1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <linux/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/sched/mm.h> 85 #include <linux/mutex.h> 86 #include <linux/string.h> 87 #include <linux/mm.h> 88 #include <linux/socket.h> 89 #include <linux/sockios.h> 90 #include <linux/errno.h> 91 #include <linux/interrupt.h> 92 #include <linux/if_ether.h> 93 #include <linux/netdevice.h> 94 #include <linux/etherdevice.h> 95 #include <linux/ethtool.h> 96 #include <linux/notifier.h> 97 #include <linux/skbuff.h> 98 #include <linux/bpf.h> 99 #include <linux/bpf_trace.h> 100 #include <net/net_namespace.h> 101 #include <net/sock.h> 102 #include <net/busy_poll.h> 103 #include <linux/rtnetlink.h> 104 #include <linux/stat.h> 105 #include <net/dst.h> 106 #include <net/dst_metadata.h> 107 #include <net/pkt_sched.h> 108 #include <net/pkt_cls.h> 109 #include <net/checksum.h> 110 #include <net/xfrm.h> 111 #include <linux/highmem.h> 112 #include <linux/init.h> 113 #include <linux/module.h> 114 #include <linux/netpoll.h> 115 #include <linux/rcupdate.h> 116 #include <linux/delay.h> 117 #include <net/iw_handler.h> 118 #include <asm/current.h> 119 #include <linux/audit.h> 120 #include <linux/dmaengine.h> 121 #include <linux/err.h> 122 #include <linux/ctype.h> 123 #include <linux/if_arp.h> 124 #include <linux/if_vlan.h> 125 #include <linux/ip.h> 126 #include <net/ip.h> 127 #include <net/mpls.h> 128 #include <linux/ipv6.h> 129 #include <linux/in.h> 130 #include <linux/jhash.h> 131 #include <linux/random.h> 132 #include <trace/events/napi.h> 133 #include <trace/events/net.h> 134 #include <trace/events/skb.h> 135 #include <linux/pci.h> 136 #include <linux/inetdevice.h> 137 #include <linux/cpu_rmap.h> 138 #include <linux/static_key.h> 139 #include <linux/hashtable.h> 140 #include <linux/vmalloc.h> 141 #include <linux/if_macvlan.h> 142 #include <linux/errqueue.h> 143 #include <linux/hrtimer.h> 144 #include <linux/netfilter_ingress.h> 145 #include <linux/crash_dump.h> 146 #include <linux/sctp.h> 147 #include <net/udp_tunnel.h> 148 #include <linux/net_namespace.h> 149 150 #include "net-sysfs.h" 151 152 /* Instead of increasing this, you should create a hash table. */ 153 #define MAX_GRO_SKBS 8 154 155 /* This should be increased if a protocol with a bigger head is added. */ 156 #define GRO_MAX_HEAD (MAX_HEADER + 128) 157 158 static DEFINE_SPINLOCK(ptype_lock); 159 static DEFINE_SPINLOCK(offload_lock); 160 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 161 struct list_head ptype_all __read_mostly; /* Taps */ 162 static struct list_head offload_base __read_mostly; 163 164 static int netif_rx_internal(struct sk_buff *skb); 165 static int call_netdevice_notifiers_info(unsigned long val, 166 struct netdev_notifier_info *info); 167 static struct napi_struct *napi_by_id(unsigned int napi_id); 168 169 /* 170 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 171 * semaphore. 172 * 173 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 174 * 175 * Writers must hold the rtnl semaphore while they loop through the 176 * dev_base_head list, and hold dev_base_lock for writing when they do the 177 * actual updates. This allows pure readers to access the list even 178 * while a writer is preparing to update it. 179 * 180 * To put it another way, dev_base_lock is held for writing only to 181 * protect against pure readers; the rtnl semaphore provides the 182 * protection against other writers. 183 * 184 * See, for example usages, register_netdevice() and 185 * unregister_netdevice(), which must be called with the rtnl 186 * semaphore held. 187 */ 188 DEFINE_RWLOCK(dev_base_lock); 189 EXPORT_SYMBOL(dev_base_lock); 190 191 static DEFINE_MUTEX(ifalias_mutex); 192 193 /* protects napi_hash addition/deletion and napi_gen_id */ 194 static DEFINE_SPINLOCK(napi_hash_lock); 195 196 static unsigned int napi_gen_id = NR_CPUS; 197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 198 199 static seqcount_t devnet_rename_seq; 200 201 static inline void dev_base_seq_inc(struct net *net) 202 { 203 while (++net->dev_base_seq == 0) 204 ; 205 } 206 207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 208 { 209 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 210 211 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 212 } 213 214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 215 { 216 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 217 } 218 219 static inline void rps_lock(struct softnet_data *sd) 220 { 221 #ifdef CONFIG_RPS 222 spin_lock(&sd->input_pkt_queue.lock); 223 #endif 224 } 225 226 static inline void rps_unlock(struct softnet_data *sd) 227 { 228 #ifdef CONFIG_RPS 229 spin_unlock(&sd->input_pkt_queue.lock); 230 #endif 231 } 232 233 /* Device list insertion */ 234 static void list_netdevice(struct net_device *dev) 235 { 236 struct net *net = dev_net(dev); 237 238 ASSERT_RTNL(); 239 240 write_lock_bh(&dev_base_lock); 241 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 242 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 243 hlist_add_head_rcu(&dev->index_hlist, 244 dev_index_hash(net, dev->ifindex)); 245 write_unlock_bh(&dev_base_lock); 246 247 dev_base_seq_inc(net); 248 } 249 250 /* Device list removal 251 * caller must respect a RCU grace period before freeing/reusing dev 252 */ 253 static void unlist_netdevice(struct net_device *dev) 254 { 255 ASSERT_RTNL(); 256 257 /* Unlink dev from the device chain */ 258 write_lock_bh(&dev_base_lock); 259 list_del_rcu(&dev->dev_list); 260 hlist_del_rcu(&dev->name_hlist); 261 hlist_del_rcu(&dev->index_hlist); 262 write_unlock_bh(&dev_base_lock); 263 264 dev_base_seq_inc(dev_net(dev)); 265 } 266 267 /* 268 * Our notifier list 269 */ 270 271 static RAW_NOTIFIER_HEAD(netdev_chain); 272 273 /* 274 * Device drivers call our routines to queue packets here. We empty the 275 * queue in the local softnet handler. 276 */ 277 278 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 279 EXPORT_PER_CPU_SYMBOL(softnet_data); 280 281 #ifdef CONFIG_LOCKDEP 282 /* 283 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 284 * according to dev->type 285 */ 286 static const unsigned short netdev_lock_type[] = { 287 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 288 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 289 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 290 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 291 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 292 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 293 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 294 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 295 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 296 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 297 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 298 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 299 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 300 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 301 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 302 303 static const char *const netdev_lock_name[] = { 304 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 305 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 306 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 307 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 308 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 309 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 310 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 311 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 312 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 313 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 314 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 315 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 316 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 317 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 318 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 319 320 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 321 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 322 323 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 324 { 325 int i; 326 327 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 328 if (netdev_lock_type[i] == dev_type) 329 return i; 330 /* the last key is used by default */ 331 return ARRAY_SIZE(netdev_lock_type) - 1; 332 } 333 334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 335 unsigned short dev_type) 336 { 337 int i; 338 339 i = netdev_lock_pos(dev_type); 340 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 341 netdev_lock_name[i]); 342 } 343 344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 345 { 346 int i; 347 348 i = netdev_lock_pos(dev->type); 349 lockdep_set_class_and_name(&dev->addr_list_lock, 350 &netdev_addr_lock_key[i], 351 netdev_lock_name[i]); 352 } 353 #else 354 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 355 unsigned short dev_type) 356 { 357 } 358 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 359 { 360 } 361 #endif 362 363 /******************************************************************************* 364 * 365 * Protocol management and registration routines 366 * 367 *******************************************************************************/ 368 369 370 /* 371 * Add a protocol ID to the list. Now that the input handler is 372 * smarter we can dispense with all the messy stuff that used to be 373 * here. 374 * 375 * BEWARE!!! Protocol handlers, mangling input packets, 376 * MUST BE last in hash buckets and checking protocol handlers 377 * MUST start from promiscuous ptype_all chain in net_bh. 378 * It is true now, do not change it. 379 * Explanation follows: if protocol handler, mangling packet, will 380 * be the first on list, it is not able to sense, that packet 381 * is cloned and should be copied-on-write, so that it will 382 * change it and subsequent readers will get broken packet. 383 * --ANK (980803) 384 */ 385 386 static inline struct list_head *ptype_head(const struct packet_type *pt) 387 { 388 if (pt->type == htons(ETH_P_ALL)) 389 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 390 else 391 return pt->dev ? &pt->dev->ptype_specific : 392 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 393 } 394 395 /** 396 * dev_add_pack - add packet handler 397 * @pt: packet type declaration 398 * 399 * Add a protocol handler to the networking stack. The passed &packet_type 400 * is linked into kernel lists and may not be freed until it has been 401 * removed from the kernel lists. 402 * 403 * This call does not sleep therefore it can not 404 * guarantee all CPU's that are in middle of receiving packets 405 * will see the new packet type (until the next received packet). 406 */ 407 408 void dev_add_pack(struct packet_type *pt) 409 { 410 struct list_head *head = ptype_head(pt); 411 412 spin_lock(&ptype_lock); 413 list_add_rcu(&pt->list, head); 414 spin_unlock(&ptype_lock); 415 } 416 EXPORT_SYMBOL(dev_add_pack); 417 418 /** 419 * __dev_remove_pack - remove packet handler 420 * @pt: packet type declaration 421 * 422 * Remove a protocol handler that was previously added to the kernel 423 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 424 * from the kernel lists and can be freed or reused once this function 425 * returns. 426 * 427 * The packet type might still be in use by receivers 428 * and must not be freed until after all the CPU's have gone 429 * through a quiescent state. 430 */ 431 void __dev_remove_pack(struct packet_type *pt) 432 { 433 struct list_head *head = ptype_head(pt); 434 struct packet_type *pt1; 435 436 spin_lock(&ptype_lock); 437 438 list_for_each_entry(pt1, head, list) { 439 if (pt == pt1) { 440 list_del_rcu(&pt->list); 441 goto out; 442 } 443 } 444 445 pr_warn("dev_remove_pack: %p not found\n", pt); 446 out: 447 spin_unlock(&ptype_lock); 448 } 449 EXPORT_SYMBOL(__dev_remove_pack); 450 451 /** 452 * dev_remove_pack - remove packet handler 453 * @pt: packet type declaration 454 * 455 * Remove a protocol handler that was previously added to the kernel 456 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 457 * from the kernel lists and can be freed or reused once this function 458 * returns. 459 * 460 * This call sleeps to guarantee that no CPU is looking at the packet 461 * type after return. 462 */ 463 void dev_remove_pack(struct packet_type *pt) 464 { 465 __dev_remove_pack(pt); 466 467 synchronize_net(); 468 } 469 EXPORT_SYMBOL(dev_remove_pack); 470 471 472 /** 473 * dev_add_offload - register offload handlers 474 * @po: protocol offload declaration 475 * 476 * Add protocol offload handlers to the networking stack. The passed 477 * &proto_offload is linked into kernel lists and may not be freed until 478 * it has been removed from the kernel lists. 479 * 480 * This call does not sleep therefore it can not 481 * guarantee all CPU's that are in middle of receiving packets 482 * will see the new offload handlers (until the next received packet). 483 */ 484 void dev_add_offload(struct packet_offload *po) 485 { 486 struct packet_offload *elem; 487 488 spin_lock(&offload_lock); 489 list_for_each_entry(elem, &offload_base, list) { 490 if (po->priority < elem->priority) 491 break; 492 } 493 list_add_rcu(&po->list, elem->list.prev); 494 spin_unlock(&offload_lock); 495 } 496 EXPORT_SYMBOL(dev_add_offload); 497 498 /** 499 * __dev_remove_offload - remove offload handler 500 * @po: packet offload declaration 501 * 502 * Remove a protocol offload handler that was previously added to the 503 * kernel offload handlers by dev_add_offload(). The passed &offload_type 504 * is removed from the kernel lists and can be freed or reused once this 505 * function returns. 506 * 507 * The packet type might still be in use by receivers 508 * and must not be freed until after all the CPU's have gone 509 * through a quiescent state. 510 */ 511 static void __dev_remove_offload(struct packet_offload *po) 512 { 513 struct list_head *head = &offload_base; 514 struct packet_offload *po1; 515 516 spin_lock(&offload_lock); 517 518 list_for_each_entry(po1, head, list) { 519 if (po == po1) { 520 list_del_rcu(&po->list); 521 goto out; 522 } 523 } 524 525 pr_warn("dev_remove_offload: %p not found\n", po); 526 out: 527 spin_unlock(&offload_lock); 528 } 529 530 /** 531 * dev_remove_offload - remove packet offload handler 532 * @po: packet offload declaration 533 * 534 * Remove a packet offload handler that was previously added to the kernel 535 * offload handlers by dev_add_offload(). The passed &offload_type is 536 * removed from the kernel lists and can be freed or reused once this 537 * function returns. 538 * 539 * This call sleeps to guarantee that no CPU is looking at the packet 540 * type after return. 541 */ 542 void dev_remove_offload(struct packet_offload *po) 543 { 544 __dev_remove_offload(po); 545 546 synchronize_net(); 547 } 548 EXPORT_SYMBOL(dev_remove_offload); 549 550 /****************************************************************************** 551 * 552 * Device Boot-time Settings Routines 553 * 554 ******************************************************************************/ 555 556 /* Boot time configuration table */ 557 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 558 559 /** 560 * netdev_boot_setup_add - add new setup entry 561 * @name: name of the device 562 * @map: configured settings for the device 563 * 564 * Adds new setup entry to the dev_boot_setup list. The function 565 * returns 0 on error and 1 on success. This is a generic routine to 566 * all netdevices. 567 */ 568 static int netdev_boot_setup_add(char *name, struct ifmap *map) 569 { 570 struct netdev_boot_setup *s; 571 int i; 572 573 s = dev_boot_setup; 574 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 575 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 576 memset(s[i].name, 0, sizeof(s[i].name)); 577 strlcpy(s[i].name, name, IFNAMSIZ); 578 memcpy(&s[i].map, map, sizeof(s[i].map)); 579 break; 580 } 581 } 582 583 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 584 } 585 586 /** 587 * netdev_boot_setup_check - check boot time settings 588 * @dev: the netdevice 589 * 590 * Check boot time settings for the device. 591 * The found settings are set for the device to be used 592 * later in the device probing. 593 * Returns 0 if no settings found, 1 if they are. 594 */ 595 int netdev_boot_setup_check(struct net_device *dev) 596 { 597 struct netdev_boot_setup *s = dev_boot_setup; 598 int i; 599 600 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 601 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 602 !strcmp(dev->name, s[i].name)) { 603 dev->irq = s[i].map.irq; 604 dev->base_addr = s[i].map.base_addr; 605 dev->mem_start = s[i].map.mem_start; 606 dev->mem_end = s[i].map.mem_end; 607 return 1; 608 } 609 } 610 return 0; 611 } 612 EXPORT_SYMBOL(netdev_boot_setup_check); 613 614 615 /** 616 * netdev_boot_base - get address from boot time settings 617 * @prefix: prefix for network device 618 * @unit: id for network device 619 * 620 * Check boot time settings for the base address of device. 621 * The found settings are set for the device to be used 622 * later in the device probing. 623 * Returns 0 if no settings found. 624 */ 625 unsigned long netdev_boot_base(const char *prefix, int unit) 626 { 627 const struct netdev_boot_setup *s = dev_boot_setup; 628 char name[IFNAMSIZ]; 629 int i; 630 631 sprintf(name, "%s%d", prefix, unit); 632 633 /* 634 * If device already registered then return base of 1 635 * to indicate not to probe for this interface 636 */ 637 if (__dev_get_by_name(&init_net, name)) 638 return 1; 639 640 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 641 if (!strcmp(name, s[i].name)) 642 return s[i].map.base_addr; 643 return 0; 644 } 645 646 /* 647 * Saves at boot time configured settings for any netdevice. 648 */ 649 int __init netdev_boot_setup(char *str) 650 { 651 int ints[5]; 652 struct ifmap map; 653 654 str = get_options(str, ARRAY_SIZE(ints), ints); 655 if (!str || !*str) 656 return 0; 657 658 /* Save settings */ 659 memset(&map, 0, sizeof(map)); 660 if (ints[0] > 0) 661 map.irq = ints[1]; 662 if (ints[0] > 1) 663 map.base_addr = ints[2]; 664 if (ints[0] > 2) 665 map.mem_start = ints[3]; 666 if (ints[0] > 3) 667 map.mem_end = ints[4]; 668 669 /* Add new entry to the list */ 670 return netdev_boot_setup_add(str, &map); 671 } 672 673 __setup("netdev=", netdev_boot_setup); 674 675 /******************************************************************************* 676 * 677 * Device Interface Subroutines 678 * 679 *******************************************************************************/ 680 681 /** 682 * dev_get_iflink - get 'iflink' value of a interface 683 * @dev: targeted interface 684 * 685 * Indicates the ifindex the interface is linked to. 686 * Physical interfaces have the same 'ifindex' and 'iflink' values. 687 */ 688 689 int dev_get_iflink(const struct net_device *dev) 690 { 691 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 692 return dev->netdev_ops->ndo_get_iflink(dev); 693 694 return dev->ifindex; 695 } 696 EXPORT_SYMBOL(dev_get_iflink); 697 698 /** 699 * dev_fill_metadata_dst - Retrieve tunnel egress information. 700 * @dev: targeted interface 701 * @skb: The packet. 702 * 703 * For better visibility of tunnel traffic OVS needs to retrieve 704 * egress tunnel information for a packet. Following API allows 705 * user to get this info. 706 */ 707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 708 { 709 struct ip_tunnel_info *info; 710 711 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 712 return -EINVAL; 713 714 info = skb_tunnel_info_unclone(skb); 715 if (!info) 716 return -ENOMEM; 717 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 718 return -EINVAL; 719 720 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 721 } 722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 723 724 /** 725 * __dev_get_by_name - find a device by its name 726 * @net: the applicable net namespace 727 * @name: name to find 728 * 729 * Find an interface by name. Must be called under RTNL semaphore 730 * or @dev_base_lock. If the name is found a pointer to the device 731 * is returned. If the name is not found then %NULL is returned. The 732 * reference counters are not incremented so the caller must be 733 * careful with locks. 734 */ 735 736 struct net_device *__dev_get_by_name(struct net *net, const char *name) 737 { 738 struct net_device *dev; 739 struct hlist_head *head = dev_name_hash(net, name); 740 741 hlist_for_each_entry(dev, head, name_hlist) 742 if (!strncmp(dev->name, name, IFNAMSIZ)) 743 return dev; 744 745 return NULL; 746 } 747 EXPORT_SYMBOL(__dev_get_by_name); 748 749 /** 750 * dev_get_by_name_rcu - find a device by its name 751 * @net: the applicable net namespace 752 * @name: name to find 753 * 754 * Find an interface by name. 755 * If the name is found a pointer to the device is returned. 756 * If the name is not found then %NULL is returned. 757 * The reference counters are not incremented so the caller must be 758 * careful with locks. The caller must hold RCU lock. 759 */ 760 761 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 762 { 763 struct net_device *dev; 764 struct hlist_head *head = dev_name_hash(net, name); 765 766 hlist_for_each_entry_rcu(dev, head, name_hlist) 767 if (!strncmp(dev->name, name, IFNAMSIZ)) 768 return dev; 769 770 return NULL; 771 } 772 EXPORT_SYMBOL(dev_get_by_name_rcu); 773 774 /** 775 * dev_get_by_name - find a device by its name 776 * @net: the applicable net namespace 777 * @name: name to find 778 * 779 * Find an interface by name. This can be called from any 780 * context and does its own locking. The returned handle has 781 * the usage count incremented and the caller must use dev_put() to 782 * release it when it is no longer needed. %NULL is returned if no 783 * matching device is found. 784 */ 785 786 struct net_device *dev_get_by_name(struct net *net, const char *name) 787 { 788 struct net_device *dev; 789 790 rcu_read_lock(); 791 dev = dev_get_by_name_rcu(net, name); 792 if (dev) 793 dev_hold(dev); 794 rcu_read_unlock(); 795 return dev; 796 } 797 EXPORT_SYMBOL(dev_get_by_name); 798 799 /** 800 * __dev_get_by_index - find a device by its ifindex 801 * @net: the applicable net namespace 802 * @ifindex: index of device 803 * 804 * Search for an interface by index. Returns %NULL if the device 805 * is not found or a pointer to the device. The device has not 806 * had its reference counter increased so the caller must be careful 807 * about locking. The caller must hold either the RTNL semaphore 808 * or @dev_base_lock. 809 */ 810 811 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 812 { 813 struct net_device *dev; 814 struct hlist_head *head = dev_index_hash(net, ifindex); 815 816 hlist_for_each_entry(dev, head, index_hlist) 817 if (dev->ifindex == ifindex) 818 return dev; 819 820 return NULL; 821 } 822 EXPORT_SYMBOL(__dev_get_by_index); 823 824 /** 825 * dev_get_by_index_rcu - find a device by its ifindex 826 * @net: the applicable net namespace 827 * @ifindex: index of device 828 * 829 * Search for an interface by index. Returns %NULL if the device 830 * is not found or a pointer to the device. The device has not 831 * had its reference counter increased so the caller must be careful 832 * about locking. The caller must hold RCU lock. 833 */ 834 835 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 836 { 837 struct net_device *dev; 838 struct hlist_head *head = dev_index_hash(net, ifindex); 839 840 hlist_for_each_entry_rcu(dev, head, index_hlist) 841 if (dev->ifindex == ifindex) 842 return dev; 843 844 return NULL; 845 } 846 EXPORT_SYMBOL(dev_get_by_index_rcu); 847 848 849 /** 850 * dev_get_by_index - find a device by its ifindex 851 * @net: the applicable net namespace 852 * @ifindex: index of device 853 * 854 * Search for an interface by index. Returns NULL if the device 855 * is not found or a pointer to the device. The device returned has 856 * had a reference added and the pointer is safe until the user calls 857 * dev_put to indicate they have finished with it. 858 */ 859 860 struct net_device *dev_get_by_index(struct net *net, int ifindex) 861 { 862 struct net_device *dev; 863 864 rcu_read_lock(); 865 dev = dev_get_by_index_rcu(net, ifindex); 866 if (dev) 867 dev_hold(dev); 868 rcu_read_unlock(); 869 return dev; 870 } 871 EXPORT_SYMBOL(dev_get_by_index); 872 873 /** 874 * dev_get_by_napi_id - find a device by napi_id 875 * @napi_id: ID of the NAPI struct 876 * 877 * Search for an interface by NAPI ID. Returns %NULL if the device 878 * is not found or a pointer to the device. The device has not had 879 * its reference counter increased so the caller must be careful 880 * about locking. The caller must hold RCU lock. 881 */ 882 883 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 884 { 885 struct napi_struct *napi; 886 887 WARN_ON_ONCE(!rcu_read_lock_held()); 888 889 if (napi_id < MIN_NAPI_ID) 890 return NULL; 891 892 napi = napi_by_id(napi_id); 893 894 return napi ? napi->dev : NULL; 895 } 896 EXPORT_SYMBOL(dev_get_by_napi_id); 897 898 /** 899 * netdev_get_name - get a netdevice name, knowing its ifindex. 900 * @net: network namespace 901 * @name: a pointer to the buffer where the name will be stored. 902 * @ifindex: the ifindex of the interface to get the name from. 903 * 904 * The use of raw_seqcount_begin() and cond_resched() before 905 * retrying is required as we want to give the writers a chance 906 * to complete when CONFIG_PREEMPT is not set. 907 */ 908 int netdev_get_name(struct net *net, char *name, int ifindex) 909 { 910 struct net_device *dev; 911 unsigned int seq; 912 913 retry: 914 seq = raw_seqcount_begin(&devnet_rename_seq); 915 rcu_read_lock(); 916 dev = dev_get_by_index_rcu(net, ifindex); 917 if (!dev) { 918 rcu_read_unlock(); 919 return -ENODEV; 920 } 921 922 strcpy(name, dev->name); 923 rcu_read_unlock(); 924 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 925 cond_resched(); 926 goto retry; 927 } 928 929 return 0; 930 } 931 932 /** 933 * dev_getbyhwaddr_rcu - find a device by its hardware address 934 * @net: the applicable net namespace 935 * @type: media type of device 936 * @ha: hardware address 937 * 938 * Search for an interface by MAC address. Returns NULL if the device 939 * is not found or a pointer to the device. 940 * The caller must hold RCU or RTNL. 941 * The returned device has not had its ref count increased 942 * and the caller must therefore be careful about locking 943 * 944 */ 945 946 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 947 const char *ha) 948 { 949 struct net_device *dev; 950 951 for_each_netdev_rcu(net, dev) 952 if (dev->type == type && 953 !memcmp(dev->dev_addr, ha, dev->addr_len)) 954 return dev; 955 956 return NULL; 957 } 958 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 959 960 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 961 { 962 struct net_device *dev; 963 964 ASSERT_RTNL(); 965 for_each_netdev(net, dev) 966 if (dev->type == type) 967 return dev; 968 969 return NULL; 970 } 971 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 972 973 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 974 { 975 struct net_device *dev, *ret = NULL; 976 977 rcu_read_lock(); 978 for_each_netdev_rcu(net, dev) 979 if (dev->type == type) { 980 dev_hold(dev); 981 ret = dev; 982 break; 983 } 984 rcu_read_unlock(); 985 return ret; 986 } 987 EXPORT_SYMBOL(dev_getfirstbyhwtype); 988 989 /** 990 * __dev_get_by_flags - find any device with given flags 991 * @net: the applicable net namespace 992 * @if_flags: IFF_* values 993 * @mask: bitmask of bits in if_flags to check 994 * 995 * Search for any interface with the given flags. Returns NULL if a device 996 * is not found or a pointer to the device. Must be called inside 997 * rtnl_lock(), and result refcount is unchanged. 998 */ 999 1000 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 1001 unsigned short mask) 1002 { 1003 struct net_device *dev, *ret; 1004 1005 ASSERT_RTNL(); 1006 1007 ret = NULL; 1008 for_each_netdev(net, dev) { 1009 if (((dev->flags ^ if_flags) & mask) == 0) { 1010 ret = dev; 1011 break; 1012 } 1013 } 1014 return ret; 1015 } 1016 EXPORT_SYMBOL(__dev_get_by_flags); 1017 1018 /** 1019 * dev_valid_name - check if name is okay for network device 1020 * @name: name string 1021 * 1022 * Network device names need to be valid file names to 1023 * to allow sysfs to work. We also disallow any kind of 1024 * whitespace. 1025 */ 1026 bool dev_valid_name(const char *name) 1027 { 1028 if (*name == '\0') 1029 return false; 1030 if (strlen(name) >= IFNAMSIZ) 1031 return false; 1032 if (!strcmp(name, ".") || !strcmp(name, "..")) 1033 return false; 1034 1035 while (*name) { 1036 if (*name == '/' || *name == ':' || isspace(*name)) 1037 return false; 1038 name++; 1039 } 1040 return true; 1041 } 1042 EXPORT_SYMBOL(dev_valid_name); 1043 1044 /** 1045 * __dev_alloc_name - allocate a name for a device 1046 * @net: network namespace to allocate the device name in 1047 * @name: name format string 1048 * @buf: scratch buffer and result name string 1049 * 1050 * Passed a format string - eg "lt%d" it will try and find a suitable 1051 * id. It scans list of devices to build up a free map, then chooses 1052 * the first empty slot. The caller must hold the dev_base or rtnl lock 1053 * while allocating the name and adding the device in order to avoid 1054 * duplicates. 1055 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1056 * Returns the number of the unit assigned or a negative errno code. 1057 */ 1058 1059 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1060 { 1061 int i = 0; 1062 const char *p; 1063 const int max_netdevices = 8*PAGE_SIZE; 1064 unsigned long *inuse; 1065 struct net_device *d; 1066 1067 if (!dev_valid_name(name)) 1068 return -EINVAL; 1069 1070 p = strchr(name, '%'); 1071 if (p) { 1072 /* 1073 * Verify the string as this thing may have come from 1074 * the user. There must be either one "%d" and no other "%" 1075 * characters. 1076 */ 1077 if (p[1] != 'd' || strchr(p + 2, '%')) 1078 return -EINVAL; 1079 1080 /* Use one page as a bit array of possible slots */ 1081 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1082 if (!inuse) 1083 return -ENOMEM; 1084 1085 for_each_netdev(net, d) { 1086 if (!sscanf(d->name, name, &i)) 1087 continue; 1088 if (i < 0 || i >= max_netdevices) 1089 continue; 1090 1091 /* avoid cases where sscanf is not exact inverse of printf */ 1092 snprintf(buf, IFNAMSIZ, name, i); 1093 if (!strncmp(buf, d->name, IFNAMSIZ)) 1094 set_bit(i, inuse); 1095 } 1096 1097 i = find_first_zero_bit(inuse, max_netdevices); 1098 free_page((unsigned long) inuse); 1099 } 1100 1101 snprintf(buf, IFNAMSIZ, name, i); 1102 if (!__dev_get_by_name(net, buf)) 1103 return i; 1104 1105 /* It is possible to run out of possible slots 1106 * when the name is long and there isn't enough space left 1107 * for the digits, or if all bits are used. 1108 */ 1109 return -ENFILE; 1110 } 1111 1112 static int dev_alloc_name_ns(struct net *net, 1113 struct net_device *dev, 1114 const char *name) 1115 { 1116 char buf[IFNAMSIZ]; 1117 int ret; 1118 1119 BUG_ON(!net); 1120 ret = __dev_alloc_name(net, name, buf); 1121 if (ret >= 0) 1122 strlcpy(dev->name, buf, IFNAMSIZ); 1123 return ret; 1124 } 1125 1126 /** 1127 * dev_alloc_name - allocate a name for a device 1128 * @dev: device 1129 * @name: name format string 1130 * 1131 * Passed a format string - eg "lt%d" it will try and find a suitable 1132 * id. It scans list of devices to build up a free map, then chooses 1133 * the first empty slot. The caller must hold the dev_base or rtnl lock 1134 * while allocating the name and adding the device in order to avoid 1135 * duplicates. 1136 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1137 * Returns the number of the unit assigned or a negative errno code. 1138 */ 1139 1140 int dev_alloc_name(struct net_device *dev, const char *name) 1141 { 1142 return dev_alloc_name_ns(dev_net(dev), dev, name); 1143 } 1144 EXPORT_SYMBOL(dev_alloc_name); 1145 1146 int dev_get_valid_name(struct net *net, struct net_device *dev, 1147 const char *name) 1148 { 1149 BUG_ON(!net); 1150 1151 if (!dev_valid_name(name)) 1152 return -EINVAL; 1153 1154 if (strchr(name, '%')) 1155 return dev_alloc_name_ns(net, dev, name); 1156 else if (__dev_get_by_name(net, name)) 1157 return -EEXIST; 1158 else if (dev->name != name) 1159 strlcpy(dev->name, name, IFNAMSIZ); 1160 1161 return 0; 1162 } 1163 EXPORT_SYMBOL(dev_get_valid_name); 1164 1165 /** 1166 * dev_change_name - change name of a device 1167 * @dev: device 1168 * @newname: name (or format string) must be at least IFNAMSIZ 1169 * 1170 * Change name of a device, can pass format strings "eth%d". 1171 * for wildcarding. 1172 */ 1173 int dev_change_name(struct net_device *dev, const char *newname) 1174 { 1175 unsigned char old_assign_type; 1176 char oldname[IFNAMSIZ]; 1177 int err = 0; 1178 int ret; 1179 struct net *net; 1180 1181 ASSERT_RTNL(); 1182 BUG_ON(!dev_net(dev)); 1183 1184 net = dev_net(dev); 1185 if (dev->flags & IFF_UP) 1186 return -EBUSY; 1187 1188 write_seqcount_begin(&devnet_rename_seq); 1189 1190 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1191 write_seqcount_end(&devnet_rename_seq); 1192 return 0; 1193 } 1194 1195 memcpy(oldname, dev->name, IFNAMSIZ); 1196 1197 err = dev_get_valid_name(net, dev, newname); 1198 if (err < 0) { 1199 write_seqcount_end(&devnet_rename_seq); 1200 return err; 1201 } 1202 1203 if (oldname[0] && !strchr(oldname, '%')) 1204 netdev_info(dev, "renamed from %s\n", oldname); 1205 1206 old_assign_type = dev->name_assign_type; 1207 dev->name_assign_type = NET_NAME_RENAMED; 1208 1209 rollback: 1210 ret = device_rename(&dev->dev, dev->name); 1211 if (ret) { 1212 memcpy(dev->name, oldname, IFNAMSIZ); 1213 dev->name_assign_type = old_assign_type; 1214 write_seqcount_end(&devnet_rename_seq); 1215 return ret; 1216 } 1217 1218 write_seqcount_end(&devnet_rename_seq); 1219 1220 netdev_adjacent_rename_links(dev, oldname); 1221 1222 write_lock_bh(&dev_base_lock); 1223 hlist_del_rcu(&dev->name_hlist); 1224 write_unlock_bh(&dev_base_lock); 1225 1226 synchronize_rcu(); 1227 1228 write_lock_bh(&dev_base_lock); 1229 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1230 write_unlock_bh(&dev_base_lock); 1231 1232 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1233 ret = notifier_to_errno(ret); 1234 1235 if (ret) { 1236 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1237 if (err >= 0) { 1238 err = ret; 1239 write_seqcount_begin(&devnet_rename_seq); 1240 memcpy(dev->name, oldname, IFNAMSIZ); 1241 memcpy(oldname, newname, IFNAMSIZ); 1242 dev->name_assign_type = old_assign_type; 1243 old_assign_type = NET_NAME_RENAMED; 1244 goto rollback; 1245 } else { 1246 pr_err("%s: name change rollback failed: %d\n", 1247 dev->name, ret); 1248 } 1249 } 1250 1251 return err; 1252 } 1253 1254 /** 1255 * dev_set_alias - change ifalias of a device 1256 * @dev: device 1257 * @alias: name up to IFALIASZ 1258 * @len: limit of bytes to copy from info 1259 * 1260 * Set ifalias for a device, 1261 */ 1262 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1263 { 1264 struct dev_ifalias *new_alias = NULL; 1265 1266 if (len >= IFALIASZ) 1267 return -EINVAL; 1268 1269 if (len) { 1270 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1271 if (!new_alias) 1272 return -ENOMEM; 1273 1274 memcpy(new_alias->ifalias, alias, len); 1275 new_alias->ifalias[len] = 0; 1276 } 1277 1278 mutex_lock(&ifalias_mutex); 1279 rcu_swap_protected(dev->ifalias, new_alias, 1280 mutex_is_locked(&ifalias_mutex)); 1281 mutex_unlock(&ifalias_mutex); 1282 1283 if (new_alias) 1284 kfree_rcu(new_alias, rcuhead); 1285 1286 return len; 1287 } 1288 1289 /** 1290 * dev_get_alias - get ifalias of a device 1291 * @dev: device 1292 * @name: buffer to store name of ifalias 1293 * @len: size of buffer 1294 * 1295 * get ifalias for a device. Caller must make sure dev cannot go 1296 * away, e.g. rcu read lock or own a reference count to device. 1297 */ 1298 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1299 { 1300 const struct dev_ifalias *alias; 1301 int ret = 0; 1302 1303 rcu_read_lock(); 1304 alias = rcu_dereference(dev->ifalias); 1305 if (alias) 1306 ret = snprintf(name, len, "%s", alias->ifalias); 1307 rcu_read_unlock(); 1308 1309 return ret; 1310 } 1311 1312 /** 1313 * netdev_features_change - device changes features 1314 * @dev: device to cause notification 1315 * 1316 * Called to indicate a device has changed features. 1317 */ 1318 void netdev_features_change(struct net_device *dev) 1319 { 1320 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1321 } 1322 EXPORT_SYMBOL(netdev_features_change); 1323 1324 /** 1325 * netdev_state_change - device changes state 1326 * @dev: device to cause notification 1327 * 1328 * Called to indicate a device has changed state. This function calls 1329 * the notifier chains for netdev_chain and sends a NEWLINK message 1330 * to the routing socket. 1331 */ 1332 void netdev_state_change(struct net_device *dev) 1333 { 1334 if (dev->flags & IFF_UP) { 1335 struct netdev_notifier_change_info change_info = { 1336 .info.dev = dev, 1337 }; 1338 1339 call_netdevice_notifiers_info(NETDEV_CHANGE, 1340 &change_info.info); 1341 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1342 } 1343 } 1344 EXPORT_SYMBOL(netdev_state_change); 1345 1346 /** 1347 * netdev_notify_peers - notify network peers about existence of @dev 1348 * @dev: network device 1349 * 1350 * Generate traffic such that interested network peers are aware of 1351 * @dev, such as by generating a gratuitous ARP. This may be used when 1352 * a device wants to inform the rest of the network about some sort of 1353 * reconfiguration such as a failover event or virtual machine 1354 * migration. 1355 */ 1356 void netdev_notify_peers(struct net_device *dev) 1357 { 1358 rtnl_lock(); 1359 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1360 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1361 rtnl_unlock(); 1362 } 1363 EXPORT_SYMBOL(netdev_notify_peers); 1364 1365 static int __dev_open(struct net_device *dev) 1366 { 1367 const struct net_device_ops *ops = dev->netdev_ops; 1368 int ret; 1369 1370 ASSERT_RTNL(); 1371 1372 if (!netif_device_present(dev)) 1373 return -ENODEV; 1374 1375 /* Block netpoll from trying to do any rx path servicing. 1376 * If we don't do this there is a chance ndo_poll_controller 1377 * or ndo_poll may be running while we open the device 1378 */ 1379 netpoll_poll_disable(dev); 1380 1381 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1382 ret = notifier_to_errno(ret); 1383 if (ret) 1384 return ret; 1385 1386 set_bit(__LINK_STATE_START, &dev->state); 1387 1388 if (ops->ndo_validate_addr) 1389 ret = ops->ndo_validate_addr(dev); 1390 1391 if (!ret && ops->ndo_open) 1392 ret = ops->ndo_open(dev); 1393 1394 netpoll_poll_enable(dev); 1395 1396 if (ret) 1397 clear_bit(__LINK_STATE_START, &dev->state); 1398 else { 1399 dev->flags |= IFF_UP; 1400 dev_set_rx_mode(dev); 1401 dev_activate(dev); 1402 add_device_randomness(dev->dev_addr, dev->addr_len); 1403 } 1404 1405 return ret; 1406 } 1407 1408 /** 1409 * dev_open - prepare an interface for use. 1410 * @dev: device to open 1411 * 1412 * Takes a device from down to up state. The device's private open 1413 * function is invoked and then the multicast lists are loaded. Finally 1414 * the device is moved into the up state and a %NETDEV_UP message is 1415 * sent to the netdev notifier chain. 1416 * 1417 * Calling this function on an active interface is a nop. On a failure 1418 * a negative errno code is returned. 1419 */ 1420 int dev_open(struct net_device *dev) 1421 { 1422 int ret; 1423 1424 if (dev->flags & IFF_UP) 1425 return 0; 1426 1427 ret = __dev_open(dev); 1428 if (ret < 0) 1429 return ret; 1430 1431 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1432 call_netdevice_notifiers(NETDEV_UP, dev); 1433 1434 return ret; 1435 } 1436 EXPORT_SYMBOL(dev_open); 1437 1438 static void __dev_close_many(struct list_head *head) 1439 { 1440 struct net_device *dev; 1441 1442 ASSERT_RTNL(); 1443 might_sleep(); 1444 1445 list_for_each_entry(dev, head, close_list) { 1446 /* Temporarily disable netpoll until the interface is down */ 1447 netpoll_poll_disable(dev); 1448 1449 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1450 1451 clear_bit(__LINK_STATE_START, &dev->state); 1452 1453 /* Synchronize to scheduled poll. We cannot touch poll list, it 1454 * can be even on different cpu. So just clear netif_running(). 1455 * 1456 * dev->stop() will invoke napi_disable() on all of it's 1457 * napi_struct instances on this device. 1458 */ 1459 smp_mb__after_atomic(); /* Commit netif_running(). */ 1460 } 1461 1462 dev_deactivate_many(head); 1463 1464 list_for_each_entry(dev, head, close_list) { 1465 const struct net_device_ops *ops = dev->netdev_ops; 1466 1467 /* 1468 * Call the device specific close. This cannot fail. 1469 * Only if device is UP 1470 * 1471 * We allow it to be called even after a DETACH hot-plug 1472 * event. 1473 */ 1474 if (ops->ndo_stop) 1475 ops->ndo_stop(dev); 1476 1477 dev->flags &= ~IFF_UP; 1478 netpoll_poll_enable(dev); 1479 } 1480 } 1481 1482 static void __dev_close(struct net_device *dev) 1483 { 1484 LIST_HEAD(single); 1485 1486 list_add(&dev->close_list, &single); 1487 __dev_close_many(&single); 1488 list_del(&single); 1489 } 1490 1491 void dev_close_many(struct list_head *head, bool unlink) 1492 { 1493 struct net_device *dev, *tmp; 1494 1495 /* Remove the devices that don't need to be closed */ 1496 list_for_each_entry_safe(dev, tmp, head, close_list) 1497 if (!(dev->flags & IFF_UP)) 1498 list_del_init(&dev->close_list); 1499 1500 __dev_close_many(head); 1501 1502 list_for_each_entry_safe(dev, tmp, head, close_list) { 1503 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1504 call_netdevice_notifiers(NETDEV_DOWN, dev); 1505 if (unlink) 1506 list_del_init(&dev->close_list); 1507 } 1508 } 1509 EXPORT_SYMBOL(dev_close_many); 1510 1511 /** 1512 * dev_close - shutdown an interface. 1513 * @dev: device to shutdown 1514 * 1515 * This function moves an active device into down state. A 1516 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1517 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1518 * chain. 1519 */ 1520 void dev_close(struct net_device *dev) 1521 { 1522 if (dev->flags & IFF_UP) { 1523 LIST_HEAD(single); 1524 1525 list_add(&dev->close_list, &single); 1526 dev_close_many(&single, true); 1527 list_del(&single); 1528 } 1529 } 1530 EXPORT_SYMBOL(dev_close); 1531 1532 1533 /** 1534 * dev_disable_lro - disable Large Receive Offload on a device 1535 * @dev: device 1536 * 1537 * Disable Large Receive Offload (LRO) on a net device. Must be 1538 * called under RTNL. This is needed if received packets may be 1539 * forwarded to another interface. 1540 */ 1541 void dev_disable_lro(struct net_device *dev) 1542 { 1543 struct net_device *lower_dev; 1544 struct list_head *iter; 1545 1546 dev->wanted_features &= ~NETIF_F_LRO; 1547 netdev_update_features(dev); 1548 1549 if (unlikely(dev->features & NETIF_F_LRO)) 1550 netdev_WARN(dev, "failed to disable LRO!\n"); 1551 1552 netdev_for_each_lower_dev(dev, lower_dev, iter) 1553 dev_disable_lro(lower_dev); 1554 } 1555 EXPORT_SYMBOL(dev_disable_lro); 1556 1557 /** 1558 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1559 * @dev: device 1560 * 1561 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1562 * called under RTNL. This is needed if Generic XDP is installed on 1563 * the device. 1564 */ 1565 static void dev_disable_gro_hw(struct net_device *dev) 1566 { 1567 dev->wanted_features &= ~NETIF_F_GRO_HW; 1568 netdev_update_features(dev); 1569 1570 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1571 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1572 } 1573 1574 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1575 struct net_device *dev) 1576 { 1577 struct netdev_notifier_info info = { 1578 .dev = dev, 1579 }; 1580 1581 return nb->notifier_call(nb, val, &info); 1582 } 1583 1584 static int dev_boot_phase = 1; 1585 1586 /** 1587 * register_netdevice_notifier - register a network notifier block 1588 * @nb: notifier 1589 * 1590 * Register a notifier to be called when network device events occur. 1591 * The notifier passed is linked into the kernel structures and must 1592 * not be reused until it has been unregistered. A negative errno code 1593 * is returned on a failure. 1594 * 1595 * When registered all registration and up events are replayed 1596 * to the new notifier to allow device to have a race free 1597 * view of the network device list. 1598 */ 1599 1600 int register_netdevice_notifier(struct notifier_block *nb) 1601 { 1602 struct net_device *dev; 1603 struct net_device *last; 1604 struct net *net; 1605 int err; 1606 1607 rtnl_lock(); 1608 err = raw_notifier_chain_register(&netdev_chain, nb); 1609 if (err) 1610 goto unlock; 1611 if (dev_boot_phase) 1612 goto unlock; 1613 for_each_net(net) { 1614 for_each_netdev(net, dev) { 1615 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1616 err = notifier_to_errno(err); 1617 if (err) 1618 goto rollback; 1619 1620 if (!(dev->flags & IFF_UP)) 1621 continue; 1622 1623 call_netdevice_notifier(nb, NETDEV_UP, dev); 1624 } 1625 } 1626 1627 unlock: 1628 rtnl_unlock(); 1629 return err; 1630 1631 rollback: 1632 last = dev; 1633 for_each_net(net) { 1634 for_each_netdev(net, dev) { 1635 if (dev == last) 1636 goto outroll; 1637 1638 if (dev->flags & IFF_UP) { 1639 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1640 dev); 1641 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1642 } 1643 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1644 } 1645 } 1646 1647 outroll: 1648 raw_notifier_chain_unregister(&netdev_chain, nb); 1649 goto unlock; 1650 } 1651 EXPORT_SYMBOL(register_netdevice_notifier); 1652 1653 /** 1654 * unregister_netdevice_notifier - unregister a network notifier block 1655 * @nb: notifier 1656 * 1657 * Unregister a notifier previously registered by 1658 * register_netdevice_notifier(). The notifier is unlinked into the 1659 * kernel structures and may then be reused. A negative errno code 1660 * is returned on a failure. 1661 * 1662 * After unregistering unregister and down device events are synthesized 1663 * for all devices on the device list to the removed notifier to remove 1664 * the need for special case cleanup code. 1665 */ 1666 1667 int unregister_netdevice_notifier(struct notifier_block *nb) 1668 { 1669 struct net_device *dev; 1670 struct net *net; 1671 int err; 1672 1673 rtnl_lock(); 1674 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1675 if (err) 1676 goto unlock; 1677 1678 for_each_net(net) { 1679 for_each_netdev(net, dev) { 1680 if (dev->flags & IFF_UP) { 1681 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1682 dev); 1683 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1684 } 1685 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1686 } 1687 } 1688 unlock: 1689 rtnl_unlock(); 1690 return err; 1691 } 1692 EXPORT_SYMBOL(unregister_netdevice_notifier); 1693 1694 /** 1695 * call_netdevice_notifiers_info - call all network notifier blocks 1696 * @val: value passed unmodified to notifier function 1697 * @info: notifier information data 1698 * 1699 * Call all network notifier blocks. Parameters and return value 1700 * are as for raw_notifier_call_chain(). 1701 */ 1702 1703 static int call_netdevice_notifiers_info(unsigned long val, 1704 struct netdev_notifier_info *info) 1705 { 1706 ASSERT_RTNL(); 1707 return raw_notifier_call_chain(&netdev_chain, val, info); 1708 } 1709 1710 /** 1711 * call_netdevice_notifiers - call all network notifier blocks 1712 * @val: value passed unmodified to notifier function 1713 * @dev: net_device pointer passed unmodified to notifier function 1714 * 1715 * Call all network notifier blocks. Parameters and return value 1716 * are as for raw_notifier_call_chain(). 1717 */ 1718 1719 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1720 { 1721 struct netdev_notifier_info info = { 1722 .dev = dev, 1723 }; 1724 1725 return call_netdevice_notifiers_info(val, &info); 1726 } 1727 EXPORT_SYMBOL(call_netdevice_notifiers); 1728 1729 #ifdef CONFIG_NET_INGRESS 1730 static struct static_key ingress_needed __read_mostly; 1731 1732 void net_inc_ingress_queue(void) 1733 { 1734 static_key_slow_inc(&ingress_needed); 1735 } 1736 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 1737 1738 void net_dec_ingress_queue(void) 1739 { 1740 static_key_slow_dec(&ingress_needed); 1741 } 1742 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 1743 #endif 1744 1745 #ifdef CONFIG_NET_EGRESS 1746 static struct static_key egress_needed __read_mostly; 1747 1748 void net_inc_egress_queue(void) 1749 { 1750 static_key_slow_inc(&egress_needed); 1751 } 1752 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 1753 1754 void net_dec_egress_queue(void) 1755 { 1756 static_key_slow_dec(&egress_needed); 1757 } 1758 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 1759 #endif 1760 1761 static struct static_key netstamp_needed __read_mostly; 1762 #ifdef HAVE_JUMP_LABEL 1763 static atomic_t netstamp_needed_deferred; 1764 static atomic_t netstamp_wanted; 1765 static void netstamp_clear(struct work_struct *work) 1766 { 1767 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1768 int wanted; 1769 1770 wanted = atomic_add_return(deferred, &netstamp_wanted); 1771 if (wanted > 0) 1772 static_key_enable(&netstamp_needed); 1773 else 1774 static_key_disable(&netstamp_needed); 1775 } 1776 static DECLARE_WORK(netstamp_work, netstamp_clear); 1777 #endif 1778 1779 void net_enable_timestamp(void) 1780 { 1781 #ifdef HAVE_JUMP_LABEL 1782 int wanted; 1783 1784 while (1) { 1785 wanted = atomic_read(&netstamp_wanted); 1786 if (wanted <= 0) 1787 break; 1788 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 1789 return; 1790 } 1791 atomic_inc(&netstamp_needed_deferred); 1792 schedule_work(&netstamp_work); 1793 #else 1794 static_key_slow_inc(&netstamp_needed); 1795 #endif 1796 } 1797 EXPORT_SYMBOL(net_enable_timestamp); 1798 1799 void net_disable_timestamp(void) 1800 { 1801 #ifdef HAVE_JUMP_LABEL 1802 int wanted; 1803 1804 while (1) { 1805 wanted = atomic_read(&netstamp_wanted); 1806 if (wanted <= 1) 1807 break; 1808 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 1809 return; 1810 } 1811 atomic_dec(&netstamp_needed_deferred); 1812 schedule_work(&netstamp_work); 1813 #else 1814 static_key_slow_dec(&netstamp_needed); 1815 #endif 1816 } 1817 EXPORT_SYMBOL(net_disable_timestamp); 1818 1819 static inline void net_timestamp_set(struct sk_buff *skb) 1820 { 1821 skb->tstamp = 0; 1822 if (static_key_false(&netstamp_needed)) 1823 __net_timestamp(skb); 1824 } 1825 1826 #define net_timestamp_check(COND, SKB) \ 1827 if (static_key_false(&netstamp_needed)) { \ 1828 if ((COND) && !(SKB)->tstamp) \ 1829 __net_timestamp(SKB); \ 1830 } \ 1831 1832 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 1833 { 1834 unsigned int len; 1835 1836 if (!(dev->flags & IFF_UP)) 1837 return false; 1838 1839 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1840 if (skb->len <= len) 1841 return true; 1842 1843 /* if TSO is enabled, we don't care about the length as the packet 1844 * could be forwarded without being segmented before 1845 */ 1846 if (skb_is_gso(skb)) 1847 return true; 1848 1849 return false; 1850 } 1851 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1852 1853 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1854 { 1855 int ret = ____dev_forward_skb(dev, skb); 1856 1857 if (likely(!ret)) { 1858 skb->protocol = eth_type_trans(skb, dev); 1859 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 1860 } 1861 1862 return ret; 1863 } 1864 EXPORT_SYMBOL_GPL(__dev_forward_skb); 1865 1866 /** 1867 * dev_forward_skb - loopback an skb to another netif 1868 * 1869 * @dev: destination network device 1870 * @skb: buffer to forward 1871 * 1872 * return values: 1873 * NET_RX_SUCCESS (no congestion) 1874 * NET_RX_DROP (packet was dropped, but freed) 1875 * 1876 * dev_forward_skb can be used for injecting an skb from the 1877 * start_xmit function of one device into the receive queue 1878 * of another device. 1879 * 1880 * The receiving device may be in another namespace, so 1881 * we have to clear all information in the skb that could 1882 * impact namespace isolation. 1883 */ 1884 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1885 { 1886 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1887 } 1888 EXPORT_SYMBOL_GPL(dev_forward_skb); 1889 1890 static inline int deliver_skb(struct sk_buff *skb, 1891 struct packet_type *pt_prev, 1892 struct net_device *orig_dev) 1893 { 1894 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 1895 return -ENOMEM; 1896 refcount_inc(&skb->users); 1897 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1898 } 1899 1900 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 1901 struct packet_type **pt, 1902 struct net_device *orig_dev, 1903 __be16 type, 1904 struct list_head *ptype_list) 1905 { 1906 struct packet_type *ptype, *pt_prev = *pt; 1907 1908 list_for_each_entry_rcu(ptype, ptype_list, list) { 1909 if (ptype->type != type) 1910 continue; 1911 if (pt_prev) 1912 deliver_skb(skb, pt_prev, orig_dev); 1913 pt_prev = ptype; 1914 } 1915 *pt = pt_prev; 1916 } 1917 1918 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1919 { 1920 if (!ptype->af_packet_priv || !skb->sk) 1921 return false; 1922 1923 if (ptype->id_match) 1924 return ptype->id_match(ptype, skb->sk); 1925 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1926 return true; 1927 1928 return false; 1929 } 1930 1931 /* 1932 * Support routine. Sends outgoing frames to any network 1933 * taps currently in use. 1934 */ 1935 1936 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1937 { 1938 struct packet_type *ptype; 1939 struct sk_buff *skb2 = NULL; 1940 struct packet_type *pt_prev = NULL; 1941 struct list_head *ptype_list = &ptype_all; 1942 1943 rcu_read_lock(); 1944 again: 1945 list_for_each_entry_rcu(ptype, ptype_list, list) { 1946 /* Never send packets back to the socket 1947 * they originated from - MvS (miquels@drinkel.ow.org) 1948 */ 1949 if (skb_loop_sk(ptype, skb)) 1950 continue; 1951 1952 if (pt_prev) { 1953 deliver_skb(skb2, pt_prev, skb->dev); 1954 pt_prev = ptype; 1955 continue; 1956 } 1957 1958 /* need to clone skb, done only once */ 1959 skb2 = skb_clone(skb, GFP_ATOMIC); 1960 if (!skb2) 1961 goto out_unlock; 1962 1963 net_timestamp_set(skb2); 1964 1965 /* skb->nh should be correctly 1966 * set by sender, so that the second statement is 1967 * just protection against buggy protocols. 1968 */ 1969 skb_reset_mac_header(skb2); 1970 1971 if (skb_network_header(skb2) < skb2->data || 1972 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 1973 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1974 ntohs(skb2->protocol), 1975 dev->name); 1976 skb_reset_network_header(skb2); 1977 } 1978 1979 skb2->transport_header = skb2->network_header; 1980 skb2->pkt_type = PACKET_OUTGOING; 1981 pt_prev = ptype; 1982 } 1983 1984 if (ptype_list == &ptype_all) { 1985 ptype_list = &dev->ptype_all; 1986 goto again; 1987 } 1988 out_unlock: 1989 if (pt_prev) { 1990 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 1991 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1992 else 1993 kfree_skb(skb2); 1994 } 1995 rcu_read_unlock(); 1996 } 1997 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 1998 1999 /** 2000 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2001 * @dev: Network device 2002 * @txq: number of queues available 2003 * 2004 * If real_num_tx_queues is changed the tc mappings may no longer be 2005 * valid. To resolve this verify the tc mapping remains valid and if 2006 * not NULL the mapping. With no priorities mapping to this 2007 * offset/count pair it will no longer be used. In the worst case TC0 2008 * is invalid nothing can be done so disable priority mappings. If is 2009 * expected that drivers will fix this mapping if they can before 2010 * calling netif_set_real_num_tx_queues. 2011 */ 2012 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2013 { 2014 int i; 2015 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2016 2017 /* If TC0 is invalidated disable TC mapping */ 2018 if (tc->offset + tc->count > txq) { 2019 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2020 dev->num_tc = 0; 2021 return; 2022 } 2023 2024 /* Invalidated prio to tc mappings set to TC0 */ 2025 for (i = 1; i < TC_BITMASK + 1; i++) { 2026 int q = netdev_get_prio_tc_map(dev, i); 2027 2028 tc = &dev->tc_to_txq[q]; 2029 if (tc->offset + tc->count > txq) { 2030 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2031 i, q); 2032 netdev_set_prio_tc_map(dev, i, 0); 2033 } 2034 } 2035 } 2036 2037 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2038 { 2039 if (dev->num_tc) { 2040 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2041 int i; 2042 2043 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2044 if ((txq - tc->offset) < tc->count) 2045 return i; 2046 } 2047 2048 return -1; 2049 } 2050 2051 return 0; 2052 } 2053 EXPORT_SYMBOL(netdev_txq_to_tc); 2054 2055 #ifdef CONFIG_XPS 2056 static DEFINE_MUTEX(xps_map_mutex); 2057 #define xmap_dereference(P) \ 2058 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2059 2060 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2061 int tci, u16 index) 2062 { 2063 struct xps_map *map = NULL; 2064 int pos; 2065 2066 if (dev_maps) 2067 map = xmap_dereference(dev_maps->cpu_map[tci]); 2068 if (!map) 2069 return false; 2070 2071 for (pos = map->len; pos--;) { 2072 if (map->queues[pos] != index) 2073 continue; 2074 2075 if (map->len > 1) { 2076 map->queues[pos] = map->queues[--map->len]; 2077 break; 2078 } 2079 2080 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL); 2081 kfree_rcu(map, rcu); 2082 return false; 2083 } 2084 2085 return true; 2086 } 2087 2088 static bool remove_xps_queue_cpu(struct net_device *dev, 2089 struct xps_dev_maps *dev_maps, 2090 int cpu, u16 offset, u16 count) 2091 { 2092 int num_tc = dev->num_tc ? : 1; 2093 bool active = false; 2094 int tci; 2095 2096 for (tci = cpu * num_tc; num_tc--; tci++) { 2097 int i, j; 2098 2099 for (i = count, j = offset; i--; j++) { 2100 if (!remove_xps_queue(dev_maps, cpu, j)) 2101 break; 2102 } 2103 2104 active |= i < 0; 2105 } 2106 2107 return active; 2108 } 2109 2110 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2111 u16 count) 2112 { 2113 struct xps_dev_maps *dev_maps; 2114 int cpu, i; 2115 bool active = false; 2116 2117 mutex_lock(&xps_map_mutex); 2118 dev_maps = xmap_dereference(dev->xps_maps); 2119 2120 if (!dev_maps) 2121 goto out_no_maps; 2122 2123 for_each_possible_cpu(cpu) 2124 active |= remove_xps_queue_cpu(dev, dev_maps, cpu, 2125 offset, count); 2126 2127 if (!active) { 2128 RCU_INIT_POINTER(dev->xps_maps, NULL); 2129 kfree_rcu(dev_maps, rcu); 2130 } 2131 2132 for (i = offset + (count - 1); count--; i--) 2133 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 2134 NUMA_NO_NODE); 2135 2136 out_no_maps: 2137 mutex_unlock(&xps_map_mutex); 2138 } 2139 2140 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2141 { 2142 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2143 } 2144 2145 static struct xps_map *expand_xps_map(struct xps_map *map, 2146 int cpu, u16 index) 2147 { 2148 struct xps_map *new_map; 2149 int alloc_len = XPS_MIN_MAP_ALLOC; 2150 int i, pos; 2151 2152 for (pos = 0; map && pos < map->len; pos++) { 2153 if (map->queues[pos] != index) 2154 continue; 2155 return map; 2156 } 2157 2158 /* Need to add queue to this CPU's existing map */ 2159 if (map) { 2160 if (pos < map->alloc_len) 2161 return map; 2162 2163 alloc_len = map->alloc_len * 2; 2164 } 2165 2166 /* Need to allocate new map to store queue on this CPU's map */ 2167 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2168 cpu_to_node(cpu)); 2169 if (!new_map) 2170 return NULL; 2171 2172 for (i = 0; i < pos; i++) 2173 new_map->queues[i] = map->queues[i]; 2174 new_map->alloc_len = alloc_len; 2175 new_map->len = pos; 2176 2177 return new_map; 2178 } 2179 2180 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2181 u16 index) 2182 { 2183 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2184 int i, cpu, tci, numa_node_id = -2; 2185 int maps_sz, num_tc = 1, tc = 0; 2186 struct xps_map *map, *new_map; 2187 bool active = false; 2188 2189 if (dev->num_tc) { 2190 num_tc = dev->num_tc; 2191 tc = netdev_txq_to_tc(dev, index); 2192 if (tc < 0) 2193 return -EINVAL; 2194 } 2195 2196 maps_sz = XPS_DEV_MAPS_SIZE(num_tc); 2197 if (maps_sz < L1_CACHE_BYTES) 2198 maps_sz = L1_CACHE_BYTES; 2199 2200 mutex_lock(&xps_map_mutex); 2201 2202 dev_maps = xmap_dereference(dev->xps_maps); 2203 2204 /* allocate memory for queue storage */ 2205 for_each_cpu_and(cpu, cpu_online_mask, mask) { 2206 if (!new_dev_maps) 2207 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2208 if (!new_dev_maps) { 2209 mutex_unlock(&xps_map_mutex); 2210 return -ENOMEM; 2211 } 2212 2213 tci = cpu * num_tc + tc; 2214 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) : 2215 NULL; 2216 2217 map = expand_xps_map(map, cpu, index); 2218 if (!map) 2219 goto error; 2220 2221 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2222 } 2223 2224 if (!new_dev_maps) 2225 goto out_no_new_maps; 2226 2227 for_each_possible_cpu(cpu) { 2228 /* copy maps belonging to foreign traffic classes */ 2229 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) { 2230 /* fill in the new device map from the old device map */ 2231 map = xmap_dereference(dev_maps->cpu_map[tci]); 2232 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2233 } 2234 2235 /* We need to explicitly update tci as prevous loop 2236 * could break out early if dev_maps is NULL. 2237 */ 2238 tci = cpu * num_tc + tc; 2239 2240 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 2241 /* add queue to CPU maps */ 2242 int pos = 0; 2243 2244 map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2245 while ((pos < map->len) && (map->queues[pos] != index)) 2246 pos++; 2247 2248 if (pos == map->len) 2249 map->queues[map->len++] = index; 2250 #ifdef CONFIG_NUMA 2251 if (numa_node_id == -2) 2252 numa_node_id = cpu_to_node(cpu); 2253 else if (numa_node_id != cpu_to_node(cpu)) 2254 numa_node_id = -1; 2255 #endif 2256 } else if (dev_maps) { 2257 /* fill in the new device map from the old device map */ 2258 map = xmap_dereference(dev_maps->cpu_map[tci]); 2259 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2260 } 2261 2262 /* copy maps belonging to foreign traffic classes */ 2263 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { 2264 /* fill in the new device map from the old device map */ 2265 map = xmap_dereference(dev_maps->cpu_map[tci]); 2266 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2267 } 2268 } 2269 2270 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 2271 2272 /* Cleanup old maps */ 2273 if (!dev_maps) 2274 goto out_no_old_maps; 2275 2276 for_each_possible_cpu(cpu) { 2277 for (i = num_tc, tci = cpu * num_tc; i--; tci++) { 2278 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2279 map = xmap_dereference(dev_maps->cpu_map[tci]); 2280 if (map && map != new_map) 2281 kfree_rcu(map, rcu); 2282 } 2283 } 2284 2285 kfree_rcu(dev_maps, rcu); 2286 2287 out_no_old_maps: 2288 dev_maps = new_dev_maps; 2289 active = true; 2290 2291 out_no_new_maps: 2292 /* update Tx queue numa node */ 2293 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2294 (numa_node_id >= 0) ? numa_node_id : 2295 NUMA_NO_NODE); 2296 2297 if (!dev_maps) 2298 goto out_no_maps; 2299 2300 /* removes queue from unused CPUs */ 2301 for_each_possible_cpu(cpu) { 2302 for (i = tc, tci = cpu * num_tc; i--; tci++) 2303 active |= remove_xps_queue(dev_maps, tci, index); 2304 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu)) 2305 active |= remove_xps_queue(dev_maps, tci, index); 2306 for (i = num_tc - tc, tci++; --i; tci++) 2307 active |= remove_xps_queue(dev_maps, tci, index); 2308 } 2309 2310 /* free map if not active */ 2311 if (!active) { 2312 RCU_INIT_POINTER(dev->xps_maps, NULL); 2313 kfree_rcu(dev_maps, rcu); 2314 } 2315 2316 out_no_maps: 2317 mutex_unlock(&xps_map_mutex); 2318 2319 return 0; 2320 error: 2321 /* remove any maps that we added */ 2322 for_each_possible_cpu(cpu) { 2323 for (i = num_tc, tci = cpu * num_tc; i--; tci++) { 2324 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2325 map = dev_maps ? 2326 xmap_dereference(dev_maps->cpu_map[tci]) : 2327 NULL; 2328 if (new_map && new_map != map) 2329 kfree(new_map); 2330 } 2331 } 2332 2333 mutex_unlock(&xps_map_mutex); 2334 2335 kfree(new_dev_maps); 2336 return -ENOMEM; 2337 } 2338 EXPORT_SYMBOL(netif_set_xps_queue); 2339 2340 #endif 2341 void netdev_reset_tc(struct net_device *dev) 2342 { 2343 #ifdef CONFIG_XPS 2344 netif_reset_xps_queues_gt(dev, 0); 2345 #endif 2346 dev->num_tc = 0; 2347 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2348 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2349 } 2350 EXPORT_SYMBOL(netdev_reset_tc); 2351 2352 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2353 { 2354 if (tc >= dev->num_tc) 2355 return -EINVAL; 2356 2357 #ifdef CONFIG_XPS 2358 netif_reset_xps_queues(dev, offset, count); 2359 #endif 2360 dev->tc_to_txq[tc].count = count; 2361 dev->tc_to_txq[tc].offset = offset; 2362 return 0; 2363 } 2364 EXPORT_SYMBOL(netdev_set_tc_queue); 2365 2366 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2367 { 2368 if (num_tc > TC_MAX_QUEUE) 2369 return -EINVAL; 2370 2371 #ifdef CONFIG_XPS 2372 netif_reset_xps_queues_gt(dev, 0); 2373 #endif 2374 dev->num_tc = num_tc; 2375 return 0; 2376 } 2377 EXPORT_SYMBOL(netdev_set_num_tc); 2378 2379 /* 2380 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2381 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 2382 */ 2383 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2384 { 2385 bool disabling; 2386 int rc; 2387 2388 disabling = txq < dev->real_num_tx_queues; 2389 2390 if (txq < 1 || txq > dev->num_tx_queues) 2391 return -EINVAL; 2392 2393 if (dev->reg_state == NETREG_REGISTERED || 2394 dev->reg_state == NETREG_UNREGISTERING) { 2395 ASSERT_RTNL(); 2396 2397 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2398 txq); 2399 if (rc) 2400 return rc; 2401 2402 if (dev->num_tc) 2403 netif_setup_tc(dev, txq); 2404 2405 dev->real_num_tx_queues = txq; 2406 2407 if (disabling) { 2408 synchronize_net(); 2409 qdisc_reset_all_tx_gt(dev, txq); 2410 #ifdef CONFIG_XPS 2411 netif_reset_xps_queues_gt(dev, txq); 2412 #endif 2413 } 2414 } else { 2415 dev->real_num_tx_queues = txq; 2416 } 2417 2418 return 0; 2419 } 2420 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2421 2422 #ifdef CONFIG_SYSFS 2423 /** 2424 * netif_set_real_num_rx_queues - set actual number of RX queues used 2425 * @dev: Network device 2426 * @rxq: Actual number of RX queues 2427 * 2428 * This must be called either with the rtnl_lock held or before 2429 * registration of the net device. Returns 0 on success, or a 2430 * negative error code. If called before registration, it always 2431 * succeeds. 2432 */ 2433 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2434 { 2435 int rc; 2436 2437 if (rxq < 1 || rxq > dev->num_rx_queues) 2438 return -EINVAL; 2439 2440 if (dev->reg_state == NETREG_REGISTERED) { 2441 ASSERT_RTNL(); 2442 2443 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2444 rxq); 2445 if (rc) 2446 return rc; 2447 } 2448 2449 dev->real_num_rx_queues = rxq; 2450 return 0; 2451 } 2452 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2453 #endif 2454 2455 /** 2456 * netif_get_num_default_rss_queues - default number of RSS queues 2457 * 2458 * This routine should set an upper limit on the number of RSS queues 2459 * used by default by multiqueue devices. 2460 */ 2461 int netif_get_num_default_rss_queues(void) 2462 { 2463 return is_kdump_kernel() ? 2464 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2465 } 2466 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2467 2468 static void __netif_reschedule(struct Qdisc *q) 2469 { 2470 struct softnet_data *sd; 2471 unsigned long flags; 2472 2473 local_irq_save(flags); 2474 sd = this_cpu_ptr(&softnet_data); 2475 q->next_sched = NULL; 2476 *sd->output_queue_tailp = q; 2477 sd->output_queue_tailp = &q->next_sched; 2478 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2479 local_irq_restore(flags); 2480 } 2481 2482 void __netif_schedule(struct Qdisc *q) 2483 { 2484 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2485 __netif_reschedule(q); 2486 } 2487 EXPORT_SYMBOL(__netif_schedule); 2488 2489 struct dev_kfree_skb_cb { 2490 enum skb_free_reason reason; 2491 }; 2492 2493 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2494 { 2495 return (struct dev_kfree_skb_cb *)skb->cb; 2496 } 2497 2498 void netif_schedule_queue(struct netdev_queue *txq) 2499 { 2500 rcu_read_lock(); 2501 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2502 struct Qdisc *q = rcu_dereference(txq->qdisc); 2503 2504 __netif_schedule(q); 2505 } 2506 rcu_read_unlock(); 2507 } 2508 EXPORT_SYMBOL(netif_schedule_queue); 2509 2510 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2511 { 2512 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2513 struct Qdisc *q; 2514 2515 rcu_read_lock(); 2516 q = rcu_dereference(dev_queue->qdisc); 2517 __netif_schedule(q); 2518 rcu_read_unlock(); 2519 } 2520 } 2521 EXPORT_SYMBOL(netif_tx_wake_queue); 2522 2523 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2524 { 2525 unsigned long flags; 2526 2527 if (unlikely(!skb)) 2528 return; 2529 2530 if (likely(refcount_read(&skb->users) == 1)) { 2531 smp_rmb(); 2532 refcount_set(&skb->users, 0); 2533 } else if (likely(!refcount_dec_and_test(&skb->users))) { 2534 return; 2535 } 2536 get_kfree_skb_cb(skb)->reason = reason; 2537 local_irq_save(flags); 2538 skb->next = __this_cpu_read(softnet_data.completion_queue); 2539 __this_cpu_write(softnet_data.completion_queue, skb); 2540 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2541 local_irq_restore(flags); 2542 } 2543 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2544 2545 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2546 { 2547 if (in_irq() || irqs_disabled()) 2548 __dev_kfree_skb_irq(skb, reason); 2549 else 2550 dev_kfree_skb(skb); 2551 } 2552 EXPORT_SYMBOL(__dev_kfree_skb_any); 2553 2554 2555 /** 2556 * netif_device_detach - mark device as removed 2557 * @dev: network device 2558 * 2559 * Mark device as removed from system and therefore no longer available. 2560 */ 2561 void netif_device_detach(struct net_device *dev) 2562 { 2563 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2564 netif_running(dev)) { 2565 netif_tx_stop_all_queues(dev); 2566 } 2567 } 2568 EXPORT_SYMBOL(netif_device_detach); 2569 2570 /** 2571 * netif_device_attach - mark device as attached 2572 * @dev: network device 2573 * 2574 * Mark device as attached from system and restart if needed. 2575 */ 2576 void netif_device_attach(struct net_device *dev) 2577 { 2578 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2579 netif_running(dev)) { 2580 netif_tx_wake_all_queues(dev); 2581 __netdev_watchdog_up(dev); 2582 } 2583 } 2584 EXPORT_SYMBOL(netif_device_attach); 2585 2586 /* 2587 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2588 * to be used as a distribution range. 2589 */ 2590 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 2591 unsigned int num_tx_queues) 2592 { 2593 u32 hash; 2594 u16 qoffset = 0; 2595 u16 qcount = num_tx_queues; 2596 2597 if (skb_rx_queue_recorded(skb)) { 2598 hash = skb_get_rx_queue(skb); 2599 while (unlikely(hash >= num_tx_queues)) 2600 hash -= num_tx_queues; 2601 return hash; 2602 } 2603 2604 if (dev->num_tc) { 2605 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2606 2607 qoffset = dev->tc_to_txq[tc].offset; 2608 qcount = dev->tc_to_txq[tc].count; 2609 } 2610 2611 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 2612 } 2613 EXPORT_SYMBOL(__skb_tx_hash); 2614 2615 static void skb_warn_bad_offload(const struct sk_buff *skb) 2616 { 2617 static const netdev_features_t null_features; 2618 struct net_device *dev = skb->dev; 2619 const char *name = ""; 2620 2621 if (!net_ratelimit()) 2622 return; 2623 2624 if (dev) { 2625 if (dev->dev.parent) 2626 name = dev_driver_string(dev->dev.parent); 2627 else 2628 name = netdev_name(dev); 2629 } 2630 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2631 "gso_type=%d ip_summed=%d\n", 2632 name, dev ? &dev->features : &null_features, 2633 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2634 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2635 skb_shinfo(skb)->gso_type, skb->ip_summed); 2636 } 2637 2638 /* 2639 * Invalidate hardware checksum when packet is to be mangled, and 2640 * complete checksum manually on outgoing path. 2641 */ 2642 int skb_checksum_help(struct sk_buff *skb) 2643 { 2644 __wsum csum; 2645 int ret = 0, offset; 2646 2647 if (skb->ip_summed == CHECKSUM_COMPLETE) 2648 goto out_set_summed; 2649 2650 if (unlikely(skb_shinfo(skb)->gso_size)) { 2651 skb_warn_bad_offload(skb); 2652 return -EINVAL; 2653 } 2654 2655 /* Before computing a checksum, we should make sure no frag could 2656 * be modified by an external entity : checksum could be wrong. 2657 */ 2658 if (skb_has_shared_frag(skb)) { 2659 ret = __skb_linearize(skb); 2660 if (ret) 2661 goto out; 2662 } 2663 2664 offset = skb_checksum_start_offset(skb); 2665 BUG_ON(offset >= skb_headlen(skb)); 2666 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2667 2668 offset += skb->csum_offset; 2669 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2670 2671 if (skb_cloned(skb) && 2672 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2673 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2674 if (ret) 2675 goto out; 2676 } 2677 2678 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 2679 out_set_summed: 2680 skb->ip_summed = CHECKSUM_NONE; 2681 out: 2682 return ret; 2683 } 2684 EXPORT_SYMBOL(skb_checksum_help); 2685 2686 int skb_crc32c_csum_help(struct sk_buff *skb) 2687 { 2688 __le32 crc32c_csum; 2689 int ret = 0, offset, start; 2690 2691 if (skb->ip_summed != CHECKSUM_PARTIAL) 2692 goto out; 2693 2694 if (unlikely(skb_is_gso(skb))) 2695 goto out; 2696 2697 /* Before computing a checksum, we should make sure no frag could 2698 * be modified by an external entity : checksum could be wrong. 2699 */ 2700 if (unlikely(skb_has_shared_frag(skb))) { 2701 ret = __skb_linearize(skb); 2702 if (ret) 2703 goto out; 2704 } 2705 start = skb_checksum_start_offset(skb); 2706 offset = start + offsetof(struct sctphdr, checksum); 2707 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 2708 ret = -EINVAL; 2709 goto out; 2710 } 2711 if (skb_cloned(skb) && 2712 !skb_clone_writable(skb, offset + sizeof(__le32))) { 2713 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2714 if (ret) 2715 goto out; 2716 } 2717 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 2718 skb->len - start, ~(__u32)0, 2719 crc32c_csum_stub)); 2720 *(__le32 *)(skb->data + offset) = crc32c_csum; 2721 skb->ip_summed = CHECKSUM_NONE; 2722 skb->csum_not_inet = 0; 2723 out: 2724 return ret; 2725 } 2726 2727 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2728 { 2729 __be16 type = skb->protocol; 2730 2731 /* Tunnel gso handlers can set protocol to ethernet. */ 2732 if (type == htons(ETH_P_TEB)) { 2733 struct ethhdr *eth; 2734 2735 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2736 return 0; 2737 2738 eth = (struct ethhdr *)skb_mac_header(skb); 2739 type = eth->h_proto; 2740 } 2741 2742 return __vlan_get_protocol(skb, type, depth); 2743 } 2744 2745 /** 2746 * skb_mac_gso_segment - mac layer segmentation handler. 2747 * @skb: buffer to segment 2748 * @features: features for the output path (see dev->features) 2749 */ 2750 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2751 netdev_features_t features) 2752 { 2753 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2754 struct packet_offload *ptype; 2755 int vlan_depth = skb->mac_len; 2756 __be16 type = skb_network_protocol(skb, &vlan_depth); 2757 2758 if (unlikely(!type)) 2759 return ERR_PTR(-EINVAL); 2760 2761 __skb_pull(skb, vlan_depth); 2762 2763 rcu_read_lock(); 2764 list_for_each_entry_rcu(ptype, &offload_base, list) { 2765 if (ptype->type == type && ptype->callbacks.gso_segment) { 2766 segs = ptype->callbacks.gso_segment(skb, features); 2767 break; 2768 } 2769 } 2770 rcu_read_unlock(); 2771 2772 __skb_push(skb, skb->data - skb_mac_header(skb)); 2773 2774 return segs; 2775 } 2776 EXPORT_SYMBOL(skb_mac_gso_segment); 2777 2778 2779 /* openvswitch calls this on rx path, so we need a different check. 2780 */ 2781 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2782 { 2783 if (tx_path) 2784 return skb->ip_summed != CHECKSUM_PARTIAL && 2785 skb->ip_summed != CHECKSUM_UNNECESSARY; 2786 2787 return skb->ip_summed == CHECKSUM_NONE; 2788 } 2789 2790 /** 2791 * __skb_gso_segment - Perform segmentation on skb. 2792 * @skb: buffer to segment 2793 * @features: features for the output path (see dev->features) 2794 * @tx_path: whether it is called in TX path 2795 * 2796 * This function segments the given skb and returns a list of segments. 2797 * 2798 * It may return NULL if the skb requires no segmentation. This is 2799 * only possible when GSO is used for verifying header integrity. 2800 * 2801 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb. 2802 */ 2803 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2804 netdev_features_t features, bool tx_path) 2805 { 2806 struct sk_buff *segs; 2807 2808 if (unlikely(skb_needs_check(skb, tx_path))) { 2809 int err; 2810 2811 /* We're going to init ->check field in TCP or UDP header */ 2812 err = skb_cow_head(skb, 0); 2813 if (err < 0) 2814 return ERR_PTR(err); 2815 } 2816 2817 /* Only report GSO partial support if it will enable us to 2818 * support segmentation on this frame without needing additional 2819 * work. 2820 */ 2821 if (features & NETIF_F_GSO_PARTIAL) { 2822 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 2823 struct net_device *dev = skb->dev; 2824 2825 partial_features |= dev->features & dev->gso_partial_features; 2826 if (!skb_gso_ok(skb, features | partial_features)) 2827 features &= ~NETIF_F_GSO_PARTIAL; 2828 } 2829 2830 BUILD_BUG_ON(SKB_SGO_CB_OFFSET + 2831 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 2832 2833 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2834 SKB_GSO_CB(skb)->encap_level = 0; 2835 2836 skb_reset_mac_header(skb); 2837 skb_reset_mac_len(skb); 2838 2839 segs = skb_mac_gso_segment(skb, features); 2840 2841 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs))) 2842 skb_warn_bad_offload(skb); 2843 2844 return segs; 2845 } 2846 EXPORT_SYMBOL(__skb_gso_segment); 2847 2848 /* Take action when hardware reception checksum errors are detected. */ 2849 #ifdef CONFIG_BUG 2850 void netdev_rx_csum_fault(struct net_device *dev) 2851 { 2852 if (net_ratelimit()) { 2853 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2854 dump_stack(); 2855 } 2856 } 2857 EXPORT_SYMBOL(netdev_rx_csum_fault); 2858 #endif 2859 2860 /* Actually, we should eliminate this check as soon as we know, that: 2861 * 1. IOMMU is present and allows to map all the memory. 2862 * 2. No high memory really exists on this machine. 2863 */ 2864 2865 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2866 { 2867 #ifdef CONFIG_HIGHMEM 2868 int i; 2869 2870 if (!(dev->features & NETIF_F_HIGHDMA)) { 2871 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2872 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2873 2874 if (PageHighMem(skb_frag_page(frag))) 2875 return 1; 2876 } 2877 } 2878 2879 if (PCI_DMA_BUS_IS_PHYS) { 2880 struct device *pdev = dev->dev.parent; 2881 2882 if (!pdev) 2883 return 0; 2884 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2885 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2886 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2887 2888 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2889 return 1; 2890 } 2891 } 2892 #endif 2893 return 0; 2894 } 2895 2896 /* If MPLS offload request, verify we are testing hardware MPLS features 2897 * instead of standard features for the netdev. 2898 */ 2899 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 2900 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2901 netdev_features_t features, 2902 __be16 type) 2903 { 2904 if (eth_p_mpls(type)) 2905 features &= skb->dev->mpls_features; 2906 2907 return features; 2908 } 2909 #else 2910 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2911 netdev_features_t features, 2912 __be16 type) 2913 { 2914 return features; 2915 } 2916 #endif 2917 2918 static netdev_features_t harmonize_features(struct sk_buff *skb, 2919 netdev_features_t features) 2920 { 2921 int tmp; 2922 __be16 type; 2923 2924 type = skb_network_protocol(skb, &tmp); 2925 features = net_mpls_features(skb, features, type); 2926 2927 if (skb->ip_summed != CHECKSUM_NONE && 2928 !can_checksum_protocol(features, type)) { 2929 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 2930 } 2931 if (illegal_highdma(skb->dev, skb)) 2932 features &= ~NETIF_F_SG; 2933 2934 return features; 2935 } 2936 2937 netdev_features_t passthru_features_check(struct sk_buff *skb, 2938 struct net_device *dev, 2939 netdev_features_t features) 2940 { 2941 return features; 2942 } 2943 EXPORT_SYMBOL(passthru_features_check); 2944 2945 static netdev_features_t dflt_features_check(const struct sk_buff *skb, 2946 struct net_device *dev, 2947 netdev_features_t features) 2948 { 2949 return vlan_features_check(skb, features); 2950 } 2951 2952 static netdev_features_t gso_features_check(const struct sk_buff *skb, 2953 struct net_device *dev, 2954 netdev_features_t features) 2955 { 2956 u16 gso_segs = skb_shinfo(skb)->gso_segs; 2957 2958 if (gso_segs > dev->gso_max_segs) 2959 return features & ~NETIF_F_GSO_MASK; 2960 2961 /* Support for GSO partial features requires software 2962 * intervention before we can actually process the packets 2963 * so we need to strip support for any partial features now 2964 * and we can pull them back in after we have partially 2965 * segmented the frame. 2966 */ 2967 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 2968 features &= ~dev->gso_partial_features; 2969 2970 /* Make sure to clear the IPv4 ID mangling feature if the 2971 * IPv4 header has the potential to be fragmented. 2972 */ 2973 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 2974 struct iphdr *iph = skb->encapsulation ? 2975 inner_ip_hdr(skb) : ip_hdr(skb); 2976 2977 if (!(iph->frag_off & htons(IP_DF))) 2978 features &= ~NETIF_F_TSO_MANGLEID; 2979 } 2980 2981 return features; 2982 } 2983 2984 netdev_features_t netif_skb_features(struct sk_buff *skb) 2985 { 2986 struct net_device *dev = skb->dev; 2987 netdev_features_t features = dev->features; 2988 2989 if (skb_is_gso(skb)) 2990 features = gso_features_check(skb, dev, features); 2991 2992 /* If encapsulation offload request, verify we are testing 2993 * hardware encapsulation features instead of standard 2994 * features for the netdev 2995 */ 2996 if (skb->encapsulation) 2997 features &= dev->hw_enc_features; 2998 2999 if (skb_vlan_tagged(skb)) 3000 features = netdev_intersect_features(features, 3001 dev->vlan_features | 3002 NETIF_F_HW_VLAN_CTAG_TX | 3003 NETIF_F_HW_VLAN_STAG_TX); 3004 3005 if (dev->netdev_ops->ndo_features_check) 3006 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3007 features); 3008 else 3009 features &= dflt_features_check(skb, dev, features); 3010 3011 return harmonize_features(skb, features); 3012 } 3013 EXPORT_SYMBOL(netif_skb_features); 3014 3015 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3016 struct netdev_queue *txq, bool more) 3017 { 3018 unsigned int len; 3019 int rc; 3020 3021 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all)) 3022 dev_queue_xmit_nit(skb, dev); 3023 3024 len = skb->len; 3025 trace_net_dev_start_xmit(skb, dev); 3026 rc = netdev_start_xmit(skb, dev, txq, more); 3027 trace_net_dev_xmit(skb, rc, dev, len); 3028 3029 return rc; 3030 } 3031 3032 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3033 struct netdev_queue *txq, int *ret) 3034 { 3035 struct sk_buff *skb = first; 3036 int rc = NETDEV_TX_OK; 3037 3038 while (skb) { 3039 struct sk_buff *next = skb->next; 3040 3041 skb->next = NULL; 3042 rc = xmit_one(skb, dev, txq, next != NULL); 3043 if (unlikely(!dev_xmit_complete(rc))) { 3044 skb->next = next; 3045 goto out; 3046 } 3047 3048 skb = next; 3049 if (netif_xmit_stopped(txq) && skb) { 3050 rc = NETDEV_TX_BUSY; 3051 break; 3052 } 3053 } 3054 3055 out: 3056 *ret = rc; 3057 return skb; 3058 } 3059 3060 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3061 netdev_features_t features) 3062 { 3063 if (skb_vlan_tag_present(skb) && 3064 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3065 skb = __vlan_hwaccel_push_inside(skb); 3066 return skb; 3067 } 3068 3069 int skb_csum_hwoffload_help(struct sk_buff *skb, 3070 const netdev_features_t features) 3071 { 3072 if (unlikely(skb->csum_not_inet)) 3073 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3074 skb_crc32c_csum_help(skb); 3075 3076 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb); 3077 } 3078 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3079 3080 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3081 { 3082 netdev_features_t features; 3083 3084 features = netif_skb_features(skb); 3085 skb = validate_xmit_vlan(skb, features); 3086 if (unlikely(!skb)) 3087 goto out_null; 3088 3089 if (netif_needs_gso(skb, features)) { 3090 struct sk_buff *segs; 3091 3092 segs = skb_gso_segment(skb, features); 3093 if (IS_ERR(segs)) { 3094 goto out_kfree_skb; 3095 } else if (segs) { 3096 consume_skb(skb); 3097 skb = segs; 3098 } 3099 } else { 3100 if (skb_needs_linearize(skb, features) && 3101 __skb_linearize(skb)) 3102 goto out_kfree_skb; 3103 3104 /* If packet is not checksummed and device does not 3105 * support checksumming for this protocol, complete 3106 * checksumming here. 3107 */ 3108 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3109 if (skb->encapsulation) 3110 skb_set_inner_transport_header(skb, 3111 skb_checksum_start_offset(skb)); 3112 else 3113 skb_set_transport_header(skb, 3114 skb_checksum_start_offset(skb)); 3115 if (skb_csum_hwoffload_help(skb, features)) 3116 goto out_kfree_skb; 3117 } 3118 } 3119 3120 skb = validate_xmit_xfrm(skb, features, again); 3121 3122 return skb; 3123 3124 out_kfree_skb: 3125 kfree_skb(skb); 3126 out_null: 3127 atomic_long_inc(&dev->tx_dropped); 3128 return NULL; 3129 } 3130 3131 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3132 { 3133 struct sk_buff *next, *head = NULL, *tail; 3134 3135 for (; skb != NULL; skb = next) { 3136 next = skb->next; 3137 skb->next = NULL; 3138 3139 /* in case skb wont be segmented, point to itself */ 3140 skb->prev = skb; 3141 3142 skb = validate_xmit_skb(skb, dev, again); 3143 if (!skb) 3144 continue; 3145 3146 if (!head) 3147 head = skb; 3148 else 3149 tail->next = skb; 3150 /* If skb was segmented, skb->prev points to 3151 * the last segment. If not, it still contains skb. 3152 */ 3153 tail = skb->prev; 3154 } 3155 return head; 3156 } 3157 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3158 3159 static void qdisc_pkt_len_init(struct sk_buff *skb) 3160 { 3161 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3162 3163 qdisc_skb_cb(skb)->pkt_len = skb->len; 3164 3165 /* To get more precise estimation of bytes sent on wire, 3166 * we add to pkt_len the headers size of all segments 3167 */ 3168 if (shinfo->gso_size) { 3169 unsigned int hdr_len; 3170 u16 gso_segs = shinfo->gso_segs; 3171 3172 /* mac layer + network layer */ 3173 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3174 3175 /* + transport layer */ 3176 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3177 const struct tcphdr *th; 3178 struct tcphdr _tcphdr; 3179 3180 th = skb_header_pointer(skb, skb_transport_offset(skb), 3181 sizeof(_tcphdr), &_tcphdr); 3182 if (likely(th)) 3183 hdr_len += __tcp_hdrlen(th); 3184 } else { 3185 struct udphdr _udphdr; 3186 3187 if (skb_header_pointer(skb, skb_transport_offset(skb), 3188 sizeof(_udphdr), &_udphdr)) 3189 hdr_len += sizeof(struct udphdr); 3190 } 3191 3192 if (shinfo->gso_type & SKB_GSO_DODGY) 3193 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3194 shinfo->gso_size); 3195 3196 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3197 } 3198 } 3199 3200 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3201 struct net_device *dev, 3202 struct netdev_queue *txq) 3203 { 3204 spinlock_t *root_lock = qdisc_lock(q); 3205 struct sk_buff *to_free = NULL; 3206 bool contended; 3207 int rc; 3208 3209 qdisc_calculate_pkt_len(skb, q); 3210 3211 if (q->flags & TCQ_F_NOLOCK) { 3212 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3213 __qdisc_drop(skb, &to_free); 3214 rc = NET_XMIT_DROP; 3215 } else { 3216 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3217 __qdisc_run(q); 3218 } 3219 3220 if (unlikely(to_free)) 3221 kfree_skb_list(to_free); 3222 return rc; 3223 } 3224 3225 /* 3226 * Heuristic to force contended enqueues to serialize on a 3227 * separate lock before trying to get qdisc main lock. 3228 * This permits qdisc->running owner to get the lock more 3229 * often and dequeue packets faster. 3230 */ 3231 contended = qdisc_is_running(q); 3232 if (unlikely(contended)) 3233 spin_lock(&q->busylock); 3234 3235 spin_lock(root_lock); 3236 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3237 __qdisc_drop(skb, &to_free); 3238 rc = NET_XMIT_DROP; 3239 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3240 qdisc_run_begin(q)) { 3241 /* 3242 * This is a work-conserving queue; there are no old skbs 3243 * waiting to be sent out; and the qdisc is not running - 3244 * xmit the skb directly. 3245 */ 3246 3247 qdisc_bstats_update(q, skb); 3248 3249 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3250 if (unlikely(contended)) { 3251 spin_unlock(&q->busylock); 3252 contended = false; 3253 } 3254 __qdisc_run(q); 3255 } 3256 3257 qdisc_run_end(q); 3258 rc = NET_XMIT_SUCCESS; 3259 } else { 3260 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3261 if (qdisc_run_begin(q)) { 3262 if (unlikely(contended)) { 3263 spin_unlock(&q->busylock); 3264 contended = false; 3265 } 3266 __qdisc_run(q); 3267 qdisc_run_end(q); 3268 } 3269 } 3270 spin_unlock(root_lock); 3271 if (unlikely(to_free)) 3272 kfree_skb_list(to_free); 3273 if (unlikely(contended)) 3274 spin_unlock(&q->busylock); 3275 return rc; 3276 } 3277 3278 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3279 static void skb_update_prio(struct sk_buff *skb) 3280 { 3281 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 3282 3283 if (!skb->priority && skb->sk && map) { 3284 unsigned int prioidx = 3285 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data); 3286 3287 if (prioidx < map->priomap_len) 3288 skb->priority = map->priomap[prioidx]; 3289 } 3290 } 3291 #else 3292 #define skb_update_prio(skb) 3293 #endif 3294 3295 DEFINE_PER_CPU(int, xmit_recursion); 3296 EXPORT_SYMBOL(xmit_recursion); 3297 3298 /** 3299 * dev_loopback_xmit - loop back @skb 3300 * @net: network namespace this loopback is happening in 3301 * @sk: sk needed to be a netfilter okfn 3302 * @skb: buffer to transmit 3303 */ 3304 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3305 { 3306 skb_reset_mac_header(skb); 3307 __skb_pull(skb, skb_network_offset(skb)); 3308 skb->pkt_type = PACKET_LOOPBACK; 3309 skb->ip_summed = CHECKSUM_UNNECESSARY; 3310 WARN_ON(!skb_dst(skb)); 3311 skb_dst_force(skb); 3312 netif_rx_ni(skb); 3313 return 0; 3314 } 3315 EXPORT_SYMBOL(dev_loopback_xmit); 3316 3317 #ifdef CONFIG_NET_EGRESS 3318 static struct sk_buff * 3319 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3320 { 3321 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress); 3322 struct tcf_result cl_res; 3323 3324 if (!miniq) 3325 return skb; 3326 3327 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3328 mini_qdisc_bstats_cpu_update(miniq, skb); 3329 3330 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 3331 case TC_ACT_OK: 3332 case TC_ACT_RECLASSIFY: 3333 skb->tc_index = TC_H_MIN(cl_res.classid); 3334 break; 3335 case TC_ACT_SHOT: 3336 mini_qdisc_qstats_cpu_drop(miniq); 3337 *ret = NET_XMIT_DROP; 3338 kfree_skb(skb); 3339 return NULL; 3340 case TC_ACT_STOLEN: 3341 case TC_ACT_QUEUED: 3342 case TC_ACT_TRAP: 3343 *ret = NET_XMIT_SUCCESS; 3344 consume_skb(skb); 3345 return NULL; 3346 case TC_ACT_REDIRECT: 3347 /* No need to push/pop skb's mac_header here on egress! */ 3348 skb_do_redirect(skb); 3349 *ret = NET_XMIT_SUCCESS; 3350 return NULL; 3351 default: 3352 break; 3353 } 3354 3355 return skb; 3356 } 3357 #endif /* CONFIG_NET_EGRESS */ 3358 3359 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 3360 { 3361 #ifdef CONFIG_XPS 3362 struct xps_dev_maps *dev_maps; 3363 struct xps_map *map; 3364 int queue_index = -1; 3365 3366 rcu_read_lock(); 3367 dev_maps = rcu_dereference(dev->xps_maps); 3368 if (dev_maps) { 3369 unsigned int tci = skb->sender_cpu - 1; 3370 3371 if (dev->num_tc) { 3372 tci *= dev->num_tc; 3373 tci += netdev_get_prio_tc_map(dev, skb->priority); 3374 } 3375 3376 map = rcu_dereference(dev_maps->cpu_map[tci]); 3377 if (map) { 3378 if (map->len == 1) 3379 queue_index = map->queues[0]; 3380 else 3381 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb), 3382 map->len)]; 3383 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3384 queue_index = -1; 3385 } 3386 } 3387 rcu_read_unlock(); 3388 3389 return queue_index; 3390 #else 3391 return -1; 3392 #endif 3393 } 3394 3395 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb) 3396 { 3397 struct sock *sk = skb->sk; 3398 int queue_index = sk_tx_queue_get(sk); 3399 3400 if (queue_index < 0 || skb->ooo_okay || 3401 queue_index >= dev->real_num_tx_queues) { 3402 int new_index = get_xps_queue(dev, skb); 3403 3404 if (new_index < 0) 3405 new_index = skb_tx_hash(dev, skb); 3406 3407 if (queue_index != new_index && sk && 3408 sk_fullsock(sk) && 3409 rcu_access_pointer(sk->sk_dst_cache)) 3410 sk_tx_queue_set(sk, new_index); 3411 3412 queue_index = new_index; 3413 } 3414 3415 return queue_index; 3416 } 3417 3418 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 3419 struct sk_buff *skb, 3420 void *accel_priv) 3421 { 3422 int queue_index = 0; 3423 3424 #ifdef CONFIG_XPS 3425 u32 sender_cpu = skb->sender_cpu - 1; 3426 3427 if (sender_cpu >= (u32)NR_CPUS) 3428 skb->sender_cpu = raw_smp_processor_id() + 1; 3429 #endif 3430 3431 if (dev->real_num_tx_queues != 1) { 3432 const struct net_device_ops *ops = dev->netdev_ops; 3433 3434 if (ops->ndo_select_queue) 3435 queue_index = ops->ndo_select_queue(dev, skb, accel_priv, 3436 __netdev_pick_tx); 3437 else 3438 queue_index = __netdev_pick_tx(dev, skb); 3439 3440 queue_index = netdev_cap_txqueue(dev, queue_index); 3441 } 3442 3443 skb_set_queue_mapping(skb, queue_index); 3444 return netdev_get_tx_queue(dev, queue_index); 3445 } 3446 3447 /** 3448 * __dev_queue_xmit - transmit a buffer 3449 * @skb: buffer to transmit 3450 * @accel_priv: private data used for L2 forwarding offload 3451 * 3452 * Queue a buffer for transmission to a network device. The caller must 3453 * have set the device and priority and built the buffer before calling 3454 * this function. The function can be called from an interrupt. 3455 * 3456 * A negative errno code is returned on a failure. A success does not 3457 * guarantee the frame will be transmitted as it may be dropped due 3458 * to congestion or traffic shaping. 3459 * 3460 * ----------------------------------------------------------------------------------- 3461 * I notice this method can also return errors from the queue disciplines, 3462 * including NET_XMIT_DROP, which is a positive value. So, errors can also 3463 * be positive. 3464 * 3465 * Regardless of the return value, the skb is consumed, so it is currently 3466 * difficult to retry a send to this method. (You can bump the ref count 3467 * before sending to hold a reference for retry if you are careful.) 3468 * 3469 * When calling this method, interrupts MUST be enabled. This is because 3470 * the BH enable code must have IRQs enabled so that it will not deadlock. 3471 * --BLG 3472 */ 3473 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv) 3474 { 3475 struct net_device *dev = skb->dev; 3476 struct netdev_queue *txq; 3477 struct Qdisc *q; 3478 int rc = -ENOMEM; 3479 bool again = false; 3480 3481 skb_reset_mac_header(skb); 3482 3483 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 3484 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 3485 3486 /* Disable soft irqs for various locks below. Also 3487 * stops preemption for RCU. 3488 */ 3489 rcu_read_lock_bh(); 3490 3491 skb_update_prio(skb); 3492 3493 qdisc_pkt_len_init(skb); 3494 #ifdef CONFIG_NET_CLS_ACT 3495 skb->tc_at_ingress = 0; 3496 # ifdef CONFIG_NET_EGRESS 3497 if (static_key_false(&egress_needed)) { 3498 skb = sch_handle_egress(skb, &rc, dev); 3499 if (!skb) 3500 goto out; 3501 } 3502 # endif 3503 #endif 3504 /* If device/qdisc don't need skb->dst, release it right now while 3505 * its hot in this cpu cache. 3506 */ 3507 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 3508 skb_dst_drop(skb); 3509 else 3510 skb_dst_force(skb); 3511 3512 txq = netdev_pick_tx(dev, skb, accel_priv); 3513 q = rcu_dereference_bh(txq->qdisc); 3514 3515 trace_net_dev_queue(skb); 3516 if (q->enqueue) { 3517 rc = __dev_xmit_skb(skb, q, dev, txq); 3518 goto out; 3519 } 3520 3521 /* The device has no queue. Common case for software devices: 3522 * loopback, all the sorts of tunnels... 3523 3524 * Really, it is unlikely that netif_tx_lock protection is necessary 3525 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 3526 * counters.) 3527 * However, it is possible, that they rely on protection 3528 * made by us here. 3529 3530 * Check this and shot the lock. It is not prone from deadlocks. 3531 *Either shot noqueue qdisc, it is even simpler 8) 3532 */ 3533 if (dev->flags & IFF_UP) { 3534 int cpu = smp_processor_id(); /* ok because BHs are off */ 3535 3536 if (txq->xmit_lock_owner != cpu) { 3537 if (unlikely(__this_cpu_read(xmit_recursion) > 3538 XMIT_RECURSION_LIMIT)) 3539 goto recursion_alert; 3540 3541 skb = validate_xmit_skb(skb, dev, &again); 3542 if (!skb) 3543 goto out; 3544 3545 HARD_TX_LOCK(dev, txq, cpu); 3546 3547 if (!netif_xmit_stopped(txq)) { 3548 __this_cpu_inc(xmit_recursion); 3549 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 3550 __this_cpu_dec(xmit_recursion); 3551 if (dev_xmit_complete(rc)) { 3552 HARD_TX_UNLOCK(dev, txq); 3553 goto out; 3554 } 3555 } 3556 HARD_TX_UNLOCK(dev, txq); 3557 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 3558 dev->name); 3559 } else { 3560 /* Recursion is detected! It is possible, 3561 * unfortunately 3562 */ 3563 recursion_alert: 3564 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 3565 dev->name); 3566 } 3567 } 3568 3569 rc = -ENETDOWN; 3570 rcu_read_unlock_bh(); 3571 3572 atomic_long_inc(&dev->tx_dropped); 3573 kfree_skb_list(skb); 3574 return rc; 3575 out: 3576 rcu_read_unlock_bh(); 3577 return rc; 3578 } 3579 3580 int dev_queue_xmit(struct sk_buff *skb) 3581 { 3582 return __dev_queue_xmit(skb, NULL); 3583 } 3584 EXPORT_SYMBOL(dev_queue_xmit); 3585 3586 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv) 3587 { 3588 return __dev_queue_xmit(skb, accel_priv); 3589 } 3590 EXPORT_SYMBOL(dev_queue_xmit_accel); 3591 3592 3593 /************************************************************************* 3594 * Receiver routines 3595 *************************************************************************/ 3596 3597 int netdev_max_backlog __read_mostly = 1000; 3598 EXPORT_SYMBOL(netdev_max_backlog); 3599 3600 int netdev_tstamp_prequeue __read_mostly = 1; 3601 int netdev_budget __read_mostly = 300; 3602 unsigned int __read_mostly netdev_budget_usecs = 2000; 3603 int weight_p __read_mostly = 64; /* old backlog weight */ 3604 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 3605 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 3606 int dev_rx_weight __read_mostly = 64; 3607 int dev_tx_weight __read_mostly = 64; 3608 3609 /* Called with irq disabled */ 3610 static inline void ____napi_schedule(struct softnet_data *sd, 3611 struct napi_struct *napi) 3612 { 3613 list_add_tail(&napi->poll_list, &sd->poll_list); 3614 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3615 } 3616 3617 #ifdef CONFIG_RPS 3618 3619 /* One global table that all flow-based protocols share. */ 3620 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3621 EXPORT_SYMBOL(rps_sock_flow_table); 3622 u32 rps_cpu_mask __read_mostly; 3623 EXPORT_SYMBOL(rps_cpu_mask); 3624 3625 struct static_key rps_needed __read_mostly; 3626 EXPORT_SYMBOL(rps_needed); 3627 struct static_key rfs_needed __read_mostly; 3628 EXPORT_SYMBOL(rfs_needed); 3629 3630 static struct rps_dev_flow * 3631 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3632 struct rps_dev_flow *rflow, u16 next_cpu) 3633 { 3634 if (next_cpu < nr_cpu_ids) { 3635 #ifdef CONFIG_RFS_ACCEL 3636 struct netdev_rx_queue *rxqueue; 3637 struct rps_dev_flow_table *flow_table; 3638 struct rps_dev_flow *old_rflow; 3639 u32 flow_id; 3640 u16 rxq_index; 3641 int rc; 3642 3643 /* Should we steer this flow to a different hardware queue? */ 3644 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 3645 !(dev->features & NETIF_F_NTUPLE)) 3646 goto out; 3647 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 3648 if (rxq_index == skb_get_rx_queue(skb)) 3649 goto out; 3650 3651 rxqueue = dev->_rx + rxq_index; 3652 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3653 if (!flow_table) 3654 goto out; 3655 flow_id = skb_get_hash(skb) & flow_table->mask; 3656 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 3657 rxq_index, flow_id); 3658 if (rc < 0) 3659 goto out; 3660 old_rflow = rflow; 3661 rflow = &flow_table->flows[flow_id]; 3662 rflow->filter = rc; 3663 if (old_rflow->filter == rflow->filter) 3664 old_rflow->filter = RPS_NO_FILTER; 3665 out: 3666 #endif 3667 rflow->last_qtail = 3668 per_cpu(softnet_data, next_cpu).input_queue_head; 3669 } 3670 3671 rflow->cpu = next_cpu; 3672 return rflow; 3673 } 3674 3675 /* 3676 * get_rps_cpu is called from netif_receive_skb and returns the target 3677 * CPU from the RPS map of the receiving queue for a given skb. 3678 * rcu_read_lock must be held on entry. 3679 */ 3680 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3681 struct rps_dev_flow **rflowp) 3682 { 3683 const struct rps_sock_flow_table *sock_flow_table; 3684 struct netdev_rx_queue *rxqueue = dev->_rx; 3685 struct rps_dev_flow_table *flow_table; 3686 struct rps_map *map; 3687 int cpu = -1; 3688 u32 tcpu; 3689 u32 hash; 3690 3691 if (skb_rx_queue_recorded(skb)) { 3692 u16 index = skb_get_rx_queue(skb); 3693 3694 if (unlikely(index >= dev->real_num_rx_queues)) { 3695 WARN_ONCE(dev->real_num_rx_queues > 1, 3696 "%s received packet on queue %u, but number " 3697 "of RX queues is %u\n", 3698 dev->name, index, dev->real_num_rx_queues); 3699 goto done; 3700 } 3701 rxqueue += index; 3702 } 3703 3704 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 3705 3706 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3707 map = rcu_dereference(rxqueue->rps_map); 3708 if (!flow_table && !map) 3709 goto done; 3710 3711 skb_reset_network_header(skb); 3712 hash = skb_get_hash(skb); 3713 if (!hash) 3714 goto done; 3715 3716 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3717 if (flow_table && sock_flow_table) { 3718 struct rps_dev_flow *rflow; 3719 u32 next_cpu; 3720 u32 ident; 3721 3722 /* First check into global flow table if there is a match */ 3723 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 3724 if ((ident ^ hash) & ~rps_cpu_mask) 3725 goto try_rps; 3726 3727 next_cpu = ident & rps_cpu_mask; 3728 3729 /* OK, now we know there is a match, 3730 * we can look at the local (per receive queue) flow table 3731 */ 3732 rflow = &flow_table->flows[hash & flow_table->mask]; 3733 tcpu = rflow->cpu; 3734 3735 /* 3736 * If the desired CPU (where last recvmsg was done) is 3737 * different from current CPU (one in the rx-queue flow 3738 * table entry), switch if one of the following holds: 3739 * - Current CPU is unset (>= nr_cpu_ids). 3740 * - Current CPU is offline. 3741 * - The current CPU's queue tail has advanced beyond the 3742 * last packet that was enqueued using this table entry. 3743 * This guarantees that all previous packets for the flow 3744 * have been dequeued, thus preserving in order delivery. 3745 */ 3746 if (unlikely(tcpu != next_cpu) && 3747 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 3748 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3749 rflow->last_qtail)) >= 0)) { 3750 tcpu = next_cpu; 3751 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3752 } 3753 3754 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 3755 *rflowp = rflow; 3756 cpu = tcpu; 3757 goto done; 3758 } 3759 } 3760 3761 try_rps: 3762 3763 if (map) { 3764 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 3765 if (cpu_online(tcpu)) { 3766 cpu = tcpu; 3767 goto done; 3768 } 3769 } 3770 3771 done: 3772 return cpu; 3773 } 3774 3775 #ifdef CONFIG_RFS_ACCEL 3776 3777 /** 3778 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3779 * @dev: Device on which the filter was set 3780 * @rxq_index: RX queue index 3781 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3782 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3783 * 3784 * Drivers that implement ndo_rx_flow_steer() should periodically call 3785 * this function for each installed filter and remove the filters for 3786 * which it returns %true. 3787 */ 3788 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3789 u32 flow_id, u16 filter_id) 3790 { 3791 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3792 struct rps_dev_flow_table *flow_table; 3793 struct rps_dev_flow *rflow; 3794 bool expire = true; 3795 unsigned int cpu; 3796 3797 rcu_read_lock(); 3798 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3799 if (flow_table && flow_id <= flow_table->mask) { 3800 rflow = &flow_table->flows[flow_id]; 3801 cpu = READ_ONCE(rflow->cpu); 3802 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 3803 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3804 rflow->last_qtail) < 3805 (int)(10 * flow_table->mask))) 3806 expire = false; 3807 } 3808 rcu_read_unlock(); 3809 return expire; 3810 } 3811 EXPORT_SYMBOL(rps_may_expire_flow); 3812 3813 #endif /* CONFIG_RFS_ACCEL */ 3814 3815 /* Called from hardirq (IPI) context */ 3816 static void rps_trigger_softirq(void *data) 3817 { 3818 struct softnet_data *sd = data; 3819 3820 ____napi_schedule(sd, &sd->backlog); 3821 sd->received_rps++; 3822 } 3823 3824 #endif /* CONFIG_RPS */ 3825 3826 /* 3827 * Check if this softnet_data structure is another cpu one 3828 * If yes, queue it to our IPI list and return 1 3829 * If no, return 0 3830 */ 3831 static int rps_ipi_queued(struct softnet_data *sd) 3832 { 3833 #ifdef CONFIG_RPS 3834 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 3835 3836 if (sd != mysd) { 3837 sd->rps_ipi_next = mysd->rps_ipi_list; 3838 mysd->rps_ipi_list = sd; 3839 3840 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3841 return 1; 3842 } 3843 #endif /* CONFIG_RPS */ 3844 return 0; 3845 } 3846 3847 #ifdef CONFIG_NET_FLOW_LIMIT 3848 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3849 #endif 3850 3851 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3852 { 3853 #ifdef CONFIG_NET_FLOW_LIMIT 3854 struct sd_flow_limit *fl; 3855 struct softnet_data *sd; 3856 unsigned int old_flow, new_flow; 3857 3858 if (qlen < (netdev_max_backlog >> 1)) 3859 return false; 3860 3861 sd = this_cpu_ptr(&softnet_data); 3862 3863 rcu_read_lock(); 3864 fl = rcu_dereference(sd->flow_limit); 3865 if (fl) { 3866 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 3867 old_flow = fl->history[fl->history_head]; 3868 fl->history[fl->history_head] = new_flow; 3869 3870 fl->history_head++; 3871 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3872 3873 if (likely(fl->buckets[old_flow])) 3874 fl->buckets[old_flow]--; 3875 3876 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3877 fl->count++; 3878 rcu_read_unlock(); 3879 return true; 3880 } 3881 } 3882 rcu_read_unlock(); 3883 #endif 3884 return false; 3885 } 3886 3887 /* 3888 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3889 * queue (may be a remote CPU queue). 3890 */ 3891 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3892 unsigned int *qtail) 3893 { 3894 struct softnet_data *sd; 3895 unsigned long flags; 3896 unsigned int qlen; 3897 3898 sd = &per_cpu(softnet_data, cpu); 3899 3900 local_irq_save(flags); 3901 3902 rps_lock(sd); 3903 if (!netif_running(skb->dev)) 3904 goto drop; 3905 qlen = skb_queue_len(&sd->input_pkt_queue); 3906 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3907 if (qlen) { 3908 enqueue: 3909 __skb_queue_tail(&sd->input_pkt_queue, skb); 3910 input_queue_tail_incr_save(sd, qtail); 3911 rps_unlock(sd); 3912 local_irq_restore(flags); 3913 return NET_RX_SUCCESS; 3914 } 3915 3916 /* Schedule NAPI for backlog device 3917 * We can use non atomic operation since we own the queue lock 3918 */ 3919 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3920 if (!rps_ipi_queued(sd)) 3921 ____napi_schedule(sd, &sd->backlog); 3922 } 3923 goto enqueue; 3924 } 3925 3926 drop: 3927 sd->dropped++; 3928 rps_unlock(sd); 3929 3930 local_irq_restore(flags); 3931 3932 atomic_long_inc(&skb->dev->rx_dropped); 3933 kfree_skb(skb); 3934 return NET_RX_DROP; 3935 } 3936 3937 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 3938 { 3939 struct net_device *dev = skb->dev; 3940 struct netdev_rx_queue *rxqueue; 3941 3942 rxqueue = dev->_rx; 3943 3944 if (skb_rx_queue_recorded(skb)) { 3945 u16 index = skb_get_rx_queue(skb); 3946 3947 if (unlikely(index >= dev->real_num_rx_queues)) { 3948 WARN_ONCE(dev->real_num_rx_queues > 1, 3949 "%s received packet on queue %u, but number " 3950 "of RX queues is %u\n", 3951 dev->name, index, dev->real_num_rx_queues); 3952 3953 return rxqueue; /* Return first rxqueue */ 3954 } 3955 rxqueue += index; 3956 } 3957 return rxqueue; 3958 } 3959 3960 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 3961 struct bpf_prog *xdp_prog) 3962 { 3963 struct netdev_rx_queue *rxqueue; 3964 u32 metalen, act = XDP_DROP; 3965 struct xdp_buff xdp; 3966 void *orig_data; 3967 int hlen, off; 3968 u32 mac_len; 3969 3970 /* Reinjected packets coming from act_mirred or similar should 3971 * not get XDP generic processing. 3972 */ 3973 if (skb_cloned(skb)) 3974 return XDP_PASS; 3975 3976 /* XDP packets must be linear and must have sufficient headroom 3977 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also 3978 * native XDP provides, thus we need to do it here as well. 3979 */ 3980 if (skb_is_nonlinear(skb) || 3981 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 3982 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 3983 int troom = skb->tail + skb->data_len - skb->end; 3984 3985 /* In case we have to go down the path and also linearize, 3986 * then lets do the pskb_expand_head() work just once here. 3987 */ 3988 if (pskb_expand_head(skb, 3989 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 3990 troom > 0 ? troom + 128 : 0, GFP_ATOMIC)) 3991 goto do_drop; 3992 if (skb_linearize(skb)) 3993 goto do_drop; 3994 } 3995 3996 /* The XDP program wants to see the packet starting at the MAC 3997 * header. 3998 */ 3999 mac_len = skb->data - skb_mac_header(skb); 4000 hlen = skb_headlen(skb) + mac_len; 4001 xdp.data = skb->data - mac_len; 4002 xdp.data_meta = xdp.data; 4003 xdp.data_end = xdp.data + hlen; 4004 xdp.data_hard_start = skb->data - skb_headroom(skb); 4005 orig_data = xdp.data; 4006 4007 rxqueue = netif_get_rxqueue(skb); 4008 xdp.rxq = &rxqueue->xdp_rxq; 4009 4010 act = bpf_prog_run_xdp(xdp_prog, &xdp); 4011 4012 off = xdp.data - orig_data; 4013 if (off > 0) 4014 __skb_pull(skb, off); 4015 else if (off < 0) 4016 __skb_push(skb, -off); 4017 skb->mac_header += off; 4018 4019 switch (act) { 4020 case XDP_REDIRECT: 4021 case XDP_TX: 4022 __skb_push(skb, mac_len); 4023 break; 4024 case XDP_PASS: 4025 metalen = xdp.data - xdp.data_meta; 4026 if (metalen) 4027 skb_metadata_set(skb, metalen); 4028 break; 4029 default: 4030 bpf_warn_invalid_xdp_action(act); 4031 /* fall through */ 4032 case XDP_ABORTED: 4033 trace_xdp_exception(skb->dev, xdp_prog, act); 4034 /* fall through */ 4035 case XDP_DROP: 4036 do_drop: 4037 kfree_skb(skb); 4038 break; 4039 } 4040 4041 return act; 4042 } 4043 4044 /* When doing generic XDP we have to bypass the qdisc layer and the 4045 * network taps in order to match in-driver-XDP behavior. 4046 */ 4047 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 4048 { 4049 struct net_device *dev = skb->dev; 4050 struct netdev_queue *txq; 4051 bool free_skb = true; 4052 int cpu, rc; 4053 4054 txq = netdev_pick_tx(dev, skb, NULL); 4055 cpu = smp_processor_id(); 4056 HARD_TX_LOCK(dev, txq, cpu); 4057 if (!netif_xmit_stopped(txq)) { 4058 rc = netdev_start_xmit(skb, dev, txq, 0); 4059 if (dev_xmit_complete(rc)) 4060 free_skb = false; 4061 } 4062 HARD_TX_UNLOCK(dev, txq); 4063 if (free_skb) { 4064 trace_xdp_exception(dev, xdp_prog, XDP_TX); 4065 kfree_skb(skb); 4066 } 4067 } 4068 EXPORT_SYMBOL_GPL(generic_xdp_tx); 4069 4070 static struct static_key generic_xdp_needed __read_mostly; 4071 4072 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 4073 { 4074 if (xdp_prog) { 4075 u32 act = netif_receive_generic_xdp(skb, xdp_prog); 4076 int err; 4077 4078 if (act != XDP_PASS) { 4079 switch (act) { 4080 case XDP_REDIRECT: 4081 err = xdp_do_generic_redirect(skb->dev, skb, 4082 xdp_prog); 4083 if (err) 4084 goto out_redir; 4085 /* fallthru to submit skb */ 4086 case XDP_TX: 4087 generic_xdp_tx(skb, xdp_prog); 4088 break; 4089 } 4090 return XDP_DROP; 4091 } 4092 } 4093 return XDP_PASS; 4094 out_redir: 4095 kfree_skb(skb); 4096 return XDP_DROP; 4097 } 4098 EXPORT_SYMBOL_GPL(do_xdp_generic); 4099 4100 static int netif_rx_internal(struct sk_buff *skb) 4101 { 4102 int ret; 4103 4104 net_timestamp_check(netdev_tstamp_prequeue, skb); 4105 4106 trace_netif_rx(skb); 4107 4108 if (static_key_false(&generic_xdp_needed)) { 4109 int ret; 4110 4111 preempt_disable(); 4112 rcu_read_lock(); 4113 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 4114 rcu_read_unlock(); 4115 preempt_enable(); 4116 4117 /* Consider XDP consuming the packet a success from 4118 * the netdev point of view we do not want to count 4119 * this as an error. 4120 */ 4121 if (ret != XDP_PASS) 4122 return NET_RX_SUCCESS; 4123 } 4124 4125 #ifdef CONFIG_RPS 4126 if (static_key_false(&rps_needed)) { 4127 struct rps_dev_flow voidflow, *rflow = &voidflow; 4128 int cpu; 4129 4130 preempt_disable(); 4131 rcu_read_lock(); 4132 4133 cpu = get_rps_cpu(skb->dev, skb, &rflow); 4134 if (cpu < 0) 4135 cpu = smp_processor_id(); 4136 4137 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4138 4139 rcu_read_unlock(); 4140 preempt_enable(); 4141 } else 4142 #endif 4143 { 4144 unsigned int qtail; 4145 4146 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 4147 put_cpu(); 4148 } 4149 return ret; 4150 } 4151 4152 /** 4153 * netif_rx - post buffer to the network code 4154 * @skb: buffer to post 4155 * 4156 * This function receives a packet from a device driver and queues it for 4157 * the upper (protocol) levels to process. It always succeeds. The buffer 4158 * may be dropped during processing for congestion control or by the 4159 * protocol layers. 4160 * 4161 * return values: 4162 * NET_RX_SUCCESS (no congestion) 4163 * NET_RX_DROP (packet was dropped) 4164 * 4165 */ 4166 4167 int netif_rx(struct sk_buff *skb) 4168 { 4169 trace_netif_rx_entry(skb); 4170 4171 return netif_rx_internal(skb); 4172 } 4173 EXPORT_SYMBOL(netif_rx); 4174 4175 int netif_rx_ni(struct sk_buff *skb) 4176 { 4177 int err; 4178 4179 trace_netif_rx_ni_entry(skb); 4180 4181 preempt_disable(); 4182 err = netif_rx_internal(skb); 4183 if (local_softirq_pending()) 4184 do_softirq(); 4185 preempt_enable(); 4186 4187 return err; 4188 } 4189 EXPORT_SYMBOL(netif_rx_ni); 4190 4191 static __latent_entropy void net_tx_action(struct softirq_action *h) 4192 { 4193 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4194 4195 if (sd->completion_queue) { 4196 struct sk_buff *clist; 4197 4198 local_irq_disable(); 4199 clist = sd->completion_queue; 4200 sd->completion_queue = NULL; 4201 local_irq_enable(); 4202 4203 while (clist) { 4204 struct sk_buff *skb = clist; 4205 4206 clist = clist->next; 4207 4208 WARN_ON(refcount_read(&skb->users)); 4209 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 4210 trace_consume_skb(skb); 4211 else 4212 trace_kfree_skb(skb, net_tx_action); 4213 4214 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 4215 __kfree_skb(skb); 4216 else 4217 __kfree_skb_defer(skb); 4218 } 4219 4220 __kfree_skb_flush(); 4221 } 4222 4223 if (sd->output_queue) { 4224 struct Qdisc *head; 4225 4226 local_irq_disable(); 4227 head = sd->output_queue; 4228 sd->output_queue = NULL; 4229 sd->output_queue_tailp = &sd->output_queue; 4230 local_irq_enable(); 4231 4232 while (head) { 4233 struct Qdisc *q = head; 4234 spinlock_t *root_lock = NULL; 4235 4236 head = head->next_sched; 4237 4238 if (!(q->flags & TCQ_F_NOLOCK)) { 4239 root_lock = qdisc_lock(q); 4240 spin_lock(root_lock); 4241 } 4242 /* We need to make sure head->next_sched is read 4243 * before clearing __QDISC_STATE_SCHED 4244 */ 4245 smp_mb__before_atomic(); 4246 clear_bit(__QDISC_STATE_SCHED, &q->state); 4247 qdisc_run(q); 4248 if (root_lock) 4249 spin_unlock(root_lock); 4250 } 4251 } 4252 4253 xfrm_dev_backlog(sd); 4254 } 4255 4256 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 4257 /* This hook is defined here for ATM LANE */ 4258 int (*br_fdb_test_addr_hook)(struct net_device *dev, 4259 unsigned char *addr) __read_mostly; 4260 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 4261 #endif 4262 4263 static inline struct sk_buff * 4264 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4265 struct net_device *orig_dev) 4266 { 4267 #ifdef CONFIG_NET_CLS_ACT 4268 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress); 4269 struct tcf_result cl_res; 4270 4271 /* If there's at least one ingress present somewhere (so 4272 * we get here via enabled static key), remaining devices 4273 * that are not configured with an ingress qdisc will bail 4274 * out here. 4275 */ 4276 if (!miniq) 4277 return skb; 4278 4279 if (*pt_prev) { 4280 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4281 *pt_prev = NULL; 4282 } 4283 4284 qdisc_skb_cb(skb)->pkt_len = skb->len; 4285 skb->tc_at_ingress = 1; 4286 mini_qdisc_bstats_cpu_update(miniq, skb); 4287 4288 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 4289 case TC_ACT_OK: 4290 case TC_ACT_RECLASSIFY: 4291 skb->tc_index = TC_H_MIN(cl_res.classid); 4292 break; 4293 case TC_ACT_SHOT: 4294 mini_qdisc_qstats_cpu_drop(miniq); 4295 kfree_skb(skb); 4296 return NULL; 4297 case TC_ACT_STOLEN: 4298 case TC_ACT_QUEUED: 4299 case TC_ACT_TRAP: 4300 consume_skb(skb); 4301 return NULL; 4302 case TC_ACT_REDIRECT: 4303 /* skb_mac_header check was done by cls/act_bpf, so 4304 * we can safely push the L2 header back before 4305 * redirecting to another netdev 4306 */ 4307 __skb_push(skb, skb->mac_len); 4308 skb_do_redirect(skb); 4309 return NULL; 4310 default: 4311 break; 4312 } 4313 #endif /* CONFIG_NET_CLS_ACT */ 4314 return skb; 4315 } 4316 4317 /** 4318 * netdev_is_rx_handler_busy - check if receive handler is registered 4319 * @dev: device to check 4320 * 4321 * Check if a receive handler is already registered for a given device. 4322 * Return true if there one. 4323 * 4324 * The caller must hold the rtnl_mutex. 4325 */ 4326 bool netdev_is_rx_handler_busy(struct net_device *dev) 4327 { 4328 ASSERT_RTNL(); 4329 return dev && rtnl_dereference(dev->rx_handler); 4330 } 4331 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 4332 4333 /** 4334 * netdev_rx_handler_register - register receive handler 4335 * @dev: device to register a handler for 4336 * @rx_handler: receive handler to register 4337 * @rx_handler_data: data pointer that is used by rx handler 4338 * 4339 * Register a receive handler for a device. This handler will then be 4340 * called from __netif_receive_skb. A negative errno code is returned 4341 * on a failure. 4342 * 4343 * The caller must hold the rtnl_mutex. 4344 * 4345 * For a general description of rx_handler, see enum rx_handler_result. 4346 */ 4347 int netdev_rx_handler_register(struct net_device *dev, 4348 rx_handler_func_t *rx_handler, 4349 void *rx_handler_data) 4350 { 4351 if (netdev_is_rx_handler_busy(dev)) 4352 return -EBUSY; 4353 4354 /* Note: rx_handler_data must be set before rx_handler */ 4355 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 4356 rcu_assign_pointer(dev->rx_handler, rx_handler); 4357 4358 return 0; 4359 } 4360 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 4361 4362 /** 4363 * netdev_rx_handler_unregister - unregister receive handler 4364 * @dev: device to unregister a handler from 4365 * 4366 * Unregister a receive handler from a device. 4367 * 4368 * The caller must hold the rtnl_mutex. 4369 */ 4370 void netdev_rx_handler_unregister(struct net_device *dev) 4371 { 4372 4373 ASSERT_RTNL(); 4374 RCU_INIT_POINTER(dev->rx_handler, NULL); 4375 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 4376 * section has a guarantee to see a non NULL rx_handler_data 4377 * as well. 4378 */ 4379 synchronize_net(); 4380 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 4381 } 4382 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 4383 4384 /* 4385 * Limit the use of PFMEMALLOC reserves to those protocols that implement 4386 * the special handling of PFMEMALLOC skbs. 4387 */ 4388 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 4389 { 4390 switch (skb->protocol) { 4391 case htons(ETH_P_ARP): 4392 case htons(ETH_P_IP): 4393 case htons(ETH_P_IPV6): 4394 case htons(ETH_P_8021Q): 4395 case htons(ETH_P_8021AD): 4396 return true; 4397 default: 4398 return false; 4399 } 4400 } 4401 4402 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 4403 int *ret, struct net_device *orig_dev) 4404 { 4405 #ifdef CONFIG_NETFILTER_INGRESS 4406 if (nf_hook_ingress_active(skb)) { 4407 int ingress_retval; 4408 4409 if (*pt_prev) { 4410 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4411 *pt_prev = NULL; 4412 } 4413 4414 rcu_read_lock(); 4415 ingress_retval = nf_hook_ingress(skb); 4416 rcu_read_unlock(); 4417 return ingress_retval; 4418 } 4419 #endif /* CONFIG_NETFILTER_INGRESS */ 4420 return 0; 4421 } 4422 4423 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 4424 { 4425 struct packet_type *ptype, *pt_prev; 4426 rx_handler_func_t *rx_handler; 4427 struct net_device *orig_dev; 4428 bool deliver_exact = false; 4429 int ret = NET_RX_DROP; 4430 __be16 type; 4431 4432 net_timestamp_check(!netdev_tstamp_prequeue, skb); 4433 4434 trace_netif_receive_skb(skb); 4435 4436 orig_dev = skb->dev; 4437 4438 skb_reset_network_header(skb); 4439 if (!skb_transport_header_was_set(skb)) 4440 skb_reset_transport_header(skb); 4441 skb_reset_mac_len(skb); 4442 4443 pt_prev = NULL; 4444 4445 another_round: 4446 skb->skb_iif = skb->dev->ifindex; 4447 4448 __this_cpu_inc(softnet_data.processed); 4449 4450 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 4451 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 4452 skb = skb_vlan_untag(skb); 4453 if (unlikely(!skb)) 4454 goto out; 4455 } 4456 4457 if (skb_skip_tc_classify(skb)) 4458 goto skip_classify; 4459 4460 if (pfmemalloc) 4461 goto skip_taps; 4462 4463 list_for_each_entry_rcu(ptype, &ptype_all, list) { 4464 if (pt_prev) 4465 ret = deliver_skb(skb, pt_prev, orig_dev); 4466 pt_prev = ptype; 4467 } 4468 4469 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 4470 if (pt_prev) 4471 ret = deliver_skb(skb, pt_prev, orig_dev); 4472 pt_prev = ptype; 4473 } 4474 4475 skip_taps: 4476 #ifdef CONFIG_NET_INGRESS 4477 if (static_key_false(&ingress_needed)) { 4478 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev); 4479 if (!skb) 4480 goto out; 4481 4482 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 4483 goto out; 4484 } 4485 #endif 4486 skb_reset_tc(skb); 4487 skip_classify: 4488 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 4489 goto drop; 4490 4491 if (skb_vlan_tag_present(skb)) { 4492 if (pt_prev) { 4493 ret = deliver_skb(skb, pt_prev, orig_dev); 4494 pt_prev = NULL; 4495 } 4496 if (vlan_do_receive(&skb)) 4497 goto another_round; 4498 else if (unlikely(!skb)) 4499 goto out; 4500 } 4501 4502 rx_handler = rcu_dereference(skb->dev->rx_handler); 4503 if (rx_handler) { 4504 if (pt_prev) { 4505 ret = deliver_skb(skb, pt_prev, orig_dev); 4506 pt_prev = NULL; 4507 } 4508 switch (rx_handler(&skb)) { 4509 case RX_HANDLER_CONSUMED: 4510 ret = NET_RX_SUCCESS; 4511 goto out; 4512 case RX_HANDLER_ANOTHER: 4513 goto another_round; 4514 case RX_HANDLER_EXACT: 4515 deliver_exact = true; 4516 case RX_HANDLER_PASS: 4517 break; 4518 default: 4519 BUG(); 4520 } 4521 } 4522 4523 if (unlikely(skb_vlan_tag_present(skb))) { 4524 if (skb_vlan_tag_get_id(skb)) 4525 skb->pkt_type = PACKET_OTHERHOST; 4526 /* Note: we might in the future use prio bits 4527 * and set skb->priority like in vlan_do_receive() 4528 * For the time being, just ignore Priority Code Point 4529 */ 4530 skb->vlan_tci = 0; 4531 } 4532 4533 type = skb->protocol; 4534 4535 /* deliver only exact match when indicated */ 4536 if (likely(!deliver_exact)) { 4537 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4538 &ptype_base[ntohs(type) & 4539 PTYPE_HASH_MASK]); 4540 } 4541 4542 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4543 &orig_dev->ptype_specific); 4544 4545 if (unlikely(skb->dev != orig_dev)) { 4546 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4547 &skb->dev->ptype_specific); 4548 } 4549 4550 if (pt_prev) { 4551 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 4552 goto drop; 4553 else 4554 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 4555 } else { 4556 drop: 4557 if (!deliver_exact) 4558 atomic_long_inc(&skb->dev->rx_dropped); 4559 else 4560 atomic_long_inc(&skb->dev->rx_nohandler); 4561 kfree_skb(skb); 4562 /* Jamal, now you will not able to escape explaining 4563 * me how you were going to use this. :-) 4564 */ 4565 ret = NET_RX_DROP; 4566 } 4567 4568 out: 4569 return ret; 4570 } 4571 4572 /** 4573 * netif_receive_skb_core - special purpose version of netif_receive_skb 4574 * @skb: buffer to process 4575 * 4576 * More direct receive version of netif_receive_skb(). It should 4577 * only be used by callers that have a need to skip RPS and Generic XDP. 4578 * Caller must also take care of handling if (page_is_)pfmemalloc. 4579 * 4580 * This function may only be called from softirq context and interrupts 4581 * should be enabled. 4582 * 4583 * Return values (usually ignored): 4584 * NET_RX_SUCCESS: no congestion 4585 * NET_RX_DROP: packet was dropped 4586 */ 4587 int netif_receive_skb_core(struct sk_buff *skb) 4588 { 4589 int ret; 4590 4591 rcu_read_lock(); 4592 ret = __netif_receive_skb_core(skb, false); 4593 rcu_read_unlock(); 4594 4595 return ret; 4596 } 4597 EXPORT_SYMBOL(netif_receive_skb_core); 4598 4599 static int __netif_receive_skb(struct sk_buff *skb) 4600 { 4601 int ret; 4602 4603 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 4604 unsigned int noreclaim_flag; 4605 4606 /* 4607 * PFMEMALLOC skbs are special, they should 4608 * - be delivered to SOCK_MEMALLOC sockets only 4609 * - stay away from userspace 4610 * - have bounded memory usage 4611 * 4612 * Use PF_MEMALLOC as this saves us from propagating the allocation 4613 * context down to all allocation sites. 4614 */ 4615 noreclaim_flag = memalloc_noreclaim_save(); 4616 ret = __netif_receive_skb_core(skb, true); 4617 memalloc_noreclaim_restore(noreclaim_flag); 4618 } else 4619 ret = __netif_receive_skb_core(skb, false); 4620 4621 return ret; 4622 } 4623 4624 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 4625 { 4626 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 4627 struct bpf_prog *new = xdp->prog; 4628 int ret = 0; 4629 4630 switch (xdp->command) { 4631 case XDP_SETUP_PROG: 4632 rcu_assign_pointer(dev->xdp_prog, new); 4633 if (old) 4634 bpf_prog_put(old); 4635 4636 if (old && !new) { 4637 static_key_slow_dec(&generic_xdp_needed); 4638 } else if (new && !old) { 4639 static_key_slow_inc(&generic_xdp_needed); 4640 dev_disable_lro(dev); 4641 dev_disable_gro_hw(dev); 4642 } 4643 break; 4644 4645 case XDP_QUERY_PROG: 4646 xdp->prog_attached = !!old; 4647 xdp->prog_id = old ? old->aux->id : 0; 4648 break; 4649 4650 default: 4651 ret = -EINVAL; 4652 break; 4653 } 4654 4655 return ret; 4656 } 4657 4658 static int netif_receive_skb_internal(struct sk_buff *skb) 4659 { 4660 int ret; 4661 4662 net_timestamp_check(netdev_tstamp_prequeue, skb); 4663 4664 if (skb_defer_rx_timestamp(skb)) 4665 return NET_RX_SUCCESS; 4666 4667 if (static_key_false(&generic_xdp_needed)) { 4668 int ret; 4669 4670 preempt_disable(); 4671 rcu_read_lock(); 4672 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 4673 rcu_read_unlock(); 4674 preempt_enable(); 4675 4676 if (ret != XDP_PASS) 4677 return NET_RX_DROP; 4678 } 4679 4680 rcu_read_lock(); 4681 #ifdef CONFIG_RPS 4682 if (static_key_false(&rps_needed)) { 4683 struct rps_dev_flow voidflow, *rflow = &voidflow; 4684 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 4685 4686 if (cpu >= 0) { 4687 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4688 rcu_read_unlock(); 4689 return ret; 4690 } 4691 } 4692 #endif 4693 ret = __netif_receive_skb(skb); 4694 rcu_read_unlock(); 4695 return ret; 4696 } 4697 4698 /** 4699 * netif_receive_skb - process receive buffer from network 4700 * @skb: buffer to process 4701 * 4702 * netif_receive_skb() is the main receive data processing function. 4703 * It always succeeds. The buffer may be dropped during processing 4704 * for congestion control or by the protocol layers. 4705 * 4706 * This function may only be called from softirq context and interrupts 4707 * should be enabled. 4708 * 4709 * Return values (usually ignored): 4710 * NET_RX_SUCCESS: no congestion 4711 * NET_RX_DROP: packet was dropped 4712 */ 4713 int netif_receive_skb(struct sk_buff *skb) 4714 { 4715 trace_netif_receive_skb_entry(skb); 4716 4717 return netif_receive_skb_internal(skb); 4718 } 4719 EXPORT_SYMBOL(netif_receive_skb); 4720 4721 DEFINE_PER_CPU(struct work_struct, flush_works); 4722 4723 /* Network device is going away, flush any packets still pending */ 4724 static void flush_backlog(struct work_struct *work) 4725 { 4726 struct sk_buff *skb, *tmp; 4727 struct softnet_data *sd; 4728 4729 local_bh_disable(); 4730 sd = this_cpu_ptr(&softnet_data); 4731 4732 local_irq_disable(); 4733 rps_lock(sd); 4734 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 4735 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 4736 __skb_unlink(skb, &sd->input_pkt_queue); 4737 kfree_skb(skb); 4738 input_queue_head_incr(sd); 4739 } 4740 } 4741 rps_unlock(sd); 4742 local_irq_enable(); 4743 4744 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 4745 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 4746 __skb_unlink(skb, &sd->process_queue); 4747 kfree_skb(skb); 4748 input_queue_head_incr(sd); 4749 } 4750 } 4751 local_bh_enable(); 4752 } 4753 4754 static void flush_all_backlogs(void) 4755 { 4756 unsigned int cpu; 4757 4758 get_online_cpus(); 4759 4760 for_each_online_cpu(cpu) 4761 queue_work_on(cpu, system_highpri_wq, 4762 per_cpu_ptr(&flush_works, cpu)); 4763 4764 for_each_online_cpu(cpu) 4765 flush_work(per_cpu_ptr(&flush_works, cpu)); 4766 4767 put_online_cpus(); 4768 } 4769 4770 static int napi_gro_complete(struct sk_buff *skb) 4771 { 4772 struct packet_offload *ptype; 4773 __be16 type = skb->protocol; 4774 struct list_head *head = &offload_base; 4775 int err = -ENOENT; 4776 4777 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 4778 4779 if (NAPI_GRO_CB(skb)->count == 1) { 4780 skb_shinfo(skb)->gso_size = 0; 4781 goto out; 4782 } 4783 4784 rcu_read_lock(); 4785 list_for_each_entry_rcu(ptype, head, list) { 4786 if (ptype->type != type || !ptype->callbacks.gro_complete) 4787 continue; 4788 4789 err = ptype->callbacks.gro_complete(skb, 0); 4790 break; 4791 } 4792 rcu_read_unlock(); 4793 4794 if (err) { 4795 WARN_ON(&ptype->list == head); 4796 kfree_skb(skb); 4797 return NET_RX_SUCCESS; 4798 } 4799 4800 out: 4801 return netif_receive_skb_internal(skb); 4802 } 4803 4804 /* napi->gro_list contains packets ordered by age. 4805 * youngest packets at the head of it. 4806 * Complete skbs in reverse order to reduce latencies. 4807 */ 4808 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 4809 { 4810 struct sk_buff *skb, *prev = NULL; 4811 4812 /* scan list and build reverse chain */ 4813 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 4814 skb->prev = prev; 4815 prev = skb; 4816 } 4817 4818 for (skb = prev; skb; skb = prev) { 4819 skb->next = NULL; 4820 4821 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 4822 return; 4823 4824 prev = skb->prev; 4825 napi_gro_complete(skb); 4826 napi->gro_count--; 4827 } 4828 4829 napi->gro_list = NULL; 4830 } 4831 EXPORT_SYMBOL(napi_gro_flush); 4832 4833 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 4834 { 4835 struct sk_buff *p; 4836 unsigned int maclen = skb->dev->hard_header_len; 4837 u32 hash = skb_get_hash_raw(skb); 4838 4839 for (p = napi->gro_list; p; p = p->next) { 4840 unsigned long diffs; 4841 4842 NAPI_GRO_CB(p)->flush = 0; 4843 4844 if (hash != skb_get_hash_raw(p)) { 4845 NAPI_GRO_CB(p)->same_flow = 0; 4846 continue; 4847 } 4848 4849 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 4850 diffs |= p->vlan_tci ^ skb->vlan_tci; 4851 diffs |= skb_metadata_dst_cmp(p, skb); 4852 diffs |= skb_metadata_differs(p, skb); 4853 if (maclen == ETH_HLEN) 4854 diffs |= compare_ether_header(skb_mac_header(p), 4855 skb_mac_header(skb)); 4856 else if (!diffs) 4857 diffs = memcmp(skb_mac_header(p), 4858 skb_mac_header(skb), 4859 maclen); 4860 NAPI_GRO_CB(p)->same_flow = !diffs; 4861 } 4862 } 4863 4864 static void skb_gro_reset_offset(struct sk_buff *skb) 4865 { 4866 const struct skb_shared_info *pinfo = skb_shinfo(skb); 4867 const skb_frag_t *frag0 = &pinfo->frags[0]; 4868 4869 NAPI_GRO_CB(skb)->data_offset = 0; 4870 NAPI_GRO_CB(skb)->frag0 = NULL; 4871 NAPI_GRO_CB(skb)->frag0_len = 0; 4872 4873 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 4874 pinfo->nr_frags && 4875 !PageHighMem(skb_frag_page(frag0))) { 4876 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 4877 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 4878 skb_frag_size(frag0), 4879 skb->end - skb->tail); 4880 } 4881 } 4882 4883 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 4884 { 4885 struct skb_shared_info *pinfo = skb_shinfo(skb); 4886 4887 BUG_ON(skb->end - skb->tail < grow); 4888 4889 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 4890 4891 skb->data_len -= grow; 4892 skb->tail += grow; 4893 4894 pinfo->frags[0].page_offset += grow; 4895 skb_frag_size_sub(&pinfo->frags[0], grow); 4896 4897 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 4898 skb_frag_unref(skb, 0); 4899 memmove(pinfo->frags, pinfo->frags + 1, 4900 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 4901 } 4902 } 4903 4904 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4905 { 4906 struct sk_buff **pp = NULL; 4907 struct packet_offload *ptype; 4908 __be16 type = skb->protocol; 4909 struct list_head *head = &offload_base; 4910 int same_flow; 4911 enum gro_result ret; 4912 int grow; 4913 4914 if (netif_elide_gro(skb->dev)) 4915 goto normal; 4916 4917 gro_list_prepare(napi, skb); 4918 4919 rcu_read_lock(); 4920 list_for_each_entry_rcu(ptype, head, list) { 4921 if (ptype->type != type || !ptype->callbacks.gro_receive) 4922 continue; 4923 4924 skb_set_network_header(skb, skb_gro_offset(skb)); 4925 skb_reset_mac_len(skb); 4926 NAPI_GRO_CB(skb)->same_flow = 0; 4927 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 4928 NAPI_GRO_CB(skb)->free = 0; 4929 NAPI_GRO_CB(skb)->encap_mark = 0; 4930 NAPI_GRO_CB(skb)->recursion_counter = 0; 4931 NAPI_GRO_CB(skb)->is_fou = 0; 4932 NAPI_GRO_CB(skb)->is_atomic = 1; 4933 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 4934 4935 /* Setup for GRO checksum validation */ 4936 switch (skb->ip_summed) { 4937 case CHECKSUM_COMPLETE: 4938 NAPI_GRO_CB(skb)->csum = skb->csum; 4939 NAPI_GRO_CB(skb)->csum_valid = 1; 4940 NAPI_GRO_CB(skb)->csum_cnt = 0; 4941 break; 4942 case CHECKSUM_UNNECESSARY: 4943 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 4944 NAPI_GRO_CB(skb)->csum_valid = 0; 4945 break; 4946 default: 4947 NAPI_GRO_CB(skb)->csum_cnt = 0; 4948 NAPI_GRO_CB(skb)->csum_valid = 0; 4949 } 4950 4951 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 4952 break; 4953 } 4954 rcu_read_unlock(); 4955 4956 if (&ptype->list == head) 4957 goto normal; 4958 4959 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) { 4960 ret = GRO_CONSUMED; 4961 goto ok; 4962 } 4963 4964 same_flow = NAPI_GRO_CB(skb)->same_flow; 4965 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 4966 4967 if (pp) { 4968 struct sk_buff *nskb = *pp; 4969 4970 *pp = nskb->next; 4971 nskb->next = NULL; 4972 napi_gro_complete(nskb); 4973 napi->gro_count--; 4974 } 4975 4976 if (same_flow) 4977 goto ok; 4978 4979 if (NAPI_GRO_CB(skb)->flush) 4980 goto normal; 4981 4982 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) { 4983 struct sk_buff *nskb = napi->gro_list; 4984 4985 /* locate the end of the list to select the 'oldest' flow */ 4986 while (nskb->next) { 4987 pp = &nskb->next; 4988 nskb = *pp; 4989 } 4990 *pp = NULL; 4991 nskb->next = NULL; 4992 napi_gro_complete(nskb); 4993 } else { 4994 napi->gro_count++; 4995 } 4996 NAPI_GRO_CB(skb)->count = 1; 4997 NAPI_GRO_CB(skb)->age = jiffies; 4998 NAPI_GRO_CB(skb)->last = skb; 4999 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 5000 skb->next = napi->gro_list; 5001 napi->gro_list = skb; 5002 ret = GRO_HELD; 5003 5004 pull: 5005 grow = skb_gro_offset(skb) - skb_headlen(skb); 5006 if (grow > 0) 5007 gro_pull_from_frag0(skb, grow); 5008 ok: 5009 return ret; 5010 5011 normal: 5012 ret = GRO_NORMAL; 5013 goto pull; 5014 } 5015 5016 struct packet_offload *gro_find_receive_by_type(__be16 type) 5017 { 5018 struct list_head *offload_head = &offload_base; 5019 struct packet_offload *ptype; 5020 5021 list_for_each_entry_rcu(ptype, offload_head, list) { 5022 if (ptype->type != type || !ptype->callbacks.gro_receive) 5023 continue; 5024 return ptype; 5025 } 5026 return NULL; 5027 } 5028 EXPORT_SYMBOL(gro_find_receive_by_type); 5029 5030 struct packet_offload *gro_find_complete_by_type(__be16 type) 5031 { 5032 struct list_head *offload_head = &offload_base; 5033 struct packet_offload *ptype; 5034 5035 list_for_each_entry_rcu(ptype, offload_head, list) { 5036 if (ptype->type != type || !ptype->callbacks.gro_complete) 5037 continue; 5038 return ptype; 5039 } 5040 return NULL; 5041 } 5042 EXPORT_SYMBOL(gro_find_complete_by_type); 5043 5044 static void napi_skb_free_stolen_head(struct sk_buff *skb) 5045 { 5046 skb_dst_drop(skb); 5047 secpath_reset(skb); 5048 kmem_cache_free(skbuff_head_cache, skb); 5049 } 5050 5051 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 5052 { 5053 switch (ret) { 5054 case GRO_NORMAL: 5055 if (netif_receive_skb_internal(skb)) 5056 ret = GRO_DROP; 5057 break; 5058 5059 case GRO_DROP: 5060 kfree_skb(skb); 5061 break; 5062 5063 case GRO_MERGED_FREE: 5064 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5065 napi_skb_free_stolen_head(skb); 5066 else 5067 __kfree_skb(skb); 5068 break; 5069 5070 case GRO_HELD: 5071 case GRO_MERGED: 5072 case GRO_CONSUMED: 5073 break; 5074 } 5075 5076 return ret; 5077 } 5078 5079 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5080 { 5081 skb_mark_napi_id(skb, napi); 5082 trace_napi_gro_receive_entry(skb); 5083 5084 skb_gro_reset_offset(skb); 5085 5086 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 5087 } 5088 EXPORT_SYMBOL(napi_gro_receive); 5089 5090 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 5091 { 5092 if (unlikely(skb->pfmemalloc)) { 5093 consume_skb(skb); 5094 return; 5095 } 5096 __skb_pull(skb, skb_headlen(skb)); 5097 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 5098 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 5099 skb->vlan_tci = 0; 5100 skb->dev = napi->dev; 5101 skb->skb_iif = 0; 5102 skb->encapsulation = 0; 5103 skb_shinfo(skb)->gso_type = 0; 5104 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 5105 secpath_reset(skb); 5106 5107 napi->skb = skb; 5108 } 5109 5110 struct sk_buff *napi_get_frags(struct napi_struct *napi) 5111 { 5112 struct sk_buff *skb = napi->skb; 5113 5114 if (!skb) { 5115 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 5116 if (skb) { 5117 napi->skb = skb; 5118 skb_mark_napi_id(skb, napi); 5119 } 5120 } 5121 return skb; 5122 } 5123 EXPORT_SYMBOL(napi_get_frags); 5124 5125 static gro_result_t napi_frags_finish(struct napi_struct *napi, 5126 struct sk_buff *skb, 5127 gro_result_t ret) 5128 { 5129 switch (ret) { 5130 case GRO_NORMAL: 5131 case GRO_HELD: 5132 __skb_push(skb, ETH_HLEN); 5133 skb->protocol = eth_type_trans(skb, skb->dev); 5134 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 5135 ret = GRO_DROP; 5136 break; 5137 5138 case GRO_DROP: 5139 napi_reuse_skb(napi, skb); 5140 break; 5141 5142 case GRO_MERGED_FREE: 5143 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5144 napi_skb_free_stolen_head(skb); 5145 else 5146 napi_reuse_skb(napi, skb); 5147 break; 5148 5149 case GRO_MERGED: 5150 case GRO_CONSUMED: 5151 break; 5152 } 5153 5154 return ret; 5155 } 5156 5157 /* Upper GRO stack assumes network header starts at gro_offset=0 5158 * Drivers could call both napi_gro_frags() and napi_gro_receive() 5159 * We copy ethernet header into skb->data to have a common layout. 5160 */ 5161 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 5162 { 5163 struct sk_buff *skb = napi->skb; 5164 const struct ethhdr *eth; 5165 unsigned int hlen = sizeof(*eth); 5166 5167 napi->skb = NULL; 5168 5169 skb_reset_mac_header(skb); 5170 skb_gro_reset_offset(skb); 5171 5172 eth = skb_gro_header_fast(skb, 0); 5173 if (unlikely(skb_gro_header_hard(skb, hlen))) { 5174 eth = skb_gro_header_slow(skb, hlen, 0); 5175 if (unlikely(!eth)) { 5176 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 5177 __func__, napi->dev->name); 5178 napi_reuse_skb(napi, skb); 5179 return NULL; 5180 } 5181 } else { 5182 gro_pull_from_frag0(skb, hlen); 5183 NAPI_GRO_CB(skb)->frag0 += hlen; 5184 NAPI_GRO_CB(skb)->frag0_len -= hlen; 5185 } 5186 __skb_pull(skb, hlen); 5187 5188 /* 5189 * This works because the only protocols we care about don't require 5190 * special handling. 5191 * We'll fix it up properly in napi_frags_finish() 5192 */ 5193 skb->protocol = eth->h_proto; 5194 5195 return skb; 5196 } 5197 5198 gro_result_t napi_gro_frags(struct napi_struct *napi) 5199 { 5200 struct sk_buff *skb = napi_frags_skb(napi); 5201 5202 if (!skb) 5203 return GRO_DROP; 5204 5205 trace_napi_gro_frags_entry(skb); 5206 5207 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 5208 } 5209 EXPORT_SYMBOL(napi_gro_frags); 5210 5211 /* Compute the checksum from gro_offset and return the folded value 5212 * after adding in any pseudo checksum. 5213 */ 5214 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 5215 { 5216 __wsum wsum; 5217 __sum16 sum; 5218 5219 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 5220 5221 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 5222 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 5223 if (likely(!sum)) { 5224 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 5225 !skb->csum_complete_sw) 5226 netdev_rx_csum_fault(skb->dev); 5227 } 5228 5229 NAPI_GRO_CB(skb)->csum = wsum; 5230 NAPI_GRO_CB(skb)->csum_valid = 1; 5231 5232 return sum; 5233 } 5234 EXPORT_SYMBOL(__skb_gro_checksum_complete); 5235 5236 static void net_rps_send_ipi(struct softnet_data *remsd) 5237 { 5238 #ifdef CONFIG_RPS 5239 while (remsd) { 5240 struct softnet_data *next = remsd->rps_ipi_next; 5241 5242 if (cpu_online(remsd->cpu)) 5243 smp_call_function_single_async(remsd->cpu, &remsd->csd); 5244 remsd = next; 5245 } 5246 #endif 5247 } 5248 5249 /* 5250 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 5251 * Note: called with local irq disabled, but exits with local irq enabled. 5252 */ 5253 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 5254 { 5255 #ifdef CONFIG_RPS 5256 struct softnet_data *remsd = sd->rps_ipi_list; 5257 5258 if (remsd) { 5259 sd->rps_ipi_list = NULL; 5260 5261 local_irq_enable(); 5262 5263 /* Send pending IPI's to kick RPS processing on remote cpus. */ 5264 net_rps_send_ipi(remsd); 5265 } else 5266 #endif 5267 local_irq_enable(); 5268 } 5269 5270 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 5271 { 5272 #ifdef CONFIG_RPS 5273 return sd->rps_ipi_list != NULL; 5274 #else 5275 return false; 5276 #endif 5277 } 5278 5279 static int process_backlog(struct napi_struct *napi, int quota) 5280 { 5281 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 5282 bool again = true; 5283 int work = 0; 5284 5285 /* Check if we have pending ipi, its better to send them now, 5286 * not waiting net_rx_action() end. 5287 */ 5288 if (sd_has_rps_ipi_waiting(sd)) { 5289 local_irq_disable(); 5290 net_rps_action_and_irq_enable(sd); 5291 } 5292 5293 napi->weight = dev_rx_weight; 5294 while (again) { 5295 struct sk_buff *skb; 5296 5297 while ((skb = __skb_dequeue(&sd->process_queue))) { 5298 rcu_read_lock(); 5299 __netif_receive_skb(skb); 5300 rcu_read_unlock(); 5301 input_queue_head_incr(sd); 5302 if (++work >= quota) 5303 return work; 5304 5305 } 5306 5307 local_irq_disable(); 5308 rps_lock(sd); 5309 if (skb_queue_empty(&sd->input_pkt_queue)) { 5310 /* 5311 * Inline a custom version of __napi_complete(). 5312 * only current cpu owns and manipulates this napi, 5313 * and NAPI_STATE_SCHED is the only possible flag set 5314 * on backlog. 5315 * We can use a plain write instead of clear_bit(), 5316 * and we dont need an smp_mb() memory barrier. 5317 */ 5318 napi->state = 0; 5319 again = false; 5320 } else { 5321 skb_queue_splice_tail_init(&sd->input_pkt_queue, 5322 &sd->process_queue); 5323 } 5324 rps_unlock(sd); 5325 local_irq_enable(); 5326 } 5327 5328 return work; 5329 } 5330 5331 /** 5332 * __napi_schedule - schedule for receive 5333 * @n: entry to schedule 5334 * 5335 * The entry's receive function will be scheduled to run. 5336 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 5337 */ 5338 void __napi_schedule(struct napi_struct *n) 5339 { 5340 unsigned long flags; 5341 5342 local_irq_save(flags); 5343 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5344 local_irq_restore(flags); 5345 } 5346 EXPORT_SYMBOL(__napi_schedule); 5347 5348 /** 5349 * napi_schedule_prep - check if napi can be scheduled 5350 * @n: napi context 5351 * 5352 * Test if NAPI routine is already running, and if not mark 5353 * it as running. This is used as a condition variable 5354 * insure only one NAPI poll instance runs. We also make 5355 * sure there is no pending NAPI disable. 5356 */ 5357 bool napi_schedule_prep(struct napi_struct *n) 5358 { 5359 unsigned long val, new; 5360 5361 do { 5362 val = READ_ONCE(n->state); 5363 if (unlikely(val & NAPIF_STATE_DISABLE)) 5364 return false; 5365 new = val | NAPIF_STATE_SCHED; 5366 5367 /* Sets STATE_MISSED bit if STATE_SCHED was already set 5368 * This was suggested by Alexander Duyck, as compiler 5369 * emits better code than : 5370 * if (val & NAPIF_STATE_SCHED) 5371 * new |= NAPIF_STATE_MISSED; 5372 */ 5373 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 5374 NAPIF_STATE_MISSED; 5375 } while (cmpxchg(&n->state, val, new) != val); 5376 5377 return !(val & NAPIF_STATE_SCHED); 5378 } 5379 EXPORT_SYMBOL(napi_schedule_prep); 5380 5381 /** 5382 * __napi_schedule_irqoff - schedule for receive 5383 * @n: entry to schedule 5384 * 5385 * Variant of __napi_schedule() assuming hard irqs are masked 5386 */ 5387 void __napi_schedule_irqoff(struct napi_struct *n) 5388 { 5389 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5390 } 5391 EXPORT_SYMBOL(__napi_schedule_irqoff); 5392 5393 bool napi_complete_done(struct napi_struct *n, int work_done) 5394 { 5395 unsigned long flags, val, new; 5396 5397 /* 5398 * 1) Don't let napi dequeue from the cpu poll list 5399 * just in case its running on a different cpu. 5400 * 2) If we are busy polling, do nothing here, we have 5401 * the guarantee we will be called later. 5402 */ 5403 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 5404 NAPIF_STATE_IN_BUSY_POLL))) 5405 return false; 5406 5407 if (n->gro_list) { 5408 unsigned long timeout = 0; 5409 5410 if (work_done) 5411 timeout = n->dev->gro_flush_timeout; 5412 5413 if (timeout) 5414 hrtimer_start(&n->timer, ns_to_ktime(timeout), 5415 HRTIMER_MODE_REL_PINNED); 5416 else 5417 napi_gro_flush(n, false); 5418 } 5419 if (unlikely(!list_empty(&n->poll_list))) { 5420 /* If n->poll_list is not empty, we need to mask irqs */ 5421 local_irq_save(flags); 5422 list_del_init(&n->poll_list); 5423 local_irq_restore(flags); 5424 } 5425 5426 do { 5427 val = READ_ONCE(n->state); 5428 5429 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 5430 5431 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED); 5432 5433 /* If STATE_MISSED was set, leave STATE_SCHED set, 5434 * because we will call napi->poll() one more time. 5435 * This C code was suggested by Alexander Duyck to help gcc. 5436 */ 5437 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 5438 NAPIF_STATE_SCHED; 5439 } while (cmpxchg(&n->state, val, new) != val); 5440 5441 if (unlikely(val & NAPIF_STATE_MISSED)) { 5442 __napi_schedule(n); 5443 return false; 5444 } 5445 5446 return true; 5447 } 5448 EXPORT_SYMBOL(napi_complete_done); 5449 5450 /* must be called under rcu_read_lock(), as we dont take a reference */ 5451 static struct napi_struct *napi_by_id(unsigned int napi_id) 5452 { 5453 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 5454 struct napi_struct *napi; 5455 5456 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 5457 if (napi->napi_id == napi_id) 5458 return napi; 5459 5460 return NULL; 5461 } 5462 5463 #if defined(CONFIG_NET_RX_BUSY_POLL) 5464 5465 #define BUSY_POLL_BUDGET 8 5466 5467 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock) 5468 { 5469 int rc; 5470 5471 /* Busy polling means there is a high chance device driver hard irq 5472 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 5473 * set in napi_schedule_prep(). 5474 * Since we are about to call napi->poll() once more, we can safely 5475 * clear NAPI_STATE_MISSED. 5476 * 5477 * Note: x86 could use a single "lock and ..." instruction 5478 * to perform these two clear_bit() 5479 */ 5480 clear_bit(NAPI_STATE_MISSED, &napi->state); 5481 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 5482 5483 local_bh_disable(); 5484 5485 /* All we really want here is to re-enable device interrupts. 5486 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 5487 */ 5488 rc = napi->poll(napi, BUSY_POLL_BUDGET); 5489 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET); 5490 netpoll_poll_unlock(have_poll_lock); 5491 if (rc == BUSY_POLL_BUDGET) 5492 __napi_schedule(napi); 5493 local_bh_enable(); 5494 } 5495 5496 void napi_busy_loop(unsigned int napi_id, 5497 bool (*loop_end)(void *, unsigned long), 5498 void *loop_end_arg) 5499 { 5500 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 5501 int (*napi_poll)(struct napi_struct *napi, int budget); 5502 void *have_poll_lock = NULL; 5503 struct napi_struct *napi; 5504 5505 restart: 5506 napi_poll = NULL; 5507 5508 rcu_read_lock(); 5509 5510 napi = napi_by_id(napi_id); 5511 if (!napi) 5512 goto out; 5513 5514 preempt_disable(); 5515 for (;;) { 5516 int work = 0; 5517 5518 local_bh_disable(); 5519 if (!napi_poll) { 5520 unsigned long val = READ_ONCE(napi->state); 5521 5522 /* If multiple threads are competing for this napi, 5523 * we avoid dirtying napi->state as much as we can. 5524 */ 5525 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 5526 NAPIF_STATE_IN_BUSY_POLL)) 5527 goto count; 5528 if (cmpxchg(&napi->state, val, 5529 val | NAPIF_STATE_IN_BUSY_POLL | 5530 NAPIF_STATE_SCHED) != val) 5531 goto count; 5532 have_poll_lock = netpoll_poll_lock(napi); 5533 napi_poll = napi->poll; 5534 } 5535 work = napi_poll(napi, BUSY_POLL_BUDGET); 5536 trace_napi_poll(napi, work, BUSY_POLL_BUDGET); 5537 count: 5538 if (work > 0) 5539 __NET_ADD_STATS(dev_net(napi->dev), 5540 LINUX_MIB_BUSYPOLLRXPACKETS, work); 5541 local_bh_enable(); 5542 5543 if (!loop_end || loop_end(loop_end_arg, start_time)) 5544 break; 5545 5546 if (unlikely(need_resched())) { 5547 if (napi_poll) 5548 busy_poll_stop(napi, have_poll_lock); 5549 preempt_enable(); 5550 rcu_read_unlock(); 5551 cond_resched(); 5552 if (loop_end(loop_end_arg, start_time)) 5553 return; 5554 goto restart; 5555 } 5556 cpu_relax(); 5557 } 5558 if (napi_poll) 5559 busy_poll_stop(napi, have_poll_lock); 5560 preempt_enable(); 5561 out: 5562 rcu_read_unlock(); 5563 } 5564 EXPORT_SYMBOL(napi_busy_loop); 5565 5566 #endif /* CONFIG_NET_RX_BUSY_POLL */ 5567 5568 static void napi_hash_add(struct napi_struct *napi) 5569 { 5570 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) || 5571 test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) 5572 return; 5573 5574 spin_lock(&napi_hash_lock); 5575 5576 /* 0..NR_CPUS range is reserved for sender_cpu use */ 5577 do { 5578 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 5579 napi_gen_id = MIN_NAPI_ID; 5580 } while (napi_by_id(napi_gen_id)); 5581 napi->napi_id = napi_gen_id; 5582 5583 hlist_add_head_rcu(&napi->napi_hash_node, 5584 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 5585 5586 spin_unlock(&napi_hash_lock); 5587 } 5588 5589 /* Warning : caller is responsible to make sure rcu grace period 5590 * is respected before freeing memory containing @napi 5591 */ 5592 bool napi_hash_del(struct napi_struct *napi) 5593 { 5594 bool rcu_sync_needed = false; 5595 5596 spin_lock(&napi_hash_lock); 5597 5598 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) { 5599 rcu_sync_needed = true; 5600 hlist_del_rcu(&napi->napi_hash_node); 5601 } 5602 spin_unlock(&napi_hash_lock); 5603 return rcu_sync_needed; 5604 } 5605 EXPORT_SYMBOL_GPL(napi_hash_del); 5606 5607 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 5608 { 5609 struct napi_struct *napi; 5610 5611 napi = container_of(timer, struct napi_struct, timer); 5612 5613 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 5614 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 5615 */ 5616 if (napi->gro_list && !napi_disable_pending(napi) && 5617 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) 5618 __napi_schedule_irqoff(napi); 5619 5620 return HRTIMER_NORESTART; 5621 } 5622 5623 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 5624 int (*poll)(struct napi_struct *, int), int weight) 5625 { 5626 INIT_LIST_HEAD(&napi->poll_list); 5627 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 5628 napi->timer.function = napi_watchdog; 5629 napi->gro_count = 0; 5630 napi->gro_list = NULL; 5631 napi->skb = NULL; 5632 napi->poll = poll; 5633 if (weight > NAPI_POLL_WEIGHT) 5634 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 5635 weight, dev->name); 5636 napi->weight = weight; 5637 list_add(&napi->dev_list, &dev->napi_list); 5638 napi->dev = dev; 5639 #ifdef CONFIG_NETPOLL 5640 napi->poll_owner = -1; 5641 #endif 5642 set_bit(NAPI_STATE_SCHED, &napi->state); 5643 napi_hash_add(napi); 5644 } 5645 EXPORT_SYMBOL(netif_napi_add); 5646 5647 void napi_disable(struct napi_struct *n) 5648 { 5649 might_sleep(); 5650 set_bit(NAPI_STATE_DISABLE, &n->state); 5651 5652 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 5653 msleep(1); 5654 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 5655 msleep(1); 5656 5657 hrtimer_cancel(&n->timer); 5658 5659 clear_bit(NAPI_STATE_DISABLE, &n->state); 5660 } 5661 EXPORT_SYMBOL(napi_disable); 5662 5663 /* Must be called in process context */ 5664 void netif_napi_del(struct napi_struct *napi) 5665 { 5666 might_sleep(); 5667 if (napi_hash_del(napi)) 5668 synchronize_net(); 5669 list_del_init(&napi->dev_list); 5670 napi_free_frags(napi); 5671 5672 kfree_skb_list(napi->gro_list); 5673 napi->gro_list = NULL; 5674 napi->gro_count = 0; 5675 } 5676 EXPORT_SYMBOL(netif_napi_del); 5677 5678 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 5679 { 5680 void *have; 5681 int work, weight; 5682 5683 list_del_init(&n->poll_list); 5684 5685 have = netpoll_poll_lock(n); 5686 5687 weight = n->weight; 5688 5689 /* This NAPI_STATE_SCHED test is for avoiding a race 5690 * with netpoll's poll_napi(). Only the entity which 5691 * obtains the lock and sees NAPI_STATE_SCHED set will 5692 * actually make the ->poll() call. Therefore we avoid 5693 * accidentally calling ->poll() when NAPI is not scheduled. 5694 */ 5695 work = 0; 5696 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 5697 work = n->poll(n, weight); 5698 trace_napi_poll(n, work, weight); 5699 } 5700 5701 WARN_ON_ONCE(work > weight); 5702 5703 if (likely(work < weight)) 5704 goto out_unlock; 5705 5706 /* Drivers must not modify the NAPI state if they 5707 * consume the entire weight. In such cases this code 5708 * still "owns" the NAPI instance and therefore can 5709 * move the instance around on the list at-will. 5710 */ 5711 if (unlikely(napi_disable_pending(n))) { 5712 napi_complete(n); 5713 goto out_unlock; 5714 } 5715 5716 if (n->gro_list) { 5717 /* flush too old packets 5718 * If HZ < 1000, flush all packets. 5719 */ 5720 napi_gro_flush(n, HZ >= 1000); 5721 } 5722 5723 /* Some drivers may have called napi_schedule 5724 * prior to exhausting their budget. 5725 */ 5726 if (unlikely(!list_empty(&n->poll_list))) { 5727 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 5728 n->dev ? n->dev->name : "backlog"); 5729 goto out_unlock; 5730 } 5731 5732 list_add_tail(&n->poll_list, repoll); 5733 5734 out_unlock: 5735 netpoll_poll_unlock(have); 5736 5737 return work; 5738 } 5739 5740 static __latent_entropy void net_rx_action(struct softirq_action *h) 5741 { 5742 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5743 unsigned long time_limit = jiffies + 5744 usecs_to_jiffies(netdev_budget_usecs); 5745 int budget = netdev_budget; 5746 LIST_HEAD(list); 5747 LIST_HEAD(repoll); 5748 5749 local_irq_disable(); 5750 list_splice_init(&sd->poll_list, &list); 5751 local_irq_enable(); 5752 5753 for (;;) { 5754 struct napi_struct *n; 5755 5756 if (list_empty(&list)) { 5757 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 5758 goto out; 5759 break; 5760 } 5761 5762 n = list_first_entry(&list, struct napi_struct, poll_list); 5763 budget -= napi_poll(n, &repoll); 5764 5765 /* If softirq window is exhausted then punt. 5766 * Allow this to run for 2 jiffies since which will allow 5767 * an average latency of 1.5/HZ. 5768 */ 5769 if (unlikely(budget <= 0 || 5770 time_after_eq(jiffies, time_limit))) { 5771 sd->time_squeeze++; 5772 break; 5773 } 5774 } 5775 5776 local_irq_disable(); 5777 5778 list_splice_tail_init(&sd->poll_list, &list); 5779 list_splice_tail(&repoll, &list); 5780 list_splice(&list, &sd->poll_list); 5781 if (!list_empty(&sd->poll_list)) 5782 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5783 5784 net_rps_action_and_irq_enable(sd); 5785 out: 5786 __kfree_skb_flush(); 5787 } 5788 5789 struct netdev_adjacent { 5790 struct net_device *dev; 5791 5792 /* upper master flag, there can only be one master device per list */ 5793 bool master; 5794 5795 /* counter for the number of times this device was added to us */ 5796 u16 ref_nr; 5797 5798 /* private field for the users */ 5799 void *private; 5800 5801 struct list_head list; 5802 struct rcu_head rcu; 5803 }; 5804 5805 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 5806 struct list_head *adj_list) 5807 { 5808 struct netdev_adjacent *adj; 5809 5810 list_for_each_entry(adj, adj_list, list) { 5811 if (adj->dev == adj_dev) 5812 return adj; 5813 } 5814 return NULL; 5815 } 5816 5817 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data) 5818 { 5819 struct net_device *dev = data; 5820 5821 return upper_dev == dev; 5822 } 5823 5824 /** 5825 * netdev_has_upper_dev - Check if device is linked to an upper device 5826 * @dev: device 5827 * @upper_dev: upper device to check 5828 * 5829 * Find out if a device is linked to specified upper device and return true 5830 * in case it is. Note that this checks only immediate upper device, 5831 * not through a complete stack of devices. The caller must hold the RTNL lock. 5832 */ 5833 bool netdev_has_upper_dev(struct net_device *dev, 5834 struct net_device *upper_dev) 5835 { 5836 ASSERT_RTNL(); 5837 5838 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 5839 upper_dev); 5840 } 5841 EXPORT_SYMBOL(netdev_has_upper_dev); 5842 5843 /** 5844 * netdev_has_upper_dev_all - Check if device is linked to an upper device 5845 * @dev: device 5846 * @upper_dev: upper device to check 5847 * 5848 * Find out if a device is linked to specified upper device and return true 5849 * in case it is. Note that this checks the entire upper device chain. 5850 * The caller must hold rcu lock. 5851 */ 5852 5853 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 5854 struct net_device *upper_dev) 5855 { 5856 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 5857 upper_dev); 5858 } 5859 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 5860 5861 /** 5862 * netdev_has_any_upper_dev - Check if device is linked to some device 5863 * @dev: device 5864 * 5865 * Find out if a device is linked to an upper device and return true in case 5866 * it is. The caller must hold the RTNL lock. 5867 */ 5868 bool netdev_has_any_upper_dev(struct net_device *dev) 5869 { 5870 ASSERT_RTNL(); 5871 5872 return !list_empty(&dev->adj_list.upper); 5873 } 5874 EXPORT_SYMBOL(netdev_has_any_upper_dev); 5875 5876 /** 5877 * netdev_master_upper_dev_get - Get master upper device 5878 * @dev: device 5879 * 5880 * Find a master upper device and return pointer to it or NULL in case 5881 * it's not there. The caller must hold the RTNL lock. 5882 */ 5883 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 5884 { 5885 struct netdev_adjacent *upper; 5886 5887 ASSERT_RTNL(); 5888 5889 if (list_empty(&dev->adj_list.upper)) 5890 return NULL; 5891 5892 upper = list_first_entry(&dev->adj_list.upper, 5893 struct netdev_adjacent, list); 5894 if (likely(upper->master)) 5895 return upper->dev; 5896 return NULL; 5897 } 5898 EXPORT_SYMBOL(netdev_master_upper_dev_get); 5899 5900 /** 5901 * netdev_has_any_lower_dev - Check if device is linked to some device 5902 * @dev: device 5903 * 5904 * Find out if a device is linked to a lower device and return true in case 5905 * it is. The caller must hold the RTNL lock. 5906 */ 5907 static bool netdev_has_any_lower_dev(struct net_device *dev) 5908 { 5909 ASSERT_RTNL(); 5910 5911 return !list_empty(&dev->adj_list.lower); 5912 } 5913 5914 void *netdev_adjacent_get_private(struct list_head *adj_list) 5915 { 5916 struct netdev_adjacent *adj; 5917 5918 adj = list_entry(adj_list, struct netdev_adjacent, list); 5919 5920 return adj->private; 5921 } 5922 EXPORT_SYMBOL(netdev_adjacent_get_private); 5923 5924 /** 5925 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 5926 * @dev: device 5927 * @iter: list_head ** of the current position 5928 * 5929 * Gets the next device from the dev's upper list, starting from iter 5930 * position. The caller must hold RCU read lock. 5931 */ 5932 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 5933 struct list_head **iter) 5934 { 5935 struct netdev_adjacent *upper; 5936 5937 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5938 5939 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5940 5941 if (&upper->list == &dev->adj_list.upper) 5942 return NULL; 5943 5944 *iter = &upper->list; 5945 5946 return upper->dev; 5947 } 5948 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 5949 5950 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 5951 struct list_head **iter) 5952 { 5953 struct netdev_adjacent *upper; 5954 5955 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5956 5957 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5958 5959 if (&upper->list == &dev->adj_list.upper) 5960 return NULL; 5961 5962 *iter = &upper->list; 5963 5964 return upper->dev; 5965 } 5966 5967 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 5968 int (*fn)(struct net_device *dev, 5969 void *data), 5970 void *data) 5971 { 5972 struct net_device *udev; 5973 struct list_head *iter; 5974 int ret; 5975 5976 for (iter = &dev->adj_list.upper, 5977 udev = netdev_next_upper_dev_rcu(dev, &iter); 5978 udev; 5979 udev = netdev_next_upper_dev_rcu(dev, &iter)) { 5980 /* first is the upper device itself */ 5981 ret = fn(udev, data); 5982 if (ret) 5983 return ret; 5984 5985 /* then look at all of its upper devices */ 5986 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data); 5987 if (ret) 5988 return ret; 5989 } 5990 5991 return 0; 5992 } 5993 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 5994 5995 /** 5996 * netdev_lower_get_next_private - Get the next ->private from the 5997 * lower neighbour list 5998 * @dev: device 5999 * @iter: list_head ** of the current position 6000 * 6001 * Gets the next netdev_adjacent->private from the dev's lower neighbour 6002 * list, starting from iter position. The caller must hold either hold the 6003 * RTNL lock or its own locking that guarantees that the neighbour lower 6004 * list will remain unchanged. 6005 */ 6006 void *netdev_lower_get_next_private(struct net_device *dev, 6007 struct list_head **iter) 6008 { 6009 struct netdev_adjacent *lower; 6010 6011 lower = list_entry(*iter, struct netdev_adjacent, list); 6012 6013 if (&lower->list == &dev->adj_list.lower) 6014 return NULL; 6015 6016 *iter = lower->list.next; 6017 6018 return lower->private; 6019 } 6020 EXPORT_SYMBOL(netdev_lower_get_next_private); 6021 6022 /** 6023 * netdev_lower_get_next_private_rcu - Get the next ->private from the 6024 * lower neighbour list, RCU 6025 * variant 6026 * @dev: device 6027 * @iter: list_head ** of the current position 6028 * 6029 * Gets the next netdev_adjacent->private from the dev's lower neighbour 6030 * list, starting from iter position. The caller must hold RCU read lock. 6031 */ 6032 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 6033 struct list_head **iter) 6034 { 6035 struct netdev_adjacent *lower; 6036 6037 WARN_ON_ONCE(!rcu_read_lock_held()); 6038 6039 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6040 6041 if (&lower->list == &dev->adj_list.lower) 6042 return NULL; 6043 6044 *iter = &lower->list; 6045 6046 return lower->private; 6047 } 6048 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 6049 6050 /** 6051 * netdev_lower_get_next - Get the next device from the lower neighbour 6052 * list 6053 * @dev: device 6054 * @iter: list_head ** of the current position 6055 * 6056 * Gets the next netdev_adjacent from the dev's lower neighbour 6057 * list, starting from iter position. The caller must hold RTNL lock or 6058 * its own locking that guarantees that the neighbour lower 6059 * list will remain unchanged. 6060 */ 6061 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 6062 { 6063 struct netdev_adjacent *lower; 6064 6065 lower = list_entry(*iter, struct netdev_adjacent, list); 6066 6067 if (&lower->list == &dev->adj_list.lower) 6068 return NULL; 6069 6070 *iter = lower->list.next; 6071 6072 return lower->dev; 6073 } 6074 EXPORT_SYMBOL(netdev_lower_get_next); 6075 6076 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 6077 struct list_head **iter) 6078 { 6079 struct netdev_adjacent *lower; 6080 6081 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 6082 6083 if (&lower->list == &dev->adj_list.lower) 6084 return NULL; 6085 6086 *iter = &lower->list; 6087 6088 return lower->dev; 6089 } 6090 6091 int netdev_walk_all_lower_dev(struct net_device *dev, 6092 int (*fn)(struct net_device *dev, 6093 void *data), 6094 void *data) 6095 { 6096 struct net_device *ldev; 6097 struct list_head *iter; 6098 int ret; 6099 6100 for (iter = &dev->adj_list.lower, 6101 ldev = netdev_next_lower_dev(dev, &iter); 6102 ldev; 6103 ldev = netdev_next_lower_dev(dev, &iter)) { 6104 /* first is the lower device itself */ 6105 ret = fn(ldev, data); 6106 if (ret) 6107 return ret; 6108 6109 /* then look at all of its lower devices */ 6110 ret = netdev_walk_all_lower_dev(ldev, fn, data); 6111 if (ret) 6112 return ret; 6113 } 6114 6115 return 0; 6116 } 6117 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 6118 6119 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 6120 struct list_head **iter) 6121 { 6122 struct netdev_adjacent *lower; 6123 6124 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6125 if (&lower->list == &dev->adj_list.lower) 6126 return NULL; 6127 6128 *iter = &lower->list; 6129 6130 return lower->dev; 6131 } 6132 6133 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 6134 int (*fn)(struct net_device *dev, 6135 void *data), 6136 void *data) 6137 { 6138 struct net_device *ldev; 6139 struct list_head *iter; 6140 int ret; 6141 6142 for (iter = &dev->adj_list.lower, 6143 ldev = netdev_next_lower_dev_rcu(dev, &iter); 6144 ldev; 6145 ldev = netdev_next_lower_dev_rcu(dev, &iter)) { 6146 /* first is the lower device itself */ 6147 ret = fn(ldev, data); 6148 if (ret) 6149 return ret; 6150 6151 /* then look at all of its lower devices */ 6152 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data); 6153 if (ret) 6154 return ret; 6155 } 6156 6157 return 0; 6158 } 6159 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 6160 6161 /** 6162 * netdev_lower_get_first_private_rcu - Get the first ->private from the 6163 * lower neighbour list, RCU 6164 * variant 6165 * @dev: device 6166 * 6167 * Gets the first netdev_adjacent->private from the dev's lower neighbour 6168 * list. The caller must hold RCU read lock. 6169 */ 6170 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 6171 { 6172 struct netdev_adjacent *lower; 6173 6174 lower = list_first_or_null_rcu(&dev->adj_list.lower, 6175 struct netdev_adjacent, list); 6176 if (lower) 6177 return lower->private; 6178 return NULL; 6179 } 6180 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 6181 6182 /** 6183 * netdev_master_upper_dev_get_rcu - Get master upper device 6184 * @dev: device 6185 * 6186 * Find a master upper device and return pointer to it or NULL in case 6187 * it's not there. The caller must hold the RCU read lock. 6188 */ 6189 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 6190 { 6191 struct netdev_adjacent *upper; 6192 6193 upper = list_first_or_null_rcu(&dev->adj_list.upper, 6194 struct netdev_adjacent, list); 6195 if (upper && likely(upper->master)) 6196 return upper->dev; 6197 return NULL; 6198 } 6199 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 6200 6201 static int netdev_adjacent_sysfs_add(struct net_device *dev, 6202 struct net_device *adj_dev, 6203 struct list_head *dev_list) 6204 { 6205 char linkname[IFNAMSIZ+7]; 6206 6207 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6208 "upper_%s" : "lower_%s", adj_dev->name); 6209 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 6210 linkname); 6211 } 6212 static void netdev_adjacent_sysfs_del(struct net_device *dev, 6213 char *name, 6214 struct list_head *dev_list) 6215 { 6216 char linkname[IFNAMSIZ+7]; 6217 6218 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6219 "upper_%s" : "lower_%s", name); 6220 sysfs_remove_link(&(dev->dev.kobj), linkname); 6221 } 6222 6223 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 6224 struct net_device *adj_dev, 6225 struct list_head *dev_list) 6226 { 6227 return (dev_list == &dev->adj_list.upper || 6228 dev_list == &dev->adj_list.lower) && 6229 net_eq(dev_net(dev), dev_net(adj_dev)); 6230 } 6231 6232 static int __netdev_adjacent_dev_insert(struct net_device *dev, 6233 struct net_device *adj_dev, 6234 struct list_head *dev_list, 6235 void *private, bool master) 6236 { 6237 struct netdev_adjacent *adj; 6238 int ret; 6239 6240 adj = __netdev_find_adj(adj_dev, dev_list); 6241 6242 if (adj) { 6243 adj->ref_nr += 1; 6244 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 6245 dev->name, adj_dev->name, adj->ref_nr); 6246 6247 return 0; 6248 } 6249 6250 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 6251 if (!adj) 6252 return -ENOMEM; 6253 6254 adj->dev = adj_dev; 6255 adj->master = master; 6256 adj->ref_nr = 1; 6257 adj->private = private; 6258 dev_hold(adj_dev); 6259 6260 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 6261 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 6262 6263 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 6264 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 6265 if (ret) 6266 goto free_adj; 6267 } 6268 6269 /* Ensure that master link is always the first item in list. */ 6270 if (master) { 6271 ret = sysfs_create_link(&(dev->dev.kobj), 6272 &(adj_dev->dev.kobj), "master"); 6273 if (ret) 6274 goto remove_symlinks; 6275 6276 list_add_rcu(&adj->list, dev_list); 6277 } else { 6278 list_add_tail_rcu(&adj->list, dev_list); 6279 } 6280 6281 return 0; 6282 6283 remove_symlinks: 6284 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6285 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6286 free_adj: 6287 kfree(adj); 6288 dev_put(adj_dev); 6289 6290 return ret; 6291 } 6292 6293 static void __netdev_adjacent_dev_remove(struct net_device *dev, 6294 struct net_device *adj_dev, 6295 u16 ref_nr, 6296 struct list_head *dev_list) 6297 { 6298 struct netdev_adjacent *adj; 6299 6300 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 6301 dev->name, adj_dev->name, ref_nr); 6302 6303 adj = __netdev_find_adj(adj_dev, dev_list); 6304 6305 if (!adj) { 6306 pr_err("Adjacency does not exist for device %s from %s\n", 6307 dev->name, adj_dev->name); 6308 WARN_ON(1); 6309 return; 6310 } 6311 6312 if (adj->ref_nr > ref_nr) { 6313 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 6314 dev->name, adj_dev->name, ref_nr, 6315 adj->ref_nr - ref_nr); 6316 adj->ref_nr -= ref_nr; 6317 return; 6318 } 6319 6320 if (adj->master) 6321 sysfs_remove_link(&(dev->dev.kobj), "master"); 6322 6323 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6324 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6325 6326 list_del_rcu(&adj->list); 6327 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 6328 adj_dev->name, dev->name, adj_dev->name); 6329 dev_put(adj_dev); 6330 kfree_rcu(adj, rcu); 6331 } 6332 6333 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 6334 struct net_device *upper_dev, 6335 struct list_head *up_list, 6336 struct list_head *down_list, 6337 void *private, bool master) 6338 { 6339 int ret; 6340 6341 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 6342 private, master); 6343 if (ret) 6344 return ret; 6345 6346 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 6347 private, false); 6348 if (ret) { 6349 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 6350 return ret; 6351 } 6352 6353 return 0; 6354 } 6355 6356 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 6357 struct net_device *upper_dev, 6358 u16 ref_nr, 6359 struct list_head *up_list, 6360 struct list_head *down_list) 6361 { 6362 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 6363 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 6364 } 6365 6366 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 6367 struct net_device *upper_dev, 6368 void *private, bool master) 6369 { 6370 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 6371 &dev->adj_list.upper, 6372 &upper_dev->adj_list.lower, 6373 private, master); 6374 } 6375 6376 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 6377 struct net_device *upper_dev) 6378 { 6379 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 6380 &dev->adj_list.upper, 6381 &upper_dev->adj_list.lower); 6382 } 6383 6384 static int __netdev_upper_dev_link(struct net_device *dev, 6385 struct net_device *upper_dev, bool master, 6386 void *upper_priv, void *upper_info, 6387 struct netlink_ext_ack *extack) 6388 { 6389 struct netdev_notifier_changeupper_info changeupper_info = { 6390 .info = { 6391 .dev = dev, 6392 .extack = extack, 6393 }, 6394 .upper_dev = upper_dev, 6395 .master = master, 6396 .linking = true, 6397 .upper_info = upper_info, 6398 }; 6399 int ret = 0; 6400 6401 ASSERT_RTNL(); 6402 6403 if (dev == upper_dev) 6404 return -EBUSY; 6405 6406 /* To prevent loops, check if dev is not upper device to upper_dev. */ 6407 if (netdev_has_upper_dev(upper_dev, dev)) 6408 return -EBUSY; 6409 6410 if (netdev_has_upper_dev(dev, upper_dev)) 6411 return -EEXIST; 6412 6413 if (master && netdev_master_upper_dev_get(dev)) 6414 return -EBUSY; 6415 6416 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 6417 &changeupper_info.info); 6418 ret = notifier_to_errno(ret); 6419 if (ret) 6420 return ret; 6421 6422 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 6423 master); 6424 if (ret) 6425 return ret; 6426 6427 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 6428 &changeupper_info.info); 6429 ret = notifier_to_errno(ret); 6430 if (ret) 6431 goto rollback; 6432 6433 return 0; 6434 6435 rollback: 6436 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 6437 6438 return ret; 6439 } 6440 6441 /** 6442 * netdev_upper_dev_link - Add a link to the upper device 6443 * @dev: device 6444 * @upper_dev: new upper device 6445 * @extack: netlink extended ack 6446 * 6447 * Adds a link to device which is upper to this one. The caller must hold 6448 * the RTNL lock. On a failure a negative errno code is returned. 6449 * On success the reference counts are adjusted and the function 6450 * returns zero. 6451 */ 6452 int netdev_upper_dev_link(struct net_device *dev, 6453 struct net_device *upper_dev, 6454 struct netlink_ext_ack *extack) 6455 { 6456 return __netdev_upper_dev_link(dev, upper_dev, false, 6457 NULL, NULL, extack); 6458 } 6459 EXPORT_SYMBOL(netdev_upper_dev_link); 6460 6461 /** 6462 * netdev_master_upper_dev_link - Add a master link to the upper device 6463 * @dev: device 6464 * @upper_dev: new upper device 6465 * @upper_priv: upper device private 6466 * @upper_info: upper info to be passed down via notifier 6467 * @extack: netlink extended ack 6468 * 6469 * Adds a link to device which is upper to this one. In this case, only 6470 * one master upper device can be linked, although other non-master devices 6471 * might be linked as well. The caller must hold the RTNL lock. 6472 * On a failure a negative errno code is returned. On success the reference 6473 * counts are adjusted and the function returns zero. 6474 */ 6475 int netdev_master_upper_dev_link(struct net_device *dev, 6476 struct net_device *upper_dev, 6477 void *upper_priv, void *upper_info, 6478 struct netlink_ext_ack *extack) 6479 { 6480 return __netdev_upper_dev_link(dev, upper_dev, true, 6481 upper_priv, upper_info, extack); 6482 } 6483 EXPORT_SYMBOL(netdev_master_upper_dev_link); 6484 6485 /** 6486 * netdev_upper_dev_unlink - Removes a link to upper device 6487 * @dev: device 6488 * @upper_dev: new upper device 6489 * 6490 * Removes a link to device which is upper to this one. The caller must hold 6491 * the RTNL lock. 6492 */ 6493 void netdev_upper_dev_unlink(struct net_device *dev, 6494 struct net_device *upper_dev) 6495 { 6496 struct netdev_notifier_changeupper_info changeupper_info = { 6497 .info = { 6498 .dev = dev, 6499 }, 6500 .upper_dev = upper_dev, 6501 .linking = false, 6502 }; 6503 6504 ASSERT_RTNL(); 6505 6506 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 6507 6508 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 6509 &changeupper_info.info); 6510 6511 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 6512 6513 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 6514 &changeupper_info.info); 6515 } 6516 EXPORT_SYMBOL(netdev_upper_dev_unlink); 6517 6518 /** 6519 * netdev_bonding_info_change - Dispatch event about slave change 6520 * @dev: device 6521 * @bonding_info: info to dispatch 6522 * 6523 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 6524 * The caller must hold the RTNL lock. 6525 */ 6526 void netdev_bonding_info_change(struct net_device *dev, 6527 struct netdev_bonding_info *bonding_info) 6528 { 6529 struct netdev_notifier_bonding_info info = { 6530 .info.dev = dev, 6531 }; 6532 6533 memcpy(&info.bonding_info, bonding_info, 6534 sizeof(struct netdev_bonding_info)); 6535 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 6536 &info.info); 6537 } 6538 EXPORT_SYMBOL(netdev_bonding_info_change); 6539 6540 static void netdev_adjacent_add_links(struct net_device *dev) 6541 { 6542 struct netdev_adjacent *iter; 6543 6544 struct net *net = dev_net(dev); 6545 6546 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6547 if (!net_eq(net, dev_net(iter->dev))) 6548 continue; 6549 netdev_adjacent_sysfs_add(iter->dev, dev, 6550 &iter->dev->adj_list.lower); 6551 netdev_adjacent_sysfs_add(dev, iter->dev, 6552 &dev->adj_list.upper); 6553 } 6554 6555 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6556 if (!net_eq(net, dev_net(iter->dev))) 6557 continue; 6558 netdev_adjacent_sysfs_add(iter->dev, dev, 6559 &iter->dev->adj_list.upper); 6560 netdev_adjacent_sysfs_add(dev, iter->dev, 6561 &dev->adj_list.lower); 6562 } 6563 } 6564 6565 static void netdev_adjacent_del_links(struct net_device *dev) 6566 { 6567 struct netdev_adjacent *iter; 6568 6569 struct net *net = dev_net(dev); 6570 6571 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6572 if (!net_eq(net, dev_net(iter->dev))) 6573 continue; 6574 netdev_adjacent_sysfs_del(iter->dev, dev->name, 6575 &iter->dev->adj_list.lower); 6576 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6577 &dev->adj_list.upper); 6578 } 6579 6580 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6581 if (!net_eq(net, dev_net(iter->dev))) 6582 continue; 6583 netdev_adjacent_sysfs_del(iter->dev, dev->name, 6584 &iter->dev->adj_list.upper); 6585 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6586 &dev->adj_list.lower); 6587 } 6588 } 6589 6590 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 6591 { 6592 struct netdev_adjacent *iter; 6593 6594 struct net *net = dev_net(dev); 6595 6596 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6597 if (!net_eq(net, dev_net(iter->dev))) 6598 continue; 6599 netdev_adjacent_sysfs_del(iter->dev, oldname, 6600 &iter->dev->adj_list.lower); 6601 netdev_adjacent_sysfs_add(iter->dev, dev, 6602 &iter->dev->adj_list.lower); 6603 } 6604 6605 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6606 if (!net_eq(net, dev_net(iter->dev))) 6607 continue; 6608 netdev_adjacent_sysfs_del(iter->dev, oldname, 6609 &iter->dev->adj_list.upper); 6610 netdev_adjacent_sysfs_add(iter->dev, dev, 6611 &iter->dev->adj_list.upper); 6612 } 6613 } 6614 6615 void *netdev_lower_dev_get_private(struct net_device *dev, 6616 struct net_device *lower_dev) 6617 { 6618 struct netdev_adjacent *lower; 6619 6620 if (!lower_dev) 6621 return NULL; 6622 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 6623 if (!lower) 6624 return NULL; 6625 6626 return lower->private; 6627 } 6628 EXPORT_SYMBOL(netdev_lower_dev_get_private); 6629 6630 6631 int dev_get_nest_level(struct net_device *dev) 6632 { 6633 struct net_device *lower = NULL; 6634 struct list_head *iter; 6635 int max_nest = -1; 6636 int nest; 6637 6638 ASSERT_RTNL(); 6639 6640 netdev_for_each_lower_dev(dev, lower, iter) { 6641 nest = dev_get_nest_level(lower); 6642 if (max_nest < nest) 6643 max_nest = nest; 6644 } 6645 6646 return max_nest + 1; 6647 } 6648 EXPORT_SYMBOL(dev_get_nest_level); 6649 6650 /** 6651 * netdev_lower_change - Dispatch event about lower device state change 6652 * @lower_dev: device 6653 * @lower_state_info: state to dispatch 6654 * 6655 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 6656 * The caller must hold the RTNL lock. 6657 */ 6658 void netdev_lower_state_changed(struct net_device *lower_dev, 6659 void *lower_state_info) 6660 { 6661 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 6662 .info.dev = lower_dev, 6663 }; 6664 6665 ASSERT_RTNL(); 6666 changelowerstate_info.lower_state_info = lower_state_info; 6667 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 6668 &changelowerstate_info.info); 6669 } 6670 EXPORT_SYMBOL(netdev_lower_state_changed); 6671 6672 static void dev_change_rx_flags(struct net_device *dev, int flags) 6673 { 6674 const struct net_device_ops *ops = dev->netdev_ops; 6675 6676 if (ops->ndo_change_rx_flags) 6677 ops->ndo_change_rx_flags(dev, flags); 6678 } 6679 6680 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 6681 { 6682 unsigned int old_flags = dev->flags; 6683 kuid_t uid; 6684 kgid_t gid; 6685 6686 ASSERT_RTNL(); 6687 6688 dev->flags |= IFF_PROMISC; 6689 dev->promiscuity += inc; 6690 if (dev->promiscuity == 0) { 6691 /* 6692 * Avoid overflow. 6693 * If inc causes overflow, untouch promisc and return error. 6694 */ 6695 if (inc < 0) 6696 dev->flags &= ~IFF_PROMISC; 6697 else { 6698 dev->promiscuity -= inc; 6699 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 6700 dev->name); 6701 return -EOVERFLOW; 6702 } 6703 } 6704 if (dev->flags != old_flags) { 6705 pr_info("device %s %s promiscuous mode\n", 6706 dev->name, 6707 dev->flags & IFF_PROMISC ? "entered" : "left"); 6708 if (audit_enabled) { 6709 current_uid_gid(&uid, &gid); 6710 audit_log(current->audit_context, GFP_ATOMIC, 6711 AUDIT_ANOM_PROMISCUOUS, 6712 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 6713 dev->name, (dev->flags & IFF_PROMISC), 6714 (old_flags & IFF_PROMISC), 6715 from_kuid(&init_user_ns, audit_get_loginuid(current)), 6716 from_kuid(&init_user_ns, uid), 6717 from_kgid(&init_user_ns, gid), 6718 audit_get_sessionid(current)); 6719 } 6720 6721 dev_change_rx_flags(dev, IFF_PROMISC); 6722 } 6723 if (notify) 6724 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 6725 return 0; 6726 } 6727 6728 /** 6729 * dev_set_promiscuity - update promiscuity count on a device 6730 * @dev: device 6731 * @inc: modifier 6732 * 6733 * Add or remove promiscuity from a device. While the count in the device 6734 * remains above zero the interface remains promiscuous. Once it hits zero 6735 * the device reverts back to normal filtering operation. A negative inc 6736 * value is used to drop promiscuity on the device. 6737 * Return 0 if successful or a negative errno code on error. 6738 */ 6739 int dev_set_promiscuity(struct net_device *dev, int inc) 6740 { 6741 unsigned int old_flags = dev->flags; 6742 int err; 6743 6744 err = __dev_set_promiscuity(dev, inc, true); 6745 if (err < 0) 6746 return err; 6747 if (dev->flags != old_flags) 6748 dev_set_rx_mode(dev); 6749 return err; 6750 } 6751 EXPORT_SYMBOL(dev_set_promiscuity); 6752 6753 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 6754 { 6755 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 6756 6757 ASSERT_RTNL(); 6758 6759 dev->flags |= IFF_ALLMULTI; 6760 dev->allmulti += inc; 6761 if (dev->allmulti == 0) { 6762 /* 6763 * Avoid overflow. 6764 * If inc causes overflow, untouch allmulti and return error. 6765 */ 6766 if (inc < 0) 6767 dev->flags &= ~IFF_ALLMULTI; 6768 else { 6769 dev->allmulti -= inc; 6770 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 6771 dev->name); 6772 return -EOVERFLOW; 6773 } 6774 } 6775 if (dev->flags ^ old_flags) { 6776 dev_change_rx_flags(dev, IFF_ALLMULTI); 6777 dev_set_rx_mode(dev); 6778 if (notify) 6779 __dev_notify_flags(dev, old_flags, 6780 dev->gflags ^ old_gflags); 6781 } 6782 return 0; 6783 } 6784 6785 /** 6786 * dev_set_allmulti - update allmulti count on a device 6787 * @dev: device 6788 * @inc: modifier 6789 * 6790 * Add or remove reception of all multicast frames to a device. While the 6791 * count in the device remains above zero the interface remains listening 6792 * to all interfaces. Once it hits zero the device reverts back to normal 6793 * filtering operation. A negative @inc value is used to drop the counter 6794 * when releasing a resource needing all multicasts. 6795 * Return 0 if successful or a negative errno code on error. 6796 */ 6797 6798 int dev_set_allmulti(struct net_device *dev, int inc) 6799 { 6800 return __dev_set_allmulti(dev, inc, true); 6801 } 6802 EXPORT_SYMBOL(dev_set_allmulti); 6803 6804 /* 6805 * Upload unicast and multicast address lists to device and 6806 * configure RX filtering. When the device doesn't support unicast 6807 * filtering it is put in promiscuous mode while unicast addresses 6808 * are present. 6809 */ 6810 void __dev_set_rx_mode(struct net_device *dev) 6811 { 6812 const struct net_device_ops *ops = dev->netdev_ops; 6813 6814 /* dev_open will call this function so the list will stay sane. */ 6815 if (!(dev->flags&IFF_UP)) 6816 return; 6817 6818 if (!netif_device_present(dev)) 6819 return; 6820 6821 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 6822 /* Unicast addresses changes may only happen under the rtnl, 6823 * therefore calling __dev_set_promiscuity here is safe. 6824 */ 6825 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 6826 __dev_set_promiscuity(dev, 1, false); 6827 dev->uc_promisc = true; 6828 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 6829 __dev_set_promiscuity(dev, -1, false); 6830 dev->uc_promisc = false; 6831 } 6832 } 6833 6834 if (ops->ndo_set_rx_mode) 6835 ops->ndo_set_rx_mode(dev); 6836 } 6837 6838 void dev_set_rx_mode(struct net_device *dev) 6839 { 6840 netif_addr_lock_bh(dev); 6841 __dev_set_rx_mode(dev); 6842 netif_addr_unlock_bh(dev); 6843 } 6844 6845 /** 6846 * dev_get_flags - get flags reported to userspace 6847 * @dev: device 6848 * 6849 * Get the combination of flag bits exported through APIs to userspace. 6850 */ 6851 unsigned int dev_get_flags(const struct net_device *dev) 6852 { 6853 unsigned int flags; 6854 6855 flags = (dev->flags & ~(IFF_PROMISC | 6856 IFF_ALLMULTI | 6857 IFF_RUNNING | 6858 IFF_LOWER_UP | 6859 IFF_DORMANT)) | 6860 (dev->gflags & (IFF_PROMISC | 6861 IFF_ALLMULTI)); 6862 6863 if (netif_running(dev)) { 6864 if (netif_oper_up(dev)) 6865 flags |= IFF_RUNNING; 6866 if (netif_carrier_ok(dev)) 6867 flags |= IFF_LOWER_UP; 6868 if (netif_dormant(dev)) 6869 flags |= IFF_DORMANT; 6870 } 6871 6872 return flags; 6873 } 6874 EXPORT_SYMBOL(dev_get_flags); 6875 6876 int __dev_change_flags(struct net_device *dev, unsigned int flags) 6877 { 6878 unsigned int old_flags = dev->flags; 6879 int ret; 6880 6881 ASSERT_RTNL(); 6882 6883 /* 6884 * Set the flags on our device. 6885 */ 6886 6887 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 6888 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 6889 IFF_AUTOMEDIA)) | 6890 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 6891 IFF_ALLMULTI)); 6892 6893 /* 6894 * Load in the correct multicast list now the flags have changed. 6895 */ 6896 6897 if ((old_flags ^ flags) & IFF_MULTICAST) 6898 dev_change_rx_flags(dev, IFF_MULTICAST); 6899 6900 dev_set_rx_mode(dev); 6901 6902 /* 6903 * Have we downed the interface. We handle IFF_UP ourselves 6904 * according to user attempts to set it, rather than blindly 6905 * setting it. 6906 */ 6907 6908 ret = 0; 6909 if ((old_flags ^ flags) & IFF_UP) { 6910 if (old_flags & IFF_UP) 6911 __dev_close(dev); 6912 else 6913 ret = __dev_open(dev); 6914 } 6915 6916 if ((flags ^ dev->gflags) & IFF_PROMISC) { 6917 int inc = (flags & IFF_PROMISC) ? 1 : -1; 6918 unsigned int old_flags = dev->flags; 6919 6920 dev->gflags ^= IFF_PROMISC; 6921 6922 if (__dev_set_promiscuity(dev, inc, false) >= 0) 6923 if (dev->flags != old_flags) 6924 dev_set_rx_mode(dev); 6925 } 6926 6927 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 6928 * is important. Some (broken) drivers set IFF_PROMISC, when 6929 * IFF_ALLMULTI is requested not asking us and not reporting. 6930 */ 6931 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 6932 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 6933 6934 dev->gflags ^= IFF_ALLMULTI; 6935 __dev_set_allmulti(dev, inc, false); 6936 } 6937 6938 return ret; 6939 } 6940 6941 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 6942 unsigned int gchanges) 6943 { 6944 unsigned int changes = dev->flags ^ old_flags; 6945 6946 if (gchanges) 6947 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 6948 6949 if (changes & IFF_UP) { 6950 if (dev->flags & IFF_UP) 6951 call_netdevice_notifiers(NETDEV_UP, dev); 6952 else 6953 call_netdevice_notifiers(NETDEV_DOWN, dev); 6954 } 6955 6956 if (dev->flags & IFF_UP && 6957 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 6958 struct netdev_notifier_change_info change_info = { 6959 .info = { 6960 .dev = dev, 6961 }, 6962 .flags_changed = changes, 6963 }; 6964 6965 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 6966 } 6967 } 6968 6969 /** 6970 * dev_change_flags - change device settings 6971 * @dev: device 6972 * @flags: device state flags 6973 * 6974 * Change settings on device based state flags. The flags are 6975 * in the userspace exported format. 6976 */ 6977 int dev_change_flags(struct net_device *dev, unsigned int flags) 6978 { 6979 int ret; 6980 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 6981 6982 ret = __dev_change_flags(dev, flags); 6983 if (ret < 0) 6984 return ret; 6985 6986 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 6987 __dev_notify_flags(dev, old_flags, changes); 6988 return ret; 6989 } 6990 EXPORT_SYMBOL(dev_change_flags); 6991 6992 int __dev_set_mtu(struct net_device *dev, int new_mtu) 6993 { 6994 const struct net_device_ops *ops = dev->netdev_ops; 6995 6996 if (ops->ndo_change_mtu) 6997 return ops->ndo_change_mtu(dev, new_mtu); 6998 6999 dev->mtu = new_mtu; 7000 return 0; 7001 } 7002 EXPORT_SYMBOL(__dev_set_mtu); 7003 7004 /** 7005 * dev_set_mtu - Change maximum transfer unit 7006 * @dev: device 7007 * @new_mtu: new transfer unit 7008 * 7009 * Change the maximum transfer size of the network device. 7010 */ 7011 int dev_set_mtu(struct net_device *dev, int new_mtu) 7012 { 7013 int err, orig_mtu; 7014 7015 if (new_mtu == dev->mtu) 7016 return 0; 7017 7018 /* MTU must be positive, and in range */ 7019 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 7020 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n", 7021 dev->name, new_mtu, dev->min_mtu); 7022 return -EINVAL; 7023 } 7024 7025 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 7026 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n", 7027 dev->name, new_mtu, dev->max_mtu); 7028 return -EINVAL; 7029 } 7030 7031 if (!netif_device_present(dev)) 7032 return -ENODEV; 7033 7034 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 7035 err = notifier_to_errno(err); 7036 if (err) 7037 return err; 7038 7039 orig_mtu = dev->mtu; 7040 err = __dev_set_mtu(dev, new_mtu); 7041 7042 if (!err) { 7043 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 7044 err = notifier_to_errno(err); 7045 if (err) { 7046 /* setting mtu back and notifying everyone again, 7047 * so that they have a chance to revert changes. 7048 */ 7049 __dev_set_mtu(dev, orig_mtu); 7050 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 7051 } 7052 } 7053 return err; 7054 } 7055 EXPORT_SYMBOL(dev_set_mtu); 7056 7057 /** 7058 * dev_change_tx_queue_len - Change TX queue length of a netdevice 7059 * @dev: device 7060 * @new_len: new tx queue length 7061 */ 7062 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 7063 { 7064 unsigned int orig_len = dev->tx_queue_len; 7065 int res; 7066 7067 if (new_len != (unsigned int)new_len) 7068 return -ERANGE; 7069 7070 if (new_len != orig_len) { 7071 dev->tx_queue_len = new_len; 7072 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 7073 res = notifier_to_errno(res); 7074 if (res) { 7075 netdev_err(dev, 7076 "refused to change device tx_queue_len\n"); 7077 dev->tx_queue_len = orig_len; 7078 return res; 7079 } 7080 return dev_qdisc_change_tx_queue_len(dev); 7081 } 7082 7083 return 0; 7084 } 7085 7086 /** 7087 * dev_set_group - Change group this device belongs to 7088 * @dev: device 7089 * @new_group: group this device should belong to 7090 */ 7091 void dev_set_group(struct net_device *dev, int new_group) 7092 { 7093 dev->group = new_group; 7094 } 7095 EXPORT_SYMBOL(dev_set_group); 7096 7097 /** 7098 * dev_set_mac_address - Change Media Access Control Address 7099 * @dev: device 7100 * @sa: new address 7101 * 7102 * Change the hardware (MAC) address of the device 7103 */ 7104 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 7105 { 7106 const struct net_device_ops *ops = dev->netdev_ops; 7107 int err; 7108 7109 if (!ops->ndo_set_mac_address) 7110 return -EOPNOTSUPP; 7111 if (sa->sa_family != dev->type) 7112 return -EINVAL; 7113 if (!netif_device_present(dev)) 7114 return -ENODEV; 7115 err = ops->ndo_set_mac_address(dev, sa); 7116 if (err) 7117 return err; 7118 dev->addr_assign_type = NET_ADDR_SET; 7119 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 7120 add_device_randomness(dev->dev_addr, dev->addr_len); 7121 return 0; 7122 } 7123 EXPORT_SYMBOL(dev_set_mac_address); 7124 7125 /** 7126 * dev_change_carrier - Change device carrier 7127 * @dev: device 7128 * @new_carrier: new value 7129 * 7130 * Change device carrier 7131 */ 7132 int dev_change_carrier(struct net_device *dev, bool new_carrier) 7133 { 7134 const struct net_device_ops *ops = dev->netdev_ops; 7135 7136 if (!ops->ndo_change_carrier) 7137 return -EOPNOTSUPP; 7138 if (!netif_device_present(dev)) 7139 return -ENODEV; 7140 return ops->ndo_change_carrier(dev, new_carrier); 7141 } 7142 EXPORT_SYMBOL(dev_change_carrier); 7143 7144 /** 7145 * dev_get_phys_port_id - Get device physical port ID 7146 * @dev: device 7147 * @ppid: port ID 7148 * 7149 * Get device physical port ID 7150 */ 7151 int dev_get_phys_port_id(struct net_device *dev, 7152 struct netdev_phys_item_id *ppid) 7153 { 7154 const struct net_device_ops *ops = dev->netdev_ops; 7155 7156 if (!ops->ndo_get_phys_port_id) 7157 return -EOPNOTSUPP; 7158 return ops->ndo_get_phys_port_id(dev, ppid); 7159 } 7160 EXPORT_SYMBOL(dev_get_phys_port_id); 7161 7162 /** 7163 * dev_get_phys_port_name - Get device physical port name 7164 * @dev: device 7165 * @name: port name 7166 * @len: limit of bytes to copy to name 7167 * 7168 * Get device physical port name 7169 */ 7170 int dev_get_phys_port_name(struct net_device *dev, 7171 char *name, size_t len) 7172 { 7173 const struct net_device_ops *ops = dev->netdev_ops; 7174 7175 if (!ops->ndo_get_phys_port_name) 7176 return -EOPNOTSUPP; 7177 return ops->ndo_get_phys_port_name(dev, name, len); 7178 } 7179 EXPORT_SYMBOL(dev_get_phys_port_name); 7180 7181 /** 7182 * dev_change_proto_down - update protocol port state information 7183 * @dev: device 7184 * @proto_down: new value 7185 * 7186 * This info can be used by switch drivers to set the phys state of the 7187 * port. 7188 */ 7189 int dev_change_proto_down(struct net_device *dev, bool proto_down) 7190 { 7191 const struct net_device_ops *ops = dev->netdev_ops; 7192 7193 if (!ops->ndo_change_proto_down) 7194 return -EOPNOTSUPP; 7195 if (!netif_device_present(dev)) 7196 return -ENODEV; 7197 return ops->ndo_change_proto_down(dev, proto_down); 7198 } 7199 EXPORT_SYMBOL(dev_change_proto_down); 7200 7201 void __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op, 7202 struct netdev_bpf *xdp) 7203 { 7204 memset(xdp, 0, sizeof(*xdp)); 7205 xdp->command = XDP_QUERY_PROG; 7206 7207 /* Query must always succeed. */ 7208 WARN_ON(bpf_op(dev, xdp) < 0); 7209 } 7210 7211 static u8 __dev_xdp_attached(struct net_device *dev, bpf_op_t bpf_op) 7212 { 7213 struct netdev_bpf xdp; 7214 7215 __dev_xdp_query(dev, bpf_op, &xdp); 7216 7217 return xdp.prog_attached; 7218 } 7219 7220 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op, 7221 struct netlink_ext_ack *extack, u32 flags, 7222 struct bpf_prog *prog) 7223 { 7224 struct netdev_bpf xdp; 7225 7226 memset(&xdp, 0, sizeof(xdp)); 7227 if (flags & XDP_FLAGS_HW_MODE) 7228 xdp.command = XDP_SETUP_PROG_HW; 7229 else 7230 xdp.command = XDP_SETUP_PROG; 7231 xdp.extack = extack; 7232 xdp.flags = flags; 7233 xdp.prog = prog; 7234 7235 return bpf_op(dev, &xdp); 7236 } 7237 7238 static void dev_xdp_uninstall(struct net_device *dev) 7239 { 7240 struct netdev_bpf xdp; 7241 bpf_op_t ndo_bpf; 7242 7243 /* Remove generic XDP */ 7244 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL)); 7245 7246 /* Remove from the driver */ 7247 ndo_bpf = dev->netdev_ops->ndo_bpf; 7248 if (!ndo_bpf) 7249 return; 7250 7251 __dev_xdp_query(dev, ndo_bpf, &xdp); 7252 if (xdp.prog_attached == XDP_ATTACHED_NONE) 7253 return; 7254 7255 /* Program removal should always succeed */ 7256 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, NULL)); 7257 } 7258 7259 /** 7260 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 7261 * @dev: device 7262 * @extack: netlink extended ack 7263 * @fd: new program fd or negative value to clear 7264 * @flags: xdp-related flags 7265 * 7266 * Set or clear a bpf program for a device 7267 */ 7268 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 7269 int fd, u32 flags) 7270 { 7271 const struct net_device_ops *ops = dev->netdev_ops; 7272 struct bpf_prog *prog = NULL; 7273 bpf_op_t bpf_op, bpf_chk; 7274 int err; 7275 7276 ASSERT_RTNL(); 7277 7278 bpf_op = bpf_chk = ops->ndo_bpf; 7279 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) 7280 return -EOPNOTSUPP; 7281 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE)) 7282 bpf_op = generic_xdp_install; 7283 if (bpf_op == bpf_chk) 7284 bpf_chk = generic_xdp_install; 7285 7286 if (fd >= 0) { 7287 if (bpf_chk && __dev_xdp_attached(dev, bpf_chk)) 7288 return -EEXIST; 7289 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && 7290 __dev_xdp_attached(dev, bpf_op)) 7291 return -EBUSY; 7292 7293 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 7294 bpf_op == ops->ndo_bpf); 7295 if (IS_ERR(prog)) 7296 return PTR_ERR(prog); 7297 7298 if (!(flags & XDP_FLAGS_HW_MODE) && 7299 bpf_prog_is_dev_bound(prog->aux)) { 7300 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported"); 7301 bpf_prog_put(prog); 7302 return -EINVAL; 7303 } 7304 } 7305 7306 err = dev_xdp_install(dev, bpf_op, extack, flags, prog); 7307 if (err < 0 && prog) 7308 bpf_prog_put(prog); 7309 7310 return err; 7311 } 7312 7313 /** 7314 * dev_new_index - allocate an ifindex 7315 * @net: the applicable net namespace 7316 * 7317 * Returns a suitable unique value for a new device interface 7318 * number. The caller must hold the rtnl semaphore or the 7319 * dev_base_lock to be sure it remains unique. 7320 */ 7321 static int dev_new_index(struct net *net) 7322 { 7323 int ifindex = net->ifindex; 7324 7325 for (;;) { 7326 if (++ifindex <= 0) 7327 ifindex = 1; 7328 if (!__dev_get_by_index(net, ifindex)) 7329 return net->ifindex = ifindex; 7330 } 7331 } 7332 7333 /* Delayed registration/unregisteration */ 7334 static LIST_HEAD(net_todo_list); 7335 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 7336 7337 static void net_set_todo(struct net_device *dev) 7338 { 7339 list_add_tail(&dev->todo_list, &net_todo_list); 7340 dev_net(dev)->dev_unreg_count++; 7341 } 7342 7343 static void rollback_registered_many(struct list_head *head) 7344 { 7345 struct net_device *dev, *tmp; 7346 LIST_HEAD(close_head); 7347 7348 BUG_ON(dev_boot_phase); 7349 ASSERT_RTNL(); 7350 7351 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 7352 /* Some devices call without registering 7353 * for initialization unwind. Remove those 7354 * devices and proceed with the remaining. 7355 */ 7356 if (dev->reg_state == NETREG_UNINITIALIZED) { 7357 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 7358 dev->name, dev); 7359 7360 WARN_ON(1); 7361 list_del(&dev->unreg_list); 7362 continue; 7363 } 7364 dev->dismantle = true; 7365 BUG_ON(dev->reg_state != NETREG_REGISTERED); 7366 } 7367 7368 /* If device is running, close it first. */ 7369 list_for_each_entry(dev, head, unreg_list) 7370 list_add_tail(&dev->close_list, &close_head); 7371 dev_close_many(&close_head, true); 7372 7373 list_for_each_entry(dev, head, unreg_list) { 7374 /* And unlink it from device chain. */ 7375 unlist_netdevice(dev); 7376 7377 dev->reg_state = NETREG_UNREGISTERING; 7378 } 7379 flush_all_backlogs(); 7380 7381 synchronize_net(); 7382 7383 list_for_each_entry(dev, head, unreg_list) { 7384 struct sk_buff *skb = NULL; 7385 7386 /* Shutdown queueing discipline. */ 7387 dev_shutdown(dev); 7388 7389 dev_xdp_uninstall(dev); 7390 7391 /* Notify protocols, that we are about to destroy 7392 * this device. They should clean all the things. 7393 */ 7394 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7395 7396 if (!dev->rtnl_link_ops || 7397 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 7398 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 7399 GFP_KERNEL, NULL, 0); 7400 7401 /* 7402 * Flush the unicast and multicast chains 7403 */ 7404 dev_uc_flush(dev); 7405 dev_mc_flush(dev); 7406 7407 if (dev->netdev_ops->ndo_uninit) 7408 dev->netdev_ops->ndo_uninit(dev); 7409 7410 if (skb) 7411 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 7412 7413 /* Notifier chain MUST detach us all upper devices. */ 7414 WARN_ON(netdev_has_any_upper_dev(dev)); 7415 WARN_ON(netdev_has_any_lower_dev(dev)); 7416 7417 /* Remove entries from kobject tree */ 7418 netdev_unregister_kobject(dev); 7419 #ifdef CONFIG_XPS 7420 /* Remove XPS queueing entries */ 7421 netif_reset_xps_queues_gt(dev, 0); 7422 #endif 7423 } 7424 7425 synchronize_net(); 7426 7427 list_for_each_entry(dev, head, unreg_list) 7428 dev_put(dev); 7429 } 7430 7431 static void rollback_registered(struct net_device *dev) 7432 { 7433 LIST_HEAD(single); 7434 7435 list_add(&dev->unreg_list, &single); 7436 rollback_registered_many(&single); 7437 list_del(&single); 7438 } 7439 7440 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 7441 struct net_device *upper, netdev_features_t features) 7442 { 7443 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 7444 netdev_features_t feature; 7445 int feature_bit; 7446 7447 for_each_netdev_feature(&upper_disables, feature_bit) { 7448 feature = __NETIF_F_BIT(feature_bit); 7449 if (!(upper->wanted_features & feature) 7450 && (features & feature)) { 7451 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 7452 &feature, upper->name); 7453 features &= ~feature; 7454 } 7455 } 7456 7457 return features; 7458 } 7459 7460 static void netdev_sync_lower_features(struct net_device *upper, 7461 struct net_device *lower, netdev_features_t features) 7462 { 7463 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 7464 netdev_features_t feature; 7465 int feature_bit; 7466 7467 for_each_netdev_feature(&upper_disables, feature_bit) { 7468 feature = __NETIF_F_BIT(feature_bit); 7469 if (!(features & feature) && (lower->features & feature)) { 7470 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 7471 &feature, lower->name); 7472 lower->wanted_features &= ~feature; 7473 netdev_update_features(lower); 7474 7475 if (unlikely(lower->features & feature)) 7476 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 7477 &feature, lower->name); 7478 } 7479 } 7480 } 7481 7482 static netdev_features_t netdev_fix_features(struct net_device *dev, 7483 netdev_features_t features) 7484 { 7485 /* Fix illegal checksum combinations */ 7486 if ((features & NETIF_F_HW_CSUM) && 7487 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 7488 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 7489 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 7490 } 7491 7492 /* TSO requires that SG is present as well. */ 7493 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 7494 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 7495 features &= ~NETIF_F_ALL_TSO; 7496 } 7497 7498 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 7499 !(features & NETIF_F_IP_CSUM)) { 7500 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 7501 features &= ~NETIF_F_TSO; 7502 features &= ~NETIF_F_TSO_ECN; 7503 } 7504 7505 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 7506 !(features & NETIF_F_IPV6_CSUM)) { 7507 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 7508 features &= ~NETIF_F_TSO6; 7509 } 7510 7511 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 7512 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 7513 features &= ~NETIF_F_TSO_MANGLEID; 7514 7515 /* TSO ECN requires that TSO is present as well. */ 7516 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 7517 features &= ~NETIF_F_TSO_ECN; 7518 7519 /* Software GSO depends on SG. */ 7520 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 7521 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 7522 features &= ~NETIF_F_GSO; 7523 } 7524 7525 /* GSO partial features require GSO partial be set */ 7526 if ((features & dev->gso_partial_features) && 7527 !(features & NETIF_F_GSO_PARTIAL)) { 7528 netdev_dbg(dev, 7529 "Dropping partially supported GSO features since no GSO partial.\n"); 7530 features &= ~dev->gso_partial_features; 7531 } 7532 7533 if (!(features & NETIF_F_RXCSUM)) { 7534 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 7535 * successfully merged by hardware must also have the 7536 * checksum verified by hardware. If the user does not 7537 * want to enable RXCSUM, logically, we should disable GRO_HW. 7538 */ 7539 if (features & NETIF_F_GRO_HW) { 7540 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 7541 features &= ~NETIF_F_GRO_HW; 7542 } 7543 } 7544 7545 return features; 7546 } 7547 7548 int __netdev_update_features(struct net_device *dev) 7549 { 7550 struct net_device *upper, *lower; 7551 netdev_features_t features; 7552 struct list_head *iter; 7553 int err = -1; 7554 7555 ASSERT_RTNL(); 7556 7557 features = netdev_get_wanted_features(dev); 7558 7559 if (dev->netdev_ops->ndo_fix_features) 7560 features = dev->netdev_ops->ndo_fix_features(dev, features); 7561 7562 /* driver might be less strict about feature dependencies */ 7563 features = netdev_fix_features(dev, features); 7564 7565 /* some features can't be enabled if they're off an an upper device */ 7566 netdev_for_each_upper_dev_rcu(dev, upper, iter) 7567 features = netdev_sync_upper_features(dev, upper, features); 7568 7569 if (dev->features == features) 7570 goto sync_lower; 7571 7572 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 7573 &dev->features, &features); 7574 7575 if (dev->netdev_ops->ndo_set_features) 7576 err = dev->netdev_ops->ndo_set_features(dev, features); 7577 else 7578 err = 0; 7579 7580 if (unlikely(err < 0)) { 7581 netdev_err(dev, 7582 "set_features() failed (%d); wanted %pNF, left %pNF\n", 7583 err, &features, &dev->features); 7584 /* return non-0 since some features might have changed and 7585 * it's better to fire a spurious notification than miss it 7586 */ 7587 return -1; 7588 } 7589 7590 sync_lower: 7591 /* some features must be disabled on lower devices when disabled 7592 * on an upper device (think: bonding master or bridge) 7593 */ 7594 netdev_for_each_lower_dev(dev, lower, iter) 7595 netdev_sync_lower_features(dev, lower, features); 7596 7597 if (!err) { 7598 netdev_features_t diff = features ^ dev->features; 7599 7600 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 7601 /* udp_tunnel_{get,drop}_rx_info both need 7602 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 7603 * device, or they won't do anything. 7604 * Thus we need to update dev->features 7605 * *before* calling udp_tunnel_get_rx_info, 7606 * but *after* calling udp_tunnel_drop_rx_info. 7607 */ 7608 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 7609 dev->features = features; 7610 udp_tunnel_get_rx_info(dev); 7611 } else { 7612 udp_tunnel_drop_rx_info(dev); 7613 } 7614 } 7615 7616 dev->features = features; 7617 } 7618 7619 return err < 0 ? 0 : 1; 7620 } 7621 7622 /** 7623 * netdev_update_features - recalculate device features 7624 * @dev: the device to check 7625 * 7626 * Recalculate dev->features set and send notifications if it 7627 * has changed. Should be called after driver or hardware dependent 7628 * conditions might have changed that influence the features. 7629 */ 7630 void netdev_update_features(struct net_device *dev) 7631 { 7632 if (__netdev_update_features(dev)) 7633 netdev_features_change(dev); 7634 } 7635 EXPORT_SYMBOL(netdev_update_features); 7636 7637 /** 7638 * netdev_change_features - recalculate device features 7639 * @dev: the device to check 7640 * 7641 * Recalculate dev->features set and send notifications even 7642 * if they have not changed. Should be called instead of 7643 * netdev_update_features() if also dev->vlan_features might 7644 * have changed to allow the changes to be propagated to stacked 7645 * VLAN devices. 7646 */ 7647 void netdev_change_features(struct net_device *dev) 7648 { 7649 __netdev_update_features(dev); 7650 netdev_features_change(dev); 7651 } 7652 EXPORT_SYMBOL(netdev_change_features); 7653 7654 /** 7655 * netif_stacked_transfer_operstate - transfer operstate 7656 * @rootdev: the root or lower level device to transfer state from 7657 * @dev: the device to transfer operstate to 7658 * 7659 * Transfer operational state from root to device. This is normally 7660 * called when a stacking relationship exists between the root 7661 * device and the device(a leaf device). 7662 */ 7663 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 7664 struct net_device *dev) 7665 { 7666 if (rootdev->operstate == IF_OPER_DORMANT) 7667 netif_dormant_on(dev); 7668 else 7669 netif_dormant_off(dev); 7670 7671 if (netif_carrier_ok(rootdev)) 7672 netif_carrier_on(dev); 7673 else 7674 netif_carrier_off(dev); 7675 } 7676 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 7677 7678 static int netif_alloc_rx_queues(struct net_device *dev) 7679 { 7680 unsigned int i, count = dev->num_rx_queues; 7681 struct netdev_rx_queue *rx; 7682 size_t sz = count * sizeof(*rx); 7683 int err = 0; 7684 7685 BUG_ON(count < 1); 7686 7687 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 7688 if (!rx) 7689 return -ENOMEM; 7690 7691 dev->_rx = rx; 7692 7693 for (i = 0; i < count; i++) { 7694 rx[i].dev = dev; 7695 7696 /* XDP RX-queue setup */ 7697 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i); 7698 if (err < 0) 7699 goto err_rxq_info; 7700 } 7701 return 0; 7702 7703 err_rxq_info: 7704 /* Rollback successful reg's and free other resources */ 7705 while (i--) 7706 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 7707 kvfree(dev->_rx); 7708 dev->_rx = NULL; 7709 return err; 7710 } 7711 7712 static void netif_free_rx_queues(struct net_device *dev) 7713 { 7714 unsigned int i, count = dev->num_rx_queues; 7715 7716 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 7717 if (!dev->_rx) 7718 return; 7719 7720 for (i = 0; i < count; i++) 7721 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 7722 7723 kvfree(dev->_rx); 7724 } 7725 7726 static void netdev_init_one_queue(struct net_device *dev, 7727 struct netdev_queue *queue, void *_unused) 7728 { 7729 /* Initialize queue lock */ 7730 spin_lock_init(&queue->_xmit_lock); 7731 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 7732 queue->xmit_lock_owner = -1; 7733 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 7734 queue->dev = dev; 7735 #ifdef CONFIG_BQL 7736 dql_init(&queue->dql, HZ); 7737 #endif 7738 } 7739 7740 static void netif_free_tx_queues(struct net_device *dev) 7741 { 7742 kvfree(dev->_tx); 7743 } 7744 7745 static int netif_alloc_netdev_queues(struct net_device *dev) 7746 { 7747 unsigned int count = dev->num_tx_queues; 7748 struct netdev_queue *tx; 7749 size_t sz = count * sizeof(*tx); 7750 7751 if (count < 1 || count > 0xffff) 7752 return -EINVAL; 7753 7754 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 7755 if (!tx) 7756 return -ENOMEM; 7757 7758 dev->_tx = tx; 7759 7760 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 7761 spin_lock_init(&dev->tx_global_lock); 7762 7763 return 0; 7764 } 7765 7766 void netif_tx_stop_all_queues(struct net_device *dev) 7767 { 7768 unsigned int i; 7769 7770 for (i = 0; i < dev->num_tx_queues; i++) { 7771 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 7772 7773 netif_tx_stop_queue(txq); 7774 } 7775 } 7776 EXPORT_SYMBOL(netif_tx_stop_all_queues); 7777 7778 /** 7779 * register_netdevice - register a network device 7780 * @dev: device to register 7781 * 7782 * Take a completed network device structure and add it to the kernel 7783 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 7784 * chain. 0 is returned on success. A negative errno code is returned 7785 * on a failure to set up the device, or if the name is a duplicate. 7786 * 7787 * Callers must hold the rtnl semaphore. You may want 7788 * register_netdev() instead of this. 7789 * 7790 * BUGS: 7791 * The locking appears insufficient to guarantee two parallel registers 7792 * will not get the same name. 7793 */ 7794 7795 int register_netdevice(struct net_device *dev) 7796 { 7797 int ret; 7798 struct net *net = dev_net(dev); 7799 7800 BUG_ON(dev_boot_phase); 7801 ASSERT_RTNL(); 7802 7803 might_sleep(); 7804 7805 /* When net_device's are persistent, this will be fatal. */ 7806 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 7807 BUG_ON(!net); 7808 7809 spin_lock_init(&dev->addr_list_lock); 7810 netdev_set_addr_lockdep_class(dev); 7811 7812 ret = dev_get_valid_name(net, dev, dev->name); 7813 if (ret < 0) 7814 goto out; 7815 7816 /* Init, if this function is available */ 7817 if (dev->netdev_ops->ndo_init) { 7818 ret = dev->netdev_ops->ndo_init(dev); 7819 if (ret) { 7820 if (ret > 0) 7821 ret = -EIO; 7822 goto out; 7823 } 7824 } 7825 7826 if (((dev->hw_features | dev->features) & 7827 NETIF_F_HW_VLAN_CTAG_FILTER) && 7828 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 7829 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 7830 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 7831 ret = -EINVAL; 7832 goto err_uninit; 7833 } 7834 7835 ret = -EBUSY; 7836 if (!dev->ifindex) 7837 dev->ifindex = dev_new_index(net); 7838 else if (__dev_get_by_index(net, dev->ifindex)) 7839 goto err_uninit; 7840 7841 /* Transfer changeable features to wanted_features and enable 7842 * software offloads (GSO and GRO). 7843 */ 7844 dev->hw_features |= NETIF_F_SOFT_FEATURES; 7845 dev->features |= NETIF_F_SOFT_FEATURES; 7846 7847 if (dev->netdev_ops->ndo_udp_tunnel_add) { 7848 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 7849 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 7850 } 7851 7852 dev->wanted_features = dev->features & dev->hw_features; 7853 7854 if (!(dev->flags & IFF_LOOPBACK)) 7855 dev->hw_features |= NETIF_F_NOCACHE_COPY; 7856 7857 /* If IPv4 TCP segmentation offload is supported we should also 7858 * allow the device to enable segmenting the frame with the option 7859 * of ignoring a static IP ID value. This doesn't enable the 7860 * feature itself but allows the user to enable it later. 7861 */ 7862 if (dev->hw_features & NETIF_F_TSO) 7863 dev->hw_features |= NETIF_F_TSO_MANGLEID; 7864 if (dev->vlan_features & NETIF_F_TSO) 7865 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 7866 if (dev->mpls_features & NETIF_F_TSO) 7867 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 7868 if (dev->hw_enc_features & NETIF_F_TSO) 7869 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 7870 7871 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 7872 */ 7873 dev->vlan_features |= NETIF_F_HIGHDMA; 7874 7875 /* Make NETIF_F_SG inheritable to tunnel devices. 7876 */ 7877 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 7878 7879 /* Make NETIF_F_SG inheritable to MPLS. 7880 */ 7881 dev->mpls_features |= NETIF_F_SG; 7882 7883 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 7884 ret = notifier_to_errno(ret); 7885 if (ret) 7886 goto err_uninit; 7887 7888 ret = netdev_register_kobject(dev); 7889 if (ret) 7890 goto err_uninit; 7891 dev->reg_state = NETREG_REGISTERED; 7892 7893 __netdev_update_features(dev); 7894 7895 /* 7896 * Default initial state at registry is that the 7897 * device is present. 7898 */ 7899 7900 set_bit(__LINK_STATE_PRESENT, &dev->state); 7901 7902 linkwatch_init_dev(dev); 7903 7904 dev_init_scheduler(dev); 7905 dev_hold(dev); 7906 list_netdevice(dev); 7907 add_device_randomness(dev->dev_addr, dev->addr_len); 7908 7909 /* If the device has permanent device address, driver should 7910 * set dev_addr and also addr_assign_type should be set to 7911 * NET_ADDR_PERM (default value). 7912 */ 7913 if (dev->addr_assign_type == NET_ADDR_PERM) 7914 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 7915 7916 /* Notify protocols, that a new device appeared. */ 7917 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 7918 ret = notifier_to_errno(ret); 7919 if (ret) { 7920 rollback_registered(dev); 7921 dev->reg_state = NETREG_UNREGISTERED; 7922 } 7923 /* 7924 * Prevent userspace races by waiting until the network 7925 * device is fully setup before sending notifications. 7926 */ 7927 if (!dev->rtnl_link_ops || 7928 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 7929 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 7930 7931 out: 7932 return ret; 7933 7934 err_uninit: 7935 if (dev->netdev_ops->ndo_uninit) 7936 dev->netdev_ops->ndo_uninit(dev); 7937 if (dev->priv_destructor) 7938 dev->priv_destructor(dev); 7939 goto out; 7940 } 7941 EXPORT_SYMBOL(register_netdevice); 7942 7943 /** 7944 * init_dummy_netdev - init a dummy network device for NAPI 7945 * @dev: device to init 7946 * 7947 * This takes a network device structure and initialize the minimum 7948 * amount of fields so it can be used to schedule NAPI polls without 7949 * registering a full blown interface. This is to be used by drivers 7950 * that need to tie several hardware interfaces to a single NAPI 7951 * poll scheduler due to HW limitations. 7952 */ 7953 int init_dummy_netdev(struct net_device *dev) 7954 { 7955 /* Clear everything. Note we don't initialize spinlocks 7956 * are they aren't supposed to be taken by any of the 7957 * NAPI code and this dummy netdev is supposed to be 7958 * only ever used for NAPI polls 7959 */ 7960 memset(dev, 0, sizeof(struct net_device)); 7961 7962 /* make sure we BUG if trying to hit standard 7963 * register/unregister code path 7964 */ 7965 dev->reg_state = NETREG_DUMMY; 7966 7967 /* NAPI wants this */ 7968 INIT_LIST_HEAD(&dev->napi_list); 7969 7970 /* a dummy interface is started by default */ 7971 set_bit(__LINK_STATE_PRESENT, &dev->state); 7972 set_bit(__LINK_STATE_START, &dev->state); 7973 7974 /* Note : We dont allocate pcpu_refcnt for dummy devices, 7975 * because users of this 'device' dont need to change 7976 * its refcount. 7977 */ 7978 7979 return 0; 7980 } 7981 EXPORT_SYMBOL_GPL(init_dummy_netdev); 7982 7983 7984 /** 7985 * register_netdev - register a network device 7986 * @dev: device to register 7987 * 7988 * Take a completed network device structure and add it to the kernel 7989 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 7990 * chain. 0 is returned on success. A negative errno code is returned 7991 * on a failure to set up the device, or if the name is a duplicate. 7992 * 7993 * This is a wrapper around register_netdevice that takes the rtnl semaphore 7994 * and expands the device name if you passed a format string to 7995 * alloc_netdev. 7996 */ 7997 int register_netdev(struct net_device *dev) 7998 { 7999 int err; 8000 8001 rtnl_lock(); 8002 err = register_netdevice(dev); 8003 rtnl_unlock(); 8004 return err; 8005 } 8006 EXPORT_SYMBOL(register_netdev); 8007 8008 int netdev_refcnt_read(const struct net_device *dev) 8009 { 8010 int i, refcnt = 0; 8011 8012 for_each_possible_cpu(i) 8013 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 8014 return refcnt; 8015 } 8016 EXPORT_SYMBOL(netdev_refcnt_read); 8017 8018 /** 8019 * netdev_wait_allrefs - wait until all references are gone. 8020 * @dev: target net_device 8021 * 8022 * This is called when unregistering network devices. 8023 * 8024 * Any protocol or device that holds a reference should register 8025 * for netdevice notification, and cleanup and put back the 8026 * reference if they receive an UNREGISTER event. 8027 * We can get stuck here if buggy protocols don't correctly 8028 * call dev_put. 8029 */ 8030 static void netdev_wait_allrefs(struct net_device *dev) 8031 { 8032 unsigned long rebroadcast_time, warning_time; 8033 int refcnt; 8034 8035 linkwatch_forget_dev(dev); 8036 8037 rebroadcast_time = warning_time = jiffies; 8038 refcnt = netdev_refcnt_read(dev); 8039 8040 while (refcnt != 0) { 8041 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 8042 rtnl_lock(); 8043 8044 /* Rebroadcast unregister notification */ 8045 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8046 8047 __rtnl_unlock(); 8048 rcu_barrier(); 8049 rtnl_lock(); 8050 8051 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 8052 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 8053 &dev->state)) { 8054 /* We must not have linkwatch events 8055 * pending on unregister. If this 8056 * happens, we simply run the queue 8057 * unscheduled, resulting in a noop 8058 * for this device. 8059 */ 8060 linkwatch_run_queue(); 8061 } 8062 8063 __rtnl_unlock(); 8064 8065 rebroadcast_time = jiffies; 8066 } 8067 8068 msleep(250); 8069 8070 refcnt = netdev_refcnt_read(dev); 8071 8072 if (time_after(jiffies, warning_time + 10 * HZ)) { 8073 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 8074 dev->name, refcnt); 8075 warning_time = jiffies; 8076 } 8077 } 8078 } 8079 8080 /* The sequence is: 8081 * 8082 * rtnl_lock(); 8083 * ... 8084 * register_netdevice(x1); 8085 * register_netdevice(x2); 8086 * ... 8087 * unregister_netdevice(y1); 8088 * unregister_netdevice(y2); 8089 * ... 8090 * rtnl_unlock(); 8091 * free_netdev(y1); 8092 * free_netdev(y2); 8093 * 8094 * We are invoked by rtnl_unlock(). 8095 * This allows us to deal with problems: 8096 * 1) We can delete sysfs objects which invoke hotplug 8097 * without deadlocking with linkwatch via keventd. 8098 * 2) Since we run with the RTNL semaphore not held, we can sleep 8099 * safely in order to wait for the netdev refcnt to drop to zero. 8100 * 8101 * We must not return until all unregister events added during 8102 * the interval the lock was held have been completed. 8103 */ 8104 void netdev_run_todo(void) 8105 { 8106 struct list_head list; 8107 8108 /* Snapshot list, allow later requests */ 8109 list_replace_init(&net_todo_list, &list); 8110 8111 __rtnl_unlock(); 8112 8113 8114 /* Wait for rcu callbacks to finish before next phase */ 8115 if (!list_empty(&list)) 8116 rcu_barrier(); 8117 8118 while (!list_empty(&list)) { 8119 struct net_device *dev 8120 = list_first_entry(&list, struct net_device, todo_list); 8121 list_del(&dev->todo_list); 8122 8123 rtnl_lock(); 8124 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 8125 __rtnl_unlock(); 8126 8127 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 8128 pr_err("network todo '%s' but state %d\n", 8129 dev->name, dev->reg_state); 8130 dump_stack(); 8131 continue; 8132 } 8133 8134 dev->reg_state = NETREG_UNREGISTERED; 8135 8136 netdev_wait_allrefs(dev); 8137 8138 /* paranoia */ 8139 BUG_ON(netdev_refcnt_read(dev)); 8140 BUG_ON(!list_empty(&dev->ptype_all)); 8141 BUG_ON(!list_empty(&dev->ptype_specific)); 8142 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 8143 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 8144 WARN_ON(dev->dn_ptr); 8145 8146 if (dev->priv_destructor) 8147 dev->priv_destructor(dev); 8148 if (dev->needs_free_netdev) 8149 free_netdev(dev); 8150 8151 /* Report a network device has been unregistered */ 8152 rtnl_lock(); 8153 dev_net(dev)->dev_unreg_count--; 8154 __rtnl_unlock(); 8155 wake_up(&netdev_unregistering_wq); 8156 8157 /* Free network device */ 8158 kobject_put(&dev->dev.kobj); 8159 } 8160 } 8161 8162 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 8163 * all the same fields in the same order as net_device_stats, with only 8164 * the type differing, but rtnl_link_stats64 may have additional fields 8165 * at the end for newer counters. 8166 */ 8167 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 8168 const struct net_device_stats *netdev_stats) 8169 { 8170 #if BITS_PER_LONG == 64 8171 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 8172 memcpy(stats64, netdev_stats, sizeof(*netdev_stats)); 8173 /* zero out counters that only exist in rtnl_link_stats64 */ 8174 memset((char *)stats64 + sizeof(*netdev_stats), 0, 8175 sizeof(*stats64) - sizeof(*netdev_stats)); 8176 #else 8177 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 8178 const unsigned long *src = (const unsigned long *)netdev_stats; 8179 u64 *dst = (u64 *)stats64; 8180 8181 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 8182 for (i = 0; i < n; i++) 8183 dst[i] = src[i]; 8184 /* zero out counters that only exist in rtnl_link_stats64 */ 8185 memset((char *)stats64 + n * sizeof(u64), 0, 8186 sizeof(*stats64) - n * sizeof(u64)); 8187 #endif 8188 } 8189 EXPORT_SYMBOL(netdev_stats_to_stats64); 8190 8191 /** 8192 * dev_get_stats - get network device statistics 8193 * @dev: device to get statistics from 8194 * @storage: place to store stats 8195 * 8196 * Get network statistics from device. Return @storage. 8197 * The device driver may provide its own method by setting 8198 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 8199 * otherwise the internal statistics structure is used. 8200 */ 8201 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 8202 struct rtnl_link_stats64 *storage) 8203 { 8204 const struct net_device_ops *ops = dev->netdev_ops; 8205 8206 if (ops->ndo_get_stats64) { 8207 memset(storage, 0, sizeof(*storage)); 8208 ops->ndo_get_stats64(dev, storage); 8209 } else if (ops->ndo_get_stats) { 8210 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 8211 } else { 8212 netdev_stats_to_stats64(storage, &dev->stats); 8213 } 8214 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped); 8215 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped); 8216 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler); 8217 return storage; 8218 } 8219 EXPORT_SYMBOL(dev_get_stats); 8220 8221 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 8222 { 8223 struct netdev_queue *queue = dev_ingress_queue(dev); 8224 8225 #ifdef CONFIG_NET_CLS_ACT 8226 if (queue) 8227 return queue; 8228 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 8229 if (!queue) 8230 return NULL; 8231 netdev_init_one_queue(dev, queue, NULL); 8232 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 8233 queue->qdisc_sleeping = &noop_qdisc; 8234 rcu_assign_pointer(dev->ingress_queue, queue); 8235 #endif 8236 return queue; 8237 } 8238 8239 static const struct ethtool_ops default_ethtool_ops; 8240 8241 void netdev_set_default_ethtool_ops(struct net_device *dev, 8242 const struct ethtool_ops *ops) 8243 { 8244 if (dev->ethtool_ops == &default_ethtool_ops) 8245 dev->ethtool_ops = ops; 8246 } 8247 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 8248 8249 void netdev_freemem(struct net_device *dev) 8250 { 8251 char *addr = (char *)dev - dev->padded; 8252 8253 kvfree(addr); 8254 } 8255 8256 /** 8257 * alloc_netdev_mqs - allocate network device 8258 * @sizeof_priv: size of private data to allocate space for 8259 * @name: device name format string 8260 * @name_assign_type: origin of device name 8261 * @setup: callback to initialize device 8262 * @txqs: the number of TX subqueues to allocate 8263 * @rxqs: the number of RX subqueues to allocate 8264 * 8265 * Allocates a struct net_device with private data area for driver use 8266 * and performs basic initialization. Also allocates subqueue structs 8267 * for each queue on the device. 8268 */ 8269 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 8270 unsigned char name_assign_type, 8271 void (*setup)(struct net_device *), 8272 unsigned int txqs, unsigned int rxqs) 8273 { 8274 struct net_device *dev; 8275 unsigned int alloc_size; 8276 struct net_device *p; 8277 8278 BUG_ON(strlen(name) >= sizeof(dev->name)); 8279 8280 if (txqs < 1) { 8281 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 8282 return NULL; 8283 } 8284 8285 if (rxqs < 1) { 8286 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 8287 return NULL; 8288 } 8289 8290 alloc_size = sizeof(struct net_device); 8291 if (sizeof_priv) { 8292 /* ensure 32-byte alignment of private area */ 8293 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 8294 alloc_size += sizeof_priv; 8295 } 8296 /* ensure 32-byte alignment of whole construct */ 8297 alloc_size += NETDEV_ALIGN - 1; 8298 8299 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 8300 if (!p) 8301 return NULL; 8302 8303 dev = PTR_ALIGN(p, NETDEV_ALIGN); 8304 dev->padded = (char *)dev - (char *)p; 8305 8306 dev->pcpu_refcnt = alloc_percpu(int); 8307 if (!dev->pcpu_refcnt) 8308 goto free_dev; 8309 8310 if (dev_addr_init(dev)) 8311 goto free_pcpu; 8312 8313 dev_mc_init(dev); 8314 dev_uc_init(dev); 8315 8316 dev_net_set(dev, &init_net); 8317 8318 dev->gso_max_size = GSO_MAX_SIZE; 8319 dev->gso_max_segs = GSO_MAX_SEGS; 8320 8321 INIT_LIST_HEAD(&dev->napi_list); 8322 INIT_LIST_HEAD(&dev->unreg_list); 8323 INIT_LIST_HEAD(&dev->close_list); 8324 INIT_LIST_HEAD(&dev->link_watch_list); 8325 INIT_LIST_HEAD(&dev->adj_list.upper); 8326 INIT_LIST_HEAD(&dev->adj_list.lower); 8327 INIT_LIST_HEAD(&dev->ptype_all); 8328 INIT_LIST_HEAD(&dev->ptype_specific); 8329 #ifdef CONFIG_NET_SCHED 8330 hash_init(dev->qdisc_hash); 8331 #endif 8332 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 8333 setup(dev); 8334 8335 if (!dev->tx_queue_len) { 8336 dev->priv_flags |= IFF_NO_QUEUE; 8337 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 8338 } 8339 8340 dev->num_tx_queues = txqs; 8341 dev->real_num_tx_queues = txqs; 8342 if (netif_alloc_netdev_queues(dev)) 8343 goto free_all; 8344 8345 dev->num_rx_queues = rxqs; 8346 dev->real_num_rx_queues = rxqs; 8347 if (netif_alloc_rx_queues(dev)) 8348 goto free_all; 8349 8350 strcpy(dev->name, name); 8351 dev->name_assign_type = name_assign_type; 8352 dev->group = INIT_NETDEV_GROUP; 8353 if (!dev->ethtool_ops) 8354 dev->ethtool_ops = &default_ethtool_ops; 8355 8356 nf_hook_ingress_init(dev); 8357 8358 return dev; 8359 8360 free_all: 8361 free_netdev(dev); 8362 return NULL; 8363 8364 free_pcpu: 8365 free_percpu(dev->pcpu_refcnt); 8366 free_dev: 8367 netdev_freemem(dev); 8368 return NULL; 8369 } 8370 EXPORT_SYMBOL(alloc_netdev_mqs); 8371 8372 /** 8373 * free_netdev - free network device 8374 * @dev: device 8375 * 8376 * This function does the last stage of destroying an allocated device 8377 * interface. The reference to the device object is released. If this 8378 * is the last reference then it will be freed.Must be called in process 8379 * context. 8380 */ 8381 void free_netdev(struct net_device *dev) 8382 { 8383 struct napi_struct *p, *n; 8384 8385 might_sleep(); 8386 netif_free_tx_queues(dev); 8387 netif_free_rx_queues(dev); 8388 8389 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 8390 8391 /* Flush device addresses */ 8392 dev_addr_flush(dev); 8393 8394 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 8395 netif_napi_del(p); 8396 8397 free_percpu(dev->pcpu_refcnt); 8398 dev->pcpu_refcnt = NULL; 8399 8400 /* Compatibility with error handling in drivers */ 8401 if (dev->reg_state == NETREG_UNINITIALIZED) { 8402 netdev_freemem(dev); 8403 return; 8404 } 8405 8406 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 8407 dev->reg_state = NETREG_RELEASED; 8408 8409 /* will free via device release */ 8410 put_device(&dev->dev); 8411 } 8412 EXPORT_SYMBOL(free_netdev); 8413 8414 /** 8415 * synchronize_net - Synchronize with packet receive processing 8416 * 8417 * Wait for packets currently being received to be done. 8418 * Does not block later packets from starting. 8419 */ 8420 void synchronize_net(void) 8421 { 8422 might_sleep(); 8423 if (rtnl_is_locked()) 8424 synchronize_rcu_expedited(); 8425 else 8426 synchronize_rcu(); 8427 } 8428 EXPORT_SYMBOL(synchronize_net); 8429 8430 /** 8431 * unregister_netdevice_queue - remove device from the kernel 8432 * @dev: device 8433 * @head: list 8434 * 8435 * This function shuts down a device interface and removes it 8436 * from the kernel tables. 8437 * If head not NULL, device is queued to be unregistered later. 8438 * 8439 * Callers must hold the rtnl semaphore. You may want 8440 * unregister_netdev() instead of this. 8441 */ 8442 8443 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 8444 { 8445 ASSERT_RTNL(); 8446 8447 if (head) { 8448 list_move_tail(&dev->unreg_list, head); 8449 } else { 8450 rollback_registered(dev); 8451 /* Finish processing unregister after unlock */ 8452 net_set_todo(dev); 8453 } 8454 } 8455 EXPORT_SYMBOL(unregister_netdevice_queue); 8456 8457 /** 8458 * unregister_netdevice_many - unregister many devices 8459 * @head: list of devices 8460 * 8461 * Note: As most callers use a stack allocated list_head, 8462 * we force a list_del() to make sure stack wont be corrupted later. 8463 */ 8464 void unregister_netdevice_many(struct list_head *head) 8465 { 8466 struct net_device *dev; 8467 8468 if (!list_empty(head)) { 8469 rollback_registered_many(head); 8470 list_for_each_entry(dev, head, unreg_list) 8471 net_set_todo(dev); 8472 list_del(head); 8473 } 8474 } 8475 EXPORT_SYMBOL(unregister_netdevice_many); 8476 8477 /** 8478 * unregister_netdev - remove device from the kernel 8479 * @dev: device 8480 * 8481 * This function shuts down a device interface and removes it 8482 * from the kernel tables. 8483 * 8484 * This is just a wrapper for unregister_netdevice that takes 8485 * the rtnl semaphore. In general you want to use this and not 8486 * unregister_netdevice. 8487 */ 8488 void unregister_netdev(struct net_device *dev) 8489 { 8490 rtnl_lock(); 8491 unregister_netdevice(dev); 8492 rtnl_unlock(); 8493 } 8494 EXPORT_SYMBOL(unregister_netdev); 8495 8496 /** 8497 * dev_change_net_namespace - move device to different nethost namespace 8498 * @dev: device 8499 * @net: network namespace 8500 * @pat: If not NULL name pattern to try if the current device name 8501 * is already taken in the destination network namespace. 8502 * 8503 * This function shuts down a device interface and moves it 8504 * to a new network namespace. On success 0 is returned, on 8505 * a failure a netagive errno code is returned. 8506 * 8507 * Callers must hold the rtnl semaphore. 8508 */ 8509 8510 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 8511 { 8512 int err, new_nsid, new_ifindex; 8513 8514 ASSERT_RTNL(); 8515 8516 /* Don't allow namespace local devices to be moved. */ 8517 err = -EINVAL; 8518 if (dev->features & NETIF_F_NETNS_LOCAL) 8519 goto out; 8520 8521 /* Ensure the device has been registrered */ 8522 if (dev->reg_state != NETREG_REGISTERED) 8523 goto out; 8524 8525 /* Get out if there is nothing todo */ 8526 err = 0; 8527 if (net_eq(dev_net(dev), net)) 8528 goto out; 8529 8530 /* Pick the destination device name, and ensure 8531 * we can use it in the destination network namespace. 8532 */ 8533 err = -EEXIST; 8534 if (__dev_get_by_name(net, dev->name)) { 8535 /* We get here if we can't use the current device name */ 8536 if (!pat) 8537 goto out; 8538 if (dev_get_valid_name(net, dev, pat) < 0) 8539 goto out; 8540 } 8541 8542 /* 8543 * And now a mini version of register_netdevice unregister_netdevice. 8544 */ 8545 8546 /* If device is running close it first. */ 8547 dev_close(dev); 8548 8549 /* And unlink it from device chain */ 8550 err = -ENODEV; 8551 unlist_netdevice(dev); 8552 8553 synchronize_net(); 8554 8555 /* Shutdown queueing discipline. */ 8556 dev_shutdown(dev); 8557 8558 /* Notify protocols, that we are about to destroy 8559 * this device. They should clean all the things. 8560 * 8561 * Note that dev->reg_state stays at NETREG_REGISTERED. 8562 * This is wanted because this way 8021q and macvlan know 8563 * the device is just moving and can keep their slaves up. 8564 */ 8565 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8566 rcu_barrier(); 8567 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 8568 8569 new_nsid = peernet2id_alloc(dev_net(dev), net); 8570 /* If there is an ifindex conflict assign a new one */ 8571 if (__dev_get_by_index(net, dev->ifindex)) 8572 new_ifindex = dev_new_index(net); 8573 else 8574 new_ifindex = dev->ifindex; 8575 8576 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 8577 new_ifindex); 8578 8579 /* 8580 * Flush the unicast and multicast chains 8581 */ 8582 dev_uc_flush(dev); 8583 dev_mc_flush(dev); 8584 8585 /* Send a netdev-removed uevent to the old namespace */ 8586 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 8587 netdev_adjacent_del_links(dev); 8588 8589 /* Actually switch the network namespace */ 8590 dev_net_set(dev, net); 8591 dev->ifindex = new_ifindex; 8592 8593 /* Send a netdev-add uevent to the new namespace */ 8594 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 8595 netdev_adjacent_add_links(dev); 8596 8597 /* Fixup kobjects */ 8598 err = device_rename(&dev->dev, dev->name); 8599 WARN_ON(err); 8600 8601 /* Add the device back in the hashes */ 8602 list_netdevice(dev); 8603 8604 /* Notify protocols, that a new device appeared. */ 8605 call_netdevice_notifiers(NETDEV_REGISTER, dev); 8606 8607 /* 8608 * Prevent userspace races by waiting until the network 8609 * device is fully setup before sending notifications. 8610 */ 8611 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 8612 8613 synchronize_net(); 8614 err = 0; 8615 out: 8616 return err; 8617 } 8618 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 8619 8620 static int dev_cpu_dead(unsigned int oldcpu) 8621 { 8622 struct sk_buff **list_skb; 8623 struct sk_buff *skb; 8624 unsigned int cpu; 8625 struct softnet_data *sd, *oldsd, *remsd = NULL; 8626 8627 local_irq_disable(); 8628 cpu = smp_processor_id(); 8629 sd = &per_cpu(softnet_data, cpu); 8630 oldsd = &per_cpu(softnet_data, oldcpu); 8631 8632 /* Find end of our completion_queue. */ 8633 list_skb = &sd->completion_queue; 8634 while (*list_skb) 8635 list_skb = &(*list_skb)->next; 8636 /* Append completion queue from offline CPU. */ 8637 *list_skb = oldsd->completion_queue; 8638 oldsd->completion_queue = NULL; 8639 8640 /* Append output queue from offline CPU. */ 8641 if (oldsd->output_queue) { 8642 *sd->output_queue_tailp = oldsd->output_queue; 8643 sd->output_queue_tailp = oldsd->output_queue_tailp; 8644 oldsd->output_queue = NULL; 8645 oldsd->output_queue_tailp = &oldsd->output_queue; 8646 } 8647 /* Append NAPI poll list from offline CPU, with one exception : 8648 * process_backlog() must be called by cpu owning percpu backlog. 8649 * We properly handle process_queue & input_pkt_queue later. 8650 */ 8651 while (!list_empty(&oldsd->poll_list)) { 8652 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 8653 struct napi_struct, 8654 poll_list); 8655 8656 list_del_init(&napi->poll_list); 8657 if (napi->poll == process_backlog) 8658 napi->state = 0; 8659 else 8660 ____napi_schedule(sd, napi); 8661 } 8662 8663 raise_softirq_irqoff(NET_TX_SOFTIRQ); 8664 local_irq_enable(); 8665 8666 #ifdef CONFIG_RPS 8667 remsd = oldsd->rps_ipi_list; 8668 oldsd->rps_ipi_list = NULL; 8669 #endif 8670 /* send out pending IPI's on offline CPU */ 8671 net_rps_send_ipi(remsd); 8672 8673 /* Process offline CPU's input_pkt_queue */ 8674 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 8675 netif_rx_ni(skb); 8676 input_queue_head_incr(oldsd); 8677 } 8678 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 8679 netif_rx_ni(skb); 8680 input_queue_head_incr(oldsd); 8681 } 8682 8683 return 0; 8684 } 8685 8686 /** 8687 * netdev_increment_features - increment feature set by one 8688 * @all: current feature set 8689 * @one: new feature set 8690 * @mask: mask feature set 8691 * 8692 * Computes a new feature set after adding a device with feature set 8693 * @one to the master device with current feature set @all. Will not 8694 * enable anything that is off in @mask. Returns the new feature set. 8695 */ 8696 netdev_features_t netdev_increment_features(netdev_features_t all, 8697 netdev_features_t one, netdev_features_t mask) 8698 { 8699 if (mask & NETIF_F_HW_CSUM) 8700 mask |= NETIF_F_CSUM_MASK; 8701 mask |= NETIF_F_VLAN_CHALLENGED; 8702 8703 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 8704 all &= one | ~NETIF_F_ALL_FOR_ALL; 8705 8706 /* If one device supports hw checksumming, set for all. */ 8707 if (all & NETIF_F_HW_CSUM) 8708 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 8709 8710 return all; 8711 } 8712 EXPORT_SYMBOL(netdev_increment_features); 8713 8714 static struct hlist_head * __net_init netdev_create_hash(void) 8715 { 8716 int i; 8717 struct hlist_head *hash; 8718 8719 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 8720 if (hash != NULL) 8721 for (i = 0; i < NETDEV_HASHENTRIES; i++) 8722 INIT_HLIST_HEAD(&hash[i]); 8723 8724 return hash; 8725 } 8726 8727 /* Initialize per network namespace state */ 8728 static int __net_init netdev_init(struct net *net) 8729 { 8730 if (net != &init_net) 8731 INIT_LIST_HEAD(&net->dev_base_head); 8732 8733 net->dev_name_head = netdev_create_hash(); 8734 if (net->dev_name_head == NULL) 8735 goto err_name; 8736 8737 net->dev_index_head = netdev_create_hash(); 8738 if (net->dev_index_head == NULL) 8739 goto err_idx; 8740 8741 return 0; 8742 8743 err_idx: 8744 kfree(net->dev_name_head); 8745 err_name: 8746 return -ENOMEM; 8747 } 8748 8749 /** 8750 * netdev_drivername - network driver for the device 8751 * @dev: network device 8752 * 8753 * Determine network driver for device. 8754 */ 8755 const char *netdev_drivername(const struct net_device *dev) 8756 { 8757 const struct device_driver *driver; 8758 const struct device *parent; 8759 const char *empty = ""; 8760 8761 parent = dev->dev.parent; 8762 if (!parent) 8763 return empty; 8764 8765 driver = parent->driver; 8766 if (driver && driver->name) 8767 return driver->name; 8768 return empty; 8769 } 8770 8771 static void __netdev_printk(const char *level, const struct net_device *dev, 8772 struct va_format *vaf) 8773 { 8774 if (dev && dev->dev.parent) { 8775 dev_printk_emit(level[1] - '0', 8776 dev->dev.parent, 8777 "%s %s %s%s: %pV", 8778 dev_driver_string(dev->dev.parent), 8779 dev_name(dev->dev.parent), 8780 netdev_name(dev), netdev_reg_state(dev), 8781 vaf); 8782 } else if (dev) { 8783 printk("%s%s%s: %pV", 8784 level, netdev_name(dev), netdev_reg_state(dev), vaf); 8785 } else { 8786 printk("%s(NULL net_device): %pV", level, vaf); 8787 } 8788 } 8789 8790 void netdev_printk(const char *level, const struct net_device *dev, 8791 const char *format, ...) 8792 { 8793 struct va_format vaf; 8794 va_list args; 8795 8796 va_start(args, format); 8797 8798 vaf.fmt = format; 8799 vaf.va = &args; 8800 8801 __netdev_printk(level, dev, &vaf); 8802 8803 va_end(args); 8804 } 8805 EXPORT_SYMBOL(netdev_printk); 8806 8807 #define define_netdev_printk_level(func, level) \ 8808 void func(const struct net_device *dev, const char *fmt, ...) \ 8809 { \ 8810 struct va_format vaf; \ 8811 va_list args; \ 8812 \ 8813 va_start(args, fmt); \ 8814 \ 8815 vaf.fmt = fmt; \ 8816 vaf.va = &args; \ 8817 \ 8818 __netdev_printk(level, dev, &vaf); \ 8819 \ 8820 va_end(args); \ 8821 } \ 8822 EXPORT_SYMBOL(func); 8823 8824 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 8825 define_netdev_printk_level(netdev_alert, KERN_ALERT); 8826 define_netdev_printk_level(netdev_crit, KERN_CRIT); 8827 define_netdev_printk_level(netdev_err, KERN_ERR); 8828 define_netdev_printk_level(netdev_warn, KERN_WARNING); 8829 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 8830 define_netdev_printk_level(netdev_info, KERN_INFO); 8831 8832 static void __net_exit netdev_exit(struct net *net) 8833 { 8834 kfree(net->dev_name_head); 8835 kfree(net->dev_index_head); 8836 if (net != &init_net) 8837 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 8838 } 8839 8840 static struct pernet_operations __net_initdata netdev_net_ops = { 8841 .init = netdev_init, 8842 .exit = netdev_exit, 8843 }; 8844 8845 static void __net_exit default_device_exit(struct net *net) 8846 { 8847 struct net_device *dev, *aux; 8848 /* 8849 * Push all migratable network devices back to the 8850 * initial network namespace 8851 */ 8852 rtnl_lock(); 8853 for_each_netdev_safe(net, dev, aux) { 8854 int err; 8855 char fb_name[IFNAMSIZ]; 8856 8857 /* Ignore unmoveable devices (i.e. loopback) */ 8858 if (dev->features & NETIF_F_NETNS_LOCAL) 8859 continue; 8860 8861 /* Leave virtual devices for the generic cleanup */ 8862 if (dev->rtnl_link_ops) 8863 continue; 8864 8865 /* Push remaining network devices to init_net */ 8866 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 8867 err = dev_change_net_namespace(dev, &init_net, fb_name); 8868 if (err) { 8869 pr_emerg("%s: failed to move %s to init_net: %d\n", 8870 __func__, dev->name, err); 8871 BUG(); 8872 } 8873 } 8874 rtnl_unlock(); 8875 } 8876 8877 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 8878 { 8879 /* Return with the rtnl_lock held when there are no network 8880 * devices unregistering in any network namespace in net_list. 8881 */ 8882 struct net *net; 8883 bool unregistering; 8884 DEFINE_WAIT_FUNC(wait, woken_wake_function); 8885 8886 add_wait_queue(&netdev_unregistering_wq, &wait); 8887 for (;;) { 8888 unregistering = false; 8889 rtnl_lock(); 8890 list_for_each_entry(net, net_list, exit_list) { 8891 if (net->dev_unreg_count > 0) { 8892 unregistering = true; 8893 break; 8894 } 8895 } 8896 if (!unregistering) 8897 break; 8898 __rtnl_unlock(); 8899 8900 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 8901 } 8902 remove_wait_queue(&netdev_unregistering_wq, &wait); 8903 } 8904 8905 static void __net_exit default_device_exit_batch(struct list_head *net_list) 8906 { 8907 /* At exit all network devices most be removed from a network 8908 * namespace. Do this in the reverse order of registration. 8909 * Do this across as many network namespaces as possible to 8910 * improve batching efficiency. 8911 */ 8912 struct net_device *dev; 8913 struct net *net; 8914 LIST_HEAD(dev_kill_list); 8915 8916 /* To prevent network device cleanup code from dereferencing 8917 * loopback devices or network devices that have been freed 8918 * wait here for all pending unregistrations to complete, 8919 * before unregistring the loopback device and allowing the 8920 * network namespace be freed. 8921 * 8922 * The netdev todo list containing all network devices 8923 * unregistrations that happen in default_device_exit_batch 8924 * will run in the rtnl_unlock() at the end of 8925 * default_device_exit_batch. 8926 */ 8927 rtnl_lock_unregistering(net_list); 8928 list_for_each_entry(net, net_list, exit_list) { 8929 for_each_netdev_reverse(net, dev) { 8930 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 8931 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 8932 else 8933 unregister_netdevice_queue(dev, &dev_kill_list); 8934 } 8935 } 8936 unregister_netdevice_many(&dev_kill_list); 8937 rtnl_unlock(); 8938 } 8939 8940 static struct pernet_operations __net_initdata default_device_ops = { 8941 .exit = default_device_exit, 8942 .exit_batch = default_device_exit_batch, 8943 }; 8944 8945 /* 8946 * Initialize the DEV module. At boot time this walks the device list and 8947 * unhooks any devices that fail to initialise (normally hardware not 8948 * present) and leaves us with a valid list of present and active devices. 8949 * 8950 */ 8951 8952 /* 8953 * This is called single threaded during boot, so no need 8954 * to take the rtnl semaphore. 8955 */ 8956 static int __init net_dev_init(void) 8957 { 8958 int i, rc = -ENOMEM; 8959 8960 BUG_ON(!dev_boot_phase); 8961 8962 if (dev_proc_init()) 8963 goto out; 8964 8965 if (netdev_kobject_init()) 8966 goto out; 8967 8968 INIT_LIST_HEAD(&ptype_all); 8969 for (i = 0; i < PTYPE_HASH_SIZE; i++) 8970 INIT_LIST_HEAD(&ptype_base[i]); 8971 8972 INIT_LIST_HEAD(&offload_base); 8973 8974 if (register_pernet_subsys(&netdev_net_ops)) 8975 goto out; 8976 8977 /* 8978 * Initialise the packet receive queues. 8979 */ 8980 8981 for_each_possible_cpu(i) { 8982 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 8983 struct softnet_data *sd = &per_cpu(softnet_data, i); 8984 8985 INIT_WORK(flush, flush_backlog); 8986 8987 skb_queue_head_init(&sd->input_pkt_queue); 8988 skb_queue_head_init(&sd->process_queue); 8989 #ifdef CONFIG_XFRM_OFFLOAD 8990 skb_queue_head_init(&sd->xfrm_backlog); 8991 #endif 8992 INIT_LIST_HEAD(&sd->poll_list); 8993 sd->output_queue_tailp = &sd->output_queue; 8994 #ifdef CONFIG_RPS 8995 sd->csd.func = rps_trigger_softirq; 8996 sd->csd.info = sd; 8997 sd->cpu = i; 8998 #endif 8999 9000 sd->backlog.poll = process_backlog; 9001 sd->backlog.weight = weight_p; 9002 } 9003 9004 dev_boot_phase = 0; 9005 9006 /* The loopback device is special if any other network devices 9007 * is present in a network namespace the loopback device must 9008 * be present. Since we now dynamically allocate and free the 9009 * loopback device ensure this invariant is maintained by 9010 * keeping the loopback device as the first device on the 9011 * list of network devices. Ensuring the loopback devices 9012 * is the first device that appears and the last network device 9013 * that disappears. 9014 */ 9015 if (register_pernet_device(&loopback_net_ops)) 9016 goto out; 9017 9018 if (register_pernet_device(&default_device_ops)) 9019 goto out; 9020 9021 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 9022 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 9023 9024 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 9025 NULL, dev_cpu_dead); 9026 WARN_ON(rc < 0); 9027 rc = 0; 9028 out: 9029 return rc; 9030 } 9031 9032 subsys_initcall(net_dev_init); 9033