1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <asm/system.h> 77 #include <linux/bitops.h> 78 #include <linux/capability.h> 79 #include <linux/cpu.h> 80 #include <linux/types.h> 81 #include <linux/kernel.h> 82 #include <linux/sched.h> 83 #include <linux/mutex.h> 84 #include <linux/string.h> 85 #include <linux/mm.h> 86 #include <linux/socket.h> 87 #include <linux/sockios.h> 88 #include <linux/errno.h> 89 #include <linux/interrupt.h> 90 #include <linux/if_ether.h> 91 #include <linux/netdevice.h> 92 #include <linux/etherdevice.h> 93 #include <linux/notifier.h> 94 #include <linux/skbuff.h> 95 #include <net/net_namespace.h> 96 #include <net/sock.h> 97 #include <linux/rtnetlink.h> 98 #include <linux/proc_fs.h> 99 #include <linux/seq_file.h> 100 #include <linux/stat.h> 101 #include <linux/if_bridge.h> 102 #include <linux/if_macvlan.h> 103 #include <net/dst.h> 104 #include <net/pkt_sched.h> 105 #include <net/checksum.h> 106 #include <linux/highmem.h> 107 #include <linux/init.h> 108 #include <linux/kmod.h> 109 #include <linux/module.h> 110 #include <linux/kallsyms.h> 111 #include <linux/netpoll.h> 112 #include <linux/rcupdate.h> 113 #include <linux/delay.h> 114 #include <net/wext.h> 115 #include <net/iw_handler.h> 116 #include <asm/current.h> 117 #include <linux/audit.h> 118 #include <linux/dmaengine.h> 119 #include <linux/err.h> 120 #include <linux/ctype.h> 121 #include <linux/if_arp.h> 122 123 #include "net-sysfs.h" 124 125 /* 126 * The list of packet types we will receive (as opposed to discard) 127 * and the routines to invoke. 128 * 129 * Why 16. Because with 16 the only overlap we get on a hash of the 130 * low nibble of the protocol value is RARP/SNAP/X.25. 131 * 132 * NOTE: That is no longer true with the addition of VLAN tags. Not 133 * sure which should go first, but I bet it won't make much 134 * difference if we are running VLANs. The good news is that 135 * this protocol won't be in the list unless compiled in, so 136 * the average user (w/out VLANs) will not be adversely affected. 137 * --BLG 138 * 139 * 0800 IP 140 * 8100 802.1Q VLAN 141 * 0001 802.3 142 * 0002 AX.25 143 * 0004 802.2 144 * 8035 RARP 145 * 0005 SNAP 146 * 0805 X.25 147 * 0806 ARP 148 * 8137 IPX 149 * 0009 Localtalk 150 * 86DD IPv6 151 */ 152 153 #define PTYPE_HASH_SIZE (16) 154 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 155 156 static DEFINE_SPINLOCK(ptype_lock); 157 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 158 static struct list_head ptype_all __read_mostly; /* Taps */ 159 160 #ifdef CONFIG_NET_DMA 161 struct net_dma { 162 struct dma_client client; 163 spinlock_t lock; 164 cpumask_t channel_mask; 165 struct dma_chan **channels; 166 }; 167 168 static enum dma_state_client 169 netdev_dma_event(struct dma_client *client, struct dma_chan *chan, 170 enum dma_state state); 171 172 static struct net_dma net_dma = { 173 .client = { 174 .event_callback = netdev_dma_event, 175 }, 176 }; 177 #endif 178 179 /* 180 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 181 * semaphore. 182 * 183 * Pure readers hold dev_base_lock for reading. 184 * 185 * Writers must hold the rtnl semaphore while they loop through the 186 * dev_base_head list, and hold dev_base_lock for writing when they do the 187 * actual updates. This allows pure readers to access the list even 188 * while a writer is preparing to update it. 189 * 190 * To put it another way, dev_base_lock is held for writing only to 191 * protect against pure readers; the rtnl semaphore provides the 192 * protection against other writers. 193 * 194 * See, for example usages, register_netdevice() and 195 * unregister_netdevice(), which must be called with the rtnl 196 * semaphore held. 197 */ 198 DEFINE_RWLOCK(dev_base_lock); 199 200 EXPORT_SYMBOL(dev_base_lock); 201 202 #define NETDEV_HASHBITS 8 203 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS) 204 205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 206 { 207 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 208 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)]; 209 } 210 211 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 212 { 213 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)]; 214 } 215 216 /* Device list insertion */ 217 static int list_netdevice(struct net_device *dev) 218 { 219 struct net *net = dev_net(dev); 220 221 ASSERT_RTNL(); 222 223 write_lock_bh(&dev_base_lock); 224 list_add_tail(&dev->dev_list, &net->dev_base_head); 225 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name)); 226 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex)); 227 write_unlock_bh(&dev_base_lock); 228 return 0; 229 } 230 231 /* Device list removal */ 232 static void unlist_netdevice(struct net_device *dev) 233 { 234 ASSERT_RTNL(); 235 236 /* Unlink dev from the device chain */ 237 write_lock_bh(&dev_base_lock); 238 list_del(&dev->dev_list); 239 hlist_del(&dev->name_hlist); 240 hlist_del(&dev->index_hlist); 241 write_unlock_bh(&dev_base_lock); 242 } 243 244 /* 245 * Our notifier list 246 */ 247 248 static RAW_NOTIFIER_HEAD(netdev_chain); 249 250 /* 251 * Device drivers call our routines to queue packets here. We empty the 252 * queue in the local softnet handler. 253 */ 254 255 DEFINE_PER_CPU(struct softnet_data, softnet_data); 256 257 #ifdef CONFIG_DEBUG_LOCK_ALLOC 258 /* 259 * register_netdevice() inits dev->_xmit_lock and sets lockdep class 260 * according to dev->type 261 */ 262 static const unsigned short netdev_lock_type[] = 263 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 264 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 265 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 266 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 267 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 268 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 269 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 270 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 271 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 272 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 273 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 274 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 275 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211, 276 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID, 277 ARPHRD_NONE}; 278 279 static const char *netdev_lock_name[] = 280 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 281 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 282 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 283 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 284 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 285 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 286 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 287 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 288 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 289 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 290 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 291 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 292 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211", 293 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID", 294 "_xmit_NONE"}; 295 296 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 297 298 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 299 { 300 int i; 301 302 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 303 if (netdev_lock_type[i] == dev_type) 304 return i; 305 /* the last key is used by default */ 306 return ARRAY_SIZE(netdev_lock_type) - 1; 307 } 308 309 static inline void netdev_set_lockdep_class(spinlock_t *lock, 310 unsigned short dev_type) 311 { 312 int i; 313 314 i = netdev_lock_pos(dev_type); 315 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 316 netdev_lock_name[i]); 317 } 318 #else 319 static inline void netdev_set_lockdep_class(spinlock_t *lock, 320 unsigned short dev_type) 321 { 322 } 323 #endif 324 325 /******************************************************************************* 326 327 Protocol management and registration routines 328 329 *******************************************************************************/ 330 331 /* 332 * Add a protocol ID to the list. Now that the input handler is 333 * smarter we can dispense with all the messy stuff that used to be 334 * here. 335 * 336 * BEWARE!!! Protocol handlers, mangling input packets, 337 * MUST BE last in hash buckets and checking protocol handlers 338 * MUST start from promiscuous ptype_all chain in net_bh. 339 * It is true now, do not change it. 340 * Explanation follows: if protocol handler, mangling packet, will 341 * be the first on list, it is not able to sense, that packet 342 * is cloned and should be copied-on-write, so that it will 343 * change it and subsequent readers will get broken packet. 344 * --ANK (980803) 345 */ 346 347 /** 348 * dev_add_pack - add packet handler 349 * @pt: packet type declaration 350 * 351 * Add a protocol handler to the networking stack. The passed &packet_type 352 * is linked into kernel lists and may not be freed until it has been 353 * removed from the kernel lists. 354 * 355 * This call does not sleep therefore it can not 356 * guarantee all CPU's that are in middle of receiving packets 357 * will see the new packet type (until the next received packet). 358 */ 359 360 void dev_add_pack(struct packet_type *pt) 361 { 362 int hash; 363 364 spin_lock_bh(&ptype_lock); 365 if (pt->type == htons(ETH_P_ALL)) 366 list_add_rcu(&pt->list, &ptype_all); 367 else { 368 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 369 list_add_rcu(&pt->list, &ptype_base[hash]); 370 } 371 spin_unlock_bh(&ptype_lock); 372 } 373 374 /** 375 * __dev_remove_pack - remove packet handler 376 * @pt: packet type declaration 377 * 378 * Remove a protocol handler that was previously added to the kernel 379 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 380 * from the kernel lists and can be freed or reused once this function 381 * returns. 382 * 383 * The packet type might still be in use by receivers 384 * and must not be freed until after all the CPU's have gone 385 * through a quiescent state. 386 */ 387 void __dev_remove_pack(struct packet_type *pt) 388 { 389 struct list_head *head; 390 struct packet_type *pt1; 391 392 spin_lock_bh(&ptype_lock); 393 394 if (pt->type == htons(ETH_P_ALL)) 395 head = &ptype_all; 396 else 397 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 398 399 list_for_each_entry(pt1, head, list) { 400 if (pt == pt1) { 401 list_del_rcu(&pt->list); 402 goto out; 403 } 404 } 405 406 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 407 out: 408 spin_unlock_bh(&ptype_lock); 409 } 410 /** 411 * dev_remove_pack - remove packet handler 412 * @pt: packet type declaration 413 * 414 * Remove a protocol handler that was previously added to the kernel 415 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 416 * from the kernel lists and can be freed or reused once this function 417 * returns. 418 * 419 * This call sleeps to guarantee that no CPU is looking at the packet 420 * type after return. 421 */ 422 void dev_remove_pack(struct packet_type *pt) 423 { 424 __dev_remove_pack(pt); 425 426 synchronize_net(); 427 } 428 429 /****************************************************************************** 430 431 Device Boot-time Settings Routines 432 433 *******************************************************************************/ 434 435 /* Boot time configuration table */ 436 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 437 438 /** 439 * netdev_boot_setup_add - add new setup entry 440 * @name: name of the device 441 * @map: configured settings for the device 442 * 443 * Adds new setup entry to the dev_boot_setup list. The function 444 * returns 0 on error and 1 on success. This is a generic routine to 445 * all netdevices. 446 */ 447 static int netdev_boot_setup_add(char *name, struct ifmap *map) 448 { 449 struct netdev_boot_setup *s; 450 int i; 451 452 s = dev_boot_setup; 453 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 454 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 455 memset(s[i].name, 0, sizeof(s[i].name)); 456 strcpy(s[i].name, name); 457 memcpy(&s[i].map, map, sizeof(s[i].map)); 458 break; 459 } 460 } 461 462 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 463 } 464 465 /** 466 * netdev_boot_setup_check - check boot time settings 467 * @dev: the netdevice 468 * 469 * Check boot time settings for the device. 470 * The found settings are set for the device to be used 471 * later in the device probing. 472 * Returns 0 if no settings found, 1 if they are. 473 */ 474 int netdev_boot_setup_check(struct net_device *dev) 475 { 476 struct netdev_boot_setup *s = dev_boot_setup; 477 int i; 478 479 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 480 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 481 !strncmp(dev->name, s[i].name, strlen(s[i].name))) { 482 dev->irq = s[i].map.irq; 483 dev->base_addr = s[i].map.base_addr; 484 dev->mem_start = s[i].map.mem_start; 485 dev->mem_end = s[i].map.mem_end; 486 return 1; 487 } 488 } 489 return 0; 490 } 491 492 493 /** 494 * netdev_boot_base - get address from boot time settings 495 * @prefix: prefix for network device 496 * @unit: id for network device 497 * 498 * Check boot time settings for the base address of device. 499 * The found settings are set for the device to be used 500 * later in the device probing. 501 * Returns 0 if no settings found. 502 */ 503 unsigned long netdev_boot_base(const char *prefix, int unit) 504 { 505 const struct netdev_boot_setup *s = dev_boot_setup; 506 char name[IFNAMSIZ]; 507 int i; 508 509 sprintf(name, "%s%d", prefix, unit); 510 511 /* 512 * If device already registered then return base of 1 513 * to indicate not to probe for this interface 514 */ 515 if (__dev_get_by_name(&init_net, name)) 516 return 1; 517 518 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 519 if (!strcmp(name, s[i].name)) 520 return s[i].map.base_addr; 521 return 0; 522 } 523 524 /* 525 * Saves at boot time configured settings for any netdevice. 526 */ 527 int __init netdev_boot_setup(char *str) 528 { 529 int ints[5]; 530 struct ifmap map; 531 532 str = get_options(str, ARRAY_SIZE(ints), ints); 533 if (!str || !*str) 534 return 0; 535 536 /* Save settings */ 537 memset(&map, 0, sizeof(map)); 538 if (ints[0] > 0) 539 map.irq = ints[1]; 540 if (ints[0] > 1) 541 map.base_addr = ints[2]; 542 if (ints[0] > 2) 543 map.mem_start = ints[3]; 544 if (ints[0] > 3) 545 map.mem_end = ints[4]; 546 547 /* Add new entry to the list */ 548 return netdev_boot_setup_add(str, &map); 549 } 550 551 __setup("netdev=", netdev_boot_setup); 552 553 /******************************************************************************* 554 555 Device Interface Subroutines 556 557 *******************************************************************************/ 558 559 /** 560 * __dev_get_by_name - find a device by its name 561 * @net: the applicable net namespace 562 * @name: name to find 563 * 564 * Find an interface by name. Must be called under RTNL semaphore 565 * or @dev_base_lock. If the name is found a pointer to the device 566 * is returned. If the name is not found then %NULL is returned. The 567 * reference counters are not incremented so the caller must be 568 * careful with locks. 569 */ 570 571 struct net_device *__dev_get_by_name(struct net *net, const char *name) 572 { 573 struct hlist_node *p; 574 575 hlist_for_each(p, dev_name_hash(net, name)) { 576 struct net_device *dev 577 = hlist_entry(p, struct net_device, name_hlist); 578 if (!strncmp(dev->name, name, IFNAMSIZ)) 579 return dev; 580 } 581 return NULL; 582 } 583 584 /** 585 * dev_get_by_name - find a device by its name 586 * @net: the applicable net namespace 587 * @name: name to find 588 * 589 * Find an interface by name. This can be called from any 590 * context and does its own locking. The returned handle has 591 * the usage count incremented and the caller must use dev_put() to 592 * release it when it is no longer needed. %NULL is returned if no 593 * matching device is found. 594 */ 595 596 struct net_device *dev_get_by_name(struct net *net, const char *name) 597 { 598 struct net_device *dev; 599 600 read_lock(&dev_base_lock); 601 dev = __dev_get_by_name(net, name); 602 if (dev) 603 dev_hold(dev); 604 read_unlock(&dev_base_lock); 605 return dev; 606 } 607 608 /** 609 * __dev_get_by_index - find a device by its ifindex 610 * @net: the applicable net namespace 611 * @ifindex: index of device 612 * 613 * Search for an interface by index. Returns %NULL if the device 614 * is not found or a pointer to the device. The device has not 615 * had its reference counter increased so the caller must be careful 616 * about locking. The caller must hold either the RTNL semaphore 617 * or @dev_base_lock. 618 */ 619 620 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 621 { 622 struct hlist_node *p; 623 624 hlist_for_each(p, dev_index_hash(net, ifindex)) { 625 struct net_device *dev 626 = hlist_entry(p, struct net_device, index_hlist); 627 if (dev->ifindex == ifindex) 628 return dev; 629 } 630 return NULL; 631 } 632 633 634 /** 635 * dev_get_by_index - find a device by its ifindex 636 * @net: the applicable net namespace 637 * @ifindex: index of device 638 * 639 * Search for an interface by index. Returns NULL if the device 640 * is not found or a pointer to the device. The device returned has 641 * had a reference added and the pointer is safe until the user calls 642 * dev_put to indicate they have finished with it. 643 */ 644 645 struct net_device *dev_get_by_index(struct net *net, int ifindex) 646 { 647 struct net_device *dev; 648 649 read_lock(&dev_base_lock); 650 dev = __dev_get_by_index(net, ifindex); 651 if (dev) 652 dev_hold(dev); 653 read_unlock(&dev_base_lock); 654 return dev; 655 } 656 657 /** 658 * dev_getbyhwaddr - find a device by its hardware address 659 * @net: the applicable net namespace 660 * @type: media type of device 661 * @ha: hardware address 662 * 663 * Search for an interface by MAC address. Returns NULL if the device 664 * is not found or a pointer to the device. The caller must hold the 665 * rtnl semaphore. The returned device has not had its ref count increased 666 * and the caller must therefore be careful about locking 667 * 668 * BUGS: 669 * If the API was consistent this would be __dev_get_by_hwaddr 670 */ 671 672 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha) 673 { 674 struct net_device *dev; 675 676 ASSERT_RTNL(); 677 678 for_each_netdev(net, dev) 679 if (dev->type == type && 680 !memcmp(dev->dev_addr, ha, dev->addr_len)) 681 return dev; 682 683 return NULL; 684 } 685 686 EXPORT_SYMBOL(dev_getbyhwaddr); 687 688 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 689 { 690 struct net_device *dev; 691 692 ASSERT_RTNL(); 693 for_each_netdev(net, dev) 694 if (dev->type == type) 695 return dev; 696 697 return NULL; 698 } 699 700 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 701 702 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 703 { 704 struct net_device *dev; 705 706 rtnl_lock(); 707 dev = __dev_getfirstbyhwtype(net, type); 708 if (dev) 709 dev_hold(dev); 710 rtnl_unlock(); 711 return dev; 712 } 713 714 EXPORT_SYMBOL(dev_getfirstbyhwtype); 715 716 /** 717 * dev_get_by_flags - find any device with given flags 718 * @net: the applicable net namespace 719 * @if_flags: IFF_* values 720 * @mask: bitmask of bits in if_flags to check 721 * 722 * Search for any interface with the given flags. Returns NULL if a device 723 * is not found or a pointer to the device. The device returned has 724 * had a reference added and the pointer is safe until the user calls 725 * dev_put to indicate they have finished with it. 726 */ 727 728 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask) 729 { 730 struct net_device *dev, *ret; 731 732 ret = NULL; 733 read_lock(&dev_base_lock); 734 for_each_netdev(net, dev) { 735 if (((dev->flags ^ if_flags) & mask) == 0) { 736 dev_hold(dev); 737 ret = dev; 738 break; 739 } 740 } 741 read_unlock(&dev_base_lock); 742 return ret; 743 } 744 745 /** 746 * dev_valid_name - check if name is okay for network device 747 * @name: name string 748 * 749 * Network device names need to be valid file names to 750 * to allow sysfs to work. We also disallow any kind of 751 * whitespace. 752 */ 753 int dev_valid_name(const char *name) 754 { 755 if (*name == '\0') 756 return 0; 757 if (strlen(name) >= IFNAMSIZ) 758 return 0; 759 if (!strcmp(name, ".") || !strcmp(name, "..")) 760 return 0; 761 762 while (*name) { 763 if (*name == '/' || isspace(*name)) 764 return 0; 765 name++; 766 } 767 return 1; 768 } 769 770 /** 771 * __dev_alloc_name - allocate a name for a device 772 * @net: network namespace to allocate the device name in 773 * @name: name format string 774 * @buf: scratch buffer and result name string 775 * 776 * Passed a format string - eg "lt%d" it will try and find a suitable 777 * id. It scans list of devices to build up a free map, then chooses 778 * the first empty slot. The caller must hold the dev_base or rtnl lock 779 * while allocating the name and adding the device in order to avoid 780 * duplicates. 781 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 782 * Returns the number of the unit assigned or a negative errno code. 783 */ 784 785 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 786 { 787 int i = 0; 788 const char *p; 789 const int max_netdevices = 8*PAGE_SIZE; 790 unsigned long *inuse; 791 struct net_device *d; 792 793 p = strnchr(name, IFNAMSIZ-1, '%'); 794 if (p) { 795 /* 796 * Verify the string as this thing may have come from 797 * the user. There must be either one "%d" and no other "%" 798 * characters. 799 */ 800 if (p[1] != 'd' || strchr(p + 2, '%')) 801 return -EINVAL; 802 803 /* Use one page as a bit array of possible slots */ 804 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 805 if (!inuse) 806 return -ENOMEM; 807 808 for_each_netdev(net, d) { 809 if (!sscanf(d->name, name, &i)) 810 continue; 811 if (i < 0 || i >= max_netdevices) 812 continue; 813 814 /* avoid cases where sscanf is not exact inverse of printf */ 815 snprintf(buf, IFNAMSIZ, name, i); 816 if (!strncmp(buf, d->name, IFNAMSIZ)) 817 set_bit(i, inuse); 818 } 819 820 i = find_first_zero_bit(inuse, max_netdevices); 821 free_page((unsigned long) inuse); 822 } 823 824 snprintf(buf, IFNAMSIZ, name, i); 825 if (!__dev_get_by_name(net, buf)) 826 return i; 827 828 /* It is possible to run out of possible slots 829 * when the name is long and there isn't enough space left 830 * for the digits, or if all bits are used. 831 */ 832 return -ENFILE; 833 } 834 835 /** 836 * dev_alloc_name - allocate a name for a device 837 * @dev: device 838 * @name: name format string 839 * 840 * Passed a format string - eg "lt%d" it will try and find a suitable 841 * id. It scans list of devices to build up a free map, then chooses 842 * the first empty slot. The caller must hold the dev_base or rtnl lock 843 * while allocating the name and adding the device in order to avoid 844 * duplicates. 845 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 846 * Returns the number of the unit assigned or a negative errno code. 847 */ 848 849 int dev_alloc_name(struct net_device *dev, const char *name) 850 { 851 char buf[IFNAMSIZ]; 852 struct net *net; 853 int ret; 854 855 BUG_ON(!dev_net(dev)); 856 net = dev_net(dev); 857 ret = __dev_alloc_name(net, name, buf); 858 if (ret >= 0) 859 strlcpy(dev->name, buf, IFNAMSIZ); 860 return ret; 861 } 862 863 864 /** 865 * dev_change_name - change name of a device 866 * @dev: device 867 * @newname: name (or format string) must be at least IFNAMSIZ 868 * 869 * Change name of a device, can pass format strings "eth%d". 870 * for wildcarding. 871 */ 872 int dev_change_name(struct net_device *dev, char *newname) 873 { 874 char oldname[IFNAMSIZ]; 875 int err = 0; 876 int ret; 877 struct net *net; 878 879 ASSERT_RTNL(); 880 BUG_ON(!dev_net(dev)); 881 882 net = dev_net(dev); 883 if (dev->flags & IFF_UP) 884 return -EBUSY; 885 886 if (!dev_valid_name(newname)) 887 return -EINVAL; 888 889 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) 890 return 0; 891 892 memcpy(oldname, dev->name, IFNAMSIZ); 893 894 if (strchr(newname, '%')) { 895 err = dev_alloc_name(dev, newname); 896 if (err < 0) 897 return err; 898 strcpy(newname, dev->name); 899 } 900 else if (__dev_get_by_name(net, newname)) 901 return -EEXIST; 902 else 903 strlcpy(dev->name, newname, IFNAMSIZ); 904 905 rollback: 906 err = device_rename(&dev->dev, dev->name); 907 if (err) { 908 memcpy(dev->name, oldname, IFNAMSIZ); 909 return err; 910 } 911 912 write_lock_bh(&dev_base_lock); 913 hlist_del(&dev->name_hlist); 914 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name)); 915 write_unlock_bh(&dev_base_lock); 916 917 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 918 ret = notifier_to_errno(ret); 919 920 if (ret) { 921 if (err) { 922 printk(KERN_ERR 923 "%s: name change rollback failed: %d.\n", 924 dev->name, ret); 925 } else { 926 err = ret; 927 memcpy(dev->name, oldname, IFNAMSIZ); 928 goto rollback; 929 } 930 } 931 932 return err; 933 } 934 935 /** 936 * netdev_features_change - device changes features 937 * @dev: device to cause notification 938 * 939 * Called to indicate a device has changed features. 940 */ 941 void netdev_features_change(struct net_device *dev) 942 { 943 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 944 } 945 EXPORT_SYMBOL(netdev_features_change); 946 947 /** 948 * netdev_state_change - device changes state 949 * @dev: device to cause notification 950 * 951 * Called to indicate a device has changed state. This function calls 952 * the notifier chains for netdev_chain and sends a NEWLINK message 953 * to the routing socket. 954 */ 955 void netdev_state_change(struct net_device *dev) 956 { 957 if (dev->flags & IFF_UP) { 958 call_netdevice_notifiers(NETDEV_CHANGE, dev); 959 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 960 } 961 } 962 963 /** 964 * dev_load - load a network module 965 * @net: the applicable net namespace 966 * @name: name of interface 967 * 968 * If a network interface is not present and the process has suitable 969 * privileges this function loads the module. If module loading is not 970 * available in this kernel then it becomes a nop. 971 */ 972 973 void dev_load(struct net *net, const char *name) 974 { 975 struct net_device *dev; 976 977 read_lock(&dev_base_lock); 978 dev = __dev_get_by_name(net, name); 979 read_unlock(&dev_base_lock); 980 981 if (!dev && capable(CAP_SYS_MODULE)) 982 request_module("%s", name); 983 } 984 985 /** 986 * dev_open - prepare an interface for use. 987 * @dev: device to open 988 * 989 * Takes a device from down to up state. The device's private open 990 * function is invoked and then the multicast lists are loaded. Finally 991 * the device is moved into the up state and a %NETDEV_UP message is 992 * sent to the netdev notifier chain. 993 * 994 * Calling this function on an active interface is a nop. On a failure 995 * a negative errno code is returned. 996 */ 997 int dev_open(struct net_device *dev) 998 { 999 int ret = 0; 1000 1001 ASSERT_RTNL(); 1002 1003 /* 1004 * Is it already up? 1005 */ 1006 1007 if (dev->flags & IFF_UP) 1008 return 0; 1009 1010 /* 1011 * Is it even present? 1012 */ 1013 if (!netif_device_present(dev)) 1014 return -ENODEV; 1015 1016 /* 1017 * Call device private open method 1018 */ 1019 set_bit(__LINK_STATE_START, &dev->state); 1020 1021 if (dev->validate_addr) 1022 ret = dev->validate_addr(dev); 1023 1024 if (!ret && dev->open) 1025 ret = dev->open(dev); 1026 1027 /* 1028 * If it went open OK then: 1029 */ 1030 1031 if (ret) 1032 clear_bit(__LINK_STATE_START, &dev->state); 1033 else { 1034 /* 1035 * Set the flags. 1036 */ 1037 dev->flags |= IFF_UP; 1038 1039 /* 1040 * Initialize multicasting status 1041 */ 1042 dev_set_rx_mode(dev); 1043 1044 /* 1045 * Wakeup transmit queue engine 1046 */ 1047 dev_activate(dev); 1048 1049 /* 1050 * ... and announce new interface. 1051 */ 1052 call_netdevice_notifiers(NETDEV_UP, dev); 1053 } 1054 1055 return ret; 1056 } 1057 1058 /** 1059 * dev_close - shutdown an interface. 1060 * @dev: device to shutdown 1061 * 1062 * This function moves an active device into down state. A 1063 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1064 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1065 * chain. 1066 */ 1067 int dev_close(struct net_device *dev) 1068 { 1069 ASSERT_RTNL(); 1070 1071 might_sleep(); 1072 1073 if (!(dev->flags & IFF_UP)) 1074 return 0; 1075 1076 /* 1077 * Tell people we are going down, so that they can 1078 * prepare to death, when device is still operating. 1079 */ 1080 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1081 1082 clear_bit(__LINK_STATE_START, &dev->state); 1083 1084 /* Synchronize to scheduled poll. We cannot touch poll list, 1085 * it can be even on different cpu. So just clear netif_running(). 1086 * 1087 * dev->stop() will invoke napi_disable() on all of it's 1088 * napi_struct instances on this device. 1089 */ 1090 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1091 1092 dev_deactivate(dev); 1093 1094 /* 1095 * Call the device specific close. This cannot fail. 1096 * Only if device is UP 1097 * 1098 * We allow it to be called even after a DETACH hot-plug 1099 * event. 1100 */ 1101 if (dev->stop) 1102 dev->stop(dev); 1103 1104 /* 1105 * Device is now down. 1106 */ 1107 1108 dev->flags &= ~IFF_UP; 1109 1110 /* 1111 * Tell people we are down 1112 */ 1113 call_netdevice_notifiers(NETDEV_DOWN, dev); 1114 1115 return 0; 1116 } 1117 1118 1119 static int dev_boot_phase = 1; 1120 1121 /* 1122 * Device change register/unregister. These are not inline or static 1123 * as we export them to the world. 1124 */ 1125 1126 /** 1127 * register_netdevice_notifier - register a network notifier block 1128 * @nb: notifier 1129 * 1130 * Register a notifier to be called when network device events occur. 1131 * The notifier passed is linked into the kernel structures and must 1132 * not be reused until it has been unregistered. A negative errno code 1133 * is returned on a failure. 1134 * 1135 * When registered all registration and up events are replayed 1136 * to the new notifier to allow device to have a race free 1137 * view of the network device list. 1138 */ 1139 1140 int register_netdevice_notifier(struct notifier_block *nb) 1141 { 1142 struct net_device *dev; 1143 struct net_device *last; 1144 struct net *net; 1145 int err; 1146 1147 rtnl_lock(); 1148 err = raw_notifier_chain_register(&netdev_chain, nb); 1149 if (err) 1150 goto unlock; 1151 if (dev_boot_phase) 1152 goto unlock; 1153 for_each_net(net) { 1154 for_each_netdev(net, dev) { 1155 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1156 err = notifier_to_errno(err); 1157 if (err) 1158 goto rollback; 1159 1160 if (!(dev->flags & IFF_UP)) 1161 continue; 1162 1163 nb->notifier_call(nb, NETDEV_UP, dev); 1164 } 1165 } 1166 1167 unlock: 1168 rtnl_unlock(); 1169 return err; 1170 1171 rollback: 1172 last = dev; 1173 for_each_net(net) { 1174 for_each_netdev(net, dev) { 1175 if (dev == last) 1176 break; 1177 1178 if (dev->flags & IFF_UP) { 1179 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1180 nb->notifier_call(nb, NETDEV_DOWN, dev); 1181 } 1182 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1183 } 1184 } 1185 1186 raw_notifier_chain_unregister(&netdev_chain, nb); 1187 goto unlock; 1188 } 1189 1190 /** 1191 * unregister_netdevice_notifier - unregister a network notifier block 1192 * @nb: notifier 1193 * 1194 * Unregister a notifier previously registered by 1195 * register_netdevice_notifier(). The notifier is unlinked into the 1196 * kernel structures and may then be reused. A negative errno code 1197 * is returned on a failure. 1198 */ 1199 1200 int unregister_netdevice_notifier(struct notifier_block *nb) 1201 { 1202 int err; 1203 1204 rtnl_lock(); 1205 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1206 rtnl_unlock(); 1207 return err; 1208 } 1209 1210 /** 1211 * call_netdevice_notifiers - call all network notifier blocks 1212 * @val: value passed unmodified to notifier function 1213 * @dev: net_device pointer passed unmodified to notifier function 1214 * 1215 * Call all network notifier blocks. Parameters and return value 1216 * are as for raw_notifier_call_chain(). 1217 */ 1218 1219 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1220 { 1221 return raw_notifier_call_chain(&netdev_chain, val, dev); 1222 } 1223 1224 /* When > 0 there are consumers of rx skb time stamps */ 1225 static atomic_t netstamp_needed = ATOMIC_INIT(0); 1226 1227 void net_enable_timestamp(void) 1228 { 1229 atomic_inc(&netstamp_needed); 1230 } 1231 1232 void net_disable_timestamp(void) 1233 { 1234 atomic_dec(&netstamp_needed); 1235 } 1236 1237 static inline void net_timestamp(struct sk_buff *skb) 1238 { 1239 if (atomic_read(&netstamp_needed)) 1240 __net_timestamp(skb); 1241 else 1242 skb->tstamp.tv64 = 0; 1243 } 1244 1245 /* 1246 * Support routine. Sends outgoing frames to any network 1247 * taps currently in use. 1248 */ 1249 1250 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1251 { 1252 struct packet_type *ptype; 1253 1254 net_timestamp(skb); 1255 1256 rcu_read_lock(); 1257 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1258 /* Never send packets back to the socket 1259 * they originated from - MvS (miquels@drinkel.ow.org) 1260 */ 1261 if ((ptype->dev == dev || !ptype->dev) && 1262 (ptype->af_packet_priv == NULL || 1263 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1264 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC); 1265 if (!skb2) 1266 break; 1267 1268 /* skb->nh should be correctly 1269 set by sender, so that the second statement is 1270 just protection against buggy protocols. 1271 */ 1272 skb_reset_mac_header(skb2); 1273 1274 if (skb_network_header(skb2) < skb2->data || 1275 skb2->network_header > skb2->tail) { 1276 if (net_ratelimit()) 1277 printk(KERN_CRIT "protocol %04x is " 1278 "buggy, dev %s\n", 1279 skb2->protocol, dev->name); 1280 skb_reset_network_header(skb2); 1281 } 1282 1283 skb2->transport_header = skb2->network_header; 1284 skb2->pkt_type = PACKET_OUTGOING; 1285 ptype->func(skb2, skb->dev, ptype, skb->dev); 1286 } 1287 } 1288 rcu_read_unlock(); 1289 } 1290 1291 1292 void __netif_schedule(struct net_device *dev) 1293 { 1294 if (!test_and_set_bit(__LINK_STATE_SCHED, &dev->state)) { 1295 unsigned long flags; 1296 struct softnet_data *sd; 1297 1298 local_irq_save(flags); 1299 sd = &__get_cpu_var(softnet_data); 1300 dev->next_sched = sd->output_queue; 1301 sd->output_queue = dev; 1302 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1303 local_irq_restore(flags); 1304 } 1305 } 1306 EXPORT_SYMBOL(__netif_schedule); 1307 1308 void dev_kfree_skb_irq(struct sk_buff *skb) 1309 { 1310 if (atomic_dec_and_test(&skb->users)) { 1311 struct softnet_data *sd; 1312 unsigned long flags; 1313 1314 local_irq_save(flags); 1315 sd = &__get_cpu_var(softnet_data); 1316 skb->next = sd->completion_queue; 1317 sd->completion_queue = skb; 1318 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1319 local_irq_restore(flags); 1320 } 1321 } 1322 EXPORT_SYMBOL(dev_kfree_skb_irq); 1323 1324 void dev_kfree_skb_any(struct sk_buff *skb) 1325 { 1326 if (in_irq() || irqs_disabled()) 1327 dev_kfree_skb_irq(skb); 1328 else 1329 dev_kfree_skb(skb); 1330 } 1331 EXPORT_SYMBOL(dev_kfree_skb_any); 1332 1333 1334 /** 1335 * netif_device_detach - mark device as removed 1336 * @dev: network device 1337 * 1338 * Mark device as removed from system and therefore no longer available. 1339 */ 1340 void netif_device_detach(struct net_device *dev) 1341 { 1342 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1343 netif_running(dev)) { 1344 netif_stop_queue(dev); 1345 } 1346 } 1347 EXPORT_SYMBOL(netif_device_detach); 1348 1349 /** 1350 * netif_device_attach - mark device as attached 1351 * @dev: network device 1352 * 1353 * Mark device as attached from system and restart if needed. 1354 */ 1355 void netif_device_attach(struct net_device *dev) 1356 { 1357 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1358 netif_running(dev)) { 1359 netif_wake_queue(dev); 1360 __netdev_watchdog_up(dev); 1361 } 1362 } 1363 EXPORT_SYMBOL(netif_device_attach); 1364 1365 1366 /* 1367 * Invalidate hardware checksum when packet is to be mangled, and 1368 * complete checksum manually on outgoing path. 1369 */ 1370 int skb_checksum_help(struct sk_buff *skb) 1371 { 1372 __wsum csum; 1373 int ret = 0, offset; 1374 1375 if (skb->ip_summed == CHECKSUM_COMPLETE) 1376 goto out_set_summed; 1377 1378 if (unlikely(skb_shinfo(skb)->gso_size)) { 1379 /* Let GSO fix up the checksum. */ 1380 goto out_set_summed; 1381 } 1382 1383 offset = skb->csum_start - skb_headroom(skb); 1384 BUG_ON(offset >= skb_headlen(skb)); 1385 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1386 1387 offset += skb->csum_offset; 1388 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1389 1390 if (skb_cloned(skb) && 1391 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1392 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1393 if (ret) 1394 goto out; 1395 } 1396 1397 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1398 out_set_summed: 1399 skb->ip_summed = CHECKSUM_NONE; 1400 out: 1401 return ret; 1402 } 1403 1404 /** 1405 * skb_gso_segment - Perform segmentation on skb. 1406 * @skb: buffer to segment 1407 * @features: features for the output path (see dev->features) 1408 * 1409 * This function segments the given skb and returns a list of segments. 1410 * 1411 * It may return NULL if the skb requires no segmentation. This is 1412 * only possible when GSO is used for verifying header integrity. 1413 */ 1414 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features) 1415 { 1416 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1417 struct packet_type *ptype; 1418 __be16 type = skb->protocol; 1419 int err; 1420 1421 BUG_ON(skb_shinfo(skb)->frag_list); 1422 1423 skb_reset_mac_header(skb); 1424 skb->mac_len = skb->network_header - skb->mac_header; 1425 __skb_pull(skb, skb->mac_len); 1426 1427 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) { 1428 if (skb_header_cloned(skb) && 1429 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1430 return ERR_PTR(err); 1431 } 1432 1433 rcu_read_lock(); 1434 list_for_each_entry_rcu(ptype, 1435 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 1436 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1437 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1438 err = ptype->gso_send_check(skb); 1439 segs = ERR_PTR(err); 1440 if (err || skb_gso_ok(skb, features)) 1441 break; 1442 __skb_push(skb, (skb->data - 1443 skb_network_header(skb))); 1444 } 1445 segs = ptype->gso_segment(skb, features); 1446 break; 1447 } 1448 } 1449 rcu_read_unlock(); 1450 1451 __skb_push(skb, skb->data - skb_mac_header(skb)); 1452 1453 return segs; 1454 } 1455 1456 EXPORT_SYMBOL(skb_gso_segment); 1457 1458 /* Take action when hardware reception checksum errors are detected. */ 1459 #ifdef CONFIG_BUG 1460 void netdev_rx_csum_fault(struct net_device *dev) 1461 { 1462 if (net_ratelimit()) { 1463 printk(KERN_ERR "%s: hw csum failure.\n", 1464 dev ? dev->name : "<unknown>"); 1465 dump_stack(); 1466 } 1467 } 1468 EXPORT_SYMBOL(netdev_rx_csum_fault); 1469 #endif 1470 1471 /* Actually, we should eliminate this check as soon as we know, that: 1472 * 1. IOMMU is present and allows to map all the memory. 1473 * 2. No high memory really exists on this machine. 1474 */ 1475 1476 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 1477 { 1478 #ifdef CONFIG_HIGHMEM 1479 int i; 1480 1481 if (dev->features & NETIF_F_HIGHDMA) 1482 return 0; 1483 1484 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1485 if (PageHighMem(skb_shinfo(skb)->frags[i].page)) 1486 return 1; 1487 1488 #endif 1489 return 0; 1490 } 1491 1492 struct dev_gso_cb { 1493 void (*destructor)(struct sk_buff *skb); 1494 }; 1495 1496 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 1497 1498 static void dev_gso_skb_destructor(struct sk_buff *skb) 1499 { 1500 struct dev_gso_cb *cb; 1501 1502 do { 1503 struct sk_buff *nskb = skb->next; 1504 1505 skb->next = nskb->next; 1506 nskb->next = NULL; 1507 kfree_skb(nskb); 1508 } while (skb->next); 1509 1510 cb = DEV_GSO_CB(skb); 1511 if (cb->destructor) 1512 cb->destructor(skb); 1513 } 1514 1515 /** 1516 * dev_gso_segment - Perform emulated hardware segmentation on skb. 1517 * @skb: buffer to segment 1518 * 1519 * This function segments the given skb and stores the list of segments 1520 * in skb->next. 1521 */ 1522 static int dev_gso_segment(struct sk_buff *skb) 1523 { 1524 struct net_device *dev = skb->dev; 1525 struct sk_buff *segs; 1526 int features = dev->features & ~(illegal_highdma(dev, skb) ? 1527 NETIF_F_SG : 0); 1528 1529 segs = skb_gso_segment(skb, features); 1530 1531 /* Verifying header integrity only. */ 1532 if (!segs) 1533 return 0; 1534 1535 if (IS_ERR(segs)) 1536 return PTR_ERR(segs); 1537 1538 skb->next = segs; 1539 DEV_GSO_CB(skb)->destructor = skb->destructor; 1540 skb->destructor = dev_gso_skb_destructor; 1541 1542 return 0; 1543 } 1544 1545 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) 1546 { 1547 if (likely(!skb->next)) { 1548 if (!list_empty(&ptype_all)) 1549 dev_queue_xmit_nit(skb, dev); 1550 1551 if (netif_needs_gso(dev, skb)) { 1552 if (unlikely(dev_gso_segment(skb))) 1553 goto out_kfree_skb; 1554 if (skb->next) 1555 goto gso; 1556 } 1557 1558 return dev->hard_start_xmit(skb, dev); 1559 } 1560 1561 gso: 1562 do { 1563 struct sk_buff *nskb = skb->next; 1564 int rc; 1565 1566 skb->next = nskb->next; 1567 nskb->next = NULL; 1568 rc = dev->hard_start_xmit(nskb, dev); 1569 if (unlikely(rc)) { 1570 nskb->next = skb->next; 1571 skb->next = nskb; 1572 return rc; 1573 } 1574 if (unlikely((netif_queue_stopped(dev) || 1575 netif_subqueue_stopped(dev, skb)) && 1576 skb->next)) 1577 return NETDEV_TX_BUSY; 1578 } while (skb->next); 1579 1580 skb->destructor = DEV_GSO_CB(skb)->destructor; 1581 1582 out_kfree_skb: 1583 kfree_skb(skb); 1584 return 0; 1585 } 1586 1587 /** 1588 * dev_queue_xmit - transmit a buffer 1589 * @skb: buffer to transmit 1590 * 1591 * Queue a buffer for transmission to a network device. The caller must 1592 * have set the device and priority and built the buffer before calling 1593 * this function. The function can be called from an interrupt. 1594 * 1595 * A negative errno code is returned on a failure. A success does not 1596 * guarantee the frame will be transmitted as it may be dropped due 1597 * to congestion or traffic shaping. 1598 * 1599 * ----------------------------------------------------------------------------------- 1600 * I notice this method can also return errors from the queue disciplines, 1601 * including NET_XMIT_DROP, which is a positive value. So, errors can also 1602 * be positive. 1603 * 1604 * Regardless of the return value, the skb is consumed, so it is currently 1605 * difficult to retry a send to this method. (You can bump the ref count 1606 * before sending to hold a reference for retry if you are careful.) 1607 * 1608 * When calling this method, interrupts MUST be enabled. This is because 1609 * the BH enable code must have IRQs enabled so that it will not deadlock. 1610 * --BLG 1611 */ 1612 1613 int dev_queue_xmit(struct sk_buff *skb) 1614 { 1615 struct net_device *dev = skb->dev; 1616 struct Qdisc *q; 1617 int rc = -ENOMEM; 1618 1619 /* GSO will handle the following emulations directly. */ 1620 if (netif_needs_gso(dev, skb)) 1621 goto gso; 1622 1623 if (skb_shinfo(skb)->frag_list && 1624 !(dev->features & NETIF_F_FRAGLIST) && 1625 __skb_linearize(skb)) 1626 goto out_kfree_skb; 1627 1628 /* Fragmented skb is linearized if device does not support SG, 1629 * or if at least one of fragments is in highmem and device 1630 * does not support DMA from it. 1631 */ 1632 if (skb_shinfo(skb)->nr_frags && 1633 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) && 1634 __skb_linearize(skb)) 1635 goto out_kfree_skb; 1636 1637 /* If packet is not checksummed and device does not support 1638 * checksumming for this protocol, complete checksumming here. 1639 */ 1640 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1641 skb_set_transport_header(skb, skb->csum_start - 1642 skb_headroom(skb)); 1643 1644 if (!(dev->features & NETIF_F_GEN_CSUM) && 1645 !((dev->features & NETIF_F_IP_CSUM) && 1646 skb->protocol == htons(ETH_P_IP)) && 1647 !((dev->features & NETIF_F_IPV6_CSUM) && 1648 skb->protocol == htons(ETH_P_IPV6))) 1649 if (skb_checksum_help(skb)) 1650 goto out_kfree_skb; 1651 } 1652 1653 gso: 1654 spin_lock_prefetch(&dev->queue_lock); 1655 1656 /* Disable soft irqs for various locks below. Also 1657 * stops preemption for RCU. 1658 */ 1659 rcu_read_lock_bh(); 1660 1661 /* Updates of qdisc are serialized by queue_lock. 1662 * The struct Qdisc which is pointed to by qdisc is now a 1663 * rcu structure - it may be accessed without acquiring 1664 * a lock (but the structure may be stale.) The freeing of the 1665 * qdisc will be deferred until it's known that there are no 1666 * more references to it. 1667 * 1668 * If the qdisc has an enqueue function, we still need to 1669 * hold the queue_lock before calling it, since queue_lock 1670 * also serializes access to the device queue. 1671 */ 1672 1673 q = rcu_dereference(dev->qdisc); 1674 #ifdef CONFIG_NET_CLS_ACT 1675 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS); 1676 #endif 1677 if (q->enqueue) { 1678 /* Grab device queue */ 1679 spin_lock(&dev->queue_lock); 1680 q = dev->qdisc; 1681 if (q->enqueue) { 1682 /* reset queue_mapping to zero */ 1683 skb_set_queue_mapping(skb, 0); 1684 rc = q->enqueue(skb, q); 1685 qdisc_run(dev); 1686 spin_unlock(&dev->queue_lock); 1687 1688 rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc; 1689 goto out; 1690 } 1691 spin_unlock(&dev->queue_lock); 1692 } 1693 1694 /* The device has no queue. Common case for software devices: 1695 loopback, all the sorts of tunnels... 1696 1697 Really, it is unlikely that netif_tx_lock protection is necessary 1698 here. (f.e. loopback and IP tunnels are clean ignoring statistics 1699 counters.) 1700 However, it is possible, that they rely on protection 1701 made by us here. 1702 1703 Check this and shot the lock. It is not prone from deadlocks. 1704 Either shot noqueue qdisc, it is even simpler 8) 1705 */ 1706 if (dev->flags & IFF_UP) { 1707 int cpu = smp_processor_id(); /* ok because BHs are off */ 1708 1709 if (dev->xmit_lock_owner != cpu) { 1710 1711 HARD_TX_LOCK(dev, cpu); 1712 1713 if (!netif_queue_stopped(dev) && 1714 !netif_subqueue_stopped(dev, skb)) { 1715 rc = 0; 1716 if (!dev_hard_start_xmit(skb, dev)) { 1717 HARD_TX_UNLOCK(dev); 1718 goto out; 1719 } 1720 } 1721 HARD_TX_UNLOCK(dev); 1722 if (net_ratelimit()) 1723 printk(KERN_CRIT "Virtual device %s asks to " 1724 "queue packet!\n", dev->name); 1725 } else { 1726 /* Recursion is detected! It is possible, 1727 * unfortunately */ 1728 if (net_ratelimit()) 1729 printk(KERN_CRIT "Dead loop on virtual device " 1730 "%s, fix it urgently!\n", dev->name); 1731 } 1732 } 1733 1734 rc = -ENETDOWN; 1735 rcu_read_unlock_bh(); 1736 1737 out_kfree_skb: 1738 kfree_skb(skb); 1739 return rc; 1740 out: 1741 rcu_read_unlock_bh(); 1742 return rc; 1743 } 1744 1745 1746 /*======================================================================= 1747 Receiver routines 1748 =======================================================================*/ 1749 1750 int netdev_max_backlog __read_mostly = 1000; 1751 int netdev_budget __read_mostly = 300; 1752 int weight_p __read_mostly = 64; /* old backlog weight */ 1753 1754 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, }; 1755 1756 1757 /** 1758 * netif_rx - post buffer to the network code 1759 * @skb: buffer to post 1760 * 1761 * This function receives a packet from a device driver and queues it for 1762 * the upper (protocol) levels to process. It always succeeds. The buffer 1763 * may be dropped during processing for congestion control or by the 1764 * protocol layers. 1765 * 1766 * return values: 1767 * NET_RX_SUCCESS (no congestion) 1768 * NET_RX_DROP (packet was dropped) 1769 * 1770 */ 1771 1772 int netif_rx(struct sk_buff *skb) 1773 { 1774 struct softnet_data *queue; 1775 unsigned long flags; 1776 1777 /* if netpoll wants it, pretend we never saw it */ 1778 if (netpoll_rx(skb)) 1779 return NET_RX_DROP; 1780 1781 if (!skb->tstamp.tv64) 1782 net_timestamp(skb); 1783 1784 /* 1785 * The code is rearranged so that the path is the most 1786 * short when CPU is congested, but is still operating. 1787 */ 1788 local_irq_save(flags); 1789 queue = &__get_cpu_var(softnet_data); 1790 1791 __get_cpu_var(netdev_rx_stat).total++; 1792 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) { 1793 if (queue->input_pkt_queue.qlen) { 1794 enqueue: 1795 dev_hold(skb->dev); 1796 __skb_queue_tail(&queue->input_pkt_queue, skb); 1797 local_irq_restore(flags); 1798 return NET_RX_SUCCESS; 1799 } 1800 1801 napi_schedule(&queue->backlog); 1802 goto enqueue; 1803 } 1804 1805 __get_cpu_var(netdev_rx_stat).dropped++; 1806 local_irq_restore(flags); 1807 1808 kfree_skb(skb); 1809 return NET_RX_DROP; 1810 } 1811 1812 int netif_rx_ni(struct sk_buff *skb) 1813 { 1814 int err; 1815 1816 preempt_disable(); 1817 err = netif_rx(skb); 1818 if (local_softirq_pending()) 1819 do_softirq(); 1820 preempt_enable(); 1821 1822 return err; 1823 } 1824 1825 EXPORT_SYMBOL(netif_rx_ni); 1826 1827 static inline struct net_device *skb_bond(struct sk_buff *skb) 1828 { 1829 struct net_device *dev = skb->dev; 1830 1831 if (dev->master) { 1832 if (skb_bond_should_drop(skb)) { 1833 kfree_skb(skb); 1834 return NULL; 1835 } 1836 skb->dev = dev->master; 1837 } 1838 1839 return dev; 1840 } 1841 1842 1843 static void net_tx_action(struct softirq_action *h) 1844 { 1845 struct softnet_data *sd = &__get_cpu_var(softnet_data); 1846 1847 if (sd->completion_queue) { 1848 struct sk_buff *clist; 1849 1850 local_irq_disable(); 1851 clist = sd->completion_queue; 1852 sd->completion_queue = NULL; 1853 local_irq_enable(); 1854 1855 while (clist) { 1856 struct sk_buff *skb = clist; 1857 clist = clist->next; 1858 1859 BUG_TRAP(!atomic_read(&skb->users)); 1860 __kfree_skb(skb); 1861 } 1862 } 1863 1864 if (sd->output_queue) { 1865 struct net_device *head; 1866 1867 local_irq_disable(); 1868 head = sd->output_queue; 1869 sd->output_queue = NULL; 1870 local_irq_enable(); 1871 1872 while (head) { 1873 struct net_device *dev = head; 1874 head = head->next_sched; 1875 1876 smp_mb__before_clear_bit(); 1877 clear_bit(__LINK_STATE_SCHED, &dev->state); 1878 1879 if (spin_trylock(&dev->queue_lock)) { 1880 qdisc_run(dev); 1881 spin_unlock(&dev->queue_lock); 1882 } else { 1883 netif_schedule(dev); 1884 } 1885 } 1886 } 1887 } 1888 1889 static inline int deliver_skb(struct sk_buff *skb, 1890 struct packet_type *pt_prev, 1891 struct net_device *orig_dev) 1892 { 1893 atomic_inc(&skb->users); 1894 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1895 } 1896 1897 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE) 1898 /* These hooks defined here for ATM */ 1899 struct net_bridge; 1900 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br, 1901 unsigned char *addr); 1902 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly; 1903 1904 /* 1905 * If bridge module is loaded call bridging hook. 1906 * returns NULL if packet was consumed. 1907 */ 1908 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p, 1909 struct sk_buff *skb) __read_mostly; 1910 static inline struct sk_buff *handle_bridge(struct sk_buff *skb, 1911 struct packet_type **pt_prev, int *ret, 1912 struct net_device *orig_dev) 1913 { 1914 struct net_bridge_port *port; 1915 1916 if (skb->pkt_type == PACKET_LOOPBACK || 1917 (port = rcu_dereference(skb->dev->br_port)) == NULL) 1918 return skb; 1919 1920 if (*pt_prev) { 1921 *ret = deliver_skb(skb, *pt_prev, orig_dev); 1922 *pt_prev = NULL; 1923 } 1924 1925 return br_handle_frame_hook(port, skb); 1926 } 1927 #else 1928 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb) 1929 #endif 1930 1931 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE) 1932 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly; 1933 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook); 1934 1935 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb, 1936 struct packet_type **pt_prev, 1937 int *ret, 1938 struct net_device *orig_dev) 1939 { 1940 if (skb->dev->macvlan_port == NULL) 1941 return skb; 1942 1943 if (*pt_prev) { 1944 *ret = deliver_skb(skb, *pt_prev, orig_dev); 1945 *pt_prev = NULL; 1946 } 1947 return macvlan_handle_frame_hook(skb); 1948 } 1949 #else 1950 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb) 1951 #endif 1952 1953 #ifdef CONFIG_NET_CLS_ACT 1954 /* TODO: Maybe we should just force sch_ingress to be compiled in 1955 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 1956 * a compare and 2 stores extra right now if we dont have it on 1957 * but have CONFIG_NET_CLS_ACT 1958 * NOTE: This doesnt stop any functionality; if you dont have 1959 * the ingress scheduler, you just cant add policies on ingress. 1960 * 1961 */ 1962 static int ing_filter(struct sk_buff *skb) 1963 { 1964 struct Qdisc *q; 1965 struct net_device *dev = skb->dev; 1966 int result = TC_ACT_OK; 1967 u32 ttl = G_TC_RTTL(skb->tc_verd); 1968 1969 if (MAX_RED_LOOP < ttl++) { 1970 printk(KERN_WARNING 1971 "Redir loop detected Dropping packet (%d->%d)\n", 1972 skb->iif, dev->ifindex); 1973 return TC_ACT_SHOT; 1974 } 1975 1976 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 1977 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 1978 1979 spin_lock(&dev->ingress_lock); 1980 if ((q = dev->qdisc_ingress) != NULL) 1981 result = q->enqueue(skb, q); 1982 spin_unlock(&dev->ingress_lock); 1983 1984 return result; 1985 } 1986 1987 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 1988 struct packet_type **pt_prev, 1989 int *ret, struct net_device *orig_dev) 1990 { 1991 if (!skb->dev->qdisc_ingress) 1992 goto out; 1993 1994 if (*pt_prev) { 1995 *ret = deliver_skb(skb, *pt_prev, orig_dev); 1996 *pt_prev = NULL; 1997 } else { 1998 /* Huh? Why does turning on AF_PACKET affect this? */ 1999 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd); 2000 } 2001 2002 switch (ing_filter(skb)) { 2003 case TC_ACT_SHOT: 2004 case TC_ACT_STOLEN: 2005 kfree_skb(skb); 2006 return NULL; 2007 } 2008 2009 out: 2010 skb->tc_verd = 0; 2011 return skb; 2012 } 2013 #endif 2014 2015 /** 2016 * netif_receive_skb - process receive buffer from network 2017 * @skb: buffer to process 2018 * 2019 * netif_receive_skb() is the main receive data processing function. 2020 * It always succeeds. The buffer may be dropped during processing 2021 * for congestion control or by the protocol layers. 2022 * 2023 * This function may only be called from softirq context and interrupts 2024 * should be enabled. 2025 * 2026 * Return values (usually ignored): 2027 * NET_RX_SUCCESS: no congestion 2028 * NET_RX_DROP: packet was dropped 2029 */ 2030 int netif_receive_skb(struct sk_buff *skb) 2031 { 2032 struct packet_type *ptype, *pt_prev; 2033 struct net_device *orig_dev; 2034 int ret = NET_RX_DROP; 2035 __be16 type; 2036 2037 /* if we've gotten here through NAPI, check netpoll */ 2038 if (netpoll_receive_skb(skb)) 2039 return NET_RX_DROP; 2040 2041 if (!skb->tstamp.tv64) 2042 net_timestamp(skb); 2043 2044 if (!skb->iif) 2045 skb->iif = skb->dev->ifindex; 2046 2047 orig_dev = skb_bond(skb); 2048 2049 if (!orig_dev) 2050 return NET_RX_DROP; 2051 2052 __get_cpu_var(netdev_rx_stat).total++; 2053 2054 skb_reset_network_header(skb); 2055 skb_reset_transport_header(skb); 2056 skb->mac_len = skb->network_header - skb->mac_header; 2057 2058 pt_prev = NULL; 2059 2060 rcu_read_lock(); 2061 2062 #ifdef CONFIG_NET_CLS_ACT 2063 if (skb->tc_verd & TC_NCLS) { 2064 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 2065 goto ncls; 2066 } 2067 #endif 2068 2069 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2070 if (!ptype->dev || ptype->dev == skb->dev) { 2071 if (pt_prev) 2072 ret = deliver_skb(skb, pt_prev, orig_dev); 2073 pt_prev = ptype; 2074 } 2075 } 2076 2077 #ifdef CONFIG_NET_CLS_ACT 2078 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 2079 if (!skb) 2080 goto out; 2081 ncls: 2082 #endif 2083 2084 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev); 2085 if (!skb) 2086 goto out; 2087 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev); 2088 if (!skb) 2089 goto out; 2090 2091 type = skb->protocol; 2092 list_for_each_entry_rcu(ptype, 2093 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 2094 if (ptype->type == type && 2095 (!ptype->dev || ptype->dev == skb->dev)) { 2096 if (pt_prev) 2097 ret = deliver_skb(skb, pt_prev, orig_dev); 2098 pt_prev = ptype; 2099 } 2100 } 2101 2102 if (pt_prev) { 2103 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2104 } else { 2105 kfree_skb(skb); 2106 /* Jamal, now you will not able to escape explaining 2107 * me how you were going to use this. :-) 2108 */ 2109 ret = NET_RX_DROP; 2110 } 2111 2112 out: 2113 rcu_read_unlock(); 2114 return ret; 2115 } 2116 2117 static int process_backlog(struct napi_struct *napi, int quota) 2118 { 2119 int work = 0; 2120 struct softnet_data *queue = &__get_cpu_var(softnet_data); 2121 unsigned long start_time = jiffies; 2122 2123 napi->weight = weight_p; 2124 do { 2125 struct sk_buff *skb; 2126 struct net_device *dev; 2127 2128 local_irq_disable(); 2129 skb = __skb_dequeue(&queue->input_pkt_queue); 2130 if (!skb) { 2131 __napi_complete(napi); 2132 local_irq_enable(); 2133 break; 2134 } 2135 2136 local_irq_enable(); 2137 2138 dev = skb->dev; 2139 2140 netif_receive_skb(skb); 2141 2142 dev_put(dev); 2143 } while (++work < quota && jiffies == start_time); 2144 2145 return work; 2146 } 2147 2148 /** 2149 * __napi_schedule - schedule for receive 2150 * @n: entry to schedule 2151 * 2152 * The entry's receive function will be scheduled to run 2153 */ 2154 void __napi_schedule(struct napi_struct *n) 2155 { 2156 unsigned long flags; 2157 2158 local_irq_save(flags); 2159 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list); 2160 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2161 local_irq_restore(flags); 2162 } 2163 EXPORT_SYMBOL(__napi_schedule); 2164 2165 2166 static void net_rx_action(struct softirq_action *h) 2167 { 2168 struct list_head *list = &__get_cpu_var(softnet_data).poll_list; 2169 unsigned long start_time = jiffies; 2170 int budget = netdev_budget; 2171 void *have; 2172 2173 local_irq_disable(); 2174 2175 while (!list_empty(list)) { 2176 struct napi_struct *n; 2177 int work, weight; 2178 2179 /* If softirq window is exhuasted then punt. 2180 * 2181 * Note that this is a slight policy change from the 2182 * previous NAPI code, which would allow up to 2 2183 * jiffies to pass before breaking out. The test 2184 * used to be "jiffies - start_time > 1". 2185 */ 2186 if (unlikely(budget <= 0 || jiffies != start_time)) 2187 goto softnet_break; 2188 2189 local_irq_enable(); 2190 2191 /* Even though interrupts have been re-enabled, this 2192 * access is safe because interrupts can only add new 2193 * entries to the tail of this list, and only ->poll() 2194 * calls can remove this head entry from the list. 2195 */ 2196 n = list_entry(list->next, struct napi_struct, poll_list); 2197 2198 have = netpoll_poll_lock(n); 2199 2200 weight = n->weight; 2201 2202 /* This NAPI_STATE_SCHED test is for avoiding a race 2203 * with netpoll's poll_napi(). Only the entity which 2204 * obtains the lock and sees NAPI_STATE_SCHED set will 2205 * actually make the ->poll() call. Therefore we avoid 2206 * accidently calling ->poll() when NAPI is not scheduled. 2207 */ 2208 work = 0; 2209 if (test_bit(NAPI_STATE_SCHED, &n->state)) 2210 work = n->poll(n, weight); 2211 2212 WARN_ON_ONCE(work > weight); 2213 2214 budget -= work; 2215 2216 local_irq_disable(); 2217 2218 /* Drivers must not modify the NAPI state if they 2219 * consume the entire weight. In such cases this code 2220 * still "owns" the NAPI instance and therefore can 2221 * move the instance around on the list at-will. 2222 */ 2223 if (unlikely(work == weight)) { 2224 if (unlikely(napi_disable_pending(n))) 2225 __napi_complete(n); 2226 else 2227 list_move_tail(&n->poll_list, list); 2228 } 2229 2230 netpoll_poll_unlock(have); 2231 } 2232 out: 2233 local_irq_enable(); 2234 2235 #ifdef CONFIG_NET_DMA 2236 /* 2237 * There may not be any more sk_buffs coming right now, so push 2238 * any pending DMA copies to hardware 2239 */ 2240 if (!cpus_empty(net_dma.channel_mask)) { 2241 int chan_idx; 2242 for_each_cpu_mask(chan_idx, net_dma.channel_mask) { 2243 struct dma_chan *chan = net_dma.channels[chan_idx]; 2244 if (chan) 2245 dma_async_memcpy_issue_pending(chan); 2246 } 2247 } 2248 #endif 2249 2250 return; 2251 2252 softnet_break: 2253 __get_cpu_var(netdev_rx_stat).time_squeeze++; 2254 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2255 goto out; 2256 } 2257 2258 static gifconf_func_t * gifconf_list [NPROTO]; 2259 2260 /** 2261 * register_gifconf - register a SIOCGIF handler 2262 * @family: Address family 2263 * @gifconf: Function handler 2264 * 2265 * Register protocol dependent address dumping routines. The handler 2266 * that is passed must not be freed or reused until it has been replaced 2267 * by another handler. 2268 */ 2269 int register_gifconf(unsigned int family, gifconf_func_t * gifconf) 2270 { 2271 if (family >= NPROTO) 2272 return -EINVAL; 2273 gifconf_list[family] = gifconf; 2274 return 0; 2275 } 2276 2277 2278 /* 2279 * Map an interface index to its name (SIOCGIFNAME) 2280 */ 2281 2282 /* 2283 * We need this ioctl for efficient implementation of the 2284 * if_indextoname() function required by the IPv6 API. Without 2285 * it, we would have to search all the interfaces to find a 2286 * match. --pb 2287 */ 2288 2289 static int dev_ifname(struct net *net, struct ifreq __user *arg) 2290 { 2291 struct net_device *dev; 2292 struct ifreq ifr; 2293 2294 /* 2295 * Fetch the caller's info block. 2296 */ 2297 2298 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 2299 return -EFAULT; 2300 2301 read_lock(&dev_base_lock); 2302 dev = __dev_get_by_index(net, ifr.ifr_ifindex); 2303 if (!dev) { 2304 read_unlock(&dev_base_lock); 2305 return -ENODEV; 2306 } 2307 2308 strcpy(ifr.ifr_name, dev->name); 2309 read_unlock(&dev_base_lock); 2310 2311 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 2312 return -EFAULT; 2313 return 0; 2314 } 2315 2316 /* 2317 * Perform a SIOCGIFCONF call. This structure will change 2318 * size eventually, and there is nothing I can do about it. 2319 * Thus we will need a 'compatibility mode'. 2320 */ 2321 2322 static int dev_ifconf(struct net *net, char __user *arg) 2323 { 2324 struct ifconf ifc; 2325 struct net_device *dev; 2326 char __user *pos; 2327 int len; 2328 int total; 2329 int i; 2330 2331 /* 2332 * Fetch the caller's info block. 2333 */ 2334 2335 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 2336 return -EFAULT; 2337 2338 pos = ifc.ifc_buf; 2339 len = ifc.ifc_len; 2340 2341 /* 2342 * Loop over the interfaces, and write an info block for each. 2343 */ 2344 2345 total = 0; 2346 for_each_netdev(net, dev) { 2347 for (i = 0; i < NPROTO; i++) { 2348 if (gifconf_list[i]) { 2349 int done; 2350 if (!pos) 2351 done = gifconf_list[i](dev, NULL, 0); 2352 else 2353 done = gifconf_list[i](dev, pos + total, 2354 len - total); 2355 if (done < 0) 2356 return -EFAULT; 2357 total += done; 2358 } 2359 } 2360 } 2361 2362 /* 2363 * All done. Write the updated control block back to the caller. 2364 */ 2365 ifc.ifc_len = total; 2366 2367 /* 2368 * Both BSD and Solaris return 0 here, so we do too. 2369 */ 2370 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 2371 } 2372 2373 #ifdef CONFIG_PROC_FS 2374 /* 2375 * This is invoked by the /proc filesystem handler to display a device 2376 * in detail. 2377 */ 2378 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 2379 __acquires(dev_base_lock) 2380 { 2381 struct net *net = seq_file_net(seq); 2382 loff_t off; 2383 struct net_device *dev; 2384 2385 read_lock(&dev_base_lock); 2386 if (!*pos) 2387 return SEQ_START_TOKEN; 2388 2389 off = 1; 2390 for_each_netdev(net, dev) 2391 if (off++ == *pos) 2392 return dev; 2393 2394 return NULL; 2395 } 2396 2397 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2398 { 2399 struct net *net = seq_file_net(seq); 2400 ++*pos; 2401 return v == SEQ_START_TOKEN ? 2402 first_net_device(net) : next_net_device((struct net_device *)v); 2403 } 2404 2405 void dev_seq_stop(struct seq_file *seq, void *v) 2406 __releases(dev_base_lock) 2407 { 2408 read_unlock(&dev_base_lock); 2409 } 2410 2411 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 2412 { 2413 struct net_device_stats *stats = dev->get_stats(dev); 2414 2415 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu " 2416 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n", 2417 dev->name, stats->rx_bytes, stats->rx_packets, 2418 stats->rx_errors, 2419 stats->rx_dropped + stats->rx_missed_errors, 2420 stats->rx_fifo_errors, 2421 stats->rx_length_errors + stats->rx_over_errors + 2422 stats->rx_crc_errors + stats->rx_frame_errors, 2423 stats->rx_compressed, stats->multicast, 2424 stats->tx_bytes, stats->tx_packets, 2425 stats->tx_errors, stats->tx_dropped, 2426 stats->tx_fifo_errors, stats->collisions, 2427 stats->tx_carrier_errors + 2428 stats->tx_aborted_errors + 2429 stats->tx_window_errors + 2430 stats->tx_heartbeat_errors, 2431 stats->tx_compressed); 2432 } 2433 2434 /* 2435 * Called from the PROCfs module. This now uses the new arbitrary sized 2436 * /proc/net interface to create /proc/net/dev 2437 */ 2438 static int dev_seq_show(struct seq_file *seq, void *v) 2439 { 2440 if (v == SEQ_START_TOKEN) 2441 seq_puts(seq, "Inter-| Receive " 2442 " | Transmit\n" 2443 " face |bytes packets errs drop fifo frame " 2444 "compressed multicast|bytes packets errs " 2445 "drop fifo colls carrier compressed\n"); 2446 else 2447 dev_seq_printf_stats(seq, v); 2448 return 0; 2449 } 2450 2451 static struct netif_rx_stats *softnet_get_online(loff_t *pos) 2452 { 2453 struct netif_rx_stats *rc = NULL; 2454 2455 while (*pos < nr_cpu_ids) 2456 if (cpu_online(*pos)) { 2457 rc = &per_cpu(netdev_rx_stat, *pos); 2458 break; 2459 } else 2460 ++*pos; 2461 return rc; 2462 } 2463 2464 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 2465 { 2466 return softnet_get_online(pos); 2467 } 2468 2469 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2470 { 2471 ++*pos; 2472 return softnet_get_online(pos); 2473 } 2474 2475 static void softnet_seq_stop(struct seq_file *seq, void *v) 2476 { 2477 } 2478 2479 static int softnet_seq_show(struct seq_file *seq, void *v) 2480 { 2481 struct netif_rx_stats *s = v; 2482 2483 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 2484 s->total, s->dropped, s->time_squeeze, 0, 2485 0, 0, 0, 0, /* was fastroute */ 2486 s->cpu_collision ); 2487 return 0; 2488 } 2489 2490 static const struct seq_operations dev_seq_ops = { 2491 .start = dev_seq_start, 2492 .next = dev_seq_next, 2493 .stop = dev_seq_stop, 2494 .show = dev_seq_show, 2495 }; 2496 2497 static int dev_seq_open(struct inode *inode, struct file *file) 2498 { 2499 return seq_open_net(inode, file, &dev_seq_ops, 2500 sizeof(struct seq_net_private)); 2501 } 2502 2503 static const struct file_operations dev_seq_fops = { 2504 .owner = THIS_MODULE, 2505 .open = dev_seq_open, 2506 .read = seq_read, 2507 .llseek = seq_lseek, 2508 .release = seq_release_net, 2509 }; 2510 2511 static const struct seq_operations softnet_seq_ops = { 2512 .start = softnet_seq_start, 2513 .next = softnet_seq_next, 2514 .stop = softnet_seq_stop, 2515 .show = softnet_seq_show, 2516 }; 2517 2518 static int softnet_seq_open(struct inode *inode, struct file *file) 2519 { 2520 return seq_open(file, &softnet_seq_ops); 2521 } 2522 2523 static const struct file_operations softnet_seq_fops = { 2524 .owner = THIS_MODULE, 2525 .open = softnet_seq_open, 2526 .read = seq_read, 2527 .llseek = seq_lseek, 2528 .release = seq_release, 2529 }; 2530 2531 static void *ptype_get_idx(loff_t pos) 2532 { 2533 struct packet_type *pt = NULL; 2534 loff_t i = 0; 2535 int t; 2536 2537 list_for_each_entry_rcu(pt, &ptype_all, list) { 2538 if (i == pos) 2539 return pt; 2540 ++i; 2541 } 2542 2543 for (t = 0; t < PTYPE_HASH_SIZE; t++) { 2544 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 2545 if (i == pos) 2546 return pt; 2547 ++i; 2548 } 2549 } 2550 return NULL; 2551 } 2552 2553 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 2554 __acquires(RCU) 2555 { 2556 rcu_read_lock(); 2557 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 2558 } 2559 2560 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2561 { 2562 struct packet_type *pt; 2563 struct list_head *nxt; 2564 int hash; 2565 2566 ++*pos; 2567 if (v == SEQ_START_TOKEN) 2568 return ptype_get_idx(0); 2569 2570 pt = v; 2571 nxt = pt->list.next; 2572 if (pt->type == htons(ETH_P_ALL)) { 2573 if (nxt != &ptype_all) 2574 goto found; 2575 hash = 0; 2576 nxt = ptype_base[0].next; 2577 } else 2578 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 2579 2580 while (nxt == &ptype_base[hash]) { 2581 if (++hash >= PTYPE_HASH_SIZE) 2582 return NULL; 2583 nxt = ptype_base[hash].next; 2584 } 2585 found: 2586 return list_entry(nxt, struct packet_type, list); 2587 } 2588 2589 static void ptype_seq_stop(struct seq_file *seq, void *v) 2590 __releases(RCU) 2591 { 2592 rcu_read_unlock(); 2593 } 2594 2595 static void ptype_seq_decode(struct seq_file *seq, void *sym) 2596 { 2597 #ifdef CONFIG_KALLSYMS 2598 unsigned long offset = 0, symsize; 2599 const char *symname; 2600 char *modname; 2601 char namebuf[128]; 2602 2603 symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset, 2604 &modname, namebuf); 2605 2606 if (symname) { 2607 char *delim = ":"; 2608 2609 if (!modname) 2610 modname = delim = ""; 2611 seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim, 2612 symname, offset); 2613 return; 2614 } 2615 #endif 2616 2617 seq_printf(seq, "[%p]", sym); 2618 } 2619 2620 static int ptype_seq_show(struct seq_file *seq, void *v) 2621 { 2622 struct packet_type *pt = v; 2623 2624 if (v == SEQ_START_TOKEN) 2625 seq_puts(seq, "Type Device Function\n"); 2626 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) { 2627 if (pt->type == htons(ETH_P_ALL)) 2628 seq_puts(seq, "ALL "); 2629 else 2630 seq_printf(seq, "%04x", ntohs(pt->type)); 2631 2632 seq_printf(seq, " %-8s ", 2633 pt->dev ? pt->dev->name : ""); 2634 ptype_seq_decode(seq, pt->func); 2635 seq_putc(seq, '\n'); 2636 } 2637 2638 return 0; 2639 } 2640 2641 static const struct seq_operations ptype_seq_ops = { 2642 .start = ptype_seq_start, 2643 .next = ptype_seq_next, 2644 .stop = ptype_seq_stop, 2645 .show = ptype_seq_show, 2646 }; 2647 2648 static int ptype_seq_open(struct inode *inode, struct file *file) 2649 { 2650 return seq_open_net(inode, file, &ptype_seq_ops, 2651 sizeof(struct seq_net_private)); 2652 } 2653 2654 static const struct file_operations ptype_seq_fops = { 2655 .owner = THIS_MODULE, 2656 .open = ptype_seq_open, 2657 .read = seq_read, 2658 .llseek = seq_lseek, 2659 .release = seq_release_net, 2660 }; 2661 2662 2663 static int __net_init dev_proc_net_init(struct net *net) 2664 { 2665 int rc = -ENOMEM; 2666 2667 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 2668 goto out; 2669 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 2670 goto out_dev; 2671 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 2672 goto out_softnet; 2673 2674 if (wext_proc_init(net)) 2675 goto out_ptype; 2676 rc = 0; 2677 out: 2678 return rc; 2679 out_ptype: 2680 proc_net_remove(net, "ptype"); 2681 out_softnet: 2682 proc_net_remove(net, "softnet_stat"); 2683 out_dev: 2684 proc_net_remove(net, "dev"); 2685 goto out; 2686 } 2687 2688 static void __net_exit dev_proc_net_exit(struct net *net) 2689 { 2690 wext_proc_exit(net); 2691 2692 proc_net_remove(net, "ptype"); 2693 proc_net_remove(net, "softnet_stat"); 2694 proc_net_remove(net, "dev"); 2695 } 2696 2697 static struct pernet_operations __net_initdata dev_proc_ops = { 2698 .init = dev_proc_net_init, 2699 .exit = dev_proc_net_exit, 2700 }; 2701 2702 static int __init dev_proc_init(void) 2703 { 2704 return register_pernet_subsys(&dev_proc_ops); 2705 } 2706 #else 2707 #define dev_proc_init() 0 2708 #endif /* CONFIG_PROC_FS */ 2709 2710 2711 /** 2712 * netdev_set_master - set up master/slave pair 2713 * @slave: slave device 2714 * @master: new master device 2715 * 2716 * Changes the master device of the slave. Pass %NULL to break the 2717 * bonding. The caller must hold the RTNL semaphore. On a failure 2718 * a negative errno code is returned. On success the reference counts 2719 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the 2720 * function returns zero. 2721 */ 2722 int netdev_set_master(struct net_device *slave, struct net_device *master) 2723 { 2724 struct net_device *old = slave->master; 2725 2726 ASSERT_RTNL(); 2727 2728 if (master) { 2729 if (old) 2730 return -EBUSY; 2731 dev_hold(master); 2732 } 2733 2734 slave->master = master; 2735 2736 synchronize_net(); 2737 2738 if (old) 2739 dev_put(old); 2740 2741 if (master) 2742 slave->flags |= IFF_SLAVE; 2743 else 2744 slave->flags &= ~IFF_SLAVE; 2745 2746 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 2747 return 0; 2748 } 2749 2750 static void __dev_set_promiscuity(struct net_device *dev, int inc) 2751 { 2752 unsigned short old_flags = dev->flags; 2753 2754 ASSERT_RTNL(); 2755 2756 if ((dev->promiscuity += inc) == 0) 2757 dev->flags &= ~IFF_PROMISC; 2758 else 2759 dev->flags |= IFF_PROMISC; 2760 if (dev->flags != old_flags) { 2761 printk(KERN_INFO "device %s %s promiscuous mode\n", 2762 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 2763 "left"); 2764 if (audit_enabled) 2765 audit_log(current->audit_context, GFP_ATOMIC, 2766 AUDIT_ANOM_PROMISCUOUS, 2767 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 2768 dev->name, (dev->flags & IFF_PROMISC), 2769 (old_flags & IFF_PROMISC), 2770 audit_get_loginuid(current), 2771 current->uid, current->gid, 2772 audit_get_sessionid(current)); 2773 2774 if (dev->change_rx_flags) 2775 dev->change_rx_flags(dev, IFF_PROMISC); 2776 } 2777 } 2778 2779 /** 2780 * dev_set_promiscuity - update promiscuity count on a device 2781 * @dev: device 2782 * @inc: modifier 2783 * 2784 * Add or remove promiscuity from a device. While the count in the device 2785 * remains above zero the interface remains promiscuous. Once it hits zero 2786 * the device reverts back to normal filtering operation. A negative inc 2787 * value is used to drop promiscuity on the device. 2788 */ 2789 void dev_set_promiscuity(struct net_device *dev, int inc) 2790 { 2791 unsigned short old_flags = dev->flags; 2792 2793 __dev_set_promiscuity(dev, inc); 2794 if (dev->flags != old_flags) 2795 dev_set_rx_mode(dev); 2796 } 2797 2798 /** 2799 * dev_set_allmulti - update allmulti count on a device 2800 * @dev: device 2801 * @inc: modifier 2802 * 2803 * Add or remove reception of all multicast frames to a device. While the 2804 * count in the device remains above zero the interface remains listening 2805 * to all interfaces. Once it hits zero the device reverts back to normal 2806 * filtering operation. A negative @inc value is used to drop the counter 2807 * when releasing a resource needing all multicasts. 2808 */ 2809 2810 void dev_set_allmulti(struct net_device *dev, int inc) 2811 { 2812 unsigned short old_flags = dev->flags; 2813 2814 ASSERT_RTNL(); 2815 2816 dev->flags |= IFF_ALLMULTI; 2817 if ((dev->allmulti += inc) == 0) 2818 dev->flags &= ~IFF_ALLMULTI; 2819 if (dev->flags ^ old_flags) { 2820 if (dev->change_rx_flags) 2821 dev->change_rx_flags(dev, IFF_ALLMULTI); 2822 dev_set_rx_mode(dev); 2823 } 2824 } 2825 2826 /* 2827 * Upload unicast and multicast address lists to device and 2828 * configure RX filtering. When the device doesn't support unicast 2829 * filtering it is put in promiscuous mode while unicast addresses 2830 * are present. 2831 */ 2832 void __dev_set_rx_mode(struct net_device *dev) 2833 { 2834 /* dev_open will call this function so the list will stay sane. */ 2835 if (!(dev->flags&IFF_UP)) 2836 return; 2837 2838 if (!netif_device_present(dev)) 2839 return; 2840 2841 if (dev->set_rx_mode) 2842 dev->set_rx_mode(dev); 2843 else { 2844 /* Unicast addresses changes may only happen under the rtnl, 2845 * therefore calling __dev_set_promiscuity here is safe. 2846 */ 2847 if (dev->uc_count > 0 && !dev->uc_promisc) { 2848 __dev_set_promiscuity(dev, 1); 2849 dev->uc_promisc = 1; 2850 } else if (dev->uc_count == 0 && dev->uc_promisc) { 2851 __dev_set_promiscuity(dev, -1); 2852 dev->uc_promisc = 0; 2853 } 2854 2855 if (dev->set_multicast_list) 2856 dev->set_multicast_list(dev); 2857 } 2858 } 2859 2860 void dev_set_rx_mode(struct net_device *dev) 2861 { 2862 netif_tx_lock_bh(dev); 2863 __dev_set_rx_mode(dev); 2864 netif_tx_unlock_bh(dev); 2865 } 2866 2867 int __dev_addr_delete(struct dev_addr_list **list, int *count, 2868 void *addr, int alen, int glbl) 2869 { 2870 struct dev_addr_list *da; 2871 2872 for (; (da = *list) != NULL; list = &da->next) { 2873 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 2874 alen == da->da_addrlen) { 2875 if (glbl) { 2876 int old_glbl = da->da_gusers; 2877 da->da_gusers = 0; 2878 if (old_glbl == 0) 2879 break; 2880 } 2881 if (--da->da_users) 2882 return 0; 2883 2884 *list = da->next; 2885 kfree(da); 2886 (*count)--; 2887 return 0; 2888 } 2889 } 2890 return -ENOENT; 2891 } 2892 2893 int __dev_addr_add(struct dev_addr_list **list, int *count, 2894 void *addr, int alen, int glbl) 2895 { 2896 struct dev_addr_list *da; 2897 2898 for (da = *list; da != NULL; da = da->next) { 2899 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 2900 da->da_addrlen == alen) { 2901 if (glbl) { 2902 int old_glbl = da->da_gusers; 2903 da->da_gusers = 1; 2904 if (old_glbl) 2905 return 0; 2906 } 2907 da->da_users++; 2908 return 0; 2909 } 2910 } 2911 2912 da = kzalloc(sizeof(*da), GFP_ATOMIC); 2913 if (da == NULL) 2914 return -ENOMEM; 2915 memcpy(da->da_addr, addr, alen); 2916 da->da_addrlen = alen; 2917 da->da_users = 1; 2918 da->da_gusers = glbl ? 1 : 0; 2919 da->next = *list; 2920 *list = da; 2921 (*count)++; 2922 return 0; 2923 } 2924 2925 /** 2926 * dev_unicast_delete - Release secondary unicast address. 2927 * @dev: device 2928 * @addr: address to delete 2929 * @alen: length of @addr 2930 * 2931 * Release reference to a secondary unicast address and remove it 2932 * from the device if the reference count drops to zero. 2933 * 2934 * The caller must hold the rtnl_mutex. 2935 */ 2936 int dev_unicast_delete(struct net_device *dev, void *addr, int alen) 2937 { 2938 int err; 2939 2940 ASSERT_RTNL(); 2941 2942 netif_tx_lock_bh(dev); 2943 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0); 2944 if (!err) 2945 __dev_set_rx_mode(dev); 2946 netif_tx_unlock_bh(dev); 2947 return err; 2948 } 2949 EXPORT_SYMBOL(dev_unicast_delete); 2950 2951 /** 2952 * dev_unicast_add - add a secondary unicast address 2953 * @dev: device 2954 * @addr: address to delete 2955 * @alen: length of @addr 2956 * 2957 * Add a secondary unicast address to the device or increase 2958 * the reference count if it already exists. 2959 * 2960 * The caller must hold the rtnl_mutex. 2961 */ 2962 int dev_unicast_add(struct net_device *dev, void *addr, int alen) 2963 { 2964 int err; 2965 2966 ASSERT_RTNL(); 2967 2968 netif_tx_lock_bh(dev); 2969 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0); 2970 if (!err) 2971 __dev_set_rx_mode(dev); 2972 netif_tx_unlock_bh(dev); 2973 return err; 2974 } 2975 EXPORT_SYMBOL(dev_unicast_add); 2976 2977 int __dev_addr_sync(struct dev_addr_list **to, int *to_count, 2978 struct dev_addr_list **from, int *from_count) 2979 { 2980 struct dev_addr_list *da, *next; 2981 int err = 0; 2982 2983 da = *from; 2984 while (da != NULL) { 2985 next = da->next; 2986 if (!da->da_synced) { 2987 err = __dev_addr_add(to, to_count, 2988 da->da_addr, da->da_addrlen, 0); 2989 if (err < 0) 2990 break; 2991 da->da_synced = 1; 2992 da->da_users++; 2993 } else if (da->da_users == 1) { 2994 __dev_addr_delete(to, to_count, 2995 da->da_addr, da->da_addrlen, 0); 2996 __dev_addr_delete(from, from_count, 2997 da->da_addr, da->da_addrlen, 0); 2998 } 2999 da = next; 3000 } 3001 return err; 3002 } 3003 3004 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count, 3005 struct dev_addr_list **from, int *from_count) 3006 { 3007 struct dev_addr_list *da, *next; 3008 3009 da = *from; 3010 while (da != NULL) { 3011 next = da->next; 3012 if (da->da_synced) { 3013 __dev_addr_delete(to, to_count, 3014 da->da_addr, da->da_addrlen, 0); 3015 da->da_synced = 0; 3016 __dev_addr_delete(from, from_count, 3017 da->da_addr, da->da_addrlen, 0); 3018 } 3019 da = next; 3020 } 3021 } 3022 3023 /** 3024 * dev_unicast_sync - Synchronize device's unicast list to another device 3025 * @to: destination device 3026 * @from: source device 3027 * 3028 * Add newly added addresses to the destination device and release 3029 * addresses that have no users left. The source device must be 3030 * locked by netif_tx_lock_bh. 3031 * 3032 * This function is intended to be called from the dev->set_rx_mode 3033 * function of layered software devices. 3034 */ 3035 int dev_unicast_sync(struct net_device *to, struct net_device *from) 3036 { 3037 int err = 0; 3038 3039 netif_tx_lock_bh(to); 3040 err = __dev_addr_sync(&to->uc_list, &to->uc_count, 3041 &from->uc_list, &from->uc_count); 3042 if (!err) 3043 __dev_set_rx_mode(to); 3044 netif_tx_unlock_bh(to); 3045 return err; 3046 } 3047 EXPORT_SYMBOL(dev_unicast_sync); 3048 3049 /** 3050 * dev_unicast_unsync - Remove synchronized addresses from the destination device 3051 * @to: destination device 3052 * @from: source device 3053 * 3054 * Remove all addresses that were added to the destination device by 3055 * dev_unicast_sync(). This function is intended to be called from the 3056 * dev->stop function of layered software devices. 3057 */ 3058 void dev_unicast_unsync(struct net_device *to, struct net_device *from) 3059 { 3060 netif_tx_lock_bh(from); 3061 netif_tx_lock_bh(to); 3062 3063 __dev_addr_unsync(&to->uc_list, &to->uc_count, 3064 &from->uc_list, &from->uc_count); 3065 __dev_set_rx_mode(to); 3066 3067 netif_tx_unlock_bh(to); 3068 netif_tx_unlock_bh(from); 3069 } 3070 EXPORT_SYMBOL(dev_unicast_unsync); 3071 3072 static void __dev_addr_discard(struct dev_addr_list **list) 3073 { 3074 struct dev_addr_list *tmp; 3075 3076 while (*list != NULL) { 3077 tmp = *list; 3078 *list = tmp->next; 3079 if (tmp->da_users > tmp->da_gusers) 3080 printk("__dev_addr_discard: address leakage! " 3081 "da_users=%d\n", tmp->da_users); 3082 kfree(tmp); 3083 } 3084 } 3085 3086 static void dev_addr_discard(struct net_device *dev) 3087 { 3088 netif_tx_lock_bh(dev); 3089 3090 __dev_addr_discard(&dev->uc_list); 3091 dev->uc_count = 0; 3092 3093 __dev_addr_discard(&dev->mc_list); 3094 dev->mc_count = 0; 3095 3096 netif_tx_unlock_bh(dev); 3097 } 3098 3099 unsigned dev_get_flags(const struct net_device *dev) 3100 { 3101 unsigned flags; 3102 3103 flags = (dev->flags & ~(IFF_PROMISC | 3104 IFF_ALLMULTI | 3105 IFF_RUNNING | 3106 IFF_LOWER_UP | 3107 IFF_DORMANT)) | 3108 (dev->gflags & (IFF_PROMISC | 3109 IFF_ALLMULTI)); 3110 3111 if (netif_running(dev)) { 3112 if (netif_oper_up(dev)) 3113 flags |= IFF_RUNNING; 3114 if (netif_carrier_ok(dev)) 3115 flags |= IFF_LOWER_UP; 3116 if (netif_dormant(dev)) 3117 flags |= IFF_DORMANT; 3118 } 3119 3120 return flags; 3121 } 3122 3123 int dev_change_flags(struct net_device *dev, unsigned flags) 3124 { 3125 int ret, changes; 3126 int old_flags = dev->flags; 3127 3128 ASSERT_RTNL(); 3129 3130 /* 3131 * Set the flags on our device. 3132 */ 3133 3134 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 3135 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 3136 IFF_AUTOMEDIA)) | 3137 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 3138 IFF_ALLMULTI)); 3139 3140 /* 3141 * Load in the correct multicast list now the flags have changed. 3142 */ 3143 3144 if (dev->change_rx_flags && (old_flags ^ flags) & IFF_MULTICAST) 3145 dev->change_rx_flags(dev, IFF_MULTICAST); 3146 3147 dev_set_rx_mode(dev); 3148 3149 /* 3150 * Have we downed the interface. We handle IFF_UP ourselves 3151 * according to user attempts to set it, rather than blindly 3152 * setting it. 3153 */ 3154 3155 ret = 0; 3156 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 3157 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev); 3158 3159 if (!ret) 3160 dev_set_rx_mode(dev); 3161 } 3162 3163 if (dev->flags & IFF_UP && 3164 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI | 3165 IFF_VOLATILE))) 3166 call_netdevice_notifiers(NETDEV_CHANGE, dev); 3167 3168 if ((flags ^ dev->gflags) & IFF_PROMISC) { 3169 int inc = (flags & IFF_PROMISC) ? +1 : -1; 3170 dev->gflags ^= IFF_PROMISC; 3171 dev_set_promiscuity(dev, inc); 3172 } 3173 3174 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 3175 is important. Some (broken) drivers set IFF_PROMISC, when 3176 IFF_ALLMULTI is requested not asking us and not reporting. 3177 */ 3178 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 3179 int inc = (flags & IFF_ALLMULTI) ? +1 : -1; 3180 dev->gflags ^= IFF_ALLMULTI; 3181 dev_set_allmulti(dev, inc); 3182 } 3183 3184 /* Exclude state transition flags, already notified */ 3185 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING); 3186 if (changes) 3187 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 3188 3189 return ret; 3190 } 3191 3192 int dev_set_mtu(struct net_device *dev, int new_mtu) 3193 { 3194 int err; 3195 3196 if (new_mtu == dev->mtu) 3197 return 0; 3198 3199 /* MTU must be positive. */ 3200 if (new_mtu < 0) 3201 return -EINVAL; 3202 3203 if (!netif_device_present(dev)) 3204 return -ENODEV; 3205 3206 err = 0; 3207 if (dev->change_mtu) 3208 err = dev->change_mtu(dev, new_mtu); 3209 else 3210 dev->mtu = new_mtu; 3211 if (!err && dev->flags & IFF_UP) 3212 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 3213 return err; 3214 } 3215 3216 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 3217 { 3218 int err; 3219 3220 if (!dev->set_mac_address) 3221 return -EOPNOTSUPP; 3222 if (sa->sa_family != dev->type) 3223 return -EINVAL; 3224 if (!netif_device_present(dev)) 3225 return -ENODEV; 3226 err = dev->set_mac_address(dev, sa); 3227 if (!err) 3228 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 3229 return err; 3230 } 3231 3232 /* 3233 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock) 3234 */ 3235 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 3236 { 3237 int err; 3238 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 3239 3240 if (!dev) 3241 return -ENODEV; 3242 3243 switch (cmd) { 3244 case SIOCGIFFLAGS: /* Get interface flags */ 3245 ifr->ifr_flags = dev_get_flags(dev); 3246 return 0; 3247 3248 case SIOCGIFMETRIC: /* Get the metric on the interface 3249 (currently unused) */ 3250 ifr->ifr_metric = 0; 3251 return 0; 3252 3253 case SIOCGIFMTU: /* Get the MTU of a device */ 3254 ifr->ifr_mtu = dev->mtu; 3255 return 0; 3256 3257 case SIOCGIFHWADDR: 3258 if (!dev->addr_len) 3259 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 3260 else 3261 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 3262 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 3263 ifr->ifr_hwaddr.sa_family = dev->type; 3264 return 0; 3265 3266 case SIOCGIFSLAVE: 3267 err = -EINVAL; 3268 break; 3269 3270 case SIOCGIFMAP: 3271 ifr->ifr_map.mem_start = dev->mem_start; 3272 ifr->ifr_map.mem_end = dev->mem_end; 3273 ifr->ifr_map.base_addr = dev->base_addr; 3274 ifr->ifr_map.irq = dev->irq; 3275 ifr->ifr_map.dma = dev->dma; 3276 ifr->ifr_map.port = dev->if_port; 3277 return 0; 3278 3279 case SIOCGIFINDEX: 3280 ifr->ifr_ifindex = dev->ifindex; 3281 return 0; 3282 3283 case SIOCGIFTXQLEN: 3284 ifr->ifr_qlen = dev->tx_queue_len; 3285 return 0; 3286 3287 default: 3288 /* dev_ioctl() should ensure this case 3289 * is never reached 3290 */ 3291 WARN_ON(1); 3292 err = -EINVAL; 3293 break; 3294 3295 } 3296 return err; 3297 } 3298 3299 /* 3300 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 3301 */ 3302 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 3303 { 3304 int err; 3305 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 3306 3307 if (!dev) 3308 return -ENODEV; 3309 3310 switch (cmd) { 3311 case SIOCSIFFLAGS: /* Set interface flags */ 3312 return dev_change_flags(dev, ifr->ifr_flags); 3313 3314 case SIOCSIFMETRIC: /* Set the metric on the interface 3315 (currently unused) */ 3316 return -EOPNOTSUPP; 3317 3318 case SIOCSIFMTU: /* Set the MTU of a device */ 3319 return dev_set_mtu(dev, ifr->ifr_mtu); 3320 3321 case SIOCSIFHWADDR: 3322 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 3323 3324 case SIOCSIFHWBROADCAST: 3325 if (ifr->ifr_hwaddr.sa_family != dev->type) 3326 return -EINVAL; 3327 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 3328 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 3329 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 3330 return 0; 3331 3332 case SIOCSIFMAP: 3333 if (dev->set_config) { 3334 if (!netif_device_present(dev)) 3335 return -ENODEV; 3336 return dev->set_config(dev, &ifr->ifr_map); 3337 } 3338 return -EOPNOTSUPP; 3339 3340 case SIOCADDMULTI: 3341 if ((!dev->set_multicast_list && !dev->set_rx_mode) || 3342 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 3343 return -EINVAL; 3344 if (!netif_device_present(dev)) 3345 return -ENODEV; 3346 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data, 3347 dev->addr_len, 1); 3348 3349 case SIOCDELMULTI: 3350 if ((!dev->set_multicast_list && !dev->set_rx_mode) || 3351 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 3352 return -EINVAL; 3353 if (!netif_device_present(dev)) 3354 return -ENODEV; 3355 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data, 3356 dev->addr_len, 1); 3357 3358 case SIOCSIFTXQLEN: 3359 if (ifr->ifr_qlen < 0) 3360 return -EINVAL; 3361 dev->tx_queue_len = ifr->ifr_qlen; 3362 return 0; 3363 3364 case SIOCSIFNAME: 3365 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 3366 return dev_change_name(dev, ifr->ifr_newname); 3367 3368 /* 3369 * Unknown or private ioctl 3370 */ 3371 3372 default: 3373 if ((cmd >= SIOCDEVPRIVATE && 3374 cmd <= SIOCDEVPRIVATE + 15) || 3375 cmd == SIOCBONDENSLAVE || 3376 cmd == SIOCBONDRELEASE || 3377 cmd == SIOCBONDSETHWADDR || 3378 cmd == SIOCBONDSLAVEINFOQUERY || 3379 cmd == SIOCBONDINFOQUERY || 3380 cmd == SIOCBONDCHANGEACTIVE || 3381 cmd == SIOCGMIIPHY || 3382 cmd == SIOCGMIIREG || 3383 cmd == SIOCSMIIREG || 3384 cmd == SIOCBRADDIF || 3385 cmd == SIOCBRDELIF || 3386 cmd == SIOCWANDEV) { 3387 err = -EOPNOTSUPP; 3388 if (dev->do_ioctl) { 3389 if (netif_device_present(dev)) 3390 err = dev->do_ioctl(dev, ifr, 3391 cmd); 3392 else 3393 err = -ENODEV; 3394 } 3395 } else 3396 err = -EINVAL; 3397 3398 } 3399 return err; 3400 } 3401 3402 /* 3403 * This function handles all "interface"-type I/O control requests. The actual 3404 * 'doing' part of this is dev_ifsioc above. 3405 */ 3406 3407 /** 3408 * dev_ioctl - network device ioctl 3409 * @net: the applicable net namespace 3410 * @cmd: command to issue 3411 * @arg: pointer to a struct ifreq in user space 3412 * 3413 * Issue ioctl functions to devices. This is normally called by the 3414 * user space syscall interfaces but can sometimes be useful for 3415 * other purposes. The return value is the return from the syscall if 3416 * positive or a negative errno code on error. 3417 */ 3418 3419 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 3420 { 3421 struct ifreq ifr; 3422 int ret; 3423 char *colon; 3424 3425 /* One special case: SIOCGIFCONF takes ifconf argument 3426 and requires shared lock, because it sleeps writing 3427 to user space. 3428 */ 3429 3430 if (cmd == SIOCGIFCONF) { 3431 rtnl_lock(); 3432 ret = dev_ifconf(net, (char __user *) arg); 3433 rtnl_unlock(); 3434 return ret; 3435 } 3436 if (cmd == SIOCGIFNAME) 3437 return dev_ifname(net, (struct ifreq __user *)arg); 3438 3439 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 3440 return -EFAULT; 3441 3442 ifr.ifr_name[IFNAMSIZ-1] = 0; 3443 3444 colon = strchr(ifr.ifr_name, ':'); 3445 if (colon) 3446 *colon = 0; 3447 3448 /* 3449 * See which interface the caller is talking about. 3450 */ 3451 3452 switch (cmd) { 3453 /* 3454 * These ioctl calls: 3455 * - can be done by all. 3456 * - atomic and do not require locking. 3457 * - return a value 3458 */ 3459 case SIOCGIFFLAGS: 3460 case SIOCGIFMETRIC: 3461 case SIOCGIFMTU: 3462 case SIOCGIFHWADDR: 3463 case SIOCGIFSLAVE: 3464 case SIOCGIFMAP: 3465 case SIOCGIFINDEX: 3466 case SIOCGIFTXQLEN: 3467 dev_load(net, ifr.ifr_name); 3468 read_lock(&dev_base_lock); 3469 ret = dev_ifsioc_locked(net, &ifr, cmd); 3470 read_unlock(&dev_base_lock); 3471 if (!ret) { 3472 if (colon) 3473 *colon = ':'; 3474 if (copy_to_user(arg, &ifr, 3475 sizeof(struct ifreq))) 3476 ret = -EFAULT; 3477 } 3478 return ret; 3479 3480 case SIOCETHTOOL: 3481 dev_load(net, ifr.ifr_name); 3482 rtnl_lock(); 3483 ret = dev_ethtool(net, &ifr); 3484 rtnl_unlock(); 3485 if (!ret) { 3486 if (colon) 3487 *colon = ':'; 3488 if (copy_to_user(arg, &ifr, 3489 sizeof(struct ifreq))) 3490 ret = -EFAULT; 3491 } 3492 return ret; 3493 3494 /* 3495 * These ioctl calls: 3496 * - require superuser power. 3497 * - require strict serialization. 3498 * - return a value 3499 */ 3500 case SIOCGMIIPHY: 3501 case SIOCGMIIREG: 3502 case SIOCSIFNAME: 3503 if (!capable(CAP_NET_ADMIN)) 3504 return -EPERM; 3505 dev_load(net, ifr.ifr_name); 3506 rtnl_lock(); 3507 ret = dev_ifsioc(net, &ifr, cmd); 3508 rtnl_unlock(); 3509 if (!ret) { 3510 if (colon) 3511 *colon = ':'; 3512 if (copy_to_user(arg, &ifr, 3513 sizeof(struct ifreq))) 3514 ret = -EFAULT; 3515 } 3516 return ret; 3517 3518 /* 3519 * These ioctl calls: 3520 * - require superuser power. 3521 * - require strict serialization. 3522 * - do not return a value 3523 */ 3524 case SIOCSIFFLAGS: 3525 case SIOCSIFMETRIC: 3526 case SIOCSIFMTU: 3527 case SIOCSIFMAP: 3528 case SIOCSIFHWADDR: 3529 case SIOCSIFSLAVE: 3530 case SIOCADDMULTI: 3531 case SIOCDELMULTI: 3532 case SIOCSIFHWBROADCAST: 3533 case SIOCSIFTXQLEN: 3534 case SIOCSMIIREG: 3535 case SIOCBONDENSLAVE: 3536 case SIOCBONDRELEASE: 3537 case SIOCBONDSETHWADDR: 3538 case SIOCBONDCHANGEACTIVE: 3539 case SIOCBRADDIF: 3540 case SIOCBRDELIF: 3541 if (!capable(CAP_NET_ADMIN)) 3542 return -EPERM; 3543 /* fall through */ 3544 case SIOCBONDSLAVEINFOQUERY: 3545 case SIOCBONDINFOQUERY: 3546 dev_load(net, ifr.ifr_name); 3547 rtnl_lock(); 3548 ret = dev_ifsioc(net, &ifr, cmd); 3549 rtnl_unlock(); 3550 return ret; 3551 3552 case SIOCGIFMEM: 3553 /* Get the per device memory space. We can add this but 3554 * currently do not support it */ 3555 case SIOCSIFMEM: 3556 /* Set the per device memory buffer space. 3557 * Not applicable in our case */ 3558 case SIOCSIFLINK: 3559 return -EINVAL; 3560 3561 /* 3562 * Unknown or private ioctl. 3563 */ 3564 default: 3565 if (cmd == SIOCWANDEV || 3566 (cmd >= SIOCDEVPRIVATE && 3567 cmd <= SIOCDEVPRIVATE + 15)) { 3568 dev_load(net, ifr.ifr_name); 3569 rtnl_lock(); 3570 ret = dev_ifsioc(net, &ifr, cmd); 3571 rtnl_unlock(); 3572 if (!ret && copy_to_user(arg, &ifr, 3573 sizeof(struct ifreq))) 3574 ret = -EFAULT; 3575 return ret; 3576 } 3577 /* Take care of Wireless Extensions */ 3578 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 3579 return wext_handle_ioctl(net, &ifr, cmd, arg); 3580 return -EINVAL; 3581 } 3582 } 3583 3584 3585 /** 3586 * dev_new_index - allocate an ifindex 3587 * @net: the applicable net namespace 3588 * 3589 * Returns a suitable unique value for a new device interface 3590 * number. The caller must hold the rtnl semaphore or the 3591 * dev_base_lock to be sure it remains unique. 3592 */ 3593 static int dev_new_index(struct net *net) 3594 { 3595 static int ifindex; 3596 for (;;) { 3597 if (++ifindex <= 0) 3598 ifindex = 1; 3599 if (!__dev_get_by_index(net, ifindex)) 3600 return ifindex; 3601 } 3602 } 3603 3604 /* Delayed registration/unregisteration */ 3605 static DEFINE_SPINLOCK(net_todo_list_lock); 3606 static LIST_HEAD(net_todo_list); 3607 3608 static void net_set_todo(struct net_device *dev) 3609 { 3610 spin_lock(&net_todo_list_lock); 3611 list_add_tail(&dev->todo_list, &net_todo_list); 3612 spin_unlock(&net_todo_list_lock); 3613 } 3614 3615 static void rollback_registered(struct net_device *dev) 3616 { 3617 BUG_ON(dev_boot_phase); 3618 ASSERT_RTNL(); 3619 3620 /* Some devices call without registering for initialization unwind. */ 3621 if (dev->reg_state == NETREG_UNINITIALIZED) { 3622 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never " 3623 "was registered\n", dev->name, dev); 3624 3625 WARN_ON(1); 3626 return; 3627 } 3628 3629 BUG_ON(dev->reg_state != NETREG_REGISTERED); 3630 3631 /* If device is running, close it first. */ 3632 dev_close(dev); 3633 3634 /* And unlink it from device chain. */ 3635 unlist_netdevice(dev); 3636 3637 dev->reg_state = NETREG_UNREGISTERING; 3638 3639 synchronize_net(); 3640 3641 /* Shutdown queueing discipline. */ 3642 dev_shutdown(dev); 3643 3644 3645 /* Notify protocols, that we are about to destroy 3646 this device. They should clean all the things. 3647 */ 3648 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 3649 3650 /* 3651 * Flush the unicast and multicast chains 3652 */ 3653 dev_addr_discard(dev); 3654 3655 if (dev->uninit) 3656 dev->uninit(dev); 3657 3658 /* Notifier chain MUST detach us from master device. */ 3659 BUG_TRAP(!dev->master); 3660 3661 /* Remove entries from kobject tree */ 3662 netdev_unregister_kobject(dev); 3663 3664 synchronize_net(); 3665 3666 dev_put(dev); 3667 } 3668 3669 /** 3670 * register_netdevice - register a network device 3671 * @dev: device to register 3672 * 3673 * Take a completed network device structure and add it to the kernel 3674 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 3675 * chain. 0 is returned on success. A negative errno code is returned 3676 * on a failure to set up the device, or if the name is a duplicate. 3677 * 3678 * Callers must hold the rtnl semaphore. You may want 3679 * register_netdev() instead of this. 3680 * 3681 * BUGS: 3682 * The locking appears insufficient to guarantee two parallel registers 3683 * will not get the same name. 3684 */ 3685 3686 int register_netdevice(struct net_device *dev) 3687 { 3688 struct hlist_head *head; 3689 struct hlist_node *p; 3690 int ret; 3691 struct net *net; 3692 3693 BUG_ON(dev_boot_phase); 3694 ASSERT_RTNL(); 3695 3696 might_sleep(); 3697 3698 /* When net_device's are persistent, this will be fatal. */ 3699 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 3700 BUG_ON(!dev_net(dev)); 3701 net = dev_net(dev); 3702 3703 spin_lock_init(&dev->queue_lock); 3704 spin_lock_init(&dev->_xmit_lock); 3705 netdev_set_lockdep_class(&dev->_xmit_lock, dev->type); 3706 dev->xmit_lock_owner = -1; 3707 spin_lock_init(&dev->ingress_lock); 3708 3709 dev->iflink = -1; 3710 3711 /* Init, if this function is available */ 3712 if (dev->init) { 3713 ret = dev->init(dev); 3714 if (ret) { 3715 if (ret > 0) 3716 ret = -EIO; 3717 goto out; 3718 } 3719 } 3720 3721 if (!dev_valid_name(dev->name)) { 3722 ret = -EINVAL; 3723 goto err_uninit; 3724 } 3725 3726 dev->ifindex = dev_new_index(net); 3727 if (dev->iflink == -1) 3728 dev->iflink = dev->ifindex; 3729 3730 /* Check for existence of name */ 3731 head = dev_name_hash(net, dev->name); 3732 hlist_for_each(p, head) { 3733 struct net_device *d 3734 = hlist_entry(p, struct net_device, name_hlist); 3735 if (!strncmp(d->name, dev->name, IFNAMSIZ)) { 3736 ret = -EEXIST; 3737 goto err_uninit; 3738 } 3739 } 3740 3741 /* Fix illegal checksum combinations */ 3742 if ((dev->features & NETIF_F_HW_CSUM) && 3743 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 3744 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n", 3745 dev->name); 3746 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 3747 } 3748 3749 if ((dev->features & NETIF_F_NO_CSUM) && 3750 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 3751 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n", 3752 dev->name); 3753 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM); 3754 } 3755 3756 3757 /* Fix illegal SG+CSUM combinations. */ 3758 if ((dev->features & NETIF_F_SG) && 3759 !(dev->features & NETIF_F_ALL_CSUM)) { 3760 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n", 3761 dev->name); 3762 dev->features &= ~NETIF_F_SG; 3763 } 3764 3765 /* TSO requires that SG is present as well. */ 3766 if ((dev->features & NETIF_F_TSO) && 3767 !(dev->features & NETIF_F_SG)) { 3768 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n", 3769 dev->name); 3770 dev->features &= ~NETIF_F_TSO; 3771 } 3772 if (dev->features & NETIF_F_UFO) { 3773 if (!(dev->features & NETIF_F_HW_CSUM)) { 3774 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no " 3775 "NETIF_F_HW_CSUM feature.\n", 3776 dev->name); 3777 dev->features &= ~NETIF_F_UFO; 3778 } 3779 if (!(dev->features & NETIF_F_SG)) { 3780 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no " 3781 "NETIF_F_SG feature.\n", 3782 dev->name); 3783 dev->features &= ~NETIF_F_UFO; 3784 } 3785 } 3786 3787 netdev_initialize_kobject(dev); 3788 ret = netdev_register_kobject(dev); 3789 if (ret) 3790 goto err_uninit; 3791 dev->reg_state = NETREG_REGISTERED; 3792 3793 /* 3794 * Default initial state at registry is that the 3795 * device is present. 3796 */ 3797 3798 set_bit(__LINK_STATE_PRESENT, &dev->state); 3799 3800 dev_init_scheduler(dev); 3801 dev_hold(dev); 3802 list_netdevice(dev); 3803 3804 /* Notify protocols, that a new device appeared. */ 3805 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 3806 ret = notifier_to_errno(ret); 3807 if (ret) { 3808 rollback_registered(dev); 3809 dev->reg_state = NETREG_UNREGISTERED; 3810 } 3811 3812 out: 3813 return ret; 3814 3815 err_uninit: 3816 if (dev->uninit) 3817 dev->uninit(dev); 3818 goto out; 3819 } 3820 3821 /** 3822 * register_netdev - register a network device 3823 * @dev: device to register 3824 * 3825 * Take a completed network device structure and add it to the kernel 3826 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 3827 * chain. 0 is returned on success. A negative errno code is returned 3828 * on a failure to set up the device, or if the name is a duplicate. 3829 * 3830 * This is a wrapper around register_netdevice that takes the rtnl semaphore 3831 * and expands the device name if you passed a format string to 3832 * alloc_netdev. 3833 */ 3834 int register_netdev(struct net_device *dev) 3835 { 3836 int err; 3837 3838 rtnl_lock(); 3839 3840 /* 3841 * If the name is a format string the caller wants us to do a 3842 * name allocation. 3843 */ 3844 if (strchr(dev->name, '%')) { 3845 err = dev_alloc_name(dev, dev->name); 3846 if (err < 0) 3847 goto out; 3848 } 3849 3850 err = register_netdevice(dev); 3851 out: 3852 rtnl_unlock(); 3853 return err; 3854 } 3855 EXPORT_SYMBOL(register_netdev); 3856 3857 /* 3858 * netdev_wait_allrefs - wait until all references are gone. 3859 * 3860 * This is called when unregistering network devices. 3861 * 3862 * Any protocol or device that holds a reference should register 3863 * for netdevice notification, and cleanup and put back the 3864 * reference if they receive an UNREGISTER event. 3865 * We can get stuck here if buggy protocols don't correctly 3866 * call dev_put. 3867 */ 3868 static void netdev_wait_allrefs(struct net_device *dev) 3869 { 3870 unsigned long rebroadcast_time, warning_time; 3871 3872 rebroadcast_time = warning_time = jiffies; 3873 while (atomic_read(&dev->refcnt) != 0) { 3874 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 3875 rtnl_lock(); 3876 3877 /* Rebroadcast unregister notification */ 3878 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 3879 3880 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 3881 &dev->state)) { 3882 /* We must not have linkwatch events 3883 * pending on unregister. If this 3884 * happens, we simply run the queue 3885 * unscheduled, resulting in a noop 3886 * for this device. 3887 */ 3888 linkwatch_run_queue(); 3889 } 3890 3891 __rtnl_unlock(); 3892 3893 rebroadcast_time = jiffies; 3894 } 3895 3896 msleep(250); 3897 3898 if (time_after(jiffies, warning_time + 10 * HZ)) { 3899 printk(KERN_EMERG "unregister_netdevice: " 3900 "waiting for %s to become free. Usage " 3901 "count = %d\n", 3902 dev->name, atomic_read(&dev->refcnt)); 3903 warning_time = jiffies; 3904 } 3905 } 3906 } 3907 3908 /* The sequence is: 3909 * 3910 * rtnl_lock(); 3911 * ... 3912 * register_netdevice(x1); 3913 * register_netdevice(x2); 3914 * ... 3915 * unregister_netdevice(y1); 3916 * unregister_netdevice(y2); 3917 * ... 3918 * rtnl_unlock(); 3919 * free_netdev(y1); 3920 * free_netdev(y2); 3921 * 3922 * We are invoked by rtnl_unlock() after it drops the semaphore. 3923 * This allows us to deal with problems: 3924 * 1) We can delete sysfs objects which invoke hotplug 3925 * without deadlocking with linkwatch via keventd. 3926 * 2) Since we run with the RTNL semaphore not held, we can sleep 3927 * safely in order to wait for the netdev refcnt to drop to zero. 3928 */ 3929 static DEFINE_MUTEX(net_todo_run_mutex); 3930 void netdev_run_todo(void) 3931 { 3932 struct list_head list; 3933 3934 /* Need to guard against multiple cpu's getting out of order. */ 3935 mutex_lock(&net_todo_run_mutex); 3936 3937 /* Not safe to do outside the semaphore. We must not return 3938 * until all unregister events invoked by the local processor 3939 * have been completed (either by this todo run, or one on 3940 * another cpu). 3941 */ 3942 if (list_empty(&net_todo_list)) 3943 goto out; 3944 3945 /* Snapshot list, allow later requests */ 3946 spin_lock(&net_todo_list_lock); 3947 list_replace_init(&net_todo_list, &list); 3948 spin_unlock(&net_todo_list_lock); 3949 3950 while (!list_empty(&list)) { 3951 struct net_device *dev 3952 = list_entry(list.next, struct net_device, todo_list); 3953 list_del(&dev->todo_list); 3954 3955 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 3956 printk(KERN_ERR "network todo '%s' but state %d\n", 3957 dev->name, dev->reg_state); 3958 dump_stack(); 3959 continue; 3960 } 3961 3962 dev->reg_state = NETREG_UNREGISTERED; 3963 3964 netdev_wait_allrefs(dev); 3965 3966 /* paranoia */ 3967 BUG_ON(atomic_read(&dev->refcnt)); 3968 BUG_TRAP(!dev->ip_ptr); 3969 BUG_TRAP(!dev->ip6_ptr); 3970 BUG_TRAP(!dev->dn_ptr); 3971 3972 if (dev->destructor) 3973 dev->destructor(dev); 3974 3975 /* Free network device */ 3976 kobject_put(&dev->dev.kobj); 3977 } 3978 3979 out: 3980 mutex_unlock(&net_todo_run_mutex); 3981 } 3982 3983 static struct net_device_stats *internal_stats(struct net_device *dev) 3984 { 3985 return &dev->stats; 3986 } 3987 3988 /** 3989 * alloc_netdev_mq - allocate network device 3990 * @sizeof_priv: size of private data to allocate space for 3991 * @name: device name format string 3992 * @setup: callback to initialize device 3993 * @queue_count: the number of subqueues to allocate 3994 * 3995 * Allocates a struct net_device with private data area for driver use 3996 * and performs basic initialization. Also allocates subquue structs 3997 * for each queue on the device at the end of the netdevice. 3998 */ 3999 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name, 4000 void (*setup)(struct net_device *), unsigned int queue_count) 4001 { 4002 void *p; 4003 struct net_device *dev; 4004 int alloc_size; 4005 4006 BUG_ON(strlen(name) >= sizeof(dev->name)); 4007 4008 alloc_size = sizeof(struct net_device) + 4009 sizeof(struct net_device_subqueue) * (queue_count - 1); 4010 if (sizeof_priv) { 4011 /* ensure 32-byte alignment of private area */ 4012 alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST; 4013 alloc_size += sizeof_priv; 4014 } 4015 /* ensure 32-byte alignment of whole construct */ 4016 alloc_size += NETDEV_ALIGN_CONST; 4017 4018 p = kzalloc(alloc_size, GFP_KERNEL); 4019 if (!p) { 4020 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n"); 4021 return NULL; 4022 } 4023 4024 dev = (struct net_device *) 4025 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST); 4026 dev->padded = (char *)dev - (char *)p; 4027 dev_net_set(dev, &init_net); 4028 4029 if (sizeof_priv) { 4030 dev->priv = ((char *)dev + 4031 ((sizeof(struct net_device) + 4032 (sizeof(struct net_device_subqueue) * 4033 (queue_count - 1)) + NETDEV_ALIGN_CONST) 4034 & ~NETDEV_ALIGN_CONST)); 4035 } 4036 4037 dev->egress_subqueue_count = queue_count; 4038 dev->gso_max_size = GSO_MAX_SIZE; 4039 4040 dev->get_stats = internal_stats; 4041 netpoll_netdev_init(dev); 4042 setup(dev); 4043 strcpy(dev->name, name); 4044 return dev; 4045 } 4046 EXPORT_SYMBOL(alloc_netdev_mq); 4047 4048 /** 4049 * free_netdev - free network device 4050 * @dev: device 4051 * 4052 * This function does the last stage of destroying an allocated device 4053 * interface. The reference to the device object is released. 4054 * If this is the last reference then it will be freed. 4055 */ 4056 void free_netdev(struct net_device *dev) 4057 { 4058 release_net(dev_net(dev)); 4059 4060 /* Compatibility with error handling in drivers */ 4061 if (dev->reg_state == NETREG_UNINITIALIZED) { 4062 kfree((char *)dev - dev->padded); 4063 return; 4064 } 4065 4066 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 4067 dev->reg_state = NETREG_RELEASED; 4068 4069 /* will free via device release */ 4070 put_device(&dev->dev); 4071 } 4072 4073 /* Synchronize with packet receive processing. */ 4074 void synchronize_net(void) 4075 { 4076 might_sleep(); 4077 synchronize_rcu(); 4078 } 4079 4080 /** 4081 * unregister_netdevice - remove device from the kernel 4082 * @dev: device 4083 * 4084 * This function shuts down a device interface and removes it 4085 * from the kernel tables. 4086 * 4087 * Callers must hold the rtnl semaphore. You may want 4088 * unregister_netdev() instead of this. 4089 */ 4090 4091 void unregister_netdevice(struct net_device *dev) 4092 { 4093 ASSERT_RTNL(); 4094 4095 rollback_registered(dev); 4096 /* Finish processing unregister after unlock */ 4097 net_set_todo(dev); 4098 } 4099 4100 /** 4101 * unregister_netdev - remove device from the kernel 4102 * @dev: device 4103 * 4104 * This function shuts down a device interface and removes it 4105 * from the kernel tables. 4106 * 4107 * This is just a wrapper for unregister_netdevice that takes 4108 * the rtnl semaphore. In general you want to use this and not 4109 * unregister_netdevice. 4110 */ 4111 void unregister_netdev(struct net_device *dev) 4112 { 4113 rtnl_lock(); 4114 unregister_netdevice(dev); 4115 rtnl_unlock(); 4116 } 4117 4118 EXPORT_SYMBOL(unregister_netdev); 4119 4120 /** 4121 * dev_change_net_namespace - move device to different nethost namespace 4122 * @dev: device 4123 * @net: network namespace 4124 * @pat: If not NULL name pattern to try if the current device name 4125 * is already taken in the destination network namespace. 4126 * 4127 * This function shuts down a device interface and moves it 4128 * to a new network namespace. On success 0 is returned, on 4129 * a failure a netagive errno code is returned. 4130 * 4131 * Callers must hold the rtnl semaphore. 4132 */ 4133 4134 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 4135 { 4136 char buf[IFNAMSIZ]; 4137 const char *destname; 4138 int err; 4139 4140 ASSERT_RTNL(); 4141 4142 /* Don't allow namespace local devices to be moved. */ 4143 err = -EINVAL; 4144 if (dev->features & NETIF_F_NETNS_LOCAL) 4145 goto out; 4146 4147 /* Ensure the device has been registrered */ 4148 err = -EINVAL; 4149 if (dev->reg_state != NETREG_REGISTERED) 4150 goto out; 4151 4152 /* Get out if there is nothing todo */ 4153 err = 0; 4154 if (net_eq(dev_net(dev), net)) 4155 goto out; 4156 4157 /* Pick the destination device name, and ensure 4158 * we can use it in the destination network namespace. 4159 */ 4160 err = -EEXIST; 4161 destname = dev->name; 4162 if (__dev_get_by_name(net, destname)) { 4163 /* We get here if we can't use the current device name */ 4164 if (!pat) 4165 goto out; 4166 if (!dev_valid_name(pat)) 4167 goto out; 4168 if (strchr(pat, '%')) { 4169 if (__dev_alloc_name(net, pat, buf) < 0) 4170 goto out; 4171 destname = buf; 4172 } else 4173 destname = pat; 4174 if (__dev_get_by_name(net, destname)) 4175 goto out; 4176 } 4177 4178 /* 4179 * And now a mini version of register_netdevice unregister_netdevice. 4180 */ 4181 4182 /* If device is running close it first. */ 4183 dev_close(dev); 4184 4185 /* And unlink it from device chain */ 4186 err = -ENODEV; 4187 unlist_netdevice(dev); 4188 4189 synchronize_net(); 4190 4191 /* Shutdown queueing discipline. */ 4192 dev_shutdown(dev); 4193 4194 /* Notify protocols, that we are about to destroy 4195 this device. They should clean all the things. 4196 */ 4197 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4198 4199 /* 4200 * Flush the unicast and multicast chains 4201 */ 4202 dev_addr_discard(dev); 4203 4204 /* Actually switch the network namespace */ 4205 dev_net_set(dev, net); 4206 4207 /* Assign the new device name */ 4208 if (destname != dev->name) 4209 strcpy(dev->name, destname); 4210 4211 /* If there is an ifindex conflict assign a new one */ 4212 if (__dev_get_by_index(net, dev->ifindex)) { 4213 int iflink = (dev->iflink == dev->ifindex); 4214 dev->ifindex = dev_new_index(net); 4215 if (iflink) 4216 dev->iflink = dev->ifindex; 4217 } 4218 4219 /* Fixup kobjects */ 4220 netdev_unregister_kobject(dev); 4221 err = netdev_register_kobject(dev); 4222 WARN_ON(err); 4223 4224 /* Add the device back in the hashes */ 4225 list_netdevice(dev); 4226 4227 /* Notify protocols, that a new device appeared. */ 4228 call_netdevice_notifiers(NETDEV_REGISTER, dev); 4229 4230 synchronize_net(); 4231 err = 0; 4232 out: 4233 return err; 4234 } 4235 4236 static int dev_cpu_callback(struct notifier_block *nfb, 4237 unsigned long action, 4238 void *ocpu) 4239 { 4240 struct sk_buff **list_skb; 4241 struct net_device **list_net; 4242 struct sk_buff *skb; 4243 unsigned int cpu, oldcpu = (unsigned long)ocpu; 4244 struct softnet_data *sd, *oldsd; 4245 4246 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 4247 return NOTIFY_OK; 4248 4249 local_irq_disable(); 4250 cpu = smp_processor_id(); 4251 sd = &per_cpu(softnet_data, cpu); 4252 oldsd = &per_cpu(softnet_data, oldcpu); 4253 4254 /* Find end of our completion_queue. */ 4255 list_skb = &sd->completion_queue; 4256 while (*list_skb) 4257 list_skb = &(*list_skb)->next; 4258 /* Append completion queue from offline CPU. */ 4259 *list_skb = oldsd->completion_queue; 4260 oldsd->completion_queue = NULL; 4261 4262 /* Find end of our output_queue. */ 4263 list_net = &sd->output_queue; 4264 while (*list_net) 4265 list_net = &(*list_net)->next_sched; 4266 /* Append output queue from offline CPU. */ 4267 *list_net = oldsd->output_queue; 4268 oldsd->output_queue = NULL; 4269 4270 raise_softirq_irqoff(NET_TX_SOFTIRQ); 4271 local_irq_enable(); 4272 4273 /* Process offline CPU's input_pkt_queue */ 4274 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) 4275 netif_rx(skb); 4276 4277 return NOTIFY_OK; 4278 } 4279 4280 #ifdef CONFIG_NET_DMA 4281 /** 4282 * net_dma_rebalance - try to maintain one DMA channel per CPU 4283 * @net_dma: DMA client and associated data (lock, channels, channel_mask) 4284 * 4285 * This is called when the number of channels allocated to the net_dma client 4286 * changes. The net_dma client tries to have one DMA channel per CPU. 4287 */ 4288 4289 static void net_dma_rebalance(struct net_dma *net_dma) 4290 { 4291 unsigned int cpu, i, n, chan_idx; 4292 struct dma_chan *chan; 4293 4294 if (cpus_empty(net_dma->channel_mask)) { 4295 for_each_online_cpu(cpu) 4296 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL); 4297 return; 4298 } 4299 4300 i = 0; 4301 cpu = first_cpu(cpu_online_map); 4302 4303 for_each_cpu_mask(chan_idx, net_dma->channel_mask) { 4304 chan = net_dma->channels[chan_idx]; 4305 4306 n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask)) 4307 + (i < (num_online_cpus() % 4308 cpus_weight(net_dma->channel_mask)) ? 1 : 0)); 4309 4310 while(n) { 4311 per_cpu(softnet_data, cpu).net_dma = chan; 4312 cpu = next_cpu(cpu, cpu_online_map); 4313 n--; 4314 } 4315 i++; 4316 } 4317 } 4318 4319 /** 4320 * netdev_dma_event - event callback for the net_dma_client 4321 * @client: should always be net_dma_client 4322 * @chan: DMA channel for the event 4323 * @state: DMA state to be handled 4324 */ 4325 static enum dma_state_client 4326 netdev_dma_event(struct dma_client *client, struct dma_chan *chan, 4327 enum dma_state state) 4328 { 4329 int i, found = 0, pos = -1; 4330 struct net_dma *net_dma = 4331 container_of(client, struct net_dma, client); 4332 enum dma_state_client ack = DMA_DUP; /* default: take no action */ 4333 4334 spin_lock(&net_dma->lock); 4335 switch (state) { 4336 case DMA_RESOURCE_AVAILABLE: 4337 for (i = 0; i < nr_cpu_ids; i++) 4338 if (net_dma->channels[i] == chan) { 4339 found = 1; 4340 break; 4341 } else if (net_dma->channels[i] == NULL && pos < 0) 4342 pos = i; 4343 4344 if (!found && pos >= 0) { 4345 ack = DMA_ACK; 4346 net_dma->channels[pos] = chan; 4347 cpu_set(pos, net_dma->channel_mask); 4348 net_dma_rebalance(net_dma); 4349 } 4350 break; 4351 case DMA_RESOURCE_REMOVED: 4352 for (i = 0; i < nr_cpu_ids; i++) 4353 if (net_dma->channels[i] == chan) { 4354 found = 1; 4355 pos = i; 4356 break; 4357 } 4358 4359 if (found) { 4360 ack = DMA_ACK; 4361 cpu_clear(pos, net_dma->channel_mask); 4362 net_dma->channels[i] = NULL; 4363 net_dma_rebalance(net_dma); 4364 } 4365 break; 4366 default: 4367 break; 4368 } 4369 spin_unlock(&net_dma->lock); 4370 4371 return ack; 4372 } 4373 4374 /** 4375 * netdev_dma_regiser - register the networking subsystem as a DMA client 4376 */ 4377 static int __init netdev_dma_register(void) 4378 { 4379 net_dma.channels = kzalloc(nr_cpu_ids * sizeof(struct net_dma), 4380 GFP_KERNEL); 4381 if (unlikely(!net_dma.channels)) { 4382 printk(KERN_NOTICE 4383 "netdev_dma: no memory for net_dma.channels\n"); 4384 return -ENOMEM; 4385 } 4386 spin_lock_init(&net_dma.lock); 4387 dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask); 4388 dma_async_client_register(&net_dma.client); 4389 dma_async_client_chan_request(&net_dma.client); 4390 return 0; 4391 } 4392 4393 #else 4394 static int __init netdev_dma_register(void) { return -ENODEV; } 4395 #endif /* CONFIG_NET_DMA */ 4396 4397 /** 4398 * netdev_compute_feature - compute conjunction of two feature sets 4399 * @all: first feature set 4400 * @one: second feature set 4401 * 4402 * Computes a new feature set after adding a device with feature set 4403 * @one to the master device with current feature set @all. Returns 4404 * the new feature set. 4405 */ 4406 int netdev_compute_features(unsigned long all, unsigned long one) 4407 { 4408 /* if device needs checksumming, downgrade to hw checksumming */ 4409 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM)) 4410 all ^= NETIF_F_NO_CSUM | NETIF_F_HW_CSUM; 4411 4412 /* if device can't do all checksum, downgrade to ipv4/ipv6 */ 4413 if (all & NETIF_F_HW_CSUM && !(one & NETIF_F_HW_CSUM)) 4414 all ^= NETIF_F_HW_CSUM 4415 | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; 4416 4417 if (one & NETIF_F_GSO) 4418 one |= NETIF_F_GSO_SOFTWARE; 4419 one |= NETIF_F_GSO; 4420 4421 /* If even one device supports robust GSO, enable it for all. */ 4422 if (one & NETIF_F_GSO_ROBUST) 4423 all |= NETIF_F_GSO_ROBUST; 4424 4425 all &= one | NETIF_F_LLTX; 4426 4427 if (!(all & NETIF_F_ALL_CSUM)) 4428 all &= ~NETIF_F_SG; 4429 if (!(all & NETIF_F_SG)) 4430 all &= ~NETIF_F_GSO_MASK; 4431 4432 return all; 4433 } 4434 EXPORT_SYMBOL(netdev_compute_features); 4435 4436 static struct hlist_head *netdev_create_hash(void) 4437 { 4438 int i; 4439 struct hlist_head *hash; 4440 4441 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 4442 if (hash != NULL) 4443 for (i = 0; i < NETDEV_HASHENTRIES; i++) 4444 INIT_HLIST_HEAD(&hash[i]); 4445 4446 return hash; 4447 } 4448 4449 /* Initialize per network namespace state */ 4450 static int __net_init netdev_init(struct net *net) 4451 { 4452 INIT_LIST_HEAD(&net->dev_base_head); 4453 4454 net->dev_name_head = netdev_create_hash(); 4455 if (net->dev_name_head == NULL) 4456 goto err_name; 4457 4458 net->dev_index_head = netdev_create_hash(); 4459 if (net->dev_index_head == NULL) 4460 goto err_idx; 4461 4462 return 0; 4463 4464 err_idx: 4465 kfree(net->dev_name_head); 4466 err_name: 4467 return -ENOMEM; 4468 } 4469 4470 static void __net_exit netdev_exit(struct net *net) 4471 { 4472 kfree(net->dev_name_head); 4473 kfree(net->dev_index_head); 4474 } 4475 4476 static struct pernet_operations __net_initdata netdev_net_ops = { 4477 .init = netdev_init, 4478 .exit = netdev_exit, 4479 }; 4480 4481 static void __net_exit default_device_exit(struct net *net) 4482 { 4483 struct net_device *dev, *next; 4484 /* 4485 * Push all migratable of the network devices back to the 4486 * initial network namespace 4487 */ 4488 rtnl_lock(); 4489 for_each_netdev_safe(net, dev, next) { 4490 int err; 4491 char fb_name[IFNAMSIZ]; 4492 4493 /* Ignore unmoveable devices (i.e. loopback) */ 4494 if (dev->features & NETIF_F_NETNS_LOCAL) 4495 continue; 4496 4497 /* Push remaing network devices to init_net */ 4498 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 4499 err = dev_change_net_namespace(dev, &init_net, fb_name); 4500 if (err) { 4501 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n", 4502 __func__, dev->name, err); 4503 BUG(); 4504 } 4505 } 4506 rtnl_unlock(); 4507 } 4508 4509 static struct pernet_operations __net_initdata default_device_ops = { 4510 .exit = default_device_exit, 4511 }; 4512 4513 /* 4514 * Initialize the DEV module. At boot time this walks the device list and 4515 * unhooks any devices that fail to initialise (normally hardware not 4516 * present) and leaves us with a valid list of present and active devices. 4517 * 4518 */ 4519 4520 /* 4521 * This is called single threaded during boot, so no need 4522 * to take the rtnl semaphore. 4523 */ 4524 static int __init net_dev_init(void) 4525 { 4526 int i, rc = -ENOMEM; 4527 4528 BUG_ON(!dev_boot_phase); 4529 4530 if (dev_proc_init()) 4531 goto out; 4532 4533 if (netdev_kobject_init()) 4534 goto out; 4535 4536 INIT_LIST_HEAD(&ptype_all); 4537 for (i = 0; i < PTYPE_HASH_SIZE; i++) 4538 INIT_LIST_HEAD(&ptype_base[i]); 4539 4540 if (register_pernet_subsys(&netdev_net_ops)) 4541 goto out; 4542 4543 if (register_pernet_device(&default_device_ops)) 4544 goto out; 4545 4546 /* 4547 * Initialise the packet receive queues. 4548 */ 4549 4550 for_each_possible_cpu(i) { 4551 struct softnet_data *queue; 4552 4553 queue = &per_cpu(softnet_data, i); 4554 skb_queue_head_init(&queue->input_pkt_queue); 4555 queue->completion_queue = NULL; 4556 INIT_LIST_HEAD(&queue->poll_list); 4557 4558 queue->backlog.poll = process_backlog; 4559 queue->backlog.weight = weight_p; 4560 } 4561 4562 netdev_dma_register(); 4563 4564 dev_boot_phase = 0; 4565 4566 open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL); 4567 open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL); 4568 4569 hotcpu_notifier(dev_cpu_callback, 0); 4570 dst_init(); 4571 dev_mcast_init(); 4572 rc = 0; 4573 out: 4574 return rc; 4575 } 4576 4577 subsys_initcall(net_dev_init); 4578 4579 EXPORT_SYMBOL(__dev_get_by_index); 4580 EXPORT_SYMBOL(__dev_get_by_name); 4581 EXPORT_SYMBOL(__dev_remove_pack); 4582 EXPORT_SYMBOL(dev_valid_name); 4583 EXPORT_SYMBOL(dev_add_pack); 4584 EXPORT_SYMBOL(dev_alloc_name); 4585 EXPORT_SYMBOL(dev_close); 4586 EXPORT_SYMBOL(dev_get_by_flags); 4587 EXPORT_SYMBOL(dev_get_by_index); 4588 EXPORT_SYMBOL(dev_get_by_name); 4589 EXPORT_SYMBOL(dev_open); 4590 EXPORT_SYMBOL(dev_queue_xmit); 4591 EXPORT_SYMBOL(dev_remove_pack); 4592 EXPORT_SYMBOL(dev_set_allmulti); 4593 EXPORT_SYMBOL(dev_set_promiscuity); 4594 EXPORT_SYMBOL(dev_change_flags); 4595 EXPORT_SYMBOL(dev_set_mtu); 4596 EXPORT_SYMBOL(dev_set_mac_address); 4597 EXPORT_SYMBOL(free_netdev); 4598 EXPORT_SYMBOL(netdev_boot_setup_check); 4599 EXPORT_SYMBOL(netdev_set_master); 4600 EXPORT_SYMBOL(netdev_state_change); 4601 EXPORT_SYMBOL(netif_receive_skb); 4602 EXPORT_SYMBOL(netif_rx); 4603 EXPORT_SYMBOL(register_gifconf); 4604 EXPORT_SYMBOL(register_netdevice); 4605 EXPORT_SYMBOL(register_netdevice_notifier); 4606 EXPORT_SYMBOL(skb_checksum_help); 4607 EXPORT_SYMBOL(synchronize_net); 4608 EXPORT_SYMBOL(unregister_netdevice); 4609 EXPORT_SYMBOL(unregister_netdevice_notifier); 4610 EXPORT_SYMBOL(net_enable_timestamp); 4611 EXPORT_SYMBOL(net_disable_timestamp); 4612 EXPORT_SYMBOL(dev_get_flags); 4613 4614 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE) 4615 EXPORT_SYMBOL(br_handle_frame_hook); 4616 EXPORT_SYMBOL(br_fdb_get_hook); 4617 EXPORT_SYMBOL(br_fdb_put_hook); 4618 #endif 4619 4620 #ifdef CONFIG_KMOD 4621 EXPORT_SYMBOL(dev_load); 4622 #endif 4623 4624 EXPORT_PER_CPU_SYMBOL(softnet_data); 4625