1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <linux/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/sched/mm.h> 85 #include <linux/mutex.h> 86 #include <linux/string.h> 87 #include <linux/mm.h> 88 #include <linux/socket.h> 89 #include <linux/sockios.h> 90 #include <linux/errno.h> 91 #include <linux/interrupt.h> 92 #include <linux/if_ether.h> 93 #include <linux/netdevice.h> 94 #include <linux/etherdevice.h> 95 #include <linux/ethtool.h> 96 #include <linux/notifier.h> 97 #include <linux/skbuff.h> 98 #include <linux/bpf.h> 99 #include <linux/bpf_trace.h> 100 #include <net/net_namespace.h> 101 #include <net/sock.h> 102 #include <net/busy_poll.h> 103 #include <linux/rtnetlink.h> 104 #include <linux/stat.h> 105 #include <net/dst.h> 106 #include <net/dst_metadata.h> 107 #include <net/pkt_sched.h> 108 #include <net/pkt_cls.h> 109 #include <net/checksum.h> 110 #include <net/xfrm.h> 111 #include <linux/highmem.h> 112 #include <linux/init.h> 113 #include <linux/module.h> 114 #include <linux/netpoll.h> 115 #include <linux/rcupdate.h> 116 #include <linux/delay.h> 117 #include <net/iw_handler.h> 118 #include <asm/current.h> 119 #include <linux/audit.h> 120 #include <linux/dmaengine.h> 121 #include <linux/err.h> 122 #include <linux/ctype.h> 123 #include <linux/if_arp.h> 124 #include <linux/if_vlan.h> 125 #include <linux/ip.h> 126 #include <net/ip.h> 127 #include <net/mpls.h> 128 #include <linux/ipv6.h> 129 #include <linux/in.h> 130 #include <linux/jhash.h> 131 #include <linux/random.h> 132 #include <trace/events/napi.h> 133 #include <trace/events/net.h> 134 #include <trace/events/skb.h> 135 #include <linux/pci.h> 136 #include <linux/inetdevice.h> 137 #include <linux/cpu_rmap.h> 138 #include <linux/static_key.h> 139 #include <linux/hashtable.h> 140 #include <linux/vmalloc.h> 141 #include <linux/if_macvlan.h> 142 #include <linux/errqueue.h> 143 #include <linux/hrtimer.h> 144 #include <linux/netfilter_ingress.h> 145 #include <linux/crash_dump.h> 146 #include <linux/sctp.h> 147 #include <net/udp_tunnel.h> 148 149 #include "net-sysfs.h" 150 151 /* Instead of increasing this, you should create a hash table. */ 152 #define MAX_GRO_SKBS 8 153 154 /* This should be increased if a protocol with a bigger head is added. */ 155 #define GRO_MAX_HEAD (MAX_HEADER + 128) 156 157 static DEFINE_SPINLOCK(ptype_lock); 158 static DEFINE_SPINLOCK(offload_lock); 159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 160 struct list_head ptype_all __read_mostly; /* Taps */ 161 static struct list_head offload_base __read_mostly; 162 163 static int netif_rx_internal(struct sk_buff *skb); 164 static int call_netdevice_notifiers_info(unsigned long val, 165 struct net_device *dev, 166 struct netdev_notifier_info *info); 167 static struct napi_struct *napi_by_id(unsigned int napi_id); 168 169 /* 170 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 171 * semaphore. 172 * 173 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 174 * 175 * Writers must hold the rtnl semaphore while they loop through the 176 * dev_base_head list, and hold dev_base_lock for writing when they do the 177 * actual updates. This allows pure readers to access the list even 178 * while a writer is preparing to update it. 179 * 180 * To put it another way, dev_base_lock is held for writing only to 181 * protect against pure readers; the rtnl semaphore provides the 182 * protection against other writers. 183 * 184 * See, for example usages, register_netdevice() and 185 * unregister_netdevice(), which must be called with the rtnl 186 * semaphore held. 187 */ 188 DEFINE_RWLOCK(dev_base_lock); 189 EXPORT_SYMBOL(dev_base_lock); 190 191 /* protects napi_hash addition/deletion and napi_gen_id */ 192 static DEFINE_SPINLOCK(napi_hash_lock); 193 194 static unsigned int napi_gen_id = NR_CPUS; 195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 196 197 static seqcount_t devnet_rename_seq; 198 199 static inline void dev_base_seq_inc(struct net *net) 200 { 201 while (++net->dev_base_seq == 0) 202 ; 203 } 204 205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 206 { 207 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 208 209 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 210 } 211 212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 213 { 214 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 215 } 216 217 static inline void rps_lock(struct softnet_data *sd) 218 { 219 #ifdef CONFIG_RPS 220 spin_lock(&sd->input_pkt_queue.lock); 221 #endif 222 } 223 224 static inline void rps_unlock(struct softnet_data *sd) 225 { 226 #ifdef CONFIG_RPS 227 spin_unlock(&sd->input_pkt_queue.lock); 228 #endif 229 } 230 231 /* Device list insertion */ 232 static void list_netdevice(struct net_device *dev) 233 { 234 struct net *net = dev_net(dev); 235 236 ASSERT_RTNL(); 237 238 write_lock_bh(&dev_base_lock); 239 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 240 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 241 hlist_add_head_rcu(&dev->index_hlist, 242 dev_index_hash(net, dev->ifindex)); 243 write_unlock_bh(&dev_base_lock); 244 245 dev_base_seq_inc(net); 246 } 247 248 /* Device list removal 249 * caller must respect a RCU grace period before freeing/reusing dev 250 */ 251 static void unlist_netdevice(struct net_device *dev) 252 { 253 ASSERT_RTNL(); 254 255 /* Unlink dev from the device chain */ 256 write_lock_bh(&dev_base_lock); 257 list_del_rcu(&dev->dev_list); 258 hlist_del_rcu(&dev->name_hlist); 259 hlist_del_rcu(&dev->index_hlist); 260 write_unlock_bh(&dev_base_lock); 261 262 dev_base_seq_inc(dev_net(dev)); 263 } 264 265 /* 266 * Our notifier list 267 */ 268 269 static RAW_NOTIFIER_HEAD(netdev_chain); 270 271 /* 272 * Device drivers call our routines to queue packets here. We empty the 273 * queue in the local softnet handler. 274 */ 275 276 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 277 EXPORT_PER_CPU_SYMBOL(softnet_data); 278 279 #ifdef CONFIG_LOCKDEP 280 /* 281 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 282 * according to dev->type 283 */ 284 static const unsigned short netdev_lock_type[] = { 285 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 286 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 287 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 288 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 289 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 290 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 291 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 292 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 293 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 294 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 295 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 296 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 297 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 298 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 299 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 300 301 static const char *const netdev_lock_name[] = { 302 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 303 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 304 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 305 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 306 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 307 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 308 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 309 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 310 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 311 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 312 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 313 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 314 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 315 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 316 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 317 318 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 319 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 320 321 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 322 { 323 int i; 324 325 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 326 if (netdev_lock_type[i] == dev_type) 327 return i; 328 /* the last key is used by default */ 329 return ARRAY_SIZE(netdev_lock_type) - 1; 330 } 331 332 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 333 unsigned short dev_type) 334 { 335 int i; 336 337 i = netdev_lock_pos(dev_type); 338 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 339 netdev_lock_name[i]); 340 } 341 342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 343 { 344 int i; 345 346 i = netdev_lock_pos(dev->type); 347 lockdep_set_class_and_name(&dev->addr_list_lock, 348 &netdev_addr_lock_key[i], 349 netdev_lock_name[i]); 350 } 351 #else 352 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 353 unsigned short dev_type) 354 { 355 } 356 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 357 { 358 } 359 #endif 360 361 /******************************************************************************* 362 * 363 * Protocol management and registration routines 364 * 365 *******************************************************************************/ 366 367 368 /* 369 * Add a protocol ID to the list. Now that the input handler is 370 * smarter we can dispense with all the messy stuff that used to be 371 * here. 372 * 373 * BEWARE!!! Protocol handlers, mangling input packets, 374 * MUST BE last in hash buckets and checking protocol handlers 375 * MUST start from promiscuous ptype_all chain in net_bh. 376 * It is true now, do not change it. 377 * Explanation follows: if protocol handler, mangling packet, will 378 * be the first on list, it is not able to sense, that packet 379 * is cloned and should be copied-on-write, so that it will 380 * change it and subsequent readers will get broken packet. 381 * --ANK (980803) 382 */ 383 384 static inline struct list_head *ptype_head(const struct packet_type *pt) 385 { 386 if (pt->type == htons(ETH_P_ALL)) 387 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 388 else 389 return pt->dev ? &pt->dev->ptype_specific : 390 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 391 } 392 393 /** 394 * dev_add_pack - add packet handler 395 * @pt: packet type declaration 396 * 397 * Add a protocol handler to the networking stack. The passed &packet_type 398 * is linked into kernel lists and may not be freed until it has been 399 * removed from the kernel lists. 400 * 401 * This call does not sleep therefore it can not 402 * guarantee all CPU's that are in middle of receiving packets 403 * will see the new packet type (until the next received packet). 404 */ 405 406 void dev_add_pack(struct packet_type *pt) 407 { 408 struct list_head *head = ptype_head(pt); 409 410 spin_lock(&ptype_lock); 411 list_add_rcu(&pt->list, head); 412 spin_unlock(&ptype_lock); 413 } 414 EXPORT_SYMBOL(dev_add_pack); 415 416 /** 417 * __dev_remove_pack - remove packet handler 418 * @pt: packet type declaration 419 * 420 * Remove a protocol handler that was previously added to the kernel 421 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 422 * from the kernel lists and can be freed or reused once this function 423 * returns. 424 * 425 * The packet type might still be in use by receivers 426 * and must not be freed until after all the CPU's have gone 427 * through a quiescent state. 428 */ 429 void __dev_remove_pack(struct packet_type *pt) 430 { 431 struct list_head *head = ptype_head(pt); 432 struct packet_type *pt1; 433 434 spin_lock(&ptype_lock); 435 436 list_for_each_entry(pt1, head, list) { 437 if (pt == pt1) { 438 list_del_rcu(&pt->list); 439 goto out; 440 } 441 } 442 443 pr_warn("dev_remove_pack: %p not found\n", pt); 444 out: 445 spin_unlock(&ptype_lock); 446 } 447 EXPORT_SYMBOL(__dev_remove_pack); 448 449 /** 450 * dev_remove_pack - remove packet handler 451 * @pt: packet type declaration 452 * 453 * Remove a protocol handler that was previously added to the kernel 454 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 455 * from the kernel lists and can be freed or reused once this function 456 * returns. 457 * 458 * This call sleeps to guarantee that no CPU is looking at the packet 459 * type after return. 460 */ 461 void dev_remove_pack(struct packet_type *pt) 462 { 463 __dev_remove_pack(pt); 464 465 synchronize_net(); 466 } 467 EXPORT_SYMBOL(dev_remove_pack); 468 469 470 /** 471 * dev_add_offload - register offload handlers 472 * @po: protocol offload declaration 473 * 474 * Add protocol offload handlers to the networking stack. The passed 475 * &proto_offload is linked into kernel lists and may not be freed until 476 * it has been removed from the kernel lists. 477 * 478 * This call does not sleep therefore it can not 479 * guarantee all CPU's that are in middle of receiving packets 480 * will see the new offload handlers (until the next received packet). 481 */ 482 void dev_add_offload(struct packet_offload *po) 483 { 484 struct packet_offload *elem; 485 486 spin_lock(&offload_lock); 487 list_for_each_entry(elem, &offload_base, list) { 488 if (po->priority < elem->priority) 489 break; 490 } 491 list_add_rcu(&po->list, elem->list.prev); 492 spin_unlock(&offload_lock); 493 } 494 EXPORT_SYMBOL(dev_add_offload); 495 496 /** 497 * __dev_remove_offload - remove offload handler 498 * @po: packet offload declaration 499 * 500 * Remove a protocol offload handler that was previously added to the 501 * kernel offload handlers by dev_add_offload(). The passed &offload_type 502 * is removed from the kernel lists and can be freed or reused once this 503 * function returns. 504 * 505 * The packet type might still be in use by receivers 506 * and must not be freed until after all the CPU's have gone 507 * through a quiescent state. 508 */ 509 static void __dev_remove_offload(struct packet_offload *po) 510 { 511 struct list_head *head = &offload_base; 512 struct packet_offload *po1; 513 514 spin_lock(&offload_lock); 515 516 list_for_each_entry(po1, head, list) { 517 if (po == po1) { 518 list_del_rcu(&po->list); 519 goto out; 520 } 521 } 522 523 pr_warn("dev_remove_offload: %p not found\n", po); 524 out: 525 spin_unlock(&offload_lock); 526 } 527 528 /** 529 * dev_remove_offload - remove packet offload handler 530 * @po: packet offload declaration 531 * 532 * Remove a packet offload handler that was previously added to the kernel 533 * offload handlers by dev_add_offload(). The passed &offload_type is 534 * removed from the kernel lists and can be freed or reused once this 535 * function returns. 536 * 537 * This call sleeps to guarantee that no CPU is looking at the packet 538 * type after return. 539 */ 540 void dev_remove_offload(struct packet_offload *po) 541 { 542 __dev_remove_offload(po); 543 544 synchronize_net(); 545 } 546 EXPORT_SYMBOL(dev_remove_offload); 547 548 /****************************************************************************** 549 * 550 * Device Boot-time Settings Routines 551 * 552 ******************************************************************************/ 553 554 /* Boot time configuration table */ 555 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 556 557 /** 558 * netdev_boot_setup_add - add new setup entry 559 * @name: name of the device 560 * @map: configured settings for the device 561 * 562 * Adds new setup entry to the dev_boot_setup list. The function 563 * returns 0 on error and 1 on success. This is a generic routine to 564 * all netdevices. 565 */ 566 static int netdev_boot_setup_add(char *name, struct ifmap *map) 567 { 568 struct netdev_boot_setup *s; 569 int i; 570 571 s = dev_boot_setup; 572 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 573 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 574 memset(s[i].name, 0, sizeof(s[i].name)); 575 strlcpy(s[i].name, name, IFNAMSIZ); 576 memcpy(&s[i].map, map, sizeof(s[i].map)); 577 break; 578 } 579 } 580 581 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 582 } 583 584 /** 585 * netdev_boot_setup_check - check boot time settings 586 * @dev: the netdevice 587 * 588 * Check boot time settings for the device. 589 * The found settings are set for the device to be used 590 * later in the device probing. 591 * Returns 0 if no settings found, 1 if they are. 592 */ 593 int netdev_boot_setup_check(struct net_device *dev) 594 { 595 struct netdev_boot_setup *s = dev_boot_setup; 596 int i; 597 598 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 599 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 600 !strcmp(dev->name, s[i].name)) { 601 dev->irq = s[i].map.irq; 602 dev->base_addr = s[i].map.base_addr; 603 dev->mem_start = s[i].map.mem_start; 604 dev->mem_end = s[i].map.mem_end; 605 return 1; 606 } 607 } 608 return 0; 609 } 610 EXPORT_SYMBOL(netdev_boot_setup_check); 611 612 613 /** 614 * netdev_boot_base - get address from boot time settings 615 * @prefix: prefix for network device 616 * @unit: id for network device 617 * 618 * Check boot time settings for the base address of device. 619 * The found settings are set for the device to be used 620 * later in the device probing. 621 * Returns 0 if no settings found. 622 */ 623 unsigned long netdev_boot_base(const char *prefix, int unit) 624 { 625 const struct netdev_boot_setup *s = dev_boot_setup; 626 char name[IFNAMSIZ]; 627 int i; 628 629 sprintf(name, "%s%d", prefix, unit); 630 631 /* 632 * If device already registered then return base of 1 633 * to indicate not to probe for this interface 634 */ 635 if (__dev_get_by_name(&init_net, name)) 636 return 1; 637 638 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 639 if (!strcmp(name, s[i].name)) 640 return s[i].map.base_addr; 641 return 0; 642 } 643 644 /* 645 * Saves at boot time configured settings for any netdevice. 646 */ 647 int __init netdev_boot_setup(char *str) 648 { 649 int ints[5]; 650 struct ifmap map; 651 652 str = get_options(str, ARRAY_SIZE(ints), ints); 653 if (!str || !*str) 654 return 0; 655 656 /* Save settings */ 657 memset(&map, 0, sizeof(map)); 658 if (ints[0] > 0) 659 map.irq = ints[1]; 660 if (ints[0] > 1) 661 map.base_addr = ints[2]; 662 if (ints[0] > 2) 663 map.mem_start = ints[3]; 664 if (ints[0] > 3) 665 map.mem_end = ints[4]; 666 667 /* Add new entry to the list */ 668 return netdev_boot_setup_add(str, &map); 669 } 670 671 __setup("netdev=", netdev_boot_setup); 672 673 /******************************************************************************* 674 * 675 * Device Interface Subroutines 676 * 677 *******************************************************************************/ 678 679 /** 680 * dev_get_iflink - get 'iflink' value of a interface 681 * @dev: targeted interface 682 * 683 * Indicates the ifindex the interface is linked to. 684 * Physical interfaces have the same 'ifindex' and 'iflink' values. 685 */ 686 687 int dev_get_iflink(const struct net_device *dev) 688 { 689 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 690 return dev->netdev_ops->ndo_get_iflink(dev); 691 692 return dev->ifindex; 693 } 694 EXPORT_SYMBOL(dev_get_iflink); 695 696 /** 697 * dev_fill_metadata_dst - Retrieve tunnel egress information. 698 * @dev: targeted interface 699 * @skb: The packet. 700 * 701 * For better visibility of tunnel traffic OVS needs to retrieve 702 * egress tunnel information for a packet. Following API allows 703 * user to get this info. 704 */ 705 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 706 { 707 struct ip_tunnel_info *info; 708 709 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 710 return -EINVAL; 711 712 info = skb_tunnel_info_unclone(skb); 713 if (!info) 714 return -ENOMEM; 715 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 716 return -EINVAL; 717 718 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 719 } 720 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 721 722 /** 723 * __dev_get_by_name - find a device by its name 724 * @net: the applicable net namespace 725 * @name: name to find 726 * 727 * Find an interface by name. Must be called under RTNL semaphore 728 * or @dev_base_lock. If the name is found a pointer to the device 729 * is returned. If the name is not found then %NULL is returned. The 730 * reference counters are not incremented so the caller must be 731 * careful with locks. 732 */ 733 734 struct net_device *__dev_get_by_name(struct net *net, const char *name) 735 { 736 struct net_device *dev; 737 struct hlist_head *head = dev_name_hash(net, name); 738 739 hlist_for_each_entry(dev, head, name_hlist) 740 if (!strncmp(dev->name, name, IFNAMSIZ)) 741 return dev; 742 743 return NULL; 744 } 745 EXPORT_SYMBOL(__dev_get_by_name); 746 747 /** 748 * dev_get_by_name_rcu - find a device by its name 749 * @net: the applicable net namespace 750 * @name: name to find 751 * 752 * Find an interface by name. 753 * If the name is found a pointer to the device is returned. 754 * If the name is not found then %NULL is returned. 755 * The reference counters are not incremented so the caller must be 756 * careful with locks. The caller must hold RCU lock. 757 */ 758 759 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 760 { 761 struct net_device *dev; 762 struct hlist_head *head = dev_name_hash(net, name); 763 764 hlist_for_each_entry_rcu(dev, head, name_hlist) 765 if (!strncmp(dev->name, name, IFNAMSIZ)) 766 return dev; 767 768 return NULL; 769 } 770 EXPORT_SYMBOL(dev_get_by_name_rcu); 771 772 /** 773 * dev_get_by_name - find a device by its name 774 * @net: the applicable net namespace 775 * @name: name to find 776 * 777 * Find an interface by name. This can be called from any 778 * context and does its own locking. The returned handle has 779 * the usage count incremented and the caller must use dev_put() to 780 * release it when it is no longer needed. %NULL is returned if no 781 * matching device is found. 782 */ 783 784 struct net_device *dev_get_by_name(struct net *net, const char *name) 785 { 786 struct net_device *dev; 787 788 rcu_read_lock(); 789 dev = dev_get_by_name_rcu(net, name); 790 if (dev) 791 dev_hold(dev); 792 rcu_read_unlock(); 793 return dev; 794 } 795 EXPORT_SYMBOL(dev_get_by_name); 796 797 /** 798 * __dev_get_by_index - find a device by its ifindex 799 * @net: the applicable net namespace 800 * @ifindex: index of device 801 * 802 * Search for an interface by index. Returns %NULL if the device 803 * is not found or a pointer to the device. The device has not 804 * had its reference counter increased so the caller must be careful 805 * about locking. The caller must hold either the RTNL semaphore 806 * or @dev_base_lock. 807 */ 808 809 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 810 { 811 struct net_device *dev; 812 struct hlist_head *head = dev_index_hash(net, ifindex); 813 814 hlist_for_each_entry(dev, head, index_hlist) 815 if (dev->ifindex == ifindex) 816 return dev; 817 818 return NULL; 819 } 820 EXPORT_SYMBOL(__dev_get_by_index); 821 822 /** 823 * dev_get_by_index_rcu - find a device by its ifindex 824 * @net: the applicable net namespace 825 * @ifindex: index of device 826 * 827 * Search for an interface by index. Returns %NULL if the device 828 * is not found or a pointer to the device. The device has not 829 * had its reference counter increased so the caller must be careful 830 * about locking. The caller must hold RCU lock. 831 */ 832 833 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 834 { 835 struct net_device *dev; 836 struct hlist_head *head = dev_index_hash(net, ifindex); 837 838 hlist_for_each_entry_rcu(dev, head, index_hlist) 839 if (dev->ifindex == ifindex) 840 return dev; 841 842 return NULL; 843 } 844 EXPORT_SYMBOL(dev_get_by_index_rcu); 845 846 847 /** 848 * dev_get_by_index - find a device by its ifindex 849 * @net: the applicable net namespace 850 * @ifindex: index of device 851 * 852 * Search for an interface by index. Returns NULL if the device 853 * is not found or a pointer to the device. The device returned has 854 * had a reference added and the pointer is safe until the user calls 855 * dev_put to indicate they have finished with it. 856 */ 857 858 struct net_device *dev_get_by_index(struct net *net, int ifindex) 859 { 860 struct net_device *dev; 861 862 rcu_read_lock(); 863 dev = dev_get_by_index_rcu(net, ifindex); 864 if (dev) 865 dev_hold(dev); 866 rcu_read_unlock(); 867 return dev; 868 } 869 EXPORT_SYMBOL(dev_get_by_index); 870 871 /** 872 * dev_get_by_napi_id - find a device by napi_id 873 * @napi_id: ID of the NAPI struct 874 * 875 * Search for an interface by NAPI ID. Returns %NULL if the device 876 * is not found or a pointer to the device. The device has not had 877 * its reference counter increased so the caller must be careful 878 * about locking. The caller must hold RCU lock. 879 */ 880 881 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 882 { 883 struct napi_struct *napi; 884 885 WARN_ON_ONCE(!rcu_read_lock_held()); 886 887 if (napi_id < MIN_NAPI_ID) 888 return NULL; 889 890 napi = napi_by_id(napi_id); 891 892 return napi ? napi->dev : NULL; 893 } 894 EXPORT_SYMBOL(dev_get_by_napi_id); 895 896 /** 897 * netdev_get_name - get a netdevice name, knowing its ifindex. 898 * @net: network namespace 899 * @name: a pointer to the buffer where the name will be stored. 900 * @ifindex: the ifindex of the interface to get the name from. 901 * 902 * The use of raw_seqcount_begin() and cond_resched() before 903 * retrying is required as we want to give the writers a chance 904 * to complete when CONFIG_PREEMPT is not set. 905 */ 906 int netdev_get_name(struct net *net, char *name, int ifindex) 907 { 908 struct net_device *dev; 909 unsigned int seq; 910 911 retry: 912 seq = raw_seqcount_begin(&devnet_rename_seq); 913 rcu_read_lock(); 914 dev = dev_get_by_index_rcu(net, ifindex); 915 if (!dev) { 916 rcu_read_unlock(); 917 return -ENODEV; 918 } 919 920 strcpy(name, dev->name); 921 rcu_read_unlock(); 922 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 923 cond_resched(); 924 goto retry; 925 } 926 927 return 0; 928 } 929 930 /** 931 * dev_getbyhwaddr_rcu - find a device by its hardware address 932 * @net: the applicable net namespace 933 * @type: media type of device 934 * @ha: hardware address 935 * 936 * Search for an interface by MAC address. Returns NULL if the device 937 * is not found or a pointer to the device. 938 * The caller must hold RCU or RTNL. 939 * The returned device has not had its ref count increased 940 * and the caller must therefore be careful about locking 941 * 942 */ 943 944 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 945 const char *ha) 946 { 947 struct net_device *dev; 948 949 for_each_netdev_rcu(net, dev) 950 if (dev->type == type && 951 !memcmp(dev->dev_addr, ha, dev->addr_len)) 952 return dev; 953 954 return NULL; 955 } 956 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 957 958 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 959 { 960 struct net_device *dev; 961 962 ASSERT_RTNL(); 963 for_each_netdev(net, dev) 964 if (dev->type == type) 965 return dev; 966 967 return NULL; 968 } 969 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 970 971 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 972 { 973 struct net_device *dev, *ret = NULL; 974 975 rcu_read_lock(); 976 for_each_netdev_rcu(net, dev) 977 if (dev->type == type) { 978 dev_hold(dev); 979 ret = dev; 980 break; 981 } 982 rcu_read_unlock(); 983 return ret; 984 } 985 EXPORT_SYMBOL(dev_getfirstbyhwtype); 986 987 /** 988 * __dev_get_by_flags - find any device with given flags 989 * @net: the applicable net namespace 990 * @if_flags: IFF_* values 991 * @mask: bitmask of bits in if_flags to check 992 * 993 * Search for any interface with the given flags. Returns NULL if a device 994 * is not found or a pointer to the device. Must be called inside 995 * rtnl_lock(), and result refcount is unchanged. 996 */ 997 998 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 999 unsigned short mask) 1000 { 1001 struct net_device *dev, *ret; 1002 1003 ASSERT_RTNL(); 1004 1005 ret = NULL; 1006 for_each_netdev(net, dev) { 1007 if (((dev->flags ^ if_flags) & mask) == 0) { 1008 ret = dev; 1009 break; 1010 } 1011 } 1012 return ret; 1013 } 1014 EXPORT_SYMBOL(__dev_get_by_flags); 1015 1016 /** 1017 * dev_valid_name - check if name is okay for network device 1018 * @name: name string 1019 * 1020 * Network device names need to be valid file names to 1021 * to allow sysfs to work. We also disallow any kind of 1022 * whitespace. 1023 */ 1024 bool dev_valid_name(const char *name) 1025 { 1026 if (*name == '\0') 1027 return false; 1028 if (strlen(name) >= IFNAMSIZ) 1029 return false; 1030 if (!strcmp(name, ".") || !strcmp(name, "..")) 1031 return false; 1032 1033 while (*name) { 1034 if (*name == '/' || *name == ':' || isspace(*name)) 1035 return false; 1036 name++; 1037 } 1038 return true; 1039 } 1040 EXPORT_SYMBOL(dev_valid_name); 1041 1042 /** 1043 * __dev_alloc_name - allocate a name for a device 1044 * @net: network namespace to allocate the device name in 1045 * @name: name format string 1046 * @buf: scratch buffer and result name string 1047 * 1048 * Passed a format string - eg "lt%d" it will try and find a suitable 1049 * id. It scans list of devices to build up a free map, then chooses 1050 * the first empty slot. The caller must hold the dev_base or rtnl lock 1051 * while allocating the name and adding the device in order to avoid 1052 * duplicates. 1053 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1054 * Returns the number of the unit assigned or a negative errno code. 1055 */ 1056 1057 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1058 { 1059 int i = 0; 1060 const char *p; 1061 const int max_netdevices = 8*PAGE_SIZE; 1062 unsigned long *inuse; 1063 struct net_device *d; 1064 1065 p = strnchr(name, IFNAMSIZ-1, '%'); 1066 if (p) { 1067 /* 1068 * Verify the string as this thing may have come from 1069 * the user. There must be either one "%d" and no other "%" 1070 * characters. 1071 */ 1072 if (p[1] != 'd' || strchr(p + 2, '%')) 1073 return -EINVAL; 1074 1075 /* Use one page as a bit array of possible slots */ 1076 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1077 if (!inuse) 1078 return -ENOMEM; 1079 1080 for_each_netdev(net, d) { 1081 if (!sscanf(d->name, name, &i)) 1082 continue; 1083 if (i < 0 || i >= max_netdevices) 1084 continue; 1085 1086 /* avoid cases where sscanf is not exact inverse of printf */ 1087 snprintf(buf, IFNAMSIZ, name, i); 1088 if (!strncmp(buf, d->name, IFNAMSIZ)) 1089 set_bit(i, inuse); 1090 } 1091 1092 i = find_first_zero_bit(inuse, max_netdevices); 1093 free_page((unsigned long) inuse); 1094 } 1095 1096 if (buf != name) 1097 snprintf(buf, IFNAMSIZ, name, i); 1098 if (!__dev_get_by_name(net, buf)) 1099 return i; 1100 1101 /* It is possible to run out of possible slots 1102 * when the name is long and there isn't enough space left 1103 * for the digits, or if all bits are used. 1104 */ 1105 return -ENFILE; 1106 } 1107 1108 /** 1109 * dev_alloc_name - allocate a name for a device 1110 * @dev: device 1111 * @name: name format string 1112 * 1113 * Passed a format string - eg "lt%d" it will try and find a suitable 1114 * id. It scans list of devices to build up a free map, then chooses 1115 * the first empty slot. The caller must hold the dev_base or rtnl lock 1116 * while allocating the name and adding the device in order to avoid 1117 * duplicates. 1118 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1119 * Returns the number of the unit assigned or a negative errno code. 1120 */ 1121 1122 int dev_alloc_name(struct net_device *dev, const char *name) 1123 { 1124 char buf[IFNAMSIZ]; 1125 struct net *net; 1126 int ret; 1127 1128 BUG_ON(!dev_net(dev)); 1129 net = dev_net(dev); 1130 ret = __dev_alloc_name(net, name, buf); 1131 if (ret >= 0) 1132 strlcpy(dev->name, buf, IFNAMSIZ); 1133 return ret; 1134 } 1135 EXPORT_SYMBOL(dev_alloc_name); 1136 1137 static int dev_alloc_name_ns(struct net *net, 1138 struct net_device *dev, 1139 const char *name) 1140 { 1141 char buf[IFNAMSIZ]; 1142 int ret; 1143 1144 ret = __dev_alloc_name(net, name, buf); 1145 if (ret >= 0) 1146 strlcpy(dev->name, buf, IFNAMSIZ); 1147 return ret; 1148 } 1149 1150 static int dev_get_valid_name(struct net *net, 1151 struct net_device *dev, 1152 const char *name) 1153 { 1154 BUG_ON(!net); 1155 1156 if (!dev_valid_name(name)) 1157 return -EINVAL; 1158 1159 if (strchr(name, '%')) 1160 return dev_alloc_name_ns(net, dev, name); 1161 else if (__dev_get_by_name(net, name)) 1162 return -EEXIST; 1163 else if (dev->name != name) 1164 strlcpy(dev->name, name, IFNAMSIZ); 1165 1166 return 0; 1167 } 1168 1169 /** 1170 * dev_change_name - change name of a device 1171 * @dev: device 1172 * @newname: name (or format string) must be at least IFNAMSIZ 1173 * 1174 * Change name of a device, can pass format strings "eth%d". 1175 * for wildcarding. 1176 */ 1177 int dev_change_name(struct net_device *dev, const char *newname) 1178 { 1179 unsigned char old_assign_type; 1180 char oldname[IFNAMSIZ]; 1181 int err = 0; 1182 int ret; 1183 struct net *net; 1184 1185 ASSERT_RTNL(); 1186 BUG_ON(!dev_net(dev)); 1187 1188 net = dev_net(dev); 1189 if (dev->flags & IFF_UP) 1190 return -EBUSY; 1191 1192 write_seqcount_begin(&devnet_rename_seq); 1193 1194 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1195 write_seqcount_end(&devnet_rename_seq); 1196 return 0; 1197 } 1198 1199 memcpy(oldname, dev->name, IFNAMSIZ); 1200 1201 err = dev_get_valid_name(net, dev, newname); 1202 if (err < 0) { 1203 write_seqcount_end(&devnet_rename_seq); 1204 return err; 1205 } 1206 1207 if (oldname[0] && !strchr(oldname, '%')) 1208 netdev_info(dev, "renamed from %s\n", oldname); 1209 1210 old_assign_type = dev->name_assign_type; 1211 dev->name_assign_type = NET_NAME_RENAMED; 1212 1213 rollback: 1214 ret = device_rename(&dev->dev, dev->name); 1215 if (ret) { 1216 memcpy(dev->name, oldname, IFNAMSIZ); 1217 dev->name_assign_type = old_assign_type; 1218 write_seqcount_end(&devnet_rename_seq); 1219 return ret; 1220 } 1221 1222 write_seqcount_end(&devnet_rename_seq); 1223 1224 netdev_adjacent_rename_links(dev, oldname); 1225 1226 write_lock_bh(&dev_base_lock); 1227 hlist_del_rcu(&dev->name_hlist); 1228 write_unlock_bh(&dev_base_lock); 1229 1230 synchronize_rcu(); 1231 1232 write_lock_bh(&dev_base_lock); 1233 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1234 write_unlock_bh(&dev_base_lock); 1235 1236 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1237 ret = notifier_to_errno(ret); 1238 1239 if (ret) { 1240 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1241 if (err >= 0) { 1242 err = ret; 1243 write_seqcount_begin(&devnet_rename_seq); 1244 memcpy(dev->name, oldname, IFNAMSIZ); 1245 memcpy(oldname, newname, IFNAMSIZ); 1246 dev->name_assign_type = old_assign_type; 1247 old_assign_type = NET_NAME_RENAMED; 1248 goto rollback; 1249 } else { 1250 pr_err("%s: name change rollback failed: %d\n", 1251 dev->name, ret); 1252 } 1253 } 1254 1255 return err; 1256 } 1257 1258 /** 1259 * dev_set_alias - change ifalias of a device 1260 * @dev: device 1261 * @alias: name up to IFALIASZ 1262 * @len: limit of bytes to copy from info 1263 * 1264 * Set ifalias for a device, 1265 */ 1266 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1267 { 1268 char *new_ifalias; 1269 1270 ASSERT_RTNL(); 1271 1272 if (len >= IFALIASZ) 1273 return -EINVAL; 1274 1275 if (!len) { 1276 kfree(dev->ifalias); 1277 dev->ifalias = NULL; 1278 return 0; 1279 } 1280 1281 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1282 if (!new_ifalias) 1283 return -ENOMEM; 1284 dev->ifalias = new_ifalias; 1285 memcpy(dev->ifalias, alias, len); 1286 dev->ifalias[len] = 0; 1287 1288 return len; 1289 } 1290 1291 1292 /** 1293 * netdev_features_change - device changes features 1294 * @dev: device to cause notification 1295 * 1296 * Called to indicate a device has changed features. 1297 */ 1298 void netdev_features_change(struct net_device *dev) 1299 { 1300 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1301 } 1302 EXPORT_SYMBOL(netdev_features_change); 1303 1304 /** 1305 * netdev_state_change - device changes state 1306 * @dev: device to cause notification 1307 * 1308 * Called to indicate a device has changed state. This function calls 1309 * the notifier chains for netdev_chain and sends a NEWLINK message 1310 * to the routing socket. 1311 */ 1312 void netdev_state_change(struct net_device *dev) 1313 { 1314 if (dev->flags & IFF_UP) { 1315 struct netdev_notifier_change_info change_info; 1316 1317 change_info.flags_changed = 0; 1318 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 1319 &change_info.info); 1320 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1321 } 1322 } 1323 EXPORT_SYMBOL(netdev_state_change); 1324 1325 /** 1326 * netdev_notify_peers - notify network peers about existence of @dev 1327 * @dev: network device 1328 * 1329 * Generate traffic such that interested network peers are aware of 1330 * @dev, such as by generating a gratuitous ARP. This may be used when 1331 * a device wants to inform the rest of the network about some sort of 1332 * reconfiguration such as a failover event or virtual machine 1333 * migration. 1334 */ 1335 void netdev_notify_peers(struct net_device *dev) 1336 { 1337 rtnl_lock(); 1338 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1339 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1340 rtnl_unlock(); 1341 } 1342 EXPORT_SYMBOL(netdev_notify_peers); 1343 1344 static int __dev_open(struct net_device *dev) 1345 { 1346 const struct net_device_ops *ops = dev->netdev_ops; 1347 int ret; 1348 1349 ASSERT_RTNL(); 1350 1351 if (!netif_device_present(dev)) 1352 return -ENODEV; 1353 1354 /* Block netpoll from trying to do any rx path servicing. 1355 * If we don't do this there is a chance ndo_poll_controller 1356 * or ndo_poll may be running while we open the device 1357 */ 1358 netpoll_poll_disable(dev); 1359 1360 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1361 ret = notifier_to_errno(ret); 1362 if (ret) 1363 return ret; 1364 1365 set_bit(__LINK_STATE_START, &dev->state); 1366 1367 if (ops->ndo_validate_addr) 1368 ret = ops->ndo_validate_addr(dev); 1369 1370 if (!ret && ops->ndo_open) 1371 ret = ops->ndo_open(dev); 1372 1373 netpoll_poll_enable(dev); 1374 1375 if (ret) 1376 clear_bit(__LINK_STATE_START, &dev->state); 1377 else { 1378 dev->flags |= IFF_UP; 1379 dev_set_rx_mode(dev); 1380 dev_activate(dev); 1381 add_device_randomness(dev->dev_addr, dev->addr_len); 1382 } 1383 1384 return ret; 1385 } 1386 1387 /** 1388 * dev_open - prepare an interface for use. 1389 * @dev: device to open 1390 * 1391 * Takes a device from down to up state. The device's private open 1392 * function is invoked and then the multicast lists are loaded. Finally 1393 * the device is moved into the up state and a %NETDEV_UP message is 1394 * sent to the netdev notifier chain. 1395 * 1396 * Calling this function on an active interface is a nop. On a failure 1397 * a negative errno code is returned. 1398 */ 1399 int dev_open(struct net_device *dev) 1400 { 1401 int ret; 1402 1403 if (dev->flags & IFF_UP) 1404 return 0; 1405 1406 ret = __dev_open(dev); 1407 if (ret < 0) 1408 return ret; 1409 1410 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1411 call_netdevice_notifiers(NETDEV_UP, dev); 1412 1413 return ret; 1414 } 1415 EXPORT_SYMBOL(dev_open); 1416 1417 static void __dev_close_many(struct list_head *head) 1418 { 1419 struct net_device *dev; 1420 1421 ASSERT_RTNL(); 1422 might_sleep(); 1423 1424 list_for_each_entry(dev, head, close_list) { 1425 /* Temporarily disable netpoll until the interface is down */ 1426 netpoll_poll_disable(dev); 1427 1428 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1429 1430 clear_bit(__LINK_STATE_START, &dev->state); 1431 1432 /* Synchronize to scheduled poll. We cannot touch poll list, it 1433 * can be even on different cpu. So just clear netif_running(). 1434 * 1435 * dev->stop() will invoke napi_disable() on all of it's 1436 * napi_struct instances on this device. 1437 */ 1438 smp_mb__after_atomic(); /* Commit netif_running(). */ 1439 } 1440 1441 dev_deactivate_many(head); 1442 1443 list_for_each_entry(dev, head, close_list) { 1444 const struct net_device_ops *ops = dev->netdev_ops; 1445 1446 /* 1447 * Call the device specific close. This cannot fail. 1448 * Only if device is UP 1449 * 1450 * We allow it to be called even after a DETACH hot-plug 1451 * event. 1452 */ 1453 if (ops->ndo_stop) 1454 ops->ndo_stop(dev); 1455 1456 dev->flags &= ~IFF_UP; 1457 netpoll_poll_enable(dev); 1458 } 1459 } 1460 1461 static void __dev_close(struct net_device *dev) 1462 { 1463 LIST_HEAD(single); 1464 1465 list_add(&dev->close_list, &single); 1466 __dev_close_many(&single); 1467 list_del(&single); 1468 } 1469 1470 void dev_close_many(struct list_head *head, bool unlink) 1471 { 1472 struct net_device *dev, *tmp; 1473 1474 /* Remove the devices that don't need to be closed */ 1475 list_for_each_entry_safe(dev, tmp, head, close_list) 1476 if (!(dev->flags & IFF_UP)) 1477 list_del_init(&dev->close_list); 1478 1479 __dev_close_many(head); 1480 1481 list_for_each_entry_safe(dev, tmp, head, close_list) { 1482 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1483 call_netdevice_notifiers(NETDEV_DOWN, dev); 1484 if (unlink) 1485 list_del_init(&dev->close_list); 1486 } 1487 } 1488 EXPORT_SYMBOL(dev_close_many); 1489 1490 /** 1491 * dev_close - shutdown an interface. 1492 * @dev: device to shutdown 1493 * 1494 * This function moves an active device into down state. A 1495 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1496 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1497 * chain. 1498 */ 1499 void dev_close(struct net_device *dev) 1500 { 1501 if (dev->flags & IFF_UP) { 1502 LIST_HEAD(single); 1503 1504 list_add(&dev->close_list, &single); 1505 dev_close_many(&single, true); 1506 list_del(&single); 1507 } 1508 } 1509 EXPORT_SYMBOL(dev_close); 1510 1511 1512 /** 1513 * dev_disable_lro - disable Large Receive Offload on a device 1514 * @dev: device 1515 * 1516 * Disable Large Receive Offload (LRO) on a net device. Must be 1517 * called under RTNL. This is needed if received packets may be 1518 * forwarded to another interface. 1519 */ 1520 void dev_disable_lro(struct net_device *dev) 1521 { 1522 struct net_device *lower_dev; 1523 struct list_head *iter; 1524 1525 dev->wanted_features &= ~NETIF_F_LRO; 1526 netdev_update_features(dev); 1527 1528 if (unlikely(dev->features & NETIF_F_LRO)) 1529 netdev_WARN(dev, "failed to disable LRO!\n"); 1530 1531 netdev_for_each_lower_dev(dev, lower_dev, iter) 1532 dev_disable_lro(lower_dev); 1533 } 1534 EXPORT_SYMBOL(dev_disable_lro); 1535 1536 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1537 struct net_device *dev) 1538 { 1539 struct netdev_notifier_info info; 1540 1541 netdev_notifier_info_init(&info, dev); 1542 return nb->notifier_call(nb, val, &info); 1543 } 1544 1545 static int dev_boot_phase = 1; 1546 1547 /** 1548 * register_netdevice_notifier - register a network notifier block 1549 * @nb: notifier 1550 * 1551 * Register a notifier to be called when network device events occur. 1552 * The notifier passed is linked into the kernel structures and must 1553 * not be reused until it has been unregistered. A negative errno code 1554 * is returned on a failure. 1555 * 1556 * When registered all registration and up events are replayed 1557 * to the new notifier to allow device to have a race free 1558 * view of the network device list. 1559 */ 1560 1561 int register_netdevice_notifier(struct notifier_block *nb) 1562 { 1563 struct net_device *dev; 1564 struct net_device *last; 1565 struct net *net; 1566 int err; 1567 1568 rtnl_lock(); 1569 err = raw_notifier_chain_register(&netdev_chain, nb); 1570 if (err) 1571 goto unlock; 1572 if (dev_boot_phase) 1573 goto unlock; 1574 for_each_net(net) { 1575 for_each_netdev(net, dev) { 1576 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1577 err = notifier_to_errno(err); 1578 if (err) 1579 goto rollback; 1580 1581 if (!(dev->flags & IFF_UP)) 1582 continue; 1583 1584 call_netdevice_notifier(nb, NETDEV_UP, dev); 1585 } 1586 } 1587 1588 unlock: 1589 rtnl_unlock(); 1590 return err; 1591 1592 rollback: 1593 last = dev; 1594 for_each_net(net) { 1595 for_each_netdev(net, dev) { 1596 if (dev == last) 1597 goto outroll; 1598 1599 if (dev->flags & IFF_UP) { 1600 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1601 dev); 1602 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1603 } 1604 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1605 } 1606 } 1607 1608 outroll: 1609 raw_notifier_chain_unregister(&netdev_chain, nb); 1610 goto unlock; 1611 } 1612 EXPORT_SYMBOL(register_netdevice_notifier); 1613 1614 /** 1615 * unregister_netdevice_notifier - unregister a network notifier block 1616 * @nb: notifier 1617 * 1618 * Unregister a notifier previously registered by 1619 * register_netdevice_notifier(). The notifier is unlinked into the 1620 * kernel structures and may then be reused. A negative errno code 1621 * is returned on a failure. 1622 * 1623 * After unregistering unregister and down device events are synthesized 1624 * for all devices on the device list to the removed notifier to remove 1625 * the need for special case cleanup code. 1626 */ 1627 1628 int unregister_netdevice_notifier(struct notifier_block *nb) 1629 { 1630 struct net_device *dev; 1631 struct net *net; 1632 int err; 1633 1634 rtnl_lock(); 1635 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1636 if (err) 1637 goto unlock; 1638 1639 for_each_net(net) { 1640 for_each_netdev(net, dev) { 1641 if (dev->flags & IFF_UP) { 1642 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1643 dev); 1644 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1645 } 1646 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1647 } 1648 } 1649 unlock: 1650 rtnl_unlock(); 1651 return err; 1652 } 1653 EXPORT_SYMBOL(unregister_netdevice_notifier); 1654 1655 /** 1656 * call_netdevice_notifiers_info - call all network notifier blocks 1657 * @val: value passed unmodified to notifier function 1658 * @dev: net_device pointer passed unmodified to notifier function 1659 * @info: notifier information data 1660 * 1661 * Call all network notifier blocks. Parameters and return value 1662 * are as for raw_notifier_call_chain(). 1663 */ 1664 1665 static int call_netdevice_notifiers_info(unsigned long val, 1666 struct net_device *dev, 1667 struct netdev_notifier_info *info) 1668 { 1669 ASSERT_RTNL(); 1670 netdev_notifier_info_init(info, dev); 1671 return raw_notifier_call_chain(&netdev_chain, val, info); 1672 } 1673 1674 /** 1675 * call_netdevice_notifiers - call all network notifier blocks 1676 * @val: value passed unmodified to notifier function 1677 * @dev: net_device pointer passed unmodified to notifier function 1678 * 1679 * Call all network notifier blocks. Parameters and return value 1680 * are as for raw_notifier_call_chain(). 1681 */ 1682 1683 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1684 { 1685 struct netdev_notifier_info info; 1686 1687 return call_netdevice_notifiers_info(val, dev, &info); 1688 } 1689 EXPORT_SYMBOL(call_netdevice_notifiers); 1690 1691 #ifdef CONFIG_NET_INGRESS 1692 static struct static_key ingress_needed __read_mostly; 1693 1694 void net_inc_ingress_queue(void) 1695 { 1696 static_key_slow_inc(&ingress_needed); 1697 } 1698 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 1699 1700 void net_dec_ingress_queue(void) 1701 { 1702 static_key_slow_dec(&ingress_needed); 1703 } 1704 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 1705 #endif 1706 1707 #ifdef CONFIG_NET_EGRESS 1708 static struct static_key egress_needed __read_mostly; 1709 1710 void net_inc_egress_queue(void) 1711 { 1712 static_key_slow_inc(&egress_needed); 1713 } 1714 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 1715 1716 void net_dec_egress_queue(void) 1717 { 1718 static_key_slow_dec(&egress_needed); 1719 } 1720 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 1721 #endif 1722 1723 static struct static_key netstamp_needed __read_mostly; 1724 #ifdef HAVE_JUMP_LABEL 1725 static atomic_t netstamp_needed_deferred; 1726 static atomic_t netstamp_wanted; 1727 static void netstamp_clear(struct work_struct *work) 1728 { 1729 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1730 int wanted; 1731 1732 wanted = atomic_add_return(deferred, &netstamp_wanted); 1733 if (wanted > 0) 1734 static_key_enable(&netstamp_needed); 1735 else 1736 static_key_disable(&netstamp_needed); 1737 } 1738 static DECLARE_WORK(netstamp_work, netstamp_clear); 1739 #endif 1740 1741 void net_enable_timestamp(void) 1742 { 1743 #ifdef HAVE_JUMP_LABEL 1744 int wanted; 1745 1746 while (1) { 1747 wanted = atomic_read(&netstamp_wanted); 1748 if (wanted <= 0) 1749 break; 1750 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 1751 return; 1752 } 1753 atomic_inc(&netstamp_needed_deferred); 1754 schedule_work(&netstamp_work); 1755 #else 1756 static_key_slow_inc(&netstamp_needed); 1757 #endif 1758 } 1759 EXPORT_SYMBOL(net_enable_timestamp); 1760 1761 void net_disable_timestamp(void) 1762 { 1763 #ifdef HAVE_JUMP_LABEL 1764 int wanted; 1765 1766 while (1) { 1767 wanted = atomic_read(&netstamp_wanted); 1768 if (wanted <= 1) 1769 break; 1770 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 1771 return; 1772 } 1773 atomic_dec(&netstamp_needed_deferred); 1774 schedule_work(&netstamp_work); 1775 #else 1776 static_key_slow_dec(&netstamp_needed); 1777 #endif 1778 } 1779 EXPORT_SYMBOL(net_disable_timestamp); 1780 1781 static inline void net_timestamp_set(struct sk_buff *skb) 1782 { 1783 skb->tstamp = 0; 1784 if (static_key_false(&netstamp_needed)) 1785 __net_timestamp(skb); 1786 } 1787 1788 #define net_timestamp_check(COND, SKB) \ 1789 if (static_key_false(&netstamp_needed)) { \ 1790 if ((COND) && !(SKB)->tstamp) \ 1791 __net_timestamp(SKB); \ 1792 } \ 1793 1794 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 1795 { 1796 unsigned int len; 1797 1798 if (!(dev->flags & IFF_UP)) 1799 return false; 1800 1801 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1802 if (skb->len <= len) 1803 return true; 1804 1805 /* if TSO is enabled, we don't care about the length as the packet 1806 * could be forwarded without being segmented before 1807 */ 1808 if (skb_is_gso(skb)) 1809 return true; 1810 1811 return false; 1812 } 1813 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1814 1815 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1816 { 1817 int ret = ____dev_forward_skb(dev, skb); 1818 1819 if (likely(!ret)) { 1820 skb->protocol = eth_type_trans(skb, dev); 1821 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 1822 } 1823 1824 return ret; 1825 } 1826 EXPORT_SYMBOL_GPL(__dev_forward_skb); 1827 1828 /** 1829 * dev_forward_skb - loopback an skb to another netif 1830 * 1831 * @dev: destination network device 1832 * @skb: buffer to forward 1833 * 1834 * return values: 1835 * NET_RX_SUCCESS (no congestion) 1836 * NET_RX_DROP (packet was dropped, but freed) 1837 * 1838 * dev_forward_skb can be used for injecting an skb from the 1839 * start_xmit function of one device into the receive queue 1840 * of another device. 1841 * 1842 * The receiving device may be in another namespace, so 1843 * we have to clear all information in the skb that could 1844 * impact namespace isolation. 1845 */ 1846 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1847 { 1848 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1849 } 1850 EXPORT_SYMBOL_GPL(dev_forward_skb); 1851 1852 static inline int deliver_skb(struct sk_buff *skb, 1853 struct packet_type *pt_prev, 1854 struct net_device *orig_dev) 1855 { 1856 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 1857 return -ENOMEM; 1858 refcount_inc(&skb->users); 1859 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1860 } 1861 1862 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 1863 struct packet_type **pt, 1864 struct net_device *orig_dev, 1865 __be16 type, 1866 struct list_head *ptype_list) 1867 { 1868 struct packet_type *ptype, *pt_prev = *pt; 1869 1870 list_for_each_entry_rcu(ptype, ptype_list, list) { 1871 if (ptype->type != type) 1872 continue; 1873 if (pt_prev) 1874 deliver_skb(skb, pt_prev, orig_dev); 1875 pt_prev = ptype; 1876 } 1877 *pt = pt_prev; 1878 } 1879 1880 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1881 { 1882 if (!ptype->af_packet_priv || !skb->sk) 1883 return false; 1884 1885 if (ptype->id_match) 1886 return ptype->id_match(ptype, skb->sk); 1887 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1888 return true; 1889 1890 return false; 1891 } 1892 1893 /* 1894 * Support routine. Sends outgoing frames to any network 1895 * taps currently in use. 1896 */ 1897 1898 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1899 { 1900 struct packet_type *ptype; 1901 struct sk_buff *skb2 = NULL; 1902 struct packet_type *pt_prev = NULL; 1903 struct list_head *ptype_list = &ptype_all; 1904 1905 rcu_read_lock(); 1906 again: 1907 list_for_each_entry_rcu(ptype, ptype_list, list) { 1908 /* Never send packets back to the socket 1909 * they originated from - MvS (miquels@drinkel.ow.org) 1910 */ 1911 if (skb_loop_sk(ptype, skb)) 1912 continue; 1913 1914 if (pt_prev) { 1915 deliver_skb(skb2, pt_prev, skb->dev); 1916 pt_prev = ptype; 1917 continue; 1918 } 1919 1920 /* need to clone skb, done only once */ 1921 skb2 = skb_clone(skb, GFP_ATOMIC); 1922 if (!skb2) 1923 goto out_unlock; 1924 1925 net_timestamp_set(skb2); 1926 1927 /* skb->nh should be correctly 1928 * set by sender, so that the second statement is 1929 * just protection against buggy protocols. 1930 */ 1931 skb_reset_mac_header(skb2); 1932 1933 if (skb_network_header(skb2) < skb2->data || 1934 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 1935 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1936 ntohs(skb2->protocol), 1937 dev->name); 1938 skb_reset_network_header(skb2); 1939 } 1940 1941 skb2->transport_header = skb2->network_header; 1942 skb2->pkt_type = PACKET_OUTGOING; 1943 pt_prev = ptype; 1944 } 1945 1946 if (ptype_list == &ptype_all) { 1947 ptype_list = &dev->ptype_all; 1948 goto again; 1949 } 1950 out_unlock: 1951 if (pt_prev) { 1952 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 1953 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1954 else 1955 kfree_skb(skb2); 1956 } 1957 rcu_read_unlock(); 1958 } 1959 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 1960 1961 /** 1962 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1963 * @dev: Network device 1964 * @txq: number of queues available 1965 * 1966 * If real_num_tx_queues is changed the tc mappings may no longer be 1967 * valid. To resolve this verify the tc mapping remains valid and if 1968 * not NULL the mapping. With no priorities mapping to this 1969 * offset/count pair it will no longer be used. In the worst case TC0 1970 * is invalid nothing can be done so disable priority mappings. If is 1971 * expected that drivers will fix this mapping if they can before 1972 * calling netif_set_real_num_tx_queues. 1973 */ 1974 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1975 { 1976 int i; 1977 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1978 1979 /* If TC0 is invalidated disable TC mapping */ 1980 if (tc->offset + tc->count > txq) { 1981 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1982 dev->num_tc = 0; 1983 return; 1984 } 1985 1986 /* Invalidated prio to tc mappings set to TC0 */ 1987 for (i = 1; i < TC_BITMASK + 1; i++) { 1988 int q = netdev_get_prio_tc_map(dev, i); 1989 1990 tc = &dev->tc_to_txq[q]; 1991 if (tc->offset + tc->count > txq) { 1992 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1993 i, q); 1994 netdev_set_prio_tc_map(dev, i, 0); 1995 } 1996 } 1997 } 1998 1999 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2000 { 2001 if (dev->num_tc) { 2002 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2003 int i; 2004 2005 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2006 if ((txq - tc->offset) < tc->count) 2007 return i; 2008 } 2009 2010 return -1; 2011 } 2012 2013 return 0; 2014 } 2015 2016 #ifdef CONFIG_XPS 2017 static DEFINE_MUTEX(xps_map_mutex); 2018 #define xmap_dereference(P) \ 2019 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2020 2021 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2022 int tci, u16 index) 2023 { 2024 struct xps_map *map = NULL; 2025 int pos; 2026 2027 if (dev_maps) 2028 map = xmap_dereference(dev_maps->cpu_map[tci]); 2029 if (!map) 2030 return false; 2031 2032 for (pos = map->len; pos--;) { 2033 if (map->queues[pos] != index) 2034 continue; 2035 2036 if (map->len > 1) { 2037 map->queues[pos] = map->queues[--map->len]; 2038 break; 2039 } 2040 2041 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL); 2042 kfree_rcu(map, rcu); 2043 return false; 2044 } 2045 2046 return true; 2047 } 2048 2049 static bool remove_xps_queue_cpu(struct net_device *dev, 2050 struct xps_dev_maps *dev_maps, 2051 int cpu, u16 offset, u16 count) 2052 { 2053 int num_tc = dev->num_tc ? : 1; 2054 bool active = false; 2055 int tci; 2056 2057 for (tci = cpu * num_tc; num_tc--; tci++) { 2058 int i, j; 2059 2060 for (i = count, j = offset; i--; j++) { 2061 if (!remove_xps_queue(dev_maps, cpu, j)) 2062 break; 2063 } 2064 2065 active |= i < 0; 2066 } 2067 2068 return active; 2069 } 2070 2071 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2072 u16 count) 2073 { 2074 struct xps_dev_maps *dev_maps; 2075 int cpu, i; 2076 bool active = false; 2077 2078 mutex_lock(&xps_map_mutex); 2079 dev_maps = xmap_dereference(dev->xps_maps); 2080 2081 if (!dev_maps) 2082 goto out_no_maps; 2083 2084 for_each_possible_cpu(cpu) 2085 active |= remove_xps_queue_cpu(dev, dev_maps, cpu, 2086 offset, count); 2087 2088 if (!active) { 2089 RCU_INIT_POINTER(dev->xps_maps, NULL); 2090 kfree_rcu(dev_maps, rcu); 2091 } 2092 2093 for (i = offset + (count - 1); count--; i--) 2094 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 2095 NUMA_NO_NODE); 2096 2097 out_no_maps: 2098 mutex_unlock(&xps_map_mutex); 2099 } 2100 2101 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2102 { 2103 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2104 } 2105 2106 static struct xps_map *expand_xps_map(struct xps_map *map, 2107 int cpu, u16 index) 2108 { 2109 struct xps_map *new_map; 2110 int alloc_len = XPS_MIN_MAP_ALLOC; 2111 int i, pos; 2112 2113 for (pos = 0; map && pos < map->len; pos++) { 2114 if (map->queues[pos] != index) 2115 continue; 2116 return map; 2117 } 2118 2119 /* Need to add queue to this CPU's existing map */ 2120 if (map) { 2121 if (pos < map->alloc_len) 2122 return map; 2123 2124 alloc_len = map->alloc_len * 2; 2125 } 2126 2127 /* Need to allocate new map to store queue on this CPU's map */ 2128 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2129 cpu_to_node(cpu)); 2130 if (!new_map) 2131 return NULL; 2132 2133 for (i = 0; i < pos; i++) 2134 new_map->queues[i] = map->queues[i]; 2135 new_map->alloc_len = alloc_len; 2136 new_map->len = pos; 2137 2138 return new_map; 2139 } 2140 2141 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2142 u16 index) 2143 { 2144 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2145 int i, cpu, tci, numa_node_id = -2; 2146 int maps_sz, num_tc = 1, tc = 0; 2147 struct xps_map *map, *new_map; 2148 bool active = false; 2149 2150 if (dev->num_tc) { 2151 num_tc = dev->num_tc; 2152 tc = netdev_txq_to_tc(dev, index); 2153 if (tc < 0) 2154 return -EINVAL; 2155 } 2156 2157 maps_sz = XPS_DEV_MAPS_SIZE(num_tc); 2158 if (maps_sz < L1_CACHE_BYTES) 2159 maps_sz = L1_CACHE_BYTES; 2160 2161 mutex_lock(&xps_map_mutex); 2162 2163 dev_maps = xmap_dereference(dev->xps_maps); 2164 2165 /* allocate memory for queue storage */ 2166 for_each_cpu_and(cpu, cpu_online_mask, mask) { 2167 if (!new_dev_maps) 2168 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2169 if (!new_dev_maps) { 2170 mutex_unlock(&xps_map_mutex); 2171 return -ENOMEM; 2172 } 2173 2174 tci = cpu * num_tc + tc; 2175 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) : 2176 NULL; 2177 2178 map = expand_xps_map(map, cpu, index); 2179 if (!map) 2180 goto error; 2181 2182 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2183 } 2184 2185 if (!new_dev_maps) 2186 goto out_no_new_maps; 2187 2188 for_each_possible_cpu(cpu) { 2189 /* copy maps belonging to foreign traffic classes */ 2190 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) { 2191 /* fill in the new device map from the old device map */ 2192 map = xmap_dereference(dev_maps->cpu_map[tci]); 2193 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2194 } 2195 2196 /* We need to explicitly update tci as prevous loop 2197 * could break out early if dev_maps is NULL. 2198 */ 2199 tci = cpu * num_tc + tc; 2200 2201 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 2202 /* add queue to CPU maps */ 2203 int pos = 0; 2204 2205 map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2206 while ((pos < map->len) && (map->queues[pos] != index)) 2207 pos++; 2208 2209 if (pos == map->len) 2210 map->queues[map->len++] = index; 2211 #ifdef CONFIG_NUMA 2212 if (numa_node_id == -2) 2213 numa_node_id = cpu_to_node(cpu); 2214 else if (numa_node_id != cpu_to_node(cpu)) 2215 numa_node_id = -1; 2216 #endif 2217 } else if (dev_maps) { 2218 /* fill in the new device map from the old device map */ 2219 map = xmap_dereference(dev_maps->cpu_map[tci]); 2220 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2221 } 2222 2223 /* copy maps belonging to foreign traffic classes */ 2224 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { 2225 /* fill in the new device map from the old device map */ 2226 map = xmap_dereference(dev_maps->cpu_map[tci]); 2227 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2228 } 2229 } 2230 2231 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 2232 2233 /* Cleanup old maps */ 2234 if (!dev_maps) 2235 goto out_no_old_maps; 2236 2237 for_each_possible_cpu(cpu) { 2238 for (i = num_tc, tci = cpu * num_tc; i--; tci++) { 2239 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2240 map = xmap_dereference(dev_maps->cpu_map[tci]); 2241 if (map && map != new_map) 2242 kfree_rcu(map, rcu); 2243 } 2244 } 2245 2246 kfree_rcu(dev_maps, rcu); 2247 2248 out_no_old_maps: 2249 dev_maps = new_dev_maps; 2250 active = true; 2251 2252 out_no_new_maps: 2253 /* update Tx queue numa node */ 2254 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2255 (numa_node_id >= 0) ? numa_node_id : 2256 NUMA_NO_NODE); 2257 2258 if (!dev_maps) 2259 goto out_no_maps; 2260 2261 /* removes queue from unused CPUs */ 2262 for_each_possible_cpu(cpu) { 2263 for (i = tc, tci = cpu * num_tc; i--; tci++) 2264 active |= remove_xps_queue(dev_maps, tci, index); 2265 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu)) 2266 active |= remove_xps_queue(dev_maps, tci, index); 2267 for (i = num_tc - tc, tci++; --i; tci++) 2268 active |= remove_xps_queue(dev_maps, tci, index); 2269 } 2270 2271 /* free map if not active */ 2272 if (!active) { 2273 RCU_INIT_POINTER(dev->xps_maps, NULL); 2274 kfree_rcu(dev_maps, rcu); 2275 } 2276 2277 out_no_maps: 2278 mutex_unlock(&xps_map_mutex); 2279 2280 return 0; 2281 error: 2282 /* remove any maps that we added */ 2283 for_each_possible_cpu(cpu) { 2284 for (i = num_tc, tci = cpu * num_tc; i--; tci++) { 2285 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2286 map = dev_maps ? 2287 xmap_dereference(dev_maps->cpu_map[tci]) : 2288 NULL; 2289 if (new_map && new_map != map) 2290 kfree(new_map); 2291 } 2292 } 2293 2294 mutex_unlock(&xps_map_mutex); 2295 2296 kfree(new_dev_maps); 2297 return -ENOMEM; 2298 } 2299 EXPORT_SYMBOL(netif_set_xps_queue); 2300 2301 #endif 2302 void netdev_reset_tc(struct net_device *dev) 2303 { 2304 #ifdef CONFIG_XPS 2305 netif_reset_xps_queues_gt(dev, 0); 2306 #endif 2307 dev->num_tc = 0; 2308 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2309 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2310 } 2311 EXPORT_SYMBOL(netdev_reset_tc); 2312 2313 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2314 { 2315 if (tc >= dev->num_tc) 2316 return -EINVAL; 2317 2318 #ifdef CONFIG_XPS 2319 netif_reset_xps_queues(dev, offset, count); 2320 #endif 2321 dev->tc_to_txq[tc].count = count; 2322 dev->tc_to_txq[tc].offset = offset; 2323 return 0; 2324 } 2325 EXPORT_SYMBOL(netdev_set_tc_queue); 2326 2327 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2328 { 2329 if (num_tc > TC_MAX_QUEUE) 2330 return -EINVAL; 2331 2332 #ifdef CONFIG_XPS 2333 netif_reset_xps_queues_gt(dev, 0); 2334 #endif 2335 dev->num_tc = num_tc; 2336 return 0; 2337 } 2338 EXPORT_SYMBOL(netdev_set_num_tc); 2339 2340 /* 2341 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2342 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 2343 */ 2344 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2345 { 2346 int rc; 2347 2348 if (txq < 1 || txq > dev->num_tx_queues) 2349 return -EINVAL; 2350 2351 if (dev->reg_state == NETREG_REGISTERED || 2352 dev->reg_state == NETREG_UNREGISTERING) { 2353 ASSERT_RTNL(); 2354 2355 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2356 txq); 2357 if (rc) 2358 return rc; 2359 2360 if (dev->num_tc) 2361 netif_setup_tc(dev, txq); 2362 2363 if (txq < dev->real_num_tx_queues) { 2364 qdisc_reset_all_tx_gt(dev, txq); 2365 #ifdef CONFIG_XPS 2366 netif_reset_xps_queues_gt(dev, txq); 2367 #endif 2368 } 2369 } 2370 2371 dev->real_num_tx_queues = txq; 2372 return 0; 2373 } 2374 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2375 2376 #ifdef CONFIG_SYSFS 2377 /** 2378 * netif_set_real_num_rx_queues - set actual number of RX queues used 2379 * @dev: Network device 2380 * @rxq: Actual number of RX queues 2381 * 2382 * This must be called either with the rtnl_lock held or before 2383 * registration of the net device. Returns 0 on success, or a 2384 * negative error code. If called before registration, it always 2385 * succeeds. 2386 */ 2387 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2388 { 2389 int rc; 2390 2391 if (rxq < 1 || rxq > dev->num_rx_queues) 2392 return -EINVAL; 2393 2394 if (dev->reg_state == NETREG_REGISTERED) { 2395 ASSERT_RTNL(); 2396 2397 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2398 rxq); 2399 if (rc) 2400 return rc; 2401 } 2402 2403 dev->real_num_rx_queues = rxq; 2404 return 0; 2405 } 2406 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2407 #endif 2408 2409 /** 2410 * netif_get_num_default_rss_queues - default number of RSS queues 2411 * 2412 * This routine should set an upper limit on the number of RSS queues 2413 * used by default by multiqueue devices. 2414 */ 2415 int netif_get_num_default_rss_queues(void) 2416 { 2417 return is_kdump_kernel() ? 2418 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2419 } 2420 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2421 2422 static void __netif_reschedule(struct Qdisc *q) 2423 { 2424 struct softnet_data *sd; 2425 unsigned long flags; 2426 2427 local_irq_save(flags); 2428 sd = this_cpu_ptr(&softnet_data); 2429 q->next_sched = NULL; 2430 *sd->output_queue_tailp = q; 2431 sd->output_queue_tailp = &q->next_sched; 2432 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2433 local_irq_restore(flags); 2434 } 2435 2436 void __netif_schedule(struct Qdisc *q) 2437 { 2438 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2439 __netif_reschedule(q); 2440 } 2441 EXPORT_SYMBOL(__netif_schedule); 2442 2443 struct dev_kfree_skb_cb { 2444 enum skb_free_reason reason; 2445 }; 2446 2447 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2448 { 2449 return (struct dev_kfree_skb_cb *)skb->cb; 2450 } 2451 2452 void netif_schedule_queue(struct netdev_queue *txq) 2453 { 2454 rcu_read_lock(); 2455 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2456 struct Qdisc *q = rcu_dereference(txq->qdisc); 2457 2458 __netif_schedule(q); 2459 } 2460 rcu_read_unlock(); 2461 } 2462 EXPORT_SYMBOL(netif_schedule_queue); 2463 2464 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2465 { 2466 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2467 struct Qdisc *q; 2468 2469 rcu_read_lock(); 2470 q = rcu_dereference(dev_queue->qdisc); 2471 __netif_schedule(q); 2472 rcu_read_unlock(); 2473 } 2474 } 2475 EXPORT_SYMBOL(netif_tx_wake_queue); 2476 2477 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2478 { 2479 unsigned long flags; 2480 2481 if (unlikely(!skb)) 2482 return; 2483 2484 if (likely(refcount_read(&skb->users) == 1)) { 2485 smp_rmb(); 2486 refcount_set(&skb->users, 0); 2487 } else if (likely(!refcount_dec_and_test(&skb->users))) { 2488 return; 2489 } 2490 get_kfree_skb_cb(skb)->reason = reason; 2491 local_irq_save(flags); 2492 skb->next = __this_cpu_read(softnet_data.completion_queue); 2493 __this_cpu_write(softnet_data.completion_queue, skb); 2494 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2495 local_irq_restore(flags); 2496 } 2497 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2498 2499 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2500 { 2501 if (in_irq() || irqs_disabled()) 2502 __dev_kfree_skb_irq(skb, reason); 2503 else 2504 dev_kfree_skb(skb); 2505 } 2506 EXPORT_SYMBOL(__dev_kfree_skb_any); 2507 2508 2509 /** 2510 * netif_device_detach - mark device as removed 2511 * @dev: network device 2512 * 2513 * Mark device as removed from system and therefore no longer available. 2514 */ 2515 void netif_device_detach(struct net_device *dev) 2516 { 2517 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2518 netif_running(dev)) { 2519 netif_tx_stop_all_queues(dev); 2520 } 2521 } 2522 EXPORT_SYMBOL(netif_device_detach); 2523 2524 /** 2525 * netif_device_attach - mark device as attached 2526 * @dev: network device 2527 * 2528 * Mark device as attached from system and restart if needed. 2529 */ 2530 void netif_device_attach(struct net_device *dev) 2531 { 2532 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2533 netif_running(dev)) { 2534 netif_tx_wake_all_queues(dev); 2535 __netdev_watchdog_up(dev); 2536 } 2537 } 2538 EXPORT_SYMBOL(netif_device_attach); 2539 2540 /* 2541 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2542 * to be used as a distribution range. 2543 */ 2544 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 2545 unsigned int num_tx_queues) 2546 { 2547 u32 hash; 2548 u16 qoffset = 0; 2549 u16 qcount = num_tx_queues; 2550 2551 if (skb_rx_queue_recorded(skb)) { 2552 hash = skb_get_rx_queue(skb); 2553 while (unlikely(hash >= num_tx_queues)) 2554 hash -= num_tx_queues; 2555 return hash; 2556 } 2557 2558 if (dev->num_tc) { 2559 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2560 2561 qoffset = dev->tc_to_txq[tc].offset; 2562 qcount = dev->tc_to_txq[tc].count; 2563 } 2564 2565 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 2566 } 2567 EXPORT_SYMBOL(__skb_tx_hash); 2568 2569 static void skb_warn_bad_offload(const struct sk_buff *skb) 2570 { 2571 static const netdev_features_t null_features; 2572 struct net_device *dev = skb->dev; 2573 const char *name = ""; 2574 2575 if (!net_ratelimit()) 2576 return; 2577 2578 if (dev) { 2579 if (dev->dev.parent) 2580 name = dev_driver_string(dev->dev.parent); 2581 else 2582 name = netdev_name(dev); 2583 } 2584 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2585 "gso_type=%d ip_summed=%d\n", 2586 name, dev ? &dev->features : &null_features, 2587 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2588 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2589 skb_shinfo(skb)->gso_type, skb->ip_summed); 2590 } 2591 2592 /* 2593 * Invalidate hardware checksum when packet is to be mangled, and 2594 * complete checksum manually on outgoing path. 2595 */ 2596 int skb_checksum_help(struct sk_buff *skb) 2597 { 2598 __wsum csum; 2599 int ret = 0, offset; 2600 2601 if (skb->ip_summed == CHECKSUM_COMPLETE) 2602 goto out_set_summed; 2603 2604 if (unlikely(skb_shinfo(skb)->gso_size)) { 2605 skb_warn_bad_offload(skb); 2606 return -EINVAL; 2607 } 2608 2609 /* Before computing a checksum, we should make sure no frag could 2610 * be modified by an external entity : checksum could be wrong. 2611 */ 2612 if (skb_has_shared_frag(skb)) { 2613 ret = __skb_linearize(skb); 2614 if (ret) 2615 goto out; 2616 } 2617 2618 offset = skb_checksum_start_offset(skb); 2619 BUG_ON(offset >= skb_headlen(skb)); 2620 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2621 2622 offset += skb->csum_offset; 2623 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2624 2625 if (skb_cloned(skb) && 2626 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2627 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2628 if (ret) 2629 goto out; 2630 } 2631 2632 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 2633 out_set_summed: 2634 skb->ip_summed = CHECKSUM_NONE; 2635 out: 2636 return ret; 2637 } 2638 EXPORT_SYMBOL(skb_checksum_help); 2639 2640 int skb_crc32c_csum_help(struct sk_buff *skb) 2641 { 2642 __le32 crc32c_csum; 2643 int ret = 0, offset, start; 2644 2645 if (skb->ip_summed != CHECKSUM_PARTIAL) 2646 goto out; 2647 2648 if (unlikely(skb_is_gso(skb))) 2649 goto out; 2650 2651 /* Before computing a checksum, we should make sure no frag could 2652 * be modified by an external entity : checksum could be wrong. 2653 */ 2654 if (unlikely(skb_has_shared_frag(skb))) { 2655 ret = __skb_linearize(skb); 2656 if (ret) 2657 goto out; 2658 } 2659 start = skb_checksum_start_offset(skb); 2660 offset = start + offsetof(struct sctphdr, checksum); 2661 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 2662 ret = -EINVAL; 2663 goto out; 2664 } 2665 if (skb_cloned(skb) && 2666 !skb_clone_writable(skb, offset + sizeof(__le32))) { 2667 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2668 if (ret) 2669 goto out; 2670 } 2671 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 2672 skb->len - start, ~(__u32)0, 2673 crc32c_csum_stub)); 2674 *(__le32 *)(skb->data + offset) = crc32c_csum; 2675 skb->ip_summed = CHECKSUM_NONE; 2676 skb->csum_not_inet = 0; 2677 out: 2678 return ret; 2679 } 2680 2681 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2682 { 2683 __be16 type = skb->protocol; 2684 2685 /* Tunnel gso handlers can set protocol to ethernet. */ 2686 if (type == htons(ETH_P_TEB)) { 2687 struct ethhdr *eth; 2688 2689 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2690 return 0; 2691 2692 eth = (struct ethhdr *)skb_mac_header(skb); 2693 type = eth->h_proto; 2694 } 2695 2696 return __vlan_get_protocol(skb, type, depth); 2697 } 2698 2699 /** 2700 * skb_mac_gso_segment - mac layer segmentation handler. 2701 * @skb: buffer to segment 2702 * @features: features for the output path (see dev->features) 2703 */ 2704 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2705 netdev_features_t features) 2706 { 2707 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2708 struct packet_offload *ptype; 2709 int vlan_depth = skb->mac_len; 2710 __be16 type = skb_network_protocol(skb, &vlan_depth); 2711 2712 if (unlikely(!type)) 2713 return ERR_PTR(-EINVAL); 2714 2715 __skb_pull(skb, vlan_depth); 2716 2717 rcu_read_lock(); 2718 list_for_each_entry_rcu(ptype, &offload_base, list) { 2719 if (ptype->type == type && ptype->callbacks.gso_segment) { 2720 segs = ptype->callbacks.gso_segment(skb, features); 2721 break; 2722 } 2723 } 2724 rcu_read_unlock(); 2725 2726 __skb_push(skb, skb->data - skb_mac_header(skb)); 2727 2728 return segs; 2729 } 2730 EXPORT_SYMBOL(skb_mac_gso_segment); 2731 2732 2733 /* openvswitch calls this on rx path, so we need a different check. 2734 */ 2735 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2736 { 2737 if (tx_path) 2738 return skb->ip_summed != CHECKSUM_PARTIAL; 2739 2740 return skb->ip_summed == CHECKSUM_NONE; 2741 } 2742 2743 /** 2744 * __skb_gso_segment - Perform segmentation on skb. 2745 * @skb: buffer to segment 2746 * @features: features for the output path (see dev->features) 2747 * @tx_path: whether it is called in TX path 2748 * 2749 * This function segments the given skb and returns a list of segments. 2750 * 2751 * It may return NULL if the skb requires no segmentation. This is 2752 * only possible when GSO is used for verifying header integrity. 2753 * 2754 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb. 2755 */ 2756 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2757 netdev_features_t features, bool tx_path) 2758 { 2759 struct sk_buff *segs; 2760 2761 if (unlikely(skb_needs_check(skb, tx_path))) { 2762 int err; 2763 2764 /* We're going to init ->check field in TCP or UDP header */ 2765 err = skb_cow_head(skb, 0); 2766 if (err < 0) 2767 return ERR_PTR(err); 2768 } 2769 2770 /* Only report GSO partial support if it will enable us to 2771 * support segmentation on this frame without needing additional 2772 * work. 2773 */ 2774 if (features & NETIF_F_GSO_PARTIAL) { 2775 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 2776 struct net_device *dev = skb->dev; 2777 2778 partial_features |= dev->features & dev->gso_partial_features; 2779 if (!skb_gso_ok(skb, features | partial_features)) 2780 features &= ~NETIF_F_GSO_PARTIAL; 2781 } 2782 2783 BUILD_BUG_ON(SKB_SGO_CB_OFFSET + 2784 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 2785 2786 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2787 SKB_GSO_CB(skb)->encap_level = 0; 2788 2789 skb_reset_mac_header(skb); 2790 skb_reset_mac_len(skb); 2791 2792 segs = skb_mac_gso_segment(skb, features); 2793 2794 if (unlikely(skb_needs_check(skb, tx_path))) 2795 skb_warn_bad_offload(skb); 2796 2797 return segs; 2798 } 2799 EXPORT_SYMBOL(__skb_gso_segment); 2800 2801 /* Take action when hardware reception checksum errors are detected. */ 2802 #ifdef CONFIG_BUG 2803 void netdev_rx_csum_fault(struct net_device *dev) 2804 { 2805 if (net_ratelimit()) { 2806 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2807 dump_stack(); 2808 } 2809 } 2810 EXPORT_SYMBOL(netdev_rx_csum_fault); 2811 #endif 2812 2813 /* Actually, we should eliminate this check as soon as we know, that: 2814 * 1. IOMMU is present and allows to map all the memory. 2815 * 2. No high memory really exists on this machine. 2816 */ 2817 2818 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2819 { 2820 #ifdef CONFIG_HIGHMEM 2821 int i; 2822 2823 if (!(dev->features & NETIF_F_HIGHDMA)) { 2824 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2825 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2826 2827 if (PageHighMem(skb_frag_page(frag))) 2828 return 1; 2829 } 2830 } 2831 2832 if (PCI_DMA_BUS_IS_PHYS) { 2833 struct device *pdev = dev->dev.parent; 2834 2835 if (!pdev) 2836 return 0; 2837 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2838 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2839 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2840 2841 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2842 return 1; 2843 } 2844 } 2845 #endif 2846 return 0; 2847 } 2848 2849 /* If MPLS offload request, verify we are testing hardware MPLS features 2850 * instead of standard features for the netdev. 2851 */ 2852 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 2853 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2854 netdev_features_t features, 2855 __be16 type) 2856 { 2857 if (eth_p_mpls(type)) 2858 features &= skb->dev->mpls_features; 2859 2860 return features; 2861 } 2862 #else 2863 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2864 netdev_features_t features, 2865 __be16 type) 2866 { 2867 return features; 2868 } 2869 #endif 2870 2871 static netdev_features_t harmonize_features(struct sk_buff *skb, 2872 netdev_features_t features) 2873 { 2874 int tmp; 2875 __be16 type; 2876 2877 type = skb_network_protocol(skb, &tmp); 2878 features = net_mpls_features(skb, features, type); 2879 2880 if (skb->ip_summed != CHECKSUM_NONE && 2881 !can_checksum_protocol(features, type)) { 2882 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 2883 } 2884 if (illegal_highdma(skb->dev, skb)) 2885 features &= ~NETIF_F_SG; 2886 2887 return features; 2888 } 2889 2890 netdev_features_t passthru_features_check(struct sk_buff *skb, 2891 struct net_device *dev, 2892 netdev_features_t features) 2893 { 2894 return features; 2895 } 2896 EXPORT_SYMBOL(passthru_features_check); 2897 2898 static netdev_features_t dflt_features_check(const struct sk_buff *skb, 2899 struct net_device *dev, 2900 netdev_features_t features) 2901 { 2902 return vlan_features_check(skb, features); 2903 } 2904 2905 static netdev_features_t gso_features_check(const struct sk_buff *skb, 2906 struct net_device *dev, 2907 netdev_features_t features) 2908 { 2909 u16 gso_segs = skb_shinfo(skb)->gso_segs; 2910 2911 if (gso_segs > dev->gso_max_segs) 2912 return features & ~NETIF_F_GSO_MASK; 2913 2914 /* Support for GSO partial features requires software 2915 * intervention before we can actually process the packets 2916 * so we need to strip support for any partial features now 2917 * and we can pull them back in after we have partially 2918 * segmented the frame. 2919 */ 2920 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 2921 features &= ~dev->gso_partial_features; 2922 2923 /* Make sure to clear the IPv4 ID mangling feature if the 2924 * IPv4 header has the potential to be fragmented. 2925 */ 2926 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 2927 struct iphdr *iph = skb->encapsulation ? 2928 inner_ip_hdr(skb) : ip_hdr(skb); 2929 2930 if (!(iph->frag_off & htons(IP_DF))) 2931 features &= ~NETIF_F_TSO_MANGLEID; 2932 } 2933 2934 return features; 2935 } 2936 2937 netdev_features_t netif_skb_features(struct sk_buff *skb) 2938 { 2939 struct net_device *dev = skb->dev; 2940 netdev_features_t features = dev->features; 2941 2942 if (skb_is_gso(skb)) 2943 features = gso_features_check(skb, dev, features); 2944 2945 /* If encapsulation offload request, verify we are testing 2946 * hardware encapsulation features instead of standard 2947 * features for the netdev 2948 */ 2949 if (skb->encapsulation) 2950 features &= dev->hw_enc_features; 2951 2952 if (skb_vlan_tagged(skb)) 2953 features = netdev_intersect_features(features, 2954 dev->vlan_features | 2955 NETIF_F_HW_VLAN_CTAG_TX | 2956 NETIF_F_HW_VLAN_STAG_TX); 2957 2958 if (dev->netdev_ops->ndo_features_check) 2959 features &= dev->netdev_ops->ndo_features_check(skb, dev, 2960 features); 2961 else 2962 features &= dflt_features_check(skb, dev, features); 2963 2964 return harmonize_features(skb, features); 2965 } 2966 EXPORT_SYMBOL(netif_skb_features); 2967 2968 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 2969 struct netdev_queue *txq, bool more) 2970 { 2971 unsigned int len; 2972 int rc; 2973 2974 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all)) 2975 dev_queue_xmit_nit(skb, dev); 2976 2977 len = skb->len; 2978 trace_net_dev_start_xmit(skb, dev); 2979 rc = netdev_start_xmit(skb, dev, txq, more); 2980 trace_net_dev_xmit(skb, rc, dev, len); 2981 2982 return rc; 2983 } 2984 2985 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 2986 struct netdev_queue *txq, int *ret) 2987 { 2988 struct sk_buff *skb = first; 2989 int rc = NETDEV_TX_OK; 2990 2991 while (skb) { 2992 struct sk_buff *next = skb->next; 2993 2994 skb->next = NULL; 2995 rc = xmit_one(skb, dev, txq, next != NULL); 2996 if (unlikely(!dev_xmit_complete(rc))) { 2997 skb->next = next; 2998 goto out; 2999 } 3000 3001 skb = next; 3002 if (netif_xmit_stopped(txq) && skb) { 3003 rc = NETDEV_TX_BUSY; 3004 break; 3005 } 3006 } 3007 3008 out: 3009 *ret = rc; 3010 return skb; 3011 } 3012 3013 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3014 netdev_features_t features) 3015 { 3016 if (skb_vlan_tag_present(skb) && 3017 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3018 skb = __vlan_hwaccel_push_inside(skb); 3019 return skb; 3020 } 3021 3022 int skb_csum_hwoffload_help(struct sk_buff *skb, 3023 const netdev_features_t features) 3024 { 3025 if (unlikely(skb->csum_not_inet)) 3026 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3027 skb_crc32c_csum_help(skb); 3028 3029 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb); 3030 } 3031 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3032 3033 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev) 3034 { 3035 netdev_features_t features; 3036 3037 features = netif_skb_features(skb); 3038 skb = validate_xmit_vlan(skb, features); 3039 if (unlikely(!skb)) 3040 goto out_null; 3041 3042 if (netif_needs_gso(skb, features)) { 3043 struct sk_buff *segs; 3044 3045 segs = skb_gso_segment(skb, features); 3046 if (IS_ERR(segs)) { 3047 goto out_kfree_skb; 3048 } else if (segs) { 3049 consume_skb(skb); 3050 skb = segs; 3051 } 3052 } else { 3053 if (skb_needs_linearize(skb, features) && 3054 __skb_linearize(skb)) 3055 goto out_kfree_skb; 3056 3057 if (validate_xmit_xfrm(skb, features)) 3058 goto out_kfree_skb; 3059 3060 /* If packet is not checksummed and device does not 3061 * support checksumming for this protocol, complete 3062 * checksumming here. 3063 */ 3064 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3065 if (skb->encapsulation) 3066 skb_set_inner_transport_header(skb, 3067 skb_checksum_start_offset(skb)); 3068 else 3069 skb_set_transport_header(skb, 3070 skb_checksum_start_offset(skb)); 3071 if (skb_csum_hwoffload_help(skb, features)) 3072 goto out_kfree_skb; 3073 } 3074 } 3075 3076 return skb; 3077 3078 out_kfree_skb: 3079 kfree_skb(skb); 3080 out_null: 3081 atomic_long_inc(&dev->tx_dropped); 3082 return NULL; 3083 } 3084 3085 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev) 3086 { 3087 struct sk_buff *next, *head = NULL, *tail; 3088 3089 for (; skb != NULL; skb = next) { 3090 next = skb->next; 3091 skb->next = NULL; 3092 3093 /* in case skb wont be segmented, point to itself */ 3094 skb->prev = skb; 3095 3096 skb = validate_xmit_skb(skb, dev); 3097 if (!skb) 3098 continue; 3099 3100 if (!head) 3101 head = skb; 3102 else 3103 tail->next = skb; 3104 /* If skb was segmented, skb->prev points to 3105 * the last segment. If not, it still contains skb. 3106 */ 3107 tail = skb->prev; 3108 } 3109 return head; 3110 } 3111 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3112 3113 static void qdisc_pkt_len_init(struct sk_buff *skb) 3114 { 3115 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3116 3117 qdisc_skb_cb(skb)->pkt_len = skb->len; 3118 3119 /* To get more precise estimation of bytes sent on wire, 3120 * we add to pkt_len the headers size of all segments 3121 */ 3122 if (shinfo->gso_size) { 3123 unsigned int hdr_len; 3124 u16 gso_segs = shinfo->gso_segs; 3125 3126 /* mac layer + network layer */ 3127 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3128 3129 /* + transport layer */ 3130 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 3131 hdr_len += tcp_hdrlen(skb); 3132 else 3133 hdr_len += sizeof(struct udphdr); 3134 3135 if (shinfo->gso_type & SKB_GSO_DODGY) 3136 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3137 shinfo->gso_size); 3138 3139 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3140 } 3141 } 3142 3143 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3144 struct net_device *dev, 3145 struct netdev_queue *txq) 3146 { 3147 spinlock_t *root_lock = qdisc_lock(q); 3148 struct sk_buff *to_free = NULL; 3149 bool contended; 3150 int rc; 3151 3152 qdisc_calculate_pkt_len(skb, q); 3153 /* 3154 * Heuristic to force contended enqueues to serialize on a 3155 * separate lock before trying to get qdisc main lock. 3156 * This permits qdisc->running owner to get the lock more 3157 * often and dequeue packets faster. 3158 */ 3159 contended = qdisc_is_running(q); 3160 if (unlikely(contended)) 3161 spin_lock(&q->busylock); 3162 3163 spin_lock(root_lock); 3164 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3165 __qdisc_drop(skb, &to_free); 3166 rc = NET_XMIT_DROP; 3167 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3168 qdisc_run_begin(q)) { 3169 /* 3170 * This is a work-conserving queue; there are no old skbs 3171 * waiting to be sent out; and the qdisc is not running - 3172 * xmit the skb directly. 3173 */ 3174 3175 qdisc_bstats_update(q, skb); 3176 3177 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3178 if (unlikely(contended)) { 3179 spin_unlock(&q->busylock); 3180 contended = false; 3181 } 3182 __qdisc_run(q); 3183 } else 3184 qdisc_run_end(q); 3185 3186 rc = NET_XMIT_SUCCESS; 3187 } else { 3188 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3189 if (qdisc_run_begin(q)) { 3190 if (unlikely(contended)) { 3191 spin_unlock(&q->busylock); 3192 contended = false; 3193 } 3194 __qdisc_run(q); 3195 } 3196 } 3197 spin_unlock(root_lock); 3198 if (unlikely(to_free)) 3199 kfree_skb_list(to_free); 3200 if (unlikely(contended)) 3201 spin_unlock(&q->busylock); 3202 return rc; 3203 } 3204 3205 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3206 static void skb_update_prio(struct sk_buff *skb) 3207 { 3208 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 3209 3210 if (!skb->priority && skb->sk && map) { 3211 unsigned int prioidx = 3212 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data); 3213 3214 if (prioidx < map->priomap_len) 3215 skb->priority = map->priomap[prioidx]; 3216 } 3217 } 3218 #else 3219 #define skb_update_prio(skb) 3220 #endif 3221 3222 DEFINE_PER_CPU(int, xmit_recursion); 3223 EXPORT_SYMBOL(xmit_recursion); 3224 3225 /** 3226 * dev_loopback_xmit - loop back @skb 3227 * @net: network namespace this loopback is happening in 3228 * @sk: sk needed to be a netfilter okfn 3229 * @skb: buffer to transmit 3230 */ 3231 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3232 { 3233 skb_reset_mac_header(skb); 3234 __skb_pull(skb, skb_network_offset(skb)); 3235 skb->pkt_type = PACKET_LOOPBACK; 3236 skb->ip_summed = CHECKSUM_UNNECESSARY; 3237 WARN_ON(!skb_dst(skb)); 3238 skb_dst_force(skb); 3239 netif_rx_ni(skb); 3240 return 0; 3241 } 3242 EXPORT_SYMBOL(dev_loopback_xmit); 3243 3244 #ifdef CONFIG_NET_EGRESS 3245 static struct sk_buff * 3246 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3247 { 3248 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list); 3249 struct tcf_result cl_res; 3250 3251 if (!cl) 3252 return skb; 3253 3254 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3255 qdisc_bstats_cpu_update(cl->q, skb); 3256 3257 switch (tcf_classify(skb, cl, &cl_res, false)) { 3258 case TC_ACT_OK: 3259 case TC_ACT_RECLASSIFY: 3260 skb->tc_index = TC_H_MIN(cl_res.classid); 3261 break; 3262 case TC_ACT_SHOT: 3263 qdisc_qstats_cpu_drop(cl->q); 3264 *ret = NET_XMIT_DROP; 3265 kfree_skb(skb); 3266 return NULL; 3267 case TC_ACT_STOLEN: 3268 case TC_ACT_QUEUED: 3269 case TC_ACT_TRAP: 3270 *ret = NET_XMIT_SUCCESS; 3271 consume_skb(skb); 3272 return NULL; 3273 case TC_ACT_REDIRECT: 3274 /* No need to push/pop skb's mac_header here on egress! */ 3275 skb_do_redirect(skb); 3276 *ret = NET_XMIT_SUCCESS; 3277 return NULL; 3278 default: 3279 break; 3280 } 3281 3282 return skb; 3283 } 3284 #endif /* CONFIG_NET_EGRESS */ 3285 3286 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 3287 { 3288 #ifdef CONFIG_XPS 3289 struct xps_dev_maps *dev_maps; 3290 struct xps_map *map; 3291 int queue_index = -1; 3292 3293 rcu_read_lock(); 3294 dev_maps = rcu_dereference(dev->xps_maps); 3295 if (dev_maps) { 3296 unsigned int tci = skb->sender_cpu - 1; 3297 3298 if (dev->num_tc) { 3299 tci *= dev->num_tc; 3300 tci += netdev_get_prio_tc_map(dev, skb->priority); 3301 } 3302 3303 map = rcu_dereference(dev_maps->cpu_map[tci]); 3304 if (map) { 3305 if (map->len == 1) 3306 queue_index = map->queues[0]; 3307 else 3308 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb), 3309 map->len)]; 3310 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3311 queue_index = -1; 3312 } 3313 } 3314 rcu_read_unlock(); 3315 3316 return queue_index; 3317 #else 3318 return -1; 3319 #endif 3320 } 3321 3322 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb) 3323 { 3324 struct sock *sk = skb->sk; 3325 int queue_index = sk_tx_queue_get(sk); 3326 3327 if (queue_index < 0 || skb->ooo_okay || 3328 queue_index >= dev->real_num_tx_queues) { 3329 int new_index = get_xps_queue(dev, skb); 3330 3331 if (new_index < 0) 3332 new_index = skb_tx_hash(dev, skb); 3333 3334 if (queue_index != new_index && sk && 3335 sk_fullsock(sk) && 3336 rcu_access_pointer(sk->sk_dst_cache)) 3337 sk_tx_queue_set(sk, new_index); 3338 3339 queue_index = new_index; 3340 } 3341 3342 return queue_index; 3343 } 3344 3345 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 3346 struct sk_buff *skb, 3347 void *accel_priv) 3348 { 3349 int queue_index = 0; 3350 3351 #ifdef CONFIG_XPS 3352 u32 sender_cpu = skb->sender_cpu - 1; 3353 3354 if (sender_cpu >= (u32)NR_CPUS) 3355 skb->sender_cpu = raw_smp_processor_id() + 1; 3356 #endif 3357 3358 if (dev->real_num_tx_queues != 1) { 3359 const struct net_device_ops *ops = dev->netdev_ops; 3360 3361 if (ops->ndo_select_queue) 3362 queue_index = ops->ndo_select_queue(dev, skb, accel_priv, 3363 __netdev_pick_tx); 3364 else 3365 queue_index = __netdev_pick_tx(dev, skb); 3366 3367 if (!accel_priv) 3368 queue_index = netdev_cap_txqueue(dev, queue_index); 3369 } 3370 3371 skb_set_queue_mapping(skb, queue_index); 3372 return netdev_get_tx_queue(dev, queue_index); 3373 } 3374 3375 /** 3376 * __dev_queue_xmit - transmit a buffer 3377 * @skb: buffer to transmit 3378 * @accel_priv: private data used for L2 forwarding offload 3379 * 3380 * Queue a buffer for transmission to a network device. The caller must 3381 * have set the device and priority and built the buffer before calling 3382 * this function. The function can be called from an interrupt. 3383 * 3384 * A negative errno code is returned on a failure. A success does not 3385 * guarantee the frame will be transmitted as it may be dropped due 3386 * to congestion or traffic shaping. 3387 * 3388 * ----------------------------------------------------------------------------------- 3389 * I notice this method can also return errors from the queue disciplines, 3390 * including NET_XMIT_DROP, which is a positive value. So, errors can also 3391 * be positive. 3392 * 3393 * Regardless of the return value, the skb is consumed, so it is currently 3394 * difficult to retry a send to this method. (You can bump the ref count 3395 * before sending to hold a reference for retry if you are careful.) 3396 * 3397 * When calling this method, interrupts MUST be enabled. This is because 3398 * the BH enable code must have IRQs enabled so that it will not deadlock. 3399 * --BLG 3400 */ 3401 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv) 3402 { 3403 struct net_device *dev = skb->dev; 3404 struct netdev_queue *txq; 3405 struct Qdisc *q; 3406 int rc = -ENOMEM; 3407 3408 skb_reset_mac_header(skb); 3409 3410 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 3411 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 3412 3413 /* Disable soft irqs for various locks below. Also 3414 * stops preemption for RCU. 3415 */ 3416 rcu_read_lock_bh(); 3417 3418 skb_update_prio(skb); 3419 3420 qdisc_pkt_len_init(skb); 3421 #ifdef CONFIG_NET_CLS_ACT 3422 skb->tc_at_ingress = 0; 3423 # ifdef CONFIG_NET_EGRESS 3424 if (static_key_false(&egress_needed)) { 3425 skb = sch_handle_egress(skb, &rc, dev); 3426 if (!skb) 3427 goto out; 3428 } 3429 # endif 3430 #endif 3431 /* If device/qdisc don't need skb->dst, release it right now while 3432 * its hot in this cpu cache. 3433 */ 3434 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 3435 skb_dst_drop(skb); 3436 else 3437 skb_dst_force(skb); 3438 3439 txq = netdev_pick_tx(dev, skb, accel_priv); 3440 q = rcu_dereference_bh(txq->qdisc); 3441 3442 trace_net_dev_queue(skb); 3443 if (q->enqueue) { 3444 rc = __dev_xmit_skb(skb, q, dev, txq); 3445 goto out; 3446 } 3447 3448 /* The device has no queue. Common case for software devices: 3449 * loopback, all the sorts of tunnels... 3450 3451 * Really, it is unlikely that netif_tx_lock protection is necessary 3452 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 3453 * counters.) 3454 * However, it is possible, that they rely on protection 3455 * made by us here. 3456 3457 * Check this and shot the lock. It is not prone from deadlocks. 3458 *Either shot noqueue qdisc, it is even simpler 8) 3459 */ 3460 if (dev->flags & IFF_UP) { 3461 int cpu = smp_processor_id(); /* ok because BHs are off */ 3462 3463 if (txq->xmit_lock_owner != cpu) { 3464 if (unlikely(__this_cpu_read(xmit_recursion) > 3465 XMIT_RECURSION_LIMIT)) 3466 goto recursion_alert; 3467 3468 skb = validate_xmit_skb(skb, dev); 3469 if (!skb) 3470 goto out; 3471 3472 HARD_TX_LOCK(dev, txq, cpu); 3473 3474 if (!netif_xmit_stopped(txq)) { 3475 __this_cpu_inc(xmit_recursion); 3476 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 3477 __this_cpu_dec(xmit_recursion); 3478 if (dev_xmit_complete(rc)) { 3479 HARD_TX_UNLOCK(dev, txq); 3480 goto out; 3481 } 3482 } 3483 HARD_TX_UNLOCK(dev, txq); 3484 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 3485 dev->name); 3486 } else { 3487 /* Recursion is detected! It is possible, 3488 * unfortunately 3489 */ 3490 recursion_alert: 3491 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 3492 dev->name); 3493 } 3494 } 3495 3496 rc = -ENETDOWN; 3497 rcu_read_unlock_bh(); 3498 3499 atomic_long_inc(&dev->tx_dropped); 3500 kfree_skb_list(skb); 3501 return rc; 3502 out: 3503 rcu_read_unlock_bh(); 3504 return rc; 3505 } 3506 3507 int dev_queue_xmit(struct sk_buff *skb) 3508 { 3509 return __dev_queue_xmit(skb, NULL); 3510 } 3511 EXPORT_SYMBOL(dev_queue_xmit); 3512 3513 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv) 3514 { 3515 return __dev_queue_xmit(skb, accel_priv); 3516 } 3517 EXPORT_SYMBOL(dev_queue_xmit_accel); 3518 3519 3520 /************************************************************************* 3521 * Receiver routines 3522 *************************************************************************/ 3523 3524 int netdev_max_backlog __read_mostly = 1000; 3525 EXPORT_SYMBOL(netdev_max_backlog); 3526 3527 int netdev_tstamp_prequeue __read_mostly = 1; 3528 int netdev_budget __read_mostly = 300; 3529 unsigned int __read_mostly netdev_budget_usecs = 2000; 3530 int weight_p __read_mostly = 64; /* old backlog weight */ 3531 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 3532 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 3533 int dev_rx_weight __read_mostly = 64; 3534 int dev_tx_weight __read_mostly = 64; 3535 3536 /* Called with irq disabled */ 3537 static inline void ____napi_schedule(struct softnet_data *sd, 3538 struct napi_struct *napi) 3539 { 3540 list_add_tail(&napi->poll_list, &sd->poll_list); 3541 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3542 } 3543 3544 #ifdef CONFIG_RPS 3545 3546 /* One global table that all flow-based protocols share. */ 3547 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3548 EXPORT_SYMBOL(rps_sock_flow_table); 3549 u32 rps_cpu_mask __read_mostly; 3550 EXPORT_SYMBOL(rps_cpu_mask); 3551 3552 struct static_key rps_needed __read_mostly; 3553 EXPORT_SYMBOL(rps_needed); 3554 struct static_key rfs_needed __read_mostly; 3555 EXPORT_SYMBOL(rfs_needed); 3556 3557 static struct rps_dev_flow * 3558 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3559 struct rps_dev_flow *rflow, u16 next_cpu) 3560 { 3561 if (next_cpu < nr_cpu_ids) { 3562 #ifdef CONFIG_RFS_ACCEL 3563 struct netdev_rx_queue *rxqueue; 3564 struct rps_dev_flow_table *flow_table; 3565 struct rps_dev_flow *old_rflow; 3566 u32 flow_id; 3567 u16 rxq_index; 3568 int rc; 3569 3570 /* Should we steer this flow to a different hardware queue? */ 3571 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 3572 !(dev->features & NETIF_F_NTUPLE)) 3573 goto out; 3574 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 3575 if (rxq_index == skb_get_rx_queue(skb)) 3576 goto out; 3577 3578 rxqueue = dev->_rx + rxq_index; 3579 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3580 if (!flow_table) 3581 goto out; 3582 flow_id = skb_get_hash(skb) & flow_table->mask; 3583 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 3584 rxq_index, flow_id); 3585 if (rc < 0) 3586 goto out; 3587 old_rflow = rflow; 3588 rflow = &flow_table->flows[flow_id]; 3589 rflow->filter = rc; 3590 if (old_rflow->filter == rflow->filter) 3591 old_rflow->filter = RPS_NO_FILTER; 3592 out: 3593 #endif 3594 rflow->last_qtail = 3595 per_cpu(softnet_data, next_cpu).input_queue_head; 3596 } 3597 3598 rflow->cpu = next_cpu; 3599 return rflow; 3600 } 3601 3602 /* 3603 * get_rps_cpu is called from netif_receive_skb and returns the target 3604 * CPU from the RPS map of the receiving queue for a given skb. 3605 * rcu_read_lock must be held on entry. 3606 */ 3607 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3608 struct rps_dev_flow **rflowp) 3609 { 3610 const struct rps_sock_flow_table *sock_flow_table; 3611 struct netdev_rx_queue *rxqueue = dev->_rx; 3612 struct rps_dev_flow_table *flow_table; 3613 struct rps_map *map; 3614 int cpu = -1; 3615 u32 tcpu; 3616 u32 hash; 3617 3618 if (skb_rx_queue_recorded(skb)) { 3619 u16 index = skb_get_rx_queue(skb); 3620 3621 if (unlikely(index >= dev->real_num_rx_queues)) { 3622 WARN_ONCE(dev->real_num_rx_queues > 1, 3623 "%s received packet on queue %u, but number " 3624 "of RX queues is %u\n", 3625 dev->name, index, dev->real_num_rx_queues); 3626 goto done; 3627 } 3628 rxqueue += index; 3629 } 3630 3631 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 3632 3633 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3634 map = rcu_dereference(rxqueue->rps_map); 3635 if (!flow_table && !map) 3636 goto done; 3637 3638 skb_reset_network_header(skb); 3639 hash = skb_get_hash(skb); 3640 if (!hash) 3641 goto done; 3642 3643 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3644 if (flow_table && sock_flow_table) { 3645 struct rps_dev_flow *rflow; 3646 u32 next_cpu; 3647 u32 ident; 3648 3649 /* First check into global flow table if there is a match */ 3650 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 3651 if ((ident ^ hash) & ~rps_cpu_mask) 3652 goto try_rps; 3653 3654 next_cpu = ident & rps_cpu_mask; 3655 3656 /* OK, now we know there is a match, 3657 * we can look at the local (per receive queue) flow table 3658 */ 3659 rflow = &flow_table->flows[hash & flow_table->mask]; 3660 tcpu = rflow->cpu; 3661 3662 /* 3663 * If the desired CPU (where last recvmsg was done) is 3664 * different from current CPU (one in the rx-queue flow 3665 * table entry), switch if one of the following holds: 3666 * - Current CPU is unset (>= nr_cpu_ids). 3667 * - Current CPU is offline. 3668 * - The current CPU's queue tail has advanced beyond the 3669 * last packet that was enqueued using this table entry. 3670 * This guarantees that all previous packets for the flow 3671 * have been dequeued, thus preserving in order delivery. 3672 */ 3673 if (unlikely(tcpu != next_cpu) && 3674 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 3675 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3676 rflow->last_qtail)) >= 0)) { 3677 tcpu = next_cpu; 3678 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3679 } 3680 3681 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 3682 *rflowp = rflow; 3683 cpu = tcpu; 3684 goto done; 3685 } 3686 } 3687 3688 try_rps: 3689 3690 if (map) { 3691 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 3692 if (cpu_online(tcpu)) { 3693 cpu = tcpu; 3694 goto done; 3695 } 3696 } 3697 3698 done: 3699 return cpu; 3700 } 3701 3702 #ifdef CONFIG_RFS_ACCEL 3703 3704 /** 3705 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3706 * @dev: Device on which the filter was set 3707 * @rxq_index: RX queue index 3708 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3709 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3710 * 3711 * Drivers that implement ndo_rx_flow_steer() should periodically call 3712 * this function for each installed filter and remove the filters for 3713 * which it returns %true. 3714 */ 3715 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3716 u32 flow_id, u16 filter_id) 3717 { 3718 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3719 struct rps_dev_flow_table *flow_table; 3720 struct rps_dev_flow *rflow; 3721 bool expire = true; 3722 unsigned int cpu; 3723 3724 rcu_read_lock(); 3725 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3726 if (flow_table && flow_id <= flow_table->mask) { 3727 rflow = &flow_table->flows[flow_id]; 3728 cpu = ACCESS_ONCE(rflow->cpu); 3729 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 3730 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3731 rflow->last_qtail) < 3732 (int)(10 * flow_table->mask))) 3733 expire = false; 3734 } 3735 rcu_read_unlock(); 3736 return expire; 3737 } 3738 EXPORT_SYMBOL(rps_may_expire_flow); 3739 3740 #endif /* CONFIG_RFS_ACCEL */ 3741 3742 /* Called from hardirq (IPI) context */ 3743 static void rps_trigger_softirq(void *data) 3744 { 3745 struct softnet_data *sd = data; 3746 3747 ____napi_schedule(sd, &sd->backlog); 3748 sd->received_rps++; 3749 } 3750 3751 #endif /* CONFIG_RPS */ 3752 3753 /* 3754 * Check if this softnet_data structure is another cpu one 3755 * If yes, queue it to our IPI list and return 1 3756 * If no, return 0 3757 */ 3758 static int rps_ipi_queued(struct softnet_data *sd) 3759 { 3760 #ifdef CONFIG_RPS 3761 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 3762 3763 if (sd != mysd) { 3764 sd->rps_ipi_next = mysd->rps_ipi_list; 3765 mysd->rps_ipi_list = sd; 3766 3767 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3768 return 1; 3769 } 3770 #endif /* CONFIG_RPS */ 3771 return 0; 3772 } 3773 3774 #ifdef CONFIG_NET_FLOW_LIMIT 3775 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3776 #endif 3777 3778 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3779 { 3780 #ifdef CONFIG_NET_FLOW_LIMIT 3781 struct sd_flow_limit *fl; 3782 struct softnet_data *sd; 3783 unsigned int old_flow, new_flow; 3784 3785 if (qlen < (netdev_max_backlog >> 1)) 3786 return false; 3787 3788 sd = this_cpu_ptr(&softnet_data); 3789 3790 rcu_read_lock(); 3791 fl = rcu_dereference(sd->flow_limit); 3792 if (fl) { 3793 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 3794 old_flow = fl->history[fl->history_head]; 3795 fl->history[fl->history_head] = new_flow; 3796 3797 fl->history_head++; 3798 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3799 3800 if (likely(fl->buckets[old_flow])) 3801 fl->buckets[old_flow]--; 3802 3803 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3804 fl->count++; 3805 rcu_read_unlock(); 3806 return true; 3807 } 3808 } 3809 rcu_read_unlock(); 3810 #endif 3811 return false; 3812 } 3813 3814 /* 3815 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3816 * queue (may be a remote CPU queue). 3817 */ 3818 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3819 unsigned int *qtail) 3820 { 3821 struct softnet_data *sd; 3822 unsigned long flags; 3823 unsigned int qlen; 3824 3825 sd = &per_cpu(softnet_data, cpu); 3826 3827 local_irq_save(flags); 3828 3829 rps_lock(sd); 3830 if (!netif_running(skb->dev)) 3831 goto drop; 3832 qlen = skb_queue_len(&sd->input_pkt_queue); 3833 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3834 if (qlen) { 3835 enqueue: 3836 __skb_queue_tail(&sd->input_pkt_queue, skb); 3837 input_queue_tail_incr_save(sd, qtail); 3838 rps_unlock(sd); 3839 local_irq_restore(flags); 3840 return NET_RX_SUCCESS; 3841 } 3842 3843 /* Schedule NAPI for backlog device 3844 * We can use non atomic operation since we own the queue lock 3845 */ 3846 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3847 if (!rps_ipi_queued(sd)) 3848 ____napi_schedule(sd, &sd->backlog); 3849 } 3850 goto enqueue; 3851 } 3852 3853 drop: 3854 sd->dropped++; 3855 rps_unlock(sd); 3856 3857 local_irq_restore(flags); 3858 3859 atomic_long_inc(&skb->dev->rx_dropped); 3860 kfree_skb(skb); 3861 return NET_RX_DROP; 3862 } 3863 3864 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 3865 struct bpf_prog *xdp_prog) 3866 { 3867 struct xdp_buff xdp; 3868 u32 act = XDP_DROP; 3869 void *orig_data; 3870 int hlen, off; 3871 u32 mac_len; 3872 3873 /* Reinjected packets coming from act_mirred or similar should 3874 * not get XDP generic processing. 3875 */ 3876 if (skb_cloned(skb)) 3877 return XDP_PASS; 3878 3879 if (skb_linearize(skb)) 3880 goto do_drop; 3881 3882 /* The XDP program wants to see the packet starting at the MAC 3883 * header. 3884 */ 3885 mac_len = skb->data - skb_mac_header(skb); 3886 hlen = skb_headlen(skb) + mac_len; 3887 xdp.data = skb->data - mac_len; 3888 xdp.data_end = xdp.data + hlen; 3889 xdp.data_hard_start = skb->data - skb_headroom(skb); 3890 orig_data = xdp.data; 3891 3892 act = bpf_prog_run_xdp(xdp_prog, &xdp); 3893 3894 off = xdp.data - orig_data; 3895 if (off > 0) 3896 __skb_pull(skb, off); 3897 else if (off < 0) 3898 __skb_push(skb, -off); 3899 skb->mac_header += off; 3900 3901 switch (act) { 3902 case XDP_REDIRECT: 3903 case XDP_TX: 3904 __skb_push(skb, mac_len); 3905 /* fall through */ 3906 case XDP_PASS: 3907 break; 3908 3909 default: 3910 bpf_warn_invalid_xdp_action(act); 3911 /* fall through */ 3912 case XDP_ABORTED: 3913 trace_xdp_exception(skb->dev, xdp_prog, act); 3914 /* fall through */ 3915 case XDP_DROP: 3916 do_drop: 3917 kfree_skb(skb); 3918 break; 3919 } 3920 3921 return act; 3922 } 3923 3924 /* When doing generic XDP we have to bypass the qdisc layer and the 3925 * network taps in order to match in-driver-XDP behavior. 3926 */ 3927 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 3928 { 3929 struct net_device *dev = skb->dev; 3930 struct netdev_queue *txq; 3931 bool free_skb = true; 3932 int cpu, rc; 3933 3934 txq = netdev_pick_tx(dev, skb, NULL); 3935 cpu = smp_processor_id(); 3936 HARD_TX_LOCK(dev, txq, cpu); 3937 if (!netif_xmit_stopped(txq)) { 3938 rc = netdev_start_xmit(skb, dev, txq, 0); 3939 if (dev_xmit_complete(rc)) 3940 free_skb = false; 3941 } 3942 HARD_TX_UNLOCK(dev, txq); 3943 if (free_skb) { 3944 trace_xdp_exception(dev, xdp_prog, XDP_TX); 3945 kfree_skb(skb); 3946 } 3947 } 3948 EXPORT_SYMBOL_GPL(generic_xdp_tx); 3949 3950 static struct static_key generic_xdp_needed __read_mostly; 3951 3952 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 3953 { 3954 if (xdp_prog) { 3955 u32 act = netif_receive_generic_xdp(skb, xdp_prog); 3956 int err; 3957 3958 if (act != XDP_PASS) { 3959 switch (act) { 3960 case XDP_REDIRECT: 3961 err = xdp_do_generic_redirect(skb->dev, skb, 3962 xdp_prog); 3963 if (err) 3964 goto out_redir; 3965 /* fallthru to submit skb */ 3966 case XDP_TX: 3967 generic_xdp_tx(skb, xdp_prog); 3968 break; 3969 } 3970 return XDP_DROP; 3971 } 3972 } 3973 return XDP_PASS; 3974 out_redir: 3975 kfree_skb(skb); 3976 return XDP_DROP; 3977 } 3978 EXPORT_SYMBOL_GPL(do_xdp_generic); 3979 3980 static int netif_rx_internal(struct sk_buff *skb) 3981 { 3982 int ret; 3983 3984 net_timestamp_check(netdev_tstamp_prequeue, skb); 3985 3986 trace_netif_rx(skb); 3987 3988 if (static_key_false(&generic_xdp_needed)) { 3989 int ret; 3990 3991 preempt_disable(); 3992 rcu_read_lock(); 3993 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 3994 rcu_read_unlock(); 3995 preempt_enable(); 3996 3997 /* Consider XDP consuming the packet a success from 3998 * the netdev point of view we do not want to count 3999 * this as an error. 4000 */ 4001 if (ret != XDP_PASS) 4002 return NET_RX_SUCCESS; 4003 } 4004 4005 #ifdef CONFIG_RPS 4006 if (static_key_false(&rps_needed)) { 4007 struct rps_dev_flow voidflow, *rflow = &voidflow; 4008 int cpu; 4009 4010 preempt_disable(); 4011 rcu_read_lock(); 4012 4013 cpu = get_rps_cpu(skb->dev, skb, &rflow); 4014 if (cpu < 0) 4015 cpu = smp_processor_id(); 4016 4017 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4018 4019 rcu_read_unlock(); 4020 preempt_enable(); 4021 } else 4022 #endif 4023 { 4024 unsigned int qtail; 4025 4026 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 4027 put_cpu(); 4028 } 4029 return ret; 4030 } 4031 4032 /** 4033 * netif_rx - post buffer to the network code 4034 * @skb: buffer to post 4035 * 4036 * This function receives a packet from a device driver and queues it for 4037 * the upper (protocol) levels to process. It always succeeds. The buffer 4038 * may be dropped during processing for congestion control or by the 4039 * protocol layers. 4040 * 4041 * return values: 4042 * NET_RX_SUCCESS (no congestion) 4043 * NET_RX_DROP (packet was dropped) 4044 * 4045 */ 4046 4047 int netif_rx(struct sk_buff *skb) 4048 { 4049 trace_netif_rx_entry(skb); 4050 4051 return netif_rx_internal(skb); 4052 } 4053 EXPORT_SYMBOL(netif_rx); 4054 4055 int netif_rx_ni(struct sk_buff *skb) 4056 { 4057 int err; 4058 4059 trace_netif_rx_ni_entry(skb); 4060 4061 preempt_disable(); 4062 err = netif_rx_internal(skb); 4063 if (local_softirq_pending()) 4064 do_softirq(); 4065 preempt_enable(); 4066 4067 return err; 4068 } 4069 EXPORT_SYMBOL(netif_rx_ni); 4070 4071 static __latent_entropy void net_tx_action(struct softirq_action *h) 4072 { 4073 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4074 4075 if (sd->completion_queue) { 4076 struct sk_buff *clist; 4077 4078 local_irq_disable(); 4079 clist = sd->completion_queue; 4080 sd->completion_queue = NULL; 4081 local_irq_enable(); 4082 4083 while (clist) { 4084 struct sk_buff *skb = clist; 4085 4086 clist = clist->next; 4087 4088 WARN_ON(refcount_read(&skb->users)); 4089 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 4090 trace_consume_skb(skb); 4091 else 4092 trace_kfree_skb(skb, net_tx_action); 4093 4094 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 4095 __kfree_skb(skb); 4096 else 4097 __kfree_skb_defer(skb); 4098 } 4099 4100 __kfree_skb_flush(); 4101 } 4102 4103 if (sd->output_queue) { 4104 struct Qdisc *head; 4105 4106 local_irq_disable(); 4107 head = sd->output_queue; 4108 sd->output_queue = NULL; 4109 sd->output_queue_tailp = &sd->output_queue; 4110 local_irq_enable(); 4111 4112 while (head) { 4113 struct Qdisc *q = head; 4114 spinlock_t *root_lock; 4115 4116 head = head->next_sched; 4117 4118 root_lock = qdisc_lock(q); 4119 spin_lock(root_lock); 4120 /* We need to make sure head->next_sched is read 4121 * before clearing __QDISC_STATE_SCHED 4122 */ 4123 smp_mb__before_atomic(); 4124 clear_bit(__QDISC_STATE_SCHED, &q->state); 4125 qdisc_run(q); 4126 spin_unlock(root_lock); 4127 } 4128 } 4129 } 4130 4131 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 4132 /* This hook is defined here for ATM LANE */ 4133 int (*br_fdb_test_addr_hook)(struct net_device *dev, 4134 unsigned char *addr) __read_mostly; 4135 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 4136 #endif 4137 4138 static inline struct sk_buff * 4139 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4140 struct net_device *orig_dev) 4141 { 4142 #ifdef CONFIG_NET_CLS_ACT 4143 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list); 4144 struct tcf_result cl_res; 4145 4146 /* If there's at least one ingress present somewhere (so 4147 * we get here via enabled static key), remaining devices 4148 * that are not configured with an ingress qdisc will bail 4149 * out here. 4150 */ 4151 if (!cl) 4152 return skb; 4153 if (*pt_prev) { 4154 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4155 *pt_prev = NULL; 4156 } 4157 4158 qdisc_skb_cb(skb)->pkt_len = skb->len; 4159 skb->tc_at_ingress = 1; 4160 qdisc_bstats_cpu_update(cl->q, skb); 4161 4162 switch (tcf_classify(skb, cl, &cl_res, false)) { 4163 case TC_ACT_OK: 4164 case TC_ACT_RECLASSIFY: 4165 skb->tc_index = TC_H_MIN(cl_res.classid); 4166 break; 4167 case TC_ACT_SHOT: 4168 qdisc_qstats_cpu_drop(cl->q); 4169 kfree_skb(skb); 4170 return NULL; 4171 case TC_ACT_STOLEN: 4172 case TC_ACT_QUEUED: 4173 case TC_ACT_TRAP: 4174 consume_skb(skb); 4175 return NULL; 4176 case TC_ACT_REDIRECT: 4177 /* skb_mac_header check was done by cls/act_bpf, so 4178 * we can safely push the L2 header back before 4179 * redirecting to another netdev 4180 */ 4181 __skb_push(skb, skb->mac_len); 4182 skb_do_redirect(skb); 4183 return NULL; 4184 default: 4185 break; 4186 } 4187 #endif /* CONFIG_NET_CLS_ACT */ 4188 return skb; 4189 } 4190 4191 /** 4192 * netdev_is_rx_handler_busy - check if receive handler is registered 4193 * @dev: device to check 4194 * 4195 * Check if a receive handler is already registered for a given device. 4196 * Return true if there one. 4197 * 4198 * The caller must hold the rtnl_mutex. 4199 */ 4200 bool netdev_is_rx_handler_busy(struct net_device *dev) 4201 { 4202 ASSERT_RTNL(); 4203 return dev && rtnl_dereference(dev->rx_handler); 4204 } 4205 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 4206 4207 /** 4208 * netdev_rx_handler_register - register receive handler 4209 * @dev: device to register a handler for 4210 * @rx_handler: receive handler to register 4211 * @rx_handler_data: data pointer that is used by rx handler 4212 * 4213 * Register a receive handler for a device. This handler will then be 4214 * called from __netif_receive_skb. A negative errno code is returned 4215 * on a failure. 4216 * 4217 * The caller must hold the rtnl_mutex. 4218 * 4219 * For a general description of rx_handler, see enum rx_handler_result. 4220 */ 4221 int netdev_rx_handler_register(struct net_device *dev, 4222 rx_handler_func_t *rx_handler, 4223 void *rx_handler_data) 4224 { 4225 if (netdev_is_rx_handler_busy(dev)) 4226 return -EBUSY; 4227 4228 /* Note: rx_handler_data must be set before rx_handler */ 4229 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 4230 rcu_assign_pointer(dev->rx_handler, rx_handler); 4231 4232 return 0; 4233 } 4234 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 4235 4236 /** 4237 * netdev_rx_handler_unregister - unregister receive handler 4238 * @dev: device to unregister a handler from 4239 * 4240 * Unregister a receive handler from a device. 4241 * 4242 * The caller must hold the rtnl_mutex. 4243 */ 4244 void netdev_rx_handler_unregister(struct net_device *dev) 4245 { 4246 4247 ASSERT_RTNL(); 4248 RCU_INIT_POINTER(dev->rx_handler, NULL); 4249 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 4250 * section has a guarantee to see a non NULL rx_handler_data 4251 * as well. 4252 */ 4253 synchronize_net(); 4254 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 4255 } 4256 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 4257 4258 /* 4259 * Limit the use of PFMEMALLOC reserves to those protocols that implement 4260 * the special handling of PFMEMALLOC skbs. 4261 */ 4262 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 4263 { 4264 switch (skb->protocol) { 4265 case htons(ETH_P_ARP): 4266 case htons(ETH_P_IP): 4267 case htons(ETH_P_IPV6): 4268 case htons(ETH_P_8021Q): 4269 case htons(ETH_P_8021AD): 4270 return true; 4271 default: 4272 return false; 4273 } 4274 } 4275 4276 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 4277 int *ret, struct net_device *orig_dev) 4278 { 4279 #ifdef CONFIG_NETFILTER_INGRESS 4280 if (nf_hook_ingress_active(skb)) { 4281 int ingress_retval; 4282 4283 if (*pt_prev) { 4284 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4285 *pt_prev = NULL; 4286 } 4287 4288 rcu_read_lock(); 4289 ingress_retval = nf_hook_ingress(skb); 4290 rcu_read_unlock(); 4291 return ingress_retval; 4292 } 4293 #endif /* CONFIG_NETFILTER_INGRESS */ 4294 return 0; 4295 } 4296 4297 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 4298 { 4299 struct packet_type *ptype, *pt_prev; 4300 rx_handler_func_t *rx_handler; 4301 struct net_device *orig_dev; 4302 bool deliver_exact = false; 4303 int ret = NET_RX_DROP; 4304 __be16 type; 4305 4306 net_timestamp_check(!netdev_tstamp_prequeue, skb); 4307 4308 trace_netif_receive_skb(skb); 4309 4310 orig_dev = skb->dev; 4311 4312 skb_reset_network_header(skb); 4313 if (!skb_transport_header_was_set(skb)) 4314 skb_reset_transport_header(skb); 4315 skb_reset_mac_len(skb); 4316 4317 pt_prev = NULL; 4318 4319 another_round: 4320 skb->skb_iif = skb->dev->ifindex; 4321 4322 __this_cpu_inc(softnet_data.processed); 4323 4324 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 4325 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 4326 skb = skb_vlan_untag(skb); 4327 if (unlikely(!skb)) 4328 goto out; 4329 } 4330 4331 if (skb_skip_tc_classify(skb)) 4332 goto skip_classify; 4333 4334 if (pfmemalloc) 4335 goto skip_taps; 4336 4337 list_for_each_entry_rcu(ptype, &ptype_all, list) { 4338 if (pt_prev) 4339 ret = deliver_skb(skb, pt_prev, orig_dev); 4340 pt_prev = ptype; 4341 } 4342 4343 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 4344 if (pt_prev) 4345 ret = deliver_skb(skb, pt_prev, orig_dev); 4346 pt_prev = ptype; 4347 } 4348 4349 skip_taps: 4350 #ifdef CONFIG_NET_INGRESS 4351 if (static_key_false(&ingress_needed)) { 4352 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev); 4353 if (!skb) 4354 goto out; 4355 4356 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 4357 goto out; 4358 } 4359 #endif 4360 skb_reset_tc(skb); 4361 skip_classify: 4362 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 4363 goto drop; 4364 4365 if (skb_vlan_tag_present(skb)) { 4366 if (pt_prev) { 4367 ret = deliver_skb(skb, pt_prev, orig_dev); 4368 pt_prev = NULL; 4369 } 4370 if (vlan_do_receive(&skb)) 4371 goto another_round; 4372 else if (unlikely(!skb)) 4373 goto out; 4374 } 4375 4376 rx_handler = rcu_dereference(skb->dev->rx_handler); 4377 if (rx_handler) { 4378 if (pt_prev) { 4379 ret = deliver_skb(skb, pt_prev, orig_dev); 4380 pt_prev = NULL; 4381 } 4382 switch (rx_handler(&skb)) { 4383 case RX_HANDLER_CONSUMED: 4384 ret = NET_RX_SUCCESS; 4385 goto out; 4386 case RX_HANDLER_ANOTHER: 4387 goto another_round; 4388 case RX_HANDLER_EXACT: 4389 deliver_exact = true; 4390 case RX_HANDLER_PASS: 4391 break; 4392 default: 4393 BUG(); 4394 } 4395 } 4396 4397 if (unlikely(skb_vlan_tag_present(skb))) { 4398 if (skb_vlan_tag_get_id(skb)) 4399 skb->pkt_type = PACKET_OTHERHOST; 4400 /* Note: we might in the future use prio bits 4401 * and set skb->priority like in vlan_do_receive() 4402 * For the time being, just ignore Priority Code Point 4403 */ 4404 skb->vlan_tci = 0; 4405 } 4406 4407 type = skb->protocol; 4408 4409 /* deliver only exact match when indicated */ 4410 if (likely(!deliver_exact)) { 4411 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4412 &ptype_base[ntohs(type) & 4413 PTYPE_HASH_MASK]); 4414 } 4415 4416 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4417 &orig_dev->ptype_specific); 4418 4419 if (unlikely(skb->dev != orig_dev)) { 4420 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4421 &skb->dev->ptype_specific); 4422 } 4423 4424 if (pt_prev) { 4425 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 4426 goto drop; 4427 else 4428 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 4429 } else { 4430 drop: 4431 if (!deliver_exact) 4432 atomic_long_inc(&skb->dev->rx_dropped); 4433 else 4434 atomic_long_inc(&skb->dev->rx_nohandler); 4435 kfree_skb(skb); 4436 /* Jamal, now you will not able to escape explaining 4437 * me how you were going to use this. :-) 4438 */ 4439 ret = NET_RX_DROP; 4440 } 4441 4442 out: 4443 return ret; 4444 } 4445 4446 static int __netif_receive_skb(struct sk_buff *skb) 4447 { 4448 int ret; 4449 4450 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 4451 unsigned int noreclaim_flag; 4452 4453 /* 4454 * PFMEMALLOC skbs are special, they should 4455 * - be delivered to SOCK_MEMALLOC sockets only 4456 * - stay away from userspace 4457 * - have bounded memory usage 4458 * 4459 * Use PF_MEMALLOC as this saves us from propagating the allocation 4460 * context down to all allocation sites. 4461 */ 4462 noreclaim_flag = memalloc_noreclaim_save(); 4463 ret = __netif_receive_skb_core(skb, true); 4464 memalloc_noreclaim_restore(noreclaim_flag); 4465 } else 4466 ret = __netif_receive_skb_core(skb, false); 4467 4468 return ret; 4469 } 4470 4471 static int generic_xdp_install(struct net_device *dev, struct netdev_xdp *xdp) 4472 { 4473 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 4474 struct bpf_prog *new = xdp->prog; 4475 int ret = 0; 4476 4477 switch (xdp->command) { 4478 case XDP_SETUP_PROG: 4479 rcu_assign_pointer(dev->xdp_prog, new); 4480 if (old) 4481 bpf_prog_put(old); 4482 4483 if (old && !new) { 4484 static_key_slow_dec(&generic_xdp_needed); 4485 } else if (new && !old) { 4486 static_key_slow_inc(&generic_xdp_needed); 4487 dev_disable_lro(dev); 4488 } 4489 break; 4490 4491 case XDP_QUERY_PROG: 4492 xdp->prog_attached = !!old; 4493 xdp->prog_id = old ? old->aux->id : 0; 4494 break; 4495 4496 default: 4497 ret = -EINVAL; 4498 break; 4499 } 4500 4501 return ret; 4502 } 4503 4504 static int netif_receive_skb_internal(struct sk_buff *skb) 4505 { 4506 int ret; 4507 4508 net_timestamp_check(netdev_tstamp_prequeue, skb); 4509 4510 if (skb_defer_rx_timestamp(skb)) 4511 return NET_RX_SUCCESS; 4512 4513 if (static_key_false(&generic_xdp_needed)) { 4514 int ret; 4515 4516 preempt_disable(); 4517 rcu_read_lock(); 4518 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 4519 rcu_read_unlock(); 4520 preempt_enable(); 4521 4522 if (ret != XDP_PASS) 4523 return NET_RX_DROP; 4524 } 4525 4526 rcu_read_lock(); 4527 #ifdef CONFIG_RPS 4528 if (static_key_false(&rps_needed)) { 4529 struct rps_dev_flow voidflow, *rflow = &voidflow; 4530 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 4531 4532 if (cpu >= 0) { 4533 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4534 rcu_read_unlock(); 4535 return ret; 4536 } 4537 } 4538 #endif 4539 ret = __netif_receive_skb(skb); 4540 rcu_read_unlock(); 4541 return ret; 4542 } 4543 4544 /** 4545 * netif_receive_skb - process receive buffer from network 4546 * @skb: buffer to process 4547 * 4548 * netif_receive_skb() is the main receive data processing function. 4549 * It always succeeds. The buffer may be dropped during processing 4550 * for congestion control or by the protocol layers. 4551 * 4552 * This function may only be called from softirq context and interrupts 4553 * should be enabled. 4554 * 4555 * Return values (usually ignored): 4556 * NET_RX_SUCCESS: no congestion 4557 * NET_RX_DROP: packet was dropped 4558 */ 4559 int netif_receive_skb(struct sk_buff *skb) 4560 { 4561 trace_netif_receive_skb_entry(skb); 4562 4563 return netif_receive_skb_internal(skb); 4564 } 4565 EXPORT_SYMBOL(netif_receive_skb); 4566 4567 DEFINE_PER_CPU(struct work_struct, flush_works); 4568 4569 /* Network device is going away, flush any packets still pending */ 4570 static void flush_backlog(struct work_struct *work) 4571 { 4572 struct sk_buff *skb, *tmp; 4573 struct softnet_data *sd; 4574 4575 local_bh_disable(); 4576 sd = this_cpu_ptr(&softnet_data); 4577 4578 local_irq_disable(); 4579 rps_lock(sd); 4580 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 4581 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 4582 __skb_unlink(skb, &sd->input_pkt_queue); 4583 kfree_skb(skb); 4584 input_queue_head_incr(sd); 4585 } 4586 } 4587 rps_unlock(sd); 4588 local_irq_enable(); 4589 4590 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 4591 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 4592 __skb_unlink(skb, &sd->process_queue); 4593 kfree_skb(skb); 4594 input_queue_head_incr(sd); 4595 } 4596 } 4597 local_bh_enable(); 4598 } 4599 4600 static void flush_all_backlogs(void) 4601 { 4602 unsigned int cpu; 4603 4604 get_online_cpus(); 4605 4606 for_each_online_cpu(cpu) 4607 queue_work_on(cpu, system_highpri_wq, 4608 per_cpu_ptr(&flush_works, cpu)); 4609 4610 for_each_online_cpu(cpu) 4611 flush_work(per_cpu_ptr(&flush_works, cpu)); 4612 4613 put_online_cpus(); 4614 } 4615 4616 static int napi_gro_complete(struct sk_buff *skb) 4617 { 4618 struct packet_offload *ptype; 4619 __be16 type = skb->protocol; 4620 struct list_head *head = &offload_base; 4621 int err = -ENOENT; 4622 4623 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 4624 4625 if (NAPI_GRO_CB(skb)->count == 1) { 4626 skb_shinfo(skb)->gso_size = 0; 4627 goto out; 4628 } 4629 4630 rcu_read_lock(); 4631 list_for_each_entry_rcu(ptype, head, list) { 4632 if (ptype->type != type || !ptype->callbacks.gro_complete) 4633 continue; 4634 4635 err = ptype->callbacks.gro_complete(skb, 0); 4636 break; 4637 } 4638 rcu_read_unlock(); 4639 4640 if (err) { 4641 WARN_ON(&ptype->list == head); 4642 kfree_skb(skb); 4643 return NET_RX_SUCCESS; 4644 } 4645 4646 out: 4647 return netif_receive_skb_internal(skb); 4648 } 4649 4650 /* napi->gro_list contains packets ordered by age. 4651 * youngest packets at the head of it. 4652 * Complete skbs in reverse order to reduce latencies. 4653 */ 4654 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 4655 { 4656 struct sk_buff *skb, *prev = NULL; 4657 4658 /* scan list and build reverse chain */ 4659 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 4660 skb->prev = prev; 4661 prev = skb; 4662 } 4663 4664 for (skb = prev; skb; skb = prev) { 4665 skb->next = NULL; 4666 4667 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 4668 return; 4669 4670 prev = skb->prev; 4671 napi_gro_complete(skb); 4672 napi->gro_count--; 4673 } 4674 4675 napi->gro_list = NULL; 4676 } 4677 EXPORT_SYMBOL(napi_gro_flush); 4678 4679 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 4680 { 4681 struct sk_buff *p; 4682 unsigned int maclen = skb->dev->hard_header_len; 4683 u32 hash = skb_get_hash_raw(skb); 4684 4685 for (p = napi->gro_list; p; p = p->next) { 4686 unsigned long diffs; 4687 4688 NAPI_GRO_CB(p)->flush = 0; 4689 4690 if (hash != skb_get_hash_raw(p)) { 4691 NAPI_GRO_CB(p)->same_flow = 0; 4692 continue; 4693 } 4694 4695 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 4696 diffs |= p->vlan_tci ^ skb->vlan_tci; 4697 diffs |= skb_metadata_dst_cmp(p, skb); 4698 if (maclen == ETH_HLEN) 4699 diffs |= compare_ether_header(skb_mac_header(p), 4700 skb_mac_header(skb)); 4701 else if (!diffs) 4702 diffs = memcmp(skb_mac_header(p), 4703 skb_mac_header(skb), 4704 maclen); 4705 NAPI_GRO_CB(p)->same_flow = !diffs; 4706 } 4707 } 4708 4709 static void skb_gro_reset_offset(struct sk_buff *skb) 4710 { 4711 const struct skb_shared_info *pinfo = skb_shinfo(skb); 4712 const skb_frag_t *frag0 = &pinfo->frags[0]; 4713 4714 NAPI_GRO_CB(skb)->data_offset = 0; 4715 NAPI_GRO_CB(skb)->frag0 = NULL; 4716 NAPI_GRO_CB(skb)->frag0_len = 0; 4717 4718 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 4719 pinfo->nr_frags && 4720 !PageHighMem(skb_frag_page(frag0))) { 4721 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 4722 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 4723 skb_frag_size(frag0), 4724 skb->end - skb->tail); 4725 } 4726 } 4727 4728 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 4729 { 4730 struct skb_shared_info *pinfo = skb_shinfo(skb); 4731 4732 BUG_ON(skb->end - skb->tail < grow); 4733 4734 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 4735 4736 skb->data_len -= grow; 4737 skb->tail += grow; 4738 4739 pinfo->frags[0].page_offset += grow; 4740 skb_frag_size_sub(&pinfo->frags[0], grow); 4741 4742 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 4743 skb_frag_unref(skb, 0); 4744 memmove(pinfo->frags, pinfo->frags + 1, 4745 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 4746 } 4747 } 4748 4749 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4750 { 4751 struct sk_buff **pp = NULL; 4752 struct packet_offload *ptype; 4753 __be16 type = skb->protocol; 4754 struct list_head *head = &offload_base; 4755 int same_flow; 4756 enum gro_result ret; 4757 int grow; 4758 4759 if (netif_elide_gro(skb->dev)) 4760 goto normal; 4761 4762 gro_list_prepare(napi, skb); 4763 4764 rcu_read_lock(); 4765 list_for_each_entry_rcu(ptype, head, list) { 4766 if (ptype->type != type || !ptype->callbacks.gro_receive) 4767 continue; 4768 4769 skb_set_network_header(skb, skb_gro_offset(skb)); 4770 skb_reset_mac_len(skb); 4771 NAPI_GRO_CB(skb)->same_flow = 0; 4772 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 4773 NAPI_GRO_CB(skb)->free = 0; 4774 NAPI_GRO_CB(skb)->encap_mark = 0; 4775 NAPI_GRO_CB(skb)->recursion_counter = 0; 4776 NAPI_GRO_CB(skb)->is_fou = 0; 4777 NAPI_GRO_CB(skb)->is_atomic = 1; 4778 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 4779 4780 /* Setup for GRO checksum validation */ 4781 switch (skb->ip_summed) { 4782 case CHECKSUM_COMPLETE: 4783 NAPI_GRO_CB(skb)->csum = skb->csum; 4784 NAPI_GRO_CB(skb)->csum_valid = 1; 4785 NAPI_GRO_CB(skb)->csum_cnt = 0; 4786 break; 4787 case CHECKSUM_UNNECESSARY: 4788 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 4789 NAPI_GRO_CB(skb)->csum_valid = 0; 4790 break; 4791 default: 4792 NAPI_GRO_CB(skb)->csum_cnt = 0; 4793 NAPI_GRO_CB(skb)->csum_valid = 0; 4794 } 4795 4796 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 4797 break; 4798 } 4799 rcu_read_unlock(); 4800 4801 if (&ptype->list == head) 4802 goto normal; 4803 4804 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) { 4805 ret = GRO_CONSUMED; 4806 goto ok; 4807 } 4808 4809 same_flow = NAPI_GRO_CB(skb)->same_flow; 4810 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 4811 4812 if (pp) { 4813 struct sk_buff *nskb = *pp; 4814 4815 *pp = nskb->next; 4816 nskb->next = NULL; 4817 napi_gro_complete(nskb); 4818 napi->gro_count--; 4819 } 4820 4821 if (same_flow) 4822 goto ok; 4823 4824 if (NAPI_GRO_CB(skb)->flush) 4825 goto normal; 4826 4827 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) { 4828 struct sk_buff *nskb = napi->gro_list; 4829 4830 /* locate the end of the list to select the 'oldest' flow */ 4831 while (nskb->next) { 4832 pp = &nskb->next; 4833 nskb = *pp; 4834 } 4835 *pp = NULL; 4836 nskb->next = NULL; 4837 napi_gro_complete(nskb); 4838 } else { 4839 napi->gro_count++; 4840 } 4841 NAPI_GRO_CB(skb)->count = 1; 4842 NAPI_GRO_CB(skb)->age = jiffies; 4843 NAPI_GRO_CB(skb)->last = skb; 4844 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 4845 skb->next = napi->gro_list; 4846 napi->gro_list = skb; 4847 ret = GRO_HELD; 4848 4849 pull: 4850 grow = skb_gro_offset(skb) - skb_headlen(skb); 4851 if (grow > 0) 4852 gro_pull_from_frag0(skb, grow); 4853 ok: 4854 return ret; 4855 4856 normal: 4857 ret = GRO_NORMAL; 4858 goto pull; 4859 } 4860 4861 struct packet_offload *gro_find_receive_by_type(__be16 type) 4862 { 4863 struct list_head *offload_head = &offload_base; 4864 struct packet_offload *ptype; 4865 4866 list_for_each_entry_rcu(ptype, offload_head, list) { 4867 if (ptype->type != type || !ptype->callbacks.gro_receive) 4868 continue; 4869 return ptype; 4870 } 4871 return NULL; 4872 } 4873 EXPORT_SYMBOL(gro_find_receive_by_type); 4874 4875 struct packet_offload *gro_find_complete_by_type(__be16 type) 4876 { 4877 struct list_head *offload_head = &offload_base; 4878 struct packet_offload *ptype; 4879 4880 list_for_each_entry_rcu(ptype, offload_head, list) { 4881 if (ptype->type != type || !ptype->callbacks.gro_complete) 4882 continue; 4883 return ptype; 4884 } 4885 return NULL; 4886 } 4887 EXPORT_SYMBOL(gro_find_complete_by_type); 4888 4889 static void napi_skb_free_stolen_head(struct sk_buff *skb) 4890 { 4891 skb_dst_drop(skb); 4892 secpath_reset(skb); 4893 kmem_cache_free(skbuff_head_cache, skb); 4894 } 4895 4896 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 4897 { 4898 switch (ret) { 4899 case GRO_NORMAL: 4900 if (netif_receive_skb_internal(skb)) 4901 ret = GRO_DROP; 4902 break; 4903 4904 case GRO_DROP: 4905 kfree_skb(skb); 4906 break; 4907 4908 case GRO_MERGED_FREE: 4909 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 4910 napi_skb_free_stolen_head(skb); 4911 else 4912 __kfree_skb(skb); 4913 break; 4914 4915 case GRO_HELD: 4916 case GRO_MERGED: 4917 case GRO_CONSUMED: 4918 break; 4919 } 4920 4921 return ret; 4922 } 4923 4924 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4925 { 4926 skb_mark_napi_id(skb, napi); 4927 trace_napi_gro_receive_entry(skb); 4928 4929 skb_gro_reset_offset(skb); 4930 4931 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 4932 } 4933 EXPORT_SYMBOL(napi_gro_receive); 4934 4935 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 4936 { 4937 if (unlikely(skb->pfmemalloc)) { 4938 consume_skb(skb); 4939 return; 4940 } 4941 __skb_pull(skb, skb_headlen(skb)); 4942 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 4943 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 4944 skb->vlan_tci = 0; 4945 skb->dev = napi->dev; 4946 skb->skb_iif = 0; 4947 skb->encapsulation = 0; 4948 skb_shinfo(skb)->gso_type = 0; 4949 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 4950 secpath_reset(skb); 4951 4952 napi->skb = skb; 4953 } 4954 4955 struct sk_buff *napi_get_frags(struct napi_struct *napi) 4956 { 4957 struct sk_buff *skb = napi->skb; 4958 4959 if (!skb) { 4960 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 4961 if (skb) { 4962 napi->skb = skb; 4963 skb_mark_napi_id(skb, napi); 4964 } 4965 } 4966 return skb; 4967 } 4968 EXPORT_SYMBOL(napi_get_frags); 4969 4970 static gro_result_t napi_frags_finish(struct napi_struct *napi, 4971 struct sk_buff *skb, 4972 gro_result_t ret) 4973 { 4974 switch (ret) { 4975 case GRO_NORMAL: 4976 case GRO_HELD: 4977 __skb_push(skb, ETH_HLEN); 4978 skb->protocol = eth_type_trans(skb, skb->dev); 4979 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 4980 ret = GRO_DROP; 4981 break; 4982 4983 case GRO_DROP: 4984 napi_reuse_skb(napi, skb); 4985 break; 4986 4987 case GRO_MERGED_FREE: 4988 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 4989 napi_skb_free_stolen_head(skb); 4990 else 4991 napi_reuse_skb(napi, skb); 4992 break; 4993 4994 case GRO_MERGED: 4995 case GRO_CONSUMED: 4996 break; 4997 } 4998 4999 return ret; 5000 } 5001 5002 /* Upper GRO stack assumes network header starts at gro_offset=0 5003 * Drivers could call both napi_gro_frags() and napi_gro_receive() 5004 * We copy ethernet header into skb->data to have a common layout. 5005 */ 5006 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 5007 { 5008 struct sk_buff *skb = napi->skb; 5009 const struct ethhdr *eth; 5010 unsigned int hlen = sizeof(*eth); 5011 5012 napi->skb = NULL; 5013 5014 skb_reset_mac_header(skb); 5015 skb_gro_reset_offset(skb); 5016 5017 eth = skb_gro_header_fast(skb, 0); 5018 if (unlikely(skb_gro_header_hard(skb, hlen))) { 5019 eth = skb_gro_header_slow(skb, hlen, 0); 5020 if (unlikely(!eth)) { 5021 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 5022 __func__, napi->dev->name); 5023 napi_reuse_skb(napi, skb); 5024 return NULL; 5025 } 5026 } else { 5027 gro_pull_from_frag0(skb, hlen); 5028 NAPI_GRO_CB(skb)->frag0 += hlen; 5029 NAPI_GRO_CB(skb)->frag0_len -= hlen; 5030 } 5031 __skb_pull(skb, hlen); 5032 5033 /* 5034 * This works because the only protocols we care about don't require 5035 * special handling. 5036 * We'll fix it up properly in napi_frags_finish() 5037 */ 5038 skb->protocol = eth->h_proto; 5039 5040 return skb; 5041 } 5042 5043 gro_result_t napi_gro_frags(struct napi_struct *napi) 5044 { 5045 struct sk_buff *skb = napi_frags_skb(napi); 5046 5047 if (!skb) 5048 return GRO_DROP; 5049 5050 trace_napi_gro_frags_entry(skb); 5051 5052 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 5053 } 5054 EXPORT_SYMBOL(napi_gro_frags); 5055 5056 /* Compute the checksum from gro_offset and return the folded value 5057 * after adding in any pseudo checksum. 5058 */ 5059 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 5060 { 5061 __wsum wsum; 5062 __sum16 sum; 5063 5064 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 5065 5066 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 5067 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 5068 if (likely(!sum)) { 5069 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 5070 !skb->csum_complete_sw) 5071 netdev_rx_csum_fault(skb->dev); 5072 } 5073 5074 NAPI_GRO_CB(skb)->csum = wsum; 5075 NAPI_GRO_CB(skb)->csum_valid = 1; 5076 5077 return sum; 5078 } 5079 EXPORT_SYMBOL(__skb_gro_checksum_complete); 5080 5081 static void net_rps_send_ipi(struct softnet_data *remsd) 5082 { 5083 #ifdef CONFIG_RPS 5084 while (remsd) { 5085 struct softnet_data *next = remsd->rps_ipi_next; 5086 5087 if (cpu_online(remsd->cpu)) 5088 smp_call_function_single_async(remsd->cpu, &remsd->csd); 5089 remsd = next; 5090 } 5091 #endif 5092 } 5093 5094 /* 5095 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 5096 * Note: called with local irq disabled, but exits with local irq enabled. 5097 */ 5098 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 5099 { 5100 #ifdef CONFIG_RPS 5101 struct softnet_data *remsd = sd->rps_ipi_list; 5102 5103 if (remsd) { 5104 sd->rps_ipi_list = NULL; 5105 5106 local_irq_enable(); 5107 5108 /* Send pending IPI's to kick RPS processing on remote cpus. */ 5109 net_rps_send_ipi(remsd); 5110 } else 5111 #endif 5112 local_irq_enable(); 5113 } 5114 5115 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 5116 { 5117 #ifdef CONFIG_RPS 5118 return sd->rps_ipi_list != NULL; 5119 #else 5120 return false; 5121 #endif 5122 } 5123 5124 static int process_backlog(struct napi_struct *napi, int quota) 5125 { 5126 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 5127 bool again = true; 5128 int work = 0; 5129 5130 /* Check if we have pending ipi, its better to send them now, 5131 * not waiting net_rx_action() end. 5132 */ 5133 if (sd_has_rps_ipi_waiting(sd)) { 5134 local_irq_disable(); 5135 net_rps_action_and_irq_enable(sd); 5136 } 5137 5138 napi->weight = dev_rx_weight; 5139 while (again) { 5140 struct sk_buff *skb; 5141 5142 while ((skb = __skb_dequeue(&sd->process_queue))) { 5143 rcu_read_lock(); 5144 __netif_receive_skb(skb); 5145 rcu_read_unlock(); 5146 input_queue_head_incr(sd); 5147 if (++work >= quota) 5148 return work; 5149 5150 } 5151 5152 local_irq_disable(); 5153 rps_lock(sd); 5154 if (skb_queue_empty(&sd->input_pkt_queue)) { 5155 /* 5156 * Inline a custom version of __napi_complete(). 5157 * only current cpu owns and manipulates this napi, 5158 * and NAPI_STATE_SCHED is the only possible flag set 5159 * on backlog. 5160 * We can use a plain write instead of clear_bit(), 5161 * and we dont need an smp_mb() memory barrier. 5162 */ 5163 napi->state = 0; 5164 again = false; 5165 } else { 5166 skb_queue_splice_tail_init(&sd->input_pkt_queue, 5167 &sd->process_queue); 5168 } 5169 rps_unlock(sd); 5170 local_irq_enable(); 5171 } 5172 5173 return work; 5174 } 5175 5176 /** 5177 * __napi_schedule - schedule for receive 5178 * @n: entry to schedule 5179 * 5180 * The entry's receive function will be scheduled to run. 5181 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 5182 */ 5183 void __napi_schedule(struct napi_struct *n) 5184 { 5185 unsigned long flags; 5186 5187 local_irq_save(flags); 5188 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5189 local_irq_restore(flags); 5190 } 5191 EXPORT_SYMBOL(__napi_schedule); 5192 5193 /** 5194 * napi_schedule_prep - check if napi can be scheduled 5195 * @n: napi context 5196 * 5197 * Test if NAPI routine is already running, and if not mark 5198 * it as running. This is used as a condition variable 5199 * insure only one NAPI poll instance runs. We also make 5200 * sure there is no pending NAPI disable. 5201 */ 5202 bool napi_schedule_prep(struct napi_struct *n) 5203 { 5204 unsigned long val, new; 5205 5206 do { 5207 val = READ_ONCE(n->state); 5208 if (unlikely(val & NAPIF_STATE_DISABLE)) 5209 return false; 5210 new = val | NAPIF_STATE_SCHED; 5211 5212 /* Sets STATE_MISSED bit if STATE_SCHED was already set 5213 * This was suggested by Alexander Duyck, as compiler 5214 * emits better code than : 5215 * if (val & NAPIF_STATE_SCHED) 5216 * new |= NAPIF_STATE_MISSED; 5217 */ 5218 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 5219 NAPIF_STATE_MISSED; 5220 } while (cmpxchg(&n->state, val, new) != val); 5221 5222 return !(val & NAPIF_STATE_SCHED); 5223 } 5224 EXPORT_SYMBOL(napi_schedule_prep); 5225 5226 /** 5227 * __napi_schedule_irqoff - schedule for receive 5228 * @n: entry to schedule 5229 * 5230 * Variant of __napi_schedule() assuming hard irqs are masked 5231 */ 5232 void __napi_schedule_irqoff(struct napi_struct *n) 5233 { 5234 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5235 } 5236 EXPORT_SYMBOL(__napi_schedule_irqoff); 5237 5238 bool napi_complete_done(struct napi_struct *n, int work_done) 5239 { 5240 unsigned long flags, val, new; 5241 5242 /* 5243 * 1) Don't let napi dequeue from the cpu poll list 5244 * just in case its running on a different cpu. 5245 * 2) If we are busy polling, do nothing here, we have 5246 * the guarantee we will be called later. 5247 */ 5248 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 5249 NAPIF_STATE_IN_BUSY_POLL))) 5250 return false; 5251 5252 if (n->gro_list) { 5253 unsigned long timeout = 0; 5254 5255 if (work_done) 5256 timeout = n->dev->gro_flush_timeout; 5257 5258 if (timeout) 5259 hrtimer_start(&n->timer, ns_to_ktime(timeout), 5260 HRTIMER_MODE_REL_PINNED); 5261 else 5262 napi_gro_flush(n, false); 5263 } 5264 if (unlikely(!list_empty(&n->poll_list))) { 5265 /* If n->poll_list is not empty, we need to mask irqs */ 5266 local_irq_save(flags); 5267 list_del_init(&n->poll_list); 5268 local_irq_restore(flags); 5269 } 5270 5271 do { 5272 val = READ_ONCE(n->state); 5273 5274 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 5275 5276 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED); 5277 5278 /* If STATE_MISSED was set, leave STATE_SCHED set, 5279 * because we will call napi->poll() one more time. 5280 * This C code was suggested by Alexander Duyck to help gcc. 5281 */ 5282 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 5283 NAPIF_STATE_SCHED; 5284 } while (cmpxchg(&n->state, val, new) != val); 5285 5286 if (unlikely(val & NAPIF_STATE_MISSED)) { 5287 __napi_schedule(n); 5288 return false; 5289 } 5290 5291 return true; 5292 } 5293 EXPORT_SYMBOL(napi_complete_done); 5294 5295 /* must be called under rcu_read_lock(), as we dont take a reference */ 5296 static struct napi_struct *napi_by_id(unsigned int napi_id) 5297 { 5298 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 5299 struct napi_struct *napi; 5300 5301 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 5302 if (napi->napi_id == napi_id) 5303 return napi; 5304 5305 return NULL; 5306 } 5307 5308 #if defined(CONFIG_NET_RX_BUSY_POLL) 5309 5310 #define BUSY_POLL_BUDGET 8 5311 5312 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock) 5313 { 5314 int rc; 5315 5316 /* Busy polling means there is a high chance device driver hard irq 5317 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 5318 * set in napi_schedule_prep(). 5319 * Since we are about to call napi->poll() once more, we can safely 5320 * clear NAPI_STATE_MISSED. 5321 * 5322 * Note: x86 could use a single "lock and ..." instruction 5323 * to perform these two clear_bit() 5324 */ 5325 clear_bit(NAPI_STATE_MISSED, &napi->state); 5326 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 5327 5328 local_bh_disable(); 5329 5330 /* All we really want here is to re-enable device interrupts. 5331 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 5332 */ 5333 rc = napi->poll(napi, BUSY_POLL_BUDGET); 5334 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET); 5335 netpoll_poll_unlock(have_poll_lock); 5336 if (rc == BUSY_POLL_BUDGET) 5337 __napi_schedule(napi); 5338 local_bh_enable(); 5339 } 5340 5341 void napi_busy_loop(unsigned int napi_id, 5342 bool (*loop_end)(void *, unsigned long), 5343 void *loop_end_arg) 5344 { 5345 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 5346 int (*napi_poll)(struct napi_struct *napi, int budget); 5347 void *have_poll_lock = NULL; 5348 struct napi_struct *napi; 5349 5350 restart: 5351 napi_poll = NULL; 5352 5353 rcu_read_lock(); 5354 5355 napi = napi_by_id(napi_id); 5356 if (!napi) 5357 goto out; 5358 5359 preempt_disable(); 5360 for (;;) { 5361 int work = 0; 5362 5363 local_bh_disable(); 5364 if (!napi_poll) { 5365 unsigned long val = READ_ONCE(napi->state); 5366 5367 /* If multiple threads are competing for this napi, 5368 * we avoid dirtying napi->state as much as we can. 5369 */ 5370 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 5371 NAPIF_STATE_IN_BUSY_POLL)) 5372 goto count; 5373 if (cmpxchg(&napi->state, val, 5374 val | NAPIF_STATE_IN_BUSY_POLL | 5375 NAPIF_STATE_SCHED) != val) 5376 goto count; 5377 have_poll_lock = netpoll_poll_lock(napi); 5378 napi_poll = napi->poll; 5379 } 5380 work = napi_poll(napi, BUSY_POLL_BUDGET); 5381 trace_napi_poll(napi, work, BUSY_POLL_BUDGET); 5382 count: 5383 if (work > 0) 5384 __NET_ADD_STATS(dev_net(napi->dev), 5385 LINUX_MIB_BUSYPOLLRXPACKETS, work); 5386 local_bh_enable(); 5387 5388 if (!loop_end || loop_end(loop_end_arg, start_time)) 5389 break; 5390 5391 if (unlikely(need_resched())) { 5392 if (napi_poll) 5393 busy_poll_stop(napi, have_poll_lock); 5394 preempt_enable(); 5395 rcu_read_unlock(); 5396 cond_resched(); 5397 if (loop_end(loop_end_arg, start_time)) 5398 return; 5399 goto restart; 5400 } 5401 cpu_relax(); 5402 } 5403 if (napi_poll) 5404 busy_poll_stop(napi, have_poll_lock); 5405 preempt_enable(); 5406 out: 5407 rcu_read_unlock(); 5408 } 5409 EXPORT_SYMBOL(napi_busy_loop); 5410 5411 #endif /* CONFIG_NET_RX_BUSY_POLL */ 5412 5413 static void napi_hash_add(struct napi_struct *napi) 5414 { 5415 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) || 5416 test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) 5417 return; 5418 5419 spin_lock(&napi_hash_lock); 5420 5421 /* 0..NR_CPUS range is reserved for sender_cpu use */ 5422 do { 5423 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 5424 napi_gen_id = MIN_NAPI_ID; 5425 } while (napi_by_id(napi_gen_id)); 5426 napi->napi_id = napi_gen_id; 5427 5428 hlist_add_head_rcu(&napi->napi_hash_node, 5429 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 5430 5431 spin_unlock(&napi_hash_lock); 5432 } 5433 5434 /* Warning : caller is responsible to make sure rcu grace period 5435 * is respected before freeing memory containing @napi 5436 */ 5437 bool napi_hash_del(struct napi_struct *napi) 5438 { 5439 bool rcu_sync_needed = false; 5440 5441 spin_lock(&napi_hash_lock); 5442 5443 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) { 5444 rcu_sync_needed = true; 5445 hlist_del_rcu(&napi->napi_hash_node); 5446 } 5447 spin_unlock(&napi_hash_lock); 5448 return rcu_sync_needed; 5449 } 5450 EXPORT_SYMBOL_GPL(napi_hash_del); 5451 5452 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 5453 { 5454 struct napi_struct *napi; 5455 5456 napi = container_of(timer, struct napi_struct, timer); 5457 5458 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 5459 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 5460 */ 5461 if (napi->gro_list && !napi_disable_pending(napi) && 5462 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) 5463 __napi_schedule_irqoff(napi); 5464 5465 return HRTIMER_NORESTART; 5466 } 5467 5468 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 5469 int (*poll)(struct napi_struct *, int), int weight) 5470 { 5471 INIT_LIST_HEAD(&napi->poll_list); 5472 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 5473 napi->timer.function = napi_watchdog; 5474 napi->gro_count = 0; 5475 napi->gro_list = NULL; 5476 napi->skb = NULL; 5477 napi->poll = poll; 5478 if (weight > NAPI_POLL_WEIGHT) 5479 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 5480 weight, dev->name); 5481 napi->weight = weight; 5482 list_add(&napi->dev_list, &dev->napi_list); 5483 napi->dev = dev; 5484 #ifdef CONFIG_NETPOLL 5485 napi->poll_owner = -1; 5486 #endif 5487 set_bit(NAPI_STATE_SCHED, &napi->state); 5488 napi_hash_add(napi); 5489 } 5490 EXPORT_SYMBOL(netif_napi_add); 5491 5492 void napi_disable(struct napi_struct *n) 5493 { 5494 might_sleep(); 5495 set_bit(NAPI_STATE_DISABLE, &n->state); 5496 5497 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 5498 msleep(1); 5499 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 5500 msleep(1); 5501 5502 hrtimer_cancel(&n->timer); 5503 5504 clear_bit(NAPI_STATE_DISABLE, &n->state); 5505 } 5506 EXPORT_SYMBOL(napi_disable); 5507 5508 /* Must be called in process context */ 5509 void netif_napi_del(struct napi_struct *napi) 5510 { 5511 might_sleep(); 5512 if (napi_hash_del(napi)) 5513 synchronize_net(); 5514 list_del_init(&napi->dev_list); 5515 napi_free_frags(napi); 5516 5517 kfree_skb_list(napi->gro_list); 5518 napi->gro_list = NULL; 5519 napi->gro_count = 0; 5520 } 5521 EXPORT_SYMBOL(netif_napi_del); 5522 5523 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 5524 { 5525 void *have; 5526 int work, weight; 5527 5528 list_del_init(&n->poll_list); 5529 5530 have = netpoll_poll_lock(n); 5531 5532 weight = n->weight; 5533 5534 /* This NAPI_STATE_SCHED test is for avoiding a race 5535 * with netpoll's poll_napi(). Only the entity which 5536 * obtains the lock and sees NAPI_STATE_SCHED set will 5537 * actually make the ->poll() call. Therefore we avoid 5538 * accidentally calling ->poll() when NAPI is not scheduled. 5539 */ 5540 work = 0; 5541 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 5542 work = n->poll(n, weight); 5543 trace_napi_poll(n, work, weight); 5544 } 5545 5546 WARN_ON_ONCE(work > weight); 5547 5548 if (likely(work < weight)) 5549 goto out_unlock; 5550 5551 /* Drivers must not modify the NAPI state if they 5552 * consume the entire weight. In such cases this code 5553 * still "owns" the NAPI instance and therefore can 5554 * move the instance around on the list at-will. 5555 */ 5556 if (unlikely(napi_disable_pending(n))) { 5557 napi_complete(n); 5558 goto out_unlock; 5559 } 5560 5561 if (n->gro_list) { 5562 /* flush too old packets 5563 * If HZ < 1000, flush all packets. 5564 */ 5565 napi_gro_flush(n, HZ >= 1000); 5566 } 5567 5568 /* Some drivers may have called napi_schedule 5569 * prior to exhausting their budget. 5570 */ 5571 if (unlikely(!list_empty(&n->poll_list))) { 5572 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 5573 n->dev ? n->dev->name : "backlog"); 5574 goto out_unlock; 5575 } 5576 5577 list_add_tail(&n->poll_list, repoll); 5578 5579 out_unlock: 5580 netpoll_poll_unlock(have); 5581 5582 return work; 5583 } 5584 5585 static __latent_entropy void net_rx_action(struct softirq_action *h) 5586 { 5587 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5588 unsigned long time_limit = jiffies + 5589 usecs_to_jiffies(netdev_budget_usecs); 5590 int budget = netdev_budget; 5591 LIST_HEAD(list); 5592 LIST_HEAD(repoll); 5593 5594 local_irq_disable(); 5595 list_splice_init(&sd->poll_list, &list); 5596 local_irq_enable(); 5597 5598 for (;;) { 5599 struct napi_struct *n; 5600 5601 if (list_empty(&list)) { 5602 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 5603 goto out; 5604 break; 5605 } 5606 5607 n = list_first_entry(&list, struct napi_struct, poll_list); 5608 budget -= napi_poll(n, &repoll); 5609 5610 /* If softirq window is exhausted then punt. 5611 * Allow this to run for 2 jiffies since which will allow 5612 * an average latency of 1.5/HZ. 5613 */ 5614 if (unlikely(budget <= 0 || 5615 time_after_eq(jiffies, time_limit))) { 5616 sd->time_squeeze++; 5617 break; 5618 } 5619 } 5620 5621 local_irq_disable(); 5622 5623 list_splice_tail_init(&sd->poll_list, &list); 5624 list_splice_tail(&repoll, &list); 5625 list_splice(&list, &sd->poll_list); 5626 if (!list_empty(&sd->poll_list)) 5627 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5628 5629 net_rps_action_and_irq_enable(sd); 5630 out: 5631 __kfree_skb_flush(); 5632 } 5633 5634 struct netdev_adjacent { 5635 struct net_device *dev; 5636 5637 /* upper master flag, there can only be one master device per list */ 5638 bool master; 5639 5640 /* counter for the number of times this device was added to us */ 5641 u16 ref_nr; 5642 5643 /* private field for the users */ 5644 void *private; 5645 5646 struct list_head list; 5647 struct rcu_head rcu; 5648 }; 5649 5650 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 5651 struct list_head *adj_list) 5652 { 5653 struct netdev_adjacent *adj; 5654 5655 list_for_each_entry(adj, adj_list, list) { 5656 if (adj->dev == adj_dev) 5657 return adj; 5658 } 5659 return NULL; 5660 } 5661 5662 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data) 5663 { 5664 struct net_device *dev = data; 5665 5666 return upper_dev == dev; 5667 } 5668 5669 /** 5670 * netdev_has_upper_dev - Check if device is linked to an upper device 5671 * @dev: device 5672 * @upper_dev: upper device to check 5673 * 5674 * Find out if a device is linked to specified upper device and return true 5675 * in case it is. Note that this checks only immediate upper device, 5676 * not through a complete stack of devices. The caller must hold the RTNL lock. 5677 */ 5678 bool netdev_has_upper_dev(struct net_device *dev, 5679 struct net_device *upper_dev) 5680 { 5681 ASSERT_RTNL(); 5682 5683 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 5684 upper_dev); 5685 } 5686 EXPORT_SYMBOL(netdev_has_upper_dev); 5687 5688 /** 5689 * netdev_has_upper_dev_all - Check if device is linked to an upper device 5690 * @dev: device 5691 * @upper_dev: upper device to check 5692 * 5693 * Find out if a device is linked to specified upper device and return true 5694 * in case it is. Note that this checks the entire upper device chain. 5695 * The caller must hold rcu lock. 5696 */ 5697 5698 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 5699 struct net_device *upper_dev) 5700 { 5701 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 5702 upper_dev); 5703 } 5704 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 5705 5706 /** 5707 * netdev_has_any_upper_dev - Check if device is linked to some device 5708 * @dev: device 5709 * 5710 * Find out if a device is linked to an upper device and return true in case 5711 * it is. The caller must hold the RTNL lock. 5712 */ 5713 bool netdev_has_any_upper_dev(struct net_device *dev) 5714 { 5715 ASSERT_RTNL(); 5716 5717 return !list_empty(&dev->adj_list.upper); 5718 } 5719 EXPORT_SYMBOL(netdev_has_any_upper_dev); 5720 5721 /** 5722 * netdev_master_upper_dev_get - Get master upper device 5723 * @dev: device 5724 * 5725 * Find a master upper device and return pointer to it or NULL in case 5726 * it's not there. The caller must hold the RTNL lock. 5727 */ 5728 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 5729 { 5730 struct netdev_adjacent *upper; 5731 5732 ASSERT_RTNL(); 5733 5734 if (list_empty(&dev->adj_list.upper)) 5735 return NULL; 5736 5737 upper = list_first_entry(&dev->adj_list.upper, 5738 struct netdev_adjacent, list); 5739 if (likely(upper->master)) 5740 return upper->dev; 5741 return NULL; 5742 } 5743 EXPORT_SYMBOL(netdev_master_upper_dev_get); 5744 5745 /** 5746 * netdev_has_any_lower_dev - Check if device is linked to some device 5747 * @dev: device 5748 * 5749 * Find out if a device is linked to a lower device and return true in case 5750 * it is. The caller must hold the RTNL lock. 5751 */ 5752 static bool netdev_has_any_lower_dev(struct net_device *dev) 5753 { 5754 ASSERT_RTNL(); 5755 5756 return !list_empty(&dev->adj_list.lower); 5757 } 5758 5759 void *netdev_adjacent_get_private(struct list_head *adj_list) 5760 { 5761 struct netdev_adjacent *adj; 5762 5763 adj = list_entry(adj_list, struct netdev_adjacent, list); 5764 5765 return adj->private; 5766 } 5767 EXPORT_SYMBOL(netdev_adjacent_get_private); 5768 5769 /** 5770 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 5771 * @dev: device 5772 * @iter: list_head ** of the current position 5773 * 5774 * Gets the next device from the dev's upper list, starting from iter 5775 * position. The caller must hold RCU read lock. 5776 */ 5777 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 5778 struct list_head **iter) 5779 { 5780 struct netdev_adjacent *upper; 5781 5782 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5783 5784 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5785 5786 if (&upper->list == &dev->adj_list.upper) 5787 return NULL; 5788 5789 *iter = &upper->list; 5790 5791 return upper->dev; 5792 } 5793 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 5794 5795 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 5796 struct list_head **iter) 5797 { 5798 struct netdev_adjacent *upper; 5799 5800 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5801 5802 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5803 5804 if (&upper->list == &dev->adj_list.upper) 5805 return NULL; 5806 5807 *iter = &upper->list; 5808 5809 return upper->dev; 5810 } 5811 5812 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 5813 int (*fn)(struct net_device *dev, 5814 void *data), 5815 void *data) 5816 { 5817 struct net_device *udev; 5818 struct list_head *iter; 5819 int ret; 5820 5821 for (iter = &dev->adj_list.upper, 5822 udev = netdev_next_upper_dev_rcu(dev, &iter); 5823 udev; 5824 udev = netdev_next_upper_dev_rcu(dev, &iter)) { 5825 /* first is the upper device itself */ 5826 ret = fn(udev, data); 5827 if (ret) 5828 return ret; 5829 5830 /* then look at all of its upper devices */ 5831 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data); 5832 if (ret) 5833 return ret; 5834 } 5835 5836 return 0; 5837 } 5838 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 5839 5840 /** 5841 * netdev_lower_get_next_private - Get the next ->private from the 5842 * lower neighbour list 5843 * @dev: device 5844 * @iter: list_head ** of the current position 5845 * 5846 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5847 * list, starting from iter position. The caller must hold either hold the 5848 * RTNL lock or its own locking that guarantees that the neighbour lower 5849 * list will remain unchanged. 5850 */ 5851 void *netdev_lower_get_next_private(struct net_device *dev, 5852 struct list_head **iter) 5853 { 5854 struct netdev_adjacent *lower; 5855 5856 lower = list_entry(*iter, struct netdev_adjacent, list); 5857 5858 if (&lower->list == &dev->adj_list.lower) 5859 return NULL; 5860 5861 *iter = lower->list.next; 5862 5863 return lower->private; 5864 } 5865 EXPORT_SYMBOL(netdev_lower_get_next_private); 5866 5867 /** 5868 * netdev_lower_get_next_private_rcu - Get the next ->private from the 5869 * lower neighbour list, RCU 5870 * variant 5871 * @dev: device 5872 * @iter: list_head ** of the current position 5873 * 5874 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5875 * list, starting from iter position. The caller must hold RCU read lock. 5876 */ 5877 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 5878 struct list_head **iter) 5879 { 5880 struct netdev_adjacent *lower; 5881 5882 WARN_ON_ONCE(!rcu_read_lock_held()); 5883 5884 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5885 5886 if (&lower->list == &dev->adj_list.lower) 5887 return NULL; 5888 5889 *iter = &lower->list; 5890 5891 return lower->private; 5892 } 5893 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 5894 5895 /** 5896 * netdev_lower_get_next - Get the next device from the lower neighbour 5897 * list 5898 * @dev: device 5899 * @iter: list_head ** of the current position 5900 * 5901 * Gets the next netdev_adjacent from the dev's lower neighbour 5902 * list, starting from iter position. The caller must hold RTNL lock or 5903 * its own locking that guarantees that the neighbour lower 5904 * list will remain unchanged. 5905 */ 5906 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 5907 { 5908 struct netdev_adjacent *lower; 5909 5910 lower = list_entry(*iter, struct netdev_adjacent, list); 5911 5912 if (&lower->list == &dev->adj_list.lower) 5913 return NULL; 5914 5915 *iter = lower->list.next; 5916 5917 return lower->dev; 5918 } 5919 EXPORT_SYMBOL(netdev_lower_get_next); 5920 5921 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 5922 struct list_head **iter) 5923 { 5924 struct netdev_adjacent *lower; 5925 5926 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 5927 5928 if (&lower->list == &dev->adj_list.lower) 5929 return NULL; 5930 5931 *iter = &lower->list; 5932 5933 return lower->dev; 5934 } 5935 5936 int netdev_walk_all_lower_dev(struct net_device *dev, 5937 int (*fn)(struct net_device *dev, 5938 void *data), 5939 void *data) 5940 { 5941 struct net_device *ldev; 5942 struct list_head *iter; 5943 int ret; 5944 5945 for (iter = &dev->adj_list.lower, 5946 ldev = netdev_next_lower_dev(dev, &iter); 5947 ldev; 5948 ldev = netdev_next_lower_dev(dev, &iter)) { 5949 /* first is the lower device itself */ 5950 ret = fn(ldev, data); 5951 if (ret) 5952 return ret; 5953 5954 /* then look at all of its lower devices */ 5955 ret = netdev_walk_all_lower_dev(ldev, fn, data); 5956 if (ret) 5957 return ret; 5958 } 5959 5960 return 0; 5961 } 5962 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 5963 5964 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 5965 struct list_head **iter) 5966 { 5967 struct netdev_adjacent *lower; 5968 5969 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5970 if (&lower->list == &dev->adj_list.lower) 5971 return NULL; 5972 5973 *iter = &lower->list; 5974 5975 return lower->dev; 5976 } 5977 5978 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 5979 int (*fn)(struct net_device *dev, 5980 void *data), 5981 void *data) 5982 { 5983 struct net_device *ldev; 5984 struct list_head *iter; 5985 int ret; 5986 5987 for (iter = &dev->adj_list.lower, 5988 ldev = netdev_next_lower_dev_rcu(dev, &iter); 5989 ldev; 5990 ldev = netdev_next_lower_dev_rcu(dev, &iter)) { 5991 /* first is the lower device itself */ 5992 ret = fn(ldev, data); 5993 if (ret) 5994 return ret; 5995 5996 /* then look at all of its lower devices */ 5997 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data); 5998 if (ret) 5999 return ret; 6000 } 6001 6002 return 0; 6003 } 6004 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 6005 6006 /** 6007 * netdev_lower_get_first_private_rcu - Get the first ->private from the 6008 * lower neighbour list, RCU 6009 * variant 6010 * @dev: device 6011 * 6012 * Gets the first netdev_adjacent->private from the dev's lower neighbour 6013 * list. The caller must hold RCU read lock. 6014 */ 6015 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 6016 { 6017 struct netdev_adjacent *lower; 6018 6019 lower = list_first_or_null_rcu(&dev->adj_list.lower, 6020 struct netdev_adjacent, list); 6021 if (lower) 6022 return lower->private; 6023 return NULL; 6024 } 6025 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 6026 6027 /** 6028 * netdev_master_upper_dev_get_rcu - Get master upper device 6029 * @dev: device 6030 * 6031 * Find a master upper device and return pointer to it or NULL in case 6032 * it's not there. The caller must hold the RCU read lock. 6033 */ 6034 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 6035 { 6036 struct netdev_adjacent *upper; 6037 6038 upper = list_first_or_null_rcu(&dev->adj_list.upper, 6039 struct netdev_adjacent, list); 6040 if (upper && likely(upper->master)) 6041 return upper->dev; 6042 return NULL; 6043 } 6044 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 6045 6046 static int netdev_adjacent_sysfs_add(struct net_device *dev, 6047 struct net_device *adj_dev, 6048 struct list_head *dev_list) 6049 { 6050 char linkname[IFNAMSIZ+7]; 6051 6052 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6053 "upper_%s" : "lower_%s", adj_dev->name); 6054 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 6055 linkname); 6056 } 6057 static void netdev_adjacent_sysfs_del(struct net_device *dev, 6058 char *name, 6059 struct list_head *dev_list) 6060 { 6061 char linkname[IFNAMSIZ+7]; 6062 6063 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6064 "upper_%s" : "lower_%s", name); 6065 sysfs_remove_link(&(dev->dev.kobj), linkname); 6066 } 6067 6068 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 6069 struct net_device *adj_dev, 6070 struct list_head *dev_list) 6071 { 6072 return (dev_list == &dev->adj_list.upper || 6073 dev_list == &dev->adj_list.lower) && 6074 net_eq(dev_net(dev), dev_net(adj_dev)); 6075 } 6076 6077 static int __netdev_adjacent_dev_insert(struct net_device *dev, 6078 struct net_device *adj_dev, 6079 struct list_head *dev_list, 6080 void *private, bool master) 6081 { 6082 struct netdev_adjacent *adj; 6083 int ret; 6084 6085 adj = __netdev_find_adj(adj_dev, dev_list); 6086 6087 if (adj) { 6088 adj->ref_nr += 1; 6089 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 6090 dev->name, adj_dev->name, adj->ref_nr); 6091 6092 return 0; 6093 } 6094 6095 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 6096 if (!adj) 6097 return -ENOMEM; 6098 6099 adj->dev = adj_dev; 6100 adj->master = master; 6101 adj->ref_nr = 1; 6102 adj->private = private; 6103 dev_hold(adj_dev); 6104 6105 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 6106 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 6107 6108 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 6109 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 6110 if (ret) 6111 goto free_adj; 6112 } 6113 6114 /* Ensure that master link is always the first item in list. */ 6115 if (master) { 6116 ret = sysfs_create_link(&(dev->dev.kobj), 6117 &(adj_dev->dev.kobj), "master"); 6118 if (ret) 6119 goto remove_symlinks; 6120 6121 list_add_rcu(&adj->list, dev_list); 6122 } else { 6123 list_add_tail_rcu(&adj->list, dev_list); 6124 } 6125 6126 return 0; 6127 6128 remove_symlinks: 6129 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6130 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6131 free_adj: 6132 kfree(adj); 6133 dev_put(adj_dev); 6134 6135 return ret; 6136 } 6137 6138 static void __netdev_adjacent_dev_remove(struct net_device *dev, 6139 struct net_device *adj_dev, 6140 u16 ref_nr, 6141 struct list_head *dev_list) 6142 { 6143 struct netdev_adjacent *adj; 6144 6145 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 6146 dev->name, adj_dev->name, ref_nr); 6147 6148 adj = __netdev_find_adj(adj_dev, dev_list); 6149 6150 if (!adj) { 6151 pr_err("Adjacency does not exist for device %s from %s\n", 6152 dev->name, adj_dev->name); 6153 WARN_ON(1); 6154 return; 6155 } 6156 6157 if (adj->ref_nr > ref_nr) { 6158 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 6159 dev->name, adj_dev->name, ref_nr, 6160 adj->ref_nr - ref_nr); 6161 adj->ref_nr -= ref_nr; 6162 return; 6163 } 6164 6165 if (adj->master) 6166 sysfs_remove_link(&(dev->dev.kobj), "master"); 6167 6168 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6169 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6170 6171 list_del_rcu(&adj->list); 6172 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 6173 adj_dev->name, dev->name, adj_dev->name); 6174 dev_put(adj_dev); 6175 kfree_rcu(adj, rcu); 6176 } 6177 6178 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 6179 struct net_device *upper_dev, 6180 struct list_head *up_list, 6181 struct list_head *down_list, 6182 void *private, bool master) 6183 { 6184 int ret; 6185 6186 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 6187 private, master); 6188 if (ret) 6189 return ret; 6190 6191 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 6192 private, false); 6193 if (ret) { 6194 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 6195 return ret; 6196 } 6197 6198 return 0; 6199 } 6200 6201 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 6202 struct net_device *upper_dev, 6203 u16 ref_nr, 6204 struct list_head *up_list, 6205 struct list_head *down_list) 6206 { 6207 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 6208 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 6209 } 6210 6211 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 6212 struct net_device *upper_dev, 6213 void *private, bool master) 6214 { 6215 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 6216 &dev->adj_list.upper, 6217 &upper_dev->adj_list.lower, 6218 private, master); 6219 } 6220 6221 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 6222 struct net_device *upper_dev) 6223 { 6224 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 6225 &dev->adj_list.upper, 6226 &upper_dev->adj_list.lower); 6227 } 6228 6229 static int __netdev_upper_dev_link(struct net_device *dev, 6230 struct net_device *upper_dev, bool master, 6231 void *upper_priv, void *upper_info) 6232 { 6233 struct netdev_notifier_changeupper_info changeupper_info; 6234 int ret = 0; 6235 6236 ASSERT_RTNL(); 6237 6238 if (dev == upper_dev) 6239 return -EBUSY; 6240 6241 /* To prevent loops, check if dev is not upper device to upper_dev. */ 6242 if (netdev_has_upper_dev(upper_dev, dev)) 6243 return -EBUSY; 6244 6245 if (netdev_has_upper_dev(dev, upper_dev)) 6246 return -EEXIST; 6247 6248 if (master && netdev_master_upper_dev_get(dev)) 6249 return -EBUSY; 6250 6251 changeupper_info.upper_dev = upper_dev; 6252 changeupper_info.master = master; 6253 changeupper_info.linking = true; 6254 changeupper_info.upper_info = upper_info; 6255 6256 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev, 6257 &changeupper_info.info); 6258 ret = notifier_to_errno(ret); 6259 if (ret) 6260 return ret; 6261 6262 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 6263 master); 6264 if (ret) 6265 return ret; 6266 6267 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev, 6268 &changeupper_info.info); 6269 ret = notifier_to_errno(ret); 6270 if (ret) 6271 goto rollback; 6272 6273 return 0; 6274 6275 rollback: 6276 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 6277 6278 return ret; 6279 } 6280 6281 /** 6282 * netdev_upper_dev_link - Add a link to the upper device 6283 * @dev: device 6284 * @upper_dev: new upper device 6285 * 6286 * Adds a link to device which is upper to this one. The caller must hold 6287 * the RTNL lock. On a failure a negative errno code is returned. 6288 * On success the reference counts are adjusted and the function 6289 * returns zero. 6290 */ 6291 int netdev_upper_dev_link(struct net_device *dev, 6292 struct net_device *upper_dev) 6293 { 6294 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL); 6295 } 6296 EXPORT_SYMBOL(netdev_upper_dev_link); 6297 6298 /** 6299 * netdev_master_upper_dev_link - Add a master link to the upper device 6300 * @dev: device 6301 * @upper_dev: new upper device 6302 * @upper_priv: upper device private 6303 * @upper_info: upper info to be passed down via notifier 6304 * 6305 * Adds a link to device which is upper to this one. In this case, only 6306 * one master upper device can be linked, although other non-master devices 6307 * might be linked as well. The caller must hold the RTNL lock. 6308 * On a failure a negative errno code is returned. On success the reference 6309 * counts are adjusted and the function returns zero. 6310 */ 6311 int netdev_master_upper_dev_link(struct net_device *dev, 6312 struct net_device *upper_dev, 6313 void *upper_priv, void *upper_info) 6314 { 6315 return __netdev_upper_dev_link(dev, upper_dev, true, 6316 upper_priv, upper_info); 6317 } 6318 EXPORT_SYMBOL(netdev_master_upper_dev_link); 6319 6320 /** 6321 * netdev_upper_dev_unlink - Removes a link to upper device 6322 * @dev: device 6323 * @upper_dev: new upper device 6324 * 6325 * Removes a link to device which is upper to this one. The caller must hold 6326 * the RTNL lock. 6327 */ 6328 void netdev_upper_dev_unlink(struct net_device *dev, 6329 struct net_device *upper_dev) 6330 { 6331 struct netdev_notifier_changeupper_info changeupper_info; 6332 6333 ASSERT_RTNL(); 6334 6335 changeupper_info.upper_dev = upper_dev; 6336 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 6337 changeupper_info.linking = false; 6338 6339 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev, 6340 &changeupper_info.info); 6341 6342 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 6343 6344 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev, 6345 &changeupper_info.info); 6346 } 6347 EXPORT_SYMBOL(netdev_upper_dev_unlink); 6348 6349 /** 6350 * netdev_bonding_info_change - Dispatch event about slave change 6351 * @dev: device 6352 * @bonding_info: info to dispatch 6353 * 6354 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 6355 * The caller must hold the RTNL lock. 6356 */ 6357 void netdev_bonding_info_change(struct net_device *dev, 6358 struct netdev_bonding_info *bonding_info) 6359 { 6360 struct netdev_notifier_bonding_info info; 6361 6362 memcpy(&info.bonding_info, bonding_info, 6363 sizeof(struct netdev_bonding_info)); 6364 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev, 6365 &info.info); 6366 } 6367 EXPORT_SYMBOL(netdev_bonding_info_change); 6368 6369 static void netdev_adjacent_add_links(struct net_device *dev) 6370 { 6371 struct netdev_adjacent *iter; 6372 6373 struct net *net = dev_net(dev); 6374 6375 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6376 if (!net_eq(net, dev_net(iter->dev))) 6377 continue; 6378 netdev_adjacent_sysfs_add(iter->dev, dev, 6379 &iter->dev->adj_list.lower); 6380 netdev_adjacent_sysfs_add(dev, iter->dev, 6381 &dev->adj_list.upper); 6382 } 6383 6384 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6385 if (!net_eq(net, dev_net(iter->dev))) 6386 continue; 6387 netdev_adjacent_sysfs_add(iter->dev, dev, 6388 &iter->dev->adj_list.upper); 6389 netdev_adjacent_sysfs_add(dev, iter->dev, 6390 &dev->adj_list.lower); 6391 } 6392 } 6393 6394 static void netdev_adjacent_del_links(struct net_device *dev) 6395 { 6396 struct netdev_adjacent *iter; 6397 6398 struct net *net = dev_net(dev); 6399 6400 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6401 if (!net_eq(net, dev_net(iter->dev))) 6402 continue; 6403 netdev_adjacent_sysfs_del(iter->dev, dev->name, 6404 &iter->dev->adj_list.lower); 6405 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6406 &dev->adj_list.upper); 6407 } 6408 6409 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6410 if (!net_eq(net, dev_net(iter->dev))) 6411 continue; 6412 netdev_adjacent_sysfs_del(iter->dev, dev->name, 6413 &iter->dev->adj_list.upper); 6414 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6415 &dev->adj_list.lower); 6416 } 6417 } 6418 6419 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 6420 { 6421 struct netdev_adjacent *iter; 6422 6423 struct net *net = dev_net(dev); 6424 6425 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6426 if (!net_eq(net, dev_net(iter->dev))) 6427 continue; 6428 netdev_adjacent_sysfs_del(iter->dev, oldname, 6429 &iter->dev->adj_list.lower); 6430 netdev_adjacent_sysfs_add(iter->dev, dev, 6431 &iter->dev->adj_list.lower); 6432 } 6433 6434 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6435 if (!net_eq(net, dev_net(iter->dev))) 6436 continue; 6437 netdev_adjacent_sysfs_del(iter->dev, oldname, 6438 &iter->dev->adj_list.upper); 6439 netdev_adjacent_sysfs_add(iter->dev, dev, 6440 &iter->dev->adj_list.upper); 6441 } 6442 } 6443 6444 void *netdev_lower_dev_get_private(struct net_device *dev, 6445 struct net_device *lower_dev) 6446 { 6447 struct netdev_adjacent *lower; 6448 6449 if (!lower_dev) 6450 return NULL; 6451 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 6452 if (!lower) 6453 return NULL; 6454 6455 return lower->private; 6456 } 6457 EXPORT_SYMBOL(netdev_lower_dev_get_private); 6458 6459 6460 int dev_get_nest_level(struct net_device *dev) 6461 { 6462 struct net_device *lower = NULL; 6463 struct list_head *iter; 6464 int max_nest = -1; 6465 int nest; 6466 6467 ASSERT_RTNL(); 6468 6469 netdev_for_each_lower_dev(dev, lower, iter) { 6470 nest = dev_get_nest_level(lower); 6471 if (max_nest < nest) 6472 max_nest = nest; 6473 } 6474 6475 return max_nest + 1; 6476 } 6477 EXPORT_SYMBOL(dev_get_nest_level); 6478 6479 /** 6480 * netdev_lower_change - Dispatch event about lower device state change 6481 * @lower_dev: device 6482 * @lower_state_info: state to dispatch 6483 * 6484 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 6485 * The caller must hold the RTNL lock. 6486 */ 6487 void netdev_lower_state_changed(struct net_device *lower_dev, 6488 void *lower_state_info) 6489 { 6490 struct netdev_notifier_changelowerstate_info changelowerstate_info; 6491 6492 ASSERT_RTNL(); 6493 changelowerstate_info.lower_state_info = lower_state_info; 6494 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev, 6495 &changelowerstate_info.info); 6496 } 6497 EXPORT_SYMBOL(netdev_lower_state_changed); 6498 6499 static void dev_change_rx_flags(struct net_device *dev, int flags) 6500 { 6501 const struct net_device_ops *ops = dev->netdev_ops; 6502 6503 if (ops->ndo_change_rx_flags) 6504 ops->ndo_change_rx_flags(dev, flags); 6505 } 6506 6507 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 6508 { 6509 unsigned int old_flags = dev->flags; 6510 kuid_t uid; 6511 kgid_t gid; 6512 6513 ASSERT_RTNL(); 6514 6515 dev->flags |= IFF_PROMISC; 6516 dev->promiscuity += inc; 6517 if (dev->promiscuity == 0) { 6518 /* 6519 * Avoid overflow. 6520 * If inc causes overflow, untouch promisc and return error. 6521 */ 6522 if (inc < 0) 6523 dev->flags &= ~IFF_PROMISC; 6524 else { 6525 dev->promiscuity -= inc; 6526 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 6527 dev->name); 6528 return -EOVERFLOW; 6529 } 6530 } 6531 if (dev->flags != old_flags) { 6532 pr_info("device %s %s promiscuous mode\n", 6533 dev->name, 6534 dev->flags & IFF_PROMISC ? "entered" : "left"); 6535 if (audit_enabled) { 6536 current_uid_gid(&uid, &gid); 6537 audit_log(current->audit_context, GFP_ATOMIC, 6538 AUDIT_ANOM_PROMISCUOUS, 6539 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 6540 dev->name, (dev->flags & IFF_PROMISC), 6541 (old_flags & IFF_PROMISC), 6542 from_kuid(&init_user_ns, audit_get_loginuid(current)), 6543 from_kuid(&init_user_ns, uid), 6544 from_kgid(&init_user_ns, gid), 6545 audit_get_sessionid(current)); 6546 } 6547 6548 dev_change_rx_flags(dev, IFF_PROMISC); 6549 } 6550 if (notify) 6551 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 6552 return 0; 6553 } 6554 6555 /** 6556 * dev_set_promiscuity - update promiscuity count on a device 6557 * @dev: device 6558 * @inc: modifier 6559 * 6560 * Add or remove promiscuity from a device. While the count in the device 6561 * remains above zero the interface remains promiscuous. Once it hits zero 6562 * the device reverts back to normal filtering operation. A negative inc 6563 * value is used to drop promiscuity on the device. 6564 * Return 0 if successful or a negative errno code on error. 6565 */ 6566 int dev_set_promiscuity(struct net_device *dev, int inc) 6567 { 6568 unsigned int old_flags = dev->flags; 6569 int err; 6570 6571 err = __dev_set_promiscuity(dev, inc, true); 6572 if (err < 0) 6573 return err; 6574 if (dev->flags != old_flags) 6575 dev_set_rx_mode(dev); 6576 return err; 6577 } 6578 EXPORT_SYMBOL(dev_set_promiscuity); 6579 6580 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 6581 { 6582 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 6583 6584 ASSERT_RTNL(); 6585 6586 dev->flags |= IFF_ALLMULTI; 6587 dev->allmulti += inc; 6588 if (dev->allmulti == 0) { 6589 /* 6590 * Avoid overflow. 6591 * If inc causes overflow, untouch allmulti and return error. 6592 */ 6593 if (inc < 0) 6594 dev->flags &= ~IFF_ALLMULTI; 6595 else { 6596 dev->allmulti -= inc; 6597 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 6598 dev->name); 6599 return -EOVERFLOW; 6600 } 6601 } 6602 if (dev->flags ^ old_flags) { 6603 dev_change_rx_flags(dev, IFF_ALLMULTI); 6604 dev_set_rx_mode(dev); 6605 if (notify) 6606 __dev_notify_flags(dev, old_flags, 6607 dev->gflags ^ old_gflags); 6608 } 6609 return 0; 6610 } 6611 6612 /** 6613 * dev_set_allmulti - update allmulti count on a device 6614 * @dev: device 6615 * @inc: modifier 6616 * 6617 * Add or remove reception of all multicast frames to a device. While the 6618 * count in the device remains above zero the interface remains listening 6619 * to all interfaces. Once it hits zero the device reverts back to normal 6620 * filtering operation. A negative @inc value is used to drop the counter 6621 * when releasing a resource needing all multicasts. 6622 * Return 0 if successful or a negative errno code on error. 6623 */ 6624 6625 int dev_set_allmulti(struct net_device *dev, int inc) 6626 { 6627 return __dev_set_allmulti(dev, inc, true); 6628 } 6629 EXPORT_SYMBOL(dev_set_allmulti); 6630 6631 /* 6632 * Upload unicast and multicast address lists to device and 6633 * configure RX filtering. When the device doesn't support unicast 6634 * filtering it is put in promiscuous mode while unicast addresses 6635 * are present. 6636 */ 6637 void __dev_set_rx_mode(struct net_device *dev) 6638 { 6639 const struct net_device_ops *ops = dev->netdev_ops; 6640 6641 /* dev_open will call this function so the list will stay sane. */ 6642 if (!(dev->flags&IFF_UP)) 6643 return; 6644 6645 if (!netif_device_present(dev)) 6646 return; 6647 6648 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 6649 /* Unicast addresses changes may only happen under the rtnl, 6650 * therefore calling __dev_set_promiscuity here is safe. 6651 */ 6652 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 6653 __dev_set_promiscuity(dev, 1, false); 6654 dev->uc_promisc = true; 6655 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 6656 __dev_set_promiscuity(dev, -1, false); 6657 dev->uc_promisc = false; 6658 } 6659 } 6660 6661 if (ops->ndo_set_rx_mode) 6662 ops->ndo_set_rx_mode(dev); 6663 } 6664 6665 void dev_set_rx_mode(struct net_device *dev) 6666 { 6667 netif_addr_lock_bh(dev); 6668 __dev_set_rx_mode(dev); 6669 netif_addr_unlock_bh(dev); 6670 } 6671 6672 /** 6673 * dev_get_flags - get flags reported to userspace 6674 * @dev: device 6675 * 6676 * Get the combination of flag bits exported through APIs to userspace. 6677 */ 6678 unsigned int dev_get_flags(const struct net_device *dev) 6679 { 6680 unsigned int flags; 6681 6682 flags = (dev->flags & ~(IFF_PROMISC | 6683 IFF_ALLMULTI | 6684 IFF_RUNNING | 6685 IFF_LOWER_UP | 6686 IFF_DORMANT)) | 6687 (dev->gflags & (IFF_PROMISC | 6688 IFF_ALLMULTI)); 6689 6690 if (netif_running(dev)) { 6691 if (netif_oper_up(dev)) 6692 flags |= IFF_RUNNING; 6693 if (netif_carrier_ok(dev)) 6694 flags |= IFF_LOWER_UP; 6695 if (netif_dormant(dev)) 6696 flags |= IFF_DORMANT; 6697 } 6698 6699 return flags; 6700 } 6701 EXPORT_SYMBOL(dev_get_flags); 6702 6703 int __dev_change_flags(struct net_device *dev, unsigned int flags) 6704 { 6705 unsigned int old_flags = dev->flags; 6706 int ret; 6707 6708 ASSERT_RTNL(); 6709 6710 /* 6711 * Set the flags on our device. 6712 */ 6713 6714 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 6715 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 6716 IFF_AUTOMEDIA)) | 6717 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 6718 IFF_ALLMULTI)); 6719 6720 /* 6721 * Load in the correct multicast list now the flags have changed. 6722 */ 6723 6724 if ((old_flags ^ flags) & IFF_MULTICAST) 6725 dev_change_rx_flags(dev, IFF_MULTICAST); 6726 6727 dev_set_rx_mode(dev); 6728 6729 /* 6730 * Have we downed the interface. We handle IFF_UP ourselves 6731 * according to user attempts to set it, rather than blindly 6732 * setting it. 6733 */ 6734 6735 ret = 0; 6736 if ((old_flags ^ flags) & IFF_UP) { 6737 if (old_flags & IFF_UP) 6738 __dev_close(dev); 6739 else 6740 ret = __dev_open(dev); 6741 } 6742 6743 if ((flags ^ dev->gflags) & IFF_PROMISC) { 6744 int inc = (flags & IFF_PROMISC) ? 1 : -1; 6745 unsigned int old_flags = dev->flags; 6746 6747 dev->gflags ^= IFF_PROMISC; 6748 6749 if (__dev_set_promiscuity(dev, inc, false) >= 0) 6750 if (dev->flags != old_flags) 6751 dev_set_rx_mode(dev); 6752 } 6753 6754 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 6755 * is important. Some (broken) drivers set IFF_PROMISC, when 6756 * IFF_ALLMULTI is requested not asking us and not reporting. 6757 */ 6758 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 6759 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 6760 6761 dev->gflags ^= IFF_ALLMULTI; 6762 __dev_set_allmulti(dev, inc, false); 6763 } 6764 6765 return ret; 6766 } 6767 6768 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 6769 unsigned int gchanges) 6770 { 6771 unsigned int changes = dev->flags ^ old_flags; 6772 6773 if (gchanges) 6774 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 6775 6776 if (changes & IFF_UP) { 6777 if (dev->flags & IFF_UP) 6778 call_netdevice_notifiers(NETDEV_UP, dev); 6779 else 6780 call_netdevice_notifiers(NETDEV_DOWN, dev); 6781 } 6782 6783 if (dev->flags & IFF_UP && 6784 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 6785 struct netdev_notifier_change_info change_info; 6786 6787 change_info.flags_changed = changes; 6788 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 6789 &change_info.info); 6790 } 6791 } 6792 6793 /** 6794 * dev_change_flags - change device settings 6795 * @dev: device 6796 * @flags: device state flags 6797 * 6798 * Change settings on device based state flags. The flags are 6799 * in the userspace exported format. 6800 */ 6801 int dev_change_flags(struct net_device *dev, unsigned int flags) 6802 { 6803 int ret; 6804 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 6805 6806 ret = __dev_change_flags(dev, flags); 6807 if (ret < 0) 6808 return ret; 6809 6810 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 6811 __dev_notify_flags(dev, old_flags, changes); 6812 return ret; 6813 } 6814 EXPORT_SYMBOL(dev_change_flags); 6815 6816 int __dev_set_mtu(struct net_device *dev, int new_mtu) 6817 { 6818 const struct net_device_ops *ops = dev->netdev_ops; 6819 6820 if (ops->ndo_change_mtu) 6821 return ops->ndo_change_mtu(dev, new_mtu); 6822 6823 dev->mtu = new_mtu; 6824 return 0; 6825 } 6826 EXPORT_SYMBOL(__dev_set_mtu); 6827 6828 /** 6829 * dev_set_mtu - Change maximum transfer unit 6830 * @dev: device 6831 * @new_mtu: new transfer unit 6832 * 6833 * Change the maximum transfer size of the network device. 6834 */ 6835 int dev_set_mtu(struct net_device *dev, int new_mtu) 6836 { 6837 int err, orig_mtu; 6838 6839 if (new_mtu == dev->mtu) 6840 return 0; 6841 6842 /* MTU must be positive, and in range */ 6843 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 6844 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n", 6845 dev->name, new_mtu, dev->min_mtu); 6846 return -EINVAL; 6847 } 6848 6849 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 6850 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n", 6851 dev->name, new_mtu, dev->max_mtu); 6852 return -EINVAL; 6853 } 6854 6855 if (!netif_device_present(dev)) 6856 return -ENODEV; 6857 6858 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 6859 err = notifier_to_errno(err); 6860 if (err) 6861 return err; 6862 6863 orig_mtu = dev->mtu; 6864 err = __dev_set_mtu(dev, new_mtu); 6865 6866 if (!err) { 6867 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 6868 err = notifier_to_errno(err); 6869 if (err) { 6870 /* setting mtu back and notifying everyone again, 6871 * so that they have a chance to revert changes. 6872 */ 6873 __dev_set_mtu(dev, orig_mtu); 6874 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 6875 } 6876 } 6877 return err; 6878 } 6879 EXPORT_SYMBOL(dev_set_mtu); 6880 6881 /** 6882 * dev_set_group - Change group this device belongs to 6883 * @dev: device 6884 * @new_group: group this device should belong to 6885 */ 6886 void dev_set_group(struct net_device *dev, int new_group) 6887 { 6888 dev->group = new_group; 6889 } 6890 EXPORT_SYMBOL(dev_set_group); 6891 6892 /** 6893 * dev_set_mac_address - Change Media Access Control Address 6894 * @dev: device 6895 * @sa: new address 6896 * 6897 * Change the hardware (MAC) address of the device 6898 */ 6899 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 6900 { 6901 const struct net_device_ops *ops = dev->netdev_ops; 6902 int err; 6903 6904 if (!ops->ndo_set_mac_address) 6905 return -EOPNOTSUPP; 6906 if (sa->sa_family != dev->type) 6907 return -EINVAL; 6908 if (!netif_device_present(dev)) 6909 return -ENODEV; 6910 err = ops->ndo_set_mac_address(dev, sa); 6911 if (err) 6912 return err; 6913 dev->addr_assign_type = NET_ADDR_SET; 6914 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 6915 add_device_randomness(dev->dev_addr, dev->addr_len); 6916 return 0; 6917 } 6918 EXPORT_SYMBOL(dev_set_mac_address); 6919 6920 /** 6921 * dev_change_carrier - Change device carrier 6922 * @dev: device 6923 * @new_carrier: new value 6924 * 6925 * Change device carrier 6926 */ 6927 int dev_change_carrier(struct net_device *dev, bool new_carrier) 6928 { 6929 const struct net_device_ops *ops = dev->netdev_ops; 6930 6931 if (!ops->ndo_change_carrier) 6932 return -EOPNOTSUPP; 6933 if (!netif_device_present(dev)) 6934 return -ENODEV; 6935 return ops->ndo_change_carrier(dev, new_carrier); 6936 } 6937 EXPORT_SYMBOL(dev_change_carrier); 6938 6939 /** 6940 * dev_get_phys_port_id - Get device physical port ID 6941 * @dev: device 6942 * @ppid: port ID 6943 * 6944 * Get device physical port ID 6945 */ 6946 int dev_get_phys_port_id(struct net_device *dev, 6947 struct netdev_phys_item_id *ppid) 6948 { 6949 const struct net_device_ops *ops = dev->netdev_ops; 6950 6951 if (!ops->ndo_get_phys_port_id) 6952 return -EOPNOTSUPP; 6953 return ops->ndo_get_phys_port_id(dev, ppid); 6954 } 6955 EXPORT_SYMBOL(dev_get_phys_port_id); 6956 6957 /** 6958 * dev_get_phys_port_name - Get device physical port name 6959 * @dev: device 6960 * @name: port name 6961 * @len: limit of bytes to copy to name 6962 * 6963 * Get device physical port name 6964 */ 6965 int dev_get_phys_port_name(struct net_device *dev, 6966 char *name, size_t len) 6967 { 6968 const struct net_device_ops *ops = dev->netdev_ops; 6969 6970 if (!ops->ndo_get_phys_port_name) 6971 return -EOPNOTSUPP; 6972 return ops->ndo_get_phys_port_name(dev, name, len); 6973 } 6974 EXPORT_SYMBOL(dev_get_phys_port_name); 6975 6976 /** 6977 * dev_change_proto_down - update protocol port state information 6978 * @dev: device 6979 * @proto_down: new value 6980 * 6981 * This info can be used by switch drivers to set the phys state of the 6982 * port. 6983 */ 6984 int dev_change_proto_down(struct net_device *dev, bool proto_down) 6985 { 6986 const struct net_device_ops *ops = dev->netdev_ops; 6987 6988 if (!ops->ndo_change_proto_down) 6989 return -EOPNOTSUPP; 6990 if (!netif_device_present(dev)) 6991 return -ENODEV; 6992 return ops->ndo_change_proto_down(dev, proto_down); 6993 } 6994 EXPORT_SYMBOL(dev_change_proto_down); 6995 6996 u8 __dev_xdp_attached(struct net_device *dev, xdp_op_t xdp_op, u32 *prog_id) 6997 { 6998 struct netdev_xdp xdp; 6999 7000 memset(&xdp, 0, sizeof(xdp)); 7001 xdp.command = XDP_QUERY_PROG; 7002 7003 /* Query must always succeed. */ 7004 WARN_ON(xdp_op(dev, &xdp) < 0); 7005 if (prog_id) 7006 *prog_id = xdp.prog_id; 7007 7008 return xdp.prog_attached; 7009 } 7010 7011 static int dev_xdp_install(struct net_device *dev, xdp_op_t xdp_op, 7012 struct netlink_ext_ack *extack, u32 flags, 7013 struct bpf_prog *prog) 7014 { 7015 struct netdev_xdp xdp; 7016 7017 memset(&xdp, 0, sizeof(xdp)); 7018 if (flags & XDP_FLAGS_HW_MODE) 7019 xdp.command = XDP_SETUP_PROG_HW; 7020 else 7021 xdp.command = XDP_SETUP_PROG; 7022 xdp.extack = extack; 7023 xdp.flags = flags; 7024 xdp.prog = prog; 7025 7026 return xdp_op(dev, &xdp); 7027 } 7028 7029 /** 7030 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 7031 * @dev: device 7032 * @extack: netlink extended ack 7033 * @fd: new program fd or negative value to clear 7034 * @flags: xdp-related flags 7035 * 7036 * Set or clear a bpf program for a device 7037 */ 7038 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 7039 int fd, u32 flags) 7040 { 7041 const struct net_device_ops *ops = dev->netdev_ops; 7042 struct bpf_prog *prog = NULL; 7043 xdp_op_t xdp_op, xdp_chk; 7044 int err; 7045 7046 ASSERT_RTNL(); 7047 7048 xdp_op = xdp_chk = ops->ndo_xdp; 7049 if (!xdp_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) 7050 return -EOPNOTSUPP; 7051 if (!xdp_op || (flags & XDP_FLAGS_SKB_MODE)) 7052 xdp_op = generic_xdp_install; 7053 if (xdp_op == xdp_chk) 7054 xdp_chk = generic_xdp_install; 7055 7056 if (fd >= 0) { 7057 if (xdp_chk && __dev_xdp_attached(dev, xdp_chk, NULL)) 7058 return -EEXIST; 7059 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && 7060 __dev_xdp_attached(dev, xdp_op, NULL)) 7061 return -EBUSY; 7062 7063 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP); 7064 if (IS_ERR(prog)) 7065 return PTR_ERR(prog); 7066 } 7067 7068 err = dev_xdp_install(dev, xdp_op, extack, flags, prog); 7069 if (err < 0 && prog) 7070 bpf_prog_put(prog); 7071 7072 return err; 7073 } 7074 7075 /** 7076 * dev_new_index - allocate an ifindex 7077 * @net: the applicable net namespace 7078 * 7079 * Returns a suitable unique value for a new device interface 7080 * number. The caller must hold the rtnl semaphore or the 7081 * dev_base_lock to be sure it remains unique. 7082 */ 7083 static int dev_new_index(struct net *net) 7084 { 7085 int ifindex = net->ifindex; 7086 7087 for (;;) { 7088 if (++ifindex <= 0) 7089 ifindex = 1; 7090 if (!__dev_get_by_index(net, ifindex)) 7091 return net->ifindex = ifindex; 7092 } 7093 } 7094 7095 /* Delayed registration/unregisteration */ 7096 static LIST_HEAD(net_todo_list); 7097 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 7098 7099 static void net_set_todo(struct net_device *dev) 7100 { 7101 list_add_tail(&dev->todo_list, &net_todo_list); 7102 dev_net(dev)->dev_unreg_count++; 7103 } 7104 7105 static void rollback_registered_many(struct list_head *head) 7106 { 7107 struct net_device *dev, *tmp; 7108 LIST_HEAD(close_head); 7109 7110 BUG_ON(dev_boot_phase); 7111 ASSERT_RTNL(); 7112 7113 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 7114 /* Some devices call without registering 7115 * for initialization unwind. Remove those 7116 * devices and proceed with the remaining. 7117 */ 7118 if (dev->reg_state == NETREG_UNINITIALIZED) { 7119 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 7120 dev->name, dev); 7121 7122 WARN_ON(1); 7123 list_del(&dev->unreg_list); 7124 continue; 7125 } 7126 dev->dismantle = true; 7127 BUG_ON(dev->reg_state != NETREG_REGISTERED); 7128 } 7129 7130 /* If device is running, close it first. */ 7131 list_for_each_entry(dev, head, unreg_list) 7132 list_add_tail(&dev->close_list, &close_head); 7133 dev_close_many(&close_head, true); 7134 7135 list_for_each_entry(dev, head, unreg_list) { 7136 /* And unlink it from device chain. */ 7137 unlist_netdevice(dev); 7138 7139 dev->reg_state = NETREG_UNREGISTERING; 7140 } 7141 flush_all_backlogs(); 7142 7143 synchronize_net(); 7144 7145 list_for_each_entry(dev, head, unreg_list) { 7146 struct sk_buff *skb = NULL; 7147 7148 /* Shutdown queueing discipline. */ 7149 dev_shutdown(dev); 7150 7151 7152 /* Notify protocols, that we are about to destroy 7153 * this device. They should clean all the things. 7154 */ 7155 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7156 7157 if (!dev->rtnl_link_ops || 7158 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 7159 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 7160 GFP_KERNEL); 7161 7162 /* 7163 * Flush the unicast and multicast chains 7164 */ 7165 dev_uc_flush(dev); 7166 dev_mc_flush(dev); 7167 7168 if (dev->netdev_ops->ndo_uninit) 7169 dev->netdev_ops->ndo_uninit(dev); 7170 7171 if (skb) 7172 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 7173 7174 /* Notifier chain MUST detach us all upper devices. */ 7175 WARN_ON(netdev_has_any_upper_dev(dev)); 7176 WARN_ON(netdev_has_any_lower_dev(dev)); 7177 7178 /* Remove entries from kobject tree */ 7179 netdev_unregister_kobject(dev); 7180 #ifdef CONFIG_XPS 7181 /* Remove XPS queueing entries */ 7182 netif_reset_xps_queues_gt(dev, 0); 7183 #endif 7184 } 7185 7186 synchronize_net(); 7187 7188 list_for_each_entry(dev, head, unreg_list) 7189 dev_put(dev); 7190 } 7191 7192 static void rollback_registered(struct net_device *dev) 7193 { 7194 LIST_HEAD(single); 7195 7196 list_add(&dev->unreg_list, &single); 7197 rollback_registered_many(&single); 7198 list_del(&single); 7199 } 7200 7201 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 7202 struct net_device *upper, netdev_features_t features) 7203 { 7204 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 7205 netdev_features_t feature; 7206 int feature_bit; 7207 7208 for_each_netdev_feature(&upper_disables, feature_bit) { 7209 feature = __NETIF_F_BIT(feature_bit); 7210 if (!(upper->wanted_features & feature) 7211 && (features & feature)) { 7212 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 7213 &feature, upper->name); 7214 features &= ~feature; 7215 } 7216 } 7217 7218 return features; 7219 } 7220 7221 static void netdev_sync_lower_features(struct net_device *upper, 7222 struct net_device *lower, netdev_features_t features) 7223 { 7224 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 7225 netdev_features_t feature; 7226 int feature_bit; 7227 7228 for_each_netdev_feature(&upper_disables, feature_bit) { 7229 feature = __NETIF_F_BIT(feature_bit); 7230 if (!(features & feature) && (lower->features & feature)) { 7231 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 7232 &feature, lower->name); 7233 lower->wanted_features &= ~feature; 7234 netdev_update_features(lower); 7235 7236 if (unlikely(lower->features & feature)) 7237 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 7238 &feature, lower->name); 7239 } 7240 } 7241 } 7242 7243 static netdev_features_t netdev_fix_features(struct net_device *dev, 7244 netdev_features_t features) 7245 { 7246 /* Fix illegal checksum combinations */ 7247 if ((features & NETIF_F_HW_CSUM) && 7248 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 7249 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 7250 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 7251 } 7252 7253 /* TSO requires that SG is present as well. */ 7254 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 7255 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 7256 features &= ~NETIF_F_ALL_TSO; 7257 } 7258 7259 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 7260 !(features & NETIF_F_IP_CSUM)) { 7261 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 7262 features &= ~NETIF_F_TSO; 7263 features &= ~NETIF_F_TSO_ECN; 7264 } 7265 7266 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 7267 !(features & NETIF_F_IPV6_CSUM)) { 7268 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 7269 features &= ~NETIF_F_TSO6; 7270 } 7271 7272 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 7273 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 7274 features &= ~NETIF_F_TSO_MANGLEID; 7275 7276 /* TSO ECN requires that TSO is present as well. */ 7277 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 7278 features &= ~NETIF_F_TSO_ECN; 7279 7280 /* Software GSO depends on SG. */ 7281 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 7282 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 7283 features &= ~NETIF_F_GSO; 7284 } 7285 7286 /* GSO partial features require GSO partial be set */ 7287 if ((features & dev->gso_partial_features) && 7288 !(features & NETIF_F_GSO_PARTIAL)) { 7289 netdev_dbg(dev, 7290 "Dropping partially supported GSO features since no GSO partial.\n"); 7291 features &= ~dev->gso_partial_features; 7292 } 7293 7294 return features; 7295 } 7296 7297 int __netdev_update_features(struct net_device *dev) 7298 { 7299 struct net_device *upper, *lower; 7300 netdev_features_t features; 7301 struct list_head *iter; 7302 int err = -1; 7303 7304 ASSERT_RTNL(); 7305 7306 features = netdev_get_wanted_features(dev); 7307 7308 if (dev->netdev_ops->ndo_fix_features) 7309 features = dev->netdev_ops->ndo_fix_features(dev, features); 7310 7311 /* driver might be less strict about feature dependencies */ 7312 features = netdev_fix_features(dev, features); 7313 7314 /* some features can't be enabled if they're off an an upper device */ 7315 netdev_for_each_upper_dev_rcu(dev, upper, iter) 7316 features = netdev_sync_upper_features(dev, upper, features); 7317 7318 if (dev->features == features) 7319 goto sync_lower; 7320 7321 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 7322 &dev->features, &features); 7323 7324 if (dev->netdev_ops->ndo_set_features) 7325 err = dev->netdev_ops->ndo_set_features(dev, features); 7326 else 7327 err = 0; 7328 7329 if (unlikely(err < 0)) { 7330 netdev_err(dev, 7331 "set_features() failed (%d); wanted %pNF, left %pNF\n", 7332 err, &features, &dev->features); 7333 /* return non-0 since some features might have changed and 7334 * it's better to fire a spurious notification than miss it 7335 */ 7336 return -1; 7337 } 7338 7339 sync_lower: 7340 /* some features must be disabled on lower devices when disabled 7341 * on an upper device (think: bonding master or bridge) 7342 */ 7343 netdev_for_each_lower_dev(dev, lower, iter) 7344 netdev_sync_lower_features(dev, lower, features); 7345 7346 if (!err) { 7347 netdev_features_t diff = features ^ dev->features; 7348 7349 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 7350 /* udp_tunnel_{get,drop}_rx_info both need 7351 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 7352 * device, or they won't do anything. 7353 * Thus we need to update dev->features 7354 * *before* calling udp_tunnel_get_rx_info, 7355 * but *after* calling udp_tunnel_drop_rx_info. 7356 */ 7357 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 7358 dev->features = features; 7359 udp_tunnel_get_rx_info(dev); 7360 } else { 7361 udp_tunnel_drop_rx_info(dev); 7362 } 7363 } 7364 7365 dev->features = features; 7366 } 7367 7368 return err < 0 ? 0 : 1; 7369 } 7370 7371 /** 7372 * netdev_update_features - recalculate device features 7373 * @dev: the device to check 7374 * 7375 * Recalculate dev->features set and send notifications if it 7376 * has changed. Should be called after driver or hardware dependent 7377 * conditions might have changed that influence the features. 7378 */ 7379 void netdev_update_features(struct net_device *dev) 7380 { 7381 if (__netdev_update_features(dev)) 7382 netdev_features_change(dev); 7383 } 7384 EXPORT_SYMBOL(netdev_update_features); 7385 7386 /** 7387 * netdev_change_features - recalculate device features 7388 * @dev: the device to check 7389 * 7390 * Recalculate dev->features set and send notifications even 7391 * if they have not changed. Should be called instead of 7392 * netdev_update_features() if also dev->vlan_features might 7393 * have changed to allow the changes to be propagated to stacked 7394 * VLAN devices. 7395 */ 7396 void netdev_change_features(struct net_device *dev) 7397 { 7398 __netdev_update_features(dev); 7399 netdev_features_change(dev); 7400 } 7401 EXPORT_SYMBOL(netdev_change_features); 7402 7403 /** 7404 * netif_stacked_transfer_operstate - transfer operstate 7405 * @rootdev: the root or lower level device to transfer state from 7406 * @dev: the device to transfer operstate to 7407 * 7408 * Transfer operational state from root to device. This is normally 7409 * called when a stacking relationship exists between the root 7410 * device and the device(a leaf device). 7411 */ 7412 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 7413 struct net_device *dev) 7414 { 7415 if (rootdev->operstate == IF_OPER_DORMANT) 7416 netif_dormant_on(dev); 7417 else 7418 netif_dormant_off(dev); 7419 7420 if (netif_carrier_ok(rootdev)) 7421 netif_carrier_on(dev); 7422 else 7423 netif_carrier_off(dev); 7424 } 7425 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 7426 7427 #ifdef CONFIG_SYSFS 7428 static int netif_alloc_rx_queues(struct net_device *dev) 7429 { 7430 unsigned int i, count = dev->num_rx_queues; 7431 struct netdev_rx_queue *rx; 7432 size_t sz = count * sizeof(*rx); 7433 7434 BUG_ON(count < 1); 7435 7436 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 7437 if (!rx) 7438 return -ENOMEM; 7439 7440 dev->_rx = rx; 7441 7442 for (i = 0; i < count; i++) 7443 rx[i].dev = dev; 7444 return 0; 7445 } 7446 #endif 7447 7448 static void netdev_init_one_queue(struct net_device *dev, 7449 struct netdev_queue *queue, void *_unused) 7450 { 7451 /* Initialize queue lock */ 7452 spin_lock_init(&queue->_xmit_lock); 7453 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 7454 queue->xmit_lock_owner = -1; 7455 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 7456 queue->dev = dev; 7457 #ifdef CONFIG_BQL 7458 dql_init(&queue->dql, HZ); 7459 #endif 7460 } 7461 7462 static void netif_free_tx_queues(struct net_device *dev) 7463 { 7464 kvfree(dev->_tx); 7465 } 7466 7467 static int netif_alloc_netdev_queues(struct net_device *dev) 7468 { 7469 unsigned int count = dev->num_tx_queues; 7470 struct netdev_queue *tx; 7471 size_t sz = count * sizeof(*tx); 7472 7473 if (count < 1 || count > 0xffff) 7474 return -EINVAL; 7475 7476 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 7477 if (!tx) 7478 return -ENOMEM; 7479 7480 dev->_tx = tx; 7481 7482 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 7483 spin_lock_init(&dev->tx_global_lock); 7484 7485 return 0; 7486 } 7487 7488 void netif_tx_stop_all_queues(struct net_device *dev) 7489 { 7490 unsigned int i; 7491 7492 for (i = 0; i < dev->num_tx_queues; i++) { 7493 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 7494 7495 netif_tx_stop_queue(txq); 7496 } 7497 } 7498 EXPORT_SYMBOL(netif_tx_stop_all_queues); 7499 7500 /** 7501 * register_netdevice - register a network device 7502 * @dev: device to register 7503 * 7504 * Take a completed network device structure and add it to the kernel 7505 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 7506 * chain. 0 is returned on success. A negative errno code is returned 7507 * on a failure to set up the device, or if the name is a duplicate. 7508 * 7509 * Callers must hold the rtnl semaphore. You may want 7510 * register_netdev() instead of this. 7511 * 7512 * BUGS: 7513 * The locking appears insufficient to guarantee two parallel registers 7514 * will not get the same name. 7515 */ 7516 7517 int register_netdevice(struct net_device *dev) 7518 { 7519 int ret; 7520 struct net *net = dev_net(dev); 7521 7522 BUG_ON(dev_boot_phase); 7523 ASSERT_RTNL(); 7524 7525 might_sleep(); 7526 7527 /* When net_device's are persistent, this will be fatal. */ 7528 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 7529 BUG_ON(!net); 7530 7531 spin_lock_init(&dev->addr_list_lock); 7532 netdev_set_addr_lockdep_class(dev); 7533 7534 ret = dev_get_valid_name(net, dev, dev->name); 7535 if (ret < 0) 7536 goto out; 7537 7538 /* Init, if this function is available */ 7539 if (dev->netdev_ops->ndo_init) { 7540 ret = dev->netdev_ops->ndo_init(dev); 7541 if (ret) { 7542 if (ret > 0) 7543 ret = -EIO; 7544 goto out; 7545 } 7546 } 7547 7548 if (((dev->hw_features | dev->features) & 7549 NETIF_F_HW_VLAN_CTAG_FILTER) && 7550 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 7551 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 7552 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 7553 ret = -EINVAL; 7554 goto err_uninit; 7555 } 7556 7557 ret = -EBUSY; 7558 if (!dev->ifindex) 7559 dev->ifindex = dev_new_index(net); 7560 else if (__dev_get_by_index(net, dev->ifindex)) 7561 goto err_uninit; 7562 7563 /* Transfer changeable features to wanted_features and enable 7564 * software offloads (GSO and GRO). 7565 */ 7566 dev->hw_features |= NETIF_F_SOFT_FEATURES; 7567 dev->features |= NETIF_F_SOFT_FEATURES; 7568 7569 if (dev->netdev_ops->ndo_udp_tunnel_add) { 7570 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 7571 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 7572 } 7573 7574 dev->wanted_features = dev->features & dev->hw_features; 7575 7576 if (!(dev->flags & IFF_LOOPBACK)) 7577 dev->hw_features |= NETIF_F_NOCACHE_COPY; 7578 7579 /* If IPv4 TCP segmentation offload is supported we should also 7580 * allow the device to enable segmenting the frame with the option 7581 * of ignoring a static IP ID value. This doesn't enable the 7582 * feature itself but allows the user to enable it later. 7583 */ 7584 if (dev->hw_features & NETIF_F_TSO) 7585 dev->hw_features |= NETIF_F_TSO_MANGLEID; 7586 if (dev->vlan_features & NETIF_F_TSO) 7587 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 7588 if (dev->mpls_features & NETIF_F_TSO) 7589 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 7590 if (dev->hw_enc_features & NETIF_F_TSO) 7591 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 7592 7593 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 7594 */ 7595 dev->vlan_features |= NETIF_F_HIGHDMA; 7596 7597 /* Make NETIF_F_SG inheritable to tunnel devices. 7598 */ 7599 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 7600 7601 /* Make NETIF_F_SG inheritable to MPLS. 7602 */ 7603 dev->mpls_features |= NETIF_F_SG; 7604 7605 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 7606 ret = notifier_to_errno(ret); 7607 if (ret) 7608 goto err_uninit; 7609 7610 ret = netdev_register_kobject(dev); 7611 if (ret) 7612 goto err_uninit; 7613 dev->reg_state = NETREG_REGISTERED; 7614 7615 __netdev_update_features(dev); 7616 7617 /* 7618 * Default initial state at registry is that the 7619 * device is present. 7620 */ 7621 7622 set_bit(__LINK_STATE_PRESENT, &dev->state); 7623 7624 linkwatch_init_dev(dev); 7625 7626 dev_init_scheduler(dev); 7627 dev_hold(dev); 7628 list_netdevice(dev); 7629 add_device_randomness(dev->dev_addr, dev->addr_len); 7630 7631 /* If the device has permanent device address, driver should 7632 * set dev_addr and also addr_assign_type should be set to 7633 * NET_ADDR_PERM (default value). 7634 */ 7635 if (dev->addr_assign_type == NET_ADDR_PERM) 7636 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 7637 7638 /* Notify protocols, that a new device appeared. */ 7639 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 7640 ret = notifier_to_errno(ret); 7641 if (ret) { 7642 rollback_registered(dev); 7643 dev->reg_state = NETREG_UNREGISTERED; 7644 } 7645 /* 7646 * Prevent userspace races by waiting until the network 7647 * device is fully setup before sending notifications. 7648 */ 7649 if (!dev->rtnl_link_ops || 7650 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 7651 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 7652 7653 out: 7654 return ret; 7655 7656 err_uninit: 7657 if (dev->netdev_ops->ndo_uninit) 7658 dev->netdev_ops->ndo_uninit(dev); 7659 if (dev->priv_destructor) 7660 dev->priv_destructor(dev); 7661 goto out; 7662 } 7663 EXPORT_SYMBOL(register_netdevice); 7664 7665 /** 7666 * init_dummy_netdev - init a dummy network device for NAPI 7667 * @dev: device to init 7668 * 7669 * This takes a network device structure and initialize the minimum 7670 * amount of fields so it can be used to schedule NAPI polls without 7671 * registering a full blown interface. This is to be used by drivers 7672 * that need to tie several hardware interfaces to a single NAPI 7673 * poll scheduler due to HW limitations. 7674 */ 7675 int init_dummy_netdev(struct net_device *dev) 7676 { 7677 /* Clear everything. Note we don't initialize spinlocks 7678 * are they aren't supposed to be taken by any of the 7679 * NAPI code and this dummy netdev is supposed to be 7680 * only ever used for NAPI polls 7681 */ 7682 memset(dev, 0, sizeof(struct net_device)); 7683 7684 /* make sure we BUG if trying to hit standard 7685 * register/unregister code path 7686 */ 7687 dev->reg_state = NETREG_DUMMY; 7688 7689 /* NAPI wants this */ 7690 INIT_LIST_HEAD(&dev->napi_list); 7691 7692 /* a dummy interface is started by default */ 7693 set_bit(__LINK_STATE_PRESENT, &dev->state); 7694 set_bit(__LINK_STATE_START, &dev->state); 7695 7696 /* Note : We dont allocate pcpu_refcnt for dummy devices, 7697 * because users of this 'device' dont need to change 7698 * its refcount. 7699 */ 7700 7701 return 0; 7702 } 7703 EXPORT_SYMBOL_GPL(init_dummy_netdev); 7704 7705 7706 /** 7707 * register_netdev - register a network device 7708 * @dev: device to register 7709 * 7710 * Take a completed network device structure and add it to the kernel 7711 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 7712 * chain. 0 is returned on success. A negative errno code is returned 7713 * on a failure to set up the device, or if the name is a duplicate. 7714 * 7715 * This is a wrapper around register_netdevice that takes the rtnl semaphore 7716 * and expands the device name if you passed a format string to 7717 * alloc_netdev. 7718 */ 7719 int register_netdev(struct net_device *dev) 7720 { 7721 int err; 7722 7723 rtnl_lock(); 7724 err = register_netdevice(dev); 7725 rtnl_unlock(); 7726 return err; 7727 } 7728 EXPORT_SYMBOL(register_netdev); 7729 7730 int netdev_refcnt_read(const struct net_device *dev) 7731 { 7732 int i, refcnt = 0; 7733 7734 for_each_possible_cpu(i) 7735 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 7736 return refcnt; 7737 } 7738 EXPORT_SYMBOL(netdev_refcnt_read); 7739 7740 /** 7741 * netdev_wait_allrefs - wait until all references are gone. 7742 * @dev: target net_device 7743 * 7744 * This is called when unregistering network devices. 7745 * 7746 * Any protocol or device that holds a reference should register 7747 * for netdevice notification, and cleanup and put back the 7748 * reference if they receive an UNREGISTER event. 7749 * We can get stuck here if buggy protocols don't correctly 7750 * call dev_put. 7751 */ 7752 static void netdev_wait_allrefs(struct net_device *dev) 7753 { 7754 unsigned long rebroadcast_time, warning_time; 7755 int refcnt; 7756 7757 linkwatch_forget_dev(dev); 7758 7759 rebroadcast_time = warning_time = jiffies; 7760 refcnt = netdev_refcnt_read(dev); 7761 7762 while (refcnt != 0) { 7763 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 7764 rtnl_lock(); 7765 7766 /* Rebroadcast unregister notification */ 7767 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7768 7769 __rtnl_unlock(); 7770 rcu_barrier(); 7771 rtnl_lock(); 7772 7773 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7774 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 7775 &dev->state)) { 7776 /* We must not have linkwatch events 7777 * pending on unregister. If this 7778 * happens, we simply run the queue 7779 * unscheduled, resulting in a noop 7780 * for this device. 7781 */ 7782 linkwatch_run_queue(); 7783 } 7784 7785 __rtnl_unlock(); 7786 7787 rebroadcast_time = jiffies; 7788 } 7789 7790 msleep(250); 7791 7792 refcnt = netdev_refcnt_read(dev); 7793 7794 if (time_after(jiffies, warning_time + 10 * HZ)) { 7795 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 7796 dev->name, refcnt); 7797 warning_time = jiffies; 7798 } 7799 } 7800 } 7801 7802 /* The sequence is: 7803 * 7804 * rtnl_lock(); 7805 * ... 7806 * register_netdevice(x1); 7807 * register_netdevice(x2); 7808 * ... 7809 * unregister_netdevice(y1); 7810 * unregister_netdevice(y2); 7811 * ... 7812 * rtnl_unlock(); 7813 * free_netdev(y1); 7814 * free_netdev(y2); 7815 * 7816 * We are invoked by rtnl_unlock(). 7817 * This allows us to deal with problems: 7818 * 1) We can delete sysfs objects which invoke hotplug 7819 * without deadlocking with linkwatch via keventd. 7820 * 2) Since we run with the RTNL semaphore not held, we can sleep 7821 * safely in order to wait for the netdev refcnt to drop to zero. 7822 * 7823 * We must not return until all unregister events added during 7824 * the interval the lock was held have been completed. 7825 */ 7826 void netdev_run_todo(void) 7827 { 7828 struct list_head list; 7829 7830 /* Snapshot list, allow later requests */ 7831 list_replace_init(&net_todo_list, &list); 7832 7833 __rtnl_unlock(); 7834 7835 7836 /* Wait for rcu callbacks to finish before next phase */ 7837 if (!list_empty(&list)) 7838 rcu_barrier(); 7839 7840 while (!list_empty(&list)) { 7841 struct net_device *dev 7842 = list_first_entry(&list, struct net_device, todo_list); 7843 list_del(&dev->todo_list); 7844 7845 rtnl_lock(); 7846 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7847 __rtnl_unlock(); 7848 7849 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 7850 pr_err("network todo '%s' but state %d\n", 7851 dev->name, dev->reg_state); 7852 dump_stack(); 7853 continue; 7854 } 7855 7856 dev->reg_state = NETREG_UNREGISTERED; 7857 7858 netdev_wait_allrefs(dev); 7859 7860 /* paranoia */ 7861 BUG_ON(netdev_refcnt_read(dev)); 7862 BUG_ON(!list_empty(&dev->ptype_all)); 7863 BUG_ON(!list_empty(&dev->ptype_specific)); 7864 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 7865 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 7866 WARN_ON(dev->dn_ptr); 7867 7868 if (dev->priv_destructor) 7869 dev->priv_destructor(dev); 7870 if (dev->needs_free_netdev) 7871 free_netdev(dev); 7872 7873 /* Report a network device has been unregistered */ 7874 rtnl_lock(); 7875 dev_net(dev)->dev_unreg_count--; 7876 __rtnl_unlock(); 7877 wake_up(&netdev_unregistering_wq); 7878 7879 /* Free network device */ 7880 kobject_put(&dev->dev.kobj); 7881 } 7882 } 7883 7884 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 7885 * all the same fields in the same order as net_device_stats, with only 7886 * the type differing, but rtnl_link_stats64 may have additional fields 7887 * at the end for newer counters. 7888 */ 7889 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 7890 const struct net_device_stats *netdev_stats) 7891 { 7892 #if BITS_PER_LONG == 64 7893 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 7894 memcpy(stats64, netdev_stats, sizeof(*netdev_stats)); 7895 /* zero out counters that only exist in rtnl_link_stats64 */ 7896 memset((char *)stats64 + sizeof(*netdev_stats), 0, 7897 sizeof(*stats64) - sizeof(*netdev_stats)); 7898 #else 7899 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 7900 const unsigned long *src = (const unsigned long *)netdev_stats; 7901 u64 *dst = (u64 *)stats64; 7902 7903 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 7904 for (i = 0; i < n; i++) 7905 dst[i] = src[i]; 7906 /* zero out counters that only exist in rtnl_link_stats64 */ 7907 memset((char *)stats64 + n * sizeof(u64), 0, 7908 sizeof(*stats64) - n * sizeof(u64)); 7909 #endif 7910 } 7911 EXPORT_SYMBOL(netdev_stats_to_stats64); 7912 7913 /** 7914 * dev_get_stats - get network device statistics 7915 * @dev: device to get statistics from 7916 * @storage: place to store stats 7917 * 7918 * Get network statistics from device. Return @storage. 7919 * The device driver may provide its own method by setting 7920 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 7921 * otherwise the internal statistics structure is used. 7922 */ 7923 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 7924 struct rtnl_link_stats64 *storage) 7925 { 7926 const struct net_device_ops *ops = dev->netdev_ops; 7927 7928 if (ops->ndo_get_stats64) { 7929 memset(storage, 0, sizeof(*storage)); 7930 ops->ndo_get_stats64(dev, storage); 7931 } else if (ops->ndo_get_stats) { 7932 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 7933 } else { 7934 netdev_stats_to_stats64(storage, &dev->stats); 7935 } 7936 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped); 7937 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped); 7938 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler); 7939 return storage; 7940 } 7941 EXPORT_SYMBOL(dev_get_stats); 7942 7943 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 7944 { 7945 struct netdev_queue *queue = dev_ingress_queue(dev); 7946 7947 #ifdef CONFIG_NET_CLS_ACT 7948 if (queue) 7949 return queue; 7950 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 7951 if (!queue) 7952 return NULL; 7953 netdev_init_one_queue(dev, queue, NULL); 7954 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 7955 queue->qdisc_sleeping = &noop_qdisc; 7956 rcu_assign_pointer(dev->ingress_queue, queue); 7957 #endif 7958 return queue; 7959 } 7960 7961 static const struct ethtool_ops default_ethtool_ops; 7962 7963 void netdev_set_default_ethtool_ops(struct net_device *dev, 7964 const struct ethtool_ops *ops) 7965 { 7966 if (dev->ethtool_ops == &default_ethtool_ops) 7967 dev->ethtool_ops = ops; 7968 } 7969 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 7970 7971 void netdev_freemem(struct net_device *dev) 7972 { 7973 char *addr = (char *)dev - dev->padded; 7974 7975 kvfree(addr); 7976 } 7977 7978 /** 7979 * alloc_netdev_mqs - allocate network device 7980 * @sizeof_priv: size of private data to allocate space for 7981 * @name: device name format string 7982 * @name_assign_type: origin of device name 7983 * @setup: callback to initialize device 7984 * @txqs: the number of TX subqueues to allocate 7985 * @rxqs: the number of RX subqueues to allocate 7986 * 7987 * Allocates a struct net_device with private data area for driver use 7988 * and performs basic initialization. Also allocates subqueue structs 7989 * for each queue on the device. 7990 */ 7991 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 7992 unsigned char name_assign_type, 7993 void (*setup)(struct net_device *), 7994 unsigned int txqs, unsigned int rxqs) 7995 { 7996 struct net_device *dev; 7997 size_t alloc_size; 7998 struct net_device *p; 7999 8000 BUG_ON(strlen(name) >= sizeof(dev->name)); 8001 8002 if (txqs < 1) { 8003 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 8004 return NULL; 8005 } 8006 8007 #ifdef CONFIG_SYSFS 8008 if (rxqs < 1) { 8009 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 8010 return NULL; 8011 } 8012 #endif 8013 8014 alloc_size = sizeof(struct net_device); 8015 if (sizeof_priv) { 8016 /* ensure 32-byte alignment of private area */ 8017 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 8018 alloc_size += sizeof_priv; 8019 } 8020 /* ensure 32-byte alignment of whole construct */ 8021 alloc_size += NETDEV_ALIGN - 1; 8022 8023 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 8024 if (!p) 8025 return NULL; 8026 8027 dev = PTR_ALIGN(p, NETDEV_ALIGN); 8028 dev->padded = (char *)dev - (char *)p; 8029 8030 dev->pcpu_refcnt = alloc_percpu(int); 8031 if (!dev->pcpu_refcnt) 8032 goto free_dev; 8033 8034 if (dev_addr_init(dev)) 8035 goto free_pcpu; 8036 8037 dev_mc_init(dev); 8038 dev_uc_init(dev); 8039 8040 dev_net_set(dev, &init_net); 8041 8042 dev->gso_max_size = GSO_MAX_SIZE; 8043 dev->gso_max_segs = GSO_MAX_SEGS; 8044 8045 INIT_LIST_HEAD(&dev->napi_list); 8046 INIT_LIST_HEAD(&dev->unreg_list); 8047 INIT_LIST_HEAD(&dev->close_list); 8048 INIT_LIST_HEAD(&dev->link_watch_list); 8049 INIT_LIST_HEAD(&dev->adj_list.upper); 8050 INIT_LIST_HEAD(&dev->adj_list.lower); 8051 INIT_LIST_HEAD(&dev->ptype_all); 8052 INIT_LIST_HEAD(&dev->ptype_specific); 8053 #ifdef CONFIG_NET_SCHED 8054 hash_init(dev->qdisc_hash); 8055 #endif 8056 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 8057 setup(dev); 8058 8059 if (!dev->tx_queue_len) { 8060 dev->priv_flags |= IFF_NO_QUEUE; 8061 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 8062 } 8063 8064 dev->num_tx_queues = txqs; 8065 dev->real_num_tx_queues = txqs; 8066 if (netif_alloc_netdev_queues(dev)) 8067 goto free_all; 8068 8069 #ifdef CONFIG_SYSFS 8070 dev->num_rx_queues = rxqs; 8071 dev->real_num_rx_queues = rxqs; 8072 if (netif_alloc_rx_queues(dev)) 8073 goto free_all; 8074 #endif 8075 8076 strcpy(dev->name, name); 8077 dev->name_assign_type = name_assign_type; 8078 dev->group = INIT_NETDEV_GROUP; 8079 if (!dev->ethtool_ops) 8080 dev->ethtool_ops = &default_ethtool_ops; 8081 8082 nf_hook_ingress_init(dev); 8083 8084 return dev; 8085 8086 free_all: 8087 free_netdev(dev); 8088 return NULL; 8089 8090 free_pcpu: 8091 free_percpu(dev->pcpu_refcnt); 8092 free_dev: 8093 netdev_freemem(dev); 8094 return NULL; 8095 } 8096 EXPORT_SYMBOL(alloc_netdev_mqs); 8097 8098 /** 8099 * free_netdev - free network device 8100 * @dev: device 8101 * 8102 * This function does the last stage of destroying an allocated device 8103 * interface. The reference to the device object is released. If this 8104 * is the last reference then it will be freed.Must be called in process 8105 * context. 8106 */ 8107 void free_netdev(struct net_device *dev) 8108 { 8109 struct napi_struct *p, *n; 8110 struct bpf_prog *prog; 8111 8112 might_sleep(); 8113 netif_free_tx_queues(dev); 8114 #ifdef CONFIG_SYSFS 8115 kvfree(dev->_rx); 8116 #endif 8117 8118 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 8119 8120 /* Flush device addresses */ 8121 dev_addr_flush(dev); 8122 8123 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 8124 netif_napi_del(p); 8125 8126 free_percpu(dev->pcpu_refcnt); 8127 dev->pcpu_refcnt = NULL; 8128 8129 prog = rcu_dereference_protected(dev->xdp_prog, 1); 8130 if (prog) { 8131 bpf_prog_put(prog); 8132 static_key_slow_dec(&generic_xdp_needed); 8133 } 8134 8135 /* Compatibility with error handling in drivers */ 8136 if (dev->reg_state == NETREG_UNINITIALIZED) { 8137 netdev_freemem(dev); 8138 return; 8139 } 8140 8141 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 8142 dev->reg_state = NETREG_RELEASED; 8143 8144 /* will free via device release */ 8145 put_device(&dev->dev); 8146 } 8147 EXPORT_SYMBOL(free_netdev); 8148 8149 /** 8150 * synchronize_net - Synchronize with packet receive processing 8151 * 8152 * Wait for packets currently being received to be done. 8153 * Does not block later packets from starting. 8154 */ 8155 void synchronize_net(void) 8156 { 8157 might_sleep(); 8158 if (rtnl_is_locked()) 8159 synchronize_rcu_expedited(); 8160 else 8161 synchronize_rcu(); 8162 } 8163 EXPORT_SYMBOL(synchronize_net); 8164 8165 /** 8166 * unregister_netdevice_queue - remove device from the kernel 8167 * @dev: device 8168 * @head: list 8169 * 8170 * This function shuts down a device interface and removes it 8171 * from the kernel tables. 8172 * If head not NULL, device is queued to be unregistered later. 8173 * 8174 * Callers must hold the rtnl semaphore. You may want 8175 * unregister_netdev() instead of this. 8176 */ 8177 8178 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 8179 { 8180 ASSERT_RTNL(); 8181 8182 if (head) { 8183 list_move_tail(&dev->unreg_list, head); 8184 } else { 8185 rollback_registered(dev); 8186 /* Finish processing unregister after unlock */ 8187 net_set_todo(dev); 8188 } 8189 } 8190 EXPORT_SYMBOL(unregister_netdevice_queue); 8191 8192 /** 8193 * unregister_netdevice_many - unregister many devices 8194 * @head: list of devices 8195 * 8196 * Note: As most callers use a stack allocated list_head, 8197 * we force a list_del() to make sure stack wont be corrupted later. 8198 */ 8199 void unregister_netdevice_many(struct list_head *head) 8200 { 8201 struct net_device *dev; 8202 8203 if (!list_empty(head)) { 8204 rollback_registered_many(head); 8205 list_for_each_entry(dev, head, unreg_list) 8206 net_set_todo(dev); 8207 list_del(head); 8208 } 8209 } 8210 EXPORT_SYMBOL(unregister_netdevice_many); 8211 8212 /** 8213 * unregister_netdev - remove device from the kernel 8214 * @dev: device 8215 * 8216 * This function shuts down a device interface and removes it 8217 * from the kernel tables. 8218 * 8219 * This is just a wrapper for unregister_netdevice that takes 8220 * the rtnl semaphore. In general you want to use this and not 8221 * unregister_netdevice. 8222 */ 8223 void unregister_netdev(struct net_device *dev) 8224 { 8225 rtnl_lock(); 8226 unregister_netdevice(dev); 8227 rtnl_unlock(); 8228 } 8229 EXPORT_SYMBOL(unregister_netdev); 8230 8231 /** 8232 * dev_change_net_namespace - move device to different nethost namespace 8233 * @dev: device 8234 * @net: network namespace 8235 * @pat: If not NULL name pattern to try if the current device name 8236 * is already taken in the destination network namespace. 8237 * 8238 * This function shuts down a device interface and moves it 8239 * to a new network namespace. On success 0 is returned, on 8240 * a failure a netagive errno code is returned. 8241 * 8242 * Callers must hold the rtnl semaphore. 8243 */ 8244 8245 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 8246 { 8247 int err; 8248 8249 ASSERT_RTNL(); 8250 8251 /* Don't allow namespace local devices to be moved. */ 8252 err = -EINVAL; 8253 if (dev->features & NETIF_F_NETNS_LOCAL) 8254 goto out; 8255 8256 /* Ensure the device has been registrered */ 8257 if (dev->reg_state != NETREG_REGISTERED) 8258 goto out; 8259 8260 /* Get out if there is nothing todo */ 8261 err = 0; 8262 if (net_eq(dev_net(dev), net)) 8263 goto out; 8264 8265 /* Pick the destination device name, and ensure 8266 * we can use it in the destination network namespace. 8267 */ 8268 err = -EEXIST; 8269 if (__dev_get_by_name(net, dev->name)) { 8270 /* We get here if we can't use the current device name */ 8271 if (!pat) 8272 goto out; 8273 if (dev_get_valid_name(net, dev, pat) < 0) 8274 goto out; 8275 } 8276 8277 /* 8278 * And now a mini version of register_netdevice unregister_netdevice. 8279 */ 8280 8281 /* If device is running close it first. */ 8282 dev_close(dev); 8283 8284 /* And unlink it from device chain */ 8285 err = -ENODEV; 8286 unlist_netdevice(dev); 8287 8288 synchronize_net(); 8289 8290 /* Shutdown queueing discipline. */ 8291 dev_shutdown(dev); 8292 8293 /* Notify protocols, that we are about to destroy 8294 * this device. They should clean all the things. 8295 * 8296 * Note that dev->reg_state stays at NETREG_REGISTERED. 8297 * This is wanted because this way 8021q and macvlan know 8298 * the device is just moving and can keep their slaves up. 8299 */ 8300 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8301 rcu_barrier(); 8302 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 8303 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL); 8304 8305 /* 8306 * Flush the unicast and multicast chains 8307 */ 8308 dev_uc_flush(dev); 8309 dev_mc_flush(dev); 8310 8311 /* Send a netdev-removed uevent to the old namespace */ 8312 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 8313 netdev_adjacent_del_links(dev); 8314 8315 /* Actually switch the network namespace */ 8316 dev_net_set(dev, net); 8317 8318 /* If there is an ifindex conflict assign a new one */ 8319 if (__dev_get_by_index(net, dev->ifindex)) 8320 dev->ifindex = dev_new_index(net); 8321 8322 /* Send a netdev-add uevent to the new namespace */ 8323 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 8324 netdev_adjacent_add_links(dev); 8325 8326 /* Fixup kobjects */ 8327 err = device_rename(&dev->dev, dev->name); 8328 WARN_ON(err); 8329 8330 /* Add the device back in the hashes */ 8331 list_netdevice(dev); 8332 8333 /* Notify protocols, that a new device appeared. */ 8334 call_netdevice_notifiers(NETDEV_REGISTER, dev); 8335 8336 /* 8337 * Prevent userspace races by waiting until the network 8338 * device is fully setup before sending notifications. 8339 */ 8340 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 8341 8342 synchronize_net(); 8343 err = 0; 8344 out: 8345 return err; 8346 } 8347 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 8348 8349 static int dev_cpu_dead(unsigned int oldcpu) 8350 { 8351 struct sk_buff **list_skb; 8352 struct sk_buff *skb; 8353 unsigned int cpu; 8354 struct softnet_data *sd, *oldsd, *remsd = NULL; 8355 8356 local_irq_disable(); 8357 cpu = smp_processor_id(); 8358 sd = &per_cpu(softnet_data, cpu); 8359 oldsd = &per_cpu(softnet_data, oldcpu); 8360 8361 /* Find end of our completion_queue. */ 8362 list_skb = &sd->completion_queue; 8363 while (*list_skb) 8364 list_skb = &(*list_skb)->next; 8365 /* Append completion queue from offline CPU. */ 8366 *list_skb = oldsd->completion_queue; 8367 oldsd->completion_queue = NULL; 8368 8369 /* Append output queue from offline CPU. */ 8370 if (oldsd->output_queue) { 8371 *sd->output_queue_tailp = oldsd->output_queue; 8372 sd->output_queue_tailp = oldsd->output_queue_tailp; 8373 oldsd->output_queue = NULL; 8374 oldsd->output_queue_tailp = &oldsd->output_queue; 8375 } 8376 /* Append NAPI poll list from offline CPU, with one exception : 8377 * process_backlog() must be called by cpu owning percpu backlog. 8378 * We properly handle process_queue & input_pkt_queue later. 8379 */ 8380 while (!list_empty(&oldsd->poll_list)) { 8381 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 8382 struct napi_struct, 8383 poll_list); 8384 8385 list_del_init(&napi->poll_list); 8386 if (napi->poll == process_backlog) 8387 napi->state = 0; 8388 else 8389 ____napi_schedule(sd, napi); 8390 } 8391 8392 raise_softirq_irqoff(NET_TX_SOFTIRQ); 8393 local_irq_enable(); 8394 8395 #ifdef CONFIG_RPS 8396 remsd = oldsd->rps_ipi_list; 8397 oldsd->rps_ipi_list = NULL; 8398 #endif 8399 /* send out pending IPI's on offline CPU */ 8400 net_rps_send_ipi(remsd); 8401 8402 /* Process offline CPU's input_pkt_queue */ 8403 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 8404 netif_rx_ni(skb); 8405 input_queue_head_incr(oldsd); 8406 } 8407 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 8408 netif_rx_ni(skb); 8409 input_queue_head_incr(oldsd); 8410 } 8411 8412 return 0; 8413 } 8414 8415 /** 8416 * netdev_increment_features - increment feature set by one 8417 * @all: current feature set 8418 * @one: new feature set 8419 * @mask: mask feature set 8420 * 8421 * Computes a new feature set after adding a device with feature set 8422 * @one to the master device with current feature set @all. Will not 8423 * enable anything that is off in @mask. Returns the new feature set. 8424 */ 8425 netdev_features_t netdev_increment_features(netdev_features_t all, 8426 netdev_features_t one, netdev_features_t mask) 8427 { 8428 if (mask & NETIF_F_HW_CSUM) 8429 mask |= NETIF_F_CSUM_MASK; 8430 mask |= NETIF_F_VLAN_CHALLENGED; 8431 8432 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 8433 all &= one | ~NETIF_F_ALL_FOR_ALL; 8434 8435 /* If one device supports hw checksumming, set for all. */ 8436 if (all & NETIF_F_HW_CSUM) 8437 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 8438 8439 return all; 8440 } 8441 EXPORT_SYMBOL(netdev_increment_features); 8442 8443 static struct hlist_head * __net_init netdev_create_hash(void) 8444 { 8445 int i; 8446 struct hlist_head *hash; 8447 8448 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 8449 if (hash != NULL) 8450 for (i = 0; i < NETDEV_HASHENTRIES; i++) 8451 INIT_HLIST_HEAD(&hash[i]); 8452 8453 return hash; 8454 } 8455 8456 /* Initialize per network namespace state */ 8457 static int __net_init netdev_init(struct net *net) 8458 { 8459 if (net != &init_net) 8460 INIT_LIST_HEAD(&net->dev_base_head); 8461 8462 net->dev_name_head = netdev_create_hash(); 8463 if (net->dev_name_head == NULL) 8464 goto err_name; 8465 8466 net->dev_index_head = netdev_create_hash(); 8467 if (net->dev_index_head == NULL) 8468 goto err_idx; 8469 8470 return 0; 8471 8472 err_idx: 8473 kfree(net->dev_name_head); 8474 err_name: 8475 return -ENOMEM; 8476 } 8477 8478 /** 8479 * netdev_drivername - network driver for the device 8480 * @dev: network device 8481 * 8482 * Determine network driver for device. 8483 */ 8484 const char *netdev_drivername(const struct net_device *dev) 8485 { 8486 const struct device_driver *driver; 8487 const struct device *parent; 8488 const char *empty = ""; 8489 8490 parent = dev->dev.parent; 8491 if (!parent) 8492 return empty; 8493 8494 driver = parent->driver; 8495 if (driver && driver->name) 8496 return driver->name; 8497 return empty; 8498 } 8499 8500 static void __netdev_printk(const char *level, const struct net_device *dev, 8501 struct va_format *vaf) 8502 { 8503 if (dev && dev->dev.parent) { 8504 dev_printk_emit(level[1] - '0', 8505 dev->dev.parent, 8506 "%s %s %s%s: %pV", 8507 dev_driver_string(dev->dev.parent), 8508 dev_name(dev->dev.parent), 8509 netdev_name(dev), netdev_reg_state(dev), 8510 vaf); 8511 } else if (dev) { 8512 printk("%s%s%s: %pV", 8513 level, netdev_name(dev), netdev_reg_state(dev), vaf); 8514 } else { 8515 printk("%s(NULL net_device): %pV", level, vaf); 8516 } 8517 } 8518 8519 void netdev_printk(const char *level, const struct net_device *dev, 8520 const char *format, ...) 8521 { 8522 struct va_format vaf; 8523 va_list args; 8524 8525 va_start(args, format); 8526 8527 vaf.fmt = format; 8528 vaf.va = &args; 8529 8530 __netdev_printk(level, dev, &vaf); 8531 8532 va_end(args); 8533 } 8534 EXPORT_SYMBOL(netdev_printk); 8535 8536 #define define_netdev_printk_level(func, level) \ 8537 void func(const struct net_device *dev, const char *fmt, ...) \ 8538 { \ 8539 struct va_format vaf; \ 8540 va_list args; \ 8541 \ 8542 va_start(args, fmt); \ 8543 \ 8544 vaf.fmt = fmt; \ 8545 vaf.va = &args; \ 8546 \ 8547 __netdev_printk(level, dev, &vaf); \ 8548 \ 8549 va_end(args); \ 8550 } \ 8551 EXPORT_SYMBOL(func); 8552 8553 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 8554 define_netdev_printk_level(netdev_alert, KERN_ALERT); 8555 define_netdev_printk_level(netdev_crit, KERN_CRIT); 8556 define_netdev_printk_level(netdev_err, KERN_ERR); 8557 define_netdev_printk_level(netdev_warn, KERN_WARNING); 8558 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 8559 define_netdev_printk_level(netdev_info, KERN_INFO); 8560 8561 static void __net_exit netdev_exit(struct net *net) 8562 { 8563 kfree(net->dev_name_head); 8564 kfree(net->dev_index_head); 8565 } 8566 8567 static struct pernet_operations __net_initdata netdev_net_ops = { 8568 .init = netdev_init, 8569 .exit = netdev_exit, 8570 }; 8571 8572 static void __net_exit default_device_exit(struct net *net) 8573 { 8574 struct net_device *dev, *aux; 8575 /* 8576 * Push all migratable network devices back to the 8577 * initial network namespace 8578 */ 8579 rtnl_lock(); 8580 for_each_netdev_safe(net, dev, aux) { 8581 int err; 8582 char fb_name[IFNAMSIZ]; 8583 8584 /* Ignore unmoveable devices (i.e. loopback) */ 8585 if (dev->features & NETIF_F_NETNS_LOCAL) 8586 continue; 8587 8588 /* Leave virtual devices for the generic cleanup */ 8589 if (dev->rtnl_link_ops) 8590 continue; 8591 8592 /* Push remaining network devices to init_net */ 8593 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 8594 err = dev_change_net_namespace(dev, &init_net, fb_name); 8595 if (err) { 8596 pr_emerg("%s: failed to move %s to init_net: %d\n", 8597 __func__, dev->name, err); 8598 BUG(); 8599 } 8600 } 8601 rtnl_unlock(); 8602 } 8603 8604 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 8605 { 8606 /* Return with the rtnl_lock held when there are no network 8607 * devices unregistering in any network namespace in net_list. 8608 */ 8609 struct net *net; 8610 bool unregistering; 8611 DEFINE_WAIT_FUNC(wait, woken_wake_function); 8612 8613 add_wait_queue(&netdev_unregistering_wq, &wait); 8614 for (;;) { 8615 unregistering = false; 8616 rtnl_lock(); 8617 list_for_each_entry(net, net_list, exit_list) { 8618 if (net->dev_unreg_count > 0) { 8619 unregistering = true; 8620 break; 8621 } 8622 } 8623 if (!unregistering) 8624 break; 8625 __rtnl_unlock(); 8626 8627 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 8628 } 8629 remove_wait_queue(&netdev_unregistering_wq, &wait); 8630 } 8631 8632 static void __net_exit default_device_exit_batch(struct list_head *net_list) 8633 { 8634 /* At exit all network devices most be removed from a network 8635 * namespace. Do this in the reverse order of registration. 8636 * Do this across as many network namespaces as possible to 8637 * improve batching efficiency. 8638 */ 8639 struct net_device *dev; 8640 struct net *net; 8641 LIST_HEAD(dev_kill_list); 8642 8643 /* To prevent network device cleanup code from dereferencing 8644 * loopback devices or network devices that have been freed 8645 * wait here for all pending unregistrations to complete, 8646 * before unregistring the loopback device and allowing the 8647 * network namespace be freed. 8648 * 8649 * The netdev todo list containing all network devices 8650 * unregistrations that happen in default_device_exit_batch 8651 * will run in the rtnl_unlock() at the end of 8652 * default_device_exit_batch. 8653 */ 8654 rtnl_lock_unregistering(net_list); 8655 list_for_each_entry(net, net_list, exit_list) { 8656 for_each_netdev_reverse(net, dev) { 8657 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 8658 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 8659 else 8660 unregister_netdevice_queue(dev, &dev_kill_list); 8661 } 8662 } 8663 unregister_netdevice_many(&dev_kill_list); 8664 rtnl_unlock(); 8665 } 8666 8667 static struct pernet_operations __net_initdata default_device_ops = { 8668 .exit = default_device_exit, 8669 .exit_batch = default_device_exit_batch, 8670 }; 8671 8672 /* 8673 * Initialize the DEV module. At boot time this walks the device list and 8674 * unhooks any devices that fail to initialise (normally hardware not 8675 * present) and leaves us with a valid list of present and active devices. 8676 * 8677 */ 8678 8679 /* 8680 * This is called single threaded during boot, so no need 8681 * to take the rtnl semaphore. 8682 */ 8683 static int __init net_dev_init(void) 8684 { 8685 int i, rc = -ENOMEM; 8686 8687 BUG_ON(!dev_boot_phase); 8688 8689 if (dev_proc_init()) 8690 goto out; 8691 8692 if (netdev_kobject_init()) 8693 goto out; 8694 8695 INIT_LIST_HEAD(&ptype_all); 8696 for (i = 0; i < PTYPE_HASH_SIZE; i++) 8697 INIT_LIST_HEAD(&ptype_base[i]); 8698 8699 INIT_LIST_HEAD(&offload_base); 8700 8701 if (register_pernet_subsys(&netdev_net_ops)) 8702 goto out; 8703 8704 /* 8705 * Initialise the packet receive queues. 8706 */ 8707 8708 for_each_possible_cpu(i) { 8709 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 8710 struct softnet_data *sd = &per_cpu(softnet_data, i); 8711 8712 INIT_WORK(flush, flush_backlog); 8713 8714 skb_queue_head_init(&sd->input_pkt_queue); 8715 skb_queue_head_init(&sd->process_queue); 8716 INIT_LIST_HEAD(&sd->poll_list); 8717 sd->output_queue_tailp = &sd->output_queue; 8718 #ifdef CONFIG_RPS 8719 sd->csd.func = rps_trigger_softirq; 8720 sd->csd.info = sd; 8721 sd->cpu = i; 8722 #endif 8723 8724 sd->backlog.poll = process_backlog; 8725 sd->backlog.weight = weight_p; 8726 } 8727 8728 dev_boot_phase = 0; 8729 8730 /* The loopback device is special if any other network devices 8731 * is present in a network namespace the loopback device must 8732 * be present. Since we now dynamically allocate and free the 8733 * loopback device ensure this invariant is maintained by 8734 * keeping the loopback device as the first device on the 8735 * list of network devices. Ensuring the loopback devices 8736 * is the first device that appears and the last network device 8737 * that disappears. 8738 */ 8739 if (register_pernet_device(&loopback_net_ops)) 8740 goto out; 8741 8742 if (register_pernet_device(&default_device_ops)) 8743 goto out; 8744 8745 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 8746 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 8747 8748 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 8749 NULL, dev_cpu_dead); 8750 WARN_ON(rc < 0); 8751 rc = 0; 8752 out: 8753 return rc; 8754 } 8755 8756 subsys_initcall(net_dev_init); 8757