xref: /openbmc/linux/net/core/dev.c (revision 732a675a)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/notifier.h>
94 #include <linux/skbuff.h>
95 #include <net/net_namespace.h>
96 #include <net/sock.h>
97 #include <linux/rtnetlink.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/stat.h>
101 #include <linux/if_bridge.h>
102 #include <linux/if_macvlan.h>
103 #include <net/dst.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/kmod.h>
109 #include <linux/module.h>
110 #include <linux/kallsyms.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 
123 #include "net-sysfs.h"
124 
125 /*
126  *	The list of packet types we will receive (as opposed to discard)
127  *	and the routines to invoke.
128  *
129  *	Why 16. Because with 16 the only overlap we get on a hash of the
130  *	low nibble of the protocol value is RARP/SNAP/X.25.
131  *
132  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
133  *             sure which should go first, but I bet it won't make much
134  *             difference if we are running VLANs.  The good news is that
135  *             this protocol won't be in the list unless compiled in, so
136  *             the average user (w/out VLANs) will not be adversely affected.
137  *             --BLG
138  *
139  *		0800	IP
140  *		8100    802.1Q VLAN
141  *		0001	802.3
142  *		0002	AX.25
143  *		0004	802.2
144  *		8035	RARP
145  *		0005	SNAP
146  *		0805	X.25
147  *		0806	ARP
148  *		8137	IPX
149  *		0009	Localtalk
150  *		86DD	IPv6
151  */
152 
153 #define PTYPE_HASH_SIZE	(16)
154 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
155 
156 static DEFINE_SPINLOCK(ptype_lock);
157 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
158 static struct list_head ptype_all __read_mostly;	/* Taps */
159 
160 #ifdef CONFIG_NET_DMA
161 struct net_dma {
162 	struct dma_client client;
163 	spinlock_t lock;
164 	cpumask_t channel_mask;
165 	struct dma_chan **channels;
166 };
167 
168 static enum dma_state_client
169 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
170 	enum dma_state state);
171 
172 static struct net_dma net_dma = {
173 	.client = {
174 		.event_callback = netdev_dma_event,
175 	},
176 };
177 #endif
178 
179 /*
180  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
181  * semaphore.
182  *
183  * Pure readers hold dev_base_lock for reading.
184  *
185  * Writers must hold the rtnl semaphore while they loop through the
186  * dev_base_head list, and hold dev_base_lock for writing when they do the
187  * actual updates.  This allows pure readers to access the list even
188  * while a writer is preparing to update it.
189  *
190  * To put it another way, dev_base_lock is held for writing only to
191  * protect against pure readers; the rtnl semaphore provides the
192  * protection against other writers.
193  *
194  * See, for example usages, register_netdevice() and
195  * unregister_netdevice(), which must be called with the rtnl
196  * semaphore held.
197  */
198 DEFINE_RWLOCK(dev_base_lock);
199 
200 EXPORT_SYMBOL(dev_base_lock);
201 
202 #define NETDEV_HASHBITS	8
203 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
204 
205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
206 {
207 	unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
208 	return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
209 }
210 
211 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
212 {
213 	return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
214 }
215 
216 /* Device list insertion */
217 static int list_netdevice(struct net_device *dev)
218 {
219 	struct net *net = dev_net(dev);
220 
221 	ASSERT_RTNL();
222 
223 	write_lock_bh(&dev_base_lock);
224 	list_add_tail(&dev->dev_list, &net->dev_base_head);
225 	hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
226 	hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
227 	write_unlock_bh(&dev_base_lock);
228 	return 0;
229 }
230 
231 /* Device list removal */
232 static void unlist_netdevice(struct net_device *dev)
233 {
234 	ASSERT_RTNL();
235 
236 	/* Unlink dev from the device chain */
237 	write_lock_bh(&dev_base_lock);
238 	list_del(&dev->dev_list);
239 	hlist_del(&dev->name_hlist);
240 	hlist_del(&dev->index_hlist);
241 	write_unlock_bh(&dev_base_lock);
242 }
243 
244 /*
245  *	Our notifier list
246  */
247 
248 static RAW_NOTIFIER_HEAD(netdev_chain);
249 
250 /*
251  *	Device drivers call our routines to queue packets here. We empty the
252  *	queue in the local softnet handler.
253  */
254 
255 DEFINE_PER_CPU(struct softnet_data, softnet_data);
256 
257 #ifdef CONFIG_DEBUG_LOCK_ALLOC
258 /*
259  * register_netdevice() inits dev->_xmit_lock and sets lockdep class
260  * according to dev->type
261  */
262 static const unsigned short netdev_lock_type[] =
263 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
264 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
265 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
266 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
267 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
268 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
269 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
270 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
271 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
272 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
273 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
274 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
275 	 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
276 	 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID,
277 	 ARPHRD_NONE};
278 
279 static const char *netdev_lock_name[] =
280 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
281 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
282 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
283 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
284 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
285 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
286 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
287 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
288 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
289 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
290 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
291 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
292 	 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
293 	 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID",
294 	 "_xmit_NONE"};
295 
296 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
297 
298 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
299 {
300 	int i;
301 
302 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
303 		if (netdev_lock_type[i] == dev_type)
304 			return i;
305 	/* the last key is used by default */
306 	return ARRAY_SIZE(netdev_lock_type) - 1;
307 }
308 
309 static inline void netdev_set_lockdep_class(spinlock_t *lock,
310 					    unsigned short dev_type)
311 {
312 	int i;
313 
314 	i = netdev_lock_pos(dev_type);
315 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
316 				   netdev_lock_name[i]);
317 }
318 #else
319 static inline void netdev_set_lockdep_class(spinlock_t *lock,
320 					    unsigned short dev_type)
321 {
322 }
323 #endif
324 
325 /*******************************************************************************
326 
327 		Protocol management and registration routines
328 
329 *******************************************************************************/
330 
331 /*
332  *	Add a protocol ID to the list. Now that the input handler is
333  *	smarter we can dispense with all the messy stuff that used to be
334  *	here.
335  *
336  *	BEWARE!!! Protocol handlers, mangling input packets,
337  *	MUST BE last in hash buckets and checking protocol handlers
338  *	MUST start from promiscuous ptype_all chain in net_bh.
339  *	It is true now, do not change it.
340  *	Explanation follows: if protocol handler, mangling packet, will
341  *	be the first on list, it is not able to sense, that packet
342  *	is cloned and should be copied-on-write, so that it will
343  *	change it and subsequent readers will get broken packet.
344  *							--ANK (980803)
345  */
346 
347 /**
348  *	dev_add_pack - add packet handler
349  *	@pt: packet type declaration
350  *
351  *	Add a protocol handler to the networking stack. The passed &packet_type
352  *	is linked into kernel lists and may not be freed until it has been
353  *	removed from the kernel lists.
354  *
355  *	This call does not sleep therefore it can not
356  *	guarantee all CPU's that are in middle of receiving packets
357  *	will see the new packet type (until the next received packet).
358  */
359 
360 void dev_add_pack(struct packet_type *pt)
361 {
362 	int hash;
363 
364 	spin_lock_bh(&ptype_lock);
365 	if (pt->type == htons(ETH_P_ALL))
366 		list_add_rcu(&pt->list, &ptype_all);
367 	else {
368 		hash = ntohs(pt->type) & PTYPE_HASH_MASK;
369 		list_add_rcu(&pt->list, &ptype_base[hash]);
370 	}
371 	spin_unlock_bh(&ptype_lock);
372 }
373 
374 /**
375  *	__dev_remove_pack	 - remove packet handler
376  *	@pt: packet type declaration
377  *
378  *	Remove a protocol handler that was previously added to the kernel
379  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
380  *	from the kernel lists and can be freed or reused once this function
381  *	returns.
382  *
383  *      The packet type might still be in use by receivers
384  *	and must not be freed until after all the CPU's have gone
385  *	through a quiescent state.
386  */
387 void __dev_remove_pack(struct packet_type *pt)
388 {
389 	struct list_head *head;
390 	struct packet_type *pt1;
391 
392 	spin_lock_bh(&ptype_lock);
393 
394 	if (pt->type == htons(ETH_P_ALL))
395 		head = &ptype_all;
396 	else
397 		head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
398 
399 	list_for_each_entry(pt1, head, list) {
400 		if (pt == pt1) {
401 			list_del_rcu(&pt->list);
402 			goto out;
403 		}
404 	}
405 
406 	printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
407 out:
408 	spin_unlock_bh(&ptype_lock);
409 }
410 /**
411  *	dev_remove_pack	 - remove packet handler
412  *	@pt: packet type declaration
413  *
414  *	Remove a protocol handler that was previously added to the kernel
415  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
416  *	from the kernel lists and can be freed or reused once this function
417  *	returns.
418  *
419  *	This call sleeps to guarantee that no CPU is looking at the packet
420  *	type after return.
421  */
422 void dev_remove_pack(struct packet_type *pt)
423 {
424 	__dev_remove_pack(pt);
425 
426 	synchronize_net();
427 }
428 
429 /******************************************************************************
430 
431 		      Device Boot-time Settings Routines
432 
433 *******************************************************************************/
434 
435 /* Boot time configuration table */
436 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
437 
438 /**
439  *	netdev_boot_setup_add	- add new setup entry
440  *	@name: name of the device
441  *	@map: configured settings for the device
442  *
443  *	Adds new setup entry to the dev_boot_setup list.  The function
444  *	returns 0 on error and 1 on success.  This is a generic routine to
445  *	all netdevices.
446  */
447 static int netdev_boot_setup_add(char *name, struct ifmap *map)
448 {
449 	struct netdev_boot_setup *s;
450 	int i;
451 
452 	s = dev_boot_setup;
453 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
454 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
455 			memset(s[i].name, 0, sizeof(s[i].name));
456 			strcpy(s[i].name, name);
457 			memcpy(&s[i].map, map, sizeof(s[i].map));
458 			break;
459 		}
460 	}
461 
462 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
463 }
464 
465 /**
466  *	netdev_boot_setup_check	- check boot time settings
467  *	@dev: the netdevice
468  *
469  * 	Check boot time settings for the device.
470  *	The found settings are set for the device to be used
471  *	later in the device probing.
472  *	Returns 0 if no settings found, 1 if they are.
473  */
474 int netdev_boot_setup_check(struct net_device *dev)
475 {
476 	struct netdev_boot_setup *s = dev_boot_setup;
477 	int i;
478 
479 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
480 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
481 		    !strncmp(dev->name, s[i].name, strlen(s[i].name))) {
482 			dev->irq 	= s[i].map.irq;
483 			dev->base_addr 	= s[i].map.base_addr;
484 			dev->mem_start 	= s[i].map.mem_start;
485 			dev->mem_end 	= s[i].map.mem_end;
486 			return 1;
487 		}
488 	}
489 	return 0;
490 }
491 
492 
493 /**
494  *	netdev_boot_base	- get address from boot time settings
495  *	@prefix: prefix for network device
496  *	@unit: id for network device
497  *
498  * 	Check boot time settings for the base address of device.
499  *	The found settings are set for the device to be used
500  *	later in the device probing.
501  *	Returns 0 if no settings found.
502  */
503 unsigned long netdev_boot_base(const char *prefix, int unit)
504 {
505 	const struct netdev_boot_setup *s = dev_boot_setup;
506 	char name[IFNAMSIZ];
507 	int i;
508 
509 	sprintf(name, "%s%d", prefix, unit);
510 
511 	/*
512 	 * If device already registered then return base of 1
513 	 * to indicate not to probe for this interface
514 	 */
515 	if (__dev_get_by_name(&init_net, name))
516 		return 1;
517 
518 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
519 		if (!strcmp(name, s[i].name))
520 			return s[i].map.base_addr;
521 	return 0;
522 }
523 
524 /*
525  * Saves at boot time configured settings for any netdevice.
526  */
527 int __init netdev_boot_setup(char *str)
528 {
529 	int ints[5];
530 	struct ifmap map;
531 
532 	str = get_options(str, ARRAY_SIZE(ints), ints);
533 	if (!str || !*str)
534 		return 0;
535 
536 	/* Save settings */
537 	memset(&map, 0, sizeof(map));
538 	if (ints[0] > 0)
539 		map.irq = ints[1];
540 	if (ints[0] > 1)
541 		map.base_addr = ints[2];
542 	if (ints[0] > 2)
543 		map.mem_start = ints[3];
544 	if (ints[0] > 3)
545 		map.mem_end = ints[4];
546 
547 	/* Add new entry to the list */
548 	return netdev_boot_setup_add(str, &map);
549 }
550 
551 __setup("netdev=", netdev_boot_setup);
552 
553 /*******************************************************************************
554 
555 			    Device Interface Subroutines
556 
557 *******************************************************************************/
558 
559 /**
560  *	__dev_get_by_name	- find a device by its name
561  *	@net: the applicable net namespace
562  *	@name: name to find
563  *
564  *	Find an interface by name. Must be called under RTNL semaphore
565  *	or @dev_base_lock. If the name is found a pointer to the device
566  *	is returned. If the name is not found then %NULL is returned. The
567  *	reference counters are not incremented so the caller must be
568  *	careful with locks.
569  */
570 
571 struct net_device *__dev_get_by_name(struct net *net, const char *name)
572 {
573 	struct hlist_node *p;
574 
575 	hlist_for_each(p, dev_name_hash(net, name)) {
576 		struct net_device *dev
577 			= hlist_entry(p, struct net_device, name_hlist);
578 		if (!strncmp(dev->name, name, IFNAMSIZ))
579 			return dev;
580 	}
581 	return NULL;
582 }
583 
584 /**
585  *	dev_get_by_name		- find a device by its name
586  *	@net: the applicable net namespace
587  *	@name: name to find
588  *
589  *	Find an interface by name. This can be called from any
590  *	context and does its own locking. The returned handle has
591  *	the usage count incremented and the caller must use dev_put() to
592  *	release it when it is no longer needed. %NULL is returned if no
593  *	matching device is found.
594  */
595 
596 struct net_device *dev_get_by_name(struct net *net, const char *name)
597 {
598 	struct net_device *dev;
599 
600 	read_lock(&dev_base_lock);
601 	dev = __dev_get_by_name(net, name);
602 	if (dev)
603 		dev_hold(dev);
604 	read_unlock(&dev_base_lock);
605 	return dev;
606 }
607 
608 /**
609  *	__dev_get_by_index - find a device by its ifindex
610  *	@net: the applicable net namespace
611  *	@ifindex: index of device
612  *
613  *	Search for an interface by index. Returns %NULL if the device
614  *	is not found or a pointer to the device. The device has not
615  *	had its reference counter increased so the caller must be careful
616  *	about locking. The caller must hold either the RTNL semaphore
617  *	or @dev_base_lock.
618  */
619 
620 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
621 {
622 	struct hlist_node *p;
623 
624 	hlist_for_each(p, dev_index_hash(net, ifindex)) {
625 		struct net_device *dev
626 			= hlist_entry(p, struct net_device, index_hlist);
627 		if (dev->ifindex == ifindex)
628 			return dev;
629 	}
630 	return NULL;
631 }
632 
633 
634 /**
635  *	dev_get_by_index - find a device by its ifindex
636  *	@net: the applicable net namespace
637  *	@ifindex: index of device
638  *
639  *	Search for an interface by index. Returns NULL if the device
640  *	is not found or a pointer to the device. The device returned has
641  *	had a reference added and the pointer is safe until the user calls
642  *	dev_put to indicate they have finished with it.
643  */
644 
645 struct net_device *dev_get_by_index(struct net *net, int ifindex)
646 {
647 	struct net_device *dev;
648 
649 	read_lock(&dev_base_lock);
650 	dev = __dev_get_by_index(net, ifindex);
651 	if (dev)
652 		dev_hold(dev);
653 	read_unlock(&dev_base_lock);
654 	return dev;
655 }
656 
657 /**
658  *	dev_getbyhwaddr - find a device by its hardware address
659  *	@net: the applicable net namespace
660  *	@type: media type of device
661  *	@ha: hardware address
662  *
663  *	Search for an interface by MAC address. Returns NULL if the device
664  *	is not found or a pointer to the device. The caller must hold the
665  *	rtnl semaphore. The returned device has not had its ref count increased
666  *	and the caller must therefore be careful about locking
667  *
668  *	BUGS:
669  *	If the API was consistent this would be __dev_get_by_hwaddr
670  */
671 
672 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
673 {
674 	struct net_device *dev;
675 
676 	ASSERT_RTNL();
677 
678 	for_each_netdev(net, dev)
679 		if (dev->type == type &&
680 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
681 			return dev;
682 
683 	return NULL;
684 }
685 
686 EXPORT_SYMBOL(dev_getbyhwaddr);
687 
688 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
689 {
690 	struct net_device *dev;
691 
692 	ASSERT_RTNL();
693 	for_each_netdev(net, dev)
694 		if (dev->type == type)
695 			return dev;
696 
697 	return NULL;
698 }
699 
700 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
701 
702 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
703 {
704 	struct net_device *dev;
705 
706 	rtnl_lock();
707 	dev = __dev_getfirstbyhwtype(net, type);
708 	if (dev)
709 		dev_hold(dev);
710 	rtnl_unlock();
711 	return dev;
712 }
713 
714 EXPORT_SYMBOL(dev_getfirstbyhwtype);
715 
716 /**
717  *	dev_get_by_flags - find any device with given flags
718  *	@net: the applicable net namespace
719  *	@if_flags: IFF_* values
720  *	@mask: bitmask of bits in if_flags to check
721  *
722  *	Search for any interface with the given flags. Returns NULL if a device
723  *	is not found or a pointer to the device. The device returned has
724  *	had a reference added and the pointer is safe until the user calls
725  *	dev_put to indicate they have finished with it.
726  */
727 
728 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
729 {
730 	struct net_device *dev, *ret;
731 
732 	ret = NULL;
733 	read_lock(&dev_base_lock);
734 	for_each_netdev(net, dev) {
735 		if (((dev->flags ^ if_flags) & mask) == 0) {
736 			dev_hold(dev);
737 			ret = dev;
738 			break;
739 		}
740 	}
741 	read_unlock(&dev_base_lock);
742 	return ret;
743 }
744 
745 /**
746  *	dev_valid_name - check if name is okay for network device
747  *	@name: name string
748  *
749  *	Network device names need to be valid file names to
750  *	to allow sysfs to work.  We also disallow any kind of
751  *	whitespace.
752  */
753 int dev_valid_name(const char *name)
754 {
755 	if (*name == '\0')
756 		return 0;
757 	if (strlen(name) >= IFNAMSIZ)
758 		return 0;
759 	if (!strcmp(name, ".") || !strcmp(name, ".."))
760 		return 0;
761 
762 	while (*name) {
763 		if (*name == '/' || isspace(*name))
764 			return 0;
765 		name++;
766 	}
767 	return 1;
768 }
769 
770 /**
771  *	__dev_alloc_name - allocate a name for a device
772  *	@net: network namespace to allocate the device name in
773  *	@name: name format string
774  *	@buf:  scratch buffer and result name string
775  *
776  *	Passed a format string - eg "lt%d" it will try and find a suitable
777  *	id. It scans list of devices to build up a free map, then chooses
778  *	the first empty slot. The caller must hold the dev_base or rtnl lock
779  *	while allocating the name and adding the device in order to avoid
780  *	duplicates.
781  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
782  *	Returns the number of the unit assigned or a negative errno code.
783  */
784 
785 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
786 {
787 	int i = 0;
788 	const char *p;
789 	const int max_netdevices = 8*PAGE_SIZE;
790 	unsigned long *inuse;
791 	struct net_device *d;
792 
793 	p = strnchr(name, IFNAMSIZ-1, '%');
794 	if (p) {
795 		/*
796 		 * Verify the string as this thing may have come from
797 		 * the user.  There must be either one "%d" and no other "%"
798 		 * characters.
799 		 */
800 		if (p[1] != 'd' || strchr(p + 2, '%'))
801 			return -EINVAL;
802 
803 		/* Use one page as a bit array of possible slots */
804 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
805 		if (!inuse)
806 			return -ENOMEM;
807 
808 		for_each_netdev(net, d) {
809 			if (!sscanf(d->name, name, &i))
810 				continue;
811 			if (i < 0 || i >= max_netdevices)
812 				continue;
813 
814 			/*  avoid cases where sscanf is not exact inverse of printf */
815 			snprintf(buf, IFNAMSIZ, name, i);
816 			if (!strncmp(buf, d->name, IFNAMSIZ))
817 				set_bit(i, inuse);
818 		}
819 
820 		i = find_first_zero_bit(inuse, max_netdevices);
821 		free_page((unsigned long) inuse);
822 	}
823 
824 	snprintf(buf, IFNAMSIZ, name, i);
825 	if (!__dev_get_by_name(net, buf))
826 		return i;
827 
828 	/* It is possible to run out of possible slots
829 	 * when the name is long and there isn't enough space left
830 	 * for the digits, or if all bits are used.
831 	 */
832 	return -ENFILE;
833 }
834 
835 /**
836  *	dev_alloc_name - allocate a name for a device
837  *	@dev: device
838  *	@name: name format string
839  *
840  *	Passed a format string - eg "lt%d" it will try and find a suitable
841  *	id. It scans list of devices to build up a free map, then chooses
842  *	the first empty slot. The caller must hold the dev_base or rtnl lock
843  *	while allocating the name and adding the device in order to avoid
844  *	duplicates.
845  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
846  *	Returns the number of the unit assigned or a negative errno code.
847  */
848 
849 int dev_alloc_name(struct net_device *dev, const char *name)
850 {
851 	char buf[IFNAMSIZ];
852 	struct net *net;
853 	int ret;
854 
855 	BUG_ON(!dev_net(dev));
856 	net = dev_net(dev);
857 	ret = __dev_alloc_name(net, name, buf);
858 	if (ret >= 0)
859 		strlcpy(dev->name, buf, IFNAMSIZ);
860 	return ret;
861 }
862 
863 
864 /**
865  *	dev_change_name - change name of a device
866  *	@dev: device
867  *	@newname: name (or format string) must be at least IFNAMSIZ
868  *
869  *	Change name of a device, can pass format strings "eth%d".
870  *	for wildcarding.
871  */
872 int dev_change_name(struct net_device *dev, char *newname)
873 {
874 	char oldname[IFNAMSIZ];
875 	int err = 0;
876 	int ret;
877 	struct net *net;
878 
879 	ASSERT_RTNL();
880 	BUG_ON(!dev_net(dev));
881 
882 	net = dev_net(dev);
883 	if (dev->flags & IFF_UP)
884 		return -EBUSY;
885 
886 	if (!dev_valid_name(newname))
887 		return -EINVAL;
888 
889 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
890 		return 0;
891 
892 	memcpy(oldname, dev->name, IFNAMSIZ);
893 
894 	if (strchr(newname, '%')) {
895 		err = dev_alloc_name(dev, newname);
896 		if (err < 0)
897 			return err;
898 		strcpy(newname, dev->name);
899 	}
900 	else if (__dev_get_by_name(net, newname))
901 		return -EEXIST;
902 	else
903 		strlcpy(dev->name, newname, IFNAMSIZ);
904 
905 rollback:
906 	err = device_rename(&dev->dev, dev->name);
907 	if (err) {
908 		memcpy(dev->name, oldname, IFNAMSIZ);
909 		return err;
910 	}
911 
912 	write_lock_bh(&dev_base_lock);
913 	hlist_del(&dev->name_hlist);
914 	hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
915 	write_unlock_bh(&dev_base_lock);
916 
917 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
918 	ret = notifier_to_errno(ret);
919 
920 	if (ret) {
921 		if (err) {
922 			printk(KERN_ERR
923 			       "%s: name change rollback failed: %d.\n",
924 			       dev->name, ret);
925 		} else {
926 			err = ret;
927 			memcpy(dev->name, oldname, IFNAMSIZ);
928 			goto rollback;
929 		}
930 	}
931 
932 	return err;
933 }
934 
935 /**
936  *	netdev_features_change - device changes features
937  *	@dev: device to cause notification
938  *
939  *	Called to indicate a device has changed features.
940  */
941 void netdev_features_change(struct net_device *dev)
942 {
943 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
944 }
945 EXPORT_SYMBOL(netdev_features_change);
946 
947 /**
948  *	netdev_state_change - device changes state
949  *	@dev: device to cause notification
950  *
951  *	Called to indicate a device has changed state. This function calls
952  *	the notifier chains for netdev_chain and sends a NEWLINK message
953  *	to the routing socket.
954  */
955 void netdev_state_change(struct net_device *dev)
956 {
957 	if (dev->flags & IFF_UP) {
958 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
959 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
960 	}
961 }
962 
963 /**
964  *	dev_load 	- load a network module
965  *	@net: the applicable net namespace
966  *	@name: name of interface
967  *
968  *	If a network interface is not present and the process has suitable
969  *	privileges this function loads the module. If module loading is not
970  *	available in this kernel then it becomes a nop.
971  */
972 
973 void dev_load(struct net *net, const char *name)
974 {
975 	struct net_device *dev;
976 
977 	read_lock(&dev_base_lock);
978 	dev = __dev_get_by_name(net, name);
979 	read_unlock(&dev_base_lock);
980 
981 	if (!dev && capable(CAP_SYS_MODULE))
982 		request_module("%s", name);
983 }
984 
985 /**
986  *	dev_open	- prepare an interface for use.
987  *	@dev:	device to open
988  *
989  *	Takes a device from down to up state. The device's private open
990  *	function is invoked and then the multicast lists are loaded. Finally
991  *	the device is moved into the up state and a %NETDEV_UP message is
992  *	sent to the netdev notifier chain.
993  *
994  *	Calling this function on an active interface is a nop. On a failure
995  *	a negative errno code is returned.
996  */
997 int dev_open(struct net_device *dev)
998 {
999 	int ret = 0;
1000 
1001 	ASSERT_RTNL();
1002 
1003 	/*
1004 	 *	Is it already up?
1005 	 */
1006 
1007 	if (dev->flags & IFF_UP)
1008 		return 0;
1009 
1010 	/*
1011 	 *	Is it even present?
1012 	 */
1013 	if (!netif_device_present(dev))
1014 		return -ENODEV;
1015 
1016 	/*
1017 	 *	Call device private open method
1018 	 */
1019 	set_bit(__LINK_STATE_START, &dev->state);
1020 
1021 	if (dev->validate_addr)
1022 		ret = dev->validate_addr(dev);
1023 
1024 	if (!ret && dev->open)
1025 		ret = dev->open(dev);
1026 
1027 	/*
1028 	 *	If it went open OK then:
1029 	 */
1030 
1031 	if (ret)
1032 		clear_bit(__LINK_STATE_START, &dev->state);
1033 	else {
1034 		/*
1035 		 *	Set the flags.
1036 		 */
1037 		dev->flags |= IFF_UP;
1038 
1039 		/*
1040 		 *	Initialize multicasting status
1041 		 */
1042 		dev_set_rx_mode(dev);
1043 
1044 		/*
1045 		 *	Wakeup transmit queue engine
1046 		 */
1047 		dev_activate(dev);
1048 
1049 		/*
1050 		 *	... and announce new interface.
1051 		 */
1052 		call_netdevice_notifiers(NETDEV_UP, dev);
1053 	}
1054 
1055 	return ret;
1056 }
1057 
1058 /**
1059  *	dev_close - shutdown an interface.
1060  *	@dev: device to shutdown
1061  *
1062  *	This function moves an active device into down state. A
1063  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1064  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1065  *	chain.
1066  */
1067 int dev_close(struct net_device *dev)
1068 {
1069 	ASSERT_RTNL();
1070 
1071 	might_sleep();
1072 
1073 	if (!(dev->flags & IFF_UP))
1074 		return 0;
1075 
1076 	/*
1077 	 *	Tell people we are going down, so that they can
1078 	 *	prepare to death, when device is still operating.
1079 	 */
1080 	call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1081 
1082 	clear_bit(__LINK_STATE_START, &dev->state);
1083 
1084 	/* Synchronize to scheduled poll. We cannot touch poll list,
1085 	 * it can be even on different cpu. So just clear netif_running().
1086 	 *
1087 	 * dev->stop() will invoke napi_disable() on all of it's
1088 	 * napi_struct instances on this device.
1089 	 */
1090 	smp_mb__after_clear_bit(); /* Commit netif_running(). */
1091 
1092 	dev_deactivate(dev);
1093 
1094 	/*
1095 	 *	Call the device specific close. This cannot fail.
1096 	 *	Only if device is UP
1097 	 *
1098 	 *	We allow it to be called even after a DETACH hot-plug
1099 	 *	event.
1100 	 */
1101 	if (dev->stop)
1102 		dev->stop(dev);
1103 
1104 	/*
1105 	 *	Device is now down.
1106 	 */
1107 
1108 	dev->flags &= ~IFF_UP;
1109 
1110 	/*
1111 	 * Tell people we are down
1112 	 */
1113 	call_netdevice_notifiers(NETDEV_DOWN, dev);
1114 
1115 	return 0;
1116 }
1117 
1118 
1119 static int dev_boot_phase = 1;
1120 
1121 /*
1122  *	Device change register/unregister. These are not inline or static
1123  *	as we export them to the world.
1124  */
1125 
1126 /**
1127  *	register_netdevice_notifier - register a network notifier block
1128  *	@nb: notifier
1129  *
1130  *	Register a notifier to be called when network device events occur.
1131  *	The notifier passed is linked into the kernel structures and must
1132  *	not be reused until it has been unregistered. A negative errno code
1133  *	is returned on a failure.
1134  *
1135  * 	When registered all registration and up events are replayed
1136  *	to the new notifier to allow device to have a race free
1137  *	view of the network device list.
1138  */
1139 
1140 int register_netdevice_notifier(struct notifier_block *nb)
1141 {
1142 	struct net_device *dev;
1143 	struct net_device *last;
1144 	struct net *net;
1145 	int err;
1146 
1147 	rtnl_lock();
1148 	err = raw_notifier_chain_register(&netdev_chain, nb);
1149 	if (err)
1150 		goto unlock;
1151 	if (dev_boot_phase)
1152 		goto unlock;
1153 	for_each_net(net) {
1154 		for_each_netdev(net, dev) {
1155 			err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1156 			err = notifier_to_errno(err);
1157 			if (err)
1158 				goto rollback;
1159 
1160 			if (!(dev->flags & IFF_UP))
1161 				continue;
1162 
1163 			nb->notifier_call(nb, NETDEV_UP, dev);
1164 		}
1165 	}
1166 
1167 unlock:
1168 	rtnl_unlock();
1169 	return err;
1170 
1171 rollback:
1172 	last = dev;
1173 	for_each_net(net) {
1174 		for_each_netdev(net, dev) {
1175 			if (dev == last)
1176 				break;
1177 
1178 			if (dev->flags & IFF_UP) {
1179 				nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1180 				nb->notifier_call(nb, NETDEV_DOWN, dev);
1181 			}
1182 			nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1183 		}
1184 	}
1185 
1186 	raw_notifier_chain_unregister(&netdev_chain, nb);
1187 	goto unlock;
1188 }
1189 
1190 /**
1191  *	unregister_netdevice_notifier - unregister a network notifier block
1192  *	@nb: notifier
1193  *
1194  *	Unregister a notifier previously registered by
1195  *	register_netdevice_notifier(). The notifier is unlinked into the
1196  *	kernel structures and may then be reused. A negative errno code
1197  *	is returned on a failure.
1198  */
1199 
1200 int unregister_netdevice_notifier(struct notifier_block *nb)
1201 {
1202 	int err;
1203 
1204 	rtnl_lock();
1205 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1206 	rtnl_unlock();
1207 	return err;
1208 }
1209 
1210 /**
1211  *	call_netdevice_notifiers - call all network notifier blocks
1212  *      @val: value passed unmodified to notifier function
1213  *      @dev: net_device pointer passed unmodified to notifier function
1214  *
1215  *	Call all network notifier blocks.  Parameters and return value
1216  *	are as for raw_notifier_call_chain().
1217  */
1218 
1219 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1220 {
1221 	return raw_notifier_call_chain(&netdev_chain, val, dev);
1222 }
1223 
1224 /* When > 0 there are consumers of rx skb time stamps */
1225 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1226 
1227 void net_enable_timestamp(void)
1228 {
1229 	atomic_inc(&netstamp_needed);
1230 }
1231 
1232 void net_disable_timestamp(void)
1233 {
1234 	atomic_dec(&netstamp_needed);
1235 }
1236 
1237 static inline void net_timestamp(struct sk_buff *skb)
1238 {
1239 	if (atomic_read(&netstamp_needed))
1240 		__net_timestamp(skb);
1241 	else
1242 		skb->tstamp.tv64 = 0;
1243 }
1244 
1245 /*
1246  *	Support routine. Sends outgoing frames to any network
1247  *	taps currently in use.
1248  */
1249 
1250 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1251 {
1252 	struct packet_type *ptype;
1253 
1254 	net_timestamp(skb);
1255 
1256 	rcu_read_lock();
1257 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1258 		/* Never send packets back to the socket
1259 		 * they originated from - MvS (miquels@drinkel.ow.org)
1260 		 */
1261 		if ((ptype->dev == dev || !ptype->dev) &&
1262 		    (ptype->af_packet_priv == NULL ||
1263 		     (struct sock *)ptype->af_packet_priv != skb->sk)) {
1264 			struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1265 			if (!skb2)
1266 				break;
1267 
1268 			/* skb->nh should be correctly
1269 			   set by sender, so that the second statement is
1270 			   just protection against buggy protocols.
1271 			 */
1272 			skb_reset_mac_header(skb2);
1273 
1274 			if (skb_network_header(skb2) < skb2->data ||
1275 			    skb2->network_header > skb2->tail) {
1276 				if (net_ratelimit())
1277 					printk(KERN_CRIT "protocol %04x is "
1278 					       "buggy, dev %s\n",
1279 					       skb2->protocol, dev->name);
1280 				skb_reset_network_header(skb2);
1281 			}
1282 
1283 			skb2->transport_header = skb2->network_header;
1284 			skb2->pkt_type = PACKET_OUTGOING;
1285 			ptype->func(skb2, skb->dev, ptype, skb->dev);
1286 		}
1287 	}
1288 	rcu_read_unlock();
1289 }
1290 
1291 
1292 void __netif_schedule(struct net_device *dev)
1293 {
1294 	if (!test_and_set_bit(__LINK_STATE_SCHED, &dev->state)) {
1295 		unsigned long flags;
1296 		struct softnet_data *sd;
1297 
1298 		local_irq_save(flags);
1299 		sd = &__get_cpu_var(softnet_data);
1300 		dev->next_sched = sd->output_queue;
1301 		sd->output_queue = dev;
1302 		raise_softirq_irqoff(NET_TX_SOFTIRQ);
1303 		local_irq_restore(flags);
1304 	}
1305 }
1306 EXPORT_SYMBOL(__netif_schedule);
1307 
1308 void dev_kfree_skb_irq(struct sk_buff *skb)
1309 {
1310 	if (atomic_dec_and_test(&skb->users)) {
1311 		struct softnet_data *sd;
1312 		unsigned long flags;
1313 
1314 		local_irq_save(flags);
1315 		sd = &__get_cpu_var(softnet_data);
1316 		skb->next = sd->completion_queue;
1317 		sd->completion_queue = skb;
1318 		raise_softirq_irqoff(NET_TX_SOFTIRQ);
1319 		local_irq_restore(flags);
1320 	}
1321 }
1322 EXPORT_SYMBOL(dev_kfree_skb_irq);
1323 
1324 void dev_kfree_skb_any(struct sk_buff *skb)
1325 {
1326 	if (in_irq() || irqs_disabled())
1327 		dev_kfree_skb_irq(skb);
1328 	else
1329 		dev_kfree_skb(skb);
1330 }
1331 EXPORT_SYMBOL(dev_kfree_skb_any);
1332 
1333 
1334 /**
1335  * netif_device_detach - mark device as removed
1336  * @dev: network device
1337  *
1338  * Mark device as removed from system and therefore no longer available.
1339  */
1340 void netif_device_detach(struct net_device *dev)
1341 {
1342 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1343 	    netif_running(dev)) {
1344 		netif_stop_queue(dev);
1345 	}
1346 }
1347 EXPORT_SYMBOL(netif_device_detach);
1348 
1349 /**
1350  * netif_device_attach - mark device as attached
1351  * @dev: network device
1352  *
1353  * Mark device as attached from system and restart if needed.
1354  */
1355 void netif_device_attach(struct net_device *dev)
1356 {
1357 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1358 	    netif_running(dev)) {
1359 		netif_wake_queue(dev);
1360 		__netdev_watchdog_up(dev);
1361 	}
1362 }
1363 EXPORT_SYMBOL(netif_device_attach);
1364 
1365 
1366 /*
1367  * Invalidate hardware checksum when packet is to be mangled, and
1368  * complete checksum manually on outgoing path.
1369  */
1370 int skb_checksum_help(struct sk_buff *skb)
1371 {
1372 	__wsum csum;
1373 	int ret = 0, offset;
1374 
1375 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1376 		goto out_set_summed;
1377 
1378 	if (unlikely(skb_shinfo(skb)->gso_size)) {
1379 		/* Let GSO fix up the checksum. */
1380 		goto out_set_summed;
1381 	}
1382 
1383 	offset = skb->csum_start - skb_headroom(skb);
1384 	BUG_ON(offset >= skb_headlen(skb));
1385 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
1386 
1387 	offset += skb->csum_offset;
1388 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1389 
1390 	if (skb_cloned(skb) &&
1391 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1392 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1393 		if (ret)
1394 			goto out;
1395 	}
1396 
1397 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
1398 out_set_summed:
1399 	skb->ip_summed = CHECKSUM_NONE;
1400 out:
1401 	return ret;
1402 }
1403 
1404 /**
1405  *	skb_gso_segment - Perform segmentation on skb.
1406  *	@skb: buffer to segment
1407  *	@features: features for the output path (see dev->features)
1408  *
1409  *	This function segments the given skb and returns a list of segments.
1410  *
1411  *	It may return NULL if the skb requires no segmentation.  This is
1412  *	only possible when GSO is used for verifying header integrity.
1413  */
1414 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1415 {
1416 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1417 	struct packet_type *ptype;
1418 	__be16 type = skb->protocol;
1419 	int err;
1420 
1421 	BUG_ON(skb_shinfo(skb)->frag_list);
1422 
1423 	skb_reset_mac_header(skb);
1424 	skb->mac_len = skb->network_header - skb->mac_header;
1425 	__skb_pull(skb, skb->mac_len);
1426 
1427 	if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) {
1428 		if (skb_header_cloned(skb) &&
1429 		    (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1430 			return ERR_PTR(err);
1431 	}
1432 
1433 	rcu_read_lock();
1434 	list_for_each_entry_rcu(ptype,
1435 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1436 		if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1437 			if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1438 				err = ptype->gso_send_check(skb);
1439 				segs = ERR_PTR(err);
1440 				if (err || skb_gso_ok(skb, features))
1441 					break;
1442 				__skb_push(skb, (skb->data -
1443 						 skb_network_header(skb)));
1444 			}
1445 			segs = ptype->gso_segment(skb, features);
1446 			break;
1447 		}
1448 	}
1449 	rcu_read_unlock();
1450 
1451 	__skb_push(skb, skb->data - skb_mac_header(skb));
1452 
1453 	return segs;
1454 }
1455 
1456 EXPORT_SYMBOL(skb_gso_segment);
1457 
1458 /* Take action when hardware reception checksum errors are detected. */
1459 #ifdef CONFIG_BUG
1460 void netdev_rx_csum_fault(struct net_device *dev)
1461 {
1462 	if (net_ratelimit()) {
1463 		printk(KERN_ERR "%s: hw csum failure.\n",
1464 			dev ? dev->name : "<unknown>");
1465 		dump_stack();
1466 	}
1467 }
1468 EXPORT_SYMBOL(netdev_rx_csum_fault);
1469 #endif
1470 
1471 /* Actually, we should eliminate this check as soon as we know, that:
1472  * 1. IOMMU is present and allows to map all the memory.
1473  * 2. No high memory really exists on this machine.
1474  */
1475 
1476 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1477 {
1478 #ifdef CONFIG_HIGHMEM
1479 	int i;
1480 
1481 	if (dev->features & NETIF_F_HIGHDMA)
1482 		return 0;
1483 
1484 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1485 		if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1486 			return 1;
1487 
1488 #endif
1489 	return 0;
1490 }
1491 
1492 struct dev_gso_cb {
1493 	void (*destructor)(struct sk_buff *skb);
1494 };
1495 
1496 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1497 
1498 static void dev_gso_skb_destructor(struct sk_buff *skb)
1499 {
1500 	struct dev_gso_cb *cb;
1501 
1502 	do {
1503 		struct sk_buff *nskb = skb->next;
1504 
1505 		skb->next = nskb->next;
1506 		nskb->next = NULL;
1507 		kfree_skb(nskb);
1508 	} while (skb->next);
1509 
1510 	cb = DEV_GSO_CB(skb);
1511 	if (cb->destructor)
1512 		cb->destructor(skb);
1513 }
1514 
1515 /**
1516  *	dev_gso_segment - Perform emulated hardware segmentation on skb.
1517  *	@skb: buffer to segment
1518  *
1519  *	This function segments the given skb and stores the list of segments
1520  *	in skb->next.
1521  */
1522 static int dev_gso_segment(struct sk_buff *skb)
1523 {
1524 	struct net_device *dev = skb->dev;
1525 	struct sk_buff *segs;
1526 	int features = dev->features & ~(illegal_highdma(dev, skb) ?
1527 					 NETIF_F_SG : 0);
1528 
1529 	segs = skb_gso_segment(skb, features);
1530 
1531 	/* Verifying header integrity only. */
1532 	if (!segs)
1533 		return 0;
1534 
1535 	if (IS_ERR(segs))
1536 		return PTR_ERR(segs);
1537 
1538 	skb->next = segs;
1539 	DEV_GSO_CB(skb)->destructor = skb->destructor;
1540 	skb->destructor = dev_gso_skb_destructor;
1541 
1542 	return 0;
1543 }
1544 
1545 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
1546 {
1547 	if (likely(!skb->next)) {
1548 		if (!list_empty(&ptype_all))
1549 			dev_queue_xmit_nit(skb, dev);
1550 
1551 		if (netif_needs_gso(dev, skb)) {
1552 			if (unlikely(dev_gso_segment(skb)))
1553 				goto out_kfree_skb;
1554 			if (skb->next)
1555 				goto gso;
1556 		}
1557 
1558 		return dev->hard_start_xmit(skb, dev);
1559 	}
1560 
1561 gso:
1562 	do {
1563 		struct sk_buff *nskb = skb->next;
1564 		int rc;
1565 
1566 		skb->next = nskb->next;
1567 		nskb->next = NULL;
1568 		rc = dev->hard_start_xmit(nskb, dev);
1569 		if (unlikely(rc)) {
1570 			nskb->next = skb->next;
1571 			skb->next = nskb;
1572 			return rc;
1573 		}
1574 		if (unlikely((netif_queue_stopped(dev) ||
1575 			     netif_subqueue_stopped(dev, skb)) &&
1576 			     skb->next))
1577 			return NETDEV_TX_BUSY;
1578 	} while (skb->next);
1579 
1580 	skb->destructor = DEV_GSO_CB(skb)->destructor;
1581 
1582 out_kfree_skb:
1583 	kfree_skb(skb);
1584 	return 0;
1585 }
1586 
1587 /**
1588  *	dev_queue_xmit - transmit a buffer
1589  *	@skb: buffer to transmit
1590  *
1591  *	Queue a buffer for transmission to a network device. The caller must
1592  *	have set the device and priority and built the buffer before calling
1593  *	this function. The function can be called from an interrupt.
1594  *
1595  *	A negative errno code is returned on a failure. A success does not
1596  *	guarantee the frame will be transmitted as it may be dropped due
1597  *	to congestion or traffic shaping.
1598  *
1599  * -----------------------------------------------------------------------------------
1600  *      I notice this method can also return errors from the queue disciplines,
1601  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
1602  *      be positive.
1603  *
1604  *      Regardless of the return value, the skb is consumed, so it is currently
1605  *      difficult to retry a send to this method.  (You can bump the ref count
1606  *      before sending to hold a reference for retry if you are careful.)
1607  *
1608  *      When calling this method, interrupts MUST be enabled.  This is because
1609  *      the BH enable code must have IRQs enabled so that it will not deadlock.
1610  *          --BLG
1611  */
1612 
1613 int dev_queue_xmit(struct sk_buff *skb)
1614 {
1615 	struct net_device *dev = skb->dev;
1616 	struct Qdisc *q;
1617 	int rc = -ENOMEM;
1618 
1619 	/* GSO will handle the following emulations directly. */
1620 	if (netif_needs_gso(dev, skb))
1621 		goto gso;
1622 
1623 	if (skb_shinfo(skb)->frag_list &&
1624 	    !(dev->features & NETIF_F_FRAGLIST) &&
1625 	    __skb_linearize(skb))
1626 		goto out_kfree_skb;
1627 
1628 	/* Fragmented skb is linearized if device does not support SG,
1629 	 * or if at least one of fragments is in highmem and device
1630 	 * does not support DMA from it.
1631 	 */
1632 	if (skb_shinfo(skb)->nr_frags &&
1633 	    (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1634 	    __skb_linearize(skb))
1635 		goto out_kfree_skb;
1636 
1637 	/* If packet is not checksummed and device does not support
1638 	 * checksumming for this protocol, complete checksumming here.
1639 	 */
1640 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1641 		skb_set_transport_header(skb, skb->csum_start -
1642 					      skb_headroom(skb));
1643 
1644 		if (!(dev->features & NETIF_F_GEN_CSUM) &&
1645 		    !((dev->features & NETIF_F_IP_CSUM) &&
1646 		      skb->protocol == htons(ETH_P_IP)) &&
1647 		    !((dev->features & NETIF_F_IPV6_CSUM) &&
1648 		      skb->protocol == htons(ETH_P_IPV6)))
1649 			if (skb_checksum_help(skb))
1650 				goto out_kfree_skb;
1651 	}
1652 
1653 gso:
1654 	spin_lock_prefetch(&dev->queue_lock);
1655 
1656 	/* Disable soft irqs for various locks below. Also
1657 	 * stops preemption for RCU.
1658 	 */
1659 	rcu_read_lock_bh();
1660 
1661 	/* Updates of qdisc are serialized by queue_lock.
1662 	 * The struct Qdisc which is pointed to by qdisc is now a
1663 	 * rcu structure - it may be accessed without acquiring
1664 	 * a lock (but the structure may be stale.) The freeing of the
1665 	 * qdisc will be deferred until it's known that there are no
1666 	 * more references to it.
1667 	 *
1668 	 * If the qdisc has an enqueue function, we still need to
1669 	 * hold the queue_lock before calling it, since queue_lock
1670 	 * also serializes access to the device queue.
1671 	 */
1672 
1673 	q = rcu_dereference(dev->qdisc);
1674 #ifdef CONFIG_NET_CLS_ACT
1675 	skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1676 #endif
1677 	if (q->enqueue) {
1678 		/* Grab device queue */
1679 		spin_lock(&dev->queue_lock);
1680 		q = dev->qdisc;
1681 		if (q->enqueue) {
1682 			/* reset queue_mapping to zero */
1683 			skb_set_queue_mapping(skb, 0);
1684 			rc = q->enqueue(skb, q);
1685 			qdisc_run(dev);
1686 			spin_unlock(&dev->queue_lock);
1687 
1688 			rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc;
1689 			goto out;
1690 		}
1691 		spin_unlock(&dev->queue_lock);
1692 	}
1693 
1694 	/* The device has no queue. Common case for software devices:
1695 	   loopback, all the sorts of tunnels...
1696 
1697 	   Really, it is unlikely that netif_tx_lock protection is necessary
1698 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
1699 	   counters.)
1700 	   However, it is possible, that they rely on protection
1701 	   made by us here.
1702 
1703 	   Check this and shot the lock. It is not prone from deadlocks.
1704 	   Either shot noqueue qdisc, it is even simpler 8)
1705 	 */
1706 	if (dev->flags & IFF_UP) {
1707 		int cpu = smp_processor_id(); /* ok because BHs are off */
1708 
1709 		if (dev->xmit_lock_owner != cpu) {
1710 
1711 			HARD_TX_LOCK(dev, cpu);
1712 
1713 			if (!netif_queue_stopped(dev) &&
1714 			    !netif_subqueue_stopped(dev, skb)) {
1715 				rc = 0;
1716 				if (!dev_hard_start_xmit(skb, dev)) {
1717 					HARD_TX_UNLOCK(dev);
1718 					goto out;
1719 				}
1720 			}
1721 			HARD_TX_UNLOCK(dev);
1722 			if (net_ratelimit())
1723 				printk(KERN_CRIT "Virtual device %s asks to "
1724 				       "queue packet!\n", dev->name);
1725 		} else {
1726 			/* Recursion is detected! It is possible,
1727 			 * unfortunately */
1728 			if (net_ratelimit())
1729 				printk(KERN_CRIT "Dead loop on virtual device "
1730 				       "%s, fix it urgently!\n", dev->name);
1731 		}
1732 	}
1733 
1734 	rc = -ENETDOWN;
1735 	rcu_read_unlock_bh();
1736 
1737 out_kfree_skb:
1738 	kfree_skb(skb);
1739 	return rc;
1740 out:
1741 	rcu_read_unlock_bh();
1742 	return rc;
1743 }
1744 
1745 
1746 /*=======================================================================
1747 			Receiver routines
1748   =======================================================================*/
1749 
1750 int netdev_max_backlog __read_mostly = 1000;
1751 int netdev_budget __read_mostly = 300;
1752 int weight_p __read_mostly = 64;            /* old backlog weight */
1753 
1754 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1755 
1756 
1757 /**
1758  *	netif_rx	-	post buffer to the network code
1759  *	@skb: buffer to post
1760  *
1761  *	This function receives a packet from a device driver and queues it for
1762  *	the upper (protocol) levels to process.  It always succeeds. The buffer
1763  *	may be dropped during processing for congestion control or by the
1764  *	protocol layers.
1765  *
1766  *	return values:
1767  *	NET_RX_SUCCESS	(no congestion)
1768  *	NET_RX_DROP     (packet was dropped)
1769  *
1770  */
1771 
1772 int netif_rx(struct sk_buff *skb)
1773 {
1774 	struct softnet_data *queue;
1775 	unsigned long flags;
1776 
1777 	/* if netpoll wants it, pretend we never saw it */
1778 	if (netpoll_rx(skb))
1779 		return NET_RX_DROP;
1780 
1781 	if (!skb->tstamp.tv64)
1782 		net_timestamp(skb);
1783 
1784 	/*
1785 	 * The code is rearranged so that the path is the most
1786 	 * short when CPU is congested, but is still operating.
1787 	 */
1788 	local_irq_save(flags);
1789 	queue = &__get_cpu_var(softnet_data);
1790 
1791 	__get_cpu_var(netdev_rx_stat).total++;
1792 	if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1793 		if (queue->input_pkt_queue.qlen) {
1794 enqueue:
1795 			dev_hold(skb->dev);
1796 			__skb_queue_tail(&queue->input_pkt_queue, skb);
1797 			local_irq_restore(flags);
1798 			return NET_RX_SUCCESS;
1799 		}
1800 
1801 		napi_schedule(&queue->backlog);
1802 		goto enqueue;
1803 	}
1804 
1805 	__get_cpu_var(netdev_rx_stat).dropped++;
1806 	local_irq_restore(flags);
1807 
1808 	kfree_skb(skb);
1809 	return NET_RX_DROP;
1810 }
1811 
1812 int netif_rx_ni(struct sk_buff *skb)
1813 {
1814 	int err;
1815 
1816 	preempt_disable();
1817 	err = netif_rx(skb);
1818 	if (local_softirq_pending())
1819 		do_softirq();
1820 	preempt_enable();
1821 
1822 	return err;
1823 }
1824 
1825 EXPORT_SYMBOL(netif_rx_ni);
1826 
1827 static inline struct net_device *skb_bond(struct sk_buff *skb)
1828 {
1829 	struct net_device *dev = skb->dev;
1830 
1831 	if (dev->master) {
1832 		if (skb_bond_should_drop(skb)) {
1833 			kfree_skb(skb);
1834 			return NULL;
1835 		}
1836 		skb->dev = dev->master;
1837 	}
1838 
1839 	return dev;
1840 }
1841 
1842 
1843 static void net_tx_action(struct softirq_action *h)
1844 {
1845 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
1846 
1847 	if (sd->completion_queue) {
1848 		struct sk_buff *clist;
1849 
1850 		local_irq_disable();
1851 		clist = sd->completion_queue;
1852 		sd->completion_queue = NULL;
1853 		local_irq_enable();
1854 
1855 		while (clist) {
1856 			struct sk_buff *skb = clist;
1857 			clist = clist->next;
1858 
1859 			BUG_TRAP(!atomic_read(&skb->users));
1860 			__kfree_skb(skb);
1861 		}
1862 	}
1863 
1864 	if (sd->output_queue) {
1865 		struct net_device *head;
1866 
1867 		local_irq_disable();
1868 		head = sd->output_queue;
1869 		sd->output_queue = NULL;
1870 		local_irq_enable();
1871 
1872 		while (head) {
1873 			struct net_device *dev = head;
1874 			head = head->next_sched;
1875 
1876 			smp_mb__before_clear_bit();
1877 			clear_bit(__LINK_STATE_SCHED, &dev->state);
1878 
1879 			if (spin_trylock(&dev->queue_lock)) {
1880 				qdisc_run(dev);
1881 				spin_unlock(&dev->queue_lock);
1882 			} else {
1883 				netif_schedule(dev);
1884 			}
1885 		}
1886 	}
1887 }
1888 
1889 static inline int deliver_skb(struct sk_buff *skb,
1890 			      struct packet_type *pt_prev,
1891 			      struct net_device *orig_dev)
1892 {
1893 	atomic_inc(&skb->users);
1894 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1895 }
1896 
1897 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
1898 /* These hooks defined here for ATM */
1899 struct net_bridge;
1900 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
1901 						unsigned char *addr);
1902 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
1903 
1904 /*
1905  * If bridge module is loaded call bridging hook.
1906  *  returns NULL if packet was consumed.
1907  */
1908 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
1909 					struct sk_buff *skb) __read_mostly;
1910 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
1911 					    struct packet_type **pt_prev, int *ret,
1912 					    struct net_device *orig_dev)
1913 {
1914 	struct net_bridge_port *port;
1915 
1916 	if (skb->pkt_type == PACKET_LOOPBACK ||
1917 	    (port = rcu_dereference(skb->dev->br_port)) == NULL)
1918 		return skb;
1919 
1920 	if (*pt_prev) {
1921 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
1922 		*pt_prev = NULL;
1923 	}
1924 
1925 	return br_handle_frame_hook(port, skb);
1926 }
1927 #else
1928 #define handle_bridge(skb, pt_prev, ret, orig_dev)	(skb)
1929 #endif
1930 
1931 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
1932 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
1933 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
1934 
1935 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
1936 					     struct packet_type **pt_prev,
1937 					     int *ret,
1938 					     struct net_device *orig_dev)
1939 {
1940 	if (skb->dev->macvlan_port == NULL)
1941 		return skb;
1942 
1943 	if (*pt_prev) {
1944 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
1945 		*pt_prev = NULL;
1946 	}
1947 	return macvlan_handle_frame_hook(skb);
1948 }
1949 #else
1950 #define handle_macvlan(skb, pt_prev, ret, orig_dev)	(skb)
1951 #endif
1952 
1953 #ifdef CONFIG_NET_CLS_ACT
1954 /* TODO: Maybe we should just force sch_ingress to be compiled in
1955  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
1956  * a compare and 2 stores extra right now if we dont have it on
1957  * but have CONFIG_NET_CLS_ACT
1958  * NOTE: This doesnt stop any functionality; if you dont have
1959  * the ingress scheduler, you just cant add policies on ingress.
1960  *
1961  */
1962 static int ing_filter(struct sk_buff *skb)
1963 {
1964 	struct Qdisc *q;
1965 	struct net_device *dev = skb->dev;
1966 	int result = TC_ACT_OK;
1967 	u32 ttl = G_TC_RTTL(skb->tc_verd);
1968 
1969 	if (MAX_RED_LOOP < ttl++) {
1970 		printk(KERN_WARNING
1971 		       "Redir loop detected Dropping packet (%d->%d)\n",
1972 		       skb->iif, dev->ifindex);
1973 		return TC_ACT_SHOT;
1974 	}
1975 
1976 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
1977 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
1978 
1979 	spin_lock(&dev->ingress_lock);
1980 	if ((q = dev->qdisc_ingress) != NULL)
1981 		result = q->enqueue(skb, q);
1982 	spin_unlock(&dev->ingress_lock);
1983 
1984 	return result;
1985 }
1986 
1987 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
1988 					 struct packet_type **pt_prev,
1989 					 int *ret, struct net_device *orig_dev)
1990 {
1991 	if (!skb->dev->qdisc_ingress)
1992 		goto out;
1993 
1994 	if (*pt_prev) {
1995 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
1996 		*pt_prev = NULL;
1997 	} else {
1998 		/* Huh? Why does turning on AF_PACKET affect this? */
1999 		skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2000 	}
2001 
2002 	switch (ing_filter(skb)) {
2003 	case TC_ACT_SHOT:
2004 	case TC_ACT_STOLEN:
2005 		kfree_skb(skb);
2006 		return NULL;
2007 	}
2008 
2009 out:
2010 	skb->tc_verd = 0;
2011 	return skb;
2012 }
2013 #endif
2014 
2015 /**
2016  *	netif_receive_skb - process receive buffer from network
2017  *	@skb: buffer to process
2018  *
2019  *	netif_receive_skb() is the main receive data processing function.
2020  *	It always succeeds. The buffer may be dropped during processing
2021  *	for congestion control or by the protocol layers.
2022  *
2023  *	This function may only be called from softirq context and interrupts
2024  *	should be enabled.
2025  *
2026  *	Return values (usually ignored):
2027  *	NET_RX_SUCCESS: no congestion
2028  *	NET_RX_DROP: packet was dropped
2029  */
2030 int netif_receive_skb(struct sk_buff *skb)
2031 {
2032 	struct packet_type *ptype, *pt_prev;
2033 	struct net_device *orig_dev;
2034 	int ret = NET_RX_DROP;
2035 	__be16 type;
2036 
2037 	/* if we've gotten here through NAPI, check netpoll */
2038 	if (netpoll_receive_skb(skb))
2039 		return NET_RX_DROP;
2040 
2041 	if (!skb->tstamp.tv64)
2042 		net_timestamp(skb);
2043 
2044 	if (!skb->iif)
2045 		skb->iif = skb->dev->ifindex;
2046 
2047 	orig_dev = skb_bond(skb);
2048 
2049 	if (!orig_dev)
2050 		return NET_RX_DROP;
2051 
2052 	__get_cpu_var(netdev_rx_stat).total++;
2053 
2054 	skb_reset_network_header(skb);
2055 	skb_reset_transport_header(skb);
2056 	skb->mac_len = skb->network_header - skb->mac_header;
2057 
2058 	pt_prev = NULL;
2059 
2060 	rcu_read_lock();
2061 
2062 #ifdef CONFIG_NET_CLS_ACT
2063 	if (skb->tc_verd & TC_NCLS) {
2064 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2065 		goto ncls;
2066 	}
2067 #endif
2068 
2069 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
2070 		if (!ptype->dev || ptype->dev == skb->dev) {
2071 			if (pt_prev)
2072 				ret = deliver_skb(skb, pt_prev, orig_dev);
2073 			pt_prev = ptype;
2074 		}
2075 	}
2076 
2077 #ifdef CONFIG_NET_CLS_ACT
2078 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2079 	if (!skb)
2080 		goto out;
2081 ncls:
2082 #endif
2083 
2084 	skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2085 	if (!skb)
2086 		goto out;
2087 	skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2088 	if (!skb)
2089 		goto out;
2090 
2091 	type = skb->protocol;
2092 	list_for_each_entry_rcu(ptype,
2093 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2094 		if (ptype->type == type &&
2095 		    (!ptype->dev || ptype->dev == skb->dev)) {
2096 			if (pt_prev)
2097 				ret = deliver_skb(skb, pt_prev, orig_dev);
2098 			pt_prev = ptype;
2099 		}
2100 	}
2101 
2102 	if (pt_prev) {
2103 		ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2104 	} else {
2105 		kfree_skb(skb);
2106 		/* Jamal, now you will not able to escape explaining
2107 		 * me how you were going to use this. :-)
2108 		 */
2109 		ret = NET_RX_DROP;
2110 	}
2111 
2112 out:
2113 	rcu_read_unlock();
2114 	return ret;
2115 }
2116 
2117 static int process_backlog(struct napi_struct *napi, int quota)
2118 {
2119 	int work = 0;
2120 	struct softnet_data *queue = &__get_cpu_var(softnet_data);
2121 	unsigned long start_time = jiffies;
2122 
2123 	napi->weight = weight_p;
2124 	do {
2125 		struct sk_buff *skb;
2126 		struct net_device *dev;
2127 
2128 		local_irq_disable();
2129 		skb = __skb_dequeue(&queue->input_pkt_queue);
2130 		if (!skb) {
2131 			__napi_complete(napi);
2132 			local_irq_enable();
2133 			break;
2134 		}
2135 
2136 		local_irq_enable();
2137 
2138 		dev = skb->dev;
2139 
2140 		netif_receive_skb(skb);
2141 
2142 		dev_put(dev);
2143 	} while (++work < quota && jiffies == start_time);
2144 
2145 	return work;
2146 }
2147 
2148 /**
2149  * __napi_schedule - schedule for receive
2150  * @n: entry to schedule
2151  *
2152  * The entry's receive function will be scheduled to run
2153  */
2154 void __napi_schedule(struct napi_struct *n)
2155 {
2156 	unsigned long flags;
2157 
2158 	local_irq_save(flags);
2159 	list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2160 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2161 	local_irq_restore(flags);
2162 }
2163 EXPORT_SYMBOL(__napi_schedule);
2164 
2165 
2166 static void net_rx_action(struct softirq_action *h)
2167 {
2168 	struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2169 	unsigned long start_time = jiffies;
2170 	int budget = netdev_budget;
2171 	void *have;
2172 
2173 	local_irq_disable();
2174 
2175 	while (!list_empty(list)) {
2176 		struct napi_struct *n;
2177 		int work, weight;
2178 
2179 		/* If softirq window is exhuasted then punt.
2180 		 *
2181 		 * Note that this is a slight policy change from the
2182 		 * previous NAPI code, which would allow up to 2
2183 		 * jiffies to pass before breaking out.  The test
2184 		 * used to be "jiffies - start_time > 1".
2185 		 */
2186 		if (unlikely(budget <= 0 || jiffies != start_time))
2187 			goto softnet_break;
2188 
2189 		local_irq_enable();
2190 
2191 		/* Even though interrupts have been re-enabled, this
2192 		 * access is safe because interrupts can only add new
2193 		 * entries to the tail of this list, and only ->poll()
2194 		 * calls can remove this head entry from the list.
2195 		 */
2196 		n = list_entry(list->next, struct napi_struct, poll_list);
2197 
2198 		have = netpoll_poll_lock(n);
2199 
2200 		weight = n->weight;
2201 
2202 		/* This NAPI_STATE_SCHED test is for avoiding a race
2203 		 * with netpoll's poll_napi().  Only the entity which
2204 		 * obtains the lock and sees NAPI_STATE_SCHED set will
2205 		 * actually make the ->poll() call.  Therefore we avoid
2206 		 * accidently calling ->poll() when NAPI is not scheduled.
2207 		 */
2208 		work = 0;
2209 		if (test_bit(NAPI_STATE_SCHED, &n->state))
2210 			work = n->poll(n, weight);
2211 
2212 		WARN_ON_ONCE(work > weight);
2213 
2214 		budget -= work;
2215 
2216 		local_irq_disable();
2217 
2218 		/* Drivers must not modify the NAPI state if they
2219 		 * consume the entire weight.  In such cases this code
2220 		 * still "owns" the NAPI instance and therefore can
2221 		 * move the instance around on the list at-will.
2222 		 */
2223 		if (unlikely(work == weight)) {
2224 			if (unlikely(napi_disable_pending(n)))
2225 				__napi_complete(n);
2226 			else
2227 				list_move_tail(&n->poll_list, list);
2228 		}
2229 
2230 		netpoll_poll_unlock(have);
2231 	}
2232 out:
2233 	local_irq_enable();
2234 
2235 #ifdef CONFIG_NET_DMA
2236 	/*
2237 	 * There may not be any more sk_buffs coming right now, so push
2238 	 * any pending DMA copies to hardware
2239 	 */
2240 	if (!cpus_empty(net_dma.channel_mask)) {
2241 		int chan_idx;
2242 		for_each_cpu_mask(chan_idx, net_dma.channel_mask) {
2243 			struct dma_chan *chan = net_dma.channels[chan_idx];
2244 			if (chan)
2245 				dma_async_memcpy_issue_pending(chan);
2246 		}
2247 	}
2248 #endif
2249 
2250 	return;
2251 
2252 softnet_break:
2253 	__get_cpu_var(netdev_rx_stat).time_squeeze++;
2254 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2255 	goto out;
2256 }
2257 
2258 static gifconf_func_t * gifconf_list [NPROTO];
2259 
2260 /**
2261  *	register_gifconf	-	register a SIOCGIF handler
2262  *	@family: Address family
2263  *	@gifconf: Function handler
2264  *
2265  *	Register protocol dependent address dumping routines. The handler
2266  *	that is passed must not be freed or reused until it has been replaced
2267  *	by another handler.
2268  */
2269 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2270 {
2271 	if (family >= NPROTO)
2272 		return -EINVAL;
2273 	gifconf_list[family] = gifconf;
2274 	return 0;
2275 }
2276 
2277 
2278 /*
2279  *	Map an interface index to its name (SIOCGIFNAME)
2280  */
2281 
2282 /*
2283  *	We need this ioctl for efficient implementation of the
2284  *	if_indextoname() function required by the IPv6 API.  Without
2285  *	it, we would have to search all the interfaces to find a
2286  *	match.  --pb
2287  */
2288 
2289 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2290 {
2291 	struct net_device *dev;
2292 	struct ifreq ifr;
2293 
2294 	/*
2295 	 *	Fetch the caller's info block.
2296 	 */
2297 
2298 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2299 		return -EFAULT;
2300 
2301 	read_lock(&dev_base_lock);
2302 	dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2303 	if (!dev) {
2304 		read_unlock(&dev_base_lock);
2305 		return -ENODEV;
2306 	}
2307 
2308 	strcpy(ifr.ifr_name, dev->name);
2309 	read_unlock(&dev_base_lock);
2310 
2311 	if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2312 		return -EFAULT;
2313 	return 0;
2314 }
2315 
2316 /*
2317  *	Perform a SIOCGIFCONF call. This structure will change
2318  *	size eventually, and there is nothing I can do about it.
2319  *	Thus we will need a 'compatibility mode'.
2320  */
2321 
2322 static int dev_ifconf(struct net *net, char __user *arg)
2323 {
2324 	struct ifconf ifc;
2325 	struct net_device *dev;
2326 	char __user *pos;
2327 	int len;
2328 	int total;
2329 	int i;
2330 
2331 	/*
2332 	 *	Fetch the caller's info block.
2333 	 */
2334 
2335 	if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2336 		return -EFAULT;
2337 
2338 	pos = ifc.ifc_buf;
2339 	len = ifc.ifc_len;
2340 
2341 	/*
2342 	 *	Loop over the interfaces, and write an info block for each.
2343 	 */
2344 
2345 	total = 0;
2346 	for_each_netdev(net, dev) {
2347 		for (i = 0; i < NPROTO; i++) {
2348 			if (gifconf_list[i]) {
2349 				int done;
2350 				if (!pos)
2351 					done = gifconf_list[i](dev, NULL, 0);
2352 				else
2353 					done = gifconf_list[i](dev, pos + total,
2354 							       len - total);
2355 				if (done < 0)
2356 					return -EFAULT;
2357 				total += done;
2358 			}
2359 		}
2360 	}
2361 
2362 	/*
2363 	 *	All done.  Write the updated control block back to the caller.
2364 	 */
2365 	ifc.ifc_len = total;
2366 
2367 	/*
2368 	 * 	Both BSD and Solaris return 0 here, so we do too.
2369 	 */
2370 	return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2371 }
2372 
2373 #ifdef CONFIG_PROC_FS
2374 /*
2375  *	This is invoked by the /proc filesystem handler to display a device
2376  *	in detail.
2377  */
2378 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2379 	__acquires(dev_base_lock)
2380 {
2381 	struct net *net = seq_file_net(seq);
2382 	loff_t off;
2383 	struct net_device *dev;
2384 
2385 	read_lock(&dev_base_lock);
2386 	if (!*pos)
2387 		return SEQ_START_TOKEN;
2388 
2389 	off = 1;
2390 	for_each_netdev(net, dev)
2391 		if (off++ == *pos)
2392 			return dev;
2393 
2394 	return NULL;
2395 }
2396 
2397 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2398 {
2399 	struct net *net = seq_file_net(seq);
2400 	++*pos;
2401 	return v == SEQ_START_TOKEN ?
2402 		first_net_device(net) : next_net_device((struct net_device *)v);
2403 }
2404 
2405 void dev_seq_stop(struct seq_file *seq, void *v)
2406 	__releases(dev_base_lock)
2407 {
2408 	read_unlock(&dev_base_lock);
2409 }
2410 
2411 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2412 {
2413 	struct net_device_stats *stats = dev->get_stats(dev);
2414 
2415 	seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2416 		   "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2417 		   dev->name, stats->rx_bytes, stats->rx_packets,
2418 		   stats->rx_errors,
2419 		   stats->rx_dropped + stats->rx_missed_errors,
2420 		   stats->rx_fifo_errors,
2421 		   stats->rx_length_errors + stats->rx_over_errors +
2422 		    stats->rx_crc_errors + stats->rx_frame_errors,
2423 		   stats->rx_compressed, stats->multicast,
2424 		   stats->tx_bytes, stats->tx_packets,
2425 		   stats->tx_errors, stats->tx_dropped,
2426 		   stats->tx_fifo_errors, stats->collisions,
2427 		   stats->tx_carrier_errors +
2428 		    stats->tx_aborted_errors +
2429 		    stats->tx_window_errors +
2430 		    stats->tx_heartbeat_errors,
2431 		   stats->tx_compressed);
2432 }
2433 
2434 /*
2435  *	Called from the PROCfs module. This now uses the new arbitrary sized
2436  *	/proc/net interface to create /proc/net/dev
2437  */
2438 static int dev_seq_show(struct seq_file *seq, void *v)
2439 {
2440 	if (v == SEQ_START_TOKEN)
2441 		seq_puts(seq, "Inter-|   Receive                            "
2442 			      "                    |  Transmit\n"
2443 			      " face |bytes    packets errs drop fifo frame "
2444 			      "compressed multicast|bytes    packets errs "
2445 			      "drop fifo colls carrier compressed\n");
2446 	else
2447 		dev_seq_printf_stats(seq, v);
2448 	return 0;
2449 }
2450 
2451 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2452 {
2453 	struct netif_rx_stats *rc = NULL;
2454 
2455 	while (*pos < nr_cpu_ids)
2456 		if (cpu_online(*pos)) {
2457 			rc = &per_cpu(netdev_rx_stat, *pos);
2458 			break;
2459 		} else
2460 			++*pos;
2461 	return rc;
2462 }
2463 
2464 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2465 {
2466 	return softnet_get_online(pos);
2467 }
2468 
2469 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2470 {
2471 	++*pos;
2472 	return softnet_get_online(pos);
2473 }
2474 
2475 static void softnet_seq_stop(struct seq_file *seq, void *v)
2476 {
2477 }
2478 
2479 static int softnet_seq_show(struct seq_file *seq, void *v)
2480 {
2481 	struct netif_rx_stats *s = v;
2482 
2483 	seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
2484 		   s->total, s->dropped, s->time_squeeze, 0,
2485 		   0, 0, 0, 0, /* was fastroute */
2486 		   s->cpu_collision );
2487 	return 0;
2488 }
2489 
2490 static const struct seq_operations dev_seq_ops = {
2491 	.start = dev_seq_start,
2492 	.next  = dev_seq_next,
2493 	.stop  = dev_seq_stop,
2494 	.show  = dev_seq_show,
2495 };
2496 
2497 static int dev_seq_open(struct inode *inode, struct file *file)
2498 {
2499 	return seq_open_net(inode, file, &dev_seq_ops,
2500 			    sizeof(struct seq_net_private));
2501 }
2502 
2503 static const struct file_operations dev_seq_fops = {
2504 	.owner	 = THIS_MODULE,
2505 	.open    = dev_seq_open,
2506 	.read    = seq_read,
2507 	.llseek  = seq_lseek,
2508 	.release = seq_release_net,
2509 };
2510 
2511 static const struct seq_operations softnet_seq_ops = {
2512 	.start = softnet_seq_start,
2513 	.next  = softnet_seq_next,
2514 	.stop  = softnet_seq_stop,
2515 	.show  = softnet_seq_show,
2516 };
2517 
2518 static int softnet_seq_open(struct inode *inode, struct file *file)
2519 {
2520 	return seq_open(file, &softnet_seq_ops);
2521 }
2522 
2523 static const struct file_operations softnet_seq_fops = {
2524 	.owner	 = THIS_MODULE,
2525 	.open    = softnet_seq_open,
2526 	.read    = seq_read,
2527 	.llseek  = seq_lseek,
2528 	.release = seq_release,
2529 };
2530 
2531 static void *ptype_get_idx(loff_t pos)
2532 {
2533 	struct packet_type *pt = NULL;
2534 	loff_t i = 0;
2535 	int t;
2536 
2537 	list_for_each_entry_rcu(pt, &ptype_all, list) {
2538 		if (i == pos)
2539 			return pt;
2540 		++i;
2541 	}
2542 
2543 	for (t = 0; t < PTYPE_HASH_SIZE; t++) {
2544 		list_for_each_entry_rcu(pt, &ptype_base[t], list) {
2545 			if (i == pos)
2546 				return pt;
2547 			++i;
2548 		}
2549 	}
2550 	return NULL;
2551 }
2552 
2553 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
2554 	__acquires(RCU)
2555 {
2556 	rcu_read_lock();
2557 	return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
2558 }
2559 
2560 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2561 {
2562 	struct packet_type *pt;
2563 	struct list_head *nxt;
2564 	int hash;
2565 
2566 	++*pos;
2567 	if (v == SEQ_START_TOKEN)
2568 		return ptype_get_idx(0);
2569 
2570 	pt = v;
2571 	nxt = pt->list.next;
2572 	if (pt->type == htons(ETH_P_ALL)) {
2573 		if (nxt != &ptype_all)
2574 			goto found;
2575 		hash = 0;
2576 		nxt = ptype_base[0].next;
2577 	} else
2578 		hash = ntohs(pt->type) & PTYPE_HASH_MASK;
2579 
2580 	while (nxt == &ptype_base[hash]) {
2581 		if (++hash >= PTYPE_HASH_SIZE)
2582 			return NULL;
2583 		nxt = ptype_base[hash].next;
2584 	}
2585 found:
2586 	return list_entry(nxt, struct packet_type, list);
2587 }
2588 
2589 static void ptype_seq_stop(struct seq_file *seq, void *v)
2590 	__releases(RCU)
2591 {
2592 	rcu_read_unlock();
2593 }
2594 
2595 static void ptype_seq_decode(struct seq_file *seq, void *sym)
2596 {
2597 #ifdef CONFIG_KALLSYMS
2598 	unsigned long offset = 0, symsize;
2599 	const char *symname;
2600 	char *modname;
2601 	char namebuf[128];
2602 
2603 	symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset,
2604 				  &modname, namebuf);
2605 
2606 	if (symname) {
2607 		char *delim = ":";
2608 
2609 		if (!modname)
2610 			modname = delim = "";
2611 		seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim,
2612 			   symname, offset);
2613 		return;
2614 	}
2615 #endif
2616 
2617 	seq_printf(seq, "[%p]", sym);
2618 }
2619 
2620 static int ptype_seq_show(struct seq_file *seq, void *v)
2621 {
2622 	struct packet_type *pt = v;
2623 
2624 	if (v == SEQ_START_TOKEN)
2625 		seq_puts(seq, "Type Device      Function\n");
2626 	else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
2627 		if (pt->type == htons(ETH_P_ALL))
2628 			seq_puts(seq, "ALL ");
2629 		else
2630 			seq_printf(seq, "%04x", ntohs(pt->type));
2631 
2632 		seq_printf(seq, " %-8s ",
2633 			   pt->dev ? pt->dev->name : "");
2634 		ptype_seq_decode(seq,  pt->func);
2635 		seq_putc(seq, '\n');
2636 	}
2637 
2638 	return 0;
2639 }
2640 
2641 static const struct seq_operations ptype_seq_ops = {
2642 	.start = ptype_seq_start,
2643 	.next  = ptype_seq_next,
2644 	.stop  = ptype_seq_stop,
2645 	.show  = ptype_seq_show,
2646 };
2647 
2648 static int ptype_seq_open(struct inode *inode, struct file *file)
2649 {
2650 	return seq_open_net(inode, file, &ptype_seq_ops,
2651 			sizeof(struct seq_net_private));
2652 }
2653 
2654 static const struct file_operations ptype_seq_fops = {
2655 	.owner	 = THIS_MODULE,
2656 	.open    = ptype_seq_open,
2657 	.read    = seq_read,
2658 	.llseek  = seq_lseek,
2659 	.release = seq_release_net,
2660 };
2661 
2662 
2663 static int __net_init dev_proc_net_init(struct net *net)
2664 {
2665 	int rc = -ENOMEM;
2666 
2667 	if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
2668 		goto out;
2669 	if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
2670 		goto out_dev;
2671 	if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
2672 		goto out_softnet;
2673 
2674 	if (wext_proc_init(net))
2675 		goto out_ptype;
2676 	rc = 0;
2677 out:
2678 	return rc;
2679 out_ptype:
2680 	proc_net_remove(net, "ptype");
2681 out_softnet:
2682 	proc_net_remove(net, "softnet_stat");
2683 out_dev:
2684 	proc_net_remove(net, "dev");
2685 	goto out;
2686 }
2687 
2688 static void __net_exit dev_proc_net_exit(struct net *net)
2689 {
2690 	wext_proc_exit(net);
2691 
2692 	proc_net_remove(net, "ptype");
2693 	proc_net_remove(net, "softnet_stat");
2694 	proc_net_remove(net, "dev");
2695 }
2696 
2697 static struct pernet_operations __net_initdata dev_proc_ops = {
2698 	.init = dev_proc_net_init,
2699 	.exit = dev_proc_net_exit,
2700 };
2701 
2702 static int __init dev_proc_init(void)
2703 {
2704 	return register_pernet_subsys(&dev_proc_ops);
2705 }
2706 #else
2707 #define dev_proc_init() 0
2708 #endif	/* CONFIG_PROC_FS */
2709 
2710 
2711 /**
2712  *	netdev_set_master	-	set up master/slave pair
2713  *	@slave: slave device
2714  *	@master: new master device
2715  *
2716  *	Changes the master device of the slave. Pass %NULL to break the
2717  *	bonding. The caller must hold the RTNL semaphore. On a failure
2718  *	a negative errno code is returned. On success the reference counts
2719  *	are adjusted, %RTM_NEWLINK is sent to the routing socket and the
2720  *	function returns zero.
2721  */
2722 int netdev_set_master(struct net_device *slave, struct net_device *master)
2723 {
2724 	struct net_device *old = slave->master;
2725 
2726 	ASSERT_RTNL();
2727 
2728 	if (master) {
2729 		if (old)
2730 			return -EBUSY;
2731 		dev_hold(master);
2732 	}
2733 
2734 	slave->master = master;
2735 
2736 	synchronize_net();
2737 
2738 	if (old)
2739 		dev_put(old);
2740 
2741 	if (master)
2742 		slave->flags |= IFF_SLAVE;
2743 	else
2744 		slave->flags &= ~IFF_SLAVE;
2745 
2746 	rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
2747 	return 0;
2748 }
2749 
2750 static void __dev_set_promiscuity(struct net_device *dev, int inc)
2751 {
2752 	unsigned short old_flags = dev->flags;
2753 
2754 	ASSERT_RTNL();
2755 
2756 	if ((dev->promiscuity += inc) == 0)
2757 		dev->flags &= ~IFF_PROMISC;
2758 	else
2759 		dev->flags |= IFF_PROMISC;
2760 	if (dev->flags != old_flags) {
2761 		printk(KERN_INFO "device %s %s promiscuous mode\n",
2762 		       dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
2763 							       "left");
2764 		if (audit_enabled)
2765 			audit_log(current->audit_context, GFP_ATOMIC,
2766 				AUDIT_ANOM_PROMISCUOUS,
2767 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
2768 				dev->name, (dev->flags & IFF_PROMISC),
2769 				(old_flags & IFF_PROMISC),
2770 				audit_get_loginuid(current),
2771 				current->uid, current->gid,
2772 				audit_get_sessionid(current));
2773 
2774 		if (dev->change_rx_flags)
2775 			dev->change_rx_flags(dev, IFF_PROMISC);
2776 	}
2777 }
2778 
2779 /**
2780  *	dev_set_promiscuity	- update promiscuity count on a device
2781  *	@dev: device
2782  *	@inc: modifier
2783  *
2784  *	Add or remove promiscuity from a device. While the count in the device
2785  *	remains above zero the interface remains promiscuous. Once it hits zero
2786  *	the device reverts back to normal filtering operation. A negative inc
2787  *	value is used to drop promiscuity on the device.
2788  */
2789 void dev_set_promiscuity(struct net_device *dev, int inc)
2790 {
2791 	unsigned short old_flags = dev->flags;
2792 
2793 	__dev_set_promiscuity(dev, inc);
2794 	if (dev->flags != old_flags)
2795 		dev_set_rx_mode(dev);
2796 }
2797 
2798 /**
2799  *	dev_set_allmulti	- update allmulti count on a device
2800  *	@dev: device
2801  *	@inc: modifier
2802  *
2803  *	Add or remove reception of all multicast frames to a device. While the
2804  *	count in the device remains above zero the interface remains listening
2805  *	to all interfaces. Once it hits zero the device reverts back to normal
2806  *	filtering operation. A negative @inc value is used to drop the counter
2807  *	when releasing a resource needing all multicasts.
2808  */
2809 
2810 void dev_set_allmulti(struct net_device *dev, int inc)
2811 {
2812 	unsigned short old_flags = dev->flags;
2813 
2814 	ASSERT_RTNL();
2815 
2816 	dev->flags |= IFF_ALLMULTI;
2817 	if ((dev->allmulti += inc) == 0)
2818 		dev->flags &= ~IFF_ALLMULTI;
2819 	if (dev->flags ^ old_flags) {
2820 		if (dev->change_rx_flags)
2821 			dev->change_rx_flags(dev, IFF_ALLMULTI);
2822 		dev_set_rx_mode(dev);
2823 	}
2824 }
2825 
2826 /*
2827  *	Upload unicast and multicast address lists to device and
2828  *	configure RX filtering. When the device doesn't support unicast
2829  *	filtering it is put in promiscuous mode while unicast addresses
2830  *	are present.
2831  */
2832 void __dev_set_rx_mode(struct net_device *dev)
2833 {
2834 	/* dev_open will call this function so the list will stay sane. */
2835 	if (!(dev->flags&IFF_UP))
2836 		return;
2837 
2838 	if (!netif_device_present(dev))
2839 		return;
2840 
2841 	if (dev->set_rx_mode)
2842 		dev->set_rx_mode(dev);
2843 	else {
2844 		/* Unicast addresses changes may only happen under the rtnl,
2845 		 * therefore calling __dev_set_promiscuity here is safe.
2846 		 */
2847 		if (dev->uc_count > 0 && !dev->uc_promisc) {
2848 			__dev_set_promiscuity(dev, 1);
2849 			dev->uc_promisc = 1;
2850 		} else if (dev->uc_count == 0 && dev->uc_promisc) {
2851 			__dev_set_promiscuity(dev, -1);
2852 			dev->uc_promisc = 0;
2853 		}
2854 
2855 		if (dev->set_multicast_list)
2856 			dev->set_multicast_list(dev);
2857 	}
2858 }
2859 
2860 void dev_set_rx_mode(struct net_device *dev)
2861 {
2862 	netif_tx_lock_bh(dev);
2863 	__dev_set_rx_mode(dev);
2864 	netif_tx_unlock_bh(dev);
2865 }
2866 
2867 int __dev_addr_delete(struct dev_addr_list **list, int *count,
2868 		      void *addr, int alen, int glbl)
2869 {
2870 	struct dev_addr_list *da;
2871 
2872 	for (; (da = *list) != NULL; list = &da->next) {
2873 		if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
2874 		    alen == da->da_addrlen) {
2875 			if (glbl) {
2876 				int old_glbl = da->da_gusers;
2877 				da->da_gusers = 0;
2878 				if (old_glbl == 0)
2879 					break;
2880 			}
2881 			if (--da->da_users)
2882 				return 0;
2883 
2884 			*list = da->next;
2885 			kfree(da);
2886 			(*count)--;
2887 			return 0;
2888 		}
2889 	}
2890 	return -ENOENT;
2891 }
2892 
2893 int __dev_addr_add(struct dev_addr_list **list, int *count,
2894 		   void *addr, int alen, int glbl)
2895 {
2896 	struct dev_addr_list *da;
2897 
2898 	for (da = *list; da != NULL; da = da->next) {
2899 		if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
2900 		    da->da_addrlen == alen) {
2901 			if (glbl) {
2902 				int old_glbl = da->da_gusers;
2903 				da->da_gusers = 1;
2904 				if (old_glbl)
2905 					return 0;
2906 			}
2907 			da->da_users++;
2908 			return 0;
2909 		}
2910 	}
2911 
2912 	da = kzalloc(sizeof(*da), GFP_ATOMIC);
2913 	if (da == NULL)
2914 		return -ENOMEM;
2915 	memcpy(da->da_addr, addr, alen);
2916 	da->da_addrlen = alen;
2917 	da->da_users = 1;
2918 	da->da_gusers = glbl ? 1 : 0;
2919 	da->next = *list;
2920 	*list = da;
2921 	(*count)++;
2922 	return 0;
2923 }
2924 
2925 /**
2926  *	dev_unicast_delete	- Release secondary unicast address.
2927  *	@dev: device
2928  *	@addr: address to delete
2929  *	@alen: length of @addr
2930  *
2931  *	Release reference to a secondary unicast address and remove it
2932  *	from the device if the reference count drops to zero.
2933  *
2934  * 	The caller must hold the rtnl_mutex.
2935  */
2936 int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
2937 {
2938 	int err;
2939 
2940 	ASSERT_RTNL();
2941 
2942 	netif_tx_lock_bh(dev);
2943 	err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
2944 	if (!err)
2945 		__dev_set_rx_mode(dev);
2946 	netif_tx_unlock_bh(dev);
2947 	return err;
2948 }
2949 EXPORT_SYMBOL(dev_unicast_delete);
2950 
2951 /**
2952  *	dev_unicast_add		- add a secondary unicast address
2953  *	@dev: device
2954  *	@addr: address to delete
2955  *	@alen: length of @addr
2956  *
2957  *	Add a secondary unicast address to the device or increase
2958  *	the reference count if it already exists.
2959  *
2960  *	The caller must hold the rtnl_mutex.
2961  */
2962 int dev_unicast_add(struct net_device *dev, void *addr, int alen)
2963 {
2964 	int err;
2965 
2966 	ASSERT_RTNL();
2967 
2968 	netif_tx_lock_bh(dev);
2969 	err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
2970 	if (!err)
2971 		__dev_set_rx_mode(dev);
2972 	netif_tx_unlock_bh(dev);
2973 	return err;
2974 }
2975 EXPORT_SYMBOL(dev_unicast_add);
2976 
2977 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
2978 		    struct dev_addr_list **from, int *from_count)
2979 {
2980 	struct dev_addr_list *da, *next;
2981 	int err = 0;
2982 
2983 	da = *from;
2984 	while (da != NULL) {
2985 		next = da->next;
2986 		if (!da->da_synced) {
2987 			err = __dev_addr_add(to, to_count,
2988 					     da->da_addr, da->da_addrlen, 0);
2989 			if (err < 0)
2990 				break;
2991 			da->da_synced = 1;
2992 			da->da_users++;
2993 		} else if (da->da_users == 1) {
2994 			__dev_addr_delete(to, to_count,
2995 					  da->da_addr, da->da_addrlen, 0);
2996 			__dev_addr_delete(from, from_count,
2997 					  da->da_addr, da->da_addrlen, 0);
2998 		}
2999 		da = next;
3000 	}
3001 	return err;
3002 }
3003 
3004 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3005 		       struct dev_addr_list **from, int *from_count)
3006 {
3007 	struct dev_addr_list *da, *next;
3008 
3009 	da = *from;
3010 	while (da != NULL) {
3011 		next = da->next;
3012 		if (da->da_synced) {
3013 			__dev_addr_delete(to, to_count,
3014 					  da->da_addr, da->da_addrlen, 0);
3015 			da->da_synced = 0;
3016 			__dev_addr_delete(from, from_count,
3017 					  da->da_addr, da->da_addrlen, 0);
3018 		}
3019 		da = next;
3020 	}
3021 }
3022 
3023 /**
3024  *	dev_unicast_sync - Synchronize device's unicast list to another device
3025  *	@to: destination device
3026  *	@from: source device
3027  *
3028  *	Add newly added addresses to the destination device and release
3029  *	addresses that have no users left. The source device must be
3030  *	locked by netif_tx_lock_bh.
3031  *
3032  *	This function is intended to be called from the dev->set_rx_mode
3033  *	function of layered software devices.
3034  */
3035 int dev_unicast_sync(struct net_device *to, struct net_device *from)
3036 {
3037 	int err = 0;
3038 
3039 	netif_tx_lock_bh(to);
3040 	err = __dev_addr_sync(&to->uc_list, &to->uc_count,
3041 			      &from->uc_list, &from->uc_count);
3042 	if (!err)
3043 		__dev_set_rx_mode(to);
3044 	netif_tx_unlock_bh(to);
3045 	return err;
3046 }
3047 EXPORT_SYMBOL(dev_unicast_sync);
3048 
3049 /**
3050  *	dev_unicast_unsync - Remove synchronized addresses from the destination device
3051  *	@to: destination device
3052  *	@from: source device
3053  *
3054  *	Remove all addresses that were added to the destination device by
3055  *	dev_unicast_sync(). This function is intended to be called from the
3056  *	dev->stop function of layered software devices.
3057  */
3058 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
3059 {
3060 	netif_tx_lock_bh(from);
3061 	netif_tx_lock_bh(to);
3062 
3063 	__dev_addr_unsync(&to->uc_list, &to->uc_count,
3064 			  &from->uc_list, &from->uc_count);
3065 	__dev_set_rx_mode(to);
3066 
3067 	netif_tx_unlock_bh(to);
3068 	netif_tx_unlock_bh(from);
3069 }
3070 EXPORT_SYMBOL(dev_unicast_unsync);
3071 
3072 static void __dev_addr_discard(struct dev_addr_list **list)
3073 {
3074 	struct dev_addr_list *tmp;
3075 
3076 	while (*list != NULL) {
3077 		tmp = *list;
3078 		*list = tmp->next;
3079 		if (tmp->da_users > tmp->da_gusers)
3080 			printk("__dev_addr_discard: address leakage! "
3081 			       "da_users=%d\n", tmp->da_users);
3082 		kfree(tmp);
3083 	}
3084 }
3085 
3086 static void dev_addr_discard(struct net_device *dev)
3087 {
3088 	netif_tx_lock_bh(dev);
3089 
3090 	__dev_addr_discard(&dev->uc_list);
3091 	dev->uc_count = 0;
3092 
3093 	__dev_addr_discard(&dev->mc_list);
3094 	dev->mc_count = 0;
3095 
3096 	netif_tx_unlock_bh(dev);
3097 }
3098 
3099 unsigned dev_get_flags(const struct net_device *dev)
3100 {
3101 	unsigned flags;
3102 
3103 	flags = (dev->flags & ~(IFF_PROMISC |
3104 				IFF_ALLMULTI |
3105 				IFF_RUNNING |
3106 				IFF_LOWER_UP |
3107 				IFF_DORMANT)) |
3108 		(dev->gflags & (IFF_PROMISC |
3109 				IFF_ALLMULTI));
3110 
3111 	if (netif_running(dev)) {
3112 		if (netif_oper_up(dev))
3113 			flags |= IFF_RUNNING;
3114 		if (netif_carrier_ok(dev))
3115 			flags |= IFF_LOWER_UP;
3116 		if (netif_dormant(dev))
3117 			flags |= IFF_DORMANT;
3118 	}
3119 
3120 	return flags;
3121 }
3122 
3123 int dev_change_flags(struct net_device *dev, unsigned flags)
3124 {
3125 	int ret, changes;
3126 	int old_flags = dev->flags;
3127 
3128 	ASSERT_RTNL();
3129 
3130 	/*
3131 	 *	Set the flags on our device.
3132 	 */
3133 
3134 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3135 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3136 			       IFF_AUTOMEDIA)) |
3137 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3138 				    IFF_ALLMULTI));
3139 
3140 	/*
3141 	 *	Load in the correct multicast list now the flags have changed.
3142 	 */
3143 
3144 	if (dev->change_rx_flags && (old_flags ^ flags) & IFF_MULTICAST)
3145 		dev->change_rx_flags(dev, IFF_MULTICAST);
3146 
3147 	dev_set_rx_mode(dev);
3148 
3149 	/*
3150 	 *	Have we downed the interface. We handle IFF_UP ourselves
3151 	 *	according to user attempts to set it, rather than blindly
3152 	 *	setting it.
3153 	 */
3154 
3155 	ret = 0;
3156 	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
3157 		ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3158 
3159 		if (!ret)
3160 			dev_set_rx_mode(dev);
3161 	}
3162 
3163 	if (dev->flags & IFF_UP &&
3164 	    ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3165 					  IFF_VOLATILE)))
3166 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
3167 
3168 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
3169 		int inc = (flags & IFF_PROMISC) ? +1 : -1;
3170 		dev->gflags ^= IFF_PROMISC;
3171 		dev_set_promiscuity(dev, inc);
3172 	}
3173 
3174 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3175 	   is important. Some (broken) drivers set IFF_PROMISC, when
3176 	   IFF_ALLMULTI is requested not asking us and not reporting.
3177 	 */
3178 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3179 		int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3180 		dev->gflags ^= IFF_ALLMULTI;
3181 		dev_set_allmulti(dev, inc);
3182 	}
3183 
3184 	/* Exclude state transition flags, already notified */
3185 	changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3186 	if (changes)
3187 		rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3188 
3189 	return ret;
3190 }
3191 
3192 int dev_set_mtu(struct net_device *dev, int new_mtu)
3193 {
3194 	int err;
3195 
3196 	if (new_mtu == dev->mtu)
3197 		return 0;
3198 
3199 	/*	MTU must be positive.	 */
3200 	if (new_mtu < 0)
3201 		return -EINVAL;
3202 
3203 	if (!netif_device_present(dev))
3204 		return -ENODEV;
3205 
3206 	err = 0;
3207 	if (dev->change_mtu)
3208 		err = dev->change_mtu(dev, new_mtu);
3209 	else
3210 		dev->mtu = new_mtu;
3211 	if (!err && dev->flags & IFF_UP)
3212 		call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
3213 	return err;
3214 }
3215 
3216 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3217 {
3218 	int err;
3219 
3220 	if (!dev->set_mac_address)
3221 		return -EOPNOTSUPP;
3222 	if (sa->sa_family != dev->type)
3223 		return -EINVAL;
3224 	if (!netif_device_present(dev))
3225 		return -ENODEV;
3226 	err = dev->set_mac_address(dev, sa);
3227 	if (!err)
3228 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3229 	return err;
3230 }
3231 
3232 /*
3233  *	Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
3234  */
3235 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
3236 {
3237 	int err;
3238 	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3239 
3240 	if (!dev)
3241 		return -ENODEV;
3242 
3243 	switch (cmd) {
3244 		case SIOCGIFFLAGS:	/* Get interface flags */
3245 			ifr->ifr_flags = dev_get_flags(dev);
3246 			return 0;
3247 
3248 		case SIOCGIFMETRIC:	/* Get the metric on the interface
3249 					   (currently unused) */
3250 			ifr->ifr_metric = 0;
3251 			return 0;
3252 
3253 		case SIOCGIFMTU:	/* Get the MTU of a device */
3254 			ifr->ifr_mtu = dev->mtu;
3255 			return 0;
3256 
3257 		case SIOCGIFHWADDR:
3258 			if (!dev->addr_len)
3259 				memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3260 			else
3261 				memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3262 				       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3263 			ifr->ifr_hwaddr.sa_family = dev->type;
3264 			return 0;
3265 
3266 		case SIOCGIFSLAVE:
3267 			err = -EINVAL;
3268 			break;
3269 
3270 		case SIOCGIFMAP:
3271 			ifr->ifr_map.mem_start = dev->mem_start;
3272 			ifr->ifr_map.mem_end   = dev->mem_end;
3273 			ifr->ifr_map.base_addr = dev->base_addr;
3274 			ifr->ifr_map.irq       = dev->irq;
3275 			ifr->ifr_map.dma       = dev->dma;
3276 			ifr->ifr_map.port      = dev->if_port;
3277 			return 0;
3278 
3279 		case SIOCGIFINDEX:
3280 			ifr->ifr_ifindex = dev->ifindex;
3281 			return 0;
3282 
3283 		case SIOCGIFTXQLEN:
3284 			ifr->ifr_qlen = dev->tx_queue_len;
3285 			return 0;
3286 
3287 		default:
3288 			/* dev_ioctl() should ensure this case
3289 			 * is never reached
3290 			 */
3291 			WARN_ON(1);
3292 			err = -EINVAL;
3293 			break;
3294 
3295 	}
3296 	return err;
3297 }
3298 
3299 /*
3300  *	Perform the SIOCxIFxxx calls, inside rtnl_lock()
3301  */
3302 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3303 {
3304 	int err;
3305 	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3306 
3307 	if (!dev)
3308 		return -ENODEV;
3309 
3310 	switch (cmd) {
3311 		case SIOCSIFFLAGS:	/* Set interface flags */
3312 			return dev_change_flags(dev, ifr->ifr_flags);
3313 
3314 		case SIOCSIFMETRIC:	/* Set the metric on the interface
3315 					   (currently unused) */
3316 			return -EOPNOTSUPP;
3317 
3318 		case SIOCSIFMTU:	/* Set the MTU of a device */
3319 			return dev_set_mtu(dev, ifr->ifr_mtu);
3320 
3321 		case SIOCSIFHWADDR:
3322 			return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3323 
3324 		case SIOCSIFHWBROADCAST:
3325 			if (ifr->ifr_hwaddr.sa_family != dev->type)
3326 				return -EINVAL;
3327 			memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3328 			       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3329 			call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3330 			return 0;
3331 
3332 		case SIOCSIFMAP:
3333 			if (dev->set_config) {
3334 				if (!netif_device_present(dev))
3335 					return -ENODEV;
3336 				return dev->set_config(dev, &ifr->ifr_map);
3337 			}
3338 			return -EOPNOTSUPP;
3339 
3340 		case SIOCADDMULTI:
3341 			if ((!dev->set_multicast_list && !dev->set_rx_mode) ||
3342 			    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3343 				return -EINVAL;
3344 			if (!netif_device_present(dev))
3345 				return -ENODEV;
3346 			return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3347 					  dev->addr_len, 1);
3348 
3349 		case SIOCDELMULTI:
3350 			if ((!dev->set_multicast_list && !dev->set_rx_mode) ||
3351 			    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3352 				return -EINVAL;
3353 			if (!netif_device_present(dev))
3354 				return -ENODEV;
3355 			return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3356 					     dev->addr_len, 1);
3357 
3358 		case SIOCSIFTXQLEN:
3359 			if (ifr->ifr_qlen < 0)
3360 				return -EINVAL;
3361 			dev->tx_queue_len = ifr->ifr_qlen;
3362 			return 0;
3363 
3364 		case SIOCSIFNAME:
3365 			ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3366 			return dev_change_name(dev, ifr->ifr_newname);
3367 
3368 		/*
3369 		 *	Unknown or private ioctl
3370 		 */
3371 
3372 		default:
3373 			if ((cmd >= SIOCDEVPRIVATE &&
3374 			    cmd <= SIOCDEVPRIVATE + 15) ||
3375 			    cmd == SIOCBONDENSLAVE ||
3376 			    cmd == SIOCBONDRELEASE ||
3377 			    cmd == SIOCBONDSETHWADDR ||
3378 			    cmd == SIOCBONDSLAVEINFOQUERY ||
3379 			    cmd == SIOCBONDINFOQUERY ||
3380 			    cmd == SIOCBONDCHANGEACTIVE ||
3381 			    cmd == SIOCGMIIPHY ||
3382 			    cmd == SIOCGMIIREG ||
3383 			    cmd == SIOCSMIIREG ||
3384 			    cmd == SIOCBRADDIF ||
3385 			    cmd == SIOCBRDELIF ||
3386 			    cmd == SIOCWANDEV) {
3387 				err = -EOPNOTSUPP;
3388 				if (dev->do_ioctl) {
3389 					if (netif_device_present(dev))
3390 						err = dev->do_ioctl(dev, ifr,
3391 								    cmd);
3392 					else
3393 						err = -ENODEV;
3394 				}
3395 			} else
3396 				err = -EINVAL;
3397 
3398 	}
3399 	return err;
3400 }
3401 
3402 /*
3403  *	This function handles all "interface"-type I/O control requests. The actual
3404  *	'doing' part of this is dev_ifsioc above.
3405  */
3406 
3407 /**
3408  *	dev_ioctl	-	network device ioctl
3409  *	@net: the applicable net namespace
3410  *	@cmd: command to issue
3411  *	@arg: pointer to a struct ifreq in user space
3412  *
3413  *	Issue ioctl functions to devices. This is normally called by the
3414  *	user space syscall interfaces but can sometimes be useful for
3415  *	other purposes. The return value is the return from the syscall if
3416  *	positive or a negative errno code on error.
3417  */
3418 
3419 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
3420 {
3421 	struct ifreq ifr;
3422 	int ret;
3423 	char *colon;
3424 
3425 	/* One special case: SIOCGIFCONF takes ifconf argument
3426 	   and requires shared lock, because it sleeps writing
3427 	   to user space.
3428 	 */
3429 
3430 	if (cmd == SIOCGIFCONF) {
3431 		rtnl_lock();
3432 		ret = dev_ifconf(net, (char __user *) arg);
3433 		rtnl_unlock();
3434 		return ret;
3435 	}
3436 	if (cmd == SIOCGIFNAME)
3437 		return dev_ifname(net, (struct ifreq __user *)arg);
3438 
3439 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3440 		return -EFAULT;
3441 
3442 	ifr.ifr_name[IFNAMSIZ-1] = 0;
3443 
3444 	colon = strchr(ifr.ifr_name, ':');
3445 	if (colon)
3446 		*colon = 0;
3447 
3448 	/*
3449 	 *	See which interface the caller is talking about.
3450 	 */
3451 
3452 	switch (cmd) {
3453 		/*
3454 		 *	These ioctl calls:
3455 		 *	- can be done by all.
3456 		 *	- atomic and do not require locking.
3457 		 *	- return a value
3458 		 */
3459 		case SIOCGIFFLAGS:
3460 		case SIOCGIFMETRIC:
3461 		case SIOCGIFMTU:
3462 		case SIOCGIFHWADDR:
3463 		case SIOCGIFSLAVE:
3464 		case SIOCGIFMAP:
3465 		case SIOCGIFINDEX:
3466 		case SIOCGIFTXQLEN:
3467 			dev_load(net, ifr.ifr_name);
3468 			read_lock(&dev_base_lock);
3469 			ret = dev_ifsioc_locked(net, &ifr, cmd);
3470 			read_unlock(&dev_base_lock);
3471 			if (!ret) {
3472 				if (colon)
3473 					*colon = ':';
3474 				if (copy_to_user(arg, &ifr,
3475 						 sizeof(struct ifreq)))
3476 					ret = -EFAULT;
3477 			}
3478 			return ret;
3479 
3480 		case SIOCETHTOOL:
3481 			dev_load(net, ifr.ifr_name);
3482 			rtnl_lock();
3483 			ret = dev_ethtool(net, &ifr);
3484 			rtnl_unlock();
3485 			if (!ret) {
3486 				if (colon)
3487 					*colon = ':';
3488 				if (copy_to_user(arg, &ifr,
3489 						 sizeof(struct ifreq)))
3490 					ret = -EFAULT;
3491 			}
3492 			return ret;
3493 
3494 		/*
3495 		 *	These ioctl calls:
3496 		 *	- require superuser power.
3497 		 *	- require strict serialization.
3498 		 *	- return a value
3499 		 */
3500 		case SIOCGMIIPHY:
3501 		case SIOCGMIIREG:
3502 		case SIOCSIFNAME:
3503 			if (!capable(CAP_NET_ADMIN))
3504 				return -EPERM;
3505 			dev_load(net, ifr.ifr_name);
3506 			rtnl_lock();
3507 			ret = dev_ifsioc(net, &ifr, cmd);
3508 			rtnl_unlock();
3509 			if (!ret) {
3510 				if (colon)
3511 					*colon = ':';
3512 				if (copy_to_user(arg, &ifr,
3513 						 sizeof(struct ifreq)))
3514 					ret = -EFAULT;
3515 			}
3516 			return ret;
3517 
3518 		/*
3519 		 *	These ioctl calls:
3520 		 *	- require superuser power.
3521 		 *	- require strict serialization.
3522 		 *	- do not return a value
3523 		 */
3524 		case SIOCSIFFLAGS:
3525 		case SIOCSIFMETRIC:
3526 		case SIOCSIFMTU:
3527 		case SIOCSIFMAP:
3528 		case SIOCSIFHWADDR:
3529 		case SIOCSIFSLAVE:
3530 		case SIOCADDMULTI:
3531 		case SIOCDELMULTI:
3532 		case SIOCSIFHWBROADCAST:
3533 		case SIOCSIFTXQLEN:
3534 		case SIOCSMIIREG:
3535 		case SIOCBONDENSLAVE:
3536 		case SIOCBONDRELEASE:
3537 		case SIOCBONDSETHWADDR:
3538 		case SIOCBONDCHANGEACTIVE:
3539 		case SIOCBRADDIF:
3540 		case SIOCBRDELIF:
3541 			if (!capable(CAP_NET_ADMIN))
3542 				return -EPERM;
3543 			/* fall through */
3544 		case SIOCBONDSLAVEINFOQUERY:
3545 		case SIOCBONDINFOQUERY:
3546 			dev_load(net, ifr.ifr_name);
3547 			rtnl_lock();
3548 			ret = dev_ifsioc(net, &ifr, cmd);
3549 			rtnl_unlock();
3550 			return ret;
3551 
3552 		case SIOCGIFMEM:
3553 			/* Get the per device memory space. We can add this but
3554 			 * currently do not support it */
3555 		case SIOCSIFMEM:
3556 			/* Set the per device memory buffer space.
3557 			 * Not applicable in our case */
3558 		case SIOCSIFLINK:
3559 			return -EINVAL;
3560 
3561 		/*
3562 		 *	Unknown or private ioctl.
3563 		 */
3564 		default:
3565 			if (cmd == SIOCWANDEV ||
3566 			    (cmd >= SIOCDEVPRIVATE &&
3567 			     cmd <= SIOCDEVPRIVATE + 15)) {
3568 				dev_load(net, ifr.ifr_name);
3569 				rtnl_lock();
3570 				ret = dev_ifsioc(net, &ifr, cmd);
3571 				rtnl_unlock();
3572 				if (!ret && copy_to_user(arg, &ifr,
3573 							 sizeof(struct ifreq)))
3574 					ret = -EFAULT;
3575 				return ret;
3576 			}
3577 			/* Take care of Wireless Extensions */
3578 			if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
3579 				return wext_handle_ioctl(net, &ifr, cmd, arg);
3580 			return -EINVAL;
3581 	}
3582 }
3583 
3584 
3585 /**
3586  *	dev_new_index	-	allocate an ifindex
3587  *	@net: the applicable net namespace
3588  *
3589  *	Returns a suitable unique value for a new device interface
3590  *	number.  The caller must hold the rtnl semaphore or the
3591  *	dev_base_lock to be sure it remains unique.
3592  */
3593 static int dev_new_index(struct net *net)
3594 {
3595 	static int ifindex;
3596 	for (;;) {
3597 		if (++ifindex <= 0)
3598 			ifindex = 1;
3599 		if (!__dev_get_by_index(net, ifindex))
3600 			return ifindex;
3601 	}
3602 }
3603 
3604 /* Delayed registration/unregisteration */
3605 static DEFINE_SPINLOCK(net_todo_list_lock);
3606 static LIST_HEAD(net_todo_list);
3607 
3608 static void net_set_todo(struct net_device *dev)
3609 {
3610 	spin_lock(&net_todo_list_lock);
3611 	list_add_tail(&dev->todo_list, &net_todo_list);
3612 	spin_unlock(&net_todo_list_lock);
3613 }
3614 
3615 static void rollback_registered(struct net_device *dev)
3616 {
3617 	BUG_ON(dev_boot_phase);
3618 	ASSERT_RTNL();
3619 
3620 	/* Some devices call without registering for initialization unwind. */
3621 	if (dev->reg_state == NETREG_UNINITIALIZED) {
3622 		printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
3623 				  "was registered\n", dev->name, dev);
3624 
3625 		WARN_ON(1);
3626 		return;
3627 	}
3628 
3629 	BUG_ON(dev->reg_state != NETREG_REGISTERED);
3630 
3631 	/* If device is running, close it first. */
3632 	dev_close(dev);
3633 
3634 	/* And unlink it from device chain. */
3635 	unlist_netdevice(dev);
3636 
3637 	dev->reg_state = NETREG_UNREGISTERING;
3638 
3639 	synchronize_net();
3640 
3641 	/* Shutdown queueing discipline. */
3642 	dev_shutdown(dev);
3643 
3644 
3645 	/* Notify protocols, that we are about to destroy
3646 	   this device. They should clean all the things.
3647 	*/
3648 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
3649 
3650 	/*
3651 	 *	Flush the unicast and multicast chains
3652 	 */
3653 	dev_addr_discard(dev);
3654 
3655 	if (dev->uninit)
3656 		dev->uninit(dev);
3657 
3658 	/* Notifier chain MUST detach us from master device. */
3659 	BUG_TRAP(!dev->master);
3660 
3661 	/* Remove entries from kobject tree */
3662 	netdev_unregister_kobject(dev);
3663 
3664 	synchronize_net();
3665 
3666 	dev_put(dev);
3667 }
3668 
3669 /**
3670  *	register_netdevice	- register a network device
3671  *	@dev: device to register
3672  *
3673  *	Take a completed network device structure and add it to the kernel
3674  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3675  *	chain. 0 is returned on success. A negative errno code is returned
3676  *	on a failure to set up the device, or if the name is a duplicate.
3677  *
3678  *	Callers must hold the rtnl semaphore. You may want
3679  *	register_netdev() instead of this.
3680  *
3681  *	BUGS:
3682  *	The locking appears insufficient to guarantee two parallel registers
3683  *	will not get the same name.
3684  */
3685 
3686 int register_netdevice(struct net_device *dev)
3687 {
3688 	struct hlist_head *head;
3689 	struct hlist_node *p;
3690 	int ret;
3691 	struct net *net;
3692 
3693 	BUG_ON(dev_boot_phase);
3694 	ASSERT_RTNL();
3695 
3696 	might_sleep();
3697 
3698 	/* When net_device's are persistent, this will be fatal. */
3699 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
3700 	BUG_ON(!dev_net(dev));
3701 	net = dev_net(dev);
3702 
3703 	spin_lock_init(&dev->queue_lock);
3704 	spin_lock_init(&dev->_xmit_lock);
3705 	netdev_set_lockdep_class(&dev->_xmit_lock, dev->type);
3706 	dev->xmit_lock_owner = -1;
3707 	spin_lock_init(&dev->ingress_lock);
3708 
3709 	dev->iflink = -1;
3710 
3711 	/* Init, if this function is available */
3712 	if (dev->init) {
3713 		ret = dev->init(dev);
3714 		if (ret) {
3715 			if (ret > 0)
3716 				ret = -EIO;
3717 			goto out;
3718 		}
3719 	}
3720 
3721 	if (!dev_valid_name(dev->name)) {
3722 		ret = -EINVAL;
3723 		goto err_uninit;
3724 	}
3725 
3726 	dev->ifindex = dev_new_index(net);
3727 	if (dev->iflink == -1)
3728 		dev->iflink = dev->ifindex;
3729 
3730 	/* Check for existence of name */
3731 	head = dev_name_hash(net, dev->name);
3732 	hlist_for_each(p, head) {
3733 		struct net_device *d
3734 			= hlist_entry(p, struct net_device, name_hlist);
3735 		if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
3736 			ret = -EEXIST;
3737 			goto err_uninit;
3738 		}
3739 	}
3740 
3741 	/* Fix illegal checksum combinations */
3742 	if ((dev->features & NETIF_F_HW_CSUM) &&
3743 	    (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3744 		printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
3745 		       dev->name);
3746 		dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3747 	}
3748 
3749 	if ((dev->features & NETIF_F_NO_CSUM) &&
3750 	    (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3751 		printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
3752 		       dev->name);
3753 		dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
3754 	}
3755 
3756 
3757 	/* Fix illegal SG+CSUM combinations. */
3758 	if ((dev->features & NETIF_F_SG) &&
3759 	    !(dev->features & NETIF_F_ALL_CSUM)) {
3760 		printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n",
3761 		       dev->name);
3762 		dev->features &= ~NETIF_F_SG;
3763 	}
3764 
3765 	/* TSO requires that SG is present as well. */
3766 	if ((dev->features & NETIF_F_TSO) &&
3767 	    !(dev->features & NETIF_F_SG)) {
3768 		printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n",
3769 		       dev->name);
3770 		dev->features &= ~NETIF_F_TSO;
3771 	}
3772 	if (dev->features & NETIF_F_UFO) {
3773 		if (!(dev->features & NETIF_F_HW_CSUM)) {
3774 			printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3775 					"NETIF_F_HW_CSUM feature.\n",
3776 							dev->name);
3777 			dev->features &= ~NETIF_F_UFO;
3778 		}
3779 		if (!(dev->features & NETIF_F_SG)) {
3780 			printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3781 					"NETIF_F_SG feature.\n",
3782 					dev->name);
3783 			dev->features &= ~NETIF_F_UFO;
3784 		}
3785 	}
3786 
3787 	netdev_initialize_kobject(dev);
3788 	ret = netdev_register_kobject(dev);
3789 	if (ret)
3790 		goto err_uninit;
3791 	dev->reg_state = NETREG_REGISTERED;
3792 
3793 	/*
3794 	 *	Default initial state at registry is that the
3795 	 *	device is present.
3796 	 */
3797 
3798 	set_bit(__LINK_STATE_PRESENT, &dev->state);
3799 
3800 	dev_init_scheduler(dev);
3801 	dev_hold(dev);
3802 	list_netdevice(dev);
3803 
3804 	/* Notify protocols, that a new device appeared. */
3805 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
3806 	ret = notifier_to_errno(ret);
3807 	if (ret) {
3808 		rollback_registered(dev);
3809 		dev->reg_state = NETREG_UNREGISTERED;
3810 	}
3811 
3812 out:
3813 	return ret;
3814 
3815 err_uninit:
3816 	if (dev->uninit)
3817 		dev->uninit(dev);
3818 	goto out;
3819 }
3820 
3821 /**
3822  *	register_netdev	- register a network device
3823  *	@dev: device to register
3824  *
3825  *	Take a completed network device structure and add it to the kernel
3826  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3827  *	chain. 0 is returned on success. A negative errno code is returned
3828  *	on a failure to set up the device, or if the name is a duplicate.
3829  *
3830  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
3831  *	and expands the device name if you passed a format string to
3832  *	alloc_netdev.
3833  */
3834 int register_netdev(struct net_device *dev)
3835 {
3836 	int err;
3837 
3838 	rtnl_lock();
3839 
3840 	/*
3841 	 * If the name is a format string the caller wants us to do a
3842 	 * name allocation.
3843 	 */
3844 	if (strchr(dev->name, '%')) {
3845 		err = dev_alloc_name(dev, dev->name);
3846 		if (err < 0)
3847 			goto out;
3848 	}
3849 
3850 	err = register_netdevice(dev);
3851 out:
3852 	rtnl_unlock();
3853 	return err;
3854 }
3855 EXPORT_SYMBOL(register_netdev);
3856 
3857 /*
3858  * netdev_wait_allrefs - wait until all references are gone.
3859  *
3860  * This is called when unregistering network devices.
3861  *
3862  * Any protocol or device that holds a reference should register
3863  * for netdevice notification, and cleanup and put back the
3864  * reference if they receive an UNREGISTER event.
3865  * We can get stuck here if buggy protocols don't correctly
3866  * call dev_put.
3867  */
3868 static void netdev_wait_allrefs(struct net_device *dev)
3869 {
3870 	unsigned long rebroadcast_time, warning_time;
3871 
3872 	rebroadcast_time = warning_time = jiffies;
3873 	while (atomic_read(&dev->refcnt) != 0) {
3874 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
3875 			rtnl_lock();
3876 
3877 			/* Rebroadcast unregister notification */
3878 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
3879 
3880 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
3881 				     &dev->state)) {
3882 				/* We must not have linkwatch events
3883 				 * pending on unregister. If this
3884 				 * happens, we simply run the queue
3885 				 * unscheduled, resulting in a noop
3886 				 * for this device.
3887 				 */
3888 				linkwatch_run_queue();
3889 			}
3890 
3891 			__rtnl_unlock();
3892 
3893 			rebroadcast_time = jiffies;
3894 		}
3895 
3896 		msleep(250);
3897 
3898 		if (time_after(jiffies, warning_time + 10 * HZ)) {
3899 			printk(KERN_EMERG "unregister_netdevice: "
3900 			       "waiting for %s to become free. Usage "
3901 			       "count = %d\n",
3902 			       dev->name, atomic_read(&dev->refcnt));
3903 			warning_time = jiffies;
3904 		}
3905 	}
3906 }
3907 
3908 /* The sequence is:
3909  *
3910  *	rtnl_lock();
3911  *	...
3912  *	register_netdevice(x1);
3913  *	register_netdevice(x2);
3914  *	...
3915  *	unregister_netdevice(y1);
3916  *	unregister_netdevice(y2);
3917  *      ...
3918  *	rtnl_unlock();
3919  *	free_netdev(y1);
3920  *	free_netdev(y2);
3921  *
3922  * We are invoked by rtnl_unlock() after it drops the semaphore.
3923  * This allows us to deal with problems:
3924  * 1) We can delete sysfs objects which invoke hotplug
3925  *    without deadlocking with linkwatch via keventd.
3926  * 2) Since we run with the RTNL semaphore not held, we can sleep
3927  *    safely in order to wait for the netdev refcnt to drop to zero.
3928  */
3929 static DEFINE_MUTEX(net_todo_run_mutex);
3930 void netdev_run_todo(void)
3931 {
3932 	struct list_head list;
3933 
3934 	/* Need to guard against multiple cpu's getting out of order. */
3935 	mutex_lock(&net_todo_run_mutex);
3936 
3937 	/* Not safe to do outside the semaphore.  We must not return
3938 	 * until all unregister events invoked by the local processor
3939 	 * have been completed (either by this todo run, or one on
3940 	 * another cpu).
3941 	 */
3942 	if (list_empty(&net_todo_list))
3943 		goto out;
3944 
3945 	/* Snapshot list, allow later requests */
3946 	spin_lock(&net_todo_list_lock);
3947 	list_replace_init(&net_todo_list, &list);
3948 	spin_unlock(&net_todo_list_lock);
3949 
3950 	while (!list_empty(&list)) {
3951 		struct net_device *dev
3952 			= list_entry(list.next, struct net_device, todo_list);
3953 		list_del(&dev->todo_list);
3954 
3955 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
3956 			printk(KERN_ERR "network todo '%s' but state %d\n",
3957 			       dev->name, dev->reg_state);
3958 			dump_stack();
3959 			continue;
3960 		}
3961 
3962 		dev->reg_state = NETREG_UNREGISTERED;
3963 
3964 		netdev_wait_allrefs(dev);
3965 
3966 		/* paranoia */
3967 		BUG_ON(atomic_read(&dev->refcnt));
3968 		BUG_TRAP(!dev->ip_ptr);
3969 		BUG_TRAP(!dev->ip6_ptr);
3970 		BUG_TRAP(!dev->dn_ptr);
3971 
3972 		if (dev->destructor)
3973 			dev->destructor(dev);
3974 
3975 		/* Free network device */
3976 		kobject_put(&dev->dev.kobj);
3977 	}
3978 
3979 out:
3980 	mutex_unlock(&net_todo_run_mutex);
3981 }
3982 
3983 static struct net_device_stats *internal_stats(struct net_device *dev)
3984 {
3985 	return &dev->stats;
3986 }
3987 
3988 /**
3989  *	alloc_netdev_mq - allocate network device
3990  *	@sizeof_priv:	size of private data to allocate space for
3991  *	@name:		device name format string
3992  *	@setup:		callback to initialize device
3993  *	@queue_count:	the number of subqueues to allocate
3994  *
3995  *	Allocates a struct net_device with private data area for driver use
3996  *	and performs basic initialization.  Also allocates subquue structs
3997  *	for each queue on the device at the end of the netdevice.
3998  */
3999 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
4000 		void (*setup)(struct net_device *), unsigned int queue_count)
4001 {
4002 	void *p;
4003 	struct net_device *dev;
4004 	int alloc_size;
4005 
4006 	BUG_ON(strlen(name) >= sizeof(dev->name));
4007 
4008 	alloc_size = sizeof(struct net_device) +
4009 		     sizeof(struct net_device_subqueue) * (queue_count - 1);
4010 	if (sizeof_priv) {
4011 		/* ensure 32-byte alignment of private area */
4012 		alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
4013 		alloc_size += sizeof_priv;
4014 	}
4015 	/* ensure 32-byte alignment of whole construct */
4016 	alloc_size += NETDEV_ALIGN_CONST;
4017 
4018 	p = kzalloc(alloc_size, GFP_KERNEL);
4019 	if (!p) {
4020 		printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
4021 		return NULL;
4022 	}
4023 
4024 	dev = (struct net_device *)
4025 		(((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
4026 	dev->padded = (char *)dev - (char *)p;
4027 	dev_net_set(dev, &init_net);
4028 
4029 	if (sizeof_priv) {
4030 		dev->priv = ((char *)dev +
4031 			     ((sizeof(struct net_device) +
4032 			       (sizeof(struct net_device_subqueue) *
4033 				(queue_count - 1)) + NETDEV_ALIGN_CONST)
4034 			      & ~NETDEV_ALIGN_CONST));
4035 	}
4036 
4037 	dev->egress_subqueue_count = queue_count;
4038 	dev->gso_max_size = GSO_MAX_SIZE;
4039 
4040 	dev->get_stats = internal_stats;
4041 	netpoll_netdev_init(dev);
4042 	setup(dev);
4043 	strcpy(dev->name, name);
4044 	return dev;
4045 }
4046 EXPORT_SYMBOL(alloc_netdev_mq);
4047 
4048 /**
4049  *	free_netdev - free network device
4050  *	@dev: device
4051  *
4052  *	This function does the last stage of destroying an allocated device
4053  * 	interface. The reference to the device object is released.
4054  *	If this is the last reference then it will be freed.
4055  */
4056 void free_netdev(struct net_device *dev)
4057 {
4058 	release_net(dev_net(dev));
4059 
4060 	/*  Compatibility with error handling in drivers */
4061 	if (dev->reg_state == NETREG_UNINITIALIZED) {
4062 		kfree((char *)dev - dev->padded);
4063 		return;
4064 	}
4065 
4066 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
4067 	dev->reg_state = NETREG_RELEASED;
4068 
4069 	/* will free via device release */
4070 	put_device(&dev->dev);
4071 }
4072 
4073 /* Synchronize with packet receive processing. */
4074 void synchronize_net(void)
4075 {
4076 	might_sleep();
4077 	synchronize_rcu();
4078 }
4079 
4080 /**
4081  *	unregister_netdevice - remove device from the kernel
4082  *	@dev: device
4083  *
4084  *	This function shuts down a device interface and removes it
4085  *	from the kernel tables.
4086  *
4087  *	Callers must hold the rtnl semaphore.  You may want
4088  *	unregister_netdev() instead of this.
4089  */
4090 
4091 void unregister_netdevice(struct net_device *dev)
4092 {
4093 	ASSERT_RTNL();
4094 
4095 	rollback_registered(dev);
4096 	/* Finish processing unregister after unlock */
4097 	net_set_todo(dev);
4098 }
4099 
4100 /**
4101  *	unregister_netdev - remove device from the kernel
4102  *	@dev: device
4103  *
4104  *	This function shuts down a device interface and removes it
4105  *	from the kernel tables.
4106  *
4107  *	This is just a wrapper for unregister_netdevice that takes
4108  *	the rtnl semaphore.  In general you want to use this and not
4109  *	unregister_netdevice.
4110  */
4111 void unregister_netdev(struct net_device *dev)
4112 {
4113 	rtnl_lock();
4114 	unregister_netdevice(dev);
4115 	rtnl_unlock();
4116 }
4117 
4118 EXPORT_SYMBOL(unregister_netdev);
4119 
4120 /**
4121  *	dev_change_net_namespace - move device to different nethost namespace
4122  *	@dev: device
4123  *	@net: network namespace
4124  *	@pat: If not NULL name pattern to try if the current device name
4125  *	      is already taken in the destination network namespace.
4126  *
4127  *	This function shuts down a device interface and moves it
4128  *	to a new network namespace. On success 0 is returned, on
4129  *	a failure a netagive errno code is returned.
4130  *
4131  *	Callers must hold the rtnl semaphore.
4132  */
4133 
4134 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
4135 {
4136 	char buf[IFNAMSIZ];
4137 	const char *destname;
4138 	int err;
4139 
4140 	ASSERT_RTNL();
4141 
4142 	/* Don't allow namespace local devices to be moved. */
4143 	err = -EINVAL;
4144 	if (dev->features & NETIF_F_NETNS_LOCAL)
4145 		goto out;
4146 
4147 	/* Ensure the device has been registrered */
4148 	err = -EINVAL;
4149 	if (dev->reg_state != NETREG_REGISTERED)
4150 		goto out;
4151 
4152 	/* Get out if there is nothing todo */
4153 	err = 0;
4154 	if (net_eq(dev_net(dev), net))
4155 		goto out;
4156 
4157 	/* Pick the destination device name, and ensure
4158 	 * we can use it in the destination network namespace.
4159 	 */
4160 	err = -EEXIST;
4161 	destname = dev->name;
4162 	if (__dev_get_by_name(net, destname)) {
4163 		/* We get here if we can't use the current device name */
4164 		if (!pat)
4165 			goto out;
4166 		if (!dev_valid_name(pat))
4167 			goto out;
4168 		if (strchr(pat, '%')) {
4169 			if (__dev_alloc_name(net, pat, buf) < 0)
4170 				goto out;
4171 			destname = buf;
4172 		} else
4173 			destname = pat;
4174 		if (__dev_get_by_name(net, destname))
4175 			goto out;
4176 	}
4177 
4178 	/*
4179 	 * And now a mini version of register_netdevice unregister_netdevice.
4180 	 */
4181 
4182 	/* If device is running close it first. */
4183 	dev_close(dev);
4184 
4185 	/* And unlink it from device chain */
4186 	err = -ENODEV;
4187 	unlist_netdevice(dev);
4188 
4189 	synchronize_net();
4190 
4191 	/* Shutdown queueing discipline. */
4192 	dev_shutdown(dev);
4193 
4194 	/* Notify protocols, that we are about to destroy
4195 	   this device. They should clean all the things.
4196 	*/
4197 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4198 
4199 	/*
4200 	 *	Flush the unicast and multicast chains
4201 	 */
4202 	dev_addr_discard(dev);
4203 
4204 	/* Actually switch the network namespace */
4205 	dev_net_set(dev, net);
4206 
4207 	/* Assign the new device name */
4208 	if (destname != dev->name)
4209 		strcpy(dev->name, destname);
4210 
4211 	/* If there is an ifindex conflict assign a new one */
4212 	if (__dev_get_by_index(net, dev->ifindex)) {
4213 		int iflink = (dev->iflink == dev->ifindex);
4214 		dev->ifindex = dev_new_index(net);
4215 		if (iflink)
4216 			dev->iflink = dev->ifindex;
4217 	}
4218 
4219 	/* Fixup kobjects */
4220 	netdev_unregister_kobject(dev);
4221 	err = netdev_register_kobject(dev);
4222 	WARN_ON(err);
4223 
4224 	/* Add the device back in the hashes */
4225 	list_netdevice(dev);
4226 
4227 	/* Notify protocols, that a new device appeared. */
4228 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
4229 
4230 	synchronize_net();
4231 	err = 0;
4232 out:
4233 	return err;
4234 }
4235 
4236 static int dev_cpu_callback(struct notifier_block *nfb,
4237 			    unsigned long action,
4238 			    void *ocpu)
4239 {
4240 	struct sk_buff **list_skb;
4241 	struct net_device **list_net;
4242 	struct sk_buff *skb;
4243 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
4244 	struct softnet_data *sd, *oldsd;
4245 
4246 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
4247 		return NOTIFY_OK;
4248 
4249 	local_irq_disable();
4250 	cpu = smp_processor_id();
4251 	sd = &per_cpu(softnet_data, cpu);
4252 	oldsd = &per_cpu(softnet_data, oldcpu);
4253 
4254 	/* Find end of our completion_queue. */
4255 	list_skb = &sd->completion_queue;
4256 	while (*list_skb)
4257 		list_skb = &(*list_skb)->next;
4258 	/* Append completion queue from offline CPU. */
4259 	*list_skb = oldsd->completion_queue;
4260 	oldsd->completion_queue = NULL;
4261 
4262 	/* Find end of our output_queue. */
4263 	list_net = &sd->output_queue;
4264 	while (*list_net)
4265 		list_net = &(*list_net)->next_sched;
4266 	/* Append output queue from offline CPU. */
4267 	*list_net = oldsd->output_queue;
4268 	oldsd->output_queue = NULL;
4269 
4270 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
4271 	local_irq_enable();
4272 
4273 	/* Process offline CPU's input_pkt_queue */
4274 	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
4275 		netif_rx(skb);
4276 
4277 	return NOTIFY_OK;
4278 }
4279 
4280 #ifdef CONFIG_NET_DMA
4281 /**
4282  * net_dma_rebalance - try to maintain one DMA channel per CPU
4283  * @net_dma: DMA client and associated data (lock, channels, channel_mask)
4284  *
4285  * This is called when the number of channels allocated to the net_dma client
4286  * changes.  The net_dma client tries to have one DMA channel per CPU.
4287  */
4288 
4289 static void net_dma_rebalance(struct net_dma *net_dma)
4290 {
4291 	unsigned int cpu, i, n, chan_idx;
4292 	struct dma_chan *chan;
4293 
4294 	if (cpus_empty(net_dma->channel_mask)) {
4295 		for_each_online_cpu(cpu)
4296 			rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL);
4297 		return;
4298 	}
4299 
4300 	i = 0;
4301 	cpu = first_cpu(cpu_online_map);
4302 
4303 	for_each_cpu_mask(chan_idx, net_dma->channel_mask) {
4304 		chan = net_dma->channels[chan_idx];
4305 
4306 		n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask))
4307 		   + (i < (num_online_cpus() %
4308 			cpus_weight(net_dma->channel_mask)) ? 1 : 0));
4309 
4310 		while(n) {
4311 			per_cpu(softnet_data, cpu).net_dma = chan;
4312 			cpu = next_cpu(cpu, cpu_online_map);
4313 			n--;
4314 		}
4315 		i++;
4316 	}
4317 }
4318 
4319 /**
4320  * netdev_dma_event - event callback for the net_dma_client
4321  * @client: should always be net_dma_client
4322  * @chan: DMA channel for the event
4323  * @state: DMA state to be handled
4324  */
4325 static enum dma_state_client
4326 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
4327 	enum dma_state state)
4328 {
4329 	int i, found = 0, pos = -1;
4330 	struct net_dma *net_dma =
4331 		container_of(client, struct net_dma, client);
4332 	enum dma_state_client ack = DMA_DUP; /* default: take no action */
4333 
4334 	spin_lock(&net_dma->lock);
4335 	switch (state) {
4336 	case DMA_RESOURCE_AVAILABLE:
4337 		for (i = 0; i < nr_cpu_ids; i++)
4338 			if (net_dma->channels[i] == chan) {
4339 				found = 1;
4340 				break;
4341 			} else if (net_dma->channels[i] == NULL && pos < 0)
4342 				pos = i;
4343 
4344 		if (!found && pos >= 0) {
4345 			ack = DMA_ACK;
4346 			net_dma->channels[pos] = chan;
4347 			cpu_set(pos, net_dma->channel_mask);
4348 			net_dma_rebalance(net_dma);
4349 		}
4350 		break;
4351 	case DMA_RESOURCE_REMOVED:
4352 		for (i = 0; i < nr_cpu_ids; i++)
4353 			if (net_dma->channels[i] == chan) {
4354 				found = 1;
4355 				pos = i;
4356 				break;
4357 			}
4358 
4359 		if (found) {
4360 			ack = DMA_ACK;
4361 			cpu_clear(pos, net_dma->channel_mask);
4362 			net_dma->channels[i] = NULL;
4363 			net_dma_rebalance(net_dma);
4364 		}
4365 		break;
4366 	default:
4367 		break;
4368 	}
4369 	spin_unlock(&net_dma->lock);
4370 
4371 	return ack;
4372 }
4373 
4374 /**
4375  * netdev_dma_regiser - register the networking subsystem as a DMA client
4376  */
4377 static int __init netdev_dma_register(void)
4378 {
4379 	net_dma.channels = kzalloc(nr_cpu_ids * sizeof(struct net_dma),
4380 								GFP_KERNEL);
4381 	if (unlikely(!net_dma.channels)) {
4382 		printk(KERN_NOTICE
4383 				"netdev_dma: no memory for net_dma.channels\n");
4384 		return -ENOMEM;
4385 	}
4386 	spin_lock_init(&net_dma.lock);
4387 	dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask);
4388 	dma_async_client_register(&net_dma.client);
4389 	dma_async_client_chan_request(&net_dma.client);
4390 	return 0;
4391 }
4392 
4393 #else
4394 static int __init netdev_dma_register(void) { return -ENODEV; }
4395 #endif /* CONFIG_NET_DMA */
4396 
4397 /**
4398  *	netdev_compute_feature - compute conjunction of two feature sets
4399  *	@all: first feature set
4400  *	@one: second feature set
4401  *
4402  *	Computes a new feature set after adding a device with feature set
4403  *	@one to the master device with current feature set @all.  Returns
4404  *	the new feature set.
4405  */
4406 int netdev_compute_features(unsigned long all, unsigned long one)
4407 {
4408 	/* if device needs checksumming, downgrade to hw checksumming */
4409 	if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
4410 		all ^= NETIF_F_NO_CSUM | NETIF_F_HW_CSUM;
4411 
4412 	/* if device can't do all checksum, downgrade to ipv4/ipv6 */
4413 	if (all & NETIF_F_HW_CSUM && !(one & NETIF_F_HW_CSUM))
4414 		all ^= NETIF_F_HW_CSUM
4415 			| NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
4416 
4417 	if (one & NETIF_F_GSO)
4418 		one |= NETIF_F_GSO_SOFTWARE;
4419 	one |= NETIF_F_GSO;
4420 
4421 	/* If even one device supports robust GSO, enable it for all. */
4422 	if (one & NETIF_F_GSO_ROBUST)
4423 		all |= NETIF_F_GSO_ROBUST;
4424 
4425 	all &= one | NETIF_F_LLTX;
4426 
4427 	if (!(all & NETIF_F_ALL_CSUM))
4428 		all &= ~NETIF_F_SG;
4429 	if (!(all & NETIF_F_SG))
4430 		all &= ~NETIF_F_GSO_MASK;
4431 
4432 	return all;
4433 }
4434 EXPORT_SYMBOL(netdev_compute_features);
4435 
4436 static struct hlist_head *netdev_create_hash(void)
4437 {
4438 	int i;
4439 	struct hlist_head *hash;
4440 
4441 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
4442 	if (hash != NULL)
4443 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
4444 			INIT_HLIST_HEAD(&hash[i]);
4445 
4446 	return hash;
4447 }
4448 
4449 /* Initialize per network namespace state */
4450 static int __net_init netdev_init(struct net *net)
4451 {
4452 	INIT_LIST_HEAD(&net->dev_base_head);
4453 
4454 	net->dev_name_head = netdev_create_hash();
4455 	if (net->dev_name_head == NULL)
4456 		goto err_name;
4457 
4458 	net->dev_index_head = netdev_create_hash();
4459 	if (net->dev_index_head == NULL)
4460 		goto err_idx;
4461 
4462 	return 0;
4463 
4464 err_idx:
4465 	kfree(net->dev_name_head);
4466 err_name:
4467 	return -ENOMEM;
4468 }
4469 
4470 static void __net_exit netdev_exit(struct net *net)
4471 {
4472 	kfree(net->dev_name_head);
4473 	kfree(net->dev_index_head);
4474 }
4475 
4476 static struct pernet_operations __net_initdata netdev_net_ops = {
4477 	.init = netdev_init,
4478 	.exit = netdev_exit,
4479 };
4480 
4481 static void __net_exit default_device_exit(struct net *net)
4482 {
4483 	struct net_device *dev, *next;
4484 	/*
4485 	 * Push all migratable of the network devices back to the
4486 	 * initial network namespace
4487 	 */
4488 	rtnl_lock();
4489 	for_each_netdev_safe(net, dev, next) {
4490 		int err;
4491 		char fb_name[IFNAMSIZ];
4492 
4493 		/* Ignore unmoveable devices (i.e. loopback) */
4494 		if (dev->features & NETIF_F_NETNS_LOCAL)
4495 			continue;
4496 
4497 		/* Push remaing network devices to init_net */
4498 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
4499 		err = dev_change_net_namespace(dev, &init_net, fb_name);
4500 		if (err) {
4501 			printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
4502 				__func__, dev->name, err);
4503 			BUG();
4504 		}
4505 	}
4506 	rtnl_unlock();
4507 }
4508 
4509 static struct pernet_operations __net_initdata default_device_ops = {
4510 	.exit = default_device_exit,
4511 };
4512 
4513 /*
4514  *	Initialize the DEV module. At boot time this walks the device list and
4515  *	unhooks any devices that fail to initialise (normally hardware not
4516  *	present) and leaves us with a valid list of present and active devices.
4517  *
4518  */
4519 
4520 /*
4521  *       This is called single threaded during boot, so no need
4522  *       to take the rtnl semaphore.
4523  */
4524 static int __init net_dev_init(void)
4525 {
4526 	int i, rc = -ENOMEM;
4527 
4528 	BUG_ON(!dev_boot_phase);
4529 
4530 	if (dev_proc_init())
4531 		goto out;
4532 
4533 	if (netdev_kobject_init())
4534 		goto out;
4535 
4536 	INIT_LIST_HEAD(&ptype_all);
4537 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
4538 		INIT_LIST_HEAD(&ptype_base[i]);
4539 
4540 	if (register_pernet_subsys(&netdev_net_ops))
4541 		goto out;
4542 
4543 	if (register_pernet_device(&default_device_ops))
4544 		goto out;
4545 
4546 	/*
4547 	 *	Initialise the packet receive queues.
4548 	 */
4549 
4550 	for_each_possible_cpu(i) {
4551 		struct softnet_data *queue;
4552 
4553 		queue = &per_cpu(softnet_data, i);
4554 		skb_queue_head_init(&queue->input_pkt_queue);
4555 		queue->completion_queue = NULL;
4556 		INIT_LIST_HEAD(&queue->poll_list);
4557 
4558 		queue->backlog.poll = process_backlog;
4559 		queue->backlog.weight = weight_p;
4560 	}
4561 
4562 	netdev_dma_register();
4563 
4564 	dev_boot_phase = 0;
4565 
4566 	open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL);
4567 	open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL);
4568 
4569 	hotcpu_notifier(dev_cpu_callback, 0);
4570 	dst_init();
4571 	dev_mcast_init();
4572 	rc = 0;
4573 out:
4574 	return rc;
4575 }
4576 
4577 subsys_initcall(net_dev_init);
4578 
4579 EXPORT_SYMBOL(__dev_get_by_index);
4580 EXPORT_SYMBOL(__dev_get_by_name);
4581 EXPORT_SYMBOL(__dev_remove_pack);
4582 EXPORT_SYMBOL(dev_valid_name);
4583 EXPORT_SYMBOL(dev_add_pack);
4584 EXPORT_SYMBOL(dev_alloc_name);
4585 EXPORT_SYMBOL(dev_close);
4586 EXPORT_SYMBOL(dev_get_by_flags);
4587 EXPORT_SYMBOL(dev_get_by_index);
4588 EXPORT_SYMBOL(dev_get_by_name);
4589 EXPORT_SYMBOL(dev_open);
4590 EXPORT_SYMBOL(dev_queue_xmit);
4591 EXPORT_SYMBOL(dev_remove_pack);
4592 EXPORT_SYMBOL(dev_set_allmulti);
4593 EXPORT_SYMBOL(dev_set_promiscuity);
4594 EXPORT_SYMBOL(dev_change_flags);
4595 EXPORT_SYMBOL(dev_set_mtu);
4596 EXPORT_SYMBOL(dev_set_mac_address);
4597 EXPORT_SYMBOL(free_netdev);
4598 EXPORT_SYMBOL(netdev_boot_setup_check);
4599 EXPORT_SYMBOL(netdev_set_master);
4600 EXPORT_SYMBOL(netdev_state_change);
4601 EXPORT_SYMBOL(netif_receive_skb);
4602 EXPORT_SYMBOL(netif_rx);
4603 EXPORT_SYMBOL(register_gifconf);
4604 EXPORT_SYMBOL(register_netdevice);
4605 EXPORT_SYMBOL(register_netdevice_notifier);
4606 EXPORT_SYMBOL(skb_checksum_help);
4607 EXPORT_SYMBOL(synchronize_net);
4608 EXPORT_SYMBOL(unregister_netdevice);
4609 EXPORT_SYMBOL(unregister_netdevice_notifier);
4610 EXPORT_SYMBOL(net_enable_timestamp);
4611 EXPORT_SYMBOL(net_disable_timestamp);
4612 EXPORT_SYMBOL(dev_get_flags);
4613 
4614 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
4615 EXPORT_SYMBOL(br_handle_frame_hook);
4616 EXPORT_SYMBOL(br_fdb_get_hook);
4617 EXPORT_SYMBOL(br_fdb_put_hook);
4618 #endif
4619 
4620 #ifdef CONFIG_KMOD
4621 EXPORT_SYMBOL(dev_load);
4622 #endif
4623 
4624 EXPORT_PER_CPU_SYMBOL(softnet_data);
4625