xref: /openbmc/linux/net/core/dev.c (revision 6a613ac6)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/dst_metadata.h>
103 #include <net/pkt_sched.h>
104 #include <net/checksum.h>
105 #include <net/xfrm.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/module.h>
109 #include <linux/netpoll.h>
110 #include <linux/rcupdate.h>
111 #include <linux/delay.h>
112 #include <net/iw_handler.h>
113 #include <asm/current.h>
114 #include <linux/audit.h>
115 #include <linux/dmaengine.h>
116 #include <linux/err.h>
117 #include <linux/ctype.h>
118 #include <linux/if_arp.h>
119 #include <linux/if_vlan.h>
120 #include <linux/ip.h>
121 #include <net/ip.h>
122 #include <net/mpls.h>
123 #include <linux/ipv6.h>
124 #include <linux/in.h>
125 #include <linux/jhash.h>
126 #include <linux/random.h>
127 #include <trace/events/napi.h>
128 #include <trace/events/net.h>
129 #include <trace/events/skb.h>
130 #include <linux/pci.h>
131 #include <linux/inetdevice.h>
132 #include <linux/cpu_rmap.h>
133 #include <linux/static_key.h>
134 #include <linux/hashtable.h>
135 #include <linux/vmalloc.h>
136 #include <linux/if_macvlan.h>
137 #include <linux/errqueue.h>
138 #include <linux/hrtimer.h>
139 #include <linux/netfilter_ingress.h>
140 
141 #include "net-sysfs.h"
142 
143 /* Instead of increasing this, you should create a hash table. */
144 #define MAX_GRO_SKBS 8
145 
146 /* This should be increased if a protocol with a bigger head is added. */
147 #define GRO_MAX_HEAD (MAX_HEADER + 128)
148 
149 static DEFINE_SPINLOCK(ptype_lock);
150 static DEFINE_SPINLOCK(offload_lock);
151 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
152 struct list_head ptype_all __read_mostly;	/* Taps */
153 static struct list_head offload_base __read_mostly;
154 
155 static int netif_rx_internal(struct sk_buff *skb);
156 static int call_netdevice_notifiers_info(unsigned long val,
157 					 struct net_device *dev,
158 					 struct netdev_notifier_info *info);
159 
160 /*
161  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
162  * semaphore.
163  *
164  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
165  *
166  * Writers must hold the rtnl semaphore while they loop through the
167  * dev_base_head list, and hold dev_base_lock for writing when they do the
168  * actual updates.  This allows pure readers to access the list even
169  * while a writer is preparing to update it.
170  *
171  * To put it another way, dev_base_lock is held for writing only to
172  * protect against pure readers; the rtnl semaphore provides the
173  * protection against other writers.
174  *
175  * See, for example usages, register_netdevice() and
176  * unregister_netdevice(), which must be called with the rtnl
177  * semaphore held.
178  */
179 DEFINE_RWLOCK(dev_base_lock);
180 EXPORT_SYMBOL(dev_base_lock);
181 
182 /* protects napi_hash addition/deletion and napi_gen_id */
183 static DEFINE_SPINLOCK(napi_hash_lock);
184 
185 static unsigned int napi_gen_id;
186 static DEFINE_HASHTABLE(napi_hash, 8);
187 
188 static seqcount_t devnet_rename_seq;
189 
190 static inline void dev_base_seq_inc(struct net *net)
191 {
192 	while (++net->dev_base_seq == 0);
193 }
194 
195 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
196 {
197 	unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
198 
199 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
200 }
201 
202 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
203 {
204 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
205 }
206 
207 static inline void rps_lock(struct softnet_data *sd)
208 {
209 #ifdef CONFIG_RPS
210 	spin_lock(&sd->input_pkt_queue.lock);
211 #endif
212 }
213 
214 static inline void rps_unlock(struct softnet_data *sd)
215 {
216 #ifdef CONFIG_RPS
217 	spin_unlock(&sd->input_pkt_queue.lock);
218 #endif
219 }
220 
221 /* Device list insertion */
222 static void list_netdevice(struct net_device *dev)
223 {
224 	struct net *net = dev_net(dev);
225 
226 	ASSERT_RTNL();
227 
228 	write_lock_bh(&dev_base_lock);
229 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
230 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
231 	hlist_add_head_rcu(&dev->index_hlist,
232 			   dev_index_hash(net, dev->ifindex));
233 	write_unlock_bh(&dev_base_lock);
234 
235 	dev_base_seq_inc(net);
236 }
237 
238 /* Device list removal
239  * caller must respect a RCU grace period before freeing/reusing dev
240  */
241 static void unlist_netdevice(struct net_device *dev)
242 {
243 	ASSERT_RTNL();
244 
245 	/* Unlink dev from the device chain */
246 	write_lock_bh(&dev_base_lock);
247 	list_del_rcu(&dev->dev_list);
248 	hlist_del_rcu(&dev->name_hlist);
249 	hlist_del_rcu(&dev->index_hlist);
250 	write_unlock_bh(&dev_base_lock);
251 
252 	dev_base_seq_inc(dev_net(dev));
253 }
254 
255 /*
256  *	Our notifier list
257  */
258 
259 static RAW_NOTIFIER_HEAD(netdev_chain);
260 
261 /*
262  *	Device drivers call our routines to queue packets here. We empty the
263  *	queue in the local softnet handler.
264  */
265 
266 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
267 EXPORT_PER_CPU_SYMBOL(softnet_data);
268 
269 #ifdef CONFIG_LOCKDEP
270 /*
271  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
272  * according to dev->type
273  */
274 static const unsigned short netdev_lock_type[] =
275 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
276 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
277 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
278 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
279 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
280 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
281 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
282 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
283 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
284 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
285 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
286 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
287 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
288 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
289 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
290 
291 static const char *const netdev_lock_name[] =
292 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
293 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
294 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
295 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
296 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
297 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
298 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
299 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
300 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
301 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
302 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
303 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
304 	 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
305 	 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
306 	 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
307 
308 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
309 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
310 
311 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
312 {
313 	int i;
314 
315 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
316 		if (netdev_lock_type[i] == dev_type)
317 			return i;
318 	/* the last key is used by default */
319 	return ARRAY_SIZE(netdev_lock_type) - 1;
320 }
321 
322 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
323 						 unsigned short dev_type)
324 {
325 	int i;
326 
327 	i = netdev_lock_pos(dev_type);
328 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
329 				   netdev_lock_name[i]);
330 }
331 
332 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
333 {
334 	int i;
335 
336 	i = netdev_lock_pos(dev->type);
337 	lockdep_set_class_and_name(&dev->addr_list_lock,
338 				   &netdev_addr_lock_key[i],
339 				   netdev_lock_name[i]);
340 }
341 #else
342 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
343 						 unsigned short dev_type)
344 {
345 }
346 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
347 {
348 }
349 #endif
350 
351 /*******************************************************************************
352 
353 		Protocol management and registration routines
354 
355 *******************************************************************************/
356 
357 /*
358  *	Add a protocol ID to the list. Now that the input handler is
359  *	smarter we can dispense with all the messy stuff that used to be
360  *	here.
361  *
362  *	BEWARE!!! Protocol handlers, mangling input packets,
363  *	MUST BE last in hash buckets and checking protocol handlers
364  *	MUST start from promiscuous ptype_all chain in net_bh.
365  *	It is true now, do not change it.
366  *	Explanation follows: if protocol handler, mangling packet, will
367  *	be the first on list, it is not able to sense, that packet
368  *	is cloned and should be copied-on-write, so that it will
369  *	change it and subsequent readers will get broken packet.
370  *							--ANK (980803)
371  */
372 
373 static inline struct list_head *ptype_head(const struct packet_type *pt)
374 {
375 	if (pt->type == htons(ETH_P_ALL))
376 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
377 	else
378 		return pt->dev ? &pt->dev->ptype_specific :
379 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
380 }
381 
382 /**
383  *	dev_add_pack - add packet handler
384  *	@pt: packet type declaration
385  *
386  *	Add a protocol handler to the networking stack. The passed &packet_type
387  *	is linked into kernel lists and may not be freed until it has been
388  *	removed from the kernel lists.
389  *
390  *	This call does not sleep therefore it can not
391  *	guarantee all CPU's that are in middle of receiving packets
392  *	will see the new packet type (until the next received packet).
393  */
394 
395 void dev_add_pack(struct packet_type *pt)
396 {
397 	struct list_head *head = ptype_head(pt);
398 
399 	spin_lock(&ptype_lock);
400 	list_add_rcu(&pt->list, head);
401 	spin_unlock(&ptype_lock);
402 }
403 EXPORT_SYMBOL(dev_add_pack);
404 
405 /**
406  *	__dev_remove_pack	 - remove packet handler
407  *	@pt: packet type declaration
408  *
409  *	Remove a protocol handler that was previously added to the kernel
410  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
411  *	from the kernel lists and can be freed or reused once this function
412  *	returns.
413  *
414  *      The packet type might still be in use by receivers
415  *	and must not be freed until after all the CPU's have gone
416  *	through a quiescent state.
417  */
418 void __dev_remove_pack(struct packet_type *pt)
419 {
420 	struct list_head *head = ptype_head(pt);
421 	struct packet_type *pt1;
422 
423 	spin_lock(&ptype_lock);
424 
425 	list_for_each_entry(pt1, head, list) {
426 		if (pt == pt1) {
427 			list_del_rcu(&pt->list);
428 			goto out;
429 		}
430 	}
431 
432 	pr_warn("dev_remove_pack: %p not found\n", pt);
433 out:
434 	spin_unlock(&ptype_lock);
435 }
436 EXPORT_SYMBOL(__dev_remove_pack);
437 
438 /**
439  *	dev_remove_pack	 - remove packet handler
440  *	@pt: packet type declaration
441  *
442  *	Remove a protocol handler that was previously added to the kernel
443  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
444  *	from the kernel lists and can be freed or reused once this function
445  *	returns.
446  *
447  *	This call sleeps to guarantee that no CPU is looking at the packet
448  *	type after return.
449  */
450 void dev_remove_pack(struct packet_type *pt)
451 {
452 	__dev_remove_pack(pt);
453 
454 	synchronize_net();
455 }
456 EXPORT_SYMBOL(dev_remove_pack);
457 
458 
459 /**
460  *	dev_add_offload - register offload handlers
461  *	@po: protocol offload declaration
462  *
463  *	Add protocol offload handlers to the networking stack. The passed
464  *	&proto_offload is linked into kernel lists and may not be freed until
465  *	it has been removed from the kernel lists.
466  *
467  *	This call does not sleep therefore it can not
468  *	guarantee all CPU's that are in middle of receiving packets
469  *	will see the new offload handlers (until the next received packet).
470  */
471 void dev_add_offload(struct packet_offload *po)
472 {
473 	struct packet_offload *elem;
474 
475 	spin_lock(&offload_lock);
476 	list_for_each_entry(elem, &offload_base, list) {
477 		if (po->priority < elem->priority)
478 			break;
479 	}
480 	list_add_rcu(&po->list, elem->list.prev);
481 	spin_unlock(&offload_lock);
482 }
483 EXPORT_SYMBOL(dev_add_offload);
484 
485 /**
486  *	__dev_remove_offload	 - remove offload handler
487  *	@po: packet offload declaration
488  *
489  *	Remove a protocol offload handler that was previously added to the
490  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
491  *	is removed from the kernel lists and can be freed or reused once this
492  *	function returns.
493  *
494  *      The packet type might still be in use by receivers
495  *	and must not be freed until after all the CPU's have gone
496  *	through a quiescent state.
497  */
498 static void __dev_remove_offload(struct packet_offload *po)
499 {
500 	struct list_head *head = &offload_base;
501 	struct packet_offload *po1;
502 
503 	spin_lock(&offload_lock);
504 
505 	list_for_each_entry(po1, head, list) {
506 		if (po == po1) {
507 			list_del_rcu(&po->list);
508 			goto out;
509 		}
510 	}
511 
512 	pr_warn("dev_remove_offload: %p not found\n", po);
513 out:
514 	spin_unlock(&offload_lock);
515 }
516 
517 /**
518  *	dev_remove_offload	 - remove packet offload handler
519  *	@po: packet offload declaration
520  *
521  *	Remove a packet offload handler that was previously added to the kernel
522  *	offload handlers by dev_add_offload(). The passed &offload_type is
523  *	removed from the kernel lists and can be freed or reused once this
524  *	function returns.
525  *
526  *	This call sleeps to guarantee that no CPU is looking at the packet
527  *	type after return.
528  */
529 void dev_remove_offload(struct packet_offload *po)
530 {
531 	__dev_remove_offload(po);
532 
533 	synchronize_net();
534 }
535 EXPORT_SYMBOL(dev_remove_offload);
536 
537 /******************************************************************************
538 
539 		      Device Boot-time Settings Routines
540 
541 *******************************************************************************/
542 
543 /* Boot time configuration table */
544 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
545 
546 /**
547  *	netdev_boot_setup_add	- add new setup entry
548  *	@name: name of the device
549  *	@map: configured settings for the device
550  *
551  *	Adds new setup entry to the dev_boot_setup list.  The function
552  *	returns 0 on error and 1 on success.  This is a generic routine to
553  *	all netdevices.
554  */
555 static int netdev_boot_setup_add(char *name, struct ifmap *map)
556 {
557 	struct netdev_boot_setup *s;
558 	int i;
559 
560 	s = dev_boot_setup;
561 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
562 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
563 			memset(s[i].name, 0, sizeof(s[i].name));
564 			strlcpy(s[i].name, name, IFNAMSIZ);
565 			memcpy(&s[i].map, map, sizeof(s[i].map));
566 			break;
567 		}
568 	}
569 
570 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
571 }
572 
573 /**
574  *	netdev_boot_setup_check	- check boot time settings
575  *	@dev: the netdevice
576  *
577  * 	Check boot time settings for the device.
578  *	The found settings are set for the device to be used
579  *	later in the device probing.
580  *	Returns 0 if no settings found, 1 if they are.
581  */
582 int netdev_boot_setup_check(struct net_device *dev)
583 {
584 	struct netdev_boot_setup *s = dev_boot_setup;
585 	int i;
586 
587 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
588 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
589 		    !strcmp(dev->name, s[i].name)) {
590 			dev->irq 	= s[i].map.irq;
591 			dev->base_addr 	= s[i].map.base_addr;
592 			dev->mem_start 	= s[i].map.mem_start;
593 			dev->mem_end 	= s[i].map.mem_end;
594 			return 1;
595 		}
596 	}
597 	return 0;
598 }
599 EXPORT_SYMBOL(netdev_boot_setup_check);
600 
601 
602 /**
603  *	netdev_boot_base	- get address from boot time settings
604  *	@prefix: prefix for network device
605  *	@unit: id for network device
606  *
607  * 	Check boot time settings for the base address of device.
608  *	The found settings are set for the device to be used
609  *	later in the device probing.
610  *	Returns 0 if no settings found.
611  */
612 unsigned long netdev_boot_base(const char *prefix, int unit)
613 {
614 	const struct netdev_boot_setup *s = dev_boot_setup;
615 	char name[IFNAMSIZ];
616 	int i;
617 
618 	sprintf(name, "%s%d", prefix, unit);
619 
620 	/*
621 	 * If device already registered then return base of 1
622 	 * to indicate not to probe for this interface
623 	 */
624 	if (__dev_get_by_name(&init_net, name))
625 		return 1;
626 
627 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
628 		if (!strcmp(name, s[i].name))
629 			return s[i].map.base_addr;
630 	return 0;
631 }
632 
633 /*
634  * Saves at boot time configured settings for any netdevice.
635  */
636 int __init netdev_boot_setup(char *str)
637 {
638 	int ints[5];
639 	struct ifmap map;
640 
641 	str = get_options(str, ARRAY_SIZE(ints), ints);
642 	if (!str || !*str)
643 		return 0;
644 
645 	/* Save settings */
646 	memset(&map, 0, sizeof(map));
647 	if (ints[0] > 0)
648 		map.irq = ints[1];
649 	if (ints[0] > 1)
650 		map.base_addr = ints[2];
651 	if (ints[0] > 2)
652 		map.mem_start = ints[3];
653 	if (ints[0] > 3)
654 		map.mem_end = ints[4];
655 
656 	/* Add new entry to the list */
657 	return netdev_boot_setup_add(str, &map);
658 }
659 
660 __setup("netdev=", netdev_boot_setup);
661 
662 /*******************************************************************************
663 
664 			    Device Interface Subroutines
665 
666 *******************************************************************************/
667 
668 /**
669  *	dev_get_iflink	- get 'iflink' value of a interface
670  *	@dev: targeted interface
671  *
672  *	Indicates the ifindex the interface is linked to.
673  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
674  */
675 
676 int dev_get_iflink(const struct net_device *dev)
677 {
678 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
679 		return dev->netdev_ops->ndo_get_iflink(dev);
680 
681 	return dev->ifindex;
682 }
683 EXPORT_SYMBOL(dev_get_iflink);
684 
685 /**
686  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
687  *	@dev: targeted interface
688  *	@skb: The packet.
689  *
690  *	For better visibility of tunnel traffic OVS needs to retrieve
691  *	egress tunnel information for a packet. Following API allows
692  *	user to get this info.
693  */
694 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
695 {
696 	struct ip_tunnel_info *info;
697 
698 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
699 		return -EINVAL;
700 
701 	info = skb_tunnel_info_unclone(skb);
702 	if (!info)
703 		return -ENOMEM;
704 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
705 		return -EINVAL;
706 
707 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
708 }
709 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
710 
711 /**
712  *	__dev_get_by_name	- find a device by its name
713  *	@net: the applicable net namespace
714  *	@name: name to find
715  *
716  *	Find an interface by name. Must be called under RTNL semaphore
717  *	or @dev_base_lock. If the name is found a pointer to the device
718  *	is returned. If the name is not found then %NULL is returned. The
719  *	reference counters are not incremented so the caller must be
720  *	careful with locks.
721  */
722 
723 struct net_device *__dev_get_by_name(struct net *net, const char *name)
724 {
725 	struct net_device *dev;
726 	struct hlist_head *head = dev_name_hash(net, name);
727 
728 	hlist_for_each_entry(dev, head, name_hlist)
729 		if (!strncmp(dev->name, name, IFNAMSIZ))
730 			return dev;
731 
732 	return NULL;
733 }
734 EXPORT_SYMBOL(__dev_get_by_name);
735 
736 /**
737  *	dev_get_by_name_rcu	- find a device by its name
738  *	@net: the applicable net namespace
739  *	@name: name to find
740  *
741  *	Find an interface by name.
742  *	If the name is found a pointer to the device is returned.
743  * 	If the name is not found then %NULL is returned.
744  *	The reference counters are not incremented so the caller must be
745  *	careful with locks. The caller must hold RCU lock.
746  */
747 
748 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
749 {
750 	struct net_device *dev;
751 	struct hlist_head *head = dev_name_hash(net, name);
752 
753 	hlist_for_each_entry_rcu(dev, head, name_hlist)
754 		if (!strncmp(dev->name, name, IFNAMSIZ))
755 			return dev;
756 
757 	return NULL;
758 }
759 EXPORT_SYMBOL(dev_get_by_name_rcu);
760 
761 /**
762  *	dev_get_by_name		- find a device by its name
763  *	@net: the applicable net namespace
764  *	@name: name to find
765  *
766  *	Find an interface by name. This can be called from any
767  *	context and does its own locking. The returned handle has
768  *	the usage count incremented and the caller must use dev_put() to
769  *	release it when it is no longer needed. %NULL is returned if no
770  *	matching device is found.
771  */
772 
773 struct net_device *dev_get_by_name(struct net *net, const char *name)
774 {
775 	struct net_device *dev;
776 
777 	rcu_read_lock();
778 	dev = dev_get_by_name_rcu(net, name);
779 	if (dev)
780 		dev_hold(dev);
781 	rcu_read_unlock();
782 	return dev;
783 }
784 EXPORT_SYMBOL(dev_get_by_name);
785 
786 /**
787  *	__dev_get_by_index - find a device by its ifindex
788  *	@net: the applicable net namespace
789  *	@ifindex: index of device
790  *
791  *	Search for an interface by index. Returns %NULL if the device
792  *	is not found or a pointer to the device. The device has not
793  *	had its reference counter increased so the caller must be careful
794  *	about locking. The caller must hold either the RTNL semaphore
795  *	or @dev_base_lock.
796  */
797 
798 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
799 {
800 	struct net_device *dev;
801 	struct hlist_head *head = dev_index_hash(net, ifindex);
802 
803 	hlist_for_each_entry(dev, head, index_hlist)
804 		if (dev->ifindex == ifindex)
805 			return dev;
806 
807 	return NULL;
808 }
809 EXPORT_SYMBOL(__dev_get_by_index);
810 
811 /**
812  *	dev_get_by_index_rcu - find a device by its ifindex
813  *	@net: the applicable net namespace
814  *	@ifindex: index of device
815  *
816  *	Search for an interface by index. Returns %NULL if the device
817  *	is not found or a pointer to the device. The device has not
818  *	had its reference counter increased so the caller must be careful
819  *	about locking. The caller must hold RCU lock.
820  */
821 
822 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
823 {
824 	struct net_device *dev;
825 	struct hlist_head *head = dev_index_hash(net, ifindex);
826 
827 	hlist_for_each_entry_rcu(dev, head, index_hlist)
828 		if (dev->ifindex == ifindex)
829 			return dev;
830 
831 	return NULL;
832 }
833 EXPORT_SYMBOL(dev_get_by_index_rcu);
834 
835 
836 /**
837  *	dev_get_by_index - find a device by its ifindex
838  *	@net: the applicable net namespace
839  *	@ifindex: index of device
840  *
841  *	Search for an interface by index. Returns NULL if the device
842  *	is not found or a pointer to the device. The device returned has
843  *	had a reference added and the pointer is safe until the user calls
844  *	dev_put to indicate they have finished with it.
845  */
846 
847 struct net_device *dev_get_by_index(struct net *net, int ifindex)
848 {
849 	struct net_device *dev;
850 
851 	rcu_read_lock();
852 	dev = dev_get_by_index_rcu(net, ifindex);
853 	if (dev)
854 		dev_hold(dev);
855 	rcu_read_unlock();
856 	return dev;
857 }
858 EXPORT_SYMBOL(dev_get_by_index);
859 
860 /**
861  *	netdev_get_name - get a netdevice name, knowing its ifindex.
862  *	@net: network namespace
863  *	@name: a pointer to the buffer where the name will be stored.
864  *	@ifindex: the ifindex of the interface to get the name from.
865  *
866  *	The use of raw_seqcount_begin() and cond_resched() before
867  *	retrying is required as we want to give the writers a chance
868  *	to complete when CONFIG_PREEMPT is not set.
869  */
870 int netdev_get_name(struct net *net, char *name, int ifindex)
871 {
872 	struct net_device *dev;
873 	unsigned int seq;
874 
875 retry:
876 	seq = raw_seqcount_begin(&devnet_rename_seq);
877 	rcu_read_lock();
878 	dev = dev_get_by_index_rcu(net, ifindex);
879 	if (!dev) {
880 		rcu_read_unlock();
881 		return -ENODEV;
882 	}
883 
884 	strcpy(name, dev->name);
885 	rcu_read_unlock();
886 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
887 		cond_resched();
888 		goto retry;
889 	}
890 
891 	return 0;
892 }
893 
894 /**
895  *	dev_getbyhwaddr_rcu - find a device by its hardware address
896  *	@net: the applicable net namespace
897  *	@type: media type of device
898  *	@ha: hardware address
899  *
900  *	Search for an interface by MAC address. Returns NULL if the device
901  *	is not found or a pointer to the device.
902  *	The caller must hold RCU or RTNL.
903  *	The returned device has not had its ref count increased
904  *	and the caller must therefore be careful about locking
905  *
906  */
907 
908 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
909 				       const char *ha)
910 {
911 	struct net_device *dev;
912 
913 	for_each_netdev_rcu(net, dev)
914 		if (dev->type == type &&
915 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
916 			return dev;
917 
918 	return NULL;
919 }
920 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
921 
922 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
923 {
924 	struct net_device *dev;
925 
926 	ASSERT_RTNL();
927 	for_each_netdev(net, dev)
928 		if (dev->type == type)
929 			return dev;
930 
931 	return NULL;
932 }
933 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
934 
935 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
936 {
937 	struct net_device *dev, *ret = NULL;
938 
939 	rcu_read_lock();
940 	for_each_netdev_rcu(net, dev)
941 		if (dev->type == type) {
942 			dev_hold(dev);
943 			ret = dev;
944 			break;
945 		}
946 	rcu_read_unlock();
947 	return ret;
948 }
949 EXPORT_SYMBOL(dev_getfirstbyhwtype);
950 
951 /**
952  *	__dev_get_by_flags - find any device with given flags
953  *	@net: the applicable net namespace
954  *	@if_flags: IFF_* values
955  *	@mask: bitmask of bits in if_flags to check
956  *
957  *	Search for any interface with the given flags. Returns NULL if a device
958  *	is not found or a pointer to the device. Must be called inside
959  *	rtnl_lock(), and result refcount is unchanged.
960  */
961 
962 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
963 				      unsigned short mask)
964 {
965 	struct net_device *dev, *ret;
966 
967 	ASSERT_RTNL();
968 
969 	ret = NULL;
970 	for_each_netdev(net, dev) {
971 		if (((dev->flags ^ if_flags) & mask) == 0) {
972 			ret = dev;
973 			break;
974 		}
975 	}
976 	return ret;
977 }
978 EXPORT_SYMBOL(__dev_get_by_flags);
979 
980 /**
981  *	dev_valid_name - check if name is okay for network device
982  *	@name: name string
983  *
984  *	Network device names need to be valid file names to
985  *	to allow sysfs to work.  We also disallow any kind of
986  *	whitespace.
987  */
988 bool dev_valid_name(const char *name)
989 {
990 	if (*name == '\0')
991 		return false;
992 	if (strlen(name) >= IFNAMSIZ)
993 		return false;
994 	if (!strcmp(name, ".") || !strcmp(name, ".."))
995 		return false;
996 
997 	while (*name) {
998 		if (*name == '/' || *name == ':' || isspace(*name))
999 			return false;
1000 		name++;
1001 	}
1002 	return true;
1003 }
1004 EXPORT_SYMBOL(dev_valid_name);
1005 
1006 /**
1007  *	__dev_alloc_name - allocate a name for a device
1008  *	@net: network namespace to allocate the device name in
1009  *	@name: name format string
1010  *	@buf:  scratch buffer and result name string
1011  *
1012  *	Passed a format string - eg "lt%d" it will try and find a suitable
1013  *	id. It scans list of devices to build up a free map, then chooses
1014  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1015  *	while allocating the name and adding the device in order to avoid
1016  *	duplicates.
1017  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1018  *	Returns the number of the unit assigned or a negative errno code.
1019  */
1020 
1021 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1022 {
1023 	int i = 0;
1024 	const char *p;
1025 	const int max_netdevices = 8*PAGE_SIZE;
1026 	unsigned long *inuse;
1027 	struct net_device *d;
1028 
1029 	p = strnchr(name, IFNAMSIZ-1, '%');
1030 	if (p) {
1031 		/*
1032 		 * Verify the string as this thing may have come from
1033 		 * the user.  There must be either one "%d" and no other "%"
1034 		 * characters.
1035 		 */
1036 		if (p[1] != 'd' || strchr(p + 2, '%'))
1037 			return -EINVAL;
1038 
1039 		/* Use one page as a bit array of possible slots */
1040 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1041 		if (!inuse)
1042 			return -ENOMEM;
1043 
1044 		for_each_netdev(net, d) {
1045 			if (!sscanf(d->name, name, &i))
1046 				continue;
1047 			if (i < 0 || i >= max_netdevices)
1048 				continue;
1049 
1050 			/*  avoid cases where sscanf is not exact inverse of printf */
1051 			snprintf(buf, IFNAMSIZ, name, i);
1052 			if (!strncmp(buf, d->name, IFNAMSIZ))
1053 				set_bit(i, inuse);
1054 		}
1055 
1056 		i = find_first_zero_bit(inuse, max_netdevices);
1057 		free_page((unsigned long) inuse);
1058 	}
1059 
1060 	if (buf != name)
1061 		snprintf(buf, IFNAMSIZ, name, i);
1062 	if (!__dev_get_by_name(net, buf))
1063 		return i;
1064 
1065 	/* It is possible to run out of possible slots
1066 	 * when the name is long and there isn't enough space left
1067 	 * for the digits, or if all bits are used.
1068 	 */
1069 	return -ENFILE;
1070 }
1071 
1072 /**
1073  *	dev_alloc_name - allocate a name for a device
1074  *	@dev: device
1075  *	@name: name format string
1076  *
1077  *	Passed a format string - eg "lt%d" it will try and find a suitable
1078  *	id. It scans list of devices to build up a free map, then chooses
1079  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1080  *	while allocating the name and adding the device in order to avoid
1081  *	duplicates.
1082  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1083  *	Returns the number of the unit assigned or a negative errno code.
1084  */
1085 
1086 int dev_alloc_name(struct net_device *dev, const char *name)
1087 {
1088 	char buf[IFNAMSIZ];
1089 	struct net *net;
1090 	int ret;
1091 
1092 	BUG_ON(!dev_net(dev));
1093 	net = dev_net(dev);
1094 	ret = __dev_alloc_name(net, name, buf);
1095 	if (ret >= 0)
1096 		strlcpy(dev->name, buf, IFNAMSIZ);
1097 	return ret;
1098 }
1099 EXPORT_SYMBOL(dev_alloc_name);
1100 
1101 static int dev_alloc_name_ns(struct net *net,
1102 			     struct net_device *dev,
1103 			     const char *name)
1104 {
1105 	char buf[IFNAMSIZ];
1106 	int ret;
1107 
1108 	ret = __dev_alloc_name(net, name, buf);
1109 	if (ret >= 0)
1110 		strlcpy(dev->name, buf, IFNAMSIZ);
1111 	return ret;
1112 }
1113 
1114 static int dev_get_valid_name(struct net *net,
1115 			      struct net_device *dev,
1116 			      const char *name)
1117 {
1118 	BUG_ON(!net);
1119 
1120 	if (!dev_valid_name(name))
1121 		return -EINVAL;
1122 
1123 	if (strchr(name, '%'))
1124 		return dev_alloc_name_ns(net, dev, name);
1125 	else if (__dev_get_by_name(net, name))
1126 		return -EEXIST;
1127 	else if (dev->name != name)
1128 		strlcpy(dev->name, name, IFNAMSIZ);
1129 
1130 	return 0;
1131 }
1132 
1133 /**
1134  *	dev_change_name - change name of a device
1135  *	@dev: device
1136  *	@newname: name (or format string) must be at least IFNAMSIZ
1137  *
1138  *	Change name of a device, can pass format strings "eth%d".
1139  *	for wildcarding.
1140  */
1141 int dev_change_name(struct net_device *dev, const char *newname)
1142 {
1143 	unsigned char old_assign_type;
1144 	char oldname[IFNAMSIZ];
1145 	int err = 0;
1146 	int ret;
1147 	struct net *net;
1148 
1149 	ASSERT_RTNL();
1150 	BUG_ON(!dev_net(dev));
1151 
1152 	net = dev_net(dev);
1153 	if (dev->flags & IFF_UP)
1154 		return -EBUSY;
1155 
1156 	write_seqcount_begin(&devnet_rename_seq);
1157 
1158 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1159 		write_seqcount_end(&devnet_rename_seq);
1160 		return 0;
1161 	}
1162 
1163 	memcpy(oldname, dev->name, IFNAMSIZ);
1164 
1165 	err = dev_get_valid_name(net, dev, newname);
1166 	if (err < 0) {
1167 		write_seqcount_end(&devnet_rename_seq);
1168 		return err;
1169 	}
1170 
1171 	if (oldname[0] && !strchr(oldname, '%'))
1172 		netdev_info(dev, "renamed from %s\n", oldname);
1173 
1174 	old_assign_type = dev->name_assign_type;
1175 	dev->name_assign_type = NET_NAME_RENAMED;
1176 
1177 rollback:
1178 	ret = device_rename(&dev->dev, dev->name);
1179 	if (ret) {
1180 		memcpy(dev->name, oldname, IFNAMSIZ);
1181 		dev->name_assign_type = old_assign_type;
1182 		write_seqcount_end(&devnet_rename_seq);
1183 		return ret;
1184 	}
1185 
1186 	write_seqcount_end(&devnet_rename_seq);
1187 
1188 	netdev_adjacent_rename_links(dev, oldname);
1189 
1190 	write_lock_bh(&dev_base_lock);
1191 	hlist_del_rcu(&dev->name_hlist);
1192 	write_unlock_bh(&dev_base_lock);
1193 
1194 	synchronize_rcu();
1195 
1196 	write_lock_bh(&dev_base_lock);
1197 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1198 	write_unlock_bh(&dev_base_lock);
1199 
1200 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1201 	ret = notifier_to_errno(ret);
1202 
1203 	if (ret) {
1204 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1205 		if (err >= 0) {
1206 			err = ret;
1207 			write_seqcount_begin(&devnet_rename_seq);
1208 			memcpy(dev->name, oldname, IFNAMSIZ);
1209 			memcpy(oldname, newname, IFNAMSIZ);
1210 			dev->name_assign_type = old_assign_type;
1211 			old_assign_type = NET_NAME_RENAMED;
1212 			goto rollback;
1213 		} else {
1214 			pr_err("%s: name change rollback failed: %d\n",
1215 			       dev->name, ret);
1216 		}
1217 	}
1218 
1219 	return err;
1220 }
1221 
1222 /**
1223  *	dev_set_alias - change ifalias of a device
1224  *	@dev: device
1225  *	@alias: name up to IFALIASZ
1226  *	@len: limit of bytes to copy from info
1227  *
1228  *	Set ifalias for a device,
1229  */
1230 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1231 {
1232 	char *new_ifalias;
1233 
1234 	ASSERT_RTNL();
1235 
1236 	if (len >= IFALIASZ)
1237 		return -EINVAL;
1238 
1239 	if (!len) {
1240 		kfree(dev->ifalias);
1241 		dev->ifalias = NULL;
1242 		return 0;
1243 	}
1244 
1245 	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1246 	if (!new_ifalias)
1247 		return -ENOMEM;
1248 	dev->ifalias = new_ifalias;
1249 
1250 	strlcpy(dev->ifalias, alias, len+1);
1251 	return len;
1252 }
1253 
1254 
1255 /**
1256  *	netdev_features_change - device changes features
1257  *	@dev: device to cause notification
1258  *
1259  *	Called to indicate a device has changed features.
1260  */
1261 void netdev_features_change(struct net_device *dev)
1262 {
1263 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1264 }
1265 EXPORT_SYMBOL(netdev_features_change);
1266 
1267 /**
1268  *	netdev_state_change - device changes state
1269  *	@dev: device to cause notification
1270  *
1271  *	Called to indicate a device has changed state. This function calls
1272  *	the notifier chains for netdev_chain and sends a NEWLINK message
1273  *	to the routing socket.
1274  */
1275 void netdev_state_change(struct net_device *dev)
1276 {
1277 	if (dev->flags & IFF_UP) {
1278 		struct netdev_notifier_change_info change_info;
1279 
1280 		change_info.flags_changed = 0;
1281 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1282 					      &change_info.info);
1283 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1284 	}
1285 }
1286 EXPORT_SYMBOL(netdev_state_change);
1287 
1288 /**
1289  * 	netdev_notify_peers - notify network peers about existence of @dev
1290  * 	@dev: network device
1291  *
1292  * Generate traffic such that interested network peers are aware of
1293  * @dev, such as by generating a gratuitous ARP. This may be used when
1294  * a device wants to inform the rest of the network about some sort of
1295  * reconfiguration such as a failover event or virtual machine
1296  * migration.
1297  */
1298 void netdev_notify_peers(struct net_device *dev)
1299 {
1300 	rtnl_lock();
1301 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1302 	rtnl_unlock();
1303 }
1304 EXPORT_SYMBOL(netdev_notify_peers);
1305 
1306 static int __dev_open(struct net_device *dev)
1307 {
1308 	const struct net_device_ops *ops = dev->netdev_ops;
1309 	int ret;
1310 
1311 	ASSERT_RTNL();
1312 
1313 	if (!netif_device_present(dev))
1314 		return -ENODEV;
1315 
1316 	/* Block netpoll from trying to do any rx path servicing.
1317 	 * If we don't do this there is a chance ndo_poll_controller
1318 	 * or ndo_poll may be running while we open the device
1319 	 */
1320 	netpoll_poll_disable(dev);
1321 
1322 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1323 	ret = notifier_to_errno(ret);
1324 	if (ret)
1325 		return ret;
1326 
1327 	set_bit(__LINK_STATE_START, &dev->state);
1328 
1329 	if (ops->ndo_validate_addr)
1330 		ret = ops->ndo_validate_addr(dev);
1331 
1332 	if (!ret && ops->ndo_open)
1333 		ret = ops->ndo_open(dev);
1334 
1335 	netpoll_poll_enable(dev);
1336 
1337 	if (ret)
1338 		clear_bit(__LINK_STATE_START, &dev->state);
1339 	else {
1340 		dev->flags |= IFF_UP;
1341 		dev_set_rx_mode(dev);
1342 		dev_activate(dev);
1343 		add_device_randomness(dev->dev_addr, dev->addr_len);
1344 	}
1345 
1346 	return ret;
1347 }
1348 
1349 /**
1350  *	dev_open	- prepare an interface for use.
1351  *	@dev:	device to open
1352  *
1353  *	Takes a device from down to up state. The device's private open
1354  *	function is invoked and then the multicast lists are loaded. Finally
1355  *	the device is moved into the up state and a %NETDEV_UP message is
1356  *	sent to the netdev notifier chain.
1357  *
1358  *	Calling this function on an active interface is a nop. On a failure
1359  *	a negative errno code is returned.
1360  */
1361 int dev_open(struct net_device *dev)
1362 {
1363 	int ret;
1364 
1365 	if (dev->flags & IFF_UP)
1366 		return 0;
1367 
1368 	ret = __dev_open(dev);
1369 	if (ret < 0)
1370 		return ret;
1371 
1372 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1373 	call_netdevice_notifiers(NETDEV_UP, dev);
1374 
1375 	return ret;
1376 }
1377 EXPORT_SYMBOL(dev_open);
1378 
1379 static int __dev_close_many(struct list_head *head)
1380 {
1381 	struct net_device *dev;
1382 
1383 	ASSERT_RTNL();
1384 	might_sleep();
1385 
1386 	list_for_each_entry(dev, head, close_list) {
1387 		/* Temporarily disable netpoll until the interface is down */
1388 		netpoll_poll_disable(dev);
1389 
1390 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1391 
1392 		clear_bit(__LINK_STATE_START, &dev->state);
1393 
1394 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1395 		 * can be even on different cpu. So just clear netif_running().
1396 		 *
1397 		 * dev->stop() will invoke napi_disable() on all of it's
1398 		 * napi_struct instances on this device.
1399 		 */
1400 		smp_mb__after_atomic(); /* Commit netif_running(). */
1401 	}
1402 
1403 	dev_deactivate_many(head);
1404 
1405 	list_for_each_entry(dev, head, close_list) {
1406 		const struct net_device_ops *ops = dev->netdev_ops;
1407 
1408 		/*
1409 		 *	Call the device specific close. This cannot fail.
1410 		 *	Only if device is UP
1411 		 *
1412 		 *	We allow it to be called even after a DETACH hot-plug
1413 		 *	event.
1414 		 */
1415 		if (ops->ndo_stop)
1416 			ops->ndo_stop(dev);
1417 
1418 		dev->flags &= ~IFF_UP;
1419 		netpoll_poll_enable(dev);
1420 	}
1421 
1422 	return 0;
1423 }
1424 
1425 static int __dev_close(struct net_device *dev)
1426 {
1427 	int retval;
1428 	LIST_HEAD(single);
1429 
1430 	list_add(&dev->close_list, &single);
1431 	retval = __dev_close_many(&single);
1432 	list_del(&single);
1433 
1434 	return retval;
1435 }
1436 
1437 int dev_close_many(struct list_head *head, bool unlink)
1438 {
1439 	struct net_device *dev, *tmp;
1440 
1441 	/* Remove the devices that don't need to be closed */
1442 	list_for_each_entry_safe(dev, tmp, head, close_list)
1443 		if (!(dev->flags & IFF_UP))
1444 			list_del_init(&dev->close_list);
1445 
1446 	__dev_close_many(head);
1447 
1448 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1449 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1450 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1451 		if (unlink)
1452 			list_del_init(&dev->close_list);
1453 	}
1454 
1455 	return 0;
1456 }
1457 EXPORT_SYMBOL(dev_close_many);
1458 
1459 /**
1460  *	dev_close - shutdown an interface.
1461  *	@dev: device to shutdown
1462  *
1463  *	This function moves an active device into down state. A
1464  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1465  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1466  *	chain.
1467  */
1468 int dev_close(struct net_device *dev)
1469 {
1470 	if (dev->flags & IFF_UP) {
1471 		LIST_HEAD(single);
1472 
1473 		list_add(&dev->close_list, &single);
1474 		dev_close_many(&single, true);
1475 		list_del(&single);
1476 	}
1477 	return 0;
1478 }
1479 EXPORT_SYMBOL(dev_close);
1480 
1481 
1482 /**
1483  *	dev_disable_lro - disable Large Receive Offload on a device
1484  *	@dev: device
1485  *
1486  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1487  *	called under RTNL.  This is needed if received packets may be
1488  *	forwarded to another interface.
1489  */
1490 void dev_disable_lro(struct net_device *dev)
1491 {
1492 	struct net_device *lower_dev;
1493 	struct list_head *iter;
1494 
1495 	dev->wanted_features &= ~NETIF_F_LRO;
1496 	netdev_update_features(dev);
1497 
1498 	if (unlikely(dev->features & NETIF_F_LRO))
1499 		netdev_WARN(dev, "failed to disable LRO!\n");
1500 
1501 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1502 		dev_disable_lro(lower_dev);
1503 }
1504 EXPORT_SYMBOL(dev_disable_lro);
1505 
1506 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1507 				   struct net_device *dev)
1508 {
1509 	struct netdev_notifier_info info;
1510 
1511 	netdev_notifier_info_init(&info, dev);
1512 	return nb->notifier_call(nb, val, &info);
1513 }
1514 
1515 static int dev_boot_phase = 1;
1516 
1517 /**
1518  *	register_netdevice_notifier - register a network notifier block
1519  *	@nb: notifier
1520  *
1521  *	Register a notifier to be called when network device events occur.
1522  *	The notifier passed is linked into the kernel structures and must
1523  *	not be reused until it has been unregistered. A negative errno code
1524  *	is returned on a failure.
1525  *
1526  * 	When registered all registration and up events are replayed
1527  *	to the new notifier to allow device to have a race free
1528  *	view of the network device list.
1529  */
1530 
1531 int register_netdevice_notifier(struct notifier_block *nb)
1532 {
1533 	struct net_device *dev;
1534 	struct net_device *last;
1535 	struct net *net;
1536 	int err;
1537 
1538 	rtnl_lock();
1539 	err = raw_notifier_chain_register(&netdev_chain, nb);
1540 	if (err)
1541 		goto unlock;
1542 	if (dev_boot_phase)
1543 		goto unlock;
1544 	for_each_net(net) {
1545 		for_each_netdev(net, dev) {
1546 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1547 			err = notifier_to_errno(err);
1548 			if (err)
1549 				goto rollback;
1550 
1551 			if (!(dev->flags & IFF_UP))
1552 				continue;
1553 
1554 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1555 		}
1556 	}
1557 
1558 unlock:
1559 	rtnl_unlock();
1560 	return err;
1561 
1562 rollback:
1563 	last = dev;
1564 	for_each_net(net) {
1565 		for_each_netdev(net, dev) {
1566 			if (dev == last)
1567 				goto outroll;
1568 
1569 			if (dev->flags & IFF_UP) {
1570 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1571 							dev);
1572 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1573 			}
1574 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1575 		}
1576 	}
1577 
1578 outroll:
1579 	raw_notifier_chain_unregister(&netdev_chain, nb);
1580 	goto unlock;
1581 }
1582 EXPORT_SYMBOL(register_netdevice_notifier);
1583 
1584 /**
1585  *	unregister_netdevice_notifier - unregister a network notifier block
1586  *	@nb: notifier
1587  *
1588  *	Unregister a notifier previously registered by
1589  *	register_netdevice_notifier(). The notifier is unlinked into the
1590  *	kernel structures and may then be reused. A negative errno code
1591  *	is returned on a failure.
1592  *
1593  * 	After unregistering unregister and down device events are synthesized
1594  *	for all devices on the device list to the removed notifier to remove
1595  *	the need for special case cleanup code.
1596  */
1597 
1598 int unregister_netdevice_notifier(struct notifier_block *nb)
1599 {
1600 	struct net_device *dev;
1601 	struct net *net;
1602 	int err;
1603 
1604 	rtnl_lock();
1605 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1606 	if (err)
1607 		goto unlock;
1608 
1609 	for_each_net(net) {
1610 		for_each_netdev(net, dev) {
1611 			if (dev->flags & IFF_UP) {
1612 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1613 							dev);
1614 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1615 			}
1616 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1617 		}
1618 	}
1619 unlock:
1620 	rtnl_unlock();
1621 	return err;
1622 }
1623 EXPORT_SYMBOL(unregister_netdevice_notifier);
1624 
1625 /**
1626  *	call_netdevice_notifiers_info - call all network notifier blocks
1627  *	@val: value passed unmodified to notifier function
1628  *	@dev: net_device pointer passed unmodified to notifier function
1629  *	@info: notifier information data
1630  *
1631  *	Call all network notifier blocks.  Parameters and return value
1632  *	are as for raw_notifier_call_chain().
1633  */
1634 
1635 static int call_netdevice_notifiers_info(unsigned long val,
1636 					 struct net_device *dev,
1637 					 struct netdev_notifier_info *info)
1638 {
1639 	ASSERT_RTNL();
1640 	netdev_notifier_info_init(info, dev);
1641 	return raw_notifier_call_chain(&netdev_chain, val, info);
1642 }
1643 
1644 /**
1645  *	call_netdevice_notifiers - call all network notifier blocks
1646  *      @val: value passed unmodified to notifier function
1647  *      @dev: net_device pointer passed unmodified to notifier function
1648  *
1649  *	Call all network notifier blocks.  Parameters and return value
1650  *	are as for raw_notifier_call_chain().
1651  */
1652 
1653 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1654 {
1655 	struct netdev_notifier_info info;
1656 
1657 	return call_netdevice_notifiers_info(val, dev, &info);
1658 }
1659 EXPORT_SYMBOL(call_netdevice_notifiers);
1660 
1661 #ifdef CONFIG_NET_INGRESS
1662 static struct static_key ingress_needed __read_mostly;
1663 
1664 void net_inc_ingress_queue(void)
1665 {
1666 	static_key_slow_inc(&ingress_needed);
1667 }
1668 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1669 
1670 void net_dec_ingress_queue(void)
1671 {
1672 	static_key_slow_dec(&ingress_needed);
1673 }
1674 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1675 #endif
1676 
1677 static struct static_key netstamp_needed __read_mostly;
1678 #ifdef HAVE_JUMP_LABEL
1679 /* We are not allowed to call static_key_slow_dec() from irq context
1680  * If net_disable_timestamp() is called from irq context, defer the
1681  * static_key_slow_dec() calls.
1682  */
1683 static atomic_t netstamp_needed_deferred;
1684 #endif
1685 
1686 void net_enable_timestamp(void)
1687 {
1688 #ifdef HAVE_JUMP_LABEL
1689 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1690 
1691 	if (deferred) {
1692 		while (--deferred)
1693 			static_key_slow_dec(&netstamp_needed);
1694 		return;
1695 	}
1696 #endif
1697 	static_key_slow_inc(&netstamp_needed);
1698 }
1699 EXPORT_SYMBOL(net_enable_timestamp);
1700 
1701 void net_disable_timestamp(void)
1702 {
1703 #ifdef HAVE_JUMP_LABEL
1704 	if (in_interrupt()) {
1705 		atomic_inc(&netstamp_needed_deferred);
1706 		return;
1707 	}
1708 #endif
1709 	static_key_slow_dec(&netstamp_needed);
1710 }
1711 EXPORT_SYMBOL(net_disable_timestamp);
1712 
1713 static inline void net_timestamp_set(struct sk_buff *skb)
1714 {
1715 	skb->tstamp.tv64 = 0;
1716 	if (static_key_false(&netstamp_needed))
1717 		__net_timestamp(skb);
1718 }
1719 
1720 #define net_timestamp_check(COND, SKB)			\
1721 	if (static_key_false(&netstamp_needed)) {		\
1722 		if ((COND) && !(SKB)->tstamp.tv64)	\
1723 			__net_timestamp(SKB);		\
1724 	}						\
1725 
1726 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1727 {
1728 	unsigned int len;
1729 
1730 	if (!(dev->flags & IFF_UP))
1731 		return false;
1732 
1733 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1734 	if (skb->len <= len)
1735 		return true;
1736 
1737 	/* if TSO is enabled, we don't care about the length as the packet
1738 	 * could be forwarded without being segmented before
1739 	 */
1740 	if (skb_is_gso(skb))
1741 		return true;
1742 
1743 	return false;
1744 }
1745 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1746 
1747 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1748 {
1749 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1750 	    unlikely(!is_skb_forwardable(dev, skb))) {
1751 		atomic_long_inc(&dev->rx_dropped);
1752 		kfree_skb(skb);
1753 		return NET_RX_DROP;
1754 	}
1755 
1756 	skb_scrub_packet(skb, true);
1757 	skb->priority = 0;
1758 	skb->protocol = eth_type_trans(skb, dev);
1759 	skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1760 
1761 	return 0;
1762 }
1763 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1764 
1765 /**
1766  * dev_forward_skb - loopback an skb to another netif
1767  *
1768  * @dev: destination network device
1769  * @skb: buffer to forward
1770  *
1771  * return values:
1772  *	NET_RX_SUCCESS	(no congestion)
1773  *	NET_RX_DROP     (packet was dropped, but freed)
1774  *
1775  * dev_forward_skb can be used for injecting an skb from the
1776  * start_xmit function of one device into the receive queue
1777  * of another device.
1778  *
1779  * The receiving device may be in another namespace, so
1780  * we have to clear all information in the skb that could
1781  * impact namespace isolation.
1782  */
1783 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1784 {
1785 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1786 }
1787 EXPORT_SYMBOL_GPL(dev_forward_skb);
1788 
1789 static inline int deliver_skb(struct sk_buff *skb,
1790 			      struct packet_type *pt_prev,
1791 			      struct net_device *orig_dev)
1792 {
1793 	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1794 		return -ENOMEM;
1795 	atomic_inc(&skb->users);
1796 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1797 }
1798 
1799 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1800 					  struct packet_type **pt,
1801 					  struct net_device *orig_dev,
1802 					  __be16 type,
1803 					  struct list_head *ptype_list)
1804 {
1805 	struct packet_type *ptype, *pt_prev = *pt;
1806 
1807 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1808 		if (ptype->type != type)
1809 			continue;
1810 		if (pt_prev)
1811 			deliver_skb(skb, pt_prev, orig_dev);
1812 		pt_prev = ptype;
1813 	}
1814 	*pt = pt_prev;
1815 }
1816 
1817 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1818 {
1819 	if (!ptype->af_packet_priv || !skb->sk)
1820 		return false;
1821 
1822 	if (ptype->id_match)
1823 		return ptype->id_match(ptype, skb->sk);
1824 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1825 		return true;
1826 
1827 	return false;
1828 }
1829 
1830 /*
1831  *	Support routine. Sends outgoing frames to any network
1832  *	taps currently in use.
1833  */
1834 
1835 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1836 {
1837 	struct packet_type *ptype;
1838 	struct sk_buff *skb2 = NULL;
1839 	struct packet_type *pt_prev = NULL;
1840 	struct list_head *ptype_list = &ptype_all;
1841 
1842 	rcu_read_lock();
1843 again:
1844 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1845 		/* Never send packets back to the socket
1846 		 * they originated from - MvS (miquels@drinkel.ow.org)
1847 		 */
1848 		if (skb_loop_sk(ptype, skb))
1849 			continue;
1850 
1851 		if (pt_prev) {
1852 			deliver_skb(skb2, pt_prev, skb->dev);
1853 			pt_prev = ptype;
1854 			continue;
1855 		}
1856 
1857 		/* need to clone skb, done only once */
1858 		skb2 = skb_clone(skb, GFP_ATOMIC);
1859 		if (!skb2)
1860 			goto out_unlock;
1861 
1862 		net_timestamp_set(skb2);
1863 
1864 		/* skb->nh should be correctly
1865 		 * set by sender, so that the second statement is
1866 		 * just protection against buggy protocols.
1867 		 */
1868 		skb_reset_mac_header(skb2);
1869 
1870 		if (skb_network_header(skb2) < skb2->data ||
1871 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1872 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1873 					     ntohs(skb2->protocol),
1874 					     dev->name);
1875 			skb_reset_network_header(skb2);
1876 		}
1877 
1878 		skb2->transport_header = skb2->network_header;
1879 		skb2->pkt_type = PACKET_OUTGOING;
1880 		pt_prev = ptype;
1881 	}
1882 
1883 	if (ptype_list == &ptype_all) {
1884 		ptype_list = &dev->ptype_all;
1885 		goto again;
1886 	}
1887 out_unlock:
1888 	if (pt_prev)
1889 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1890 	rcu_read_unlock();
1891 }
1892 
1893 /**
1894  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1895  * @dev: Network device
1896  * @txq: number of queues available
1897  *
1898  * If real_num_tx_queues is changed the tc mappings may no longer be
1899  * valid. To resolve this verify the tc mapping remains valid and if
1900  * not NULL the mapping. With no priorities mapping to this
1901  * offset/count pair it will no longer be used. In the worst case TC0
1902  * is invalid nothing can be done so disable priority mappings. If is
1903  * expected that drivers will fix this mapping if they can before
1904  * calling netif_set_real_num_tx_queues.
1905  */
1906 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1907 {
1908 	int i;
1909 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1910 
1911 	/* If TC0 is invalidated disable TC mapping */
1912 	if (tc->offset + tc->count > txq) {
1913 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1914 		dev->num_tc = 0;
1915 		return;
1916 	}
1917 
1918 	/* Invalidated prio to tc mappings set to TC0 */
1919 	for (i = 1; i < TC_BITMASK + 1; i++) {
1920 		int q = netdev_get_prio_tc_map(dev, i);
1921 
1922 		tc = &dev->tc_to_txq[q];
1923 		if (tc->offset + tc->count > txq) {
1924 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1925 				i, q);
1926 			netdev_set_prio_tc_map(dev, i, 0);
1927 		}
1928 	}
1929 }
1930 
1931 #ifdef CONFIG_XPS
1932 static DEFINE_MUTEX(xps_map_mutex);
1933 #define xmap_dereference(P)		\
1934 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1935 
1936 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1937 					int cpu, u16 index)
1938 {
1939 	struct xps_map *map = NULL;
1940 	int pos;
1941 
1942 	if (dev_maps)
1943 		map = xmap_dereference(dev_maps->cpu_map[cpu]);
1944 
1945 	for (pos = 0; map && pos < map->len; pos++) {
1946 		if (map->queues[pos] == index) {
1947 			if (map->len > 1) {
1948 				map->queues[pos] = map->queues[--map->len];
1949 			} else {
1950 				RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1951 				kfree_rcu(map, rcu);
1952 				map = NULL;
1953 			}
1954 			break;
1955 		}
1956 	}
1957 
1958 	return map;
1959 }
1960 
1961 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1962 {
1963 	struct xps_dev_maps *dev_maps;
1964 	int cpu, i;
1965 	bool active = false;
1966 
1967 	mutex_lock(&xps_map_mutex);
1968 	dev_maps = xmap_dereference(dev->xps_maps);
1969 
1970 	if (!dev_maps)
1971 		goto out_no_maps;
1972 
1973 	for_each_possible_cpu(cpu) {
1974 		for (i = index; i < dev->num_tx_queues; i++) {
1975 			if (!remove_xps_queue(dev_maps, cpu, i))
1976 				break;
1977 		}
1978 		if (i == dev->num_tx_queues)
1979 			active = true;
1980 	}
1981 
1982 	if (!active) {
1983 		RCU_INIT_POINTER(dev->xps_maps, NULL);
1984 		kfree_rcu(dev_maps, rcu);
1985 	}
1986 
1987 	for (i = index; i < dev->num_tx_queues; i++)
1988 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1989 					     NUMA_NO_NODE);
1990 
1991 out_no_maps:
1992 	mutex_unlock(&xps_map_mutex);
1993 }
1994 
1995 static struct xps_map *expand_xps_map(struct xps_map *map,
1996 				      int cpu, u16 index)
1997 {
1998 	struct xps_map *new_map;
1999 	int alloc_len = XPS_MIN_MAP_ALLOC;
2000 	int i, pos;
2001 
2002 	for (pos = 0; map && pos < map->len; pos++) {
2003 		if (map->queues[pos] != index)
2004 			continue;
2005 		return map;
2006 	}
2007 
2008 	/* Need to add queue to this CPU's existing map */
2009 	if (map) {
2010 		if (pos < map->alloc_len)
2011 			return map;
2012 
2013 		alloc_len = map->alloc_len * 2;
2014 	}
2015 
2016 	/* Need to allocate new map to store queue on this CPU's map */
2017 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2018 			       cpu_to_node(cpu));
2019 	if (!new_map)
2020 		return NULL;
2021 
2022 	for (i = 0; i < pos; i++)
2023 		new_map->queues[i] = map->queues[i];
2024 	new_map->alloc_len = alloc_len;
2025 	new_map->len = pos;
2026 
2027 	return new_map;
2028 }
2029 
2030 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2031 			u16 index)
2032 {
2033 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2034 	struct xps_map *map, *new_map;
2035 	int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2036 	int cpu, numa_node_id = -2;
2037 	bool active = false;
2038 
2039 	mutex_lock(&xps_map_mutex);
2040 
2041 	dev_maps = xmap_dereference(dev->xps_maps);
2042 
2043 	/* allocate memory for queue storage */
2044 	for_each_online_cpu(cpu) {
2045 		if (!cpumask_test_cpu(cpu, mask))
2046 			continue;
2047 
2048 		if (!new_dev_maps)
2049 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2050 		if (!new_dev_maps) {
2051 			mutex_unlock(&xps_map_mutex);
2052 			return -ENOMEM;
2053 		}
2054 
2055 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2056 				 NULL;
2057 
2058 		map = expand_xps_map(map, cpu, index);
2059 		if (!map)
2060 			goto error;
2061 
2062 		RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2063 	}
2064 
2065 	if (!new_dev_maps)
2066 		goto out_no_new_maps;
2067 
2068 	for_each_possible_cpu(cpu) {
2069 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2070 			/* add queue to CPU maps */
2071 			int pos = 0;
2072 
2073 			map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2074 			while ((pos < map->len) && (map->queues[pos] != index))
2075 				pos++;
2076 
2077 			if (pos == map->len)
2078 				map->queues[map->len++] = index;
2079 #ifdef CONFIG_NUMA
2080 			if (numa_node_id == -2)
2081 				numa_node_id = cpu_to_node(cpu);
2082 			else if (numa_node_id != cpu_to_node(cpu))
2083 				numa_node_id = -1;
2084 #endif
2085 		} else if (dev_maps) {
2086 			/* fill in the new device map from the old device map */
2087 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
2088 			RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2089 		}
2090 
2091 	}
2092 
2093 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2094 
2095 	/* Cleanup old maps */
2096 	if (dev_maps) {
2097 		for_each_possible_cpu(cpu) {
2098 			new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2099 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
2100 			if (map && map != new_map)
2101 				kfree_rcu(map, rcu);
2102 		}
2103 
2104 		kfree_rcu(dev_maps, rcu);
2105 	}
2106 
2107 	dev_maps = new_dev_maps;
2108 	active = true;
2109 
2110 out_no_new_maps:
2111 	/* update Tx queue numa node */
2112 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2113 				     (numa_node_id >= 0) ? numa_node_id :
2114 				     NUMA_NO_NODE);
2115 
2116 	if (!dev_maps)
2117 		goto out_no_maps;
2118 
2119 	/* removes queue from unused CPUs */
2120 	for_each_possible_cpu(cpu) {
2121 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2122 			continue;
2123 
2124 		if (remove_xps_queue(dev_maps, cpu, index))
2125 			active = true;
2126 	}
2127 
2128 	/* free map if not active */
2129 	if (!active) {
2130 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2131 		kfree_rcu(dev_maps, rcu);
2132 	}
2133 
2134 out_no_maps:
2135 	mutex_unlock(&xps_map_mutex);
2136 
2137 	return 0;
2138 error:
2139 	/* remove any maps that we added */
2140 	for_each_possible_cpu(cpu) {
2141 		new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2142 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2143 				 NULL;
2144 		if (new_map && new_map != map)
2145 			kfree(new_map);
2146 	}
2147 
2148 	mutex_unlock(&xps_map_mutex);
2149 
2150 	kfree(new_dev_maps);
2151 	return -ENOMEM;
2152 }
2153 EXPORT_SYMBOL(netif_set_xps_queue);
2154 
2155 #endif
2156 /*
2157  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2158  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2159  */
2160 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2161 {
2162 	int rc;
2163 
2164 	if (txq < 1 || txq > dev->num_tx_queues)
2165 		return -EINVAL;
2166 
2167 	if (dev->reg_state == NETREG_REGISTERED ||
2168 	    dev->reg_state == NETREG_UNREGISTERING) {
2169 		ASSERT_RTNL();
2170 
2171 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2172 						  txq);
2173 		if (rc)
2174 			return rc;
2175 
2176 		if (dev->num_tc)
2177 			netif_setup_tc(dev, txq);
2178 
2179 		if (txq < dev->real_num_tx_queues) {
2180 			qdisc_reset_all_tx_gt(dev, txq);
2181 #ifdef CONFIG_XPS
2182 			netif_reset_xps_queues_gt(dev, txq);
2183 #endif
2184 		}
2185 	}
2186 
2187 	dev->real_num_tx_queues = txq;
2188 	return 0;
2189 }
2190 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2191 
2192 #ifdef CONFIG_SYSFS
2193 /**
2194  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2195  *	@dev: Network device
2196  *	@rxq: Actual number of RX queues
2197  *
2198  *	This must be called either with the rtnl_lock held or before
2199  *	registration of the net device.  Returns 0 on success, or a
2200  *	negative error code.  If called before registration, it always
2201  *	succeeds.
2202  */
2203 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2204 {
2205 	int rc;
2206 
2207 	if (rxq < 1 || rxq > dev->num_rx_queues)
2208 		return -EINVAL;
2209 
2210 	if (dev->reg_state == NETREG_REGISTERED) {
2211 		ASSERT_RTNL();
2212 
2213 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2214 						  rxq);
2215 		if (rc)
2216 			return rc;
2217 	}
2218 
2219 	dev->real_num_rx_queues = rxq;
2220 	return 0;
2221 }
2222 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2223 #endif
2224 
2225 /**
2226  * netif_get_num_default_rss_queues - default number of RSS queues
2227  *
2228  * This routine should set an upper limit on the number of RSS queues
2229  * used by default by multiqueue devices.
2230  */
2231 int netif_get_num_default_rss_queues(void)
2232 {
2233 	return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2234 }
2235 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2236 
2237 static inline void __netif_reschedule(struct Qdisc *q)
2238 {
2239 	struct softnet_data *sd;
2240 	unsigned long flags;
2241 
2242 	local_irq_save(flags);
2243 	sd = this_cpu_ptr(&softnet_data);
2244 	q->next_sched = NULL;
2245 	*sd->output_queue_tailp = q;
2246 	sd->output_queue_tailp = &q->next_sched;
2247 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2248 	local_irq_restore(flags);
2249 }
2250 
2251 void __netif_schedule(struct Qdisc *q)
2252 {
2253 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2254 		__netif_reschedule(q);
2255 }
2256 EXPORT_SYMBOL(__netif_schedule);
2257 
2258 struct dev_kfree_skb_cb {
2259 	enum skb_free_reason reason;
2260 };
2261 
2262 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2263 {
2264 	return (struct dev_kfree_skb_cb *)skb->cb;
2265 }
2266 
2267 void netif_schedule_queue(struct netdev_queue *txq)
2268 {
2269 	rcu_read_lock();
2270 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2271 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2272 
2273 		__netif_schedule(q);
2274 	}
2275 	rcu_read_unlock();
2276 }
2277 EXPORT_SYMBOL(netif_schedule_queue);
2278 
2279 /**
2280  *	netif_wake_subqueue - allow sending packets on subqueue
2281  *	@dev: network device
2282  *	@queue_index: sub queue index
2283  *
2284  * Resume individual transmit queue of a device with multiple transmit queues.
2285  */
2286 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2287 {
2288 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2289 
2290 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2291 		struct Qdisc *q;
2292 
2293 		rcu_read_lock();
2294 		q = rcu_dereference(txq->qdisc);
2295 		__netif_schedule(q);
2296 		rcu_read_unlock();
2297 	}
2298 }
2299 EXPORT_SYMBOL(netif_wake_subqueue);
2300 
2301 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2302 {
2303 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2304 		struct Qdisc *q;
2305 
2306 		rcu_read_lock();
2307 		q = rcu_dereference(dev_queue->qdisc);
2308 		__netif_schedule(q);
2309 		rcu_read_unlock();
2310 	}
2311 }
2312 EXPORT_SYMBOL(netif_tx_wake_queue);
2313 
2314 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2315 {
2316 	unsigned long flags;
2317 
2318 	if (likely(atomic_read(&skb->users) == 1)) {
2319 		smp_rmb();
2320 		atomic_set(&skb->users, 0);
2321 	} else if (likely(!atomic_dec_and_test(&skb->users))) {
2322 		return;
2323 	}
2324 	get_kfree_skb_cb(skb)->reason = reason;
2325 	local_irq_save(flags);
2326 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2327 	__this_cpu_write(softnet_data.completion_queue, skb);
2328 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2329 	local_irq_restore(flags);
2330 }
2331 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2332 
2333 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2334 {
2335 	if (in_irq() || irqs_disabled())
2336 		__dev_kfree_skb_irq(skb, reason);
2337 	else
2338 		dev_kfree_skb(skb);
2339 }
2340 EXPORT_SYMBOL(__dev_kfree_skb_any);
2341 
2342 
2343 /**
2344  * netif_device_detach - mark device as removed
2345  * @dev: network device
2346  *
2347  * Mark device as removed from system and therefore no longer available.
2348  */
2349 void netif_device_detach(struct net_device *dev)
2350 {
2351 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2352 	    netif_running(dev)) {
2353 		netif_tx_stop_all_queues(dev);
2354 	}
2355 }
2356 EXPORT_SYMBOL(netif_device_detach);
2357 
2358 /**
2359  * netif_device_attach - mark device as attached
2360  * @dev: network device
2361  *
2362  * Mark device as attached from system and restart if needed.
2363  */
2364 void netif_device_attach(struct net_device *dev)
2365 {
2366 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2367 	    netif_running(dev)) {
2368 		netif_tx_wake_all_queues(dev);
2369 		__netdev_watchdog_up(dev);
2370 	}
2371 }
2372 EXPORT_SYMBOL(netif_device_attach);
2373 
2374 /*
2375  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2376  * to be used as a distribution range.
2377  */
2378 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2379 		  unsigned int num_tx_queues)
2380 {
2381 	u32 hash;
2382 	u16 qoffset = 0;
2383 	u16 qcount = num_tx_queues;
2384 
2385 	if (skb_rx_queue_recorded(skb)) {
2386 		hash = skb_get_rx_queue(skb);
2387 		while (unlikely(hash >= num_tx_queues))
2388 			hash -= num_tx_queues;
2389 		return hash;
2390 	}
2391 
2392 	if (dev->num_tc) {
2393 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2394 		qoffset = dev->tc_to_txq[tc].offset;
2395 		qcount = dev->tc_to_txq[tc].count;
2396 	}
2397 
2398 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2399 }
2400 EXPORT_SYMBOL(__skb_tx_hash);
2401 
2402 static void skb_warn_bad_offload(const struct sk_buff *skb)
2403 {
2404 	static const netdev_features_t null_features = 0;
2405 	struct net_device *dev = skb->dev;
2406 	const char *name = "";
2407 
2408 	if (!net_ratelimit())
2409 		return;
2410 
2411 	if (dev) {
2412 		if (dev->dev.parent)
2413 			name = dev_driver_string(dev->dev.parent);
2414 		else
2415 			name = netdev_name(dev);
2416 	}
2417 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2418 	     "gso_type=%d ip_summed=%d\n",
2419 	     name, dev ? &dev->features : &null_features,
2420 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2421 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2422 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2423 }
2424 
2425 /*
2426  * Invalidate hardware checksum when packet is to be mangled, and
2427  * complete checksum manually on outgoing path.
2428  */
2429 int skb_checksum_help(struct sk_buff *skb)
2430 {
2431 	__wsum csum;
2432 	int ret = 0, offset;
2433 
2434 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2435 		goto out_set_summed;
2436 
2437 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2438 		skb_warn_bad_offload(skb);
2439 		return -EINVAL;
2440 	}
2441 
2442 	/* Before computing a checksum, we should make sure no frag could
2443 	 * be modified by an external entity : checksum could be wrong.
2444 	 */
2445 	if (skb_has_shared_frag(skb)) {
2446 		ret = __skb_linearize(skb);
2447 		if (ret)
2448 			goto out;
2449 	}
2450 
2451 	offset = skb_checksum_start_offset(skb);
2452 	BUG_ON(offset >= skb_headlen(skb));
2453 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2454 
2455 	offset += skb->csum_offset;
2456 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2457 
2458 	if (skb_cloned(skb) &&
2459 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2460 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2461 		if (ret)
2462 			goto out;
2463 	}
2464 
2465 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
2466 out_set_summed:
2467 	skb->ip_summed = CHECKSUM_NONE;
2468 out:
2469 	return ret;
2470 }
2471 EXPORT_SYMBOL(skb_checksum_help);
2472 
2473 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2474 {
2475 	__be16 type = skb->protocol;
2476 
2477 	/* Tunnel gso handlers can set protocol to ethernet. */
2478 	if (type == htons(ETH_P_TEB)) {
2479 		struct ethhdr *eth;
2480 
2481 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2482 			return 0;
2483 
2484 		eth = (struct ethhdr *)skb_mac_header(skb);
2485 		type = eth->h_proto;
2486 	}
2487 
2488 	return __vlan_get_protocol(skb, type, depth);
2489 }
2490 
2491 /**
2492  *	skb_mac_gso_segment - mac layer segmentation handler.
2493  *	@skb: buffer to segment
2494  *	@features: features for the output path (see dev->features)
2495  */
2496 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2497 				    netdev_features_t features)
2498 {
2499 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2500 	struct packet_offload *ptype;
2501 	int vlan_depth = skb->mac_len;
2502 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2503 
2504 	if (unlikely(!type))
2505 		return ERR_PTR(-EINVAL);
2506 
2507 	__skb_pull(skb, vlan_depth);
2508 
2509 	rcu_read_lock();
2510 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2511 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2512 			segs = ptype->callbacks.gso_segment(skb, features);
2513 			break;
2514 		}
2515 	}
2516 	rcu_read_unlock();
2517 
2518 	__skb_push(skb, skb->data - skb_mac_header(skb));
2519 
2520 	return segs;
2521 }
2522 EXPORT_SYMBOL(skb_mac_gso_segment);
2523 
2524 
2525 /* openvswitch calls this on rx path, so we need a different check.
2526  */
2527 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2528 {
2529 	if (tx_path)
2530 		return skb->ip_summed != CHECKSUM_PARTIAL;
2531 	else
2532 		return skb->ip_summed == CHECKSUM_NONE;
2533 }
2534 
2535 /**
2536  *	__skb_gso_segment - Perform segmentation on skb.
2537  *	@skb: buffer to segment
2538  *	@features: features for the output path (see dev->features)
2539  *	@tx_path: whether it is called in TX path
2540  *
2541  *	This function segments the given skb and returns a list of segments.
2542  *
2543  *	It may return NULL if the skb requires no segmentation.  This is
2544  *	only possible when GSO is used for verifying header integrity.
2545  */
2546 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2547 				  netdev_features_t features, bool tx_path)
2548 {
2549 	if (unlikely(skb_needs_check(skb, tx_path))) {
2550 		int err;
2551 
2552 		skb_warn_bad_offload(skb);
2553 
2554 		err = skb_cow_head(skb, 0);
2555 		if (err < 0)
2556 			return ERR_PTR(err);
2557 	}
2558 
2559 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2560 	SKB_GSO_CB(skb)->encap_level = 0;
2561 
2562 	skb_reset_mac_header(skb);
2563 	skb_reset_mac_len(skb);
2564 
2565 	return skb_mac_gso_segment(skb, features);
2566 }
2567 EXPORT_SYMBOL(__skb_gso_segment);
2568 
2569 /* Take action when hardware reception checksum errors are detected. */
2570 #ifdef CONFIG_BUG
2571 void netdev_rx_csum_fault(struct net_device *dev)
2572 {
2573 	if (net_ratelimit()) {
2574 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2575 		dump_stack();
2576 	}
2577 }
2578 EXPORT_SYMBOL(netdev_rx_csum_fault);
2579 #endif
2580 
2581 /* Actually, we should eliminate this check as soon as we know, that:
2582  * 1. IOMMU is present and allows to map all the memory.
2583  * 2. No high memory really exists on this machine.
2584  */
2585 
2586 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2587 {
2588 #ifdef CONFIG_HIGHMEM
2589 	int i;
2590 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2591 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2592 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2593 			if (PageHighMem(skb_frag_page(frag)))
2594 				return 1;
2595 		}
2596 	}
2597 
2598 	if (PCI_DMA_BUS_IS_PHYS) {
2599 		struct device *pdev = dev->dev.parent;
2600 
2601 		if (!pdev)
2602 			return 0;
2603 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2604 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2605 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2606 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2607 				return 1;
2608 		}
2609 	}
2610 #endif
2611 	return 0;
2612 }
2613 
2614 /* If MPLS offload request, verify we are testing hardware MPLS features
2615  * instead of standard features for the netdev.
2616  */
2617 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2618 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2619 					   netdev_features_t features,
2620 					   __be16 type)
2621 {
2622 	if (eth_p_mpls(type))
2623 		features &= skb->dev->mpls_features;
2624 
2625 	return features;
2626 }
2627 #else
2628 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2629 					   netdev_features_t features,
2630 					   __be16 type)
2631 {
2632 	return features;
2633 }
2634 #endif
2635 
2636 static netdev_features_t harmonize_features(struct sk_buff *skb,
2637 	netdev_features_t features)
2638 {
2639 	int tmp;
2640 	__be16 type;
2641 
2642 	type = skb_network_protocol(skb, &tmp);
2643 	features = net_mpls_features(skb, features, type);
2644 
2645 	if (skb->ip_summed != CHECKSUM_NONE &&
2646 	    !can_checksum_protocol(features, type)) {
2647 		features &= ~NETIF_F_ALL_CSUM;
2648 	} else if (illegal_highdma(skb->dev, skb)) {
2649 		features &= ~NETIF_F_SG;
2650 	}
2651 
2652 	return features;
2653 }
2654 
2655 netdev_features_t passthru_features_check(struct sk_buff *skb,
2656 					  struct net_device *dev,
2657 					  netdev_features_t features)
2658 {
2659 	return features;
2660 }
2661 EXPORT_SYMBOL(passthru_features_check);
2662 
2663 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2664 					     struct net_device *dev,
2665 					     netdev_features_t features)
2666 {
2667 	return vlan_features_check(skb, features);
2668 }
2669 
2670 netdev_features_t netif_skb_features(struct sk_buff *skb)
2671 {
2672 	struct net_device *dev = skb->dev;
2673 	netdev_features_t features = dev->features;
2674 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
2675 
2676 	if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2677 		features &= ~NETIF_F_GSO_MASK;
2678 
2679 	/* If encapsulation offload request, verify we are testing
2680 	 * hardware encapsulation features instead of standard
2681 	 * features for the netdev
2682 	 */
2683 	if (skb->encapsulation)
2684 		features &= dev->hw_enc_features;
2685 
2686 	if (skb_vlan_tagged(skb))
2687 		features = netdev_intersect_features(features,
2688 						     dev->vlan_features |
2689 						     NETIF_F_HW_VLAN_CTAG_TX |
2690 						     NETIF_F_HW_VLAN_STAG_TX);
2691 
2692 	if (dev->netdev_ops->ndo_features_check)
2693 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
2694 								features);
2695 	else
2696 		features &= dflt_features_check(skb, dev, features);
2697 
2698 	return harmonize_features(skb, features);
2699 }
2700 EXPORT_SYMBOL(netif_skb_features);
2701 
2702 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2703 		    struct netdev_queue *txq, bool more)
2704 {
2705 	unsigned int len;
2706 	int rc;
2707 
2708 	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2709 		dev_queue_xmit_nit(skb, dev);
2710 
2711 	len = skb->len;
2712 	trace_net_dev_start_xmit(skb, dev);
2713 	rc = netdev_start_xmit(skb, dev, txq, more);
2714 	trace_net_dev_xmit(skb, rc, dev, len);
2715 
2716 	return rc;
2717 }
2718 
2719 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2720 				    struct netdev_queue *txq, int *ret)
2721 {
2722 	struct sk_buff *skb = first;
2723 	int rc = NETDEV_TX_OK;
2724 
2725 	while (skb) {
2726 		struct sk_buff *next = skb->next;
2727 
2728 		skb->next = NULL;
2729 		rc = xmit_one(skb, dev, txq, next != NULL);
2730 		if (unlikely(!dev_xmit_complete(rc))) {
2731 			skb->next = next;
2732 			goto out;
2733 		}
2734 
2735 		skb = next;
2736 		if (netif_xmit_stopped(txq) && skb) {
2737 			rc = NETDEV_TX_BUSY;
2738 			break;
2739 		}
2740 	}
2741 
2742 out:
2743 	*ret = rc;
2744 	return skb;
2745 }
2746 
2747 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2748 					  netdev_features_t features)
2749 {
2750 	if (skb_vlan_tag_present(skb) &&
2751 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
2752 		skb = __vlan_hwaccel_push_inside(skb);
2753 	return skb;
2754 }
2755 
2756 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2757 {
2758 	netdev_features_t features;
2759 
2760 	if (skb->next)
2761 		return skb;
2762 
2763 	features = netif_skb_features(skb);
2764 	skb = validate_xmit_vlan(skb, features);
2765 	if (unlikely(!skb))
2766 		goto out_null;
2767 
2768 	if (netif_needs_gso(skb, features)) {
2769 		struct sk_buff *segs;
2770 
2771 		segs = skb_gso_segment(skb, features);
2772 		if (IS_ERR(segs)) {
2773 			goto out_kfree_skb;
2774 		} else if (segs) {
2775 			consume_skb(skb);
2776 			skb = segs;
2777 		}
2778 	} else {
2779 		if (skb_needs_linearize(skb, features) &&
2780 		    __skb_linearize(skb))
2781 			goto out_kfree_skb;
2782 
2783 		/* If packet is not checksummed and device does not
2784 		 * support checksumming for this protocol, complete
2785 		 * checksumming here.
2786 		 */
2787 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2788 			if (skb->encapsulation)
2789 				skb_set_inner_transport_header(skb,
2790 							       skb_checksum_start_offset(skb));
2791 			else
2792 				skb_set_transport_header(skb,
2793 							 skb_checksum_start_offset(skb));
2794 			if (!(features & NETIF_F_ALL_CSUM) &&
2795 			    skb_checksum_help(skb))
2796 				goto out_kfree_skb;
2797 		}
2798 	}
2799 
2800 	return skb;
2801 
2802 out_kfree_skb:
2803 	kfree_skb(skb);
2804 out_null:
2805 	return NULL;
2806 }
2807 
2808 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2809 {
2810 	struct sk_buff *next, *head = NULL, *tail;
2811 
2812 	for (; skb != NULL; skb = next) {
2813 		next = skb->next;
2814 		skb->next = NULL;
2815 
2816 		/* in case skb wont be segmented, point to itself */
2817 		skb->prev = skb;
2818 
2819 		skb = validate_xmit_skb(skb, dev);
2820 		if (!skb)
2821 			continue;
2822 
2823 		if (!head)
2824 			head = skb;
2825 		else
2826 			tail->next = skb;
2827 		/* If skb was segmented, skb->prev points to
2828 		 * the last segment. If not, it still contains skb.
2829 		 */
2830 		tail = skb->prev;
2831 	}
2832 	return head;
2833 }
2834 
2835 static void qdisc_pkt_len_init(struct sk_buff *skb)
2836 {
2837 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
2838 
2839 	qdisc_skb_cb(skb)->pkt_len = skb->len;
2840 
2841 	/* To get more precise estimation of bytes sent on wire,
2842 	 * we add to pkt_len the headers size of all segments
2843 	 */
2844 	if (shinfo->gso_size)  {
2845 		unsigned int hdr_len;
2846 		u16 gso_segs = shinfo->gso_segs;
2847 
2848 		/* mac layer + network layer */
2849 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2850 
2851 		/* + transport layer */
2852 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2853 			hdr_len += tcp_hdrlen(skb);
2854 		else
2855 			hdr_len += sizeof(struct udphdr);
2856 
2857 		if (shinfo->gso_type & SKB_GSO_DODGY)
2858 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2859 						shinfo->gso_size);
2860 
2861 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2862 	}
2863 }
2864 
2865 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2866 				 struct net_device *dev,
2867 				 struct netdev_queue *txq)
2868 {
2869 	spinlock_t *root_lock = qdisc_lock(q);
2870 	bool contended;
2871 	int rc;
2872 
2873 	qdisc_pkt_len_init(skb);
2874 	qdisc_calculate_pkt_len(skb, q);
2875 	/*
2876 	 * Heuristic to force contended enqueues to serialize on a
2877 	 * separate lock before trying to get qdisc main lock.
2878 	 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2879 	 * often and dequeue packets faster.
2880 	 */
2881 	contended = qdisc_is_running(q);
2882 	if (unlikely(contended))
2883 		spin_lock(&q->busylock);
2884 
2885 	spin_lock(root_lock);
2886 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2887 		kfree_skb(skb);
2888 		rc = NET_XMIT_DROP;
2889 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2890 		   qdisc_run_begin(q)) {
2891 		/*
2892 		 * This is a work-conserving queue; there are no old skbs
2893 		 * waiting to be sent out; and the qdisc is not running -
2894 		 * xmit the skb directly.
2895 		 */
2896 
2897 		qdisc_bstats_update(q, skb);
2898 
2899 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2900 			if (unlikely(contended)) {
2901 				spin_unlock(&q->busylock);
2902 				contended = false;
2903 			}
2904 			__qdisc_run(q);
2905 		} else
2906 			qdisc_run_end(q);
2907 
2908 		rc = NET_XMIT_SUCCESS;
2909 	} else {
2910 		rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2911 		if (qdisc_run_begin(q)) {
2912 			if (unlikely(contended)) {
2913 				spin_unlock(&q->busylock);
2914 				contended = false;
2915 			}
2916 			__qdisc_run(q);
2917 		}
2918 	}
2919 	spin_unlock(root_lock);
2920 	if (unlikely(contended))
2921 		spin_unlock(&q->busylock);
2922 	return rc;
2923 }
2924 
2925 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2926 static void skb_update_prio(struct sk_buff *skb)
2927 {
2928 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2929 
2930 	if (!skb->priority && skb->sk && map) {
2931 		unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2932 
2933 		if (prioidx < map->priomap_len)
2934 			skb->priority = map->priomap[prioidx];
2935 	}
2936 }
2937 #else
2938 #define skb_update_prio(skb)
2939 #endif
2940 
2941 DEFINE_PER_CPU(int, xmit_recursion);
2942 EXPORT_SYMBOL(xmit_recursion);
2943 
2944 #define RECURSION_LIMIT 10
2945 
2946 /**
2947  *	dev_loopback_xmit - loop back @skb
2948  *	@net: network namespace this loopback is happening in
2949  *	@sk:  sk needed to be a netfilter okfn
2950  *	@skb: buffer to transmit
2951  */
2952 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
2953 {
2954 	skb_reset_mac_header(skb);
2955 	__skb_pull(skb, skb_network_offset(skb));
2956 	skb->pkt_type = PACKET_LOOPBACK;
2957 	skb->ip_summed = CHECKSUM_UNNECESSARY;
2958 	WARN_ON(!skb_dst(skb));
2959 	skb_dst_force(skb);
2960 	netif_rx_ni(skb);
2961 	return 0;
2962 }
2963 EXPORT_SYMBOL(dev_loopback_xmit);
2964 
2965 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2966 {
2967 #ifdef CONFIG_XPS
2968 	struct xps_dev_maps *dev_maps;
2969 	struct xps_map *map;
2970 	int queue_index = -1;
2971 
2972 	rcu_read_lock();
2973 	dev_maps = rcu_dereference(dev->xps_maps);
2974 	if (dev_maps) {
2975 		map = rcu_dereference(
2976 		    dev_maps->cpu_map[skb->sender_cpu - 1]);
2977 		if (map) {
2978 			if (map->len == 1)
2979 				queue_index = map->queues[0];
2980 			else
2981 				queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
2982 									   map->len)];
2983 			if (unlikely(queue_index >= dev->real_num_tx_queues))
2984 				queue_index = -1;
2985 		}
2986 	}
2987 	rcu_read_unlock();
2988 
2989 	return queue_index;
2990 #else
2991 	return -1;
2992 #endif
2993 }
2994 
2995 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
2996 {
2997 	struct sock *sk = skb->sk;
2998 	int queue_index = sk_tx_queue_get(sk);
2999 
3000 	if (queue_index < 0 || skb->ooo_okay ||
3001 	    queue_index >= dev->real_num_tx_queues) {
3002 		int new_index = get_xps_queue(dev, skb);
3003 		if (new_index < 0)
3004 			new_index = skb_tx_hash(dev, skb);
3005 
3006 		if (queue_index != new_index && sk &&
3007 		    sk_fullsock(sk) &&
3008 		    rcu_access_pointer(sk->sk_dst_cache))
3009 			sk_tx_queue_set(sk, new_index);
3010 
3011 		queue_index = new_index;
3012 	}
3013 
3014 	return queue_index;
3015 }
3016 
3017 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3018 				    struct sk_buff *skb,
3019 				    void *accel_priv)
3020 {
3021 	int queue_index = 0;
3022 
3023 #ifdef CONFIG_XPS
3024 	if (skb->sender_cpu == 0)
3025 		skb->sender_cpu = raw_smp_processor_id() + 1;
3026 #endif
3027 
3028 	if (dev->real_num_tx_queues != 1) {
3029 		const struct net_device_ops *ops = dev->netdev_ops;
3030 		if (ops->ndo_select_queue)
3031 			queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3032 							    __netdev_pick_tx);
3033 		else
3034 			queue_index = __netdev_pick_tx(dev, skb);
3035 
3036 		if (!accel_priv)
3037 			queue_index = netdev_cap_txqueue(dev, queue_index);
3038 	}
3039 
3040 	skb_set_queue_mapping(skb, queue_index);
3041 	return netdev_get_tx_queue(dev, queue_index);
3042 }
3043 
3044 /**
3045  *	__dev_queue_xmit - transmit a buffer
3046  *	@skb: buffer to transmit
3047  *	@accel_priv: private data used for L2 forwarding offload
3048  *
3049  *	Queue a buffer for transmission to a network device. The caller must
3050  *	have set the device and priority and built the buffer before calling
3051  *	this function. The function can be called from an interrupt.
3052  *
3053  *	A negative errno code is returned on a failure. A success does not
3054  *	guarantee the frame will be transmitted as it may be dropped due
3055  *	to congestion or traffic shaping.
3056  *
3057  * -----------------------------------------------------------------------------------
3058  *      I notice this method can also return errors from the queue disciplines,
3059  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3060  *      be positive.
3061  *
3062  *      Regardless of the return value, the skb is consumed, so it is currently
3063  *      difficult to retry a send to this method.  (You can bump the ref count
3064  *      before sending to hold a reference for retry if you are careful.)
3065  *
3066  *      When calling this method, interrupts MUST be enabled.  This is because
3067  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3068  *          --BLG
3069  */
3070 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3071 {
3072 	struct net_device *dev = skb->dev;
3073 	struct netdev_queue *txq;
3074 	struct Qdisc *q;
3075 	int rc = -ENOMEM;
3076 
3077 	skb_reset_mac_header(skb);
3078 
3079 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3080 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3081 
3082 	/* Disable soft irqs for various locks below. Also
3083 	 * stops preemption for RCU.
3084 	 */
3085 	rcu_read_lock_bh();
3086 
3087 	skb_update_prio(skb);
3088 
3089 	/* If device/qdisc don't need skb->dst, release it right now while
3090 	 * its hot in this cpu cache.
3091 	 */
3092 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3093 		skb_dst_drop(skb);
3094 	else
3095 		skb_dst_force(skb);
3096 
3097 #ifdef CONFIG_NET_SWITCHDEV
3098 	/* Don't forward if offload device already forwarded */
3099 	if (skb->offload_fwd_mark &&
3100 	    skb->offload_fwd_mark == dev->offload_fwd_mark) {
3101 		consume_skb(skb);
3102 		rc = NET_XMIT_SUCCESS;
3103 		goto out;
3104 	}
3105 #endif
3106 
3107 	txq = netdev_pick_tx(dev, skb, accel_priv);
3108 	q = rcu_dereference_bh(txq->qdisc);
3109 
3110 #ifdef CONFIG_NET_CLS_ACT
3111 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3112 #endif
3113 	trace_net_dev_queue(skb);
3114 	if (q->enqueue) {
3115 		rc = __dev_xmit_skb(skb, q, dev, txq);
3116 		goto out;
3117 	}
3118 
3119 	/* The device has no queue. Common case for software devices:
3120 	   loopback, all the sorts of tunnels...
3121 
3122 	   Really, it is unlikely that netif_tx_lock protection is necessary
3123 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3124 	   counters.)
3125 	   However, it is possible, that they rely on protection
3126 	   made by us here.
3127 
3128 	   Check this and shot the lock. It is not prone from deadlocks.
3129 	   Either shot noqueue qdisc, it is even simpler 8)
3130 	 */
3131 	if (dev->flags & IFF_UP) {
3132 		int cpu = smp_processor_id(); /* ok because BHs are off */
3133 
3134 		if (txq->xmit_lock_owner != cpu) {
3135 
3136 			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
3137 				goto recursion_alert;
3138 
3139 			skb = validate_xmit_skb(skb, dev);
3140 			if (!skb)
3141 				goto drop;
3142 
3143 			HARD_TX_LOCK(dev, txq, cpu);
3144 
3145 			if (!netif_xmit_stopped(txq)) {
3146 				__this_cpu_inc(xmit_recursion);
3147 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3148 				__this_cpu_dec(xmit_recursion);
3149 				if (dev_xmit_complete(rc)) {
3150 					HARD_TX_UNLOCK(dev, txq);
3151 					goto out;
3152 				}
3153 			}
3154 			HARD_TX_UNLOCK(dev, txq);
3155 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3156 					     dev->name);
3157 		} else {
3158 			/* Recursion is detected! It is possible,
3159 			 * unfortunately
3160 			 */
3161 recursion_alert:
3162 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3163 					     dev->name);
3164 		}
3165 	}
3166 
3167 	rc = -ENETDOWN;
3168 drop:
3169 	rcu_read_unlock_bh();
3170 
3171 	atomic_long_inc(&dev->tx_dropped);
3172 	kfree_skb_list(skb);
3173 	return rc;
3174 out:
3175 	rcu_read_unlock_bh();
3176 	return rc;
3177 }
3178 
3179 int dev_queue_xmit(struct sk_buff *skb)
3180 {
3181 	return __dev_queue_xmit(skb, NULL);
3182 }
3183 EXPORT_SYMBOL(dev_queue_xmit);
3184 
3185 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3186 {
3187 	return __dev_queue_xmit(skb, accel_priv);
3188 }
3189 EXPORT_SYMBOL(dev_queue_xmit_accel);
3190 
3191 
3192 /*=======================================================================
3193 			Receiver routines
3194   =======================================================================*/
3195 
3196 int netdev_max_backlog __read_mostly = 1000;
3197 EXPORT_SYMBOL(netdev_max_backlog);
3198 
3199 int netdev_tstamp_prequeue __read_mostly = 1;
3200 int netdev_budget __read_mostly = 300;
3201 int weight_p __read_mostly = 64;            /* old backlog weight */
3202 
3203 /* Called with irq disabled */
3204 static inline void ____napi_schedule(struct softnet_data *sd,
3205 				     struct napi_struct *napi)
3206 {
3207 	list_add_tail(&napi->poll_list, &sd->poll_list);
3208 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3209 }
3210 
3211 #ifdef CONFIG_RPS
3212 
3213 /* One global table that all flow-based protocols share. */
3214 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3215 EXPORT_SYMBOL(rps_sock_flow_table);
3216 u32 rps_cpu_mask __read_mostly;
3217 EXPORT_SYMBOL(rps_cpu_mask);
3218 
3219 struct static_key rps_needed __read_mostly;
3220 
3221 static struct rps_dev_flow *
3222 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3223 	    struct rps_dev_flow *rflow, u16 next_cpu)
3224 {
3225 	if (next_cpu < nr_cpu_ids) {
3226 #ifdef CONFIG_RFS_ACCEL
3227 		struct netdev_rx_queue *rxqueue;
3228 		struct rps_dev_flow_table *flow_table;
3229 		struct rps_dev_flow *old_rflow;
3230 		u32 flow_id;
3231 		u16 rxq_index;
3232 		int rc;
3233 
3234 		/* Should we steer this flow to a different hardware queue? */
3235 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3236 		    !(dev->features & NETIF_F_NTUPLE))
3237 			goto out;
3238 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3239 		if (rxq_index == skb_get_rx_queue(skb))
3240 			goto out;
3241 
3242 		rxqueue = dev->_rx + rxq_index;
3243 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3244 		if (!flow_table)
3245 			goto out;
3246 		flow_id = skb_get_hash(skb) & flow_table->mask;
3247 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3248 							rxq_index, flow_id);
3249 		if (rc < 0)
3250 			goto out;
3251 		old_rflow = rflow;
3252 		rflow = &flow_table->flows[flow_id];
3253 		rflow->filter = rc;
3254 		if (old_rflow->filter == rflow->filter)
3255 			old_rflow->filter = RPS_NO_FILTER;
3256 	out:
3257 #endif
3258 		rflow->last_qtail =
3259 			per_cpu(softnet_data, next_cpu).input_queue_head;
3260 	}
3261 
3262 	rflow->cpu = next_cpu;
3263 	return rflow;
3264 }
3265 
3266 /*
3267  * get_rps_cpu is called from netif_receive_skb and returns the target
3268  * CPU from the RPS map of the receiving queue for a given skb.
3269  * rcu_read_lock must be held on entry.
3270  */
3271 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3272 		       struct rps_dev_flow **rflowp)
3273 {
3274 	const struct rps_sock_flow_table *sock_flow_table;
3275 	struct netdev_rx_queue *rxqueue = dev->_rx;
3276 	struct rps_dev_flow_table *flow_table;
3277 	struct rps_map *map;
3278 	int cpu = -1;
3279 	u32 tcpu;
3280 	u32 hash;
3281 
3282 	if (skb_rx_queue_recorded(skb)) {
3283 		u16 index = skb_get_rx_queue(skb);
3284 
3285 		if (unlikely(index >= dev->real_num_rx_queues)) {
3286 			WARN_ONCE(dev->real_num_rx_queues > 1,
3287 				  "%s received packet on queue %u, but number "
3288 				  "of RX queues is %u\n",
3289 				  dev->name, index, dev->real_num_rx_queues);
3290 			goto done;
3291 		}
3292 		rxqueue += index;
3293 	}
3294 
3295 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3296 
3297 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3298 	map = rcu_dereference(rxqueue->rps_map);
3299 	if (!flow_table && !map)
3300 		goto done;
3301 
3302 	skb_reset_network_header(skb);
3303 	hash = skb_get_hash(skb);
3304 	if (!hash)
3305 		goto done;
3306 
3307 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3308 	if (flow_table && sock_flow_table) {
3309 		struct rps_dev_flow *rflow;
3310 		u32 next_cpu;
3311 		u32 ident;
3312 
3313 		/* First check into global flow table if there is a match */
3314 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3315 		if ((ident ^ hash) & ~rps_cpu_mask)
3316 			goto try_rps;
3317 
3318 		next_cpu = ident & rps_cpu_mask;
3319 
3320 		/* OK, now we know there is a match,
3321 		 * we can look at the local (per receive queue) flow table
3322 		 */
3323 		rflow = &flow_table->flows[hash & flow_table->mask];
3324 		tcpu = rflow->cpu;
3325 
3326 		/*
3327 		 * If the desired CPU (where last recvmsg was done) is
3328 		 * different from current CPU (one in the rx-queue flow
3329 		 * table entry), switch if one of the following holds:
3330 		 *   - Current CPU is unset (>= nr_cpu_ids).
3331 		 *   - Current CPU is offline.
3332 		 *   - The current CPU's queue tail has advanced beyond the
3333 		 *     last packet that was enqueued using this table entry.
3334 		 *     This guarantees that all previous packets for the flow
3335 		 *     have been dequeued, thus preserving in order delivery.
3336 		 */
3337 		if (unlikely(tcpu != next_cpu) &&
3338 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3339 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3340 		      rflow->last_qtail)) >= 0)) {
3341 			tcpu = next_cpu;
3342 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3343 		}
3344 
3345 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3346 			*rflowp = rflow;
3347 			cpu = tcpu;
3348 			goto done;
3349 		}
3350 	}
3351 
3352 try_rps:
3353 
3354 	if (map) {
3355 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3356 		if (cpu_online(tcpu)) {
3357 			cpu = tcpu;
3358 			goto done;
3359 		}
3360 	}
3361 
3362 done:
3363 	return cpu;
3364 }
3365 
3366 #ifdef CONFIG_RFS_ACCEL
3367 
3368 /**
3369  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3370  * @dev: Device on which the filter was set
3371  * @rxq_index: RX queue index
3372  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3373  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3374  *
3375  * Drivers that implement ndo_rx_flow_steer() should periodically call
3376  * this function for each installed filter and remove the filters for
3377  * which it returns %true.
3378  */
3379 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3380 			 u32 flow_id, u16 filter_id)
3381 {
3382 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3383 	struct rps_dev_flow_table *flow_table;
3384 	struct rps_dev_flow *rflow;
3385 	bool expire = true;
3386 	unsigned int cpu;
3387 
3388 	rcu_read_lock();
3389 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3390 	if (flow_table && flow_id <= flow_table->mask) {
3391 		rflow = &flow_table->flows[flow_id];
3392 		cpu = ACCESS_ONCE(rflow->cpu);
3393 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3394 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3395 			   rflow->last_qtail) <
3396 		     (int)(10 * flow_table->mask)))
3397 			expire = false;
3398 	}
3399 	rcu_read_unlock();
3400 	return expire;
3401 }
3402 EXPORT_SYMBOL(rps_may_expire_flow);
3403 
3404 #endif /* CONFIG_RFS_ACCEL */
3405 
3406 /* Called from hardirq (IPI) context */
3407 static void rps_trigger_softirq(void *data)
3408 {
3409 	struct softnet_data *sd = data;
3410 
3411 	____napi_schedule(sd, &sd->backlog);
3412 	sd->received_rps++;
3413 }
3414 
3415 #endif /* CONFIG_RPS */
3416 
3417 /*
3418  * Check if this softnet_data structure is another cpu one
3419  * If yes, queue it to our IPI list and return 1
3420  * If no, return 0
3421  */
3422 static int rps_ipi_queued(struct softnet_data *sd)
3423 {
3424 #ifdef CONFIG_RPS
3425 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3426 
3427 	if (sd != mysd) {
3428 		sd->rps_ipi_next = mysd->rps_ipi_list;
3429 		mysd->rps_ipi_list = sd;
3430 
3431 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3432 		return 1;
3433 	}
3434 #endif /* CONFIG_RPS */
3435 	return 0;
3436 }
3437 
3438 #ifdef CONFIG_NET_FLOW_LIMIT
3439 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3440 #endif
3441 
3442 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3443 {
3444 #ifdef CONFIG_NET_FLOW_LIMIT
3445 	struct sd_flow_limit *fl;
3446 	struct softnet_data *sd;
3447 	unsigned int old_flow, new_flow;
3448 
3449 	if (qlen < (netdev_max_backlog >> 1))
3450 		return false;
3451 
3452 	sd = this_cpu_ptr(&softnet_data);
3453 
3454 	rcu_read_lock();
3455 	fl = rcu_dereference(sd->flow_limit);
3456 	if (fl) {
3457 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3458 		old_flow = fl->history[fl->history_head];
3459 		fl->history[fl->history_head] = new_flow;
3460 
3461 		fl->history_head++;
3462 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3463 
3464 		if (likely(fl->buckets[old_flow]))
3465 			fl->buckets[old_flow]--;
3466 
3467 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3468 			fl->count++;
3469 			rcu_read_unlock();
3470 			return true;
3471 		}
3472 	}
3473 	rcu_read_unlock();
3474 #endif
3475 	return false;
3476 }
3477 
3478 /*
3479  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3480  * queue (may be a remote CPU queue).
3481  */
3482 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3483 			      unsigned int *qtail)
3484 {
3485 	struct softnet_data *sd;
3486 	unsigned long flags;
3487 	unsigned int qlen;
3488 
3489 	sd = &per_cpu(softnet_data, cpu);
3490 
3491 	local_irq_save(flags);
3492 
3493 	rps_lock(sd);
3494 	if (!netif_running(skb->dev))
3495 		goto drop;
3496 	qlen = skb_queue_len(&sd->input_pkt_queue);
3497 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3498 		if (qlen) {
3499 enqueue:
3500 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3501 			input_queue_tail_incr_save(sd, qtail);
3502 			rps_unlock(sd);
3503 			local_irq_restore(flags);
3504 			return NET_RX_SUCCESS;
3505 		}
3506 
3507 		/* Schedule NAPI for backlog device
3508 		 * We can use non atomic operation since we own the queue lock
3509 		 */
3510 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3511 			if (!rps_ipi_queued(sd))
3512 				____napi_schedule(sd, &sd->backlog);
3513 		}
3514 		goto enqueue;
3515 	}
3516 
3517 drop:
3518 	sd->dropped++;
3519 	rps_unlock(sd);
3520 
3521 	local_irq_restore(flags);
3522 
3523 	atomic_long_inc(&skb->dev->rx_dropped);
3524 	kfree_skb(skb);
3525 	return NET_RX_DROP;
3526 }
3527 
3528 static int netif_rx_internal(struct sk_buff *skb)
3529 {
3530 	int ret;
3531 
3532 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3533 
3534 	trace_netif_rx(skb);
3535 #ifdef CONFIG_RPS
3536 	if (static_key_false(&rps_needed)) {
3537 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3538 		int cpu;
3539 
3540 		preempt_disable();
3541 		rcu_read_lock();
3542 
3543 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3544 		if (cpu < 0)
3545 			cpu = smp_processor_id();
3546 
3547 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3548 
3549 		rcu_read_unlock();
3550 		preempt_enable();
3551 	} else
3552 #endif
3553 	{
3554 		unsigned int qtail;
3555 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3556 		put_cpu();
3557 	}
3558 	return ret;
3559 }
3560 
3561 /**
3562  *	netif_rx	-	post buffer to the network code
3563  *	@skb: buffer to post
3564  *
3565  *	This function receives a packet from a device driver and queues it for
3566  *	the upper (protocol) levels to process.  It always succeeds. The buffer
3567  *	may be dropped during processing for congestion control or by the
3568  *	protocol layers.
3569  *
3570  *	return values:
3571  *	NET_RX_SUCCESS	(no congestion)
3572  *	NET_RX_DROP     (packet was dropped)
3573  *
3574  */
3575 
3576 int netif_rx(struct sk_buff *skb)
3577 {
3578 	trace_netif_rx_entry(skb);
3579 
3580 	return netif_rx_internal(skb);
3581 }
3582 EXPORT_SYMBOL(netif_rx);
3583 
3584 int netif_rx_ni(struct sk_buff *skb)
3585 {
3586 	int err;
3587 
3588 	trace_netif_rx_ni_entry(skb);
3589 
3590 	preempt_disable();
3591 	err = netif_rx_internal(skb);
3592 	if (local_softirq_pending())
3593 		do_softirq();
3594 	preempt_enable();
3595 
3596 	return err;
3597 }
3598 EXPORT_SYMBOL(netif_rx_ni);
3599 
3600 static void net_tx_action(struct softirq_action *h)
3601 {
3602 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3603 
3604 	if (sd->completion_queue) {
3605 		struct sk_buff *clist;
3606 
3607 		local_irq_disable();
3608 		clist = sd->completion_queue;
3609 		sd->completion_queue = NULL;
3610 		local_irq_enable();
3611 
3612 		while (clist) {
3613 			struct sk_buff *skb = clist;
3614 			clist = clist->next;
3615 
3616 			WARN_ON(atomic_read(&skb->users));
3617 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3618 				trace_consume_skb(skb);
3619 			else
3620 				trace_kfree_skb(skb, net_tx_action);
3621 			__kfree_skb(skb);
3622 		}
3623 	}
3624 
3625 	if (sd->output_queue) {
3626 		struct Qdisc *head;
3627 
3628 		local_irq_disable();
3629 		head = sd->output_queue;
3630 		sd->output_queue = NULL;
3631 		sd->output_queue_tailp = &sd->output_queue;
3632 		local_irq_enable();
3633 
3634 		while (head) {
3635 			struct Qdisc *q = head;
3636 			spinlock_t *root_lock;
3637 
3638 			head = head->next_sched;
3639 
3640 			root_lock = qdisc_lock(q);
3641 			if (spin_trylock(root_lock)) {
3642 				smp_mb__before_atomic();
3643 				clear_bit(__QDISC_STATE_SCHED,
3644 					  &q->state);
3645 				qdisc_run(q);
3646 				spin_unlock(root_lock);
3647 			} else {
3648 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
3649 					      &q->state)) {
3650 					__netif_reschedule(q);
3651 				} else {
3652 					smp_mb__before_atomic();
3653 					clear_bit(__QDISC_STATE_SCHED,
3654 						  &q->state);
3655 				}
3656 			}
3657 		}
3658 	}
3659 }
3660 
3661 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3662     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3663 /* This hook is defined here for ATM LANE */
3664 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3665 			     unsigned char *addr) __read_mostly;
3666 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3667 #endif
3668 
3669 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3670 					 struct packet_type **pt_prev,
3671 					 int *ret, struct net_device *orig_dev)
3672 {
3673 #ifdef CONFIG_NET_CLS_ACT
3674 	struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3675 	struct tcf_result cl_res;
3676 
3677 	/* If there's at least one ingress present somewhere (so
3678 	 * we get here via enabled static key), remaining devices
3679 	 * that are not configured with an ingress qdisc will bail
3680 	 * out here.
3681 	 */
3682 	if (!cl)
3683 		return skb;
3684 	if (*pt_prev) {
3685 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3686 		*pt_prev = NULL;
3687 	}
3688 
3689 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3690 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3691 	qdisc_bstats_cpu_update(cl->q, skb);
3692 
3693 	switch (tc_classify(skb, cl, &cl_res, false)) {
3694 	case TC_ACT_OK:
3695 	case TC_ACT_RECLASSIFY:
3696 		skb->tc_index = TC_H_MIN(cl_res.classid);
3697 		break;
3698 	case TC_ACT_SHOT:
3699 		qdisc_qstats_cpu_drop(cl->q);
3700 	case TC_ACT_STOLEN:
3701 	case TC_ACT_QUEUED:
3702 		kfree_skb(skb);
3703 		return NULL;
3704 	case TC_ACT_REDIRECT:
3705 		/* skb_mac_header check was done by cls/act_bpf, so
3706 		 * we can safely push the L2 header back before
3707 		 * redirecting to another netdev
3708 		 */
3709 		__skb_push(skb, skb->mac_len);
3710 		skb_do_redirect(skb);
3711 		return NULL;
3712 	default:
3713 		break;
3714 	}
3715 #endif /* CONFIG_NET_CLS_ACT */
3716 	return skb;
3717 }
3718 
3719 /**
3720  *	netdev_rx_handler_register - register receive handler
3721  *	@dev: device to register a handler for
3722  *	@rx_handler: receive handler to register
3723  *	@rx_handler_data: data pointer that is used by rx handler
3724  *
3725  *	Register a receive handler for a device. This handler will then be
3726  *	called from __netif_receive_skb. A negative errno code is returned
3727  *	on a failure.
3728  *
3729  *	The caller must hold the rtnl_mutex.
3730  *
3731  *	For a general description of rx_handler, see enum rx_handler_result.
3732  */
3733 int netdev_rx_handler_register(struct net_device *dev,
3734 			       rx_handler_func_t *rx_handler,
3735 			       void *rx_handler_data)
3736 {
3737 	ASSERT_RTNL();
3738 
3739 	if (dev->rx_handler)
3740 		return -EBUSY;
3741 
3742 	/* Note: rx_handler_data must be set before rx_handler */
3743 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3744 	rcu_assign_pointer(dev->rx_handler, rx_handler);
3745 
3746 	return 0;
3747 }
3748 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3749 
3750 /**
3751  *	netdev_rx_handler_unregister - unregister receive handler
3752  *	@dev: device to unregister a handler from
3753  *
3754  *	Unregister a receive handler from a device.
3755  *
3756  *	The caller must hold the rtnl_mutex.
3757  */
3758 void netdev_rx_handler_unregister(struct net_device *dev)
3759 {
3760 
3761 	ASSERT_RTNL();
3762 	RCU_INIT_POINTER(dev->rx_handler, NULL);
3763 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3764 	 * section has a guarantee to see a non NULL rx_handler_data
3765 	 * as well.
3766 	 */
3767 	synchronize_net();
3768 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3769 }
3770 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3771 
3772 /*
3773  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3774  * the special handling of PFMEMALLOC skbs.
3775  */
3776 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3777 {
3778 	switch (skb->protocol) {
3779 	case htons(ETH_P_ARP):
3780 	case htons(ETH_P_IP):
3781 	case htons(ETH_P_IPV6):
3782 	case htons(ETH_P_8021Q):
3783 	case htons(ETH_P_8021AD):
3784 		return true;
3785 	default:
3786 		return false;
3787 	}
3788 }
3789 
3790 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
3791 			     int *ret, struct net_device *orig_dev)
3792 {
3793 #ifdef CONFIG_NETFILTER_INGRESS
3794 	if (nf_hook_ingress_active(skb)) {
3795 		if (*pt_prev) {
3796 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
3797 			*pt_prev = NULL;
3798 		}
3799 
3800 		return nf_hook_ingress(skb);
3801 	}
3802 #endif /* CONFIG_NETFILTER_INGRESS */
3803 	return 0;
3804 }
3805 
3806 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3807 {
3808 	struct packet_type *ptype, *pt_prev;
3809 	rx_handler_func_t *rx_handler;
3810 	struct net_device *orig_dev;
3811 	bool deliver_exact = false;
3812 	int ret = NET_RX_DROP;
3813 	__be16 type;
3814 
3815 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
3816 
3817 	trace_netif_receive_skb(skb);
3818 
3819 	orig_dev = skb->dev;
3820 
3821 	skb_reset_network_header(skb);
3822 	if (!skb_transport_header_was_set(skb))
3823 		skb_reset_transport_header(skb);
3824 	skb_reset_mac_len(skb);
3825 
3826 	pt_prev = NULL;
3827 
3828 another_round:
3829 	skb->skb_iif = skb->dev->ifindex;
3830 
3831 	__this_cpu_inc(softnet_data.processed);
3832 
3833 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3834 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3835 		skb = skb_vlan_untag(skb);
3836 		if (unlikely(!skb))
3837 			goto out;
3838 	}
3839 
3840 #ifdef CONFIG_NET_CLS_ACT
3841 	if (skb->tc_verd & TC_NCLS) {
3842 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3843 		goto ncls;
3844 	}
3845 #endif
3846 
3847 	if (pfmemalloc)
3848 		goto skip_taps;
3849 
3850 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
3851 		if (pt_prev)
3852 			ret = deliver_skb(skb, pt_prev, orig_dev);
3853 		pt_prev = ptype;
3854 	}
3855 
3856 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3857 		if (pt_prev)
3858 			ret = deliver_skb(skb, pt_prev, orig_dev);
3859 		pt_prev = ptype;
3860 	}
3861 
3862 skip_taps:
3863 #ifdef CONFIG_NET_INGRESS
3864 	if (static_key_false(&ingress_needed)) {
3865 		skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3866 		if (!skb)
3867 			goto out;
3868 
3869 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
3870 			goto out;
3871 	}
3872 #endif
3873 #ifdef CONFIG_NET_CLS_ACT
3874 	skb->tc_verd = 0;
3875 ncls:
3876 #endif
3877 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3878 		goto drop;
3879 
3880 	if (skb_vlan_tag_present(skb)) {
3881 		if (pt_prev) {
3882 			ret = deliver_skb(skb, pt_prev, orig_dev);
3883 			pt_prev = NULL;
3884 		}
3885 		if (vlan_do_receive(&skb))
3886 			goto another_round;
3887 		else if (unlikely(!skb))
3888 			goto out;
3889 	}
3890 
3891 	rx_handler = rcu_dereference(skb->dev->rx_handler);
3892 	if (rx_handler) {
3893 		if (pt_prev) {
3894 			ret = deliver_skb(skb, pt_prev, orig_dev);
3895 			pt_prev = NULL;
3896 		}
3897 		switch (rx_handler(&skb)) {
3898 		case RX_HANDLER_CONSUMED:
3899 			ret = NET_RX_SUCCESS;
3900 			goto out;
3901 		case RX_HANDLER_ANOTHER:
3902 			goto another_round;
3903 		case RX_HANDLER_EXACT:
3904 			deliver_exact = true;
3905 		case RX_HANDLER_PASS:
3906 			break;
3907 		default:
3908 			BUG();
3909 		}
3910 	}
3911 
3912 	if (unlikely(skb_vlan_tag_present(skb))) {
3913 		if (skb_vlan_tag_get_id(skb))
3914 			skb->pkt_type = PACKET_OTHERHOST;
3915 		/* Note: we might in the future use prio bits
3916 		 * and set skb->priority like in vlan_do_receive()
3917 		 * For the time being, just ignore Priority Code Point
3918 		 */
3919 		skb->vlan_tci = 0;
3920 	}
3921 
3922 	type = skb->protocol;
3923 
3924 	/* deliver only exact match when indicated */
3925 	if (likely(!deliver_exact)) {
3926 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3927 				       &ptype_base[ntohs(type) &
3928 						   PTYPE_HASH_MASK]);
3929 	}
3930 
3931 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3932 			       &orig_dev->ptype_specific);
3933 
3934 	if (unlikely(skb->dev != orig_dev)) {
3935 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3936 				       &skb->dev->ptype_specific);
3937 	}
3938 
3939 	if (pt_prev) {
3940 		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3941 			goto drop;
3942 		else
3943 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3944 	} else {
3945 drop:
3946 		atomic_long_inc(&skb->dev->rx_dropped);
3947 		kfree_skb(skb);
3948 		/* Jamal, now you will not able to escape explaining
3949 		 * me how you were going to use this. :-)
3950 		 */
3951 		ret = NET_RX_DROP;
3952 	}
3953 
3954 out:
3955 	return ret;
3956 }
3957 
3958 static int __netif_receive_skb(struct sk_buff *skb)
3959 {
3960 	int ret;
3961 
3962 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3963 		unsigned long pflags = current->flags;
3964 
3965 		/*
3966 		 * PFMEMALLOC skbs are special, they should
3967 		 * - be delivered to SOCK_MEMALLOC sockets only
3968 		 * - stay away from userspace
3969 		 * - have bounded memory usage
3970 		 *
3971 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
3972 		 * context down to all allocation sites.
3973 		 */
3974 		current->flags |= PF_MEMALLOC;
3975 		ret = __netif_receive_skb_core(skb, true);
3976 		tsk_restore_flags(current, pflags, PF_MEMALLOC);
3977 	} else
3978 		ret = __netif_receive_skb_core(skb, false);
3979 
3980 	return ret;
3981 }
3982 
3983 static int netif_receive_skb_internal(struct sk_buff *skb)
3984 {
3985 	int ret;
3986 
3987 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3988 
3989 	if (skb_defer_rx_timestamp(skb))
3990 		return NET_RX_SUCCESS;
3991 
3992 	rcu_read_lock();
3993 
3994 #ifdef CONFIG_RPS
3995 	if (static_key_false(&rps_needed)) {
3996 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3997 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
3998 
3999 		if (cpu >= 0) {
4000 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4001 			rcu_read_unlock();
4002 			return ret;
4003 		}
4004 	}
4005 #endif
4006 	ret = __netif_receive_skb(skb);
4007 	rcu_read_unlock();
4008 	return ret;
4009 }
4010 
4011 /**
4012  *	netif_receive_skb - process receive buffer from network
4013  *	@skb: buffer to process
4014  *
4015  *	netif_receive_skb() is the main receive data processing function.
4016  *	It always succeeds. The buffer may be dropped during processing
4017  *	for congestion control or by the protocol layers.
4018  *
4019  *	This function may only be called from softirq context and interrupts
4020  *	should be enabled.
4021  *
4022  *	Return values (usually ignored):
4023  *	NET_RX_SUCCESS: no congestion
4024  *	NET_RX_DROP: packet was dropped
4025  */
4026 int netif_receive_skb(struct sk_buff *skb)
4027 {
4028 	trace_netif_receive_skb_entry(skb);
4029 
4030 	return netif_receive_skb_internal(skb);
4031 }
4032 EXPORT_SYMBOL(netif_receive_skb);
4033 
4034 /* Network device is going away, flush any packets still pending
4035  * Called with irqs disabled.
4036  */
4037 static void flush_backlog(void *arg)
4038 {
4039 	struct net_device *dev = arg;
4040 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4041 	struct sk_buff *skb, *tmp;
4042 
4043 	rps_lock(sd);
4044 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4045 		if (skb->dev == dev) {
4046 			__skb_unlink(skb, &sd->input_pkt_queue);
4047 			kfree_skb(skb);
4048 			input_queue_head_incr(sd);
4049 		}
4050 	}
4051 	rps_unlock(sd);
4052 
4053 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4054 		if (skb->dev == dev) {
4055 			__skb_unlink(skb, &sd->process_queue);
4056 			kfree_skb(skb);
4057 			input_queue_head_incr(sd);
4058 		}
4059 	}
4060 }
4061 
4062 static int napi_gro_complete(struct sk_buff *skb)
4063 {
4064 	struct packet_offload *ptype;
4065 	__be16 type = skb->protocol;
4066 	struct list_head *head = &offload_base;
4067 	int err = -ENOENT;
4068 
4069 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4070 
4071 	if (NAPI_GRO_CB(skb)->count == 1) {
4072 		skb_shinfo(skb)->gso_size = 0;
4073 		goto out;
4074 	}
4075 
4076 	rcu_read_lock();
4077 	list_for_each_entry_rcu(ptype, head, list) {
4078 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4079 			continue;
4080 
4081 		err = ptype->callbacks.gro_complete(skb, 0);
4082 		break;
4083 	}
4084 	rcu_read_unlock();
4085 
4086 	if (err) {
4087 		WARN_ON(&ptype->list == head);
4088 		kfree_skb(skb);
4089 		return NET_RX_SUCCESS;
4090 	}
4091 
4092 out:
4093 	return netif_receive_skb_internal(skb);
4094 }
4095 
4096 /* napi->gro_list contains packets ordered by age.
4097  * youngest packets at the head of it.
4098  * Complete skbs in reverse order to reduce latencies.
4099  */
4100 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4101 {
4102 	struct sk_buff *skb, *prev = NULL;
4103 
4104 	/* scan list and build reverse chain */
4105 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4106 		skb->prev = prev;
4107 		prev = skb;
4108 	}
4109 
4110 	for (skb = prev; skb; skb = prev) {
4111 		skb->next = NULL;
4112 
4113 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4114 			return;
4115 
4116 		prev = skb->prev;
4117 		napi_gro_complete(skb);
4118 		napi->gro_count--;
4119 	}
4120 
4121 	napi->gro_list = NULL;
4122 }
4123 EXPORT_SYMBOL(napi_gro_flush);
4124 
4125 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4126 {
4127 	struct sk_buff *p;
4128 	unsigned int maclen = skb->dev->hard_header_len;
4129 	u32 hash = skb_get_hash_raw(skb);
4130 
4131 	for (p = napi->gro_list; p; p = p->next) {
4132 		unsigned long diffs;
4133 
4134 		NAPI_GRO_CB(p)->flush = 0;
4135 
4136 		if (hash != skb_get_hash_raw(p)) {
4137 			NAPI_GRO_CB(p)->same_flow = 0;
4138 			continue;
4139 		}
4140 
4141 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4142 		diffs |= p->vlan_tci ^ skb->vlan_tci;
4143 		if (maclen == ETH_HLEN)
4144 			diffs |= compare_ether_header(skb_mac_header(p),
4145 						      skb_mac_header(skb));
4146 		else if (!diffs)
4147 			diffs = memcmp(skb_mac_header(p),
4148 				       skb_mac_header(skb),
4149 				       maclen);
4150 		NAPI_GRO_CB(p)->same_flow = !diffs;
4151 	}
4152 }
4153 
4154 static void skb_gro_reset_offset(struct sk_buff *skb)
4155 {
4156 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
4157 	const skb_frag_t *frag0 = &pinfo->frags[0];
4158 
4159 	NAPI_GRO_CB(skb)->data_offset = 0;
4160 	NAPI_GRO_CB(skb)->frag0 = NULL;
4161 	NAPI_GRO_CB(skb)->frag0_len = 0;
4162 
4163 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4164 	    pinfo->nr_frags &&
4165 	    !PageHighMem(skb_frag_page(frag0))) {
4166 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4167 		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4168 	}
4169 }
4170 
4171 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4172 {
4173 	struct skb_shared_info *pinfo = skb_shinfo(skb);
4174 
4175 	BUG_ON(skb->end - skb->tail < grow);
4176 
4177 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4178 
4179 	skb->data_len -= grow;
4180 	skb->tail += grow;
4181 
4182 	pinfo->frags[0].page_offset += grow;
4183 	skb_frag_size_sub(&pinfo->frags[0], grow);
4184 
4185 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4186 		skb_frag_unref(skb, 0);
4187 		memmove(pinfo->frags, pinfo->frags + 1,
4188 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
4189 	}
4190 }
4191 
4192 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4193 {
4194 	struct sk_buff **pp = NULL;
4195 	struct packet_offload *ptype;
4196 	__be16 type = skb->protocol;
4197 	struct list_head *head = &offload_base;
4198 	int same_flow;
4199 	enum gro_result ret;
4200 	int grow;
4201 
4202 	if (!(skb->dev->features & NETIF_F_GRO))
4203 		goto normal;
4204 
4205 	if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4206 		goto normal;
4207 
4208 	gro_list_prepare(napi, skb);
4209 
4210 	rcu_read_lock();
4211 	list_for_each_entry_rcu(ptype, head, list) {
4212 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4213 			continue;
4214 
4215 		skb_set_network_header(skb, skb_gro_offset(skb));
4216 		skb_reset_mac_len(skb);
4217 		NAPI_GRO_CB(skb)->same_flow = 0;
4218 		NAPI_GRO_CB(skb)->flush = 0;
4219 		NAPI_GRO_CB(skb)->free = 0;
4220 		NAPI_GRO_CB(skb)->udp_mark = 0;
4221 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4222 
4223 		/* Setup for GRO checksum validation */
4224 		switch (skb->ip_summed) {
4225 		case CHECKSUM_COMPLETE:
4226 			NAPI_GRO_CB(skb)->csum = skb->csum;
4227 			NAPI_GRO_CB(skb)->csum_valid = 1;
4228 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4229 			break;
4230 		case CHECKSUM_UNNECESSARY:
4231 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4232 			NAPI_GRO_CB(skb)->csum_valid = 0;
4233 			break;
4234 		default:
4235 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4236 			NAPI_GRO_CB(skb)->csum_valid = 0;
4237 		}
4238 
4239 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4240 		break;
4241 	}
4242 	rcu_read_unlock();
4243 
4244 	if (&ptype->list == head)
4245 		goto normal;
4246 
4247 	same_flow = NAPI_GRO_CB(skb)->same_flow;
4248 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4249 
4250 	if (pp) {
4251 		struct sk_buff *nskb = *pp;
4252 
4253 		*pp = nskb->next;
4254 		nskb->next = NULL;
4255 		napi_gro_complete(nskb);
4256 		napi->gro_count--;
4257 	}
4258 
4259 	if (same_flow)
4260 		goto ok;
4261 
4262 	if (NAPI_GRO_CB(skb)->flush)
4263 		goto normal;
4264 
4265 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4266 		struct sk_buff *nskb = napi->gro_list;
4267 
4268 		/* locate the end of the list to select the 'oldest' flow */
4269 		while (nskb->next) {
4270 			pp = &nskb->next;
4271 			nskb = *pp;
4272 		}
4273 		*pp = NULL;
4274 		nskb->next = NULL;
4275 		napi_gro_complete(nskb);
4276 	} else {
4277 		napi->gro_count++;
4278 	}
4279 	NAPI_GRO_CB(skb)->count = 1;
4280 	NAPI_GRO_CB(skb)->age = jiffies;
4281 	NAPI_GRO_CB(skb)->last = skb;
4282 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4283 	skb->next = napi->gro_list;
4284 	napi->gro_list = skb;
4285 	ret = GRO_HELD;
4286 
4287 pull:
4288 	grow = skb_gro_offset(skb) - skb_headlen(skb);
4289 	if (grow > 0)
4290 		gro_pull_from_frag0(skb, grow);
4291 ok:
4292 	return ret;
4293 
4294 normal:
4295 	ret = GRO_NORMAL;
4296 	goto pull;
4297 }
4298 
4299 struct packet_offload *gro_find_receive_by_type(__be16 type)
4300 {
4301 	struct list_head *offload_head = &offload_base;
4302 	struct packet_offload *ptype;
4303 
4304 	list_for_each_entry_rcu(ptype, offload_head, list) {
4305 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4306 			continue;
4307 		return ptype;
4308 	}
4309 	return NULL;
4310 }
4311 EXPORT_SYMBOL(gro_find_receive_by_type);
4312 
4313 struct packet_offload *gro_find_complete_by_type(__be16 type)
4314 {
4315 	struct list_head *offload_head = &offload_base;
4316 	struct packet_offload *ptype;
4317 
4318 	list_for_each_entry_rcu(ptype, offload_head, list) {
4319 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4320 			continue;
4321 		return ptype;
4322 	}
4323 	return NULL;
4324 }
4325 EXPORT_SYMBOL(gro_find_complete_by_type);
4326 
4327 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4328 {
4329 	switch (ret) {
4330 	case GRO_NORMAL:
4331 		if (netif_receive_skb_internal(skb))
4332 			ret = GRO_DROP;
4333 		break;
4334 
4335 	case GRO_DROP:
4336 		kfree_skb(skb);
4337 		break;
4338 
4339 	case GRO_MERGED_FREE:
4340 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4341 			kmem_cache_free(skbuff_head_cache, skb);
4342 		else
4343 			__kfree_skb(skb);
4344 		break;
4345 
4346 	case GRO_HELD:
4347 	case GRO_MERGED:
4348 		break;
4349 	}
4350 
4351 	return ret;
4352 }
4353 
4354 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4355 {
4356 	trace_napi_gro_receive_entry(skb);
4357 
4358 	skb_gro_reset_offset(skb);
4359 
4360 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4361 }
4362 EXPORT_SYMBOL(napi_gro_receive);
4363 
4364 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4365 {
4366 	if (unlikely(skb->pfmemalloc)) {
4367 		consume_skb(skb);
4368 		return;
4369 	}
4370 	__skb_pull(skb, skb_headlen(skb));
4371 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
4372 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4373 	skb->vlan_tci = 0;
4374 	skb->dev = napi->dev;
4375 	skb->skb_iif = 0;
4376 	skb->encapsulation = 0;
4377 	skb_shinfo(skb)->gso_type = 0;
4378 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4379 
4380 	napi->skb = skb;
4381 }
4382 
4383 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4384 {
4385 	struct sk_buff *skb = napi->skb;
4386 
4387 	if (!skb) {
4388 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4389 		napi->skb = skb;
4390 	}
4391 	return skb;
4392 }
4393 EXPORT_SYMBOL(napi_get_frags);
4394 
4395 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4396 				      struct sk_buff *skb,
4397 				      gro_result_t ret)
4398 {
4399 	switch (ret) {
4400 	case GRO_NORMAL:
4401 	case GRO_HELD:
4402 		__skb_push(skb, ETH_HLEN);
4403 		skb->protocol = eth_type_trans(skb, skb->dev);
4404 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4405 			ret = GRO_DROP;
4406 		break;
4407 
4408 	case GRO_DROP:
4409 	case GRO_MERGED_FREE:
4410 		napi_reuse_skb(napi, skb);
4411 		break;
4412 
4413 	case GRO_MERGED:
4414 		break;
4415 	}
4416 
4417 	return ret;
4418 }
4419 
4420 /* Upper GRO stack assumes network header starts at gro_offset=0
4421  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4422  * We copy ethernet header into skb->data to have a common layout.
4423  */
4424 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4425 {
4426 	struct sk_buff *skb = napi->skb;
4427 	const struct ethhdr *eth;
4428 	unsigned int hlen = sizeof(*eth);
4429 
4430 	napi->skb = NULL;
4431 
4432 	skb_reset_mac_header(skb);
4433 	skb_gro_reset_offset(skb);
4434 
4435 	eth = skb_gro_header_fast(skb, 0);
4436 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
4437 		eth = skb_gro_header_slow(skb, hlen, 0);
4438 		if (unlikely(!eth)) {
4439 			napi_reuse_skb(napi, skb);
4440 			return NULL;
4441 		}
4442 	} else {
4443 		gro_pull_from_frag0(skb, hlen);
4444 		NAPI_GRO_CB(skb)->frag0 += hlen;
4445 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
4446 	}
4447 	__skb_pull(skb, hlen);
4448 
4449 	/*
4450 	 * This works because the only protocols we care about don't require
4451 	 * special handling.
4452 	 * We'll fix it up properly in napi_frags_finish()
4453 	 */
4454 	skb->protocol = eth->h_proto;
4455 
4456 	return skb;
4457 }
4458 
4459 gro_result_t napi_gro_frags(struct napi_struct *napi)
4460 {
4461 	struct sk_buff *skb = napi_frags_skb(napi);
4462 
4463 	if (!skb)
4464 		return GRO_DROP;
4465 
4466 	trace_napi_gro_frags_entry(skb);
4467 
4468 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4469 }
4470 EXPORT_SYMBOL(napi_gro_frags);
4471 
4472 /* Compute the checksum from gro_offset and return the folded value
4473  * after adding in any pseudo checksum.
4474  */
4475 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4476 {
4477 	__wsum wsum;
4478 	__sum16 sum;
4479 
4480 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4481 
4482 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4483 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4484 	if (likely(!sum)) {
4485 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4486 		    !skb->csum_complete_sw)
4487 			netdev_rx_csum_fault(skb->dev);
4488 	}
4489 
4490 	NAPI_GRO_CB(skb)->csum = wsum;
4491 	NAPI_GRO_CB(skb)->csum_valid = 1;
4492 
4493 	return sum;
4494 }
4495 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4496 
4497 /*
4498  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4499  * Note: called with local irq disabled, but exits with local irq enabled.
4500  */
4501 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4502 {
4503 #ifdef CONFIG_RPS
4504 	struct softnet_data *remsd = sd->rps_ipi_list;
4505 
4506 	if (remsd) {
4507 		sd->rps_ipi_list = NULL;
4508 
4509 		local_irq_enable();
4510 
4511 		/* Send pending IPI's to kick RPS processing on remote cpus. */
4512 		while (remsd) {
4513 			struct softnet_data *next = remsd->rps_ipi_next;
4514 
4515 			if (cpu_online(remsd->cpu))
4516 				smp_call_function_single_async(remsd->cpu,
4517 							   &remsd->csd);
4518 			remsd = next;
4519 		}
4520 	} else
4521 #endif
4522 		local_irq_enable();
4523 }
4524 
4525 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4526 {
4527 #ifdef CONFIG_RPS
4528 	return sd->rps_ipi_list != NULL;
4529 #else
4530 	return false;
4531 #endif
4532 }
4533 
4534 static int process_backlog(struct napi_struct *napi, int quota)
4535 {
4536 	int work = 0;
4537 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4538 
4539 	/* Check if we have pending ipi, its better to send them now,
4540 	 * not waiting net_rx_action() end.
4541 	 */
4542 	if (sd_has_rps_ipi_waiting(sd)) {
4543 		local_irq_disable();
4544 		net_rps_action_and_irq_enable(sd);
4545 	}
4546 
4547 	napi->weight = weight_p;
4548 	local_irq_disable();
4549 	while (1) {
4550 		struct sk_buff *skb;
4551 
4552 		while ((skb = __skb_dequeue(&sd->process_queue))) {
4553 			rcu_read_lock();
4554 			local_irq_enable();
4555 			__netif_receive_skb(skb);
4556 			rcu_read_unlock();
4557 			local_irq_disable();
4558 			input_queue_head_incr(sd);
4559 			if (++work >= quota) {
4560 				local_irq_enable();
4561 				return work;
4562 			}
4563 		}
4564 
4565 		rps_lock(sd);
4566 		if (skb_queue_empty(&sd->input_pkt_queue)) {
4567 			/*
4568 			 * Inline a custom version of __napi_complete().
4569 			 * only current cpu owns and manipulates this napi,
4570 			 * and NAPI_STATE_SCHED is the only possible flag set
4571 			 * on backlog.
4572 			 * We can use a plain write instead of clear_bit(),
4573 			 * and we dont need an smp_mb() memory barrier.
4574 			 */
4575 			napi->state = 0;
4576 			rps_unlock(sd);
4577 
4578 			break;
4579 		}
4580 
4581 		skb_queue_splice_tail_init(&sd->input_pkt_queue,
4582 					   &sd->process_queue);
4583 		rps_unlock(sd);
4584 	}
4585 	local_irq_enable();
4586 
4587 	return work;
4588 }
4589 
4590 /**
4591  * __napi_schedule - schedule for receive
4592  * @n: entry to schedule
4593  *
4594  * The entry's receive function will be scheduled to run.
4595  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4596  */
4597 void __napi_schedule(struct napi_struct *n)
4598 {
4599 	unsigned long flags;
4600 
4601 	local_irq_save(flags);
4602 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4603 	local_irq_restore(flags);
4604 }
4605 EXPORT_SYMBOL(__napi_schedule);
4606 
4607 /**
4608  * __napi_schedule_irqoff - schedule for receive
4609  * @n: entry to schedule
4610  *
4611  * Variant of __napi_schedule() assuming hard irqs are masked
4612  */
4613 void __napi_schedule_irqoff(struct napi_struct *n)
4614 {
4615 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4616 }
4617 EXPORT_SYMBOL(__napi_schedule_irqoff);
4618 
4619 void __napi_complete(struct napi_struct *n)
4620 {
4621 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4622 
4623 	list_del_init(&n->poll_list);
4624 	smp_mb__before_atomic();
4625 	clear_bit(NAPI_STATE_SCHED, &n->state);
4626 }
4627 EXPORT_SYMBOL(__napi_complete);
4628 
4629 void napi_complete_done(struct napi_struct *n, int work_done)
4630 {
4631 	unsigned long flags;
4632 
4633 	/*
4634 	 * don't let napi dequeue from the cpu poll list
4635 	 * just in case its running on a different cpu
4636 	 */
4637 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4638 		return;
4639 
4640 	if (n->gro_list) {
4641 		unsigned long timeout = 0;
4642 
4643 		if (work_done)
4644 			timeout = n->dev->gro_flush_timeout;
4645 
4646 		if (timeout)
4647 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
4648 				      HRTIMER_MODE_REL_PINNED);
4649 		else
4650 			napi_gro_flush(n, false);
4651 	}
4652 	if (likely(list_empty(&n->poll_list))) {
4653 		WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4654 	} else {
4655 		/* If n->poll_list is not empty, we need to mask irqs */
4656 		local_irq_save(flags);
4657 		__napi_complete(n);
4658 		local_irq_restore(flags);
4659 	}
4660 }
4661 EXPORT_SYMBOL(napi_complete_done);
4662 
4663 /* must be called under rcu_read_lock(), as we dont take a reference */
4664 struct napi_struct *napi_by_id(unsigned int napi_id)
4665 {
4666 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4667 	struct napi_struct *napi;
4668 
4669 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4670 		if (napi->napi_id == napi_id)
4671 			return napi;
4672 
4673 	return NULL;
4674 }
4675 EXPORT_SYMBOL_GPL(napi_by_id);
4676 
4677 void napi_hash_add(struct napi_struct *napi)
4678 {
4679 	if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4680 
4681 		spin_lock(&napi_hash_lock);
4682 
4683 		/* 0 is not a valid id, we also skip an id that is taken
4684 		 * we expect both events to be extremely rare
4685 		 */
4686 		napi->napi_id = 0;
4687 		while (!napi->napi_id) {
4688 			napi->napi_id = ++napi_gen_id;
4689 			if (napi_by_id(napi->napi_id))
4690 				napi->napi_id = 0;
4691 		}
4692 
4693 		hlist_add_head_rcu(&napi->napi_hash_node,
4694 			&napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4695 
4696 		spin_unlock(&napi_hash_lock);
4697 	}
4698 }
4699 EXPORT_SYMBOL_GPL(napi_hash_add);
4700 
4701 /* Warning : caller is responsible to make sure rcu grace period
4702  * is respected before freeing memory containing @napi
4703  */
4704 void napi_hash_del(struct napi_struct *napi)
4705 {
4706 	spin_lock(&napi_hash_lock);
4707 
4708 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4709 		hlist_del_rcu(&napi->napi_hash_node);
4710 
4711 	spin_unlock(&napi_hash_lock);
4712 }
4713 EXPORT_SYMBOL_GPL(napi_hash_del);
4714 
4715 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4716 {
4717 	struct napi_struct *napi;
4718 
4719 	napi = container_of(timer, struct napi_struct, timer);
4720 	if (napi->gro_list)
4721 		napi_schedule(napi);
4722 
4723 	return HRTIMER_NORESTART;
4724 }
4725 
4726 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4727 		    int (*poll)(struct napi_struct *, int), int weight)
4728 {
4729 	INIT_LIST_HEAD(&napi->poll_list);
4730 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4731 	napi->timer.function = napi_watchdog;
4732 	napi->gro_count = 0;
4733 	napi->gro_list = NULL;
4734 	napi->skb = NULL;
4735 	napi->poll = poll;
4736 	if (weight > NAPI_POLL_WEIGHT)
4737 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4738 			    weight, dev->name);
4739 	napi->weight = weight;
4740 	list_add(&napi->dev_list, &dev->napi_list);
4741 	napi->dev = dev;
4742 #ifdef CONFIG_NETPOLL
4743 	spin_lock_init(&napi->poll_lock);
4744 	napi->poll_owner = -1;
4745 #endif
4746 	set_bit(NAPI_STATE_SCHED, &napi->state);
4747 }
4748 EXPORT_SYMBOL(netif_napi_add);
4749 
4750 void napi_disable(struct napi_struct *n)
4751 {
4752 	might_sleep();
4753 	set_bit(NAPI_STATE_DISABLE, &n->state);
4754 
4755 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4756 		msleep(1);
4757 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
4758 		msleep(1);
4759 
4760 	hrtimer_cancel(&n->timer);
4761 
4762 	clear_bit(NAPI_STATE_DISABLE, &n->state);
4763 }
4764 EXPORT_SYMBOL(napi_disable);
4765 
4766 void netif_napi_del(struct napi_struct *napi)
4767 {
4768 	list_del_init(&napi->dev_list);
4769 	napi_free_frags(napi);
4770 
4771 	kfree_skb_list(napi->gro_list);
4772 	napi->gro_list = NULL;
4773 	napi->gro_count = 0;
4774 }
4775 EXPORT_SYMBOL(netif_napi_del);
4776 
4777 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4778 {
4779 	void *have;
4780 	int work, weight;
4781 
4782 	list_del_init(&n->poll_list);
4783 
4784 	have = netpoll_poll_lock(n);
4785 
4786 	weight = n->weight;
4787 
4788 	/* This NAPI_STATE_SCHED test is for avoiding a race
4789 	 * with netpoll's poll_napi().  Only the entity which
4790 	 * obtains the lock and sees NAPI_STATE_SCHED set will
4791 	 * actually make the ->poll() call.  Therefore we avoid
4792 	 * accidentally calling ->poll() when NAPI is not scheduled.
4793 	 */
4794 	work = 0;
4795 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4796 		work = n->poll(n, weight);
4797 		trace_napi_poll(n);
4798 	}
4799 
4800 	WARN_ON_ONCE(work > weight);
4801 
4802 	if (likely(work < weight))
4803 		goto out_unlock;
4804 
4805 	/* Drivers must not modify the NAPI state if they
4806 	 * consume the entire weight.  In such cases this code
4807 	 * still "owns" the NAPI instance and therefore can
4808 	 * move the instance around on the list at-will.
4809 	 */
4810 	if (unlikely(napi_disable_pending(n))) {
4811 		napi_complete(n);
4812 		goto out_unlock;
4813 	}
4814 
4815 	if (n->gro_list) {
4816 		/* flush too old packets
4817 		 * If HZ < 1000, flush all packets.
4818 		 */
4819 		napi_gro_flush(n, HZ >= 1000);
4820 	}
4821 
4822 	/* Some drivers may have called napi_schedule
4823 	 * prior to exhausting their budget.
4824 	 */
4825 	if (unlikely(!list_empty(&n->poll_list))) {
4826 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4827 			     n->dev ? n->dev->name : "backlog");
4828 		goto out_unlock;
4829 	}
4830 
4831 	list_add_tail(&n->poll_list, repoll);
4832 
4833 out_unlock:
4834 	netpoll_poll_unlock(have);
4835 
4836 	return work;
4837 }
4838 
4839 static void net_rx_action(struct softirq_action *h)
4840 {
4841 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4842 	unsigned long time_limit = jiffies + 2;
4843 	int budget = netdev_budget;
4844 	LIST_HEAD(list);
4845 	LIST_HEAD(repoll);
4846 
4847 	local_irq_disable();
4848 	list_splice_init(&sd->poll_list, &list);
4849 	local_irq_enable();
4850 
4851 	for (;;) {
4852 		struct napi_struct *n;
4853 
4854 		if (list_empty(&list)) {
4855 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4856 				return;
4857 			break;
4858 		}
4859 
4860 		n = list_first_entry(&list, struct napi_struct, poll_list);
4861 		budget -= napi_poll(n, &repoll);
4862 
4863 		/* If softirq window is exhausted then punt.
4864 		 * Allow this to run for 2 jiffies since which will allow
4865 		 * an average latency of 1.5/HZ.
4866 		 */
4867 		if (unlikely(budget <= 0 ||
4868 			     time_after_eq(jiffies, time_limit))) {
4869 			sd->time_squeeze++;
4870 			break;
4871 		}
4872 	}
4873 
4874 	local_irq_disable();
4875 
4876 	list_splice_tail_init(&sd->poll_list, &list);
4877 	list_splice_tail(&repoll, &list);
4878 	list_splice(&list, &sd->poll_list);
4879 	if (!list_empty(&sd->poll_list))
4880 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4881 
4882 	net_rps_action_and_irq_enable(sd);
4883 }
4884 
4885 struct netdev_adjacent {
4886 	struct net_device *dev;
4887 
4888 	/* upper master flag, there can only be one master device per list */
4889 	bool master;
4890 
4891 	/* counter for the number of times this device was added to us */
4892 	u16 ref_nr;
4893 
4894 	/* private field for the users */
4895 	void *private;
4896 
4897 	struct list_head list;
4898 	struct rcu_head rcu;
4899 };
4900 
4901 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
4902 						 struct list_head *adj_list)
4903 {
4904 	struct netdev_adjacent *adj;
4905 
4906 	list_for_each_entry(adj, adj_list, list) {
4907 		if (adj->dev == adj_dev)
4908 			return adj;
4909 	}
4910 	return NULL;
4911 }
4912 
4913 /**
4914  * netdev_has_upper_dev - Check if device is linked to an upper device
4915  * @dev: device
4916  * @upper_dev: upper device to check
4917  *
4918  * Find out if a device is linked to specified upper device and return true
4919  * in case it is. Note that this checks only immediate upper device,
4920  * not through a complete stack of devices. The caller must hold the RTNL lock.
4921  */
4922 bool netdev_has_upper_dev(struct net_device *dev,
4923 			  struct net_device *upper_dev)
4924 {
4925 	ASSERT_RTNL();
4926 
4927 	return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
4928 }
4929 EXPORT_SYMBOL(netdev_has_upper_dev);
4930 
4931 /**
4932  * netdev_has_any_upper_dev - Check if device is linked to some device
4933  * @dev: device
4934  *
4935  * Find out if a device is linked to an upper device and return true in case
4936  * it is. The caller must hold the RTNL lock.
4937  */
4938 static bool netdev_has_any_upper_dev(struct net_device *dev)
4939 {
4940 	ASSERT_RTNL();
4941 
4942 	return !list_empty(&dev->all_adj_list.upper);
4943 }
4944 
4945 /**
4946  * netdev_master_upper_dev_get - Get master upper device
4947  * @dev: device
4948  *
4949  * Find a master upper device and return pointer to it or NULL in case
4950  * it's not there. The caller must hold the RTNL lock.
4951  */
4952 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4953 {
4954 	struct netdev_adjacent *upper;
4955 
4956 	ASSERT_RTNL();
4957 
4958 	if (list_empty(&dev->adj_list.upper))
4959 		return NULL;
4960 
4961 	upper = list_first_entry(&dev->adj_list.upper,
4962 				 struct netdev_adjacent, list);
4963 	if (likely(upper->master))
4964 		return upper->dev;
4965 	return NULL;
4966 }
4967 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4968 
4969 void *netdev_adjacent_get_private(struct list_head *adj_list)
4970 {
4971 	struct netdev_adjacent *adj;
4972 
4973 	adj = list_entry(adj_list, struct netdev_adjacent, list);
4974 
4975 	return adj->private;
4976 }
4977 EXPORT_SYMBOL(netdev_adjacent_get_private);
4978 
4979 /**
4980  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4981  * @dev: device
4982  * @iter: list_head ** of the current position
4983  *
4984  * Gets the next device from the dev's upper list, starting from iter
4985  * position. The caller must hold RCU read lock.
4986  */
4987 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4988 						 struct list_head **iter)
4989 {
4990 	struct netdev_adjacent *upper;
4991 
4992 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4993 
4994 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4995 
4996 	if (&upper->list == &dev->adj_list.upper)
4997 		return NULL;
4998 
4999 	*iter = &upper->list;
5000 
5001 	return upper->dev;
5002 }
5003 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5004 
5005 /**
5006  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
5007  * @dev: device
5008  * @iter: list_head ** of the current position
5009  *
5010  * Gets the next device from the dev's upper list, starting from iter
5011  * position. The caller must hold RCU read lock.
5012  */
5013 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5014 						     struct list_head **iter)
5015 {
5016 	struct netdev_adjacent *upper;
5017 
5018 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5019 
5020 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5021 
5022 	if (&upper->list == &dev->all_adj_list.upper)
5023 		return NULL;
5024 
5025 	*iter = &upper->list;
5026 
5027 	return upper->dev;
5028 }
5029 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
5030 
5031 /**
5032  * netdev_lower_get_next_private - Get the next ->private from the
5033  *				   lower neighbour list
5034  * @dev: device
5035  * @iter: list_head ** of the current position
5036  *
5037  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5038  * list, starting from iter position. The caller must hold either hold the
5039  * RTNL lock or its own locking that guarantees that the neighbour lower
5040  * list will remain unchanged.
5041  */
5042 void *netdev_lower_get_next_private(struct net_device *dev,
5043 				    struct list_head **iter)
5044 {
5045 	struct netdev_adjacent *lower;
5046 
5047 	lower = list_entry(*iter, struct netdev_adjacent, list);
5048 
5049 	if (&lower->list == &dev->adj_list.lower)
5050 		return NULL;
5051 
5052 	*iter = lower->list.next;
5053 
5054 	return lower->private;
5055 }
5056 EXPORT_SYMBOL(netdev_lower_get_next_private);
5057 
5058 /**
5059  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5060  *				       lower neighbour list, RCU
5061  *				       variant
5062  * @dev: device
5063  * @iter: list_head ** of the current position
5064  *
5065  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5066  * list, starting from iter position. The caller must hold RCU read lock.
5067  */
5068 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5069 					struct list_head **iter)
5070 {
5071 	struct netdev_adjacent *lower;
5072 
5073 	WARN_ON_ONCE(!rcu_read_lock_held());
5074 
5075 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5076 
5077 	if (&lower->list == &dev->adj_list.lower)
5078 		return NULL;
5079 
5080 	*iter = &lower->list;
5081 
5082 	return lower->private;
5083 }
5084 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5085 
5086 /**
5087  * netdev_lower_get_next - Get the next device from the lower neighbour
5088  *                         list
5089  * @dev: device
5090  * @iter: list_head ** of the current position
5091  *
5092  * Gets the next netdev_adjacent from the dev's lower neighbour
5093  * list, starting from iter position. The caller must hold RTNL lock or
5094  * its own locking that guarantees that the neighbour lower
5095  * list will remain unchanged.
5096  */
5097 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5098 {
5099 	struct netdev_adjacent *lower;
5100 
5101 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5102 
5103 	if (&lower->list == &dev->adj_list.lower)
5104 		return NULL;
5105 
5106 	*iter = &lower->list;
5107 
5108 	return lower->dev;
5109 }
5110 EXPORT_SYMBOL(netdev_lower_get_next);
5111 
5112 /**
5113  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5114  *				       lower neighbour list, RCU
5115  *				       variant
5116  * @dev: device
5117  *
5118  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5119  * list. The caller must hold RCU read lock.
5120  */
5121 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5122 {
5123 	struct netdev_adjacent *lower;
5124 
5125 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
5126 			struct netdev_adjacent, list);
5127 	if (lower)
5128 		return lower->private;
5129 	return NULL;
5130 }
5131 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5132 
5133 /**
5134  * netdev_master_upper_dev_get_rcu - Get master upper device
5135  * @dev: device
5136  *
5137  * Find a master upper device and return pointer to it or NULL in case
5138  * it's not there. The caller must hold the RCU read lock.
5139  */
5140 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5141 {
5142 	struct netdev_adjacent *upper;
5143 
5144 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
5145 				       struct netdev_adjacent, list);
5146 	if (upper && likely(upper->master))
5147 		return upper->dev;
5148 	return NULL;
5149 }
5150 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5151 
5152 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5153 			      struct net_device *adj_dev,
5154 			      struct list_head *dev_list)
5155 {
5156 	char linkname[IFNAMSIZ+7];
5157 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
5158 		"upper_%s" : "lower_%s", adj_dev->name);
5159 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5160 				 linkname);
5161 }
5162 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5163 			       char *name,
5164 			       struct list_head *dev_list)
5165 {
5166 	char linkname[IFNAMSIZ+7];
5167 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
5168 		"upper_%s" : "lower_%s", name);
5169 	sysfs_remove_link(&(dev->dev.kobj), linkname);
5170 }
5171 
5172 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5173 						 struct net_device *adj_dev,
5174 						 struct list_head *dev_list)
5175 {
5176 	return (dev_list == &dev->adj_list.upper ||
5177 		dev_list == &dev->adj_list.lower) &&
5178 		net_eq(dev_net(dev), dev_net(adj_dev));
5179 }
5180 
5181 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5182 					struct net_device *adj_dev,
5183 					struct list_head *dev_list,
5184 					void *private, bool master)
5185 {
5186 	struct netdev_adjacent *adj;
5187 	int ret;
5188 
5189 	adj = __netdev_find_adj(adj_dev, dev_list);
5190 
5191 	if (adj) {
5192 		adj->ref_nr++;
5193 		return 0;
5194 	}
5195 
5196 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5197 	if (!adj)
5198 		return -ENOMEM;
5199 
5200 	adj->dev = adj_dev;
5201 	adj->master = master;
5202 	adj->ref_nr = 1;
5203 	adj->private = private;
5204 	dev_hold(adj_dev);
5205 
5206 	pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5207 		 adj_dev->name, dev->name, adj_dev->name);
5208 
5209 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5210 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5211 		if (ret)
5212 			goto free_adj;
5213 	}
5214 
5215 	/* Ensure that master link is always the first item in list. */
5216 	if (master) {
5217 		ret = sysfs_create_link(&(dev->dev.kobj),
5218 					&(adj_dev->dev.kobj), "master");
5219 		if (ret)
5220 			goto remove_symlinks;
5221 
5222 		list_add_rcu(&adj->list, dev_list);
5223 	} else {
5224 		list_add_tail_rcu(&adj->list, dev_list);
5225 	}
5226 
5227 	return 0;
5228 
5229 remove_symlinks:
5230 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5231 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5232 free_adj:
5233 	kfree(adj);
5234 	dev_put(adj_dev);
5235 
5236 	return ret;
5237 }
5238 
5239 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5240 					 struct net_device *adj_dev,
5241 					 struct list_head *dev_list)
5242 {
5243 	struct netdev_adjacent *adj;
5244 
5245 	adj = __netdev_find_adj(adj_dev, dev_list);
5246 
5247 	if (!adj) {
5248 		pr_err("tried to remove device %s from %s\n",
5249 		       dev->name, adj_dev->name);
5250 		BUG();
5251 	}
5252 
5253 	if (adj->ref_nr > 1) {
5254 		pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5255 			 adj->ref_nr-1);
5256 		adj->ref_nr--;
5257 		return;
5258 	}
5259 
5260 	if (adj->master)
5261 		sysfs_remove_link(&(dev->dev.kobj), "master");
5262 
5263 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5264 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5265 
5266 	list_del_rcu(&adj->list);
5267 	pr_debug("dev_put for %s, because link removed from %s to %s\n",
5268 		 adj_dev->name, dev->name, adj_dev->name);
5269 	dev_put(adj_dev);
5270 	kfree_rcu(adj, rcu);
5271 }
5272 
5273 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5274 					    struct net_device *upper_dev,
5275 					    struct list_head *up_list,
5276 					    struct list_head *down_list,
5277 					    void *private, bool master)
5278 {
5279 	int ret;
5280 
5281 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5282 					   master);
5283 	if (ret)
5284 		return ret;
5285 
5286 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5287 					   false);
5288 	if (ret) {
5289 		__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5290 		return ret;
5291 	}
5292 
5293 	return 0;
5294 }
5295 
5296 static int __netdev_adjacent_dev_link(struct net_device *dev,
5297 				      struct net_device *upper_dev)
5298 {
5299 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5300 						&dev->all_adj_list.upper,
5301 						&upper_dev->all_adj_list.lower,
5302 						NULL, false);
5303 }
5304 
5305 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5306 					       struct net_device *upper_dev,
5307 					       struct list_head *up_list,
5308 					       struct list_head *down_list)
5309 {
5310 	__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5311 	__netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5312 }
5313 
5314 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5315 					 struct net_device *upper_dev)
5316 {
5317 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5318 					   &dev->all_adj_list.upper,
5319 					   &upper_dev->all_adj_list.lower);
5320 }
5321 
5322 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5323 						struct net_device *upper_dev,
5324 						void *private, bool master)
5325 {
5326 	int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5327 
5328 	if (ret)
5329 		return ret;
5330 
5331 	ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5332 					       &dev->adj_list.upper,
5333 					       &upper_dev->adj_list.lower,
5334 					       private, master);
5335 	if (ret) {
5336 		__netdev_adjacent_dev_unlink(dev, upper_dev);
5337 		return ret;
5338 	}
5339 
5340 	return 0;
5341 }
5342 
5343 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5344 						   struct net_device *upper_dev)
5345 {
5346 	__netdev_adjacent_dev_unlink(dev, upper_dev);
5347 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5348 					   &dev->adj_list.upper,
5349 					   &upper_dev->adj_list.lower);
5350 }
5351 
5352 static int __netdev_upper_dev_link(struct net_device *dev,
5353 				   struct net_device *upper_dev, bool master,
5354 				   void *private)
5355 {
5356 	struct netdev_notifier_changeupper_info changeupper_info;
5357 	struct netdev_adjacent *i, *j, *to_i, *to_j;
5358 	int ret = 0;
5359 
5360 	ASSERT_RTNL();
5361 
5362 	if (dev == upper_dev)
5363 		return -EBUSY;
5364 
5365 	/* To prevent loops, check if dev is not upper device to upper_dev. */
5366 	if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
5367 		return -EBUSY;
5368 
5369 	if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
5370 		return -EEXIST;
5371 
5372 	if (master && netdev_master_upper_dev_get(dev))
5373 		return -EBUSY;
5374 
5375 	changeupper_info.upper_dev = upper_dev;
5376 	changeupper_info.master = master;
5377 	changeupper_info.linking = true;
5378 
5379 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5380 					    &changeupper_info.info);
5381 	ret = notifier_to_errno(ret);
5382 	if (ret)
5383 		return ret;
5384 
5385 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5386 						   master);
5387 	if (ret)
5388 		return ret;
5389 
5390 	/* Now that we linked these devs, make all the upper_dev's
5391 	 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5392 	 * versa, and don't forget the devices itself. All of these
5393 	 * links are non-neighbours.
5394 	 */
5395 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5396 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5397 			pr_debug("Interlinking %s with %s, non-neighbour\n",
5398 				 i->dev->name, j->dev->name);
5399 			ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5400 			if (ret)
5401 				goto rollback_mesh;
5402 		}
5403 	}
5404 
5405 	/* add dev to every upper_dev's upper device */
5406 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5407 		pr_debug("linking %s's upper device %s with %s\n",
5408 			 upper_dev->name, i->dev->name, dev->name);
5409 		ret = __netdev_adjacent_dev_link(dev, i->dev);
5410 		if (ret)
5411 			goto rollback_upper_mesh;
5412 	}
5413 
5414 	/* add upper_dev to every dev's lower device */
5415 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5416 		pr_debug("linking %s's lower device %s with %s\n", dev->name,
5417 			 i->dev->name, upper_dev->name);
5418 		ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5419 		if (ret)
5420 			goto rollback_lower_mesh;
5421 	}
5422 
5423 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5424 				      &changeupper_info.info);
5425 	return 0;
5426 
5427 rollback_lower_mesh:
5428 	to_i = i;
5429 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5430 		if (i == to_i)
5431 			break;
5432 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
5433 	}
5434 
5435 	i = NULL;
5436 
5437 rollback_upper_mesh:
5438 	to_i = i;
5439 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5440 		if (i == to_i)
5441 			break;
5442 		__netdev_adjacent_dev_unlink(dev, i->dev);
5443 	}
5444 
5445 	i = j = NULL;
5446 
5447 rollback_mesh:
5448 	to_i = i;
5449 	to_j = j;
5450 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5451 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5452 			if (i == to_i && j == to_j)
5453 				break;
5454 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5455 		}
5456 		if (i == to_i)
5457 			break;
5458 	}
5459 
5460 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5461 
5462 	return ret;
5463 }
5464 
5465 /**
5466  * netdev_upper_dev_link - Add a link to the upper device
5467  * @dev: device
5468  * @upper_dev: new upper device
5469  *
5470  * Adds a link to device which is upper to this one. The caller must hold
5471  * the RTNL lock. On a failure a negative errno code is returned.
5472  * On success the reference counts are adjusted and the function
5473  * returns zero.
5474  */
5475 int netdev_upper_dev_link(struct net_device *dev,
5476 			  struct net_device *upper_dev)
5477 {
5478 	return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5479 }
5480 EXPORT_SYMBOL(netdev_upper_dev_link);
5481 
5482 /**
5483  * netdev_master_upper_dev_link - Add a master link to the upper device
5484  * @dev: device
5485  * @upper_dev: new upper device
5486  *
5487  * Adds a link to device which is upper to this one. In this case, only
5488  * one master upper device can be linked, although other non-master devices
5489  * might be linked as well. The caller must hold the RTNL lock.
5490  * On a failure a negative errno code is returned. On success the reference
5491  * counts are adjusted and the function returns zero.
5492  */
5493 int netdev_master_upper_dev_link(struct net_device *dev,
5494 				 struct net_device *upper_dev)
5495 {
5496 	return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5497 }
5498 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5499 
5500 int netdev_master_upper_dev_link_private(struct net_device *dev,
5501 					 struct net_device *upper_dev,
5502 					 void *private)
5503 {
5504 	return __netdev_upper_dev_link(dev, upper_dev, true, private);
5505 }
5506 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5507 
5508 /**
5509  * netdev_upper_dev_unlink - Removes a link to upper device
5510  * @dev: device
5511  * @upper_dev: new upper device
5512  *
5513  * Removes a link to device which is upper to this one. The caller must hold
5514  * the RTNL lock.
5515  */
5516 void netdev_upper_dev_unlink(struct net_device *dev,
5517 			     struct net_device *upper_dev)
5518 {
5519 	struct netdev_notifier_changeupper_info changeupper_info;
5520 	struct netdev_adjacent *i, *j;
5521 	ASSERT_RTNL();
5522 
5523 	changeupper_info.upper_dev = upper_dev;
5524 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5525 	changeupper_info.linking = false;
5526 
5527 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5528 				      &changeupper_info.info);
5529 
5530 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5531 
5532 	/* Here is the tricky part. We must remove all dev's lower
5533 	 * devices from all upper_dev's upper devices and vice
5534 	 * versa, to maintain the graph relationship.
5535 	 */
5536 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5537 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5538 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5539 
5540 	/* remove also the devices itself from lower/upper device
5541 	 * list
5542 	 */
5543 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5544 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
5545 
5546 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5547 		__netdev_adjacent_dev_unlink(dev, i->dev);
5548 
5549 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5550 				      &changeupper_info.info);
5551 }
5552 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5553 
5554 /**
5555  * netdev_bonding_info_change - Dispatch event about slave change
5556  * @dev: device
5557  * @bonding_info: info to dispatch
5558  *
5559  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5560  * The caller must hold the RTNL lock.
5561  */
5562 void netdev_bonding_info_change(struct net_device *dev,
5563 				struct netdev_bonding_info *bonding_info)
5564 {
5565 	struct netdev_notifier_bonding_info	info;
5566 
5567 	memcpy(&info.bonding_info, bonding_info,
5568 	       sizeof(struct netdev_bonding_info));
5569 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5570 				      &info.info);
5571 }
5572 EXPORT_SYMBOL(netdev_bonding_info_change);
5573 
5574 static void netdev_adjacent_add_links(struct net_device *dev)
5575 {
5576 	struct netdev_adjacent *iter;
5577 
5578 	struct net *net = dev_net(dev);
5579 
5580 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5581 		if (!net_eq(net,dev_net(iter->dev)))
5582 			continue;
5583 		netdev_adjacent_sysfs_add(iter->dev, dev,
5584 					  &iter->dev->adj_list.lower);
5585 		netdev_adjacent_sysfs_add(dev, iter->dev,
5586 					  &dev->adj_list.upper);
5587 	}
5588 
5589 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5590 		if (!net_eq(net,dev_net(iter->dev)))
5591 			continue;
5592 		netdev_adjacent_sysfs_add(iter->dev, dev,
5593 					  &iter->dev->adj_list.upper);
5594 		netdev_adjacent_sysfs_add(dev, iter->dev,
5595 					  &dev->adj_list.lower);
5596 	}
5597 }
5598 
5599 static void netdev_adjacent_del_links(struct net_device *dev)
5600 {
5601 	struct netdev_adjacent *iter;
5602 
5603 	struct net *net = dev_net(dev);
5604 
5605 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5606 		if (!net_eq(net,dev_net(iter->dev)))
5607 			continue;
5608 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
5609 					  &iter->dev->adj_list.lower);
5610 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
5611 					  &dev->adj_list.upper);
5612 	}
5613 
5614 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5615 		if (!net_eq(net,dev_net(iter->dev)))
5616 			continue;
5617 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
5618 					  &iter->dev->adj_list.upper);
5619 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
5620 					  &dev->adj_list.lower);
5621 	}
5622 }
5623 
5624 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5625 {
5626 	struct netdev_adjacent *iter;
5627 
5628 	struct net *net = dev_net(dev);
5629 
5630 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5631 		if (!net_eq(net,dev_net(iter->dev)))
5632 			continue;
5633 		netdev_adjacent_sysfs_del(iter->dev, oldname,
5634 					  &iter->dev->adj_list.lower);
5635 		netdev_adjacent_sysfs_add(iter->dev, dev,
5636 					  &iter->dev->adj_list.lower);
5637 	}
5638 
5639 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5640 		if (!net_eq(net,dev_net(iter->dev)))
5641 			continue;
5642 		netdev_adjacent_sysfs_del(iter->dev, oldname,
5643 					  &iter->dev->adj_list.upper);
5644 		netdev_adjacent_sysfs_add(iter->dev, dev,
5645 					  &iter->dev->adj_list.upper);
5646 	}
5647 }
5648 
5649 void *netdev_lower_dev_get_private(struct net_device *dev,
5650 				   struct net_device *lower_dev)
5651 {
5652 	struct netdev_adjacent *lower;
5653 
5654 	if (!lower_dev)
5655 		return NULL;
5656 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
5657 	if (!lower)
5658 		return NULL;
5659 
5660 	return lower->private;
5661 }
5662 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5663 
5664 
5665 int dev_get_nest_level(struct net_device *dev,
5666 		       bool (*type_check)(struct net_device *dev))
5667 {
5668 	struct net_device *lower = NULL;
5669 	struct list_head *iter;
5670 	int max_nest = -1;
5671 	int nest;
5672 
5673 	ASSERT_RTNL();
5674 
5675 	netdev_for_each_lower_dev(dev, lower, iter) {
5676 		nest = dev_get_nest_level(lower, type_check);
5677 		if (max_nest < nest)
5678 			max_nest = nest;
5679 	}
5680 
5681 	if (type_check(dev))
5682 		max_nest++;
5683 
5684 	return max_nest;
5685 }
5686 EXPORT_SYMBOL(dev_get_nest_level);
5687 
5688 static void dev_change_rx_flags(struct net_device *dev, int flags)
5689 {
5690 	const struct net_device_ops *ops = dev->netdev_ops;
5691 
5692 	if (ops->ndo_change_rx_flags)
5693 		ops->ndo_change_rx_flags(dev, flags);
5694 }
5695 
5696 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5697 {
5698 	unsigned int old_flags = dev->flags;
5699 	kuid_t uid;
5700 	kgid_t gid;
5701 
5702 	ASSERT_RTNL();
5703 
5704 	dev->flags |= IFF_PROMISC;
5705 	dev->promiscuity += inc;
5706 	if (dev->promiscuity == 0) {
5707 		/*
5708 		 * Avoid overflow.
5709 		 * If inc causes overflow, untouch promisc and return error.
5710 		 */
5711 		if (inc < 0)
5712 			dev->flags &= ~IFF_PROMISC;
5713 		else {
5714 			dev->promiscuity -= inc;
5715 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5716 				dev->name);
5717 			return -EOVERFLOW;
5718 		}
5719 	}
5720 	if (dev->flags != old_flags) {
5721 		pr_info("device %s %s promiscuous mode\n",
5722 			dev->name,
5723 			dev->flags & IFF_PROMISC ? "entered" : "left");
5724 		if (audit_enabled) {
5725 			current_uid_gid(&uid, &gid);
5726 			audit_log(current->audit_context, GFP_ATOMIC,
5727 				AUDIT_ANOM_PROMISCUOUS,
5728 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5729 				dev->name, (dev->flags & IFF_PROMISC),
5730 				(old_flags & IFF_PROMISC),
5731 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
5732 				from_kuid(&init_user_ns, uid),
5733 				from_kgid(&init_user_ns, gid),
5734 				audit_get_sessionid(current));
5735 		}
5736 
5737 		dev_change_rx_flags(dev, IFF_PROMISC);
5738 	}
5739 	if (notify)
5740 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
5741 	return 0;
5742 }
5743 
5744 /**
5745  *	dev_set_promiscuity	- update promiscuity count on a device
5746  *	@dev: device
5747  *	@inc: modifier
5748  *
5749  *	Add or remove promiscuity from a device. While the count in the device
5750  *	remains above zero the interface remains promiscuous. Once it hits zero
5751  *	the device reverts back to normal filtering operation. A negative inc
5752  *	value is used to drop promiscuity on the device.
5753  *	Return 0 if successful or a negative errno code on error.
5754  */
5755 int dev_set_promiscuity(struct net_device *dev, int inc)
5756 {
5757 	unsigned int old_flags = dev->flags;
5758 	int err;
5759 
5760 	err = __dev_set_promiscuity(dev, inc, true);
5761 	if (err < 0)
5762 		return err;
5763 	if (dev->flags != old_flags)
5764 		dev_set_rx_mode(dev);
5765 	return err;
5766 }
5767 EXPORT_SYMBOL(dev_set_promiscuity);
5768 
5769 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5770 {
5771 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5772 
5773 	ASSERT_RTNL();
5774 
5775 	dev->flags |= IFF_ALLMULTI;
5776 	dev->allmulti += inc;
5777 	if (dev->allmulti == 0) {
5778 		/*
5779 		 * Avoid overflow.
5780 		 * If inc causes overflow, untouch allmulti and return error.
5781 		 */
5782 		if (inc < 0)
5783 			dev->flags &= ~IFF_ALLMULTI;
5784 		else {
5785 			dev->allmulti -= inc;
5786 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5787 				dev->name);
5788 			return -EOVERFLOW;
5789 		}
5790 	}
5791 	if (dev->flags ^ old_flags) {
5792 		dev_change_rx_flags(dev, IFF_ALLMULTI);
5793 		dev_set_rx_mode(dev);
5794 		if (notify)
5795 			__dev_notify_flags(dev, old_flags,
5796 					   dev->gflags ^ old_gflags);
5797 	}
5798 	return 0;
5799 }
5800 
5801 /**
5802  *	dev_set_allmulti	- update allmulti count on a device
5803  *	@dev: device
5804  *	@inc: modifier
5805  *
5806  *	Add or remove reception of all multicast frames to a device. While the
5807  *	count in the device remains above zero the interface remains listening
5808  *	to all interfaces. Once it hits zero the device reverts back to normal
5809  *	filtering operation. A negative @inc value is used to drop the counter
5810  *	when releasing a resource needing all multicasts.
5811  *	Return 0 if successful or a negative errno code on error.
5812  */
5813 
5814 int dev_set_allmulti(struct net_device *dev, int inc)
5815 {
5816 	return __dev_set_allmulti(dev, inc, true);
5817 }
5818 EXPORT_SYMBOL(dev_set_allmulti);
5819 
5820 /*
5821  *	Upload unicast and multicast address lists to device and
5822  *	configure RX filtering. When the device doesn't support unicast
5823  *	filtering it is put in promiscuous mode while unicast addresses
5824  *	are present.
5825  */
5826 void __dev_set_rx_mode(struct net_device *dev)
5827 {
5828 	const struct net_device_ops *ops = dev->netdev_ops;
5829 
5830 	/* dev_open will call this function so the list will stay sane. */
5831 	if (!(dev->flags&IFF_UP))
5832 		return;
5833 
5834 	if (!netif_device_present(dev))
5835 		return;
5836 
5837 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5838 		/* Unicast addresses changes may only happen under the rtnl,
5839 		 * therefore calling __dev_set_promiscuity here is safe.
5840 		 */
5841 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5842 			__dev_set_promiscuity(dev, 1, false);
5843 			dev->uc_promisc = true;
5844 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5845 			__dev_set_promiscuity(dev, -1, false);
5846 			dev->uc_promisc = false;
5847 		}
5848 	}
5849 
5850 	if (ops->ndo_set_rx_mode)
5851 		ops->ndo_set_rx_mode(dev);
5852 }
5853 
5854 void dev_set_rx_mode(struct net_device *dev)
5855 {
5856 	netif_addr_lock_bh(dev);
5857 	__dev_set_rx_mode(dev);
5858 	netif_addr_unlock_bh(dev);
5859 }
5860 
5861 /**
5862  *	dev_get_flags - get flags reported to userspace
5863  *	@dev: device
5864  *
5865  *	Get the combination of flag bits exported through APIs to userspace.
5866  */
5867 unsigned int dev_get_flags(const struct net_device *dev)
5868 {
5869 	unsigned int flags;
5870 
5871 	flags = (dev->flags & ~(IFF_PROMISC |
5872 				IFF_ALLMULTI |
5873 				IFF_RUNNING |
5874 				IFF_LOWER_UP |
5875 				IFF_DORMANT)) |
5876 		(dev->gflags & (IFF_PROMISC |
5877 				IFF_ALLMULTI));
5878 
5879 	if (netif_running(dev)) {
5880 		if (netif_oper_up(dev))
5881 			flags |= IFF_RUNNING;
5882 		if (netif_carrier_ok(dev))
5883 			flags |= IFF_LOWER_UP;
5884 		if (netif_dormant(dev))
5885 			flags |= IFF_DORMANT;
5886 	}
5887 
5888 	return flags;
5889 }
5890 EXPORT_SYMBOL(dev_get_flags);
5891 
5892 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5893 {
5894 	unsigned int old_flags = dev->flags;
5895 	int ret;
5896 
5897 	ASSERT_RTNL();
5898 
5899 	/*
5900 	 *	Set the flags on our device.
5901 	 */
5902 
5903 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5904 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5905 			       IFF_AUTOMEDIA)) |
5906 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5907 				    IFF_ALLMULTI));
5908 
5909 	/*
5910 	 *	Load in the correct multicast list now the flags have changed.
5911 	 */
5912 
5913 	if ((old_flags ^ flags) & IFF_MULTICAST)
5914 		dev_change_rx_flags(dev, IFF_MULTICAST);
5915 
5916 	dev_set_rx_mode(dev);
5917 
5918 	/*
5919 	 *	Have we downed the interface. We handle IFF_UP ourselves
5920 	 *	according to user attempts to set it, rather than blindly
5921 	 *	setting it.
5922 	 */
5923 
5924 	ret = 0;
5925 	if ((old_flags ^ flags) & IFF_UP)
5926 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5927 
5928 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
5929 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
5930 		unsigned int old_flags = dev->flags;
5931 
5932 		dev->gflags ^= IFF_PROMISC;
5933 
5934 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
5935 			if (dev->flags != old_flags)
5936 				dev_set_rx_mode(dev);
5937 	}
5938 
5939 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5940 	   is important. Some (broken) drivers set IFF_PROMISC, when
5941 	   IFF_ALLMULTI is requested not asking us and not reporting.
5942 	 */
5943 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5944 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5945 
5946 		dev->gflags ^= IFF_ALLMULTI;
5947 		__dev_set_allmulti(dev, inc, false);
5948 	}
5949 
5950 	return ret;
5951 }
5952 
5953 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5954 			unsigned int gchanges)
5955 {
5956 	unsigned int changes = dev->flags ^ old_flags;
5957 
5958 	if (gchanges)
5959 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5960 
5961 	if (changes & IFF_UP) {
5962 		if (dev->flags & IFF_UP)
5963 			call_netdevice_notifiers(NETDEV_UP, dev);
5964 		else
5965 			call_netdevice_notifiers(NETDEV_DOWN, dev);
5966 	}
5967 
5968 	if (dev->flags & IFF_UP &&
5969 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5970 		struct netdev_notifier_change_info change_info;
5971 
5972 		change_info.flags_changed = changes;
5973 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5974 					      &change_info.info);
5975 	}
5976 }
5977 
5978 /**
5979  *	dev_change_flags - change device settings
5980  *	@dev: device
5981  *	@flags: device state flags
5982  *
5983  *	Change settings on device based state flags. The flags are
5984  *	in the userspace exported format.
5985  */
5986 int dev_change_flags(struct net_device *dev, unsigned int flags)
5987 {
5988 	int ret;
5989 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5990 
5991 	ret = __dev_change_flags(dev, flags);
5992 	if (ret < 0)
5993 		return ret;
5994 
5995 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5996 	__dev_notify_flags(dev, old_flags, changes);
5997 	return ret;
5998 }
5999 EXPORT_SYMBOL(dev_change_flags);
6000 
6001 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6002 {
6003 	const struct net_device_ops *ops = dev->netdev_ops;
6004 
6005 	if (ops->ndo_change_mtu)
6006 		return ops->ndo_change_mtu(dev, new_mtu);
6007 
6008 	dev->mtu = new_mtu;
6009 	return 0;
6010 }
6011 
6012 /**
6013  *	dev_set_mtu - Change maximum transfer unit
6014  *	@dev: device
6015  *	@new_mtu: new transfer unit
6016  *
6017  *	Change the maximum transfer size of the network device.
6018  */
6019 int dev_set_mtu(struct net_device *dev, int new_mtu)
6020 {
6021 	int err, orig_mtu;
6022 
6023 	if (new_mtu == dev->mtu)
6024 		return 0;
6025 
6026 	/*	MTU must be positive.	 */
6027 	if (new_mtu < 0)
6028 		return -EINVAL;
6029 
6030 	if (!netif_device_present(dev))
6031 		return -ENODEV;
6032 
6033 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6034 	err = notifier_to_errno(err);
6035 	if (err)
6036 		return err;
6037 
6038 	orig_mtu = dev->mtu;
6039 	err = __dev_set_mtu(dev, new_mtu);
6040 
6041 	if (!err) {
6042 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6043 		err = notifier_to_errno(err);
6044 		if (err) {
6045 			/* setting mtu back and notifying everyone again,
6046 			 * so that they have a chance to revert changes.
6047 			 */
6048 			__dev_set_mtu(dev, orig_mtu);
6049 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6050 		}
6051 	}
6052 	return err;
6053 }
6054 EXPORT_SYMBOL(dev_set_mtu);
6055 
6056 /**
6057  *	dev_set_group - Change group this device belongs to
6058  *	@dev: device
6059  *	@new_group: group this device should belong to
6060  */
6061 void dev_set_group(struct net_device *dev, int new_group)
6062 {
6063 	dev->group = new_group;
6064 }
6065 EXPORT_SYMBOL(dev_set_group);
6066 
6067 /**
6068  *	dev_set_mac_address - Change Media Access Control Address
6069  *	@dev: device
6070  *	@sa: new address
6071  *
6072  *	Change the hardware (MAC) address of the device
6073  */
6074 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6075 {
6076 	const struct net_device_ops *ops = dev->netdev_ops;
6077 	int err;
6078 
6079 	if (!ops->ndo_set_mac_address)
6080 		return -EOPNOTSUPP;
6081 	if (sa->sa_family != dev->type)
6082 		return -EINVAL;
6083 	if (!netif_device_present(dev))
6084 		return -ENODEV;
6085 	err = ops->ndo_set_mac_address(dev, sa);
6086 	if (err)
6087 		return err;
6088 	dev->addr_assign_type = NET_ADDR_SET;
6089 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6090 	add_device_randomness(dev->dev_addr, dev->addr_len);
6091 	return 0;
6092 }
6093 EXPORT_SYMBOL(dev_set_mac_address);
6094 
6095 /**
6096  *	dev_change_carrier - Change device carrier
6097  *	@dev: device
6098  *	@new_carrier: new value
6099  *
6100  *	Change device carrier
6101  */
6102 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6103 {
6104 	const struct net_device_ops *ops = dev->netdev_ops;
6105 
6106 	if (!ops->ndo_change_carrier)
6107 		return -EOPNOTSUPP;
6108 	if (!netif_device_present(dev))
6109 		return -ENODEV;
6110 	return ops->ndo_change_carrier(dev, new_carrier);
6111 }
6112 EXPORT_SYMBOL(dev_change_carrier);
6113 
6114 /**
6115  *	dev_get_phys_port_id - Get device physical port ID
6116  *	@dev: device
6117  *	@ppid: port ID
6118  *
6119  *	Get device physical port ID
6120  */
6121 int dev_get_phys_port_id(struct net_device *dev,
6122 			 struct netdev_phys_item_id *ppid)
6123 {
6124 	const struct net_device_ops *ops = dev->netdev_ops;
6125 
6126 	if (!ops->ndo_get_phys_port_id)
6127 		return -EOPNOTSUPP;
6128 	return ops->ndo_get_phys_port_id(dev, ppid);
6129 }
6130 EXPORT_SYMBOL(dev_get_phys_port_id);
6131 
6132 /**
6133  *	dev_get_phys_port_name - Get device physical port name
6134  *	@dev: device
6135  *	@name: port name
6136  *
6137  *	Get device physical port name
6138  */
6139 int dev_get_phys_port_name(struct net_device *dev,
6140 			   char *name, size_t len)
6141 {
6142 	const struct net_device_ops *ops = dev->netdev_ops;
6143 
6144 	if (!ops->ndo_get_phys_port_name)
6145 		return -EOPNOTSUPP;
6146 	return ops->ndo_get_phys_port_name(dev, name, len);
6147 }
6148 EXPORT_SYMBOL(dev_get_phys_port_name);
6149 
6150 /**
6151  *	dev_change_proto_down - update protocol port state information
6152  *	@dev: device
6153  *	@proto_down: new value
6154  *
6155  *	This info can be used by switch drivers to set the phys state of the
6156  *	port.
6157  */
6158 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6159 {
6160 	const struct net_device_ops *ops = dev->netdev_ops;
6161 
6162 	if (!ops->ndo_change_proto_down)
6163 		return -EOPNOTSUPP;
6164 	if (!netif_device_present(dev))
6165 		return -ENODEV;
6166 	return ops->ndo_change_proto_down(dev, proto_down);
6167 }
6168 EXPORT_SYMBOL(dev_change_proto_down);
6169 
6170 /**
6171  *	dev_new_index	-	allocate an ifindex
6172  *	@net: the applicable net namespace
6173  *
6174  *	Returns a suitable unique value for a new device interface
6175  *	number.  The caller must hold the rtnl semaphore or the
6176  *	dev_base_lock to be sure it remains unique.
6177  */
6178 static int dev_new_index(struct net *net)
6179 {
6180 	int ifindex = net->ifindex;
6181 	for (;;) {
6182 		if (++ifindex <= 0)
6183 			ifindex = 1;
6184 		if (!__dev_get_by_index(net, ifindex))
6185 			return net->ifindex = ifindex;
6186 	}
6187 }
6188 
6189 /* Delayed registration/unregisteration */
6190 static LIST_HEAD(net_todo_list);
6191 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6192 
6193 static void net_set_todo(struct net_device *dev)
6194 {
6195 	list_add_tail(&dev->todo_list, &net_todo_list);
6196 	dev_net(dev)->dev_unreg_count++;
6197 }
6198 
6199 static void rollback_registered_many(struct list_head *head)
6200 {
6201 	struct net_device *dev, *tmp;
6202 	LIST_HEAD(close_head);
6203 
6204 	BUG_ON(dev_boot_phase);
6205 	ASSERT_RTNL();
6206 
6207 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6208 		/* Some devices call without registering
6209 		 * for initialization unwind. Remove those
6210 		 * devices and proceed with the remaining.
6211 		 */
6212 		if (dev->reg_state == NETREG_UNINITIALIZED) {
6213 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6214 				 dev->name, dev);
6215 
6216 			WARN_ON(1);
6217 			list_del(&dev->unreg_list);
6218 			continue;
6219 		}
6220 		dev->dismantle = true;
6221 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
6222 	}
6223 
6224 	/* If device is running, close it first. */
6225 	list_for_each_entry(dev, head, unreg_list)
6226 		list_add_tail(&dev->close_list, &close_head);
6227 	dev_close_many(&close_head, true);
6228 
6229 	list_for_each_entry(dev, head, unreg_list) {
6230 		/* And unlink it from device chain. */
6231 		unlist_netdevice(dev);
6232 
6233 		dev->reg_state = NETREG_UNREGISTERING;
6234 		on_each_cpu(flush_backlog, dev, 1);
6235 	}
6236 
6237 	synchronize_net();
6238 
6239 	list_for_each_entry(dev, head, unreg_list) {
6240 		struct sk_buff *skb = NULL;
6241 
6242 		/* Shutdown queueing discipline. */
6243 		dev_shutdown(dev);
6244 
6245 
6246 		/* Notify protocols, that we are about to destroy
6247 		   this device. They should clean all the things.
6248 		*/
6249 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6250 
6251 		if (!dev->rtnl_link_ops ||
6252 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6253 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6254 						     GFP_KERNEL);
6255 
6256 		/*
6257 		 *	Flush the unicast and multicast chains
6258 		 */
6259 		dev_uc_flush(dev);
6260 		dev_mc_flush(dev);
6261 
6262 		if (dev->netdev_ops->ndo_uninit)
6263 			dev->netdev_ops->ndo_uninit(dev);
6264 
6265 		if (skb)
6266 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6267 
6268 		/* Notifier chain MUST detach us all upper devices. */
6269 		WARN_ON(netdev_has_any_upper_dev(dev));
6270 
6271 		/* Remove entries from kobject tree */
6272 		netdev_unregister_kobject(dev);
6273 #ifdef CONFIG_XPS
6274 		/* Remove XPS queueing entries */
6275 		netif_reset_xps_queues_gt(dev, 0);
6276 #endif
6277 	}
6278 
6279 	synchronize_net();
6280 
6281 	list_for_each_entry(dev, head, unreg_list)
6282 		dev_put(dev);
6283 }
6284 
6285 static void rollback_registered(struct net_device *dev)
6286 {
6287 	LIST_HEAD(single);
6288 
6289 	list_add(&dev->unreg_list, &single);
6290 	rollback_registered_many(&single);
6291 	list_del(&single);
6292 }
6293 
6294 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6295 	struct net_device *upper, netdev_features_t features)
6296 {
6297 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6298 	netdev_features_t feature;
6299 	int feature_bit;
6300 
6301 	for_each_netdev_feature(&upper_disables, feature_bit) {
6302 		feature = __NETIF_F_BIT(feature_bit);
6303 		if (!(upper->wanted_features & feature)
6304 		    && (features & feature)) {
6305 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6306 				   &feature, upper->name);
6307 			features &= ~feature;
6308 		}
6309 	}
6310 
6311 	return features;
6312 }
6313 
6314 static void netdev_sync_lower_features(struct net_device *upper,
6315 	struct net_device *lower, netdev_features_t features)
6316 {
6317 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6318 	netdev_features_t feature;
6319 	int feature_bit;
6320 
6321 	for_each_netdev_feature(&upper_disables, feature_bit) {
6322 		feature = __NETIF_F_BIT(feature_bit);
6323 		if (!(features & feature) && (lower->features & feature)) {
6324 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6325 				   &feature, lower->name);
6326 			lower->wanted_features &= ~feature;
6327 			netdev_update_features(lower);
6328 
6329 			if (unlikely(lower->features & feature))
6330 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6331 					    &feature, lower->name);
6332 		}
6333 	}
6334 }
6335 
6336 static netdev_features_t netdev_fix_features(struct net_device *dev,
6337 	netdev_features_t features)
6338 {
6339 	/* Fix illegal checksum combinations */
6340 	if ((features & NETIF_F_HW_CSUM) &&
6341 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6342 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6343 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6344 	}
6345 
6346 	/* TSO requires that SG is present as well. */
6347 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6348 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6349 		features &= ~NETIF_F_ALL_TSO;
6350 	}
6351 
6352 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6353 					!(features & NETIF_F_IP_CSUM)) {
6354 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6355 		features &= ~NETIF_F_TSO;
6356 		features &= ~NETIF_F_TSO_ECN;
6357 	}
6358 
6359 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6360 					 !(features & NETIF_F_IPV6_CSUM)) {
6361 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6362 		features &= ~NETIF_F_TSO6;
6363 	}
6364 
6365 	/* TSO ECN requires that TSO is present as well. */
6366 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6367 		features &= ~NETIF_F_TSO_ECN;
6368 
6369 	/* Software GSO depends on SG. */
6370 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6371 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6372 		features &= ~NETIF_F_GSO;
6373 	}
6374 
6375 	/* UFO needs SG and checksumming */
6376 	if (features & NETIF_F_UFO) {
6377 		/* maybe split UFO into V4 and V6? */
6378 		if (!((features & NETIF_F_GEN_CSUM) ||
6379 		    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6380 			    == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6381 			netdev_dbg(dev,
6382 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
6383 			features &= ~NETIF_F_UFO;
6384 		}
6385 
6386 		if (!(features & NETIF_F_SG)) {
6387 			netdev_dbg(dev,
6388 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6389 			features &= ~NETIF_F_UFO;
6390 		}
6391 	}
6392 
6393 #ifdef CONFIG_NET_RX_BUSY_POLL
6394 	if (dev->netdev_ops->ndo_busy_poll)
6395 		features |= NETIF_F_BUSY_POLL;
6396 	else
6397 #endif
6398 		features &= ~NETIF_F_BUSY_POLL;
6399 
6400 	return features;
6401 }
6402 
6403 int __netdev_update_features(struct net_device *dev)
6404 {
6405 	struct net_device *upper, *lower;
6406 	netdev_features_t features;
6407 	struct list_head *iter;
6408 	int err = -1;
6409 
6410 	ASSERT_RTNL();
6411 
6412 	features = netdev_get_wanted_features(dev);
6413 
6414 	if (dev->netdev_ops->ndo_fix_features)
6415 		features = dev->netdev_ops->ndo_fix_features(dev, features);
6416 
6417 	/* driver might be less strict about feature dependencies */
6418 	features = netdev_fix_features(dev, features);
6419 
6420 	/* some features can't be enabled if they're off an an upper device */
6421 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
6422 		features = netdev_sync_upper_features(dev, upper, features);
6423 
6424 	if (dev->features == features)
6425 		goto sync_lower;
6426 
6427 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6428 		&dev->features, &features);
6429 
6430 	if (dev->netdev_ops->ndo_set_features)
6431 		err = dev->netdev_ops->ndo_set_features(dev, features);
6432 	else
6433 		err = 0;
6434 
6435 	if (unlikely(err < 0)) {
6436 		netdev_err(dev,
6437 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
6438 			err, &features, &dev->features);
6439 		/* return non-0 since some features might have changed and
6440 		 * it's better to fire a spurious notification than miss it
6441 		 */
6442 		return -1;
6443 	}
6444 
6445 sync_lower:
6446 	/* some features must be disabled on lower devices when disabled
6447 	 * on an upper device (think: bonding master or bridge)
6448 	 */
6449 	netdev_for_each_lower_dev(dev, lower, iter)
6450 		netdev_sync_lower_features(dev, lower, features);
6451 
6452 	if (!err)
6453 		dev->features = features;
6454 
6455 	return err < 0 ? 0 : 1;
6456 }
6457 
6458 /**
6459  *	netdev_update_features - recalculate device features
6460  *	@dev: the device to check
6461  *
6462  *	Recalculate dev->features set and send notifications if it
6463  *	has changed. Should be called after driver or hardware dependent
6464  *	conditions might have changed that influence the features.
6465  */
6466 void netdev_update_features(struct net_device *dev)
6467 {
6468 	if (__netdev_update_features(dev))
6469 		netdev_features_change(dev);
6470 }
6471 EXPORT_SYMBOL(netdev_update_features);
6472 
6473 /**
6474  *	netdev_change_features - recalculate device features
6475  *	@dev: the device to check
6476  *
6477  *	Recalculate dev->features set and send notifications even
6478  *	if they have not changed. Should be called instead of
6479  *	netdev_update_features() if also dev->vlan_features might
6480  *	have changed to allow the changes to be propagated to stacked
6481  *	VLAN devices.
6482  */
6483 void netdev_change_features(struct net_device *dev)
6484 {
6485 	__netdev_update_features(dev);
6486 	netdev_features_change(dev);
6487 }
6488 EXPORT_SYMBOL(netdev_change_features);
6489 
6490 /**
6491  *	netif_stacked_transfer_operstate -	transfer operstate
6492  *	@rootdev: the root or lower level device to transfer state from
6493  *	@dev: the device to transfer operstate to
6494  *
6495  *	Transfer operational state from root to device. This is normally
6496  *	called when a stacking relationship exists between the root
6497  *	device and the device(a leaf device).
6498  */
6499 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6500 					struct net_device *dev)
6501 {
6502 	if (rootdev->operstate == IF_OPER_DORMANT)
6503 		netif_dormant_on(dev);
6504 	else
6505 		netif_dormant_off(dev);
6506 
6507 	if (netif_carrier_ok(rootdev)) {
6508 		if (!netif_carrier_ok(dev))
6509 			netif_carrier_on(dev);
6510 	} else {
6511 		if (netif_carrier_ok(dev))
6512 			netif_carrier_off(dev);
6513 	}
6514 }
6515 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6516 
6517 #ifdef CONFIG_SYSFS
6518 static int netif_alloc_rx_queues(struct net_device *dev)
6519 {
6520 	unsigned int i, count = dev->num_rx_queues;
6521 	struct netdev_rx_queue *rx;
6522 	size_t sz = count * sizeof(*rx);
6523 
6524 	BUG_ON(count < 1);
6525 
6526 	rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6527 	if (!rx) {
6528 		rx = vzalloc(sz);
6529 		if (!rx)
6530 			return -ENOMEM;
6531 	}
6532 	dev->_rx = rx;
6533 
6534 	for (i = 0; i < count; i++)
6535 		rx[i].dev = dev;
6536 	return 0;
6537 }
6538 #endif
6539 
6540 static void netdev_init_one_queue(struct net_device *dev,
6541 				  struct netdev_queue *queue, void *_unused)
6542 {
6543 	/* Initialize queue lock */
6544 	spin_lock_init(&queue->_xmit_lock);
6545 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6546 	queue->xmit_lock_owner = -1;
6547 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6548 	queue->dev = dev;
6549 #ifdef CONFIG_BQL
6550 	dql_init(&queue->dql, HZ);
6551 #endif
6552 }
6553 
6554 static void netif_free_tx_queues(struct net_device *dev)
6555 {
6556 	kvfree(dev->_tx);
6557 }
6558 
6559 static int netif_alloc_netdev_queues(struct net_device *dev)
6560 {
6561 	unsigned int count = dev->num_tx_queues;
6562 	struct netdev_queue *tx;
6563 	size_t sz = count * sizeof(*tx);
6564 
6565 	if (count < 1 || count > 0xffff)
6566 		return -EINVAL;
6567 
6568 	tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6569 	if (!tx) {
6570 		tx = vzalloc(sz);
6571 		if (!tx)
6572 			return -ENOMEM;
6573 	}
6574 	dev->_tx = tx;
6575 
6576 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6577 	spin_lock_init(&dev->tx_global_lock);
6578 
6579 	return 0;
6580 }
6581 
6582 void netif_tx_stop_all_queues(struct net_device *dev)
6583 {
6584 	unsigned int i;
6585 
6586 	for (i = 0; i < dev->num_tx_queues; i++) {
6587 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6588 		netif_tx_stop_queue(txq);
6589 	}
6590 }
6591 EXPORT_SYMBOL(netif_tx_stop_all_queues);
6592 
6593 /**
6594  *	register_netdevice	- register a network device
6595  *	@dev: device to register
6596  *
6597  *	Take a completed network device structure and add it to the kernel
6598  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6599  *	chain. 0 is returned on success. A negative errno code is returned
6600  *	on a failure to set up the device, or if the name is a duplicate.
6601  *
6602  *	Callers must hold the rtnl semaphore. You may want
6603  *	register_netdev() instead of this.
6604  *
6605  *	BUGS:
6606  *	The locking appears insufficient to guarantee two parallel registers
6607  *	will not get the same name.
6608  */
6609 
6610 int register_netdevice(struct net_device *dev)
6611 {
6612 	int ret;
6613 	struct net *net = dev_net(dev);
6614 
6615 	BUG_ON(dev_boot_phase);
6616 	ASSERT_RTNL();
6617 
6618 	might_sleep();
6619 
6620 	/* When net_device's are persistent, this will be fatal. */
6621 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6622 	BUG_ON(!net);
6623 
6624 	spin_lock_init(&dev->addr_list_lock);
6625 	netdev_set_addr_lockdep_class(dev);
6626 
6627 	ret = dev_get_valid_name(net, dev, dev->name);
6628 	if (ret < 0)
6629 		goto out;
6630 
6631 	/* Init, if this function is available */
6632 	if (dev->netdev_ops->ndo_init) {
6633 		ret = dev->netdev_ops->ndo_init(dev);
6634 		if (ret) {
6635 			if (ret > 0)
6636 				ret = -EIO;
6637 			goto out;
6638 		}
6639 	}
6640 
6641 	if (((dev->hw_features | dev->features) &
6642 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
6643 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6644 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6645 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6646 		ret = -EINVAL;
6647 		goto err_uninit;
6648 	}
6649 
6650 	ret = -EBUSY;
6651 	if (!dev->ifindex)
6652 		dev->ifindex = dev_new_index(net);
6653 	else if (__dev_get_by_index(net, dev->ifindex))
6654 		goto err_uninit;
6655 
6656 	/* Transfer changeable features to wanted_features and enable
6657 	 * software offloads (GSO and GRO).
6658 	 */
6659 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
6660 	dev->features |= NETIF_F_SOFT_FEATURES;
6661 	dev->wanted_features = dev->features & dev->hw_features;
6662 
6663 	if (!(dev->flags & IFF_LOOPBACK)) {
6664 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
6665 	}
6666 
6667 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6668 	 */
6669 	dev->vlan_features |= NETIF_F_HIGHDMA;
6670 
6671 	/* Make NETIF_F_SG inheritable to tunnel devices.
6672 	 */
6673 	dev->hw_enc_features |= NETIF_F_SG;
6674 
6675 	/* Make NETIF_F_SG inheritable to MPLS.
6676 	 */
6677 	dev->mpls_features |= NETIF_F_SG;
6678 
6679 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6680 	ret = notifier_to_errno(ret);
6681 	if (ret)
6682 		goto err_uninit;
6683 
6684 	ret = netdev_register_kobject(dev);
6685 	if (ret)
6686 		goto err_uninit;
6687 	dev->reg_state = NETREG_REGISTERED;
6688 
6689 	__netdev_update_features(dev);
6690 
6691 	/*
6692 	 *	Default initial state at registry is that the
6693 	 *	device is present.
6694 	 */
6695 
6696 	set_bit(__LINK_STATE_PRESENT, &dev->state);
6697 
6698 	linkwatch_init_dev(dev);
6699 
6700 	dev_init_scheduler(dev);
6701 	dev_hold(dev);
6702 	list_netdevice(dev);
6703 	add_device_randomness(dev->dev_addr, dev->addr_len);
6704 
6705 	/* If the device has permanent device address, driver should
6706 	 * set dev_addr and also addr_assign_type should be set to
6707 	 * NET_ADDR_PERM (default value).
6708 	 */
6709 	if (dev->addr_assign_type == NET_ADDR_PERM)
6710 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6711 
6712 	/* Notify protocols, that a new device appeared. */
6713 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6714 	ret = notifier_to_errno(ret);
6715 	if (ret) {
6716 		rollback_registered(dev);
6717 		dev->reg_state = NETREG_UNREGISTERED;
6718 	}
6719 	/*
6720 	 *	Prevent userspace races by waiting until the network
6721 	 *	device is fully setup before sending notifications.
6722 	 */
6723 	if (!dev->rtnl_link_ops ||
6724 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6725 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6726 
6727 out:
6728 	return ret;
6729 
6730 err_uninit:
6731 	if (dev->netdev_ops->ndo_uninit)
6732 		dev->netdev_ops->ndo_uninit(dev);
6733 	goto out;
6734 }
6735 EXPORT_SYMBOL(register_netdevice);
6736 
6737 /**
6738  *	init_dummy_netdev	- init a dummy network device for NAPI
6739  *	@dev: device to init
6740  *
6741  *	This takes a network device structure and initialize the minimum
6742  *	amount of fields so it can be used to schedule NAPI polls without
6743  *	registering a full blown interface. This is to be used by drivers
6744  *	that need to tie several hardware interfaces to a single NAPI
6745  *	poll scheduler due to HW limitations.
6746  */
6747 int init_dummy_netdev(struct net_device *dev)
6748 {
6749 	/* Clear everything. Note we don't initialize spinlocks
6750 	 * are they aren't supposed to be taken by any of the
6751 	 * NAPI code and this dummy netdev is supposed to be
6752 	 * only ever used for NAPI polls
6753 	 */
6754 	memset(dev, 0, sizeof(struct net_device));
6755 
6756 	/* make sure we BUG if trying to hit standard
6757 	 * register/unregister code path
6758 	 */
6759 	dev->reg_state = NETREG_DUMMY;
6760 
6761 	/* NAPI wants this */
6762 	INIT_LIST_HEAD(&dev->napi_list);
6763 
6764 	/* a dummy interface is started by default */
6765 	set_bit(__LINK_STATE_PRESENT, &dev->state);
6766 	set_bit(__LINK_STATE_START, &dev->state);
6767 
6768 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
6769 	 * because users of this 'device' dont need to change
6770 	 * its refcount.
6771 	 */
6772 
6773 	return 0;
6774 }
6775 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6776 
6777 
6778 /**
6779  *	register_netdev	- register a network device
6780  *	@dev: device to register
6781  *
6782  *	Take a completed network device structure and add it to the kernel
6783  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6784  *	chain. 0 is returned on success. A negative errno code is returned
6785  *	on a failure to set up the device, or if the name is a duplicate.
6786  *
6787  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
6788  *	and expands the device name if you passed a format string to
6789  *	alloc_netdev.
6790  */
6791 int register_netdev(struct net_device *dev)
6792 {
6793 	int err;
6794 
6795 	rtnl_lock();
6796 	err = register_netdevice(dev);
6797 	rtnl_unlock();
6798 	return err;
6799 }
6800 EXPORT_SYMBOL(register_netdev);
6801 
6802 int netdev_refcnt_read(const struct net_device *dev)
6803 {
6804 	int i, refcnt = 0;
6805 
6806 	for_each_possible_cpu(i)
6807 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6808 	return refcnt;
6809 }
6810 EXPORT_SYMBOL(netdev_refcnt_read);
6811 
6812 /**
6813  * netdev_wait_allrefs - wait until all references are gone.
6814  * @dev: target net_device
6815  *
6816  * This is called when unregistering network devices.
6817  *
6818  * Any protocol or device that holds a reference should register
6819  * for netdevice notification, and cleanup and put back the
6820  * reference if they receive an UNREGISTER event.
6821  * We can get stuck here if buggy protocols don't correctly
6822  * call dev_put.
6823  */
6824 static void netdev_wait_allrefs(struct net_device *dev)
6825 {
6826 	unsigned long rebroadcast_time, warning_time;
6827 	int refcnt;
6828 
6829 	linkwatch_forget_dev(dev);
6830 
6831 	rebroadcast_time = warning_time = jiffies;
6832 	refcnt = netdev_refcnt_read(dev);
6833 
6834 	while (refcnt != 0) {
6835 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6836 			rtnl_lock();
6837 
6838 			/* Rebroadcast unregister notification */
6839 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6840 
6841 			__rtnl_unlock();
6842 			rcu_barrier();
6843 			rtnl_lock();
6844 
6845 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6846 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6847 				     &dev->state)) {
6848 				/* We must not have linkwatch events
6849 				 * pending on unregister. If this
6850 				 * happens, we simply run the queue
6851 				 * unscheduled, resulting in a noop
6852 				 * for this device.
6853 				 */
6854 				linkwatch_run_queue();
6855 			}
6856 
6857 			__rtnl_unlock();
6858 
6859 			rebroadcast_time = jiffies;
6860 		}
6861 
6862 		msleep(250);
6863 
6864 		refcnt = netdev_refcnt_read(dev);
6865 
6866 		if (time_after(jiffies, warning_time + 10 * HZ)) {
6867 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6868 				 dev->name, refcnt);
6869 			warning_time = jiffies;
6870 		}
6871 	}
6872 }
6873 
6874 /* The sequence is:
6875  *
6876  *	rtnl_lock();
6877  *	...
6878  *	register_netdevice(x1);
6879  *	register_netdevice(x2);
6880  *	...
6881  *	unregister_netdevice(y1);
6882  *	unregister_netdevice(y2);
6883  *      ...
6884  *	rtnl_unlock();
6885  *	free_netdev(y1);
6886  *	free_netdev(y2);
6887  *
6888  * We are invoked by rtnl_unlock().
6889  * This allows us to deal with problems:
6890  * 1) We can delete sysfs objects which invoke hotplug
6891  *    without deadlocking with linkwatch via keventd.
6892  * 2) Since we run with the RTNL semaphore not held, we can sleep
6893  *    safely in order to wait for the netdev refcnt to drop to zero.
6894  *
6895  * We must not return until all unregister events added during
6896  * the interval the lock was held have been completed.
6897  */
6898 void netdev_run_todo(void)
6899 {
6900 	struct list_head list;
6901 
6902 	/* Snapshot list, allow later requests */
6903 	list_replace_init(&net_todo_list, &list);
6904 
6905 	__rtnl_unlock();
6906 
6907 
6908 	/* Wait for rcu callbacks to finish before next phase */
6909 	if (!list_empty(&list))
6910 		rcu_barrier();
6911 
6912 	while (!list_empty(&list)) {
6913 		struct net_device *dev
6914 			= list_first_entry(&list, struct net_device, todo_list);
6915 		list_del(&dev->todo_list);
6916 
6917 		rtnl_lock();
6918 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6919 		__rtnl_unlock();
6920 
6921 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6922 			pr_err("network todo '%s' but state %d\n",
6923 			       dev->name, dev->reg_state);
6924 			dump_stack();
6925 			continue;
6926 		}
6927 
6928 		dev->reg_state = NETREG_UNREGISTERED;
6929 
6930 		netdev_wait_allrefs(dev);
6931 
6932 		/* paranoia */
6933 		BUG_ON(netdev_refcnt_read(dev));
6934 		BUG_ON(!list_empty(&dev->ptype_all));
6935 		BUG_ON(!list_empty(&dev->ptype_specific));
6936 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
6937 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6938 		WARN_ON(dev->dn_ptr);
6939 
6940 		if (dev->destructor)
6941 			dev->destructor(dev);
6942 
6943 		/* Report a network device has been unregistered */
6944 		rtnl_lock();
6945 		dev_net(dev)->dev_unreg_count--;
6946 		__rtnl_unlock();
6947 		wake_up(&netdev_unregistering_wq);
6948 
6949 		/* Free network device */
6950 		kobject_put(&dev->dev.kobj);
6951 	}
6952 }
6953 
6954 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
6955  * fields in the same order, with only the type differing.
6956  */
6957 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6958 			     const struct net_device_stats *netdev_stats)
6959 {
6960 #if BITS_PER_LONG == 64
6961 	BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6962 	memcpy(stats64, netdev_stats, sizeof(*stats64));
6963 #else
6964 	size_t i, n = sizeof(*stats64) / sizeof(u64);
6965 	const unsigned long *src = (const unsigned long *)netdev_stats;
6966 	u64 *dst = (u64 *)stats64;
6967 
6968 	BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6969 		     sizeof(*stats64) / sizeof(u64));
6970 	for (i = 0; i < n; i++)
6971 		dst[i] = src[i];
6972 #endif
6973 }
6974 EXPORT_SYMBOL(netdev_stats_to_stats64);
6975 
6976 /**
6977  *	dev_get_stats	- get network device statistics
6978  *	@dev: device to get statistics from
6979  *	@storage: place to store stats
6980  *
6981  *	Get network statistics from device. Return @storage.
6982  *	The device driver may provide its own method by setting
6983  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6984  *	otherwise the internal statistics structure is used.
6985  */
6986 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6987 					struct rtnl_link_stats64 *storage)
6988 {
6989 	const struct net_device_ops *ops = dev->netdev_ops;
6990 
6991 	if (ops->ndo_get_stats64) {
6992 		memset(storage, 0, sizeof(*storage));
6993 		ops->ndo_get_stats64(dev, storage);
6994 	} else if (ops->ndo_get_stats) {
6995 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6996 	} else {
6997 		netdev_stats_to_stats64(storage, &dev->stats);
6998 	}
6999 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7000 	storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7001 	return storage;
7002 }
7003 EXPORT_SYMBOL(dev_get_stats);
7004 
7005 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7006 {
7007 	struct netdev_queue *queue = dev_ingress_queue(dev);
7008 
7009 #ifdef CONFIG_NET_CLS_ACT
7010 	if (queue)
7011 		return queue;
7012 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7013 	if (!queue)
7014 		return NULL;
7015 	netdev_init_one_queue(dev, queue, NULL);
7016 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7017 	queue->qdisc_sleeping = &noop_qdisc;
7018 	rcu_assign_pointer(dev->ingress_queue, queue);
7019 #endif
7020 	return queue;
7021 }
7022 
7023 static const struct ethtool_ops default_ethtool_ops;
7024 
7025 void netdev_set_default_ethtool_ops(struct net_device *dev,
7026 				    const struct ethtool_ops *ops)
7027 {
7028 	if (dev->ethtool_ops == &default_ethtool_ops)
7029 		dev->ethtool_ops = ops;
7030 }
7031 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7032 
7033 void netdev_freemem(struct net_device *dev)
7034 {
7035 	char *addr = (char *)dev - dev->padded;
7036 
7037 	kvfree(addr);
7038 }
7039 
7040 /**
7041  *	alloc_netdev_mqs - allocate network device
7042  *	@sizeof_priv:		size of private data to allocate space for
7043  *	@name:			device name format string
7044  *	@name_assign_type: 	origin of device name
7045  *	@setup:			callback to initialize device
7046  *	@txqs:			the number of TX subqueues to allocate
7047  *	@rxqs:			the number of RX subqueues to allocate
7048  *
7049  *	Allocates a struct net_device with private data area for driver use
7050  *	and performs basic initialization.  Also allocates subqueue structs
7051  *	for each queue on the device.
7052  */
7053 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7054 		unsigned char name_assign_type,
7055 		void (*setup)(struct net_device *),
7056 		unsigned int txqs, unsigned int rxqs)
7057 {
7058 	struct net_device *dev;
7059 	size_t alloc_size;
7060 	struct net_device *p;
7061 
7062 	BUG_ON(strlen(name) >= sizeof(dev->name));
7063 
7064 	if (txqs < 1) {
7065 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7066 		return NULL;
7067 	}
7068 
7069 #ifdef CONFIG_SYSFS
7070 	if (rxqs < 1) {
7071 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7072 		return NULL;
7073 	}
7074 #endif
7075 
7076 	alloc_size = sizeof(struct net_device);
7077 	if (sizeof_priv) {
7078 		/* ensure 32-byte alignment of private area */
7079 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7080 		alloc_size += sizeof_priv;
7081 	}
7082 	/* ensure 32-byte alignment of whole construct */
7083 	alloc_size += NETDEV_ALIGN - 1;
7084 
7085 	p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7086 	if (!p)
7087 		p = vzalloc(alloc_size);
7088 	if (!p)
7089 		return NULL;
7090 
7091 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
7092 	dev->padded = (char *)dev - (char *)p;
7093 
7094 	dev->pcpu_refcnt = alloc_percpu(int);
7095 	if (!dev->pcpu_refcnt)
7096 		goto free_dev;
7097 
7098 	if (dev_addr_init(dev))
7099 		goto free_pcpu;
7100 
7101 	dev_mc_init(dev);
7102 	dev_uc_init(dev);
7103 
7104 	dev_net_set(dev, &init_net);
7105 
7106 	dev->gso_max_size = GSO_MAX_SIZE;
7107 	dev->gso_max_segs = GSO_MAX_SEGS;
7108 	dev->gso_min_segs = 0;
7109 
7110 	INIT_LIST_HEAD(&dev->napi_list);
7111 	INIT_LIST_HEAD(&dev->unreg_list);
7112 	INIT_LIST_HEAD(&dev->close_list);
7113 	INIT_LIST_HEAD(&dev->link_watch_list);
7114 	INIT_LIST_HEAD(&dev->adj_list.upper);
7115 	INIT_LIST_HEAD(&dev->adj_list.lower);
7116 	INIT_LIST_HEAD(&dev->all_adj_list.upper);
7117 	INIT_LIST_HEAD(&dev->all_adj_list.lower);
7118 	INIT_LIST_HEAD(&dev->ptype_all);
7119 	INIT_LIST_HEAD(&dev->ptype_specific);
7120 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7121 	setup(dev);
7122 
7123 	if (!dev->tx_queue_len)
7124 		dev->priv_flags |= IFF_NO_QUEUE;
7125 
7126 	dev->num_tx_queues = txqs;
7127 	dev->real_num_tx_queues = txqs;
7128 	if (netif_alloc_netdev_queues(dev))
7129 		goto free_all;
7130 
7131 #ifdef CONFIG_SYSFS
7132 	dev->num_rx_queues = rxqs;
7133 	dev->real_num_rx_queues = rxqs;
7134 	if (netif_alloc_rx_queues(dev))
7135 		goto free_all;
7136 #endif
7137 
7138 	strcpy(dev->name, name);
7139 	dev->name_assign_type = name_assign_type;
7140 	dev->group = INIT_NETDEV_GROUP;
7141 	if (!dev->ethtool_ops)
7142 		dev->ethtool_ops = &default_ethtool_ops;
7143 
7144 	nf_hook_ingress_init(dev);
7145 
7146 	return dev;
7147 
7148 free_all:
7149 	free_netdev(dev);
7150 	return NULL;
7151 
7152 free_pcpu:
7153 	free_percpu(dev->pcpu_refcnt);
7154 free_dev:
7155 	netdev_freemem(dev);
7156 	return NULL;
7157 }
7158 EXPORT_SYMBOL(alloc_netdev_mqs);
7159 
7160 /**
7161  *	free_netdev - free network device
7162  *	@dev: device
7163  *
7164  *	This function does the last stage of destroying an allocated device
7165  * 	interface. The reference to the device object is released.
7166  *	If this is the last reference then it will be freed.
7167  */
7168 void free_netdev(struct net_device *dev)
7169 {
7170 	struct napi_struct *p, *n;
7171 
7172 	netif_free_tx_queues(dev);
7173 #ifdef CONFIG_SYSFS
7174 	kvfree(dev->_rx);
7175 #endif
7176 
7177 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7178 
7179 	/* Flush device addresses */
7180 	dev_addr_flush(dev);
7181 
7182 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7183 		netif_napi_del(p);
7184 
7185 	free_percpu(dev->pcpu_refcnt);
7186 	dev->pcpu_refcnt = NULL;
7187 
7188 	/*  Compatibility with error handling in drivers */
7189 	if (dev->reg_state == NETREG_UNINITIALIZED) {
7190 		netdev_freemem(dev);
7191 		return;
7192 	}
7193 
7194 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7195 	dev->reg_state = NETREG_RELEASED;
7196 
7197 	/* will free via device release */
7198 	put_device(&dev->dev);
7199 }
7200 EXPORT_SYMBOL(free_netdev);
7201 
7202 /**
7203  *	synchronize_net -  Synchronize with packet receive processing
7204  *
7205  *	Wait for packets currently being received to be done.
7206  *	Does not block later packets from starting.
7207  */
7208 void synchronize_net(void)
7209 {
7210 	might_sleep();
7211 	if (rtnl_is_locked())
7212 		synchronize_rcu_expedited();
7213 	else
7214 		synchronize_rcu();
7215 }
7216 EXPORT_SYMBOL(synchronize_net);
7217 
7218 /**
7219  *	unregister_netdevice_queue - remove device from the kernel
7220  *	@dev: device
7221  *	@head: list
7222  *
7223  *	This function shuts down a device interface and removes it
7224  *	from the kernel tables.
7225  *	If head not NULL, device is queued to be unregistered later.
7226  *
7227  *	Callers must hold the rtnl semaphore.  You may want
7228  *	unregister_netdev() instead of this.
7229  */
7230 
7231 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7232 {
7233 	ASSERT_RTNL();
7234 
7235 	if (head) {
7236 		list_move_tail(&dev->unreg_list, head);
7237 	} else {
7238 		rollback_registered(dev);
7239 		/* Finish processing unregister after unlock */
7240 		net_set_todo(dev);
7241 	}
7242 }
7243 EXPORT_SYMBOL(unregister_netdevice_queue);
7244 
7245 /**
7246  *	unregister_netdevice_many - unregister many devices
7247  *	@head: list of devices
7248  *
7249  *  Note: As most callers use a stack allocated list_head,
7250  *  we force a list_del() to make sure stack wont be corrupted later.
7251  */
7252 void unregister_netdevice_many(struct list_head *head)
7253 {
7254 	struct net_device *dev;
7255 
7256 	if (!list_empty(head)) {
7257 		rollback_registered_many(head);
7258 		list_for_each_entry(dev, head, unreg_list)
7259 			net_set_todo(dev);
7260 		list_del(head);
7261 	}
7262 }
7263 EXPORT_SYMBOL(unregister_netdevice_many);
7264 
7265 /**
7266  *	unregister_netdev - remove device from the kernel
7267  *	@dev: device
7268  *
7269  *	This function shuts down a device interface and removes it
7270  *	from the kernel tables.
7271  *
7272  *	This is just a wrapper for unregister_netdevice that takes
7273  *	the rtnl semaphore.  In general you want to use this and not
7274  *	unregister_netdevice.
7275  */
7276 void unregister_netdev(struct net_device *dev)
7277 {
7278 	rtnl_lock();
7279 	unregister_netdevice(dev);
7280 	rtnl_unlock();
7281 }
7282 EXPORT_SYMBOL(unregister_netdev);
7283 
7284 /**
7285  *	dev_change_net_namespace - move device to different nethost namespace
7286  *	@dev: device
7287  *	@net: network namespace
7288  *	@pat: If not NULL name pattern to try if the current device name
7289  *	      is already taken in the destination network namespace.
7290  *
7291  *	This function shuts down a device interface and moves it
7292  *	to a new network namespace. On success 0 is returned, on
7293  *	a failure a netagive errno code is returned.
7294  *
7295  *	Callers must hold the rtnl semaphore.
7296  */
7297 
7298 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7299 {
7300 	int err;
7301 
7302 	ASSERT_RTNL();
7303 
7304 	/* Don't allow namespace local devices to be moved. */
7305 	err = -EINVAL;
7306 	if (dev->features & NETIF_F_NETNS_LOCAL)
7307 		goto out;
7308 
7309 	/* Ensure the device has been registrered */
7310 	if (dev->reg_state != NETREG_REGISTERED)
7311 		goto out;
7312 
7313 	/* Get out if there is nothing todo */
7314 	err = 0;
7315 	if (net_eq(dev_net(dev), net))
7316 		goto out;
7317 
7318 	/* Pick the destination device name, and ensure
7319 	 * we can use it in the destination network namespace.
7320 	 */
7321 	err = -EEXIST;
7322 	if (__dev_get_by_name(net, dev->name)) {
7323 		/* We get here if we can't use the current device name */
7324 		if (!pat)
7325 			goto out;
7326 		if (dev_get_valid_name(net, dev, pat) < 0)
7327 			goto out;
7328 	}
7329 
7330 	/*
7331 	 * And now a mini version of register_netdevice unregister_netdevice.
7332 	 */
7333 
7334 	/* If device is running close it first. */
7335 	dev_close(dev);
7336 
7337 	/* And unlink it from device chain */
7338 	err = -ENODEV;
7339 	unlist_netdevice(dev);
7340 
7341 	synchronize_net();
7342 
7343 	/* Shutdown queueing discipline. */
7344 	dev_shutdown(dev);
7345 
7346 	/* Notify protocols, that we are about to destroy
7347 	   this device. They should clean all the things.
7348 
7349 	   Note that dev->reg_state stays at NETREG_REGISTERED.
7350 	   This is wanted because this way 8021q and macvlan know
7351 	   the device is just moving and can keep their slaves up.
7352 	*/
7353 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7354 	rcu_barrier();
7355 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7356 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7357 
7358 	/*
7359 	 *	Flush the unicast and multicast chains
7360 	 */
7361 	dev_uc_flush(dev);
7362 	dev_mc_flush(dev);
7363 
7364 	/* Send a netdev-removed uevent to the old namespace */
7365 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7366 	netdev_adjacent_del_links(dev);
7367 
7368 	/* Actually switch the network namespace */
7369 	dev_net_set(dev, net);
7370 
7371 	/* If there is an ifindex conflict assign a new one */
7372 	if (__dev_get_by_index(net, dev->ifindex))
7373 		dev->ifindex = dev_new_index(net);
7374 
7375 	/* Send a netdev-add uevent to the new namespace */
7376 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7377 	netdev_adjacent_add_links(dev);
7378 
7379 	/* Fixup kobjects */
7380 	err = device_rename(&dev->dev, dev->name);
7381 	WARN_ON(err);
7382 
7383 	/* Add the device back in the hashes */
7384 	list_netdevice(dev);
7385 
7386 	/* Notify protocols, that a new device appeared. */
7387 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
7388 
7389 	/*
7390 	 *	Prevent userspace races by waiting until the network
7391 	 *	device is fully setup before sending notifications.
7392 	 */
7393 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7394 
7395 	synchronize_net();
7396 	err = 0;
7397 out:
7398 	return err;
7399 }
7400 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7401 
7402 static int dev_cpu_callback(struct notifier_block *nfb,
7403 			    unsigned long action,
7404 			    void *ocpu)
7405 {
7406 	struct sk_buff **list_skb;
7407 	struct sk_buff *skb;
7408 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
7409 	struct softnet_data *sd, *oldsd;
7410 
7411 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7412 		return NOTIFY_OK;
7413 
7414 	local_irq_disable();
7415 	cpu = smp_processor_id();
7416 	sd = &per_cpu(softnet_data, cpu);
7417 	oldsd = &per_cpu(softnet_data, oldcpu);
7418 
7419 	/* Find end of our completion_queue. */
7420 	list_skb = &sd->completion_queue;
7421 	while (*list_skb)
7422 		list_skb = &(*list_skb)->next;
7423 	/* Append completion queue from offline CPU. */
7424 	*list_skb = oldsd->completion_queue;
7425 	oldsd->completion_queue = NULL;
7426 
7427 	/* Append output queue from offline CPU. */
7428 	if (oldsd->output_queue) {
7429 		*sd->output_queue_tailp = oldsd->output_queue;
7430 		sd->output_queue_tailp = oldsd->output_queue_tailp;
7431 		oldsd->output_queue = NULL;
7432 		oldsd->output_queue_tailp = &oldsd->output_queue;
7433 	}
7434 	/* Append NAPI poll list from offline CPU, with one exception :
7435 	 * process_backlog() must be called by cpu owning percpu backlog.
7436 	 * We properly handle process_queue & input_pkt_queue later.
7437 	 */
7438 	while (!list_empty(&oldsd->poll_list)) {
7439 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7440 							    struct napi_struct,
7441 							    poll_list);
7442 
7443 		list_del_init(&napi->poll_list);
7444 		if (napi->poll == process_backlog)
7445 			napi->state = 0;
7446 		else
7447 			____napi_schedule(sd, napi);
7448 	}
7449 
7450 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
7451 	local_irq_enable();
7452 
7453 	/* Process offline CPU's input_pkt_queue */
7454 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7455 		netif_rx_ni(skb);
7456 		input_queue_head_incr(oldsd);
7457 	}
7458 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7459 		netif_rx_ni(skb);
7460 		input_queue_head_incr(oldsd);
7461 	}
7462 
7463 	return NOTIFY_OK;
7464 }
7465 
7466 
7467 /**
7468  *	netdev_increment_features - increment feature set by one
7469  *	@all: current feature set
7470  *	@one: new feature set
7471  *	@mask: mask feature set
7472  *
7473  *	Computes a new feature set after adding a device with feature set
7474  *	@one to the master device with current feature set @all.  Will not
7475  *	enable anything that is off in @mask. Returns the new feature set.
7476  */
7477 netdev_features_t netdev_increment_features(netdev_features_t all,
7478 	netdev_features_t one, netdev_features_t mask)
7479 {
7480 	if (mask & NETIF_F_GEN_CSUM)
7481 		mask |= NETIF_F_ALL_CSUM;
7482 	mask |= NETIF_F_VLAN_CHALLENGED;
7483 
7484 	all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7485 	all &= one | ~NETIF_F_ALL_FOR_ALL;
7486 
7487 	/* If one device supports hw checksumming, set for all. */
7488 	if (all & NETIF_F_GEN_CSUM)
7489 		all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7490 
7491 	return all;
7492 }
7493 EXPORT_SYMBOL(netdev_increment_features);
7494 
7495 static struct hlist_head * __net_init netdev_create_hash(void)
7496 {
7497 	int i;
7498 	struct hlist_head *hash;
7499 
7500 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7501 	if (hash != NULL)
7502 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
7503 			INIT_HLIST_HEAD(&hash[i]);
7504 
7505 	return hash;
7506 }
7507 
7508 /* Initialize per network namespace state */
7509 static int __net_init netdev_init(struct net *net)
7510 {
7511 	if (net != &init_net)
7512 		INIT_LIST_HEAD(&net->dev_base_head);
7513 
7514 	net->dev_name_head = netdev_create_hash();
7515 	if (net->dev_name_head == NULL)
7516 		goto err_name;
7517 
7518 	net->dev_index_head = netdev_create_hash();
7519 	if (net->dev_index_head == NULL)
7520 		goto err_idx;
7521 
7522 	return 0;
7523 
7524 err_idx:
7525 	kfree(net->dev_name_head);
7526 err_name:
7527 	return -ENOMEM;
7528 }
7529 
7530 /**
7531  *	netdev_drivername - network driver for the device
7532  *	@dev: network device
7533  *
7534  *	Determine network driver for device.
7535  */
7536 const char *netdev_drivername(const struct net_device *dev)
7537 {
7538 	const struct device_driver *driver;
7539 	const struct device *parent;
7540 	const char *empty = "";
7541 
7542 	parent = dev->dev.parent;
7543 	if (!parent)
7544 		return empty;
7545 
7546 	driver = parent->driver;
7547 	if (driver && driver->name)
7548 		return driver->name;
7549 	return empty;
7550 }
7551 
7552 static void __netdev_printk(const char *level, const struct net_device *dev,
7553 			    struct va_format *vaf)
7554 {
7555 	if (dev && dev->dev.parent) {
7556 		dev_printk_emit(level[1] - '0',
7557 				dev->dev.parent,
7558 				"%s %s %s%s: %pV",
7559 				dev_driver_string(dev->dev.parent),
7560 				dev_name(dev->dev.parent),
7561 				netdev_name(dev), netdev_reg_state(dev),
7562 				vaf);
7563 	} else if (dev) {
7564 		printk("%s%s%s: %pV",
7565 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
7566 	} else {
7567 		printk("%s(NULL net_device): %pV", level, vaf);
7568 	}
7569 }
7570 
7571 void netdev_printk(const char *level, const struct net_device *dev,
7572 		   const char *format, ...)
7573 {
7574 	struct va_format vaf;
7575 	va_list args;
7576 
7577 	va_start(args, format);
7578 
7579 	vaf.fmt = format;
7580 	vaf.va = &args;
7581 
7582 	__netdev_printk(level, dev, &vaf);
7583 
7584 	va_end(args);
7585 }
7586 EXPORT_SYMBOL(netdev_printk);
7587 
7588 #define define_netdev_printk_level(func, level)			\
7589 void func(const struct net_device *dev, const char *fmt, ...)	\
7590 {								\
7591 	struct va_format vaf;					\
7592 	va_list args;						\
7593 								\
7594 	va_start(args, fmt);					\
7595 								\
7596 	vaf.fmt = fmt;						\
7597 	vaf.va = &args;						\
7598 								\
7599 	__netdev_printk(level, dev, &vaf);			\
7600 								\
7601 	va_end(args);						\
7602 }								\
7603 EXPORT_SYMBOL(func);
7604 
7605 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7606 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7607 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7608 define_netdev_printk_level(netdev_err, KERN_ERR);
7609 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7610 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7611 define_netdev_printk_level(netdev_info, KERN_INFO);
7612 
7613 static void __net_exit netdev_exit(struct net *net)
7614 {
7615 	kfree(net->dev_name_head);
7616 	kfree(net->dev_index_head);
7617 }
7618 
7619 static struct pernet_operations __net_initdata netdev_net_ops = {
7620 	.init = netdev_init,
7621 	.exit = netdev_exit,
7622 };
7623 
7624 static void __net_exit default_device_exit(struct net *net)
7625 {
7626 	struct net_device *dev, *aux;
7627 	/*
7628 	 * Push all migratable network devices back to the
7629 	 * initial network namespace
7630 	 */
7631 	rtnl_lock();
7632 	for_each_netdev_safe(net, dev, aux) {
7633 		int err;
7634 		char fb_name[IFNAMSIZ];
7635 
7636 		/* Ignore unmoveable devices (i.e. loopback) */
7637 		if (dev->features & NETIF_F_NETNS_LOCAL)
7638 			continue;
7639 
7640 		/* Leave virtual devices for the generic cleanup */
7641 		if (dev->rtnl_link_ops)
7642 			continue;
7643 
7644 		/* Push remaining network devices to init_net */
7645 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7646 		err = dev_change_net_namespace(dev, &init_net, fb_name);
7647 		if (err) {
7648 			pr_emerg("%s: failed to move %s to init_net: %d\n",
7649 				 __func__, dev->name, err);
7650 			BUG();
7651 		}
7652 	}
7653 	rtnl_unlock();
7654 }
7655 
7656 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7657 {
7658 	/* Return with the rtnl_lock held when there are no network
7659 	 * devices unregistering in any network namespace in net_list.
7660 	 */
7661 	struct net *net;
7662 	bool unregistering;
7663 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
7664 
7665 	add_wait_queue(&netdev_unregistering_wq, &wait);
7666 	for (;;) {
7667 		unregistering = false;
7668 		rtnl_lock();
7669 		list_for_each_entry(net, net_list, exit_list) {
7670 			if (net->dev_unreg_count > 0) {
7671 				unregistering = true;
7672 				break;
7673 			}
7674 		}
7675 		if (!unregistering)
7676 			break;
7677 		__rtnl_unlock();
7678 
7679 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7680 	}
7681 	remove_wait_queue(&netdev_unregistering_wq, &wait);
7682 }
7683 
7684 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7685 {
7686 	/* At exit all network devices most be removed from a network
7687 	 * namespace.  Do this in the reverse order of registration.
7688 	 * Do this across as many network namespaces as possible to
7689 	 * improve batching efficiency.
7690 	 */
7691 	struct net_device *dev;
7692 	struct net *net;
7693 	LIST_HEAD(dev_kill_list);
7694 
7695 	/* To prevent network device cleanup code from dereferencing
7696 	 * loopback devices or network devices that have been freed
7697 	 * wait here for all pending unregistrations to complete,
7698 	 * before unregistring the loopback device and allowing the
7699 	 * network namespace be freed.
7700 	 *
7701 	 * The netdev todo list containing all network devices
7702 	 * unregistrations that happen in default_device_exit_batch
7703 	 * will run in the rtnl_unlock() at the end of
7704 	 * default_device_exit_batch.
7705 	 */
7706 	rtnl_lock_unregistering(net_list);
7707 	list_for_each_entry(net, net_list, exit_list) {
7708 		for_each_netdev_reverse(net, dev) {
7709 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7710 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7711 			else
7712 				unregister_netdevice_queue(dev, &dev_kill_list);
7713 		}
7714 	}
7715 	unregister_netdevice_many(&dev_kill_list);
7716 	rtnl_unlock();
7717 }
7718 
7719 static struct pernet_operations __net_initdata default_device_ops = {
7720 	.exit = default_device_exit,
7721 	.exit_batch = default_device_exit_batch,
7722 };
7723 
7724 /*
7725  *	Initialize the DEV module. At boot time this walks the device list and
7726  *	unhooks any devices that fail to initialise (normally hardware not
7727  *	present) and leaves us with a valid list of present and active devices.
7728  *
7729  */
7730 
7731 /*
7732  *       This is called single threaded during boot, so no need
7733  *       to take the rtnl semaphore.
7734  */
7735 static int __init net_dev_init(void)
7736 {
7737 	int i, rc = -ENOMEM;
7738 
7739 	BUG_ON(!dev_boot_phase);
7740 
7741 	if (dev_proc_init())
7742 		goto out;
7743 
7744 	if (netdev_kobject_init())
7745 		goto out;
7746 
7747 	INIT_LIST_HEAD(&ptype_all);
7748 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
7749 		INIT_LIST_HEAD(&ptype_base[i]);
7750 
7751 	INIT_LIST_HEAD(&offload_base);
7752 
7753 	if (register_pernet_subsys(&netdev_net_ops))
7754 		goto out;
7755 
7756 	/*
7757 	 *	Initialise the packet receive queues.
7758 	 */
7759 
7760 	for_each_possible_cpu(i) {
7761 		struct softnet_data *sd = &per_cpu(softnet_data, i);
7762 
7763 		skb_queue_head_init(&sd->input_pkt_queue);
7764 		skb_queue_head_init(&sd->process_queue);
7765 		INIT_LIST_HEAD(&sd->poll_list);
7766 		sd->output_queue_tailp = &sd->output_queue;
7767 #ifdef CONFIG_RPS
7768 		sd->csd.func = rps_trigger_softirq;
7769 		sd->csd.info = sd;
7770 		sd->cpu = i;
7771 #endif
7772 
7773 		sd->backlog.poll = process_backlog;
7774 		sd->backlog.weight = weight_p;
7775 	}
7776 
7777 	dev_boot_phase = 0;
7778 
7779 	/* The loopback device is special if any other network devices
7780 	 * is present in a network namespace the loopback device must
7781 	 * be present. Since we now dynamically allocate and free the
7782 	 * loopback device ensure this invariant is maintained by
7783 	 * keeping the loopback device as the first device on the
7784 	 * list of network devices.  Ensuring the loopback devices
7785 	 * is the first device that appears and the last network device
7786 	 * that disappears.
7787 	 */
7788 	if (register_pernet_device(&loopback_net_ops))
7789 		goto out;
7790 
7791 	if (register_pernet_device(&default_device_ops))
7792 		goto out;
7793 
7794 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7795 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7796 
7797 	hotcpu_notifier(dev_cpu_callback, 0);
7798 	dst_subsys_init();
7799 	rc = 0;
7800 out:
7801 	return rc;
7802 }
7803 
7804 subsys_initcall(net_dev_init);
7805