1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <asm/system.h> 77 #include <linux/bitops.h> 78 #include <linux/capability.h> 79 #include <linux/cpu.h> 80 #include <linux/types.h> 81 #include <linux/kernel.h> 82 #include <linux/sched.h> 83 #include <linux/mutex.h> 84 #include <linux/string.h> 85 #include <linux/mm.h> 86 #include <linux/socket.h> 87 #include <linux/sockios.h> 88 #include <linux/errno.h> 89 #include <linux/interrupt.h> 90 #include <linux/if_ether.h> 91 #include <linux/netdevice.h> 92 #include <linux/etherdevice.h> 93 #include <linux/ethtool.h> 94 #include <linux/notifier.h> 95 #include <linux/skbuff.h> 96 #include <net/net_namespace.h> 97 #include <net/sock.h> 98 #include <linux/rtnetlink.h> 99 #include <linux/proc_fs.h> 100 #include <linux/seq_file.h> 101 #include <linux/stat.h> 102 #include <linux/if_bridge.h> 103 #include <linux/if_macvlan.h> 104 #include <net/dst.h> 105 #include <net/pkt_sched.h> 106 #include <net/checksum.h> 107 #include <linux/highmem.h> 108 #include <linux/init.h> 109 #include <linux/kmod.h> 110 #include <linux/module.h> 111 #include <linux/netpoll.h> 112 #include <linux/rcupdate.h> 113 #include <linux/delay.h> 114 #include <net/wext.h> 115 #include <net/iw_handler.h> 116 #include <asm/current.h> 117 #include <linux/audit.h> 118 #include <linux/dmaengine.h> 119 #include <linux/err.h> 120 #include <linux/ctype.h> 121 #include <linux/if_arp.h> 122 #include <linux/if_vlan.h> 123 #include <linux/ip.h> 124 #include <net/ip.h> 125 #include <linux/ipv6.h> 126 #include <linux/in.h> 127 #include <linux/jhash.h> 128 #include <linux/random.h> 129 130 #include "net-sysfs.h" 131 132 /* Instead of increasing this, you should create a hash table. */ 133 #define MAX_GRO_SKBS 8 134 135 /* This should be increased if a protocol with a bigger head is added. */ 136 #define GRO_MAX_HEAD (MAX_HEADER + 128) 137 138 /* 139 * The list of packet types we will receive (as opposed to discard) 140 * and the routines to invoke. 141 * 142 * Why 16. Because with 16 the only overlap we get on a hash of the 143 * low nibble of the protocol value is RARP/SNAP/X.25. 144 * 145 * NOTE: That is no longer true with the addition of VLAN tags. Not 146 * sure which should go first, but I bet it won't make much 147 * difference if we are running VLANs. The good news is that 148 * this protocol won't be in the list unless compiled in, so 149 * the average user (w/out VLANs) will not be adversely affected. 150 * --BLG 151 * 152 * 0800 IP 153 * 8100 802.1Q VLAN 154 * 0001 802.3 155 * 0002 AX.25 156 * 0004 802.2 157 * 8035 RARP 158 * 0005 SNAP 159 * 0805 X.25 160 * 0806 ARP 161 * 8137 IPX 162 * 0009 Localtalk 163 * 86DD IPv6 164 */ 165 166 #define PTYPE_HASH_SIZE (16) 167 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 168 169 static DEFINE_SPINLOCK(ptype_lock); 170 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 171 static struct list_head ptype_all __read_mostly; /* Taps */ 172 173 /* 174 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 175 * semaphore. 176 * 177 * Pure readers hold dev_base_lock for reading. 178 * 179 * Writers must hold the rtnl semaphore while they loop through the 180 * dev_base_head list, and hold dev_base_lock for writing when they do the 181 * actual updates. This allows pure readers to access the list even 182 * while a writer is preparing to update it. 183 * 184 * To put it another way, dev_base_lock is held for writing only to 185 * protect against pure readers; the rtnl semaphore provides the 186 * protection against other writers. 187 * 188 * See, for example usages, register_netdevice() and 189 * unregister_netdevice(), which must be called with the rtnl 190 * semaphore held. 191 */ 192 DEFINE_RWLOCK(dev_base_lock); 193 194 EXPORT_SYMBOL(dev_base_lock); 195 196 #define NETDEV_HASHBITS 8 197 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS) 198 199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 200 { 201 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 202 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)]; 203 } 204 205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 206 { 207 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)]; 208 } 209 210 /* Device list insertion */ 211 static int list_netdevice(struct net_device *dev) 212 { 213 struct net *net = dev_net(dev); 214 215 ASSERT_RTNL(); 216 217 write_lock_bh(&dev_base_lock); 218 list_add_tail(&dev->dev_list, &net->dev_base_head); 219 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name)); 220 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex)); 221 write_unlock_bh(&dev_base_lock); 222 return 0; 223 } 224 225 /* Device list removal */ 226 static void unlist_netdevice(struct net_device *dev) 227 { 228 ASSERT_RTNL(); 229 230 /* Unlink dev from the device chain */ 231 write_lock_bh(&dev_base_lock); 232 list_del(&dev->dev_list); 233 hlist_del(&dev->name_hlist); 234 hlist_del(&dev->index_hlist); 235 write_unlock_bh(&dev_base_lock); 236 } 237 238 /* 239 * Our notifier list 240 */ 241 242 static RAW_NOTIFIER_HEAD(netdev_chain); 243 244 /* 245 * Device drivers call our routines to queue packets here. We empty the 246 * queue in the local softnet handler. 247 */ 248 249 DEFINE_PER_CPU(struct softnet_data, softnet_data); 250 251 #ifdef CONFIG_LOCKDEP 252 /* 253 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 254 * according to dev->type 255 */ 256 static const unsigned short netdev_lock_type[] = 257 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 258 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 259 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 260 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 261 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 262 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 263 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 264 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 265 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 266 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 267 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 268 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 269 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211, 270 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, 271 ARPHRD_PHONET_PIPE, ARPHRD_VOID, ARPHRD_NONE}; 272 273 static const char *netdev_lock_name[] = 274 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 275 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 276 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 277 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 278 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 279 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 280 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 281 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 282 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 283 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 284 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 285 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 286 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211", 287 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", 288 "_xmit_PHONET_PIPE", "_xmit_VOID", "_xmit_NONE"}; 289 290 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 291 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 292 293 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 294 { 295 int i; 296 297 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 298 if (netdev_lock_type[i] == dev_type) 299 return i; 300 /* the last key is used by default */ 301 return ARRAY_SIZE(netdev_lock_type) - 1; 302 } 303 304 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 305 unsigned short dev_type) 306 { 307 int i; 308 309 i = netdev_lock_pos(dev_type); 310 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 311 netdev_lock_name[i]); 312 } 313 314 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 315 { 316 int i; 317 318 i = netdev_lock_pos(dev->type); 319 lockdep_set_class_and_name(&dev->addr_list_lock, 320 &netdev_addr_lock_key[i], 321 netdev_lock_name[i]); 322 } 323 #else 324 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 325 unsigned short dev_type) 326 { 327 } 328 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 329 { 330 } 331 #endif 332 333 /******************************************************************************* 334 335 Protocol management and registration routines 336 337 *******************************************************************************/ 338 339 /* 340 * Add a protocol ID to the list. Now that the input handler is 341 * smarter we can dispense with all the messy stuff that used to be 342 * here. 343 * 344 * BEWARE!!! Protocol handlers, mangling input packets, 345 * MUST BE last in hash buckets and checking protocol handlers 346 * MUST start from promiscuous ptype_all chain in net_bh. 347 * It is true now, do not change it. 348 * Explanation follows: if protocol handler, mangling packet, will 349 * be the first on list, it is not able to sense, that packet 350 * is cloned and should be copied-on-write, so that it will 351 * change it and subsequent readers will get broken packet. 352 * --ANK (980803) 353 */ 354 355 /** 356 * dev_add_pack - add packet handler 357 * @pt: packet type declaration 358 * 359 * Add a protocol handler to the networking stack. The passed &packet_type 360 * is linked into kernel lists and may not be freed until it has been 361 * removed from the kernel lists. 362 * 363 * This call does not sleep therefore it can not 364 * guarantee all CPU's that are in middle of receiving packets 365 * will see the new packet type (until the next received packet). 366 */ 367 368 void dev_add_pack(struct packet_type *pt) 369 { 370 int hash; 371 372 spin_lock_bh(&ptype_lock); 373 if (pt->type == htons(ETH_P_ALL)) 374 list_add_rcu(&pt->list, &ptype_all); 375 else { 376 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 377 list_add_rcu(&pt->list, &ptype_base[hash]); 378 } 379 spin_unlock_bh(&ptype_lock); 380 } 381 382 /** 383 * __dev_remove_pack - remove packet handler 384 * @pt: packet type declaration 385 * 386 * Remove a protocol handler that was previously added to the kernel 387 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 388 * from the kernel lists and can be freed or reused once this function 389 * returns. 390 * 391 * The packet type might still be in use by receivers 392 * and must not be freed until after all the CPU's have gone 393 * through a quiescent state. 394 */ 395 void __dev_remove_pack(struct packet_type *pt) 396 { 397 struct list_head *head; 398 struct packet_type *pt1; 399 400 spin_lock_bh(&ptype_lock); 401 402 if (pt->type == htons(ETH_P_ALL)) 403 head = &ptype_all; 404 else 405 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 406 407 list_for_each_entry(pt1, head, list) { 408 if (pt == pt1) { 409 list_del_rcu(&pt->list); 410 goto out; 411 } 412 } 413 414 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 415 out: 416 spin_unlock_bh(&ptype_lock); 417 } 418 /** 419 * dev_remove_pack - remove packet handler 420 * @pt: packet type declaration 421 * 422 * Remove a protocol handler that was previously added to the kernel 423 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 424 * from the kernel lists and can be freed or reused once this function 425 * returns. 426 * 427 * This call sleeps to guarantee that no CPU is looking at the packet 428 * type after return. 429 */ 430 void dev_remove_pack(struct packet_type *pt) 431 { 432 __dev_remove_pack(pt); 433 434 synchronize_net(); 435 } 436 437 /****************************************************************************** 438 439 Device Boot-time Settings Routines 440 441 *******************************************************************************/ 442 443 /* Boot time configuration table */ 444 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 445 446 /** 447 * netdev_boot_setup_add - add new setup entry 448 * @name: name of the device 449 * @map: configured settings for the device 450 * 451 * Adds new setup entry to the dev_boot_setup list. The function 452 * returns 0 on error and 1 on success. This is a generic routine to 453 * all netdevices. 454 */ 455 static int netdev_boot_setup_add(char *name, struct ifmap *map) 456 { 457 struct netdev_boot_setup *s; 458 int i; 459 460 s = dev_boot_setup; 461 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 462 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 463 memset(s[i].name, 0, sizeof(s[i].name)); 464 strlcpy(s[i].name, name, IFNAMSIZ); 465 memcpy(&s[i].map, map, sizeof(s[i].map)); 466 break; 467 } 468 } 469 470 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 471 } 472 473 /** 474 * netdev_boot_setup_check - check boot time settings 475 * @dev: the netdevice 476 * 477 * Check boot time settings for the device. 478 * The found settings are set for the device to be used 479 * later in the device probing. 480 * Returns 0 if no settings found, 1 if they are. 481 */ 482 int netdev_boot_setup_check(struct net_device *dev) 483 { 484 struct netdev_boot_setup *s = dev_boot_setup; 485 int i; 486 487 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 488 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 489 !strcmp(dev->name, s[i].name)) { 490 dev->irq = s[i].map.irq; 491 dev->base_addr = s[i].map.base_addr; 492 dev->mem_start = s[i].map.mem_start; 493 dev->mem_end = s[i].map.mem_end; 494 return 1; 495 } 496 } 497 return 0; 498 } 499 500 501 /** 502 * netdev_boot_base - get address from boot time settings 503 * @prefix: prefix for network device 504 * @unit: id for network device 505 * 506 * Check boot time settings for the base address of device. 507 * The found settings are set for the device to be used 508 * later in the device probing. 509 * Returns 0 if no settings found. 510 */ 511 unsigned long netdev_boot_base(const char *prefix, int unit) 512 { 513 const struct netdev_boot_setup *s = dev_boot_setup; 514 char name[IFNAMSIZ]; 515 int i; 516 517 sprintf(name, "%s%d", prefix, unit); 518 519 /* 520 * If device already registered then return base of 1 521 * to indicate not to probe for this interface 522 */ 523 if (__dev_get_by_name(&init_net, name)) 524 return 1; 525 526 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 527 if (!strcmp(name, s[i].name)) 528 return s[i].map.base_addr; 529 return 0; 530 } 531 532 /* 533 * Saves at boot time configured settings for any netdevice. 534 */ 535 int __init netdev_boot_setup(char *str) 536 { 537 int ints[5]; 538 struct ifmap map; 539 540 str = get_options(str, ARRAY_SIZE(ints), ints); 541 if (!str || !*str) 542 return 0; 543 544 /* Save settings */ 545 memset(&map, 0, sizeof(map)); 546 if (ints[0] > 0) 547 map.irq = ints[1]; 548 if (ints[0] > 1) 549 map.base_addr = ints[2]; 550 if (ints[0] > 2) 551 map.mem_start = ints[3]; 552 if (ints[0] > 3) 553 map.mem_end = ints[4]; 554 555 /* Add new entry to the list */ 556 return netdev_boot_setup_add(str, &map); 557 } 558 559 __setup("netdev=", netdev_boot_setup); 560 561 /******************************************************************************* 562 563 Device Interface Subroutines 564 565 *******************************************************************************/ 566 567 /** 568 * __dev_get_by_name - find a device by its name 569 * @net: the applicable net namespace 570 * @name: name to find 571 * 572 * Find an interface by name. Must be called under RTNL semaphore 573 * or @dev_base_lock. If the name is found a pointer to the device 574 * is returned. If the name is not found then %NULL is returned. The 575 * reference counters are not incremented so the caller must be 576 * careful with locks. 577 */ 578 579 struct net_device *__dev_get_by_name(struct net *net, const char *name) 580 { 581 struct hlist_node *p; 582 583 hlist_for_each(p, dev_name_hash(net, name)) { 584 struct net_device *dev 585 = hlist_entry(p, struct net_device, name_hlist); 586 if (!strncmp(dev->name, name, IFNAMSIZ)) 587 return dev; 588 } 589 return NULL; 590 } 591 592 /** 593 * dev_get_by_name - find a device by its name 594 * @net: the applicable net namespace 595 * @name: name to find 596 * 597 * Find an interface by name. This can be called from any 598 * context and does its own locking. The returned handle has 599 * the usage count incremented and the caller must use dev_put() to 600 * release it when it is no longer needed. %NULL is returned if no 601 * matching device is found. 602 */ 603 604 struct net_device *dev_get_by_name(struct net *net, const char *name) 605 { 606 struct net_device *dev; 607 608 read_lock(&dev_base_lock); 609 dev = __dev_get_by_name(net, name); 610 if (dev) 611 dev_hold(dev); 612 read_unlock(&dev_base_lock); 613 return dev; 614 } 615 616 /** 617 * __dev_get_by_index - find a device by its ifindex 618 * @net: the applicable net namespace 619 * @ifindex: index of device 620 * 621 * Search for an interface by index. Returns %NULL if the device 622 * is not found or a pointer to the device. The device has not 623 * had its reference counter increased so the caller must be careful 624 * about locking. The caller must hold either the RTNL semaphore 625 * or @dev_base_lock. 626 */ 627 628 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 629 { 630 struct hlist_node *p; 631 632 hlist_for_each(p, dev_index_hash(net, ifindex)) { 633 struct net_device *dev 634 = hlist_entry(p, struct net_device, index_hlist); 635 if (dev->ifindex == ifindex) 636 return dev; 637 } 638 return NULL; 639 } 640 641 642 /** 643 * dev_get_by_index - find a device by its ifindex 644 * @net: the applicable net namespace 645 * @ifindex: index of device 646 * 647 * Search for an interface by index. Returns NULL if the device 648 * is not found or a pointer to the device. The device returned has 649 * had a reference added and the pointer is safe until the user calls 650 * dev_put to indicate they have finished with it. 651 */ 652 653 struct net_device *dev_get_by_index(struct net *net, int ifindex) 654 { 655 struct net_device *dev; 656 657 read_lock(&dev_base_lock); 658 dev = __dev_get_by_index(net, ifindex); 659 if (dev) 660 dev_hold(dev); 661 read_unlock(&dev_base_lock); 662 return dev; 663 } 664 665 /** 666 * dev_getbyhwaddr - find a device by its hardware address 667 * @net: the applicable net namespace 668 * @type: media type of device 669 * @ha: hardware address 670 * 671 * Search for an interface by MAC address. Returns NULL if the device 672 * is not found or a pointer to the device. The caller must hold the 673 * rtnl semaphore. The returned device has not had its ref count increased 674 * and the caller must therefore be careful about locking 675 * 676 * BUGS: 677 * If the API was consistent this would be __dev_get_by_hwaddr 678 */ 679 680 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha) 681 { 682 struct net_device *dev; 683 684 ASSERT_RTNL(); 685 686 for_each_netdev(net, dev) 687 if (dev->type == type && 688 !memcmp(dev->dev_addr, ha, dev->addr_len)) 689 return dev; 690 691 return NULL; 692 } 693 694 EXPORT_SYMBOL(dev_getbyhwaddr); 695 696 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 697 { 698 struct net_device *dev; 699 700 ASSERT_RTNL(); 701 for_each_netdev(net, dev) 702 if (dev->type == type) 703 return dev; 704 705 return NULL; 706 } 707 708 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 709 710 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 711 { 712 struct net_device *dev; 713 714 rtnl_lock(); 715 dev = __dev_getfirstbyhwtype(net, type); 716 if (dev) 717 dev_hold(dev); 718 rtnl_unlock(); 719 return dev; 720 } 721 722 EXPORT_SYMBOL(dev_getfirstbyhwtype); 723 724 /** 725 * dev_get_by_flags - find any device with given flags 726 * @net: the applicable net namespace 727 * @if_flags: IFF_* values 728 * @mask: bitmask of bits in if_flags to check 729 * 730 * Search for any interface with the given flags. Returns NULL if a device 731 * is not found or a pointer to the device. The device returned has 732 * had a reference added and the pointer is safe until the user calls 733 * dev_put to indicate they have finished with it. 734 */ 735 736 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask) 737 { 738 struct net_device *dev, *ret; 739 740 ret = NULL; 741 read_lock(&dev_base_lock); 742 for_each_netdev(net, dev) { 743 if (((dev->flags ^ if_flags) & mask) == 0) { 744 dev_hold(dev); 745 ret = dev; 746 break; 747 } 748 } 749 read_unlock(&dev_base_lock); 750 return ret; 751 } 752 753 /** 754 * dev_valid_name - check if name is okay for network device 755 * @name: name string 756 * 757 * Network device names need to be valid file names to 758 * to allow sysfs to work. We also disallow any kind of 759 * whitespace. 760 */ 761 int dev_valid_name(const char *name) 762 { 763 if (*name == '\0') 764 return 0; 765 if (strlen(name) >= IFNAMSIZ) 766 return 0; 767 if (!strcmp(name, ".") || !strcmp(name, "..")) 768 return 0; 769 770 while (*name) { 771 if (*name == '/' || isspace(*name)) 772 return 0; 773 name++; 774 } 775 return 1; 776 } 777 778 /** 779 * __dev_alloc_name - allocate a name for a device 780 * @net: network namespace to allocate the device name in 781 * @name: name format string 782 * @buf: scratch buffer and result name string 783 * 784 * Passed a format string - eg "lt%d" it will try and find a suitable 785 * id. It scans list of devices to build up a free map, then chooses 786 * the first empty slot. The caller must hold the dev_base or rtnl lock 787 * while allocating the name and adding the device in order to avoid 788 * duplicates. 789 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 790 * Returns the number of the unit assigned or a negative errno code. 791 */ 792 793 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 794 { 795 int i = 0; 796 const char *p; 797 const int max_netdevices = 8*PAGE_SIZE; 798 unsigned long *inuse; 799 struct net_device *d; 800 801 p = strnchr(name, IFNAMSIZ-1, '%'); 802 if (p) { 803 /* 804 * Verify the string as this thing may have come from 805 * the user. There must be either one "%d" and no other "%" 806 * characters. 807 */ 808 if (p[1] != 'd' || strchr(p + 2, '%')) 809 return -EINVAL; 810 811 /* Use one page as a bit array of possible slots */ 812 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 813 if (!inuse) 814 return -ENOMEM; 815 816 for_each_netdev(net, d) { 817 if (!sscanf(d->name, name, &i)) 818 continue; 819 if (i < 0 || i >= max_netdevices) 820 continue; 821 822 /* avoid cases where sscanf is not exact inverse of printf */ 823 snprintf(buf, IFNAMSIZ, name, i); 824 if (!strncmp(buf, d->name, IFNAMSIZ)) 825 set_bit(i, inuse); 826 } 827 828 i = find_first_zero_bit(inuse, max_netdevices); 829 free_page((unsigned long) inuse); 830 } 831 832 snprintf(buf, IFNAMSIZ, name, i); 833 if (!__dev_get_by_name(net, buf)) 834 return i; 835 836 /* It is possible to run out of possible slots 837 * when the name is long and there isn't enough space left 838 * for the digits, or if all bits are used. 839 */ 840 return -ENFILE; 841 } 842 843 /** 844 * dev_alloc_name - allocate a name for a device 845 * @dev: device 846 * @name: name format string 847 * 848 * Passed a format string - eg "lt%d" it will try and find a suitable 849 * id. It scans list of devices to build up a free map, then chooses 850 * the first empty slot. The caller must hold the dev_base or rtnl lock 851 * while allocating the name and adding the device in order to avoid 852 * duplicates. 853 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 854 * Returns the number of the unit assigned or a negative errno code. 855 */ 856 857 int dev_alloc_name(struct net_device *dev, const char *name) 858 { 859 char buf[IFNAMSIZ]; 860 struct net *net; 861 int ret; 862 863 BUG_ON(!dev_net(dev)); 864 net = dev_net(dev); 865 ret = __dev_alloc_name(net, name, buf); 866 if (ret >= 0) 867 strlcpy(dev->name, buf, IFNAMSIZ); 868 return ret; 869 } 870 871 872 /** 873 * dev_change_name - change name of a device 874 * @dev: device 875 * @newname: name (or format string) must be at least IFNAMSIZ 876 * 877 * Change name of a device, can pass format strings "eth%d". 878 * for wildcarding. 879 */ 880 int dev_change_name(struct net_device *dev, const char *newname) 881 { 882 char oldname[IFNAMSIZ]; 883 int err = 0; 884 int ret; 885 struct net *net; 886 887 ASSERT_RTNL(); 888 BUG_ON(!dev_net(dev)); 889 890 net = dev_net(dev); 891 if (dev->flags & IFF_UP) 892 return -EBUSY; 893 894 if (!dev_valid_name(newname)) 895 return -EINVAL; 896 897 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) 898 return 0; 899 900 memcpy(oldname, dev->name, IFNAMSIZ); 901 902 if (strchr(newname, '%')) { 903 err = dev_alloc_name(dev, newname); 904 if (err < 0) 905 return err; 906 } 907 else if (__dev_get_by_name(net, newname)) 908 return -EEXIST; 909 else 910 strlcpy(dev->name, newname, IFNAMSIZ); 911 912 rollback: 913 /* For now only devices in the initial network namespace 914 * are in sysfs. 915 */ 916 if (net == &init_net) { 917 ret = device_rename(&dev->dev, dev->name); 918 if (ret) { 919 memcpy(dev->name, oldname, IFNAMSIZ); 920 return ret; 921 } 922 } 923 924 write_lock_bh(&dev_base_lock); 925 hlist_del(&dev->name_hlist); 926 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name)); 927 write_unlock_bh(&dev_base_lock); 928 929 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 930 ret = notifier_to_errno(ret); 931 932 if (ret) { 933 if (err) { 934 printk(KERN_ERR 935 "%s: name change rollback failed: %d.\n", 936 dev->name, ret); 937 } else { 938 err = ret; 939 memcpy(dev->name, oldname, IFNAMSIZ); 940 goto rollback; 941 } 942 } 943 944 return err; 945 } 946 947 /** 948 * dev_set_alias - change ifalias of a device 949 * @dev: device 950 * @alias: name up to IFALIASZ 951 * @len: limit of bytes to copy from info 952 * 953 * Set ifalias for a device, 954 */ 955 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 956 { 957 ASSERT_RTNL(); 958 959 if (len >= IFALIASZ) 960 return -EINVAL; 961 962 if (!len) { 963 if (dev->ifalias) { 964 kfree(dev->ifalias); 965 dev->ifalias = NULL; 966 } 967 return 0; 968 } 969 970 dev->ifalias = krealloc(dev->ifalias, len+1, GFP_KERNEL); 971 if (!dev->ifalias) 972 return -ENOMEM; 973 974 strlcpy(dev->ifalias, alias, len+1); 975 return len; 976 } 977 978 979 /** 980 * netdev_features_change - device changes features 981 * @dev: device to cause notification 982 * 983 * Called to indicate a device has changed features. 984 */ 985 void netdev_features_change(struct net_device *dev) 986 { 987 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 988 } 989 EXPORT_SYMBOL(netdev_features_change); 990 991 /** 992 * netdev_state_change - device changes state 993 * @dev: device to cause notification 994 * 995 * Called to indicate a device has changed state. This function calls 996 * the notifier chains for netdev_chain and sends a NEWLINK message 997 * to the routing socket. 998 */ 999 void netdev_state_change(struct net_device *dev) 1000 { 1001 if (dev->flags & IFF_UP) { 1002 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1003 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1004 } 1005 } 1006 1007 void netdev_bonding_change(struct net_device *dev) 1008 { 1009 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev); 1010 } 1011 EXPORT_SYMBOL(netdev_bonding_change); 1012 1013 /** 1014 * dev_load - load a network module 1015 * @net: the applicable net namespace 1016 * @name: name of interface 1017 * 1018 * If a network interface is not present and the process has suitable 1019 * privileges this function loads the module. If module loading is not 1020 * available in this kernel then it becomes a nop. 1021 */ 1022 1023 void dev_load(struct net *net, const char *name) 1024 { 1025 struct net_device *dev; 1026 1027 read_lock(&dev_base_lock); 1028 dev = __dev_get_by_name(net, name); 1029 read_unlock(&dev_base_lock); 1030 1031 if (!dev && capable(CAP_SYS_MODULE)) 1032 request_module("%s", name); 1033 } 1034 1035 /** 1036 * dev_open - prepare an interface for use. 1037 * @dev: device to open 1038 * 1039 * Takes a device from down to up state. The device's private open 1040 * function is invoked and then the multicast lists are loaded. Finally 1041 * the device is moved into the up state and a %NETDEV_UP message is 1042 * sent to the netdev notifier chain. 1043 * 1044 * Calling this function on an active interface is a nop. On a failure 1045 * a negative errno code is returned. 1046 */ 1047 int dev_open(struct net_device *dev) 1048 { 1049 const struct net_device_ops *ops = dev->netdev_ops; 1050 int ret = 0; 1051 1052 ASSERT_RTNL(); 1053 1054 /* 1055 * Is it already up? 1056 */ 1057 1058 if (dev->flags & IFF_UP) 1059 return 0; 1060 1061 /* 1062 * Is it even present? 1063 */ 1064 if (!netif_device_present(dev)) 1065 return -ENODEV; 1066 1067 /* 1068 * Call device private open method 1069 */ 1070 set_bit(__LINK_STATE_START, &dev->state); 1071 1072 if (ops->ndo_validate_addr) 1073 ret = ops->ndo_validate_addr(dev); 1074 1075 if (!ret && ops->ndo_open) 1076 ret = ops->ndo_open(dev); 1077 1078 /* 1079 * If it went open OK then: 1080 */ 1081 1082 if (ret) 1083 clear_bit(__LINK_STATE_START, &dev->state); 1084 else { 1085 /* 1086 * Set the flags. 1087 */ 1088 dev->flags |= IFF_UP; 1089 1090 /* 1091 * Enable NET_DMA 1092 */ 1093 net_dmaengine_get(); 1094 1095 /* 1096 * Initialize multicasting status 1097 */ 1098 dev_set_rx_mode(dev); 1099 1100 /* 1101 * Wakeup transmit queue engine 1102 */ 1103 dev_activate(dev); 1104 1105 /* 1106 * ... and announce new interface. 1107 */ 1108 call_netdevice_notifiers(NETDEV_UP, dev); 1109 } 1110 1111 return ret; 1112 } 1113 1114 /** 1115 * dev_close - shutdown an interface. 1116 * @dev: device to shutdown 1117 * 1118 * This function moves an active device into down state. A 1119 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1120 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1121 * chain. 1122 */ 1123 int dev_close(struct net_device *dev) 1124 { 1125 const struct net_device_ops *ops = dev->netdev_ops; 1126 ASSERT_RTNL(); 1127 1128 might_sleep(); 1129 1130 if (!(dev->flags & IFF_UP)) 1131 return 0; 1132 1133 /* 1134 * Tell people we are going down, so that they can 1135 * prepare to death, when device is still operating. 1136 */ 1137 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1138 1139 clear_bit(__LINK_STATE_START, &dev->state); 1140 1141 /* Synchronize to scheduled poll. We cannot touch poll list, 1142 * it can be even on different cpu. So just clear netif_running(). 1143 * 1144 * dev->stop() will invoke napi_disable() on all of it's 1145 * napi_struct instances on this device. 1146 */ 1147 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1148 1149 dev_deactivate(dev); 1150 1151 /* 1152 * Call the device specific close. This cannot fail. 1153 * Only if device is UP 1154 * 1155 * We allow it to be called even after a DETACH hot-plug 1156 * event. 1157 */ 1158 if (ops->ndo_stop) 1159 ops->ndo_stop(dev); 1160 1161 /* 1162 * Device is now down. 1163 */ 1164 1165 dev->flags &= ~IFF_UP; 1166 1167 /* 1168 * Tell people we are down 1169 */ 1170 call_netdevice_notifiers(NETDEV_DOWN, dev); 1171 1172 /* 1173 * Shutdown NET_DMA 1174 */ 1175 net_dmaengine_put(); 1176 1177 return 0; 1178 } 1179 1180 1181 /** 1182 * dev_disable_lro - disable Large Receive Offload on a device 1183 * @dev: device 1184 * 1185 * Disable Large Receive Offload (LRO) on a net device. Must be 1186 * called under RTNL. This is needed if received packets may be 1187 * forwarded to another interface. 1188 */ 1189 void dev_disable_lro(struct net_device *dev) 1190 { 1191 if (dev->ethtool_ops && dev->ethtool_ops->get_flags && 1192 dev->ethtool_ops->set_flags) { 1193 u32 flags = dev->ethtool_ops->get_flags(dev); 1194 if (flags & ETH_FLAG_LRO) { 1195 flags &= ~ETH_FLAG_LRO; 1196 dev->ethtool_ops->set_flags(dev, flags); 1197 } 1198 } 1199 WARN_ON(dev->features & NETIF_F_LRO); 1200 } 1201 EXPORT_SYMBOL(dev_disable_lro); 1202 1203 1204 static int dev_boot_phase = 1; 1205 1206 /* 1207 * Device change register/unregister. These are not inline or static 1208 * as we export them to the world. 1209 */ 1210 1211 /** 1212 * register_netdevice_notifier - register a network notifier block 1213 * @nb: notifier 1214 * 1215 * Register a notifier to be called when network device events occur. 1216 * The notifier passed is linked into the kernel structures and must 1217 * not be reused until it has been unregistered. A negative errno code 1218 * is returned on a failure. 1219 * 1220 * When registered all registration and up events are replayed 1221 * to the new notifier to allow device to have a race free 1222 * view of the network device list. 1223 */ 1224 1225 int register_netdevice_notifier(struct notifier_block *nb) 1226 { 1227 struct net_device *dev; 1228 struct net_device *last; 1229 struct net *net; 1230 int err; 1231 1232 rtnl_lock(); 1233 err = raw_notifier_chain_register(&netdev_chain, nb); 1234 if (err) 1235 goto unlock; 1236 if (dev_boot_phase) 1237 goto unlock; 1238 for_each_net(net) { 1239 for_each_netdev(net, dev) { 1240 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1241 err = notifier_to_errno(err); 1242 if (err) 1243 goto rollback; 1244 1245 if (!(dev->flags & IFF_UP)) 1246 continue; 1247 1248 nb->notifier_call(nb, NETDEV_UP, dev); 1249 } 1250 } 1251 1252 unlock: 1253 rtnl_unlock(); 1254 return err; 1255 1256 rollback: 1257 last = dev; 1258 for_each_net(net) { 1259 for_each_netdev(net, dev) { 1260 if (dev == last) 1261 break; 1262 1263 if (dev->flags & IFF_UP) { 1264 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1265 nb->notifier_call(nb, NETDEV_DOWN, dev); 1266 } 1267 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1268 } 1269 } 1270 1271 raw_notifier_chain_unregister(&netdev_chain, nb); 1272 goto unlock; 1273 } 1274 1275 /** 1276 * unregister_netdevice_notifier - unregister a network notifier block 1277 * @nb: notifier 1278 * 1279 * Unregister a notifier previously registered by 1280 * register_netdevice_notifier(). The notifier is unlinked into the 1281 * kernel structures and may then be reused. A negative errno code 1282 * is returned on a failure. 1283 */ 1284 1285 int unregister_netdevice_notifier(struct notifier_block *nb) 1286 { 1287 int err; 1288 1289 rtnl_lock(); 1290 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1291 rtnl_unlock(); 1292 return err; 1293 } 1294 1295 /** 1296 * call_netdevice_notifiers - call all network notifier blocks 1297 * @val: value passed unmodified to notifier function 1298 * @dev: net_device pointer passed unmodified to notifier function 1299 * 1300 * Call all network notifier blocks. Parameters and return value 1301 * are as for raw_notifier_call_chain(). 1302 */ 1303 1304 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1305 { 1306 return raw_notifier_call_chain(&netdev_chain, val, dev); 1307 } 1308 1309 /* When > 0 there are consumers of rx skb time stamps */ 1310 static atomic_t netstamp_needed = ATOMIC_INIT(0); 1311 1312 void net_enable_timestamp(void) 1313 { 1314 atomic_inc(&netstamp_needed); 1315 } 1316 1317 void net_disable_timestamp(void) 1318 { 1319 atomic_dec(&netstamp_needed); 1320 } 1321 1322 static inline void net_timestamp(struct sk_buff *skb) 1323 { 1324 if (atomic_read(&netstamp_needed)) 1325 __net_timestamp(skb); 1326 else 1327 skb->tstamp.tv64 = 0; 1328 } 1329 1330 /* 1331 * Support routine. Sends outgoing frames to any network 1332 * taps currently in use. 1333 */ 1334 1335 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1336 { 1337 struct packet_type *ptype; 1338 1339 #ifdef CONFIG_NET_CLS_ACT 1340 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS))) 1341 net_timestamp(skb); 1342 #else 1343 net_timestamp(skb); 1344 #endif 1345 1346 rcu_read_lock(); 1347 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1348 /* Never send packets back to the socket 1349 * they originated from - MvS (miquels@drinkel.ow.org) 1350 */ 1351 if ((ptype->dev == dev || !ptype->dev) && 1352 (ptype->af_packet_priv == NULL || 1353 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1354 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC); 1355 if (!skb2) 1356 break; 1357 1358 /* skb->nh should be correctly 1359 set by sender, so that the second statement is 1360 just protection against buggy protocols. 1361 */ 1362 skb_reset_mac_header(skb2); 1363 1364 if (skb_network_header(skb2) < skb2->data || 1365 skb2->network_header > skb2->tail) { 1366 if (net_ratelimit()) 1367 printk(KERN_CRIT "protocol %04x is " 1368 "buggy, dev %s\n", 1369 skb2->protocol, dev->name); 1370 skb_reset_network_header(skb2); 1371 } 1372 1373 skb2->transport_header = skb2->network_header; 1374 skb2->pkt_type = PACKET_OUTGOING; 1375 ptype->func(skb2, skb->dev, ptype, skb->dev); 1376 } 1377 } 1378 rcu_read_unlock(); 1379 } 1380 1381 1382 static inline void __netif_reschedule(struct Qdisc *q) 1383 { 1384 struct softnet_data *sd; 1385 unsigned long flags; 1386 1387 local_irq_save(flags); 1388 sd = &__get_cpu_var(softnet_data); 1389 q->next_sched = sd->output_queue; 1390 sd->output_queue = q; 1391 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1392 local_irq_restore(flags); 1393 } 1394 1395 void __netif_schedule(struct Qdisc *q) 1396 { 1397 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 1398 __netif_reschedule(q); 1399 } 1400 EXPORT_SYMBOL(__netif_schedule); 1401 1402 void dev_kfree_skb_irq(struct sk_buff *skb) 1403 { 1404 if (atomic_dec_and_test(&skb->users)) { 1405 struct softnet_data *sd; 1406 unsigned long flags; 1407 1408 local_irq_save(flags); 1409 sd = &__get_cpu_var(softnet_data); 1410 skb->next = sd->completion_queue; 1411 sd->completion_queue = skb; 1412 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1413 local_irq_restore(flags); 1414 } 1415 } 1416 EXPORT_SYMBOL(dev_kfree_skb_irq); 1417 1418 void dev_kfree_skb_any(struct sk_buff *skb) 1419 { 1420 if (in_irq() || irqs_disabled()) 1421 dev_kfree_skb_irq(skb); 1422 else 1423 dev_kfree_skb(skb); 1424 } 1425 EXPORT_SYMBOL(dev_kfree_skb_any); 1426 1427 1428 /** 1429 * netif_device_detach - mark device as removed 1430 * @dev: network device 1431 * 1432 * Mark device as removed from system and therefore no longer available. 1433 */ 1434 void netif_device_detach(struct net_device *dev) 1435 { 1436 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1437 netif_running(dev)) { 1438 netif_tx_stop_all_queues(dev); 1439 } 1440 } 1441 EXPORT_SYMBOL(netif_device_detach); 1442 1443 /** 1444 * netif_device_attach - mark device as attached 1445 * @dev: network device 1446 * 1447 * Mark device as attached from system and restart if needed. 1448 */ 1449 void netif_device_attach(struct net_device *dev) 1450 { 1451 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1452 netif_running(dev)) { 1453 netif_tx_wake_all_queues(dev); 1454 __netdev_watchdog_up(dev); 1455 } 1456 } 1457 EXPORT_SYMBOL(netif_device_attach); 1458 1459 static bool can_checksum_protocol(unsigned long features, __be16 protocol) 1460 { 1461 return ((features & NETIF_F_GEN_CSUM) || 1462 ((features & NETIF_F_IP_CSUM) && 1463 protocol == htons(ETH_P_IP)) || 1464 ((features & NETIF_F_IPV6_CSUM) && 1465 protocol == htons(ETH_P_IPV6)) || 1466 ((features & NETIF_F_FCOE_CRC) && 1467 protocol == htons(ETH_P_FCOE))); 1468 } 1469 1470 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb) 1471 { 1472 if (can_checksum_protocol(dev->features, skb->protocol)) 1473 return true; 1474 1475 if (skb->protocol == htons(ETH_P_8021Q)) { 1476 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 1477 if (can_checksum_protocol(dev->features & dev->vlan_features, 1478 veh->h_vlan_encapsulated_proto)) 1479 return true; 1480 } 1481 1482 return false; 1483 } 1484 1485 /* 1486 * Invalidate hardware checksum when packet is to be mangled, and 1487 * complete checksum manually on outgoing path. 1488 */ 1489 int skb_checksum_help(struct sk_buff *skb) 1490 { 1491 __wsum csum; 1492 int ret = 0, offset; 1493 1494 if (skb->ip_summed == CHECKSUM_COMPLETE) 1495 goto out_set_summed; 1496 1497 if (unlikely(skb_shinfo(skb)->gso_size)) { 1498 /* Let GSO fix up the checksum. */ 1499 goto out_set_summed; 1500 } 1501 1502 offset = skb->csum_start - skb_headroom(skb); 1503 BUG_ON(offset >= skb_headlen(skb)); 1504 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1505 1506 offset += skb->csum_offset; 1507 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1508 1509 if (skb_cloned(skb) && 1510 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1511 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1512 if (ret) 1513 goto out; 1514 } 1515 1516 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1517 out_set_summed: 1518 skb->ip_summed = CHECKSUM_NONE; 1519 out: 1520 return ret; 1521 } 1522 1523 /** 1524 * skb_gso_segment - Perform segmentation on skb. 1525 * @skb: buffer to segment 1526 * @features: features for the output path (see dev->features) 1527 * 1528 * This function segments the given skb and returns a list of segments. 1529 * 1530 * It may return NULL if the skb requires no segmentation. This is 1531 * only possible when GSO is used for verifying header integrity. 1532 */ 1533 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features) 1534 { 1535 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1536 struct packet_type *ptype; 1537 __be16 type = skb->protocol; 1538 int err; 1539 1540 skb_reset_mac_header(skb); 1541 skb->mac_len = skb->network_header - skb->mac_header; 1542 __skb_pull(skb, skb->mac_len); 1543 1544 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1545 struct net_device *dev = skb->dev; 1546 struct ethtool_drvinfo info = {}; 1547 1548 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo) 1549 dev->ethtool_ops->get_drvinfo(dev, &info); 1550 1551 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d " 1552 "ip_summed=%d", 1553 info.driver, dev ? dev->features : 0L, 1554 skb->sk ? skb->sk->sk_route_caps : 0L, 1555 skb->len, skb->data_len, skb->ip_summed); 1556 1557 if (skb_header_cloned(skb) && 1558 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1559 return ERR_PTR(err); 1560 } 1561 1562 rcu_read_lock(); 1563 list_for_each_entry_rcu(ptype, 1564 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 1565 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1566 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1567 err = ptype->gso_send_check(skb); 1568 segs = ERR_PTR(err); 1569 if (err || skb_gso_ok(skb, features)) 1570 break; 1571 __skb_push(skb, (skb->data - 1572 skb_network_header(skb))); 1573 } 1574 segs = ptype->gso_segment(skb, features); 1575 break; 1576 } 1577 } 1578 rcu_read_unlock(); 1579 1580 __skb_push(skb, skb->data - skb_mac_header(skb)); 1581 1582 return segs; 1583 } 1584 1585 EXPORT_SYMBOL(skb_gso_segment); 1586 1587 /* Take action when hardware reception checksum errors are detected. */ 1588 #ifdef CONFIG_BUG 1589 void netdev_rx_csum_fault(struct net_device *dev) 1590 { 1591 if (net_ratelimit()) { 1592 printk(KERN_ERR "%s: hw csum failure.\n", 1593 dev ? dev->name : "<unknown>"); 1594 dump_stack(); 1595 } 1596 } 1597 EXPORT_SYMBOL(netdev_rx_csum_fault); 1598 #endif 1599 1600 /* Actually, we should eliminate this check as soon as we know, that: 1601 * 1. IOMMU is present and allows to map all the memory. 1602 * 2. No high memory really exists on this machine. 1603 */ 1604 1605 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 1606 { 1607 #ifdef CONFIG_HIGHMEM 1608 int i; 1609 1610 if (dev->features & NETIF_F_HIGHDMA) 1611 return 0; 1612 1613 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1614 if (PageHighMem(skb_shinfo(skb)->frags[i].page)) 1615 return 1; 1616 1617 #endif 1618 return 0; 1619 } 1620 1621 struct dev_gso_cb { 1622 void (*destructor)(struct sk_buff *skb); 1623 }; 1624 1625 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 1626 1627 static void dev_gso_skb_destructor(struct sk_buff *skb) 1628 { 1629 struct dev_gso_cb *cb; 1630 1631 do { 1632 struct sk_buff *nskb = skb->next; 1633 1634 skb->next = nskb->next; 1635 nskb->next = NULL; 1636 kfree_skb(nskb); 1637 } while (skb->next); 1638 1639 cb = DEV_GSO_CB(skb); 1640 if (cb->destructor) 1641 cb->destructor(skb); 1642 } 1643 1644 /** 1645 * dev_gso_segment - Perform emulated hardware segmentation on skb. 1646 * @skb: buffer to segment 1647 * 1648 * This function segments the given skb and stores the list of segments 1649 * in skb->next. 1650 */ 1651 static int dev_gso_segment(struct sk_buff *skb) 1652 { 1653 struct net_device *dev = skb->dev; 1654 struct sk_buff *segs; 1655 int features = dev->features & ~(illegal_highdma(dev, skb) ? 1656 NETIF_F_SG : 0); 1657 1658 segs = skb_gso_segment(skb, features); 1659 1660 /* Verifying header integrity only. */ 1661 if (!segs) 1662 return 0; 1663 1664 if (IS_ERR(segs)) 1665 return PTR_ERR(segs); 1666 1667 skb->next = segs; 1668 DEV_GSO_CB(skb)->destructor = skb->destructor; 1669 skb->destructor = dev_gso_skb_destructor; 1670 1671 return 0; 1672 } 1673 1674 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 1675 struct netdev_queue *txq) 1676 { 1677 const struct net_device_ops *ops = dev->netdev_ops; 1678 int rc; 1679 1680 if (likely(!skb->next)) { 1681 if (!list_empty(&ptype_all)) 1682 dev_queue_xmit_nit(skb, dev); 1683 1684 if (netif_needs_gso(dev, skb)) { 1685 if (unlikely(dev_gso_segment(skb))) 1686 goto out_kfree_skb; 1687 if (skb->next) 1688 goto gso; 1689 } 1690 1691 rc = ops->ndo_start_xmit(skb, dev); 1692 /* 1693 * TODO: if skb_orphan() was called by 1694 * dev->hard_start_xmit() (for example, the unmodified 1695 * igb driver does that; bnx2 doesn't), then 1696 * skb_tx_software_timestamp() will be unable to send 1697 * back the time stamp. 1698 * 1699 * How can this be prevented? Always create another 1700 * reference to the socket before calling 1701 * dev->hard_start_xmit()? Prevent that skb_orphan() 1702 * does anything in dev->hard_start_xmit() by clearing 1703 * the skb destructor before the call and restoring it 1704 * afterwards, then doing the skb_orphan() ourselves? 1705 */ 1706 return rc; 1707 } 1708 1709 gso: 1710 do { 1711 struct sk_buff *nskb = skb->next; 1712 1713 skb->next = nskb->next; 1714 nskb->next = NULL; 1715 rc = ops->ndo_start_xmit(nskb, dev); 1716 if (unlikely(rc)) { 1717 nskb->next = skb->next; 1718 skb->next = nskb; 1719 return rc; 1720 } 1721 if (unlikely(netif_tx_queue_stopped(txq) && skb->next)) 1722 return NETDEV_TX_BUSY; 1723 } while (skb->next); 1724 1725 skb->destructor = DEV_GSO_CB(skb)->destructor; 1726 1727 out_kfree_skb: 1728 kfree_skb(skb); 1729 return 0; 1730 } 1731 1732 static u32 skb_tx_hashrnd; 1733 1734 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb) 1735 { 1736 u32 hash; 1737 1738 if (skb_rx_queue_recorded(skb)) 1739 return skb_get_rx_queue(skb) % dev->real_num_tx_queues; 1740 1741 if (skb->sk && skb->sk->sk_hash) 1742 hash = skb->sk->sk_hash; 1743 else 1744 hash = skb->protocol; 1745 1746 hash = jhash_1word(hash, skb_tx_hashrnd); 1747 1748 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32); 1749 } 1750 EXPORT_SYMBOL(skb_tx_hash); 1751 1752 static struct netdev_queue *dev_pick_tx(struct net_device *dev, 1753 struct sk_buff *skb) 1754 { 1755 const struct net_device_ops *ops = dev->netdev_ops; 1756 u16 queue_index = 0; 1757 1758 if (ops->ndo_select_queue) 1759 queue_index = ops->ndo_select_queue(dev, skb); 1760 else if (dev->real_num_tx_queues > 1) 1761 queue_index = skb_tx_hash(dev, skb); 1762 1763 skb_set_queue_mapping(skb, queue_index); 1764 return netdev_get_tx_queue(dev, queue_index); 1765 } 1766 1767 /** 1768 * dev_queue_xmit - transmit a buffer 1769 * @skb: buffer to transmit 1770 * 1771 * Queue a buffer for transmission to a network device. The caller must 1772 * have set the device and priority and built the buffer before calling 1773 * this function. The function can be called from an interrupt. 1774 * 1775 * A negative errno code is returned on a failure. A success does not 1776 * guarantee the frame will be transmitted as it may be dropped due 1777 * to congestion or traffic shaping. 1778 * 1779 * ----------------------------------------------------------------------------------- 1780 * I notice this method can also return errors from the queue disciplines, 1781 * including NET_XMIT_DROP, which is a positive value. So, errors can also 1782 * be positive. 1783 * 1784 * Regardless of the return value, the skb is consumed, so it is currently 1785 * difficult to retry a send to this method. (You can bump the ref count 1786 * before sending to hold a reference for retry if you are careful.) 1787 * 1788 * When calling this method, interrupts MUST be enabled. This is because 1789 * the BH enable code must have IRQs enabled so that it will not deadlock. 1790 * --BLG 1791 */ 1792 int dev_queue_xmit(struct sk_buff *skb) 1793 { 1794 struct net_device *dev = skb->dev; 1795 struct netdev_queue *txq; 1796 struct Qdisc *q; 1797 int rc = -ENOMEM; 1798 1799 /* GSO will handle the following emulations directly. */ 1800 if (netif_needs_gso(dev, skb)) 1801 goto gso; 1802 1803 if (skb_shinfo(skb)->frag_list && 1804 !(dev->features & NETIF_F_FRAGLIST) && 1805 __skb_linearize(skb)) 1806 goto out_kfree_skb; 1807 1808 /* Fragmented skb is linearized if device does not support SG, 1809 * or if at least one of fragments is in highmem and device 1810 * does not support DMA from it. 1811 */ 1812 if (skb_shinfo(skb)->nr_frags && 1813 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) && 1814 __skb_linearize(skb)) 1815 goto out_kfree_skb; 1816 1817 /* If packet is not checksummed and device does not support 1818 * checksumming for this protocol, complete checksumming here. 1819 */ 1820 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1821 skb_set_transport_header(skb, skb->csum_start - 1822 skb_headroom(skb)); 1823 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb)) 1824 goto out_kfree_skb; 1825 } 1826 1827 gso: 1828 /* Disable soft irqs for various locks below. Also 1829 * stops preemption for RCU. 1830 */ 1831 rcu_read_lock_bh(); 1832 1833 txq = dev_pick_tx(dev, skb); 1834 q = rcu_dereference(txq->qdisc); 1835 1836 #ifdef CONFIG_NET_CLS_ACT 1837 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS); 1838 #endif 1839 if (q->enqueue) { 1840 spinlock_t *root_lock = qdisc_lock(q); 1841 1842 spin_lock(root_lock); 1843 1844 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 1845 kfree_skb(skb); 1846 rc = NET_XMIT_DROP; 1847 } else { 1848 rc = qdisc_enqueue_root(skb, q); 1849 qdisc_run(q); 1850 } 1851 spin_unlock(root_lock); 1852 1853 goto out; 1854 } 1855 1856 /* The device has no queue. Common case for software devices: 1857 loopback, all the sorts of tunnels... 1858 1859 Really, it is unlikely that netif_tx_lock protection is necessary 1860 here. (f.e. loopback and IP tunnels are clean ignoring statistics 1861 counters.) 1862 However, it is possible, that they rely on protection 1863 made by us here. 1864 1865 Check this and shot the lock. It is not prone from deadlocks. 1866 Either shot noqueue qdisc, it is even simpler 8) 1867 */ 1868 if (dev->flags & IFF_UP) { 1869 int cpu = smp_processor_id(); /* ok because BHs are off */ 1870 1871 if (txq->xmit_lock_owner != cpu) { 1872 1873 HARD_TX_LOCK(dev, txq, cpu); 1874 1875 if (!netif_tx_queue_stopped(txq)) { 1876 rc = 0; 1877 if (!dev_hard_start_xmit(skb, dev, txq)) { 1878 HARD_TX_UNLOCK(dev, txq); 1879 goto out; 1880 } 1881 } 1882 HARD_TX_UNLOCK(dev, txq); 1883 if (net_ratelimit()) 1884 printk(KERN_CRIT "Virtual device %s asks to " 1885 "queue packet!\n", dev->name); 1886 } else { 1887 /* Recursion is detected! It is possible, 1888 * unfortunately */ 1889 if (net_ratelimit()) 1890 printk(KERN_CRIT "Dead loop on virtual device " 1891 "%s, fix it urgently!\n", dev->name); 1892 } 1893 } 1894 1895 rc = -ENETDOWN; 1896 rcu_read_unlock_bh(); 1897 1898 out_kfree_skb: 1899 kfree_skb(skb); 1900 return rc; 1901 out: 1902 rcu_read_unlock_bh(); 1903 return rc; 1904 } 1905 1906 1907 /*======================================================================= 1908 Receiver routines 1909 =======================================================================*/ 1910 1911 int netdev_max_backlog __read_mostly = 1000; 1912 int netdev_budget __read_mostly = 300; 1913 int weight_p __read_mostly = 64; /* old backlog weight */ 1914 1915 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, }; 1916 1917 1918 /** 1919 * netif_rx - post buffer to the network code 1920 * @skb: buffer to post 1921 * 1922 * This function receives a packet from a device driver and queues it for 1923 * the upper (protocol) levels to process. It always succeeds. The buffer 1924 * may be dropped during processing for congestion control or by the 1925 * protocol layers. 1926 * 1927 * return values: 1928 * NET_RX_SUCCESS (no congestion) 1929 * NET_RX_DROP (packet was dropped) 1930 * 1931 */ 1932 1933 int netif_rx(struct sk_buff *skb) 1934 { 1935 struct softnet_data *queue; 1936 unsigned long flags; 1937 1938 /* if netpoll wants it, pretend we never saw it */ 1939 if (netpoll_rx(skb)) 1940 return NET_RX_DROP; 1941 1942 if (!skb->tstamp.tv64) 1943 net_timestamp(skb); 1944 1945 /* 1946 * The code is rearranged so that the path is the most 1947 * short when CPU is congested, but is still operating. 1948 */ 1949 local_irq_save(flags); 1950 queue = &__get_cpu_var(softnet_data); 1951 1952 __get_cpu_var(netdev_rx_stat).total++; 1953 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) { 1954 if (queue->input_pkt_queue.qlen) { 1955 enqueue: 1956 __skb_queue_tail(&queue->input_pkt_queue, skb); 1957 local_irq_restore(flags); 1958 return NET_RX_SUCCESS; 1959 } 1960 1961 napi_schedule(&queue->backlog); 1962 goto enqueue; 1963 } 1964 1965 __get_cpu_var(netdev_rx_stat).dropped++; 1966 local_irq_restore(flags); 1967 1968 kfree_skb(skb); 1969 return NET_RX_DROP; 1970 } 1971 1972 int netif_rx_ni(struct sk_buff *skb) 1973 { 1974 int err; 1975 1976 preempt_disable(); 1977 err = netif_rx(skb); 1978 if (local_softirq_pending()) 1979 do_softirq(); 1980 preempt_enable(); 1981 1982 return err; 1983 } 1984 1985 EXPORT_SYMBOL(netif_rx_ni); 1986 1987 static void net_tx_action(struct softirq_action *h) 1988 { 1989 struct softnet_data *sd = &__get_cpu_var(softnet_data); 1990 1991 if (sd->completion_queue) { 1992 struct sk_buff *clist; 1993 1994 local_irq_disable(); 1995 clist = sd->completion_queue; 1996 sd->completion_queue = NULL; 1997 local_irq_enable(); 1998 1999 while (clist) { 2000 struct sk_buff *skb = clist; 2001 clist = clist->next; 2002 2003 WARN_ON(atomic_read(&skb->users)); 2004 __kfree_skb(skb); 2005 } 2006 } 2007 2008 if (sd->output_queue) { 2009 struct Qdisc *head; 2010 2011 local_irq_disable(); 2012 head = sd->output_queue; 2013 sd->output_queue = NULL; 2014 local_irq_enable(); 2015 2016 while (head) { 2017 struct Qdisc *q = head; 2018 spinlock_t *root_lock; 2019 2020 head = head->next_sched; 2021 2022 root_lock = qdisc_lock(q); 2023 if (spin_trylock(root_lock)) { 2024 smp_mb__before_clear_bit(); 2025 clear_bit(__QDISC_STATE_SCHED, 2026 &q->state); 2027 qdisc_run(q); 2028 spin_unlock(root_lock); 2029 } else { 2030 if (!test_bit(__QDISC_STATE_DEACTIVATED, 2031 &q->state)) { 2032 __netif_reschedule(q); 2033 } else { 2034 smp_mb__before_clear_bit(); 2035 clear_bit(__QDISC_STATE_SCHED, 2036 &q->state); 2037 } 2038 } 2039 } 2040 } 2041 } 2042 2043 static inline int deliver_skb(struct sk_buff *skb, 2044 struct packet_type *pt_prev, 2045 struct net_device *orig_dev) 2046 { 2047 atomic_inc(&skb->users); 2048 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2049 } 2050 2051 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE) 2052 /* These hooks defined here for ATM */ 2053 struct net_bridge; 2054 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br, 2055 unsigned char *addr); 2056 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly; 2057 2058 /* 2059 * If bridge module is loaded call bridging hook. 2060 * returns NULL if packet was consumed. 2061 */ 2062 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p, 2063 struct sk_buff *skb) __read_mostly; 2064 static inline struct sk_buff *handle_bridge(struct sk_buff *skb, 2065 struct packet_type **pt_prev, int *ret, 2066 struct net_device *orig_dev) 2067 { 2068 struct net_bridge_port *port; 2069 2070 if (skb->pkt_type == PACKET_LOOPBACK || 2071 (port = rcu_dereference(skb->dev->br_port)) == NULL) 2072 return skb; 2073 2074 if (*pt_prev) { 2075 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2076 *pt_prev = NULL; 2077 } 2078 2079 return br_handle_frame_hook(port, skb); 2080 } 2081 #else 2082 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb) 2083 #endif 2084 2085 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE) 2086 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly; 2087 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook); 2088 2089 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb, 2090 struct packet_type **pt_prev, 2091 int *ret, 2092 struct net_device *orig_dev) 2093 { 2094 if (skb->dev->macvlan_port == NULL) 2095 return skb; 2096 2097 if (*pt_prev) { 2098 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2099 *pt_prev = NULL; 2100 } 2101 return macvlan_handle_frame_hook(skb); 2102 } 2103 #else 2104 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb) 2105 #endif 2106 2107 #ifdef CONFIG_NET_CLS_ACT 2108 /* TODO: Maybe we should just force sch_ingress to be compiled in 2109 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 2110 * a compare and 2 stores extra right now if we dont have it on 2111 * but have CONFIG_NET_CLS_ACT 2112 * NOTE: This doesnt stop any functionality; if you dont have 2113 * the ingress scheduler, you just cant add policies on ingress. 2114 * 2115 */ 2116 static int ing_filter(struct sk_buff *skb) 2117 { 2118 struct net_device *dev = skb->dev; 2119 u32 ttl = G_TC_RTTL(skb->tc_verd); 2120 struct netdev_queue *rxq; 2121 int result = TC_ACT_OK; 2122 struct Qdisc *q; 2123 2124 if (MAX_RED_LOOP < ttl++) { 2125 printk(KERN_WARNING 2126 "Redir loop detected Dropping packet (%d->%d)\n", 2127 skb->iif, dev->ifindex); 2128 return TC_ACT_SHOT; 2129 } 2130 2131 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 2132 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 2133 2134 rxq = &dev->rx_queue; 2135 2136 q = rxq->qdisc; 2137 if (q != &noop_qdisc) { 2138 spin_lock(qdisc_lock(q)); 2139 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 2140 result = qdisc_enqueue_root(skb, q); 2141 spin_unlock(qdisc_lock(q)); 2142 } 2143 2144 return result; 2145 } 2146 2147 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 2148 struct packet_type **pt_prev, 2149 int *ret, struct net_device *orig_dev) 2150 { 2151 if (skb->dev->rx_queue.qdisc == &noop_qdisc) 2152 goto out; 2153 2154 if (*pt_prev) { 2155 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2156 *pt_prev = NULL; 2157 } else { 2158 /* Huh? Why does turning on AF_PACKET affect this? */ 2159 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd); 2160 } 2161 2162 switch (ing_filter(skb)) { 2163 case TC_ACT_SHOT: 2164 case TC_ACT_STOLEN: 2165 kfree_skb(skb); 2166 return NULL; 2167 } 2168 2169 out: 2170 skb->tc_verd = 0; 2171 return skb; 2172 } 2173 #endif 2174 2175 /* 2176 * netif_nit_deliver - deliver received packets to network taps 2177 * @skb: buffer 2178 * 2179 * This function is used to deliver incoming packets to network 2180 * taps. It should be used when the normal netif_receive_skb path 2181 * is bypassed, for example because of VLAN acceleration. 2182 */ 2183 void netif_nit_deliver(struct sk_buff *skb) 2184 { 2185 struct packet_type *ptype; 2186 2187 if (list_empty(&ptype_all)) 2188 return; 2189 2190 skb_reset_network_header(skb); 2191 skb_reset_transport_header(skb); 2192 skb->mac_len = skb->network_header - skb->mac_header; 2193 2194 rcu_read_lock(); 2195 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2196 if (!ptype->dev || ptype->dev == skb->dev) 2197 deliver_skb(skb, ptype, skb->dev); 2198 } 2199 rcu_read_unlock(); 2200 } 2201 2202 /** 2203 * netif_receive_skb - process receive buffer from network 2204 * @skb: buffer to process 2205 * 2206 * netif_receive_skb() is the main receive data processing function. 2207 * It always succeeds. The buffer may be dropped during processing 2208 * for congestion control or by the protocol layers. 2209 * 2210 * This function may only be called from softirq context and interrupts 2211 * should be enabled. 2212 * 2213 * Return values (usually ignored): 2214 * NET_RX_SUCCESS: no congestion 2215 * NET_RX_DROP: packet was dropped 2216 */ 2217 int netif_receive_skb(struct sk_buff *skb) 2218 { 2219 struct packet_type *ptype, *pt_prev; 2220 struct net_device *orig_dev; 2221 struct net_device *null_or_orig; 2222 int ret = NET_RX_DROP; 2223 __be16 type; 2224 2225 if (skb->vlan_tci && vlan_hwaccel_do_receive(skb)) 2226 return NET_RX_SUCCESS; 2227 2228 /* if we've gotten here through NAPI, check netpoll */ 2229 if (netpoll_receive_skb(skb)) 2230 return NET_RX_DROP; 2231 2232 if (!skb->tstamp.tv64) 2233 net_timestamp(skb); 2234 2235 if (!skb->iif) 2236 skb->iif = skb->dev->ifindex; 2237 2238 null_or_orig = NULL; 2239 orig_dev = skb->dev; 2240 if (orig_dev->master) { 2241 if (skb_bond_should_drop(skb)) 2242 null_or_orig = orig_dev; /* deliver only exact match */ 2243 else 2244 skb->dev = orig_dev->master; 2245 } 2246 2247 __get_cpu_var(netdev_rx_stat).total++; 2248 2249 skb_reset_network_header(skb); 2250 skb_reset_transport_header(skb); 2251 skb->mac_len = skb->network_header - skb->mac_header; 2252 2253 pt_prev = NULL; 2254 2255 rcu_read_lock(); 2256 2257 #ifdef CONFIG_NET_CLS_ACT 2258 if (skb->tc_verd & TC_NCLS) { 2259 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 2260 goto ncls; 2261 } 2262 #endif 2263 2264 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2265 if (ptype->dev == null_or_orig || ptype->dev == skb->dev || 2266 ptype->dev == orig_dev) { 2267 if (pt_prev) 2268 ret = deliver_skb(skb, pt_prev, orig_dev); 2269 pt_prev = ptype; 2270 } 2271 } 2272 2273 #ifdef CONFIG_NET_CLS_ACT 2274 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 2275 if (!skb) 2276 goto out; 2277 ncls: 2278 #endif 2279 2280 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev); 2281 if (!skb) 2282 goto out; 2283 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev); 2284 if (!skb) 2285 goto out; 2286 2287 skb_orphan(skb); 2288 2289 type = skb->protocol; 2290 list_for_each_entry_rcu(ptype, 2291 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 2292 if (ptype->type == type && 2293 (ptype->dev == null_or_orig || ptype->dev == skb->dev || 2294 ptype->dev == orig_dev)) { 2295 if (pt_prev) 2296 ret = deliver_skb(skb, pt_prev, orig_dev); 2297 pt_prev = ptype; 2298 } 2299 } 2300 2301 if (pt_prev) { 2302 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2303 } else { 2304 kfree_skb(skb); 2305 /* Jamal, now you will not able to escape explaining 2306 * me how you were going to use this. :-) 2307 */ 2308 ret = NET_RX_DROP; 2309 } 2310 2311 out: 2312 rcu_read_unlock(); 2313 return ret; 2314 } 2315 2316 /* Network device is going away, flush any packets still pending */ 2317 static void flush_backlog(void *arg) 2318 { 2319 struct net_device *dev = arg; 2320 struct softnet_data *queue = &__get_cpu_var(softnet_data); 2321 struct sk_buff *skb, *tmp; 2322 2323 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp) 2324 if (skb->dev == dev) { 2325 __skb_unlink(skb, &queue->input_pkt_queue); 2326 kfree_skb(skb); 2327 } 2328 } 2329 2330 static int napi_gro_complete(struct sk_buff *skb) 2331 { 2332 struct packet_type *ptype; 2333 __be16 type = skb->protocol; 2334 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 2335 int err = -ENOENT; 2336 2337 if (NAPI_GRO_CB(skb)->count == 1) { 2338 skb_shinfo(skb)->gso_size = 0; 2339 goto out; 2340 } 2341 2342 rcu_read_lock(); 2343 list_for_each_entry_rcu(ptype, head, list) { 2344 if (ptype->type != type || ptype->dev || !ptype->gro_complete) 2345 continue; 2346 2347 err = ptype->gro_complete(skb); 2348 break; 2349 } 2350 rcu_read_unlock(); 2351 2352 if (err) { 2353 WARN_ON(&ptype->list == head); 2354 kfree_skb(skb); 2355 return NET_RX_SUCCESS; 2356 } 2357 2358 out: 2359 return netif_receive_skb(skb); 2360 } 2361 2362 void napi_gro_flush(struct napi_struct *napi) 2363 { 2364 struct sk_buff *skb, *next; 2365 2366 for (skb = napi->gro_list; skb; skb = next) { 2367 next = skb->next; 2368 skb->next = NULL; 2369 napi_gro_complete(skb); 2370 } 2371 2372 napi->gro_count = 0; 2373 napi->gro_list = NULL; 2374 } 2375 EXPORT_SYMBOL(napi_gro_flush); 2376 2377 void *skb_gro_header(struct sk_buff *skb, unsigned int hlen) 2378 { 2379 unsigned int offset = skb_gro_offset(skb); 2380 2381 hlen += offset; 2382 if (hlen <= skb_headlen(skb)) 2383 return skb->data + offset; 2384 2385 if (unlikely(!skb_shinfo(skb)->nr_frags || 2386 skb_shinfo(skb)->frags[0].size <= 2387 hlen - skb_headlen(skb) || 2388 PageHighMem(skb_shinfo(skb)->frags[0].page))) 2389 return pskb_may_pull(skb, hlen) ? skb->data + offset : NULL; 2390 2391 return page_address(skb_shinfo(skb)->frags[0].page) + 2392 skb_shinfo(skb)->frags[0].page_offset + 2393 offset - skb_headlen(skb); 2394 } 2395 EXPORT_SYMBOL(skb_gro_header); 2396 2397 int dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 2398 { 2399 struct sk_buff **pp = NULL; 2400 struct packet_type *ptype; 2401 __be16 type = skb->protocol; 2402 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 2403 int same_flow; 2404 int mac_len; 2405 int ret; 2406 2407 if (!(skb->dev->features & NETIF_F_GRO)) 2408 goto normal; 2409 2410 if (skb_is_gso(skb) || skb_shinfo(skb)->frag_list) 2411 goto normal; 2412 2413 rcu_read_lock(); 2414 list_for_each_entry_rcu(ptype, head, list) { 2415 if (ptype->type != type || ptype->dev || !ptype->gro_receive) 2416 continue; 2417 2418 skb_set_network_header(skb, skb_gro_offset(skb)); 2419 mac_len = skb->network_header - skb->mac_header; 2420 skb->mac_len = mac_len; 2421 NAPI_GRO_CB(skb)->same_flow = 0; 2422 NAPI_GRO_CB(skb)->flush = 0; 2423 NAPI_GRO_CB(skb)->free = 0; 2424 2425 pp = ptype->gro_receive(&napi->gro_list, skb); 2426 break; 2427 } 2428 rcu_read_unlock(); 2429 2430 if (&ptype->list == head) 2431 goto normal; 2432 2433 same_flow = NAPI_GRO_CB(skb)->same_flow; 2434 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 2435 2436 if (pp) { 2437 struct sk_buff *nskb = *pp; 2438 2439 *pp = nskb->next; 2440 nskb->next = NULL; 2441 napi_gro_complete(nskb); 2442 napi->gro_count--; 2443 } 2444 2445 if (same_flow) 2446 goto ok; 2447 2448 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS) 2449 goto normal; 2450 2451 napi->gro_count++; 2452 NAPI_GRO_CB(skb)->count = 1; 2453 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 2454 skb->next = napi->gro_list; 2455 napi->gro_list = skb; 2456 ret = GRO_HELD; 2457 2458 pull: 2459 if (unlikely(!pskb_may_pull(skb, skb_gro_offset(skb)))) { 2460 if (napi->gro_list == skb) 2461 napi->gro_list = skb->next; 2462 ret = GRO_DROP; 2463 } 2464 2465 ok: 2466 return ret; 2467 2468 normal: 2469 ret = GRO_NORMAL; 2470 goto pull; 2471 } 2472 EXPORT_SYMBOL(dev_gro_receive); 2473 2474 static int __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 2475 { 2476 struct sk_buff *p; 2477 2478 if (netpoll_rx_on(skb)) 2479 return GRO_NORMAL; 2480 2481 for (p = napi->gro_list; p; p = p->next) { 2482 NAPI_GRO_CB(p)->same_flow = (p->dev == skb->dev) 2483 && !compare_ether_header(skb_mac_header(p), 2484 skb_gro_mac_header(skb)); 2485 NAPI_GRO_CB(p)->flush = 0; 2486 } 2487 2488 return dev_gro_receive(napi, skb); 2489 } 2490 2491 int napi_skb_finish(int ret, struct sk_buff *skb) 2492 { 2493 int err = NET_RX_SUCCESS; 2494 2495 switch (ret) { 2496 case GRO_NORMAL: 2497 return netif_receive_skb(skb); 2498 2499 case GRO_DROP: 2500 err = NET_RX_DROP; 2501 /* fall through */ 2502 2503 case GRO_MERGED_FREE: 2504 kfree_skb(skb); 2505 break; 2506 } 2507 2508 return err; 2509 } 2510 EXPORT_SYMBOL(napi_skb_finish); 2511 2512 int napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 2513 { 2514 skb_gro_reset_offset(skb); 2515 2516 return napi_skb_finish(__napi_gro_receive(napi, skb), skb); 2517 } 2518 EXPORT_SYMBOL(napi_gro_receive); 2519 2520 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 2521 { 2522 __skb_pull(skb, skb_headlen(skb)); 2523 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb)); 2524 2525 napi->skb = skb; 2526 } 2527 EXPORT_SYMBOL(napi_reuse_skb); 2528 2529 struct sk_buff *napi_fraginfo_skb(struct napi_struct *napi, 2530 struct napi_gro_fraginfo *info) 2531 { 2532 struct net_device *dev = napi->dev; 2533 struct sk_buff *skb = napi->skb; 2534 struct ethhdr *eth; 2535 skb_frag_t *frag; 2536 int i; 2537 2538 napi->skb = NULL; 2539 2540 if (!skb) { 2541 skb = netdev_alloc_skb(dev, GRO_MAX_HEAD + NET_IP_ALIGN); 2542 if (!skb) 2543 goto out; 2544 2545 skb_reserve(skb, NET_IP_ALIGN); 2546 } 2547 2548 BUG_ON(info->nr_frags > MAX_SKB_FRAGS); 2549 frag = info->frags; 2550 2551 for (i = 0; i < info->nr_frags; i++) { 2552 skb_fill_page_desc(skb, i, frag->page, frag->page_offset, 2553 frag->size); 2554 frag++; 2555 } 2556 skb_shinfo(skb)->nr_frags = info->nr_frags; 2557 2558 skb->data_len = info->len; 2559 skb->len += info->len; 2560 skb->truesize += info->len; 2561 2562 skb_reset_mac_header(skb); 2563 skb_gro_reset_offset(skb); 2564 2565 eth = skb_gro_header(skb, sizeof(*eth)); 2566 if (!eth) { 2567 napi_reuse_skb(napi, skb); 2568 skb = NULL; 2569 goto out; 2570 } 2571 2572 skb_gro_pull(skb, sizeof(*eth)); 2573 2574 /* 2575 * This works because the only protocols we care about don't require 2576 * special handling. We'll fix it up properly at the end. 2577 */ 2578 skb->protocol = eth->h_proto; 2579 2580 skb->ip_summed = info->ip_summed; 2581 skb->csum = info->csum; 2582 2583 out: 2584 return skb; 2585 } 2586 EXPORT_SYMBOL(napi_fraginfo_skb); 2587 2588 int napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, int ret) 2589 { 2590 int err = NET_RX_SUCCESS; 2591 2592 switch (ret) { 2593 case GRO_NORMAL: 2594 case GRO_HELD: 2595 skb->protocol = eth_type_trans(skb, napi->dev); 2596 2597 if (ret == GRO_NORMAL) 2598 return netif_receive_skb(skb); 2599 2600 skb_gro_pull(skb, -ETH_HLEN); 2601 break; 2602 2603 case GRO_DROP: 2604 err = NET_RX_DROP; 2605 /* fall through */ 2606 2607 case GRO_MERGED_FREE: 2608 napi_reuse_skb(napi, skb); 2609 break; 2610 } 2611 2612 return err; 2613 } 2614 EXPORT_SYMBOL(napi_frags_finish); 2615 2616 int napi_gro_frags(struct napi_struct *napi, struct napi_gro_fraginfo *info) 2617 { 2618 struct sk_buff *skb = napi_fraginfo_skb(napi, info); 2619 2620 if (!skb) 2621 return NET_RX_DROP; 2622 2623 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb)); 2624 } 2625 EXPORT_SYMBOL(napi_gro_frags); 2626 2627 static int process_backlog(struct napi_struct *napi, int quota) 2628 { 2629 int work = 0; 2630 struct softnet_data *queue = &__get_cpu_var(softnet_data); 2631 unsigned long start_time = jiffies; 2632 2633 napi->weight = weight_p; 2634 do { 2635 struct sk_buff *skb; 2636 2637 local_irq_disable(); 2638 skb = __skb_dequeue(&queue->input_pkt_queue); 2639 if (!skb) { 2640 __napi_complete(napi); 2641 local_irq_enable(); 2642 break; 2643 } 2644 local_irq_enable(); 2645 2646 netif_receive_skb(skb); 2647 } while (++work < quota && jiffies == start_time); 2648 2649 return work; 2650 } 2651 2652 /** 2653 * __napi_schedule - schedule for receive 2654 * @n: entry to schedule 2655 * 2656 * The entry's receive function will be scheduled to run 2657 */ 2658 void __napi_schedule(struct napi_struct *n) 2659 { 2660 unsigned long flags; 2661 2662 local_irq_save(flags); 2663 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list); 2664 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2665 local_irq_restore(flags); 2666 } 2667 EXPORT_SYMBOL(__napi_schedule); 2668 2669 void __napi_complete(struct napi_struct *n) 2670 { 2671 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 2672 BUG_ON(n->gro_list); 2673 2674 list_del(&n->poll_list); 2675 smp_mb__before_clear_bit(); 2676 clear_bit(NAPI_STATE_SCHED, &n->state); 2677 } 2678 EXPORT_SYMBOL(__napi_complete); 2679 2680 void napi_complete(struct napi_struct *n) 2681 { 2682 unsigned long flags; 2683 2684 /* 2685 * don't let napi dequeue from the cpu poll list 2686 * just in case its running on a different cpu 2687 */ 2688 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 2689 return; 2690 2691 napi_gro_flush(n); 2692 local_irq_save(flags); 2693 __napi_complete(n); 2694 local_irq_restore(flags); 2695 } 2696 EXPORT_SYMBOL(napi_complete); 2697 2698 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2699 int (*poll)(struct napi_struct *, int), int weight) 2700 { 2701 INIT_LIST_HEAD(&napi->poll_list); 2702 napi->gro_count = 0; 2703 napi->gro_list = NULL; 2704 napi->skb = NULL; 2705 napi->poll = poll; 2706 napi->weight = weight; 2707 list_add(&napi->dev_list, &dev->napi_list); 2708 napi->dev = dev; 2709 #ifdef CONFIG_NETPOLL 2710 spin_lock_init(&napi->poll_lock); 2711 napi->poll_owner = -1; 2712 #endif 2713 set_bit(NAPI_STATE_SCHED, &napi->state); 2714 } 2715 EXPORT_SYMBOL(netif_napi_add); 2716 2717 void netif_napi_del(struct napi_struct *napi) 2718 { 2719 struct sk_buff *skb, *next; 2720 2721 list_del_init(&napi->dev_list); 2722 kfree_skb(napi->skb); 2723 2724 for (skb = napi->gro_list; skb; skb = next) { 2725 next = skb->next; 2726 skb->next = NULL; 2727 kfree_skb(skb); 2728 } 2729 2730 napi->gro_list = NULL; 2731 napi->gro_count = 0; 2732 } 2733 EXPORT_SYMBOL(netif_napi_del); 2734 2735 2736 static void net_rx_action(struct softirq_action *h) 2737 { 2738 struct list_head *list = &__get_cpu_var(softnet_data).poll_list; 2739 unsigned long time_limit = jiffies + 2; 2740 int budget = netdev_budget; 2741 void *have; 2742 2743 local_irq_disable(); 2744 2745 while (!list_empty(list)) { 2746 struct napi_struct *n; 2747 int work, weight; 2748 2749 /* If softirq window is exhuasted then punt. 2750 * Allow this to run for 2 jiffies since which will allow 2751 * an average latency of 1.5/HZ. 2752 */ 2753 if (unlikely(budget <= 0 || time_after(jiffies, time_limit))) 2754 goto softnet_break; 2755 2756 local_irq_enable(); 2757 2758 /* Even though interrupts have been re-enabled, this 2759 * access is safe because interrupts can only add new 2760 * entries to the tail of this list, and only ->poll() 2761 * calls can remove this head entry from the list. 2762 */ 2763 n = list_entry(list->next, struct napi_struct, poll_list); 2764 2765 have = netpoll_poll_lock(n); 2766 2767 weight = n->weight; 2768 2769 /* This NAPI_STATE_SCHED test is for avoiding a race 2770 * with netpoll's poll_napi(). Only the entity which 2771 * obtains the lock and sees NAPI_STATE_SCHED set will 2772 * actually make the ->poll() call. Therefore we avoid 2773 * accidently calling ->poll() when NAPI is not scheduled. 2774 */ 2775 work = 0; 2776 if (test_bit(NAPI_STATE_SCHED, &n->state)) 2777 work = n->poll(n, weight); 2778 2779 WARN_ON_ONCE(work > weight); 2780 2781 budget -= work; 2782 2783 local_irq_disable(); 2784 2785 /* Drivers must not modify the NAPI state if they 2786 * consume the entire weight. In such cases this code 2787 * still "owns" the NAPI instance and therefore can 2788 * move the instance around on the list at-will. 2789 */ 2790 if (unlikely(work == weight)) { 2791 if (unlikely(napi_disable_pending(n))) 2792 __napi_complete(n); 2793 else 2794 list_move_tail(&n->poll_list, list); 2795 } 2796 2797 netpoll_poll_unlock(have); 2798 } 2799 out: 2800 local_irq_enable(); 2801 2802 #ifdef CONFIG_NET_DMA 2803 /* 2804 * There may not be any more sk_buffs coming right now, so push 2805 * any pending DMA copies to hardware 2806 */ 2807 dma_issue_pending_all(); 2808 #endif 2809 2810 return; 2811 2812 softnet_break: 2813 __get_cpu_var(netdev_rx_stat).time_squeeze++; 2814 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2815 goto out; 2816 } 2817 2818 static gifconf_func_t * gifconf_list [NPROTO]; 2819 2820 /** 2821 * register_gifconf - register a SIOCGIF handler 2822 * @family: Address family 2823 * @gifconf: Function handler 2824 * 2825 * Register protocol dependent address dumping routines. The handler 2826 * that is passed must not be freed or reused until it has been replaced 2827 * by another handler. 2828 */ 2829 int register_gifconf(unsigned int family, gifconf_func_t * gifconf) 2830 { 2831 if (family >= NPROTO) 2832 return -EINVAL; 2833 gifconf_list[family] = gifconf; 2834 return 0; 2835 } 2836 2837 2838 /* 2839 * Map an interface index to its name (SIOCGIFNAME) 2840 */ 2841 2842 /* 2843 * We need this ioctl for efficient implementation of the 2844 * if_indextoname() function required by the IPv6 API. Without 2845 * it, we would have to search all the interfaces to find a 2846 * match. --pb 2847 */ 2848 2849 static int dev_ifname(struct net *net, struct ifreq __user *arg) 2850 { 2851 struct net_device *dev; 2852 struct ifreq ifr; 2853 2854 /* 2855 * Fetch the caller's info block. 2856 */ 2857 2858 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 2859 return -EFAULT; 2860 2861 read_lock(&dev_base_lock); 2862 dev = __dev_get_by_index(net, ifr.ifr_ifindex); 2863 if (!dev) { 2864 read_unlock(&dev_base_lock); 2865 return -ENODEV; 2866 } 2867 2868 strcpy(ifr.ifr_name, dev->name); 2869 read_unlock(&dev_base_lock); 2870 2871 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 2872 return -EFAULT; 2873 return 0; 2874 } 2875 2876 /* 2877 * Perform a SIOCGIFCONF call. This structure will change 2878 * size eventually, and there is nothing I can do about it. 2879 * Thus we will need a 'compatibility mode'. 2880 */ 2881 2882 static int dev_ifconf(struct net *net, char __user *arg) 2883 { 2884 struct ifconf ifc; 2885 struct net_device *dev; 2886 char __user *pos; 2887 int len; 2888 int total; 2889 int i; 2890 2891 /* 2892 * Fetch the caller's info block. 2893 */ 2894 2895 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 2896 return -EFAULT; 2897 2898 pos = ifc.ifc_buf; 2899 len = ifc.ifc_len; 2900 2901 /* 2902 * Loop over the interfaces, and write an info block for each. 2903 */ 2904 2905 total = 0; 2906 for_each_netdev(net, dev) { 2907 for (i = 0; i < NPROTO; i++) { 2908 if (gifconf_list[i]) { 2909 int done; 2910 if (!pos) 2911 done = gifconf_list[i](dev, NULL, 0); 2912 else 2913 done = gifconf_list[i](dev, pos + total, 2914 len - total); 2915 if (done < 0) 2916 return -EFAULT; 2917 total += done; 2918 } 2919 } 2920 } 2921 2922 /* 2923 * All done. Write the updated control block back to the caller. 2924 */ 2925 ifc.ifc_len = total; 2926 2927 /* 2928 * Both BSD and Solaris return 0 here, so we do too. 2929 */ 2930 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 2931 } 2932 2933 #ifdef CONFIG_PROC_FS 2934 /* 2935 * This is invoked by the /proc filesystem handler to display a device 2936 * in detail. 2937 */ 2938 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 2939 __acquires(dev_base_lock) 2940 { 2941 struct net *net = seq_file_net(seq); 2942 loff_t off; 2943 struct net_device *dev; 2944 2945 read_lock(&dev_base_lock); 2946 if (!*pos) 2947 return SEQ_START_TOKEN; 2948 2949 off = 1; 2950 for_each_netdev(net, dev) 2951 if (off++ == *pos) 2952 return dev; 2953 2954 return NULL; 2955 } 2956 2957 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2958 { 2959 struct net *net = seq_file_net(seq); 2960 ++*pos; 2961 return v == SEQ_START_TOKEN ? 2962 first_net_device(net) : next_net_device((struct net_device *)v); 2963 } 2964 2965 void dev_seq_stop(struct seq_file *seq, void *v) 2966 __releases(dev_base_lock) 2967 { 2968 read_unlock(&dev_base_lock); 2969 } 2970 2971 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 2972 { 2973 const struct net_device_stats *stats = dev_get_stats(dev); 2974 2975 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu " 2976 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n", 2977 dev->name, stats->rx_bytes, stats->rx_packets, 2978 stats->rx_errors, 2979 stats->rx_dropped + stats->rx_missed_errors, 2980 stats->rx_fifo_errors, 2981 stats->rx_length_errors + stats->rx_over_errors + 2982 stats->rx_crc_errors + stats->rx_frame_errors, 2983 stats->rx_compressed, stats->multicast, 2984 stats->tx_bytes, stats->tx_packets, 2985 stats->tx_errors, stats->tx_dropped, 2986 stats->tx_fifo_errors, stats->collisions, 2987 stats->tx_carrier_errors + 2988 stats->tx_aborted_errors + 2989 stats->tx_window_errors + 2990 stats->tx_heartbeat_errors, 2991 stats->tx_compressed); 2992 } 2993 2994 /* 2995 * Called from the PROCfs module. This now uses the new arbitrary sized 2996 * /proc/net interface to create /proc/net/dev 2997 */ 2998 static int dev_seq_show(struct seq_file *seq, void *v) 2999 { 3000 if (v == SEQ_START_TOKEN) 3001 seq_puts(seq, "Inter-| Receive " 3002 " | Transmit\n" 3003 " face |bytes packets errs drop fifo frame " 3004 "compressed multicast|bytes packets errs " 3005 "drop fifo colls carrier compressed\n"); 3006 else 3007 dev_seq_printf_stats(seq, v); 3008 return 0; 3009 } 3010 3011 static struct netif_rx_stats *softnet_get_online(loff_t *pos) 3012 { 3013 struct netif_rx_stats *rc = NULL; 3014 3015 while (*pos < nr_cpu_ids) 3016 if (cpu_online(*pos)) { 3017 rc = &per_cpu(netdev_rx_stat, *pos); 3018 break; 3019 } else 3020 ++*pos; 3021 return rc; 3022 } 3023 3024 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 3025 { 3026 return softnet_get_online(pos); 3027 } 3028 3029 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3030 { 3031 ++*pos; 3032 return softnet_get_online(pos); 3033 } 3034 3035 static void softnet_seq_stop(struct seq_file *seq, void *v) 3036 { 3037 } 3038 3039 static int softnet_seq_show(struct seq_file *seq, void *v) 3040 { 3041 struct netif_rx_stats *s = v; 3042 3043 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 3044 s->total, s->dropped, s->time_squeeze, 0, 3045 0, 0, 0, 0, /* was fastroute */ 3046 s->cpu_collision ); 3047 return 0; 3048 } 3049 3050 static const struct seq_operations dev_seq_ops = { 3051 .start = dev_seq_start, 3052 .next = dev_seq_next, 3053 .stop = dev_seq_stop, 3054 .show = dev_seq_show, 3055 }; 3056 3057 static int dev_seq_open(struct inode *inode, struct file *file) 3058 { 3059 return seq_open_net(inode, file, &dev_seq_ops, 3060 sizeof(struct seq_net_private)); 3061 } 3062 3063 static const struct file_operations dev_seq_fops = { 3064 .owner = THIS_MODULE, 3065 .open = dev_seq_open, 3066 .read = seq_read, 3067 .llseek = seq_lseek, 3068 .release = seq_release_net, 3069 }; 3070 3071 static const struct seq_operations softnet_seq_ops = { 3072 .start = softnet_seq_start, 3073 .next = softnet_seq_next, 3074 .stop = softnet_seq_stop, 3075 .show = softnet_seq_show, 3076 }; 3077 3078 static int softnet_seq_open(struct inode *inode, struct file *file) 3079 { 3080 return seq_open(file, &softnet_seq_ops); 3081 } 3082 3083 static const struct file_operations softnet_seq_fops = { 3084 .owner = THIS_MODULE, 3085 .open = softnet_seq_open, 3086 .read = seq_read, 3087 .llseek = seq_lseek, 3088 .release = seq_release, 3089 }; 3090 3091 static void *ptype_get_idx(loff_t pos) 3092 { 3093 struct packet_type *pt = NULL; 3094 loff_t i = 0; 3095 int t; 3096 3097 list_for_each_entry_rcu(pt, &ptype_all, list) { 3098 if (i == pos) 3099 return pt; 3100 ++i; 3101 } 3102 3103 for (t = 0; t < PTYPE_HASH_SIZE; t++) { 3104 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 3105 if (i == pos) 3106 return pt; 3107 ++i; 3108 } 3109 } 3110 return NULL; 3111 } 3112 3113 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 3114 __acquires(RCU) 3115 { 3116 rcu_read_lock(); 3117 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 3118 } 3119 3120 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3121 { 3122 struct packet_type *pt; 3123 struct list_head *nxt; 3124 int hash; 3125 3126 ++*pos; 3127 if (v == SEQ_START_TOKEN) 3128 return ptype_get_idx(0); 3129 3130 pt = v; 3131 nxt = pt->list.next; 3132 if (pt->type == htons(ETH_P_ALL)) { 3133 if (nxt != &ptype_all) 3134 goto found; 3135 hash = 0; 3136 nxt = ptype_base[0].next; 3137 } else 3138 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 3139 3140 while (nxt == &ptype_base[hash]) { 3141 if (++hash >= PTYPE_HASH_SIZE) 3142 return NULL; 3143 nxt = ptype_base[hash].next; 3144 } 3145 found: 3146 return list_entry(nxt, struct packet_type, list); 3147 } 3148 3149 static void ptype_seq_stop(struct seq_file *seq, void *v) 3150 __releases(RCU) 3151 { 3152 rcu_read_unlock(); 3153 } 3154 3155 static int ptype_seq_show(struct seq_file *seq, void *v) 3156 { 3157 struct packet_type *pt = v; 3158 3159 if (v == SEQ_START_TOKEN) 3160 seq_puts(seq, "Type Device Function\n"); 3161 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) { 3162 if (pt->type == htons(ETH_P_ALL)) 3163 seq_puts(seq, "ALL "); 3164 else 3165 seq_printf(seq, "%04x", ntohs(pt->type)); 3166 3167 seq_printf(seq, " %-8s %pF\n", 3168 pt->dev ? pt->dev->name : "", pt->func); 3169 } 3170 3171 return 0; 3172 } 3173 3174 static const struct seq_operations ptype_seq_ops = { 3175 .start = ptype_seq_start, 3176 .next = ptype_seq_next, 3177 .stop = ptype_seq_stop, 3178 .show = ptype_seq_show, 3179 }; 3180 3181 static int ptype_seq_open(struct inode *inode, struct file *file) 3182 { 3183 return seq_open_net(inode, file, &ptype_seq_ops, 3184 sizeof(struct seq_net_private)); 3185 } 3186 3187 static const struct file_operations ptype_seq_fops = { 3188 .owner = THIS_MODULE, 3189 .open = ptype_seq_open, 3190 .read = seq_read, 3191 .llseek = seq_lseek, 3192 .release = seq_release_net, 3193 }; 3194 3195 3196 static int __net_init dev_proc_net_init(struct net *net) 3197 { 3198 int rc = -ENOMEM; 3199 3200 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 3201 goto out; 3202 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 3203 goto out_dev; 3204 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 3205 goto out_softnet; 3206 3207 if (wext_proc_init(net)) 3208 goto out_ptype; 3209 rc = 0; 3210 out: 3211 return rc; 3212 out_ptype: 3213 proc_net_remove(net, "ptype"); 3214 out_softnet: 3215 proc_net_remove(net, "softnet_stat"); 3216 out_dev: 3217 proc_net_remove(net, "dev"); 3218 goto out; 3219 } 3220 3221 static void __net_exit dev_proc_net_exit(struct net *net) 3222 { 3223 wext_proc_exit(net); 3224 3225 proc_net_remove(net, "ptype"); 3226 proc_net_remove(net, "softnet_stat"); 3227 proc_net_remove(net, "dev"); 3228 } 3229 3230 static struct pernet_operations __net_initdata dev_proc_ops = { 3231 .init = dev_proc_net_init, 3232 .exit = dev_proc_net_exit, 3233 }; 3234 3235 static int __init dev_proc_init(void) 3236 { 3237 return register_pernet_subsys(&dev_proc_ops); 3238 } 3239 #else 3240 #define dev_proc_init() 0 3241 #endif /* CONFIG_PROC_FS */ 3242 3243 3244 /** 3245 * netdev_set_master - set up master/slave pair 3246 * @slave: slave device 3247 * @master: new master device 3248 * 3249 * Changes the master device of the slave. Pass %NULL to break the 3250 * bonding. The caller must hold the RTNL semaphore. On a failure 3251 * a negative errno code is returned. On success the reference counts 3252 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the 3253 * function returns zero. 3254 */ 3255 int netdev_set_master(struct net_device *slave, struct net_device *master) 3256 { 3257 struct net_device *old = slave->master; 3258 3259 ASSERT_RTNL(); 3260 3261 if (master) { 3262 if (old) 3263 return -EBUSY; 3264 dev_hold(master); 3265 } 3266 3267 slave->master = master; 3268 3269 synchronize_net(); 3270 3271 if (old) 3272 dev_put(old); 3273 3274 if (master) 3275 slave->flags |= IFF_SLAVE; 3276 else 3277 slave->flags &= ~IFF_SLAVE; 3278 3279 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 3280 return 0; 3281 } 3282 3283 static void dev_change_rx_flags(struct net_device *dev, int flags) 3284 { 3285 const struct net_device_ops *ops = dev->netdev_ops; 3286 3287 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags) 3288 ops->ndo_change_rx_flags(dev, flags); 3289 } 3290 3291 static int __dev_set_promiscuity(struct net_device *dev, int inc) 3292 { 3293 unsigned short old_flags = dev->flags; 3294 uid_t uid; 3295 gid_t gid; 3296 3297 ASSERT_RTNL(); 3298 3299 dev->flags |= IFF_PROMISC; 3300 dev->promiscuity += inc; 3301 if (dev->promiscuity == 0) { 3302 /* 3303 * Avoid overflow. 3304 * If inc causes overflow, untouch promisc and return error. 3305 */ 3306 if (inc < 0) 3307 dev->flags &= ~IFF_PROMISC; 3308 else { 3309 dev->promiscuity -= inc; 3310 printk(KERN_WARNING "%s: promiscuity touches roof, " 3311 "set promiscuity failed, promiscuity feature " 3312 "of device might be broken.\n", dev->name); 3313 return -EOVERFLOW; 3314 } 3315 } 3316 if (dev->flags != old_flags) { 3317 printk(KERN_INFO "device %s %s promiscuous mode\n", 3318 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 3319 "left"); 3320 if (audit_enabled) { 3321 current_uid_gid(&uid, &gid); 3322 audit_log(current->audit_context, GFP_ATOMIC, 3323 AUDIT_ANOM_PROMISCUOUS, 3324 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 3325 dev->name, (dev->flags & IFF_PROMISC), 3326 (old_flags & IFF_PROMISC), 3327 audit_get_loginuid(current), 3328 uid, gid, 3329 audit_get_sessionid(current)); 3330 } 3331 3332 dev_change_rx_flags(dev, IFF_PROMISC); 3333 } 3334 return 0; 3335 } 3336 3337 /** 3338 * dev_set_promiscuity - update promiscuity count on a device 3339 * @dev: device 3340 * @inc: modifier 3341 * 3342 * Add or remove promiscuity from a device. While the count in the device 3343 * remains above zero the interface remains promiscuous. Once it hits zero 3344 * the device reverts back to normal filtering operation. A negative inc 3345 * value is used to drop promiscuity on the device. 3346 * Return 0 if successful or a negative errno code on error. 3347 */ 3348 int dev_set_promiscuity(struct net_device *dev, int inc) 3349 { 3350 unsigned short old_flags = dev->flags; 3351 int err; 3352 3353 err = __dev_set_promiscuity(dev, inc); 3354 if (err < 0) 3355 return err; 3356 if (dev->flags != old_flags) 3357 dev_set_rx_mode(dev); 3358 return err; 3359 } 3360 3361 /** 3362 * dev_set_allmulti - update allmulti count on a device 3363 * @dev: device 3364 * @inc: modifier 3365 * 3366 * Add or remove reception of all multicast frames to a device. While the 3367 * count in the device remains above zero the interface remains listening 3368 * to all interfaces. Once it hits zero the device reverts back to normal 3369 * filtering operation. A negative @inc value is used to drop the counter 3370 * when releasing a resource needing all multicasts. 3371 * Return 0 if successful or a negative errno code on error. 3372 */ 3373 3374 int dev_set_allmulti(struct net_device *dev, int inc) 3375 { 3376 unsigned short old_flags = dev->flags; 3377 3378 ASSERT_RTNL(); 3379 3380 dev->flags |= IFF_ALLMULTI; 3381 dev->allmulti += inc; 3382 if (dev->allmulti == 0) { 3383 /* 3384 * Avoid overflow. 3385 * If inc causes overflow, untouch allmulti and return error. 3386 */ 3387 if (inc < 0) 3388 dev->flags &= ~IFF_ALLMULTI; 3389 else { 3390 dev->allmulti -= inc; 3391 printk(KERN_WARNING "%s: allmulti touches roof, " 3392 "set allmulti failed, allmulti feature of " 3393 "device might be broken.\n", dev->name); 3394 return -EOVERFLOW; 3395 } 3396 } 3397 if (dev->flags ^ old_flags) { 3398 dev_change_rx_flags(dev, IFF_ALLMULTI); 3399 dev_set_rx_mode(dev); 3400 } 3401 return 0; 3402 } 3403 3404 /* 3405 * Upload unicast and multicast address lists to device and 3406 * configure RX filtering. When the device doesn't support unicast 3407 * filtering it is put in promiscuous mode while unicast addresses 3408 * are present. 3409 */ 3410 void __dev_set_rx_mode(struct net_device *dev) 3411 { 3412 const struct net_device_ops *ops = dev->netdev_ops; 3413 3414 /* dev_open will call this function so the list will stay sane. */ 3415 if (!(dev->flags&IFF_UP)) 3416 return; 3417 3418 if (!netif_device_present(dev)) 3419 return; 3420 3421 if (ops->ndo_set_rx_mode) 3422 ops->ndo_set_rx_mode(dev); 3423 else { 3424 /* Unicast addresses changes may only happen under the rtnl, 3425 * therefore calling __dev_set_promiscuity here is safe. 3426 */ 3427 if (dev->uc_count > 0 && !dev->uc_promisc) { 3428 __dev_set_promiscuity(dev, 1); 3429 dev->uc_promisc = 1; 3430 } else if (dev->uc_count == 0 && dev->uc_promisc) { 3431 __dev_set_promiscuity(dev, -1); 3432 dev->uc_promisc = 0; 3433 } 3434 3435 if (ops->ndo_set_multicast_list) 3436 ops->ndo_set_multicast_list(dev); 3437 } 3438 } 3439 3440 void dev_set_rx_mode(struct net_device *dev) 3441 { 3442 netif_addr_lock_bh(dev); 3443 __dev_set_rx_mode(dev); 3444 netif_addr_unlock_bh(dev); 3445 } 3446 3447 int __dev_addr_delete(struct dev_addr_list **list, int *count, 3448 void *addr, int alen, int glbl) 3449 { 3450 struct dev_addr_list *da; 3451 3452 for (; (da = *list) != NULL; list = &da->next) { 3453 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 3454 alen == da->da_addrlen) { 3455 if (glbl) { 3456 int old_glbl = da->da_gusers; 3457 da->da_gusers = 0; 3458 if (old_glbl == 0) 3459 break; 3460 } 3461 if (--da->da_users) 3462 return 0; 3463 3464 *list = da->next; 3465 kfree(da); 3466 (*count)--; 3467 return 0; 3468 } 3469 } 3470 return -ENOENT; 3471 } 3472 3473 int __dev_addr_add(struct dev_addr_list **list, int *count, 3474 void *addr, int alen, int glbl) 3475 { 3476 struct dev_addr_list *da; 3477 3478 for (da = *list; da != NULL; da = da->next) { 3479 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 3480 da->da_addrlen == alen) { 3481 if (glbl) { 3482 int old_glbl = da->da_gusers; 3483 da->da_gusers = 1; 3484 if (old_glbl) 3485 return 0; 3486 } 3487 da->da_users++; 3488 return 0; 3489 } 3490 } 3491 3492 da = kzalloc(sizeof(*da), GFP_ATOMIC); 3493 if (da == NULL) 3494 return -ENOMEM; 3495 memcpy(da->da_addr, addr, alen); 3496 da->da_addrlen = alen; 3497 da->da_users = 1; 3498 da->da_gusers = glbl ? 1 : 0; 3499 da->next = *list; 3500 *list = da; 3501 (*count)++; 3502 return 0; 3503 } 3504 3505 /** 3506 * dev_unicast_delete - Release secondary unicast address. 3507 * @dev: device 3508 * @addr: address to delete 3509 * @alen: length of @addr 3510 * 3511 * Release reference to a secondary unicast address and remove it 3512 * from the device if the reference count drops to zero. 3513 * 3514 * The caller must hold the rtnl_mutex. 3515 */ 3516 int dev_unicast_delete(struct net_device *dev, void *addr, int alen) 3517 { 3518 int err; 3519 3520 ASSERT_RTNL(); 3521 3522 netif_addr_lock_bh(dev); 3523 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0); 3524 if (!err) 3525 __dev_set_rx_mode(dev); 3526 netif_addr_unlock_bh(dev); 3527 return err; 3528 } 3529 EXPORT_SYMBOL(dev_unicast_delete); 3530 3531 /** 3532 * dev_unicast_add - add a secondary unicast address 3533 * @dev: device 3534 * @addr: address to add 3535 * @alen: length of @addr 3536 * 3537 * Add a secondary unicast address to the device or increase 3538 * the reference count if it already exists. 3539 * 3540 * The caller must hold the rtnl_mutex. 3541 */ 3542 int dev_unicast_add(struct net_device *dev, void *addr, int alen) 3543 { 3544 int err; 3545 3546 ASSERT_RTNL(); 3547 3548 netif_addr_lock_bh(dev); 3549 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0); 3550 if (!err) 3551 __dev_set_rx_mode(dev); 3552 netif_addr_unlock_bh(dev); 3553 return err; 3554 } 3555 EXPORT_SYMBOL(dev_unicast_add); 3556 3557 int __dev_addr_sync(struct dev_addr_list **to, int *to_count, 3558 struct dev_addr_list **from, int *from_count) 3559 { 3560 struct dev_addr_list *da, *next; 3561 int err = 0; 3562 3563 da = *from; 3564 while (da != NULL) { 3565 next = da->next; 3566 if (!da->da_synced) { 3567 err = __dev_addr_add(to, to_count, 3568 da->da_addr, da->da_addrlen, 0); 3569 if (err < 0) 3570 break; 3571 da->da_synced = 1; 3572 da->da_users++; 3573 } else if (da->da_users == 1) { 3574 __dev_addr_delete(to, to_count, 3575 da->da_addr, da->da_addrlen, 0); 3576 __dev_addr_delete(from, from_count, 3577 da->da_addr, da->da_addrlen, 0); 3578 } 3579 da = next; 3580 } 3581 return err; 3582 } 3583 3584 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count, 3585 struct dev_addr_list **from, int *from_count) 3586 { 3587 struct dev_addr_list *da, *next; 3588 3589 da = *from; 3590 while (da != NULL) { 3591 next = da->next; 3592 if (da->da_synced) { 3593 __dev_addr_delete(to, to_count, 3594 da->da_addr, da->da_addrlen, 0); 3595 da->da_synced = 0; 3596 __dev_addr_delete(from, from_count, 3597 da->da_addr, da->da_addrlen, 0); 3598 } 3599 da = next; 3600 } 3601 } 3602 3603 /** 3604 * dev_unicast_sync - Synchronize device's unicast list to another device 3605 * @to: destination device 3606 * @from: source device 3607 * 3608 * Add newly added addresses to the destination device and release 3609 * addresses that have no users left. The source device must be 3610 * locked by netif_tx_lock_bh. 3611 * 3612 * This function is intended to be called from the dev->set_rx_mode 3613 * function of layered software devices. 3614 */ 3615 int dev_unicast_sync(struct net_device *to, struct net_device *from) 3616 { 3617 int err = 0; 3618 3619 netif_addr_lock_bh(to); 3620 err = __dev_addr_sync(&to->uc_list, &to->uc_count, 3621 &from->uc_list, &from->uc_count); 3622 if (!err) 3623 __dev_set_rx_mode(to); 3624 netif_addr_unlock_bh(to); 3625 return err; 3626 } 3627 EXPORT_SYMBOL(dev_unicast_sync); 3628 3629 /** 3630 * dev_unicast_unsync - Remove synchronized addresses from the destination device 3631 * @to: destination device 3632 * @from: source device 3633 * 3634 * Remove all addresses that were added to the destination device by 3635 * dev_unicast_sync(). This function is intended to be called from the 3636 * dev->stop function of layered software devices. 3637 */ 3638 void dev_unicast_unsync(struct net_device *to, struct net_device *from) 3639 { 3640 netif_addr_lock_bh(from); 3641 netif_addr_lock(to); 3642 3643 __dev_addr_unsync(&to->uc_list, &to->uc_count, 3644 &from->uc_list, &from->uc_count); 3645 __dev_set_rx_mode(to); 3646 3647 netif_addr_unlock(to); 3648 netif_addr_unlock_bh(from); 3649 } 3650 EXPORT_SYMBOL(dev_unicast_unsync); 3651 3652 static void __dev_addr_discard(struct dev_addr_list **list) 3653 { 3654 struct dev_addr_list *tmp; 3655 3656 while (*list != NULL) { 3657 tmp = *list; 3658 *list = tmp->next; 3659 if (tmp->da_users > tmp->da_gusers) 3660 printk("__dev_addr_discard: address leakage! " 3661 "da_users=%d\n", tmp->da_users); 3662 kfree(tmp); 3663 } 3664 } 3665 3666 static void dev_addr_discard(struct net_device *dev) 3667 { 3668 netif_addr_lock_bh(dev); 3669 3670 __dev_addr_discard(&dev->uc_list); 3671 dev->uc_count = 0; 3672 3673 __dev_addr_discard(&dev->mc_list); 3674 dev->mc_count = 0; 3675 3676 netif_addr_unlock_bh(dev); 3677 } 3678 3679 /** 3680 * dev_get_flags - get flags reported to userspace 3681 * @dev: device 3682 * 3683 * Get the combination of flag bits exported through APIs to userspace. 3684 */ 3685 unsigned dev_get_flags(const struct net_device *dev) 3686 { 3687 unsigned flags; 3688 3689 flags = (dev->flags & ~(IFF_PROMISC | 3690 IFF_ALLMULTI | 3691 IFF_RUNNING | 3692 IFF_LOWER_UP | 3693 IFF_DORMANT)) | 3694 (dev->gflags & (IFF_PROMISC | 3695 IFF_ALLMULTI)); 3696 3697 if (netif_running(dev)) { 3698 if (netif_oper_up(dev)) 3699 flags |= IFF_RUNNING; 3700 if (netif_carrier_ok(dev)) 3701 flags |= IFF_LOWER_UP; 3702 if (netif_dormant(dev)) 3703 flags |= IFF_DORMANT; 3704 } 3705 3706 return flags; 3707 } 3708 3709 /** 3710 * dev_change_flags - change device settings 3711 * @dev: device 3712 * @flags: device state flags 3713 * 3714 * Change settings on device based state flags. The flags are 3715 * in the userspace exported format. 3716 */ 3717 int dev_change_flags(struct net_device *dev, unsigned flags) 3718 { 3719 int ret, changes; 3720 int old_flags = dev->flags; 3721 3722 ASSERT_RTNL(); 3723 3724 /* 3725 * Set the flags on our device. 3726 */ 3727 3728 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 3729 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 3730 IFF_AUTOMEDIA)) | 3731 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 3732 IFF_ALLMULTI)); 3733 3734 /* 3735 * Load in the correct multicast list now the flags have changed. 3736 */ 3737 3738 if ((old_flags ^ flags) & IFF_MULTICAST) 3739 dev_change_rx_flags(dev, IFF_MULTICAST); 3740 3741 dev_set_rx_mode(dev); 3742 3743 /* 3744 * Have we downed the interface. We handle IFF_UP ourselves 3745 * according to user attempts to set it, rather than blindly 3746 * setting it. 3747 */ 3748 3749 ret = 0; 3750 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 3751 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev); 3752 3753 if (!ret) 3754 dev_set_rx_mode(dev); 3755 } 3756 3757 if (dev->flags & IFF_UP && 3758 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI | 3759 IFF_VOLATILE))) 3760 call_netdevice_notifiers(NETDEV_CHANGE, dev); 3761 3762 if ((flags ^ dev->gflags) & IFF_PROMISC) { 3763 int inc = (flags & IFF_PROMISC) ? +1 : -1; 3764 dev->gflags ^= IFF_PROMISC; 3765 dev_set_promiscuity(dev, inc); 3766 } 3767 3768 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 3769 is important. Some (broken) drivers set IFF_PROMISC, when 3770 IFF_ALLMULTI is requested not asking us and not reporting. 3771 */ 3772 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 3773 int inc = (flags & IFF_ALLMULTI) ? +1 : -1; 3774 dev->gflags ^= IFF_ALLMULTI; 3775 dev_set_allmulti(dev, inc); 3776 } 3777 3778 /* Exclude state transition flags, already notified */ 3779 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING); 3780 if (changes) 3781 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 3782 3783 return ret; 3784 } 3785 3786 /** 3787 * dev_set_mtu - Change maximum transfer unit 3788 * @dev: device 3789 * @new_mtu: new transfer unit 3790 * 3791 * Change the maximum transfer size of the network device. 3792 */ 3793 int dev_set_mtu(struct net_device *dev, int new_mtu) 3794 { 3795 const struct net_device_ops *ops = dev->netdev_ops; 3796 int err; 3797 3798 if (new_mtu == dev->mtu) 3799 return 0; 3800 3801 /* MTU must be positive. */ 3802 if (new_mtu < 0) 3803 return -EINVAL; 3804 3805 if (!netif_device_present(dev)) 3806 return -ENODEV; 3807 3808 err = 0; 3809 if (ops->ndo_change_mtu) 3810 err = ops->ndo_change_mtu(dev, new_mtu); 3811 else 3812 dev->mtu = new_mtu; 3813 3814 if (!err && dev->flags & IFF_UP) 3815 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 3816 return err; 3817 } 3818 3819 /** 3820 * dev_set_mac_address - Change Media Access Control Address 3821 * @dev: device 3822 * @sa: new address 3823 * 3824 * Change the hardware (MAC) address of the device 3825 */ 3826 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 3827 { 3828 const struct net_device_ops *ops = dev->netdev_ops; 3829 int err; 3830 3831 if (!ops->ndo_set_mac_address) 3832 return -EOPNOTSUPP; 3833 if (sa->sa_family != dev->type) 3834 return -EINVAL; 3835 if (!netif_device_present(dev)) 3836 return -ENODEV; 3837 err = ops->ndo_set_mac_address(dev, sa); 3838 if (!err) 3839 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 3840 return err; 3841 } 3842 3843 /* 3844 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock) 3845 */ 3846 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 3847 { 3848 int err; 3849 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 3850 3851 if (!dev) 3852 return -ENODEV; 3853 3854 switch (cmd) { 3855 case SIOCGIFFLAGS: /* Get interface flags */ 3856 ifr->ifr_flags = dev_get_flags(dev); 3857 return 0; 3858 3859 case SIOCGIFMETRIC: /* Get the metric on the interface 3860 (currently unused) */ 3861 ifr->ifr_metric = 0; 3862 return 0; 3863 3864 case SIOCGIFMTU: /* Get the MTU of a device */ 3865 ifr->ifr_mtu = dev->mtu; 3866 return 0; 3867 3868 case SIOCGIFHWADDR: 3869 if (!dev->addr_len) 3870 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 3871 else 3872 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 3873 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 3874 ifr->ifr_hwaddr.sa_family = dev->type; 3875 return 0; 3876 3877 case SIOCGIFSLAVE: 3878 err = -EINVAL; 3879 break; 3880 3881 case SIOCGIFMAP: 3882 ifr->ifr_map.mem_start = dev->mem_start; 3883 ifr->ifr_map.mem_end = dev->mem_end; 3884 ifr->ifr_map.base_addr = dev->base_addr; 3885 ifr->ifr_map.irq = dev->irq; 3886 ifr->ifr_map.dma = dev->dma; 3887 ifr->ifr_map.port = dev->if_port; 3888 return 0; 3889 3890 case SIOCGIFINDEX: 3891 ifr->ifr_ifindex = dev->ifindex; 3892 return 0; 3893 3894 case SIOCGIFTXQLEN: 3895 ifr->ifr_qlen = dev->tx_queue_len; 3896 return 0; 3897 3898 default: 3899 /* dev_ioctl() should ensure this case 3900 * is never reached 3901 */ 3902 WARN_ON(1); 3903 err = -EINVAL; 3904 break; 3905 3906 } 3907 return err; 3908 } 3909 3910 /* 3911 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 3912 */ 3913 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 3914 { 3915 int err; 3916 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 3917 const struct net_device_ops *ops; 3918 3919 if (!dev) 3920 return -ENODEV; 3921 3922 ops = dev->netdev_ops; 3923 3924 switch (cmd) { 3925 case SIOCSIFFLAGS: /* Set interface flags */ 3926 return dev_change_flags(dev, ifr->ifr_flags); 3927 3928 case SIOCSIFMETRIC: /* Set the metric on the interface 3929 (currently unused) */ 3930 return -EOPNOTSUPP; 3931 3932 case SIOCSIFMTU: /* Set the MTU of a device */ 3933 return dev_set_mtu(dev, ifr->ifr_mtu); 3934 3935 case SIOCSIFHWADDR: 3936 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 3937 3938 case SIOCSIFHWBROADCAST: 3939 if (ifr->ifr_hwaddr.sa_family != dev->type) 3940 return -EINVAL; 3941 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 3942 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 3943 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 3944 return 0; 3945 3946 case SIOCSIFMAP: 3947 if (ops->ndo_set_config) { 3948 if (!netif_device_present(dev)) 3949 return -ENODEV; 3950 return ops->ndo_set_config(dev, &ifr->ifr_map); 3951 } 3952 return -EOPNOTSUPP; 3953 3954 case SIOCADDMULTI: 3955 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 3956 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 3957 return -EINVAL; 3958 if (!netif_device_present(dev)) 3959 return -ENODEV; 3960 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data, 3961 dev->addr_len, 1); 3962 3963 case SIOCDELMULTI: 3964 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 3965 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 3966 return -EINVAL; 3967 if (!netif_device_present(dev)) 3968 return -ENODEV; 3969 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data, 3970 dev->addr_len, 1); 3971 3972 case SIOCSIFTXQLEN: 3973 if (ifr->ifr_qlen < 0) 3974 return -EINVAL; 3975 dev->tx_queue_len = ifr->ifr_qlen; 3976 return 0; 3977 3978 case SIOCSIFNAME: 3979 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 3980 return dev_change_name(dev, ifr->ifr_newname); 3981 3982 /* 3983 * Unknown or private ioctl 3984 */ 3985 3986 default: 3987 if ((cmd >= SIOCDEVPRIVATE && 3988 cmd <= SIOCDEVPRIVATE + 15) || 3989 cmd == SIOCBONDENSLAVE || 3990 cmd == SIOCBONDRELEASE || 3991 cmd == SIOCBONDSETHWADDR || 3992 cmd == SIOCBONDSLAVEINFOQUERY || 3993 cmd == SIOCBONDINFOQUERY || 3994 cmd == SIOCBONDCHANGEACTIVE || 3995 cmd == SIOCGMIIPHY || 3996 cmd == SIOCGMIIREG || 3997 cmd == SIOCSMIIREG || 3998 cmd == SIOCBRADDIF || 3999 cmd == SIOCBRDELIF || 4000 cmd == SIOCSHWTSTAMP || 4001 cmd == SIOCWANDEV) { 4002 err = -EOPNOTSUPP; 4003 if (ops->ndo_do_ioctl) { 4004 if (netif_device_present(dev)) 4005 err = ops->ndo_do_ioctl(dev, ifr, cmd); 4006 else 4007 err = -ENODEV; 4008 } 4009 } else 4010 err = -EINVAL; 4011 4012 } 4013 return err; 4014 } 4015 4016 /* 4017 * This function handles all "interface"-type I/O control requests. The actual 4018 * 'doing' part of this is dev_ifsioc above. 4019 */ 4020 4021 /** 4022 * dev_ioctl - network device ioctl 4023 * @net: the applicable net namespace 4024 * @cmd: command to issue 4025 * @arg: pointer to a struct ifreq in user space 4026 * 4027 * Issue ioctl functions to devices. This is normally called by the 4028 * user space syscall interfaces but can sometimes be useful for 4029 * other purposes. The return value is the return from the syscall if 4030 * positive or a negative errno code on error. 4031 */ 4032 4033 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 4034 { 4035 struct ifreq ifr; 4036 int ret; 4037 char *colon; 4038 4039 /* One special case: SIOCGIFCONF takes ifconf argument 4040 and requires shared lock, because it sleeps writing 4041 to user space. 4042 */ 4043 4044 if (cmd == SIOCGIFCONF) { 4045 rtnl_lock(); 4046 ret = dev_ifconf(net, (char __user *) arg); 4047 rtnl_unlock(); 4048 return ret; 4049 } 4050 if (cmd == SIOCGIFNAME) 4051 return dev_ifname(net, (struct ifreq __user *)arg); 4052 4053 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 4054 return -EFAULT; 4055 4056 ifr.ifr_name[IFNAMSIZ-1] = 0; 4057 4058 colon = strchr(ifr.ifr_name, ':'); 4059 if (colon) 4060 *colon = 0; 4061 4062 /* 4063 * See which interface the caller is talking about. 4064 */ 4065 4066 switch (cmd) { 4067 /* 4068 * These ioctl calls: 4069 * - can be done by all. 4070 * - atomic and do not require locking. 4071 * - return a value 4072 */ 4073 case SIOCGIFFLAGS: 4074 case SIOCGIFMETRIC: 4075 case SIOCGIFMTU: 4076 case SIOCGIFHWADDR: 4077 case SIOCGIFSLAVE: 4078 case SIOCGIFMAP: 4079 case SIOCGIFINDEX: 4080 case SIOCGIFTXQLEN: 4081 dev_load(net, ifr.ifr_name); 4082 read_lock(&dev_base_lock); 4083 ret = dev_ifsioc_locked(net, &ifr, cmd); 4084 read_unlock(&dev_base_lock); 4085 if (!ret) { 4086 if (colon) 4087 *colon = ':'; 4088 if (copy_to_user(arg, &ifr, 4089 sizeof(struct ifreq))) 4090 ret = -EFAULT; 4091 } 4092 return ret; 4093 4094 case SIOCETHTOOL: 4095 dev_load(net, ifr.ifr_name); 4096 rtnl_lock(); 4097 ret = dev_ethtool(net, &ifr); 4098 rtnl_unlock(); 4099 if (!ret) { 4100 if (colon) 4101 *colon = ':'; 4102 if (copy_to_user(arg, &ifr, 4103 sizeof(struct ifreq))) 4104 ret = -EFAULT; 4105 } 4106 return ret; 4107 4108 /* 4109 * These ioctl calls: 4110 * - require superuser power. 4111 * - require strict serialization. 4112 * - return a value 4113 */ 4114 case SIOCGMIIPHY: 4115 case SIOCGMIIREG: 4116 case SIOCSIFNAME: 4117 if (!capable(CAP_NET_ADMIN)) 4118 return -EPERM; 4119 dev_load(net, ifr.ifr_name); 4120 rtnl_lock(); 4121 ret = dev_ifsioc(net, &ifr, cmd); 4122 rtnl_unlock(); 4123 if (!ret) { 4124 if (colon) 4125 *colon = ':'; 4126 if (copy_to_user(arg, &ifr, 4127 sizeof(struct ifreq))) 4128 ret = -EFAULT; 4129 } 4130 return ret; 4131 4132 /* 4133 * These ioctl calls: 4134 * - require superuser power. 4135 * - require strict serialization. 4136 * - do not return a value 4137 */ 4138 case SIOCSIFFLAGS: 4139 case SIOCSIFMETRIC: 4140 case SIOCSIFMTU: 4141 case SIOCSIFMAP: 4142 case SIOCSIFHWADDR: 4143 case SIOCSIFSLAVE: 4144 case SIOCADDMULTI: 4145 case SIOCDELMULTI: 4146 case SIOCSIFHWBROADCAST: 4147 case SIOCSIFTXQLEN: 4148 case SIOCSMIIREG: 4149 case SIOCBONDENSLAVE: 4150 case SIOCBONDRELEASE: 4151 case SIOCBONDSETHWADDR: 4152 case SIOCBONDCHANGEACTIVE: 4153 case SIOCBRADDIF: 4154 case SIOCBRDELIF: 4155 case SIOCSHWTSTAMP: 4156 if (!capable(CAP_NET_ADMIN)) 4157 return -EPERM; 4158 /* fall through */ 4159 case SIOCBONDSLAVEINFOQUERY: 4160 case SIOCBONDINFOQUERY: 4161 dev_load(net, ifr.ifr_name); 4162 rtnl_lock(); 4163 ret = dev_ifsioc(net, &ifr, cmd); 4164 rtnl_unlock(); 4165 return ret; 4166 4167 case SIOCGIFMEM: 4168 /* Get the per device memory space. We can add this but 4169 * currently do not support it */ 4170 case SIOCSIFMEM: 4171 /* Set the per device memory buffer space. 4172 * Not applicable in our case */ 4173 case SIOCSIFLINK: 4174 return -EINVAL; 4175 4176 /* 4177 * Unknown or private ioctl. 4178 */ 4179 default: 4180 if (cmd == SIOCWANDEV || 4181 (cmd >= SIOCDEVPRIVATE && 4182 cmd <= SIOCDEVPRIVATE + 15)) { 4183 dev_load(net, ifr.ifr_name); 4184 rtnl_lock(); 4185 ret = dev_ifsioc(net, &ifr, cmd); 4186 rtnl_unlock(); 4187 if (!ret && copy_to_user(arg, &ifr, 4188 sizeof(struct ifreq))) 4189 ret = -EFAULT; 4190 return ret; 4191 } 4192 /* Take care of Wireless Extensions */ 4193 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 4194 return wext_handle_ioctl(net, &ifr, cmd, arg); 4195 return -EINVAL; 4196 } 4197 } 4198 4199 4200 /** 4201 * dev_new_index - allocate an ifindex 4202 * @net: the applicable net namespace 4203 * 4204 * Returns a suitable unique value for a new device interface 4205 * number. The caller must hold the rtnl semaphore or the 4206 * dev_base_lock to be sure it remains unique. 4207 */ 4208 static int dev_new_index(struct net *net) 4209 { 4210 static int ifindex; 4211 for (;;) { 4212 if (++ifindex <= 0) 4213 ifindex = 1; 4214 if (!__dev_get_by_index(net, ifindex)) 4215 return ifindex; 4216 } 4217 } 4218 4219 /* Delayed registration/unregisteration */ 4220 static LIST_HEAD(net_todo_list); 4221 4222 static void net_set_todo(struct net_device *dev) 4223 { 4224 list_add_tail(&dev->todo_list, &net_todo_list); 4225 } 4226 4227 static void rollback_registered(struct net_device *dev) 4228 { 4229 BUG_ON(dev_boot_phase); 4230 ASSERT_RTNL(); 4231 4232 /* Some devices call without registering for initialization unwind. */ 4233 if (dev->reg_state == NETREG_UNINITIALIZED) { 4234 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never " 4235 "was registered\n", dev->name, dev); 4236 4237 WARN_ON(1); 4238 return; 4239 } 4240 4241 BUG_ON(dev->reg_state != NETREG_REGISTERED); 4242 4243 /* If device is running, close it first. */ 4244 dev_close(dev); 4245 4246 /* And unlink it from device chain. */ 4247 unlist_netdevice(dev); 4248 4249 dev->reg_state = NETREG_UNREGISTERING; 4250 4251 synchronize_net(); 4252 4253 /* Shutdown queueing discipline. */ 4254 dev_shutdown(dev); 4255 4256 4257 /* Notify protocols, that we are about to destroy 4258 this device. They should clean all the things. 4259 */ 4260 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4261 4262 /* 4263 * Flush the unicast and multicast chains 4264 */ 4265 dev_addr_discard(dev); 4266 4267 if (dev->netdev_ops->ndo_uninit) 4268 dev->netdev_ops->ndo_uninit(dev); 4269 4270 /* Notifier chain MUST detach us from master device. */ 4271 WARN_ON(dev->master); 4272 4273 /* Remove entries from kobject tree */ 4274 netdev_unregister_kobject(dev); 4275 4276 synchronize_net(); 4277 4278 dev_put(dev); 4279 } 4280 4281 static void __netdev_init_queue_locks_one(struct net_device *dev, 4282 struct netdev_queue *dev_queue, 4283 void *_unused) 4284 { 4285 spin_lock_init(&dev_queue->_xmit_lock); 4286 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type); 4287 dev_queue->xmit_lock_owner = -1; 4288 } 4289 4290 static void netdev_init_queue_locks(struct net_device *dev) 4291 { 4292 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL); 4293 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL); 4294 } 4295 4296 unsigned long netdev_fix_features(unsigned long features, const char *name) 4297 { 4298 /* Fix illegal SG+CSUM combinations. */ 4299 if ((features & NETIF_F_SG) && 4300 !(features & NETIF_F_ALL_CSUM)) { 4301 if (name) 4302 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no " 4303 "checksum feature.\n", name); 4304 features &= ~NETIF_F_SG; 4305 } 4306 4307 /* TSO requires that SG is present as well. */ 4308 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) { 4309 if (name) 4310 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no " 4311 "SG feature.\n", name); 4312 features &= ~NETIF_F_TSO; 4313 } 4314 4315 if (features & NETIF_F_UFO) { 4316 if (!(features & NETIF_F_GEN_CSUM)) { 4317 if (name) 4318 printk(KERN_ERR "%s: Dropping NETIF_F_UFO " 4319 "since no NETIF_F_HW_CSUM feature.\n", 4320 name); 4321 features &= ~NETIF_F_UFO; 4322 } 4323 4324 if (!(features & NETIF_F_SG)) { 4325 if (name) 4326 printk(KERN_ERR "%s: Dropping NETIF_F_UFO " 4327 "since no NETIF_F_SG feature.\n", name); 4328 features &= ~NETIF_F_UFO; 4329 } 4330 } 4331 4332 return features; 4333 } 4334 EXPORT_SYMBOL(netdev_fix_features); 4335 4336 /* Some devices need to (re-)set their netdev_ops inside 4337 * ->init() or similar. If that happens, we have to setup 4338 * the compat pointers again. 4339 */ 4340 void netdev_resync_ops(struct net_device *dev) 4341 { 4342 #ifdef CONFIG_COMPAT_NET_DEV_OPS 4343 const struct net_device_ops *ops = dev->netdev_ops; 4344 4345 dev->init = ops->ndo_init; 4346 dev->uninit = ops->ndo_uninit; 4347 dev->open = ops->ndo_open; 4348 dev->change_rx_flags = ops->ndo_change_rx_flags; 4349 dev->set_rx_mode = ops->ndo_set_rx_mode; 4350 dev->set_multicast_list = ops->ndo_set_multicast_list; 4351 dev->set_mac_address = ops->ndo_set_mac_address; 4352 dev->validate_addr = ops->ndo_validate_addr; 4353 dev->do_ioctl = ops->ndo_do_ioctl; 4354 dev->set_config = ops->ndo_set_config; 4355 dev->change_mtu = ops->ndo_change_mtu; 4356 dev->neigh_setup = ops->ndo_neigh_setup; 4357 dev->tx_timeout = ops->ndo_tx_timeout; 4358 dev->get_stats = ops->ndo_get_stats; 4359 dev->vlan_rx_register = ops->ndo_vlan_rx_register; 4360 dev->vlan_rx_add_vid = ops->ndo_vlan_rx_add_vid; 4361 dev->vlan_rx_kill_vid = ops->ndo_vlan_rx_kill_vid; 4362 #ifdef CONFIG_NET_POLL_CONTROLLER 4363 dev->poll_controller = ops->ndo_poll_controller; 4364 #endif 4365 #endif 4366 } 4367 EXPORT_SYMBOL(netdev_resync_ops); 4368 4369 /** 4370 * register_netdevice - register a network device 4371 * @dev: device to register 4372 * 4373 * Take a completed network device structure and add it to the kernel 4374 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 4375 * chain. 0 is returned on success. A negative errno code is returned 4376 * on a failure to set up the device, or if the name is a duplicate. 4377 * 4378 * Callers must hold the rtnl semaphore. You may want 4379 * register_netdev() instead of this. 4380 * 4381 * BUGS: 4382 * The locking appears insufficient to guarantee two parallel registers 4383 * will not get the same name. 4384 */ 4385 4386 int register_netdevice(struct net_device *dev) 4387 { 4388 struct hlist_head *head; 4389 struct hlist_node *p; 4390 int ret; 4391 struct net *net = dev_net(dev); 4392 4393 BUG_ON(dev_boot_phase); 4394 ASSERT_RTNL(); 4395 4396 might_sleep(); 4397 4398 /* When net_device's are persistent, this will be fatal. */ 4399 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 4400 BUG_ON(!net); 4401 4402 spin_lock_init(&dev->addr_list_lock); 4403 netdev_set_addr_lockdep_class(dev); 4404 netdev_init_queue_locks(dev); 4405 4406 dev->iflink = -1; 4407 4408 #ifdef CONFIG_COMPAT_NET_DEV_OPS 4409 /* Netdevice_ops API compatibility support. 4410 * This is temporary until all network devices are converted. 4411 */ 4412 if (dev->netdev_ops) { 4413 netdev_resync_ops(dev); 4414 } else { 4415 char drivername[64]; 4416 pr_info("%s (%s): not using net_device_ops yet\n", 4417 dev->name, netdev_drivername(dev, drivername, 64)); 4418 4419 /* This works only because net_device_ops and the 4420 compatibility structure are the same. */ 4421 dev->netdev_ops = (void *) &(dev->init); 4422 } 4423 #endif 4424 4425 /* Init, if this function is available */ 4426 if (dev->netdev_ops->ndo_init) { 4427 ret = dev->netdev_ops->ndo_init(dev); 4428 if (ret) { 4429 if (ret > 0) 4430 ret = -EIO; 4431 goto out; 4432 } 4433 } 4434 4435 if (!dev_valid_name(dev->name)) { 4436 ret = -EINVAL; 4437 goto err_uninit; 4438 } 4439 4440 dev->ifindex = dev_new_index(net); 4441 if (dev->iflink == -1) 4442 dev->iflink = dev->ifindex; 4443 4444 /* Check for existence of name */ 4445 head = dev_name_hash(net, dev->name); 4446 hlist_for_each(p, head) { 4447 struct net_device *d 4448 = hlist_entry(p, struct net_device, name_hlist); 4449 if (!strncmp(d->name, dev->name, IFNAMSIZ)) { 4450 ret = -EEXIST; 4451 goto err_uninit; 4452 } 4453 } 4454 4455 /* Fix illegal checksum combinations */ 4456 if ((dev->features & NETIF_F_HW_CSUM) && 4457 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 4458 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n", 4459 dev->name); 4460 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4461 } 4462 4463 if ((dev->features & NETIF_F_NO_CSUM) && 4464 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 4465 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n", 4466 dev->name); 4467 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM); 4468 } 4469 4470 dev->features = netdev_fix_features(dev->features, dev->name); 4471 4472 /* Enable software GSO if SG is supported. */ 4473 if (dev->features & NETIF_F_SG) 4474 dev->features |= NETIF_F_GSO; 4475 4476 netdev_initialize_kobject(dev); 4477 ret = netdev_register_kobject(dev); 4478 if (ret) 4479 goto err_uninit; 4480 dev->reg_state = NETREG_REGISTERED; 4481 4482 /* 4483 * Default initial state at registry is that the 4484 * device is present. 4485 */ 4486 4487 set_bit(__LINK_STATE_PRESENT, &dev->state); 4488 4489 dev_init_scheduler(dev); 4490 dev_hold(dev); 4491 list_netdevice(dev); 4492 4493 /* Notify protocols, that a new device appeared. */ 4494 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 4495 ret = notifier_to_errno(ret); 4496 if (ret) { 4497 rollback_registered(dev); 4498 dev->reg_state = NETREG_UNREGISTERED; 4499 } 4500 4501 out: 4502 return ret; 4503 4504 err_uninit: 4505 if (dev->netdev_ops->ndo_uninit) 4506 dev->netdev_ops->ndo_uninit(dev); 4507 goto out; 4508 } 4509 4510 /** 4511 * init_dummy_netdev - init a dummy network device for NAPI 4512 * @dev: device to init 4513 * 4514 * This takes a network device structure and initialize the minimum 4515 * amount of fields so it can be used to schedule NAPI polls without 4516 * registering a full blown interface. This is to be used by drivers 4517 * that need to tie several hardware interfaces to a single NAPI 4518 * poll scheduler due to HW limitations. 4519 */ 4520 int init_dummy_netdev(struct net_device *dev) 4521 { 4522 /* Clear everything. Note we don't initialize spinlocks 4523 * are they aren't supposed to be taken by any of the 4524 * NAPI code and this dummy netdev is supposed to be 4525 * only ever used for NAPI polls 4526 */ 4527 memset(dev, 0, sizeof(struct net_device)); 4528 4529 /* make sure we BUG if trying to hit standard 4530 * register/unregister code path 4531 */ 4532 dev->reg_state = NETREG_DUMMY; 4533 4534 /* initialize the ref count */ 4535 atomic_set(&dev->refcnt, 1); 4536 4537 /* NAPI wants this */ 4538 INIT_LIST_HEAD(&dev->napi_list); 4539 4540 /* a dummy interface is started by default */ 4541 set_bit(__LINK_STATE_PRESENT, &dev->state); 4542 set_bit(__LINK_STATE_START, &dev->state); 4543 4544 return 0; 4545 } 4546 EXPORT_SYMBOL_GPL(init_dummy_netdev); 4547 4548 4549 /** 4550 * register_netdev - register a network device 4551 * @dev: device to register 4552 * 4553 * Take a completed network device structure and add it to the kernel 4554 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 4555 * chain. 0 is returned on success. A negative errno code is returned 4556 * on a failure to set up the device, or if the name is a duplicate. 4557 * 4558 * This is a wrapper around register_netdevice that takes the rtnl semaphore 4559 * and expands the device name if you passed a format string to 4560 * alloc_netdev. 4561 */ 4562 int register_netdev(struct net_device *dev) 4563 { 4564 int err; 4565 4566 rtnl_lock(); 4567 4568 /* 4569 * If the name is a format string the caller wants us to do a 4570 * name allocation. 4571 */ 4572 if (strchr(dev->name, '%')) { 4573 err = dev_alloc_name(dev, dev->name); 4574 if (err < 0) 4575 goto out; 4576 } 4577 4578 err = register_netdevice(dev); 4579 out: 4580 rtnl_unlock(); 4581 return err; 4582 } 4583 EXPORT_SYMBOL(register_netdev); 4584 4585 /* 4586 * netdev_wait_allrefs - wait until all references are gone. 4587 * 4588 * This is called when unregistering network devices. 4589 * 4590 * Any protocol or device that holds a reference should register 4591 * for netdevice notification, and cleanup and put back the 4592 * reference if they receive an UNREGISTER event. 4593 * We can get stuck here if buggy protocols don't correctly 4594 * call dev_put. 4595 */ 4596 static void netdev_wait_allrefs(struct net_device *dev) 4597 { 4598 unsigned long rebroadcast_time, warning_time; 4599 4600 rebroadcast_time = warning_time = jiffies; 4601 while (atomic_read(&dev->refcnt) != 0) { 4602 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 4603 rtnl_lock(); 4604 4605 /* Rebroadcast unregister notification */ 4606 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4607 4608 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 4609 &dev->state)) { 4610 /* We must not have linkwatch events 4611 * pending on unregister. If this 4612 * happens, we simply run the queue 4613 * unscheduled, resulting in a noop 4614 * for this device. 4615 */ 4616 linkwatch_run_queue(); 4617 } 4618 4619 __rtnl_unlock(); 4620 4621 rebroadcast_time = jiffies; 4622 } 4623 4624 msleep(250); 4625 4626 if (time_after(jiffies, warning_time + 10 * HZ)) { 4627 printk(KERN_EMERG "unregister_netdevice: " 4628 "waiting for %s to become free. Usage " 4629 "count = %d\n", 4630 dev->name, atomic_read(&dev->refcnt)); 4631 warning_time = jiffies; 4632 } 4633 } 4634 } 4635 4636 /* The sequence is: 4637 * 4638 * rtnl_lock(); 4639 * ... 4640 * register_netdevice(x1); 4641 * register_netdevice(x2); 4642 * ... 4643 * unregister_netdevice(y1); 4644 * unregister_netdevice(y2); 4645 * ... 4646 * rtnl_unlock(); 4647 * free_netdev(y1); 4648 * free_netdev(y2); 4649 * 4650 * We are invoked by rtnl_unlock(). 4651 * This allows us to deal with problems: 4652 * 1) We can delete sysfs objects which invoke hotplug 4653 * without deadlocking with linkwatch via keventd. 4654 * 2) Since we run with the RTNL semaphore not held, we can sleep 4655 * safely in order to wait for the netdev refcnt to drop to zero. 4656 * 4657 * We must not return until all unregister events added during 4658 * the interval the lock was held have been completed. 4659 */ 4660 void netdev_run_todo(void) 4661 { 4662 struct list_head list; 4663 4664 /* Snapshot list, allow later requests */ 4665 list_replace_init(&net_todo_list, &list); 4666 4667 __rtnl_unlock(); 4668 4669 while (!list_empty(&list)) { 4670 struct net_device *dev 4671 = list_entry(list.next, struct net_device, todo_list); 4672 list_del(&dev->todo_list); 4673 4674 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 4675 printk(KERN_ERR "network todo '%s' but state %d\n", 4676 dev->name, dev->reg_state); 4677 dump_stack(); 4678 continue; 4679 } 4680 4681 dev->reg_state = NETREG_UNREGISTERED; 4682 4683 on_each_cpu(flush_backlog, dev, 1); 4684 4685 netdev_wait_allrefs(dev); 4686 4687 /* paranoia */ 4688 BUG_ON(atomic_read(&dev->refcnt)); 4689 WARN_ON(dev->ip_ptr); 4690 WARN_ON(dev->ip6_ptr); 4691 WARN_ON(dev->dn_ptr); 4692 4693 if (dev->destructor) 4694 dev->destructor(dev); 4695 4696 /* Free network device */ 4697 kobject_put(&dev->dev.kobj); 4698 } 4699 } 4700 4701 /** 4702 * dev_get_stats - get network device statistics 4703 * @dev: device to get statistics from 4704 * 4705 * Get network statistics from device. The device driver may provide 4706 * its own method by setting dev->netdev_ops->get_stats; otherwise 4707 * the internal statistics structure is used. 4708 */ 4709 const struct net_device_stats *dev_get_stats(struct net_device *dev) 4710 { 4711 const struct net_device_ops *ops = dev->netdev_ops; 4712 4713 if (ops->ndo_get_stats) 4714 return ops->ndo_get_stats(dev); 4715 else 4716 return &dev->stats; 4717 } 4718 EXPORT_SYMBOL(dev_get_stats); 4719 4720 static void netdev_init_one_queue(struct net_device *dev, 4721 struct netdev_queue *queue, 4722 void *_unused) 4723 { 4724 queue->dev = dev; 4725 } 4726 4727 static void netdev_init_queues(struct net_device *dev) 4728 { 4729 netdev_init_one_queue(dev, &dev->rx_queue, NULL); 4730 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 4731 spin_lock_init(&dev->tx_global_lock); 4732 } 4733 4734 /** 4735 * alloc_netdev_mq - allocate network device 4736 * @sizeof_priv: size of private data to allocate space for 4737 * @name: device name format string 4738 * @setup: callback to initialize device 4739 * @queue_count: the number of subqueues to allocate 4740 * 4741 * Allocates a struct net_device with private data area for driver use 4742 * and performs basic initialization. Also allocates subquue structs 4743 * for each queue on the device at the end of the netdevice. 4744 */ 4745 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name, 4746 void (*setup)(struct net_device *), unsigned int queue_count) 4747 { 4748 struct netdev_queue *tx; 4749 struct net_device *dev; 4750 size_t alloc_size; 4751 void *p; 4752 4753 BUG_ON(strlen(name) >= sizeof(dev->name)); 4754 4755 alloc_size = sizeof(struct net_device); 4756 if (sizeof_priv) { 4757 /* ensure 32-byte alignment of private area */ 4758 alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST; 4759 alloc_size += sizeof_priv; 4760 } 4761 /* ensure 32-byte alignment of whole construct */ 4762 alloc_size += NETDEV_ALIGN_CONST; 4763 4764 p = kzalloc(alloc_size, GFP_KERNEL); 4765 if (!p) { 4766 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n"); 4767 return NULL; 4768 } 4769 4770 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL); 4771 if (!tx) { 4772 printk(KERN_ERR "alloc_netdev: Unable to allocate " 4773 "tx qdiscs.\n"); 4774 kfree(p); 4775 return NULL; 4776 } 4777 4778 dev = (struct net_device *) 4779 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST); 4780 dev->padded = (char *)dev - (char *)p; 4781 dev_net_set(dev, &init_net); 4782 4783 dev->_tx = tx; 4784 dev->num_tx_queues = queue_count; 4785 dev->real_num_tx_queues = queue_count; 4786 4787 dev->gso_max_size = GSO_MAX_SIZE; 4788 4789 netdev_init_queues(dev); 4790 4791 INIT_LIST_HEAD(&dev->napi_list); 4792 setup(dev); 4793 strcpy(dev->name, name); 4794 return dev; 4795 } 4796 EXPORT_SYMBOL(alloc_netdev_mq); 4797 4798 /** 4799 * free_netdev - free network device 4800 * @dev: device 4801 * 4802 * This function does the last stage of destroying an allocated device 4803 * interface. The reference to the device object is released. 4804 * If this is the last reference then it will be freed. 4805 */ 4806 void free_netdev(struct net_device *dev) 4807 { 4808 struct napi_struct *p, *n; 4809 4810 release_net(dev_net(dev)); 4811 4812 kfree(dev->_tx); 4813 4814 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 4815 netif_napi_del(p); 4816 4817 /* Compatibility with error handling in drivers */ 4818 if (dev->reg_state == NETREG_UNINITIALIZED) { 4819 kfree((char *)dev - dev->padded); 4820 return; 4821 } 4822 4823 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 4824 dev->reg_state = NETREG_RELEASED; 4825 4826 /* will free via device release */ 4827 put_device(&dev->dev); 4828 } 4829 4830 /** 4831 * synchronize_net - Synchronize with packet receive processing 4832 * 4833 * Wait for packets currently being received to be done. 4834 * Does not block later packets from starting. 4835 */ 4836 void synchronize_net(void) 4837 { 4838 might_sleep(); 4839 synchronize_rcu(); 4840 } 4841 4842 /** 4843 * unregister_netdevice - remove device from the kernel 4844 * @dev: device 4845 * 4846 * This function shuts down a device interface and removes it 4847 * from the kernel tables. 4848 * 4849 * Callers must hold the rtnl semaphore. You may want 4850 * unregister_netdev() instead of this. 4851 */ 4852 4853 void unregister_netdevice(struct net_device *dev) 4854 { 4855 ASSERT_RTNL(); 4856 4857 rollback_registered(dev); 4858 /* Finish processing unregister after unlock */ 4859 net_set_todo(dev); 4860 } 4861 4862 /** 4863 * unregister_netdev - remove device from the kernel 4864 * @dev: device 4865 * 4866 * This function shuts down a device interface and removes it 4867 * from the kernel tables. 4868 * 4869 * This is just a wrapper for unregister_netdevice that takes 4870 * the rtnl semaphore. In general you want to use this and not 4871 * unregister_netdevice. 4872 */ 4873 void unregister_netdev(struct net_device *dev) 4874 { 4875 rtnl_lock(); 4876 unregister_netdevice(dev); 4877 rtnl_unlock(); 4878 } 4879 4880 EXPORT_SYMBOL(unregister_netdev); 4881 4882 /** 4883 * dev_change_net_namespace - move device to different nethost namespace 4884 * @dev: device 4885 * @net: network namespace 4886 * @pat: If not NULL name pattern to try if the current device name 4887 * is already taken in the destination network namespace. 4888 * 4889 * This function shuts down a device interface and moves it 4890 * to a new network namespace. On success 0 is returned, on 4891 * a failure a netagive errno code is returned. 4892 * 4893 * Callers must hold the rtnl semaphore. 4894 */ 4895 4896 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 4897 { 4898 char buf[IFNAMSIZ]; 4899 const char *destname; 4900 int err; 4901 4902 ASSERT_RTNL(); 4903 4904 /* Don't allow namespace local devices to be moved. */ 4905 err = -EINVAL; 4906 if (dev->features & NETIF_F_NETNS_LOCAL) 4907 goto out; 4908 4909 #ifdef CONFIG_SYSFS 4910 /* Don't allow real devices to be moved when sysfs 4911 * is enabled. 4912 */ 4913 err = -EINVAL; 4914 if (dev->dev.parent) 4915 goto out; 4916 #endif 4917 4918 /* Ensure the device has been registrered */ 4919 err = -EINVAL; 4920 if (dev->reg_state != NETREG_REGISTERED) 4921 goto out; 4922 4923 /* Get out if there is nothing todo */ 4924 err = 0; 4925 if (net_eq(dev_net(dev), net)) 4926 goto out; 4927 4928 /* Pick the destination device name, and ensure 4929 * we can use it in the destination network namespace. 4930 */ 4931 err = -EEXIST; 4932 destname = dev->name; 4933 if (__dev_get_by_name(net, destname)) { 4934 /* We get here if we can't use the current device name */ 4935 if (!pat) 4936 goto out; 4937 if (!dev_valid_name(pat)) 4938 goto out; 4939 if (strchr(pat, '%')) { 4940 if (__dev_alloc_name(net, pat, buf) < 0) 4941 goto out; 4942 destname = buf; 4943 } else 4944 destname = pat; 4945 if (__dev_get_by_name(net, destname)) 4946 goto out; 4947 } 4948 4949 /* 4950 * And now a mini version of register_netdevice unregister_netdevice. 4951 */ 4952 4953 /* If device is running close it first. */ 4954 dev_close(dev); 4955 4956 /* And unlink it from device chain */ 4957 err = -ENODEV; 4958 unlist_netdevice(dev); 4959 4960 synchronize_net(); 4961 4962 /* Shutdown queueing discipline. */ 4963 dev_shutdown(dev); 4964 4965 /* Notify protocols, that we are about to destroy 4966 this device. They should clean all the things. 4967 */ 4968 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4969 4970 /* 4971 * Flush the unicast and multicast chains 4972 */ 4973 dev_addr_discard(dev); 4974 4975 netdev_unregister_kobject(dev); 4976 4977 /* Actually switch the network namespace */ 4978 dev_net_set(dev, net); 4979 4980 /* Assign the new device name */ 4981 if (destname != dev->name) 4982 strcpy(dev->name, destname); 4983 4984 /* If there is an ifindex conflict assign a new one */ 4985 if (__dev_get_by_index(net, dev->ifindex)) { 4986 int iflink = (dev->iflink == dev->ifindex); 4987 dev->ifindex = dev_new_index(net); 4988 if (iflink) 4989 dev->iflink = dev->ifindex; 4990 } 4991 4992 /* Fixup kobjects */ 4993 err = netdev_register_kobject(dev); 4994 WARN_ON(err); 4995 4996 /* Add the device back in the hashes */ 4997 list_netdevice(dev); 4998 4999 /* Notify protocols, that a new device appeared. */ 5000 call_netdevice_notifiers(NETDEV_REGISTER, dev); 5001 5002 synchronize_net(); 5003 err = 0; 5004 out: 5005 return err; 5006 } 5007 5008 static int dev_cpu_callback(struct notifier_block *nfb, 5009 unsigned long action, 5010 void *ocpu) 5011 { 5012 struct sk_buff **list_skb; 5013 struct Qdisc **list_net; 5014 struct sk_buff *skb; 5015 unsigned int cpu, oldcpu = (unsigned long)ocpu; 5016 struct softnet_data *sd, *oldsd; 5017 5018 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 5019 return NOTIFY_OK; 5020 5021 local_irq_disable(); 5022 cpu = smp_processor_id(); 5023 sd = &per_cpu(softnet_data, cpu); 5024 oldsd = &per_cpu(softnet_data, oldcpu); 5025 5026 /* Find end of our completion_queue. */ 5027 list_skb = &sd->completion_queue; 5028 while (*list_skb) 5029 list_skb = &(*list_skb)->next; 5030 /* Append completion queue from offline CPU. */ 5031 *list_skb = oldsd->completion_queue; 5032 oldsd->completion_queue = NULL; 5033 5034 /* Find end of our output_queue. */ 5035 list_net = &sd->output_queue; 5036 while (*list_net) 5037 list_net = &(*list_net)->next_sched; 5038 /* Append output queue from offline CPU. */ 5039 *list_net = oldsd->output_queue; 5040 oldsd->output_queue = NULL; 5041 5042 raise_softirq_irqoff(NET_TX_SOFTIRQ); 5043 local_irq_enable(); 5044 5045 /* Process offline CPU's input_pkt_queue */ 5046 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) 5047 netif_rx(skb); 5048 5049 return NOTIFY_OK; 5050 } 5051 5052 5053 /** 5054 * netdev_increment_features - increment feature set by one 5055 * @all: current feature set 5056 * @one: new feature set 5057 * @mask: mask feature set 5058 * 5059 * Computes a new feature set after adding a device with feature set 5060 * @one to the master device with current feature set @all. Will not 5061 * enable anything that is off in @mask. Returns the new feature set. 5062 */ 5063 unsigned long netdev_increment_features(unsigned long all, unsigned long one, 5064 unsigned long mask) 5065 { 5066 /* If device needs checksumming, downgrade to it. */ 5067 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM)) 5068 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM); 5069 else if (mask & NETIF_F_ALL_CSUM) { 5070 /* If one device supports v4/v6 checksumming, set for all. */ 5071 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) && 5072 !(all & NETIF_F_GEN_CSUM)) { 5073 all &= ~NETIF_F_ALL_CSUM; 5074 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM); 5075 } 5076 5077 /* If one device supports hw checksumming, set for all. */ 5078 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) { 5079 all &= ~NETIF_F_ALL_CSUM; 5080 all |= NETIF_F_HW_CSUM; 5081 } 5082 } 5083 5084 one |= NETIF_F_ALL_CSUM; 5085 5086 one |= all & NETIF_F_ONE_FOR_ALL; 5087 all &= one | NETIF_F_LLTX | NETIF_F_GSO; 5088 all |= one & mask & NETIF_F_ONE_FOR_ALL; 5089 5090 return all; 5091 } 5092 EXPORT_SYMBOL(netdev_increment_features); 5093 5094 static struct hlist_head *netdev_create_hash(void) 5095 { 5096 int i; 5097 struct hlist_head *hash; 5098 5099 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 5100 if (hash != NULL) 5101 for (i = 0; i < NETDEV_HASHENTRIES; i++) 5102 INIT_HLIST_HEAD(&hash[i]); 5103 5104 return hash; 5105 } 5106 5107 /* Initialize per network namespace state */ 5108 static int __net_init netdev_init(struct net *net) 5109 { 5110 INIT_LIST_HEAD(&net->dev_base_head); 5111 5112 net->dev_name_head = netdev_create_hash(); 5113 if (net->dev_name_head == NULL) 5114 goto err_name; 5115 5116 net->dev_index_head = netdev_create_hash(); 5117 if (net->dev_index_head == NULL) 5118 goto err_idx; 5119 5120 return 0; 5121 5122 err_idx: 5123 kfree(net->dev_name_head); 5124 err_name: 5125 return -ENOMEM; 5126 } 5127 5128 /** 5129 * netdev_drivername - network driver for the device 5130 * @dev: network device 5131 * @buffer: buffer for resulting name 5132 * @len: size of buffer 5133 * 5134 * Determine network driver for device. 5135 */ 5136 char *netdev_drivername(const struct net_device *dev, char *buffer, int len) 5137 { 5138 const struct device_driver *driver; 5139 const struct device *parent; 5140 5141 if (len <= 0 || !buffer) 5142 return buffer; 5143 buffer[0] = 0; 5144 5145 parent = dev->dev.parent; 5146 5147 if (!parent) 5148 return buffer; 5149 5150 driver = parent->driver; 5151 if (driver && driver->name) 5152 strlcpy(buffer, driver->name, len); 5153 return buffer; 5154 } 5155 5156 static void __net_exit netdev_exit(struct net *net) 5157 { 5158 kfree(net->dev_name_head); 5159 kfree(net->dev_index_head); 5160 } 5161 5162 static struct pernet_operations __net_initdata netdev_net_ops = { 5163 .init = netdev_init, 5164 .exit = netdev_exit, 5165 }; 5166 5167 static void __net_exit default_device_exit(struct net *net) 5168 { 5169 struct net_device *dev; 5170 /* 5171 * Push all migratable of the network devices back to the 5172 * initial network namespace 5173 */ 5174 rtnl_lock(); 5175 restart: 5176 for_each_netdev(net, dev) { 5177 int err; 5178 char fb_name[IFNAMSIZ]; 5179 5180 /* Ignore unmoveable devices (i.e. loopback) */ 5181 if (dev->features & NETIF_F_NETNS_LOCAL) 5182 continue; 5183 5184 /* Delete virtual devices */ 5185 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) { 5186 dev->rtnl_link_ops->dellink(dev); 5187 goto restart; 5188 } 5189 5190 /* Push remaing network devices to init_net */ 5191 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 5192 err = dev_change_net_namespace(dev, &init_net, fb_name); 5193 if (err) { 5194 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n", 5195 __func__, dev->name, err); 5196 BUG(); 5197 } 5198 goto restart; 5199 } 5200 rtnl_unlock(); 5201 } 5202 5203 static struct pernet_operations __net_initdata default_device_ops = { 5204 .exit = default_device_exit, 5205 }; 5206 5207 /* 5208 * Initialize the DEV module. At boot time this walks the device list and 5209 * unhooks any devices that fail to initialise (normally hardware not 5210 * present) and leaves us with a valid list of present and active devices. 5211 * 5212 */ 5213 5214 /* 5215 * This is called single threaded during boot, so no need 5216 * to take the rtnl semaphore. 5217 */ 5218 static int __init net_dev_init(void) 5219 { 5220 int i, rc = -ENOMEM; 5221 5222 BUG_ON(!dev_boot_phase); 5223 5224 if (dev_proc_init()) 5225 goto out; 5226 5227 if (netdev_kobject_init()) 5228 goto out; 5229 5230 INIT_LIST_HEAD(&ptype_all); 5231 for (i = 0; i < PTYPE_HASH_SIZE; i++) 5232 INIT_LIST_HEAD(&ptype_base[i]); 5233 5234 if (register_pernet_subsys(&netdev_net_ops)) 5235 goto out; 5236 5237 /* 5238 * Initialise the packet receive queues. 5239 */ 5240 5241 for_each_possible_cpu(i) { 5242 struct softnet_data *queue; 5243 5244 queue = &per_cpu(softnet_data, i); 5245 skb_queue_head_init(&queue->input_pkt_queue); 5246 queue->completion_queue = NULL; 5247 INIT_LIST_HEAD(&queue->poll_list); 5248 5249 queue->backlog.poll = process_backlog; 5250 queue->backlog.weight = weight_p; 5251 queue->backlog.gro_list = NULL; 5252 queue->backlog.gro_count = 0; 5253 } 5254 5255 dev_boot_phase = 0; 5256 5257 /* The loopback device is special if any other network devices 5258 * is present in a network namespace the loopback device must 5259 * be present. Since we now dynamically allocate and free the 5260 * loopback device ensure this invariant is maintained by 5261 * keeping the loopback device as the first device on the 5262 * list of network devices. Ensuring the loopback devices 5263 * is the first device that appears and the last network device 5264 * that disappears. 5265 */ 5266 if (register_pernet_device(&loopback_net_ops)) 5267 goto out; 5268 5269 if (register_pernet_device(&default_device_ops)) 5270 goto out; 5271 5272 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 5273 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 5274 5275 hotcpu_notifier(dev_cpu_callback, 0); 5276 dst_init(); 5277 dev_mcast_init(); 5278 rc = 0; 5279 out: 5280 return rc; 5281 } 5282 5283 subsys_initcall(net_dev_init); 5284 5285 static int __init initialize_hashrnd(void) 5286 { 5287 get_random_bytes(&skb_tx_hashrnd, sizeof(skb_tx_hashrnd)); 5288 return 0; 5289 } 5290 5291 late_initcall_sync(initialize_hashrnd); 5292 5293 EXPORT_SYMBOL(__dev_get_by_index); 5294 EXPORT_SYMBOL(__dev_get_by_name); 5295 EXPORT_SYMBOL(__dev_remove_pack); 5296 EXPORT_SYMBOL(dev_valid_name); 5297 EXPORT_SYMBOL(dev_add_pack); 5298 EXPORT_SYMBOL(dev_alloc_name); 5299 EXPORT_SYMBOL(dev_close); 5300 EXPORT_SYMBOL(dev_get_by_flags); 5301 EXPORT_SYMBOL(dev_get_by_index); 5302 EXPORT_SYMBOL(dev_get_by_name); 5303 EXPORT_SYMBOL(dev_open); 5304 EXPORT_SYMBOL(dev_queue_xmit); 5305 EXPORT_SYMBOL(dev_remove_pack); 5306 EXPORT_SYMBOL(dev_set_allmulti); 5307 EXPORT_SYMBOL(dev_set_promiscuity); 5308 EXPORT_SYMBOL(dev_change_flags); 5309 EXPORT_SYMBOL(dev_set_mtu); 5310 EXPORT_SYMBOL(dev_set_mac_address); 5311 EXPORT_SYMBOL(free_netdev); 5312 EXPORT_SYMBOL(netdev_boot_setup_check); 5313 EXPORT_SYMBOL(netdev_set_master); 5314 EXPORT_SYMBOL(netdev_state_change); 5315 EXPORT_SYMBOL(netif_receive_skb); 5316 EXPORT_SYMBOL(netif_rx); 5317 EXPORT_SYMBOL(register_gifconf); 5318 EXPORT_SYMBOL(register_netdevice); 5319 EXPORT_SYMBOL(register_netdevice_notifier); 5320 EXPORT_SYMBOL(skb_checksum_help); 5321 EXPORT_SYMBOL(synchronize_net); 5322 EXPORT_SYMBOL(unregister_netdevice); 5323 EXPORT_SYMBOL(unregister_netdevice_notifier); 5324 EXPORT_SYMBOL(net_enable_timestamp); 5325 EXPORT_SYMBOL(net_disable_timestamp); 5326 EXPORT_SYMBOL(dev_get_flags); 5327 5328 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE) 5329 EXPORT_SYMBOL(br_handle_frame_hook); 5330 EXPORT_SYMBOL(br_fdb_get_hook); 5331 EXPORT_SYMBOL(br_fdb_put_hook); 5332 #endif 5333 5334 EXPORT_SYMBOL(dev_load); 5335 5336 EXPORT_PER_CPU_SYMBOL(softnet_data); 5337