xref: /openbmc/linux/net/core/dev.c (revision 71de0a05)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <trace/events/qdisc.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_netdev.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149 #include <net/devlink.h>
150 #include <linux/pm_runtime.h>
151 #include <linux/prandom.h>
152 #include <linux/once_lite.h>
153 
154 #include "dev.h"
155 #include "net-sysfs.h"
156 
157 
158 static DEFINE_SPINLOCK(ptype_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly;	/* Taps */
161 
162 static int netif_rx_internal(struct sk_buff *skb);
163 static int call_netdevice_notifiers_info(unsigned long val,
164 					 struct netdev_notifier_info *info);
165 static int call_netdevice_notifiers_extack(unsigned long val,
166 					   struct net_device *dev,
167 					   struct netlink_ext_ack *extack);
168 static struct napi_struct *napi_by_id(unsigned int napi_id);
169 
170 /*
171  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
172  * semaphore.
173  *
174  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175  *
176  * Writers must hold the rtnl semaphore while they loop through the
177  * dev_base_head list, and hold dev_base_lock for writing when they do the
178  * actual updates.  This allows pure readers to access the list even
179  * while a writer is preparing to update it.
180  *
181  * To put it another way, dev_base_lock is held for writing only to
182  * protect against pure readers; the rtnl semaphore provides the
183  * protection against other writers.
184  *
185  * See, for example usages, register_netdevice() and
186  * unregister_netdevice(), which must be called with the rtnl
187  * semaphore held.
188  */
189 DEFINE_RWLOCK(dev_base_lock);
190 EXPORT_SYMBOL(dev_base_lock);
191 
192 static DEFINE_MUTEX(ifalias_mutex);
193 
194 /* protects napi_hash addition/deletion and napi_gen_id */
195 static DEFINE_SPINLOCK(napi_hash_lock);
196 
197 static unsigned int napi_gen_id = NR_CPUS;
198 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
199 
200 static DECLARE_RWSEM(devnet_rename_sem);
201 
202 static inline void dev_base_seq_inc(struct net *net)
203 {
204 	while (++net->dev_base_seq == 0)
205 		;
206 }
207 
208 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
209 {
210 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
211 
212 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213 }
214 
215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216 {
217 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218 }
219 
220 static inline void rps_lock_irqsave(struct softnet_data *sd,
221 				    unsigned long *flags)
222 {
223 	if (IS_ENABLED(CONFIG_RPS))
224 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
225 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
226 		local_irq_save(*flags);
227 }
228 
229 static inline void rps_lock_irq_disable(struct softnet_data *sd)
230 {
231 	if (IS_ENABLED(CONFIG_RPS))
232 		spin_lock_irq(&sd->input_pkt_queue.lock);
233 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
234 		local_irq_disable();
235 }
236 
237 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
238 					  unsigned long *flags)
239 {
240 	if (IS_ENABLED(CONFIG_RPS))
241 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
242 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
243 		local_irq_restore(*flags);
244 }
245 
246 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
247 {
248 	if (IS_ENABLED(CONFIG_RPS))
249 		spin_unlock_irq(&sd->input_pkt_queue.lock);
250 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
251 		local_irq_enable();
252 }
253 
254 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
255 						       const char *name)
256 {
257 	struct netdev_name_node *name_node;
258 
259 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
260 	if (!name_node)
261 		return NULL;
262 	INIT_HLIST_NODE(&name_node->hlist);
263 	name_node->dev = dev;
264 	name_node->name = name;
265 	return name_node;
266 }
267 
268 static struct netdev_name_node *
269 netdev_name_node_head_alloc(struct net_device *dev)
270 {
271 	struct netdev_name_node *name_node;
272 
273 	name_node = netdev_name_node_alloc(dev, dev->name);
274 	if (!name_node)
275 		return NULL;
276 	INIT_LIST_HEAD(&name_node->list);
277 	return name_node;
278 }
279 
280 static void netdev_name_node_free(struct netdev_name_node *name_node)
281 {
282 	kfree(name_node);
283 }
284 
285 static void netdev_name_node_add(struct net *net,
286 				 struct netdev_name_node *name_node)
287 {
288 	hlist_add_head_rcu(&name_node->hlist,
289 			   dev_name_hash(net, name_node->name));
290 }
291 
292 static void netdev_name_node_del(struct netdev_name_node *name_node)
293 {
294 	hlist_del_rcu(&name_node->hlist);
295 }
296 
297 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
298 							const char *name)
299 {
300 	struct hlist_head *head = dev_name_hash(net, name);
301 	struct netdev_name_node *name_node;
302 
303 	hlist_for_each_entry(name_node, head, hlist)
304 		if (!strcmp(name_node->name, name))
305 			return name_node;
306 	return NULL;
307 }
308 
309 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
310 							    const char *name)
311 {
312 	struct hlist_head *head = dev_name_hash(net, name);
313 	struct netdev_name_node *name_node;
314 
315 	hlist_for_each_entry_rcu(name_node, head, hlist)
316 		if (!strcmp(name_node->name, name))
317 			return name_node;
318 	return NULL;
319 }
320 
321 bool netdev_name_in_use(struct net *net, const char *name)
322 {
323 	return netdev_name_node_lookup(net, name);
324 }
325 EXPORT_SYMBOL(netdev_name_in_use);
326 
327 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
328 {
329 	struct netdev_name_node *name_node;
330 	struct net *net = dev_net(dev);
331 
332 	name_node = netdev_name_node_lookup(net, name);
333 	if (name_node)
334 		return -EEXIST;
335 	name_node = netdev_name_node_alloc(dev, name);
336 	if (!name_node)
337 		return -ENOMEM;
338 	netdev_name_node_add(net, name_node);
339 	/* The node that holds dev->name acts as a head of per-device list. */
340 	list_add_tail(&name_node->list, &dev->name_node->list);
341 
342 	return 0;
343 }
344 
345 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
346 {
347 	list_del(&name_node->list);
348 	netdev_name_node_del(name_node);
349 	kfree(name_node->name);
350 	netdev_name_node_free(name_node);
351 }
352 
353 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
354 {
355 	struct netdev_name_node *name_node;
356 	struct net *net = dev_net(dev);
357 
358 	name_node = netdev_name_node_lookup(net, name);
359 	if (!name_node)
360 		return -ENOENT;
361 	/* lookup might have found our primary name or a name belonging
362 	 * to another device.
363 	 */
364 	if (name_node == dev->name_node || name_node->dev != dev)
365 		return -EINVAL;
366 
367 	__netdev_name_node_alt_destroy(name_node);
368 
369 	return 0;
370 }
371 
372 static void netdev_name_node_alt_flush(struct net_device *dev)
373 {
374 	struct netdev_name_node *name_node, *tmp;
375 
376 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
377 		__netdev_name_node_alt_destroy(name_node);
378 }
379 
380 /* Device list insertion */
381 static void list_netdevice(struct net_device *dev)
382 {
383 	struct net *net = dev_net(dev);
384 
385 	ASSERT_RTNL();
386 
387 	write_lock(&dev_base_lock);
388 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
389 	netdev_name_node_add(net, dev->name_node);
390 	hlist_add_head_rcu(&dev->index_hlist,
391 			   dev_index_hash(net, dev->ifindex));
392 	write_unlock(&dev_base_lock);
393 
394 	dev_base_seq_inc(net);
395 }
396 
397 /* Device list removal
398  * caller must respect a RCU grace period before freeing/reusing dev
399  */
400 static void unlist_netdevice(struct net_device *dev, bool lock)
401 {
402 	ASSERT_RTNL();
403 
404 	/* Unlink dev from the device chain */
405 	if (lock)
406 		write_lock(&dev_base_lock);
407 	list_del_rcu(&dev->dev_list);
408 	netdev_name_node_del(dev->name_node);
409 	hlist_del_rcu(&dev->index_hlist);
410 	if (lock)
411 		write_unlock(&dev_base_lock);
412 
413 	dev_base_seq_inc(dev_net(dev));
414 }
415 
416 /*
417  *	Our notifier list
418  */
419 
420 static RAW_NOTIFIER_HEAD(netdev_chain);
421 
422 /*
423  *	Device drivers call our routines to queue packets here. We empty the
424  *	queue in the local softnet handler.
425  */
426 
427 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
428 EXPORT_PER_CPU_SYMBOL(softnet_data);
429 
430 #ifdef CONFIG_LOCKDEP
431 /*
432  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
433  * according to dev->type
434  */
435 static const unsigned short netdev_lock_type[] = {
436 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
437 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
438 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
439 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
440 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
441 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
442 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
443 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
444 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
445 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
446 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
447 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
448 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
449 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
450 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
451 
452 static const char *const netdev_lock_name[] = {
453 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
454 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
455 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
456 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
457 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
458 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
459 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
460 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
461 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
462 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
463 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
464 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
465 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
466 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
467 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
468 
469 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
470 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
471 
472 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
473 {
474 	int i;
475 
476 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
477 		if (netdev_lock_type[i] == dev_type)
478 			return i;
479 	/* the last key is used by default */
480 	return ARRAY_SIZE(netdev_lock_type) - 1;
481 }
482 
483 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
484 						 unsigned short dev_type)
485 {
486 	int i;
487 
488 	i = netdev_lock_pos(dev_type);
489 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
490 				   netdev_lock_name[i]);
491 }
492 
493 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
494 {
495 	int i;
496 
497 	i = netdev_lock_pos(dev->type);
498 	lockdep_set_class_and_name(&dev->addr_list_lock,
499 				   &netdev_addr_lock_key[i],
500 				   netdev_lock_name[i]);
501 }
502 #else
503 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
504 						 unsigned short dev_type)
505 {
506 }
507 
508 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
509 {
510 }
511 #endif
512 
513 /*******************************************************************************
514  *
515  *		Protocol management and registration routines
516  *
517  *******************************************************************************/
518 
519 
520 /*
521  *	Add a protocol ID to the list. Now that the input handler is
522  *	smarter we can dispense with all the messy stuff that used to be
523  *	here.
524  *
525  *	BEWARE!!! Protocol handlers, mangling input packets,
526  *	MUST BE last in hash buckets and checking protocol handlers
527  *	MUST start from promiscuous ptype_all chain in net_bh.
528  *	It is true now, do not change it.
529  *	Explanation follows: if protocol handler, mangling packet, will
530  *	be the first on list, it is not able to sense, that packet
531  *	is cloned and should be copied-on-write, so that it will
532  *	change it and subsequent readers will get broken packet.
533  *							--ANK (980803)
534  */
535 
536 static inline struct list_head *ptype_head(const struct packet_type *pt)
537 {
538 	if (pt->type == htons(ETH_P_ALL))
539 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
540 	else
541 		return pt->dev ? &pt->dev->ptype_specific :
542 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
543 }
544 
545 /**
546  *	dev_add_pack - add packet handler
547  *	@pt: packet type declaration
548  *
549  *	Add a protocol handler to the networking stack. The passed &packet_type
550  *	is linked into kernel lists and may not be freed until it has been
551  *	removed from the kernel lists.
552  *
553  *	This call does not sleep therefore it can not
554  *	guarantee all CPU's that are in middle of receiving packets
555  *	will see the new packet type (until the next received packet).
556  */
557 
558 void dev_add_pack(struct packet_type *pt)
559 {
560 	struct list_head *head = ptype_head(pt);
561 
562 	spin_lock(&ptype_lock);
563 	list_add_rcu(&pt->list, head);
564 	spin_unlock(&ptype_lock);
565 }
566 EXPORT_SYMBOL(dev_add_pack);
567 
568 /**
569  *	__dev_remove_pack	 - remove packet handler
570  *	@pt: packet type declaration
571  *
572  *	Remove a protocol handler that was previously added to the kernel
573  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
574  *	from the kernel lists and can be freed or reused once this function
575  *	returns.
576  *
577  *      The packet type might still be in use by receivers
578  *	and must not be freed until after all the CPU's have gone
579  *	through a quiescent state.
580  */
581 void __dev_remove_pack(struct packet_type *pt)
582 {
583 	struct list_head *head = ptype_head(pt);
584 	struct packet_type *pt1;
585 
586 	spin_lock(&ptype_lock);
587 
588 	list_for_each_entry(pt1, head, list) {
589 		if (pt == pt1) {
590 			list_del_rcu(&pt->list);
591 			goto out;
592 		}
593 	}
594 
595 	pr_warn("dev_remove_pack: %p not found\n", pt);
596 out:
597 	spin_unlock(&ptype_lock);
598 }
599 EXPORT_SYMBOL(__dev_remove_pack);
600 
601 /**
602  *	dev_remove_pack	 - remove packet handler
603  *	@pt: packet type declaration
604  *
605  *	Remove a protocol handler that was previously added to the kernel
606  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
607  *	from the kernel lists and can be freed or reused once this function
608  *	returns.
609  *
610  *	This call sleeps to guarantee that no CPU is looking at the packet
611  *	type after return.
612  */
613 void dev_remove_pack(struct packet_type *pt)
614 {
615 	__dev_remove_pack(pt);
616 
617 	synchronize_net();
618 }
619 EXPORT_SYMBOL(dev_remove_pack);
620 
621 
622 /*******************************************************************************
623  *
624  *			    Device Interface Subroutines
625  *
626  *******************************************************************************/
627 
628 /**
629  *	dev_get_iflink	- get 'iflink' value of a interface
630  *	@dev: targeted interface
631  *
632  *	Indicates the ifindex the interface is linked to.
633  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
634  */
635 
636 int dev_get_iflink(const struct net_device *dev)
637 {
638 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
639 		return dev->netdev_ops->ndo_get_iflink(dev);
640 
641 	return dev->ifindex;
642 }
643 EXPORT_SYMBOL(dev_get_iflink);
644 
645 /**
646  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
647  *	@dev: targeted interface
648  *	@skb: The packet.
649  *
650  *	For better visibility of tunnel traffic OVS needs to retrieve
651  *	egress tunnel information for a packet. Following API allows
652  *	user to get this info.
653  */
654 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
655 {
656 	struct ip_tunnel_info *info;
657 
658 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
659 		return -EINVAL;
660 
661 	info = skb_tunnel_info_unclone(skb);
662 	if (!info)
663 		return -ENOMEM;
664 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
665 		return -EINVAL;
666 
667 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
668 }
669 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
670 
671 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
672 {
673 	int k = stack->num_paths++;
674 
675 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
676 		return NULL;
677 
678 	return &stack->path[k];
679 }
680 
681 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
682 			  struct net_device_path_stack *stack)
683 {
684 	const struct net_device *last_dev;
685 	struct net_device_path_ctx ctx = {
686 		.dev	= dev,
687 	};
688 	struct net_device_path *path;
689 	int ret = 0;
690 
691 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
692 	stack->num_paths = 0;
693 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
694 		last_dev = ctx.dev;
695 		path = dev_fwd_path(stack);
696 		if (!path)
697 			return -1;
698 
699 		memset(path, 0, sizeof(struct net_device_path));
700 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
701 		if (ret < 0)
702 			return -1;
703 
704 		if (WARN_ON_ONCE(last_dev == ctx.dev))
705 			return -1;
706 	}
707 
708 	if (!ctx.dev)
709 		return ret;
710 
711 	path = dev_fwd_path(stack);
712 	if (!path)
713 		return -1;
714 	path->type = DEV_PATH_ETHERNET;
715 	path->dev = ctx.dev;
716 
717 	return ret;
718 }
719 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
720 
721 /**
722  *	__dev_get_by_name	- find a device by its name
723  *	@net: the applicable net namespace
724  *	@name: name to find
725  *
726  *	Find an interface by name. Must be called under RTNL semaphore
727  *	or @dev_base_lock. If the name is found a pointer to the device
728  *	is returned. If the name is not found then %NULL is returned. The
729  *	reference counters are not incremented so the caller must be
730  *	careful with locks.
731  */
732 
733 struct net_device *__dev_get_by_name(struct net *net, const char *name)
734 {
735 	struct netdev_name_node *node_name;
736 
737 	node_name = netdev_name_node_lookup(net, name);
738 	return node_name ? node_name->dev : NULL;
739 }
740 EXPORT_SYMBOL(__dev_get_by_name);
741 
742 /**
743  * dev_get_by_name_rcu	- find a device by its name
744  * @net: the applicable net namespace
745  * @name: name to find
746  *
747  * Find an interface by name.
748  * If the name is found a pointer to the device is returned.
749  * If the name is not found then %NULL is returned.
750  * The reference counters are not incremented so the caller must be
751  * careful with locks. The caller must hold RCU lock.
752  */
753 
754 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
755 {
756 	struct netdev_name_node *node_name;
757 
758 	node_name = netdev_name_node_lookup_rcu(net, name);
759 	return node_name ? node_name->dev : NULL;
760 }
761 EXPORT_SYMBOL(dev_get_by_name_rcu);
762 
763 /**
764  *	dev_get_by_name		- find a device by its name
765  *	@net: the applicable net namespace
766  *	@name: name to find
767  *
768  *	Find an interface by name. This can be called from any
769  *	context and does its own locking. The returned handle has
770  *	the usage count incremented and the caller must use dev_put() to
771  *	release it when it is no longer needed. %NULL is returned if no
772  *	matching device is found.
773  */
774 
775 struct net_device *dev_get_by_name(struct net *net, const char *name)
776 {
777 	struct net_device *dev;
778 
779 	rcu_read_lock();
780 	dev = dev_get_by_name_rcu(net, name);
781 	dev_hold(dev);
782 	rcu_read_unlock();
783 	return dev;
784 }
785 EXPORT_SYMBOL(dev_get_by_name);
786 
787 /**
788  *	__dev_get_by_index - find a device by its ifindex
789  *	@net: the applicable net namespace
790  *	@ifindex: index of device
791  *
792  *	Search for an interface by index. Returns %NULL if the device
793  *	is not found or a pointer to the device. The device has not
794  *	had its reference counter increased so the caller must be careful
795  *	about locking. The caller must hold either the RTNL semaphore
796  *	or @dev_base_lock.
797  */
798 
799 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
800 {
801 	struct net_device *dev;
802 	struct hlist_head *head = dev_index_hash(net, ifindex);
803 
804 	hlist_for_each_entry(dev, head, index_hlist)
805 		if (dev->ifindex == ifindex)
806 			return dev;
807 
808 	return NULL;
809 }
810 EXPORT_SYMBOL(__dev_get_by_index);
811 
812 /**
813  *	dev_get_by_index_rcu - find a device by its ifindex
814  *	@net: the applicable net namespace
815  *	@ifindex: index of device
816  *
817  *	Search for an interface by index. Returns %NULL if the device
818  *	is not found or a pointer to the device. The device has not
819  *	had its reference counter increased so the caller must be careful
820  *	about locking. The caller must hold RCU lock.
821  */
822 
823 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
824 {
825 	struct net_device *dev;
826 	struct hlist_head *head = dev_index_hash(net, ifindex);
827 
828 	hlist_for_each_entry_rcu(dev, head, index_hlist)
829 		if (dev->ifindex == ifindex)
830 			return dev;
831 
832 	return NULL;
833 }
834 EXPORT_SYMBOL(dev_get_by_index_rcu);
835 
836 
837 /**
838  *	dev_get_by_index - find a device by its ifindex
839  *	@net: the applicable net namespace
840  *	@ifindex: index of device
841  *
842  *	Search for an interface by index. Returns NULL if the device
843  *	is not found or a pointer to the device. The device returned has
844  *	had a reference added and the pointer is safe until the user calls
845  *	dev_put to indicate they have finished with it.
846  */
847 
848 struct net_device *dev_get_by_index(struct net *net, int ifindex)
849 {
850 	struct net_device *dev;
851 
852 	rcu_read_lock();
853 	dev = dev_get_by_index_rcu(net, ifindex);
854 	dev_hold(dev);
855 	rcu_read_unlock();
856 	return dev;
857 }
858 EXPORT_SYMBOL(dev_get_by_index);
859 
860 /**
861  *	dev_get_by_napi_id - find a device by napi_id
862  *	@napi_id: ID of the NAPI struct
863  *
864  *	Search for an interface by NAPI ID. Returns %NULL if the device
865  *	is not found or a pointer to the device. The device has not had
866  *	its reference counter increased so the caller must be careful
867  *	about locking. The caller must hold RCU lock.
868  */
869 
870 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
871 {
872 	struct napi_struct *napi;
873 
874 	WARN_ON_ONCE(!rcu_read_lock_held());
875 
876 	if (napi_id < MIN_NAPI_ID)
877 		return NULL;
878 
879 	napi = napi_by_id(napi_id);
880 
881 	return napi ? napi->dev : NULL;
882 }
883 EXPORT_SYMBOL(dev_get_by_napi_id);
884 
885 /**
886  *	netdev_get_name - get a netdevice name, knowing its ifindex.
887  *	@net: network namespace
888  *	@name: a pointer to the buffer where the name will be stored.
889  *	@ifindex: the ifindex of the interface to get the name from.
890  */
891 int netdev_get_name(struct net *net, char *name, int ifindex)
892 {
893 	struct net_device *dev;
894 	int ret;
895 
896 	down_read(&devnet_rename_sem);
897 	rcu_read_lock();
898 
899 	dev = dev_get_by_index_rcu(net, ifindex);
900 	if (!dev) {
901 		ret = -ENODEV;
902 		goto out;
903 	}
904 
905 	strcpy(name, dev->name);
906 
907 	ret = 0;
908 out:
909 	rcu_read_unlock();
910 	up_read(&devnet_rename_sem);
911 	return ret;
912 }
913 
914 /**
915  *	dev_getbyhwaddr_rcu - find a device by its hardware address
916  *	@net: the applicable net namespace
917  *	@type: media type of device
918  *	@ha: hardware address
919  *
920  *	Search for an interface by MAC address. Returns NULL if the device
921  *	is not found or a pointer to the device.
922  *	The caller must hold RCU or RTNL.
923  *	The returned device has not had its ref count increased
924  *	and the caller must therefore be careful about locking
925  *
926  */
927 
928 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
929 				       const char *ha)
930 {
931 	struct net_device *dev;
932 
933 	for_each_netdev_rcu(net, dev)
934 		if (dev->type == type &&
935 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
936 			return dev;
937 
938 	return NULL;
939 }
940 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
941 
942 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
943 {
944 	struct net_device *dev, *ret = NULL;
945 
946 	rcu_read_lock();
947 	for_each_netdev_rcu(net, dev)
948 		if (dev->type == type) {
949 			dev_hold(dev);
950 			ret = dev;
951 			break;
952 		}
953 	rcu_read_unlock();
954 	return ret;
955 }
956 EXPORT_SYMBOL(dev_getfirstbyhwtype);
957 
958 /**
959  *	__dev_get_by_flags - find any device with given flags
960  *	@net: the applicable net namespace
961  *	@if_flags: IFF_* values
962  *	@mask: bitmask of bits in if_flags to check
963  *
964  *	Search for any interface with the given flags. Returns NULL if a device
965  *	is not found or a pointer to the device. Must be called inside
966  *	rtnl_lock(), and result refcount is unchanged.
967  */
968 
969 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
970 				      unsigned short mask)
971 {
972 	struct net_device *dev, *ret;
973 
974 	ASSERT_RTNL();
975 
976 	ret = NULL;
977 	for_each_netdev(net, dev) {
978 		if (((dev->flags ^ if_flags) & mask) == 0) {
979 			ret = dev;
980 			break;
981 		}
982 	}
983 	return ret;
984 }
985 EXPORT_SYMBOL(__dev_get_by_flags);
986 
987 /**
988  *	dev_valid_name - check if name is okay for network device
989  *	@name: name string
990  *
991  *	Network device names need to be valid file names to
992  *	allow sysfs to work.  We also disallow any kind of
993  *	whitespace.
994  */
995 bool dev_valid_name(const char *name)
996 {
997 	if (*name == '\0')
998 		return false;
999 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1000 		return false;
1001 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1002 		return false;
1003 
1004 	while (*name) {
1005 		if (*name == '/' || *name == ':' || isspace(*name))
1006 			return false;
1007 		name++;
1008 	}
1009 	return true;
1010 }
1011 EXPORT_SYMBOL(dev_valid_name);
1012 
1013 /**
1014  *	__dev_alloc_name - allocate a name for a device
1015  *	@net: network namespace to allocate the device name in
1016  *	@name: name format string
1017  *	@buf:  scratch buffer and result name string
1018  *
1019  *	Passed a format string - eg "lt%d" it will try and find a suitable
1020  *	id. It scans list of devices to build up a free map, then chooses
1021  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1022  *	while allocating the name and adding the device in order to avoid
1023  *	duplicates.
1024  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1025  *	Returns the number of the unit assigned or a negative errno code.
1026  */
1027 
1028 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1029 {
1030 	int i = 0;
1031 	const char *p;
1032 	const int max_netdevices = 8*PAGE_SIZE;
1033 	unsigned long *inuse;
1034 	struct net_device *d;
1035 
1036 	if (!dev_valid_name(name))
1037 		return -EINVAL;
1038 
1039 	p = strchr(name, '%');
1040 	if (p) {
1041 		/*
1042 		 * Verify the string as this thing may have come from
1043 		 * the user.  There must be either one "%d" and no other "%"
1044 		 * characters.
1045 		 */
1046 		if (p[1] != 'd' || strchr(p + 2, '%'))
1047 			return -EINVAL;
1048 
1049 		/* Use one page as a bit array of possible slots */
1050 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1051 		if (!inuse)
1052 			return -ENOMEM;
1053 
1054 		for_each_netdev(net, d) {
1055 			struct netdev_name_node *name_node;
1056 			list_for_each_entry(name_node, &d->name_node->list, list) {
1057 				if (!sscanf(name_node->name, name, &i))
1058 					continue;
1059 				if (i < 0 || i >= max_netdevices)
1060 					continue;
1061 
1062 				/*  avoid cases where sscanf is not exact inverse of printf */
1063 				snprintf(buf, IFNAMSIZ, name, i);
1064 				if (!strncmp(buf, name_node->name, IFNAMSIZ))
1065 					__set_bit(i, inuse);
1066 			}
1067 			if (!sscanf(d->name, name, &i))
1068 				continue;
1069 			if (i < 0 || i >= max_netdevices)
1070 				continue;
1071 
1072 			/*  avoid cases where sscanf is not exact inverse of printf */
1073 			snprintf(buf, IFNAMSIZ, name, i);
1074 			if (!strncmp(buf, d->name, IFNAMSIZ))
1075 				__set_bit(i, inuse);
1076 		}
1077 
1078 		i = find_first_zero_bit(inuse, max_netdevices);
1079 		free_page((unsigned long) inuse);
1080 	}
1081 
1082 	snprintf(buf, IFNAMSIZ, name, i);
1083 	if (!netdev_name_in_use(net, buf))
1084 		return i;
1085 
1086 	/* It is possible to run out of possible slots
1087 	 * when the name is long and there isn't enough space left
1088 	 * for the digits, or if all bits are used.
1089 	 */
1090 	return -ENFILE;
1091 }
1092 
1093 static int dev_alloc_name_ns(struct net *net,
1094 			     struct net_device *dev,
1095 			     const char *name)
1096 {
1097 	char buf[IFNAMSIZ];
1098 	int ret;
1099 
1100 	BUG_ON(!net);
1101 	ret = __dev_alloc_name(net, name, buf);
1102 	if (ret >= 0)
1103 		strscpy(dev->name, buf, IFNAMSIZ);
1104 	return ret;
1105 }
1106 
1107 /**
1108  *	dev_alloc_name - allocate a name for a device
1109  *	@dev: device
1110  *	@name: name format string
1111  *
1112  *	Passed a format string - eg "lt%d" it will try and find a suitable
1113  *	id. It scans list of devices to build up a free map, then chooses
1114  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1115  *	while allocating the name and adding the device in order to avoid
1116  *	duplicates.
1117  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1118  *	Returns the number of the unit assigned or a negative errno code.
1119  */
1120 
1121 int dev_alloc_name(struct net_device *dev, const char *name)
1122 {
1123 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1124 }
1125 EXPORT_SYMBOL(dev_alloc_name);
1126 
1127 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1128 			      const char *name)
1129 {
1130 	BUG_ON(!net);
1131 
1132 	if (!dev_valid_name(name))
1133 		return -EINVAL;
1134 
1135 	if (strchr(name, '%'))
1136 		return dev_alloc_name_ns(net, dev, name);
1137 	else if (netdev_name_in_use(net, name))
1138 		return -EEXIST;
1139 	else if (dev->name != name)
1140 		strscpy(dev->name, name, IFNAMSIZ);
1141 
1142 	return 0;
1143 }
1144 
1145 /**
1146  *	dev_change_name - change name of a device
1147  *	@dev: device
1148  *	@newname: name (or format string) must be at least IFNAMSIZ
1149  *
1150  *	Change name of a device, can pass format strings "eth%d".
1151  *	for wildcarding.
1152  */
1153 int dev_change_name(struct net_device *dev, const char *newname)
1154 {
1155 	unsigned char old_assign_type;
1156 	char oldname[IFNAMSIZ];
1157 	int err = 0;
1158 	int ret;
1159 	struct net *net;
1160 
1161 	ASSERT_RTNL();
1162 	BUG_ON(!dev_net(dev));
1163 
1164 	net = dev_net(dev);
1165 
1166 	down_write(&devnet_rename_sem);
1167 
1168 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1169 		up_write(&devnet_rename_sem);
1170 		return 0;
1171 	}
1172 
1173 	memcpy(oldname, dev->name, IFNAMSIZ);
1174 
1175 	err = dev_get_valid_name(net, dev, newname);
1176 	if (err < 0) {
1177 		up_write(&devnet_rename_sem);
1178 		return err;
1179 	}
1180 
1181 	if (oldname[0] && !strchr(oldname, '%'))
1182 		netdev_info(dev, "renamed from %s%s\n", oldname,
1183 			    dev->flags & IFF_UP ? " (while UP)" : "");
1184 
1185 	old_assign_type = dev->name_assign_type;
1186 	dev->name_assign_type = NET_NAME_RENAMED;
1187 
1188 rollback:
1189 	ret = device_rename(&dev->dev, dev->name);
1190 	if (ret) {
1191 		memcpy(dev->name, oldname, IFNAMSIZ);
1192 		dev->name_assign_type = old_assign_type;
1193 		up_write(&devnet_rename_sem);
1194 		return ret;
1195 	}
1196 
1197 	up_write(&devnet_rename_sem);
1198 
1199 	netdev_adjacent_rename_links(dev, oldname);
1200 
1201 	write_lock(&dev_base_lock);
1202 	netdev_name_node_del(dev->name_node);
1203 	write_unlock(&dev_base_lock);
1204 
1205 	synchronize_rcu();
1206 
1207 	write_lock(&dev_base_lock);
1208 	netdev_name_node_add(net, dev->name_node);
1209 	write_unlock(&dev_base_lock);
1210 
1211 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1212 	ret = notifier_to_errno(ret);
1213 
1214 	if (ret) {
1215 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1216 		if (err >= 0) {
1217 			err = ret;
1218 			down_write(&devnet_rename_sem);
1219 			memcpy(dev->name, oldname, IFNAMSIZ);
1220 			memcpy(oldname, newname, IFNAMSIZ);
1221 			dev->name_assign_type = old_assign_type;
1222 			old_assign_type = NET_NAME_RENAMED;
1223 			goto rollback;
1224 		} else {
1225 			netdev_err(dev, "name change rollback failed: %d\n",
1226 				   ret);
1227 		}
1228 	}
1229 
1230 	return err;
1231 }
1232 
1233 /**
1234  *	dev_set_alias - change ifalias of a device
1235  *	@dev: device
1236  *	@alias: name up to IFALIASZ
1237  *	@len: limit of bytes to copy from info
1238  *
1239  *	Set ifalias for a device,
1240  */
1241 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1242 {
1243 	struct dev_ifalias *new_alias = NULL;
1244 
1245 	if (len >= IFALIASZ)
1246 		return -EINVAL;
1247 
1248 	if (len) {
1249 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1250 		if (!new_alias)
1251 			return -ENOMEM;
1252 
1253 		memcpy(new_alias->ifalias, alias, len);
1254 		new_alias->ifalias[len] = 0;
1255 	}
1256 
1257 	mutex_lock(&ifalias_mutex);
1258 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1259 					mutex_is_locked(&ifalias_mutex));
1260 	mutex_unlock(&ifalias_mutex);
1261 
1262 	if (new_alias)
1263 		kfree_rcu(new_alias, rcuhead);
1264 
1265 	return len;
1266 }
1267 EXPORT_SYMBOL(dev_set_alias);
1268 
1269 /**
1270  *	dev_get_alias - get ifalias of a device
1271  *	@dev: device
1272  *	@name: buffer to store name of ifalias
1273  *	@len: size of buffer
1274  *
1275  *	get ifalias for a device.  Caller must make sure dev cannot go
1276  *	away,  e.g. rcu read lock or own a reference count to device.
1277  */
1278 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1279 {
1280 	const struct dev_ifalias *alias;
1281 	int ret = 0;
1282 
1283 	rcu_read_lock();
1284 	alias = rcu_dereference(dev->ifalias);
1285 	if (alias)
1286 		ret = snprintf(name, len, "%s", alias->ifalias);
1287 	rcu_read_unlock();
1288 
1289 	return ret;
1290 }
1291 
1292 /**
1293  *	netdev_features_change - device changes features
1294  *	@dev: device to cause notification
1295  *
1296  *	Called to indicate a device has changed features.
1297  */
1298 void netdev_features_change(struct net_device *dev)
1299 {
1300 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1301 }
1302 EXPORT_SYMBOL(netdev_features_change);
1303 
1304 /**
1305  *	netdev_state_change - device changes state
1306  *	@dev: device to cause notification
1307  *
1308  *	Called to indicate a device has changed state. This function calls
1309  *	the notifier chains for netdev_chain and sends a NEWLINK message
1310  *	to the routing socket.
1311  */
1312 void netdev_state_change(struct net_device *dev)
1313 {
1314 	if (dev->flags & IFF_UP) {
1315 		struct netdev_notifier_change_info change_info = {
1316 			.info.dev = dev,
1317 		};
1318 
1319 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1320 					      &change_info.info);
1321 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1322 	}
1323 }
1324 EXPORT_SYMBOL(netdev_state_change);
1325 
1326 /**
1327  * __netdev_notify_peers - notify network peers about existence of @dev,
1328  * to be called when rtnl lock is already held.
1329  * @dev: network device
1330  *
1331  * Generate traffic such that interested network peers are aware of
1332  * @dev, such as by generating a gratuitous ARP. This may be used when
1333  * a device wants to inform the rest of the network about some sort of
1334  * reconfiguration such as a failover event or virtual machine
1335  * migration.
1336  */
1337 void __netdev_notify_peers(struct net_device *dev)
1338 {
1339 	ASSERT_RTNL();
1340 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1341 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1342 }
1343 EXPORT_SYMBOL(__netdev_notify_peers);
1344 
1345 /**
1346  * netdev_notify_peers - notify network peers about existence of @dev
1347  * @dev: network device
1348  *
1349  * Generate traffic such that interested network peers are aware of
1350  * @dev, such as by generating a gratuitous ARP. This may be used when
1351  * a device wants to inform the rest of the network about some sort of
1352  * reconfiguration such as a failover event or virtual machine
1353  * migration.
1354  */
1355 void netdev_notify_peers(struct net_device *dev)
1356 {
1357 	rtnl_lock();
1358 	__netdev_notify_peers(dev);
1359 	rtnl_unlock();
1360 }
1361 EXPORT_SYMBOL(netdev_notify_peers);
1362 
1363 static int napi_threaded_poll(void *data);
1364 
1365 static int napi_kthread_create(struct napi_struct *n)
1366 {
1367 	int err = 0;
1368 
1369 	/* Create and wake up the kthread once to put it in
1370 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1371 	 * warning and work with loadavg.
1372 	 */
1373 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1374 				n->dev->name, n->napi_id);
1375 	if (IS_ERR(n->thread)) {
1376 		err = PTR_ERR(n->thread);
1377 		pr_err("kthread_run failed with err %d\n", err);
1378 		n->thread = NULL;
1379 	}
1380 
1381 	return err;
1382 }
1383 
1384 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1385 {
1386 	const struct net_device_ops *ops = dev->netdev_ops;
1387 	int ret;
1388 
1389 	ASSERT_RTNL();
1390 	dev_addr_check(dev);
1391 
1392 	if (!netif_device_present(dev)) {
1393 		/* may be detached because parent is runtime-suspended */
1394 		if (dev->dev.parent)
1395 			pm_runtime_resume(dev->dev.parent);
1396 		if (!netif_device_present(dev))
1397 			return -ENODEV;
1398 	}
1399 
1400 	/* Block netpoll from trying to do any rx path servicing.
1401 	 * If we don't do this there is a chance ndo_poll_controller
1402 	 * or ndo_poll may be running while we open the device
1403 	 */
1404 	netpoll_poll_disable(dev);
1405 
1406 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1407 	ret = notifier_to_errno(ret);
1408 	if (ret)
1409 		return ret;
1410 
1411 	set_bit(__LINK_STATE_START, &dev->state);
1412 
1413 	if (ops->ndo_validate_addr)
1414 		ret = ops->ndo_validate_addr(dev);
1415 
1416 	if (!ret && ops->ndo_open)
1417 		ret = ops->ndo_open(dev);
1418 
1419 	netpoll_poll_enable(dev);
1420 
1421 	if (ret)
1422 		clear_bit(__LINK_STATE_START, &dev->state);
1423 	else {
1424 		dev->flags |= IFF_UP;
1425 		dev_set_rx_mode(dev);
1426 		dev_activate(dev);
1427 		add_device_randomness(dev->dev_addr, dev->addr_len);
1428 	}
1429 
1430 	return ret;
1431 }
1432 
1433 /**
1434  *	dev_open	- prepare an interface for use.
1435  *	@dev: device to open
1436  *	@extack: netlink extended ack
1437  *
1438  *	Takes a device from down to up state. The device's private open
1439  *	function is invoked and then the multicast lists are loaded. Finally
1440  *	the device is moved into the up state and a %NETDEV_UP message is
1441  *	sent to the netdev notifier chain.
1442  *
1443  *	Calling this function on an active interface is a nop. On a failure
1444  *	a negative errno code is returned.
1445  */
1446 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1447 {
1448 	int ret;
1449 
1450 	if (dev->flags & IFF_UP)
1451 		return 0;
1452 
1453 	ret = __dev_open(dev, extack);
1454 	if (ret < 0)
1455 		return ret;
1456 
1457 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1458 	call_netdevice_notifiers(NETDEV_UP, dev);
1459 
1460 	return ret;
1461 }
1462 EXPORT_SYMBOL(dev_open);
1463 
1464 static void __dev_close_many(struct list_head *head)
1465 {
1466 	struct net_device *dev;
1467 
1468 	ASSERT_RTNL();
1469 	might_sleep();
1470 
1471 	list_for_each_entry(dev, head, close_list) {
1472 		/* Temporarily disable netpoll until the interface is down */
1473 		netpoll_poll_disable(dev);
1474 
1475 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1476 
1477 		clear_bit(__LINK_STATE_START, &dev->state);
1478 
1479 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1480 		 * can be even on different cpu. So just clear netif_running().
1481 		 *
1482 		 * dev->stop() will invoke napi_disable() on all of it's
1483 		 * napi_struct instances on this device.
1484 		 */
1485 		smp_mb__after_atomic(); /* Commit netif_running(). */
1486 	}
1487 
1488 	dev_deactivate_many(head);
1489 
1490 	list_for_each_entry(dev, head, close_list) {
1491 		const struct net_device_ops *ops = dev->netdev_ops;
1492 
1493 		/*
1494 		 *	Call the device specific close. This cannot fail.
1495 		 *	Only if device is UP
1496 		 *
1497 		 *	We allow it to be called even after a DETACH hot-plug
1498 		 *	event.
1499 		 */
1500 		if (ops->ndo_stop)
1501 			ops->ndo_stop(dev);
1502 
1503 		dev->flags &= ~IFF_UP;
1504 		netpoll_poll_enable(dev);
1505 	}
1506 }
1507 
1508 static void __dev_close(struct net_device *dev)
1509 {
1510 	LIST_HEAD(single);
1511 
1512 	list_add(&dev->close_list, &single);
1513 	__dev_close_many(&single);
1514 	list_del(&single);
1515 }
1516 
1517 void dev_close_many(struct list_head *head, bool unlink)
1518 {
1519 	struct net_device *dev, *tmp;
1520 
1521 	/* Remove the devices that don't need to be closed */
1522 	list_for_each_entry_safe(dev, tmp, head, close_list)
1523 		if (!(dev->flags & IFF_UP))
1524 			list_del_init(&dev->close_list);
1525 
1526 	__dev_close_many(head);
1527 
1528 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1529 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1530 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1531 		if (unlink)
1532 			list_del_init(&dev->close_list);
1533 	}
1534 }
1535 EXPORT_SYMBOL(dev_close_many);
1536 
1537 /**
1538  *	dev_close - shutdown an interface.
1539  *	@dev: device to shutdown
1540  *
1541  *	This function moves an active device into down state. A
1542  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1543  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1544  *	chain.
1545  */
1546 void dev_close(struct net_device *dev)
1547 {
1548 	if (dev->flags & IFF_UP) {
1549 		LIST_HEAD(single);
1550 
1551 		list_add(&dev->close_list, &single);
1552 		dev_close_many(&single, true);
1553 		list_del(&single);
1554 	}
1555 }
1556 EXPORT_SYMBOL(dev_close);
1557 
1558 
1559 /**
1560  *	dev_disable_lro - disable Large Receive Offload on a device
1561  *	@dev: device
1562  *
1563  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1564  *	called under RTNL.  This is needed if received packets may be
1565  *	forwarded to another interface.
1566  */
1567 void dev_disable_lro(struct net_device *dev)
1568 {
1569 	struct net_device *lower_dev;
1570 	struct list_head *iter;
1571 
1572 	dev->wanted_features &= ~NETIF_F_LRO;
1573 	netdev_update_features(dev);
1574 
1575 	if (unlikely(dev->features & NETIF_F_LRO))
1576 		netdev_WARN(dev, "failed to disable LRO!\n");
1577 
1578 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1579 		dev_disable_lro(lower_dev);
1580 }
1581 EXPORT_SYMBOL(dev_disable_lro);
1582 
1583 /**
1584  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1585  *	@dev: device
1586  *
1587  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1588  *	called under RTNL.  This is needed if Generic XDP is installed on
1589  *	the device.
1590  */
1591 static void dev_disable_gro_hw(struct net_device *dev)
1592 {
1593 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1594 	netdev_update_features(dev);
1595 
1596 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1597 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1598 }
1599 
1600 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1601 {
1602 #define N(val) 						\
1603 	case NETDEV_##val:				\
1604 		return "NETDEV_" __stringify(val);
1605 	switch (cmd) {
1606 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1607 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1608 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1609 	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1610 	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1611 	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1612 	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1613 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1614 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1615 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1616 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1617 	N(XDP_FEAT_CHANGE)
1618 	}
1619 #undef N
1620 	return "UNKNOWN_NETDEV_EVENT";
1621 }
1622 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1623 
1624 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1625 				   struct net_device *dev)
1626 {
1627 	struct netdev_notifier_info info = {
1628 		.dev = dev,
1629 	};
1630 
1631 	return nb->notifier_call(nb, val, &info);
1632 }
1633 
1634 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1635 					     struct net_device *dev)
1636 {
1637 	int err;
1638 
1639 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1640 	err = notifier_to_errno(err);
1641 	if (err)
1642 		return err;
1643 
1644 	if (!(dev->flags & IFF_UP))
1645 		return 0;
1646 
1647 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1648 	return 0;
1649 }
1650 
1651 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1652 						struct net_device *dev)
1653 {
1654 	if (dev->flags & IFF_UP) {
1655 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1656 					dev);
1657 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1658 	}
1659 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1660 }
1661 
1662 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1663 						 struct net *net)
1664 {
1665 	struct net_device *dev;
1666 	int err;
1667 
1668 	for_each_netdev(net, dev) {
1669 		err = call_netdevice_register_notifiers(nb, dev);
1670 		if (err)
1671 			goto rollback;
1672 	}
1673 	return 0;
1674 
1675 rollback:
1676 	for_each_netdev_continue_reverse(net, dev)
1677 		call_netdevice_unregister_notifiers(nb, dev);
1678 	return err;
1679 }
1680 
1681 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1682 						    struct net *net)
1683 {
1684 	struct net_device *dev;
1685 
1686 	for_each_netdev(net, dev)
1687 		call_netdevice_unregister_notifiers(nb, dev);
1688 }
1689 
1690 static int dev_boot_phase = 1;
1691 
1692 /**
1693  * register_netdevice_notifier - register a network notifier block
1694  * @nb: notifier
1695  *
1696  * Register a notifier to be called when network device events occur.
1697  * The notifier passed is linked into the kernel structures and must
1698  * not be reused until it has been unregistered. A negative errno code
1699  * is returned on a failure.
1700  *
1701  * When registered all registration and up events are replayed
1702  * to the new notifier to allow device to have a race free
1703  * view of the network device list.
1704  */
1705 
1706 int register_netdevice_notifier(struct notifier_block *nb)
1707 {
1708 	struct net *net;
1709 	int err;
1710 
1711 	/* Close race with setup_net() and cleanup_net() */
1712 	down_write(&pernet_ops_rwsem);
1713 	rtnl_lock();
1714 	err = raw_notifier_chain_register(&netdev_chain, nb);
1715 	if (err)
1716 		goto unlock;
1717 	if (dev_boot_phase)
1718 		goto unlock;
1719 	for_each_net(net) {
1720 		err = call_netdevice_register_net_notifiers(nb, net);
1721 		if (err)
1722 			goto rollback;
1723 	}
1724 
1725 unlock:
1726 	rtnl_unlock();
1727 	up_write(&pernet_ops_rwsem);
1728 	return err;
1729 
1730 rollback:
1731 	for_each_net_continue_reverse(net)
1732 		call_netdevice_unregister_net_notifiers(nb, net);
1733 
1734 	raw_notifier_chain_unregister(&netdev_chain, nb);
1735 	goto unlock;
1736 }
1737 EXPORT_SYMBOL(register_netdevice_notifier);
1738 
1739 /**
1740  * unregister_netdevice_notifier - unregister a network notifier block
1741  * @nb: notifier
1742  *
1743  * Unregister a notifier previously registered by
1744  * register_netdevice_notifier(). The notifier is unlinked into the
1745  * kernel structures and may then be reused. A negative errno code
1746  * is returned on a failure.
1747  *
1748  * After unregistering unregister and down device events are synthesized
1749  * for all devices on the device list to the removed notifier to remove
1750  * the need for special case cleanup code.
1751  */
1752 
1753 int unregister_netdevice_notifier(struct notifier_block *nb)
1754 {
1755 	struct net *net;
1756 	int err;
1757 
1758 	/* Close race with setup_net() and cleanup_net() */
1759 	down_write(&pernet_ops_rwsem);
1760 	rtnl_lock();
1761 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1762 	if (err)
1763 		goto unlock;
1764 
1765 	for_each_net(net)
1766 		call_netdevice_unregister_net_notifiers(nb, net);
1767 
1768 unlock:
1769 	rtnl_unlock();
1770 	up_write(&pernet_ops_rwsem);
1771 	return err;
1772 }
1773 EXPORT_SYMBOL(unregister_netdevice_notifier);
1774 
1775 static int __register_netdevice_notifier_net(struct net *net,
1776 					     struct notifier_block *nb,
1777 					     bool ignore_call_fail)
1778 {
1779 	int err;
1780 
1781 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1782 	if (err)
1783 		return err;
1784 	if (dev_boot_phase)
1785 		return 0;
1786 
1787 	err = call_netdevice_register_net_notifiers(nb, net);
1788 	if (err && !ignore_call_fail)
1789 		goto chain_unregister;
1790 
1791 	return 0;
1792 
1793 chain_unregister:
1794 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1795 	return err;
1796 }
1797 
1798 static int __unregister_netdevice_notifier_net(struct net *net,
1799 					       struct notifier_block *nb)
1800 {
1801 	int err;
1802 
1803 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1804 	if (err)
1805 		return err;
1806 
1807 	call_netdevice_unregister_net_notifiers(nb, net);
1808 	return 0;
1809 }
1810 
1811 /**
1812  * register_netdevice_notifier_net - register a per-netns network notifier block
1813  * @net: network namespace
1814  * @nb: notifier
1815  *
1816  * Register a notifier to be called when network device events occur.
1817  * The notifier passed is linked into the kernel structures and must
1818  * not be reused until it has been unregistered. A negative errno code
1819  * is returned on a failure.
1820  *
1821  * When registered all registration and up events are replayed
1822  * to the new notifier to allow device to have a race free
1823  * view of the network device list.
1824  */
1825 
1826 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1827 {
1828 	int err;
1829 
1830 	rtnl_lock();
1831 	err = __register_netdevice_notifier_net(net, nb, false);
1832 	rtnl_unlock();
1833 	return err;
1834 }
1835 EXPORT_SYMBOL(register_netdevice_notifier_net);
1836 
1837 /**
1838  * unregister_netdevice_notifier_net - unregister a per-netns
1839  *                                     network notifier block
1840  * @net: network namespace
1841  * @nb: notifier
1842  *
1843  * Unregister a notifier previously registered by
1844  * register_netdevice_notifier_net(). The notifier is unlinked from the
1845  * kernel structures and may then be reused. A negative errno code
1846  * is returned on a failure.
1847  *
1848  * After unregistering unregister and down device events are synthesized
1849  * for all devices on the device list to the removed notifier to remove
1850  * the need for special case cleanup code.
1851  */
1852 
1853 int unregister_netdevice_notifier_net(struct net *net,
1854 				      struct notifier_block *nb)
1855 {
1856 	int err;
1857 
1858 	rtnl_lock();
1859 	err = __unregister_netdevice_notifier_net(net, nb);
1860 	rtnl_unlock();
1861 	return err;
1862 }
1863 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1864 
1865 static void __move_netdevice_notifier_net(struct net *src_net,
1866 					  struct net *dst_net,
1867 					  struct notifier_block *nb)
1868 {
1869 	__unregister_netdevice_notifier_net(src_net, nb);
1870 	__register_netdevice_notifier_net(dst_net, nb, true);
1871 }
1872 
1873 int register_netdevice_notifier_dev_net(struct net_device *dev,
1874 					struct notifier_block *nb,
1875 					struct netdev_net_notifier *nn)
1876 {
1877 	int err;
1878 
1879 	rtnl_lock();
1880 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1881 	if (!err) {
1882 		nn->nb = nb;
1883 		list_add(&nn->list, &dev->net_notifier_list);
1884 	}
1885 	rtnl_unlock();
1886 	return err;
1887 }
1888 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1889 
1890 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1891 					  struct notifier_block *nb,
1892 					  struct netdev_net_notifier *nn)
1893 {
1894 	int err;
1895 
1896 	rtnl_lock();
1897 	list_del(&nn->list);
1898 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1899 	rtnl_unlock();
1900 	return err;
1901 }
1902 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1903 
1904 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1905 					     struct net *net)
1906 {
1907 	struct netdev_net_notifier *nn;
1908 
1909 	list_for_each_entry(nn, &dev->net_notifier_list, list)
1910 		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1911 }
1912 
1913 /**
1914  *	call_netdevice_notifiers_info - call all network notifier blocks
1915  *	@val: value passed unmodified to notifier function
1916  *	@info: notifier information data
1917  *
1918  *	Call all network notifier blocks.  Parameters and return value
1919  *	are as for raw_notifier_call_chain().
1920  */
1921 
1922 static int call_netdevice_notifiers_info(unsigned long val,
1923 					 struct netdev_notifier_info *info)
1924 {
1925 	struct net *net = dev_net(info->dev);
1926 	int ret;
1927 
1928 	ASSERT_RTNL();
1929 
1930 	/* Run per-netns notifier block chain first, then run the global one.
1931 	 * Hopefully, one day, the global one is going to be removed after
1932 	 * all notifier block registrators get converted to be per-netns.
1933 	 */
1934 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1935 	if (ret & NOTIFY_STOP_MASK)
1936 		return ret;
1937 	return raw_notifier_call_chain(&netdev_chain, val, info);
1938 }
1939 
1940 /**
1941  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1942  *	                                       for and rollback on error
1943  *	@val_up: value passed unmodified to notifier function
1944  *	@val_down: value passed unmodified to the notifier function when
1945  *	           recovering from an error on @val_up
1946  *	@info: notifier information data
1947  *
1948  *	Call all per-netns network notifier blocks, but not notifier blocks on
1949  *	the global notifier chain. Parameters and return value are as for
1950  *	raw_notifier_call_chain_robust().
1951  */
1952 
1953 static int
1954 call_netdevice_notifiers_info_robust(unsigned long val_up,
1955 				     unsigned long val_down,
1956 				     struct netdev_notifier_info *info)
1957 {
1958 	struct net *net = dev_net(info->dev);
1959 
1960 	ASSERT_RTNL();
1961 
1962 	return raw_notifier_call_chain_robust(&net->netdev_chain,
1963 					      val_up, val_down, info);
1964 }
1965 
1966 static int call_netdevice_notifiers_extack(unsigned long val,
1967 					   struct net_device *dev,
1968 					   struct netlink_ext_ack *extack)
1969 {
1970 	struct netdev_notifier_info info = {
1971 		.dev = dev,
1972 		.extack = extack,
1973 	};
1974 
1975 	return call_netdevice_notifiers_info(val, &info);
1976 }
1977 
1978 /**
1979  *	call_netdevice_notifiers - call all network notifier blocks
1980  *      @val: value passed unmodified to notifier function
1981  *      @dev: net_device pointer passed unmodified to notifier function
1982  *
1983  *	Call all network notifier blocks.  Parameters and return value
1984  *	are as for raw_notifier_call_chain().
1985  */
1986 
1987 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1988 {
1989 	return call_netdevice_notifiers_extack(val, dev, NULL);
1990 }
1991 EXPORT_SYMBOL(call_netdevice_notifiers);
1992 
1993 /**
1994  *	call_netdevice_notifiers_mtu - call all network notifier blocks
1995  *	@val: value passed unmodified to notifier function
1996  *	@dev: net_device pointer passed unmodified to notifier function
1997  *	@arg: additional u32 argument passed to the notifier function
1998  *
1999  *	Call all network notifier blocks.  Parameters and return value
2000  *	are as for raw_notifier_call_chain().
2001  */
2002 static int call_netdevice_notifiers_mtu(unsigned long val,
2003 					struct net_device *dev, u32 arg)
2004 {
2005 	struct netdev_notifier_info_ext info = {
2006 		.info.dev = dev,
2007 		.ext.mtu = arg,
2008 	};
2009 
2010 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2011 
2012 	return call_netdevice_notifiers_info(val, &info.info);
2013 }
2014 
2015 #ifdef CONFIG_NET_INGRESS
2016 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2017 
2018 void net_inc_ingress_queue(void)
2019 {
2020 	static_branch_inc(&ingress_needed_key);
2021 }
2022 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2023 
2024 void net_dec_ingress_queue(void)
2025 {
2026 	static_branch_dec(&ingress_needed_key);
2027 }
2028 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2029 #endif
2030 
2031 #ifdef CONFIG_NET_EGRESS
2032 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2033 
2034 void net_inc_egress_queue(void)
2035 {
2036 	static_branch_inc(&egress_needed_key);
2037 }
2038 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2039 
2040 void net_dec_egress_queue(void)
2041 {
2042 	static_branch_dec(&egress_needed_key);
2043 }
2044 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2045 #endif
2046 
2047 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2048 EXPORT_SYMBOL(netstamp_needed_key);
2049 #ifdef CONFIG_JUMP_LABEL
2050 static atomic_t netstamp_needed_deferred;
2051 static atomic_t netstamp_wanted;
2052 static void netstamp_clear(struct work_struct *work)
2053 {
2054 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2055 	int wanted;
2056 
2057 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2058 	if (wanted > 0)
2059 		static_branch_enable(&netstamp_needed_key);
2060 	else
2061 		static_branch_disable(&netstamp_needed_key);
2062 }
2063 static DECLARE_WORK(netstamp_work, netstamp_clear);
2064 #endif
2065 
2066 void net_enable_timestamp(void)
2067 {
2068 #ifdef CONFIG_JUMP_LABEL
2069 	int wanted = atomic_read(&netstamp_wanted);
2070 
2071 	while (wanted > 0) {
2072 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2073 			return;
2074 	}
2075 	atomic_inc(&netstamp_needed_deferred);
2076 	schedule_work(&netstamp_work);
2077 #else
2078 	static_branch_inc(&netstamp_needed_key);
2079 #endif
2080 }
2081 EXPORT_SYMBOL(net_enable_timestamp);
2082 
2083 void net_disable_timestamp(void)
2084 {
2085 #ifdef CONFIG_JUMP_LABEL
2086 	int wanted = atomic_read(&netstamp_wanted);
2087 
2088 	while (wanted > 1) {
2089 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2090 			return;
2091 	}
2092 	atomic_dec(&netstamp_needed_deferred);
2093 	schedule_work(&netstamp_work);
2094 #else
2095 	static_branch_dec(&netstamp_needed_key);
2096 #endif
2097 }
2098 EXPORT_SYMBOL(net_disable_timestamp);
2099 
2100 static inline void net_timestamp_set(struct sk_buff *skb)
2101 {
2102 	skb->tstamp = 0;
2103 	skb->mono_delivery_time = 0;
2104 	if (static_branch_unlikely(&netstamp_needed_key))
2105 		skb->tstamp = ktime_get_real();
2106 }
2107 
2108 #define net_timestamp_check(COND, SKB)				\
2109 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2110 		if ((COND) && !(SKB)->tstamp)			\
2111 			(SKB)->tstamp = ktime_get_real();	\
2112 	}							\
2113 
2114 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2115 {
2116 	return __is_skb_forwardable(dev, skb, true);
2117 }
2118 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2119 
2120 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2121 			      bool check_mtu)
2122 {
2123 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2124 
2125 	if (likely(!ret)) {
2126 		skb->protocol = eth_type_trans(skb, dev);
2127 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2128 	}
2129 
2130 	return ret;
2131 }
2132 
2133 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2134 {
2135 	return __dev_forward_skb2(dev, skb, true);
2136 }
2137 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2138 
2139 /**
2140  * dev_forward_skb - loopback an skb to another netif
2141  *
2142  * @dev: destination network device
2143  * @skb: buffer to forward
2144  *
2145  * return values:
2146  *	NET_RX_SUCCESS	(no congestion)
2147  *	NET_RX_DROP     (packet was dropped, but freed)
2148  *
2149  * dev_forward_skb can be used for injecting an skb from the
2150  * start_xmit function of one device into the receive queue
2151  * of another device.
2152  *
2153  * The receiving device may be in another namespace, so
2154  * we have to clear all information in the skb that could
2155  * impact namespace isolation.
2156  */
2157 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2158 {
2159 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2160 }
2161 EXPORT_SYMBOL_GPL(dev_forward_skb);
2162 
2163 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2164 {
2165 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2166 }
2167 
2168 static inline int deliver_skb(struct sk_buff *skb,
2169 			      struct packet_type *pt_prev,
2170 			      struct net_device *orig_dev)
2171 {
2172 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2173 		return -ENOMEM;
2174 	refcount_inc(&skb->users);
2175 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2176 }
2177 
2178 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2179 					  struct packet_type **pt,
2180 					  struct net_device *orig_dev,
2181 					  __be16 type,
2182 					  struct list_head *ptype_list)
2183 {
2184 	struct packet_type *ptype, *pt_prev = *pt;
2185 
2186 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2187 		if (ptype->type != type)
2188 			continue;
2189 		if (pt_prev)
2190 			deliver_skb(skb, pt_prev, orig_dev);
2191 		pt_prev = ptype;
2192 	}
2193 	*pt = pt_prev;
2194 }
2195 
2196 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2197 {
2198 	if (!ptype->af_packet_priv || !skb->sk)
2199 		return false;
2200 
2201 	if (ptype->id_match)
2202 		return ptype->id_match(ptype, skb->sk);
2203 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2204 		return true;
2205 
2206 	return false;
2207 }
2208 
2209 /**
2210  * dev_nit_active - return true if any network interface taps are in use
2211  *
2212  * @dev: network device to check for the presence of taps
2213  */
2214 bool dev_nit_active(struct net_device *dev)
2215 {
2216 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2217 }
2218 EXPORT_SYMBOL_GPL(dev_nit_active);
2219 
2220 /*
2221  *	Support routine. Sends outgoing frames to any network
2222  *	taps currently in use.
2223  */
2224 
2225 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2226 {
2227 	struct packet_type *ptype;
2228 	struct sk_buff *skb2 = NULL;
2229 	struct packet_type *pt_prev = NULL;
2230 	struct list_head *ptype_list = &ptype_all;
2231 
2232 	rcu_read_lock();
2233 again:
2234 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2235 		if (ptype->ignore_outgoing)
2236 			continue;
2237 
2238 		/* Never send packets back to the socket
2239 		 * they originated from - MvS (miquels@drinkel.ow.org)
2240 		 */
2241 		if (skb_loop_sk(ptype, skb))
2242 			continue;
2243 
2244 		if (pt_prev) {
2245 			deliver_skb(skb2, pt_prev, skb->dev);
2246 			pt_prev = ptype;
2247 			continue;
2248 		}
2249 
2250 		/* need to clone skb, done only once */
2251 		skb2 = skb_clone(skb, GFP_ATOMIC);
2252 		if (!skb2)
2253 			goto out_unlock;
2254 
2255 		net_timestamp_set(skb2);
2256 
2257 		/* skb->nh should be correctly
2258 		 * set by sender, so that the second statement is
2259 		 * just protection against buggy protocols.
2260 		 */
2261 		skb_reset_mac_header(skb2);
2262 
2263 		if (skb_network_header(skb2) < skb2->data ||
2264 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2265 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2266 					     ntohs(skb2->protocol),
2267 					     dev->name);
2268 			skb_reset_network_header(skb2);
2269 		}
2270 
2271 		skb2->transport_header = skb2->network_header;
2272 		skb2->pkt_type = PACKET_OUTGOING;
2273 		pt_prev = ptype;
2274 	}
2275 
2276 	if (ptype_list == &ptype_all) {
2277 		ptype_list = &dev->ptype_all;
2278 		goto again;
2279 	}
2280 out_unlock:
2281 	if (pt_prev) {
2282 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2283 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2284 		else
2285 			kfree_skb(skb2);
2286 	}
2287 	rcu_read_unlock();
2288 }
2289 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2290 
2291 /**
2292  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2293  * @dev: Network device
2294  * @txq: number of queues available
2295  *
2296  * If real_num_tx_queues is changed the tc mappings may no longer be
2297  * valid. To resolve this verify the tc mapping remains valid and if
2298  * not NULL the mapping. With no priorities mapping to this
2299  * offset/count pair it will no longer be used. In the worst case TC0
2300  * is invalid nothing can be done so disable priority mappings. If is
2301  * expected that drivers will fix this mapping if they can before
2302  * calling netif_set_real_num_tx_queues.
2303  */
2304 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2305 {
2306 	int i;
2307 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2308 
2309 	/* If TC0 is invalidated disable TC mapping */
2310 	if (tc->offset + tc->count > txq) {
2311 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2312 		dev->num_tc = 0;
2313 		return;
2314 	}
2315 
2316 	/* Invalidated prio to tc mappings set to TC0 */
2317 	for (i = 1; i < TC_BITMASK + 1; i++) {
2318 		int q = netdev_get_prio_tc_map(dev, i);
2319 
2320 		tc = &dev->tc_to_txq[q];
2321 		if (tc->offset + tc->count > txq) {
2322 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2323 				    i, q);
2324 			netdev_set_prio_tc_map(dev, i, 0);
2325 		}
2326 	}
2327 }
2328 
2329 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2330 {
2331 	if (dev->num_tc) {
2332 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2333 		int i;
2334 
2335 		/* walk through the TCs and see if it falls into any of them */
2336 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2337 			if ((txq - tc->offset) < tc->count)
2338 				return i;
2339 		}
2340 
2341 		/* didn't find it, just return -1 to indicate no match */
2342 		return -1;
2343 	}
2344 
2345 	return 0;
2346 }
2347 EXPORT_SYMBOL(netdev_txq_to_tc);
2348 
2349 #ifdef CONFIG_XPS
2350 static struct static_key xps_needed __read_mostly;
2351 static struct static_key xps_rxqs_needed __read_mostly;
2352 static DEFINE_MUTEX(xps_map_mutex);
2353 #define xmap_dereference(P)		\
2354 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2355 
2356 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2357 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2358 {
2359 	struct xps_map *map = NULL;
2360 	int pos;
2361 
2362 	if (dev_maps)
2363 		map = xmap_dereference(dev_maps->attr_map[tci]);
2364 	if (!map)
2365 		return false;
2366 
2367 	for (pos = map->len; pos--;) {
2368 		if (map->queues[pos] != index)
2369 			continue;
2370 
2371 		if (map->len > 1) {
2372 			map->queues[pos] = map->queues[--map->len];
2373 			break;
2374 		}
2375 
2376 		if (old_maps)
2377 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2378 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2379 		kfree_rcu(map, rcu);
2380 		return false;
2381 	}
2382 
2383 	return true;
2384 }
2385 
2386 static bool remove_xps_queue_cpu(struct net_device *dev,
2387 				 struct xps_dev_maps *dev_maps,
2388 				 int cpu, u16 offset, u16 count)
2389 {
2390 	int num_tc = dev_maps->num_tc;
2391 	bool active = false;
2392 	int tci;
2393 
2394 	for (tci = cpu * num_tc; num_tc--; tci++) {
2395 		int i, j;
2396 
2397 		for (i = count, j = offset; i--; j++) {
2398 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2399 				break;
2400 		}
2401 
2402 		active |= i < 0;
2403 	}
2404 
2405 	return active;
2406 }
2407 
2408 static void reset_xps_maps(struct net_device *dev,
2409 			   struct xps_dev_maps *dev_maps,
2410 			   enum xps_map_type type)
2411 {
2412 	static_key_slow_dec_cpuslocked(&xps_needed);
2413 	if (type == XPS_RXQS)
2414 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2415 
2416 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2417 
2418 	kfree_rcu(dev_maps, rcu);
2419 }
2420 
2421 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2422 			   u16 offset, u16 count)
2423 {
2424 	struct xps_dev_maps *dev_maps;
2425 	bool active = false;
2426 	int i, j;
2427 
2428 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2429 	if (!dev_maps)
2430 		return;
2431 
2432 	for (j = 0; j < dev_maps->nr_ids; j++)
2433 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2434 	if (!active)
2435 		reset_xps_maps(dev, dev_maps, type);
2436 
2437 	if (type == XPS_CPUS) {
2438 		for (i = offset + (count - 1); count--; i--)
2439 			netdev_queue_numa_node_write(
2440 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2441 	}
2442 }
2443 
2444 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2445 				   u16 count)
2446 {
2447 	if (!static_key_false(&xps_needed))
2448 		return;
2449 
2450 	cpus_read_lock();
2451 	mutex_lock(&xps_map_mutex);
2452 
2453 	if (static_key_false(&xps_rxqs_needed))
2454 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2455 
2456 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2457 
2458 	mutex_unlock(&xps_map_mutex);
2459 	cpus_read_unlock();
2460 }
2461 
2462 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2463 {
2464 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2465 }
2466 
2467 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2468 				      u16 index, bool is_rxqs_map)
2469 {
2470 	struct xps_map *new_map;
2471 	int alloc_len = XPS_MIN_MAP_ALLOC;
2472 	int i, pos;
2473 
2474 	for (pos = 0; map && pos < map->len; pos++) {
2475 		if (map->queues[pos] != index)
2476 			continue;
2477 		return map;
2478 	}
2479 
2480 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2481 	if (map) {
2482 		if (pos < map->alloc_len)
2483 			return map;
2484 
2485 		alloc_len = map->alloc_len * 2;
2486 	}
2487 
2488 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2489 	 *  map
2490 	 */
2491 	if (is_rxqs_map)
2492 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2493 	else
2494 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2495 				       cpu_to_node(attr_index));
2496 	if (!new_map)
2497 		return NULL;
2498 
2499 	for (i = 0; i < pos; i++)
2500 		new_map->queues[i] = map->queues[i];
2501 	new_map->alloc_len = alloc_len;
2502 	new_map->len = pos;
2503 
2504 	return new_map;
2505 }
2506 
2507 /* Copy xps maps at a given index */
2508 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2509 			      struct xps_dev_maps *new_dev_maps, int index,
2510 			      int tc, bool skip_tc)
2511 {
2512 	int i, tci = index * dev_maps->num_tc;
2513 	struct xps_map *map;
2514 
2515 	/* copy maps belonging to foreign traffic classes */
2516 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2517 		if (i == tc && skip_tc)
2518 			continue;
2519 
2520 		/* fill in the new device map from the old device map */
2521 		map = xmap_dereference(dev_maps->attr_map[tci]);
2522 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2523 	}
2524 }
2525 
2526 /* Must be called under cpus_read_lock */
2527 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2528 			  u16 index, enum xps_map_type type)
2529 {
2530 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2531 	const unsigned long *online_mask = NULL;
2532 	bool active = false, copy = false;
2533 	int i, j, tci, numa_node_id = -2;
2534 	int maps_sz, num_tc = 1, tc = 0;
2535 	struct xps_map *map, *new_map;
2536 	unsigned int nr_ids;
2537 
2538 	if (dev->num_tc) {
2539 		/* Do not allow XPS on subordinate device directly */
2540 		num_tc = dev->num_tc;
2541 		if (num_tc < 0)
2542 			return -EINVAL;
2543 
2544 		/* If queue belongs to subordinate dev use its map */
2545 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2546 
2547 		tc = netdev_txq_to_tc(dev, index);
2548 		if (tc < 0)
2549 			return -EINVAL;
2550 	}
2551 
2552 	mutex_lock(&xps_map_mutex);
2553 
2554 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2555 	if (type == XPS_RXQS) {
2556 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2557 		nr_ids = dev->num_rx_queues;
2558 	} else {
2559 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2560 		if (num_possible_cpus() > 1)
2561 			online_mask = cpumask_bits(cpu_online_mask);
2562 		nr_ids = nr_cpu_ids;
2563 	}
2564 
2565 	if (maps_sz < L1_CACHE_BYTES)
2566 		maps_sz = L1_CACHE_BYTES;
2567 
2568 	/* The old dev_maps could be larger or smaller than the one we're
2569 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2570 	 * between. We could try to be smart, but let's be safe instead and only
2571 	 * copy foreign traffic classes if the two map sizes match.
2572 	 */
2573 	if (dev_maps &&
2574 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2575 		copy = true;
2576 
2577 	/* allocate memory for queue storage */
2578 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2579 	     j < nr_ids;) {
2580 		if (!new_dev_maps) {
2581 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2582 			if (!new_dev_maps) {
2583 				mutex_unlock(&xps_map_mutex);
2584 				return -ENOMEM;
2585 			}
2586 
2587 			new_dev_maps->nr_ids = nr_ids;
2588 			new_dev_maps->num_tc = num_tc;
2589 		}
2590 
2591 		tci = j * num_tc + tc;
2592 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2593 
2594 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2595 		if (!map)
2596 			goto error;
2597 
2598 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2599 	}
2600 
2601 	if (!new_dev_maps)
2602 		goto out_no_new_maps;
2603 
2604 	if (!dev_maps) {
2605 		/* Increment static keys at most once per type */
2606 		static_key_slow_inc_cpuslocked(&xps_needed);
2607 		if (type == XPS_RXQS)
2608 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2609 	}
2610 
2611 	for (j = 0; j < nr_ids; j++) {
2612 		bool skip_tc = false;
2613 
2614 		tci = j * num_tc + tc;
2615 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2616 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2617 			/* add tx-queue to CPU/rx-queue maps */
2618 			int pos = 0;
2619 
2620 			skip_tc = true;
2621 
2622 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2623 			while ((pos < map->len) && (map->queues[pos] != index))
2624 				pos++;
2625 
2626 			if (pos == map->len)
2627 				map->queues[map->len++] = index;
2628 #ifdef CONFIG_NUMA
2629 			if (type == XPS_CPUS) {
2630 				if (numa_node_id == -2)
2631 					numa_node_id = cpu_to_node(j);
2632 				else if (numa_node_id != cpu_to_node(j))
2633 					numa_node_id = -1;
2634 			}
2635 #endif
2636 		}
2637 
2638 		if (copy)
2639 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2640 					  skip_tc);
2641 	}
2642 
2643 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2644 
2645 	/* Cleanup old maps */
2646 	if (!dev_maps)
2647 		goto out_no_old_maps;
2648 
2649 	for (j = 0; j < dev_maps->nr_ids; j++) {
2650 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2651 			map = xmap_dereference(dev_maps->attr_map[tci]);
2652 			if (!map)
2653 				continue;
2654 
2655 			if (copy) {
2656 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2657 				if (map == new_map)
2658 					continue;
2659 			}
2660 
2661 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2662 			kfree_rcu(map, rcu);
2663 		}
2664 	}
2665 
2666 	old_dev_maps = dev_maps;
2667 
2668 out_no_old_maps:
2669 	dev_maps = new_dev_maps;
2670 	active = true;
2671 
2672 out_no_new_maps:
2673 	if (type == XPS_CPUS)
2674 		/* update Tx queue numa node */
2675 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2676 					     (numa_node_id >= 0) ?
2677 					     numa_node_id : NUMA_NO_NODE);
2678 
2679 	if (!dev_maps)
2680 		goto out_no_maps;
2681 
2682 	/* removes tx-queue from unused CPUs/rx-queues */
2683 	for (j = 0; j < dev_maps->nr_ids; j++) {
2684 		tci = j * dev_maps->num_tc;
2685 
2686 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2687 			if (i == tc &&
2688 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2689 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2690 				continue;
2691 
2692 			active |= remove_xps_queue(dev_maps,
2693 						   copy ? old_dev_maps : NULL,
2694 						   tci, index);
2695 		}
2696 	}
2697 
2698 	if (old_dev_maps)
2699 		kfree_rcu(old_dev_maps, rcu);
2700 
2701 	/* free map if not active */
2702 	if (!active)
2703 		reset_xps_maps(dev, dev_maps, type);
2704 
2705 out_no_maps:
2706 	mutex_unlock(&xps_map_mutex);
2707 
2708 	return 0;
2709 error:
2710 	/* remove any maps that we added */
2711 	for (j = 0; j < nr_ids; j++) {
2712 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2713 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2714 			map = copy ?
2715 			      xmap_dereference(dev_maps->attr_map[tci]) :
2716 			      NULL;
2717 			if (new_map && new_map != map)
2718 				kfree(new_map);
2719 		}
2720 	}
2721 
2722 	mutex_unlock(&xps_map_mutex);
2723 
2724 	kfree(new_dev_maps);
2725 	return -ENOMEM;
2726 }
2727 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2728 
2729 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2730 			u16 index)
2731 {
2732 	int ret;
2733 
2734 	cpus_read_lock();
2735 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2736 	cpus_read_unlock();
2737 
2738 	return ret;
2739 }
2740 EXPORT_SYMBOL(netif_set_xps_queue);
2741 
2742 #endif
2743 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2744 {
2745 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2746 
2747 	/* Unbind any subordinate channels */
2748 	while (txq-- != &dev->_tx[0]) {
2749 		if (txq->sb_dev)
2750 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2751 	}
2752 }
2753 
2754 void netdev_reset_tc(struct net_device *dev)
2755 {
2756 #ifdef CONFIG_XPS
2757 	netif_reset_xps_queues_gt(dev, 0);
2758 #endif
2759 	netdev_unbind_all_sb_channels(dev);
2760 
2761 	/* Reset TC configuration of device */
2762 	dev->num_tc = 0;
2763 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2764 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2765 }
2766 EXPORT_SYMBOL(netdev_reset_tc);
2767 
2768 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2769 {
2770 	if (tc >= dev->num_tc)
2771 		return -EINVAL;
2772 
2773 #ifdef CONFIG_XPS
2774 	netif_reset_xps_queues(dev, offset, count);
2775 #endif
2776 	dev->tc_to_txq[tc].count = count;
2777 	dev->tc_to_txq[tc].offset = offset;
2778 	return 0;
2779 }
2780 EXPORT_SYMBOL(netdev_set_tc_queue);
2781 
2782 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2783 {
2784 	if (num_tc > TC_MAX_QUEUE)
2785 		return -EINVAL;
2786 
2787 #ifdef CONFIG_XPS
2788 	netif_reset_xps_queues_gt(dev, 0);
2789 #endif
2790 	netdev_unbind_all_sb_channels(dev);
2791 
2792 	dev->num_tc = num_tc;
2793 	return 0;
2794 }
2795 EXPORT_SYMBOL(netdev_set_num_tc);
2796 
2797 void netdev_unbind_sb_channel(struct net_device *dev,
2798 			      struct net_device *sb_dev)
2799 {
2800 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2801 
2802 #ifdef CONFIG_XPS
2803 	netif_reset_xps_queues_gt(sb_dev, 0);
2804 #endif
2805 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2806 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2807 
2808 	while (txq-- != &dev->_tx[0]) {
2809 		if (txq->sb_dev == sb_dev)
2810 			txq->sb_dev = NULL;
2811 	}
2812 }
2813 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2814 
2815 int netdev_bind_sb_channel_queue(struct net_device *dev,
2816 				 struct net_device *sb_dev,
2817 				 u8 tc, u16 count, u16 offset)
2818 {
2819 	/* Make certain the sb_dev and dev are already configured */
2820 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2821 		return -EINVAL;
2822 
2823 	/* We cannot hand out queues we don't have */
2824 	if ((offset + count) > dev->real_num_tx_queues)
2825 		return -EINVAL;
2826 
2827 	/* Record the mapping */
2828 	sb_dev->tc_to_txq[tc].count = count;
2829 	sb_dev->tc_to_txq[tc].offset = offset;
2830 
2831 	/* Provide a way for Tx queue to find the tc_to_txq map or
2832 	 * XPS map for itself.
2833 	 */
2834 	while (count--)
2835 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2836 
2837 	return 0;
2838 }
2839 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2840 
2841 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2842 {
2843 	/* Do not use a multiqueue device to represent a subordinate channel */
2844 	if (netif_is_multiqueue(dev))
2845 		return -ENODEV;
2846 
2847 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2848 	 * Channel 0 is meant to be "native" mode and used only to represent
2849 	 * the main root device. We allow writing 0 to reset the device back
2850 	 * to normal mode after being used as a subordinate channel.
2851 	 */
2852 	if (channel > S16_MAX)
2853 		return -EINVAL;
2854 
2855 	dev->num_tc = -channel;
2856 
2857 	return 0;
2858 }
2859 EXPORT_SYMBOL(netdev_set_sb_channel);
2860 
2861 /*
2862  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2863  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2864  */
2865 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2866 {
2867 	bool disabling;
2868 	int rc;
2869 
2870 	disabling = txq < dev->real_num_tx_queues;
2871 
2872 	if (txq < 1 || txq > dev->num_tx_queues)
2873 		return -EINVAL;
2874 
2875 	if (dev->reg_state == NETREG_REGISTERED ||
2876 	    dev->reg_state == NETREG_UNREGISTERING) {
2877 		ASSERT_RTNL();
2878 
2879 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2880 						  txq);
2881 		if (rc)
2882 			return rc;
2883 
2884 		if (dev->num_tc)
2885 			netif_setup_tc(dev, txq);
2886 
2887 		dev_qdisc_change_real_num_tx(dev, txq);
2888 
2889 		dev->real_num_tx_queues = txq;
2890 
2891 		if (disabling) {
2892 			synchronize_net();
2893 			qdisc_reset_all_tx_gt(dev, txq);
2894 #ifdef CONFIG_XPS
2895 			netif_reset_xps_queues_gt(dev, txq);
2896 #endif
2897 		}
2898 	} else {
2899 		dev->real_num_tx_queues = txq;
2900 	}
2901 
2902 	return 0;
2903 }
2904 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2905 
2906 #ifdef CONFIG_SYSFS
2907 /**
2908  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2909  *	@dev: Network device
2910  *	@rxq: Actual number of RX queues
2911  *
2912  *	This must be called either with the rtnl_lock held or before
2913  *	registration of the net device.  Returns 0 on success, or a
2914  *	negative error code.  If called before registration, it always
2915  *	succeeds.
2916  */
2917 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2918 {
2919 	int rc;
2920 
2921 	if (rxq < 1 || rxq > dev->num_rx_queues)
2922 		return -EINVAL;
2923 
2924 	if (dev->reg_state == NETREG_REGISTERED) {
2925 		ASSERT_RTNL();
2926 
2927 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2928 						  rxq);
2929 		if (rc)
2930 			return rc;
2931 	}
2932 
2933 	dev->real_num_rx_queues = rxq;
2934 	return 0;
2935 }
2936 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2937 #endif
2938 
2939 /**
2940  *	netif_set_real_num_queues - set actual number of RX and TX queues used
2941  *	@dev: Network device
2942  *	@txq: Actual number of TX queues
2943  *	@rxq: Actual number of RX queues
2944  *
2945  *	Set the real number of both TX and RX queues.
2946  *	Does nothing if the number of queues is already correct.
2947  */
2948 int netif_set_real_num_queues(struct net_device *dev,
2949 			      unsigned int txq, unsigned int rxq)
2950 {
2951 	unsigned int old_rxq = dev->real_num_rx_queues;
2952 	int err;
2953 
2954 	if (txq < 1 || txq > dev->num_tx_queues ||
2955 	    rxq < 1 || rxq > dev->num_rx_queues)
2956 		return -EINVAL;
2957 
2958 	/* Start from increases, so the error path only does decreases -
2959 	 * decreases can't fail.
2960 	 */
2961 	if (rxq > dev->real_num_rx_queues) {
2962 		err = netif_set_real_num_rx_queues(dev, rxq);
2963 		if (err)
2964 			return err;
2965 	}
2966 	if (txq > dev->real_num_tx_queues) {
2967 		err = netif_set_real_num_tx_queues(dev, txq);
2968 		if (err)
2969 			goto undo_rx;
2970 	}
2971 	if (rxq < dev->real_num_rx_queues)
2972 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
2973 	if (txq < dev->real_num_tx_queues)
2974 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
2975 
2976 	return 0;
2977 undo_rx:
2978 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
2979 	return err;
2980 }
2981 EXPORT_SYMBOL(netif_set_real_num_queues);
2982 
2983 /**
2984  * netif_set_tso_max_size() - set the max size of TSO frames supported
2985  * @dev:	netdev to update
2986  * @size:	max skb->len of a TSO frame
2987  *
2988  * Set the limit on the size of TSO super-frames the device can handle.
2989  * Unless explicitly set the stack will assume the value of
2990  * %GSO_LEGACY_MAX_SIZE.
2991  */
2992 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
2993 {
2994 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
2995 	if (size < READ_ONCE(dev->gso_max_size))
2996 		netif_set_gso_max_size(dev, size);
2997 	if (size < READ_ONCE(dev->gso_ipv4_max_size))
2998 		netif_set_gso_ipv4_max_size(dev, size);
2999 }
3000 EXPORT_SYMBOL(netif_set_tso_max_size);
3001 
3002 /**
3003  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3004  * @dev:	netdev to update
3005  * @segs:	max number of TCP segments
3006  *
3007  * Set the limit on the number of TCP segments the device can generate from
3008  * a single TSO super-frame.
3009  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3010  */
3011 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3012 {
3013 	dev->tso_max_segs = segs;
3014 	if (segs < READ_ONCE(dev->gso_max_segs))
3015 		netif_set_gso_max_segs(dev, segs);
3016 }
3017 EXPORT_SYMBOL(netif_set_tso_max_segs);
3018 
3019 /**
3020  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3021  * @to:		netdev to update
3022  * @from:	netdev from which to copy the limits
3023  */
3024 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3025 {
3026 	netif_set_tso_max_size(to, from->tso_max_size);
3027 	netif_set_tso_max_segs(to, from->tso_max_segs);
3028 }
3029 EXPORT_SYMBOL(netif_inherit_tso_max);
3030 
3031 /**
3032  * netif_get_num_default_rss_queues - default number of RSS queues
3033  *
3034  * Default value is the number of physical cores if there are only 1 or 2, or
3035  * divided by 2 if there are more.
3036  */
3037 int netif_get_num_default_rss_queues(void)
3038 {
3039 	cpumask_var_t cpus;
3040 	int cpu, count = 0;
3041 
3042 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3043 		return 1;
3044 
3045 	cpumask_copy(cpus, cpu_online_mask);
3046 	for_each_cpu(cpu, cpus) {
3047 		++count;
3048 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3049 	}
3050 	free_cpumask_var(cpus);
3051 
3052 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3053 }
3054 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3055 
3056 static void __netif_reschedule(struct Qdisc *q)
3057 {
3058 	struct softnet_data *sd;
3059 	unsigned long flags;
3060 
3061 	local_irq_save(flags);
3062 	sd = this_cpu_ptr(&softnet_data);
3063 	q->next_sched = NULL;
3064 	*sd->output_queue_tailp = q;
3065 	sd->output_queue_tailp = &q->next_sched;
3066 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3067 	local_irq_restore(flags);
3068 }
3069 
3070 void __netif_schedule(struct Qdisc *q)
3071 {
3072 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3073 		__netif_reschedule(q);
3074 }
3075 EXPORT_SYMBOL(__netif_schedule);
3076 
3077 struct dev_kfree_skb_cb {
3078 	enum skb_free_reason reason;
3079 };
3080 
3081 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3082 {
3083 	return (struct dev_kfree_skb_cb *)skb->cb;
3084 }
3085 
3086 void netif_schedule_queue(struct netdev_queue *txq)
3087 {
3088 	rcu_read_lock();
3089 	if (!netif_xmit_stopped(txq)) {
3090 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3091 
3092 		__netif_schedule(q);
3093 	}
3094 	rcu_read_unlock();
3095 }
3096 EXPORT_SYMBOL(netif_schedule_queue);
3097 
3098 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3099 {
3100 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3101 		struct Qdisc *q;
3102 
3103 		rcu_read_lock();
3104 		q = rcu_dereference(dev_queue->qdisc);
3105 		__netif_schedule(q);
3106 		rcu_read_unlock();
3107 	}
3108 }
3109 EXPORT_SYMBOL(netif_tx_wake_queue);
3110 
3111 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3112 {
3113 	unsigned long flags;
3114 
3115 	if (unlikely(!skb))
3116 		return;
3117 
3118 	if (likely(refcount_read(&skb->users) == 1)) {
3119 		smp_rmb();
3120 		refcount_set(&skb->users, 0);
3121 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3122 		return;
3123 	}
3124 	get_kfree_skb_cb(skb)->reason = reason;
3125 	local_irq_save(flags);
3126 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3127 	__this_cpu_write(softnet_data.completion_queue, skb);
3128 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3129 	local_irq_restore(flags);
3130 }
3131 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3132 
3133 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3134 {
3135 	if (in_hardirq() || irqs_disabled())
3136 		__dev_kfree_skb_irq(skb, reason);
3137 	else if (unlikely(reason == SKB_REASON_DROPPED))
3138 		kfree_skb(skb);
3139 	else
3140 		consume_skb(skb);
3141 }
3142 EXPORT_SYMBOL(__dev_kfree_skb_any);
3143 
3144 
3145 /**
3146  * netif_device_detach - mark device as removed
3147  * @dev: network device
3148  *
3149  * Mark device as removed from system and therefore no longer available.
3150  */
3151 void netif_device_detach(struct net_device *dev)
3152 {
3153 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3154 	    netif_running(dev)) {
3155 		netif_tx_stop_all_queues(dev);
3156 	}
3157 }
3158 EXPORT_SYMBOL(netif_device_detach);
3159 
3160 /**
3161  * netif_device_attach - mark device as attached
3162  * @dev: network device
3163  *
3164  * Mark device as attached from system and restart if needed.
3165  */
3166 void netif_device_attach(struct net_device *dev)
3167 {
3168 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3169 	    netif_running(dev)) {
3170 		netif_tx_wake_all_queues(dev);
3171 		__netdev_watchdog_up(dev);
3172 	}
3173 }
3174 EXPORT_SYMBOL(netif_device_attach);
3175 
3176 /*
3177  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3178  * to be used as a distribution range.
3179  */
3180 static u16 skb_tx_hash(const struct net_device *dev,
3181 		       const struct net_device *sb_dev,
3182 		       struct sk_buff *skb)
3183 {
3184 	u32 hash;
3185 	u16 qoffset = 0;
3186 	u16 qcount = dev->real_num_tx_queues;
3187 
3188 	if (dev->num_tc) {
3189 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3190 
3191 		qoffset = sb_dev->tc_to_txq[tc].offset;
3192 		qcount = sb_dev->tc_to_txq[tc].count;
3193 		if (unlikely(!qcount)) {
3194 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3195 					     sb_dev->name, qoffset, tc);
3196 			qoffset = 0;
3197 			qcount = dev->real_num_tx_queues;
3198 		}
3199 	}
3200 
3201 	if (skb_rx_queue_recorded(skb)) {
3202 		hash = skb_get_rx_queue(skb);
3203 		if (hash >= qoffset)
3204 			hash -= qoffset;
3205 		while (unlikely(hash >= qcount))
3206 			hash -= qcount;
3207 		return hash + qoffset;
3208 	}
3209 
3210 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3211 }
3212 
3213 static void skb_warn_bad_offload(const struct sk_buff *skb)
3214 {
3215 	static const netdev_features_t null_features;
3216 	struct net_device *dev = skb->dev;
3217 	const char *name = "";
3218 
3219 	if (!net_ratelimit())
3220 		return;
3221 
3222 	if (dev) {
3223 		if (dev->dev.parent)
3224 			name = dev_driver_string(dev->dev.parent);
3225 		else
3226 			name = netdev_name(dev);
3227 	}
3228 	skb_dump(KERN_WARNING, skb, false);
3229 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3230 	     name, dev ? &dev->features : &null_features,
3231 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3232 }
3233 
3234 /*
3235  * Invalidate hardware checksum when packet is to be mangled, and
3236  * complete checksum manually on outgoing path.
3237  */
3238 int skb_checksum_help(struct sk_buff *skb)
3239 {
3240 	__wsum csum;
3241 	int ret = 0, offset;
3242 
3243 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3244 		goto out_set_summed;
3245 
3246 	if (unlikely(skb_is_gso(skb))) {
3247 		skb_warn_bad_offload(skb);
3248 		return -EINVAL;
3249 	}
3250 
3251 	/* Before computing a checksum, we should make sure no frag could
3252 	 * be modified by an external entity : checksum could be wrong.
3253 	 */
3254 	if (skb_has_shared_frag(skb)) {
3255 		ret = __skb_linearize(skb);
3256 		if (ret)
3257 			goto out;
3258 	}
3259 
3260 	offset = skb_checksum_start_offset(skb);
3261 	ret = -EINVAL;
3262 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3263 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3264 		goto out;
3265 	}
3266 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3267 
3268 	offset += skb->csum_offset;
3269 	if (WARN_ON_ONCE(offset + sizeof(__sum16) > skb_headlen(skb))) {
3270 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3271 		goto out;
3272 	}
3273 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3274 	if (ret)
3275 		goto out;
3276 
3277 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3278 out_set_summed:
3279 	skb->ip_summed = CHECKSUM_NONE;
3280 out:
3281 	return ret;
3282 }
3283 EXPORT_SYMBOL(skb_checksum_help);
3284 
3285 int skb_crc32c_csum_help(struct sk_buff *skb)
3286 {
3287 	__le32 crc32c_csum;
3288 	int ret = 0, offset, start;
3289 
3290 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3291 		goto out;
3292 
3293 	if (unlikely(skb_is_gso(skb)))
3294 		goto out;
3295 
3296 	/* Before computing a checksum, we should make sure no frag could
3297 	 * be modified by an external entity : checksum could be wrong.
3298 	 */
3299 	if (unlikely(skb_has_shared_frag(skb))) {
3300 		ret = __skb_linearize(skb);
3301 		if (ret)
3302 			goto out;
3303 	}
3304 	start = skb_checksum_start_offset(skb);
3305 	offset = start + offsetof(struct sctphdr, checksum);
3306 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3307 		ret = -EINVAL;
3308 		goto out;
3309 	}
3310 
3311 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3312 	if (ret)
3313 		goto out;
3314 
3315 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3316 						  skb->len - start, ~(__u32)0,
3317 						  crc32c_csum_stub));
3318 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3319 	skb->ip_summed = CHECKSUM_NONE;
3320 	skb->csum_not_inet = 0;
3321 out:
3322 	return ret;
3323 }
3324 
3325 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3326 {
3327 	__be16 type = skb->protocol;
3328 
3329 	/* Tunnel gso handlers can set protocol to ethernet. */
3330 	if (type == htons(ETH_P_TEB)) {
3331 		struct ethhdr *eth;
3332 
3333 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3334 			return 0;
3335 
3336 		eth = (struct ethhdr *)skb->data;
3337 		type = eth->h_proto;
3338 	}
3339 
3340 	return __vlan_get_protocol(skb, type, depth);
3341 }
3342 
3343 /* openvswitch calls this on rx path, so we need a different check.
3344  */
3345 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3346 {
3347 	if (tx_path)
3348 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3349 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3350 
3351 	return skb->ip_summed == CHECKSUM_NONE;
3352 }
3353 
3354 /**
3355  *	__skb_gso_segment - Perform segmentation on skb.
3356  *	@skb: buffer to segment
3357  *	@features: features for the output path (see dev->features)
3358  *	@tx_path: whether it is called in TX path
3359  *
3360  *	This function segments the given skb and returns a list of segments.
3361  *
3362  *	It may return NULL if the skb requires no segmentation.  This is
3363  *	only possible when GSO is used for verifying header integrity.
3364  *
3365  *	Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3366  */
3367 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3368 				  netdev_features_t features, bool tx_path)
3369 {
3370 	struct sk_buff *segs;
3371 
3372 	if (unlikely(skb_needs_check(skb, tx_path))) {
3373 		int err;
3374 
3375 		/* We're going to init ->check field in TCP or UDP header */
3376 		err = skb_cow_head(skb, 0);
3377 		if (err < 0)
3378 			return ERR_PTR(err);
3379 	}
3380 
3381 	/* Only report GSO partial support if it will enable us to
3382 	 * support segmentation on this frame without needing additional
3383 	 * work.
3384 	 */
3385 	if (features & NETIF_F_GSO_PARTIAL) {
3386 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3387 		struct net_device *dev = skb->dev;
3388 
3389 		partial_features |= dev->features & dev->gso_partial_features;
3390 		if (!skb_gso_ok(skb, features | partial_features))
3391 			features &= ~NETIF_F_GSO_PARTIAL;
3392 	}
3393 
3394 	BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3395 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3396 
3397 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3398 	SKB_GSO_CB(skb)->encap_level = 0;
3399 
3400 	skb_reset_mac_header(skb);
3401 	skb_reset_mac_len(skb);
3402 
3403 	segs = skb_mac_gso_segment(skb, features);
3404 
3405 	if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3406 		skb_warn_bad_offload(skb);
3407 
3408 	return segs;
3409 }
3410 EXPORT_SYMBOL(__skb_gso_segment);
3411 
3412 /* Take action when hardware reception checksum errors are detected. */
3413 #ifdef CONFIG_BUG
3414 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3415 {
3416 	netdev_err(dev, "hw csum failure\n");
3417 	skb_dump(KERN_ERR, skb, true);
3418 	dump_stack();
3419 }
3420 
3421 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3422 {
3423 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3424 }
3425 EXPORT_SYMBOL(netdev_rx_csum_fault);
3426 #endif
3427 
3428 /* XXX: check that highmem exists at all on the given machine. */
3429 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3430 {
3431 #ifdef CONFIG_HIGHMEM
3432 	int i;
3433 
3434 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3435 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3436 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3437 
3438 			if (PageHighMem(skb_frag_page(frag)))
3439 				return 1;
3440 		}
3441 	}
3442 #endif
3443 	return 0;
3444 }
3445 
3446 /* If MPLS offload request, verify we are testing hardware MPLS features
3447  * instead of standard features for the netdev.
3448  */
3449 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3450 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3451 					   netdev_features_t features,
3452 					   __be16 type)
3453 {
3454 	if (eth_p_mpls(type))
3455 		features &= skb->dev->mpls_features;
3456 
3457 	return features;
3458 }
3459 #else
3460 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3461 					   netdev_features_t features,
3462 					   __be16 type)
3463 {
3464 	return features;
3465 }
3466 #endif
3467 
3468 static netdev_features_t harmonize_features(struct sk_buff *skb,
3469 	netdev_features_t features)
3470 {
3471 	__be16 type;
3472 
3473 	type = skb_network_protocol(skb, NULL);
3474 	features = net_mpls_features(skb, features, type);
3475 
3476 	if (skb->ip_summed != CHECKSUM_NONE &&
3477 	    !can_checksum_protocol(features, type)) {
3478 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3479 	}
3480 	if (illegal_highdma(skb->dev, skb))
3481 		features &= ~NETIF_F_SG;
3482 
3483 	return features;
3484 }
3485 
3486 netdev_features_t passthru_features_check(struct sk_buff *skb,
3487 					  struct net_device *dev,
3488 					  netdev_features_t features)
3489 {
3490 	return features;
3491 }
3492 EXPORT_SYMBOL(passthru_features_check);
3493 
3494 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3495 					     struct net_device *dev,
3496 					     netdev_features_t features)
3497 {
3498 	return vlan_features_check(skb, features);
3499 }
3500 
3501 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3502 					    struct net_device *dev,
3503 					    netdev_features_t features)
3504 {
3505 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3506 
3507 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3508 		return features & ~NETIF_F_GSO_MASK;
3509 
3510 	if (!skb_shinfo(skb)->gso_type) {
3511 		skb_warn_bad_offload(skb);
3512 		return features & ~NETIF_F_GSO_MASK;
3513 	}
3514 
3515 	/* Support for GSO partial features requires software
3516 	 * intervention before we can actually process the packets
3517 	 * so we need to strip support for any partial features now
3518 	 * and we can pull them back in after we have partially
3519 	 * segmented the frame.
3520 	 */
3521 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3522 		features &= ~dev->gso_partial_features;
3523 
3524 	/* Make sure to clear the IPv4 ID mangling feature if the
3525 	 * IPv4 header has the potential to be fragmented.
3526 	 */
3527 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3528 		struct iphdr *iph = skb->encapsulation ?
3529 				    inner_ip_hdr(skb) : ip_hdr(skb);
3530 
3531 		if (!(iph->frag_off & htons(IP_DF)))
3532 			features &= ~NETIF_F_TSO_MANGLEID;
3533 	}
3534 
3535 	return features;
3536 }
3537 
3538 netdev_features_t netif_skb_features(struct sk_buff *skb)
3539 {
3540 	struct net_device *dev = skb->dev;
3541 	netdev_features_t features = dev->features;
3542 
3543 	if (skb_is_gso(skb))
3544 		features = gso_features_check(skb, dev, features);
3545 
3546 	/* If encapsulation offload request, verify we are testing
3547 	 * hardware encapsulation features instead of standard
3548 	 * features for the netdev
3549 	 */
3550 	if (skb->encapsulation)
3551 		features &= dev->hw_enc_features;
3552 
3553 	if (skb_vlan_tagged(skb))
3554 		features = netdev_intersect_features(features,
3555 						     dev->vlan_features |
3556 						     NETIF_F_HW_VLAN_CTAG_TX |
3557 						     NETIF_F_HW_VLAN_STAG_TX);
3558 
3559 	if (dev->netdev_ops->ndo_features_check)
3560 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3561 								features);
3562 	else
3563 		features &= dflt_features_check(skb, dev, features);
3564 
3565 	return harmonize_features(skb, features);
3566 }
3567 EXPORT_SYMBOL(netif_skb_features);
3568 
3569 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3570 		    struct netdev_queue *txq, bool more)
3571 {
3572 	unsigned int len;
3573 	int rc;
3574 
3575 	if (dev_nit_active(dev))
3576 		dev_queue_xmit_nit(skb, dev);
3577 
3578 	len = skb->len;
3579 	trace_net_dev_start_xmit(skb, dev);
3580 	rc = netdev_start_xmit(skb, dev, txq, more);
3581 	trace_net_dev_xmit(skb, rc, dev, len);
3582 
3583 	return rc;
3584 }
3585 
3586 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3587 				    struct netdev_queue *txq, int *ret)
3588 {
3589 	struct sk_buff *skb = first;
3590 	int rc = NETDEV_TX_OK;
3591 
3592 	while (skb) {
3593 		struct sk_buff *next = skb->next;
3594 
3595 		skb_mark_not_on_list(skb);
3596 		rc = xmit_one(skb, dev, txq, next != NULL);
3597 		if (unlikely(!dev_xmit_complete(rc))) {
3598 			skb->next = next;
3599 			goto out;
3600 		}
3601 
3602 		skb = next;
3603 		if (netif_tx_queue_stopped(txq) && skb) {
3604 			rc = NETDEV_TX_BUSY;
3605 			break;
3606 		}
3607 	}
3608 
3609 out:
3610 	*ret = rc;
3611 	return skb;
3612 }
3613 
3614 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3615 					  netdev_features_t features)
3616 {
3617 	if (skb_vlan_tag_present(skb) &&
3618 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3619 		skb = __vlan_hwaccel_push_inside(skb);
3620 	return skb;
3621 }
3622 
3623 int skb_csum_hwoffload_help(struct sk_buff *skb,
3624 			    const netdev_features_t features)
3625 {
3626 	if (unlikely(skb_csum_is_sctp(skb)))
3627 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3628 			skb_crc32c_csum_help(skb);
3629 
3630 	if (features & NETIF_F_HW_CSUM)
3631 		return 0;
3632 
3633 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3634 		switch (skb->csum_offset) {
3635 		case offsetof(struct tcphdr, check):
3636 		case offsetof(struct udphdr, check):
3637 			return 0;
3638 		}
3639 	}
3640 
3641 	return skb_checksum_help(skb);
3642 }
3643 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3644 
3645 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3646 {
3647 	netdev_features_t features;
3648 
3649 	features = netif_skb_features(skb);
3650 	skb = validate_xmit_vlan(skb, features);
3651 	if (unlikely(!skb))
3652 		goto out_null;
3653 
3654 	skb = sk_validate_xmit_skb(skb, dev);
3655 	if (unlikely(!skb))
3656 		goto out_null;
3657 
3658 	if (netif_needs_gso(skb, features)) {
3659 		struct sk_buff *segs;
3660 
3661 		segs = skb_gso_segment(skb, features);
3662 		if (IS_ERR(segs)) {
3663 			goto out_kfree_skb;
3664 		} else if (segs) {
3665 			consume_skb(skb);
3666 			skb = segs;
3667 		}
3668 	} else {
3669 		if (skb_needs_linearize(skb, features) &&
3670 		    __skb_linearize(skb))
3671 			goto out_kfree_skb;
3672 
3673 		/* If packet is not checksummed and device does not
3674 		 * support checksumming for this protocol, complete
3675 		 * checksumming here.
3676 		 */
3677 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3678 			if (skb->encapsulation)
3679 				skb_set_inner_transport_header(skb,
3680 							       skb_checksum_start_offset(skb));
3681 			else
3682 				skb_set_transport_header(skb,
3683 							 skb_checksum_start_offset(skb));
3684 			if (skb_csum_hwoffload_help(skb, features))
3685 				goto out_kfree_skb;
3686 		}
3687 	}
3688 
3689 	skb = validate_xmit_xfrm(skb, features, again);
3690 
3691 	return skb;
3692 
3693 out_kfree_skb:
3694 	kfree_skb(skb);
3695 out_null:
3696 	dev_core_stats_tx_dropped_inc(dev);
3697 	return NULL;
3698 }
3699 
3700 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3701 {
3702 	struct sk_buff *next, *head = NULL, *tail;
3703 
3704 	for (; skb != NULL; skb = next) {
3705 		next = skb->next;
3706 		skb_mark_not_on_list(skb);
3707 
3708 		/* in case skb wont be segmented, point to itself */
3709 		skb->prev = skb;
3710 
3711 		skb = validate_xmit_skb(skb, dev, again);
3712 		if (!skb)
3713 			continue;
3714 
3715 		if (!head)
3716 			head = skb;
3717 		else
3718 			tail->next = skb;
3719 		/* If skb was segmented, skb->prev points to
3720 		 * the last segment. If not, it still contains skb.
3721 		 */
3722 		tail = skb->prev;
3723 	}
3724 	return head;
3725 }
3726 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3727 
3728 static void qdisc_pkt_len_init(struct sk_buff *skb)
3729 {
3730 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3731 
3732 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3733 
3734 	/* To get more precise estimation of bytes sent on wire,
3735 	 * we add to pkt_len the headers size of all segments
3736 	 */
3737 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3738 		unsigned int hdr_len;
3739 		u16 gso_segs = shinfo->gso_segs;
3740 
3741 		/* mac layer + network layer */
3742 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3743 
3744 		/* + transport layer */
3745 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3746 			const struct tcphdr *th;
3747 			struct tcphdr _tcphdr;
3748 
3749 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3750 						sizeof(_tcphdr), &_tcphdr);
3751 			if (likely(th))
3752 				hdr_len += __tcp_hdrlen(th);
3753 		} else {
3754 			struct udphdr _udphdr;
3755 
3756 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3757 					       sizeof(_udphdr), &_udphdr))
3758 				hdr_len += sizeof(struct udphdr);
3759 		}
3760 
3761 		if (shinfo->gso_type & SKB_GSO_DODGY)
3762 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3763 						shinfo->gso_size);
3764 
3765 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3766 	}
3767 }
3768 
3769 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3770 			     struct sk_buff **to_free,
3771 			     struct netdev_queue *txq)
3772 {
3773 	int rc;
3774 
3775 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3776 	if (rc == NET_XMIT_SUCCESS)
3777 		trace_qdisc_enqueue(q, txq, skb);
3778 	return rc;
3779 }
3780 
3781 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3782 				 struct net_device *dev,
3783 				 struct netdev_queue *txq)
3784 {
3785 	spinlock_t *root_lock = qdisc_lock(q);
3786 	struct sk_buff *to_free = NULL;
3787 	bool contended;
3788 	int rc;
3789 
3790 	qdisc_calculate_pkt_len(skb, q);
3791 
3792 	if (q->flags & TCQ_F_NOLOCK) {
3793 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3794 		    qdisc_run_begin(q)) {
3795 			/* Retest nolock_qdisc_is_empty() within the protection
3796 			 * of q->seqlock to protect from racing with requeuing.
3797 			 */
3798 			if (unlikely(!nolock_qdisc_is_empty(q))) {
3799 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3800 				__qdisc_run(q);
3801 				qdisc_run_end(q);
3802 
3803 				goto no_lock_out;
3804 			}
3805 
3806 			qdisc_bstats_cpu_update(q, skb);
3807 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3808 			    !nolock_qdisc_is_empty(q))
3809 				__qdisc_run(q);
3810 
3811 			qdisc_run_end(q);
3812 			return NET_XMIT_SUCCESS;
3813 		}
3814 
3815 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3816 		qdisc_run(q);
3817 
3818 no_lock_out:
3819 		if (unlikely(to_free))
3820 			kfree_skb_list_reason(to_free,
3821 					      SKB_DROP_REASON_QDISC_DROP);
3822 		return rc;
3823 	}
3824 
3825 	/*
3826 	 * Heuristic to force contended enqueues to serialize on a
3827 	 * separate lock before trying to get qdisc main lock.
3828 	 * This permits qdisc->running owner to get the lock more
3829 	 * often and dequeue packets faster.
3830 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3831 	 * and then other tasks will only enqueue packets. The packets will be
3832 	 * sent after the qdisc owner is scheduled again. To prevent this
3833 	 * scenario the task always serialize on the lock.
3834 	 */
3835 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3836 	if (unlikely(contended))
3837 		spin_lock(&q->busylock);
3838 
3839 	spin_lock(root_lock);
3840 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3841 		__qdisc_drop(skb, &to_free);
3842 		rc = NET_XMIT_DROP;
3843 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3844 		   qdisc_run_begin(q)) {
3845 		/*
3846 		 * This is a work-conserving queue; there are no old skbs
3847 		 * waiting to be sent out; and the qdisc is not running -
3848 		 * xmit the skb directly.
3849 		 */
3850 
3851 		qdisc_bstats_update(q, skb);
3852 
3853 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3854 			if (unlikely(contended)) {
3855 				spin_unlock(&q->busylock);
3856 				contended = false;
3857 			}
3858 			__qdisc_run(q);
3859 		}
3860 
3861 		qdisc_run_end(q);
3862 		rc = NET_XMIT_SUCCESS;
3863 	} else {
3864 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3865 		if (qdisc_run_begin(q)) {
3866 			if (unlikely(contended)) {
3867 				spin_unlock(&q->busylock);
3868 				contended = false;
3869 			}
3870 			__qdisc_run(q);
3871 			qdisc_run_end(q);
3872 		}
3873 	}
3874 	spin_unlock(root_lock);
3875 	if (unlikely(to_free))
3876 		kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3877 	if (unlikely(contended))
3878 		spin_unlock(&q->busylock);
3879 	return rc;
3880 }
3881 
3882 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3883 static void skb_update_prio(struct sk_buff *skb)
3884 {
3885 	const struct netprio_map *map;
3886 	const struct sock *sk;
3887 	unsigned int prioidx;
3888 
3889 	if (skb->priority)
3890 		return;
3891 	map = rcu_dereference_bh(skb->dev->priomap);
3892 	if (!map)
3893 		return;
3894 	sk = skb_to_full_sk(skb);
3895 	if (!sk)
3896 		return;
3897 
3898 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3899 
3900 	if (prioidx < map->priomap_len)
3901 		skb->priority = map->priomap[prioidx];
3902 }
3903 #else
3904 #define skb_update_prio(skb)
3905 #endif
3906 
3907 /**
3908  *	dev_loopback_xmit - loop back @skb
3909  *	@net: network namespace this loopback is happening in
3910  *	@sk:  sk needed to be a netfilter okfn
3911  *	@skb: buffer to transmit
3912  */
3913 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3914 {
3915 	skb_reset_mac_header(skb);
3916 	__skb_pull(skb, skb_network_offset(skb));
3917 	skb->pkt_type = PACKET_LOOPBACK;
3918 	if (skb->ip_summed == CHECKSUM_NONE)
3919 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3920 	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3921 	skb_dst_force(skb);
3922 	netif_rx(skb);
3923 	return 0;
3924 }
3925 EXPORT_SYMBOL(dev_loopback_xmit);
3926 
3927 #ifdef CONFIG_NET_EGRESS
3928 static struct sk_buff *
3929 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3930 {
3931 #ifdef CONFIG_NET_CLS_ACT
3932 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3933 	struct tcf_result cl_res;
3934 
3935 	if (!miniq)
3936 		return skb;
3937 
3938 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3939 	tc_skb_cb(skb)->mru = 0;
3940 	tc_skb_cb(skb)->post_ct = false;
3941 	mini_qdisc_bstats_cpu_update(miniq, skb);
3942 
3943 	switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3944 	case TC_ACT_OK:
3945 	case TC_ACT_RECLASSIFY:
3946 		skb->tc_index = TC_H_MIN(cl_res.classid);
3947 		break;
3948 	case TC_ACT_SHOT:
3949 		mini_qdisc_qstats_cpu_drop(miniq);
3950 		*ret = NET_XMIT_DROP;
3951 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
3952 		return NULL;
3953 	case TC_ACT_STOLEN:
3954 	case TC_ACT_QUEUED:
3955 	case TC_ACT_TRAP:
3956 		*ret = NET_XMIT_SUCCESS;
3957 		consume_skb(skb);
3958 		return NULL;
3959 	case TC_ACT_REDIRECT:
3960 		/* No need to push/pop skb's mac_header here on egress! */
3961 		skb_do_redirect(skb);
3962 		*ret = NET_XMIT_SUCCESS;
3963 		return NULL;
3964 	default:
3965 		break;
3966 	}
3967 #endif /* CONFIG_NET_CLS_ACT */
3968 
3969 	return skb;
3970 }
3971 
3972 static struct netdev_queue *
3973 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3974 {
3975 	int qm = skb_get_queue_mapping(skb);
3976 
3977 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3978 }
3979 
3980 static bool netdev_xmit_txqueue_skipped(void)
3981 {
3982 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3983 }
3984 
3985 void netdev_xmit_skip_txqueue(bool skip)
3986 {
3987 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3988 }
3989 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3990 #endif /* CONFIG_NET_EGRESS */
3991 
3992 #ifdef CONFIG_XPS
3993 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3994 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3995 {
3996 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
3997 	struct xps_map *map;
3998 	int queue_index = -1;
3999 
4000 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4001 		return queue_index;
4002 
4003 	tci *= dev_maps->num_tc;
4004 	tci += tc;
4005 
4006 	map = rcu_dereference(dev_maps->attr_map[tci]);
4007 	if (map) {
4008 		if (map->len == 1)
4009 			queue_index = map->queues[0];
4010 		else
4011 			queue_index = map->queues[reciprocal_scale(
4012 						skb_get_hash(skb), map->len)];
4013 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4014 			queue_index = -1;
4015 	}
4016 	return queue_index;
4017 }
4018 #endif
4019 
4020 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4021 			 struct sk_buff *skb)
4022 {
4023 #ifdef CONFIG_XPS
4024 	struct xps_dev_maps *dev_maps;
4025 	struct sock *sk = skb->sk;
4026 	int queue_index = -1;
4027 
4028 	if (!static_key_false(&xps_needed))
4029 		return -1;
4030 
4031 	rcu_read_lock();
4032 	if (!static_key_false(&xps_rxqs_needed))
4033 		goto get_cpus_map;
4034 
4035 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4036 	if (dev_maps) {
4037 		int tci = sk_rx_queue_get(sk);
4038 
4039 		if (tci >= 0)
4040 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4041 							  tci);
4042 	}
4043 
4044 get_cpus_map:
4045 	if (queue_index < 0) {
4046 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4047 		if (dev_maps) {
4048 			unsigned int tci = skb->sender_cpu - 1;
4049 
4050 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4051 							  tci);
4052 		}
4053 	}
4054 	rcu_read_unlock();
4055 
4056 	return queue_index;
4057 #else
4058 	return -1;
4059 #endif
4060 }
4061 
4062 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4063 		     struct net_device *sb_dev)
4064 {
4065 	return 0;
4066 }
4067 EXPORT_SYMBOL(dev_pick_tx_zero);
4068 
4069 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4070 		       struct net_device *sb_dev)
4071 {
4072 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4073 }
4074 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4075 
4076 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4077 		     struct net_device *sb_dev)
4078 {
4079 	struct sock *sk = skb->sk;
4080 	int queue_index = sk_tx_queue_get(sk);
4081 
4082 	sb_dev = sb_dev ? : dev;
4083 
4084 	if (queue_index < 0 || skb->ooo_okay ||
4085 	    queue_index >= dev->real_num_tx_queues) {
4086 		int new_index = get_xps_queue(dev, sb_dev, skb);
4087 
4088 		if (new_index < 0)
4089 			new_index = skb_tx_hash(dev, sb_dev, skb);
4090 
4091 		if (queue_index != new_index && sk &&
4092 		    sk_fullsock(sk) &&
4093 		    rcu_access_pointer(sk->sk_dst_cache))
4094 			sk_tx_queue_set(sk, new_index);
4095 
4096 		queue_index = new_index;
4097 	}
4098 
4099 	return queue_index;
4100 }
4101 EXPORT_SYMBOL(netdev_pick_tx);
4102 
4103 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4104 					 struct sk_buff *skb,
4105 					 struct net_device *sb_dev)
4106 {
4107 	int queue_index = 0;
4108 
4109 #ifdef CONFIG_XPS
4110 	u32 sender_cpu = skb->sender_cpu - 1;
4111 
4112 	if (sender_cpu >= (u32)NR_CPUS)
4113 		skb->sender_cpu = raw_smp_processor_id() + 1;
4114 #endif
4115 
4116 	if (dev->real_num_tx_queues != 1) {
4117 		const struct net_device_ops *ops = dev->netdev_ops;
4118 
4119 		if (ops->ndo_select_queue)
4120 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4121 		else
4122 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4123 
4124 		queue_index = netdev_cap_txqueue(dev, queue_index);
4125 	}
4126 
4127 	skb_set_queue_mapping(skb, queue_index);
4128 	return netdev_get_tx_queue(dev, queue_index);
4129 }
4130 
4131 /**
4132  * __dev_queue_xmit() - transmit a buffer
4133  * @skb:	buffer to transmit
4134  * @sb_dev:	suboordinate device used for L2 forwarding offload
4135  *
4136  * Queue a buffer for transmission to a network device. The caller must
4137  * have set the device and priority and built the buffer before calling
4138  * this function. The function can be called from an interrupt.
4139  *
4140  * When calling this method, interrupts MUST be enabled. This is because
4141  * the BH enable code must have IRQs enabled so that it will not deadlock.
4142  *
4143  * Regardless of the return value, the skb is consumed, so it is currently
4144  * difficult to retry a send to this method. (You can bump the ref count
4145  * before sending to hold a reference for retry if you are careful.)
4146  *
4147  * Return:
4148  * * 0				- buffer successfully transmitted
4149  * * positive qdisc return code	- NET_XMIT_DROP etc.
4150  * * negative errno		- other errors
4151  */
4152 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4153 {
4154 	struct net_device *dev = skb->dev;
4155 	struct netdev_queue *txq = NULL;
4156 	struct Qdisc *q;
4157 	int rc = -ENOMEM;
4158 	bool again = false;
4159 
4160 	skb_reset_mac_header(skb);
4161 	skb_assert_len(skb);
4162 
4163 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4164 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4165 
4166 	/* Disable soft irqs for various locks below. Also
4167 	 * stops preemption for RCU.
4168 	 */
4169 	rcu_read_lock_bh();
4170 
4171 	skb_update_prio(skb);
4172 
4173 	qdisc_pkt_len_init(skb);
4174 #ifdef CONFIG_NET_CLS_ACT
4175 	skb->tc_at_ingress = 0;
4176 #endif
4177 #ifdef CONFIG_NET_EGRESS
4178 	if (static_branch_unlikely(&egress_needed_key)) {
4179 		if (nf_hook_egress_active()) {
4180 			skb = nf_hook_egress(skb, &rc, dev);
4181 			if (!skb)
4182 				goto out;
4183 		}
4184 
4185 		netdev_xmit_skip_txqueue(false);
4186 
4187 		nf_skip_egress(skb, true);
4188 		skb = sch_handle_egress(skb, &rc, dev);
4189 		if (!skb)
4190 			goto out;
4191 		nf_skip_egress(skb, false);
4192 
4193 		if (netdev_xmit_txqueue_skipped())
4194 			txq = netdev_tx_queue_mapping(dev, skb);
4195 	}
4196 #endif
4197 	/* If device/qdisc don't need skb->dst, release it right now while
4198 	 * its hot in this cpu cache.
4199 	 */
4200 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4201 		skb_dst_drop(skb);
4202 	else
4203 		skb_dst_force(skb);
4204 
4205 	if (!txq)
4206 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4207 
4208 	q = rcu_dereference_bh(txq->qdisc);
4209 
4210 	trace_net_dev_queue(skb);
4211 	if (q->enqueue) {
4212 		rc = __dev_xmit_skb(skb, q, dev, txq);
4213 		goto out;
4214 	}
4215 
4216 	/* The device has no queue. Common case for software devices:
4217 	 * loopback, all the sorts of tunnels...
4218 
4219 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4220 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4221 	 * counters.)
4222 	 * However, it is possible, that they rely on protection
4223 	 * made by us here.
4224 
4225 	 * Check this and shot the lock. It is not prone from deadlocks.
4226 	 *Either shot noqueue qdisc, it is even simpler 8)
4227 	 */
4228 	if (dev->flags & IFF_UP) {
4229 		int cpu = smp_processor_id(); /* ok because BHs are off */
4230 
4231 		/* Other cpus might concurrently change txq->xmit_lock_owner
4232 		 * to -1 or to their cpu id, but not to our id.
4233 		 */
4234 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4235 			if (dev_xmit_recursion())
4236 				goto recursion_alert;
4237 
4238 			skb = validate_xmit_skb(skb, dev, &again);
4239 			if (!skb)
4240 				goto out;
4241 
4242 			HARD_TX_LOCK(dev, txq, cpu);
4243 
4244 			if (!netif_xmit_stopped(txq)) {
4245 				dev_xmit_recursion_inc();
4246 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4247 				dev_xmit_recursion_dec();
4248 				if (dev_xmit_complete(rc)) {
4249 					HARD_TX_UNLOCK(dev, txq);
4250 					goto out;
4251 				}
4252 			}
4253 			HARD_TX_UNLOCK(dev, txq);
4254 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4255 					     dev->name);
4256 		} else {
4257 			/* Recursion is detected! It is possible,
4258 			 * unfortunately
4259 			 */
4260 recursion_alert:
4261 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4262 					     dev->name);
4263 		}
4264 	}
4265 
4266 	rc = -ENETDOWN;
4267 	rcu_read_unlock_bh();
4268 
4269 	dev_core_stats_tx_dropped_inc(dev);
4270 	kfree_skb_list(skb);
4271 	return rc;
4272 out:
4273 	rcu_read_unlock_bh();
4274 	return rc;
4275 }
4276 EXPORT_SYMBOL(__dev_queue_xmit);
4277 
4278 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4279 {
4280 	struct net_device *dev = skb->dev;
4281 	struct sk_buff *orig_skb = skb;
4282 	struct netdev_queue *txq;
4283 	int ret = NETDEV_TX_BUSY;
4284 	bool again = false;
4285 
4286 	if (unlikely(!netif_running(dev) ||
4287 		     !netif_carrier_ok(dev)))
4288 		goto drop;
4289 
4290 	skb = validate_xmit_skb_list(skb, dev, &again);
4291 	if (skb != orig_skb)
4292 		goto drop;
4293 
4294 	skb_set_queue_mapping(skb, queue_id);
4295 	txq = skb_get_tx_queue(dev, skb);
4296 
4297 	local_bh_disable();
4298 
4299 	dev_xmit_recursion_inc();
4300 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4301 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4302 		ret = netdev_start_xmit(skb, dev, txq, false);
4303 	HARD_TX_UNLOCK(dev, txq);
4304 	dev_xmit_recursion_dec();
4305 
4306 	local_bh_enable();
4307 	return ret;
4308 drop:
4309 	dev_core_stats_tx_dropped_inc(dev);
4310 	kfree_skb_list(skb);
4311 	return NET_XMIT_DROP;
4312 }
4313 EXPORT_SYMBOL(__dev_direct_xmit);
4314 
4315 /*************************************************************************
4316  *			Receiver routines
4317  *************************************************************************/
4318 
4319 int netdev_max_backlog __read_mostly = 1000;
4320 EXPORT_SYMBOL(netdev_max_backlog);
4321 
4322 int netdev_tstamp_prequeue __read_mostly = 1;
4323 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4324 int netdev_budget __read_mostly = 300;
4325 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4326 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4327 int weight_p __read_mostly = 64;           /* old backlog weight */
4328 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4329 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4330 int dev_rx_weight __read_mostly = 64;
4331 int dev_tx_weight __read_mostly = 64;
4332 
4333 /* Called with irq disabled */
4334 static inline void ____napi_schedule(struct softnet_data *sd,
4335 				     struct napi_struct *napi)
4336 {
4337 	struct task_struct *thread;
4338 
4339 	lockdep_assert_irqs_disabled();
4340 
4341 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4342 		/* Paired with smp_mb__before_atomic() in
4343 		 * napi_enable()/dev_set_threaded().
4344 		 * Use READ_ONCE() to guarantee a complete
4345 		 * read on napi->thread. Only call
4346 		 * wake_up_process() when it's not NULL.
4347 		 */
4348 		thread = READ_ONCE(napi->thread);
4349 		if (thread) {
4350 			/* Avoid doing set_bit() if the thread is in
4351 			 * INTERRUPTIBLE state, cause napi_thread_wait()
4352 			 * makes sure to proceed with napi polling
4353 			 * if the thread is explicitly woken from here.
4354 			 */
4355 			if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4356 				set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4357 			wake_up_process(thread);
4358 			return;
4359 		}
4360 	}
4361 
4362 	list_add_tail(&napi->poll_list, &sd->poll_list);
4363 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4364 }
4365 
4366 #ifdef CONFIG_RPS
4367 
4368 /* One global table that all flow-based protocols share. */
4369 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4370 EXPORT_SYMBOL(rps_sock_flow_table);
4371 u32 rps_cpu_mask __read_mostly;
4372 EXPORT_SYMBOL(rps_cpu_mask);
4373 
4374 struct static_key_false rps_needed __read_mostly;
4375 EXPORT_SYMBOL(rps_needed);
4376 struct static_key_false rfs_needed __read_mostly;
4377 EXPORT_SYMBOL(rfs_needed);
4378 
4379 static struct rps_dev_flow *
4380 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4381 	    struct rps_dev_flow *rflow, u16 next_cpu)
4382 {
4383 	if (next_cpu < nr_cpu_ids) {
4384 #ifdef CONFIG_RFS_ACCEL
4385 		struct netdev_rx_queue *rxqueue;
4386 		struct rps_dev_flow_table *flow_table;
4387 		struct rps_dev_flow *old_rflow;
4388 		u32 flow_id;
4389 		u16 rxq_index;
4390 		int rc;
4391 
4392 		/* Should we steer this flow to a different hardware queue? */
4393 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4394 		    !(dev->features & NETIF_F_NTUPLE))
4395 			goto out;
4396 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4397 		if (rxq_index == skb_get_rx_queue(skb))
4398 			goto out;
4399 
4400 		rxqueue = dev->_rx + rxq_index;
4401 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4402 		if (!flow_table)
4403 			goto out;
4404 		flow_id = skb_get_hash(skb) & flow_table->mask;
4405 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4406 							rxq_index, flow_id);
4407 		if (rc < 0)
4408 			goto out;
4409 		old_rflow = rflow;
4410 		rflow = &flow_table->flows[flow_id];
4411 		rflow->filter = rc;
4412 		if (old_rflow->filter == rflow->filter)
4413 			old_rflow->filter = RPS_NO_FILTER;
4414 	out:
4415 #endif
4416 		rflow->last_qtail =
4417 			per_cpu(softnet_data, next_cpu).input_queue_head;
4418 	}
4419 
4420 	rflow->cpu = next_cpu;
4421 	return rflow;
4422 }
4423 
4424 /*
4425  * get_rps_cpu is called from netif_receive_skb and returns the target
4426  * CPU from the RPS map of the receiving queue for a given skb.
4427  * rcu_read_lock must be held on entry.
4428  */
4429 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4430 		       struct rps_dev_flow **rflowp)
4431 {
4432 	const struct rps_sock_flow_table *sock_flow_table;
4433 	struct netdev_rx_queue *rxqueue = dev->_rx;
4434 	struct rps_dev_flow_table *flow_table;
4435 	struct rps_map *map;
4436 	int cpu = -1;
4437 	u32 tcpu;
4438 	u32 hash;
4439 
4440 	if (skb_rx_queue_recorded(skb)) {
4441 		u16 index = skb_get_rx_queue(skb);
4442 
4443 		if (unlikely(index >= dev->real_num_rx_queues)) {
4444 			WARN_ONCE(dev->real_num_rx_queues > 1,
4445 				  "%s received packet on queue %u, but number "
4446 				  "of RX queues is %u\n",
4447 				  dev->name, index, dev->real_num_rx_queues);
4448 			goto done;
4449 		}
4450 		rxqueue += index;
4451 	}
4452 
4453 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4454 
4455 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4456 	map = rcu_dereference(rxqueue->rps_map);
4457 	if (!flow_table && !map)
4458 		goto done;
4459 
4460 	skb_reset_network_header(skb);
4461 	hash = skb_get_hash(skb);
4462 	if (!hash)
4463 		goto done;
4464 
4465 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4466 	if (flow_table && sock_flow_table) {
4467 		struct rps_dev_flow *rflow;
4468 		u32 next_cpu;
4469 		u32 ident;
4470 
4471 		/* First check into global flow table if there is a match */
4472 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4473 		if ((ident ^ hash) & ~rps_cpu_mask)
4474 			goto try_rps;
4475 
4476 		next_cpu = ident & rps_cpu_mask;
4477 
4478 		/* OK, now we know there is a match,
4479 		 * we can look at the local (per receive queue) flow table
4480 		 */
4481 		rflow = &flow_table->flows[hash & flow_table->mask];
4482 		tcpu = rflow->cpu;
4483 
4484 		/*
4485 		 * If the desired CPU (where last recvmsg was done) is
4486 		 * different from current CPU (one in the rx-queue flow
4487 		 * table entry), switch if one of the following holds:
4488 		 *   - Current CPU is unset (>= nr_cpu_ids).
4489 		 *   - Current CPU is offline.
4490 		 *   - The current CPU's queue tail has advanced beyond the
4491 		 *     last packet that was enqueued using this table entry.
4492 		 *     This guarantees that all previous packets for the flow
4493 		 *     have been dequeued, thus preserving in order delivery.
4494 		 */
4495 		if (unlikely(tcpu != next_cpu) &&
4496 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4497 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4498 		      rflow->last_qtail)) >= 0)) {
4499 			tcpu = next_cpu;
4500 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4501 		}
4502 
4503 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4504 			*rflowp = rflow;
4505 			cpu = tcpu;
4506 			goto done;
4507 		}
4508 	}
4509 
4510 try_rps:
4511 
4512 	if (map) {
4513 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4514 		if (cpu_online(tcpu)) {
4515 			cpu = tcpu;
4516 			goto done;
4517 		}
4518 	}
4519 
4520 done:
4521 	return cpu;
4522 }
4523 
4524 #ifdef CONFIG_RFS_ACCEL
4525 
4526 /**
4527  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4528  * @dev: Device on which the filter was set
4529  * @rxq_index: RX queue index
4530  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4531  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4532  *
4533  * Drivers that implement ndo_rx_flow_steer() should periodically call
4534  * this function for each installed filter and remove the filters for
4535  * which it returns %true.
4536  */
4537 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4538 			 u32 flow_id, u16 filter_id)
4539 {
4540 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4541 	struct rps_dev_flow_table *flow_table;
4542 	struct rps_dev_flow *rflow;
4543 	bool expire = true;
4544 	unsigned int cpu;
4545 
4546 	rcu_read_lock();
4547 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4548 	if (flow_table && flow_id <= flow_table->mask) {
4549 		rflow = &flow_table->flows[flow_id];
4550 		cpu = READ_ONCE(rflow->cpu);
4551 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4552 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4553 			   rflow->last_qtail) <
4554 		     (int)(10 * flow_table->mask)))
4555 			expire = false;
4556 	}
4557 	rcu_read_unlock();
4558 	return expire;
4559 }
4560 EXPORT_SYMBOL(rps_may_expire_flow);
4561 
4562 #endif /* CONFIG_RFS_ACCEL */
4563 
4564 /* Called from hardirq (IPI) context */
4565 static void rps_trigger_softirq(void *data)
4566 {
4567 	struct softnet_data *sd = data;
4568 
4569 	____napi_schedule(sd, &sd->backlog);
4570 	sd->received_rps++;
4571 }
4572 
4573 #endif /* CONFIG_RPS */
4574 
4575 /* Called from hardirq (IPI) context */
4576 static void trigger_rx_softirq(void *data)
4577 {
4578 	struct softnet_data *sd = data;
4579 
4580 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4581 	smp_store_release(&sd->defer_ipi_scheduled, 0);
4582 }
4583 
4584 /*
4585  * Check if this softnet_data structure is another cpu one
4586  * If yes, queue it to our IPI list and return 1
4587  * If no, return 0
4588  */
4589 static int napi_schedule_rps(struct softnet_data *sd)
4590 {
4591 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4592 
4593 #ifdef CONFIG_RPS
4594 	if (sd != mysd) {
4595 		sd->rps_ipi_next = mysd->rps_ipi_list;
4596 		mysd->rps_ipi_list = sd;
4597 
4598 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4599 		return 1;
4600 	}
4601 #endif /* CONFIG_RPS */
4602 	__napi_schedule_irqoff(&mysd->backlog);
4603 	return 0;
4604 }
4605 
4606 #ifdef CONFIG_NET_FLOW_LIMIT
4607 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4608 #endif
4609 
4610 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4611 {
4612 #ifdef CONFIG_NET_FLOW_LIMIT
4613 	struct sd_flow_limit *fl;
4614 	struct softnet_data *sd;
4615 	unsigned int old_flow, new_flow;
4616 
4617 	if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4618 		return false;
4619 
4620 	sd = this_cpu_ptr(&softnet_data);
4621 
4622 	rcu_read_lock();
4623 	fl = rcu_dereference(sd->flow_limit);
4624 	if (fl) {
4625 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4626 		old_flow = fl->history[fl->history_head];
4627 		fl->history[fl->history_head] = new_flow;
4628 
4629 		fl->history_head++;
4630 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4631 
4632 		if (likely(fl->buckets[old_flow]))
4633 			fl->buckets[old_flow]--;
4634 
4635 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4636 			fl->count++;
4637 			rcu_read_unlock();
4638 			return true;
4639 		}
4640 	}
4641 	rcu_read_unlock();
4642 #endif
4643 	return false;
4644 }
4645 
4646 /*
4647  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4648  * queue (may be a remote CPU queue).
4649  */
4650 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4651 			      unsigned int *qtail)
4652 {
4653 	enum skb_drop_reason reason;
4654 	struct softnet_data *sd;
4655 	unsigned long flags;
4656 	unsigned int qlen;
4657 
4658 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
4659 	sd = &per_cpu(softnet_data, cpu);
4660 
4661 	rps_lock_irqsave(sd, &flags);
4662 	if (!netif_running(skb->dev))
4663 		goto drop;
4664 	qlen = skb_queue_len(&sd->input_pkt_queue);
4665 	if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4666 		if (qlen) {
4667 enqueue:
4668 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4669 			input_queue_tail_incr_save(sd, qtail);
4670 			rps_unlock_irq_restore(sd, &flags);
4671 			return NET_RX_SUCCESS;
4672 		}
4673 
4674 		/* Schedule NAPI for backlog device
4675 		 * We can use non atomic operation since we own the queue lock
4676 		 */
4677 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4678 			napi_schedule_rps(sd);
4679 		goto enqueue;
4680 	}
4681 	reason = SKB_DROP_REASON_CPU_BACKLOG;
4682 
4683 drop:
4684 	sd->dropped++;
4685 	rps_unlock_irq_restore(sd, &flags);
4686 
4687 	dev_core_stats_rx_dropped_inc(skb->dev);
4688 	kfree_skb_reason(skb, reason);
4689 	return NET_RX_DROP;
4690 }
4691 
4692 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4693 {
4694 	struct net_device *dev = skb->dev;
4695 	struct netdev_rx_queue *rxqueue;
4696 
4697 	rxqueue = dev->_rx;
4698 
4699 	if (skb_rx_queue_recorded(skb)) {
4700 		u16 index = skb_get_rx_queue(skb);
4701 
4702 		if (unlikely(index >= dev->real_num_rx_queues)) {
4703 			WARN_ONCE(dev->real_num_rx_queues > 1,
4704 				  "%s received packet on queue %u, but number "
4705 				  "of RX queues is %u\n",
4706 				  dev->name, index, dev->real_num_rx_queues);
4707 
4708 			return rxqueue; /* Return first rxqueue */
4709 		}
4710 		rxqueue += index;
4711 	}
4712 	return rxqueue;
4713 }
4714 
4715 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4716 			     struct bpf_prog *xdp_prog)
4717 {
4718 	void *orig_data, *orig_data_end, *hard_start;
4719 	struct netdev_rx_queue *rxqueue;
4720 	bool orig_bcast, orig_host;
4721 	u32 mac_len, frame_sz;
4722 	__be16 orig_eth_type;
4723 	struct ethhdr *eth;
4724 	u32 metalen, act;
4725 	int off;
4726 
4727 	/* The XDP program wants to see the packet starting at the MAC
4728 	 * header.
4729 	 */
4730 	mac_len = skb->data - skb_mac_header(skb);
4731 	hard_start = skb->data - skb_headroom(skb);
4732 
4733 	/* SKB "head" area always have tailroom for skb_shared_info */
4734 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4735 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4736 
4737 	rxqueue = netif_get_rxqueue(skb);
4738 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4739 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4740 			 skb_headlen(skb) + mac_len, true);
4741 
4742 	orig_data_end = xdp->data_end;
4743 	orig_data = xdp->data;
4744 	eth = (struct ethhdr *)xdp->data;
4745 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4746 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4747 	orig_eth_type = eth->h_proto;
4748 
4749 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4750 
4751 	/* check if bpf_xdp_adjust_head was used */
4752 	off = xdp->data - orig_data;
4753 	if (off) {
4754 		if (off > 0)
4755 			__skb_pull(skb, off);
4756 		else if (off < 0)
4757 			__skb_push(skb, -off);
4758 
4759 		skb->mac_header += off;
4760 		skb_reset_network_header(skb);
4761 	}
4762 
4763 	/* check if bpf_xdp_adjust_tail was used */
4764 	off = xdp->data_end - orig_data_end;
4765 	if (off != 0) {
4766 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4767 		skb->len += off; /* positive on grow, negative on shrink */
4768 	}
4769 
4770 	/* check if XDP changed eth hdr such SKB needs update */
4771 	eth = (struct ethhdr *)xdp->data;
4772 	if ((orig_eth_type != eth->h_proto) ||
4773 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
4774 						  skb->dev->dev_addr)) ||
4775 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4776 		__skb_push(skb, ETH_HLEN);
4777 		skb->pkt_type = PACKET_HOST;
4778 		skb->protocol = eth_type_trans(skb, skb->dev);
4779 	}
4780 
4781 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4782 	 * before calling us again on redirect path. We do not call do_redirect
4783 	 * as we leave that up to the caller.
4784 	 *
4785 	 * Caller is responsible for managing lifetime of skb (i.e. calling
4786 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4787 	 */
4788 	switch (act) {
4789 	case XDP_REDIRECT:
4790 	case XDP_TX:
4791 		__skb_push(skb, mac_len);
4792 		break;
4793 	case XDP_PASS:
4794 		metalen = xdp->data - xdp->data_meta;
4795 		if (metalen)
4796 			skb_metadata_set(skb, metalen);
4797 		break;
4798 	}
4799 
4800 	return act;
4801 }
4802 
4803 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4804 				     struct xdp_buff *xdp,
4805 				     struct bpf_prog *xdp_prog)
4806 {
4807 	u32 act = XDP_DROP;
4808 
4809 	/* Reinjected packets coming from act_mirred or similar should
4810 	 * not get XDP generic processing.
4811 	 */
4812 	if (skb_is_redirected(skb))
4813 		return XDP_PASS;
4814 
4815 	/* XDP packets must be linear and must have sufficient headroom
4816 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4817 	 * native XDP provides, thus we need to do it here as well.
4818 	 */
4819 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4820 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4821 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4822 		int troom = skb->tail + skb->data_len - skb->end;
4823 
4824 		/* In case we have to go down the path and also linearize,
4825 		 * then lets do the pskb_expand_head() work just once here.
4826 		 */
4827 		if (pskb_expand_head(skb,
4828 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4829 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4830 			goto do_drop;
4831 		if (skb_linearize(skb))
4832 			goto do_drop;
4833 	}
4834 
4835 	act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4836 	switch (act) {
4837 	case XDP_REDIRECT:
4838 	case XDP_TX:
4839 	case XDP_PASS:
4840 		break;
4841 	default:
4842 		bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4843 		fallthrough;
4844 	case XDP_ABORTED:
4845 		trace_xdp_exception(skb->dev, xdp_prog, act);
4846 		fallthrough;
4847 	case XDP_DROP:
4848 	do_drop:
4849 		kfree_skb(skb);
4850 		break;
4851 	}
4852 
4853 	return act;
4854 }
4855 
4856 /* When doing generic XDP we have to bypass the qdisc layer and the
4857  * network taps in order to match in-driver-XDP behavior. This also means
4858  * that XDP packets are able to starve other packets going through a qdisc,
4859  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4860  * queues, so they do not have this starvation issue.
4861  */
4862 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4863 {
4864 	struct net_device *dev = skb->dev;
4865 	struct netdev_queue *txq;
4866 	bool free_skb = true;
4867 	int cpu, rc;
4868 
4869 	txq = netdev_core_pick_tx(dev, skb, NULL);
4870 	cpu = smp_processor_id();
4871 	HARD_TX_LOCK(dev, txq, cpu);
4872 	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
4873 		rc = netdev_start_xmit(skb, dev, txq, 0);
4874 		if (dev_xmit_complete(rc))
4875 			free_skb = false;
4876 	}
4877 	HARD_TX_UNLOCK(dev, txq);
4878 	if (free_skb) {
4879 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4880 		dev_core_stats_tx_dropped_inc(dev);
4881 		kfree_skb(skb);
4882 	}
4883 }
4884 
4885 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4886 
4887 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4888 {
4889 	if (xdp_prog) {
4890 		struct xdp_buff xdp;
4891 		u32 act;
4892 		int err;
4893 
4894 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4895 		if (act != XDP_PASS) {
4896 			switch (act) {
4897 			case XDP_REDIRECT:
4898 				err = xdp_do_generic_redirect(skb->dev, skb,
4899 							      &xdp, xdp_prog);
4900 				if (err)
4901 					goto out_redir;
4902 				break;
4903 			case XDP_TX:
4904 				generic_xdp_tx(skb, xdp_prog);
4905 				break;
4906 			}
4907 			return XDP_DROP;
4908 		}
4909 	}
4910 	return XDP_PASS;
4911 out_redir:
4912 	kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
4913 	return XDP_DROP;
4914 }
4915 EXPORT_SYMBOL_GPL(do_xdp_generic);
4916 
4917 static int netif_rx_internal(struct sk_buff *skb)
4918 {
4919 	int ret;
4920 
4921 	net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
4922 
4923 	trace_netif_rx(skb);
4924 
4925 #ifdef CONFIG_RPS
4926 	if (static_branch_unlikely(&rps_needed)) {
4927 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4928 		int cpu;
4929 
4930 		rcu_read_lock();
4931 
4932 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4933 		if (cpu < 0)
4934 			cpu = smp_processor_id();
4935 
4936 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4937 
4938 		rcu_read_unlock();
4939 	} else
4940 #endif
4941 	{
4942 		unsigned int qtail;
4943 
4944 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
4945 	}
4946 	return ret;
4947 }
4948 
4949 /**
4950  *	__netif_rx	-	Slightly optimized version of netif_rx
4951  *	@skb: buffer to post
4952  *
4953  *	This behaves as netif_rx except that it does not disable bottom halves.
4954  *	As a result this function may only be invoked from the interrupt context
4955  *	(either hard or soft interrupt).
4956  */
4957 int __netif_rx(struct sk_buff *skb)
4958 {
4959 	int ret;
4960 
4961 	lockdep_assert_once(hardirq_count() | softirq_count());
4962 
4963 	trace_netif_rx_entry(skb);
4964 	ret = netif_rx_internal(skb);
4965 	trace_netif_rx_exit(ret);
4966 	return ret;
4967 }
4968 EXPORT_SYMBOL(__netif_rx);
4969 
4970 /**
4971  *	netif_rx	-	post buffer to the network code
4972  *	@skb: buffer to post
4973  *
4974  *	This function receives a packet from a device driver and queues it for
4975  *	the upper (protocol) levels to process via the backlog NAPI device. It
4976  *	always succeeds. The buffer may be dropped during processing for
4977  *	congestion control or by the protocol layers.
4978  *	The network buffer is passed via the backlog NAPI device. Modern NIC
4979  *	driver should use NAPI and GRO.
4980  *	This function can used from interrupt and from process context. The
4981  *	caller from process context must not disable interrupts before invoking
4982  *	this function.
4983  *
4984  *	return values:
4985  *	NET_RX_SUCCESS	(no congestion)
4986  *	NET_RX_DROP     (packet was dropped)
4987  *
4988  */
4989 int netif_rx(struct sk_buff *skb)
4990 {
4991 	bool need_bh_off = !(hardirq_count() | softirq_count());
4992 	int ret;
4993 
4994 	if (need_bh_off)
4995 		local_bh_disable();
4996 	trace_netif_rx_entry(skb);
4997 	ret = netif_rx_internal(skb);
4998 	trace_netif_rx_exit(ret);
4999 	if (need_bh_off)
5000 		local_bh_enable();
5001 	return ret;
5002 }
5003 EXPORT_SYMBOL(netif_rx);
5004 
5005 static __latent_entropy void net_tx_action(struct softirq_action *h)
5006 {
5007 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5008 
5009 	if (sd->completion_queue) {
5010 		struct sk_buff *clist;
5011 
5012 		local_irq_disable();
5013 		clist = sd->completion_queue;
5014 		sd->completion_queue = NULL;
5015 		local_irq_enable();
5016 
5017 		while (clist) {
5018 			struct sk_buff *skb = clist;
5019 
5020 			clist = clist->next;
5021 
5022 			WARN_ON(refcount_read(&skb->users));
5023 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5024 				trace_consume_skb(skb, net_tx_action);
5025 			else
5026 				trace_kfree_skb(skb, net_tx_action,
5027 						SKB_DROP_REASON_NOT_SPECIFIED);
5028 
5029 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5030 				__kfree_skb(skb);
5031 			else
5032 				__kfree_skb_defer(skb);
5033 		}
5034 	}
5035 
5036 	if (sd->output_queue) {
5037 		struct Qdisc *head;
5038 
5039 		local_irq_disable();
5040 		head = sd->output_queue;
5041 		sd->output_queue = NULL;
5042 		sd->output_queue_tailp = &sd->output_queue;
5043 		local_irq_enable();
5044 
5045 		rcu_read_lock();
5046 
5047 		while (head) {
5048 			struct Qdisc *q = head;
5049 			spinlock_t *root_lock = NULL;
5050 
5051 			head = head->next_sched;
5052 
5053 			/* We need to make sure head->next_sched is read
5054 			 * before clearing __QDISC_STATE_SCHED
5055 			 */
5056 			smp_mb__before_atomic();
5057 
5058 			if (!(q->flags & TCQ_F_NOLOCK)) {
5059 				root_lock = qdisc_lock(q);
5060 				spin_lock(root_lock);
5061 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5062 						     &q->state))) {
5063 				/* There is a synchronize_net() between
5064 				 * STATE_DEACTIVATED flag being set and
5065 				 * qdisc_reset()/some_qdisc_is_busy() in
5066 				 * dev_deactivate(), so we can safely bail out
5067 				 * early here to avoid data race between
5068 				 * qdisc_deactivate() and some_qdisc_is_busy()
5069 				 * for lockless qdisc.
5070 				 */
5071 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5072 				continue;
5073 			}
5074 
5075 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5076 			qdisc_run(q);
5077 			if (root_lock)
5078 				spin_unlock(root_lock);
5079 		}
5080 
5081 		rcu_read_unlock();
5082 	}
5083 
5084 	xfrm_dev_backlog(sd);
5085 }
5086 
5087 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5088 /* This hook is defined here for ATM LANE */
5089 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5090 			     unsigned char *addr) __read_mostly;
5091 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5092 #endif
5093 
5094 static inline struct sk_buff *
5095 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5096 		   struct net_device *orig_dev, bool *another)
5097 {
5098 #ifdef CONFIG_NET_CLS_ACT
5099 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5100 	struct tcf_result cl_res;
5101 
5102 	/* If there's at least one ingress present somewhere (so
5103 	 * we get here via enabled static key), remaining devices
5104 	 * that are not configured with an ingress qdisc will bail
5105 	 * out here.
5106 	 */
5107 	if (!miniq)
5108 		return skb;
5109 
5110 	if (*pt_prev) {
5111 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
5112 		*pt_prev = NULL;
5113 	}
5114 
5115 	qdisc_skb_cb(skb)->pkt_len = skb->len;
5116 	tc_skb_cb(skb)->mru = 0;
5117 	tc_skb_cb(skb)->post_ct = false;
5118 	skb->tc_at_ingress = 1;
5119 	mini_qdisc_bstats_cpu_update(miniq, skb);
5120 
5121 	switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5122 	case TC_ACT_OK:
5123 	case TC_ACT_RECLASSIFY:
5124 		skb->tc_index = TC_H_MIN(cl_res.classid);
5125 		break;
5126 	case TC_ACT_SHOT:
5127 		mini_qdisc_qstats_cpu_drop(miniq);
5128 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
5129 		*ret = NET_RX_DROP;
5130 		return NULL;
5131 	case TC_ACT_STOLEN:
5132 	case TC_ACT_QUEUED:
5133 	case TC_ACT_TRAP:
5134 		consume_skb(skb);
5135 		*ret = NET_RX_SUCCESS;
5136 		return NULL;
5137 	case TC_ACT_REDIRECT:
5138 		/* skb_mac_header check was done by cls/act_bpf, so
5139 		 * we can safely push the L2 header back before
5140 		 * redirecting to another netdev
5141 		 */
5142 		__skb_push(skb, skb->mac_len);
5143 		if (skb_do_redirect(skb) == -EAGAIN) {
5144 			__skb_pull(skb, skb->mac_len);
5145 			*another = true;
5146 			break;
5147 		}
5148 		*ret = NET_RX_SUCCESS;
5149 		return NULL;
5150 	case TC_ACT_CONSUMED:
5151 		*ret = NET_RX_SUCCESS;
5152 		return NULL;
5153 	default:
5154 		break;
5155 	}
5156 #endif /* CONFIG_NET_CLS_ACT */
5157 	return skb;
5158 }
5159 
5160 /**
5161  *	netdev_is_rx_handler_busy - check if receive handler is registered
5162  *	@dev: device to check
5163  *
5164  *	Check if a receive handler is already registered for a given device.
5165  *	Return true if there one.
5166  *
5167  *	The caller must hold the rtnl_mutex.
5168  */
5169 bool netdev_is_rx_handler_busy(struct net_device *dev)
5170 {
5171 	ASSERT_RTNL();
5172 	return dev && rtnl_dereference(dev->rx_handler);
5173 }
5174 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5175 
5176 /**
5177  *	netdev_rx_handler_register - register receive handler
5178  *	@dev: device to register a handler for
5179  *	@rx_handler: receive handler to register
5180  *	@rx_handler_data: data pointer that is used by rx handler
5181  *
5182  *	Register a receive handler for a device. This handler will then be
5183  *	called from __netif_receive_skb. A negative errno code is returned
5184  *	on a failure.
5185  *
5186  *	The caller must hold the rtnl_mutex.
5187  *
5188  *	For a general description of rx_handler, see enum rx_handler_result.
5189  */
5190 int netdev_rx_handler_register(struct net_device *dev,
5191 			       rx_handler_func_t *rx_handler,
5192 			       void *rx_handler_data)
5193 {
5194 	if (netdev_is_rx_handler_busy(dev))
5195 		return -EBUSY;
5196 
5197 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5198 		return -EINVAL;
5199 
5200 	/* Note: rx_handler_data must be set before rx_handler */
5201 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5202 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5203 
5204 	return 0;
5205 }
5206 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5207 
5208 /**
5209  *	netdev_rx_handler_unregister - unregister receive handler
5210  *	@dev: device to unregister a handler from
5211  *
5212  *	Unregister a receive handler from a device.
5213  *
5214  *	The caller must hold the rtnl_mutex.
5215  */
5216 void netdev_rx_handler_unregister(struct net_device *dev)
5217 {
5218 
5219 	ASSERT_RTNL();
5220 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5221 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5222 	 * section has a guarantee to see a non NULL rx_handler_data
5223 	 * as well.
5224 	 */
5225 	synchronize_net();
5226 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5227 }
5228 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5229 
5230 /*
5231  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5232  * the special handling of PFMEMALLOC skbs.
5233  */
5234 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5235 {
5236 	switch (skb->protocol) {
5237 	case htons(ETH_P_ARP):
5238 	case htons(ETH_P_IP):
5239 	case htons(ETH_P_IPV6):
5240 	case htons(ETH_P_8021Q):
5241 	case htons(ETH_P_8021AD):
5242 		return true;
5243 	default:
5244 		return false;
5245 	}
5246 }
5247 
5248 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5249 			     int *ret, struct net_device *orig_dev)
5250 {
5251 	if (nf_hook_ingress_active(skb)) {
5252 		int ingress_retval;
5253 
5254 		if (*pt_prev) {
5255 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5256 			*pt_prev = NULL;
5257 		}
5258 
5259 		rcu_read_lock();
5260 		ingress_retval = nf_hook_ingress(skb);
5261 		rcu_read_unlock();
5262 		return ingress_retval;
5263 	}
5264 	return 0;
5265 }
5266 
5267 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5268 				    struct packet_type **ppt_prev)
5269 {
5270 	struct packet_type *ptype, *pt_prev;
5271 	rx_handler_func_t *rx_handler;
5272 	struct sk_buff *skb = *pskb;
5273 	struct net_device *orig_dev;
5274 	bool deliver_exact = false;
5275 	int ret = NET_RX_DROP;
5276 	__be16 type;
5277 
5278 	net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5279 
5280 	trace_netif_receive_skb(skb);
5281 
5282 	orig_dev = skb->dev;
5283 
5284 	skb_reset_network_header(skb);
5285 	if (!skb_transport_header_was_set(skb))
5286 		skb_reset_transport_header(skb);
5287 	skb_reset_mac_len(skb);
5288 
5289 	pt_prev = NULL;
5290 
5291 another_round:
5292 	skb->skb_iif = skb->dev->ifindex;
5293 
5294 	__this_cpu_inc(softnet_data.processed);
5295 
5296 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5297 		int ret2;
5298 
5299 		migrate_disable();
5300 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5301 		migrate_enable();
5302 
5303 		if (ret2 != XDP_PASS) {
5304 			ret = NET_RX_DROP;
5305 			goto out;
5306 		}
5307 	}
5308 
5309 	if (eth_type_vlan(skb->protocol)) {
5310 		skb = skb_vlan_untag(skb);
5311 		if (unlikely(!skb))
5312 			goto out;
5313 	}
5314 
5315 	if (skb_skip_tc_classify(skb))
5316 		goto skip_classify;
5317 
5318 	if (pfmemalloc)
5319 		goto skip_taps;
5320 
5321 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5322 		if (pt_prev)
5323 			ret = deliver_skb(skb, pt_prev, orig_dev);
5324 		pt_prev = ptype;
5325 	}
5326 
5327 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5328 		if (pt_prev)
5329 			ret = deliver_skb(skb, pt_prev, orig_dev);
5330 		pt_prev = ptype;
5331 	}
5332 
5333 skip_taps:
5334 #ifdef CONFIG_NET_INGRESS
5335 	if (static_branch_unlikely(&ingress_needed_key)) {
5336 		bool another = false;
5337 
5338 		nf_skip_egress(skb, true);
5339 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5340 					 &another);
5341 		if (another)
5342 			goto another_round;
5343 		if (!skb)
5344 			goto out;
5345 
5346 		nf_skip_egress(skb, false);
5347 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5348 			goto out;
5349 	}
5350 #endif
5351 	skb_reset_redirect(skb);
5352 skip_classify:
5353 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5354 		goto drop;
5355 
5356 	if (skb_vlan_tag_present(skb)) {
5357 		if (pt_prev) {
5358 			ret = deliver_skb(skb, pt_prev, orig_dev);
5359 			pt_prev = NULL;
5360 		}
5361 		if (vlan_do_receive(&skb))
5362 			goto another_round;
5363 		else if (unlikely(!skb))
5364 			goto out;
5365 	}
5366 
5367 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5368 	if (rx_handler) {
5369 		if (pt_prev) {
5370 			ret = deliver_skb(skb, pt_prev, orig_dev);
5371 			pt_prev = NULL;
5372 		}
5373 		switch (rx_handler(&skb)) {
5374 		case RX_HANDLER_CONSUMED:
5375 			ret = NET_RX_SUCCESS;
5376 			goto out;
5377 		case RX_HANDLER_ANOTHER:
5378 			goto another_round;
5379 		case RX_HANDLER_EXACT:
5380 			deliver_exact = true;
5381 			break;
5382 		case RX_HANDLER_PASS:
5383 			break;
5384 		default:
5385 			BUG();
5386 		}
5387 	}
5388 
5389 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5390 check_vlan_id:
5391 		if (skb_vlan_tag_get_id(skb)) {
5392 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5393 			 * find vlan device.
5394 			 */
5395 			skb->pkt_type = PACKET_OTHERHOST;
5396 		} else if (eth_type_vlan(skb->protocol)) {
5397 			/* Outer header is 802.1P with vlan 0, inner header is
5398 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5399 			 * not find vlan dev for vlan id 0.
5400 			 */
5401 			__vlan_hwaccel_clear_tag(skb);
5402 			skb = skb_vlan_untag(skb);
5403 			if (unlikely(!skb))
5404 				goto out;
5405 			if (vlan_do_receive(&skb))
5406 				/* After stripping off 802.1P header with vlan 0
5407 				 * vlan dev is found for inner header.
5408 				 */
5409 				goto another_round;
5410 			else if (unlikely(!skb))
5411 				goto out;
5412 			else
5413 				/* We have stripped outer 802.1P vlan 0 header.
5414 				 * But could not find vlan dev.
5415 				 * check again for vlan id to set OTHERHOST.
5416 				 */
5417 				goto check_vlan_id;
5418 		}
5419 		/* Note: we might in the future use prio bits
5420 		 * and set skb->priority like in vlan_do_receive()
5421 		 * For the time being, just ignore Priority Code Point
5422 		 */
5423 		__vlan_hwaccel_clear_tag(skb);
5424 	}
5425 
5426 	type = skb->protocol;
5427 
5428 	/* deliver only exact match when indicated */
5429 	if (likely(!deliver_exact)) {
5430 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5431 				       &ptype_base[ntohs(type) &
5432 						   PTYPE_HASH_MASK]);
5433 	}
5434 
5435 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5436 			       &orig_dev->ptype_specific);
5437 
5438 	if (unlikely(skb->dev != orig_dev)) {
5439 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5440 				       &skb->dev->ptype_specific);
5441 	}
5442 
5443 	if (pt_prev) {
5444 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5445 			goto drop;
5446 		*ppt_prev = pt_prev;
5447 	} else {
5448 drop:
5449 		if (!deliver_exact)
5450 			dev_core_stats_rx_dropped_inc(skb->dev);
5451 		else
5452 			dev_core_stats_rx_nohandler_inc(skb->dev);
5453 		kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5454 		/* Jamal, now you will not able to escape explaining
5455 		 * me how you were going to use this. :-)
5456 		 */
5457 		ret = NET_RX_DROP;
5458 	}
5459 
5460 out:
5461 	/* The invariant here is that if *ppt_prev is not NULL
5462 	 * then skb should also be non-NULL.
5463 	 *
5464 	 * Apparently *ppt_prev assignment above holds this invariant due to
5465 	 * skb dereferencing near it.
5466 	 */
5467 	*pskb = skb;
5468 	return ret;
5469 }
5470 
5471 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5472 {
5473 	struct net_device *orig_dev = skb->dev;
5474 	struct packet_type *pt_prev = NULL;
5475 	int ret;
5476 
5477 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5478 	if (pt_prev)
5479 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5480 					 skb->dev, pt_prev, orig_dev);
5481 	return ret;
5482 }
5483 
5484 /**
5485  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5486  *	@skb: buffer to process
5487  *
5488  *	More direct receive version of netif_receive_skb().  It should
5489  *	only be used by callers that have a need to skip RPS and Generic XDP.
5490  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5491  *
5492  *	This function may only be called from softirq context and interrupts
5493  *	should be enabled.
5494  *
5495  *	Return values (usually ignored):
5496  *	NET_RX_SUCCESS: no congestion
5497  *	NET_RX_DROP: packet was dropped
5498  */
5499 int netif_receive_skb_core(struct sk_buff *skb)
5500 {
5501 	int ret;
5502 
5503 	rcu_read_lock();
5504 	ret = __netif_receive_skb_one_core(skb, false);
5505 	rcu_read_unlock();
5506 
5507 	return ret;
5508 }
5509 EXPORT_SYMBOL(netif_receive_skb_core);
5510 
5511 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5512 						  struct packet_type *pt_prev,
5513 						  struct net_device *orig_dev)
5514 {
5515 	struct sk_buff *skb, *next;
5516 
5517 	if (!pt_prev)
5518 		return;
5519 	if (list_empty(head))
5520 		return;
5521 	if (pt_prev->list_func != NULL)
5522 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5523 				   ip_list_rcv, head, pt_prev, orig_dev);
5524 	else
5525 		list_for_each_entry_safe(skb, next, head, list) {
5526 			skb_list_del_init(skb);
5527 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5528 		}
5529 }
5530 
5531 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5532 {
5533 	/* Fast-path assumptions:
5534 	 * - There is no RX handler.
5535 	 * - Only one packet_type matches.
5536 	 * If either of these fails, we will end up doing some per-packet
5537 	 * processing in-line, then handling the 'last ptype' for the whole
5538 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5539 	 * because the 'last ptype' must be constant across the sublist, and all
5540 	 * other ptypes are handled per-packet.
5541 	 */
5542 	/* Current (common) ptype of sublist */
5543 	struct packet_type *pt_curr = NULL;
5544 	/* Current (common) orig_dev of sublist */
5545 	struct net_device *od_curr = NULL;
5546 	struct list_head sublist;
5547 	struct sk_buff *skb, *next;
5548 
5549 	INIT_LIST_HEAD(&sublist);
5550 	list_for_each_entry_safe(skb, next, head, list) {
5551 		struct net_device *orig_dev = skb->dev;
5552 		struct packet_type *pt_prev = NULL;
5553 
5554 		skb_list_del_init(skb);
5555 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5556 		if (!pt_prev)
5557 			continue;
5558 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5559 			/* dispatch old sublist */
5560 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5561 			/* start new sublist */
5562 			INIT_LIST_HEAD(&sublist);
5563 			pt_curr = pt_prev;
5564 			od_curr = orig_dev;
5565 		}
5566 		list_add_tail(&skb->list, &sublist);
5567 	}
5568 
5569 	/* dispatch final sublist */
5570 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5571 }
5572 
5573 static int __netif_receive_skb(struct sk_buff *skb)
5574 {
5575 	int ret;
5576 
5577 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5578 		unsigned int noreclaim_flag;
5579 
5580 		/*
5581 		 * PFMEMALLOC skbs are special, they should
5582 		 * - be delivered to SOCK_MEMALLOC sockets only
5583 		 * - stay away from userspace
5584 		 * - have bounded memory usage
5585 		 *
5586 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5587 		 * context down to all allocation sites.
5588 		 */
5589 		noreclaim_flag = memalloc_noreclaim_save();
5590 		ret = __netif_receive_skb_one_core(skb, true);
5591 		memalloc_noreclaim_restore(noreclaim_flag);
5592 	} else
5593 		ret = __netif_receive_skb_one_core(skb, false);
5594 
5595 	return ret;
5596 }
5597 
5598 static void __netif_receive_skb_list(struct list_head *head)
5599 {
5600 	unsigned long noreclaim_flag = 0;
5601 	struct sk_buff *skb, *next;
5602 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5603 
5604 	list_for_each_entry_safe(skb, next, head, list) {
5605 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5606 			struct list_head sublist;
5607 
5608 			/* Handle the previous sublist */
5609 			list_cut_before(&sublist, head, &skb->list);
5610 			if (!list_empty(&sublist))
5611 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5612 			pfmemalloc = !pfmemalloc;
5613 			/* See comments in __netif_receive_skb */
5614 			if (pfmemalloc)
5615 				noreclaim_flag = memalloc_noreclaim_save();
5616 			else
5617 				memalloc_noreclaim_restore(noreclaim_flag);
5618 		}
5619 	}
5620 	/* Handle the remaining sublist */
5621 	if (!list_empty(head))
5622 		__netif_receive_skb_list_core(head, pfmemalloc);
5623 	/* Restore pflags */
5624 	if (pfmemalloc)
5625 		memalloc_noreclaim_restore(noreclaim_flag);
5626 }
5627 
5628 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5629 {
5630 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5631 	struct bpf_prog *new = xdp->prog;
5632 	int ret = 0;
5633 
5634 	switch (xdp->command) {
5635 	case XDP_SETUP_PROG:
5636 		rcu_assign_pointer(dev->xdp_prog, new);
5637 		if (old)
5638 			bpf_prog_put(old);
5639 
5640 		if (old && !new) {
5641 			static_branch_dec(&generic_xdp_needed_key);
5642 		} else if (new && !old) {
5643 			static_branch_inc(&generic_xdp_needed_key);
5644 			dev_disable_lro(dev);
5645 			dev_disable_gro_hw(dev);
5646 		}
5647 		break;
5648 
5649 	default:
5650 		ret = -EINVAL;
5651 		break;
5652 	}
5653 
5654 	return ret;
5655 }
5656 
5657 static int netif_receive_skb_internal(struct sk_buff *skb)
5658 {
5659 	int ret;
5660 
5661 	net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5662 
5663 	if (skb_defer_rx_timestamp(skb))
5664 		return NET_RX_SUCCESS;
5665 
5666 	rcu_read_lock();
5667 #ifdef CONFIG_RPS
5668 	if (static_branch_unlikely(&rps_needed)) {
5669 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5670 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5671 
5672 		if (cpu >= 0) {
5673 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5674 			rcu_read_unlock();
5675 			return ret;
5676 		}
5677 	}
5678 #endif
5679 	ret = __netif_receive_skb(skb);
5680 	rcu_read_unlock();
5681 	return ret;
5682 }
5683 
5684 void netif_receive_skb_list_internal(struct list_head *head)
5685 {
5686 	struct sk_buff *skb, *next;
5687 	struct list_head sublist;
5688 
5689 	INIT_LIST_HEAD(&sublist);
5690 	list_for_each_entry_safe(skb, next, head, list) {
5691 		net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5692 		skb_list_del_init(skb);
5693 		if (!skb_defer_rx_timestamp(skb))
5694 			list_add_tail(&skb->list, &sublist);
5695 	}
5696 	list_splice_init(&sublist, head);
5697 
5698 	rcu_read_lock();
5699 #ifdef CONFIG_RPS
5700 	if (static_branch_unlikely(&rps_needed)) {
5701 		list_for_each_entry_safe(skb, next, head, list) {
5702 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5703 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5704 
5705 			if (cpu >= 0) {
5706 				/* Will be handled, remove from list */
5707 				skb_list_del_init(skb);
5708 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5709 			}
5710 		}
5711 	}
5712 #endif
5713 	__netif_receive_skb_list(head);
5714 	rcu_read_unlock();
5715 }
5716 
5717 /**
5718  *	netif_receive_skb - process receive buffer from network
5719  *	@skb: buffer to process
5720  *
5721  *	netif_receive_skb() is the main receive data processing function.
5722  *	It always succeeds. The buffer may be dropped during processing
5723  *	for congestion control or by the protocol layers.
5724  *
5725  *	This function may only be called from softirq context and interrupts
5726  *	should be enabled.
5727  *
5728  *	Return values (usually ignored):
5729  *	NET_RX_SUCCESS: no congestion
5730  *	NET_RX_DROP: packet was dropped
5731  */
5732 int netif_receive_skb(struct sk_buff *skb)
5733 {
5734 	int ret;
5735 
5736 	trace_netif_receive_skb_entry(skb);
5737 
5738 	ret = netif_receive_skb_internal(skb);
5739 	trace_netif_receive_skb_exit(ret);
5740 
5741 	return ret;
5742 }
5743 EXPORT_SYMBOL(netif_receive_skb);
5744 
5745 /**
5746  *	netif_receive_skb_list - process many receive buffers from network
5747  *	@head: list of skbs to process.
5748  *
5749  *	Since return value of netif_receive_skb() is normally ignored, and
5750  *	wouldn't be meaningful for a list, this function returns void.
5751  *
5752  *	This function may only be called from softirq context and interrupts
5753  *	should be enabled.
5754  */
5755 void netif_receive_skb_list(struct list_head *head)
5756 {
5757 	struct sk_buff *skb;
5758 
5759 	if (list_empty(head))
5760 		return;
5761 	if (trace_netif_receive_skb_list_entry_enabled()) {
5762 		list_for_each_entry(skb, head, list)
5763 			trace_netif_receive_skb_list_entry(skb);
5764 	}
5765 	netif_receive_skb_list_internal(head);
5766 	trace_netif_receive_skb_list_exit(0);
5767 }
5768 EXPORT_SYMBOL(netif_receive_skb_list);
5769 
5770 static DEFINE_PER_CPU(struct work_struct, flush_works);
5771 
5772 /* Network device is going away, flush any packets still pending */
5773 static void flush_backlog(struct work_struct *work)
5774 {
5775 	struct sk_buff *skb, *tmp;
5776 	struct softnet_data *sd;
5777 
5778 	local_bh_disable();
5779 	sd = this_cpu_ptr(&softnet_data);
5780 
5781 	rps_lock_irq_disable(sd);
5782 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5783 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5784 			__skb_unlink(skb, &sd->input_pkt_queue);
5785 			dev_kfree_skb_irq(skb);
5786 			input_queue_head_incr(sd);
5787 		}
5788 	}
5789 	rps_unlock_irq_enable(sd);
5790 
5791 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5792 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5793 			__skb_unlink(skb, &sd->process_queue);
5794 			kfree_skb(skb);
5795 			input_queue_head_incr(sd);
5796 		}
5797 	}
5798 	local_bh_enable();
5799 }
5800 
5801 static bool flush_required(int cpu)
5802 {
5803 #if IS_ENABLED(CONFIG_RPS)
5804 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5805 	bool do_flush;
5806 
5807 	rps_lock_irq_disable(sd);
5808 
5809 	/* as insertion into process_queue happens with the rps lock held,
5810 	 * process_queue access may race only with dequeue
5811 	 */
5812 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5813 		   !skb_queue_empty_lockless(&sd->process_queue);
5814 	rps_unlock_irq_enable(sd);
5815 
5816 	return do_flush;
5817 #endif
5818 	/* without RPS we can't safely check input_pkt_queue: during a
5819 	 * concurrent remote skb_queue_splice() we can detect as empty both
5820 	 * input_pkt_queue and process_queue even if the latter could end-up
5821 	 * containing a lot of packets.
5822 	 */
5823 	return true;
5824 }
5825 
5826 static void flush_all_backlogs(void)
5827 {
5828 	static cpumask_t flush_cpus;
5829 	unsigned int cpu;
5830 
5831 	/* since we are under rtnl lock protection we can use static data
5832 	 * for the cpumask and avoid allocating on stack the possibly
5833 	 * large mask
5834 	 */
5835 	ASSERT_RTNL();
5836 
5837 	cpus_read_lock();
5838 
5839 	cpumask_clear(&flush_cpus);
5840 	for_each_online_cpu(cpu) {
5841 		if (flush_required(cpu)) {
5842 			queue_work_on(cpu, system_highpri_wq,
5843 				      per_cpu_ptr(&flush_works, cpu));
5844 			cpumask_set_cpu(cpu, &flush_cpus);
5845 		}
5846 	}
5847 
5848 	/* we can have in flight packet[s] on the cpus we are not flushing,
5849 	 * synchronize_net() in unregister_netdevice_many() will take care of
5850 	 * them
5851 	 */
5852 	for_each_cpu(cpu, &flush_cpus)
5853 		flush_work(per_cpu_ptr(&flush_works, cpu));
5854 
5855 	cpus_read_unlock();
5856 }
5857 
5858 static void net_rps_send_ipi(struct softnet_data *remsd)
5859 {
5860 #ifdef CONFIG_RPS
5861 	while (remsd) {
5862 		struct softnet_data *next = remsd->rps_ipi_next;
5863 
5864 		if (cpu_online(remsd->cpu))
5865 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5866 		remsd = next;
5867 	}
5868 #endif
5869 }
5870 
5871 /*
5872  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5873  * Note: called with local irq disabled, but exits with local irq enabled.
5874  */
5875 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5876 {
5877 #ifdef CONFIG_RPS
5878 	struct softnet_data *remsd = sd->rps_ipi_list;
5879 
5880 	if (remsd) {
5881 		sd->rps_ipi_list = NULL;
5882 
5883 		local_irq_enable();
5884 
5885 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5886 		net_rps_send_ipi(remsd);
5887 	} else
5888 #endif
5889 		local_irq_enable();
5890 }
5891 
5892 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5893 {
5894 #ifdef CONFIG_RPS
5895 	return sd->rps_ipi_list != NULL;
5896 #else
5897 	return false;
5898 #endif
5899 }
5900 
5901 static int process_backlog(struct napi_struct *napi, int quota)
5902 {
5903 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5904 	bool again = true;
5905 	int work = 0;
5906 
5907 	/* Check if we have pending ipi, its better to send them now,
5908 	 * not waiting net_rx_action() end.
5909 	 */
5910 	if (sd_has_rps_ipi_waiting(sd)) {
5911 		local_irq_disable();
5912 		net_rps_action_and_irq_enable(sd);
5913 	}
5914 
5915 	napi->weight = READ_ONCE(dev_rx_weight);
5916 	while (again) {
5917 		struct sk_buff *skb;
5918 
5919 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5920 			rcu_read_lock();
5921 			__netif_receive_skb(skb);
5922 			rcu_read_unlock();
5923 			input_queue_head_incr(sd);
5924 			if (++work >= quota)
5925 				return work;
5926 
5927 		}
5928 
5929 		rps_lock_irq_disable(sd);
5930 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5931 			/*
5932 			 * Inline a custom version of __napi_complete().
5933 			 * only current cpu owns and manipulates this napi,
5934 			 * and NAPI_STATE_SCHED is the only possible flag set
5935 			 * on backlog.
5936 			 * We can use a plain write instead of clear_bit(),
5937 			 * and we dont need an smp_mb() memory barrier.
5938 			 */
5939 			napi->state = 0;
5940 			again = false;
5941 		} else {
5942 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5943 						   &sd->process_queue);
5944 		}
5945 		rps_unlock_irq_enable(sd);
5946 	}
5947 
5948 	return work;
5949 }
5950 
5951 /**
5952  * __napi_schedule - schedule for receive
5953  * @n: entry to schedule
5954  *
5955  * The entry's receive function will be scheduled to run.
5956  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5957  */
5958 void __napi_schedule(struct napi_struct *n)
5959 {
5960 	unsigned long flags;
5961 
5962 	local_irq_save(flags);
5963 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5964 	local_irq_restore(flags);
5965 }
5966 EXPORT_SYMBOL(__napi_schedule);
5967 
5968 /**
5969  *	napi_schedule_prep - check if napi can be scheduled
5970  *	@n: napi context
5971  *
5972  * Test if NAPI routine is already running, and if not mark
5973  * it as running.  This is used as a condition variable to
5974  * insure only one NAPI poll instance runs.  We also make
5975  * sure there is no pending NAPI disable.
5976  */
5977 bool napi_schedule_prep(struct napi_struct *n)
5978 {
5979 	unsigned long new, val = READ_ONCE(n->state);
5980 
5981 	do {
5982 		if (unlikely(val & NAPIF_STATE_DISABLE))
5983 			return false;
5984 		new = val | NAPIF_STATE_SCHED;
5985 
5986 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
5987 		 * This was suggested by Alexander Duyck, as compiler
5988 		 * emits better code than :
5989 		 * if (val & NAPIF_STATE_SCHED)
5990 		 *     new |= NAPIF_STATE_MISSED;
5991 		 */
5992 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5993 						   NAPIF_STATE_MISSED;
5994 	} while (!try_cmpxchg(&n->state, &val, new));
5995 
5996 	return !(val & NAPIF_STATE_SCHED);
5997 }
5998 EXPORT_SYMBOL(napi_schedule_prep);
5999 
6000 /**
6001  * __napi_schedule_irqoff - schedule for receive
6002  * @n: entry to schedule
6003  *
6004  * Variant of __napi_schedule() assuming hard irqs are masked.
6005  *
6006  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6007  * because the interrupt disabled assumption might not be true
6008  * due to force-threaded interrupts and spinlock substitution.
6009  */
6010 void __napi_schedule_irqoff(struct napi_struct *n)
6011 {
6012 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6013 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6014 	else
6015 		__napi_schedule(n);
6016 }
6017 EXPORT_SYMBOL(__napi_schedule_irqoff);
6018 
6019 bool napi_complete_done(struct napi_struct *n, int work_done)
6020 {
6021 	unsigned long flags, val, new, timeout = 0;
6022 	bool ret = true;
6023 
6024 	/*
6025 	 * 1) Don't let napi dequeue from the cpu poll list
6026 	 *    just in case its running on a different cpu.
6027 	 * 2) If we are busy polling, do nothing here, we have
6028 	 *    the guarantee we will be called later.
6029 	 */
6030 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6031 				 NAPIF_STATE_IN_BUSY_POLL)))
6032 		return false;
6033 
6034 	if (work_done) {
6035 		if (n->gro_bitmask)
6036 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6037 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6038 	}
6039 	if (n->defer_hard_irqs_count > 0) {
6040 		n->defer_hard_irqs_count--;
6041 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6042 		if (timeout)
6043 			ret = false;
6044 	}
6045 	if (n->gro_bitmask) {
6046 		/* When the NAPI instance uses a timeout and keeps postponing
6047 		 * it, we need to bound somehow the time packets are kept in
6048 		 * the GRO layer
6049 		 */
6050 		napi_gro_flush(n, !!timeout);
6051 	}
6052 
6053 	gro_normal_list(n);
6054 
6055 	if (unlikely(!list_empty(&n->poll_list))) {
6056 		/* If n->poll_list is not empty, we need to mask irqs */
6057 		local_irq_save(flags);
6058 		list_del_init(&n->poll_list);
6059 		local_irq_restore(flags);
6060 	}
6061 
6062 	val = READ_ONCE(n->state);
6063 	do {
6064 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6065 
6066 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6067 			      NAPIF_STATE_SCHED_THREADED |
6068 			      NAPIF_STATE_PREFER_BUSY_POLL);
6069 
6070 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6071 		 * because we will call napi->poll() one more time.
6072 		 * This C code was suggested by Alexander Duyck to help gcc.
6073 		 */
6074 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6075 						    NAPIF_STATE_SCHED;
6076 	} while (!try_cmpxchg(&n->state, &val, new));
6077 
6078 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6079 		__napi_schedule(n);
6080 		return false;
6081 	}
6082 
6083 	if (timeout)
6084 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6085 			      HRTIMER_MODE_REL_PINNED);
6086 	return ret;
6087 }
6088 EXPORT_SYMBOL(napi_complete_done);
6089 
6090 /* must be called under rcu_read_lock(), as we dont take a reference */
6091 static struct napi_struct *napi_by_id(unsigned int napi_id)
6092 {
6093 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6094 	struct napi_struct *napi;
6095 
6096 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6097 		if (napi->napi_id == napi_id)
6098 			return napi;
6099 
6100 	return NULL;
6101 }
6102 
6103 #if defined(CONFIG_NET_RX_BUSY_POLL)
6104 
6105 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6106 {
6107 	if (!skip_schedule) {
6108 		gro_normal_list(napi);
6109 		__napi_schedule(napi);
6110 		return;
6111 	}
6112 
6113 	if (napi->gro_bitmask) {
6114 		/* flush too old packets
6115 		 * If HZ < 1000, flush all packets.
6116 		 */
6117 		napi_gro_flush(napi, HZ >= 1000);
6118 	}
6119 
6120 	gro_normal_list(napi);
6121 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6122 }
6123 
6124 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6125 			   u16 budget)
6126 {
6127 	bool skip_schedule = false;
6128 	unsigned long timeout;
6129 	int rc;
6130 
6131 	/* Busy polling means there is a high chance device driver hard irq
6132 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6133 	 * set in napi_schedule_prep().
6134 	 * Since we are about to call napi->poll() once more, we can safely
6135 	 * clear NAPI_STATE_MISSED.
6136 	 *
6137 	 * Note: x86 could use a single "lock and ..." instruction
6138 	 * to perform these two clear_bit()
6139 	 */
6140 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6141 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6142 
6143 	local_bh_disable();
6144 
6145 	if (prefer_busy_poll) {
6146 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6147 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6148 		if (napi->defer_hard_irqs_count && timeout) {
6149 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6150 			skip_schedule = true;
6151 		}
6152 	}
6153 
6154 	/* All we really want here is to re-enable device interrupts.
6155 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6156 	 */
6157 	rc = napi->poll(napi, budget);
6158 	/* We can't gro_normal_list() here, because napi->poll() might have
6159 	 * rearmed the napi (napi_complete_done()) in which case it could
6160 	 * already be running on another CPU.
6161 	 */
6162 	trace_napi_poll(napi, rc, budget);
6163 	netpoll_poll_unlock(have_poll_lock);
6164 	if (rc == budget)
6165 		__busy_poll_stop(napi, skip_schedule);
6166 	local_bh_enable();
6167 }
6168 
6169 void napi_busy_loop(unsigned int napi_id,
6170 		    bool (*loop_end)(void *, unsigned long),
6171 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6172 {
6173 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6174 	int (*napi_poll)(struct napi_struct *napi, int budget);
6175 	void *have_poll_lock = NULL;
6176 	struct napi_struct *napi;
6177 
6178 restart:
6179 	napi_poll = NULL;
6180 
6181 	rcu_read_lock();
6182 
6183 	napi = napi_by_id(napi_id);
6184 	if (!napi)
6185 		goto out;
6186 
6187 	preempt_disable();
6188 	for (;;) {
6189 		int work = 0;
6190 
6191 		local_bh_disable();
6192 		if (!napi_poll) {
6193 			unsigned long val = READ_ONCE(napi->state);
6194 
6195 			/* If multiple threads are competing for this napi,
6196 			 * we avoid dirtying napi->state as much as we can.
6197 			 */
6198 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6199 				   NAPIF_STATE_IN_BUSY_POLL)) {
6200 				if (prefer_busy_poll)
6201 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6202 				goto count;
6203 			}
6204 			if (cmpxchg(&napi->state, val,
6205 				    val | NAPIF_STATE_IN_BUSY_POLL |
6206 					  NAPIF_STATE_SCHED) != val) {
6207 				if (prefer_busy_poll)
6208 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6209 				goto count;
6210 			}
6211 			have_poll_lock = netpoll_poll_lock(napi);
6212 			napi_poll = napi->poll;
6213 		}
6214 		work = napi_poll(napi, budget);
6215 		trace_napi_poll(napi, work, budget);
6216 		gro_normal_list(napi);
6217 count:
6218 		if (work > 0)
6219 			__NET_ADD_STATS(dev_net(napi->dev),
6220 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6221 		local_bh_enable();
6222 
6223 		if (!loop_end || loop_end(loop_end_arg, start_time))
6224 			break;
6225 
6226 		if (unlikely(need_resched())) {
6227 			if (napi_poll)
6228 				busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6229 			preempt_enable();
6230 			rcu_read_unlock();
6231 			cond_resched();
6232 			if (loop_end(loop_end_arg, start_time))
6233 				return;
6234 			goto restart;
6235 		}
6236 		cpu_relax();
6237 	}
6238 	if (napi_poll)
6239 		busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6240 	preempt_enable();
6241 out:
6242 	rcu_read_unlock();
6243 }
6244 EXPORT_SYMBOL(napi_busy_loop);
6245 
6246 #endif /* CONFIG_NET_RX_BUSY_POLL */
6247 
6248 static void napi_hash_add(struct napi_struct *napi)
6249 {
6250 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6251 		return;
6252 
6253 	spin_lock(&napi_hash_lock);
6254 
6255 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6256 	do {
6257 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6258 			napi_gen_id = MIN_NAPI_ID;
6259 	} while (napi_by_id(napi_gen_id));
6260 	napi->napi_id = napi_gen_id;
6261 
6262 	hlist_add_head_rcu(&napi->napi_hash_node,
6263 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6264 
6265 	spin_unlock(&napi_hash_lock);
6266 }
6267 
6268 /* Warning : caller is responsible to make sure rcu grace period
6269  * is respected before freeing memory containing @napi
6270  */
6271 static void napi_hash_del(struct napi_struct *napi)
6272 {
6273 	spin_lock(&napi_hash_lock);
6274 
6275 	hlist_del_init_rcu(&napi->napi_hash_node);
6276 
6277 	spin_unlock(&napi_hash_lock);
6278 }
6279 
6280 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6281 {
6282 	struct napi_struct *napi;
6283 
6284 	napi = container_of(timer, struct napi_struct, timer);
6285 
6286 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6287 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6288 	 */
6289 	if (!napi_disable_pending(napi) &&
6290 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6291 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6292 		__napi_schedule_irqoff(napi);
6293 	}
6294 
6295 	return HRTIMER_NORESTART;
6296 }
6297 
6298 static void init_gro_hash(struct napi_struct *napi)
6299 {
6300 	int i;
6301 
6302 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6303 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6304 		napi->gro_hash[i].count = 0;
6305 	}
6306 	napi->gro_bitmask = 0;
6307 }
6308 
6309 int dev_set_threaded(struct net_device *dev, bool threaded)
6310 {
6311 	struct napi_struct *napi;
6312 	int err = 0;
6313 
6314 	if (dev->threaded == threaded)
6315 		return 0;
6316 
6317 	if (threaded) {
6318 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6319 			if (!napi->thread) {
6320 				err = napi_kthread_create(napi);
6321 				if (err) {
6322 					threaded = false;
6323 					break;
6324 				}
6325 			}
6326 		}
6327 	}
6328 
6329 	dev->threaded = threaded;
6330 
6331 	/* Make sure kthread is created before THREADED bit
6332 	 * is set.
6333 	 */
6334 	smp_mb__before_atomic();
6335 
6336 	/* Setting/unsetting threaded mode on a napi might not immediately
6337 	 * take effect, if the current napi instance is actively being
6338 	 * polled. In this case, the switch between threaded mode and
6339 	 * softirq mode will happen in the next round of napi_schedule().
6340 	 * This should not cause hiccups/stalls to the live traffic.
6341 	 */
6342 	list_for_each_entry(napi, &dev->napi_list, dev_list) {
6343 		if (threaded)
6344 			set_bit(NAPI_STATE_THREADED, &napi->state);
6345 		else
6346 			clear_bit(NAPI_STATE_THREADED, &napi->state);
6347 	}
6348 
6349 	return err;
6350 }
6351 EXPORT_SYMBOL(dev_set_threaded);
6352 
6353 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6354 			   int (*poll)(struct napi_struct *, int), int weight)
6355 {
6356 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6357 		return;
6358 
6359 	INIT_LIST_HEAD(&napi->poll_list);
6360 	INIT_HLIST_NODE(&napi->napi_hash_node);
6361 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6362 	napi->timer.function = napi_watchdog;
6363 	init_gro_hash(napi);
6364 	napi->skb = NULL;
6365 	INIT_LIST_HEAD(&napi->rx_list);
6366 	napi->rx_count = 0;
6367 	napi->poll = poll;
6368 	if (weight > NAPI_POLL_WEIGHT)
6369 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6370 				weight);
6371 	napi->weight = weight;
6372 	napi->dev = dev;
6373 #ifdef CONFIG_NETPOLL
6374 	napi->poll_owner = -1;
6375 #endif
6376 	set_bit(NAPI_STATE_SCHED, &napi->state);
6377 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6378 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6379 	napi_hash_add(napi);
6380 	napi_get_frags_check(napi);
6381 	/* Create kthread for this napi if dev->threaded is set.
6382 	 * Clear dev->threaded if kthread creation failed so that
6383 	 * threaded mode will not be enabled in napi_enable().
6384 	 */
6385 	if (dev->threaded && napi_kthread_create(napi))
6386 		dev->threaded = 0;
6387 }
6388 EXPORT_SYMBOL(netif_napi_add_weight);
6389 
6390 void napi_disable(struct napi_struct *n)
6391 {
6392 	unsigned long val, new;
6393 
6394 	might_sleep();
6395 	set_bit(NAPI_STATE_DISABLE, &n->state);
6396 
6397 	val = READ_ONCE(n->state);
6398 	do {
6399 		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6400 			usleep_range(20, 200);
6401 			val = READ_ONCE(n->state);
6402 		}
6403 
6404 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6405 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6406 	} while (!try_cmpxchg(&n->state, &val, new));
6407 
6408 	hrtimer_cancel(&n->timer);
6409 
6410 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6411 }
6412 EXPORT_SYMBOL(napi_disable);
6413 
6414 /**
6415  *	napi_enable - enable NAPI scheduling
6416  *	@n: NAPI context
6417  *
6418  * Resume NAPI from being scheduled on this context.
6419  * Must be paired with napi_disable.
6420  */
6421 void napi_enable(struct napi_struct *n)
6422 {
6423 	unsigned long new, val = READ_ONCE(n->state);
6424 
6425 	do {
6426 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6427 
6428 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6429 		if (n->dev->threaded && n->thread)
6430 			new |= NAPIF_STATE_THREADED;
6431 	} while (!try_cmpxchg(&n->state, &val, new));
6432 }
6433 EXPORT_SYMBOL(napi_enable);
6434 
6435 static void flush_gro_hash(struct napi_struct *napi)
6436 {
6437 	int i;
6438 
6439 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6440 		struct sk_buff *skb, *n;
6441 
6442 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6443 			kfree_skb(skb);
6444 		napi->gro_hash[i].count = 0;
6445 	}
6446 }
6447 
6448 /* Must be called in process context */
6449 void __netif_napi_del(struct napi_struct *napi)
6450 {
6451 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6452 		return;
6453 
6454 	napi_hash_del(napi);
6455 	list_del_rcu(&napi->dev_list);
6456 	napi_free_frags(napi);
6457 
6458 	flush_gro_hash(napi);
6459 	napi->gro_bitmask = 0;
6460 
6461 	if (napi->thread) {
6462 		kthread_stop(napi->thread);
6463 		napi->thread = NULL;
6464 	}
6465 }
6466 EXPORT_SYMBOL(__netif_napi_del);
6467 
6468 static int __napi_poll(struct napi_struct *n, bool *repoll)
6469 {
6470 	int work, weight;
6471 
6472 	weight = n->weight;
6473 
6474 	/* This NAPI_STATE_SCHED test is for avoiding a race
6475 	 * with netpoll's poll_napi().  Only the entity which
6476 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6477 	 * actually make the ->poll() call.  Therefore we avoid
6478 	 * accidentally calling ->poll() when NAPI is not scheduled.
6479 	 */
6480 	work = 0;
6481 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6482 		work = n->poll(n, weight);
6483 		trace_napi_poll(n, work, weight);
6484 	}
6485 
6486 	if (unlikely(work > weight))
6487 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6488 				n->poll, work, weight);
6489 
6490 	if (likely(work < weight))
6491 		return work;
6492 
6493 	/* Drivers must not modify the NAPI state if they
6494 	 * consume the entire weight.  In such cases this code
6495 	 * still "owns" the NAPI instance and therefore can
6496 	 * move the instance around on the list at-will.
6497 	 */
6498 	if (unlikely(napi_disable_pending(n))) {
6499 		napi_complete(n);
6500 		return work;
6501 	}
6502 
6503 	/* The NAPI context has more processing work, but busy-polling
6504 	 * is preferred. Exit early.
6505 	 */
6506 	if (napi_prefer_busy_poll(n)) {
6507 		if (napi_complete_done(n, work)) {
6508 			/* If timeout is not set, we need to make sure
6509 			 * that the NAPI is re-scheduled.
6510 			 */
6511 			napi_schedule(n);
6512 		}
6513 		return work;
6514 	}
6515 
6516 	if (n->gro_bitmask) {
6517 		/* flush too old packets
6518 		 * If HZ < 1000, flush all packets.
6519 		 */
6520 		napi_gro_flush(n, HZ >= 1000);
6521 	}
6522 
6523 	gro_normal_list(n);
6524 
6525 	/* Some drivers may have called napi_schedule
6526 	 * prior to exhausting their budget.
6527 	 */
6528 	if (unlikely(!list_empty(&n->poll_list))) {
6529 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6530 			     n->dev ? n->dev->name : "backlog");
6531 		return work;
6532 	}
6533 
6534 	*repoll = true;
6535 
6536 	return work;
6537 }
6538 
6539 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6540 {
6541 	bool do_repoll = false;
6542 	void *have;
6543 	int work;
6544 
6545 	list_del_init(&n->poll_list);
6546 
6547 	have = netpoll_poll_lock(n);
6548 
6549 	work = __napi_poll(n, &do_repoll);
6550 
6551 	if (do_repoll)
6552 		list_add_tail(&n->poll_list, repoll);
6553 
6554 	netpoll_poll_unlock(have);
6555 
6556 	return work;
6557 }
6558 
6559 static int napi_thread_wait(struct napi_struct *napi)
6560 {
6561 	bool woken = false;
6562 
6563 	set_current_state(TASK_INTERRUPTIBLE);
6564 
6565 	while (!kthread_should_stop()) {
6566 		/* Testing SCHED_THREADED bit here to make sure the current
6567 		 * kthread owns this napi and could poll on this napi.
6568 		 * Testing SCHED bit is not enough because SCHED bit might be
6569 		 * set by some other busy poll thread or by napi_disable().
6570 		 */
6571 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6572 			WARN_ON(!list_empty(&napi->poll_list));
6573 			__set_current_state(TASK_RUNNING);
6574 			return 0;
6575 		}
6576 
6577 		schedule();
6578 		/* woken being true indicates this thread owns this napi. */
6579 		woken = true;
6580 		set_current_state(TASK_INTERRUPTIBLE);
6581 	}
6582 	__set_current_state(TASK_RUNNING);
6583 
6584 	return -1;
6585 }
6586 
6587 static int napi_threaded_poll(void *data)
6588 {
6589 	struct napi_struct *napi = data;
6590 	void *have;
6591 
6592 	while (!napi_thread_wait(napi)) {
6593 		for (;;) {
6594 			bool repoll = false;
6595 
6596 			local_bh_disable();
6597 
6598 			have = netpoll_poll_lock(napi);
6599 			__napi_poll(napi, &repoll);
6600 			netpoll_poll_unlock(have);
6601 
6602 			local_bh_enable();
6603 
6604 			if (!repoll)
6605 				break;
6606 
6607 			cond_resched();
6608 		}
6609 	}
6610 	return 0;
6611 }
6612 
6613 static void skb_defer_free_flush(struct softnet_data *sd)
6614 {
6615 	struct sk_buff *skb, *next;
6616 
6617 	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6618 	if (!READ_ONCE(sd->defer_list))
6619 		return;
6620 
6621 	spin_lock_irq(&sd->defer_lock);
6622 	skb = sd->defer_list;
6623 	sd->defer_list = NULL;
6624 	sd->defer_count = 0;
6625 	spin_unlock_irq(&sd->defer_lock);
6626 
6627 	while (skb != NULL) {
6628 		next = skb->next;
6629 		napi_consume_skb(skb, 1);
6630 		skb = next;
6631 	}
6632 }
6633 
6634 static __latent_entropy void net_rx_action(struct softirq_action *h)
6635 {
6636 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6637 	unsigned long time_limit = jiffies +
6638 		usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6639 	int budget = READ_ONCE(netdev_budget);
6640 	LIST_HEAD(list);
6641 	LIST_HEAD(repoll);
6642 
6643 	local_irq_disable();
6644 	list_splice_init(&sd->poll_list, &list);
6645 	local_irq_enable();
6646 
6647 	for (;;) {
6648 		struct napi_struct *n;
6649 
6650 		skb_defer_free_flush(sd);
6651 
6652 		if (list_empty(&list)) {
6653 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6654 				goto end;
6655 			break;
6656 		}
6657 
6658 		n = list_first_entry(&list, struct napi_struct, poll_list);
6659 		budget -= napi_poll(n, &repoll);
6660 
6661 		/* If softirq window is exhausted then punt.
6662 		 * Allow this to run for 2 jiffies since which will allow
6663 		 * an average latency of 1.5/HZ.
6664 		 */
6665 		if (unlikely(budget <= 0 ||
6666 			     time_after_eq(jiffies, time_limit))) {
6667 			sd->time_squeeze++;
6668 			break;
6669 		}
6670 	}
6671 
6672 	local_irq_disable();
6673 
6674 	list_splice_tail_init(&sd->poll_list, &list);
6675 	list_splice_tail(&repoll, &list);
6676 	list_splice(&list, &sd->poll_list);
6677 	if (!list_empty(&sd->poll_list))
6678 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6679 
6680 	net_rps_action_and_irq_enable(sd);
6681 end:;
6682 }
6683 
6684 struct netdev_adjacent {
6685 	struct net_device *dev;
6686 	netdevice_tracker dev_tracker;
6687 
6688 	/* upper master flag, there can only be one master device per list */
6689 	bool master;
6690 
6691 	/* lookup ignore flag */
6692 	bool ignore;
6693 
6694 	/* counter for the number of times this device was added to us */
6695 	u16 ref_nr;
6696 
6697 	/* private field for the users */
6698 	void *private;
6699 
6700 	struct list_head list;
6701 	struct rcu_head rcu;
6702 };
6703 
6704 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6705 						 struct list_head *adj_list)
6706 {
6707 	struct netdev_adjacent *adj;
6708 
6709 	list_for_each_entry(adj, adj_list, list) {
6710 		if (adj->dev == adj_dev)
6711 			return adj;
6712 	}
6713 	return NULL;
6714 }
6715 
6716 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6717 				    struct netdev_nested_priv *priv)
6718 {
6719 	struct net_device *dev = (struct net_device *)priv->data;
6720 
6721 	return upper_dev == dev;
6722 }
6723 
6724 /**
6725  * netdev_has_upper_dev - Check if device is linked to an upper device
6726  * @dev: device
6727  * @upper_dev: upper device to check
6728  *
6729  * Find out if a device is linked to specified upper device and return true
6730  * in case it is. Note that this checks only immediate upper device,
6731  * not through a complete stack of devices. The caller must hold the RTNL lock.
6732  */
6733 bool netdev_has_upper_dev(struct net_device *dev,
6734 			  struct net_device *upper_dev)
6735 {
6736 	struct netdev_nested_priv priv = {
6737 		.data = (void *)upper_dev,
6738 	};
6739 
6740 	ASSERT_RTNL();
6741 
6742 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6743 					     &priv);
6744 }
6745 EXPORT_SYMBOL(netdev_has_upper_dev);
6746 
6747 /**
6748  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6749  * @dev: device
6750  * @upper_dev: upper device to check
6751  *
6752  * Find out if a device is linked to specified upper device and return true
6753  * in case it is. Note that this checks the entire upper device chain.
6754  * The caller must hold rcu lock.
6755  */
6756 
6757 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6758 				  struct net_device *upper_dev)
6759 {
6760 	struct netdev_nested_priv priv = {
6761 		.data = (void *)upper_dev,
6762 	};
6763 
6764 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6765 					       &priv);
6766 }
6767 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6768 
6769 /**
6770  * netdev_has_any_upper_dev - Check if device is linked to some device
6771  * @dev: device
6772  *
6773  * Find out if a device is linked to an upper device and return true in case
6774  * it is. The caller must hold the RTNL lock.
6775  */
6776 bool netdev_has_any_upper_dev(struct net_device *dev)
6777 {
6778 	ASSERT_RTNL();
6779 
6780 	return !list_empty(&dev->adj_list.upper);
6781 }
6782 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6783 
6784 /**
6785  * netdev_master_upper_dev_get - Get master upper device
6786  * @dev: device
6787  *
6788  * Find a master upper device and return pointer to it or NULL in case
6789  * it's not there. The caller must hold the RTNL lock.
6790  */
6791 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6792 {
6793 	struct netdev_adjacent *upper;
6794 
6795 	ASSERT_RTNL();
6796 
6797 	if (list_empty(&dev->adj_list.upper))
6798 		return NULL;
6799 
6800 	upper = list_first_entry(&dev->adj_list.upper,
6801 				 struct netdev_adjacent, list);
6802 	if (likely(upper->master))
6803 		return upper->dev;
6804 	return NULL;
6805 }
6806 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6807 
6808 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6809 {
6810 	struct netdev_adjacent *upper;
6811 
6812 	ASSERT_RTNL();
6813 
6814 	if (list_empty(&dev->adj_list.upper))
6815 		return NULL;
6816 
6817 	upper = list_first_entry(&dev->adj_list.upper,
6818 				 struct netdev_adjacent, list);
6819 	if (likely(upper->master) && !upper->ignore)
6820 		return upper->dev;
6821 	return NULL;
6822 }
6823 
6824 /**
6825  * netdev_has_any_lower_dev - Check if device is linked to some device
6826  * @dev: device
6827  *
6828  * Find out if a device is linked to a lower device and return true in case
6829  * it is. The caller must hold the RTNL lock.
6830  */
6831 static bool netdev_has_any_lower_dev(struct net_device *dev)
6832 {
6833 	ASSERT_RTNL();
6834 
6835 	return !list_empty(&dev->adj_list.lower);
6836 }
6837 
6838 void *netdev_adjacent_get_private(struct list_head *adj_list)
6839 {
6840 	struct netdev_adjacent *adj;
6841 
6842 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6843 
6844 	return adj->private;
6845 }
6846 EXPORT_SYMBOL(netdev_adjacent_get_private);
6847 
6848 /**
6849  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6850  * @dev: device
6851  * @iter: list_head ** of the current position
6852  *
6853  * Gets the next device from the dev's upper list, starting from iter
6854  * position. The caller must hold RCU read lock.
6855  */
6856 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6857 						 struct list_head **iter)
6858 {
6859 	struct netdev_adjacent *upper;
6860 
6861 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6862 
6863 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6864 
6865 	if (&upper->list == &dev->adj_list.upper)
6866 		return NULL;
6867 
6868 	*iter = &upper->list;
6869 
6870 	return upper->dev;
6871 }
6872 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6873 
6874 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6875 						  struct list_head **iter,
6876 						  bool *ignore)
6877 {
6878 	struct netdev_adjacent *upper;
6879 
6880 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6881 
6882 	if (&upper->list == &dev->adj_list.upper)
6883 		return NULL;
6884 
6885 	*iter = &upper->list;
6886 	*ignore = upper->ignore;
6887 
6888 	return upper->dev;
6889 }
6890 
6891 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6892 						    struct list_head **iter)
6893 {
6894 	struct netdev_adjacent *upper;
6895 
6896 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6897 
6898 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6899 
6900 	if (&upper->list == &dev->adj_list.upper)
6901 		return NULL;
6902 
6903 	*iter = &upper->list;
6904 
6905 	return upper->dev;
6906 }
6907 
6908 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6909 				       int (*fn)(struct net_device *dev,
6910 					 struct netdev_nested_priv *priv),
6911 				       struct netdev_nested_priv *priv)
6912 {
6913 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6914 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6915 	int ret, cur = 0;
6916 	bool ignore;
6917 
6918 	now = dev;
6919 	iter = &dev->adj_list.upper;
6920 
6921 	while (1) {
6922 		if (now != dev) {
6923 			ret = fn(now, priv);
6924 			if (ret)
6925 				return ret;
6926 		}
6927 
6928 		next = NULL;
6929 		while (1) {
6930 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
6931 			if (!udev)
6932 				break;
6933 			if (ignore)
6934 				continue;
6935 
6936 			next = udev;
6937 			niter = &udev->adj_list.upper;
6938 			dev_stack[cur] = now;
6939 			iter_stack[cur++] = iter;
6940 			break;
6941 		}
6942 
6943 		if (!next) {
6944 			if (!cur)
6945 				return 0;
6946 			next = dev_stack[--cur];
6947 			niter = iter_stack[cur];
6948 		}
6949 
6950 		now = next;
6951 		iter = niter;
6952 	}
6953 
6954 	return 0;
6955 }
6956 
6957 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6958 				  int (*fn)(struct net_device *dev,
6959 					    struct netdev_nested_priv *priv),
6960 				  struct netdev_nested_priv *priv)
6961 {
6962 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6963 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6964 	int ret, cur = 0;
6965 
6966 	now = dev;
6967 	iter = &dev->adj_list.upper;
6968 
6969 	while (1) {
6970 		if (now != dev) {
6971 			ret = fn(now, priv);
6972 			if (ret)
6973 				return ret;
6974 		}
6975 
6976 		next = NULL;
6977 		while (1) {
6978 			udev = netdev_next_upper_dev_rcu(now, &iter);
6979 			if (!udev)
6980 				break;
6981 
6982 			next = udev;
6983 			niter = &udev->adj_list.upper;
6984 			dev_stack[cur] = now;
6985 			iter_stack[cur++] = iter;
6986 			break;
6987 		}
6988 
6989 		if (!next) {
6990 			if (!cur)
6991 				return 0;
6992 			next = dev_stack[--cur];
6993 			niter = iter_stack[cur];
6994 		}
6995 
6996 		now = next;
6997 		iter = niter;
6998 	}
6999 
7000 	return 0;
7001 }
7002 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7003 
7004 static bool __netdev_has_upper_dev(struct net_device *dev,
7005 				   struct net_device *upper_dev)
7006 {
7007 	struct netdev_nested_priv priv = {
7008 		.flags = 0,
7009 		.data = (void *)upper_dev,
7010 	};
7011 
7012 	ASSERT_RTNL();
7013 
7014 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7015 					   &priv);
7016 }
7017 
7018 /**
7019  * netdev_lower_get_next_private - Get the next ->private from the
7020  *				   lower neighbour list
7021  * @dev: device
7022  * @iter: list_head ** of the current position
7023  *
7024  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7025  * list, starting from iter position. The caller must hold either hold the
7026  * RTNL lock or its own locking that guarantees that the neighbour lower
7027  * list will remain unchanged.
7028  */
7029 void *netdev_lower_get_next_private(struct net_device *dev,
7030 				    struct list_head **iter)
7031 {
7032 	struct netdev_adjacent *lower;
7033 
7034 	lower = list_entry(*iter, struct netdev_adjacent, list);
7035 
7036 	if (&lower->list == &dev->adj_list.lower)
7037 		return NULL;
7038 
7039 	*iter = lower->list.next;
7040 
7041 	return lower->private;
7042 }
7043 EXPORT_SYMBOL(netdev_lower_get_next_private);
7044 
7045 /**
7046  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7047  *				       lower neighbour list, RCU
7048  *				       variant
7049  * @dev: device
7050  * @iter: list_head ** of the current position
7051  *
7052  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7053  * list, starting from iter position. The caller must hold RCU read lock.
7054  */
7055 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7056 					struct list_head **iter)
7057 {
7058 	struct netdev_adjacent *lower;
7059 
7060 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7061 
7062 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7063 
7064 	if (&lower->list == &dev->adj_list.lower)
7065 		return NULL;
7066 
7067 	*iter = &lower->list;
7068 
7069 	return lower->private;
7070 }
7071 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7072 
7073 /**
7074  * netdev_lower_get_next - Get the next device from the lower neighbour
7075  *                         list
7076  * @dev: device
7077  * @iter: list_head ** of the current position
7078  *
7079  * Gets the next netdev_adjacent from the dev's lower neighbour
7080  * list, starting from iter position. The caller must hold RTNL lock or
7081  * its own locking that guarantees that the neighbour lower
7082  * list will remain unchanged.
7083  */
7084 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7085 {
7086 	struct netdev_adjacent *lower;
7087 
7088 	lower = list_entry(*iter, struct netdev_adjacent, list);
7089 
7090 	if (&lower->list == &dev->adj_list.lower)
7091 		return NULL;
7092 
7093 	*iter = lower->list.next;
7094 
7095 	return lower->dev;
7096 }
7097 EXPORT_SYMBOL(netdev_lower_get_next);
7098 
7099 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7100 						struct list_head **iter)
7101 {
7102 	struct netdev_adjacent *lower;
7103 
7104 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7105 
7106 	if (&lower->list == &dev->adj_list.lower)
7107 		return NULL;
7108 
7109 	*iter = &lower->list;
7110 
7111 	return lower->dev;
7112 }
7113 
7114 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7115 						  struct list_head **iter,
7116 						  bool *ignore)
7117 {
7118 	struct netdev_adjacent *lower;
7119 
7120 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7121 
7122 	if (&lower->list == &dev->adj_list.lower)
7123 		return NULL;
7124 
7125 	*iter = &lower->list;
7126 	*ignore = lower->ignore;
7127 
7128 	return lower->dev;
7129 }
7130 
7131 int netdev_walk_all_lower_dev(struct net_device *dev,
7132 			      int (*fn)(struct net_device *dev,
7133 					struct netdev_nested_priv *priv),
7134 			      struct netdev_nested_priv *priv)
7135 {
7136 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7137 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7138 	int ret, cur = 0;
7139 
7140 	now = dev;
7141 	iter = &dev->adj_list.lower;
7142 
7143 	while (1) {
7144 		if (now != dev) {
7145 			ret = fn(now, priv);
7146 			if (ret)
7147 				return ret;
7148 		}
7149 
7150 		next = NULL;
7151 		while (1) {
7152 			ldev = netdev_next_lower_dev(now, &iter);
7153 			if (!ldev)
7154 				break;
7155 
7156 			next = ldev;
7157 			niter = &ldev->adj_list.lower;
7158 			dev_stack[cur] = now;
7159 			iter_stack[cur++] = iter;
7160 			break;
7161 		}
7162 
7163 		if (!next) {
7164 			if (!cur)
7165 				return 0;
7166 			next = dev_stack[--cur];
7167 			niter = iter_stack[cur];
7168 		}
7169 
7170 		now = next;
7171 		iter = niter;
7172 	}
7173 
7174 	return 0;
7175 }
7176 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7177 
7178 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7179 				       int (*fn)(struct net_device *dev,
7180 					 struct netdev_nested_priv *priv),
7181 				       struct netdev_nested_priv *priv)
7182 {
7183 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7184 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7185 	int ret, cur = 0;
7186 	bool ignore;
7187 
7188 	now = dev;
7189 	iter = &dev->adj_list.lower;
7190 
7191 	while (1) {
7192 		if (now != dev) {
7193 			ret = fn(now, priv);
7194 			if (ret)
7195 				return ret;
7196 		}
7197 
7198 		next = NULL;
7199 		while (1) {
7200 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7201 			if (!ldev)
7202 				break;
7203 			if (ignore)
7204 				continue;
7205 
7206 			next = ldev;
7207 			niter = &ldev->adj_list.lower;
7208 			dev_stack[cur] = now;
7209 			iter_stack[cur++] = iter;
7210 			break;
7211 		}
7212 
7213 		if (!next) {
7214 			if (!cur)
7215 				return 0;
7216 			next = dev_stack[--cur];
7217 			niter = iter_stack[cur];
7218 		}
7219 
7220 		now = next;
7221 		iter = niter;
7222 	}
7223 
7224 	return 0;
7225 }
7226 
7227 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7228 					     struct list_head **iter)
7229 {
7230 	struct netdev_adjacent *lower;
7231 
7232 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7233 	if (&lower->list == &dev->adj_list.lower)
7234 		return NULL;
7235 
7236 	*iter = &lower->list;
7237 
7238 	return lower->dev;
7239 }
7240 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7241 
7242 static u8 __netdev_upper_depth(struct net_device *dev)
7243 {
7244 	struct net_device *udev;
7245 	struct list_head *iter;
7246 	u8 max_depth = 0;
7247 	bool ignore;
7248 
7249 	for (iter = &dev->adj_list.upper,
7250 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7251 	     udev;
7252 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7253 		if (ignore)
7254 			continue;
7255 		if (max_depth < udev->upper_level)
7256 			max_depth = udev->upper_level;
7257 	}
7258 
7259 	return max_depth;
7260 }
7261 
7262 static u8 __netdev_lower_depth(struct net_device *dev)
7263 {
7264 	struct net_device *ldev;
7265 	struct list_head *iter;
7266 	u8 max_depth = 0;
7267 	bool ignore;
7268 
7269 	for (iter = &dev->adj_list.lower,
7270 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7271 	     ldev;
7272 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7273 		if (ignore)
7274 			continue;
7275 		if (max_depth < ldev->lower_level)
7276 			max_depth = ldev->lower_level;
7277 	}
7278 
7279 	return max_depth;
7280 }
7281 
7282 static int __netdev_update_upper_level(struct net_device *dev,
7283 				       struct netdev_nested_priv *__unused)
7284 {
7285 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7286 	return 0;
7287 }
7288 
7289 #ifdef CONFIG_LOCKDEP
7290 static LIST_HEAD(net_unlink_list);
7291 
7292 static void net_unlink_todo(struct net_device *dev)
7293 {
7294 	if (list_empty(&dev->unlink_list))
7295 		list_add_tail(&dev->unlink_list, &net_unlink_list);
7296 }
7297 #endif
7298 
7299 static int __netdev_update_lower_level(struct net_device *dev,
7300 				       struct netdev_nested_priv *priv)
7301 {
7302 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7303 
7304 #ifdef CONFIG_LOCKDEP
7305 	if (!priv)
7306 		return 0;
7307 
7308 	if (priv->flags & NESTED_SYNC_IMM)
7309 		dev->nested_level = dev->lower_level - 1;
7310 	if (priv->flags & NESTED_SYNC_TODO)
7311 		net_unlink_todo(dev);
7312 #endif
7313 	return 0;
7314 }
7315 
7316 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7317 				  int (*fn)(struct net_device *dev,
7318 					    struct netdev_nested_priv *priv),
7319 				  struct netdev_nested_priv *priv)
7320 {
7321 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7322 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7323 	int ret, cur = 0;
7324 
7325 	now = dev;
7326 	iter = &dev->adj_list.lower;
7327 
7328 	while (1) {
7329 		if (now != dev) {
7330 			ret = fn(now, priv);
7331 			if (ret)
7332 				return ret;
7333 		}
7334 
7335 		next = NULL;
7336 		while (1) {
7337 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7338 			if (!ldev)
7339 				break;
7340 
7341 			next = ldev;
7342 			niter = &ldev->adj_list.lower;
7343 			dev_stack[cur] = now;
7344 			iter_stack[cur++] = iter;
7345 			break;
7346 		}
7347 
7348 		if (!next) {
7349 			if (!cur)
7350 				return 0;
7351 			next = dev_stack[--cur];
7352 			niter = iter_stack[cur];
7353 		}
7354 
7355 		now = next;
7356 		iter = niter;
7357 	}
7358 
7359 	return 0;
7360 }
7361 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7362 
7363 /**
7364  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7365  *				       lower neighbour list, RCU
7366  *				       variant
7367  * @dev: device
7368  *
7369  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7370  * list. The caller must hold RCU read lock.
7371  */
7372 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7373 {
7374 	struct netdev_adjacent *lower;
7375 
7376 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7377 			struct netdev_adjacent, list);
7378 	if (lower)
7379 		return lower->private;
7380 	return NULL;
7381 }
7382 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7383 
7384 /**
7385  * netdev_master_upper_dev_get_rcu - Get master upper device
7386  * @dev: device
7387  *
7388  * Find a master upper device and return pointer to it or NULL in case
7389  * it's not there. The caller must hold the RCU read lock.
7390  */
7391 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7392 {
7393 	struct netdev_adjacent *upper;
7394 
7395 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7396 				       struct netdev_adjacent, list);
7397 	if (upper && likely(upper->master))
7398 		return upper->dev;
7399 	return NULL;
7400 }
7401 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7402 
7403 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7404 			      struct net_device *adj_dev,
7405 			      struct list_head *dev_list)
7406 {
7407 	char linkname[IFNAMSIZ+7];
7408 
7409 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7410 		"upper_%s" : "lower_%s", adj_dev->name);
7411 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7412 				 linkname);
7413 }
7414 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7415 			       char *name,
7416 			       struct list_head *dev_list)
7417 {
7418 	char linkname[IFNAMSIZ+7];
7419 
7420 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7421 		"upper_%s" : "lower_%s", name);
7422 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7423 }
7424 
7425 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7426 						 struct net_device *adj_dev,
7427 						 struct list_head *dev_list)
7428 {
7429 	return (dev_list == &dev->adj_list.upper ||
7430 		dev_list == &dev->adj_list.lower) &&
7431 		net_eq(dev_net(dev), dev_net(adj_dev));
7432 }
7433 
7434 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7435 					struct net_device *adj_dev,
7436 					struct list_head *dev_list,
7437 					void *private, bool master)
7438 {
7439 	struct netdev_adjacent *adj;
7440 	int ret;
7441 
7442 	adj = __netdev_find_adj(adj_dev, dev_list);
7443 
7444 	if (adj) {
7445 		adj->ref_nr += 1;
7446 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7447 			 dev->name, adj_dev->name, adj->ref_nr);
7448 
7449 		return 0;
7450 	}
7451 
7452 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7453 	if (!adj)
7454 		return -ENOMEM;
7455 
7456 	adj->dev = adj_dev;
7457 	adj->master = master;
7458 	adj->ref_nr = 1;
7459 	adj->private = private;
7460 	adj->ignore = false;
7461 	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7462 
7463 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7464 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7465 
7466 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7467 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7468 		if (ret)
7469 			goto free_adj;
7470 	}
7471 
7472 	/* Ensure that master link is always the first item in list. */
7473 	if (master) {
7474 		ret = sysfs_create_link(&(dev->dev.kobj),
7475 					&(adj_dev->dev.kobj), "master");
7476 		if (ret)
7477 			goto remove_symlinks;
7478 
7479 		list_add_rcu(&adj->list, dev_list);
7480 	} else {
7481 		list_add_tail_rcu(&adj->list, dev_list);
7482 	}
7483 
7484 	return 0;
7485 
7486 remove_symlinks:
7487 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7488 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7489 free_adj:
7490 	netdev_put(adj_dev, &adj->dev_tracker);
7491 	kfree(adj);
7492 
7493 	return ret;
7494 }
7495 
7496 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7497 					 struct net_device *adj_dev,
7498 					 u16 ref_nr,
7499 					 struct list_head *dev_list)
7500 {
7501 	struct netdev_adjacent *adj;
7502 
7503 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7504 		 dev->name, adj_dev->name, ref_nr);
7505 
7506 	adj = __netdev_find_adj(adj_dev, dev_list);
7507 
7508 	if (!adj) {
7509 		pr_err("Adjacency does not exist for device %s from %s\n",
7510 		       dev->name, adj_dev->name);
7511 		WARN_ON(1);
7512 		return;
7513 	}
7514 
7515 	if (adj->ref_nr > ref_nr) {
7516 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7517 			 dev->name, adj_dev->name, ref_nr,
7518 			 adj->ref_nr - ref_nr);
7519 		adj->ref_nr -= ref_nr;
7520 		return;
7521 	}
7522 
7523 	if (adj->master)
7524 		sysfs_remove_link(&(dev->dev.kobj), "master");
7525 
7526 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7527 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7528 
7529 	list_del_rcu(&adj->list);
7530 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7531 		 adj_dev->name, dev->name, adj_dev->name);
7532 	netdev_put(adj_dev, &adj->dev_tracker);
7533 	kfree_rcu(adj, rcu);
7534 }
7535 
7536 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7537 					    struct net_device *upper_dev,
7538 					    struct list_head *up_list,
7539 					    struct list_head *down_list,
7540 					    void *private, bool master)
7541 {
7542 	int ret;
7543 
7544 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7545 					   private, master);
7546 	if (ret)
7547 		return ret;
7548 
7549 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7550 					   private, false);
7551 	if (ret) {
7552 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7553 		return ret;
7554 	}
7555 
7556 	return 0;
7557 }
7558 
7559 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7560 					       struct net_device *upper_dev,
7561 					       u16 ref_nr,
7562 					       struct list_head *up_list,
7563 					       struct list_head *down_list)
7564 {
7565 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7566 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7567 }
7568 
7569 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7570 						struct net_device *upper_dev,
7571 						void *private, bool master)
7572 {
7573 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7574 						&dev->adj_list.upper,
7575 						&upper_dev->adj_list.lower,
7576 						private, master);
7577 }
7578 
7579 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7580 						   struct net_device *upper_dev)
7581 {
7582 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7583 					   &dev->adj_list.upper,
7584 					   &upper_dev->adj_list.lower);
7585 }
7586 
7587 static int __netdev_upper_dev_link(struct net_device *dev,
7588 				   struct net_device *upper_dev, bool master,
7589 				   void *upper_priv, void *upper_info,
7590 				   struct netdev_nested_priv *priv,
7591 				   struct netlink_ext_ack *extack)
7592 {
7593 	struct netdev_notifier_changeupper_info changeupper_info = {
7594 		.info = {
7595 			.dev = dev,
7596 			.extack = extack,
7597 		},
7598 		.upper_dev = upper_dev,
7599 		.master = master,
7600 		.linking = true,
7601 		.upper_info = upper_info,
7602 	};
7603 	struct net_device *master_dev;
7604 	int ret = 0;
7605 
7606 	ASSERT_RTNL();
7607 
7608 	if (dev == upper_dev)
7609 		return -EBUSY;
7610 
7611 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7612 	if (__netdev_has_upper_dev(upper_dev, dev))
7613 		return -EBUSY;
7614 
7615 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7616 		return -EMLINK;
7617 
7618 	if (!master) {
7619 		if (__netdev_has_upper_dev(dev, upper_dev))
7620 			return -EEXIST;
7621 	} else {
7622 		master_dev = __netdev_master_upper_dev_get(dev);
7623 		if (master_dev)
7624 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7625 	}
7626 
7627 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7628 					    &changeupper_info.info);
7629 	ret = notifier_to_errno(ret);
7630 	if (ret)
7631 		return ret;
7632 
7633 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7634 						   master);
7635 	if (ret)
7636 		return ret;
7637 
7638 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7639 					    &changeupper_info.info);
7640 	ret = notifier_to_errno(ret);
7641 	if (ret)
7642 		goto rollback;
7643 
7644 	__netdev_update_upper_level(dev, NULL);
7645 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7646 
7647 	__netdev_update_lower_level(upper_dev, priv);
7648 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7649 				    priv);
7650 
7651 	return 0;
7652 
7653 rollback:
7654 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7655 
7656 	return ret;
7657 }
7658 
7659 /**
7660  * netdev_upper_dev_link - Add a link to the upper device
7661  * @dev: device
7662  * @upper_dev: new upper device
7663  * @extack: netlink extended ack
7664  *
7665  * Adds a link to device which is upper to this one. The caller must hold
7666  * the RTNL lock. On a failure a negative errno code is returned.
7667  * On success the reference counts are adjusted and the function
7668  * returns zero.
7669  */
7670 int netdev_upper_dev_link(struct net_device *dev,
7671 			  struct net_device *upper_dev,
7672 			  struct netlink_ext_ack *extack)
7673 {
7674 	struct netdev_nested_priv priv = {
7675 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7676 		.data = NULL,
7677 	};
7678 
7679 	return __netdev_upper_dev_link(dev, upper_dev, false,
7680 				       NULL, NULL, &priv, extack);
7681 }
7682 EXPORT_SYMBOL(netdev_upper_dev_link);
7683 
7684 /**
7685  * netdev_master_upper_dev_link - Add a master link to the upper device
7686  * @dev: device
7687  * @upper_dev: new upper device
7688  * @upper_priv: upper device private
7689  * @upper_info: upper info to be passed down via notifier
7690  * @extack: netlink extended ack
7691  *
7692  * Adds a link to device which is upper to this one. In this case, only
7693  * one master upper device can be linked, although other non-master devices
7694  * might be linked as well. The caller must hold the RTNL lock.
7695  * On a failure a negative errno code is returned. On success the reference
7696  * counts are adjusted and the function returns zero.
7697  */
7698 int netdev_master_upper_dev_link(struct net_device *dev,
7699 				 struct net_device *upper_dev,
7700 				 void *upper_priv, void *upper_info,
7701 				 struct netlink_ext_ack *extack)
7702 {
7703 	struct netdev_nested_priv priv = {
7704 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7705 		.data = NULL,
7706 	};
7707 
7708 	return __netdev_upper_dev_link(dev, upper_dev, true,
7709 				       upper_priv, upper_info, &priv, extack);
7710 }
7711 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7712 
7713 static void __netdev_upper_dev_unlink(struct net_device *dev,
7714 				      struct net_device *upper_dev,
7715 				      struct netdev_nested_priv *priv)
7716 {
7717 	struct netdev_notifier_changeupper_info changeupper_info = {
7718 		.info = {
7719 			.dev = dev,
7720 		},
7721 		.upper_dev = upper_dev,
7722 		.linking = false,
7723 	};
7724 
7725 	ASSERT_RTNL();
7726 
7727 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7728 
7729 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7730 				      &changeupper_info.info);
7731 
7732 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7733 
7734 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7735 				      &changeupper_info.info);
7736 
7737 	__netdev_update_upper_level(dev, NULL);
7738 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7739 
7740 	__netdev_update_lower_level(upper_dev, priv);
7741 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7742 				    priv);
7743 }
7744 
7745 /**
7746  * netdev_upper_dev_unlink - Removes a link to upper device
7747  * @dev: device
7748  * @upper_dev: new upper device
7749  *
7750  * Removes a link to device which is upper to this one. The caller must hold
7751  * the RTNL lock.
7752  */
7753 void netdev_upper_dev_unlink(struct net_device *dev,
7754 			     struct net_device *upper_dev)
7755 {
7756 	struct netdev_nested_priv priv = {
7757 		.flags = NESTED_SYNC_TODO,
7758 		.data = NULL,
7759 	};
7760 
7761 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
7762 }
7763 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7764 
7765 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7766 				      struct net_device *lower_dev,
7767 				      bool val)
7768 {
7769 	struct netdev_adjacent *adj;
7770 
7771 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7772 	if (adj)
7773 		adj->ignore = val;
7774 
7775 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7776 	if (adj)
7777 		adj->ignore = val;
7778 }
7779 
7780 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7781 					struct net_device *lower_dev)
7782 {
7783 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7784 }
7785 
7786 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7787 				       struct net_device *lower_dev)
7788 {
7789 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7790 }
7791 
7792 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7793 				   struct net_device *new_dev,
7794 				   struct net_device *dev,
7795 				   struct netlink_ext_ack *extack)
7796 {
7797 	struct netdev_nested_priv priv = {
7798 		.flags = 0,
7799 		.data = NULL,
7800 	};
7801 	int err;
7802 
7803 	if (!new_dev)
7804 		return 0;
7805 
7806 	if (old_dev && new_dev != old_dev)
7807 		netdev_adjacent_dev_disable(dev, old_dev);
7808 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7809 				      extack);
7810 	if (err) {
7811 		if (old_dev && new_dev != old_dev)
7812 			netdev_adjacent_dev_enable(dev, old_dev);
7813 		return err;
7814 	}
7815 
7816 	return 0;
7817 }
7818 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7819 
7820 void netdev_adjacent_change_commit(struct net_device *old_dev,
7821 				   struct net_device *new_dev,
7822 				   struct net_device *dev)
7823 {
7824 	struct netdev_nested_priv priv = {
7825 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7826 		.data = NULL,
7827 	};
7828 
7829 	if (!new_dev || !old_dev)
7830 		return;
7831 
7832 	if (new_dev == old_dev)
7833 		return;
7834 
7835 	netdev_adjacent_dev_enable(dev, old_dev);
7836 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
7837 }
7838 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7839 
7840 void netdev_adjacent_change_abort(struct net_device *old_dev,
7841 				  struct net_device *new_dev,
7842 				  struct net_device *dev)
7843 {
7844 	struct netdev_nested_priv priv = {
7845 		.flags = 0,
7846 		.data = NULL,
7847 	};
7848 
7849 	if (!new_dev)
7850 		return;
7851 
7852 	if (old_dev && new_dev != old_dev)
7853 		netdev_adjacent_dev_enable(dev, old_dev);
7854 
7855 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
7856 }
7857 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7858 
7859 /**
7860  * netdev_bonding_info_change - Dispatch event about slave change
7861  * @dev: device
7862  * @bonding_info: info to dispatch
7863  *
7864  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7865  * The caller must hold the RTNL lock.
7866  */
7867 void netdev_bonding_info_change(struct net_device *dev,
7868 				struct netdev_bonding_info *bonding_info)
7869 {
7870 	struct netdev_notifier_bonding_info info = {
7871 		.info.dev = dev,
7872 	};
7873 
7874 	memcpy(&info.bonding_info, bonding_info,
7875 	       sizeof(struct netdev_bonding_info));
7876 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7877 				      &info.info);
7878 }
7879 EXPORT_SYMBOL(netdev_bonding_info_change);
7880 
7881 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7882 					   struct netlink_ext_ack *extack)
7883 {
7884 	struct netdev_notifier_offload_xstats_info info = {
7885 		.info.dev = dev,
7886 		.info.extack = extack,
7887 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7888 	};
7889 	int err;
7890 	int rc;
7891 
7892 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7893 					 GFP_KERNEL);
7894 	if (!dev->offload_xstats_l3)
7895 		return -ENOMEM;
7896 
7897 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
7898 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
7899 						  &info.info);
7900 	err = notifier_to_errno(rc);
7901 	if (err)
7902 		goto free_stats;
7903 
7904 	return 0;
7905 
7906 free_stats:
7907 	kfree(dev->offload_xstats_l3);
7908 	dev->offload_xstats_l3 = NULL;
7909 	return err;
7910 }
7911 
7912 int netdev_offload_xstats_enable(struct net_device *dev,
7913 				 enum netdev_offload_xstats_type type,
7914 				 struct netlink_ext_ack *extack)
7915 {
7916 	ASSERT_RTNL();
7917 
7918 	if (netdev_offload_xstats_enabled(dev, type))
7919 		return -EALREADY;
7920 
7921 	switch (type) {
7922 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7923 		return netdev_offload_xstats_enable_l3(dev, extack);
7924 	}
7925 
7926 	WARN_ON(1);
7927 	return -EINVAL;
7928 }
7929 EXPORT_SYMBOL(netdev_offload_xstats_enable);
7930 
7931 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
7932 {
7933 	struct netdev_notifier_offload_xstats_info info = {
7934 		.info.dev = dev,
7935 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7936 	};
7937 
7938 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
7939 				      &info.info);
7940 	kfree(dev->offload_xstats_l3);
7941 	dev->offload_xstats_l3 = NULL;
7942 }
7943 
7944 int netdev_offload_xstats_disable(struct net_device *dev,
7945 				  enum netdev_offload_xstats_type type)
7946 {
7947 	ASSERT_RTNL();
7948 
7949 	if (!netdev_offload_xstats_enabled(dev, type))
7950 		return -EALREADY;
7951 
7952 	switch (type) {
7953 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7954 		netdev_offload_xstats_disable_l3(dev);
7955 		return 0;
7956 	}
7957 
7958 	WARN_ON(1);
7959 	return -EINVAL;
7960 }
7961 EXPORT_SYMBOL(netdev_offload_xstats_disable);
7962 
7963 static void netdev_offload_xstats_disable_all(struct net_device *dev)
7964 {
7965 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
7966 }
7967 
7968 static struct rtnl_hw_stats64 *
7969 netdev_offload_xstats_get_ptr(const struct net_device *dev,
7970 			      enum netdev_offload_xstats_type type)
7971 {
7972 	switch (type) {
7973 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7974 		return dev->offload_xstats_l3;
7975 	}
7976 
7977 	WARN_ON(1);
7978 	return NULL;
7979 }
7980 
7981 bool netdev_offload_xstats_enabled(const struct net_device *dev,
7982 				   enum netdev_offload_xstats_type type)
7983 {
7984 	ASSERT_RTNL();
7985 
7986 	return netdev_offload_xstats_get_ptr(dev, type);
7987 }
7988 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
7989 
7990 struct netdev_notifier_offload_xstats_ru {
7991 	bool used;
7992 };
7993 
7994 struct netdev_notifier_offload_xstats_rd {
7995 	struct rtnl_hw_stats64 stats;
7996 	bool used;
7997 };
7998 
7999 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8000 				  const struct rtnl_hw_stats64 *src)
8001 {
8002 	dest->rx_packets	  += src->rx_packets;
8003 	dest->tx_packets	  += src->tx_packets;
8004 	dest->rx_bytes		  += src->rx_bytes;
8005 	dest->tx_bytes		  += src->tx_bytes;
8006 	dest->rx_errors		  += src->rx_errors;
8007 	dest->tx_errors		  += src->tx_errors;
8008 	dest->rx_dropped	  += src->rx_dropped;
8009 	dest->tx_dropped	  += src->tx_dropped;
8010 	dest->multicast		  += src->multicast;
8011 }
8012 
8013 static int netdev_offload_xstats_get_used(struct net_device *dev,
8014 					  enum netdev_offload_xstats_type type,
8015 					  bool *p_used,
8016 					  struct netlink_ext_ack *extack)
8017 {
8018 	struct netdev_notifier_offload_xstats_ru report_used = {};
8019 	struct netdev_notifier_offload_xstats_info info = {
8020 		.info.dev = dev,
8021 		.info.extack = extack,
8022 		.type = type,
8023 		.report_used = &report_used,
8024 	};
8025 	int rc;
8026 
8027 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8028 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8029 					   &info.info);
8030 	*p_used = report_used.used;
8031 	return notifier_to_errno(rc);
8032 }
8033 
8034 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8035 					   enum netdev_offload_xstats_type type,
8036 					   struct rtnl_hw_stats64 *p_stats,
8037 					   bool *p_used,
8038 					   struct netlink_ext_ack *extack)
8039 {
8040 	struct netdev_notifier_offload_xstats_rd report_delta = {};
8041 	struct netdev_notifier_offload_xstats_info info = {
8042 		.info.dev = dev,
8043 		.info.extack = extack,
8044 		.type = type,
8045 		.report_delta = &report_delta,
8046 	};
8047 	struct rtnl_hw_stats64 *stats;
8048 	int rc;
8049 
8050 	stats = netdev_offload_xstats_get_ptr(dev, type);
8051 	if (WARN_ON(!stats))
8052 		return -EINVAL;
8053 
8054 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8055 					   &info.info);
8056 
8057 	/* Cache whatever we got, even if there was an error, otherwise the
8058 	 * successful stats retrievals would get lost.
8059 	 */
8060 	netdev_hw_stats64_add(stats, &report_delta.stats);
8061 
8062 	if (p_stats)
8063 		*p_stats = *stats;
8064 	*p_used = report_delta.used;
8065 
8066 	return notifier_to_errno(rc);
8067 }
8068 
8069 int netdev_offload_xstats_get(struct net_device *dev,
8070 			      enum netdev_offload_xstats_type type,
8071 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
8072 			      struct netlink_ext_ack *extack)
8073 {
8074 	ASSERT_RTNL();
8075 
8076 	if (p_stats)
8077 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
8078 						       p_used, extack);
8079 	else
8080 		return netdev_offload_xstats_get_used(dev, type, p_used,
8081 						      extack);
8082 }
8083 EXPORT_SYMBOL(netdev_offload_xstats_get);
8084 
8085 void
8086 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8087 				   const struct rtnl_hw_stats64 *stats)
8088 {
8089 	report_delta->used = true;
8090 	netdev_hw_stats64_add(&report_delta->stats, stats);
8091 }
8092 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8093 
8094 void
8095 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8096 {
8097 	report_used->used = true;
8098 }
8099 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8100 
8101 void netdev_offload_xstats_push_delta(struct net_device *dev,
8102 				      enum netdev_offload_xstats_type type,
8103 				      const struct rtnl_hw_stats64 *p_stats)
8104 {
8105 	struct rtnl_hw_stats64 *stats;
8106 
8107 	ASSERT_RTNL();
8108 
8109 	stats = netdev_offload_xstats_get_ptr(dev, type);
8110 	if (WARN_ON(!stats))
8111 		return;
8112 
8113 	netdev_hw_stats64_add(stats, p_stats);
8114 }
8115 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8116 
8117 /**
8118  * netdev_get_xmit_slave - Get the xmit slave of master device
8119  * @dev: device
8120  * @skb: The packet
8121  * @all_slaves: assume all the slaves are active
8122  *
8123  * The reference counters are not incremented so the caller must be
8124  * careful with locks. The caller must hold RCU lock.
8125  * %NULL is returned if no slave is found.
8126  */
8127 
8128 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8129 					 struct sk_buff *skb,
8130 					 bool all_slaves)
8131 {
8132 	const struct net_device_ops *ops = dev->netdev_ops;
8133 
8134 	if (!ops->ndo_get_xmit_slave)
8135 		return NULL;
8136 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8137 }
8138 EXPORT_SYMBOL(netdev_get_xmit_slave);
8139 
8140 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8141 						  struct sock *sk)
8142 {
8143 	const struct net_device_ops *ops = dev->netdev_ops;
8144 
8145 	if (!ops->ndo_sk_get_lower_dev)
8146 		return NULL;
8147 	return ops->ndo_sk_get_lower_dev(dev, sk);
8148 }
8149 
8150 /**
8151  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8152  * @dev: device
8153  * @sk: the socket
8154  *
8155  * %NULL is returned if no lower device is found.
8156  */
8157 
8158 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8159 					    struct sock *sk)
8160 {
8161 	struct net_device *lower;
8162 
8163 	lower = netdev_sk_get_lower_dev(dev, sk);
8164 	while (lower) {
8165 		dev = lower;
8166 		lower = netdev_sk_get_lower_dev(dev, sk);
8167 	}
8168 
8169 	return dev;
8170 }
8171 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8172 
8173 static void netdev_adjacent_add_links(struct net_device *dev)
8174 {
8175 	struct netdev_adjacent *iter;
8176 
8177 	struct net *net = dev_net(dev);
8178 
8179 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8180 		if (!net_eq(net, dev_net(iter->dev)))
8181 			continue;
8182 		netdev_adjacent_sysfs_add(iter->dev, dev,
8183 					  &iter->dev->adj_list.lower);
8184 		netdev_adjacent_sysfs_add(dev, iter->dev,
8185 					  &dev->adj_list.upper);
8186 	}
8187 
8188 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8189 		if (!net_eq(net, dev_net(iter->dev)))
8190 			continue;
8191 		netdev_adjacent_sysfs_add(iter->dev, dev,
8192 					  &iter->dev->adj_list.upper);
8193 		netdev_adjacent_sysfs_add(dev, iter->dev,
8194 					  &dev->adj_list.lower);
8195 	}
8196 }
8197 
8198 static void netdev_adjacent_del_links(struct net_device *dev)
8199 {
8200 	struct netdev_adjacent *iter;
8201 
8202 	struct net *net = dev_net(dev);
8203 
8204 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8205 		if (!net_eq(net, dev_net(iter->dev)))
8206 			continue;
8207 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8208 					  &iter->dev->adj_list.lower);
8209 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8210 					  &dev->adj_list.upper);
8211 	}
8212 
8213 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8214 		if (!net_eq(net, dev_net(iter->dev)))
8215 			continue;
8216 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8217 					  &iter->dev->adj_list.upper);
8218 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8219 					  &dev->adj_list.lower);
8220 	}
8221 }
8222 
8223 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8224 {
8225 	struct netdev_adjacent *iter;
8226 
8227 	struct net *net = dev_net(dev);
8228 
8229 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8230 		if (!net_eq(net, dev_net(iter->dev)))
8231 			continue;
8232 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8233 					  &iter->dev->adj_list.lower);
8234 		netdev_adjacent_sysfs_add(iter->dev, dev,
8235 					  &iter->dev->adj_list.lower);
8236 	}
8237 
8238 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8239 		if (!net_eq(net, dev_net(iter->dev)))
8240 			continue;
8241 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8242 					  &iter->dev->adj_list.upper);
8243 		netdev_adjacent_sysfs_add(iter->dev, dev,
8244 					  &iter->dev->adj_list.upper);
8245 	}
8246 }
8247 
8248 void *netdev_lower_dev_get_private(struct net_device *dev,
8249 				   struct net_device *lower_dev)
8250 {
8251 	struct netdev_adjacent *lower;
8252 
8253 	if (!lower_dev)
8254 		return NULL;
8255 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8256 	if (!lower)
8257 		return NULL;
8258 
8259 	return lower->private;
8260 }
8261 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8262 
8263 
8264 /**
8265  * netdev_lower_state_changed - Dispatch event about lower device state change
8266  * @lower_dev: device
8267  * @lower_state_info: state to dispatch
8268  *
8269  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8270  * The caller must hold the RTNL lock.
8271  */
8272 void netdev_lower_state_changed(struct net_device *lower_dev,
8273 				void *lower_state_info)
8274 {
8275 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8276 		.info.dev = lower_dev,
8277 	};
8278 
8279 	ASSERT_RTNL();
8280 	changelowerstate_info.lower_state_info = lower_state_info;
8281 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8282 				      &changelowerstate_info.info);
8283 }
8284 EXPORT_SYMBOL(netdev_lower_state_changed);
8285 
8286 static void dev_change_rx_flags(struct net_device *dev, int flags)
8287 {
8288 	const struct net_device_ops *ops = dev->netdev_ops;
8289 
8290 	if (ops->ndo_change_rx_flags)
8291 		ops->ndo_change_rx_flags(dev, flags);
8292 }
8293 
8294 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8295 {
8296 	unsigned int old_flags = dev->flags;
8297 	kuid_t uid;
8298 	kgid_t gid;
8299 
8300 	ASSERT_RTNL();
8301 
8302 	dev->flags |= IFF_PROMISC;
8303 	dev->promiscuity += inc;
8304 	if (dev->promiscuity == 0) {
8305 		/*
8306 		 * Avoid overflow.
8307 		 * If inc causes overflow, untouch promisc and return error.
8308 		 */
8309 		if (inc < 0)
8310 			dev->flags &= ~IFF_PROMISC;
8311 		else {
8312 			dev->promiscuity -= inc;
8313 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8314 			return -EOVERFLOW;
8315 		}
8316 	}
8317 	if (dev->flags != old_flags) {
8318 		netdev_info(dev, "%s promiscuous mode\n",
8319 			    dev->flags & IFF_PROMISC ? "entered" : "left");
8320 		if (audit_enabled) {
8321 			current_uid_gid(&uid, &gid);
8322 			audit_log(audit_context(), GFP_ATOMIC,
8323 				  AUDIT_ANOM_PROMISCUOUS,
8324 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8325 				  dev->name, (dev->flags & IFF_PROMISC),
8326 				  (old_flags & IFF_PROMISC),
8327 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8328 				  from_kuid(&init_user_ns, uid),
8329 				  from_kgid(&init_user_ns, gid),
8330 				  audit_get_sessionid(current));
8331 		}
8332 
8333 		dev_change_rx_flags(dev, IFF_PROMISC);
8334 	}
8335 	if (notify)
8336 		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8337 	return 0;
8338 }
8339 
8340 /**
8341  *	dev_set_promiscuity	- update promiscuity count on a device
8342  *	@dev: device
8343  *	@inc: modifier
8344  *
8345  *	Add or remove promiscuity from a device. While the count in the device
8346  *	remains above zero the interface remains promiscuous. Once it hits zero
8347  *	the device reverts back to normal filtering operation. A negative inc
8348  *	value is used to drop promiscuity on the device.
8349  *	Return 0 if successful or a negative errno code on error.
8350  */
8351 int dev_set_promiscuity(struct net_device *dev, int inc)
8352 {
8353 	unsigned int old_flags = dev->flags;
8354 	int err;
8355 
8356 	err = __dev_set_promiscuity(dev, inc, true);
8357 	if (err < 0)
8358 		return err;
8359 	if (dev->flags != old_flags)
8360 		dev_set_rx_mode(dev);
8361 	return err;
8362 }
8363 EXPORT_SYMBOL(dev_set_promiscuity);
8364 
8365 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8366 {
8367 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8368 
8369 	ASSERT_RTNL();
8370 
8371 	dev->flags |= IFF_ALLMULTI;
8372 	dev->allmulti += inc;
8373 	if (dev->allmulti == 0) {
8374 		/*
8375 		 * Avoid overflow.
8376 		 * If inc causes overflow, untouch allmulti and return error.
8377 		 */
8378 		if (inc < 0)
8379 			dev->flags &= ~IFF_ALLMULTI;
8380 		else {
8381 			dev->allmulti -= inc;
8382 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8383 			return -EOVERFLOW;
8384 		}
8385 	}
8386 	if (dev->flags ^ old_flags) {
8387 		netdev_info(dev, "%s allmulticast mode\n",
8388 			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
8389 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8390 		dev_set_rx_mode(dev);
8391 		if (notify)
8392 			__dev_notify_flags(dev, old_flags,
8393 					   dev->gflags ^ old_gflags, 0, NULL);
8394 	}
8395 	return 0;
8396 }
8397 
8398 /**
8399  *	dev_set_allmulti	- update allmulti count on a device
8400  *	@dev: device
8401  *	@inc: modifier
8402  *
8403  *	Add or remove reception of all multicast frames to a device. While the
8404  *	count in the device remains above zero the interface remains listening
8405  *	to all interfaces. Once it hits zero the device reverts back to normal
8406  *	filtering operation. A negative @inc value is used to drop the counter
8407  *	when releasing a resource needing all multicasts.
8408  *	Return 0 if successful or a negative errno code on error.
8409  */
8410 
8411 int dev_set_allmulti(struct net_device *dev, int inc)
8412 {
8413 	return __dev_set_allmulti(dev, inc, true);
8414 }
8415 EXPORT_SYMBOL(dev_set_allmulti);
8416 
8417 /*
8418  *	Upload unicast and multicast address lists to device and
8419  *	configure RX filtering. When the device doesn't support unicast
8420  *	filtering it is put in promiscuous mode while unicast addresses
8421  *	are present.
8422  */
8423 void __dev_set_rx_mode(struct net_device *dev)
8424 {
8425 	const struct net_device_ops *ops = dev->netdev_ops;
8426 
8427 	/* dev_open will call this function so the list will stay sane. */
8428 	if (!(dev->flags&IFF_UP))
8429 		return;
8430 
8431 	if (!netif_device_present(dev))
8432 		return;
8433 
8434 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8435 		/* Unicast addresses changes may only happen under the rtnl,
8436 		 * therefore calling __dev_set_promiscuity here is safe.
8437 		 */
8438 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8439 			__dev_set_promiscuity(dev, 1, false);
8440 			dev->uc_promisc = true;
8441 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8442 			__dev_set_promiscuity(dev, -1, false);
8443 			dev->uc_promisc = false;
8444 		}
8445 	}
8446 
8447 	if (ops->ndo_set_rx_mode)
8448 		ops->ndo_set_rx_mode(dev);
8449 }
8450 
8451 void dev_set_rx_mode(struct net_device *dev)
8452 {
8453 	netif_addr_lock_bh(dev);
8454 	__dev_set_rx_mode(dev);
8455 	netif_addr_unlock_bh(dev);
8456 }
8457 
8458 /**
8459  *	dev_get_flags - get flags reported to userspace
8460  *	@dev: device
8461  *
8462  *	Get the combination of flag bits exported through APIs to userspace.
8463  */
8464 unsigned int dev_get_flags(const struct net_device *dev)
8465 {
8466 	unsigned int flags;
8467 
8468 	flags = (dev->flags & ~(IFF_PROMISC |
8469 				IFF_ALLMULTI |
8470 				IFF_RUNNING |
8471 				IFF_LOWER_UP |
8472 				IFF_DORMANT)) |
8473 		(dev->gflags & (IFF_PROMISC |
8474 				IFF_ALLMULTI));
8475 
8476 	if (netif_running(dev)) {
8477 		if (netif_oper_up(dev))
8478 			flags |= IFF_RUNNING;
8479 		if (netif_carrier_ok(dev))
8480 			flags |= IFF_LOWER_UP;
8481 		if (netif_dormant(dev))
8482 			flags |= IFF_DORMANT;
8483 	}
8484 
8485 	return flags;
8486 }
8487 EXPORT_SYMBOL(dev_get_flags);
8488 
8489 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8490 		       struct netlink_ext_ack *extack)
8491 {
8492 	unsigned int old_flags = dev->flags;
8493 	int ret;
8494 
8495 	ASSERT_RTNL();
8496 
8497 	/*
8498 	 *	Set the flags on our device.
8499 	 */
8500 
8501 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8502 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8503 			       IFF_AUTOMEDIA)) |
8504 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8505 				    IFF_ALLMULTI));
8506 
8507 	/*
8508 	 *	Load in the correct multicast list now the flags have changed.
8509 	 */
8510 
8511 	if ((old_flags ^ flags) & IFF_MULTICAST)
8512 		dev_change_rx_flags(dev, IFF_MULTICAST);
8513 
8514 	dev_set_rx_mode(dev);
8515 
8516 	/*
8517 	 *	Have we downed the interface. We handle IFF_UP ourselves
8518 	 *	according to user attempts to set it, rather than blindly
8519 	 *	setting it.
8520 	 */
8521 
8522 	ret = 0;
8523 	if ((old_flags ^ flags) & IFF_UP) {
8524 		if (old_flags & IFF_UP)
8525 			__dev_close(dev);
8526 		else
8527 			ret = __dev_open(dev, extack);
8528 	}
8529 
8530 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8531 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8532 		unsigned int old_flags = dev->flags;
8533 
8534 		dev->gflags ^= IFF_PROMISC;
8535 
8536 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8537 			if (dev->flags != old_flags)
8538 				dev_set_rx_mode(dev);
8539 	}
8540 
8541 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8542 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8543 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8544 	 */
8545 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8546 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8547 
8548 		dev->gflags ^= IFF_ALLMULTI;
8549 		__dev_set_allmulti(dev, inc, false);
8550 	}
8551 
8552 	return ret;
8553 }
8554 
8555 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8556 			unsigned int gchanges, u32 portid,
8557 			const struct nlmsghdr *nlh)
8558 {
8559 	unsigned int changes = dev->flags ^ old_flags;
8560 
8561 	if (gchanges)
8562 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8563 
8564 	if (changes & IFF_UP) {
8565 		if (dev->flags & IFF_UP)
8566 			call_netdevice_notifiers(NETDEV_UP, dev);
8567 		else
8568 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8569 	}
8570 
8571 	if (dev->flags & IFF_UP &&
8572 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8573 		struct netdev_notifier_change_info change_info = {
8574 			.info = {
8575 				.dev = dev,
8576 			},
8577 			.flags_changed = changes,
8578 		};
8579 
8580 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8581 	}
8582 }
8583 
8584 /**
8585  *	dev_change_flags - change device settings
8586  *	@dev: device
8587  *	@flags: device state flags
8588  *	@extack: netlink extended ack
8589  *
8590  *	Change settings on device based state flags. The flags are
8591  *	in the userspace exported format.
8592  */
8593 int dev_change_flags(struct net_device *dev, unsigned int flags,
8594 		     struct netlink_ext_ack *extack)
8595 {
8596 	int ret;
8597 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8598 
8599 	ret = __dev_change_flags(dev, flags, extack);
8600 	if (ret < 0)
8601 		return ret;
8602 
8603 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8604 	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
8605 	return ret;
8606 }
8607 EXPORT_SYMBOL(dev_change_flags);
8608 
8609 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8610 {
8611 	const struct net_device_ops *ops = dev->netdev_ops;
8612 
8613 	if (ops->ndo_change_mtu)
8614 		return ops->ndo_change_mtu(dev, new_mtu);
8615 
8616 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8617 	WRITE_ONCE(dev->mtu, new_mtu);
8618 	return 0;
8619 }
8620 EXPORT_SYMBOL(__dev_set_mtu);
8621 
8622 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8623 		     struct netlink_ext_ack *extack)
8624 {
8625 	/* MTU must be positive, and in range */
8626 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8627 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8628 		return -EINVAL;
8629 	}
8630 
8631 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8632 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8633 		return -EINVAL;
8634 	}
8635 	return 0;
8636 }
8637 
8638 /**
8639  *	dev_set_mtu_ext - Change maximum transfer unit
8640  *	@dev: device
8641  *	@new_mtu: new transfer unit
8642  *	@extack: netlink extended ack
8643  *
8644  *	Change the maximum transfer size of the network device.
8645  */
8646 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8647 		    struct netlink_ext_ack *extack)
8648 {
8649 	int err, orig_mtu;
8650 
8651 	if (new_mtu == dev->mtu)
8652 		return 0;
8653 
8654 	err = dev_validate_mtu(dev, new_mtu, extack);
8655 	if (err)
8656 		return err;
8657 
8658 	if (!netif_device_present(dev))
8659 		return -ENODEV;
8660 
8661 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8662 	err = notifier_to_errno(err);
8663 	if (err)
8664 		return err;
8665 
8666 	orig_mtu = dev->mtu;
8667 	err = __dev_set_mtu(dev, new_mtu);
8668 
8669 	if (!err) {
8670 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8671 						   orig_mtu);
8672 		err = notifier_to_errno(err);
8673 		if (err) {
8674 			/* setting mtu back and notifying everyone again,
8675 			 * so that they have a chance to revert changes.
8676 			 */
8677 			__dev_set_mtu(dev, orig_mtu);
8678 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8679 						     new_mtu);
8680 		}
8681 	}
8682 	return err;
8683 }
8684 
8685 int dev_set_mtu(struct net_device *dev, int new_mtu)
8686 {
8687 	struct netlink_ext_ack extack;
8688 	int err;
8689 
8690 	memset(&extack, 0, sizeof(extack));
8691 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8692 	if (err && extack._msg)
8693 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8694 	return err;
8695 }
8696 EXPORT_SYMBOL(dev_set_mtu);
8697 
8698 /**
8699  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8700  *	@dev: device
8701  *	@new_len: new tx queue length
8702  */
8703 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8704 {
8705 	unsigned int orig_len = dev->tx_queue_len;
8706 	int res;
8707 
8708 	if (new_len != (unsigned int)new_len)
8709 		return -ERANGE;
8710 
8711 	if (new_len != orig_len) {
8712 		dev->tx_queue_len = new_len;
8713 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8714 		res = notifier_to_errno(res);
8715 		if (res)
8716 			goto err_rollback;
8717 		res = dev_qdisc_change_tx_queue_len(dev);
8718 		if (res)
8719 			goto err_rollback;
8720 	}
8721 
8722 	return 0;
8723 
8724 err_rollback:
8725 	netdev_err(dev, "refused to change device tx_queue_len\n");
8726 	dev->tx_queue_len = orig_len;
8727 	return res;
8728 }
8729 
8730 /**
8731  *	dev_set_group - Change group this device belongs to
8732  *	@dev: device
8733  *	@new_group: group this device should belong to
8734  */
8735 void dev_set_group(struct net_device *dev, int new_group)
8736 {
8737 	dev->group = new_group;
8738 }
8739 
8740 /**
8741  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8742  *	@dev: device
8743  *	@addr: new address
8744  *	@extack: netlink extended ack
8745  */
8746 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8747 			      struct netlink_ext_ack *extack)
8748 {
8749 	struct netdev_notifier_pre_changeaddr_info info = {
8750 		.info.dev = dev,
8751 		.info.extack = extack,
8752 		.dev_addr = addr,
8753 	};
8754 	int rc;
8755 
8756 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8757 	return notifier_to_errno(rc);
8758 }
8759 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8760 
8761 /**
8762  *	dev_set_mac_address - Change Media Access Control Address
8763  *	@dev: device
8764  *	@sa: new address
8765  *	@extack: netlink extended ack
8766  *
8767  *	Change the hardware (MAC) address of the device
8768  */
8769 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8770 			struct netlink_ext_ack *extack)
8771 {
8772 	const struct net_device_ops *ops = dev->netdev_ops;
8773 	int err;
8774 
8775 	if (!ops->ndo_set_mac_address)
8776 		return -EOPNOTSUPP;
8777 	if (sa->sa_family != dev->type)
8778 		return -EINVAL;
8779 	if (!netif_device_present(dev))
8780 		return -ENODEV;
8781 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8782 	if (err)
8783 		return err;
8784 	err = ops->ndo_set_mac_address(dev, sa);
8785 	if (err)
8786 		return err;
8787 	dev->addr_assign_type = NET_ADDR_SET;
8788 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8789 	add_device_randomness(dev->dev_addr, dev->addr_len);
8790 	return 0;
8791 }
8792 EXPORT_SYMBOL(dev_set_mac_address);
8793 
8794 static DECLARE_RWSEM(dev_addr_sem);
8795 
8796 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8797 			     struct netlink_ext_ack *extack)
8798 {
8799 	int ret;
8800 
8801 	down_write(&dev_addr_sem);
8802 	ret = dev_set_mac_address(dev, sa, extack);
8803 	up_write(&dev_addr_sem);
8804 	return ret;
8805 }
8806 EXPORT_SYMBOL(dev_set_mac_address_user);
8807 
8808 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8809 {
8810 	size_t size = sizeof(sa->sa_data_min);
8811 	struct net_device *dev;
8812 	int ret = 0;
8813 
8814 	down_read(&dev_addr_sem);
8815 	rcu_read_lock();
8816 
8817 	dev = dev_get_by_name_rcu(net, dev_name);
8818 	if (!dev) {
8819 		ret = -ENODEV;
8820 		goto unlock;
8821 	}
8822 	if (!dev->addr_len)
8823 		memset(sa->sa_data, 0, size);
8824 	else
8825 		memcpy(sa->sa_data, dev->dev_addr,
8826 		       min_t(size_t, size, dev->addr_len));
8827 	sa->sa_family = dev->type;
8828 
8829 unlock:
8830 	rcu_read_unlock();
8831 	up_read(&dev_addr_sem);
8832 	return ret;
8833 }
8834 EXPORT_SYMBOL(dev_get_mac_address);
8835 
8836 /**
8837  *	dev_change_carrier - Change device carrier
8838  *	@dev: device
8839  *	@new_carrier: new value
8840  *
8841  *	Change device carrier
8842  */
8843 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8844 {
8845 	const struct net_device_ops *ops = dev->netdev_ops;
8846 
8847 	if (!ops->ndo_change_carrier)
8848 		return -EOPNOTSUPP;
8849 	if (!netif_device_present(dev))
8850 		return -ENODEV;
8851 	return ops->ndo_change_carrier(dev, new_carrier);
8852 }
8853 
8854 /**
8855  *	dev_get_phys_port_id - Get device physical port ID
8856  *	@dev: device
8857  *	@ppid: port ID
8858  *
8859  *	Get device physical port ID
8860  */
8861 int dev_get_phys_port_id(struct net_device *dev,
8862 			 struct netdev_phys_item_id *ppid)
8863 {
8864 	const struct net_device_ops *ops = dev->netdev_ops;
8865 
8866 	if (!ops->ndo_get_phys_port_id)
8867 		return -EOPNOTSUPP;
8868 	return ops->ndo_get_phys_port_id(dev, ppid);
8869 }
8870 
8871 /**
8872  *	dev_get_phys_port_name - Get device physical port name
8873  *	@dev: device
8874  *	@name: port name
8875  *	@len: limit of bytes to copy to name
8876  *
8877  *	Get device physical port name
8878  */
8879 int dev_get_phys_port_name(struct net_device *dev,
8880 			   char *name, size_t len)
8881 {
8882 	const struct net_device_ops *ops = dev->netdev_ops;
8883 	int err;
8884 
8885 	if (ops->ndo_get_phys_port_name) {
8886 		err = ops->ndo_get_phys_port_name(dev, name, len);
8887 		if (err != -EOPNOTSUPP)
8888 			return err;
8889 	}
8890 	return devlink_compat_phys_port_name_get(dev, name, len);
8891 }
8892 
8893 /**
8894  *	dev_get_port_parent_id - Get the device's port parent identifier
8895  *	@dev: network device
8896  *	@ppid: pointer to a storage for the port's parent identifier
8897  *	@recurse: allow/disallow recursion to lower devices
8898  *
8899  *	Get the devices's port parent identifier
8900  */
8901 int dev_get_port_parent_id(struct net_device *dev,
8902 			   struct netdev_phys_item_id *ppid,
8903 			   bool recurse)
8904 {
8905 	const struct net_device_ops *ops = dev->netdev_ops;
8906 	struct netdev_phys_item_id first = { };
8907 	struct net_device *lower_dev;
8908 	struct list_head *iter;
8909 	int err;
8910 
8911 	if (ops->ndo_get_port_parent_id) {
8912 		err = ops->ndo_get_port_parent_id(dev, ppid);
8913 		if (err != -EOPNOTSUPP)
8914 			return err;
8915 	}
8916 
8917 	err = devlink_compat_switch_id_get(dev, ppid);
8918 	if (!recurse || err != -EOPNOTSUPP)
8919 		return err;
8920 
8921 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
8922 		err = dev_get_port_parent_id(lower_dev, ppid, true);
8923 		if (err)
8924 			break;
8925 		if (!first.id_len)
8926 			first = *ppid;
8927 		else if (memcmp(&first, ppid, sizeof(*ppid)))
8928 			return -EOPNOTSUPP;
8929 	}
8930 
8931 	return err;
8932 }
8933 EXPORT_SYMBOL(dev_get_port_parent_id);
8934 
8935 /**
8936  *	netdev_port_same_parent_id - Indicate if two network devices have
8937  *	the same port parent identifier
8938  *	@a: first network device
8939  *	@b: second network device
8940  */
8941 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8942 {
8943 	struct netdev_phys_item_id a_id = { };
8944 	struct netdev_phys_item_id b_id = { };
8945 
8946 	if (dev_get_port_parent_id(a, &a_id, true) ||
8947 	    dev_get_port_parent_id(b, &b_id, true))
8948 		return false;
8949 
8950 	return netdev_phys_item_id_same(&a_id, &b_id);
8951 }
8952 EXPORT_SYMBOL(netdev_port_same_parent_id);
8953 
8954 /**
8955  *	dev_change_proto_down - set carrier according to proto_down.
8956  *
8957  *	@dev: device
8958  *	@proto_down: new value
8959  */
8960 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8961 {
8962 	if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
8963 		return -EOPNOTSUPP;
8964 	if (!netif_device_present(dev))
8965 		return -ENODEV;
8966 	if (proto_down)
8967 		netif_carrier_off(dev);
8968 	else
8969 		netif_carrier_on(dev);
8970 	dev->proto_down = proto_down;
8971 	return 0;
8972 }
8973 
8974 /**
8975  *	dev_change_proto_down_reason - proto down reason
8976  *
8977  *	@dev: device
8978  *	@mask: proto down mask
8979  *	@value: proto down value
8980  */
8981 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8982 				  u32 value)
8983 {
8984 	int b;
8985 
8986 	if (!mask) {
8987 		dev->proto_down_reason = value;
8988 	} else {
8989 		for_each_set_bit(b, &mask, 32) {
8990 			if (value & (1 << b))
8991 				dev->proto_down_reason |= BIT(b);
8992 			else
8993 				dev->proto_down_reason &= ~BIT(b);
8994 		}
8995 	}
8996 }
8997 
8998 struct bpf_xdp_link {
8999 	struct bpf_link link;
9000 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9001 	int flags;
9002 };
9003 
9004 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9005 {
9006 	if (flags & XDP_FLAGS_HW_MODE)
9007 		return XDP_MODE_HW;
9008 	if (flags & XDP_FLAGS_DRV_MODE)
9009 		return XDP_MODE_DRV;
9010 	if (flags & XDP_FLAGS_SKB_MODE)
9011 		return XDP_MODE_SKB;
9012 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9013 }
9014 
9015 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9016 {
9017 	switch (mode) {
9018 	case XDP_MODE_SKB:
9019 		return generic_xdp_install;
9020 	case XDP_MODE_DRV:
9021 	case XDP_MODE_HW:
9022 		return dev->netdev_ops->ndo_bpf;
9023 	default:
9024 		return NULL;
9025 	}
9026 }
9027 
9028 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9029 					 enum bpf_xdp_mode mode)
9030 {
9031 	return dev->xdp_state[mode].link;
9032 }
9033 
9034 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9035 				     enum bpf_xdp_mode mode)
9036 {
9037 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9038 
9039 	if (link)
9040 		return link->link.prog;
9041 	return dev->xdp_state[mode].prog;
9042 }
9043 
9044 u8 dev_xdp_prog_count(struct net_device *dev)
9045 {
9046 	u8 count = 0;
9047 	int i;
9048 
9049 	for (i = 0; i < __MAX_XDP_MODE; i++)
9050 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9051 			count++;
9052 	return count;
9053 }
9054 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9055 
9056 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9057 {
9058 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9059 
9060 	return prog ? prog->aux->id : 0;
9061 }
9062 
9063 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9064 			     struct bpf_xdp_link *link)
9065 {
9066 	dev->xdp_state[mode].link = link;
9067 	dev->xdp_state[mode].prog = NULL;
9068 }
9069 
9070 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9071 			     struct bpf_prog *prog)
9072 {
9073 	dev->xdp_state[mode].link = NULL;
9074 	dev->xdp_state[mode].prog = prog;
9075 }
9076 
9077 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9078 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9079 			   u32 flags, struct bpf_prog *prog)
9080 {
9081 	struct netdev_bpf xdp;
9082 	int err;
9083 
9084 	memset(&xdp, 0, sizeof(xdp));
9085 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9086 	xdp.extack = extack;
9087 	xdp.flags = flags;
9088 	xdp.prog = prog;
9089 
9090 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9091 	 * "moved" into driver), so they don't increment it on their own, but
9092 	 * they do decrement refcnt when program is detached or replaced.
9093 	 * Given net_device also owns link/prog, we need to bump refcnt here
9094 	 * to prevent drivers from underflowing it.
9095 	 */
9096 	if (prog)
9097 		bpf_prog_inc(prog);
9098 	err = bpf_op(dev, &xdp);
9099 	if (err) {
9100 		if (prog)
9101 			bpf_prog_put(prog);
9102 		return err;
9103 	}
9104 
9105 	if (mode != XDP_MODE_HW)
9106 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9107 
9108 	return 0;
9109 }
9110 
9111 static void dev_xdp_uninstall(struct net_device *dev)
9112 {
9113 	struct bpf_xdp_link *link;
9114 	struct bpf_prog *prog;
9115 	enum bpf_xdp_mode mode;
9116 	bpf_op_t bpf_op;
9117 
9118 	ASSERT_RTNL();
9119 
9120 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9121 		prog = dev_xdp_prog(dev, mode);
9122 		if (!prog)
9123 			continue;
9124 
9125 		bpf_op = dev_xdp_bpf_op(dev, mode);
9126 		if (!bpf_op)
9127 			continue;
9128 
9129 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9130 
9131 		/* auto-detach link from net device */
9132 		link = dev_xdp_link(dev, mode);
9133 		if (link)
9134 			link->dev = NULL;
9135 		else
9136 			bpf_prog_put(prog);
9137 
9138 		dev_xdp_set_link(dev, mode, NULL);
9139 	}
9140 }
9141 
9142 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9143 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9144 			  struct bpf_prog *old_prog, u32 flags)
9145 {
9146 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9147 	struct bpf_prog *cur_prog;
9148 	struct net_device *upper;
9149 	struct list_head *iter;
9150 	enum bpf_xdp_mode mode;
9151 	bpf_op_t bpf_op;
9152 	int err;
9153 
9154 	ASSERT_RTNL();
9155 
9156 	/* either link or prog attachment, never both */
9157 	if (link && (new_prog || old_prog))
9158 		return -EINVAL;
9159 	/* link supports only XDP mode flags */
9160 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9161 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9162 		return -EINVAL;
9163 	}
9164 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9165 	if (num_modes > 1) {
9166 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9167 		return -EINVAL;
9168 	}
9169 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9170 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9171 		NL_SET_ERR_MSG(extack,
9172 			       "More than one program loaded, unset mode is ambiguous");
9173 		return -EINVAL;
9174 	}
9175 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9176 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9177 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9178 		return -EINVAL;
9179 	}
9180 
9181 	mode = dev_xdp_mode(dev, flags);
9182 	/* can't replace attached link */
9183 	if (dev_xdp_link(dev, mode)) {
9184 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9185 		return -EBUSY;
9186 	}
9187 
9188 	/* don't allow if an upper device already has a program */
9189 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9190 		if (dev_xdp_prog_count(upper) > 0) {
9191 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9192 			return -EEXIST;
9193 		}
9194 	}
9195 
9196 	cur_prog = dev_xdp_prog(dev, mode);
9197 	/* can't replace attached prog with link */
9198 	if (link && cur_prog) {
9199 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9200 		return -EBUSY;
9201 	}
9202 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9203 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9204 		return -EEXIST;
9205 	}
9206 
9207 	/* put effective new program into new_prog */
9208 	if (link)
9209 		new_prog = link->link.prog;
9210 
9211 	if (new_prog) {
9212 		bool offload = mode == XDP_MODE_HW;
9213 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9214 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9215 
9216 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9217 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9218 			return -EBUSY;
9219 		}
9220 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9221 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9222 			return -EEXIST;
9223 		}
9224 		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9225 			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9226 			return -EINVAL;
9227 		}
9228 		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9229 			NL_SET_ERR_MSG(extack, "Program bound to different device");
9230 			return -EINVAL;
9231 		}
9232 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9233 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9234 			return -EINVAL;
9235 		}
9236 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9237 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9238 			return -EINVAL;
9239 		}
9240 	}
9241 
9242 	/* don't call drivers if the effective program didn't change */
9243 	if (new_prog != cur_prog) {
9244 		bpf_op = dev_xdp_bpf_op(dev, mode);
9245 		if (!bpf_op) {
9246 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9247 			return -EOPNOTSUPP;
9248 		}
9249 
9250 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9251 		if (err)
9252 			return err;
9253 	}
9254 
9255 	if (link)
9256 		dev_xdp_set_link(dev, mode, link);
9257 	else
9258 		dev_xdp_set_prog(dev, mode, new_prog);
9259 	if (cur_prog)
9260 		bpf_prog_put(cur_prog);
9261 
9262 	return 0;
9263 }
9264 
9265 static int dev_xdp_attach_link(struct net_device *dev,
9266 			       struct netlink_ext_ack *extack,
9267 			       struct bpf_xdp_link *link)
9268 {
9269 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9270 }
9271 
9272 static int dev_xdp_detach_link(struct net_device *dev,
9273 			       struct netlink_ext_ack *extack,
9274 			       struct bpf_xdp_link *link)
9275 {
9276 	enum bpf_xdp_mode mode;
9277 	bpf_op_t bpf_op;
9278 
9279 	ASSERT_RTNL();
9280 
9281 	mode = dev_xdp_mode(dev, link->flags);
9282 	if (dev_xdp_link(dev, mode) != link)
9283 		return -EINVAL;
9284 
9285 	bpf_op = dev_xdp_bpf_op(dev, mode);
9286 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9287 	dev_xdp_set_link(dev, mode, NULL);
9288 	return 0;
9289 }
9290 
9291 static void bpf_xdp_link_release(struct bpf_link *link)
9292 {
9293 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9294 
9295 	rtnl_lock();
9296 
9297 	/* if racing with net_device's tear down, xdp_link->dev might be
9298 	 * already NULL, in which case link was already auto-detached
9299 	 */
9300 	if (xdp_link->dev) {
9301 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9302 		xdp_link->dev = NULL;
9303 	}
9304 
9305 	rtnl_unlock();
9306 }
9307 
9308 static int bpf_xdp_link_detach(struct bpf_link *link)
9309 {
9310 	bpf_xdp_link_release(link);
9311 	return 0;
9312 }
9313 
9314 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9315 {
9316 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9317 
9318 	kfree(xdp_link);
9319 }
9320 
9321 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9322 				     struct seq_file *seq)
9323 {
9324 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9325 	u32 ifindex = 0;
9326 
9327 	rtnl_lock();
9328 	if (xdp_link->dev)
9329 		ifindex = xdp_link->dev->ifindex;
9330 	rtnl_unlock();
9331 
9332 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9333 }
9334 
9335 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9336 				       struct bpf_link_info *info)
9337 {
9338 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9339 	u32 ifindex = 0;
9340 
9341 	rtnl_lock();
9342 	if (xdp_link->dev)
9343 		ifindex = xdp_link->dev->ifindex;
9344 	rtnl_unlock();
9345 
9346 	info->xdp.ifindex = ifindex;
9347 	return 0;
9348 }
9349 
9350 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9351 			       struct bpf_prog *old_prog)
9352 {
9353 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9354 	enum bpf_xdp_mode mode;
9355 	bpf_op_t bpf_op;
9356 	int err = 0;
9357 
9358 	rtnl_lock();
9359 
9360 	/* link might have been auto-released already, so fail */
9361 	if (!xdp_link->dev) {
9362 		err = -ENOLINK;
9363 		goto out_unlock;
9364 	}
9365 
9366 	if (old_prog && link->prog != old_prog) {
9367 		err = -EPERM;
9368 		goto out_unlock;
9369 	}
9370 	old_prog = link->prog;
9371 	if (old_prog->type != new_prog->type ||
9372 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
9373 		err = -EINVAL;
9374 		goto out_unlock;
9375 	}
9376 
9377 	if (old_prog == new_prog) {
9378 		/* no-op, don't disturb drivers */
9379 		bpf_prog_put(new_prog);
9380 		goto out_unlock;
9381 	}
9382 
9383 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9384 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9385 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9386 			      xdp_link->flags, new_prog);
9387 	if (err)
9388 		goto out_unlock;
9389 
9390 	old_prog = xchg(&link->prog, new_prog);
9391 	bpf_prog_put(old_prog);
9392 
9393 out_unlock:
9394 	rtnl_unlock();
9395 	return err;
9396 }
9397 
9398 static const struct bpf_link_ops bpf_xdp_link_lops = {
9399 	.release = bpf_xdp_link_release,
9400 	.dealloc = bpf_xdp_link_dealloc,
9401 	.detach = bpf_xdp_link_detach,
9402 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9403 	.fill_link_info = bpf_xdp_link_fill_link_info,
9404 	.update_prog = bpf_xdp_link_update,
9405 };
9406 
9407 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9408 {
9409 	struct net *net = current->nsproxy->net_ns;
9410 	struct bpf_link_primer link_primer;
9411 	struct bpf_xdp_link *link;
9412 	struct net_device *dev;
9413 	int err, fd;
9414 
9415 	rtnl_lock();
9416 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9417 	if (!dev) {
9418 		rtnl_unlock();
9419 		return -EINVAL;
9420 	}
9421 
9422 	link = kzalloc(sizeof(*link), GFP_USER);
9423 	if (!link) {
9424 		err = -ENOMEM;
9425 		goto unlock;
9426 	}
9427 
9428 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9429 	link->dev = dev;
9430 	link->flags = attr->link_create.flags;
9431 
9432 	err = bpf_link_prime(&link->link, &link_primer);
9433 	if (err) {
9434 		kfree(link);
9435 		goto unlock;
9436 	}
9437 
9438 	err = dev_xdp_attach_link(dev, NULL, link);
9439 	rtnl_unlock();
9440 
9441 	if (err) {
9442 		link->dev = NULL;
9443 		bpf_link_cleanup(&link_primer);
9444 		goto out_put_dev;
9445 	}
9446 
9447 	fd = bpf_link_settle(&link_primer);
9448 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9449 	dev_put(dev);
9450 	return fd;
9451 
9452 unlock:
9453 	rtnl_unlock();
9454 
9455 out_put_dev:
9456 	dev_put(dev);
9457 	return err;
9458 }
9459 
9460 /**
9461  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9462  *	@dev: device
9463  *	@extack: netlink extended ack
9464  *	@fd: new program fd or negative value to clear
9465  *	@expected_fd: old program fd that userspace expects to replace or clear
9466  *	@flags: xdp-related flags
9467  *
9468  *	Set or clear a bpf program for a device
9469  */
9470 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9471 		      int fd, int expected_fd, u32 flags)
9472 {
9473 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9474 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9475 	int err;
9476 
9477 	ASSERT_RTNL();
9478 
9479 	if (fd >= 0) {
9480 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9481 						 mode != XDP_MODE_SKB);
9482 		if (IS_ERR(new_prog))
9483 			return PTR_ERR(new_prog);
9484 	}
9485 
9486 	if (expected_fd >= 0) {
9487 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9488 						 mode != XDP_MODE_SKB);
9489 		if (IS_ERR(old_prog)) {
9490 			err = PTR_ERR(old_prog);
9491 			old_prog = NULL;
9492 			goto err_out;
9493 		}
9494 	}
9495 
9496 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9497 
9498 err_out:
9499 	if (err && new_prog)
9500 		bpf_prog_put(new_prog);
9501 	if (old_prog)
9502 		bpf_prog_put(old_prog);
9503 	return err;
9504 }
9505 
9506 /**
9507  *	dev_new_index	-	allocate an ifindex
9508  *	@net: the applicable net namespace
9509  *
9510  *	Returns a suitable unique value for a new device interface
9511  *	number.  The caller must hold the rtnl semaphore or the
9512  *	dev_base_lock to be sure it remains unique.
9513  */
9514 static int dev_new_index(struct net *net)
9515 {
9516 	int ifindex = net->ifindex;
9517 
9518 	for (;;) {
9519 		if (++ifindex <= 0)
9520 			ifindex = 1;
9521 		if (!__dev_get_by_index(net, ifindex))
9522 			return net->ifindex = ifindex;
9523 	}
9524 }
9525 
9526 /* Delayed registration/unregisteration */
9527 LIST_HEAD(net_todo_list);
9528 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9529 
9530 static void net_set_todo(struct net_device *dev)
9531 {
9532 	list_add_tail(&dev->todo_list, &net_todo_list);
9533 	atomic_inc(&dev_net(dev)->dev_unreg_count);
9534 }
9535 
9536 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9537 	struct net_device *upper, netdev_features_t features)
9538 {
9539 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9540 	netdev_features_t feature;
9541 	int feature_bit;
9542 
9543 	for_each_netdev_feature(upper_disables, feature_bit) {
9544 		feature = __NETIF_F_BIT(feature_bit);
9545 		if (!(upper->wanted_features & feature)
9546 		    && (features & feature)) {
9547 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9548 				   &feature, upper->name);
9549 			features &= ~feature;
9550 		}
9551 	}
9552 
9553 	return features;
9554 }
9555 
9556 static void netdev_sync_lower_features(struct net_device *upper,
9557 	struct net_device *lower, netdev_features_t features)
9558 {
9559 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9560 	netdev_features_t feature;
9561 	int feature_bit;
9562 
9563 	for_each_netdev_feature(upper_disables, feature_bit) {
9564 		feature = __NETIF_F_BIT(feature_bit);
9565 		if (!(features & feature) && (lower->features & feature)) {
9566 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9567 				   &feature, lower->name);
9568 			lower->wanted_features &= ~feature;
9569 			__netdev_update_features(lower);
9570 
9571 			if (unlikely(lower->features & feature))
9572 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9573 					    &feature, lower->name);
9574 			else
9575 				netdev_features_change(lower);
9576 		}
9577 	}
9578 }
9579 
9580 static netdev_features_t netdev_fix_features(struct net_device *dev,
9581 	netdev_features_t features)
9582 {
9583 	/* Fix illegal checksum combinations */
9584 	if ((features & NETIF_F_HW_CSUM) &&
9585 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9586 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9587 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9588 	}
9589 
9590 	/* TSO requires that SG is present as well. */
9591 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9592 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9593 		features &= ~NETIF_F_ALL_TSO;
9594 	}
9595 
9596 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9597 					!(features & NETIF_F_IP_CSUM)) {
9598 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9599 		features &= ~NETIF_F_TSO;
9600 		features &= ~NETIF_F_TSO_ECN;
9601 	}
9602 
9603 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9604 					 !(features & NETIF_F_IPV6_CSUM)) {
9605 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9606 		features &= ~NETIF_F_TSO6;
9607 	}
9608 
9609 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9610 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9611 		features &= ~NETIF_F_TSO_MANGLEID;
9612 
9613 	/* TSO ECN requires that TSO is present as well. */
9614 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9615 		features &= ~NETIF_F_TSO_ECN;
9616 
9617 	/* Software GSO depends on SG. */
9618 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9619 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9620 		features &= ~NETIF_F_GSO;
9621 	}
9622 
9623 	/* GSO partial features require GSO partial be set */
9624 	if ((features & dev->gso_partial_features) &&
9625 	    !(features & NETIF_F_GSO_PARTIAL)) {
9626 		netdev_dbg(dev,
9627 			   "Dropping partially supported GSO features since no GSO partial.\n");
9628 		features &= ~dev->gso_partial_features;
9629 	}
9630 
9631 	if (!(features & NETIF_F_RXCSUM)) {
9632 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9633 		 * successfully merged by hardware must also have the
9634 		 * checksum verified by hardware.  If the user does not
9635 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9636 		 */
9637 		if (features & NETIF_F_GRO_HW) {
9638 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9639 			features &= ~NETIF_F_GRO_HW;
9640 		}
9641 	}
9642 
9643 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9644 	if (features & NETIF_F_RXFCS) {
9645 		if (features & NETIF_F_LRO) {
9646 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9647 			features &= ~NETIF_F_LRO;
9648 		}
9649 
9650 		if (features & NETIF_F_GRO_HW) {
9651 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9652 			features &= ~NETIF_F_GRO_HW;
9653 		}
9654 	}
9655 
9656 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9657 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9658 		features &= ~NETIF_F_LRO;
9659 	}
9660 
9661 	if (features & NETIF_F_HW_TLS_TX) {
9662 		bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9663 			(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9664 		bool hw_csum = features & NETIF_F_HW_CSUM;
9665 
9666 		if (!ip_csum && !hw_csum) {
9667 			netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9668 			features &= ~NETIF_F_HW_TLS_TX;
9669 		}
9670 	}
9671 
9672 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9673 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9674 		features &= ~NETIF_F_HW_TLS_RX;
9675 	}
9676 
9677 	return features;
9678 }
9679 
9680 int __netdev_update_features(struct net_device *dev)
9681 {
9682 	struct net_device *upper, *lower;
9683 	netdev_features_t features;
9684 	struct list_head *iter;
9685 	int err = -1;
9686 
9687 	ASSERT_RTNL();
9688 
9689 	features = netdev_get_wanted_features(dev);
9690 
9691 	if (dev->netdev_ops->ndo_fix_features)
9692 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9693 
9694 	/* driver might be less strict about feature dependencies */
9695 	features = netdev_fix_features(dev, features);
9696 
9697 	/* some features can't be enabled if they're off on an upper device */
9698 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9699 		features = netdev_sync_upper_features(dev, upper, features);
9700 
9701 	if (dev->features == features)
9702 		goto sync_lower;
9703 
9704 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9705 		&dev->features, &features);
9706 
9707 	if (dev->netdev_ops->ndo_set_features)
9708 		err = dev->netdev_ops->ndo_set_features(dev, features);
9709 	else
9710 		err = 0;
9711 
9712 	if (unlikely(err < 0)) {
9713 		netdev_err(dev,
9714 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9715 			err, &features, &dev->features);
9716 		/* return non-0 since some features might have changed and
9717 		 * it's better to fire a spurious notification than miss it
9718 		 */
9719 		return -1;
9720 	}
9721 
9722 sync_lower:
9723 	/* some features must be disabled on lower devices when disabled
9724 	 * on an upper device (think: bonding master or bridge)
9725 	 */
9726 	netdev_for_each_lower_dev(dev, lower, iter)
9727 		netdev_sync_lower_features(dev, lower, features);
9728 
9729 	if (!err) {
9730 		netdev_features_t diff = features ^ dev->features;
9731 
9732 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9733 			/* udp_tunnel_{get,drop}_rx_info both need
9734 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9735 			 * device, or they won't do anything.
9736 			 * Thus we need to update dev->features
9737 			 * *before* calling udp_tunnel_get_rx_info,
9738 			 * but *after* calling udp_tunnel_drop_rx_info.
9739 			 */
9740 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9741 				dev->features = features;
9742 				udp_tunnel_get_rx_info(dev);
9743 			} else {
9744 				udp_tunnel_drop_rx_info(dev);
9745 			}
9746 		}
9747 
9748 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9749 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9750 				dev->features = features;
9751 				err |= vlan_get_rx_ctag_filter_info(dev);
9752 			} else {
9753 				vlan_drop_rx_ctag_filter_info(dev);
9754 			}
9755 		}
9756 
9757 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9758 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9759 				dev->features = features;
9760 				err |= vlan_get_rx_stag_filter_info(dev);
9761 			} else {
9762 				vlan_drop_rx_stag_filter_info(dev);
9763 			}
9764 		}
9765 
9766 		dev->features = features;
9767 	}
9768 
9769 	return err < 0 ? 0 : 1;
9770 }
9771 
9772 /**
9773  *	netdev_update_features - recalculate device features
9774  *	@dev: the device to check
9775  *
9776  *	Recalculate dev->features set and send notifications if it
9777  *	has changed. Should be called after driver or hardware dependent
9778  *	conditions might have changed that influence the features.
9779  */
9780 void netdev_update_features(struct net_device *dev)
9781 {
9782 	if (__netdev_update_features(dev))
9783 		netdev_features_change(dev);
9784 }
9785 EXPORT_SYMBOL(netdev_update_features);
9786 
9787 /**
9788  *	netdev_change_features - recalculate device features
9789  *	@dev: the device to check
9790  *
9791  *	Recalculate dev->features set and send notifications even
9792  *	if they have not changed. Should be called instead of
9793  *	netdev_update_features() if also dev->vlan_features might
9794  *	have changed to allow the changes to be propagated to stacked
9795  *	VLAN devices.
9796  */
9797 void netdev_change_features(struct net_device *dev)
9798 {
9799 	__netdev_update_features(dev);
9800 	netdev_features_change(dev);
9801 }
9802 EXPORT_SYMBOL(netdev_change_features);
9803 
9804 /**
9805  *	netif_stacked_transfer_operstate -	transfer operstate
9806  *	@rootdev: the root or lower level device to transfer state from
9807  *	@dev: the device to transfer operstate to
9808  *
9809  *	Transfer operational state from root to device. This is normally
9810  *	called when a stacking relationship exists between the root
9811  *	device and the device(a leaf device).
9812  */
9813 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9814 					struct net_device *dev)
9815 {
9816 	if (rootdev->operstate == IF_OPER_DORMANT)
9817 		netif_dormant_on(dev);
9818 	else
9819 		netif_dormant_off(dev);
9820 
9821 	if (rootdev->operstate == IF_OPER_TESTING)
9822 		netif_testing_on(dev);
9823 	else
9824 		netif_testing_off(dev);
9825 
9826 	if (netif_carrier_ok(rootdev))
9827 		netif_carrier_on(dev);
9828 	else
9829 		netif_carrier_off(dev);
9830 }
9831 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9832 
9833 static int netif_alloc_rx_queues(struct net_device *dev)
9834 {
9835 	unsigned int i, count = dev->num_rx_queues;
9836 	struct netdev_rx_queue *rx;
9837 	size_t sz = count * sizeof(*rx);
9838 	int err = 0;
9839 
9840 	BUG_ON(count < 1);
9841 
9842 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9843 	if (!rx)
9844 		return -ENOMEM;
9845 
9846 	dev->_rx = rx;
9847 
9848 	for (i = 0; i < count; i++) {
9849 		rx[i].dev = dev;
9850 
9851 		/* XDP RX-queue setup */
9852 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9853 		if (err < 0)
9854 			goto err_rxq_info;
9855 	}
9856 	return 0;
9857 
9858 err_rxq_info:
9859 	/* Rollback successful reg's and free other resources */
9860 	while (i--)
9861 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9862 	kvfree(dev->_rx);
9863 	dev->_rx = NULL;
9864 	return err;
9865 }
9866 
9867 static void netif_free_rx_queues(struct net_device *dev)
9868 {
9869 	unsigned int i, count = dev->num_rx_queues;
9870 
9871 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9872 	if (!dev->_rx)
9873 		return;
9874 
9875 	for (i = 0; i < count; i++)
9876 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9877 
9878 	kvfree(dev->_rx);
9879 }
9880 
9881 static void netdev_init_one_queue(struct net_device *dev,
9882 				  struct netdev_queue *queue, void *_unused)
9883 {
9884 	/* Initialize queue lock */
9885 	spin_lock_init(&queue->_xmit_lock);
9886 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9887 	queue->xmit_lock_owner = -1;
9888 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9889 	queue->dev = dev;
9890 #ifdef CONFIG_BQL
9891 	dql_init(&queue->dql, HZ);
9892 #endif
9893 }
9894 
9895 static void netif_free_tx_queues(struct net_device *dev)
9896 {
9897 	kvfree(dev->_tx);
9898 }
9899 
9900 static int netif_alloc_netdev_queues(struct net_device *dev)
9901 {
9902 	unsigned int count = dev->num_tx_queues;
9903 	struct netdev_queue *tx;
9904 	size_t sz = count * sizeof(*tx);
9905 
9906 	if (count < 1 || count > 0xffff)
9907 		return -EINVAL;
9908 
9909 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9910 	if (!tx)
9911 		return -ENOMEM;
9912 
9913 	dev->_tx = tx;
9914 
9915 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9916 	spin_lock_init(&dev->tx_global_lock);
9917 
9918 	return 0;
9919 }
9920 
9921 void netif_tx_stop_all_queues(struct net_device *dev)
9922 {
9923 	unsigned int i;
9924 
9925 	for (i = 0; i < dev->num_tx_queues; i++) {
9926 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9927 
9928 		netif_tx_stop_queue(txq);
9929 	}
9930 }
9931 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9932 
9933 /**
9934  * register_netdevice() - register a network device
9935  * @dev: device to register
9936  *
9937  * Take a prepared network device structure and make it externally accessible.
9938  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
9939  * Callers must hold the rtnl lock - you may want register_netdev()
9940  * instead of this.
9941  */
9942 int register_netdevice(struct net_device *dev)
9943 {
9944 	int ret;
9945 	struct net *net = dev_net(dev);
9946 
9947 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9948 		     NETDEV_FEATURE_COUNT);
9949 	BUG_ON(dev_boot_phase);
9950 	ASSERT_RTNL();
9951 
9952 	might_sleep();
9953 
9954 	/* When net_device's are persistent, this will be fatal. */
9955 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9956 	BUG_ON(!net);
9957 
9958 	ret = ethtool_check_ops(dev->ethtool_ops);
9959 	if (ret)
9960 		return ret;
9961 
9962 	spin_lock_init(&dev->addr_list_lock);
9963 	netdev_set_addr_lockdep_class(dev);
9964 
9965 	ret = dev_get_valid_name(net, dev, dev->name);
9966 	if (ret < 0)
9967 		goto out;
9968 
9969 	ret = -ENOMEM;
9970 	dev->name_node = netdev_name_node_head_alloc(dev);
9971 	if (!dev->name_node)
9972 		goto out;
9973 
9974 	/* Init, if this function is available */
9975 	if (dev->netdev_ops->ndo_init) {
9976 		ret = dev->netdev_ops->ndo_init(dev);
9977 		if (ret) {
9978 			if (ret > 0)
9979 				ret = -EIO;
9980 			goto err_free_name;
9981 		}
9982 	}
9983 
9984 	if (((dev->hw_features | dev->features) &
9985 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
9986 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9987 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9988 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9989 		ret = -EINVAL;
9990 		goto err_uninit;
9991 	}
9992 
9993 	ret = -EBUSY;
9994 	if (!dev->ifindex)
9995 		dev->ifindex = dev_new_index(net);
9996 	else if (__dev_get_by_index(net, dev->ifindex))
9997 		goto err_uninit;
9998 
9999 	/* Transfer changeable features to wanted_features and enable
10000 	 * software offloads (GSO and GRO).
10001 	 */
10002 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10003 	dev->features |= NETIF_F_SOFT_FEATURES;
10004 
10005 	if (dev->udp_tunnel_nic_info) {
10006 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10007 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10008 	}
10009 
10010 	dev->wanted_features = dev->features & dev->hw_features;
10011 
10012 	if (!(dev->flags & IFF_LOOPBACK))
10013 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10014 
10015 	/* If IPv4 TCP segmentation offload is supported we should also
10016 	 * allow the device to enable segmenting the frame with the option
10017 	 * of ignoring a static IP ID value.  This doesn't enable the
10018 	 * feature itself but allows the user to enable it later.
10019 	 */
10020 	if (dev->hw_features & NETIF_F_TSO)
10021 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10022 	if (dev->vlan_features & NETIF_F_TSO)
10023 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10024 	if (dev->mpls_features & NETIF_F_TSO)
10025 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10026 	if (dev->hw_enc_features & NETIF_F_TSO)
10027 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10028 
10029 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10030 	 */
10031 	dev->vlan_features |= NETIF_F_HIGHDMA;
10032 
10033 	/* Make NETIF_F_SG inheritable to tunnel devices.
10034 	 */
10035 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10036 
10037 	/* Make NETIF_F_SG inheritable to MPLS.
10038 	 */
10039 	dev->mpls_features |= NETIF_F_SG;
10040 
10041 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10042 	ret = notifier_to_errno(ret);
10043 	if (ret)
10044 		goto err_uninit;
10045 
10046 	ret = netdev_register_kobject(dev);
10047 	write_lock(&dev_base_lock);
10048 	dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10049 	write_unlock(&dev_base_lock);
10050 	if (ret)
10051 		goto err_uninit_notify;
10052 
10053 	__netdev_update_features(dev);
10054 
10055 	/*
10056 	 *	Default initial state at registry is that the
10057 	 *	device is present.
10058 	 */
10059 
10060 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10061 
10062 	linkwatch_init_dev(dev);
10063 
10064 	dev_init_scheduler(dev);
10065 
10066 	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10067 	list_netdevice(dev);
10068 
10069 	add_device_randomness(dev->dev_addr, dev->addr_len);
10070 
10071 	/* If the device has permanent device address, driver should
10072 	 * set dev_addr and also addr_assign_type should be set to
10073 	 * NET_ADDR_PERM (default value).
10074 	 */
10075 	if (dev->addr_assign_type == NET_ADDR_PERM)
10076 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10077 
10078 	/* Notify protocols, that a new device appeared. */
10079 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10080 	ret = notifier_to_errno(ret);
10081 	if (ret) {
10082 		/* Expect explicit free_netdev() on failure */
10083 		dev->needs_free_netdev = false;
10084 		unregister_netdevice_queue(dev, NULL);
10085 		goto out;
10086 	}
10087 	/*
10088 	 *	Prevent userspace races by waiting until the network
10089 	 *	device is fully setup before sending notifications.
10090 	 */
10091 	if (!dev->rtnl_link_ops ||
10092 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10093 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10094 
10095 out:
10096 	return ret;
10097 
10098 err_uninit_notify:
10099 	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10100 err_uninit:
10101 	if (dev->netdev_ops->ndo_uninit)
10102 		dev->netdev_ops->ndo_uninit(dev);
10103 	if (dev->priv_destructor)
10104 		dev->priv_destructor(dev);
10105 err_free_name:
10106 	netdev_name_node_free(dev->name_node);
10107 	goto out;
10108 }
10109 EXPORT_SYMBOL(register_netdevice);
10110 
10111 /**
10112  *	init_dummy_netdev	- init a dummy network device for NAPI
10113  *	@dev: device to init
10114  *
10115  *	This takes a network device structure and initialize the minimum
10116  *	amount of fields so it can be used to schedule NAPI polls without
10117  *	registering a full blown interface. This is to be used by drivers
10118  *	that need to tie several hardware interfaces to a single NAPI
10119  *	poll scheduler due to HW limitations.
10120  */
10121 int init_dummy_netdev(struct net_device *dev)
10122 {
10123 	/* Clear everything. Note we don't initialize spinlocks
10124 	 * are they aren't supposed to be taken by any of the
10125 	 * NAPI code and this dummy netdev is supposed to be
10126 	 * only ever used for NAPI polls
10127 	 */
10128 	memset(dev, 0, sizeof(struct net_device));
10129 
10130 	/* make sure we BUG if trying to hit standard
10131 	 * register/unregister code path
10132 	 */
10133 	dev->reg_state = NETREG_DUMMY;
10134 
10135 	/* NAPI wants this */
10136 	INIT_LIST_HEAD(&dev->napi_list);
10137 
10138 	/* a dummy interface is started by default */
10139 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10140 	set_bit(__LINK_STATE_START, &dev->state);
10141 
10142 	/* napi_busy_loop stats accounting wants this */
10143 	dev_net_set(dev, &init_net);
10144 
10145 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10146 	 * because users of this 'device' dont need to change
10147 	 * its refcount.
10148 	 */
10149 
10150 	return 0;
10151 }
10152 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10153 
10154 
10155 /**
10156  *	register_netdev	- register a network device
10157  *	@dev: device to register
10158  *
10159  *	Take a completed network device structure and add it to the kernel
10160  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10161  *	chain. 0 is returned on success. A negative errno code is returned
10162  *	on a failure to set up the device, or if the name is a duplicate.
10163  *
10164  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10165  *	and expands the device name if you passed a format string to
10166  *	alloc_netdev.
10167  */
10168 int register_netdev(struct net_device *dev)
10169 {
10170 	int err;
10171 
10172 	if (rtnl_lock_killable())
10173 		return -EINTR;
10174 	err = register_netdevice(dev);
10175 	rtnl_unlock();
10176 	return err;
10177 }
10178 EXPORT_SYMBOL(register_netdev);
10179 
10180 int netdev_refcnt_read(const struct net_device *dev)
10181 {
10182 #ifdef CONFIG_PCPU_DEV_REFCNT
10183 	int i, refcnt = 0;
10184 
10185 	for_each_possible_cpu(i)
10186 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10187 	return refcnt;
10188 #else
10189 	return refcount_read(&dev->dev_refcnt);
10190 #endif
10191 }
10192 EXPORT_SYMBOL(netdev_refcnt_read);
10193 
10194 int netdev_unregister_timeout_secs __read_mostly = 10;
10195 
10196 #define WAIT_REFS_MIN_MSECS 1
10197 #define WAIT_REFS_MAX_MSECS 250
10198 /**
10199  * netdev_wait_allrefs_any - wait until all references are gone.
10200  * @list: list of net_devices to wait on
10201  *
10202  * This is called when unregistering network devices.
10203  *
10204  * Any protocol or device that holds a reference should register
10205  * for netdevice notification, and cleanup and put back the
10206  * reference if they receive an UNREGISTER event.
10207  * We can get stuck here if buggy protocols don't correctly
10208  * call dev_put.
10209  */
10210 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10211 {
10212 	unsigned long rebroadcast_time, warning_time;
10213 	struct net_device *dev;
10214 	int wait = 0;
10215 
10216 	rebroadcast_time = warning_time = jiffies;
10217 
10218 	list_for_each_entry(dev, list, todo_list)
10219 		if (netdev_refcnt_read(dev) == 1)
10220 			return dev;
10221 
10222 	while (true) {
10223 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10224 			rtnl_lock();
10225 
10226 			/* Rebroadcast unregister notification */
10227 			list_for_each_entry(dev, list, todo_list)
10228 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10229 
10230 			__rtnl_unlock();
10231 			rcu_barrier();
10232 			rtnl_lock();
10233 
10234 			list_for_each_entry(dev, list, todo_list)
10235 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10236 					     &dev->state)) {
10237 					/* We must not have linkwatch events
10238 					 * pending on unregister. If this
10239 					 * happens, we simply run the queue
10240 					 * unscheduled, resulting in a noop
10241 					 * for this device.
10242 					 */
10243 					linkwatch_run_queue();
10244 					break;
10245 				}
10246 
10247 			__rtnl_unlock();
10248 
10249 			rebroadcast_time = jiffies;
10250 		}
10251 
10252 		if (!wait) {
10253 			rcu_barrier();
10254 			wait = WAIT_REFS_MIN_MSECS;
10255 		} else {
10256 			msleep(wait);
10257 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10258 		}
10259 
10260 		list_for_each_entry(dev, list, todo_list)
10261 			if (netdev_refcnt_read(dev) == 1)
10262 				return dev;
10263 
10264 		if (time_after(jiffies, warning_time +
10265 			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10266 			list_for_each_entry(dev, list, todo_list) {
10267 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10268 					 dev->name, netdev_refcnt_read(dev));
10269 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10270 			}
10271 
10272 			warning_time = jiffies;
10273 		}
10274 	}
10275 }
10276 
10277 /* The sequence is:
10278  *
10279  *	rtnl_lock();
10280  *	...
10281  *	register_netdevice(x1);
10282  *	register_netdevice(x2);
10283  *	...
10284  *	unregister_netdevice(y1);
10285  *	unregister_netdevice(y2);
10286  *      ...
10287  *	rtnl_unlock();
10288  *	free_netdev(y1);
10289  *	free_netdev(y2);
10290  *
10291  * We are invoked by rtnl_unlock().
10292  * This allows us to deal with problems:
10293  * 1) We can delete sysfs objects which invoke hotplug
10294  *    without deadlocking with linkwatch via keventd.
10295  * 2) Since we run with the RTNL semaphore not held, we can sleep
10296  *    safely in order to wait for the netdev refcnt to drop to zero.
10297  *
10298  * We must not return until all unregister events added during
10299  * the interval the lock was held have been completed.
10300  */
10301 void netdev_run_todo(void)
10302 {
10303 	struct net_device *dev, *tmp;
10304 	struct list_head list;
10305 #ifdef CONFIG_LOCKDEP
10306 	struct list_head unlink_list;
10307 
10308 	list_replace_init(&net_unlink_list, &unlink_list);
10309 
10310 	while (!list_empty(&unlink_list)) {
10311 		struct net_device *dev = list_first_entry(&unlink_list,
10312 							  struct net_device,
10313 							  unlink_list);
10314 		list_del_init(&dev->unlink_list);
10315 		dev->nested_level = dev->lower_level - 1;
10316 	}
10317 #endif
10318 
10319 	/* Snapshot list, allow later requests */
10320 	list_replace_init(&net_todo_list, &list);
10321 
10322 	__rtnl_unlock();
10323 
10324 	/* Wait for rcu callbacks to finish before next phase */
10325 	if (!list_empty(&list))
10326 		rcu_barrier();
10327 
10328 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10329 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10330 			netdev_WARN(dev, "run_todo but not unregistering\n");
10331 			list_del(&dev->todo_list);
10332 			continue;
10333 		}
10334 
10335 		write_lock(&dev_base_lock);
10336 		dev->reg_state = NETREG_UNREGISTERED;
10337 		write_unlock(&dev_base_lock);
10338 		linkwatch_forget_dev(dev);
10339 	}
10340 
10341 	while (!list_empty(&list)) {
10342 		dev = netdev_wait_allrefs_any(&list);
10343 		list_del(&dev->todo_list);
10344 
10345 		/* paranoia */
10346 		BUG_ON(netdev_refcnt_read(dev) != 1);
10347 		BUG_ON(!list_empty(&dev->ptype_all));
10348 		BUG_ON(!list_empty(&dev->ptype_specific));
10349 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10350 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10351 
10352 		if (dev->priv_destructor)
10353 			dev->priv_destructor(dev);
10354 		if (dev->needs_free_netdev)
10355 			free_netdev(dev);
10356 
10357 		if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10358 			wake_up(&netdev_unregistering_wq);
10359 
10360 		/* Free network device */
10361 		kobject_put(&dev->dev.kobj);
10362 	}
10363 }
10364 
10365 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10366  * all the same fields in the same order as net_device_stats, with only
10367  * the type differing, but rtnl_link_stats64 may have additional fields
10368  * at the end for newer counters.
10369  */
10370 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10371 			     const struct net_device_stats *netdev_stats)
10372 {
10373 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10374 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10375 	u64 *dst = (u64 *)stats64;
10376 
10377 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10378 	for (i = 0; i < n; i++)
10379 		dst[i] = (unsigned long)atomic_long_read(&src[i]);
10380 	/* zero out counters that only exist in rtnl_link_stats64 */
10381 	memset((char *)stats64 + n * sizeof(u64), 0,
10382 	       sizeof(*stats64) - n * sizeof(u64));
10383 }
10384 EXPORT_SYMBOL(netdev_stats_to_stats64);
10385 
10386 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev)
10387 {
10388 	struct net_device_core_stats __percpu *p;
10389 
10390 	p = alloc_percpu_gfp(struct net_device_core_stats,
10391 			     GFP_ATOMIC | __GFP_NOWARN);
10392 
10393 	if (p && cmpxchg(&dev->core_stats, NULL, p))
10394 		free_percpu(p);
10395 
10396 	/* This READ_ONCE() pairs with the cmpxchg() above */
10397 	return READ_ONCE(dev->core_stats);
10398 }
10399 EXPORT_SYMBOL(netdev_core_stats_alloc);
10400 
10401 /**
10402  *	dev_get_stats	- get network device statistics
10403  *	@dev: device to get statistics from
10404  *	@storage: place to store stats
10405  *
10406  *	Get network statistics from device. Return @storage.
10407  *	The device driver may provide its own method by setting
10408  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10409  *	otherwise the internal statistics structure is used.
10410  */
10411 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10412 					struct rtnl_link_stats64 *storage)
10413 {
10414 	const struct net_device_ops *ops = dev->netdev_ops;
10415 	const struct net_device_core_stats __percpu *p;
10416 
10417 	if (ops->ndo_get_stats64) {
10418 		memset(storage, 0, sizeof(*storage));
10419 		ops->ndo_get_stats64(dev, storage);
10420 	} else if (ops->ndo_get_stats) {
10421 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10422 	} else {
10423 		netdev_stats_to_stats64(storage, &dev->stats);
10424 	}
10425 
10426 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10427 	p = READ_ONCE(dev->core_stats);
10428 	if (p) {
10429 		const struct net_device_core_stats *core_stats;
10430 		int i;
10431 
10432 		for_each_possible_cpu(i) {
10433 			core_stats = per_cpu_ptr(p, i);
10434 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10435 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10436 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10437 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10438 		}
10439 	}
10440 	return storage;
10441 }
10442 EXPORT_SYMBOL(dev_get_stats);
10443 
10444 /**
10445  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10446  *	@s: place to store stats
10447  *	@netstats: per-cpu network stats to read from
10448  *
10449  *	Read per-cpu network statistics and populate the related fields in @s.
10450  */
10451 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10452 			   const struct pcpu_sw_netstats __percpu *netstats)
10453 {
10454 	int cpu;
10455 
10456 	for_each_possible_cpu(cpu) {
10457 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10458 		const struct pcpu_sw_netstats *stats;
10459 		unsigned int start;
10460 
10461 		stats = per_cpu_ptr(netstats, cpu);
10462 		do {
10463 			start = u64_stats_fetch_begin(&stats->syncp);
10464 			rx_packets = u64_stats_read(&stats->rx_packets);
10465 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
10466 			tx_packets = u64_stats_read(&stats->tx_packets);
10467 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
10468 		} while (u64_stats_fetch_retry(&stats->syncp, start));
10469 
10470 		s->rx_packets += rx_packets;
10471 		s->rx_bytes   += rx_bytes;
10472 		s->tx_packets += tx_packets;
10473 		s->tx_bytes   += tx_bytes;
10474 	}
10475 }
10476 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10477 
10478 /**
10479  *	dev_get_tstats64 - ndo_get_stats64 implementation
10480  *	@dev: device to get statistics from
10481  *	@s: place to store stats
10482  *
10483  *	Populate @s from dev->stats and dev->tstats. Can be used as
10484  *	ndo_get_stats64() callback.
10485  */
10486 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10487 {
10488 	netdev_stats_to_stats64(s, &dev->stats);
10489 	dev_fetch_sw_netstats(s, dev->tstats);
10490 }
10491 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10492 
10493 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10494 {
10495 	struct netdev_queue *queue = dev_ingress_queue(dev);
10496 
10497 #ifdef CONFIG_NET_CLS_ACT
10498 	if (queue)
10499 		return queue;
10500 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10501 	if (!queue)
10502 		return NULL;
10503 	netdev_init_one_queue(dev, queue, NULL);
10504 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10505 	queue->qdisc_sleeping = &noop_qdisc;
10506 	rcu_assign_pointer(dev->ingress_queue, queue);
10507 #endif
10508 	return queue;
10509 }
10510 
10511 static const struct ethtool_ops default_ethtool_ops;
10512 
10513 void netdev_set_default_ethtool_ops(struct net_device *dev,
10514 				    const struct ethtool_ops *ops)
10515 {
10516 	if (dev->ethtool_ops == &default_ethtool_ops)
10517 		dev->ethtool_ops = ops;
10518 }
10519 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10520 
10521 /**
10522  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10523  * @dev: netdev to enable the IRQ coalescing on
10524  *
10525  * Sets a conservative default for SW IRQ coalescing. Users can use
10526  * sysfs attributes to override the default values.
10527  */
10528 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10529 {
10530 	WARN_ON(dev->reg_state == NETREG_REGISTERED);
10531 
10532 	dev->gro_flush_timeout = 20000;
10533 	dev->napi_defer_hard_irqs = 1;
10534 }
10535 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10536 
10537 void netdev_freemem(struct net_device *dev)
10538 {
10539 	char *addr = (char *)dev - dev->padded;
10540 
10541 	kvfree(addr);
10542 }
10543 
10544 /**
10545  * alloc_netdev_mqs - allocate network device
10546  * @sizeof_priv: size of private data to allocate space for
10547  * @name: device name format string
10548  * @name_assign_type: origin of device name
10549  * @setup: callback to initialize device
10550  * @txqs: the number of TX subqueues to allocate
10551  * @rxqs: the number of RX subqueues to allocate
10552  *
10553  * Allocates a struct net_device with private data area for driver use
10554  * and performs basic initialization.  Also allocates subqueue structs
10555  * for each queue on the device.
10556  */
10557 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10558 		unsigned char name_assign_type,
10559 		void (*setup)(struct net_device *),
10560 		unsigned int txqs, unsigned int rxqs)
10561 {
10562 	struct net_device *dev;
10563 	unsigned int alloc_size;
10564 	struct net_device *p;
10565 
10566 	BUG_ON(strlen(name) >= sizeof(dev->name));
10567 
10568 	if (txqs < 1) {
10569 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10570 		return NULL;
10571 	}
10572 
10573 	if (rxqs < 1) {
10574 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10575 		return NULL;
10576 	}
10577 
10578 	alloc_size = sizeof(struct net_device);
10579 	if (sizeof_priv) {
10580 		/* ensure 32-byte alignment of private area */
10581 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10582 		alloc_size += sizeof_priv;
10583 	}
10584 	/* ensure 32-byte alignment of whole construct */
10585 	alloc_size += NETDEV_ALIGN - 1;
10586 
10587 	p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10588 	if (!p)
10589 		return NULL;
10590 
10591 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10592 	dev->padded = (char *)dev - (char *)p;
10593 
10594 	ref_tracker_dir_init(&dev->refcnt_tracker, 128);
10595 #ifdef CONFIG_PCPU_DEV_REFCNT
10596 	dev->pcpu_refcnt = alloc_percpu(int);
10597 	if (!dev->pcpu_refcnt)
10598 		goto free_dev;
10599 	__dev_hold(dev);
10600 #else
10601 	refcount_set(&dev->dev_refcnt, 1);
10602 #endif
10603 
10604 	if (dev_addr_init(dev))
10605 		goto free_pcpu;
10606 
10607 	dev_mc_init(dev);
10608 	dev_uc_init(dev);
10609 
10610 	dev_net_set(dev, &init_net);
10611 
10612 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10613 	dev->gso_max_segs = GSO_MAX_SEGS;
10614 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10615 	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10616 	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10617 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10618 	dev->tso_max_segs = TSO_MAX_SEGS;
10619 	dev->upper_level = 1;
10620 	dev->lower_level = 1;
10621 #ifdef CONFIG_LOCKDEP
10622 	dev->nested_level = 0;
10623 	INIT_LIST_HEAD(&dev->unlink_list);
10624 #endif
10625 
10626 	INIT_LIST_HEAD(&dev->napi_list);
10627 	INIT_LIST_HEAD(&dev->unreg_list);
10628 	INIT_LIST_HEAD(&dev->close_list);
10629 	INIT_LIST_HEAD(&dev->link_watch_list);
10630 	INIT_LIST_HEAD(&dev->adj_list.upper);
10631 	INIT_LIST_HEAD(&dev->adj_list.lower);
10632 	INIT_LIST_HEAD(&dev->ptype_all);
10633 	INIT_LIST_HEAD(&dev->ptype_specific);
10634 	INIT_LIST_HEAD(&dev->net_notifier_list);
10635 #ifdef CONFIG_NET_SCHED
10636 	hash_init(dev->qdisc_hash);
10637 #endif
10638 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10639 	setup(dev);
10640 
10641 	if (!dev->tx_queue_len) {
10642 		dev->priv_flags |= IFF_NO_QUEUE;
10643 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10644 	}
10645 
10646 	dev->num_tx_queues = txqs;
10647 	dev->real_num_tx_queues = txqs;
10648 	if (netif_alloc_netdev_queues(dev))
10649 		goto free_all;
10650 
10651 	dev->num_rx_queues = rxqs;
10652 	dev->real_num_rx_queues = rxqs;
10653 	if (netif_alloc_rx_queues(dev))
10654 		goto free_all;
10655 
10656 	strcpy(dev->name, name);
10657 	dev->name_assign_type = name_assign_type;
10658 	dev->group = INIT_NETDEV_GROUP;
10659 	if (!dev->ethtool_ops)
10660 		dev->ethtool_ops = &default_ethtool_ops;
10661 
10662 	nf_hook_netdev_init(dev);
10663 
10664 	return dev;
10665 
10666 free_all:
10667 	free_netdev(dev);
10668 	return NULL;
10669 
10670 free_pcpu:
10671 #ifdef CONFIG_PCPU_DEV_REFCNT
10672 	free_percpu(dev->pcpu_refcnt);
10673 free_dev:
10674 #endif
10675 	netdev_freemem(dev);
10676 	return NULL;
10677 }
10678 EXPORT_SYMBOL(alloc_netdev_mqs);
10679 
10680 /**
10681  * free_netdev - free network device
10682  * @dev: device
10683  *
10684  * This function does the last stage of destroying an allocated device
10685  * interface. The reference to the device object is released. If this
10686  * is the last reference then it will be freed.Must be called in process
10687  * context.
10688  */
10689 void free_netdev(struct net_device *dev)
10690 {
10691 	struct napi_struct *p, *n;
10692 
10693 	might_sleep();
10694 
10695 	/* When called immediately after register_netdevice() failed the unwind
10696 	 * handling may still be dismantling the device. Handle that case by
10697 	 * deferring the free.
10698 	 */
10699 	if (dev->reg_state == NETREG_UNREGISTERING) {
10700 		ASSERT_RTNL();
10701 		dev->needs_free_netdev = true;
10702 		return;
10703 	}
10704 
10705 	netif_free_tx_queues(dev);
10706 	netif_free_rx_queues(dev);
10707 
10708 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10709 
10710 	/* Flush device addresses */
10711 	dev_addr_flush(dev);
10712 
10713 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10714 		netif_napi_del(p);
10715 
10716 	ref_tracker_dir_exit(&dev->refcnt_tracker);
10717 #ifdef CONFIG_PCPU_DEV_REFCNT
10718 	free_percpu(dev->pcpu_refcnt);
10719 	dev->pcpu_refcnt = NULL;
10720 #endif
10721 	free_percpu(dev->core_stats);
10722 	dev->core_stats = NULL;
10723 	free_percpu(dev->xdp_bulkq);
10724 	dev->xdp_bulkq = NULL;
10725 
10726 	/*  Compatibility with error handling in drivers */
10727 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10728 		netdev_freemem(dev);
10729 		return;
10730 	}
10731 
10732 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10733 	dev->reg_state = NETREG_RELEASED;
10734 
10735 	/* will free via device release */
10736 	put_device(&dev->dev);
10737 }
10738 EXPORT_SYMBOL(free_netdev);
10739 
10740 /**
10741  *	synchronize_net -  Synchronize with packet receive processing
10742  *
10743  *	Wait for packets currently being received to be done.
10744  *	Does not block later packets from starting.
10745  */
10746 void synchronize_net(void)
10747 {
10748 	might_sleep();
10749 	if (rtnl_is_locked())
10750 		synchronize_rcu_expedited();
10751 	else
10752 		synchronize_rcu();
10753 }
10754 EXPORT_SYMBOL(synchronize_net);
10755 
10756 /**
10757  *	unregister_netdevice_queue - remove device from the kernel
10758  *	@dev: device
10759  *	@head: list
10760  *
10761  *	This function shuts down a device interface and removes it
10762  *	from the kernel tables.
10763  *	If head not NULL, device is queued to be unregistered later.
10764  *
10765  *	Callers must hold the rtnl semaphore.  You may want
10766  *	unregister_netdev() instead of this.
10767  */
10768 
10769 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10770 {
10771 	ASSERT_RTNL();
10772 
10773 	if (head) {
10774 		list_move_tail(&dev->unreg_list, head);
10775 	} else {
10776 		LIST_HEAD(single);
10777 
10778 		list_add(&dev->unreg_list, &single);
10779 		unregister_netdevice_many(&single);
10780 	}
10781 }
10782 EXPORT_SYMBOL(unregister_netdevice_queue);
10783 
10784 void unregister_netdevice_many_notify(struct list_head *head,
10785 				      u32 portid, const struct nlmsghdr *nlh)
10786 {
10787 	struct net_device *dev, *tmp;
10788 	LIST_HEAD(close_head);
10789 
10790 	BUG_ON(dev_boot_phase);
10791 	ASSERT_RTNL();
10792 
10793 	if (list_empty(head))
10794 		return;
10795 
10796 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10797 		/* Some devices call without registering
10798 		 * for initialization unwind. Remove those
10799 		 * devices and proceed with the remaining.
10800 		 */
10801 		if (dev->reg_state == NETREG_UNINITIALIZED) {
10802 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10803 				 dev->name, dev);
10804 
10805 			WARN_ON(1);
10806 			list_del(&dev->unreg_list);
10807 			continue;
10808 		}
10809 		dev->dismantle = true;
10810 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
10811 	}
10812 
10813 	/* If device is running, close it first. */
10814 	list_for_each_entry(dev, head, unreg_list)
10815 		list_add_tail(&dev->close_list, &close_head);
10816 	dev_close_many(&close_head, true);
10817 
10818 	list_for_each_entry(dev, head, unreg_list) {
10819 		/* And unlink it from device chain. */
10820 		write_lock(&dev_base_lock);
10821 		unlist_netdevice(dev, false);
10822 		dev->reg_state = NETREG_UNREGISTERING;
10823 		write_unlock(&dev_base_lock);
10824 	}
10825 	flush_all_backlogs();
10826 
10827 	synchronize_net();
10828 
10829 	list_for_each_entry(dev, head, unreg_list) {
10830 		struct sk_buff *skb = NULL;
10831 
10832 		/* Shutdown queueing discipline. */
10833 		dev_shutdown(dev);
10834 
10835 		dev_xdp_uninstall(dev);
10836 		bpf_dev_bound_netdev_unregister(dev);
10837 
10838 		netdev_offload_xstats_disable_all(dev);
10839 
10840 		/* Notify protocols, that we are about to destroy
10841 		 * this device. They should clean all the things.
10842 		 */
10843 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10844 
10845 		if (!dev->rtnl_link_ops ||
10846 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10847 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10848 						     GFP_KERNEL, NULL, 0,
10849 						     portid, nlmsg_seq(nlh));
10850 
10851 		/*
10852 		 *	Flush the unicast and multicast chains
10853 		 */
10854 		dev_uc_flush(dev);
10855 		dev_mc_flush(dev);
10856 
10857 		netdev_name_node_alt_flush(dev);
10858 		netdev_name_node_free(dev->name_node);
10859 
10860 		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10861 
10862 		if (dev->netdev_ops->ndo_uninit)
10863 			dev->netdev_ops->ndo_uninit(dev);
10864 
10865 		if (skb)
10866 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
10867 
10868 		/* Notifier chain MUST detach us all upper devices. */
10869 		WARN_ON(netdev_has_any_upper_dev(dev));
10870 		WARN_ON(netdev_has_any_lower_dev(dev));
10871 
10872 		/* Remove entries from kobject tree */
10873 		netdev_unregister_kobject(dev);
10874 #ifdef CONFIG_XPS
10875 		/* Remove XPS queueing entries */
10876 		netif_reset_xps_queues_gt(dev, 0);
10877 #endif
10878 	}
10879 
10880 	synchronize_net();
10881 
10882 	list_for_each_entry(dev, head, unreg_list) {
10883 		netdev_put(dev, &dev->dev_registered_tracker);
10884 		net_set_todo(dev);
10885 	}
10886 
10887 	list_del(head);
10888 }
10889 
10890 /**
10891  *	unregister_netdevice_many - unregister many devices
10892  *	@head: list of devices
10893  *
10894  *  Note: As most callers use a stack allocated list_head,
10895  *  we force a list_del() to make sure stack wont be corrupted later.
10896  */
10897 void unregister_netdevice_many(struct list_head *head)
10898 {
10899 	unregister_netdevice_many_notify(head, 0, NULL);
10900 }
10901 EXPORT_SYMBOL(unregister_netdevice_many);
10902 
10903 /**
10904  *	unregister_netdev - remove device from the kernel
10905  *	@dev: device
10906  *
10907  *	This function shuts down a device interface and removes it
10908  *	from the kernel tables.
10909  *
10910  *	This is just a wrapper for unregister_netdevice that takes
10911  *	the rtnl semaphore.  In general you want to use this and not
10912  *	unregister_netdevice.
10913  */
10914 void unregister_netdev(struct net_device *dev)
10915 {
10916 	rtnl_lock();
10917 	unregister_netdevice(dev);
10918 	rtnl_unlock();
10919 }
10920 EXPORT_SYMBOL(unregister_netdev);
10921 
10922 /**
10923  *	__dev_change_net_namespace - move device to different nethost namespace
10924  *	@dev: device
10925  *	@net: network namespace
10926  *	@pat: If not NULL name pattern to try if the current device name
10927  *	      is already taken in the destination network namespace.
10928  *	@new_ifindex: If not zero, specifies device index in the target
10929  *	              namespace.
10930  *
10931  *	This function shuts down a device interface and moves it
10932  *	to a new network namespace. On success 0 is returned, on
10933  *	a failure a netagive errno code is returned.
10934  *
10935  *	Callers must hold the rtnl semaphore.
10936  */
10937 
10938 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
10939 			       const char *pat, int new_ifindex)
10940 {
10941 	struct net *net_old = dev_net(dev);
10942 	int err, new_nsid;
10943 
10944 	ASSERT_RTNL();
10945 
10946 	/* Don't allow namespace local devices to be moved. */
10947 	err = -EINVAL;
10948 	if (dev->features & NETIF_F_NETNS_LOCAL)
10949 		goto out;
10950 
10951 	/* Ensure the device has been registrered */
10952 	if (dev->reg_state != NETREG_REGISTERED)
10953 		goto out;
10954 
10955 	/* Get out if there is nothing todo */
10956 	err = 0;
10957 	if (net_eq(net_old, net))
10958 		goto out;
10959 
10960 	/* Pick the destination device name, and ensure
10961 	 * we can use it in the destination network namespace.
10962 	 */
10963 	err = -EEXIST;
10964 	if (netdev_name_in_use(net, dev->name)) {
10965 		/* We get here if we can't use the current device name */
10966 		if (!pat)
10967 			goto out;
10968 		err = dev_get_valid_name(net, dev, pat);
10969 		if (err < 0)
10970 			goto out;
10971 	}
10972 
10973 	/* Check that new_ifindex isn't used yet. */
10974 	err = -EBUSY;
10975 	if (new_ifindex && __dev_get_by_index(net, new_ifindex))
10976 		goto out;
10977 
10978 	/*
10979 	 * And now a mini version of register_netdevice unregister_netdevice.
10980 	 */
10981 
10982 	/* If device is running close it first. */
10983 	dev_close(dev);
10984 
10985 	/* And unlink it from device chain */
10986 	unlist_netdevice(dev, true);
10987 
10988 	synchronize_net();
10989 
10990 	/* Shutdown queueing discipline. */
10991 	dev_shutdown(dev);
10992 
10993 	/* Notify protocols, that we are about to destroy
10994 	 * this device. They should clean all the things.
10995 	 *
10996 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
10997 	 * This is wanted because this way 8021q and macvlan know
10998 	 * the device is just moving and can keep their slaves up.
10999 	 */
11000 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11001 	rcu_barrier();
11002 
11003 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11004 	/* If there is an ifindex conflict assign a new one */
11005 	if (!new_ifindex) {
11006 		if (__dev_get_by_index(net, dev->ifindex))
11007 			new_ifindex = dev_new_index(net);
11008 		else
11009 			new_ifindex = dev->ifindex;
11010 	}
11011 
11012 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11013 			    new_ifindex);
11014 
11015 	/*
11016 	 *	Flush the unicast and multicast chains
11017 	 */
11018 	dev_uc_flush(dev);
11019 	dev_mc_flush(dev);
11020 
11021 	/* Send a netdev-removed uevent to the old namespace */
11022 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11023 	netdev_adjacent_del_links(dev);
11024 
11025 	/* Move per-net netdevice notifiers that are following the netdevice */
11026 	move_netdevice_notifiers_dev_net(dev, net);
11027 
11028 	/* Actually switch the network namespace */
11029 	dev_net_set(dev, net);
11030 	dev->ifindex = new_ifindex;
11031 
11032 	/* Send a netdev-add uevent to the new namespace */
11033 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11034 	netdev_adjacent_add_links(dev);
11035 
11036 	/* Fixup kobjects */
11037 	err = device_rename(&dev->dev, dev->name);
11038 	WARN_ON(err);
11039 
11040 	/* Adapt owner in case owning user namespace of target network
11041 	 * namespace is different from the original one.
11042 	 */
11043 	err = netdev_change_owner(dev, net_old, net);
11044 	WARN_ON(err);
11045 
11046 	/* Add the device back in the hashes */
11047 	list_netdevice(dev);
11048 
11049 	/* Notify protocols, that a new device appeared. */
11050 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
11051 
11052 	/*
11053 	 *	Prevent userspace races by waiting until the network
11054 	 *	device is fully setup before sending notifications.
11055 	 */
11056 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11057 
11058 	synchronize_net();
11059 	err = 0;
11060 out:
11061 	return err;
11062 }
11063 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11064 
11065 static int dev_cpu_dead(unsigned int oldcpu)
11066 {
11067 	struct sk_buff **list_skb;
11068 	struct sk_buff *skb;
11069 	unsigned int cpu;
11070 	struct softnet_data *sd, *oldsd, *remsd = NULL;
11071 
11072 	local_irq_disable();
11073 	cpu = smp_processor_id();
11074 	sd = &per_cpu(softnet_data, cpu);
11075 	oldsd = &per_cpu(softnet_data, oldcpu);
11076 
11077 	/* Find end of our completion_queue. */
11078 	list_skb = &sd->completion_queue;
11079 	while (*list_skb)
11080 		list_skb = &(*list_skb)->next;
11081 	/* Append completion queue from offline CPU. */
11082 	*list_skb = oldsd->completion_queue;
11083 	oldsd->completion_queue = NULL;
11084 
11085 	/* Append output queue from offline CPU. */
11086 	if (oldsd->output_queue) {
11087 		*sd->output_queue_tailp = oldsd->output_queue;
11088 		sd->output_queue_tailp = oldsd->output_queue_tailp;
11089 		oldsd->output_queue = NULL;
11090 		oldsd->output_queue_tailp = &oldsd->output_queue;
11091 	}
11092 	/* Append NAPI poll list from offline CPU, with one exception :
11093 	 * process_backlog() must be called by cpu owning percpu backlog.
11094 	 * We properly handle process_queue & input_pkt_queue later.
11095 	 */
11096 	while (!list_empty(&oldsd->poll_list)) {
11097 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11098 							    struct napi_struct,
11099 							    poll_list);
11100 
11101 		list_del_init(&napi->poll_list);
11102 		if (napi->poll == process_backlog)
11103 			napi->state = 0;
11104 		else
11105 			____napi_schedule(sd, napi);
11106 	}
11107 
11108 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11109 	local_irq_enable();
11110 
11111 #ifdef CONFIG_RPS
11112 	remsd = oldsd->rps_ipi_list;
11113 	oldsd->rps_ipi_list = NULL;
11114 #endif
11115 	/* send out pending IPI's on offline CPU */
11116 	net_rps_send_ipi(remsd);
11117 
11118 	/* Process offline CPU's input_pkt_queue */
11119 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11120 		netif_rx(skb);
11121 		input_queue_head_incr(oldsd);
11122 	}
11123 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11124 		netif_rx(skb);
11125 		input_queue_head_incr(oldsd);
11126 	}
11127 
11128 	return 0;
11129 }
11130 
11131 /**
11132  *	netdev_increment_features - increment feature set by one
11133  *	@all: current feature set
11134  *	@one: new feature set
11135  *	@mask: mask feature set
11136  *
11137  *	Computes a new feature set after adding a device with feature set
11138  *	@one to the master device with current feature set @all.  Will not
11139  *	enable anything that is off in @mask. Returns the new feature set.
11140  */
11141 netdev_features_t netdev_increment_features(netdev_features_t all,
11142 	netdev_features_t one, netdev_features_t mask)
11143 {
11144 	if (mask & NETIF_F_HW_CSUM)
11145 		mask |= NETIF_F_CSUM_MASK;
11146 	mask |= NETIF_F_VLAN_CHALLENGED;
11147 
11148 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11149 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11150 
11151 	/* If one device supports hw checksumming, set for all. */
11152 	if (all & NETIF_F_HW_CSUM)
11153 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11154 
11155 	return all;
11156 }
11157 EXPORT_SYMBOL(netdev_increment_features);
11158 
11159 static struct hlist_head * __net_init netdev_create_hash(void)
11160 {
11161 	int i;
11162 	struct hlist_head *hash;
11163 
11164 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11165 	if (hash != NULL)
11166 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11167 			INIT_HLIST_HEAD(&hash[i]);
11168 
11169 	return hash;
11170 }
11171 
11172 /* Initialize per network namespace state */
11173 static int __net_init netdev_init(struct net *net)
11174 {
11175 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11176 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11177 
11178 	INIT_LIST_HEAD(&net->dev_base_head);
11179 
11180 	net->dev_name_head = netdev_create_hash();
11181 	if (net->dev_name_head == NULL)
11182 		goto err_name;
11183 
11184 	net->dev_index_head = netdev_create_hash();
11185 	if (net->dev_index_head == NULL)
11186 		goto err_idx;
11187 
11188 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11189 
11190 	return 0;
11191 
11192 err_idx:
11193 	kfree(net->dev_name_head);
11194 err_name:
11195 	return -ENOMEM;
11196 }
11197 
11198 /**
11199  *	netdev_drivername - network driver for the device
11200  *	@dev: network device
11201  *
11202  *	Determine network driver for device.
11203  */
11204 const char *netdev_drivername(const struct net_device *dev)
11205 {
11206 	const struct device_driver *driver;
11207 	const struct device *parent;
11208 	const char *empty = "";
11209 
11210 	parent = dev->dev.parent;
11211 	if (!parent)
11212 		return empty;
11213 
11214 	driver = parent->driver;
11215 	if (driver && driver->name)
11216 		return driver->name;
11217 	return empty;
11218 }
11219 
11220 static void __netdev_printk(const char *level, const struct net_device *dev,
11221 			    struct va_format *vaf)
11222 {
11223 	if (dev && dev->dev.parent) {
11224 		dev_printk_emit(level[1] - '0',
11225 				dev->dev.parent,
11226 				"%s %s %s%s: %pV",
11227 				dev_driver_string(dev->dev.parent),
11228 				dev_name(dev->dev.parent),
11229 				netdev_name(dev), netdev_reg_state(dev),
11230 				vaf);
11231 	} else if (dev) {
11232 		printk("%s%s%s: %pV",
11233 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11234 	} else {
11235 		printk("%s(NULL net_device): %pV", level, vaf);
11236 	}
11237 }
11238 
11239 void netdev_printk(const char *level, const struct net_device *dev,
11240 		   const char *format, ...)
11241 {
11242 	struct va_format vaf;
11243 	va_list args;
11244 
11245 	va_start(args, format);
11246 
11247 	vaf.fmt = format;
11248 	vaf.va = &args;
11249 
11250 	__netdev_printk(level, dev, &vaf);
11251 
11252 	va_end(args);
11253 }
11254 EXPORT_SYMBOL(netdev_printk);
11255 
11256 #define define_netdev_printk_level(func, level)			\
11257 void func(const struct net_device *dev, const char *fmt, ...)	\
11258 {								\
11259 	struct va_format vaf;					\
11260 	va_list args;						\
11261 								\
11262 	va_start(args, fmt);					\
11263 								\
11264 	vaf.fmt = fmt;						\
11265 	vaf.va = &args;						\
11266 								\
11267 	__netdev_printk(level, dev, &vaf);			\
11268 								\
11269 	va_end(args);						\
11270 }								\
11271 EXPORT_SYMBOL(func);
11272 
11273 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11274 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11275 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11276 define_netdev_printk_level(netdev_err, KERN_ERR);
11277 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11278 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11279 define_netdev_printk_level(netdev_info, KERN_INFO);
11280 
11281 static void __net_exit netdev_exit(struct net *net)
11282 {
11283 	kfree(net->dev_name_head);
11284 	kfree(net->dev_index_head);
11285 	if (net != &init_net)
11286 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11287 }
11288 
11289 static struct pernet_operations __net_initdata netdev_net_ops = {
11290 	.init = netdev_init,
11291 	.exit = netdev_exit,
11292 };
11293 
11294 static void __net_exit default_device_exit_net(struct net *net)
11295 {
11296 	struct net_device *dev, *aux;
11297 	/*
11298 	 * Push all migratable network devices back to the
11299 	 * initial network namespace
11300 	 */
11301 	ASSERT_RTNL();
11302 	for_each_netdev_safe(net, dev, aux) {
11303 		int err;
11304 		char fb_name[IFNAMSIZ];
11305 
11306 		/* Ignore unmoveable devices (i.e. loopback) */
11307 		if (dev->features & NETIF_F_NETNS_LOCAL)
11308 			continue;
11309 
11310 		/* Leave virtual devices for the generic cleanup */
11311 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11312 			continue;
11313 
11314 		/* Push remaining network devices to init_net */
11315 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11316 		if (netdev_name_in_use(&init_net, fb_name))
11317 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11318 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11319 		if (err) {
11320 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11321 				 __func__, dev->name, err);
11322 			BUG();
11323 		}
11324 	}
11325 }
11326 
11327 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11328 {
11329 	/* At exit all network devices most be removed from a network
11330 	 * namespace.  Do this in the reverse order of registration.
11331 	 * Do this across as many network namespaces as possible to
11332 	 * improve batching efficiency.
11333 	 */
11334 	struct net_device *dev;
11335 	struct net *net;
11336 	LIST_HEAD(dev_kill_list);
11337 
11338 	rtnl_lock();
11339 	list_for_each_entry(net, net_list, exit_list) {
11340 		default_device_exit_net(net);
11341 		cond_resched();
11342 	}
11343 
11344 	list_for_each_entry(net, net_list, exit_list) {
11345 		for_each_netdev_reverse(net, dev) {
11346 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11347 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11348 			else
11349 				unregister_netdevice_queue(dev, &dev_kill_list);
11350 		}
11351 	}
11352 	unregister_netdevice_many(&dev_kill_list);
11353 	rtnl_unlock();
11354 }
11355 
11356 static struct pernet_operations __net_initdata default_device_ops = {
11357 	.exit_batch = default_device_exit_batch,
11358 };
11359 
11360 /*
11361  *	Initialize the DEV module. At boot time this walks the device list and
11362  *	unhooks any devices that fail to initialise (normally hardware not
11363  *	present) and leaves us with a valid list of present and active devices.
11364  *
11365  */
11366 
11367 /*
11368  *       This is called single threaded during boot, so no need
11369  *       to take the rtnl semaphore.
11370  */
11371 static int __init net_dev_init(void)
11372 {
11373 	int i, rc = -ENOMEM;
11374 
11375 	BUG_ON(!dev_boot_phase);
11376 
11377 	if (dev_proc_init())
11378 		goto out;
11379 
11380 	if (netdev_kobject_init())
11381 		goto out;
11382 
11383 	INIT_LIST_HEAD(&ptype_all);
11384 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11385 		INIT_LIST_HEAD(&ptype_base[i]);
11386 
11387 	if (register_pernet_subsys(&netdev_net_ops))
11388 		goto out;
11389 
11390 	/*
11391 	 *	Initialise the packet receive queues.
11392 	 */
11393 
11394 	for_each_possible_cpu(i) {
11395 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11396 		struct softnet_data *sd = &per_cpu(softnet_data, i);
11397 
11398 		INIT_WORK(flush, flush_backlog);
11399 
11400 		skb_queue_head_init(&sd->input_pkt_queue);
11401 		skb_queue_head_init(&sd->process_queue);
11402 #ifdef CONFIG_XFRM_OFFLOAD
11403 		skb_queue_head_init(&sd->xfrm_backlog);
11404 #endif
11405 		INIT_LIST_HEAD(&sd->poll_list);
11406 		sd->output_queue_tailp = &sd->output_queue;
11407 #ifdef CONFIG_RPS
11408 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11409 		sd->cpu = i;
11410 #endif
11411 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11412 		spin_lock_init(&sd->defer_lock);
11413 
11414 		init_gro_hash(&sd->backlog);
11415 		sd->backlog.poll = process_backlog;
11416 		sd->backlog.weight = weight_p;
11417 	}
11418 
11419 	dev_boot_phase = 0;
11420 
11421 	/* The loopback device is special if any other network devices
11422 	 * is present in a network namespace the loopback device must
11423 	 * be present. Since we now dynamically allocate and free the
11424 	 * loopback device ensure this invariant is maintained by
11425 	 * keeping the loopback device as the first device on the
11426 	 * list of network devices.  Ensuring the loopback devices
11427 	 * is the first device that appears and the last network device
11428 	 * that disappears.
11429 	 */
11430 	if (register_pernet_device(&loopback_net_ops))
11431 		goto out;
11432 
11433 	if (register_pernet_device(&default_device_ops))
11434 		goto out;
11435 
11436 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11437 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11438 
11439 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11440 				       NULL, dev_cpu_dead);
11441 	WARN_ON(rc < 0);
11442 	rc = 0;
11443 out:
11444 	return rc;
11445 }
11446 
11447 subsys_initcall(net_dev_init);
11448