						      skb_mac_header(skb));
3835 		else if (!diffs)
3836 			diffs = memcmp(skb_mac_header(p),
3837 				       skb_mac_header(skb),
3838 				       maclen);
3839 		NAPI_GRO_CB(p)->same_flow = !diffs;
3840 	}
3841 }
3842 
3843 static void skb_gro_reset_offset(struct sk_buff *skb)
3844 {
3845 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
3846 	const skb_frag_t *frag0 = &pinfo->frags[0];
3847 
3848 	NAPI_GRO_CB(skb)->data_offset = 0;
3849 	NAPI_GRO_CB(skb)->frag0 = NULL;
3850 	NAPI_GRO_CB(skb)->frag0_len = 0;
3851 
3852 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3853 	    pinfo->nr_frags &&
3854 	    !PageHighMem(skb_frag_page(frag0))) {
3855 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3856 		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3857 	}
3858 }
3859 
3860 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
3861 {
3862 	struct skb_shared_info *pinfo = skb_shinfo(skb);
3863 
3864 	BUG_ON(skb->end - skb->tail < grow);
3865 
3866 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3867 
3868 	skb->data_len -= grow;
3869 	skb->tail += grow;
3870 
3871 	pinfo->frags[0].page_offset += grow;
3872 	skb_frag_size_sub(&pinfo->frags[0], grow);
3873 
3874 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
3875 		skb_frag_unref(skb, 0);
3876 		memmove(pinfo->frags, pinfo->frags + 1,
3877 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
3878 	}
3879 }
3880 
3881 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3882 {
3883 	struct sk_buff **pp = NULL;
3884 	struct packet_offload *ptype;
3885 	__be16 type = skb->protocol;
3886 	struct list_head *head = &offload_base;
3887 	int same_flow;
3888 	enum gro_result ret;
3889 	int grow;
3890 
3891 	if (!(skb->dev->features & NETIF_F_GRO))
3892 		goto normal;
3893 
3894 	if (skb_is_gso(skb) || skb_has_frag_list(skb))
3895 		goto normal;
3896 
3897 	gro_list_prepare(napi, skb);
3898 	NAPI_GRO_CB(skb)->csum = skb->csum; /* Needed for CHECKSUM_COMPLETE */
3899 
3900 	rcu_read_lock();
3901 	list_for_each_entry_rcu(ptype, head, list) {
3902 		if (ptype->type != type || !ptype->callbacks.gro_receive)
3903 			continue;
3904 
3905 		skb_set_network_header(skb, skb_gro_offset(skb));
3906 		skb_reset_mac_len(skb);
3907 		NAPI_GRO_CB(skb)->same_flow = 0;
3908 		NAPI_GRO_CB(skb)->flush = 0;
3909 		NAPI_GRO_CB(skb)->free = 0;
3910 		NAPI_GRO_CB(skb)->udp_mark = 0;
3911 
3912 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3913 		break;
3914 	}
3915 	rcu_read_unlock();
3916 
3917 	if (&ptype->list == head)
3918 		goto normal;
3919 
3920 	same_flow = NAPI_GRO_CB(skb)->same_flow;
3921 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3922 
3923 	if (pp) {
3924 		struct sk_buff *nskb = *pp;
3925 
3926 		*pp = nskb->next;
3927 		nskb->next = NULL;
3928 		napi_gro_complete(nskb);
3929 		napi->gro_count--;
3930 	}
3931 
3932 	if (same_flow)
3933 		goto ok;
3934 
3935 	if (NAPI_GRO_CB(skb)->flush)
3936 		goto normal;
3937 
3938 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
3939 		struct sk_buff *nskb = napi->gro_list;
3940 
3941 		/* locate the end of the list to select the 'oldest' flow */
3942 		while (nskb->next) {
3943 			pp = &nskb->next;
3944 			nskb = *pp;
3945 		}
3946 		*pp = NULL;
3947 		nskb->next = NULL;
3948 		napi_gro_complete(nskb);
3949 	} else {
3950 		napi->gro_count++;
3951 	}
3952 	NAPI_GRO_CB(skb)->count = 1;
3953 	NAPI_GRO_CB(skb)->age = jiffies;
3954 	NAPI_GRO_CB(skb)->last = skb;
3955 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3956 	skb->next = napi->gro_list;
3957 	napi->gro_list = skb;
3958 	ret = GRO_HELD;
3959 
3960 pull:
3961 	grow = skb_gro_offset(skb) - skb_headlen(skb);
3962 	if (grow > 0)
3963 		gro_pull_from_frag0(skb, grow);
3964 ok:
3965 	return ret;
3966 
3967 normal:
3968 	ret = GRO_NORMAL;
3969 	goto pull;
3970 }
3971 
3972 struct packet_offload *gro_find_receive_by_type(__be16 type)
3973 {
3974 	struct list_head *offload_head = &offload_base;
3975 	struct packet_offload *ptype;
3976 
3977 	list_for_each_entry_rcu(ptype, offload_head, list) {
3978 		if (ptype->type != type || !ptype->callbacks.gro_receive)
3979 			continue;
3980 		return ptype;
3981 	}
3982 	return NULL;
3983 }
3984 EXPORT_SYMBOL(gro_find_receive_by_type);
3985 
3986 struct packet_offload *gro_find_complete_by_type(__be16 type)
3987 {
3988 	struct list_head *offload_head = &offload_base;
3989 	struct packet_offload *ptype;
3990 
3991 	list_for_each_entry_rcu(ptype, offload_head, list) {
3992 		if (ptype->type != type || !ptype->callbacks.gro_complete)
3993 			continue;
3994 		return ptype;
3995 	}
3996 	return NULL;
3997 }
3998 EXPORT_SYMBOL(gro_find_complete_by_type);
3999 
4000 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4001 {
4002 	switch (ret) {
4003 	case GRO_NORMAL:
4004 		if (netif_receive_skb_internal(skb))
4005 			ret = GRO_DROP;
4006 		break;
4007 
4008 	case GRO_DROP:
4009 		kfree_skb(skb);
4010 		break;
4011 
4012 	case GRO_MERGED_FREE:
4013 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4014 			kmem_cache_free(skbuff_head_cache, skb);
4015 		else
4016 			__kfree_skb(skb);
4017 		break;
4018 
4019 	case GRO_HELD:
4020 	case GRO_MERGED:
4021 		break;
4022 	}
4023 
4024 	return ret;
4025 }
4026 
4027 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4028 {
4029 	trace_napi_gro_receive_entry(skb);
4030 
4031 	skb_gro_reset_offset(skb);
4032 
4033 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4034 }
4035 EXPORT_SYMBOL(napi_gro_receive);
4036 
4037 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4038 {
4039 	__skb_pull(skb, skb_headlen(skb));
4040 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
4041 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4042 	skb->vlan_tci = 0;
4043 	skb->dev = napi->dev;
4044 	skb->skb_iif = 0;
4045 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4046 
4047 	napi->skb = skb;
4048 }
4049 
4050 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4051 {
4052 	struct sk_buff *skb = napi->skb;
4053 
4054 	if (!skb) {
4055 		skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
4056 		napi->skb = skb;
4057 	}
4058 	return skb;
4059 }
4060 EXPORT_SYMBOL(napi_get_frags);
4061 
4062 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4063 				      struct sk_buff *skb,
4064 				      gro_result_t ret)
4065 {
4066 	switch (ret) {
4067 	case GRO_NORMAL:
4068 	case GRO_HELD:
4069 		__skb_push(skb, ETH_HLEN);
4070 		skb->protocol = eth_type_trans(skb, skb->dev);
4071 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4072 			ret = GRO_DROP;
4073 		break;
4074 
4075 	case GRO_DROP:
4076 	case GRO_MERGED_FREE:
4077 		napi_reuse_skb(napi, skb);
4078 		break;
4079 
4080 	case GRO_MERGED:
4081 		break;
4082 	}
4083 
4084 	return ret;
4085 }
4086 
4087 /* Upper GRO stack assumes network header starts at gro_offset=0
4088  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4089  * We copy ethernet header into skb->data to have a common layout.
4090  */
4091 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4092 {
4093 	struct sk_buff *skb = napi->skb;
4094 	const struct ethhdr *eth;
4095 	unsigned int hlen = sizeof(*eth);
4096 
4097 	napi->skb = NULL;
4098 
4099 	skb_reset_mac_header(skb);
4100 	skb_gro_reset_offset(skb);
4101 
4102 	eth = skb_gro_header_fast(skb, 0);
4103 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
4104 		eth = skb_gro_header_slow(skb, hlen, 0);
4105 		if (unlikely(!eth)) {
4106 			napi_reuse_skb(napi, skb);
4107 			return NULL;
4108 		}
4109 	} else {
4110 		gro_pull_from_frag0(skb, hlen);
4111 		NAPI_GRO_CB(skb)->frag0 += hlen;
4112 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
4113 	}
4114 	__skb_pull(skb, hlen);
4115 
4116 	/*
4117 	 * This works because the only protocols we care about don't require
4118 	 * special handling.
4119 	 * We'll fix it up properly in napi_frags_finish()
4120 	 */
4121 	skb->protocol = eth->h_proto;
4122 
4123 	return skb;
4124 }
4125 
4126 gro_result_t napi_gro_frags(struct napi_struct *napi)
4127 {
4128 	struct sk_buff *skb = napi_frags_skb(napi);
4129 
4130 	if (!skb)
4131 		return GRO_DROP;
4132 
4133 	trace_napi_gro_frags_entry(skb);
4134 
4135 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4136 }
4137 EXPORT_SYMBOL(napi_gro_frags);
4138 
4139 /*
4140  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4141  * Note: called with local irq disabled, but exits with local irq enabled.
4142  */
4143 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4144 {
4145 #ifdef CONFIG_RPS
4146 	struct softnet_data *remsd = sd->rps_ipi_list;
4147 
4148 	if (remsd) {
4149 		sd->rps_ipi_list = NULL;
4150 
4151 		local_irq_enable();
4152 
4153 		/* Send pending IPI's to kick RPS processing on remote cpus. */
4154 		while (remsd) {
4155 			struct softnet_data *next = remsd->rps_ipi_next;
4156 
4157 			if (cpu_online(remsd->cpu))
4158 				smp_call_function_single_async(remsd->cpu,
4159 							   &remsd->csd);
4160 			remsd = next;
4161 		}
4162 	} else
4163 #endif
4164 		local_irq_enable();
4165 }
4166 
4167 static int process_backlog(struct napi_struct *napi, int quota)
4168 {
4169 	int work = 0;
4170 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4171 
4172 #ifdef CONFIG_RPS
4173 	/* Check if we have pending ipi, its better to send them now,
4174 	 * not waiting net_rx_action() end.
4175 	 */
4176 	if (sd->rps_ipi_list) {
4177 		local_irq_disable();
4178 		net_rps_action_and_irq_enable(sd);
4179 	}
4180 #endif
4181 	napi->weight = weight_p;
4182 	local_irq_disable();
4183 	while (work < quota) {
4184 		struct sk_buff *skb;
4185 		unsigned int qlen;
4186 
4187 		while ((skb = __skb_dequeue(&sd->process_queue))) {
4188 			local_irq_enable();
4189 			__netif_receive_skb(skb);
4190 			local_irq_disable();
4191 			input_queue_head_incr(sd);
4192 			if (++work >= quota) {
4193 				local_irq_enable();
4194 				return work;
4195 			}
4196 		}
4197 
4198 		rps_lock(sd);
4199 		qlen = skb_queue_len(&sd->input_pkt_queue);
4200 		if (qlen)
4201 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
4202 						   &sd->process_queue);
4203 
4204 		if (qlen < quota - work) {
4205 			/*
4206 			 * Inline a custom version of __napi_complete().
4207 			 * only current cpu owns and manipulates this napi,
4208 			 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
4209 			 * we can use a plain write instead of clear_bit(),
4210 			 * and we dont need an smp_mb() memory barrier.
4211 			 */
4212 			list_del(&napi->poll_list);
4213 			napi->state = 0;
4214 
4215 			quota = work + qlen;
4216 		}
4217 		rps_unlock(sd);
4218 	}
4219 	local_irq_enable();
4220 
4221 	return work;
4222 }
4223 
4224 /**
4225  * __napi_schedule - schedule for receive
4226  * @n: entry to schedule
4227  *
4228  * The entry's receive function will be scheduled to run
4229  */
4230 void __napi_schedule(struct napi_struct *n)
4231 {
4232 	unsigned long flags;
4233 
4234 	local_irq_save(flags);
4235 	____napi_schedule(&__get_cpu_var(softnet_data), n);
4236 	local_irq_restore(flags);
4237 }
4238 EXPORT_SYMBOL(__napi_schedule);
4239 
4240 void __napi_complete(struct napi_struct *n)
4241 {
4242 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4243 	BUG_ON(n->gro_list);
4244 
4245 	list_del(&n->poll_list);
4246 	smp_mb__before_atomic();
4247 	clear_bit(NAPI_STATE_SCHED, &n->state);
4248 }
4249 EXPORT_SYMBOL(__napi_complete);
4250 
4251 void napi_complete(struct napi_struct *n)
4252 {
4253 	unsigned long flags;
4254 
4255 	/*
4256 	 * don't let napi dequeue from the cpu poll list
4257 	 * just in case its running on a different cpu
4258 	 */
4259 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4260 		return;
4261 
4262 	napi_gro_flush(n, false);
4263 	local_irq_save(flags);
4264 	__napi_complete(n);
4265 	local_irq_restore(flags);
4266 }
4267 EXPORT_SYMBOL(napi_complete);
4268 
4269 /* must be called under rcu_read_lock(), as we dont take a reference */
4270 struct napi_struct *napi_by_id(unsigned int napi_id)
4271 {
4272 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4273 	struct napi_struct *napi;
4274 
4275 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4276 		if (napi->napi_id == napi_id)
4277 			return napi;
4278 
4279 	return NULL;
4280 }
4281 EXPORT_SYMBOL_GPL(napi_by_id);
4282 
4283 void napi_hash_add(struct napi_struct *napi)
4284 {
4285 	if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4286 
4287 		spin_lock(&napi_hash_lock);
4288 
4289 		/* 0 is not a valid id, we also skip an id that is taken
4290 		 * we expect both events to be extremely rare
4291 		 */
4292 		napi->napi_id = 0;
4293 		while (!napi->napi_id) {
4294 			napi->napi_id = ++napi_gen_id;
4295 			if (napi_by_id(napi->napi_id))
4296 				napi->napi_id = 0;
4297 		}
4298 
4299 		hlist_add_head_rcu(&napi->napi_hash_node,
4300 			&napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4301 
4302 		spin_unlock(&napi_hash_lock);
4303 	}
4304 }
4305 EXPORT_SYMBOL_GPL(napi_hash_add);
4306 
4307 /* Warning : caller is responsible to make sure rcu grace period
4308  * is respected before freeing memory containing @napi
4309  */
4310 void napi_hash_del(struct napi_struct *napi)
4311 {
4312 	spin_lock(&napi_hash_lock);
4313 
4314 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4315 		hlist_del_rcu(&napi->napi_hash_node);
4316 
4317 	spin_unlock(&napi_hash_lock);
4318 }
4319 EXPORT_SYMBOL_GPL(napi_hash_del);
4320 
4321 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4322 		    int (*poll)(struct napi_struct *, int), int weight)
4323 {
4324 	INIT_LIST_HEAD(&napi->poll_list);
4325 	napi->gro_count = 0;
4326 	napi->gro_list = NULL;
4327 	napi->skb = NULL;
4328 	napi->poll = poll;
4329 	if (weight > NAPI_POLL_WEIGHT)
4330 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4331 			    weight, dev->name);
4332 	napi->weight = weight;
4333 	list_add(&napi->dev_list, &dev->napi_list);
4334 	napi->dev = dev;
4335 #ifdef CONFIG_NETPOLL
4336 	spin_lock_init(&napi->poll_lock);
4337 	napi->poll_owner = -1;
4338 #endif
4339 	set_bit(NAPI_STATE_SCHED, &napi->state);
4340 }
4341 EXPORT_SYMBOL(netif_napi_add);
4342 
4343 void netif_napi_del(struct napi_struct *napi)
4344 {
4345 	list_del_init(&napi->dev_list);
4346 	napi_free_frags(napi);
4347 
4348 	kfree_skb_list(napi->gro_list);
4349 	napi->gro_list = NULL;
4350 	napi->gro_count = 0;
4351 }
4352 EXPORT_SYMBOL(netif_napi_del);
4353 
4354 static void net_rx_action(struct softirq_action *h)
4355 {
4356 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
4357 	unsigned long time_limit = jiffies + 2;
4358 	int budget = netdev_budget;
4359 	void *have;
4360 
4361 	local_irq_disable();
4362 
4363 	while (!list_empty(&sd->poll_list)) {
4364 		struct napi_struct *n;
4365 		int work, weight;
4366 
4367 		/* If softirq window is exhuasted then punt.
4368 		 * Allow this to run for 2 jiffies since which will allow
4369 		 * an average latency of 1.5/HZ.
4370 		 */
4371 		if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4372 			goto softnet_break;
4373 
4374 		local_irq_enable();
4375 
4376 		/* Even though interrupts have been re-enabled, this
4377 		 * access is safe because interrupts can only add new
4378 		 * entries to the tail of this list, and only ->poll()
4379 		 * calls can remove this head entry from the list.
4380 		 */
4381 		n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4382 
4383 		have = netpoll_poll_lock(n);
4384 
4385 		weight = n->weight;
4386 
4387 		/* This NAPI_STATE_SCHED test is for avoiding a race
4388 		 * with netpoll's poll_napi().  Only the entity which
4389 		 * obtains the lock and sees NAPI_STATE_SCHED set will
4390 		 * actually make the ->poll() call.  Therefore we avoid
4391 		 * accidentally calling ->poll() when NAPI is not scheduled.
4392 		 */
4393 		work = 0;
4394 		if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4395 			work = n->poll(n, weight);
4396 			trace_napi_poll(n);
4397 		}
4398 
4399 		WARN_ON_ONCE(work > weight);
4400 
4401 		budget -= work;
4402 
4403 		local_irq_disable();
4404 
4405 		/* Drivers must not modify the NAPI state if they
4406 		 * consume the entire weight.  In such cases this code
4407 		 * still "owns" the NAPI instance and therefore can
4408 		 * move the instance around on the list at-will.
4409 		 */
4410 		if (unlikely(work == weight)) {
4411 			if (unlikely(napi_disable_pending(n))) {
4412 				local_irq_enable();
4413 				napi_complete(n);
4414 				local_irq_disable();
4415 			} else {
4416 				if (n->gro_list) {
4417 					/* flush too old packets
4418 					 * If HZ < 1000, flush all packets.
4419 					 */
4420 					local_irq_enable();
4421 					napi_gro_flush(n, HZ >= 1000);
4422 					local_irq_disable();
4423 				}
4424 				list_move_tail(&n->poll_list, &sd->poll_list);
4425 			}
4426 		}
4427 
4428 		netpoll_poll_unlock(have);
4429 	}
4430 out:
4431 	net_rps_action_and_irq_enable(sd);
4432 
4433 #ifdef CONFIG_NET_DMA
4434 	/*
4435 	 * There may not be any more sk_buffs coming right now, so push
4436 	 * any pending DMA copies to hardware
4437 	 */
4438 	dma_issue_pending_all();
4439 #endif
4440 
4441 	return;
4442 
4443 softnet_break:
4444 	sd->time_squeeze++;
4445 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4446 	goto out;
4447 }
4448 
4449 struct netdev_adjacent {
4450 	struct net_device *dev;
4451 
4452 	/* upper master flag, there can only be one master device per list */
4453 	bool master;
4454 
4455 	/* counter for the number of times this device was added to us */
4456 	u16 ref_nr;
4457 
4458 	/* private field for the users */
4459 	void *private;
4460 
4461 	struct list_head list;
4462 	struct rcu_head rcu;
4463 };
4464 
4465 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4466 						 struct net_device *adj_dev,
4467 						 struct list_head *adj_list)
4468 {
4469 	struct netdev_adjacent *adj;
4470 
4471 	list_for_each_entry(adj, adj_list, list) {
4472 		if (adj->dev == adj_dev)
4473 			return adj;
4474 	}
4475 	return NULL;
4476 }
4477 
4478 /**
4479  * netdev_has_upper_dev - Check if device is linked to an upper device
4480  * @dev: device
4481  * @upper_dev: upper device to check
4482  *
4483  * Find out if a device is linked to specified upper device and return true
4484  * in case it is. Note that this checks only immediate upper device,
4485  * not through a complete stack of devices. The caller must hold the RTNL lock.
4486  */
4487 bool netdev_has_upper_dev(struct net_device *dev,
4488 			  struct net_device *upper_dev)
4489 {
4490 	ASSERT_RTNL();
4491 
4492 	return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4493 }
4494 EXPORT_SYMBOL(netdev_has_upper_dev);
4495 
4496 /**
4497  * netdev_has_any_upper_dev - Check if device is linked to some device
4498  * @dev: device
4499  *
4500  * Find out if a device is linked to an upper device and return true in case
4501  * it is. The caller must hold the RTNL lock.
4502  */
4503 static bool netdev_has_any_upper_dev(struct net_device *dev)
4504 {
4505 	ASSERT_RTNL();
4506 
4507 	return !list_empty(&dev->all_adj_list.upper);
4508 }
4509 
4510 /**
4511  * netdev_master_upper_dev_get - Get master upper device
4512  * @dev: device
4513  *
4514  * Find a master upper device and return pointer to it or NULL in case
4515  * it's not there. The caller must hold the RTNL lock.
4516  */
4517 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4518 {
4519 	struct netdev_adjacent *upper;
4520 
4521 	ASSERT_RTNL();
4522 
4523 	if (list_empty(&dev->adj_list.upper))
4524 		return NULL;
4525 
4526 	upper = list_first_entry(&dev->adj_list.upper,
4527 				 struct netdev_adjacent, list);
4528 	if (likely(upper->master))
4529 		return upper->dev;
4530 	return NULL;
4531 }
4532 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4533 
4534 void *netdev_adjacent_get_private(struct list_head *adj_list)
4535 {
4536 	struct netdev_adjacent *adj;
4537 
4538 	adj = list_entry(adj_list, struct netdev_adjacent, list);
4539 
4540 	return adj->private;
4541 }
4542 EXPORT_SYMBOL(netdev_adjacent_get_private);
4543 
4544 /**
4545  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4546  * @dev: device
4547  * @iter: list_head ** of the current position
4548  *
4549  * Gets the next device from the dev's upper list, starting from iter
4550  * position. The caller must hold RCU read lock.
4551  */
4552 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4553 						 struct list_head **iter)
4554 {
4555 	struct netdev_adjacent *upper;
4556 
4557 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4558 
4559 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4560 
4561 	if (&upper->list == &dev->adj_list.upper)
4562 		return NULL;
4563 
4564 	*iter = &upper->list;
4565 
4566 	return upper->dev;
4567 }
4568 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4569 
4570 /**
4571  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4572  * @dev: device
4573  * @iter: list_head ** of the current position
4574  *
4575  * Gets the next device from the dev's upper list, starting from iter
4576  * position. The caller must hold RCU read lock.
4577  */
4578 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4579 						     struct list_head **iter)
4580 {
4581 	struct netdev_adjacent *upper;
4582 
4583 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4584 
4585 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4586 
4587 	if (&upper->list == &dev->all_adj_list.upper)
4588 		return NULL;
4589 
4590 	*iter = &upper->list;
4591 
4592 	return upper->dev;
4593 }
4594 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4595 
4596 /**
4597  * netdev_lower_get_next_private - Get the next ->private from the
4598  *				   lower neighbour list
4599  * @dev: device
4600  * @iter: list_head ** of the current position
4601  *
4602  * Gets the next netdev_adjacent->private from the dev's lower neighbour
4603  * list, starting from iter position. The caller must hold either hold the
4604  * RTNL lock or its own locking that guarantees that the neighbour lower
4605  * list will remain unchainged.
4606  */
4607 void *netdev_lower_get_next_private(struct net_device *dev,
4608 				    struct list_head **iter)
4609 {
4610 	struct netdev_adjacent *lower;
4611 
4612 	lower = list_entry(*iter, struct netdev_adjacent, list);
4613 
4614 	if (&lower->list == &dev->adj_list.lower)
4615 		return NULL;
4616 
4617 	*iter = lower->list.next;
4618 
4619 	return lower->private;
4620 }
4621 EXPORT_SYMBOL(netdev_lower_get_next_private);
4622 
4623 /**
4624  * netdev_lower_get_next_private_rcu - Get the next ->private from the
4625  *				       lower neighbour list, RCU
4626  *				       variant
4627  * @dev: device
4628  * @iter: list_head ** of the current position
4629  *
4630  * Gets the next netdev_adjacent->private from the dev's lower neighbour
4631  * list, starting from iter position. The caller must hold RCU read lock.
4632  */
4633 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4634 					struct list_head **iter)
4635 {
4636 	struct netdev_adjacent *lower;
4637 
4638 	WARN_ON_ONCE(!rcu_read_lock_held());
4639 
4640 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4641 
4642 	if (&lower->list == &dev->adj_list.lower)
4643 		return NULL;
4644 
4645 	*iter = &lower->list;
4646 
4647 	return lower->private;
4648 }
4649 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4650 
4651 /**
4652  * netdev_lower_get_next - Get the next device from the lower neighbour
4653  *                         list
4654  * @dev: device
4655  * @iter: list_head ** of the current position
4656  *
4657  * Gets the next netdev_adjacent from the dev's lower neighbour
4658  * list, starting from iter position. The caller must hold RTNL lock or
4659  * its own locking that guarantees that the neighbour lower
4660  * list will remain unchainged.
4661  */
4662 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4663 {
4664 	struct netdev_adjacent *lower;
4665 
4666 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4667 
4668 	if (&lower->list == &dev->adj_list.lower)
4669 		return NULL;
4670 
4671 	*iter = &lower->list;
4672 
4673 	return lower->dev;
4674 }
4675 EXPORT_SYMBOL(netdev_lower_get_next);
4676 
4677 /**
4678  * netdev_lower_get_first_private_rcu - Get the first ->private from the
4679  *				       lower neighbour list, RCU
4680  *				       variant
4681  * @dev: device
4682  *
4683  * Gets the first netdev_adjacent->private from the dev's lower neighbour
4684  * list. The caller must hold RCU read lock.
4685  */
4686 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4687 {
4688 	struct netdev_adjacent *lower;
4689 
4690 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
4691 			struct netdev_adjacent, list);
4692 	if (lower)
4693 		return lower->private;
4694 	return NULL;
4695 }
4696 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4697 
4698 /**
4699  * netdev_master_upper_dev_get_rcu - Get master upper device
4700  * @dev: device
4701  *
4702  * Find a master upper device and return pointer to it or NULL in case
4703  * it's not there. The caller must hold the RCU read lock.
4704  */
4705 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4706 {
4707 	struct netdev_adjacent *upper;
4708 
4709 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
4710 				       struct netdev_adjacent, list);
4711 	if (upper && likely(upper->master))
4712 		return upper->dev;
4713 	return NULL;
4714 }
4715 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4716 
4717 static int netdev_adjacent_sysfs_add(struct net_device *dev,
4718 			      struct net_device *adj_dev,
4719 			      struct list_head *dev_list)
4720 {
4721 	char linkname[IFNAMSIZ+7];
4722 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
4723 		"upper_%s" : "lower_%s", adj_dev->name);
4724 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4725 				 linkname);
4726 }
4727 static void netdev_adjacent_sysfs_del(struct net_device *dev,
4728 			       char *name,
4729 			       struct list_head *dev_list)
4730 {
4731 	char linkname[IFNAMSIZ+7];
4732 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
4733 		"upper_%s" : "lower_%s", name);
4734 	sysfs_remove_link(&(dev->dev.kobj), linkname);
4735 }
4736 
4737 #define netdev_adjacent_is_neigh_list(dev, dev_list) \
4738 		(dev_list == &dev->adj_list.upper || \
4739 		 dev_list == &dev->adj_list.lower)
4740 
4741 static int __netdev_adjacent_dev_insert(struct net_device *dev,
4742 					struct net_device *adj_dev,
4743 					struct list_head *dev_list,
4744 					void *private, bool master)
4745 {
4746 	struct netdev_adjacent *adj;
4747 	int ret;
4748 
4749 	adj = __netdev_find_adj(dev, adj_dev, dev_list);
4750 
4751 	if (adj) {
4752 		adj->ref_nr++;
4753 		return 0;
4754 	}
4755 
4756 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4757 	if (!adj)
4758 		return -ENOMEM;
4759 
4760 	adj->dev = adj_dev;
4761 	adj->master = master;
4762 	adj->ref_nr = 1;
4763 	adj->private = private;
4764 	dev_hold(adj_dev);
4765 
4766 	pr_debug("dev_hold for %s, because of link added from %s to %s\n",
4767 		 adj_dev->name, dev->name, adj_dev->name);
4768 
4769 	if (netdev_adjacent_is_neigh_list(dev, dev_list)) {
4770 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
4771 		if (ret)
4772 			goto free_adj;
4773 	}
4774 
4775 	/* Ensure that master link is always the first item in list. */
4776 	if (master) {
4777 		ret = sysfs_create_link(&(dev->dev.kobj),
4778 					&(adj_dev->dev.kobj), "master");
4779 		if (ret)
4780 			goto remove_symlinks;
4781 
4782 		list_add_rcu(&adj->list, dev_list);
4783 	} else {
4784 		list_add_tail_rcu(&adj->list, dev_list);
4785 	}
4786 
4787 	return 0;
4788 
4789 remove_symlinks:
4790 	if (netdev_adjacent_is_neigh_list(dev, dev_list))
4791 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4792 free_adj:
4793 	kfree(adj);
4794 	dev_put(adj_dev);
4795 
4796 	return ret;
4797 }
4798 
4799 static void __netdev_adjacent_dev_remove(struct net_device *dev,
4800 					 struct net_device *adj_dev,
4801 					 struct list_head *dev_list)
4802 {
4803 	struct netdev_adjacent *adj;
4804 
4805 	adj = __netdev_find_adj(dev, adj_dev, dev_list);
4806 
4807 	if (!adj) {
4808 		pr_err("tried to remove device %s from %s\n",
4809 		       dev->name, adj_dev->name);
4810 		BUG();
4811 	}
4812 
4813 	if (adj->ref_nr > 1) {
4814 		pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
4815 			 adj->ref_nr-1);
4816 		adj->ref_nr--;
4817 		return;
4818 	}
4819 
4820 	if (adj->master)
4821 		sysfs_remove_link(&(dev->dev.kobj), "master");
4822 
4823 	if (netdev_adjacent_is_neigh_list(dev, dev_list))
4824 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4825 
4826 	list_del_rcu(&adj->list);
4827 	pr_debug("dev_put for %s, because link removed from %s to %s\n",
4828 		 adj_dev->name, dev->name, adj_dev->name);
4829 	dev_put(adj_dev);
4830 	kfree_rcu(adj, rcu);
4831 }
4832 
4833 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
4834 					    struct net_device *upper_dev,
4835 					    struct list_head *up_list,
4836 					    struct list_head *down_list,
4837 					    void *private, bool master)
4838 {
4839 	int ret;
4840 
4841 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
4842 					   master);
4843 	if (ret)
4844 		return ret;
4845 
4846 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
4847 					   false);
4848 	if (ret) {
4849 		__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4850 		return ret;
4851 	}
4852 
4853 	return 0;
4854 }
4855 
4856 static int __netdev_adjacent_dev_link(struct net_device *dev,
4857 				      struct net_device *upper_dev)
4858 {
4859 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
4860 						&dev->all_adj_list.upper,
4861 						&upper_dev->all_adj_list.lower,
4862 						NULL, false);
4863 }
4864 
4865 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
4866 					       struct net_device *upper_dev,
4867 					       struct list_head *up_list,
4868 					       struct list_head *down_list)
4869 {
4870 	__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4871 	__netdev_adjacent_dev_remove(upper_dev, dev, down_list);
4872 }
4873 
4874 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
4875 					 struct net_device *upper_dev)
4876 {
4877 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4878 					   &dev->all_adj_list.upper,
4879 					   &upper_dev->all_adj_list.lower);
4880 }
4881 
4882 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
4883 						struct net_device *upper_dev,
4884 						void *private, bool master)
4885 {
4886 	int ret = __netdev_adjacent_dev_link(dev, upper_dev);
4887 
4888 	if (ret)
4889 		return ret;
4890 
4891 	ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
4892 					       &dev->adj_list.upper,
4893 					       &upper_dev->adj_list.lower,
4894 					       private, master);
4895 	if (ret) {
4896 		__netdev_adjacent_dev_unlink(dev, upper_dev);
4897 		return ret;
4898 	}
4899 
4900 	return 0;
4901 }
4902 
4903 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
4904 						   struct net_device *upper_dev)
4905 {
4906 	__netdev_adjacent_dev_unlink(dev, upper_dev);
4907 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4908 					   &dev->adj_list.upper,
4909 					   &upper_dev->adj_list.lower);
4910 }
4911 
4912 static int __netdev_upper_dev_link(struct net_device *dev,
4913 				   struct net_device *upper_dev, bool master,
4914 				   void *private)
4915 {
4916 	struct netdev_adjacent *i, *j, *to_i, *to_j;
4917 	int ret = 0;
4918 
4919 	ASSERT_RTNL();
4920 
4921 	if (dev == upper_dev)
4922 		return -EBUSY;
4923 
4924 	/* To prevent loops, check if dev is not upper device to upper_dev. */
4925 	if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
4926 		return -EBUSY;
4927 
4928 	if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
4929 		return -EEXIST;
4930 
4931 	if (master && netdev_master_upper_dev_get(dev))
4932 		return -EBUSY;
4933 
4934 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
4935 						   master);
4936 	if (ret)
4937 		return ret;
4938 
4939 	/* Now that we linked these devs, make all the upper_dev's
4940 	 * all_adj_list.upper visible to every dev's all_adj_list.lower an
4941 	 * versa, and don't forget the devices itself. All of these
4942 	 * links are non-neighbours.
4943 	 */
4944 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4945 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
4946 			pr_debug("Interlinking %s with %s, non-neighbour\n",
4947 				 i->dev->name, j->dev->name);
4948 			ret = __netdev_adjacent_dev_link(i->dev, j->dev);
4949 			if (ret)
4950 				goto rollback_mesh;
4951 		}
4952 	}
4953 
4954 	/* add dev to every upper_dev's upper device */
4955 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
4956 		pr_debug("linking %s's upper device %s with %s\n",
4957 			 upper_dev->name, i->dev->name, dev->name);
4958 		ret = __netdev_adjacent_dev_link(dev, i->dev);
4959 		if (ret)
4960 			goto rollback_upper_mesh;
4961 	}
4962 
4963 	/* add upper_dev to every dev's lower device */
4964 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4965 		pr_debug("linking %s's lower device %s with %s\n", dev->name,
4966 			 i->dev->name, upper_dev->name);
4967 		ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
4968 		if (ret)
4969 			goto rollback_lower_mesh;
4970 	}
4971 
4972 	call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
4973 	return 0;
4974 
4975 rollback_lower_mesh:
4976 	to_i = i;
4977 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4978 		if (i == to_i)
4979 			break;
4980 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
4981 	}
4982 
4983 	i = NULL;
4984 
4985 rollback_upper_mesh:
4986 	to_i = i;
4987 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
4988 		if (i == to_i)
4989 			break;
4990 		__netdev_adjacent_dev_unlink(dev, i->dev);
4991 	}
4992 
4993 	i = j = NULL;
4994 
4995 rollback_mesh:
4996 	to_i = i;
4997 	to_j = j;
4998 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4999 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5000 			if (i == to_i && j == to_j)
5001 				break;
5002 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5003 		}
5004 		if (i == to_i)
5005 			break;
5006 	}
5007 
5008 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5009 
5010 	return ret;
5011 }
5012 
5013 /**
5014  * netdev_upper_dev_link - Add a link to the upper device
5015  * @dev: device
5016  * @upper_dev: new upper device
5017  *
5018  * Adds a link to device which is upper to this one. The caller must hold
5019  * the RTNL lock. On a failure a negative errno code is returned.
5020  * On success the reference counts are adjusted and the function
5021  * returns zero.
5022  */
5023 int netdev_upper_dev_link(struct net_device *dev,
5024 			  struct net_device *upper_dev)
5025 {
5026 	return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5027 }
5028 EXPORT_SYMBOL(netdev_upper_dev_link);
5029 
5030 /**
5031  * netdev_master_upper_dev_link - Add a master link to the upper device
5032  * @dev: device
5033  * @upper_dev: new upper device
5034  *
5035  * Adds a link to device which is upper to this one. In this case, only
5036  * one master upper device can be linked, although other non-master devices
5037  * might be linked as well. The caller must hold the RTNL lock.
5038  * On a failure a negative errno code is returned. On success the reference
5039  * counts are adjusted and the function returns zero.
5040  */
5041 int netdev_master_upper_dev_link(struct net_device *dev,
5042 				 struct net_device *upper_dev)
5043 {
5044 	return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5045 }
5046 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5047 
5048 int netdev_master_upper_dev_link_private(struct net_device *dev,
5049 					 struct net_device *upper_dev,
5050 					 void *private)
5051 {
5052 	return __netdev_upper_dev_link(dev, upper_dev, true, private);
5053 }
5054 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5055 
5056 /**
5057  * netdev_upper_dev_unlink - Removes a link to upper device
5058  * @dev: device
5059  * @upper_dev: new upper device
5060  *
5061  * Removes a link to device which is upper to this one. The caller must hold
5062  * the RTNL lock.
5063  */
5064 void netdev_upper_dev_unlink(struct net_device *dev,
5065 			     struct net_device *upper_dev)
5066 {
5067 	struct netdev_adjacent *i, *j;
5068 	ASSERT_RTNL();
5069 
5070 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5071 
5072 	/* Here is the tricky part. We must remove all dev's lower
5073 	 * devices from all upper_dev's upper devices and vice
5074 	 * versa, to maintain the graph relationship.
5075 	 */
5076 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5077 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5078 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5079 
5080 	/* remove also the devices itself from lower/upper device
5081 	 * list
5082 	 */
5083 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5084 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
5085 
5086 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5087 		__netdev_adjacent_dev_unlink(dev, i->dev);
5088 
5089 	call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5090 }
5091 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5092 
5093 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5094 {
5095 	struct netdev_adjacent *iter;
5096 
5097 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5098 		netdev_adjacent_sysfs_del(iter->dev, oldname,
5099 					  &iter->dev->adj_list.lower);
5100 		netdev_adjacent_sysfs_add(iter->dev, dev,
5101 					  &iter->dev->adj_list.lower);
5102 	}
5103 
5104 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5105 		netdev_adjacent_sysfs_del(iter->dev, oldname,
5106 					  &iter->dev->adj_list.upper);
5107 		netdev_adjacent_sysfs_add(iter->dev, dev,
5108 					  &iter->dev->adj_list.upper);
5109 	}
5110 }
5111 
5112 void *netdev_lower_dev_get_private(struct net_device *dev,
5113 				   struct net_device *lower_dev)
5114 {
5115 	struct netdev_adjacent *lower;
5116 
5117 	if (!lower_dev)
5118 		return NULL;
5119 	lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5120 	if (!lower)
5121 		return NULL;
5122 
5123 	return lower->private;
5124 }
5125 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5126 
5127 
5128 int dev_get_nest_level(struct net_device *dev,
5129 		       bool (*type_check)(struct net_device *dev))
5130 {
5131 	struct net_device *lower = NULL;
5132 	struct list_head *iter;
5133 	int max_nest = -1;
5134 	int nest;
5135 
5136 	ASSERT_RTNL();
5137 
5138 	netdev_for_each_lower_dev(dev, lower, iter) {
5139 		nest = dev_get_nest_level(lower, type_check);
5140 		if (max_nest < nest)
5141 			max_nest = nest;
5142 	}
5143 
5144 	if (type_check(dev))
5145 		max_nest++;
5146 
5147 	return max_nest;
5148 }
5149 EXPORT_SYMBOL(dev_get_nest_level);
5150 
5151 static void dev_change_rx_flags(struct net_device *dev, int flags)
5152 {
5153 	const struct net_device_ops *ops = dev->netdev_ops;
5154 
5155 	if (ops->ndo_change_rx_flags)
5156 		ops->ndo_change_rx_flags(dev, flags);
5157 }
5158 
5159 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5160 {
5161 	unsigned int old_flags = dev->flags;
5162 	kuid_t uid;
5163 	kgid_t gid;
5164 
5165 	ASSERT_RTNL();
5166 
5167 	dev->flags |= IFF_PROMISC;
5168 	dev->promiscuity += inc;
5169 	if (dev->promiscuity == 0) {
5170 		/*
5171 		 * Avoid overflow.
5172 		 * If inc causes overflow, untouch promisc and return error.
5173 		 */
5174 		if (inc < 0)
5175 			dev->flags &= ~IFF_PROMISC;
5176 		else {
5177 			dev->promiscuity -= inc;
5178 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5179 				dev->name);
5180 			return -EOVERFLOW;
5181 		}
5182 	}
5183 	if (dev->flags != old_flags) {
5184 		pr_info("device %s %s promiscuous mode\n",
5185 			dev->name,
5186 			dev->flags & IFF_PROMISC ? "entered" : "left");
5187 		if (audit_enabled) {
5188 			current_uid_gid(&uid, &gid);
5189 			audit_log(current->audit_context, GFP_ATOMIC,
5190 				AUDIT_ANOM_PROMISCUOUS,
5191 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5192 				dev->name, (dev->flags & IFF_PROMISC),
5193 				(old_flags & IFF_PROMISC),
5194 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
5195 				from_kuid(&init_user_ns, uid),
5196 				from_kgid(&init_user_ns, gid),
5197 				audit_get_sessionid(current));
5198 		}
5199 
5200 		dev_change_rx_flags(dev, IFF_PROMISC);
5201 	}
5202 	if (notify)
5203 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
5204 	return 0;
5205 }
5206 
5207 /**
5208  *	dev_set_promiscuity	- update promiscuity count on a device
5209  *	@dev: device
5210  *	@inc: modifier
5211  *
5212  *	Add or remove promiscuity from a device. While the count in the device
5213  *	remains above zero the interface remains promiscuous. Once it hits zero
5214  *	the device reverts back to normal filtering operation. A negative inc
5215  *	value is used to drop promiscuity on the device.
5216  *	Return 0 if successful or a negative errno code on error.
5217  */
5218 int dev_set_promiscuity(struct net_device *dev, int inc)
5219 {
5220 	unsigned int old_flags = dev->flags;
5221 	int err;
5222 
5223 	err = __dev_set_promiscuity(dev, inc, true);
5224 	if (err < 0)
5225 		return err;
5226 	if (dev->flags != old_flags)
5227 		dev_set_rx_mode(dev);
5228 	return err;
5229 }
5230 EXPORT_SYMBOL(dev_set_promiscuity);
5231 
5232 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5233 {
5234 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5235 
5236 	ASSERT_RTNL();
5237 
5238 	dev->flags |= IFF_ALLMULTI;
5239 	dev->allmulti += inc;
5240 	if (dev->allmulti == 0) {
5241 		/*
5242 		 * Avoid overflow.
5243 		 * If inc causes overflow, untouch allmulti and return error.
5244 		 */
5245 		if (inc < 0)
5246 			dev->flags &= ~IFF_ALLMULTI;
5247 		else {
5248 			dev->allmulti -= inc;
5249 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5250 				dev->name);
5251 			return -EOVERFLOW;
5252 		}
5253 	}
5254 	if (dev->flags ^ old_flags) {
5255 		dev_change_rx_flags(dev, IFF_ALLMULTI);
5256 		dev_set_rx_mode(dev);
5257 		if (notify)
5258 			__dev_notify_flags(dev, old_flags,
5259 					   dev->gflags ^ old_gflags);
5260 	}
5261 	return 0;
5262 }
5263 
5264 /**
5265  *	dev_set_allmulti	- update allmulti count on a device
5266  *	@dev: device
5267  *	@inc: modifier
5268  *
5269  *	Add or remove reception of all multicast frames to a device. While the
5270  *	count in the device remains above zero the interface remains listening
5271  *	to all interfaces. Once it hits zero the device reverts back to normal
5272  *	filtering operation. A negative @inc value is used to drop the counter
5273  *	when releasing a resource needing all multicasts.
5274  *	Return 0 if successful or a negative errno code on error.
5275  */
5276 
5277 int dev_set_allmulti(struct net_device *dev, int inc)
5278 {
5279 	return __dev_set_allmulti(dev, inc, true);
5280 }
5281 EXPORT_SYMBOL(dev_set_allmulti);
5282 
5283 /*
5284  *	Upload unicast and multicast address lists to device and
5285  *	configure RX filtering. When the device doesn't support unicast
5286  *	filtering it is put in promiscuous mode while unicast addresses
5287  *	are present.
5288  */
5289 void __dev_set_rx_mode(struct net_device *dev)
5290 {
5291 	const struct net_device_ops *ops = dev->netdev_ops;
5292 
5293 	/* dev_open will call this function so the list will stay sane. */
5294 	if (!(dev->flags&IFF_UP))
5295 		return;
5296 
5297 	if (!netif_device_present(dev))
5298 		return;
5299 
5300 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5301 		/* Unicast addresses changes may only happen under the rtnl,
5302 		 * therefore calling __dev_set_promiscuity here is safe.
5303 		 */
5304 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5305 			__dev_set_promiscuity(dev, 1, false);
5306 			dev->uc_promisc = true;
5307 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5308 			__dev_set_promiscuity(dev, -1, false);
5309 			dev->uc_promisc = false;
5310 		}
5311 	}
5312 
5313 	if (ops->ndo_set_rx_mode)
5314 		ops->ndo_set_rx_mode(dev);
5315 }
5316 
5317 void dev_set_rx_mode(struct net_device *dev)
5318 {
5319 	netif_addr_lock_bh(dev);
5320 	__dev_set_rx_mode(dev);
5321 	netif_addr_unlock_bh(dev);
5322 }
5323 
5324 /**
5325  *	dev_get_flags - get flags reported to userspace
5326  *	@dev: device
5327  *
5328  *	Get the combination of flag bits exported through APIs to userspace.
5329  */
5330 unsigned int dev_get_flags(const struct net_device *dev)
5331 {
5332 	unsigned int flags;
5333 
5334 	flags = (dev->flags & ~(IFF_PROMISC |
5335 				IFF_ALLMULTI |
5336 				IFF_RUNNING |
5337 				IFF_LOWER_UP |
5338 				IFF_DORMANT)) |
5339 		(dev->gflags & (IFF_PROMISC |
5340 				IFF_ALLMULTI));
5341 
5342 	if (netif_running(dev)) {
5343 		if (netif_oper_up(dev))
5344 			flags |= IFF_RUNNING;
5345 		if (netif_carrier_ok(dev))
5346 			flags |= IFF_LOWER_UP;
5347 		if (netif_dormant(dev))
5348 			flags |= IFF_DORMANT;
5349 	}
5350 
5351 	return flags;
5352 }
5353 EXPORT_SYMBOL(dev_get_flags);
5354 
5355 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5356 {
5357 	unsigned int old_flags = dev->flags;
5358 	int ret;
5359 
5360 	ASSERT_RTNL();
5361 
5362 	/*
5363 	 *	Set the flags on our device.
5364 	 */
5365 
5366 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5367 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5368 			       IFF_AUTOMEDIA)) |
5369 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5370 				    IFF_ALLMULTI));
5371 
5372 	/*
5373 	 *	Load in the correct multicast list now the flags have changed.
5374 	 */
5375 
5376 	if ((old_flags ^ flags) & IFF_MULTICAST)
5377 		dev_change_rx_flags(dev, IFF_MULTICAST);
5378 
5379 	dev_set_rx_mode(dev);
5380 
5381 	/*
5382 	 *	Have we downed the interface. We handle IFF_UP ourselves
5383 	 *	according to user attempts to set it, rather than blindly
5384 	 *	setting it.
5385 	 */
5386 
5387 	ret = 0;
5388 	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
5389 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5390 
5391 		if (!ret)
5392 			dev_set_rx_mode(dev);
5393 	}
5394 
5395 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
5396 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
5397 		unsigned int old_flags = dev->flags;
5398 
5399 		dev->gflags ^= IFF_PROMISC;
5400 
5401 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
5402 			if (dev->flags != old_flags)
5403 				dev_set_rx_mode(dev);
5404 	}
5405 
5406 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5407 	   is important. Some (broken) drivers set IFF_PROMISC, when
5408 	   IFF_ALLMULTI is requested not asking us and not reporting.
5409 	 */
5410 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5411 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5412 
5413 		dev->gflags ^= IFF_ALLMULTI;
5414 		__dev_set_allmulti(dev, inc, false);
5415 	}
5416 
5417 	return ret;
5418 }
5419 
5420 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5421 			unsigned int gchanges)
5422 {
5423 	unsigned int changes = dev->flags ^ old_flags;
5424 
5425 	if (gchanges)
5426 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5427 
5428 	if (changes & IFF_UP) {
5429 		if (dev->flags & IFF_UP)
5430 			call_netdevice_notifiers(NETDEV_UP, dev);
5431 		else
5432 			call_netdevice_notifiers(NETDEV_DOWN, dev);
5433 	}
5434 
5435 	if (dev->flags & IFF_UP &&
5436 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5437 		struct netdev_notifier_change_info change_info;
5438 
5439 		change_info.flags_changed = changes;
5440 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5441 					      &change_info.info);
5442 	}
5443 }
5444 
5445 /**
5446  *	dev_change_flags - change device settings
5447  *	@dev: device
5448  *	@flags: device state flags
5449  *
5450  *	Change settings on device based state flags. The flags are
5451  *	in the userspace exported format.
5452  */
5453 int dev_change_flags(struct net_device *dev, unsigned int flags)
5454 {
5455 	int ret;
5456 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5457 
5458 	ret = __dev_change_flags(dev, flags);
5459 	if (ret < 0)
5460 		return ret;
5461 
5462 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5463 	__dev_notify_flags(dev, old_flags, changes);
5464 	return ret;
5465 }
5466 EXPORT_SYMBOL(dev_change_flags);
5467 
5468 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5469 {
5470 	const struct net_device_ops *ops = dev->netdev_ops;
5471 
5472 	if (ops->ndo_change_mtu)
5473 		return ops->ndo_change_mtu(dev, new_mtu);
5474 
5475 	dev->mtu = new_mtu;
5476 	return 0;
5477 }
5478 
5479 /**
5480  *	dev_set_mtu - Change maximum transfer unit
5481  *	@dev: device
5482  *	@new_mtu: new transfer unit
5483  *
5484  *	Change the maximum transfer size of the network device.
5485  */
5486 int dev_set_mtu(struct net_device *dev, int new_mtu)
5487 {
5488 	int err, orig_mtu;
5489 
5490 	if (new_mtu == dev->mtu)
5491 		return 0;
5492 
5493 	/*	MTU must be positive.	 */
5494 	if (new_mtu < 0)
5495 		return -EINVAL;
5496 
5497 	if (!netif_device_present(dev))
5498 		return -ENODEV;
5499 
5500 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5501 	err = notifier_to_errno(err);
5502 	if (err)
5503 		return err;
5504 
5505 	orig_mtu = dev->mtu;
5506 	err = __dev_set_mtu(dev, new_mtu);
5507 
5508 	if (!err) {
5509 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5510 		err = notifier_to_errno(err);
5511 		if (err) {
5512 			/* setting mtu back and notifying everyone again,
5513 			 * so that they have a chance to revert changes.
5514 			 */
5515 			__dev_set_mtu(dev, orig_mtu);
5516 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5517 		}
5518 	}
5519 	return err;
5520 }
5521 EXPORT_SYMBOL(dev_set_mtu);
5522 
5523 /**
5524  *	dev_set_group - Change group this device belongs to
5525  *	@dev: device
5526  *	@new_group: group this device should belong to
5527  */
5528 void dev_set_group(struct net_device *dev, int new_group)
5529 {
5530 	dev->group = new_group;
5531 }
5532 EXPORT_SYMBOL(dev_set_group);
5533 
5534 /**
5535  *	dev_set_mac_address - Change Media Access Control Address
5536  *	@dev: device
5537  *	@sa: new address
5538  *
5539  *	Change the hardware (MAC) address of the device
5540  */
5541 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5542 {
5543 	const struct net_device_ops *ops = dev->netdev_ops;
5544 	int err;
5545 
5546 	if (!ops->ndo_set_mac_address)
5547 		return -EOPNOTSUPP;
5548 	if (sa->sa_family != dev->type)
5549 		return -EINVAL;
5550 	if (!netif_device_present(dev))
5551 		return -ENODEV;
5552 	err = ops->ndo_set_mac_address(dev, sa);
5553 	if (err)
5554 		return err;
5555 	dev->addr_assign_type = NET_ADDR_SET;
5556 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5557 	add_device_randomness(dev->dev_addr, dev->addr_len);
5558 	return 0;
5559 }
5560 EXPORT_SYMBOL(dev_set_mac_address);
5561 
5562 /**
5563  *	dev_change_carrier - Change device carrier
5564  *	@dev: device
5565  *	@new_carrier: new value
5566  *
5567  *	Change device carrier
5568  */
5569 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5570 {
5571 	const struct net_device_ops *ops = dev->netdev_ops;
5572 
5573 	if (!ops->ndo_change_carrier)
5574 		return -EOPNOTSUPP;
5575 	if (!netif_device_present(dev))
5576 		return -ENODEV;
5577 	return ops->ndo_change_carrier(dev, new_carrier);
5578 }
5579 EXPORT_SYMBOL(dev_change_carrier);
5580 
5581 /**
5582  *	dev_get_phys_port_id - Get device physical port ID
5583  *	@dev: device
5584  *	@ppid: port ID
5585  *
5586  *	Get device physical port ID
5587  */
5588 int dev_get_phys_port_id(struct net_device *dev,
5589 			 struct netdev_phys_port_id *ppid)
5590 {
5591 	const struct net_device_ops *ops = dev->netdev_ops;
5592 
5593 	if (!ops->ndo_get_phys_port_id)
5594 		return -EOPNOTSUPP;
5595 	return ops->ndo_get_phys_port_id(dev, ppid);
5596 }
5597 EXPORT_SYMBOL(dev_get_phys_port_id);
5598 
5599 /**
5600  *	dev_new_index	-	allocate an ifindex
5601  *	@net: the applicable net namespace
5602  *
5603  *	Returns a suitable unique value for a new device interface
5604  *	number.  The caller must hold the rtnl semaphore or the
5605  *	dev_base_lock to be sure it remains unique.
5606  */
5607 static int dev_new_index(struct net *net)
5608 {
5609 	int ifindex = net->ifindex;
5610 	for (;;) {
5611 		if (++ifindex <= 0)
5612 			ifindex = 1;
5613 		if (!__dev_get_by_index(net, ifindex))
5614 			return net->ifindex = ifindex;
5615 	}
5616 }
5617 
5618 /* Delayed registration/unregisteration */
5619 static LIST_HEAD(net_todo_list);
5620 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5621 
5622 static void net_set_todo(struct net_device *dev)
5623 {
5624 	list_add_tail(&dev->todo_list, &net_todo_list);
5625 	dev_net(dev)->dev_unreg_count++;
5626 }
5627 
5628 static void rollback_registered_many(struct list_head *head)
5629 {
5630 	struct net_device *dev, *tmp;
5631 	LIST_HEAD(close_head);
5632 
5633 	BUG_ON(dev_boot_phase);
5634 	ASSERT_RTNL();
5635 
5636 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5637 		/* Some devices call without registering
5638 		 * for initialization unwind. Remove those
5639 		 * devices and proceed with the remaining.
5640 		 */
5641 		if (dev->reg_state == NETREG_UNINITIALIZED) {
5642 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5643 				 dev->name, dev);
5644 
5645 			WARN_ON(1);
5646 			list_del(&dev->unreg_list);
5647 			continue;
5648 		}
5649 		dev->dismantle = true;
5650 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
5651 	}
5652 
5653 	/* If device is running, close it first. */
5654 	list_for_each_entry(dev, head, unreg_list)
5655 		list_add_tail(&dev->close_list, &close_head);
5656 	dev_close_many(&close_head);
5657 
5658 	list_for_each_entry(dev, head, unreg_list) {
5659 		/* And unlink it from device chain. */
5660 		unlist_netdevice(dev);
5661 
5662 		dev->reg_state = NETREG_UNREGISTERING;
5663 	}
5664 
5665 	synchronize_net();
5666 
5667 	list_for_each_entry(dev, head, unreg_list) {
5668 		/* Shutdown queueing discipline. */
5669 		dev_shutdown(dev);
5670 
5671 
5672 		/* Notify protocols, that we are about to destroy
5673 		   this device. They should clean all the things.
5674 		*/
5675 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5676 
5677 		if (!dev->rtnl_link_ops ||
5678 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5679 			rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
5680 
5681 		/*
5682 		 *	Flush the unicast and multicast chains
5683 		 */
5684 		dev_uc_flush(dev);
5685 		dev_mc_flush(dev);
5686 
5687 		if (dev->netdev_ops->ndo_uninit)
5688 			dev->netdev_ops->ndo_uninit(dev);
5689 
5690 		/* Notifier chain MUST detach us all upper devices. */
5691 		WARN_ON(netdev_has_any_upper_dev(dev));
5692 
5693 		/* Remove entries from kobject tree */
5694 		netdev_unregister_kobject(dev);
5695 #ifdef CONFIG_XPS
5696 		/* Remove XPS queueing entries */
5697 		netif_reset_xps_queues_gt(dev, 0);
5698 #endif
5699 	}
5700 
5701 	synchronize_net();
5702 
5703 	list_for_each_entry(dev, head, unreg_list)
5704 		dev_put(dev);
5705 }
5706 
5707 static void rollback_registered(struct net_device *dev)
5708 {
5709 	LIST_HEAD(single);
5710 
5711 	list_add(&dev->unreg_list, &single);
5712 	rollback_registered_many(&single);
5713 	list_del(&single);
5714 }
5715 
5716 static netdev_features_t netdev_fix_features(struct net_device *dev,
5717 	netdev_features_t features)
5718 {
5719 	/* Fix illegal checksum combinations */
5720 	if ((features & NETIF_F_HW_CSUM) &&
5721 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5722 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5723 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5724 	}
5725 
5726 	/* TSO requires that SG is present as well. */
5727 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5728 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5729 		features &= ~NETIF_F_ALL_TSO;
5730 	}
5731 
5732 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5733 					!(features & NETIF_F_IP_CSUM)) {
5734 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5735 		features &= ~NETIF_F_TSO;
5736 		features &= ~NETIF_F_TSO_ECN;
5737 	}
5738 
5739 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
5740 					 !(features & NETIF_F_IPV6_CSUM)) {
5741 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
5742 		features &= ~NETIF_F_TSO6;
5743 	}
5744 
5745 	/* TSO ECN requires that TSO is present as well. */
5746 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5747 		features &= ~NETIF_F_TSO_ECN;
5748 
5749 	/* Software GSO depends on SG. */
5750 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5751 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5752 		features &= ~NETIF_F_GSO;
5753 	}
5754 
5755 	/* UFO needs SG and checksumming */
5756 	if (features & NETIF_F_UFO) {
5757 		/* maybe split UFO into V4 and V6? */
5758 		if (!((features & NETIF_F_GEN_CSUM) ||
5759 		    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5760 			    == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5761 			netdev_dbg(dev,
5762 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
5763 			features &= ~NETIF_F_UFO;
5764 		}
5765 
5766 		if (!(features & NETIF_F_SG)) {
5767 			netdev_dbg(dev,
5768 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5769 			features &= ~NETIF_F_UFO;
5770 		}
5771 	}
5772 
5773 #ifdef CONFIG_NET_RX_BUSY_POLL
5774 	if (dev->netdev_ops->ndo_busy_poll)
5775 		features |= NETIF_F_BUSY_POLL;
5776 	else
5777 #endif
5778 		features &= ~NETIF_F_BUSY_POLL;
5779 
5780 	return features;
5781 }
5782 
5783 int __netdev_update_features(struct net_device *dev)
5784 {
5785 	netdev_features_t features;
5786 	int err = 0;
5787 
5788 	ASSERT_RTNL();
5789 
5790 	features = netdev_get_wanted_features(dev);
5791 
5792 	if (dev->netdev_ops->ndo_fix_features)
5793 		features = dev->netdev_ops->ndo_fix_features(dev, features);
5794 
5795 	/* driver might be less strict about feature dependencies */
5796 	features = netdev_fix_features(dev, features);
5797 
5798 	if (dev->features == features)
5799 		return 0;
5800 
5801 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5802 		&dev->features, &features);
5803 
5804 	if (dev->netdev_ops->ndo_set_features)
5805 		err = dev->netdev_ops->ndo_set_features(dev, features);
5806 
5807 	if (unlikely(err < 0)) {
5808 		netdev_err(dev,
5809 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
5810 			err, &features, &dev->features);
5811 		return -1;
5812 	}
5813 
5814 	if (!err)
5815 		dev->features = features;
5816 
5817 	return 1;
5818 }
5819 
5820 /**
5821  *	netdev_update_features - recalculate device features
5822  *	@dev: the device to check
5823  *
5824  *	Recalculate dev->features set and send notifications if it
5825  *	has changed. Should be called after driver or hardware dependent
5826  *	conditions might have changed that influence the features.
5827  */
5828 void netdev_update_features(struct net_device *dev)
5829 {
5830 	if (__netdev_update_features(dev))
5831 		netdev_features_change(dev);
5832 }
5833 EXPORT_SYMBOL(netdev_update_features);
5834 
5835 /**
5836  *	netdev_change_features - recalculate device features
5837  *	@dev: the device to check
5838  *
5839  *	Recalculate dev->features set and send notifications even
5840  *	if they have not changed. Should be called instead of
5841  *	netdev_update_features() if also dev->vlan_features might
5842  *	have changed to allow the changes to be propagated to stacked
5843  *	VLAN devices.
5844  */
5845 void netdev_change_features(struct net_device *dev)
5846 {
5847 	__netdev_update_features(dev);
5848 	netdev_features_change(dev);
5849 }
5850 EXPORT_SYMBOL(netdev_change_features);
5851 
5852 /**
5853  *	netif_stacked_transfer_operstate -	transfer operstate
5854  *	@rootdev: the root or lower level device to transfer state from
5855  *	@dev: the device to transfer operstate to
5856  *
5857  *	Transfer operational state from root to device. This is normally
5858  *	called when a stacking relationship exists between the root
5859  *	device and the device(a leaf device).
5860  */
5861 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5862 					struct net_device *dev)
5863 {
5864 	if (rootdev->operstate == IF_OPER_DORMANT)
5865 		netif_dormant_on(dev);
5866 	else
5867 		netif_dormant_off(dev);
5868 
5869 	if (netif_carrier_ok(rootdev)) {
5870 		if (!netif_carrier_ok(dev))
5871 			netif_carrier_on(dev);
5872 	} else {
5873 		if (netif_carrier_ok(dev))
5874 			netif_carrier_off(dev);
5875 	}
5876 }
5877 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5878 
5879 #ifdef CONFIG_SYSFS
5880 static int netif_alloc_rx_queues(struct net_device *dev)
5881 {
5882 	unsigned int i, count = dev->num_rx_queues;
5883 	struct netdev_rx_queue *rx;
5884 
5885 	BUG_ON(count < 1);
5886 
5887 	rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5888 	if (!rx)
5889 		return -ENOMEM;
5890 
5891 	dev->_rx = rx;
5892 
5893 	for (i = 0; i < count; i++)
5894 		rx[i].dev = dev;
5895 	return 0;
5896 }
5897 #endif
5898 
5899 static void netdev_init_one_queue(struct net_device *dev,
5900 				  struct netdev_queue *queue, void *_unused)
5901 {
5902 	/* Initialize queue lock */
5903 	spin_lock_init(&queue->_xmit_lock);
5904 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5905 	queue->xmit_lock_owner = -1;
5906 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5907 	queue->dev = dev;
5908 #ifdef CONFIG_BQL
5909 	dql_init(&queue->dql, HZ);
5910 #endif
5911 }
5912 
5913 static void netif_free_tx_queues(struct net_device *dev)
5914 {
5915 	if (is_vmalloc_addr(dev->_tx))
5916 		vfree(dev->_tx);
5917 	else
5918 		kfree(dev->_tx);
5919 }
5920 
5921 static int netif_alloc_netdev_queues(struct net_device *dev)
5922 {
5923 	unsigned int count = dev->num_tx_queues;
5924 	struct netdev_queue *tx;
5925 	size_t sz = count * sizeof(*tx);
5926 
5927 	BUG_ON(count < 1 || count > 0xffff);
5928 
5929 	tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
5930 	if (!tx) {
5931 		tx = vzalloc(sz);
5932 		if (!tx)
5933 			return -ENOMEM;
5934 	}
5935 	dev->_tx = tx;
5936 
5937 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5938 	spin_lock_init(&dev->tx_global_lock);
5939 
5940 	return 0;
5941 }
5942 
5943 /**
5944  *	register_netdevice	- register a network device
5945  *	@dev: device to register
5946  *
5947  *	Take a completed network device structure and add it to the kernel
5948  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5949  *	chain. 0 is returned on success. A negative errno code is returned
5950  *	on a failure to set up the device, or if the name is a duplicate.
5951  *
5952  *	Callers must hold the rtnl semaphore. You may want
5953  *	register_netdev() instead of this.
5954  *
5955  *	BUGS:
5956  *	The locking appears insufficient to guarantee two parallel registers
5957  *	will not get the same name.
5958  */
5959 
5960 int register_netdevice(struct net_device *dev)
5961 {
5962 	int ret;
5963 	struct net *net = dev_net(dev);
5964 
5965 	BUG_ON(dev_boot_phase);
5966 	ASSERT_RTNL();
5967 
5968 	might_sleep();
5969 
5970 	/* When net_device's are persistent, this will be fatal. */
5971 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5972 	BUG_ON(!net);
5973 
5974 	spin_lock_init(&dev->addr_list_lock);
5975 	netdev_set_addr_lockdep_class(dev);
5976 
5977 	dev->iflink = -1;
5978 
5979 	ret = dev_get_valid_name(net, dev, dev->name);
5980 	if (ret < 0)
5981 		goto out;
5982 
5983 	/* Init, if this function is available */
5984 	if (dev->netdev_ops->ndo_init) {
5985 		ret = dev->netdev_ops->ndo_init(dev);
5986 		if (ret) {
5987 			if (ret > 0)
5988 				ret = -EIO;
5989 			goto out;
5990 		}
5991 	}
5992 
5993 	if (((dev->hw_features | dev->features) &
5994 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
5995 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
5996 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
5997 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
5998 		ret = -EINVAL;
5999 		goto err_uninit;
6000 	}
6001 
6002 	ret = -EBUSY;
6003 	if (!dev->ifindex)
6004 		dev->ifindex = dev_new_index(net);
6005 	else if (__dev_get_by_index(net, dev->ifindex))
6006 		goto err_uninit;
6007 
6008 	if (dev->iflink == -1)
6009 		dev->iflink = dev->ifindex;
6010 
6011 	/* Transfer changeable features to wanted_features and enable
6012 	 * software offloads (GSO and GRO).
6013 	 */
6014 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
6015 	dev->features |= NETIF_F_SOFT_FEATURES;
6016 	dev->wanted_features = dev->features & dev->hw_features;
6017 
6018 	if (!(dev->flags & IFF_LOOPBACK)) {
6019 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
6020 	}
6021 
6022 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6023 	 */
6024 	dev->vlan_features |= NETIF_F_HIGHDMA;
6025 
6026 	/* Make NETIF_F_SG inheritable to tunnel devices.
6027 	 */
6028 	dev->hw_enc_features |= NETIF_F_SG;
6029 
6030 	/* Make NETIF_F_SG inheritable to MPLS.
6031 	 */
6032 	dev->mpls_features |= NETIF_F_SG;
6033 
6034 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6035 	ret = notifier_to_errno(ret);
6036 	if (ret)
6037 		goto err_uninit;
6038 
6039 	ret = netdev_register_kobject(dev);
6040 	if (ret)
6041 		goto err_uninit;
6042 	dev->reg_state = NETREG_REGISTERED;
6043 
6044 	__netdev_update_features(dev);
6045 
6046 	/*
6047 	 *	Default initial state at registry is that the
6048 	 *	device is present.
6049 	 */
6050 
6051 	set_bit(__LINK_STATE_PRESENT, &dev->state);
6052 
6053 	linkwatch_init_dev(dev);
6054 
6055 	dev_init_scheduler(dev);
6056 	dev_hold(dev);
6057 	list_netdevice(dev);
6058 	add_device_randomness(dev->dev_addr, dev->addr_len);
6059 
6060 	/* If the device has permanent device address, driver should
6061 	 * set dev_addr and also addr_assign_type should be set to
6062 	 * NET_ADDR_PERM (default value).
6063 	 */
6064 	if (dev->addr_assign_type == NET_ADDR_PERM)
6065 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6066 
6067 	/* Notify protocols, that a new device appeared. */
6068 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6069 	ret = notifier_to_errno(ret);
6070 	if (ret) {
6071 		rollback_registered(dev);
6072 		dev->reg_state = NETREG_UNREGISTERED;
6073 	}
6074 	/*
6075 	 *	Prevent userspace races by waiting until the network
6076 	 *	device is fully setup before sending notifications.
6077 	 */
6078 	if (!dev->rtnl_link_ops ||
6079 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6080 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6081 
6082 out:
6083 	return ret;
6084 
6085 err_uninit:
6086 	if (dev->netdev_ops->ndo_uninit)
6087 		dev->netdev_ops->ndo_uninit(dev);
6088 	goto out;
6089 }
6090 EXPORT_SYMBOL(register_netdevice);
6091 
6092 /**
6093  *	init_dummy_netdev	- init a dummy network device for NAPI
6094  *	@dev: device to init
6095  *
6096  *	This takes a network device structure and initialize the minimum
6097  *	amount of fields so it can be used to schedule NAPI polls without
6098  *	registering a full blown interface. This is to be used by drivers
6099  *	that need to tie several hardware interfaces to a single NAPI
6100  *	poll scheduler due to HW limitations.
6101  */
6102 int init_dummy_netdev(struct net_device *dev)
6103 {
6104 	/* Clear everything. Note we don't initialize spinlocks
6105 	 * are they aren't supposed to be taken by any of the
6106 	 * NAPI code and this dummy netdev is supposed to be
6107 	 * only ever used for NAPI polls
6108 	 */
6109 	memset(dev, 0, sizeof(struct net_device));
6110 
6111 	/* make sure we BUG if trying to hit standard
6112 	 * register/unregister code path
6113 	 */
6114 	dev->reg_state = NETREG_DUMMY;
6115 
6116 	/* NAPI wants this */
6117 	INIT_LIST_HEAD(&dev->napi_list);
6118 
6119 	/* a dummy interface is started by default */
6120 	set_bit(__LINK_STATE_PRESENT, &dev->state);
6121 	set_bit(__LINK_STATE_START, &dev->state);
6122 
6123 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
6124 	 * because users of this 'device' dont need to change
6125 	 * its refcount.
6126 	 */
6127 
6128 	return 0;
6129 }
6130 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6131 
6132 
6133 /**
6134  *	register_netdev	- register a network device
6135  *	@dev: device to register
6136  *
6137  *	Take a completed network device structure and add it to the kernel
6138  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6139  *	chain. 0 is returned on success. A negative errno code is returned
6140  *	on a failure to set up the device, or if the name is a duplicate.
6141  *
6142  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
6143  *	and expands the device name if you passed a format string to
6144  *	alloc_netdev.
6145  */
6146 int register_netdev(struct net_device *dev)
6147 {
6148 	int err;
6149 
6150 	rtnl_lock();
6151 	err = register_netdevice(dev);
6152 	rtnl_unlock();
6153 	return err;
6154 }
6155 EXPORT_SYMBOL(register_netdev);
6156 
6157 int netdev_refcnt_read(const struct net_device *dev)
6158 {
6159 	int i, refcnt = 0;
6160 
6161 	for_each_possible_cpu(i)
6162 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6163 	return refcnt;
6164 }
6165 EXPORT_SYMBOL(netdev_refcnt_read);
6166 
6167 /**
6168  * netdev_wait_allrefs - wait until all references are gone.
6169  * @dev: target net_device
6170  *
6171  * This is called when unregistering network devices.
6172  *
6173  * Any protocol or device that holds a reference should register
6174  * for netdevice notification, and cleanup and put back the
6175  * reference if they receive an UNREGISTER event.
6176  * We can get stuck here if buggy protocols don't correctly
6177  * call dev_put.
6178  */
6179 static void netdev_wait_allrefs(struct net_device *dev)
6180 {
6181 	unsigned long rebroadcast_time, warning_time;
6182 	int refcnt;
6183 
6184 	linkwatch_forget_dev(dev);
6185 
6186 	rebroadcast_time = warning_time = jiffies;
6187 	refcnt = netdev_refcnt_read(dev);
6188 
6189 	while (refcnt != 0) {
6190 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6191 			rtnl_lock();
6192 
6193 			/* Rebroadcast unregister notification */
6194 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6195 
6196 			__rtnl_unlock();
6197 			rcu_barrier();
6198 			rtnl_lock();
6199 
6200 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6201 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6202 				     &dev->state)) {
6203 				/* We must not have linkwatch events
6204 				 * pending on unregister. If this
6205 				 * happens, we simply run the queue
6206 				 * unscheduled, resulting in a noop
6207 				 * for this device.
6208 				 */
6209 				linkwatch_run_queue();
6210 			}
6211 
6212 			__rtnl_unlock();
6213 
6214 			rebroadcast_time = jiffies;
6215 		}
6216 
6217 		msleep(250);
6218 
6219 		refcnt = netdev_refcnt_read(dev);
6220 
6221 		if (time_after(jiffies, warning_time + 10 * HZ)) {
6222 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6223 				 dev->name, refcnt);
6224 			warning_time = jiffies;
6225 		}
6226 	}
6227 }
6228 
6229 /* The sequence is:
6230  *
6231  *	rtnl_lock();
6232  *	...
6233  *	register_netdevice(x1);
6234  *	register_netdevice(x2);
6235  *	...
6236  *	unregister_netdevice(y1);
6237  *	unregister_netdevice(y2);
6238  *      ...
6239  *	rtnl_unlock();
6240  *	free_netdev(y1);
6241  *	free_netdev(y2);
6242  *
6243  * We are invoked by rtnl_unlock().
6244  * This allows us to deal with problems:
6245  * 1) We can delete sysfs objects which invoke hotplug
6246  *    without deadlocking with linkwatch via keventd.
6247  * 2) Since we run with the RTNL semaphore not held, we can sleep
6248  *    safely in order to wait for the netdev refcnt to drop to zero.
6249  *
6250  * We must not return until all unregister events added during
6251  * the interval the lock was held have been completed.
6252  */
6253 void netdev_run_todo(void)
6254 {
6255 	struct list_head list;
6256 
6257 	/* Snapshot list, allow later requests */
6258 	list_replace_init(&net_todo_list, &list);
6259 
6260 	__rtnl_unlock();
6261 
6262 
6263 	/* Wait for rcu callbacks to finish before next phase */
6264 	if (!list_empty(&list))
6265 		rcu_barrier();
6266 
6267 	while (!list_empty(&list)) {
6268 		struct net_device *dev
6269 			= list_first_entry(&list, struct net_device, todo_list);
6270 		list_del(&dev->todo_list);
6271 
6272 		rtnl_lock();
6273 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6274 		__rtnl_unlock();
6275 
6276 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6277 			pr_err("network todo '%s' but state %d\n",
6278 			       dev->name, dev->reg_state);
6279 			dump_stack();
6280 			continue;
6281 		}
6282 
6283 		dev->reg_state = NETREG_UNREGISTERED;
6284 
6285 		on_each_cpu(flush_backlog, dev, 1);
6286 
6287 		netdev_wait_allrefs(dev);
6288 
6289 		/* paranoia */
6290 		BUG_ON(netdev_refcnt_read(dev));
6291 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
6292 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6293 		WARN_ON(dev->dn_ptr);
6294 
6295 		if (dev->destructor)
6296 			dev->destructor(dev);
6297 
6298 		/* Report a network device has been unregistered */
6299 		rtnl_lock();
6300 		dev_net(dev)->dev_unreg_count--;
6301 		__rtnl_unlock();
6302 		wake_up(&netdev_unregistering_wq);
6303 
6304 		/* Free network device */
6305 		kobject_put(&dev->dev.kobj);
6306 	}
6307 }
6308 
6309 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
6310  * fields in the same order, with only the type differing.
6311  */
6312 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6313 			     const struct net_device_stats *netdev_stats)
6314 {
6315 #if BITS_PER_LONG == 64
6316 	BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6317 	memcpy(stats64, netdev_stats, sizeof(*stats64));
6318 #else
6319 	size_t i, n = sizeof(*stats64) / sizeof(u64);
6320 	const unsigned long *src = (const unsigned long *)netdev_stats;
6321 	u64 *dst = (u64 *)stats64;
6322 
6323 	BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6324 		     sizeof(*stats64) / sizeof(u64));
6325 	for (i = 0; i < n; i++)
6326 		dst[i] = src[i];
6327 #endif
6328 }
6329 EXPORT_SYMBOL(netdev_stats_to_stats64);
6330 
6331 /**
6332  *	dev_get_stats	- get network device statistics
6333  *	@dev: device to get statistics from
6334  *	@storage: place to store stats
6335  *
6336  *	Get network statistics from device. Return @storage.
6337  *	The device driver may provide its own method by setting
6338  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6339  *	otherwise the internal statistics structure is used.
6340  */
6341 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6342 					struct rtnl_link_stats64 *storage)
6343 {
6344 	const struct net_device_ops *ops = dev->netdev_ops;
6345 
6346 	if (ops->ndo_get_stats64) {
6347 		memset(storage, 0, sizeof(*storage));
6348 		ops->ndo_get_stats64(dev, storage);
6349 	} else if (ops->ndo_get_stats) {
6350 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6351 	} else {
6352 		netdev_stats_to_stats64(storage, &dev->stats);
6353 	}
6354 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6355 	storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6356 	return storage;
6357 }
6358 EXPORT_SYMBOL(dev_get_stats);
6359 
6360 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6361 {
6362 	struct netdev_queue *queue = dev_ingress_queue(dev);
6363 
6364 #ifdef CONFIG_NET_CLS_ACT
6365 	if (queue)
6366 		return queue;
6367 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6368 	if (!queue)
6369 		return NULL;
6370 	netdev_init_one_queue(dev, queue, NULL);
6371 	queue->qdisc = &noop_qdisc;
6372 	queue->qdisc_sleeping = &noop_qdisc;
6373 	rcu_assign_pointer(dev->ingress_queue, queue);
6374 #endif
6375 	return queue;
6376 }
6377 
6378 static const struct ethtool_ops default_ethtool_ops;
6379 
6380 void netdev_set_default_ethtool_ops(struct net_device *dev,
6381 				    const struct ethtool_ops *ops)
6382 {
6383 	if (dev->ethtool_ops == &default_ethtool_ops)
6384 		dev->ethtool_ops = ops;
6385 }
6386 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6387 
6388 void netdev_freemem(struct net_device *dev)
6389 {
6390 	char *addr = (char *)dev - dev->padded;
6391 
6392 	if (is_vmalloc_addr(addr))
6393 		vfree(addr);
6394 	else
6395 		kfree(addr);
6396 }
6397 
6398 /**
6399  *	alloc_netdev_mqs - allocate network device
6400  *	@sizeof_priv:	size of private data to allocate space for
6401  *	@name:		device name format string
6402  *	@setup:		callback to initialize device
6403  *	@txqs:		the number of TX subqueues to allocate
6404  *	@rxqs:		the number of RX subqueues to allocate
6405  *
6406  *	Allocates a struct net_device with private data area for driver use
6407  *	and performs basic initialization.  Also allocates subqueue structs
6408  *	for each queue on the device.
6409  */
6410 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6411 		void (*setup)(struct net_device *),
6412 		unsigned int txqs, unsigned int rxqs)
6413 {
6414 	struct net_device *dev;
6415 	size_t alloc_size;
6416 	struct net_device *p;
6417 
6418 	BUG_ON(strlen(name) >= sizeof(dev->name));
6419 
6420 	if (txqs < 1) {
6421 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6422 		return NULL;
6423 	}
6424 
6425 #ifdef CONFIG_SYSFS
6426 	if (rxqs < 1) {
6427 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6428 		return NULL;
6429 	}
6430 #endif
6431 
6432 	alloc_size = sizeof(struct net_device);
6433 	if (sizeof_priv) {
6434 		/* ensure 32-byte alignment of private area */
6435 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6436 		alloc_size += sizeof_priv;
6437 	}
6438 	/* ensure 32-byte alignment of whole construct */
6439 	alloc_size += NETDEV_ALIGN - 1;
6440 
6441 	p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6442 	if (!p)
6443 		p = vzalloc(alloc_size);
6444 	if (!p)
6445 		return NULL;
6446 
6447 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
6448 	dev->padded = (char *)dev - (char *)p;
6449 
6450 	dev->pcpu_refcnt = alloc_percpu(int);
6451 	if (!dev->pcpu_refcnt)
6452 		goto free_dev;
6453 
6454 	if (dev_addr_init(dev))
6455 		goto free_pcpu;
6456 
6457 	dev_mc_init(dev);
6458 	dev_uc_init(dev);
6459 
6460 	dev_net_set(dev, &init_net);
6461 
6462 	dev->gso_max_size = GSO_MAX_SIZE;
6463 	dev->gso_max_segs = GSO_MAX_SEGS;
6464 
6465 	INIT_LIST_HEAD(&dev->napi_list);
6466 	INIT_LIST_HEAD(&dev->unreg_list);
6467 	INIT_LIST_HEAD(&dev->close_list);
6468 	INIT_LIST_HEAD(&dev->link_watch_list);
6469 	INIT_LIST_HEAD(&dev->adj_list.upper);
6470 	INIT_LIST_HEAD(&dev->adj_list.lower);
6471 	INIT_LIST_HEAD(&dev->all_adj_list.upper);
6472 	INIT_LIST_HEAD(&dev->all_adj_list.lower);
6473 	dev->priv_flags = IFF_XMIT_DST_RELEASE;
6474 	setup(dev);
6475 
6476 	dev->num_tx_queues = txqs;
6477 	dev->real_num_tx_queues = txqs;
6478 	if (netif_alloc_netdev_queues(dev))
6479 		goto free_all;
6480 
6481 #ifdef CONFIG_SYSFS
6482 	dev->num_rx_queues = rxqs;
6483 	dev->real_num_rx_queues = rxqs;
6484 	if (netif_alloc_rx_queues(dev))
6485 		goto free_all;
6486 #endif
6487 
6488 	strcpy(dev->name, name);
6489 	dev->group = INIT_NETDEV_GROUP;
6490 	if (!dev->ethtool_ops)
6491 		dev->ethtool_ops = &default_ethtool_ops;
6492 	return dev;
6493 
6494 free_all:
6495 	free_netdev(dev);
6496 	return NULL;
6497 
6498 free_pcpu:
6499 	free_percpu(dev->pcpu_refcnt);
6500 	netif_free_tx_queues(dev);
6501 #ifdef CONFIG_SYSFS
6502 	kfree(dev->_rx);
6503 #endif
6504 
6505 free_dev:
6506 	netdev_freemem(dev);
6507 	return NULL;
6508 }
6509 EXPORT_SYMBOL(alloc_netdev_mqs);
6510 
6511 /**
6512  *	free_netdev - free network device
6513  *	@dev: device
6514  *
6515  *	This function does the last stage of destroying an allocated device
6516  * 	interface. The reference to the device object is released.
6517  *	If this is the last reference then it will be freed.
6518  */
6519 void free_netdev(struct net_device *dev)
6520 {
6521 	struct napi_struct *p, *n;
6522 
6523 	release_net(dev_net(dev));
6524 
6525 	netif_free_tx_queues(dev);
6526 #ifdef CONFIG_SYSFS
6527 	kfree(dev->_rx);
6528 #endif
6529 
6530 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6531 
6532 	/* Flush device addresses */
6533 	dev_addr_flush(dev);
6534 
6535 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6536 		netif_napi_del(p);
6537 
6538 	free_percpu(dev->pcpu_refcnt);
6539 	dev->pcpu_refcnt = NULL;
6540 
6541 	/*  Compatibility with error handling in drivers */
6542 	if (dev->reg_state == NETREG_UNINITIALIZED) {
6543 		netdev_freemem(dev);
6544 		return;
6545 	}
6546 
6547 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6548 	dev->reg_state = NETREG_RELEASED;
6549 
6550 	/* will free via device release */
6551 	put_device(&dev->dev);
6552 }
6553 EXPORT_SYMBOL(free_netdev);
6554 
6555 /**
6556  *	synchronize_net -  Synchronize with packet receive processing
6557  *
6558  *	Wait for packets currently being received to be done.
6559  *	Does not block later packets from starting.
6560  */
6561 void synchronize_net(void)
6562 {
6563 	might_sleep();
6564 	if (rtnl_is_locked())
6565 		synchronize_rcu_expedited();
6566 	else
6567 		synchronize_rcu();
6568 }
6569 EXPORT_SYMBOL(synchronize_net);
6570 
6571 /**
6572  *	unregister_netdevice_queue - remove device from the kernel
6573  *	@dev: device
6574  *	@head: list
6575  *
6576  *	This function shuts down a device interface and removes it
6577  *	from the kernel tables.
6578  *	If head not NULL, device is queued to be unregistered later.
6579  *
6580  *	Callers must hold the rtnl semaphore.  You may want
6581  *	unregister_netdev() instead of this.
6582  */
6583 
6584 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6585 {
6586 	ASSERT_RTNL();
6587 
6588 	if (head) {
6589 		list_move_tail(&dev->unreg_list, head);
6590 	} else {
6591 		rollback_registered(dev);
6592 		/* Finish processing unregister after unlock */
6593 		net_set_todo(dev);
6594 	}
6595 }
6596 EXPORT_SYMBOL(unregister_netdevice_queue);
6597 
6598 /**
6599  *	unregister_netdevice_many - unregister many devices
6600  *	@head: list of devices
6601  */
6602 void unregister_netdevice_many(struct list_head *head)
6603 {
6604 	struct net_device *dev;
6605 
6606 	if (!list_empty(head)) {
6607 		rollback_registered_many(head);
6608 		list_for_each_entry(dev, head, unreg_list)
6609 			net_set_todo(dev);
6610 	}
6611 }
6612 EXPORT_SYMBOL(unregister_netdevice_many);
6613 
6614 /**
6615  *	unregister_netdev - remove device from the kernel
6616  *	@dev: device
6617  *
6618  *	This function shuts down a device interface and removes it
6619  *	from the kernel tables.
6620  *
6621  *	This is just a wrapper for unregister_netdevice that takes
6622  *	the rtnl semaphore.  In general you want to use this and not
6623  *	unregister_netdevice.
6624  */
6625 void unregister_netdev(struct net_device *dev)
6626 {
6627 	rtnl_lock();
6628 	unregister_netdevice(dev);
6629 	rtnl_unlock();
6630 }
6631 EXPORT_SYMBOL(unregister_netdev);
6632 
6633 /**
6634  *	dev_change_net_namespace - move device to different nethost namespace
6635  *	@dev: device
6636  *	@net: network namespace
6637  *	@pat: If not NULL name pattern to try if the current device name
6638  *	      is already taken in the destination network namespace.
6639  *
6640  *	This function shuts down a device interface and moves it
6641  *	to a new network namespace. On success 0 is returned, on
6642  *	a failure a netagive errno code is returned.
6643  *
6644  *	Callers must hold the rtnl semaphore.
6645  */
6646 
6647 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6648 {
6649 	int err;
6650 
6651 	ASSERT_RTNL();
6652 
6653 	/* Don't allow namespace local devices to be moved. */
6654 	err = -EINVAL;
6655 	if (dev->features & NETIF_F_NETNS_LOCAL)
6656 		goto out;
6657 
6658 	/* Ensure the device has been registrered */
6659 	if (dev->reg_state != NETREG_REGISTERED)
6660 		goto out;
6661 
6662 	/* Get out if there is nothing todo */
6663 	err = 0;
6664 	if (net_eq(dev_net(dev), net))
6665 		goto out;
6666 
6667 	/* Pick the destination device name, and ensure
6668 	 * we can use it in the destination network namespace.
6669 	 */
6670 	err = -EEXIST;
6671 	if (__dev_get_by_name(net, dev->name)) {
6672 		/* We get here if we can't use the current device name */
6673 		if (!pat)
6674 			goto out;
6675 		if (dev_get_valid_name(net, dev, pat) < 0)
6676 			goto out;
6677 	}
6678 
6679 	/*
6680 	 * And now a mini version of register_netdevice unregister_netdevice.
6681 	 */
6682 
6683 	/* If device is running close it first. */
6684 	dev_close(dev);
6685 
6686 	/* And unlink it from device chain */
6687 	err = -ENODEV;
6688 	unlist_netdevice(dev);
6689 
6690 	synchronize_net();
6691 
6692 	/* Shutdown queueing discipline. */
6693 	dev_shutdown(dev);
6694 
6695 	/* Notify protocols, that we are about to destroy
6696 	   this device. They should clean all the things.
6697 
6698 	   Note that dev->reg_state stays at NETREG_REGISTERED.
6699 	   This is wanted because this way 8021q and macvlan know
6700 	   the device is just moving and can keep their slaves up.
6701 	*/
6702 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6703 	rcu_barrier();
6704 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6705 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
6706 
6707 	/*
6708 	 *	Flush the unicast and multicast chains
6709 	 */
6710 	dev_uc_flush(dev);
6711 	dev_mc_flush(dev);
6712 
6713 	/* Send a netdev-removed uevent to the old namespace */
6714 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6715 
6716 	/* Actually switch the network namespace */
6717 	dev_net_set(dev, net);
6718 
6719 	/* If there is an ifindex conflict assign a new one */
6720 	if (__dev_get_by_index(net, dev->ifindex)) {
6721 		int iflink = (dev->iflink == dev->ifindex);
6722 		dev->ifindex = dev_new_index(net);
6723 		if (iflink)
6724 			dev->iflink = dev->ifindex;
6725 	}
6726 
6727 	/* Send a netdev-add uevent to the new namespace */
6728 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6729 
6730 	/* Fixup kobjects */
6731 	err = device_rename(&dev->dev, dev->name);
6732 	WARN_ON(err);
6733 
6734 	/* Add the device back in the hashes */
6735 	list_netdevice(dev);
6736 
6737 	/* Notify protocols, that a new device appeared. */
6738 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
6739 
6740 	/*
6741 	 *	Prevent userspace races by waiting until the network
6742 	 *	device is fully setup before sending notifications.
6743 	 */
6744 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6745 
6746 	synchronize_net();
6747 	err = 0;
6748 out:
6749 	return err;
6750 }
6751 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6752 
6753 static int dev_cpu_callback(struct notifier_block *nfb,
6754 			    unsigned long action,
6755 			    void *ocpu)
6756 {
6757 	struct sk_buff **list_skb;
6758 	struct sk_buff *skb;
6759 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
6760 	struct softnet_data *sd, *oldsd;
6761 
6762 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6763 		return NOTIFY_OK;
6764 
6765 	local_irq_disable();
6766 	cpu = smp_processor_id();
6767 	sd = &per_cpu(softnet_data, cpu);
6768 	oldsd = &per_cpu(softnet_data, oldcpu);
6769 
6770 	/* Find end of our completion_queue. */
6771 	list_skb = &sd->completion_queue;
6772 	while (*list_skb)
6773 		list_skb = &(*list_skb)->next;
6774 	/* Append completion queue from offline CPU. */
6775 	*list_skb = oldsd->completion_queue;
6776 	oldsd->completion_queue = NULL;
6777 
6778 	/* Append output queue from offline CPU. */
6779 	if (oldsd->output_queue) {
6780 		*sd->output_queue_tailp = oldsd->output_queue;
6781 		sd->output_queue_tailp = oldsd->output_queue_tailp;
6782 		oldsd->output_queue = NULL;
6783 		oldsd->output_queue_tailp = &oldsd->output_queue;
6784 	}
6785 	/* Append NAPI poll list from offline CPU. */
6786 	if (!list_empty(&oldsd->poll_list)) {
6787 		list_splice_init(&oldsd->poll_list, &sd->poll_list);
6788 		raise_softirq_irqoff(NET_RX_SOFTIRQ);
6789 	}
6790 
6791 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
6792 	local_irq_enable();
6793 
6794 	/* Process offline CPU's input_pkt_queue */
6795 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6796 		netif_rx_internal(skb);
6797 		input_queue_head_incr(oldsd);
6798 	}
6799 	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6800 		netif_rx_internal(skb);
6801 		input_queue_head_incr(oldsd);
6802 	}
6803 
6804 	return NOTIFY_OK;
6805 }
6806 
6807 
6808 /**
6809  *	netdev_increment_features - increment feature set by one
6810  *	@all: current feature set
6811  *	@one: new feature set
6812  *	@mask: mask feature set
6813  *
6814  *	Computes a new feature set after adding a device with feature set
6815  *	@one to the master device with current feature set @all.  Will not
6816  *	enable anything that is off in @mask. Returns the new feature set.
6817  */
6818 netdev_features_t netdev_increment_features(netdev_features_t all,
6819 	netdev_features_t one, netdev_features_t mask)
6820 {
6821 	if (mask & NETIF_F_GEN_CSUM)
6822 		mask |= NETIF_F_ALL_CSUM;
6823 	mask |= NETIF_F_VLAN_CHALLENGED;
6824 
6825 	all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6826 	all &= one | ~NETIF_F_ALL_FOR_ALL;
6827 
6828 	/* If one device supports hw checksumming, set for all. */
6829 	if (all & NETIF_F_GEN_CSUM)
6830 		all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6831 
6832 	return all;
6833 }
6834 EXPORT_SYMBOL(netdev_increment_features);
6835 
6836 static struct hlist_head * __net_init netdev_create_hash(void)
6837 {
6838 	int i;
6839 	struct hlist_head *hash;
6840 
6841 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6842 	if (hash != NULL)
6843 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
6844 			INIT_HLIST_HEAD(&hash[i]);
6845 
6846 	return hash;
6847 }
6848 
6849 /* Initialize per network namespace state */
6850 static int __net_init netdev_init(struct net *net)
6851 {
6852 	if (net != &init_net)
6853 		INIT_LIST_HEAD(&net->dev_base_head);
6854 
6855 	net->dev_name_head = netdev_create_hash();
6856 	if (net->dev_name_head == NULL)
6857 		goto err_name;
6858 
6859 	net->dev_index_head = netdev_create_hash();
6860 	if (net->dev_index_head == NULL)
6861 		goto err_idx;
6862 
6863 	return 0;
6864 
6865 err_idx:
6866 	kfree(net->dev_name_head);
6867 err_name:
6868 	return -ENOMEM;
6869 }
6870 
6871 /**
6872  *	netdev_drivername - network driver for the device
6873  *	@dev: network device
6874  *
6875  *	Determine network driver for device.
6876  */
6877 const char *netdev_drivername(const struct net_device *dev)
6878 {
6879 	const struct device_driver *driver;
6880 	const struct device *parent;
6881 	const char *empty = "";
6882 
6883 	parent = dev->dev.parent;
6884 	if (!parent)
6885 		return empty;
6886 
6887 	driver = parent->driver;
6888 	if (driver && driver->name)
6889 		return driver->name;
6890 	return empty;
6891 }
6892 
6893 static int __netdev_printk(const char *level, const struct net_device *dev,
6894 			   struct va_format *vaf)
6895 {
6896 	int r;
6897 
6898 	if (dev && dev->dev.parent) {
6899 		r = dev_printk_emit(level[1] - '0',
6900 				    dev->dev.parent,
6901 				    "%s %s %s: %pV",
6902 				    dev_driver_string(dev->dev.parent),
6903 				    dev_name(dev->dev.parent),
6904 				    netdev_name(dev), vaf);
6905 	} else if (dev) {
6906 		r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6907 	} else {
6908 		r = printk("%s(NULL net_device): %pV", level, vaf);
6909 	}
6910 
6911 	return r;
6912 }
6913 
6914 int netdev_printk(const char *level, const struct net_device *dev,
6915 		  const char *format, ...)
6916 {
6917 	struct va_format vaf;
6918 	va_list args;
6919 	int r;
6920 
6921 	va_start(args, format);
6922 
6923 	vaf.fmt = format;
6924 	vaf.va = &args;
6925 
6926 	r = __netdev_printk(level, dev, &vaf);
6927 
6928 	va_end(args);
6929 
6930 	return r;
6931 }
6932 EXPORT_SYMBOL(netdev_printk);
6933 
6934 #define define_netdev_printk_level(func, level)			\
6935 int func(const struct net_device *dev, const char *fmt, ...)	\
6936 {								\
6937 	int r;							\
6938 	struct va_format vaf;					\
6939 	va_list args;						\
6940 								\
6941 	va_start(args, fmt);					\
6942 								\
6943 	vaf.fmt = fmt;						\
6944 	vaf.va = &args;						\
6945 								\
6946 	r = __netdev_printk(level, dev, &vaf);			\
6947 								\
6948 	va_end(args);						\
6949 								\
6950 	return r;						\
6951 }								\
6952 EXPORT_SYMBOL(func);
6953 
6954 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6955 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6956 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6957 define_netdev_printk_level(netdev_err, KERN_ERR);
6958 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6959 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6960 define_netdev_printk_level(netdev_info, KERN_INFO);
6961 
6962 static void __net_exit netdev_exit(struct net *net)
6963 {
6964 	kfree(net->dev_name_head);
6965 	kfree(net->dev_index_head);
6966 }
6967 
6968 static struct pernet_operations __net_initdata netdev_net_ops = {
6969 	.init = netdev_init,
6970 	.exit = netdev_exit,
6971 };
6972 
6973 static void __net_exit default_device_exit(struct net *net)
6974 {
6975 	struct net_device *dev, *aux;
6976 	/*
6977 	 * Push all migratable network devices back to the
6978 	 * initial network namespace
6979 	 */
6980 	rtnl_lock();
6981 	for_each_netdev_safe(net, dev, aux) {
6982 		int err;
6983 		char fb_name[IFNAMSIZ];
6984 
6985 		/* Ignore unmoveable devices (i.e. loopback) */
6986 		if (dev->features & NETIF_F_NETNS_LOCAL)
6987 			continue;
6988 
6989 		/* Leave virtual devices for the generic cleanup */
6990 		if (dev->rtnl_link_ops)
6991 			continue;
6992 
6993 		/* Push remaining network devices to init_net */
6994 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6995 		err = dev_change_net_namespace(dev, &init_net, fb_name);
6996 		if (err) {
6997 			pr_emerg("%s: failed to move %s to init_net: %d\n",
6998 				 __func__, dev->name, err);
6999 			BUG();
7000 		}
7001 	}
7002 	rtnl_unlock();
7003 }
7004 
7005 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7006 {
7007 	/* Return with the rtnl_lock held when there are no network
7008 	 * devices unregistering in any network namespace in net_list.
7009 	 */
7010 	struct net *net;
7011 	bool unregistering;
7012 	DEFINE_WAIT(wait);
7013 
7014 	for (;;) {
7015 		prepare_to_wait(&netdev_unregistering_wq, &wait,
7016 				TASK_UNINTERRUPTIBLE);
7017 		unregistering = false;
7018 		rtnl_lock();
7019 		list_for_each_entry(net, net_list, exit_list) {
7020 			if (net->dev_unreg_count > 0) {
7021 				unregistering = true;
7022 				break;
7023 			}
7024 		}
7025 		if (!unregistering)
7026 			break;
7027 		__rtnl_unlock();
7028 		schedule();
7029 	}
7030 	finish_wait(&netdev_unregistering_wq, &wait);
7031 }
7032 
7033 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7034 {
7035 	/* At exit all network devices most be removed from a network
7036 	 * namespace.  Do this in the reverse order of registration.
7037 	 * Do this across as many network namespaces as possible to
7038 	 * improve batching efficiency.
7039 	 */
7040 	struct net_device *dev;
7041 	struct net *net;
7042 	LIST_HEAD(dev_kill_list);
7043 
7044 	/* To prevent network device cleanup code from dereferencing
7045 	 * loopback devices or network devices that have been freed
7046 	 * wait here for all pending unregistrations to complete,
7047 	 * before unregistring the loopback device and allowing the
7048 	 * network namespace be freed.
7049 	 *
7050 	 * The netdev todo list containing all network devices
7051 	 * unregistrations that happen in default_device_exit_batch
7052 	 * will run in the rtnl_unlock() at the end of
7053 	 * default_device_exit_batch.
7054 	 */
7055 	rtnl_lock_unregistering(net_list);
7056 	list_for_each_entry(net, net_list, exit_list) {
7057 		for_each_netdev_reverse(net, dev) {
7058 			if (dev->rtnl_link_ops)
7059 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7060 			else
7061 				unregister_netdevice_queue(dev, &dev_kill_list);
7062 		}
7063 	}
7064 	unregister_netdevice_many(&dev_kill_list);
7065 	list_del(&dev_kill_list);
7066 	rtnl_unlock();
7067 }
7068 
7069 static struct pernet_operations __net_initdata default_device_ops = {
7070 	.exit = default_device_exit,
7071 	.exit_batch = default_device_exit_batch,
7072 };
7073 
7074 /*
7075  *	Initialize the DEV module. At boot time this walks the device list and
7076  *	unhooks any devices that fail to initialise (normally hardware not
7077  *	present) and leaves us with a valid list of present and active devices.
7078  *
7079  */
7080 
7081 /*
7082  *       This is called single threaded during boot, so no need
7083  *       to take the rtnl semaphore.
7084  */
7085 static int __init net_dev_init(void)
7086 {
7087 	int i, rc = -ENOMEM;
7088 
7089 	BUG_ON(!dev_boot_phase);
7090 
7091 	if (dev_proc_init())
7092 		goto out;
7093 
7094 	if (netdev_kobject_init())
7095 		goto out;
7096 
7097 	INIT_LIST_HEAD(&ptype_all);
7098 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
7099 		INIT_LIST_HEAD(&ptype_base[i]);
7100 
7101 	INIT_LIST_HEAD(&offload_base);
7102 
7103 	if (register_pernet_subsys(&netdev_net_ops))
7104 		goto out;
7105 
7106 	/*
7107 	 *	Initialise the packet receive queues.
7108 	 */
7109 
7110 	for_each_possible_cpu(i) {
7111 		struct softnet_data *sd = &per_cpu(softnet_data, i);
7112 
7113 		skb_queue_head_init(&sd->input_pkt_queue);
7114 		skb_queue_head_init(&sd->process_queue);
7115 		INIT_LIST_HEAD(&sd->poll_list);
7116 		sd->output_queue_tailp = &sd->output_queue;
7117 #ifdef CONFIG_RPS
7118 		sd->csd.func = rps_trigger_softirq;
7119 		sd->csd.info = sd;
7120 		sd->cpu = i;
7121 #endif
7122 
7123 		sd->backlog.poll = process_backlog;
7124 		sd->backlog.weight = weight_p;
7125 	}
7126 
7127 	dev_boot_phase = 0;
7128 
7129 	/* The loopback device is special if any other network devices
7130 	 * is present in a network namespace the loopback device must
7131 	 * be present. Since we now dynamically allocate and free the
7132 	 * loopback device ensure this invariant is maintained by
7133 	 * keeping the loopback device as the first device on the
7134 	 * list of network devices.  Ensuring the loopback devices
7135 	 * is the first device that appears and the last network device
7136 	 * that disappears.
7137 	 */
7138 	if (register_pernet_device(&loopback_net_ops))
7139 		goto out;
7140 
7141 	if (register_pernet_device(&default_device_ops))
7142 		goto out;
7143 
7144 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7145 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7146 
7147 	hotcpu_notifier(dev_cpu_callback, 0);
7148 	dst_init();
7149 	rc = 0;
7150 out:
7151 	return rc;
7152 }
7153 
7154 subsys_initcall(net_dev_init);
7155