xref: /openbmc/linux/net/core/dev.c (revision 78ccbf9ff89bd7a20d36be039cb3eab71081648c)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <net/busy_poll.h>
101 #include <linux/rtnetlink.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
123 #include <net/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/static_key.h>
136 #include <linux/hashtable.h>
137 #include <linux/vmalloc.h>
138 #include <linux/if_macvlan.h>
139 #include <linux/errqueue.h>
140 #include <linux/hrtimer.h>
141 #include <linux/netfilter_ingress.h>
142 #include <linux/sctp.h>
143 #include <linux/crash_dump.h>
144 
145 #include "net-sysfs.h"
146 
147 /* Instead of increasing this, you should create a hash table. */
148 #define MAX_GRO_SKBS 8
149 
150 /* This should be increased if a protocol with a bigger head is added. */
151 #define GRO_MAX_HEAD (MAX_HEADER + 128)
152 
153 static DEFINE_SPINLOCK(ptype_lock);
154 static DEFINE_SPINLOCK(offload_lock);
155 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
156 struct list_head ptype_all __read_mostly;	/* Taps */
157 static struct list_head offload_base __read_mostly;
158 
159 static int netif_rx_internal(struct sk_buff *skb);
160 static int call_netdevice_notifiers_info(unsigned long val,
161 					 struct net_device *dev,
162 					 struct netdev_notifier_info *info);
163 
164 /*
165  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
166  * semaphore.
167  *
168  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
169  *
170  * Writers must hold the rtnl semaphore while they loop through the
171  * dev_base_head list, and hold dev_base_lock for writing when they do the
172  * actual updates.  This allows pure readers to access the list even
173  * while a writer is preparing to update it.
174  *
175  * To put it another way, dev_base_lock is held for writing only to
176  * protect against pure readers; the rtnl semaphore provides the
177  * protection against other writers.
178  *
179  * See, for example usages, register_netdevice() and
180  * unregister_netdevice(), which must be called with the rtnl
181  * semaphore held.
182  */
183 DEFINE_RWLOCK(dev_base_lock);
184 EXPORT_SYMBOL(dev_base_lock);
185 
186 /* protects napi_hash addition/deletion and napi_gen_id */
187 static DEFINE_SPINLOCK(napi_hash_lock);
188 
189 static unsigned int napi_gen_id = NR_CPUS;
190 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
191 
192 static seqcount_t devnet_rename_seq;
193 
194 static inline void dev_base_seq_inc(struct net *net)
195 {
196 	while (++net->dev_base_seq == 0);
197 }
198 
199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
200 {
201 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
202 
203 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
204 }
205 
206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
207 {
208 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
209 }
210 
211 static inline void rps_lock(struct softnet_data *sd)
212 {
213 #ifdef CONFIG_RPS
214 	spin_lock(&sd->input_pkt_queue.lock);
215 #endif
216 }
217 
218 static inline void rps_unlock(struct softnet_data *sd)
219 {
220 #ifdef CONFIG_RPS
221 	spin_unlock(&sd->input_pkt_queue.lock);
222 #endif
223 }
224 
225 /* Device list insertion */
226 static void list_netdevice(struct net_device *dev)
227 {
228 	struct net *net = dev_net(dev);
229 
230 	ASSERT_RTNL();
231 
232 	write_lock_bh(&dev_base_lock);
233 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
234 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
235 	hlist_add_head_rcu(&dev->index_hlist,
236 			   dev_index_hash(net, dev->ifindex));
237 	write_unlock_bh(&dev_base_lock);
238 
239 	dev_base_seq_inc(net);
240 }
241 
242 /* Device list removal
243  * caller must respect a RCU grace period before freeing/reusing dev
244  */
245 static void unlist_netdevice(struct net_device *dev)
246 {
247 	ASSERT_RTNL();
248 
249 	/* Unlink dev from the device chain */
250 	write_lock_bh(&dev_base_lock);
251 	list_del_rcu(&dev->dev_list);
252 	hlist_del_rcu(&dev->name_hlist);
253 	hlist_del_rcu(&dev->index_hlist);
254 	write_unlock_bh(&dev_base_lock);
255 
256 	dev_base_seq_inc(dev_net(dev));
257 }
258 
259 /*
260  *	Our notifier list
261  */
262 
263 static RAW_NOTIFIER_HEAD(netdev_chain);
264 
265 /*
266  *	Device drivers call our routines to queue packets here. We empty the
267  *	queue in the local softnet handler.
268  */
269 
270 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
271 EXPORT_PER_CPU_SYMBOL(softnet_data);
272 
273 #ifdef CONFIG_LOCKDEP
274 /*
275  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
276  * according to dev->type
277  */
278 static const unsigned short netdev_lock_type[] =
279 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
280 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
281 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
282 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
283 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
284 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
285 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
286 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
287 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
288 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
289 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
290 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
291 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
292 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
293 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
294 
295 static const char *const netdev_lock_name[] =
296 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
297 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
298 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
299 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
300 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
301 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
302 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
303 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
304 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
305 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
306 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
307 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
308 	 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
309 	 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
310 	 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
311 
312 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
313 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
314 
315 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
316 {
317 	int i;
318 
319 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
320 		if (netdev_lock_type[i] == dev_type)
321 			return i;
322 	/* the last key is used by default */
323 	return ARRAY_SIZE(netdev_lock_type) - 1;
324 }
325 
326 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
327 						 unsigned short dev_type)
328 {
329 	int i;
330 
331 	i = netdev_lock_pos(dev_type);
332 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
333 				   netdev_lock_name[i]);
334 }
335 
336 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
337 {
338 	int i;
339 
340 	i = netdev_lock_pos(dev->type);
341 	lockdep_set_class_and_name(&dev->addr_list_lock,
342 				   &netdev_addr_lock_key[i],
343 				   netdev_lock_name[i]);
344 }
345 #else
346 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
347 						 unsigned short dev_type)
348 {
349 }
350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
351 {
352 }
353 #endif
354 
355 /*******************************************************************************
356 
357 		Protocol management and registration routines
358 
359 *******************************************************************************/
360 
361 /*
362  *	Add a protocol ID to the list. Now that the input handler is
363  *	smarter we can dispense with all the messy stuff that used to be
364  *	here.
365  *
366  *	BEWARE!!! Protocol handlers, mangling input packets,
367  *	MUST BE last in hash buckets and checking protocol handlers
368  *	MUST start from promiscuous ptype_all chain in net_bh.
369  *	It is true now, do not change it.
370  *	Explanation follows: if protocol handler, mangling packet, will
371  *	be the first on list, it is not able to sense, that packet
372  *	is cloned and should be copied-on-write, so that it will
373  *	change it and subsequent readers will get broken packet.
374  *							--ANK (980803)
375  */
376 
377 static inline struct list_head *ptype_head(const struct packet_type *pt)
378 {
379 	if (pt->type == htons(ETH_P_ALL))
380 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
381 	else
382 		return pt->dev ? &pt->dev->ptype_specific :
383 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
384 }
385 
386 /**
387  *	dev_add_pack - add packet handler
388  *	@pt: packet type declaration
389  *
390  *	Add a protocol handler to the networking stack. The passed &packet_type
391  *	is linked into kernel lists and may not be freed until it has been
392  *	removed from the kernel lists.
393  *
394  *	This call does not sleep therefore it can not
395  *	guarantee all CPU's that are in middle of receiving packets
396  *	will see the new packet type (until the next received packet).
397  */
398 
399 void dev_add_pack(struct packet_type *pt)
400 {
401 	struct list_head *head = ptype_head(pt);
402 
403 	spin_lock(&ptype_lock);
404 	list_add_rcu(&pt->list, head);
405 	spin_unlock(&ptype_lock);
406 }
407 EXPORT_SYMBOL(dev_add_pack);
408 
409 /**
410  *	__dev_remove_pack	 - remove packet handler
411  *	@pt: packet type declaration
412  *
413  *	Remove a protocol handler that was previously added to the kernel
414  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
415  *	from the kernel lists and can be freed or reused once this function
416  *	returns.
417  *
418  *      The packet type might still be in use by receivers
419  *	and must not be freed until after all the CPU's have gone
420  *	through a quiescent state.
421  */
422 void __dev_remove_pack(struct packet_type *pt)
423 {
424 	struct list_head *head = ptype_head(pt);
425 	struct packet_type *pt1;
426 
427 	spin_lock(&ptype_lock);
428 
429 	list_for_each_entry(pt1, head, list) {
430 		if (pt == pt1) {
431 			list_del_rcu(&pt->list);
432 			goto out;
433 		}
434 	}
435 
436 	pr_warn("dev_remove_pack: %p not found\n", pt);
437 out:
438 	spin_unlock(&ptype_lock);
439 }
440 EXPORT_SYMBOL(__dev_remove_pack);
441 
442 /**
443  *	dev_remove_pack	 - remove packet handler
444  *	@pt: packet type declaration
445  *
446  *	Remove a protocol handler that was previously added to the kernel
447  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
448  *	from the kernel lists and can be freed or reused once this function
449  *	returns.
450  *
451  *	This call sleeps to guarantee that no CPU is looking at the packet
452  *	type after return.
453  */
454 void dev_remove_pack(struct packet_type *pt)
455 {
456 	__dev_remove_pack(pt);
457 
458 	synchronize_net();
459 }
460 EXPORT_SYMBOL(dev_remove_pack);
461 
462 
463 /**
464  *	dev_add_offload - register offload handlers
465  *	@po: protocol offload declaration
466  *
467  *	Add protocol offload handlers to the networking stack. The passed
468  *	&proto_offload is linked into kernel lists and may not be freed until
469  *	it has been removed from the kernel lists.
470  *
471  *	This call does not sleep therefore it can not
472  *	guarantee all CPU's that are in middle of receiving packets
473  *	will see the new offload handlers (until the next received packet).
474  */
475 void dev_add_offload(struct packet_offload *po)
476 {
477 	struct packet_offload *elem;
478 
479 	spin_lock(&offload_lock);
480 	list_for_each_entry(elem, &offload_base, list) {
481 		if (po->priority < elem->priority)
482 			break;
483 	}
484 	list_add_rcu(&po->list, elem->list.prev);
485 	spin_unlock(&offload_lock);
486 }
487 EXPORT_SYMBOL(dev_add_offload);
488 
489 /**
490  *	__dev_remove_offload	 - remove offload handler
491  *	@po: packet offload declaration
492  *
493  *	Remove a protocol offload handler that was previously added to the
494  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
495  *	is removed from the kernel lists and can be freed or reused once this
496  *	function returns.
497  *
498  *      The packet type might still be in use by receivers
499  *	and must not be freed until after all the CPU's have gone
500  *	through a quiescent state.
501  */
502 static void __dev_remove_offload(struct packet_offload *po)
503 {
504 	struct list_head *head = &offload_base;
505 	struct packet_offload *po1;
506 
507 	spin_lock(&offload_lock);
508 
509 	list_for_each_entry(po1, head, list) {
510 		if (po == po1) {
511 			list_del_rcu(&po->list);
512 			goto out;
513 		}
514 	}
515 
516 	pr_warn("dev_remove_offload: %p not found\n", po);
517 out:
518 	spin_unlock(&offload_lock);
519 }
520 
521 /**
522  *	dev_remove_offload	 - remove packet offload handler
523  *	@po: packet offload declaration
524  *
525  *	Remove a packet offload handler that was previously added to the kernel
526  *	offload handlers by dev_add_offload(). The passed &offload_type is
527  *	removed from the kernel lists and can be freed or reused once this
528  *	function returns.
529  *
530  *	This call sleeps to guarantee that no CPU is looking at the packet
531  *	type after return.
532  */
533 void dev_remove_offload(struct packet_offload *po)
534 {
535 	__dev_remove_offload(po);
536 
537 	synchronize_net();
538 }
539 EXPORT_SYMBOL(dev_remove_offload);
540 
541 /******************************************************************************
542 
543 		      Device Boot-time Settings Routines
544 
545 *******************************************************************************/
546 
547 /* Boot time configuration table */
548 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
549 
550 /**
551  *	netdev_boot_setup_add	- add new setup entry
552  *	@name: name of the device
553  *	@map: configured settings for the device
554  *
555  *	Adds new setup entry to the dev_boot_setup list.  The function
556  *	returns 0 on error and 1 on success.  This is a generic routine to
557  *	all netdevices.
558  */
559 static int netdev_boot_setup_add(char *name, struct ifmap *map)
560 {
561 	struct netdev_boot_setup *s;
562 	int i;
563 
564 	s = dev_boot_setup;
565 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
566 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
567 			memset(s[i].name, 0, sizeof(s[i].name));
568 			strlcpy(s[i].name, name, IFNAMSIZ);
569 			memcpy(&s[i].map, map, sizeof(s[i].map));
570 			break;
571 		}
572 	}
573 
574 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
575 }
576 
577 /**
578  *	netdev_boot_setup_check	- check boot time settings
579  *	@dev: the netdevice
580  *
581  * 	Check boot time settings for the device.
582  *	The found settings are set for the device to be used
583  *	later in the device probing.
584  *	Returns 0 if no settings found, 1 if they are.
585  */
586 int netdev_boot_setup_check(struct net_device *dev)
587 {
588 	struct netdev_boot_setup *s = dev_boot_setup;
589 	int i;
590 
591 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
592 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
593 		    !strcmp(dev->name, s[i].name)) {
594 			dev->irq 	= s[i].map.irq;
595 			dev->base_addr 	= s[i].map.base_addr;
596 			dev->mem_start 	= s[i].map.mem_start;
597 			dev->mem_end 	= s[i].map.mem_end;
598 			return 1;
599 		}
600 	}
601 	return 0;
602 }
603 EXPORT_SYMBOL(netdev_boot_setup_check);
604 
605 
606 /**
607  *	netdev_boot_base	- get address from boot time settings
608  *	@prefix: prefix for network device
609  *	@unit: id for network device
610  *
611  * 	Check boot time settings for the base address of device.
612  *	The found settings are set for the device to be used
613  *	later in the device probing.
614  *	Returns 0 if no settings found.
615  */
616 unsigned long netdev_boot_base(const char *prefix, int unit)
617 {
618 	const struct netdev_boot_setup *s = dev_boot_setup;
619 	char name[IFNAMSIZ];
620 	int i;
621 
622 	sprintf(name, "%s%d", prefix, unit);
623 
624 	/*
625 	 * If device already registered then return base of 1
626 	 * to indicate not to probe for this interface
627 	 */
628 	if (__dev_get_by_name(&init_net, name))
629 		return 1;
630 
631 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
632 		if (!strcmp(name, s[i].name))
633 			return s[i].map.base_addr;
634 	return 0;
635 }
636 
637 /*
638  * Saves at boot time configured settings for any netdevice.
639  */
640 int __init netdev_boot_setup(char *str)
641 {
642 	int ints[5];
643 	struct ifmap map;
644 
645 	str = get_options(str, ARRAY_SIZE(ints), ints);
646 	if (!str || !*str)
647 		return 0;
648 
649 	/* Save settings */
650 	memset(&map, 0, sizeof(map));
651 	if (ints[0] > 0)
652 		map.irq = ints[1];
653 	if (ints[0] > 1)
654 		map.base_addr = ints[2];
655 	if (ints[0] > 2)
656 		map.mem_start = ints[3];
657 	if (ints[0] > 3)
658 		map.mem_end = ints[4];
659 
660 	/* Add new entry to the list */
661 	return netdev_boot_setup_add(str, &map);
662 }
663 
664 __setup("netdev=", netdev_boot_setup);
665 
666 /*******************************************************************************
667 
668 			    Device Interface Subroutines
669 
670 *******************************************************************************/
671 
672 /**
673  *	dev_get_iflink	- get 'iflink' value of a interface
674  *	@dev: targeted interface
675  *
676  *	Indicates the ifindex the interface is linked to.
677  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
678  */
679 
680 int dev_get_iflink(const struct net_device *dev)
681 {
682 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
683 		return dev->netdev_ops->ndo_get_iflink(dev);
684 
685 	return dev->ifindex;
686 }
687 EXPORT_SYMBOL(dev_get_iflink);
688 
689 /**
690  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
691  *	@dev: targeted interface
692  *	@skb: The packet.
693  *
694  *	For better visibility of tunnel traffic OVS needs to retrieve
695  *	egress tunnel information for a packet. Following API allows
696  *	user to get this info.
697  */
698 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
699 {
700 	struct ip_tunnel_info *info;
701 
702 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
703 		return -EINVAL;
704 
705 	info = skb_tunnel_info_unclone(skb);
706 	if (!info)
707 		return -ENOMEM;
708 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
709 		return -EINVAL;
710 
711 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
712 }
713 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
714 
715 /**
716  *	__dev_get_by_name	- find a device by its name
717  *	@net: the applicable net namespace
718  *	@name: name to find
719  *
720  *	Find an interface by name. Must be called under RTNL semaphore
721  *	or @dev_base_lock. If the name is found a pointer to the device
722  *	is returned. If the name is not found then %NULL is returned. The
723  *	reference counters are not incremented so the caller must be
724  *	careful with locks.
725  */
726 
727 struct net_device *__dev_get_by_name(struct net *net, const char *name)
728 {
729 	struct net_device *dev;
730 	struct hlist_head *head = dev_name_hash(net, name);
731 
732 	hlist_for_each_entry(dev, head, name_hlist)
733 		if (!strncmp(dev->name, name, IFNAMSIZ))
734 			return dev;
735 
736 	return NULL;
737 }
738 EXPORT_SYMBOL(__dev_get_by_name);
739 
740 /**
741  *	dev_get_by_name_rcu	- find a device by its name
742  *	@net: the applicable net namespace
743  *	@name: name to find
744  *
745  *	Find an interface by name.
746  *	If the name is found a pointer to the device is returned.
747  * 	If the name is not found then %NULL is returned.
748  *	The reference counters are not incremented so the caller must be
749  *	careful with locks. The caller must hold RCU lock.
750  */
751 
752 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
753 {
754 	struct net_device *dev;
755 	struct hlist_head *head = dev_name_hash(net, name);
756 
757 	hlist_for_each_entry_rcu(dev, head, name_hlist)
758 		if (!strncmp(dev->name, name, IFNAMSIZ))
759 			return dev;
760 
761 	return NULL;
762 }
763 EXPORT_SYMBOL(dev_get_by_name_rcu);
764 
765 /**
766  *	dev_get_by_name		- find a device by its name
767  *	@net: the applicable net namespace
768  *	@name: name to find
769  *
770  *	Find an interface by name. This can be called from any
771  *	context and does its own locking. The returned handle has
772  *	the usage count incremented and the caller must use dev_put() to
773  *	release it when it is no longer needed. %NULL is returned if no
774  *	matching device is found.
775  */
776 
777 struct net_device *dev_get_by_name(struct net *net, const char *name)
778 {
779 	struct net_device *dev;
780 
781 	rcu_read_lock();
782 	dev = dev_get_by_name_rcu(net, name);
783 	if (dev)
784 		dev_hold(dev);
785 	rcu_read_unlock();
786 	return dev;
787 }
788 EXPORT_SYMBOL(dev_get_by_name);
789 
790 /**
791  *	__dev_get_by_index - find a device by its ifindex
792  *	@net: the applicable net namespace
793  *	@ifindex: index of device
794  *
795  *	Search for an interface by index. Returns %NULL if the device
796  *	is not found or a pointer to the device. The device has not
797  *	had its reference counter increased so the caller must be careful
798  *	about locking. The caller must hold either the RTNL semaphore
799  *	or @dev_base_lock.
800  */
801 
802 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
803 {
804 	struct net_device *dev;
805 	struct hlist_head *head = dev_index_hash(net, ifindex);
806 
807 	hlist_for_each_entry(dev, head, index_hlist)
808 		if (dev->ifindex == ifindex)
809 			return dev;
810 
811 	return NULL;
812 }
813 EXPORT_SYMBOL(__dev_get_by_index);
814 
815 /**
816  *	dev_get_by_index_rcu - find a device by its ifindex
817  *	@net: the applicable net namespace
818  *	@ifindex: index of device
819  *
820  *	Search for an interface by index. Returns %NULL if the device
821  *	is not found or a pointer to the device. The device has not
822  *	had its reference counter increased so the caller must be careful
823  *	about locking. The caller must hold RCU lock.
824  */
825 
826 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
827 {
828 	struct net_device *dev;
829 	struct hlist_head *head = dev_index_hash(net, ifindex);
830 
831 	hlist_for_each_entry_rcu(dev, head, index_hlist)
832 		if (dev->ifindex == ifindex)
833 			return dev;
834 
835 	return NULL;
836 }
837 EXPORT_SYMBOL(dev_get_by_index_rcu);
838 
839 
840 /**
841  *	dev_get_by_index - find a device by its ifindex
842  *	@net: the applicable net namespace
843  *	@ifindex: index of device
844  *
845  *	Search for an interface by index. Returns NULL if the device
846  *	is not found or a pointer to the device. The device returned has
847  *	had a reference added and the pointer is safe until the user calls
848  *	dev_put to indicate they have finished with it.
849  */
850 
851 struct net_device *dev_get_by_index(struct net *net, int ifindex)
852 {
853 	struct net_device *dev;
854 
855 	rcu_read_lock();
856 	dev = dev_get_by_index_rcu(net, ifindex);
857 	if (dev)
858 		dev_hold(dev);
859 	rcu_read_unlock();
860 	return dev;
861 }
862 EXPORT_SYMBOL(dev_get_by_index);
863 
864 /**
865  *	netdev_get_name - get a netdevice name, knowing its ifindex.
866  *	@net: network namespace
867  *	@name: a pointer to the buffer where the name will be stored.
868  *	@ifindex: the ifindex of the interface to get the name from.
869  *
870  *	The use of raw_seqcount_begin() and cond_resched() before
871  *	retrying is required as we want to give the writers a chance
872  *	to complete when CONFIG_PREEMPT is not set.
873  */
874 int netdev_get_name(struct net *net, char *name, int ifindex)
875 {
876 	struct net_device *dev;
877 	unsigned int seq;
878 
879 retry:
880 	seq = raw_seqcount_begin(&devnet_rename_seq);
881 	rcu_read_lock();
882 	dev = dev_get_by_index_rcu(net, ifindex);
883 	if (!dev) {
884 		rcu_read_unlock();
885 		return -ENODEV;
886 	}
887 
888 	strcpy(name, dev->name);
889 	rcu_read_unlock();
890 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
891 		cond_resched();
892 		goto retry;
893 	}
894 
895 	return 0;
896 }
897 
898 /**
899  *	dev_getbyhwaddr_rcu - find a device by its hardware address
900  *	@net: the applicable net namespace
901  *	@type: media type of device
902  *	@ha: hardware address
903  *
904  *	Search for an interface by MAC address. Returns NULL if the device
905  *	is not found or a pointer to the device.
906  *	The caller must hold RCU or RTNL.
907  *	The returned device has not had its ref count increased
908  *	and the caller must therefore be careful about locking
909  *
910  */
911 
912 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
913 				       const char *ha)
914 {
915 	struct net_device *dev;
916 
917 	for_each_netdev_rcu(net, dev)
918 		if (dev->type == type &&
919 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
920 			return dev;
921 
922 	return NULL;
923 }
924 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
925 
926 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
927 {
928 	struct net_device *dev;
929 
930 	ASSERT_RTNL();
931 	for_each_netdev(net, dev)
932 		if (dev->type == type)
933 			return dev;
934 
935 	return NULL;
936 }
937 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
938 
939 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
940 {
941 	struct net_device *dev, *ret = NULL;
942 
943 	rcu_read_lock();
944 	for_each_netdev_rcu(net, dev)
945 		if (dev->type == type) {
946 			dev_hold(dev);
947 			ret = dev;
948 			break;
949 		}
950 	rcu_read_unlock();
951 	return ret;
952 }
953 EXPORT_SYMBOL(dev_getfirstbyhwtype);
954 
955 /**
956  *	__dev_get_by_flags - find any device with given flags
957  *	@net: the applicable net namespace
958  *	@if_flags: IFF_* values
959  *	@mask: bitmask of bits in if_flags to check
960  *
961  *	Search for any interface with the given flags. Returns NULL if a device
962  *	is not found or a pointer to the device. Must be called inside
963  *	rtnl_lock(), and result refcount is unchanged.
964  */
965 
966 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
967 				      unsigned short mask)
968 {
969 	struct net_device *dev, *ret;
970 
971 	ASSERT_RTNL();
972 
973 	ret = NULL;
974 	for_each_netdev(net, dev) {
975 		if (((dev->flags ^ if_flags) & mask) == 0) {
976 			ret = dev;
977 			break;
978 		}
979 	}
980 	return ret;
981 }
982 EXPORT_SYMBOL(__dev_get_by_flags);
983 
984 /**
985  *	dev_valid_name - check if name is okay for network device
986  *	@name: name string
987  *
988  *	Network device names need to be valid file names to
989  *	to allow sysfs to work.  We also disallow any kind of
990  *	whitespace.
991  */
992 bool dev_valid_name(const char *name)
993 {
994 	if (*name == '\0')
995 		return false;
996 	if (strlen(name) >= IFNAMSIZ)
997 		return false;
998 	if (!strcmp(name, ".") || !strcmp(name, ".."))
999 		return false;
1000 
1001 	while (*name) {
1002 		if (*name == '/' || *name == ':' || isspace(*name))
1003 			return false;
1004 		name++;
1005 	}
1006 	return true;
1007 }
1008 EXPORT_SYMBOL(dev_valid_name);
1009 
1010 /**
1011  *	__dev_alloc_name - allocate a name for a device
1012  *	@net: network namespace to allocate the device name in
1013  *	@name: name format string
1014  *	@buf:  scratch buffer and result name string
1015  *
1016  *	Passed a format string - eg "lt%d" it will try and find a suitable
1017  *	id. It scans list of devices to build up a free map, then chooses
1018  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1019  *	while allocating the name and adding the device in order to avoid
1020  *	duplicates.
1021  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1022  *	Returns the number of the unit assigned or a negative errno code.
1023  */
1024 
1025 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1026 {
1027 	int i = 0;
1028 	const char *p;
1029 	const int max_netdevices = 8*PAGE_SIZE;
1030 	unsigned long *inuse;
1031 	struct net_device *d;
1032 
1033 	p = strnchr(name, IFNAMSIZ-1, '%');
1034 	if (p) {
1035 		/*
1036 		 * Verify the string as this thing may have come from
1037 		 * the user.  There must be either one "%d" and no other "%"
1038 		 * characters.
1039 		 */
1040 		if (p[1] != 'd' || strchr(p + 2, '%'))
1041 			return -EINVAL;
1042 
1043 		/* Use one page as a bit array of possible slots */
1044 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1045 		if (!inuse)
1046 			return -ENOMEM;
1047 
1048 		for_each_netdev(net, d) {
1049 			if (!sscanf(d->name, name, &i))
1050 				continue;
1051 			if (i < 0 || i >= max_netdevices)
1052 				continue;
1053 
1054 			/*  avoid cases where sscanf is not exact inverse of printf */
1055 			snprintf(buf, IFNAMSIZ, name, i);
1056 			if (!strncmp(buf, d->name, IFNAMSIZ))
1057 				set_bit(i, inuse);
1058 		}
1059 
1060 		i = find_first_zero_bit(inuse, max_netdevices);
1061 		free_page((unsigned long) inuse);
1062 	}
1063 
1064 	if (buf != name)
1065 		snprintf(buf, IFNAMSIZ, name, i);
1066 	if (!__dev_get_by_name(net, buf))
1067 		return i;
1068 
1069 	/* It is possible to run out of possible slots
1070 	 * when the name is long and there isn't enough space left
1071 	 * for the digits, or if all bits are used.
1072 	 */
1073 	return -ENFILE;
1074 }
1075 
1076 /**
1077  *	dev_alloc_name - allocate a name for a device
1078  *	@dev: device
1079  *	@name: name format string
1080  *
1081  *	Passed a format string - eg "lt%d" it will try and find a suitable
1082  *	id. It scans list of devices to build up a free map, then chooses
1083  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1084  *	while allocating the name and adding the device in order to avoid
1085  *	duplicates.
1086  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1087  *	Returns the number of the unit assigned or a negative errno code.
1088  */
1089 
1090 int dev_alloc_name(struct net_device *dev, const char *name)
1091 {
1092 	char buf[IFNAMSIZ];
1093 	struct net *net;
1094 	int ret;
1095 
1096 	BUG_ON(!dev_net(dev));
1097 	net = dev_net(dev);
1098 	ret = __dev_alloc_name(net, name, buf);
1099 	if (ret >= 0)
1100 		strlcpy(dev->name, buf, IFNAMSIZ);
1101 	return ret;
1102 }
1103 EXPORT_SYMBOL(dev_alloc_name);
1104 
1105 static int dev_alloc_name_ns(struct net *net,
1106 			     struct net_device *dev,
1107 			     const char *name)
1108 {
1109 	char buf[IFNAMSIZ];
1110 	int ret;
1111 
1112 	ret = __dev_alloc_name(net, name, buf);
1113 	if (ret >= 0)
1114 		strlcpy(dev->name, buf, IFNAMSIZ);
1115 	return ret;
1116 }
1117 
1118 static int dev_get_valid_name(struct net *net,
1119 			      struct net_device *dev,
1120 			      const char *name)
1121 {
1122 	BUG_ON(!net);
1123 
1124 	if (!dev_valid_name(name))
1125 		return -EINVAL;
1126 
1127 	if (strchr(name, '%'))
1128 		return dev_alloc_name_ns(net, dev, name);
1129 	else if (__dev_get_by_name(net, name))
1130 		return -EEXIST;
1131 	else if (dev->name != name)
1132 		strlcpy(dev->name, name, IFNAMSIZ);
1133 
1134 	return 0;
1135 }
1136 
1137 /**
1138  *	dev_change_name - change name of a device
1139  *	@dev: device
1140  *	@newname: name (or format string) must be at least IFNAMSIZ
1141  *
1142  *	Change name of a device, can pass format strings "eth%d".
1143  *	for wildcarding.
1144  */
1145 int dev_change_name(struct net_device *dev, const char *newname)
1146 {
1147 	unsigned char old_assign_type;
1148 	char oldname[IFNAMSIZ];
1149 	int err = 0;
1150 	int ret;
1151 	struct net *net;
1152 
1153 	ASSERT_RTNL();
1154 	BUG_ON(!dev_net(dev));
1155 
1156 	net = dev_net(dev);
1157 	if (dev->flags & IFF_UP)
1158 		return -EBUSY;
1159 
1160 	write_seqcount_begin(&devnet_rename_seq);
1161 
1162 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1163 		write_seqcount_end(&devnet_rename_seq);
1164 		return 0;
1165 	}
1166 
1167 	memcpy(oldname, dev->name, IFNAMSIZ);
1168 
1169 	err = dev_get_valid_name(net, dev, newname);
1170 	if (err < 0) {
1171 		write_seqcount_end(&devnet_rename_seq);
1172 		return err;
1173 	}
1174 
1175 	if (oldname[0] && !strchr(oldname, '%'))
1176 		netdev_info(dev, "renamed from %s\n", oldname);
1177 
1178 	old_assign_type = dev->name_assign_type;
1179 	dev->name_assign_type = NET_NAME_RENAMED;
1180 
1181 rollback:
1182 	ret = device_rename(&dev->dev, dev->name);
1183 	if (ret) {
1184 		memcpy(dev->name, oldname, IFNAMSIZ);
1185 		dev->name_assign_type = old_assign_type;
1186 		write_seqcount_end(&devnet_rename_seq);
1187 		return ret;
1188 	}
1189 
1190 	write_seqcount_end(&devnet_rename_seq);
1191 
1192 	netdev_adjacent_rename_links(dev, oldname);
1193 
1194 	write_lock_bh(&dev_base_lock);
1195 	hlist_del_rcu(&dev->name_hlist);
1196 	write_unlock_bh(&dev_base_lock);
1197 
1198 	synchronize_rcu();
1199 
1200 	write_lock_bh(&dev_base_lock);
1201 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1202 	write_unlock_bh(&dev_base_lock);
1203 
1204 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1205 	ret = notifier_to_errno(ret);
1206 
1207 	if (ret) {
1208 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1209 		if (err >= 0) {
1210 			err = ret;
1211 			write_seqcount_begin(&devnet_rename_seq);
1212 			memcpy(dev->name, oldname, IFNAMSIZ);
1213 			memcpy(oldname, newname, IFNAMSIZ);
1214 			dev->name_assign_type = old_assign_type;
1215 			old_assign_type = NET_NAME_RENAMED;
1216 			goto rollback;
1217 		} else {
1218 			pr_err("%s: name change rollback failed: %d\n",
1219 			       dev->name, ret);
1220 		}
1221 	}
1222 
1223 	return err;
1224 }
1225 
1226 /**
1227  *	dev_set_alias - change ifalias of a device
1228  *	@dev: device
1229  *	@alias: name up to IFALIASZ
1230  *	@len: limit of bytes to copy from info
1231  *
1232  *	Set ifalias for a device,
1233  */
1234 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1235 {
1236 	char *new_ifalias;
1237 
1238 	ASSERT_RTNL();
1239 
1240 	if (len >= IFALIASZ)
1241 		return -EINVAL;
1242 
1243 	if (!len) {
1244 		kfree(dev->ifalias);
1245 		dev->ifalias = NULL;
1246 		return 0;
1247 	}
1248 
1249 	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1250 	if (!new_ifalias)
1251 		return -ENOMEM;
1252 	dev->ifalias = new_ifalias;
1253 
1254 	strlcpy(dev->ifalias, alias, len+1);
1255 	return len;
1256 }
1257 
1258 
1259 /**
1260  *	netdev_features_change - device changes features
1261  *	@dev: device to cause notification
1262  *
1263  *	Called to indicate a device has changed features.
1264  */
1265 void netdev_features_change(struct net_device *dev)
1266 {
1267 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1268 }
1269 EXPORT_SYMBOL(netdev_features_change);
1270 
1271 /**
1272  *	netdev_state_change - device changes state
1273  *	@dev: device to cause notification
1274  *
1275  *	Called to indicate a device has changed state. This function calls
1276  *	the notifier chains for netdev_chain and sends a NEWLINK message
1277  *	to the routing socket.
1278  */
1279 void netdev_state_change(struct net_device *dev)
1280 {
1281 	if (dev->flags & IFF_UP) {
1282 		struct netdev_notifier_change_info change_info;
1283 
1284 		change_info.flags_changed = 0;
1285 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1286 					      &change_info.info);
1287 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1288 	}
1289 }
1290 EXPORT_SYMBOL(netdev_state_change);
1291 
1292 /**
1293  * 	netdev_notify_peers - notify network peers about existence of @dev
1294  * 	@dev: network device
1295  *
1296  * Generate traffic such that interested network peers are aware of
1297  * @dev, such as by generating a gratuitous ARP. This may be used when
1298  * a device wants to inform the rest of the network about some sort of
1299  * reconfiguration such as a failover event or virtual machine
1300  * migration.
1301  */
1302 void netdev_notify_peers(struct net_device *dev)
1303 {
1304 	rtnl_lock();
1305 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1306 	rtnl_unlock();
1307 }
1308 EXPORT_SYMBOL(netdev_notify_peers);
1309 
1310 static int __dev_open(struct net_device *dev)
1311 {
1312 	const struct net_device_ops *ops = dev->netdev_ops;
1313 	int ret;
1314 
1315 	ASSERT_RTNL();
1316 
1317 	if (!netif_device_present(dev))
1318 		return -ENODEV;
1319 
1320 	/* Block netpoll from trying to do any rx path servicing.
1321 	 * If we don't do this there is a chance ndo_poll_controller
1322 	 * or ndo_poll may be running while we open the device
1323 	 */
1324 	netpoll_poll_disable(dev);
1325 
1326 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1327 	ret = notifier_to_errno(ret);
1328 	if (ret)
1329 		return ret;
1330 
1331 	set_bit(__LINK_STATE_START, &dev->state);
1332 
1333 	if (ops->ndo_validate_addr)
1334 		ret = ops->ndo_validate_addr(dev);
1335 
1336 	if (!ret && ops->ndo_open)
1337 		ret = ops->ndo_open(dev);
1338 
1339 	netpoll_poll_enable(dev);
1340 
1341 	if (ret)
1342 		clear_bit(__LINK_STATE_START, &dev->state);
1343 	else {
1344 		dev->flags |= IFF_UP;
1345 		dev_set_rx_mode(dev);
1346 		dev_activate(dev);
1347 		add_device_randomness(dev->dev_addr, dev->addr_len);
1348 	}
1349 
1350 	return ret;
1351 }
1352 
1353 /**
1354  *	dev_open	- prepare an interface for use.
1355  *	@dev:	device to open
1356  *
1357  *	Takes a device from down to up state. The device's private open
1358  *	function is invoked and then the multicast lists are loaded. Finally
1359  *	the device is moved into the up state and a %NETDEV_UP message is
1360  *	sent to the netdev notifier chain.
1361  *
1362  *	Calling this function on an active interface is a nop. On a failure
1363  *	a negative errno code is returned.
1364  */
1365 int dev_open(struct net_device *dev)
1366 {
1367 	int ret;
1368 
1369 	if (dev->flags & IFF_UP)
1370 		return 0;
1371 
1372 	ret = __dev_open(dev);
1373 	if (ret < 0)
1374 		return ret;
1375 
1376 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1377 	call_netdevice_notifiers(NETDEV_UP, dev);
1378 
1379 	return ret;
1380 }
1381 EXPORT_SYMBOL(dev_open);
1382 
1383 static int __dev_close_many(struct list_head *head)
1384 {
1385 	struct net_device *dev;
1386 
1387 	ASSERT_RTNL();
1388 	might_sleep();
1389 
1390 	list_for_each_entry(dev, head, close_list) {
1391 		/* Temporarily disable netpoll until the interface is down */
1392 		netpoll_poll_disable(dev);
1393 
1394 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1395 
1396 		clear_bit(__LINK_STATE_START, &dev->state);
1397 
1398 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1399 		 * can be even on different cpu. So just clear netif_running().
1400 		 *
1401 		 * dev->stop() will invoke napi_disable() on all of it's
1402 		 * napi_struct instances on this device.
1403 		 */
1404 		smp_mb__after_atomic(); /* Commit netif_running(). */
1405 	}
1406 
1407 	dev_deactivate_many(head);
1408 
1409 	list_for_each_entry(dev, head, close_list) {
1410 		const struct net_device_ops *ops = dev->netdev_ops;
1411 
1412 		/*
1413 		 *	Call the device specific close. This cannot fail.
1414 		 *	Only if device is UP
1415 		 *
1416 		 *	We allow it to be called even after a DETACH hot-plug
1417 		 *	event.
1418 		 */
1419 		if (ops->ndo_stop)
1420 			ops->ndo_stop(dev);
1421 
1422 		dev->flags &= ~IFF_UP;
1423 		netpoll_poll_enable(dev);
1424 	}
1425 
1426 	return 0;
1427 }
1428 
1429 static int __dev_close(struct net_device *dev)
1430 {
1431 	int retval;
1432 	LIST_HEAD(single);
1433 
1434 	list_add(&dev->close_list, &single);
1435 	retval = __dev_close_many(&single);
1436 	list_del(&single);
1437 
1438 	return retval;
1439 }
1440 
1441 int dev_close_many(struct list_head *head, bool unlink)
1442 {
1443 	struct net_device *dev, *tmp;
1444 
1445 	/* Remove the devices that don't need to be closed */
1446 	list_for_each_entry_safe(dev, tmp, head, close_list)
1447 		if (!(dev->flags & IFF_UP))
1448 			list_del_init(&dev->close_list);
1449 
1450 	__dev_close_many(head);
1451 
1452 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1453 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1454 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1455 		if (unlink)
1456 			list_del_init(&dev->close_list);
1457 	}
1458 
1459 	return 0;
1460 }
1461 EXPORT_SYMBOL(dev_close_many);
1462 
1463 /**
1464  *	dev_close - shutdown an interface.
1465  *	@dev: device to shutdown
1466  *
1467  *	This function moves an active device into down state. A
1468  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1469  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1470  *	chain.
1471  */
1472 int dev_close(struct net_device *dev)
1473 {
1474 	if (dev->flags & IFF_UP) {
1475 		LIST_HEAD(single);
1476 
1477 		list_add(&dev->close_list, &single);
1478 		dev_close_many(&single, true);
1479 		list_del(&single);
1480 	}
1481 	return 0;
1482 }
1483 EXPORT_SYMBOL(dev_close);
1484 
1485 
1486 /**
1487  *	dev_disable_lro - disable Large Receive Offload on a device
1488  *	@dev: device
1489  *
1490  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1491  *	called under RTNL.  This is needed if received packets may be
1492  *	forwarded to another interface.
1493  */
1494 void dev_disable_lro(struct net_device *dev)
1495 {
1496 	struct net_device *lower_dev;
1497 	struct list_head *iter;
1498 
1499 	dev->wanted_features &= ~NETIF_F_LRO;
1500 	netdev_update_features(dev);
1501 
1502 	if (unlikely(dev->features & NETIF_F_LRO))
1503 		netdev_WARN(dev, "failed to disable LRO!\n");
1504 
1505 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1506 		dev_disable_lro(lower_dev);
1507 }
1508 EXPORT_SYMBOL(dev_disable_lro);
1509 
1510 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1511 				   struct net_device *dev)
1512 {
1513 	struct netdev_notifier_info info;
1514 
1515 	netdev_notifier_info_init(&info, dev);
1516 	return nb->notifier_call(nb, val, &info);
1517 }
1518 
1519 static int dev_boot_phase = 1;
1520 
1521 /**
1522  *	register_netdevice_notifier - register a network notifier block
1523  *	@nb: notifier
1524  *
1525  *	Register a notifier to be called when network device events occur.
1526  *	The notifier passed is linked into the kernel structures and must
1527  *	not be reused until it has been unregistered. A negative errno code
1528  *	is returned on a failure.
1529  *
1530  * 	When registered all registration and up events are replayed
1531  *	to the new notifier to allow device to have a race free
1532  *	view of the network device list.
1533  */
1534 
1535 int register_netdevice_notifier(struct notifier_block *nb)
1536 {
1537 	struct net_device *dev;
1538 	struct net_device *last;
1539 	struct net *net;
1540 	int err;
1541 
1542 	rtnl_lock();
1543 	err = raw_notifier_chain_register(&netdev_chain, nb);
1544 	if (err)
1545 		goto unlock;
1546 	if (dev_boot_phase)
1547 		goto unlock;
1548 	for_each_net(net) {
1549 		for_each_netdev(net, dev) {
1550 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1551 			err = notifier_to_errno(err);
1552 			if (err)
1553 				goto rollback;
1554 
1555 			if (!(dev->flags & IFF_UP))
1556 				continue;
1557 
1558 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1559 		}
1560 	}
1561 
1562 unlock:
1563 	rtnl_unlock();
1564 	return err;
1565 
1566 rollback:
1567 	last = dev;
1568 	for_each_net(net) {
1569 		for_each_netdev(net, dev) {
1570 			if (dev == last)
1571 				goto outroll;
1572 
1573 			if (dev->flags & IFF_UP) {
1574 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1575 							dev);
1576 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1577 			}
1578 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1579 		}
1580 	}
1581 
1582 outroll:
1583 	raw_notifier_chain_unregister(&netdev_chain, nb);
1584 	goto unlock;
1585 }
1586 EXPORT_SYMBOL(register_netdevice_notifier);
1587 
1588 /**
1589  *	unregister_netdevice_notifier - unregister a network notifier block
1590  *	@nb: notifier
1591  *
1592  *	Unregister a notifier previously registered by
1593  *	register_netdevice_notifier(). The notifier is unlinked into the
1594  *	kernel structures and may then be reused. A negative errno code
1595  *	is returned on a failure.
1596  *
1597  * 	After unregistering unregister and down device events are synthesized
1598  *	for all devices on the device list to the removed notifier to remove
1599  *	the need for special case cleanup code.
1600  */
1601 
1602 int unregister_netdevice_notifier(struct notifier_block *nb)
1603 {
1604 	struct net_device *dev;
1605 	struct net *net;
1606 	int err;
1607 
1608 	rtnl_lock();
1609 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1610 	if (err)
1611 		goto unlock;
1612 
1613 	for_each_net(net) {
1614 		for_each_netdev(net, dev) {
1615 			if (dev->flags & IFF_UP) {
1616 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1617 							dev);
1618 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1619 			}
1620 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1621 		}
1622 	}
1623 unlock:
1624 	rtnl_unlock();
1625 	return err;
1626 }
1627 EXPORT_SYMBOL(unregister_netdevice_notifier);
1628 
1629 /**
1630  *	call_netdevice_notifiers_info - call all network notifier blocks
1631  *	@val: value passed unmodified to notifier function
1632  *	@dev: net_device pointer passed unmodified to notifier function
1633  *	@info: notifier information data
1634  *
1635  *	Call all network notifier blocks.  Parameters and return value
1636  *	are as for raw_notifier_call_chain().
1637  */
1638 
1639 static int call_netdevice_notifiers_info(unsigned long val,
1640 					 struct net_device *dev,
1641 					 struct netdev_notifier_info *info)
1642 {
1643 	ASSERT_RTNL();
1644 	netdev_notifier_info_init(info, dev);
1645 	return raw_notifier_call_chain(&netdev_chain, val, info);
1646 }
1647 
1648 /**
1649  *	call_netdevice_notifiers - call all network notifier blocks
1650  *      @val: value passed unmodified to notifier function
1651  *      @dev: net_device pointer passed unmodified to notifier function
1652  *
1653  *	Call all network notifier blocks.  Parameters and return value
1654  *	are as for raw_notifier_call_chain().
1655  */
1656 
1657 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1658 {
1659 	struct netdev_notifier_info info;
1660 
1661 	return call_netdevice_notifiers_info(val, dev, &info);
1662 }
1663 EXPORT_SYMBOL(call_netdevice_notifiers);
1664 
1665 #ifdef CONFIG_NET_INGRESS
1666 static struct static_key ingress_needed __read_mostly;
1667 
1668 void net_inc_ingress_queue(void)
1669 {
1670 	static_key_slow_inc(&ingress_needed);
1671 }
1672 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1673 
1674 void net_dec_ingress_queue(void)
1675 {
1676 	static_key_slow_dec(&ingress_needed);
1677 }
1678 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1679 #endif
1680 
1681 #ifdef CONFIG_NET_EGRESS
1682 static struct static_key egress_needed __read_mostly;
1683 
1684 void net_inc_egress_queue(void)
1685 {
1686 	static_key_slow_inc(&egress_needed);
1687 }
1688 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1689 
1690 void net_dec_egress_queue(void)
1691 {
1692 	static_key_slow_dec(&egress_needed);
1693 }
1694 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1695 #endif
1696 
1697 static struct static_key netstamp_needed __read_mostly;
1698 #ifdef HAVE_JUMP_LABEL
1699 /* We are not allowed to call static_key_slow_dec() from irq context
1700  * If net_disable_timestamp() is called from irq context, defer the
1701  * static_key_slow_dec() calls.
1702  */
1703 static atomic_t netstamp_needed_deferred;
1704 #endif
1705 
1706 void net_enable_timestamp(void)
1707 {
1708 #ifdef HAVE_JUMP_LABEL
1709 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1710 
1711 	if (deferred) {
1712 		while (--deferred)
1713 			static_key_slow_dec(&netstamp_needed);
1714 		return;
1715 	}
1716 #endif
1717 	static_key_slow_inc(&netstamp_needed);
1718 }
1719 EXPORT_SYMBOL(net_enable_timestamp);
1720 
1721 void net_disable_timestamp(void)
1722 {
1723 #ifdef HAVE_JUMP_LABEL
1724 	if (in_interrupt()) {
1725 		atomic_inc(&netstamp_needed_deferred);
1726 		return;
1727 	}
1728 #endif
1729 	static_key_slow_dec(&netstamp_needed);
1730 }
1731 EXPORT_SYMBOL(net_disable_timestamp);
1732 
1733 static inline void net_timestamp_set(struct sk_buff *skb)
1734 {
1735 	skb->tstamp.tv64 = 0;
1736 	if (static_key_false(&netstamp_needed))
1737 		__net_timestamp(skb);
1738 }
1739 
1740 #define net_timestamp_check(COND, SKB)			\
1741 	if (static_key_false(&netstamp_needed)) {		\
1742 		if ((COND) && !(SKB)->tstamp.tv64)	\
1743 			__net_timestamp(SKB);		\
1744 	}						\
1745 
1746 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1747 {
1748 	unsigned int len;
1749 
1750 	if (!(dev->flags & IFF_UP))
1751 		return false;
1752 
1753 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1754 	if (skb->len <= len)
1755 		return true;
1756 
1757 	/* if TSO is enabled, we don't care about the length as the packet
1758 	 * could be forwarded without being segmented before
1759 	 */
1760 	if (skb_is_gso(skb))
1761 		return true;
1762 
1763 	return false;
1764 }
1765 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1766 
1767 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1768 {
1769 	int ret = ____dev_forward_skb(dev, skb);
1770 
1771 	if (likely(!ret)) {
1772 		skb->protocol = eth_type_trans(skb, dev);
1773 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1774 	}
1775 
1776 	return ret;
1777 }
1778 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1779 
1780 /**
1781  * dev_forward_skb - loopback an skb to another netif
1782  *
1783  * @dev: destination network device
1784  * @skb: buffer to forward
1785  *
1786  * return values:
1787  *	NET_RX_SUCCESS	(no congestion)
1788  *	NET_RX_DROP     (packet was dropped, but freed)
1789  *
1790  * dev_forward_skb can be used for injecting an skb from the
1791  * start_xmit function of one device into the receive queue
1792  * of another device.
1793  *
1794  * The receiving device may be in another namespace, so
1795  * we have to clear all information in the skb that could
1796  * impact namespace isolation.
1797  */
1798 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1799 {
1800 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1801 }
1802 EXPORT_SYMBOL_GPL(dev_forward_skb);
1803 
1804 static inline int deliver_skb(struct sk_buff *skb,
1805 			      struct packet_type *pt_prev,
1806 			      struct net_device *orig_dev)
1807 {
1808 	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1809 		return -ENOMEM;
1810 	atomic_inc(&skb->users);
1811 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1812 }
1813 
1814 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1815 					  struct packet_type **pt,
1816 					  struct net_device *orig_dev,
1817 					  __be16 type,
1818 					  struct list_head *ptype_list)
1819 {
1820 	struct packet_type *ptype, *pt_prev = *pt;
1821 
1822 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1823 		if (ptype->type != type)
1824 			continue;
1825 		if (pt_prev)
1826 			deliver_skb(skb, pt_prev, orig_dev);
1827 		pt_prev = ptype;
1828 	}
1829 	*pt = pt_prev;
1830 }
1831 
1832 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1833 {
1834 	if (!ptype->af_packet_priv || !skb->sk)
1835 		return false;
1836 
1837 	if (ptype->id_match)
1838 		return ptype->id_match(ptype, skb->sk);
1839 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1840 		return true;
1841 
1842 	return false;
1843 }
1844 
1845 /*
1846  *	Support routine. Sends outgoing frames to any network
1847  *	taps currently in use.
1848  */
1849 
1850 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1851 {
1852 	struct packet_type *ptype;
1853 	struct sk_buff *skb2 = NULL;
1854 	struct packet_type *pt_prev = NULL;
1855 	struct list_head *ptype_list = &ptype_all;
1856 
1857 	rcu_read_lock();
1858 again:
1859 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1860 		/* Never send packets back to the socket
1861 		 * they originated from - MvS (miquels@drinkel.ow.org)
1862 		 */
1863 		if (skb_loop_sk(ptype, skb))
1864 			continue;
1865 
1866 		if (pt_prev) {
1867 			deliver_skb(skb2, pt_prev, skb->dev);
1868 			pt_prev = ptype;
1869 			continue;
1870 		}
1871 
1872 		/* need to clone skb, done only once */
1873 		skb2 = skb_clone(skb, GFP_ATOMIC);
1874 		if (!skb2)
1875 			goto out_unlock;
1876 
1877 		net_timestamp_set(skb2);
1878 
1879 		/* skb->nh should be correctly
1880 		 * set by sender, so that the second statement is
1881 		 * just protection against buggy protocols.
1882 		 */
1883 		skb_reset_mac_header(skb2);
1884 
1885 		if (skb_network_header(skb2) < skb2->data ||
1886 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1887 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1888 					     ntohs(skb2->protocol),
1889 					     dev->name);
1890 			skb_reset_network_header(skb2);
1891 		}
1892 
1893 		skb2->transport_header = skb2->network_header;
1894 		skb2->pkt_type = PACKET_OUTGOING;
1895 		pt_prev = ptype;
1896 	}
1897 
1898 	if (ptype_list == &ptype_all) {
1899 		ptype_list = &dev->ptype_all;
1900 		goto again;
1901 	}
1902 out_unlock:
1903 	if (pt_prev)
1904 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1905 	rcu_read_unlock();
1906 }
1907 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1908 
1909 /**
1910  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1911  * @dev: Network device
1912  * @txq: number of queues available
1913  *
1914  * If real_num_tx_queues is changed the tc mappings may no longer be
1915  * valid. To resolve this verify the tc mapping remains valid and if
1916  * not NULL the mapping. With no priorities mapping to this
1917  * offset/count pair it will no longer be used. In the worst case TC0
1918  * is invalid nothing can be done so disable priority mappings. If is
1919  * expected that drivers will fix this mapping if they can before
1920  * calling netif_set_real_num_tx_queues.
1921  */
1922 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1923 {
1924 	int i;
1925 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1926 
1927 	/* If TC0 is invalidated disable TC mapping */
1928 	if (tc->offset + tc->count > txq) {
1929 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1930 		dev->num_tc = 0;
1931 		return;
1932 	}
1933 
1934 	/* Invalidated prio to tc mappings set to TC0 */
1935 	for (i = 1; i < TC_BITMASK + 1; i++) {
1936 		int q = netdev_get_prio_tc_map(dev, i);
1937 
1938 		tc = &dev->tc_to_txq[q];
1939 		if (tc->offset + tc->count > txq) {
1940 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1941 				i, q);
1942 			netdev_set_prio_tc_map(dev, i, 0);
1943 		}
1944 	}
1945 }
1946 
1947 #ifdef CONFIG_XPS
1948 static DEFINE_MUTEX(xps_map_mutex);
1949 #define xmap_dereference(P)		\
1950 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1951 
1952 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1953 					int cpu, u16 index)
1954 {
1955 	struct xps_map *map = NULL;
1956 	int pos;
1957 
1958 	if (dev_maps)
1959 		map = xmap_dereference(dev_maps->cpu_map[cpu]);
1960 
1961 	for (pos = 0; map && pos < map->len; pos++) {
1962 		if (map->queues[pos] == index) {
1963 			if (map->len > 1) {
1964 				map->queues[pos] = map->queues[--map->len];
1965 			} else {
1966 				RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1967 				kfree_rcu(map, rcu);
1968 				map = NULL;
1969 			}
1970 			break;
1971 		}
1972 	}
1973 
1974 	return map;
1975 }
1976 
1977 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1978 {
1979 	struct xps_dev_maps *dev_maps;
1980 	int cpu, i;
1981 	bool active = false;
1982 
1983 	mutex_lock(&xps_map_mutex);
1984 	dev_maps = xmap_dereference(dev->xps_maps);
1985 
1986 	if (!dev_maps)
1987 		goto out_no_maps;
1988 
1989 	for_each_possible_cpu(cpu) {
1990 		for (i = index; i < dev->num_tx_queues; i++) {
1991 			if (!remove_xps_queue(dev_maps, cpu, i))
1992 				break;
1993 		}
1994 		if (i == dev->num_tx_queues)
1995 			active = true;
1996 	}
1997 
1998 	if (!active) {
1999 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2000 		kfree_rcu(dev_maps, rcu);
2001 	}
2002 
2003 	for (i = index; i < dev->num_tx_queues; i++)
2004 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2005 					     NUMA_NO_NODE);
2006 
2007 out_no_maps:
2008 	mutex_unlock(&xps_map_mutex);
2009 }
2010 
2011 static struct xps_map *expand_xps_map(struct xps_map *map,
2012 				      int cpu, u16 index)
2013 {
2014 	struct xps_map *new_map;
2015 	int alloc_len = XPS_MIN_MAP_ALLOC;
2016 	int i, pos;
2017 
2018 	for (pos = 0; map && pos < map->len; pos++) {
2019 		if (map->queues[pos] != index)
2020 			continue;
2021 		return map;
2022 	}
2023 
2024 	/* Need to add queue to this CPU's existing map */
2025 	if (map) {
2026 		if (pos < map->alloc_len)
2027 			return map;
2028 
2029 		alloc_len = map->alloc_len * 2;
2030 	}
2031 
2032 	/* Need to allocate new map to store queue on this CPU's map */
2033 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2034 			       cpu_to_node(cpu));
2035 	if (!new_map)
2036 		return NULL;
2037 
2038 	for (i = 0; i < pos; i++)
2039 		new_map->queues[i] = map->queues[i];
2040 	new_map->alloc_len = alloc_len;
2041 	new_map->len = pos;
2042 
2043 	return new_map;
2044 }
2045 
2046 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2047 			u16 index)
2048 {
2049 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2050 	struct xps_map *map, *new_map;
2051 	int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2052 	int cpu, numa_node_id = -2;
2053 	bool active = false;
2054 
2055 	mutex_lock(&xps_map_mutex);
2056 
2057 	dev_maps = xmap_dereference(dev->xps_maps);
2058 
2059 	/* allocate memory for queue storage */
2060 	for_each_online_cpu(cpu) {
2061 		if (!cpumask_test_cpu(cpu, mask))
2062 			continue;
2063 
2064 		if (!new_dev_maps)
2065 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2066 		if (!new_dev_maps) {
2067 			mutex_unlock(&xps_map_mutex);
2068 			return -ENOMEM;
2069 		}
2070 
2071 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2072 				 NULL;
2073 
2074 		map = expand_xps_map(map, cpu, index);
2075 		if (!map)
2076 			goto error;
2077 
2078 		RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2079 	}
2080 
2081 	if (!new_dev_maps)
2082 		goto out_no_new_maps;
2083 
2084 	for_each_possible_cpu(cpu) {
2085 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2086 			/* add queue to CPU maps */
2087 			int pos = 0;
2088 
2089 			map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2090 			while ((pos < map->len) && (map->queues[pos] != index))
2091 				pos++;
2092 
2093 			if (pos == map->len)
2094 				map->queues[map->len++] = index;
2095 #ifdef CONFIG_NUMA
2096 			if (numa_node_id == -2)
2097 				numa_node_id = cpu_to_node(cpu);
2098 			else if (numa_node_id != cpu_to_node(cpu))
2099 				numa_node_id = -1;
2100 #endif
2101 		} else if (dev_maps) {
2102 			/* fill in the new device map from the old device map */
2103 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
2104 			RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2105 		}
2106 
2107 	}
2108 
2109 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2110 
2111 	/* Cleanup old maps */
2112 	if (dev_maps) {
2113 		for_each_possible_cpu(cpu) {
2114 			new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2115 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
2116 			if (map && map != new_map)
2117 				kfree_rcu(map, rcu);
2118 		}
2119 
2120 		kfree_rcu(dev_maps, rcu);
2121 	}
2122 
2123 	dev_maps = new_dev_maps;
2124 	active = true;
2125 
2126 out_no_new_maps:
2127 	/* update Tx queue numa node */
2128 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2129 				     (numa_node_id >= 0) ? numa_node_id :
2130 				     NUMA_NO_NODE);
2131 
2132 	if (!dev_maps)
2133 		goto out_no_maps;
2134 
2135 	/* removes queue from unused CPUs */
2136 	for_each_possible_cpu(cpu) {
2137 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2138 			continue;
2139 
2140 		if (remove_xps_queue(dev_maps, cpu, index))
2141 			active = true;
2142 	}
2143 
2144 	/* free map if not active */
2145 	if (!active) {
2146 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2147 		kfree_rcu(dev_maps, rcu);
2148 	}
2149 
2150 out_no_maps:
2151 	mutex_unlock(&xps_map_mutex);
2152 
2153 	return 0;
2154 error:
2155 	/* remove any maps that we added */
2156 	for_each_possible_cpu(cpu) {
2157 		new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2158 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2159 				 NULL;
2160 		if (new_map && new_map != map)
2161 			kfree(new_map);
2162 	}
2163 
2164 	mutex_unlock(&xps_map_mutex);
2165 
2166 	kfree(new_dev_maps);
2167 	return -ENOMEM;
2168 }
2169 EXPORT_SYMBOL(netif_set_xps_queue);
2170 
2171 #endif
2172 /*
2173  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2174  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2175  */
2176 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2177 {
2178 	int rc;
2179 
2180 	if (txq < 1 || txq > dev->num_tx_queues)
2181 		return -EINVAL;
2182 
2183 	if (dev->reg_state == NETREG_REGISTERED ||
2184 	    dev->reg_state == NETREG_UNREGISTERING) {
2185 		ASSERT_RTNL();
2186 
2187 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2188 						  txq);
2189 		if (rc)
2190 			return rc;
2191 
2192 		if (dev->num_tc)
2193 			netif_setup_tc(dev, txq);
2194 
2195 		if (txq < dev->real_num_tx_queues) {
2196 			qdisc_reset_all_tx_gt(dev, txq);
2197 #ifdef CONFIG_XPS
2198 			netif_reset_xps_queues_gt(dev, txq);
2199 #endif
2200 		}
2201 	}
2202 
2203 	dev->real_num_tx_queues = txq;
2204 	return 0;
2205 }
2206 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2207 
2208 #ifdef CONFIG_SYSFS
2209 /**
2210  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2211  *	@dev: Network device
2212  *	@rxq: Actual number of RX queues
2213  *
2214  *	This must be called either with the rtnl_lock held or before
2215  *	registration of the net device.  Returns 0 on success, or a
2216  *	negative error code.  If called before registration, it always
2217  *	succeeds.
2218  */
2219 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2220 {
2221 	int rc;
2222 
2223 	if (rxq < 1 || rxq > dev->num_rx_queues)
2224 		return -EINVAL;
2225 
2226 	if (dev->reg_state == NETREG_REGISTERED) {
2227 		ASSERT_RTNL();
2228 
2229 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2230 						  rxq);
2231 		if (rc)
2232 			return rc;
2233 	}
2234 
2235 	dev->real_num_rx_queues = rxq;
2236 	return 0;
2237 }
2238 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2239 #endif
2240 
2241 /**
2242  * netif_get_num_default_rss_queues - default number of RSS queues
2243  *
2244  * This routine should set an upper limit on the number of RSS queues
2245  * used by default by multiqueue devices.
2246  */
2247 int netif_get_num_default_rss_queues(void)
2248 {
2249 	return is_kdump_kernel() ?
2250 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2251 }
2252 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2253 
2254 static void __netif_reschedule(struct Qdisc *q)
2255 {
2256 	struct softnet_data *sd;
2257 	unsigned long flags;
2258 
2259 	local_irq_save(flags);
2260 	sd = this_cpu_ptr(&softnet_data);
2261 	q->next_sched = NULL;
2262 	*sd->output_queue_tailp = q;
2263 	sd->output_queue_tailp = &q->next_sched;
2264 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2265 	local_irq_restore(flags);
2266 }
2267 
2268 void __netif_schedule(struct Qdisc *q)
2269 {
2270 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2271 		__netif_reschedule(q);
2272 }
2273 EXPORT_SYMBOL(__netif_schedule);
2274 
2275 struct dev_kfree_skb_cb {
2276 	enum skb_free_reason reason;
2277 };
2278 
2279 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2280 {
2281 	return (struct dev_kfree_skb_cb *)skb->cb;
2282 }
2283 
2284 void netif_schedule_queue(struct netdev_queue *txq)
2285 {
2286 	rcu_read_lock();
2287 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2288 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2289 
2290 		__netif_schedule(q);
2291 	}
2292 	rcu_read_unlock();
2293 }
2294 EXPORT_SYMBOL(netif_schedule_queue);
2295 
2296 /**
2297  *	netif_wake_subqueue - allow sending packets on subqueue
2298  *	@dev: network device
2299  *	@queue_index: sub queue index
2300  *
2301  * Resume individual transmit queue of a device with multiple transmit queues.
2302  */
2303 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2304 {
2305 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2306 
2307 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2308 		struct Qdisc *q;
2309 
2310 		rcu_read_lock();
2311 		q = rcu_dereference(txq->qdisc);
2312 		__netif_schedule(q);
2313 		rcu_read_unlock();
2314 	}
2315 }
2316 EXPORT_SYMBOL(netif_wake_subqueue);
2317 
2318 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2319 {
2320 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2321 		struct Qdisc *q;
2322 
2323 		rcu_read_lock();
2324 		q = rcu_dereference(dev_queue->qdisc);
2325 		__netif_schedule(q);
2326 		rcu_read_unlock();
2327 	}
2328 }
2329 EXPORT_SYMBOL(netif_tx_wake_queue);
2330 
2331 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2332 {
2333 	unsigned long flags;
2334 
2335 	if (likely(atomic_read(&skb->users) == 1)) {
2336 		smp_rmb();
2337 		atomic_set(&skb->users, 0);
2338 	} else if (likely(!atomic_dec_and_test(&skb->users))) {
2339 		return;
2340 	}
2341 	get_kfree_skb_cb(skb)->reason = reason;
2342 	local_irq_save(flags);
2343 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2344 	__this_cpu_write(softnet_data.completion_queue, skb);
2345 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2346 	local_irq_restore(flags);
2347 }
2348 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2349 
2350 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2351 {
2352 	if (in_irq() || irqs_disabled())
2353 		__dev_kfree_skb_irq(skb, reason);
2354 	else
2355 		dev_kfree_skb(skb);
2356 }
2357 EXPORT_SYMBOL(__dev_kfree_skb_any);
2358 
2359 
2360 /**
2361  * netif_device_detach - mark device as removed
2362  * @dev: network device
2363  *
2364  * Mark device as removed from system and therefore no longer available.
2365  */
2366 void netif_device_detach(struct net_device *dev)
2367 {
2368 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2369 	    netif_running(dev)) {
2370 		netif_tx_stop_all_queues(dev);
2371 	}
2372 }
2373 EXPORT_SYMBOL(netif_device_detach);
2374 
2375 /**
2376  * netif_device_attach - mark device as attached
2377  * @dev: network device
2378  *
2379  * Mark device as attached from system and restart if needed.
2380  */
2381 void netif_device_attach(struct net_device *dev)
2382 {
2383 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2384 	    netif_running(dev)) {
2385 		netif_tx_wake_all_queues(dev);
2386 		__netdev_watchdog_up(dev);
2387 	}
2388 }
2389 EXPORT_SYMBOL(netif_device_attach);
2390 
2391 /*
2392  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2393  * to be used as a distribution range.
2394  */
2395 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2396 		  unsigned int num_tx_queues)
2397 {
2398 	u32 hash;
2399 	u16 qoffset = 0;
2400 	u16 qcount = num_tx_queues;
2401 
2402 	if (skb_rx_queue_recorded(skb)) {
2403 		hash = skb_get_rx_queue(skb);
2404 		while (unlikely(hash >= num_tx_queues))
2405 			hash -= num_tx_queues;
2406 		return hash;
2407 	}
2408 
2409 	if (dev->num_tc) {
2410 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2411 		qoffset = dev->tc_to_txq[tc].offset;
2412 		qcount = dev->tc_to_txq[tc].count;
2413 	}
2414 
2415 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2416 }
2417 EXPORT_SYMBOL(__skb_tx_hash);
2418 
2419 static void skb_warn_bad_offload(const struct sk_buff *skb)
2420 {
2421 	static const netdev_features_t null_features;
2422 	struct net_device *dev = skb->dev;
2423 	const char *name = "";
2424 
2425 	if (!net_ratelimit())
2426 		return;
2427 
2428 	if (dev) {
2429 		if (dev->dev.parent)
2430 			name = dev_driver_string(dev->dev.parent);
2431 		else
2432 			name = netdev_name(dev);
2433 	}
2434 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2435 	     "gso_type=%d ip_summed=%d\n",
2436 	     name, dev ? &dev->features : &null_features,
2437 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2438 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2439 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2440 }
2441 
2442 /*
2443  * Invalidate hardware checksum when packet is to be mangled, and
2444  * complete checksum manually on outgoing path.
2445  */
2446 int skb_checksum_help(struct sk_buff *skb)
2447 {
2448 	__wsum csum;
2449 	int ret = 0, offset;
2450 
2451 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2452 		goto out_set_summed;
2453 
2454 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2455 		skb_warn_bad_offload(skb);
2456 		return -EINVAL;
2457 	}
2458 
2459 	/* Before computing a checksum, we should make sure no frag could
2460 	 * be modified by an external entity : checksum could be wrong.
2461 	 */
2462 	if (skb_has_shared_frag(skb)) {
2463 		ret = __skb_linearize(skb);
2464 		if (ret)
2465 			goto out;
2466 	}
2467 
2468 	offset = skb_checksum_start_offset(skb);
2469 	BUG_ON(offset >= skb_headlen(skb));
2470 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2471 
2472 	offset += skb->csum_offset;
2473 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2474 
2475 	if (skb_cloned(skb) &&
2476 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2477 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2478 		if (ret)
2479 			goto out;
2480 	}
2481 
2482 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2483 out_set_summed:
2484 	skb->ip_summed = CHECKSUM_NONE;
2485 out:
2486 	return ret;
2487 }
2488 EXPORT_SYMBOL(skb_checksum_help);
2489 
2490 /* skb_csum_offload_check - Driver helper function to determine if a device
2491  * with limited checksum offload capabilities is able to offload the checksum
2492  * for a given packet.
2493  *
2494  * Arguments:
2495  *   skb - sk_buff for the packet in question
2496  *   spec - contains the description of what device can offload
2497  *   csum_encapped - returns true if the checksum being offloaded is
2498  *	      encpasulated. That is it is checksum for the transport header
2499  *	      in the inner headers.
2500  *   checksum_help - when set indicates that helper function should
2501  *	      call skb_checksum_help if offload checks fail
2502  *
2503  * Returns:
2504  *   true: Packet has passed the checksum checks and should be offloadable to
2505  *	   the device (a driver may still need to check for additional
2506  *	   restrictions of its device)
2507  *   false: Checksum is not offloadable. If checksum_help was set then
2508  *	   skb_checksum_help was called to resolve checksum for non-GSO
2509  *	   packets and when IP protocol is not SCTP
2510  */
2511 bool __skb_csum_offload_chk(struct sk_buff *skb,
2512 			    const struct skb_csum_offl_spec *spec,
2513 			    bool *csum_encapped,
2514 			    bool csum_help)
2515 {
2516 	struct iphdr *iph;
2517 	struct ipv6hdr *ipv6;
2518 	void *nhdr;
2519 	int protocol;
2520 	u8 ip_proto;
2521 
2522 	if (skb->protocol == htons(ETH_P_8021Q) ||
2523 	    skb->protocol == htons(ETH_P_8021AD)) {
2524 		if (!spec->vlan_okay)
2525 			goto need_help;
2526 	}
2527 
2528 	/* We check whether the checksum refers to a transport layer checksum in
2529 	 * the outermost header or an encapsulated transport layer checksum that
2530 	 * corresponds to the inner headers of the skb. If the checksum is for
2531 	 * something else in the packet we need help.
2532 	 */
2533 	if (skb_checksum_start_offset(skb) == skb_transport_offset(skb)) {
2534 		/* Non-encapsulated checksum */
2535 		protocol = eproto_to_ipproto(vlan_get_protocol(skb));
2536 		nhdr = skb_network_header(skb);
2537 		*csum_encapped = false;
2538 		if (spec->no_not_encapped)
2539 			goto need_help;
2540 	} else if (skb->encapsulation && spec->encap_okay &&
2541 		   skb_checksum_start_offset(skb) ==
2542 		   skb_inner_transport_offset(skb)) {
2543 		/* Encapsulated checksum */
2544 		*csum_encapped = true;
2545 		switch (skb->inner_protocol_type) {
2546 		case ENCAP_TYPE_ETHER:
2547 			protocol = eproto_to_ipproto(skb->inner_protocol);
2548 			break;
2549 		case ENCAP_TYPE_IPPROTO:
2550 			protocol = skb->inner_protocol;
2551 			break;
2552 		}
2553 		nhdr = skb_inner_network_header(skb);
2554 	} else {
2555 		goto need_help;
2556 	}
2557 
2558 	switch (protocol) {
2559 	case IPPROTO_IP:
2560 		if (!spec->ipv4_okay)
2561 			goto need_help;
2562 		iph = nhdr;
2563 		ip_proto = iph->protocol;
2564 		if (iph->ihl != 5 && !spec->ip_options_okay)
2565 			goto need_help;
2566 		break;
2567 	case IPPROTO_IPV6:
2568 		if (!spec->ipv6_okay)
2569 			goto need_help;
2570 		if (spec->no_encapped_ipv6 && *csum_encapped)
2571 			goto need_help;
2572 		ipv6 = nhdr;
2573 		nhdr += sizeof(*ipv6);
2574 		ip_proto = ipv6->nexthdr;
2575 		break;
2576 	default:
2577 		goto need_help;
2578 	}
2579 
2580 ip_proto_again:
2581 	switch (ip_proto) {
2582 	case IPPROTO_TCP:
2583 		if (!spec->tcp_okay ||
2584 		    skb->csum_offset != offsetof(struct tcphdr, check))
2585 			goto need_help;
2586 		break;
2587 	case IPPROTO_UDP:
2588 		if (!spec->udp_okay ||
2589 		    skb->csum_offset != offsetof(struct udphdr, check))
2590 			goto need_help;
2591 		break;
2592 	case IPPROTO_SCTP:
2593 		if (!spec->sctp_okay ||
2594 		    skb->csum_offset != offsetof(struct sctphdr, checksum))
2595 			goto cant_help;
2596 		break;
2597 	case NEXTHDR_HOP:
2598 	case NEXTHDR_ROUTING:
2599 	case NEXTHDR_DEST: {
2600 		u8 *opthdr = nhdr;
2601 
2602 		if (protocol != IPPROTO_IPV6 || !spec->ext_hdrs_okay)
2603 			goto need_help;
2604 
2605 		ip_proto = opthdr[0];
2606 		nhdr += (opthdr[1] + 1) << 3;
2607 
2608 		goto ip_proto_again;
2609 	}
2610 	default:
2611 		goto need_help;
2612 	}
2613 
2614 	/* Passed the tests for offloading checksum */
2615 	return true;
2616 
2617 need_help:
2618 	if (csum_help && !skb_shinfo(skb)->gso_size)
2619 		skb_checksum_help(skb);
2620 cant_help:
2621 	return false;
2622 }
2623 EXPORT_SYMBOL(__skb_csum_offload_chk);
2624 
2625 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2626 {
2627 	__be16 type = skb->protocol;
2628 
2629 	/* Tunnel gso handlers can set protocol to ethernet. */
2630 	if (type == htons(ETH_P_TEB)) {
2631 		struct ethhdr *eth;
2632 
2633 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2634 			return 0;
2635 
2636 		eth = (struct ethhdr *)skb_mac_header(skb);
2637 		type = eth->h_proto;
2638 	}
2639 
2640 	return __vlan_get_protocol(skb, type, depth);
2641 }
2642 
2643 /**
2644  *	skb_mac_gso_segment - mac layer segmentation handler.
2645  *	@skb: buffer to segment
2646  *	@features: features for the output path (see dev->features)
2647  */
2648 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2649 				    netdev_features_t features)
2650 {
2651 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2652 	struct packet_offload *ptype;
2653 	int vlan_depth = skb->mac_len;
2654 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2655 
2656 	if (unlikely(!type))
2657 		return ERR_PTR(-EINVAL);
2658 
2659 	__skb_pull(skb, vlan_depth);
2660 
2661 	rcu_read_lock();
2662 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2663 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2664 			segs = ptype->callbacks.gso_segment(skb, features);
2665 			break;
2666 		}
2667 	}
2668 	rcu_read_unlock();
2669 
2670 	__skb_push(skb, skb->data - skb_mac_header(skb));
2671 
2672 	return segs;
2673 }
2674 EXPORT_SYMBOL(skb_mac_gso_segment);
2675 
2676 
2677 /* openvswitch calls this on rx path, so we need a different check.
2678  */
2679 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2680 {
2681 	if (tx_path)
2682 		return skb->ip_summed != CHECKSUM_PARTIAL;
2683 	else
2684 		return skb->ip_summed == CHECKSUM_NONE;
2685 }
2686 
2687 /**
2688  *	__skb_gso_segment - Perform segmentation on skb.
2689  *	@skb: buffer to segment
2690  *	@features: features for the output path (see dev->features)
2691  *	@tx_path: whether it is called in TX path
2692  *
2693  *	This function segments the given skb and returns a list of segments.
2694  *
2695  *	It may return NULL if the skb requires no segmentation.  This is
2696  *	only possible when GSO is used for verifying header integrity.
2697  *
2698  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2699  */
2700 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2701 				  netdev_features_t features, bool tx_path)
2702 {
2703 	if (unlikely(skb_needs_check(skb, tx_path))) {
2704 		int err;
2705 
2706 		skb_warn_bad_offload(skb);
2707 
2708 		err = skb_cow_head(skb, 0);
2709 		if (err < 0)
2710 			return ERR_PTR(err);
2711 	}
2712 
2713 	/* Only report GSO partial support if it will enable us to
2714 	 * support segmentation on this frame without needing additional
2715 	 * work.
2716 	 */
2717 	if (features & NETIF_F_GSO_PARTIAL) {
2718 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2719 		struct net_device *dev = skb->dev;
2720 
2721 		partial_features |= dev->features & dev->gso_partial_features;
2722 		if (!skb_gso_ok(skb, features | partial_features))
2723 			features &= ~NETIF_F_GSO_PARTIAL;
2724 	}
2725 
2726 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2727 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2728 
2729 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2730 	SKB_GSO_CB(skb)->encap_level = 0;
2731 
2732 	skb_reset_mac_header(skb);
2733 	skb_reset_mac_len(skb);
2734 
2735 	return skb_mac_gso_segment(skb, features);
2736 }
2737 EXPORT_SYMBOL(__skb_gso_segment);
2738 
2739 /* Take action when hardware reception checksum errors are detected. */
2740 #ifdef CONFIG_BUG
2741 void netdev_rx_csum_fault(struct net_device *dev)
2742 {
2743 	if (net_ratelimit()) {
2744 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2745 		dump_stack();
2746 	}
2747 }
2748 EXPORT_SYMBOL(netdev_rx_csum_fault);
2749 #endif
2750 
2751 /* Actually, we should eliminate this check as soon as we know, that:
2752  * 1. IOMMU is present and allows to map all the memory.
2753  * 2. No high memory really exists on this machine.
2754  */
2755 
2756 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2757 {
2758 #ifdef CONFIG_HIGHMEM
2759 	int i;
2760 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2761 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2762 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2763 			if (PageHighMem(skb_frag_page(frag)))
2764 				return 1;
2765 		}
2766 	}
2767 
2768 	if (PCI_DMA_BUS_IS_PHYS) {
2769 		struct device *pdev = dev->dev.parent;
2770 
2771 		if (!pdev)
2772 			return 0;
2773 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2774 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2775 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2776 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2777 				return 1;
2778 		}
2779 	}
2780 #endif
2781 	return 0;
2782 }
2783 
2784 /* If MPLS offload request, verify we are testing hardware MPLS features
2785  * instead of standard features for the netdev.
2786  */
2787 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2788 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2789 					   netdev_features_t features,
2790 					   __be16 type)
2791 {
2792 	if (eth_p_mpls(type))
2793 		features &= skb->dev->mpls_features;
2794 
2795 	return features;
2796 }
2797 #else
2798 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2799 					   netdev_features_t features,
2800 					   __be16 type)
2801 {
2802 	return features;
2803 }
2804 #endif
2805 
2806 static netdev_features_t harmonize_features(struct sk_buff *skb,
2807 	netdev_features_t features)
2808 {
2809 	int tmp;
2810 	__be16 type;
2811 
2812 	type = skb_network_protocol(skb, &tmp);
2813 	features = net_mpls_features(skb, features, type);
2814 
2815 	if (skb->ip_summed != CHECKSUM_NONE &&
2816 	    !can_checksum_protocol(features, type)) {
2817 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2818 	} else if (illegal_highdma(skb->dev, skb)) {
2819 		features &= ~NETIF_F_SG;
2820 	}
2821 
2822 	return features;
2823 }
2824 
2825 netdev_features_t passthru_features_check(struct sk_buff *skb,
2826 					  struct net_device *dev,
2827 					  netdev_features_t features)
2828 {
2829 	return features;
2830 }
2831 EXPORT_SYMBOL(passthru_features_check);
2832 
2833 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2834 					     struct net_device *dev,
2835 					     netdev_features_t features)
2836 {
2837 	return vlan_features_check(skb, features);
2838 }
2839 
2840 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2841 					    struct net_device *dev,
2842 					    netdev_features_t features)
2843 {
2844 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
2845 
2846 	if (gso_segs > dev->gso_max_segs)
2847 		return features & ~NETIF_F_GSO_MASK;
2848 
2849 	/* Support for GSO partial features requires software
2850 	 * intervention before we can actually process the packets
2851 	 * so we need to strip support for any partial features now
2852 	 * and we can pull them back in after we have partially
2853 	 * segmented the frame.
2854 	 */
2855 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2856 		features &= ~dev->gso_partial_features;
2857 
2858 	/* Make sure to clear the IPv4 ID mangling feature if the
2859 	 * IPv4 header has the potential to be fragmented.
2860 	 */
2861 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2862 		struct iphdr *iph = skb->encapsulation ?
2863 				    inner_ip_hdr(skb) : ip_hdr(skb);
2864 
2865 		if (!(iph->frag_off & htons(IP_DF)))
2866 			features &= ~NETIF_F_TSO_MANGLEID;
2867 	}
2868 
2869 	return features;
2870 }
2871 
2872 netdev_features_t netif_skb_features(struct sk_buff *skb)
2873 {
2874 	struct net_device *dev = skb->dev;
2875 	netdev_features_t features = dev->features;
2876 
2877 	if (skb_is_gso(skb))
2878 		features = gso_features_check(skb, dev, features);
2879 
2880 	/* If encapsulation offload request, verify we are testing
2881 	 * hardware encapsulation features instead of standard
2882 	 * features for the netdev
2883 	 */
2884 	if (skb->encapsulation)
2885 		features &= dev->hw_enc_features;
2886 
2887 	if (skb_vlan_tagged(skb))
2888 		features = netdev_intersect_features(features,
2889 						     dev->vlan_features |
2890 						     NETIF_F_HW_VLAN_CTAG_TX |
2891 						     NETIF_F_HW_VLAN_STAG_TX);
2892 
2893 	if (dev->netdev_ops->ndo_features_check)
2894 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
2895 								features);
2896 	else
2897 		features &= dflt_features_check(skb, dev, features);
2898 
2899 	return harmonize_features(skb, features);
2900 }
2901 EXPORT_SYMBOL(netif_skb_features);
2902 
2903 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2904 		    struct netdev_queue *txq, bool more)
2905 {
2906 	unsigned int len;
2907 	int rc;
2908 
2909 	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2910 		dev_queue_xmit_nit(skb, dev);
2911 
2912 	len = skb->len;
2913 	trace_net_dev_start_xmit(skb, dev);
2914 	rc = netdev_start_xmit(skb, dev, txq, more);
2915 	trace_net_dev_xmit(skb, rc, dev, len);
2916 
2917 	return rc;
2918 }
2919 
2920 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2921 				    struct netdev_queue *txq, int *ret)
2922 {
2923 	struct sk_buff *skb = first;
2924 	int rc = NETDEV_TX_OK;
2925 
2926 	while (skb) {
2927 		struct sk_buff *next = skb->next;
2928 
2929 		skb->next = NULL;
2930 		rc = xmit_one(skb, dev, txq, next != NULL);
2931 		if (unlikely(!dev_xmit_complete(rc))) {
2932 			skb->next = next;
2933 			goto out;
2934 		}
2935 
2936 		skb = next;
2937 		if (netif_xmit_stopped(txq) && skb) {
2938 			rc = NETDEV_TX_BUSY;
2939 			break;
2940 		}
2941 	}
2942 
2943 out:
2944 	*ret = rc;
2945 	return skb;
2946 }
2947 
2948 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2949 					  netdev_features_t features)
2950 {
2951 	if (skb_vlan_tag_present(skb) &&
2952 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
2953 		skb = __vlan_hwaccel_push_inside(skb);
2954 	return skb;
2955 }
2956 
2957 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2958 {
2959 	netdev_features_t features;
2960 
2961 	features = netif_skb_features(skb);
2962 	skb = validate_xmit_vlan(skb, features);
2963 	if (unlikely(!skb))
2964 		goto out_null;
2965 
2966 	if (netif_needs_gso(skb, features)) {
2967 		struct sk_buff *segs;
2968 
2969 		segs = skb_gso_segment(skb, features);
2970 		if (IS_ERR(segs)) {
2971 			goto out_kfree_skb;
2972 		} else if (segs) {
2973 			consume_skb(skb);
2974 			skb = segs;
2975 		}
2976 	} else {
2977 		if (skb_needs_linearize(skb, features) &&
2978 		    __skb_linearize(skb))
2979 			goto out_kfree_skb;
2980 
2981 		/* If packet is not checksummed and device does not
2982 		 * support checksumming for this protocol, complete
2983 		 * checksumming here.
2984 		 */
2985 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2986 			if (skb->encapsulation)
2987 				skb_set_inner_transport_header(skb,
2988 							       skb_checksum_start_offset(skb));
2989 			else
2990 				skb_set_transport_header(skb,
2991 							 skb_checksum_start_offset(skb));
2992 			if (!(features & NETIF_F_CSUM_MASK) &&
2993 			    skb_checksum_help(skb))
2994 				goto out_kfree_skb;
2995 		}
2996 	}
2997 
2998 	return skb;
2999 
3000 out_kfree_skb:
3001 	kfree_skb(skb);
3002 out_null:
3003 	atomic_long_inc(&dev->tx_dropped);
3004 	return NULL;
3005 }
3006 
3007 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3008 {
3009 	struct sk_buff *next, *head = NULL, *tail;
3010 
3011 	for (; skb != NULL; skb = next) {
3012 		next = skb->next;
3013 		skb->next = NULL;
3014 
3015 		/* in case skb wont be segmented, point to itself */
3016 		skb->prev = skb;
3017 
3018 		skb = validate_xmit_skb(skb, dev);
3019 		if (!skb)
3020 			continue;
3021 
3022 		if (!head)
3023 			head = skb;
3024 		else
3025 			tail->next = skb;
3026 		/* If skb was segmented, skb->prev points to
3027 		 * the last segment. If not, it still contains skb.
3028 		 */
3029 		tail = skb->prev;
3030 	}
3031 	return head;
3032 }
3033 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3034 
3035 static void qdisc_pkt_len_init(struct sk_buff *skb)
3036 {
3037 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3038 
3039 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3040 
3041 	/* To get more precise estimation of bytes sent on wire,
3042 	 * we add to pkt_len the headers size of all segments
3043 	 */
3044 	if (shinfo->gso_size)  {
3045 		unsigned int hdr_len;
3046 		u16 gso_segs = shinfo->gso_segs;
3047 
3048 		/* mac layer + network layer */
3049 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3050 
3051 		/* + transport layer */
3052 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3053 			hdr_len += tcp_hdrlen(skb);
3054 		else
3055 			hdr_len += sizeof(struct udphdr);
3056 
3057 		if (shinfo->gso_type & SKB_GSO_DODGY)
3058 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3059 						shinfo->gso_size);
3060 
3061 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3062 	}
3063 }
3064 
3065 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3066 				 struct net_device *dev,
3067 				 struct netdev_queue *txq)
3068 {
3069 	spinlock_t *root_lock = qdisc_lock(q);
3070 	struct sk_buff *to_free = NULL;
3071 	bool contended;
3072 	int rc;
3073 
3074 	qdisc_calculate_pkt_len(skb, q);
3075 	/*
3076 	 * Heuristic to force contended enqueues to serialize on a
3077 	 * separate lock before trying to get qdisc main lock.
3078 	 * This permits qdisc->running owner to get the lock more
3079 	 * often and dequeue packets faster.
3080 	 */
3081 	contended = qdisc_is_running(q);
3082 	if (unlikely(contended))
3083 		spin_lock(&q->busylock);
3084 
3085 	spin_lock(root_lock);
3086 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3087 		__qdisc_drop(skb, &to_free);
3088 		rc = NET_XMIT_DROP;
3089 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3090 		   qdisc_run_begin(q)) {
3091 		/*
3092 		 * This is a work-conserving queue; there are no old skbs
3093 		 * waiting to be sent out; and the qdisc is not running -
3094 		 * xmit the skb directly.
3095 		 */
3096 
3097 		qdisc_bstats_update(q, skb);
3098 
3099 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3100 			if (unlikely(contended)) {
3101 				spin_unlock(&q->busylock);
3102 				contended = false;
3103 			}
3104 			__qdisc_run(q);
3105 		} else
3106 			qdisc_run_end(q);
3107 
3108 		rc = NET_XMIT_SUCCESS;
3109 	} else {
3110 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3111 		if (qdisc_run_begin(q)) {
3112 			if (unlikely(contended)) {
3113 				spin_unlock(&q->busylock);
3114 				contended = false;
3115 			}
3116 			__qdisc_run(q);
3117 		}
3118 	}
3119 	spin_unlock(root_lock);
3120 	if (unlikely(to_free))
3121 		kfree_skb_list(to_free);
3122 	if (unlikely(contended))
3123 		spin_unlock(&q->busylock);
3124 	return rc;
3125 }
3126 
3127 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3128 static void skb_update_prio(struct sk_buff *skb)
3129 {
3130 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3131 
3132 	if (!skb->priority && skb->sk && map) {
3133 		unsigned int prioidx =
3134 			sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3135 
3136 		if (prioidx < map->priomap_len)
3137 			skb->priority = map->priomap[prioidx];
3138 	}
3139 }
3140 #else
3141 #define skb_update_prio(skb)
3142 #endif
3143 
3144 DEFINE_PER_CPU(int, xmit_recursion);
3145 EXPORT_SYMBOL(xmit_recursion);
3146 
3147 /**
3148  *	dev_loopback_xmit - loop back @skb
3149  *	@net: network namespace this loopback is happening in
3150  *	@sk:  sk needed to be a netfilter okfn
3151  *	@skb: buffer to transmit
3152  */
3153 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3154 {
3155 	skb_reset_mac_header(skb);
3156 	__skb_pull(skb, skb_network_offset(skb));
3157 	skb->pkt_type = PACKET_LOOPBACK;
3158 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3159 	WARN_ON(!skb_dst(skb));
3160 	skb_dst_force(skb);
3161 	netif_rx_ni(skb);
3162 	return 0;
3163 }
3164 EXPORT_SYMBOL(dev_loopback_xmit);
3165 
3166 #ifdef CONFIG_NET_EGRESS
3167 static struct sk_buff *
3168 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3169 {
3170 	struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3171 	struct tcf_result cl_res;
3172 
3173 	if (!cl)
3174 		return skb;
3175 
3176 	/* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3177 	 * earlier by the caller.
3178 	 */
3179 	qdisc_bstats_cpu_update(cl->q, skb);
3180 
3181 	switch (tc_classify(skb, cl, &cl_res, false)) {
3182 	case TC_ACT_OK:
3183 	case TC_ACT_RECLASSIFY:
3184 		skb->tc_index = TC_H_MIN(cl_res.classid);
3185 		break;
3186 	case TC_ACT_SHOT:
3187 		qdisc_qstats_cpu_drop(cl->q);
3188 		*ret = NET_XMIT_DROP;
3189 		kfree_skb(skb);
3190 		return NULL;
3191 	case TC_ACT_STOLEN:
3192 	case TC_ACT_QUEUED:
3193 		*ret = NET_XMIT_SUCCESS;
3194 		consume_skb(skb);
3195 		return NULL;
3196 	case TC_ACT_REDIRECT:
3197 		/* No need to push/pop skb's mac_header here on egress! */
3198 		skb_do_redirect(skb);
3199 		*ret = NET_XMIT_SUCCESS;
3200 		return NULL;
3201 	default:
3202 		break;
3203 	}
3204 
3205 	return skb;
3206 }
3207 #endif /* CONFIG_NET_EGRESS */
3208 
3209 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3210 {
3211 #ifdef CONFIG_XPS
3212 	struct xps_dev_maps *dev_maps;
3213 	struct xps_map *map;
3214 	int queue_index = -1;
3215 
3216 	rcu_read_lock();
3217 	dev_maps = rcu_dereference(dev->xps_maps);
3218 	if (dev_maps) {
3219 		map = rcu_dereference(
3220 		    dev_maps->cpu_map[skb->sender_cpu - 1]);
3221 		if (map) {
3222 			if (map->len == 1)
3223 				queue_index = map->queues[0];
3224 			else
3225 				queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3226 									   map->len)];
3227 			if (unlikely(queue_index >= dev->real_num_tx_queues))
3228 				queue_index = -1;
3229 		}
3230 	}
3231 	rcu_read_unlock();
3232 
3233 	return queue_index;
3234 #else
3235 	return -1;
3236 #endif
3237 }
3238 
3239 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3240 {
3241 	struct sock *sk = skb->sk;
3242 	int queue_index = sk_tx_queue_get(sk);
3243 
3244 	if (queue_index < 0 || skb->ooo_okay ||
3245 	    queue_index >= dev->real_num_tx_queues) {
3246 		int new_index = get_xps_queue(dev, skb);
3247 		if (new_index < 0)
3248 			new_index = skb_tx_hash(dev, skb);
3249 
3250 		if (queue_index != new_index && sk &&
3251 		    sk_fullsock(sk) &&
3252 		    rcu_access_pointer(sk->sk_dst_cache))
3253 			sk_tx_queue_set(sk, new_index);
3254 
3255 		queue_index = new_index;
3256 	}
3257 
3258 	return queue_index;
3259 }
3260 
3261 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3262 				    struct sk_buff *skb,
3263 				    void *accel_priv)
3264 {
3265 	int queue_index = 0;
3266 
3267 #ifdef CONFIG_XPS
3268 	u32 sender_cpu = skb->sender_cpu - 1;
3269 
3270 	if (sender_cpu >= (u32)NR_CPUS)
3271 		skb->sender_cpu = raw_smp_processor_id() + 1;
3272 #endif
3273 
3274 	if (dev->real_num_tx_queues != 1) {
3275 		const struct net_device_ops *ops = dev->netdev_ops;
3276 		if (ops->ndo_select_queue)
3277 			queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3278 							    __netdev_pick_tx);
3279 		else
3280 			queue_index = __netdev_pick_tx(dev, skb);
3281 
3282 		if (!accel_priv)
3283 			queue_index = netdev_cap_txqueue(dev, queue_index);
3284 	}
3285 
3286 	skb_set_queue_mapping(skb, queue_index);
3287 	return netdev_get_tx_queue(dev, queue_index);
3288 }
3289 
3290 /**
3291  *	__dev_queue_xmit - transmit a buffer
3292  *	@skb: buffer to transmit
3293  *	@accel_priv: private data used for L2 forwarding offload
3294  *
3295  *	Queue a buffer for transmission to a network device. The caller must
3296  *	have set the device and priority and built the buffer before calling
3297  *	this function. The function can be called from an interrupt.
3298  *
3299  *	A negative errno code is returned on a failure. A success does not
3300  *	guarantee the frame will be transmitted as it may be dropped due
3301  *	to congestion or traffic shaping.
3302  *
3303  * -----------------------------------------------------------------------------------
3304  *      I notice this method can also return errors from the queue disciplines,
3305  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3306  *      be positive.
3307  *
3308  *      Regardless of the return value, the skb is consumed, so it is currently
3309  *      difficult to retry a send to this method.  (You can bump the ref count
3310  *      before sending to hold a reference for retry if you are careful.)
3311  *
3312  *      When calling this method, interrupts MUST be enabled.  This is because
3313  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3314  *          --BLG
3315  */
3316 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3317 {
3318 	struct net_device *dev = skb->dev;
3319 	struct netdev_queue *txq;
3320 	struct Qdisc *q;
3321 	int rc = -ENOMEM;
3322 
3323 	skb_reset_mac_header(skb);
3324 
3325 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3326 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3327 
3328 	/* Disable soft irqs for various locks below. Also
3329 	 * stops preemption for RCU.
3330 	 */
3331 	rcu_read_lock_bh();
3332 
3333 	skb_update_prio(skb);
3334 
3335 	qdisc_pkt_len_init(skb);
3336 #ifdef CONFIG_NET_CLS_ACT
3337 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3338 # ifdef CONFIG_NET_EGRESS
3339 	if (static_key_false(&egress_needed)) {
3340 		skb = sch_handle_egress(skb, &rc, dev);
3341 		if (!skb)
3342 			goto out;
3343 	}
3344 # endif
3345 #endif
3346 	/* If device/qdisc don't need skb->dst, release it right now while
3347 	 * its hot in this cpu cache.
3348 	 */
3349 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3350 		skb_dst_drop(skb);
3351 	else
3352 		skb_dst_force(skb);
3353 
3354 	txq = netdev_pick_tx(dev, skb, accel_priv);
3355 	q = rcu_dereference_bh(txq->qdisc);
3356 
3357 	trace_net_dev_queue(skb);
3358 	if (q->enqueue) {
3359 		rc = __dev_xmit_skb(skb, q, dev, txq);
3360 		goto out;
3361 	}
3362 
3363 	/* The device has no queue. Common case for software devices:
3364 	   loopback, all the sorts of tunnels...
3365 
3366 	   Really, it is unlikely that netif_tx_lock protection is necessary
3367 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3368 	   counters.)
3369 	   However, it is possible, that they rely on protection
3370 	   made by us here.
3371 
3372 	   Check this and shot the lock. It is not prone from deadlocks.
3373 	   Either shot noqueue qdisc, it is even simpler 8)
3374 	 */
3375 	if (dev->flags & IFF_UP) {
3376 		int cpu = smp_processor_id(); /* ok because BHs are off */
3377 
3378 		if (txq->xmit_lock_owner != cpu) {
3379 			if (unlikely(__this_cpu_read(xmit_recursion) >
3380 				     XMIT_RECURSION_LIMIT))
3381 				goto recursion_alert;
3382 
3383 			skb = validate_xmit_skb(skb, dev);
3384 			if (!skb)
3385 				goto out;
3386 
3387 			HARD_TX_LOCK(dev, txq, cpu);
3388 
3389 			if (!netif_xmit_stopped(txq)) {
3390 				__this_cpu_inc(xmit_recursion);
3391 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3392 				__this_cpu_dec(xmit_recursion);
3393 				if (dev_xmit_complete(rc)) {
3394 					HARD_TX_UNLOCK(dev, txq);
3395 					goto out;
3396 				}
3397 			}
3398 			HARD_TX_UNLOCK(dev, txq);
3399 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3400 					     dev->name);
3401 		} else {
3402 			/* Recursion is detected! It is possible,
3403 			 * unfortunately
3404 			 */
3405 recursion_alert:
3406 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3407 					     dev->name);
3408 		}
3409 	}
3410 
3411 	rc = -ENETDOWN;
3412 	rcu_read_unlock_bh();
3413 
3414 	atomic_long_inc(&dev->tx_dropped);
3415 	kfree_skb_list(skb);
3416 	return rc;
3417 out:
3418 	rcu_read_unlock_bh();
3419 	return rc;
3420 }
3421 
3422 int dev_queue_xmit(struct sk_buff *skb)
3423 {
3424 	return __dev_queue_xmit(skb, NULL);
3425 }
3426 EXPORT_SYMBOL(dev_queue_xmit);
3427 
3428 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3429 {
3430 	return __dev_queue_xmit(skb, accel_priv);
3431 }
3432 EXPORT_SYMBOL(dev_queue_xmit_accel);
3433 
3434 
3435 /*=======================================================================
3436 			Receiver routines
3437   =======================================================================*/
3438 
3439 int netdev_max_backlog __read_mostly = 1000;
3440 EXPORT_SYMBOL(netdev_max_backlog);
3441 
3442 int netdev_tstamp_prequeue __read_mostly = 1;
3443 int netdev_budget __read_mostly = 300;
3444 int weight_p __read_mostly = 64;            /* old backlog weight */
3445 
3446 /* Called with irq disabled */
3447 static inline void ____napi_schedule(struct softnet_data *sd,
3448 				     struct napi_struct *napi)
3449 {
3450 	list_add_tail(&napi->poll_list, &sd->poll_list);
3451 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3452 }
3453 
3454 #ifdef CONFIG_RPS
3455 
3456 /* One global table that all flow-based protocols share. */
3457 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3458 EXPORT_SYMBOL(rps_sock_flow_table);
3459 u32 rps_cpu_mask __read_mostly;
3460 EXPORT_SYMBOL(rps_cpu_mask);
3461 
3462 struct static_key rps_needed __read_mostly;
3463 EXPORT_SYMBOL(rps_needed);
3464 
3465 static struct rps_dev_flow *
3466 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3467 	    struct rps_dev_flow *rflow, u16 next_cpu)
3468 {
3469 	if (next_cpu < nr_cpu_ids) {
3470 #ifdef CONFIG_RFS_ACCEL
3471 		struct netdev_rx_queue *rxqueue;
3472 		struct rps_dev_flow_table *flow_table;
3473 		struct rps_dev_flow *old_rflow;
3474 		u32 flow_id;
3475 		u16 rxq_index;
3476 		int rc;
3477 
3478 		/* Should we steer this flow to a different hardware queue? */
3479 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3480 		    !(dev->features & NETIF_F_NTUPLE))
3481 			goto out;
3482 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3483 		if (rxq_index == skb_get_rx_queue(skb))
3484 			goto out;
3485 
3486 		rxqueue = dev->_rx + rxq_index;
3487 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3488 		if (!flow_table)
3489 			goto out;
3490 		flow_id = skb_get_hash(skb) & flow_table->mask;
3491 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3492 							rxq_index, flow_id);
3493 		if (rc < 0)
3494 			goto out;
3495 		old_rflow = rflow;
3496 		rflow = &flow_table->flows[flow_id];
3497 		rflow->filter = rc;
3498 		if (old_rflow->filter == rflow->filter)
3499 			old_rflow->filter = RPS_NO_FILTER;
3500 	out:
3501 #endif
3502 		rflow->last_qtail =
3503 			per_cpu(softnet_data, next_cpu).input_queue_head;
3504 	}
3505 
3506 	rflow->cpu = next_cpu;
3507 	return rflow;
3508 }
3509 
3510 /*
3511  * get_rps_cpu is called from netif_receive_skb and returns the target
3512  * CPU from the RPS map of the receiving queue for a given skb.
3513  * rcu_read_lock must be held on entry.
3514  */
3515 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3516 		       struct rps_dev_flow **rflowp)
3517 {
3518 	const struct rps_sock_flow_table *sock_flow_table;
3519 	struct netdev_rx_queue *rxqueue = dev->_rx;
3520 	struct rps_dev_flow_table *flow_table;
3521 	struct rps_map *map;
3522 	int cpu = -1;
3523 	u32 tcpu;
3524 	u32 hash;
3525 
3526 	if (skb_rx_queue_recorded(skb)) {
3527 		u16 index = skb_get_rx_queue(skb);
3528 
3529 		if (unlikely(index >= dev->real_num_rx_queues)) {
3530 			WARN_ONCE(dev->real_num_rx_queues > 1,
3531 				  "%s received packet on queue %u, but number "
3532 				  "of RX queues is %u\n",
3533 				  dev->name, index, dev->real_num_rx_queues);
3534 			goto done;
3535 		}
3536 		rxqueue += index;
3537 	}
3538 
3539 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3540 
3541 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3542 	map = rcu_dereference(rxqueue->rps_map);
3543 	if (!flow_table && !map)
3544 		goto done;
3545 
3546 	skb_reset_network_header(skb);
3547 	hash = skb_get_hash(skb);
3548 	if (!hash)
3549 		goto done;
3550 
3551 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3552 	if (flow_table && sock_flow_table) {
3553 		struct rps_dev_flow *rflow;
3554 		u32 next_cpu;
3555 		u32 ident;
3556 
3557 		/* First check into global flow table if there is a match */
3558 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3559 		if ((ident ^ hash) & ~rps_cpu_mask)
3560 			goto try_rps;
3561 
3562 		next_cpu = ident & rps_cpu_mask;
3563 
3564 		/* OK, now we know there is a match,
3565 		 * we can look at the local (per receive queue) flow table
3566 		 */
3567 		rflow = &flow_table->flows[hash & flow_table->mask];
3568 		tcpu = rflow->cpu;
3569 
3570 		/*
3571 		 * If the desired CPU (where last recvmsg was done) is
3572 		 * different from current CPU (one in the rx-queue flow
3573 		 * table entry), switch if one of the following holds:
3574 		 *   - Current CPU is unset (>= nr_cpu_ids).
3575 		 *   - Current CPU is offline.
3576 		 *   - The current CPU's queue tail has advanced beyond the
3577 		 *     last packet that was enqueued using this table entry.
3578 		 *     This guarantees that all previous packets for the flow
3579 		 *     have been dequeued, thus preserving in order delivery.
3580 		 */
3581 		if (unlikely(tcpu != next_cpu) &&
3582 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3583 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3584 		      rflow->last_qtail)) >= 0)) {
3585 			tcpu = next_cpu;
3586 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3587 		}
3588 
3589 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3590 			*rflowp = rflow;
3591 			cpu = tcpu;
3592 			goto done;
3593 		}
3594 	}
3595 
3596 try_rps:
3597 
3598 	if (map) {
3599 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3600 		if (cpu_online(tcpu)) {
3601 			cpu = tcpu;
3602 			goto done;
3603 		}
3604 	}
3605 
3606 done:
3607 	return cpu;
3608 }
3609 
3610 #ifdef CONFIG_RFS_ACCEL
3611 
3612 /**
3613  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3614  * @dev: Device on which the filter was set
3615  * @rxq_index: RX queue index
3616  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3617  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3618  *
3619  * Drivers that implement ndo_rx_flow_steer() should periodically call
3620  * this function for each installed filter and remove the filters for
3621  * which it returns %true.
3622  */
3623 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3624 			 u32 flow_id, u16 filter_id)
3625 {
3626 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3627 	struct rps_dev_flow_table *flow_table;
3628 	struct rps_dev_flow *rflow;
3629 	bool expire = true;
3630 	unsigned int cpu;
3631 
3632 	rcu_read_lock();
3633 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3634 	if (flow_table && flow_id <= flow_table->mask) {
3635 		rflow = &flow_table->flows[flow_id];
3636 		cpu = ACCESS_ONCE(rflow->cpu);
3637 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3638 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3639 			   rflow->last_qtail) <
3640 		     (int)(10 * flow_table->mask)))
3641 			expire = false;
3642 	}
3643 	rcu_read_unlock();
3644 	return expire;
3645 }
3646 EXPORT_SYMBOL(rps_may_expire_flow);
3647 
3648 #endif /* CONFIG_RFS_ACCEL */
3649 
3650 /* Called from hardirq (IPI) context */
3651 static void rps_trigger_softirq(void *data)
3652 {
3653 	struct softnet_data *sd = data;
3654 
3655 	____napi_schedule(sd, &sd->backlog);
3656 	sd->received_rps++;
3657 }
3658 
3659 #endif /* CONFIG_RPS */
3660 
3661 /*
3662  * Check if this softnet_data structure is another cpu one
3663  * If yes, queue it to our IPI list and return 1
3664  * If no, return 0
3665  */
3666 static int rps_ipi_queued(struct softnet_data *sd)
3667 {
3668 #ifdef CONFIG_RPS
3669 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3670 
3671 	if (sd != mysd) {
3672 		sd->rps_ipi_next = mysd->rps_ipi_list;
3673 		mysd->rps_ipi_list = sd;
3674 
3675 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3676 		return 1;
3677 	}
3678 #endif /* CONFIG_RPS */
3679 	return 0;
3680 }
3681 
3682 #ifdef CONFIG_NET_FLOW_LIMIT
3683 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3684 #endif
3685 
3686 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3687 {
3688 #ifdef CONFIG_NET_FLOW_LIMIT
3689 	struct sd_flow_limit *fl;
3690 	struct softnet_data *sd;
3691 	unsigned int old_flow, new_flow;
3692 
3693 	if (qlen < (netdev_max_backlog >> 1))
3694 		return false;
3695 
3696 	sd = this_cpu_ptr(&softnet_data);
3697 
3698 	rcu_read_lock();
3699 	fl = rcu_dereference(sd->flow_limit);
3700 	if (fl) {
3701 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3702 		old_flow = fl->history[fl->history_head];
3703 		fl->history[fl->history_head] = new_flow;
3704 
3705 		fl->history_head++;
3706 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3707 
3708 		if (likely(fl->buckets[old_flow]))
3709 			fl->buckets[old_flow]--;
3710 
3711 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3712 			fl->count++;
3713 			rcu_read_unlock();
3714 			return true;
3715 		}
3716 	}
3717 	rcu_read_unlock();
3718 #endif
3719 	return false;
3720 }
3721 
3722 /*
3723  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3724  * queue (may be a remote CPU queue).
3725  */
3726 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3727 			      unsigned int *qtail)
3728 {
3729 	struct softnet_data *sd;
3730 	unsigned long flags;
3731 	unsigned int qlen;
3732 
3733 	sd = &per_cpu(softnet_data, cpu);
3734 
3735 	local_irq_save(flags);
3736 
3737 	rps_lock(sd);
3738 	if (!netif_running(skb->dev))
3739 		goto drop;
3740 	qlen = skb_queue_len(&sd->input_pkt_queue);
3741 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3742 		if (qlen) {
3743 enqueue:
3744 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3745 			input_queue_tail_incr_save(sd, qtail);
3746 			rps_unlock(sd);
3747 			local_irq_restore(flags);
3748 			return NET_RX_SUCCESS;
3749 		}
3750 
3751 		/* Schedule NAPI for backlog device
3752 		 * We can use non atomic operation since we own the queue lock
3753 		 */
3754 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3755 			if (!rps_ipi_queued(sd))
3756 				____napi_schedule(sd, &sd->backlog);
3757 		}
3758 		goto enqueue;
3759 	}
3760 
3761 drop:
3762 	sd->dropped++;
3763 	rps_unlock(sd);
3764 
3765 	local_irq_restore(flags);
3766 
3767 	atomic_long_inc(&skb->dev->rx_dropped);
3768 	kfree_skb(skb);
3769 	return NET_RX_DROP;
3770 }
3771 
3772 static int netif_rx_internal(struct sk_buff *skb)
3773 {
3774 	int ret;
3775 
3776 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3777 
3778 	trace_netif_rx(skb);
3779 #ifdef CONFIG_RPS
3780 	if (static_key_false(&rps_needed)) {
3781 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3782 		int cpu;
3783 
3784 		preempt_disable();
3785 		rcu_read_lock();
3786 
3787 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3788 		if (cpu < 0)
3789 			cpu = smp_processor_id();
3790 
3791 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3792 
3793 		rcu_read_unlock();
3794 		preempt_enable();
3795 	} else
3796 #endif
3797 	{
3798 		unsigned int qtail;
3799 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3800 		put_cpu();
3801 	}
3802 	return ret;
3803 }
3804 
3805 /**
3806  *	netif_rx	-	post buffer to the network code
3807  *	@skb: buffer to post
3808  *
3809  *	This function receives a packet from a device driver and queues it for
3810  *	the upper (protocol) levels to process.  It always succeeds. The buffer
3811  *	may be dropped during processing for congestion control or by the
3812  *	protocol layers.
3813  *
3814  *	return values:
3815  *	NET_RX_SUCCESS	(no congestion)
3816  *	NET_RX_DROP     (packet was dropped)
3817  *
3818  */
3819 
3820 int netif_rx(struct sk_buff *skb)
3821 {
3822 	trace_netif_rx_entry(skb);
3823 
3824 	return netif_rx_internal(skb);
3825 }
3826 EXPORT_SYMBOL(netif_rx);
3827 
3828 int netif_rx_ni(struct sk_buff *skb)
3829 {
3830 	int err;
3831 
3832 	trace_netif_rx_ni_entry(skb);
3833 
3834 	preempt_disable();
3835 	err = netif_rx_internal(skb);
3836 	if (local_softirq_pending())
3837 		do_softirq();
3838 	preempt_enable();
3839 
3840 	return err;
3841 }
3842 EXPORT_SYMBOL(netif_rx_ni);
3843 
3844 static __latent_entropy void net_tx_action(struct softirq_action *h)
3845 {
3846 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3847 
3848 	if (sd->completion_queue) {
3849 		struct sk_buff *clist;
3850 
3851 		local_irq_disable();
3852 		clist = sd->completion_queue;
3853 		sd->completion_queue = NULL;
3854 		local_irq_enable();
3855 
3856 		while (clist) {
3857 			struct sk_buff *skb = clist;
3858 			clist = clist->next;
3859 
3860 			WARN_ON(atomic_read(&skb->users));
3861 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3862 				trace_consume_skb(skb);
3863 			else
3864 				trace_kfree_skb(skb, net_tx_action);
3865 
3866 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3867 				__kfree_skb(skb);
3868 			else
3869 				__kfree_skb_defer(skb);
3870 		}
3871 
3872 		__kfree_skb_flush();
3873 	}
3874 
3875 	if (sd->output_queue) {
3876 		struct Qdisc *head;
3877 
3878 		local_irq_disable();
3879 		head = sd->output_queue;
3880 		sd->output_queue = NULL;
3881 		sd->output_queue_tailp = &sd->output_queue;
3882 		local_irq_enable();
3883 
3884 		while (head) {
3885 			struct Qdisc *q = head;
3886 			spinlock_t *root_lock;
3887 
3888 			head = head->next_sched;
3889 
3890 			root_lock = qdisc_lock(q);
3891 			spin_lock(root_lock);
3892 			/* We need to make sure head->next_sched is read
3893 			 * before clearing __QDISC_STATE_SCHED
3894 			 */
3895 			smp_mb__before_atomic();
3896 			clear_bit(__QDISC_STATE_SCHED, &q->state);
3897 			qdisc_run(q);
3898 			spin_unlock(root_lock);
3899 		}
3900 	}
3901 }
3902 
3903 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
3904 /* This hook is defined here for ATM LANE */
3905 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3906 			     unsigned char *addr) __read_mostly;
3907 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3908 #endif
3909 
3910 static inline struct sk_buff *
3911 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3912 		   struct net_device *orig_dev)
3913 {
3914 #ifdef CONFIG_NET_CLS_ACT
3915 	struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3916 	struct tcf_result cl_res;
3917 
3918 	/* If there's at least one ingress present somewhere (so
3919 	 * we get here via enabled static key), remaining devices
3920 	 * that are not configured with an ingress qdisc will bail
3921 	 * out here.
3922 	 */
3923 	if (!cl)
3924 		return skb;
3925 	if (*pt_prev) {
3926 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3927 		*pt_prev = NULL;
3928 	}
3929 
3930 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3931 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3932 	qdisc_bstats_cpu_update(cl->q, skb);
3933 
3934 	switch (tc_classify(skb, cl, &cl_res, false)) {
3935 	case TC_ACT_OK:
3936 	case TC_ACT_RECLASSIFY:
3937 		skb->tc_index = TC_H_MIN(cl_res.classid);
3938 		break;
3939 	case TC_ACT_SHOT:
3940 		qdisc_qstats_cpu_drop(cl->q);
3941 		kfree_skb(skb);
3942 		return NULL;
3943 	case TC_ACT_STOLEN:
3944 	case TC_ACT_QUEUED:
3945 		consume_skb(skb);
3946 		return NULL;
3947 	case TC_ACT_REDIRECT:
3948 		/* skb_mac_header check was done by cls/act_bpf, so
3949 		 * we can safely push the L2 header back before
3950 		 * redirecting to another netdev
3951 		 */
3952 		__skb_push(skb, skb->mac_len);
3953 		skb_do_redirect(skb);
3954 		return NULL;
3955 	default:
3956 		break;
3957 	}
3958 #endif /* CONFIG_NET_CLS_ACT */
3959 	return skb;
3960 }
3961 
3962 /**
3963  *	netdev_is_rx_handler_busy - check if receive handler is registered
3964  *	@dev: device to check
3965  *
3966  *	Check if a receive handler is already registered for a given device.
3967  *	Return true if there one.
3968  *
3969  *	The caller must hold the rtnl_mutex.
3970  */
3971 bool netdev_is_rx_handler_busy(struct net_device *dev)
3972 {
3973 	ASSERT_RTNL();
3974 	return dev && rtnl_dereference(dev->rx_handler);
3975 }
3976 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3977 
3978 /**
3979  *	netdev_rx_handler_register - register receive handler
3980  *	@dev: device to register a handler for
3981  *	@rx_handler: receive handler to register
3982  *	@rx_handler_data: data pointer that is used by rx handler
3983  *
3984  *	Register a receive handler for a device. This handler will then be
3985  *	called from __netif_receive_skb. A negative errno code is returned
3986  *	on a failure.
3987  *
3988  *	The caller must hold the rtnl_mutex.
3989  *
3990  *	For a general description of rx_handler, see enum rx_handler_result.
3991  */
3992 int netdev_rx_handler_register(struct net_device *dev,
3993 			       rx_handler_func_t *rx_handler,
3994 			       void *rx_handler_data)
3995 {
3996 	ASSERT_RTNL();
3997 
3998 	if (dev->rx_handler)
3999 		return -EBUSY;
4000 
4001 	/* Note: rx_handler_data must be set before rx_handler */
4002 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4003 	rcu_assign_pointer(dev->rx_handler, rx_handler);
4004 
4005 	return 0;
4006 }
4007 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4008 
4009 /**
4010  *	netdev_rx_handler_unregister - unregister receive handler
4011  *	@dev: device to unregister a handler from
4012  *
4013  *	Unregister a receive handler from a device.
4014  *
4015  *	The caller must hold the rtnl_mutex.
4016  */
4017 void netdev_rx_handler_unregister(struct net_device *dev)
4018 {
4019 
4020 	ASSERT_RTNL();
4021 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4022 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4023 	 * section has a guarantee to see a non NULL rx_handler_data
4024 	 * as well.
4025 	 */
4026 	synchronize_net();
4027 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4028 }
4029 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4030 
4031 /*
4032  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4033  * the special handling of PFMEMALLOC skbs.
4034  */
4035 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4036 {
4037 	switch (skb->protocol) {
4038 	case htons(ETH_P_ARP):
4039 	case htons(ETH_P_IP):
4040 	case htons(ETH_P_IPV6):
4041 	case htons(ETH_P_8021Q):
4042 	case htons(ETH_P_8021AD):
4043 		return true;
4044 	default:
4045 		return false;
4046 	}
4047 }
4048 
4049 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4050 			     int *ret, struct net_device *orig_dev)
4051 {
4052 #ifdef CONFIG_NETFILTER_INGRESS
4053 	if (nf_hook_ingress_active(skb)) {
4054 		int ingress_retval;
4055 
4056 		if (*pt_prev) {
4057 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4058 			*pt_prev = NULL;
4059 		}
4060 
4061 		rcu_read_lock();
4062 		ingress_retval = nf_hook_ingress(skb);
4063 		rcu_read_unlock();
4064 		return ingress_retval;
4065 	}
4066 #endif /* CONFIG_NETFILTER_INGRESS */
4067 	return 0;
4068 }
4069 
4070 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4071 {
4072 	struct packet_type *ptype, *pt_prev;
4073 	rx_handler_func_t *rx_handler;
4074 	struct net_device *orig_dev;
4075 	bool deliver_exact = false;
4076 	int ret = NET_RX_DROP;
4077 	__be16 type;
4078 
4079 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4080 
4081 	trace_netif_receive_skb(skb);
4082 
4083 	orig_dev = skb->dev;
4084 
4085 	skb_reset_network_header(skb);
4086 	if (!skb_transport_header_was_set(skb))
4087 		skb_reset_transport_header(skb);
4088 	skb_reset_mac_len(skb);
4089 
4090 	pt_prev = NULL;
4091 
4092 another_round:
4093 	skb->skb_iif = skb->dev->ifindex;
4094 
4095 	__this_cpu_inc(softnet_data.processed);
4096 
4097 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4098 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4099 		skb = skb_vlan_untag(skb);
4100 		if (unlikely(!skb))
4101 			goto out;
4102 	}
4103 
4104 #ifdef CONFIG_NET_CLS_ACT
4105 	if (skb->tc_verd & TC_NCLS) {
4106 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4107 		goto ncls;
4108 	}
4109 #endif
4110 
4111 	if (pfmemalloc)
4112 		goto skip_taps;
4113 
4114 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
4115 		if (pt_prev)
4116 			ret = deliver_skb(skb, pt_prev, orig_dev);
4117 		pt_prev = ptype;
4118 	}
4119 
4120 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4121 		if (pt_prev)
4122 			ret = deliver_skb(skb, pt_prev, orig_dev);
4123 		pt_prev = ptype;
4124 	}
4125 
4126 skip_taps:
4127 #ifdef CONFIG_NET_INGRESS
4128 	if (static_key_false(&ingress_needed)) {
4129 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4130 		if (!skb)
4131 			goto out;
4132 
4133 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4134 			goto out;
4135 	}
4136 #endif
4137 #ifdef CONFIG_NET_CLS_ACT
4138 	skb->tc_verd = 0;
4139 ncls:
4140 #endif
4141 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4142 		goto drop;
4143 
4144 	if (skb_vlan_tag_present(skb)) {
4145 		if (pt_prev) {
4146 			ret = deliver_skb(skb, pt_prev, orig_dev);
4147 			pt_prev = NULL;
4148 		}
4149 		if (vlan_do_receive(&skb))
4150 			goto another_round;
4151 		else if (unlikely(!skb))
4152 			goto out;
4153 	}
4154 
4155 	rx_handler = rcu_dereference(skb->dev->rx_handler);
4156 	if (rx_handler) {
4157 		if (pt_prev) {
4158 			ret = deliver_skb(skb, pt_prev, orig_dev);
4159 			pt_prev = NULL;
4160 		}
4161 		switch (rx_handler(&skb)) {
4162 		case RX_HANDLER_CONSUMED:
4163 			ret = NET_RX_SUCCESS;
4164 			goto out;
4165 		case RX_HANDLER_ANOTHER:
4166 			goto another_round;
4167 		case RX_HANDLER_EXACT:
4168 			deliver_exact = true;
4169 		case RX_HANDLER_PASS:
4170 			break;
4171 		default:
4172 			BUG();
4173 		}
4174 	}
4175 
4176 	if (unlikely(skb_vlan_tag_present(skb))) {
4177 		if (skb_vlan_tag_get_id(skb))
4178 			skb->pkt_type = PACKET_OTHERHOST;
4179 		/* Note: we might in the future use prio bits
4180 		 * and set skb->priority like in vlan_do_receive()
4181 		 * For the time being, just ignore Priority Code Point
4182 		 */
4183 		skb->vlan_tci = 0;
4184 	}
4185 
4186 	type = skb->protocol;
4187 
4188 	/* deliver only exact match when indicated */
4189 	if (likely(!deliver_exact)) {
4190 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4191 				       &ptype_base[ntohs(type) &
4192 						   PTYPE_HASH_MASK]);
4193 	}
4194 
4195 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4196 			       &orig_dev->ptype_specific);
4197 
4198 	if (unlikely(skb->dev != orig_dev)) {
4199 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4200 				       &skb->dev->ptype_specific);
4201 	}
4202 
4203 	if (pt_prev) {
4204 		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4205 			goto drop;
4206 		else
4207 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4208 	} else {
4209 drop:
4210 		if (!deliver_exact)
4211 			atomic_long_inc(&skb->dev->rx_dropped);
4212 		else
4213 			atomic_long_inc(&skb->dev->rx_nohandler);
4214 		kfree_skb(skb);
4215 		/* Jamal, now you will not able to escape explaining
4216 		 * me how you were going to use this. :-)
4217 		 */
4218 		ret = NET_RX_DROP;
4219 	}
4220 
4221 out:
4222 	return ret;
4223 }
4224 
4225 static int __netif_receive_skb(struct sk_buff *skb)
4226 {
4227 	int ret;
4228 
4229 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4230 		unsigned long pflags = current->flags;
4231 
4232 		/*
4233 		 * PFMEMALLOC skbs are special, they should
4234 		 * - be delivered to SOCK_MEMALLOC sockets only
4235 		 * - stay away from userspace
4236 		 * - have bounded memory usage
4237 		 *
4238 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
4239 		 * context down to all allocation sites.
4240 		 */
4241 		current->flags |= PF_MEMALLOC;
4242 		ret = __netif_receive_skb_core(skb, true);
4243 		tsk_restore_flags(current, pflags, PF_MEMALLOC);
4244 	} else
4245 		ret = __netif_receive_skb_core(skb, false);
4246 
4247 	return ret;
4248 }
4249 
4250 static int netif_receive_skb_internal(struct sk_buff *skb)
4251 {
4252 	int ret;
4253 
4254 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4255 
4256 	if (skb_defer_rx_timestamp(skb))
4257 		return NET_RX_SUCCESS;
4258 
4259 	rcu_read_lock();
4260 
4261 #ifdef CONFIG_RPS
4262 	if (static_key_false(&rps_needed)) {
4263 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4264 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4265 
4266 		if (cpu >= 0) {
4267 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4268 			rcu_read_unlock();
4269 			return ret;
4270 		}
4271 	}
4272 #endif
4273 	ret = __netif_receive_skb(skb);
4274 	rcu_read_unlock();
4275 	return ret;
4276 }
4277 
4278 /**
4279  *	netif_receive_skb - process receive buffer from network
4280  *	@skb: buffer to process
4281  *
4282  *	netif_receive_skb() is the main receive data processing function.
4283  *	It always succeeds. The buffer may be dropped during processing
4284  *	for congestion control or by the protocol layers.
4285  *
4286  *	This function may only be called from softirq context and interrupts
4287  *	should be enabled.
4288  *
4289  *	Return values (usually ignored):
4290  *	NET_RX_SUCCESS: no congestion
4291  *	NET_RX_DROP: packet was dropped
4292  */
4293 int netif_receive_skb(struct sk_buff *skb)
4294 {
4295 	trace_netif_receive_skb_entry(skb);
4296 
4297 	return netif_receive_skb_internal(skb);
4298 }
4299 EXPORT_SYMBOL(netif_receive_skb);
4300 
4301 DEFINE_PER_CPU(struct work_struct, flush_works);
4302 
4303 /* Network device is going away, flush any packets still pending */
4304 static void flush_backlog(struct work_struct *work)
4305 {
4306 	struct sk_buff *skb, *tmp;
4307 	struct softnet_data *sd;
4308 
4309 	local_bh_disable();
4310 	sd = this_cpu_ptr(&softnet_data);
4311 
4312 	local_irq_disable();
4313 	rps_lock(sd);
4314 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4315 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4316 			__skb_unlink(skb, &sd->input_pkt_queue);
4317 			kfree_skb(skb);
4318 			input_queue_head_incr(sd);
4319 		}
4320 	}
4321 	rps_unlock(sd);
4322 	local_irq_enable();
4323 
4324 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4325 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4326 			__skb_unlink(skb, &sd->process_queue);
4327 			kfree_skb(skb);
4328 			input_queue_head_incr(sd);
4329 		}
4330 	}
4331 	local_bh_enable();
4332 }
4333 
4334 static void flush_all_backlogs(void)
4335 {
4336 	unsigned int cpu;
4337 
4338 	get_online_cpus();
4339 
4340 	for_each_online_cpu(cpu)
4341 		queue_work_on(cpu, system_highpri_wq,
4342 			      per_cpu_ptr(&flush_works, cpu));
4343 
4344 	for_each_online_cpu(cpu)
4345 		flush_work(per_cpu_ptr(&flush_works, cpu));
4346 
4347 	put_online_cpus();
4348 }
4349 
4350 static int napi_gro_complete(struct sk_buff *skb)
4351 {
4352 	struct packet_offload *ptype;
4353 	__be16 type = skb->protocol;
4354 	struct list_head *head = &offload_base;
4355 	int err = -ENOENT;
4356 
4357 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4358 
4359 	if (NAPI_GRO_CB(skb)->count == 1) {
4360 		skb_shinfo(skb)->gso_size = 0;
4361 		goto out;
4362 	}
4363 
4364 	rcu_read_lock();
4365 	list_for_each_entry_rcu(ptype, head, list) {
4366 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4367 			continue;
4368 
4369 		err = ptype->callbacks.gro_complete(skb, 0);
4370 		break;
4371 	}
4372 	rcu_read_unlock();
4373 
4374 	if (err) {
4375 		WARN_ON(&ptype->list == head);
4376 		kfree_skb(skb);
4377 		return NET_RX_SUCCESS;
4378 	}
4379 
4380 out:
4381 	return netif_receive_skb_internal(skb);
4382 }
4383 
4384 /* napi->gro_list contains packets ordered by age.
4385  * youngest packets at the head of it.
4386  * Complete skbs in reverse order to reduce latencies.
4387  */
4388 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4389 {
4390 	struct sk_buff *skb, *prev = NULL;
4391 
4392 	/* scan list and build reverse chain */
4393 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4394 		skb->prev = prev;
4395 		prev = skb;
4396 	}
4397 
4398 	for (skb = prev; skb; skb = prev) {
4399 		skb->next = NULL;
4400 
4401 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4402 			return;
4403 
4404 		prev = skb->prev;
4405 		napi_gro_complete(skb);
4406 		napi->gro_count--;
4407 	}
4408 
4409 	napi->gro_list = NULL;
4410 }
4411 EXPORT_SYMBOL(napi_gro_flush);
4412 
4413 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4414 {
4415 	struct sk_buff *p;
4416 	unsigned int maclen = skb->dev->hard_header_len;
4417 	u32 hash = skb_get_hash_raw(skb);
4418 
4419 	for (p = napi->gro_list; p; p = p->next) {
4420 		unsigned long diffs;
4421 
4422 		NAPI_GRO_CB(p)->flush = 0;
4423 
4424 		if (hash != skb_get_hash_raw(p)) {
4425 			NAPI_GRO_CB(p)->same_flow = 0;
4426 			continue;
4427 		}
4428 
4429 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4430 		diffs |= p->vlan_tci ^ skb->vlan_tci;
4431 		diffs |= skb_metadata_dst_cmp(p, skb);
4432 		if (maclen == ETH_HLEN)
4433 			diffs |= compare_ether_header(skb_mac_header(p),
4434 						      skb_mac_header(skb));
4435 		else if (!diffs)
4436 			diffs = memcmp(skb_mac_header(p),
4437 				       skb_mac_header(skb),
4438 				       maclen);
4439 		NAPI_GRO_CB(p)->same_flow = !diffs;
4440 	}
4441 }
4442 
4443 static void skb_gro_reset_offset(struct sk_buff *skb)
4444 {
4445 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
4446 	const skb_frag_t *frag0 = &pinfo->frags[0];
4447 
4448 	NAPI_GRO_CB(skb)->data_offset = 0;
4449 	NAPI_GRO_CB(skb)->frag0 = NULL;
4450 	NAPI_GRO_CB(skb)->frag0_len = 0;
4451 
4452 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4453 	    pinfo->nr_frags &&
4454 	    !PageHighMem(skb_frag_page(frag0))) {
4455 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4456 		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4457 	}
4458 }
4459 
4460 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4461 {
4462 	struct skb_shared_info *pinfo = skb_shinfo(skb);
4463 
4464 	BUG_ON(skb->end - skb->tail < grow);
4465 
4466 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4467 
4468 	skb->data_len -= grow;
4469 	skb->tail += grow;
4470 
4471 	pinfo->frags[0].page_offset += grow;
4472 	skb_frag_size_sub(&pinfo->frags[0], grow);
4473 
4474 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4475 		skb_frag_unref(skb, 0);
4476 		memmove(pinfo->frags, pinfo->frags + 1,
4477 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
4478 	}
4479 }
4480 
4481 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4482 {
4483 	struct sk_buff **pp = NULL;
4484 	struct packet_offload *ptype;
4485 	__be16 type = skb->protocol;
4486 	struct list_head *head = &offload_base;
4487 	int same_flow;
4488 	enum gro_result ret;
4489 	int grow;
4490 
4491 	if (!(skb->dev->features & NETIF_F_GRO))
4492 		goto normal;
4493 
4494 	if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4495 		goto normal;
4496 
4497 	gro_list_prepare(napi, skb);
4498 
4499 	rcu_read_lock();
4500 	list_for_each_entry_rcu(ptype, head, list) {
4501 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4502 			continue;
4503 
4504 		skb_set_network_header(skb, skb_gro_offset(skb));
4505 		skb_reset_mac_len(skb);
4506 		NAPI_GRO_CB(skb)->same_flow = 0;
4507 		NAPI_GRO_CB(skb)->flush = 0;
4508 		NAPI_GRO_CB(skb)->free = 0;
4509 		NAPI_GRO_CB(skb)->encap_mark = 0;
4510 		NAPI_GRO_CB(skb)->recursion_counter = 0;
4511 		NAPI_GRO_CB(skb)->is_fou = 0;
4512 		NAPI_GRO_CB(skb)->is_atomic = 1;
4513 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4514 
4515 		/* Setup for GRO checksum validation */
4516 		switch (skb->ip_summed) {
4517 		case CHECKSUM_COMPLETE:
4518 			NAPI_GRO_CB(skb)->csum = skb->csum;
4519 			NAPI_GRO_CB(skb)->csum_valid = 1;
4520 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4521 			break;
4522 		case CHECKSUM_UNNECESSARY:
4523 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4524 			NAPI_GRO_CB(skb)->csum_valid = 0;
4525 			break;
4526 		default:
4527 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4528 			NAPI_GRO_CB(skb)->csum_valid = 0;
4529 		}
4530 
4531 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4532 		break;
4533 	}
4534 	rcu_read_unlock();
4535 
4536 	if (&ptype->list == head)
4537 		goto normal;
4538 
4539 	same_flow = NAPI_GRO_CB(skb)->same_flow;
4540 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4541 
4542 	if (pp) {
4543 		struct sk_buff *nskb = *pp;
4544 
4545 		*pp = nskb->next;
4546 		nskb->next = NULL;
4547 		napi_gro_complete(nskb);
4548 		napi->gro_count--;
4549 	}
4550 
4551 	if (same_flow)
4552 		goto ok;
4553 
4554 	if (NAPI_GRO_CB(skb)->flush)
4555 		goto normal;
4556 
4557 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4558 		struct sk_buff *nskb = napi->gro_list;
4559 
4560 		/* locate the end of the list to select the 'oldest' flow */
4561 		while (nskb->next) {
4562 			pp = &nskb->next;
4563 			nskb = *pp;
4564 		}
4565 		*pp = NULL;
4566 		nskb->next = NULL;
4567 		napi_gro_complete(nskb);
4568 	} else {
4569 		napi->gro_count++;
4570 	}
4571 	NAPI_GRO_CB(skb)->count = 1;
4572 	NAPI_GRO_CB(skb)->age = jiffies;
4573 	NAPI_GRO_CB(skb)->last = skb;
4574 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4575 	skb->next = napi->gro_list;
4576 	napi->gro_list = skb;
4577 	ret = GRO_HELD;
4578 
4579 pull:
4580 	grow = skb_gro_offset(skb) - skb_headlen(skb);
4581 	if (grow > 0)
4582 		gro_pull_from_frag0(skb, grow);
4583 ok:
4584 	return ret;
4585 
4586 normal:
4587 	ret = GRO_NORMAL;
4588 	goto pull;
4589 }
4590 
4591 struct packet_offload *gro_find_receive_by_type(__be16 type)
4592 {
4593 	struct list_head *offload_head = &offload_base;
4594 	struct packet_offload *ptype;
4595 
4596 	list_for_each_entry_rcu(ptype, offload_head, list) {
4597 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4598 			continue;
4599 		return ptype;
4600 	}
4601 	return NULL;
4602 }
4603 EXPORT_SYMBOL(gro_find_receive_by_type);
4604 
4605 struct packet_offload *gro_find_complete_by_type(__be16 type)
4606 {
4607 	struct list_head *offload_head = &offload_base;
4608 	struct packet_offload *ptype;
4609 
4610 	list_for_each_entry_rcu(ptype, offload_head, list) {
4611 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4612 			continue;
4613 		return ptype;
4614 	}
4615 	return NULL;
4616 }
4617 EXPORT_SYMBOL(gro_find_complete_by_type);
4618 
4619 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4620 {
4621 	switch (ret) {
4622 	case GRO_NORMAL:
4623 		if (netif_receive_skb_internal(skb))
4624 			ret = GRO_DROP;
4625 		break;
4626 
4627 	case GRO_DROP:
4628 		kfree_skb(skb);
4629 		break;
4630 
4631 	case GRO_MERGED_FREE:
4632 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4633 			skb_dst_drop(skb);
4634 			kmem_cache_free(skbuff_head_cache, skb);
4635 		} else {
4636 			__kfree_skb(skb);
4637 		}
4638 		break;
4639 
4640 	case GRO_HELD:
4641 	case GRO_MERGED:
4642 		break;
4643 	}
4644 
4645 	return ret;
4646 }
4647 
4648 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4649 {
4650 	skb_mark_napi_id(skb, napi);
4651 	trace_napi_gro_receive_entry(skb);
4652 
4653 	skb_gro_reset_offset(skb);
4654 
4655 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4656 }
4657 EXPORT_SYMBOL(napi_gro_receive);
4658 
4659 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4660 {
4661 	if (unlikely(skb->pfmemalloc)) {
4662 		consume_skb(skb);
4663 		return;
4664 	}
4665 	__skb_pull(skb, skb_headlen(skb));
4666 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
4667 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4668 	skb->vlan_tci = 0;
4669 	skb->dev = napi->dev;
4670 	skb->skb_iif = 0;
4671 	skb->encapsulation = 0;
4672 	skb_shinfo(skb)->gso_type = 0;
4673 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4674 
4675 	napi->skb = skb;
4676 }
4677 
4678 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4679 {
4680 	struct sk_buff *skb = napi->skb;
4681 
4682 	if (!skb) {
4683 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4684 		if (skb) {
4685 			napi->skb = skb;
4686 			skb_mark_napi_id(skb, napi);
4687 		}
4688 	}
4689 	return skb;
4690 }
4691 EXPORT_SYMBOL(napi_get_frags);
4692 
4693 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4694 				      struct sk_buff *skb,
4695 				      gro_result_t ret)
4696 {
4697 	switch (ret) {
4698 	case GRO_NORMAL:
4699 	case GRO_HELD:
4700 		__skb_push(skb, ETH_HLEN);
4701 		skb->protocol = eth_type_trans(skb, skb->dev);
4702 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4703 			ret = GRO_DROP;
4704 		break;
4705 
4706 	case GRO_DROP:
4707 	case GRO_MERGED_FREE:
4708 		napi_reuse_skb(napi, skb);
4709 		break;
4710 
4711 	case GRO_MERGED:
4712 		break;
4713 	}
4714 
4715 	return ret;
4716 }
4717 
4718 /* Upper GRO stack assumes network header starts at gro_offset=0
4719  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4720  * We copy ethernet header into skb->data to have a common layout.
4721  */
4722 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4723 {
4724 	struct sk_buff *skb = napi->skb;
4725 	const struct ethhdr *eth;
4726 	unsigned int hlen = sizeof(*eth);
4727 
4728 	napi->skb = NULL;
4729 
4730 	skb_reset_mac_header(skb);
4731 	skb_gro_reset_offset(skb);
4732 
4733 	eth = skb_gro_header_fast(skb, 0);
4734 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
4735 		eth = skb_gro_header_slow(skb, hlen, 0);
4736 		if (unlikely(!eth)) {
4737 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4738 					     __func__, napi->dev->name);
4739 			napi_reuse_skb(napi, skb);
4740 			return NULL;
4741 		}
4742 	} else {
4743 		gro_pull_from_frag0(skb, hlen);
4744 		NAPI_GRO_CB(skb)->frag0 += hlen;
4745 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
4746 	}
4747 	__skb_pull(skb, hlen);
4748 
4749 	/*
4750 	 * This works because the only protocols we care about don't require
4751 	 * special handling.
4752 	 * We'll fix it up properly in napi_frags_finish()
4753 	 */
4754 	skb->protocol = eth->h_proto;
4755 
4756 	return skb;
4757 }
4758 
4759 gro_result_t napi_gro_frags(struct napi_struct *napi)
4760 {
4761 	struct sk_buff *skb = napi_frags_skb(napi);
4762 
4763 	if (!skb)
4764 		return GRO_DROP;
4765 
4766 	trace_napi_gro_frags_entry(skb);
4767 
4768 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4769 }
4770 EXPORT_SYMBOL(napi_gro_frags);
4771 
4772 /* Compute the checksum from gro_offset and return the folded value
4773  * after adding in any pseudo checksum.
4774  */
4775 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4776 {
4777 	__wsum wsum;
4778 	__sum16 sum;
4779 
4780 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4781 
4782 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4783 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4784 	if (likely(!sum)) {
4785 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4786 		    !skb->csum_complete_sw)
4787 			netdev_rx_csum_fault(skb->dev);
4788 	}
4789 
4790 	NAPI_GRO_CB(skb)->csum = wsum;
4791 	NAPI_GRO_CB(skb)->csum_valid = 1;
4792 
4793 	return sum;
4794 }
4795 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4796 
4797 /*
4798  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4799  * Note: called with local irq disabled, but exits with local irq enabled.
4800  */
4801 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4802 {
4803 #ifdef CONFIG_RPS
4804 	struct softnet_data *remsd = sd->rps_ipi_list;
4805 
4806 	if (remsd) {
4807 		sd->rps_ipi_list = NULL;
4808 
4809 		local_irq_enable();
4810 
4811 		/* Send pending IPI's to kick RPS processing on remote cpus. */
4812 		while (remsd) {
4813 			struct softnet_data *next = remsd->rps_ipi_next;
4814 
4815 			if (cpu_online(remsd->cpu))
4816 				smp_call_function_single_async(remsd->cpu,
4817 							   &remsd->csd);
4818 			remsd = next;
4819 		}
4820 	} else
4821 #endif
4822 		local_irq_enable();
4823 }
4824 
4825 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4826 {
4827 #ifdef CONFIG_RPS
4828 	return sd->rps_ipi_list != NULL;
4829 #else
4830 	return false;
4831 #endif
4832 }
4833 
4834 static int process_backlog(struct napi_struct *napi, int quota)
4835 {
4836 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4837 	bool again = true;
4838 	int work = 0;
4839 
4840 	/* Check if we have pending ipi, its better to send them now,
4841 	 * not waiting net_rx_action() end.
4842 	 */
4843 	if (sd_has_rps_ipi_waiting(sd)) {
4844 		local_irq_disable();
4845 		net_rps_action_and_irq_enable(sd);
4846 	}
4847 
4848 	napi->weight = weight_p;
4849 	while (again) {
4850 		struct sk_buff *skb;
4851 
4852 		while ((skb = __skb_dequeue(&sd->process_queue))) {
4853 			rcu_read_lock();
4854 			__netif_receive_skb(skb);
4855 			rcu_read_unlock();
4856 			input_queue_head_incr(sd);
4857 			if (++work >= quota)
4858 				return work;
4859 
4860 		}
4861 
4862 		local_irq_disable();
4863 		rps_lock(sd);
4864 		if (skb_queue_empty(&sd->input_pkt_queue)) {
4865 			/*
4866 			 * Inline a custom version of __napi_complete().
4867 			 * only current cpu owns and manipulates this napi,
4868 			 * and NAPI_STATE_SCHED is the only possible flag set
4869 			 * on backlog.
4870 			 * We can use a plain write instead of clear_bit(),
4871 			 * and we dont need an smp_mb() memory barrier.
4872 			 */
4873 			napi->state = 0;
4874 			again = false;
4875 		} else {
4876 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
4877 						   &sd->process_queue);
4878 		}
4879 		rps_unlock(sd);
4880 		local_irq_enable();
4881 	}
4882 
4883 	return work;
4884 }
4885 
4886 /**
4887  * __napi_schedule - schedule for receive
4888  * @n: entry to schedule
4889  *
4890  * The entry's receive function will be scheduled to run.
4891  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4892  */
4893 void __napi_schedule(struct napi_struct *n)
4894 {
4895 	unsigned long flags;
4896 
4897 	local_irq_save(flags);
4898 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4899 	local_irq_restore(flags);
4900 }
4901 EXPORT_SYMBOL(__napi_schedule);
4902 
4903 /**
4904  * __napi_schedule_irqoff - schedule for receive
4905  * @n: entry to schedule
4906  *
4907  * Variant of __napi_schedule() assuming hard irqs are masked
4908  */
4909 void __napi_schedule_irqoff(struct napi_struct *n)
4910 {
4911 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4912 }
4913 EXPORT_SYMBOL(__napi_schedule_irqoff);
4914 
4915 void __napi_complete(struct napi_struct *n)
4916 {
4917 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4918 
4919 	list_del_init(&n->poll_list);
4920 	smp_mb__before_atomic();
4921 	clear_bit(NAPI_STATE_SCHED, &n->state);
4922 }
4923 EXPORT_SYMBOL(__napi_complete);
4924 
4925 void napi_complete_done(struct napi_struct *n, int work_done)
4926 {
4927 	unsigned long flags;
4928 
4929 	/*
4930 	 * don't let napi dequeue from the cpu poll list
4931 	 * just in case its running on a different cpu
4932 	 */
4933 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4934 		return;
4935 
4936 	if (n->gro_list) {
4937 		unsigned long timeout = 0;
4938 
4939 		if (work_done)
4940 			timeout = n->dev->gro_flush_timeout;
4941 
4942 		if (timeout)
4943 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
4944 				      HRTIMER_MODE_REL_PINNED);
4945 		else
4946 			napi_gro_flush(n, false);
4947 	}
4948 	if (likely(list_empty(&n->poll_list))) {
4949 		WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4950 	} else {
4951 		/* If n->poll_list is not empty, we need to mask irqs */
4952 		local_irq_save(flags);
4953 		__napi_complete(n);
4954 		local_irq_restore(flags);
4955 	}
4956 }
4957 EXPORT_SYMBOL(napi_complete_done);
4958 
4959 /* must be called under rcu_read_lock(), as we dont take a reference */
4960 static struct napi_struct *napi_by_id(unsigned int napi_id)
4961 {
4962 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4963 	struct napi_struct *napi;
4964 
4965 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4966 		if (napi->napi_id == napi_id)
4967 			return napi;
4968 
4969 	return NULL;
4970 }
4971 
4972 #if defined(CONFIG_NET_RX_BUSY_POLL)
4973 #define BUSY_POLL_BUDGET 8
4974 bool sk_busy_loop(struct sock *sk, int nonblock)
4975 {
4976 	unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
4977 	int (*busy_poll)(struct napi_struct *dev);
4978 	struct napi_struct *napi;
4979 	int rc = false;
4980 
4981 	rcu_read_lock();
4982 
4983 	napi = napi_by_id(sk->sk_napi_id);
4984 	if (!napi)
4985 		goto out;
4986 
4987 	/* Note: ndo_busy_poll method is optional in linux-4.5 */
4988 	busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
4989 
4990 	do {
4991 		rc = 0;
4992 		local_bh_disable();
4993 		if (busy_poll) {
4994 			rc = busy_poll(napi);
4995 		} else if (napi_schedule_prep(napi)) {
4996 			void *have = netpoll_poll_lock(napi);
4997 
4998 			if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
4999 				rc = napi->poll(napi, BUSY_POLL_BUDGET);
5000 				trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5001 				if (rc == BUSY_POLL_BUDGET) {
5002 					napi_complete_done(napi, rc);
5003 					napi_schedule(napi);
5004 				}
5005 			}
5006 			netpoll_poll_unlock(have);
5007 		}
5008 		if (rc > 0)
5009 			__NET_ADD_STATS(sock_net(sk),
5010 					LINUX_MIB_BUSYPOLLRXPACKETS, rc);
5011 		local_bh_enable();
5012 
5013 		if (rc == LL_FLUSH_FAILED)
5014 			break; /* permanent failure */
5015 
5016 		cpu_relax();
5017 	} while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) &&
5018 		 !need_resched() && !busy_loop_timeout(end_time));
5019 
5020 	rc = !skb_queue_empty(&sk->sk_receive_queue);
5021 out:
5022 	rcu_read_unlock();
5023 	return rc;
5024 }
5025 EXPORT_SYMBOL(sk_busy_loop);
5026 
5027 #endif /* CONFIG_NET_RX_BUSY_POLL */
5028 
5029 void napi_hash_add(struct napi_struct *napi)
5030 {
5031 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5032 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5033 		return;
5034 
5035 	spin_lock(&napi_hash_lock);
5036 
5037 	/* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5038 	do {
5039 		if (unlikely(++napi_gen_id < NR_CPUS + 1))
5040 			napi_gen_id = NR_CPUS + 1;
5041 	} while (napi_by_id(napi_gen_id));
5042 	napi->napi_id = napi_gen_id;
5043 
5044 	hlist_add_head_rcu(&napi->napi_hash_node,
5045 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5046 
5047 	spin_unlock(&napi_hash_lock);
5048 }
5049 EXPORT_SYMBOL_GPL(napi_hash_add);
5050 
5051 /* Warning : caller is responsible to make sure rcu grace period
5052  * is respected before freeing memory containing @napi
5053  */
5054 bool napi_hash_del(struct napi_struct *napi)
5055 {
5056 	bool rcu_sync_needed = false;
5057 
5058 	spin_lock(&napi_hash_lock);
5059 
5060 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5061 		rcu_sync_needed = true;
5062 		hlist_del_rcu(&napi->napi_hash_node);
5063 	}
5064 	spin_unlock(&napi_hash_lock);
5065 	return rcu_sync_needed;
5066 }
5067 EXPORT_SYMBOL_GPL(napi_hash_del);
5068 
5069 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5070 {
5071 	struct napi_struct *napi;
5072 
5073 	napi = container_of(timer, struct napi_struct, timer);
5074 	if (napi->gro_list)
5075 		napi_schedule(napi);
5076 
5077 	return HRTIMER_NORESTART;
5078 }
5079 
5080 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5081 		    int (*poll)(struct napi_struct *, int), int weight)
5082 {
5083 	INIT_LIST_HEAD(&napi->poll_list);
5084 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5085 	napi->timer.function = napi_watchdog;
5086 	napi->gro_count = 0;
5087 	napi->gro_list = NULL;
5088 	napi->skb = NULL;
5089 	napi->poll = poll;
5090 	if (weight > NAPI_POLL_WEIGHT)
5091 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5092 			    weight, dev->name);
5093 	napi->weight = weight;
5094 	list_add(&napi->dev_list, &dev->napi_list);
5095 	napi->dev = dev;
5096 #ifdef CONFIG_NETPOLL
5097 	spin_lock_init(&napi->poll_lock);
5098 	napi->poll_owner = -1;
5099 #endif
5100 	set_bit(NAPI_STATE_SCHED, &napi->state);
5101 	napi_hash_add(napi);
5102 }
5103 EXPORT_SYMBOL(netif_napi_add);
5104 
5105 void napi_disable(struct napi_struct *n)
5106 {
5107 	might_sleep();
5108 	set_bit(NAPI_STATE_DISABLE, &n->state);
5109 
5110 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5111 		msleep(1);
5112 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5113 		msleep(1);
5114 
5115 	hrtimer_cancel(&n->timer);
5116 
5117 	clear_bit(NAPI_STATE_DISABLE, &n->state);
5118 }
5119 EXPORT_SYMBOL(napi_disable);
5120 
5121 /* Must be called in process context */
5122 void netif_napi_del(struct napi_struct *napi)
5123 {
5124 	might_sleep();
5125 	if (napi_hash_del(napi))
5126 		synchronize_net();
5127 	list_del_init(&napi->dev_list);
5128 	napi_free_frags(napi);
5129 
5130 	kfree_skb_list(napi->gro_list);
5131 	napi->gro_list = NULL;
5132 	napi->gro_count = 0;
5133 }
5134 EXPORT_SYMBOL(netif_napi_del);
5135 
5136 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5137 {
5138 	void *have;
5139 	int work, weight;
5140 
5141 	list_del_init(&n->poll_list);
5142 
5143 	have = netpoll_poll_lock(n);
5144 
5145 	weight = n->weight;
5146 
5147 	/* This NAPI_STATE_SCHED test is for avoiding a race
5148 	 * with netpoll's poll_napi().  Only the entity which
5149 	 * obtains the lock and sees NAPI_STATE_SCHED set will
5150 	 * actually make the ->poll() call.  Therefore we avoid
5151 	 * accidentally calling ->poll() when NAPI is not scheduled.
5152 	 */
5153 	work = 0;
5154 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5155 		work = n->poll(n, weight);
5156 		trace_napi_poll(n, work, weight);
5157 	}
5158 
5159 	WARN_ON_ONCE(work > weight);
5160 
5161 	if (likely(work < weight))
5162 		goto out_unlock;
5163 
5164 	/* Drivers must not modify the NAPI state if they
5165 	 * consume the entire weight.  In such cases this code
5166 	 * still "owns" the NAPI instance and therefore can
5167 	 * move the instance around on the list at-will.
5168 	 */
5169 	if (unlikely(napi_disable_pending(n))) {
5170 		napi_complete(n);
5171 		goto out_unlock;
5172 	}
5173 
5174 	if (n->gro_list) {
5175 		/* flush too old packets
5176 		 * If HZ < 1000, flush all packets.
5177 		 */
5178 		napi_gro_flush(n, HZ >= 1000);
5179 	}
5180 
5181 	/* Some drivers may have called napi_schedule
5182 	 * prior to exhausting their budget.
5183 	 */
5184 	if (unlikely(!list_empty(&n->poll_list))) {
5185 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5186 			     n->dev ? n->dev->name : "backlog");
5187 		goto out_unlock;
5188 	}
5189 
5190 	list_add_tail(&n->poll_list, repoll);
5191 
5192 out_unlock:
5193 	netpoll_poll_unlock(have);
5194 
5195 	return work;
5196 }
5197 
5198 static __latent_entropy void net_rx_action(struct softirq_action *h)
5199 {
5200 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5201 	unsigned long time_limit = jiffies + 2;
5202 	int budget = netdev_budget;
5203 	LIST_HEAD(list);
5204 	LIST_HEAD(repoll);
5205 
5206 	local_irq_disable();
5207 	list_splice_init(&sd->poll_list, &list);
5208 	local_irq_enable();
5209 
5210 	for (;;) {
5211 		struct napi_struct *n;
5212 
5213 		if (list_empty(&list)) {
5214 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5215 				return;
5216 			break;
5217 		}
5218 
5219 		n = list_first_entry(&list, struct napi_struct, poll_list);
5220 		budget -= napi_poll(n, &repoll);
5221 
5222 		/* If softirq window is exhausted then punt.
5223 		 * Allow this to run for 2 jiffies since which will allow
5224 		 * an average latency of 1.5/HZ.
5225 		 */
5226 		if (unlikely(budget <= 0 ||
5227 			     time_after_eq(jiffies, time_limit))) {
5228 			sd->time_squeeze++;
5229 			break;
5230 		}
5231 	}
5232 
5233 	__kfree_skb_flush();
5234 	local_irq_disable();
5235 
5236 	list_splice_tail_init(&sd->poll_list, &list);
5237 	list_splice_tail(&repoll, &list);
5238 	list_splice(&list, &sd->poll_list);
5239 	if (!list_empty(&sd->poll_list))
5240 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5241 
5242 	net_rps_action_and_irq_enable(sd);
5243 }
5244 
5245 struct netdev_adjacent {
5246 	struct net_device *dev;
5247 
5248 	/* upper master flag, there can only be one master device per list */
5249 	bool master;
5250 
5251 	/* counter for the number of times this device was added to us */
5252 	u16 ref_nr;
5253 
5254 	/* private field for the users */
5255 	void *private;
5256 
5257 	struct list_head list;
5258 	struct rcu_head rcu;
5259 };
5260 
5261 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5262 						 struct list_head *adj_list)
5263 {
5264 	struct netdev_adjacent *adj;
5265 
5266 	list_for_each_entry(adj, adj_list, list) {
5267 		if (adj->dev == adj_dev)
5268 			return adj;
5269 	}
5270 	return NULL;
5271 }
5272 
5273 /**
5274  * netdev_has_upper_dev - Check if device is linked to an upper device
5275  * @dev: device
5276  * @upper_dev: upper device to check
5277  *
5278  * Find out if a device is linked to specified upper device and return true
5279  * in case it is. Note that this checks only immediate upper device,
5280  * not through a complete stack of devices. The caller must hold the RTNL lock.
5281  */
5282 bool netdev_has_upper_dev(struct net_device *dev,
5283 			  struct net_device *upper_dev)
5284 {
5285 	ASSERT_RTNL();
5286 
5287 	return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
5288 }
5289 EXPORT_SYMBOL(netdev_has_upper_dev);
5290 
5291 /**
5292  * netdev_has_any_upper_dev - Check if device is linked to some device
5293  * @dev: device
5294  *
5295  * Find out if a device is linked to an upper device and return true in case
5296  * it is. The caller must hold the RTNL lock.
5297  */
5298 static bool netdev_has_any_upper_dev(struct net_device *dev)
5299 {
5300 	ASSERT_RTNL();
5301 
5302 	return !list_empty(&dev->all_adj_list.upper);
5303 }
5304 
5305 /**
5306  * netdev_master_upper_dev_get - Get master upper device
5307  * @dev: device
5308  *
5309  * Find a master upper device and return pointer to it or NULL in case
5310  * it's not there. The caller must hold the RTNL lock.
5311  */
5312 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5313 {
5314 	struct netdev_adjacent *upper;
5315 
5316 	ASSERT_RTNL();
5317 
5318 	if (list_empty(&dev->adj_list.upper))
5319 		return NULL;
5320 
5321 	upper = list_first_entry(&dev->adj_list.upper,
5322 				 struct netdev_adjacent, list);
5323 	if (likely(upper->master))
5324 		return upper->dev;
5325 	return NULL;
5326 }
5327 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5328 
5329 void *netdev_adjacent_get_private(struct list_head *adj_list)
5330 {
5331 	struct netdev_adjacent *adj;
5332 
5333 	adj = list_entry(adj_list, struct netdev_adjacent, list);
5334 
5335 	return adj->private;
5336 }
5337 EXPORT_SYMBOL(netdev_adjacent_get_private);
5338 
5339 /**
5340  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5341  * @dev: device
5342  * @iter: list_head ** of the current position
5343  *
5344  * Gets the next device from the dev's upper list, starting from iter
5345  * position. The caller must hold RCU read lock.
5346  */
5347 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5348 						 struct list_head **iter)
5349 {
5350 	struct netdev_adjacent *upper;
5351 
5352 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5353 
5354 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5355 
5356 	if (&upper->list == &dev->adj_list.upper)
5357 		return NULL;
5358 
5359 	*iter = &upper->list;
5360 
5361 	return upper->dev;
5362 }
5363 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5364 
5365 /**
5366  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
5367  * @dev: device
5368  * @iter: list_head ** of the current position
5369  *
5370  * Gets the next device from the dev's upper list, starting from iter
5371  * position. The caller must hold RCU read lock.
5372  */
5373 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5374 						     struct list_head **iter)
5375 {
5376 	struct netdev_adjacent *upper;
5377 
5378 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5379 
5380 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5381 
5382 	if (&upper->list == &dev->all_adj_list.upper)
5383 		return NULL;
5384 
5385 	*iter = &upper->list;
5386 
5387 	return upper->dev;
5388 }
5389 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
5390 
5391 /**
5392  * netdev_lower_get_next_private - Get the next ->private from the
5393  *				   lower neighbour list
5394  * @dev: device
5395  * @iter: list_head ** of the current position
5396  *
5397  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5398  * list, starting from iter position. The caller must hold either hold the
5399  * RTNL lock or its own locking that guarantees that the neighbour lower
5400  * list will remain unchanged.
5401  */
5402 void *netdev_lower_get_next_private(struct net_device *dev,
5403 				    struct list_head **iter)
5404 {
5405 	struct netdev_adjacent *lower;
5406 
5407 	lower = list_entry(*iter, struct netdev_adjacent, list);
5408 
5409 	if (&lower->list == &dev->adj_list.lower)
5410 		return NULL;
5411 
5412 	*iter = lower->list.next;
5413 
5414 	return lower->private;
5415 }
5416 EXPORT_SYMBOL(netdev_lower_get_next_private);
5417 
5418 /**
5419  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5420  *				       lower neighbour list, RCU
5421  *				       variant
5422  * @dev: device
5423  * @iter: list_head ** of the current position
5424  *
5425  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5426  * list, starting from iter position. The caller must hold RCU read lock.
5427  */
5428 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5429 					struct list_head **iter)
5430 {
5431 	struct netdev_adjacent *lower;
5432 
5433 	WARN_ON_ONCE(!rcu_read_lock_held());
5434 
5435 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5436 
5437 	if (&lower->list == &dev->adj_list.lower)
5438 		return NULL;
5439 
5440 	*iter = &lower->list;
5441 
5442 	return lower->private;
5443 }
5444 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5445 
5446 /**
5447  * netdev_lower_get_next - Get the next device from the lower neighbour
5448  *                         list
5449  * @dev: device
5450  * @iter: list_head ** of the current position
5451  *
5452  * Gets the next netdev_adjacent from the dev's lower neighbour
5453  * list, starting from iter position. The caller must hold RTNL lock or
5454  * its own locking that guarantees that the neighbour lower
5455  * list will remain unchanged.
5456  */
5457 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5458 {
5459 	struct netdev_adjacent *lower;
5460 
5461 	lower = list_entry(*iter, struct netdev_adjacent, list);
5462 
5463 	if (&lower->list == &dev->adj_list.lower)
5464 		return NULL;
5465 
5466 	*iter = lower->list.next;
5467 
5468 	return lower->dev;
5469 }
5470 EXPORT_SYMBOL(netdev_lower_get_next);
5471 
5472 /**
5473  * netdev_all_lower_get_next - Get the next device from all lower neighbour list
5474  * @dev: device
5475  * @iter: list_head ** of the current position
5476  *
5477  * Gets the next netdev_adjacent from the dev's all lower neighbour
5478  * list, starting from iter position. The caller must hold RTNL lock or
5479  * its own locking that guarantees that the neighbour all lower
5480  * list will remain unchanged.
5481  */
5482 struct net_device *netdev_all_lower_get_next(struct net_device *dev, struct list_head **iter)
5483 {
5484 	struct netdev_adjacent *lower;
5485 
5486 	lower = list_entry(*iter, struct netdev_adjacent, list);
5487 
5488 	if (&lower->list == &dev->all_adj_list.lower)
5489 		return NULL;
5490 
5491 	*iter = lower->list.next;
5492 
5493 	return lower->dev;
5494 }
5495 EXPORT_SYMBOL(netdev_all_lower_get_next);
5496 
5497 /**
5498  * netdev_all_lower_get_next_rcu - Get the next device from all
5499  *				   lower neighbour list, RCU variant
5500  * @dev: device
5501  * @iter: list_head ** of the current position
5502  *
5503  * Gets the next netdev_adjacent from the dev's all lower neighbour
5504  * list, starting from iter position. The caller must hold RCU read lock.
5505  */
5506 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
5507 						 struct list_head **iter)
5508 {
5509 	struct netdev_adjacent *lower;
5510 
5511 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5512 
5513 	if (&lower->list == &dev->all_adj_list.lower)
5514 		return NULL;
5515 
5516 	*iter = &lower->list;
5517 
5518 	return lower->dev;
5519 }
5520 EXPORT_SYMBOL(netdev_all_lower_get_next_rcu);
5521 
5522 /**
5523  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5524  *				       lower neighbour list, RCU
5525  *				       variant
5526  * @dev: device
5527  *
5528  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5529  * list. The caller must hold RCU read lock.
5530  */
5531 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5532 {
5533 	struct netdev_adjacent *lower;
5534 
5535 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
5536 			struct netdev_adjacent, list);
5537 	if (lower)
5538 		return lower->private;
5539 	return NULL;
5540 }
5541 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5542 
5543 /**
5544  * netdev_master_upper_dev_get_rcu - Get master upper device
5545  * @dev: device
5546  *
5547  * Find a master upper device and return pointer to it or NULL in case
5548  * it's not there. The caller must hold the RCU read lock.
5549  */
5550 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5551 {
5552 	struct netdev_adjacent *upper;
5553 
5554 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
5555 				       struct netdev_adjacent, list);
5556 	if (upper && likely(upper->master))
5557 		return upper->dev;
5558 	return NULL;
5559 }
5560 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5561 
5562 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5563 			      struct net_device *adj_dev,
5564 			      struct list_head *dev_list)
5565 {
5566 	char linkname[IFNAMSIZ+7];
5567 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
5568 		"upper_%s" : "lower_%s", adj_dev->name);
5569 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5570 				 linkname);
5571 }
5572 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5573 			       char *name,
5574 			       struct list_head *dev_list)
5575 {
5576 	char linkname[IFNAMSIZ+7];
5577 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
5578 		"upper_%s" : "lower_%s", name);
5579 	sysfs_remove_link(&(dev->dev.kobj), linkname);
5580 }
5581 
5582 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5583 						 struct net_device *adj_dev,
5584 						 struct list_head *dev_list)
5585 {
5586 	return (dev_list == &dev->adj_list.upper ||
5587 		dev_list == &dev->adj_list.lower) &&
5588 		net_eq(dev_net(dev), dev_net(adj_dev));
5589 }
5590 
5591 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5592 					struct net_device *adj_dev,
5593 					u16 ref_nr,
5594 					struct list_head *dev_list,
5595 					void *private, bool master)
5596 {
5597 	struct netdev_adjacent *adj;
5598 	int ret;
5599 
5600 	adj = __netdev_find_adj(adj_dev, dev_list);
5601 
5602 	if (adj) {
5603 		adj->ref_nr += ref_nr;
5604 		return 0;
5605 	}
5606 
5607 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5608 	if (!adj)
5609 		return -ENOMEM;
5610 
5611 	adj->dev = adj_dev;
5612 	adj->master = master;
5613 	adj->ref_nr = ref_nr;
5614 	adj->private = private;
5615 	dev_hold(adj_dev);
5616 
5617 	pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5618 		 adj_dev->name, dev->name, adj_dev->name);
5619 
5620 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5621 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5622 		if (ret)
5623 			goto free_adj;
5624 	}
5625 
5626 	/* Ensure that master link is always the first item in list. */
5627 	if (master) {
5628 		ret = sysfs_create_link(&(dev->dev.kobj),
5629 					&(adj_dev->dev.kobj), "master");
5630 		if (ret)
5631 			goto remove_symlinks;
5632 
5633 		list_add_rcu(&adj->list, dev_list);
5634 	} else {
5635 		list_add_tail_rcu(&adj->list, dev_list);
5636 	}
5637 
5638 	return 0;
5639 
5640 remove_symlinks:
5641 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5642 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5643 free_adj:
5644 	kfree(adj);
5645 	dev_put(adj_dev);
5646 
5647 	return ret;
5648 }
5649 
5650 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5651 					 struct net_device *adj_dev,
5652 					 u16 ref_nr,
5653 					 struct list_head *dev_list)
5654 {
5655 	struct netdev_adjacent *adj;
5656 
5657 	adj = __netdev_find_adj(adj_dev, dev_list);
5658 
5659 	if (!adj) {
5660 		pr_err("tried to remove device %s from %s\n",
5661 		       dev->name, adj_dev->name);
5662 		BUG();
5663 	}
5664 
5665 	if (adj->ref_nr > ref_nr) {
5666 		pr_debug("%s to %s ref_nr-%d = %d\n", dev->name, adj_dev->name,
5667 			 ref_nr, adj->ref_nr-ref_nr);
5668 		adj->ref_nr -= ref_nr;
5669 		return;
5670 	}
5671 
5672 	if (adj->master)
5673 		sysfs_remove_link(&(dev->dev.kobj), "master");
5674 
5675 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5676 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5677 
5678 	list_del_rcu(&adj->list);
5679 	pr_debug("dev_put for %s, because link removed from %s to %s\n",
5680 		 adj_dev->name, dev->name, adj_dev->name);
5681 	dev_put(adj_dev);
5682 	kfree_rcu(adj, rcu);
5683 }
5684 
5685 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5686 					    struct net_device *upper_dev,
5687 					    u16 ref_nr,
5688 					    struct list_head *up_list,
5689 					    struct list_head *down_list,
5690 					    void *private, bool master)
5691 {
5692 	int ret;
5693 
5694 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, ref_nr, up_list,
5695 					   private, master);
5696 	if (ret)
5697 		return ret;
5698 
5699 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, ref_nr, down_list,
5700 					   private, false);
5701 	if (ret) {
5702 		__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5703 		return ret;
5704 	}
5705 
5706 	return 0;
5707 }
5708 
5709 static int __netdev_adjacent_dev_link(struct net_device *dev,
5710 				      struct net_device *upper_dev,
5711 				      u16 ref_nr)
5712 {
5713 	return __netdev_adjacent_dev_link_lists(dev, upper_dev, ref_nr,
5714 						&dev->all_adj_list.upper,
5715 						&upper_dev->all_adj_list.lower,
5716 						NULL, false);
5717 }
5718 
5719 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5720 					       struct net_device *upper_dev,
5721 					       u16 ref_nr,
5722 					       struct list_head *up_list,
5723 					       struct list_head *down_list)
5724 {
5725 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5726 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5727 }
5728 
5729 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5730 					 struct net_device *upper_dev,
5731 					 u16 ref_nr)
5732 {
5733 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, ref_nr,
5734 					   &dev->all_adj_list.upper,
5735 					   &upper_dev->all_adj_list.lower);
5736 }
5737 
5738 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5739 						struct net_device *upper_dev,
5740 						void *private, bool master)
5741 {
5742 	int ret = __netdev_adjacent_dev_link(dev, upper_dev, 1);
5743 
5744 	if (ret)
5745 		return ret;
5746 
5747 	ret = __netdev_adjacent_dev_link_lists(dev, upper_dev, 1,
5748 					       &dev->adj_list.upper,
5749 					       &upper_dev->adj_list.lower,
5750 					       private, master);
5751 	if (ret) {
5752 		__netdev_adjacent_dev_unlink(dev, upper_dev, 1);
5753 		return ret;
5754 	}
5755 
5756 	return 0;
5757 }
5758 
5759 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5760 						   struct net_device *upper_dev)
5761 {
5762 	__netdev_adjacent_dev_unlink(dev, upper_dev, 1);
5763 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
5764 					   &dev->adj_list.upper,
5765 					   &upper_dev->adj_list.lower);
5766 }
5767 
5768 static int __netdev_upper_dev_link(struct net_device *dev,
5769 				   struct net_device *upper_dev, bool master,
5770 				   void *upper_priv, void *upper_info)
5771 {
5772 	struct netdev_notifier_changeupper_info changeupper_info;
5773 	struct netdev_adjacent *i, *j, *to_i, *to_j;
5774 	int ret = 0;
5775 
5776 	ASSERT_RTNL();
5777 
5778 	if (dev == upper_dev)
5779 		return -EBUSY;
5780 
5781 	/* To prevent loops, check if dev is not upper device to upper_dev. */
5782 	if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
5783 		return -EBUSY;
5784 
5785 	if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
5786 		return -EEXIST;
5787 
5788 	if (master && netdev_master_upper_dev_get(dev))
5789 		return -EBUSY;
5790 
5791 	changeupper_info.upper_dev = upper_dev;
5792 	changeupper_info.master = master;
5793 	changeupper_info.linking = true;
5794 	changeupper_info.upper_info = upper_info;
5795 
5796 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5797 					    &changeupper_info.info);
5798 	ret = notifier_to_errno(ret);
5799 	if (ret)
5800 		return ret;
5801 
5802 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5803 						   master);
5804 	if (ret)
5805 		return ret;
5806 
5807 	/* Now that we linked these devs, make all the upper_dev's
5808 	 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5809 	 * versa, and don't forget the devices itself. All of these
5810 	 * links are non-neighbours.
5811 	 */
5812 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5813 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5814 			pr_debug("Interlinking %s with %s, non-neighbour\n",
5815 				 i->dev->name, j->dev->name);
5816 			ret = __netdev_adjacent_dev_link(i->dev, j->dev, i->ref_nr);
5817 			if (ret)
5818 				goto rollback_mesh;
5819 		}
5820 	}
5821 
5822 	/* add dev to every upper_dev's upper device */
5823 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5824 		pr_debug("linking %s's upper device %s with %s\n",
5825 			 upper_dev->name, i->dev->name, dev->name);
5826 		ret = __netdev_adjacent_dev_link(dev, i->dev, i->ref_nr);
5827 		if (ret)
5828 			goto rollback_upper_mesh;
5829 	}
5830 
5831 	/* add upper_dev to every dev's lower device */
5832 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5833 		pr_debug("linking %s's lower device %s with %s\n", dev->name,
5834 			 i->dev->name, upper_dev->name);
5835 		ret = __netdev_adjacent_dev_link(i->dev, upper_dev, i->ref_nr);
5836 		if (ret)
5837 			goto rollback_lower_mesh;
5838 	}
5839 
5840 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5841 					    &changeupper_info.info);
5842 	ret = notifier_to_errno(ret);
5843 	if (ret)
5844 		goto rollback_lower_mesh;
5845 
5846 	return 0;
5847 
5848 rollback_lower_mesh:
5849 	to_i = i;
5850 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5851 		if (i == to_i)
5852 			break;
5853 		__netdev_adjacent_dev_unlink(i->dev, upper_dev, i->ref_nr);
5854 	}
5855 
5856 	i = NULL;
5857 
5858 rollback_upper_mesh:
5859 	to_i = i;
5860 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5861 		if (i == to_i)
5862 			break;
5863 		__netdev_adjacent_dev_unlink(dev, i->dev, i->ref_nr);
5864 	}
5865 
5866 	i = j = NULL;
5867 
5868 rollback_mesh:
5869 	to_i = i;
5870 	to_j = j;
5871 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5872 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5873 			if (i == to_i && j == to_j)
5874 				break;
5875 			__netdev_adjacent_dev_unlink(i->dev, j->dev, i->ref_nr);
5876 		}
5877 		if (i == to_i)
5878 			break;
5879 	}
5880 
5881 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5882 
5883 	return ret;
5884 }
5885 
5886 /**
5887  * netdev_upper_dev_link - Add a link to the upper device
5888  * @dev: device
5889  * @upper_dev: new upper device
5890  *
5891  * Adds a link to device which is upper to this one. The caller must hold
5892  * the RTNL lock. On a failure a negative errno code is returned.
5893  * On success the reference counts are adjusted and the function
5894  * returns zero.
5895  */
5896 int netdev_upper_dev_link(struct net_device *dev,
5897 			  struct net_device *upper_dev)
5898 {
5899 	return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
5900 }
5901 EXPORT_SYMBOL(netdev_upper_dev_link);
5902 
5903 /**
5904  * netdev_master_upper_dev_link - Add a master link to the upper device
5905  * @dev: device
5906  * @upper_dev: new upper device
5907  * @upper_priv: upper device private
5908  * @upper_info: upper info to be passed down via notifier
5909  *
5910  * Adds a link to device which is upper to this one. In this case, only
5911  * one master upper device can be linked, although other non-master devices
5912  * might be linked as well. The caller must hold the RTNL lock.
5913  * On a failure a negative errno code is returned. On success the reference
5914  * counts are adjusted and the function returns zero.
5915  */
5916 int netdev_master_upper_dev_link(struct net_device *dev,
5917 				 struct net_device *upper_dev,
5918 				 void *upper_priv, void *upper_info)
5919 {
5920 	return __netdev_upper_dev_link(dev, upper_dev, true,
5921 				       upper_priv, upper_info);
5922 }
5923 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5924 
5925 /**
5926  * netdev_upper_dev_unlink - Removes a link to upper device
5927  * @dev: device
5928  * @upper_dev: new upper device
5929  *
5930  * Removes a link to device which is upper to this one. The caller must hold
5931  * the RTNL lock.
5932  */
5933 void netdev_upper_dev_unlink(struct net_device *dev,
5934 			     struct net_device *upper_dev)
5935 {
5936 	struct netdev_notifier_changeupper_info changeupper_info;
5937 	struct netdev_adjacent *i, *j;
5938 	ASSERT_RTNL();
5939 
5940 	changeupper_info.upper_dev = upper_dev;
5941 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5942 	changeupper_info.linking = false;
5943 
5944 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5945 				      &changeupper_info.info);
5946 
5947 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5948 
5949 	/* Here is the tricky part. We must remove all dev's lower
5950 	 * devices from all upper_dev's upper devices and vice
5951 	 * versa, to maintain the graph relationship.
5952 	 */
5953 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5954 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5955 			__netdev_adjacent_dev_unlink(i->dev, j->dev, i->ref_nr);
5956 
5957 	/* remove also the devices itself from lower/upper device
5958 	 * list
5959 	 */
5960 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5961 		__netdev_adjacent_dev_unlink(i->dev, upper_dev, i->ref_nr);
5962 
5963 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5964 		__netdev_adjacent_dev_unlink(dev, i->dev, i->ref_nr);
5965 
5966 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5967 				      &changeupper_info.info);
5968 }
5969 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5970 
5971 /**
5972  * netdev_bonding_info_change - Dispatch event about slave change
5973  * @dev: device
5974  * @bonding_info: info to dispatch
5975  *
5976  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5977  * The caller must hold the RTNL lock.
5978  */
5979 void netdev_bonding_info_change(struct net_device *dev,
5980 				struct netdev_bonding_info *bonding_info)
5981 {
5982 	struct netdev_notifier_bonding_info	info;
5983 
5984 	memcpy(&info.bonding_info, bonding_info,
5985 	       sizeof(struct netdev_bonding_info));
5986 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5987 				      &info.info);
5988 }
5989 EXPORT_SYMBOL(netdev_bonding_info_change);
5990 
5991 static void netdev_adjacent_add_links(struct net_device *dev)
5992 {
5993 	struct netdev_adjacent *iter;
5994 
5995 	struct net *net = dev_net(dev);
5996 
5997 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5998 		if (!net_eq(net, dev_net(iter->dev)))
5999 			continue;
6000 		netdev_adjacent_sysfs_add(iter->dev, dev,
6001 					  &iter->dev->adj_list.lower);
6002 		netdev_adjacent_sysfs_add(dev, iter->dev,
6003 					  &dev->adj_list.upper);
6004 	}
6005 
6006 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6007 		if (!net_eq(net, dev_net(iter->dev)))
6008 			continue;
6009 		netdev_adjacent_sysfs_add(iter->dev, dev,
6010 					  &iter->dev->adj_list.upper);
6011 		netdev_adjacent_sysfs_add(dev, iter->dev,
6012 					  &dev->adj_list.lower);
6013 	}
6014 }
6015 
6016 static void netdev_adjacent_del_links(struct net_device *dev)
6017 {
6018 	struct netdev_adjacent *iter;
6019 
6020 	struct net *net = dev_net(dev);
6021 
6022 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6023 		if (!net_eq(net, dev_net(iter->dev)))
6024 			continue;
6025 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6026 					  &iter->dev->adj_list.lower);
6027 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6028 					  &dev->adj_list.upper);
6029 	}
6030 
6031 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6032 		if (!net_eq(net, dev_net(iter->dev)))
6033 			continue;
6034 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6035 					  &iter->dev->adj_list.upper);
6036 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6037 					  &dev->adj_list.lower);
6038 	}
6039 }
6040 
6041 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6042 {
6043 	struct netdev_adjacent *iter;
6044 
6045 	struct net *net = dev_net(dev);
6046 
6047 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6048 		if (!net_eq(net, dev_net(iter->dev)))
6049 			continue;
6050 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6051 					  &iter->dev->adj_list.lower);
6052 		netdev_adjacent_sysfs_add(iter->dev, dev,
6053 					  &iter->dev->adj_list.lower);
6054 	}
6055 
6056 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6057 		if (!net_eq(net, dev_net(iter->dev)))
6058 			continue;
6059 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6060 					  &iter->dev->adj_list.upper);
6061 		netdev_adjacent_sysfs_add(iter->dev, dev,
6062 					  &iter->dev->adj_list.upper);
6063 	}
6064 }
6065 
6066 void *netdev_lower_dev_get_private(struct net_device *dev,
6067 				   struct net_device *lower_dev)
6068 {
6069 	struct netdev_adjacent *lower;
6070 
6071 	if (!lower_dev)
6072 		return NULL;
6073 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6074 	if (!lower)
6075 		return NULL;
6076 
6077 	return lower->private;
6078 }
6079 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6080 
6081 
6082 int dev_get_nest_level(struct net_device *dev)
6083 {
6084 	struct net_device *lower = NULL;
6085 	struct list_head *iter;
6086 	int max_nest = -1;
6087 	int nest;
6088 
6089 	ASSERT_RTNL();
6090 
6091 	netdev_for_each_lower_dev(dev, lower, iter) {
6092 		nest = dev_get_nest_level(lower);
6093 		if (max_nest < nest)
6094 			max_nest = nest;
6095 	}
6096 
6097 	return max_nest + 1;
6098 }
6099 EXPORT_SYMBOL(dev_get_nest_level);
6100 
6101 /**
6102  * netdev_lower_change - Dispatch event about lower device state change
6103  * @lower_dev: device
6104  * @lower_state_info: state to dispatch
6105  *
6106  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6107  * The caller must hold the RTNL lock.
6108  */
6109 void netdev_lower_state_changed(struct net_device *lower_dev,
6110 				void *lower_state_info)
6111 {
6112 	struct netdev_notifier_changelowerstate_info changelowerstate_info;
6113 
6114 	ASSERT_RTNL();
6115 	changelowerstate_info.lower_state_info = lower_state_info;
6116 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6117 				      &changelowerstate_info.info);
6118 }
6119 EXPORT_SYMBOL(netdev_lower_state_changed);
6120 
6121 int netdev_default_l2upper_neigh_construct(struct net_device *dev,
6122 					   struct neighbour *n)
6123 {
6124 	struct net_device *lower_dev, *stop_dev;
6125 	struct list_head *iter;
6126 	int err;
6127 
6128 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
6129 		if (!lower_dev->netdev_ops->ndo_neigh_construct)
6130 			continue;
6131 		err = lower_dev->netdev_ops->ndo_neigh_construct(lower_dev, n);
6132 		if (err) {
6133 			stop_dev = lower_dev;
6134 			goto rollback;
6135 		}
6136 	}
6137 	return 0;
6138 
6139 rollback:
6140 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
6141 		if (lower_dev == stop_dev)
6142 			break;
6143 		if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6144 			continue;
6145 		lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6146 	}
6147 	return err;
6148 }
6149 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_construct);
6150 
6151 void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
6152 					  struct neighbour *n)
6153 {
6154 	struct net_device *lower_dev;
6155 	struct list_head *iter;
6156 
6157 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
6158 		if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6159 			continue;
6160 		lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6161 	}
6162 }
6163 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_destroy);
6164 
6165 static void dev_change_rx_flags(struct net_device *dev, int flags)
6166 {
6167 	const struct net_device_ops *ops = dev->netdev_ops;
6168 
6169 	if (ops->ndo_change_rx_flags)
6170 		ops->ndo_change_rx_flags(dev, flags);
6171 }
6172 
6173 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6174 {
6175 	unsigned int old_flags = dev->flags;
6176 	kuid_t uid;
6177 	kgid_t gid;
6178 
6179 	ASSERT_RTNL();
6180 
6181 	dev->flags |= IFF_PROMISC;
6182 	dev->promiscuity += inc;
6183 	if (dev->promiscuity == 0) {
6184 		/*
6185 		 * Avoid overflow.
6186 		 * If inc causes overflow, untouch promisc and return error.
6187 		 */
6188 		if (inc < 0)
6189 			dev->flags &= ~IFF_PROMISC;
6190 		else {
6191 			dev->promiscuity -= inc;
6192 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6193 				dev->name);
6194 			return -EOVERFLOW;
6195 		}
6196 	}
6197 	if (dev->flags != old_flags) {
6198 		pr_info("device %s %s promiscuous mode\n",
6199 			dev->name,
6200 			dev->flags & IFF_PROMISC ? "entered" : "left");
6201 		if (audit_enabled) {
6202 			current_uid_gid(&uid, &gid);
6203 			audit_log(current->audit_context, GFP_ATOMIC,
6204 				AUDIT_ANOM_PROMISCUOUS,
6205 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6206 				dev->name, (dev->flags & IFF_PROMISC),
6207 				(old_flags & IFF_PROMISC),
6208 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
6209 				from_kuid(&init_user_ns, uid),
6210 				from_kgid(&init_user_ns, gid),
6211 				audit_get_sessionid(current));
6212 		}
6213 
6214 		dev_change_rx_flags(dev, IFF_PROMISC);
6215 	}
6216 	if (notify)
6217 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
6218 	return 0;
6219 }
6220 
6221 /**
6222  *	dev_set_promiscuity	- update promiscuity count on a device
6223  *	@dev: device
6224  *	@inc: modifier
6225  *
6226  *	Add or remove promiscuity from a device. While the count in the device
6227  *	remains above zero the interface remains promiscuous. Once it hits zero
6228  *	the device reverts back to normal filtering operation. A negative inc
6229  *	value is used to drop promiscuity on the device.
6230  *	Return 0 if successful or a negative errno code on error.
6231  */
6232 int dev_set_promiscuity(struct net_device *dev, int inc)
6233 {
6234 	unsigned int old_flags = dev->flags;
6235 	int err;
6236 
6237 	err = __dev_set_promiscuity(dev, inc, true);
6238 	if (err < 0)
6239 		return err;
6240 	if (dev->flags != old_flags)
6241 		dev_set_rx_mode(dev);
6242 	return err;
6243 }
6244 EXPORT_SYMBOL(dev_set_promiscuity);
6245 
6246 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6247 {
6248 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6249 
6250 	ASSERT_RTNL();
6251 
6252 	dev->flags |= IFF_ALLMULTI;
6253 	dev->allmulti += inc;
6254 	if (dev->allmulti == 0) {
6255 		/*
6256 		 * Avoid overflow.
6257 		 * If inc causes overflow, untouch allmulti and return error.
6258 		 */
6259 		if (inc < 0)
6260 			dev->flags &= ~IFF_ALLMULTI;
6261 		else {
6262 			dev->allmulti -= inc;
6263 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6264 				dev->name);
6265 			return -EOVERFLOW;
6266 		}
6267 	}
6268 	if (dev->flags ^ old_flags) {
6269 		dev_change_rx_flags(dev, IFF_ALLMULTI);
6270 		dev_set_rx_mode(dev);
6271 		if (notify)
6272 			__dev_notify_flags(dev, old_flags,
6273 					   dev->gflags ^ old_gflags);
6274 	}
6275 	return 0;
6276 }
6277 
6278 /**
6279  *	dev_set_allmulti	- update allmulti count on a device
6280  *	@dev: device
6281  *	@inc: modifier
6282  *
6283  *	Add or remove reception of all multicast frames to a device. While the
6284  *	count in the device remains above zero the interface remains listening
6285  *	to all interfaces. Once it hits zero the device reverts back to normal
6286  *	filtering operation. A negative @inc value is used to drop the counter
6287  *	when releasing a resource needing all multicasts.
6288  *	Return 0 if successful or a negative errno code on error.
6289  */
6290 
6291 int dev_set_allmulti(struct net_device *dev, int inc)
6292 {
6293 	return __dev_set_allmulti(dev, inc, true);
6294 }
6295 EXPORT_SYMBOL(dev_set_allmulti);
6296 
6297 /*
6298  *	Upload unicast and multicast address lists to device and
6299  *	configure RX filtering. When the device doesn't support unicast
6300  *	filtering it is put in promiscuous mode while unicast addresses
6301  *	are present.
6302  */
6303 void __dev_set_rx_mode(struct net_device *dev)
6304 {
6305 	const struct net_device_ops *ops = dev->netdev_ops;
6306 
6307 	/* dev_open will call this function so the list will stay sane. */
6308 	if (!(dev->flags&IFF_UP))
6309 		return;
6310 
6311 	if (!netif_device_present(dev))
6312 		return;
6313 
6314 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6315 		/* Unicast addresses changes may only happen under the rtnl,
6316 		 * therefore calling __dev_set_promiscuity here is safe.
6317 		 */
6318 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6319 			__dev_set_promiscuity(dev, 1, false);
6320 			dev->uc_promisc = true;
6321 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6322 			__dev_set_promiscuity(dev, -1, false);
6323 			dev->uc_promisc = false;
6324 		}
6325 	}
6326 
6327 	if (ops->ndo_set_rx_mode)
6328 		ops->ndo_set_rx_mode(dev);
6329 }
6330 
6331 void dev_set_rx_mode(struct net_device *dev)
6332 {
6333 	netif_addr_lock_bh(dev);
6334 	__dev_set_rx_mode(dev);
6335 	netif_addr_unlock_bh(dev);
6336 }
6337 
6338 /**
6339  *	dev_get_flags - get flags reported to userspace
6340  *	@dev: device
6341  *
6342  *	Get the combination of flag bits exported through APIs to userspace.
6343  */
6344 unsigned int dev_get_flags(const struct net_device *dev)
6345 {
6346 	unsigned int flags;
6347 
6348 	flags = (dev->flags & ~(IFF_PROMISC |
6349 				IFF_ALLMULTI |
6350 				IFF_RUNNING |
6351 				IFF_LOWER_UP |
6352 				IFF_DORMANT)) |
6353 		(dev->gflags & (IFF_PROMISC |
6354 				IFF_ALLMULTI));
6355 
6356 	if (netif_running(dev)) {
6357 		if (netif_oper_up(dev))
6358 			flags |= IFF_RUNNING;
6359 		if (netif_carrier_ok(dev))
6360 			flags |= IFF_LOWER_UP;
6361 		if (netif_dormant(dev))
6362 			flags |= IFF_DORMANT;
6363 	}
6364 
6365 	return flags;
6366 }
6367 EXPORT_SYMBOL(dev_get_flags);
6368 
6369 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6370 {
6371 	unsigned int old_flags = dev->flags;
6372 	int ret;
6373 
6374 	ASSERT_RTNL();
6375 
6376 	/*
6377 	 *	Set the flags on our device.
6378 	 */
6379 
6380 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6381 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6382 			       IFF_AUTOMEDIA)) |
6383 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6384 				    IFF_ALLMULTI));
6385 
6386 	/*
6387 	 *	Load in the correct multicast list now the flags have changed.
6388 	 */
6389 
6390 	if ((old_flags ^ flags) & IFF_MULTICAST)
6391 		dev_change_rx_flags(dev, IFF_MULTICAST);
6392 
6393 	dev_set_rx_mode(dev);
6394 
6395 	/*
6396 	 *	Have we downed the interface. We handle IFF_UP ourselves
6397 	 *	according to user attempts to set it, rather than blindly
6398 	 *	setting it.
6399 	 */
6400 
6401 	ret = 0;
6402 	if ((old_flags ^ flags) & IFF_UP)
6403 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6404 
6405 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
6406 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
6407 		unsigned int old_flags = dev->flags;
6408 
6409 		dev->gflags ^= IFF_PROMISC;
6410 
6411 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
6412 			if (dev->flags != old_flags)
6413 				dev_set_rx_mode(dev);
6414 	}
6415 
6416 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6417 	   is important. Some (broken) drivers set IFF_PROMISC, when
6418 	   IFF_ALLMULTI is requested not asking us and not reporting.
6419 	 */
6420 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6421 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6422 
6423 		dev->gflags ^= IFF_ALLMULTI;
6424 		__dev_set_allmulti(dev, inc, false);
6425 	}
6426 
6427 	return ret;
6428 }
6429 
6430 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6431 			unsigned int gchanges)
6432 {
6433 	unsigned int changes = dev->flags ^ old_flags;
6434 
6435 	if (gchanges)
6436 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6437 
6438 	if (changes & IFF_UP) {
6439 		if (dev->flags & IFF_UP)
6440 			call_netdevice_notifiers(NETDEV_UP, dev);
6441 		else
6442 			call_netdevice_notifiers(NETDEV_DOWN, dev);
6443 	}
6444 
6445 	if (dev->flags & IFF_UP &&
6446 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6447 		struct netdev_notifier_change_info change_info;
6448 
6449 		change_info.flags_changed = changes;
6450 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6451 					      &change_info.info);
6452 	}
6453 }
6454 
6455 /**
6456  *	dev_change_flags - change device settings
6457  *	@dev: device
6458  *	@flags: device state flags
6459  *
6460  *	Change settings on device based state flags. The flags are
6461  *	in the userspace exported format.
6462  */
6463 int dev_change_flags(struct net_device *dev, unsigned int flags)
6464 {
6465 	int ret;
6466 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6467 
6468 	ret = __dev_change_flags(dev, flags);
6469 	if (ret < 0)
6470 		return ret;
6471 
6472 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6473 	__dev_notify_flags(dev, old_flags, changes);
6474 	return ret;
6475 }
6476 EXPORT_SYMBOL(dev_change_flags);
6477 
6478 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6479 {
6480 	const struct net_device_ops *ops = dev->netdev_ops;
6481 
6482 	if (ops->ndo_change_mtu)
6483 		return ops->ndo_change_mtu(dev, new_mtu);
6484 
6485 	dev->mtu = new_mtu;
6486 	return 0;
6487 }
6488 
6489 /**
6490  *	dev_set_mtu - Change maximum transfer unit
6491  *	@dev: device
6492  *	@new_mtu: new transfer unit
6493  *
6494  *	Change the maximum transfer size of the network device.
6495  */
6496 int dev_set_mtu(struct net_device *dev, int new_mtu)
6497 {
6498 	int err, orig_mtu;
6499 
6500 	if (new_mtu == dev->mtu)
6501 		return 0;
6502 
6503 	/*	MTU must be positive.	 */
6504 	if (new_mtu < 0)
6505 		return -EINVAL;
6506 
6507 	if (!netif_device_present(dev))
6508 		return -ENODEV;
6509 
6510 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6511 	err = notifier_to_errno(err);
6512 	if (err)
6513 		return err;
6514 
6515 	orig_mtu = dev->mtu;
6516 	err = __dev_set_mtu(dev, new_mtu);
6517 
6518 	if (!err) {
6519 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6520 		err = notifier_to_errno(err);
6521 		if (err) {
6522 			/* setting mtu back and notifying everyone again,
6523 			 * so that they have a chance to revert changes.
6524 			 */
6525 			__dev_set_mtu(dev, orig_mtu);
6526 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6527 		}
6528 	}
6529 	return err;
6530 }
6531 EXPORT_SYMBOL(dev_set_mtu);
6532 
6533 /**
6534  *	dev_set_group - Change group this device belongs to
6535  *	@dev: device
6536  *	@new_group: group this device should belong to
6537  */
6538 void dev_set_group(struct net_device *dev, int new_group)
6539 {
6540 	dev->group = new_group;
6541 }
6542 EXPORT_SYMBOL(dev_set_group);
6543 
6544 /**
6545  *	dev_set_mac_address - Change Media Access Control Address
6546  *	@dev: device
6547  *	@sa: new address
6548  *
6549  *	Change the hardware (MAC) address of the device
6550  */
6551 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6552 {
6553 	const struct net_device_ops *ops = dev->netdev_ops;
6554 	int err;
6555 
6556 	if (!ops->ndo_set_mac_address)
6557 		return -EOPNOTSUPP;
6558 	if (sa->sa_family != dev->type)
6559 		return -EINVAL;
6560 	if (!netif_device_present(dev))
6561 		return -ENODEV;
6562 	err = ops->ndo_set_mac_address(dev, sa);
6563 	if (err)
6564 		return err;
6565 	dev->addr_assign_type = NET_ADDR_SET;
6566 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6567 	add_device_randomness(dev->dev_addr, dev->addr_len);
6568 	return 0;
6569 }
6570 EXPORT_SYMBOL(dev_set_mac_address);
6571 
6572 /**
6573  *	dev_change_carrier - Change device carrier
6574  *	@dev: device
6575  *	@new_carrier: new value
6576  *
6577  *	Change device carrier
6578  */
6579 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6580 {
6581 	const struct net_device_ops *ops = dev->netdev_ops;
6582 
6583 	if (!ops->ndo_change_carrier)
6584 		return -EOPNOTSUPP;
6585 	if (!netif_device_present(dev))
6586 		return -ENODEV;
6587 	return ops->ndo_change_carrier(dev, new_carrier);
6588 }
6589 EXPORT_SYMBOL(dev_change_carrier);
6590 
6591 /**
6592  *	dev_get_phys_port_id - Get device physical port ID
6593  *	@dev: device
6594  *	@ppid: port ID
6595  *
6596  *	Get device physical port ID
6597  */
6598 int dev_get_phys_port_id(struct net_device *dev,
6599 			 struct netdev_phys_item_id *ppid)
6600 {
6601 	const struct net_device_ops *ops = dev->netdev_ops;
6602 
6603 	if (!ops->ndo_get_phys_port_id)
6604 		return -EOPNOTSUPP;
6605 	return ops->ndo_get_phys_port_id(dev, ppid);
6606 }
6607 EXPORT_SYMBOL(dev_get_phys_port_id);
6608 
6609 /**
6610  *	dev_get_phys_port_name - Get device physical port name
6611  *	@dev: device
6612  *	@name: port name
6613  *	@len: limit of bytes to copy to name
6614  *
6615  *	Get device physical port name
6616  */
6617 int dev_get_phys_port_name(struct net_device *dev,
6618 			   char *name, size_t len)
6619 {
6620 	const struct net_device_ops *ops = dev->netdev_ops;
6621 
6622 	if (!ops->ndo_get_phys_port_name)
6623 		return -EOPNOTSUPP;
6624 	return ops->ndo_get_phys_port_name(dev, name, len);
6625 }
6626 EXPORT_SYMBOL(dev_get_phys_port_name);
6627 
6628 /**
6629  *	dev_change_proto_down - update protocol port state information
6630  *	@dev: device
6631  *	@proto_down: new value
6632  *
6633  *	This info can be used by switch drivers to set the phys state of the
6634  *	port.
6635  */
6636 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6637 {
6638 	const struct net_device_ops *ops = dev->netdev_ops;
6639 
6640 	if (!ops->ndo_change_proto_down)
6641 		return -EOPNOTSUPP;
6642 	if (!netif_device_present(dev))
6643 		return -ENODEV;
6644 	return ops->ndo_change_proto_down(dev, proto_down);
6645 }
6646 EXPORT_SYMBOL(dev_change_proto_down);
6647 
6648 /**
6649  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
6650  *	@dev: device
6651  *	@fd: new program fd or negative value to clear
6652  *
6653  *	Set or clear a bpf program for a device
6654  */
6655 int dev_change_xdp_fd(struct net_device *dev, int fd)
6656 {
6657 	const struct net_device_ops *ops = dev->netdev_ops;
6658 	struct bpf_prog *prog = NULL;
6659 	struct netdev_xdp xdp = {};
6660 	int err;
6661 
6662 	if (!ops->ndo_xdp)
6663 		return -EOPNOTSUPP;
6664 	if (fd >= 0) {
6665 		prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6666 		if (IS_ERR(prog))
6667 			return PTR_ERR(prog);
6668 	}
6669 
6670 	xdp.command = XDP_SETUP_PROG;
6671 	xdp.prog = prog;
6672 	err = ops->ndo_xdp(dev, &xdp);
6673 	if (err < 0 && prog)
6674 		bpf_prog_put(prog);
6675 
6676 	return err;
6677 }
6678 EXPORT_SYMBOL(dev_change_xdp_fd);
6679 
6680 /**
6681  *	dev_new_index	-	allocate an ifindex
6682  *	@net: the applicable net namespace
6683  *
6684  *	Returns a suitable unique value for a new device interface
6685  *	number.  The caller must hold the rtnl semaphore or the
6686  *	dev_base_lock to be sure it remains unique.
6687  */
6688 static int dev_new_index(struct net *net)
6689 {
6690 	int ifindex = net->ifindex;
6691 	for (;;) {
6692 		if (++ifindex <= 0)
6693 			ifindex = 1;
6694 		if (!__dev_get_by_index(net, ifindex))
6695 			return net->ifindex = ifindex;
6696 	}
6697 }
6698 
6699 /* Delayed registration/unregisteration */
6700 static LIST_HEAD(net_todo_list);
6701 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6702 
6703 static void net_set_todo(struct net_device *dev)
6704 {
6705 	list_add_tail(&dev->todo_list, &net_todo_list);
6706 	dev_net(dev)->dev_unreg_count++;
6707 }
6708 
6709 static void rollback_registered_many(struct list_head *head)
6710 {
6711 	struct net_device *dev, *tmp;
6712 	LIST_HEAD(close_head);
6713 
6714 	BUG_ON(dev_boot_phase);
6715 	ASSERT_RTNL();
6716 
6717 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6718 		/* Some devices call without registering
6719 		 * for initialization unwind. Remove those
6720 		 * devices and proceed with the remaining.
6721 		 */
6722 		if (dev->reg_state == NETREG_UNINITIALIZED) {
6723 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6724 				 dev->name, dev);
6725 
6726 			WARN_ON(1);
6727 			list_del(&dev->unreg_list);
6728 			continue;
6729 		}
6730 		dev->dismantle = true;
6731 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
6732 	}
6733 
6734 	/* If device is running, close it first. */
6735 	list_for_each_entry(dev, head, unreg_list)
6736 		list_add_tail(&dev->close_list, &close_head);
6737 	dev_close_many(&close_head, true);
6738 
6739 	list_for_each_entry(dev, head, unreg_list) {
6740 		/* And unlink it from device chain. */
6741 		unlist_netdevice(dev);
6742 
6743 		dev->reg_state = NETREG_UNREGISTERING;
6744 	}
6745 	flush_all_backlogs();
6746 
6747 	synchronize_net();
6748 
6749 	list_for_each_entry(dev, head, unreg_list) {
6750 		struct sk_buff *skb = NULL;
6751 
6752 		/* Shutdown queueing discipline. */
6753 		dev_shutdown(dev);
6754 
6755 
6756 		/* Notify protocols, that we are about to destroy
6757 		   this device. They should clean all the things.
6758 		*/
6759 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6760 
6761 		if (!dev->rtnl_link_ops ||
6762 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6763 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6764 						     GFP_KERNEL);
6765 
6766 		/*
6767 		 *	Flush the unicast and multicast chains
6768 		 */
6769 		dev_uc_flush(dev);
6770 		dev_mc_flush(dev);
6771 
6772 		if (dev->netdev_ops->ndo_uninit)
6773 			dev->netdev_ops->ndo_uninit(dev);
6774 
6775 		if (skb)
6776 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6777 
6778 		/* Notifier chain MUST detach us all upper devices. */
6779 		WARN_ON(netdev_has_any_upper_dev(dev));
6780 
6781 		/* Remove entries from kobject tree */
6782 		netdev_unregister_kobject(dev);
6783 #ifdef CONFIG_XPS
6784 		/* Remove XPS queueing entries */
6785 		netif_reset_xps_queues_gt(dev, 0);
6786 #endif
6787 	}
6788 
6789 	synchronize_net();
6790 
6791 	list_for_each_entry(dev, head, unreg_list)
6792 		dev_put(dev);
6793 }
6794 
6795 static void rollback_registered(struct net_device *dev)
6796 {
6797 	LIST_HEAD(single);
6798 
6799 	list_add(&dev->unreg_list, &single);
6800 	rollback_registered_many(&single);
6801 	list_del(&single);
6802 }
6803 
6804 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6805 	struct net_device *upper, netdev_features_t features)
6806 {
6807 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6808 	netdev_features_t feature;
6809 	int feature_bit;
6810 
6811 	for_each_netdev_feature(&upper_disables, feature_bit) {
6812 		feature = __NETIF_F_BIT(feature_bit);
6813 		if (!(upper->wanted_features & feature)
6814 		    && (features & feature)) {
6815 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6816 				   &feature, upper->name);
6817 			features &= ~feature;
6818 		}
6819 	}
6820 
6821 	return features;
6822 }
6823 
6824 static void netdev_sync_lower_features(struct net_device *upper,
6825 	struct net_device *lower, netdev_features_t features)
6826 {
6827 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6828 	netdev_features_t feature;
6829 	int feature_bit;
6830 
6831 	for_each_netdev_feature(&upper_disables, feature_bit) {
6832 		feature = __NETIF_F_BIT(feature_bit);
6833 		if (!(features & feature) && (lower->features & feature)) {
6834 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6835 				   &feature, lower->name);
6836 			lower->wanted_features &= ~feature;
6837 			netdev_update_features(lower);
6838 
6839 			if (unlikely(lower->features & feature))
6840 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6841 					    &feature, lower->name);
6842 		}
6843 	}
6844 }
6845 
6846 static netdev_features_t netdev_fix_features(struct net_device *dev,
6847 	netdev_features_t features)
6848 {
6849 	/* Fix illegal checksum combinations */
6850 	if ((features & NETIF_F_HW_CSUM) &&
6851 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6852 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6853 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6854 	}
6855 
6856 	/* TSO requires that SG is present as well. */
6857 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6858 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6859 		features &= ~NETIF_F_ALL_TSO;
6860 	}
6861 
6862 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6863 					!(features & NETIF_F_IP_CSUM)) {
6864 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6865 		features &= ~NETIF_F_TSO;
6866 		features &= ~NETIF_F_TSO_ECN;
6867 	}
6868 
6869 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6870 					 !(features & NETIF_F_IPV6_CSUM)) {
6871 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6872 		features &= ~NETIF_F_TSO6;
6873 	}
6874 
6875 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6876 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6877 		features &= ~NETIF_F_TSO_MANGLEID;
6878 
6879 	/* TSO ECN requires that TSO is present as well. */
6880 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6881 		features &= ~NETIF_F_TSO_ECN;
6882 
6883 	/* Software GSO depends on SG. */
6884 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6885 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6886 		features &= ~NETIF_F_GSO;
6887 	}
6888 
6889 	/* UFO needs SG and checksumming */
6890 	if (features & NETIF_F_UFO) {
6891 		/* maybe split UFO into V4 and V6? */
6892 		if (!(features & NETIF_F_HW_CSUM) &&
6893 		    ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6894 		     (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6895 			netdev_dbg(dev,
6896 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
6897 			features &= ~NETIF_F_UFO;
6898 		}
6899 
6900 		if (!(features & NETIF_F_SG)) {
6901 			netdev_dbg(dev,
6902 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6903 			features &= ~NETIF_F_UFO;
6904 		}
6905 	}
6906 
6907 	/* GSO partial features require GSO partial be set */
6908 	if ((features & dev->gso_partial_features) &&
6909 	    !(features & NETIF_F_GSO_PARTIAL)) {
6910 		netdev_dbg(dev,
6911 			   "Dropping partially supported GSO features since no GSO partial.\n");
6912 		features &= ~dev->gso_partial_features;
6913 	}
6914 
6915 #ifdef CONFIG_NET_RX_BUSY_POLL
6916 	if (dev->netdev_ops->ndo_busy_poll)
6917 		features |= NETIF_F_BUSY_POLL;
6918 	else
6919 #endif
6920 		features &= ~NETIF_F_BUSY_POLL;
6921 
6922 	return features;
6923 }
6924 
6925 int __netdev_update_features(struct net_device *dev)
6926 {
6927 	struct net_device *upper, *lower;
6928 	netdev_features_t features;
6929 	struct list_head *iter;
6930 	int err = -1;
6931 
6932 	ASSERT_RTNL();
6933 
6934 	features = netdev_get_wanted_features(dev);
6935 
6936 	if (dev->netdev_ops->ndo_fix_features)
6937 		features = dev->netdev_ops->ndo_fix_features(dev, features);
6938 
6939 	/* driver might be less strict about feature dependencies */
6940 	features = netdev_fix_features(dev, features);
6941 
6942 	/* some features can't be enabled if they're off an an upper device */
6943 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
6944 		features = netdev_sync_upper_features(dev, upper, features);
6945 
6946 	if (dev->features == features)
6947 		goto sync_lower;
6948 
6949 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6950 		&dev->features, &features);
6951 
6952 	if (dev->netdev_ops->ndo_set_features)
6953 		err = dev->netdev_ops->ndo_set_features(dev, features);
6954 	else
6955 		err = 0;
6956 
6957 	if (unlikely(err < 0)) {
6958 		netdev_err(dev,
6959 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
6960 			err, &features, &dev->features);
6961 		/* return non-0 since some features might have changed and
6962 		 * it's better to fire a spurious notification than miss it
6963 		 */
6964 		return -1;
6965 	}
6966 
6967 sync_lower:
6968 	/* some features must be disabled on lower devices when disabled
6969 	 * on an upper device (think: bonding master or bridge)
6970 	 */
6971 	netdev_for_each_lower_dev(dev, lower, iter)
6972 		netdev_sync_lower_features(dev, lower, features);
6973 
6974 	if (!err)
6975 		dev->features = features;
6976 
6977 	return err < 0 ? 0 : 1;
6978 }
6979 
6980 /**
6981  *	netdev_update_features - recalculate device features
6982  *	@dev: the device to check
6983  *
6984  *	Recalculate dev->features set and send notifications if it
6985  *	has changed. Should be called after driver or hardware dependent
6986  *	conditions might have changed that influence the features.
6987  */
6988 void netdev_update_features(struct net_device *dev)
6989 {
6990 	if (__netdev_update_features(dev))
6991 		netdev_features_change(dev);
6992 }
6993 EXPORT_SYMBOL(netdev_update_features);
6994 
6995 /**
6996  *	netdev_change_features - recalculate device features
6997  *	@dev: the device to check
6998  *
6999  *	Recalculate dev->features set and send notifications even
7000  *	if they have not changed. Should be called instead of
7001  *	netdev_update_features() if also dev->vlan_features might
7002  *	have changed to allow the changes to be propagated to stacked
7003  *	VLAN devices.
7004  */
7005 void netdev_change_features(struct net_device *dev)
7006 {
7007 	__netdev_update_features(dev);
7008 	netdev_features_change(dev);
7009 }
7010 EXPORT_SYMBOL(netdev_change_features);
7011 
7012 /**
7013  *	netif_stacked_transfer_operstate -	transfer operstate
7014  *	@rootdev: the root or lower level device to transfer state from
7015  *	@dev: the device to transfer operstate to
7016  *
7017  *	Transfer operational state from root to device. This is normally
7018  *	called when a stacking relationship exists between the root
7019  *	device and the device(a leaf device).
7020  */
7021 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7022 					struct net_device *dev)
7023 {
7024 	if (rootdev->operstate == IF_OPER_DORMANT)
7025 		netif_dormant_on(dev);
7026 	else
7027 		netif_dormant_off(dev);
7028 
7029 	if (netif_carrier_ok(rootdev)) {
7030 		if (!netif_carrier_ok(dev))
7031 			netif_carrier_on(dev);
7032 	} else {
7033 		if (netif_carrier_ok(dev))
7034 			netif_carrier_off(dev);
7035 	}
7036 }
7037 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7038 
7039 #ifdef CONFIG_SYSFS
7040 static int netif_alloc_rx_queues(struct net_device *dev)
7041 {
7042 	unsigned int i, count = dev->num_rx_queues;
7043 	struct netdev_rx_queue *rx;
7044 	size_t sz = count * sizeof(*rx);
7045 
7046 	BUG_ON(count < 1);
7047 
7048 	rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7049 	if (!rx) {
7050 		rx = vzalloc(sz);
7051 		if (!rx)
7052 			return -ENOMEM;
7053 	}
7054 	dev->_rx = rx;
7055 
7056 	for (i = 0; i < count; i++)
7057 		rx[i].dev = dev;
7058 	return 0;
7059 }
7060 #endif
7061 
7062 static void netdev_init_one_queue(struct net_device *dev,
7063 				  struct netdev_queue *queue, void *_unused)
7064 {
7065 	/* Initialize queue lock */
7066 	spin_lock_init(&queue->_xmit_lock);
7067 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7068 	queue->xmit_lock_owner = -1;
7069 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7070 	queue->dev = dev;
7071 #ifdef CONFIG_BQL
7072 	dql_init(&queue->dql, HZ);
7073 #endif
7074 }
7075 
7076 static void netif_free_tx_queues(struct net_device *dev)
7077 {
7078 	kvfree(dev->_tx);
7079 }
7080 
7081 static int netif_alloc_netdev_queues(struct net_device *dev)
7082 {
7083 	unsigned int count = dev->num_tx_queues;
7084 	struct netdev_queue *tx;
7085 	size_t sz = count * sizeof(*tx);
7086 
7087 	if (count < 1 || count > 0xffff)
7088 		return -EINVAL;
7089 
7090 	tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7091 	if (!tx) {
7092 		tx = vzalloc(sz);
7093 		if (!tx)
7094 			return -ENOMEM;
7095 	}
7096 	dev->_tx = tx;
7097 
7098 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7099 	spin_lock_init(&dev->tx_global_lock);
7100 
7101 	return 0;
7102 }
7103 
7104 void netif_tx_stop_all_queues(struct net_device *dev)
7105 {
7106 	unsigned int i;
7107 
7108 	for (i = 0; i < dev->num_tx_queues; i++) {
7109 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7110 		netif_tx_stop_queue(txq);
7111 	}
7112 }
7113 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7114 
7115 /**
7116  *	register_netdevice	- register a network device
7117  *	@dev: device to register
7118  *
7119  *	Take a completed network device structure and add it to the kernel
7120  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7121  *	chain. 0 is returned on success. A negative errno code is returned
7122  *	on a failure to set up the device, or if the name is a duplicate.
7123  *
7124  *	Callers must hold the rtnl semaphore. You may want
7125  *	register_netdev() instead of this.
7126  *
7127  *	BUGS:
7128  *	The locking appears insufficient to guarantee two parallel registers
7129  *	will not get the same name.
7130  */
7131 
7132 int register_netdevice(struct net_device *dev)
7133 {
7134 	int ret;
7135 	struct net *net = dev_net(dev);
7136 
7137 	BUG_ON(dev_boot_phase);
7138 	ASSERT_RTNL();
7139 
7140 	might_sleep();
7141 
7142 	/* When net_device's are persistent, this will be fatal. */
7143 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7144 	BUG_ON(!net);
7145 
7146 	spin_lock_init(&dev->addr_list_lock);
7147 	netdev_set_addr_lockdep_class(dev);
7148 
7149 	ret = dev_get_valid_name(net, dev, dev->name);
7150 	if (ret < 0)
7151 		goto out;
7152 
7153 	/* Init, if this function is available */
7154 	if (dev->netdev_ops->ndo_init) {
7155 		ret = dev->netdev_ops->ndo_init(dev);
7156 		if (ret) {
7157 			if (ret > 0)
7158 				ret = -EIO;
7159 			goto out;
7160 		}
7161 	}
7162 
7163 	if (((dev->hw_features | dev->features) &
7164 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
7165 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7166 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7167 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7168 		ret = -EINVAL;
7169 		goto err_uninit;
7170 	}
7171 
7172 	ret = -EBUSY;
7173 	if (!dev->ifindex)
7174 		dev->ifindex = dev_new_index(net);
7175 	else if (__dev_get_by_index(net, dev->ifindex))
7176 		goto err_uninit;
7177 
7178 	/* Transfer changeable features to wanted_features and enable
7179 	 * software offloads (GSO and GRO).
7180 	 */
7181 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
7182 	dev->features |= NETIF_F_SOFT_FEATURES;
7183 	dev->wanted_features = dev->features & dev->hw_features;
7184 
7185 	if (!(dev->flags & IFF_LOOPBACK))
7186 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
7187 
7188 	/* If IPv4 TCP segmentation offload is supported we should also
7189 	 * allow the device to enable segmenting the frame with the option
7190 	 * of ignoring a static IP ID value.  This doesn't enable the
7191 	 * feature itself but allows the user to enable it later.
7192 	 */
7193 	if (dev->hw_features & NETIF_F_TSO)
7194 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
7195 	if (dev->vlan_features & NETIF_F_TSO)
7196 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7197 	if (dev->mpls_features & NETIF_F_TSO)
7198 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7199 	if (dev->hw_enc_features & NETIF_F_TSO)
7200 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7201 
7202 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7203 	 */
7204 	dev->vlan_features |= NETIF_F_HIGHDMA;
7205 
7206 	/* Make NETIF_F_SG inheritable to tunnel devices.
7207 	 */
7208 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7209 
7210 	/* Make NETIF_F_SG inheritable to MPLS.
7211 	 */
7212 	dev->mpls_features |= NETIF_F_SG;
7213 
7214 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7215 	ret = notifier_to_errno(ret);
7216 	if (ret)
7217 		goto err_uninit;
7218 
7219 	ret = netdev_register_kobject(dev);
7220 	if (ret)
7221 		goto err_uninit;
7222 	dev->reg_state = NETREG_REGISTERED;
7223 
7224 	__netdev_update_features(dev);
7225 
7226 	/*
7227 	 *	Default initial state at registry is that the
7228 	 *	device is present.
7229 	 */
7230 
7231 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7232 
7233 	linkwatch_init_dev(dev);
7234 
7235 	dev_init_scheduler(dev);
7236 	dev_hold(dev);
7237 	list_netdevice(dev);
7238 	add_device_randomness(dev->dev_addr, dev->addr_len);
7239 
7240 	/* If the device has permanent device address, driver should
7241 	 * set dev_addr and also addr_assign_type should be set to
7242 	 * NET_ADDR_PERM (default value).
7243 	 */
7244 	if (dev->addr_assign_type == NET_ADDR_PERM)
7245 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7246 
7247 	/* Notify protocols, that a new device appeared. */
7248 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7249 	ret = notifier_to_errno(ret);
7250 	if (ret) {
7251 		rollback_registered(dev);
7252 		dev->reg_state = NETREG_UNREGISTERED;
7253 	}
7254 	/*
7255 	 *	Prevent userspace races by waiting until the network
7256 	 *	device is fully setup before sending notifications.
7257 	 */
7258 	if (!dev->rtnl_link_ops ||
7259 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7260 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7261 
7262 out:
7263 	return ret;
7264 
7265 err_uninit:
7266 	if (dev->netdev_ops->ndo_uninit)
7267 		dev->netdev_ops->ndo_uninit(dev);
7268 	goto out;
7269 }
7270 EXPORT_SYMBOL(register_netdevice);
7271 
7272 /**
7273  *	init_dummy_netdev	- init a dummy network device for NAPI
7274  *	@dev: device to init
7275  *
7276  *	This takes a network device structure and initialize the minimum
7277  *	amount of fields so it can be used to schedule NAPI polls without
7278  *	registering a full blown interface. This is to be used by drivers
7279  *	that need to tie several hardware interfaces to a single NAPI
7280  *	poll scheduler due to HW limitations.
7281  */
7282 int init_dummy_netdev(struct net_device *dev)
7283 {
7284 	/* Clear everything. Note we don't initialize spinlocks
7285 	 * are they aren't supposed to be taken by any of the
7286 	 * NAPI code and this dummy netdev is supposed to be
7287 	 * only ever used for NAPI polls
7288 	 */
7289 	memset(dev, 0, sizeof(struct net_device));
7290 
7291 	/* make sure we BUG if trying to hit standard
7292 	 * register/unregister code path
7293 	 */
7294 	dev->reg_state = NETREG_DUMMY;
7295 
7296 	/* NAPI wants this */
7297 	INIT_LIST_HEAD(&dev->napi_list);
7298 
7299 	/* a dummy interface is started by default */
7300 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7301 	set_bit(__LINK_STATE_START, &dev->state);
7302 
7303 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
7304 	 * because users of this 'device' dont need to change
7305 	 * its refcount.
7306 	 */
7307 
7308 	return 0;
7309 }
7310 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7311 
7312 
7313 /**
7314  *	register_netdev	- register a network device
7315  *	@dev: device to register
7316  *
7317  *	Take a completed network device structure and add it to the kernel
7318  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7319  *	chain. 0 is returned on success. A negative errno code is returned
7320  *	on a failure to set up the device, or if the name is a duplicate.
7321  *
7322  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
7323  *	and expands the device name if you passed a format string to
7324  *	alloc_netdev.
7325  */
7326 int register_netdev(struct net_device *dev)
7327 {
7328 	int err;
7329 
7330 	rtnl_lock();
7331 	err = register_netdevice(dev);
7332 	rtnl_unlock();
7333 	return err;
7334 }
7335 EXPORT_SYMBOL(register_netdev);
7336 
7337 int netdev_refcnt_read(const struct net_device *dev)
7338 {
7339 	int i, refcnt = 0;
7340 
7341 	for_each_possible_cpu(i)
7342 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7343 	return refcnt;
7344 }
7345 EXPORT_SYMBOL(netdev_refcnt_read);
7346 
7347 /**
7348  * netdev_wait_allrefs - wait until all references are gone.
7349  * @dev: target net_device
7350  *
7351  * This is called when unregistering network devices.
7352  *
7353  * Any protocol or device that holds a reference should register
7354  * for netdevice notification, and cleanup and put back the
7355  * reference if they receive an UNREGISTER event.
7356  * We can get stuck here if buggy protocols don't correctly
7357  * call dev_put.
7358  */
7359 static void netdev_wait_allrefs(struct net_device *dev)
7360 {
7361 	unsigned long rebroadcast_time, warning_time;
7362 	int refcnt;
7363 
7364 	linkwatch_forget_dev(dev);
7365 
7366 	rebroadcast_time = warning_time = jiffies;
7367 	refcnt = netdev_refcnt_read(dev);
7368 
7369 	while (refcnt != 0) {
7370 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7371 			rtnl_lock();
7372 
7373 			/* Rebroadcast unregister notification */
7374 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7375 
7376 			__rtnl_unlock();
7377 			rcu_barrier();
7378 			rtnl_lock();
7379 
7380 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7381 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7382 				     &dev->state)) {
7383 				/* We must not have linkwatch events
7384 				 * pending on unregister. If this
7385 				 * happens, we simply run the queue
7386 				 * unscheduled, resulting in a noop
7387 				 * for this device.
7388 				 */
7389 				linkwatch_run_queue();
7390 			}
7391 
7392 			__rtnl_unlock();
7393 
7394 			rebroadcast_time = jiffies;
7395 		}
7396 
7397 		msleep(250);
7398 
7399 		refcnt = netdev_refcnt_read(dev);
7400 
7401 		if (time_after(jiffies, warning_time + 10 * HZ)) {
7402 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7403 				 dev->name, refcnt);
7404 			warning_time = jiffies;
7405 		}
7406 	}
7407 }
7408 
7409 /* The sequence is:
7410  *
7411  *	rtnl_lock();
7412  *	...
7413  *	register_netdevice(x1);
7414  *	register_netdevice(x2);
7415  *	...
7416  *	unregister_netdevice(y1);
7417  *	unregister_netdevice(y2);
7418  *      ...
7419  *	rtnl_unlock();
7420  *	free_netdev(y1);
7421  *	free_netdev(y2);
7422  *
7423  * We are invoked by rtnl_unlock().
7424  * This allows us to deal with problems:
7425  * 1) We can delete sysfs objects which invoke hotplug
7426  *    without deadlocking with linkwatch via keventd.
7427  * 2) Since we run with the RTNL semaphore not held, we can sleep
7428  *    safely in order to wait for the netdev refcnt to drop to zero.
7429  *
7430  * We must not return until all unregister events added during
7431  * the interval the lock was held have been completed.
7432  */
7433 void netdev_run_todo(void)
7434 {
7435 	struct list_head list;
7436 
7437 	/* Snapshot list, allow later requests */
7438 	list_replace_init(&net_todo_list, &list);
7439 
7440 	__rtnl_unlock();
7441 
7442 
7443 	/* Wait for rcu callbacks to finish before next phase */
7444 	if (!list_empty(&list))
7445 		rcu_barrier();
7446 
7447 	while (!list_empty(&list)) {
7448 		struct net_device *dev
7449 			= list_first_entry(&list, struct net_device, todo_list);
7450 		list_del(&dev->todo_list);
7451 
7452 		rtnl_lock();
7453 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7454 		__rtnl_unlock();
7455 
7456 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7457 			pr_err("network todo '%s' but state %d\n",
7458 			       dev->name, dev->reg_state);
7459 			dump_stack();
7460 			continue;
7461 		}
7462 
7463 		dev->reg_state = NETREG_UNREGISTERED;
7464 
7465 		netdev_wait_allrefs(dev);
7466 
7467 		/* paranoia */
7468 		BUG_ON(netdev_refcnt_read(dev));
7469 		BUG_ON(!list_empty(&dev->ptype_all));
7470 		BUG_ON(!list_empty(&dev->ptype_specific));
7471 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
7472 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7473 		WARN_ON(dev->dn_ptr);
7474 
7475 		if (dev->destructor)
7476 			dev->destructor(dev);
7477 
7478 		/* Report a network device has been unregistered */
7479 		rtnl_lock();
7480 		dev_net(dev)->dev_unreg_count--;
7481 		__rtnl_unlock();
7482 		wake_up(&netdev_unregistering_wq);
7483 
7484 		/* Free network device */
7485 		kobject_put(&dev->dev.kobj);
7486 	}
7487 }
7488 
7489 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7490  * all the same fields in the same order as net_device_stats, with only
7491  * the type differing, but rtnl_link_stats64 may have additional fields
7492  * at the end for newer counters.
7493  */
7494 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7495 			     const struct net_device_stats *netdev_stats)
7496 {
7497 #if BITS_PER_LONG == 64
7498 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7499 	memcpy(stats64, netdev_stats, sizeof(*stats64));
7500 	/* zero out counters that only exist in rtnl_link_stats64 */
7501 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
7502 	       sizeof(*stats64) - sizeof(*netdev_stats));
7503 #else
7504 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7505 	const unsigned long *src = (const unsigned long *)netdev_stats;
7506 	u64 *dst = (u64 *)stats64;
7507 
7508 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7509 	for (i = 0; i < n; i++)
7510 		dst[i] = src[i];
7511 	/* zero out counters that only exist in rtnl_link_stats64 */
7512 	memset((char *)stats64 + n * sizeof(u64), 0,
7513 	       sizeof(*stats64) - n * sizeof(u64));
7514 #endif
7515 }
7516 EXPORT_SYMBOL(netdev_stats_to_stats64);
7517 
7518 /**
7519  *	dev_get_stats	- get network device statistics
7520  *	@dev: device to get statistics from
7521  *	@storage: place to store stats
7522  *
7523  *	Get network statistics from device. Return @storage.
7524  *	The device driver may provide its own method by setting
7525  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7526  *	otherwise the internal statistics structure is used.
7527  */
7528 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7529 					struct rtnl_link_stats64 *storage)
7530 {
7531 	const struct net_device_ops *ops = dev->netdev_ops;
7532 
7533 	if (ops->ndo_get_stats64) {
7534 		memset(storage, 0, sizeof(*storage));
7535 		ops->ndo_get_stats64(dev, storage);
7536 	} else if (ops->ndo_get_stats) {
7537 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7538 	} else {
7539 		netdev_stats_to_stats64(storage, &dev->stats);
7540 	}
7541 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7542 	storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7543 	storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7544 	return storage;
7545 }
7546 EXPORT_SYMBOL(dev_get_stats);
7547 
7548 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7549 {
7550 	struct netdev_queue *queue = dev_ingress_queue(dev);
7551 
7552 #ifdef CONFIG_NET_CLS_ACT
7553 	if (queue)
7554 		return queue;
7555 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7556 	if (!queue)
7557 		return NULL;
7558 	netdev_init_one_queue(dev, queue, NULL);
7559 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7560 	queue->qdisc_sleeping = &noop_qdisc;
7561 	rcu_assign_pointer(dev->ingress_queue, queue);
7562 #endif
7563 	return queue;
7564 }
7565 
7566 static const struct ethtool_ops default_ethtool_ops;
7567 
7568 void netdev_set_default_ethtool_ops(struct net_device *dev,
7569 				    const struct ethtool_ops *ops)
7570 {
7571 	if (dev->ethtool_ops == &default_ethtool_ops)
7572 		dev->ethtool_ops = ops;
7573 }
7574 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7575 
7576 void netdev_freemem(struct net_device *dev)
7577 {
7578 	char *addr = (char *)dev - dev->padded;
7579 
7580 	kvfree(addr);
7581 }
7582 
7583 /**
7584  *	alloc_netdev_mqs - allocate network device
7585  *	@sizeof_priv:		size of private data to allocate space for
7586  *	@name:			device name format string
7587  *	@name_assign_type: 	origin of device name
7588  *	@setup:			callback to initialize device
7589  *	@txqs:			the number of TX subqueues to allocate
7590  *	@rxqs:			the number of RX subqueues to allocate
7591  *
7592  *	Allocates a struct net_device with private data area for driver use
7593  *	and performs basic initialization.  Also allocates subqueue structs
7594  *	for each queue on the device.
7595  */
7596 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7597 		unsigned char name_assign_type,
7598 		void (*setup)(struct net_device *),
7599 		unsigned int txqs, unsigned int rxqs)
7600 {
7601 	struct net_device *dev;
7602 	size_t alloc_size;
7603 	struct net_device *p;
7604 
7605 	BUG_ON(strlen(name) >= sizeof(dev->name));
7606 
7607 	if (txqs < 1) {
7608 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7609 		return NULL;
7610 	}
7611 
7612 #ifdef CONFIG_SYSFS
7613 	if (rxqs < 1) {
7614 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7615 		return NULL;
7616 	}
7617 #endif
7618 
7619 	alloc_size = sizeof(struct net_device);
7620 	if (sizeof_priv) {
7621 		/* ensure 32-byte alignment of private area */
7622 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7623 		alloc_size += sizeof_priv;
7624 	}
7625 	/* ensure 32-byte alignment of whole construct */
7626 	alloc_size += NETDEV_ALIGN - 1;
7627 
7628 	p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7629 	if (!p)
7630 		p = vzalloc(alloc_size);
7631 	if (!p)
7632 		return NULL;
7633 
7634 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
7635 	dev->padded = (char *)dev - (char *)p;
7636 
7637 	dev->pcpu_refcnt = alloc_percpu(int);
7638 	if (!dev->pcpu_refcnt)
7639 		goto free_dev;
7640 
7641 	if (dev_addr_init(dev))
7642 		goto free_pcpu;
7643 
7644 	dev_mc_init(dev);
7645 	dev_uc_init(dev);
7646 
7647 	dev_net_set(dev, &init_net);
7648 
7649 	dev->gso_max_size = GSO_MAX_SIZE;
7650 	dev->gso_max_segs = GSO_MAX_SEGS;
7651 
7652 	INIT_LIST_HEAD(&dev->napi_list);
7653 	INIT_LIST_HEAD(&dev->unreg_list);
7654 	INIT_LIST_HEAD(&dev->close_list);
7655 	INIT_LIST_HEAD(&dev->link_watch_list);
7656 	INIT_LIST_HEAD(&dev->adj_list.upper);
7657 	INIT_LIST_HEAD(&dev->adj_list.lower);
7658 	INIT_LIST_HEAD(&dev->all_adj_list.upper);
7659 	INIT_LIST_HEAD(&dev->all_adj_list.lower);
7660 	INIT_LIST_HEAD(&dev->ptype_all);
7661 	INIT_LIST_HEAD(&dev->ptype_specific);
7662 #ifdef CONFIG_NET_SCHED
7663 	hash_init(dev->qdisc_hash);
7664 #endif
7665 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7666 	setup(dev);
7667 
7668 	if (!dev->tx_queue_len) {
7669 		dev->priv_flags |= IFF_NO_QUEUE;
7670 		dev->tx_queue_len = 1;
7671 	}
7672 
7673 	dev->num_tx_queues = txqs;
7674 	dev->real_num_tx_queues = txqs;
7675 	if (netif_alloc_netdev_queues(dev))
7676 		goto free_all;
7677 
7678 #ifdef CONFIG_SYSFS
7679 	dev->num_rx_queues = rxqs;
7680 	dev->real_num_rx_queues = rxqs;
7681 	if (netif_alloc_rx_queues(dev))
7682 		goto free_all;
7683 #endif
7684 
7685 	strcpy(dev->name, name);
7686 	dev->name_assign_type = name_assign_type;
7687 	dev->group = INIT_NETDEV_GROUP;
7688 	if (!dev->ethtool_ops)
7689 		dev->ethtool_ops = &default_ethtool_ops;
7690 
7691 	nf_hook_ingress_init(dev);
7692 
7693 	return dev;
7694 
7695 free_all:
7696 	free_netdev(dev);
7697 	return NULL;
7698 
7699 free_pcpu:
7700 	free_percpu(dev->pcpu_refcnt);
7701 free_dev:
7702 	netdev_freemem(dev);
7703 	return NULL;
7704 }
7705 EXPORT_SYMBOL(alloc_netdev_mqs);
7706 
7707 /**
7708  *	free_netdev - free network device
7709  *	@dev: device
7710  *
7711  *	This function does the last stage of destroying an allocated device
7712  * 	interface. The reference to the device object is released.
7713  *	If this is the last reference then it will be freed.
7714  *	Must be called in process context.
7715  */
7716 void free_netdev(struct net_device *dev)
7717 {
7718 	struct napi_struct *p, *n;
7719 
7720 	might_sleep();
7721 	netif_free_tx_queues(dev);
7722 #ifdef CONFIG_SYSFS
7723 	kvfree(dev->_rx);
7724 #endif
7725 
7726 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7727 
7728 	/* Flush device addresses */
7729 	dev_addr_flush(dev);
7730 
7731 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7732 		netif_napi_del(p);
7733 
7734 	free_percpu(dev->pcpu_refcnt);
7735 	dev->pcpu_refcnt = NULL;
7736 
7737 	/*  Compatibility with error handling in drivers */
7738 	if (dev->reg_state == NETREG_UNINITIALIZED) {
7739 		netdev_freemem(dev);
7740 		return;
7741 	}
7742 
7743 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7744 	dev->reg_state = NETREG_RELEASED;
7745 
7746 	/* will free via device release */
7747 	put_device(&dev->dev);
7748 }
7749 EXPORT_SYMBOL(free_netdev);
7750 
7751 /**
7752  *	synchronize_net -  Synchronize with packet receive processing
7753  *
7754  *	Wait for packets currently being received to be done.
7755  *	Does not block later packets from starting.
7756  */
7757 void synchronize_net(void)
7758 {
7759 	might_sleep();
7760 	if (rtnl_is_locked())
7761 		synchronize_rcu_expedited();
7762 	else
7763 		synchronize_rcu();
7764 }
7765 EXPORT_SYMBOL(synchronize_net);
7766 
7767 /**
7768  *	unregister_netdevice_queue - remove device from the kernel
7769  *	@dev: device
7770  *	@head: list
7771  *
7772  *	This function shuts down a device interface and removes it
7773  *	from the kernel tables.
7774  *	If head not NULL, device is queued to be unregistered later.
7775  *
7776  *	Callers must hold the rtnl semaphore.  You may want
7777  *	unregister_netdev() instead of this.
7778  */
7779 
7780 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7781 {
7782 	ASSERT_RTNL();
7783 
7784 	if (head) {
7785 		list_move_tail(&dev->unreg_list, head);
7786 	} else {
7787 		rollback_registered(dev);
7788 		/* Finish processing unregister after unlock */
7789 		net_set_todo(dev);
7790 	}
7791 }
7792 EXPORT_SYMBOL(unregister_netdevice_queue);
7793 
7794 /**
7795  *	unregister_netdevice_many - unregister many devices
7796  *	@head: list of devices
7797  *
7798  *  Note: As most callers use a stack allocated list_head,
7799  *  we force a list_del() to make sure stack wont be corrupted later.
7800  */
7801 void unregister_netdevice_many(struct list_head *head)
7802 {
7803 	struct net_device *dev;
7804 
7805 	if (!list_empty(head)) {
7806 		rollback_registered_many(head);
7807 		list_for_each_entry(dev, head, unreg_list)
7808 			net_set_todo(dev);
7809 		list_del(head);
7810 	}
7811 }
7812 EXPORT_SYMBOL(unregister_netdevice_many);
7813 
7814 /**
7815  *	unregister_netdev - remove device from the kernel
7816  *	@dev: device
7817  *
7818  *	This function shuts down a device interface and removes it
7819  *	from the kernel tables.
7820  *
7821  *	This is just a wrapper for unregister_netdevice that takes
7822  *	the rtnl semaphore.  In general you want to use this and not
7823  *	unregister_netdevice.
7824  */
7825 void unregister_netdev(struct net_device *dev)
7826 {
7827 	rtnl_lock();
7828 	unregister_netdevice(dev);
7829 	rtnl_unlock();
7830 }
7831 EXPORT_SYMBOL(unregister_netdev);
7832 
7833 /**
7834  *	dev_change_net_namespace - move device to different nethost namespace
7835  *	@dev: device
7836  *	@net: network namespace
7837  *	@pat: If not NULL name pattern to try if the current device name
7838  *	      is already taken in the destination network namespace.
7839  *
7840  *	This function shuts down a device interface and moves it
7841  *	to a new network namespace. On success 0 is returned, on
7842  *	a failure a netagive errno code is returned.
7843  *
7844  *	Callers must hold the rtnl semaphore.
7845  */
7846 
7847 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7848 {
7849 	int err;
7850 
7851 	ASSERT_RTNL();
7852 
7853 	/* Don't allow namespace local devices to be moved. */
7854 	err = -EINVAL;
7855 	if (dev->features & NETIF_F_NETNS_LOCAL)
7856 		goto out;
7857 
7858 	/* Ensure the device has been registrered */
7859 	if (dev->reg_state != NETREG_REGISTERED)
7860 		goto out;
7861 
7862 	/* Get out if there is nothing todo */
7863 	err = 0;
7864 	if (net_eq(dev_net(dev), net))
7865 		goto out;
7866 
7867 	/* Pick the destination device name, and ensure
7868 	 * we can use it in the destination network namespace.
7869 	 */
7870 	err = -EEXIST;
7871 	if (__dev_get_by_name(net, dev->name)) {
7872 		/* We get here if we can't use the current device name */
7873 		if (!pat)
7874 			goto out;
7875 		if (dev_get_valid_name(net, dev, pat) < 0)
7876 			goto out;
7877 	}
7878 
7879 	/*
7880 	 * And now a mini version of register_netdevice unregister_netdevice.
7881 	 */
7882 
7883 	/* If device is running close it first. */
7884 	dev_close(dev);
7885 
7886 	/* And unlink it from device chain */
7887 	err = -ENODEV;
7888 	unlist_netdevice(dev);
7889 
7890 	synchronize_net();
7891 
7892 	/* Shutdown queueing discipline. */
7893 	dev_shutdown(dev);
7894 
7895 	/* Notify protocols, that we are about to destroy
7896 	   this device. They should clean all the things.
7897 
7898 	   Note that dev->reg_state stays at NETREG_REGISTERED.
7899 	   This is wanted because this way 8021q and macvlan know
7900 	   the device is just moving and can keep their slaves up.
7901 	*/
7902 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7903 	rcu_barrier();
7904 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7905 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7906 
7907 	/*
7908 	 *	Flush the unicast and multicast chains
7909 	 */
7910 	dev_uc_flush(dev);
7911 	dev_mc_flush(dev);
7912 
7913 	/* Send a netdev-removed uevent to the old namespace */
7914 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7915 	netdev_adjacent_del_links(dev);
7916 
7917 	/* Actually switch the network namespace */
7918 	dev_net_set(dev, net);
7919 
7920 	/* If there is an ifindex conflict assign a new one */
7921 	if (__dev_get_by_index(net, dev->ifindex))
7922 		dev->ifindex = dev_new_index(net);
7923 
7924 	/* Send a netdev-add uevent to the new namespace */
7925 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7926 	netdev_adjacent_add_links(dev);
7927 
7928 	/* Fixup kobjects */
7929 	err = device_rename(&dev->dev, dev->name);
7930 	WARN_ON(err);
7931 
7932 	/* Add the device back in the hashes */
7933 	list_netdevice(dev);
7934 
7935 	/* Notify protocols, that a new device appeared. */
7936 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
7937 
7938 	/*
7939 	 *	Prevent userspace races by waiting until the network
7940 	 *	device is fully setup before sending notifications.
7941 	 */
7942 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7943 
7944 	synchronize_net();
7945 	err = 0;
7946 out:
7947 	return err;
7948 }
7949 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7950 
7951 static int dev_cpu_callback(struct notifier_block *nfb,
7952 			    unsigned long action,
7953 			    void *ocpu)
7954 {
7955 	struct sk_buff **list_skb;
7956 	struct sk_buff *skb;
7957 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
7958 	struct softnet_data *sd, *oldsd;
7959 
7960 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7961 		return NOTIFY_OK;
7962 
7963 	local_irq_disable();
7964 	cpu = smp_processor_id();
7965 	sd = &per_cpu(softnet_data, cpu);
7966 	oldsd = &per_cpu(softnet_data, oldcpu);
7967 
7968 	/* Find end of our completion_queue. */
7969 	list_skb = &sd->completion_queue;
7970 	while (*list_skb)
7971 		list_skb = &(*list_skb)->next;
7972 	/* Append completion queue from offline CPU. */
7973 	*list_skb = oldsd->completion_queue;
7974 	oldsd->completion_queue = NULL;
7975 
7976 	/* Append output queue from offline CPU. */
7977 	if (oldsd->output_queue) {
7978 		*sd->output_queue_tailp = oldsd->output_queue;
7979 		sd->output_queue_tailp = oldsd->output_queue_tailp;
7980 		oldsd->output_queue = NULL;
7981 		oldsd->output_queue_tailp = &oldsd->output_queue;
7982 	}
7983 	/* Append NAPI poll list from offline CPU, with one exception :
7984 	 * process_backlog() must be called by cpu owning percpu backlog.
7985 	 * We properly handle process_queue & input_pkt_queue later.
7986 	 */
7987 	while (!list_empty(&oldsd->poll_list)) {
7988 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7989 							    struct napi_struct,
7990 							    poll_list);
7991 
7992 		list_del_init(&napi->poll_list);
7993 		if (napi->poll == process_backlog)
7994 			napi->state = 0;
7995 		else
7996 			____napi_schedule(sd, napi);
7997 	}
7998 
7999 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
8000 	local_irq_enable();
8001 
8002 	/* Process offline CPU's input_pkt_queue */
8003 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8004 		netif_rx_ni(skb);
8005 		input_queue_head_incr(oldsd);
8006 	}
8007 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8008 		netif_rx_ni(skb);
8009 		input_queue_head_incr(oldsd);
8010 	}
8011 
8012 	return NOTIFY_OK;
8013 }
8014 
8015 
8016 /**
8017  *	netdev_increment_features - increment feature set by one
8018  *	@all: current feature set
8019  *	@one: new feature set
8020  *	@mask: mask feature set
8021  *
8022  *	Computes a new feature set after adding a device with feature set
8023  *	@one to the master device with current feature set @all.  Will not
8024  *	enable anything that is off in @mask. Returns the new feature set.
8025  */
8026 netdev_features_t netdev_increment_features(netdev_features_t all,
8027 	netdev_features_t one, netdev_features_t mask)
8028 {
8029 	if (mask & NETIF_F_HW_CSUM)
8030 		mask |= NETIF_F_CSUM_MASK;
8031 	mask |= NETIF_F_VLAN_CHALLENGED;
8032 
8033 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8034 	all &= one | ~NETIF_F_ALL_FOR_ALL;
8035 
8036 	/* If one device supports hw checksumming, set for all. */
8037 	if (all & NETIF_F_HW_CSUM)
8038 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8039 
8040 	return all;
8041 }
8042 EXPORT_SYMBOL(netdev_increment_features);
8043 
8044 static struct hlist_head * __net_init netdev_create_hash(void)
8045 {
8046 	int i;
8047 	struct hlist_head *hash;
8048 
8049 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8050 	if (hash != NULL)
8051 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
8052 			INIT_HLIST_HEAD(&hash[i]);
8053 
8054 	return hash;
8055 }
8056 
8057 /* Initialize per network namespace state */
8058 static int __net_init netdev_init(struct net *net)
8059 {
8060 	if (net != &init_net)
8061 		INIT_LIST_HEAD(&net->dev_base_head);
8062 
8063 	net->dev_name_head = netdev_create_hash();
8064 	if (net->dev_name_head == NULL)
8065 		goto err_name;
8066 
8067 	net->dev_index_head = netdev_create_hash();
8068 	if (net->dev_index_head == NULL)
8069 		goto err_idx;
8070 
8071 	return 0;
8072 
8073 err_idx:
8074 	kfree(net->dev_name_head);
8075 err_name:
8076 	return -ENOMEM;
8077 }
8078 
8079 /**
8080  *	netdev_drivername - network driver for the device
8081  *	@dev: network device
8082  *
8083  *	Determine network driver for device.
8084  */
8085 const char *netdev_drivername(const struct net_device *dev)
8086 {
8087 	const struct device_driver *driver;
8088 	const struct device *parent;
8089 	const char *empty = "";
8090 
8091 	parent = dev->dev.parent;
8092 	if (!parent)
8093 		return empty;
8094 
8095 	driver = parent->driver;
8096 	if (driver && driver->name)
8097 		return driver->name;
8098 	return empty;
8099 }
8100 
8101 static void __netdev_printk(const char *level, const struct net_device *dev,
8102 			    struct va_format *vaf)
8103 {
8104 	if (dev && dev->dev.parent) {
8105 		dev_printk_emit(level[1] - '0',
8106 				dev->dev.parent,
8107 				"%s %s %s%s: %pV",
8108 				dev_driver_string(dev->dev.parent),
8109 				dev_name(dev->dev.parent),
8110 				netdev_name(dev), netdev_reg_state(dev),
8111 				vaf);
8112 	} else if (dev) {
8113 		printk("%s%s%s: %pV",
8114 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
8115 	} else {
8116 		printk("%s(NULL net_device): %pV", level, vaf);
8117 	}
8118 }
8119 
8120 void netdev_printk(const char *level, const struct net_device *dev,
8121 		   const char *format, ...)
8122 {
8123 	struct va_format vaf;
8124 	va_list args;
8125 
8126 	va_start(args, format);
8127 
8128 	vaf.fmt = format;
8129 	vaf.va = &args;
8130 
8131 	__netdev_printk(level, dev, &vaf);
8132 
8133 	va_end(args);
8134 }
8135 EXPORT_SYMBOL(netdev_printk);
8136 
8137 #define define_netdev_printk_level(func, level)			\
8138 void func(const struct net_device *dev, const char *fmt, ...)	\
8139 {								\
8140 	struct va_format vaf;					\
8141 	va_list args;						\
8142 								\
8143 	va_start(args, fmt);					\
8144 								\
8145 	vaf.fmt = fmt;						\
8146 	vaf.va = &args;						\
8147 								\
8148 	__netdev_printk(level, dev, &vaf);			\
8149 								\
8150 	va_end(args);						\
8151 }								\
8152 EXPORT_SYMBOL(func);
8153 
8154 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8155 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8156 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8157 define_netdev_printk_level(netdev_err, KERN_ERR);
8158 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8159 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8160 define_netdev_printk_level(netdev_info, KERN_INFO);
8161 
8162 static void __net_exit netdev_exit(struct net *net)
8163 {
8164 	kfree(net->dev_name_head);
8165 	kfree(net->dev_index_head);
8166 }
8167 
8168 static struct pernet_operations __net_initdata netdev_net_ops = {
8169 	.init = netdev_init,
8170 	.exit = netdev_exit,
8171 };
8172 
8173 static void __net_exit default_device_exit(struct net *net)
8174 {
8175 	struct net_device *dev, *aux;
8176 	/*
8177 	 * Push all migratable network devices back to the
8178 	 * initial network namespace
8179 	 */
8180 	rtnl_lock();
8181 	for_each_netdev_safe(net, dev, aux) {
8182 		int err;
8183 		char fb_name[IFNAMSIZ];
8184 
8185 		/* Ignore unmoveable devices (i.e. loopback) */
8186 		if (dev->features & NETIF_F_NETNS_LOCAL)
8187 			continue;
8188 
8189 		/* Leave virtual devices for the generic cleanup */
8190 		if (dev->rtnl_link_ops)
8191 			continue;
8192 
8193 		/* Push remaining network devices to init_net */
8194 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8195 		err = dev_change_net_namespace(dev, &init_net, fb_name);
8196 		if (err) {
8197 			pr_emerg("%s: failed to move %s to init_net: %d\n",
8198 				 __func__, dev->name, err);
8199 			BUG();
8200 		}
8201 	}
8202 	rtnl_unlock();
8203 }
8204 
8205 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8206 {
8207 	/* Return with the rtnl_lock held when there are no network
8208 	 * devices unregistering in any network namespace in net_list.
8209 	 */
8210 	struct net *net;
8211 	bool unregistering;
8212 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
8213 
8214 	add_wait_queue(&netdev_unregistering_wq, &wait);
8215 	for (;;) {
8216 		unregistering = false;
8217 		rtnl_lock();
8218 		list_for_each_entry(net, net_list, exit_list) {
8219 			if (net->dev_unreg_count > 0) {
8220 				unregistering = true;
8221 				break;
8222 			}
8223 		}
8224 		if (!unregistering)
8225 			break;
8226 		__rtnl_unlock();
8227 
8228 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8229 	}
8230 	remove_wait_queue(&netdev_unregistering_wq, &wait);
8231 }
8232 
8233 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8234 {
8235 	/* At exit all network devices most be removed from a network
8236 	 * namespace.  Do this in the reverse order of registration.
8237 	 * Do this across as many network namespaces as possible to
8238 	 * improve batching efficiency.
8239 	 */
8240 	struct net_device *dev;
8241 	struct net *net;
8242 	LIST_HEAD(dev_kill_list);
8243 
8244 	/* To prevent network device cleanup code from dereferencing
8245 	 * loopback devices or network devices that have been freed
8246 	 * wait here for all pending unregistrations to complete,
8247 	 * before unregistring the loopback device and allowing the
8248 	 * network namespace be freed.
8249 	 *
8250 	 * The netdev todo list containing all network devices
8251 	 * unregistrations that happen in default_device_exit_batch
8252 	 * will run in the rtnl_unlock() at the end of
8253 	 * default_device_exit_batch.
8254 	 */
8255 	rtnl_lock_unregistering(net_list);
8256 	list_for_each_entry(net, net_list, exit_list) {
8257 		for_each_netdev_reverse(net, dev) {
8258 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8259 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8260 			else
8261 				unregister_netdevice_queue(dev, &dev_kill_list);
8262 		}
8263 	}
8264 	unregister_netdevice_many(&dev_kill_list);
8265 	rtnl_unlock();
8266 }
8267 
8268 static struct pernet_operations __net_initdata default_device_ops = {
8269 	.exit = default_device_exit,
8270 	.exit_batch = default_device_exit_batch,
8271 };
8272 
8273 /*
8274  *	Initialize the DEV module. At boot time this walks the device list and
8275  *	unhooks any devices that fail to initialise (normally hardware not
8276  *	present) and leaves us with a valid list of present and active devices.
8277  *
8278  */
8279 
8280 /*
8281  *       This is called single threaded during boot, so no need
8282  *       to take the rtnl semaphore.
8283  */
8284 static int __init net_dev_init(void)
8285 {
8286 	int i, rc = -ENOMEM;
8287 
8288 	BUG_ON(!dev_boot_phase);
8289 
8290 	if (dev_proc_init())
8291 		goto out;
8292 
8293 	if (netdev_kobject_init())
8294 		goto out;
8295 
8296 	INIT_LIST_HEAD(&ptype_all);
8297 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
8298 		INIT_LIST_HEAD(&ptype_base[i]);
8299 
8300 	INIT_LIST_HEAD(&offload_base);
8301 
8302 	if (register_pernet_subsys(&netdev_net_ops))
8303 		goto out;
8304 
8305 	/*
8306 	 *	Initialise the packet receive queues.
8307 	 */
8308 
8309 	for_each_possible_cpu(i) {
8310 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8311 		struct softnet_data *sd = &per_cpu(softnet_data, i);
8312 
8313 		INIT_WORK(flush, flush_backlog);
8314 
8315 		skb_queue_head_init(&sd->input_pkt_queue);
8316 		skb_queue_head_init(&sd->process_queue);
8317 		INIT_LIST_HEAD(&sd->poll_list);
8318 		sd->output_queue_tailp = &sd->output_queue;
8319 #ifdef CONFIG_RPS
8320 		sd->csd.func = rps_trigger_softirq;
8321 		sd->csd.info = sd;
8322 		sd->cpu = i;
8323 #endif
8324 
8325 		sd->backlog.poll = process_backlog;
8326 		sd->backlog.weight = weight_p;
8327 	}
8328 
8329 	dev_boot_phase = 0;
8330 
8331 	/* The loopback device is special if any other network devices
8332 	 * is present in a network namespace the loopback device must
8333 	 * be present. Since we now dynamically allocate and free the
8334 	 * loopback device ensure this invariant is maintained by
8335 	 * keeping the loopback device as the first device on the
8336 	 * list of network devices.  Ensuring the loopback devices
8337 	 * is the first device that appears and the last network device
8338 	 * that disappears.
8339 	 */
8340 	if (register_pernet_device(&loopback_net_ops))
8341 		goto out;
8342 
8343 	if (register_pernet_device(&default_device_ops))
8344 		goto out;
8345 
8346 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8347 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8348 
8349 	hotcpu_notifier(dev_cpu_callback, 0);
8350 	dst_subsys_init();
8351 	rc = 0;
8352 out:
8353 	return rc;
8354 }
8355 
8356 subsys_initcall(net_dev_init);
8357