xref: /openbmc/linux/net/core/dev.c (revision 82ced6fd)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/ethtool.h>
94 #include <linux/notifier.h>
95 #include <linux/skbuff.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/stat.h>
102 #include <linux/if_bridge.h>
103 #include <linux/if_macvlan.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 
130 #include "net-sysfs.h"
131 
132 /* Instead of increasing this, you should create a hash table. */
133 #define MAX_GRO_SKBS 8
134 
135 /* This should be increased if a protocol with a bigger head is added. */
136 #define GRO_MAX_HEAD (MAX_HEADER + 128)
137 
138 /*
139  *	The list of packet types we will receive (as opposed to discard)
140  *	and the routines to invoke.
141  *
142  *	Why 16. Because with 16 the only overlap we get on a hash of the
143  *	low nibble of the protocol value is RARP/SNAP/X.25.
144  *
145  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
146  *             sure which should go first, but I bet it won't make much
147  *             difference if we are running VLANs.  The good news is that
148  *             this protocol won't be in the list unless compiled in, so
149  *             the average user (w/out VLANs) will not be adversely affected.
150  *             --BLG
151  *
152  *		0800	IP
153  *		8100    802.1Q VLAN
154  *		0001	802.3
155  *		0002	AX.25
156  *		0004	802.2
157  *		8035	RARP
158  *		0005	SNAP
159  *		0805	X.25
160  *		0806	ARP
161  *		8137	IPX
162  *		0009	Localtalk
163  *		86DD	IPv6
164  */
165 
166 #define PTYPE_HASH_SIZE	(16)
167 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
168 
169 static DEFINE_SPINLOCK(ptype_lock);
170 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
171 static struct list_head ptype_all __read_mostly;	/* Taps */
172 
173 /*
174  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
175  * semaphore.
176  *
177  * Pure readers hold dev_base_lock for reading.
178  *
179  * Writers must hold the rtnl semaphore while they loop through the
180  * dev_base_head list, and hold dev_base_lock for writing when they do the
181  * actual updates.  This allows pure readers to access the list even
182  * while a writer is preparing to update it.
183  *
184  * To put it another way, dev_base_lock is held for writing only to
185  * protect against pure readers; the rtnl semaphore provides the
186  * protection against other writers.
187  *
188  * See, for example usages, register_netdevice() and
189  * unregister_netdevice(), which must be called with the rtnl
190  * semaphore held.
191  */
192 DEFINE_RWLOCK(dev_base_lock);
193 
194 EXPORT_SYMBOL(dev_base_lock);
195 
196 #define NETDEV_HASHBITS	8
197 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
198 
199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
200 {
201 	unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
202 	return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
203 }
204 
205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
206 {
207 	return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
208 }
209 
210 /* Device list insertion */
211 static int list_netdevice(struct net_device *dev)
212 {
213 	struct net *net = dev_net(dev);
214 
215 	ASSERT_RTNL();
216 
217 	write_lock_bh(&dev_base_lock);
218 	list_add_tail(&dev->dev_list, &net->dev_base_head);
219 	hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
220 	hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
221 	write_unlock_bh(&dev_base_lock);
222 	return 0;
223 }
224 
225 /* Device list removal */
226 static void unlist_netdevice(struct net_device *dev)
227 {
228 	ASSERT_RTNL();
229 
230 	/* Unlink dev from the device chain */
231 	write_lock_bh(&dev_base_lock);
232 	list_del(&dev->dev_list);
233 	hlist_del(&dev->name_hlist);
234 	hlist_del(&dev->index_hlist);
235 	write_unlock_bh(&dev_base_lock);
236 }
237 
238 /*
239  *	Our notifier list
240  */
241 
242 static RAW_NOTIFIER_HEAD(netdev_chain);
243 
244 /*
245  *	Device drivers call our routines to queue packets here. We empty the
246  *	queue in the local softnet handler.
247  */
248 
249 DEFINE_PER_CPU(struct softnet_data, softnet_data);
250 
251 #ifdef CONFIG_LOCKDEP
252 /*
253  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
254  * according to dev->type
255  */
256 static const unsigned short netdev_lock_type[] =
257 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
258 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
259 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
260 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
261 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
262 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
263 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
264 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
265 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
266 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
267 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
268 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
269 	 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
270 	 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
271 	 ARPHRD_PHONET_PIPE, ARPHRD_VOID, ARPHRD_NONE};
272 
273 static const char *netdev_lock_name[] =
274 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
275 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
276 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
277 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
278 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
279 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
280 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
281 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
282 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
283 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
284 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
285 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
286 	 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
287 	 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
288 	 "_xmit_PHONET_PIPE", "_xmit_VOID", "_xmit_NONE"};
289 
290 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
291 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
292 
293 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
294 {
295 	int i;
296 
297 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
298 		if (netdev_lock_type[i] == dev_type)
299 			return i;
300 	/* the last key is used by default */
301 	return ARRAY_SIZE(netdev_lock_type) - 1;
302 }
303 
304 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
305 						 unsigned short dev_type)
306 {
307 	int i;
308 
309 	i = netdev_lock_pos(dev_type);
310 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
311 				   netdev_lock_name[i]);
312 }
313 
314 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
315 {
316 	int i;
317 
318 	i = netdev_lock_pos(dev->type);
319 	lockdep_set_class_and_name(&dev->addr_list_lock,
320 				   &netdev_addr_lock_key[i],
321 				   netdev_lock_name[i]);
322 }
323 #else
324 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
325 						 unsigned short dev_type)
326 {
327 }
328 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
329 {
330 }
331 #endif
332 
333 /*******************************************************************************
334 
335 		Protocol management and registration routines
336 
337 *******************************************************************************/
338 
339 /*
340  *	Add a protocol ID to the list. Now that the input handler is
341  *	smarter we can dispense with all the messy stuff that used to be
342  *	here.
343  *
344  *	BEWARE!!! Protocol handlers, mangling input packets,
345  *	MUST BE last in hash buckets and checking protocol handlers
346  *	MUST start from promiscuous ptype_all chain in net_bh.
347  *	It is true now, do not change it.
348  *	Explanation follows: if protocol handler, mangling packet, will
349  *	be the first on list, it is not able to sense, that packet
350  *	is cloned and should be copied-on-write, so that it will
351  *	change it and subsequent readers will get broken packet.
352  *							--ANK (980803)
353  */
354 
355 /**
356  *	dev_add_pack - add packet handler
357  *	@pt: packet type declaration
358  *
359  *	Add a protocol handler to the networking stack. The passed &packet_type
360  *	is linked into kernel lists and may not be freed until it has been
361  *	removed from the kernel lists.
362  *
363  *	This call does not sleep therefore it can not
364  *	guarantee all CPU's that are in middle of receiving packets
365  *	will see the new packet type (until the next received packet).
366  */
367 
368 void dev_add_pack(struct packet_type *pt)
369 {
370 	int hash;
371 
372 	spin_lock_bh(&ptype_lock);
373 	if (pt->type == htons(ETH_P_ALL))
374 		list_add_rcu(&pt->list, &ptype_all);
375 	else {
376 		hash = ntohs(pt->type) & PTYPE_HASH_MASK;
377 		list_add_rcu(&pt->list, &ptype_base[hash]);
378 	}
379 	spin_unlock_bh(&ptype_lock);
380 }
381 
382 /**
383  *	__dev_remove_pack	 - remove packet handler
384  *	@pt: packet type declaration
385  *
386  *	Remove a protocol handler that was previously added to the kernel
387  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
388  *	from the kernel lists and can be freed or reused once this function
389  *	returns.
390  *
391  *      The packet type might still be in use by receivers
392  *	and must not be freed until after all the CPU's have gone
393  *	through a quiescent state.
394  */
395 void __dev_remove_pack(struct packet_type *pt)
396 {
397 	struct list_head *head;
398 	struct packet_type *pt1;
399 
400 	spin_lock_bh(&ptype_lock);
401 
402 	if (pt->type == htons(ETH_P_ALL))
403 		head = &ptype_all;
404 	else
405 		head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
406 
407 	list_for_each_entry(pt1, head, list) {
408 		if (pt == pt1) {
409 			list_del_rcu(&pt->list);
410 			goto out;
411 		}
412 	}
413 
414 	printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
415 out:
416 	spin_unlock_bh(&ptype_lock);
417 }
418 /**
419  *	dev_remove_pack	 - remove packet handler
420  *	@pt: packet type declaration
421  *
422  *	Remove a protocol handler that was previously added to the kernel
423  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
424  *	from the kernel lists and can be freed or reused once this function
425  *	returns.
426  *
427  *	This call sleeps to guarantee that no CPU is looking at the packet
428  *	type after return.
429  */
430 void dev_remove_pack(struct packet_type *pt)
431 {
432 	__dev_remove_pack(pt);
433 
434 	synchronize_net();
435 }
436 
437 /******************************************************************************
438 
439 		      Device Boot-time Settings Routines
440 
441 *******************************************************************************/
442 
443 /* Boot time configuration table */
444 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
445 
446 /**
447  *	netdev_boot_setup_add	- add new setup entry
448  *	@name: name of the device
449  *	@map: configured settings for the device
450  *
451  *	Adds new setup entry to the dev_boot_setup list.  The function
452  *	returns 0 on error and 1 on success.  This is a generic routine to
453  *	all netdevices.
454  */
455 static int netdev_boot_setup_add(char *name, struct ifmap *map)
456 {
457 	struct netdev_boot_setup *s;
458 	int i;
459 
460 	s = dev_boot_setup;
461 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
462 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
463 			memset(s[i].name, 0, sizeof(s[i].name));
464 			strlcpy(s[i].name, name, IFNAMSIZ);
465 			memcpy(&s[i].map, map, sizeof(s[i].map));
466 			break;
467 		}
468 	}
469 
470 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
471 }
472 
473 /**
474  *	netdev_boot_setup_check	- check boot time settings
475  *	@dev: the netdevice
476  *
477  * 	Check boot time settings for the device.
478  *	The found settings are set for the device to be used
479  *	later in the device probing.
480  *	Returns 0 if no settings found, 1 if they are.
481  */
482 int netdev_boot_setup_check(struct net_device *dev)
483 {
484 	struct netdev_boot_setup *s = dev_boot_setup;
485 	int i;
486 
487 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
488 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
489 		    !strcmp(dev->name, s[i].name)) {
490 			dev->irq 	= s[i].map.irq;
491 			dev->base_addr 	= s[i].map.base_addr;
492 			dev->mem_start 	= s[i].map.mem_start;
493 			dev->mem_end 	= s[i].map.mem_end;
494 			return 1;
495 		}
496 	}
497 	return 0;
498 }
499 
500 
501 /**
502  *	netdev_boot_base	- get address from boot time settings
503  *	@prefix: prefix for network device
504  *	@unit: id for network device
505  *
506  * 	Check boot time settings for the base address of device.
507  *	The found settings are set for the device to be used
508  *	later in the device probing.
509  *	Returns 0 if no settings found.
510  */
511 unsigned long netdev_boot_base(const char *prefix, int unit)
512 {
513 	const struct netdev_boot_setup *s = dev_boot_setup;
514 	char name[IFNAMSIZ];
515 	int i;
516 
517 	sprintf(name, "%s%d", prefix, unit);
518 
519 	/*
520 	 * If device already registered then return base of 1
521 	 * to indicate not to probe for this interface
522 	 */
523 	if (__dev_get_by_name(&init_net, name))
524 		return 1;
525 
526 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
527 		if (!strcmp(name, s[i].name))
528 			return s[i].map.base_addr;
529 	return 0;
530 }
531 
532 /*
533  * Saves at boot time configured settings for any netdevice.
534  */
535 int __init netdev_boot_setup(char *str)
536 {
537 	int ints[5];
538 	struct ifmap map;
539 
540 	str = get_options(str, ARRAY_SIZE(ints), ints);
541 	if (!str || !*str)
542 		return 0;
543 
544 	/* Save settings */
545 	memset(&map, 0, sizeof(map));
546 	if (ints[0] > 0)
547 		map.irq = ints[1];
548 	if (ints[0] > 1)
549 		map.base_addr = ints[2];
550 	if (ints[0] > 2)
551 		map.mem_start = ints[3];
552 	if (ints[0] > 3)
553 		map.mem_end = ints[4];
554 
555 	/* Add new entry to the list */
556 	return netdev_boot_setup_add(str, &map);
557 }
558 
559 __setup("netdev=", netdev_boot_setup);
560 
561 /*******************************************************************************
562 
563 			    Device Interface Subroutines
564 
565 *******************************************************************************/
566 
567 /**
568  *	__dev_get_by_name	- find a device by its name
569  *	@net: the applicable net namespace
570  *	@name: name to find
571  *
572  *	Find an interface by name. Must be called under RTNL semaphore
573  *	or @dev_base_lock. If the name is found a pointer to the device
574  *	is returned. If the name is not found then %NULL is returned. The
575  *	reference counters are not incremented so the caller must be
576  *	careful with locks.
577  */
578 
579 struct net_device *__dev_get_by_name(struct net *net, const char *name)
580 {
581 	struct hlist_node *p;
582 
583 	hlist_for_each(p, dev_name_hash(net, name)) {
584 		struct net_device *dev
585 			= hlist_entry(p, struct net_device, name_hlist);
586 		if (!strncmp(dev->name, name, IFNAMSIZ))
587 			return dev;
588 	}
589 	return NULL;
590 }
591 
592 /**
593  *	dev_get_by_name		- find a device by its name
594  *	@net: the applicable net namespace
595  *	@name: name to find
596  *
597  *	Find an interface by name. This can be called from any
598  *	context and does its own locking. The returned handle has
599  *	the usage count incremented and the caller must use dev_put() to
600  *	release it when it is no longer needed. %NULL is returned if no
601  *	matching device is found.
602  */
603 
604 struct net_device *dev_get_by_name(struct net *net, const char *name)
605 {
606 	struct net_device *dev;
607 
608 	read_lock(&dev_base_lock);
609 	dev = __dev_get_by_name(net, name);
610 	if (dev)
611 		dev_hold(dev);
612 	read_unlock(&dev_base_lock);
613 	return dev;
614 }
615 
616 /**
617  *	__dev_get_by_index - find a device by its ifindex
618  *	@net: the applicable net namespace
619  *	@ifindex: index of device
620  *
621  *	Search for an interface by index. Returns %NULL if the device
622  *	is not found or a pointer to the device. The device has not
623  *	had its reference counter increased so the caller must be careful
624  *	about locking. The caller must hold either the RTNL semaphore
625  *	or @dev_base_lock.
626  */
627 
628 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
629 {
630 	struct hlist_node *p;
631 
632 	hlist_for_each(p, dev_index_hash(net, ifindex)) {
633 		struct net_device *dev
634 			= hlist_entry(p, struct net_device, index_hlist);
635 		if (dev->ifindex == ifindex)
636 			return dev;
637 	}
638 	return NULL;
639 }
640 
641 
642 /**
643  *	dev_get_by_index - find a device by its ifindex
644  *	@net: the applicable net namespace
645  *	@ifindex: index of device
646  *
647  *	Search for an interface by index. Returns NULL if the device
648  *	is not found or a pointer to the device. The device returned has
649  *	had a reference added and the pointer is safe until the user calls
650  *	dev_put to indicate they have finished with it.
651  */
652 
653 struct net_device *dev_get_by_index(struct net *net, int ifindex)
654 {
655 	struct net_device *dev;
656 
657 	read_lock(&dev_base_lock);
658 	dev = __dev_get_by_index(net, ifindex);
659 	if (dev)
660 		dev_hold(dev);
661 	read_unlock(&dev_base_lock);
662 	return dev;
663 }
664 
665 /**
666  *	dev_getbyhwaddr - find a device by its hardware address
667  *	@net: the applicable net namespace
668  *	@type: media type of device
669  *	@ha: hardware address
670  *
671  *	Search for an interface by MAC address. Returns NULL if the device
672  *	is not found or a pointer to the device. The caller must hold the
673  *	rtnl semaphore. The returned device has not had its ref count increased
674  *	and the caller must therefore be careful about locking
675  *
676  *	BUGS:
677  *	If the API was consistent this would be __dev_get_by_hwaddr
678  */
679 
680 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
681 {
682 	struct net_device *dev;
683 
684 	ASSERT_RTNL();
685 
686 	for_each_netdev(net, dev)
687 		if (dev->type == type &&
688 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
689 			return dev;
690 
691 	return NULL;
692 }
693 
694 EXPORT_SYMBOL(dev_getbyhwaddr);
695 
696 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
697 {
698 	struct net_device *dev;
699 
700 	ASSERT_RTNL();
701 	for_each_netdev(net, dev)
702 		if (dev->type == type)
703 			return dev;
704 
705 	return NULL;
706 }
707 
708 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
709 
710 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
711 {
712 	struct net_device *dev;
713 
714 	rtnl_lock();
715 	dev = __dev_getfirstbyhwtype(net, type);
716 	if (dev)
717 		dev_hold(dev);
718 	rtnl_unlock();
719 	return dev;
720 }
721 
722 EXPORT_SYMBOL(dev_getfirstbyhwtype);
723 
724 /**
725  *	dev_get_by_flags - find any device with given flags
726  *	@net: the applicable net namespace
727  *	@if_flags: IFF_* values
728  *	@mask: bitmask of bits in if_flags to check
729  *
730  *	Search for any interface with the given flags. Returns NULL if a device
731  *	is not found or a pointer to the device. The device returned has
732  *	had a reference added and the pointer is safe until the user calls
733  *	dev_put to indicate they have finished with it.
734  */
735 
736 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
737 {
738 	struct net_device *dev, *ret;
739 
740 	ret = NULL;
741 	read_lock(&dev_base_lock);
742 	for_each_netdev(net, dev) {
743 		if (((dev->flags ^ if_flags) & mask) == 0) {
744 			dev_hold(dev);
745 			ret = dev;
746 			break;
747 		}
748 	}
749 	read_unlock(&dev_base_lock);
750 	return ret;
751 }
752 
753 /**
754  *	dev_valid_name - check if name is okay for network device
755  *	@name: name string
756  *
757  *	Network device names need to be valid file names to
758  *	to allow sysfs to work.  We also disallow any kind of
759  *	whitespace.
760  */
761 int dev_valid_name(const char *name)
762 {
763 	if (*name == '\0')
764 		return 0;
765 	if (strlen(name) >= IFNAMSIZ)
766 		return 0;
767 	if (!strcmp(name, ".") || !strcmp(name, ".."))
768 		return 0;
769 
770 	while (*name) {
771 		if (*name == '/' || isspace(*name))
772 			return 0;
773 		name++;
774 	}
775 	return 1;
776 }
777 
778 /**
779  *	__dev_alloc_name - allocate a name for a device
780  *	@net: network namespace to allocate the device name in
781  *	@name: name format string
782  *	@buf:  scratch buffer and result name string
783  *
784  *	Passed a format string - eg "lt%d" it will try and find a suitable
785  *	id. It scans list of devices to build up a free map, then chooses
786  *	the first empty slot. The caller must hold the dev_base or rtnl lock
787  *	while allocating the name and adding the device in order to avoid
788  *	duplicates.
789  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
790  *	Returns the number of the unit assigned or a negative errno code.
791  */
792 
793 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
794 {
795 	int i = 0;
796 	const char *p;
797 	const int max_netdevices = 8*PAGE_SIZE;
798 	unsigned long *inuse;
799 	struct net_device *d;
800 
801 	p = strnchr(name, IFNAMSIZ-1, '%');
802 	if (p) {
803 		/*
804 		 * Verify the string as this thing may have come from
805 		 * the user.  There must be either one "%d" and no other "%"
806 		 * characters.
807 		 */
808 		if (p[1] != 'd' || strchr(p + 2, '%'))
809 			return -EINVAL;
810 
811 		/* Use one page as a bit array of possible slots */
812 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
813 		if (!inuse)
814 			return -ENOMEM;
815 
816 		for_each_netdev(net, d) {
817 			if (!sscanf(d->name, name, &i))
818 				continue;
819 			if (i < 0 || i >= max_netdevices)
820 				continue;
821 
822 			/*  avoid cases where sscanf is not exact inverse of printf */
823 			snprintf(buf, IFNAMSIZ, name, i);
824 			if (!strncmp(buf, d->name, IFNAMSIZ))
825 				set_bit(i, inuse);
826 		}
827 
828 		i = find_first_zero_bit(inuse, max_netdevices);
829 		free_page((unsigned long) inuse);
830 	}
831 
832 	snprintf(buf, IFNAMSIZ, name, i);
833 	if (!__dev_get_by_name(net, buf))
834 		return i;
835 
836 	/* It is possible to run out of possible slots
837 	 * when the name is long and there isn't enough space left
838 	 * for the digits, or if all bits are used.
839 	 */
840 	return -ENFILE;
841 }
842 
843 /**
844  *	dev_alloc_name - allocate a name for a device
845  *	@dev: device
846  *	@name: name format string
847  *
848  *	Passed a format string - eg "lt%d" it will try and find a suitable
849  *	id. It scans list of devices to build up a free map, then chooses
850  *	the first empty slot. The caller must hold the dev_base or rtnl lock
851  *	while allocating the name and adding the device in order to avoid
852  *	duplicates.
853  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
854  *	Returns the number of the unit assigned or a negative errno code.
855  */
856 
857 int dev_alloc_name(struct net_device *dev, const char *name)
858 {
859 	char buf[IFNAMSIZ];
860 	struct net *net;
861 	int ret;
862 
863 	BUG_ON(!dev_net(dev));
864 	net = dev_net(dev);
865 	ret = __dev_alloc_name(net, name, buf);
866 	if (ret >= 0)
867 		strlcpy(dev->name, buf, IFNAMSIZ);
868 	return ret;
869 }
870 
871 
872 /**
873  *	dev_change_name - change name of a device
874  *	@dev: device
875  *	@newname: name (or format string) must be at least IFNAMSIZ
876  *
877  *	Change name of a device, can pass format strings "eth%d".
878  *	for wildcarding.
879  */
880 int dev_change_name(struct net_device *dev, const char *newname)
881 {
882 	char oldname[IFNAMSIZ];
883 	int err = 0;
884 	int ret;
885 	struct net *net;
886 
887 	ASSERT_RTNL();
888 	BUG_ON(!dev_net(dev));
889 
890 	net = dev_net(dev);
891 	if (dev->flags & IFF_UP)
892 		return -EBUSY;
893 
894 	if (!dev_valid_name(newname))
895 		return -EINVAL;
896 
897 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
898 		return 0;
899 
900 	memcpy(oldname, dev->name, IFNAMSIZ);
901 
902 	if (strchr(newname, '%')) {
903 		err = dev_alloc_name(dev, newname);
904 		if (err < 0)
905 			return err;
906 	}
907 	else if (__dev_get_by_name(net, newname))
908 		return -EEXIST;
909 	else
910 		strlcpy(dev->name, newname, IFNAMSIZ);
911 
912 rollback:
913 	/* For now only devices in the initial network namespace
914 	 * are in sysfs.
915 	 */
916 	if (net == &init_net) {
917 		ret = device_rename(&dev->dev, dev->name);
918 		if (ret) {
919 			memcpy(dev->name, oldname, IFNAMSIZ);
920 			return ret;
921 		}
922 	}
923 
924 	write_lock_bh(&dev_base_lock);
925 	hlist_del(&dev->name_hlist);
926 	hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
927 	write_unlock_bh(&dev_base_lock);
928 
929 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
930 	ret = notifier_to_errno(ret);
931 
932 	if (ret) {
933 		if (err) {
934 			printk(KERN_ERR
935 			       "%s: name change rollback failed: %d.\n",
936 			       dev->name, ret);
937 		} else {
938 			err = ret;
939 			memcpy(dev->name, oldname, IFNAMSIZ);
940 			goto rollback;
941 		}
942 	}
943 
944 	return err;
945 }
946 
947 /**
948  *	dev_set_alias - change ifalias of a device
949  *	@dev: device
950  *	@alias: name up to IFALIASZ
951  *	@len: limit of bytes to copy from info
952  *
953  *	Set ifalias for a device,
954  */
955 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
956 {
957 	ASSERT_RTNL();
958 
959 	if (len >= IFALIASZ)
960 		return -EINVAL;
961 
962 	if (!len) {
963 		if (dev->ifalias) {
964 			kfree(dev->ifalias);
965 			dev->ifalias = NULL;
966 		}
967 		return 0;
968 	}
969 
970 	dev->ifalias = krealloc(dev->ifalias, len+1, GFP_KERNEL);
971 	if (!dev->ifalias)
972 		return -ENOMEM;
973 
974 	strlcpy(dev->ifalias, alias, len+1);
975 	return len;
976 }
977 
978 
979 /**
980  *	netdev_features_change - device changes features
981  *	@dev: device to cause notification
982  *
983  *	Called to indicate a device has changed features.
984  */
985 void netdev_features_change(struct net_device *dev)
986 {
987 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
988 }
989 EXPORT_SYMBOL(netdev_features_change);
990 
991 /**
992  *	netdev_state_change - device changes state
993  *	@dev: device to cause notification
994  *
995  *	Called to indicate a device has changed state. This function calls
996  *	the notifier chains for netdev_chain and sends a NEWLINK message
997  *	to the routing socket.
998  */
999 void netdev_state_change(struct net_device *dev)
1000 {
1001 	if (dev->flags & IFF_UP) {
1002 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
1003 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1004 	}
1005 }
1006 
1007 void netdev_bonding_change(struct net_device *dev)
1008 {
1009 	call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev);
1010 }
1011 EXPORT_SYMBOL(netdev_bonding_change);
1012 
1013 /**
1014  *	dev_load 	- load a network module
1015  *	@net: the applicable net namespace
1016  *	@name: name of interface
1017  *
1018  *	If a network interface is not present and the process has suitable
1019  *	privileges this function loads the module. If module loading is not
1020  *	available in this kernel then it becomes a nop.
1021  */
1022 
1023 void dev_load(struct net *net, const char *name)
1024 {
1025 	struct net_device *dev;
1026 
1027 	read_lock(&dev_base_lock);
1028 	dev = __dev_get_by_name(net, name);
1029 	read_unlock(&dev_base_lock);
1030 
1031 	if (!dev && capable(CAP_SYS_MODULE))
1032 		request_module("%s", name);
1033 }
1034 
1035 /**
1036  *	dev_open	- prepare an interface for use.
1037  *	@dev:	device to open
1038  *
1039  *	Takes a device from down to up state. The device's private open
1040  *	function is invoked and then the multicast lists are loaded. Finally
1041  *	the device is moved into the up state and a %NETDEV_UP message is
1042  *	sent to the netdev notifier chain.
1043  *
1044  *	Calling this function on an active interface is a nop. On a failure
1045  *	a negative errno code is returned.
1046  */
1047 int dev_open(struct net_device *dev)
1048 {
1049 	const struct net_device_ops *ops = dev->netdev_ops;
1050 	int ret = 0;
1051 
1052 	ASSERT_RTNL();
1053 
1054 	/*
1055 	 *	Is it already up?
1056 	 */
1057 
1058 	if (dev->flags & IFF_UP)
1059 		return 0;
1060 
1061 	/*
1062 	 *	Is it even present?
1063 	 */
1064 	if (!netif_device_present(dev))
1065 		return -ENODEV;
1066 
1067 	/*
1068 	 *	Call device private open method
1069 	 */
1070 	set_bit(__LINK_STATE_START, &dev->state);
1071 
1072 	if (ops->ndo_validate_addr)
1073 		ret = ops->ndo_validate_addr(dev);
1074 
1075 	if (!ret && ops->ndo_open)
1076 		ret = ops->ndo_open(dev);
1077 
1078 	/*
1079 	 *	If it went open OK then:
1080 	 */
1081 
1082 	if (ret)
1083 		clear_bit(__LINK_STATE_START, &dev->state);
1084 	else {
1085 		/*
1086 		 *	Set the flags.
1087 		 */
1088 		dev->flags |= IFF_UP;
1089 
1090 		/*
1091 		 *	Enable NET_DMA
1092 		 */
1093 		net_dmaengine_get();
1094 
1095 		/*
1096 		 *	Initialize multicasting status
1097 		 */
1098 		dev_set_rx_mode(dev);
1099 
1100 		/*
1101 		 *	Wakeup transmit queue engine
1102 		 */
1103 		dev_activate(dev);
1104 
1105 		/*
1106 		 *	... and announce new interface.
1107 		 */
1108 		call_netdevice_notifiers(NETDEV_UP, dev);
1109 	}
1110 
1111 	return ret;
1112 }
1113 
1114 /**
1115  *	dev_close - shutdown an interface.
1116  *	@dev: device to shutdown
1117  *
1118  *	This function moves an active device into down state. A
1119  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1120  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1121  *	chain.
1122  */
1123 int dev_close(struct net_device *dev)
1124 {
1125 	const struct net_device_ops *ops = dev->netdev_ops;
1126 	ASSERT_RTNL();
1127 
1128 	might_sleep();
1129 
1130 	if (!(dev->flags & IFF_UP))
1131 		return 0;
1132 
1133 	/*
1134 	 *	Tell people we are going down, so that they can
1135 	 *	prepare to death, when device is still operating.
1136 	 */
1137 	call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1138 
1139 	clear_bit(__LINK_STATE_START, &dev->state);
1140 
1141 	/* Synchronize to scheduled poll. We cannot touch poll list,
1142 	 * it can be even on different cpu. So just clear netif_running().
1143 	 *
1144 	 * dev->stop() will invoke napi_disable() on all of it's
1145 	 * napi_struct instances on this device.
1146 	 */
1147 	smp_mb__after_clear_bit(); /* Commit netif_running(). */
1148 
1149 	dev_deactivate(dev);
1150 
1151 	/*
1152 	 *	Call the device specific close. This cannot fail.
1153 	 *	Only if device is UP
1154 	 *
1155 	 *	We allow it to be called even after a DETACH hot-plug
1156 	 *	event.
1157 	 */
1158 	if (ops->ndo_stop)
1159 		ops->ndo_stop(dev);
1160 
1161 	/*
1162 	 *	Device is now down.
1163 	 */
1164 
1165 	dev->flags &= ~IFF_UP;
1166 
1167 	/*
1168 	 * Tell people we are down
1169 	 */
1170 	call_netdevice_notifiers(NETDEV_DOWN, dev);
1171 
1172 	/*
1173 	 *	Shutdown NET_DMA
1174 	 */
1175 	net_dmaengine_put();
1176 
1177 	return 0;
1178 }
1179 
1180 
1181 /**
1182  *	dev_disable_lro - disable Large Receive Offload on a device
1183  *	@dev: device
1184  *
1185  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1186  *	called under RTNL.  This is needed if received packets may be
1187  *	forwarded to another interface.
1188  */
1189 void dev_disable_lro(struct net_device *dev)
1190 {
1191 	if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1192 	    dev->ethtool_ops->set_flags) {
1193 		u32 flags = dev->ethtool_ops->get_flags(dev);
1194 		if (flags & ETH_FLAG_LRO) {
1195 			flags &= ~ETH_FLAG_LRO;
1196 			dev->ethtool_ops->set_flags(dev, flags);
1197 		}
1198 	}
1199 	WARN_ON(dev->features & NETIF_F_LRO);
1200 }
1201 EXPORT_SYMBOL(dev_disable_lro);
1202 
1203 
1204 static int dev_boot_phase = 1;
1205 
1206 /*
1207  *	Device change register/unregister. These are not inline or static
1208  *	as we export them to the world.
1209  */
1210 
1211 /**
1212  *	register_netdevice_notifier - register a network notifier block
1213  *	@nb: notifier
1214  *
1215  *	Register a notifier to be called when network device events occur.
1216  *	The notifier passed is linked into the kernel structures and must
1217  *	not be reused until it has been unregistered. A negative errno code
1218  *	is returned on a failure.
1219  *
1220  * 	When registered all registration and up events are replayed
1221  *	to the new notifier to allow device to have a race free
1222  *	view of the network device list.
1223  */
1224 
1225 int register_netdevice_notifier(struct notifier_block *nb)
1226 {
1227 	struct net_device *dev;
1228 	struct net_device *last;
1229 	struct net *net;
1230 	int err;
1231 
1232 	rtnl_lock();
1233 	err = raw_notifier_chain_register(&netdev_chain, nb);
1234 	if (err)
1235 		goto unlock;
1236 	if (dev_boot_phase)
1237 		goto unlock;
1238 	for_each_net(net) {
1239 		for_each_netdev(net, dev) {
1240 			err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1241 			err = notifier_to_errno(err);
1242 			if (err)
1243 				goto rollback;
1244 
1245 			if (!(dev->flags & IFF_UP))
1246 				continue;
1247 
1248 			nb->notifier_call(nb, NETDEV_UP, dev);
1249 		}
1250 	}
1251 
1252 unlock:
1253 	rtnl_unlock();
1254 	return err;
1255 
1256 rollback:
1257 	last = dev;
1258 	for_each_net(net) {
1259 		for_each_netdev(net, dev) {
1260 			if (dev == last)
1261 				break;
1262 
1263 			if (dev->flags & IFF_UP) {
1264 				nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1265 				nb->notifier_call(nb, NETDEV_DOWN, dev);
1266 			}
1267 			nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1268 		}
1269 	}
1270 
1271 	raw_notifier_chain_unregister(&netdev_chain, nb);
1272 	goto unlock;
1273 }
1274 
1275 /**
1276  *	unregister_netdevice_notifier - unregister a network notifier block
1277  *	@nb: notifier
1278  *
1279  *	Unregister a notifier previously registered by
1280  *	register_netdevice_notifier(). The notifier is unlinked into the
1281  *	kernel structures and may then be reused. A negative errno code
1282  *	is returned on a failure.
1283  */
1284 
1285 int unregister_netdevice_notifier(struct notifier_block *nb)
1286 {
1287 	int err;
1288 
1289 	rtnl_lock();
1290 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1291 	rtnl_unlock();
1292 	return err;
1293 }
1294 
1295 /**
1296  *	call_netdevice_notifiers - call all network notifier blocks
1297  *      @val: value passed unmodified to notifier function
1298  *      @dev: net_device pointer passed unmodified to notifier function
1299  *
1300  *	Call all network notifier blocks.  Parameters and return value
1301  *	are as for raw_notifier_call_chain().
1302  */
1303 
1304 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1305 {
1306 	return raw_notifier_call_chain(&netdev_chain, val, dev);
1307 }
1308 
1309 /* When > 0 there are consumers of rx skb time stamps */
1310 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1311 
1312 void net_enable_timestamp(void)
1313 {
1314 	atomic_inc(&netstamp_needed);
1315 }
1316 
1317 void net_disable_timestamp(void)
1318 {
1319 	atomic_dec(&netstamp_needed);
1320 }
1321 
1322 static inline void net_timestamp(struct sk_buff *skb)
1323 {
1324 	if (atomic_read(&netstamp_needed))
1325 		__net_timestamp(skb);
1326 	else
1327 		skb->tstamp.tv64 = 0;
1328 }
1329 
1330 /*
1331  *	Support routine. Sends outgoing frames to any network
1332  *	taps currently in use.
1333  */
1334 
1335 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1336 {
1337 	struct packet_type *ptype;
1338 
1339 #ifdef CONFIG_NET_CLS_ACT
1340 	if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1341 		net_timestamp(skb);
1342 #else
1343 	net_timestamp(skb);
1344 #endif
1345 
1346 	rcu_read_lock();
1347 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1348 		/* Never send packets back to the socket
1349 		 * they originated from - MvS (miquels@drinkel.ow.org)
1350 		 */
1351 		if ((ptype->dev == dev || !ptype->dev) &&
1352 		    (ptype->af_packet_priv == NULL ||
1353 		     (struct sock *)ptype->af_packet_priv != skb->sk)) {
1354 			struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1355 			if (!skb2)
1356 				break;
1357 
1358 			/* skb->nh should be correctly
1359 			   set by sender, so that the second statement is
1360 			   just protection against buggy protocols.
1361 			 */
1362 			skb_reset_mac_header(skb2);
1363 
1364 			if (skb_network_header(skb2) < skb2->data ||
1365 			    skb2->network_header > skb2->tail) {
1366 				if (net_ratelimit())
1367 					printk(KERN_CRIT "protocol %04x is "
1368 					       "buggy, dev %s\n",
1369 					       skb2->protocol, dev->name);
1370 				skb_reset_network_header(skb2);
1371 			}
1372 
1373 			skb2->transport_header = skb2->network_header;
1374 			skb2->pkt_type = PACKET_OUTGOING;
1375 			ptype->func(skb2, skb->dev, ptype, skb->dev);
1376 		}
1377 	}
1378 	rcu_read_unlock();
1379 }
1380 
1381 
1382 static inline void __netif_reschedule(struct Qdisc *q)
1383 {
1384 	struct softnet_data *sd;
1385 	unsigned long flags;
1386 
1387 	local_irq_save(flags);
1388 	sd = &__get_cpu_var(softnet_data);
1389 	q->next_sched = sd->output_queue;
1390 	sd->output_queue = q;
1391 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
1392 	local_irq_restore(flags);
1393 }
1394 
1395 void __netif_schedule(struct Qdisc *q)
1396 {
1397 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1398 		__netif_reschedule(q);
1399 }
1400 EXPORT_SYMBOL(__netif_schedule);
1401 
1402 void dev_kfree_skb_irq(struct sk_buff *skb)
1403 {
1404 	if (atomic_dec_and_test(&skb->users)) {
1405 		struct softnet_data *sd;
1406 		unsigned long flags;
1407 
1408 		local_irq_save(flags);
1409 		sd = &__get_cpu_var(softnet_data);
1410 		skb->next = sd->completion_queue;
1411 		sd->completion_queue = skb;
1412 		raise_softirq_irqoff(NET_TX_SOFTIRQ);
1413 		local_irq_restore(flags);
1414 	}
1415 }
1416 EXPORT_SYMBOL(dev_kfree_skb_irq);
1417 
1418 void dev_kfree_skb_any(struct sk_buff *skb)
1419 {
1420 	if (in_irq() || irqs_disabled())
1421 		dev_kfree_skb_irq(skb);
1422 	else
1423 		dev_kfree_skb(skb);
1424 }
1425 EXPORT_SYMBOL(dev_kfree_skb_any);
1426 
1427 
1428 /**
1429  * netif_device_detach - mark device as removed
1430  * @dev: network device
1431  *
1432  * Mark device as removed from system and therefore no longer available.
1433  */
1434 void netif_device_detach(struct net_device *dev)
1435 {
1436 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1437 	    netif_running(dev)) {
1438 		netif_tx_stop_all_queues(dev);
1439 	}
1440 }
1441 EXPORT_SYMBOL(netif_device_detach);
1442 
1443 /**
1444  * netif_device_attach - mark device as attached
1445  * @dev: network device
1446  *
1447  * Mark device as attached from system and restart if needed.
1448  */
1449 void netif_device_attach(struct net_device *dev)
1450 {
1451 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1452 	    netif_running(dev)) {
1453 		netif_tx_wake_all_queues(dev);
1454 		__netdev_watchdog_up(dev);
1455 	}
1456 }
1457 EXPORT_SYMBOL(netif_device_attach);
1458 
1459 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1460 {
1461 	return ((features & NETIF_F_GEN_CSUM) ||
1462 		((features & NETIF_F_IP_CSUM) &&
1463 		 protocol == htons(ETH_P_IP)) ||
1464 		((features & NETIF_F_IPV6_CSUM) &&
1465 		 protocol == htons(ETH_P_IPV6)) ||
1466 		((features & NETIF_F_FCOE_CRC) &&
1467 		 protocol == htons(ETH_P_FCOE)));
1468 }
1469 
1470 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1471 {
1472 	if (can_checksum_protocol(dev->features, skb->protocol))
1473 		return true;
1474 
1475 	if (skb->protocol == htons(ETH_P_8021Q)) {
1476 		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1477 		if (can_checksum_protocol(dev->features & dev->vlan_features,
1478 					  veh->h_vlan_encapsulated_proto))
1479 			return true;
1480 	}
1481 
1482 	return false;
1483 }
1484 
1485 /*
1486  * Invalidate hardware checksum when packet is to be mangled, and
1487  * complete checksum manually on outgoing path.
1488  */
1489 int skb_checksum_help(struct sk_buff *skb)
1490 {
1491 	__wsum csum;
1492 	int ret = 0, offset;
1493 
1494 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1495 		goto out_set_summed;
1496 
1497 	if (unlikely(skb_shinfo(skb)->gso_size)) {
1498 		/* Let GSO fix up the checksum. */
1499 		goto out_set_summed;
1500 	}
1501 
1502 	offset = skb->csum_start - skb_headroom(skb);
1503 	BUG_ON(offset >= skb_headlen(skb));
1504 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
1505 
1506 	offset += skb->csum_offset;
1507 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1508 
1509 	if (skb_cloned(skb) &&
1510 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1511 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1512 		if (ret)
1513 			goto out;
1514 	}
1515 
1516 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
1517 out_set_summed:
1518 	skb->ip_summed = CHECKSUM_NONE;
1519 out:
1520 	return ret;
1521 }
1522 
1523 /**
1524  *	skb_gso_segment - Perform segmentation on skb.
1525  *	@skb: buffer to segment
1526  *	@features: features for the output path (see dev->features)
1527  *
1528  *	This function segments the given skb and returns a list of segments.
1529  *
1530  *	It may return NULL if the skb requires no segmentation.  This is
1531  *	only possible when GSO is used for verifying header integrity.
1532  */
1533 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1534 {
1535 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1536 	struct packet_type *ptype;
1537 	__be16 type = skb->protocol;
1538 	int err;
1539 
1540 	skb_reset_mac_header(skb);
1541 	skb->mac_len = skb->network_header - skb->mac_header;
1542 	__skb_pull(skb, skb->mac_len);
1543 
1544 	if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1545 		struct net_device *dev = skb->dev;
1546 		struct ethtool_drvinfo info = {};
1547 
1548 		if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1549 			dev->ethtool_ops->get_drvinfo(dev, &info);
1550 
1551 		WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1552 			"ip_summed=%d",
1553 		     info.driver, dev ? dev->features : 0L,
1554 		     skb->sk ? skb->sk->sk_route_caps : 0L,
1555 		     skb->len, skb->data_len, skb->ip_summed);
1556 
1557 		if (skb_header_cloned(skb) &&
1558 		    (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1559 			return ERR_PTR(err);
1560 	}
1561 
1562 	rcu_read_lock();
1563 	list_for_each_entry_rcu(ptype,
1564 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1565 		if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1566 			if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1567 				err = ptype->gso_send_check(skb);
1568 				segs = ERR_PTR(err);
1569 				if (err || skb_gso_ok(skb, features))
1570 					break;
1571 				__skb_push(skb, (skb->data -
1572 						 skb_network_header(skb)));
1573 			}
1574 			segs = ptype->gso_segment(skb, features);
1575 			break;
1576 		}
1577 	}
1578 	rcu_read_unlock();
1579 
1580 	__skb_push(skb, skb->data - skb_mac_header(skb));
1581 
1582 	return segs;
1583 }
1584 
1585 EXPORT_SYMBOL(skb_gso_segment);
1586 
1587 /* Take action when hardware reception checksum errors are detected. */
1588 #ifdef CONFIG_BUG
1589 void netdev_rx_csum_fault(struct net_device *dev)
1590 {
1591 	if (net_ratelimit()) {
1592 		printk(KERN_ERR "%s: hw csum failure.\n",
1593 			dev ? dev->name : "<unknown>");
1594 		dump_stack();
1595 	}
1596 }
1597 EXPORT_SYMBOL(netdev_rx_csum_fault);
1598 #endif
1599 
1600 /* Actually, we should eliminate this check as soon as we know, that:
1601  * 1. IOMMU is present and allows to map all the memory.
1602  * 2. No high memory really exists on this machine.
1603  */
1604 
1605 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1606 {
1607 #ifdef CONFIG_HIGHMEM
1608 	int i;
1609 
1610 	if (dev->features & NETIF_F_HIGHDMA)
1611 		return 0;
1612 
1613 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1614 		if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1615 			return 1;
1616 
1617 #endif
1618 	return 0;
1619 }
1620 
1621 struct dev_gso_cb {
1622 	void (*destructor)(struct sk_buff *skb);
1623 };
1624 
1625 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1626 
1627 static void dev_gso_skb_destructor(struct sk_buff *skb)
1628 {
1629 	struct dev_gso_cb *cb;
1630 
1631 	do {
1632 		struct sk_buff *nskb = skb->next;
1633 
1634 		skb->next = nskb->next;
1635 		nskb->next = NULL;
1636 		kfree_skb(nskb);
1637 	} while (skb->next);
1638 
1639 	cb = DEV_GSO_CB(skb);
1640 	if (cb->destructor)
1641 		cb->destructor(skb);
1642 }
1643 
1644 /**
1645  *	dev_gso_segment - Perform emulated hardware segmentation on skb.
1646  *	@skb: buffer to segment
1647  *
1648  *	This function segments the given skb and stores the list of segments
1649  *	in skb->next.
1650  */
1651 static int dev_gso_segment(struct sk_buff *skb)
1652 {
1653 	struct net_device *dev = skb->dev;
1654 	struct sk_buff *segs;
1655 	int features = dev->features & ~(illegal_highdma(dev, skb) ?
1656 					 NETIF_F_SG : 0);
1657 
1658 	segs = skb_gso_segment(skb, features);
1659 
1660 	/* Verifying header integrity only. */
1661 	if (!segs)
1662 		return 0;
1663 
1664 	if (IS_ERR(segs))
1665 		return PTR_ERR(segs);
1666 
1667 	skb->next = segs;
1668 	DEV_GSO_CB(skb)->destructor = skb->destructor;
1669 	skb->destructor = dev_gso_skb_destructor;
1670 
1671 	return 0;
1672 }
1673 
1674 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1675 			struct netdev_queue *txq)
1676 {
1677 	const struct net_device_ops *ops = dev->netdev_ops;
1678 	int rc;
1679 
1680 	if (likely(!skb->next)) {
1681 		if (!list_empty(&ptype_all))
1682 			dev_queue_xmit_nit(skb, dev);
1683 
1684 		if (netif_needs_gso(dev, skb)) {
1685 			if (unlikely(dev_gso_segment(skb)))
1686 				goto out_kfree_skb;
1687 			if (skb->next)
1688 				goto gso;
1689 		}
1690 
1691 		rc = ops->ndo_start_xmit(skb, dev);
1692 		/*
1693 		 * TODO: if skb_orphan() was called by
1694 		 * dev->hard_start_xmit() (for example, the unmodified
1695 		 * igb driver does that; bnx2 doesn't), then
1696 		 * skb_tx_software_timestamp() will be unable to send
1697 		 * back the time stamp.
1698 		 *
1699 		 * How can this be prevented? Always create another
1700 		 * reference to the socket before calling
1701 		 * dev->hard_start_xmit()? Prevent that skb_orphan()
1702 		 * does anything in dev->hard_start_xmit() by clearing
1703 		 * the skb destructor before the call and restoring it
1704 		 * afterwards, then doing the skb_orphan() ourselves?
1705 		 */
1706 		return rc;
1707 	}
1708 
1709 gso:
1710 	do {
1711 		struct sk_buff *nskb = skb->next;
1712 
1713 		skb->next = nskb->next;
1714 		nskb->next = NULL;
1715 		rc = ops->ndo_start_xmit(nskb, dev);
1716 		if (unlikely(rc)) {
1717 			nskb->next = skb->next;
1718 			skb->next = nskb;
1719 			return rc;
1720 		}
1721 		if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1722 			return NETDEV_TX_BUSY;
1723 	} while (skb->next);
1724 
1725 	skb->destructor = DEV_GSO_CB(skb)->destructor;
1726 
1727 out_kfree_skb:
1728 	kfree_skb(skb);
1729 	return 0;
1730 }
1731 
1732 static u32 skb_tx_hashrnd;
1733 
1734 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
1735 {
1736 	u32 hash;
1737 
1738 	if (skb_rx_queue_recorded(skb))
1739 		return skb_get_rx_queue(skb) % dev->real_num_tx_queues;
1740 
1741 	if (skb->sk && skb->sk->sk_hash)
1742 		hash = skb->sk->sk_hash;
1743 	else
1744 		hash = skb->protocol;
1745 
1746 	hash = jhash_1word(hash, skb_tx_hashrnd);
1747 
1748 	return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1749 }
1750 EXPORT_SYMBOL(skb_tx_hash);
1751 
1752 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1753 					struct sk_buff *skb)
1754 {
1755 	const struct net_device_ops *ops = dev->netdev_ops;
1756 	u16 queue_index = 0;
1757 
1758 	if (ops->ndo_select_queue)
1759 		queue_index = ops->ndo_select_queue(dev, skb);
1760 	else if (dev->real_num_tx_queues > 1)
1761 		queue_index = skb_tx_hash(dev, skb);
1762 
1763 	skb_set_queue_mapping(skb, queue_index);
1764 	return netdev_get_tx_queue(dev, queue_index);
1765 }
1766 
1767 /**
1768  *	dev_queue_xmit - transmit a buffer
1769  *	@skb: buffer to transmit
1770  *
1771  *	Queue a buffer for transmission to a network device. The caller must
1772  *	have set the device and priority and built the buffer before calling
1773  *	this function. The function can be called from an interrupt.
1774  *
1775  *	A negative errno code is returned on a failure. A success does not
1776  *	guarantee the frame will be transmitted as it may be dropped due
1777  *	to congestion or traffic shaping.
1778  *
1779  * -----------------------------------------------------------------------------------
1780  *      I notice this method can also return errors from the queue disciplines,
1781  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
1782  *      be positive.
1783  *
1784  *      Regardless of the return value, the skb is consumed, so it is currently
1785  *      difficult to retry a send to this method.  (You can bump the ref count
1786  *      before sending to hold a reference for retry if you are careful.)
1787  *
1788  *      When calling this method, interrupts MUST be enabled.  This is because
1789  *      the BH enable code must have IRQs enabled so that it will not deadlock.
1790  *          --BLG
1791  */
1792 int dev_queue_xmit(struct sk_buff *skb)
1793 {
1794 	struct net_device *dev = skb->dev;
1795 	struct netdev_queue *txq;
1796 	struct Qdisc *q;
1797 	int rc = -ENOMEM;
1798 
1799 	/* GSO will handle the following emulations directly. */
1800 	if (netif_needs_gso(dev, skb))
1801 		goto gso;
1802 
1803 	if (skb_shinfo(skb)->frag_list &&
1804 	    !(dev->features & NETIF_F_FRAGLIST) &&
1805 	    __skb_linearize(skb))
1806 		goto out_kfree_skb;
1807 
1808 	/* Fragmented skb is linearized if device does not support SG,
1809 	 * or if at least one of fragments is in highmem and device
1810 	 * does not support DMA from it.
1811 	 */
1812 	if (skb_shinfo(skb)->nr_frags &&
1813 	    (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1814 	    __skb_linearize(skb))
1815 		goto out_kfree_skb;
1816 
1817 	/* If packet is not checksummed and device does not support
1818 	 * checksumming for this protocol, complete checksumming here.
1819 	 */
1820 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1821 		skb_set_transport_header(skb, skb->csum_start -
1822 					      skb_headroom(skb));
1823 		if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1824 			goto out_kfree_skb;
1825 	}
1826 
1827 gso:
1828 	/* Disable soft irqs for various locks below. Also
1829 	 * stops preemption for RCU.
1830 	 */
1831 	rcu_read_lock_bh();
1832 
1833 	txq = dev_pick_tx(dev, skb);
1834 	q = rcu_dereference(txq->qdisc);
1835 
1836 #ifdef CONFIG_NET_CLS_ACT
1837 	skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1838 #endif
1839 	if (q->enqueue) {
1840 		spinlock_t *root_lock = qdisc_lock(q);
1841 
1842 		spin_lock(root_lock);
1843 
1844 		if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
1845 			kfree_skb(skb);
1846 			rc = NET_XMIT_DROP;
1847 		} else {
1848 			rc = qdisc_enqueue_root(skb, q);
1849 			qdisc_run(q);
1850 		}
1851 		spin_unlock(root_lock);
1852 
1853 		goto out;
1854 	}
1855 
1856 	/* The device has no queue. Common case for software devices:
1857 	   loopback, all the sorts of tunnels...
1858 
1859 	   Really, it is unlikely that netif_tx_lock protection is necessary
1860 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
1861 	   counters.)
1862 	   However, it is possible, that they rely on protection
1863 	   made by us here.
1864 
1865 	   Check this and shot the lock. It is not prone from deadlocks.
1866 	   Either shot noqueue qdisc, it is even simpler 8)
1867 	 */
1868 	if (dev->flags & IFF_UP) {
1869 		int cpu = smp_processor_id(); /* ok because BHs are off */
1870 
1871 		if (txq->xmit_lock_owner != cpu) {
1872 
1873 			HARD_TX_LOCK(dev, txq, cpu);
1874 
1875 			if (!netif_tx_queue_stopped(txq)) {
1876 				rc = 0;
1877 				if (!dev_hard_start_xmit(skb, dev, txq)) {
1878 					HARD_TX_UNLOCK(dev, txq);
1879 					goto out;
1880 				}
1881 			}
1882 			HARD_TX_UNLOCK(dev, txq);
1883 			if (net_ratelimit())
1884 				printk(KERN_CRIT "Virtual device %s asks to "
1885 				       "queue packet!\n", dev->name);
1886 		} else {
1887 			/* Recursion is detected! It is possible,
1888 			 * unfortunately */
1889 			if (net_ratelimit())
1890 				printk(KERN_CRIT "Dead loop on virtual device "
1891 				       "%s, fix it urgently!\n", dev->name);
1892 		}
1893 	}
1894 
1895 	rc = -ENETDOWN;
1896 	rcu_read_unlock_bh();
1897 
1898 out_kfree_skb:
1899 	kfree_skb(skb);
1900 	return rc;
1901 out:
1902 	rcu_read_unlock_bh();
1903 	return rc;
1904 }
1905 
1906 
1907 /*=======================================================================
1908 			Receiver routines
1909   =======================================================================*/
1910 
1911 int netdev_max_backlog __read_mostly = 1000;
1912 int netdev_budget __read_mostly = 300;
1913 int weight_p __read_mostly = 64;            /* old backlog weight */
1914 
1915 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1916 
1917 
1918 /**
1919  *	netif_rx	-	post buffer to the network code
1920  *	@skb: buffer to post
1921  *
1922  *	This function receives a packet from a device driver and queues it for
1923  *	the upper (protocol) levels to process.  It always succeeds. The buffer
1924  *	may be dropped during processing for congestion control or by the
1925  *	protocol layers.
1926  *
1927  *	return values:
1928  *	NET_RX_SUCCESS	(no congestion)
1929  *	NET_RX_DROP     (packet was dropped)
1930  *
1931  */
1932 
1933 int netif_rx(struct sk_buff *skb)
1934 {
1935 	struct softnet_data *queue;
1936 	unsigned long flags;
1937 
1938 	/* if netpoll wants it, pretend we never saw it */
1939 	if (netpoll_rx(skb))
1940 		return NET_RX_DROP;
1941 
1942 	if (!skb->tstamp.tv64)
1943 		net_timestamp(skb);
1944 
1945 	/*
1946 	 * The code is rearranged so that the path is the most
1947 	 * short when CPU is congested, but is still operating.
1948 	 */
1949 	local_irq_save(flags);
1950 	queue = &__get_cpu_var(softnet_data);
1951 
1952 	__get_cpu_var(netdev_rx_stat).total++;
1953 	if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1954 		if (queue->input_pkt_queue.qlen) {
1955 enqueue:
1956 			__skb_queue_tail(&queue->input_pkt_queue, skb);
1957 			local_irq_restore(flags);
1958 			return NET_RX_SUCCESS;
1959 		}
1960 
1961 		napi_schedule(&queue->backlog);
1962 		goto enqueue;
1963 	}
1964 
1965 	__get_cpu_var(netdev_rx_stat).dropped++;
1966 	local_irq_restore(flags);
1967 
1968 	kfree_skb(skb);
1969 	return NET_RX_DROP;
1970 }
1971 
1972 int netif_rx_ni(struct sk_buff *skb)
1973 {
1974 	int err;
1975 
1976 	preempt_disable();
1977 	err = netif_rx(skb);
1978 	if (local_softirq_pending())
1979 		do_softirq();
1980 	preempt_enable();
1981 
1982 	return err;
1983 }
1984 
1985 EXPORT_SYMBOL(netif_rx_ni);
1986 
1987 static void net_tx_action(struct softirq_action *h)
1988 {
1989 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
1990 
1991 	if (sd->completion_queue) {
1992 		struct sk_buff *clist;
1993 
1994 		local_irq_disable();
1995 		clist = sd->completion_queue;
1996 		sd->completion_queue = NULL;
1997 		local_irq_enable();
1998 
1999 		while (clist) {
2000 			struct sk_buff *skb = clist;
2001 			clist = clist->next;
2002 
2003 			WARN_ON(atomic_read(&skb->users));
2004 			__kfree_skb(skb);
2005 		}
2006 	}
2007 
2008 	if (sd->output_queue) {
2009 		struct Qdisc *head;
2010 
2011 		local_irq_disable();
2012 		head = sd->output_queue;
2013 		sd->output_queue = NULL;
2014 		local_irq_enable();
2015 
2016 		while (head) {
2017 			struct Qdisc *q = head;
2018 			spinlock_t *root_lock;
2019 
2020 			head = head->next_sched;
2021 
2022 			root_lock = qdisc_lock(q);
2023 			if (spin_trylock(root_lock)) {
2024 				smp_mb__before_clear_bit();
2025 				clear_bit(__QDISC_STATE_SCHED,
2026 					  &q->state);
2027 				qdisc_run(q);
2028 				spin_unlock(root_lock);
2029 			} else {
2030 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
2031 					      &q->state)) {
2032 					__netif_reschedule(q);
2033 				} else {
2034 					smp_mb__before_clear_bit();
2035 					clear_bit(__QDISC_STATE_SCHED,
2036 						  &q->state);
2037 				}
2038 			}
2039 		}
2040 	}
2041 }
2042 
2043 static inline int deliver_skb(struct sk_buff *skb,
2044 			      struct packet_type *pt_prev,
2045 			      struct net_device *orig_dev)
2046 {
2047 	atomic_inc(&skb->users);
2048 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2049 }
2050 
2051 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2052 /* These hooks defined here for ATM */
2053 struct net_bridge;
2054 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
2055 						unsigned char *addr);
2056 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
2057 
2058 /*
2059  * If bridge module is loaded call bridging hook.
2060  *  returns NULL if packet was consumed.
2061  */
2062 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2063 					struct sk_buff *skb) __read_mostly;
2064 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2065 					    struct packet_type **pt_prev, int *ret,
2066 					    struct net_device *orig_dev)
2067 {
2068 	struct net_bridge_port *port;
2069 
2070 	if (skb->pkt_type == PACKET_LOOPBACK ||
2071 	    (port = rcu_dereference(skb->dev->br_port)) == NULL)
2072 		return skb;
2073 
2074 	if (*pt_prev) {
2075 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
2076 		*pt_prev = NULL;
2077 	}
2078 
2079 	return br_handle_frame_hook(port, skb);
2080 }
2081 #else
2082 #define handle_bridge(skb, pt_prev, ret, orig_dev)	(skb)
2083 #endif
2084 
2085 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2086 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2087 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2088 
2089 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2090 					     struct packet_type **pt_prev,
2091 					     int *ret,
2092 					     struct net_device *orig_dev)
2093 {
2094 	if (skb->dev->macvlan_port == NULL)
2095 		return skb;
2096 
2097 	if (*pt_prev) {
2098 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
2099 		*pt_prev = NULL;
2100 	}
2101 	return macvlan_handle_frame_hook(skb);
2102 }
2103 #else
2104 #define handle_macvlan(skb, pt_prev, ret, orig_dev)	(skb)
2105 #endif
2106 
2107 #ifdef CONFIG_NET_CLS_ACT
2108 /* TODO: Maybe we should just force sch_ingress to be compiled in
2109  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2110  * a compare and 2 stores extra right now if we dont have it on
2111  * but have CONFIG_NET_CLS_ACT
2112  * NOTE: This doesnt stop any functionality; if you dont have
2113  * the ingress scheduler, you just cant add policies on ingress.
2114  *
2115  */
2116 static int ing_filter(struct sk_buff *skb)
2117 {
2118 	struct net_device *dev = skb->dev;
2119 	u32 ttl = G_TC_RTTL(skb->tc_verd);
2120 	struct netdev_queue *rxq;
2121 	int result = TC_ACT_OK;
2122 	struct Qdisc *q;
2123 
2124 	if (MAX_RED_LOOP < ttl++) {
2125 		printk(KERN_WARNING
2126 		       "Redir loop detected Dropping packet (%d->%d)\n",
2127 		       skb->iif, dev->ifindex);
2128 		return TC_ACT_SHOT;
2129 	}
2130 
2131 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2132 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2133 
2134 	rxq = &dev->rx_queue;
2135 
2136 	q = rxq->qdisc;
2137 	if (q != &noop_qdisc) {
2138 		spin_lock(qdisc_lock(q));
2139 		if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2140 			result = qdisc_enqueue_root(skb, q);
2141 		spin_unlock(qdisc_lock(q));
2142 	}
2143 
2144 	return result;
2145 }
2146 
2147 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2148 					 struct packet_type **pt_prev,
2149 					 int *ret, struct net_device *orig_dev)
2150 {
2151 	if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2152 		goto out;
2153 
2154 	if (*pt_prev) {
2155 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
2156 		*pt_prev = NULL;
2157 	} else {
2158 		/* Huh? Why does turning on AF_PACKET affect this? */
2159 		skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2160 	}
2161 
2162 	switch (ing_filter(skb)) {
2163 	case TC_ACT_SHOT:
2164 	case TC_ACT_STOLEN:
2165 		kfree_skb(skb);
2166 		return NULL;
2167 	}
2168 
2169 out:
2170 	skb->tc_verd = 0;
2171 	return skb;
2172 }
2173 #endif
2174 
2175 /*
2176  * 	netif_nit_deliver - deliver received packets to network taps
2177  * 	@skb: buffer
2178  *
2179  * 	This function is used to deliver incoming packets to network
2180  * 	taps. It should be used when the normal netif_receive_skb path
2181  * 	is bypassed, for example because of VLAN acceleration.
2182  */
2183 void netif_nit_deliver(struct sk_buff *skb)
2184 {
2185 	struct packet_type *ptype;
2186 
2187 	if (list_empty(&ptype_all))
2188 		return;
2189 
2190 	skb_reset_network_header(skb);
2191 	skb_reset_transport_header(skb);
2192 	skb->mac_len = skb->network_header - skb->mac_header;
2193 
2194 	rcu_read_lock();
2195 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
2196 		if (!ptype->dev || ptype->dev == skb->dev)
2197 			deliver_skb(skb, ptype, skb->dev);
2198 	}
2199 	rcu_read_unlock();
2200 }
2201 
2202 /**
2203  *	netif_receive_skb - process receive buffer from network
2204  *	@skb: buffer to process
2205  *
2206  *	netif_receive_skb() is the main receive data processing function.
2207  *	It always succeeds. The buffer may be dropped during processing
2208  *	for congestion control or by the protocol layers.
2209  *
2210  *	This function may only be called from softirq context and interrupts
2211  *	should be enabled.
2212  *
2213  *	Return values (usually ignored):
2214  *	NET_RX_SUCCESS: no congestion
2215  *	NET_RX_DROP: packet was dropped
2216  */
2217 int netif_receive_skb(struct sk_buff *skb)
2218 {
2219 	struct packet_type *ptype, *pt_prev;
2220 	struct net_device *orig_dev;
2221 	struct net_device *null_or_orig;
2222 	int ret = NET_RX_DROP;
2223 	__be16 type;
2224 
2225 	if (skb->vlan_tci && vlan_hwaccel_do_receive(skb))
2226 		return NET_RX_SUCCESS;
2227 
2228 	/* if we've gotten here through NAPI, check netpoll */
2229 	if (netpoll_receive_skb(skb))
2230 		return NET_RX_DROP;
2231 
2232 	if (!skb->tstamp.tv64)
2233 		net_timestamp(skb);
2234 
2235 	if (!skb->iif)
2236 		skb->iif = skb->dev->ifindex;
2237 
2238 	null_or_orig = NULL;
2239 	orig_dev = skb->dev;
2240 	if (orig_dev->master) {
2241 		if (skb_bond_should_drop(skb))
2242 			null_or_orig = orig_dev; /* deliver only exact match */
2243 		else
2244 			skb->dev = orig_dev->master;
2245 	}
2246 
2247 	__get_cpu_var(netdev_rx_stat).total++;
2248 
2249 	skb_reset_network_header(skb);
2250 	skb_reset_transport_header(skb);
2251 	skb->mac_len = skb->network_header - skb->mac_header;
2252 
2253 	pt_prev = NULL;
2254 
2255 	rcu_read_lock();
2256 
2257 #ifdef CONFIG_NET_CLS_ACT
2258 	if (skb->tc_verd & TC_NCLS) {
2259 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2260 		goto ncls;
2261 	}
2262 #endif
2263 
2264 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
2265 		if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2266 		    ptype->dev == orig_dev) {
2267 			if (pt_prev)
2268 				ret = deliver_skb(skb, pt_prev, orig_dev);
2269 			pt_prev = ptype;
2270 		}
2271 	}
2272 
2273 #ifdef CONFIG_NET_CLS_ACT
2274 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2275 	if (!skb)
2276 		goto out;
2277 ncls:
2278 #endif
2279 
2280 	skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2281 	if (!skb)
2282 		goto out;
2283 	skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2284 	if (!skb)
2285 		goto out;
2286 
2287 	skb_orphan(skb);
2288 
2289 	type = skb->protocol;
2290 	list_for_each_entry_rcu(ptype,
2291 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2292 		if (ptype->type == type &&
2293 		    (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2294 		     ptype->dev == orig_dev)) {
2295 			if (pt_prev)
2296 				ret = deliver_skb(skb, pt_prev, orig_dev);
2297 			pt_prev = ptype;
2298 		}
2299 	}
2300 
2301 	if (pt_prev) {
2302 		ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2303 	} else {
2304 		kfree_skb(skb);
2305 		/* Jamal, now you will not able to escape explaining
2306 		 * me how you were going to use this. :-)
2307 		 */
2308 		ret = NET_RX_DROP;
2309 	}
2310 
2311 out:
2312 	rcu_read_unlock();
2313 	return ret;
2314 }
2315 
2316 /* Network device is going away, flush any packets still pending  */
2317 static void flush_backlog(void *arg)
2318 {
2319 	struct net_device *dev = arg;
2320 	struct softnet_data *queue = &__get_cpu_var(softnet_data);
2321 	struct sk_buff *skb, *tmp;
2322 
2323 	skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2324 		if (skb->dev == dev) {
2325 			__skb_unlink(skb, &queue->input_pkt_queue);
2326 			kfree_skb(skb);
2327 		}
2328 }
2329 
2330 static int napi_gro_complete(struct sk_buff *skb)
2331 {
2332 	struct packet_type *ptype;
2333 	__be16 type = skb->protocol;
2334 	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2335 	int err = -ENOENT;
2336 
2337 	if (NAPI_GRO_CB(skb)->count == 1) {
2338 		skb_shinfo(skb)->gso_size = 0;
2339 		goto out;
2340 	}
2341 
2342 	rcu_read_lock();
2343 	list_for_each_entry_rcu(ptype, head, list) {
2344 		if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2345 			continue;
2346 
2347 		err = ptype->gro_complete(skb);
2348 		break;
2349 	}
2350 	rcu_read_unlock();
2351 
2352 	if (err) {
2353 		WARN_ON(&ptype->list == head);
2354 		kfree_skb(skb);
2355 		return NET_RX_SUCCESS;
2356 	}
2357 
2358 out:
2359 	return netif_receive_skb(skb);
2360 }
2361 
2362 void napi_gro_flush(struct napi_struct *napi)
2363 {
2364 	struct sk_buff *skb, *next;
2365 
2366 	for (skb = napi->gro_list; skb; skb = next) {
2367 		next = skb->next;
2368 		skb->next = NULL;
2369 		napi_gro_complete(skb);
2370 	}
2371 
2372 	napi->gro_count = 0;
2373 	napi->gro_list = NULL;
2374 }
2375 EXPORT_SYMBOL(napi_gro_flush);
2376 
2377 void *skb_gro_header(struct sk_buff *skb, unsigned int hlen)
2378 {
2379 	unsigned int offset = skb_gro_offset(skb);
2380 
2381 	hlen += offset;
2382 	if (hlen <= skb_headlen(skb))
2383 		return skb->data + offset;
2384 
2385 	if (unlikely(!skb_shinfo(skb)->nr_frags ||
2386 		     skb_shinfo(skb)->frags[0].size <=
2387 		     hlen - skb_headlen(skb) ||
2388 		     PageHighMem(skb_shinfo(skb)->frags[0].page)))
2389 		return pskb_may_pull(skb, hlen) ? skb->data + offset : NULL;
2390 
2391 	return page_address(skb_shinfo(skb)->frags[0].page) +
2392 	       skb_shinfo(skb)->frags[0].page_offset +
2393 	       offset - skb_headlen(skb);
2394 }
2395 EXPORT_SYMBOL(skb_gro_header);
2396 
2397 int dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2398 {
2399 	struct sk_buff **pp = NULL;
2400 	struct packet_type *ptype;
2401 	__be16 type = skb->protocol;
2402 	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2403 	int same_flow;
2404 	int mac_len;
2405 	int ret;
2406 
2407 	if (!(skb->dev->features & NETIF_F_GRO))
2408 		goto normal;
2409 
2410 	if (skb_is_gso(skb) || skb_shinfo(skb)->frag_list)
2411 		goto normal;
2412 
2413 	rcu_read_lock();
2414 	list_for_each_entry_rcu(ptype, head, list) {
2415 		if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2416 			continue;
2417 
2418 		skb_set_network_header(skb, skb_gro_offset(skb));
2419 		mac_len = skb->network_header - skb->mac_header;
2420 		skb->mac_len = mac_len;
2421 		NAPI_GRO_CB(skb)->same_flow = 0;
2422 		NAPI_GRO_CB(skb)->flush = 0;
2423 		NAPI_GRO_CB(skb)->free = 0;
2424 
2425 		pp = ptype->gro_receive(&napi->gro_list, skb);
2426 		break;
2427 	}
2428 	rcu_read_unlock();
2429 
2430 	if (&ptype->list == head)
2431 		goto normal;
2432 
2433 	same_flow = NAPI_GRO_CB(skb)->same_flow;
2434 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
2435 
2436 	if (pp) {
2437 		struct sk_buff *nskb = *pp;
2438 
2439 		*pp = nskb->next;
2440 		nskb->next = NULL;
2441 		napi_gro_complete(nskb);
2442 		napi->gro_count--;
2443 	}
2444 
2445 	if (same_flow)
2446 		goto ok;
2447 
2448 	if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
2449 		goto normal;
2450 
2451 	napi->gro_count++;
2452 	NAPI_GRO_CB(skb)->count = 1;
2453 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
2454 	skb->next = napi->gro_list;
2455 	napi->gro_list = skb;
2456 	ret = GRO_HELD;
2457 
2458 pull:
2459 	if (unlikely(!pskb_may_pull(skb, skb_gro_offset(skb)))) {
2460 		if (napi->gro_list == skb)
2461 			napi->gro_list = skb->next;
2462 		ret = GRO_DROP;
2463 	}
2464 
2465 ok:
2466 	return ret;
2467 
2468 normal:
2469 	ret = GRO_NORMAL;
2470 	goto pull;
2471 }
2472 EXPORT_SYMBOL(dev_gro_receive);
2473 
2474 static int __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2475 {
2476 	struct sk_buff *p;
2477 
2478 	if (netpoll_rx_on(skb))
2479 		return GRO_NORMAL;
2480 
2481 	for (p = napi->gro_list; p; p = p->next) {
2482 		NAPI_GRO_CB(p)->same_flow = (p->dev == skb->dev)
2483 			&& !compare_ether_header(skb_mac_header(p),
2484 						 skb_gro_mac_header(skb));
2485 		NAPI_GRO_CB(p)->flush = 0;
2486 	}
2487 
2488 	return dev_gro_receive(napi, skb);
2489 }
2490 
2491 int napi_skb_finish(int ret, struct sk_buff *skb)
2492 {
2493 	int err = NET_RX_SUCCESS;
2494 
2495 	switch (ret) {
2496 	case GRO_NORMAL:
2497 		return netif_receive_skb(skb);
2498 
2499 	case GRO_DROP:
2500 		err = NET_RX_DROP;
2501 		/* fall through */
2502 
2503 	case GRO_MERGED_FREE:
2504 		kfree_skb(skb);
2505 		break;
2506 	}
2507 
2508 	return err;
2509 }
2510 EXPORT_SYMBOL(napi_skb_finish);
2511 
2512 int napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2513 {
2514 	skb_gro_reset_offset(skb);
2515 
2516 	return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
2517 }
2518 EXPORT_SYMBOL(napi_gro_receive);
2519 
2520 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
2521 {
2522 	__skb_pull(skb, skb_headlen(skb));
2523 	skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
2524 
2525 	napi->skb = skb;
2526 }
2527 EXPORT_SYMBOL(napi_reuse_skb);
2528 
2529 struct sk_buff *napi_fraginfo_skb(struct napi_struct *napi,
2530 				  struct napi_gro_fraginfo *info)
2531 {
2532 	struct net_device *dev = napi->dev;
2533 	struct sk_buff *skb = napi->skb;
2534 	struct ethhdr *eth;
2535 	skb_frag_t *frag;
2536 	int i;
2537 
2538 	napi->skb = NULL;
2539 
2540 	if (!skb) {
2541 		skb = netdev_alloc_skb(dev, GRO_MAX_HEAD + NET_IP_ALIGN);
2542 		if (!skb)
2543 			goto out;
2544 
2545 		skb_reserve(skb, NET_IP_ALIGN);
2546 	}
2547 
2548 	BUG_ON(info->nr_frags > MAX_SKB_FRAGS);
2549 	frag = info->frags;
2550 
2551 	for (i = 0; i < info->nr_frags; i++) {
2552 		skb_fill_page_desc(skb, i, frag->page, frag->page_offset,
2553 				   frag->size);
2554 		frag++;
2555 	}
2556 	skb_shinfo(skb)->nr_frags = info->nr_frags;
2557 
2558 	skb->data_len = info->len;
2559 	skb->len += info->len;
2560 	skb->truesize += info->len;
2561 
2562 	skb_reset_mac_header(skb);
2563 	skb_gro_reset_offset(skb);
2564 
2565 	eth = skb_gro_header(skb, sizeof(*eth));
2566 	if (!eth) {
2567 		napi_reuse_skb(napi, skb);
2568 		skb = NULL;
2569 		goto out;
2570 	}
2571 
2572 	skb_gro_pull(skb, sizeof(*eth));
2573 
2574 	/*
2575 	 * This works because the only protocols we care about don't require
2576 	 * special handling.  We'll fix it up properly at the end.
2577 	 */
2578 	skb->protocol = eth->h_proto;
2579 
2580 	skb->ip_summed = info->ip_summed;
2581 	skb->csum = info->csum;
2582 
2583 out:
2584 	return skb;
2585 }
2586 EXPORT_SYMBOL(napi_fraginfo_skb);
2587 
2588 int napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, int ret)
2589 {
2590 	int err = NET_RX_SUCCESS;
2591 
2592 	switch (ret) {
2593 	case GRO_NORMAL:
2594 	case GRO_HELD:
2595 		skb->protocol = eth_type_trans(skb, napi->dev);
2596 
2597 		if (ret == GRO_NORMAL)
2598 			return netif_receive_skb(skb);
2599 
2600 		skb_gro_pull(skb, -ETH_HLEN);
2601 		break;
2602 
2603 	case GRO_DROP:
2604 		err = NET_RX_DROP;
2605 		/* fall through */
2606 
2607 	case GRO_MERGED_FREE:
2608 		napi_reuse_skb(napi, skb);
2609 		break;
2610 	}
2611 
2612 	return err;
2613 }
2614 EXPORT_SYMBOL(napi_frags_finish);
2615 
2616 int napi_gro_frags(struct napi_struct *napi, struct napi_gro_fraginfo *info)
2617 {
2618 	struct sk_buff *skb = napi_fraginfo_skb(napi, info);
2619 
2620 	if (!skb)
2621 		return NET_RX_DROP;
2622 
2623 	return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
2624 }
2625 EXPORT_SYMBOL(napi_gro_frags);
2626 
2627 static int process_backlog(struct napi_struct *napi, int quota)
2628 {
2629 	int work = 0;
2630 	struct softnet_data *queue = &__get_cpu_var(softnet_data);
2631 	unsigned long start_time = jiffies;
2632 
2633 	napi->weight = weight_p;
2634 	do {
2635 		struct sk_buff *skb;
2636 
2637 		local_irq_disable();
2638 		skb = __skb_dequeue(&queue->input_pkt_queue);
2639 		if (!skb) {
2640 			__napi_complete(napi);
2641 			local_irq_enable();
2642 			break;
2643 		}
2644 		local_irq_enable();
2645 
2646 		netif_receive_skb(skb);
2647 	} while (++work < quota && jiffies == start_time);
2648 
2649 	return work;
2650 }
2651 
2652 /**
2653  * __napi_schedule - schedule for receive
2654  * @n: entry to schedule
2655  *
2656  * The entry's receive function will be scheduled to run
2657  */
2658 void __napi_schedule(struct napi_struct *n)
2659 {
2660 	unsigned long flags;
2661 
2662 	local_irq_save(flags);
2663 	list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2664 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2665 	local_irq_restore(flags);
2666 }
2667 EXPORT_SYMBOL(__napi_schedule);
2668 
2669 void __napi_complete(struct napi_struct *n)
2670 {
2671 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
2672 	BUG_ON(n->gro_list);
2673 
2674 	list_del(&n->poll_list);
2675 	smp_mb__before_clear_bit();
2676 	clear_bit(NAPI_STATE_SCHED, &n->state);
2677 }
2678 EXPORT_SYMBOL(__napi_complete);
2679 
2680 void napi_complete(struct napi_struct *n)
2681 {
2682 	unsigned long flags;
2683 
2684 	/*
2685 	 * don't let napi dequeue from the cpu poll list
2686 	 * just in case its running on a different cpu
2687 	 */
2688 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
2689 		return;
2690 
2691 	napi_gro_flush(n);
2692 	local_irq_save(flags);
2693 	__napi_complete(n);
2694 	local_irq_restore(flags);
2695 }
2696 EXPORT_SYMBOL(napi_complete);
2697 
2698 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2699 		    int (*poll)(struct napi_struct *, int), int weight)
2700 {
2701 	INIT_LIST_HEAD(&napi->poll_list);
2702 	napi->gro_count = 0;
2703 	napi->gro_list = NULL;
2704 	napi->skb = NULL;
2705 	napi->poll = poll;
2706 	napi->weight = weight;
2707 	list_add(&napi->dev_list, &dev->napi_list);
2708 	napi->dev = dev;
2709 #ifdef CONFIG_NETPOLL
2710 	spin_lock_init(&napi->poll_lock);
2711 	napi->poll_owner = -1;
2712 #endif
2713 	set_bit(NAPI_STATE_SCHED, &napi->state);
2714 }
2715 EXPORT_SYMBOL(netif_napi_add);
2716 
2717 void netif_napi_del(struct napi_struct *napi)
2718 {
2719 	struct sk_buff *skb, *next;
2720 
2721 	list_del_init(&napi->dev_list);
2722 	kfree_skb(napi->skb);
2723 
2724 	for (skb = napi->gro_list; skb; skb = next) {
2725 		next = skb->next;
2726 		skb->next = NULL;
2727 		kfree_skb(skb);
2728 	}
2729 
2730 	napi->gro_list = NULL;
2731 	napi->gro_count = 0;
2732 }
2733 EXPORT_SYMBOL(netif_napi_del);
2734 
2735 
2736 static void net_rx_action(struct softirq_action *h)
2737 {
2738 	struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2739 	unsigned long time_limit = jiffies + 2;
2740 	int budget = netdev_budget;
2741 	void *have;
2742 
2743 	local_irq_disable();
2744 
2745 	while (!list_empty(list)) {
2746 		struct napi_struct *n;
2747 		int work, weight;
2748 
2749 		/* If softirq window is exhuasted then punt.
2750 		 * Allow this to run for 2 jiffies since which will allow
2751 		 * an average latency of 1.5/HZ.
2752 		 */
2753 		if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
2754 			goto softnet_break;
2755 
2756 		local_irq_enable();
2757 
2758 		/* Even though interrupts have been re-enabled, this
2759 		 * access is safe because interrupts can only add new
2760 		 * entries to the tail of this list, and only ->poll()
2761 		 * calls can remove this head entry from the list.
2762 		 */
2763 		n = list_entry(list->next, struct napi_struct, poll_list);
2764 
2765 		have = netpoll_poll_lock(n);
2766 
2767 		weight = n->weight;
2768 
2769 		/* This NAPI_STATE_SCHED test is for avoiding a race
2770 		 * with netpoll's poll_napi().  Only the entity which
2771 		 * obtains the lock and sees NAPI_STATE_SCHED set will
2772 		 * actually make the ->poll() call.  Therefore we avoid
2773 		 * accidently calling ->poll() when NAPI is not scheduled.
2774 		 */
2775 		work = 0;
2776 		if (test_bit(NAPI_STATE_SCHED, &n->state))
2777 			work = n->poll(n, weight);
2778 
2779 		WARN_ON_ONCE(work > weight);
2780 
2781 		budget -= work;
2782 
2783 		local_irq_disable();
2784 
2785 		/* Drivers must not modify the NAPI state if they
2786 		 * consume the entire weight.  In such cases this code
2787 		 * still "owns" the NAPI instance and therefore can
2788 		 * move the instance around on the list at-will.
2789 		 */
2790 		if (unlikely(work == weight)) {
2791 			if (unlikely(napi_disable_pending(n)))
2792 				__napi_complete(n);
2793 			else
2794 				list_move_tail(&n->poll_list, list);
2795 		}
2796 
2797 		netpoll_poll_unlock(have);
2798 	}
2799 out:
2800 	local_irq_enable();
2801 
2802 #ifdef CONFIG_NET_DMA
2803 	/*
2804 	 * There may not be any more sk_buffs coming right now, so push
2805 	 * any pending DMA copies to hardware
2806 	 */
2807 	dma_issue_pending_all();
2808 #endif
2809 
2810 	return;
2811 
2812 softnet_break:
2813 	__get_cpu_var(netdev_rx_stat).time_squeeze++;
2814 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2815 	goto out;
2816 }
2817 
2818 static gifconf_func_t * gifconf_list [NPROTO];
2819 
2820 /**
2821  *	register_gifconf	-	register a SIOCGIF handler
2822  *	@family: Address family
2823  *	@gifconf: Function handler
2824  *
2825  *	Register protocol dependent address dumping routines. The handler
2826  *	that is passed must not be freed or reused until it has been replaced
2827  *	by another handler.
2828  */
2829 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2830 {
2831 	if (family >= NPROTO)
2832 		return -EINVAL;
2833 	gifconf_list[family] = gifconf;
2834 	return 0;
2835 }
2836 
2837 
2838 /*
2839  *	Map an interface index to its name (SIOCGIFNAME)
2840  */
2841 
2842 /*
2843  *	We need this ioctl for efficient implementation of the
2844  *	if_indextoname() function required by the IPv6 API.  Without
2845  *	it, we would have to search all the interfaces to find a
2846  *	match.  --pb
2847  */
2848 
2849 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2850 {
2851 	struct net_device *dev;
2852 	struct ifreq ifr;
2853 
2854 	/*
2855 	 *	Fetch the caller's info block.
2856 	 */
2857 
2858 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2859 		return -EFAULT;
2860 
2861 	read_lock(&dev_base_lock);
2862 	dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2863 	if (!dev) {
2864 		read_unlock(&dev_base_lock);
2865 		return -ENODEV;
2866 	}
2867 
2868 	strcpy(ifr.ifr_name, dev->name);
2869 	read_unlock(&dev_base_lock);
2870 
2871 	if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2872 		return -EFAULT;
2873 	return 0;
2874 }
2875 
2876 /*
2877  *	Perform a SIOCGIFCONF call. This structure will change
2878  *	size eventually, and there is nothing I can do about it.
2879  *	Thus we will need a 'compatibility mode'.
2880  */
2881 
2882 static int dev_ifconf(struct net *net, char __user *arg)
2883 {
2884 	struct ifconf ifc;
2885 	struct net_device *dev;
2886 	char __user *pos;
2887 	int len;
2888 	int total;
2889 	int i;
2890 
2891 	/*
2892 	 *	Fetch the caller's info block.
2893 	 */
2894 
2895 	if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2896 		return -EFAULT;
2897 
2898 	pos = ifc.ifc_buf;
2899 	len = ifc.ifc_len;
2900 
2901 	/*
2902 	 *	Loop over the interfaces, and write an info block for each.
2903 	 */
2904 
2905 	total = 0;
2906 	for_each_netdev(net, dev) {
2907 		for (i = 0; i < NPROTO; i++) {
2908 			if (gifconf_list[i]) {
2909 				int done;
2910 				if (!pos)
2911 					done = gifconf_list[i](dev, NULL, 0);
2912 				else
2913 					done = gifconf_list[i](dev, pos + total,
2914 							       len - total);
2915 				if (done < 0)
2916 					return -EFAULT;
2917 				total += done;
2918 			}
2919 		}
2920 	}
2921 
2922 	/*
2923 	 *	All done.  Write the updated control block back to the caller.
2924 	 */
2925 	ifc.ifc_len = total;
2926 
2927 	/*
2928 	 * 	Both BSD and Solaris return 0 here, so we do too.
2929 	 */
2930 	return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2931 }
2932 
2933 #ifdef CONFIG_PROC_FS
2934 /*
2935  *	This is invoked by the /proc filesystem handler to display a device
2936  *	in detail.
2937  */
2938 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2939 	__acquires(dev_base_lock)
2940 {
2941 	struct net *net = seq_file_net(seq);
2942 	loff_t off;
2943 	struct net_device *dev;
2944 
2945 	read_lock(&dev_base_lock);
2946 	if (!*pos)
2947 		return SEQ_START_TOKEN;
2948 
2949 	off = 1;
2950 	for_each_netdev(net, dev)
2951 		if (off++ == *pos)
2952 			return dev;
2953 
2954 	return NULL;
2955 }
2956 
2957 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2958 {
2959 	struct net *net = seq_file_net(seq);
2960 	++*pos;
2961 	return v == SEQ_START_TOKEN ?
2962 		first_net_device(net) : next_net_device((struct net_device *)v);
2963 }
2964 
2965 void dev_seq_stop(struct seq_file *seq, void *v)
2966 	__releases(dev_base_lock)
2967 {
2968 	read_unlock(&dev_base_lock);
2969 }
2970 
2971 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2972 {
2973 	const struct net_device_stats *stats = dev_get_stats(dev);
2974 
2975 	seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2976 		   "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2977 		   dev->name, stats->rx_bytes, stats->rx_packets,
2978 		   stats->rx_errors,
2979 		   stats->rx_dropped + stats->rx_missed_errors,
2980 		   stats->rx_fifo_errors,
2981 		   stats->rx_length_errors + stats->rx_over_errors +
2982 		    stats->rx_crc_errors + stats->rx_frame_errors,
2983 		   stats->rx_compressed, stats->multicast,
2984 		   stats->tx_bytes, stats->tx_packets,
2985 		   stats->tx_errors, stats->tx_dropped,
2986 		   stats->tx_fifo_errors, stats->collisions,
2987 		   stats->tx_carrier_errors +
2988 		    stats->tx_aborted_errors +
2989 		    stats->tx_window_errors +
2990 		    stats->tx_heartbeat_errors,
2991 		   stats->tx_compressed);
2992 }
2993 
2994 /*
2995  *	Called from the PROCfs module. This now uses the new arbitrary sized
2996  *	/proc/net interface to create /proc/net/dev
2997  */
2998 static int dev_seq_show(struct seq_file *seq, void *v)
2999 {
3000 	if (v == SEQ_START_TOKEN)
3001 		seq_puts(seq, "Inter-|   Receive                            "
3002 			      "                    |  Transmit\n"
3003 			      " face |bytes    packets errs drop fifo frame "
3004 			      "compressed multicast|bytes    packets errs "
3005 			      "drop fifo colls carrier compressed\n");
3006 	else
3007 		dev_seq_printf_stats(seq, v);
3008 	return 0;
3009 }
3010 
3011 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
3012 {
3013 	struct netif_rx_stats *rc = NULL;
3014 
3015 	while (*pos < nr_cpu_ids)
3016 		if (cpu_online(*pos)) {
3017 			rc = &per_cpu(netdev_rx_stat, *pos);
3018 			break;
3019 		} else
3020 			++*pos;
3021 	return rc;
3022 }
3023 
3024 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3025 {
3026 	return softnet_get_online(pos);
3027 }
3028 
3029 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3030 {
3031 	++*pos;
3032 	return softnet_get_online(pos);
3033 }
3034 
3035 static void softnet_seq_stop(struct seq_file *seq, void *v)
3036 {
3037 }
3038 
3039 static int softnet_seq_show(struct seq_file *seq, void *v)
3040 {
3041 	struct netif_rx_stats *s = v;
3042 
3043 	seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3044 		   s->total, s->dropped, s->time_squeeze, 0,
3045 		   0, 0, 0, 0, /* was fastroute */
3046 		   s->cpu_collision );
3047 	return 0;
3048 }
3049 
3050 static const struct seq_operations dev_seq_ops = {
3051 	.start = dev_seq_start,
3052 	.next  = dev_seq_next,
3053 	.stop  = dev_seq_stop,
3054 	.show  = dev_seq_show,
3055 };
3056 
3057 static int dev_seq_open(struct inode *inode, struct file *file)
3058 {
3059 	return seq_open_net(inode, file, &dev_seq_ops,
3060 			    sizeof(struct seq_net_private));
3061 }
3062 
3063 static const struct file_operations dev_seq_fops = {
3064 	.owner	 = THIS_MODULE,
3065 	.open    = dev_seq_open,
3066 	.read    = seq_read,
3067 	.llseek  = seq_lseek,
3068 	.release = seq_release_net,
3069 };
3070 
3071 static const struct seq_operations softnet_seq_ops = {
3072 	.start = softnet_seq_start,
3073 	.next  = softnet_seq_next,
3074 	.stop  = softnet_seq_stop,
3075 	.show  = softnet_seq_show,
3076 };
3077 
3078 static int softnet_seq_open(struct inode *inode, struct file *file)
3079 {
3080 	return seq_open(file, &softnet_seq_ops);
3081 }
3082 
3083 static const struct file_operations softnet_seq_fops = {
3084 	.owner	 = THIS_MODULE,
3085 	.open    = softnet_seq_open,
3086 	.read    = seq_read,
3087 	.llseek  = seq_lseek,
3088 	.release = seq_release,
3089 };
3090 
3091 static void *ptype_get_idx(loff_t pos)
3092 {
3093 	struct packet_type *pt = NULL;
3094 	loff_t i = 0;
3095 	int t;
3096 
3097 	list_for_each_entry_rcu(pt, &ptype_all, list) {
3098 		if (i == pos)
3099 			return pt;
3100 		++i;
3101 	}
3102 
3103 	for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3104 		list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3105 			if (i == pos)
3106 				return pt;
3107 			++i;
3108 		}
3109 	}
3110 	return NULL;
3111 }
3112 
3113 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3114 	__acquires(RCU)
3115 {
3116 	rcu_read_lock();
3117 	return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3118 }
3119 
3120 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3121 {
3122 	struct packet_type *pt;
3123 	struct list_head *nxt;
3124 	int hash;
3125 
3126 	++*pos;
3127 	if (v == SEQ_START_TOKEN)
3128 		return ptype_get_idx(0);
3129 
3130 	pt = v;
3131 	nxt = pt->list.next;
3132 	if (pt->type == htons(ETH_P_ALL)) {
3133 		if (nxt != &ptype_all)
3134 			goto found;
3135 		hash = 0;
3136 		nxt = ptype_base[0].next;
3137 	} else
3138 		hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3139 
3140 	while (nxt == &ptype_base[hash]) {
3141 		if (++hash >= PTYPE_HASH_SIZE)
3142 			return NULL;
3143 		nxt = ptype_base[hash].next;
3144 	}
3145 found:
3146 	return list_entry(nxt, struct packet_type, list);
3147 }
3148 
3149 static void ptype_seq_stop(struct seq_file *seq, void *v)
3150 	__releases(RCU)
3151 {
3152 	rcu_read_unlock();
3153 }
3154 
3155 static int ptype_seq_show(struct seq_file *seq, void *v)
3156 {
3157 	struct packet_type *pt = v;
3158 
3159 	if (v == SEQ_START_TOKEN)
3160 		seq_puts(seq, "Type Device      Function\n");
3161 	else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3162 		if (pt->type == htons(ETH_P_ALL))
3163 			seq_puts(seq, "ALL ");
3164 		else
3165 			seq_printf(seq, "%04x", ntohs(pt->type));
3166 
3167 		seq_printf(seq, " %-8s %pF\n",
3168 			   pt->dev ? pt->dev->name : "", pt->func);
3169 	}
3170 
3171 	return 0;
3172 }
3173 
3174 static const struct seq_operations ptype_seq_ops = {
3175 	.start = ptype_seq_start,
3176 	.next  = ptype_seq_next,
3177 	.stop  = ptype_seq_stop,
3178 	.show  = ptype_seq_show,
3179 };
3180 
3181 static int ptype_seq_open(struct inode *inode, struct file *file)
3182 {
3183 	return seq_open_net(inode, file, &ptype_seq_ops,
3184 			sizeof(struct seq_net_private));
3185 }
3186 
3187 static const struct file_operations ptype_seq_fops = {
3188 	.owner	 = THIS_MODULE,
3189 	.open    = ptype_seq_open,
3190 	.read    = seq_read,
3191 	.llseek  = seq_lseek,
3192 	.release = seq_release_net,
3193 };
3194 
3195 
3196 static int __net_init dev_proc_net_init(struct net *net)
3197 {
3198 	int rc = -ENOMEM;
3199 
3200 	if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3201 		goto out;
3202 	if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3203 		goto out_dev;
3204 	if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3205 		goto out_softnet;
3206 
3207 	if (wext_proc_init(net))
3208 		goto out_ptype;
3209 	rc = 0;
3210 out:
3211 	return rc;
3212 out_ptype:
3213 	proc_net_remove(net, "ptype");
3214 out_softnet:
3215 	proc_net_remove(net, "softnet_stat");
3216 out_dev:
3217 	proc_net_remove(net, "dev");
3218 	goto out;
3219 }
3220 
3221 static void __net_exit dev_proc_net_exit(struct net *net)
3222 {
3223 	wext_proc_exit(net);
3224 
3225 	proc_net_remove(net, "ptype");
3226 	proc_net_remove(net, "softnet_stat");
3227 	proc_net_remove(net, "dev");
3228 }
3229 
3230 static struct pernet_operations __net_initdata dev_proc_ops = {
3231 	.init = dev_proc_net_init,
3232 	.exit = dev_proc_net_exit,
3233 };
3234 
3235 static int __init dev_proc_init(void)
3236 {
3237 	return register_pernet_subsys(&dev_proc_ops);
3238 }
3239 #else
3240 #define dev_proc_init() 0
3241 #endif	/* CONFIG_PROC_FS */
3242 
3243 
3244 /**
3245  *	netdev_set_master	-	set up master/slave pair
3246  *	@slave: slave device
3247  *	@master: new master device
3248  *
3249  *	Changes the master device of the slave. Pass %NULL to break the
3250  *	bonding. The caller must hold the RTNL semaphore. On a failure
3251  *	a negative errno code is returned. On success the reference counts
3252  *	are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3253  *	function returns zero.
3254  */
3255 int netdev_set_master(struct net_device *slave, struct net_device *master)
3256 {
3257 	struct net_device *old = slave->master;
3258 
3259 	ASSERT_RTNL();
3260 
3261 	if (master) {
3262 		if (old)
3263 			return -EBUSY;
3264 		dev_hold(master);
3265 	}
3266 
3267 	slave->master = master;
3268 
3269 	synchronize_net();
3270 
3271 	if (old)
3272 		dev_put(old);
3273 
3274 	if (master)
3275 		slave->flags |= IFF_SLAVE;
3276 	else
3277 		slave->flags &= ~IFF_SLAVE;
3278 
3279 	rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3280 	return 0;
3281 }
3282 
3283 static void dev_change_rx_flags(struct net_device *dev, int flags)
3284 {
3285 	const struct net_device_ops *ops = dev->netdev_ops;
3286 
3287 	if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3288 		ops->ndo_change_rx_flags(dev, flags);
3289 }
3290 
3291 static int __dev_set_promiscuity(struct net_device *dev, int inc)
3292 {
3293 	unsigned short old_flags = dev->flags;
3294 	uid_t uid;
3295 	gid_t gid;
3296 
3297 	ASSERT_RTNL();
3298 
3299 	dev->flags |= IFF_PROMISC;
3300 	dev->promiscuity += inc;
3301 	if (dev->promiscuity == 0) {
3302 		/*
3303 		 * Avoid overflow.
3304 		 * If inc causes overflow, untouch promisc and return error.
3305 		 */
3306 		if (inc < 0)
3307 			dev->flags &= ~IFF_PROMISC;
3308 		else {
3309 			dev->promiscuity -= inc;
3310 			printk(KERN_WARNING "%s: promiscuity touches roof, "
3311 				"set promiscuity failed, promiscuity feature "
3312 				"of device might be broken.\n", dev->name);
3313 			return -EOVERFLOW;
3314 		}
3315 	}
3316 	if (dev->flags != old_flags) {
3317 		printk(KERN_INFO "device %s %s promiscuous mode\n",
3318 		       dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
3319 							       "left");
3320 		if (audit_enabled) {
3321 			current_uid_gid(&uid, &gid);
3322 			audit_log(current->audit_context, GFP_ATOMIC,
3323 				AUDIT_ANOM_PROMISCUOUS,
3324 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3325 				dev->name, (dev->flags & IFF_PROMISC),
3326 				(old_flags & IFF_PROMISC),
3327 				audit_get_loginuid(current),
3328 				uid, gid,
3329 				audit_get_sessionid(current));
3330 		}
3331 
3332 		dev_change_rx_flags(dev, IFF_PROMISC);
3333 	}
3334 	return 0;
3335 }
3336 
3337 /**
3338  *	dev_set_promiscuity	- update promiscuity count on a device
3339  *	@dev: device
3340  *	@inc: modifier
3341  *
3342  *	Add or remove promiscuity from a device. While the count in the device
3343  *	remains above zero the interface remains promiscuous. Once it hits zero
3344  *	the device reverts back to normal filtering operation. A negative inc
3345  *	value is used to drop promiscuity on the device.
3346  *	Return 0 if successful or a negative errno code on error.
3347  */
3348 int dev_set_promiscuity(struct net_device *dev, int inc)
3349 {
3350 	unsigned short old_flags = dev->flags;
3351 	int err;
3352 
3353 	err = __dev_set_promiscuity(dev, inc);
3354 	if (err < 0)
3355 		return err;
3356 	if (dev->flags != old_flags)
3357 		dev_set_rx_mode(dev);
3358 	return err;
3359 }
3360 
3361 /**
3362  *	dev_set_allmulti	- update allmulti count on a device
3363  *	@dev: device
3364  *	@inc: modifier
3365  *
3366  *	Add or remove reception of all multicast frames to a device. While the
3367  *	count in the device remains above zero the interface remains listening
3368  *	to all interfaces. Once it hits zero the device reverts back to normal
3369  *	filtering operation. A negative @inc value is used to drop the counter
3370  *	when releasing a resource needing all multicasts.
3371  *	Return 0 if successful or a negative errno code on error.
3372  */
3373 
3374 int dev_set_allmulti(struct net_device *dev, int inc)
3375 {
3376 	unsigned short old_flags = dev->flags;
3377 
3378 	ASSERT_RTNL();
3379 
3380 	dev->flags |= IFF_ALLMULTI;
3381 	dev->allmulti += inc;
3382 	if (dev->allmulti == 0) {
3383 		/*
3384 		 * Avoid overflow.
3385 		 * If inc causes overflow, untouch allmulti and return error.
3386 		 */
3387 		if (inc < 0)
3388 			dev->flags &= ~IFF_ALLMULTI;
3389 		else {
3390 			dev->allmulti -= inc;
3391 			printk(KERN_WARNING "%s: allmulti touches roof, "
3392 				"set allmulti failed, allmulti feature of "
3393 				"device might be broken.\n", dev->name);
3394 			return -EOVERFLOW;
3395 		}
3396 	}
3397 	if (dev->flags ^ old_flags) {
3398 		dev_change_rx_flags(dev, IFF_ALLMULTI);
3399 		dev_set_rx_mode(dev);
3400 	}
3401 	return 0;
3402 }
3403 
3404 /*
3405  *	Upload unicast and multicast address lists to device and
3406  *	configure RX filtering. When the device doesn't support unicast
3407  *	filtering it is put in promiscuous mode while unicast addresses
3408  *	are present.
3409  */
3410 void __dev_set_rx_mode(struct net_device *dev)
3411 {
3412 	const struct net_device_ops *ops = dev->netdev_ops;
3413 
3414 	/* dev_open will call this function so the list will stay sane. */
3415 	if (!(dev->flags&IFF_UP))
3416 		return;
3417 
3418 	if (!netif_device_present(dev))
3419 		return;
3420 
3421 	if (ops->ndo_set_rx_mode)
3422 		ops->ndo_set_rx_mode(dev);
3423 	else {
3424 		/* Unicast addresses changes may only happen under the rtnl,
3425 		 * therefore calling __dev_set_promiscuity here is safe.
3426 		 */
3427 		if (dev->uc_count > 0 && !dev->uc_promisc) {
3428 			__dev_set_promiscuity(dev, 1);
3429 			dev->uc_promisc = 1;
3430 		} else if (dev->uc_count == 0 && dev->uc_promisc) {
3431 			__dev_set_promiscuity(dev, -1);
3432 			dev->uc_promisc = 0;
3433 		}
3434 
3435 		if (ops->ndo_set_multicast_list)
3436 			ops->ndo_set_multicast_list(dev);
3437 	}
3438 }
3439 
3440 void dev_set_rx_mode(struct net_device *dev)
3441 {
3442 	netif_addr_lock_bh(dev);
3443 	__dev_set_rx_mode(dev);
3444 	netif_addr_unlock_bh(dev);
3445 }
3446 
3447 int __dev_addr_delete(struct dev_addr_list **list, int *count,
3448 		      void *addr, int alen, int glbl)
3449 {
3450 	struct dev_addr_list *da;
3451 
3452 	for (; (da = *list) != NULL; list = &da->next) {
3453 		if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3454 		    alen == da->da_addrlen) {
3455 			if (glbl) {
3456 				int old_glbl = da->da_gusers;
3457 				da->da_gusers = 0;
3458 				if (old_glbl == 0)
3459 					break;
3460 			}
3461 			if (--da->da_users)
3462 				return 0;
3463 
3464 			*list = da->next;
3465 			kfree(da);
3466 			(*count)--;
3467 			return 0;
3468 		}
3469 	}
3470 	return -ENOENT;
3471 }
3472 
3473 int __dev_addr_add(struct dev_addr_list **list, int *count,
3474 		   void *addr, int alen, int glbl)
3475 {
3476 	struct dev_addr_list *da;
3477 
3478 	for (da = *list; da != NULL; da = da->next) {
3479 		if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3480 		    da->da_addrlen == alen) {
3481 			if (glbl) {
3482 				int old_glbl = da->da_gusers;
3483 				da->da_gusers = 1;
3484 				if (old_glbl)
3485 					return 0;
3486 			}
3487 			da->da_users++;
3488 			return 0;
3489 		}
3490 	}
3491 
3492 	da = kzalloc(sizeof(*da), GFP_ATOMIC);
3493 	if (da == NULL)
3494 		return -ENOMEM;
3495 	memcpy(da->da_addr, addr, alen);
3496 	da->da_addrlen = alen;
3497 	da->da_users = 1;
3498 	da->da_gusers = glbl ? 1 : 0;
3499 	da->next = *list;
3500 	*list = da;
3501 	(*count)++;
3502 	return 0;
3503 }
3504 
3505 /**
3506  *	dev_unicast_delete	- Release secondary unicast address.
3507  *	@dev: device
3508  *	@addr: address to delete
3509  *	@alen: length of @addr
3510  *
3511  *	Release reference to a secondary unicast address and remove it
3512  *	from the device if the reference count drops to zero.
3513  *
3514  * 	The caller must hold the rtnl_mutex.
3515  */
3516 int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
3517 {
3518 	int err;
3519 
3520 	ASSERT_RTNL();
3521 
3522 	netif_addr_lock_bh(dev);
3523 	err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3524 	if (!err)
3525 		__dev_set_rx_mode(dev);
3526 	netif_addr_unlock_bh(dev);
3527 	return err;
3528 }
3529 EXPORT_SYMBOL(dev_unicast_delete);
3530 
3531 /**
3532  *	dev_unicast_add		- add a secondary unicast address
3533  *	@dev: device
3534  *	@addr: address to add
3535  *	@alen: length of @addr
3536  *
3537  *	Add a secondary unicast address to the device or increase
3538  *	the reference count if it already exists.
3539  *
3540  *	The caller must hold the rtnl_mutex.
3541  */
3542 int dev_unicast_add(struct net_device *dev, void *addr, int alen)
3543 {
3544 	int err;
3545 
3546 	ASSERT_RTNL();
3547 
3548 	netif_addr_lock_bh(dev);
3549 	err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3550 	if (!err)
3551 		__dev_set_rx_mode(dev);
3552 	netif_addr_unlock_bh(dev);
3553 	return err;
3554 }
3555 EXPORT_SYMBOL(dev_unicast_add);
3556 
3557 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3558 		    struct dev_addr_list **from, int *from_count)
3559 {
3560 	struct dev_addr_list *da, *next;
3561 	int err = 0;
3562 
3563 	da = *from;
3564 	while (da != NULL) {
3565 		next = da->next;
3566 		if (!da->da_synced) {
3567 			err = __dev_addr_add(to, to_count,
3568 					     da->da_addr, da->da_addrlen, 0);
3569 			if (err < 0)
3570 				break;
3571 			da->da_synced = 1;
3572 			da->da_users++;
3573 		} else if (da->da_users == 1) {
3574 			__dev_addr_delete(to, to_count,
3575 					  da->da_addr, da->da_addrlen, 0);
3576 			__dev_addr_delete(from, from_count,
3577 					  da->da_addr, da->da_addrlen, 0);
3578 		}
3579 		da = next;
3580 	}
3581 	return err;
3582 }
3583 
3584 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3585 		       struct dev_addr_list **from, int *from_count)
3586 {
3587 	struct dev_addr_list *da, *next;
3588 
3589 	da = *from;
3590 	while (da != NULL) {
3591 		next = da->next;
3592 		if (da->da_synced) {
3593 			__dev_addr_delete(to, to_count,
3594 					  da->da_addr, da->da_addrlen, 0);
3595 			da->da_synced = 0;
3596 			__dev_addr_delete(from, from_count,
3597 					  da->da_addr, da->da_addrlen, 0);
3598 		}
3599 		da = next;
3600 	}
3601 }
3602 
3603 /**
3604  *	dev_unicast_sync - Synchronize device's unicast list to another device
3605  *	@to: destination device
3606  *	@from: source device
3607  *
3608  *	Add newly added addresses to the destination device and release
3609  *	addresses that have no users left. The source device must be
3610  *	locked by netif_tx_lock_bh.
3611  *
3612  *	This function is intended to be called from the dev->set_rx_mode
3613  *	function of layered software devices.
3614  */
3615 int dev_unicast_sync(struct net_device *to, struct net_device *from)
3616 {
3617 	int err = 0;
3618 
3619 	netif_addr_lock_bh(to);
3620 	err = __dev_addr_sync(&to->uc_list, &to->uc_count,
3621 			      &from->uc_list, &from->uc_count);
3622 	if (!err)
3623 		__dev_set_rx_mode(to);
3624 	netif_addr_unlock_bh(to);
3625 	return err;
3626 }
3627 EXPORT_SYMBOL(dev_unicast_sync);
3628 
3629 /**
3630  *	dev_unicast_unsync - Remove synchronized addresses from the destination device
3631  *	@to: destination device
3632  *	@from: source device
3633  *
3634  *	Remove all addresses that were added to the destination device by
3635  *	dev_unicast_sync(). This function is intended to be called from the
3636  *	dev->stop function of layered software devices.
3637  */
3638 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
3639 {
3640 	netif_addr_lock_bh(from);
3641 	netif_addr_lock(to);
3642 
3643 	__dev_addr_unsync(&to->uc_list, &to->uc_count,
3644 			  &from->uc_list, &from->uc_count);
3645 	__dev_set_rx_mode(to);
3646 
3647 	netif_addr_unlock(to);
3648 	netif_addr_unlock_bh(from);
3649 }
3650 EXPORT_SYMBOL(dev_unicast_unsync);
3651 
3652 static void __dev_addr_discard(struct dev_addr_list **list)
3653 {
3654 	struct dev_addr_list *tmp;
3655 
3656 	while (*list != NULL) {
3657 		tmp = *list;
3658 		*list = tmp->next;
3659 		if (tmp->da_users > tmp->da_gusers)
3660 			printk("__dev_addr_discard: address leakage! "
3661 			       "da_users=%d\n", tmp->da_users);
3662 		kfree(tmp);
3663 	}
3664 }
3665 
3666 static void dev_addr_discard(struct net_device *dev)
3667 {
3668 	netif_addr_lock_bh(dev);
3669 
3670 	__dev_addr_discard(&dev->uc_list);
3671 	dev->uc_count = 0;
3672 
3673 	__dev_addr_discard(&dev->mc_list);
3674 	dev->mc_count = 0;
3675 
3676 	netif_addr_unlock_bh(dev);
3677 }
3678 
3679 /**
3680  *	dev_get_flags - get flags reported to userspace
3681  *	@dev: device
3682  *
3683  *	Get the combination of flag bits exported through APIs to userspace.
3684  */
3685 unsigned dev_get_flags(const struct net_device *dev)
3686 {
3687 	unsigned flags;
3688 
3689 	flags = (dev->flags & ~(IFF_PROMISC |
3690 				IFF_ALLMULTI |
3691 				IFF_RUNNING |
3692 				IFF_LOWER_UP |
3693 				IFF_DORMANT)) |
3694 		(dev->gflags & (IFF_PROMISC |
3695 				IFF_ALLMULTI));
3696 
3697 	if (netif_running(dev)) {
3698 		if (netif_oper_up(dev))
3699 			flags |= IFF_RUNNING;
3700 		if (netif_carrier_ok(dev))
3701 			flags |= IFF_LOWER_UP;
3702 		if (netif_dormant(dev))
3703 			flags |= IFF_DORMANT;
3704 	}
3705 
3706 	return flags;
3707 }
3708 
3709 /**
3710  *	dev_change_flags - change device settings
3711  *	@dev: device
3712  *	@flags: device state flags
3713  *
3714  *	Change settings on device based state flags. The flags are
3715  *	in the userspace exported format.
3716  */
3717 int dev_change_flags(struct net_device *dev, unsigned flags)
3718 {
3719 	int ret, changes;
3720 	int old_flags = dev->flags;
3721 
3722 	ASSERT_RTNL();
3723 
3724 	/*
3725 	 *	Set the flags on our device.
3726 	 */
3727 
3728 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3729 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3730 			       IFF_AUTOMEDIA)) |
3731 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3732 				    IFF_ALLMULTI));
3733 
3734 	/*
3735 	 *	Load in the correct multicast list now the flags have changed.
3736 	 */
3737 
3738 	if ((old_flags ^ flags) & IFF_MULTICAST)
3739 		dev_change_rx_flags(dev, IFF_MULTICAST);
3740 
3741 	dev_set_rx_mode(dev);
3742 
3743 	/*
3744 	 *	Have we downed the interface. We handle IFF_UP ourselves
3745 	 *	according to user attempts to set it, rather than blindly
3746 	 *	setting it.
3747 	 */
3748 
3749 	ret = 0;
3750 	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
3751 		ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3752 
3753 		if (!ret)
3754 			dev_set_rx_mode(dev);
3755 	}
3756 
3757 	if (dev->flags & IFF_UP &&
3758 	    ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3759 					  IFF_VOLATILE)))
3760 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
3761 
3762 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
3763 		int inc = (flags & IFF_PROMISC) ? +1 : -1;
3764 		dev->gflags ^= IFF_PROMISC;
3765 		dev_set_promiscuity(dev, inc);
3766 	}
3767 
3768 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3769 	   is important. Some (broken) drivers set IFF_PROMISC, when
3770 	   IFF_ALLMULTI is requested not asking us and not reporting.
3771 	 */
3772 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3773 		int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3774 		dev->gflags ^= IFF_ALLMULTI;
3775 		dev_set_allmulti(dev, inc);
3776 	}
3777 
3778 	/* Exclude state transition flags, already notified */
3779 	changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3780 	if (changes)
3781 		rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3782 
3783 	return ret;
3784 }
3785 
3786 /**
3787  *	dev_set_mtu - Change maximum transfer unit
3788  *	@dev: device
3789  *	@new_mtu: new transfer unit
3790  *
3791  *	Change the maximum transfer size of the network device.
3792  */
3793 int dev_set_mtu(struct net_device *dev, int new_mtu)
3794 {
3795 	const struct net_device_ops *ops = dev->netdev_ops;
3796 	int err;
3797 
3798 	if (new_mtu == dev->mtu)
3799 		return 0;
3800 
3801 	/*	MTU must be positive.	 */
3802 	if (new_mtu < 0)
3803 		return -EINVAL;
3804 
3805 	if (!netif_device_present(dev))
3806 		return -ENODEV;
3807 
3808 	err = 0;
3809 	if (ops->ndo_change_mtu)
3810 		err = ops->ndo_change_mtu(dev, new_mtu);
3811 	else
3812 		dev->mtu = new_mtu;
3813 
3814 	if (!err && dev->flags & IFF_UP)
3815 		call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
3816 	return err;
3817 }
3818 
3819 /**
3820  *	dev_set_mac_address - Change Media Access Control Address
3821  *	@dev: device
3822  *	@sa: new address
3823  *
3824  *	Change the hardware (MAC) address of the device
3825  */
3826 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3827 {
3828 	const struct net_device_ops *ops = dev->netdev_ops;
3829 	int err;
3830 
3831 	if (!ops->ndo_set_mac_address)
3832 		return -EOPNOTSUPP;
3833 	if (sa->sa_family != dev->type)
3834 		return -EINVAL;
3835 	if (!netif_device_present(dev))
3836 		return -ENODEV;
3837 	err = ops->ndo_set_mac_address(dev, sa);
3838 	if (!err)
3839 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3840 	return err;
3841 }
3842 
3843 /*
3844  *	Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
3845  */
3846 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
3847 {
3848 	int err;
3849 	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3850 
3851 	if (!dev)
3852 		return -ENODEV;
3853 
3854 	switch (cmd) {
3855 		case SIOCGIFFLAGS:	/* Get interface flags */
3856 			ifr->ifr_flags = dev_get_flags(dev);
3857 			return 0;
3858 
3859 		case SIOCGIFMETRIC:	/* Get the metric on the interface
3860 					   (currently unused) */
3861 			ifr->ifr_metric = 0;
3862 			return 0;
3863 
3864 		case SIOCGIFMTU:	/* Get the MTU of a device */
3865 			ifr->ifr_mtu = dev->mtu;
3866 			return 0;
3867 
3868 		case SIOCGIFHWADDR:
3869 			if (!dev->addr_len)
3870 				memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3871 			else
3872 				memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3873 				       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3874 			ifr->ifr_hwaddr.sa_family = dev->type;
3875 			return 0;
3876 
3877 		case SIOCGIFSLAVE:
3878 			err = -EINVAL;
3879 			break;
3880 
3881 		case SIOCGIFMAP:
3882 			ifr->ifr_map.mem_start = dev->mem_start;
3883 			ifr->ifr_map.mem_end   = dev->mem_end;
3884 			ifr->ifr_map.base_addr = dev->base_addr;
3885 			ifr->ifr_map.irq       = dev->irq;
3886 			ifr->ifr_map.dma       = dev->dma;
3887 			ifr->ifr_map.port      = dev->if_port;
3888 			return 0;
3889 
3890 		case SIOCGIFINDEX:
3891 			ifr->ifr_ifindex = dev->ifindex;
3892 			return 0;
3893 
3894 		case SIOCGIFTXQLEN:
3895 			ifr->ifr_qlen = dev->tx_queue_len;
3896 			return 0;
3897 
3898 		default:
3899 			/* dev_ioctl() should ensure this case
3900 			 * is never reached
3901 			 */
3902 			WARN_ON(1);
3903 			err = -EINVAL;
3904 			break;
3905 
3906 	}
3907 	return err;
3908 }
3909 
3910 /*
3911  *	Perform the SIOCxIFxxx calls, inside rtnl_lock()
3912  */
3913 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3914 {
3915 	int err;
3916 	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3917 	const struct net_device_ops *ops;
3918 
3919 	if (!dev)
3920 		return -ENODEV;
3921 
3922 	ops = dev->netdev_ops;
3923 
3924 	switch (cmd) {
3925 		case SIOCSIFFLAGS:	/* Set interface flags */
3926 			return dev_change_flags(dev, ifr->ifr_flags);
3927 
3928 		case SIOCSIFMETRIC:	/* Set the metric on the interface
3929 					   (currently unused) */
3930 			return -EOPNOTSUPP;
3931 
3932 		case SIOCSIFMTU:	/* Set the MTU of a device */
3933 			return dev_set_mtu(dev, ifr->ifr_mtu);
3934 
3935 		case SIOCSIFHWADDR:
3936 			return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3937 
3938 		case SIOCSIFHWBROADCAST:
3939 			if (ifr->ifr_hwaddr.sa_family != dev->type)
3940 				return -EINVAL;
3941 			memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3942 			       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3943 			call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3944 			return 0;
3945 
3946 		case SIOCSIFMAP:
3947 			if (ops->ndo_set_config) {
3948 				if (!netif_device_present(dev))
3949 					return -ENODEV;
3950 				return ops->ndo_set_config(dev, &ifr->ifr_map);
3951 			}
3952 			return -EOPNOTSUPP;
3953 
3954 		case SIOCADDMULTI:
3955 			if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
3956 			    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3957 				return -EINVAL;
3958 			if (!netif_device_present(dev))
3959 				return -ENODEV;
3960 			return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3961 					  dev->addr_len, 1);
3962 
3963 		case SIOCDELMULTI:
3964 			if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
3965 			    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3966 				return -EINVAL;
3967 			if (!netif_device_present(dev))
3968 				return -ENODEV;
3969 			return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3970 					     dev->addr_len, 1);
3971 
3972 		case SIOCSIFTXQLEN:
3973 			if (ifr->ifr_qlen < 0)
3974 				return -EINVAL;
3975 			dev->tx_queue_len = ifr->ifr_qlen;
3976 			return 0;
3977 
3978 		case SIOCSIFNAME:
3979 			ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3980 			return dev_change_name(dev, ifr->ifr_newname);
3981 
3982 		/*
3983 		 *	Unknown or private ioctl
3984 		 */
3985 
3986 		default:
3987 			if ((cmd >= SIOCDEVPRIVATE &&
3988 			    cmd <= SIOCDEVPRIVATE + 15) ||
3989 			    cmd == SIOCBONDENSLAVE ||
3990 			    cmd == SIOCBONDRELEASE ||
3991 			    cmd == SIOCBONDSETHWADDR ||
3992 			    cmd == SIOCBONDSLAVEINFOQUERY ||
3993 			    cmd == SIOCBONDINFOQUERY ||
3994 			    cmd == SIOCBONDCHANGEACTIVE ||
3995 			    cmd == SIOCGMIIPHY ||
3996 			    cmd == SIOCGMIIREG ||
3997 			    cmd == SIOCSMIIREG ||
3998 			    cmd == SIOCBRADDIF ||
3999 			    cmd == SIOCBRDELIF ||
4000 			    cmd == SIOCSHWTSTAMP ||
4001 			    cmd == SIOCWANDEV) {
4002 				err = -EOPNOTSUPP;
4003 				if (ops->ndo_do_ioctl) {
4004 					if (netif_device_present(dev))
4005 						err = ops->ndo_do_ioctl(dev, ifr, cmd);
4006 					else
4007 						err = -ENODEV;
4008 				}
4009 			} else
4010 				err = -EINVAL;
4011 
4012 	}
4013 	return err;
4014 }
4015 
4016 /*
4017  *	This function handles all "interface"-type I/O control requests. The actual
4018  *	'doing' part of this is dev_ifsioc above.
4019  */
4020 
4021 /**
4022  *	dev_ioctl	-	network device ioctl
4023  *	@net: the applicable net namespace
4024  *	@cmd: command to issue
4025  *	@arg: pointer to a struct ifreq in user space
4026  *
4027  *	Issue ioctl functions to devices. This is normally called by the
4028  *	user space syscall interfaces but can sometimes be useful for
4029  *	other purposes. The return value is the return from the syscall if
4030  *	positive or a negative errno code on error.
4031  */
4032 
4033 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4034 {
4035 	struct ifreq ifr;
4036 	int ret;
4037 	char *colon;
4038 
4039 	/* One special case: SIOCGIFCONF takes ifconf argument
4040 	   and requires shared lock, because it sleeps writing
4041 	   to user space.
4042 	 */
4043 
4044 	if (cmd == SIOCGIFCONF) {
4045 		rtnl_lock();
4046 		ret = dev_ifconf(net, (char __user *) arg);
4047 		rtnl_unlock();
4048 		return ret;
4049 	}
4050 	if (cmd == SIOCGIFNAME)
4051 		return dev_ifname(net, (struct ifreq __user *)arg);
4052 
4053 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4054 		return -EFAULT;
4055 
4056 	ifr.ifr_name[IFNAMSIZ-1] = 0;
4057 
4058 	colon = strchr(ifr.ifr_name, ':');
4059 	if (colon)
4060 		*colon = 0;
4061 
4062 	/*
4063 	 *	See which interface the caller is talking about.
4064 	 */
4065 
4066 	switch (cmd) {
4067 		/*
4068 		 *	These ioctl calls:
4069 		 *	- can be done by all.
4070 		 *	- atomic and do not require locking.
4071 		 *	- return a value
4072 		 */
4073 		case SIOCGIFFLAGS:
4074 		case SIOCGIFMETRIC:
4075 		case SIOCGIFMTU:
4076 		case SIOCGIFHWADDR:
4077 		case SIOCGIFSLAVE:
4078 		case SIOCGIFMAP:
4079 		case SIOCGIFINDEX:
4080 		case SIOCGIFTXQLEN:
4081 			dev_load(net, ifr.ifr_name);
4082 			read_lock(&dev_base_lock);
4083 			ret = dev_ifsioc_locked(net, &ifr, cmd);
4084 			read_unlock(&dev_base_lock);
4085 			if (!ret) {
4086 				if (colon)
4087 					*colon = ':';
4088 				if (copy_to_user(arg, &ifr,
4089 						 sizeof(struct ifreq)))
4090 					ret = -EFAULT;
4091 			}
4092 			return ret;
4093 
4094 		case SIOCETHTOOL:
4095 			dev_load(net, ifr.ifr_name);
4096 			rtnl_lock();
4097 			ret = dev_ethtool(net, &ifr);
4098 			rtnl_unlock();
4099 			if (!ret) {
4100 				if (colon)
4101 					*colon = ':';
4102 				if (copy_to_user(arg, &ifr,
4103 						 sizeof(struct ifreq)))
4104 					ret = -EFAULT;
4105 			}
4106 			return ret;
4107 
4108 		/*
4109 		 *	These ioctl calls:
4110 		 *	- require superuser power.
4111 		 *	- require strict serialization.
4112 		 *	- return a value
4113 		 */
4114 		case SIOCGMIIPHY:
4115 		case SIOCGMIIREG:
4116 		case SIOCSIFNAME:
4117 			if (!capable(CAP_NET_ADMIN))
4118 				return -EPERM;
4119 			dev_load(net, ifr.ifr_name);
4120 			rtnl_lock();
4121 			ret = dev_ifsioc(net, &ifr, cmd);
4122 			rtnl_unlock();
4123 			if (!ret) {
4124 				if (colon)
4125 					*colon = ':';
4126 				if (copy_to_user(arg, &ifr,
4127 						 sizeof(struct ifreq)))
4128 					ret = -EFAULT;
4129 			}
4130 			return ret;
4131 
4132 		/*
4133 		 *	These ioctl calls:
4134 		 *	- require superuser power.
4135 		 *	- require strict serialization.
4136 		 *	- do not return a value
4137 		 */
4138 		case SIOCSIFFLAGS:
4139 		case SIOCSIFMETRIC:
4140 		case SIOCSIFMTU:
4141 		case SIOCSIFMAP:
4142 		case SIOCSIFHWADDR:
4143 		case SIOCSIFSLAVE:
4144 		case SIOCADDMULTI:
4145 		case SIOCDELMULTI:
4146 		case SIOCSIFHWBROADCAST:
4147 		case SIOCSIFTXQLEN:
4148 		case SIOCSMIIREG:
4149 		case SIOCBONDENSLAVE:
4150 		case SIOCBONDRELEASE:
4151 		case SIOCBONDSETHWADDR:
4152 		case SIOCBONDCHANGEACTIVE:
4153 		case SIOCBRADDIF:
4154 		case SIOCBRDELIF:
4155 		case SIOCSHWTSTAMP:
4156 			if (!capable(CAP_NET_ADMIN))
4157 				return -EPERM;
4158 			/* fall through */
4159 		case SIOCBONDSLAVEINFOQUERY:
4160 		case SIOCBONDINFOQUERY:
4161 			dev_load(net, ifr.ifr_name);
4162 			rtnl_lock();
4163 			ret = dev_ifsioc(net, &ifr, cmd);
4164 			rtnl_unlock();
4165 			return ret;
4166 
4167 		case SIOCGIFMEM:
4168 			/* Get the per device memory space. We can add this but
4169 			 * currently do not support it */
4170 		case SIOCSIFMEM:
4171 			/* Set the per device memory buffer space.
4172 			 * Not applicable in our case */
4173 		case SIOCSIFLINK:
4174 			return -EINVAL;
4175 
4176 		/*
4177 		 *	Unknown or private ioctl.
4178 		 */
4179 		default:
4180 			if (cmd == SIOCWANDEV ||
4181 			    (cmd >= SIOCDEVPRIVATE &&
4182 			     cmd <= SIOCDEVPRIVATE + 15)) {
4183 				dev_load(net, ifr.ifr_name);
4184 				rtnl_lock();
4185 				ret = dev_ifsioc(net, &ifr, cmd);
4186 				rtnl_unlock();
4187 				if (!ret && copy_to_user(arg, &ifr,
4188 							 sizeof(struct ifreq)))
4189 					ret = -EFAULT;
4190 				return ret;
4191 			}
4192 			/* Take care of Wireless Extensions */
4193 			if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4194 				return wext_handle_ioctl(net, &ifr, cmd, arg);
4195 			return -EINVAL;
4196 	}
4197 }
4198 
4199 
4200 /**
4201  *	dev_new_index	-	allocate an ifindex
4202  *	@net: the applicable net namespace
4203  *
4204  *	Returns a suitable unique value for a new device interface
4205  *	number.  The caller must hold the rtnl semaphore or the
4206  *	dev_base_lock to be sure it remains unique.
4207  */
4208 static int dev_new_index(struct net *net)
4209 {
4210 	static int ifindex;
4211 	for (;;) {
4212 		if (++ifindex <= 0)
4213 			ifindex = 1;
4214 		if (!__dev_get_by_index(net, ifindex))
4215 			return ifindex;
4216 	}
4217 }
4218 
4219 /* Delayed registration/unregisteration */
4220 static LIST_HEAD(net_todo_list);
4221 
4222 static void net_set_todo(struct net_device *dev)
4223 {
4224 	list_add_tail(&dev->todo_list, &net_todo_list);
4225 }
4226 
4227 static void rollback_registered(struct net_device *dev)
4228 {
4229 	BUG_ON(dev_boot_phase);
4230 	ASSERT_RTNL();
4231 
4232 	/* Some devices call without registering for initialization unwind. */
4233 	if (dev->reg_state == NETREG_UNINITIALIZED) {
4234 		printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
4235 				  "was registered\n", dev->name, dev);
4236 
4237 		WARN_ON(1);
4238 		return;
4239 	}
4240 
4241 	BUG_ON(dev->reg_state != NETREG_REGISTERED);
4242 
4243 	/* If device is running, close it first. */
4244 	dev_close(dev);
4245 
4246 	/* And unlink it from device chain. */
4247 	unlist_netdevice(dev);
4248 
4249 	dev->reg_state = NETREG_UNREGISTERING;
4250 
4251 	synchronize_net();
4252 
4253 	/* Shutdown queueing discipline. */
4254 	dev_shutdown(dev);
4255 
4256 
4257 	/* Notify protocols, that we are about to destroy
4258 	   this device. They should clean all the things.
4259 	*/
4260 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4261 
4262 	/*
4263 	 *	Flush the unicast and multicast chains
4264 	 */
4265 	dev_addr_discard(dev);
4266 
4267 	if (dev->netdev_ops->ndo_uninit)
4268 		dev->netdev_ops->ndo_uninit(dev);
4269 
4270 	/* Notifier chain MUST detach us from master device. */
4271 	WARN_ON(dev->master);
4272 
4273 	/* Remove entries from kobject tree */
4274 	netdev_unregister_kobject(dev);
4275 
4276 	synchronize_net();
4277 
4278 	dev_put(dev);
4279 }
4280 
4281 static void __netdev_init_queue_locks_one(struct net_device *dev,
4282 					  struct netdev_queue *dev_queue,
4283 					  void *_unused)
4284 {
4285 	spin_lock_init(&dev_queue->_xmit_lock);
4286 	netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4287 	dev_queue->xmit_lock_owner = -1;
4288 }
4289 
4290 static void netdev_init_queue_locks(struct net_device *dev)
4291 {
4292 	netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4293 	__netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4294 }
4295 
4296 unsigned long netdev_fix_features(unsigned long features, const char *name)
4297 {
4298 	/* Fix illegal SG+CSUM combinations. */
4299 	if ((features & NETIF_F_SG) &&
4300 	    !(features & NETIF_F_ALL_CSUM)) {
4301 		if (name)
4302 			printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4303 			       "checksum feature.\n", name);
4304 		features &= ~NETIF_F_SG;
4305 	}
4306 
4307 	/* TSO requires that SG is present as well. */
4308 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4309 		if (name)
4310 			printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4311 			       "SG feature.\n", name);
4312 		features &= ~NETIF_F_TSO;
4313 	}
4314 
4315 	if (features & NETIF_F_UFO) {
4316 		if (!(features & NETIF_F_GEN_CSUM)) {
4317 			if (name)
4318 				printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4319 				       "since no NETIF_F_HW_CSUM feature.\n",
4320 				       name);
4321 			features &= ~NETIF_F_UFO;
4322 		}
4323 
4324 		if (!(features & NETIF_F_SG)) {
4325 			if (name)
4326 				printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4327 				       "since no NETIF_F_SG feature.\n", name);
4328 			features &= ~NETIF_F_UFO;
4329 		}
4330 	}
4331 
4332 	return features;
4333 }
4334 EXPORT_SYMBOL(netdev_fix_features);
4335 
4336 /* Some devices need to (re-)set their netdev_ops inside
4337  * ->init() or similar.  If that happens, we have to setup
4338  * the compat pointers again.
4339  */
4340 void netdev_resync_ops(struct net_device *dev)
4341 {
4342 #ifdef CONFIG_COMPAT_NET_DEV_OPS
4343 	const struct net_device_ops *ops = dev->netdev_ops;
4344 
4345 	dev->init = ops->ndo_init;
4346 	dev->uninit = ops->ndo_uninit;
4347 	dev->open = ops->ndo_open;
4348 	dev->change_rx_flags = ops->ndo_change_rx_flags;
4349 	dev->set_rx_mode = ops->ndo_set_rx_mode;
4350 	dev->set_multicast_list = ops->ndo_set_multicast_list;
4351 	dev->set_mac_address = ops->ndo_set_mac_address;
4352 	dev->validate_addr = ops->ndo_validate_addr;
4353 	dev->do_ioctl = ops->ndo_do_ioctl;
4354 	dev->set_config = ops->ndo_set_config;
4355 	dev->change_mtu = ops->ndo_change_mtu;
4356 	dev->neigh_setup = ops->ndo_neigh_setup;
4357 	dev->tx_timeout = ops->ndo_tx_timeout;
4358 	dev->get_stats = ops->ndo_get_stats;
4359 	dev->vlan_rx_register = ops->ndo_vlan_rx_register;
4360 	dev->vlan_rx_add_vid = ops->ndo_vlan_rx_add_vid;
4361 	dev->vlan_rx_kill_vid = ops->ndo_vlan_rx_kill_vid;
4362 #ifdef CONFIG_NET_POLL_CONTROLLER
4363 	dev->poll_controller = ops->ndo_poll_controller;
4364 #endif
4365 #endif
4366 }
4367 EXPORT_SYMBOL(netdev_resync_ops);
4368 
4369 /**
4370  *	register_netdevice	- register a network device
4371  *	@dev: device to register
4372  *
4373  *	Take a completed network device structure and add it to the kernel
4374  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4375  *	chain. 0 is returned on success. A negative errno code is returned
4376  *	on a failure to set up the device, or if the name is a duplicate.
4377  *
4378  *	Callers must hold the rtnl semaphore. You may want
4379  *	register_netdev() instead of this.
4380  *
4381  *	BUGS:
4382  *	The locking appears insufficient to guarantee two parallel registers
4383  *	will not get the same name.
4384  */
4385 
4386 int register_netdevice(struct net_device *dev)
4387 {
4388 	struct hlist_head *head;
4389 	struct hlist_node *p;
4390 	int ret;
4391 	struct net *net = dev_net(dev);
4392 
4393 	BUG_ON(dev_boot_phase);
4394 	ASSERT_RTNL();
4395 
4396 	might_sleep();
4397 
4398 	/* When net_device's are persistent, this will be fatal. */
4399 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4400 	BUG_ON(!net);
4401 
4402 	spin_lock_init(&dev->addr_list_lock);
4403 	netdev_set_addr_lockdep_class(dev);
4404 	netdev_init_queue_locks(dev);
4405 
4406 	dev->iflink = -1;
4407 
4408 #ifdef CONFIG_COMPAT_NET_DEV_OPS
4409 	/* Netdevice_ops API compatibility support.
4410 	 * This is temporary until all network devices are converted.
4411 	 */
4412 	if (dev->netdev_ops) {
4413 		netdev_resync_ops(dev);
4414 	} else {
4415 		char drivername[64];
4416 		pr_info("%s (%s): not using net_device_ops yet\n",
4417 			dev->name, netdev_drivername(dev, drivername, 64));
4418 
4419 		/* This works only because net_device_ops and the
4420 		   compatibility structure are the same. */
4421 		dev->netdev_ops = (void *) &(dev->init);
4422 	}
4423 #endif
4424 
4425 	/* Init, if this function is available */
4426 	if (dev->netdev_ops->ndo_init) {
4427 		ret = dev->netdev_ops->ndo_init(dev);
4428 		if (ret) {
4429 			if (ret > 0)
4430 				ret = -EIO;
4431 			goto out;
4432 		}
4433 	}
4434 
4435 	if (!dev_valid_name(dev->name)) {
4436 		ret = -EINVAL;
4437 		goto err_uninit;
4438 	}
4439 
4440 	dev->ifindex = dev_new_index(net);
4441 	if (dev->iflink == -1)
4442 		dev->iflink = dev->ifindex;
4443 
4444 	/* Check for existence of name */
4445 	head = dev_name_hash(net, dev->name);
4446 	hlist_for_each(p, head) {
4447 		struct net_device *d
4448 			= hlist_entry(p, struct net_device, name_hlist);
4449 		if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
4450 			ret = -EEXIST;
4451 			goto err_uninit;
4452 		}
4453 	}
4454 
4455 	/* Fix illegal checksum combinations */
4456 	if ((dev->features & NETIF_F_HW_CSUM) &&
4457 	    (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4458 		printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
4459 		       dev->name);
4460 		dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4461 	}
4462 
4463 	if ((dev->features & NETIF_F_NO_CSUM) &&
4464 	    (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4465 		printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
4466 		       dev->name);
4467 		dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
4468 	}
4469 
4470 	dev->features = netdev_fix_features(dev->features, dev->name);
4471 
4472 	/* Enable software GSO if SG is supported. */
4473 	if (dev->features & NETIF_F_SG)
4474 		dev->features |= NETIF_F_GSO;
4475 
4476 	netdev_initialize_kobject(dev);
4477 	ret = netdev_register_kobject(dev);
4478 	if (ret)
4479 		goto err_uninit;
4480 	dev->reg_state = NETREG_REGISTERED;
4481 
4482 	/*
4483 	 *	Default initial state at registry is that the
4484 	 *	device is present.
4485 	 */
4486 
4487 	set_bit(__LINK_STATE_PRESENT, &dev->state);
4488 
4489 	dev_init_scheduler(dev);
4490 	dev_hold(dev);
4491 	list_netdevice(dev);
4492 
4493 	/* Notify protocols, that a new device appeared. */
4494 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
4495 	ret = notifier_to_errno(ret);
4496 	if (ret) {
4497 		rollback_registered(dev);
4498 		dev->reg_state = NETREG_UNREGISTERED;
4499 	}
4500 
4501 out:
4502 	return ret;
4503 
4504 err_uninit:
4505 	if (dev->netdev_ops->ndo_uninit)
4506 		dev->netdev_ops->ndo_uninit(dev);
4507 	goto out;
4508 }
4509 
4510 /**
4511  *	init_dummy_netdev	- init a dummy network device for NAPI
4512  *	@dev: device to init
4513  *
4514  *	This takes a network device structure and initialize the minimum
4515  *	amount of fields so it can be used to schedule NAPI polls without
4516  *	registering a full blown interface. This is to be used by drivers
4517  *	that need to tie several hardware interfaces to a single NAPI
4518  *	poll scheduler due to HW limitations.
4519  */
4520 int init_dummy_netdev(struct net_device *dev)
4521 {
4522 	/* Clear everything. Note we don't initialize spinlocks
4523 	 * are they aren't supposed to be taken by any of the
4524 	 * NAPI code and this dummy netdev is supposed to be
4525 	 * only ever used for NAPI polls
4526 	 */
4527 	memset(dev, 0, sizeof(struct net_device));
4528 
4529 	/* make sure we BUG if trying to hit standard
4530 	 * register/unregister code path
4531 	 */
4532 	dev->reg_state = NETREG_DUMMY;
4533 
4534 	/* initialize the ref count */
4535 	atomic_set(&dev->refcnt, 1);
4536 
4537 	/* NAPI wants this */
4538 	INIT_LIST_HEAD(&dev->napi_list);
4539 
4540 	/* a dummy interface is started by default */
4541 	set_bit(__LINK_STATE_PRESENT, &dev->state);
4542 	set_bit(__LINK_STATE_START, &dev->state);
4543 
4544 	return 0;
4545 }
4546 EXPORT_SYMBOL_GPL(init_dummy_netdev);
4547 
4548 
4549 /**
4550  *	register_netdev	- register a network device
4551  *	@dev: device to register
4552  *
4553  *	Take a completed network device structure and add it to the kernel
4554  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4555  *	chain. 0 is returned on success. A negative errno code is returned
4556  *	on a failure to set up the device, or if the name is a duplicate.
4557  *
4558  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
4559  *	and expands the device name if you passed a format string to
4560  *	alloc_netdev.
4561  */
4562 int register_netdev(struct net_device *dev)
4563 {
4564 	int err;
4565 
4566 	rtnl_lock();
4567 
4568 	/*
4569 	 * If the name is a format string the caller wants us to do a
4570 	 * name allocation.
4571 	 */
4572 	if (strchr(dev->name, '%')) {
4573 		err = dev_alloc_name(dev, dev->name);
4574 		if (err < 0)
4575 			goto out;
4576 	}
4577 
4578 	err = register_netdevice(dev);
4579 out:
4580 	rtnl_unlock();
4581 	return err;
4582 }
4583 EXPORT_SYMBOL(register_netdev);
4584 
4585 /*
4586  * netdev_wait_allrefs - wait until all references are gone.
4587  *
4588  * This is called when unregistering network devices.
4589  *
4590  * Any protocol or device that holds a reference should register
4591  * for netdevice notification, and cleanup and put back the
4592  * reference if they receive an UNREGISTER event.
4593  * We can get stuck here if buggy protocols don't correctly
4594  * call dev_put.
4595  */
4596 static void netdev_wait_allrefs(struct net_device *dev)
4597 {
4598 	unsigned long rebroadcast_time, warning_time;
4599 
4600 	rebroadcast_time = warning_time = jiffies;
4601 	while (atomic_read(&dev->refcnt) != 0) {
4602 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
4603 			rtnl_lock();
4604 
4605 			/* Rebroadcast unregister notification */
4606 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4607 
4608 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
4609 				     &dev->state)) {
4610 				/* We must not have linkwatch events
4611 				 * pending on unregister. If this
4612 				 * happens, we simply run the queue
4613 				 * unscheduled, resulting in a noop
4614 				 * for this device.
4615 				 */
4616 				linkwatch_run_queue();
4617 			}
4618 
4619 			__rtnl_unlock();
4620 
4621 			rebroadcast_time = jiffies;
4622 		}
4623 
4624 		msleep(250);
4625 
4626 		if (time_after(jiffies, warning_time + 10 * HZ)) {
4627 			printk(KERN_EMERG "unregister_netdevice: "
4628 			       "waiting for %s to become free. Usage "
4629 			       "count = %d\n",
4630 			       dev->name, atomic_read(&dev->refcnt));
4631 			warning_time = jiffies;
4632 		}
4633 	}
4634 }
4635 
4636 /* The sequence is:
4637  *
4638  *	rtnl_lock();
4639  *	...
4640  *	register_netdevice(x1);
4641  *	register_netdevice(x2);
4642  *	...
4643  *	unregister_netdevice(y1);
4644  *	unregister_netdevice(y2);
4645  *      ...
4646  *	rtnl_unlock();
4647  *	free_netdev(y1);
4648  *	free_netdev(y2);
4649  *
4650  * We are invoked by rtnl_unlock().
4651  * This allows us to deal with problems:
4652  * 1) We can delete sysfs objects which invoke hotplug
4653  *    without deadlocking with linkwatch via keventd.
4654  * 2) Since we run with the RTNL semaphore not held, we can sleep
4655  *    safely in order to wait for the netdev refcnt to drop to zero.
4656  *
4657  * We must not return until all unregister events added during
4658  * the interval the lock was held have been completed.
4659  */
4660 void netdev_run_todo(void)
4661 {
4662 	struct list_head list;
4663 
4664 	/* Snapshot list, allow later requests */
4665 	list_replace_init(&net_todo_list, &list);
4666 
4667 	__rtnl_unlock();
4668 
4669 	while (!list_empty(&list)) {
4670 		struct net_device *dev
4671 			= list_entry(list.next, struct net_device, todo_list);
4672 		list_del(&dev->todo_list);
4673 
4674 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
4675 			printk(KERN_ERR "network todo '%s' but state %d\n",
4676 			       dev->name, dev->reg_state);
4677 			dump_stack();
4678 			continue;
4679 		}
4680 
4681 		dev->reg_state = NETREG_UNREGISTERED;
4682 
4683 		on_each_cpu(flush_backlog, dev, 1);
4684 
4685 		netdev_wait_allrefs(dev);
4686 
4687 		/* paranoia */
4688 		BUG_ON(atomic_read(&dev->refcnt));
4689 		WARN_ON(dev->ip_ptr);
4690 		WARN_ON(dev->ip6_ptr);
4691 		WARN_ON(dev->dn_ptr);
4692 
4693 		if (dev->destructor)
4694 			dev->destructor(dev);
4695 
4696 		/* Free network device */
4697 		kobject_put(&dev->dev.kobj);
4698 	}
4699 }
4700 
4701 /**
4702  *	dev_get_stats	- get network device statistics
4703  *	@dev: device to get statistics from
4704  *
4705  *	Get network statistics from device. The device driver may provide
4706  *	its own method by setting dev->netdev_ops->get_stats; otherwise
4707  *	the internal statistics structure is used.
4708  */
4709 const struct net_device_stats *dev_get_stats(struct net_device *dev)
4710  {
4711 	const struct net_device_ops *ops = dev->netdev_ops;
4712 
4713 	if (ops->ndo_get_stats)
4714 		return ops->ndo_get_stats(dev);
4715 	else
4716 		return &dev->stats;
4717 }
4718 EXPORT_SYMBOL(dev_get_stats);
4719 
4720 static void netdev_init_one_queue(struct net_device *dev,
4721 				  struct netdev_queue *queue,
4722 				  void *_unused)
4723 {
4724 	queue->dev = dev;
4725 }
4726 
4727 static void netdev_init_queues(struct net_device *dev)
4728 {
4729 	netdev_init_one_queue(dev, &dev->rx_queue, NULL);
4730 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
4731 	spin_lock_init(&dev->tx_global_lock);
4732 }
4733 
4734 /**
4735  *	alloc_netdev_mq - allocate network device
4736  *	@sizeof_priv:	size of private data to allocate space for
4737  *	@name:		device name format string
4738  *	@setup:		callback to initialize device
4739  *	@queue_count:	the number of subqueues to allocate
4740  *
4741  *	Allocates a struct net_device with private data area for driver use
4742  *	and performs basic initialization.  Also allocates subquue structs
4743  *	for each queue on the device at the end of the netdevice.
4744  */
4745 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
4746 		void (*setup)(struct net_device *), unsigned int queue_count)
4747 {
4748 	struct netdev_queue *tx;
4749 	struct net_device *dev;
4750 	size_t alloc_size;
4751 	void *p;
4752 
4753 	BUG_ON(strlen(name) >= sizeof(dev->name));
4754 
4755 	alloc_size = sizeof(struct net_device);
4756 	if (sizeof_priv) {
4757 		/* ensure 32-byte alignment of private area */
4758 		alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
4759 		alloc_size += sizeof_priv;
4760 	}
4761 	/* ensure 32-byte alignment of whole construct */
4762 	alloc_size += NETDEV_ALIGN_CONST;
4763 
4764 	p = kzalloc(alloc_size, GFP_KERNEL);
4765 	if (!p) {
4766 		printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
4767 		return NULL;
4768 	}
4769 
4770 	tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
4771 	if (!tx) {
4772 		printk(KERN_ERR "alloc_netdev: Unable to allocate "
4773 		       "tx qdiscs.\n");
4774 		kfree(p);
4775 		return NULL;
4776 	}
4777 
4778 	dev = (struct net_device *)
4779 		(((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
4780 	dev->padded = (char *)dev - (char *)p;
4781 	dev_net_set(dev, &init_net);
4782 
4783 	dev->_tx = tx;
4784 	dev->num_tx_queues = queue_count;
4785 	dev->real_num_tx_queues = queue_count;
4786 
4787 	dev->gso_max_size = GSO_MAX_SIZE;
4788 
4789 	netdev_init_queues(dev);
4790 
4791 	INIT_LIST_HEAD(&dev->napi_list);
4792 	setup(dev);
4793 	strcpy(dev->name, name);
4794 	return dev;
4795 }
4796 EXPORT_SYMBOL(alloc_netdev_mq);
4797 
4798 /**
4799  *	free_netdev - free network device
4800  *	@dev: device
4801  *
4802  *	This function does the last stage of destroying an allocated device
4803  * 	interface. The reference to the device object is released.
4804  *	If this is the last reference then it will be freed.
4805  */
4806 void free_netdev(struct net_device *dev)
4807 {
4808 	struct napi_struct *p, *n;
4809 
4810 	release_net(dev_net(dev));
4811 
4812 	kfree(dev->_tx);
4813 
4814 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
4815 		netif_napi_del(p);
4816 
4817 	/*  Compatibility with error handling in drivers */
4818 	if (dev->reg_state == NETREG_UNINITIALIZED) {
4819 		kfree((char *)dev - dev->padded);
4820 		return;
4821 	}
4822 
4823 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
4824 	dev->reg_state = NETREG_RELEASED;
4825 
4826 	/* will free via device release */
4827 	put_device(&dev->dev);
4828 }
4829 
4830 /**
4831  *	synchronize_net -  Synchronize with packet receive processing
4832  *
4833  *	Wait for packets currently being received to be done.
4834  *	Does not block later packets from starting.
4835  */
4836 void synchronize_net(void)
4837 {
4838 	might_sleep();
4839 	synchronize_rcu();
4840 }
4841 
4842 /**
4843  *	unregister_netdevice - remove device from the kernel
4844  *	@dev: device
4845  *
4846  *	This function shuts down a device interface and removes it
4847  *	from the kernel tables.
4848  *
4849  *	Callers must hold the rtnl semaphore.  You may want
4850  *	unregister_netdev() instead of this.
4851  */
4852 
4853 void unregister_netdevice(struct net_device *dev)
4854 {
4855 	ASSERT_RTNL();
4856 
4857 	rollback_registered(dev);
4858 	/* Finish processing unregister after unlock */
4859 	net_set_todo(dev);
4860 }
4861 
4862 /**
4863  *	unregister_netdev - remove device from the kernel
4864  *	@dev: device
4865  *
4866  *	This function shuts down a device interface and removes it
4867  *	from the kernel tables.
4868  *
4869  *	This is just a wrapper for unregister_netdevice that takes
4870  *	the rtnl semaphore.  In general you want to use this and not
4871  *	unregister_netdevice.
4872  */
4873 void unregister_netdev(struct net_device *dev)
4874 {
4875 	rtnl_lock();
4876 	unregister_netdevice(dev);
4877 	rtnl_unlock();
4878 }
4879 
4880 EXPORT_SYMBOL(unregister_netdev);
4881 
4882 /**
4883  *	dev_change_net_namespace - move device to different nethost namespace
4884  *	@dev: device
4885  *	@net: network namespace
4886  *	@pat: If not NULL name pattern to try if the current device name
4887  *	      is already taken in the destination network namespace.
4888  *
4889  *	This function shuts down a device interface and moves it
4890  *	to a new network namespace. On success 0 is returned, on
4891  *	a failure a netagive errno code is returned.
4892  *
4893  *	Callers must hold the rtnl semaphore.
4894  */
4895 
4896 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
4897 {
4898 	char buf[IFNAMSIZ];
4899 	const char *destname;
4900 	int err;
4901 
4902 	ASSERT_RTNL();
4903 
4904 	/* Don't allow namespace local devices to be moved. */
4905 	err = -EINVAL;
4906 	if (dev->features & NETIF_F_NETNS_LOCAL)
4907 		goto out;
4908 
4909 #ifdef CONFIG_SYSFS
4910 	/* Don't allow real devices to be moved when sysfs
4911 	 * is enabled.
4912 	 */
4913 	err = -EINVAL;
4914 	if (dev->dev.parent)
4915 		goto out;
4916 #endif
4917 
4918 	/* Ensure the device has been registrered */
4919 	err = -EINVAL;
4920 	if (dev->reg_state != NETREG_REGISTERED)
4921 		goto out;
4922 
4923 	/* Get out if there is nothing todo */
4924 	err = 0;
4925 	if (net_eq(dev_net(dev), net))
4926 		goto out;
4927 
4928 	/* Pick the destination device name, and ensure
4929 	 * we can use it in the destination network namespace.
4930 	 */
4931 	err = -EEXIST;
4932 	destname = dev->name;
4933 	if (__dev_get_by_name(net, destname)) {
4934 		/* We get here if we can't use the current device name */
4935 		if (!pat)
4936 			goto out;
4937 		if (!dev_valid_name(pat))
4938 			goto out;
4939 		if (strchr(pat, '%')) {
4940 			if (__dev_alloc_name(net, pat, buf) < 0)
4941 				goto out;
4942 			destname = buf;
4943 		} else
4944 			destname = pat;
4945 		if (__dev_get_by_name(net, destname))
4946 			goto out;
4947 	}
4948 
4949 	/*
4950 	 * And now a mini version of register_netdevice unregister_netdevice.
4951 	 */
4952 
4953 	/* If device is running close it first. */
4954 	dev_close(dev);
4955 
4956 	/* And unlink it from device chain */
4957 	err = -ENODEV;
4958 	unlist_netdevice(dev);
4959 
4960 	synchronize_net();
4961 
4962 	/* Shutdown queueing discipline. */
4963 	dev_shutdown(dev);
4964 
4965 	/* Notify protocols, that we are about to destroy
4966 	   this device. They should clean all the things.
4967 	*/
4968 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4969 
4970 	/*
4971 	 *	Flush the unicast and multicast chains
4972 	 */
4973 	dev_addr_discard(dev);
4974 
4975 	netdev_unregister_kobject(dev);
4976 
4977 	/* Actually switch the network namespace */
4978 	dev_net_set(dev, net);
4979 
4980 	/* Assign the new device name */
4981 	if (destname != dev->name)
4982 		strcpy(dev->name, destname);
4983 
4984 	/* If there is an ifindex conflict assign a new one */
4985 	if (__dev_get_by_index(net, dev->ifindex)) {
4986 		int iflink = (dev->iflink == dev->ifindex);
4987 		dev->ifindex = dev_new_index(net);
4988 		if (iflink)
4989 			dev->iflink = dev->ifindex;
4990 	}
4991 
4992 	/* Fixup kobjects */
4993 	err = netdev_register_kobject(dev);
4994 	WARN_ON(err);
4995 
4996 	/* Add the device back in the hashes */
4997 	list_netdevice(dev);
4998 
4999 	/* Notify protocols, that a new device appeared. */
5000 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
5001 
5002 	synchronize_net();
5003 	err = 0;
5004 out:
5005 	return err;
5006 }
5007 
5008 static int dev_cpu_callback(struct notifier_block *nfb,
5009 			    unsigned long action,
5010 			    void *ocpu)
5011 {
5012 	struct sk_buff **list_skb;
5013 	struct Qdisc **list_net;
5014 	struct sk_buff *skb;
5015 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
5016 	struct softnet_data *sd, *oldsd;
5017 
5018 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5019 		return NOTIFY_OK;
5020 
5021 	local_irq_disable();
5022 	cpu = smp_processor_id();
5023 	sd = &per_cpu(softnet_data, cpu);
5024 	oldsd = &per_cpu(softnet_data, oldcpu);
5025 
5026 	/* Find end of our completion_queue. */
5027 	list_skb = &sd->completion_queue;
5028 	while (*list_skb)
5029 		list_skb = &(*list_skb)->next;
5030 	/* Append completion queue from offline CPU. */
5031 	*list_skb = oldsd->completion_queue;
5032 	oldsd->completion_queue = NULL;
5033 
5034 	/* Find end of our output_queue. */
5035 	list_net = &sd->output_queue;
5036 	while (*list_net)
5037 		list_net = &(*list_net)->next_sched;
5038 	/* Append output queue from offline CPU. */
5039 	*list_net = oldsd->output_queue;
5040 	oldsd->output_queue = NULL;
5041 
5042 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
5043 	local_irq_enable();
5044 
5045 	/* Process offline CPU's input_pkt_queue */
5046 	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
5047 		netif_rx(skb);
5048 
5049 	return NOTIFY_OK;
5050 }
5051 
5052 
5053 /**
5054  *	netdev_increment_features - increment feature set by one
5055  *	@all: current feature set
5056  *	@one: new feature set
5057  *	@mask: mask feature set
5058  *
5059  *	Computes a new feature set after adding a device with feature set
5060  *	@one to the master device with current feature set @all.  Will not
5061  *	enable anything that is off in @mask. Returns the new feature set.
5062  */
5063 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5064 					unsigned long mask)
5065 {
5066 	/* If device needs checksumming, downgrade to it. */
5067         if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5068 		all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5069 	else if (mask & NETIF_F_ALL_CSUM) {
5070 		/* If one device supports v4/v6 checksumming, set for all. */
5071 		if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5072 		    !(all & NETIF_F_GEN_CSUM)) {
5073 			all &= ~NETIF_F_ALL_CSUM;
5074 			all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5075 		}
5076 
5077 		/* If one device supports hw checksumming, set for all. */
5078 		if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5079 			all &= ~NETIF_F_ALL_CSUM;
5080 			all |= NETIF_F_HW_CSUM;
5081 		}
5082 	}
5083 
5084 	one |= NETIF_F_ALL_CSUM;
5085 
5086 	one |= all & NETIF_F_ONE_FOR_ALL;
5087 	all &= one | NETIF_F_LLTX | NETIF_F_GSO;
5088 	all |= one & mask & NETIF_F_ONE_FOR_ALL;
5089 
5090 	return all;
5091 }
5092 EXPORT_SYMBOL(netdev_increment_features);
5093 
5094 static struct hlist_head *netdev_create_hash(void)
5095 {
5096 	int i;
5097 	struct hlist_head *hash;
5098 
5099 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5100 	if (hash != NULL)
5101 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
5102 			INIT_HLIST_HEAD(&hash[i]);
5103 
5104 	return hash;
5105 }
5106 
5107 /* Initialize per network namespace state */
5108 static int __net_init netdev_init(struct net *net)
5109 {
5110 	INIT_LIST_HEAD(&net->dev_base_head);
5111 
5112 	net->dev_name_head = netdev_create_hash();
5113 	if (net->dev_name_head == NULL)
5114 		goto err_name;
5115 
5116 	net->dev_index_head = netdev_create_hash();
5117 	if (net->dev_index_head == NULL)
5118 		goto err_idx;
5119 
5120 	return 0;
5121 
5122 err_idx:
5123 	kfree(net->dev_name_head);
5124 err_name:
5125 	return -ENOMEM;
5126 }
5127 
5128 /**
5129  *	netdev_drivername - network driver for the device
5130  *	@dev: network device
5131  *	@buffer: buffer for resulting name
5132  *	@len: size of buffer
5133  *
5134  *	Determine network driver for device.
5135  */
5136 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5137 {
5138 	const struct device_driver *driver;
5139 	const struct device *parent;
5140 
5141 	if (len <= 0 || !buffer)
5142 		return buffer;
5143 	buffer[0] = 0;
5144 
5145 	parent = dev->dev.parent;
5146 
5147 	if (!parent)
5148 		return buffer;
5149 
5150 	driver = parent->driver;
5151 	if (driver && driver->name)
5152 		strlcpy(buffer, driver->name, len);
5153 	return buffer;
5154 }
5155 
5156 static void __net_exit netdev_exit(struct net *net)
5157 {
5158 	kfree(net->dev_name_head);
5159 	kfree(net->dev_index_head);
5160 }
5161 
5162 static struct pernet_operations __net_initdata netdev_net_ops = {
5163 	.init = netdev_init,
5164 	.exit = netdev_exit,
5165 };
5166 
5167 static void __net_exit default_device_exit(struct net *net)
5168 {
5169 	struct net_device *dev;
5170 	/*
5171 	 * Push all migratable of the network devices back to the
5172 	 * initial network namespace
5173 	 */
5174 	rtnl_lock();
5175 restart:
5176 	for_each_netdev(net, dev) {
5177 		int err;
5178 		char fb_name[IFNAMSIZ];
5179 
5180 		/* Ignore unmoveable devices (i.e. loopback) */
5181 		if (dev->features & NETIF_F_NETNS_LOCAL)
5182 			continue;
5183 
5184 		/* Delete virtual devices */
5185 		if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) {
5186 			dev->rtnl_link_ops->dellink(dev);
5187 			goto restart;
5188 		}
5189 
5190 		/* Push remaing network devices to init_net */
5191 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5192 		err = dev_change_net_namespace(dev, &init_net, fb_name);
5193 		if (err) {
5194 			printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5195 				__func__, dev->name, err);
5196 			BUG();
5197 		}
5198 		goto restart;
5199 	}
5200 	rtnl_unlock();
5201 }
5202 
5203 static struct pernet_operations __net_initdata default_device_ops = {
5204 	.exit = default_device_exit,
5205 };
5206 
5207 /*
5208  *	Initialize the DEV module. At boot time this walks the device list and
5209  *	unhooks any devices that fail to initialise (normally hardware not
5210  *	present) and leaves us with a valid list of present and active devices.
5211  *
5212  */
5213 
5214 /*
5215  *       This is called single threaded during boot, so no need
5216  *       to take the rtnl semaphore.
5217  */
5218 static int __init net_dev_init(void)
5219 {
5220 	int i, rc = -ENOMEM;
5221 
5222 	BUG_ON(!dev_boot_phase);
5223 
5224 	if (dev_proc_init())
5225 		goto out;
5226 
5227 	if (netdev_kobject_init())
5228 		goto out;
5229 
5230 	INIT_LIST_HEAD(&ptype_all);
5231 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
5232 		INIT_LIST_HEAD(&ptype_base[i]);
5233 
5234 	if (register_pernet_subsys(&netdev_net_ops))
5235 		goto out;
5236 
5237 	/*
5238 	 *	Initialise the packet receive queues.
5239 	 */
5240 
5241 	for_each_possible_cpu(i) {
5242 		struct softnet_data *queue;
5243 
5244 		queue = &per_cpu(softnet_data, i);
5245 		skb_queue_head_init(&queue->input_pkt_queue);
5246 		queue->completion_queue = NULL;
5247 		INIT_LIST_HEAD(&queue->poll_list);
5248 
5249 		queue->backlog.poll = process_backlog;
5250 		queue->backlog.weight = weight_p;
5251 		queue->backlog.gro_list = NULL;
5252 		queue->backlog.gro_count = 0;
5253 	}
5254 
5255 	dev_boot_phase = 0;
5256 
5257 	/* The loopback device is special if any other network devices
5258 	 * is present in a network namespace the loopback device must
5259 	 * be present. Since we now dynamically allocate and free the
5260 	 * loopback device ensure this invariant is maintained by
5261 	 * keeping the loopback device as the first device on the
5262 	 * list of network devices.  Ensuring the loopback devices
5263 	 * is the first device that appears and the last network device
5264 	 * that disappears.
5265 	 */
5266 	if (register_pernet_device(&loopback_net_ops))
5267 		goto out;
5268 
5269 	if (register_pernet_device(&default_device_ops))
5270 		goto out;
5271 
5272 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5273 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
5274 
5275 	hotcpu_notifier(dev_cpu_callback, 0);
5276 	dst_init();
5277 	dev_mcast_init();
5278 	rc = 0;
5279 out:
5280 	return rc;
5281 }
5282 
5283 subsys_initcall(net_dev_init);
5284 
5285 static int __init initialize_hashrnd(void)
5286 {
5287 	get_random_bytes(&skb_tx_hashrnd, sizeof(skb_tx_hashrnd));
5288 	return 0;
5289 }
5290 
5291 late_initcall_sync(initialize_hashrnd);
5292 
5293 EXPORT_SYMBOL(__dev_get_by_index);
5294 EXPORT_SYMBOL(__dev_get_by_name);
5295 EXPORT_SYMBOL(__dev_remove_pack);
5296 EXPORT_SYMBOL(dev_valid_name);
5297 EXPORT_SYMBOL(dev_add_pack);
5298 EXPORT_SYMBOL(dev_alloc_name);
5299 EXPORT_SYMBOL(dev_close);
5300 EXPORT_SYMBOL(dev_get_by_flags);
5301 EXPORT_SYMBOL(dev_get_by_index);
5302 EXPORT_SYMBOL(dev_get_by_name);
5303 EXPORT_SYMBOL(dev_open);
5304 EXPORT_SYMBOL(dev_queue_xmit);
5305 EXPORT_SYMBOL(dev_remove_pack);
5306 EXPORT_SYMBOL(dev_set_allmulti);
5307 EXPORT_SYMBOL(dev_set_promiscuity);
5308 EXPORT_SYMBOL(dev_change_flags);
5309 EXPORT_SYMBOL(dev_set_mtu);
5310 EXPORT_SYMBOL(dev_set_mac_address);
5311 EXPORT_SYMBOL(free_netdev);
5312 EXPORT_SYMBOL(netdev_boot_setup_check);
5313 EXPORT_SYMBOL(netdev_set_master);
5314 EXPORT_SYMBOL(netdev_state_change);
5315 EXPORT_SYMBOL(netif_receive_skb);
5316 EXPORT_SYMBOL(netif_rx);
5317 EXPORT_SYMBOL(register_gifconf);
5318 EXPORT_SYMBOL(register_netdevice);
5319 EXPORT_SYMBOL(register_netdevice_notifier);
5320 EXPORT_SYMBOL(skb_checksum_help);
5321 EXPORT_SYMBOL(synchronize_net);
5322 EXPORT_SYMBOL(unregister_netdevice);
5323 EXPORT_SYMBOL(unregister_netdevice_notifier);
5324 EXPORT_SYMBOL(net_enable_timestamp);
5325 EXPORT_SYMBOL(net_disable_timestamp);
5326 EXPORT_SYMBOL(dev_get_flags);
5327 
5328 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
5329 EXPORT_SYMBOL(br_handle_frame_hook);
5330 EXPORT_SYMBOL(br_fdb_get_hook);
5331 EXPORT_SYMBOL(br_fdb_put_hook);
5332 #endif
5333 
5334 EXPORT_SYMBOL(dev_load);
5335 
5336 EXPORT_PER_CPU_SYMBOL(softnet_data);
5337