xref: /openbmc/linux/net/core/dev.c (revision 727dede0)
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/pkt_cls.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <linux/pci.h>
136 #include <linux/inetdevice.h>
137 #include <linux/cpu_rmap.h>
138 #include <linux/static_key.h>
139 #include <linux/hashtable.h>
140 #include <linux/vmalloc.h>
141 #include <linux/if_macvlan.h>
142 #include <linux/errqueue.h>
143 #include <linux/hrtimer.h>
144 #include <linux/netfilter_ingress.h>
145 #include <linux/crash_dump.h>
146 #include <linux/sctp.h>
147 #include <net/udp_tunnel.h>
148 
149 #include "net-sysfs.h"
150 
151 /* Instead of increasing this, you should create a hash table. */
152 #define MAX_GRO_SKBS 8
153 
154 /* This should be increased if a protocol with a bigger head is added. */
155 #define GRO_MAX_HEAD (MAX_HEADER + 128)
156 
157 static DEFINE_SPINLOCK(ptype_lock);
158 static DEFINE_SPINLOCK(offload_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly;	/* Taps */
161 static struct list_head offload_base __read_mostly;
162 
163 static int netif_rx_internal(struct sk_buff *skb);
164 static int call_netdevice_notifiers_info(unsigned long val,
165 					 struct net_device *dev,
166 					 struct netdev_notifier_info *info);
167 static struct napi_struct *napi_by_id(unsigned int napi_id);
168 
169 /*
170  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171  * semaphore.
172  *
173  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174  *
175  * Writers must hold the rtnl semaphore while they loop through the
176  * dev_base_head list, and hold dev_base_lock for writing when they do the
177  * actual updates.  This allows pure readers to access the list even
178  * while a writer is preparing to update it.
179  *
180  * To put it another way, dev_base_lock is held for writing only to
181  * protect against pure readers; the rtnl semaphore provides the
182  * protection against other writers.
183  *
184  * See, for example usages, register_netdevice() and
185  * unregister_netdevice(), which must be called with the rtnl
186  * semaphore held.
187  */
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
190 
191 /* protects napi_hash addition/deletion and napi_gen_id */
192 static DEFINE_SPINLOCK(napi_hash_lock);
193 
194 static unsigned int napi_gen_id = NR_CPUS;
195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
196 
197 static seqcount_t devnet_rename_seq;
198 
199 static inline void dev_base_seq_inc(struct net *net)
200 {
201 	while (++net->dev_base_seq == 0)
202 		;
203 }
204 
205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
206 {
207 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
208 
209 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
210 }
211 
212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
213 {
214 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
215 }
216 
217 static inline void rps_lock(struct softnet_data *sd)
218 {
219 #ifdef CONFIG_RPS
220 	spin_lock(&sd->input_pkt_queue.lock);
221 #endif
222 }
223 
224 static inline void rps_unlock(struct softnet_data *sd)
225 {
226 #ifdef CONFIG_RPS
227 	spin_unlock(&sd->input_pkt_queue.lock);
228 #endif
229 }
230 
231 /* Device list insertion */
232 static void list_netdevice(struct net_device *dev)
233 {
234 	struct net *net = dev_net(dev);
235 
236 	ASSERT_RTNL();
237 
238 	write_lock_bh(&dev_base_lock);
239 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
240 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
241 	hlist_add_head_rcu(&dev->index_hlist,
242 			   dev_index_hash(net, dev->ifindex));
243 	write_unlock_bh(&dev_base_lock);
244 
245 	dev_base_seq_inc(net);
246 }
247 
248 /* Device list removal
249  * caller must respect a RCU grace period before freeing/reusing dev
250  */
251 static void unlist_netdevice(struct net_device *dev)
252 {
253 	ASSERT_RTNL();
254 
255 	/* Unlink dev from the device chain */
256 	write_lock_bh(&dev_base_lock);
257 	list_del_rcu(&dev->dev_list);
258 	hlist_del_rcu(&dev->name_hlist);
259 	hlist_del_rcu(&dev->index_hlist);
260 	write_unlock_bh(&dev_base_lock);
261 
262 	dev_base_seq_inc(dev_net(dev));
263 }
264 
265 /*
266  *	Our notifier list
267  */
268 
269 static RAW_NOTIFIER_HEAD(netdev_chain);
270 
271 /*
272  *	Device drivers call our routines to queue packets here. We empty the
273  *	queue in the local softnet handler.
274  */
275 
276 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
277 EXPORT_PER_CPU_SYMBOL(softnet_data);
278 
279 #ifdef CONFIG_LOCKDEP
280 /*
281  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
282  * according to dev->type
283  */
284 static const unsigned short netdev_lock_type[] = {
285 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
286 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
287 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
288 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
289 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
290 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
291 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
292 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
293 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
294 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
295 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
296 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
297 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
298 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
299 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
300 
301 static const char *const netdev_lock_name[] = {
302 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
303 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
304 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
305 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
306 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
307 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
308 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
309 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
310 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
311 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
312 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
313 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
314 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
315 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
316 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
317 
318 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
319 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
320 
321 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
322 {
323 	int i;
324 
325 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
326 		if (netdev_lock_type[i] == dev_type)
327 			return i;
328 	/* the last key is used by default */
329 	return ARRAY_SIZE(netdev_lock_type) - 1;
330 }
331 
332 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
333 						 unsigned short dev_type)
334 {
335 	int i;
336 
337 	i = netdev_lock_pos(dev_type);
338 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
339 				   netdev_lock_name[i]);
340 }
341 
342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
343 {
344 	int i;
345 
346 	i = netdev_lock_pos(dev->type);
347 	lockdep_set_class_and_name(&dev->addr_list_lock,
348 				   &netdev_addr_lock_key[i],
349 				   netdev_lock_name[i]);
350 }
351 #else
352 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
353 						 unsigned short dev_type)
354 {
355 }
356 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
357 {
358 }
359 #endif
360 
361 /*******************************************************************************
362  *
363  *		Protocol management and registration routines
364  *
365  *******************************************************************************/
366 
367 
368 /*
369  *	Add a protocol ID to the list. Now that the input handler is
370  *	smarter we can dispense with all the messy stuff that used to be
371  *	here.
372  *
373  *	BEWARE!!! Protocol handlers, mangling input packets,
374  *	MUST BE last in hash buckets and checking protocol handlers
375  *	MUST start from promiscuous ptype_all chain in net_bh.
376  *	It is true now, do not change it.
377  *	Explanation follows: if protocol handler, mangling packet, will
378  *	be the first on list, it is not able to sense, that packet
379  *	is cloned and should be copied-on-write, so that it will
380  *	change it and subsequent readers will get broken packet.
381  *							--ANK (980803)
382  */
383 
384 static inline struct list_head *ptype_head(const struct packet_type *pt)
385 {
386 	if (pt->type == htons(ETH_P_ALL))
387 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
388 	else
389 		return pt->dev ? &pt->dev->ptype_specific :
390 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
391 }
392 
393 /**
394  *	dev_add_pack - add packet handler
395  *	@pt: packet type declaration
396  *
397  *	Add a protocol handler to the networking stack. The passed &packet_type
398  *	is linked into kernel lists and may not be freed until it has been
399  *	removed from the kernel lists.
400  *
401  *	This call does not sleep therefore it can not
402  *	guarantee all CPU's that are in middle of receiving packets
403  *	will see the new packet type (until the next received packet).
404  */
405 
406 void dev_add_pack(struct packet_type *pt)
407 {
408 	struct list_head *head = ptype_head(pt);
409 
410 	spin_lock(&ptype_lock);
411 	list_add_rcu(&pt->list, head);
412 	spin_unlock(&ptype_lock);
413 }
414 EXPORT_SYMBOL(dev_add_pack);
415 
416 /**
417  *	__dev_remove_pack	 - remove packet handler
418  *	@pt: packet type declaration
419  *
420  *	Remove a protocol handler that was previously added to the kernel
421  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
422  *	from the kernel lists and can be freed or reused once this function
423  *	returns.
424  *
425  *      The packet type might still be in use by receivers
426  *	and must not be freed until after all the CPU's have gone
427  *	through a quiescent state.
428  */
429 void __dev_remove_pack(struct packet_type *pt)
430 {
431 	struct list_head *head = ptype_head(pt);
432 	struct packet_type *pt1;
433 
434 	spin_lock(&ptype_lock);
435 
436 	list_for_each_entry(pt1, head, list) {
437 		if (pt == pt1) {
438 			list_del_rcu(&pt->list);
439 			goto out;
440 		}
441 	}
442 
443 	pr_warn("dev_remove_pack: %p not found\n", pt);
444 out:
445 	spin_unlock(&ptype_lock);
446 }
447 EXPORT_SYMBOL(__dev_remove_pack);
448 
449 /**
450  *	dev_remove_pack	 - remove packet handler
451  *	@pt: packet type declaration
452  *
453  *	Remove a protocol handler that was previously added to the kernel
454  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
455  *	from the kernel lists and can be freed or reused once this function
456  *	returns.
457  *
458  *	This call sleeps to guarantee that no CPU is looking at the packet
459  *	type after return.
460  */
461 void dev_remove_pack(struct packet_type *pt)
462 {
463 	__dev_remove_pack(pt);
464 
465 	synchronize_net();
466 }
467 EXPORT_SYMBOL(dev_remove_pack);
468 
469 
470 /**
471  *	dev_add_offload - register offload handlers
472  *	@po: protocol offload declaration
473  *
474  *	Add protocol offload handlers to the networking stack. The passed
475  *	&proto_offload is linked into kernel lists and may not be freed until
476  *	it has been removed from the kernel lists.
477  *
478  *	This call does not sleep therefore it can not
479  *	guarantee all CPU's that are in middle of receiving packets
480  *	will see the new offload handlers (until the next received packet).
481  */
482 void dev_add_offload(struct packet_offload *po)
483 {
484 	struct packet_offload *elem;
485 
486 	spin_lock(&offload_lock);
487 	list_for_each_entry(elem, &offload_base, list) {
488 		if (po->priority < elem->priority)
489 			break;
490 	}
491 	list_add_rcu(&po->list, elem->list.prev);
492 	spin_unlock(&offload_lock);
493 }
494 EXPORT_SYMBOL(dev_add_offload);
495 
496 /**
497  *	__dev_remove_offload	 - remove offload handler
498  *	@po: packet offload declaration
499  *
500  *	Remove a protocol offload handler that was previously added to the
501  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
502  *	is removed from the kernel lists and can be freed or reused once this
503  *	function returns.
504  *
505  *      The packet type might still be in use by receivers
506  *	and must not be freed until after all the CPU's have gone
507  *	through a quiescent state.
508  */
509 static void __dev_remove_offload(struct packet_offload *po)
510 {
511 	struct list_head *head = &offload_base;
512 	struct packet_offload *po1;
513 
514 	spin_lock(&offload_lock);
515 
516 	list_for_each_entry(po1, head, list) {
517 		if (po == po1) {
518 			list_del_rcu(&po->list);
519 			goto out;
520 		}
521 	}
522 
523 	pr_warn("dev_remove_offload: %p not found\n", po);
524 out:
525 	spin_unlock(&offload_lock);
526 }
527 
528 /**
529  *	dev_remove_offload	 - remove packet offload handler
530  *	@po: packet offload declaration
531  *
532  *	Remove a packet offload handler that was previously added to the kernel
533  *	offload handlers by dev_add_offload(). The passed &offload_type is
534  *	removed from the kernel lists and can be freed or reused once this
535  *	function returns.
536  *
537  *	This call sleeps to guarantee that no CPU is looking at the packet
538  *	type after return.
539  */
540 void dev_remove_offload(struct packet_offload *po)
541 {
542 	__dev_remove_offload(po);
543 
544 	synchronize_net();
545 }
546 EXPORT_SYMBOL(dev_remove_offload);
547 
548 /******************************************************************************
549  *
550  *		      Device Boot-time Settings Routines
551  *
552  ******************************************************************************/
553 
554 /* Boot time configuration table */
555 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
556 
557 /**
558  *	netdev_boot_setup_add	- add new setup entry
559  *	@name: name of the device
560  *	@map: configured settings for the device
561  *
562  *	Adds new setup entry to the dev_boot_setup list.  The function
563  *	returns 0 on error and 1 on success.  This is a generic routine to
564  *	all netdevices.
565  */
566 static int netdev_boot_setup_add(char *name, struct ifmap *map)
567 {
568 	struct netdev_boot_setup *s;
569 	int i;
570 
571 	s = dev_boot_setup;
572 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
573 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
574 			memset(s[i].name, 0, sizeof(s[i].name));
575 			strlcpy(s[i].name, name, IFNAMSIZ);
576 			memcpy(&s[i].map, map, sizeof(s[i].map));
577 			break;
578 		}
579 	}
580 
581 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
582 }
583 
584 /**
585  * netdev_boot_setup_check	- check boot time settings
586  * @dev: the netdevice
587  *
588  * Check boot time settings for the device.
589  * The found settings are set for the device to be used
590  * later in the device probing.
591  * Returns 0 if no settings found, 1 if they are.
592  */
593 int netdev_boot_setup_check(struct net_device *dev)
594 {
595 	struct netdev_boot_setup *s = dev_boot_setup;
596 	int i;
597 
598 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
599 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
600 		    !strcmp(dev->name, s[i].name)) {
601 			dev->irq = s[i].map.irq;
602 			dev->base_addr = s[i].map.base_addr;
603 			dev->mem_start = s[i].map.mem_start;
604 			dev->mem_end = s[i].map.mem_end;
605 			return 1;
606 		}
607 	}
608 	return 0;
609 }
610 EXPORT_SYMBOL(netdev_boot_setup_check);
611 
612 
613 /**
614  * netdev_boot_base	- get address from boot time settings
615  * @prefix: prefix for network device
616  * @unit: id for network device
617  *
618  * Check boot time settings for the base address of device.
619  * The found settings are set for the device to be used
620  * later in the device probing.
621  * Returns 0 if no settings found.
622  */
623 unsigned long netdev_boot_base(const char *prefix, int unit)
624 {
625 	const struct netdev_boot_setup *s = dev_boot_setup;
626 	char name[IFNAMSIZ];
627 	int i;
628 
629 	sprintf(name, "%s%d", prefix, unit);
630 
631 	/*
632 	 * If device already registered then return base of 1
633 	 * to indicate not to probe for this interface
634 	 */
635 	if (__dev_get_by_name(&init_net, name))
636 		return 1;
637 
638 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
639 		if (!strcmp(name, s[i].name))
640 			return s[i].map.base_addr;
641 	return 0;
642 }
643 
644 /*
645  * Saves at boot time configured settings for any netdevice.
646  */
647 int __init netdev_boot_setup(char *str)
648 {
649 	int ints[5];
650 	struct ifmap map;
651 
652 	str = get_options(str, ARRAY_SIZE(ints), ints);
653 	if (!str || !*str)
654 		return 0;
655 
656 	/* Save settings */
657 	memset(&map, 0, sizeof(map));
658 	if (ints[0] > 0)
659 		map.irq = ints[1];
660 	if (ints[0] > 1)
661 		map.base_addr = ints[2];
662 	if (ints[0] > 2)
663 		map.mem_start = ints[3];
664 	if (ints[0] > 3)
665 		map.mem_end = ints[4];
666 
667 	/* Add new entry to the list */
668 	return netdev_boot_setup_add(str, &map);
669 }
670 
671 __setup("netdev=", netdev_boot_setup);
672 
673 /*******************************************************************************
674  *
675  *			    Device Interface Subroutines
676  *
677  *******************************************************************************/
678 
679 /**
680  *	dev_get_iflink	- get 'iflink' value of a interface
681  *	@dev: targeted interface
682  *
683  *	Indicates the ifindex the interface is linked to.
684  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
685  */
686 
687 int dev_get_iflink(const struct net_device *dev)
688 {
689 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
690 		return dev->netdev_ops->ndo_get_iflink(dev);
691 
692 	return dev->ifindex;
693 }
694 EXPORT_SYMBOL(dev_get_iflink);
695 
696 /**
697  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
698  *	@dev: targeted interface
699  *	@skb: The packet.
700  *
701  *	For better visibility of tunnel traffic OVS needs to retrieve
702  *	egress tunnel information for a packet. Following API allows
703  *	user to get this info.
704  */
705 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
706 {
707 	struct ip_tunnel_info *info;
708 
709 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
710 		return -EINVAL;
711 
712 	info = skb_tunnel_info_unclone(skb);
713 	if (!info)
714 		return -ENOMEM;
715 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
716 		return -EINVAL;
717 
718 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
719 }
720 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
721 
722 /**
723  *	__dev_get_by_name	- find a device by its name
724  *	@net: the applicable net namespace
725  *	@name: name to find
726  *
727  *	Find an interface by name. Must be called under RTNL semaphore
728  *	or @dev_base_lock. If the name is found a pointer to the device
729  *	is returned. If the name is not found then %NULL is returned. The
730  *	reference counters are not incremented so the caller must be
731  *	careful with locks.
732  */
733 
734 struct net_device *__dev_get_by_name(struct net *net, const char *name)
735 {
736 	struct net_device *dev;
737 	struct hlist_head *head = dev_name_hash(net, name);
738 
739 	hlist_for_each_entry(dev, head, name_hlist)
740 		if (!strncmp(dev->name, name, IFNAMSIZ))
741 			return dev;
742 
743 	return NULL;
744 }
745 EXPORT_SYMBOL(__dev_get_by_name);
746 
747 /**
748  * dev_get_by_name_rcu	- find a device by its name
749  * @net: the applicable net namespace
750  * @name: name to find
751  *
752  * Find an interface by name.
753  * If the name is found a pointer to the device is returned.
754  * If the name is not found then %NULL is returned.
755  * The reference counters are not incremented so the caller must be
756  * careful with locks. The caller must hold RCU lock.
757  */
758 
759 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
760 {
761 	struct net_device *dev;
762 	struct hlist_head *head = dev_name_hash(net, name);
763 
764 	hlist_for_each_entry_rcu(dev, head, name_hlist)
765 		if (!strncmp(dev->name, name, IFNAMSIZ))
766 			return dev;
767 
768 	return NULL;
769 }
770 EXPORT_SYMBOL(dev_get_by_name_rcu);
771 
772 /**
773  *	dev_get_by_name		- find a device by its name
774  *	@net: the applicable net namespace
775  *	@name: name to find
776  *
777  *	Find an interface by name. This can be called from any
778  *	context and does its own locking. The returned handle has
779  *	the usage count incremented and the caller must use dev_put() to
780  *	release it when it is no longer needed. %NULL is returned if no
781  *	matching device is found.
782  */
783 
784 struct net_device *dev_get_by_name(struct net *net, const char *name)
785 {
786 	struct net_device *dev;
787 
788 	rcu_read_lock();
789 	dev = dev_get_by_name_rcu(net, name);
790 	if (dev)
791 		dev_hold(dev);
792 	rcu_read_unlock();
793 	return dev;
794 }
795 EXPORT_SYMBOL(dev_get_by_name);
796 
797 /**
798  *	__dev_get_by_index - find a device by its ifindex
799  *	@net: the applicable net namespace
800  *	@ifindex: index of device
801  *
802  *	Search for an interface by index. Returns %NULL if the device
803  *	is not found or a pointer to the device. The device has not
804  *	had its reference counter increased so the caller must be careful
805  *	about locking. The caller must hold either the RTNL semaphore
806  *	or @dev_base_lock.
807  */
808 
809 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
810 {
811 	struct net_device *dev;
812 	struct hlist_head *head = dev_index_hash(net, ifindex);
813 
814 	hlist_for_each_entry(dev, head, index_hlist)
815 		if (dev->ifindex == ifindex)
816 			return dev;
817 
818 	return NULL;
819 }
820 EXPORT_SYMBOL(__dev_get_by_index);
821 
822 /**
823  *	dev_get_by_index_rcu - find a device by its ifindex
824  *	@net: the applicable net namespace
825  *	@ifindex: index of device
826  *
827  *	Search for an interface by index. Returns %NULL if the device
828  *	is not found or a pointer to the device. The device has not
829  *	had its reference counter increased so the caller must be careful
830  *	about locking. The caller must hold RCU lock.
831  */
832 
833 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
834 {
835 	struct net_device *dev;
836 	struct hlist_head *head = dev_index_hash(net, ifindex);
837 
838 	hlist_for_each_entry_rcu(dev, head, index_hlist)
839 		if (dev->ifindex == ifindex)
840 			return dev;
841 
842 	return NULL;
843 }
844 EXPORT_SYMBOL(dev_get_by_index_rcu);
845 
846 
847 /**
848  *	dev_get_by_index - find a device by its ifindex
849  *	@net: the applicable net namespace
850  *	@ifindex: index of device
851  *
852  *	Search for an interface by index. Returns NULL if the device
853  *	is not found or a pointer to the device. The device returned has
854  *	had a reference added and the pointer is safe until the user calls
855  *	dev_put to indicate they have finished with it.
856  */
857 
858 struct net_device *dev_get_by_index(struct net *net, int ifindex)
859 {
860 	struct net_device *dev;
861 
862 	rcu_read_lock();
863 	dev = dev_get_by_index_rcu(net, ifindex);
864 	if (dev)
865 		dev_hold(dev);
866 	rcu_read_unlock();
867 	return dev;
868 }
869 EXPORT_SYMBOL(dev_get_by_index);
870 
871 /**
872  *	dev_get_by_napi_id - find a device by napi_id
873  *	@napi_id: ID of the NAPI struct
874  *
875  *	Search for an interface by NAPI ID. Returns %NULL if the device
876  *	is not found or a pointer to the device. The device has not had
877  *	its reference counter increased so the caller must be careful
878  *	about locking. The caller must hold RCU lock.
879  */
880 
881 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
882 {
883 	struct napi_struct *napi;
884 
885 	WARN_ON_ONCE(!rcu_read_lock_held());
886 
887 	if (napi_id < MIN_NAPI_ID)
888 		return NULL;
889 
890 	napi = napi_by_id(napi_id);
891 
892 	return napi ? napi->dev : NULL;
893 }
894 EXPORT_SYMBOL(dev_get_by_napi_id);
895 
896 /**
897  *	netdev_get_name - get a netdevice name, knowing its ifindex.
898  *	@net: network namespace
899  *	@name: a pointer to the buffer where the name will be stored.
900  *	@ifindex: the ifindex of the interface to get the name from.
901  *
902  *	The use of raw_seqcount_begin() and cond_resched() before
903  *	retrying is required as we want to give the writers a chance
904  *	to complete when CONFIG_PREEMPT is not set.
905  */
906 int netdev_get_name(struct net *net, char *name, int ifindex)
907 {
908 	struct net_device *dev;
909 	unsigned int seq;
910 
911 retry:
912 	seq = raw_seqcount_begin(&devnet_rename_seq);
913 	rcu_read_lock();
914 	dev = dev_get_by_index_rcu(net, ifindex);
915 	if (!dev) {
916 		rcu_read_unlock();
917 		return -ENODEV;
918 	}
919 
920 	strcpy(name, dev->name);
921 	rcu_read_unlock();
922 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
923 		cond_resched();
924 		goto retry;
925 	}
926 
927 	return 0;
928 }
929 
930 /**
931  *	dev_getbyhwaddr_rcu - find a device by its hardware address
932  *	@net: the applicable net namespace
933  *	@type: media type of device
934  *	@ha: hardware address
935  *
936  *	Search for an interface by MAC address. Returns NULL if the device
937  *	is not found or a pointer to the device.
938  *	The caller must hold RCU or RTNL.
939  *	The returned device has not had its ref count increased
940  *	and the caller must therefore be careful about locking
941  *
942  */
943 
944 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
945 				       const char *ha)
946 {
947 	struct net_device *dev;
948 
949 	for_each_netdev_rcu(net, dev)
950 		if (dev->type == type &&
951 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
952 			return dev;
953 
954 	return NULL;
955 }
956 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
957 
958 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
959 {
960 	struct net_device *dev;
961 
962 	ASSERT_RTNL();
963 	for_each_netdev(net, dev)
964 		if (dev->type == type)
965 			return dev;
966 
967 	return NULL;
968 }
969 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
970 
971 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
972 {
973 	struct net_device *dev, *ret = NULL;
974 
975 	rcu_read_lock();
976 	for_each_netdev_rcu(net, dev)
977 		if (dev->type == type) {
978 			dev_hold(dev);
979 			ret = dev;
980 			break;
981 		}
982 	rcu_read_unlock();
983 	return ret;
984 }
985 EXPORT_SYMBOL(dev_getfirstbyhwtype);
986 
987 /**
988  *	__dev_get_by_flags - find any device with given flags
989  *	@net: the applicable net namespace
990  *	@if_flags: IFF_* values
991  *	@mask: bitmask of bits in if_flags to check
992  *
993  *	Search for any interface with the given flags. Returns NULL if a device
994  *	is not found or a pointer to the device. Must be called inside
995  *	rtnl_lock(), and result refcount is unchanged.
996  */
997 
998 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
999 				      unsigned short mask)
1000 {
1001 	struct net_device *dev, *ret;
1002 
1003 	ASSERT_RTNL();
1004 
1005 	ret = NULL;
1006 	for_each_netdev(net, dev) {
1007 		if (((dev->flags ^ if_flags) & mask) == 0) {
1008 			ret = dev;
1009 			break;
1010 		}
1011 	}
1012 	return ret;
1013 }
1014 EXPORT_SYMBOL(__dev_get_by_flags);
1015 
1016 /**
1017  *	dev_valid_name - check if name is okay for network device
1018  *	@name: name string
1019  *
1020  *	Network device names need to be valid file names to
1021  *	to allow sysfs to work.  We also disallow any kind of
1022  *	whitespace.
1023  */
1024 bool dev_valid_name(const char *name)
1025 {
1026 	if (*name == '\0')
1027 		return false;
1028 	if (strlen(name) >= IFNAMSIZ)
1029 		return false;
1030 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1031 		return false;
1032 
1033 	while (*name) {
1034 		if (*name == '/' || *name == ':' || isspace(*name))
1035 			return false;
1036 		name++;
1037 	}
1038 	return true;
1039 }
1040 EXPORT_SYMBOL(dev_valid_name);
1041 
1042 /**
1043  *	__dev_alloc_name - allocate a name for a device
1044  *	@net: network namespace to allocate the device name in
1045  *	@name: name format string
1046  *	@buf:  scratch buffer and result name string
1047  *
1048  *	Passed a format string - eg "lt%d" it will try and find a suitable
1049  *	id. It scans list of devices to build up a free map, then chooses
1050  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1051  *	while allocating the name and adding the device in order to avoid
1052  *	duplicates.
1053  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1054  *	Returns the number of the unit assigned or a negative errno code.
1055  */
1056 
1057 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1058 {
1059 	int i = 0;
1060 	const char *p;
1061 	const int max_netdevices = 8*PAGE_SIZE;
1062 	unsigned long *inuse;
1063 	struct net_device *d;
1064 
1065 	p = strnchr(name, IFNAMSIZ-1, '%');
1066 	if (p) {
1067 		/*
1068 		 * Verify the string as this thing may have come from
1069 		 * the user.  There must be either one "%d" and no other "%"
1070 		 * characters.
1071 		 */
1072 		if (p[1] != 'd' || strchr(p + 2, '%'))
1073 			return -EINVAL;
1074 
1075 		/* Use one page as a bit array of possible slots */
1076 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1077 		if (!inuse)
1078 			return -ENOMEM;
1079 
1080 		for_each_netdev(net, d) {
1081 			if (!sscanf(d->name, name, &i))
1082 				continue;
1083 			if (i < 0 || i >= max_netdevices)
1084 				continue;
1085 
1086 			/*  avoid cases where sscanf is not exact inverse of printf */
1087 			snprintf(buf, IFNAMSIZ, name, i);
1088 			if (!strncmp(buf, d->name, IFNAMSIZ))
1089 				set_bit(i, inuse);
1090 		}
1091 
1092 		i = find_first_zero_bit(inuse, max_netdevices);
1093 		free_page((unsigned long) inuse);
1094 	}
1095 
1096 	if (buf != name)
1097 		snprintf(buf, IFNAMSIZ, name, i);
1098 	if (!__dev_get_by_name(net, buf))
1099 		return i;
1100 
1101 	/* It is possible to run out of possible slots
1102 	 * when the name is long and there isn't enough space left
1103 	 * for the digits, or if all bits are used.
1104 	 */
1105 	return -ENFILE;
1106 }
1107 
1108 /**
1109  *	dev_alloc_name - allocate a name for a device
1110  *	@dev: device
1111  *	@name: name format string
1112  *
1113  *	Passed a format string - eg "lt%d" it will try and find a suitable
1114  *	id. It scans list of devices to build up a free map, then chooses
1115  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1116  *	while allocating the name and adding the device in order to avoid
1117  *	duplicates.
1118  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1119  *	Returns the number of the unit assigned or a negative errno code.
1120  */
1121 
1122 int dev_alloc_name(struct net_device *dev, const char *name)
1123 {
1124 	char buf[IFNAMSIZ];
1125 	struct net *net;
1126 	int ret;
1127 
1128 	BUG_ON(!dev_net(dev));
1129 	net = dev_net(dev);
1130 	ret = __dev_alloc_name(net, name, buf);
1131 	if (ret >= 0)
1132 		strlcpy(dev->name, buf, IFNAMSIZ);
1133 	return ret;
1134 }
1135 EXPORT_SYMBOL(dev_alloc_name);
1136 
1137 static int dev_alloc_name_ns(struct net *net,
1138 			     struct net_device *dev,
1139 			     const char *name)
1140 {
1141 	char buf[IFNAMSIZ];
1142 	int ret;
1143 
1144 	ret = __dev_alloc_name(net, name, buf);
1145 	if (ret >= 0)
1146 		strlcpy(dev->name, buf, IFNAMSIZ);
1147 	return ret;
1148 }
1149 
1150 static int dev_get_valid_name(struct net *net,
1151 			      struct net_device *dev,
1152 			      const char *name)
1153 {
1154 	BUG_ON(!net);
1155 
1156 	if (!dev_valid_name(name))
1157 		return -EINVAL;
1158 
1159 	if (strchr(name, '%'))
1160 		return dev_alloc_name_ns(net, dev, name);
1161 	else if (__dev_get_by_name(net, name))
1162 		return -EEXIST;
1163 	else if (dev->name != name)
1164 		strlcpy(dev->name, name, IFNAMSIZ);
1165 
1166 	return 0;
1167 }
1168 
1169 /**
1170  *	dev_change_name - change name of a device
1171  *	@dev: device
1172  *	@newname: name (or format string) must be at least IFNAMSIZ
1173  *
1174  *	Change name of a device, can pass format strings "eth%d".
1175  *	for wildcarding.
1176  */
1177 int dev_change_name(struct net_device *dev, const char *newname)
1178 {
1179 	unsigned char old_assign_type;
1180 	char oldname[IFNAMSIZ];
1181 	int err = 0;
1182 	int ret;
1183 	struct net *net;
1184 
1185 	ASSERT_RTNL();
1186 	BUG_ON(!dev_net(dev));
1187 
1188 	net = dev_net(dev);
1189 	if (dev->flags & IFF_UP)
1190 		return -EBUSY;
1191 
1192 	write_seqcount_begin(&devnet_rename_seq);
1193 
1194 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1195 		write_seqcount_end(&devnet_rename_seq);
1196 		return 0;
1197 	}
1198 
1199 	memcpy(oldname, dev->name, IFNAMSIZ);
1200 
1201 	err = dev_get_valid_name(net, dev, newname);
1202 	if (err < 0) {
1203 		write_seqcount_end(&devnet_rename_seq);
1204 		return err;
1205 	}
1206 
1207 	if (oldname[0] && !strchr(oldname, '%'))
1208 		netdev_info(dev, "renamed from %s\n", oldname);
1209 
1210 	old_assign_type = dev->name_assign_type;
1211 	dev->name_assign_type = NET_NAME_RENAMED;
1212 
1213 rollback:
1214 	ret = device_rename(&dev->dev, dev->name);
1215 	if (ret) {
1216 		memcpy(dev->name, oldname, IFNAMSIZ);
1217 		dev->name_assign_type = old_assign_type;
1218 		write_seqcount_end(&devnet_rename_seq);
1219 		return ret;
1220 	}
1221 
1222 	write_seqcount_end(&devnet_rename_seq);
1223 
1224 	netdev_adjacent_rename_links(dev, oldname);
1225 
1226 	write_lock_bh(&dev_base_lock);
1227 	hlist_del_rcu(&dev->name_hlist);
1228 	write_unlock_bh(&dev_base_lock);
1229 
1230 	synchronize_rcu();
1231 
1232 	write_lock_bh(&dev_base_lock);
1233 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1234 	write_unlock_bh(&dev_base_lock);
1235 
1236 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1237 	ret = notifier_to_errno(ret);
1238 
1239 	if (ret) {
1240 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1241 		if (err >= 0) {
1242 			err = ret;
1243 			write_seqcount_begin(&devnet_rename_seq);
1244 			memcpy(dev->name, oldname, IFNAMSIZ);
1245 			memcpy(oldname, newname, IFNAMSIZ);
1246 			dev->name_assign_type = old_assign_type;
1247 			old_assign_type = NET_NAME_RENAMED;
1248 			goto rollback;
1249 		} else {
1250 			pr_err("%s: name change rollback failed: %d\n",
1251 			       dev->name, ret);
1252 		}
1253 	}
1254 
1255 	return err;
1256 }
1257 
1258 /**
1259  *	dev_set_alias - change ifalias of a device
1260  *	@dev: device
1261  *	@alias: name up to IFALIASZ
1262  *	@len: limit of bytes to copy from info
1263  *
1264  *	Set ifalias for a device,
1265  */
1266 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1267 {
1268 	char *new_ifalias;
1269 
1270 	ASSERT_RTNL();
1271 
1272 	if (len >= IFALIASZ)
1273 		return -EINVAL;
1274 
1275 	if (!len) {
1276 		kfree(dev->ifalias);
1277 		dev->ifalias = NULL;
1278 		return 0;
1279 	}
1280 
1281 	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1282 	if (!new_ifalias)
1283 		return -ENOMEM;
1284 	dev->ifalias = new_ifalias;
1285 	memcpy(dev->ifalias, alias, len);
1286 	dev->ifalias[len] = 0;
1287 
1288 	return len;
1289 }
1290 
1291 
1292 /**
1293  *	netdev_features_change - device changes features
1294  *	@dev: device to cause notification
1295  *
1296  *	Called to indicate a device has changed features.
1297  */
1298 void netdev_features_change(struct net_device *dev)
1299 {
1300 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1301 }
1302 EXPORT_SYMBOL(netdev_features_change);
1303 
1304 /**
1305  *	netdev_state_change - device changes state
1306  *	@dev: device to cause notification
1307  *
1308  *	Called to indicate a device has changed state. This function calls
1309  *	the notifier chains for netdev_chain and sends a NEWLINK message
1310  *	to the routing socket.
1311  */
1312 void netdev_state_change(struct net_device *dev)
1313 {
1314 	if (dev->flags & IFF_UP) {
1315 		struct netdev_notifier_change_info change_info;
1316 
1317 		change_info.flags_changed = 0;
1318 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1319 					      &change_info.info);
1320 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1321 	}
1322 }
1323 EXPORT_SYMBOL(netdev_state_change);
1324 
1325 /**
1326  * netdev_notify_peers - notify network peers about existence of @dev
1327  * @dev: network device
1328  *
1329  * Generate traffic such that interested network peers are aware of
1330  * @dev, such as by generating a gratuitous ARP. This may be used when
1331  * a device wants to inform the rest of the network about some sort of
1332  * reconfiguration such as a failover event or virtual machine
1333  * migration.
1334  */
1335 void netdev_notify_peers(struct net_device *dev)
1336 {
1337 	rtnl_lock();
1338 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1339 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1340 	rtnl_unlock();
1341 }
1342 EXPORT_SYMBOL(netdev_notify_peers);
1343 
1344 static int __dev_open(struct net_device *dev)
1345 {
1346 	const struct net_device_ops *ops = dev->netdev_ops;
1347 	int ret;
1348 
1349 	ASSERT_RTNL();
1350 
1351 	if (!netif_device_present(dev))
1352 		return -ENODEV;
1353 
1354 	/* Block netpoll from trying to do any rx path servicing.
1355 	 * If we don't do this there is a chance ndo_poll_controller
1356 	 * or ndo_poll may be running while we open the device
1357 	 */
1358 	netpoll_poll_disable(dev);
1359 
1360 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1361 	ret = notifier_to_errno(ret);
1362 	if (ret)
1363 		return ret;
1364 
1365 	set_bit(__LINK_STATE_START, &dev->state);
1366 
1367 	if (ops->ndo_validate_addr)
1368 		ret = ops->ndo_validate_addr(dev);
1369 
1370 	if (!ret && ops->ndo_open)
1371 		ret = ops->ndo_open(dev);
1372 
1373 	netpoll_poll_enable(dev);
1374 
1375 	if (ret)
1376 		clear_bit(__LINK_STATE_START, &dev->state);
1377 	else {
1378 		dev->flags |= IFF_UP;
1379 		dev_set_rx_mode(dev);
1380 		dev_activate(dev);
1381 		add_device_randomness(dev->dev_addr, dev->addr_len);
1382 	}
1383 
1384 	return ret;
1385 }
1386 
1387 /**
1388  *	dev_open	- prepare an interface for use.
1389  *	@dev:	device to open
1390  *
1391  *	Takes a device from down to up state. The device's private open
1392  *	function is invoked and then the multicast lists are loaded. Finally
1393  *	the device is moved into the up state and a %NETDEV_UP message is
1394  *	sent to the netdev notifier chain.
1395  *
1396  *	Calling this function on an active interface is a nop. On a failure
1397  *	a negative errno code is returned.
1398  */
1399 int dev_open(struct net_device *dev)
1400 {
1401 	int ret;
1402 
1403 	if (dev->flags & IFF_UP)
1404 		return 0;
1405 
1406 	ret = __dev_open(dev);
1407 	if (ret < 0)
1408 		return ret;
1409 
1410 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1411 	call_netdevice_notifiers(NETDEV_UP, dev);
1412 
1413 	return ret;
1414 }
1415 EXPORT_SYMBOL(dev_open);
1416 
1417 static void __dev_close_many(struct list_head *head)
1418 {
1419 	struct net_device *dev;
1420 
1421 	ASSERT_RTNL();
1422 	might_sleep();
1423 
1424 	list_for_each_entry(dev, head, close_list) {
1425 		/* Temporarily disable netpoll until the interface is down */
1426 		netpoll_poll_disable(dev);
1427 
1428 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1429 
1430 		clear_bit(__LINK_STATE_START, &dev->state);
1431 
1432 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1433 		 * can be even on different cpu. So just clear netif_running().
1434 		 *
1435 		 * dev->stop() will invoke napi_disable() on all of it's
1436 		 * napi_struct instances on this device.
1437 		 */
1438 		smp_mb__after_atomic(); /* Commit netif_running(). */
1439 	}
1440 
1441 	dev_deactivate_many(head);
1442 
1443 	list_for_each_entry(dev, head, close_list) {
1444 		const struct net_device_ops *ops = dev->netdev_ops;
1445 
1446 		/*
1447 		 *	Call the device specific close. This cannot fail.
1448 		 *	Only if device is UP
1449 		 *
1450 		 *	We allow it to be called even after a DETACH hot-plug
1451 		 *	event.
1452 		 */
1453 		if (ops->ndo_stop)
1454 			ops->ndo_stop(dev);
1455 
1456 		dev->flags &= ~IFF_UP;
1457 		netpoll_poll_enable(dev);
1458 	}
1459 }
1460 
1461 static void __dev_close(struct net_device *dev)
1462 {
1463 	LIST_HEAD(single);
1464 
1465 	list_add(&dev->close_list, &single);
1466 	__dev_close_many(&single);
1467 	list_del(&single);
1468 }
1469 
1470 void dev_close_many(struct list_head *head, bool unlink)
1471 {
1472 	struct net_device *dev, *tmp;
1473 
1474 	/* Remove the devices that don't need to be closed */
1475 	list_for_each_entry_safe(dev, tmp, head, close_list)
1476 		if (!(dev->flags & IFF_UP))
1477 			list_del_init(&dev->close_list);
1478 
1479 	__dev_close_many(head);
1480 
1481 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1482 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1483 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1484 		if (unlink)
1485 			list_del_init(&dev->close_list);
1486 	}
1487 }
1488 EXPORT_SYMBOL(dev_close_many);
1489 
1490 /**
1491  *	dev_close - shutdown an interface.
1492  *	@dev: device to shutdown
1493  *
1494  *	This function moves an active device into down state. A
1495  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1496  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1497  *	chain.
1498  */
1499 void dev_close(struct net_device *dev)
1500 {
1501 	if (dev->flags & IFF_UP) {
1502 		LIST_HEAD(single);
1503 
1504 		list_add(&dev->close_list, &single);
1505 		dev_close_many(&single, true);
1506 		list_del(&single);
1507 	}
1508 }
1509 EXPORT_SYMBOL(dev_close);
1510 
1511 
1512 /**
1513  *	dev_disable_lro - disable Large Receive Offload on a device
1514  *	@dev: device
1515  *
1516  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1517  *	called under RTNL.  This is needed if received packets may be
1518  *	forwarded to another interface.
1519  */
1520 void dev_disable_lro(struct net_device *dev)
1521 {
1522 	struct net_device *lower_dev;
1523 	struct list_head *iter;
1524 
1525 	dev->wanted_features &= ~NETIF_F_LRO;
1526 	netdev_update_features(dev);
1527 
1528 	if (unlikely(dev->features & NETIF_F_LRO))
1529 		netdev_WARN(dev, "failed to disable LRO!\n");
1530 
1531 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1532 		dev_disable_lro(lower_dev);
1533 }
1534 EXPORT_SYMBOL(dev_disable_lro);
1535 
1536 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1537 				   struct net_device *dev)
1538 {
1539 	struct netdev_notifier_info info;
1540 
1541 	netdev_notifier_info_init(&info, dev);
1542 	return nb->notifier_call(nb, val, &info);
1543 }
1544 
1545 static int dev_boot_phase = 1;
1546 
1547 /**
1548  * register_netdevice_notifier - register a network notifier block
1549  * @nb: notifier
1550  *
1551  * Register a notifier to be called when network device events occur.
1552  * The notifier passed is linked into the kernel structures and must
1553  * not be reused until it has been unregistered. A negative errno code
1554  * is returned on a failure.
1555  *
1556  * When registered all registration and up events are replayed
1557  * to the new notifier to allow device to have a race free
1558  * view of the network device list.
1559  */
1560 
1561 int register_netdevice_notifier(struct notifier_block *nb)
1562 {
1563 	struct net_device *dev;
1564 	struct net_device *last;
1565 	struct net *net;
1566 	int err;
1567 
1568 	rtnl_lock();
1569 	err = raw_notifier_chain_register(&netdev_chain, nb);
1570 	if (err)
1571 		goto unlock;
1572 	if (dev_boot_phase)
1573 		goto unlock;
1574 	for_each_net(net) {
1575 		for_each_netdev(net, dev) {
1576 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1577 			err = notifier_to_errno(err);
1578 			if (err)
1579 				goto rollback;
1580 
1581 			if (!(dev->flags & IFF_UP))
1582 				continue;
1583 
1584 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1585 		}
1586 	}
1587 
1588 unlock:
1589 	rtnl_unlock();
1590 	return err;
1591 
1592 rollback:
1593 	last = dev;
1594 	for_each_net(net) {
1595 		for_each_netdev(net, dev) {
1596 			if (dev == last)
1597 				goto outroll;
1598 
1599 			if (dev->flags & IFF_UP) {
1600 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1601 							dev);
1602 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1603 			}
1604 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1605 		}
1606 	}
1607 
1608 outroll:
1609 	raw_notifier_chain_unregister(&netdev_chain, nb);
1610 	goto unlock;
1611 }
1612 EXPORT_SYMBOL(register_netdevice_notifier);
1613 
1614 /**
1615  * unregister_netdevice_notifier - unregister a network notifier block
1616  * @nb: notifier
1617  *
1618  * Unregister a notifier previously registered by
1619  * register_netdevice_notifier(). The notifier is unlinked into the
1620  * kernel structures and may then be reused. A negative errno code
1621  * is returned on a failure.
1622  *
1623  * After unregistering unregister and down device events are synthesized
1624  * for all devices on the device list to the removed notifier to remove
1625  * the need for special case cleanup code.
1626  */
1627 
1628 int unregister_netdevice_notifier(struct notifier_block *nb)
1629 {
1630 	struct net_device *dev;
1631 	struct net *net;
1632 	int err;
1633 
1634 	rtnl_lock();
1635 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1636 	if (err)
1637 		goto unlock;
1638 
1639 	for_each_net(net) {
1640 		for_each_netdev(net, dev) {
1641 			if (dev->flags & IFF_UP) {
1642 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1643 							dev);
1644 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1645 			}
1646 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1647 		}
1648 	}
1649 unlock:
1650 	rtnl_unlock();
1651 	return err;
1652 }
1653 EXPORT_SYMBOL(unregister_netdevice_notifier);
1654 
1655 /**
1656  *	call_netdevice_notifiers_info - call all network notifier blocks
1657  *	@val: value passed unmodified to notifier function
1658  *	@dev: net_device pointer passed unmodified to notifier function
1659  *	@info: notifier information data
1660  *
1661  *	Call all network notifier blocks.  Parameters and return value
1662  *	are as for raw_notifier_call_chain().
1663  */
1664 
1665 static int call_netdevice_notifiers_info(unsigned long val,
1666 					 struct net_device *dev,
1667 					 struct netdev_notifier_info *info)
1668 {
1669 	ASSERT_RTNL();
1670 	netdev_notifier_info_init(info, dev);
1671 	return raw_notifier_call_chain(&netdev_chain, val, info);
1672 }
1673 
1674 /**
1675  *	call_netdevice_notifiers - call all network notifier blocks
1676  *      @val: value passed unmodified to notifier function
1677  *      @dev: net_device pointer passed unmodified to notifier function
1678  *
1679  *	Call all network notifier blocks.  Parameters and return value
1680  *	are as for raw_notifier_call_chain().
1681  */
1682 
1683 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1684 {
1685 	struct netdev_notifier_info info;
1686 
1687 	return call_netdevice_notifiers_info(val, dev, &info);
1688 }
1689 EXPORT_SYMBOL(call_netdevice_notifiers);
1690 
1691 #ifdef CONFIG_NET_INGRESS
1692 static struct static_key ingress_needed __read_mostly;
1693 
1694 void net_inc_ingress_queue(void)
1695 {
1696 	static_key_slow_inc(&ingress_needed);
1697 }
1698 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1699 
1700 void net_dec_ingress_queue(void)
1701 {
1702 	static_key_slow_dec(&ingress_needed);
1703 }
1704 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1705 #endif
1706 
1707 #ifdef CONFIG_NET_EGRESS
1708 static struct static_key egress_needed __read_mostly;
1709 
1710 void net_inc_egress_queue(void)
1711 {
1712 	static_key_slow_inc(&egress_needed);
1713 }
1714 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1715 
1716 void net_dec_egress_queue(void)
1717 {
1718 	static_key_slow_dec(&egress_needed);
1719 }
1720 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1721 #endif
1722 
1723 static struct static_key netstamp_needed __read_mostly;
1724 #ifdef HAVE_JUMP_LABEL
1725 static atomic_t netstamp_needed_deferred;
1726 static atomic_t netstamp_wanted;
1727 static void netstamp_clear(struct work_struct *work)
1728 {
1729 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1730 	int wanted;
1731 
1732 	wanted = atomic_add_return(deferred, &netstamp_wanted);
1733 	if (wanted > 0)
1734 		static_key_enable(&netstamp_needed);
1735 	else
1736 		static_key_disable(&netstamp_needed);
1737 }
1738 static DECLARE_WORK(netstamp_work, netstamp_clear);
1739 #endif
1740 
1741 void net_enable_timestamp(void)
1742 {
1743 #ifdef HAVE_JUMP_LABEL
1744 	int wanted;
1745 
1746 	while (1) {
1747 		wanted = atomic_read(&netstamp_wanted);
1748 		if (wanted <= 0)
1749 			break;
1750 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1751 			return;
1752 	}
1753 	atomic_inc(&netstamp_needed_deferred);
1754 	schedule_work(&netstamp_work);
1755 #else
1756 	static_key_slow_inc(&netstamp_needed);
1757 #endif
1758 }
1759 EXPORT_SYMBOL(net_enable_timestamp);
1760 
1761 void net_disable_timestamp(void)
1762 {
1763 #ifdef HAVE_JUMP_LABEL
1764 	int wanted;
1765 
1766 	while (1) {
1767 		wanted = atomic_read(&netstamp_wanted);
1768 		if (wanted <= 1)
1769 			break;
1770 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1771 			return;
1772 	}
1773 	atomic_dec(&netstamp_needed_deferred);
1774 	schedule_work(&netstamp_work);
1775 #else
1776 	static_key_slow_dec(&netstamp_needed);
1777 #endif
1778 }
1779 EXPORT_SYMBOL(net_disable_timestamp);
1780 
1781 static inline void net_timestamp_set(struct sk_buff *skb)
1782 {
1783 	skb->tstamp = 0;
1784 	if (static_key_false(&netstamp_needed))
1785 		__net_timestamp(skb);
1786 }
1787 
1788 #define net_timestamp_check(COND, SKB)			\
1789 	if (static_key_false(&netstamp_needed)) {		\
1790 		if ((COND) && !(SKB)->tstamp)	\
1791 			__net_timestamp(SKB);		\
1792 	}						\
1793 
1794 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1795 {
1796 	unsigned int len;
1797 
1798 	if (!(dev->flags & IFF_UP))
1799 		return false;
1800 
1801 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1802 	if (skb->len <= len)
1803 		return true;
1804 
1805 	/* if TSO is enabled, we don't care about the length as the packet
1806 	 * could be forwarded without being segmented before
1807 	 */
1808 	if (skb_is_gso(skb))
1809 		return true;
1810 
1811 	return false;
1812 }
1813 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1814 
1815 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1816 {
1817 	int ret = ____dev_forward_skb(dev, skb);
1818 
1819 	if (likely(!ret)) {
1820 		skb->protocol = eth_type_trans(skb, dev);
1821 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1822 	}
1823 
1824 	return ret;
1825 }
1826 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1827 
1828 /**
1829  * dev_forward_skb - loopback an skb to another netif
1830  *
1831  * @dev: destination network device
1832  * @skb: buffer to forward
1833  *
1834  * return values:
1835  *	NET_RX_SUCCESS	(no congestion)
1836  *	NET_RX_DROP     (packet was dropped, but freed)
1837  *
1838  * dev_forward_skb can be used for injecting an skb from the
1839  * start_xmit function of one device into the receive queue
1840  * of another device.
1841  *
1842  * The receiving device may be in another namespace, so
1843  * we have to clear all information in the skb that could
1844  * impact namespace isolation.
1845  */
1846 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1847 {
1848 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1849 }
1850 EXPORT_SYMBOL_GPL(dev_forward_skb);
1851 
1852 static inline int deliver_skb(struct sk_buff *skb,
1853 			      struct packet_type *pt_prev,
1854 			      struct net_device *orig_dev)
1855 {
1856 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1857 		return -ENOMEM;
1858 	refcount_inc(&skb->users);
1859 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1860 }
1861 
1862 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1863 					  struct packet_type **pt,
1864 					  struct net_device *orig_dev,
1865 					  __be16 type,
1866 					  struct list_head *ptype_list)
1867 {
1868 	struct packet_type *ptype, *pt_prev = *pt;
1869 
1870 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1871 		if (ptype->type != type)
1872 			continue;
1873 		if (pt_prev)
1874 			deliver_skb(skb, pt_prev, orig_dev);
1875 		pt_prev = ptype;
1876 	}
1877 	*pt = pt_prev;
1878 }
1879 
1880 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1881 {
1882 	if (!ptype->af_packet_priv || !skb->sk)
1883 		return false;
1884 
1885 	if (ptype->id_match)
1886 		return ptype->id_match(ptype, skb->sk);
1887 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1888 		return true;
1889 
1890 	return false;
1891 }
1892 
1893 /*
1894  *	Support routine. Sends outgoing frames to any network
1895  *	taps currently in use.
1896  */
1897 
1898 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1899 {
1900 	struct packet_type *ptype;
1901 	struct sk_buff *skb2 = NULL;
1902 	struct packet_type *pt_prev = NULL;
1903 	struct list_head *ptype_list = &ptype_all;
1904 
1905 	rcu_read_lock();
1906 again:
1907 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1908 		/* Never send packets back to the socket
1909 		 * they originated from - MvS (miquels@drinkel.ow.org)
1910 		 */
1911 		if (skb_loop_sk(ptype, skb))
1912 			continue;
1913 
1914 		if (pt_prev) {
1915 			deliver_skb(skb2, pt_prev, skb->dev);
1916 			pt_prev = ptype;
1917 			continue;
1918 		}
1919 
1920 		/* need to clone skb, done only once */
1921 		skb2 = skb_clone(skb, GFP_ATOMIC);
1922 		if (!skb2)
1923 			goto out_unlock;
1924 
1925 		net_timestamp_set(skb2);
1926 
1927 		/* skb->nh should be correctly
1928 		 * set by sender, so that the second statement is
1929 		 * just protection against buggy protocols.
1930 		 */
1931 		skb_reset_mac_header(skb2);
1932 
1933 		if (skb_network_header(skb2) < skb2->data ||
1934 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1935 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1936 					     ntohs(skb2->protocol),
1937 					     dev->name);
1938 			skb_reset_network_header(skb2);
1939 		}
1940 
1941 		skb2->transport_header = skb2->network_header;
1942 		skb2->pkt_type = PACKET_OUTGOING;
1943 		pt_prev = ptype;
1944 	}
1945 
1946 	if (ptype_list == &ptype_all) {
1947 		ptype_list = &dev->ptype_all;
1948 		goto again;
1949 	}
1950 out_unlock:
1951 	if (pt_prev) {
1952 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
1953 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1954 		else
1955 			kfree_skb(skb2);
1956 	}
1957 	rcu_read_unlock();
1958 }
1959 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1960 
1961 /**
1962  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1963  * @dev: Network device
1964  * @txq: number of queues available
1965  *
1966  * If real_num_tx_queues is changed the tc mappings may no longer be
1967  * valid. To resolve this verify the tc mapping remains valid and if
1968  * not NULL the mapping. With no priorities mapping to this
1969  * offset/count pair it will no longer be used. In the worst case TC0
1970  * is invalid nothing can be done so disable priority mappings. If is
1971  * expected that drivers will fix this mapping if they can before
1972  * calling netif_set_real_num_tx_queues.
1973  */
1974 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1975 {
1976 	int i;
1977 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1978 
1979 	/* If TC0 is invalidated disable TC mapping */
1980 	if (tc->offset + tc->count > txq) {
1981 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1982 		dev->num_tc = 0;
1983 		return;
1984 	}
1985 
1986 	/* Invalidated prio to tc mappings set to TC0 */
1987 	for (i = 1; i < TC_BITMASK + 1; i++) {
1988 		int q = netdev_get_prio_tc_map(dev, i);
1989 
1990 		tc = &dev->tc_to_txq[q];
1991 		if (tc->offset + tc->count > txq) {
1992 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1993 				i, q);
1994 			netdev_set_prio_tc_map(dev, i, 0);
1995 		}
1996 	}
1997 }
1998 
1999 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2000 {
2001 	if (dev->num_tc) {
2002 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2003 		int i;
2004 
2005 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2006 			if ((txq - tc->offset) < tc->count)
2007 				return i;
2008 		}
2009 
2010 		return -1;
2011 	}
2012 
2013 	return 0;
2014 }
2015 
2016 #ifdef CONFIG_XPS
2017 static DEFINE_MUTEX(xps_map_mutex);
2018 #define xmap_dereference(P)		\
2019 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2020 
2021 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2022 			     int tci, u16 index)
2023 {
2024 	struct xps_map *map = NULL;
2025 	int pos;
2026 
2027 	if (dev_maps)
2028 		map = xmap_dereference(dev_maps->cpu_map[tci]);
2029 	if (!map)
2030 		return false;
2031 
2032 	for (pos = map->len; pos--;) {
2033 		if (map->queues[pos] != index)
2034 			continue;
2035 
2036 		if (map->len > 1) {
2037 			map->queues[pos] = map->queues[--map->len];
2038 			break;
2039 		}
2040 
2041 		RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2042 		kfree_rcu(map, rcu);
2043 		return false;
2044 	}
2045 
2046 	return true;
2047 }
2048 
2049 static bool remove_xps_queue_cpu(struct net_device *dev,
2050 				 struct xps_dev_maps *dev_maps,
2051 				 int cpu, u16 offset, u16 count)
2052 {
2053 	int num_tc = dev->num_tc ? : 1;
2054 	bool active = false;
2055 	int tci;
2056 
2057 	for (tci = cpu * num_tc; num_tc--; tci++) {
2058 		int i, j;
2059 
2060 		for (i = count, j = offset; i--; j++) {
2061 			if (!remove_xps_queue(dev_maps, cpu, j))
2062 				break;
2063 		}
2064 
2065 		active |= i < 0;
2066 	}
2067 
2068 	return active;
2069 }
2070 
2071 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2072 				   u16 count)
2073 {
2074 	struct xps_dev_maps *dev_maps;
2075 	int cpu, i;
2076 	bool active = false;
2077 
2078 	mutex_lock(&xps_map_mutex);
2079 	dev_maps = xmap_dereference(dev->xps_maps);
2080 
2081 	if (!dev_maps)
2082 		goto out_no_maps;
2083 
2084 	for_each_possible_cpu(cpu)
2085 		active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2086 					       offset, count);
2087 
2088 	if (!active) {
2089 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2090 		kfree_rcu(dev_maps, rcu);
2091 	}
2092 
2093 	for (i = offset + (count - 1); count--; i--)
2094 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2095 					     NUMA_NO_NODE);
2096 
2097 out_no_maps:
2098 	mutex_unlock(&xps_map_mutex);
2099 }
2100 
2101 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2102 {
2103 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2104 }
2105 
2106 static struct xps_map *expand_xps_map(struct xps_map *map,
2107 				      int cpu, u16 index)
2108 {
2109 	struct xps_map *new_map;
2110 	int alloc_len = XPS_MIN_MAP_ALLOC;
2111 	int i, pos;
2112 
2113 	for (pos = 0; map && pos < map->len; pos++) {
2114 		if (map->queues[pos] != index)
2115 			continue;
2116 		return map;
2117 	}
2118 
2119 	/* Need to add queue to this CPU's existing map */
2120 	if (map) {
2121 		if (pos < map->alloc_len)
2122 			return map;
2123 
2124 		alloc_len = map->alloc_len * 2;
2125 	}
2126 
2127 	/* Need to allocate new map to store queue on this CPU's map */
2128 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2129 			       cpu_to_node(cpu));
2130 	if (!new_map)
2131 		return NULL;
2132 
2133 	for (i = 0; i < pos; i++)
2134 		new_map->queues[i] = map->queues[i];
2135 	new_map->alloc_len = alloc_len;
2136 	new_map->len = pos;
2137 
2138 	return new_map;
2139 }
2140 
2141 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2142 			u16 index)
2143 {
2144 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2145 	int i, cpu, tci, numa_node_id = -2;
2146 	int maps_sz, num_tc = 1, tc = 0;
2147 	struct xps_map *map, *new_map;
2148 	bool active = false;
2149 
2150 	if (dev->num_tc) {
2151 		num_tc = dev->num_tc;
2152 		tc = netdev_txq_to_tc(dev, index);
2153 		if (tc < 0)
2154 			return -EINVAL;
2155 	}
2156 
2157 	maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2158 	if (maps_sz < L1_CACHE_BYTES)
2159 		maps_sz = L1_CACHE_BYTES;
2160 
2161 	mutex_lock(&xps_map_mutex);
2162 
2163 	dev_maps = xmap_dereference(dev->xps_maps);
2164 
2165 	/* allocate memory for queue storage */
2166 	for_each_cpu_and(cpu, cpu_online_mask, mask) {
2167 		if (!new_dev_maps)
2168 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2169 		if (!new_dev_maps) {
2170 			mutex_unlock(&xps_map_mutex);
2171 			return -ENOMEM;
2172 		}
2173 
2174 		tci = cpu * num_tc + tc;
2175 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2176 				 NULL;
2177 
2178 		map = expand_xps_map(map, cpu, index);
2179 		if (!map)
2180 			goto error;
2181 
2182 		RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2183 	}
2184 
2185 	if (!new_dev_maps)
2186 		goto out_no_new_maps;
2187 
2188 	for_each_possible_cpu(cpu) {
2189 		/* copy maps belonging to foreign traffic classes */
2190 		for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2191 			/* fill in the new device map from the old device map */
2192 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2193 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2194 		}
2195 
2196 		/* We need to explicitly update tci as prevous loop
2197 		 * could break out early if dev_maps is NULL.
2198 		 */
2199 		tci = cpu * num_tc + tc;
2200 
2201 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2202 			/* add queue to CPU maps */
2203 			int pos = 0;
2204 
2205 			map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2206 			while ((pos < map->len) && (map->queues[pos] != index))
2207 				pos++;
2208 
2209 			if (pos == map->len)
2210 				map->queues[map->len++] = index;
2211 #ifdef CONFIG_NUMA
2212 			if (numa_node_id == -2)
2213 				numa_node_id = cpu_to_node(cpu);
2214 			else if (numa_node_id != cpu_to_node(cpu))
2215 				numa_node_id = -1;
2216 #endif
2217 		} else if (dev_maps) {
2218 			/* fill in the new device map from the old device map */
2219 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2220 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2221 		}
2222 
2223 		/* copy maps belonging to foreign traffic classes */
2224 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2225 			/* fill in the new device map from the old device map */
2226 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2227 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2228 		}
2229 	}
2230 
2231 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2232 
2233 	/* Cleanup old maps */
2234 	if (!dev_maps)
2235 		goto out_no_old_maps;
2236 
2237 	for_each_possible_cpu(cpu) {
2238 		for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2239 			new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2240 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2241 			if (map && map != new_map)
2242 				kfree_rcu(map, rcu);
2243 		}
2244 	}
2245 
2246 	kfree_rcu(dev_maps, rcu);
2247 
2248 out_no_old_maps:
2249 	dev_maps = new_dev_maps;
2250 	active = true;
2251 
2252 out_no_new_maps:
2253 	/* update Tx queue numa node */
2254 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2255 				     (numa_node_id >= 0) ? numa_node_id :
2256 				     NUMA_NO_NODE);
2257 
2258 	if (!dev_maps)
2259 		goto out_no_maps;
2260 
2261 	/* removes queue from unused CPUs */
2262 	for_each_possible_cpu(cpu) {
2263 		for (i = tc, tci = cpu * num_tc; i--; tci++)
2264 			active |= remove_xps_queue(dev_maps, tci, index);
2265 		if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2266 			active |= remove_xps_queue(dev_maps, tci, index);
2267 		for (i = num_tc - tc, tci++; --i; tci++)
2268 			active |= remove_xps_queue(dev_maps, tci, index);
2269 	}
2270 
2271 	/* free map if not active */
2272 	if (!active) {
2273 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2274 		kfree_rcu(dev_maps, rcu);
2275 	}
2276 
2277 out_no_maps:
2278 	mutex_unlock(&xps_map_mutex);
2279 
2280 	return 0;
2281 error:
2282 	/* remove any maps that we added */
2283 	for_each_possible_cpu(cpu) {
2284 		for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2285 			new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2286 			map = dev_maps ?
2287 			      xmap_dereference(dev_maps->cpu_map[tci]) :
2288 			      NULL;
2289 			if (new_map && new_map != map)
2290 				kfree(new_map);
2291 		}
2292 	}
2293 
2294 	mutex_unlock(&xps_map_mutex);
2295 
2296 	kfree(new_dev_maps);
2297 	return -ENOMEM;
2298 }
2299 EXPORT_SYMBOL(netif_set_xps_queue);
2300 
2301 #endif
2302 void netdev_reset_tc(struct net_device *dev)
2303 {
2304 #ifdef CONFIG_XPS
2305 	netif_reset_xps_queues_gt(dev, 0);
2306 #endif
2307 	dev->num_tc = 0;
2308 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2309 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2310 }
2311 EXPORT_SYMBOL(netdev_reset_tc);
2312 
2313 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2314 {
2315 	if (tc >= dev->num_tc)
2316 		return -EINVAL;
2317 
2318 #ifdef CONFIG_XPS
2319 	netif_reset_xps_queues(dev, offset, count);
2320 #endif
2321 	dev->tc_to_txq[tc].count = count;
2322 	dev->tc_to_txq[tc].offset = offset;
2323 	return 0;
2324 }
2325 EXPORT_SYMBOL(netdev_set_tc_queue);
2326 
2327 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2328 {
2329 	if (num_tc > TC_MAX_QUEUE)
2330 		return -EINVAL;
2331 
2332 #ifdef CONFIG_XPS
2333 	netif_reset_xps_queues_gt(dev, 0);
2334 #endif
2335 	dev->num_tc = num_tc;
2336 	return 0;
2337 }
2338 EXPORT_SYMBOL(netdev_set_num_tc);
2339 
2340 /*
2341  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2342  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2343  */
2344 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2345 {
2346 	int rc;
2347 
2348 	if (txq < 1 || txq > dev->num_tx_queues)
2349 		return -EINVAL;
2350 
2351 	if (dev->reg_state == NETREG_REGISTERED ||
2352 	    dev->reg_state == NETREG_UNREGISTERING) {
2353 		ASSERT_RTNL();
2354 
2355 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2356 						  txq);
2357 		if (rc)
2358 			return rc;
2359 
2360 		if (dev->num_tc)
2361 			netif_setup_tc(dev, txq);
2362 
2363 		if (txq < dev->real_num_tx_queues) {
2364 			qdisc_reset_all_tx_gt(dev, txq);
2365 #ifdef CONFIG_XPS
2366 			netif_reset_xps_queues_gt(dev, txq);
2367 #endif
2368 		}
2369 	}
2370 
2371 	dev->real_num_tx_queues = txq;
2372 	return 0;
2373 }
2374 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2375 
2376 #ifdef CONFIG_SYSFS
2377 /**
2378  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2379  *	@dev: Network device
2380  *	@rxq: Actual number of RX queues
2381  *
2382  *	This must be called either with the rtnl_lock held or before
2383  *	registration of the net device.  Returns 0 on success, or a
2384  *	negative error code.  If called before registration, it always
2385  *	succeeds.
2386  */
2387 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2388 {
2389 	int rc;
2390 
2391 	if (rxq < 1 || rxq > dev->num_rx_queues)
2392 		return -EINVAL;
2393 
2394 	if (dev->reg_state == NETREG_REGISTERED) {
2395 		ASSERT_RTNL();
2396 
2397 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2398 						  rxq);
2399 		if (rc)
2400 			return rc;
2401 	}
2402 
2403 	dev->real_num_rx_queues = rxq;
2404 	return 0;
2405 }
2406 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2407 #endif
2408 
2409 /**
2410  * netif_get_num_default_rss_queues - default number of RSS queues
2411  *
2412  * This routine should set an upper limit on the number of RSS queues
2413  * used by default by multiqueue devices.
2414  */
2415 int netif_get_num_default_rss_queues(void)
2416 {
2417 	return is_kdump_kernel() ?
2418 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2419 }
2420 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2421 
2422 static void __netif_reschedule(struct Qdisc *q)
2423 {
2424 	struct softnet_data *sd;
2425 	unsigned long flags;
2426 
2427 	local_irq_save(flags);
2428 	sd = this_cpu_ptr(&softnet_data);
2429 	q->next_sched = NULL;
2430 	*sd->output_queue_tailp = q;
2431 	sd->output_queue_tailp = &q->next_sched;
2432 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2433 	local_irq_restore(flags);
2434 }
2435 
2436 void __netif_schedule(struct Qdisc *q)
2437 {
2438 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2439 		__netif_reschedule(q);
2440 }
2441 EXPORT_SYMBOL(__netif_schedule);
2442 
2443 struct dev_kfree_skb_cb {
2444 	enum skb_free_reason reason;
2445 };
2446 
2447 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2448 {
2449 	return (struct dev_kfree_skb_cb *)skb->cb;
2450 }
2451 
2452 void netif_schedule_queue(struct netdev_queue *txq)
2453 {
2454 	rcu_read_lock();
2455 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2456 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2457 
2458 		__netif_schedule(q);
2459 	}
2460 	rcu_read_unlock();
2461 }
2462 EXPORT_SYMBOL(netif_schedule_queue);
2463 
2464 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2465 {
2466 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2467 		struct Qdisc *q;
2468 
2469 		rcu_read_lock();
2470 		q = rcu_dereference(dev_queue->qdisc);
2471 		__netif_schedule(q);
2472 		rcu_read_unlock();
2473 	}
2474 }
2475 EXPORT_SYMBOL(netif_tx_wake_queue);
2476 
2477 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2478 {
2479 	unsigned long flags;
2480 
2481 	if (unlikely(!skb))
2482 		return;
2483 
2484 	if (likely(refcount_read(&skb->users) == 1)) {
2485 		smp_rmb();
2486 		refcount_set(&skb->users, 0);
2487 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
2488 		return;
2489 	}
2490 	get_kfree_skb_cb(skb)->reason = reason;
2491 	local_irq_save(flags);
2492 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2493 	__this_cpu_write(softnet_data.completion_queue, skb);
2494 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2495 	local_irq_restore(flags);
2496 }
2497 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2498 
2499 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2500 {
2501 	if (in_irq() || irqs_disabled())
2502 		__dev_kfree_skb_irq(skb, reason);
2503 	else
2504 		dev_kfree_skb(skb);
2505 }
2506 EXPORT_SYMBOL(__dev_kfree_skb_any);
2507 
2508 
2509 /**
2510  * netif_device_detach - mark device as removed
2511  * @dev: network device
2512  *
2513  * Mark device as removed from system and therefore no longer available.
2514  */
2515 void netif_device_detach(struct net_device *dev)
2516 {
2517 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2518 	    netif_running(dev)) {
2519 		netif_tx_stop_all_queues(dev);
2520 	}
2521 }
2522 EXPORT_SYMBOL(netif_device_detach);
2523 
2524 /**
2525  * netif_device_attach - mark device as attached
2526  * @dev: network device
2527  *
2528  * Mark device as attached from system and restart if needed.
2529  */
2530 void netif_device_attach(struct net_device *dev)
2531 {
2532 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2533 	    netif_running(dev)) {
2534 		netif_tx_wake_all_queues(dev);
2535 		__netdev_watchdog_up(dev);
2536 	}
2537 }
2538 EXPORT_SYMBOL(netif_device_attach);
2539 
2540 /*
2541  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2542  * to be used as a distribution range.
2543  */
2544 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2545 		  unsigned int num_tx_queues)
2546 {
2547 	u32 hash;
2548 	u16 qoffset = 0;
2549 	u16 qcount = num_tx_queues;
2550 
2551 	if (skb_rx_queue_recorded(skb)) {
2552 		hash = skb_get_rx_queue(skb);
2553 		while (unlikely(hash >= num_tx_queues))
2554 			hash -= num_tx_queues;
2555 		return hash;
2556 	}
2557 
2558 	if (dev->num_tc) {
2559 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2560 
2561 		qoffset = dev->tc_to_txq[tc].offset;
2562 		qcount = dev->tc_to_txq[tc].count;
2563 	}
2564 
2565 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2566 }
2567 EXPORT_SYMBOL(__skb_tx_hash);
2568 
2569 static void skb_warn_bad_offload(const struct sk_buff *skb)
2570 {
2571 	static const netdev_features_t null_features;
2572 	struct net_device *dev = skb->dev;
2573 	const char *name = "";
2574 
2575 	if (!net_ratelimit())
2576 		return;
2577 
2578 	if (dev) {
2579 		if (dev->dev.parent)
2580 			name = dev_driver_string(dev->dev.parent);
2581 		else
2582 			name = netdev_name(dev);
2583 	}
2584 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2585 	     "gso_type=%d ip_summed=%d\n",
2586 	     name, dev ? &dev->features : &null_features,
2587 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2588 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2589 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2590 }
2591 
2592 /*
2593  * Invalidate hardware checksum when packet is to be mangled, and
2594  * complete checksum manually on outgoing path.
2595  */
2596 int skb_checksum_help(struct sk_buff *skb)
2597 {
2598 	__wsum csum;
2599 	int ret = 0, offset;
2600 
2601 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2602 		goto out_set_summed;
2603 
2604 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2605 		skb_warn_bad_offload(skb);
2606 		return -EINVAL;
2607 	}
2608 
2609 	/* Before computing a checksum, we should make sure no frag could
2610 	 * be modified by an external entity : checksum could be wrong.
2611 	 */
2612 	if (skb_has_shared_frag(skb)) {
2613 		ret = __skb_linearize(skb);
2614 		if (ret)
2615 			goto out;
2616 	}
2617 
2618 	offset = skb_checksum_start_offset(skb);
2619 	BUG_ON(offset >= skb_headlen(skb));
2620 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2621 
2622 	offset += skb->csum_offset;
2623 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2624 
2625 	if (skb_cloned(skb) &&
2626 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2627 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2628 		if (ret)
2629 			goto out;
2630 	}
2631 
2632 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2633 out_set_summed:
2634 	skb->ip_summed = CHECKSUM_NONE;
2635 out:
2636 	return ret;
2637 }
2638 EXPORT_SYMBOL(skb_checksum_help);
2639 
2640 int skb_crc32c_csum_help(struct sk_buff *skb)
2641 {
2642 	__le32 crc32c_csum;
2643 	int ret = 0, offset, start;
2644 
2645 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2646 		goto out;
2647 
2648 	if (unlikely(skb_is_gso(skb)))
2649 		goto out;
2650 
2651 	/* Before computing a checksum, we should make sure no frag could
2652 	 * be modified by an external entity : checksum could be wrong.
2653 	 */
2654 	if (unlikely(skb_has_shared_frag(skb))) {
2655 		ret = __skb_linearize(skb);
2656 		if (ret)
2657 			goto out;
2658 	}
2659 	start = skb_checksum_start_offset(skb);
2660 	offset = start + offsetof(struct sctphdr, checksum);
2661 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2662 		ret = -EINVAL;
2663 		goto out;
2664 	}
2665 	if (skb_cloned(skb) &&
2666 	    !skb_clone_writable(skb, offset + sizeof(__le32))) {
2667 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2668 		if (ret)
2669 			goto out;
2670 	}
2671 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2672 						  skb->len - start, ~(__u32)0,
2673 						  crc32c_csum_stub));
2674 	*(__le32 *)(skb->data + offset) = crc32c_csum;
2675 	skb->ip_summed = CHECKSUM_NONE;
2676 	skb->csum_not_inet = 0;
2677 out:
2678 	return ret;
2679 }
2680 
2681 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2682 {
2683 	__be16 type = skb->protocol;
2684 
2685 	/* Tunnel gso handlers can set protocol to ethernet. */
2686 	if (type == htons(ETH_P_TEB)) {
2687 		struct ethhdr *eth;
2688 
2689 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2690 			return 0;
2691 
2692 		eth = (struct ethhdr *)skb_mac_header(skb);
2693 		type = eth->h_proto;
2694 	}
2695 
2696 	return __vlan_get_protocol(skb, type, depth);
2697 }
2698 
2699 /**
2700  *	skb_mac_gso_segment - mac layer segmentation handler.
2701  *	@skb: buffer to segment
2702  *	@features: features for the output path (see dev->features)
2703  */
2704 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2705 				    netdev_features_t features)
2706 {
2707 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2708 	struct packet_offload *ptype;
2709 	int vlan_depth = skb->mac_len;
2710 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2711 
2712 	if (unlikely(!type))
2713 		return ERR_PTR(-EINVAL);
2714 
2715 	__skb_pull(skb, vlan_depth);
2716 
2717 	rcu_read_lock();
2718 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2719 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2720 			segs = ptype->callbacks.gso_segment(skb, features);
2721 			break;
2722 		}
2723 	}
2724 	rcu_read_unlock();
2725 
2726 	__skb_push(skb, skb->data - skb_mac_header(skb));
2727 
2728 	return segs;
2729 }
2730 EXPORT_SYMBOL(skb_mac_gso_segment);
2731 
2732 
2733 /* openvswitch calls this on rx path, so we need a different check.
2734  */
2735 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2736 {
2737 	if (tx_path)
2738 		return skb->ip_summed != CHECKSUM_PARTIAL;
2739 
2740 	return skb->ip_summed == CHECKSUM_NONE;
2741 }
2742 
2743 /**
2744  *	__skb_gso_segment - Perform segmentation on skb.
2745  *	@skb: buffer to segment
2746  *	@features: features for the output path (see dev->features)
2747  *	@tx_path: whether it is called in TX path
2748  *
2749  *	This function segments the given skb and returns a list of segments.
2750  *
2751  *	It may return NULL if the skb requires no segmentation.  This is
2752  *	only possible when GSO is used for verifying header integrity.
2753  *
2754  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2755  */
2756 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2757 				  netdev_features_t features, bool tx_path)
2758 {
2759 	struct sk_buff *segs;
2760 
2761 	if (unlikely(skb_needs_check(skb, tx_path))) {
2762 		int err;
2763 
2764 		/* We're going to init ->check field in TCP or UDP header */
2765 		err = skb_cow_head(skb, 0);
2766 		if (err < 0)
2767 			return ERR_PTR(err);
2768 	}
2769 
2770 	/* Only report GSO partial support if it will enable us to
2771 	 * support segmentation on this frame without needing additional
2772 	 * work.
2773 	 */
2774 	if (features & NETIF_F_GSO_PARTIAL) {
2775 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2776 		struct net_device *dev = skb->dev;
2777 
2778 		partial_features |= dev->features & dev->gso_partial_features;
2779 		if (!skb_gso_ok(skb, features | partial_features))
2780 			features &= ~NETIF_F_GSO_PARTIAL;
2781 	}
2782 
2783 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2784 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2785 
2786 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2787 	SKB_GSO_CB(skb)->encap_level = 0;
2788 
2789 	skb_reset_mac_header(skb);
2790 	skb_reset_mac_len(skb);
2791 
2792 	segs = skb_mac_gso_segment(skb, features);
2793 
2794 	if (unlikely(skb_needs_check(skb, tx_path)))
2795 		skb_warn_bad_offload(skb);
2796 
2797 	return segs;
2798 }
2799 EXPORT_SYMBOL(__skb_gso_segment);
2800 
2801 /* Take action when hardware reception checksum errors are detected. */
2802 #ifdef CONFIG_BUG
2803 void netdev_rx_csum_fault(struct net_device *dev)
2804 {
2805 	if (net_ratelimit()) {
2806 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2807 		dump_stack();
2808 	}
2809 }
2810 EXPORT_SYMBOL(netdev_rx_csum_fault);
2811 #endif
2812 
2813 /* Actually, we should eliminate this check as soon as we know, that:
2814  * 1. IOMMU is present and allows to map all the memory.
2815  * 2. No high memory really exists on this machine.
2816  */
2817 
2818 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2819 {
2820 #ifdef CONFIG_HIGHMEM
2821 	int i;
2822 
2823 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2824 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2825 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2826 
2827 			if (PageHighMem(skb_frag_page(frag)))
2828 				return 1;
2829 		}
2830 	}
2831 
2832 	if (PCI_DMA_BUS_IS_PHYS) {
2833 		struct device *pdev = dev->dev.parent;
2834 
2835 		if (!pdev)
2836 			return 0;
2837 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2838 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2839 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2840 
2841 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2842 				return 1;
2843 		}
2844 	}
2845 #endif
2846 	return 0;
2847 }
2848 
2849 /* If MPLS offload request, verify we are testing hardware MPLS features
2850  * instead of standard features for the netdev.
2851  */
2852 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2853 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2854 					   netdev_features_t features,
2855 					   __be16 type)
2856 {
2857 	if (eth_p_mpls(type))
2858 		features &= skb->dev->mpls_features;
2859 
2860 	return features;
2861 }
2862 #else
2863 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2864 					   netdev_features_t features,
2865 					   __be16 type)
2866 {
2867 	return features;
2868 }
2869 #endif
2870 
2871 static netdev_features_t harmonize_features(struct sk_buff *skb,
2872 	netdev_features_t features)
2873 {
2874 	int tmp;
2875 	__be16 type;
2876 
2877 	type = skb_network_protocol(skb, &tmp);
2878 	features = net_mpls_features(skb, features, type);
2879 
2880 	if (skb->ip_summed != CHECKSUM_NONE &&
2881 	    !can_checksum_protocol(features, type)) {
2882 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2883 	}
2884 	if (illegal_highdma(skb->dev, skb))
2885 		features &= ~NETIF_F_SG;
2886 
2887 	return features;
2888 }
2889 
2890 netdev_features_t passthru_features_check(struct sk_buff *skb,
2891 					  struct net_device *dev,
2892 					  netdev_features_t features)
2893 {
2894 	return features;
2895 }
2896 EXPORT_SYMBOL(passthru_features_check);
2897 
2898 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2899 					     struct net_device *dev,
2900 					     netdev_features_t features)
2901 {
2902 	return vlan_features_check(skb, features);
2903 }
2904 
2905 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2906 					    struct net_device *dev,
2907 					    netdev_features_t features)
2908 {
2909 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
2910 
2911 	if (gso_segs > dev->gso_max_segs)
2912 		return features & ~NETIF_F_GSO_MASK;
2913 
2914 	/* Support for GSO partial features requires software
2915 	 * intervention before we can actually process the packets
2916 	 * so we need to strip support for any partial features now
2917 	 * and we can pull them back in after we have partially
2918 	 * segmented the frame.
2919 	 */
2920 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2921 		features &= ~dev->gso_partial_features;
2922 
2923 	/* Make sure to clear the IPv4 ID mangling feature if the
2924 	 * IPv4 header has the potential to be fragmented.
2925 	 */
2926 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2927 		struct iphdr *iph = skb->encapsulation ?
2928 				    inner_ip_hdr(skb) : ip_hdr(skb);
2929 
2930 		if (!(iph->frag_off & htons(IP_DF)))
2931 			features &= ~NETIF_F_TSO_MANGLEID;
2932 	}
2933 
2934 	return features;
2935 }
2936 
2937 netdev_features_t netif_skb_features(struct sk_buff *skb)
2938 {
2939 	struct net_device *dev = skb->dev;
2940 	netdev_features_t features = dev->features;
2941 
2942 	if (skb_is_gso(skb))
2943 		features = gso_features_check(skb, dev, features);
2944 
2945 	/* If encapsulation offload request, verify we are testing
2946 	 * hardware encapsulation features instead of standard
2947 	 * features for the netdev
2948 	 */
2949 	if (skb->encapsulation)
2950 		features &= dev->hw_enc_features;
2951 
2952 	if (skb_vlan_tagged(skb))
2953 		features = netdev_intersect_features(features,
2954 						     dev->vlan_features |
2955 						     NETIF_F_HW_VLAN_CTAG_TX |
2956 						     NETIF_F_HW_VLAN_STAG_TX);
2957 
2958 	if (dev->netdev_ops->ndo_features_check)
2959 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
2960 								features);
2961 	else
2962 		features &= dflt_features_check(skb, dev, features);
2963 
2964 	return harmonize_features(skb, features);
2965 }
2966 EXPORT_SYMBOL(netif_skb_features);
2967 
2968 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2969 		    struct netdev_queue *txq, bool more)
2970 {
2971 	unsigned int len;
2972 	int rc;
2973 
2974 	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2975 		dev_queue_xmit_nit(skb, dev);
2976 
2977 	len = skb->len;
2978 	trace_net_dev_start_xmit(skb, dev);
2979 	rc = netdev_start_xmit(skb, dev, txq, more);
2980 	trace_net_dev_xmit(skb, rc, dev, len);
2981 
2982 	return rc;
2983 }
2984 
2985 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2986 				    struct netdev_queue *txq, int *ret)
2987 {
2988 	struct sk_buff *skb = first;
2989 	int rc = NETDEV_TX_OK;
2990 
2991 	while (skb) {
2992 		struct sk_buff *next = skb->next;
2993 
2994 		skb->next = NULL;
2995 		rc = xmit_one(skb, dev, txq, next != NULL);
2996 		if (unlikely(!dev_xmit_complete(rc))) {
2997 			skb->next = next;
2998 			goto out;
2999 		}
3000 
3001 		skb = next;
3002 		if (netif_xmit_stopped(txq) && skb) {
3003 			rc = NETDEV_TX_BUSY;
3004 			break;
3005 		}
3006 	}
3007 
3008 out:
3009 	*ret = rc;
3010 	return skb;
3011 }
3012 
3013 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3014 					  netdev_features_t features)
3015 {
3016 	if (skb_vlan_tag_present(skb) &&
3017 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3018 		skb = __vlan_hwaccel_push_inside(skb);
3019 	return skb;
3020 }
3021 
3022 int skb_csum_hwoffload_help(struct sk_buff *skb,
3023 			    const netdev_features_t features)
3024 {
3025 	if (unlikely(skb->csum_not_inet))
3026 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3027 			skb_crc32c_csum_help(skb);
3028 
3029 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3030 }
3031 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3032 
3033 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
3034 {
3035 	netdev_features_t features;
3036 
3037 	features = netif_skb_features(skb);
3038 	skb = validate_xmit_vlan(skb, features);
3039 	if (unlikely(!skb))
3040 		goto out_null;
3041 
3042 	if (netif_needs_gso(skb, features)) {
3043 		struct sk_buff *segs;
3044 
3045 		segs = skb_gso_segment(skb, features);
3046 		if (IS_ERR(segs)) {
3047 			goto out_kfree_skb;
3048 		} else if (segs) {
3049 			consume_skb(skb);
3050 			skb = segs;
3051 		}
3052 	} else {
3053 		if (skb_needs_linearize(skb, features) &&
3054 		    __skb_linearize(skb))
3055 			goto out_kfree_skb;
3056 
3057 		if (validate_xmit_xfrm(skb, features))
3058 			goto out_kfree_skb;
3059 
3060 		/* If packet is not checksummed and device does not
3061 		 * support checksumming for this protocol, complete
3062 		 * checksumming here.
3063 		 */
3064 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3065 			if (skb->encapsulation)
3066 				skb_set_inner_transport_header(skb,
3067 							       skb_checksum_start_offset(skb));
3068 			else
3069 				skb_set_transport_header(skb,
3070 							 skb_checksum_start_offset(skb));
3071 			if (skb_csum_hwoffload_help(skb, features))
3072 				goto out_kfree_skb;
3073 		}
3074 	}
3075 
3076 	return skb;
3077 
3078 out_kfree_skb:
3079 	kfree_skb(skb);
3080 out_null:
3081 	atomic_long_inc(&dev->tx_dropped);
3082 	return NULL;
3083 }
3084 
3085 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3086 {
3087 	struct sk_buff *next, *head = NULL, *tail;
3088 
3089 	for (; skb != NULL; skb = next) {
3090 		next = skb->next;
3091 		skb->next = NULL;
3092 
3093 		/* in case skb wont be segmented, point to itself */
3094 		skb->prev = skb;
3095 
3096 		skb = validate_xmit_skb(skb, dev);
3097 		if (!skb)
3098 			continue;
3099 
3100 		if (!head)
3101 			head = skb;
3102 		else
3103 			tail->next = skb;
3104 		/* If skb was segmented, skb->prev points to
3105 		 * the last segment. If not, it still contains skb.
3106 		 */
3107 		tail = skb->prev;
3108 	}
3109 	return head;
3110 }
3111 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3112 
3113 static void qdisc_pkt_len_init(struct sk_buff *skb)
3114 {
3115 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3116 
3117 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3118 
3119 	/* To get more precise estimation of bytes sent on wire,
3120 	 * we add to pkt_len the headers size of all segments
3121 	 */
3122 	if (shinfo->gso_size)  {
3123 		unsigned int hdr_len;
3124 		u16 gso_segs = shinfo->gso_segs;
3125 
3126 		/* mac layer + network layer */
3127 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3128 
3129 		/* + transport layer */
3130 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3131 			hdr_len += tcp_hdrlen(skb);
3132 		else
3133 			hdr_len += sizeof(struct udphdr);
3134 
3135 		if (shinfo->gso_type & SKB_GSO_DODGY)
3136 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3137 						shinfo->gso_size);
3138 
3139 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3140 	}
3141 }
3142 
3143 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3144 				 struct net_device *dev,
3145 				 struct netdev_queue *txq)
3146 {
3147 	spinlock_t *root_lock = qdisc_lock(q);
3148 	struct sk_buff *to_free = NULL;
3149 	bool contended;
3150 	int rc;
3151 
3152 	qdisc_calculate_pkt_len(skb, q);
3153 	/*
3154 	 * Heuristic to force contended enqueues to serialize on a
3155 	 * separate lock before trying to get qdisc main lock.
3156 	 * This permits qdisc->running owner to get the lock more
3157 	 * often and dequeue packets faster.
3158 	 */
3159 	contended = qdisc_is_running(q);
3160 	if (unlikely(contended))
3161 		spin_lock(&q->busylock);
3162 
3163 	spin_lock(root_lock);
3164 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3165 		__qdisc_drop(skb, &to_free);
3166 		rc = NET_XMIT_DROP;
3167 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3168 		   qdisc_run_begin(q)) {
3169 		/*
3170 		 * This is a work-conserving queue; there are no old skbs
3171 		 * waiting to be sent out; and the qdisc is not running -
3172 		 * xmit the skb directly.
3173 		 */
3174 
3175 		qdisc_bstats_update(q, skb);
3176 
3177 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3178 			if (unlikely(contended)) {
3179 				spin_unlock(&q->busylock);
3180 				contended = false;
3181 			}
3182 			__qdisc_run(q);
3183 		} else
3184 			qdisc_run_end(q);
3185 
3186 		rc = NET_XMIT_SUCCESS;
3187 	} else {
3188 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3189 		if (qdisc_run_begin(q)) {
3190 			if (unlikely(contended)) {
3191 				spin_unlock(&q->busylock);
3192 				contended = false;
3193 			}
3194 			__qdisc_run(q);
3195 		}
3196 	}
3197 	spin_unlock(root_lock);
3198 	if (unlikely(to_free))
3199 		kfree_skb_list(to_free);
3200 	if (unlikely(contended))
3201 		spin_unlock(&q->busylock);
3202 	return rc;
3203 }
3204 
3205 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3206 static void skb_update_prio(struct sk_buff *skb)
3207 {
3208 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3209 
3210 	if (!skb->priority && skb->sk && map) {
3211 		unsigned int prioidx =
3212 			sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3213 
3214 		if (prioidx < map->priomap_len)
3215 			skb->priority = map->priomap[prioidx];
3216 	}
3217 }
3218 #else
3219 #define skb_update_prio(skb)
3220 #endif
3221 
3222 DEFINE_PER_CPU(int, xmit_recursion);
3223 EXPORT_SYMBOL(xmit_recursion);
3224 
3225 /**
3226  *	dev_loopback_xmit - loop back @skb
3227  *	@net: network namespace this loopback is happening in
3228  *	@sk:  sk needed to be a netfilter okfn
3229  *	@skb: buffer to transmit
3230  */
3231 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3232 {
3233 	skb_reset_mac_header(skb);
3234 	__skb_pull(skb, skb_network_offset(skb));
3235 	skb->pkt_type = PACKET_LOOPBACK;
3236 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3237 	WARN_ON(!skb_dst(skb));
3238 	skb_dst_force(skb);
3239 	netif_rx_ni(skb);
3240 	return 0;
3241 }
3242 EXPORT_SYMBOL(dev_loopback_xmit);
3243 
3244 #ifdef CONFIG_NET_EGRESS
3245 static struct sk_buff *
3246 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3247 {
3248 	struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3249 	struct tcf_result cl_res;
3250 
3251 	if (!cl)
3252 		return skb;
3253 
3254 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3255 	qdisc_bstats_cpu_update(cl->q, skb);
3256 
3257 	switch (tcf_classify(skb, cl, &cl_res, false)) {
3258 	case TC_ACT_OK:
3259 	case TC_ACT_RECLASSIFY:
3260 		skb->tc_index = TC_H_MIN(cl_res.classid);
3261 		break;
3262 	case TC_ACT_SHOT:
3263 		qdisc_qstats_cpu_drop(cl->q);
3264 		*ret = NET_XMIT_DROP;
3265 		kfree_skb(skb);
3266 		return NULL;
3267 	case TC_ACT_STOLEN:
3268 	case TC_ACT_QUEUED:
3269 	case TC_ACT_TRAP:
3270 		*ret = NET_XMIT_SUCCESS;
3271 		consume_skb(skb);
3272 		return NULL;
3273 	case TC_ACT_REDIRECT:
3274 		/* No need to push/pop skb's mac_header here on egress! */
3275 		skb_do_redirect(skb);
3276 		*ret = NET_XMIT_SUCCESS;
3277 		return NULL;
3278 	default:
3279 		break;
3280 	}
3281 
3282 	return skb;
3283 }
3284 #endif /* CONFIG_NET_EGRESS */
3285 
3286 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3287 {
3288 #ifdef CONFIG_XPS
3289 	struct xps_dev_maps *dev_maps;
3290 	struct xps_map *map;
3291 	int queue_index = -1;
3292 
3293 	rcu_read_lock();
3294 	dev_maps = rcu_dereference(dev->xps_maps);
3295 	if (dev_maps) {
3296 		unsigned int tci = skb->sender_cpu - 1;
3297 
3298 		if (dev->num_tc) {
3299 			tci *= dev->num_tc;
3300 			tci += netdev_get_prio_tc_map(dev, skb->priority);
3301 		}
3302 
3303 		map = rcu_dereference(dev_maps->cpu_map[tci]);
3304 		if (map) {
3305 			if (map->len == 1)
3306 				queue_index = map->queues[0];
3307 			else
3308 				queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3309 									   map->len)];
3310 			if (unlikely(queue_index >= dev->real_num_tx_queues))
3311 				queue_index = -1;
3312 		}
3313 	}
3314 	rcu_read_unlock();
3315 
3316 	return queue_index;
3317 #else
3318 	return -1;
3319 #endif
3320 }
3321 
3322 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3323 {
3324 	struct sock *sk = skb->sk;
3325 	int queue_index = sk_tx_queue_get(sk);
3326 
3327 	if (queue_index < 0 || skb->ooo_okay ||
3328 	    queue_index >= dev->real_num_tx_queues) {
3329 		int new_index = get_xps_queue(dev, skb);
3330 
3331 		if (new_index < 0)
3332 			new_index = skb_tx_hash(dev, skb);
3333 
3334 		if (queue_index != new_index && sk &&
3335 		    sk_fullsock(sk) &&
3336 		    rcu_access_pointer(sk->sk_dst_cache))
3337 			sk_tx_queue_set(sk, new_index);
3338 
3339 		queue_index = new_index;
3340 	}
3341 
3342 	return queue_index;
3343 }
3344 
3345 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3346 				    struct sk_buff *skb,
3347 				    void *accel_priv)
3348 {
3349 	int queue_index = 0;
3350 
3351 #ifdef CONFIG_XPS
3352 	u32 sender_cpu = skb->sender_cpu - 1;
3353 
3354 	if (sender_cpu >= (u32)NR_CPUS)
3355 		skb->sender_cpu = raw_smp_processor_id() + 1;
3356 #endif
3357 
3358 	if (dev->real_num_tx_queues != 1) {
3359 		const struct net_device_ops *ops = dev->netdev_ops;
3360 
3361 		if (ops->ndo_select_queue)
3362 			queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3363 							    __netdev_pick_tx);
3364 		else
3365 			queue_index = __netdev_pick_tx(dev, skb);
3366 
3367 		if (!accel_priv)
3368 			queue_index = netdev_cap_txqueue(dev, queue_index);
3369 	}
3370 
3371 	skb_set_queue_mapping(skb, queue_index);
3372 	return netdev_get_tx_queue(dev, queue_index);
3373 }
3374 
3375 /**
3376  *	__dev_queue_xmit - transmit a buffer
3377  *	@skb: buffer to transmit
3378  *	@accel_priv: private data used for L2 forwarding offload
3379  *
3380  *	Queue a buffer for transmission to a network device. The caller must
3381  *	have set the device and priority and built the buffer before calling
3382  *	this function. The function can be called from an interrupt.
3383  *
3384  *	A negative errno code is returned on a failure. A success does not
3385  *	guarantee the frame will be transmitted as it may be dropped due
3386  *	to congestion or traffic shaping.
3387  *
3388  * -----------------------------------------------------------------------------------
3389  *      I notice this method can also return errors from the queue disciplines,
3390  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3391  *      be positive.
3392  *
3393  *      Regardless of the return value, the skb is consumed, so it is currently
3394  *      difficult to retry a send to this method.  (You can bump the ref count
3395  *      before sending to hold a reference for retry if you are careful.)
3396  *
3397  *      When calling this method, interrupts MUST be enabled.  This is because
3398  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3399  *          --BLG
3400  */
3401 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3402 {
3403 	struct net_device *dev = skb->dev;
3404 	struct netdev_queue *txq;
3405 	struct Qdisc *q;
3406 	int rc = -ENOMEM;
3407 
3408 	skb_reset_mac_header(skb);
3409 
3410 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3411 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3412 
3413 	/* Disable soft irqs for various locks below. Also
3414 	 * stops preemption for RCU.
3415 	 */
3416 	rcu_read_lock_bh();
3417 
3418 	skb_update_prio(skb);
3419 
3420 	qdisc_pkt_len_init(skb);
3421 #ifdef CONFIG_NET_CLS_ACT
3422 	skb->tc_at_ingress = 0;
3423 # ifdef CONFIG_NET_EGRESS
3424 	if (static_key_false(&egress_needed)) {
3425 		skb = sch_handle_egress(skb, &rc, dev);
3426 		if (!skb)
3427 			goto out;
3428 	}
3429 # endif
3430 #endif
3431 	/* If device/qdisc don't need skb->dst, release it right now while
3432 	 * its hot in this cpu cache.
3433 	 */
3434 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3435 		skb_dst_drop(skb);
3436 	else
3437 		skb_dst_force(skb);
3438 
3439 	txq = netdev_pick_tx(dev, skb, accel_priv);
3440 	q = rcu_dereference_bh(txq->qdisc);
3441 
3442 	trace_net_dev_queue(skb);
3443 	if (q->enqueue) {
3444 		rc = __dev_xmit_skb(skb, q, dev, txq);
3445 		goto out;
3446 	}
3447 
3448 	/* The device has no queue. Common case for software devices:
3449 	 * loopback, all the sorts of tunnels...
3450 
3451 	 * Really, it is unlikely that netif_tx_lock protection is necessary
3452 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3453 	 * counters.)
3454 	 * However, it is possible, that they rely on protection
3455 	 * made by us here.
3456 
3457 	 * Check this and shot the lock. It is not prone from deadlocks.
3458 	 *Either shot noqueue qdisc, it is even simpler 8)
3459 	 */
3460 	if (dev->flags & IFF_UP) {
3461 		int cpu = smp_processor_id(); /* ok because BHs are off */
3462 
3463 		if (txq->xmit_lock_owner != cpu) {
3464 			if (unlikely(__this_cpu_read(xmit_recursion) >
3465 				     XMIT_RECURSION_LIMIT))
3466 				goto recursion_alert;
3467 
3468 			skb = validate_xmit_skb(skb, dev);
3469 			if (!skb)
3470 				goto out;
3471 
3472 			HARD_TX_LOCK(dev, txq, cpu);
3473 
3474 			if (!netif_xmit_stopped(txq)) {
3475 				__this_cpu_inc(xmit_recursion);
3476 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3477 				__this_cpu_dec(xmit_recursion);
3478 				if (dev_xmit_complete(rc)) {
3479 					HARD_TX_UNLOCK(dev, txq);
3480 					goto out;
3481 				}
3482 			}
3483 			HARD_TX_UNLOCK(dev, txq);
3484 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3485 					     dev->name);
3486 		} else {
3487 			/* Recursion is detected! It is possible,
3488 			 * unfortunately
3489 			 */
3490 recursion_alert:
3491 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3492 					     dev->name);
3493 		}
3494 	}
3495 
3496 	rc = -ENETDOWN;
3497 	rcu_read_unlock_bh();
3498 
3499 	atomic_long_inc(&dev->tx_dropped);
3500 	kfree_skb_list(skb);
3501 	return rc;
3502 out:
3503 	rcu_read_unlock_bh();
3504 	return rc;
3505 }
3506 
3507 int dev_queue_xmit(struct sk_buff *skb)
3508 {
3509 	return __dev_queue_xmit(skb, NULL);
3510 }
3511 EXPORT_SYMBOL(dev_queue_xmit);
3512 
3513 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3514 {
3515 	return __dev_queue_xmit(skb, accel_priv);
3516 }
3517 EXPORT_SYMBOL(dev_queue_xmit_accel);
3518 
3519 
3520 /*************************************************************************
3521  *			Receiver routines
3522  *************************************************************************/
3523 
3524 int netdev_max_backlog __read_mostly = 1000;
3525 EXPORT_SYMBOL(netdev_max_backlog);
3526 
3527 int netdev_tstamp_prequeue __read_mostly = 1;
3528 int netdev_budget __read_mostly = 300;
3529 unsigned int __read_mostly netdev_budget_usecs = 2000;
3530 int weight_p __read_mostly = 64;           /* old backlog weight */
3531 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3532 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3533 int dev_rx_weight __read_mostly = 64;
3534 int dev_tx_weight __read_mostly = 64;
3535 
3536 /* Called with irq disabled */
3537 static inline void ____napi_schedule(struct softnet_data *sd,
3538 				     struct napi_struct *napi)
3539 {
3540 	list_add_tail(&napi->poll_list, &sd->poll_list);
3541 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3542 }
3543 
3544 #ifdef CONFIG_RPS
3545 
3546 /* One global table that all flow-based protocols share. */
3547 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3548 EXPORT_SYMBOL(rps_sock_flow_table);
3549 u32 rps_cpu_mask __read_mostly;
3550 EXPORT_SYMBOL(rps_cpu_mask);
3551 
3552 struct static_key rps_needed __read_mostly;
3553 EXPORT_SYMBOL(rps_needed);
3554 struct static_key rfs_needed __read_mostly;
3555 EXPORT_SYMBOL(rfs_needed);
3556 
3557 static struct rps_dev_flow *
3558 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3559 	    struct rps_dev_flow *rflow, u16 next_cpu)
3560 {
3561 	if (next_cpu < nr_cpu_ids) {
3562 #ifdef CONFIG_RFS_ACCEL
3563 		struct netdev_rx_queue *rxqueue;
3564 		struct rps_dev_flow_table *flow_table;
3565 		struct rps_dev_flow *old_rflow;
3566 		u32 flow_id;
3567 		u16 rxq_index;
3568 		int rc;
3569 
3570 		/* Should we steer this flow to a different hardware queue? */
3571 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3572 		    !(dev->features & NETIF_F_NTUPLE))
3573 			goto out;
3574 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3575 		if (rxq_index == skb_get_rx_queue(skb))
3576 			goto out;
3577 
3578 		rxqueue = dev->_rx + rxq_index;
3579 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3580 		if (!flow_table)
3581 			goto out;
3582 		flow_id = skb_get_hash(skb) & flow_table->mask;
3583 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3584 							rxq_index, flow_id);
3585 		if (rc < 0)
3586 			goto out;
3587 		old_rflow = rflow;
3588 		rflow = &flow_table->flows[flow_id];
3589 		rflow->filter = rc;
3590 		if (old_rflow->filter == rflow->filter)
3591 			old_rflow->filter = RPS_NO_FILTER;
3592 	out:
3593 #endif
3594 		rflow->last_qtail =
3595 			per_cpu(softnet_data, next_cpu).input_queue_head;
3596 	}
3597 
3598 	rflow->cpu = next_cpu;
3599 	return rflow;
3600 }
3601 
3602 /*
3603  * get_rps_cpu is called from netif_receive_skb and returns the target
3604  * CPU from the RPS map of the receiving queue for a given skb.
3605  * rcu_read_lock must be held on entry.
3606  */
3607 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3608 		       struct rps_dev_flow **rflowp)
3609 {
3610 	const struct rps_sock_flow_table *sock_flow_table;
3611 	struct netdev_rx_queue *rxqueue = dev->_rx;
3612 	struct rps_dev_flow_table *flow_table;
3613 	struct rps_map *map;
3614 	int cpu = -1;
3615 	u32 tcpu;
3616 	u32 hash;
3617 
3618 	if (skb_rx_queue_recorded(skb)) {
3619 		u16 index = skb_get_rx_queue(skb);
3620 
3621 		if (unlikely(index >= dev->real_num_rx_queues)) {
3622 			WARN_ONCE(dev->real_num_rx_queues > 1,
3623 				  "%s received packet on queue %u, but number "
3624 				  "of RX queues is %u\n",
3625 				  dev->name, index, dev->real_num_rx_queues);
3626 			goto done;
3627 		}
3628 		rxqueue += index;
3629 	}
3630 
3631 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3632 
3633 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3634 	map = rcu_dereference(rxqueue->rps_map);
3635 	if (!flow_table && !map)
3636 		goto done;
3637 
3638 	skb_reset_network_header(skb);
3639 	hash = skb_get_hash(skb);
3640 	if (!hash)
3641 		goto done;
3642 
3643 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3644 	if (flow_table && sock_flow_table) {
3645 		struct rps_dev_flow *rflow;
3646 		u32 next_cpu;
3647 		u32 ident;
3648 
3649 		/* First check into global flow table if there is a match */
3650 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3651 		if ((ident ^ hash) & ~rps_cpu_mask)
3652 			goto try_rps;
3653 
3654 		next_cpu = ident & rps_cpu_mask;
3655 
3656 		/* OK, now we know there is a match,
3657 		 * we can look at the local (per receive queue) flow table
3658 		 */
3659 		rflow = &flow_table->flows[hash & flow_table->mask];
3660 		tcpu = rflow->cpu;
3661 
3662 		/*
3663 		 * If the desired CPU (where last recvmsg was done) is
3664 		 * different from current CPU (one in the rx-queue flow
3665 		 * table entry), switch if one of the following holds:
3666 		 *   - Current CPU is unset (>= nr_cpu_ids).
3667 		 *   - Current CPU is offline.
3668 		 *   - The current CPU's queue tail has advanced beyond the
3669 		 *     last packet that was enqueued using this table entry.
3670 		 *     This guarantees that all previous packets for the flow
3671 		 *     have been dequeued, thus preserving in order delivery.
3672 		 */
3673 		if (unlikely(tcpu != next_cpu) &&
3674 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3675 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3676 		      rflow->last_qtail)) >= 0)) {
3677 			tcpu = next_cpu;
3678 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3679 		}
3680 
3681 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3682 			*rflowp = rflow;
3683 			cpu = tcpu;
3684 			goto done;
3685 		}
3686 	}
3687 
3688 try_rps:
3689 
3690 	if (map) {
3691 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3692 		if (cpu_online(tcpu)) {
3693 			cpu = tcpu;
3694 			goto done;
3695 		}
3696 	}
3697 
3698 done:
3699 	return cpu;
3700 }
3701 
3702 #ifdef CONFIG_RFS_ACCEL
3703 
3704 /**
3705  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3706  * @dev: Device on which the filter was set
3707  * @rxq_index: RX queue index
3708  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3709  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3710  *
3711  * Drivers that implement ndo_rx_flow_steer() should periodically call
3712  * this function for each installed filter and remove the filters for
3713  * which it returns %true.
3714  */
3715 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3716 			 u32 flow_id, u16 filter_id)
3717 {
3718 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3719 	struct rps_dev_flow_table *flow_table;
3720 	struct rps_dev_flow *rflow;
3721 	bool expire = true;
3722 	unsigned int cpu;
3723 
3724 	rcu_read_lock();
3725 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3726 	if (flow_table && flow_id <= flow_table->mask) {
3727 		rflow = &flow_table->flows[flow_id];
3728 		cpu = ACCESS_ONCE(rflow->cpu);
3729 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3730 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3731 			   rflow->last_qtail) <
3732 		     (int)(10 * flow_table->mask)))
3733 			expire = false;
3734 	}
3735 	rcu_read_unlock();
3736 	return expire;
3737 }
3738 EXPORT_SYMBOL(rps_may_expire_flow);
3739 
3740 #endif /* CONFIG_RFS_ACCEL */
3741 
3742 /* Called from hardirq (IPI) context */
3743 static void rps_trigger_softirq(void *data)
3744 {
3745 	struct softnet_data *sd = data;
3746 
3747 	____napi_schedule(sd, &sd->backlog);
3748 	sd->received_rps++;
3749 }
3750 
3751 #endif /* CONFIG_RPS */
3752 
3753 /*
3754  * Check if this softnet_data structure is another cpu one
3755  * If yes, queue it to our IPI list and return 1
3756  * If no, return 0
3757  */
3758 static int rps_ipi_queued(struct softnet_data *sd)
3759 {
3760 #ifdef CONFIG_RPS
3761 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3762 
3763 	if (sd != mysd) {
3764 		sd->rps_ipi_next = mysd->rps_ipi_list;
3765 		mysd->rps_ipi_list = sd;
3766 
3767 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3768 		return 1;
3769 	}
3770 #endif /* CONFIG_RPS */
3771 	return 0;
3772 }
3773 
3774 #ifdef CONFIG_NET_FLOW_LIMIT
3775 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3776 #endif
3777 
3778 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3779 {
3780 #ifdef CONFIG_NET_FLOW_LIMIT
3781 	struct sd_flow_limit *fl;
3782 	struct softnet_data *sd;
3783 	unsigned int old_flow, new_flow;
3784 
3785 	if (qlen < (netdev_max_backlog >> 1))
3786 		return false;
3787 
3788 	sd = this_cpu_ptr(&softnet_data);
3789 
3790 	rcu_read_lock();
3791 	fl = rcu_dereference(sd->flow_limit);
3792 	if (fl) {
3793 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3794 		old_flow = fl->history[fl->history_head];
3795 		fl->history[fl->history_head] = new_flow;
3796 
3797 		fl->history_head++;
3798 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3799 
3800 		if (likely(fl->buckets[old_flow]))
3801 			fl->buckets[old_flow]--;
3802 
3803 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3804 			fl->count++;
3805 			rcu_read_unlock();
3806 			return true;
3807 		}
3808 	}
3809 	rcu_read_unlock();
3810 #endif
3811 	return false;
3812 }
3813 
3814 /*
3815  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3816  * queue (may be a remote CPU queue).
3817  */
3818 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3819 			      unsigned int *qtail)
3820 {
3821 	struct softnet_data *sd;
3822 	unsigned long flags;
3823 	unsigned int qlen;
3824 
3825 	sd = &per_cpu(softnet_data, cpu);
3826 
3827 	local_irq_save(flags);
3828 
3829 	rps_lock(sd);
3830 	if (!netif_running(skb->dev))
3831 		goto drop;
3832 	qlen = skb_queue_len(&sd->input_pkt_queue);
3833 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3834 		if (qlen) {
3835 enqueue:
3836 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3837 			input_queue_tail_incr_save(sd, qtail);
3838 			rps_unlock(sd);
3839 			local_irq_restore(flags);
3840 			return NET_RX_SUCCESS;
3841 		}
3842 
3843 		/* Schedule NAPI for backlog device
3844 		 * We can use non atomic operation since we own the queue lock
3845 		 */
3846 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3847 			if (!rps_ipi_queued(sd))
3848 				____napi_schedule(sd, &sd->backlog);
3849 		}
3850 		goto enqueue;
3851 	}
3852 
3853 drop:
3854 	sd->dropped++;
3855 	rps_unlock(sd);
3856 
3857 	local_irq_restore(flags);
3858 
3859 	atomic_long_inc(&skb->dev->rx_dropped);
3860 	kfree_skb(skb);
3861 	return NET_RX_DROP;
3862 }
3863 
3864 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
3865 				     struct bpf_prog *xdp_prog)
3866 {
3867 	struct xdp_buff xdp;
3868 	u32 act = XDP_DROP;
3869 	void *orig_data;
3870 	int hlen, off;
3871 	u32 mac_len;
3872 
3873 	/* Reinjected packets coming from act_mirred or similar should
3874 	 * not get XDP generic processing.
3875 	 */
3876 	if (skb_cloned(skb))
3877 		return XDP_PASS;
3878 
3879 	if (skb_linearize(skb))
3880 		goto do_drop;
3881 
3882 	/* The XDP program wants to see the packet starting at the MAC
3883 	 * header.
3884 	 */
3885 	mac_len = skb->data - skb_mac_header(skb);
3886 	hlen = skb_headlen(skb) + mac_len;
3887 	xdp.data = skb->data - mac_len;
3888 	xdp.data_end = xdp.data + hlen;
3889 	xdp.data_hard_start = skb->data - skb_headroom(skb);
3890 	orig_data = xdp.data;
3891 
3892 	act = bpf_prog_run_xdp(xdp_prog, &xdp);
3893 
3894 	off = xdp.data - orig_data;
3895 	if (off > 0)
3896 		__skb_pull(skb, off);
3897 	else if (off < 0)
3898 		__skb_push(skb, -off);
3899 	skb->mac_header += off;
3900 
3901 	switch (act) {
3902 	case XDP_REDIRECT:
3903 	case XDP_TX:
3904 		__skb_push(skb, mac_len);
3905 		/* fall through */
3906 	case XDP_PASS:
3907 		break;
3908 
3909 	default:
3910 		bpf_warn_invalid_xdp_action(act);
3911 		/* fall through */
3912 	case XDP_ABORTED:
3913 		trace_xdp_exception(skb->dev, xdp_prog, act);
3914 		/* fall through */
3915 	case XDP_DROP:
3916 	do_drop:
3917 		kfree_skb(skb);
3918 		break;
3919 	}
3920 
3921 	return act;
3922 }
3923 
3924 /* When doing generic XDP we have to bypass the qdisc layer and the
3925  * network taps in order to match in-driver-XDP behavior.
3926  */
3927 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
3928 {
3929 	struct net_device *dev = skb->dev;
3930 	struct netdev_queue *txq;
3931 	bool free_skb = true;
3932 	int cpu, rc;
3933 
3934 	txq = netdev_pick_tx(dev, skb, NULL);
3935 	cpu = smp_processor_id();
3936 	HARD_TX_LOCK(dev, txq, cpu);
3937 	if (!netif_xmit_stopped(txq)) {
3938 		rc = netdev_start_xmit(skb, dev, txq, 0);
3939 		if (dev_xmit_complete(rc))
3940 			free_skb = false;
3941 	}
3942 	HARD_TX_UNLOCK(dev, txq);
3943 	if (free_skb) {
3944 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
3945 		kfree_skb(skb);
3946 	}
3947 }
3948 EXPORT_SYMBOL_GPL(generic_xdp_tx);
3949 
3950 static struct static_key generic_xdp_needed __read_mostly;
3951 
3952 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
3953 {
3954 	if (xdp_prog) {
3955 		u32 act = netif_receive_generic_xdp(skb, xdp_prog);
3956 		int err;
3957 
3958 		if (act != XDP_PASS) {
3959 			switch (act) {
3960 			case XDP_REDIRECT:
3961 				err = xdp_do_generic_redirect(skb->dev, skb,
3962 							      xdp_prog);
3963 				if (err)
3964 					goto out_redir;
3965 			/* fallthru to submit skb */
3966 			case XDP_TX:
3967 				generic_xdp_tx(skb, xdp_prog);
3968 				break;
3969 			}
3970 			return XDP_DROP;
3971 		}
3972 	}
3973 	return XDP_PASS;
3974 out_redir:
3975 	kfree_skb(skb);
3976 	return XDP_DROP;
3977 }
3978 EXPORT_SYMBOL_GPL(do_xdp_generic);
3979 
3980 static int netif_rx_internal(struct sk_buff *skb)
3981 {
3982 	int ret;
3983 
3984 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3985 
3986 	trace_netif_rx(skb);
3987 
3988 	if (static_key_false(&generic_xdp_needed)) {
3989 		int ret;
3990 
3991 		preempt_disable();
3992 		rcu_read_lock();
3993 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
3994 		rcu_read_unlock();
3995 		preempt_enable();
3996 
3997 		/* Consider XDP consuming the packet a success from
3998 		 * the netdev point of view we do not want to count
3999 		 * this as an error.
4000 		 */
4001 		if (ret != XDP_PASS)
4002 			return NET_RX_SUCCESS;
4003 	}
4004 
4005 #ifdef CONFIG_RPS
4006 	if (static_key_false(&rps_needed)) {
4007 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4008 		int cpu;
4009 
4010 		preempt_disable();
4011 		rcu_read_lock();
4012 
4013 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4014 		if (cpu < 0)
4015 			cpu = smp_processor_id();
4016 
4017 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4018 
4019 		rcu_read_unlock();
4020 		preempt_enable();
4021 	} else
4022 #endif
4023 	{
4024 		unsigned int qtail;
4025 
4026 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4027 		put_cpu();
4028 	}
4029 	return ret;
4030 }
4031 
4032 /**
4033  *	netif_rx	-	post buffer to the network code
4034  *	@skb: buffer to post
4035  *
4036  *	This function receives a packet from a device driver and queues it for
4037  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4038  *	may be dropped during processing for congestion control or by the
4039  *	protocol layers.
4040  *
4041  *	return values:
4042  *	NET_RX_SUCCESS	(no congestion)
4043  *	NET_RX_DROP     (packet was dropped)
4044  *
4045  */
4046 
4047 int netif_rx(struct sk_buff *skb)
4048 {
4049 	trace_netif_rx_entry(skb);
4050 
4051 	return netif_rx_internal(skb);
4052 }
4053 EXPORT_SYMBOL(netif_rx);
4054 
4055 int netif_rx_ni(struct sk_buff *skb)
4056 {
4057 	int err;
4058 
4059 	trace_netif_rx_ni_entry(skb);
4060 
4061 	preempt_disable();
4062 	err = netif_rx_internal(skb);
4063 	if (local_softirq_pending())
4064 		do_softirq();
4065 	preempt_enable();
4066 
4067 	return err;
4068 }
4069 EXPORT_SYMBOL(netif_rx_ni);
4070 
4071 static __latent_entropy void net_tx_action(struct softirq_action *h)
4072 {
4073 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4074 
4075 	if (sd->completion_queue) {
4076 		struct sk_buff *clist;
4077 
4078 		local_irq_disable();
4079 		clist = sd->completion_queue;
4080 		sd->completion_queue = NULL;
4081 		local_irq_enable();
4082 
4083 		while (clist) {
4084 			struct sk_buff *skb = clist;
4085 
4086 			clist = clist->next;
4087 
4088 			WARN_ON(refcount_read(&skb->users));
4089 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4090 				trace_consume_skb(skb);
4091 			else
4092 				trace_kfree_skb(skb, net_tx_action);
4093 
4094 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4095 				__kfree_skb(skb);
4096 			else
4097 				__kfree_skb_defer(skb);
4098 		}
4099 
4100 		__kfree_skb_flush();
4101 	}
4102 
4103 	if (sd->output_queue) {
4104 		struct Qdisc *head;
4105 
4106 		local_irq_disable();
4107 		head = sd->output_queue;
4108 		sd->output_queue = NULL;
4109 		sd->output_queue_tailp = &sd->output_queue;
4110 		local_irq_enable();
4111 
4112 		while (head) {
4113 			struct Qdisc *q = head;
4114 			spinlock_t *root_lock;
4115 
4116 			head = head->next_sched;
4117 
4118 			root_lock = qdisc_lock(q);
4119 			spin_lock(root_lock);
4120 			/* We need to make sure head->next_sched is read
4121 			 * before clearing __QDISC_STATE_SCHED
4122 			 */
4123 			smp_mb__before_atomic();
4124 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4125 			qdisc_run(q);
4126 			spin_unlock(root_lock);
4127 		}
4128 	}
4129 }
4130 
4131 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4132 /* This hook is defined here for ATM LANE */
4133 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4134 			     unsigned char *addr) __read_mostly;
4135 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4136 #endif
4137 
4138 static inline struct sk_buff *
4139 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4140 		   struct net_device *orig_dev)
4141 {
4142 #ifdef CONFIG_NET_CLS_ACT
4143 	struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
4144 	struct tcf_result cl_res;
4145 
4146 	/* If there's at least one ingress present somewhere (so
4147 	 * we get here via enabled static key), remaining devices
4148 	 * that are not configured with an ingress qdisc will bail
4149 	 * out here.
4150 	 */
4151 	if (!cl)
4152 		return skb;
4153 	if (*pt_prev) {
4154 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4155 		*pt_prev = NULL;
4156 	}
4157 
4158 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4159 	skb->tc_at_ingress = 1;
4160 	qdisc_bstats_cpu_update(cl->q, skb);
4161 
4162 	switch (tcf_classify(skb, cl, &cl_res, false)) {
4163 	case TC_ACT_OK:
4164 	case TC_ACT_RECLASSIFY:
4165 		skb->tc_index = TC_H_MIN(cl_res.classid);
4166 		break;
4167 	case TC_ACT_SHOT:
4168 		qdisc_qstats_cpu_drop(cl->q);
4169 		kfree_skb(skb);
4170 		return NULL;
4171 	case TC_ACT_STOLEN:
4172 	case TC_ACT_QUEUED:
4173 	case TC_ACT_TRAP:
4174 		consume_skb(skb);
4175 		return NULL;
4176 	case TC_ACT_REDIRECT:
4177 		/* skb_mac_header check was done by cls/act_bpf, so
4178 		 * we can safely push the L2 header back before
4179 		 * redirecting to another netdev
4180 		 */
4181 		__skb_push(skb, skb->mac_len);
4182 		skb_do_redirect(skb);
4183 		return NULL;
4184 	default:
4185 		break;
4186 	}
4187 #endif /* CONFIG_NET_CLS_ACT */
4188 	return skb;
4189 }
4190 
4191 /**
4192  *	netdev_is_rx_handler_busy - check if receive handler is registered
4193  *	@dev: device to check
4194  *
4195  *	Check if a receive handler is already registered for a given device.
4196  *	Return true if there one.
4197  *
4198  *	The caller must hold the rtnl_mutex.
4199  */
4200 bool netdev_is_rx_handler_busy(struct net_device *dev)
4201 {
4202 	ASSERT_RTNL();
4203 	return dev && rtnl_dereference(dev->rx_handler);
4204 }
4205 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4206 
4207 /**
4208  *	netdev_rx_handler_register - register receive handler
4209  *	@dev: device to register a handler for
4210  *	@rx_handler: receive handler to register
4211  *	@rx_handler_data: data pointer that is used by rx handler
4212  *
4213  *	Register a receive handler for a device. This handler will then be
4214  *	called from __netif_receive_skb. A negative errno code is returned
4215  *	on a failure.
4216  *
4217  *	The caller must hold the rtnl_mutex.
4218  *
4219  *	For a general description of rx_handler, see enum rx_handler_result.
4220  */
4221 int netdev_rx_handler_register(struct net_device *dev,
4222 			       rx_handler_func_t *rx_handler,
4223 			       void *rx_handler_data)
4224 {
4225 	if (netdev_is_rx_handler_busy(dev))
4226 		return -EBUSY;
4227 
4228 	/* Note: rx_handler_data must be set before rx_handler */
4229 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4230 	rcu_assign_pointer(dev->rx_handler, rx_handler);
4231 
4232 	return 0;
4233 }
4234 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4235 
4236 /**
4237  *	netdev_rx_handler_unregister - unregister receive handler
4238  *	@dev: device to unregister a handler from
4239  *
4240  *	Unregister a receive handler from a device.
4241  *
4242  *	The caller must hold the rtnl_mutex.
4243  */
4244 void netdev_rx_handler_unregister(struct net_device *dev)
4245 {
4246 
4247 	ASSERT_RTNL();
4248 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4249 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4250 	 * section has a guarantee to see a non NULL rx_handler_data
4251 	 * as well.
4252 	 */
4253 	synchronize_net();
4254 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4255 }
4256 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4257 
4258 /*
4259  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4260  * the special handling of PFMEMALLOC skbs.
4261  */
4262 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4263 {
4264 	switch (skb->protocol) {
4265 	case htons(ETH_P_ARP):
4266 	case htons(ETH_P_IP):
4267 	case htons(ETH_P_IPV6):
4268 	case htons(ETH_P_8021Q):
4269 	case htons(ETH_P_8021AD):
4270 		return true;
4271 	default:
4272 		return false;
4273 	}
4274 }
4275 
4276 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4277 			     int *ret, struct net_device *orig_dev)
4278 {
4279 #ifdef CONFIG_NETFILTER_INGRESS
4280 	if (nf_hook_ingress_active(skb)) {
4281 		int ingress_retval;
4282 
4283 		if (*pt_prev) {
4284 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4285 			*pt_prev = NULL;
4286 		}
4287 
4288 		rcu_read_lock();
4289 		ingress_retval = nf_hook_ingress(skb);
4290 		rcu_read_unlock();
4291 		return ingress_retval;
4292 	}
4293 #endif /* CONFIG_NETFILTER_INGRESS */
4294 	return 0;
4295 }
4296 
4297 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4298 {
4299 	struct packet_type *ptype, *pt_prev;
4300 	rx_handler_func_t *rx_handler;
4301 	struct net_device *orig_dev;
4302 	bool deliver_exact = false;
4303 	int ret = NET_RX_DROP;
4304 	__be16 type;
4305 
4306 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4307 
4308 	trace_netif_receive_skb(skb);
4309 
4310 	orig_dev = skb->dev;
4311 
4312 	skb_reset_network_header(skb);
4313 	if (!skb_transport_header_was_set(skb))
4314 		skb_reset_transport_header(skb);
4315 	skb_reset_mac_len(skb);
4316 
4317 	pt_prev = NULL;
4318 
4319 another_round:
4320 	skb->skb_iif = skb->dev->ifindex;
4321 
4322 	__this_cpu_inc(softnet_data.processed);
4323 
4324 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4325 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4326 		skb = skb_vlan_untag(skb);
4327 		if (unlikely(!skb))
4328 			goto out;
4329 	}
4330 
4331 	if (skb_skip_tc_classify(skb))
4332 		goto skip_classify;
4333 
4334 	if (pfmemalloc)
4335 		goto skip_taps;
4336 
4337 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
4338 		if (pt_prev)
4339 			ret = deliver_skb(skb, pt_prev, orig_dev);
4340 		pt_prev = ptype;
4341 	}
4342 
4343 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4344 		if (pt_prev)
4345 			ret = deliver_skb(skb, pt_prev, orig_dev);
4346 		pt_prev = ptype;
4347 	}
4348 
4349 skip_taps:
4350 #ifdef CONFIG_NET_INGRESS
4351 	if (static_key_false(&ingress_needed)) {
4352 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4353 		if (!skb)
4354 			goto out;
4355 
4356 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4357 			goto out;
4358 	}
4359 #endif
4360 	skb_reset_tc(skb);
4361 skip_classify:
4362 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4363 		goto drop;
4364 
4365 	if (skb_vlan_tag_present(skb)) {
4366 		if (pt_prev) {
4367 			ret = deliver_skb(skb, pt_prev, orig_dev);
4368 			pt_prev = NULL;
4369 		}
4370 		if (vlan_do_receive(&skb))
4371 			goto another_round;
4372 		else if (unlikely(!skb))
4373 			goto out;
4374 	}
4375 
4376 	rx_handler = rcu_dereference(skb->dev->rx_handler);
4377 	if (rx_handler) {
4378 		if (pt_prev) {
4379 			ret = deliver_skb(skb, pt_prev, orig_dev);
4380 			pt_prev = NULL;
4381 		}
4382 		switch (rx_handler(&skb)) {
4383 		case RX_HANDLER_CONSUMED:
4384 			ret = NET_RX_SUCCESS;
4385 			goto out;
4386 		case RX_HANDLER_ANOTHER:
4387 			goto another_round;
4388 		case RX_HANDLER_EXACT:
4389 			deliver_exact = true;
4390 		case RX_HANDLER_PASS:
4391 			break;
4392 		default:
4393 			BUG();
4394 		}
4395 	}
4396 
4397 	if (unlikely(skb_vlan_tag_present(skb))) {
4398 		if (skb_vlan_tag_get_id(skb))
4399 			skb->pkt_type = PACKET_OTHERHOST;
4400 		/* Note: we might in the future use prio bits
4401 		 * and set skb->priority like in vlan_do_receive()
4402 		 * For the time being, just ignore Priority Code Point
4403 		 */
4404 		skb->vlan_tci = 0;
4405 	}
4406 
4407 	type = skb->protocol;
4408 
4409 	/* deliver only exact match when indicated */
4410 	if (likely(!deliver_exact)) {
4411 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4412 				       &ptype_base[ntohs(type) &
4413 						   PTYPE_HASH_MASK]);
4414 	}
4415 
4416 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4417 			       &orig_dev->ptype_specific);
4418 
4419 	if (unlikely(skb->dev != orig_dev)) {
4420 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4421 				       &skb->dev->ptype_specific);
4422 	}
4423 
4424 	if (pt_prev) {
4425 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4426 			goto drop;
4427 		else
4428 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4429 	} else {
4430 drop:
4431 		if (!deliver_exact)
4432 			atomic_long_inc(&skb->dev->rx_dropped);
4433 		else
4434 			atomic_long_inc(&skb->dev->rx_nohandler);
4435 		kfree_skb(skb);
4436 		/* Jamal, now you will not able to escape explaining
4437 		 * me how you were going to use this. :-)
4438 		 */
4439 		ret = NET_RX_DROP;
4440 	}
4441 
4442 out:
4443 	return ret;
4444 }
4445 
4446 static int __netif_receive_skb(struct sk_buff *skb)
4447 {
4448 	int ret;
4449 
4450 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4451 		unsigned int noreclaim_flag;
4452 
4453 		/*
4454 		 * PFMEMALLOC skbs are special, they should
4455 		 * - be delivered to SOCK_MEMALLOC sockets only
4456 		 * - stay away from userspace
4457 		 * - have bounded memory usage
4458 		 *
4459 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
4460 		 * context down to all allocation sites.
4461 		 */
4462 		noreclaim_flag = memalloc_noreclaim_save();
4463 		ret = __netif_receive_skb_core(skb, true);
4464 		memalloc_noreclaim_restore(noreclaim_flag);
4465 	} else
4466 		ret = __netif_receive_skb_core(skb, false);
4467 
4468 	return ret;
4469 }
4470 
4471 static int generic_xdp_install(struct net_device *dev, struct netdev_xdp *xdp)
4472 {
4473 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4474 	struct bpf_prog *new = xdp->prog;
4475 	int ret = 0;
4476 
4477 	switch (xdp->command) {
4478 	case XDP_SETUP_PROG:
4479 		rcu_assign_pointer(dev->xdp_prog, new);
4480 		if (old)
4481 			bpf_prog_put(old);
4482 
4483 		if (old && !new) {
4484 			static_key_slow_dec(&generic_xdp_needed);
4485 		} else if (new && !old) {
4486 			static_key_slow_inc(&generic_xdp_needed);
4487 			dev_disable_lro(dev);
4488 		}
4489 		break;
4490 
4491 	case XDP_QUERY_PROG:
4492 		xdp->prog_attached = !!old;
4493 		xdp->prog_id = old ? old->aux->id : 0;
4494 		break;
4495 
4496 	default:
4497 		ret = -EINVAL;
4498 		break;
4499 	}
4500 
4501 	return ret;
4502 }
4503 
4504 static int netif_receive_skb_internal(struct sk_buff *skb)
4505 {
4506 	int ret;
4507 
4508 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4509 
4510 	if (skb_defer_rx_timestamp(skb))
4511 		return NET_RX_SUCCESS;
4512 
4513 	if (static_key_false(&generic_xdp_needed)) {
4514 		int ret;
4515 
4516 		preempt_disable();
4517 		rcu_read_lock();
4518 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4519 		rcu_read_unlock();
4520 		preempt_enable();
4521 
4522 		if (ret != XDP_PASS)
4523 			return NET_RX_DROP;
4524 	}
4525 
4526 	rcu_read_lock();
4527 #ifdef CONFIG_RPS
4528 	if (static_key_false(&rps_needed)) {
4529 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4530 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4531 
4532 		if (cpu >= 0) {
4533 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4534 			rcu_read_unlock();
4535 			return ret;
4536 		}
4537 	}
4538 #endif
4539 	ret = __netif_receive_skb(skb);
4540 	rcu_read_unlock();
4541 	return ret;
4542 }
4543 
4544 /**
4545  *	netif_receive_skb - process receive buffer from network
4546  *	@skb: buffer to process
4547  *
4548  *	netif_receive_skb() is the main receive data processing function.
4549  *	It always succeeds. The buffer may be dropped during processing
4550  *	for congestion control or by the protocol layers.
4551  *
4552  *	This function may only be called from softirq context and interrupts
4553  *	should be enabled.
4554  *
4555  *	Return values (usually ignored):
4556  *	NET_RX_SUCCESS: no congestion
4557  *	NET_RX_DROP: packet was dropped
4558  */
4559 int netif_receive_skb(struct sk_buff *skb)
4560 {
4561 	trace_netif_receive_skb_entry(skb);
4562 
4563 	return netif_receive_skb_internal(skb);
4564 }
4565 EXPORT_SYMBOL(netif_receive_skb);
4566 
4567 DEFINE_PER_CPU(struct work_struct, flush_works);
4568 
4569 /* Network device is going away, flush any packets still pending */
4570 static void flush_backlog(struct work_struct *work)
4571 {
4572 	struct sk_buff *skb, *tmp;
4573 	struct softnet_data *sd;
4574 
4575 	local_bh_disable();
4576 	sd = this_cpu_ptr(&softnet_data);
4577 
4578 	local_irq_disable();
4579 	rps_lock(sd);
4580 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4581 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4582 			__skb_unlink(skb, &sd->input_pkt_queue);
4583 			kfree_skb(skb);
4584 			input_queue_head_incr(sd);
4585 		}
4586 	}
4587 	rps_unlock(sd);
4588 	local_irq_enable();
4589 
4590 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4591 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4592 			__skb_unlink(skb, &sd->process_queue);
4593 			kfree_skb(skb);
4594 			input_queue_head_incr(sd);
4595 		}
4596 	}
4597 	local_bh_enable();
4598 }
4599 
4600 static void flush_all_backlogs(void)
4601 {
4602 	unsigned int cpu;
4603 
4604 	get_online_cpus();
4605 
4606 	for_each_online_cpu(cpu)
4607 		queue_work_on(cpu, system_highpri_wq,
4608 			      per_cpu_ptr(&flush_works, cpu));
4609 
4610 	for_each_online_cpu(cpu)
4611 		flush_work(per_cpu_ptr(&flush_works, cpu));
4612 
4613 	put_online_cpus();
4614 }
4615 
4616 static int napi_gro_complete(struct sk_buff *skb)
4617 {
4618 	struct packet_offload *ptype;
4619 	__be16 type = skb->protocol;
4620 	struct list_head *head = &offload_base;
4621 	int err = -ENOENT;
4622 
4623 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4624 
4625 	if (NAPI_GRO_CB(skb)->count == 1) {
4626 		skb_shinfo(skb)->gso_size = 0;
4627 		goto out;
4628 	}
4629 
4630 	rcu_read_lock();
4631 	list_for_each_entry_rcu(ptype, head, list) {
4632 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4633 			continue;
4634 
4635 		err = ptype->callbacks.gro_complete(skb, 0);
4636 		break;
4637 	}
4638 	rcu_read_unlock();
4639 
4640 	if (err) {
4641 		WARN_ON(&ptype->list == head);
4642 		kfree_skb(skb);
4643 		return NET_RX_SUCCESS;
4644 	}
4645 
4646 out:
4647 	return netif_receive_skb_internal(skb);
4648 }
4649 
4650 /* napi->gro_list contains packets ordered by age.
4651  * youngest packets at the head of it.
4652  * Complete skbs in reverse order to reduce latencies.
4653  */
4654 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4655 {
4656 	struct sk_buff *skb, *prev = NULL;
4657 
4658 	/* scan list and build reverse chain */
4659 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4660 		skb->prev = prev;
4661 		prev = skb;
4662 	}
4663 
4664 	for (skb = prev; skb; skb = prev) {
4665 		skb->next = NULL;
4666 
4667 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4668 			return;
4669 
4670 		prev = skb->prev;
4671 		napi_gro_complete(skb);
4672 		napi->gro_count--;
4673 	}
4674 
4675 	napi->gro_list = NULL;
4676 }
4677 EXPORT_SYMBOL(napi_gro_flush);
4678 
4679 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4680 {
4681 	struct sk_buff *p;
4682 	unsigned int maclen = skb->dev->hard_header_len;
4683 	u32 hash = skb_get_hash_raw(skb);
4684 
4685 	for (p = napi->gro_list; p; p = p->next) {
4686 		unsigned long diffs;
4687 
4688 		NAPI_GRO_CB(p)->flush = 0;
4689 
4690 		if (hash != skb_get_hash_raw(p)) {
4691 			NAPI_GRO_CB(p)->same_flow = 0;
4692 			continue;
4693 		}
4694 
4695 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4696 		diffs |= p->vlan_tci ^ skb->vlan_tci;
4697 		diffs |= skb_metadata_dst_cmp(p, skb);
4698 		if (maclen == ETH_HLEN)
4699 			diffs |= compare_ether_header(skb_mac_header(p),
4700 						      skb_mac_header(skb));
4701 		else if (!diffs)
4702 			diffs = memcmp(skb_mac_header(p),
4703 				       skb_mac_header(skb),
4704 				       maclen);
4705 		NAPI_GRO_CB(p)->same_flow = !diffs;
4706 	}
4707 }
4708 
4709 static void skb_gro_reset_offset(struct sk_buff *skb)
4710 {
4711 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
4712 	const skb_frag_t *frag0 = &pinfo->frags[0];
4713 
4714 	NAPI_GRO_CB(skb)->data_offset = 0;
4715 	NAPI_GRO_CB(skb)->frag0 = NULL;
4716 	NAPI_GRO_CB(skb)->frag0_len = 0;
4717 
4718 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4719 	    pinfo->nr_frags &&
4720 	    !PageHighMem(skb_frag_page(frag0))) {
4721 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4722 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4723 						    skb_frag_size(frag0),
4724 						    skb->end - skb->tail);
4725 	}
4726 }
4727 
4728 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4729 {
4730 	struct skb_shared_info *pinfo = skb_shinfo(skb);
4731 
4732 	BUG_ON(skb->end - skb->tail < grow);
4733 
4734 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4735 
4736 	skb->data_len -= grow;
4737 	skb->tail += grow;
4738 
4739 	pinfo->frags[0].page_offset += grow;
4740 	skb_frag_size_sub(&pinfo->frags[0], grow);
4741 
4742 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4743 		skb_frag_unref(skb, 0);
4744 		memmove(pinfo->frags, pinfo->frags + 1,
4745 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
4746 	}
4747 }
4748 
4749 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4750 {
4751 	struct sk_buff **pp = NULL;
4752 	struct packet_offload *ptype;
4753 	__be16 type = skb->protocol;
4754 	struct list_head *head = &offload_base;
4755 	int same_flow;
4756 	enum gro_result ret;
4757 	int grow;
4758 
4759 	if (netif_elide_gro(skb->dev))
4760 		goto normal;
4761 
4762 	gro_list_prepare(napi, skb);
4763 
4764 	rcu_read_lock();
4765 	list_for_each_entry_rcu(ptype, head, list) {
4766 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4767 			continue;
4768 
4769 		skb_set_network_header(skb, skb_gro_offset(skb));
4770 		skb_reset_mac_len(skb);
4771 		NAPI_GRO_CB(skb)->same_flow = 0;
4772 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4773 		NAPI_GRO_CB(skb)->free = 0;
4774 		NAPI_GRO_CB(skb)->encap_mark = 0;
4775 		NAPI_GRO_CB(skb)->recursion_counter = 0;
4776 		NAPI_GRO_CB(skb)->is_fou = 0;
4777 		NAPI_GRO_CB(skb)->is_atomic = 1;
4778 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4779 
4780 		/* Setup for GRO checksum validation */
4781 		switch (skb->ip_summed) {
4782 		case CHECKSUM_COMPLETE:
4783 			NAPI_GRO_CB(skb)->csum = skb->csum;
4784 			NAPI_GRO_CB(skb)->csum_valid = 1;
4785 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4786 			break;
4787 		case CHECKSUM_UNNECESSARY:
4788 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4789 			NAPI_GRO_CB(skb)->csum_valid = 0;
4790 			break;
4791 		default:
4792 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4793 			NAPI_GRO_CB(skb)->csum_valid = 0;
4794 		}
4795 
4796 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4797 		break;
4798 	}
4799 	rcu_read_unlock();
4800 
4801 	if (&ptype->list == head)
4802 		goto normal;
4803 
4804 	if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4805 		ret = GRO_CONSUMED;
4806 		goto ok;
4807 	}
4808 
4809 	same_flow = NAPI_GRO_CB(skb)->same_flow;
4810 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4811 
4812 	if (pp) {
4813 		struct sk_buff *nskb = *pp;
4814 
4815 		*pp = nskb->next;
4816 		nskb->next = NULL;
4817 		napi_gro_complete(nskb);
4818 		napi->gro_count--;
4819 	}
4820 
4821 	if (same_flow)
4822 		goto ok;
4823 
4824 	if (NAPI_GRO_CB(skb)->flush)
4825 		goto normal;
4826 
4827 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4828 		struct sk_buff *nskb = napi->gro_list;
4829 
4830 		/* locate the end of the list to select the 'oldest' flow */
4831 		while (nskb->next) {
4832 			pp = &nskb->next;
4833 			nskb = *pp;
4834 		}
4835 		*pp = NULL;
4836 		nskb->next = NULL;
4837 		napi_gro_complete(nskb);
4838 	} else {
4839 		napi->gro_count++;
4840 	}
4841 	NAPI_GRO_CB(skb)->count = 1;
4842 	NAPI_GRO_CB(skb)->age = jiffies;
4843 	NAPI_GRO_CB(skb)->last = skb;
4844 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4845 	skb->next = napi->gro_list;
4846 	napi->gro_list = skb;
4847 	ret = GRO_HELD;
4848 
4849 pull:
4850 	grow = skb_gro_offset(skb) - skb_headlen(skb);
4851 	if (grow > 0)
4852 		gro_pull_from_frag0(skb, grow);
4853 ok:
4854 	return ret;
4855 
4856 normal:
4857 	ret = GRO_NORMAL;
4858 	goto pull;
4859 }
4860 
4861 struct packet_offload *gro_find_receive_by_type(__be16 type)
4862 {
4863 	struct list_head *offload_head = &offload_base;
4864 	struct packet_offload *ptype;
4865 
4866 	list_for_each_entry_rcu(ptype, offload_head, list) {
4867 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4868 			continue;
4869 		return ptype;
4870 	}
4871 	return NULL;
4872 }
4873 EXPORT_SYMBOL(gro_find_receive_by_type);
4874 
4875 struct packet_offload *gro_find_complete_by_type(__be16 type)
4876 {
4877 	struct list_head *offload_head = &offload_base;
4878 	struct packet_offload *ptype;
4879 
4880 	list_for_each_entry_rcu(ptype, offload_head, list) {
4881 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4882 			continue;
4883 		return ptype;
4884 	}
4885 	return NULL;
4886 }
4887 EXPORT_SYMBOL(gro_find_complete_by_type);
4888 
4889 static void napi_skb_free_stolen_head(struct sk_buff *skb)
4890 {
4891 	skb_dst_drop(skb);
4892 	secpath_reset(skb);
4893 	kmem_cache_free(skbuff_head_cache, skb);
4894 }
4895 
4896 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4897 {
4898 	switch (ret) {
4899 	case GRO_NORMAL:
4900 		if (netif_receive_skb_internal(skb))
4901 			ret = GRO_DROP;
4902 		break;
4903 
4904 	case GRO_DROP:
4905 		kfree_skb(skb);
4906 		break;
4907 
4908 	case GRO_MERGED_FREE:
4909 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4910 			napi_skb_free_stolen_head(skb);
4911 		else
4912 			__kfree_skb(skb);
4913 		break;
4914 
4915 	case GRO_HELD:
4916 	case GRO_MERGED:
4917 	case GRO_CONSUMED:
4918 		break;
4919 	}
4920 
4921 	return ret;
4922 }
4923 
4924 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4925 {
4926 	skb_mark_napi_id(skb, napi);
4927 	trace_napi_gro_receive_entry(skb);
4928 
4929 	skb_gro_reset_offset(skb);
4930 
4931 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4932 }
4933 EXPORT_SYMBOL(napi_gro_receive);
4934 
4935 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4936 {
4937 	if (unlikely(skb->pfmemalloc)) {
4938 		consume_skb(skb);
4939 		return;
4940 	}
4941 	__skb_pull(skb, skb_headlen(skb));
4942 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
4943 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4944 	skb->vlan_tci = 0;
4945 	skb->dev = napi->dev;
4946 	skb->skb_iif = 0;
4947 	skb->encapsulation = 0;
4948 	skb_shinfo(skb)->gso_type = 0;
4949 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4950 	secpath_reset(skb);
4951 
4952 	napi->skb = skb;
4953 }
4954 
4955 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4956 {
4957 	struct sk_buff *skb = napi->skb;
4958 
4959 	if (!skb) {
4960 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4961 		if (skb) {
4962 			napi->skb = skb;
4963 			skb_mark_napi_id(skb, napi);
4964 		}
4965 	}
4966 	return skb;
4967 }
4968 EXPORT_SYMBOL(napi_get_frags);
4969 
4970 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4971 				      struct sk_buff *skb,
4972 				      gro_result_t ret)
4973 {
4974 	switch (ret) {
4975 	case GRO_NORMAL:
4976 	case GRO_HELD:
4977 		__skb_push(skb, ETH_HLEN);
4978 		skb->protocol = eth_type_trans(skb, skb->dev);
4979 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4980 			ret = GRO_DROP;
4981 		break;
4982 
4983 	case GRO_DROP:
4984 		napi_reuse_skb(napi, skb);
4985 		break;
4986 
4987 	case GRO_MERGED_FREE:
4988 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4989 			napi_skb_free_stolen_head(skb);
4990 		else
4991 			napi_reuse_skb(napi, skb);
4992 		break;
4993 
4994 	case GRO_MERGED:
4995 	case GRO_CONSUMED:
4996 		break;
4997 	}
4998 
4999 	return ret;
5000 }
5001 
5002 /* Upper GRO stack assumes network header starts at gro_offset=0
5003  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5004  * We copy ethernet header into skb->data to have a common layout.
5005  */
5006 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5007 {
5008 	struct sk_buff *skb = napi->skb;
5009 	const struct ethhdr *eth;
5010 	unsigned int hlen = sizeof(*eth);
5011 
5012 	napi->skb = NULL;
5013 
5014 	skb_reset_mac_header(skb);
5015 	skb_gro_reset_offset(skb);
5016 
5017 	eth = skb_gro_header_fast(skb, 0);
5018 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
5019 		eth = skb_gro_header_slow(skb, hlen, 0);
5020 		if (unlikely(!eth)) {
5021 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5022 					     __func__, napi->dev->name);
5023 			napi_reuse_skb(napi, skb);
5024 			return NULL;
5025 		}
5026 	} else {
5027 		gro_pull_from_frag0(skb, hlen);
5028 		NAPI_GRO_CB(skb)->frag0 += hlen;
5029 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
5030 	}
5031 	__skb_pull(skb, hlen);
5032 
5033 	/*
5034 	 * This works because the only protocols we care about don't require
5035 	 * special handling.
5036 	 * We'll fix it up properly in napi_frags_finish()
5037 	 */
5038 	skb->protocol = eth->h_proto;
5039 
5040 	return skb;
5041 }
5042 
5043 gro_result_t napi_gro_frags(struct napi_struct *napi)
5044 {
5045 	struct sk_buff *skb = napi_frags_skb(napi);
5046 
5047 	if (!skb)
5048 		return GRO_DROP;
5049 
5050 	trace_napi_gro_frags_entry(skb);
5051 
5052 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5053 }
5054 EXPORT_SYMBOL(napi_gro_frags);
5055 
5056 /* Compute the checksum from gro_offset and return the folded value
5057  * after adding in any pseudo checksum.
5058  */
5059 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5060 {
5061 	__wsum wsum;
5062 	__sum16 sum;
5063 
5064 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5065 
5066 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5067 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5068 	if (likely(!sum)) {
5069 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5070 		    !skb->csum_complete_sw)
5071 			netdev_rx_csum_fault(skb->dev);
5072 	}
5073 
5074 	NAPI_GRO_CB(skb)->csum = wsum;
5075 	NAPI_GRO_CB(skb)->csum_valid = 1;
5076 
5077 	return sum;
5078 }
5079 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5080 
5081 static void net_rps_send_ipi(struct softnet_data *remsd)
5082 {
5083 #ifdef CONFIG_RPS
5084 	while (remsd) {
5085 		struct softnet_data *next = remsd->rps_ipi_next;
5086 
5087 		if (cpu_online(remsd->cpu))
5088 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5089 		remsd = next;
5090 	}
5091 #endif
5092 }
5093 
5094 /*
5095  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5096  * Note: called with local irq disabled, but exits with local irq enabled.
5097  */
5098 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5099 {
5100 #ifdef CONFIG_RPS
5101 	struct softnet_data *remsd = sd->rps_ipi_list;
5102 
5103 	if (remsd) {
5104 		sd->rps_ipi_list = NULL;
5105 
5106 		local_irq_enable();
5107 
5108 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5109 		net_rps_send_ipi(remsd);
5110 	} else
5111 #endif
5112 		local_irq_enable();
5113 }
5114 
5115 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5116 {
5117 #ifdef CONFIG_RPS
5118 	return sd->rps_ipi_list != NULL;
5119 #else
5120 	return false;
5121 #endif
5122 }
5123 
5124 static int process_backlog(struct napi_struct *napi, int quota)
5125 {
5126 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5127 	bool again = true;
5128 	int work = 0;
5129 
5130 	/* Check if we have pending ipi, its better to send them now,
5131 	 * not waiting net_rx_action() end.
5132 	 */
5133 	if (sd_has_rps_ipi_waiting(sd)) {
5134 		local_irq_disable();
5135 		net_rps_action_and_irq_enable(sd);
5136 	}
5137 
5138 	napi->weight = dev_rx_weight;
5139 	while (again) {
5140 		struct sk_buff *skb;
5141 
5142 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5143 			rcu_read_lock();
5144 			__netif_receive_skb(skb);
5145 			rcu_read_unlock();
5146 			input_queue_head_incr(sd);
5147 			if (++work >= quota)
5148 				return work;
5149 
5150 		}
5151 
5152 		local_irq_disable();
5153 		rps_lock(sd);
5154 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5155 			/*
5156 			 * Inline a custom version of __napi_complete().
5157 			 * only current cpu owns and manipulates this napi,
5158 			 * and NAPI_STATE_SCHED is the only possible flag set
5159 			 * on backlog.
5160 			 * We can use a plain write instead of clear_bit(),
5161 			 * and we dont need an smp_mb() memory barrier.
5162 			 */
5163 			napi->state = 0;
5164 			again = false;
5165 		} else {
5166 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5167 						   &sd->process_queue);
5168 		}
5169 		rps_unlock(sd);
5170 		local_irq_enable();
5171 	}
5172 
5173 	return work;
5174 }
5175 
5176 /**
5177  * __napi_schedule - schedule for receive
5178  * @n: entry to schedule
5179  *
5180  * The entry's receive function will be scheduled to run.
5181  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5182  */
5183 void __napi_schedule(struct napi_struct *n)
5184 {
5185 	unsigned long flags;
5186 
5187 	local_irq_save(flags);
5188 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5189 	local_irq_restore(flags);
5190 }
5191 EXPORT_SYMBOL(__napi_schedule);
5192 
5193 /**
5194  *	napi_schedule_prep - check if napi can be scheduled
5195  *	@n: napi context
5196  *
5197  * Test if NAPI routine is already running, and if not mark
5198  * it as running.  This is used as a condition variable
5199  * insure only one NAPI poll instance runs.  We also make
5200  * sure there is no pending NAPI disable.
5201  */
5202 bool napi_schedule_prep(struct napi_struct *n)
5203 {
5204 	unsigned long val, new;
5205 
5206 	do {
5207 		val = READ_ONCE(n->state);
5208 		if (unlikely(val & NAPIF_STATE_DISABLE))
5209 			return false;
5210 		new = val | NAPIF_STATE_SCHED;
5211 
5212 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
5213 		 * This was suggested by Alexander Duyck, as compiler
5214 		 * emits better code than :
5215 		 * if (val & NAPIF_STATE_SCHED)
5216 		 *     new |= NAPIF_STATE_MISSED;
5217 		 */
5218 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5219 						   NAPIF_STATE_MISSED;
5220 	} while (cmpxchg(&n->state, val, new) != val);
5221 
5222 	return !(val & NAPIF_STATE_SCHED);
5223 }
5224 EXPORT_SYMBOL(napi_schedule_prep);
5225 
5226 /**
5227  * __napi_schedule_irqoff - schedule for receive
5228  * @n: entry to schedule
5229  *
5230  * Variant of __napi_schedule() assuming hard irqs are masked
5231  */
5232 void __napi_schedule_irqoff(struct napi_struct *n)
5233 {
5234 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5235 }
5236 EXPORT_SYMBOL(__napi_schedule_irqoff);
5237 
5238 bool napi_complete_done(struct napi_struct *n, int work_done)
5239 {
5240 	unsigned long flags, val, new;
5241 
5242 	/*
5243 	 * 1) Don't let napi dequeue from the cpu poll list
5244 	 *    just in case its running on a different cpu.
5245 	 * 2) If we are busy polling, do nothing here, we have
5246 	 *    the guarantee we will be called later.
5247 	 */
5248 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5249 				 NAPIF_STATE_IN_BUSY_POLL)))
5250 		return false;
5251 
5252 	if (n->gro_list) {
5253 		unsigned long timeout = 0;
5254 
5255 		if (work_done)
5256 			timeout = n->dev->gro_flush_timeout;
5257 
5258 		if (timeout)
5259 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
5260 				      HRTIMER_MODE_REL_PINNED);
5261 		else
5262 			napi_gro_flush(n, false);
5263 	}
5264 	if (unlikely(!list_empty(&n->poll_list))) {
5265 		/* If n->poll_list is not empty, we need to mask irqs */
5266 		local_irq_save(flags);
5267 		list_del_init(&n->poll_list);
5268 		local_irq_restore(flags);
5269 	}
5270 
5271 	do {
5272 		val = READ_ONCE(n->state);
5273 
5274 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5275 
5276 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5277 
5278 		/* If STATE_MISSED was set, leave STATE_SCHED set,
5279 		 * because we will call napi->poll() one more time.
5280 		 * This C code was suggested by Alexander Duyck to help gcc.
5281 		 */
5282 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5283 						    NAPIF_STATE_SCHED;
5284 	} while (cmpxchg(&n->state, val, new) != val);
5285 
5286 	if (unlikely(val & NAPIF_STATE_MISSED)) {
5287 		__napi_schedule(n);
5288 		return false;
5289 	}
5290 
5291 	return true;
5292 }
5293 EXPORT_SYMBOL(napi_complete_done);
5294 
5295 /* must be called under rcu_read_lock(), as we dont take a reference */
5296 static struct napi_struct *napi_by_id(unsigned int napi_id)
5297 {
5298 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5299 	struct napi_struct *napi;
5300 
5301 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5302 		if (napi->napi_id == napi_id)
5303 			return napi;
5304 
5305 	return NULL;
5306 }
5307 
5308 #if defined(CONFIG_NET_RX_BUSY_POLL)
5309 
5310 #define BUSY_POLL_BUDGET 8
5311 
5312 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5313 {
5314 	int rc;
5315 
5316 	/* Busy polling means there is a high chance device driver hard irq
5317 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5318 	 * set in napi_schedule_prep().
5319 	 * Since we are about to call napi->poll() once more, we can safely
5320 	 * clear NAPI_STATE_MISSED.
5321 	 *
5322 	 * Note: x86 could use a single "lock and ..." instruction
5323 	 * to perform these two clear_bit()
5324 	 */
5325 	clear_bit(NAPI_STATE_MISSED, &napi->state);
5326 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5327 
5328 	local_bh_disable();
5329 
5330 	/* All we really want here is to re-enable device interrupts.
5331 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5332 	 */
5333 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
5334 	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5335 	netpoll_poll_unlock(have_poll_lock);
5336 	if (rc == BUSY_POLL_BUDGET)
5337 		__napi_schedule(napi);
5338 	local_bh_enable();
5339 }
5340 
5341 void napi_busy_loop(unsigned int napi_id,
5342 		    bool (*loop_end)(void *, unsigned long),
5343 		    void *loop_end_arg)
5344 {
5345 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5346 	int (*napi_poll)(struct napi_struct *napi, int budget);
5347 	void *have_poll_lock = NULL;
5348 	struct napi_struct *napi;
5349 
5350 restart:
5351 	napi_poll = NULL;
5352 
5353 	rcu_read_lock();
5354 
5355 	napi = napi_by_id(napi_id);
5356 	if (!napi)
5357 		goto out;
5358 
5359 	preempt_disable();
5360 	for (;;) {
5361 		int work = 0;
5362 
5363 		local_bh_disable();
5364 		if (!napi_poll) {
5365 			unsigned long val = READ_ONCE(napi->state);
5366 
5367 			/* If multiple threads are competing for this napi,
5368 			 * we avoid dirtying napi->state as much as we can.
5369 			 */
5370 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5371 				   NAPIF_STATE_IN_BUSY_POLL))
5372 				goto count;
5373 			if (cmpxchg(&napi->state, val,
5374 				    val | NAPIF_STATE_IN_BUSY_POLL |
5375 					  NAPIF_STATE_SCHED) != val)
5376 				goto count;
5377 			have_poll_lock = netpoll_poll_lock(napi);
5378 			napi_poll = napi->poll;
5379 		}
5380 		work = napi_poll(napi, BUSY_POLL_BUDGET);
5381 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5382 count:
5383 		if (work > 0)
5384 			__NET_ADD_STATS(dev_net(napi->dev),
5385 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
5386 		local_bh_enable();
5387 
5388 		if (!loop_end || loop_end(loop_end_arg, start_time))
5389 			break;
5390 
5391 		if (unlikely(need_resched())) {
5392 			if (napi_poll)
5393 				busy_poll_stop(napi, have_poll_lock);
5394 			preempt_enable();
5395 			rcu_read_unlock();
5396 			cond_resched();
5397 			if (loop_end(loop_end_arg, start_time))
5398 				return;
5399 			goto restart;
5400 		}
5401 		cpu_relax();
5402 	}
5403 	if (napi_poll)
5404 		busy_poll_stop(napi, have_poll_lock);
5405 	preempt_enable();
5406 out:
5407 	rcu_read_unlock();
5408 }
5409 EXPORT_SYMBOL(napi_busy_loop);
5410 
5411 #endif /* CONFIG_NET_RX_BUSY_POLL */
5412 
5413 static void napi_hash_add(struct napi_struct *napi)
5414 {
5415 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5416 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5417 		return;
5418 
5419 	spin_lock(&napi_hash_lock);
5420 
5421 	/* 0..NR_CPUS range is reserved for sender_cpu use */
5422 	do {
5423 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5424 			napi_gen_id = MIN_NAPI_ID;
5425 	} while (napi_by_id(napi_gen_id));
5426 	napi->napi_id = napi_gen_id;
5427 
5428 	hlist_add_head_rcu(&napi->napi_hash_node,
5429 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5430 
5431 	spin_unlock(&napi_hash_lock);
5432 }
5433 
5434 /* Warning : caller is responsible to make sure rcu grace period
5435  * is respected before freeing memory containing @napi
5436  */
5437 bool napi_hash_del(struct napi_struct *napi)
5438 {
5439 	bool rcu_sync_needed = false;
5440 
5441 	spin_lock(&napi_hash_lock);
5442 
5443 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5444 		rcu_sync_needed = true;
5445 		hlist_del_rcu(&napi->napi_hash_node);
5446 	}
5447 	spin_unlock(&napi_hash_lock);
5448 	return rcu_sync_needed;
5449 }
5450 EXPORT_SYMBOL_GPL(napi_hash_del);
5451 
5452 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5453 {
5454 	struct napi_struct *napi;
5455 
5456 	napi = container_of(timer, struct napi_struct, timer);
5457 
5458 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
5459 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5460 	 */
5461 	if (napi->gro_list && !napi_disable_pending(napi) &&
5462 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5463 		__napi_schedule_irqoff(napi);
5464 
5465 	return HRTIMER_NORESTART;
5466 }
5467 
5468 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5469 		    int (*poll)(struct napi_struct *, int), int weight)
5470 {
5471 	INIT_LIST_HEAD(&napi->poll_list);
5472 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5473 	napi->timer.function = napi_watchdog;
5474 	napi->gro_count = 0;
5475 	napi->gro_list = NULL;
5476 	napi->skb = NULL;
5477 	napi->poll = poll;
5478 	if (weight > NAPI_POLL_WEIGHT)
5479 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5480 			    weight, dev->name);
5481 	napi->weight = weight;
5482 	list_add(&napi->dev_list, &dev->napi_list);
5483 	napi->dev = dev;
5484 #ifdef CONFIG_NETPOLL
5485 	napi->poll_owner = -1;
5486 #endif
5487 	set_bit(NAPI_STATE_SCHED, &napi->state);
5488 	napi_hash_add(napi);
5489 }
5490 EXPORT_SYMBOL(netif_napi_add);
5491 
5492 void napi_disable(struct napi_struct *n)
5493 {
5494 	might_sleep();
5495 	set_bit(NAPI_STATE_DISABLE, &n->state);
5496 
5497 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5498 		msleep(1);
5499 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5500 		msleep(1);
5501 
5502 	hrtimer_cancel(&n->timer);
5503 
5504 	clear_bit(NAPI_STATE_DISABLE, &n->state);
5505 }
5506 EXPORT_SYMBOL(napi_disable);
5507 
5508 /* Must be called in process context */
5509 void netif_napi_del(struct napi_struct *napi)
5510 {
5511 	might_sleep();
5512 	if (napi_hash_del(napi))
5513 		synchronize_net();
5514 	list_del_init(&napi->dev_list);
5515 	napi_free_frags(napi);
5516 
5517 	kfree_skb_list(napi->gro_list);
5518 	napi->gro_list = NULL;
5519 	napi->gro_count = 0;
5520 }
5521 EXPORT_SYMBOL(netif_napi_del);
5522 
5523 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5524 {
5525 	void *have;
5526 	int work, weight;
5527 
5528 	list_del_init(&n->poll_list);
5529 
5530 	have = netpoll_poll_lock(n);
5531 
5532 	weight = n->weight;
5533 
5534 	/* This NAPI_STATE_SCHED test is for avoiding a race
5535 	 * with netpoll's poll_napi().  Only the entity which
5536 	 * obtains the lock and sees NAPI_STATE_SCHED set will
5537 	 * actually make the ->poll() call.  Therefore we avoid
5538 	 * accidentally calling ->poll() when NAPI is not scheduled.
5539 	 */
5540 	work = 0;
5541 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5542 		work = n->poll(n, weight);
5543 		trace_napi_poll(n, work, weight);
5544 	}
5545 
5546 	WARN_ON_ONCE(work > weight);
5547 
5548 	if (likely(work < weight))
5549 		goto out_unlock;
5550 
5551 	/* Drivers must not modify the NAPI state if they
5552 	 * consume the entire weight.  In such cases this code
5553 	 * still "owns" the NAPI instance and therefore can
5554 	 * move the instance around on the list at-will.
5555 	 */
5556 	if (unlikely(napi_disable_pending(n))) {
5557 		napi_complete(n);
5558 		goto out_unlock;
5559 	}
5560 
5561 	if (n->gro_list) {
5562 		/* flush too old packets
5563 		 * If HZ < 1000, flush all packets.
5564 		 */
5565 		napi_gro_flush(n, HZ >= 1000);
5566 	}
5567 
5568 	/* Some drivers may have called napi_schedule
5569 	 * prior to exhausting their budget.
5570 	 */
5571 	if (unlikely(!list_empty(&n->poll_list))) {
5572 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5573 			     n->dev ? n->dev->name : "backlog");
5574 		goto out_unlock;
5575 	}
5576 
5577 	list_add_tail(&n->poll_list, repoll);
5578 
5579 out_unlock:
5580 	netpoll_poll_unlock(have);
5581 
5582 	return work;
5583 }
5584 
5585 static __latent_entropy void net_rx_action(struct softirq_action *h)
5586 {
5587 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5588 	unsigned long time_limit = jiffies +
5589 		usecs_to_jiffies(netdev_budget_usecs);
5590 	int budget = netdev_budget;
5591 	LIST_HEAD(list);
5592 	LIST_HEAD(repoll);
5593 
5594 	local_irq_disable();
5595 	list_splice_init(&sd->poll_list, &list);
5596 	local_irq_enable();
5597 
5598 	for (;;) {
5599 		struct napi_struct *n;
5600 
5601 		if (list_empty(&list)) {
5602 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5603 				goto out;
5604 			break;
5605 		}
5606 
5607 		n = list_first_entry(&list, struct napi_struct, poll_list);
5608 		budget -= napi_poll(n, &repoll);
5609 
5610 		/* If softirq window is exhausted then punt.
5611 		 * Allow this to run for 2 jiffies since which will allow
5612 		 * an average latency of 1.5/HZ.
5613 		 */
5614 		if (unlikely(budget <= 0 ||
5615 			     time_after_eq(jiffies, time_limit))) {
5616 			sd->time_squeeze++;
5617 			break;
5618 		}
5619 	}
5620 
5621 	local_irq_disable();
5622 
5623 	list_splice_tail_init(&sd->poll_list, &list);
5624 	list_splice_tail(&repoll, &list);
5625 	list_splice(&list, &sd->poll_list);
5626 	if (!list_empty(&sd->poll_list))
5627 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5628 
5629 	net_rps_action_and_irq_enable(sd);
5630 out:
5631 	__kfree_skb_flush();
5632 }
5633 
5634 struct netdev_adjacent {
5635 	struct net_device *dev;
5636 
5637 	/* upper master flag, there can only be one master device per list */
5638 	bool master;
5639 
5640 	/* counter for the number of times this device was added to us */
5641 	u16 ref_nr;
5642 
5643 	/* private field for the users */
5644 	void *private;
5645 
5646 	struct list_head list;
5647 	struct rcu_head rcu;
5648 };
5649 
5650 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5651 						 struct list_head *adj_list)
5652 {
5653 	struct netdev_adjacent *adj;
5654 
5655 	list_for_each_entry(adj, adj_list, list) {
5656 		if (adj->dev == adj_dev)
5657 			return adj;
5658 	}
5659 	return NULL;
5660 }
5661 
5662 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5663 {
5664 	struct net_device *dev = data;
5665 
5666 	return upper_dev == dev;
5667 }
5668 
5669 /**
5670  * netdev_has_upper_dev - Check if device is linked to an upper device
5671  * @dev: device
5672  * @upper_dev: upper device to check
5673  *
5674  * Find out if a device is linked to specified upper device and return true
5675  * in case it is. Note that this checks only immediate upper device,
5676  * not through a complete stack of devices. The caller must hold the RTNL lock.
5677  */
5678 bool netdev_has_upper_dev(struct net_device *dev,
5679 			  struct net_device *upper_dev)
5680 {
5681 	ASSERT_RTNL();
5682 
5683 	return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5684 					     upper_dev);
5685 }
5686 EXPORT_SYMBOL(netdev_has_upper_dev);
5687 
5688 /**
5689  * netdev_has_upper_dev_all - Check if device is linked to an upper device
5690  * @dev: device
5691  * @upper_dev: upper device to check
5692  *
5693  * Find out if a device is linked to specified upper device and return true
5694  * in case it is. Note that this checks the entire upper device chain.
5695  * The caller must hold rcu lock.
5696  */
5697 
5698 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5699 				  struct net_device *upper_dev)
5700 {
5701 	return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5702 					       upper_dev);
5703 }
5704 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5705 
5706 /**
5707  * netdev_has_any_upper_dev - Check if device is linked to some device
5708  * @dev: device
5709  *
5710  * Find out if a device is linked to an upper device and return true in case
5711  * it is. The caller must hold the RTNL lock.
5712  */
5713 bool netdev_has_any_upper_dev(struct net_device *dev)
5714 {
5715 	ASSERT_RTNL();
5716 
5717 	return !list_empty(&dev->adj_list.upper);
5718 }
5719 EXPORT_SYMBOL(netdev_has_any_upper_dev);
5720 
5721 /**
5722  * netdev_master_upper_dev_get - Get master upper device
5723  * @dev: device
5724  *
5725  * Find a master upper device and return pointer to it or NULL in case
5726  * it's not there. The caller must hold the RTNL lock.
5727  */
5728 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5729 {
5730 	struct netdev_adjacent *upper;
5731 
5732 	ASSERT_RTNL();
5733 
5734 	if (list_empty(&dev->adj_list.upper))
5735 		return NULL;
5736 
5737 	upper = list_first_entry(&dev->adj_list.upper,
5738 				 struct netdev_adjacent, list);
5739 	if (likely(upper->master))
5740 		return upper->dev;
5741 	return NULL;
5742 }
5743 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5744 
5745 /**
5746  * netdev_has_any_lower_dev - Check if device is linked to some device
5747  * @dev: device
5748  *
5749  * Find out if a device is linked to a lower device and return true in case
5750  * it is. The caller must hold the RTNL lock.
5751  */
5752 static bool netdev_has_any_lower_dev(struct net_device *dev)
5753 {
5754 	ASSERT_RTNL();
5755 
5756 	return !list_empty(&dev->adj_list.lower);
5757 }
5758 
5759 void *netdev_adjacent_get_private(struct list_head *adj_list)
5760 {
5761 	struct netdev_adjacent *adj;
5762 
5763 	adj = list_entry(adj_list, struct netdev_adjacent, list);
5764 
5765 	return adj->private;
5766 }
5767 EXPORT_SYMBOL(netdev_adjacent_get_private);
5768 
5769 /**
5770  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5771  * @dev: device
5772  * @iter: list_head ** of the current position
5773  *
5774  * Gets the next device from the dev's upper list, starting from iter
5775  * position. The caller must hold RCU read lock.
5776  */
5777 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5778 						 struct list_head **iter)
5779 {
5780 	struct netdev_adjacent *upper;
5781 
5782 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5783 
5784 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5785 
5786 	if (&upper->list == &dev->adj_list.upper)
5787 		return NULL;
5788 
5789 	*iter = &upper->list;
5790 
5791 	return upper->dev;
5792 }
5793 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5794 
5795 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5796 						    struct list_head **iter)
5797 {
5798 	struct netdev_adjacent *upper;
5799 
5800 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5801 
5802 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5803 
5804 	if (&upper->list == &dev->adj_list.upper)
5805 		return NULL;
5806 
5807 	*iter = &upper->list;
5808 
5809 	return upper->dev;
5810 }
5811 
5812 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5813 				  int (*fn)(struct net_device *dev,
5814 					    void *data),
5815 				  void *data)
5816 {
5817 	struct net_device *udev;
5818 	struct list_head *iter;
5819 	int ret;
5820 
5821 	for (iter = &dev->adj_list.upper,
5822 	     udev = netdev_next_upper_dev_rcu(dev, &iter);
5823 	     udev;
5824 	     udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5825 		/* first is the upper device itself */
5826 		ret = fn(udev, data);
5827 		if (ret)
5828 			return ret;
5829 
5830 		/* then look at all of its upper devices */
5831 		ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5832 		if (ret)
5833 			return ret;
5834 	}
5835 
5836 	return 0;
5837 }
5838 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5839 
5840 /**
5841  * netdev_lower_get_next_private - Get the next ->private from the
5842  *				   lower neighbour list
5843  * @dev: device
5844  * @iter: list_head ** of the current position
5845  *
5846  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5847  * list, starting from iter position. The caller must hold either hold the
5848  * RTNL lock or its own locking that guarantees that the neighbour lower
5849  * list will remain unchanged.
5850  */
5851 void *netdev_lower_get_next_private(struct net_device *dev,
5852 				    struct list_head **iter)
5853 {
5854 	struct netdev_adjacent *lower;
5855 
5856 	lower = list_entry(*iter, struct netdev_adjacent, list);
5857 
5858 	if (&lower->list == &dev->adj_list.lower)
5859 		return NULL;
5860 
5861 	*iter = lower->list.next;
5862 
5863 	return lower->private;
5864 }
5865 EXPORT_SYMBOL(netdev_lower_get_next_private);
5866 
5867 /**
5868  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5869  *				       lower neighbour list, RCU
5870  *				       variant
5871  * @dev: device
5872  * @iter: list_head ** of the current position
5873  *
5874  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5875  * list, starting from iter position. The caller must hold RCU read lock.
5876  */
5877 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5878 					struct list_head **iter)
5879 {
5880 	struct netdev_adjacent *lower;
5881 
5882 	WARN_ON_ONCE(!rcu_read_lock_held());
5883 
5884 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5885 
5886 	if (&lower->list == &dev->adj_list.lower)
5887 		return NULL;
5888 
5889 	*iter = &lower->list;
5890 
5891 	return lower->private;
5892 }
5893 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5894 
5895 /**
5896  * netdev_lower_get_next - Get the next device from the lower neighbour
5897  *                         list
5898  * @dev: device
5899  * @iter: list_head ** of the current position
5900  *
5901  * Gets the next netdev_adjacent from the dev's lower neighbour
5902  * list, starting from iter position. The caller must hold RTNL lock or
5903  * its own locking that guarantees that the neighbour lower
5904  * list will remain unchanged.
5905  */
5906 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5907 {
5908 	struct netdev_adjacent *lower;
5909 
5910 	lower = list_entry(*iter, struct netdev_adjacent, list);
5911 
5912 	if (&lower->list == &dev->adj_list.lower)
5913 		return NULL;
5914 
5915 	*iter = lower->list.next;
5916 
5917 	return lower->dev;
5918 }
5919 EXPORT_SYMBOL(netdev_lower_get_next);
5920 
5921 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5922 						struct list_head **iter)
5923 {
5924 	struct netdev_adjacent *lower;
5925 
5926 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5927 
5928 	if (&lower->list == &dev->adj_list.lower)
5929 		return NULL;
5930 
5931 	*iter = &lower->list;
5932 
5933 	return lower->dev;
5934 }
5935 
5936 int netdev_walk_all_lower_dev(struct net_device *dev,
5937 			      int (*fn)(struct net_device *dev,
5938 					void *data),
5939 			      void *data)
5940 {
5941 	struct net_device *ldev;
5942 	struct list_head *iter;
5943 	int ret;
5944 
5945 	for (iter = &dev->adj_list.lower,
5946 	     ldev = netdev_next_lower_dev(dev, &iter);
5947 	     ldev;
5948 	     ldev = netdev_next_lower_dev(dev, &iter)) {
5949 		/* first is the lower device itself */
5950 		ret = fn(ldev, data);
5951 		if (ret)
5952 			return ret;
5953 
5954 		/* then look at all of its lower devices */
5955 		ret = netdev_walk_all_lower_dev(ldev, fn, data);
5956 		if (ret)
5957 			return ret;
5958 	}
5959 
5960 	return 0;
5961 }
5962 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5963 
5964 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5965 						    struct list_head **iter)
5966 {
5967 	struct netdev_adjacent *lower;
5968 
5969 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5970 	if (&lower->list == &dev->adj_list.lower)
5971 		return NULL;
5972 
5973 	*iter = &lower->list;
5974 
5975 	return lower->dev;
5976 }
5977 
5978 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5979 				  int (*fn)(struct net_device *dev,
5980 					    void *data),
5981 				  void *data)
5982 {
5983 	struct net_device *ldev;
5984 	struct list_head *iter;
5985 	int ret;
5986 
5987 	for (iter = &dev->adj_list.lower,
5988 	     ldev = netdev_next_lower_dev_rcu(dev, &iter);
5989 	     ldev;
5990 	     ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5991 		/* first is the lower device itself */
5992 		ret = fn(ldev, data);
5993 		if (ret)
5994 			return ret;
5995 
5996 		/* then look at all of its lower devices */
5997 		ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5998 		if (ret)
5999 			return ret;
6000 	}
6001 
6002 	return 0;
6003 }
6004 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6005 
6006 /**
6007  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6008  *				       lower neighbour list, RCU
6009  *				       variant
6010  * @dev: device
6011  *
6012  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6013  * list. The caller must hold RCU read lock.
6014  */
6015 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6016 {
6017 	struct netdev_adjacent *lower;
6018 
6019 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
6020 			struct netdev_adjacent, list);
6021 	if (lower)
6022 		return lower->private;
6023 	return NULL;
6024 }
6025 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6026 
6027 /**
6028  * netdev_master_upper_dev_get_rcu - Get master upper device
6029  * @dev: device
6030  *
6031  * Find a master upper device and return pointer to it or NULL in case
6032  * it's not there. The caller must hold the RCU read lock.
6033  */
6034 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6035 {
6036 	struct netdev_adjacent *upper;
6037 
6038 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
6039 				       struct netdev_adjacent, list);
6040 	if (upper && likely(upper->master))
6041 		return upper->dev;
6042 	return NULL;
6043 }
6044 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6045 
6046 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6047 			      struct net_device *adj_dev,
6048 			      struct list_head *dev_list)
6049 {
6050 	char linkname[IFNAMSIZ+7];
6051 
6052 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6053 		"upper_%s" : "lower_%s", adj_dev->name);
6054 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6055 				 linkname);
6056 }
6057 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6058 			       char *name,
6059 			       struct list_head *dev_list)
6060 {
6061 	char linkname[IFNAMSIZ+7];
6062 
6063 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6064 		"upper_%s" : "lower_%s", name);
6065 	sysfs_remove_link(&(dev->dev.kobj), linkname);
6066 }
6067 
6068 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6069 						 struct net_device *adj_dev,
6070 						 struct list_head *dev_list)
6071 {
6072 	return (dev_list == &dev->adj_list.upper ||
6073 		dev_list == &dev->adj_list.lower) &&
6074 		net_eq(dev_net(dev), dev_net(adj_dev));
6075 }
6076 
6077 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6078 					struct net_device *adj_dev,
6079 					struct list_head *dev_list,
6080 					void *private, bool master)
6081 {
6082 	struct netdev_adjacent *adj;
6083 	int ret;
6084 
6085 	adj = __netdev_find_adj(adj_dev, dev_list);
6086 
6087 	if (adj) {
6088 		adj->ref_nr += 1;
6089 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6090 			 dev->name, adj_dev->name, adj->ref_nr);
6091 
6092 		return 0;
6093 	}
6094 
6095 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6096 	if (!adj)
6097 		return -ENOMEM;
6098 
6099 	adj->dev = adj_dev;
6100 	adj->master = master;
6101 	adj->ref_nr = 1;
6102 	adj->private = private;
6103 	dev_hold(adj_dev);
6104 
6105 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6106 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6107 
6108 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6109 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6110 		if (ret)
6111 			goto free_adj;
6112 	}
6113 
6114 	/* Ensure that master link is always the first item in list. */
6115 	if (master) {
6116 		ret = sysfs_create_link(&(dev->dev.kobj),
6117 					&(adj_dev->dev.kobj), "master");
6118 		if (ret)
6119 			goto remove_symlinks;
6120 
6121 		list_add_rcu(&adj->list, dev_list);
6122 	} else {
6123 		list_add_tail_rcu(&adj->list, dev_list);
6124 	}
6125 
6126 	return 0;
6127 
6128 remove_symlinks:
6129 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6130 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6131 free_adj:
6132 	kfree(adj);
6133 	dev_put(adj_dev);
6134 
6135 	return ret;
6136 }
6137 
6138 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6139 					 struct net_device *adj_dev,
6140 					 u16 ref_nr,
6141 					 struct list_head *dev_list)
6142 {
6143 	struct netdev_adjacent *adj;
6144 
6145 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6146 		 dev->name, adj_dev->name, ref_nr);
6147 
6148 	adj = __netdev_find_adj(adj_dev, dev_list);
6149 
6150 	if (!adj) {
6151 		pr_err("Adjacency does not exist for device %s from %s\n",
6152 		       dev->name, adj_dev->name);
6153 		WARN_ON(1);
6154 		return;
6155 	}
6156 
6157 	if (adj->ref_nr > ref_nr) {
6158 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6159 			 dev->name, adj_dev->name, ref_nr,
6160 			 adj->ref_nr - ref_nr);
6161 		adj->ref_nr -= ref_nr;
6162 		return;
6163 	}
6164 
6165 	if (adj->master)
6166 		sysfs_remove_link(&(dev->dev.kobj), "master");
6167 
6168 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6169 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6170 
6171 	list_del_rcu(&adj->list);
6172 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6173 		 adj_dev->name, dev->name, adj_dev->name);
6174 	dev_put(adj_dev);
6175 	kfree_rcu(adj, rcu);
6176 }
6177 
6178 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6179 					    struct net_device *upper_dev,
6180 					    struct list_head *up_list,
6181 					    struct list_head *down_list,
6182 					    void *private, bool master)
6183 {
6184 	int ret;
6185 
6186 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6187 					   private, master);
6188 	if (ret)
6189 		return ret;
6190 
6191 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6192 					   private, false);
6193 	if (ret) {
6194 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6195 		return ret;
6196 	}
6197 
6198 	return 0;
6199 }
6200 
6201 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6202 					       struct net_device *upper_dev,
6203 					       u16 ref_nr,
6204 					       struct list_head *up_list,
6205 					       struct list_head *down_list)
6206 {
6207 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6208 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6209 }
6210 
6211 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6212 						struct net_device *upper_dev,
6213 						void *private, bool master)
6214 {
6215 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6216 						&dev->adj_list.upper,
6217 						&upper_dev->adj_list.lower,
6218 						private, master);
6219 }
6220 
6221 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6222 						   struct net_device *upper_dev)
6223 {
6224 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6225 					   &dev->adj_list.upper,
6226 					   &upper_dev->adj_list.lower);
6227 }
6228 
6229 static int __netdev_upper_dev_link(struct net_device *dev,
6230 				   struct net_device *upper_dev, bool master,
6231 				   void *upper_priv, void *upper_info)
6232 {
6233 	struct netdev_notifier_changeupper_info changeupper_info;
6234 	int ret = 0;
6235 
6236 	ASSERT_RTNL();
6237 
6238 	if (dev == upper_dev)
6239 		return -EBUSY;
6240 
6241 	/* To prevent loops, check if dev is not upper device to upper_dev. */
6242 	if (netdev_has_upper_dev(upper_dev, dev))
6243 		return -EBUSY;
6244 
6245 	if (netdev_has_upper_dev(dev, upper_dev))
6246 		return -EEXIST;
6247 
6248 	if (master && netdev_master_upper_dev_get(dev))
6249 		return -EBUSY;
6250 
6251 	changeupper_info.upper_dev = upper_dev;
6252 	changeupper_info.master = master;
6253 	changeupper_info.linking = true;
6254 	changeupper_info.upper_info = upper_info;
6255 
6256 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6257 					    &changeupper_info.info);
6258 	ret = notifier_to_errno(ret);
6259 	if (ret)
6260 		return ret;
6261 
6262 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6263 						   master);
6264 	if (ret)
6265 		return ret;
6266 
6267 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6268 					    &changeupper_info.info);
6269 	ret = notifier_to_errno(ret);
6270 	if (ret)
6271 		goto rollback;
6272 
6273 	return 0;
6274 
6275 rollback:
6276 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6277 
6278 	return ret;
6279 }
6280 
6281 /**
6282  * netdev_upper_dev_link - Add a link to the upper device
6283  * @dev: device
6284  * @upper_dev: new upper device
6285  *
6286  * Adds a link to device which is upper to this one. The caller must hold
6287  * the RTNL lock. On a failure a negative errno code is returned.
6288  * On success the reference counts are adjusted and the function
6289  * returns zero.
6290  */
6291 int netdev_upper_dev_link(struct net_device *dev,
6292 			  struct net_device *upper_dev)
6293 {
6294 	return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
6295 }
6296 EXPORT_SYMBOL(netdev_upper_dev_link);
6297 
6298 /**
6299  * netdev_master_upper_dev_link - Add a master link to the upper device
6300  * @dev: device
6301  * @upper_dev: new upper device
6302  * @upper_priv: upper device private
6303  * @upper_info: upper info to be passed down via notifier
6304  *
6305  * Adds a link to device which is upper to this one. In this case, only
6306  * one master upper device can be linked, although other non-master devices
6307  * might be linked as well. The caller must hold the RTNL lock.
6308  * On a failure a negative errno code is returned. On success the reference
6309  * counts are adjusted and the function returns zero.
6310  */
6311 int netdev_master_upper_dev_link(struct net_device *dev,
6312 				 struct net_device *upper_dev,
6313 				 void *upper_priv, void *upper_info)
6314 {
6315 	return __netdev_upper_dev_link(dev, upper_dev, true,
6316 				       upper_priv, upper_info);
6317 }
6318 EXPORT_SYMBOL(netdev_master_upper_dev_link);
6319 
6320 /**
6321  * netdev_upper_dev_unlink - Removes a link to upper device
6322  * @dev: device
6323  * @upper_dev: new upper device
6324  *
6325  * Removes a link to device which is upper to this one. The caller must hold
6326  * the RTNL lock.
6327  */
6328 void netdev_upper_dev_unlink(struct net_device *dev,
6329 			     struct net_device *upper_dev)
6330 {
6331 	struct netdev_notifier_changeupper_info changeupper_info;
6332 
6333 	ASSERT_RTNL();
6334 
6335 	changeupper_info.upper_dev = upper_dev;
6336 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6337 	changeupper_info.linking = false;
6338 
6339 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6340 				      &changeupper_info.info);
6341 
6342 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6343 
6344 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6345 				      &changeupper_info.info);
6346 }
6347 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6348 
6349 /**
6350  * netdev_bonding_info_change - Dispatch event about slave change
6351  * @dev: device
6352  * @bonding_info: info to dispatch
6353  *
6354  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6355  * The caller must hold the RTNL lock.
6356  */
6357 void netdev_bonding_info_change(struct net_device *dev,
6358 				struct netdev_bonding_info *bonding_info)
6359 {
6360 	struct netdev_notifier_bonding_info	info;
6361 
6362 	memcpy(&info.bonding_info, bonding_info,
6363 	       sizeof(struct netdev_bonding_info));
6364 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
6365 				      &info.info);
6366 }
6367 EXPORT_SYMBOL(netdev_bonding_info_change);
6368 
6369 static void netdev_adjacent_add_links(struct net_device *dev)
6370 {
6371 	struct netdev_adjacent *iter;
6372 
6373 	struct net *net = dev_net(dev);
6374 
6375 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6376 		if (!net_eq(net, dev_net(iter->dev)))
6377 			continue;
6378 		netdev_adjacent_sysfs_add(iter->dev, dev,
6379 					  &iter->dev->adj_list.lower);
6380 		netdev_adjacent_sysfs_add(dev, iter->dev,
6381 					  &dev->adj_list.upper);
6382 	}
6383 
6384 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6385 		if (!net_eq(net, dev_net(iter->dev)))
6386 			continue;
6387 		netdev_adjacent_sysfs_add(iter->dev, dev,
6388 					  &iter->dev->adj_list.upper);
6389 		netdev_adjacent_sysfs_add(dev, iter->dev,
6390 					  &dev->adj_list.lower);
6391 	}
6392 }
6393 
6394 static void netdev_adjacent_del_links(struct net_device *dev)
6395 {
6396 	struct netdev_adjacent *iter;
6397 
6398 	struct net *net = dev_net(dev);
6399 
6400 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6401 		if (!net_eq(net, dev_net(iter->dev)))
6402 			continue;
6403 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6404 					  &iter->dev->adj_list.lower);
6405 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6406 					  &dev->adj_list.upper);
6407 	}
6408 
6409 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6410 		if (!net_eq(net, dev_net(iter->dev)))
6411 			continue;
6412 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6413 					  &iter->dev->adj_list.upper);
6414 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6415 					  &dev->adj_list.lower);
6416 	}
6417 }
6418 
6419 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6420 {
6421 	struct netdev_adjacent *iter;
6422 
6423 	struct net *net = dev_net(dev);
6424 
6425 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6426 		if (!net_eq(net, dev_net(iter->dev)))
6427 			continue;
6428 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6429 					  &iter->dev->adj_list.lower);
6430 		netdev_adjacent_sysfs_add(iter->dev, dev,
6431 					  &iter->dev->adj_list.lower);
6432 	}
6433 
6434 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6435 		if (!net_eq(net, dev_net(iter->dev)))
6436 			continue;
6437 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6438 					  &iter->dev->adj_list.upper);
6439 		netdev_adjacent_sysfs_add(iter->dev, dev,
6440 					  &iter->dev->adj_list.upper);
6441 	}
6442 }
6443 
6444 void *netdev_lower_dev_get_private(struct net_device *dev,
6445 				   struct net_device *lower_dev)
6446 {
6447 	struct netdev_adjacent *lower;
6448 
6449 	if (!lower_dev)
6450 		return NULL;
6451 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6452 	if (!lower)
6453 		return NULL;
6454 
6455 	return lower->private;
6456 }
6457 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6458 
6459 
6460 int dev_get_nest_level(struct net_device *dev)
6461 {
6462 	struct net_device *lower = NULL;
6463 	struct list_head *iter;
6464 	int max_nest = -1;
6465 	int nest;
6466 
6467 	ASSERT_RTNL();
6468 
6469 	netdev_for_each_lower_dev(dev, lower, iter) {
6470 		nest = dev_get_nest_level(lower);
6471 		if (max_nest < nest)
6472 			max_nest = nest;
6473 	}
6474 
6475 	return max_nest + 1;
6476 }
6477 EXPORT_SYMBOL(dev_get_nest_level);
6478 
6479 /**
6480  * netdev_lower_change - Dispatch event about lower device state change
6481  * @lower_dev: device
6482  * @lower_state_info: state to dispatch
6483  *
6484  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6485  * The caller must hold the RTNL lock.
6486  */
6487 void netdev_lower_state_changed(struct net_device *lower_dev,
6488 				void *lower_state_info)
6489 {
6490 	struct netdev_notifier_changelowerstate_info changelowerstate_info;
6491 
6492 	ASSERT_RTNL();
6493 	changelowerstate_info.lower_state_info = lower_state_info;
6494 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6495 				      &changelowerstate_info.info);
6496 }
6497 EXPORT_SYMBOL(netdev_lower_state_changed);
6498 
6499 static void dev_change_rx_flags(struct net_device *dev, int flags)
6500 {
6501 	const struct net_device_ops *ops = dev->netdev_ops;
6502 
6503 	if (ops->ndo_change_rx_flags)
6504 		ops->ndo_change_rx_flags(dev, flags);
6505 }
6506 
6507 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6508 {
6509 	unsigned int old_flags = dev->flags;
6510 	kuid_t uid;
6511 	kgid_t gid;
6512 
6513 	ASSERT_RTNL();
6514 
6515 	dev->flags |= IFF_PROMISC;
6516 	dev->promiscuity += inc;
6517 	if (dev->promiscuity == 0) {
6518 		/*
6519 		 * Avoid overflow.
6520 		 * If inc causes overflow, untouch promisc and return error.
6521 		 */
6522 		if (inc < 0)
6523 			dev->flags &= ~IFF_PROMISC;
6524 		else {
6525 			dev->promiscuity -= inc;
6526 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6527 				dev->name);
6528 			return -EOVERFLOW;
6529 		}
6530 	}
6531 	if (dev->flags != old_flags) {
6532 		pr_info("device %s %s promiscuous mode\n",
6533 			dev->name,
6534 			dev->flags & IFF_PROMISC ? "entered" : "left");
6535 		if (audit_enabled) {
6536 			current_uid_gid(&uid, &gid);
6537 			audit_log(current->audit_context, GFP_ATOMIC,
6538 				AUDIT_ANOM_PROMISCUOUS,
6539 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6540 				dev->name, (dev->flags & IFF_PROMISC),
6541 				(old_flags & IFF_PROMISC),
6542 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
6543 				from_kuid(&init_user_ns, uid),
6544 				from_kgid(&init_user_ns, gid),
6545 				audit_get_sessionid(current));
6546 		}
6547 
6548 		dev_change_rx_flags(dev, IFF_PROMISC);
6549 	}
6550 	if (notify)
6551 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
6552 	return 0;
6553 }
6554 
6555 /**
6556  *	dev_set_promiscuity	- update promiscuity count on a device
6557  *	@dev: device
6558  *	@inc: modifier
6559  *
6560  *	Add or remove promiscuity from a device. While the count in the device
6561  *	remains above zero the interface remains promiscuous. Once it hits zero
6562  *	the device reverts back to normal filtering operation. A negative inc
6563  *	value is used to drop promiscuity on the device.
6564  *	Return 0 if successful or a negative errno code on error.
6565  */
6566 int dev_set_promiscuity(struct net_device *dev, int inc)
6567 {
6568 	unsigned int old_flags = dev->flags;
6569 	int err;
6570 
6571 	err = __dev_set_promiscuity(dev, inc, true);
6572 	if (err < 0)
6573 		return err;
6574 	if (dev->flags != old_flags)
6575 		dev_set_rx_mode(dev);
6576 	return err;
6577 }
6578 EXPORT_SYMBOL(dev_set_promiscuity);
6579 
6580 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6581 {
6582 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6583 
6584 	ASSERT_RTNL();
6585 
6586 	dev->flags |= IFF_ALLMULTI;
6587 	dev->allmulti += inc;
6588 	if (dev->allmulti == 0) {
6589 		/*
6590 		 * Avoid overflow.
6591 		 * If inc causes overflow, untouch allmulti and return error.
6592 		 */
6593 		if (inc < 0)
6594 			dev->flags &= ~IFF_ALLMULTI;
6595 		else {
6596 			dev->allmulti -= inc;
6597 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6598 				dev->name);
6599 			return -EOVERFLOW;
6600 		}
6601 	}
6602 	if (dev->flags ^ old_flags) {
6603 		dev_change_rx_flags(dev, IFF_ALLMULTI);
6604 		dev_set_rx_mode(dev);
6605 		if (notify)
6606 			__dev_notify_flags(dev, old_flags,
6607 					   dev->gflags ^ old_gflags);
6608 	}
6609 	return 0;
6610 }
6611 
6612 /**
6613  *	dev_set_allmulti	- update allmulti count on a device
6614  *	@dev: device
6615  *	@inc: modifier
6616  *
6617  *	Add or remove reception of all multicast frames to a device. While the
6618  *	count in the device remains above zero the interface remains listening
6619  *	to all interfaces. Once it hits zero the device reverts back to normal
6620  *	filtering operation. A negative @inc value is used to drop the counter
6621  *	when releasing a resource needing all multicasts.
6622  *	Return 0 if successful or a negative errno code on error.
6623  */
6624 
6625 int dev_set_allmulti(struct net_device *dev, int inc)
6626 {
6627 	return __dev_set_allmulti(dev, inc, true);
6628 }
6629 EXPORT_SYMBOL(dev_set_allmulti);
6630 
6631 /*
6632  *	Upload unicast and multicast address lists to device and
6633  *	configure RX filtering. When the device doesn't support unicast
6634  *	filtering it is put in promiscuous mode while unicast addresses
6635  *	are present.
6636  */
6637 void __dev_set_rx_mode(struct net_device *dev)
6638 {
6639 	const struct net_device_ops *ops = dev->netdev_ops;
6640 
6641 	/* dev_open will call this function so the list will stay sane. */
6642 	if (!(dev->flags&IFF_UP))
6643 		return;
6644 
6645 	if (!netif_device_present(dev))
6646 		return;
6647 
6648 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6649 		/* Unicast addresses changes may only happen under the rtnl,
6650 		 * therefore calling __dev_set_promiscuity here is safe.
6651 		 */
6652 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6653 			__dev_set_promiscuity(dev, 1, false);
6654 			dev->uc_promisc = true;
6655 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6656 			__dev_set_promiscuity(dev, -1, false);
6657 			dev->uc_promisc = false;
6658 		}
6659 	}
6660 
6661 	if (ops->ndo_set_rx_mode)
6662 		ops->ndo_set_rx_mode(dev);
6663 }
6664 
6665 void dev_set_rx_mode(struct net_device *dev)
6666 {
6667 	netif_addr_lock_bh(dev);
6668 	__dev_set_rx_mode(dev);
6669 	netif_addr_unlock_bh(dev);
6670 }
6671 
6672 /**
6673  *	dev_get_flags - get flags reported to userspace
6674  *	@dev: device
6675  *
6676  *	Get the combination of flag bits exported through APIs to userspace.
6677  */
6678 unsigned int dev_get_flags(const struct net_device *dev)
6679 {
6680 	unsigned int flags;
6681 
6682 	flags = (dev->flags & ~(IFF_PROMISC |
6683 				IFF_ALLMULTI |
6684 				IFF_RUNNING |
6685 				IFF_LOWER_UP |
6686 				IFF_DORMANT)) |
6687 		(dev->gflags & (IFF_PROMISC |
6688 				IFF_ALLMULTI));
6689 
6690 	if (netif_running(dev)) {
6691 		if (netif_oper_up(dev))
6692 			flags |= IFF_RUNNING;
6693 		if (netif_carrier_ok(dev))
6694 			flags |= IFF_LOWER_UP;
6695 		if (netif_dormant(dev))
6696 			flags |= IFF_DORMANT;
6697 	}
6698 
6699 	return flags;
6700 }
6701 EXPORT_SYMBOL(dev_get_flags);
6702 
6703 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6704 {
6705 	unsigned int old_flags = dev->flags;
6706 	int ret;
6707 
6708 	ASSERT_RTNL();
6709 
6710 	/*
6711 	 *	Set the flags on our device.
6712 	 */
6713 
6714 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6715 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6716 			       IFF_AUTOMEDIA)) |
6717 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6718 				    IFF_ALLMULTI));
6719 
6720 	/*
6721 	 *	Load in the correct multicast list now the flags have changed.
6722 	 */
6723 
6724 	if ((old_flags ^ flags) & IFF_MULTICAST)
6725 		dev_change_rx_flags(dev, IFF_MULTICAST);
6726 
6727 	dev_set_rx_mode(dev);
6728 
6729 	/*
6730 	 *	Have we downed the interface. We handle IFF_UP ourselves
6731 	 *	according to user attempts to set it, rather than blindly
6732 	 *	setting it.
6733 	 */
6734 
6735 	ret = 0;
6736 	if ((old_flags ^ flags) & IFF_UP) {
6737 		if (old_flags & IFF_UP)
6738 			__dev_close(dev);
6739 		else
6740 			ret = __dev_open(dev);
6741 	}
6742 
6743 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
6744 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
6745 		unsigned int old_flags = dev->flags;
6746 
6747 		dev->gflags ^= IFF_PROMISC;
6748 
6749 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
6750 			if (dev->flags != old_flags)
6751 				dev_set_rx_mode(dev);
6752 	}
6753 
6754 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6755 	 * is important. Some (broken) drivers set IFF_PROMISC, when
6756 	 * IFF_ALLMULTI is requested not asking us and not reporting.
6757 	 */
6758 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6759 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6760 
6761 		dev->gflags ^= IFF_ALLMULTI;
6762 		__dev_set_allmulti(dev, inc, false);
6763 	}
6764 
6765 	return ret;
6766 }
6767 
6768 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6769 			unsigned int gchanges)
6770 {
6771 	unsigned int changes = dev->flags ^ old_flags;
6772 
6773 	if (gchanges)
6774 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6775 
6776 	if (changes & IFF_UP) {
6777 		if (dev->flags & IFF_UP)
6778 			call_netdevice_notifiers(NETDEV_UP, dev);
6779 		else
6780 			call_netdevice_notifiers(NETDEV_DOWN, dev);
6781 	}
6782 
6783 	if (dev->flags & IFF_UP &&
6784 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6785 		struct netdev_notifier_change_info change_info;
6786 
6787 		change_info.flags_changed = changes;
6788 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6789 					      &change_info.info);
6790 	}
6791 }
6792 
6793 /**
6794  *	dev_change_flags - change device settings
6795  *	@dev: device
6796  *	@flags: device state flags
6797  *
6798  *	Change settings on device based state flags. The flags are
6799  *	in the userspace exported format.
6800  */
6801 int dev_change_flags(struct net_device *dev, unsigned int flags)
6802 {
6803 	int ret;
6804 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6805 
6806 	ret = __dev_change_flags(dev, flags);
6807 	if (ret < 0)
6808 		return ret;
6809 
6810 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6811 	__dev_notify_flags(dev, old_flags, changes);
6812 	return ret;
6813 }
6814 EXPORT_SYMBOL(dev_change_flags);
6815 
6816 int __dev_set_mtu(struct net_device *dev, int new_mtu)
6817 {
6818 	const struct net_device_ops *ops = dev->netdev_ops;
6819 
6820 	if (ops->ndo_change_mtu)
6821 		return ops->ndo_change_mtu(dev, new_mtu);
6822 
6823 	dev->mtu = new_mtu;
6824 	return 0;
6825 }
6826 EXPORT_SYMBOL(__dev_set_mtu);
6827 
6828 /**
6829  *	dev_set_mtu - Change maximum transfer unit
6830  *	@dev: device
6831  *	@new_mtu: new transfer unit
6832  *
6833  *	Change the maximum transfer size of the network device.
6834  */
6835 int dev_set_mtu(struct net_device *dev, int new_mtu)
6836 {
6837 	int err, orig_mtu;
6838 
6839 	if (new_mtu == dev->mtu)
6840 		return 0;
6841 
6842 	/* MTU must be positive, and in range */
6843 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6844 		net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6845 				    dev->name, new_mtu, dev->min_mtu);
6846 		return -EINVAL;
6847 	}
6848 
6849 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6850 		net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6851 				    dev->name, new_mtu, dev->max_mtu);
6852 		return -EINVAL;
6853 	}
6854 
6855 	if (!netif_device_present(dev))
6856 		return -ENODEV;
6857 
6858 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6859 	err = notifier_to_errno(err);
6860 	if (err)
6861 		return err;
6862 
6863 	orig_mtu = dev->mtu;
6864 	err = __dev_set_mtu(dev, new_mtu);
6865 
6866 	if (!err) {
6867 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6868 		err = notifier_to_errno(err);
6869 		if (err) {
6870 			/* setting mtu back and notifying everyone again,
6871 			 * so that they have a chance to revert changes.
6872 			 */
6873 			__dev_set_mtu(dev, orig_mtu);
6874 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6875 		}
6876 	}
6877 	return err;
6878 }
6879 EXPORT_SYMBOL(dev_set_mtu);
6880 
6881 /**
6882  *	dev_set_group - Change group this device belongs to
6883  *	@dev: device
6884  *	@new_group: group this device should belong to
6885  */
6886 void dev_set_group(struct net_device *dev, int new_group)
6887 {
6888 	dev->group = new_group;
6889 }
6890 EXPORT_SYMBOL(dev_set_group);
6891 
6892 /**
6893  *	dev_set_mac_address - Change Media Access Control Address
6894  *	@dev: device
6895  *	@sa: new address
6896  *
6897  *	Change the hardware (MAC) address of the device
6898  */
6899 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6900 {
6901 	const struct net_device_ops *ops = dev->netdev_ops;
6902 	int err;
6903 
6904 	if (!ops->ndo_set_mac_address)
6905 		return -EOPNOTSUPP;
6906 	if (sa->sa_family != dev->type)
6907 		return -EINVAL;
6908 	if (!netif_device_present(dev))
6909 		return -ENODEV;
6910 	err = ops->ndo_set_mac_address(dev, sa);
6911 	if (err)
6912 		return err;
6913 	dev->addr_assign_type = NET_ADDR_SET;
6914 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6915 	add_device_randomness(dev->dev_addr, dev->addr_len);
6916 	return 0;
6917 }
6918 EXPORT_SYMBOL(dev_set_mac_address);
6919 
6920 /**
6921  *	dev_change_carrier - Change device carrier
6922  *	@dev: device
6923  *	@new_carrier: new value
6924  *
6925  *	Change device carrier
6926  */
6927 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6928 {
6929 	const struct net_device_ops *ops = dev->netdev_ops;
6930 
6931 	if (!ops->ndo_change_carrier)
6932 		return -EOPNOTSUPP;
6933 	if (!netif_device_present(dev))
6934 		return -ENODEV;
6935 	return ops->ndo_change_carrier(dev, new_carrier);
6936 }
6937 EXPORT_SYMBOL(dev_change_carrier);
6938 
6939 /**
6940  *	dev_get_phys_port_id - Get device physical port ID
6941  *	@dev: device
6942  *	@ppid: port ID
6943  *
6944  *	Get device physical port ID
6945  */
6946 int dev_get_phys_port_id(struct net_device *dev,
6947 			 struct netdev_phys_item_id *ppid)
6948 {
6949 	const struct net_device_ops *ops = dev->netdev_ops;
6950 
6951 	if (!ops->ndo_get_phys_port_id)
6952 		return -EOPNOTSUPP;
6953 	return ops->ndo_get_phys_port_id(dev, ppid);
6954 }
6955 EXPORT_SYMBOL(dev_get_phys_port_id);
6956 
6957 /**
6958  *	dev_get_phys_port_name - Get device physical port name
6959  *	@dev: device
6960  *	@name: port name
6961  *	@len: limit of bytes to copy to name
6962  *
6963  *	Get device physical port name
6964  */
6965 int dev_get_phys_port_name(struct net_device *dev,
6966 			   char *name, size_t len)
6967 {
6968 	const struct net_device_ops *ops = dev->netdev_ops;
6969 
6970 	if (!ops->ndo_get_phys_port_name)
6971 		return -EOPNOTSUPP;
6972 	return ops->ndo_get_phys_port_name(dev, name, len);
6973 }
6974 EXPORT_SYMBOL(dev_get_phys_port_name);
6975 
6976 /**
6977  *	dev_change_proto_down - update protocol port state information
6978  *	@dev: device
6979  *	@proto_down: new value
6980  *
6981  *	This info can be used by switch drivers to set the phys state of the
6982  *	port.
6983  */
6984 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6985 {
6986 	const struct net_device_ops *ops = dev->netdev_ops;
6987 
6988 	if (!ops->ndo_change_proto_down)
6989 		return -EOPNOTSUPP;
6990 	if (!netif_device_present(dev))
6991 		return -ENODEV;
6992 	return ops->ndo_change_proto_down(dev, proto_down);
6993 }
6994 EXPORT_SYMBOL(dev_change_proto_down);
6995 
6996 u8 __dev_xdp_attached(struct net_device *dev, xdp_op_t xdp_op, u32 *prog_id)
6997 {
6998 	struct netdev_xdp xdp;
6999 
7000 	memset(&xdp, 0, sizeof(xdp));
7001 	xdp.command = XDP_QUERY_PROG;
7002 
7003 	/* Query must always succeed. */
7004 	WARN_ON(xdp_op(dev, &xdp) < 0);
7005 	if (prog_id)
7006 		*prog_id = xdp.prog_id;
7007 
7008 	return xdp.prog_attached;
7009 }
7010 
7011 static int dev_xdp_install(struct net_device *dev, xdp_op_t xdp_op,
7012 			   struct netlink_ext_ack *extack, u32 flags,
7013 			   struct bpf_prog *prog)
7014 {
7015 	struct netdev_xdp xdp;
7016 
7017 	memset(&xdp, 0, sizeof(xdp));
7018 	if (flags & XDP_FLAGS_HW_MODE)
7019 		xdp.command = XDP_SETUP_PROG_HW;
7020 	else
7021 		xdp.command = XDP_SETUP_PROG;
7022 	xdp.extack = extack;
7023 	xdp.flags = flags;
7024 	xdp.prog = prog;
7025 
7026 	return xdp_op(dev, &xdp);
7027 }
7028 
7029 /**
7030  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
7031  *	@dev: device
7032  *	@extack: netlink extended ack
7033  *	@fd: new program fd or negative value to clear
7034  *	@flags: xdp-related flags
7035  *
7036  *	Set or clear a bpf program for a device
7037  */
7038 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7039 		      int fd, u32 flags)
7040 {
7041 	const struct net_device_ops *ops = dev->netdev_ops;
7042 	struct bpf_prog *prog = NULL;
7043 	xdp_op_t xdp_op, xdp_chk;
7044 	int err;
7045 
7046 	ASSERT_RTNL();
7047 
7048 	xdp_op = xdp_chk = ops->ndo_xdp;
7049 	if (!xdp_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7050 		return -EOPNOTSUPP;
7051 	if (!xdp_op || (flags & XDP_FLAGS_SKB_MODE))
7052 		xdp_op = generic_xdp_install;
7053 	if (xdp_op == xdp_chk)
7054 		xdp_chk = generic_xdp_install;
7055 
7056 	if (fd >= 0) {
7057 		if (xdp_chk && __dev_xdp_attached(dev, xdp_chk, NULL))
7058 			return -EEXIST;
7059 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7060 		    __dev_xdp_attached(dev, xdp_op, NULL))
7061 			return -EBUSY;
7062 
7063 		prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
7064 		if (IS_ERR(prog))
7065 			return PTR_ERR(prog);
7066 	}
7067 
7068 	err = dev_xdp_install(dev, xdp_op, extack, flags, prog);
7069 	if (err < 0 && prog)
7070 		bpf_prog_put(prog);
7071 
7072 	return err;
7073 }
7074 
7075 /**
7076  *	dev_new_index	-	allocate an ifindex
7077  *	@net: the applicable net namespace
7078  *
7079  *	Returns a suitable unique value for a new device interface
7080  *	number.  The caller must hold the rtnl semaphore or the
7081  *	dev_base_lock to be sure it remains unique.
7082  */
7083 static int dev_new_index(struct net *net)
7084 {
7085 	int ifindex = net->ifindex;
7086 
7087 	for (;;) {
7088 		if (++ifindex <= 0)
7089 			ifindex = 1;
7090 		if (!__dev_get_by_index(net, ifindex))
7091 			return net->ifindex = ifindex;
7092 	}
7093 }
7094 
7095 /* Delayed registration/unregisteration */
7096 static LIST_HEAD(net_todo_list);
7097 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7098 
7099 static void net_set_todo(struct net_device *dev)
7100 {
7101 	list_add_tail(&dev->todo_list, &net_todo_list);
7102 	dev_net(dev)->dev_unreg_count++;
7103 }
7104 
7105 static void rollback_registered_many(struct list_head *head)
7106 {
7107 	struct net_device *dev, *tmp;
7108 	LIST_HEAD(close_head);
7109 
7110 	BUG_ON(dev_boot_phase);
7111 	ASSERT_RTNL();
7112 
7113 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7114 		/* Some devices call without registering
7115 		 * for initialization unwind. Remove those
7116 		 * devices and proceed with the remaining.
7117 		 */
7118 		if (dev->reg_state == NETREG_UNINITIALIZED) {
7119 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7120 				 dev->name, dev);
7121 
7122 			WARN_ON(1);
7123 			list_del(&dev->unreg_list);
7124 			continue;
7125 		}
7126 		dev->dismantle = true;
7127 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
7128 	}
7129 
7130 	/* If device is running, close it first. */
7131 	list_for_each_entry(dev, head, unreg_list)
7132 		list_add_tail(&dev->close_list, &close_head);
7133 	dev_close_many(&close_head, true);
7134 
7135 	list_for_each_entry(dev, head, unreg_list) {
7136 		/* And unlink it from device chain. */
7137 		unlist_netdevice(dev);
7138 
7139 		dev->reg_state = NETREG_UNREGISTERING;
7140 	}
7141 	flush_all_backlogs();
7142 
7143 	synchronize_net();
7144 
7145 	list_for_each_entry(dev, head, unreg_list) {
7146 		struct sk_buff *skb = NULL;
7147 
7148 		/* Shutdown queueing discipline. */
7149 		dev_shutdown(dev);
7150 
7151 
7152 		/* Notify protocols, that we are about to destroy
7153 		 * this device. They should clean all the things.
7154 		 */
7155 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7156 
7157 		if (!dev->rtnl_link_ops ||
7158 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7159 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7160 						     GFP_KERNEL);
7161 
7162 		/*
7163 		 *	Flush the unicast and multicast chains
7164 		 */
7165 		dev_uc_flush(dev);
7166 		dev_mc_flush(dev);
7167 
7168 		if (dev->netdev_ops->ndo_uninit)
7169 			dev->netdev_ops->ndo_uninit(dev);
7170 
7171 		if (skb)
7172 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7173 
7174 		/* Notifier chain MUST detach us all upper devices. */
7175 		WARN_ON(netdev_has_any_upper_dev(dev));
7176 		WARN_ON(netdev_has_any_lower_dev(dev));
7177 
7178 		/* Remove entries from kobject tree */
7179 		netdev_unregister_kobject(dev);
7180 #ifdef CONFIG_XPS
7181 		/* Remove XPS queueing entries */
7182 		netif_reset_xps_queues_gt(dev, 0);
7183 #endif
7184 	}
7185 
7186 	synchronize_net();
7187 
7188 	list_for_each_entry(dev, head, unreg_list)
7189 		dev_put(dev);
7190 }
7191 
7192 static void rollback_registered(struct net_device *dev)
7193 {
7194 	LIST_HEAD(single);
7195 
7196 	list_add(&dev->unreg_list, &single);
7197 	rollback_registered_many(&single);
7198 	list_del(&single);
7199 }
7200 
7201 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7202 	struct net_device *upper, netdev_features_t features)
7203 {
7204 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7205 	netdev_features_t feature;
7206 	int feature_bit;
7207 
7208 	for_each_netdev_feature(&upper_disables, feature_bit) {
7209 		feature = __NETIF_F_BIT(feature_bit);
7210 		if (!(upper->wanted_features & feature)
7211 		    && (features & feature)) {
7212 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7213 				   &feature, upper->name);
7214 			features &= ~feature;
7215 		}
7216 	}
7217 
7218 	return features;
7219 }
7220 
7221 static void netdev_sync_lower_features(struct net_device *upper,
7222 	struct net_device *lower, netdev_features_t features)
7223 {
7224 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7225 	netdev_features_t feature;
7226 	int feature_bit;
7227 
7228 	for_each_netdev_feature(&upper_disables, feature_bit) {
7229 		feature = __NETIF_F_BIT(feature_bit);
7230 		if (!(features & feature) && (lower->features & feature)) {
7231 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7232 				   &feature, lower->name);
7233 			lower->wanted_features &= ~feature;
7234 			netdev_update_features(lower);
7235 
7236 			if (unlikely(lower->features & feature))
7237 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7238 					    &feature, lower->name);
7239 		}
7240 	}
7241 }
7242 
7243 static netdev_features_t netdev_fix_features(struct net_device *dev,
7244 	netdev_features_t features)
7245 {
7246 	/* Fix illegal checksum combinations */
7247 	if ((features & NETIF_F_HW_CSUM) &&
7248 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7249 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7250 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7251 	}
7252 
7253 	/* TSO requires that SG is present as well. */
7254 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7255 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7256 		features &= ~NETIF_F_ALL_TSO;
7257 	}
7258 
7259 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7260 					!(features & NETIF_F_IP_CSUM)) {
7261 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7262 		features &= ~NETIF_F_TSO;
7263 		features &= ~NETIF_F_TSO_ECN;
7264 	}
7265 
7266 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7267 					 !(features & NETIF_F_IPV6_CSUM)) {
7268 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7269 		features &= ~NETIF_F_TSO6;
7270 	}
7271 
7272 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7273 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7274 		features &= ~NETIF_F_TSO_MANGLEID;
7275 
7276 	/* TSO ECN requires that TSO is present as well. */
7277 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7278 		features &= ~NETIF_F_TSO_ECN;
7279 
7280 	/* Software GSO depends on SG. */
7281 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7282 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7283 		features &= ~NETIF_F_GSO;
7284 	}
7285 
7286 	/* GSO partial features require GSO partial be set */
7287 	if ((features & dev->gso_partial_features) &&
7288 	    !(features & NETIF_F_GSO_PARTIAL)) {
7289 		netdev_dbg(dev,
7290 			   "Dropping partially supported GSO features since no GSO partial.\n");
7291 		features &= ~dev->gso_partial_features;
7292 	}
7293 
7294 	return features;
7295 }
7296 
7297 int __netdev_update_features(struct net_device *dev)
7298 {
7299 	struct net_device *upper, *lower;
7300 	netdev_features_t features;
7301 	struct list_head *iter;
7302 	int err = -1;
7303 
7304 	ASSERT_RTNL();
7305 
7306 	features = netdev_get_wanted_features(dev);
7307 
7308 	if (dev->netdev_ops->ndo_fix_features)
7309 		features = dev->netdev_ops->ndo_fix_features(dev, features);
7310 
7311 	/* driver might be less strict about feature dependencies */
7312 	features = netdev_fix_features(dev, features);
7313 
7314 	/* some features can't be enabled if they're off an an upper device */
7315 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
7316 		features = netdev_sync_upper_features(dev, upper, features);
7317 
7318 	if (dev->features == features)
7319 		goto sync_lower;
7320 
7321 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7322 		&dev->features, &features);
7323 
7324 	if (dev->netdev_ops->ndo_set_features)
7325 		err = dev->netdev_ops->ndo_set_features(dev, features);
7326 	else
7327 		err = 0;
7328 
7329 	if (unlikely(err < 0)) {
7330 		netdev_err(dev,
7331 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
7332 			err, &features, &dev->features);
7333 		/* return non-0 since some features might have changed and
7334 		 * it's better to fire a spurious notification than miss it
7335 		 */
7336 		return -1;
7337 	}
7338 
7339 sync_lower:
7340 	/* some features must be disabled on lower devices when disabled
7341 	 * on an upper device (think: bonding master or bridge)
7342 	 */
7343 	netdev_for_each_lower_dev(dev, lower, iter)
7344 		netdev_sync_lower_features(dev, lower, features);
7345 
7346 	if (!err) {
7347 		netdev_features_t diff = features ^ dev->features;
7348 
7349 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
7350 			/* udp_tunnel_{get,drop}_rx_info both need
7351 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
7352 			 * device, or they won't do anything.
7353 			 * Thus we need to update dev->features
7354 			 * *before* calling udp_tunnel_get_rx_info,
7355 			 * but *after* calling udp_tunnel_drop_rx_info.
7356 			 */
7357 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
7358 				dev->features = features;
7359 				udp_tunnel_get_rx_info(dev);
7360 			} else {
7361 				udp_tunnel_drop_rx_info(dev);
7362 			}
7363 		}
7364 
7365 		dev->features = features;
7366 	}
7367 
7368 	return err < 0 ? 0 : 1;
7369 }
7370 
7371 /**
7372  *	netdev_update_features - recalculate device features
7373  *	@dev: the device to check
7374  *
7375  *	Recalculate dev->features set and send notifications if it
7376  *	has changed. Should be called after driver or hardware dependent
7377  *	conditions might have changed that influence the features.
7378  */
7379 void netdev_update_features(struct net_device *dev)
7380 {
7381 	if (__netdev_update_features(dev))
7382 		netdev_features_change(dev);
7383 }
7384 EXPORT_SYMBOL(netdev_update_features);
7385 
7386 /**
7387  *	netdev_change_features - recalculate device features
7388  *	@dev: the device to check
7389  *
7390  *	Recalculate dev->features set and send notifications even
7391  *	if they have not changed. Should be called instead of
7392  *	netdev_update_features() if also dev->vlan_features might
7393  *	have changed to allow the changes to be propagated to stacked
7394  *	VLAN devices.
7395  */
7396 void netdev_change_features(struct net_device *dev)
7397 {
7398 	__netdev_update_features(dev);
7399 	netdev_features_change(dev);
7400 }
7401 EXPORT_SYMBOL(netdev_change_features);
7402 
7403 /**
7404  *	netif_stacked_transfer_operstate -	transfer operstate
7405  *	@rootdev: the root or lower level device to transfer state from
7406  *	@dev: the device to transfer operstate to
7407  *
7408  *	Transfer operational state from root to device. This is normally
7409  *	called when a stacking relationship exists between the root
7410  *	device and the device(a leaf device).
7411  */
7412 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7413 					struct net_device *dev)
7414 {
7415 	if (rootdev->operstate == IF_OPER_DORMANT)
7416 		netif_dormant_on(dev);
7417 	else
7418 		netif_dormant_off(dev);
7419 
7420 	if (netif_carrier_ok(rootdev))
7421 		netif_carrier_on(dev);
7422 	else
7423 		netif_carrier_off(dev);
7424 }
7425 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7426 
7427 #ifdef CONFIG_SYSFS
7428 static int netif_alloc_rx_queues(struct net_device *dev)
7429 {
7430 	unsigned int i, count = dev->num_rx_queues;
7431 	struct netdev_rx_queue *rx;
7432 	size_t sz = count * sizeof(*rx);
7433 
7434 	BUG_ON(count < 1);
7435 
7436 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7437 	if (!rx)
7438 		return -ENOMEM;
7439 
7440 	dev->_rx = rx;
7441 
7442 	for (i = 0; i < count; i++)
7443 		rx[i].dev = dev;
7444 	return 0;
7445 }
7446 #endif
7447 
7448 static void netdev_init_one_queue(struct net_device *dev,
7449 				  struct netdev_queue *queue, void *_unused)
7450 {
7451 	/* Initialize queue lock */
7452 	spin_lock_init(&queue->_xmit_lock);
7453 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7454 	queue->xmit_lock_owner = -1;
7455 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7456 	queue->dev = dev;
7457 #ifdef CONFIG_BQL
7458 	dql_init(&queue->dql, HZ);
7459 #endif
7460 }
7461 
7462 static void netif_free_tx_queues(struct net_device *dev)
7463 {
7464 	kvfree(dev->_tx);
7465 }
7466 
7467 static int netif_alloc_netdev_queues(struct net_device *dev)
7468 {
7469 	unsigned int count = dev->num_tx_queues;
7470 	struct netdev_queue *tx;
7471 	size_t sz = count * sizeof(*tx);
7472 
7473 	if (count < 1 || count > 0xffff)
7474 		return -EINVAL;
7475 
7476 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7477 	if (!tx)
7478 		return -ENOMEM;
7479 
7480 	dev->_tx = tx;
7481 
7482 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7483 	spin_lock_init(&dev->tx_global_lock);
7484 
7485 	return 0;
7486 }
7487 
7488 void netif_tx_stop_all_queues(struct net_device *dev)
7489 {
7490 	unsigned int i;
7491 
7492 	for (i = 0; i < dev->num_tx_queues; i++) {
7493 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7494 
7495 		netif_tx_stop_queue(txq);
7496 	}
7497 }
7498 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7499 
7500 /**
7501  *	register_netdevice	- register a network device
7502  *	@dev: device to register
7503  *
7504  *	Take a completed network device structure and add it to the kernel
7505  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7506  *	chain. 0 is returned on success. A negative errno code is returned
7507  *	on a failure to set up the device, or if the name is a duplicate.
7508  *
7509  *	Callers must hold the rtnl semaphore. You may want
7510  *	register_netdev() instead of this.
7511  *
7512  *	BUGS:
7513  *	The locking appears insufficient to guarantee two parallel registers
7514  *	will not get the same name.
7515  */
7516 
7517 int register_netdevice(struct net_device *dev)
7518 {
7519 	int ret;
7520 	struct net *net = dev_net(dev);
7521 
7522 	BUG_ON(dev_boot_phase);
7523 	ASSERT_RTNL();
7524 
7525 	might_sleep();
7526 
7527 	/* When net_device's are persistent, this will be fatal. */
7528 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7529 	BUG_ON(!net);
7530 
7531 	spin_lock_init(&dev->addr_list_lock);
7532 	netdev_set_addr_lockdep_class(dev);
7533 
7534 	ret = dev_get_valid_name(net, dev, dev->name);
7535 	if (ret < 0)
7536 		goto out;
7537 
7538 	/* Init, if this function is available */
7539 	if (dev->netdev_ops->ndo_init) {
7540 		ret = dev->netdev_ops->ndo_init(dev);
7541 		if (ret) {
7542 			if (ret > 0)
7543 				ret = -EIO;
7544 			goto out;
7545 		}
7546 	}
7547 
7548 	if (((dev->hw_features | dev->features) &
7549 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
7550 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7551 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7552 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7553 		ret = -EINVAL;
7554 		goto err_uninit;
7555 	}
7556 
7557 	ret = -EBUSY;
7558 	if (!dev->ifindex)
7559 		dev->ifindex = dev_new_index(net);
7560 	else if (__dev_get_by_index(net, dev->ifindex))
7561 		goto err_uninit;
7562 
7563 	/* Transfer changeable features to wanted_features and enable
7564 	 * software offloads (GSO and GRO).
7565 	 */
7566 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
7567 	dev->features |= NETIF_F_SOFT_FEATURES;
7568 
7569 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
7570 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7571 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7572 	}
7573 
7574 	dev->wanted_features = dev->features & dev->hw_features;
7575 
7576 	if (!(dev->flags & IFF_LOOPBACK))
7577 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
7578 
7579 	/* If IPv4 TCP segmentation offload is supported we should also
7580 	 * allow the device to enable segmenting the frame with the option
7581 	 * of ignoring a static IP ID value.  This doesn't enable the
7582 	 * feature itself but allows the user to enable it later.
7583 	 */
7584 	if (dev->hw_features & NETIF_F_TSO)
7585 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
7586 	if (dev->vlan_features & NETIF_F_TSO)
7587 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7588 	if (dev->mpls_features & NETIF_F_TSO)
7589 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7590 	if (dev->hw_enc_features & NETIF_F_TSO)
7591 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7592 
7593 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7594 	 */
7595 	dev->vlan_features |= NETIF_F_HIGHDMA;
7596 
7597 	/* Make NETIF_F_SG inheritable to tunnel devices.
7598 	 */
7599 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7600 
7601 	/* Make NETIF_F_SG inheritable to MPLS.
7602 	 */
7603 	dev->mpls_features |= NETIF_F_SG;
7604 
7605 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7606 	ret = notifier_to_errno(ret);
7607 	if (ret)
7608 		goto err_uninit;
7609 
7610 	ret = netdev_register_kobject(dev);
7611 	if (ret)
7612 		goto err_uninit;
7613 	dev->reg_state = NETREG_REGISTERED;
7614 
7615 	__netdev_update_features(dev);
7616 
7617 	/*
7618 	 *	Default initial state at registry is that the
7619 	 *	device is present.
7620 	 */
7621 
7622 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7623 
7624 	linkwatch_init_dev(dev);
7625 
7626 	dev_init_scheduler(dev);
7627 	dev_hold(dev);
7628 	list_netdevice(dev);
7629 	add_device_randomness(dev->dev_addr, dev->addr_len);
7630 
7631 	/* If the device has permanent device address, driver should
7632 	 * set dev_addr and also addr_assign_type should be set to
7633 	 * NET_ADDR_PERM (default value).
7634 	 */
7635 	if (dev->addr_assign_type == NET_ADDR_PERM)
7636 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7637 
7638 	/* Notify protocols, that a new device appeared. */
7639 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7640 	ret = notifier_to_errno(ret);
7641 	if (ret) {
7642 		rollback_registered(dev);
7643 		dev->reg_state = NETREG_UNREGISTERED;
7644 	}
7645 	/*
7646 	 *	Prevent userspace races by waiting until the network
7647 	 *	device is fully setup before sending notifications.
7648 	 */
7649 	if (!dev->rtnl_link_ops ||
7650 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7651 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7652 
7653 out:
7654 	return ret;
7655 
7656 err_uninit:
7657 	if (dev->netdev_ops->ndo_uninit)
7658 		dev->netdev_ops->ndo_uninit(dev);
7659 	if (dev->priv_destructor)
7660 		dev->priv_destructor(dev);
7661 	goto out;
7662 }
7663 EXPORT_SYMBOL(register_netdevice);
7664 
7665 /**
7666  *	init_dummy_netdev	- init a dummy network device for NAPI
7667  *	@dev: device to init
7668  *
7669  *	This takes a network device structure and initialize the minimum
7670  *	amount of fields so it can be used to schedule NAPI polls without
7671  *	registering a full blown interface. This is to be used by drivers
7672  *	that need to tie several hardware interfaces to a single NAPI
7673  *	poll scheduler due to HW limitations.
7674  */
7675 int init_dummy_netdev(struct net_device *dev)
7676 {
7677 	/* Clear everything. Note we don't initialize spinlocks
7678 	 * are they aren't supposed to be taken by any of the
7679 	 * NAPI code and this dummy netdev is supposed to be
7680 	 * only ever used for NAPI polls
7681 	 */
7682 	memset(dev, 0, sizeof(struct net_device));
7683 
7684 	/* make sure we BUG if trying to hit standard
7685 	 * register/unregister code path
7686 	 */
7687 	dev->reg_state = NETREG_DUMMY;
7688 
7689 	/* NAPI wants this */
7690 	INIT_LIST_HEAD(&dev->napi_list);
7691 
7692 	/* a dummy interface is started by default */
7693 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7694 	set_bit(__LINK_STATE_START, &dev->state);
7695 
7696 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
7697 	 * because users of this 'device' dont need to change
7698 	 * its refcount.
7699 	 */
7700 
7701 	return 0;
7702 }
7703 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7704 
7705 
7706 /**
7707  *	register_netdev	- register a network device
7708  *	@dev: device to register
7709  *
7710  *	Take a completed network device structure and add it to the kernel
7711  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7712  *	chain. 0 is returned on success. A negative errno code is returned
7713  *	on a failure to set up the device, or if the name is a duplicate.
7714  *
7715  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
7716  *	and expands the device name if you passed a format string to
7717  *	alloc_netdev.
7718  */
7719 int register_netdev(struct net_device *dev)
7720 {
7721 	int err;
7722 
7723 	rtnl_lock();
7724 	err = register_netdevice(dev);
7725 	rtnl_unlock();
7726 	return err;
7727 }
7728 EXPORT_SYMBOL(register_netdev);
7729 
7730 int netdev_refcnt_read(const struct net_device *dev)
7731 {
7732 	int i, refcnt = 0;
7733 
7734 	for_each_possible_cpu(i)
7735 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7736 	return refcnt;
7737 }
7738 EXPORT_SYMBOL(netdev_refcnt_read);
7739 
7740 /**
7741  * netdev_wait_allrefs - wait until all references are gone.
7742  * @dev: target net_device
7743  *
7744  * This is called when unregistering network devices.
7745  *
7746  * Any protocol or device that holds a reference should register
7747  * for netdevice notification, and cleanup and put back the
7748  * reference if they receive an UNREGISTER event.
7749  * We can get stuck here if buggy protocols don't correctly
7750  * call dev_put.
7751  */
7752 static void netdev_wait_allrefs(struct net_device *dev)
7753 {
7754 	unsigned long rebroadcast_time, warning_time;
7755 	int refcnt;
7756 
7757 	linkwatch_forget_dev(dev);
7758 
7759 	rebroadcast_time = warning_time = jiffies;
7760 	refcnt = netdev_refcnt_read(dev);
7761 
7762 	while (refcnt != 0) {
7763 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7764 			rtnl_lock();
7765 
7766 			/* Rebroadcast unregister notification */
7767 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7768 
7769 			__rtnl_unlock();
7770 			rcu_barrier();
7771 			rtnl_lock();
7772 
7773 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7774 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7775 				     &dev->state)) {
7776 				/* We must not have linkwatch events
7777 				 * pending on unregister. If this
7778 				 * happens, we simply run the queue
7779 				 * unscheduled, resulting in a noop
7780 				 * for this device.
7781 				 */
7782 				linkwatch_run_queue();
7783 			}
7784 
7785 			__rtnl_unlock();
7786 
7787 			rebroadcast_time = jiffies;
7788 		}
7789 
7790 		msleep(250);
7791 
7792 		refcnt = netdev_refcnt_read(dev);
7793 
7794 		if (time_after(jiffies, warning_time + 10 * HZ)) {
7795 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7796 				 dev->name, refcnt);
7797 			warning_time = jiffies;
7798 		}
7799 	}
7800 }
7801 
7802 /* The sequence is:
7803  *
7804  *	rtnl_lock();
7805  *	...
7806  *	register_netdevice(x1);
7807  *	register_netdevice(x2);
7808  *	...
7809  *	unregister_netdevice(y1);
7810  *	unregister_netdevice(y2);
7811  *      ...
7812  *	rtnl_unlock();
7813  *	free_netdev(y1);
7814  *	free_netdev(y2);
7815  *
7816  * We are invoked by rtnl_unlock().
7817  * This allows us to deal with problems:
7818  * 1) We can delete sysfs objects which invoke hotplug
7819  *    without deadlocking with linkwatch via keventd.
7820  * 2) Since we run with the RTNL semaphore not held, we can sleep
7821  *    safely in order to wait for the netdev refcnt to drop to zero.
7822  *
7823  * We must not return until all unregister events added during
7824  * the interval the lock was held have been completed.
7825  */
7826 void netdev_run_todo(void)
7827 {
7828 	struct list_head list;
7829 
7830 	/* Snapshot list, allow later requests */
7831 	list_replace_init(&net_todo_list, &list);
7832 
7833 	__rtnl_unlock();
7834 
7835 
7836 	/* Wait for rcu callbacks to finish before next phase */
7837 	if (!list_empty(&list))
7838 		rcu_barrier();
7839 
7840 	while (!list_empty(&list)) {
7841 		struct net_device *dev
7842 			= list_first_entry(&list, struct net_device, todo_list);
7843 		list_del(&dev->todo_list);
7844 
7845 		rtnl_lock();
7846 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7847 		__rtnl_unlock();
7848 
7849 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7850 			pr_err("network todo '%s' but state %d\n",
7851 			       dev->name, dev->reg_state);
7852 			dump_stack();
7853 			continue;
7854 		}
7855 
7856 		dev->reg_state = NETREG_UNREGISTERED;
7857 
7858 		netdev_wait_allrefs(dev);
7859 
7860 		/* paranoia */
7861 		BUG_ON(netdev_refcnt_read(dev));
7862 		BUG_ON(!list_empty(&dev->ptype_all));
7863 		BUG_ON(!list_empty(&dev->ptype_specific));
7864 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
7865 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7866 		WARN_ON(dev->dn_ptr);
7867 
7868 		if (dev->priv_destructor)
7869 			dev->priv_destructor(dev);
7870 		if (dev->needs_free_netdev)
7871 			free_netdev(dev);
7872 
7873 		/* Report a network device has been unregistered */
7874 		rtnl_lock();
7875 		dev_net(dev)->dev_unreg_count--;
7876 		__rtnl_unlock();
7877 		wake_up(&netdev_unregistering_wq);
7878 
7879 		/* Free network device */
7880 		kobject_put(&dev->dev.kobj);
7881 	}
7882 }
7883 
7884 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7885  * all the same fields in the same order as net_device_stats, with only
7886  * the type differing, but rtnl_link_stats64 may have additional fields
7887  * at the end for newer counters.
7888  */
7889 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7890 			     const struct net_device_stats *netdev_stats)
7891 {
7892 #if BITS_PER_LONG == 64
7893 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7894 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
7895 	/* zero out counters that only exist in rtnl_link_stats64 */
7896 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
7897 	       sizeof(*stats64) - sizeof(*netdev_stats));
7898 #else
7899 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7900 	const unsigned long *src = (const unsigned long *)netdev_stats;
7901 	u64 *dst = (u64 *)stats64;
7902 
7903 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7904 	for (i = 0; i < n; i++)
7905 		dst[i] = src[i];
7906 	/* zero out counters that only exist in rtnl_link_stats64 */
7907 	memset((char *)stats64 + n * sizeof(u64), 0,
7908 	       sizeof(*stats64) - n * sizeof(u64));
7909 #endif
7910 }
7911 EXPORT_SYMBOL(netdev_stats_to_stats64);
7912 
7913 /**
7914  *	dev_get_stats	- get network device statistics
7915  *	@dev: device to get statistics from
7916  *	@storage: place to store stats
7917  *
7918  *	Get network statistics from device. Return @storage.
7919  *	The device driver may provide its own method by setting
7920  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7921  *	otherwise the internal statistics structure is used.
7922  */
7923 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7924 					struct rtnl_link_stats64 *storage)
7925 {
7926 	const struct net_device_ops *ops = dev->netdev_ops;
7927 
7928 	if (ops->ndo_get_stats64) {
7929 		memset(storage, 0, sizeof(*storage));
7930 		ops->ndo_get_stats64(dev, storage);
7931 	} else if (ops->ndo_get_stats) {
7932 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7933 	} else {
7934 		netdev_stats_to_stats64(storage, &dev->stats);
7935 	}
7936 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
7937 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
7938 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
7939 	return storage;
7940 }
7941 EXPORT_SYMBOL(dev_get_stats);
7942 
7943 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7944 {
7945 	struct netdev_queue *queue = dev_ingress_queue(dev);
7946 
7947 #ifdef CONFIG_NET_CLS_ACT
7948 	if (queue)
7949 		return queue;
7950 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7951 	if (!queue)
7952 		return NULL;
7953 	netdev_init_one_queue(dev, queue, NULL);
7954 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7955 	queue->qdisc_sleeping = &noop_qdisc;
7956 	rcu_assign_pointer(dev->ingress_queue, queue);
7957 #endif
7958 	return queue;
7959 }
7960 
7961 static const struct ethtool_ops default_ethtool_ops;
7962 
7963 void netdev_set_default_ethtool_ops(struct net_device *dev,
7964 				    const struct ethtool_ops *ops)
7965 {
7966 	if (dev->ethtool_ops == &default_ethtool_ops)
7967 		dev->ethtool_ops = ops;
7968 }
7969 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7970 
7971 void netdev_freemem(struct net_device *dev)
7972 {
7973 	char *addr = (char *)dev - dev->padded;
7974 
7975 	kvfree(addr);
7976 }
7977 
7978 /**
7979  * alloc_netdev_mqs - allocate network device
7980  * @sizeof_priv: size of private data to allocate space for
7981  * @name: device name format string
7982  * @name_assign_type: origin of device name
7983  * @setup: callback to initialize device
7984  * @txqs: the number of TX subqueues to allocate
7985  * @rxqs: the number of RX subqueues to allocate
7986  *
7987  * Allocates a struct net_device with private data area for driver use
7988  * and performs basic initialization.  Also allocates subqueue structs
7989  * for each queue on the device.
7990  */
7991 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7992 		unsigned char name_assign_type,
7993 		void (*setup)(struct net_device *),
7994 		unsigned int txqs, unsigned int rxqs)
7995 {
7996 	struct net_device *dev;
7997 	size_t alloc_size;
7998 	struct net_device *p;
7999 
8000 	BUG_ON(strlen(name) >= sizeof(dev->name));
8001 
8002 	if (txqs < 1) {
8003 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8004 		return NULL;
8005 	}
8006 
8007 #ifdef CONFIG_SYSFS
8008 	if (rxqs < 1) {
8009 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8010 		return NULL;
8011 	}
8012 #endif
8013 
8014 	alloc_size = sizeof(struct net_device);
8015 	if (sizeof_priv) {
8016 		/* ensure 32-byte alignment of private area */
8017 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8018 		alloc_size += sizeof_priv;
8019 	}
8020 	/* ensure 32-byte alignment of whole construct */
8021 	alloc_size += NETDEV_ALIGN - 1;
8022 
8023 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8024 	if (!p)
8025 		return NULL;
8026 
8027 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
8028 	dev->padded = (char *)dev - (char *)p;
8029 
8030 	dev->pcpu_refcnt = alloc_percpu(int);
8031 	if (!dev->pcpu_refcnt)
8032 		goto free_dev;
8033 
8034 	if (dev_addr_init(dev))
8035 		goto free_pcpu;
8036 
8037 	dev_mc_init(dev);
8038 	dev_uc_init(dev);
8039 
8040 	dev_net_set(dev, &init_net);
8041 
8042 	dev->gso_max_size = GSO_MAX_SIZE;
8043 	dev->gso_max_segs = GSO_MAX_SEGS;
8044 
8045 	INIT_LIST_HEAD(&dev->napi_list);
8046 	INIT_LIST_HEAD(&dev->unreg_list);
8047 	INIT_LIST_HEAD(&dev->close_list);
8048 	INIT_LIST_HEAD(&dev->link_watch_list);
8049 	INIT_LIST_HEAD(&dev->adj_list.upper);
8050 	INIT_LIST_HEAD(&dev->adj_list.lower);
8051 	INIT_LIST_HEAD(&dev->ptype_all);
8052 	INIT_LIST_HEAD(&dev->ptype_specific);
8053 #ifdef CONFIG_NET_SCHED
8054 	hash_init(dev->qdisc_hash);
8055 #endif
8056 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8057 	setup(dev);
8058 
8059 	if (!dev->tx_queue_len) {
8060 		dev->priv_flags |= IFF_NO_QUEUE;
8061 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8062 	}
8063 
8064 	dev->num_tx_queues = txqs;
8065 	dev->real_num_tx_queues = txqs;
8066 	if (netif_alloc_netdev_queues(dev))
8067 		goto free_all;
8068 
8069 #ifdef CONFIG_SYSFS
8070 	dev->num_rx_queues = rxqs;
8071 	dev->real_num_rx_queues = rxqs;
8072 	if (netif_alloc_rx_queues(dev))
8073 		goto free_all;
8074 #endif
8075 
8076 	strcpy(dev->name, name);
8077 	dev->name_assign_type = name_assign_type;
8078 	dev->group = INIT_NETDEV_GROUP;
8079 	if (!dev->ethtool_ops)
8080 		dev->ethtool_ops = &default_ethtool_ops;
8081 
8082 	nf_hook_ingress_init(dev);
8083 
8084 	return dev;
8085 
8086 free_all:
8087 	free_netdev(dev);
8088 	return NULL;
8089 
8090 free_pcpu:
8091 	free_percpu(dev->pcpu_refcnt);
8092 free_dev:
8093 	netdev_freemem(dev);
8094 	return NULL;
8095 }
8096 EXPORT_SYMBOL(alloc_netdev_mqs);
8097 
8098 /**
8099  * free_netdev - free network device
8100  * @dev: device
8101  *
8102  * This function does the last stage of destroying an allocated device
8103  * interface. The reference to the device object is released. If this
8104  * is the last reference then it will be freed.Must be called in process
8105  * context.
8106  */
8107 void free_netdev(struct net_device *dev)
8108 {
8109 	struct napi_struct *p, *n;
8110 	struct bpf_prog *prog;
8111 
8112 	might_sleep();
8113 	netif_free_tx_queues(dev);
8114 #ifdef CONFIG_SYSFS
8115 	kvfree(dev->_rx);
8116 #endif
8117 
8118 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8119 
8120 	/* Flush device addresses */
8121 	dev_addr_flush(dev);
8122 
8123 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8124 		netif_napi_del(p);
8125 
8126 	free_percpu(dev->pcpu_refcnt);
8127 	dev->pcpu_refcnt = NULL;
8128 
8129 	prog = rcu_dereference_protected(dev->xdp_prog, 1);
8130 	if (prog) {
8131 		bpf_prog_put(prog);
8132 		static_key_slow_dec(&generic_xdp_needed);
8133 	}
8134 
8135 	/*  Compatibility with error handling in drivers */
8136 	if (dev->reg_state == NETREG_UNINITIALIZED) {
8137 		netdev_freemem(dev);
8138 		return;
8139 	}
8140 
8141 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8142 	dev->reg_state = NETREG_RELEASED;
8143 
8144 	/* will free via device release */
8145 	put_device(&dev->dev);
8146 }
8147 EXPORT_SYMBOL(free_netdev);
8148 
8149 /**
8150  *	synchronize_net -  Synchronize with packet receive processing
8151  *
8152  *	Wait for packets currently being received to be done.
8153  *	Does not block later packets from starting.
8154  */
8155 void synchronize_net(void)
8156 {
8157 	might_sleep();
8158 	if (rtnl_is_locked())
8159 		synchronize_rcu_expedited();
8160 	else
8161 		synchronize_rcu();
8162 }
8163 EXPORT_SYMBOL(synchronize_net);
8164 
8165 /**
8166  *	unregister_netdevice_queue - remove device from the kernel
8167  *	@dev: device
8168  *	@head: list
8169  *
8170  *	This function shuts down a device interface and removes it
8171  *	from the kernel tables.
8172  *	If head not NULL, device is queued to be unregistered later.
8173  *
8174  *	Callers must hold the rtnl semaphore.  You may want
8175  *	unregister_netdev() instead of this.
8176  */
8177 
8178 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8179 {
8180 	ASSERT_RTNL();
8181 
8182 	if (head) {
8183 		list_move_tail(&dev->unreg_list, head);
8184 	} else {
8185 		rollback_registered(dev);
8186 		/* Finish processing unregister after unlock */
8187 		net_set_todo(dev);
8188 	}
8189 }
8190 EXPORT_SYMBOL(unregister_netdevice_queue);
8191 
8192 /**
8193  *	unregister_netdevice_many - unregister many devices
8194  *	@head: list of devices
8195  *
8196  *  Note: As most callers use a stack allocated list_head,
8197  *  we force a list_del() to make sure stack wont be corrupted later.
8198  */
8199 void unregister_netdevice_many(struct list_head *head)
8200 {
8201 	struct net_device *dev;
8202 
8203 	if (!list_empty(head)) {
8204 		rollback_registered_many(head);
8205 		list_for_each_entry(dev, head, unreg_list)
8206 			net_set_todo(dev);
8207 		list_del(head);
8208 	}
8209 }
8210 EXPORT_SYMBOL(unregister_netdevice_many);
8211 
8212 /**
8213  *	unregister_netdev - remove device from the kernel
8214  *	@dev: device
8215  *
8216  *	This function shuts down a device interface and removes it
8217  *	from the kernel tables.
8218  *
8219  *	This is just a wrapper for unregister_netdevice that takes
8220  *	the rtnl semaphore.  In general you want to use this and not
8221  *	unregister_netdevice.
8222  */
8223 void unregister_netdev(struct net_device *dev)
8224 {
8225 	rtnl_lock();
8226 	unregister_netdevice(dev);
8227 	rtnl_unlock();
8228 }
8229 EXPORT_SYMBOL(unregister_netdev);
8230 
8231 /**
8232  *	dev_change_net_namespace - move device to different nethost namespace
8233  *	@dev: device
8234  *	@net: network namespace
8235  *	@pat: If not NULL name pattern to try if the current device name
8236  *	      is already taken in the destination network namespace.
8237  *
8238  *	This function shuts down a device interface and moves it
8239  *	to a new network namespace. On success 0 is returned, on
8240  *	a failure a netagive errno code is returned.
8241  *
8242  *	Callers must hold the rtnl semaphore.
8243  */
8244 
8245 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8246 {
8247 	int err;
8248 
8249 	ASSERT_RTNL();
8250 
8251 	/* Don't allow namespace local devices to be moved. */
8252 	err = -EINVAL;
8253 	if (dev->features & NETIF_F_NETNS_LOCAL)
8254 		goto out;
8255 
8256 	/* Ensure the device has been registrered */
8257 	if (dev->reg_state != NETREG_REGISTERED)
8258 		goto out;
8259 
8260 	/* Get out if there is nothing todo */
8261 	err = 0;
8262 	if (net_eq(dev_net(dev), net))
8263 		goto out;
8264 
8265 	/* Pick the destination device name, and ensure
8266 	 * we can use it in the destination network namespace.
8267 	 */
8268 	err = -EEXIST;
8269 	if (__dev_get_by_name(net, dev->name)) {
8270 		/* We get here if we can't use the current device name */
8271 		if (!pat)
8272 			goto out;
8273 		if (dev_get_valid_name(net, dev, pat) < 0)
8274 			goto out;
8275 	}
8276 
8277 	/*
8278 	 * And now a mini version of register_netdevice unregister_netdevice.
8279 	 */
8280 
8281 	/* If device is running close it first. */
8282 	dev_close(dev);
8283 
8284 	/* And unlink it from device chain */
8285 	err = -ENODEV;
8286 	unlist_netdevice(dev);
8287 
8288 	synchronize_net();
8289 
8290 	/* Shutdown queueing discipline. */
8291 	dev_shutdown(dev);
8292 
8293 	/* Notify protocols, that we are about to destroy
8294 	 * this device. They should clean all the things.
8295 	 *
8296 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
8297 	 * This is wanted because this way 8021q and macvlan know
8298 	 * the device is just moving and can keep their slaves up.
8299 	 */
8300 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8301 	rcu_barrier();
8302 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8303 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
8304 
8305 	/*
8306 	 *	Flush the unicast and multicast chains
8307 	 */
8308 	dev_uc_flush(dev);
8309 	dev_mc_flush(dev);
8310 
8311 	/* Send a netdev-removed uevent to the old namespace */
8312 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8313 	netdev_adjacent_del_links(dev);
8314 
8315 	/* Actually switch the network namespace */
8316 	dev_net_set(dev, net);
8317 
8318 	/* If there is an ifindex conflict assign a new one */
8319 	if (__dev_get_by_index(net, dev->ifindex))
8320 		dev->ifindex = dev_new_index(net);
8321 
8322 	/* Send a netdev-add uevent to the new namespace */
8323 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8324 	netdev_adjacent_add_links(dev);
8325 
8326 	/* Fixup kobjects */
8327 	err = device_rename(&dev->dev, dev->name);
8328 	WARN_ON(err);
8329 
8330 	/* Add the device back in the hashes */
8331 	list_netdevice(dev);
8332 
8333 	/* Notify protocols, that a new device appeared. */
8334 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
8335 
8336 	/*
8337 	 *	Prevent userspace races by waiting until the network
8338 	 *	device is fully setup before sending notifications.
8339 	 */
8340 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8341 
8342 	synchronize_net();
8343 	err = 0;
8344 out:
8345 	return err;
8346 }
8347 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8348 
8349 static int dev_cpu_dead(unsigned int oldcpu)
8350 {
8351 	struct sk_buff **list_skb;
8352 	struct sk_buff *skb;
8353 	unsigned int cpu;
8354 	struct softnet_data *sd, *oldsd, *remsd = NULL;
8355 
8356 	local_irq_disable();
8357 	cpu = smp_processor_id();
8358 	sd = &per_cpu(softnet_data, cpu);
8359 	oldsd = &per_cpu(softnet_data, oldcpu);
8360 
8361 	/* Find end of our completion_queue. */
8362 	list_skb = &sd->completion_queue;
8363 	while (*list_skb)
8364 		list_skb = &(*list_skb)->next;
8365 	/* Append completion queue from offline CPU. */
8366 	*list_skb = oldsd->completion_queue;
8367 	oldsd->completion_queue = NULL;
8368 
8369 	/* Append output queue from offline CPU. */
8370 	if (oldsd->output_queue) {
8371 		*sd->output_queue_tailp = oldsd->output_queue;
8372 		sd->output_queue_tailp = oldsd->output_queue_tailp;
8373 		oldsd->output_queue = NULL;
8374 		oldsd->output_queue_tailp = &oldsd->output_queue;
8375 	}
8376 	/* Append NAPI poll list from offline CPU, with one exception :
8377 	 * process_backlog() must be called by cpu owning percpu backlog.
8378 	 * We properly handle process_queue & input_pkt_queue later.
8379 	 */
8380 	while (!list_empty(&oldsd->poll_list)) {
8381 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8382 							    struct napi_struct,
8383 							    poll_list);
8384 
8385 		list_del_init(&napi->poll_list);
8386 		if (napi->poll == process_backlog)
8387 			napi->state = 0;
8388 		else
8389 			____napi_schedule(sd, napi);
8390 	}
8391 
8392 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
8393 	local_irq_enable();
8394 
8395 #ifdef CONFIG_RPS
8396 	remsd = oldsd->rps_ipi_list;
8397 	oldsd->rps_ipi_list = NULL;
8398 #endif
8399 	/* send out pending IPI's on offline CPU */
8400 	net_rps_send_ipi(remsd);
8401 
8402 	/* Process offline CPU's input_pkt_queue */
8403 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8404 		netif_rx_ni(skb);
8405 		input_queue_head_incr(oldsd);
8406 	}
8407 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8408 		netif_rx_ni(skb);
8409 		input_queue_head_incr(oldsd);
8410 	}
8411 
8412 	return 0;
8413 }
8414 
8415 /**
8416  *	netdev_increment_features - increment feature set by one
8417  *	@all: current feature set
8418  *	@one: new feature set
8419  *	@mask: mask feature set
8420  *
8421  *	Computes a new feature set after adding a device with feature set
8422  *	@one to the master device with current feature set @all.  Will not
8423  *	enable anything that is off in @mask. Returns the new feature set.
8424  */
8425 netdev_features_t netdev_increment_features(netdev_features_t all,
8426 	netdev_features_t one, netdev_features_t mask)
8427 {
8428 	if (mask & NETIF_F_HW_CSUM)
8429 		mask |= NETIF_F_CSUM_MASK;
8430 	mask |= NETIF_F_VLAN_CHALLENGED;
8431 
8432 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8433 	all &= one | ~NETIF_F_ALL_FOR_ALL;
8434 
8435 	/* If one device supports hw checksumming, set for all. */
8436 	if (all & NETIF_F_HW_CSUM)
8437 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8438 
8439 	return all;
8440 }
8441 EXPORT_SYMBOL(netdev_increment_features);
8442 
8443 static struct hlist_head * __net_init netdev_create_hash(void)
8444 {
8445 	int i;
8446 	struct hlist_head *hash;
8447 
8448 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8449 	if (hash != NULL)
8450 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
8451 			INIT_HLIST_HEAD(&hash[i]);
8452 
8453 	return hash;
8454 }
8455 
8456 /* Initialize per network namespace state */
8457 static int __net_init netdev_init(struct net *net)
8458 {
8459 	if (net != &init_net)
8460 		INIT_LIST_HEAD(&net->dev_base_head);
8461 
8462 	net->dev_name_head = netdev_create_hash();
8463 	if (net->dev_name_head == NULL)
8464 		goto err_name;
8465 
8466 	net->dev_index_head = netdev_create_hash();
8467 	if (net->dev_index_head == NULL)
8468 		goto err_idx;
8469 
8470 	return 0;
8471 
8472 err_idx:
8473 	kfree(net->dev_name_head);
8474 err_name:
8475 	return -ENOMEM;
8476 }
8477 
8478 /**
8479  *	netdev_drivername - network driver for the device
8480  *	@dev: network device
8481  *
8482  *	Determine network driver for device.
8483  */
8484 const char *netdev_drivername(const struct net_device *dev)
8485 {
8486 	const struct device_driver *driver;
8487 	const struct device *parent;
8488 	const char *empty = "";
8489 
8490 	parent = dev->dev.parent;
8491 	if (!parent)
8492 		return empty;
8493 
8494 	driver = parent->driver;
8495 	if (driver && driver->name)
8496 		return driver->name;
8497 	return empty;
8498 }
8499 
8500 static void __netdev_printk(const char *level, const struct net_device *dev,
8501 			    struct va_format *vaf)
8502 {
8503 	if (dev && dev->dev.parent) {
8504 		dev_printk_emit(level[1] - '0',
8505 				dev->dev.parent,
8506 				"%s %s %s%s: %pV",
8507 				dev_driver_string(dev->dev.parent),
8508 				dev_name(dev->dev.parent),
8509 				netdev_name(dev), netdev_reg_state(dev),
8510 				vaf);
8511 	} else if (dev) {
8512 		printk("%s%s%s: %pV",
8513 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
8514 	} else {
8515 		printk("%s(NULL net_device): %pV", level, vaf);
8516 	}
8517 }
8518 
8519 void netdev_printk(const char *level, const struct net_device *dev,
8520 		   const char *format, ...)
8521 {
8522 	struct va_format vaf;
8523 	va_list args;
8524 
8525 	va_start(args, format);
8526 
8527 	vaf.fmt = format;
8528 	vaf.va = &args;
8529 
8530 	__netdev_printk(level, dev, &vaf);
8531 
8532 	va_end(args);
8533 }
8534 EXPORT_SYMBOL(netdev_printk);
8535 
8536 #define define_netdev_printk_level(func, level)			\
8537 void func(const struct net_device *dev, const char *fmt, ...)	\
8538 {								\
8539 	struct va_format vaf;					\
8540 	va_list args;						\
8541 								\
8542 	va_start(args, fmt);					\
8543 								\
8544 	vaf.fmt = fmt;						\
8545 	vaf.va = &args;						\
8546 								\
8547 	__netdev_printk(level, dev, &vaf);			\
8548 								\
8549 	va_end(args);						\
8550 }								\
8551 EXPORT_SYMBOL(func);
8552 
8553 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8554 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8555 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8556 define_netdev_printk_level(netdev_err, KERN_ERR);
8557 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8558 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8559 define_netdev_printk_level(netdev_info, KERN_INFO);
8560 
8561 static void __net_exit netdev_exit(struct net *net)
8562 {
8563 	kfree(net->dev_name_head);
8564 	kfree(net->dev_index_head);
8565 }
8566 
8567 static struct pernet_operations __net_initdata netdev_net_ops = {
8568 	.init = netdev_init,
8569 	.exit = netdev_exit,
8570 };
8571 
8572 static void __net_exit default_device_exit(struct net *net)
8573 {
8574 	struct net_device *dev, *aux;
8575 	/*
8576 	 * Push all migratable network devices back to the
8577 	 * initial network namespace
8578 	 */
8579 	rtnl_lock();
8580 	for_each_netdev_safe(net, dev, aux) {
8581 		int err;
8582 		char fb_name[IFNAMSIZ];
8583 
8584 		/* Ignore unmoveable devices (i.e. loopback) */
8585 		if (dev->features & NETIF_F_NETNS_LOCAL)
8586 			continue;
8587 
8588 		/* Leave virtual devices for the generic cleanup */
8589 		if (dev->rtnl_link_ops)
8590 			continue;
8591 
8592 		/* Push remaining network devices to init_net */
8593 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8594 		err = dev_change_net_namespace(dev, &init_net, fb_name);
8595 		if (err) {
8596 			pr_emerg("%s: failed to move %s to init_net: %d\n",
8597 				 __func__, dev->name, err);
8598 			BUG();
8599 		}
8600 	}
8601 	rtnl_unlock();
8602 }
8603 
8604 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8605 {
8606 	/* Return with the rtnl_lock held when there are no network
8607 	 * devices unregistering in any network namespace in net_list.
8608 	 */
8609 	struct net *net;
8610 	bool unregistering;
8611 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
8612 
8613 	add_wait_queue(&netdev_unregistering_wq, &wait);
8614 	for (;;) {
8615 		unregistering = false;
8616 		rtnl_lock();
8617 		list_for_each_entry(net, net_list, exit_list) {
8618 			if (net->dev_unreg_count > 0) {
8619 				unregistering = true;
8620 				break;
8621 			}
8622 		}
8623 		if (!unregistering)
8624 			break;
8625 		__rtnl_unlock();
8626 
8627 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8628 	}
8629 	remove_wait_queue(&netdev_unregistering_wq, &wait);
8630 }
8631 
8632 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8633 {
8634 	/* At exit all network devices most be removed from a network
8635 	 * namespace.  Do this in the reverse order of registration.
8636 	 * Do this across as many network namespaces as possible to
8637 	 * improve batching efficiency.
8638 	 */
8639 	struct net_device *dev;
8640 	struct net *net;
8641 	LIST_HEAD(dev_kill_list);
8642 
8643 	/* To prevent network device cleanup code from dereferencing
8644 	 * loopback devices or network devices that have been freed
8645 	 * wait here for all pending unregistrations to complete,
8646 	 * before unregistring the loopback device and allowing the
8647 	 * network namespace be freed.
8648 	 *
8649 	 * The netdev todo list containing all network devices
8650 	 * unregistrations that happen in default_device_exit_batch
8651 	 * will run in the rtnl_unlock() at the end of
8652 	 * default_device_exit_batch.
8653 	 */
8654 	rtnl_lock_unregistering(net_list);
8655 	list_for_each_entry(net, net_list, exit_list) {
8656 		for_each_netdev_reverse(net, dev) {
8657 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8658 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8659 			else
8660 				unregister_netdevice_queue(dev, &dev_kill_list);
8661 		}
8662 	}
8663 	unregister_netdevice_many(&dev_kill_list);
8664 	rtnl_unlock();
8665 }
8666 
8667 static struct pernet_operations __net_initdata default_device_ops = {
8668 	.exit = default_device_exit,
8669 	.exit_batch = default_device_exit_batch,
8670 };
8671 
8672 /*
8673  *	Initialize the DEV module. At boot time this walks the device list and
8674  *	unhooks any devices that fail to initialise (normally hardware not
8675  *	present) and leaves us with a valid list of present and active devices.
8676  *
8677  */
8678 
8679 /*
8680  *       This is called single threaded during boot, so no need
8681  *       to take the rtnl semaphore.
8682  */
8683 static int __init net_dev_init(void)
8684 {
8685 	int i, rc = -ENOMEM;
8686 
8687 	BUG_ON(!dev_boot_phase);
8688 
8689 	if (dev_proc_init())
8690 		goto out;
8691 
8692 	if (netdev_kobject_init())
8693 		goto out;
8694 
8695 	INIT_LIST_HEAD(&ptype_all);
8696 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
8697 		INIT_LIST_HEAD(&ptype_base[i]);
8698 
8699 	INIT_LIST_HEAD(&offload_base);
8700 
8701 	if (register_pernet_subsys(&netdev_net_ops))
8702 		goto out;
8703 
8704 	/*
8705 	 *	Initialise the packet receive queues.
8706 	 */
8707 
8708 	for_each_possible_cpu(i) {
8709 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8710 		struct softnet_data *sd = &per_cpu(softnet_data, i);
8711 
8712 		INIT_WORK(flush, flush_backlog);
8713 
8714 		skb_queue_head_init(&sd->input_pkt_queue);
8715 		skb_queue_head_init(&sd->process_queue);
8716 		INIT_LIST_HEAD(&sd->poll_list);
8717 		sd->output_queue_tailp = &sd->output_queue;
8718 #ifdef CONFIG_RPS
8719 		sd->csd.func = rps_trigger_softirq;
8720 		sd->csd.info = sd;
8721 		sd->cpu = i;
8722 #endif
8723 
8724 		sd->backlog.poll = process_backlog;
8725 		sd->backlog.weight = weight_p;
8726 	}
8727 
8728 	dev_boot_phase = 0;
8729 
8730 	/* The loopback device is special if any other network devices
8731 	 * is present in a network namespace the loopback device must
8732 	 * be present. Since we now dynamically allocate and free the
8733 	 * loopback device ensure this invariant is maintained by
8734 	 * keeping the loopback device as the first device on the
8735 	 * list of network devices.  Ensuring the loopback devices
8736 	 * is the first device that appears and the last network device
8737 	 * that disappears.
8738 	 */
8739 	if (register_pernet_device(&loopback_net_ops))
8740 		goto out;
8741 
8742 	if (register_pernet_device(&default_device_ops))
8743 		goto out;
8744 
8745 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8746 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8747 
8748 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8749 				       NULL, dev_cpu_dead);
8750 	WARN_ON(rc < 0);
8751 	rc = 0;
8752 out:
8753 	return rc;
8754 }
8755 
8756 subsys_initcall(net_dev_init);
8757