1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <asm/system.h> 77 #include <linux/bitops.h> 78 #include <linux/capability.h> 79 #include <linux/cpu.h> 80 #include <linux/types.h> 81 #include <linux/kernel.h> 82 #include <linux/hash.h> 83 #include <linux/slab.h> 84 #include <linux/sched.h> 85 #include <linux/mutex.h> 86 #include <linux/string.h> 87 #include <linux/mm.h> 88 #include <linux/socket.h> 89 #include <linux/sockios.h> 90 #include <linux/errno.h> 91 #include <linux/interrupt.h> 92 #include <linux/if_ether.h> 93 #include <linux/netdevice.h> 94 #include <linux/etherdevice.h> 95 #include <linux/ethtool.h> 96 #include <linux/notifier.h> 97 #include <linux/skbuff.h> 98 #include <net/net_namespace.h> 99 #include <net/sock.h> 100 #include <linux/rtnetlink.h> 101 #include <linux/proc_fs.h> 102 #include <linux/seq_file.h> 103 #include <linux/stat.h> 104 #include <net/dst.h> 105 #include <net/pkt_sched.h> 106 #include <net/checksum.h> 107 #include <net/xfrm.h> 108 #include <linux/highmem.h> 109 #include <linux/init.h> 110 #include <linux/kmod.h> 111 #include <linux/module.h> 112 #include <linux/netpoll.h> 113 #include <linux/rcupdate.h> 114 #include <linux/delay.h> 115 #include <net/wext.h> 116 #include <net/iw_handler.h> 117 #include <asm/current.h> 118 #include <linux/audit.h> 119 #include <linux/dmaengine.h> 120 #include <linux/err.h> 121 #include <linux/ctype.h> 122 #include <linux/if_arp.h> 123 #include <linux/if_vlan.h> 124 #include <linux/ip.h> 125 #include <net/ip.h> 126 #include <linux/ipv6.h> 127 #include <linux/in.h> 128 #include <linux/jhash.h> 129 #include <linux/random.h> 130 #include <trace/events/napi.h> 131 #include <trace/events/net.h> 132 #include <trace/events/skb.h> 133 #include <linux/pci.h> 134 #include <linux/inetdevice.h> 135 #include <linux/cpu_rmap.h> 136 137 #include "net-sysfs.h" 138 139 /* Instead of increasing this, you should create a hash table. */ 140 #define MAX_GRO_SKBS 8 141 142 /* This should be increased if a protocol with a bigger head is added. */ 143 #define GRO_MAX_HEAD (MAX_HEADER + 128) 144 145 /* 146 * The list of packet types we will receive (as opposed to discard) 147 * and the routines to invoke. 148 * 149 * Why 16. Because with 16 the only overlap we get on a hash of the 150 * low nibble of the protocol value is RARP/SNAP/X.25. 151 * 152 * NOTE: That is no longer true with the addition of VLAN tags. Not 153 * sure which should go first, but I bet it won't make much 154 * difference if we are running VLANs. The good news is that 155 * this protocol won't be in the list unless compiled in, so 156 * the average user (w/out VLANs) will not be adversely affected. 157 * --BLG 158 * 159 * 0800 IP 160 * 8100 802.1Q VLAN 161 * 0001 802.3 162 * 0002 AX.25 163 * 0004 802.2 164 * 8035 RARP 165 * 0005 SNAP 166 * 0805 X.25 167 * 0806 ARP 168 * 8137 IPX 169 * 0009 Localtalk 170 * 86DD IPv6 171 */ 172 173 #define PTYPE_HASH_SIZE (16) 174 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 175 176 static DEFINE_SPINLOCK(ptype_lock); 177 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 178 static struct list_head ptype_all __read_mostly; /* Taps */ 179 180 /* 181 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 182 * semaphore. 183 * 184 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 185 * 186 * Writers must hold the rtnl semaphore while they loop through the 187 * dev_base_head list, and hold dev_base_lock for writing when they do the 188 * actual updates. This allows pure readers to access the list even 189 * while a writer is preparing to update it. 190 * 191 * To put it another way, dev_base_lock is held for writing only to 192 * protect against pure readers; the rtnl semaphore provides the 193 * protection against other writers. 194 * 195 * See, for example usages, register_netdevice() and 196 * unregister_netdevice(), which must be called with the rtnl 197 * semaphore held. 198 */ 199 DEFINE_RWLOCK(dev_base_lock); 200 EXPORT_SYMBOL(dev_base_lock); 201 202 static inline void dev_base_seq_inc(struct net *net) 203 { 204 while (++net->dev_base_seq == 0); 205 } 206 207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 208 { 209 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 210 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 211 } 212 213 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 214 { 215 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 216 } 217 218 static inline void rps_lock(struct softnet_data *sd) 219 { 220 #ifdef CONFIG_RPS 221 spin_lock(&sd->input_pkt_queue.lock); 222 #endif 223 } 224 225 static inline void rps_unlock(struct softnet_data *sd) 226 { 227 #ifdef CONFIG_RPS 228 spin_unlock(&sd->input_pkt_queue.lock); 229 #endif 230 } 231 232 /* Device list insertion */ 233 static int list_netdevice(struct net_device *dev) 234 { 235 struct net *net = dev_net(dev); 236 237 ASSERT_RTNL(); 238 239 write_lock_bh(&dev_base_lock); 240 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 241 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 242 hlist_add_head_rcu(&dev->index_hlist, 243 dev_index_hash(net, dev->ifindex)); 244 write_unlock_bh(&dev_base_lock); 245 246 dev_base_seq_inc(net); 247 248 return 0; 249 } 250 251 /* Device list removal 252 * caller must respect a RCU grace period before freeing/reusing dev 253 */ 254 static void unlist_netdevice(struct net_device *dev) 255 { 256 ASSERT_RTNL(); 257 258 /* Unlink dev from the device chain */ 259 write_lock_bh(&dev_base_lock); 260 list_del_rcu(&dev->dev_list); 261 hlist_del_rcu(&dev->name_hlist); 262 hlist_del_rcu(&dev->index_hlist); 263 write_unlock_bh(&dev_base_lock); 264 265 dev_base_seq_inc(dev_net(dev)); 266 } 267 268 /* 269 * Our notifier list 270 */ 271 272 static RAW_NOTIFIER_HEAD(netdev_chain); 273 274 /* 275 * Device drivers call our routines to queue packets here. We empty the 276 * queue in the local softnet handler. 277 */ 278 279 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 280 EXPORT_PER_CPU_SYMBOL(softnet_data); 281 282 #ifdef CONFIG_LOCKDEP 283 /* 284 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 285 * according to dev->type 286 */ 287 static const unsigned short netdev_lock_type[] = 288 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 289 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 290 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 291 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 292 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 293 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 294 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 295 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 296 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 297 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 298 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 299 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 300 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211, 301 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, 302 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154, 303 ARPHRD_VOID, ARPHRD_NONE}; 304 305 static const char *const netdev_lock_name[] = 306 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 307 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 308 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 309 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 310 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 311 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 312 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 313 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 314 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 315 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 316 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 317 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 318 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211", 319 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", 320 "_xmit_PHONET_PIPE", "_xmit_IEEE802154", 321 "_xmit_VOID", "_xmit_NONE"}; 322 323 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 324 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 325 326 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 327 { 328 int i; 329 330 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 331 if (netdev_lock_type[i] == dev_type) 332 return i; 333 /* the last key is used by default */ 334 return ARRAY_SIZE(netdev_lock_type) - 1; 335 } 336 337 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 338 unsigned short dev_type) 339 { 340 int i; 341 342 i = netdev_lock_pos(dev_type); 343 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 344 netdev_lock_name[i]); 345 } 346 347 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 348 { 349 int i; 350 351 i = netdev_lock_pos(dev->type); 352 lockdep_set_class_and_name(&dev->addr_list_lock, 353 &netdev_addr_lock_key[i], 354 netdev_lock_name[i]); 355 } 356 #else 357 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 358 unsigned short dev_type) 359 { 360 } 361 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 362 { 363 } 364 #endif 365 366 /******************************************************************************* 367 368 Protocol management and registration routines 369 370 *******************************************************************************/ 371 372 /* 373 * Add a protocol ID to the list. Now that the input handler is 374 * smarter we can dispense with all the messy stuff that used to be 375 * here. 376 * 377 * BEWARE!!! Protocol handlers, mangling input packets, 378 * MUST BE last in hash buckets and checking protocol handlers 379 * MUST start from promiscuous ptype_all chain in net_bh. 380 * It is true now, do not change it. 381 * Explanation follows: if protocol handler, mangling packet, will 382 * be the first on list, it is not able to sense, that packet 383 * is cloned and should be copied-on-write, so that it will 384 * change it and subsequent readers will get broken packet. 385 * --ANK (980803) 386 */ 387 388 static inline struct list_head *ptype_head(const struct packet_type *pt) 389 { 390 if (pt->type == htons(ETH_P_ALL)) 391 return &ptype_all; 392 else 393 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 394 } 395 396 /** 397 * dev_add_pack - add packet handler 398 * @pt: packet type declaration 399 * 400 * Add a protocol handler to the networking stack. The passed &packet_type 401 * is linked into kernel lists and may not be freed until it has been 402 * removed from the kernel lists. 403 * 404 * This call does not sleep therefore it can not 405 * guarantee all CPU's that are in middle of receiving packets 406 * will see the new packet type (until the next received packet). 407 */ 408 409 void dev_add_pack(struct packet_type *pt) 410 { 411 struct list_head *head = ptype_head(pt); 412 413 spin_lock(&ptype_lock); 414 list_add_rcu(&pt->list, head); 415 spin_unlock(&ptype_lock); 416 } 417 EXPORT_SYMBOL(dev_add_pack); 418 419 /** 420 * __dev_remove_pack - remove packet handler 421 * @pt: packet type declaration 422 * 423 * Remove a protocol handler that was previously added to the kernel 424 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 425 * from the kernel lists and can be freed or reused once this function 426 * returns. 427 * 428 * The packet type might still be in use by receivers 429 * and must not be freed until after all the CPU's have gone 430 * through a quiescent state. 431 */ 432 void __dev_remove_pack(struct packet_type *pt) 433 { 434 struct list_head *head = ptype_head(pt); 435 struct packet_type *pt1; 436 437 spin_lock(&ptype_lock); 438 439 list_for_each_entry(pt1, head, list) { 440 if (pt == pt1) { 441 list_del_rcu(&pt->list); 442 goto out; 443 } 444 } 445 446 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 447 out: 448 spin_unlock(&ptype_lock); 449 } 450 EXPORT_SYMBOL(__dev_remove_pack); 451 452 /** 453 * dev_remove_pack - remove packet handler 454 * @pt: packet type declaration 455 * 456 * Remove a protocol handler that was previously added to the kernel 457 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 458 * from the kernel lists and can be freed or reused once this function 459 * returns. 460 * 461 * This call sleeps to guarantee that no CPU is looking at the packet 462 * type after return. 463 */ 464 void dev_remove_pack(struct packet_type *pt) 465 { 466 __dev_remove_pack(pt); 467 468 synchronize_net(); 469 } 470 EXPORT_SYMBOL(dev_remove_pack); 471 472 /****************************************************************************** 473 474 Device Boot-time Settings Routines 475 476 *******************************************************************************/ 477 478 /* Boot time configuration table */ 479 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 480 481 /** 482 * netdev_boot_setup_add - add new setup entry 483 * @name: name of the device 484 * @map: configured settings for the device 485 * 486 * Adds new setup entry to the dev_boot_setup list. The function 487 * returns 0 on error and 1 on success. This is a generic routine to 488 * all netdevices. 489 */ 490 static int netdev_boot_setup_add(char *name, struct ifmap *map) 491 { 492 struct netdev_boot_setup *s; 493 int i; 494 495 s = dev_boot_setup; 496 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 497 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 498 memset(s[i].name, 0, sizeof(s[i].name)); 499 strlcpy(s[i].name, name, IFNAMSIZ); 500 memcpy(&s[i].map, map, sizeof(s[i].map)); 501 break; 502 } 503 } 504 505 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 506 } 507 508 /** 509 * netdev_boot_setup_check - check boot time settings 510 * @dev: the netdevice 511 * 512 * Check boot time settings for the device. 513 * The found settings are set for the device to be used 514 * later in the device probing. 515 * Returns 0 if no settings found, 1 if they are. 516 */ 517 int netdev_boot_setup_check(struct net_device *dev) 518 { 519 struct netdev_boot_setup *s = dev_boot_setup; 520 int i; 521 522 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 523 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 524 !strcmp(dev->name, s[i].name)) { 525 dev->irq = s[i].map.irq; 526 dev->base_addr = s[i].map.base_addr; 527 dev->mem_start = s[i].map.mem_start; 528 dev->mem_end = s[i].map.mem_end; 529 return 1; 530 } 531 } 532 return 0; 533 } 534 EXPORT_SYMBOL(netdev_boot_setup_check); 535 536 537 /** 538 * netdev_boot_base - get address from boot time settings 539 * @prefix: prefix for network device 540 * @unit: id for network device 541 * 542 * Check boot time settings for the base address of device. 543 * The found settings are set for the device to be used 544 * later in the device probing. 545 * Returns 0 if no settings found. 546 */ 547 unsigned long netdev_boot_base(const char *prefix, int unit) 548 { 549 const struct netdev_boot_setup *s = dev_boot_setup; 550 char name[IFNAMSIZ]; 551 int i; 552 553 sprintf(name, "%s%d", prefix, unit); 554 555 /* 556 * If device already registered then return base of 1 557 * to indicate not to probe for this interface 558 */ 559 if (__dev_get_by_name(&init_net, name)) 560 return 1; 561 562 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 563 if (!strcmp(name, s[i].name)) 564 return s[i].map.base_addr; 565 return 0; 566 } 567 568 /* 569 * Saves at boot time configured settings for any netdevice. 570 */ 571 int __init netdev_boot_setup(char *str) 572 { 573 int ints[5]; 574 struct ifmap map; 575 576 str = get_options(str, ARRAY_SIZE(ints), ints); 577 if (!str || !*str) 578 return 0; 579 580 /* Save settings */ 581 memset(&map, 0, sizeof(map)); 582 if (ints[0] > 0) 583 map.irq = ints[1]; 584 if (ints[0] > 1) 585 map.base_addr = ints[2]; 586 if (ints[0] > 2) 587 map.mem_start = ints[3]; 588 if (ints[0] > 3) 589 map.mem_end = ints[4]; 590 591 /* Add new entry to the list */ 592 return netdev_boot_setup_add(str, &map); 593 } 594 595 __setup("netdev=", netdev_boot_setup); 596 597 /******************************************************************************* 598 599 Device Interface Subroutines 600 601 *******************************************************************************/ 602 603 /** 604 * __dev_get_by_name - find a device by its name 605 * @net: the applicable net namespace 606 * @name: name to find 607 * 608 * Find an interface by name. Must be called under RTNL semaphore 609 * or @dev_base_lock. If the name is found a pointer to the device 610 * is returned. If the name is not found then %NULL is returned. The 611 * reference counters are not incremented so the caller must be 612 * careful with locks. 613 */ 614 615 struct net_device *__dev_get_by_name(struct net *net, const char *name) 616 { 617 struct hlist_node *p; 618 struct net_device *dev; 619 struct hlist_head *head = dev_name_hash(net, name); 620 621 hlist_for_each_entry(dev, p, head, name_hlist) 622 if (!strncmp(dev->name, name, IFNAMSIZ)) 623 return dev; 624 625 return NULL; 626 } 627 EXPORT_SYMBOL(__dev_get_by_name); 628 629 /** 630 * dev_get_by_name_rcu - find a device by its name 631 * @net: the applicable net namespace 632 * @name: name to find 633 * 634 * Find an interface by name. 635 * If the name is found a pointer to the device is returned. 636 * If the name is not found then %NULL is returned. 637 * The reference counters are not incremented so the caller must be 638 * careful with locks. The caller must hold RCU lock. 639 */ 640 641 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 642 { 643 struct hlist_node *p; 644 struct net_device *dev; 645 struct hlist_head *head = dev_name_hash(net, name); 646 647 hlist_for_each_entry_rcu(dev, p, head, name_hlist) 648 if (!strncmp(dev->name, name, IFNAMSIZ)) 649 return dev; 650 651 return NULL; 652 } 653 EXPORT_SYMBOL(dev_get_by_name_rcu); 654 655 /** 656 * dev_get_by_name - find a device by its name 657 * @net: the applicable net namespace 658 * @name: name to find 659 * 660 * Find an interface by name. This can be called from any 661 * context and does its own locking. The returned handle has 662 * the usage count incremented and the caller must use dev_put() to 663 * release it when it is no longer needed. %NULL is returned if no 664 * matching device is found. 665 */ 666 667 struct net_device *dev_get_by_name(struct net *net, const char *name) 668 { 669 struct net_device *dev; 670 671 rcu_read_lock(); 672 dev = dev_get_by_name_rcu(net, name); 673 if (dev) 674 dev_hold(dev); 675 rcu_read_unlock(); 676 return dev; 677 } 678 EXPORT_SYMBOL(dev_get_by_name); 679 680 /** 681 * __dev_get_by_index - find a device by its ifindex 682 * @net: the applicable net namespace 683 * @ifindex: index of device 684 * 685 * Search for an interface by index. Returns %NULL if the device 686 * is not found or a pointer to the device. The device has not 687 * had its reference counter increased so the caller must be careful 688 * about locking. The caller must hold either the RTNL semaphore 689 * or @dev_base_lock. 690 */ 691 692 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 693 { 694 struct hlist_node *p; 695 struct net_device *dev; 696 struct hlist_head *head = dev_index_hash(net, ifindex); 697 698 hlist_for_each_entry(dev, p, head, index_hlist) 699 if (dev->ifindex == ifindex) 700 return dev; 701 702 return NULL; 703 } 704 EXPORT_SYMBOL(__dev_get_by_index); 705 706 /** 707 * dev_get_by_index_rcu - find a device by its ifindex 708 * @net: the applicable net namespace 709 * @ifindex: index of device 710 * 711 * Search for an interface by index. Returns %NULL if the device 712 * is not found or a pointer to the device. The device has not 713 * had its reference counter increased so the caller must be careful 714 * about locking. The caller must hold RCU lock. 715 */ 716 717 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 718 { 719 struct hlist_node *p; 720 struct net_device *dev; 721 struct hlist_head *head = dev_index_hash(net, ifindex); 722 723 hlist_for_each_entry_rcu(dev, p, head, index_hlist) 724 if (dev->ifindex == ifindex) 725 return dev; 726 727 return NULL; 728 } 729 EXPORT_SYMBOL(dev_get_by_index_rcu); 730 731 732 /** 733 * dev_get_by_index - find a device by its ifindex 734 * @net: the applicable net namespace 735 * @ifindex: index of device 736 * 737 * Search for an interface by index. Returns NULL if the device 738 * is not found or a pointer to the device. The device returned has 739 * had a reference added and the pointer is safe until the user calls 740 * dev_put to indicate they have finished with it. 741 */ 742 743 struct net_device *dev_get_by_index(struct net *net, int ifindex) 744 { 745 struct net_device *dev; 746 747 rcu_read_lock(); 748 dev = dev_get_by_index_rcu(net, ifindex); 749 if (dev) 750 dev_hold(dev); 751 rcu_read_unlock(); 752 return dev; 753 } 754 EXPORT_SYMBOL(dev_get_by_index); 755 756 /** 757 * dev_getbyhwaddr_rcu - find a device by its hardware address 758 * @net: the applicable net namespace 759 * @type: media type of device 760 * @ha: hardware address 761 * 762 * Search for an interface by MAC address. Returns NULL if the device 763 * is not found or a pointer to the device. 764 * The caller must hold RCU or RTNL. 765 * The returned device has not had its ref count increased 766 * and the caller must therefore be careful about locking 767 * 768 */ 769 770 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 771 const char *ha) 772 { 773 struct net_device *dev; 774 775 for_each_netdev_rcu(net, dev) 776 if (dev->type == type && 777 !memcmp(dev->dev_addr, ha, dev->addr_len)) 778 return dev; 779 780 return NULL; 781 } 782 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 783 784 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 785 { 786 struct net_device *dev; 787 788 ASSERT_RTNL(); 789 for_each_netdev(net, dev) 790 if (dev->type == type) 791 return dev; 792 793 return NULL; 794 } 795 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 796 797 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 798 { 799 struct net_device *dev, *ret = NULL; 800 801 rcu_read_lock(); 802 for_each_netdev_rcu(net, dev) 803 if (dev->type == type) { 804 dev_hold(dev); 805 ret = dev; 806 break; 807 } 808 rcu_read_unlock(); 809 return ret; 810 } 811 EXPORT_SYMBOL(dev_getfirstbyhwtype); 812 813 /** 814 * dev_get_by_flags_rcu - find any device with given flags 815 * @net: the applicable net namespace 816 * @if_flags: IFF_* values 817 * @mask: bitmask of bits in if_flags to check 818 * 819 * Search for any interface with the given flags. Returns NULL if a device 820 * is not found or a pointer to the device. Must be called inside 821 * rcu_read_lock(), and result refcount is unchanged. 822 */ 823 824 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags, 825 unsigned short mask) 826 { 827 struct net_device *dev, *ret; 828 829 ret = NULL; 830 for_each_netdev_rcu(net, dev) { 831 if (((dev->flags ^ if_flags) & mask) == 0) { 832 ret = dev; 833 break; 834 } 835 } 836 return ret; 837 } 838 EXPORT_SYMBOL(dev_get_by_flags_rcu); 839 840 /** 841 * dev_valid_name - check if name is okay for network device 842 * @name: name string 843 * 844 * Network device names need to be valid file names to 845 * to allow sysfs to work. We also disallow any kind of 846 * whitespace. 847 */ 848 int dev_valid_name(const char *name) 849 { 850 if (*name == '\0') 851 return 0; 852 if (strlen(name) >= IFNAMSIZ) 853 return 0; 854 if (!strcmp(name, ".") || !strcmp(name, "..")) 855 return 0; 856 857 while (*name) { 858 if (*name == '/' || isspace(*name)) 859 return 0; 860 name++; 861 } 862 return 1; 863 } 864 EXPORT_SYMBOL(dev_valid_name); 865 866 /** 867 * __dev_alloc_name - allocate a name for a device 868 * @net: network namespace to allocate the device name in 869 * @name: name format string 870 * @buf: scratch buffer and result name string 871 * 872 * Passed a format string - eg "lt%d" it will try and find a suitable 873 * id. It scans list of devices to build up a free map, then chooses 874 * the first empty slot. The caller must hold the dev_base or rtnl lock 875 * while allocating the name and adding the device in order to avoid 876 * duplicates. 877 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 878 * Returns the number of the unit assigned or a negative errno code. 879 */ 880 881 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 882 { 883 int i = 0; 884 const char *p; 885 const int max_netdevices = 8*PAGE_SIZE; 886 unsigned long *inuse; 887 struct net_device *d; 888 889 p = strnchr(name, IFNAMSIZ-1, '%'); 890 if (p) { 891 /* 892 * Verify the string as this thing may have come from 893 * the user. There must be either one "%d" and no other "%" 894 * characters. 895 */ 896 if (p[1] != 'd' || strchr(p + 2, '%')) 897 return -EINVAL; 898 899 /* Use one page as a bit array of possible slots */ 900 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 901 if (!inuse) 902 return -ENOMEM; 903 904 for_each_netdev(net, d) { 905 if (!sscanf(d->name, name, &i)) 906 continue; 907 if (i < 0 || i >= max_netdevices) 908 continue; 909 910 /* avoid cases where sscanf is not exact inverse of printf */ 911 snprintf(buf, IFNAMSIZ, name, i); 912 if (!strncmp(buf, d->name, IFNAMSIZ)) 913 set_bit(i, inuse); 914 } 915 916 i = find_first_zero_bit(inuse, max_netdevices); 917 free_page((unsigned long) inuse); 918 } 919 920 if (buf != name) 921 snprintf(buf, IFNAMSIZ, name, i); 922 if (!__dev_get_by_name(net, buf)) 923 return i; 924 925 /* It is possible to run out of possible slots 926 * when the name is long and there isn't enough space left 927 * for the digits, or if all bits are used. 928 */ 929 return -ENFILE; 930 } 931 932 /** 933 * dev_alloc_name - allocate a name for a device 934 * @dev: device 935 * @name: name format string 936 * 937 * Passed a format string - eg "lt%d" it will try and find a suitable 938 * id. It scans list of devices to build up a free map, then chooses 939 * the first empty slot. The caller must hold the dev_base or rtnl lock 940 * while allocating the name and adding the device in order to avoid 941 * duplicates. 942 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 943 * Returns the number of the unit assigned or a negative errno code. 944 */ 945 946 int dev_alloc_name(struct net_device *dev, const char *name) 947 { 948 char buf[IFNAMSIZ]; 949 struct net *net; 950 int ret; 951 952 BUG_ON(!dev_net(dev)); 953 net = dev_net(dev); 954 ret = __dev_alloc_name(net, name, buf); 955 if (ret >= 0) 956 strlcpy(dev->name, buf, IFNAMSIZ); 957 return ret; 958 } 959 EXPORT_SYMBOL(dev_alloc_name); 960 961 static int dev_get_valid_name(struct net_device *dev, const char *name) 962 { 963 struct net *net; 964 965 BUG_ON(!dev_net(dev)); 966 net = dev_net(dev); 967 968 if (!dev_valid_name(name)) 969 return -EINVAL; 970 971 if (strchr(name, '%')) 972 return dev_alloc_name(dev, name); 973 else if (__dev_get_by_name(net, name)) 974 return -EEXIST; 975 else if (dev->name != name) 976 strlcpy(dev->name, name, IFNAMSIZ); 977 978 return 0; 979 } 980 981 /** 982 * dev_change_name - change name of a device 983 * @dev: device 984 * @newname: name (or format string) must be at least IFNAMSIZ 985 * 986 * Change name of a device, can pass format strings "eth%d". 987 * for wildcarding. 988 */ 989 int dev_change_name(struct net_device *dev, const char *newname) 990 { 991 char oldname[IFNAMSIZ]; 992 int err = 0; 993 int ret; 994 struct net *net; 995 996 ASSERT_RTNL(); 997 BUG_ON(!dev_net(dev)); 998 999 net = dev_net(dev); 1000 if (dev->flags & IFF_UP) 1001 return -EBUSY; 1002 1003 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) 1004 return 0; 1005 1006 memcpy(oldname, dev->name, IFNAMSIZ); 1007 1008 err = dev_get_valid_name(dev, newname); 1009 if (err < 0) 1010 return err; 1011 1012 rollback: 1013 ret = device_rename(&dev->dev, dev->name); 1014 if (ret) { 1015 memcpy(dev->name, oldname, IFNAMSIZ); 1016 return ret; 1017 } 1018 1019 write_lock_bh(&dev_base_lock); 1020 hlist_del_rcu(&dev->name_hlist); 1021 write_unlock_bh(&dev_base_lock); 1022 1023 synchronize_rcu(); 1024 1025 write_lock_bh(&dev_base_lock); 1026 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1027 write_unlock_bh(&dev_base_lock); 1028 1029 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1030 ret = notifier_to_errno(ret); 1031 1032 if (ret) { 1033 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1034 if (err >= 0) { 1035 err = ret; 1036 memcpy(dev->name, oldname, IFNAMSIZ); 1037 goto rollback; 1038 } else { 1039 printk(KERN_ERR 1040 "%s: name change rollback failed: %d.\n", 1041 dev->name, ret); 1042 } 1043 } 1044 1045 return err; 1046 } 1047 1048 /** 1049 * dev_set_alias - change ifalias of a device 1050 * @dev: device 1051 * @alias: name up to IFALIASZ 1052 * @len: limit of bytes to copy from info 1053 * 1054 * Set ifalias for a device, 1055 */ 1056 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1057 { 1058 ASSERT_RTNL(); 1059 1060 if (len >= IFALIASZ) 1061 return -EINVAL; 1062 1063 if (!len) { 1064 if (dev->ifalias) { 1065 kfree(dev->ifalias); 1066 dev->ifalias = NULL; 1067 } 1068 return 0; 1069 } 1070 1071 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1072 if (!dev->ifalias) 1073 return -ENOMEM; 1074 1075 strlcpy(dev->ifalias, alias, len+1); 1076 return len; 1077 } 1078 1079 1080 /** 1081 * netdev_features_change - device changes features 1082 * @dev: device to cause notification 1083 * 1084 * Called to indicate a device has changed features. 1085 */ 1086 void netdev_features_change(struct net_device *dev) 1087 { 1088 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1089 } 1090 EXPORT_SYMBOL(netdev_features_change); 1091 1092 /** 1093 * netdev_state_change - device changes state 1094 * @dev: device to cause notification 1095 * 1096 * Called to indicate a device has changed state. This function calls 1097 * the notifier chains for netdev_chain and sends a NEWLINK message 1098 * to the routing socket. 1099 */ 1100 void netdev_state_change(struct net_device *dev) 1101 { 1102 if (dev->flags & IFF_UP) { 1103 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1104 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1105 } 1106 } 1107 EXPORT_SYMBOL(netdev_state_change); 1108 1109 int netdev_bonding_change(struct net_device *dev, unsigned long event) 1110 { 1111 return call_netdevice_notifiers(event, dev); 1112 } 1113 EXPORT_SYMBOL(netdev_bonding_change); 1114 1115 /** 1116 * dev_load - load a network module 1117 * @net: the applicable net namespace 1118 * @name: name of interface 1119 * 1120 * If a network interface is not present and the process has suitable 1121 * privileges this function loads the module. If module loading is not 1122 * available in this kernel then it becomes a nop. 1123 */ 1124 1125 void dev_load(struct net *net, const char *name) 1126 { 1127 struct net_device *dev; 1128 int no_module; 1129 1130 rcu_read_lock(); 1131 dev = dev_get_by_name_rcu(net, name); 1132 rcu_read_unlock(); 1133 1134 no_module = !dev; 1135 if (no_module && capable(CAP_NET_ADMIN)) 1136 no_module = request_module("netdev-%s", name); 1137 if (no_module && capable(CAP_SYS_MODULE)) { 1138 if (!request_module("%s", name)) 1139 pr_err("Loading kernel module for a network device " 1140 "with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s " 1141 "instead\n", name); 1142 } 1143 } 1144 EXPORT_SYMBOL(dev_load); 1145 1146 static int __dev_open(struct net_device *dev) 1147 { 1148 const struct net_device_ops *ops = dev->netdev_ops; 1149 int ret; 1150 1151 ASSERT_RTNL(); 1152 1153 if (!netif_device_present(dev)) 1154 return -ENODEV; 1155 1156 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1157 ret = notifier_to_errno(ret); 1158 if (ret) 1159 return ret; 1160 1161 set_bit(__LINK_STATE_START, &dev->state); 1162 1163 if (ops->ndo_validate_addr) 1164 ret = ops->ndo_validate_addr(dev); 1165 1166 if (!ret && ops->ndo_open) 1167 ret = ops->ndo_open(dev); 1168 1169 if (ret) 1170 clear_bit(__LINK_STATE_START, &dev->state); 1171 else { 1172 dev->flags |= IFF_UP; 1173 net_dmaengine_get(); 1174 dev_set_rx_mode(dev); 1175 dev_activate(dev); 1176 } 1177 1178 return ret; 1179 } 1180 1181 /** 1182 * dev_open - prepare an interface for use. 1183 * @dev: device to open 1184 * 1185 * Takes a device from down to up state. The device's private open 1186 * function is invoked and then the multicast lists are loaded. Finally 1187 * the device is moved into the up state and a %NETDEV_UP message is 1188 * sent to the netdev notifier chain. 1189 * 1190 * Calling this function on an active interface is a nop. On a failure 1191 * a negative errno code is returned. 1192 */ 1193 int dev_open(struct net_device *dev) 1194 { 1195 int ret; 1196 1197 if (dev->flags & IFF_UP) 1198 return 0; 1199 1200 ret = __dev_open(dev); 1201 if (ret < 0) 1202 return ret; 1203 1204 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1205 call_netdevice_notifiers(NETDEV_UP, dev); 1206 1207 return ret; 1208 } 1209 EXPORT_SYMBOL(dev_open); 1210 1211 static int __dev_close_many(struct list_head *head) 1212 { 1213 struct net_device *dev; 1214 1215 ASSERT_RTNL(); 1216 might_sleep(); 1217 1218 list_for_each_entry(dev, head, unreg_list) { 1219 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1220 1221 clear_bit(__LINK_STATE_START, &dev->state); 1222 1223 /* Synchronize to scheduled poll. We cannot touch poll list, it 1224 * can be even on different cpu. So just clear netif_running(). 1225 * 1226 * dev->stop() will invoke napi_disable() on all of it's 1227 * napi_struct instances on this device. 1228 */ 1229 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1230 } 1231 1232 dev_deactivate_many(head); 1233 1234 list_for_each_entry(dev, head, unreg_list) { 1235 const struct net_device_ops *ops = dev->netdev_ops; 1236 1237 /* 1238 * Call the device specific close. This cannot fail. 1239 * Only if device is UP 1240 * 1241 * We allow it to be called even after a DETACH hot-plug 1242 * event. 1243 */ 1244 if (ops->ndo_stop) 1245 ops->ndo_stop(dev); 1246 1247 dev->flags &= ~IFF_UP; 1248 net_dmaengine_put(); 1249 } 1250 1251 return 0; 1252 } 1253 1254 static int __dev_close(struct net_device *dev) 1255 { 1256 int retval; 1257 LIST_HEAD(single); 1258 1259 list_add(&dev->unreg_list, &single); 1260 retval = __dev_close_many(&single); 1261 list_del(&single); 1262 return retval; 1263 } 1264 1265 static int dev_close_many(struct list_head *head) 1266 { 1267 struct net_device *dev, *tmp; 1268 LIST_HEAD(tmp_list); 1269 1270 list_for_each_entry_safe(dev, tmp, head, unreg_list) 1271 if (!(dev->flags & IFF_UP)) 1272 list_move(&dev->unreg_list, &tmp_list); 1273 1274 __dev_close_many(head); 1275 1276 list_for_each_entry(dev, head, unreg_list) { 1277 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1278 call_netdevice_notifiers(NETDEV_DOWN, dev); 1279 } 1280 1281 /* rollback_registered_many needs the complete original list */ 1282 list_splice(&tmp_list, head); 1283 return 0; 1284 } 1285 1286 /** 1287 * dev_close - shutdown an interface. 1288 * @dev: device to shutdown 1289 * 1290 * This function moves an active device into down state. A 1291 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1292 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1293 * chain. 1294 */ 1295 int dev_close(struct net_device *dev) 1296 { 1297 if (dev->flags & IFF_UP) { 1298 LIST_HEAD(single); 1299 1300 list_add(&dev->unreg_list, &single); 1301 dev_close_many(&single); 1302 list_del(&single); 1303 } 1304 return 0; 1305 } 1306 EXPORT_SYMBOL(dev_close); 1307 1308 1309 /** 1310 * dev_disable_lro - disable Large Receive Offload on a device 1311 * @dev: device 1312 * 1313 * Disable Large Receive Offload (LRO) on a net device. Must be 1314 * called under RTNL. This is needed if received packets may be 1315 * forwarded to another interface. 1316 */ 1317 void dev_disable_lro(struct net_device *dev) 1318 { 1319 u32 flags; 1320 1321 /* 1322 * If we're trying to disable lro on a vlan device 1323 * use the underlying physical device instead 1324 */ 1325 if (is_vlan_dev(dev)) 1326 dev = vlan_dev_real_dev(dev); 1327 1328 if (dev->ethtool_ops && dev->ethtool_ops->get_flags) 1329 flags = dev->ethtool_ops->get_flags(dev); 1330 else 1331 flags = ethtool_op_get_flags(dev); 1332 1333 if (!(flags & ETH_FLAG_LRO)) 1334 return; 1335 1336 __ethtool_set_flags(dev, flags & ~ETH_FLAG_LRO); 1337 if (unlikely(dev->features & NETIF_F_LRO)) 1338 netdev_WARN(dev, "failed to disable LRO!\n"); 1339 } 1340 EXPORT_SYMBOL(dev_disable_lro); 1341 1342 1343 static int dev_boot_phase = 1; 1344 1345 /** 1346 * register_netdevice_notifier - register a network notifier block 1347 * @nb: notifier 1348 * 1349 * Register a notifier to be called when network device events occur. 1350 * The notifier passed is linked into the kernel structures and must 1351 * not be reused until it has been unregistered. A negative errno code 1352 * is returned on a failure. 1353 * 1354 * When registered all registration and up events are replayed 1355 * to the new notifier to allow device to have a race free 1356 * view of the network device list. 1357 */ 1358 1359 int register_netdevice_notifier(struct notifier_block *nb) 1360 { 1361 struct net_device *dev; 1362 struct net_device *last; 1363 struct net *net; 1364 int err; 1365 1366 rtnl_lock(); 1367 err = raw_notifier_chain_register(&netdev_chain, nb); 1368 if (err) 1369 goto unlock; 1370 if (dev_boot_phase) 1371 goto unlock; 1372 for_each_net(net) { 1373 for_each_netdev(net, dev) { 1374 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1375 err = notifier_to_errno(err); 1376 if (err) 1377 goto rollback; 1378 1379 if (!(dev->flags & IFF_UP)) 1380 continue; 1381 1382 nb->notifier_call(nb, NETDEV_UP, dev); 1383 } 1384 } 1385 1386 unlock: 1387 rtnl_unlock(); 1388 return err; 1389 1390 rollback: 1391 last = dev; 1392 for_each_net(net) { 1393 for_each_netdev(net, dev) { 1394 if (dev == last) 1395 break; 1396 1397 if (dev->flags & IFF_UP) { 1398 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1399 nb->notifier_call(nb, NETDEV_DOWN, dev); 1400 } 1401 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1402 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev); 1403 } 1404 } 1405 1406 raw_notifier_chain_unregister(&netdev_chain, nb); 1407 goto unlock; 1408 } 1409 EXPORT_SYMBOL(register_netdevice_notifier); 1410 1411 /** 1412 * unregister_netdevice_notifier - unregister a network notifier block 1413 * @nb: notifier 1414 * 1415 * Unregister a notifier previously registered by 1416 * register_netdevice_notifier(). The notifier is unlinked into the 1417 * kernel structures and may then be reused. A negative errno code 1418 * is returned on a failure. 1419 */ 1420 1421 int unregister_netdevice_notifier(struct notifier_block *nb) 1422 { 1423 int err; 1424 1425 rtnl_lock(); 1426 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1427 rtnl_unlock(); 1428 return err; 1429 } 1430 EXPORT_SYMBOL(unregister_netdevice_notifier); 1431 1432 /** 1433 * call_netdevice_notifiers - call all network notifier blocks 1434 * @val: value passed unmodified to notifier function 1435 * @dev: net_device pointer passed unmodified to notifier function 1436 * 1437 * Call all network notifier blocks. Parameters and return value 1438 * are as for raw_notifier_call_chain(). 1439 */ 1440 1441 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1442 { 1443 ASSERT_RTNL(); 1444 return raw_notifier_call_chain(&netdev_chain, val, dev); 1445 } 1446 EXPORT_SYMBOL(call_netdevice_notifiers); 1447 1448 /* When > 0 there are consumers of rx skb time stamps */ 1449 static atomic_t netstamp_needed = ATOMIC_INIT(0); 1450 1451 void net_enable_timestamp(void) 1452 { 1453 atomic_inc(&netstamp_needed); 1454 } 1455 EXPORT_SYMBOL(net_enable_timestamp); 1456 1457 void net_disable_timestamp(void) 1458 { 1459 atomic_dec(&netstamp_needed); 1460 } 1461 EXPORT_SYMBOL(net_disable_timestamp); 1462 1463 static inline void net_timestamp_set(struct sk_buff *skb) 1464 { 1465 if (atomic_read(&netstamp_needed)) 1466 __net_timestamp(skb); 1467 else 1468 skb->tstamp.tv64 = 0; 1469 } 1470 1471 static inline void net_timestamp_check(struct sk_buff *skb) 1472 { 1473 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed)) 1474 __net_timestamp(skb); 1475 } 1476 1477 static inline bool is_skb_forwardable(struct net_device *dev, 1478 struct sk_buff *skb) 1479 { 1480 unsigned int len; 1481 1482 if (!(dev->flags & IFF_UP)) 1483 return false; 1484 1485 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1486 if (skb->len <= len) 1487 return true; 1488 1489 /* if TSO is enabled, we don't care about the length as the packet 1490 * could be forwarded without being segmented before 1491 */ 1492 if (skb_is_gso(skb)) 1493 return true; 1494 1495 return false; 1496 } 1497 1498 /** 1499 * dev_forward_skb - loopback an skb to another netif 1500 * 1501 * @dev: destination network device 1502 * @skb: buffer to forward 1503 * 1504 * return values: 1505 * NET_RX_SUCCESS (no congestion) 1506 * NET_RX_DROP (packet was dropped, but freed) 1507 * 1508 * dev_forward_skb can be used for injecting an skb from the 1509 * start_xmit function of one device into the receive queue 1510 * of another device. 1511 * 1512 * The receiving device may be in another namespace, so 1513 * we have to clear all information in the skb that could 1514 * impact namespace isolation. 1515 */ 1516 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1517 { 1518 skb_orphan(skb); 1519 nf_reset(skb); 1520 1521 if (unlikely(!is_skb_forwardable(dev, skb))) { 1522 atomic_long_inc(&dev->rx_dropped); 1523 kfree_skb(skb); 1524 return NET_RX_DROP; 1525 } 1526 skb_set_dev(skb, dev); 1527 skb->tstamp.tv64 = 0; 1528 skb->pkt_type = PACKET_HOST; 1529 skb->protocol = eth_type_trans(skb, dev); 1530 return netif_rx(skb); 1531 } 1532 EXPORT_SYMBOL_GPL(dev_forward_skb); 1533 1534 static inline int deliver_skb(struct sk_buff *skb, 1535 struct packet_type *pt_prev, 1536 struct net_device *orig_dev) 1537 { 1538 atomic_inc(&skb->users); 1539 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1540 } 1541 1542 /* 1543 * Support routine. Sends outgoing frames to any network 1544 * taps currently in use. 1545 */ 1546 1547 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1548 { 1549 struct packet_type *ptype; 1550 struct sk_buff *skb2 = NULL; 1551 struct packet_type *pt_prev = NULL; 1552 1553 rcu_read_lock(); 1554 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1555 /* Never send packets back to the socket 1556 * they originated from - MvS (miquels@drinkel.ow.org) 1557 */ 1558 if ((ptype->dev == dev || !ptype->dev) && 1559 (ptype->af_packet_priv == NULL || 1560 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1561 if (pt_prev) { 1562 deliver_skb(skb2, pt_prev, skb->dev); 1563 pt_prev = ptype; 1564 continue; 1565 } 1566 1567 skb2 = skb_clone(skb, GFP_ATOMIC); 1568 if (!skb2) 1569 break; 1570 1571 net_timestamp_set(skb2); 1572 1573 /* skb->nh should be correctly 1574 set by sender, so that the second statement is 1575 just protection against buggy protocols. 1576 */ 1577 skb_reset_mac_header(skb2); 1578 1579 if (skb_network_header(skb2) < skb2->data || 1580 skb2->network_header > skb2->tail) { 1581 if (net_ratelimit()) 1582 printk(KERN_CRIT "protocol %04x is " 1583 "buggy, dev %s\n", 1584 ntohs(skb2->protocol), 1585 dev->name); 1586 skb_reset_network_header(skb2); 1587 } 1588 1589 skb2->transport_header = skb2->network_header; 1590 skb2->pkt_type = PACKET_OUTGOING; 1591 pt_prev = ptype; 1592 } 1593 } 1594 if (pt_prev) 1595 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1596 rcu_read_unlock(); 1597 } 1598 1599 /* netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1600 * @dev: Network device 1601 * @txq: number of queues available 1602 * 1603 * If real_num_tx_queues is changed the tc mappings may no longer be 1604 * valid. To resolve this verify the tc mapping remains valid and if 1605 * not NULL the mapping. With no priorities mapping to this 1606 * offset/count pair it will no longer be used. In the worst case TC0 1607 * is invalid nothing can be done so disable priority mappings. If is 1608 * expected that drivers will fix this mapping if they can before 1609 * calling netif_set_real_num_tx_queues. 1610 */ 1611 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1612 { 1613 int i; 1614 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1615 1616 /* If TC0 is invalidated disable TC mapping */ 1617 if (tc->offset + tc->count > txq) { 1618 pr_warning("Number of in use tx queues changed " 1619 "invalidating tc mappings. Priority " 1620 "traffic classification disabled!\n"); 1621 dev->num_tc = 0; 1622 return; 1623 } 1624 1625 /* Invalidated prio to tc mappings set to TC0 */ 1626 for (i = 1; i < TC_BITMASK + 1; i++) { 1627 int q = netdev_get_prio_tc_map(dev, i); 1628 1629 tc = &dev->tc_to_txq[q]; 1630 if (tc->offset + tc->count > txq) { 1631 pr_warning("Number of in use tx queues " 1632 "changed. Priority %i to tc " 1633 "mapping %i is no longer valid " 1634 "setting map to 0\n", 1635 i, q); 1636 netdev_set_prio_tc_map(dev, i, 0); 1637 } 1638 } 1639 } 1640 1641 /* 1642 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 1643 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 1644 */ 1645 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 1646 { 1647 int rc; 1648 1649 if (txq < 1 || txq > dev->num_tx_queues) 1650 return -EINVAL; 1651 1652 if (dev->reg_state == NETREG_REGISTERED || 1653 dev->reg_state == NETREG_UNREGISTERING) { 1654 ASSERT_RTNL(); 1655 1656 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 1657 txq); 1658 if (rc) 1659 return rc; 1660 1661 if (dev->num_tc) 1662 netif_setup_tc(dev, txq); 1663 1664 if (txq < dev->real_num_tx_queues) 1665 qdisc_reset_all_tx_gt(dev, txq); 1666 } 1667 1668 dev->real_num_tx_queues = txq; 1669 return 0; 1670 } 1671 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 1672 1673 #ifdef CONFIG_RPS 1674 /** 1675 * netif_set_real_num_rx_queues - set actual number of RX queues used 1676 * @dev: Network device 1677 * @rxq: Actual number of RX queues 1678 * 1679 * This must be called either with the rtnl_lock held or before 1680 * registration of the net device. Returns 0 on success, or a 1681 * negative error code. If called before registration, it always 1682 * succeeds. 1683 */ 1684 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 1685 { 1686 int rc; 1687 1688 if (rxq < 1 || rxq > dev->num_rx_queues) 1689 return -EINVAL; 1690 1691 if (dev->reg_state == NETREG_REGISTERED) { 1692 ASSERT_RTNL(); 1693 1694 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 1695 rxq); 1696 if (rc) 1697 return rc; 1698 } 1699 1700 dev->real_num_rx_queues = rxq; 1701 return 0; 1702 } 1703 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 1704 #endif 1705 1706 static inline void __netif_reschedule(struct Qdisc *q) 1707 { 1708 struct softnet_data *sd; 1709 unsigned long flags; 1710 1711 local_irq_save(flags); 1712 sd = &__get_cpu_var(softnet_data); 1713 q->next_sched = NULL; 1714 *sd->output_queue_tailp = q; 1715 sd->output_queue_tailp = &q->next_sched; 1716 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1717 local_irq_restore(flags); 1718 } 1719 1720 void __netif_schedule(struct Qdisc *q) 1721 { 1722 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 1723 __netif_reschedule(q); 1724 } 1725 EXPORT_SYMBOL(__netif_schedule); 1726 1727 void dev_kfree_skb_irq(struct sk_buff *skb) 1728 { 1729 if (atomic_dec_and_test(&skb->users)) { 1730 struct softnet_data *sd; 1731 unsigned long flags; 1732 1733 local_irq_save(flags); 1734 sd = &__get_cpu_var(softnet_data); 1735 skb->next = sd->completion_queue; 1736 sd->completion_queue = skb; 1737 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1738 local_irq_restore(flags); 1739 } 1740 } 1741 EXPORT_SYMBOL(dev_kfree_skb_irq); 1742 1743 void dev_kfree_skb_any(struct sk_buff *skb) 1744 { 1745 if (in_irq() || irqs_disabled()) 1746 dev_kfree_skb_irq(skb); 1747 else 1748 dev_kfree_skb(skb); 1749 } 1750 EXPORT_SYMBOL(dev_kfree_skb_any); 1751 1752 1753 /** 1754 * netif_device_detach - mark device as removed 1755 * @dev: network device 1756 * 1757 * Mark device as removed from system and therefore no longer available. 1758 */ 1759 void netif_device_detach(struct net_device *dev) 1760 { 1761 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1762 netif_running(dev)) { 1763 netif_tx_stop_all_queues(dev); 1764 } 1765 } 1766 EXPORT_SYMBOL(netif_device_detach); 1767 1768 /** 1769 * netif_device_attach - mark device as attached 1770 * @dev: network device 1771 * 1772 * Mark device as attached from system and restart if needed. 1773 */ 1774 void netif_device_attach(struct net_device *dev) 1775 { 1776 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1777 netif_running(dev)) { 1778 netif_tx_wake_all_queues(dev); 1779 __netdev_watchdog_up(dev); 1780 } 1781 } 1782 EXPORT_SYMBOL(netif_device_attach); 1783 1784 /** 1785 * skb_dev_set -- assign a new device to a buffer 1786 * @skb: buffer for the new device 1787 * @dev: network device 1788 * 1789 * If an skb is owned by a device already, we have to reset 1790 * all data private to the namespace a device belongs to 1791 * before assigning it a new device. 1792 */ 1793 #ifdef CONFIG_NET_NS 1794 void skb_set_dev(struct sk_buff *skb, struct net_device *dev) 1795 { 1796 skb_dst_drop(skb); 1797 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) { 1798 secpath_reset(skb); 1799 nf_reset(skb); 1800 skb_init_secmark(skb); 1801 skb->mark = 0; 1802 skb->priority = 0; 1803 skb->nf_trace = 0; 1804 skb->ipvs_property = 0; 1805 #ifdef CONFIG_NET_SCHED 1806 skb->tc_index = 0; 1807 #endif 1808 } 1809 skb->dev = dev; 1810 } 1811 EXPORT_SYMBOL(skb_set_dev); 1812 #endif /* CONFIG_NET_NS */ 1813 1814 /* 1815 * Invalidate hardware checksum when packet is to be mangled, and 1816 * complete checksum manually on outgoing path. 1817 */ 1818 int skb_checksum_help(struct sk_buff *skb) 1819 { 1820 __wsum csum; 1821 int ret = 0, offset; 1822 1823 if (skb->ip_summed == CHECKSUM_COMPLETE) 1824 goto out_set_summed; 1825 1826 if (unlikely(skb_shinfo(skb)->gso_size)) { 1827 /* Let GSO fix up the checksum. */ 1828 goto out_set_summed; 1829 } 1830 1831 offset = skb_checksum_start_offset(skb); 1832 BUG_ON(offset >= skb_headlen(skb)); 1833 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1834 1835 offset += skb->csum_offset; 1836 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1837 1838 if (skb_cloned(skb) && 1839 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1840 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1841 if (ret) 1842 goto out; 1843 } 1844 1845 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1846 out_set_summed: 1847 skb->ip_summed = CHECKSUM_NONE; 1848 out: 1849 return ret; 1850 } 1851 EXPORT_SYMBOL(skb_checksum_help); 1852 1853 /** 1854 * skb_gso_segment - Perform segmentation on skb. 1855 * @skb: buffer to segment 1856 * @features: features for the output path (see dev->features) 1857 * 1858 * This function segments the given skb and returns a list of segments. 1859 * 1860 * It may return NULL if the skb requires no segmentation. This is 1861 * only possible when GSO is used for verifying header integrity. 1862 */ 1863 struct sk_buff *skb_gso_segment(struct sk_buff *skb, u32 features) 1864 { 1865 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1866 struct packet_type *ptype; 1867 __be16 type = skb->protocol; 1868 int vlan_depth = ETH_HLEN; 1869 int err; 1870 1871 while (type == htons(ETH_P_8021Q)) { 1872 struct vlan_hdr *vh; 1873 1874 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN))) 1875 return ERR_PTR(-EINVAL); 1876 1877 vh = (struct vlan_hdr *)(skb->data + vlan_depth); 1878 type = vh->h_vlan_encapsulated_proto; 1879 vlan_depth += VLAN_HLEN; 1880 } 1881 1882 skb_reset_mac_header(skb); 1883 skb->mac_len = skb->network_header - skb->mac_header; 1884 __skb_pull(skb, skb->mac_len); 1885 1886 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1887 struct net_device *dev = skb->dev; 1888 struct ethtool_drvinfo info = {}; 1889 1890 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo) 1891 dev->ethtool_ops->get_drvinfo(dev, &info); 1892 1893 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d ip_summed=%d\n", 1894 info.driver, dev ? dev->features : 0L, 1895 skb->sk ? skb->sk->sk_route_caps : 0L, 1896 skb->len, skb->data_len, skb->ip_summed); 1897 1898 if (skb_header_cloned(skb) && 1899 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1900 return ERR_PTR(err); 1901 } 1902 1903 rcu_read_lock(); 1904 list_for_each_entry_rcu(ptype, 1905 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 1906 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1907 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1908 err = ptype->gso_send_check(skb); 1909 segs = ERR_PTR(err); 1910 if (err || skb_gso_ok(skb, features)) 1911 break; 1912 __skb_push(skb, (skb->data - 1913 skb_network_header(skb))); 1914 } 1915 segs = ptype->gso_segment(skb, features); 1916 break; 1917 } 1918 } 1919 rcu_read_unlock(); 1920 1921 __skb_push(skb, skb->data - skb_mac_header(skb)); 1922 1923 return segs; 1924 } 1925 EXPORT_SYMBOL(skb_gso_segment); 1926 1927 /* Take action when hardware reception checksum errors are detected. */ 1928 #ifdef CONFIG_BUG 1929 void netdev_rx_csum_fault(struct net_device *dev) 1930 { 1931 if (net_ratelimit()) { 1932 printk(KERN_ERR "%s: hw csum failure.\n", 1933 dev ? dev->name : "<unknown>"); 1934 dump_stack(); 1935 } 1936 } 1937 EXPORT_SYMBOL(netdev_rx_csum_fault); 1938 #endif 1939 1940 /* Actually, we should eliminate this check as soon as we know, that: 1941 * 1. IOMMU is present and allows to map all the memory. 1942 * 2. No high memory really exists on this machine. 1943 */ 1944 1945 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 1946 { 1947 #ifdef CONFIG_HIGHMEM 1948 int i; 1949 if (!(dev->features & NETIF_F_HIGHDMA)) { 1950 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1951 if (PageHighMem(skb_shinfo(skb)->frags[i].page)) 1952 return 1; 1953 } 1954 1955 if (PCI_DMA_BUS_IS_PHYS) { 1956 struct device *pdev = dev->dev.parent; 1957 1958 if (!pdev) 1959 return 0; 1960 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1961 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page); 1962 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 1963 return 1; 1964 } 1965 } 1966 #endif 1967 return 0; 1968 } 1969 1970 struct dev_gso_cb { 1971 void (*destructor)(struct sk_buff *skb); 1972 }; 1973 1974 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 1975 1976 static void dev_gso_skb_destructor(struct sk_buff *skb) 1977 { 1978 struct dev_gso_cb *cb; 1979 1980 do { 1981 struct sk_buff *nskb = skb->next; 1982 1983 skb->next = nskb->next; 1984 nskb->next = NULL; 1985 kfree_skb(nskb); 1986 } while (skb->next); 1987 1988 cb = DEV_GSO_CB(skb); 1989 if (cb->destructor) 1990 cb->destructor(skb); 1991 } 1992 1993 /** 1994 * dev_gso_segment - Perform emulated hardware segmentation on skb. 1995 * @skb: buffer to segment 1996 * @features: device features as applicable to this skb 1997 * 1998 * This function segments the given skb and stores the list of segments 1999 * in skb->next. 2000 */ 2001 static int dev_gso_segment(struct sk_buff *skb, int features) 2002 { 2003 struct sk_buff *segs; 2004 2005 segs = skb_gso_segment(skb, features); 2006 2007 /* Verifying header integrity only. */ 2008 if (!segs) 2009 return 0; 2010 2011 if (IS_ERR(segs)) 2012 return PTR_ERR(segs); 2013 2014 skb->next = segs; 2015 DEV_GSO_CB(skb)->destructor = skb->destructor; 2016 skb->destructor = dev_gso_skb_destructor; 2017 2018 return 0; 2019 } 2020 2021 /* 2022 * Try to orphan skb early, right before transmission by the device. 2023 * We cannot orphan skb if tx timestamp is requested or the sk-reference 2024 * is needed on driver level for other reasons, e.g. see net/can/raw.c 2025 */ 2026 static inline void skb_orphan_try(struct sk_buff *skb) 2027 { 2028 struct sock *sk = skb->sk; 2029 2030 if (sk && !skb_shinfo(skb)->tx_flags) { 2031 /* skb_tx_hash() wont be able to get sk. 2032 * We copy sk_hash into skb->rxhash 2033 */ 2034 if (!skb->rxhash) 2035 skb->rxhash = sk->sk_hash; 2036 skb_orphan(skb); 2037 } 2038 } 2039 2040 static bool can_checksum_protocol(unsigned long features, __be16 protocol) 2041 { 2042 return ((features & NETIF_F_GEN_CSUM) || 2043 ((features & NETIF_F_V4_CSUM) && 2044 protocol == htons(ETH_P_IP)) || 2045 ((features & NETIF_F_V6_CSUM) && 2046 protocol == htons(ETH_P_IPV6)) || 2047 ((features & NETIF_F_FCOE_CRC) && 2048 protocol == htons(ETH_P_FCOE))); 2049 } 2050 2051 static u32 harmonize_features(struct sk_buff *skb, __be16 protocol, u32 features) 2052 { 2053 if (!can_checksum_protocol(features, protocol)) { 2054 features &= ~NETIF_F_ALL_CSUM; 2055 features &= ~NETIF_F_SG; 2056 } else if (illegal_highdma(skb->dev, skb)) { 2057 features &= ~NETIF_F_SG; 2058 } 2059 2060 return features; 2061 } 2062 2063 u32 netif_skb_features(struct sk_buff *skb) 2064 { 2065 __be16 protocol = skb->protocol; 2066 u32 features = skb->dev->features; 2067 2068 if (protocol == htons(ETH_P_8021Q)) { 2069 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 2070 protocol = veh->h_vlan_encapsulated_proto; 2071 } else if (!vlan_tx_tag_present(skb)) { 2072 return harmonize_features(skb, protocol, features); 2073 } 2074 2075 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX); 2076 2077 if (protocol != htons(ETH_P_8021Q)) { 2078 return harmonize_features(skb, protocol, features); 2079 } else { 2080 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST | 2081 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX; 2082 return harmonize_features(skb, protocol, features); 2083 } 2084 } 2085 EXPORT_SYMBOL(netif_skb_features); 2086 2087 /* 2088 * Returns true if either: 2089 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 2090 * 2. skb is fragmented and the device does not support SG, or if 2091 * at least one of fragments is in highmem and device does not 2092 * support DMA from it. 2093 */ 2094 static inline int skb_needs_linearize(struct sk_buff *skb, 2095 int features) 2096 { 2097 return skb_is_nonlinear(skb) && 2098 ((skb_has_frag_list(skb) && 2099 !(features & NETIF_F_FRAGLIST)) || 2100 (skb_shinfo(skb)->nr_frags && 2101 !(features & NETIF_F_SG))); 2102 } 2103 2104 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 2105 struct netdev_queue *txq) 2106 { 2107 const struct net_device_ops *ops = dev->netdev_ops; 2108 int rc = NETDEV_TX_OK; 2109 unsigned int skb_len; 2110 2111 if (likely(!skb->next)) { 2112 u32 features; 2113 2114 /* 2115 * If device doesn't need skb->dst, release it right now while 2116 * its hot in this cpu cache 2117 */ 2118 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2119 skb_dst_drop(skb); 2120 2121 if (!list_empty(&ptype_all)) 2122 dev_queue_xmit_nit(skb, dev); 2123 2124 skb_orphan_try(skb); 2125 2126 features = netif_skb_features(skb); 2127 2128 if (vlan_tx_tag_present(skb) && 2129 !(features & NETIF_F_HW_VLAN_TX)) { 2130 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb)); 2131 if (unlikely(!skb)) 2132 goto out; 2133 2134 skb->vlan_tci = 0; 2135 } 2136 2137 if (netif_needs_gso(skb, features)) { 2138 if (unlikely(dev_gso_segment(skb, features))) 2139 goto out_kfree_skb; 2140 if (skb->next) 2141 goto gso; 2142 } else { 2143 if (skb_needs_linearize(skb, features) && 2144 __skb_linearize(skb)) 2145 goto out_kfree_skb; 2146 2147 /* If packet is not checksummed and device does not 2148 * support checksumming for this protocol, complete 2149 * checksumming here. 2150 */ 2151 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2152 skb_set_transport_header(skb, 2153 skb_checksum_start_offset(skb)); 2154 if (!(features & NETIF_F_ALL_CSUM) && 2155 skb_checksum_help(skb)) 2156 goto out_kfree_skb; 2157 } 2158 } 2159 2160 skb_len = skb->len; 2161 rc = ops->ndo_start_xmit(skb, dev); 2162 trace_net_dev_xmit(skb, rc, dev, skb_len); 2163 if (rc == NETDEV_TX_OK) 2164 txq_trans_update(txq); 2165 return rc; 2166 } 2167 2168 gso: 2169 do { 2170 struct sk_buff *nskb = skb->next; 2171 2172 skb->next = nskb->next; 2173 nskb->next = NULL; 2174 2175 /* 2176 * If device doesn't need nskb->dst, release it right now while 2177 * its hot in this cpu cache 2178 */ 2179 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2180 skb_dst_drop(nskb); 2181 2182 skb_len = nskb->len; 2183 rc = ops->ndo_start_xmit(nskb, dev); 2184 trace_net_dev_xmit(nskb, rc, dev, skb_len); 2185 if (unlikely(rc != NETDEV_TX_OK)) { 2186 if (rc & ~NETDEV_TX_MASK) 2187 goto out_kfree_gso_skb; 2188 nskb->next = skb->next; 2189 skb->next = nskb; 2190 return rc; 2191 } 2192 txq_trans_update(txq); 2193 if (unlikely(netif_tx_queue_stopped(txq) && skb->next)) 2194 return NETDEV_TX_BUSY; 2195 } while (skb->next); 2196 2197 out_kfree_gso_skb: 2198 if (likely(skb->next == NULL)) 2199 skb->destructor = DEV_GSO_CB(skb)->destructor; 2200 out_kfree_skb: 2201 kfree_skb(skb); 2202 out: 2203 return rc; 2204 } 2205 2206 static u32 hashrnd __read_mostly; 2207 2208 /* 2209 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2210 * to be used as a distribution range. 2211 */ 2212 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb, 2213 unsigned int num_tx_queues) 2214 { 2215 u32 hash; 2216 u16 qoffset = 0; 2217 u16 qcount = num_tx_queues; 2218 2219 if (skb_rx_queue_recorded(skb)) { 2220 hash = skb_get_rx_queue(skb); 2221 while (unlikely(hash >= num_tx_queues)) 2222 hash -= num_tx_queues; 2223 return hash; 2224 } 2225 2226 if (dev->num_tc) { 2227 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2228 qoffset = dev->tc_to_txq[tc].offset; 2229 qcount = dev->tc_to_txq[tc].count; 2230 } 2231 2232 if (skb->sk && skb->sk->sk_hash) 2233 hash = skb->sk->sk_hash; 2234 else 2235 hash = (__force u16) skb->protocol ^ skb->rxhash; 2236 hash = jhash_1word(hash, hashrnd); 2237 2238 return (u16) (((u64) hash * qcount) >> 32) + qoffset; 2239 } 2240 EXPORT_SYMBOL(__skb_tx_hash); 2241 2242 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index) 2243 { 2244 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 2245 if (net_ratelimit()) { 2246 pr_warning("%s selects TX queue %d, but " 2247 "real number of TX queues is %d\n", 2248 dev->name, queue_index, dev->real_num_tx_queues); 2249 } 2250 return 0; 2251 } 2252 return queue_index; 2253 } 2254 2255 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 2256 { 2257 #ifdef CONFIG_XPS 2258 struct xps_dev_maps *dev_maps; 2259 struct xps_map *map; 2260 int queue_index = -1; 2261 2262 rcu_read_lock(); 2263 dev_maps = rcu_dereference(dev->xps_maps); 2264 if (dev_maps) { 2265 map = rcu_dereference( 2266 dev_maps->cpu_map[raw_smp_processor_id()]); 2267 if (map) { 2268 if (map->len == 1) 2269 queue_index = map->queues[0]; 2270 else { 2271 u32 hash; 2272 if (skb->sk && skb->sk->sk_hash) 2273 hash = skb->sk->sk_hash; 2274 else 2275 hash = (__force u16) skb->protocol ^ 2276 skb->rxhash; 2277 hash = jhash_1word(hash, hashrnd); 2278 queue_index = map->queues[ 2279 ((u64)hash * map->len) >> 32]; 2280 } 2281 if (unlikely(queue_index >= dev->real_num_tx_queues)) 2282 queue_index = -1; 2283 } 2284 } 2285 rcu_read_unlock(); 2286 2287 return queue_index; 2288 #else 2289 return -1; 2290 #endif 2291 } 2292 2293 static struct netdev_queue *dev_pick_tx(struct net_device *dev, 2294 struct sk_buff *skb) 2295 { 2296 int queue_index; 2297 const struct net_device_ops *ops = dev->netdev_ops; 2298 2299 if (dev->real_num_tx_queues == 1) 2300 queue_index = 0; 2301 else if (ops->ndo_select_queue) { 2302 queue_index = ops->ndo_select_queue(dev, skb); 2303 queue_index = dev_cap_txqueue(dev, queue_index); 2304 } else { 2305 struct sock *sk = skb->sk; 2306 queue_index = sk_tx_queue_get(sk); 2307 2308 if (queue_index < 0 || skb->ooo_okay || 2309 queue_index >= dev->real_num_tx_queues) { 2310 int old_index = queue_index; 2311 2312 queue_index = get_xps_queue(dev, skb); 2313 if (queue_index < 0) 2314 queue_index = skb_tx_hash(dev, skb); 2315 2316 if (queue_index != old_index && sk) { 2317 struct dst_entry *dst = 2318 rcu_dereference_check(sk->sk_dst_cache, 1); 2319 2320 if (dst && skb_dst(skb) == dst) 2321 sk_tx_queue_set(sk, queue_index); 2322 } 2323 } 2324 } 2325 2326 skb_set_queue_mapping(skb, queue_index); 2327 return netdev_get_tx_queue(dev, queue_index); 2328 } 2329 2330 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2331 struct net_device *dev, 2332 struct netdev_queue *txq) 2333 { 2334 spinlock_t *root_lock = qdisc_lock(q); 2335 bool contended; 2336 int rc; 2337 2338 qdisc_skb_cb(skb)->pkt_len = skb->len; 2339 qdisc_calculate_pkt_len(skb, q); 2340 /* 2341 * Heuristic to force contended enqueues to serialize on a 2342 * separate lock before trying to get qdisc main lock. 2343 * This permits __QDISC_STATE_RUNNING owner to get the lock more often 2344 * and dequeue packets faster. 2345 */ 2346 contended = qdisc_is_running(q); 2347 if (unlikely(contended)) 2348 spin_lock(&q->busylock); 2349 2350 spin_lock(root_lock); 2351 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2352 kfree_skb(skb); 2353 rc = NET_XMIT_DROP; 2354 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2355 qdisc_run_begin(q)) { 2356 /* 2357 * This is a work-conserving queue; there are no old skbs 2358 * waiting to be sent out; and the qdisc is not running - 2359 * xmit the skb directly. 2360 */ 2361 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE)) 2362 skb_dst_force(skb); 2363 2364 qdisc_bstats_update(q, skb); 2365 2366 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) { 2367 if (unlikely(contended)) { 2368 spin_unlock(&q->busylock); 2369 contended = false; 2370 } 2371 __qdisc_run(q); 2372 } else 2373 qdisc_run_end(q); 2374 2375 rc = NET_XMIT_SUCCESS; 2376 } else { 2377 skb_dst_force(skb); 2378 rc = q->enqueue(skb, q) & NET_XMIT_MASK; 2379 if (qdisc_run_begin(q)) { 2380 if (unlikely(contended)) { 2381 spin_unlock(&q->busylock); 2382 contended = false; 2383 } 2384 __qdisc_run(q); 2385 } 2386 } 2387 spin_unlock(root_lock); 2388 if (unlikely(contended)) 2389 spin_unlock(&q->busylock); 2390 return rc; 2391 } 2392 2393 static DEFINE_PER_CPU(int, xmit_recursion); 2394 #define RECURSION_LIMIT 10 2395 2396 /** 2397 * dev_queue_xmit - transmit a buffer 2398 * @skb: buffer to transmit 2399 * 2400 * Queue a buffer for transmission to a network device. The caller must 2401 * have set the device and priority and built the buffer before calling 2402 * this function. The function can be called from an interrupt. 2403 * 2404 * A negative errno code is returned on a failure. A success does not 2405 * guarantee the frame will be transmitted as it may be dropped due 2406 * to congestion or traffic shaping. 2407 * 2408 * ----------------------------------------------------------------------------------- 2409 * I notice this method can also return errors from the queue disciplines, 2410 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2411 * be positive. 2412 * 2413 * Regardless of the return value, the skb is consumed, so it is currently 2414 * difficult to retry a send to this method. (You can bump the ref count 2415 * before sending to hold a reference for retry if you are careful.) 2416 * 2417 * When calling this method, interrupts MUST be enabled. This is because 2418 * the BH enable code must have IRQs enabled so that it will not deadlock. 2419 * --BLG 2420 */ 2421 int dev_queue_xmit(struct sk_buff *skb) 2422 { 2423 struct net_device *dev = skb->dev; 2424 struct netdev_queue *txq; 2425 struct Qdisc *q; 2426 int rc = -ENOMEM; 2427 2428 /* Disable soft irqs for various locks below. Also 2429 * stops preemption for RCU. 2430 */ 2431 rcu_read_lock_bh(); 2432 2433 txq = dev_pick_tx(dev, skb); 2434 q = rcu_dereference_bh(txq->qdisc); 2435 2436 #ifdef CONFIG_NET_CLS_ACT 2437 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2438 #endif 2439 trace_net_dev_queue(skb); 2440 if (q->enqueue) { 2441 rc = __dev_xmit_skb(skb, q, dev, txq); 2442 goto out; 2443 } 2444 2445 /* The device has no queue. Common case for software devices: 2446 loopback, all the sorts of tunnels... 2447 2448 Really, it is unlikely that netif_tx_lock protection is necessary 2449 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2450 counters.) 2451 However, it is possible, that they rely on protection 2452 made by us here. 2453 2454 Check this and shot the lock. It is not prone from deadlocks. 2455 Either shot noqueue qdisc, it is even simpler 8) 2456 */ 2457 if (dev->flags & IFF_UP) { 2458 int cpu = smp_processor_id(); /* ok because BHs are off */ 2459 2460 if (txq->xmit_lock_owner != cpu) { 2461 2462 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 2463 goto recursion_alert; 2464 2465 HARD_TX_LOCK(dev, txq, cpu); 2466 2467 if (!netif_tx_queue_stopped(txq)) { 2468 __this_cpu_inc(xmit_recursion); 2469 rc = dev_hard_start_xmit(skb, dev, txq); 2470 __this_cpu_dec(xmit_recursion); 2471 if (dev_xmit_complete(rc)) { 2472 HARD_TX_UNLOCK(dev, txq); 2473 goto out; 2474 } 2475 } 2476 HARD_TX_UNLOCK(dev, txq); 2477 if (net_ratelimit()) 2478 printk(KERN_CRIT "Virtual device %s asks to " 2479 "queue packet!\n", dev->name); 2480 } else { 2481 /* Recursion is detected! It is possible, 2482 * unfortunately 2483 */ 2484 recursion_alert: 2485 if (net_ratelimit()) 2486 printk(KERN_CRIT "Dead loop on virtual device " 2487 "%s, fix it urgently!\n", dev->name); 2488 } 2489 } 2490 2491 rc = -ENETDOWN; 2492 rcu_read_unlock_bh(); 2493 2494 kfree_skb(skb); 2495 return rc; 2496 out: 2497 rcu_read_unlock_bh(); 2498 return rc; 2499 } 2500 EXPORT_SYMBOL(dev_queue_xmit); 2501 2502 2503 /*======================================================================= 2504 Receiver routines 2505 =======================================================================*/ 2506 2507 int netdev_max_backlog __read_mostly = 1000; 2508 int netdev_tstamp_prequeue __read_mostly = 1; 2509 int netdev_budget __read_mostly = 300; 2510 int weight_p __read_mostly = 64; /* old backlog weight */ 2511 2512 /* Called with irq disabled */ 2513 static inline void ____napi_schedule(struct softnet_data *sd, 2514 struct napi_struct *napi) 2515 { 2516 list_add_tail(&napi->poll_list, &sd->poll_list); 2517 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2518 } 2519 2520 /* 2521 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses 2522 * and src/dst port numbers. Returns a non-zero hash number on success 2523 * and 0 on failure. 2524 */ 2525 __u32 __skb_get_rxhash(struct sk_buff *skb) 2526 { 2527 int nhoff, hash = 0, poff; 2528 const struct ipv6hdr *ip6; 2529 const struct iphdr *ip; 2530 u8 ip_proto; 2531 u32 addr1, addr2, ihl; 2532 union { 2533 u32 v32; 2534 u16 v16[2]; 2535 } ports; 2536 2537 nhoff = skb_network_offset(skb); 2538 2539 switch (skb->protocol) { 2540 case __constant_htons(ETH_P_IP): 2541 if (!pskb_may_pull(skb, sizeof(*ip) + nhoff)) 2542 goto done; 2543 2544 ip = (const struct iphdr *) (skb->data + nhoff); 2545 if (ip_is_fragment(ip)) 2546 ip_proto = 0; 2547 else 2548 ip_proto = ip->protocol; 2549 addr1 = (__force u32) ip->saddr; 2550 addr2 = (__force u32) ip->daddr; 2551 ihl = ip->ihl; 2552 break; 2553 case __constant_htons(ETH_P_IPV6): 2554 if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff)) 2555 goto done; 2556 2557 ip6 = (const struct ipv6hdr *) (skb->data + nhoff); 2558 ip_proto = ip6->nexthdr; 2559 addr1 = (__force u32) ip6->saddr.s6_addr32[3]; 2560 addr2 = (__force u32) ip6->daddr.s6_addr32[3]; 2561 ihl = (40 >> 2); 2562 break; 2563 default: 2564 goto done; 2565 } 2566 2567 ports.v32 = 0; 2568 poff = proto_ports_offset(ip_proto); 2569 if (poff >= 0) { 2570 nhoff += ihl * 4 + poff; 2571 if (pskb_may_pull(skb, nhoff + 4)) { 2572 ports.v32 = * (__force u32 *) (skb->data + nhoff); 2573 if (ports.v16[1] < ports.v16[0]) 2574 swap(ports.v16[0], ports.v16[1]); 2575 } 2576 } 2577 2578 /* get a consistent hash (same value on both flow directions) */ 2579 if (addr2 < addr1) 2580 swap(addr1, addr2); 2581 2582 hash = jhash_3words(addr1, addr2, ports.v32, hashrnd); 2583 if (!hash) 2584 hash = 1; 2585 2586 done: 2587 return hash; 2588 } 2589 EXPORT_SYMBOL(__skb_get_rxhash); 2590 2591 #ifdef CONFIG_RPS 2592 2593 /* One global table that all flow-based protocols share. */ 2594 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 2595 EXPORT_SYMBOL(rps_sock_flow_table); 2596 2597 static struct rps_dev_flow * 2598 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2599 struct rps_dev_flow *rflow, u16 next_cpu) 2600 { 2601 u16 tcpu; 2602 2603 tcpu = rflow->cpu = next_cpu; 2604 if (tcpu != RPS_NO_CPU) { 2605 #ifdef CONFIG_RFS_ACCEL 2606 struct netdev_rx_queue *rxqueue; 2607 struct rps_dev_flow_table *flow_table; 2608 struct rps_dev_flow *old_rflow; 2609 u32 flow_id; 2610 u16 rxq_index; 2611 int rc; 2612 2613 /* Should we steer this flow to a different hardware queue? */ 2614 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 2615 !(dev->features & NETIF_F_NTUPLE)) 2616 goto out; 2617 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 2618 if (rxq_index == skb_get_rx_queue(skb)) 2619 goto out; 2620 2621 rxqueue = dev->_rx + rxq_index; 2622 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2623 if (!flow_table) 2624 goto out; 2625 flow_id = skb->rxhash & flow_table->mask; 2626 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 2627 rxq_index, flow_id); 2628 if (rc < 0) 2629 goto out; 2630 old_rflow = rflow; 2631 rflow = &flow_table->flows[flow_id]; 2632 rflow->cpu = next_cpu; 2633 rflow->filter = rc; 2634 if (old_rflow->filter == rflow->filter) 2635 old_rflow->filter = RPS_NO_FILTER; 2636 out: 2637 #endif 2638 rflow->last_qtail = 2639 per_cpu(softnet_data, tcpu).input_queue_head; 2640 } 2641 2642 return rflow; 2643 } 2644 2645 /* 2646 * get_rps_cpu is called from netif_receive_skb and returns the target 2647 * CPU from the RPS map of the receiving queue for a given skb. 2648 * rcu_read_lock must be held on entry. 2649 */ 2650 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2651 struct rps_dev_flow **rflowp) 2652 { 2653 struct netdev_rx_queue *rxqueue; 2654 struct rps_map *map; 2655 struct rps_dev_flow_table *flow_table; 2656 struct rps_sock_flow_table *sock_flow_table; 2657 int cpu = -1; 2658 u16 tcpu; 2659 2660 if (skb_rx_queue_recorded(skb)) { 2661 u16 index = skb_get_rx_queue(skb); 2662 if (unlikely(index >= dev->real_num_rx_queues)) { 2663 WARN_ONCE(dev->real_num_rx_queues > 1, 2664 "%s received packet on queue %u, but number " 2665 "of RX queues is %u\n", 2666 dev->name, index, dev->real_num_rx_queues); 2667 goto done; 2668 } 2669 rxqueue = dev->_rx + index; 2670 } else 2671 rxqueue = dev->_rx; 2672 2673 map = rcu_dereference(rxqueue->rps_map); 2674 if (map) { 2675 if (map->len == 1 && 2676 !rcu_dereference_raw(rxqueue->rps_flow_table)) { 2677 tcpu = map->cpus[0]; 2678 if (cpu_online(tcpu)) 2679 cpu = tcpu; 2680 goto done; 2681 } 2682 } else if (!rcu_dereference_raw(rxqueue->rps_flow_table)) { 2683 goto done; 2684 } 2685 2686 skb_reset_network_header(skb); 2687 if (!skb_get_rxhash(skb)) 2688 goto done; 2689 2690 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2691 sock_flow_table = rcu_dereference(rps_sock_flow_table); 2692 if (flow_table && sock_flow_table) { 2693 u16 next_cpu; 2694 struct rps_dev_flow *rflow; 2695 2696 rflow = &flow_table->flows[skb->rxhash & flow_table->mask]; 2697 tcpu = rflow->cpu; 2698 2699 next_cpu = sock_flow_table->ents[skb->rxhash & 2700 sock_flow_table->mask]; 2701 2702 /* 2703 * If the desired CPU (where last recvmsg was done) is 2704 * different from current CPU (one in the rx-queue flow 2705 * table entry), switch if one of the following holds: 2706 * - Current CPU is unset (equal to RPS_NO_CPU). 2707 * - Current CPU is offline. 2708 * - The current CPU's queue tail has advanced beyond the 2709 * last packet that was enqueued using this table entry. 2710 * This guarantees that all previous packets for the flow 2711 * have been dequeued, thus preserving in order delivery. 2712 */ 2713 if (unlikely(tcpu != next_cpu) && 2714 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) || 2715 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 2716 rflow->last_qtail)) >= 0)) 2717 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 2718 2719 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) { 2720 *rflowp = rflow; 2721 cpu = tcpu; 2722 goto done; 2723 } 2724 } 2725 2726 if (map) { 2727 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32]; 2728 2729 if (cpu_online(tcpu)) { 2730 cpu = tcpu; 2731 goto done; 2732 } 2733 } 2734 2735 done: 2736 return cpu; 2737 } 2738 2739 #ifdef CONFIG_RFS_ACCEL 2740 2741 /** 2742 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 2743 * @dev: Device on which the filter was set 2744 * @rxq_index: RX queue index 2745 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 2746 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 2747 * 2748 * Drivers that implement ndo_rx_flow_steer() should periodically call 2749 * this function for each installed filter and remove the filters for 2750 * which it returns %true. 2751 */ 2752 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 2753 u32 flow_id, u16 filter_id) 2754 { 2755 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 2756 struct rps_dev_flow_table *flow_table; 2757 struct rps_dev_flow *rflow; 2758 bool expire = true; 2759 int cpu; 2760 2761 rcu_read_lock(); 2762 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2763 if (flow_table && flow_id <= flow_table->mask) { 2764 rflow = &flow_table->flows[flow_id]; 2765 cpu = ACCESS_ONCE(rflow->cpu); 2766 if (rflow->filter == filter_id && cpu != RPS_NO_CPU && 2767 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 2768 rflow->last_qtail) < 2769 (int)(10 * flow_table->mask))) 2770 expire = false; 2771 } 2772 rcu_read_unlock(); 2773 return expire; 2774 } 2775 EXPORT_SYMBOL(rps_may_expire_flow); 2776 2777 #endif /* CONFIG_RFS_ACCEL */ 2778 2779 /* Called from hardirq (IPI) context */ 2780 static void rps_trigger_softirq(void *data) 2781 { 2782 struct softnet_data *sd = data; 2783 2784 ____napi_schedule(sd, &sd->backlog); 2785 sd->received_rps++; 2786 } 2787 2788 #endif /* CONFIG_RPS */ 2789 2790 /* 2791 * Check if this softnet_data structure is another cpu one 2792 * If yes, queue it to our IPI list and return 1 2793 * If no, return 0 2794 */ 2795 static int rps_ipi_queued(struct softnet_data *sd) 2796 { 2797 #ifdef CONFIG_RPS 2798 struct softnet_data *mysd = &__get_cpu_var(softnet_data); 2799 2800 if (sd != mysd) { 2801 sd->rps_ipi_next = mysd->rps_ipi_list; 2802 mysd->rps_ipi_list = sd; 2803 2804 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2805 return 1; 2806 } 2807 #endif /* CONFIG_RPS */ 2808 return 0; 2809 } 2810 2811 /* 2812 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 2813 * queue (may be a remote CPU queue). 2814 */ 2815 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 2816 unsigned int *qtail) 2817 { 2818 struct softnet_data *sd; 2819 unsigned long flags; 2820 2821 sd = &per_cpu(softnet_data, cpu); 2822 2823 local_irq_save(flags); 2824 2825 rps_lock(sd); 2826 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) { 2827 if (skb_queue_len(&sd->input_pkt_queue)) { 2828 enqueue: 2829 __skb_queue_tail(&sd->input_pkt_queue, skb); 2830 input_queue_tail_incr_save(sd, qtail); 2831 rps_unlock(sd); 2832 local_irq_restore(flags); 2833 return NET_RX_SUCCESS; 2834 } 2835 2836 /* Schedule NAPI for backlog device 2837 * We can use non atomic operation since we own the queue lock 2838 */ 2839 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 2840 if (!rps_ipi_queued(sd)) 2841 ____napi_schedule(sd, &sd->backlog); 2842 } 2843 goto enqueue; 2844 } 2845 2846 sd->dropped++; 2847 rps_unlock(sd); 2848 2849 local_irq_restore(flags); 2850 2851 atomic_long_inc(&skb->dev->rx_dropped); 2852 kfree_skb(skb); 2853 return NET_RX_DROP; 2854 } 2855 2856 /** 2857 * netif_rx - post buffer to the network code 2858 * @skb: buffer to post 2859 * 2860 * This function receives a packet from a device driver and queues it for 2861 * the upper (protocol) levels to process. It always succeeds. The buffer 2862 * may be dropped during processing for congestion control or by the 2863 * protocol layers. 2864 * 2865 * return values: 2866 * NET_RX_SUCCESS (no congestion) 2867 * NET_RX_DROP (packet was dropped) 2868 * 2869 */ 2870 2871 int netif_rx(struct sk_buff *skb) 2872 { 2873 int ret; 2874 2875 /* if netpoll wants it, pretend we never saw it */ 2876 if (netpoll_rx(skb)) 2877 return NET_RX_DROP; 2878 2879 if (netdev_tstamp_prequeue) 2880 net_timestamp_check(skb); 2881 2882 trace_netif_rx(skb); 2883 #ifdef CONFIG_RPS 2884 { 2885 struct rps_dev_flow voidflow, *rflow = &voidflow; 2886 int cpu; 2887 2888 preempt_disable(); 2889 rcu_read_lock(); 2890 2891 cpu = get_rps_cpu(skb->dev, skb, &rflow); 2892 if (cpu < 0) 2893 cpu = smp_processor_id(); 2894 2895 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 2896 2897 rcu_read_unlock(); 2898 preempt_enable(); 2899 } 2900 #else 2901 { 2902 unsigned int qtail; 2903 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 2904 put_cpu(); 2905 } 2906 #endif 2907 return ret; 2908 } 2909 EXPORT_SYMBOL(netif_rx); 2910 2911 int netif_rx_ni(struct sk_buff *skb) 2912 { 2913 int err; 2914 2915 preempt_disable(); 2916 err = netif_rx(skb); 2917 if (local_softirq_pending()) 2918 do_softirq(); 2919 preempt_enable(); 2920 2921 return err; 2922 } 2923 EXPORT_SYMBOL(netif_rx_ni); 2924 2925 static void net_tx_action(struct softirq_action *h) 2926 { 2927 struct softnet_data *sd = &__get_cpu_var(softnet_data); 2928 2929 if (sd->completion_queue) { 2930 struct sk_buff *clist; 2931 2932 local_irq_disable(); 2933 clist = sd->completion_queue; 2934 sd->completion_queue = NULL; 2935 local_irq_enable(); 2936 2937 while (clist) { 2938 struct sk_buff *skb = clist; 2939 clist = clist->next; 2940 2941 WARN_ON(atomic_read(&skb->users)); 2942 trace_kfree_skb(skb, net_tx_action); 2943 __kfree_skb(skb); 2944 } 2945 } 2946 2947 if (sd->output_queue) { 2948 struct Qdisc *head; 2949 2950 local_irq_disable(); 2951 head = sd->output_queue; 2952 sd->output_queue = NULL; 2953 sd->output_queue_tailp = &sd->output_queue; 2954 local_irq_enable(); 2955 2956 while (head) { 2957 struct Qdisc *q = head; 2958 spinlock_t *root_lock; 2959 2960 head = head->next_sched; 2961 2962 root_lock = qdisc_lock(q); 2963 if (spin_trylock(root_lock)) { 2964 smp_mb__before_clear_bit(); 2965 clear_bit(__QDISC_STATE_SCHED, 2966 &q->state); 2967 qdisc_run(q); 2968 spin_unlock(root_lock); 2969 } else { 2970 if (!test_bit(__QDISC_STATE_DEACTIVATED, 2971 &q->state)) { 2972 __netif_reschedule(q); 2973 } else { 2974 smp_mb__before_clear_bit(); 2975 clear_bit(__QDISC_STATE_SCHED, 2976 &q->state); 2977 } 2978 } 2979 } 2980 } 2981 } 2982 2983 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 2984 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 2985 /* This hook is defined here for ATM LANE */ 2986 int (*br_fdb_test_addr_hook)(struct net_device *dev, 2987 unsigned char *addr) __read_mostly; 2988 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 2989 #endif 2990 2991 #ifdef CONFIG_NET_CLS_ACT 2992 /* TODO: Maybe we should just force sch_ingress to be compiled in 2993 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 2994 * a compare and 2 stores extra right now if we dont have it on 2995 * but have CONFIG_NET_CLS_ACT 2996 * NOTE: This doesn't stop any functionality; if you dont have 2997 * the ingress scheduler, you just can't add policies on ingress. 2998 * 2999 */ 3000 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq) 3001 { 3002 struct net_device *dev = skb->dev; 3003 u32 ttl = G_TC_RTTL(skb->tc_verd); 3004 int result = TC_ACT_OK; 3005 struct Qdisc *q; 3006 3007 if (unlikely(MAX_RED_LOOP < ttl++)) { 3008 if (net_ratelimit()) 3009 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n", 3010 skb->skb_iif, dev->ifindex); 3011 return TC_ACT_SHOT; 3012 } 3013 3014 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 3015 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3016 3017 q = rxq->qdisc; 3018 if (q != &noop_qdisc) { 3019 spin_lock(qdisc_lock(q)); 3020 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 3021 result = qdisc_enqueue_root(skb, q); 3022 spin_unlock(qdisc_lock(q)); 3023 } 3024 3025 return result; 3026 } 3027 3028 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 3029 struct packet_type **pt_prev, 3030 int *ret, struct net_device *orig_dev) 3031 { 3032 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue); 3033 3034 if (!rxq || rxq->qdisc == &noop_qdisc) 3035 goto out; 3036 3037 if (*pt_prev) { 3038 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3039 *pt_prev = NULL; 3040 } 3041 3042 switch (ing_filter(skb, rxq)) { 3043 case TC_ACT_SHOT: 3044 case TC_ACT_STOLEN: 3045 kfree_skb(skb); 3046 return NULL; 3047 } 3048 3049 out: 3050 skb->tc_verd = 0; 3051 return skb; 3052 } 3053 #endif 3054 3055 /** 3056 * netdev_rx_handler_register - register receive handler 3057 * @dev: device to register a handler for 3058 * @rx_handler: receive handler to register 3059 * @rx_handler_data: data pointer that is used by rx handler 3060 * 3061 * Register a receive hander for a device. This handler will then be 3062 * called from __netif_receive_skb. A negative errno code is returned 3063 * on a failure. 3064 * 3065 * The caller must hold the rtnl_mutex. 3066 * 3067 * For a general description of rx_handler, see enum rx_handler_result. 3068 */ 3069 int netdev_rx_handler_register(struct net_device *dev, 3070 rx_handler_func_t *rx_handler, 3071 void *rx_handler_data) 3072 { 3073 ASSERT_RTNL(); 3074 3075 if (dev->rx_handler) 3076 return -EBUSY; 3077 3078 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3079 rcu_assign_pointer(dev->rx_handler, rx_handler); 3080 3081 return 0; 3082 } 3083 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3084 3085 /** 3086 * netdev_rx_handler_unregister - unregister receive handler 3087 * @dev: device to unregister a handler from 3088 * 3089 * Unregister a receive hander from a device. 3090 * 3091 * The caller must hold the rtnl_mutex. 3092 */ 3093 void netdev_rx_handler_unregister(struct net_device *dev) 3094 { 3095 3096 ASSERT_RTNL(); 3097 rcu_assign_pointer(dev->rx_handler, NULL); 3098 rcu_assign_pointer(dev->rx_handler_data, NULL); 3099 } 3100 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 3101 3102 static int __netif_receive_skb(struct sk_buff *skb) 3103 { 3104 struct packet_type *ptype, *pt_prev; 3105 rx_handler_func_t *rx_handler; 3106 struct net_device *orig_dev; 3107 struct net_device *null_or_dev; 3108 bool deliver_exact = false; 3109 int ret = NET_RX_DROP; 3110 __be16 type; 3111 3112 if (!netdev_tstamp_prequeue) 3113 net_timestamp_check(skb); 3114 3115 trace_netif_receive_skb(skb); 3116 3117 /* if we've gotten here through NAPI, check netpoll */ 3118 if (netpoll_receive_skb(skb)) 3119 return NET_RX_DROP; 3120 3121 if (!skb->skb_iif) 3122 skb->skb_iif = skb->dev->ifindex; 3123 orig_dev = skb->dev; 3124 3125 skb_reset_network_header(skb); 3126 skb_reset_transport_header(skb); 3127 skb_reset_mac_len(skb); 3128 3129 pt_prev = NULL; 3130 3131 rcu_read_lock(); 3132 3133 another_round: 3134 3135 __this_cpu_inc(softnet_data.processed); 3136 3137 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) { 3138 skb = vlan_untag(skb); 3139 if (unlikely(!skb)) 3140 goto out; 3141 } 3142 3143 #ifdef CONFIG_NET_CLS_ACT 3144 if (skb->tc_verd & TC_NCLS) { 3145 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3146 goto ncls; 3147 } 3148 #endif 3149 3150 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3151 if (!ptype->dev || ptype->dev == skb->dev) { 3152 if (pt_prev) 3153 ret = deliver_skb(skb, pt_prev, orig_dev); 3154 pt_prev = ptype; 3155 } 3156 } 3157 3158 #ifdef CONFIG_NET_CLS_ACT 3159 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 3160 if (!skb) 3161 goto out; 3162 ncls: 3163 #endif 3164 3165 rx_handler = rcu_dereference(skb->dev->rx_handler); 3166 if (rx_handler) { 3167 if (pt_prev) { 3168 ret = deliver_skb(skb, pt_prev, orig_dev); 3169 pt_prev = NULL; 3170 } 3171 switch (rx_handler(&skb)) { 3172 case RX_HANDLER_CONSUMED: 3173 goto out; 3174 case RX_HANDLER_ANOTHER: 3175 goto another_round; 3176 case RX_HANDLER_EXACT: 3177 deliver_exact = true; 3178 case RX_HANDLER_PASS: 3179 break; 3180 default: 3181 BUG(); 3182 } 3183 } 3184 3185 if (vlan_tx_tag_present(skb)) { 3186 if (pt_prev) { 3187 ret = deliver_skb(skb, pt_prev, orig_dev); 3188 pt_prev = NULL; 3189 } 3190 if (vlan_do_receive(&skb)) { 3191 ret = __netif_receive_skb(skb); 3192 goto out; 3193 } else if (unlikely(!skb)) 3194 goto out; 3195 } 3196 3197 /* deliver only exact match when indicated */ 3198 null_or_dev = deliver_exact ? skb->dev : NULL; 3199 3200 type = skb->protocol; 3201 list_for_each_entry_rcu(ptype, 3202 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 3203 if (ptype->type == type && 3204 (ptype->dev == null_or_dev || ptype->dev == skb->dev || 3205 ptype->dev == orig_dev)) { 3206 if (pt_prev) 3207 ret = deliver_skb(skb, pt_prev, orig_dev); 3208 pt_prev = ptype; 3209 } 3210 } 3211 3212 if (pt_prev) { 3213 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 3214 } else { 3215 atomic_long_inc(&skb->dev->rx_dropped); 3216 kfree_skb(skb); 3217 /* Jamal, now you will not able to escape explaining 3218 * me how you were going to use this. :-) 3219 */ 3220 ret = NET_RX_DROP; 3221 } 3222 3223 out: 3224 rcu_read_unlock(); 3225 return ret; 3226 } 3227 3228 /** 3229 * netif_receive_skb - process receive buffer from network 3230 * @skb: buffer to process 3231 * 3232 * netif_receive_skb() is the main receive data processing function. 3233 * It always succeeds. The buffer may be dropped during processing 3234 * for congestion control or by the protocol layers. 3235 * 3236 * This function may only be called from softirq context and interrupts 3237 * should be enabled. 3238 * 3239 * Return values (usually ignored): 3240 * NET_RX_SUCCESS: no congestion 3241 * NET_RX_DROP: packet was dropped 3242 */ 3243 int netif_receive_skb(struct sk_buff *skb) 3244 { 3245 if (netdev_tstamp_prequeue) 3246 net_timestamp_check(skb); 3247 3248 if (skb_defer_rx_timestamp(skb)) 3249 return NET_RX_SUCCESS; 3250 3251 #ifdef CONFIG_RPS 3252 { 3253 struct rps_dev_flow voidflow, *rflow = &voidflow; 3254 int cpu, ret; 3255 3256 rcu_read_lock(); 3257 3258 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3259 3260 if (cpu >= 0) { 3261 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3262 rcu_read_unlock(); 3263 } else { 3264 rcu_read_unlock(); 3265 ret = __netif_receive_skb(skb); 3266 } 3267 3268 return ret; 3269 } 3270 #else 3271 return __netif_receive_skb(skb); 3272 #endif 3273 } 3274 EXPORT_SYMBOL(netif_receive_skb); 3275 3276 /* Network device is going away, flush any packets still pending 3277 * Called with irqs disabled. 3278 */ 3279 static void flush_backlog(void *arg) 3280 { 3281 struct net_device *dev = arg; 3282 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3283 struct sk_buff *skb, *tmp; 3284 3285 rps_lock(sd); 3286 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 3287 if (skb->dev == dev) { 3288 __skb_unlink(skb, &sd->input_pkt_queue); 3289 kfree_skb(skb); 3290 input_queue_head_incr(sd); 3291 } 3292 } 3293 rps_unlock(sd); 3294 3295 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 3296 if (skb->dev == dev) { 3297 __skb_unlink(skb, &sd->process_queue); 3298 kfree_skb(skb); 3299 input_queue_head_incr(sd); 3300 } 3301 } 3302 } 3303 3304 static int napi_gro_complete(struct sk_buff *skb) 3305 { 3306 struct packet_type *ptype; 3307 __be16 type = skb->protocol; 3308 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3309 int err = -ENOENT; 3310 3311 if (NAPI_GRO_CB(skb)->count == 1) { 3312 skb_shinfo(skb)->gso_size = 0; 3313 goto out; 3314 } 3315 3316 rcu_read_lock(); 3317 list_for_each_entry_rcu(ptype, head, list) { 3318 if (ptype->type != type || ptype->dev || !ptype->gro_complete) 3319 continue; 3320 3321 err = ptype->gro_complete(skb); 3322 break; 3323 } 3324 rcu_read_unlock(); 3325 3326 if (err) { 3327 WARN_ON(&ptype->list == head); 3328 kfree_skb(skb); 3329 return NET_RX_SUCCESS; 3330 } 3331 3332 out: 3333 return netif_receive_skb(skb); 3334 } 3335 3336 inline void napi_gro_flush(struct napi_struct *napi) 3337 { 3338 struct sk_buff *skb, *next; 3339 3340 for (skb = napi->gro_list; skb; skb = next) { 3341 next = skb->next; 3342 skb->next = NULL; 3343 napi_gro_complete(skb); 3344 } 3345 3346 napi->gro_count = 0; 3347 napi->gro_list = NULL; 3348 } 3349 EXPORT_SYMBOL(napi_gro_flush); 3350 3351 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3352 { 3353 struct sk_buff **pp = NULL; 3354 struct packet_type *ptype; 3355 __be16 type = skb->protocol; 3356 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3357 int same_flow; 3358 int mac_len; 3359 enum gro_result ret; 3360 3361 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb)) 3362 goto normal; 3363 3364 if (skb_is_gso(skb) || skb_has_frag_list(skb)) 3365 goto normal; 3366 3367 rcu_read_lock(); 3368 list_for_each_entry_rcu(ptype, head, list) { 3369 if (ptype->type != type || ptype->dev || !ptype->gro_receive) 3370 continue; 3371 3372 skb_set_network_header(skb, skb_gro_offset(skb)); 3373 mac_len = skb->network_header - skb->mac_header; 3374 skb->mac_len = mac_len; 3375 NAPI_GRO_CB(skb)->same_flow = 0; 3376 NAPI_GRO_CB(skb)->flush = 0; 3377 NAPI_GRO_CB(skb)->free = 0; 3378 3379 pp = ptype->gro_receive(&napi->gro_list, skb); 3380 break; 3381 } 3382 rcu_read_unlock(); 3383 3384 if (&ptype->list == head) 3385 goto normal; 3386 3387 same_flow = NAPI_GRO_CB(skb)->same_flow; 3388 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 3389 3390 if (pp) { 3391 struct sk_buff *nskb = *pp; 3392 3393 *pp = nskb->next; 3394 nskb->next = NULL; 3395 napi_gro_complete(nskb); 3396 napi->gro_count--; 3397 } 3398 3399 if (same_flow) 3400 goto ok; 3401 3402 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS) 3403 goto normal; 3404 3405 napi->gro_count++; 3406 NAPI_GRO_CB(skb)->count = 1; 3407 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 3408 skb->next = napi->gro_list; 3409 napi->gro_list = skb; 3410 ret = GRO_HELD; 3411 3412 pull: 3413 if (skb_headlen(skb) < skb_gro_offset(skb)) { 3414 int grow = skb_gro_offset(skb) - skb_headlen(skb); 3415 3416 BUG_ON(skb->end - skb->tail < grow); 3417 3418 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 3419 3420 skb->tail += grow; 3421 skb->data_len -= grow; 3422 3423 skb_shinfo(skb)->frags[0].page_offset += grow; 3424 skb_shinfo(skb)->frags[0].size -= grow; 3425 3426 if (unlikely(!skb_shinfo(skb)->frags[0].size)) { 3427 put_page(skb_shinfo(skb)->frags[0].page); 3428 memmove(skb_shinfo(skb)->frags, 3429 skb_shinfo(skb)->frags + 1, 3430 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t)); 3431 } 3432 } 3433 3434 ok: 3435 return ret; 3436 3437 normal: 3438 ret = GRO_NORMAL; 3439 goto pull; 3440 } 3441 EXPORT_SYMBOL(dev_gro_receive); 3442 3443 static inline gro_result_t 3444 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3445 { 3446 struct sk_buff *p; 3447 3448 for (p = napi->gro_list; p; p = p->next) { 3449 unsigned long diffs; 3450 3451 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 3452 diffs |= p->vlan_tci ^ skb->vlan_tci; 3453 diffs |= compare_ether_header(skb_mac_header(p), 3454 skb_gro_mac_header(skb)); 3455 NAPI_GRO_CB(p)->same_flow = !diffs; 3456 NAPI_GRO_CB(p)->flush = 0; 3457 } 3458 3459 return dev_gro_receive(napi, skb); 3460 } 3461 3462 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 3463 { 3464 switch (ret) { 3465 case GRO_NORMAL: 3466 if (netif_receive_skb(skb)) 3467 ret = GRO_DROP; 3468 break; 3469 3470 case GRO_DROP: 3471 case GRO_MERGED_FREE: 3472 kfree_skb(skb); 3473 break; 3474 3475 case GRO_HELD: 3476 case GRO_MERGED: 3477 break; 3478 } 3479 3480 return ret; 3481 } 3482 EXPORT_SYMBOL(napi_skb_finish); 3483 3484 void skb_gro_reset_offset(struct sk_buff *skb) 3485 { 3486 NAPI_GRO_CB(skb)->data_offset = 0; 3487 NAPI_GRO_CB(skb)->frag0 = NULL; 3488 NAPI_GRO_CB(skb)->frag0_len = 0; 3489 3490 if (skb->mac_header == skb->tail && 3491 !PageHighMem(skb_shinfo(skb)->frags[0].page)) { 3492 NAPI_GRO_CB(skb)->frag0 = 3493 page_address(skb_shinfo(skb)->frags[0].page) + 3494 skb_shinfo(skb)->frags[0].page_offset; 3495 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size; 3496 } 3497 } 3498 EXPORT_SYMBOL(skb_gro_reset_offset); 3499 3500 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3501 { 3502 skb_gro_reset_offset(skb); 3503 3504 return napi_skb_finish(__napi_gro_receive(napi, skb), skb); 3505 } 3506 EXPORT_SYMBOL(napi_gro_receive); 3507 3508 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 3509 { 3510 __skb_pull(skb, skb_headlen(skb)); 3511 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb)); 3512 skb->vlan_tci = 0; 3513 skb->dev = napi->dev; 3514 skb->skb_iif = 0; 3515 3516 napi->skb = skb; 3517 } 3518 3519 struct sk_buff *napi_get_frags(struct napi_struct *napi) 3520 { 3521 struct sk_buff *skb = napi->skb; 3522 3523 if (!skb) { 3524 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD); 3525 if (skb) 3526 napi->skb = skb; 3527 } 3528 return skb; 3529 } 3530 EXPORT_SYMBOL(napi_get_frags); 3531 3532 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, 3533 gro_result_t ret) 3534 { 3535 switch (ret) { 3536 case GRO_NORMAL: 3537 case GRO_HELD: 3538 skb->protocol = eth_type_trans(skb, skb->dev); 3539 3540 if (ret == GRO_HELD) 3541 skb_gro_pull(skb, -ETH_HLEN); 3542 else if (netif_receive_skb(skb)) 3543 ret = GRO_DROP; 3544 break; 3545 3546 case GRO_DROP: 3547 case GRO_MERGED_FREE: 3548 napi_reuse_skb(napi, skb); 3549 break; 3550 3551 case GRO_MERGED: 3552 break; 3553 } 3554 3555 return ret; 3556 } 3557 EXPORT_SYMBOL(napi_frags_finish); 3558 3559 struct sk_buff *napi_frags_skb(struct napi_struct *napi) 3560 { 3561 struct sk_buff *skb = napi->skb; 3562 struct ethhdr *eth; 3563 unsigned int hlen; 3564 unsigned int off; 3565 3566 napi->skb = NULL; 3567 3568 skb_reset_mac_header(skb); 3569 skb_gro_reset_offset(skb); 3570 3571 off = skb_gro_offset(skb); 3572 hlen = off + sizeof(*eth); 3573 eth = skb_gro_header_fast(skb, off); 3574 if (skb_gro_header_hard(skb, hlen)) { 3575 eth = skb_gro_header_slow(skb, hlen, off); 3576 if (unlikely(!eth)) { 3577 napi_reuse_skb(napi, skb); 3578 skb = NULL; 3579 goto out; 3580 } 3581 } 3582 3583 skb_gro_pull(skb, sizeof(*eth)); 3584 3585 /* 3586 * This works because the only protocols we care about don't require 3587 * special handling. We'll fix it up properly at the end. 3588 */ 3589 skb->protocol = eth->h_proto; 3590 3591 out: 3592 return skb; 3593 } 3594 EXPORT_SYMBOL(napi_frags_skb); 3595 3596 gro_result_t napi_gro_frags(struct napi_struct *napi) 3597 { 3598 struct sk_buff *skb = napi_frags_skb(napi); 3599 3600 if (!skb) 3601 return GRO_DROP; 3602 3603 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb)); 3604 } 3605 EXPORT_SYMBOL(napi_gro_frags); 3606 3607 /* 3608 * net_rps_action sends any pending IPI's for rps. 3609 * Note: called with local irq disabled, but exits with local irq enabled. 3610 */ 3611 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 3612 { 3613 #ifdef CONFIG_RPS 3614 struct softnet_data *remsd = sd->rps_ipi_list; 3615 3616 if (remsd) { 3617 sd->rps_ipi_list = NULL; 3618 3619 local_irq_enable(); 3620 3621 /* Send pending IPI's to kick RPS processing on remote cpus. */ 3622 while (remsd) { 3623 struct softnet_data *next = remsd->rps_ipi_next; 3624 3625 if (cpu_online(remsd->cpu)) 3626 __smp_call_function_single(remsd->cpu, 3627 &remsd->csd, 0); 3628 remsd = next; 3629 } 3630 } else 3631 #endif 3632 local_irq_enable(); 3633 } 3634 3635 static int process_backlog(struct napi_struct *napi, int quota) 3636 { 3637 int work = 0; 3638 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 3639 3640 #ifdef CONFIG_RPS 3641 /* Check if we have pending ipi, its better to send them now, 3642 * not waiting net_rx_action() end. 3643 */ 3644 if (sd->rps_ipi_list) { 3645 local_irq_disable(); 3646 net_rps_action_and_irq_enable(sd); 3647 } 3648 #endif 3649 napi->weight = weight_p; 3650 local_irq_disable(); 3651 while (work < quota) { 3652 struct sk_buff *skb; 3653 unsigned int qlen; 3654 3655 while ((skb = __skb_dequeue(&sd->process_queue))) { 3656 local_irq_enable(); 3657 __netif_receive_skb(skb); 3658 local_irq_disable(); 3659 input_queue_head_incr(sd); 3660 if (++work >= quota) { 3661 local_irq_enable(); 3662 return work; 3663 } 3664 } 3665 3666 rps_lock(sd); 3667 qlen = skb_queue_len(&sd->input_pkt_queue); 3668 if (qlen) 3669 skb_queue_splice_tail_init(&sd->input_pkt_queue, 3670 &sd->process_queue); 3671 3672 if (qlen < quota - work) { 3673 /* 3674 * Inline a custom version of __napi_complete(). 3675 * only current cpu owns and manipulates this napi, 3676 * and NAPI_STATE_SCHED is the only possible flag set on backlog. 3677 * we can use a plain write instead of clear_bit(), 3678 * and we dont need an smp_mb() memory barrier. 3679 */ 3680 list_del(&napi->poll_list); 3681 napi->state = 0; 3682 3683 quota = work + qlen; 3684 } 3685 rps_unlock(sd); 3686 } 3687 local_irq_enable(); 3688 3689 return work; 3690 } 3691 3692 /** 3693 * __napi_schedule - schedule for receive 3694 * @n: entry to schedule 3695 * 3696 * The entry's receive function will be scheduled to run 3697 */ 3698 void __napi_schedule(struct napi_struct *n) 3699 { 3700 unsigned long flags; 3701 3702 local_irq_save(flags); 3703 ____napi_schedule(&__get_cpu_var(softnet_data), n); 3704 local_irq_restore(flags); 3705 } 3706 EXPORT_SYMBOL(__napi_schedule); 3707 3708 void __napi_complete(struct napi_struct *n) 3709 { 3710 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 3711 BUG_ON(n->gro_list); 3712 3713 list_del(&n->poll_list); 3714 smp_mb__before_clear_bit(); 3715 clear_bit(NAPI_STATE_SCHED, &n->state); 3716 } 3717 EXPORT_SYMBOL(__napi_complete); 3718 3719 void napi_complete(struct napi_struct *n) 3720 { 3721 unsigned long flags; 3722 3723 /* 3724 * don't let napi dequeue from the cpu poll list 3725 * just in case its running on a different cpu 3726 */ 3727 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 3728 return; 3729 3730 napi_gro_flush(n); 3731 local_irq_save(flags); 3732 __napi_complete(n); 3733 local_irq_restore(flags); 3734 } 3735 EXPORT_SYMBOL(napi_complete); 3736 3737 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 3738 int (*poll)(struct napi_struct *, int), int weight) 3739 { 3740 INIT_LIST_HEAD(&napi->poll_list); 3741 napi->gro_count = 0; 3742 napi->gro_list = NULL; 3743 napi->skb = NULL; 3744 napi->poll = poll; 3745 napi->weight = weight; 3746 list_add(&napi->dev_list, &dev->napi_list); 3747 napi->dev = dev; 3748 #ifdef CONFIG_NETPOLL 3749 spin_lock_init(&napi->poll_lock); 3750 napi->poll_owner = -1; 3751 #endif 3752 set_bit(NAPI_STATE_SCHED, &napi->state); 3753 } 3754 EXPORT_SYMBOL(netif_napi_add); 3755 3756 void netif_napi_del(struct napi_struct *napi) 3757 { 3758 struct sk_buff *skb, *next; 3759 3760 list_del_init(&napi->dev_list); 3761 napi_free_frags(napi); 3762 3763 for (skb = napi->gro_list; skb; skb = next) { 3764 next = skb->next; 3765 skb->next = NULL; 3766 kfree_skb(skb); 3767 } 3768 3769 napi->gro_list = NULL; 3770 napi->gro_count = 0; 3771 } 3772 EXPORT_SYMBOL(netif_napi_del); 3773 3774 static void net_rx_action(struct softirq_action *h) 3775 { 3776 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3777 unsigned long time_limit = jiffies + 2; 3778 int budget = netdev_budget; 3779 void *have; 3780 3781 local_irq_disable(); 3782 3783 while (!list_empty(&sd->poll_list)) { 3784 struct napi_struct *n; 3785 int work, weight; 3786 3787 /* If softirq window is exhuasted then punt. 3788 * Allow this to run for 2 jiffies since which will allow 3789 * an average latency of 1.5/HZ. 3790 */ 3791 if (unlikely(budget <= 0 || time_after(jiffies, time_limit))) 3792 goto softnet_break; 3793 3794 local_irq_enable(); 3795 3796 /* Even though interrupts have been re-enabled, this 3797 * access is safe because interrupts can only add new 3798 * entries to the tail of this list, and only ->poll() 3799 * calls can remove this head entry from the list. 3800 */ 3801 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list); 3802 3803 have = netpoll_poll_lock(n); 3804 3805 weight = n->weight; 3806 3807 /* This NAPI_STATE_SCHED test is for avoiding a race 3808 * with netpoll's poll_napi(). Only the entity which 3809 * obtains the lock and sees NAPI_STATE_SCHED set will 3810 * actually make the ->poll() call. Therefore we avoid 3811 * accidentally calling ->poll() when NAPI is not scheduled. 3812 */ 3813 work = 0; 3814 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 3815 work = n->poll(n, weight); 3816 trace_napi_poll(n); 3817 } 3818 3819 WARN_ON_ONCE(work > weight); 3820 3821 budget -= work; 3822 3823 local_irq_disable(); 3824 3825 /* Drivers must not modify the NAPI state if they 3826 * consume the entire weight. In such cases this code 3827 * still "owns" the NAPI instance and therefore can 3828 * move the instance around on the list at-will. 3829 */ 3830 if (unlikely(work == weight)) { 3831 if (unlikely(napi_disable_pending(n))) { 3832 local_irq_enable(); 3833 napi_complete(n); 3834 local_irq_disable(); 3835 } else 3836 list_move_tail(&n->poll_list, &sd->poll_list); 3837 } 3838 3839 netpoll_poll_unlock(have); 3840 } 3841 out: 3842 net_rps_action_and_irq_enable(sd); 3843 3844 #ifdef CONFIG_NET_DMA 3845 /* 3846 * There may not be any more sk_buffs coming right now, so push 3847 * any pending DMA copies to hardware 3848 */ 3849 dma_issue_pending_all(); 3850 #endif 3851 3852 return; 3853 3854 softnet_break: 3855 sd->time_squeeze++; 3856 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3857 goto out; 3858 } 3859 3860 static gifconf_func_t *gifconf_list[NPROTO]; 3861 3862 /** 3863 * register_gifconf - register a SIOCGIF handler 3864 * @family: Address family 3865 * @gifconf: Function handler 3866 * 3867 * Register protocol dependent address dumping routines. The handler 3868 * that is passed must not be freed or reused until it has been replaced 3869 * by another handler. 3870 */ 3871 int register_gifconf(unsigned int family, gifconf_func_t *gifconf) 3872 { 3873 if (family >= NPROTO) 3874 return -EINVAL; 3875 gifconf_list[family] = gifconf; 3876 return 0; 3877 } 3878 EXPORT_SYMBOL(register_gifconf); 3879 3880 3881 /* 3882 * Map an interface index to its name (SIOCGIFNAME) 3883 */ 3884 3885 /* 3886 * We need this ioctl for efficient implementation of the 3887 * if_indextoname() function required by the IPv6 API. Without 3888 * it, we would have to search all the interfaces to find a 3889 * match. --pb 3890 */ 3891 3892 static int dev_ifname(struct net *net, struct ifreq __user *arg) 3893 { 3894 struct net_device *dev; 3895 struct ifreq ifr; 3896 3897 /* 3898 * Fetch the caller's info block. 3899 */ 3900 3901 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 3902 return -EFAULT; 3903 3904 rcu_read_lock(); 3905 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex); 3906 if (!dev) { 3907 rcu_read_unlock(); 3908 return -ENODEV; 3909 } 3910 3911 strcpy(ifr.ifr_name, dev->name); 3912 rcu_read_unlock(); 3913 3914 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 3915 return -EFAULT; 3916 return 0; 3917 } 3918 3919 /* 3920 * Perform a SIOCGIFCONF call. This structure will change 3921 * size eventually, and there is nothing I can do about it. 3922 * Thus we will need a 'compatibility mode'. 3923 */ 3924 3925 static int dev_ifconf(struct net *net, char __user *arg) 3926 { 3927 struct ifconf ifc; 3928 struct net_device *dev; 3929 char __user *pos; 3930 int len; 3931 int total; 3932 int i; 3933 3934 /* 3935 * Fetch the caller's info block. 3936 */ 3937 3938 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 3939 return -EFAULT; 3940 3941 pos = ifc.ifc_buf; 3942 len = ifc.ifc_len; 3943 3944 /* 3945 * Loop over the interfaces, and write an info block for each. 3946 */ 3947 3948 total = 0; 3949 for_each_netdev(net, dev) { 3950 for (i = 0; i < NPROTO; i++) { 3951 if (gifconf_list[i]) { 3952 int done; 3953 if (!pos) 3954 done = gifconf_list[i](dev, NULL, 0); 3955 else 3956 done = gifconf_list[i](dev, pos + total, 3957 len - total); 3958 if (done < 0) 3959 return -EFAULT; 3960 total += done; 3961 } 3962 } 3963 } 3964 3965 /* 3966 * All done. Write the updated control block back to the caller. 3967 */ 3968 ifc.ifc_len = total; 3969 3970 /* 3971 * Both BSD and Solaris return 0 here, so we do too. 3972 */ 3973 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 3974 } 3975 3976 #ifdef CONFIG_PROC_FS 3977 /* 3978 * This is invoked by the /proc filesystem handler to display a device 3979 * in detail. 3980 */ 3981 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 3982 __acquires(RCU) 3983 { 3984 struct net *net = seq_file_net(seq); 3985 loff_t off; 3986 struct net_device *dev; 3987 3988 rcu_read_lock(); 3989 if (!*pos) 3990 return SEQ_START_TOKEN; 3991 3992 off = 1; 3993 for_each_netdev_rcu(net, dev) 3994 if (off++ == *pos) 3995 return dev; 3996 3997 return NULL; 3998 } 3999 4000 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4001 { 4002 struct net_device *dev = v; 4003 4004 if (v == SEQ_START_TOKEN) 4005 dev = first_net_device_rcu(seq_file_net(seq)); 4006 else 4007 dev = next_net_device_rcu(dev); 4008 4009 ++*pos; 4010 return dev; 4011 } 4012 4013 void dev_seq_stop(struct seq_file *seq, void *v) 4014 __releases(RCU) 4015 { 4016 rcu_read_unlock(); 4017 } 4018 4019 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 4020 { 4021 struct rtnl_link_stats64 temp; 4022 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp); 4023 4024 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu " 4025 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n", 4026 dev->name, stats->rx_bytes, stats->rx_packets, 4027 stats->rx_errors, 4028 stats->rx_dropped + stats->rx_missed_errors, 4029 stats->rx_fifo_errors, 4030 stats->rx_length_errors + stats->rx_over_errors + 4031 stats->rx_crc_errors + stats->rx_frame_errors, 4032 stats->rx_compressed, stats->multicast, 4033 stats->tx_bytes, stats->tx_packets, 4034 stats->tx_errors, stats->tx_dropped, 4035 stats->tx_fifo_errors, stats->collisions, 4036 stats->tx_carrier_errors + 4037 stats->tx_aborted_errors + 4038 stats->tx_window_errors + 4039 stats->tx_heartbeat_errors, 4040 stats->tx_compressed); 4041 } 4042 4043 /* 4044 * Called from the PROCfs module. This now uses the new arbitrary sized 4045 * /proc/net interface to create /proc/net/dev 4046 */ 4047 static int dev_seq_show(struct seq_file *seq, void *v) 4048 { 4049 if (v == SEQ_START_TOKEN) 4050 seq_puts(seq, "Inter-| Receive " 4051 " | Transmit\n" 4052 " face |bytes packets errs drop fifo frame " 4053 "compressed multicast|bytes packets errs " 4054 "drop fifo colls carrier compressed\n"); 4055 else 4056 dev_seq_printf_stats(seq, v); 4057 return 0; 4058 } 4059 4060 static struct softnet_data *softnet_get_online(loff_t *pos) 4061 { 4062 struct softnet_data *sd = NULL; 4063 4064 while (*pos < nr_cpu_ids) 4065 if (cpu_online(*pos)) { 4066 sd = &per_cpu(softnet_data, *pos); 4067 break; 4068 } else 4069 ++*pos; 4070 return sd; 4071 } 4072 4073 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 4074 { 4075 return softnet_get_online(pos); 4076 } 4077 4078 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4079 { 4080 ++*pos; 4081 return softnet_get_online(pos); 4082 } 4083 4084 static void softnet_seq_stop(struct seq_file *seq, void *v) 4085 { 4086 } 4087 4088 static int softnet_seq_show(struct seq_file *seq, void *v) 4089 { 4090 struct softnet_data *sd = v; 4091 4092 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 4093 sd->processed, sd->dropped, sd->time_squeeze, 0, 4094 0, 0, 0, 0, /* was fastroute */ 4095 sd->cpu_collision, sd->received_rps); 4096 return 0; 4097 } 4098 4099 static const struct seq_operations dev_seq_ops = { 4100 .start = dev_seq_start, 4101 .next = dev_seq_next, 4102 .stop = dev_seq_stop, 4103 .show = dev_seq_show, 4104 }; 4105 4106 static int dev_seq_open(struct inode *inode, struct file *file) 4107 { 4108 return seq_open_net(inode, file, &dev_seq_ops, 4109 sizeof(struct seq_net_private)); 4110 } 4111 4112 static const struct file_operations dev_seq_fops = { 4113 .owner = THIS_MODULE, 4114 .open = dev_seq_open, 4115 .read = seq_read, 4116 .llseek = seq_lseek, 4117 .release = seq_release_net, 4118 }; 4119 4120 static const struct seq_operations softnet_seq_ops = { 4121 .start = softnet_seq_start, 4122 .next = softnet_seq_next, 4123 .stop = softnet_seq_stop, 4124 .show = softnet_seq_show, 4125 }; 4126 4127 static int softnet_seq_open(struct inode *inode, struct file *file) 4128 { 4129 return seq_open(file, &softnet_seq_ops); 4130 } 4131 4132 static const struct file_operations softnet_seq_fops = { 4133 .owner = THIS_MODULE, 4134 .open = softnet_seq_open, 4135 .read = seq_read, 4136 .llseek = seq_lseek, 4137 .release = seq_release, 4138 }; 4139 4140 static void *ptype_get_idx(loff_t pos) 4141 { 4142 struct packet_type *pt = NULL; 4143 loff_t i = 0; 4144 int t; 4145 4146 list_for_each_entry_rcu(pt, &ptype_all, list) { 4147 if (i == pos) 4148 return pt; 4149 ++i; 4150 } 4151 4152 for (t = 0; t < PTYPE_HASH_SIZE; t++) { 4153 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 4154 if (i == pos) 4155 return pt; 4156 ++i; 4157 } 4158 } 4159 return NULL; 4160 } 4161 4162 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 4163 __acquires(RCU) 4164 { 4165 rcu_read_lock(); 4166 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 4167 } 4168 4169 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4170 { 4171 struct packet_type *pt; 4172 struct list_head *nxt; 4173 int hash; 4174 4175 ++*pos; 4176 if (v == SEQ_START_TOKEN) 4177 return ptype_get_idx(0); 4178 4179 pt = v; 4180 nxt = pt->list.next; 4181 if (pt->type == htons(ETH_P_ALL)) { 4182 if (nxt != &ptype_all) 4183 goto found; 4184 hash = 0; 4185 nxt = ptype_base[0].next; 4186 } else 4187 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 4188 4189 while (nxt == &ptype_base[hash]) { 4190 if (++hash >= PTYPE_HASH_SIZE) 4191 return NULL; 4192 nxt = ptype_base[hash].next; 4193 } 4194 found: 4195 return list_entry(nxt, struct packet_type, list); 4196 } 4197 4198 static void ptype_seq_stop(struct seq_file *seq, void *v) 4199 __releases(RCU) 4200 { 4201 rcu_read_unlock(); 4202 } 4203 4204 static int ptype_seq_show(struct seq_file *seq, void *v) 4205 { 4206 struct packet_type *pt = v; 4207 4208 if (v == SEQ_START_TOKEN) 4209 seq_puts(seq, "Type Device Function\n"); 4210 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) { 4211 if (pt->type == htons(ETH_P_ALL)) 4212 seq_puts(seq, "ALL "); 4213 else 4214 seq_printf(seq, "%04x", ntohs(pt->type)); 4215 4216 seq_printf(seq, " %-8s %pF\n", 4217 pt->dev ? pt->dev->name : "", pt->func); 4218 } 4219 4220 return 0; 4221 } 4222 4223 static const struct seq_operations ptype_seq_ops = { 4224 .start = ptype_seq_start, 4225 .next = ptype_seq_next, 4226 .stop = ptype_seq_stop, 4227 .show = ptype_seq_show, 4228 }; 4229 4230 static int ptype_seq_open(struct inode *inode, struct file *file) 4231 { 4232 return seq_open_net(inode, file, &ptype_seq_ops, 4233 sizeof(struct seq_net_private)); 4234 } 4235 4236 static const struct file_operations ptype_seq_fops = { 4237 .owner = THIS_MODULE, 4238 .open = ptype_seq_open, 4239 .read = seq_read, 4240 .llseek = seq_lseek, 4241 .release = seq_release_net, 4242 }; 4243 4244 4245 static int __net_init dev_proc_net_init(struct net *net) 4246 { 4247 int rc = -ENOMEM; 4248 4249 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 4250 goto out; 4251 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 4252 goto out_dev; 4253 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 4254 goto out_softnet; 4255 4256 if (wext_proc_init(net)) 4257 goto out_ptype; 4258 rc = 0; 4259 out: 4260 return rc; 4261 out_ptype: 4262 proc_net_remove(net, "ptype"); 4263 out_softnet: 4264 proc_net_remove(net, "softnet_stat"); 4265 out_dev: 4266 proc_net_remove(net, "dev"); 4267 goto out; 4268 } 4269 4270 static void __net_exit dev_proc_net_exit(struct net *net) 4271 { 4272 wext_proc_exit(net); 4273 4274 proc_net_remove(net, "ptype"); 4275 proc_net_remove(net, "softnet_stat"); 4276 proc_net_remove(net, "dev"); 4277 } 4278 4279 static struct pernet_operations __net_initdata dev_proc_ops = { 4280 .init = dev_proc_net_init, 4281 .exit = dev_proc_net_exit, 4282 }; 4283 4284 static int __init dev_proc_init(void) 4285 { 4286 return register_pernet_subsys(&dev_proc_ops); 4287 } 4288 #else 4289 #define dev_proc_init() 0 4290 #endif /* CONFIG_PROC_FS */ 4291 4292 4293 /** 4294 * netdev_set_master - set up master pointer 4295 * @slave: slave device 4296 * @master: new master device 4297 * 4298 * Changes the master device of the slave. Pass %NULL to break the 4299 * bonding. The caller must hold the RTNL semaphore. On a failure 4300 * a negative errno code is returned. On success the reference counts 4301 * are adjusted and the function returns zero. 4302 */ 4303 int netdev_set_master(struct net_device *slave, struct net_device *master) 4304 { 4305 struct net_device *old = slave->master; 4306 4307 ASSERT_RTNL(); 4308 4309 if (master) { 4310 if (old) 4311 return -EBUSY; 4312 dev_hold(master); 4313 } 4314 4315 slave->master = master; 4316 4317 if (old) 4318 dev_put(old); 4319 return 0; 4320 } 4321 EXPORT_SYMBOL(netdev_set_master); 4322 4323 /** 4324 * netdev_set_bond_master - set up bonding master/slave pair 4325 * @slave: slave device 4326 * @master: new master device 4327 * 4328 * Changes the master device of the slave. Pass %NULL to break the 4329 * bonding. The caller must hold the RTNL semaphore. On a failure 4330 * a negative errno code is returned. On success %RTM_NEWLINK is sent 4331 * to the routing socket and the function returns zero. 4332 */ 4333 int netdev_set_bond_master(struct net_device *slave, struct net_device *master) 4334 { 4335 int err; 4336 4337 ASSERT_RTNL(); 4338 4339 err = netdev_set_master(slave, master); 4340 if (err) 4341 return err; 4342 if (master) 4343 slave->flags |= IFF_SLAVE; 4344 else 4345 slave->flags &= ~IFF_SLAVE; 4346 4347 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 4348 return 0; 4349 } 4350 EXPORT_SYMBOL(netdev_set_bond_master); 4351 4352 static void dev_change_rx_flags(struct net_device *dev, int flags) 4353 { 4354 const struct net_device_ops *ops = dev->netdev_ops; 4355 4356 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags) 4357 ops->ndo_change_rx_flags(dev, flags); 4358 } 4359 4360 static int __dev_set_promiscuity(struct net_device *dev, int inc) 4361 { 4362 unsigned short old_flags = dev->flags; 4363 uid_t uid; 4364 gid_t gid; 4365 4366 ASSERT_RTNL(); 4367 4368 dev->flags |= IFF_PROMISC; 4369 dev->promiscuity += inc; 4370 if (dev->promiscuity == 0) { 4371 /* 4372 * Avoid overflow. 4373 * If inc causes overflow, untouch promisc and return error. 4374 */ 4375 if (inc < 0) 4376 dev->flags &= ~IFF_PROMISC; 4377 else { 4378 dev->promiscuity -= inc; 4379 printk(KERN_WARNING "%s: promiscuity touches roof, " 4380 "set promiscuity failed, promiscuity feature " 4381 "of device might be broken.\n", dev->name); 4382 return -EOVERFLOW; 4383 } 4384 } 4385 if (dev->flags != old_flags) { 4386 printk(KERN_INFO "device %s %s promiscuous mode\n", 4387 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 4388 "left"); 4389 if (audit_enabled) { 4390 current_uid_gid(&uid, &gid); 4391 audit_log(current->audit_context, GFP_ATOMIC, 4392 AUDIT_ANOM_PROMISCUOUS, 4393 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 4394 dev->name, (dev->flags & IFF_PROMISC), 4395 (old_flags & IFF_PROMISC), 4396 audit_get_loginuid(current), 4397 uid, gid, 4398 audit_get_sessionid(current)); 4399 } 4400 4401 dev_change_rx_flags(dev, IFF_PROMISC); 4402 } 4403 return 0; 4404 } 4405 4406 /** 4407 * dev_set_promiscuity - update promiscuity count on a device 4408 * @dev: device 4409 * @inc: modifier 4410 * 4411 * Add or remove promiscuity from a device. While the count in the device 4412 * remains above zero the interface remains promiscuous. Once it hits zero 4413 * the device reverts back to normal filtering operation. A negative inc 4414 * value is used to drop promiscuity on the device. 4415 * Return 0 if successful or a negative errno code on error. 4416 */ 4417 int dev_set_promiscuity(struct net_device *dev, int inc) 4418 { 4419 unsigned short old_flags = dev->flags; 4420 int err; 4421 4422 err = __dev_set_promiscuity(dev, inc); 4423 if (err < 0) 4424 return err; 4425 if (dev->flags != old_flags) 4426 dev_set_rx_mode(dev); 4427 return err; 4428 } 4429 EXPORT_SYMBOL(dev_set_promiscuity); 4430 4431 /** 4432 * dev_set_allmulti - update allmulti count on a device 4433 * @dev: device 4434 * @inc: modifier 4435 * 4436 * Add or remove reception of all multicast frames to a device. While the 4437 * count in the device remains above zero the interface remains listening 4438 * to all interfaces. Once it hits zero the device reverts back to normal 4439 * filtering operation. A negative @inc value is used to drop the counter 4440 * when releasing a resource needing all multicasts. 4441 * Return 0 if successful or a negative errno code on error. 4442 */ 4443 4444 int dev_set_allmulti(struct net_device *dev, int inc) 4445 { 4446 unsigned short old_flags = dev->flags; 4447 4448 ASSERT_RTNL(); 4449 4450 dev->flags |= IFF_ALLMULTI; 4451 dev->allmulti += inc; 4452 if (dev->allmulti == 0) { 4453 /* 4454 * Avoid overflow. 4455 * If inc causes overflow, untouch allmulti and return error. 4456 */ 4457 if (inc < 0) 4458 dev->flags &= ~IFF_ALLMULTI; 4459 else { 4460 dev->allmulti -= inc; 4461 printk(KERN_WARNING "%s: allmulti touches roof, " 4462 "set allmulti failed, allmulti feature of " 4463 "device might be broken.\n", dev->name); 4464 return -EOVERFLOW; 4465 } 4466 } 4467 if (dev->flags ^ old_flags) { 4468 dev_change_rx_flags(dev, IFF_ALLMULTI); 4469 dev_set_rx_mode(dev); 4470 } 4471 return 0; 4472 } 4473 EXPORT_SYMBOL(dev_set_allmulti); 4474 4475 /* 4476 * Upload unicast and multicast address lists to device and 4477 * configure RX filtering. When the device doesn't support unicast 4478 * filtering it is put in promiscuous mode while unicast addresses 4479 * are present. 4480 */ 4481 void __dev_set_rx_mode(struct net_device *dev) 4482 { 4483 const struct net_device_ops *ops = dev->netdev_ops; 4484 4485 /* dev_open will call this function so the list will stay sane. */ 4486 if (!(dev->flags&IFF_UP)) 4487 return; 4488 4489 if (!netif_device_present(dev)) 4490 return; 4491 4492 if (ops->ndo_set_rx_mode) 4493 ops->ndo_set_rx_mode(dev); 4494 else { 4495 /* Unicast addresses changes may only happen under the rtnl, 4496 * therefore calling __dev_set_promiscuity here is safe. 4497 */ 4498 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 4499 __dev_set_promiscuity(dev, 1); 4500 dev->uc_promisc = 1; 4501 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 4502 __dev_set_promiscuity(dev, -1); 4503 dev->uc_promisc = 0; 4504 } 4505 4506 if (ops->ndo_set_multicast_list) 4507 ops->ndo_set_multicast_list(dev); 4508 } 4509 } 4510 4511 void dev_set_rx_mode(struct net_device *dev) 4512 { 4513 netif_addr_lock_bh(dev); 4514 __dev_set_rx_mode(dev); 4515 netif_addr_unlock_bh(dev); 4516 } 4517 4518 /** 4519 * dev_ethtool_get_settings - call device's ethtool_ops::get_settings() 4520 * @dev: device 4521 * @cmd: memory area for ethtool_ops::get_settings() result 4522 * 4523 * The cmd arg is initialized properly (cleared and 4524 * ethtool_cmd::cmd field set to ETHTOOL_GSET). 4525 * 4526 * Return device's ethtool_ops::get_settings() result value or 4527 * -EOPNOTSUPP when device doesn't expose 4528 * ethtool_ops::get_settings() operation. 4529 */ 4530 int dev_ethtool_get_settings(struct net_device *dev, 4531 struct ethtool_cmd *cmd) 4532 { 4533 if (!dev->ethtool_ops || !dev->ethtool_ops->get_settings) 4534 return -EOPNOTSUPP; 4535 4536 memset(cmd, 0, sizeof(struct ethtool_cmd)); 4537 cmd->cmd = ETHTOOL_GSET; 4538 return dev->ethtool_ops->get_settings(dev, cmd); 4539 } 4540 EXPORT_SYMBOL(dev_ethtool_get_settings); 4541 4542 /** 4543 * dev_get_flags - get flags reported to userspace 4544 * @dev: device 4545 * 4546 * Get the combination of flag bits exported through APIs to userspace. 4547 */ 4548 unsigned dev_get_flags(const struct net_device *dev) 4549 { 4550 unsigned flags; 4551 4552 flags = (dev->flags & ~(IFF_PROMISC | 4553 IFF_ALLMULTI | 4554 IFF_RUNNING | 4555 IFF_LOWER_UP | 4556 IFF_DORMANT)) | 4557 (dev->gflags & (IFF_PROMISC | 4558 IFF_ALLMULTI)); 4559 4560 if (netif_running(dev)) { 4561 if (netif_oper_up(dev)) 4562 flags |= IFF_RUNNING; 4563 if (netif_carrier_ok(dev)) 4564 flags |= IFF_LOWER_UP; 4565 if (netif_dormant(dev)) 4566 flags |= IFF_DORMANT; 4567 } 4568 4569 return flags; 4570 } 4571 EXPORT_SYMBOL(dev_get_flags); 4572 4573 int __dev_change_flags(struct net_device *dev, unsigned int flags) 4574 { 4575 int old_flags = dev->flags; 4576 int ret; 4577 4578 ASSERT_RTNL(); 4579 4580 /* 4581 * Set the flags on our device. 4582 */ 4583 4584 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 4585 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 4586 IFF_AUTOMEDIA)) | 4587 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 4588 IFF_ALLMULTI)); 4589 4590 /* 4591 * Load in the correct multicast list now the flags have changed. 4592 */ 4593 4594 if ((old_flags ^ flags) & IFF_MULTICAST) 4595 dev_change_rx_flags(dev, IFF_MULTICAST); 4596 4597 dev_set_rx_mode(dev); 4598 4599 /* 4600 * Have we downed the interface. We handle IFF_UP ourselves 4601 * according to user attempts to set it, rather than blindly 4602 * setting it. 4603 */ 4604 4605 ret = 0; 4606 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 4607 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 4608 4609 if (!ret) 4610 dev_set_rx_mode(dev); 4611 } 4612 4613 if ((flags ^ dev->gflags) & IFF_PROMISC) { 4614 int inc = (flags & IFF_PROMISC) ? 1 : -1; 4615 4616 dev->gflags ^= IFF_PROMISC; 4617 dev_set_promiscuity(dev, inc); 4618 } 4619 4620 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 4621 is important. Some (broken) drivers set IFF_PROMISC, when 4622 IFF_ALLMULTI is requested not asking us and not reporting. 4623 */ 4624 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 4625 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 4626 4627 dev->gflags ^= IFF_ALLMULTI; 4628 dev_set_allmulti(dev, inc); 4629 } 4630 4631 return ret; 4632 } 4633 4634 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags) 4635 { 4636 unsigned int changes = dev->flags ^ old_flags; 4637 4638 if (changes & IFF_UP) { 4639 if (dev->flags & IFF_UP) 4640 call_netdevice_notifiers(NETDEV_UP, dev); 4641 else 4642 call_netdevice_notifiers(NETDEV_DOWN, dev); 4643 } 4644 4645 if (dev->flags & IFF_UP && 4646 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) 4647 call_netdevice_notifiers(NETDEV_CHANGE, dev); 4648 } 4649 4650 /** 4651 * dev_change_flags - change device settings 4652 * @dev: device 4653 * @flags: device state flags 4654 * 4655 * Change settings on device based state flags. The flags are 4656 * in the userspace exported format. 4657 */ 4658 int dev_change_flags(struct net_device *dev, unsigned flags) 4659 { 4660 int ret, changes; 4661 int old_flags = dev->flags; 4662 4663 ret = __dev_change_flags(dev, flags); 4664 if (ret < 0) 4665 return ret; 4666 4667 changes = old_flags ^ dev->flags; 4668 if (changes) 4669 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 4670 4671 __dev_notify_flags(dev, old_flags); 4672 return ret; 4673 } 4674 EXPORT_SYMBOL(dev_change_flags); 4675 4676 /** 4677 * dev_set_mtu - Change maximum transfer unit 4678 * @dev: device 4679 * @new_mtu: new transfer unit 4680 * 4681 * Change the maximum transfer size of the network device. 4682 */ 4683 int dev_set_mtu(struct net_device *dev, int new_mtu) 4684 { 4685 const struct net_device_ops *ops = dev->netdev_ops; 4686 int err; 4687 4688 if (new_mtu == dev->mtu) 4689 return 0; 4690 4691 /* MTU must be positive. */ 4692 if (new_mtu < 0) 4693 return -EINVAL; 4694 4695 if (!netif_device_present(dev)) 4696 return -ENODEV; 4697 4698 err = 0; 4699 if (ops->ndo_change_mtu) 4700 err = ops->ndo_change_mtu(dev, new_mtu); 4701 else 4702 dev->mtu = new_mtu; 4703 4704 if (!err && dev->flags & IFF_UP) 4705 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 4706 return err; 4707 } 4708 EXPORT_SYMBOL(dev_set_mtu); 4709 4710 /** 4711 * dev_set_group - Change group this device belongs to 4712 * @dev: device 4713 * @new_group: group this device should belong to 4714 */ 4715 void dev_set_group(struct net_device *dev, int new_group) 4716 { 4717 dev->group = new_group; 4718 } 4719 EXPORT_SYMBOL(dev_set_group); 4720 4721 /** 4722 * dev_set_mac_address - Change Media Access Control Address 4723 * @dev: device 4724 * @sa: new address 4725 * 4726 * Change the hardware (MAC) address of the device 4727 */ 4728 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 4729 { 4730 const struct net_device_ops *ops = dev->netdev_ops; 4731 int err; 4732 4733 if (!ops->ndo_set_mac_address) 4734 return -EOPNOTSUPP; 4735 if (sa->sa_family != dev->type) 4736 return -EINVAL; 4737 if (!netif_device_present(dev)) 4738 return -ENODEV; 4739 err = ops->ndo_set_mac_address(dev, sa); 4740 if (!err) 4741 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4742 return err; 4743 } 4744 EXPORT_SYMBOL(dev_set_mac_address); 4745 4746 /* 4747 * Perform the SIOCxIFxxx calls, inside rcu_read_lock() 4748 */ 4749 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 4750 { 4751 int err; 4752 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name); 4753 4754 if (!dev) 4755 return -ENODEV; 4756 4757 switch (cmd) { 4758 case SIOCGIFFLAGS: /* Get interface flags */ 4759 ifr->ifr_flags = (short) dev_get_flags(dev); 4760 return 0; 4761 4762 case SIOCGIFMETRIC: /* Get the metric on the interface 4763 (currently unused) */ 4764 ifr->ifr_metric = 0; 4765 return 0; 4766 4767 case SIOCGIFMTU: /* Get the MTU of a device */ 4768 ifr->ifr_mtu = dev->mtu; 4769 return 0; 4770 4771 case SIOCGIFHWADDR: 4772 if (!dev->addr_len) 4773 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 4774 else 4775 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 4776 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4777 ifr->ifr_hwaddr.sa_family = dev->type; 4778 return 0; 4779 4780 case SIOCGIFSLAVE: 4781 err = -EINVAL; 4782 break; 4783 4784 case SIOCGIFMAP: 4785 ifr->ifr_map.mem_start = dev->mem_start; 4786 ifr->ifr_map.mem_end = dev->mem_end; 4787 ifr->ifr_map.base_addr = dev->base_addr; 4788 ifr->ifr_map.irq = dev->irq; 4789 ifr->ifr_map.dma = dev->dma; 4790 ifr->ifr_map.port = dev->if_port; 4791 return 0; 4792 4793 case SIOCGIFINDEX: 4794 ifr->ifr_ifindex = dev->ifindex; 4795 return 0; 4796 4797 case SIOCGIFTXQLEN: 4798 ifr->ifr_qlen = dev->tx_queue_len; 4799 return 0; 4800 4801 default: 4802 /* dev_ioctl() should ensure this case 4803 * is never reached 4804 */ 4805 WARN_ON(1); 4806 err = -ENOTTY; 4807 break; 4808 4809 } 4810 return err; 4811 } 4812 4813 /* 4814 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 4815 */ 4816 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 4817 { 4818 int err; 4819 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 4820 const struct net_device_ops *ops; 4821 4822 if (!dev) 4823 return -ENODEV; 4824 4825 ops = dev->netdev_ops; 4826 4827 switch (cmd) { 4828 case SIOCSIFFLAGS: /* Set interface flags */ 4829 return dev_change_flags(dev, ifr->ifr_flags); 4830 4831 case SIOCSIFMETRIC: /* Set the metric on the interface 4832 (currently unused) */ 4833 return -EOPNOTSUPP; 4834 4835 case SIOCSIFMTU: /* Set the MTU of a device */ 4836 return dev_set_mtu(dev, ifr->ifr_mtu); 4837 4838 case SIOCSIFHWADDR: 4839 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 4840 4841 case SIOCSIFHWBROADCAST: 4842 if (ifr->ifr_hwaddr.sa_family != dev->type) 4843 return -EINVAL; 4844 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 4845 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4846 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4847 return 0; 4848 4849 case SIOCSIFMAP: 4850 if (ops->ndo_set_config) { 4851 if (!netif_device_present(dev)) 4852 return -ENODEV; 4853 return ops->ndo_set_config(dev, &ifr->ifr_map); 4854 } 4855 return -EOPNOTSUPP; 4856 4857 case SIOCADDMULTI: 4858 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 4859 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4860 return -EINVAL; 4861 if (!netif_device_present(dev)) 4862 return -ENODEV; 4863 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data); 4864 4865 case SIOCDELMULTI: 4866 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 4867 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4868 return -EINVAL; 4869 if (!netif_device_present(dev)) 4870 return -ENODEV; 4871 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data); 4872 4873 case SIOCSIFTXQLEN: 4874 if (ifr->ifr_qlen < 0) 4875 return -EINVAL; 4876 dev->tx_queue_len = ifr->ifr_qlen; 4877 return 0; 4878 4879 case SIOCSIFNAME: 4880 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 4881 return dev_change_name(dev, ifr->ifr_newname); 4882 4883 /* 4884 * Unknown or private ioctl 4885 */ 4886 default: 4887 if ((cmd >= SIOCDEVPRIVATE && 4888 cmd <= SIOCDEVPRIVATE + 15) || 4889 cmd == SIOCBONDENSLAVE || 4890 cmd == SIOCBONDRELEASE || 4891 cmd == SIOCBONDSETHWADDR || 4892 cmd == SIOCBONDSLAVEINFOQUERY || 4893 cmd == SIOCBONDINFOQUERY || 4894 cmd == SIOCBONDCHANGEACTIVE || 4895 cmd == SIOCGMIIPHY || 4896 cmd == SIOCGMIIREG || 4897 cmd == SIOCSMIIREG || 4898 cmd == SIOCBRADDIF || 4899 cmd == SIOCBRDELIF || 4900 cmd == SIOCSHWTSTAMP || 4901 cmd == SIOCWANDEV) { 4902 err = -EOPNOTSUPP; 4903 if (ops->ndo_do_ioctl) { 4904 if (netif_device_present(dev)) 4905 err = ops->ndo_do_ioctl(dev, ifr, cmd); 4906 else 4907 err = -ENODEV; 4908 } 4909 } else 4910 err = -EINVAL; 4911 4912 } 4913 return err; 4914 } 4915 4916 /* 4917 * This function handles all "interface"-type I/O control requests. The actual 4918 * 'doing' part of this is dev_ifsioc above. 4919 */ 4920 4921 /** 4922 * dev_ioctl - network device ioctl 4923 * @net: the applicable net namespace 4924 * @cmd: command to issue 4925 * @arg: pointer to a struct ifreq in user space 4926 * 4927 * Issue ioctl functions to devices. This is normally called by the 4928 * user space syscall interfaces but can sometimes be useful for 4929 * other purposes. The return value is the return from the syscall if 4930 * positive or a negative errno code on error. 4931 */ 4932 4933 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 4934 { 4935 struct ifreq ifr; 4936 int ret; 4937 char *colon; 4938 4939 /* One special case: SIOCGIFCONF takes ifconf argument 4940 and requires shared lock, because it sleeps writing 4941 to user space. 4942 */ 4943 4944 if (cmd == SIOCGIFCONF) { 4945 rtnl_lock(); 4946 ret = dev_ifconf(net, (char __user *) arg); 4947 rtnl_unlock(); 4948 return ret; 4949 } 4950 if (cmd == SIOCGIFNAME) 4951 return dev_ifname(net, (struct ifreq __user *)arg); 4952 4953 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 4954 return -EFAULT; 4955 4956 ifr.ifr_name[IFNAMSIZ-1] = 0; 4957 4958 colon = strchr(ifr.ifr_name, ':'); 4959 if (colon) 4960 *colon = 0; 4961 4962 /* 4963 * See which interface the caller is talking about. 4964 */ 4965 4966 switch (cmd) { 4967 /* 4968 * These ioctl calls: 4969 * - can be done by all. 4970 * - atomic and do not require locking. 4971 * - return a value 4972 */ 4973 case SIOCGIFFLAGS: 4974 case SIOCGIFMETRIC: 4975 case SIOCGIFMTU: 4976 case SIOCGIFHWADDR: 4977 case SIOCGIFSLAVE: 4978 case SIOCGIFMAP: 4979 case SIOCGIFINDEX: 4980 case SIOCGIFTXQLEN: 4981 dev_load(net, ifr.ifr_name); 4982 rcu_read_lock(); 4983 ret = dev_ifsioc_locked(net, &ifr, cmd); 4984 rcu_read_unlock(); 4985 if (!ret) { 4986 if (colon) 4987 *colon = ':'; 4988 if (copy_to_user(arg, &ifr, 4989 sizeof(struct ifreq))) 4990 ret = -EFAULT; 4991 } 4992 return ret; 4993 4994 case SIOCETHTOOL: 4995 dev_load(net, ifr.ifr_name); 4996 rtnl_lock(); 4997 ret = dev_ethtool(net, &ifr); 4998 rtnl_unlock(); 4999 if (!ret) { 5000 if (colon) 5001 *colon = ':'; 5002 if (copy_to_user(arg, &ifr, 5003 sizeof(struct ifreq))) 5004 ret = -EFAULT; 5005 } 5006 return ret; 5007 5008 /* 5009 * These ioctl calls: 5010 * - require superuser power. 5011 * - require strict serialization. 5012 * - return a value 5013 */ 5014 case SIOCGMIIPHY: 5015 case SIOCGMIIREG: 5016 case SIOCSIFNAME: 5017 if (!capable(CAP_NET_ADMIN)) 5018 return -EPERM; 5019 dev_load(net, ifr.ifr_name); 5020 rtnl_lock(); 5021 ret = dev_ifsioc(net, &ifr, cmd); 5022 rtnl_unlock(); 5023 if (!ret) { 5024 if (colon) 5025 *colon = ':'; 5026 if (copy_to_user(arg, &ifr, 5027 sizeof(struct ifreq))) 5028 ret = -EFAULT; 5029 } 5030 return ret; 5031 5032 /* 5033 * These ioctl calls: 5034 * - require superuser power. 5035 * - require strict serialization. 5036 * - do not return a value 5037 */ 5038 case SIOCSIFFLAGS: 5039 case SIOCSIFMETRIC: 5040 case SIOCSIFMTU: 5041 case SIOCSIFMAP: 5042 case SIOCSIFHWADDR: 5043 case SIOCSIFSLAVE: 5044 case SIOCADDMULTI: 5045 case SIOCDELMULTI: 5046 case SIOCSIFHWBROADCAST: 5047 case SIOCSIFTXQLEN: 5048 case SIOCSMIIREG: 5049 case SIOCBONDENSLAVE: 5050 case SIOCBONDRELEASE: 5051 case SIOCBONDSETHWADDR: 5052 case SIOCBONDCHANGEACTIVE: 5053 case SIOCBRADDIF: 5054 case SIOCBRDELIF: 5055 case SIOCSHWTSTAMP: 5056 if (!capable(CAP_NET_ADMIN)) 5057 return -EPERM; 5058 /* fall through */ 5059 case SIOCBONDSLAVEINFOQUERY: 5060 case SIOCBONDINFOQUERY: 5061 dev_load(net, ifr.ifr_name); 5062 rtnl_lock(); 5063 ret = dev_ifsioc(net, &ifr, cmd); 5064 rtnl_unlock(); 5065 return ret; 5066 5067 case SIOCGIFMEM: 5068 /* Get the per device memory space. We can add this but 5069 * currently do not support it */ 5070 case SIOCSIFMEM: 5071 /* Set the per device memory buffer space. 5072 * Not applicable in our case */ 5073 case SIOCSIFLINK: 5074 return -ENOTTY; 5075 5076 /* 5077 * Unknown or private ioctl. 5078 */ 5079 default: 5080 if (cmd == SIOCWANDEV || 5081 (cmd >= SIOCDEVPRIVATE && 5082 cmd <= SIOCDEVPRIVATE + 15)) { 5083 dev_load(net, ifr.ifr_name); 5084 rtnl_lock(); 5085 ret = dev_ifsioc(net, &ifr, cmd); 5086 rtnl_unlock(); 5087 if (!ret && copy_to_user(arg, &ifr, 5088 sizeof(struct ifreq))) 5089 ret = -EFAULT; 5090 return ret; 5091 } 5092 /* Take care of Wireless Extensions */ 5093 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 5094 return wext_handle_ioctl(net, &ifr, cmd, arg); 5095 return -ENOTTY; 5096 } 5097 } 5098 5099 5100 /** 5101 * dev_new_index - allocate an ifindex 5102 * @net: the applicable net namespace 5103 * 5104 * Returns a suitable unique value for a new device interface 5105 * number. The caller must hold the rtnl semaphore or the 5106 * dev_base_lock to be sure it remains unique. 5107 */ 5108 static int dev_new_index(struct net *net) 5109 { 5110 static int ifindex; 5111 for (;;) { 5112 if (++ifindex <= 0) 5113 ifindex = 1; 5114 if (!__dev_get_by_index(net, ifindex)) 5115 return ifindex; 5116 } 5117 } 5118 5119 /* Delayed registration/unregisteration */ 5120 static LIST_HEAD(net_todo_list); 5121 5122 static void net_set_todo(struct net_device *dev) 5123 { 5124 list_add_tail(&dev->todo_list, &net_todo_list); 5125 } 5126 5127 static void rollback_registered_many(struct list_head *head) 5128 { 5129 struct net_device *dev, *tmp; 5130 5131 BUG_ON(dev_boot_phase); 5132 ASSERT_RTNL(); 5133 5134 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 5135 /* Some devices call without registering 5136 * for initialization unwind. Remove those 5137 * devices and proceed with the remaining. 5138 */ 5139 if (dev->reg_state == NETREG_UNINITIALIZED) { 5140 pr_debug("unregister_netdevice: device %s/%p never " 5141 "was registered\n", dev->name, dev); 5142 5143 WARN_ON(1); 5144 list_del(&dev->unreg_list); 5145 continue; 5146 } 5147 dev->dismantle = true; 5148 BUG_ON(dev->reg_state != NETREG_REGISTERED); 5149 } 5150 5151 /* If device is running, close it first. */ 5152 dev_close_many(head); 5153 5154 list_for_each_entry(dev, head, unreg_list) { 5155 /* And unlink it from device chain. */ 5156 unlist_netdevice(dev); 5157 5158 dev->reg_state = NETREG_UNREGISTERING; 5159 } 5160 5161 synchronize_net(); 5162 5163 list_for_each_entry(dev, head, unreg_list) { 5164 /* Shutdown queueing discipline. */ 5165 dev_shutdown(dev); 5166 5167 5168 /* Notify protocols, that we are about to destroy 5169 this device. They should clean all the things. 5170 */ 5171 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5172 5173 if (!dev->rtnl_link_ops || 5174 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5175 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 5176 5177 /* 5178 * Flush the unicast and multicast chains 5179 */ 5180 dev_uc_flush(dev); 5181 dev_mc_flush(dev); 5182 5183 if (dev->netdev_ops->ndo_uninit) 5184 dev->netdev_ops->ndo_uninit(dev); 5185 5186 /* Notifier chain MUST detach us from master device. */ 5187 WARN_ON(dev->master); 5188 5189 /* Remove entries from kobject tree */ 5190 netdev_unregister_kobject(dev); 5191 } 5192 5193 /* Process any work delayed until the end of the batch */ 5194 dev = list_first_entry(head, struct net_device, unreg_list); 5195 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 5196 5197 rcu_barrier(); 5198 5199 list_for_each_entry(dev, head, unreg_list) 5200 dev_put(dev); 5201 } 5202 5203 static void rollback_registered(struct net_device *dev) 5204 { 5205 LIST_HEAD(single); 5206 5207 list_add(&dev->unreg_list, &single); 5208 rollback_registered_many(&single); 5209 list_del(&single); 5210 } 5211 5212 static u32 netdev_fix_features(struct net_device *dev, u32 features) 5213 { 5214 /* Fix illegal checksum combinations */ 5215 if ((features & NETIF_F_HW_CSUM) && 5216 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5217 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 5218 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5219 } 5220 5221 if ((features & NETIF_F_NO_CSUM) && 5222 (features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5223 netdev_warn(dev, "mixed no checksumming and other settings.\n"); 5224 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM); 5225 } 5226 5227 /* Fix illegal SG+CSUM combinations. */ 5228 if ((features & NETIF_F_SG) && 5229 !(features & NETIF_F_ALL_CSUM)) { 5230 netdev_dbg(dev, 5231 "Dropping NETIF_F_SG since no checksum feature.\n"); 5232 features &= ~NETIF_F_SG; 5233 } 5234 5235 /* TSO requires that SG is present as well. */ 5236 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 5237 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 5238 features &= ~NETIF_F_ALL_TSO; 5239 } 5240 5241 /* TSO ECN requires that TSO is present as well. */ 5242 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 5243 features &= ~NETIF_F_TSO_ECN; 5244 5245 /* Software GSO depends on SG. */ 5246 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 5247 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 5248 features &= ~NETIF_F_GSO; 5249 } 5250 5251 /* UFO needs SG and checksumming */ 5252 if (features & NETIF_F_UFO) { 5253 /* maybe split UFO into V4 and V6? */ 5254 if (!((features & NETIF_F_GEN_CSUM) || 5255 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM)) 5256 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5257 netdev_dbg(dev, 5258 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 5259 features &= ~NETIF_F_UFO; 5260 } 5261 5262 if (!(features & NETIF_F_SG)) { 5263 netdev_dbg(dev, 5264 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 5265 features &= ~NETIF_F_UFO; 5266 } 5267 } 5268 5269 return features; 5270 } 5271 5272 int __netdev_update_features(struct net_device *dev) 5273 { 5274 u32 features; 5275 int err = 0; 5276 5277 ASSERT_RTNL(); 5278 5279 features = netdev_get_wanted_features(dev); 5280 5281 if (dev->netdev_ops->ndo_fix_features) 5282 features = dev->netdev_ops->ndo_fix_features(dev, features); 5283 5284 /* driver might be less strict about feature dependencies */ 5285 features = netdev_fix_features(dev, features); 5286 5287 if (dev->features == features) 5288 return 0; 5289 5290 netdev_dbg(dev, "Features changed: 0x%08x -> 0x%08x\n", 5291 dev->features, features); 5292 5293 if (dev->netdev_ops->ndo_set_features) 5294 err = dev->netdev_ops->ndo_set_features(dev, features); 5295 5296 if (unlikely(err < 0)) { 5297 netdev_err(dev, 5298 "set_features() failed (%d); wanted 0x%08x, left 0x%08x\n", 5299 err, features, dev->features); 5300 return -1; 5301 } 5302 5303 if (!err) 5304 dev->features = features; 5305 5306 return 1; 5307 } 5308 5309 /** 5310 * netdev_update_features - recalculate device features 5311 * @dev: the device to check 5312 * 5313 * Recalculate dev->features set and send notifications if it 5314 * has changed. Should be called after driver or hardware dependent 5315 * conditions might have changed that influence the features. 5316 */ 5317 void netdev_update_features(struct net_device *dev) 5318 { 5319 if (__netdev_update_features(dev)) 5320 netdev_features_change(dev); 5321 } 5322 EXPORT_SYMBOL(netdev_update_features); 5323 5324 /** 5325 * netdev_change_features - recalculate device features 5326 * @dev: the device to check 5327 * 5328 * Recalculate dev->features set and send notifications even 5329 * if they have not changed. Should be called instead of 5330 * netdev_update_features() if also dev->vlan_features might 5331 * have changed to allow the changes to be propagated to stacked 5332 * VLAN devices. 5333 */ 5334 void netdev_change_features(struct net_device *dev) 5335 { 5336 __netdev_update_features(dev); 5337 netdev_features_change(dev); 5338 } 5339 EXPORT_SYMBOL(netdev_change_features); 5340 5341 /** 5342 * netif_stacked_transfer_operstate - transfer operstate 5343 * @rootdev: the root or lower level device to transfer state from 5344 * @dev: the device to transfer operstate to 5345 * 5346 * Transfer operational state from root to device. This is normally 5347 * called when a stacking relationship exists between the root 5348 * device and the device(a leaf device). 5349 */ 5350 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5351 struct net_device *dev) 5352 { 5353 if (rootdev->operstate == IF_OPER_DORMANT) 5354 netif_dormant_on(dev); 5355 else 5356 netif_dormant_off(dev); 5357 5358 if (netif_carrier_ok(rootdev)) { 5359 if (!netif_carrier_ok(dev)) 5360 netif_carrier_on(dev); 5361 } else { 5362 if (netif_carrier_ok(dev)) 5363 netif_carrier_off(dev); 5364 } 5365 } 5366 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 5367 5368 #ifdef CONFIG_RPS 5369 static int netif_alloc_rx_queues(struct net_device *dev) 5370 { 5371 unsigned int i, count = dev->num_rx_queues; 5372 struct netdev_rx_queue *rx; 5373 5374 BUG_ON(count < 1); 5375 5376 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL); 5377 if (!rx) { 5378 pr_err("netdev: Unable to allocate %u rx queues.\n", count); 5379 return -ENOMEM; 5380 } 5381 dev->_rx = rx; 5382 5383 for (i = 0; i < count; i++) 5384 rx[i].dev = dev; 5385 return 0; 5386 } 5387 #endif 5388 5389 static void netdev_init_one_queue(struct net_device *dev, 5390 struct netdev_queue *queue, void *_unused) 5391 { 5392 /* Initialize queue lock */ 5393 spin_lock_init(&queue->_xmit_lock); 5394 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 5395 queue->xmit_lock_owner = -1; 5396 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 5397 queue->dev = dev; 5398 } 5399 5400 static int netif_alloc_netdev_queues(struct net_device *dev) 5401 { 5402 unsigned int count = dev->num_tx_queues; 5403 struct netdev_queue *tx; 5404 5405 BUG_ON(count < 1); 5406 5407 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL); 5408 if (!tx) { 5409 pr_err("netdev: Unable to allocate %u tx queues.\n", 5410 count); 5411 return -ENOMEM; 5412 } 5413 dev->_tx = tx; 5414 5415 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 5416 spin_lock_init(&dev->tx_global_lock); 5417 5418 return 0; 5419 } 5420 5421 /** 5422 * register_netdevice - register a network device 5423 * @dev: device to register 5424 * 5425 * Take a completed network device structure and add it to the kernel 5426 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5427 * chain. 0 is returned on success. A negative errno code is returned 5428 * on a failure to set up the device, or if the name is a duplicate. 5429 * 5430 * Callers must hold the rtnl semaphore. You may want 5431 * register_netdev() instead of this. 5432 * 5433 * BUGS: 5434 * The locking appears insufficient to guarantee two parallel registers 5435 * will not get the same name. 5436 */ 5437 5438 int register_netdevice(struct net_device *dev) 5439 { 5440 int ret; 5441 struct net *net = dev_net(dev); 5442 5443 BUG_ON(dev_boot_phase); 5444 ASSERT_RTNL(); 5445 5446 might_sleep(); 5447 5448 /* When net_device's are persistent, this will be fatal. */ 5449 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 5450 BUG_ON(!net); 5451 5452 spin_lock_init(&dev->addr_list_lock); 5453 netdev_set_addr_lockdep_class(dev); 5454 5455 dev->iflink = -1; 5456 5457 ret = dev_get_valid_name(dev, dev->name); 5458 if (ret < 0) 5459 goto out; 5460 5461 /* Init, if this function is available */ 5462 if (dev->netdev_ops->ndo_init) { 5463 ret = dev->netdev_ops->ndo_init(dev); 5464 if (ret) { 5465 if (ret > 0) 5466 ret = -EIO; 5467 goto out; 5468 } 5469 } 5470 5471 dev->ifindex = dev_new_index(net); 5472 if (dev->iflink == -1) 5473 dev->iflink = dev->ifindex; 5474 5475 /* Transfer changeable features to wanted_features and enable 5476 * software offloads (GSO and GRO). 5477 */ 5478 dev->hw_features |= NETIF_F_SOFT_FEATURES; 5479 dev->features |= NETIF_F_SOFT_FEATURES; 5480 dev->wanted_features = dev->features & dev->hw_features; 5481 5482 /* Turn on no cache copy if HW is doing checksum */ 5483 dev->hw_features |= NETIF_F_NOCACHE_COPY; 5484 if ((dev->features & NETIF_F_ALL_CSUM) && 5485 !(dev->features & NETIF_F_NO_CSUM)) { 5486 dev->wanted_features |= NETIF_F_NOCACHE_COPY; 5487 dev->features |= NETIF_F_NOCACHE_COPY; 5488 } 5489 5490 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 5491 */ 5492 dev->vlan_features |= NETIF_F_HIGHDMA; 5493 5494 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 5495 ret = notifier_to_errno(ret); 5496 if (ret) 5497 goto err_uninit; 5498 5499 ret = netdev_register_kobject(dev); 5500 if (ret) 5501 goto err_uninit; 5502 dev->reg_state = NETREG_REGISTERED; 5503 5504 __netdev_update_features(dev); 5505 5506 /* 5507 * Default initial state at registry is that the 5508 * device is present. 5509 */ 5510 5511 set_bit(__LINK_STATE_PRESENT, &dev->state); 5512 5513 dev_init_scheduler(dev); 5514 dev_hold(dev); 5515 list_netdevice(dev); 5516 5517 /* Notify protocols, that a new device appeared. */ 5518 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 5519 ret = notifier_to_errno(ret); 5520 if (ret) { 5521 rollback_registered(dev); 5522 dev->reg_state = NETREG_UNREGISTERED; 5523 } 5524 /* 5525 * Prevent userspace races by waiting until the network 5526 * device is fully setup before sending notifications. 5527 */ 5528 if (!dev->rtnl_link_ops || 5529 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5530 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5531 5532 out: 5533 return ret; 5534 5535 err_uninit: 5536 if (dev->netdev_ops->ndo_uninit) 5537 dev->netdev_ops->ndo_uninit(dev); 5538 goto out; 5539 } 5540 EXPORT_SYMBOL(register_netdevice); 5541 5542 /** 5543 * init_dummy_netdev - init a dummy network device for NAPI 5544 * @dev: device to init 5545 * 5546 * This takes a network device structure and initialize the minimum 5547 * amount of fields so it can be used to schedule NAPI polls without 5548 * registering a full blown interface. This is to be used by drivers 5549 * that need to tie several hardware interfaces to a single NAPI 5550 * poll scheduler due to HW limitations. 5551 */ 5552 int init_dummy_netdev(struct net_device *dev) 5553 { 5554 /* Clear everything. Note we don't initialize spinlocks 5555 * are they aren't supposed to be taken by any of the 5556 * NAPI code and this dummy netdev is supposed to be 5557 * only ever used for NAPI polls 5558 */ 5559 memset(dev, 0, sizeof(struct net_device)); 5560 5561 /* make sure we BUG if trying to hit standard 5562 * register/unregister code path 5563 */ 5564 dev->reg_state = NETREG_DUMMY; 5565 5566 /* NAPI wants this */ 5567 INIT_LIST_HEAD(&dev->napi_list); 5568 5569 /* a dummy interface is started by default */ 5570 set_bit(__LINK_STATE_PRESENT, &dev->state); 5571 set_bit(__LINK_STATE_START, &dev->state); 5572 5573 /* Note : We dont allocate pcpu_refcnt for dummy devices, 5574 * because users of this 'device' dont need to change 5575 * its refcount. 5576 */ 5577 5578 return 0; 5579 } 5580 EXPORT_SYMBOL_GPL(init_dummy_netdev); 5581 5582 5583 /** 5584 * register_netdev - register a network device 5585 * @dev: device to register 5586 * 5587 * Take a completed network device structure and add it to the kernel 5588 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5589 * chain. 0 is returned on success. A negative errno code is returned 5590 * on a failure to set up the device, or if the name is a duplicate. 5591 * 5592 * This is a wrapper around register_netdevice that takes the rtnl semaphore 5593 * and expands the device name if you passed a format string to 5594 * alloc_netdev. 5595 */ 5596 int register_netdev(struct net_device *dev) 5597 { 5598 int err; 5599 5600 rtnl_lock(); 5601 err = register_netdevice(dev); 5602 rtnl_unlock(); 5603 return err; 5604 } 5605 EXPORT_SYMBOL(register_netdev); 5606 5607 int netdev_refcnt_read(const struct net_device *dev) 5608 { 5609 int i, refcnt = 0; 5610 5611 for_each_possible_cpu(i) 5612 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 5613 return refcnt; 5614 } 5615 EXPORT_SYMBOL(netdev_refcnt_read); 5616 5617 /* 5618 * netdev_wait_allrefs - wait until all references are gone. 5619 * 5620 * This is called when unregistering network devices. 5621 * 5622 * Any protocol or device that holds a reference should register 5623 * for netdevice notification, and cleanup and put back the 5624 * reference if they receive an UNREGISTER event. 5625 * We can get stuck here if buggy protocols don't correctly 5626 * call dev_put. 5627 */ 5628 static void netdev_wait_allrefs(struct net_device *dev) 5629 { 5630 unsigned long rebroadcast_time, warning_time; 5631 int refcnt; 5632 5633 linkwatch_forget_dev(dev); 5634 5635 rebroadcast_time = warning_time = jiffies; 5636 refcnt = netdev_refcnt_read(dev); 5637 5638 while (refcnt != 0) { 5639 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 5640 rtnl_lock(); 5641 5642 /* Rebroadcast unregister notification */ 5643 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5644 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users 5645 * should have already handle it the first time */ 5646 5647 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 5648 &dev->state)) { 5649 /* We must not have linkwatch events 5650 * pending on unregister. If this 5651 * happens, we simply run the queue 5652 * unscheduled, resulting in a noop 5653 * for this device. 5654 */ 5655 linkwatch_run_queue(); 5656 } 5657 5658 __rtnl_unlock(); 5659 5660 rebroadcast_time = jiffies; 5661 } 5662 5663 msleep(250); 5664 5665 refcnt = netdev_refcnt_read(dev); 5666 5667 if (time_after(jiffies, warning_time + 10 * HZ)) { 5668 printk(KERN_EMERG "unregister_netdevice: " 5669 "waiting for %s to become free. Usage " 5670 "count = %d\n", 5671 dev->name, refcnt); 5672 warning_time = jiffies; 5673 } 5674 } 5675 } 5676 5677 /* The sequence is: 5678 * 5679 * rtnl_lock(); 5680 * ... 5681 * register_netdevice(x1); 5682 * register_netdevice(x2); 5683 * ... 5684 * unregister_netdevice(y1); 5685 * unregister_netdevice(y2); 5686 * ... 5687 * rtnl_unlock(); 5688 * free_netdev(y1); 5689 * free_netdev(y2); 5690 * 5691 * We are invoked by rtnl_unlock(). 5692 * This allows us to deal with problems: 5693 * 1) We can delete sysfs objects which invoke hotplug 5694 * without deadlocking with linkwatch via keventd. 5695 * 2) Since we run with the RTNL semaphore not held, we can sleep 5696 * safely in order to wait for the netdev refcnt to drop to zero. 5697 * 5698 * We must not return until all unregister events added during 5699 * the interval the lock was held have been completed. 5700 */ 5701 void netdev_run_todo(void) 5702 { 5703 struct list_head list; 5704 5705 /* Snapshot list, allow later requests */ 5706 list_replace_init(&net_todo_list, &list); 5707 5708 __rtnl_unlock(); 5709 5710 while (!list_empty(&list)) { 5711 struct net_device *dev 5712 = list_first_entry(&list, struct net_device, todo_list); 5713 list_del(&dev->todo_list); 5714 5715 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 5716 printk(KERN_ERR "network todo '%s' but state %d\n", 5717 dev->name, dev->reg_state); 5718 dump_stack(); 5719 continue; 5720 } 5721 5722 dev->reg_state = NETREG_UNREGISTERED; 5723 5724 on_each_cpu(flush_backlog, dev, 1); 5725 5726 netdev_wait_allrefs(dev); 5727 5728 /* paranoia */ 5729 BUG_ON(netdev_refcnt_read(dev)); 5730 WARN_ON(rcu_dereference_raw(dev->ip_ptr)); 5731 WARN_ON(rcu_dereference_raw(dev->ip6_ptr)); 5732 WARN_ON(dev->dn_ptr); 5733 5734 if (dev->destructor) 5735 dev->destructor(dev); 5736 5737 /* Free network device */ 5738 kobject_put(&dev->dev.kobj); 5739 } 5740 } 5741 5742 /* Convert net_device_stats to rtnl_link_stats64. They have the same 5743 * fields in the same order, with only the type differing. 5744 */ 5745 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 5746 const struct net_device_stats *netdev_stats) 5747 { 5748 #if BITS_PER_LONG == 64 5749 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 5750 memcpy(stats64, netdev_stats, sizeof(*stats64)); 5751 #else 5752 size_t i, n = sizeof(*stats64) / sizeof(u64); 5753 const unsigned long *src = (const unsigned long *)netdev_stats; 5754 u64 *dst = (u64 *)stats64; 5755 5756 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 5757 sizeof(*stats64) / sizeof(u64)); 5758 for (i = 0; i < n; i++) 5759 dst[i] = src[i]; 5760 #endif 5761 } 5762 5763 /** 5764 * dev_get_stats - get network device statistics 5765 * @dev: device to get statistics from 5766 * @storage: place to store stats 5767 * 5768 * Get network statistics from device. Return @storage. 5769 * The device driver may provide its own method by setting 5770 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 5771 * otherwise the internal statistics structure is used. 5772 */ 5773 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 5774 struct rtnl_link_stats64 *storage) 5775 { 5776 const struct net_device_ops *ops = dev->netdev_ops; 5777 5778 if (ops->ndo_get_stats64) { 5779 memset(storage, 0, sizeof(*storage)); 5780 ops->ndo_get_stats64(dev, storage); 5781 } else if (ops->ndo_get_stats) { 5782 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 5783 } else { 5784 netdev_stats_to_stats64(storage, &dev->stats); 5785 } 5786 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 5787 return storage; 5788 } 5789 EXPORT_SYMBOL(dev_get_stats); 5790 5791 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 5792 { 5793 struct netdev_queue *queue = dev_ingress_queue(dev); 5794 5795 #ifdef CONFIG_NET_CLS_ACT 5796 if (queue) 5797 return queue; 5798 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 5799 if (!queue) 5800 return NULL; 5801 netdev_init_one_queue(dev, queue, NULL); 5802 queue->qdisc = &noop_qdisc; 5803 queue->qdisc_sleeping = &noop_qdisc; 5804 rcu_assign_pointer(dev->ingress_queue, queue); 5805 #endif 5806 return queue; 5807 } 5808 5809 /** 5810 * alloc_netdev_mqs - allocate network device 5811 * @sizeof_priv: size of private data to allocate space for 5812 * @name: device name format string 5813 * @setup: callback to initialize device 5814 * @txqs: the number of TX subqueues to allocate 5815 * @rxqs: the number of RX subqueues to allocate 5816 * 5817 * Allocates a struct net_device with private data area for driver use 5818 * and performs basic initialization. Also allocates subquue structs 5819 * for each queue on the device. 5820 */ 5821 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 5822 void (*setup)(struct net_device *), 5823 unsigned int txqs, unsigned int rxqs) 5824 { 5825 struct net_device *dev; 5826 size_t alloc_size; 5827 struct net_device *p; 5828 5829 BUG_ON(strlen(name) >= sizeof(dev->name)); 5830 5831 if (txqs < 1) { 5832 pr_err("alloc_netdev: Unable to allocate device " 5833 "with zero queues.\n"); 5834 return NULL; 5835 } 5836 5837 #ifdef CONFIG_RPS 5838 if (rxqs < 1) { 5839 pr_err("alloc_netdev: Unable to allocate device " 5840 "with zero RX queues.\n"); 5841 return NULL; 5842 } 5843 #endif 5844 5845 alloc_size = sizeof(struct net_device); 5846 if (sizeof_priv) { 5847 /* ensure 32-byte alignment of private area */ 5848 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 5849 alloc_size += sizeof_priv; 5850 } 5851 /* ensure 32-byte alignment of whole construct */ 5852 alloc_size += NETDEV_ALIGN - 1; 5853 5854 p = kzalloc(alloc_size, GFP_KERNEL); 5855 if (!p) { 5856 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n"); 5857 return NULL; 5858 } 5859 5860 dev = PTR_ALIGN(p, NETDEV_ALIGN); 5861 dev->padded = (char *)dev - (char *)p; 5862 5863 dev->pcpu_refcnt = alloc_percpu(int); 5864 if (!dev->pcpu_refcnt) 5865 goto free_p; 5866 5867 if (dev_addr_init(dev)) 5868 goto free_pcpu; 5869 5870 dev_mc_init(dev); 5871 dev_uc_init(dev); 5872 5873 dev_net_set(dev, &init_net); 5874 5875 dev->gso_max_size = GSO_MAX_SIZE; 5876 5877 INIT_LIST_HEAD(&dev->napi_list); 5878 INIT_LIST_HEAD(&dev->unreg_list); 5879 INIT_LIST_HEAD(&dev->link_watch_list); 5880 dev->priv_flags = IFF_XMIT_DST_RELEASE; 5881 setup(dev); 5882 5883 dev->num_tx_queues = txqs; 5884 dev->real_num_tx_queues = txqs; 5885 if (netif_alloc_netdev_queues(dev)) 5886 goto free_all; 5887 5888 #ifdef CONFIG_RPS 5889 dev->num_rx_queues = rxqs; 5890 dev->real_num_rx_queues = rxqs; 5891 if (netif_alloc_rx_queues(dev)) 5892 goto free_all; 5893 #endif 5894 5895 strcpy(dev->name, name); 5896 dev->group = INIT_NETDEV_GROUP; 5897 return dev; 5898 5899 free_all: 5900 free_netdev(dev); 5901 return NULL; 5902 5903 free_pcpu: 5904 free_percpu(dev->pcpu_refcnt); 5905 kfree(dev->_tx); 5906 #ifdef CONFIG_RPS 5907 kfree(dev->_rx); 5908 #endif 5909 5910 free_p: 5911 kfree(p); 5912 return NULL; 5913 } 5914 EXPORT_SYMBOL(alloc_netdev_mqs); 5915 5916 /** 5917 * free_netdev - free network device 5918 * @dev: device 5919 * 5920 * This function does the last stage of destroying an allocated device 5921 * interface. The reference to the device object is released. 5922 * If this is the last reference then it will be freed. 5923 */ 5924 void free_netdev(struct net_device *dev) 5925 { 5926 struct napi_struct *p, *n; 5927 5928 release_net(dev_net(dev)); 5929 5930 kfree(dev->_tx); 5931 #ifdef CONFIG_RPS 5932 kfree(dev->_rx); 5933 #endif 5934 5935 kfree(rcu_dereference_raw(dev->ingress_queue)); 5936 5937 /* Flush device addresses */ 5938 dev_addr_flush(dev); 5939 5940 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 5941 netif_napi_del(p); 5942 5943 free_percpu(dev->pcpu_refcnt); 5944 dev->pcpu_refcnt = NULL; 5945 5946 /* Compatibility with error handling in drivers */ 5947 if (dev->reg_state == NETREG_UNINITIALIZED) { 5948 kfree((char *)dev - dev->padded); 5949 return; 5950 } 5951 5952 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 5953 dev->reg_state = NETREG_RELEASED; 5954 5955 /* will free via device release */ 5956 put_device(&dev->dev); 5957 } 5958 EXPORT_SYMBOL(free_netdev); 5959 5960 /** 5961 * synchronize_net - Synchronize with packet receive processing 5962 * 5963 * Wait for packets currently being received to be done. 5964 * Does not block later packets from starting. 5965 */ 5966 void synchronize_net(void) 5967 { 5968 might_sleep(); 5969 if (rtnl_is_locked()) 5970 synchronize_rcu_expedited(); 5971 else 5972 synchronize_rcu(); 5973 } 5974 EXPORT_SYMBOL(synchronize_net); 5975 5976 /** 5977 * unregister_netdevice_queue - remove device from the kernel 5978 * @dev: device 5979 * @head: list 5980 * 5981 * This function shuts down a device interface and removes it 5982 * from the kernel tables. 5983 * If head not NULL, device is queued to be unregistered later. 5984 * 5985 * Callers must hold the rtnl semaphore. You may want 5986 * unregister_netdev() instead of this. 5987 */ 5988 5989 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 5990 { 5991 ASSERT_RTNL(); 5992 5993 if (head) { 5994 list_move_tail(&dev->unreg_list, head); 5995 } else { 5996 rollback_registered(dev); 5997 /* Finish processing unregister after unlock */ 5998 net_set_todo(dev); 5999 } 6000 } 6001 EXPORT_SYMBOL(unregister_netdevice_queue); 6002 6003 /** 6004 * unregister_netdevice_many - unregister many devices 6005 * @head: list of devices 6006 */ 6007 void unregister_netdevice_many(struct list_head *head) 6008 { 6009 struct net_device *dev; 6010 6011 if (!list_empty(head)) { 6012 rollback_registered_many(head); 6013 list_for_each_entry(dev, head, unreg_list) 6014 net_set_todo(dev); 6015 } 6016 } 6017 EXPORT_SYMBOL(unregister_netdevice_many); 6018 6019 /** 6020 * unregister_netdev - remove device from the kernel 6021 * @dev: device 6022 * 6023 * This function shuts down a device interface and removes it 6024 * from the kernel tables. 6025 * 6026 * This is just a wrapper for unregister_netdevice that takes 6027 * the rtnl semaphore. In general you want to use this and not 6028 * unregister_netdevice. 6029 */ 6030 void unregister_netdev(struct net_device *dev) 6031 { 6032 rtnl_lock(); 6033 unregister_netdevice(dev); 6034 rtnl_unlock(); 6035 } 6036 EXPORT_SYMBOL(unregister_netdev); 6037 6038 /** 6039 * dev_change_net_namespace - move device to different nethost namespace 6040 * @dev: device 6041 * @net: network namespace 6042 * @pat: If not NULL name pattern to try if the current device name 6043 * is already taken in the destination network namespace. 6044 * 6045 * This function shuts down a device interface and moves it 6046 * to a new network namespace. On success 0 is returned, on 6047 * a failure a netagive errno code is returned. 6048 * 6049 * Callers must hold the rtnl semaphore. 6050 */ 6051 6052 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 6053 { 6054 int err; 6055 6056 ASSERT_RTNL(); 6057 6058 /* Don't allow namespace local devices to be moved. */ 6059 err = -EINVAL; 6060 if (dev->features & NETIF_F_NETNS_LOCAL) 6061 goto out; 6062 6063 /* Ensure the device has been registrered */ 6064 err = -EINVAL; 6065 if (dev->reg_state != NETREG_REGISTERED) 6066 goto out; 6067 6068 /* Get out if there is nothing todo */ 6069 err = 0; 6070 if (net_eq(dev_net(dev), net)) 6071 goto out; 6072 6073 /* Pick the destination device name, and ensure 6074 * we can use it in the destination network namespace. 6075 */ 6076 err = -EEXIST; 6077 if (__dev_get_by_name(net, dev->name)) { 6078 /* We get here if we can't use the current device name */ 6079 if (!pat) 6080 goto out; 6081 if (dev_get_valid_name(dev, pat) < 0) 6082 goto out; 6083 } 6084 6085 /* 6086 * And now a mini version of register_netdevice unregister_netdevice. 6087 */ 6088 6089 /* If device is running close it first. */ 6090 dev_close(dev); 6091 6092 /* And unlink it from device chain */ 6093 err = -ENODEV; 6094 unlist_netdevice(dev); 6095 6096 synchronize_net(); 6097 6098 /* Shutdown queueing discipline. */ 6099 dev_shutdown(dev); 6100 6101 /* Notify protocols, that we are about to destroy 6102 this device. They should clean all the things. 6103 6104 Note that dev->reg_state stays at NETREG_REGISTERED. 6105 This is wanted because this way 8021q and macvlan know 6106 the device is just moving and can keep their slaves up. 6107 */ 6108 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6109 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 6110 6111 /* 6112 * Flush the unicast and multicast chains 6113 */ 6114 dev_uc_flush(dev); 6115 dev_mc_flush(dev); 6116 6117 /* Actually switch the network namespace */ 6118 dev_net_set(dev, net); 6119 6120 /* If there is an ifindex conflict assign a new one */ 6121 if (__dev_get_by_index(net, dev->ifindex)) { 6122 int iflink = (dev->iflink == dev->ifindex); 6123 dev->ifindex = dev_new_index(net); 6124 if (iflink) 6125 dev->iflink = dev->ifindex; 6126 } 6127 6128 /* Fixup kobjects */ 6129 err = device_rename(&dev->dev, dev->name); 6130 WARN_ON(err); 6131 6132 /* Add the device back in the hashes */ 6133 list_netdevice(dev); 6134 6135 /* Notify protocols, that a new device appeared. */ 6136 call_netdevice_notifiers(NETDEV_REGISTER, dev); 6137 6138 /* 6139 * Prevent userspace races by waiting until the network 6140 * device is fully setup before sending notifications. 6141 */ 6142 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 6143 6144 synchronize_net(); 6145 err = 0; 6146 out: 6147 return err; 6148 } 6149 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 6150 6151 static int dev_cpu_callback(struct notifier_block *nfb, 6152 unsigned long action, 6153 void *ocpu) 6154 { 6155 struct sk_buff **list_skb; 6156 struct sk_buff *skb; 6157 unsigned int cpu, oldcpu = (unsigned long)ocpu; 6158 struct softnet_data *sd, *oldsd; 6159 6160 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 6161 return NOTIFY_OK; 6162 6163 local_irq_disable(); 6164 cpu = smp_processor_id(); 6165 sd = &per_cpu(softnet_data, cpu); 6166 oldsd = &per_cpu(softnet_data, oldcpu); 6167 6168 /* Find end of our completion_queue. */ 6169 list_skb = &sd->completion_queue; 6170 while (*list_skb) 6171 list_skb = &(*list_skb)->next; 6172 /* Append completion queue from offline CPU. */ 6173 *list_skb = oldsd->completion_queue; 6174 oldsd->completion_queue = NULL; 6175 6176 /* Append output queue from offline CPU. */ 6177 if (oldsd->output_queue) { 6178 *sd->output_queue_tailp = oldsd->output_queue; 6179 sd->output_queue_tailp = oldsd->output_queue_tailp; 6180 oldsd->output_queue = NULL; 6181 oldsd->output_queue_tailp = &oldsd->output_queue; 6182 } 6183 /* Append NAPI poll list from offline CPU. */ 6184 if (!list_empty(&oldsd->poll_list)) { 6185 list_splice_init(&oldsd->poll_list, &sd->poll_list); 6186 raise_softirq_irqoff(NET_RX_SOFTIRQ); 6187 } 6188 6189 raise_softirq_irqoff(NET_TX_SOFTIRQ); 6190 local_irq_enable(); 6191 6192 /* Process offline CPU's input_pkt_queue */ 6193 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 6194 netif_rx(skb); 6195 input_queue_head_incr(oldsd); 6196 } 6197 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) { 6198 netif_rx(skb); 6199 input_queue_head_incr(oldsd); 6200 } 6201 6202 return NOTIFY_OK; 6203 } 6204 6205 6206 /** 6207 * netdev_increment_features - increment feature set by one 6208 * @all: current feature set 6209 * @one: new feature set 6210 * @mask: mask feature set 6211 * 6212 * Computes a new feature set after adding a device with feature set 6213 * @one to the master device with current feature set @all. Will not 6214 * enable anything that is off in @mask. Returns the new feature set. 6215 */ 6216 u32 netdev_increment_features(u32 all, u32 one, u32 mask) 6217 { 6218 if (mask & NETIF_F_GEN_CSUM) 6219 mask |= NETIF_F_ALL_CSUM; 6220 mask |= NETIF_F_VLAN_CHALLENGED; 6221 6222 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask; 6223 all &= one | ~NETIF_F_ALL_FOR_ALL; 6224 6225 /* If device needs checksumming, downgrade to it. */ 6226 if (all & (NETIF_F_ALL_CSUM & ~NETIF_F_NO_CSUM)) 6227 all &= ~NETIF_F_NO_CSUM; 6228 6229 /* If one device supports hw checksumming, set for all. */ 6230 if (all & NETIF_F_GEN_CSUM) 6231 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 6232 6233 return all; 6234 } 6235 EXPORT_SYMBOL(netdev_increment_features); 6236 6237 static struct hlist_head *netdev_create_hash(void) 6238 { 6239 int i; 6240 struct hlist_head *hash; 6241 6242 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 6243 if (hash != NULL) 6244 for (i = 0; i < NETDEV_HASHENTRIES; i++) 6245 INIT_HLIST_HEAD(&hash[i]); 6246 6247 return hash; 6248 } 6249 6250 /* Initialize per network namespace state */ 6251 static int __net_init netdev_init(struct net *net) 6252 { 6253 INIT_LIST_HEAD(&net->dev_base_head); 6254 6255 net->dev_name_head = netdev_create_hash(); 6256 if (net->dev_name_head == NULL) 6257 goto err_name; 6258 6259 net->dev_index_head = netdev_create_hash(); 6260 if (net->dev_index_head == NULL) 6261 goto err_idx; 6262 6263 return 0; 6264 6265 err_idx: 6266 kfree(net->dev_name_head); 6267 err_name: 6268 return -ENOMEM; 6269 } 6270 6271 /** 6272 * netdev_drivername - network driver for the device 6273 * @dev: network device 6274 * 6275 * Determine network driver for device. 6276 */ 6277 const char *netdev_drivername(const struct net_device *dev) 6278 { 6279 const struct device_driver *driver; 6280 const struct device *parent; 6281 const char *empty = ""; 6282 6283 parent = dev->dev.parent; 6284 if (!parent) 6285 return empty; 6286 6287 driver = parent->driver; 6288 if (driver && driver->name) 6289 return driver->name; 6290 return empty; 6291 } 6292 6293 static int __netdev_printk(const char *level, const struct net_device *dev, 6294 struct va_format *vaf) 6295 { 6296 int r; 6297 6298 if (dev && dev->dev.parent) 6299 r = dev_printk(level, dev->dev.parent, "%s: %pV", 6300 netdev_name(dev), vaf); 6301 else if (dev) 6302 r = printk("%s%s: %pV", level, netdev_name(dev), vaf); 6303 else 6304 r = printk("%s(NULL net_device): %pV", level, vaf); 6305 6306 return r; 6307 } 6308 6309 int netdev_printk(const char *level, const struct net_device *dev, 6310 const char *format, ...) 6311 { 6312 struct va_format vaf; 6313 va_list args; 6314 int r; 6315 6316 va_start(args, format); 6317 6318 vaf.fmt = format; 6319 vaf.va = &args; 6320 6321 r = __netdev_printk(level, dev, &vaf); 6322 va_end(args); 6323 6324 return r; 6325 } 6326 EXPORT_SYMBOL(netdev_printk); 6327 6328 #define define_netdev_printk_level(func, level) \ 6329 int func(const struct net_device *dev, const char *fmt, ...) \ 6330 { \ 6331 int r; \ 6332 struct va_format vaf; \ 6333 va_list args; \ 6334 \ 6335 va_start(args, fmt); \ 6336 \ 6337 vaf.fmt = fmt; \ 6338 vaf.va = &args; \ 6339 \ 6340 r = __netdev_printk(level, dev, &vaf); \ 6341 va_end(args); \ 6342 \ 6343 return r; \ 6344 } \ 6345 EXPORT_SYMBOL(func); 6346 6347 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 6348 define_netdev_printk_level(netdev_alert, KERN_ALERT); 6349 define_netdev_printk_level(netdev_crit, KERN_CRIT); 6350 define_netdev_printk_level(netdev_err, KERN_ERR); 6351 define_netdev_printk_level(netdev_warn, KERN_WARNING); 6352 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 6353 define_netdev_printk_level(netdev_info, KERN_INFO); 6354 6355 static void __net_exit netdev_exit(struct net *net) 6356 { 6357 kfree(net->dev_name_head); 6358 kfree(net->dev_index_head); 6359 } 6360 6361 static struct pernet_operations __net_initdata netdev_net_ops = { 6362 .init = netdev_init, 6363 .exit = netdev_exit, 6364 }; 6365 6366 static void __net_exit default_device_exit(struct net *net) 6367 { 6368 struct net_device *dev, *aux; 6369 /* 6370 * Push all migratable network devices back to the 6371 * initial network namespace 6372 */ 6373 rtnl_lock(); 6374 for_each_netdev_safe(net, dev, aux) { 6375 int err; 6376 char fb_name[IFNAMSIZ]; 6377 6378 /* Ignore unmoveable devices (i.e. loopback) */ 6379 if (dev->features & NETIF_F_NETNS_LOCAL) 6380 continue; 6381 6382 /* Leave virtual devices for the generic cleanup */ 6383 if (dev->rtnl_link_ops) 6384 continue; 6385 6386 /* Push remaining network devices to init_net */ 6387 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 6388 err = dev_change_net_namespace(dev, &init_net, fb_name); 6389 if (err) { 6390 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n", 6391 __func__, dev->name, err); 6392 BUG(); 6393 } 6394 } 6395 rtnl_unlock(); 6396 } 6397 6398 static void __net_exit default_device_exit_batch(struct list_head *net_list) 6399 { 6400 /* At exit all network devices most be removed from a network 6401 * namespace. Do this in the reverse order of registration. 6402 * Do this across as many network namespaces as possible to 6403 * improve batching efficiency. 6404 */ 6405 struct net_device *dev; 6406 struct net *net; 6407 LIST_HEAD(dev_kill_list); 6408 6409 rtnl_lock(); 6410 list_for_each_entry(net, net_list, exit_list) { 6411 for_each_netdev_reverse(net, dev) { 6412 if (dev->rtnl_link_ops) 6413 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 6414 else 6415 unregister_netdevice_queue(dev, &dev_kill_list); 6416 } 6417 } 6418 unregister_netdevice_many(&dev_kill_list); 6419 list_del(&dev_kill_list); 6420 rtnl_unlock(); 6421 } 6422 6423 static struct pernet_operations __net_initdata default_device_ops = { 6424 .exit = default_device_exit, 6425 .exit_batch = default_device_exit_batch, 6426 }; 6427 6428 /* 6429 * Initialize the DEV module. At boot time this walks the device list and 6430 * unhooks any devices that fail to initialise (normally hardware not 6431 * present) and leaves us with a valid list of present and active devices. 6432 * 6433 */ 6434 6435 /* 6436 * This is called single threaded during boot, so no need 6437 * to take the rtnl semaphore. 6438 */ 6439 static int __init net_dev_init(void) 6440 { 6441 int i, rc = -ENOMEM; 6442 6443 BUG_ON(!dev_boot_phase); 6444 6445 if (dev_proc_init()) 6446 goto out; 6447 6448 if (netdev_kobject_init()) 6449 goto out; 6450 6451 INIT_LIST_HEAD(&ptype_all); 6452 for (i = 0; i < PTYPE_HASH_SIZE; i++) 6453 INIT_LIST_HEAD(&ptype_base[i]); 6454 6455 if (register_pernet_subsys(&netdev_net_ops)) 6456 goto out; 6457 6458 /* 6459 * Initialise the packet receive queues. 6460 */ 6461 6462 for_each_possible_cpu(i) { 6463 struct softnet_data *sd = &per_cpu(softnet_data, i); 6464 6465 memset(sd, 0, sizeof(*sd)); 6466 skb_queue_head_init(&sd->input_pkt_queue); 6467 skb_queue_head_init(&sd->process_queue); 6468 sd->completion_queue = NULL; 6469 INIT_LIST_HEAD(&sd->poll_list); 6470 sd->output_queue = NULL; 6471 sd->output_queue_tailp = &sd->output_queue; 6472 #ifdef CONFIG_RPS 6473 sd->csd.func = rps_trigger_softirq; 6474 sd->csd.info = sd; 6475 sd->csd.flags = 0; 6476 sd->cpu = i; 6477 #endif 6478 6479 sd->backlog.poll = process_backlog; 6480 sd->backlog.weight = weight_p; 6481 sd->backlog.gro_list = NULL; 6482 sd->backlog.gro_count = 0; 6483 } 6484 6485 dev_boot_phase = 0; 6486 6487 /* The loopback device is special if any other network devices 6488 * is present in a network namespace the loopback device must 6489 * be present. Since we now dynamically allocate and free the 6490 * loopback device ensure this invariant is maintained by 6491 * keeping the loopback device as the first device on the 6492 * list of network devices. Ensuring the loopback devices 6493 * is the first device that appears and the last network device 6494 * that disappears. 6495 */ 6496 if (register_pernet_device(&loopback_net_ops)) 6497 goto out; 6498 6499 if (register_pernet_device(&default_device_ops)) 6500 goto out; 6501 6502 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 6503 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 6504 6505 hotcpu_notifier(dev_cpu_callback, 0); 6506 dst_init(); 6507 dev_mcast_init(); 6508 rc = 0; 6509 out: 6510 return rc; 6511 } 6512 6513 subsys_initcall(net_dev_init); 6514 6515 static int __init initialize_hashrnd(void) 6516 { 6517 get_random_bytes(&hashrnd, sizeof(hashrnd)); 6518 return 0; 6519 } 6520 6521 late_initcall_sync(initialize_hashrnd); 6522 6523