1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET3 Protocol independent device support routines. 4 * 5 * Derived from the non IP parts of dev.c 1.0.19 6 * Authors: Ross Biro 7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 8 * Mark Evans, <evansmp@uhura.aston.ac.uk> 9 * 10 * Additional Authors: 11 * Florian la Roche <rzsfl@rz.uni-sb.de> 12 * Alan Cox <gw4pts@gw4pts.ampr.org> 13 * David Hinds <dahinds@users.sourceforge.net> 14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 15 * Adam Sulmicki <adam@cfar.umd.edu> 16 * Pekka Riikonen <priikone@poesidon.pspt.fi> 17 * 18 * Changes: 19 * D.J. Barrow : Fixed bug where dev->refcnt gets set 20 * to 2 if register_netdev gets called 21 * before net_dev_init & also removed a 22 * few lines of code in the process. 23 * Alan Cox : device private ioctl copies fields back. 24 * Alan Cox : Transmit queue code does relevant 25 * stunts to keep the queue safe. 26 * Alan Cox : Fixed double lock. 27 * Alan Cox : Fixed promisc NULL pointer trap 28 * ???????? : Support the full private ioctl range 29 * Alan Cox : Moved ioctl permission check into 30 * drivers 31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 32 * Alan Cox : 100 backlog just doesn't cut it when 33 * you start doing multicast video 8) 34 * Alan Cox : Rewrote net_bh and list manager. 35 * Alan Cox : Fix ETH_P_ALL echoback lengths. 36 * Alan Cox : Took out transmit every packet pass 37 * Saved a few bytes in the ioctl handler 38 * Alan Cox : Network driver sets packet type before 39 * calling netif_rx. Saves a function 40 * call a packet. 41 * Alan Cox : Hashed net_bh() 42 * Richard Kooijman: Timestamp fixes. 43 * Alan Cox : Wrong field in SIOCGIFDSTADDR 44 * Alan Cox : Device lock protection. 45 * Alan Cox : Fixed nasty side effect of device close 46 * changes. 47 * Rudi Cilibrasi : Pass the right thing to 48 * set_mac_address() 49 * Dave Miller : 32bit quantity for the device lock to 50 * make it work out on a Sparc. 51 * Bjorn Ekwall : Added KERNELD hack. 52 * Alan Cox : Cleaned up the backlog initialise. 53 * Craig Metz : SIOCGIFCONF fix if space for under 54 * 1 device. 55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 56 * is no device open function. 57 * Andi Kleen : Fix error reporting for SIOCGIFCONF 58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 59 * Cyrus Durgin : Cleaned for KMOD 60 * Adam Sulmicki : Bug Fix : Network Device Unload 61 * A network device unload needs to purge 62 * the backlog queue. 63 * Paul Rusty Russell : SIOCSIFNAME 64 * Pekka Riikonen : Netdev boot-time settings code 65 * Andrew Morton : Make unregister_netdevice wait 66 * indefinitely on dev->refcnt 67 * J Hadi Salim : - Backlog queue sampling 68 * - netif_rx() feedback 69 */ 70 71 #include <linux/uaccess.h> 72 #include <linux/bitops.h> 73 #include <linux/capability.h> 74 #include <linux/cpu.h> 75 #include <linux/types.h> 76 #include <linux/kernel.h> 77 #include <linux/hash.h> 78 #include <linux/slab.h> 79 #include <linux/sched.h> 80 #include <linux/sched/mm.h> 81 #include <linux/mutex.h> 82 #include <linux/rwsem.h> 83 #include <linux/string.h> 84 #include <linux/mm.h> 85 #include <linux/socket.h> 86 #include <linux/sockios.h> 87 #include <linux/errno.h> 88 #include <linux/interrupt.h> 89 #include <linux/if_ether.h> 90 #include <linux/netdevice.h> 91 #include <linux/etherdevice.h> 92 #include <linux/ethtool.h> 93 #include <linux/skbuff.h> 94 #include <linux/kthread.h> 95 #include <linux/bpf.h> 96 #include <linux/bpf_trace.h> 97 #include <net/net_namespace.h> 98 #include <net/sock.h> 99 #include <net/busy_poll.h> 100 #include <linux/rtnetlink.h> 101 #include <linux/stat.h> 102 #include <net/dsa.h> 103 #include <net/dst.h> 104 #include <net/dst_metadata.h> 105 #include <net/gro.h> 106 #include <net/pkt_sched.h> 107 #include <net/pkt_cls.h> 108 #include <net/checksum.h> 109 #include <net/xfrm.h> 110 #include <net/tcx.h> 111 #include <linux/highmem.h> 112 #include <linux/init.h> 113 #include <linux/module.h> 114 #include <linux/netpoll.h> 115 #include <linux/rcupdate.h> 116 #include <linux/delay.h> 117 #include <net/iw_handler.h> 118 #include <asm/current.h> 119 #include <linux/audit.h> 120 #include <linux/dmaengine.h> 121 #include <linux/err.h> 122 #include <linux/ctype.h> 123 #include <linux/if_arp.h> 124 #include <linux/if_vlan.h> 125 #include <linux/ip.h> 126 #include <net/ip.h> 127 #include <net/mpls.h> 128 #include <linux/ipv6.h> 129 #include <linux/in.h> 130 #include <linux/jhash.h> 131 #include <linux/random.h> 132 #include <trace/events/napi.h> 133 #include <trace/events/net.h> 134 #include <trace/events/skb.h> 135 #include <trace/events/qdisc.h> 136 #include <linux/inetdevice.h> 137 #include <linux/cpu_rmap.h> 138 #include <linux/static_key.h> 139 #include <linux/hashtable.h> 140 #include <linux/vmalloc.h> 141 #include <linux/if_macvlan.h> 142 #include <linux/errqueue.h> 143 #include <linux/hrtimer.h> 144 #include <linux/netfilter_netdev.h> 145 #include <linux/crash_dump.h> 146 #include <linux/sctp.h> 147 #include <net/udp_tunnel.h> 148 #include <linux/net_namespace.h> 149 #include <linux/indirect_call_wrapper.h> 150 #include <net/devlink.h> 151 #include <linux/pm_runtime.h> 152 #include <linux/prandom.h> 153 #include <linux/once_lite.h> 154 155 #include "dev.h" 156 #include "net-sysfs.h" 157 158 static DEFINE_SPINLOCK(ptype_lock); 159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 160 struct list_head ptype_all __read_mostly; /* Taps */ 161 162 static int netif_rx_internal(struct sk_buff *skb); 163 static int call_netdevice_notifiers_extack(unsigned long val, 164 struct net_device *dev, 165 struct netlink_ext_ack *extack); 166 static struct napi_struct *napi_by_id(unsigned int napi_id); 167 168 /* 169 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 170 * semaphore. 171 * 172 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 173 * 174 * Writers must hold the rtnl semaphore while they loop through the 175 * dev_base_head list, and hold dev_base_lock for writing when they do the 176 * actual updates. This allows pure readers to access the list even 177 * while a writer is preparing to update it. 178 * 179 * To put it another way, dev_base_lock is held for writing only to 180 * protect against pure readers; the rtnl semaphore provides the 181 * protection against other writers. 182 * 183 * See, for example usages, register_netdevice() and 184 * unregister_netdevice(), which must be called with the rtnl 185 * semaphore held. 186 */ 187 DEFINE_RWLOCK(dev_base_lock); 188 EXPORT_SYMBOL(dev_base_lock); 189 190 static DEFINE_MUTEX(ifalias_mutex); 191 192 /* protects napi_hash addition/deletion and napi_gen_id */ 193 static DEFINE_SPINLOCK(napi_hash_lock); 194 195 static unsigned int napi_gen_id = NR_CPUS; 196 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 197 198 static DECLARE_RWSEM(devnet_rename_sem); 199 200 static inline void dev_base_seq_inc(struct net *net) 201 { 202 while (++net->dev_base_seq == 0) 203 ; 204 } 205 206 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 207 { 208 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 209 210 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 211 } 212 213 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 214 { 215 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 216 } 217 218 static inline void rps_lock_irqsave(struct softnet_data *sd, 219 unsigned long *flags) 220 { 221 if (IS_ENABLED(CONFIG_RPS)) 222 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags); 223 else if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 224 local_irq_save(*flags); 225 } 226 227 static inline void rps_lock_irq_disable(struct softnet_data *sd) 228 { 229 if (IS_ENABLED(CONFIG_RPS)) 230 spin_lock_irq(&sd->input_pkt_queue.lock); 231 else if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 232 local_irq_disable(); 233 } 234 235 static inline void rps_unlock_irq_restore(struct softnet_data *sd, 236 unsigned long *flags) 237 { 238 if (IS_ENABLED(CONFIG_RPS)) 239 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags); 240 else if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 241 local_irq_restore(*flags); 242 } 243 244 static inline void rps_unlock_irq_enable(struct softnet_data *sd) 245 { 246 if (IS_ENABLED(CONFIG_RPS)) 247 spin_unlock_irq(&sd->input_pkt_queue.lock); 248 else if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 249 local_irq_enable(); 250 } 251 252 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev, 253 const char *name) 254 { 255 struct netdev_name_node *name_node; 256 257 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL); 258 if (!name_node) 259 return NULL; 260 INIT_HLIST_NODE(&name_node->hlist); 261 name_node->dev = dev; 262 name_node->name = name; 263 return name_node; 264 } 265 266 static struct netdev_name_node * 267 netdev_name_node_head_alloc(struct net_device *dev) 268 { 269 struct netdev_name_node *name_node; 270 271 name_node = netdev_name_node_alloc(dev, dev->name); 272 if (!name_node) 273 return NULL; 274 INIT_LIST_HEAD(&name_node->list); 275 return name_node; 276 } 277 278 static void netdev_name_node_free(struct netdev_name_node *name_node) 279 { 280 kfree(name_node); 281 } 282 283 static void netdev_name_node_add(struct net *net, 284 struct netdev_name_node *name_node) 285 { 286 hlist_add_head_rcu(&name_node->hlist, 287 dev_name_hash(net, name_node->name)); 288 } 289 290 static void netdev_name_node_del(struct netdev_name_node *name_node) 291 { 292 hlist_del_rcu(&name_node->hlist); 293 } 294 295 static struct netdev_name_node *netdev_name_node_lookup(struct net *net, 296 const char *name) 297 { 298 struct hlist_head *head = dev_name_hash(net, name); 299 struct netdev_name_node *name_node; 300 301 hlist_for_each_entry(name_node, head, hlist) 302 if (!strcmp(name_node->name, name)) 303 return name_node; 304 return NULL; 305 } 306 307 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net, 308 const char *name) 309 { 310 struct hlist_head *head = dev_name_hash(net, name); 311 struct netdev_name_node *name_node; 312 313 hlist_for_each_entry_rcu(name_node, head, hlist) 314 if (!strcmp(name_node->name, name)) 315 return name_node; 316 return NULL; 317 } 318 319 bool netdev_name_in_use(struct net *net, const char *name) 320 { 321 return netdev_name_node_lookup(net, name); 322 } 323 EXPORT_SYMBOL(netdev_name_in_use); 324 325 int netdev_name_node_alt_create(struct net_device *dev, const char *name) 326 { 327 struct netdev_name_node *name_node; 328 struct net *net = dev_net(dev); 329 330 name_node = netdev_name_node_lookup(net, name); 331 if (name_node) 332 return -EEXIST; 333 name_node = netdev_name_node_alloc(dev, name); 334 if (!name_node) 335 return -ENOMEM; 336 netdev_name_node_add(net, name_node); 337 /* The node that holds dev->name acts as a head of per-device list. */ 338 list_add_tail(&name_node->list, &dev->name_node->list); 339 340 return 0; 341 } 342 343 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node) 344 { 345 list_del(&name_node->list); 346 netdev_name_node_del(name_node); 347 kfree(name_node->name); 348 netdev_name_node_free(name_node); 349 } 350 351 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name) 352 { 353 struct netdev_name_node *name_node; 354 struct net *net = dev_net(dev); 355 356 name_node = netdev_name_node_lookup(net, name); 357 if (!name_node) 358 return -ENOENT; 359 /* lookup might have found our primary name or a name belonging 360 * to another device. 361 */ 362 if (name_node == dev->name_node || name_node->dev != dev) 363 return -EINVAL; 364 365 __netdev_name_node_alt_destroy(name_node); 366 367 return 0; 368 } 369 370 static void netdev_name_node_alt_flush(struct net_device *dev) 371 { 372 struct netdev_name_node *name_node, *tmp; 373 374 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) 375 __netdev_name_node_alt_destroy(name_node); 376 } 377 378 /* Device list insertion */ 379 static void list_netdevice(struct net_device *dev) 380 { 381 struct net *net = dev_net(dev); 382 383 ASSERT_RTNL(); 384 385 write_lock(&dev_base_lock); 386 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 387 netdev_name_node_add(net, dev->name_node); 388 hlist_add_head_rcu(&dev->index_hlist, 389 dev_index_hash(net, dev->ifindex)); 390 write_unlock(&dev_base_lock); 391 392 dev_base_seq_inc(net); 393 } 394 395 /* Device list removal 396 * caller must respect a RCU grace period before freeing/reusing dev 397 */ 398 static void unlist_netdevice(struct net_device *dev, bool lock) 399 { 400 ASSERT_RTNL(); 401 402 /* Unlink dev from the device chain */ 403 if (lock) 404 write_lock(&dev_base_lock); 405 list_del_rcu(&dev->dev_list); 406 netdev_name_node_del(dev->name_node); 407 hlist_del_rcu(&dev->index_hlist); 408 if (lock) 409 write_unlock(&dev_base_lock); 410 411 dev_base_seq_inc(dev_net(dev)); 412 } 413 414 /* 415 * Our notifier list 416 */ 417 418 static RAW_NOTIFIER_HEAD(netdev_chain); 419 420 /* 421 * Device drivers call our routines to queue packets here. We empty the 422 * queue in the local softnet handler. 423 */ 424 425 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 426 EXPORT_PER_CPU_SYMBOL(softnet_data); 427 428 #ifdef CONFIG_LOCKDEP 429 /* 430 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 431 * according to dev->type 432 */ 433 static const unsigned short netdev_lock_type[] = { 434 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 435 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 436 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 437 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 438 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 439 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 440 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 441 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 442 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 443 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 444 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 445 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 446 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 447 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 448 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 449 450 static const char *const netdev_lock_name[] = { 451 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 452 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 453 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 454 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 455 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 456 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 457 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 458 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 459 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 460 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 461 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 462 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 463 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 464 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 465 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 466 467 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 468 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 469 470 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 471 { 472 int i; 473 474 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 475 if (netdev_lock_type[i] == dev_type) 476 return i; 477 /* the last key is used by default */ 478 return ARRAY_SIZE(netdev_lock_type) - 1; 479 } 480 481 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 482 unsigned short dev_type) 483 { 484 int i; 485 486 i = netdev_lock_pos(dev_type); 487 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 488 netdev_lock_name[i]); 489 } 490 491 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 492 { 493 int i; 494 495 i = netdev_lock_pos(dev->type); 496 lockdep_set_class_and_name(&dev->addr_list_lock, 497 &netdev_addr_lock_key[i], 498 netdev_lock_name[i]); 499 } 500 #else 501 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 502 unsigned short dev_type) 503 { 504 } 505 506 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 507 { 508 } 509 #endif 510 511 /******************************************************************************* 512 * 513 * Protocol management and registration routines 514 * 515 *******************************************************************************/ 516 517 518 /* 519 * Add a protocol ID to the list. Now that the input handler is 520 * smarter we can dispense with all the messy stuff that used to be 521 * here. 522 * 523 * BEWARE!!! Protocol handlers, mangling input packets, 524 * MUST BE last in hash buckets and checking protocol handlers 525 * MUST start from promiscuous ptype_all chain in net_bh. 526 * It is true now, do not change it. 527 * Explanation follows: if protocol handler, mangling packet, will 528 * be the first on list, it is not able to sense, that packet 529 * is cloned and should be copied-on-write, so that it will 530 * change it and subsequent readers will get broken packet. 531 * --ANK (980803) 532 */ 533 534 static inline struct list_head *ptype_head(const struct packet_type *pt) 535 { 536 if (pt->type == htons(ETH_P_ALL)) 537 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 538 else 539 return pt->dev ? &pt->dev->ptype_specific : 540 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 541 } 542 543 /** 544 * dev_add_pack - add packet handler 545 * @pt: packet type declaration 546 * 547 * Add a protocol handler to the networking stack. The passed &packet_type 548 * is linked into kernel lists and may not be freed until it has been 549 * removed from the kernel lists. 550 * 551 * This call does not sleep therefore it can not 552 * guarantee all CPU's that are in middle of receiving packets 553 * will see the new packet type (until the next received packet). 554 */ 555 556 void dev_add_pack(struct packet_type *pt) 557 { 558 struct list_head *head = ptype_head(pt); 559 560 spin_lock(&ptype_lock); 561 list_add_rcu(&pt->list, head); 562 spin_unlock(&ptype_lock); 563 } 564 EXPORT_SYMBOL(dev_add_pack); 565 566 /** 567 * __dev_remove_pack - remove packet handler 568 * @pt: packet type declaration 569 * 570 * Remove a protocol handler that was previously added to the kernel 571 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 572 * from the kernel lists and can be freed or reused once this function 573 * returns. 574 * 575 * The packet type might still be in use by receivers 576 * and must not be freed until after all the CPU's have gone 577 * through a quiescent state. 578 */ 579 void __dev_remove_pack(struct packet_type *pt) 580 { 581 struct list_head *head = ptype_head(pt); 582 struct packet_type *pt1; 583 584 spin_lock(&ptype_lock); 585 586 list_for_each_entry(pt1, head, list) { 587 if (pt == pt1) { 588 list_del_rcu(&pt->list); 589 goto out; 590 } 591 } 592 593 pr_warn("dev_remove_pack: %p not found\n", pt); 594 out: 595 spin_unlock(&ptype_lock); 596 } 597 EXPORT_SYMBOL(__dev_remove_pack); 598 599 /** 600 * dev_remove_pack - remove packet handler 601 * @pt: packet type declaration 602 * 603 * Remove a protocol handler that was previously added to the kernel 604 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 605 * from the kernel lists and can be freed or reused once this function 606 * returns. 607 * 608 * This call sleeps to guarantee that no CPU is looking at the packet 609 * type after return. 610 */ 611 void dev_remove_pack(struct packet_type *pt) 612 { 613 __dev_remove_pack(pt); 614 615 synchronize_net(); 616 } 617 EXPORT_SYMBOL(dev_remove_pack); 618 619 620 /******************************************************************************* 621 * 622 * Device Interface Subroutines 623 * 624 *******************************************************************************/ 625 626 /** 627 * dev_get_iflink - get 'iflink' value of a interface 628 * @dev: targeted interface 629 * 630 * Indicates the ifindex the interface is linked to. 631 * Physical interfaces have the same 'ifindex' and 'iflink' values. 632 */ 633 634 int dev_get_iflink(const struct net_device *dev) 635 { 636 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 637 return dev->netdev_ops->ndo_get_iflink(dev); 638 639 return dev->ifindex; 640 } 641 EXPORT_SYMBOL(dev_get_iflink); 642 643 /** 644 * dev_fill_metadata_dst - Retrieve tunnel egress information. 645 * @dev: targeted interface 646 * @skb: The packet. 647 * 648 * For better visibility of tunnel traffic OVS needs to retrieve 649 * egress tunnel information for a packet. Following API allows 650 * user to get this info. 651 */ 652 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 653 { 654 struct ip_tunnel_info *info; 655 656 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 657 return -EINVAL; 658 659 info = skb_tunnel_info_unclone(skb); 660 if (!info) 661 return -ENOMEM; 662 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 663 return -EINVAL; 664 665 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 666 } 667 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 668 669 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack) 670 { 671 int k = stack->num_paths++; 672 673 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX)) 674 return NULL; 675 676 return &stack->path[k]; 677 } 678 679 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 680 struct net_device_path_stack *stack) 681 { 682 const struct net_device *last_dev; 683 struct net_device_path_ctx ctx = { 684 .dev = dev, 685 }; 686 struct net_device_path *path; 687 int ret = 0; 688 689 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr)); 690 stack->num_paths = 0; 691 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) { 692 last_dev = ctx.dev; 693 path = dev_fwd_path(stack); 694 if (!path) 695 return -1; 696 697 memset(path, 0, sizeof(struct net_device_path)); 698 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path); 699 if (ret < 0) 700 return -1; 701 702 if (WARN_ON_ONCE(last_dev == ctx.dev)) 703 return -1; 704 } 705 706 if (!ctx.dev) 707 return ret; 708 709 path = dev_fwd_path(stack); 710 if (!path) 711 return -1; 712 path->type = DEV_PATH_ETHERNET; 713 path->dev = ctx.dev; 714 715 return ret; 716 } 717 EXPORT_SYMBOL_GPL(dev_fill_forward_path); 718 719 /** 720 * __dev_get_by_name - find a device by its name 721 * @net: the applicable net namespace 722 * @name: name to find 723 * 724 * Find an interface by name. Must be called under RTNL semaphore 725 * or @dev_base_lock. If the name is found a pointer to the device 726 * is returned. If the name is not found then %NULL is returned. The 727 * reference counters are not incremented so the caller must be 728 * careful with locks. 729 */ 730 731 struct net_device *__dev_get_by_name(struct net *net, const char *name) 732 { 733 struct netdev_name_node *node_name; 734 735 node_name = netdev_name_node_lookup(net, name); 736 return node_name ? node_name->dev : NULL; 737 } 738 EXPORT_SYMBOL(__dev_get_by_name); 739 740 /** 741 * dev_get_by_name_rcu - find a device by its name 742 * @net: the applicable net namespace 743 * @name: name to find 744 * 745 * Find an interface by name. 746 * If the name is found a pointer to the device is returned. 747 * If the name is not found then %NULL is returned. 748 * The reference counters are not incremented so the caller must be 749 * careful with locks. The caller must hold RCU lock. 750 */ 751 752 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 753 { 754 struct netdev_name_node *node_name; 755 756 node_name = netdev_name_node_lookup_rcu(net, name); 757 return node_name ? node_name->dev : NULL; 758 } 759 EXPORT_SYMBOL(dev_get_by_name_rcu); 760 761 /* Deprecated for new users, call netdev_get_by_name() instead */ 762 struct net_device *dev_get_by_name(struct net *net, const char *name) 763 { 764 struct net_device *dev; 765 766 rcu_read_lock(); 767 dev = dev_get_by_name_rcu(net, name); 768 dev_hold(dev); 769 rcu_read_unlock(); 770 return dev; 771 } 772 EXPORT_SYMBOL(dev_get_by_name); 773 774 /** 775 * netdev_get_by_name() - find a device by its name 776 * @net: the applicable net namespace 777 * @name: name to find 778 * @tracker: tracking object for the acquired reference 779 * @gfp: allocation flags for the tracker 780 * 781 * Find an interface by name. This can be called from any 782 * context and does its own locking. The returned handle has 783 * the usage count incremented and the caller must use netdev_put() to 784 * release it when it is no longer needed. %NULL is returned if no 785 * matching device is found. 786 */ 787 struct net_device *netdev_get_by_name(struct net *net, const char *name, 788 netdevice_tracker *tracker, gfp_t gfp) 789 { 790 struct net_device *dev; 791 792 dev = dev_get_by_name(net, name); 793 if (dev) 794 netdev_tracker_alloc(dev, tracker, gfp); 795 return dev; 796 } 797 EXPORT_SYMBOL(netdev_get_by_name); 798 799 /** 800 * __dev_get_by_index - find a device by its ifindex 801 * @net: the applicable net namespace 802 * @ifindex: index of device 803 * 804 * Search for an interface by index. Returns %NULL if the device 805 * is not found or a pointer to the device. The device has not 806 * had its reference counter increased so the caller must be careful 807 * about locking. The caller must hold either the RTNL semaphore 808 * or @dev_base_lock. 809 */ 810 811 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 812 { 813 struct net_device *dev; 814 struct hlist_head *head = dev_index_hash(net, ifindex); 815 816 hlist_for_each_entry(dev, head, index_hlist) 817 if (dev->ifindex == ifindex) 818 return dev; 819 820 return NULL; 821 } 822 EXPORT_SYMBOL(__dev_get_by_index); 823 824 /** 825 * dev_get_by_index_rcu - find a device by its ifindex 826 * @net: the applicable net namespace 827 * @ifindex: index of device 828 * 829 * Search for an interface by index. Returns %NULL if the device 830 * is not found or a pointer to the device. The device has not 831 * had its reference counter increased so the caller must be careful 832 * about locking. The caller must hold RCU lock. 833 */ 834 835 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 836 { 837 struct net_device *dev; 838 struct hlist_head *head = dev_index_hash(net, ifindex); 839 840 hlist_for_each_entry_rcu(dev, head, index_hlist) 841 if (dev->ifindex == ifindex) 842 return dev; 843 844 return NULL; 845 } 846 EXPORT_SYMBOL(dev_get_by_index_rcu); 847 848 /* Deprecated for new users, call netdev_get_by_index() instead */ 849 struct net_device *dev_get_by_index(struct net *net, int ifindex) 850 { 851 struct net_device *dev; 852 853 rcu_read_lock(); 854 dev = dev_get_by_index_rcu(net, ifindex); 855 dev_hold(dev); 856 rcu_read_unlock(); 857 return dev; 858 } 859 EXPORT_SYMBOL(dev_get_by_index); 860 861 /** 862 * netdev_get_by_index() - find a device by its ifindex 863 * @net: the applicable net namespace 864 * @ifindex: index of device 865 * @tracker: tracking object for the acquired reference 866 * @gfp: allocation flags for the tracker 867 * 868 * Search for an interface by index. Returns NULL if the device 869 * is not found or a pointer to the device. The device returned has 870 * had a reference added and the pointer is safe until the user calls 871 * netdev_put() to indicate they have finished with it. 872 */ 873 struct net_device *netdev_get_by_index(struct net *net, int ifindex, 874 netdevice_tracker *tracker, gfp_t gfp) 875 { 876 struct net_device *dev; 877 878 dev = dev_get_by_index(net, ifindex); 879 if (dev) 880 netdev_tracker_alloc(dev, tracker, gfp); 881 return dev; 882 } 883 EXPORT_SYMBOL(netdev_get_by_index); 884 885 /** 886 * dev_get_by_napi_id - find a device by napi_id 887 * @napi_id: ID of the NAPI struct 888 * 889 * Search for an interface by NAPI ID. Returns %NULL if the device 890 * is not found or a pointer to the device. The device has not had 891 * its reference counter increased so the caller must be careful 892 * about locking. The caller must hold RCU lock. 893 */ 894 895 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 896 { 897 struct napi_struct *napi; 898 899 WARN_ON_ONCE(!rcu_read_lock_held()); 900 901 if (napi_id < MIN_NAPI_ID) 902 return NULL; 903 904 napi = napi_by_id(napi_id); 905 906 return napi ? napi->dev : NULL; 907 } 908 EXPORT_SYMBOL(dev_get_by_napi_id); 909 910 /** 911 * netdev_get_name - get a netdevice name, knowing its ifindex. 912 * @net: network namespace 913 * @name: a pointer to the buffer where the name will be stored. 914 * @ifindex: the ifindex of the interface to get the name from. 915 */ 916 int netdev_get_name(struct net *net, char *name, int ifindex) 917 { 918 struct net_device *dev; 919 int ret; 920 921 down_read(&devnet_rename_sem); 922 rcu_read_lock(); 923 924 dev = dev_get_by_index_rcu(net, ifindex); 925 if (!dev) { 926 ret = -ENODEV; 927 goto out; 928 } 929 930 strcpy(name, dev->name); 931 932 ret = 0; 933 out: 934 rcu_read_unlock(); 935 up_read(&devnet_rename_sem); 936 return ret; 937 } 938 939 /** 940 * dev_getbyhwaddr_rcu - find a device by its hardware address 941 * @net: the applicable net namespace 942 * @type: media type of device 943 * @ha: hardware address 944 * 945 * Search for an interface by MAC address. Returns NULL if the device 946 * is not found or a pointer to the device. 947 * The caller must hold RCU or RTNL. 948 * The returned device has not had its ref count increased 949 * and the caller must therefore be careful about locking 950 * 951 */ 952 953 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 954 const char *ha) 955 { 956 struct net_device *dev; 957 958 for_each_netdev_rcu(net, dev) 959 if (dev->type == type && 960 !memcmp(dev->dev_addr, ha, dev->addr_len)) 961 return dev; 962 963 return NULL; 964 } 965 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 966 967 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 968 { 969 struct net_device *dev, *ret = NULL; 970 971 rcu_read_lock(); 972 for_each_netdev_rcu(net, dev) 973 if (dev->type == type) { 974 dev_hold(dev); 975 ret = dev; 976 break; 977 } 978 rcu_read_unlock(); 979 return ret; 980 } 981 EXPORT_SYMBOL(dev_getfirstbyhwtype); 982 983 /** 984 * __dev_get_by_flags - find any device with given flags 985 * @net: the applicable net namespace 986 * @if_flags: IFF_* values 987 * @mask: bitmask of bits in if_flags to check 988 * 989 * Search for any interface with the given flags. Returns NULL if a device 990 * is not found or a pointer to the device. Must be called inside 991 * rtnl_lock(), and result refcount is unchanged. 992 */ 993 994 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 995 unsigned short mask) 996 { 997 struct net_device *dev, *ret; 998 999 ASSERT_RTNL(); 1000 1001 ret = NULL; 1002 for_each_netdev(net, dev) { 1003 if (((dev->flags ^ if_flags) & mask) == 0) { 1004 ret = dev; 1005 break; 1006 } 1007 } 1008 return ret; 1009 } 1010 EXPORT_SYMBOL(__dev_get_by_flags); 1011 1012 /** 1013 * dev_valid_name - check if name is okay for network device 1014 * @name: name string 1015 * 1016 * Network device names need to be valid file names to 1017 * allow sysfs to work. We also disallow any kind of 1018 * whitespace. 1019 */ 1020 bool dev_valid_name(const char *name) 1021 { 1022 if (*name == '\0') 1023 return false; 1024 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1025 return false; 1026 if (!strcmp(name, ".") || !strcmp(name, "..")) 1027 return false; 1028 1029 while (*name) { 1030 if (*name == '/' || *name == ':' || isspace(*name)) 1031 return false; 1032 name++; 1033 } 1034 return true; 1035 } 1036 EXPORT_SYMBOL(dev_valid_name); 1037 1038 /** 1039 * __dev_alloc_name - allocate a name for a device 1040 * @net: network namespace to allocate the device name in 1041 * @name: name format string 1042 * @buf: scratch buffer and result name string 1043 * 1044 * Passed a format string - eg "lt%d" it will try and find a suitable 1045 * id. It scans list of devices to build up a free map, then chooses 1046 * the first empty slot. The caller must hold the dev_base or rtnl lock 1047 * while allocating the name and adding the device in order to avoid 1048 * duplicates. 1049 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1050 * Returns the number of the unit assigned or a negative errno code. 1051 */ 1052 1053 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1054 { 1055 int i = 0; 1056 const char *p; 1057 const int max_netdevices = 8*PAGE_SIZE; 1058 unsigned long *inuse; 1059 struct net_device *d; 1060 1061 if (!dev_valid_name(name)) 1062 return -EINVAL; 1063 1064 p = strchr(name, '%'); 1065 if (p) { 1066 /* 1067 * Verify the string as this thing may have come from 1068 * the user. There must be either one "%d" and no other "%" 1069 * characters. 1070 */ 1071 if (p[1] != 'd' || strchr(p + 2, '%')) 1072 return -EINVAL; 1073 1074 /* Use one page as a bit array of possible slots */ 1075 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1076 if (!inuse) 1077 return -ENOMEM; 1078 1079 for_each_netdev(net, d) { 1080 struct netdev_name_node *name_node; 1081 list_for_each_entry(name_node, &d->name_node->list, list) { 1082 if (!sscanf(name_node->name, name, &i)) 1083 continue; 1084 if (i < 0 || i >= max_netdevices) 1085 continue; 1086 1087 /* avoid cases where sscanf is not exact inverse of printf */ 1088 snprintf(buf, IFNAMSIZ, name, i); 1089 if (!strncmp(buf, name_node->name, IFNAMSIZ)) 1090 __set_bit(i, inuse); 1091 } 1092 if (!sscanf(d->name, name, &i)) 1093 continue; 1094 if (i < 0 || i >= max_netdevices) 1095 continue; 1096 1097 /* avoid cases where sscanf is not exact inverse of printf */ 1098 snprintf(buf, IFNAMSIZ, name, i); 1099 if (!strncmp(buf, d->name, IFNAMSIZ)) 1100 __set_bit(i, inuse); 1101 } 1102 1103 i = find_first_zero_bit(inuse, max_netdevices); 1104 free_page((unsigned long) inuse); 1105 } 1106 1107 snprintf(buf, IFNAMSIZ, name, i); 1108 if (!netdev_name_in_use(net, buf)) 1109 return i; 1110 1111 /* It is possible to run out of possible slots 1112 * when the name is long and there isn't enough space left 1113 * for the digits, or if all bits are used. 1114 */ 1115 return -ENFILE; 1116 } 1117 1118 static int dev_alloc_name_ns(struct net *net, 1119 struct net_device *dev, 1120 const char *name) 1121 { 1122 char buf[IFNAMSIZ]; 1123 int ret; 1124 1125 BUG_ON(!net); 1126 ret = __dev_alloc_name(net, name, buf); 1127 if (ret >= 0) 1128 strscpy(dev->name, buf, IFNAMSIZ); 1129 return ret; 1130 } 1131 1132 /** 1133 * dev_alloc_name - allocate a name for a device 1134 * @dev: device 1135 * @name: name format string 1136 * 1137 * Passed a format string - eg "lt%d" it will try and find a suitable 1138 * id. It scans list of devices to build up a free map, then chooses 1139 * the first empty slot. The caller must hold the dev_base or rtnl lock 1140 * while allocating the name and adding the device in order to avoid 1141 * duplicates. 1142 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1143 * Returns the number of the unit assigned or a negative errno code. 1144 */ 1145 1146 int dev_alloc_name(struct net_device *dev, const char *name) 1147 { 1148 return dev_alloc_name_ns(dev_net(dev), dev, name); 1149 } 1150 EXPORT_SYMBOL(dev_alloc_name); 1151 1152 static int dev_get_valid_name(struct net *net, struct net_device *dev, 1153 const char *name) 1154 { 1155 BUG_ON(!net); 1156 1157 if (!dev_valid_name(name)) 1158 return -EINVAL; 1159 1160 if (strchr(name, '%')) 1161 return dev_alloc_name_ns(net, dev, name); 1162 else if (netdev_name_in_use(net, name)) 1163 return -EEXIST; 1164 else if (dev->name != name) 1165 strscpy(dev->name, name, IFNAMSIZ); 1166 1167 return 0; 1168 } 1169 1170 /** 1171 * dev_change_name - change name of a device 1172 * @dev: device 1173 * @newname: name (or format string) must be at least IFNAMSIZ 1174 * 1175 * Change name of a device, can pass format strings "eth%d". 1176 * for wildcarding. 1177 */ 1178 int dev_change_name(struct net_device *dev, const char *newname) 1179 { 1180 unsigned char old_assign_type; 1181 char oldname[IFNAMSIZ]; 1182 int err = 0; 1183 int ret; 1184 struct net *net; 1185 1186 ASSERT_RTNL(); 1187 BUG_ON(!dev_net(dev)); 1188 1189 net = dev_net(dev); 1190 1191 down_write(&devnet_rename_sem); 1192 1193 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1194 up_write(&devnet_rename_sem); 1195 return 0; 1196 } 1197 1198 memcpy(oldname, dev->name, IFNAMSIZ); 1199 1200 err = dev_get_valid_name(net, dev, newname); 1201 if (err < 0) { 1202 up_write(&devnet_rename_sem); 1203 return err; 1204 } 1205 1206 if (oldname[0] && !strchr(oldname, '%')) 1207 netdev_info(dev, "renamed from %s%s\n", oldname, 1208 dev->flags & IFF_UP ? " (while UP)" : ""); 1209 1210 old_assign_type = dev->name_assign_type; 1211 dev->name_assign_type = NET_NAME_RENAMED; 1212 1213 rollback: 1214 ret = device_rename(&dev->dev, dev->name); 1215 if (ret) { 1216 memcpy(dev->name, oldname, IFNAMSIZ); 1217 dev->name_assign_type = old_assign_type; 1218 up_write(&devnet_rename_sem); 1219 return ret; 1220 } 1221 1222 up_write(&devnet_rename_sem); 1223 1224 netdev_adjacent_rename_links(dev, oldname); 1225 1226 write_lock(&dev_base_lock); 1227 netdev_name_node_del(dev->name_node); 1228 write_unlock(&dev_base_lock); 1229 1230 synchronize_rcu(); 1231 1232 write_lock(&dev_base_lock); 1233 netdev_name_node_add(net, dev->name_node); 1234 write_unlock(&dev_base_lock); 1235 1236 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1237 ret = notifier_to_errno(ret); 1238 1239 if (ret) { 1240 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1241 if (err >= 0) { 1242 err = ret; 1243 down_write(&devnet_rename_sem); 1244 memcpy(dev->name, oldname, IFNAMSIZ); 1245 memcpy(oldname, newname, IFNAMSIZ); 1246 dev->name_assign_type = old_assign_type; 1247 old_assign_type = NET_NAME_RENAMED; 1248 goto rollback; 1249 } else { 1250 netdev_err(dev, "name change rollback failed: %d\n", 1251 ret); 1252 } 1253 } 1254 1255 return err; 1256 } 1257 1258 /** 1259 * dev_set_alias - change ifalias of a device 1260 * @dev: device 1261 * @alias: name up to IFALIASZ 1262 * @len: limit of bytes to copy from info 1263 * 1264 * Set ifalias for a device, 1265 */ 1266 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1267 { 1268 struct dev_ifalias *new_alias = NULL; 1269 1270 if (len >= IFALIASZ) 1271 return -EINVAL; 1272 1273 if (len) { 1274 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1275 if (!new_alias) 1276 return -ENOMEM; 1277 1278 memcpy(new_alias->ifalias, alias, len); 1279 new_alias->ifalias[len] = 0; 1280 } 1281 1282 mutex_lock(&ifalias_mutex); 1283 new_alias = rcu_replace_pointer(dev->ifalias, new_alias, 1284 mutex_is_locked(&ifalias_mutex)); 1285 mutex_unlock(&ifalias_mutex); 1286 1287 if (new_alias) 1288 kfree_rcu(new_alias, rcuhead); 1289 1290 return len; 1291 } 1292 EXPORT_SYMBOL(dev_set_alias); 1293 1294 /** 1295 * dev_get_alias - get ifalias of a device 1296 * @dev: device 1297 * @name: buffer to store name of ifalias 1298 * @len: size of buffer 1299 * 1300 * get ifalias for a device. Caller must make sure dev cannot go 1301 * away, e.g. rcu read lock or own a reference count to device. 1302 */ 1303 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1304 { 1305 const struct dev_ifalias *alias; 1306 int ret = 0; 1307 1308 rcu_read_lock(); 1309 alias = rcu_dereference(dev->ifalias); 1310 if (alias) 1311 ret = snprintf(name, len, "%s", alias->ifalias); 1312 rcu_read_unlock(); 1313 1314 return ret; 1315 } 1316 1317 /** 1318 * netdev_features_change - device changes features 1319 * @dev: device to cause notification 1320 * 1321 * Called to indicate a device has changed features. 1322 */ 1323 void netdev_features_change(struct net_device *dev) 1324 { 1325 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1326 } 1327 EXPORT_SYMBOL(netdev_features_change); 1328 1329 /** 1330 * netdev_state_change - device changes state 1331 * @dev: device to cause notification 1332 * 1333 * Called to indicate a device has changed state. This function calls 1334 * the notifier chains for netdev_chain and sends a NEWLINK message 1335 * to the routing socket. 1336 */ 1337 void netdev_state_change(struct net_device *dev) 1338 { 1339 if (dev->flags & IFF_UP) { 1340 struct netdev_notifier_change_info change_info = { 1341 .info.dev = dev, 1342 }; 1343 1344 call_netdevice_notifiers_info(NETDEV_CHANGE, 1345 &change_info.info); 1346 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL); 1347 } 1348 } 1349 EXPORT_SYMBOL(netdev_state_change); 1350 1351 /** 1352 * __netdev_notify_peers - notify network peers about existence of @dev, 1353 * to be called when rtnl lock is already held. 1354 * @dev: network device 1355 * 1356 * Generate traffic such that interested network peers are aware of 1357 * @dev, such as by generating a gratuitous ARP. This may be used when 1358 * a device wants to inform the rest of the network about some sort of 1359 * reconfiguration such as a failover event or virtual machine 1360 * migration. 1361 */ 1362 void __netdev_notify_peers(struct net_device *dev) 1363 { 1364 ASSERT_RTNL(); 1365 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1366 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1367 } 1368 EXPORT_SYMBOL(__netdev_notify_peers); 1369 1370 /** 1371 * netdev_notify_peers - notify network peers about existence of @dev 1372 * @dev: network device 1373 * 1374 * Generate traffic such that interested network peers are aware of 1375 * @dev, such as by generating a gratuitous ARP. This may be used when 1376 * a device wants to inform the rest of the network about some sort of 1377 * reconfiguration such as a failover event or virtual machine 1378 * migration. 1379 */ 1380 void netdev_notify_peers(struct net_device *dev) 1381 { 1382 rtnl_lock(); 1383 __netdev_notify_peers(dev); 1384 rtnl_unlock(); 1385 } 1386 EXPORT_SYMBOL(netdev_notify_peers); 1387 1388 static int napi_threaded_poll(void *data); 1389 1390 static int napi_kthread_create(struct napi_struct *n) 1391 { 1392 int err = 0; 1393 1394 /* Create and wake up the kthread once to put it in 1395 * TASK_INTERRUPTIBLE mode to avoid the blocked task 1396 * warning and work with loadavg. 1397 */ 1398 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d", 1399 n->dev->name, n->napi_id); 1400 if (IS_ERR(n->thread)) { 1401 err = PTR_ERR(n->thread); 1402 pr_err("kthread_run failed with err %d\n", err); 1403 n->thread = NULL; 1404 } 1405 1406 return err; 1407 } 1408 1409 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1410 { 1411 const struct net_device_ops *ops = dev->netdev_ops; 1412 int ret; 1413 1414 ASSERT_RTNL(); 1415 dev_addr_check(dev); 1416 1417 if (!netif_device_present(dev)) { 1418 /* may be detached because parent is runtime-suspended */ 1419 if (dev->dev.parent) 1420 pm_runtime_resume(dev->dev.parent); 1421 if (!netif_device_present(dev)) 1422 return -ENODEV; 1423 } 1424 1425 /* Block netpoll from trying to do any rx path servicing. 1426 * If we don't do this there is a chance ndo_poll_controller 1427 * or ndo_poll may be running while we open the device 1428 */ 1429 netpoll_poll_disable(dev); 1430 1431 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1432 ret = notifier_to_errno(ret); 1433 if (ret) 1434 return ret; 1435 1436 set_bit(__LINK_STATE_START, &dev->state); 1437 1438 if (ops->ndo_validate_addr) 1439 ret = ops->ndo_validate_addr(dev); 1440 1441 if (!ret && ops->ndo_open) 1442 ret = ops->ndo_open(dev); 1443 1444 netpoll_poll_enable(dev); 1445 1446 if (ret) 1447 clear_bit(__LINK_STATE_START, &dev->state); 1448 else { 1449 dev->flags |= IFF_UP; 1450 dev_set_rx_mode(dev); 1451 dev_activate(dev); 1452 add_device_randomness(dev->dev_addr, dev->addr_len); 1453 } 1454 1455 return ret; 1456 } 1457 1458 /** 1459 * dev_open - prepare an interface for use. 1460 * @dev: device to open 1461 * @extack: netlink extended ack 1462 * 1463 * Takes a device from down to up state. The device's private open 1464 * function is invoked and then the multicast lists are loaded. Finally 1465 * the device is moved into the up state and a %NETDEV_UP message is 1466 * sent to the netdev notifier chain. 1467 * 1468 * Calling this function on an active interface is a nop. On a failure 1469 * a negative errno code is returned. 1470 */ 1471 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1472 { 1473 int ret; 1474 1475 if (dev->flags & IFF_UP) 1476 return 0; 1477 1478 ret = __dev_open(dev, extack); 1479 if (ret < 0) 1480 return ret; 1481 1482 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL); 1483 call_netdevice_notifiers(NETDEV_UP, dev); 1484 1485 return ret; 1486 } 1487 EXPORT_SYMBOL(dev_open); 1488 1489 static void __dev_close_many(struct list_head *head) 1490 { 1491 struct net_device *dev; 1492 1493 ASSERT_RTNL(); 1494 might_sleep(); 1495 1496 list_for_each_entry(dev, head, close_list) { 1497 /* Temporarily disable netpoll until the interface is down */ 1498 netpoll_poll_disable(dev); 1499 1500 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1501 1502 clear_bit(__LINK_STATE_START, &dev->state); 1503 1504 /* Synchronize to scheduled poll. We cannot touch poll list, it 1505 * can be even on different cpu. So just clear netif_running(). 1506 * 1507 * dev->stop() will invoke napi_disable() on all of it's 1508 * napi_struct instances on this device. 1509 */ 1510 smp_mb__after_atomic(); /* Commit netif_running(). */ 1511 } 1512 1513 dev_deactivate_many(head); 1514 1515 list_for_each_entry(dev, head, close_list) { 1516 const struct net_device_ops *ops = dev->netdev_ops; 1517 1518 /* 1519 * Call the device specific close. This cannot fail. 1520 * Only if device is UP 1521 * 1522 * We allow it to be called even after a DETACH hot-plug 1523 * event. 1524 */ 1525 if (ops->ndo_stop) 1526 ops->ndo_stop(dev); 1527 1528 dev->flags &= ~IFF_UP; 1529 netpoll_poll_enable(dev); 1530 } 1531 } 1532 1533 static void __dev_close(struct net_device *dev) 1534 { 1535 LIST_HEAD(single); 1536 1537 list_add(&dev->close_list, &single); 1538 __dev_close_many(&single); 1539 list_del(&single); 1540 } 1541 1542 void dev_close_many(struct list_head *head, bool unlink) 1543 { 1544 struct net_device *dev, *tmp; 1545 1546 /* Remove the devices that don't need to be closed */ 1547 list_for_each_entry_safe(dev, tmp, head, close_list) 1548 if (!(dev->flags & IFF_UP)) 1549 list_del_init(&dev->close_list); 1550 1551 __dev_close_many(head); 1552 1553 list_for_each_entry_safe(dev, tmp, head, close_list) { 1554 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL); 1555 call_netdevice_notifiers(NETDEV_DOWN, dev); 1556 if (unlink) 1557 list_del_init(&dev->close_list); 1558 } 1559 } 1560 EXPORT_SYMBOL(dev_close_many); 1561 1562 /** 1563 * dev_close - shutdown an interface. 1564 * @dev: device to shutdown 1565 * 1566 * This function moves an active device into down state. A 1567 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1568 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1569 * chain. 1570 */ 1571 void dev_close(struct net_device *dev) 1572 { 1573 if (dev->flags & IFF_UP) { 1574 LIST_HEAD(single); 1575 1576 list_add(&dev->close_list, &single); 1577 dev_close_many(&single, true); 1578 list_del(&single); 1579 } 1580 } 1581 EXPORT_SYMBOL(dev_close); 1582 1583 1584 /** 1585 * dev_disable_lro - disable Large Receive Offload on a device 1586 * @dev: device 1587 * 1588 * Disable Large Receive Offload (LRO) on a net device. Must be 1589 * called under RTNL. This is needed if received packets may be 1590 * forwarded to another interface. 1591 */ 1592 void dev_disable_lro(struct net_device *dev) 1593 { 1594 struct net_device *lower_dev; 1595 struct list_head *iter; 1596 1597 dev->wanted_features &= ~NETIF_F_LRO; 1598 netdev_update_features(dev); 1599 1600 if (unlikely(dev->features & NETIF_F_LRO)) 1601 netdev_WARN(dev, "failed to disable LRO!\n"); 1602 1603 netdev_for_each_lower_dev(dev, lower_dev, iter) 1604 dev_disable_lro(lower_dev); 1605 } 1606 EXPORT_SYMBOL(dev_disable_lro); 1607 1608 /** 1609 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1610 * @dev: device 1611 * 1612 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1613 * called under RTNL. This is needed if Generic XDP is installed on 1614 * the device. 1615 */ 1616 static void dev_disable_gro_hw(struct net_device *dev) 1617 { 1618 dev->wanted_features &= ~NETIF_F_GRO_HW; 1619 netdev_update_features(dev); 1620 1621 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1622 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1623 } 1624 1625 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1626 { 1627 #define N(val) \ 1628 case NETDEV_##val: \ 1629 return "NETDEV_" __stringify(val); 1630 switch (cmd) { 1631 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1632 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1633 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1634 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) 1635 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) 1636 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE) 1637 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1638 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1639 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1640 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE) 1641 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA) 1642 N(XDP_FEAT_CHANGE) 1643 } 1644 #undef N 1645 return "UNKNOWN_NETDEV_EVENT"; 1646 } 1647 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1648 1649 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1650 struct net_device *dev) 1651 { 1652 struct netdev_notifier_info info = { 1653 .dev = dev, 1654 }; 1655 1656 return nb->notifier_call(nb, val, &info); 1657 } 1658 1659 static int call_netdevice_register_notifiers(struct notifier_block *nb, 1660 struct net_device *dev) 1661 { 1662 int err; 1663 1664 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1665 err = notifier_to_errno(err); 1666 if (err) 1667 return err; 1668 1669 if (!(dev->flags & IFF_UP)) 1670 return 0; 1671 1672 call_netdevice_notifier(nb, NETDEV_UP, dev); 1673 return 0; 1674 } 1675 1676 static void call_netdevice_unregister_notifiers(struct notifier_block *nb, 1677 struct net_device *dev) 1678 { 1679 if (dev->flags & IFF_UP) { 1680 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1681 dev); 1682 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1683 } 1684 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1685 } 1686 1687 static int call_netdevice_register_net_notifiers(struct notifier_block *nb, 1688 struct net *net) 1689 { 1690 struct net_device *dev; 1691 int err; 1692 1693 for_each_netdev(net, dev) { 1694 err = call_netdevice_register_notifiers(nb, dev); 1695 if (err) 1696 goto rollback; 1697 } 1698 return 0; 1699 1700 rollback: 1701 for_each_netdev_continue_reverse(net, dev) 1702 call_netdevice_unregister_notifiers(nb, dev); 1703 return err; 1704 } 1705 1706 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb, 1707 struct net *net) 1708 { 1709 struct net_device *dev; 1710 1711 for_each_netdev(net, dev) 1712 call_netdevice_unregister_notifiers(nb, dev); 1713 } 1714 1715 static int dev_boot_phase = 1; 1716 1717 /** 1718 * register_netdevice_notifier - register a network notifier block 1719 * @nb: notifier 1720 * 1721 * Register a notifier to be called when network device events occur. 1722 * The notifier passed is linked into the kernel structures and must 1723 * not be reused until it has been unregistered. A negative errno code 1724 * is returned on a failure. 1725 * 1726 * When registered all registration and up events are replayed 1727 * to the new notifier to allow device to have a race free 1728 * view of the network device list. 1729 */ 1730 1731 int register_netdevice_notifier(struct notifier_block *nb) 1732 { 1733 struct net *net; 1734 int err; 1735 1736 /* Close race with setup_net() and cleanup_net() */ 1737 down_write(&pernet_ops_rwsem); 1738 rtnl_lock(); 1739 err = raw_notifier_chain_register(&netdev_chain, nb); 1740 if (err) 1741 goto unlock; 1742 if (dev_boot_phase) 1743 goto unlock; 1744 for_each_net(net) { 1745 err = call_netdevice_register_net_notifiers(nb, net); 1746 if (err) 1747 goto rollback; 1748 } 1749 1750 unlock: 1751 rtnl_unlock(); 1752 up_write(&pernet_ops_rwsem); 1753 return err; 1754 1755 rollback: 1756 for_each_net_continue_reverse(net) 1757 call_netdevice_unregister_net_notifiers(nb, net); 1758 1759 raw_notifier_chain_unregister(&netdev_chain, nb); 1760 goto unlock; 1761 } 1762 EXPORT_SYMBOL(register_netdevice_notifier); 1763 1764 /** 1765 * unregister_netdevice_notifier - unregister a network notifier block 1766 * @nb: notifier 1767 * 1768 * Unregister a notifier previously registered by 1769 * register_netdevice_notifier(). The notifier is unlinked into the 1770 * kernel structures and may then be reused. A negative errno code 1771 * is returned on a failure. 1772 * 1773 * After unregistering unregister and down device events are synthesized 1774 * for all devices on the device list to the removed notifier to remove 1775 * the need for special case cleanup code. 1776 */ 1777 1778 int unregister_netdevice_notifier(struct notifier_block *nb) 1779 { 1780 struct net *net; 1781 int err; 1782 1783 /* Close race with setup_net() and cleanup_net() */ 1784 down_write(&pernet_ops_rwsem); 1785 rtnl_lock(); 1786 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1787 if (err) 1788 goto unlock; 1789 1790 for_each_net(net) 1791 call_netdevice_unregister_net_notifiers(nb, net); 1792 1793 unlock: 1794 rtnl_unlock(); 1795 up_write(&pernet_ops_rwsem); 1796 return err; 1797 } 1798 EXPORT_SYMBOL(unregister_netdevice_notifier); 1799 1800 static int __register_netdevice_notifier_net(struct net *net, 1801 struct notifier_block *nb, 1802 bool ignore_call_fail) 1803 { 1804 int err; 1805 1806 err = raw_notifier_chain_register(&net->netdev_chain, nb); 1807 if (err) 1808 return err; 1809 if (dev_boot_phase) 1810 return 0; 1811 1812 err = call_netdevice_register_net_notifiers(nb, net); 1813 if (err && !ignore_call_fail) 1814 goto chain_unregister; 1815 1816 return 0; 1817 1818 chain_unregister: 1819 raw_notifier_chain_unregister(&net->netdev_chain, nb); 1820 return err; 1821 } 1822 1823 static int __unregister_netdevice_notifier_net(struct net *net, 1824 struct notifier_block *nb) 1825 { 1826 int err; 1827 1828 err = raw_notifier_chain_unregister(&net->netdev_chain, nb); 1829 if (err) 1830 return err; 1831 1832 call_netdevice_unregister_net_notifiers(nb, net); 1833 return 0; 1834 } 1835 1836 /** 1837 * register_netdevice_notifier_net - register a per-netns network notifier block 1838 * @net: network namespace 1839 * @nb: notifier 1840 * 1841 * Register a notifier to be called when network device events occur. 1842 * The notifier passed is linked into the kernel structures and must 1843 * not be reused until it has been unregistered. A negative errno code 1844 * is returned on a failure. 1845 * 1846 * When registered all registration and up events are replayed 1847 * to the new notifier to allow device to have a race free 1848 * view of the network device list. 1849 */ 1850 1851 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb) 1852 { 1853 int err; 1854 1855 rtnl_lock(); 1856 err = __register_netdevice_notifier_net(net, nb, false); 1857 rtnl_unlock(); 1858 return err; 1859 } 1860 EXPORT_SYMBOL(register_netdevice_notifier_net); 1861 1862 /** 1863 * unregister_netdevice_notifier_net - unregister a per-netns 1864 * network notifier block 1865 * @net: network namespace 1866 * @nb: notifier 1867 * 1868 * Unregister a notifier previously registered by 1869 * register_netdevice_notifier_net(). The notifier is unlinked from the 1870 * kernel structures and may then be reused. A negative errno code 1871 * is returned on a failure. 1872 * 1873 * After unregistering unregister and down device events are synthesized 1874 * for all devices on the device list to the removed notifier to remove 1875 * the need for special case cleanup code. 1876 */ 1877 1878 int unregister_netdevice_notifier_net(struct net *net, 1879 struct notifier_block *nb) 1880 { 1881 int err; 1882 1883 rtnl_lock(); 1884 err = __unregister_netdevice_notifier_net(net, nb); 1885 rtnl_unlock(); 1886 return err; 1887 } 1888 EXPORT_SYMBOL(unregister_netdevice_notifier_net); 1889 1890 static void __move_netdevice_notifier_net(struct net *src_net, 1891 struct net *dst_net, 1892 struct notifier_block *nb) 1893 { 1894 __unregister_netdevice_notifier_net(src_net, nb); 1895 __register_netdevice_notifier_net(dst_net, nb, true); 1896 } 1897 1898 int register_netdevice_notifier_dev_net(struct net_device *dev, 1899 struct notifier_block *nb, 1900 struct netdev_net_notifier *nn) 1901 { 1902 int err; 1903 1904 rtnl_lock(); 1905 err = __register_netdevice_notifier_net(dev_net(dev), nb, false); 1906 if (!err) { 1907 nn->nb = nb; 1908 list_add(&nn->list, &dev->net_notifier_list); 1909 } 1910 rtnl_unlock(); 1911 return err; 1912 } 1913 EXPORT_SYMBOL(register_netdevice_notifier_dev_net); 1914 1915 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 1916 struct notifier_block *nb, 1917 struct netdev_net_notifier *nn) 1918 { 1919 int err; 1920 1921 rtnl_lock(); 1922 list_del(&nn->list); 1923 err = __unregister_netdevice_notifier_net(dev_net(dev), nb); 1924 rtnl_unlock(); 1925 return err; 1926 } 1927 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net); 1928 1929 static void move_netdevice_notifiers_dev_net(struct net_device *dev, 1930 struct net *net) 1931 { 1932 struct netdev_net_notifier *nn; 1933 1934 list_for_each_entry(nn, &dev->net_notifier_list, list) 1935 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb); 1936 } 1937 1938 /** 1939 * call_netdevice_notifiers_info - call all network notifier blocks 1940 * @val: value passed unmodified to notifier function 1941 * @info: notifier information data 1942 * 1943 * Call all network notifier blocks. Parameters and return value 1944 * are as for raw_notifier_call_chain(). 1945 */ 1946 1947 int call_netdevice_notifiers_info(unsigned long val, 1948 struct netdev_notifier_info *info) 1949 { 1950 struct net *net = dev_net(info->dev); 1951 int ret; 1952 1953 ASSERT_RTNL(); 1954 1955 /* Run per-netns notifier block chain first, then run the global one. 1956 * Hopefully, one day, the global one is going to be removed after 1957 * all notifier block registrators get converted to be per-netns. 1958 */ 1959 ret = raw_notifier_call_chain(&net->netdev_chain, val, info); 1960 if (ret & NOTIFY_STOP_MASK) 1961 return ret; 1962 return raw_notifier_call_chain(&netdev_chain, val, info); 1963 } 1964 1965 /** 1966 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks 1967 * for and rollback on error 1968 * @val_up: value passed unmodified to notifier function 1969 * @val_down: value passed unmodified to the notifier function when 1970 * recovering from an error on @val_up 1971 * @info: notifier information data 1972 * 1973 * Call all per-netns network notifier blocks, but not notifier blocks on 1974 * the global notifier chain. Parameters and return value are as for 1975 * raw_notifier_call_chain_robust(). 1976 */ 1977 1978 static int 1979 call_netdevice_notifiers_info_robust(unsigned long val_up, 1980 unsigned long val_down, 1981 struct netdev_notifier_info *info) 1982 { 1983 struct net *net = dev_net(info->dev); 1984 1985 ASSERT_RTNL(); 1986 1987 return raw_notifier_call_chain_robust(&net->netdev_chain, 1988 val_up, val_down, info); 1989 } 1990 1991 static int call_netdevice_notifiers_extack(unsigned long val, 1992 struct net_device *dev, 1993 struct netlink_ext_ack *extack) 1994 { 1995 struct netdev_notifier_info info = { 1996 .dev = dev, 1997 .extack = extack, 1998 }; 1999 2000 return call_netdevice_notifiers_info(val, &info); 2001 } 2002 2003 /** 2004 * call_netdevice_notifiers - call all network notifier blocks 2005 * @val: value passed unmodified to notifier function 2006 * @dev: net_device pointer passed unmodified to notifier function 2007 * 2008 * Call all network notifier blocks. Parameters and return value 2009 * are as for raw_notifier_call_chain(). 2010 */ 2011 2012 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 2013 { 2014 return call_netdevice_notifiers_extack(val, dev, NULL); 2015 } 2016 EXPORT_SYMBOL(call_netdevice_notifiers); 2017 2018 /** 2019 * call_netdevice_notifiers_mtu - call all network notifier blocks 2020 * @val: value passed unmodified to notifier function 2021 * @dev: net_device pointer passed unmodified to notifier function 2022 * @arg: additional u32 argument passed to the notifier function 2023 * 2024 * Call all network notifier blocks. Parameters and return value 2025 * are as for raw_notifier_call_chain(). 2026 */ 2027 static int call_netdevice_notifiers_mtu(unsigned long val, 2028 struct net_device *dev, u32 arg) 2029 { 2030 struct netdev_notifier_info_ext info = { 2031 .info.dev = dev, 2032 .ext.mtu = arg, 2033 }; 2034 2035 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 2036 2037 return call_netdevice_notifiers_info(val, &info.info); 2038 } 2039 2040 #ifdef CONFIG_NET_INGRESS 2041 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 2042 2043 void net_inc_ingress_queue(void) 2044 { 2045 static_branch_inc(&ingress_needed_key); 2046 } 2047 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 2048 2049 void net_dec_ingress_queue(void) 2050 { 2051 static_branch_dec(&ingress_needed_key); 2052 } 2053 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 2054 #endif 2055 2056 #ifdef CONFIG_NET_EGRESS 2057 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 2058 2059 void net_inc_egress_queue(void) 2060 { 2061 static_branch_inc(&egress_needed_key); 2062 } 2063 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 2064 2065 void net_dec_egress_queue(void) 2066 { 2067 static_branch_dec(&egress_needed_key); 2068 } 2069 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 2070 #endif 2071 2072 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 2073 EXPORT_SYMBOL(netstamp_needed_key); 2074 #ifdef CONFIG_JUMP_LABEL 2075 static atomic_t netstamp_needed_deferred; 2076 static atomic_t netstamp_wanted; 2077 static void netstamp_clear(struct work_struct *work) 2078 { 2079 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 2080 int wanted; 2081 2082 wanted = atomic_add_return(deferred, &netstamp_wanted); 2083 if (wanted > 0) 2084 static_branch_enable(&netstamp_needed_key); 2085 else 2086 static_branch_disable(&netstamp_needed_key); 2087 } 2088 static DECLARE_WORK(netstamp_work, netstamp_clear); 2089 #endif 2090 2091 void net_enable_timestamp(void) 2092 { 2093 #ifdef CONFIG_JUMP_LABEL 2094 int wanted = atomic_read(&netstamp_wanted); 2095 2096 while (wanted > 0) { 2097 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1)) 2098 return; 2099 } 2100 atomic_inc(&netstamp_needed_deferred); 2101 schedule_work(&netstamp_work); 2102 #else 2103 static_branch_inc(&netstamp_needed_key); 2104 #endif 2105 } 2106 EXPORT_SYMBOL(net_enable_timestamp); 2107 2108 void net_disable_timestamp(void) 2109 { 2110 #ifdef CONFIG_JUMP_LABEL 2111 int wanted = atomic_read(&netstamp_wanted); 2112 2113 while (wanted > 1) { 2114 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1)) 2115 return; 2116 } 2117 atomic_dec(&netstamp_needed_deferred); 2118 schedule_work(&netstamp_work); 2119 #else 2120 static_branch_dec(&netstamp_needed_key); 2121 #endif 2122 } 2123 EXPORT_SYMBOL(net_disable_timestamp); 2124 2125 static inline void net_timestamp_set(struct sk_buff *skb) 2126 { 2127 skb->tstamp = 0; 2128 skb->mono_delivery_time = 0; 2129 if (static_branch_unlikely(&netstamp_needed_key)) 2130 skb->tstamp = ktime_get_real(); 2131 } 2132 2133 #define net_timestamp_check(COND, SKB) \ 2134 if (static_branch_unlikely(&netstamp_needed_key)) { \ 2135 if ((COND) && !(SKB)->tstamp) \ 2136 (SKB)->tstamp = ktime_get_real(); \ 2137 } \ 2138 2139 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 2140 { 2141 return __is_skb_forwardable(dev, skb, true); 2142 } 2143 EXPORT_SYMBOL_GPL(is_skb_forwardable); 2144 2145 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb, 2146 bool check_mtu) 2147 { 2148 int ret = ____dev_forward_skb(dev, skb, check_mtu); 2149 2150 if (likely(!ret)) { 2151 skb->protocol = eth_type_trans(skb, dev); 2152 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 2153 } 2154 2155 return ret; 2156 } 2157 2158 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2159 { 2160 return __dev_forward_skb2(dev, skb, true); 2161 } 2162 EXPORT_SYMBOL_GPL(__dev_forward_skb); 2163 2164 /** 2165 * dev_forward_skb - loopback an skb to another netif 2166 * 2167 * @dev: destination network device 2168 * @skb: buffer to forward 2169 * 2170 * return values: 2171 * NET_RX_SUCCESS (no congestion) 2172 * NET_RX_DROP (packet was dropped, but freed) 2173 * 2174 * dev_forward_skb can be used for injecting an skb from the 2175 * start_xmit function of one device into the receive queue 2176 * of another device. 2177 * 2178 * The receiving device may be in another namespace, so 2179 * we have to clear all information in the skb that could 2180 * impact namespace isolation. 2181 */ 2182 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2183 { 2184 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 2185 } 2186 EXPORT_SYMBOL_GPL(dev_forward_skb); 2187 2188 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb) 2189 { 2190 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb); 2191 } 2192 2193 static inline int deliver_skb(struct sk_buff *skb, 2194 struct packet_type *pt_prev, 2195 struct net_device *orig_dev) 2196 { 2197 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 2198 return -ENOMEM; 2199 refcount_inc(&skb->users); 2200 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2201 } 2202 2203 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 2204 struct packet_type **pt, 2205 struct net_device *orig_dev, 2206 __be16 type, 2207 struct list_head *ptype_list) 2208 { 2209 struct packet_type *ptype, *pt_prev = *pt; 2210 2211 list_for_each_entry_rcu(ptype, ptype_list, list) { 2212 if (ptype->type != type) 2213 continue; 2214 if (pt_prev) 2215 deliver_skb(skb, pt_prev, orig_dev); 2216 pt_prev = ptype; 2217 } 2218 *pt = pt_prev; 2219 } 2220 2221 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 2222 { 2223 if (!ptype->af_packet_priv || !skb->sk) 2224 return false; 2225 2226 if (ptype->id_match) 2227 return ptype->id_match(ptype, skb->sk); 2228 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 2229 return true; 2230 2231 return false; 2232 } 2233 2234 /** 2235 * dev_nit_active - return true if any network interface taps are in use 2236 * 2237 * @dev: network device to check for the presence of taps 2238 */ 2239 bool dev_nit_active(struct net_device *dev) 2240 { 2241 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all); 2242 } 2243 EXPORT_SYMBOL_GPL(dev_nit_active); 2244 2245 /* 2246 * Support routine. Sends outgoing frames to any network 2247 * taps currently in use. 2248 */ 2249 2250 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 2251 { 2252 struct packet_type *ptype; 2253 struct sk_buff *skb2 = NULL; 2254 struct packet_type *pt_prev = NULL; 2255 struct list_head *ptype_list = &ptype_all; 2256 2257 rcu_read_lock(); 2258 again: 2259 list_for_each_entry_rcu(ptype, ptype_list, list) { 2260 if (ptype->ignore_outgoing) 2261 continue; 2262 2263 /* Never send packets back to the socket 2264 * they originated from - MvS (miquels@drinkel.ow.org) 2265 */ 2266 if (skb_loop_sk(ptype, skb)) 2267 continue; 2268 2269 if (pt_prev) { 2270 deliver_skb(skb2, pt_prev, skb->dev); 2271 pt_prev = ptype; 2272 continue; 2273 } 2274 2275 /* need to clone skb, done only once */ 2276 skb2 = skb_clone(skb, GFP_ATOMIC); 2277 if (!skb2) 2278 goto out_unlock; 2279 2280 net_timestamp_set(skb2); 2281 2282 /* skb->nh should be correctly 2283 * set by sender, so that the second statement is 2284 * just protection against buggy protocols. 2285 */ 2286 skb_reset_mac_header(skb2); 2287 2288 if (skb_network_header(skb2) < skb2->data || 2289 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2290 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2291 ntohs(skb2->protocol), 2292 dev->name); 2293 skb_reset_network_header(skb2); 2294 } 2295 2296 skb2->transport_header = skb2->network_header; 2297 skb2->pkt_type = PACKET_OUTGOING; 2298 pt_prev = ptype; 2299 } 2300 2301 if (ptype_list == &ptype_all) { 2302 ptype_list = &dev->ptype_all; 2303 goto again; 2304 } 2305 out_unlock: 2306 if (pt_prev) { 2307 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2308 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2309 else 2310 kfree_skb(skb2); 2311 } 2312 rcu_read_unlock(); 2313 } 2314 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2315 2316 /** 2317 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2318 * @dev: Network device 2319 * @txq: number of queues available 2320 * 2321 * If real_num_tx_queues is changed the tc mappings may no longer be 2322 * valid. To resolve this verify the tc mapping remains valid and if 2323 * not NULL the mapping. With no priorities mapping to this 2324 * offset/count pair it will no longer be used. In the worst case TC0 2325 * is invalid nothing can be done so disable priority mappings. If is 2326 * expected that drivers will fix this mapping if they can before 2327 * calling netif_set_real_num_tx_queues. 2328 */ 2329 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2330 { 2331 int i; 2332 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2333 2334 /* If TC0 is invalidated disable TC mapping */ 2335 if (tc->offset + tc->count > txq) { 2336 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2337 dev->num_tc = 0; 2338 return; 2339 } 2340 2341 /* Invalidated prio to tc mappings set to TC0 */ 2342 for (i = 1; i < TC_BITMASK + 1; i++) { 2343 int q = netdev_get_prio_tc_map(dev, i); 2344 2345 tc = &dev->tc_to_txq[q]; 2346 if (tc->offset + tc->count > txq) { 2347 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2348 i, q); 2349 netdev_set_prio_tc_map(dev, i, 0); 2350 } 2351 } 2352 } 2353 2354 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2355 { 2356 if (dev->num_tc) { 2357 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2358 int i; 2359 2360 /* walk through the TCs and see if it falls into any of them */ 2361 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2362 if ((txq - tc->offset) < tc->count) 2363 return i; 2364 } 2365 2366 /* didn't find it, just return -1 to indicate no match */ 2367 return -1; 2368 } 2369 2370 return 0; 2371 } 2372 EXPORT_SYMBOL(netdev_txq_to_tc); 2373 2374 #ifdef CONFIG_XPS 2375 static struct static_key xps_needed __read_mostly; 2376 static struct static_key xps_rxqs_needed __read_mostly; 2377 static DEFINE_MUTEX(xps_map_mutex); 2378 #define xmap_dereference(P) \ 2379 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2380 2381 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2382 struct xps_dev_maps *old_maps, int tci, u16 index) 2383 { 2384 struct xps_map *map = NULL; 2385 int pos; 2386 2387 map = xmap_dereference(dev_maps->attr_map[tci]); 2388 if (!map) 2389 return false; 2390 2391 for (pos = map->len; pos--;) { 2392 if (map->queues[pos] != index) 2393 continue; 2394 2395 if (map->len > 1) { 2396 map->queues[pos] = map->queues[--map->len]; 2397 break; 2398 } 2399 2400 if (old_maps) 2401 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL); 2402 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2403 kfree_rcu(map, rcu); 2404 return false; 2405 } 2406 2407 return true; 2408 } 2409 2410 static bool remove_xps_queue_cpu(struct net_device *dev, 2411 struct xps_dev_maps *dev_maps, 2412 int cpu, u16 offset, u16 count) 2413 { 2414 int num_tc = dev_maps->num_tc; 2415 bool active = false; 2416 int tci; 2417 2418 for (tci = cpu * num_tc; num_tc--; tci++) { 2419 int i, j; 2420 2421 for (i = count, j = offset; i--; j++) { 2422 if (!remove_xps_queue(dev_maps, NULL, tci, j)) 2423 break; 2424 } 2425 2426 active |= i < 0; 2427 } 2428 2429 return active; 2430 } 2431 2432 static void reset_xps_maps(struct net_device *dev, 2433 struct xps_dev_maps *dev_maps, 2434 enum xps_map_type type) 2435 { 2436 static_key_slow_dec_cpuslocked(&xps_needed); 2437 if (type == XPS_RXQS) 2438 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2439 2440 RCU_INIT_POINTER(dev->xps_maps[type], NULL); 2441 2442 kfree_rcu(dev_maps, rcu); 2443 } 2444 2445 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type, 2446 u16 offset, u16 count) 2447 { 2448 struct xps_dev_maps *dev_maps; 2449 bool active = false; 2450 int i, j; 2451 2452 dev_maps = xmap_dereference(dev->xps_maps[type]); 2453 if (!dev_maps) 2454 return; 2455 2456 for (j = 0; j < dev_maps->nr_ids; j++) 2457 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count); 2458 if (!active) 2459 reset_xps_maps(dev, dev_maps, type); 2460 2461 if (type == XPS_CPUS) { 2462 for (i = offset + (count - 1); count--; i--) 2463 netdev_queue_numa_node_write( 2464 netdev_get_tx_queue(dev, i), NUMA_NO_NODE); 2465 } 2466 } 2467 2468 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2469 u16 count) 2470 { 2471 if (!static_key_false(&xps_needed)) 2472 return; 2473 2474 cpus_read_lock(); 2475 mutex_lock(&xps_map_mutex); 2476 2477 if (static_key_false(&xps_rxqs_needed)) 2478 clean_xps_maps(dev, XPS_RXQS, offset, count); 2479 2480 clean_xps_maps(dev, XPS_CPUS, offset, count); 2481 2482 mutex_unlock(&xps_map_mutex); 2483 cpus_read_unlock(); 2484 } 2485 2486 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2487 { 2488 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2489 } 2490 2491 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2492 u16 index, bool is_rxqs_map) 2493 { 2494 struct xps_map *new_map; 2495 int alloc_len = XPS_MIN_MAP_ALLOC; 2496 int i, pos; 2497 2498 for (pos = 0; map && pos < map->len; pos++) { 2499 if (map->queues[pos] != index) 2500 continue; 2501 return map; 2502 } 2503 2504 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2505 if (map) { 2506 if (pos < map->alloc_len) 2507 return map; 2508 2509 alloc_len = map->alloc_len * 2; 2510 } 2511 2512 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2513 * map 2514 */ 2515 if (is_rxqs_map) 2516 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2517 else 2518 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2519 cpu_to_node(attr_index)); 2520 if (!new_map) 2521 return NULL; 2522 2523 for (i = 0; i < pos; i++) 2524 new_map->queues[i] = map->queues[i]; 2525 new_map->alloc_len = alloc_len; 2526 new_map->len = pos; 2527 2528 return new_map; 2529 } 2530 2531 /* Copy xps maps at a given index */ 2532 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps, 2533 struct xps_dev_maps *new_dev_maps, int index, 2534 int tc, bool skip_tc) 2535 { 2536 int i, tci = index * dev_maps->num_tc; 2537 struct xps_map *map; 2538 2539 /* copy maps belonging to foreign traffic classes */ 2540 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2541 if (i == tc && skip_tc) 2542 continue; 2543 2544 /* fill in the new device map from the old device map */ 2545 map = xmap_dereference(dev_maps->attr_map[tci]); 2546 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2547 } 2548 } 2549 2550 /* Must be called under cpus_read_lock */ 2551 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2552 u16 index, enum xps_map_type type) 2553 { 2554 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL; 2555 const unsigned long *online_mask = NULL; 2556 bool active = false, copy = false; 2557 int i, j, tci, numa_node_id = -2; 2558 int maps_sz, num_tc = 1, tc = 0; 2559 struct xps_map *map, *new_map; 2560 unsigned int nr_ids; 2561 2562 WARN_ON_ONCE(index >= dev->num_tx_queues); 2563 2564 if (dev->num_tc) { 2565 /* Do not allow XPS on subordinate device directly */ 2566 num_tc = dev->num_tc; 2567 if (num_tc < 0) 2568 return -EINVAL; 2569 2570 /* If queue belongs to subordinate dev use its map */ 2571 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2572 2573 tc = netdev_txq_to_tc(dev, index); 2574 if (tc < 0) 2575 return -EINVAL; 2576 } 2577 2578 mutex_lock(&xps_map_mutex); 2579 2580 dev_maps = xmap_dereference(dev->xps_maps[type]); 2581 if (type == XPS_RXQS) { 2582 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2583 nr_ids = dev->num_rx_queues; 2584 } else { 2585 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2586 if (num_possible_cpus() > 1) 2587 online_mask = cpumask_bits(cpu_online_mask); 2588 nr_ids = nr_cpu_ids; 2589 } 2590 2591 if (maps_sz < L1_CACHE_BYTES) 2592 maps_sz = L1_CACHE_BYTES; 2593 2594 /* The old dev_maps could be larger or smaller than the one we're 2595 * setting up now, as dev->num_tc or nr_ids could have been updated in 2596 * between. We could try to be smart, but let's be safe instead and only 2597 * copy foreign traffic classes if the two map sizes match. 2598 */ 2599 if (dev_maps && 2600 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids) 2601 copy = true; 2602 2603 /* allocate memory for queue storage */ 2604 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2605 j < nr_ids;) { 2606 if (!new_dev_maps) { 2607 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2608 if (!new_dev_maps) { 2609 mutex_unlock(&xps_map_mutex); 2610 return -ENOMEM; 2611 } 2612 2613 new_dev_maps->nr_ids = nr_ids; 2614 new_dev_maps->num_tc = num_tc; 2615 } 2616 2617 tci = j * num_tc + tc; 2618 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL; 2619 2620 map = expand_xps_map(map, j, index, type == XPS_RXQS); 2621 if (!map) 2622 goto error; 2623 2624 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2625 } 2626 2627 if (!new_dev_maps) 2628 goto out_no_new_maps; 2629 2630 if (!dev_maps) { 2631 /* Increment static keys at most once per type */ 2632 static_key_slow_inc_cpuslocked(&xps_needed); 2633 if (type == XPS_RXQS) 2634 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2635 } 2636 2637 for (j = 0; j < nr_ids; j++) { 2638 bool skip_tc = false; 2639 2640 tci = j * num_tc + tc; 2641 if (netif_attr_test_mask(j, mask, nr_ids) && 2642 netif_attr_test_online(j, online_mask, nr_ids)) { 2643 /* add tx-queue to CPU/rx-queue maps */ 2644 int pos = 0; 2645 2646 skip_tc = true; 2647 2648 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2649 while ((pos < map->len) && (map->queues[pos] != index)) 2650 pos++; 2651 2652 if (pos == map->len) 2653 map->queues[map->len++] = index; 2654 #ifdef CONFIG_NUMA 2655 if (type == XPS_CPUS) { 2656 if (numa_node_id == -2) 2657 numa_node_id = cpu_to_node(j); 2658 else if (numa_node_id != cpu_to_node(j)) 2659 numa_node_id = -1; 2660 } 2661 #endif 2662 } 2663 2664 if (copy) 2665 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc, 2666 skip_tc); 2667 } 2668 2669 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps); 2670 2671 /* Cleanup old maps */ 2672 if (!dev_maps) 2673 goto out_no_old_maps; 2674 2675 for (j = 0; j < dev_maps->nr_ids; j++) { 2676 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) { 2677 map = xmap_dereference(dev_maps->attr_map[tci]); 2678 if (!map) 2679 continue; 2680 2681 if (copy) { 2682 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2683 if (map == new_map) 2684 continue; 2685 } 2686 2687 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2688 kfree_rcu(map, rcu); 2689 } 2690 } 2691 2692 old_dev_maps = dev_maps; 2693 2694 out_no_old_maps: 2695 dev_maps = new_dev_maps; 2696 active = true; 2697 2698 out_no_new_maps: 2699 if (type == XPS_CPUS) 2700 /* update Tx queue numa node */ 2701 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2702 (numa_node_id >= 0) ? 2703 numa_node_id : NUMA_NO_NODE); 2704 2705 if (!dev_maps) 2706 goto out_no_maps; 2707 2708 /* removes tx-queue from unused CPUs/rx-queues */ 2709 for (j = 0; j < dev_maps->nr_ids; j++) { 2710 tci = j * dev_maps->num_tc; 2711 2712 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2713 if (i == tc && 2714 netif_attr_test_mask(j, mask, dev_maps->nr_ids) && 2715 netif_attr_test_online(j, online_mask, dev_maps->nr_ids)) 2716 continue; 2717 2718 active |= remove_xps_queue(dev_maps, 2719 copy ? old_dev_maps : NULL, 2720 tci, index); 2721 } 2722 } 2723 2724 if (old_dev_maps) 2725 kfree_rcu(old_dev_maps, rcu); 2726 2727 /* free map if not active */ 2728 if (!active) 2729 reset_xps_maps(dev, dev_maps, type); 2730 2731 out_no_maps: 2732 mutex_unlock(&xps_map_mutex); 2733 2734 return 0; 2735 error: 2736 /* remove any maps that we added */ 2737 for (j = 0; j < nr_ids; j++) { 2738 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2739 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2740 map = copy ? 2741 xmap_dereference(dev_maps->attr_map[tci]) : 2742 NULL; 2743 if (new_map && new_map != map) 2744 kfree(new_map); 2745 } 2746 } 2747 2748 mutex_unlock(&xps_map_mutex); 2749 2750 kfree(new_dev_maps); 2751 return -ENOMEM; 2752 } 2753 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 2754 2755 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2756 u16 index) 2757 { 2758 int ret; 2759 2760 cpus_read_lock(); 2761 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS); 2762 cpus_read_unlock(); 2763 2764 return ret; 2765 } 2766 EXPORT_SYMBOL(netif_set_xps_queue); 2767 2768 #endif 2769 static void netdev_unbind_all_sb_channels(struct net_device *dev) 2770 { 2771 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2772 2773 /* Unbind any subordinate channels */ 2774 while (txq-- != &dev->_tx[0]) { 2775 if (txq->sb_dev) 2776 netdev_unbind_sb_channel(dev, txq->sb_dev); 2777 } 2778 } 2779 2780 void netdev_reset_tc(struct net_device *dev) 2781 { 2782 #ifdef CONFIG_XPS 2783 netif_reset_xps_queues_gt(dev, 0); 2784 #endif 2785 netdev_unbind_all_sb_channels(dev); 2786 2787 /* Reset TC configuration of device */ 2788 dev->num_tc = 0; 2789 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2790 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2791 } 2792 EXPORT_SYMBOL(netdev_reset_tc); 2793 2794 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2795 { 2796 if (tc >= dev->num_tc) 2797 return -EINVAL; 2798 2799 #ifdef CONFIG_XPS 2800 netif_reset_xps_queues(dev, offset, count); 2801 #endif 2802 dev->tc_to_txq[tc].count = count; 2803 dev->tc_to_txq[tc].offset = offset; 2804 return 0; 2805 } 2806 EXPORT_SYMBOL(netdev_set_tc_queue); 2807 2808 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2809 { 2810 if (num_tc > TC_MAX_QUEUE) 2811 return -EINVAL; 2812 2813 #ifdef CONFIG_XPS 2814 netif_reset_xps_queues_gt(dev, 0); 2815 #endif 2816 netdev_unbind_all_sb_channels(dev); 2817 2818 dev->num_tc = num_tc; 2819 return 0; 2820 } 2821 EXPORT_SYMBOL(netdev_set_num_tc); 2822 2823 void netdev_unbind_sb_channel(struct net_device *dev, 2824 struct net_device *sb_dev) 2825 { 2826 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2827 2828 #ifdef CONFIG_XPS 2829 netif_reset_xps_queues_gt(sb_dev, 0); 2830 #endif 2831 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 2832 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 2833 2834 while (txq-- != &dev->_tx[0]) { 2835 if (txq->sb_dev == sb_dev) 2836 txq->sb_dev = NULL; 2837 } 2838 } 2839 EXPORT_SYMBOL(netdev_unbind_sb_channel); 2840 2841 int netdev_bind_sb_channel_queue(struct net_device *dev, 2842 struct net_device *sb_dev, 2843 u8 tc, u16 count, u16 offset) 2844 { 2845 /* Make certain the sb_dev and dev are already configured */ 2846 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 2847 return -EINVAL; 2848 2849 /* We cannot hand out queues we don't have */ 2850 if ((offset + count) > dev->real_num_tx_queues) 2851 return -EINVAL; 2852 2853 /* Record the mapping */ 2854 sb_dev->tc_to_txq[tc].count = count; 2855 sb_dev->tc_to_txq[tc].offset = offset; 2856 2857 /* Provide a way for Tx queue to find the tc_to_txq map or 2858 * XPS map for itself. 2859 */ 2860 while (count--) 2861 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 2862 2863 return 0; 2864 } 2865 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 2866 2867 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 2868 { 2869 /* Do not use a multiqueue device to represent a subordinate channel */ 2870 if (netif_is_multiqueue(dev)) 2871 return -ENODEV; 2872 2873 /* We allow channels 1 - 32767 to be used for subordinate channels. 2874 * Channel 0 is meant to be "native" mode and used only to represent 2875 * the main root device. We allow writing 0 to reset the device back 2876 * to normal mode after being used as a subordinate channel. 2877 */ 2878 if (channel > S16_MAX) 2879 return -EINVAL; 2880 2881 dev->num_tc = -channel; 2882 2883 return 0; 2884 } 2885 EXPORT_SYMBOL(netdev_set_sb_channel); 2886 2887 /* 2888 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2889 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 2890 */ 2891 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2892 { 2893 bool disabling; 2894 int rc; 2895 2896 disabling = txq < dev->real_num_tx_queues; 2897 2898 if (txq < 1 || txq > dev->num_tx_queues) 2899 return -EINVAL; 2900 2901 if (dev->reg_state == NETREG_REGISTERED || 2902 dev->reg_state == NETREG_UNREGISTERING) { 2903 ASSERT_RTNL(); 2904 2905 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2906 txq); 2907 if (rc) 2908 return rc; 2909 2910 if (dev->num_tc) 2911 netif_setup_tc(dev, txq); 2912 2913 dev_qdisc_change_real_num_tx(dev, txq); 2914 2915 dev->real_num_tx_queues = txq; 2916 2917 if (disabling) { 2918 synchronize_net(); 2919 qdisc_reset_all_tx_gt(dev, txq); 2920 #ifdef CONFIG_XPS 2921 netif_reset_xps_queues_gt(dev, txq); 2922 #endif 2923 } 2924 } else { 2925 dev->real_num_tx_queues = txq; 2926 } 2927 2928 return 0; 2929 } 2930 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2931 2932 #ifdef CONFIG_SYSFS 2933 /** 2934 * netif_set_real_num_rx_queues - set actual number of RX queues used 2935 * @dev: Network device 2936 * @rxq: Actual number of RX queues 2937 * 2938 * This must be called either with the rtnl_lock held or before 2939 * registration of the net device. Returns 0 on success, or a 2940 * negative error code. If called before registration, it always 2941 * succeeds. 2942 */ 2943 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2944 { 2945 int rc; 2946 2947 if (rxq < 1 || rxq > dev->num_rx_queues) 2948 return -EINVAL; 2949 2950 if (dev->reg_state == NETREG_REGISTERED) { 2951 ASSERT_RTNL(); 2952 2953 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2954 rxq); 2955 if (rc) 2956 return rc; 2957 } 2958 2959 dev->real_num_rx_queues = rxq; 2960 return 0; 2961 } 2962 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2963 #endif 2964 2965 /** 2966 * netif_set_real_num_queues - set actual number of RX and TX queues used 2967 * @dev: Network device 2968 * @txq: Actual number of TX queues 2969 * @rxq: Actual number of RX queues 2970 * 2971 * Set the real number of both TX and RX queues. 2972 * Does nothing if the number of queues is already correct. 2973 */ 2974 int netif_set_real_num_queues(struct net_device *dev, 2975 unsigned int txq, unsigned int rxq) 2976 { 2977 unsigned int old_rxq = dev->real_num_rx_queues; 2978 int err; 2979 2980 if (txq < 1 || txq > dev->num_tx_queues || 2981 rxq < 1 || rxq > dev->num_rx_queues) 2982 return -EINVAL; 2983 2984 /* Start from increases, so the error path only does decreases - 2985 * decreases can't fail. 2986 */ 2987 if (rxq > dev->real_num_rx_queues) { 2988 err = netif_set_real_num_rx_queues(dev, rxq); 2989 if (err) 2990 return err; 2991 } 2992 if (txq > dev->real_num_tx_queues) { 2993 err = netif_set_real_num_tx_queues(dev, txq); 2994 if (err) 2995 goto undo_rx; 2996 } 2997 if (rxq < dev->real_num_rx_queues) 2998 WARN_ON(netif_set_real_num_rx_queues(dev, rxq)); 2999 if (txq < dev->real_num_tx_queues) 3000 WARN_ON(netif_set_real_num_tx_queues(dev, txq)); 3001 3002 return 0; 3003 undo_rx: 3004 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq)); 3005 return err; 3006 } 3007 EXPORT_SYMBOL(netif_set_real_num_queues); 3008 3009 /** 3010 * netif_set_tso_max_size() - set the max size of TSO frames supported 3011 * @dev: netdev to update 3012 * @size: max skb->len of a TSO frame 3013 * 3014 * Set the limit on the size of TSO super-frames the device can handle. 3015 * Unless explicitly set the stack will assume the value of 3016 * %GSO_LEGACY_MAX_SIZE. 3017 */ 3018 void netif_set_tso_max_size(struct net_device *dev, unsigned int size) 3019 { 3020 dev->tso_max_size = min(GSO_MAX_SIZE, size); 3021 if (size < READ_ONCE(dev->gso_max_size)) 3022 netif_set_gso_max_size(dev, size); 3023 if (size < READ_ONCE(dev->gso_ipv4_max_size)) 3024 netif_set_gso_ipv4_max_size(dev, size); 3025 } 3026 EXPORT_SYMBOL(netif_set_tso_max_size); 3027 3028 /** 3029 * netif_set_tso_max_segs() - set the max number of segs supported for TSO 3030 * @dev: netdev to update 3031 * @segs: max number of TCP segments 3032 * 3033 * Set the limit on the number of TCP segments the device can generate from 3034 * a single TSO super-frame. 3035 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS. 3036 */ 3037 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs) 3038 { 3039 dev->tso_max_segs = segs; 3040 if (segs < READ_ONCE(dev->gso_max_segs)) 3041 netif_set_gso_max_segs(dev, segs); 3042 } 3043 EXPORT_SYMBOL(netif_set_tso_max_segs); 3044 3045 /** 3046 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper 3047 * @to: netdev to update 3048 * @from: netdev from which to copy the limits 3049 */ 3050 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from) 3051 { 3052 netif_set_tso_max_size(to, from->tso_max_size); 3053 netif_set_tso_max_segs(to, from->tso_max_segs); 3054 } 3055 EXPORT_SYMBOL(netif_inherit_tso_max); 3056 3057 /** 3058 * netif_get_num_default_rss_queues - default number of RSS queues 3059 * 3060 * Default value is the number of physical cores if there are only 1 or 2, or 3061 * divided by 2 if there are more. 3062 */ 3063 int netif_get_num_default_rss_queues(void) 3064 { 3065 cpumask_var_t cpus; 3066 int cpu, count = 0; 3067 3068 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL))) 3069 return 1; 3070 3071 cpumask_copy(cpus, cpu_online_mask); 3072 for_each_cpu(cpu, cpus) { 3073 ++count; 3074 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu)); 3075 } 3076 free_cpumask_var(cpus); 3077 3078 return count > 2 ? DIV_ROUND_UP(count, 2) : count; 3079 } 3080 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 3081 3082 static void __netif_reschedule(struct Qdisc *q) 3083 { 3084 struct softnet_data *sd; 3085 unsigned long flags; 3086 3087 local_irq_save(flags); 3088 sd = this_cpu_ptr(&softnet_data); 3089 q->next_sched = NULL; 3090 *sd->output_queue_tailp = q; 3091 sd->output_queue_tailp = &q->next_sched; 3092 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3093 local_irq_restore(flags); 3094 } 3095 3096 void __netif_schedule(struct Qdisc *q) 3097 { 3098 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 3099 __netif_reschedule(q); 3100 } 3101 EXPORT_SYMBOL(__netif_schedule); 3102 3103 struct dev_kfree_skb_cb { 3104 enum skb_drop_reason reason; 3105 }; 3106 3107 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 3108 { 3109 return (struct dev_kfree_skb_cb *)skb->cb; 3110 } 3111 3112 void netif_schedule_queue(struct netdev_queue *txq) 3113 { 3114 rcu_read_lock(); 3115 if (!netif_xmit_stopped(txq)) { 3116 struct Qdisc *q = rcu_dereference(txq->qdisc); 3117 3118 __netif_schedule(q); 3119 } 3120 rcu_read_unlock(); 3121 } 3122 EXPORT_SYMBOL(netif_schedule_queue); 3123 3124 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 3125 { 3126 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 3127 struct Qdisc *q; 3128 3129 rcu_read_lock(); 3130 q = rcu_dereference(dev_queue->qdisc); 3131 __netif_schedule(q); 3132 rcu_read_unlock(); 3133 } 3134 } 3135 EXPORT_SYMBOL(netif_tx_wake_queue); 3136 3137 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason) 3138 { 3139 unsigned long flags; 3140 3141 if (unlikely(!skb)) 3142 return; 3143 3144 if (likely(refcount_read(&skb->users) == 1)) { 3145 smp_rmb(); 3146 refcount_set(&skb->users, 0); 3147 } else if (likely(!refcount_dec_and_test(&skb->users))) { 3148 return; 3149 } 3150 get_kfree_skb_cb(skb)->reason = reason; 3151 local_irq_save(flags); 3152 skb->next = __this_cpu_read(softnet_data.completion_queue); 3153 __this_cpu_write(softnet_data.completion_queue, skb); 3154 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3155 local_irq_restore(flags); 3156 } 3157 EXPORT_SYMBOL(dev_kfree_skb_irq_reason); 3158 3159 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason) 3160 { 3161 if (in_hardirq() || irqs_disabled()) 3162 dev_kfree_skb_irq_reason(skb, reason); 3163 else 3164 kfree_skb_reason(skb, reason); 3165 } 3166 EXPORT_SYMBOL(dev_kfree_skb_any_reason); 3167 3168 3169 /** 3170 * netif_device_detach - mark device as removed 3171 * @dev: network device 3172 * 3173 * Mark device as removed from system and therefore no longer available. 3174 */ 3175 void netif_device_detach(struct net_device *dev) 3176 { 3177 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 3178 netif_running(dev)) { 3179 netif_tx_stop_all_queues(dev); 3180 } 3181 } 3182 EXPORT_SYMBOL(netif_device_detach); 3183 3184 /** 3185 * netif_device_attach - mark device as attached 3186 * @dev: network device 3187 * 3188 * Mark device as attached from system and restart if needed. 3189 */ 3190 void netif_device_attach(struct net_device *dev) 3191 { 3192 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 3193 netif_running(dev)) { 3194 netif_tx_wake_all_queues(dev); 3195 __netdev_watchdog_up(dev); 3196 } 3197 } 3198 EXPORT_SYMBOL(netif_device_attach); 3199 3200 /* 3201 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 3202 * to be used as a distribution range. 3203 */ 3204 static u16 skb_tx_hash(const struct net_device *dev, 3205 const struct net_device *sb_dev, 3206 struct sk_buff *skb) 3207 { 3208 u32 hash; 3209 u16 qoffset = 0; 3210 u16 qcount = dev->real_num_tx_queues; 3211 3212 if (dev->num_tc) { 3213 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 3214 3215 qoffset = sb_dev->tc_to_txq[tc].offset; 3216 qcount = sb_dev->tc_to_txq[tc].count; 3217 if (unlikely(!qcount)) { 3218 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n", 3219 sb_dev->name, qoffset, tc); 3220 qoffset = 0; 3221 qcount = dev->real_num_tx_queues; 3222 } 3223 } 3224 3225 if (skb_rx_queue_recorded(skb)) { 3226 DEBUG_NET_WARN_ON_ONCE(qcount == 0); 3227 hash = skb_get_rx_queue(skb); 3228 if (hash >= qoffset) 3229 hash -= qoffset; 3230 while (unlikely(hash >= qcount)) 3231 hash -= qcount; 3232 return hash + qoffset; 3233 } 3234 3235 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 3236 } 3237 3238 void skb_warn_bad_offload(const struct sk_buff *skb) 3239 { 3240 static const netdev_features_t null_features; 3241 struct net_device *dev = skb->dev; 3242 const char *name = ""; 3243 3244 if (!net_ratelimit()) 3245 return; 3246 3247 if (dev) { 3248 if (dev->dev.parent) 3249 name = dev_driver_string(dev->dev.parent); 3250 else 3251 name = netdev_name(dev); 3252 } 3253 skb_dump(KERN_WARNING, skb, false); 3254 WARN(1, "%s: caps=(%pNF, %pNF)\n", 3255 name, dev ? &dev->features : &null_features, 3256 skb->sk ? &skb->sk->sk_route_caps : &null_features); 3257 } 3258 3259 /* 3260 * Invalidate hardware checksum when packet is to be mangled, and 3261 * complete checksum manually on outgoing path. 3262 */ 3263 int skb_checksum_help(struct sk_buff *skb) 3264 { 3265 __wsum csum; 3266 int ret = 0, offset; 3267 3268 if (skb->ip_summed == CHECKSUM_COMPLETE) 3269 goto out_set_summed; 3270 3271 if (unlikely(skb_is_gso(skb))) { 3272 skb_warn_bad_offload(skb); 3273 return -EINVAL; 3274 } 3275 3276 /* Before computing a checksum, we should make sure no frag could 3277 * be modified by an external entity : checksum could be wrong. 3278 */ 3279 if (skb_has_shared_frag(skb)) { 3280 ret = __skb_linearize(skb); 3281 if (ret) 3282 goto out; 3283 } 3284 3285 offset = skb_checksum_start_offset(skb); 3286 ret = -EINVAL; 3287 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 3288 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3289 goto out; 3290 } 3291 csum = skb_checksum(skb, offset, skb->len - offset, 0); 3292 3293 offset += skb->csum_offset; 3294 if (WARN_ON_ONCE(offset + sizeof(__sum16) > skb_headlen(skb))) { 3295 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3296 goto out; 3297 } 3298 ret = skb_ensure_writable(skb, offset + sizeof(__sum16)); 3299 if (ret) 3300 goto out; 3301 3302 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 3303 out_set_summed: 3304 skb->ip_summed = CHECKSUM_NONE; 3305 out: 3306 return ret; 3307 } 3308 EXPORT_SYMBOL(skb_checksum_help); 3309 3310 int skb_crc32c_csum_help(struct sk_buff *skb) 3311 { 3312 __le32 crc32c_csum; 3313 int ret = 0, offset, start; 3314 3315 if (skb->ip_summed != CHECKSUM_PARTIAL) 3316 goto out; 3317 3318 if (unlikely(skb_is_gso(skb))) 3319 goto out; 3320 3321 /* Before computing a checksum, we should make sure no frag could 3322 * be modified by an external entity : checksum could be wrong. 3323 */ 3324 if (unlikely(skb_has_shared_frag(skb))) { 3325 ret = __skb_linearize(skb); 3326 if (ret) 3327 goto out; 3328 } 3329 start = skb_checksum_start_offset(skb); 3330 offset = start + offsetof(struct sctphdr, checksum); 3331 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 3332 ret = -EINVAL; 3333 goto out; 3334 } 3335 3336 ret = skb_ensure_writable(skb, offset + sizeof(__le32)); 3337 if (ret) 3338 goto out; 3339 3340 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 3341 skb->len - start, ~(__u32)0, 3342 crc32c_csum_stub)); 3343 *(__le32 *)(skb->data + offset) = crc32c_csum; 3344 skb_reset_csum_not_inet(skb); 3345 out: 3346 return ret; 3347 } 3348 3349 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 3350 { 3351 __be16 type = skb->protocol; 3352 3353 /* Tunnel gso handlers can set protocol to ethernet. */ 3354 if (type == htons(ETH_P_TEB)) { 3355 struct ethhdr *eth; 3356 3357 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 3358 return 0; 3359 3360 eth = (struct ethhdr *)skb->data; 3361 type = eth->h_proto; 3362 } 3363 3364 return vlan_get_protocol_and_depth(skb, type, depth); 3365 } 3366 3367 3368 /* Take action when hardware reception checksum errors are detected. */ 3369 #ifdef CONFIG_BUG 3370 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3371 { 3372 netdev_err(dev, "hw csum failure\n"); 3373 skb_dump(KERN_ERR, skb, true); 3374 dump_stack(); 3375 } 3376 3377 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3378 { 3379 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb); 3380 } 3381 EXPORT_SYMBOL(netdev_rx_csum_fault); 3382 #endif 3383 3384 /* XXX: check that highmem exists at all on the given machine. */ 3385 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3386 { 3387 #ifdef CONFIG_HIGHMEM 3388 int i; 3389 3390 if (!(dev->features & NETIF_F_HIGHDMA)) { 3391 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3392 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3393 3394 if (PageHighMem(skb_frag_page(frag))) 3395 return 1; 3396 } 3397 } 3398 #endif 3399 return 0; 3400 } 3401 3402 /* If MPLS offload request, verify we are testing hardware MPLS features 3403 * instead of standard features for the netdev. 3404 */ 3405 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3406 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3407 netdev_features_t features, 3408 __be16 type) 3409 { 3410 if (eth_p_mpls(type)) 3411 features &= skb->dev->mpls_features; 3412 3413 return features; 3414 } 3415 #else 3416 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3417 netdev_features_t features, 3418 __be16 type) 3419 { 3420 return features; 3421 } 3422 #endif 3423 3424 static netdev_features_t harmonize_features(struct sk_buff *skb, 3425 netdev_features_t features) 3426 { 3427 __be16 type; 3428 3429 type = skb_network_protocol(skb, NULL); 3430 features = net_mpls_features(skb, features, type); 3431 3432 if (skb->ip_summed != CHECKSUM_NONE && 3433 !can_checksum_protocol(features, type)) { 3434 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3435 } 3436 if (illegal_highdma(skb->dev, skb)) 3437 features &= ~NETIF_F_SG; 3438 3439 return features; 3440 } 3441 3442 netdev_features_t passthru_features_check(struct sk_buff *skb, 3443 struct net_device *dev, 3444 netdev_features_t features) 3445 { 3446 return features; 3447 } 3448 EXPORT_SYMBOL(passthru_features_check); 3449 3450 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3451 struct net_device *dev, 3452 netdev_features_t features) 3453 { 3454 return vlan_features_check(skb, features); 3455 } 3456 3457 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3458 struct net_device *dev, 3459 netdev_features_t features) 3460 { 3461 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3462 3463 if (gso_segs > READ_ONCE(dev->gso_max_segs)) 3464 return features & ~NETIF_F_GSO_MASK; 3465 3466 if (!skb_shinfo(skb)->gso_type) { 3467 skb_warn_bad_offload(skb); 3468 return features & ~NETIF_F_GSO_MASK; 3469 } 3470 3471 /* Support for GSO partial features requires software 3472 * intervention before we can actually process the packets 3473 * so we need to strip support for any partial features now 3474 * and we can pull them back in after we have partially 3475 * segmented the frame. 3476 */ 3477 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3478 features &= ~dev->gso_partial_features; 3479 3480 /* Make sure to clear the IPv4 ID mangling feature if the 3481 * IPv4 header has the potential to be fragmented. 3482 */ 3483 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3484 struct iphdr *iph = skb->encapsulation ? 3485 inner_ip_hdr(skb) : ip_hdr(skb); 3486 3487 if (!(iph->frag_off & htons(IP_DF))) 3488 features &= ~NETIF_F_TSO_MANGLEID; 3489 } 3490 3491 return features; 3492 } 3493 3494 netdev_features_t netif_skb_features(struct sk_buff *skb) 3495 { 3496 struct net_device *dev = skb->dev; 3497 netdev_features_t features = dev->features; 3498 3499 if (skb_is_gso(skb)) 3500 features = gso_features_check(skb, dev, features); 3501 3502 /* If encapsulation offload request, verify we are testing 3503 * hardware encapsulation features instead of standard 3504 * features for the netdev 3505 */ 3506 if (skb->encapsulation) 3507 features &= dev->hw_enc_features; 3508 3509 if (skb_vlan_tagged(skb)) 3510 features = netdev_intersect_features(features, 3511 dev->vlan_features | 3512 NETIF_F_HW_VLAN_CTAG_TX | 3513 NETIF_F_HW_VLAN_STAG_TX); 3514 3515 if (dev->netdev_ops->ndo_features_check) 3516 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3517 features); 3518 else 3519 features &= dflt_features_check(skb, dev, features); 3520 3521 return harmonize_features(skb, features); 3522 } 3523 EXPORT_SYMBOL(netif_skb_features); 3524 3525 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3526 struct netdev_queue *txq, bool more) 3527 { 3528 unsigned int len; 3529 int rc; 3530 3531 if (dev_nit_active(dev)) 3532 dev_queue_xmit_nit(skb, dev); 3533 3534 len = skb->len; 3535 trace_net_dev_start_xmit(skb, dev); 3536 rc = netdev_start_xmit(skb, dev, txq, more); 3537 trace_net_dev_xmit(skb, rc, dev, len); 3538 3539 return rc; 3540 } 3541 3542 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3543 struct netdev_queue *txq, int *ret) 3544 { 3545 struct sk_buff *skb = first; 3546 int rc = NETDEV_TX_OK; 3547 3548 while (skb) { 3549 struct sk_buff *next = skb->next; 3550 3551 skb_mark_not_on_list(skb); 3552 rc = xmit_one(skb, dev, txq, next != NULL); 3553 if (unlikely(!dev_xmit_complete(rc))) { 3554 skb->next = next; 3555 goto out; 3556 } 3557 3558 skb = next; 3559 if (netif_tx_queue_stopped(txq) && skb) { 3560 rc = NETDEV_TX_BUSY; 3561 break; 3562 } 3563 } 3564 3565 out: 3566 *ret = rc; 3567 return skb; 3568 } 3569 3570 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3571 netdev_features_t features) 3572 { 3573 if (skb_vlan_tag_present(skb) && 3574 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3575 skb = __vlan_hwaccel_push_inside(skb); 3576 return skb; 3577 } 3578 3579 int skb_csum_hwoffload_help(struct sk_buff *skb, 3580 const netdev_features_t features) 3581 { 3582 if (unlikely(skb_csum_is_sctp(skb))) 3583 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3584 skb_crc32c_csum_help(skb); 3585 3586 if (features & NETIF_F_HW_CSUM) 3587 return 0; 3588 3589 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 3590 switch (skb->csum_offset) { 3591 case offsetof(struct tcphdr, check): 3592 case offsetof(struct udphdr, check): 3593 return 0; 3594 } 3595 } 3596 3597 return skb_checksum_help(skb); 3598 } 3599 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3600 3601 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3602 { 3603 netdev_features_t features; 3604 3605 features = netif_skb_features(skb); 3606 skb = validate_xmit_vlan(skb, features); 3607 if (unlikely(!skb)) 3608 goto out_null; 3609 3610 skb = sk_validate_xmit_skb(skb, dev); 3611 if (unlikely(!skb)) 3612 goto out_null; 3613 3614 if (netif_needs_gso(skb, features)) { 3615 struct sk_buff *segs; 3616 3617 segs = skb_gso_segment(skb, features); 3618 if (IS_ERR(segs)) { 3619 goto out_kfree_skb; 3620 } else if (segs) { 3621 consume_skb(skb); 3622 skb = segs; 3623 } 3624 } else { 3625 if (skb_needs_linearize(skb, features) && 3626 __skb_linearize(skb)) 3627 goto out_kfree_skb; 3628 3629 /* If packet is not checksummed and device does not 3630 * support checksumming for this protocol, complete 3631 * checksumming here. 3632 */ 3633 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3634 if (skb->encapsulation) 3635 skb_set_inner_transport_header(skb, 3636 skb_checksum_start_offset(skb)); 3637 else 3638 skb_set_transport_header(skb, 3639 skb_checksum_start_offset(skb)); 3640 if (skb_csum_hwoffload_help(skb, features)) 3641 goto out_kfree_skb; 3642 } 3643 } 3644 3645 skb = validate_xmit_xfrm(skb, features, again); 3646 3647 return skb; 3648 3649 out_kfree_skb: 3650 kfree_skb(skb); 3651 out_null: 3652 dev_core_stats_tx_dropped_inc(dev); 3653 return NULL; 3654 } 3655 3656 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3657 { 3658 struct sk_buff *next, *head = NULL, *tail; 3659 3660 for (; skb != NULL; skb = next) { 3661 next = skb->next; 3662 skb_mark_not_on_list(skb); 3663 3664 /* in case skb wont be segmented, point to itself */ 3665 skb->prev = skb; 3666 3667 skb = validate_xmit_skb(skb, dev, again); 3668 if (!skb) 3669 continue; 3670 3671 if (!head) 3672 head = skb; 3673 else 3674 tail->next = skb; 3675 /* If skb was segmented, skb->prev points to 3676 * the last segment. If not, it still contains skb. 3677 */ 3678 tail = skb->prev; 3679 } 3680 return head; 3681 } 3682 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3683 3684 static void qdisc_pkt_len_init(struct sk_buff *skb) 3685 { 3686 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3687 3688 qdisc_skb_cb(skb)->pkt_len = skb->len; 3689 3690 /* To get more precise estimation of bytes sent on wire, 3691 * we add to pkt_len the headers size of all segments 3692 */ 3693 if (shinfo->gso_size && skb_transport_header_was_set(skb)) { 3694 u16 gso_segs = shinfo->gso_segs; 3695 unsigned int hdr_len; 3696 3697 /* mac layer + network layer */ 3698 hdr_len = skb_transport_offset(skb); 3699 3700 /* + transport layer */ 3701 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3702 const struct tcphdr *th; 3703 struct tcphdr _tcphdr; 3704 3705 th = skb_header_pointer(skb, hdr_len, 3706 sizeof(_tcphdr), &_tcphdr); 3707 if (likely(th)) 3708 hdr_len += __tcp_hdrlen(th); 3709 } else { 3710 struct udphdr _udphdr; 3711 3712 if (skb_header_pointer(skb, hdr_len, 3713 sizeof(_udphdr), &_udphdr)) 3714 hdr_len += sizeof(struct udphdr); 3715 } 3716 3717 if (shinfo->gso_type & SKB_GSO_DODGY) 3718 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3719 shinfo->gso_size); 3720 3721 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3722 } 3723 } 3724 3725 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q, 3726 struct sk_buff **to_free, 3727 struct netdev_queue *txq) 3728 { 3729 int rc; 3730 3731 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK; 3732 if (rc == NET_XMIT_SUCCESS) 3733 trace_qdisc_enqueue(q, txq, skb); 3734 return rc; 3735 } 3736 3737 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3738 struct net_device *dev, 3739 struct netdev_queue *txq) 3740 { 3741 spinlock_t *root_lock = qdisc_lock(q); 3742 struct sk_buff *to_free = NULL; 3743 bool contended; 3744 int rc; 3745 3746 qdisc_calculate_pkt_len(skb, q); 3747 3748 if (q->flags & TCQ_F_NOLOCK) { 3749 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) && 3750 qdisc_run_begin(q)) { 3751 /* Retest nolock_qdisc_is_empty() within the protection 3752 * of q->seqlock to protect from racing with requeuing. 3753 */ 3754 if (unlikely(!nolock_qdisc_is_empty(q))) { 3755 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 3756 __qdisc_run(q); 3757 qdisc_run_end(q); 3758 3759 goto no_lock_out; 3760 } 3761 3762 qdisc_bstats_cpu_update(q, skb); 3763 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) && 3764 !nolock_qdisc_is_empty(q)) 3765 __qdisc_run(q); 3766 3767 qdisc_run_end(q); 3768 return NET_XMIT_SUCCESS; 3769 } 3770 3771 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 3772 qdisc_run(q); 3773 3774 no_lock_out: 3775 if (unlikely(to_free)) 3776 kfree_skb_list_reason(to_free, 3777 SKB_DROP_REASON_QDISC_DROP); 3778 return rc; 3779 } 3780 3781 /* 3782 * Heuristic to force contended enqueues to serialize on a 3783 * separate lock before trying to get qdisc main lock. 3784 * This permits qdisc->running owner to get the lock more 3785 * often and dequeue packets faster. 3786 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit 3787 * and then other tasks will only enqueue packets. The packets will be 3788 * sent after the qdisc owner is scheduled again. To prevent this 3789 * scenario the task always serialize on the lock. 3790 */ 3791 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT); 3792 if (unlikely(contended)) 3793 spin_lock(&q->busylock); 3794 3795 spin_lock(root_lock); 3796 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3797 __qdisc_drop(skb, &to_free); 3798 rc = NET_XMIT_DROP; 3799 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3800 qdisc_run_begin(q)) { 3801 /* 3802 * This is a work-conserving queue; there are no old skbs 3803 * waiting to be sent out; and the qdisc is not running - 3804 * xmit the skb directly. 3805 */ 3806 3807 qdisc_bstats_update(q, skb); 3808 3809 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3810 if (unlikely(contended)) { 3811 spin_unlock(&q->busylock); 3812 contended = false; 3813 } 3814 __qdisc_run(q); 3815 } 3816 3817 qdisc_run_end(q); 3818 rc = NET_XMIT_SUCCESS; 3819 } else { 3820 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 3821 if (qdisc_run_begin(q)) { 3822 if (unlikely(contended)) { 3823 spin_unlock(&q->busylock); 3824 contended = false; 3825 } 3826 __qdisc_run(q); 3827 qdisc_run_end(q); 3828 } 3829 } 3830 spin_unlock(root_lock); 3831 if (unlikely(to_free)) 3832 kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP); 3833 if (unlikely(contended)) 3834 spin_unlock(&q->busylock); 3835 return rc; 3836 } 3837 3838 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3839 static void skb_update_prio(struct sk_buff *skb) 3840 { 3841 const struct netprio_map *map; 3842 const struct sock *sk; 3843 unsigned int prioidx; 3844 3845 if (skb->priority) 3846 return; 3847 map = rcu_dereference_bh(skb->dev->priomap); 3848 if (!map) 3849 return; 3850 sk = skb_to_full_sk(skb); 3851 if (!sk) 3852 return; 3853 3854 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 3855 3856 if (prioidx < map->priomap_len) 3857 skb->priority = map->priomap[prioidx]; 3858 } 3859 #else 3860 #define skb_update_prio(skb) 3861 #endif 3862 3863 /** 3864 * dev_loopback_xmit - loop back @skb 3865 * @net: network namespace this loopback is happening in 3866 * @sk: sk needed to be a netfilter okfn 3867 * @skb: buffer to transmit 3868 */ 3869 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3870 { 3871 skb_reset_mac_header(skb); 3872 __skb_pull(skb, skb_network_offset(skb)); 3873 skb->pkt_type = PACKET_LOOPBACK; 3874 if (skb->ip_summed == CHECKSUM_NONE) 3875 skb->ip_summed = CHECKSUM_UNNECESSARY; 3876 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb)); 3877 skb_dst_force(skb); 3878 netif_rx(skb); 3879 return 0; 3880 } 3881 EXPORT_SYMBOL(dev_loopback_xmit); 3882 3883 #ifdef CONFIG_NET_EGRESS 3884 static struct netdev_queue * 3885 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb) 3886 { 3887 int qm = skb_get_queue_mapping(skb); 3888 3889 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm)); 3890 } 3891 3892 static bool netdev_xmit_txqueue_skipped(void) 3893 { 3894 return __this_cpu_read(softnet_data.xmit.skip_txqueue); 3895 } 3896 3897 void netdev_xmit_skip_txqueue(bool skip) 3898 { 3899 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip); 3900 } 3901 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue); 3902 #endif /* CONFIG_NET_EGRESS */ 3903 3904 #ifdef CONFIG_NET_XGRESS 3905 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb) 3906 { 3907 int ret = TC_ACT_UNSPEC; 3908 #ifdef CONFIG_NET_CLS_ACT 3909 struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq); 3910 struct tcf_result res; 3911 3912 if (!miniq) 3913 return ret; 3914 3915 tc_skb_cb(skb)->mru = 0; 3916 tc_skb_cb(skb)->post_ct = false; 3917 3918 mini_qdisc_bstats_cpu_update(miniq, skb); 3919 ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false); 3920 /* Only tcf related quirks below. */ 3921 switch (ret) { 3922 case TC_ACT_SHOT: 3923 mini_qdisc_qstats_cpu_drop(miniq); 3924 break; 3925 case TC_ACT_OK: 3926 case TC_ACT_RECLASSIFY: 3927 skb->tc_index = TC_H_MIN(res.classid); 3928 break; 3929 } 3930 #endif /* CONFIG_NET_CLS_ACT */ 3931 return ret; 3932 } 3933 3934 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key); 3935 3936 void tcx_inc(void) 3937 { 3938 static_branch_inc(&tcx_needed_key); 3939 } 3940 3941 void tcx_dec(void) 3942 { 3943 static_branch_dec(&tcx_needed_key); 3944 } 3945 3946 static __always_inline enum tcx_action_base 3947 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb, 3948 const bool needs_mac) 3949 { 3950 const struct bpf_mprog_fp *fp; 3951 const struct bpf_prog *prog; 3952 int ret = TCX_NEXT; 3953 3954 if (needs_mac) 3955 __skb_push(skb, skb->mac_len); 3956 bpf_mprog_foreach_prog(entry, fp, prog) { 3957 bpf_compute_data_pointers(skb); 3958 ret = bpf_prog_run(prog, skb); 3959 if (ret != TCX_NEXT) 3960 break; 3961 } 3962 if (needs_mac) 3963 __skb_pull(skb, skb->mac_len); 3964 return tcx_action_code(skb, ret); 3965 } 3966 3967 static __always_inline struct sk_buff * 3968 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 3969 struct net_device *orig_dev, bool *another) 3970 { 3971 struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress); 3972 int sch_ret; 3973 3974 if (!entry) 3975 return skb; 3976 if (*pt_prev) { 3977 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3978 *pt_prev = NULL; 3979 } 3980 3981 qdisc_skb_cb(skb)->pkt_len = skb->len; 3982 tcx_set_ingress(skb, true); 3983 3984 if (static_branch_unlikely(&tcx_needed_key)) { 3985 sch_ret = tcx_run(entry, skb, true); 3986 if (sch_ret != TC_ACT_UNSPEC) 3987 goto ingress_verdict; 3988 } 3989 sch_ret = tc_run(tcx_entry(entry), skb); 3990 ingress_verdict: 3991 switch (sch_ret) { 3992 case TC_ACT_REDIRECT: 3993 /* skb_mac_header check was done by BPF, so we can safely 3994 * push the L2 header back before redirecting to another 3995 * netdev. 3996 */ 3997 __skb_push(skb, skb->mac_len); 3998 if (skb_do_redirect(skb) == -EAGAIN) { 3999 __skb_pull(skb, skb->mac_len); 4000 *another = true; 4001 break; 4002 } 4003 *ret = NET_RX_SUCCESS; 4004 return NULL; 4005 case TC_ACT_SHOT: 4006 kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS); 4007 *ret = NET_RX_DROP; 4008 return NULL; 4009 /* used by tc_run */ 4010 case TC_ACT_STOLEN: 4011 case TC_ACT_QUEUED: 4012 case TC_ACT_TRAP: 4013 consume_skb(skb); 4014 fallthrough; 4015 case TC_ACT_CONSUMED: 4016 *ret = NET_RX_SUCCESS; 4017 return NULL; 4018 } 4019 4020 return skb; 4021 } 4022 4023 static __always_inline struct sk_buff * 4024 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 4025 { 4026 struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress); 4027 int sch_ret; 4028 4029 if (!entry) 4030 return skb; 4031 4032 /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was 4033 * already set by the caller. 4034 */ 4035 if (static_branch_unlikely(&tcx_needed_key)) { 4036 sch_ret = tcx_run(entry, skb, false); 4037 if (sch_ret != TC_ACT_UNSPEC) 4038 goto egress_verdict; 4039 } 4040 sch_ret = tc_run(tcx_entry(entry), skb); 4041 egress_verdict: 4042 switch (sch_ret) { 4043 case TC_ACT_REDIRECT: 4044 /* No need to push/pop skb's mac_header here on egress! */ 4045 skb_do_redirect(skb); 4046 *ret = NET_XMIT_SUCCESS; 4047 return NULL; 4048 case TC_ACT_SHOT: 4049 kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS); 4050 *ret = NET_XMIT_DROP; 4051 return NULL; 4052 /* used by tc_run */ 4053 case TC_ACT_STOLEN: 4054 case TC_ACT_QUEUED: 4055 case TC_ACT_TRAP: 4056 *ret = NET_XMIT_SUCCESS; 4057 return NULL; 4058 } 4059 4060 return skb; 4061 } 4062 #else 4063 static __always_inline struct sk_buff * 4064 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4065 struct net_device *orig_dev, bool *another) 4066 { 4067 return skb; 4068 } 4069 4070 static __always_inline struct sk_buff * 4071 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 4072 { 4073 return skb; 4074 } 4075 #endif /* CONFIG_NET_XGRESS */ 4076 4077 #ifdef CONFIG_XPS 4078 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 4079 struct xps_dev_maps *dev_maps, unsigned int tci) 4080 { 4081 int tc = netdev_get_prio_tc_map(dev, skb->priority); 4082 struct xps_map *map; 4083 int queue_index = -1; 4084 4085 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids) 4086 return queue_index; 4087 4088 tci *= dev_maps->num_tc; 4089 tci += tc; 4090 4091 map = rcu_dereference(dev_maps->attr_map[tci]); 4092 if (map) { 4093 if (map->len == 1) 4094 queue_index = map->queues[0]; 4095 else 4096 queue_index = map->queues[reciprocal_scale( 4097 skb_get_hash(skb), map->len)]; 4098 if (unlikely(queue_index >= dev->real_num_tx_queues)) 4099 queue_index = -1; 4100 } 4101 return queue_index; 4102 } 4103 #endif 4104 4105 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 4106 struct sk_buff *skb) 4107 { 4108 #ifdef CONFIG_XPS 4109 struct xps_dev_maps *dev_maps; 4110 struct sock *sk = skb->sk; 4111 int queue_index = -1; 4112 4113 if (!static_key_false(&xps_needed)) 4114 return -1; 4115 4116 rcu_read_lock(); 4117 if (!static_key_false(&xps_rxqs_needed)) 4118 goto get_cpus_map; 4119 4120 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]); 4121 if (dev_maps) { 4122 int tci = sk_rx_queue_get(sk); 4123 4124 if (tci >= 0) 4125 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4126 tci); 4127 } 4128 4129 get_cpus_map: 4130 if (queue_index < 0) { 4131 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]); 4132 if (dev_maps) { 4133 unsigned int tci = skb->sender_cpu - 1; 4134 4135 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4136 tci); 4137 } 4138 } 4139 rcu_read_unlock(); 4140 4141 return queue_index; 4142 #else 4143 return -1; 4144 #endif 4145 } 4146 4147 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 4148 struct net_device *sb_dev) 4149 { 4150 return 0; 4151 } 4152 EXPORT_SYMBOL(dev_pick_tx_zero); 4153 4154 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 4155 struct net_device *sb_dev) 4156 { 4157 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues; 4158 } 4159 EXPORT_SYMBOL(dev_pick_tx_cpu_id); 4160 4161 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 4162 struct net_device *sb_dev) 4163 { 4164 struct sock *sk = skb->sk; 4165 int queue_index = sk_tx_queue_get(sk); 4166 4167 sb_dev = sb_dev ? : dev; 4168 4169 if (queue_index < 0 || skb->ooo_okay || 4170 queue_index >= dev->real_num_tx_queues) { 4171 int new_index = get_xps_queue(dev, sb_dev, skb); 4172 4173 if (new_index < 0) 4174 new_index = skb_tx_hash(dev, sb_dev, skb); 4175 4176 if (queue_index != new_index && sk && 4177 sk_fullsock(sk) && 4178 rcu_access_pointer(sk->sk_dst_cache)) 4179 sk_tx_queue_set(sk, new_index); 4180 4181 queue_index = new_index; 4182 } 4183 4184 return queue_index; 4185 } 4186 EXPORT_SYMBOL(netdev_pick_tx); 4187 4188 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 4189 struct sk_buff *skb, 4190 struct net_device *sb_dev) 4191 { 4192 int queue_index = 0; 4193 4194 #ifdef CONFIG_XPS 4195 u32 sender_cpu = skb->sender_cpu - 1; 4196 4197 if (sender_cpu >= (u32)NR_CPUS) 4198 skb->sender_cpu = raw_smp_processor_id() + 1; 4199 #endif 4200 4201 if (dev->real_num_tx_queues != 1) { 4202 const struct net_device_ops *ops = dev->netdev_ops; 4203 4204 if (ops->ndo_select_queue) 4205 queue_index = ops->ndo_select_queue(dev, skb, sb_dev); 4206 else 4207 queue_index = netdev_pick_tx(dev, skb, sb_dev); 4208 4209 queue_index = netdev_cap_txqueue(dev, queue_index); 4210 } 4211 4212 skb_set_queue_mapping(skb, queue_index); 4213 return netdev_get_tx_queue(dev, queue_index); 4214 } 4215 4216 /** 4217 * __dev_queue_xmit() - transmit a buffer 4218 * @skb: buffer to transmit 4219 * @sb_dev: suboordinate device used for L2 forwarding offload 4220 * 4221 * Queue a buffer for transmission to a network device. The caller must 4222 * have set the device and priority and built the buffer before calling 4223 * this function. The function can be called from an interrupt. 4224 * 4225 * When calling this method, interrupts MUST be enabled. This is because 4226 * the BH enable code must have IRQs enabled so that it will not deadlock. 4227 * 4228 * Regardless of the return value, the skb is consumed, so it is currently 4229 * difficult to retry a send to this method. (You can bump the ref count 4230 * before sending to hold a reference for retry if you are careful.) 4231 * 4232 * Return: 4233 * * 0 - buffer successfully transmitted 4234 * * positive qdisc return code - NET_XMIT_DROP etc. 4235 * * negative errno - other errors 4236 */ 4237 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 4238 { 4239 struct net_device *dev = skb->dev; 4240 struct netdev_queue *txq = NULL; 4241 struct Qdisc *q; 4242 int rc = -ENOMEM; 4243 bool again = false; 4244 4245 skb_reset_mac_header(skb); 4246 skb_assert_len(skb); 4247 4248 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 4249 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED); 4250 4251 /* Disable soft irqs for various locks below. Also 4252 * stops preemption for RCU. 4253 */ 4254 rcu_read_lock_bh(); 4255 4256 skb_update_prio(skb); 4257 4258 qdisc_pkt_len_init(skb); 4259 tcx_set_ingress(skb, false); 4260 #ifdef CONFIG_NET_EGRESS 4261 if (static_branch_unlikely(&egress_needed_key)) { 4262 if (nf_hook_egress_active()) { 4263 skb = nf_hook_egress(skb, &rc, dev); 4264 if (!skb) 4265 goto out; 4266 } 4267 4268 netdev_xmit_skip_txqueue(false); 4269 4270 nf_skip_egress(skb, true); 4271 skb = sch_handle_egress(skb, &rc, dev); 4272 if (!skb) 4273 goto out; 4274 nf_skip_egress(skb, false); 4275 4276 if (netdev_xmit_txqueue_skipped()) 4277 txq = netdev_tx_queue_mapping(dev, skb); 4278 } 4279 #endif 4280 /* If device/qdisc don't need skb->dst, release it right now while 4281 * its hot in this cpu cache. 4282 */ 4283 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 4284 skb_dst_drop(skb); 4285 else 4286 skb_dst_force(skb); 4287 4288 if (!txq) 4289 txq = netdev_core_pick_tx(dev, skb, sb_dev); 4290 4291 q = rcu_dereference_bh(txq->qdisc); 4292 4293 trace_net_dev_queue(skb); 4294 if (q->enqueue) { 4295 rc = __dev_xmit_skb(skb, q, dev, txq); 4296 goto out; 4297 } 4298 4299 /* The device has no queue. Common case for software devices: 4300 * loopback, all the sorts of tunnels... 4301 4302 * Really, it is unlikely that netif_tx_lock protection is necessary 4303 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 4304 * counters.) 4305 * However, it is possible, that they rely on protection 4306 * made by us here. 4307 4308 * Check this and shot the lock. It is not prone from deadlocks. 4309 *Either shot noqueue qdisc, it is even simpler 8) 4310 */ 4311 if (dev->flags & IFF_UP) { 4312 int cpu = smp_processor_id(); /* ok because BHs are off */ 4313 4314 /* Other cpus might concurrently change txq->xmit_lock_owner 4315 * to -1 or to their cpu id, but not to our id. 4316 */ 4317 if (READ_ONCE(txq->xmit_lock_owner) != cpu) { 4318 if (dev_xmit_recursion()) 4319 goto recursion_alert; 4320 4321 skb = validate_xmit_skb(skb, dev, &again); 4322 if (!skb) 4323 goto out; 4324 4325 HARD_TX_LOCK(dev, txq, cpu); 4326 4327 if (!netif_xmit_stopped(txq)) { 4328 dev_xmit_recursion_inc(); 4329 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 4330 dev_xmit_recursion_dec(); 4331 if (dev_xmit_complete(rc)) { 4332 HARD_TX_UNLOCK(dev, txq); 4333 goto out; 4334 } 4335 } 4336 HARD_TX_UNLOCK(dev, txq); 4337 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 4338 dev->name); 4339 } else { 4340 /* Recursion is detected! It is possible, 4341 * unfortunately 4342 */ 4343 recursion_alert: 4344 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 4345 dev->name); 4346 } 4347 } 4348 4349 rc = -ENETDOWN; 4350 rcu_read_unlock_bh(); 4351 4352 dev_core_stats_tx_dropped_inc(dev); 4353 kfree_skb_list(skb); 4354 return rc; 4355 out: 4356 rcu_read_unlock_bh(); 4357 return rc; 4358 } 4359 EXPORT_SYMBOL(__dev_queue_xmit); 4360 4361 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 4362 { 4363 struct net_device *dev = skb->dev; 4364 struct sk_buff *orig_skb = skb; 4365 struct netdev_queue *txq; 4366 int ret = NETDEV_TX_BUSY; 4367 bool again = false; 4368 4369 if (unlikely(!netif_running(dev) || 4370 !netif_carrier_ok(dev))) 4371 goto drop; 4372 4373 skb = validate_xmit_skb_list(skb, dev, &again); 4374 if (skb != orig_skb) 4375 goto drop; 4376 4377 skb_set_queue_mapping(skb, queue_id); 4378 txq = skb_get_tx_queue(dev, skb); 4379 4380 local_bh_disable(); 4381 4382 dev_xmit_recursion_inc(); 4383 HARD_TX_LOCK(dev, txq, smp_processor_id()); 4384 if (!netif_xmit_frozen_or_drv_stopped(txq)) 4385 ret = netdev_start_xmit(skb, dev, txq, false); 4386 HARD_TX_UNLOCK(dev, txq); 4387 dev_xmit_recursion_dec(); 4388 4389 local_bh_enable(); 4390 return ret; 4391 drop: 4392 dev_core_stats_tx_dropped_inc(dev); 4393 kfree_skb_list(skb); 4394 return NET_XMIT_DROP; 4395 } 4396 EXPORT_SYMBOL(__dev_direct_xmit); 4397 4398 /************************************************************************* 4399 * Receiver routines 4400 *************************************************************************/ 4401 4402 int netdev_max_backlog __read_mostly = 1000; 4403 EXPORT_SYMBOL(netdev_max_backlog); 4404 4405 int netdev_tstamp_prequeue __read_mostly = 1; 4406 unsigned int sysctl_skb_defer_max __read_mostly = 64; 4407 int netdev_budget __read_mostly = 300; 4408 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */ 4409 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ; 4410 int weight_p __read_mostly = 64; /* old backlog weight */ 4411 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 4412 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 4413 int dev_rx_weight __read_mostly = 64; 4414 int dev_tx_weight __read_mostly = 64; 4415 4416 /* Called with irq disabled */ 4417 static inline void ____napi_schedule(struct softnet_data *sd, 4418 struct napi_struct *napi) 4419 { 4420 struct task_struct *thread; 4421 4422 lockdep_assert_irqs_disabled(); 4423 4424 if (test_bit(NAPI_STATE_THREADED, &napi->state)) { 4425 /* Paired with smp_mb__before_atomic() in 4426 * napi_enable()/dev_set_threaded(). 4427 * Use READ_ONCE() to guarantee a complete 4428 * read on napi->thread. Only call 4429 * wake_up_process() when it's not NULL. 4430 */ 4431 thread = READ_ONCE(napi->thread); 4432 if (thread) { 4433 /* Avoid doing set_bit() if the thread is in 4434 * INTERRUPTIBLE state, cause napi_thread_wait() 4435 * makes sure to proceed with napi polling 4436 * if the thread is explicitly woken from here. 4437 */ 4438 if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE) 4439 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state); 4440 wake_up_process(thread); 4441 return; 4442 } 4443 } 4444 4445 list_add_tail(&napi->poll_list, &sd->poll_list); 4446 WRITE_ONCE(napi->list_owner, smp_processor_id()); 4447 /* If not called from net_rx_action() 4448 * we have to raise NET_RX_SOFTIRQ. 4449 */ 4450 if (!sd->in_net_rx_action) 4451 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4452 } 4453 4454 #ifdef CONFIG_RPS 4455 4456 /* One global table that all flow-based protocols share. */ 4457 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 4458 EXPORT_SYMBOL(rps_sock_flow_table); 4459 u32 rps_cpu_mask __read_mostly; 4460 EXPORT_SYMBOL(rps_cpu_mask); 4461 4462 struct static_key_false rps_needed __read_mostly; 4463 EXPORT_SYMBOL(rps_needed); 4464 struct static_key_false rfs_needed __read_mostly; 4465 EXPORT_SYMBOL(rfs_needed); 4466 4467 static struct rps_dev_flow * 4468 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4469 struct rps_dev_flow *rflow, u16 next_cpu) 4470 { 4471 if (next_cpu < nr_cpu_ids) { 4472 #ifdef CONFIG_RFS_ACCEL 4473 struct netdev_rx_queue *rxqueue; 4474 struct rps_dev_flow_table *flow_table; 4475 struct rps_dev_flow *old_rflow; 4476 u32 flow_id; 4477 u16 rxq_index; 4478 int rc; 4479 4480 /* Should we steer this flow to a different hardware queue? */ 4481 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 4482 !(dev->features & NETIF_F_NTUPLE)) 4483 goto out; 4484 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 4485 if (rxq_index == skb_get_rx_queue(skb)) 4486 goto out; 4487 4488 rxqueue = dev->_rx + rxq_index; 4489 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4490 if (!flow_table) 4491 goto out; 4492 flow_id = skb_get_hash(skb) & flow_table->mask; 4493 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 4494 rxq_index, flow_id); 4495 if (rc < 0) 4496 goto out; 4497 old_rflow = rflow; 4498 rflow = &flow_table->flows[flow_id]; 4499 rflow->filter = rc; 4500 if (old_rflow->filter == rflow->filter) 4501 old_rflow->filter = RPS_NO_FILTER; 4502 out: 4503 #endif 4504 rflow->last_qtail = 4505 per_cpu(softnet_data, next_cpu).input_queue_head; 4506 } 4507 4508 rflow->cpu = next_cpu; 4509 return rflow; 4510 } 4511 4512 /* 4513 * get_rps_cpu is called from netif_receive_skb and returns the target 4514 * CPU from the RPS map of the receiving queue for a given skb. 4515 * rcu_read_lock must be held on entry. 4516 */ 4517 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4518 struct rps_dev_flow **rflowp) 4519 { 4520 const struct rps_sock_flow_table *sock_flow_table; 4521 struct netdev_rx_queue *rxqueue = dev->_rx; 4522 struct rps_dev_flow_table *flow_table; 4523 struct rps_map *map; 4524 int cpu = -1; 4525 u32 tcpu; 4526 u32 hash; 4527 4528 if (skb_rx_queue_recorded(skb)) { 4529 u16 index = skb_get_rx_queue(skb); 4530 4531 if (unlikely(index >= dev->real_num_rx_queues)) { 4532 WARN_ONCE(dev->real_num_rx_queues > 1, 4533 "%s received packet on queue %u, but number " 4534 "of RX queues is %u\n", 4535 dev->name, index, dev->real_num_rx_queues); 4536 goto done; 4537 } 4538 rxqueue += index; 4539 } 4540 4541 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 4542 4543 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4544 map = rcu_dereference(rxqueue->rps_map); 4545 if (!flow_table && !map) 4546 goto done; 4547 4548 skb_reset_network_header(skb); 4549 hash = skb_get_hash(skb); 4550 if (!hash) 4551 goto done; 4552 4553 sock_flow_table = rcu_dereference(rps_sock_flow_table); 4554 if (flow_table && sock_flow_table) { 4555 struct rps_dev_flow *rflow; 4556 u32 next_cpu; 4557 u32 ident; 4558 4559 /* First check into global flow table if there is a match. 4560 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow(). 4561 */ 4562 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]); 4563 if ((ident ^ hash) & ~rps_cpu_mask) 4564 goto try_rps; 4565 4566 next_cpu = ident & rps_cpu_mask; 4567 4568 /* OK, now we know there is a match, 4569 * we can look at the local (per receive queue) flow table 4570 */ 4571 rflow = &flow_table->flows[hash & flow_table->mask]; 4572 tcpu = rflow->cpu; 4573 4574 /* 4575 * If the desired CPU (where last recvmsg was done) is 4576 * different from current CPU (one in the rx-queue flow 4577 * table entry), switch if one of the following holds: 4578 * - Current CPU is unset (>= nr_cpu_ids). 4579 * - Current CPU is offline. 4580 * - The current CPU's queue tail has advanced beyond the 4581 * last packet that was enqueued using this table entry. 4582 * This guarantees that all previous packets for the flow 4583 * have been dequeued, thus preserving in order delivery. 4584 */ 4585 if (unlikely(tcpu != next_cpu) && 4586 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 4587 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 4588 rflow->last_qtail)) >= 0)) { 4589 tcpu = next_cpu; 4590 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 4591 } 4592 4593 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 4594 *rflowp = rflow; 4595 cpu = tcpu; 4596 goto done; 4597 } 4598 } 4599 4600 try_rps: 4601 4602 if (map) { 4603 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 4604 if (cpu_online(tcpu)) { 4605 cpu = tcpu; 4606 goto done; 4607 } 4608 } 4609 4610 done: 4611 return cpu; 4612 } 4613 4614 #ifdef CONFIG_RFS_ACCEL 4615 4616 /** 4617 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 4618 * @dev: Device on which the filter was set 4619 * @rxq_index: RX queue index 4620 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 4621 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 4622 * 4623 * Drivers that implement ndo_rx_flow_steer() should periodically call 4624 * this function for each installed filter and remove the filters for 4625 * which it returns %true. 4626 */ 4627 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 4628 u32 flow_id, u16 filter_id) 4629 { 4630 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 4631 struct rps_dev_flow_table *flow_table; 4632 struct rps_dev_flow *rflow; 4633 bool expire = true; 4634 unsigned int cpu; 4635 4636 rcu_read_lock(); 4637 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4638 if (flow_table && flow_id <= flow_table->mask) { 4639 rflow = &flow_table->flows[flow_id]; 4640 cpu = READ_ONCE(rflow->cpu); 4641 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 4642 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 4643 rflow->last_qtail) < 4644 (int)(10 * flow_table->mask))) 4645 expire = false; 4646 } 4647 rcu_read_unlock(); 4648 return expire; 4649 } 4650 EXPORT_SYMBOL(rps_may_expire_flow); 4651 4652 #endif /* CONFIG_RFS_ACCEL */ 4653 4654 /* Called from hardirq (IPI) context */ 4655 static void rps_trigger_softirq(void *data) 4656 { 4657 struct softnet_data *sd = data; 4658 4659 ____napi_schedule(sd, &sd->backlog); 4660 sd->received_rps++; 4661 } 4662 4663 #endif /* CONFIG_RPS */ 4664 4665 /* Called from hardirq (IPI) context */ 4666 static void trigger_rx_softirq(void *data) 4667 { 4668 struct softnet_data *sd = data; 4669 4670 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4671 smp_store_release(&sd->defer_ipi_scheduled, 0); 4672 } 4673 4674 /* 4675 * After we queued a packet into sd->input_pkt_queue, 4676 * we need to make sure this queue is serviced soon. 4677 * 4678 * - If this is another cpu queue, link it to our rps_ipi_list, 4679 * and make sure we will process rps_ipi_list from net_rx_action(). 4680 * 4681 * - If this is our own queue, NAPI schedule our backlog. 4682 * Note that this also raises NET_RX_SOFTIRQ. 4683 */ 4684 static void napi_schedule_rps(struct softnet_data *sd) 4685 { 4686 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 4687 4688 #ifdef CONFIG_RPS 4689 if (sd != mysd) { 4690 sd->rps_ipi_next = mysd->rps_ipi_list; 4691 mysd->rps_ipi_list = sd; 4692 4693 /* If not called from net_rx_action() or napi_threaded_poll() 4694 * we have to raise NET_RX_SOFTIRQ. 4695 */ 4696 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll) 4697 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4698 return; 4699 } 4700 #endif /* CONFIG_RPS */ 4701 __napi_schedule_irqoff(&mysd->backlog); 4702 } 4703 4704 #ifdef CONFIG_NET_FLOW_LIMIT 4705 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 4706 #endif 4707 4708 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 4709 { 4710 #ifdef CONFIG_NET_FLOW_LIMIT 4711 struct sd_flow_limit *fl; 4712 struct softnet_data *sd; 4713 unsigned int old_flow, new_flow; 4714 4715 if (qlen < (READ_ONCE(netdev_max_backlog) >> 1)) 4716 return false; 4717 4718 sd = this_cpu_ptr(&softnet_data); 4719 4720 rcu_read_lock(); 4721 fl = rcu_dereference(sd->flow_limit); 4722 if (fl) { 4723 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 4724 old_flow = fl->history[fl->history_head]; 4725 fl->history[fl->history_head] = new_flow; 4726 4727 fl->history_head++; 4728 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 4729 4730 if (likely(fl->buckets[old_flow])) 4731 fl->buckets[old_flow]--; 4732 4733 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 4734 fl->count++; 4735 rcu_read_unlock(); 4736 return true; 4737 } 4738 } 4739 rcu_read_unlock(); 4740 #endif 4741 return false; 4742 } 4743 4744 /* 4745 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 4746 * queue (may be a remote CPU queue). 4747 */ 4748 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 4749 unsigned int *qtail) 4750 { 4751 enum skb_drop_reason reason; 4752 struct softnet_data *sd; 4753 unsigned long flags; 4754 unsigned int qlen; 4755 4756 reason = SKB_DROP_REASON_NOT_SPECIFIED; 4757 sd = &per_cpu(softnet_data, cpu); 4758 4759 rps_lock_irqsave(sd, &flags); 4760 if (!netif_running(skb->dev)) 4761 goto drop; 4762 qlen = skb_queue_len(&sd->input_pkt_queue); 4763 if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) { 4764 if (qlen) { 4765 enqueue: 4766 __skb_queue_tail(&sd->input_pkt_queue, skb); 4767 input_queue_tail_incr_save(sd, qtail); 4768 rps_unlock_irq_restore(sd, &flags); 4769 return NET_RX_SUCCESS; 4770 } 4771 4772 /* Schedule NAPI for backlog device 4773 * We can use non atomic operation since we own the queue lock 4774 */ 4775 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) 4776 napi_schedule_rps(sd); 4777 goto enqueue; 4778 } 4779 reason = SKB_DROP_REASON_CPU_BACKLOG; 4780 4781 drop: 4782 sd->dropped++; 4783 rps_unlock_irq_restore(sd, &flags); 4784 4785 dev_core_stats_rx_dropped_inc(skb->dev); 4786 kfree_skb_reason(skb, reason); 4787 return NET_RX_DROP; 4788 } 4789 4790 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 4791 { 4792 struct net_device *dev = skb->dev; 4793 struct netdev_rx_queue *rxqueue; 4794 4795 rxqueue = dev->_rx; 4796 4797 if (skb_rx_queue_recorded(skb)) { 4798 u16 index = skb_get_rx_queue(skb); 4799 4800 if (unlikely(index >= dev->real_num_rx_queues)) { 4801 WARN_ONCE(dev->real_num_rx_queues > 1, 4802 "%s received packet on queue %u, but number " 4803 "of RX queues is %u\n", 4804 dev->name, index, dev->real_num_rx_queues); 4805 4806 return rxqueue; /* Return first rxqueue */ 4807 } 4808 rxqueue += index; 4809 } 4810 return rxqueue; 4811 } 4812 4813 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 4814 struct bpf_prog *xdp_prog) 4815 { 4816 void *orig_data, *orig_data_end, *hard_start; 4817 struct netdev_rx_queue *rxqueue; 4818 bool orig_bcast, orig_host; 4819 u32 mac_len, frame_sz; 4820 __be16 orig_eth_type; 4821 struct ethhdr *eth; 4822 u32 metalen, act; 4823 int off; 4824 4825 /* The XDP program wants to see the packet starting at the MAC 4826 * header. 4827 */ 4828 mac_len = skb->data - skb_mac_header(skb); 4829 hard_start = skb->data - skb_headroom(skb); 4830 4831 /* SKB "head" area always have tailroom for skb_shared_info */ 4832 frame_sz = (void *)skb_end_pointer(skb) - hard_start; 4833 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4834 4835 rxqueue = netif_get_rxqueue(skb); 4836 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq); 4837 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len, 4838 skb_headlen(skb) + mac_len, true); 4839 4840 orig_data_end = xdp->data_end; 4841 orig_data = xdp->data; 4842 eth = (struct ethhdr *)xdp->data; 4843 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr); 4844 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 4845 orig_eth_type = eth->h_proto; 4846 4847 act = bpf_prog_run_xdp(xdp_prog, xdp); 4848 4849 /* check if bpf_xdp_adjust_head was used */ 4850 off = xdp->data - orig_data; 4851 if (off) { 4852 if (off > 0) 4853 __skb_pull(skb, off); 4854 else if (off < 0) 4855 __skb_push(skb, -off); 4856 4857 skb->mac_header += off; 4858 skb_reset_network_header(skb); 4859 } 4860 4861 /* check if bpf_xdp_adjust_tail was used */ 4862 off = xdp->data_end - orig_data_end; 4863 if (off != 0) { 4864 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 4865 skb->len += off; /* positive on grow, negative on shrink */ 4866 } 4867 4868 /* check if XDP changed eth hdr such SKB needs update */ 4869 eth = (struct ethhdr *)xdp->data; 4870 if ((orig_eth_type != eth->h_proto) || 4871 (orig_host != ether_addr_equal_64bits(eth->h_dest, 4872 skb->dev->dev_addr)) || 4873 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 4874 __skb_push(skb, ETH_HLEN); 4875 skb->pkt_type = PACKET_HOST; 4876 skb->protocol = eth_type_trans(skb, skb->dev); 4877 } 4878 4879 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull 4880 * before calling us again on redirect path. We do not call do_redirect 4881 * as we leave that up to the caller. 4882 * 4883 * Caller is responsible for managing lifetime of skb (i.e. calling 4884 * kfree_skb in response to actions it cannot handle/XDP_DROP). 4885 */ 4886 switch (act) { 4887 case XDP_REDIRECT: 4888 case XDP_TX: 4889 __skb_push(skb, mac_len); 4890 break; 4891 case XDP_PASS: 4892 metalen = xdp->data - xdp->data_meta; 4893 if (metalen) 4894 skb_metadata_set(skb, metalen); 4895 break; 4896 } 4897 4898 return act; 4899 } 4900 4901 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 4902 struct xdp_buff *xdp, 4903 struct bpf_prog *xdp_prog) 4904 { 4905 u32 act = XDP_DROP; 4906 4907 /* Reinjected packets coming from act_mirred or similar should 4908 * not get XDP generic processing. 4909 */ 4910 if (skb_is_redirected(skb)) 4911 return XDP_PASS; 4912 4913 /* XDP packets must be linear and must have sufficient headroom 4914 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also 4915 * native XDP provides, thus we need to do it here as well. 4916 */ 4917 if (skb_cloned(skb) || skb_is_nonlinear(skb) || 4918 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 4919 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 4920 int troom = skb->tail + skb->data_len - skb->end; 4921 4922 /* In case we have to go down the path and also linearize, 4923 * then lets do the pskb_expand_head() work just once here. 4924 */ 4925 if (pskb_expand_head(skb, 4926 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 4927 troom > 0 ? troom + 128 : 0, GFP_ATOMIC)) 4928 goto do_drop; 4929 if (skb_linearize(skb)) 4930 goto do_drop; 4931 } 4932 4933 act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog); 4934 switch (act) { 4935 case XDP_REDIRECT: 4936 case XDP_TX: 4937 case XDP_PASS: 4938 break; 4939 default: 4940 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act); 4941 fallthrough; 4942 case XDP_ABORTED: 4943 trace_xdp_exception(skb->dev, xdp_prog, act); 4944 fallthrough; 4945 case XDP_DROP: 4946 do_drop: 4947 kfree_skb(skb); 4948 break; 4949 } 4950 4951 return act; 4952 } 4953 4954 /* When doing generic XDP we have to bypass the qdisc layer and the 4955 * network taps in order to match in-driver-XDP behavior. This also means 4956 * that XDP packets are able to starve other packets going through a qdisc, 4957 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX 4958 * queues, so they do not have this starvation issue. 4959 */ 4960 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 4961 { 4962 struct net_device *dev = skb->dev; 4963 struct netdev_queue *txq; 4964 bool free_skb = true; 4965 int cpu, rc; 4966 4967 txq = netdev_core_pick_tx(dev, skb, NULL); 4968 cpu = smp_processor_id(); 4969 HARD_TX_LOCK(dev, txq, cpu); 4970 if (!netif_xmit_frozen_or_drv_stopped(txq)) { 4971 rc = netdev_start_xmit(skb, dev, txq, 0); 4972 if (dev_xmit_complete(rc)) 4973 free_skb = false; 4974 } 4975 HARD_TX_UNLOCK(dev, txq); 4976 if (free_skb) { 4977 trace_xdp_exception(dev, xdp_prog, XDP_TX); 4978 dev_core_stats_tx_dropped_inc(dev); 4979 kfree_skb(skb); 4980 } 4981 } 4982 4983 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 4984 4985 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 4986 { 4987 if (xdp_prog) { 4988 struct xdp_buff xdp; 4989 u32 act; 4990 int err; 4991 4992 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog); 4993 if (act != XDP_PASS) { 4994 switch (act) { 4995 case XDP_REDIRECT: 4996 err = xdp_do_generic_redirect(skb->dev, skb, 4997 &xdp, xdp_prog); 4998 if (err) 4999 goto out_redir; 5000 break; 5001 case XDP_TX: 5002 generic_xdp_tx(skb, xdp_prog); 5003 break; 5004 } 5005 return XDP_DROP; 5006 } 5007 } 5008 return XDP_PASS; 5009 out_redir: 5010 kfree_skb_reason(skb, SKB_DROP_REASON_XDP); 5011 return XDP_DROP; 5012 } 5013 EXPORT_SYMBOL_GPL(do_xdp_generic); 5014 5015 static int netif_rx_internal(struct sk_buff *skb) 5016 { 5017 int ret; 5018 5019 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb); 5020 5021 trace_netif_rx(skb); 5022 5023 #ifdef CONFIG_RPS 5024 if (static_branch_unlikely(&rps_needed)) { 5025 struct rps_dev_flow voidflow, *rflow = &voidflow; 5026 int cpu; 5027 5028 rcu_read_lock(); 5029 5030 cpu = get_rps_cpu(skb->dev, skb, &rflow); 5031 if (cpu < 0) 5032 cpu = smp_processor_id(); 5033 5034 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5035 5036 rcu_read_unlock(); 5037 } else 5038 #endif 5039 { 5040 unsigned int qtail; 5041 5042 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail); 5043 } 5044 return ret; 5045 } 5046 5047 /** 5048 * __netif_rx - Slightly optimized version of netif_rx 5049 * @skb: buffer to post 5050 * 5051 * This behaves as netif_rx except that it does not disable bottom halves. 5052 * As a result this function may only be invoked from the interrupt context 5053 * (either hard or soft interrupt). 5054 */ 5055 int __netif_rx(struct sk_buff *skb) 5056 { 5057 int ret; 5058 5059 lockdep_assert_once(hardirq_count() | softirq_count()); 5060 5061 trace_netif_rx_entry(skb); 5062 ret = netif_rx_internal(skb); 5063 trace_netif_rx_exit(ret); 5064 return ret; 5065 } 5066 EXPORT_SYMBOL(__netif_rx); 5067 5068 /** 5069 * netif_rx - post buffer to the network code 5070 * @skb: buffer to post 5071 * 5072 * This function receives a packet from a device driver and queues it for 5073 * the upper (protocol) levels to process via the backlog NAPI device. It 5074 * always succeeds. The buffer may be dropped during processing for 5075 * congestion control or by the protocol layers. 5076 * The network buffer is passed via the backlog NAPI device. Modern NIC 5077 * driver should use NAPI and GRO. 5078 * This function can used from interrupt and from process context. The 5079 * caller from process context must not disable interrupts before invoking 5080 * this function. 5081 * 5082 * return values: 5083 * NET_RX_SUCCESS (no congestion) 5084 * NET_RX_DROP (packet was dropped) 5085 * 5086 */ 5087 int netif_rx(struct sk_buff *skb) 5088 { 5089 bool need_bh_off = !(hardirq_count() | softirq_count()); 5090 int ret; 5091 5092 if (need_bh_off) 5093 local_bh_disable(); 5094 trace_netif_rx_entry(skb); 5095 ret = netif_rx_internal(skb); 5096 trace_netif_rx_exit(ret); 5097 if (need_bh_off) 5098 local_bh_enable(); 5099 return ret; 5100 } 5101 EXPORT_SYMBOL(netif_rx); 5102 5103 static __latent_entropy void net_tx_action(struct softirq_action *h) 5104 { 5105 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5106 5107 if (sd->completion_queue) { 5108 struct sk_buff *clist; 5109 5110 local_irq_disable(); 5111 clist = sd->completion_queue; 5112 sd->completion_queue = NULL; 5113 local_irq_enable(); 5114 5115 while (clist) { 5116 struct sk_buff *skb = clist; 5117 5118 clist = clist->next; 5119 5120 WARN_ON(refcount_read(&skb->users)); 5121 if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED)) 5122 trace_consume_skb(skb, net_tx_action); 5123 else 5124 trace_kfree_skb(skb, net_tx_action, 5125 get_kfree_skb_cb(skb)->reason); 5126 5127 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 5128 __kfree_skb(skb); 5129 else 5130 __napi_kfree_skb(skb, 5131 get_kfree_skb_cb(skb)->reason); 5132 } 5133 } 5134 5135 if (sd->output_queue) { 5136 struct Qdisc *head; 5137 5138 local_irq_disable(); 5139 head = sd->output_queue; 5140 sd->output_queue = NULL; 5141 sd->output_queue_tailp = &sd->output_queue; 5142 local_irq_enable(); 5143 5144 rcu_read_lock(); 5145 5146 while (head) { 5147 struct Qdisc *q = head; 5148 spinlock_t *root_lock = NULL; 5149 5150 head = head->next_sched; 5151 5152 /* We need to make sure head->next_sched is read 5153 * before clearing __QDISC_STATE_SCHED 5154 */ 5155 smp_mb__before_atomic(); 5156 5157 if (!(q->flags & TCQ_F_NOLOCK)) { 5158 root_lock = qdisc_lock(q); 5159 spin_lock(root_lock); 5160 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, 5161 &q->state))) { 5162 /* There is a synchronize_net() between 5163 * STATE_DEACTIVATED flag being set and 5164 * qdisc_reset()/some_qdisc_is_busy() in 5165 * dev_deactivate(), so we can safely bail out 5166 * early here to avoid data race between 5167 * qdisc_deactivate() and some_qdisc_is_busy() 5168 * for lockless qdisc. 5169 */ 5170 clear_bit(__QDISC_STATE_SCHED, &q->state); 5171 continue; 5172 } 5173 5174 clear_bit(__QDISC_STATE_SCHED, &q->state); 5175 qdisc_run(q); 5176 if (root_lock) 5177 spin_unlock(root_lock); 5178 } 5179 5180 rcu_read_unlock(); 5181 } 5182 5183 xfrm_dev_backlog(sd); 5184 } 5185 5186 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 5187 /* This hook is defined here for ATM LANE */ 5188 int (*br_fdb_test_addr_hook)(struct net_device *dev, 5189 unsigned char *addr) __read_mostly; 5190 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 5191 #endif 5192 5193 /** 5194 * netdev_is_rx_handler_busy - check if receive handler is registered 5195 * @dev: device to check 5196 * 5197 * Check if a receive handler is already registered for a given device. 5198 * Return true if there one. 5199 * 5200 * The caller must hold the rtnl_mutex. 5201 */ 5202 bool netdev_is_rx_handler_busy(struct net_device *dev) 5203 { 5204 ASSERT_RTNL(); 5205 return dev && rtnl_dereference(dev->rx_handler); 5206 } 5207 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 5208 5209 /** 5210 * netdev_rx_handler_register - register receive handler 5211 * @dev: device to register a handler for 5212 * @rx_handler: receive handler to register 5213 * @rx_handler_data: data pointer that is used by rx handler 5214 * 5215 * Register a receive handler for a device. This handler will then be 5216 * called from __netif_receive_skb. A negative errno code is returned 5217 * on a failure. 5218 * 5219 * The caller must hold the rtnl_mutex. 5220 * 5221 * For a general description of rx_handler, see enum rx_handler_result. 5222 */ 5223 int netdev_rx_handler_register(struct net_device *dev, 5224 rx_handler_func_t *rx_handler, 5225 void *rx_handler_data) 5226 { 5227 if (netdev_is_rx_handler_busy(dev)) 5228 return -EBUSY; 5229 5230 if (dev->priv_flags & IFF_NO_RX_HANDLER) 5231 return -EINVAL; 5232 5233 /* Note: rx_handler_data must be set before rx_handler */ 5234 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 5235 rcu_assign_pointer(dev->rx_handler, rx_handler); 5236 5237 return 0; 5238 } 5239 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 5240 5241 /** 5242 * netdev_rx_handler_unregister - unregister receive handler 5243 * @dev: device to unregister a handler from 5244 * 5245 * Unregister a receive handler from a device. 5246 * 5247 * The caller must hold the rtnl_mutex. 5248 */ 5249 void netdev_rx_handler_unregister(struct net_device *dev) 5250 { 5251 5252 ASSERT_RTNL(); 5253 RCU_INIT_POINTER(dev->rx_handler, NULL); 5254 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 5255 * section has a guarantee to see a non NULL rx_handler_data 5256 * as well. 5257 */ 5258 synchronize_net(); 5259 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 5260 } 5261 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 5262 5263 /* 5264 * Limit the use of PFMEMALLOC reserves to those protocols that implement 5265 * the special handling of PFMEMALLOC skbs. 5266 */ 5267 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 5268 { 5269 switch (skb->protocol) { 5270 case htons(ETH_P_ARP): 5271 case htons(ETH_P_IP): 5272 case htons(ETH_P_IPV6): 5273 case htons(ETH_P_8021Q): 5274 case htons(ETH_P_8021AD): 5275 return true; 5276 default: 5277 return false; 5278 } 5279 } 5280 5281 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 5282 int *ret, struct net_device *orig_dev) 5283 { 5284 if (nf_hook_ingress_active(skb)) { 5285 int ingress_retval; 5286 5287 if (*pt_prev) { 5288 *ret = deliver_skb(skb, *pt_prev, orig_dev); 5289 *pt_prev = NULL; 5290 } 5291 5292 rcu_read_lock(); 5293 ingress_retval = nf_hook_ingress(skb); 5294 rcu_read_unlock(); 5295 return ingress_retval; 5296 } 5297 return 0; 5298 } 5299 5300 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc, 5301 struct packet_type **ppt_prev) 5302 { 5303 struct packet_type *ptype, *pt_prev; 5304 rx_handler_func_t *rx_handler; 5305 struct sk_buff *skb = *pskb; 5306 struct net_device *orig_dev; 5307 bool deliver_exact = false; 5308 int ret = NET_RX_DROP; 5309 __be16 type; 5310 5311 net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb); 5312 5313 trace_netif_receive_skb(skb); 5314 5315 orig_dev = skb->dev; 5316 5317 skb_reset_network_header(skb); 5318 if (!skb_transport_header_was_set(skb)) 5319 skb_reset_transport_header(skb); 5320 skb_reset_mac_len(skb); 5321 5322 pt_prev = NULL; 5323 5324 another_round: 5325 skb->skb_iif = skb->dev->ifindex; 5326 5327 __this_cpu_inc(softnet_data.processed); 5328 5329 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5330 int ret2; 5331 5332 migrate_disable(); 5333 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 5334 migrate_enable(); 5335 5336 if (ret2 != XDP_PASS) { 5337 ret = NET_RX_DROP; 5338 goto out; 5339 } 5340 } 5341 5342 if (eth_type_vlan(skb->protocol)) { 5343 skb = skb_vlan_untag(skb); 5344 if (unlikely(!skb)) 5345 goto out; 5346 } 5347 5348 if (skb_skip_tc_classify(skb)) 5349 goto skip_classify; 5350 5351 if (pfmemalloc) 5352 goto skip_taps; 5353 5354 list_for_each_entry_rcu(ptype, &ptype_all, list) { 5355 if (pt_prev) 5356 ret = deliver_skb(skb, pt_prev, orig_dev); 5357 pt_prev = ptype; 5358 } 5359 5360 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 5361 if (pt_prev) 5362 ret = deliver_skb(skb, pt_prev, orig_dev); 5363 pt_prev = ptype; 5364 } 5365 5366 skip_taps: 5367 #ifdef CONFIG_NET_INGRESS 5368 if (static_branch_unlikely(&ingress_needed_key)) { 5369 bool another = false; 5370 5371 nf_skip_egress(skb, true); 5372 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev, 5373 &another); 5374 if (another) 5375 goto another_round; 5376 if (!skb) 5377 goto out; 5378 5379 nf_skip_egress(skb, false); 5380 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 5381 goto out; 5382 } 5383 #endif 5384 skb_reset_redirect(skb); 5385 skip_classify: 5386 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 5387 goto drop; 5388 5389 if (skb_vlan_tag_present(skb)) { 5390 if (pt_prev) { 5391 ret = deliver_skb(skb, pt_prev, orig_dev); 5392 pt_prev = NULL; 5393 } 5394 if (vlan_do_receive(&skb)) 5395 goto another_round; 5396 else if (unlikely(!skb)) 5397 goto out; 5398 } 5399 5400 rx_handler = rcu_dereference(skb->dev->rx_handler); 5401 if (rx_handler) { 5402 if (pt_prev) { 5403 ret = deliver_skb(skb, pt_prev, orig_dev); 5404 pt_prev = NULL; 5405 } 5406 switch (rx_handler(&skb)) { 5407 case RX_HANDLER_CONSUMED: 5408 ret = NET_RX_SUCCESS; 5409 goto out; 5410 case RX_HANDLER_ANOTHER: 5411 goto another_round; 5412 case RX_HANDLER_EXACT: 5413 deliver_exact = true; 5414 break; 5415 case RX_HANDLER_PASS: 5416 break; 5417 default: 5418 BUG(); 5419 } 5420 } 5421 5422 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) { 5423 check_vlan_id: 5424 if (skb_vlan_tag_get_id(skb)) { 5425 /* Vlan id is non 0 and vlan_do_receive() above couldn't 5426 * find vlan device. 5427 */ 5428 skb->pkt_type = PACKET_OTHERHOST; 5429 } else if (eth_type_vlan(skb->protocol)) { 5430 /* Outer header is 802.1P with vlan 0, inner header is 5431 * 802.1Q or 802.1AD and vlan_do_receive() above could 5432 * not find vlan dev for vlan id 0. 5433 */ 5434 __vlan_hwaccel_clear_tag(skb); 5435 skb = skb_vlan_untag(skb); 5436 if (unlikely(!skb)) 5437 goto out; 5438 if (vlan_do_receive(&skb)) 5439 /* After stripping off 802.1P header with vlan 0 5440 * vlan dev is found for inner header. 5441 */ 5442 goto another_round; 5443 else if (unlikely(!skb)) 5444 goto out; 5445 else 5446 /* We have stripped outer 802.1P vlan 0 header. 5447 * But could not find vlan dev. 5448 * check again for vlan id to set OTHERHOST. 5449 */ 5450 goto check_vlan_id; 5451 } 5452 /* Note: we might in the future use prio bits 5453 * and set skb->priority like in vlan_do_receive() 5454 * For the time being, just ignore Priority Code Point 5455 */ 5456 __vlan_hwaccel_clear_tag(skb); 5457 } 5458 5459 type = skb->protocol; 5460 5461 /* deliver only exact match when indicated */ 5462 if (likely(!deliver_exact)) { 5463 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5464 &ptype_base[ntohs(type) & 5465 PTYPE_HASH_MASK]); 5466 } 5467 5468 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5469 &orig_dev->ptype_specific); 5470 5471 if (unlikely(skb->dev != orig_dev)) { 5472 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5473 &skb->dev->ptype_specific); 5474 } 5475 5476 if (pt_prev) { 5477 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 5478 goto drop; 5479 *ppt_prev = pt_prev; 5480 } else { 5481 drop: 5482 if (!deliver_exact) 5483 dev_core_stats_rx_dropped_inc(skb->dev); 5484 else 5485 dev_core_stats_rx_nohandler_inc(skb->dev); 5486 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO); 5487 /* Jamal, now you will not able to escape explaining 5488 * me how you were going to use this. :-) 5489 */ 5490 ret = NET_RX_DROP; 5491 } 5492 5493 out: 5494 /* The invariant here is that if *ppt_prev is not NULL 5495 * then skb should also be non-NULL. 5496 * 5497 * Apparently *ppt_prev assignment above holds this invariant due to 5498 * skb dereferencing near it. 5499 */ 5500 *pskb = skb; 5501 return ret; 5502 } 5503 5504 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 5505 { 5506 struct net_device *orig_dev = skb->dev; 5507 struct packet_type *pt_prev = NULL; 5508 int ret; 5509 5510 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5511 if (pt_prev) 5512 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, 5513 skb->dev, pt_prev, orig_dev); 5514 return ret; 5515 } 5516 5517 /** 5518 * netif_receive_skb_core - special purpose version of netif_receive_skb 5519 * @skb: buffer to process 5520 * 5521 * More direct receive version of netif_receive_skb(). It should 5522 * only be used by callers that have a need to skip RPS and Generic XDP. 5523 * Caller must also take care of handling if ``(page_is_)pfmemalloc``. 5524 * 5525 * This function may only be called from softirq context and interrupts 5526 * should be enabled. 5527 * 5528 * Return values (usually ignored): 5529 * NET_RX_SUCCESS: no congestion 5530 * NET_RX_DROP: packet was dropped 5531 */ 5532 int netif_receive_skb_core(struct sk_buff *skb) 5533 { 5534 int ret; 5535 5536 rcu_read_lock(); 5537 ret = __netif_receive_skb_one_core(skb, false); 5538 rcu_read_unlock(); 5539 5540 return ret; 5541 } 5542 EXPORT_SYMBOL(netif_receive_skb_core); 5543 5544 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 5545 struct packet_type *pt_prev, 5546 struct net_device *orig_dev) 5547 { 5548 struct sk_buff *skb, *next; 5549 5550 if (!pt_prev) 5551 return; 5552 if (list_empty(head)) 5553 return; 5554 if (pt_prev->list_func != NULL) 5555 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv, 5556 ip_list_rcv, head, pt_prev, orig_dev); 5557 else 5558 list_for_each_entry_safe(skb, next, head, list) { 5559 skb_list_del_init(skb); 5560 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 5561 } 5562 } 5563 5564 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 5565 { 5566 /* Fast-path assumptions: 5567 * - There is no RX handler. 5568 * - Only one packet_type matches. 5569 * If either of these fails, we will end up doing some per-packet 5570 * processing in-line, then handling the 'last ptype' for the whole 5571 * sublist. This can't cause out-of-order delivery to any single ptype, 5572 * because the 'last ptype' must be constant across the sublist, and all 5573 * other ptypes are handled per-packet. 5574 */ 5575 /* Current (common) ptype of sublist */ 5576 struct packet_type *pt_curr = NULL; 5577 /* Current (common) orig_dev of sublist */ 5578 struct net_device *od_curr = NULL; 5579 struct list_head sublist; 5580 struct sk_buff *skb, *next; 5581 5582 INIT_LIST_HEAD(&sublist); 5583 list_for_each_entry_safe(skb, next, head, list) { 5584 struct net_device *orig_dev = skb->dev; 5585 struct packet_type *pt_prev = NULL; 5586 5587 skb_list_del_init(skb); 5588 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5589 if (!pt_prev) 5590 continue; 5591 if (pt_curr != pt_prev || od_curr != orig_dev) { 5592 /* dispatch old sublist */ 5593 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5594 /* start new sublist */ 5595 INIT_LIST_HEAD(&sublist); 5596 pt_curr = pt_prev; 5597 od_curr = orig_dev; 5598 } 5599 list_add_tail(&skb->list, &sublist); 5600 } 5601 5602 /* dispatch final sublist */ 5603 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5604 } 5605 5606 static int __netif_receive_skb(struct sk_buff *skb) 5607 { 5608 int ret; 5609 5610 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 5611 unsigned int noreclaim_flag; 5612 5613 /* 5614 * PFMEMALLOC skbs are special, they should 5615 * - be delivered to SOCK_MEMALLOC sockets only 5616 * - stay away from userspace 5617 * - have bounded memory usage 5618 * 5619 * Use PF_MEMALLOC as this saves us from propagating the allocation 5620 * context down to all allocation sites. 5621 */ 5622 noreclaim_flag = memalloc_noreclaim_save(); 5623 ret = __netif_receive_skb_one_core(skb, true); 5624 memalloc_noreclaim_restore(noreclaim_flag); 5625 } else 5626 ret = __netif_receive_skb_one_core(skb, false); 5627 5628 return ret; 5629 } 5630 5631 static void __netif_receive_skb_list(struct list_head *head) 5632 { 5633 unsigned long noreclaim_flag = 0; 5634 struct sk_buff *skb, *next; 5635 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 5636 5637 list_for_each_entry_safe(skb, next, head, list) { 5638 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 5639 struct list_head sublist; 5640 5641 /* Handle the previous sublist */ 5642 list_cut_before(&sublist, head, &skb->list); 5643 if (!list_empty(&sublist)) 5644 __netif_receive_skb_list_core(&sublist, pfmemalloc); 5645 pfmemalloc = !pfmemalloc; 5646 /* See comments in __netif_receive_skb */ 5647 if (pfmemalloc) 5648 noreclaim_flag = memalloc_noreclaim_save(); 5649 else 5650 memalloc_noreclaim_restore(noreclaim_flag); 5651 } 5652 } 5653 /* Handle the remaining sublist */ 5654 if (!list_empty(head)) 5655 __netif_receive_skb_list_core(head, pfmemalloc); 5656 /* Restore pflags */ 5657 if (pfmemalloc) 5658 memalloc_noreclaim_restore(noreclaim_flag); 5659 } 5660 5661 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 5662 { 5663 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 5664 struct bpf_prog *new = xdp->prog; 5665 int ret = 0; 5666 5667 switch (xdp->command) { 5668 case XDP_SETUP_PROG: 5669 rcu_assign_pointer(dev->xdp_prog, new); 5670 if (old) 5671 bpf_prog_put(old); 5672 5673 if (old && !new) { 5674 static_branch_dec(&generic_xdp_needed_key); 5675 } else if (new && !old) { 5676 static_branch_inc(&generic_xdp_needed_key); 5677 dev_disable_lro(dev); 5678 dev_disable_gro_hw(dev); 5679 } 5680 break; 5681 5682 default: 5683 ret = -EINVAL; 5684 break; 5685 } 5686 5687 return ret; 5688 } 5689 5690 static int netif_receive_skb_internal(struct sk_buff *skb) 5691 { 5692 int ret; 5693 5694 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb); 5695 5696 if (skb_defer_rx_timestamp(skb)) 5697 return NET_RX_SUCCESS; 5698 5699 rcu_read_lock(); 5700 #ifdef CONFIG_RPS 5701 if (static_branch_unlikely(&rps_needed)) { 5702 struct rps_dev_flow voidflow, *rflow = &voidflow; 5703 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5704 5705 if (cpu >= 0) { 5706 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5707 rcu_read_unlock(); 5708 return ret; 5709 } 5710 } 5711 #endif 5712 ret = __netif_receive_skb(skb); 5713 rcu_read_unlock(); 5714 return ret; 5715 } 5716 5717 void netif_receive_skb_list_internal(struct list_head *head) 5718 { 5719 struct sk_buff *skb, *next; 5720 struct list_head sublist; 5721 5722 INIT_LIST_HEAD(&sublist); 5723 list_for_each_entry_safe(skb, next, head, list) { 5724 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb); 5725 skb_list_del_init(skb); 5726 if (!skb_defer_rx_timestamp(skb)) 5727 list_add_tail(&skb->list, &sublist); 5728 } 5729 list_splice_init(&sublist, head); 5730 5731 rcu_read_lock(); 5732 #ifdef CONFIG_RPS 5733 if (static_branch_unlikely(&rps_needed)) { 5734 list_for_each_entry_safe(skb, next, head, list) { 5735 struct rps_dev_flow voidflow, *rflow = &voidflow; 5736 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5737 5738 if (cpu >= 0) { 5739 /* Will be handled, remove from list */ 5740 skb_list_del_init(skb); 5741 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5742 } 5743 } 5744 } 5745 #endif 5746 __netif_receive_skb_list(head); 5747 rcu_read_unlock(); 5748 } 5749 5750 /** 5751 * netif_receive_skb - process receive buffer from network 5752 * @skb: buffer to process 5753 * 5754 * netif_receive_skb() is the main receive data processing function. 5755 * It always succeeds. The buffer may be dropped during processing 5756 * for congestion control or by the protocol layers. 5757 * 5758 * This function may only be called from softirq context and interrupts 5759 * should be enabled. 5760 * 5761 * Return values (usually ignored): 5762 * NET_RX_SUCCESS: no congestion 5763 * NET_RX_DROP: packet was dropped 5764 */ 5765 int netif_receive_skb(struct sk_buff *skb) 5766 { 5767 int ret; 5768 5769 trace_netif_receive_skb_entry(skb); 5770 5771 ret = netif_receive_skb_internal(skb); 5772 trace_netif_receive_skb_exit(ret); 5773 5774 return ret; 5775 } 5776 EXPORT_SYMBOL(netif_receive_skb); 5777 5778 /** 5779 * netif_receive_skb_list - process many receive buffers from network 5780 * @head: list of skbs to process. 5781 * 5782 * Since return value of netif_receive_skb() is normally ignored, and 5783 * wouldn't be meaningful for a list, this function returns void. 5784 * 5785 * This function may only be called from softirq context and interrupts 5786 * should be enabled. 5787 */ 5788 void netif_receive_skb_list(struct list_head *head) 5789 { 5790 struct sk_buff *skb; 5791 5792 if (list_empty(head)) 5793 return; 5794 if (trace_netif_receive_skb_list_entry_enabled()) { 5795 list_for_each_entry(skb, head, list) 5796 trace_netif_receive_skb_list_entry(skb); 5797 } 5798 netif_receive_skb_list_internal(head); 5799 trace_netif_receive_skb_list_exit(0); 5800 } 5801 EXPORT_SYMBOL(netif_receive_skb_list); 5802 5803 static DEFINE_PER_CPU(struct work_struct, flush_works); 5804 5805 /* Network device is going away, flush any packets still pending */ 5806 static void flush_backlog(struct work_struct *work) 5807 { 5808 struct sk_buff *skb, *tmp; 5809 struct softnet_data *sd; 5810 5811 local_bh_disable(); 5812 sd = this_cpu_ptr(&softnet_data); 5813 5814 rps_lock_irq_disable(sd); 5815 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 5816 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5817 __skb_unlink(skb, &sd->input_pkt_queue); 5818 dev_kfree_skb_irq(skb); 5819 input_queue_head_incr(sd); 5820 } 5821 } 5822 rps_unlock_irq_enable(sd); 5823 5824 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 5825 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5826 __skb_unlink(skb, &sd->process_queue); 5827 kfree_skb(skb); 5828 input_queue_head_incr(sd); 5829 } 5830 } 5831 local_bh_enable(); 5832 } 5833 5834 static bool flush_required(int cpu) 5835 { 5836 #if IS_ENABLED(CONFIG_RPS) 5837 struct softnet_data *sd = &per_cpu(softnet_data, cpu); 5838 bool do_flush; 5839 5840 rps_lock_irq_disable(sd); 5841 5842 /* as insertion into process_queue happens with the rps lock held, 5843 * process_queue access may race only with dequeue 5844 */ 5845 do_flush = !skb_queue_empty(&sd->input_pkt_queue) || 5846 !skb_queue_empty_lockless(&sd->process_queue); 5847 rps_unlock_irq_enable(sd); 5848 5849 return do_flush; 5850 #endif 5851 /* without RPS we can't safely check input_pkt_queue: during a 5852 * concurrent remote skb_queue_splice() we can detect as empty both 5853 * input_pkt_queue and process_queue even if the latter could end-up 5854 * containing a lot of packets. 5855 */ 5856 return true; 5857 } 5858 5859 static void flush_all_backlogs(void) 5860 { 5861 static cpumask_t flush_cpus; 5862 unsigned int cpu; 5863 5864 /* since we are under rtnl lock protection we can use static data 5865 * for the cpumask and avoid allocating on stack the possibly 5866 * large mask 5867 */ 5868 ASSERT_RTNL(); 5869 5870 cpus_read_lock(); 5871 5872 cpumask_clear(&flush_cpus); 5873 for_each_online_cpu(cpu) { 5874 if (flush_required(cpu)) { 5875 queue_work_on(cpu, system_highpri_wq, 5876 per_cpu_ptr(&flush_works, cpu)); 5877 cpumask_set_cpu(cpu, &flush_cpus); 5878 } 5879 } 5880 5881 /* we can have in flight packet[s] on the cpus we are not flushing, 5882 * synchronize_net() in unregister_netdevice_many() will take care of 5883 * them 5884 */ 5885 for_each_cpu(cpu, &flush_cpus) 5886 flush_work(per_cpu_ptr(&flush_works, cpu)); 5887 5888 cpus_read_unlock(); 5889 } 5890 5891 static void net_rps_send_ipi(struct softnet_data *remsd) 5892 { 5893 #ifdef CONFIG_RPS 5894 while (remsd) { 5895 struct softnet_data *next = remsd->rps_ipi_next; 5896 5897 if (cpu_online(remsd->cpu)) 5898 smp_call_function_single_async(remsd->cpu, &remsd->csd); 5899 remsd = next; 5900 } 5901 #endif 5902 } 5903 5904 /* 5905 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 5906 * Note: called with local irq disabled, but exits with local irq enabled. 5907 */ 5908 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 5909 { 5910 #ifdef CONFIG_RPS 5911 struct softnet_data *remsd = sd->rps_ipi_list; 5912 5913 if (remsd) { 5914 sd->rps_ipi_list = NULL; 5915 5916 local_irq_enable(); 5917 5918 /* Send pending IPI's to kick RPS processing on remote cpus. */ 5919 net_rps_send_ipi(remsd); 5920 } else 5921 #endif 5922 local_irq_enable(); 5923 } 5924 5925 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 5926 { 5927 #ifdef CONFIG_RPS 5928 return sd->rps_ipi_list != NULL; 5929 #else 5930 return false; 5931 #endif 5932 } 5933 5934 static int process_backlog(struct napi_struct *napi, int quota) 5935 { 5936 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 5937 bool again = true; 5938 int work = 0; 5939 5940 /* Check if we have pending ipi, its better to send them now, 5941 * not waiting net_rx_action() end. 5942 */ 5943 if (sd_has_rps_ipi_waiting(sd)) { 5944 local_irq_disable(); 5945 net_rps_action_and_irq_enable(sd); 5946 } 5947 5948 napi->weight = READ_ONCE(dev_rx_weight); 5949 while (again) { 5950 struct sk_buff *skb; 5951 5952 while ((skb = __skb_dequeue(&sd->process_queue))) { 5953 rcu_read_lock(); 5954 __netif_receive_skb(skb); 5955 rcu_read_unlock(); 5956 input_queue_head_incr(sd); 5957 if (++work >= quota) 5958 return work; 5959 5960 } 5961 5962 rps_lock_irq_disable(sd); 5963 if (skb_queue_empty(&sd->input_pkt_queue)) { 5964 /* 5965 * Inline a custom version of __napi_complete(). 5966 * only current cpu owns and manipulates this napi, 5967 * and NAPI_STATE_SCHED is the only possible flag set 5968 * on backlog. 5969 * We can use a plain write instead of clear_bit(), 5970 * and we dont need an smp_mb() memory barrier. 5971 */ 5972 napi->state = 0; 5973 again = false; 5974 } else { 5975 skb_queue_splice_tail_init(&sd->input_pkt_queue, 5976 &sd->process_queue); 5977 } 5978 rps_unlock_irq_enable(sd); 5979 } 5980 5981 return work; 5982 } 5983 5984 /** 5985 * __napi_schedule - schedule for receive 5986 * @n: entry to schedule 5987 * 5988 * The entry's receive function will be scheduled to run. 5989 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 5990 */ 5991 void __napi_schedule(struct napi_struct *n) 5992 { 5993 unsigned long flags; 5994 5995 local_irq_save(flags); 5996 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5997 local_irq_restore(flags); 5998 } 5999 EXPORT_SYMBOL(__napi_schedule); 6000 6001 /** 6002 * napi_schedule_prep - check if napi can be scheduled 6003 * @n: napi context 6004 * 6005 * Test if NAPI routine is already running, and if not mark 6006 * it as running. This is used as a condition variable to 6007 * insure only one NAPI poll instance runs. We also make 6008 * sure there is no pending NAPI disable. 6009 */ 6010 bool napi_schedule_prep(struct napi_struct *n) 6011 { 6012 unsigned long new, val = READ_ONCE(n->state); 6013 6014 do { 6015 if (unlikely(val & NAPIF_STATE_DISABLE)) 6016 return false; 6017 new = val | NAPIF_STATE_SCHED; 6018 6019 /* Sets STATE_MISSED bit if STATE_SCHED was already set 6020 * This was suggested by Alexander Duyck, as compiler 6021 * emits better code than : 6022 * if (val & NAPIF_STATE_SCHED) 6023 * new |= NAPIF_STATE_MISSED; 6024 */ 6025 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 6026 NAPIF_STATE_MISSED; 6027 } while (!try_cmpxchg(&n->state, &val, new)); 6028 6029 return !(val & NAPIF_STATE_SCHED); 6030 } 6031 EXPORT_SYMBOL(napi_schedule_prep); 6032 6033 /** 6034 * __napi_schedule_irqoff - schedule for receive 6035 * @n: entry to schedule 6036 * 6037 * Variant of __napi_schedule() assuming hard irqs are masked. 6038 * 6039 * On PREEMPT_RT enabled kernels this maps to __napi_schedule() 6040 * because the interrupt disabled assumption might not be true 6041 * due to force-threaded interrupts and spinlock substitution. 6042 */ 6043 void __napi_schedule_irqoff(struct napi_struct *n) 6044 { 6045 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6046 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6047 else 6048 __napi_schedule(n); 6049 } 6050 EXPORT_SYMBOL(__napi_schedule_irqoff); 6051 6052 bool napi_complete_done(struct napi_struct *n, int work_done) 6053 { 6054 unsigned long flags, val, new, timeout = 0; 6055 bool ret = true; 6056 6057 /* 6058 * 1) Don't let napi dequeue from the cpu poll list 6059 * just in case its running on a different cpu. 6060 * 2) If we are busy polling, do nothing here, we have 6061 * the guarantee we will be called later. 6062 */ 6063 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 6064 NAPIF_STATE_IN_BUSY_POLL))) 6065 return false; 6066 6067 if (work_done) { 6068 if (n->gro_bitmask) 6069 timeout = READ_ONCE(n->dev->gro_flush_timeout); 6070 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs); 6071 } 6072 if (n->defer_hard_irqs_count > 0) { 6073 n->defer_hard_irqs_count--; 6074 timeout = READ_ONCE(n->dev->gro_flush_timeout); 6075 if (timeout) 6076 ret = false; 6077 } 6078 if (n->gro_bitmask) { 6079 /* When the NAPI instance uses a timeout and keeps postponing 6080 * it, we need to bound somehow the time packets are kept in 6081 * the GRO layer 6082 */ 6083 napi_gro_flush(n, !!timeout); 6084 } 6085 6086 gro_normal_list(n); 6087 6088 if (unlikely(!list_empty(&n->poll_list))) { 6089 /* If n->poll_list is not empty, we need to mask irqs */ 6090 local_irq_save(flags); 6091 list_del_init(&n->poll_list); 6092 local_irq_restore(flags); 6093 } 6094 WRITE_ONCE(n->list_owner, -1); 6095 6096 val = READ_ONCE(n->state); 6097 do { 6098 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 6099 6100 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED | 6101 NAPIF_STATE_SCHED_THREADED | 6102 NAPIF_STATE_PREFER_BUSY_POLL); 6103 6104 /* If STATE_MISSED was set, leave STATE_SCHED set, 6105 * because we will call napi->poll() one more time. 6106 * This C code was suggested by Alexander Duyck to help gcc. 6107 */ 6108 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6109 NAPIF_STATE_SCHED; 6110 } while (!try_cmpxchg(&n->state, &val, new)); 6111 6112 if (unlikely(val & NAPIF_STATE_MISSED)) { 6113 __napi_schedule(n); 6114 return false; 6115 } 6116 6117 if (timeout) 6118 hrtimer_start(&n->timer, ns_to_ktime(timeout), 6119 HRTIMER_MODE_REL_PINNED); 6120 return ret; 6121 } 6122 EXPORT_SYMBOL(napi_complete_done); 6123 6124 /* must be called under rcu_read_lock(), as we dont take a reference */ 6125 static struct napi_struct *napi_by_id(unsigned int napi_id) 6126 { 6127 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 6128 struct napi_struct *napi; 6129 6130 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 6131 if (napi->napi_id == napi_id) 6132 return napi; 6133 6134 return NULL; 6135 } 6136 6137 #if defined(CONFIG_NET_RX_BUSY_POLL) 6138 6139 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule) 6140 { 6141 if (!skip_schedule) { 6142 gro_normal_list(napi); 6143 __napi_schedule(napi); 6144 return; 6145 } 6146 6147 if (napi->gro_bitmask) { 6148 /* flush too old packets 6149 * If HZ < 1000, flush all packets. 6150 */ 6151 napi_gro_flush(napi, HZ >= 1000); 6152 } 6153 6154 gro_normal_list(napi); 6155 clear_bit(NAPI_STATE_SCHED, &napi->state); 6156 } 6157 6158 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll, 6159 u16 budget) 6160 { 6161 bool skip_schedule = false; 6162 unsigned long timeout; 6163 int rc; 6164 6165 /* Busy polling means there is a high chance device driver hard irq 6166 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6167 * set in napi_schedule_prep(). 6168 * Since we are about to call napi->poll() once more, we can safely 6169 * clear NAPI_STATE_MISSED. 6170 * 6171 * Note: x86 could use a single "lock and ..." instruction 6172 * to perform these two clear_bit() 6173 */ 6174 clear_bit(NAPI_STATE_MISSED, &napi->state); 6175 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6176 6177 local_bh_disable(); 6178 6179 if (prefer_busy_poll) { 6180 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs); 6181 timeout = READ_ONCE(napi->dev->gro_flush_timeout); 6182 if (napi->defer_hard_irqs_count && timeout) { 6183 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED); 6184 skip_schedule = true; 6185 } 6186 } 6187 6188 /* All we really want here is to re-enable device interrupts. 6189 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6190 */ 6191 rc = napi->poll(napi, budget); 6192 /* We can't gro_normal_list() here, because napi->poll() might have 6193 * rearmed the napi (napi_complete_done()) in which case it could 6194 * already be running on another CPU. 6195 */ 6196 trace_napi_poll(napi, rc, budget); 6197 netpoll_poll_unlock(have_poll_lock); 6198 if (rc == budget) 6199 __busy_poll_stop(napi, skip_schedule); 6200 local_bh_enable(); 6201 } 6202 6203 void napi_busy_loop(unsigned int napi_id, 6204 bool (*loop_end)(void *, unsigned long), 6205 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6206 { 6207 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6208 int (*napi_poll)(struct napi_struct *napi, int budget); 6209 void *have_poll_lock = NULL; 6210 struct napi_struct *napi; 6211 6212 restart: 6213 napi_poll = NULL; 6214 6215 rcu_read_lock(); 6216 6217 napi = napi_by_id(napi_id); 6218 if (!napi) 6219 goto out; 6220 6221 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6222 preempt_disable(); 6223 for (;;) { 6224 int work = 0; 6225 6226 local_bh_disable(); 6227 if (!napi_poll) { 6228 unsigned long val = READ_ONCE(napi->state); 6229 6230 /* If multiple threads are competing for this napi, 6231 * we avoid dirtying napi->state as much as we can. 6232 */ 6233 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6234 NAPIF_STATE_IN_BUSY_POLL)) { 6235 if (prefer_busy_poll) 6236 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6237 goto count; 6238 } 6239 if (cmpxchg(&napi->state, val, 6240 val | NAPIF_STATE_IN_BUSY_POLL | 6241 NAPIF_STATE_SCHED) != val) { 6242 if (prefer_busy_poll) 6243 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6244 goto count; 6245 } 6246 have_poll_lock = netpoll_poll_lock(napi); 6247 napi_poll = napi->poll; 6248 } 6249 work = napi_poll(napi, budget); 6250 trace_napi_poll(napi, work, budget); 6251 gro_normal_list(napi); 6252 count: 6253 if (work > 0) 6254 __NET_ADD_STATS(dev_net(napi->dev), 6255 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6256 local_bh_enable(); 6257 6258 if (!loop_end || loop_end(loop_end_arg, start_time)) 6259 break; 6260 6261 if (unlikely(need_resched())) { 6262 if (napi_poll) 6263 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget); 6264 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6265 preempt_enable(); 6266 rcu_read_unlock(); 6267 cond_resched(); 6268 if (loop_end(loop_end_arg, start_time)) 6269 return; 6270 goto restart; 6271 } 6272 cpu_relax(); 6273 } 6274 if (napi_poll) 6275 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget); 6276 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6277 preempt_enable(); 6278 out: 6279 rcu_read_unlock(); 6280 } 6281 EXPORT_SYMBOL(napi_busy_loop); 6282 6283 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6284 6285 static void napi_hash_add(struct napi_struct *napi) 6286 { 6287 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state)) 6288 return; 6289 6290 spin_lock(&napi_hash_lock); 6291 6292 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6293 do { 6294 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 6295 napi_gen_id = MIN_NAPI_ID; 6296 } while (napi_by_id(napi_gen_id)); 6297 napi->napi_id = napi_gen_id; 6298 6299 hlist_add_head_rcu(&napi->napi_hash_node, 6300 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6301 6302 spin_unlock(&napi_hash_lock); 6303 } 6304 6305 /* Warning : caller is responsible to make sure rcu grace period 6306 * is respected before freeing memory containing @napi 6307 */ 6308 static void napi_hash_del(struct napi_struct *napi) 6309 { 6310 spin_lock(&napi_hash_lock); 6311 6312 hlist_del_init_rcu(&napi->napi_hash_node); 6313 6314 spin_unlock(&napi_hash_lock); 6315 } 6316 6317 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 6318 { 6319 struct napi_struct *napi; 6320 6321 napi = container_of(timer, struct napi_struct, timer); 6322 6323 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 6324 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 6325 */ 6326 if (!napi_disable_pending(napi) && 6327 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) { 6328 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6329 __napi_schedule_irqoff(napi); 6330 } 6331 6332 return HRTIMER_NORESTART; 6333 } 6334 6335 static void init_gro_hash(struct napi_struct *napi) 6336 { 6337 int i; 6338 6339 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6340 INIT_LIST_HEAD(&napi->gro_hash[i].list); 6341 napi->gro_hash[i].count = 0; 6342 } 6343 napi->gro_bitmask = 0; 6344 } 6345 6346 int dev_set_threaded(struct net_device *dev, bool threaded) 6347 { 6348 struct napi_struct *napi; 6349 int err = 0; 6350 6351 if (dev->threaded == threaded) 6352 return 0; 6353 6354 if (threaded) { 6355 list_for_each_entry(napi, &dev->napi_list, dev_list) { 6356 if (!napi->thread) { 6357 err = napi_kthread_create(napi); 6358 if (err) { 6359 threaded = false; 6360 break; 6361 } 6362 } 6363 } 6364 } 6365 6366 dev->threaded = threaded; 6367 6368 /* Make sure kthread is created before THREADED bit 6369 * is set. 6370 */ 6371 smp_mb__before_atomic(); 6372 6373 /* Setting/unsetting threaded mode on a napi might not immediately 6374 * take effect, if the current napi instance is actively being 6375 * polled. In this case, the switch between threaded mode and 6376 * softirq mode will happen in the next round of napi_schedule(). 6377 * This should not cause hiccups/stalls to the live traffic. 6378 */ 6379 list_for_each_entry(napi, &dev->napi_list, dev_list) 6380 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded); 6381 6382 return err; 6383 } 6384 EXPORT_SYMBOL(dev_set_threaded); 6385 6386 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi, 6387 int (*poll)(struct napi_struct *, int), int weight) 6388 { 6389 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state))) 6390 return; 6391 6392 INIT_LIST_HEAD(&napi->poll_list); 6393 INIT_HLIST_NODE(&napi->napi_hash_node); 6394 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 6395 napi->timer.function = napi_watchdog; 6396 init_gro_hash(napi); 6397 napi->skb = NULL; 6398 INIT_LIST_HEAD(&napi->rx_list); 6399 napi->rx_count = 0; 6400 napi->poll = poll; 6401 if (weight > NAPI_POLL_WEIGHT) 6402 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 6403 weight); 6404 napi->weight = weight; 6405 napi->dev = dev; 6406 #ifdef CONFIG_NETPOLL 6407 napi->poll_owner = -1; 6408 #endif 6409 napi->list_owner = -1; 6410 set_bit(NAPI_STATE_SCHED, &napi->state); 6411 set_bit(NAPI_STATE_NPSVC, &napi->state); 6412 list_add_rcu(&napi->dev_list, &dev->napi_list); 6413 napi_hash_add(napi); 6414 napi_get_frags_check(napi); 6415 /* Create kthread for this napi if dev->threaded is set. 6416 * Clear dev->threaded if kthread creation failed so that 6417 * threaded mode will not be enabled in napi_enable(). 6418 */ 6419 if (dev->threaded && napi_kthread_create(napi)) 6420 dev->threaded = 0; 6421 } 6422 EXPORT_SYMBOL(netif_napi_add_weight); 6423 6424 void napi_disable(struct napi_struct *n) 6425 { 6426 unsigned long val, new; 6427 6428 might_sleep(); 6429 set_bit(NAPI_STATE_DISABLE, &n->state); 6430 6431 val = READ_ONCE(n->state); 6432 do { 6433 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) { 6434 usleep_range(20, 200); 6435 val = READ_ONCE(n->state); 6436 } 6437 6438 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC; 6439 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL); 6440 } while (!try_cmpxchg(&n->state, &val, new)); 6441 6442 hrtimer_cancel(&n->timer); 6443 6444 clear_bit(NAPI_STATE_DISABLE, &n->state); 6445 } 6446 EXPORT_SYMBOL(napi_disable); 6447 6448 /** 6449 * napi_enable - enable NAPI scheduling 6450 * @n: NAPI context 6451 * 6452 * Resume NAPI from being scheduled on this context. 6453 * Must be paired with napi_disable. 6454 */ 6455 void napi_enable(struct napi_struct *n) 6456 { 6457 unsigned long new, val = READ_ONCE(n->state); 6458 6459 do { 6460 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val)); 6461 6462 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC); 6463 if (n->dev->threaded && n->thread) 6464 new |= NAPIF_STATE_THREADED; 6465 } while (!try_cmpxchg(&n->state, &val, new)); 6466 } 6467 EXPORT_SYMBOL(napi_enable); 6468 6469 static void flush_gro_hash(struct napi_struct *napi) 6470 { 6471 int i; 6472 6473 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6474 struct sk_buff *skb, *n; 6475 6476 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list) 6477 kfree_skb(skb); 6478 napi->gro_hash[i].count = 0; 6479 } 6480 } 6481 6482 /* Must be called in process context */ 6483 void __netif_napi_del(struct napi_struct *napi) 6484 { 6485 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state)) 6486 return; 6487 6488 napi_hash_del(napi); 6489 list_del_rcu(&napi->dev_list); 6490 napi_free_frags(napi); 6491 6492 flush_gro_hash(napi); 6493 napi->gro_bitmask = 0; 6494 6495 if (napi->thread) { 6496 kthread_stop(napi->thread); 6497 napi->thread = NULL; 6498 } 6499 } 6500 EXPORT_SYMBOL(__netif_napi_del); 6501 6502 static int __napi_poll(struct napi_struct *n, bool *repoll) 6503 { 6504 int work, weight; 6505 6506 weight = n->weight; 6507 6508 /* This NAPI_STATE_SCHED test is for avoiding a race 6509 * with netpoll's poll_napi(). Only the entity which 6510 * obtains the lock and sees NAPI_STATE_SCHED set will 6511 * actually make the ->poll() call. Therefore we avoid 6512 * accidentally calling ->poll() when NAPI is not scheduled. 6513 */ 6514 work = 0; 6515 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 6516 work = n->poll(n, weight); 6517 trace_napi_poll(n, work, weight); 6518 } 6519 6520 if (unlikely(work > weight)) 6521 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n", 6522 n->poll, work, weight); 6523 6524 if (likely(work < weight)) 6525 return work; 6526 6527 /* Drivers must not modify the NAPI state if they 6528 * consume the entire weight. In such cases this code 6529 * still "owns" the NAPI instance and therefore can 6530 * move the instance around on the list at-will. 6531 */ 6532 if (unlikely(napi_disable_pending(n))) { 6533 napi_complete(n); 6534 return work; 6535 } 6536 6537 /* The NAPI context has more processing work, but busy-polling 6538 * is preferred. Exit early. 6539 */ 6540 if (napi_prefer_busy_poll(n)) { 6541 if (napi_complete_done(n, work)) { 6542 /* If timeout is not set, we need to make sure 6543 * that the NAPI is re-scheduled. 6544 */ 6545 napi_schedule(n); 6546 } 6547 return work; 6548 } 6549 6550 if (n->gro_bitmask) { 6551 /* flush too old packets 6552 * If HZ < 1000, flush all packets. 6553 */ 6554 napi_gro_flush(n, HZ >= 1000); 6555 } 6556 6557 gro_normal_list(n); 6558 6559 /* Some drivers may have called napi_schedule 6560 * prior to exhausting their budget. 6561 */ 6562 if (unlikely(!list_empty(&n->poll_list))) { 6563 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 6564 n->dev ? n->dev->name : "backlog"); 6565 return work; 6566 } 6567 6568 *repoll = true; 6569 6570 return work; 6571 } 6572 6573 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 6574 { 6575 bool do_repoll = false; 6576 void *have; 6577 int work; 6578 6579 list_del_init(&n->poll_list); 6580 6581 have = netpoll_poll_lock(n); 6582 6583 work = __napi_poll(n, &do_repoll); 6584 6585 if (do_repoll) 6586 list_add_tail(&n->poll_list, repoll); 6587 6588 netpoll_poll_unlock(have); 6589 6590 return work; 6591 } 6592 6593 static int napi_thread_wait(struct napi_struct *napi) 6594 { 6595 bool woken = false; 6596 6597 set_current_state(TASK_INTERRUPTIBLE); 6598 6599 while (!kthread_should_stop()) { 6600 /* Testing SCHED_THREADED bit here to make sure the current 6601 * kthread owns this napi and could poll on this napi. 6602 * Testing SCHED bit is not enough because SCHED bit might be 6603 * set by some other busy poll thread or by napi_disable(). 6604 */ 6605 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) { 6606 WARN_ON(!list_empty(&napi->poll_list)); 6607 __set_current_state(TASK_RUNNING); 6608 return 0; 6609 } 6610 6611 schedule(); 6612 /* woken being true indicates this thread owns this napi. */ 6613 woken = true; 6614 set_current_state(TASK_INTERRUPTIBLE); 6615 } 6616 __set_current_state(TASK_RUNNING); 6617 6618 return -1; 6619 } 6620 6621 static void skb_defer_free_flush(struct softnet_data *sd) 6622 { 6623 struct sk_buff *skb, *next; 6624 6625 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */ 6626 if (!READ_ONCE(sd->defer_list)) 6627 return; 6628 6629 spin_lock(&sd->defer_lock); 6630 skb = sd->defer_list; 6631 sd->defer_list = NULL; 6632 sd->defer_count = 0; 6633 spin_unlock(&sd->defer_lock); 6634 6635 while (skb != NULL) { 6636 next = skb->next; 6637 napi_consume_skb(skb, 1); 6638 skb = next; 6639 } 6640 } 6641 6642 static int napi_threaded_poll(void *data) 6643 { 6644 struct napi_struct *napi = data; 6645 struct softnet_data *sd; 6646 void *have; 6647 6648 while (!napi_thread_wait(napi)) { 6649 for (;;) { 6650 bool repoll = false; 6651 6652 local_bh_disable(); 6653 sd = this_cpu_ptr(&softnet_data); 6654 sd->in_napi_threaded_poll = true; 6655 6656 have = netpoll_poll_lock(napi); 6657 __napi_poll(napi, &repoll); 6658 netpoll_poll_unlock(have); 6659 6660 sd->in_napi_threaded_poll = false; 6661 barrier(); 6662 6663 if (sd_has_rps_ipi_waiting(sd)) { 6664 local_irq_disable(); 6665 net_rps_action_and_irq_enable(sd); 6666 } 6667 skb_defer_free_flush(sd); 6668 local_bh_enable(); 6669 6670 if (!repoll) 6671 break; 6672 6673 cond_resched(); 6674 } 6675 } 6676 return 0; 6677 } 6678 6679 static __latent_entropy void net_rx_action(struct softirq_action *h) 6680 { 6681 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 6682 unsigned long time_limit = jiffies + 6683 usecs_to_jiffies(READ_ONCE(netdev_budget_usecs)); 6684 int budget = READ_ONCE(netdev_budget); 6685 LIST_HEAD(list); 6686 LIST_HEAD(repoll); 6687 6688 start: 6689 sd->in_net_rx_action = true; 6690 local_irq_disable(); 6691 list_splice_init(&sd->poll_list, &list); 6692 local_irq_enable(); 6693 6694 for (;;) { 6695 struct napi_struct *n; 6696 6697 skb_defer_free_flush(sd); 6698 6699 if (list_empty(&list)) { 6700 if (list_empty(&repoll)) { 6701 sd->in_net_rx_action = false; 6702 barrier(); 6703 /* We need to check if ____napi_schedule() 6704 * had refilled poll_list while 6705 * sd->in_net_rx_action was true. 6706 */ 6707 if (!list_empty(&sd->poll_list)) 6708 goto start; 6709 if (!sd_has_rps_ipi_waiting(sd)) 6710 goto end; 6711 } 6712 break; 6713 } 6714 6715 n = list_first_entry(&list, struct napi_struct, poll_list); 6716 budget -= napi_poll(n, &repoll); 6717 6718 /* If softirq window is exhausted then punt. 6719 * Allow this to run for 2 jiffies since which will allow 6720 * an average latency of 1.5/HZ. 6721 */ 6722 if (unlikely(budget <= 0 || 6723 time_after_eq(jiffies, time_limit))) { 6724 sd->time_squeeze++; 6725 break; 6726 } 6727 } 6728 6729 local_irq_disable(); 6730 6731 list_splice_tail_init(&sd->poll_list, &list); 6732 list_splice_tail(&repoll, &list); 6733 list_splice(&list, &sd->poll_list); 6734 if (!list_empty(&sd->poll_list)) 6735 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 6736 else 6737 sd->in_net_rx_action = false; 6738 6739 net_rps_action_and_irq_enable(sd); 6740 end:; 6741 } 6742 6743 struct netdev_adjacent { 6744 struct net_device *dev; 6745 netdevice_tracker dev_tracker; 6746 6747 /* upper master flag, there can only be one master device per list */ 6748 bool master; 6749 6750 /* lookup ignore flag */ 6751 bool ignore; 6752 6753 /* counter for the number of times this device was added to us */ 6754 u16 ref_nr; 6755 6756 /* private field for the users */ 6757 void *private; 6758 6759 struct list_head list; 6760 struct rcu_head rcu; 6761 }; 6762 6763 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 6764 struct list_head *adj_list) 6765 { 6766 struct netdev_adjacent *adj; 6767 6768 list_for_each_entry(adj, adj_list, list) { 6769 if (adj->dev == adj_dev) 6770 return adj; 6771 } 6772 return NULL; 6773 } 6774 6775 static int ____netdev_has_upper_dev(struct net_device *upper_dev, 6776 struct netdev_nested_priv *priv) 6777 { 6778 struct net_device *dev = (struct net_device *)priv->data; 6779 6780 return upper_dev == dev; 6781 } 6782 6783 /** 6784 * netdev_has_upper_dev - Check if device is linked to an upper device 6785 * @dev: device 6786 * @upper_dev: upper device to check 6787 * 6788 * Find out if a device is linked to specified upper device and return true 6789 * in case it is. Note that this checks only immediate upper device, 6790 * not through a complete stack of devices. The caller must hold the RTNL lock. 6791 */ 6792 bool netdev_has_upper_dev(struct net_device *dev, 6793 struct net_device *upper_dev) 6794 { 6795 struct netdev_nested_priv priv = { 6796 .data = (void *)upper_dev, 6797 }; 6798 6799 ASSERT_RTNL(); 6800 6801 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 6802 &priv); 6803 } 6804 EXPORT_SYMBOL(netdev_has_upper_dev); 6805 6806 /** 6807 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device 6808 * @dev: device 6809 * @upper_dev: upper device to check 6810 * 6811 * Find out if a device is linked to specified upper device and return true 6812 * in case it is. Note that this checks the entire upper device chain. 6813 * The caller must hold rcu lock. 6814 */ 6815 6816 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 6817 struct net_device *upper_dev) 6818 { 6819 struct netdev_nested_priv priv = { 6820 .data = (void *)upper_dev, 6821 }; 6822 6823 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 6824 &priv); 6825 } 6826 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 6827 6828 /** 6829 * netdev_has_any_upper_dev - Check if device is linked to some device 6830 * @dev: device 6831 * 6832 * Find out if a device is linked to an upper device and return true in case 6833 * it is. The caller must hold the RTNL lock. 6834 */ 6835 bool netdev_has_any_upper_dev(struct net_device *dev) 6836 { 6837 ASSERT_RTNL(); 6838 6839 return !list_empty(&dev->adj_list.upper); 6840 } 6841 EXPORT_SYMBOL(netdev_has_any_upper_dev); 6842 6843 /** 6844 * netdev_master_upper_dev_get - Get master upper device 6845 * @dev: device 6846 * 6847 * Find a master upper device and return pointer to it or NULL in case 6848 * it's not there. The caller must hold the RTNL lock. 6849 */ 6850 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 6851 { 6852 struct netdev_adjacent *upper; 6853 6854 ASSERT_RTNL(); 6855 6856 if (list_empty(&dev->adj_list.upper)) 6857 return NULL; 6858 6859 upper = list_first_entry(&dev->adj_list.upper, 6860 struct netdev_adjacent, list); 6861 if (likely(upper->master)) 6862 return upper->dev; 6863 return NULL; 6864 } 6865 EXPORT_SYMBOL(netdev_master_upper_dev_get); 6866 6867 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev) 6868 { 6869 struct netdev_adjacent *upper; 6870 6871 ASSERT_RTNL(); 6872 6873 if (list_empty(&dev->adj_list.upper)) 6874 return NULL; 6875 6876 upper = list_first_entry(&dev->adj_list.upper, 6877 struct netdev_adjacent, list); 6878 if (likely(upper->master) && !upper->ignore) 6879 return upper->dev; 6880 return NULL; 6881 } 6882 6883 /** 6884 * netdev_has_any_lower_dev - Check if device is linked to some device 6885 * @dev: device 6886 * 6887 * Find out if a device is linked to a lower device and return true in case 6888 * it is. The caller must hold the RTNL lock. 6889 */ 6890 static bool netdev_has_any_lower_dev(struct net_device *dev) 6891 { 6892 ASSERT_RTNL(); 6893 6894 return !list_empty(&dev->adj_list.lower); 6895 } 6896 6897 void *netdev_adjacent_get_private(struct list_head *adj_list) 6898 { 6899 struct netdev_adjacent *adj; 6900 6901 adj = list_entry(adj_list, struct netdev_adjacent, list); 6902 6903 return adj->private; 6904 } 6905 EXPORT_SYMBOL(netdev_adjacent_get_private); 6906 6907 /** 6908 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 6909 * @dev: device 6910 * @iter: list_head ** of the current position 6911 * 6912 * Gets the next device from the dev's upper list, starting from iter 6913 * position. The caller must hold RCU read lock. 6914 */ 6915 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 6916 struct list_head **iter) 6917 { 6918 struct netdev_adjacent *upper; 6919 6920 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6921 6922 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6923 6924 if (&upper->list == &dev->adj_list.upper) 6925 return NULL; 6926 6927 *iter = &upper->list; 6928 6929 return upper->dev; 6930 } 6931 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 6932 6933 static struct net_device *__netdev_next_upper_dev(struct net_device *dev, 6934 struct list_head **iter, 6935 bool *ignore) 6936 { 6937 struct netdev_adjacent *upper; 6938 6939 upper = list_entry((*iter)->next, struct netdev_adjacent, list); 6940 6941 if (&upper->list == &dev->adj_list.upper) 6942 return NULL; 6943 6944 *iter = &upper->list; 6945 *ignore = upper->ignore; 6946 6947 return upper->dev; 6948 } 6949 6950 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 6951 struct list_head **iter) 6952 { 6953 struct netdev_adjacent *upper; 6954 6955 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6956 6957 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6958 6959 if (&upper->list == &dev->adj_list.upper) 6960 return NULL; 6961 6962 *iter = &upper->list; 6963 6964 return upper->dev; 6965 } 6966 6967 static int __netdev_walk_all_upper_dev(struct net_device *dev, 6968 int (*fn)(struct net_device *dev, 6969 struct netdev_nested_priv *priv), 6970 struct netdev_nested_priv *priv) 6971 { 6972 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 6973 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 6974 int ret, cur = 0; 6975 bool ignore; 6976 6977 now = dev; 6978 iter = &dev->adj_list.upper; 6979 6980 while (1) { 6981 if (now != dev) { 6982 ret = fn(now, priv); 6983 if (ret) 6984 return ret; 6985 } 6986 6987 next = NULL; 6988 while (1) { 6989 udev = __netdev_next_upper_dev(now, &iter, &ignore); 6990 if (!udev) 6991 break; 6992 if (ignore) 6993 continue; 6994 6995 next = udev; 6996 niter = &udev->adj_list.upper; 6997 dev_stack[cur] = now; 6998 iter_stack[cur++] = iter; 6999 break; 7000 } 7001 7002 if (!next) { 7003 if (!cur) 7004 return 0; 7005 next = dev_stack[--cur]; 7006 niter = iter_stack[cur]; 7007 } 7008 7009 now = next; 7010 iter = niter; 7011 } 7012 7013 return 0; 7014 } 7015 7016 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 7017 int (*fn)(struct net_device *dev, 7018 struct netdev_nested_priv *priv), 7019 struct netdev_nested_priv *priv) 7020 { 7021 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7022 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7023 int ret, cur = 0; 7024 7025 now = dev; 7026 iter = &dev->adj_list.upper; 7027 7028 while (1) { 7029 if (now != dev) { 7030 ret = fn(now, priv); 7031 if (ret) 7032 return ret; 7033 } 7034 7035 next = NULL; 7036 while (1) { 7037 udev = netdev_next_upper_dev_rcu(now, &iter); 7038 if (!udev) 7039 break; 7040 7041 next = udev; 7042 niter = &udev->adj_list.upper; 7043 dev_stack[cur] = now; 7044 iter_stack[cur++] = iter; 7045 break; 7046 } 7047 7048 if (!next) { 7049 if (!cur) 7050 return 0; 7051 next = dev_stack[--cur]; 7052 niter = iter_stack[cur]; 7053 } 7054 7055 now = next; 7056 iter = niter; 7057 } 7058 7059 return 0; 7060 } 7061 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 7062 7063 static bool __netdev_has_upper_dev(struct net_device *dev, 7064 struct net_device *upper_dev) 7065 { 7066 struct netdev_nested_priv priv = { 7067 .flags = 0, 7068 .data = (void *)upper_dev, 7069 }; 7070 7071 ASSERT_RTNL(); 7072 7073 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev, 7074 &priv); 7075 } 7076 7077 /** 7078 * netdev_lower_get_next_private - Get the next ->private from the 7079 * lower neighbour list 7080 * @dev: device 7081 * @iter: list_head ** of the current position 7082 * 7083 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7084 * list, starting from iter position. The caller must hold either hold the 7085 * RTNL lock or its own locking that guarantees that the neighbour lower 7086 * list will remain unchanged. 7087 */ 7088 void *netdev_lower_get_next_private(struct net_device *dev, 7089 struct list_head **iter) 7090 { 7091 struct netdev_adjacent *lower; 7092 7093 lower = list_entry(*iter, struct netdev_adjacent, list); 7094 7095 if (&lower->list == &dev->adj_list.lower) 7096 return NULL; 7097 7098 *iter = lower->list.next; 7099 7100 return lower->private; 7101 } 7102 EXPORT_SYMBOL(netdev_lower_get_next_private); 7103 7104 /** 7105 * netdev_lower_get_next_private_rcu - Get the next ->private from the 7106 * lower neighbour list, RCU 7107 * variant 7108 * @dev: device 7109 * @iter: list_head ** of the current position 7110 * 7111 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7112 * list, starting from iter position. The caller must hold RCU read lock. 7113 */ 7114 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 7115 struct list_head **iter) 7116 { 7117 struct netdev_adjacent *lower; 7118 7119 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 7120 7121 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7122 7123 if (&lower->list == &dev->adj_list.lower) 7124 return NULL; 7125 7126 *iter = &lower->list; 7127 7128 return lower->private; 7129 } 7130 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 7131 7132 /** 7133 * netdev_lower_get_next - Get the next device from the lower neighbour 7134 * list 7135 * @dev: device 7136 * @iter: list_head ** of the current position 7137 * 7138 * Gets the next netdev_adjacent from the dev's lower neighbour 7139 * list, starting from iter position. The caller must hold RTNL lock or 7140 * its own locking that guarantees that the neighbour lower 7141 * list will remain unchanged. 7142 */ 7143 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 7144 { 7145 struct netdev_adjacent *lower; 7146 7147 lower = list_entry(*iter, struct netdev_adjacent, list); 7148 7149 if (&lower->list == &dev->adj_list.lower) 7150 return NULL; 7151 7152 *iter = lower->list.next; 7153 7154 return lower->dev; 7155 } 7156 EXPORT_SYMBOL(netdev_lower_get_next); 7157 7158 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 7159 struct list_head **iter) 7160 { 7161 struct netdev_adjacent *lower; 7162 7163 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7164 7165 if (&lower->list == &dev->adj_list.lower) 7166 return NULL; 7167 7168 *iter = &lower->list; 7169 7170 return lower->dev; 7171 } 7172 7173 static struct net_device *__netdev_next_lower_dev(struct net_device *dev, 7174 struct list_head **iter, 7175 bool *ignore) 7176 { 7177 struct netdev_adjacent *lower; 7178 7179 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7180 7181 if (&lower->list == &dev->adj_list.lower) 7182 return NULL; 7183 7184 *iter = &lower->list; 7185 *ignore = lower->ignore; 7186 7187 return lower->dev; 7188 } 7189 7190 int netdev_walk_all_lower_dev(struct net_device *dev, 7191 int (*fn)(struct net_device *dev, 7192 struct netdev_nested_priv *priv), 7193 struct netdev_nested_priv *priv) 7194 { 7195 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7196 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7197 int ret, cur = 0; 7198 7199 now = dev; 7200 iter = &dev->adj_list.lower; 7201 7202 while (1) { 7203 if (now != dev) { 7204 ret = fn(now, priv); 7205 if (ret) 7206 return ret; 7207 } 7208 7209 next = NULL; 7210 while (1) { 7211 ldev = netdev_next_lower_dev(now, &iter); 7212 if (!ldev) 7213 break; 7214 7215 next = ldev; 7216 niter = &ldev->adj_list.lower; 7217 dev_stack[cur] = now; 7218 iter_stack[cur++] = iter; 7219 break; 7220 } 7221 7222 if (!next) { 7223 if (!cur) 7224 return 0; 7225 next = dev_stack[--cur]; 7226 niter = iter_stack[cur]; 7227 } 7228 7229 now = next; 7230 iter = niter; 7231 } 7232 7233 return 0; 7234 } 7235 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 7236 7237 static int __netdev_walk_all_lower_dev(struct net_device *dev, 7238 int (*fn)(struct net_device *dev, 7239 struct netdev_nested_priv *priv), 7240 struct netdev_nested_priv *priv) 7241 { 7242 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7243 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7244 int ret, cur = 0; 7245 bool ignore; 7246 7247 now = dev; 7248 iter = &dev->adj_list.lower; 7249 7250 while (1) { 7251 if (now != dev) { 7252 ret = fn(now, priv); 7253 if (ret) 7254 return ret; 7255 } 7256 7257 next = NULL; 7258 while (1) { 7259 ldev = __netdev_next_lower_dev(now, &iter, &ignore); 7260 if (!ldev) 7261 break; 7262 if (ignore) 7263 continue; 7264 7265 next = ldev; 7266 niter = &ldev->adj_list.lower; 7267 dev_stack[cur] = now; 7268 iter_stack[cur++] = iter; 7269 break; 7270 } 7271 7272 if (!next) { 7273 if (!cur) 7274 return 0; 7275 next = dev_stack[--cur]; 7276 niter = iter_stack[cur]; 7277 } 7278 7279 now = next; 7280 iter = niter; 7281 } 7282 7283 return 0; 7284 } 7285 7286 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 7287 struct list_head **iter) 7288 { 7289 struct netdev_adjacent *lower; 7290 7291 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7292 if (&lower->list == &dev->adj_list.lower) 7293 return NULL; 7294 7295 *iter = &lower->list; 7296 7297 return lower->dev; 7298 } 7299 EXPORT_SYMBOL(netdev_next_lower_dev_rcu); 7300 7301 static u8 __netdev_upper_depth(struct net_device *dev) 7302 { 7303 struct net_device *udev; 7304 struct list_head *iter; 7305 u8 max_depth = 0; 7306 bool ignore; 7307 7308 for (iter = &dev->adj_list.upper, 7309 udev = __netdev_next_upper_dev(dev, &iter, &ignore); 7310 udev; 7311 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) { 7312 if (ignore) 7313 continue; 7314 if (max_depth < udev->upper_level) 7315 max_depth = udev->upper_level; 7316 } 7317 7318 return max_depth; 7319 } 7320 7321 static u8 __netdev_lower_depth(struct net_device *dev) 7322 { 7323 struct net_device *ldev; 7324 struct list_head *iter; 7325 u8 max_depth = 0; 7326 bool ignore; 7327 7328 for (iter = &dev->adj_list.lower, 7329 ldev = __netdev_next_lower_dev(dev, &iter, &ignore); 7330 ldev; 7331 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) { 7332 if (ignore) 7333 continue; 7334 if (max_depth < ldev->lower_level) 7335 max_depth = ldev->lower_level; 7336 } 7337 7338 return max_depth; 7339 } 7340 7341 static int __netdev_update_upper_level(struct net_device *dev, 7342 struct netdev_nested_priv *__unused) 7343 { 7344 dev->upper_level = __netdev_upper_depth(dev) + 1; 7345 return 0; 7346 } 7347 7348 #ifdef CONFIG_LOCKDEP 7349 static LIST_HEAD(net_unlink_list); 7350 7351 static void net_unlink_todo(struct net_device *dev) 7352 { 7353 if (list_empty(&dev->unlink_list)) 7354 list_add_tail(&dev->unlink_list, &net_unlink_list); 7355 } 7356 #endif 7357 7358 static int __netdev_update_lower_level(struct net_device *dev, 7359 struct netdev_nested_priv *priv) 7360 { 7361 dev->lower_level = __netdev_lower_depth(dev) + 1; 7362 7363 #ifdef CONFIG_LOCKDEP 7364 if (!priv) 7365 return 0; 7366 7367 if (priv->flags & NESTED_SYNC_IMM) 7368 dev->nested_level = dev->lower_level - 1; 7369 if (priv->flags & NESTED_SYNC_TODO) 7370 net_unlink_todo(dev); 7371 #endif 7372 return 0; 7373 } 7374 7375 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 7376 int (*fn)(struct net_device *dev, 7377 struct netdev_nested_priv *priv), 7378 struct netdev_nested_priv *priv) 7379 { 7380 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7381 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7382 int ret, cur = 0; 7383 7384 now = dev; 7385 iter = &dev->adj_list.lower; 7386 7387 while (1) { 7388 if (now != dev) { 7389 ret = fn(now, priv); 7390 if (ret) 7391 return ret; 7392 } 7393 7394 next = NULL; 7395 while (1) { 7396 ldev = netdev_next_lower_dev_rcu(now, &iter); 7397 if (!ldev) 7398 break; 7399 7400 next = ldev; 7401 niter = &ldev->adj_list.lower; 7402 dev_stack[cur] = now; 7403 iter_stack[cur++] = iter; 7404 break; 7405 } 7406 7407 if (!next) { 7408 if (!cur) 7409 return 0; 7410 next = dev_stack[--cur]; 7411 niter = iter_stack[cur]; 7412 } 7413 7414 now = next; 7415 iter = niter; 7416 } 7417 7418 return 0; 7419 } 7420 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 7421 7422 /** 7423 * netdev_lower_get_first_private_rcu - Get the first ->private from the 7424 * lower neighbour list, RCU 7425 * variant 7426 * @dev: device 7427 * 7428 * Gets the first netdev_adjacent->private from the dev's lower neighbour 7429 * list. The caller must hold RCU read lock. 7430 */ 7431 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 7432 { 7433 struct netdev_adjacent *lower; 7434 7435 lower = list_first_or_null_rcu(&dev->adj_list.lower, 7436 struct netdev_adjacent, list); 7437 if (lower) 7438 return lower->private; 7439 return NULL; 7440 } 7441 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 7442 7443 /** 7444 * netdev_master_upper_dev_get_rcu - Get master upper device 7445 * @dev: device 7446 * 7447 * Find a master upper device and return pointer to it or NULL in case 7448 * it's not there. The caller must hold the RCU read lock. 7449 */ 7450 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 7451 { 7452 struct netdev_adjacent *upper; 7453 7454 upper = list_first_or_null_rcu(&dev->adj_list.upper, 7455 struct netdev_adjacent, list); 7456 if (upper && likely(upper->master)) 7457 return upper->dev; 7458 return NULL; 7459 } 7460 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 7461 7462 static int netdev_adjacent_sysfs_add(struct net_device *dev, 7463 struct net_device *adj_dev, 7464 struct list_head *dev_list) 7465 { 7466 char linkname[IFNAMSIZ+7]; 7467 7468 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7469 "upper_%s" : "lower_%s", adj_dev->name); 7470 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 7471 linkname); 7472 } 7473 static void netdev_adjacent_sysfs_del(struct net_device *dev, 7474 char *name, 7475 struct list_head *dev_list) 7476 { 7477 char linkname[IFNAMSIZ+7]; 7478 7479 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7480 "upper_%s" : "lower_%s", name); 7481 sysfs_remove_link(&(dev->dev.kobj), linkname); 7482 } 7483 7484 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 7485 struct net_device *adj_dev, 7486 struct list_head *dev_list) 7487 { 7488 return (dev_list == &dev->adj_list.upper || 7489 dev_list == &dev->adj_list.lower) && 7490 net_eq(dev_net(dev), dev_net(adj_dev)); 7491 } 7492 7493 static int __netdev_adjacent_dev_insert(struct net_device *dev, 7494 struct net_device *adj_dev, 7495 struct list_head *dev_list, 7496 void *private, bool master) 7497 { 7498 struct netdev_adjacent *adj; 7499 int ret; 7500 7501 adj = __netdev_find_adj(adj_dev, dev_list); 7502 7503 if (adj) { 7504 adj->ref_nr += 1; 7505 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 7506 dev->name, adj_dev->name, adj->ref_nr); 7507 7508 return 0; 7509 } 7510 7511 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 7512 if (!adj) 7513 return -ENOMEM; 7514 7515 adj->dev = adj_dev; 7516 adj->master = master; 7517 adj->ref_nr = 1; 7518 adj->private = private; 7519 adj->ignore = false; 7520 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL); 7521 7522 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 7523 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 7524 7525 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 7526 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 7527 if (ret) 7528 goto free_adj; 7529 } 7530 7531 /* Ensure that master link is always the first item in list. */ 7532 if (master) { 7533 ret = sysfs_create_link(&(dev->dev.kobj), 7534 &(adj_dev->dev.kobj), "master"); 7535 if (ret) 7536 goto remove_symlinks; 7537 7538 list_add_rcu(&adj->list, dev_list); 7539 } else { 7540 list_add_tail_rcu(&adj->list, dev_list); 7541 } 7542 7543 return 0; 7544 7545 remove_symlinks: 7546 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7547 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7548 free_adj: 7549 netdev_put(adj_dev, &adj->dev_tracker); 7550 kfree(adj); 7551 7552 return ret; 7553 } 7554 7555 static void __netdev_adjacent_dev_remove(struct net_device *dev, 7556 struct net_device *adj_dev, 7557 u16 ref_nr, 7558 struct list_head *dev_list) 7559 { 7560 struct netdev_adjacent *adj; 7561 7562 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 7563 dev->name, adj_dev->name, ref_nr); 7564 7565 adj = __netdev_find_adj(adj_dev, dev_list); 7566 7567 if (!adj) { 7568 pr_err("Adjacency does not exist for device %s from %s\n", 7569 dev->name, adj_dev->name); 7570 WARN_ON(1); 7571 return; 7572 } 7573 7574 if (adj->ref_nr > ref_nr) { 7575 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 7576 dev->name, adj_dev->name, ref_nr, 7577 adj->ref_nr - ref_nr); 7578 adj->ref_nr -= ref_nr; 7579 return; 7580 } 7581 7582 if (adj->master) 7583 sysfs_remove_link(&(dev->dev.kobj), "master"); 7584 7585 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7586 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7587 7588 list_del_rcu(&adj->list); 7589 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 7590 adj_dev->name, dev->name, adj_dev->name); 7591 netdev_put(adj_dev, &adj->dev_tracker); 7592 kfree_rcu(adj, rcu); 7593 } 7594 7595 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 7596 struct net_device *upper_dev, 7597 struct list_head *up_list, 7598 struct list_head *down_list, 7599 void *private, bool master) 7600 { 7601 int ret; 7602 7603 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 7604 private, master); 7605 if (ret) 7606 return ret; 7607 7608 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 7609 private, false); 7610 if (ret) { 7611 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 7612 return ret; 7613 } 7614 7615 return 0; 7616 } 7617 7618 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 7619 struct net_device *upper_dev, 7620 u16 ref_nr, 7621 struct list_head *up_list, 7622 struct list_head *down_list) 7623 { 7624 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 7625 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 7626 } 7627 7628 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 7629 struct net_device *upper_dev, 7630 void *private, bool master) 7631 { 7632 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 7633 &dev->adj_list.upper, 7634 &upper_dev->adj_list.lower, 7635 private, master); 7636 } 7637 7638 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 7639 struct net_device *upper_dev) 7640 { 7641 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 7642 &dev->adj_list.upper, 7643 &upper_dev->adj_list.lower); 7644 } 7645 7646 static int __netdev_upper_dev_link(struct net_device *dev, 7647 struct net_device *upper_dev, bool master, 7648 void *upper_priv, void *upper_info, 7649 struct netdev_nested_priv *priv, 7650 struct netlink_ext_ack *extack) 7651 { 7652 struct netdev_notifier_changeupper_info changeupper_info = { 7653 .info = { 7654 .dev = dev, 7655 .extack = extack, 7656 }, 7657 .upper_dev = upper_dev, 7658 .master = master, 7659 .linking = true, 7660 .upper_info = upper_info, 7661 }; 7662 struct net_device *master_dev; 7663 int ret = 0; 7664 7665 ASSERT_RTNL(); 7666 7667 if (dev == upper_dev) 7668 return -EBUSY; 7669 7670 /* To prevent loops, check if dev is not upper device to upper_dev. */ 7671 if (__netdev_has_upper_dev(upper_dev, dev)) 7672 return -EBUSY; 7673 7674 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV) 7675 return -EMLINK; 7676 7677 if (!master) { 7678 if (__netdev_has_upper_dev(dev, upper_dev)) 7679 return -EEXIST; 7680 } else { 7681 master_dev = __netdev_master_upper_dev_get(dev); 7682 if (master_dev) 7683 return master_dev == upper_dev ? -EEXIST : -EBUSY; 7684 } 7685 7686 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7687 &changeupper_info.info); 7688 ret = notifier_to_errno(ret); 7689 if (ret) 7690 return ret; 7691 7692 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 7693 master); 7694 if (ret) 7695 return ret; 7696 7697 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7698 &changeupper_info.info); 7699 ret = notifier_to_errno(ret); 7700 if (ret) 7701 goto rollback; 7702 7703 __netdev_update_upper_level(dev, NULL); 7704 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7705 7706 __netdev_update_lower_level(upper_dev, priv); 7707 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 7708 priv); 7709 7710 return 0; 7711 7712 rollback: 7713 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7714 7715 return ret; 7716 } 7717 7718 /** 7719 * netdev_upper_dev_link - Add a link to the upper device 7720 * @dev: device 7721 * @upper_dev: new upper device 7722 * @extack: netlink extended ack 7723 * 7724 * Adds a link to device which is upper to this one. The caller must hold 7725 * the RTNL lock. On a failure a negative errno code is returned. 7726 * On success the reference counts are adjusted and the function 7727 * returns zero. 7728 */ 7729 int netdev_upper_dev_link(struct net_device *dev, 7730 struct net_device *upper_dev, 7731 struct netlink_ext_ack *extack) 7732 { 7733 struct netdev_nested_priv priv = { 7734 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 7735 .data = NULL, 7736 }; 7737 7738 return __netdev_upper_dev_link(dev, upper_dev, false, 7739 NULL, NULL, &priv, extack); 7740 } 7741 EXPORT_SYMBOL(netdev_upper_dev_link); 7742 7743 /** 7744 * netdev_master_upper_dev_link - Add a master link to the upper device 7745 * @dev: device 7746 * @upper_dev: new upper device 7747 * @upper_priv: upper device private 7748 * @upper_info: upper info to be passed down via notifier 7749 * @extack: netlink extended ack 7750 * 7751 * Adds a link to device which is upper to this one. In this case, only 7752 * one master upper device can be linked, although other non-master devices 7753 * might be linked as well. The caller must hold the RTNL lock. 7754 * On a failure a negative errno code is returned. On success the reference 7755 * counts are adjusted and the function returns zero. 7756 */ 7757 int netdev_master_upper_dev_link(struct net_device *dev, 7758 struct net_device *upper_dev, 7759 void *upper_priv, void *upper_info, 7760 struct netlink_ext_ack *extack) 7761 { 7762 struct netdev_nested_priv priv = { 7763 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 7764 .data = NULL, 7765 }; 7766 7767 return __netdev_upper_dev_link(dev, upper_dev, true, 7768 upper_priv, upper_info, &priv, extack); 7769 } 7770 EXPORT_SYMBOL(netdev_master_upper_dev_link); 7771 7772 static void __netdev_upper_dev_unlink(struct net_device *dev, 7773 struct net_device *upper_dev, 7774 struct netdev_nested_priv *priv) 7775 { 7776 struct netdev_notifier_changeupper_info changeupper_info = { 7777 .info = { 7778 .dev = dev, 7779 }, 7780 .upper_dev = upper_dev, 7781 .linking = false, 7782 }; 7783 7784 ASSERT_RTNL(); 7785 7786 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 7787 7788 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7789 &changeupper_info.info); 7790 7791 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7792 7793 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7794 &changeupper_info.info); 7795 7796 __netdev_update_upper_level(dev, NULL); 7797 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7798 7799 __netdev_update_lower_level(upper_dev, priv); 7800 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 7801 priv); 7802 } 7803 7804 /** 7805 * netdev_upper_dev_unlink - Removes a link to upper device 7806 * @dev: device 7807 * @upper_dev: new upper device 7808 * 7809 * Removes a link to device which is upper to this one. The caller must hold 7810 * the RTNL lock. 7811 */ 7812 void netdev_upper_dev_unlink(struct net_device *dev, 7813 struct net_device *upper_dev) 7814 { 7815 struct netdev_nested_priv priv = { 7816 .flags = NESTED_SYNC_TODO, 7817 .data = NULL, 7818 }; 7819 7820 __netdev_upper_dev_unlink(dev, upper_dev, &priv); 7821 } 7822 EXPORT_SYMBOL(netdev_upper_dev_unlink); 7823 7824 static void __netdev_adjacent_dev_set(struct net_device *upper_dev, 7825 struct net_device *lower_dev, 7826 bool val) 7827 { 7828 struct netdev_adjacent *adj; 7829 7830 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower); 7831 if (adj) 7832 adj->ignore = val; 7833 7834 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper); 7835 if (adj) 7836 adj->ignore = val; 7837 } 7838 7839 static void netdev_adjacent_dev_disable(struct net_device *upper_dev, 7840 struct net_device *lower_dev) 7841 { 7842 __netdev_adjacent_dev_set(upper_dev, lower_dev, true); 7843 } 7844 7845 static void netdev_adjacent_dev_enable(struct net_device *upper_dev, 7846 struct net_device *lower_dev) 7847 { 7848 __netdev_adjacent_dev_set(upper_dev, lower_dev, false); 7849 } 7850 7851 int netdev_adjacent_change_prepare(struct net_device *old_dev, 7852 struct net_device *new_dev, 7853 struct net_device *dev, 7854 struct netlink_ext_ack *extack) 7855 { 7856 struct netdev_nested_priv priv = { 7857 .flags = 0, 7858 .data = NULL, 7859 }; 7860 int err; 7861 7862 if (!new_dev) 7863 return 0; 7864 7865 if (old_dev && new_dev != old_dev) 7866 netdev_adjacent_dev_disable(dev, old_dev); 7867 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv, 7868 extack); 7869 if (err) { 7870 if (old_dev && new_dev != old_dev) 7871 netdev_adjacent_dev_enable(dev, old_dev); 7872 return err; 7873 } 7874 7875 return 0; 7876 } 7877 EXPORT_SYMBOL(netdev_adjacent_change_prepare); 7878 7879 void netdev_adjacent_change_commit(struct net_device *old_dev, 7880 struct net_device *new_dev, 7881 struct net_device *dev) 7882 { 7883 struct netdev_nested_priv priv = { 7884 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 7885 .data = NULL, 7886 }; 7887 7888 if (!new_dev || !old_dev) 7889 return; 7890 7891 if (new_dev == old_dev) 7892 return; 7893 7894 netdev_adjacent_dev_enable(dev, old_dev); 7895 __netdev_upper_dev_unlink(old_dev, dev, &priv); 7896 } 7897 EXPORT_SYMBOL(netdev_adjacent_change_commit); 7898 7899 void netdev_adjacent_change_abort(struct net_device *old_dev, 7900 struct net_device *new_dev, 7901 struct net_device *dev) 7902 { 7903 struct netdev_nested_priv priv = { 7904 .flags = 0, 7905 .data = NULL, 7906 }; 7907 7908 if (!new_dev) 7909 return; 7910 7911 if (old_dev && new_dev != old_dev) 7912 netdev_adjacent_dev_enable(dev, old_dev); 7913 7914 __netdev_upper_dev_unlink(new_dev, dev, &priv); 7915 } 7916 EXPORT_SYMBOL(netdev_adjacent_change_abort); 7917 7918 /** 7919 * netdev_bonding_info_change - Dispatch event about slave change 7920 * @dev: device 7921 * @bonding_info: info to dispatch 7922 * 7923 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 7924 * The caller must hold the RTNL lock. 7925 */ 7926 void netdev_bonding_info_change(struct net_device *dev, 7927 struct netdev_bonding_info *bonding_info) 7928 { 7929 struct netdev_notifier_bonding_info info = { 7930 .info.dev = dev, 7931 }; 7932 7933 memcpy(&info.bonding_info, bonding_info, 7934 sizeof(struct netdev_bonding_info)); 7935 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 7936 &info.info); 7937 } 7938 EXPORT_SYMBOL(netdev_bonding_info_change); 7939 7940 static int netdev_offload_xstats_enable_l3(struct net_device *dev, 7941 struct netlink_ext_ack *extack) 7942 { 7943 struct netdev_notifier_offload_xstats_info info = { 7944 .info.dev = dev, 7945 .info.extack = extack, 7946 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 7947 }; 7948 int err; 7949 int rc; 7950 7951 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3), 7952 GFP_KERNEL); 7953 if (!dev->offload_xstats_l3) 7954 return -ENOMEM; 7955 7956 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE, 7957 NETDEV_OFFLOAD_XSTATS_DISABLE, 7958 &info.info); 7959 err = notifier_to_errno(rc); 7960 if (err) 7961 goto free_stats; 7962 7963 return 0; 7964 7965 free_stats: 7966 kfree(dev->offload_xstats_l3); 7967 dev->offload_xstats_l3 = NULL; 7968 return err; 7969 } 7970 7971 int netdev_offload_xstats_enable(struct net_device *dev, 7972 enum netdev_offload_xstats_type type, 7973 struct netlink_ext_ack *extack) 7974 { 7975 ASSERT_RTNL(); 7976 7977 if (netdev_offload_xstats_enabled(dev, type)) 7978 return -EALREADY; 7979 7980 switch (type) { 7981 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 7982 return netdev_offload_xstats_enable_l3(dev, extack); 7983 } 7984 7985 WARN_ON(1); 7986 return -EINVAL; 7987 } 7988 EXPORT_SYMBOL(netdev_offload_xstats_enable); 7989 7990 static void netdev_offload_xstats_disable_l3(struct net_device *dev) 7991 { 7992 struct netdev_notifier_offload_xstats_info info = { 7993 .info.dev = dev, 7994 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 7995 }; 7996 7997 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE, 7998 &info.info); 7999 kfree(dev->offload_xstats_l3); 8000 dev->offload_xstats_l3 = NULL; 8001 } 8002 8003 int netdev_offload_xstats_disable(struct net_device *dev, 8004 enum netdev_offload_xstats_type type) 8005 { 8006 ASSERT_RTNL(); 8007 8008 if (!netdev_offload_xstats_enabled(dev, type)) 8009 return -EALREADY; 8010 8011 switch (type) { 8012 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8013 netdev_offload_xstats_disable_l3(dev); 8014 return 0; 8015 } 8016 8017 WARN_ON(1); 8018 return -EINVAL; 8019 } 8020 EXPORT_SYMBOL(netdev_offload_xstats_disable); 8021 8022 static void netdev_offload_xstats_disable_all(struct net_device *dev) 8023 { 8024 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3); 8025 } 8026 8027 static struct rtnl_hw_stats64 * 8028 netdev_offload_xstats_get_ptr(const struct net_device *dev, 8029 enum netdev_offload_xstats_type type) 8030 { 8031 switch (type) { 8032 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8033 return dev->offload_xstats_l3; 8034 } 8035 8036 WARN_ON(1); 8037 return NULL; 8038 } 8039 8040 bool netdev_offload_xstats_enabled(const struct net_device *dev, 8041 enum netdev_offload_xstats_type type) 8042 { 8043 ASSERT_RTNL(); 8044 8045 return netdev_offload_xstats_get_ptr(dev, type); 8046 } 8047 EXPORT_SYMBOL(netdev_offload_xstats_enabled); 8048 8049 struct netdev_notifier_offload_xstats_ru { 8050 bool used; 8051 }; 8052 8053 struct netdev_notifier_offload_xstats_rd { 8054 struct rtnl_hw_stats64 stats; 8055 bool used; 8056 }; 8057 8058 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest, 8059 const struct rtnl_hw_stats64 *src) 8060 { 8061 dest->rx_packets += src->rx_packets; 8062 dest->tx_packets += src->tx_packets; 8063 dest->rx_bytes += src->rx_bytes; 8064 dest->tx_bytes += src->tx_bytes; 8065 dest->rx_errors += src->rx_errors; 8066 dest->tx_errors += src->tx_errors; 8067 dest->rx_dropped += src->rx_dropped; 8068 dest->tx_dropped += src->tx_dropped; 8069 dest->multicast += src->multicast; 8070 } 8071 8072 static int netdev_offload_xstats_get_used(struct net_device *dev, 8073 enum netdev_offload_xstats_type type, 8074 bool *p_used, 8075 struct netlink_ext_ack *extack) 8076 { 8077 struct netdev_notifier_offload_xstats_ru report_used = {}; 8078 struct netdev_notifier_offload_xstats_info info = { 8079 .info.dev = dev, 8080 .info.extack = extack, 8081 .type = type, 8082 .report_used = &report_used, 8083 }; 8084 int rc; 8085 8086 WARN_ON(!netdev_offload_xstats_enabled(dev, type)); 8087 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED, 8088 &info.info); 8089 *p_used = report_used.used; 8090 return notifier_to_errno(rc); 8091 } 8092 8093 static int netdev_offload_xstats_get_stats(struct net_device *dev, 8094 enum netdev_offload_xstats_type type, 8095 struct rtnl_hw_stats64 *p_stats, 8096 bool *p_used, 8097 struct netlink_ext_ack *extack) 8098 { 8099 struct netdev_notifier_offload_xstats_rd report_delta = {}; 8100 struct netdev_notifier_offload_xstats_info info = { 8101 .info.dev = dev, 8102 .info.extack = extack, 8103 .type = type, 8104 .report_delta = &report_delta, 8105 }; 8106 struct rtnl_hw_stats64 *stats; 8107 int rc; 8108 8109 stats = netdev_offload_xstats_get_ptr(dev, type); 8110 if (WARN_ON(!stats)) 8111 return -EINVAL; 8112 8113 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 8114 &info.info); 8115 8116 /* Cache whatever we got, even if there was an error, otherwise the 8117 * successful stats retrievals would get lost. 8118 */ 8119 netdev_hw_stats64_add(stats, &report_delta.stats); 8120 8121 if (p_stats) 8122 *p_stats = *stats; 8123 *p_used = report_delta.used; 8124 8125 return notifier_to_errno(rc); 8126 } 8127 8128 int netdev_offload_xstats_get(struct net_device *dev, 8129 enum netdev_offload_xstats_type type, 8130 struct rtnl_hw_stats64 *p_stats, bool *p_used, 8131 struct netlink_ext_ack *extack) 8132 { 8133 ASSERT_RTNL(); 8134 8135 if (p_stats) 8136 return netdev_offload_xstats_get_stats(dev, type, p_stats, 8137 p_used, extack); 8138 else 8139 return netdev_offload_xstats_get_used(dev, type, p_used, 8140 extack); 8141 } 8142 EXPORT_SYMBOL(netdev_offload_xstats_get); 8143 8144 void 8145 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta, 8146 const struct rtnl_hw_stats64 *stats) 8147 { 8148 report_delta->used = true; 8149 netdev_hw_stats64_add(&report_delta->stats, stats); 8150 } 8151 EXPORT_SYMBOL(netdev_offload_xstats_report_delta); 8152 8153 void 8154 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used) 8155 { 8156 report_used->used = true; 8157 } 8158 EXPORT_SYMBOL(netdev_offload_xstats_report_used); 8159 8160 void netdev_offload_xstats_push_delta(struct net_device *dev, 8161 enum netdev_offload_xstats_type type, 8162 const struct rtnl_hw_stats64 *p_stats) 8163 { 8164 struct rtnl_hw_stats64 *stats; 8165 8166 ASSERT_RTNL(); 8167 8168 stats = netdev_offload_xstats_get_ptr(dev, type); 8169 if (WARN_ON(!stats)) 8170 return; 8171 8172 netdev_hw_stats64_add(stats, p_stats); 8173 } 8174 EXPORT_SYMBOL(netdev_offload_xstats_push_delta); 8175 8176 /** 8177 * netdev_get_xmit_slave - Get the xmit slave of master device 8178 * @dev: device 8179 * @skb: The packet 8180 * @all_slaves: assume all the slaves are active 8181 * 8182 * The reference counters are not incremented so the caller must be 8183 * careful with locks. The caller must hold RCU lock. 8184 * %NULL is returned if no slave is found. 8185 */ 8186 8187 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 8188 struct sk_buff *skb, 8189 bool all_slaves) 8190 { 8191 const struct net_device_ops *ops = dev->netdev_ops; 8192 8193 if (!ops->ndo_get_xmit_slave) 8194 return NULL; 8195 return ops->ndo_get_xmit_slave(dev, skb, all_slaves); 8196 } 8197 EXPORT_SYMBOL(netdev_get_xmit_slave); 8198 8199 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev, 8200 struct sock *sk) 8201 { 8202 const struct net_device_ops *ops = dev->netdev_ops; 8203 8204 if (!ops->ndo_sk_get_lower_dev) 8205 return NULL; 8206 return ops->ndo_sk_get_lower_dev(dev, sk); 8207 } 8208 8209 /** 8210 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket 8211 * @dev: device 8212 * @sk: the socket 8213 * 8214 * %NULL is returned if no lower device is found. 8215 */ 8216 8217 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 8218 struct sock *sk) 8219 { 8220 struct net_device *lower; 8221 8222 lower = netdev_sk_get_lower_dev(dev, sk); 8223 while (lower) { 8224 dev = lower; 8225 lower = netdev_sk_get_lower_dev(dev, sk); 8226 } 8227 8228 return dev; 8229 } 8230 EXPORT_SYMBOL(netdev_sk_get_lowest_dev); 8231 8232 static void netdev_adjacent_add_links(struct net_device *dev) 8233 { 8234 struct netdev_adjacent *iter; 8235 8236 struct net *net = dev_net(dev); 8237 8238 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8239 if (!net_eq(net, dev_net(iter->dev))) 8240 continue; 8241 netdev_adjacent_sysfs_add(iter->dev, dev, 8242 &iter->dev->adj_list.lower); 8243 netdev_adjacent_sysfs_add(dev, iter->dev, 8244 &dev->adj_list.upper); 8245 } 8246 8247 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8248 if (!net_eq(net, dev_net(iter->dev))) 8249 continue; 8250 netdev_adjacent_sysfs_add(iter->dev, dev, 8251 &iter->dev->adj_list.upper); 8252 netdev_adjacent_sysfs_add(dev, iter->dev, 8253 &dev->adj_list.lower); 8254 } 8255 } 8256 8257 static void netdev_adjacent_del_links(struct net_device *dev) 8258 { 8259 struct netdev_adjacent *iter; 8260 8261 struct net *net = dev_net(dev); 8262 8263 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8264 if (!net_eq(net, dev_net(iter->dev))) 8265 continue; 8266 netdev_adjacent_sysfs_del(iter->dev, dev->name, 8267 &iter->dev->adj_list.lower); 8268 netdev_adjacent_sysfs_del(dev, iter->dev->name, 8269 &dev->adj_list.upper); 8270 } 8271 8272 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8273 if (!net_eq(net, dev_net(iter->dev))) 8274 continue; 8275 netdev_adjacent_sysfs_del(iter->dev, dev->name, 8276 &iter->dev->adj_list.upper); 8277 netdev_adjacent_sysfs_del(dev, iter->dev->name, 8278 &dev->adj_list.lower); 8279 } 8280 } 8281 8282 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 8283 { 8284 struct netdev_adjacent *iter; 8285 8286 struct net *net = dev_net(dev); 8287 8288 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8289 if (!net_eq(net, dev_net(iter->dev))) 8290 continue; 8291 netdev_adjacent_sysfs_del(iter->dev, oldname, 8292 &iter->dev->adj_list.lower); 8293 netdev_adjacent_sysfs_add(iter->dev, dev, 8294 &iter->dev->adj_list.lower); 8295 } 8296 8297 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8298 if (!net_eq(net, dev_net(iter->dev))) 8299 continue; 8300 netdev_adjacent_sysfs_del(iter->dev, oldname, 8301 &iter->dev->adj_list.upper); 8302 netdev_adjacent_sysfs_add(iter->dev, dev, 8303 &iter->dev->adj_list.upper); 8304 } 8305 } 8306 8307 void *netdev_lower_dev_get_private(struct net_device *dev, 8308 struct net_device *lower_dev) 8309 { 8310 struct netdev_adjacent *lower; 8311 8312 if (!lower_dev) 8313 return NULL; 8314 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 8315 if (!lower) 8316 return NULL; 8317 8318 return lower->private; 8319 } 8320 EXPORT_SYMBOL(netdev_lower_dev_get_private); 8321 8322 8323 /** 8324 * netdev_lower_state_changed - Dispatch event about lower device state change 8325 * @lower_dev: device 8326 * @lower_state_info: state to dispatch 8327 * 8328 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 8329 * The caller must hold the RTNL lock. 8330 */ 8331 void netdev_lower_state_changed(struct net_device *lower_dev, 8332 void *lower_state_info) 8333 { 8334 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 8335 .info.dev = lower_dev, 8336 }; 8337 8338 ASSERT_RTNL(); 8339 changelowerstate_info.lower_state_info = lower_state_info; 8340 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 8341 &changelowerstate_info.info); 8342 } 8343 EXPORT_SYMBOL(netdev_lower_state_changed); 8344 8345 static void dev_change_rx_flags(struct net_device *dev, int flags) 8346 { 8347 const struct net_device_ops *ops = dev->netdev_ops; 8348 8349 if (ops->ndo_change_rx_flags) 8350 ops->ndo_change_rx_flags(dev, flags); 8351 } 8352 8353 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 8354 { 8355 unsigned int old_flags = dev->flags; 8356 kuid_t uid; 8357 kgid_t gid; 8358 8359 ASSERT_RTNL(); 8360 8361 dev->flags |= IFF_PROMISC; 8362 dev->promiscuity += inc; 8363 if (dev->promiscuity == 0) { 8364 /* 8365 * Avoid overflow. 8366 * If inc causes overflow, untouch promisc and return error. 8367 */ 8368 if (inc < 0) 8369 dev->flags &= ~IFF_PROMISC; 8370 else { 8371 dev->promiscuity -= inc; 8372 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n"); 8373 return -EOVERFLOW; 8374 } 8375 } 8376 if (dev->flags != old_flags) { 8377 netdev_info(dev, "%s promiscuous mode\n", 8378 dev->flags & IFF_PROMISC ? "entered" : "left"); 8379 if (audit_enabled) { 8380 current_uid_gid(&uid, &gid); 8381 audit_log(audit_context(), GFP_ATOMIC, 8382 AUDIT_ANOM_PROMISCUOUS, 8383 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 8384 dev->name, (dev->flags & IFF_PROMISC), 8385 (old_flags & IFF_PROMISC), 8386 from_kuid(&init_user_ns, audit_get_loginuid(current)), 8387 from_kuid(&init_user_ns, uid), 8388 from_kgid(&init_user_ns, gid), 8389 audit_get_sessionid(current)); 8390 } 8391 8392 dev_change_rx_flags(dev, IFF_PROMISC); 8393 } 8394 if (notify) 8395 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL); 8396 return 0; 8397 } 8398 8399 /** 8400 * dev_set_promiscuity - update promiscuity count on a device 8401 * @dev: device 8402 * @inc: modifier 8403 * 8404 * Add or remove promiscuity from a device. While the count in the device 8405 * remains above zero the interface remains promiscuous. Once it hits zero 8406 * the device reverts back to normal filtering operation. A negative inc 8407 * value is used to drop promiscuity on the device. 8408 * Return 0 if successful or a negative errno code on error. 8409 */ 8410 int dev_set_promiscuity(struct net_device *dev, int inc) 8411 { 8412 unsigned int old_flags = dev->flags; 8413 int err; 8414 8415 err = __dev_set_promiscuity(dev, inc, true); 8416 if (err < 0) 8417 return err; 8418 if (dev->flags != old_flags) 8419 dev_set_rx_mode(dev); 8420 return err; 8421 } 8422 EXPORT_SYMBOL(dev_set_promiscuity); 8423 8424 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 8425 { 8426 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 8427 8428 ASSERT_RTNL(); 8429 8430 dev->flags |= IFF_ALLMULTI; 8431 dev->allmulti += inc; 8432 if (dev->allmulti == 0) { 8433 /* 8434 * Avoid overflow. 8435 * If inc causes overflow, untouch allmulti and return error. 8436 */ 8437 if (inc < 0) 8438 dev->flags &= ~IFF_ALLMULTI; 8439 else { 8440 dev->allmulti -= inc; 8441 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n"); 8442 return -EOVERFLOW; 8443 } 8444 } 8445 if (dev->flags ^ old_flags) { 8446 netdev_info(dev, "%s allmulticast mode\n", 8447 dev->flags & IFF_ALLMULTI ? "entered" : "left"); 8448 dev_change_rx_flags(dev, IFF_ALLMULTI); 8449 dev_set_rx_mode(dev); 8450 if (notify) 8451 __dev_notify_flags(dev, old_flags, 8452 dev->gflags ^ old_gflags, 0, NULL); 8453 } 8454 return 0; 8455 } 8456 8457 /** 8458 * dev_set_allmulti - update allmulti count on a device 8459 * @dev: device 8460 * @inc: modifier 8461 * 8462 * Add or remove reception of all multicast frames to a device. While the 8463 * count in the device remains above zero the interface remains listening 8464 * to all interfaces. Once it hits zero the device reverts back to normal 8465 * filtering operation. A negative @inc value is used to drop the counter 8466 * when releasing a resource needing all multicasts. 8467 * Return 0 if successful or a negative errno code on error. 8468 */ 8469 8470 int dev_set_allmulti(struct net_device *dev, int inc) 8471 { 8472 return __dev_set_allmulti(dev, inc, true); 8473 } 8474 EXPORT_SYMBOL(dev_set_allmulti); 8475 8476 /* 8477 * Upload unicast and multicast address lists to device and 8478 * configure RX filtering. When the device doesn't support unicast 8479 * filtering it is put in promiscuous mode while unicast addresses 8480 * are present. 8481 */ 8482 void __dev_set_rx_mode(struct net_device *dev) 8483 { 8484 const struct net_device_ops *ops = dev->netdev_ops; 8485 8486 /* dev_open will call this function so the list will stay sane. */ 8487 if (!(dev->flags&IFF_UP)) 8488 return; 8489 8490 if (!netif_device_present(dev)) 8491 return; 8492 8493 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 8494 /* Unicast addresses changes may only happen under the rtnl, 8495 * therefore calling __dev_set_promiscuity here is safe. 8496 */ 8497 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 8498 __dev_set_promiscuity(dev, 1, false); 8499 dev->uc_promisc = true; 8500 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 8501 __dev_set_promiscuity(dev, -1, false); 8502 dev->uc_promisc = false; 8503 } 8504 } 8505 8506 if (ops->ndo_set_rx_mode) 8507 ops->ndo_set_rx_mode(dev); 8508 } 8509 8510 void dev_set_rx_mode(struct net_device *dev) 8511 { 8512 netif_addr_lock_bh(dev); 8513 __dev_set_rx_mode(dev); 8514 netif_addr_unlock_bh(dev); 8515 } 8516 8517 /** 8518 * dev_get_flags - get flags reported to userspace 8519 * @dev: device 8520 * 8521 * Get the combination of flag bits exported through APIs to userspace. 8522 */ 8523 unsigned int dev_get_flags(const struct net_device *dev) 8524 { 8525 unsigned int flags; 8526 8527 flags = (dev->flags & ~(IFF_PROMISC | 8528 IFF_ALLMULTI | 8529 IFF_RUNNING | 8530 IFF_LOWER_UP | 8531 IFF_DORMANT)) | 8532 (dev->gflags & (IFF_PROMISC | 8533 IFF_ALLMULTI)); 8534 8535 if (netif_running(dev)) { 8536 if (netif_oper_up(dev)) 8537 flags |= IFF_RUNNING; 8538 if (netif_carrier_ok(dev)) 8539 flags |= IFF_LOWER_UP; 8540 if (netif_dormant(dev)) 8541 flags |= IFF_DORMANT; 8542 } 8543 8544 return flags; 8545 } 8546 EXPORT_SYMBOL(dev_get_flags); 8547 8548 int __dev_change_flags(struct net_device *dev, unsigned int flags, 8549 struct netlink_ext_ack *extack) 8550 { 8551 unsigned int old_flags = dev->flags; 8552 int ret; 8553 8554 ASSERT_RTNL(); 8555 8556 /* 8557 * Set the flags on our device. 8558 */ 8559 8560 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 8561 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 8562 IFF_AUTOMEDIA)) | 8563 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 8564 IFF_ALLMULTI)); 8565 8566 /* 8567 * Load in the correct multicast list now the flags have changed. 8568 */ 8569 8570 if ((old_flags ^ flags) & IFF_MULTICAST) 8571 dev_change_rx_flags(dev, IFF_MULTICAST); 8572 8573 dev_set_rx_mode(dev); 8574 8575 /* 8576 * Have we downed the interface. We handle IFF_UP ourselves 8577 * according to user attempts to set it, rather than blindly 8578 * setting it. 8579 */ 8580 8581 ret = 0; 8582 if ((old_flags ^ flags) & IFF_UP) { 8583 if (old_flags & IFF_UP) 8584 __dev_close(dev); 8585 else 8586 ret = __dev_open(dev, extack); 8587 } 8588 8589 if ((flags ^ dev->gflags) & IFF_PROMISC) { 8590 int inc = (flags & IFF_PROMISC) ? 1 : -1; 8591 unsigned int old_flags = dev->flags; 8592 8593 dev->gflags ^= IFF_PROMISC; 8594 8595 if (__dev_set_promiscuity(dev, inc, false) >= 0) 8596 if (dev->flags != old_flags) 8597 dev_set_rx_mode(dev); 8598 } 8599 8600 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 8601 * is important. Some (broken) drivers set IFF_PROMISC, when 8602 * IFF_ALLMULTI is requested not asking us and not reporting. 8603 */ 8604 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 8605 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 8606 8607 dev->gflags ^= IFF_ALLMULTI; 8608 __dev_set_allmulti(dev, inc, false); 8609 } 8610 8611 return ret; 8612 } 8613 8614 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 8615 unsigned int gchanges, u32 portid, 8616 const struct nlmsghdr *nlh) 8617 { 8618 unsigned int changes = dev->flags ^ old_flags; 8619 8620 if (gchanges) 8621 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh); 8622 8623 if (changes & IFF_UP) { 8624 if (dev->flags & IFF_UP) 8625 call_netdevice_notifiers(NETDEV_UP, dev); 8626 else 8627 call_netdevice_notifiers(NETDEV_DOWN, dev); 8628 } 8629 8630 if (dev->flags & IFF_UP && 8631 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 8632 struct netdev_notifier_change_info change_info = { 8633 .info = { 8634 .dev = dev, 8635 }, 8636 .flags_changed = changes, 8637 }; 8638 8639 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 8640 } 8641 } 8642 8643 /** 8644 * dev_change_flags - change device settings 8645 * @dev: device 8646 * @flags: device state flags 8647 * @extack: netlink extended ack 8648 * 8649 * Change settings on device based state flags. The flags are 8650 * in the userspace exported format. 8651 */ 8652 int dev_change_flags(struct net_device *dev, unsigned int flags, 8653 struct netlink_ext_ack *extack) 8654 { 8655 int ret; 8656 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 8657 8658 ret = __dev_change_flags(dev, flags, extack); 8659 if (ret < 0) 8660 return ret; 8661 8662 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 8663 __dev_notify_flags(dev, old_flags, changes, 0, NULL); 8664 return ret; 8665 } 8666 EXPORT_SYMBOL(dev_change_flags); 8667 8668 int __dev_set_mtu(struct net_device *dev, int new_mtu) 8669 { 8670 const struct net_device_ops *ops = dev->netdev_ops; 8671 8672 if (ops->ndo_change_mtu) 8673 return ops->ndo_change_mtu(dev, new_mtu); 8674 8675 /* Pairs with all the lockless reads of dev->mtu in the stack */ 8676 WRITE_ONCE(dev->mtu, new_mtu); 8677 return 0; 8678 } 8679 EXPORT_SYMBOL(__dev_set_mtu); 8680 8681 int dev_validate_mtu(struct net_device *dev, int new_mtu, 8682 struct netlink_ext_ack *extack) 8683 { 8684 /* MTU must be positive, and in range */ 8685 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 8686 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 8687 return -EINVAL; 8688 } 8689 8690 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 8691 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 8692 return -EINVAL; 8693 } 8694 return 0; 8695 } 8696 8697 /** 8698 * dev_set_mtu_ext - Change maximum transfer unit 8699 * @dev: device 8700 * @new_mtu: new transfer unit 8701 * @extack: netlink extended ack 8702 * 8703 * Change the maximum transfer size of the network device. 8704 */ 8705 int dev_set_mtu_ext(struct net_device *dev, int new_mtu, 8706 struct netlink_ext_ack *extack) 8707 { 8708 int err, orig_mtu; 8709 8710 if (new_mtu == dev->mtu) 8711 return 0; 8712 8713 err = dev_validate_mtu(dev, new_mtu, extack); 8714 if (err) 8715 return err; 8716 8717 if (!netif_device_present(dev)) 8718 return -ENODEV; 8719 8720 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 8721 err = notifier_to_errno(err); 8722 if (err) 8723 return err; 8724 8725 orig_mtu = dev->mtu; 8726 err = __dev_set_mtu(dev, new_mtu); 8727 8728 if (!err) { 8729 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8730 orig_mtu); 8731 err = notifier_to_errno(err); 8732 if (err) { 8733 /* setting mtu back and notifying everyone again, 8734 * so that they have a chance to revert changes. 8735 */ 8736 __dev_set_mtu(dev, orig_mtu); 8737 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8738 new_mtu); 8739 } 8740 } 8741 return err; 8742 } 8743 8744 int dev_set_mtu(struct net_device *dev, int new_mtu) 8745 { 8746 struct netlink_ext_ack extack; 8747 int err; 8748 8749 memset(&extack, 0, sizeof(extack)); 8750 err = dev_set_mtu_ext(dev, new_mtu, &extack); 8751 if (err && extack._msg) 8752 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 8753 return err; 8754 } 8755 EXPORT_SYMBOL(dev_set_mtu); 8756 8757 /** 8758 * dev_change_tx_queue_len - Change TX queue length of a netdevice 8759 * @dev: device 8760 * @new_len: new tx queue length 8761 */ 8762 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 8763 { 8764 unsigned int orig_len = dev->tx_queue_len; 8765 int res; 8766 8767 if (new_len != (unsigned int)new_len) 8768 return -ERANGE; 8769 8770 if (new_len != orig_len) { 8771 dev->tx_queue_len = new_len; 8772 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 8773 res = notifier_to_errno(res); 8774 if (res) 8775 goto err_rollback; 8776 res = dev_qdisc_change_tx_queue_len(dev); 8777 if (res) 8778 goto err_rollback; 8779 } 8780 8781 return 0; 8782 8783 err_rollback: 8784 netdev_err(dev, "refused to change device tx_queue_len\n"); 8785 dev->tx_queue_len = orig_len; 8786 return res; 8787 } 8788 8789 /** 8790 * dev_set_group - Change group this device belongs to 8791 * @dev: device 8792 * @new_group: group this device should belong to 8793 */ 8794 void dev_set_group(struct net_device *dev, int new_group) 8795 { 8796 dev->group = new_group; 8797 } 8798 8799 /** 8800 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR. 8801 * @dev: device 8802 * @addr: new address 8803 * @extack: netlink extended ack 8804 */ 8805 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 8806 struct netlink_ext_ack *extack) 8807 { 8808 struct netdev_notifier_pre_changeaddr_info info = { 8809 .info.dev = dev, 8810 .info.extack = extack, 8811 .dev_addr = addr, 8812 }; 8813 int rc; 8814 8815 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); 8816 return notifier_to_errno(rc); 8817 } 8818 EXPORT_SYMBOL(dev_pre_changeaddr_notify); 8819 8820 /** 8821 * dev_set_mac_address - Change Media Access Control Address 8822 * @dev: device 8823 * @sa: new address 8824 * @extack: netlink extended ack 8825 * 8826 * Change the hardware (MAC) address of the device 8827 */ 8828 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 8829 struct netlink_ext_ack *extack) 8830 { 8831 const struct net_device_ops *ops = dev->netdev_ops; 8832 int err; 8833 8834 if (!ops->ndo_set_mac_address) 8835 return -EOPNOTSUPP; 8836 if (sa->sa_family != dev->type) 8837 return -EINVAL; 8838 if (!netif_device_present(dev)) 8839 return -ENODEV; 8840 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack); 8841 if (err) 8842 return err; 8843 if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) { 8844 err = ops->ndo_set_mac_address(dev, sa); 8845 if (err) 8846 return err; 8847 } 8848 dev->addr_assign_type = NET_ADDR_SET; 8849 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 8850 add_device_randomness(dev->dev_addr, dev->addr_len); 8851 return 0; 8852 } 8853 EXPORT_SYMBOL(dev_set_mac_address); 8854 8855 static DECLARE_RWSEM(dev_addr_sem); 8856 8857 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa, 8858 struct netlink_ext_ack *extack) 8859 { 8860 int ret; 8861 8862 down_write(&dev_addr_sem); 8863 ret = dev_set_mac_address(dev, sa, extack); 8864 up_write(&dev_addr_sem); 8865 return ret; 8866 } 8867 EXPORT_SYMBOL(dev_set_mac_address_user); 8868 8869 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name) 8870 { 8871 size_t size = sizeof(sa->sa_data_min); 8872 struct net_device *dev; 8873 int ret = 0; 8874 8875 down_read(&dev_addr_sem); 8876 rcu_read_lock(); 8877 8878 dev = dev_get_by_name_rcu(net, dev_name); 8879 if (!dev) { 8880 ret = -ENODEV; 8881 goto unlock; 8882 } 8883 if (!dev->addr_len) 8884 memset(sa->sa_data, 0, size); 8885 else 8886 memcpy(sa->sa_data, dev->dev_addr, 8887 min_t(size_t, size, dev->addr_len)); 8888 sa->sa_family = dev->type; 8889 8890 unlock: 8891 rcu_read_unlock(); 8892 up_read(&dev_addr_sem); 8893 return ret; 8894 } 8895 EXPORT_SYMBOL(dev_get_mac_address); 8896 8897 /** 8898 * dev_change_carrier - Change device carrier 8899 * @dev: device 8900 * @new_carrier: new value 8901 * 8902 * Change device carrier 8903 */ 8904 int dev_change_carrier(struct net_device *dev, bool new_carrier) 8905 { 8906 const struct net_device_ops *ops = dev->netdev_ops; 8907 8908 if (!ops->ndo_change_carrier) 8909 return -EOPNOTSUPP; 8910 if (!netif_device_present(dev)) 8911 return -ENODEV; 8912 return ops->ndo_change_carrier(dev, new_carrier); 8913 } 8914 8915 /** 8916 * dev_get_phys_port_id - Get device physical port ID 8917 * @dev: device 8918 * @ppid: port ID 8919 * 8920 * Get device physical port ID 8921 */ 8922 int dev_get_phys_port_id(struct net_device *dev, 8923 struct netdev_phys_item_id *ppid) 8924 { 8925 const struct net_device_ops *ops = dev->netdev_ops; 8926 8927 if (!ops->ndo_get_phys_port_id) 8928 return -EOPNOTSUPP; 8929 return ops->ndo_get_phys_port_id(dev, ppid); 8930 } 8931 8932 /** 8933 * dev_get_phys_port_name - Get device physical port name 8934 * @dev: device 8935 * @name: port name 8936 * @len: limit of bytes to copy to name 8937 * 8938 * Get device physical port name 8939 */ 8940 int dev_get_phys_port_name(struct net_device *dev, 8941 char *name, size_t len) 8942 { 8943 const struct net_device_ops *ops = dev->netdev_ops; 8944 int err; 8945 8946 if (ops->ndo_get_phys_port_name) { 8947 err = ops->ndo_get_phys_port_name(dev, name, len); 8948 if (err != -EOPNOTSUPP) 8949 return err; 8950 } 8951 return devlink_compat_phys_port_name_get(dev, name, len); 8952 } 8953 8954 /** 8955 * dev_get_port_parent_id - Get the device's port parent identifier 8956 * @dev: network device 8957 * @ppid: pointer to a storage for the port's parent identifier 8958 * @recurse: allow/disallow recursion to lower devices 8959 * 8960 * Get the devices's port parent identifier 8961 */ 8962 int dev_get_port_parent_id(struct net_device *dev, 8963 struct netdev_phys_item_id *ppid, 8964 bool recurse) 8965 { 8966 const struct net_device_ops *ops = dev->netdev_ops; 8967 struct netdev_phys_item_id first = { }; 8968 struct net_device *lower_dev; 8969 struct list_head *iter; 8970 int err; 8971 8972 if (ops->ndo_get_port_parent_id) { 8973 err = ops->ndo_get_port_parent_id(dev, ppid); 8974 if (err != -EOPNOTSUPP) 8975 return err; 8976 } 8977 8978 err = devlink_compat_switch_id_get(dev, ppid); 8979 if (!recurse || err != -EOPNOTSUPP) 8980 return err; 8981 8982 netdev_for_each_lower_dev(dev, lower_dev, iter) { 8983 err = dev_get_port_parent_id(lower_dev, ppid, true); 8984 if (err) 8985 break; 8986 if (!first.id_len) 8987 first = *ppid; 8988 else if (memcmp(&first, ppid, sizeof(*ppid))) 8989 return -EOPNOTSUPP; 8990 } 8991 8992 return err; 8993 } 8994 EXPORT_SYMBOL(dev_get_port_parent_id); 8995 8996 /** 8997 * netdev_port_same_parent_id - Indicate if two network devices have 8998 * the same port parent identifier 8999 * @a: first network device 9000 * @b: second network device 9001 */ 9002 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) 9003 { 9004 struct netdev_phys_item_id a_id = { }; 9005 struct netdev_phys_item_id b_id = { }; 9006 9007 if (dev_get_port_parent_id(a, &a_id, true) || 9008 dev_get_port_parent_id(b, &b_id, true)) 9009 return false; 9010 9011 return netdev_phys_item_id_same(&a_id, &b_id); 9012 } 9013 EXPORT_SYMBOL(netdev_port_same_parent_id); 9014 9015 /** 9016 * dev_change_proto_down - set carrier according to proto_down. 9017 * 9018 * @dev: device 9019 * @proto_down: new value 9020 */ 9021 int dev_change_proto_down(struct net_device *dev, bool proto_down) 9022 { 9023 if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN)) 9024 return -EOPNOTSUPP; 9025 if (!netif_device_present(dev)) 9026 return -ENODEV; 9027 if (proto_down) 9028 netif_carrier_off(dev); 9029 else 9030 netif_carrier_on(dev); 9031 dev->proto_down = proto_down; 9032 return 0; 9033 } 9034 9035 /** 9036 * dev_change_proto_down_reason - proto down reason 9037 * 9038 * @dev: device 9039 * @mask: proto down mask 9040 * @value: proto down value 9041 */ 9042 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask, 9043 u32 value) 9044 { 9045 int b; 9046 9047 if (!mask) { 9048 dev->proto_down_reason = value; 9049 } else { 9050 for_each_set_bit(b, &mask, 32) { 9051 if (value & (1 << b)) 9052 dev->proto_down_reason |= BIT(b); 9053 else 9054 dev->proto_down_reason &= ~BIT(b); 9055 } 9056 } 9057 } 9058 9059 struct bpf_xdp_link { 9060 struct bpf_link link; 9061 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */ 9062 int flags; 9063 }; 9064 9065 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags) 9066 { 9067 if (flags & XDP_FLAGS_HW_MODE) 9068 return XDP_MODE_HW; 9069 if (flags & XDP_FLAGS_DRV_MODE) 9070 return XDP_MODE_DRV; 9071 if (flags & XDP_FLAGS_SKB_MODE) 9072 return XDP_MODE_SKB; 9073 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB; 9074 } 9075 9076 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode) 9077 { 9078 switch (mode) { 9079 case XDP_MODE_SKB: 9080 return generic_xdp_install; 9081 case XDP_MODE_DRV: 9082 case XDP_MODE_HW: 9083 return dev->netdev_ops->ndo_bpf; 9084 default: 9085 return NULL; 9086 } 9087 } 9088 9089 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev, 9090 enum bpf_xdp_mode mode) 9091 { 9092 return dev->xdp_state[mode].link; 9093 } 9094 9095 static struct bpf_prog *dev_xdp_prog(struct net_device *dev, 9096 enum bpf_xdp_mode mode) 9097 { 9098 struct bpf_xdp_link *link = dev_xdp_link(dev, mode); 9099 9100 if (link) 9101 return link->link.prog; 9102 return dev->xdp_state[mode].prog; 9103 } 9104 9105 u8 dev_xdp_prog_count(struct net_device *dev) 9106 { 9107 u8 count = 0; 9108 int i; 9109 9110 for (i = 0; i < __MAX_XDP_MODE; i++) 9111 if (dev->xdp_state[i].prog || dev->xdp_state[i].link) 9112 count++; 9113 return count; 9114 } 9115 EXPORT_SYMBOL_GPL(dev_xdp_prog_count); 9116 9117 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode) 9118 { 9119 struct bpf_prog *prog = dev_xdp_prog(dev, mode); 9120 9121 return prog ? prog->aux->id : 0; 9122 } 9123 9124 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode, 9125 struct bpf_xdp_link *link) 9126 { 9127 dev->xdp_state[mode].link = link; 9128 dev->xdp_state[mode].prog = NULL; 9129 } 9130 9131 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode, 9132 struct bpf_prog *prog) 9133 { 9134 dev->xdp_state[mode].link = NULL; 9135 dev->xdp_state[mode].prog = prog; 9136 } 9137 9138 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode, 9139 bpf_op_t bpf_op, struct netlink_ext_ack *extack, 9140 u32 flags, struct bpf_prog *prog) 9141 { 9142 struct netdev_bpf xdp; 9143 int err; 9144 9145 memset(&xdp, 0, sizeof(xdp)); 9146 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG; 9147 xdp.extack = extack; 9148 xdp.flags = flags; 9149 xdp.prog = prog; 9150 9151 /* Drivers assume refcnt is already incremented (i.e, prog pointer is 9152 * "moved" into driver), so they don't increment it on their own, but 9153 * they do decrement refcnt when program is detached or replaced. 9154 * Given net_device also owns link/prog, we need to bump refcnt here 9155 * to prevent drivers from underflowing it. 9156 */ 9157 if (prog) 9158 bpf_prog_inc(prog); 9159 err = bpf_op(dev, &xdp); 9160 if (err) { 9161 if (prog) 9162 bpf_prog_put(prog); 9163 return err; 9164 } 9165 9166 if (mode != XDP_MODE_HW) 9167 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog); 9168 9169 return 0; 9170 } 9171 9172 static void dev_xdp_uninstall(struct net_device *dev) 9173 { 9174 struct bpf_xdp_link *link; 9175 struct bpf_prog *prog; 9176 enum bpf_xdp_mode mode; 9177 bpf_op_t bpf_op; 9178 9179 ASSERT_RTNL(); 9180 9181 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) { 9182 prog = dev_xdp_prog(dev, mode); 9183 if (!prog) 9184 continue; 9185 9186 bpf_op = dev_xdp_bpf_op(dev, mode); 9187 if (!bpf_op) 9188 continue; 9189 9190 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 9191 9192 /* auto-detach link from net device */ 9193 link = dev_xdp_link(dev, mode); 9194 if (link) 9195 link->dev = NULL; 9196 else 9197 bpf_prog_put(prog); 9198 9199 dev_xdp_set_link(dev, mode, NULL); 9200 } 9201 } 9202 9203 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack, 9204 struct bpf_xdp_link *link, struct bpf_prog *new_prog, 9205 struct bpf_prog *old_prog, u32 flags) 9206 { 9207 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES); 9208 struct bpf_prog *cur_prog; 9209 struct net_device *upper; 9210 struct list_head *iter; 9211 enum bpf_xdp_mode mode; 9212 bpf_op_t bpf_op; 9213 int err; 9214 9215 ASSERT_RTNL(); 9216 9217 /* either link or prog attachment, never both */ 9218 if (link && (new_prog || old_prog)) 9219 return -EINVAL; 9220 /* link supports only XDP mode flags */ 9221 if (link && (flags & ~XDP_FLAGS_MODES)) { 9222 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment"); 9223 return -EINVAL; 9224 } 9225 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */ 9226 if (num_modes > 1) { 9227 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set"); 9228 return -EINVAL; 9229 } 9230 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */ 9231 if (!num_modes && dev_xdp_prog_count(dev) > 1) { 9232 NL_SET_ERR_MSG(extack, 9233 "More than one program loaded, unset mode is ambiguous"); 9234 return -EINVAL; 9235 } 9236 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */ 9237 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) { 9238 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified"); 9239 return -EINVAL; 9240 } 9241 9242 mode = dev_xdp_mode(dev, flags); 9243 /* can't replace attached link */ 9244 if (dev_xdp_link(dev, mode)) { 9245 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link"); 9246 return -EBUSY; 9247 } 9248 9249 /* don't allow if an upper device already has a program */ 9250 netdev_for_each_upper_dev_rcu(dev, upper, iter) { 9251 if (dev_xdp_prog_count(upper) > 0) { 9252 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program"); 9253 return -EEXIST; 9254 } 9255 } 9256 9257 cur_prog = dev_xdp_prog(dev, mode); 9258 /* can't replace attached prog with link */ 9259 if (link && cur_prog) { 9260 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link"); 9261 return -EBUSY; 9262 } 9263 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) { 9264 NL_SET_ERR_MSG(extack, "Active program does not match expected"); 9265 return -EEXIST; 9266 } 9267 9268 /* put effective new program into new_prog */ 9269 if (link) 9270 new_prog = link->link.prog; 9271 9272 if (new_prog) { 9273 bool offload = mode == XDP_MODE_HW; 9274 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB 9275 ? XDP_MODE_DRV : XDP_MODE_SKB; 9276 9277 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) { 9278 NL_SET_ERR_MSG(extack, "XDP program already attached"); 9279 return -EBUSY; 9280 } 9281 if (!offload && dev_xdp_prog(dev, other_mode)) { 9282 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time"); 9283 return -EEXIST; 9284 } 9285 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) { 9286 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported"); 9287 return -EINVAL; 9288 } 9289 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) { 9290 NL_SET_ERR_MSG(extack, "Program bound to different device"); 9291 return -EINVAL; 9292 } 9293 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) { 9294 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device"); 9295 return -EINVAL; 9296 } 9297 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) { 9298 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device"); 9299 return -EINVAL; 9300 } 9301 } 9302 9303 /* don't call drivers if the effective program didn't change */ 9304 if (new_prog != cur_prog) { 9305 bpf_op = dev_xdp_bpf_op(dev, mode); 9306 if (!bpf_op) { 9307 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode"); 9308 return -EOPNOTSUPP; 9309 } 9310 9311 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog); 9312 if (err) 9313 return err; 9314 } 9315 9316 if (link) 9317 dev_xdp_set_link(dev, mode, link); 9318 else 9319 dev_xdp_set_prog(dev, mode, new_prog); 9320 if (cur_prog) 9321 bpf_prog_put(cur_prog); 9322 9323 return 0; 9324 } 9325 9326 static int dev_xdp_attach_link(struct net_device *dev, 9327 struct netlink_ext_ack *extack, 9328 struct bpf_xdp_link *link) 9329 { 9330 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags); 9331 } 9332 9333 static int dev_xdp_detach_link(struct net_device *dev, 9334 struct netlink_ext_ack *extack, 9335 struct bpf_xdp_link *link) 9336 { 9337 enum bpf_xdp_mode mode; 9338 bpf_op_t bpf_op; 9339 9340 ASSERT_RTNL(); 9341 9342 mode = dev_xdp_mode(dev, link->flags); 9343 if (dev_xdp_link(dev, mode) != link) 9344 return -EINVAL; 9345 9346 bpf_op = dev_xdp_bpf_op(dev, mode); 9347 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 9348 dev_xdp_set_link(dev, mode, NULL); 9349 return 0; 9350 } 9351 9352 static void bpf_xdp_link_release(struct bpf_link *link) 9353 { 9354 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9355 9356 rtnl_lock(); 9357 9358 /* if racing with net_device's tear down, xdp_link->dev might be 9359 * already NULL, in which case link was already auto-detached 9360 */ 9361 if (xdp_link->dev) { 9362 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link)); 9363 xdp_link->dev = NULL; 9364 } 9365 9366 rtnl_unlock(); 9367 } 9368 9369 static int bpf_xdp_link_detach(struct bpf_link *link) 9370 { 9371 bpf_xdp_link_release(link); 9372 return 0; 9373 } 9374 9375 static void bpf_xdp_link_dealloc(struct bpf_link *link) 9376 { 9377 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9378 9379 kfree(xdp_link); 9380 } 9381 9382 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link, 9383 struct seq_file *seq) 9384 { 9385 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9386 u32 ifindex = 0; 9387 9388 rtnl_lock(); 9389 if (xdp_link->dev) 9390 ifindex = xdp_link->dev->ifindex; 9391 rtnl_unlock(); 9392 9393 seq_printf(seq, "ifindex:\t%u\n", ifindex); 9394 } 9395 9396 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link, 9397 struct bpf_link_info *info) 9398 { 9399 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9400 u32 ifindex = 0; 9401 9402 rtnl_lock(); 9403 if (xdp_link->dev) 9404 ifindex = xdp_link->dev->ifindex; 9405 rtnl_unlock(); 9406 9407 info->xdp.ifindex = ifindex; 9408 return 0; 9409 } 9410 9411 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog, 9412 struct bpf_prog *old_prog) 9413 { 9414 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9415 enum bpf_xdp_mode mode; 9416 bpf_op_t bpf_op; 9417 int err = 0; 9418 9419 rtnl_lock(); 9420 9421 /* link might have been auto-released already, so fail */ 9422 if (!xdp_link->dev) { 9423 err = -ENOLINK; 9424 goto out_unlock; 9425 } 9426 9427 if (old_prog && link->prog != old_prog) { 9428 err = -EPERM; 9429 goto out_unlock; 9430 } 9431 old_prog = link->prog; 9432 if (old_prog->type != new_prog->type || 9433 old_prog->expected_attach_type != new_prog->expected_attach_type) { 9434 err = -EINVAL; 9435 goto out_unlock; 9436 } 9437 9438 if (old_prog == new_prog) { 9439 /* no-op, don't disturb drivers */ 9440 bpf_prog_put(new_prog); 9441 goto out_unlock; 9442 } 9443 9444 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags); 9445 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode); 9446 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL, 9447 xdp_link->flags, new_prog); 9448 if (err) 9449 goto out_unlock; 9450 9451 old_prog = xchg(&link->prog, new_prog); 9452 bpf_prog_put(old_prog); 9453 9454 out_unlock: 9455 rtnl_unlock(); 9456 return err; 9457 } 9458 9459 static const struct bpf_link_ops bpf_xdp_link_lops = { 9460 .release = bpf_xdp_link_release, 9461 .dealloc = bpf_xdp_link_dealloc, 9462 .detach = bpf_xdp_link_detach, 9463 .show_fdinfo = bpf_xdp_link_show_fdinfo, 9464 .fill_link_info = bpf_xdp_link_fill_link_info, 9465 .update_prog = bpf_xdp_link_update, 9466 }; 9467 9468 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 9469 { 9470 struct net *net = current->nsproxy->net_ns; 9471 struct bpf_link_primer link_primer; 9472 struct bpf_xdp_link *link; 9473 struct net_device *dev; 9474 int err, fd; 9475 9476 rtnl_lock(); 9477 dev = dev_get_by_index(net, attr->link_create.target_ifindex); 9478 if (!dev) { 9479 rtnl_unlock(); 9480 return -EINVAL; 9481 } 9482 9483 link = kzalloc(sizeof(*link), GFP_USER); 9484 if (!link) { 9485 err = -ENOMEM; 9486 goto unlock; 9487 } 9488 9489 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog); 9490 link->dev = dev; 9491 link->flags = attr->link_create.flags; 9492 9493 err = bpf_link_prime(&link->link, &link_primer); 9494 if (err) { 9495 kfree(link); 9496 goto unlock; 9497 } 9498 9499 err = dev_xdp_attach_link(dev, NULL, link); 9500 rtnl_unlock(); 9501 9502 if (err) { 9503 link->dev = NULL; 9504 bpf_link_cleanup(&link_primer); 9505 goto out_put_dev; 9506 } 9507 9508 fd = bpf_link_settle(&link_primer); 9509 /* link itself doesn't hold dev's refcnt to not complicate shutdown */ 9510 dev_put(dev); 9511 return fd; 9512 9513 unlock: 9514 rtnl_unlock(); 9515 9516 out_put_dev: 9517 dev_put(dev); 9518 return err; 9519 } 9520 9521 /** 9522 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 9523 * @dev: device 9524 * @extack: netlink extended ack 9525 * @fd: new program fd or negative value to clear 9526 * @expected_fd: old program fd that userspace expects to replace or clear 9527 * @flags: xdp-related flags 9528 * 9529 * Set or clear a bpf program for a device 9530 */ 9531 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 9532 int fd, int expected_fd, u32 flags) 9533 { 9534 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags); 9535 struct bpf_prog *new_prog = NULL, *old_prog = NULL; 9536 int err; 9537 9538 ASSERT_RTNL(); 9539 9540 if (fd >= 0) { 9541 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 9542 mode != XDP_MODE_SKB); 9543 if (IS_ERR(new_prog)) 9544 return PTR_ERR(new_prog); 9545 } 9546 9547 if (expected_fd >= 0) { 9548 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP, 9549 mode != XDP_MODE_SKB); 9550 if (IS_ERR(old_prog)) { 9551 err = PTR_ERR(old_prog); 9552 old_prog = NULL; 9553 goto err_out; 9554 } 9555 } 9556 9557 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags); 9558 9559 err_out: 9560 if (err && new_prog) 9561 bpf_prog_put(new_prog); 9562 if (old_prog) 9563 bpf_prog_put(old_prog); 9564 return err; 9565 } 9566 9567 /** 9568 * dev_new_index - allocate an ifindex 9569 * @net: the applicable net namespace 9570 * 9571 * Returns a suitable unique value for a new device interface 9572 * number. The caller must hold the rtnl semaphore or the 9573 * dev_base_lock to be sure it remains unique. 9574 */ 9575 static int dev_new_index(struct net *net) 9576 { 9577 int ifindex = net->ifindex; 9578 9579 for (;;) { 9580 if (++ifindex <= 0) 9581 ifindex = 1; 9582 if (!__dev_get_by_index(net, ifindex)) 9583 return net->ifindex = ifindex; 9584 } 9585 } 9586 9587 /* Delayed registration/unregisteration */ 9588 LIST_HEAD(net_todo_list); 9589 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 9590 9591 static void net_set_todo(struct net_device *dev) 9592 { 9593 list_add_tail(&dev->todo_list, &net_todo_list); 9594 atomic_inc(&dev_net(dev)->dev_unreg_count); 9595 } 9596 9597 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 9598 struct net_device *upper, netdev_features_t features) 9599 { 9600 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 9601 netdev_features_t feature; 9602 int feature_bit; 9603 9604 for_each_netdev_feature(upper_disables, feature_bit) { 9605 feature = __NETIF_F_BIT(feature_bit); 9606 if (!(upper->wanted_features & feature) 9607 && (features & feature)) { 9608 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 9609 &feature, upper->name); 9610 features &= ~feature; 9611 } 9612 } 9613 9614 return features; 9615 } 9616 9617 static void netdev_sync_lower_features(struct net_device *upper, 9618 struct net_device *lower, netdev_features_t features) 9619 { 9620 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 9621 netdev_features_t feature; 9622 int feature_bit; 9623 9624 for_each_netdev_feature(upper_disables, feature_bit) { 9625 feature = __NETIF_F_BIT(feature_bit); 9626 if (!(features & feature) && (lower->features & feature)) { 9627 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 9628 &feature, lower->name); 9629 lower->wanted_features &= ~feature; 9630 __netdev_update_features(lower); 9631 9632 if (unlikely(lower->features & feature)) 9633 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 9634 &feature, lower->name); 9635 else 9636 netdev_features_change(lower); 9637 } 9638 } 9639 } 9640 9641 static netdev_features_t netdev_fix_features(struct net_device *dev, 9642 netdev_features_t features) 9643 { 9644 /* Fix illegal checksum combinations */ 9645 if ((features & NETIF_F_HW_CSUM) && 9646 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 9647 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 9648 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 9649 } 9650 9651 /* TSO requires that SG is present as well. */ 9652 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 9653 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 9654 features &= ~NETIF_F_ALL_TSO; 9655 } 9656 9657 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 9658 !(features & NETIF_F_IP_CSUM)) { 9659 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 9660 features &= ~NETIF_F_TSO; 9661 features &= ~NETIF_F_TSO_ECN; 9662 } 9663 9664 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 9665 !(features & NETIF_F_IPV6_CSUM)) { 9666 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 9667 features &= ~NETIF_F_TSO6; 9668 } 9669 9670 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 9671 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 9672 features &= ~NETIF_F_TSO_MANGLEID; 9673 9674 /* TSO ECN requires that TSO is present as well. */ 9675 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 9676 features &= ~NETIF_F_TSO_ECN; 9677 9678 /* Software GSO depends on SG. */ 9679 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 9680 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 9681 features &= ~NETIF_F_GSO; 9682 } 9683 9684 /* GSO partial features require GSO partial be set */ 9685 if ((features & dev->gso_partial_features) && 9686 !(features & NETIF_F_GSO_PARTIAL)) { 9687 netdev_dbg(dev, 9688 "Dropping partially supported GSO features since no GSO partial.\n"); 9689 features &= ~dev->gso_partial_features; 9690 } 9691 9692 if (!(features & NETIF_F_RXCSUM)) { 9693 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 9694 * successfully merged by hardware must also have the 9695 * checksum verified by hardware. If the user does not 9696 * want to enable RXCSUM, logically, we should disable GRO_HW. 9697 */ 9698 if (features & NETIF_F_GRO_HW) { 9699 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 9700 features &= ~NETIF_F_GRO_HW; 9701 } 9702 } 9703 9704 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 9705 if (features & NETIF_F_RXFCS) { 9706 if (features & NETIF_F_LRO) { 9707 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 9708 features &= ~NETIF_F_LRO; 9709 } 9710 9711 if (features & NETIF_F_GRO_HW) { 9712 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 9713 features &= ~NETIF_F_GRO_HW; 9714 } 9715 } 9716 9717 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) { 9718 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n"); 9719 features &= ~NETIF_F_LRO; 9720 } 9721 9722 if (features & NETIF_F_HW_TLS_TX) { 9723 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) == 9724 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM); 9725 bool hw_csum = features & NETIF_F_HW_CSUM; 9726 9727 if (!ip_csum && !hw_csum) { 9728 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n"); 9729 features &= ~NETIF_F_HW_TLS_TX; 9730 } 9731 } 9732 9733 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) { 9734 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n"); 9735 features &= ~NETIF_F_HW_TLS_RX; 9736 } 9737 9738 return features; 9739 } 9740 9741 int __netdev_update_features(struct net_device *dev) 9742 { 9743 struct net_device *upper, *lower; 9744 netdev_features_t features; 9745 struct list_head *iter; 9746 int err = -1; 9747 9748 ASSERT_RTNL(); 9749 9750 features = netdev_get_wanted_features(dev); 9751 9752 if (dev->netdev_ops->ndo_fix_features) 9753 features = dev->netdev_ops->ndo_fix_features(dev, features); 9754 9755 /* driver might be less strict about feature dependencies */ 9756 features = netdev_fix_features(dev, features); 9757 9758 /* some features can't be enabled if they're off on an upper device */ 9759 netdev_for_each_upper_dev_rcu(dev, upper, iter) 9760 features = netdev_sync_upper_features(dev, upper, features); 9761 9762 if (dev->features == features) 9763 goto sync_lower; 9764 9765 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 9766 &dev->features, &features); 9767 9768 if (dev->netdev_ops->ndo_set_features) 9769 err = dev->netdev_ops->ndo_set_features(dev, features); 9770 else 9771 err = 0; 9772 9773 if (unlikely(err < 0)) { 9774 netdev_err(dev, 9775 "set_features() failed (%d); wanted %pNF, left %pNF\n", 9776 err, &features, &dev->features); 9777 /* return non-0 since some features might have changed and 9778 * it's better to fire a spurious notification than miss it 9779 */ 9780 return -1; 9781 } 9782 9783 sync_lower: 9784 /* some features must be disabled on lower devices when disabled 9785 * on an upper device (think: bonding master or bridge) 9786 */ 9787 netdev_for_each_lower_dev(dev, lower, iter) 9788 netdev_sync_lower_features(dev, lower, features); 9789 9790 if (!err) { 9791 netdev_features_t diff = features ^ dev->features; 9792 9793 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 9794 /* udp_tunnel_{get,drop}_rx_info both need 9795 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 9796 * device, or they won't do anything. 9797 * Thus we need to update dev->features 9798 * *before* calling udp_tunnel_get_rx_info, 9799 * but *after* calling udp_tunnel_drop_rx_info. 9800 */ 9801 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 9802 dev->features = features; 9803 udp_tunnel_get_rx_info(dev); 9804 } else { 9805 udp_tunnel_drop_rx_info(dev); 9806 } 9807 } 9808 9809 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 9810 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 9811 dev->features = features; 9812 err |= vlan_get_rx_ctag_filter_info(dev); 9813 } else { 9814 vlan_drop_rx_ctag_filter_info(dev); 9815 } 9816 } 9817 9818 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 9819 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 9820 dev->features = features; 9821 err |= vlan_get_rx_stag_filter_info(dev); 9822 } else { 9823 vlan_drop_rx_stag_filter_info(dev); 9824 } 9825 } 9826 9827 dev->features = features; 9828 } 9829 9830 return err < 0 ? 0 : 1; 9831 } 9832 9833 /** 9834 * netdev_update_features - recalculate device features 9835 * @dev: the device to check 9836 * 9837 * Recalculate dev->features set and send notifications if it 9838 * has changed. Should be called after driver or hardware dependent 9839 * conditions might have changed that influence the features. 9840 */ 9841 void netdev_update_features(struct net_device *dev) 9842 { 9843 if (__netdev_update_features(dev)) 9844 netdev_features_change(dev); 9845 } 9846 EXPORT_SYMBOL(netdev_update_features); 9847 9848 /** 9849 * netdev_change_features - recalculate device features 9850 * @dev: the device to check 9851 * 9852 * Recalculate dev->features set and send notifications even 9853 * if they have not changed. Should be called instead of 9854 * netdev_update_features() if also dev->vlan_features might 9855 * have changed to allow the changes to be propagated to stacked 9856 * VLAN devices. 9857 */ 9858 void netdev_change_features(struct net_device *dev) 9859 { 9860 __netdev_update_features(dev); 9861 netdev_features_change(dev); 9862 } 9863 EXPORT_SYMBOL(netdev_change_features); 9864 9865 /** 9866 * netif_stacked_transfer_operstate - transfer operstate 9867 * @rootdev: the root or lower level device to transfer state from 9868 * @dev: the device to transfer operstate to 9869 * 9870 * Transfer operational state from root to device. This is normally 9871 * called when a stacking relationship exists between the root 9872 * device and the device(a leaf device). 9873 */ 9874 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 9875 struct net_device *dev) 9876 { 9877 if (rootdev->operstate == IF_OPER_DORMANT) 9878 netif_dormant_on(dev); 9879 else 9880 netif_dormant_off(dev); 9881 9882 if (rootdev->operstate == IF_OPER_TESTING) 9883 netif_testing_on(dev); 9884 else 9885 netif_testing_off(dev); 9886 9887 if (netif_carrier_ok(rootdev)) 9888 netif_carrier_on(dev); 9889 else 9890 netif_carrier_off(dev); 9891 } 9892 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 9893 9894 static int netif_alloc_rx_queues(struct net_device *dev) 9895 { 9896 unsigned int i, count = dev->num_rx_queues; 9897 struct netdev_rx_queue *rx; 9898 size_t sz = count * sizeof(*rx); 9899 int err = 0; 9900 9901 BUG_ON(count < 1); 9902 9903 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 9904 if (!rx) 9905 return -ENOMEM; 9906 9907 dev->_rx = rx; 9908 9909 for (i = 0; i < count; i++) { 9910 rx[i].dev = dev; 9911 9912 /* XDP RX-queue setup */ 9913 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0); 9914 if (err < 0) 9915 goto err_rxq_info; 9916 } 9917 return 0; 9918 9919 err_rxq_info: 9920 /* Rollback successful reg's and free other resources */ 9921 while (i--) 9922 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 9923 kvfree(dev->_rx); 9924 dev->_rx = NULL; 9925 return err; 9926 } 9927 9928 static void netif_free_rx_queues(struct net_device *dev) 9929 { 9930 unsigned int i, count = dev->num_rx_queues; 9931 9932 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 9933 if (!dev->_rx) 9934 return; 9935 9936 for (i = 0; i < count; i++) 9937 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 9938 9939 kvfree(dev->_rx); 9940 } 9941 9942 static void netdev_init_one_queue(struct net_device *dev, 9943 struct netdev_queue *queue, void *_unused) 9944 { 9945 /* Initialize queue lock */ 9946 spin_lock_init(&queue->_xmit_lock); 9947 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 9948 queue->xmit_lock_owner = -1; 9949 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 9950 queue->dev = dev; 9951 #ifdef CONFIG_BQL 9952 dql_init(&queue->dql, HZ); 9953 #endif 9954 } 9955 9956 static void netif_free_tx_queues(struct net_device *dev) 9957 { 9958 kvfree(dev->_tx); 9959 } 9960 9961 static int netif_alloc_netdev_queues(struct net_device *dev) 9962 { 9963 unsigned int count = dev->num_tx_queues; 9964 struct netdev_queue *tx; 9965 size_t sz = count * sizeof(*tx); 9966 9967 if (count < 1 || count > 0xffff) 9968 return -EINVAL; 9969 9970 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 9971 if (!tx) 9972 return -ENOMEM; 9973 9974 dev->_tx = tx; 9975 9976 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 9977 spin_lock_init(&dev->tx_global_lock); 9978 9979 return 0; 9980 } 9981 9982 void netif_tx_stop_all_queues(struct net_device *dev) 9983 { 9984 unsigned int i; 9985 9986 for (i = 0; i < dev->num_tx_queues; i++) { 9987 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 9988 9989 netif_tx_stop_queue(txq); 9990 } 9991 } 9992 EXPORT_SYMBOL(netif_tx_stop_all_queues); 9993 9994 /** 9995 * register_netdevice() - register a network device 9996 * @dev: device to register 9997 * 9998 * Take a prepared network device structure and make it externally accessible. 9999 * A %NETDEV_REGISTER message is sent to the netdev notifier chain. 10000 * Callers must hold the rtnl lock - you may want register_netdev() 10001 * instead of this. 10002 */ 10003 int register_netdevice(struct net_device *dev) 10004 { 10005 int ret; 10006 struct net *net = dev_net(dev); 10007 10008 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 10009 NETDEV_FEATURE_COUNT); 10010 BUG_ON(dev_boot_phase); 10011 ASSERT_RTNL(); 10012 10013 might_sleep(); 10014 10015 /* When net_device's are persistent, this will be fatal. */ 10016 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 10017 BUG_ON(!net); 10018 10019 ret = ethtool_check_ops(dev->ethtool_ops); 10020 if (ret) 10021 return ret; 10022 10023 spin_lock_init(&dev->addr_list_lock); 10024 netdev_set_addr_lockdep_class(dev); 10025 10026 ret = dev_get_valid_name(net, dev, dev->name); 10027 if (ret < 0) 10028 goto out; 10029 10030 ret = -ENOMEM; 10031 dev->name_node = netdev_name_node_head_alloc(dev); 10032 if (!dev->name_node) 10033 goto out; 10034 10035 /* Init, if this function is available */ 10036 if (dev->netdev_ops->ndo_init) { 10037 ret = dev->netdev_ops->ndo_init(dev); 10038 if (ret) { 10039 if (ret > 0) 10040 ret = -EIO; 10041 goto err_free_name; 10042 } 10043 } 10044 10045 if (((dev->hw_features | dev->features) & 10046 NETIF_F_HW_VLAN_CTAG_FILTER) && 10047 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 10048 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 10049 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 10050 ret = -EINVAL; 10051 goto err_uninit; 10052 } 10053 10054 ret = -EBUSY; 10055 if (!dev->ifindex) 10056 dev->ifindex = dev_new_index(net); 10057 else if (__dev_get_by_index(net, dev->ifindex)) 10058 goto err_uninit; 10059 10060 /* Transfer changeable features to wanted_features and enable 10061 * software offloads (GSO and GRO). 10062 */ 10063 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF); 10064 dev->features |= NETIF_F_SOFT_FEATURES; 10065 10066 if (dev->udp_tunnel_nic_info) { 10067 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 10068 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 10069 } 10070 10071 dev->wanted_features = dev->features & dev->hw_features; 10072 10073 if (!(dev->flags & IFF_LOOPBACK)) 10074 dev->hw_features |= NETIF_F_NOCACHE_COPY; 10075 10076 /* If IPv4 TCP segmentation offload is supported we should also 10077 * allow the device to enable segmenting the frame with the option 10078 * of ignoring a static IP ID value. This doesn't enable the 10079 * feature itself but allows the user to enable it later. 10080 */ 10081 if (dev->hw_features & NETIF_F_TSO) 10082 dev->hw_features |= NETIF_F_TSO_MANGLEID; 10083 if (dev->vlan_features & NETIF_F_TSO) 10084 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 10085 if (dev->mpls_features & NETIF_F_TSO) 10086 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 10087 if (dev->hw_enc_features & NETIF_F_TSO) 10088 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 10089 10090 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 10091 */ 10092 dev->vlan_features |= NETIF_F_HIGHDMA; 10093 10094 /* Make NETIF_F_SG inheritable to tunnel devices. 10095 */ 10096 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 10097 10098 /* Make NETIF_F_SG inheritable to MPLS. 10099 */ 10100 dev->mpls_features |= NETIF_F_SG; 10101 10102 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 10103 ret = notifier_to_errno(ret); 10104 if (ret) 10105 goto err_uninit; 10106 10107 ret = netdev_register_kobject(dev); 10108 write_lock(&dev_base_lock); 10109 dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED; 10110 write_unlock(&dev_base_lock); 10111 if (ret) 10112 goto err_uninit_notify; 10113 10114 __netdev_update_features(dev); 10115 10116 /* 10117 * Default initial state at registry is that the 10118 * device is present. 10119 */ 10120 10121 set_bit(__LINK_STATE_PRESENT, &dev->state); 10122 10123 linkwatch_init_dev(dev); 10124 10125 dev_init_scheduler(dev); 10126 10127 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL); 10128 list_netdevice(dev); 10129 10130 add_device_randomness(dev->dev_addr, dev->addr_len); 10131 10132 /* If the device has permanent device address, driver should 10133 * set dev_addr and also addr_assign_type should be set to 10134 * NET_ADDR_PERM (default value). 10135 */ 10136 if (dev->addr_assign_type == NET_ADDR_PERM) 10137 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 10138 10139 /* Notify protocols, that a new device appeared. */ 10140 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 10141 ret = notifier_to_errno(ret); 10142 if (ret) { 10143 /* Expect explicit free_netdev() on failure */ 10144 dev->needs_free_netdev = false; 10145 unregister_netdevice_queue(dev, NULL); 10146 goto out; 10147 } 10148 /* 10149 * Prevent userspace races by waiting until the network 10150 * device is fully setup before sending notifications. 10151 */ 10152 if (!dev->rtnl_link_ops || 10153 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 10154 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL); 10155 10156 out: 10157 return ret; 10158 10159 err_uninit_notify: 10160 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); 10161 err_uninit: 10162 if (dev->netdev_ops->ndo_uninit) 10163 dev->netdev_ops->ndo_uninit(dev); 10164 if (dev->priv_destructor) 10165 dev->priv_destructor(dev); 10166 err_free_name: 10167 netdev_name_node_free(dev->name_node); 10168 goto out; 10169 } 10170 EXPORT_SYMBOL(register_netdevice); 10171 10172 /** 10173 * init_dummy_netdev - init a dummy network device for NAPI 10174 * @dev: device to init 10175 * 10176 * This takes a network device structure and initialize the minimum 10177 * amount of fields so it can be used to schedule NAPI polls without 10178 * registering a full blown interface. This is to be used by drivers 10179 * that need to tie several hardware interfaces to a single NAPI 10180 * poll scheduler due to HW limitations. 10181 */ 10182 int init_dummy_netdev(struct net_device *dev) 10183 { 10184 /* Clear everything. Note we don't initialize spinlocks 10185 * are they aren't supposed to be taken by any of the 10186 * NAPI code and this dummy netdev is supposed to be 10187 * only ever used for NAPI polls 10188 */ 10189 memset(dev, 0, sizeof(struct net_device)); 10190 10191 /* make sure we BUG if trying to hit standard 10192 * register/unregister code path 10193 */ 10194 dev->reg_state = NETREG_DUMMY; 10195 10196 /* NAPI wants this */ 10197 INIT_LIST_HEAD(&dev->napi_list); 10198 10199 /* a dummy interface is started by default */ 10200 set_bit(__LINK_STATE_PRESENT, &dev->state); 10201 set_bit(__LINK_STATE_START, &dev->state); 10202 10203 /* napi_busy_loop stats accounting wants this */ 10204 dev_net_set(dev, &init_net); 10205 10206 /* Note : We dont allocate pcpu_refcnt for dummy devices, 10207 * because users of this 'device' dont need to change 10208 * its refcount. 10209 */ 10210 10211 return 0; 10212 } 10213 EXPORT_SYMBOL_GPL(init_dummy_netdev); 10214 10215 10216 /** 10217 * register_netdev - register a network device 10218 * @dev: device to register 10219 * 10220 * Take a completed network device structure and add it to the kernel 10221 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 10222 * chain. 0 is returned on success. A negative errno code is returned 10223 * on a failure to set up the device, or if the name is a duplicate. 10224 * 10225 * This is a wrapper around register_netdevice that takes the rtnl semaphore 10226 * and expands the device name if you passed a format string to 10227 * alloc_netdev. 10228 */ 10229 int register_netdev(struct net_device *dev) 10230 { 10231 int err; 10232 10233 if (rtnl_lock_killable()) 10234 return -EINTR; 10235 err = register_netdevice(dev); 10236 rtnl_unlock(); 10237 return err; 10238 } 10239 EXPORT_SYMBOL(register_netdev); 10240 10241 int netdev_refcnt_read(const struct net_device *dev) 10242 { 10243 #ifdef CONFIG_PCPU_DEV_REFCNT 10244 int i, refcnt = 0; 10245 10246 for_each_possible_cpu(i) 10247 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 10248 return refcnt; 10249 #else 10250 return refcount_read(&dev->dev_refcnt); 10251 #endif 10252 } 10253 EXPORT_SYMBOL(netdev_refcnt_read); 10254 10255 int netdev_unregister_timeout_secs __read_mostly = 10; 10256 10257 #define WAIT_REFS_MIN_MSECS 1 10258 #define WAIT_REFS_MAX_MSECS 250 10259 /** 10260 * netdev_wait_allrefs_any - wait until all references are gone. 10261 * @list: list of net_devices to wait on 10262 * 10263 * This is called when unregistering network devices. 10264 * 10265 * Any protocol or device that holds a reference should register 10266 * for netdevice notification, and cleanup and put back the 10267 * reference if they receive an UNREGISTER event. 10268 * We can get stuck here if buggy protocols don't correctly 10269 * call dev_put. 10270 */ 10271 static struct net_device *netdev_wait_allrefs_any(struct list_head *list) 10272 { 10273 unsigned long rebroadcast_time, warning_time; 10274 struct net_device *dev; 10275 int wait = 0; 10276 10277 rebroadcast_time = warning_time = jiffies; 10278 10279 list_for_each_entry(dev, list, todo_list) 10280 if (netdev_refcnt_read(dev) == 1) 10281 return dev; 10282 10283 while (true) { 10284 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 10285 rtnl_lock(); 10286 10287 /* Rebroadcast unregister notification */ 10288 list_for_each_entry(dev, list, todo_list) 10289 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 10290 10291 __rtnl_unlock(); 10292 rcu_barrier(); 10293 rtnl_lock(); 10294 10295 list_for_each_entry(dev, list, todo_list) 10296 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 10297 &dev->state)) { 10298 /* We must not have linkwatch events 10299 * pending on unregister. If this 10300 * happens, we simply run the queue 10301 * unscheduled, resulting in a noop 10302 * for this device. 10303 */ 10304 linkwatch_run_queue(); 10305 break; 10306 } 10307 10308 __rtnl_unlock(); 10309 10310 rebroadcast_time = jiffies; 10311 } 10312 10313 if (!wait) { 10314 rcu_barrier(); 10315 wait = WAIT_REFS_MIN_MSECS; 10316 } else { 10317 msleep(wait); 10318 wait = min(wait << 1, WAIT_REFS_MAX_MSECS); 10319 } 10320 10321 list_for_each_entry(dev, list, todo_list) 10322 if (netdev_refcnt_read(dev) == 1) 10323 return dev; 10324 10325 if (time_after(jiffies, warning_time + 10326 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) { 10327 list_for_each_entry(dev, list, todo_list) { 10328 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 10329 dev->name, netdev_refcnt_read(dev)); 10330 ref_tracker_dir_print(&dev->refcnt_tracker, 10); 10331 } 10332 10333 warning_time = jiffies; 10334 } 10335 } 10336 } 10337 10338 /* The sequence is: 10339 * 10340 * rtnl_lock(); 10341 * ... 10342 * register_netdevice(x1); 10343 * register_netdevice(x2); 10344 * ... 10345 * unregister_netdevice(y1); 10346 * unregister_netdevice(y2); 10347 * ... 10348 * rtnl_unlock(); 10349 * free_netdev(y1); 10350 * free_netdev(y2); 10351 * 10352 * We are invoked by rtnl_unlock(). 10353 * This allows us to deal with problems: 10354 * 1) We can delete sysfs objects which invoke hotplug 10355 * without deadlocking with linkwatch via keventd. 10356 * 2) Since we run with the RTNL semaphore not held, we can sleep 10357 * safely in order to wait for the netdev refcnt to drop to zero. 10358 * 10359 * We must not return until all unregister events added during 10360 * the interval the lock was held have been completed. 10361 */ 10362 void netdev_run_todo(void) 10363 { 10364 struct net_device *dev, *tmp; 10365 struct list_head list; 10366 #ifdef CONFIG_LOCKDEP 10367 struct list_head unlink_list; 10368 10369 list_replace_init(&net_unlink_list, &unlink_list); 10370 10371 while (!list_empty(&unlink_list)) { 10372 struct net_device *dev = list_first_entry(&unlink_list, 10373 struct net_device, 10374 unlink_list); 10375 list_del_init(&dev->unlink_list); 10376 dev->nested_level = dev->lower_level - 1; 10377 } 10378 #endif 10379 10380 /* Snapshot list, allow later requests */ 10381 list_replace_init(&net_todo_list, &list); 10382 10383 __rtnl_unlock(); 10384 10385 /* Wait for rcu callbacks to finish before next phase */ 10386 if (!list_empty(&list)) 10387 rcu_barrier(); 10388 10389 list_for_each_entry_safe(dev, tmp, &list, todo_list) { 10390 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 10391 netdev_WARN(dev, "run_todo but not unregistering\n"); 10392 list_del(&dev->todo_list); 10393 continue; 10394 } 10395 10396 write_lock(&dev_base_lock); 10397 dev->reg_state = NETREG_UNREGISTERED; 10398 write_unlock(&dev_base_lock); 10399 linkwatch_forget_dev(dev); 10400 } 10401 10402 while (!list_empty(&list)) { 10403 dev = netdev_wait_allrefs_any(&list); 10404 list_del(&dev->todo_list); 10405 10406 /* paranoia */ 10407 BUG_ON(netdev_refcnt_read(dev) != 1); 10408 BUG_ON(!list_empty(&dev->ptype_all)); 10409 BUG_ON(!list_empty(&dev->ptype_specific)); 10410 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 10411 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 10412 10413 if (dev->priv_destructor) 10414 dev->priv_destructor(dev); 10415 if (dev->needs_free_netdev) 10416 free_netdev(dev); 10417 10418 if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count)) 10419 wake_up(&netdev_unregistering_wq); 10420 10421 /* Free network device */ 10422 kobject_put(&dev->dev.kobj); 10423 } 10424 } 10425 10426 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 10427 * all the same fields in the same order as net_device_stats, with only 10428 * the type differing, but rtnl_link_stats64 may have additional fields 10429 * at the end for newer counters. 10430 */ 10431 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 10432 const struct net_device_stats *netdev_stats) 10433 { 10434 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t); 10435 const atomic_long_t *src = (atomic_long_t *)netdev_stats; 10436 u64 *dst = (u64 *)stats64; 10437 10438 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 10439 for (i = 0; i < n; i++) 10440 dst[i] = (unsigned long)atomic_long_read(&src[i]); 10441 /* zero out counters that only exist in rtnl_link_stats64 */ 10442 memset((char *)stats64 + n * sizeof(u64), 0, 10443 sizeof(*stats64) - n * sizeof(u64)); 10444 } 10445 EXPORT_SYMBOL(netdev_stats_to_stats64); 10446 10447 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev) 10448 { 10449 struct net_device_core_stats __percpu *p; 10450 10451 p = alloc_percpu_gfp(struct net_device_core_stats, 10452 GFP_ATOMIC | __GFP_NOWARN); 10453 10454 if (p && cmpxchg(&dev->core_stats, NULL, p)) 10455 free_percpu(p); 10456 10457 /* This READ_ONCE() pairs with the cmpxchg() above */ 10458 return READ_ONCE(dev->core_stats); 10459 } 10460 EXPORT_SYMBOL(netdev_core_stats_alloc); 10461 10462 /** 10463 * dev_get_stats - get network device statistics 10464 * @dev: device to get statistics from 10465 * @storage: place to store stats 10466 * 10467 * Get network statistics from device. Return @storage. 10468 * The device driver may provide its own method by setting 10469 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 10470 * otherwise the internal statistics structure is used. 10471 */ 10472 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 10473 struct rtnl_link_stats64 *storage) 10474 { 10475 const struct net_device_ops *ops = dev->netdev_ops; 10476 const struct net_device_core_stats __percpu *p; 10477 10478 if (ops->ndo_get_stats64) { 10479 memset(storage, 0, sizeof(*storage)); 10480 ops->ndo_get_stats64(dev, storage); 10481 } else if (ops->ndo_get_stats) { 10482 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 10483 } else { 10484 netdev_stats_to_stats64(storage, &dev->stats); 10485 } 10486 10487 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 10488 p = READ_ONCE(dev->core_stats); 10489 if (p) { 10490 const struct net_device_core_stats *core_stats; 10491 int i; 10492 10493 for_each_possible_cpu(i) { 10494 core_stats = per_cpu_ptr(p, i); 10495 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped); 10496 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped); 10497 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler); 10498 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped); 10499 } 10500 } 10501 return storage; 10502 } 10503 EXPORT_SYMBOL(dev_get_stats); 10504 10505 /** 10506 * dev_fetch_sw_netstats - get per-cpu network device statistics 10507 * @s: place to store stats 10508 * @netstats: per-cpu network stats to read from 10509 * 10510 * Read per-cpu network statistics and populate the related fields in @s. 10511 */ 10512 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 10513 const struct pcpu_sw_netstats __percpu *netstats) 10514 { 10515 int cpu; 10516 10517 for_each_possible_cpu(cpu) { 10518 u64 rx_packets, rx_bytes, tx_packets, tx_bytes; 10519 const struct pcpu_sw_netstats *stats; 10520 unsigned int start; 10521 10522 stats = per_cpu_ptr(netstats, cpu); 10523 do { 10524 start = u64_stats_fetch_begin(&stats->syncp); 10525 rx_packets = u64_stats_read(&stats->rx_packets); 10526 rx_bytes = u64_stats_read(&stats->rx_bytes); 10527 tx_packets = u64_stats_read(&stats->tx_packets); 10528 tx_bytes = u64_stats_read(&stats->tx_bytes); 10529 } while (u64_stats_fetch_retry(&stats->syncp, start)); 10530 10531 s->rx_packets += rx_packets; 10532 s->rx_bytes += rx_bytes; 10533 s->tx_packets += tx_packets; 10534 s->tx_bytes += tx_bytes; 10535 } 10536 } 10537 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats); 10538 10539 /** 10540 * dev_get_tstats64 - ndo_get_stats64 implementation 10541 * @dev: device to get statistics from 10542 * @s: place to store stats 10543 * 10544 * Populate @s from dev->stats and dev->tstats. Can be used as 10545 * ndo_get_stats64() callback. 10546 */ 10547 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s) 10548 { 10549 netdev_stats_to_stats64(s, &dev->stats); 10550 dev_fetch_sw_netstats(s, dev->tstats); 10551 } 10552 EXPORT_SYMBOL_GPL(dev_get_tstats64); 10553 10554 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 10555 { 10556 struct netdev_queue *queue = dev_ingress_queue(dev); 10557 10558 #ifdef CONFIG_NET_CLS_ACT 10559 if (queue) 10560 return queue; 10561 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 10562 if (!queue) 10563 return NULL; 10564 netdev_init_one_queue(dev, queue, NULL); 10565 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 10566 RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc); 10567 rcu_assign_pointer(dev->ingress_queue, queue); 10568 #endif 10569 return queue; 10570 } 10571 10572 static const struct ethtool_ops default_ethtool_ops; 10573 10574 void netdev_set_default_ethtool_ops(struct net_device *dev, 10575 const struct ethtool_ops *ops) 10576 { 10577 if (dev->ethtool_ops == &default_ethtool_ops) 10578 dev->ethtool_ops = ops; 10579 } 10580 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 10581 10582 /** 10583 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default 10584 * @dev: netdev to enable the IRQ coalescing on 10585 * 10586 * Sets a conservative default for SW IRQ coalescing. Users can use 10587 * sysfs attributes to override the default values. 10588 */ 10589 void netdev_sw_irq_coalesce_default_on(struct net_device *dev) 10590 { 10591 WARN_ON(dev->reg_state == NETREG_REGISTERED); 10592 10593 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 10594 dev->gro_flush_timeout = 20000; 10595 dev->napi_defer_hard_irqs = 1; 10596 } 10597 } 10598 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on); 10599 10600 void netdev_freemem(struct net_device *dev) 10601 { 10602 char *addr = (char *)dev - dev->padded; 10603 10604 kvfree(addr); 10605 } 10606 10607 /** 10608 * alloc_netdev_mqs - allocate network device 10609 * @sizeof_priv: size of private data to allocate space for 10610 * @name: device name format string 10611 * @name_assign_type: origin of device name 10612 * @setup: callback to initialize device 10613 * @txqs: the number of TX subqueues to allocate 10614 * @rxqs: the number of RX subqueues to allocate 10615 * 10616 * Allocates a struct net_device with private data area for driver use 10617 * and performs basic initialization. Also allocates subqueue structs 10618 * for each queue on the device. 10619 */ 10620 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 10621 unsigned char name_assign_type, 10622 void (*setup)(struct net_device *), 10623 unsigned int txqs, unsigned int rxqs) 10624 { 10625 struct net_device *dev; 10626 unsigned int alloc_size; 10627 struct net_device *p; 10628 10629 BUG_ON(strlen(name) >= sizeof(dev->name)); 10630 10631 if (txqs < 1) { 10632 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 10633 return NULL; 10634 } 10635 10636 if (rxqs < 1) { 10637 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 10638 return NULL; 10639 } 10640 10641 alloc_size = sizeof(struct net_device); 10642 if (sizeof_priv) { 10643 /* ensure 32-byte alignment of private area */ 10644 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 10645 alloc_size += sizeof_priv; 10646 } 10647 /* ensure 32-byte alignment of whole construct */ 10648 alloc_size += NETDEV_ALIGN - 1; 10649 10650 p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 10651 if (!p) 10652 return NULL; 10653 10654 dev = PTR_ALIGN(p, NETDEV_ALIGN); 10655 dev->padded = (char *)dev - (char *)p; 10656 10657 ref_tracker_dir_init(&dev->refcnt_tracker, 128, name); 10658 #ifdef CONFIG_PCPU_DEV_REFCNT 10659 dev->pcpu_refcnt = alloc_percpu(int); 10660 if (!dev->pcpu_refcnt) 10661 goto free_dev; 10662 __dev_hold(dev); 10663 #else 10664 refcount_set(&dev->dev_refcnt, 1); 10665 #endif 10666 10667 if (dev_addr_init(dev)) 10668 goto free_pcpu; 10669 10670 dev_mc_init(dev); 10671 dev_uc_init(dev); 10672 10673 dev_net_set(dev, &init_net); 10674 10675 dev->gso_max_size = GSO_LEGACY_MAX_SIZE; 10676 dev->xdp_zc_max_segs = 1; 10677 dev->gso_max_segs = GSO_MAX_SEGS; 10678 dev->gro_max_size = GRO_LEGACY_MAX_SIZE; 10679 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE; 10680 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE; 10681 dev->tso_max_size = TSO_LEGACY_MAX_SIZE; 10682 dev->tso_max_segs = TSO_MAX_SEGS; 10683 dev->upper_level = 1; 10684 dev->lower_level = 1; 10685 #ifdef CONFIG_LOCKDEP 10686 dev->nested_level = 0; 10687 INIT_LIST_HEAD(&dev->unlink_list); 10688 #endif 10689 10690 INIT_LIST_HEAD(&dev->napi_list); 10691 INIT_LIST_HEAD(&dev->unreg_list); 10692 INIT_LIST_HEAD(&dev->close_list); 10693 INIT_LIST_HEAD(&dev->link_watch_list); 10694 INIT_LIST_HEAD(&dev->adj_list.upper); 10695 INIT_LIST_HEAD(&dev->adj_list.lower); 10696 INIT_LIST_HEAD(&dev->ptype_all); 10697 INIT_LIST_HEAD(&dev->ptype_specific); 10698 INIT_LIST_HEAD(&dev->net_notifier_list); 10699 #ifdef CONFIG_NET_SCHED 10700 hash_init(dev->qdisc_hash); 10701 #endif 10702 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 10703 setup(dev); 10704 10705 if (!dev->tx_queue_len) { 10706 dev->priv_flags |= IFF_NO_QUEUE; 10707 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 10708 } 10709 10710 dev->num_tx_queues = txqs; 10711 dev->real_num_tx_queues = txqs; 10712 if (netif_alloc_netdev_queues(dev)) 10713 goto free_all; 10714 10715 dev->num_rx_queues = rxqs; 10716 dev->real_num_rx_queues = rxqs; 10717 if (netif_alloc_rx_queues(dev)) 10718 goto free_all; 10719 10720 strcpy(dev->name, name); 10721 dev->name_assign_type = name_assign_type; 10722 dev->group = INIT_NETDEV_GROUP; 10723 if (!dev->ethtool_ops) 10724 dev->ethtool_ops = &default_ethtool_ops; 10725 10726 nf_hook_netdev_init(dev); 10727 10728 return dev; 10729 10730 free_all: 10731 free_netdev(dev); 10732 return NULL; 10733 10734 free_pcpu: 10735 #ifdef CONFIG_PCPU_DEV_REFCNT 10736 free_percpu(dev->pcpu_refcnt); 10737 free_dev: 10738 #endif 10739 netdev_freemem(dev); 10740 return NULL; 10741 } 10742 EXPORT_SYMBOL(alloc_netdev_mqs); 10743 10744 /** 10745 * free_netdev - free network device 10746 * @dev: device 10747 * 10748 * This function does the last stage of destroying an allocated device 10749 * interface. The reference to the device object is released. If this 10750 * is the last reference then it will be freed.Must be called in process 10751 * context. 10752 */ 10753 void free_netdev(struct net_device *dev) 10754 { 10755 struct napi_struct *p, *n; 10756 10757 might_sleep(); 10758 10759 /* When called immediately after register_netdevice() failed the unwind 10760 * handling may still be dismantling the device. Handle that case by 10761 * deferring the free. 10762 */ 10763 if (dev->reg_state == NETREG_UNREGISTERING) { 10764 ASSERT_RTNL(); 10765 dev->needs_free_netdev = true; 10766 return; 10767 } 10768 10769 netif_free_tx_queues(dev); 10770 netif_free_rx_queues(dev); 10771 10772 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 10773 10774 /* Flush device addresses */ 10775 dev_addr_flush(dev); 10776 10777 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 10778 netif_napi_del(p); 10779 10780 ref_tracker_dir_exit(&dev->refcnt_tracker); 10781 #ifdef CONFIG_PCPU_DEV_REFCNT 10782 free_percpu(dev->pcpu_refcnt); 10783 dev->pcpu_refcnt = NULL; 10784 #endif 10785 free_percpu(dev->core_stats); 10786 dev->core_stats = NULL; 10787 free_percpu(dev->xdp_bulkq); 10788 dev->xdp_bulkq = NULL; 10789 10790 /* Compatibility with error handling in drivers */ 10791 if (dev->reg_state == NETREG_UNINITIALIZED) { 10792 netdev_freemem(dev); 10793 return; 10794 } 10795 10796 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 10797 dev->reg_state = NETREG_RELEASED; 10798 10799 /* will free via device release */ 10800 put_device(&dev->dev); 10801 } 10802 EXPORT_SYMBOL(free_netdev); 10803 10804 /** 10805 * synchronize_net - Synchronize with packet receive processing 10806 * 10807 * Wait for packets currently being received to be done. 10808 * Does not block later packets from starting. 10809 */ 10810 void synchronize_net(void) 10811 { 10812 might_sleep(); 10813 if (rtnl_is_locked()) 10814 synchronize_rcu_expedited(); 10815 else 10816 synchronize_rcu(); 10817 } 10818 EXPORT_SYMBOL(synchronize_net); 10819 10820 /** 10821 * unregister_netdevice_queue - remove device from the kernel 10822 * @dev: device 10823 * @head: list 10824 * 10825 * This function shuts down a device interface and removes it 10826 * from the kernel tables. 10827 * If head not NULL, device is queued to be unregistered later. 10828 * 10829 * Callers must hold the rtnl semaphore. You may want 10830 * unregister_netdev() instead of this. 10831 */ 10832 10833 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 10834 { 10835 ASSERT_RTNL(); 10836 10837 if (head) { 10838 list_move_tail(&dev->unreg_list, head); 10839 } else { 10840 LIST_HEAD(single); 10841 10842 list_add(&dev->unreg_list, &single); 10843 unregister_netdevice_many(&single); 10844 } 10845 } 10846 EXPORT_SYMBOL(unregister_netdevice_queue); 10847 10848 void unregister_netdevice_many_notify(struct list_head *head, 10849 u32 portid, const struct nlmsghdr *nlh) 10850 { 10851 struct net_device *dev, *tmp; 10852 LIST_HEAD(close_head); 10853 10854 BUG_ON(dev_boot_phase); 10855 ASSERT_RTNL(); 10856 10857 if (list_empty(head)) 10858 return; 10859 10860 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 10861 /* Some devices call without registering 10862 * for initialization unwind. Remove those 10863 * devices and proceed with the remaining. 10864 */ 10865 if (dev->reg_state == NETREG_UNINITIALIZED) { 10866 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 10867 dev->name, dev); 10868 10869 WARN_ON(1); 10870 list_del(&dev->unreg_list); 10871 continue; 10872 } 10873 dev->dismantle = true; 10874 BUG_ON(dev->reg_state != NETREG_REGISTERED); 10875 } 10876 10877 /* If device is running, close it first. */ 10878 list_for_each_entry(dev, head, unreg_list) 10879 list_add_tail(&dev->close_list, &close_head); 10880 dev_close_many(&close_head, true); 10881 10882 list_for_each_entry(dev, head, unreg_list) { 10883 /* And unlink it from device chain. */ 10884 write_lock(&dev_base_lock); 10885 unlist_netdevice(dev, false); 10886 dev->reg_state = NETREG_UNREGISTERING; 10887 write_unlock(&dev_base_lock); 10888 } 10889 flush_all_backlogs(); 10890 10891 synchronize_net(); 10892 10893 list_for_each_entry(dev, head, unreg_list) { 10894 struct sk_buff *skb = NULL; 10895 10896 /* Shutdown queueing discipline. */ 10897 dev_shutdown(dev); 10898 dev_tcx_uninstall(dev); 10899 dev_xdp_uninstall(dev); 10900 bpf_dev_bound_netdev_unregister(dev); 10901 10902 netdev_offload_xstats_disable_all(dev); 10903 10904 /* Notify protocols, that we are about to destroy 10905 * this device. They should clean all the things. 10906 */ 10907 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 10908 10909 if (!dev->rtnl_link_ops || 10910 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 10911 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 10912 GFP_KERNEL, NULL, 0, 10913 portid, nlh); 10914 10915 /* 10916 * Flush the unicast and multicast chains 10917 */ 10918 dev_uc_flush(dev); 10919 dev_mc_flush(dev); 10920 10921 netdev_name_node_alt_flush(dev); 10922 netdev_name_node_free(dev->name_node); 10923 10924 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); 10925 10926 if (dev->netdev_ops->ndo_uninit) 10927 dev->netdev_ops->ndo_uninit(dev); 10928 10929 if (skb) 10930 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh); 10931 10932 /* Notifier chain MUST detach us all upper devices. */ 10933 WARN_ON(netdev_has_any_upper_dev(dev)); 10934 WARN_ON(netdev_has_any_lower_dev(dev)); 10935 10936 /* Remove entries from kobject tree */ 10937 netdev_unregister_kobject(dev); 10938 #ifdef CONFIG_XPS 10939 /* Remove XPS queueing entries */ 10940 netif_reset_xps_queues_gt(dev, 0); 10941 #endif 10942 } 10943 10944 synchronize_net(); 10945 10946 list_for_each_entry(dev, head, unreg_list) { 10947 netdev_put(dev, &dev->dev_registered_tracker); 10948 net_set_todo(dev); 10949 } 10950 10951 list_del(head); 10952 } 10953 10954 /** 10955 * unregister_netdevice_many - unregister many devices 10956 * @head: list of devices 10957 * 10958 * Note: As most callers use a stack allocated list_head, 10959 * we force a list_del() to make sure stack wont be corrupted later. 10960 */ 10961 void unregister_netdevice_many(struct list_head *head) 10962 { 10963 unregister_netdevice_many_notify(head, 0, NULL); 10964 } 10965 EXPORT_SYMBOL(unregister_netdevice_many); 10966 10967 /** 10968 * unregister_netdev - remove device from the kernel 10969 * @dev: device 10970 * 10971 * This function shuts down a device interface and removes it 10972 * from the kernel tables. 10973 * 10974 * This is just a wrapper for unregister_netdevice that takes 10975 * the rtnl semaphore. In general you want to use this and not 10976 * unregister_netdevice. 10977 */ 10978 void unregister_netdev(struct net_device *dev) 10979 { 10980 rtnl_lock(); 10981 unregister_netdevice(dev); 10982 rtnl_unlock(); 10983 } 10984 EXPORT_SYMBOL(unregister_netdev); 10985 10986 /** 10987 * __dev_change_net_namespace - move device to different nethost namespace 10988 * @dev: device 10989 * @net: network namespace 10990 * @pat: If not NULL name pattern to try if the current device name 10991 * is already taken in the destination network namespace. 10992 * @new_ifindex: If not zero, specifies device index in the target 10993 * namespace. 10994 * 10995 * This function shuts down a device interface and moves it 10996 * to a new network namespace. On success 0 is returned, on 10997 * a failure a netagive errno code is returned. 10998 * 10999 * Callers must hold the rtnl semaphore. 11000 */ 11001 11002 int __dev_change_net_namespace(struct net_device *dev, struct net *net, 11003 const char *pat, int new_ifindex) 11004 { 11005 struct net *net_old = dev_net(dev); 11006 int err, new_nsid; 11007 11008 ASSERT_RTNL(); 11009 11010 /* Don't allow namespace local devices to be moved. */ 11011 err = -EINVAL; 11012 if (dev->features & NETIF_F_NETNS_LOCAL) 11013 goto out; 11014 11015 /* Ensure the device has been registrered */ 11016 if (dev->reg_state != NETREG_REGISTERED) 11017 goto out; 11018 11019 /* Get out if there is nothing todo */ 11020 err = 0; 11021 if (net_eq(net_old, net)) 11022 goto out; 11023 11024 /* Pick the destination device name, and ensure 11025 * we can use it in the destination network namespace. 11026 */ 11027 err = -EEXIST; 11028 if (netdev_name_in_use(net, dev->name)) { 11029 /* We get here if we can't use the current device name */ 11030 if (!pat) 11031 goto out; 11032 err = dev_get_valid_name(net, dev, pat); 11033 if (err < 0) 11034 goto out; 11035 } 11036 11037 /* Check that new_ifindex isn't used yet. */ 11038 err = -EBUSY; 11039 if (new_ifindex && __dev_get_by_index(net, new_ifindex)) 11040 goto out; 11041 11042 /* 11043 * And now a mini version of register_netdevice unregister_netdevice. 11044 */ 11045 11046 /* If device is running close it first. */ 11047 dev_close(dev); 11048 11049 /* And unlink it from device chain */ 11050 unlist_netdevice(dev, true); 11051 11052 synchronize_net(); 11053 11054 /* Shutdown queueing discipline. */ 11055 dev_shutdown(dev); 11056 11057 /* Notify protocols, that we are about to destroy 11058 * this device. They should clean all the things. 11059 * 11060 * Note that dev->reg_state stays at NETREG_REGISTERED. 11061 * This is wanted because this way 8021q and macvlan know 11062 * the device is just moving and can keep their slaves up. 11063 */ 11064 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 11065 rcu_barrier(); 11066 11067 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL); 11068 /* If there is an ifindex conflict assign a new one */ 11069 if (!new_ifindex) { 11070 if (__dev_get_by_index(net, dev->ifindex)) 11071 new_ifindex = dev_new_index(net); 11072 else 11073 new_ifindex = dev->ifindex; 11074 } 11075 11076 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 11077 new_ifindex); 11078 11079 /* 11080 * Flush the unicast and multicast chains 11081 */ 11082 dev_uc_flush(dev); 11083 dev_mc_flush(dev); 11084 11085 /* Send a netdev-removed uevent to the old namespace */ 11086 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 11087 netdev_adjacent_del_links(dev); 11088 11089 /* Move per-net netdevice notifiers that are following the netdevice */ 11090 move_netdevice_notifiers_dev_net(dev, net); 11091 11092 /* Actually switch the network namespace */ 11093 dev_net_set(dev, net); 11094 dev->ifindex = new_ifindex; 11095 11096 /* Send a netdev-add uevent to the new namespace */ 11097 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 11098 netdev_adjacent_add_links(dev); 11099 11100 /* Fixup kobjects */ 11101 err = device_rename(&dev->dev, dev->name); 11102 WARN_ON(err); 11103 11104 /* Adapt owner in case owning user namespace of target network 11105 * namespace is different from the original one. 11106 */ 11107 err = netdev_change_owner(dev, net_old, net); 11108 WARN_ON(err); 11109 11110 /* Add the device back in the hashes */ 11111 list_netdevice(dev); 11112 11113 /* Notify protocols, that a new device appeared. */ 11114 call_netdevice_notifiers(NETDEV_REGISTER, dev); 11115 11116 /* 11117 * Prevent userspace races by waiting until the network 11118 * device is fully setup before sending notifications. 11119 */ 11120 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL); 11121 11122 synchronize_net(); 11123 err = 0; 11124 out: 11125 return err; 11126 } 11127 EXPORT_SYMBOL_GPL(__dev_change_net_namespace); 11128 11129 static int dev_cpu_dead(unsigned int oldcpu) 11130 { 11131 struct sk_buff **list_skb; 11132 struct sk_buff *skb; 11133 unsigned int cpu; 11134 struct softnet_data *sd, *oldsd, *remsd = NULL; 11135 11136 local_irq_disable(); 11137 cpu = smp_processor_id(); 11138 sd = &per_cpu(softnet_data, cpu); 11139 oldsd = &per_cpu(softnet_data, oldcpu); 11140 11141 /* Find end of our completion_queue. */ 11142 list_skb = &sd->completion_queue; 11143 while (*list_skb) 11144 list_skb = &(*list_skb)->next; 11145 /* Append completion queue from offline CPU. */ 11146 *list_skb = oldsd->completion_queue; 11147 oldsd->completion_queue = NULL; 11148 11149 /* Append output queue from offline CPU. */ 11150 if (oldsd->output_queue) { 11151 *sd->output_queue_tailp = oldsd->output_queue; 11152 sd->output_queue_tailp = oldsd->output_queue_tailp; 11153 oldsd->output_queue = NULL; 11154 oldsd->output_queue_tailp = &oldsd->output_queue; 11155 } 11156 /* Append NAPI poll list from offline CPU, with one exception : 11157 * process_backlog() must be called by cpu owning percpu backlog. 11158 * We properly handle process_queue & input_pkt_queue later. 11159 */ 11160 while (!list_empty(&oldsd->poll_list)) { 11161 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 11162 struct napi_struct, 11163 poll_list); 11164 11165 list_del_init(&napi->poll_list); 11166 if (napi->poll == process_backlog) 11167 napi->state = 0; 11168 else 11169 ____napi_schedule(sd, napi); 11170 } 11171 11172 raise_softirq_irqoff(NET_TX_SOFTIRQ); 11173 local_irq_enable(); 11174 11175 #ifdef CONFIG_RPS 11176 remsd = oldsd->rps_ipi_list; 11177 oldsd->rps_ipi_list = NULL; 11178 #endif 11179 /* send out pending IPI's on offline CPU */ 11180 net_rps_send_ipi(remsd); 11181 11182 /* Process offline CPU's input_pkt_queue */ 11183 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 11184 netif_rx(skb); 11185 input_queue_head_incr(oldsd); 11186 } 11187 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 11188 netif_rx(skb); 11189 input_queue_head_incr(oldsd); 11190 } 11191 11192 return 0; 11193 } 11194 11195 /** 11196 * netdev_increment_features - increment feature set by one 11197 * @all: current feature set 11198 * @one: new feature set 11199 * @mask: mask feature set 11200 * 11201 * Computes a new feature set after adding a device with feature set 11202 * @one to the master device with current feature set @all. Will not 11203 * enable anything that is off in @mask. Returns the new feature set. 11204 */ 11205 netdev_features_t netdev_increment_features(netdev_features_t all, 11206 netdev_features_t one, netdev_features_t mask) 11207 { 11208 if (mask & NETIF_F_HW_CSUM) 11209 mask |= NETIF_F_CSUM_MASK; 11210 mask |= NETIF_F_VLAN_CHALLENGED; 11211 11212 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 11213 all &= one | ~NETIF_F_ALL_FOR_ALL; 11214 11215 /* If one device supports hw checksumming, set for all. */ 11216 if (all & NETIF_F_HW_CSUM) 11217 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 11218 11219 return all; 11220 } 11221 EXPORT_SYMBOL(netdev_increment_features); 11222 11223 static struct hlist_head * __net_init netdev_create_hash(void) 11224 { 11225 int i; 11226 struct hlist_head *hash; 11227 11228 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 11229 if (hash != NULL) 11230 for (i = 0; i < NETDEV_HASHENTRIES; i++) 11231 INIT_HLIST_HEAD(&hash[i]); 11232 11233 return hash; 11234 } 11235 11236 /* Initialize per network namespace state */ 11237 static int __net_init netdev_init(struct net *net) 11238 { 11239 BUILD_BUG_ON(GRO_HASH_BUCKETS > 11240 8 * sizeof_field(struct napi_struct, gro_bitmask)); 11241 11242 INIT_LIST_HEAD(&net->dev_base_head); 11243 11244 net->dev_name_head = netdev_create_hash(); 11245 if (net->dev_name_head == NULL) 11246 goto err_name; 11247 11248 net->dev_index_head = netdev_create_hash(); 11249 if (net->dev_index_head == NULL) 11250 goto err_idx; 11251 11252 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain); 11253 11254 return 0; 11255 11256 err_idx: 11257 kfree(net->dev_name_head); 11258 err_name: 11259 return -ENOMEM; 11260 } 11261 11262 /** 11263 * netdev_drivername - network driver for the device 11264 * @dev: network device 11265 * 11266 * Determine network driver for device. 11267 */ 11268 const char *netdev_drivername(const struct net_device *dev) 11269 { 11270 const struct device_driver *driver; 11271 const struct device *parent; 11272 const char *empty = ""; 11273 11274 parent = dev->dev.parent; 11275 if (!parent) 11276 return empty; 11277 11278 driver = parent->driver; 11279 if (driver && driver->name) 11280 return driver->name; 11281 return empty; 11282 } 11283 11284 static void __netdev_printk(const char *level, const struct net_device *dev, 11285 struct va_format *vaf) 11286 { 11287 if (dev && dev->dev.parent) { 11288 dev_printk_emit(level[1] - '0', 11289 dev->dev.parent, 11290 "%s %s %s%s: %pV", 11291 dev_driver_string(dev->dev.parent), 11292 dev_name(dev->dev.parent), 11293 netdev_name(dev), netdev_reg_state(dev), 11294 vaf); 11295 } else if (dev) { 11296 printk("%s%s%s: %pV", 11297 level, netdev_name(dev), netdev_reg_state(dev), vaf); 11298 } else { 11299 printk("%s(NULL net_device): %pV", level, vaf); 11300 } 11301 } 11302 11303 void netdev_printk(const char *level, const struct net_device *dev, 11304 const char *format, ...) 11305 { 11306 struct va_format vaf; 11307 va_list args; 11308 11309 va_start(args, format); 11310 11311 vaf.fmt = format; 11312 vaf.va = &args; 11313 11314 __netdev_printk(level, dev, &vaf); 11315 11316 va_end(args); 11317 } 11318 EXPORT_SYMBOL(netdev_printk); 11319 11320 #define define_netdev_printk_level(func, level) \ 11321 void func(const struct net_device *dev, const char *fmt, ...) \ 11322 { \ 11323 struct va_format vaf; \ 11324 va_list args; \ 11325 \ 11326 va_start(args, fmt); \ 11327 \ 11328 vaf.fmt = fmt; \ 11329 vaf.va = &args; \ 11330 \ 11331 __netdev_printk(level, dev, &vaf); \ 11332 \ 11333 va_end(args); \ 11334 } \ 11335 EXPORT_SYMBOL(func); 11336 11337 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 11338 define_netdev_printk_level(netdev_alert, KERN_ALERT); 11339 define_netdev_printk_level(netdev_crit, KERN_CRIT); 11340 define_netdev_printk_level(netdev_err, KERN_ERR); 11341 define_netdev_printk_level(netdev_warn, KERN_WARNING); 11342 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 11343 define_netdev_printk_level(netdev_info, KERN_INFO); 11344 11345 static void __net_exit netdev_exit(struct net *net) 11346 { 11347 kfree(net->dev_name_head); 11348 kfree(net->dev_index_head); 11349 if (net != &init_net) 11350 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 11351 } 11352 11353 static struct pernet_operations __net_initdata netdev_net_ops = { 11354 .init = netdev_init, 11355 .exit = netdev_exit, 11356 }; 11357 11358 static void __net_exit default_device_exit_net(struct net *net) 11359 { 11360 struct net_device *dev, *aux; 11361 /* 11362 * Push all migratable network devices back to the 11363 * initial network namespace 11364 */ 11365 ASSERT_RTNL(); 11366 for_each_netdev_safe(net, dev, aux) { 11367 int err; 11368 char fb_name[IFNAMSIZ]; 11369 11370 /* Ignore unmoveable devices (i.e. loopback) */ 11371 if (dev->features & NETIF_F_NETNS_LOCAL) 11372 continue; 11373 11374 /* Leave virtual devices for the generic cleanup */ 11375 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund) 11376 continue; 11377 11378 /* Push remaining network devices to init_net */ 11379 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 11380 if (netdev_name_in_use(&init_net, fb_name)) 11381 snprintf(fb_name, IFNAMSIZ, "dev%%d"); 11382 err = dev_change_net_namespace(dev, &init_net, fb_name); 11383 if (err) { 11384 pr_emerg("%s: failed to move %s to init_net: %d\n", 11385 __func__, dev->name, err); 11386 BUG(); 11387 } 11388 } 11389 } 11390 11391 static void __net_exit default_device_exit_batch(struct list_head *net_list) 11392 { 11393 /* At exit all network devices most be removed from a network 11394 * namespace. Do this in the reverse order of registration. 11395 * Do this across as many network namespaces as possible to 11396 * improve batching efficiency. 11397 */ 11398 struct net_device *dev; 11399 struct net *net; 11400 LIST_HEAD(dev_kill_list); 11401 11402 rtnl_lock(); 11403 list_for_each_entry(net, net_list, exit_list) { 11404 default_device_exit_net(net); 11405 cond_resched(); 11406 } 11407 11408 list_for_each_entry(net, net_list, exit_list) { 11409 for_each_netdev_reverse(net, dev) { 11410 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 11411 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 11412 else 11413 unregister_netdevice_queue(dev, &dev_kill_list); 11414 } 11415 } 11416 unregister_netdevice_many(&dev_kill_list); 11417 rtnl_unlock(); 11418 } 11419 11420 static struct pernet_operations __net_initdata default_device_ops = { 11421 .exit_batch = default_device_exit_batch, 11422 }; 11423 11424 /* 11425 * Initialize the DEV module. At boot time this walks the device list and 11426 * unhooks any devices that fail to initialise (normally hardware not 11427 * present) and leaves us with a valid list of present and active devices. 11428 * 11429 */ 11430 11431 /* 11432 * This is called single threaded during boot, so no need 11433 * to take the rtnl semaphore. 11434 */ 11435 static int __init net_dev_init(void) 11436 { 11437 int i, rc = -ENOMEM; 11438 11439 BUG_ON(!dev_boot_phase); 11440 11441 if (dev_proc_init()) 11442 goto out; 11443 11444 if (netdev_kobject_init()) 11445 goto out; 11446 11447 INIT_LIST_HEAD(&ptype_all); 11448 for (i = 0; i < PTYPE_HASH_SIZE; i++) 11449 INIT_LIST_HEAD(&ptype_base[i]); 11450 11451 if (register_pernet_subsys(&netdev_net_ops)) 11452 goto out; 11453 11454 /* 11455 * Initialise the packet receive queues. 11456 */ 11457 11458 for_each_possible_cpu(i) { 11459 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 11460 struct softnet_data *sd = &per_cpu(softnet_data, i); 11461 11462 INIT_WORK(flush, flush_backlog); 11463 11464 skb_queue_head_init(&sd->input_pkt_queue); 11465 skb_queue_head_init(&sd->process_queue); 11466 #ifdef CONFIG_XFRM_OFFLOAD 11467 skb_queue_head_init(&sd->xfrm_backlog); 11468 #endif 11469 INIT_LIST_HEAD(&sd->poll_list); 11470 sd->output_queue_tailp = &sd->output_queue; 11471 #ifdef CONFIG_RPS 11472 INIT_CSD(&sd->csd, rps_trigger_softirq, sd); 11473 sd->cpu = i; 11474 #endif 11475 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd); 11476 spin_lock_init(&sd->defer_lock); 11477 11478 init_gro_hash(&sd->backlog); 11479 sd->backlog.poll = process_backlog; 11480 sd->backlog.weight = weight_p; 11481 } 11482 11483 dev_boot_phase = 0; 11484 11485 /* The loopback device is special if any other network devices 11486 * is present in a network namespace the loopback device must 11487 * be present. Since we now dynamically allocate and free the 11488 * loopback device ensure this invariant is maintained by 11489 * keeping the loopback device as the first device on the 11490 * list of network devices. Ensuring the loopback devices 11491 * is the first device that appears and the last network device 11492 * that disappears. 11493 */ 11494 if (register_pernet_device(&loopback_net_ops)) 11495 goto out; 11496 11497 if (register_pernet_device(&default_device_ops)) 11498 goto out; 11499 11500 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 11501 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 11502 11503 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 11504 NULL, dev_cpu_dead); 11505 WARN_ON(rc < 0); 11506 rc = 0; 11507 out: 11508 return rc; 11509 } 11510 11511 subsys_initcall(net_dev_init); 11512