1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <linux/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/sched/mm.h> 85 #include <linux/mutex.h> 86 #include <linux/string.h> 87 #include <linux/mm.h> 88 #include <linux/socket.h> 89 #include <linux/sockios.h> 90 #include <linux/errno.h> 91 #include <linux/interrupt.h> 92 #include <linux/if_ether.h> 93 #include <linux/netdevice.h> 94 #include <linux/etherdevice.h> 95 #include <linux/ethtool.h> 96 #include <linux/notifier.h> 97 #include <linux/skbuff.h> 98 #include <linux/bpf.h> 99 #include <linux/bpf_trace.h> 100 #include <net/net_namespace.h> 101 #include <net/sock.h> 102 #include <net/busy_poll.h> 103 #include <linux/rtnetlink.h> 104 #include <linux/stat.h> 105 #include <net/dst.h> 106 #include <net/dst_metadata.h> 107 #include <net/pkt_sched.h> 108 #include <net/pkt_cls.h> 109 #include <net/checksum.h> 110 #include <net/xfrm.h> 111 #include <linux/highmem.h> 112 #include <linux/init.h> 113 #include <linux/module.h> 114 #include <linux/netpoll.h> 115 #include <linux/rcupdate.h> 116 #include <linux/delay.h> 117 #include <net/iw_handler.h> 118 #include <asm/current.h> 119 #include <linux/audit.h> 120 #include <linux/dmaengine.h> 121 #include <linux/err.h> 122 #include <linux/ctype.h> 123 #include <linux/if_arp.h> 124 #include <linux/if_vlan.h> 125 #include <linux/ip.h> 126 #include <net/ip.h> 127 #include <net/mpls.h> 128 #include <linux/ipv6.h> 129 #include <linux/in.h> 130 #include <linux/jhash.h> 131 #include <linux/random.h> 132 #include <trace/events/napi.h> 133 #include <trace/events/net.h> 134 #include <trace/events/skb.h> 135 #include <linux/pci.h> 136 #include <linux/inetdevice.h> 137 #include <linux/cpu_rmap.h> 138 #include <linux/static_key.h> 139 #include <linux/hashtable.h> 140 #include <linux/vmalloc.h> 141 #include <linux/if_macvlan.h> 142 #include <linux/errqueue.h> 143 #include <linux/hrtimer.h> 144 #include <linux/netfilter_ingress.h> 145 #include <linux/crash_dump.h> 146 #include <linux/sctp.h> 147 #include <net/udp_tunnel.h> 148 149 #include "net-sysfs.h" 150 151 /* Instead of increasing this, you should create a hash table. */ 152 #define MAX_GRO_SKBS 8 153 154 /* This should be increased if a protocol with a bigger head is added. */ 155 #define GRO_MAX_HEAD (MAX_HEADER + 128) 156 157 static DEFINE_SPINLOCK(ptype_lock); 158 static DEFINE_SPINLOCK(offload_lock); 159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 160 struct list_head ptype_all __read_mostly; /* Taps */ 161 static struct list_head offload_base __read_mostly; 162 163 static int netif_rx_internal(struct sk_buff *skb); 164 static int call_netdevice_notifiers_info(unsigned long val, 165 struct net_device *dev, 166 struct netdev_notifier_info *info); 167 static struct napi_struct *napi_by_id(unsigned int napi_id); 168 169 /* 170 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 171 * semaphore. 172 * 173 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 174 * 175 * Writers must hold the rtnl semaphore while they loop through the 176 * dev_base_head list, and hold dev_base_lock for writing when they do the 177 * actual updates. This allows pure readers to access the list even 178 * while a writer is preparing to update it. 179 * 180 * To put it another way, dev_base_lock is held for writing only to 181 * protect against pure readers; the rtnl semaphore provides the 182 * protection against other writers. 183 * 184 * See, for example usages, register_netdevice() and 185 * unregister_netdevice(), which must be called with the rtnl 186 * semaphore held. 187 */ 188 DEFINE_RWLOCK(dev_base_lock); 189 EXPORT_SYMBOL(dev_base_lock); 190 191 /* protects napi_hash addition/deletion and napi_gen_id */ 192 static DEFINE_SPINLOCK(napi_hash_lock); 193 194 static unsigned int napi_gen_id = NR_CPUS; 195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 196 197 static seqcount_t devnet_rename_seq; 198 199 static inline void dev_base_seq_inc(struct net *net) 200 { 201 while (++net->dev_base_seq == 0) 202 ; 203 } 204 205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 206 { 207 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 208 209 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 210 } 211 212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 213 { 214 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 215 } 216 217 static inline void rps_lock(struct softnet_data *sd) 218 { 219 #ifdef CONFIG_RPS 220 spin_lock(&sd->input_pkt_queue.lock); 221 #endif 222 } 223 224 static inline void rps_unlock(struct softnet_data *sd) 225 { 226 #ifdef CONFIG_RPS 227 spin_unlock(&sd->input_pkt_queue.lock); 228 #endif 229 } 230 231 /* Device list insertion */ 232 static void list_netdevice(struct net_device *dev) 233 { 234 struct net *net = dev_net(dev); 235 236 ASSERT_RTNL(); 237 238 write_lock_bh(&dev_base_lock); 239 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 240 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 241 hlist_add_head_rcu(&dev->index_hlist, 242 dev_index_hash(net, dev->ifindex)); 243 write_unlock_bh(&dev_base_lock); 244 245 dev_base_seq_inc(net); 246 } 247 248 /* Device list removal 249 * caller must respect a RCU grace period before freeing/reusing dev 250 */ 251 static void unlist_netdevice(struct net_device *dev) 252 { 253 ASSERT_RTNL(); 254 255 /* Unlink dev from the device chain */ 256 write_lock_bh(&dev_base_lock); 257 list_del_rcu(&dev->dev_list); 258 hlist_del_rcu(&dev->name_hlist); 259 hlist_del_rcu(&dev->index_hlist); 260 write_unlock_bh(&dev_base_lock); 261 262 dev_base_seq_inc(dev_net(dev)); 263 } 264 265 /* 266 * Our notifier list 267 */ 268 269 static RAW_NOTIFIER_HEAD(netdev_chain); 270 271 /* 272 * Device drivers call our routines to queue packets here. We empty the 273 * queue in the local softnet handler. 274 */ 275 276 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 277 EXPORT_PER_CPU_SYMBOL(softnet_data); 278 279 #ifdef CONFIG_LOCKDEP 280 /* 281 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 282 * according to dev->type 283 */ 284 static const unsigned short netdev_lock_type[] = { 285 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 286 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 287 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 288 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 289 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 290 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 291 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 292 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 293 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 294 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 295 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 296 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 297 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 298 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 299 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 300 301 static const char *const netdev_lock_name[] = { 302 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 303 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 304 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 305 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 306 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 307 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 308 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 309 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 310 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 311 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 312 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 313 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 314 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 315 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 316 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 317 318 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 319 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 320 321 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 322 { 323 int i; 324 325 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 326 if (netdev_lock_type[i] == dev_type) 327 return i; 328 /* the last key is used by default */ 329 return ARRAY_SIZE(netdev_lock_type) - 1; 330 } 331 332 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 333 unsigned short dev_type) 334 { 335 int i; 336 337 i = netdev_lock_pos(dev_type); 338 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 339 netdev_lock_name[i]); 340 } 341 342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 343 { 344 int i; 345 346 i = netdev_lock_pos(dev->type); 347 lockdep_set_class_and_name(&dev->addr_list_lock, 348 &netdev_addr_lock_key[i], 349 netdev_lock_name[i]); 350 } 351 #else 352 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 353 unsigned short dev_type) 354 { 355 } 356 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 357 { 358 } 359 #endif 360 361 /******************************************************************************* 362 * 363 * Protocol management and registration routines 364 * 365 *******************************************************************************/ 366 367 368 /* 369 * Add a protocol ID to the list. Now that the input handler is 370 * smarter we can dispense with all the messy stuff that used to be 371 * here. 372 * 373 * BEWARE!!! Protocol handlers, mangling input packets, 374 * MUST BE last in hash buckets and checking protocol handlers 375 * MUST start from promiscuous ptype_all chain in net_bh. 376 * It is true now, do not change it. 377 * Explanation follows: if protocol handler, mangling packet, will 378 * be the first on list, it is not able to sense, that packet 379 * is cloned and should be copied-on-write, so that it will 380 * change it and subsequent readers will get broken packet. 381 * --ANK (980803) 382 */ 383 384 static inline struct list_head *ptype_head(const struct packet_type *pt) 385 { 386 if (pt->type == htons(ETH_P_ALL)) 387 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 388 else 389 return pt->dev ? &pt->dev->ptype_specific : 390 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 391 } 392 393 /** 394 * dev_add_pack - add packet handler 395 * @pt: packet type declaration 396 * 397 * Add a protocol handler to the networking stack. The passed &packet_type 398 * is linked into kernel lists and may not be freed until it has been 399 * removed from the kernel lists. 400 * 401 * This call does not sleep therefore it can not 402 * guarantee all CPU's that are in middle of receiving packets 403 * will see the new packet type (until the next received packet). 404 */ 405 406 void dev_add_pack(struct packet_type *pt) 407 { 408 struct list_head *head = ptype_head(pt); 409 410 spin_lock(&ptype_lock); 411 list_add_rcu(&pt->list, head); 412 spin_unlock(&ptype_lock); 413 } 414 EXPORT_SYMBOL(dev_add_pack); 415 416 /** 417 * __dev_remove_pack - remove packet handler 418 * @pt: packet type declaration 419 * 420 * Remove a protocol handler that was previously added to the kernel 421 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 422 * from the kernel lists and can be freed or reused once this function 423 * returns. 424 * 425 * The packet type might still be in use by receivers 426 * and must not be freed until after all the CPU's have gone 427 * through a quiescent state. 428 */ 429 void __dev_remove_pack(struct packet_type *pt) 430 { 431 struct list_head *head = ptype_head(pt); 432 struct packet_type *pt1; 433 434 spin_lock(&ptype_lock); 435 436 list_for_each_entry(pt1, head, list) { 437 if (pt == pt1) { 438 list_del_rcu(&pt->list); 439 goto out; 440 } 441 } 442 443 pr_warn("dev_remove_pack: %p not found\n", pt); 444 out: 445 spin_unlock(&ptype_lock); 446 } 447 EXPORT_SYMBOL(__dev_remove_pack); 448 449 /** 450 * dev_remove_pack - remove packet handler 451 * @pt: packet type declaration 452 * 453 * Remove a protocol handler that was previously added to the kernel 454 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 455 * from the kernel lists and can be freed or reused once this function 456 * returns. 457 * 458 * This call sleeps to guarantee that no CPU is looking at the packet 459 * type after return. 460 */ 461 void dev_remove_pack(struct packet_type *pt) 462 { 463 __dev_remove_pack(pt); 464 465 synchronize_net(); 466 } 467 EXPORT_SYMBOL(dev_remove_pack); 468 469 470 /** 471 * dev_add_offload - register offload handlers 472 * @po: protocol offload declaration 473 * 474 * Add protocol offload handlers to the networking stack. The passed 475 * &proto_offload is linked into kernel lists and may not be freed until 476 * it has been removed from the kernel lists. 477 * 478 * This call does not sleep therefore it can not 479 * guarantee all CPU's that are in middle of receiving packets 480 * will see the new offload handlers (until the next received packet). 481 */ 482 void dev_add_offload(struct packet_offload *po) 483 { 484 struct packet_offload *elem; 485 486 spin_lock(&offload_lock); 487 list_for_each_entry(elem, &offload_base, list) { 488 if (po->priority < elem->priority) 489 break; 490 } 491 list_add_rcu(&po->list, elem->list.prev); 492 spin_unlock(&offload_lock); 493 } 494 EXPORT_SYMBOL(dev_add_offload); 495 496 /** 497 * __dev_remove_offload - remove offload handler 498 * @po: packet offload declaration 499 * 500 * Remove a protocol offload handler that was previously added to the 501 * kernel offload handlers by dev_add_offload(). The passed &offload_type 502 * is removed from the kernel lists and can be freed or reused once this 503 * function returns. 504 * 505 * The packet type might still be in use by receivers 506 * and must not be freed until after all the CPU's have gone 507 * through a quiescent state. 508 */ 509 static void __dev_remove_offload(struct packet_offload *po) 510 { 511 struct list_head *head = &offload_base; 512 struct packet_offload *po1; 513 514 spin_lock(&offload_lock); 515 516 list_for_each_entry(po1, head, list) { 517 if (po == po1) { 518 list_del_rcu(&po->list); 519 goto out; 520 } 521 } 522 523 pr_warn("dev_remove_offload: %p not found\n", po); 524 out: 525 spin_unlock(&offload_lock); 526 } 527 528 /** 529 * dev_remove_offload - remove packet offload handler 530 * @po: packet offload declaration 531 * 532 * Remove a packet offload handler that was previously added to the kernel 533 * offload handlers by dev_add_offload(). The passed &offload_type is 534 * removed from the kernel lists and can be freed or reused once this 535 * function returns. 536 * 537 * This call sleeps to guarantee that no CPU is looking at the packet 538 * type after return. 539 */ 540 void dev_remove_offload(struct packet_offload *po) 541 { 542 __dev_remove_offload(po); 543 544 synchronize_net(); 545 } 546 EXPORT_SYMBOL(dev_remove_offload); 547 548 /****************************************************************************** 549 * 550 * Device Boot-time Settings Routines 551 * 552 ******************************************************************************/ 553 554 /* Boot time configuration table */ 555 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 556 557 /** 558 * netdev_boot_setup_add - add new setup entry 559 * @name: name of the device 560 * @map: configured settings for the device 561 * 562 * Adds new setup entry to the dev_boot_setup list. The function 563 * returns 0 on error and 1 on success. This is a generic routine to 564 * all netdevices. 565 */ 566 static int netdev_boot_setup_add(char *name, struct ifmap *map) 567 { 568 struct netdev_boot_setup *s; 569 int i; 570 571 s = dev_boot_setup; 572 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 573 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 574 memset(s[i].name, 0, sizeof(s[i].name)); 575 strlcpy(s[i].name, name, IFNAMSIZ); 576 memcpy(&s[i].map, map, sizeof(s[i].map)); 577 break; 578 } 579 } 580 581 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 582 } 583 584 /** 585 * netdev_boot_setup_check - check boot time settings 586 * @dev: the netdevice 587 * 588 * Check boot time settings for the device. 589 * The found settings are set for the device to be used 590 * later in the device probing. 591 * Returns 0 if no settings found, 1 if they are. 592 */ 593 int netdev_boot_setup_check(struct net_device *dev) 594 { 595 struct netdev_boot_setup *s = dev_boot_setup; 596 int i; 597 598 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 599 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 600 !strcmp(dev->name, s[i].name)) { 601 dev->irq = s[i].map.irq; 602 dev->base_addr = s[i].map.base_addr; 603 dev->mem_start = s[i].map.mem_start; 604 dev->mem_end = s[i].map.mem_end; 605 return 1; 606 } 607 } 608 return 0; 609 } 610 EXPORT_SYMBOL(netdev_boot_setup_check); 611 612 613 /** 614 * netdev_boot_base - get address from boot time settings 615 * @prefix: prefix for network device 616 * @unit: id for network device 617 * 618 * Check boot time settings for the base address of device. 619 * The found settings are set for the device to be used 620 * later in the device probing. 621 * Returns 0 if no settings found. 622 */ 623 unsigned long netdev_boot_base(const char *prefix, int unit) 624 { 625 const struct netdev_boot_setup *s = dev_boot_setup; 626 char name[IFNAMSIZ]; 627 int i; 628 629 sprintf(name, "%s%d", prefix, unit); 630 631 /* 632 * If device already registered then return base of 1 633 * to indicate not to probe for this interface 634 */ 635 if (__dev_get_by_name(&init_net, name)) 636 return 1; 637 638 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 639 if (!strcmp(name, s[i].name)) 640 return s[i].map.base_addr; 641 return 0; 642 } 643 644 /* 645 * Saves at boot time configured settings for any netdevice. 646 */ 647 int __init netdev_boot_setup(char *str) 648 { 649 int ints[5]; 650 struct ifmap map; 651 652 str = get_options(str, ARRAY_SIZE(ints), ints); 653 if (!str || !*str) 654 return 0; 655 656 /* Save settings */ 657 memset(&map, 0, sizeof(map)); 658 if (ints[0] > 0) 659 map.irq = ints[1]; 660 if (ints[0] > 1) 661 map.base_addr = ints[2]; 662 if (ints[0] > 2) 663 map.mem_start = ints[3]; 664 if (ints[0] > 3) 665 map.mem_end = ints[4]; 666 667 /* Add new entry to the list */ 668 return netdev_boot_setup_add(str, &map); 669 } 670 671 __setup("netdev=", netdev_boot_setup); 672 673 /******************************************************************************* 674 * 675 * Device Interface Subroutines 676 * 677 *******************************************************************************/ 678 679 /** 680 * dev_get_iflink - get 'iflink' value of a interface 681 * @dev: targeted interface 682 * 683 * Indicates the ifindex the interface is linked to. 684 * Physical interfaces have the same 'ifindex' and 'iflink' values. 685 */ 686 687 int dev_get_iflink(const struct net_device *dev) 688 { 689 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 690 return dev->netdev_ops->ndo_get_iflink(dev); 691 692 return dev->ifindex; 693 } 694 EXPORT_SYMBOL(dev_get_iflink); 695 696 /** 697 * dev_fill_metadata_dst - Retrieve tunnel egress information. 698 * @dev: targeted interface 699 * @skb: The packet. 700 * 701 * For better visibility of tunnel traffic OVS needs to retrieve 702 * egress tunnel information for a packet. Following API allows 703 * user to get this info. 704 */ 705 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 706 { 707 struct ip_tunnel_info *info; 708 709 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 710 return -EINVAL; 711 712 info = skb_tunnel_info_unclone(skb); 713 if (!info) 714 return -ENOMEM; 715 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 716 return -EINVAL; 717 718 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 719 } 720 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 721 722 /** 723 * __dev_get_by_name - find a device by its name 724 * @net: the applicable net namespace 725 * @name: name to find 726 * 727 * Find an interface by name. Must be called under RTNL semaphore 728 * or @dev_base_lock. If the name is found a pointer to the device 729 * is returned. If the name is not found then %NULL is returned. The 730 * reference counters are not incremented so the caller must be 731 * careful with locks. 732 */ 733 734 struct net_device *__dev_get_by_name(struct net *net, const char *name) 735 { 736 struct net_device *dev; 737 struct hlist_head *head = dev_name_hash(net, name); 738 739 hlist_for_each_entry(dev, head, name_hlist) 740 if (!strncmp(dev->name, name, IFNAMSIZ)) 741 return dev; 742 743 return NULL; 744 } 745 EXPORT_SYMBOL(__dev_get_by_name); 746 747 /** 748 * dev_get_by_name_rcu - find a device by its name 749 * @net: the applicable net namespace 750 * @name: name to find 751 * 752 * Find an interface by name. 753 * If the name is found a pointer to the device is returned. 754 * If the name is not found then %NULL is returned. 755 * The reference counters are not incremented so the caller must be 756 * careful with locks. The caller must hold RCU lock. 757 */ 758 759 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 760 { 761 struct net_device *dev; 762 struct hlist_head *head = dev_name_hash(net, name); 763 764 hlist_for_each_entry_rcu(dev, head, name_hlist) 765 if (!strncmp(dev->name, name, IFNAMSIZ)) 766 return dev; 767 768 return NULL; 769 } 770 EXPORT_SYMBOL(dev_get_by_name_rcu); 771 772 /** 773 * dev_get_by_name - find a device by its name 774 * @net: the applicable net namespace 775 * @name: name to find 776 * 777 * Find an interface by name. This can be called from any 778 * context and does its own locking. The returned handle has 779 * the usage count incremented and the caller must use dev_put() to 780 * release it when it is no longer needed. %NULL is returned if no 781 * matching device is found. 782 */ 783 784 struct net_device *dev_get_by_name(struct net *net, const char *name) 785 { 786 struct net_device *dev; 787 788 rcu_read_lock(); 789 dev = dev_get_by_name_rcu(net, name); 790 if (dev) 791 dev_hold(dev); 792 rcu_read_unlock(); 793 return dev; 794 } 795 EXPORT_SYMBOL(dev_get_by_name); 796 797 /** 798 * __dev_get_by_index - find a device by its ifindex 799 * @net: the applicable net namespace 800 * @ifindex: index of device 801 * 802 * Search for an interface by index. Returns %NULL if the device 803 * is not found or a pointer to the device. The device has not 804 * had its reference counter increased so the caller must be careful 805 * about locking. The caller must hold either the RTNL semaphore 806 * or @dev_base_lock. 807 */ 808 809 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 810 { 811 struct net_device *dev; 812 struct hlist_head *head = dev_index_hash(net, ifindex); 813 814 hlist_for_each_entry(dev, head, index_hlist) 815 if (dev->ifindex == ifindex) 816 return dev; 817 818 return NULL; 819 } 820 EXPORT_SYMBOL(__dev_get_by_index); 821 822 /** 823 * dev_get_by_index_rcu - find a device by its ifindex 824 * @net: the applicable net namespace 825 * @ifindex: index of device 826 * 827 * Search for an interface by index. Returns %NULL if the device 828 * is not found or a pointer to the device. The device has not 829 * had its reference counter increased so the caller must be careful 830 * about locking. The caller must hold RCU lock. 831 */ 832 833 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 834 { 835 struct net_device *dev; 836 struct hlist_head *head = dev_index_hash(net, ifindex); 837 838 hlist_for_each_entry_rcu(dev, head, index_hlist) 839 if (dev->ifindex == ifindex) 840 return dev; 841 842 return NULL; 843 } 844 EXPORT_SYMBOL(dev_get_by_index_rcu); 845 846 847 /** 848 * dev_get_by_index - find a device by its ifindex 849 * @net: the applicable net namespace 850 * @ifindex: index of device 851 * 852 * Search for an interface by index. Returns NULL if the device 853 * is not found or a pointer to the device. The device returned has 854 * had a reference added and the pointer is safe until the user calls 855 * dev_put to indicate they have finished with it. 856 */ 857 858 struct net_device *dev_get_by_index(struct net *net, int ifindex) 859 { 860 struct net_device *dev; 861 862 rcu_read_lock(); 863 dev = dev_get_by_index_rcu(net, ifindex); 864 if (dev) 865 dev_hold(dev); 866 rcu_read_unlock(); 867 return dev; 868 } 869 EXPORT_SYMBOL(dev_get_by_index); 870 871 /** 872 * dev_get_by_napi_id - find a device by napi_id 873 * @napi_id: ID of the NAPI struct 874 * 875 * Search for an interface by NAPI ID. Returns %NULL if the device 876 * is not found or a pointer to the device. The device has not had 877 * its reference counter increased so the caller must be careful 878 * about locking. The caller must hold RCU lock. 879 */ 880 881 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 882 { 883 struct napi_struct *napi; 884 885 WARN_ON_ONCE(!rcu_read_lock_held()); 886 887 if (napi_id < MIN_NAPI_ID) 888 return NULL; 889 890 napi = napi_by_id(napi_id); 891 892 return napi ? napi->dev : NULL; 893 } 894 EXPORT_SYMBOL(dev_get_by_napi_id); 895 896 /** 897 * netdev_get_name - get a netdevice name, knowing its ifindex. 898 * @net: network namespace 899 * @name: a pointer to the buffer where the name will be stored. 900 * @ifindex: the ifindex of the interface to get the name from. 901 * 902 * The use of raw_seqcount_begin() and cond_resched() before 903 * retrying is required as we want to give the writers a chance 904 * to complete when CONFIG_PREEMPT is not set. 905 */ 906 int netdev_get_name(struct net *net, char *name, int ifindex) 907 { 908 struct net_device *dev; 909 unsigned int seq; 910 911 retry: 912 seq = raw_seqcount_begin(&devnet_rename_seq); 913 rcu_read_lock(); 914 dev = dev_get_by_index_rcu(net, ifindex); 915 if (!dev) { 916 rcu_read_unlock(); 917 return -ENODEV; 918 } 919 920 strcpy(name, dev->name); 921 rcu_read_unlock(); 922 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 923 cond_resched(); 924 goto retry; 925 } 926 927 return 0; 928 } 929 930 /** 931 * dev_getbyhwaddr_rcu - find a device by its hardware address 932 * @net: the applicable net namespace 933 * @type: media type of device 934 * @ha: hardware address 935 * 936 * Search for an interface by MAC address. Returns NULL if the device 937 * is not found or a pointer to the device. 938 * The caller must hold RCU or RTNL. 939 * The returned device has not had its ref count increased 940 * and the caller must therefore be careful about locking 941 * 942 */ 943 944 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 945 const char *ha) 946 { 947 struct net_device *dev; 948 949 for_each_netdev_rcu(net, dev) 950 if (dev->type == type && 951 !memcmp(dev->dev_addr, ha, dev->addr_len)) 952 return dev; 953 954 return NULL; 955 } 956 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 957 958 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 959 { 960 struct net_device *dev; 961 962 ASSERT_RTNL(); 963 for_each_netdev(net, dev) 964 if (dev->type == type) 965 return dev; 966 967 return NULL; 968 } 969 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 970 971 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 972 { 973 struct net_device *dev, *ret = NULL; 974 975 rcu_read_lock(); 976 for_each_netdev_rcu(net, dev) 977 if (dev->type == type) { 978 dev_hold(dev); 979 ret = dev; 980 break; 981 } 982 rcu_read_unlock(); 983 return ret; 984 } 985 EXPORT_SYMBOL(dev_getfirstbyhwtype); 986 987 /** 988 * __dev_get_by_flags - find any device with given flags 989 * @net: the applicable net namespace 990 * @if_flags: IFF_* values 991 * @mask: bitmask of bits in if_flags to check 992 * 993 * Search for any interface with the given flags. Returns NULL if a device 994 * is not found or a pointer to the device. Must be called inside 995 * rtnl_lock(), and result refcount is unchanged. 996 */ 997 998 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 999 unsigned short mask) 1000 { 1001 struct net_device *dev, *ret; 1002 1003 ASSERT_RTNL(); 1004 1005 ret = NULL; 1006 for_each_netdev(net, dev) { 1007 if (((dev->flags ^ if_flags) & mask) == 0) { 1008 ret = dev; 1009 break; 1010 } 1011 } 1012 return ret; 1013 } 1014 EXPORT_SYMBOL(__dev_get_by_flags); 1015 1016 /** 1017 * dev_valid_name - check if name is okay for network device 1018 * @name: name string 1019 * 1020 * Network device names need to be valid file names to 1021 * to allow sysfs to work. We also disallow any kind of 1022 * whitespace. 1023 */ 1024 bool dev_valid_name(const char *name) 1025 { 1026 if (*name == '\0') 1027 return false; 1028 if (strlen(name) >= IFNAMSIZ) 1029 return false; 1030 if (!strcmp(name, ".") || !strcmp(name, "..")) 1031 return false; 1032 1033 while (*name) { 1034 if (*name == '/' || *name == ':' || isspace(*name)) 1035 return false; 1036 name++; 1037 } 1038 return true; 1039 } 1040 EXPORT_SYMBOL(dev_valid_name); 1041 1042 /** 1043 * __dev_alloc_name - allocate a name for a device 1044 * @net: network namespace to allocate the device name in 1045 * @name: name format string 1046 * @buf: scratch buffer and result name string 1047 * 1048 * Passed a format string - eg "lt%d" it will try and find a suitable 1049 * id. It scans list of devices to build up a free map, then chooses 1050 * the first empty slot. The caller must hold the dev_base or rtnl lock 1051 * while allocating the name and adding the device in order to avoid 1052 * duplicates. 1053 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1054 * Returns the number of the unit assigned or a negative errno code. 1055 */ 1056 1057 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1058 { 1059 int i = 0; 1060 const char *p; 1061 const int max_netdevices = 8*PAGE_SIZE; 1062 unsigned long *inuse; 1063 struct net_device *d; 1064 1065 p = strnchr(name, IFNAMSIZ-1, '%'); 1066 if (p) { 1067 /* 1068 * Verify the string as this thing may have come from 1069 * the user. There must be either one "%d" and no other "%" 1070 * characters. 1071 */ 1072 if (p[1] != 'd' || strchr(p + 2, '%')) 1073 return -EINVAL; 1074 1075 /* Use one page as a bit array of possible slots */ 1076 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1077 if (!inuse) 1078 return -ENOMEM; 1079 1080 for_each_netdev(net, d) { 1081 if (!sscanf(d->name, name, &i)) 1082 continue; 1083 if (i < 0 || i >= max_netdevices) 1084 continue; 1085 1086 /* avoid cases where sscanf is not exact inverse of printf */ 1087 snprintf(buf, IFNAMSIZ, name, i); 1088 if (!strncmp(buf, d->name, IFNAMSIZ)) 1089 set_bit(i, inuse); 1090 } 1091 1092 i = find_first_zero_bit(inuse, max_netdevices); 1093 free_page((unsigned long) inuse); 1094 } 1095 1096 if (buf != name) 1097 snprintf(buf, IFNAMSIZ, name, i); 1098 if (!__dev_get_by_name(net, buf)) 1099 return i; 1100 1101 /* It is possible to run out of possible slots 1102 * when the name is long and there isn't enough space left 1103 * for the digits, or if all bits are used. 1104 */ 1105 return -ENFILE; 1106 } 1107 1108 /** 1109 * dev_alloc_name - allocate a name for a device 1110 * @dev: device 1111 * @name: name format string 1112 * 1113 * Passed a format string - eg "lt%d" it will try and find a suitable 1114 * id. It scans list of devices to build up a free map, then chooses 1115 * the first empty slot. The caller must hold the dev_base or rtnl lock 1116 * while allocating the name and adding the device in order to avoid 1117 * duplicates. 1118 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1119 * Returns the number of the unit assigned or a negative errno code. 1120 */ 1121 1122 int dev_alloc_name(struct net_device *dev, const char *name) 1123 { 1124 char buf[IFNAMSIZ]; 1125 struct net *net; 1126 int ret; 1127 1128 BUG_ON(!dev_net(dev)); 1129 net = dev_net(dev); 1130 ret = __dev_alloc_name(net, name, buf); 1131 if (ret >= 0) 1132 strlcpy(dev->name, buf, IFNAMSIZ); 1133 return ret; 1134 } 1135 EXPORT_SYMBOL(dev_alloc_name); 1136 1137 static int dev_alloc_name_ns(struct net *net, 1138 struct net_device *dev, 1139 const char *name) 1140 { 1141 char buf[IFNAMSIZ]; 1142 int ret; 1143 1144 ret = __dev_alloc_name(net, name, buf); 1145 if (ret >= 0) 1146 strlcpy(dev->name, buf, IFNAMSIZ); 1147 return ret; 1148 } 1149 1150 static int dev_get_valid_name(struct net *net, 1151 struct net_device *dev, 1152 const char *name) 1153 { 1154 BUG_ON(!net); 1155 1156 if (!dev_valid_name(name)) 1157 return -EINVAL; 1158 1159 if (strchr(name, '%')) 1160 return dev_alloc_name_ns(net, dev, name); 1161 else if (__dev_get_by_name(net, name)) 1162 return -EEXIST; 1163 else if (dev->name != name) 1164 strlcpy(dev->name, name, IFNAMSIZ); 1165 1166 return 0; 1167 } 1168 1169 /** 1170 * dev_change_name - change name of a device 1171 * @dev: device 1172 * @newname: name (or format string) must be at least IFNAMSIZ 1173 * 1174 * Change name of a device, can pass format strings "eth%d". 1175 * for wildcarding. 1176 */ 1177 int dev_change_name(struct net_device *dev, const char *newname) 1178 { 1179 unsigned char old_assign_type; 1180 char oldname[IFNAMSIZ]; 1181 int err = 0; 1182 int ret; 1183 struct net *net; 1184 1185 ASSERT_RTNL(); 1186 BUG_ON(!dev_net(dev)); 1187 1188 net = dev_net(dev); 1189 if (dev->flags & IFF_UP) 1190 return -EBUSY; 1191 1192 write_seqcount_begin(&devnet_rename_seq); 1193 1194 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1195 write_seqcount_end(&devnet_rename_seq); 1196 return 0; 1197 } 1198 1199 memcpy(oldname, dev->name, IFNAMSIZ); 1200 1201 err = dev_get_valid_name(net, dev, newname); 1202 if (err < 0) { 1203 write_seqcount_end(&devnet_rename_seq); 1204 return err; 1205 } 1206 1207 if (oldname[0] && !strchr(oldname, '%')) 1208 netdev_info(dev, "renamed from %s\n", oldname); 1209 1210 old_assign_type = dev->name_assign_type; 1211 dev->name_assign_type = NET_NAME_RENAMED; 1212 1213 rollback: 1214 ret = device_rename(&dev->dev, dev->name); 1215 if (ret) { 1216 memcpy(dev->name, oldname, IFNAMSIZ); 1217 dev->name_assign_type = old_assign_type; 1218 write_seqcount_end(&devnet_rename_seq); 1219 return ret; 1220 } 1221 1222 write_seqcount_end(&devnet_rename_seq); 1223 1224 netdev_adjacent_rename_links(dev, oldname); 1225 1226 write_lock_bh(&dev_base_lock); 1227 hlist_del_rcu(&dev->name_hlist); 1228 write_unlock_bh(&dev_base_lock); 1229 1230 synchronize_rcu(); 1231 1232 write_lock_bh(&dev_base_lock); 1233 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1234 write_unlock_bh(&dev_base_lock); 1235 1236 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1237 ret = notifier_to_errno(ret); 1238 1239 if (ret) { 1240 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1241 if (err >= 0) { 1242 err = ret; 1243 write_seqcount_begin(&devnet_rename_seq); 1244 memcpy(dev->name, oldname, IFNAMSIZ); 1245 memcpy(oldname, newname, IFNAMSIZ); 1246 dev->name_assign_type = old_assign_type; 1247 old_assign_type = NET_NAME_RENAMED; 1248 goto rollback; 1249 } else { 1250 pr_err("%s: name change rollback failed: %d\n", 1251 dev->name, ret); 1252 } 1253 } 1254 1255 return err; 1256 } 1257 1258 /** 1259 * dev_set_alias - change ifalias of a device 1260 * @dev: device 1261 * @alias: name up to IFALIASZ 1262 * @len: limit of bytes to copy from info 1263 * 1264 * Set ifalias for a device, 1265 */ 1266 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1267 { 1268 char *new_ifalias; 1269 1270 ASSERT_RTNL(); 1271 1272 if (len >= IFALIASZ) 1273 return -EINVAL; 1274 1275 if (!len) { 1276 kfree(dev->ifalias); 1277 dev->ifalias = NULL; 1278 return 0; 1279 } 1280 1281 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1282 if (!new_ifalias) 1283 return -ENOMEM; 1284 dev->ifalias = new_ifalias; 1285 memcpy(dev->ifalias, alias, len); 1286 dev->ifalias[len] = 0; 1287 1288 return len; 1289 } 1290 1291 1292 /** 1293 * netdev_features_change - device changes features 1294 * @dev: device to cause notification 1295 * 1296 * Called to indicate a device has changed features. 1297 */ 1298 void netdev_features_change(struct net_device *dev) 1299 { 1300 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1301 } 1302 EXPORT_SYMBOL(netdev_features_change); 1303 1304 /** 1305 * netdev_state_change - device changes state 1306 * @dev: device to cause notification 1307 * 1308 * Called to indicate a device has changed state. This function calls 1309 * the notifier chains for netdev_chain and sends a NEWLINK message 1310 * to the routing socket. 1311 */ 1312 void netdev_state_change(struct net_device *dev) 1313 { 1314 if (dev->flags & IFF_UP) { 1315 struct netdev_notifier_change_info change_info; 1316 1317 change_info.flags_changed = 0; 1318 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 1319 &change_info.info); 1320 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1321 } 1322 } 1323 EXPORT_SYMBOL(netdev_state_change); 1324 1325 /** 1326 * netdev_notify_peers - notify network peers about existence of @dev 1327 * @dev: network device 1328 * 1329 * Generate traffic such that interested network peers are aware of 1330 * @dev, such as by generating a gratuitous ARP. This may be used when 1331 * a device wants to inform the rest of the network about some sort of 1332 * reconfiguration such as a failover event or virtual machine 1333 * migration. 1334 */ 1335 void netdev_notify_peers(struct net_device *dev) 1336 { 1337 rtnl_lock(); 1338 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1339 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1340 rtnl_unlock(); 1341 } 1342 EXPORT_SYMBOL(netdev_notify_peers); 1343 1344 static int __dev_open(struct net_device *dev) 1345 { 1346 const struct net_device_ops *ops = dev->netdev_ops; 1347 int ret; 1348 1349 ASSERT_RTNL(); 1350 1351 if (!netif_device_present(dev)) 1352 return -ENODEV; 1353 1354 /* Block netpoll from trying to do any rx path servicing. 1355 * If we don't do this there is a chance ndo_poll_controller 1356 * or ndo_poll may be running while we open the device 1357 */ 1358 netpoll_poll_disable(dev); 1359 1360 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1361 ret = notifier_to_errno(ret); 1362 if (ret) 1363 return ret; 1364 1365 set_bit(__LINK_STATE_START, &dev->state); 1366 1367 if (ops->ndo_validate_addr) 1368 ret = ops->ndo_validate_addr(dev); 1369 1370 if (!ret && ops->ndo_open) 1371 ret = ops->ndo_open(dev); 1372 1373 netpoll_poll_enable(dev); 1374 1375 if (ret) 1376 clear_bit(__LINK_STATE_START, &dev->state); 1377 else { 1378 dev->flags |= IFF_UP; 1379 dev_set_rx_mode(dev); 1380 dev_activate(dev); 1381 add_device_randomness(dev->dev_addr, dev->addr_len); 1382 } 1383 1384 return ret; 1385 } 1386 1387 /** 1388 * dev_open - prepare an interface for use. 1389 * @dev: device to open 1390 * 1391 * Takes a device from down to up state. The device's private open 1392 * function is invoked and then the multicast lists are loaded. Finally 1393 * the device is moved into the up state and a %NETDEV_UP message is 1394 * sent to the netdev notifier chain. 1395 * 1396 * Calling this function on an active interface is a nop. On a failure 1397 * a negative errno code is returned. 1398 */ 1399 int dev_open(struct net_device *dev) 1400 { 1401 int ret; 1402 1403 if (dev->flags & IFF_UP) 1404 return 0; 1405 1406 ret = __dev_open(dev); 1407 if (ret < 0) 1408 return ret; 1409 1410 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1411 call_netdevice_notifiers(NETDEV_UP, dev); 1412 1413 return ret; 1414 } 1415 EXPORT_SYMBOL(dev_open); 1416 1417 static void __dev_close_many(struct list_head *head) 1418 { 1419 struct net_device *dev; 1420 1421 ASSERT_RTNL(); 1422 might_sleep(); 1423 1424 list_for_each_entry(dev, head, close_list) { 1425 /* Temporarily disable netpoll until the interface is down */ 1426 netpoll_poll_disable(dev); 1427 1428 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1429 1430 clear_bit(__LINK_STATE_START, &dev->state); 1431 1432 /* Synchronize to scheduled poll. We cannot touch poll list, it 1433 * can be even on different cpu. So just clear netif_running(). 1434 * 1435 * dev->stop() will invoke napi_disable() on all of it's 1436 * napi_struct instances on this device. 1437 */ 1438 smp_mb__after_atomic(); /* Commit netif_running(). */ 1439 } 1440 1441 dev_deactivate_many(head); 1442 1443 list_for_each_entry(dev, head, close_list) { 1444 const struct net_device_ops *ops = dev->netdev_ops; 1445 1446 /* 1447 * Call the device specific close. This cannot fail. 1448 * Only if device is UP 1449 * 1450 * We allow it to be called even after a DETACH hot-plug 1451 * event. 1452 */ 1453 if (ops->ndo_stop) 1454 ops->ndo_stop(dev); 1455 1456 dev->flags &= ~IFF_UP; 1457 netpoll_poll_enable(dev); 1458 } 1459 } 1460 1461 static void __dev_close(struct net_device *dev) 1462 { 1463 LIST_HEAD(single); 1464 1465 list_add(&dev->close_list, &single); 1466 __dev_close_many(&single); 1467 list_del(&single); 1468 } 1469 1470 void dev_close_many(struct list_head *head, bool unlink) 1471 { 1472 struct net_device *dev, *tmp; 1473 1474 /* Remove the devices that don't need to be closed */ 1475 list_for_each_entry_safe(dev, tmp, head, close_list) 1476 if (!(dev->flags & IFF_UP)) 1477 list_del_init(&dev->close_list); 1478 1479 __dev_close_many(head); 1480 1481 list_for_each_entry_safe(dev, tmp, head, close_list) { 1482 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1483 call_netdevice_notifiers(NETDEV_DOWN, dev); 1484 if (unlink) 1485 list_del_init(&dev->close_list); 1486 } 1487 } 1488 EXPORT_SYMBOL(dev_close_many); 1489 1490 /** 1491 * dev_close - shutdown an interface. 1492 * @dev: device to shutdown 1493 * 1494 * This function moves an active device into down state. A 1495 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1496 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1497 * chain. 1498 */ 1499 void dev_close(struct net_device *dev) 1500 { 1501 if (dev->flags & IFF_UP) { 1502 LIST_HEAD(single); 1503 1504 list_add(&dev->close_list, &single); 1505 dev_close_many(&single, true); 1506 list_del(&single); 1507 } 1508 } 1509 EXPORT_SYMBOL(dev_close); 1510 1511 1512 /** 1513 * dev_disable_lro - disable Large Receive Offload on a device 1514 * @dev: device 1515 * 1516 * Disable Large Receive Offload (LRO) on a net device. Must be 1517 * called under RTNL. This is needed if received packets may be 1518 * forwarded to another interface. 1519 */ 1520 void dev_disable_lro(struct net_device *dev) 1521 { 1522 struct net_device *lower_dev; 1523 struct list_head *iter; 1524 1525 dev->wanted_features &= ~NETIF_F_LRO; 1526 netdev_update_features(dev); 1527 1528 if (unlikely(dev->features & NETIF_F_LRO)) 1529 netdev_WARN(dev, "failed to disable LRO!\n"); 1530 1531 netdev_for_each_lower_dev(dev, lower_dev, iter) 1532 dev_disable_lro(lower_dev); 1533 } 1534 EXPORT_SYMBOL(dev_disable_lro); 1535 1536 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1537 struct net_device *dev) 1538 { 1539 struct netdev_notifier_info info; 1540 1541 netdev_notifier_info_init(&info, dev); 1542 return nb->notifier_call(nb, val, &info); 1543 } 1544 1545 static int dev_boot_phase = 1; 1546 1547 /** 1548 * register_netdevice_notifier - register a network notifier block 1549 * @nb: notifier 1550 * 1551 * Register a notifier to be called when network device events occur. 1552 * The notifier passed is linked into the kernel structures and must 1553 * not be reused until it has been unregistered. A negative errno code 1554 * is returned on a failure. 1555 * 1556 * When registered all registration and up events are replayed 1557 * to the new notifier to allow device to have a race free 1558 * view of the network device list. 1559 */ 1560 1561 int register_netdevice_notifier(struct notifier_block *nb) 1562 { 1563 struct net_device *dev; 1564 struct net_device *last; 1565 struct net *net; 1566 int err; 1567 1568 rtnl_lock(); 1569 err = raw_notifier_chain_register(&netdev_chain, nb); 1570 if (err) 1571 goto unlock; 1572 if (dev_boot_phase) 1573 goto unlock; 1574 for_each_net(net) { 1575 for_each_netdev(net, dev) { 1576 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1577 err = notifier_to_errno(err); 1578 if (err) 1579 goto rollback; 1580 1581 if (!(dev->flags & IFF_UP)) 1582 continue; 1583 1584 call_netdevice_notifier(nb, NETDEV_UP, dev); 1585 } 1586 } 1587 1588 unlock: 1589 rtnl_unlock(); 1590 return err; 1591 1592 rollback: 1593 last = dev; 1594 for_each_net(net) { 1595 for_each_netdev(net, dev) { 1596 if (dev == last) 1597 goto outroll; 1598 1599 if (dev->flags & IFF_UP) { 1600 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1601 dev); 1602 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1603 } 1604 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1605 } 1606 } 1607 1608 outroll: 1609 raw_notifier_chain_unregister(&netdev_chain, nb); 1610 goto unlock; 1611 } 1612 EXPORT_SYMBOL(register_netdevice_notifier); 1613 1614 /** 1615 * unregister_netdevice_notifier - unregister a network notifier block 1616 * @nb: notifier 1617 * 1618 * Unregister a notifier previously registered by 1619 * register_netdevice_notifier(). The notifier is unlinked into the 1620 * kernel structures and may then be reused. A negative errno code 1621 * is returned on a failure. 1622 * 1623 * After unregistering unregister and down device events are synthesized 1624 * for all devices on the device list to the removed notifier to remove 1625 * the need for special case cleanup code. 1626 */ 1627 1628 int unregister_netdevice_notifier(struct notifier_block *nb) 1629 { 1630 struct net_device *dev; 1631 struct net *net; 1632 int err; 1633 1634 rtnl_lock(); 1635 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1636 if (err) 1637 goto unlock; 1638 1639 for_each_net(net) { 1640 for_each_netdev(net, dev) { 1641 if (dev->flags & IFF_UP) { 1642 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1643 dev); 1644 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1645 } 1646 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1647 } 1648 } 1649 unlock: 1650 rtnl_unlock(); 1651 return err; 1652 } 1653 EXPORT_SYMBOL(unregister_netdevice_notifier); 1654 1655 /** 1656 * call_netdevice_notifiers_info - call all network notifier blocks 1657 * @val: value passed unmodified to notifier function 1658 * @dev: net_device pointer passed unmodified to notifier function 1659 * @info: notifier information data 1660 * 1661 * Call all network notifier blocks. Parameters and return value 1662 * are as for raw_notifier_call_chain(). 1663 */ 1664 1665 static int call_netdevice_notifiers_info(unsigned long val, 1666 struct net_device *dev, 1667 struct netdev_notifier_info *info) 1668 { 1669 ASSERT_RTNL(); 1670 netdev_notifier_info_init(info, dev); 1671 return raw_notifier_call_chain(&netdev_chain, val, info); 1672 } 1673 1674 /** 1675 * call_netdevice_notifiers - call all network notifier blocks 1676 * @val: value passed unmodified to notifier function 1677 * @dev: net_device pointer passed unmodified to notifier function 1678 * 1679 * Call all network notifier blocks. Parameters and return value 1680 * are as for raw_notifier_call_chain(). 1681 */ 1682 1683 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1684 { 1685 struct netdev_notifier_info info; 1686 1687 return call_netdevice_notifiers_info(val, dev, &info); 1688 } 1689 EXPORT_SYMBOL(call_netdevice_notifiers); 1690 1691 #ifdef CONFIG_NET_INGRESS 1692 static struct static_key ingress_needed __read_mostly; 1693 1694 void net_inc_ingress_queue(void) 1695 { 1696 static_key_slow_inc(&ingress_needed); 1697 } 1698 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 1699 1700 void net_dec_ingress_queue(void) 1701 { 1702 static_key_slow_dec(&ingress_needed); 1703 } 1704 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 1705 #endif 1706 1707 #ifdef CONFIG_NET_EGRESS 1708 static struct static_key egress_needed __read_mostly; 1709 1710 void net_inc_egress_queue(void) 1711 { 1712 static_key_slow_inc(&egress_needed); 1713 } 1714 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 1715 1716 void net_dec_egress_queue(void) 1717 { 1718 static_key_slow_dec(&egress_needed); 1719 } 1720 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 1721 #endif 1722 1723 static struct static_key netstamp_needed __read_mostly; 1724 #ifdef HAVE_JUMP_LABEL 1725 static atomic_t netstamp_needed_deferred; 1726 static atomic_t netstamp_wanted; 1727 static void netstamp_clear(struct work_struct *work) 1728 { 1729 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1730 int wanted; 1731 1732 wanted = atomic_add_return(deferred, &netstamp_wanted); 1733 if (wanted > 0) 1734 static_key_enable(&netstamp_needed); 1735 else 1736 static_key_disable(&netstamp_needed); 1737 } 1738 static DECLARE_WORK(netstamp_work, netstamp_clear); 1739 #endif 1740 1741 void net_enable_timestamp(void) 1742 { 1743 #ifdef HAVE_JUMP_LABEL 1744 int wanted; 1745 1746 while (1) { 1747 wanted = atomic_read(&netstamp_wanted); 1748 if (wanted <= 0) 1749 break; 1750 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 1751 return; 1752 } 1753 atomic_inc(&netstamp_needed_deferred); 1754 schedule_work(&netstamp_work); 1755 #else 1756 static_key_slow_inc(&netstamp_needed); 1757 #endif 1758 } 1759 EXPORT_SYMBOL(net_enable_timestamp); 1760 1761 void net_disable_timestamp(void) 1762 { 1763 #ifdef HAVE_JUMP_LABEL 1764 int wanted; 1765 1766 while (1) { 1767 wanted = atomic_read(&netstamp_wanted); 1768 if (wanted <= 1) 1769 break; 1770 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 1771 return; 1772 } 1773 atomic_dec(&netstamp_needed_deferred); 1774 schedule_work(&netstamp_work); 1775 #else 1776 static_key_slow_dec(&netstamp_needed); 1777 #endif 1778 } 1779 EXPORT_SYMBOL(net_disable_timestamp); 1780 1781 static inline void net_timestamp_set(struct sk_buff *skb) 1782 { 1783 skb->tstamp = 0; 1784 if (static_key_false(&netstamp_needed)) 1785 __net_timestamp(skb); 1786 } 1787 1788 #define net_timestamp_check(COND, SKB) \ 1789 if (static_key_false(&netstamp_needed)) { \ 1790 if ((COND) && !(SKB)->tstamp) \ 1791 __net_timestamp(SKB); \ 1792 } \ 1793 1794 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 1795 { 1796 unsigned int len; 1797 1798 if (!(dev->flags & IFF_UP)) 1799 return false; 1800 1801 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1802 if (skb->len <= len) 1803 return true; 1804 1805 /* if TSO is enabled, we don't care about the length as the packet 1806 * could be forwarded without being segmented before 1807 */ 1808 if (skb_is_gso(skb)) 1809 return true; 1810 1811 return false; 1812 } 1813 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1814 1815 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1816 { 1817 int ret = ____dev_forward_skb(dev, skb); 1818 1819 if (likely(!ret)) { 1820 skb->protocol = eth_type_trans(skb, dev); 1821 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 1822 } 1823 1824 return ret; 1825 } 1826 EXPORT_SYMBOL_GPL(__dev_forward_skb); 1827 1828 /** 1829 * dev_forward_skb - loopback an skb to another netif 1830 * 1831 * @dev: destination network device 1832 * @skb: buffer to forward 1833 * 1834 * return values: 1835 * NET_RX_SUCCESS (no congestion) 1836 * NET_RX_DROP (packet was dropped, but freed) 1837 * 1838 * dev_forward_skb can be used for injecting an skb from the 1839 * start_xmit function of one device into the receive queue 1840 * of another device. 1841 * 1842 * The receiving device may be in another namespace, so 1843 * we have to clear all information in the skb that could 1844 * impact namespace isolation. 1845 */ 1846 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1847 { 1848 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1849 } 1850 EXPORT_SYMBOL_GPL(dev_forward_skb); 1851 1852 static inline int deliver_skb(struct sk_buff *skb, 1853 struct packet_type *pt_prev, 1854 struct net_device *orig_dev) 1855 { 1856 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 1857 return -ENOMEM; 1858 refcount_inc(&skb->users); 1859 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1860 } 1861 1862 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 1863 struct packet_type **pt, 1864 struct net_device *orig_dev, 1865 __be16 type, 1866 struct list_head *ptype_list) 1867 { 1868 struct packet_type *ptype, *pt_prev = *pt; 1869 1870 list_for_each_entry_rcu(ptype, ptype_list, list) { 1871 if (ptype->type != type) 1872 continue; 1873 if (pt_prev) 1874 deliver_skb(skb, pt_prev, orig_dev); 1875 pt_prev = ptype; 1876 } 1877 *pt = pt_prev; 1878 } 1879 1880 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1881 { 1882 if (!ptype->af_packet_priv || !skb->sk) 1883 return false; 1884 1885 if (ptype->id_match) 1886 return ptype->id_match(ptype, skb->sk); 1887 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1888 return true; 1889 1890 return false; 1891 } 1892 1893 /* 1894 * Support routine. Sends outgoing frames to any network 1895 * taps currently in use. 1896 */ 1897 1898 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1899 { 1900 struct packet_type *ptype; 1901 struct sk_buff *skb2 = NULL; 1902 struct packet_type *pt_prev = NULL; 1903 struct list_head *ptype_list = &ptype_all; 1904 1905 rcu_read_lock(); 1906 again: 1907 list_for_each_entry_rcu(ptype, ptype_list, list) { 1908 /* Never send packets back to the socket 1909 * they originated from - MvS (miquels@drinkel.ow.org) 1910 */ 1911 if (skb_loop_sk(ptype, skb)) 1912 continue; 1913 1914 if (pt_prev) { 1915 deliver_skb(skb2, pt_prev, skb->dev); 1916 pt_prev = ptype; 1917 continue; 1918 } 1919 1920 /* need to clone skb, done only once */ 1921 skb2 = skb_clone(skb, GFP_ATOMIC); 1922 if (!skb2) 1923 goto out_unlock; 1924 1925 net_timestamp_set(skb2); 1926 1927 /* skb->nh should be correctly 1928 * set by sender, so that the second statement is 1929 * just protection against buggy protocols. 1930 */ 1931 skb_reset_mac_header(skb2); 1932 1933 if (skb_network_header(skb2) < skb2->data || 1934 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 1935 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1936 ntohs(skb2->protocol), 1937 dev->name); 1938 skb_reset_network_header(skb2); 1939 } 1940 1941 skb2->transport_header = skb2->network_header; 1942 skb2->pkt_type = PACKET_OUTGOING; 1943 pt_prev = ptype; 1944 } 1945 1946 if (ptype_list == &ptype_all) { 1947 ptype_list = &dev->ptype_all; 1948 goto again; 1949 } 1950 out_unlock: 1951 if (pt_prev) 1952 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1953 rcu_read_unlock(); 1954 } 1955 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 1956 1957 /** 1958 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1959 * @dev: Network device 1960 * @txq: number of queues available 1961 * 1962 * If real_num_tx_queues is changed the tc mappings may no longer be 1963 * valid. To resolve this verify the tc mapping remains valid and if 1964 * not NULL the mapping. With no priorities mapping to this 1965 * offset/count pair it will no longer be used. In the worst case TC0 1966 * is invalid nothing can be done so disable priority mappings. If is 1967 * expected that drivers will fix this mapping if they can before 1968 * calling netif_set_real_num_tx_queues. 1969 */ 1970 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1971 { 1972 int i; 1973 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1974 1975 /* If TC0 is invalidated disable TC mapping */ 1976 if (tc->offset + tc->count > txq) { 1977 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1978 dev->num_tc = 0; 1979 return; 1980 } 1981 1982 /* Invalidated prio to tc mappings set to TC0 */ 1983 for (i = 1; i < TC_BITMASK + 1; i++) { 1984 int q = netdev_get_prio_tc_map(dev, i); 1985 1986 tc = &dev->tc_to_txq[q]; 1987 if (tc->offset + tc->count > txq) { 1988 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1989 i, q); 1990 netdev_set_prio_tc_map(dev, i, 0); 1991 } 1992 } 1993 } 1994 1995 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 1996 { 1997 if (dev->num_tc) { 1998 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1999 int i; 2000 2001 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2002 if ((txq - tc->offset) < tc->count) 2003 return i; 2004 } 2005 2006 return -1; 2007 } 2008 2009 return 0; 2010 } 2011 2012 #ifdef CONFIG_XPS 2013 static DEFINE_MUTEX(xps_map_mutex); 2014 #define xmap_dereference(P) \ 2015 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2016 2017 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2018 int tci, u16 index) 2019 { 2020 struct xps_map *map = NULL; 2021 int pos; 2022 2023 if (dev_maps) 2024 map = xmap_dereference(dev_maps->cpu_map[tci]); 2025 if (!map) 2026 return false; 2027 2028 for (pos = map->len; pos--;) { 2029 if (map->queues[pos] != index) 2030 continue; 2031 2032 if (map->len > 1) { 2033 map->queues[pos] = map->queues[--map->len]; 2034 break; 2035 } 2036 2037 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL); 2038 kfree_rcu(map, rcu); 2039 return false; 2040 } 2041 2042 return true; 2043 } 2044 2045 static bool remove_xps_queue_cpu(struct net_device *dev, 2046 struct xps_dev_maps *dev_maps, 2047 int cpu, u16 offset, u16 count) 2048 { 2049 int num_tc = dev->num_tc ? : 1; 2050 bool active = false; 2051 int tci; 2052 2053 for (tci = cpu * num_tc; num_tc--; tci++) { 2054 int i, j; 2055 2056 for (i = count, j = offset; i--; j++) { 2057 if (!remove_xps_queue(dev_maps, cpu, j)) 2058 break; 2059 } 2060 2061 active |= i < 0; 2062 } 2063 2064 return active; 2065 } 2066 2067 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2068 u16 count) 2069 { 2070 struct xps_dev_maps *dev_maps; 2071 int cpu, i; 2072 bool active = false; 2073 2074 mutex_lock(&xps_map_mutex); 2075 dev_maps = xmap_dereference(dev->xps_maps); 2076 2077 if (!dev_maps) 2078 goto out_no_maps; 2079 2080 for_each_possible_cpu(cpu) 2081 active |= remove_xps_queue_cpu(dev, dev_maps, cpu, 2082 offset, count); 2083 2084 if (!active) { 2085 RCU_INIT_POINTER(dev->xps_maps, NULL); 2086 kfree_rcu(dev_maps, rcu); 2087 } 2088 2089 for (i = offset + (count - 1); count--; i--) 2090 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 2091 NUMA_NO_NODE); 2092 2093 out_no_maps: 2094 mutex_unlock(&xps_map_mutex); 2095 } 2096 2097 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2098 { 2099 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2100 } 2101 2102 static struct xps_map *expand_xps_map(struct xps_map *map, 2103 int cpu, u16 index) 2104 { 2105 struct xps_map *new_map; 2106 int alloc_len = XPS_MIN_MAP_ALLOC; 2107 int i, pos; 2108 2109 for (pos = 0; map && pos < map->len; pos++) { 2110 if (map->queues[pos] != index) 2111 continue; 2112 return map; 2113 } 2114 2115 /* Need to add queue to this CPU's existing map */ 2116 if (map) { 2117 if (pos < map->alloc_len) 2118 return map; 2119 2120 alloc_len = map->alloc_len * 2; 2121 } 2122 2123 /* Need to allocate new map to store queue on this CPU's map */ 2124 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2125 cpu_to_node(cpu)); 2126 if (!new_map) 2127 return NULL; 2128 2129 for (i = 0; i < pos; i++) 2130 new_map->queues[i] = map->queues[i]; 2131 new_map->alloc_len = alloc_len; 2132 new_map->len = pos; 2133 2134 return new_map; 2135 } 2136 2137 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2138 u16 index) 2139 { 2140 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2141 int i, cpu, tci, numa_node_id = -2; 2142 int maps_sz, num_tc = 1, tc = 0; 2143 struct xps_map *map, *new_map; 2144 bool active = false; 2145 2146 if (dev->num_tc) { 2147 num_tc = dev->num_tc; 2148 tc = netdev_txq_to_tc(dev, index); 2149 if (tc < 0) 2150 return -EINVAL; 2151 } 2152 2153 maps_sz = XPS_DEV_MAPS_SIZE(num_tc); 2154 if (maps_sz < L1_CACHE_BYTES) 2155 maps_sz = L1_CACHE_BYTES; 2156 2157 mutex_lock(&xps_map_mutex); 2158 2159 dev_maps = xmap_dereference(dev->xps_maps); 2160 2161 /* allocate memory for queue storage */ 2162 for_each_cpu_and(cpu, cpu_online_mask, mask) { 2163 if (!new_dev_maps) 2164 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2165 if (!new_dev_maps) { 2166 mutex_unlock(&xps_map_mutex); 2167 return -ENOMEM; 2168 } 2169 2170 tci = cpu * num_tc + tc; 2171 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) : 2172 NULL; 2173 2174 map = expand_xps_map(map, cpu, index); 2175 if (!map) 2176 goto error; 2177 2178 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2179 } 2180 2181 if (!new_dev_maps) 2182 goto out_no_new_maps; 2183 2184 for_each_possible_cpu(cpu) { 2185 /* copy maps belonging to foreign traffic classes */ 2186 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) { 2187 /* fill in the new device map from the old device map */ 2188 map = xmap_dereference(dev_maps->cpu_map[tci]); 2189 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2190 } 2191 2192 /* We need to explicitly update tci as prevous loop 2193 * could break out early if dev_maps is NULL. 2194 */ 2195 tci = cpu * num_tc + tc; 2196 2197 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 2198 /* add queue to CPU maps */ 2199 int pos = 0; 2200 2201 map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2202 while ((pos < map->len) && (map->queues[pos] != index)) 2203 pos++; 2204 2205 if (pos == map->len) 2206 map->queues[map->len++] = index; 2207 #ifdef CONFIG_NUMA 2208 if (numa_node_id == -2) 2209 numa_node_id = cpu_to_node(cpu); 2210 else if (numa_node_id != cpu_to_node(cpu)) 2211 numa_node_id = -1; 2212 #endif 2213 } else if (dev_maps) { 2214 /* fill in the new device map from the old device map */ 2215 map = xmap_dereference(dev_maps->cpu_map[tci]); 2216 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2217 } 2218 2219 /* copy maps belonging to foreign traffic classes */ 2220 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { 2221 /* fill in the new device map from the old device map */ 2222 map = xmap_dereference(dev_maps->cpu_map[tci]); 2223 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2224 } 2225 } 2226 2227 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 2228 2229 /* Cleanup old maps */ 2230 if (!dev_maps) 2231 goto out_no_old_maps; 2232 2233 for_each_possible_cpu(cpu) { 2234 for (i = num_tc, tci = cpu * num_tc; i--; tci++) { 2235 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2236 map = xmap_dereference(dev_maps->cpu_map[tci]); 2237 if (map && map != new_map) 2238 kfree_rcu(map, rcu); 2239 } 2240 } 2241 2242 kfree_rcu(dev_maps, rcu); 2243 2244 out_no_old_maps: 2245 dev_maps = new_dev_maps; 2246 active = true; 2247 2248 out_no_new_maps: 2249 /* update Tx queue numa node */ 2250 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2251 (numa_node_id >= 0) ? numa_node_id : 2252 NUMA_NO_NODE); 2253 2254 if (!dev_maps) 2255 goto out_no_maps; 2256 2257 /* removes queue from unused CPUs */ 2258 for_each_possible_cpu(cpu) { 2259 for (i = tc, tci = cpu * num_tc; i--; tci++) 2260 active |= remove_xps_queue(dev_maps, tci, index); 2261 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu)) 2262 active |= remove_xps_queue(dev_maps, tci, index); 2263 for (i = num_tc - tc, tci++; --i; tci++) 2264 active |= remove_xps_queue(dev_maps, tci, index); 2265 } 2266 2267 /* free map if not active */ 2268 if (!active) { 2269 RCU_INIT_POINTER(dev->xps_maps, NULL); 2270 kfree_rcu(dev_maps, rcu); 2271 } 2272 2273 out_no_maps: 2274 mutex_unlock(&xps_map_mutex); 2275 2276 return 0; 2277 error: 2278 /* remove any maps that we added */ 2279 for_each_possible_cpu(cpu) { 2280 for (i = num_tc, tci = cpu * num_tc; i--; tci++) { 2281 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2282 map = dev_maps ? 2283 xmap_dereference(dev_maps->cpu_map[tci]) : 2284 NULL; 2285 if (new_map && new_map != map) 2286 kfree(new_map); 2287 } 2288 } 2289 2290 mutex_unlock(&xps_map_mutex); 2291 2292 kfree(new_dev_maps); 2293 return -ENOMEM; 2294 } 2295 EXPORT_SYMBOL(netif_set_xps_queue); 2296 2297 #endif 2298 void netdev_reset_tc(struct net_device *dev) 2299 { 2300 #ifdef CONFIG_XPS 2301 netif_reset_xps_queues_gt(dev, 0); 2302 #endif 2303 dev->num_tc = 0; 2304 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2305 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2306 } 2307 EXPORT_SYMBOL(netdev_reset_tc); 2308 2309 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2310 { 2311 if (tc >= dev->num_tc) 2312 return -EINVAL; 2313 2314 #ifdef CONFIG_XPS 2315 netif_reset_xps_queues(dev, offset, count); 2316 #endif 2317 dev->tc_to_txq[tc].count = count; 2318 dev->tc_to_txq[tc].offset = offset; 2319 return 0; 2320 } 2321 EXPORT_SYMBOL(netdev_set_tc_queue); 2322 2323 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2324 { 2325 if (num_tc > TC_MAX_QUEUE) 2326 return -EINVAL; 2327 2328 #ifdef CONFIG_XPS 2329 netif_reset_xps_queues_gt(dev, 0); 2330 #endif 2331 dev->num_tc = num_tc; 2332 return 0; 2333 } 2334 EXPORT_SYMBOL(netdev_set_num_tc); 2335 2336 /* 2337 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2338 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 2339 */ 2340 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2341 { 2342 int rc; 2343 2344 if (txq < 1 || txq > dev->num_tx_queues) 2345 return -EINVAL; 2346 2347 if (dev->reg_state == NETREG_REGISTERED || 2348 dev->reg_state == NETREG_UNREGISTERING) { 2349 ASSERT_RTNL(); 2350 2351 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2352 txq); 2353 if (rc) 2354 return rc; 2355 2356 if (dev->num_tc) 2357 netif_setup_tc(dev, txq); 2358 2359 if (txq < dev->real_num_tx_queues) { 2360 qdisc_reset_all_tx_gt(dev, txq); 2361 #ifdef CONFIG_XPS 2362 netif_reset_xps_queues_gt(dev, txq); 2363 #endif 2364 } 2365 } 2366 2367 dev->real_num_tx_queues = txq; 2368 return 0; 2369 } 2370 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2371 2372 #ifdef CONFIG_SYSFS 2373 /** 2374 * netif_set_real_num_rx_queues - set actual number of RX queues used 2375 * @dev: Network device 2376 * @rxq: Actual number of RX queues 2377 * 2378 * This must be called either with the rtnl_lock held or before 2379 * registration of the net device. Returns 0 on success, or a 2380 * negative error code. If called before registration, it always 2381 * succeeds. 2382 */ 2383 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2384 { 2385 int rc; 2386 2387 if (rxq < 1 || rxq > dev->num_rx_queues) 2388 return -EINVAL; 2389 2390 if (dev->reg_state == NETREG_REGISTERED) { 2391 ASSERT_RTNL(); 2392 2393 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2394 rxq); 2395 if (rc) 2396 return rc; 2397 } 2398 2399 dev->real_num_rx_queues = rxq; 2400 return 0; 2401 } 2402 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2403 #endif 2404 2405 /** 2406 * netif_get_num_default_rss_queues - default number of RSS queues 2407 * 2408 * This routine should set an upper limit on the number of RSS queues 2409 * used by default by multiqueue devices. 2410 */ 2411 int netif_get_num_default_rss_queues(void) 2412 { 2413 return is_kdump_kernel() ? 2414 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2415 } 2416 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2417 2418 static void __netif_reschedule(struct Qdisc *q) 2419 { 2420 struct softnet_data *sd; 2421 unsigned long flags; 2422 2423 local_irq_save(flags); 2424 sd = this_cpu_ptr(&softnet_data); 2425 q->next_sched = NULL; 2426 *sd->output_queue_tailp = q; 2427 sd->output_queue_tailp = &q->next_sched; 2428 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2429 local_irq_restore(flags); 2430 } 2431 2432 void __netif_schedule(struct Qdisc *q) 2433 { 2434 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2435 __netif_reschedule(q); 2436 } 2437 EXPORT_SYMBOL(__netif_schedule); 2438 2439 struct dev_kfree_skb_cb { 2440 enum skb_free_reason reason; 2441 }; 2442 2443 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2444 { 2445 return (struct dev_kfree_skb_cb *)skb->cb; 2446 } 2447 2448 void netif_schedule_queue(struct netdev_queue *txq) 2449 { 2450 rcu_read_lock(); 2451 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2452 struct Qdisc *q = rcu_dereference(txq->qdisc); 2453 2454 __netif_schedule(q); 2455 } 2456 rcu_read_unlock(); 2457 } 2458 EXPORT_SYMBOL(netif_schedule_queue); 2459 2460 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2461 { 2462 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2463 struct Qdisc *q; 2464 2465 rcu_read_lock(); 2466 q = rcu_dereference(dev_queue->qdisc); 2467 __netif_schedule(q); 2468 rcu_read_unlock(); 2469 } 2470 } 2471 EXPORT_SYMBOL(netif_tx_wake_queue); 2472 2473 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2474 { 2475 unsigned long flags; 2476 2477 if (unlikely(!skb)) 2478 return; 2479 2480 if (likely(refcount_read(&skb->users) == 1)) { 2481 smp_rmb(); 2482 refcount_set(&skb->users, 0); 2483 } else if (likely(!refcount_dec_and_test(&skb->users))) { 2484 return; 2485 } 2486 get_kfree_skb_cb(skb)->reason = reason; 2487 local_irq_save(flags); 2488 skb->next = __this_cpu_read(softnet_data.completion_queue); 2489 __this_cpu_write(softnet_data.completion_queue, skb); 2490 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2491 local_irq_restore(flags); 2492 } 2493 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2494 2495 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2496 { 2497 if (in_irq() || irqs_disabled()) 2498 __dev_kfree_skb_irq(skb, reason); 2499 else 2500 dev_kfree_skb(skb); 2501 } 2502 EXPORT_SYMBOL(__dev_kfree_skb_any); 2503 2504 2505 /** 2506 * netif_device_detach - mark device as removed 2507 * @dev: network device 2508 * 2509 * Mark device as removed from system and therefore no longer available. 2510 */ 2511 void netif_device_detach(struct net_device *dev) 2512 { 2513 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2514 netif_running(dev)) { 2515 netif_tx_stop_all_queues(dev); 2516 } 2517 } 2518 EXPORT_SYMBOL(netif_device_detach); 2519 2520 /** 2521 * netif_device_attach - mark device as attached 2522 * @dev: network device 2523 * 2524 * Mark device as attached from system and restart if needed. 2525 */ 2526 void netif_device_attach(struct net_device *dev) 2527 { 2528 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2529 netif_running(dev)) { 2530 netif_tx_wake_all_queues(dev); 2531 __netdev_watchdog_up(dev); 2532 } 2533 } 2534 EXPORT_SYMBOL(netif_device_attach); 2535 2536 /* 2537 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2538 * to be used as a distribution range. 2539 */ 2540 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 2541 unsigned int num_tx_queues) 2542 { 2543 u32 hash; 2544 u16 qoffset = 0; 2545 u16 qcount = num_tx_queues; 2546 2547 if (skb_rx_queue_recorded(skb)) { 2548 hash = skb_get_rx_queue(skb); 2549 while (unlikely(hash >= num_tx_queues)) 2550 hash -= num_tx_queues; 2551 return hash; 2552 } 2553 2554 if (dev->num_tc) { 2555 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2556 2557 qoffset = dev->tc_to_txq[tc].offset; 2558 qcount = dev->tc_to_txq[tc].count; 2559 } 2560 2561 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 2562 } 2563 EXPORT_SYMBOL(__skb_tx_hash); 2564 2565 static void skb_warn_bad_offload(const struct sk_buff *skb) 2566 { 2567 static const netdev_features_t null_features; 2568 struct net_device *dev = skb->dev; 2569 const char *name = ""; 2570 2571 if (!net_ratelimit()) 2572 return; 2573 2574 if (dev) { 2575 if (dev->dev.parent) 2576 name = dev_driver_string(dev->dev.parent); 2577 else 2578 name = netdev_name(dev); 2579 } 2580 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2581 "gso_type=%d ip_summed=%d\n", 2582 name, dev ? &dev->features : &null_features, 2583 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2584 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2585 skb_shinfo(skb)->gso_type, skb->ip_summed); 2586 } 2587 2588 /* 2589 * Invalidate hardware checksum when packet is to be mangled, and 2590 * complete checksum manually on outgoing path. 2591 */ 2592 int skb_checksum_help(struct sk_buff *skb) 2593 { 2594 __wsum csum; 2595 int ret = 0, offset; 2596 2597 if (skb->ip_summed == CHECKSUM_COMPLETE) 2598 goto out_set_summed; 2599 2600 if (unlikely(skb_shinfo(skb)->gso_size)) { 2601 skb_warn_bad_offload(skb); 2602 return -EINVAL; 2603 } 2604 2605 /* Before computing a checksum, we should make sure no frag could 2606 * be modified by an external entity : checksum could be wrong. 2607 */ 2608 if (skb_has_shared_frag(skb)) { 2609 ret = __skb_linearize(skb); 2610 if (ret) 2611 goto out; 2612 } 2613 2614 offset = skb_checksum_start_offset(skb); 2615 BUG_ON(offset >= skb_headlen(skb)); 2616 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2617 2618 offset += skb->csum_offset; 2619 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2620 2621 if (skb_cloned(skb) && 2622 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2623 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2624 if (ret) 2625 goto out; 2626 } 2627 2628 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 2629 out_set_summed: 2630 skb->ip_summed = CHECKSUM_NONE; 2631 out: 2632 return ret; 2633 } 2634 EXPORT_SYMBOL(skb_checksum_help); 2635 2636 int skb_crc32c_csum_help(struct sk_buff *skb) 2637 { 2638 __le32 crc32c_csum; 2639 int ret = 0, offset, start; 2640 2641 if (skb->ip_summed != CHECKSUM_PARTIAL) 2642 goto out; 2643 2644 if (unlikely(skb_is_gso(skb))) 2645 goto out; 2646 2647 /* Before computing a checksum, we should make sure no frag could 2648 * be modified by an external entity : checksum could be wrong. 2649 */ 2650 if (unlikely(skb_has_shared_frag(skb))) { 2651 ret = __skb_linearize(skb); 2652 if (ret) 2653 goto out; 2654 } 2655 start = skb_checksum_start_offset(skb); 2656 offset = start + offsetof(struct sctphdr, checksum); 2657 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 2658 ret = -EINVAL; 2659 goto out; 2660 } 2661 if (skb_cloned(skb) && 2662 !skb_clone_writable(skb, offset + sizeof(__le32))) { 2663 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2664 if (ret) 2665 goto out; 2666 } 2667 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 2668 skb->len - start, ~(__u32)0, 2669 crc32c_csum_stub)); 2670 *(__le32 *)(skb->data + offset) = crc32c_csum; 2671 skb->ip_summed = CHECKSUM_NONE; 2672 skb->csum_not_inet = 0; 2673 out: 2674 return ret; 2675 } 2676 2677 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2678 { 2679 __be16 type = skb->protocol; 2680 2681 /* Tunnel gso handlers can set protocol to ethernet. */ 2682 if (type == htons(ETH_P_TEB)) { 2683 struct ethhdr *eth; 2684 2685 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2686 return 0; 2687 2688 eth = (struct ethhdr *)skb_mac_header(skb); 2689 type = eth->h_proto; 2690 } 2691 2692 return __vlan_get_protocol(skb, type, depth); 2693 } 2694 2695 /** 2696 * skb_mac_gso_segment - mac layer segmentation handler. 2697 * @skb: buffer to segment 2698 * @features: features for the output path (see dev->features) 2699 */ 2700 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2701 netdev_features_t features) 2702 { 2703 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2704 struct packet_offload *ptype; 2705 int vlan_depth = skb->mac_len; 2706 __be16 type = skb_network_protocol(skb, &vlan_depth); 2707 2708 if (unlikely(!type)) 2709 return ERR_PTR(-EINVAL); 2710 2711 __skb_pull(skb, vlan_depth); 2712 2713 rcu_read_lock(); 2714 list_for_each_entry_rcu(ptype, &offload_base, list) { 2715 if (ptype->type == type && ptype->callbacks.gso_segment) { 2716 segs = ptype->callbacks.gso_segment(skb, features); 2717 break; 2718 } 2719 } 2720 rcu_read_unlock(); 2721 2722 __skb_push(skb, skb->data - skb_mac_header(skb)); 2723 2724 return segs; 2725 } 2726 EXPORT_SYMBOL(skb_mac_gso_segment); 2727 2728 2729 /* openvswitch calls this on rx path, so we need a different check. 2730 */ 2731 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2732 { 2733 if (tx_path) 2734 return skb->ip_summed != CHECKSUM_PARTIAL; 2735 2736 return skb->ip_summed == CHECKSUM_NONE; 2737 } 2738 2739 /** 2740 * __skb_gso_segment - Perform segmentation on skb. 2741 * @skb: buffer to segment 2742 * @features: features for the output path (see dev->features) 2743 * @tx_path: whether it is called in TX path 2744 * 2745 * This function segments the given skb and returns a list of segments. 2746 * 2747 * It may return NULL if the skb requires no segmentation. This is 2748 * only possible when GSO is used for verifying header integrity. 2749 * 2750 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb. 2751 */ 2752 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2753 netdev_features_t features, bool tx_path) 2754 { 2755 struct sk_buff *segs; 2756 2757 if (unlikely(skb_needs_check(skb, tx_path))) { 2758 int err; 2759 2760 /* We're going to init ->check field in TCP or UDP header */ 2761 err = skb_cow_head(skb, 0); 2762 if (err < 0) 2763 return ERR_PTR(err); 2764 } 2765 2766 /* Only report GSO partial support if it will enable us to 2767 * support segmentation on this frame without needing additional 2768 * work. 2769 */ 2770 if (features & NETIF_F_GSO_PARTIAL) { 2771 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 2772 struct net_device *dev = skb->dev; 2773 2774 partial_features |= dev->features & dev->gso_partial_features; 2775 if (!skb_gso_ok(skb, features | partial_features)) 2776 features &= ~NETIF_F_GSO_PARTIAL; 2777 } 2778 2779 BUILD_BUG_ON(SKB_SGO_CB_OFFSET + 2780 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 2781 2782 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2783 SKB_GSO_CB(skb)->encap_level = 0; 2784 2785 skb_reset_mac_header(skb); 2786 skb_reset_mac_len(skb); 2787 2788 segs = skb_mac_gso_segment(skb, features); 2789 2790 if (unlikely(skb_needs_check(skb, tx_path))) 2791 skb_warn_bad_offload(skb); 2792 2793 return segs; 2794 } 2795 EXPORT_SYMBOL(__skb_gso_segment); 2796 2797 /* Take action when hardware reception checksum errors are detected. */ 2798 #ifdef CONFIG_BUG 2799 void netdev_rx_csum_fault(struct net_device *dev) 2800 { 2801 if (net_ratelimit()) { 2802 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2803 dump_stack(); 2804 } 2805 } 2806 EXPORT_SYMBOL(netdev_rx_csum_fault); 2807 #endif 2808 2809 /* Actually, we should eliminate this check as soon as we know, that: 2810 * 1. IOMMU is present and allows to map all the memory. 2811 * 2. No high memory really exists on this machine. 2812 */ 2813 2814 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2815 { 2816 #ifdef CONFIG_HIGHMEM 2817 int i; 2818 2819 if (!(dev->features & NETIF_F_HIGHDMA)) { 2820 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2821 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2822 2823 if (PageHighMem(skb_frag_page(frag))) 2824 return 1; 2825 } 2826 } 2827 2828 if (PCI_DMA_BUS_IS_PHYS) { 2829 struct device *pdev = dev->dev.parent; 2830 2831 if (!pdev) 2832 return 0; 2833 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2834 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2835 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2836 2837 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2838 return 1; 2839 } 2840 } 2841 #endif 2842 return 0; 2843 } 2844 2845 /* If MPLS offload request, verify we are testing hardware MPLS features 2846 * instead of standard features for the netdev. 2847 */ 2848 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 2849 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2850 netdev_features_t features, 2851 __be16 type) 2852 { 2853 if (eth_p_mpls(type)) 2854 features &= skb->dev->mpls_features; 2855 2856 return features; 2857 } 2858 #else 2859 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2860 netdev_features_t features, 2861 __be16 type) 2862 { 2863 return features; 2864 } 2865 #endif 2866 2867 static netdev_features_t harmonize_features(struct sk_buff *skb, 2868 netdev_features_t features) 2869 { 2870 int tmp; 2871 __be16 type; 2872 2873 type = skb_network_protocol(skb, &tmp); 2874 features = net_mpls_features(skb, features, type); 2875 2876 if (skb->ip_summed != CHECKSUM_NONE && 2877 !can_checksum_protocol(features, type)) { 2878 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 2879 } 2880 if (illegal_highdma(skb->dev, skb)) 2881 features &= ~NETIF_F_SG; 2882 2883 return features; 2884 } 2885 2886 netdev_features_t passthru_features_check(struct sk_buff *skb, 2887 struct net_device *dev, 2888 netdev_features_t features) 2889 { 2890 return features; 2891 } 2892 EXPORT_SYMBOL(passthru_features_check); 2893 2894 static netdev_features_t dflt_features_check(const struct sk_buff *skb, 2895 struct net_device *dev, 2896 netdev_features_t features) 2897 { 2898 return vlan_features_check(skb, features); 2899 } 2900 2901 static netdev_features_t gso_features_check(const struct sk_buff *skb, 2902 struct net_device *dev, 2903 netdev_features_t features) 2904 { 2905 u16 gso_segs = skb_shinfo(skb)->gso_segs; 2906 2907 if (gso_segs > dev->gso_max_segs) 2908 return features & ~NETIF_F_GSO_MASK; 2909 2910 /* Support for GSO partial features requires software 2911 * intervention before we can actually process the packets 2912 * so we need to strip support for any partial features now 2913 * and we can pull them back in after we have partially 2914 * segmented the frame. 2915 */ 2916 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 2917 features &= ~dev->gso_partial_features; 2918 2919 /* Make sure to clear the IPv4 ID mangling feature if the 2920 * IPv4 header has the potential to be fragmented. 2921 */ 2922 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 2923 struct iphdr *iph = skb->encapsulation ? 2924 inner_ip_hdr(skb) : ip_hdr(skb); 2925 2926 if (!(iph->frag_off & htons(IP_DF))) 2927 features &= ~NETIF_F_TSO_MANGLEID; 2928 } 2929 2930 return features; 2931 } 2932 2933 netdev_features_t netif_skb_features(struct sk_buff *skb) 2934 { 2935 struct net_device *dev = skb->dev; 2936 netdev_features_t features = dev->features; 2937 2938 if (skb_is_gso(skb)) 2939 features = gso_features_check(skb, dev, features); 2940 2941 /* If encapsulation offload request, verify we are testing 2942 * hardware encapsulation features instead of standard 2943 * features for the netdev 2944 */ 2945 if (skb->encapsulation) 2946 features &= dev->hw_enc_features; 2947 2948 if (skb_vlan_tagged(skb)) 2949 features = netdev_intersect_features(features, 2950 dev->vlan_features | 2951 NETIF_F_HW_VLAN_CTAG_TX | 2952 NETIF_F_HW_VLAN_STAG_TX); 2953 2954 if (dev->netdev_ops->ndo_features_check) 2955 features &= dev->netdev_ops->ndo_features_check(skb, dev, 2956 features); 2957 else 2958 features &= dflt_features_check(skb, dev, features); 2959 2960 return harmonize_features(skb, features); 2961 } 2962 EXPORT_SYMBOL(netif_skb_features); 2963 2964 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 2965 struct netdev_queue *txq, bool more) 2966 { 2967 unsigned int len; 2968 int rc; 2969 2970 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all)) 2971 dev_queue_xmit_nit(skb, dev); 2972 2973 len = skb->len; 2974 trace_net_dev_start_xmit(skb, dev); 2975 rc = netdev_start_xmit(skb, dev, txq, more); 2976 trace_net_dev_xmit(skb, rc, dev, len); 2977 2978 return rc; 2979 } 2980 2981 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 2982 struct netdev_queue *txq, int *ret) 2983 { 2984 struct sk_buff *skb = first; 2985 int rc = NETDEV_TX_OK; 2986 2987 while (skb) { 2988 struct sk_buff *next = skb->next; 2989 2990 skb->next = NULL; 2991 rc = xmit_one(skb, dev, txq, next != NULL); 2992 if (unlikely(!dev_xmit_complete(rc))) { 2993 skb->next = next; 2994 goto out; 2995 } 2996 2997 skb = next; 2998 if (netif_xmit_stopped(txq) && skb) { 2999 rc = NETDEV_TX_BUSY; 3000 break; 3001 } 3002 } 3003 3004 out: 3005 *ret = rc; 3006 return skb; 3007 } 3008 3009 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3010 netdev_features_t features) 3011 { 3012 if (skb_vlan_tag_present(skb) && 3013 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3014 skb = __vlan_hwaccel_push_inside(skb); 3015 return skb; 3016 } 3017 3018 int skb_csum_hwoffload_help(struct sk_buff *skb, 3019 const netdev_features_t features) 3020 { 3021 if (unlikely(skb->csum_not_inet)) 3022 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3023 skb_crc32c_csum_help(skb); 3024 3025 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb); 3026 } 3027 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3028 3029 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev) 3030 { 3031 netdev_features_t features; 3032 3033 features = netif_skb_features(skb); 3034 skb = validate_xmit_vlan(skb, features); 3035 if (unlikely(!skb)) 3036 goto out_null; 3037 3038 if (netif_needs_gso(skb, features)) { 3039 struct sk_buff *segs; 3040 3041 segs = skb_gso_segment(skb, features); 3042 if (IS_ERR(segs)) { 3043 goto out_kfree_skb; 3044 } else if (segs) { 3045 consume_skb(skb); 3046 skb = segs; 3047 } 3048 } else { 3049 if (skb_needs_linearize(skb, features) && 3050 __skb_linearize(skb)) 3051 goto out_kfree_skb; 3052 3053 if (validate_xmit_xfrm(skb, features)) 3054 goto out_kfree_skb; 3055 3056 /* If packet is not checksummed and device does not 3057 * support checksumming for this protocol, complete 3058 * checksumming here. 3059 */ 3060 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3061 if (skb->encapsulation) 3062 skb_set_inner_transport_header(skb, 3063 skb_checksum_start_offset(skb)); 3064 else 3065 skb_set_transport_header(skb, 3066 skb_checksum_start_offset(skb)); 3067 if (skb_csum_hwoffload_help(skb, features)) 3068 goto out_kfree_skb; 3069 } 3070 } 3071 3072 return skb; 3073 3074 out_kfree_skb: 3075 kfree_skb(skb); 3076 out_null: 3077 atomic_long_inc(&dev->tx_dropped); 3078 return NULL; 3079 } 3080 3081 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev) 3082 { 3083 struct sk_buff *next, *head = NULL, *tail; 3084 3085 for (; skb != NULL; skb = next) { 3086 next = skb->next; 3087 skb->next = NULL; 3088 3089 /* in case skb wont be segmented, point to itself */ 3090 skb->prev = skb; 3091 3092 skb = validate_xmit_skb(skb, dev); 3093 if (!skb) 3094 continue; 3095 3096 if (!head) 3097 head = skb; 3098 else 3099 tail->next = skb; 3100 /* If skb was segmented, skb->prev points to 3101 * the last segment. If not, it still contains skb. 3102 */ 3103 tail = skb->prev; 3104 } 3105 return head; 3106 } 3107 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3108 3109 static void qdisc_pkt_len_init(struct sk_buff *skb) 3110 { 3111 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3112 3113 qdisc_skb_cb(skb)->pkt_len = skb->len; 3114 3115 /* To get more precise estimation of bytes sent on wire, 3116 * we add to pkt_len the headers size of all segments 3117 */ 3118 if (shinfo->gso_size) { 3119 unsigned int hdr_len; 3120 u16 gso_segs = shinfo->gso_segs; 3121 3122 /* mac layer + network layer */ 3123 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3124 3125 /* + transport layer */ 3126 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 3127 hdr_len += tcp_hdrlen(skb); 3128 else 3129 hdr_len += sizeof(struct udphdr); 3130 3131 if (shinfo->gso_type & SKB_GSO_DODGY) 3132 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3133 shinfo->gso_size); 3134 3135 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3136 } 3137 } 3138 3139 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3140 struct net_device *dev, 3141 struct netdev_queue *txq) 3142 { 3143 spinlock_t *root_lock = qdisc_lock(q); 3144 struct sk_buff *to_free = NULL; 3145 bool contended; 3146 int rc; 3147 3148 qdisc_calculate_pkt_len(skb, q); 3149 /* 3150 * Heuristic to force contended enqueues to serialize on a 3151 * separate lock before trying to get qdisc main lock. 3152 * This permits qdisc->running owner to get the lock more 3153 * often and dequeue packets faster. 3154 */ 3155 contended = qdisc_is_running(q); 3156 if (unlikely(contended)) 3157 spin_lock(&q->busylock); 3158 3159 spin_lock(root_lock); 3160 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3161 __qdisc_drop(skb, &to_free); 3162 rc = NET_XMIT_DROP; 3163 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3164 qdisc_run_begin(q)) { 3165 /* 3166 * This is a work-conserving queue; there are no old skbs 3167 * waiting to be sent out; and the qdisc is not running - 3168 * xmit the skb directly. 3169 */ 3170 3171 qdisc_bstats_update(q, skb); 3172 3173 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3174 if (unlikely(contended)) { 3175 spin_unlock(&q->busylock); 3176 contended = false; 3177 } 3178 __qdisc_run(q); 3179 } else 3180 qdisc_run_end(q); 3181 3182 rc = NET_XMIT_SUCCESS; 3183 } else { 3184 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3185 if (qdisc_run_begin(q)) { 3186 if (unlikely(contended)) { 3187 spin_unlock(&q->busylock); 3188 contended = false; 3189 } 3190 __qdisc_run(q); 3191 } 3192 } 3193 spin_unlock(root_lock); 3194 if (unlikely(to_free)) 3195 kfree_skb_list(to_free); 3196 if (unlikely(contended)) 3197 spin_unlock(&q->busylock); 3198 return rc; 3199 } 3200 3201 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3202 static void skb_update_prio(struct sk_buff *skb) 3203 { 3204 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 3205 3206 if (!skb->priority && skb->sk && map) { 3207 unsigned int prioidx = 3208 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data); 3209 3210 if (prioidx < map->priomap_len) 3211 skb->priority = map->priomap[prioidx]; 3212 } 3213 } 3214 #else 3215 #define skb_update_prio(skb) 3216 #endif 3217 3218 DEFINE_PER_CPU(int, xmit_recursion); 3219 EXPORT_SYMBOL(xmit_recursion); 3220 3221 /** 3222 * dev_loopback_xmit - loop back @skb 3223 * @net: network namespace this loopback is happening in 3224 * @sk: sk needed to be a netfilter okfn 3225 * @skb: buffer to transmit 3226 */ 3227 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3228 { 3229 skb_reset_mac_header(skb); 3230 __skb_pull(skb, skb_network_offset(skb)); 3231 skb->pkt_type = PACKET_LOOPBACK; 3232 skb->ip_summed = CHECKSUM_UNNECESSARY; 3233 WARN_ON(!skb_dst(skb)); 3234 skb_dst_force(skb); 3235 netif_rx_ni(skb); 3236 return 0; 3237 } 3238 EXPORT_SYMBOL(dev_loopback_xmit); 3239 3240 #ifdef CONFIG_NET_EGRESS 3241 static struct sk_buff * 3242 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3243 { 3244 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list); 3245 struct tcf_result cl_res; 3246 3247 if (!cl) 3248 return skb; 3249 3250 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3251 qdisc_bstats_cpu_update(cl->q, skb); 3252 3253 switch (tcf_classify(skb, cl, &cl_res, false)) { 3254 case TC_ACT_OK: 3255 case TC_ACT_RECLASSIFY: 3256 skb->tc_index = TC_H_MIN(cl_res.classid); 3257 break; 3258 case TC_ACT_SHOT: 3259 qdisc_qstats_cpu_drop(cl->q); 3260 *ret = NET_XMIT_DROP; 3261 kfree_skb(skb); 3262 return NULL; 3263 case TC_ACT_STOLEN: 3264 case TC_ACT_QUEUED: 3265 case TC_ACT_TRAP: 3266 *ret = NET_XMIT_SUCCESS; 3267 consume_skb(skb); 3268 return NULL; 3269 case TC_ACT_REDIRECT: 3270 /* No need to push/pop skb's mac_header here on egress! */ 3271 skb_do_redirect(skb); 3272 *ret = NET_XMIT_SUCCESS; 3273 return NULL; 3274 default: 3275 break; 3276 } 3277 3278 return skb; 3279 } 3280 #endif /* CONFIG_NET_EGRESS */ 3281 3282 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 3283 { 3284 #ifdef CONFIG_XPS 3285 struct xps_dev_maps *dev_maps; 3286 struct xps_map *map; 3287 int queue_index = -1; 3288 3289 rcu_read_lock(); 3290 dev_maps = rcu_dereference(dev->xps_maps); 3291 if (dev_maps) { 3292 unsigned int tci = skb->sender_cpu - 1; 3293 3294 if (dev->num_tc) { 3295 tci *= dev->num_tc; 3296 tci += netdev_get_prio_tc_map(dev, skb->priority); 3297 } 3298 3299 map = rcu_dereference(dev_maps->cpu_map[tci]); 3300 if (map) { 3301 if (map->len == 1) 3302 queue_index = map->queues[0]; 3303 else 3304 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb), 3305 map->len)]; 3306 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3307 queue_index = -1; 3308 } 3309 } 3310 rcu_read_unlock(); 3311 3312 return queue_index; 3313 #else 3314 return -1; 3315 #endif 3316 } 3317 3318 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb) 3319 { 3320 struct sock *sk = skb->sk; 3321 int queue_index = sk_tx_queue_get(sk); 3322 3323 if (queue_index < 0 || skb->ooo_okay || 3324 queue_index >= dev->real_num_tx_queues) { 3325 int new_index = get_xps_queue(dev, skb); 3326 3327 if (new_index < 0) 3328 new_index = skb_tx_hash(dev, skb); 3329 3330 if (queue_index != new_index && sk && 3331 sk_fullsock(sk) && 3332 rcu_access_pointer(sk->sk_dst_cache)) 3333 sk_tx_queue_set(sk, new_index); 3334 3335 queue_index = new_index; 3336 } 3337 3338 return queue_index; 3339 } 3340 3341 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 3342 struct sk_buff *skb, 3343 void *accel_priv) 3344 { 3345 int queue_index = 0; 3346 3347 #ifdef CONFIG_XPS 3348 u32 sender_cpu = skb->sender_cpu - 1; 3349 3350 if (sender_cpu >= (u32)NR_CPUS) 3351 skb->sender_cpu = raw_smp_processor_id() + 1; 3352 #endif 3353 3354 if (dev->real_num_tx_queues != 1) { 3355 const struct net_device_ops *ops = dev->netdev_ops; 3356 3357 if (ops->ndo_select_queue) 3358 queue_index = ops->ndo_select_queue(dev, skb, accel_priv, 3359 __netdev_pick_tx); 3360 else 3361 queue_index = __netdev_pick_tx(dev, skb); 3362 3363 if (!accel_priv) 3364 queue_index = netdev_cap_txqueue(dev, queue_index); 3365 } 3366 3367 skb_set_queue_mapping(skb, queue_index); 3368 return netdev_get_tx_queue(dev, queue_index); 3369 } 3370 3371 /** 3372 * __dev_queue_xmit - transmit a buffer 3373 * @skb: buffer to transmit 3374 * @accel_priv: private data used for L2 forwarding offload 3375 * 3376 * Queue a buffer for transmission to a network device. The caller must 3377 * have set the device and priority and built the buffer before calling 3378 * this function. The function can be called from an interrupt. 3379 * 3380 * A negative errno code is returned on a failure. A success does not 3381 * guarantee the frame will be transmitted as it may be dropped due 3382 * to congestion or traffic shaping. 3383 * 3384 * ----------------------------------------------------------------------------------- 3385 * I notice this method can also return errors from the queue disciplines, 3386 * including NET_XMIT_DROP, which is a positive value. So, errors can also 3387 * be positive. 3388 * 3389 * Regardless of the return value, the skb is consumed, so it is currently 3390 * difficult to retry a send to this method. (You can bump the ref count 3391 * before sending to hold a reference for retry if you are careful.) 3392 * 3393 * When calling this method, interrupts MUST be enabled. This is because 3394 * the BH enable code must have IRQs enabled so that it will not deadlock. 3395 * --BLG 3396 */ 3397 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv) 3398 { 3399 struct net_device *dev = skb->dev; 3400 struct netdev_queue *txq; 3401 struct Qdisc *q; 3402 int rc = -ENOMEM; 3403 3404 skb_reset_mac_header(skb); 3405 3406 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 3407 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 3408 3409 /* Disable soft irqs for various locks below. Also 3410 * stops preemption for RCU. 3411 */ 3412 rcu_read_lock_bh(); 3413 3414 skb_update_prio(skb); 3415 3416 qdisc_pkt_len_init(skb); 3417 #ifdef CONFIG_NET_CLS_ACT 3418 skb->tc_at_ingress = 0; 3419 # ifdef CONFIG_NET_EGRESS 3420 if (static_key_false(&egress_needed)) { 3421 skb = sch_handle_egress(skb, &rc, dev); 3422 if (!skb) 3423 goto out; 3424 } 3425 # endif 3426 #endif 3427 /* If device/qdisc don't need skb->dst, release it right now while 3428 * its hot in this cpu cache. 3429 */ 3430 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 3431 skb_dst_drop(skb); 3432 else 3433 skb_dst_force(skb); 3434 3435 txq = netdev_pick_tx(dev, skb, accel_priv); 3436 q = rcu_dereference_bh(txq->qdisc); 3437 3438 trace_net_dev_queue(skb); 3439 if (q->enqueue) { 3440 rc = __dev_xmit_skb(skb, q, dev, txq); 3441 goto out; 3442 } 3443 3444 /* The device has no queue. Common case for software devices: 3445 * loopback, all the sorts of tunnels... 3446 3447 * Really, it is unlikely that netif_tx_lock protection is necessary 3448 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 3449 * counters.) 3450 * However, it is possible, that they rely on protection 3451 * made by us here. 3452 3453 * Check this and shot the lock. It is not prone from deadlocks. 3454 *Either shot noqueue qdisc, it is even simpler 8) 3455 */ 3456 if (dev->flags & IFF_UP) { 3457 int cpu = smp_processor_id(); /* ok because BHs are off */ 3458 3459 if (txq->xmit_lock_owner != cpu) { 3460 if (unlikely(__this_cpu_read(xmit_recursion) > 3461 XMIT_RECURSION_LIMIT)) 3462 goto recursion_alert; 3463 3464 skb = validate_xmit_skb(skb, dev); 3465 if (!skb) 3466 goto out; 3467 3468 HARD_TX_LOCK(dev, txq, cpu); 3469 3470 if (!netif_xmit_stopped(txq)) { 3471 __this_cpu_inc(xmit_recursion); 3472 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 3473 __this_cpu_dec(xmit_recursion); 3474 if (dev_xmit_complete(rc)) { 3475 HARD_TX_UNLOCK(dev, txq); 3476 goto out; 3477 } 3478 } 3479 HARD_TX_UNLOCK(dev, txq); 3480 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 3481 dev->name); 3482 } else { 3483 /* Recursion is detected! It is possible, 3484 * unfortunately 3485 */ 3486 recursion_alert: 3487 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 3488 dev->name); 3489 } 3490 } 3491 3492 rc = -ENETDOWN; 3493 rcu_read_unlock_bh(); 3494 3495 atomic_long_inc(&dev->tx_dropped); 3496 kfree_skb_list(skb); 3497 return rc; 3498 out: 3499 rcu_read_unlock_bh(); 3500 return rc; 3501 } 3502 3503 int dev_queue_xmit(struct sk_buff *skb) 3504 { 3505 return __dev_queue_xmit(skb, NULL); 3506 } 3507 EXPORT_SYMBOL(dev_queue_xmit); 3508 3509 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv) 3510 { 3511 return __dev_queue_xmit(skb, accel_priv); 3512 } 3513 EXPORT_SYMBOL(dev_queue_xmit_accel); 3514 3515 3516 /************************************************************************* 3517 * Receiver routines 3518 *************************************************************************/ 3519 3520 int netdev_max_backlog __read_mostly = 1000; 3521 EXPORT_SYMBOL(netdev_max_backlog); 3522 3523 int netdev_tstamp_prequeue __read_mostly = 1; 3524 int netdev_budget __read_mostly = 300; 3525 unsigned int __read_mostly netdev_budget_usecs = 2000; 3526 int weight_p __read_mostly = 64; /* old backlog weight */ 3527 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 3528 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 3529 int dev_rx_weight __read_mostly = 64; 3530 int dev_tx_weight __read_mostly = 64; 3531 3532 /* Called with irq disabled */ 3533 static inline void ____napi_schedule(struct softnet_data *sd, 3534 struct napi_struct *napi) 3535 { 3536 list_add_tail(&napi->poll_list, &sd->poll_list); 3537 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3538 } 3539 3540 #ifdef CONFIG_RPS 3541 3542 /* One global table that all flow-based protocols share. */ 3543 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3544 EXPORT_SYMBOL(rps_sock_flow_table); 3545 u32 rps_cpu_mask __read_mostly; 3546 EXPORT_SYMBOL(rps_cpu_mask); 3547 3548 struct static_key rps_needed __read_mostly; 3549 EXPORT_SYMBOL(rps_needed); 3550 struct static_key rfs_needed __read_mostly; 3551 EXPORT_SYMBOL(rfs_needed); 3552 3553 static struct rps_dev_flow * 3554 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3555 struct rps_dev_flow *rflow, u16 next_cpu) 3556 { 3557 if (next_cpu < nr_cpu_ids) { 3558 #ifdef CONFIG_RFS_ACCEL 3559 struct netdev_rx_queue *rxqueue; 3560 struct rps_dev_flow_table *flow_table; 3561 struct rps_dev_flow *old_rflow; 3562 u32 flow_id; 3563 u16 rxq_index; 3564 int rc; 3565 3566 /* Should we steer this flow to a different hardware queue? */ 3567 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 3568 !(dev->features & NETIF_F_NTUPLE)) 3569 goto out; 3570 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 3571 if (rxq_index == skb_get_rx_queue(skb)) 3572 goto out; 3573 3574 rxqueue = dev->_rx + rxq_index; 3575 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3576 if (!flow_table) 3577 goto out; 3578 flow_id = skb_get_hash(skb) & flow_table->mask; 3579 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 3580 rxq_index, flow_id); 3581 if (rc < 0) 3582 goto out; 3583 old_rflow = rflow; 3584 rflow = &flow_table->flows[flow_id]; 3585 rflow->filter = rc; 3586 if (old_rflow->filter == rflow->filter) 3587 old_rflow->filter = RPS_NO_FILTER; 3588 out: 3589 #endif 3590 rflow->last_qtail = 3591 per_cpu(softnet_data, next_cpu).input_queue_head; 3592 } 3593 3594 rflow->cpu = next_cpu; 3595 return rflow; 3596 } 3597 3598 /* 3599 * get_rps_cpu is called from netif_receive_skb and returns the target 3600 * CPU from the RPS map of the receiving queue for a given skb. 3601 * rcu_read_lock must be held on entry. 3602 */ 3603 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3604 struct rps_dev_flow **rflowp) 3605 { 3606 const struct rps_sock_flow_table *sock_flow_table; 3607 struct netdev_rx_queue *rxqueue = dev->_rx; 3608 struct rps_dev_flow_table *flow_table; 3609 struct rps_map *map; 3610 int cpu = -1; 3611 u32 tcpu; 3612 u32 hash; 3613 3614 if (skb_rx_queue_recorded(skb)) { 3615 u16 index = skb_get_rx_queue(skb); 3616 3617 if (unlikely(index >= dev->real_num_rx_queues)) { 3618 WARN_ONCE(dev->real_num_rx_queues > 1, 3619 "%s received packet on queue %u, but number " 3620 "of RX queues is %u\n", 3621 dev->name, index, dev->real_num_rx_queues); 3622 goto done; 3623 } 3624 rxqueue += index; 3625 } 3626 3627 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 3628 3629 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3630 map = rcu_dereference(rxqueue->rps_map); 3631 if (!flow_table && !map) 3632 goto done; 3633 3634 skb_reset_network_header(skb); 3635 hash = skb_get_hash(skb); 3636 if (!hash) 3637 goto done; 3638 3639 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3640 if (flow_table && sock_flow_table) { 3641 struct rps_dev_flow *rflow; 3642 u32 next_cpu; 3643 u32 ident; 3644 3645 /* First check into global flow table if there is a match */ 3646 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 3647 if ((ident ^ hash) & ~rps_cpu_mask) 3648 goto try_rps; 3649 3650 next_cpu = ident & rps_cpu_mask; 3651 3652 /* OK, now we know there is a match, 3653 * we can look at the local (per receive queue) flow table 3654 */ 3655 rflow = &flow_table->flows[hash & flow_table->mask]; 3656 tcpu = rflow->cpu; 3657 3658 /* 3659 * If the desired CPU (where last recvmsg was done) is 3660 * different from current CPU (one in the rx-queue flow 3661 * table entry), switch if one of the following holds: 3662 * - Current CPU is unset (>= nr_cpu_ids). 3663 * - Current CPU is offline. 3664 * - The current CPU's queue tail has advanced beyond the 3665 * last packet that was enqueued using this table entry. 3666 * This guarantees that all previous packets for the flow 3667 * have been dequeued, thus preserving in order delivery. 3668 */ 3669 if (unlikely(tcpu != next_cpu) && 3670 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 3671 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3672 rflow->last_qtail)) >= 0)) { 3673 tcpu = next_cpu; 3674 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3675 } 3676 3677 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 3678 *rflowp = rflow; 3679 cpu = tcpu; 3680 goto done; 3681 } 3682 } 3683 3684 try_rps: 3685 3686 if (map) { 3687 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 3688 if (cpu_online(tcpu)) { 3689 cpu = tcpu; 3690 goto done; 3691 } 3692 } 3693 3694 done: 3695 return cpu; 3696 } 3697 3698 #ifdef CONFIG_RFS_ACCEL 3699 3700 /** 3701 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3702 * @dev: Device on which the filter was set 3703 * @rxq_index: RX queue index 3704 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3705 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3706 * 3707 * Drivers that implement ndo_rx_flow_steer() should periodically call 3708 * this function for each installed filter and remove the filters for 3709 * which it returns %true. 3710 */ 3711 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3712 u32 flow_id, u16 filter_id) 3713 { 3714 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3715 struct rps_dev_flow_table *flow_table; 3716 struct rps_dev_flow *rflow; 3717 bool expire = true; 3718 unsigned int cpu; 3719 3720 rcu_read_lock(); 3721 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3722 if (flow_table && flow_id <= flow_table->mask) { 3723 rflow = &flow_table->flows[flow_id]; 3724 cpu = ACCESS_ONCE(rflow->cpu); 3725 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 3726 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3727 rflow->last_qtail) < 3728 (int)(10 * flow_table->mask))) 3729 expire = false; 3730 } 3731 rcu_read_unlock(); 3732 return expire; 3733 } 3734 EXPORT_SYMBOL(rps_may_expire_flow); 3735 3736 #endif /* CONFIG_RFS_ACCEL */ 3737 3738 /* Called from hardirq (IPI) context */ 3739 static void rps_trigger_softirq(void *data) 3740 { 3741 struct softnet_data *sd = data; 3742 3743 ____napi_schedule(sd, &sd->backlog); 3744 sd->received_rps++; 3745 } 3746 3747 #endif /* CONFIG_RPS */ 3748 3749 /* 3750 * Check if this softnet_data structure is another cpu one 3751 * If yes, queue it to our IPI list and return 1 3752 * If no, return 0 3753 */ 3754 static int rps_ipi_queued(struct softnet_data *sd) 3755 { 3756 #ifdef CONFIG_RPS 3757 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 3758 3759 if (sd != mysd) { 3760 sd->rps_ipi_next = mysd->rps_ipi_list; 3761 mysd->rps_ipi_list = sd; 3762 3763 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3764 return 1; 3765 } 3766 #endif /* CONFIG_RPS */ 3767 return 0; 3768 } 3769 3770 #ifdef CONFIG_NET_FLOW_LIMIT 3771 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3772 #endif 3773 3774 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3775 { 3776 #ifdef CONFIG_NET_FLOW_LIMIT 3777 struct sd_flow_limit *fl; 3778 struct softnet_data *sd; 3779 unsigned int old_flow, new_flow; 3780 3781 if (qlen < (netdev_max_backlog >> 1)) 3782 return false; 3783 3784 sd = this_cpu_ptr(&softnet_data); 3785 3786 rcu_read_lock(); 3787 fl = rcu_dereference(sd->flow_limit); 3788 if (fl) { 3789 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 3790 old_flow = fl->history[fl->history_head]; 3791 fl->history[fl->history_head] = new_flow; 3792 3793 fl->history_head++; 3794 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3795 3796 if (likely(fl->buckets[old_flow])) 3797 fl->buckets[old_flow]--; 3798 3799 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3800 fl->count++; 3801 rcu_read_unlock(); 3802 return true; 3803 } 3804 } 3805 rcu_read_unlock(); 3806 #endif 3807 return false; 3808 } 3809 3810 /* 3811 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3812 * queue (may be a remote CPU queue). 3813 */ 3814 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3815 unsigned int *qtail) 3816 { 3817 struct softnet_data *sd; 3818 unsigned long flags; 3819 unsigned int qlen; 3820 3821 sd = &per_cpu(softnet_data, cpu); 3822 3823 local_irq_save(flags); 3824 3825 rps_lock(sd); 3826 if (!netif_running(skb->dev)) 3827 goto drop; 3828 qlen = skb_queue_len(&sd->input_pkt_queue); 3829 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3830 if (qlen) { 3831 enqueue: 3832 __skb_queue_tail(&sd->input_pkt_queue, skb); 3833 input_queue_tail_incr_save(sd, qtail); 3834 rps_unlock(sd); 3835 local_irq_restore(flags); 3836 return NET_RX_SUCCESS; 3837 } 3838 3839 /* Schedule NAPI for backlog device 3840 * We can use non atomic operation since we own the queue lock 3841 */ 3842 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3843 if (!rps_ipi_queued(sd)) 3844 ____napi_schedule(sd, &sd->backlog); 3845 } 3846 goto enqueue; 3847 } 3848 3849 drop: 3850 sd->dropped++; 3851 rps_unlock(sd); 3852 3853 local_irq_restore(flags); 3854 3855 atomic_long_inc(&skb->dev->rx_dropped); 3856 kfree_skb(skb); 3857 return NET_RX_DROP; 3858 } 3859 3860 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 3861 struct bpf_prog *xdp_prog) 3862 { 3863 struct xdp_buff xdp; 3864 u32 act = XDP_DROP; 3865 void *orig_data; 3866 int hlen, off; 3867 u32 mac_len; 3868 3869 /* Reinjected packets coming from act_mirred or similar should 3870 * not get XDP generic processing. 3871 */ 3872 if (skb_cloned(skb)) 3873 return XDP_PASS; 3874 3875 if (skb_linearize(skb)) 3876 goto do_drop; 3877 3878 /* The XDP program wants to see the packet starting at the MAC 3879 * header. 3880 */ 3881 mac_len = skb->data - skb_mac_header(skb); 3882 hlen = skb_headlen(skb) + mac_len; 3883 xdp.data = skb->data - mac_len; 3884 xdp.data_end = xdp.data + hlen; 3885 xdp.data_hard_start = skb->data - skb_headroom(skb); 3886 orig_data = xdp.data; 3887 3888 act = bpf_prog_run_xdp(xdp_prog, &xdp); 3889 3890 off = xdp.data - orig_data; 3891 if (off > 0) 3892 __skb_pull(skb, off); 3893 else if (off < 0) 3894 __skb_push(skb, -off); 3895 3896 switch (act) { 3897 case XDP_REDIRECT: 3898 case XDP_TX: 3899 __skb_push(skb, mac_len); 3900 /* fall through */ 3901 case XDP_PASS: 3902 break; 3903 3904 default: 3905 bpf_warn_invalid_xdp_action(act); 3906 /* fall through */ 3907 case XDP_ABORTED: 3908 trace_xdp_exception(skb->dev, xdp_prog, act); 3909 /* fall through */ 3910 case XDP_DROP: 3911 do_drop: 3912 kfree_skb(skb); 3913 break; 3914 } 3915 3916 return act; 3917 } 3918 3919 /* When doing generic XDP we have to bypass the qdisc layer and the 3920 * network taps in order to match in-driver-XDP behavior. 3921 */ 3922 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 3923 { 3924 struct net_device *dev = skb->dev; 3925 struct netdev_queue *txq; 3926 bool free_skb = true; 3927 int cpu, rc; 3928 3929 txq = netdev_pick_tx(dev, skb, NULL); 3930 cpu = smp_processor_id(); 3931 HARD_TX_LOCK(dev, txq, cpu); 3932 if (!netif_xmit_stopped(txq)) { 3933 rc = netdev_start_xmit(skb, dev, txq, 0); 3934 if (dev_xmit_complete(rc)) 3935 free_skb = false; 3936 } 3937 HARD_TX_UNLOCK(dev, txq); 3938 if (free_skb) { 3939 trace_xdp_exception(dev, xdp_prog, XDP_TX); 3940 kfree_skb(skb); 3941 } 3942 } 3943 EXPORT_SYMBOL_GPL(generic_xdp_tx); 3944 3945 static struct static_key generic_xdp_needed __read_mostly; 3946 3947 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 3948 { 3949 if (xdp_prog) { 3950 u32 act = netif_receive_generic_xdp(skb, xdp_prog); 3951 int err; 3952 3953 if (act != XDP_PASS) { 3954 switch (act) { 3955 case XDP_REDIRECT: 3956 err = xdp_do_generic_redirect(skb->dev, skb, 3957 xdp_prog); 3958 if (err) 3959 goto out_redir; 3960 /* fallthru to submit skb */ 3961 case XDP_TX: 3962 generic_xdp_tx(skb, xdp_prog); 3963 break; 3964 } 3965 return XDP_DROP; 3966 } 3967 } 3968 return XDP_PASS; 3969 out_redir: 3970 kfree_skb(skb); 3971 return XDP_DROP; 3972 } 3973 EXPORT_SYMBOL_GPL(do_xdp_generic); 3974 3975 static int netif_rx_internal(struct sk_buff *skb) 3976 { 3977 int ret; 3978 3979 net_timestamp_check(netdev_tstamp_prequeue, skb); 3980 3981 trace_netif_rx(skb); 3982 3983 if (static_key_false(&generic_xdp_needed)) { 3984 int ret; 3985 3986 preempt_disable(); 3987 rcu_read_lock(); 3988 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 3989 rcu_read_unlock(); 3990 preempt_enable(); 3991 3992 /* Consider XDP consuming the packet a success from 3993 * the netdev point of view we do not want to count 3994 * this as an error. 3995 */ 3996 if (ret != XDP_PASS) 3997 return NET_RX_SUCCESS; 3998 } 3999 4000 #ifdef CONFIG_RPS 4001 if (static_key_false(&rps_needed)) { 4002 struct rps_dev_flow voidflow, *rflow = &voidflow; 4003 int cpu; 4004 4005 preempt_disable(); 4006 rcu_read_lock(); 4007 4008 cpu = get_rps_cpu(skb->dev, skb, &rflow); 4009 if (cpu < 0) 4010 cpu = smp_processor_id(); 4011 4012 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4013 4014 rcu_read_unlock(); 4015 preempt_enable(); 4016 } else 4017 #endif 4018 { 4019 unsigned int qtail; 4020 4021 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 4022 put_cpu(); 4023 } 4024 return ret; 4025 } 4026 4027 /** 4028 * netif_rx - post buffer to the network code 4029 * @skb: buffer to post 4030 * 4031 * This function receives a packet from a device driver and queues it for 4032 * the upper (protocol) levels to process. It always succeeds. The buffer 4033 * may be dropped during processing for congestion control or by the 4034 * protocol layers. 4035 * 4036 * return values: 4037 * NET_RX_SUCCESS (no congestion) 4038 * NET_RX_DROP (packet was dropped) 4039 * 4040 */ 4041 4042 int netif_rx(struct sk_buff *skb) 4043 { 4044 trace_netif_rx_entry(skb); 4045 4046 return netif_rx_internal(skb); 4047 } 4048 EXPORT_SYMBOL(netif_rx); 4049 4050 int netif_rx_ni(struct sk_buff *skb) 4051 { 4052 int err; 4053 4054 trace_netif_rx_ni_entry(skb); 4055 4056 preempt_disable(); 4057 err = netif_rx_internal(skb); 4058 if (local_softirq_pending()) 4059 do_softirq(); 4060 preempt_enable(); 4061 4062 return err; 4063 } 4064 EXPORT_SYMBOL(netif_rx_ni); 4065 4066 static __latent_entropy void net_tx_action(struct softirq_action *h) 4067 { 4068 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4069 4070 if (sd->completion_queue) { 4071 struct sk_buff *clist; 4072 4073 local_irq_disable(); 4074 clist = sd->completion_queue; 4075 sd->completion_queue = NULL; 4076 local_irq_enable(); 4077 4078 while (clist) { 4079 struct sk_buff *skb = clist; 4080 4081 clist = clist->next; 4082 4083 WARN_ON(refcount_read(&skb->users)); 4084 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 4085 trace_consume_skb(skb); 4086 else 4087 trace_kfree_skb(skb, net_tx_action); 4088 4089 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 4090 __kfree_skb(skb); 4091 else 4092 __kfree_skb_defer(skb); 4093 } 4094 4095 __kfree_skb_flush(); 4096 } 4097 4098 if (sd->output_queue) { 4099 struct Qdisc *head; 4100 4101 local_irq_disable(); 4102 head = sd->output_queue; 4103 sd->output_queue = NULL; 4104 sd->output_queue_tailp = &sd->output_queue; 4105 local_irq_enable(); 4106 4107 while (head) { 4108 struct Qdisc *q = head; 4109 spinlock_t *root_lock; 4110 4111 head = head->next_sched; 4112 4113 root_lock = qdisc_lock(q); 4114 spin_lock(root_lock); 4115 /* We need to make sure head->next_sched is read 4116 * before clearing __QDISC_STATE_SCHED 4117 */ 4118 smp_mb__before_atomic(); 4119 clear_bit(__QDISC_STATE_SCHED, &q->state); 4120 qdisc_run(q); 4121 spin_unlock(root_lock); 4122 } 4123 } 4124 } 4125 4126 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 4127 /* This hook is defined here for ATM LANE */ 4128 int (*br_fdb_test_addr_hook)(struct net_device *dev, 4129 unsigned char *addr) __read_mostly; 4130 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 4131 #endif 4132 4133 static inline struct sk_buff * 4134 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4135 struct net_device *orig_dev) 4136 { 4137 #ifdef CONFIG_NET_CLS_ACT 4138 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list); 4139 struct tcf_result cl_res; 4140 4141 /* If there's at least one ingress present somewhere (so 4142 * we get here via enabled static key), remaining devices 4143 * that are not configured with an ingress qdisc will bail 4144 * out here. 4145 */ 4146 if (!cl) 4147 return skb; 4148 if (*pt_prev) { 4149 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4150 *pt_prev = NULL; 4151 } 4152 4153 qdisc_skb_cb(skb)->pkt_len = skb->len; 4154 skb->tc_at_ingress = 1; 4155 qdisc_bstats_cpu_update(cl->q, skb); 4156 4157 switch (tcf_classify(skb, cl, &cl_res, false)) { 4158 case TC_ACT_OK: 4159 case TC_ACT_RECLASSIFY: 4160 skb->tc_index = TC_H_MIN(cl_res.classid); 4161 break; 4162 case TC_ACT_SHOT: 4163 qdisc_qstats_cpu_drop(cl->q); 4164 kfree_skb(skb); 4165 return NULL; 4166 case TC_ACT_STOLEN: 4167 case TC_ACT_QUEUED: 4168 case TC_ACT_TRAP: 4169 consume_skb(skb); 4170 return NULL; 4171 case TC_ACT_REDIRECT: 4172 /* skb_mac_header check was done by cls/act_bpf, so 4173 * we can safely push the L2 header back before 4174 * redirecting to another netdev 4175 */ 4176 __skb_push(skb, skb->mac_len); 4177 skb_do_redirect(skb); 4178 return NULL; 4179 default: 4180 break; 4181 } 4182 #endif /* CONFIG_NET_CLS_ACT */ 4183 return skb; 4184 } 4185 4186 /** 4187 * netdev_is_rx_handler_busy - check if receive handler is registered 4188 * @dev: device to check 4189 * 4190 * Check if a receive handler is already registered for a given device. 4191 * Return true if there one. 4192 * 4193 * The caller must hold the rtnl_mutex. 4194 */ 4195 bool netdev_is_rx_handler_busy(struct net_device *dev) 4196 { 4197 ASSERT_RTNL(); 4198 return dev && rtnl_dereference(dev->rx_handler); 4199 } 4200 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 4201 4202 /** 4203 * netdev_rx_handler_register - register receive handler 4204 * @dev: device to register a handler for 4205 * @rx_handler: receive handler to register 4206 * @rx_handler_data: data pointer that is used by rx handler 4207 * 4208 * Register a receive handler for a device. This handler will then be 4209 * called from __netif_receive_skb. A negative errno code is returned 4210 * on a failure. 4211 * 4212 * The caller must hold the rtnl_mutex. 4213 * 4214 * For a general description of rx_handler, see enum rx_handler_result. 4215 */ 4216 int netdev_rx_handler_register(struct net_device *dev, 4217 rx_handler_func_t *rx_handler, 4218 void *rx_handler_data) 4219 { 4220 if (netdev_is_rx_handler_busy(dev)) 4221 return -EBUSY; 4222 4223 /* Note: rx_handler_data must be set before rx_handler */ 4224 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 4225 rcu_assign_pointer(dev->rx_handler, rx_handler); 4226 4227 return 0; 4228 } 4229 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 4230 4231 /** 4232 * netdev_rx_handler_unregister - unregister receive handler 4233 * @dev: device to unregister a handler from 4234 * 4235 * Unregister a receive handler from a device. 4236 * 4237 * The caller must hold the rtnl_mutex. 4238 */ 4239 void netdev_rx_handler_unregister(struct net_device *dev) 4240 { 4241 4242 ASSERT_RTNL(); 4243 RCU_INIT_POINTER(dev->rx_handler, NULL); 4244 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 4245 * section has a guarantee to see a non NULL rx_handler_data 4246 * as well. 4247 */ 4248 synchronize_net(); 4249 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 4250 } 4251 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 4252 4253 /* 4254 * Limit the use of PFMEMALLOC reserves to those protocols that implement 4255 * the special handling of PFMEMALLOC skbs. 4256 */ 4257 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 4258 { 4259 switch (skb->protocol) { 4260 case htons(ETH_P_ARP): 4261 case htons(ETH_P_IP): 4262 case htons(ETH_P_IPV6): 4263 case htons(ETH_P_8021Q): 4264 case htons(ETH_P_8021AD): 4265 return true; 4266 default: 4267 return false; 4268 } 4269 } 4270 4271 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 4272 int *ret, struct net_device *orig_dev) 4273 { 4274 #ifdef CONFIG_NETFILTER_INGRESS 4275 if (nf_hook_ingress_active(skb)) { 4276 int ingress_retval; 4277 4278 if (*pt_prev) { 4279 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4280 *pt_prev = NULL; 4281 } 4282 4283 rcu_read_lock(); 4284 ingress_retval = nf_hook_ingress(skb); 4285 rcu_read_unlock(); 4286 return ingress_retval; 4287 } 4288 #endif /* CONFIG_NETFILTER_INGRESS */ 4289 return 0; 4290 } 4291 4292 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 4293 { 4294 struct packet_type *ptype, *pt_prev; 4295 rx_handler_func_t *rx_handler; 4296 struct net_device *orig_dev; 4297 bool deliver_exact = false; 4298 int ret = NET_RX_DROP; 4299 __be16 type; 4300 4301 net_timestamp_check(!netdev_tstamp_prequeue, skb); 4302 4303 trace_netif_receive_skb(skb); 4304 4305 orig_dev = skb->dev; 4306 4307 skb_reset_network_header(skb); 4308 if (!skb_transport_header_was_set(skb)) 4309 skb_reset_transport_header(skb); 4310 skb_reset_mac_len(skb); 4311 4312 pt_prev = NULL; 4313 4314 another_round: 4315 skb->skb_iif = skb->dev->ifindex; 4316 4317 __this_cpu_inc(softnet_data.processed); 4318 4319 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 4320 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 4321 skb = skb_vlan_untag(skb); 4322 if (unlikely(!skb)) 4323 goto out; 4324 } 4325 4326 if (skb_skip_tc_classify(skb)) 4327 goto skip_classify; 4328 4329 if (pfmemalloc) 4330 goto skip_taps; 4331 4332 list_for_each_entry_rcu(ptype, &ptype_all, list) { 4333 if (pt_prev) 4334 ret = deliver_skb(skb, pt_prev, orig_dev); 4335 pt_prev = ptype; 4336 } 4337 4338 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 4339 if (pt_prev) 4340 ret = deliver_skb(skb, pt_prev, orig_dev); 4341 pt_prev = ptype; 4342 } 4343 4344 skip_taps: 4345 #ifdef CONFIG_NET_INGRESS 4346 if (static_key_false(&ingress_needed)) { 4347 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev); 4348 if (!skb) 4349 goto out; 4350 4351 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 4352 goto out; 4353 } 4354 #endif 4355 skb_reset_tc(skb); 4356 skip_classify: 4357 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 4358 goto drop; 4359 4360 if (skb_vlan_tag_present(skb)) { 4361 if (pt_prev) { 4362 ret = deliver_skb(skb, pt_prev, orig_dev); 4363 pt_prev = NULL; 4364 } 4365 if (vlan_do_receive(&skb)) 4366 goto another_round; 4367 else if (unlikely(!skb)) 4368 goto out; 4369 } 4370 4371 rx_handler = rcu_dereference(skb->dev->rx_handler); 4372 if (rx_handler) { 4373 if (pt_prev) { 4374 ret = deliver_skb(skb, pt_prev, orig_dev); 4375 pt_prev = NULL; 4376 } 4377 switch (rx_handler(&skb)) { 4378 case RX_HANDLER_CONSUMED: 4379 ret = NET_RX_SUCCESS; 4380 goto out; 4381 case RX_HANDLER_ANOTHER: 4382 goto another_round; 4383 case RX_HANDLER_EXACT: 4384 deliver_exact = true; 4385 case RX_HANDLER_PASS: 4386 break; 4387 default: 4388 BUG(); 4389 } 4390 } 4391 4392 if (unlikely(skb_vlan_tag_present(skb))) { 4393 if (skb_vlan_tag_get_id(skb)) 4394 skb->pkt_type = PACKET_OTHERHOST; 4395 /* Note: we might in the future use prio bits 4396 * and set skb->priority like in vlan_do_receive() 4397 * For the time being, just ignore Priority Code Point 4398 */ 4399 skb->vlan_tci = 0; 4400 } 4401 4402 type = skb->protocol; 4403 4404 /* deliver only exact match when indicated */ 4405 if (likely(!deliver_exact)) { 4406 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4407 &ptype_base[ntohs(type) & 4408 PTYPE_HASH_MASK]); 4409 } 4410 4411 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4412 &orig_dev->ptype_specific); 4413 4414 if (unlikely(skb->dev != orig_dev)) { 4415 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4416 &skb->dev->ptype_specific); 4417 } 4418 4419 if (pt_prev) { 4420 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 4421 goto drop; 4422 else 4423 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 4424 } else { 4425 drop: 4426 if (!deliver_exact) 4427 atomic_long_inc(&skb->dev->rx_dropped); 4428 else 4429 atomic_long_inc(&skb->dev->rx_nohandler); 4430 kfree_skb(skb); 4431 /* Jamal, now you will not able to escape explaining 4432 * me how you were going to use this. :-) 4433 */ 4434 ret = NET_RX_DROP; 4435 } 4436 4437 out: 4438 return ret; 4439 } 4440 4441 static int __netif_receive_skb(struct sk_buff *skb) 4442 { 4443 int ret; 4444 4445 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 4446 unsigned int noreclaim_flag; 4447 4448 /* 4449 * PFMEMALLOC skbs are special, they should 4450 * - be delivered to SOCK_MEMALLOC sockets only 4451 * - stay away from userspace 4452 * - have bounded memory usage 4453 * 4454 * Use PF_MEMALLOC as this saves us from propagating the allocation 4455 * context down to all allocation sites. 4456 */ 4457 noreclaim_flag = memalloc_noreclaim_save(); 4458 ret = __netif_receive_skb_core(skb, true); 4459 memalloc_noreclaim_restore(noreclaim_flag); 4460 } else 4461 ret = __netif_receive_skb_core(skb, false); 4462 4463 return ret; 4464 } 4465 4466 static int generic_xdp_install(struct net_device *dev, struct netdev_xdp *xdp) 4467 { 4468 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 4469 struct bpf_prog *new = xdp->prog; 4470 int ret = 0; 4471 4472 switch (xdp->command) { 4473 case XDP_SETUP_PROG: 4474 rcu_assign_pointer(dev->xdp_prog, new); 4475 if (old) 4476 bpf_prog_put(old); 4477 4478 if (old && !new) { 4479 static_key_slow_dec(&generic_xdp_needed); 4480 } else if (new && !old) { 4481 static_key_slow_inc(&generic_xdp_needed); 4482 dev_disable_lro(dev); 4483 } 4484 break; 4485 4486 case XDP_QUERY_PROG: 4487 xdp->prog_attached = !!old; 4488 xdp->prog_id = old ? old->aux->id : 0; 4489 break; 4490 4491 default: 4492 ret = -EINVAL; 4493 break; 4494 } 4495 4496 return ret; 4497 } 4498 4499 static int netif_receive_skb_internal(struct sk_buff *skb) 4500 { 4501 int ret; 4502 4503 net_timestamp_check(netdev_tstamp_prequeue, skb); 4504 4505 if (skb_defer_rx_timestamp(skb)) 4506 return NET_RX_SUCCESS; 4507 4508 if (static_key_false(&generic_xdp_needed)) { 4509 int ret; 4510 4511 preempt_disable(); 4512 rcu_read_lock(); 4513 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 4514 rcu_read_unlock(); 4515 preempt_enable(); 4516 4517 if (ret != XDP_PASS) 4518 return NET_RX_DROP; 4519 } 4520 4521 rcu_read_lock(); 4522 #ifdef CONFIG_RPS 4523 if (static_key_false(&rps_needed)) { 4524 struct rps_dev_flow voidflow, *rflow = &voidflow; 4525 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 4526 4527 if (cpu >= 0) { 4528 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4529 rcu_read_unlock(); 4530 return ret; 4531 } 4532 } 4533 #endif 4534 ret = __netif_receive_skb(skb); 4535 rcu_read_unlock(); 4536 return ret; 4537 } 4538 4539 /** 4540 * netif_receive_skb - process receive buffer from network 4541 * @skb: buffer to process 4542 * 4543 * netif_receive_skb() is the main receive data processing function. 4544 * It always succeeds. The buffer may be dropped during processing 4545 * for congestion control or by the protocol layers. 4546 * 4547 * This function may only be called from softirq context and interrupts 4548 * should be enabled. 4549 * 4550 * Return values (usually ignored): 4551 * NET_RX_SUCCESS: no congestion 4552 * NET_RX_DROP: packet was dropped 4553 */ 4554 int netif_receive_skb(struct sk_buff *skb) 4555 { 4556 trace_netif_receive_skb_entry(skb); 4557 4558 return netif_receive_skb_internal(skb); 4559 } 4560 EXPORT_SYMBOL(netif_receive_skb); 4561 4562 DEFINE_PER_CPU(struct work_struct, flush_works); 4563 4564 /* Network device is going away, flush any packets still pending */ 4565 static void flush_backlog(struct work_struct *work) 4566 { 4567 struct sk_buff *skb, *tmp; 4568 struct softnet_data *sd; 4569 4570 local_bh_disable(); 4571 sd = this_cpu_ptr(&softnet_data); 4572 4573 local_irq_disable(); 4574 rps_lock(sd); 4575 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 4576 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 4577 __skb_unlink(skb, &sd->input_pkt_queue); 4578 kfree_skb(skb); 4579 input_queue_head_incr(sd); 4580 } 4581 } 4582 rps_unlock(sd); 4583 local_irq_enable(); 4584 4585 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 4586 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 4587 __skb_unlink(skb, &sd->process_queue); 4588 kfree_skb(skb); 4589 input_queue_head_incr(sd); 4590 } 4591 } 4592 local_bh_enable(); 4593 } 4594 4595 static void flush_all_backlogs(void) 4596 { 4597 unsigned int cpu; 4598 4599 get_online_cpus(); 4600 4601 for_each_online_cpu(cpu) 4602 queue_work_on(cpu, system_highpri_wq, 4603 per_cpu_ptr(&flush_works, cpu)); 4604 4605 for_each_online_cpu(cpu) 4606 flush_work(per_cpu_ptr(&flush_works, cpu)); 4607 4608 put_online_cpus(); 4609 } 4610 4611 static int napi_gro_complete(struct sk_buff *skb) 4612 { 4613 struct packet_offload *ptype; 4614 __be16 type = skb->protocol; 4615 struct list_head *head = &offload_base; 4616 int err = -ENOENT; 4617 4618 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 4619 4620 if (NAPI_GRO_CB(skb)->count == 1) { 4621 skb_shinfo(skb)->gso_size = 0; 4622 goto out; 4623 } 4624 4625 rcu_read_lock(); 4626 list_for_each_entry_rcu(ptype, head, list) { 4627 if (ptype->type != type || !ptype->callbacks.gro_complete) 4628 continue; 4629 4630 err = ptype->callbacks.gro_complete(skb, 0); 4631 break; 4632 } 4633 rcu_read_unlock(); 4634 4635 if (err) { 4636 WARN_ON(&ptype->list == head); 4637 kfree_skb(skb); 4638 return NET_RX_SUCCESS; 4639 } 4640 4641 out: 4642 return netif_receive_skb_internal(skb); 4643 } 4644 4645 /* napi->gro_list contains packets ordered by age. 4646 * youngest packets at the head of it. 4647 * Complete skbs in reverse order to reduce latencies. 4648 */ 4649 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 4650 { 4651 struct sk_buff *skb, *prev = NULL; 4652 4653 /* scan list and build reverse chain */ 4654 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 4655 skb->prev = prev; 4656 prev = skb; 4657 } 4658 4659 for (skb = prev; skb; skb = prev) { 4660 skb->next = NULL; 4661 4662 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 4663 return; 4664 4665 prev = skb->prev; 4666 napi_gro_complete(skb); 4667 napi->gro_count--; 4668 } 4669 4670 napi->gro_list = NULL; 4671 } 4672 EXPORT_SYMBOL(napi_gro_flush); 4673 4674 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 4675 { 4676 struct sk_buff *p; 4677 unsigned int maclen = skb->dev->hard_header_len; 4678 u32 hash = skb_get_hash_raw(skb); 4679 4680 for (p = napi->gro_list; p; p = p->next) { 4681 unsigned long diffs; 4682 4683 NAPI_GRO_CB(p)->flush = 0; 4684 4685 if (hash != skb_get_hash_raw(p)) { 4686 NAPI_GRO_CB(p)->same_flow = 0; 4687 continue; 4688 } 4689 4690 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 4691 diffs |= p->vlan_tci ^ skb->vlan_tci; 4692 diffs |= skb_metadata_dst_cmp(p, skb); 4693 if (maclen == ETH_HLEN) 4694 diffs |= compare_ether_header(skb_mac_header(p), 4695 skb_mac_header(skb)); 4696 else if (!diffs) 4697 diffs = memcmp(skb_mac_header(p), 4698 skb_mac_header(skb), 4699 maclen); 4700 NAPI_GRO_CB(p)->same_flow = !diffs; 4701 } 4702 } 4703 4704 static void skb_gro_reset_offset(struct sk_buff *skb) 4705 { 4706 const struct skb_shared_info *pinfo = skb_shinfo(skb); 4707 const skb_frag_t *frag0 = &pinfo->frags[0]; 4708 4709 NAPI_GRO_CB(skb)->data_offset = 0; 4710 NAPI_GRO_CB(skb)->frag0 = NULL; 4711 NAPI_GRO_CB(skb)->frag0_len = 0; 4712 4713 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 4714 pinfo->nr_frags && 4715 !PageHighMem(skb_frag_page(frag0))) { 4716 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 4717 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 4718 skb_frag_size(frag0), 4719 skb->end - skb->tail); 4720 } 4721 } 4722 4723 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 4724 { 4725 struct skb_shared_info *pinfo = skb_shinfo(skb); 4726 4727 BUG_ON(skb->end - skb->tail < grow); 4728 4729 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 4730 4731 skb->data_len -= grow; 4732 skb->tail += grow; 4733 4734 pinfo->frags[0].page_offset += grow; 4735 skb_frag_size_sub(&pinfo->frags[0], grow); 4736 4737 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 4738 skb_frag_unref(skb, 0); 4739 memmove(pinfo->frags, pinfo->frags + 1, 4740 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 4741 } 4742 } 4743 4744 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4745 { 4746 struct sk_buff **pp = NULL; 4747 struct packet_offload *ptype; 4748 __be16 type = skb->protocol; 4749 struct list_head *head = &offload_base; 4750 int same_flow; 4751 enum gro_result ret; 4752 int grow; 4753 4754 if (netif_elide_gro(skb->dev)) 4755 goto normal; 4756 4757 gro_list_prepare(napi, skb); 4758 4759 rcu_read_lock(); 4760 list_for_each_entry_rcu(ptype, head, list) { 4761 if (ptype->type != type || !ptype->callbacks.gro_receive) 4762 continue; 4763 4764 skb_set_network_header(skb, skb_gro_offset(skb)); 4765 skb_reset_mac_len(skb); 4766 NAPI_GRO_CB(skb)->same_flow = 0; 4767 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 4768 NAPI_GRO_CB(skb)->free = 0; 4769 NAPI_GRO_CB(skb)->encap_mark = 0; 4770 NAPI_GRO_CB(skb)->recursion_counter = 0; 4771 NAPI_GRO_CB(skb)->is_fou = 0; 4772 NAPI_GRO_CB(skb)->is_atomic = 1; 4773 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 4774 4775 /* Setup for GRO checksum validation */ 4776 switch (skb->ip_summed) { 4777 case CHECKSUM_COMPLETE: 4778 NAPI_GRO_CB(skb)->csum = skb->csum; 4779 NAPI_GRO_CB(skb)->csum_valid = 1; 4780 NAPI_GRO_CB(skb)->csum_cnt = 0; 4781 break; 4782 case CHECKSUM_UNNECESSARY: 4783 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 4784 NAPI_GRO_CB(skb)->csum_valid = 0; 4785 break; 4786 default: 4787 NAPI_GRO_CB(skb)->csum_cnt = 0; 4788 NAPI_GRO_CB(skb)->csum_valid = 0; 4789 } 4790 4791 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 4792 break; 4793 } 4794 rcu_read_unlock(); 4795 4796 if (&ptype->list == head) 4797 goto normal; 4798 4799 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) { 4800 ret = GRO_CONSUMED; 4801 goto ok; 4802 } 4803 4804 same_flow = NAPI_GRO_CB(skb)->same_flow; 4805 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 4806 4807 if (pp) { 4808 struct sk_buff *nskb = *pp; 4809 4810 *pp = nskb->next; 4811 nskb->next = NULL; 4812 napi_gro_complete(nskb); 4813 napi->gro_count--; 4814 } 4815 4816 if (same_flow) 4817 goto ok; 4818 4819 if (NAPI_GRO_CB(skb)->flush) 4820 goto normal; 4821 4822 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) { 4823 struct sk_buff *nskb = napi->gro_list; 4824 4825 /* locate the end of the list to select the 'oldest' flow */ 4826 while (nskb->next) { 4827 pp = &nskb->next; 4828 nskb = *pp; 4829 } 4830 *pp = NULL; 4831 nskb->next = NULL; 4832 napi_gro_complete(nskb); 4833 } else { 4834 napi->gro_count++; 4835 } 4836 NAPI_GRO_CB(skb)->count = 1; 4837 NAPI_GRO_CB(skb)->age = jiffies; 4838 NAPI_GRO_CB(skb)->last = skb; 4839 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 4840 skb->next = napi->gro_list; 4841 napi->gro_list = skb; 4842 ret = GRO_HELD; 4843 4844 pull: 4845 grow = skb_gro_offset(skb) - skb_headlen(skb); 4846 if (grow > 0) 4847 gro_pull_from_frag0(skb, grow); 4848 ok: 4849 return ret; 4850 4851 normal: 4852 ret = GRO_NORMAL; 4853 goto pull; 4854 } 4855 4856 struct packet_offload *gro_find_receive_by_type(__be16 type) 4857 { 4858 struct list_head *offload_head = &offload_base; 4859 struct packet_offload *ptype; 4860 4861 list_for_each_entry_rcu(ptype, offload_head, list) { 4862 if (ptype->type != type || !ptype->callbacks.gro_receive) 4863 continue; 4864 return ptype; 4865 } 4866 return NULL; 4867 } 4868 EXPORT_SYMBOL(gro_find_receive_by_type); 4869 4870 struct packet_offload *gro_find_complete_by_type(__be16 type) 4871 { 4872 struct list_head *offload_head = &offload_base; 4873 struct packet_offload *ptype; 4874 4875 list_for_each_entry_rcu(ptype, offload_head, list) { 4876 if (ptype->type != type || !ptype->callbacks.gro_complete) 4877 continue; 4878 return ptype; 4879 } 4880 return NULL; 4881 } 4882 EXPORT_SYMBOL(gro_find_complete_by_type); 4883 4884 static void napi_skb_free_stolen_head(struct sk_buff *skb) 4885 { 4886 skb_dst_drop(skb); 4887 secpath_reset(skb); 4888 kmem_cache_free(skbuff_head_cache, skb); 4889 } 4890 4891 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 4892 { 4893 switch (ret) { 4894 case GRO_NORMAL: 4895 if (netif_receive_skb_internal(skb)) 4896 ret = GRO_DROP; 4897 break; 4898 4899 case GRO_DROP: 4900 kfree_skb(skb); 4901 break; 4902 4903 case GRO_MERGED_FREE: 4904 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 4905 napi_skb_free_stolen_head(skb); 4906 else 4907 __kfree_skb(skb); 4908 break; 4909 4910 case GRO_HELD: 4911 case GRO_MERGED: 4912 case GRO_CONSUMED: 4913 break; 4914 } 4915 4916 return ret; 4917 } 4918 4919 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4920 { 4921 skb_mark_napi_id(skb, napi); 4922 trace_napi_gro_receive_entry(skb); 4923 4924 skb_gro_reset_offset(skb); 4925 4926 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 4927 } 4928 EXPORT_SYMBOL(napi_gro_receive); 4929 4930 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 4931 { 4932 if (unlikely(skb->pfmemalloc)) { 4933 consume_skb(skb); 4934 return; 4935 } 4936 __skb_pull(skb, skb_headlen(skb)); 4937 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 4938 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 4939 skb->vlan_tci = 0; 4940 skb->dev = napi->dev; 4941 skb->skb_iif = 0; 4942 skb->encapsulation = 0; 4943 skb_shinfo(skb)->gso_type = 0; 4944 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 4945 secpath_reset(skb); 4946 4947 napi->skb = skb; 4948 } 4949 4950 struct sk_buff *napi_get_frags(struct napi_struct *napi) 4951 { 4952 struct sk_buff *skb = napi->skb; 4953 4954 if (!skb) { 4955 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 4956 if (skb) { 4957 napi->skb = skb; 4958 skb_mark_napi_id(skb, napi); 4959 } 4960 } 4961 return skb; 4962 } 4963 EXPORT_SYMBOL(napi_get_frags); 4964 4965 static gro_result_t napi_frags_finish(struct napi_struct *napi, 4966 struct sk_buff *skb, 4967 gro_result_t ret) 4968 { 4969 switch (ret) { 4970 case GRO_NORMAL: 4971 case GRO_HELD: 4972 __skb_push(skb, ETH_HLEN); 4973 skb->protocol = eth_type_trans(skb, skb->dev); 4974 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 4975 ret = GRO_DROP; 4976 break; 4977 4978 case GRO_DROP: 4979 napi_reuse_skb(napi, skb); 4980 break; 4981 4982 case GRO_MERGED_FREE: 4983 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 4984 napi_skb_free_stolen_head(skb); 4985 else 4986 napi_reuse_skb(napi, skb); 4987 break; 4988 4989 case GRO_MERGED: 4990 case GRO_CONSUMED: 4991 break; 4992 } 4993 4994 return ret; 4995 } 4996 4997 /* Upper GRO stack assumes network header starts at gro_offset=0 4998 * Drivers could call both napi_gro_frags() and napi_gro_receive() 4999 * We copy ethernet header into skb->data to have a common layout. 5000 */ 5001 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 5002 { 5003 struct sk_buff *skb = napi->skb; 5004 const struct ethhdr *eth; 5005 unsigned int hlen = sizeof(*eth); 5006 5007 napi->skb = NULL; 5008 5009 skb_reset_mac_header(skb); 5010 skb_gro_reset_offset(skb); 5011 5012 eth = skb_gro_header_fast(skb, 0); 5013 if (unlikely(skb_gro_header_hard(skb, hlen))) { 5014 eth = skb_gro_header_slow(skb, hlen, 0); 5015 if (unlikely(!eth)) { 5016 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 5017 __func__, napi->dev->name); 5018 napi_reuse_skb(napi, skb); 5019 return NULL; 5020 } 5021 } else { 5022 gro_pull_from_frag0(skb, hlen); 5023 NAPI_GRO_CB(skb)->frag0 += hlen; 5024 NAPI_GRO_CB(skb)->frag0_len -= hlen; 5025 } 5026 __skb_pull(skb, hlen); 5027 5028 /* 5029 * This works because the only protocols we care about don't require 5030 * special handling. 5031 * We'll fix it up properly in napi_frags_finish() 5032 */ 5033 skb->protocol = eth->h_proto; 5034 5035 return skb; 5036 } 5037 5038 gro_result_t napi_gro_frags(struct napi_struct *napi) 5039 { 5040 struct sk_buff *skb = napi_frags_skb(napi); 5041 5042 if (!skb) 5043 return GRO_DROP; 5044 5045 trace_napi_gro_frags_entry(skb); 5046 5047 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 5048 } 5049 EXPORT_SYMBOL(napi_gro_frags); 5050 5051 /* Compute the checksum from gro_offset and return the folded value 5052 * after adding in any pseudo checksum. 5053 */ 5054 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 5055 { 5056 __wsum wsum; 5057 __sum16 sum; 5058 5059 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 5060 5061 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 5062 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 5063 if (likely(!sum)) { 5064 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 5065 !skb->csum_complete_sw) 5066 netdev_rx_csum_fault(skb->dev); 5067 } 5068 5069 NAPI_GRO_CB(skb)->csum = wsum; 5070 NAPI_GRO_CB(skb)->csum_valid = 1; 5071 5072 return sum; 5073 } 5074 EXPORT_SYMBOL(__skb_gro_checksum_complete); 5075 5076 static void net_rps_send_ipi(struct softnet_data *remsd) 5077 { 5078 #ifdef CONFIG_RPS 5079 while (remsd) { 5080 struct softnet_data *next = remsd->rps_ipi_next; 5081 5082 if (cpu_online(remsd->cpu)) 5083 smp_call_function_single_async(remsd->cpu, &remsd->csd); 5084 remsd = next; 5085 } 5086 #endif 5087 } 5088 5089 /* 5090 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 5091 * Note: called with local irq disabled, but exits with local irq enabled. 5092 */ 5093 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 5094 { 5095 #ifdef CONFIG_RPS 5096 struct softnet_data *remsd = sd->rps_ipi_list; 5097 5098 if (remsd) { 5099 sd->rps_ipi_list = NULL; 5100 5101 local_irq_enable(); 5102 5103 /* Send pending IPI's to kick RPS processing on remote cpus. */ 5104 net_rps_send_ipi(remsd); 5105 } else 5106 #endif 5107 local_irq_enable(); 5108 } 5109 5110 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 5111 { 5112 #ifdef CONFIG_RPS 5113 return sd->rps_ipi_list != NULL; 5114 #else 5115 return false; 5116 #endif 5117 } 5118 5119 static int process_backlog(struct napi_struct *napi, int quota) 5120 { 5121 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 5122 bool again = true; 5123 int work = 0; 5124 5125 /* Check if we have pending ipi, its better to send them now, 5126 * not waiting net_rx_action() end. 5127 */ 5128 if (sd_has_rps_ipi_waiting(sd)) { 5129 local_irq_disable(); 5130 net_rps_action_and_irq_enable(sd); 5131 } 5132 5133 napi->weight = dev_rx_weight; 5134 while (again) { 5135 struct sk_buff *skb; 5136 5137 while ((skb = __skb_dequeue(&sd->process_queue))) { 5138 rcu_read_lock(); 5139 __netif_receive_skb(skb); 5140 rcu_read_unlock(); 5141 input_queue_head_incr(sd); 5142 if (++work >= quota) 5143 return work; 5144 5145 } 5146 5147 local_irq_disable(); 5148 rps_lock(sd); 5149 if (skb_queue_empty(&sd->input_pkt_queue)) { 5150 /* 5151 * Inline a custom version of __napi_complete(). 5152 * only current cpu owns and manipulates this napi, 5153 * and NAPI_STATE_SCHED is the only possible flag set 5154 * on backlog. 5155 * We can use a plain write instead of clear_bit(), 5156 * and we dont need an smp_mb() memory barrier. 5157 */ 5158 napi->state = 0; 5159 again = false; 5160 } else { 5161 skb_queue_splice_tail_init(&sd->input_pkt_queue, 5162 &sd->process_queue); 5163 } 5164 rps_unlock(sd); 5165 local_irq_enable(); 5166 } 5167 5168 return work; 5169 } 5170 5171 /** 5172 * __napi_schedule - schedule for receive 5173 * @n: entry to schedule 5174 * 5175 * The entry's receive function will be scheduled to run. 5176 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 5177 */ 5178 void __napi_schedule(struct napi_struct *n) 5179 { 5180 unsigned long flags; 5181 5182 local_irq_save(flags); 5183 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5184 local_irq_restore(flags); 5185 } 5186 EXPORT_SYMBOL(__napi_schedule); 5187 5188 /** 5189 * napi_schedule_prep - check if napi can be scheduled 5190 * @n: napi context 5191 * 5192 * Test if NAPI routine is already running, and if not mark 5193 * it as running. This is used as a condition variable 5194 * insure only one NAPI poll instance runs. We also make 5195 * sure there is no pending NAPI disable. 5196 */ 5197 bool napi_schedule_prep(struct napi_struct *n) 5198 { 5199 unsigned long val, new; 5200 5201 do { 5202 val = READ_ONCE(n->state); 5203 if (unlikely(val & NAPIF_STATE_DISABLE)) 5204 return false; 5205 new = val | NAPIF_STATE_SCHED; 5206 5207 /* Sets STATE_MISSED bit if STATE_SCHED was already set 5208 * This was suggested by Alexander Duyck, as compiler 5209 * emits better code than : 5210 * if (val & NAPIF_STATE_SCHED) 5211 * new |= NAPIF_STATE_MISSED; 5212 */ 5213 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 5214 NAPIF_STATE_MISSED; 5215 } while (cmpxchg(&n->state, val, new) != val); 5216 5217 return !(val & NAPIF_STATE_SCHED); 5218 } 5219 EXPORT_SYMBOL(napi_schedule_prep); 5220 5221 /** 5222 * __napi_schedule_irqoff - schedule for receive 5223 * @n: entry to schedule 5224 * 5225 * Variant of __napi_schedule() assuming hard irqs are masked 5226 */ 5227 void __napi_schedule_irqoff(struct napi_struct *n) 5228 { 5229 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5230 } 5231 EXPORT_SYMBOL(__napi_schedule_irqoff); 5232 5233 bool napi_complete_done(struct napi_struct *n, int work_done) 5234 { 5235 unsigned long flags, val, new; 5236 5237 /* 5238 * 1) Don't let napi dequeue from the cpu poll list 5239 * just in case its running on a different cpu. 5240 * 2) If we are busy polling, do nothing here, we have 5241 * the guarantee we will be called later. 5242 */ 5243 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 5244 NAPIF_STATE_IN_BUSY_POLL))) 5245 return false; 5246 5247 if (n->gro_list) { 5248 unsigned long timeout = 0; 5249 5250 if (work_done) 5251 timeout = n->dev->gro_flush_timeout; 5252 5253 if (timeout) 5254 hrtimer_start(&n->timer, ns_to_ktime(timeout), 5255 HRTIMER_MODE_REL_PINNED); 5256 else 5257 napi_gro_flush(n, false); 5258 } 5259 if (unlikely(!list_empty(&n->poll_list))) { 5260 /* If n->poll_list is not empty, we need to mask irqs */ 5261 local_irq_save(flags); 5262 list_del_init(&n->poll_list); 5263 local_irq_restore(flags); 5264 } 5265 5266 do { 5267 val = READ_ONCE(n->state); 5268 5269 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 5270 5271 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED); 5272 5273 /* If STATE_MISSED was set, leave STATE_SCHED set, 5274 * because we will call napi->poll() one more time. 5275 * This C code was suggested by Alexander Duyck to help gcc. 5276 */ 5277 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 5278 NAPIF_STATE_SCHED; 5279 } while (cmpxchg(&n->state, val, new) != val); 5280 5281 if (unlikely(val & NAPIF_STATE_MISSED)) { 5282 __napi_schedule(n); 5283 return false; 5284 } 5285 5286 return true; 5287 } 5288 EXPORT_SYMBOL(napi_complete_done); 5289 5290 /* must be called under rcu_read_lock(), as we dont take a reference */ 5291 static struct napi_struct *napi_by_id(unsigned int napi_id) 5292 { 5293 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 5294 struct napi_struct *napi; 5295 5296 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 5297 if (napi->napi_id == napi_id) 5298 return napi; 5299 5300 return NULL; 5301 } 5302 5303 #if defined(CONFIG_NET_RX_BUSY_POLL) 5304 5305 #define BUSY_POLL_BUDGET 8 5306 5307 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock) 5308 { 5309 int rc; 5310 5311 /* Busy polling means there is a high chance device driver hard irq 5312 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 5313 * set in napi_schedule_prep(). 5314 * Since we are about to call napi->poll() once more, we can safely 5315 * clear NAPI_STATE_MISSED. 5316 * 5317 * Note: x86 could use a single "lock and ..." instruction 5318 * to perform these two clear_bit() 5319 */ 5320 clear_bit(NAPI_STATE_MISSED, &napi->state); 5321 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 5322 5323 local_bh_disable(); 5324 5325 /* All we really want here is to re-enable device interrupts. 5326 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 5327 */ 5328 rc = napi->poll(napi, BUSY_POLL_BUDGET); 5329 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET); 5330 netpoll_poll_unlock(have_poll_lock); 5331 if (rc == BUSY_POLL_BUDGET) 5332 __napi_schedule(napi); 5333 local_bh_enable(); 5334 } 5335 5336 void napi_busy_loop(unsigned int napi_id, 5337 bool (*loop_end)(void *, unsigned long), 5338 void *loop_end_arg) 5339 { 5340 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 5341 int (*napi_poll)(struct napi_struct *napi, int budget); 5342 void *have_poll_lock = NULL; 5343 struct napi_struct *napi; 5344 5345 restart: 5346 napi_poll = NULL; 5347 5348 rcu_read_lock(); 5349 5350 napi = napi_by_id(napi_id); 5351 if (!napi) 5352 goto out; 5353 5354 preempt_disable(); 5355 for (;;) { 5356 int work = 0; 5357 5358 local_bh_disable(); 5359 if (!napi_poll) { 5360 unsigned long val = READ_ONCE(napi->state); 5361 5362 /* If multiple threads are competing for this napi, 5363 * we avoid dirtying napi->state as much as we can. 5364 */ 5365 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 5366 NAPIF_STATE_IN_BUSY_POLL)) 5367 goto count; 5368 if (cmpxchg(&napi->state, val, 5369 val | NAPIF_STATE_IN_BUSY_POLL | 5370 NAPIF_STATE_SCHED) != val) 5371 goto count; 5372 have_poll_lock = netpoll_poll_lock(napi); 5373 napi_poll = napi->poll; 5374 } 5375 work = napi_poll(napi, BUSY_POLL_BUDGET); 5376 trace_napi_poll(napi, work, BUSY_POLL_BUDGET); 5377 count: 5378 if (work > 0) 5379 __NET_ADD_STATS(dev_net(napi->dev), 5380 LINUX_MIB_BUSYPOLLRXPACKETS, work); 5381 local_bh_enable(); 5382 5383 if (!loop_end || loop_end(loop_end_arg, start_time)) 5384 break; 5385 5386 if (unlikely(need_resched())) { 5387 if (napi_poll) 5388 busy_poll_stop(napi, have_poll_lock); 5389 preempt_enable(); 5390 rcu_read_unlock(); 5391 cond_resched(); 5392 if (loop_end(loop_end_arg, start_time)) 5393 return; 5394 goto restart; 5395 } 5396 cpu_relax(); 5397 } 5398 if (napi_poll) 5399 busy_poll_stop(napi, have_poll_lock); 5400 preempt_enable(); 5401 out: 5402 rcu_read_unlock(); 5403 } 5404 EXPORT_SYMBOL(napi_busy_loop); 5405 5406 #endif /* CONFIG_NET_RX_BUSY_POLL */ 5407 5408 static void napi_hash_add(struct napi_struct *napi) 5409 { 5410 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) || 5411 test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) 5412 return; 5413 5414 spin_lock(&napi_hash_lock); 5415 5416 /* 0..NR_CPUS range is reserved for sender_cpu use */ 5417 do { 5418 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 5419 napi_gen_id = MIN_NAPI_ID; 5420 } while (napi_by_id(napi_gen_id)); 5421 napi->napi_id = napi_gen_id; 5422 5423 hlist_add_head_rcu(&napi->napi_hash_node, 5424 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 5425 5426 spin_unlock(&napi_hash_lock); 5427 } 5428 5429 /* Warning : caller is responsible to make sure rcu grace period 5430 * is respected before freeing memory containing @napi 5431 */ 5432 bool napi_hash_del(struct napi_struct *napi) 5433 { 5434 bool rcu_sync_needed = false; 5435 5436 spin_lock(&napi_hash_lock); 5437 5438 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) { 5439 rcu_sync_needed = true; 5440 hlist_del_rcu(&napi->napi_hash_node); 5441 } 5442 spin_unlock(&napi_hash_lock); 5443 return rcu_sync_needed; 5444 } 5445 EXPORT_SYMBOL_GPL(napi_hash_del); 5446 5447 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 5448 { 5449 struct napi_struct *napi; 5450 5451 napi = container_of(timer, struct napi_struct, timer); 5452 5453 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 5454 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 5455 */ 5456 if (napi->gro_list && !napi_disable_pending(napi) && 5457 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) 5458 __napi_schedule_irqoff(napi); 5459 5460 return HRTIMER_NORESTART; 5461 } 5462 5463 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 5464 int (*poll)(struct napi_struct *, int), int weight) 5465 { 5466 INIT_LIST_HEAD(&napi->poll_list); 5467 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 5468 napi->timer.function = napi_watchdog; 5469 napi->gro_count = 0; 5470 napi->gro_list = NULL; 5471 napi->skb = NULL; 5472 napi->poll = poll; 5473 if (weight > NAPI_POLL_WEIGHT) 5474 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 5475 weight, dev->name); 5476 napi->weight = weight; 5477 list_add(&napi->dev_list, &dev->napi_list); 5478 napi->dev = dev; 5479 #ifdef CONFIG_NETPOLL 5480 napi->poll_owner = -1; 5481 #endif 5482 set_bit(NAPI_STATE_SCHED, &napi->state); 5483 napi_hash_add(napi); 5484 } 5485 EXPORT_SYMBOL(netif_napi_add); 5486 5487 void napi_disable(struct napi_struct *n) 5488 { 5489 might_sleep(); 5490 set_bit(NAPI_STATE_DISABLE, &n->state); 5491 5492 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 5493 msleep(1); 5494 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 5495 msleep(1); 5496 5497 hrtimer_cancel(&n->timer); 5498 5499 clear_bit(NAPI_STATE_DISABLE, &n->state); 5500 } 5501 EXPORT_SYMBOL(napi_disable); 5502 5503 /* Must be called in process context */ 5504 void netif_napi_del(struct napi_struct *napi) 5505 { 5506 might_sleep(); 5507 if (napi_hash_del(napi)) 5508 synchronize_net(); 5509 list_del_init(&napi->dev_list); 5510 napi_free_frags(napi); 5511 5512 kfree_skb_list(napi->gro_list); 5513 napi->gro_list = NULL; 5514 napi->gro_count = 0; 5515 } 5516 EXPORT_SYMBOL(netif_napi_del); 5517 5518 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 5519 { 5520 void *have; 5521 int work, weight; 5522 5523 list_del_init(&n->poll_list); 5524 5525 have = netpoll_poll_lock(n); 5526 5527 weight = n->weight; 5528 5529 /* This NAPI_STATE_SCHED test is for avoiding a race 5530 * with netpoll's poll_napi(). Only the entity which 5531 * obtains the lock and sees NAPI_STATE_SCHED set will 5532 * actually make the ->poll() call. Therefore we avoid 5533 * accidentally calling ->poll() when NAPI is not scheduled. 5534 */ 5535 work = 0; 5536 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 5537 work = n->poll(n, weight); 5538 trace_napi_poll(n, work, weight); 5539 } 5540 5541 WARN_ON_ONCE(work > weight); 5542 5543 if (likely(work < weight)) 5544 goto out_unlock; 5545 5546 /* Drivers must not modify the NAPI state if they 5547 * consume the entire weight. In such cases this code 5548 * still "owns" the NAPI instance and therefore can 5549 * move the instance around on the list at-will. 5550 */ 5551 if (unlikely(napi_disable_pending(n))) { 5552 napi_complete(n); 5553 goto out_unlock; 5554 } 5555 5556 if (n->gro_list) { 5557 /* flush too old packets 5558 * If HZ < 1000, flush all packets. 5559 */ 5560 napi_gro_flush(n, HZ >= 1000); 5561 } 5562 5563 /* Some drivers may have called napi_schedule 5564 * prior to exhausting their budget. 5565 */ 5566 if (unlikely(!list_empty(&n->poll_list))) { 5567 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 5568 n->dev ? n->dev->name : "backlog"); 5569 goto out_unlock; 5570 } 5571 5572 list_add_tail(&n->poll_list, repoll); 5573 5574 out_unlock: 5575 netpoll_poll_unlock(have); 5576 5577 return work; 5578 } 5579 5580 static __latent_entropy void net_rx_action(struct softirq_action *h) 5581 { 5582 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5583 unsigned long time_limit = jiffies + 5584 usecs_to_jiffies(netdev_budget_usecs); 5585 int budget = netdev_budget; 5586 LIST_HEAD(list); 5587 LIST_HEAD(repoll); 5588 5589 local_irq_disable(); 5590 list_splice_init(&sd->poll_list, &list); 5591 local_irq_enable(); 5592 5593 for (;;) { 5594 struct napi_struct *n; 5595 5596 if (list_empty(&list)) { 5597 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 5598 goto out; 5599 break; 5600 } 5601 5602 n = list_first_entry(&list, struct napi_struct, poll_list); 5603 budget -= napi_poll(n, &repoll); 5604 5605 /* If softirq window is exhausted then punt. 5606 * Allow this to run for 2 jiffies since which will allow 5607 * an average latency of 1.5/HZ. 5608 */ 5609 if (unlikely(budget <= 0 || 5610 time_after_eq(jiffies, time_limit))) { 5611 sd->time_squeeze++; 5612 break; 5613 } 5614 } 5615 5616 local_irq_disable(); 5617 5618 list_splice_tail_init(&sd->poll_list, &list); 5619 list_splice_tail(&repoll, &list); 5620 list_splice(&list, &sd->poll_list); 5621 if (!list_empty(&sd->poll_list)) 5622 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5623 5624 net_rps_action_and_irq_enable(sd); 5625 out: 5626 __kfree_skb_flush(); 5627 } 5628 5629 struct netdev_adjacent { 5630 struct net_device *dev; 5631 5632 /* upper master flag, there can only be one master device per list */ 5633 bool master; 5634 5635 /* counter for the number of times this device was added to us */ 5636 u16 ref_nr; 5637 5638 /* private field for the users */ 5639 void *private; 5640 5641 struct list_head list; 5642 struct rcu_head rcu; 5643 }; 5644 5645 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 5646 struct list_head *adj_list) 5647 { 5648 struct netdev_adjacent *adj; 5649 5650 list_for_each_entry(adj, adj_list, list) { 5651 if (adj->dev == adj_dev) 5652 return adj; 5653 } 5654 return NULL; 5655 } 5656 5657 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data) 5658 { 5659 struct net_device *dev = data; 5660 5661 return upper_dev == dev; 5662 } 5663 5664 /** 5665 * netdev_has_upper_dev - Check if device is linked to an upper device 5666 * @dev: device 5667 * @upper_dev: upper device to check 5668 * 5669 * Find out if a device is linked to specified upper device and return true 5670 * in case it is. Note that this checks only immediate upper device, 5671 * not through a complete stack of devices. The caller must hold the RTNL lock. 5672 */ 5673 bool netdev_has_upper_dev(struct net_device *dev, 5674 struct net_device *upper_dev) 5675 { 5676 ASSERT_RTNL(); 5677 5678 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 5679 upper_dev); 5680 } 5681 EXPORT_SYMBOL(netdev_has_upper_dev); 5682 5683 /** 5684 * netdev_has_upper_dev_all - Check if device is linked to an upper device 5685 * @dev: device 5686 * @upper_dev: upper device to check 5687 * 5688 * Find out if a device is linked to specified upper device and return true 5689 * in case it is. Note that this checks the entire upper device chain. 5690 * The caller must hold rcu lock. 5691 */ 5692 5693 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 5694 struct net_device *upper_dev) 5695 { 5696 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 5697 upper_dev); 5698 } 5699 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 5700 5701 /** 5702 * netdev_has_any_upper_dev - Check if device is linked to some device 5703 * @dev: device 5704 * 5705 * Find out if a device is linked to an upper device and return true in case 5706 * it is. The caller must hold the RTNL lock. 5707 */ 5708 bool netdev_has_any_upper_dev(struct net_device *dev) 5709 { 5710 ASSERT_RTNL(); 5711 5712 return !list_empty(&dev->adj_list.upper); 5713 } 5714 EXPORT_SYMBOL(netdev_has_any_upper_dev); 5715 5716 /** 5717 * netdev_master_upper_dev_get - Get master upper device 5718 * @dev: device 5719 * 5720 * Find a master upper device and return pointer to it or NULL in case 5721 * it's not there. The caller must hold the RTNL lock. 5722 */ 5723 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 5724 { 5725 struct netdev_adjacent *upper; 5726 5727 ASSERT_RTNL(); 5728 5729 if (list_empty(&dev->adj_list.upper)) 5730 return NULL; 5731 5732 upper = list_first_entry(&dev->adj_list.upper, 5733 struct netdev_adjacent, list); 5734 if (likely(upper->master)) 5735 return upper->dev; 5736 return NULL; 5737 } 5738 EXPORT_SYMBOL(netdev_master_upper_dev_get); 5739 5740 /** 5741 * netdev_has_any_lower_dev - Check if device is linked to some device 5742 * @dev: device 5743 * 5744 * Find out if a device is linked to a lower device and return true in case 5745 * it is. The caller must hold the RTNL lock. 5746 */ 5747 static bool netdev_has_any_lower_dev(struct net_device *dev) 5748 { 5749 ASSERT_RTNL(); 5750 5751 return !list_empty(&dev->adj_list.lower); 5752 } 5753 5754 void *netdev_adjacent_get_private(struct list_head *adj_list) 5755 { 5756 struct netdev_adjacent *adj; 5757 5758 adj = list_entry(adj_list, struct netdev_adjacent, list); 5759 5760 return adj->private; 5761 } 5762 EXPORT_SYMBOL(netdev_adjacent_get_private); 5763 5764 /** 5765 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 5766 * @dev: device 5767 * @iter: list_head ** of the current position 5768 * 5769 * Gets the next device from the dev's upper list, starting from iter 5770 * position. The caller must hold RCU read lock. 5771 */ 5772 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 5773 struct list_head **iter) 5774 { 5775 struct netdev_adjacent *upper; 5776 5777 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5778 5779 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5780 5781 if (&upper->list == &dev->adj_list.upper) 5782 return NULL; 5783 5784 *iter = &upper->list; 5785 5786 return upper->dev; 5787 } 5788 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 5789 5790 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 5791 struct list_head **iter) 5792 { 5793 struct netdev_adjacent *upper; 5794 5795 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5796 5797 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5798 5799 if (&upper->list == &dev->adj_list.upper) 5800 return NULL; 5801 5802 *iter = &upper->list; 5803 5804 return upper->dev; 5805 } 5806 5807 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 5808 int (*fn)(struct net_device *dev, 5809 void *data), 5810 void *data) 5811 { 5812 struct net_device *udev; 5813 struct list_head *iter; 5814 int ret; 5815 5816 for (iter = &dev->adj_list.upper, 5817 udev = netdev_next_upper_dev_rcu(dev, &iter); 5818 udev; 5819 udev = netdev_next_upper_dev_rcu(dev, &iter)) { 5820 /* first is the upper device itself */ 5821 ret = fn(udev, data); 5822 if (ret) 5823 return ret; 5824 5825 /* then look at all of its upper devices */ 5826 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data); 5827 if (ret) 5828 return ret; 5829 } 5830 5831 return 0; 5832 } 5833 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 5834 5835 /** 5836 * netdev_lower_get_next_private - Get the next ->private from the 5837 * lower neighbour list 5838 * @dev: device 5839 * @iter: list_head ** of the current position 5840 * 5841 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5842 * list, starting from iter position. The caller must hold either hold the 5843 * RTNL lock or its own locking that guarantees that the neighbour lower 5844 * list will remain unchanged. 5845 */ 5846 void *netdev_lower_get_next_private(struct net_device *dev, 5847 struct list_head **iter) 5848 { 5849 struct netdev_adjacent *lower; 5850 5851 lower = list_entry(*iter, struct netdev_adjacent, list); 5852 5853 if (&lower->list == &dev->adj_list.lower) 5854 return NULL; 5855 5856 *iter = lower->list.next; 5857 5858 return lower->private; 5859 } 5860 EXPORT_SYMBOL(netdev_lower_get_next_private); 5861 5862 /** 5863 * netdev_lower_get_next_private_rcu - Get the next ->private from the 5864 * lower neighbour list, RCU 5865 * variant 5866 * @dev: device 5867 * @iter: list_head ** of the current position 5868 * 5869 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5870 * list, starting from iter position. The caller must hold RCU read lock. 5871 */ 5872 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 5873 struct list_head **iter) 5874 { 5875 struct netdev_adjacent *lower; 5876 5877 WARN_ON_ONCE(!rcu_read_lock_held()); 5878 5879 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5880 5881 if (&lower->list == &dev->adj_list.lower) 5882 return NULL; 5883 5884 *iter = &lower->list; 5885 5886 return lower->private; 5887 } 5888 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 5889 5890 /** 5891 * netdev_lower_get_next - Get the next device from the lower neighbour 5892 * list 5893 * @dev: device 5894 * @iter: list_head ** of the current position 5895 * 5896 * Gets the next netdev_adjacent from the dev's lower neighbour 5897 * list, starting from iter position. The caller must hold RTNL lock or 5898 * its own locking that guarantees that the neighbour lower 5899 * list will remain unchanged. 5900 */ 5901 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 5902 { 5903 struct netdev_adjacent *lower; 5904 5905 lower = list_entry(*iter, struct netdev_adjacent, list); 5906 5907 if (&lower->list == &dev->adj_list.lower) 5908 return NULL; 5909 5910 *iter = lower->list.next; 5911 5912 return lower->dev; 5913 } 5914 EXPORT_SYMBOL(netdev_lower_get_next); 5915 5916 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 5917 struct list_head **iter) 5918 { 5919 struct netdev_adjacent *lower; 5920 5921 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 5922 5923 if (&lower->list == &dev->adj_list.lower) 5924 return NULL; 5925 5926 *iter = &lower->list; 5927 5928 return lower->dev; 5929 } 5930 5931 int netdev_walk_all_lower_dev(struct net_device *dev, 5932 int (*fn)(struct net_device *dev, 5933 void *data), 5934 void *data) 5935 { 5936 struct net_device *ldev; 5937 struct list_head *iter; 5938 int ret; 5939 5940 for (iter = &dev->adj_list.lower, 5941 ldev = netdev_next_lower_dev(dev, &iter); 5942 ldev; 5943 ldev = netdev_next_lower_dev(dev, &iter)) { 5944 /* first is the lower device itself */ 5945 ret = fn(ldev, data); 5946 if (ret) 5947 return ret; 5948 5949 /* then look at all of its lower devices */ 5950 ret = netdev_walk_all_lower_dev(ldev, fn, data); 5951 if (ret) 5952 return ret; 5953 } 5954 5955 return 0; 5956 } 5957 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 5958 5959 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 5960 struct list_head **iter) 5961 { 5962 struct netdev_adjacent *lower; 5963 5964 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5965 if (&lower->list == &dev->adj_list.lower) 5966 return NULL; 5967 5968 *iter = &lower->list; 5969 5970 return lower->dev; 5971 } 5972 5973 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 5974 int (*fn)(struct net_device *dev, 5975 void *data), 5976 void *data) 5977 { 5978 struct net_device *ldev; 5979 struct list_head *iter; 5980 int ret; 5981 5982 for (iter = &dev->adj_list.lower, 5983 ldev = netdev_next_lower_dev_rcu(dev, &iter); 5984 ldev; 5985 ldev = netdev_next_lower_dev_rcu(dev, &iter)) { 5986 /* first is the lower device itself */ 5987 ret = fn(ldev, data); 5988 if (ret) 5989 return ret; 5990 5991 /* then look at all of its lower devices */ 5992 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data); 5993 if (ret) 5994 return ret; 5995 } 5996 5997 return 0; 5998 } 5999 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 6000 6001 /** 6002 * netdev_lower_get_first_private_rcu - Get the first ->private from the 6003 * lower neighbour list, RCU 6004 * variant 6005 * @dev: device 6006 * 6007 * Gets the first netdev_adjacent->private from the dev's lower neighbour 6008 * list. The caller must hold RCU read lock. 6009 */ 6010 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 6011 { 6012 struct netdev_adjacent *lower; 6013 6014 lower = list_first_or_null_rcu(&dev->adj_list.lower, 6015 struct netdev_adjacent, list); 6016 if (lower) 6017 return lower->private; 6018 return NULL; 6019 } 6020 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 6021 6022 /** 6023 * netdev_master_upper_dev_get_rcu - Get master upper device 6024 * @dev: device 6025 * 6026 * Find a master upper device and return pointer to it or NULL in case 6027 * it's not there. The caller must hold the RCU read lock. 6028 */ 6029 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 6030 { 6031 struct netdev_adjacent *upper; 6032 6033 upper = list_first_or_null_rcu(&dev->adj_list.upper, 6034 struct netdev_adjacent, list); 6035 if (upper && likely(upper->master)) 6036 return upper->dev; 6037 return NULL; 6038 } 6039 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 6040 6041 static int netdev_adjacent_sysfs_add(struct net_device *dev, 6042 struct net_device *adj_dev, 6043 struct list_head *dev_list) 6044 { 6045 char linkname[IFNAMSIZ+7]; 6046 6047 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6048 "upper_%s" : "lower_%s", adj_dev->name); 6049 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 6050 linkname); 6051 } 6052 static void netdev_adjacent_sysfs_del(struct net_device *dev, 6053 char *name, 6054 struct list_head *dev_list) 6055 { 6056 char linkname[IFNAMSIZ+7]; 6057 6058 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6059 "upper_%s" : "lower_%s", name); 6060 sysfs_remove_link(&(dev->dev.kobj), linkname); 6061 } 6062 6063 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 6064 struct net_device *adj_dev, 6065 struct list_head *dev_list) 6066 { 6067 return (dev_list == &dev->adj_list.upper || 6068 dev_list == &dev->adj_list.lower) && 6069 net_eq(dev_net(dev), dev_net(adj_dev)); 6070 } 6071 6072 static int __netdev_adjacent_dev_insert(struct net_device *dev, 6073 struct net_device *adj_dev, 6074 struct list_head *dev_list, 6075 void *private, bool master) 6076 { 6077 struct netdev_adjacent *adj; 6078 int ret; 6079 6080 adj = __netdev_find_adj(adj_dev, dev_list); 6081 6082 if (adj) { 6083 adj->ref_nr += 1; 6084 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 6085 dev->name, adj_dev->name, adj->ref_nr); 6086 6087 return 0; 6088 } 6089 6090 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 6091 if (!adj) 6092 return -ENOMEM; 6093 6094 adj->dev = adj_dev; 6095 adj->master = master; 6096 adj->ref_nr = 1; 6097 adj->private = private; 6098 dev_hold(adj_dev); 6099 6100 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 6101 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 6102 6103 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 6104 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 6105 if (ret) 6106 goto free_adj; 6107 } 6108 6109 /* Ensure that master link is always the first item in list. */ 6110 if (master) { 6111 ret = sysfs_create_link(&(dev->dev.kobj), 6112 &(adj_dev->dev.kobj), "master"); 6113 if (ret) 6114 goto remove_symlinks; 6115 6116 list_add_rcu(&adj->list, dev_list); 6117 } else { 6118 list_add_tail_rcu(&adj->list, dev_list); 6119 } 6120 6121 return 0; 6122 6123 remove_symlinks: 6124 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6125 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6126 free_adj: 6127 kfree(adj); 6128 dev_put(adj_dev); 6129 6130 return ret; 6131 } 6132 6133 static void __netdev_adjacent_dev_remove(struct net_device *dev, 6134 struct net_device *adj_dev, 6135 u16 ref_nr, 6136 struct list_head *dev_list) 6137 { 6138 struct netdev_adjacent *adj; 6139 6140 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 6141 dev->name, adj_dev->name, ref_nr); 6142 6143 adj = __netdev_find_adj(adj_dev, dev_list); 6144 6145 if (!adj) { 6146 pr_err("Adjacency does not exist for device %s from %s\n", 6147 dev->name, adj_dev->name); 6148 WARN_ON(1); 6149 return; 6150 } 6151 6152 if (adj->ref_nr > ref_nr) { 6153 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 6154 dev->name, adj_dev->name, ref_nr, 6155 adj->ref_nr - ref_nr); 6156 adj->ref_nr -= ref_nr; 6157 return; 6158 } 6159 6160 if (adj->master) 6161 sysfs_remove_link(&(dev->dev.kobj), "master"); 6162 6163 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6164 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6165 6166 list_del_rcu(&adj->list); 6167 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 6168 adj_dev->name, dev->name, adj_dev->name); 6169 dev_put(adj_dev); 6170 kfree_rcu(adj, rcu); 6171 } 6172 6173 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 6174 struct net_device *upper_dev, 6175 struct list_head *up_list, 6176 struct list_head *down_list, 6177 void *private, bool master) 6178 { 6179 int ret; 6180 6181 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 6182 private, master); 6183 if (ret) 6184 return ret; 6185 6186 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 6187 private, false); 6188 if (ret) { 6189 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 6190 return ret; 6191 } 6192 6193 return 0; 6194 } 6195 6196 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 6197 struct net_device *upper_dev, 6198 u16 ref_nr, 6199 struct list_head *up_list, 6200 struct list_head *down_list) 6201 { 6202 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 6203 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 6204 } 6205 6206 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 6207 struct net_device *upper_dev, 6208 void *private, bool master) 6209 { 6210 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 6211 &dev->adj_list.upper, 6212 &upper_dev->adj_list.lower, 6213 private, master); 6214 } 6215 6216 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 6217 struct net_device *upper_dev) 6218 { 6219 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 6220 &dev->adj_list.upper, 6221 &upper_dev->adj_list.lower); 6222 } 6223 6224 static int __netdev_upper_dev_link(struct net_device *dev, 6225 struct net_device *upper_dev, bool master, 6226 void *upper_priv, void *upper_info) 6227 { 6228 struct netdev_notifier_changeupper_info changeupper_info; 6229 int ret = 0; 6230 6231 ASSERT_RTNL(); 6232 6233 if (dev == upper_dev) 6234 return -EBUSY; 6235 6236 /* To prevent loops, check if dev is not upper device to upper_dev. */ 6237 if (netdev_has_upper_dev(upper_dev, dev)) 6238 return -EBUSY; 6239 6240 if (netdev_has_upper_dev(dev, upper_dev)) 6241 return -EEXIST; 6242 6243 if (master && netdev_master_upper_dev_get(dev)) 6244 return -EBUSY; 6245 6246 changeupper_info.upper_dev = upper_dev; 6247 changeupper_info.master = master; 6248 changeupper_info.linking = true; 6249 changeupper_info.upper_info = upper_info; 6250 6251 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev, 6252 &changeupper_info.info); 6253 ret = notifier_to_errno(ret); 6254 if (ret) 6255 return ret; 6256 6257 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 6258 master); 6259 if (ret) 6260 return ret; 6261 6262 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev, 6263 &changeupper_info.info); 6264 ret = notifier_to_errno(ret); 6265 if (ret) 6266 goto rollback; 6267 6268 return 0; 6269 6270 rollback: 6271 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 6272 6273 return ret; 6274 } 6275 6276 /** 6277 * netdev_upper_dev_link - Add a link to the upper device 6278 * @dev: device 6279 * @upper_dev: new upper device 6280 * 6281 * Adds a link to device which is upper to this one. The caller must hold 6282 * the RTNL lock. On a failure a negative errno code is returned. 6283 * On success the reference counts are adjusted and the function 6284 * returns zero. 6285 */ 6286 int netdev_upper_dev_link(struct net_device *dev, 6287 struct net_device *upper_dev) 6288 { 6289 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL); 6290 } 6291 EXPORT_SYMBOL(netdev_upper_dev_link); 6292 6293 /** 6294 * netdev_master_upper_dev_link - Add a master link to the upper device 6295 * @dev: device 6296 * @upper_dev: new upper device 6297 * @upper_priv: upper device private 6298 * @upper_info: upper info to be passed down via notifier 6299 * 6300 * Adds a link to device which is upper to this one. In this case, only 6301 * one master upper device can be linked, although other non-master devices 6302 * might be linked as well. The caller must hold the RTNL lock. 6303 * On a failure a negative errno code is returned. On success the reference 6304 * counts are adjusted and the function returns zero. 6305 */ 6306 int netdev_master_upper_dev_link(struct net_device *dev, 6307 struct net_device *upper_dev, 6308 void *upper_priv, void *upper_info) 6309 { 6310 return __netdev_upper_dev_link(dev, upper_dev, true, 6311 upper_priv, upper_info); 6312 } 6313 EXPORT_SYMBOL(netdev_master_upper_dev_link); 6314 6315 /** 6316 * netdev_upper_dev_unlink - Removes a link to upper device 6317 * @dev: device 6318 * @upper_dev: new upper device 6319 * 6320 * Removes a link to device which is upper to this one. The caller must hold 6321 * the RTNL lock. 6322 */ 6323 void netdev_upper_dev_unlink(struct net_device *dev, 6324 struct net_device *upper_dev) 6325 { 6326 struct netdev_notifier_changeupper_info changeupper_info; 6327 6328 ASSERT_RTNL(); 6329 6330 changeupper_info.upper_dev = upper_dev; 6331 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 6332 changeupper_info.linking = false; 6333 6334 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev, 6335 &changeupper_info.info); 6336 6337 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 6338 6339 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev, 6340 &changeupper_info.info); 6341 } 6342 EXPORT_SYMBOL(netdev_upper_dev_unlink); 6343 6344 /** 6345 * netdev_bonding_info_change - Dispatch event about slave change 6346 * @dev: device 6347 * @bonding_info: info to dispatch 6348 * 6349 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 6350 * The caller must hold the RTNL lock. 6351 */ 6352 void netdev_bonding_info_change(struct net_device *dev, 6353 struct netdev_bonding_info *bonding_info) 6354 { 6355 struct netdev_notifier_bonding_info info; 6356 6357 memcpy(&info.bonding_info, bonding_info, 6358 sizeof(struct netdev_bonding_info)); 6359 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev, 6360 &info.info); 6361 } 6362 EXPORT_SYMBOL(netdev_bonding_info_change); 6363 6364 static void netdev_adjacent_add_links(struct net_device *dev) 6365 { 6366 struct netdev_adjacent *iter; 6367 6368 struct net *net = dev_net(dev); 6369 6370 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6371 if (!net_eq(net, dev_net(iter->dev))) 6372 continue; 6373 netdev_adjacent_sysfs_add(iter->dev, dev, 6374 &iter->dev->adj_list.lower); 6375 netdev_adjacent_sysfs_add(dev, iter->dev, 6376 &dev->adj_list.upper); 6377 } 6378 6379 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6380 if (!net_eq(net, dev_net(iter->dev))) 6381 continue; 6382 netdev_adjacent_sysfs_add(iter->dev, dev, 6383 &iter->dev->adj_list.upper); 6384 netdev_adjacent_sysfs_add(dev, iter->dev, 6385 &dev->adj_list.lower); 6386 } 6387 } 6388 6389 static void netdev_adjacent_del_links(struct net_device *dev) 6390 { 6391 struct netdev_adjacent *iter; 6392 6393 struct net *net = dev_net(dev); 6394 6395 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6396 if (!net_eq(net, dev_net(iter->dev))) 6397 continue; 6398 netdev_adjacent_sysfs_del(iter->dev, dev->name, 6399 &iter->dev->adj_list.lower); 6400 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6401 &dev->adj_list.upper); 6402 } 6403 6404 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6405 if (!net_eq(net, dev_net(iter->dev))) 6406 continue; 6407 netdev_adjacent_sysfs_del(iter->dev, dev->name, 6408 &iter->dev->adj_list.upper); 6409 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6410 &dev->adj_list.lower); 6411 } 6412 } 6413 6414 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 6415 { 6416 struct netdev_adjacent *iter; 6417 6418 struct net *net = dev_net(dev); 6419 6420 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6421 if (!net_eq(net, dev_net(iter->dev))) 6422 continue; 6423 netdev_adjacent_sysfs_del(iter->dev, oldname, 6424 &iter->dev->adj_list.lower); 6425 netdev_adjacent_sysfs_add(iter->dev, dev, 6426 &iter->dev->adj_list.lower); 6427 } 6428 6429 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6430 if (!net_eq(net, dev_net(iter->dev))) 6431 continue; 6432 netdev_adjacent_sysfs_del(iter->dev, oldname, 6433 &iter->dev->adj_list.upper); 6434 netdev_adjacent_sysfs_add(iter->dev, dev, 6435 &iter->dev->adj_list.upper); 6436 } 6437 } 6438 6439 void *netdev_lower_dev_get_private(struct net_device *dev, 6440 struct net_device *lower_dev) 6441 { 6442 struct netdev_adjacent *lower; 6443 6444 if (!lower_dev) 6445 return NULL; 6446 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 6447 if (!lower) 6448 return NULL; 6449 6450 return lower->private; 6451 } 6452 EXPORT_SYMBOL(netdev_lower_dev_get_private); 6453 6454 6455 int dev_get_nest_level(struct net_device *dev) 6456 { 6457 struct net_device *lower = NULL; 6458 struct list_head *iter; 6459 int max_nest = -1; 6460 int nest; 6461 6462 ASSERT_RTNL(); 6463 6464 netdev_for_each_lower_dev(dev, lower, iter) { 6465 nest = dev_get_nest_level(lower); 6466 if (max_nest < nest) 6467 max_nest = nest; 6468 } 6469 6470 return max_nest + 1; 6471 } 6472 EXPORT_SYMBOL(dev_get_nest_level); 6473 6474 /** 6475 * netdev_lower_change - Dispatch event about lower device state change 6476 * @lower_dev: device 6477 * @lower_state_info: state to dispatch 6478 * 6479 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 6480 * The caller must hold the RTNL lock. 6481 */ 6482 void netdev_lower_state_changed(struct net_device *lower_dev, 6483 void *lower_state_info) 6484 { 6485 struct netdev_notifier_changelowerstate_info changelowerstate_info; 6486 6487 ASSERT_RTNL(); 6488 changelowerstate_info.lower_state_info = lower_state_info; 6489 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev, 6490 &changelowerstate_info.info); 6491 } 6492 EXPORT_SYMBOL(netdev_lower_state_changed); 6493 6494 static void dev_change_rx_flags(struct net_device *dev, int flags) 6495 { 6496 const struct net_device_ops *ops = dev->netdev_ops; 6497 6498 if (ops->ndo_change_rx_flags) 6499 ops->ndo_change_rx_flags(dev, flags); 6500 } 6501 6502 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 6503 { 6504 unsigned int old_flags = dev->flags; 6505 kuid_t uid; 6506 kgid_t gid; 6507 6508 ASSERT_RTNL(); 6509 6510 dev->flags |= IFF_PROMISC; 6511 dev->promiscuity += inc; 6512 if (dev->promiscuity == 0) { 6513 /* 6514 * Avoid overflow. 6515 * If inc causes overflow, untouch promisc and return error. 6516 */ 6517 if (inc < 0) 6518 dev->flags &= ~IFF_PROMISC; 6519 else { 6520 dev->promiscuity -= inc; 6521 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 6522 dev->name); 6523 return -EOVERFLOW; 6524 } 6525 } 6526 if (dev->flags != old_flags) { 6527 pr_info("device %s %s promiscuous mode\n", 6528 dev->name, 6529 dev->flags & IFF_PROMISC ? "entered" : "left"); 6530 if (audit_enabled) { 6531 current_uid_gid(&uid, &gid); 6532 audit_log(current->audit_context, GFP_ATOMIC, 6533 AUDIT_ANOM_PROMISCUOUS, 6534 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 6535 dev->name, (dev->flags & IFF_PROMISC), 6536 (old_flags & IFF_PROMISC), 6537 from_kuid(&init_user_ns, audit_get_loginuid(current)), 6538 from_kuid(&init_user_ns, uid), 6539 from_kgid(&init_user_ns, gid), 6540 audit_get_sessionid(current)); 6541 } 6542 6543 dev_change_rx_flags(dev, IFF_PROMISC); 6544 } 6545 if (notify) 6546 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 6547 return 0; 6548 } 6549 6550 /** 6551 * dev_set_promiscuity - update promiscuity count on a device 6552 * @dev: device 6553 * @inc: modifier 6554 * 6555 * Add or remove promiscuity from a device. While the count in the device 6556 * remains above zero the interface remains promiscuous. Once it hits zero 6557 * the device reverts back to normal filtering operation. A negative inc 6558 * value is used to drop promiscuity on the device. 6559 * Return 0 if successful or a negative errno code on error. 6560 */ 6561 int dev_set_promiscuity(struct net_device *dev, int inc) 6562 { 6563 unsigned int old_flags = dev->flags; 6564 int err; 6565 6566 err = __dev_set_promiscuity(dev, inc, true); 6567 if (err < 0) 6568 return err; 6569 if (dev->flags != old_flags) 6570 dev_set_rx_mode(dev); 6571 return err; 6572 } 6573 EXPORT_SYMBOL(dev_set_promiscuity); 6574 6575 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 6576 { 6577 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 6578 6579 ASSERT_RTNL(); 6580 6581 dev->flags |= IFF_ALLMULTI; 6582 dev->allmulti += inc; 6583 if (dev->allmulti == 0) { 6584 /* 6585 * Avoid overflow. 6586 * If inc causes overflow, untouch allmulti and return error. 6587 */ 6588 if (inc < 0) 6589 dev->flags &= ~IFF_ALLMULTI; 6590 else { 6591 dev->allmulti -= inc; 6592 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 6593 dev->name); 6594 return -EOVERFLOW; 6595 } 6596 } 6597 if (dev->flags ^ old_flags) { 6598 dev_change_rx_flags(dev, IFF_ALLMULTI); 6599 dev_set_rx_mode(dev); 6600 if (notify) 6601 __dev_notify_flags(dev, old_flags, 6602 dev->gflags ^ old_gflags); 6603 } 6604 return 0; 6605 } 6606 6607 /** 6608 * dev_set_allmulti - update allmulti count on a device 6609 * @dev: device 6610 * @inc: modifier 6611 * 6612 * Add or remove reception of all multicast frames to a device. While the 6613 * count in the device remains above zero the interface remains listening 6614 * to all interfaces. Once it hits zero the device reverts back to normal 6615 * filtering operation. A negative @inc value is used to drop the counter 6616 * when releasing a resource needing all multicasts. 6617 * Return 0 if successful or a negative errno code on error. 6618 */ 6619 6620 int dev_set_allmulti(struct net_device *dev, int inc) 6621 { 6622 return __dev_set_allmulti(dev, inc, true); 6623 } 6624 EXPORT_SYMBOL(dev_set_allmulti); 6625 6626 /* 6627 * Upload unicast and multicast address lists to device and 6628 * configure RX filtering. When the device doesn't support unicast 6629 * filtering it is put in promiscuous mode while unicast addresses 6630 * are present. 6631 */ 6632 void __dev_set_rx_mode(struct net_device *dev) 6633 { 6634 const struct net_device_ops *ops = dev->netdev_ops; 6635 6636 /* dev_open will call this function so the list will stay sane. */ 6637 if (!(dev->flags&IFF_UP)) 6638 return; 6639 6640 if (!netif_device_present(dev)) 6641 return; 6642 6643 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 6644 /* Unicast addresses changes may only happen under the rtnl, 6645 * therefore calling __dev_set_promiscuity here is safe. 6646 */ 6647 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 6648 __dev_set_promiscuity(dev, 1, false); 6649 dev->uc_promisc = true; 6650 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 6651 __dev_set_promiscuity(dev, -1, false); 6652 dev->uc_promisc = false; 6653 } 6654 } 6655 6656 if (ops->ndo_set_rx_mode) 6657 ops->ndo_set_rx_mode(dev); 6658 } 6659 6660 void dev_set_rx_mode(struct net_device *dev) 6661 { 6662 netif_addr_lock_bh(dev); 6663 __dev_set_rx_mode(dev); 6664 netif_addr_unlock_bh(dev); 6665 } 6666 6667 /** 6668 * dev_get_flags - get flags reported to userspace 6669 * @dev: device 6670 * 6671 * Get the combination of flag bits exported through APIs to userspace. 6672 */ 6673 unsigned int dev_get_flags(const struct net_device *dev) 6674 { 6675 unsigned int flags; 6676 6677 flags = (dev->flags & ~(IFF_PROMISC | 6678 IFF_ALLMULTI | 6679 IFF_RUNNING | 6680 IFF_LOWER_UP | 6681 IFF_DORMANT)) | 6682 (dev->gflags & (IFF_PROMISC | 6683 IFF_ALLMULTI)); 6684 6685 if (netif_running(dev)) { 6686 if (netif_oper_up(dev)) 6687 flags |= IFF_RUNNING; 6688 if (netif_carrier_ok(dev)) 6689 flags |= IFF_LOWER_UP; 6690 if (netif_dormant(dev)) 6691 flags |= IFF_DORMANT; 6692 } 6693 6694 return flags; 6695 } 6696 EXPORT_SYMBOL(dev_get_flags); 6697 6698 int __dev_change_flags(struct net_device *dev, unsigned int flags) 6699 { 6700 unsigned int old_flags = dev->flags; 6701 int ret; 6702 6703 ASSERT_RTNL(); 6704 6705 /* 6706 * Set the flags on our device. 6707 */ 6708 6709 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 6710 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 6711 IFF_AUTOMEDIA)) | 6712 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 6713 IFF_ALLMULTI)); 6714 6715 /* 6716 * Load in the correct multicast list now the flags have changed. 6717 */ 6718 6719 if ((old_flags ^ flags) & IFF_MULTICAST) 6720 dev_change_rx_flags(dev, IFF_MULTICAST); 6721 6722 dev_set_rx_mode(dev); 6723 6724 /* 6725 * Have we downed the interface. We handle IFF_UP ourselves 6726 * according to user attempts to set it, rather than blindly 6727 * setting it. 6728 */ 6729 6730 ret = 0; 6731 if ((old_flags ^ flags) & IFF_UP) { 6732 if (old_flags & IFF_UP) 6733 __dev_close(dev); 6734 else 6735 ret = __dev_open(dev); 6736 } 6737 6738 if ((flags ^ dev->gflags) & IFF_PROMISC) { 6739 int inc = (flags & IFF_PROMISC) ? 1 : -1; 6740 unsigned int old_flags = dev->flags; 6741 6742 dev->gflags ^= IFF_PROMISC; 6743 6744 if (__dev_set_promiscuity(dev, inc, false) >= 0) 6745 if (dev->flags != old_flags) 6746 dev_set_rx_mode(dev); 6747 } 6748 6749 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 6750 * is important. Some (broken) drivers set IFF_PROMISC, when 6751 * IFF_ALLMULTI is requested not asking us and not reporting. 6752 */ 6753 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 6754 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 6755 6756 dev->gflags ^= IFF_ALLMULTI; 6757 __dev_set_allmulti(dev, inc, false); 6758 } 6759 6760 return ret; 6761 } 6762 6763 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 6764 unsigned int gchanges) 6765 { 6766 unsigned int changes = dev->flags ^ old_flags; 6767 6768 if (gchanges) 6769 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 6770 6771 if (changes & IFF_UP) { 6772 if (dev->flags & IFF_UP) 6773 call_netdevice_notifiers(NETDEV_UP, dev); 6774 else 6775 call_netdevice_notifiers(NETDEV_DOWN, dev); 6776 } 6777 6778 if (dev->flags & IFF_UP && 6779 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 6780 struct netdev_notifier_change_info change_info; 6781 6782 change_info.flags_changed = changes; 6783 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 6784 &change_info.info); 6785 } 6786 } 6787 6788 /** 6789 * dev_change_flags - change device settings 6790 * @dev: device 6791 * @flags: device state flags 6792 * 6793 * Change settings on device based state flags. The flags are 6794 * in the userspace exported format. 6795 */ 6796 int dev_change_flags(struct net_device *dev, unsigned int flags) 6797 { 6798 int ret; 6799 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 6800 6801 ret = __dev_change_flags(dev, flags); 6802 if (ret < 0) 6803 return ret; 6804 6805 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 6806 __dev_notify_flags(dev, old_flags, changes); 6807 return ret; 6808 } 6809 EXPORT_SYMBOL(dev_change_flags); 6810 6811 int __dev_set_mtu(struct net_device *dev, int new_mtu) 6812 { 6813 const struct net_device_ops *ops = dev->netdev_ops; 6814 6815 if (ops->ndo_change_mtu) 6816 return ops->ndo_change_mtu(dev, new_mtu); 6817 6818 dev->mtu = new_mtu; 6819 return 0; 6820 } 6821 EXPORT_SYMBOL(__dev_set_mtu); 6822 6823 /** 6824 * dev_set_mtu - Change maximum transfer unit 6825 * @dev: device 6826 * @new_mtu: new transfer unit 6827 * 6828 * Change the maximum transfer size of the network device. 6829 */ 6830 int dev_set_mtu(struct net_device *dev, int new_mtu) 6831 { 6832 int err, orig_mtu; 6833 6834 if (new_mtu == dev->mtu) 6835 return 0; 6836 6837 /* MTU must be positive, and in range */ 6838 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 6839 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n", 6840 dev->name, new_mtu, dev->min_mtu); 6841 return -EINVAL; 6842 } 6843 6844 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 6845 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n", 6846 dev->name, new_mtu, dev->max_mtu); 6847 return -EINVAL; 6848 } 6849 6850 if (!netif_device_present(dev)) 6851 return -ENODEV; 6852 6853 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 6854 err = notifier_to_errno(err); 6855 if (err) 6856 return err; 6857 6858 orig_mtu = dev->mtu; 6859 err = __dev_set_mtu(dev, new_mtu); 6860 6861 if (!err) { 6862 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 6863 err = notifier_to_errno(err); 6864 if (err) { 6865 /* setting mtu back and notifying everyone again, 6866 * so that they have a chance to revert changes. 6867 */ 6868 __dev_set_mtu(dev, orig_mtu); 6869 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 6870 } 6871 } 6872 return err; 6873 } 6874 EXPORT_SYMBOL(dev_set_mtu); 6875 6876 /** 6877 * dev_set_group - Change group this device belongs to 6878 * @dev: device 6879 * @new_group: group this device should belong to 6880 */ 6881 void dev_set_group(struct net_device *dev, int new_group) 6882 { 6883 dev->group = new_group; 6884 } 6885 EXPORT_SYMBOL(dev_set_group); 6886 6887 /** 6888 * dev_set_mac_address - Change Media Access Control Address 6889 * @dev: device 6890 * @sa: new address 6891 * 6892 * Change the hardware (MAC) address of the device 6893 */ 6894 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 6895 { 6896 const struct net_device_ops *ops = dev->netdev_ops; 6897 int err; 6898 6899 if (!ops->ndo_set_mac_address) 6900 return -EOPNOTSUPP; 6901 if (sa->sa_family != dev->type) 6902 return -EINVAL; 6903 if (!netif_device_present(dev)) 6904 return -ENODEV; 6905 err = ops->ndo_set_mac_address(dev, sa); 6906 if (err) 6907 return err; 6908 dev->addr_assign_type = NET_ADDR_SET; 6909 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 6910 add_device_randomness(dev->dev_addr, dev->addr_len); 6911 return 0; 6912 } 6913 EXPORT_SYMBOL(dev_set_mac_address); 6914 6915 /** 6916 * dev_change_carrier - Change device carrier 6917 * @dev: device 6918 * @new_carrier: new value 6919 * 6920 * Change device carrier 6921 */ 6922 int dev_change_carrier(struct net_device *dev, bool new_carrier) 6923 { 6924 const struct net_device_ops *ops = dev->netdev_ops; 6925 6926 if (!ops->ndo_change_carrier) 6927 return -EOPNOTSUPP; 6928 if (!netif_device_present(dev)) 6929 return -ENODEV; 6930 return ops->ndo_change_carrier(dev, new_carrier); 6931 } 6932 EXPORT_SYMBOL(dev_change_carrier); 6933 6934 /** 6935 * dev_get_phys_port_id - Get device physical port ID 6936 * @dev: device 6937 * @ppid: port ID 6938 * 6939 * Get device physical port ID 6940 */ 6941 int dev_get_phys_port_id(struct net_device *dev, 6942 struct netdev_phys_item_id *ppid) 6943 { 6944 const struct net_device_ops *ops = dev->netdev_ops; 6945 6946 if (!ops->ndo_get_phys_port_id) 6947 return -EOPNOTSUPP; 6948 return ops->ndo_get_phys_port_id(dev, ppid); 6949 } 6950 EXPORT_SYMBOL(dev_get_phys_port_id); 6951 6952 /** 6953 * dev_get_phys_port_name - Get device physical port name 6954 * @dev: device 6955 * @name: port name 6956 * @len: limit of bytes to copy to name 6957 * 6958 * Get device physical port name 6959 */ 6960 int dev_get_phys_port_name(struct net_device *dev, 6961 char *name, size_t len) 6962 { 6963 const struct net_device_ops *ops = dev->netdev_ops; 6964 6965 if (!ops->ndo_get_phys_port_name) 6966 return -EOPNOTSUPP; 6967 return ops->ndo_get_phys_port_name(dev, name, len); 6968 } 6969 EXPORT_SYMBOL(dev_get_phys_port_name); 6970 6971 /** 6972 * dev_change_proto_down - update protocol port state information 6973 * @dev: device 6974 * @proto_down: new value 6975 * 6976 * This info can be used by switch drivers to set the phys state of the 6977 * port. 6978 */ 6979 int dev_change_proto_down(struct net_device *dev, bool proto_down) 6980 { 6981 const struct net_device_ops *ops = dev->netdev_ops; 6982 6983 if (!ops->ndo_change_proto_down) 6984 return -EOPNOTSUPP; 6985 if (!netif_device_present(dev)) 6986 return -ENODEV; 6987 return ops->ndo_change_proto_down(dev, proto_down); 6988 } 6989 EXPORT_SYMBOL(dev_change_proto_down); 6990 6991 u8 __dev_xdp_attached(struct net_device *dev, xdp_op_t xdp_op, u32 *prog_id) 6992 { 6993 struct netdev_xdp xdp; 6994 6995 memset(&xdp, 0, sizeof(xdp)); 6996 xdp.command = XDP_QUERY_PROG; 6997 6998 /* Query must always succeed. */ 6999 WARN_ON(xdp_op(dev, &xdp) < 0); 7000 if (prog_id) 7001 *prog_id = xdp.prog_id; 7002 7003 return xdp.prog_attached; 7004 } 7005 7006 static int dev_xdp_install(struct net_device *dev, xdp_op_t xdp_op, 7007 struct netlink_ext_ack *extack, u32 flags, 7008 struct bpf_prog *prog) 7009 { 7010 struct netdev_xdp xdp; 7011 7012 memset(&xdp, 0, sizeof(xdp)); 7013 if (flags & XDP_FLAGS_HW_MODE) 7014 xdp.command = XDP_SETUP_PROG_HW; 7015 else 7016 xdp.command = XDP_SETUP_PROG; 7017 xdp.extack = extack; 7018 xdp.flags = flags; 7019 xdp.prog = prog; 7020 7021 return xdp_op(dev, &xdp); 7022 } 7023 7024 /** 7025 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 7026 * @dev: device 7027 * @extack: netlink extended ack 7028 * @fd: new program fd or negative value to clear 7029 * @flags: xdp-related flags 7030 * 7031 * Set or clear a bpf program for a device 7032 */ 7033 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 7034 int fd, u32 flags) 7035 { 7036 const struct net_device_ops *ops = dev->netdev_ops; 7037 struct bpf_prog *prog = NULL; 7038 xdp_op_t xdp_op, xdp_chk; 7039 int err; 7040 7041 ASSERT_RTNL(); 7042 7043 xdp_op = xdp_chk = ops->ndo_xdp; 7044 if (!xdp_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) 7045 return -EOPNOTSUPP; 7046 if (!xdp_op || (flags & XDP_FLAGS_SKB_MODE)) 7047 xdp_op = generic_xdp_install; 7048 if (xdp_op == xdp_chk) 7049 xdp_chk = generic_xdp_install; 7050 7051 if (fd >= 0) { 7052 if (xdp_chk && __dev_xdp_attached(dev, xdp_chk, NULL)) 7053 return -EEXIST; 7054 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && 7055 __dev_xdp_attached(dev, xdp_op, NULL)) 7056 return -EBUSY; 7057 7058 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP); 7059 if (IS_ERR(prog)) 7060 return PTR_ERR(prog); 7061 } 7062 7063 err = dev_xdp_install(dev, xdp_op, extack, flags, prog); 7064 if (err < 0 && prog) 7065 bpf_prog_put(prog); 7066 7067 return err; 7068 } 7069 7070 /** 7071 * dev_new_index - allocate an ifindex 7072 * @net: the applicable net namespace 7073 * 7074 * Returns a suitable unique value for a new device interface 7075 * number. The caller must hold the rtnl semaphore or the 7076 * dev_base_lock to be sure it remains unique. 7077 */ 7078 static int dev_new_index(struct net *net) 7079 { 7080 int ifindex = net->ifindex; 7081 7082 for (;;) { 7083 if (++ifindex <= 0) 7084 ifindex = 1; 7085 if (!__dev_get_by_index(net, ifindex)) 7086 return net->ifindex = ifindex; 7087 } 7088 } 7089 7090 /* Delayed registration/unregisteration */ 7091 static LIST_HEAD(net_todo_list); 7092 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 7093 7094 static void net_set_todo(struct net_device *dev) 7095 { 7096 list_add_tail(&dev->todo_list, &net_todo_list); 7097 dev_net(dev)->dev_unreg_count++; 7098 } 7099 7100 static void rollback_registered_many(struct list_head *head) 7101 { 7102 struct net_device *dev, *tmp; 7103 LIST_HEAD(close_head); 7104 7105 BUG_ON(dev_boot_phase); 7106 ASSERT_RTNL(); 7107 7108 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 7109 /* Some devices call without registering 7110 * for initialization unwind. Remove those 7111 * devices and proceed with the remaining. 7112 */ 7113 if (dev->reg_state == NETREG_UNINITIALIZED) { 7114 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 7115 dev->name, dev); 7116 7117 WARN_ON(1); 7118 list_del(&dev->unreg_list); 7119 continue; 7120 } 7121 dev->dismantle = true; 7122 BUG_ON(dev->reg_state != NETREG_REGISTERED); 7123 } 7124 7125 /* If device is running, close it first. */ 7126 list_for_each_entry(dev, head, unreg_list) 7127 list_add_tail(&dev->close_list, &close_head); 7128 dev_close_many(&close_head, true); 7129 7130 list_for_each_entry(dev, head, unreg_list) { 7131 /* And unlink it from device chain. */ 7132 unlist_netdevice(dev); 7133 7134 dev->reg_state = NETREG_UNREGISTERING; 7135 } 7136 flush_all_backlogs(); 7137 7138 synchronize_net(); 7139 7140 list_for_each_entry(dev, head, unreg_list) { 7141 struct sk_buff *skb = NULL; 7142 7143 /* Shutdown queueing discipline. */ 7144 dev_shutdown(dev); 7145 7146 7147 /* Notify protocols, that we are about to destroy 7148 * this device. They should clean all the things. 7149 */ 7150 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7151 7152 if (!dev->rtnl_link_ops || 7153 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 7154 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 7155 GFP_KERNEL); 7156 7157 /* 7158 * Flush the unicast and multicast chains 7159 */ 7160 dev_uc_flush(dev); 7161 dev_mc_flush(dev); 7162 7163 if (dev->netdev_ops->ndo_uninit) 7164 dev->netdev_ops->ndo_uninit(dev); 7165 7166 if (skb) 7167 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 7168 7169 /* Notifier chain MUST detach us all upper devices. */ 7170 WARN_ON(netdev_has_any_upper_dev(dev)); 7171 WARN_ON(netdev_has_any_lower_dev(dev)); 7172 7173 /* Remove entries from kobject tree */ 7174 netdev_unregister_kobject(dev); 7175 #ifdef CONFIG_XPS 7176 /* Remove XPS queueing entries */ 7177 netif_reset_xps_queues_gt(dev, 0); 7178 #endif 7179 } 7180 7181 synchronize_net(); 7182 7183 list_for_each_entry(dev, head, unreg_list) 7184 dev_put(dev); 7185 } 7186 7187 static void rollback_registered(struct net_device *dev) 7188 { 7189 LIST_HEAD(single); 7190 7191 list_add(&dev->unreg_list, &single); 7192 rollback_registered_many(&single); 7193 list_del(&single); 7194 } 7195 7196 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 7197 struct net_device *upper, netdev_features_t features) 7198 { 7199 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 7200 netdev_features_t feature; 7201 int feature_bit; 7202 7203 for_each_netdev_feature(&upper_disables, feature_bit) { 7204 feature = __NETIF_F_BIT(feature_bit); 7205 if (!(upper->wanted_features & feature) 7206 && (features & feature)) { 7207 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 7208 &feature, upper->name); 7209 features &= ~feature; 7210 } 7211 } 7212 7213 return features; 7214 } 7215 7216 static void netdev_sync_lower_features(struct net_device *upper, 7217 struct net_device *lower, netdev_features_t features) 7218 { 7219 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 7220 netdev_features_t feature; 7221 int feature_bit; 7222 7223 for_each_netdev_feature(&upper_disables, feature_bit) { 7224 feature = __NETIF_F_BIT(feature_bit); 7225 if (!(features & feature) && (lower->features & feature)) { 7226 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 7227 &feature, lower->name); 7228 lower->wanted_features &= ~feature; 7229 netdev_update_features(lower); 7230 7231 if (unlikely(lower->features & feature)) 7232 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 7233 &feature, lower->name); 7234 } 7235 } 7236 } 7237 7238 static netdev_features_t netdev_fix_features(struct net_device *dev, 7239 netdev_features_t features) 7240 { 7241 /* Fix illegal checksum combinations */ 7242 if ((features & NETIF_F_HW_CSUM) && 7243 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 7244 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 7245 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 7246 } 7247 7248 /* TSO requires that SG is present as well. */ 7249 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 7250 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 7251 features &= ~NETIF_F_ALL_TSO; 7252 } 7253 7254 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 7255 !(features & NETIF_F_IP_CSUM)) { 7256 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 7257 features &= ~NETIF_F_TSO; 7258 features &= ~NETIF_F_TSO_ECN; 7259 } 7260 7261 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 7262 !(features & NETIF_F_IPV6_CSUM)) { 7263 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 7264 features &= ~NETIF_F_TSO6; 7265 } 7266 7267 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 7268 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 7269 features &= ~NETIF_F_TSO_MANGLEID; 7270 7271 /* TSO ECN requires that TSO is present as well. */ 7272 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 7273 features &= ~NETIF_F_TSO_ECN; 7274 7275 /* Software GSO depends on SG. */ 7276 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 7277 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 7278 features &= ~NETIF_F_GSO; 7279 } 7280 7281 /* GSO partial features require GSO partial be set */ 7282 if ((features & dev->gso_partial_features) && 7283 !(features & NETIF_F_GSO_PARTIAL)) { 7284 netdev_dbg(dev, 7285 "Dropping partially supported GSO features since no GSO partial.\n"); 7286 features &= ~dev->gso_partial_features; 7287 } 7288 7289 return features; 7290 } 7291 7292 int __netdev_update_features(struct net_device *dev) 7293 { 7294 struct net_device *upper, *lower; 7295 netdev_features_t features; 7296 struct list_head *iter; 7297 int err = -1; 7298 7299 ASSERT_RTNL(); 7300 7301 features = netdev_get_wanted_features(dev); 7302 7303 if (dev->netdev_ops->ndo_fix_features) 7304 features = dev->netdev_ops->ndo_fix_features(dev, features); 7305 7306 /* driver might be less strict about feature dependencies */ 7307 features = netdev_fix_features(dev, features); 7308 7309 /* some features can't be enabled if they're off an an upper device */ 7310 netdev_for_each_upper_dev_rcu(dev, upper, iter) 7311 features = netdev_sync_upper_features(dev, upper, features); 7312 7313 if (dev->features == features) 7314 goto sync_lower; 7315 7316 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 7317 &dev->features, &features); 7318 7319 if (dev->netdev_ops->ndo_set_features) 7320 err = dev->netdev_ops->ndo_set_features(dev, features); 7321 else 7322 err = 0; 7323 7324 if (unlikely(err < 0)) { 7325 netdev_err(dev, 7326 "set_features() failed (%d); wanted %pNF, left %pNF\n", 7327 err, &features, &dev->features); 7328 /* return non-0 since some features might have changed and 7329 * it's better to fire a spurious notification than miss it 7330 */ 7331 return -1; 7332 } 7333 7334 sync_lower: 7335 /* some features must be disabled on lower devices when disabled 7336 * on an upper device (think: bonding master or bridge) 7337 */ 7338 netdev_for_each_lower_dev(dev, lower, iter) 7339 netdev_sync_lower_features(dev, lower, features); 7340 7341 if (!err) { 7342 netdev_features_t diff = features ^ dev->features; 7343 7344 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 7345 /* udp_tunnel_{get,drop}_rx_info both need 7346 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 7347 * device, or they won't do anything. 7348 * Thus we need to update dev->features 7349 * *before* calling udp_tunnel_get_rx_info, 7350 * but *after* calling udp_tunnel_drop_rx_info. 7351 */ 7352 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 7353 dev->features = features; 7354 udp_tunnel_get_rx_info(dev); 7355 } else { 7356 udp_tunnel_drop_rx_info(dev); 7357 } 7358 } 7359 7360 dev->features = features; 7361 } 7362 7363 return err < 0 ? 0 : 1; 7364 } 7365 7366 /** 7367 * netdev_update_features - recalculate device features 7368 * @dev: the device to check 7369 * 7370 * Recalculate dev->features set and send notifications if it 7371 * has changed. Should be called after driver or hardware dependent 7372 * conditions might have changed that influence the features. 7373 */ 7374 void netdev_update_features(struct net_device *dev) 7375 { 7376 if (__netdev_update_features(dev)) 7377 netdev_features_change(dev); 7378 } 7379 EXPORT_SYMBOL(netdev_update_features); 7380 7381 /** 7382 * netdev_change_features - recalculate device features 7383 * @dev: the device to check 7384 * 7385 * Recalculate dev->features set and send notifications even 7386 * if they have not changed. Should be called instead of 7387 * netdev_update_features() if also dev->vlan_features might 7388 * have changed to allow the changes to be propagated to stacked 7389 * VLAN devices. 7390 */ 7391 void netdev_change_features(struct net_device *dev) 7392 { 7393 __netdev_update_features(dev); 7394 netdev_features_change(dev); 7395 } 7396 EXPORT_SYMBOL(netdev_change_features); 7397 7398 /** 7399 * netif_stacked_transfer_operstate - transfer operstate 7400 * @rootdev: the root or lower level device to transfer state from 7401 * @dev: the device to transfer operstate to 7402 * 7403 * Transfer operational state from root to device. This is normally 7404 * called when a stacking relationship exists between the root 7405 * device and the device(a leaf device). 7406 */ 7407 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 7408 struct net_device *dev) 7409 { 7410 if (rootdev->operstate == IF_OPER_DORMANT) 7411 netif_dormant_on(dev); 7412 else 7413 netif_dormant_off(dev); 7414 7415 if (netif_carrier_ok(rootdev)) 7416 netif_carrier_on(dev); 7417 else 7418 netif_carrier_off(dev); 7419 } 7420 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 7421 7422 #ifdef CONFIG_SYSFS 7423 static int netif_alloc_rx_queues(struct net_device *dev) 7424 { 7425 unsigned int i, count = dev->num_rx_queues; 7426 struct netdev_rx_queue *rx; 7427 size_t sz = count * sizeof(*rx); 7428 7429 BUG_ON(count < 1); 7430 7431 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 7432 if (!rx) 7433 return -ENOMEM; 7434 7435 dev->_rx = rx; 7436 7437 for (i = 0; i < count; i++) 7438 rx[i].dev = dev; 7439 return 0; 7440 } 7441 #endif 7442 7443 static void netdev_init_one_queue(struct net_device *dev, 7444 struct netdev_queue *queue, void *_unused) 7445 { 7446 /* Initialize queue lock */ 7447 spin_lock_init(&queue->_xmit_lock); 7448 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 7449 queue->xmit_lock_owner = -1; 7450 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 7451 queue->dev = dev; 7452 #ifdef CONFIG_BQL 7453 dql_init(&queue->dql, HZ); 7454 #endif 7455 } 7456 7457 static void netif_free_tx_queues(struct net_device *dev) 7458 { 7459 kvfree(dev->_tx); 7460 } 7461 7462 static int netif_alloc_netdev_queues(struct net_device *dev) 7463 { 7464 unsigned int count = dev->num_tx_queues; 7465 struct netdev_queue *tx; 7466 size_t sz = count * sizeof(*tx); 7467 7468 if (count < 1 || count > 0xffff) 7469 return -EINVAL; 7470 7471 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 7472 if (!tx) 7473 return -ENOMEM; 7474 7475 dev->_tx = tx; 7476 7477 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 7478 spin_lock_init(&dev->tx_global_lock); 7479 7480 return 0; 7481 } 7482 7483 void netif_tx_stop_all_queues(struct net_device *dev) 7484 { 7485 unsigned int i; 7486 7487 for (i = 0; i < dev->num_tx_queues; i++) { 7488 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 7489 7490 netif_tx_stop_queue(txq); 7491 } 7492 } 7493 EXPORT_SYMBOL(netif_tx_stop_all_queues); 7494 7495 /** 7496 * register_netdevice - register a network device 7497 * @dev: device to register 7498 * 7499 * Take a completed network device structure and add it to the kernel 7500 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 7501 * chain. 0 is returned on success. A negative errno code is returned 7502 * on a failure to set up the device, or if the name is a duplicate. 7503 * 7504 * Callers must hold the rtnl semaphore. You may want 7505 * register_netdev() instead of this. 7506 * 7507 * BUGS: 7508 * The locking appears insufficient to guarantee two parallel registers 7509 * will not get the same name. 7510 */ 7511 7512 int register_netdevice(struct net_device *dev) 7513 { 7514 int ret; 7515 struct net *net = dev_net(dev); 7516 7517 BUG_ON(dev_boot_phase); 7518 ASSERT_RTNL(); 7519 7520 might_sleep(); 7521 7522 /* When net_device's are persistent, this will be fatal. */ 7523 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 7524 BUG_ON(!net); 7525 7526 spin_lock_init(&dev->addr_list_lock); 7527 netdev_set_addr_lockdep_class(dev); 7528 7529 ret = dev_get_valid_name(net, dev, dev->name); 7530 if (ret < 0) 7531 goto out; 7532 7533 /* Init, if this function is available */ 7534 if (dev->netdev_ops->ndo_init) { 7535 ret = dev->netdev_ops->ndo_init(dev); 7536 if (ret) { 7537 if (ret > 0) 7538 ret = -EIO; 7539 goto out; 7540 } 7541 } 7542 7543 if (((dev->hw_features | dev->features) & 7544 NETIF_F_HW_VLAN_CTAG_FILTER) && 7545 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 7546 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 7547 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 7548 ret = -EINVAL; 7549 goto err_uninit; 7550 } 7551 7552 ret = -EBUSY; 7553 if (!dev->ifindex) 7554 dev->ifindex = dev_new_index(net); 7555 else if (__dev_get_by_index(net, dev->ifindex)) 7556 goto err_uninit; 7557 7558 /* Transfer changeable features to wanted_features and enable 7559 * software offloads (GSO and GRO). 7560 */ 7561 dev->hw_features |= NETIF_F_SOFT_FEATURES; 7562 dev->features |= NETIF_F_SOFT_FEATURES; 7563 7564 if (dev->netdev_ops->ndo_udp_tunnel_add) { 7565 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 7566 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 7567 } 7568 7569 dev->wanted_features = dev->features & dev->hw_features; 7570 7571 if (!(dev->flags & IFF_LOOPBACK)) 7572 dev->hw_features |= NETIF_F_NOCACHE_COPY; 7573 7574 /* If IPv4 TCP segmentation offload is supported we should also 7575 * allow the device to enable segmenting the frame with the option 7576 * of ignoring a static IP ID value. This doesn't enable the 7577 * feature itself but allows the user to enable it later. 7578 */ 7579 if (dev->hw_features & NETIF_F_TSO) 7580 dev->hw_features |= NETIF_F_TSO_MANGLEID; 7581 if (dev->vlan_features & NETIF_F_TSO) 7582 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 7583 if (dev->mpls_features & NETIF_F_TSO) 7584 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 7585 if (dev->hw_enc_features & NETIF_F_TSO) 7586 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 7587 7588 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 7589 */ 7590 dev->vlan_features |= NETIF_F_HIGHDMA; 7591 7592 /* Make NETIF_F_SG inheritable to tunnel devices. 7593 */ 7594 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 7595 7596 /* Make NETIF_F_SG inheritable to MPLS. 7597 */ 7598 dev->mpls_features |= NETIF_F_SG; 7599 7600 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 7601 ret = notifier_to_errno(ret); 7602 if (ret) 7603 goto err_uninit; 7604 7605 ret = netdev_register_kobject(dev); 7606 if (ret) 7607 goto err_uninit; 7608 dev->reg_state = NETREG_REGISTERED; 7609 7610 __netdev_update_features(dev); 7611 7612 /* 7613 * Default initial state at registry is that the 7614 * device is present. 7615 */ 7616 7617 set_bit(__LINK_STATE_PRESENT, &dev->state); 7618 7619 linkwatch_init_dev(dev); 7620 7621 dev_init_scheduler(dev); 7622 dev_hold(dev); 7623 list_netdevice(dev); 7624 add_device_randomness(dev->dev_addr, dev->addr_len); 7625 7626 /* If the device has permanent device address, driver should 7627 * set dev_addr and also addr_assign_type should be set to 7628 * NET_ADDR_PERM (default value). 7629 */ 7630 if (dev->addr_assign_type == NET_ADDR_PERM) 7631 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 7632 7633 /* Notify protocols, that a new device appeared. */ 7634 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 7635 ret = notifier_to_errno(ret); 7636 if (ret) { 7637 rollback_registered(dev); 7638 dev->reg_state = NETREG_UNREGISTERED; 7639 } 7640 /* 7641 * Prevent userspace races by waiting until the network 7642 * device is fully setup before sending notifications. 7643 */ 7644 if (!dev->rtnl_link_ops || 7645 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 7646 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 7647 7648 out: 7649 return ret; 7650 7651 err_uninit: 7652 if (dev->netdev_ops->ndo_uninit) 7653 dev->netdev_ops->ndo_uninit(dev); 7654 if (dev->priv_destructor) 7655 dev->priv_destructor(dev); 7656 goto out; 7657 } 7658 EXPORT_SYMBOL(register_netdevice); 7659 7660 /** 7661 * init_dummy_netdev - init a dummy network device for NAPI 7662 * @dev: device to init 7663 * 7664 * This takes a network device structure and initialize the minimum 7665 * amount of fields so it can be used to schedule NAPI polls without 7666 * registering a full blown interface. This is to be used by drivers 7667 * that need to tie several hardware interfaces to a single NAPI 7668 * poll scheduler due to HW limitations. 7669 */ 7670 int init_dummy_netdev(struct net_device *dev) 7671 { 7672 /* Clear everything. Note we don't initialize spinlocks 7673 * are they aren't supposed to be taken by any of the 7674 * NAPI code and this dummy netdev is supposed to be 7675 * only ever used for NAPI polls 7676 */ 7677 memset(dev, 0, sizeof(struct net_device)); 7678 7679 /* make sure we BUG if trying to hit standard 7680 * register/unregister code path 7681 */ 7682 dev->reg_state = NETREG_DUMMY; 7683 7684 /* NAPI wants this */ 7685 INIT_LIST_HEAD(&dev->napi_list); 7686 7687 /* a dummy interface is started by default */ 7688 set_bit(__LINK_STATE_PRESENT, &dev->state); 7689 set_bit(__LINK_STATE_START, &dev->state); 7690 7691 /* Note : We dont allocate pcpu_refcnt for dummy devices, 7692 * because users of this 'device' dont need to change 7693 * its refcount. 7694 */ 7695 7696 return 0; 7697 } 7698 EXPORT_SYMBOL_GPL(init_dummy_netdev); 7699 7700 7701 /** 7702 * register_netdev - register a network device 7703 * @dev: device to register 7704 * 7705 * Take a completed network device structure and add it to the kernel 7706 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 7707 * chain. 0 is returned on success. A negative errno code is returned 7708 * on a failure to set up the device, or if the name is a duplicate. 7709 * 7710 * This is a wrapper around register_netdevice that takes the rtnl semaphore 7711 * and expands the device name if you passed a format string to 7712 * alloc_netdev. 7713 */ 7714 int register_netdev(struct net_device *dev) 7715 { 7716 int err; 7717 7718 rtnl_lock(); 7719 err = register_netdevice(dev); 7720 rtnl_unlock(); 7721 return err; 7722 } 7723 EXPORT_SYMBOL(register_netdev); 7724 7725 int netdev_refcnt_read(const struct net_device *dev) 7726 { 7727 int i, refcnt = 0; 7728 7729 for_each_possible_cpu(i) 7730 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 7731 return refcnt; 7732 } 7733 EXPORT_SYMBOL(netdev_refcnt_read); 7734 7735 /** 7736 * netdev_wait_allrefs - wait until all references are gone. 7737 * @dev: target net_device 7738 * 7739 * This is called when unregistering network devices. 7740 * 7741 * Any protocol or device that holds a reference should register 7742 * for netdevice notification, and cleanup and put back the 7743 * reference if they receive an UNREGISTER event. 7744 * We can get stuck here if buggy protocols don't correctly 7745 * call dev_put. 7746 */ 7747 static void netdev_wait_allrefs(struct net_device *dev) 7748 { 7749 unsigned long rebroadcast_time, warning_time; 7750 int refcnt; 7751 7752 linkwatch_forget_dev(dev); 7753 7754 rebroadcast_time = warning_time = jiffies; 7755 refcnt = netdev_refcnt_read(dev); 7756 7757 while (refcnt != 0) { 7758 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 7759 rtnl_lock(); 7760 7761 /* Rebroadcast unregister notification */ 7762 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7763 7764 __rtnl_unlock(); 7765 rcu_barrier(); 7766 rtnl_lock(); 7767 7768 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7769 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 7770 &dev->state)) { 7771 /* We must not have linkwatch events 7772 * pending on unregister. If this 7773 * happens, we simply run the queue 7774 * unscheduled, resulting in a noop 7775 * for this device. 7776 */ 7777 linkwatch_run_queue(); 7778 } 7779 7780 __rtnl_unlock(); 7781 7782 rebroadcast_time = jiffies; 7783 } 7784 7785 msleep(250); 7786 7787 refcnt = netdev_refcnt_read(dev); 7788 7789 if (time_after(jiffies, warning_time + 10 * HZ)) { 7790 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 7791 dev->name, refcnt); 7792 warning_time = jiffies; 7793 } 7794 } 7795 } 7796 7797 /* The sequence is: 7798 * 7799 * rtnl_lock(); 7800 * ... 7801 * register_netdevice(x1); 7802 * register_netdevice(x2); 7803 * ... 7804 * unregister_netdevice(y1); 7805 * unregister_netdevice(y2); 7806 * ... 7807 * rtnl_unlock(); 7808 * free_netdev(y1); 7809 * free_netdev(y2); 7810 * 7811 * We are invoked by rtnl_unlock(). 7812 * This allows us to deal with problems: 7813 * 1) We can delete sysfs objects which invoke hotplug 7814 * without deadlocking with linkwatch via keventd. 7815 * 2) Since we run with the RTNL semaphore not held, we can sleep 7816 * safely in order to wait for the netdev refcnt to drop to zero. 7817 * 7818 * We must not return until all unregister events added during 7819 * the interval the lock was held have been completed. 7820 */ 7821 void netdev_run_todo(void) 7822 { 7823 struct list_head list; 7824 7825 /* Snapshot list, allow later requests */ 7826 list_replace_init(&net_todo_list, &list); 7827 7828 __rtnl_unlock(); 7829 7830 7831 /* Wait for rcu callbacks to finish before next phase */ 7832 if (!list_empty(&list)) 7833 rcu_barrier(); 7834 7835 while (!list_empty(&list)) { 7836 struct net_device *dev 7837 = list_first_entry(&list, struct net_device, todo_list); 7838 list_del(&dev->todo_list); 7839 7840 rtnl_lock(); 7841 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7842 __rtnl_unlock(); 7843 7844 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 7845 pr_err("network todo '%s' but state %d\n", 7846 dev->name, dev->reg_state); 7847 dump_stack(); 7848 continue; 7849 } 7850 7851 dev->reg_state = NETREG_UNREGISTERED; 7852 7853 netdev_wait_allrefs(dev); 7854 7855 /* paranoia */ 7856 BUG_ON(netdev_refcnt_read(dev)); 7857 BUG_ON(!list_empty(&dev->ptype_all)); 7858 BUG_ON(!list_empty(&dev->ptype_specific)); 7859 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 7860 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 7861 WARN_ON(dev->dn_ptr); 7862 7863 if (dev->priv_destructor) 7864 dev->priv_destructor(dev); 7865 if (dev->needs_free_netdev) 7866 free_netdev(dev); 7867 7868 /* Report a network device has been unregistered */ 7869 rtnl_lock(); 7870 dev_net(dev)->dev_unreg_count--; 7871 __rtnl_unlock(); 7872 wake_up(&netdev_unregistering_wq); 7873 7874 /* Free network device */ 7875 kobject_put(&dev->dev.kobj); 7876 } 7877 } 7878 7879 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 7880 * all the same fields in the same order as net_device_stats, with only 7881 * the type differing, but rtnl_link_stats64 may have additional fields 7882 * at the end for newer counters. 7883 */ 7884 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 7885 const struct net_device_stats *netdev_stats) 7886 { 7887 #if BITS_PER_LONG == 64 7888 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 7889 memcpy(stats64, netdev_stats, sizeof(*netdev_stats)); 7890 /* zero out counters that only exist in rtnl_link_stats64 */ 7891 memset((char *)stats64 + sizeof(*netdev_stats), 0, 7892 sizeof(*stats64) - sizeof(*netdev_stats)); 7893 #else 7894 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 7895 const unsigned long *src = (const unsigned long *)netdev_stats; 7896 u64 *dst = (u64 *)stats64; 7897 7898 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 7899 for (i = 0; i < n; i++) 7900 dst[i] = src[i]; 7901 /* zero out counters that only exist in rtnl_link_stats64 */ 7902 memset((char *)stats64 + n * sizeof(u64), 0, 7903 sizeof(*stats64) - n * sizeof(u64)); 7904 #endif 7905 } 7906 EXPORT_SYMBOL(netdev_stats_to_stats64); 7907 7908 /** 7909 * dev_get_stats - get network device statistics 7910 * @dev: device to get statistics from 7911 * @storage: place to store stats 7912 * 7913 * Get network statistics from device. Return @storage. 7914 * The device driver may provide its own method by setting 7915 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 7916 * otherwise the internal statistics structure is used. 7917 */ 7918 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 7919 struct rtnl_link_stats64 *storage) 7920 { 7921 const struct net_device_ops *ops = dev->netdev_ops; 7922 7923 if (ops->ndo_get_stats64) { 7924 memset(storage, 0, sizeof(*storage)); 7925 ops->ndo_get_stats64(dev, storage); 7926 } else if (ops->ndo_get_stats) { 7927 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 7928 } else { 7929 netdev_stats_to_stats64(storage, &dev->stats); 7930 } 7931 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped); 7932 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped); 7933 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler); 7934 return storage; 7935 } 7936 EXPORT_SYMBOL(dev_get_stats); 7937 7938 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 7939 { 7940 struct netdev_queue *queue = dev_ingress_queue(dev); 7941 7942 #ifdef CONFIG_NET_CLS_ACT 7943 if (queue) 7944 return queue; 7945 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 7946 if (!queue) 7947 return NULL; 7948 netdev_init_one_queue(dev, queue, NULL); 7949 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 7950 queue->qdisc_sleeping = &noop_qdisc; 7951 rcu_assign_pointer(dev->ingress_queue, queue); 7952 #endif 7953 return queue; 7954 } 7955 7956 static const struct ethtool_ops default_ethtool_ops; 7957 7958 void netdev_set_default_ethtool_ops(struct net_device *dev, 7959 const struct ethtool_ops *ops) 7960 { 7961 if (dev->ethtool_ops == &default_ethtool_ops) 7962 dev->ethtool_ops = ops; 7963 } 7964 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 7965 7966 void netdev_freemem(struct net_device *dev) 7967 { 7968 char *addr = (char *)dev - dev->padded; 7969 7970 kvfree(addr); 7971 } 7972 7973 /** 7974 * alloc_netdev_mqs - allocate network device 7975 * @sizeof_priv: size of private data to allocate space for 7976 * @name: device name format string 7977 * @name_assign_type: origin of device name 7978 * @setup: callback to initialize device 7979 * @txqs: the number of TX subqueues to allocate 7980 * @rxqs: the number of RX subqueues to allocate 7981 * 7982 * Allocates a struct net_device with private data area for driver use 7983 * and performs basic initialization. Also allocates subqueue structs 7984 * for each queue on the device. 7985 */ 7986 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 7987 unsigned char name_assign_type, 7988 void (*setup)(struct net_device *), 7989 unsigned int txqs, unsigned int rxqs) 7990 { 7991 struct net_device *dev; 7992 size_t alloc_size; 7993 struct net_device *p; 7994 7995 BUG_ON(strlen(name) >= sizeof(dev->name)); 7996 7997 if (txqs < 1) { 7998 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 7999 return NULL; 8000 } 8001 8002 #ifdef CONFIG_SYSFS 8003 if (rxqs < 1) { 8004 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 8005 return NULL; 8006 } 8007 #endif 8008 8009 alloc_size = sizeof(struct net_device); 8010 if (sizeof_priv) { 8011 /* ensure 32-byte alignment of private area */ 8012 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 8013 alloc_size += sizeof_priv; 8014 } 8015 /* ensure 32-byte alignment of whole construct */ 8016 alloc_size += NETDEV_ALIGN - 1; 8017 8018 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 8019 if (!p) 8020 return NULL; 8021 8022 dev = PTR_ALIGN(p, NETDEV_ALIGN); 8023 dev->padded = (char *)dev - (char *)p; 8024 8025 dev->pcpu_refcnt = alloc_percpu(int); 8026 if (!dev->pcpu_refcnt) 8027 goto free_dev; 8028 8029 if (dev_addr_init(dev)) 8030 goto free_pcpu; 8031 8032 dev_mc_init(dev); 8033 dev_uc_init(dev); 8034 8035 dev_net_set(dev, &init_net); 8036 8037 dev->gso_max_size = GSO_MAX_SIZE; 8038 dev->gso_max_segs = GSO_MAX_SEGS; 8039 8040 INIT_LIST_HEAD(&dev->napi_list); 8041 INIT_LIST_HEAD(&dev->unreg_list); 8042 INIT_LIST_HEAD(&dev->close_list); 8043 INIT_LIST_HEAD(&dev->link_watch_list); 8044 INIT_LIST_HEAD(&dev->adj_list.upper); 8045 INIT_LIST_HEAD(&dev->adj_list.lower); 8046 INIT_LIST_HEAD(&dev->ptype_all); 8047 INIT_LIST_HEAD(&dev->ptype_specific); 8048 #ifdef CONFIG_NET_SCHED 8049 hash_init(dev->qdisc_hash); 8050 #endif 8051 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 8052 setup(dev); 8053 8054 if (!dev->tx_queue_len) { 8055 dev->priv_flags |= IFF_NO_QUEUE; 8056 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 8057 } 8058 8059 dev->num_tx_queues = txqs; 8060 dev->real_num_tx_queues = txqs; 8061 if (netif_alloc_netdev_queues(dev)) 8062 goto free_all; 8063 8064 #ifdef CONFIG_SYSFS 8065 dev->num_rx_queues = rxqs; 8066 dev->real_num_rx_queues = rxqs; 8067 if (netif_alloc_rx_queues(dev)) 8068 goto free_all; 8069 #endif 8070 8071 strcpy(dev->name, name); 8072 dev->name_assign_type = name_assign_type; 8073 dev->group = INIT_NETDEV_GROUP; 8074 if (!dev->ethtool_ops) 8075 dev->ethtool_ops = &default_ethtool_ops; 8076 8077 nf_hook_ingress_init(dev); 8078 8079 return dev; 8080 8081 free_all: 8082 free_netdev(dev); 8083 return NULL; 8084 8085 free_pcpu: 8086 free_percpu(dev->pcpu_refcnt); 8087 free_dev: 8088 netdev_freemem(dev); 8089 return NULL; 8090 } 8091 EXPORT_SYMBOL(alloc_netdev_mqs); 8092 8093 /** 8094 * free_netdev - free network device 8095 * @dev: device 8096 * 8097 * This function does the last stage of destroying an allocated device 8098 * interface. The reference to the device object is released. If this 8099 * is the last reference then it will be freed.Must be called in process 8100 * context. 8101 */ 8102 void free_netdev(struct net_device *dev) 8103 { 8104 struct napi_struct *p, *n; 8105 struct bpf_prog *prog; 8106 8107 might_sleep(); 8108 netif_free_tx_queues(dev); 8109 #ifdef CONFIG_SYSFS 8110 kvfree(dev->_rx); 8111 #endif 8112 8113 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 8114 8115 /* Flush device addresses */ 8116 dev_addr_flush(dev); 8117 8118 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 8119 netif_napi_del(p); 8120 8121 free_percpu(dev->pcpu_refcnt); 8122 dev->pcpu_refcnt = NULL; 8123 8124 prog = rcu_dereference_protected(dev->xdp_prog, 1); 8125 if (prog) { 8126 bpf_prog_put(prog); 8127 static_key_slow_dec(&generic_xdp_needed); 8128 } 8129 8130 /* Compatibility with error handling in drivers */ 8131 if (dev->reg_state == NETREG_UNINITIALIZED) { 8132 netdev_freemem(dev); 8133 return; 8134 } 8135 8136 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 8137 dev->reg_state = NETREG_RELEASED; 8138 8139 /* will free via device release */ 8140 put_device(&dev->dev); 8141 } 8142 EXPORT_SYMBOL(free_netdev); 8143 8144 /** 8145 * synchronize_net - Synchronize with packet receive processing 8146 * 8147 * Wait for packets currently being received to be done. 8148 * Does not block later packets from starting. 8149 */ 8150 void synchronize_net(void) 8151 { 8152 might_sleep(); 8153 if (rtnl_is_locked()) 8154 synchronize_rcu_expedited(); 8155 else 8156 synchronize_rcu(); 8157 } 8158 EXPORT_SYMBOL(synchronize_net); 8159 8160 /** 8161 * unregister_netdevice_queue - remove device from the kernel 8162 * @dev: device 8163 * @head: list 8164 * 8165 * This function shuts down a device interface and removes it 8166 * from the kernel tables. 8167 * If head not NULL, device is queued to be unregistered later. 8168 * 8169 * Callers must hold the rtnl semaphore. You may want 8170 * unregister_netdev() instead of this. 8171 */ 8172 8173 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 8174 { 8175 ASSERT_RTNL(); 8176 8177 if (head) { 8178 list_move_tail(&dev->unreg_list, head); 8179 } else { 8180 rollback_registered(dev); 8181 /* Finish processing unregister after unlock */ 8182 net_set_todo(dev); 8183 } 8184 } 8185 EXPORT_SYMBOL(unregister_netdevice_queue); 8186 8187 /** 8188 * unregister_netdevice_many - unregister many devices 8189 * @head: list of devices 8190 * 8191 * Note: As most callers use a stack allocated list_head, 8192 * we force a list_del() to make sure stack wont be corrupted later. 8193 */ 8194 void unregister_netdevice_many(struct list_head *head) 8195 { 8196 struct net_device *dev; 8197 8198 if (!list_empty(head)) { 8199 rollback_registered_many(head); 8200 list_for_each_entry(dev, head, unreg_list) 8201 net_set_todo(dev); 8202 list_del(head); 8203 } 8204 } 8205 EXPORT_SYMBOL(unregister_netdevice_many); 8206 8207 /** 8208 * unregister_netdev - remove device from the kernel 8209 * @dev: device 8210 * 8211 * This function shuts down a device interface and removes it 8212 * from the kernel tables. 8213 * 8214 * This is just a wrapper for unregister_netdevice that takes 8215 * the rtnl semaphore. In general you want to use this and not 8216 * unregister_netdevice. 8217 */ 8218 void unregister_netdev(struct net_device *dev) 8219 { 8220 rtnl_lock(); 8221 unregister_netdevice(dev); 8222 rtnl_unlock(); 8223 } 8224 EXPORT_SYMBOL(unregister_netdev); 8225 8226 /** 8227 * dev_change_net_namespace - move device to different nethost namespace 8228 * @dev: device 8229 * @net: network namespace 8230 * @pat: If not NULL name pattern to try if the current device name 8231 * is already taken in the destination network namespace. 8232 * 8233 * This function shuts down a device interface and moves it 8234 * to a new network namespace. On success 0 is returned, on 8235 * a failure a netagive errno code is returned. 8236 * 8237 * Callers must hold the rtnl semaphore. 8238 */ 8239 8240 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 8241 { 8242 int err; 8243 8244 ASSERT_RTNL(); 8245 8246 /* Don't allow namespace local devices to be moved. */ 8247 err = -EINVAL; 8248 if (dev->features & NETIF_F_NETNS_LOCAL) 8249 goto out; 8250 8251 /* Ensure the device has been registrered */ 8252 if (dev->reg_state != NETREG_REGISTERED) 8253 goto out; 8254 8255 /* Get out if there is nothing todo */ 8256 err = 0; 8257 if (net_eq(dev_net(dev), net)) 8258 goto out; 8259 8260 /* Pick the destination device name, and ensure 8261 * we can use it in the destination network namespace. 8262 */ 8263 err = -EEXIST; 8264 if (__dev_get_by_name(net, dev->name)) { 8265 /* We get here if we can't use the current device name */ 8266 if (!pat) 8267 goto out; 8268 if (dev_get_valid_name(net, dev, pat) < 0) 8269 goto out; 8270 } 8271 8272 /* 8273 * And now a mini version of register_netdevice unregister_netdevice. 8274 */ 8275 8276 /* If device is running close it first. */ 8277 dev_close(dev); 8278 8279 /* And unlink it from device chain */ 8280 err = -ENODEV; 8281 unlist_netdevice(dev); 8282 8283 synchronize_net(); 8284 8285 /* Shutdown queueing discipline. */ 8286 dev_shutdown(dev); 8287 8288 /* Notify protocols, that we are about to destroy 8289 * this device. They should clean all the things. 8290 * 8291 * Note that dev->reg_state stays at NETREG_REGISTERED. 8292 * This is wanted because this way 8021q and macvlan know 8293 * the device is just moving and can keep their slaves up. 8294 */ 8295 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8296 rcu_barrier(); 8297 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 8298 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL); 8299 8300 /* 8301 * Flush the unicast and multicast chains 8302 */ 8303 dev_uc_flush(dev); 8304 dev_mc_flush(dev); 8305 8306 /* Send a netdev-removed uevent to the old namespace */ 8307 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 8308 netdev_adjacent_del_links(dev); 8309 8310 /* Actually switch the network namespace */ 8311 dev_net_set(dev, net); 8312 8313 /* If there is an ifindex conflict assign a new one */ 8314 if (__dev_get_by_index(net, dev->ifindex)) 8315 dev->ifindex = dev_new_index(net); 8316 8317 /* Send a netdev-add uevent to the new namespace */ 8318 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 8319 netdev_adjacent_add_links(dev); 8320 8321 /* Fixup kobjects */ 8322 err = device_rename(&dev->dev, dev->name); 8323 WARN_ON(err); 8324 8325 /* Add the device back in the hashes */ 8326 list_netdevice(dev); 8327 8328 /* Notify protocols, that a new device appeared. */ 8329 call_netdevice_notifiers(NETDEV_REGISTER, dev); 8330 8331 /* 8332 * Prevent userspace races by waiting until the network 8333 * device is fully setup before sending notifications. 8334 */ 8335 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 8336 8337 synchronize_net(); 8338 err = 0; 8339 out: 8340 return err; 8341 } 8342 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 8343 8344 static int dev_cpu_dead(unsigned int oldcpu) 8345 { 8346 struct sk_buff **list_skb; 8347 struct sk_buff *skb; 8348 unsigned int cpu; 8349 struct softnet_data *sd, *oldsd, *remsd = NULL; 8350 8351 local_irq_disable(); 8352 cpu = smp_processor_id(); 8353 sd = &per_cpu(softnet_data, cpu); 8354 oldsd = &per_cpu(softnet_data, oldcpu); 8355 8356 /* Find end of our completion_queue. */ 8357 list_skb = &sd->completion_queue; 8358 while (*list_skb) 8359 list_skb = &(*list_skb)->next; 8360 /* Append completion queue from offline CPU. */ 8361 *list_skb = oldsd->completion_queue; 8362 oldsd->completion_queue = NULL; 8363 8364 /* Append output queue from offline CPU. */ 8365 if (oldsd->output_queue) { 8366 *sd->output_queue_tailp = oldsd->output_queue; 8367 sd->output_queue_tailp = oldsd->output_queue_tailp; 8368 oldsd->output_queue = NULL; 8369 oldsd->output_queue_tailp = &oldsd->output_queue; 8370 } 8371 /* Append NAPI poll list from offline CPU, with one exception : 8372 * process_backlog() must be called by cpu owning percpu backlog. 8373 * We properly handle process_queue & input_pkt_queue later. 8374 */ 8375 while (!list_empty(&oldsd->poll_list)) { 8376 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 8377 struct napi_struct, 8378 poll_list); 8379 8380 list_del_init(&napi->poll_list); 8381 if (napi->poll == process_backlog) 8382 napi->state = 0; 8383 else 8384 ____napi_schedule(sd, napi); 8385 } 8386 8387 raise_softirq_irqoff(NET_TX_SOFTIRQ); 8388 local_irq_enable(); 8389 8390 #ifdef CONFIG_RPS 8391 remsd = oldsd->rps_ipi_list; 8392 oldsd->rps_ipi_list = NULL; 8393 #endif 8394 /* send out pending IPI's on offline CPU */ 8395 net_rps_send_ipi(remsd); 8396 8397 /* Process offline CPU's input_pkt_queue */ 8398 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 8399 netif_rx_ni(skb); 8400 input_queue_head_incr(oldsd); 8401 } 8402 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 8403 netif_rx_ni(skb); 8404 input_queue_head_incr(oldsd); 8405 } 8406 8407 return 0; 8408 } 8409 8410 /** 8411 * netdev_increment_features - increment feature set by one 8412 * @all: current feature set 8413 * @one: new feature set 8414 * @mask: mask feature set 8415 * 8416 * Computes a new feature set after adding a device with feature set 8417 * @one to the master device with current feature set @all. Will not 8418 * enable anything that is off in @mask. Returns the new feature set. 8419 */ 8420 netdev_features_t netdev_increment_features(netdev_features_t all, 8421 netdev_features_t one, netdev_features_t mask) 8422 { 8423 if (mask & NETIF_F_HW_CSUM) 8424 mask |= NETIF_F_CSUM_MASK; 8425 mask |= NETIF_F_VLAN_CHALLENGED; 8426 8427 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 8428 all &= one | ~NETIF_F_ALL_FOR_ALL; 8429 8430 /* If one device supports hw checksumming, set for all. */ 8431 if (all & NETIF_F_HW_CSUM) 8432 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 8433 8434 return all; 8435 } 8436 EXPORT_SYMBOL(netdev_increment_features); 8437 8438 static struct hlist_head * __net_init netdev_create_hash(void) 8439 { 8440 int i; 8441 struct hlist_head *hash; 8442 8443 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 8444 if (hash != NULL) 8445 for (i = 0; i < NETDEV_HASHENTRIES; i++) 8446 INIT_HLIST_HEAD(&hash[i]); 8447 8448 return hash; 8449 } 8450 8451 /* Initialize per network namespace state */ 8452 static int __net_init netdev_init(struct net *net) 8453 { 8454 if (net != &init_net) 8455 INIT_LIST_HEAD(&net->dev_base_head); 8456 8457 net->dev_name_head = netdev_create_hash(); 8458 if (net->dev_name_head == NULL) 8459 goto err_name; 8460 8461 net->dev_index_head = netdev_create_hash(); 8462 if (net->dev_index_head == NULL) 8463 goto err_idx; 8464 8465 return 0; 8466 8467 err_idx: 8468 kfree(net->dev_name_head); 8469 err_name: 8470 return -ENOMEM; 8471 } 8472 8473 /** 8474 * netdev_drivername - network driver for the device 8475 * @dev: network device 8476 * 8477 * Determine network driver for device. 8478 */ 8479 const char *netdev_drivername(const struct net_device *dev) 8480 { 8481 const struct device_driver *driver; 8482 const struct device *parent; 8483 const char *empty = ""; 8484 8485 parent = dev->dev.parent; 8486 if (!parent) 8487 return empty; 8488 8489 driver = parent->driver; 8490 if (driver && driver->name) 8491 return driver->name; 8492 return empty; 8493 } 8494 8495 static void __netdev_printk(const char *level, const struct net_device *dev, 8496 struct va_format *vaf) 8497 { 8498 if (dev && dev->dev.parent) { 8499 dev_printk_emit(level[1] - '0', 8500 dev->dev.parent, 8501 "%s %s %s%s: %pV", 8502 dev_driver_string(dev->dev.parent), 8503 dev_name(dev->dev.parent), 8504 netdev_name(dev), netdev_reg_state(dev), 8505 vaf); 8506 } else if (dev) { 8507 printk("%s%s%s: %pV", 8508 level, netdev_name(dev), netdev_reg_state(dev), vaf); 8509 } else { 8510 printk("%s(NULL net_device): %pV", level, vaf); 8511 } 8512 } 8513 8514 void netdev_printk(const char *level, const struct net_device *dev, 8515 const char *format, ...) 8516 { 8517 struct va_format vaf; 8518 va_list args; 8519 8520 va_start(args, format); 8521 8522 vaf.fmt = format; 8523 vaf.va = &args; 8524 8525 __netdev_printk(level, dev, &vaf); 8526 8527 va_end(args); 8528 } 8529 EXPORT_SYMBOL(netdev_printk); 8530 8531 #define define_netdev_printk_level(func, level) \ 8532 void func(const struct net_device *dev, const char *fmt, ...) \ 8533 { \ 8534 struct va_format vaf; \ 8535 va_list args; \ 8536 \ 8537 va_start(args, fmt); \ 8538 \ 8539 vaf.fmt = fmt; \ 8540 vaf.va = &args; \ 8541 \ 8542 __netdev_printk(level, dev, &vaf); \ 8543 \ 8544 va_end(args); \ 8545 } \ 8546 EXPORT_SYMBOL(func); 8547 8548 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 8549 define_netdev_printk_level(netdev_alert, KERN_ALERT); 8550 define_netdev_printk_level(netdev_crit, KERN_CRIT); 8551 define_netdev_printk_level(netdev_err, KERN_ERR); 8552 define_netdev_printk_level(netdev_warn, KERN_WARNING); 8553 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 8554 define_netdev_printk_level(netdev_info, KERN_INFO); 8555 8556 static void __net_exit netdev_exit(struct net *net) 8557 { 8558 kfree(net->dev_name_head); 8559 kfree(net->dev_index_head); 8560 } 8561 8562 static struct pernet_operations __net_initdata netdev_net_ops = { 8563 .init = netdev_init, 8564 .exit = netdev_exit, 8565 }; 8566 8567 static void __net_exit default_device_exit(struct net *net) 8568 { 8569 struct net_device *dev, *aux; 8570 /* 8571 * Push all migratable network devices back to the 8572 * initial network namespace 8573 */ 8574 rtnl_lock(); 8575 for_each_netdev_safe(net, dev, aux) { 8576 int err; 8577 char fb_name[IFNAMSIZ]; 8578 8579 /* Ignore unmoveable devices (i.e. loopback) */ 8580 if (dev->features & NETIF_F_NETNS_LOCAL) 8581 continue; 8582 8583 /* Leave virtual devices for the generic cleanup */ 8584 if (dev->rtnl_link_ops) 8585 continue; 8586 8587 /* Push remaining network devices to init_net */ 8588 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 8589 err = dev_change_net_namespace(dev, &init_net, fb_name); 8590 if (err) { 8591 pr_emerg("%s: failed to move %s to init_net: %d\n", 8592 __func__, dev->name, err); 8593 BUG(); 8594 } 8595 } 8596 rtnl_unlock(); 8597 } 8598 8599 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 8600 { 8601 /* Return with the rtnl_lock held when there are no network 8602 * devices unregistering in any network namespace in net_list. 8603 */ 8604 struct net *net; 8605 bool unregistering; 8606 DEFINE_WAIT_FUNC(wait, woken_wake_function); 8607 8608 add_wait_queue(&netdev_unregistering_wq, &wait); 8609 for (;;) { 8610 unregistering = false; 8611 rtnl_lock(); 8612 list_for_each_entry(net, net_list, exit_list) { 8613 if (net->dev_unreg_count > 0) { 8614 unregistering = true; 8615 break; 8616 } 8617 } 8618 if (!unregistering) 8619 break; 8620 __rtnl_unlock(); 8621 8622 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 8623 } 8624 remove_wait_queue(&netdev_unregistering_wq, &wait); 8625 } 8626 8627 static void __net_exit default_device_exit_batch(struct list_head *net_list) 8628 { 8629 /* At exit all network devices most be removed from a network 8630 * namespace. Do this in the reverse order of registration. 8631 * Do this across as many network namespaces as possible to 8632 * improve batching efficiency. 8633 */ 8634 struct net_device *dev; 8635 struct net *net; 8636 LIST_HEAD(dev_kill_list); 8637 8638 /* To prevent network device cleanup code from dereferencing 8639 * loopback devices or network devices that have been freed 8640 * wait here for all pending unregistrations to complete, 8641 * before unregistring the loopback device and allowing the 8642 * network namespace be freed. 8643 * 8644 * The netdev todo list containing all network devices 8645 * unregistrations that happen in default_device_exit_batch 8646 * will run in the rtnl_unlock() at the end of 8647 * default_device_exit_batch. 8648 */ 8649 rtnl_lock_unregistering(net_list); 8650 list_for_each_entry(net, net_list, exit_list) { 8651 for_each_netdev_reverse(net, dev) { 8652 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 8653 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 8654 else 8655 unregister_netdevice_queue(dev, &dev_kill_list); 8656 } 8657 } 8658 unregister_netdevice_many(&dev_kill_list); 8659 rtnl_unlock(); 8660 } 8661 8662 static struct pernet_operations __net_initdata default_device_ops = { 8663 .exit = default_device_exit, 8664 .exit_batch = default_device_exit_batch, 8665 }; 8666 8667 /* 8668 * Initialize the DEV module. At boot time this walks the device list and 8669 * unhooks any devices that fail to initialise (normally hardware not 8670 * present) and leaves us with a valid list of present and active devices. 8671 * 8672 */ 8673 8674 /* 8675 * This is called single threaded during boot, so no need 8676 * to take the rtnl semaphore. 8677 */ 8678 static int __init net_dev_init(void) 8679 { 8680 int i, rc = -ENOMEM; 8681 8682 BUG_ON(!dev_boot_phase); 8683 8684 if (dev_proc_init()) 8685 goto out; 8686 8687 if (netdev_kobject_init()) 8688 goto out; 8689 8690 INIT_LIST_HEAD(&ptype_all); 8691 for (i = 0; i < PTYPE_HASH_SIZE; i++) 8692 INIT_LIST_HEAD(&ptype_base[i]); 8693 8694 INIT_LIST_HEAD(&offload_base); 8695 8696 if (register_pernet_subsys(&netdev_net_ops)) 8697 goto out; 8698 8699 /* 8700 * Initialise the packet receive queues. 8701 */ 8702 8703 for_each_possible_cpu(i) { 8704 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 8705 struct softnet_data *sd = &per_cpu(softnet_data, i); 8706 8707 INIT_WORK(flush, flush_backlog); 8708 8709 skb_queue_head_init(&sd->input_pkt_queue); 8710 skb_queue_head_init(&sd->process_queue); 8711 INIT_LIST_HEAD(&sd->poll_list); 8712 sd->output_queue_tailp = &sd->output_queue; 8713 #ifdef CONFIG_RPS 8714 sd->csd.func = rps_trigger_softirq; 8715 sd->csd.info = sd; 8716 sd->cpu = i; 8717 #endif 8718 8719 sd->backlog.poll = process_backlog; 8720 sd->backlog.weight = weight_p; 8721 } 8722 8723 dev_boot_phase = 0; 8724 8725 /* The loopback device is special if any other network devices 8726 * is present in a network namespace the loopback device must 8727 * be present. Since we now dynamically allocate and free the 8728 * loopback device ensure this invariant is maintained by 8729 * keeping the loopback device as the first device on the 8730 * list of network devices. Ensuring the loopback devices 8731 * is the first device that appears and the last network device 8732 * that disappears. 8733 */ 8734 if (register_pernet_device(&loopback_net_ops)) 8735 goto out; 8736 8737 if (register_pernet_device(&default_device_ops)) 8738 goto out; 8739 8740 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 8741 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 8742 8743 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 8744 NULL, dev_cpu_dead); 8745 WARN_ON(rc < 0); 8746 rc = 0; 8747 out: 8748 return rc; 8749 } 8750 8751 subsys_initcall(net_dev_init); 8752