xref: /openbmc/linux/net/core/dev.c (revision 69868c3b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <linux/inetdevice.h>
135 #include <linux/cpu_rmap.h>
136 #include <linux/static_key.h>
137 #include <linux/hashtable.h>
138 #include <linux/vmalloc.h>
139 #include <linux/if_macvlan.h>
140 #include <linux/errqueue.h>
141 #include <linux/hrtimer.h>
142 #include <linux/netfilter_ingress.h>
143 #include <linux/crash_dump.h>
144 #include <linux/sctp.h>
145 #include <net/udp_tunnel.h>
146 #include <linux/net_namespace.h>
147 #include <linux/indirect_call_wrapper.h>
148 #include <net/devlink.h>
149 #include <linux/pm_runtime.h>
150 #include <linux/prandom.h>
151 #include <linux/once_lite.h>
152 
153 #include "net-sysfs.h"
154 
155 #define MAX_GRO_SKBS 8
156 
157 /* This should be increased if a protocol with a bigger head is added. */
158 #define GRO_MAX_HEAD (MAX_HEADER + 128)
159 
160 static DEFINE_SPINLOCK(ptype_lock);
161 static DEFINE_SPINLOCK(offload_lock);
162 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
163 struct list_head ptype_all __read_mostly;	/* Taps */
164 static struct list_head offload_base __read_mostly;
165 
166 static int netif_rx_internal(struct sk_buff *skb);
167 static int call_netdevice_notifiers_info(unsigned long val,
168 					 struct netdev_notifier_info *info);
169 static int call_netdevice_notifiers_extack(unsigned long val,
170 					   struct net_device *dev,
171 					   struct netlink_ext_ack *extack);
172 static struct napi_struct *napi_by_id(unsigned int napi_id);
173 
174 /*
175  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
176  * semaphore.
177  *
178  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
179  *
180  * Writers must hold the rtnl semaphore while they loop through the
181  * dev_base_head list, and hold dev_base_lock for writing when they do the
182  * actual updates.  This allows pure readers to access the list even
183  * while a writer is preparing to update it.
184  *
185  * To put it another way, dev_base_lock is held for writing only to
186  * protect against pure readers; the rtnl semaphore provides the
187  * protection against other writers.
188  *
189  * See, for example usages, register_netdevice() and
190  * unregister_netdevice(), which must be called with the rtnl
191  * semaphore held.
192  */
193 DEFINE_RWLOCK(dev_base_lock);
194 EXPORT_SYMBOL(dev_base_lock);
195 
196 static DEFINE_MUTEX(ifalias_mutex);
197 
198 /* protects napi_hash addition/deletion and napi_gen_id */
199 static DEFINE_SPINLOCK(napi_hash_lock);
200 
201 static unsigned int napi_gen_id = NR_CPUS;
202 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
203 
204 static DECLARE_RWSEM(devnet_rename_sem);
205 
206 static inline void dev_base_seq_inc(struct net *net)
207 {
208 	while (++net->dev_base_seq == 0)
209 		;
210 }
211 
212 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
213 {
214 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
215 
216 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
217 }
218 
219 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
220 {
221 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
222 }
223 
224 static inline void rps_lock(struct softnet_data *sd)
225 {
226 #ifdef CONFIG_RPS
227 	spin_lock(&sd->input_pkt_queue.lock);
228 #endif
229 }
230 
231 static inline void rps_unlock(struct softnet_data *sd)
232 {
233 #ifdef CONFIG_RPS
234 	spin_unlock(&sd->input_pkt_queue.lock);
235 #endif
236 }
237 
238 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
239 						       const char *name)
240 {
241 	struct netdev_name_node *name_node;
242 
243 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
244 	if (!name_node)
245 		return NULL;
246 	INIT_HLIST_NODE(&name_node->hlist);
247 	name_node->dev = dev;
248 	name_node->name = name;
249 	return name_node;
250 }
251 
252 static struct netdev_name_node *
253 netdev_name_node_head_alloc(struct net_device *dev)
254 {
255 	struct netdev_name_node *name_node;
256 
257 	name_node = netdev_name_node_alloc(dev, dev->name);
258 	if (!name_node)
259 		return NULL;
260 	INIT_LIST_HEAD(&name_node->list);
261 	return name_node;
262 }
263 
264 static void netdev_name_node_free(struct netdev_name_node *name_node)
265 {
266 	kfree(name_node);
267 }
268 
269 static void netdev_name_node_add(struct net *net,
270 				 struct netdev_name_node *name_node)
271 {
272 	hlist_add_head_rcu(&name_node->hlist,
273 			   dev_name_hash(net, name_node->name));
274 }
275 
276 static void netdev_name_node_del(struct netdev_name_node *name_node)
277 {
278 	hlist_del_rcu(&name_node->hlist);
279 }
280 
281 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
282 							const char *name)
283 {
284 	struct hlist_head *head = dev_name_hash(net, name);
285 	struct netdev_name_node *name_node;
286 
287 	hlist_for_each_entry(name_node, head, hlist)
288 		if (!strcmp(name_node->name, name))
289 			return name_node;
290 	return NULL;
291 }
292 
293 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
294 							    const char *name)
295 {
296 	struct hlist_head *head = dev_name_hash(net, name);
297 	struct netdev_name_node *name_node;
298 
299 	hlist_for_each_entry_rcu(name_node, head, hlist)
300 		if (!strcmp(name_node->name, name))
301 			return name_node;
302 	return NULL;
303 }
304 
305 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
306 {
307 	struct netdev_name_node *name_node;
308 	struct net *net = dev_net(dev);
309 
310 	name_node = netdev_name_node_lookup(net, name);
311 	if (name_node)
312 		return -EEXIST;
313 	name_node = netdev_name_node_alloc(dev, name);
314 	if (!name_node)
315 		return -ENOMEM;
316 	netdev_name_node_add(net, name_node);
317 	/* The node that holds dev->name acts as a head of per-device list. */
318 	list_add_tail(&name_node->list, &dev->name_node->list);
319 
320 	return 0;
321 }
322 EXPORT_SYMBOL(netdev_name_node_alt_create);
323 
324 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
325 {
326 	list_del(&name_node->list);
327 	netdev_name_node_del(name_node);
328 	kfree(name_node->name);
329 	netdev_name_node_free(name_node);
330 }
331 
332 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
333 {
334 	struct netdev_name_node *name_node;
335 	struct net *net = dev_net(dev);
336 
337 	name_node = netdev_name_node_lookup(net, name);
338 	if (!name_node)
339 		return -ENOENT;
340 	/* lookup might have found our primary name or a name belonging
341 	 * to another device.
342 	 */
343 	if (name_node == dev->name_node || name_node->dev != dev)
344 		return -EINVAL;
345 
346 	__netdev_name_node_alt_destroy(name_node);
347 
348 	return 0;
349 }
350 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
351 
352 static void netdev_name_node_alt_flush(struct net_device *dev)
353 {
354 	struct netdev_name_node *name_node, *tmp;
355 
356 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
357 		__netdev_name_node_alt_destroy(name_node);
358 }
359 
360 /* Device list insertion */
361 static void list_netdevice(struct net_device *dev)
362 {
363 	struct net *net = dev_net(dev);
364 
365 	ASSERT_RTNL();
366 
367 	write_lock_bh(&dev_base_lock);
368 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
369 	netdev_name_node_add(net, dev->name_node);
370 	hlist_add_head_rcu(&dev->index_hlist,
371 			   dev_index_hash(net, dev->ifindex));
372 	write_unlock_bh(&dev_base_lock);
373 
374 	dev_base_seq_inc(net);
375 }
376 
377 /* Device list removal
378  * caller must respect a RCU grace period before freeing/reusing dev
379  */
380 static void unlist_netdevice(struct net_device *dev)
381 {
382 	ASSERT_RTNL();
383 
384 	/* Unlink dev from the device chain */
385 	write_lock_bh(&dev_base_lock);
386 	list_del_rcu(&dev->dev_list);
387 	netdev_name_node_del(dev->name_node);
388 	hlist_del_rcu(&dev->index_hlist);
389 	write_unlock_bh(&dev_base_lock);
390 
391 	dev_base_seq_inc(dev_net(dev));
392 }
393 
394 /*
395  *	Our notifier list
396  */
397 
398 static RAW_NOTIFIER_HEAD(netdev_chain);
399 
400 /*
401  *	Device drivers call our routines to queue packets here. We empty the
402  *	queue in the local softnet handler.
403  */
404 
405 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
406 EXPORT_PER_CPU_SYMBOL(softnet_data);
407 
408 #ifdef CONFIG_LOCKDEP
409 /*
410  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
411  * according to dev->type
412  */
413 static const unsigned short netdev_lock_type[] = {
414 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
415 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
416 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
417 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
418 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
419 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
420 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
421 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
422 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
423 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
424 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
425 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
426 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
427 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
428 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
429 
430 static const char *const netdev_lock_name[] = {
431 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
432 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
433 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
434 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
435 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
436 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
437 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
438 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
439 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
440 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
441 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
442 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
443 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
444 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
445 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
446 
447 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
448 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
449 
450 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
451 {
452 	int i;
453 
454 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
455 		if (netdev_lock_type[i] == dev_type)
456 			return i;
457 	/* the last key is used by default */
458 	return ARRAY_SIZE(netdev_lock_type) - 1;
459 }
460 
461 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
462 						 unsigned short dev_type)
463 {
464 	int i;
465 
466 	i = netdev_lock_pos(dev_type);
467 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
468 				   netdev_lock_name[i]);
469 }
470 
471 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
472 {
473 	int i;
474 
475 	i = netdev_lock_pos(dev->type);
476 	lockdep_set_class_and_name(&dev->addr_list_lock,
477 				   &netdev_addr_lock_key[i],
478 				   netdev_lock_name[i]);
479 }
480 #else
481 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
482 						 unsigned short dev_type)
483 {
484 }
485 
486 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
487 {
488 }
489 #endif
490 
491 /*******************************************************************************
492  *
493  *		Protocol management and registration routines
494  *
495  *******************************************************************************/
496 
497 
498 /*
499  *	Add a protocol ID to the list. Now that the input handler is
500  *	smarter we can dispense with all the messy stuff that used to be
501  *	here.
502  *
503  *	BEWARE!!! Protocol handlers, mangling input packets,
504  *	MUST BE last in hash buckets and checking protocol handlers
505  *	MUST start from promiscuous ptype_all chain in net_bh.
506  *	It is true now, do not change it.
507  *	Explanation follows: if protocol handler, mangling packet, will
508  *	be the first on list, it is not able to sense, that packet
509  *	is cloned and should be copied-on-write, so that it will
510  *	change it and subsequent readers will get broken packet.
511  *							--ANK (980803)
512  */
513 
514 static inline struct list_head *ptype_head(const struct packet_type *pt)
515 {
516 	if (pt->type == htons(ETH_P_ALL))
517 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
518 	else
519 		return pt->dev ? &pt->dev->ptype_specific :
520 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
521 }
522 
523 /**
524  *	dev_add_pack - add packet handler
525  *	@pt: packet type declaration
526  *
527  *	Add a protocol handler to the networking stack. The passed &packet_type
528  *	is linked into kernel lists and may not be freed until it has been
529  *	removed from the kernel lists.
530  *
531  *	This call does not sleep therefore it can not
532  *	guarantee all CPU's that are in middle of receiving packets
533  *	will see the new packet type (until the next received packet).
534  */
535 
536 void dev_add_pack(struct packet_type *pt)
537 {
538 	struct list_head *head = ptype_head(pt);
539 
540 	spin_lock(&ptype_lock);
541 	list_add_rcu(&pt->list, head);
542 	spin_unlock(&ptype_lock);
543 }
544 EXPORT_SYMBOL(dev_add_pack);
545 
546 /**
547  *	__dev_remove_pack	 - remove packet handler
548  *	@pt: packet type declaration
549  *
550  *	Remove a protocol handler that was previously added to the kernel
551  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
552  *	from the kernel lists and can be freed or reused once this function
553  *	returns.
554  *
555  *      The packet type might still be in use by receivers
556  *	and must not be freed until after all the CPU's have gone
557  *	through a quiescent state.
558  */
559 void __dev_remove_pack(struct packet_type *pt)
560 {
561 	struct list_head *head = ptype_head(pt);
562 	struct packet_type *pt1;
563 
564 	spin_lock(&ptype_lock);
565 
566 	list_for_each_entry(pt1, head, list) {
567 		if (pt == pt1) {
568 			list_del_rcu(&pt->list);
569 			goto out;
570 		}
571 	}
572 
573 	pr_warn("dev_remove_pack: %p not found\n", pt);
574 out:
575 	spin_unlock(&ptype_lock);
576 }
577 EXPORT_SYMBOL(__dev_remove_pack);
578 
579 /**
580  *	dev_remove_pack	 - remove packet handler
581  *	@pt: packet type declaration
582  *
583  *	Remove a protocol handler that was previously added to the kernel
584  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
585  *	from the kernel lists and can be freed or reused once this function
586  *	returns.
587  *
588  *	This call sleeps to guarantee that no CPU is looking at the packet
589  *	type after return.
590  */
591 void dev_remove_pack(struct packet_type *pt)
592 {
593 	__dev_remove_pack(pt);
594 
595 	synchronize_net();
596 }
597 EXPORT_SYMBOL(dev_remove_pack);
598 
599 
600 /**
601  *	dev_add_offload - register offload handlers
602  *	@po: protocol offload declaration
603  *
604  *	Add protocol offload handlers to the networking stack. The passed
605  *	&proto_offload is linked into kernel lists and may not be freed until
606  *	it has been removed from the kernel lists.
607  *
608  *	This call does not sleep therefore it can not
609  *	guarantee all CPU's that are in middle of receiving packets
610  *	will see the new offload handlers (until the next received packet).
611  */
612 void dev_add_offload(struct packet_offload *po)
613 {
614 	struct packet_offload *elem;
615 
616 	spin_lock(&offload_lock);
617 	list_for_each_entry(elem, &offload_base, list) {
618 		if (po->priority < elem->priority)
619 			break;
620 	}
621 	list_add_rcu(&po->list, elem->list.prev);
622 	spin_unlock(&offload_lock);
623 }
624 EXPORT_SYMBOL(dev_add_offload);
625 
626 /**
627  *	__dev_remove_offload	 - remove offload handler
628  *	@po: packet offload declaration
629  *
630  *	Remove a protocol offload handler that was previously added to the
631  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
632  *	is removed from the kernel lists and can be freed or reused once this
633  *	function returns.
634  *
635  *      The packet type might still be in use by receivers
636  *	and must not be freed until after all the CPU's have gone
637  *	through a quiescent state.
638  */
639 static void __dev_remove_offload(struct packet_offload *po)
640 {
641 	struct list_head *head = &offload_base;
642 	struct packet_offload *po1;
643 
644 	spin_lock(&offload_lock);
645 
646 	list_for_each_entry(po1, head, list) {
647 		if (po == po1) {
648 			list_del_rcu(&po->list);
649 			goto out;
650 		}
651 	}
652 
653 	pr_warn("dev_remove_offload: %p not found\n", po);
654 out:
655 	spin_unlock(&offload_lock);
656 }
657 
658 /**
659  *	dev_remove_offload	 - remove packet offload handler
660  *	@po: packet offload declaration
661  *
662  *	Remove a packet offload handler that was previously added to the kernel
663  *	offload handlers by dev_add_offload(). The passed &offload_type is
664  *	removed from the kernel lists and can be freed or reused once this
665  *	function returns.
666  *
667  *	This call sleeps to guarantee that no CPU is looking at the packet
668  *	type after return.
669  */
670 void dev_remove_offload(struct packet_offload *po)
671 {
672 	__dev_remove_offload(po);
673 
674 	synchronize_net();
675 }
676 EXPORT_SYMBOL(dev_remove_offload);
677 
678 /******************************************************************************
679  *
680  *		      Device Boot-time Settings Routines
681  *
682  ******************************************************************************/
683 
684 /* Boot time configuration table */
685 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
686 
687 /**
688  *	netdev_boot_setup_add	- add new setup entry
689  *	@name: name of the device
690  *	@map: configured settings for the device
691  *
692  *	Adds new setup entry to the dev_boot_setup list.  The function
693  *	returns 0 on error and 1 on success.  This is a generic routine to
694  *	all netdevices.
695  */
696 static int netdev_boot_setup_add(char *name, struct ifmap *map)
697 {
698 	struct netdev_boot_setup *s;
699 	int i;
700 
701 	s = dev_boot_setup;
702 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
703 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
704 			memset(s[i].name, 0, sizeof(s[i].name));
705 			strlcpy(s[i].name, name, IFNAMSIZ);
706 			memcpy(&s[i].map, map, sizeof(s[i].map));
707 			break;
708 		}
709 	}
710 
711 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
712 }
713 
714 /**
715  * netdev_boot_setup_check	- check boot time settings
716  * @dev: the netdevice
717  *
718  * Check boot time settings for the device.
719  * The found settings are set for the device to be used
720  * later in the device probing.
721  * Returns 0 if no settings found, 1 if they are.
722  */
723 int netdev_boot_setup_check(struct net_device *dev)
724 {
725 	struct netdev_boot_setup *s = dev_boot_setup;
726 	int i;
727 
728 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
729 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
730 		    !strcmp(dev->name, s[i].name)) {
731 			dev->irq = s[i].map.irq;
732 			dev->base_addr = s[i].map.base_addr;
733 			dev->mem_start = s[i].map.mem_start;
734 			dev->mem_end = s[i].map.mem_end;
735 			return 1;
736 		}
737 	}
738 	return 0;
739 }
740 EXPORT_SYMBOL(netdev_boot_setup_check);
741 
742 
743 /**
744  * netdev_boot_base	- get address from boot time settings
745  * @prefix: prefix for network device
746  * @unit: id for network device
747  *
748  * Check boot time settings for the base address of device.
749  * The found settings are set for the device to be used
750  * later in the device probing.
751  * Returns 0 if no settings found.
752  */
753 unsigned long netdev_boot_base(const char *prefix, int unit)
754 {
755 	const struct netdev_boot_setup *s = dev_boot_setup;
756 	char name[IFNAMSIZ];
757 	int i;
758 
759 	sprintf(name, "%s%d", prefix, unit);
760 
761 	/*
762 	 * If device already registered then return base of 1
763 	 * to indicate not to probe for this interface
764 	 */
765 	if (__dev_get_by_name(&init_net, name))
766 		return 1;
767 
768 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
769 		if (!strcmp(name, s[i].name))
770 			return s[i].map.base_addr;
771 	return 0;
772 }
773 
774 /*
775  * Saves at boot time configured settings for any netdevice.
776  */
777 int __init netdev_boot_setup(char *str)
778 {
779 	int ints[5];
780 	struct ifmap map;
781 
782 	str = get_options(str, ARRAY_SIZE(ints), ints);
783 	if (!str || !*str)
784 		return 0;
785 
786 	/* Save settings */
787 	memset(&map, 0, sizeof(map));
788 	if (ints[0] > 0)
789 		map.irq = ints[1];
790 	if (ints[0] > 1)
791 		map.base_addr = ints[2];
792 	if (ints[0] > 2)
793 		map.mem_start = ints[3];
794 	if (ints[0] > 3)
795 		map.mem_end = ints[4];
796 
797 	/* Add new entry to the list */
798 	return netdev_boot_setup_add(str, &map);
799 }
800 
801 __setup("netdev=", netdev_boot_setup);
802 
803 /*******************************************************************************
804  *
805  *			    Device Interface Subroutines
806  *
807  *******************************************************************************/
808 
809 /**
810  *	dev_get_iflink	- get 'iflink' value of a interface
811  *	@dev: targeted interface
812  *
813  *	Indicates the ifindex the interface is linked to.
814  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
815  */
816 
817 int dev_get_iflink(const struct net_device *dev)
818 {
819 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
820 		return dev->netdev_ops->ndo_get_iflink(dev);
821 
822 	return dev->ifindex;
823 }
824 EXPORT_SYMBOL(dev_get_iflink);
825 
826 /**
827  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
828  *	@dev: targeted interface
829  *	@skb: The packet.
830  *
831  *	For better visibility of tunnel traffic OVS needs to retrieve
832  *	egress tunnel information for a packet. Following API allows
833  *	user to get this info.
834  */
835 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
836 {
837 	struct ip_tunnel_info *info;
838 
839 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
840 		return -EINVAL;
841 
842 	info = skb_tunnel_info_unclone(skb);
843 	if (!info)
844 		return -ENOMEM;
845 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
846 		return -EINVAL;
847 
848 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
849 }
850 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
851 
852 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
853 {
854 	int k = stack->num_paths++;
855 
856 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
857 		return NULL;
858 
859 	return &stack->path[k];
860 }
861 
862 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
863 			  struct net_device_path_stack *stack)
864 {
865 	const struct net_device *last_dev;
866 	struct net_device_path_ctx ctx = {
867 		.dev	= dev,
868 		.daddr	= daddr,
869 	};
870 	struct net_device_path *path;
871 	int ret = 0;
872 
873 	stack->num_paths = 0;
874 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
875 		last_dev = ctx.dev;
876 		path = dev_fwd_path(stack);
877 		if (!path)
878 			return -1;
879 
880 		memset(path, 0, sizeof(struct net_device_path));
881 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
882 		if (ret < 0)
883 			return -1;
884 
885 		if (WARN_ON_ONCE(last_dev == ctx.dev))
886 			return -1;
887 	}
888 	path = dev_fwd_path(stack);
889 	if (!path)
890 		return -1;
891 	path->type = DEV_PATH_ETHERNET;
892 	path->dev = ctx.dev;
893 
894 	return ret;
895 }
896 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
897 
898 /**
899  *	__dev_get_by_name	- find a device by its name
900  *	@net: the applicable net namespace
901  *	@name: name to find
902  *
903  *	Find an interface by name. Must be called under RTNL semaphore
904  *	or @dev_base_lock. If the name is found a pointer to the device
905  *	is returned. If the name is not found then %NULL is returned. The
906  *	reference counters are not incremented so the caller must be
907  *	careful with locks.
908  */
909 
910 struct net_device *__dev_get_by_name(struct net *net, const char *name)
911 {
912 	struct netdev_name_node *node_name;
913 
914 	node_name = netdev_name_node_lookup(net, name);
915 	return node_name ? node_name->dev : NULL;
916 }
917 EXPORT_SYMBOL(__dev_get_by_name);
918 
919 /**
920  * dev_get_by_name_rcu	- find a device by its name
921  * @net: the applicable net namespace
922  * @name: name to find
923  *
924  * Find an interface by name.
925  * If the name is found a pointer to the device is returned.
926  * If the name is not found then %NULL is returned.
927  * The reference counters are not incremented so the caller must be
928  * careful with locks. The caller must hold RCU lock.
929  */
930 
931 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
932 {
933 	struct netdev_name_node *node_name;
934 
935 	node_name = netdev_name_node_lookup_rcu(net, name);
936 	return node_name ? node_name->dev : NULL;
937 }
938 EXPORT_SYMBOL(dev_get_by_name_rcu);
939 
940 /**
941  *	dev_get_by_name		- find a device by its name
942  *	@net: the applicable net namespace
943  *	@name: name to find
944  *
945  *	Find an interface by name. This can be called from any
946  *	context and does its own locking. The returned handle has
947  *	the usage count incremented and the caller must use dev_put() to
948  *	release it when it is no longer needed. %NULL is returned if no
949  *	matching device is found.
950  */
951 
952 struct net_device *dev_get_by_name(struct net *net, const char *name)
953 {
954 	struct net_device *dev;
955 
956 	rcu_read_lock();
957 	dev = dev_get_by_name_rcu(net, name);
958 	if (dev)
959 		dev_hold(dev);
960 	rcu_read_unlock();
961 	return dev;
962 }
963 EXPORT_SYMBOL(dev_get_by_name);
964 
965 /**
966  *	__dev_get_by_index - find a device by its ifindex
967  *	@net: the applicable net namespace
968  *	@ifindex: index of device
969  *
970  *	Search for an interface by index. Returns %NULL if the device
971  *	is not found or a pointer to the device. The device has not
972  *	had its reference counter increased so the caller must be careful
973  *	about locking. The caller must hold either the RTNL semaphore
974  *	or @dev_base_lock.
975  */
976 
977 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
978 {
979 	struct net_device *dev;
980 	struct hlist_head *head = dev_index_hash(net, ifindex);
981 
982 	hlist_for_each_entry(dev, head, index_hlist)
983 		if (dev->ifindex == ifindex)
984 			return dev;
985 
986 	return NULL;
987 }
988 EXPORT_SYMBOL(__dev_get_by_index);
989 
990 /**
991  *	dev_get_by_index_rcu - find a device by its ifindex
992  *	@net: the applicable net namespace
993  *	@ifindex: index of device
994  *
995  *	Search for an interface by index. Returns %NULL if the device
996  *	is not found or a pointer to the device. The device has not
997  *	had its reference counter increased so the caller must be careful
998  *	about locking. The caller must hold RCU lock.
999  */
1000 
1001 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
1002 {
1003 	struct net_device *dev;
1004 	struct hlist_head *head = dev_index_hash(net, ifindex);
1005 
1006 	hlist_for_each_entry_rcu(dev, head, index_hlist)
1007 		if (dev->ifindex == ifindex)
1008 			return dev;
1009 
1010 	return NULL;
1011 }
1012 EXPORT_SYMBOL(dev_get_by_index_rcu);
1013 
1014 
1015 /**
1016  *	dev_get_by_index - find a device by its ifindex
1017  *	@net: the applicable net namespace
1018  *	@ifindex: index of device
1019  *
1020  *	Search for an interface by index. Returns NULL if the device
1021  *	is not found or a pointer to the device. The device returned has
1022  *	had a reference added and the pointer is safe until the user calls
1023  *	dev_put to indicate they have finished with it.
1024  */
1025 
1026 struct net_device *dev_get_by_index(struct net *net, int ifindex)
1027 {
1028 	struct net_device *dev;
1029 
1030 	rcu_read_lock();
1031 	dev = dev_get_by_index_rcu(net, ifindex);
1032 	if (dev)
1033 		dev_hold(dev);
1034 	rcu_read_unlock();
1035 	return dev;
1036 }
1037 EXPORT_SYMBOL(dev_get_by_index);
1038 
1039 /**
1040  *	dev_get_by_napi_id - find a device by napi_id
1041  *	@napi_id: ID of the NAPI struct
1042  *
1043  *	Search for an interface by NAPI ID. Returns %NULL if the device
1044  *	is not found or a pointer to the device. The device has not had
1045  *	its reference counter increased so the caller must be careful
1046  *	about locking. The caller must hold RCU lock.
1047  */
1048 
1049 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1050 {
1051 	struct napi_struct *napi;
1052 
1053 	WARN_ON_ONCE(!rcu_read_lock_held());
1054 
1055 	if (napi_id < MIN_NAPI_ID)
1056 		return NULL;
1057 
1058 	napi = napi_by_id(napi_id);
1059 
1060 	return napi ? napi->dev : NULL;
1061 }
1062 EXPORT_SYMBOL(dev_get_by_napi_id);
1063 
1064 /**
1065  *	netdev_get_name - get a netdevice name, knowing its ifindex.
1066  *	@net: network namespace
1067  *	@name: a pointer to the buffer where the name will be stored.
1068  *	@ifindex: the ifindex of the interface to get the name from.
1069  */
1070 int netdev_get_name(struct net *net, char *name, int ifindex)
1071 {
1072 	struct net_device *dev;
1073 	int ret;
1074 
1075 	down_read(&devnet_rename_sem);
1076 	rcu_read_lock();
1077 
1078 	dev = dev_get_by_index_rcu(net, ifindex);
1079 	if (!dev) {
1080 		ret = -ENODEV;
1081 		goto out;
1082 	}
1083 
1084 	strcpy(name, dev->name);
1085 
1086 	ret = 0;
1087 out:
1088 	rcu_read_unlock();
1089 	up_read(&devnet_rename_sem);
1090 	return ret;
1091 }
1092 
1093 /**
1094  *	dev_getbyhwaddr_rcu - find a device by its hardware address
1095  *	@net: the applicable net namespace
1096  *	@type: media type of device
1097  *	@ha: hardware address
1098  *
1099  *	Search for an interface by MAC address. Returns NULL if the device
1100  *	is not found or a pointer to the device.
1101  *	The caller must hold RCU or RTNL.
1102  *	The returned device has not had its ref count increased
1103  *	and the caller must therefore be careful about locking
1104  *
1105  */
1106 
1107 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1108 				       const char *ha)
1109 {
1110 	struct net_device *dev;
1111 
1112 	for_each_netdev_rcu(net, dev)
1113 		if (dev->type == type &&
1114 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
1115 			return dev;
1116 
1117 	return NULL;
1118 }
1119 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1120 
1121 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1122 {
1123 	struct net_device *dev, *ret = NULL;
1124 
1125 	rcu_read_lock();
1126 	for_each_netdev_rcu(net, dev)
1127 		if (dev->type == type) {
1128 			dev_hold(dev);
1129 			ret = dev;
1130 			break;
1131 		}
1132 	rcu_read_unlock();
1133 	return ret;
1134 }
1135 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1136 
1137 /**
1138  *	__dev_get_by_flags - find any device with given flags
1139  *	@net: the applicable net namespace
1140  *	@if_flags: IFF_* values
1141  *	@mask: bitmask of bits in if_flags to check
1142  *
1143  *	Search for any interface with the given flags. Returns NULL if a device
1144  *	is not found or a pointer to the device. Must be called inside
1145  *	rtnl_lock(), and result refcount is unchanged.
1146  */
1147 
1148 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1149 				      unsigned short mask)
1150 {
1151 	struct net_device *dev, *ret;
1152 
1153 	ASSERT_RTNL();
1154 
1155 	ret = NULL;
1156 	for_each_netdev(net, dev) {
1157 		if (((dev->flags ^ if_flags) & mask) == 0) {
1158 			ret = dev;
1159 			break;
1160 		}
1161 	}
1162 	return ret;
1163 }
1164 EXPORT_SYMBOL(__dev_get_by_flags);
1165 
1166 /**
1167  *	dev_valid_name - check if name is okay for network device
1168  *	@name: name string
1169  *
1170  *	Network device names need to be valid file names to
1171  *	allow sysfs to work.  We also disallow any kind of
1172  *	whitespace.
1173  */
1174 bool dev_valid_name(const char *name)
1175 {
1176 	if (*name == '\0')
1177 		return false;
1178 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1179 		return false;
1180 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1181 		return false;
1182 
1183 	while (*name) {
1184 		if (*name == '/' || *name == ':' || isspace(*name))
1185 			return false;
1186 		name++;
1187 	}
1188 	return true;
1189 }
1190 EXPORT_SYMBOL(dev_valid_name);
1191 
1192 /**
1193  *	__dev_alloc_name - allocate a name for a device
1194  *	@net: network namespace to allocate the device name in
1195  *	@name: name format string
1196  *	@buf:  scratch buffer and result name string
1197  *
1198  *	Passed a format string - eg "lt%d" it will try and find a suitable
1199  *	id. It scans list of devices to build up a free map, then chooses
1200  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1201  *	while allocating the name and adding the device in order to avoid
1202  *	duplicates.
1203  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1204  *	Returns the number of the unit assigned or a negative errno code.
1205  */
1206 
1207 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1208 {
1209 	int i = 0;
1210 	const char *p;
1211 	const int max_netdevices = 8*PAGE_SIZE;
1212 	unsigned long *inuse;
1213 	struct net_device *d;
1214 
1215 	if (!dev_valid_name(name))
1216 		return -EINVAL;
1217 
1218 	p = strchr(name, '%');
1219 	if (p) {
1220 		/*
1221 		 * Verify the string as this thing may have come from
1222 		 * the user.  There must be either one "%d" and no other "%"
1223 		 * characters.
1224 		 */
1225 		if (p[1] != 'd' || strchr(p + 2, '%'))
1226 			return -EINVAL;
1227 
1228 		/* Use one page as a bit array of possible slots */
1229 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1230 		if (!inuse)
1231 			return -ENOMEM;
1232 
1233 		for_each_netdev(net, d) {
1234 			struct netdev_name_node *name_node;
1235 			list_for_each_entry(name_node, &d->name_node->list, list) {
1236 				if (!sscanf(name_node->name, name, &i))
1237 					continue;
1238 				if (i < 0 || i >= max_netdevices)
1239 					continue;
1240 
1241 				/*  avoid cases where sscanf is not exact inverse of printf */
1242 				snprintf(buf, IFNAMSIZ, name, i);
1243 				if (!strncmp(buf, name_node->name, IFNAMSIZ))
1244 					set_bit(i, inuse);
1245 			}
1246 			if (!sscanf(d->name, name, &i))
1247 				continue;
1248 			if (i < 0 || i >= max_netdevices)
1249 				continue;
1250 
1251 			/*  avoid cases where sscanf is not exact inverse of printf */
1252 			snprintf(buf, IFNAMSIZ, name, i);
1253 			if (!strncmp(buf, d->name, IFNAMSIZ))
1254 				set_bit(i, inuse);
1255 		}
1256 
1257 		i = find_first_zero_bit(inuse, max_netdevices);
1258 		free_page((unsigned long) inuse);
1259 	}
1260 
1261 	snprintf(buf, IFNAMSIZ, name, i);
1262 	if (!__dev_get_by_name(net, buf))
1263 		return i;
1264 
1265 	/* It is possible to run out of possible slots
1266 	 * when the name is long and there isn't enough space left
1267 	 * for the digits, or if all bits are used.
1268 	 */
1269 	return -ENFILE;
1270 }
1271 
1272 static int dev_alloc_name_ns(struct net *net,
1273 			     struct net_device *dev,
1274 			     const char *name)
1275 {
1276 	char buf[IFNAMSIZ];
1277 	int ret;
1278 
1279 	BUG_ON(!net);
1280 	ret = __dev_alloc_name(net, name, buf);
1281 	if (ret >= 0)
1282 		strlcpy(dev->name, buf, IFNAMSIZ);
1283 	return ret;
1284 }
1285 
1286 /**
1287  *	dev_alloc_name - allocate a name for a device
1288  *	@dev: device
1289  *	@name: name format string
1290  *
1291  *	Passed a format string - eg "lt%d" it will try and find a suitable
1292  *	id. It scans list of devices to build up a free map, then chooses
1293  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1294  *	while allocating the name and adding the device in order to avoid
1295  *	duplicates.
1296  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1297  *	Returns the number of the unit assigned or a negative errno code.
1298  */
1299 
1300 int dev_alloc_name(struct net_device *dev, const char *name)
1301 {
1302 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1303 }
1304 EXPORT_SYMBOL(dev_alloc_name);
1305 
1306 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1307 			      const char *name)
1308 {
1309 	BUG_ON(!net);
1310 
1311 	if (!dev_valid_name(name))
1312 		return -EINVAL;
1313 
1314 	if (strchr(name, '%'))
1315 		return dev_alloc_name_ns(net, dev, name);
1316 	else if (__dev_get_by_name(net, name))
1317 		return -EEXIST;
1318 	else if (dev->name != name)
1319 		strlcpy(dev->name, name, IFNAMSIZ);
1320 
1321 	return 0;
1322 }
1323 
1324 /**
1325  *	dev_change_name - change name of a device
1326  *	@dev: device
1327  *	@newname: name (or format string) must be at least IFNAMSIZ
1328  *
1329  *	Change name of a device, can pass format strings "eth%d".
1330  *	for wildcarding.
1331  */
1332 int dev_change_name(struct net_device *dev, const char *newname)
1333 {
1334 	unsigned char old_assign_type;
1335 	char oldname[IFNAMSIZ];
1336 	int err = 0;
1337 	int ret;
1338 	struct net *net;
1339 
1340 	ASSERT_RTNL();
1341 	BUG_ON(!dev_net(dev));
1342 
1343 	net = dev_net(dev);
1344 
1345 	/* Some auto-enslaved devices e.g. failover slaves are
1346 	 * special, as userspace might rename the device after
1347 	 * the interface had been brought up and running since
1348 	 * the point kernel initiated auto-enslavement. Allow
1349 	 * live name change even when these slave devices are
1350 	 * up and running.
1351 	 *
1352 	 * Typically, users of these auto-enslaving devices
1353 	 * don't actually care about slave name change, as
1354 	 * they are supposed to operate on master interface
1355 	 * directly.
1356 	 */
1357 	if (dev->flags & IFF_UP &&
1358 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1359 		return -EBUSY;
1360 
1361 	down_write(&devnet_rename_sem);
1362 
1363 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1364 		up_write(&devnet_rename_sem);
1365 		return 0;
1366 	}
1367 
1368 	memcpy(oldname, dev->name, IFNAMSIZ);
1369 
1370 	err = dev_get_valid_name(net, dev, newname);
1371 	if (err < 0) {
1372 		up_write(&devnet_rename_sem);
1373 		return err;
1374 	}
1375 
1376 	if (oldname[0] && !strchr(oldname, '%'))
1377 		netdev_info(dev, "renamed from %s\n", oldname);
1378 
1379 	old_assign_type = dev->name_assign_type;
1380 	dev->name_assign_type = NET_NAME_RENAMED;
1381 
1382 rollback:
1383 	ret = device_rename(&dev->dev, dev->name);
1384 	if (ret) {
1385 		memcpy(dev->name, oldname, IFNAMSIZ);
1386 		dev->name_assign_type = old_assign_type;
1387 		up_write(&devnet_rename_sem);
1388 		return ret;
1389 	}
1390 
1391 	up_write(&devnet_rename_sem);
1392 
1393 	netdev_adjacent_rename_links(dev, oldname);
1394 
1395 	write_lock_bh(&dev_base_lock);
1396 	netdev_name_node_del(dev->name_node);
1397 	write_unlock_bh(&dev_base_lock);
1398 
1399 	synchronize_rcu();
1400 
1401 	write_lock_bh(&dev_base_lock);
1402 	netdev_name_node_add(net, dev->name_node);
1403 	write_unlock_bh(&dev_base_lock);
1404 
1405 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1406 	ret = notifier_to_errno(ret);
1407 
1408 	if (ret) {
1409 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1410 		if (err >= 0) {
1411 			err = ret;
1412 			down_write(&devnet_rename_sem);
1413 			memcpy(dev->name, oldname, IFNAMSIZ);
1414 			memcpy(oldname, newname, IFNAMSIZ);
1415 			dev->name_assign_type = old_assign_type;
1416 			old_assign_type = NET_NAME_RENAMED;
1417 			goto rollback;
1418 		} else {
1419 			pr_err("%s: name change rollback failed: %d\n",
1420 			       dev->name, ret);
1421 		}
1422 	}
1423 
1424 	return err;
1425 }
1426 
1427 /**
1428  *	dev_set_alias - change ifalias of a device
1429  *	@dev: device
1430  *	@alias: name up to IFALIASZ
1431  *	@len: limit of bytes to copy from info
1432  *
1433  *	Set ifalias for a device,
1434  */
1435 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1436 {
1437 	struct dev_ifalias *new_alias = NULL;
1438 
1439 	if (len >= IFALIASZ)
1440 		return -EINVAL;
1441 
1442 	if (len) {
1443 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1444 		if (!new_alias)
1445 			return -ENOMEM;
1446 
1447 		memcpy(new_alias->ifalias, alias, len);
1448 		new_alias->ifalias[len] = 0;
1449 	}
1450 
1451 	mutex_lock(&ifalias_mutex);
1452 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1453 					mutex_is_locked(&ifalias_mutex));
1454 	mutex_unlock(&ifalias_mutex);
1455 
1456 	if (new_alias)
1457 		kfree_rcu(new_alias, rcuhead);
1458 
1459 	return len;
1460 }
1461 EXPORT_SYMBOL(dev_set_alias);
1462 
1463 /**
1464  *	dev_get_alias - get ifalias of a device
1465  *	@dev: device
1466  *	@name: buffer to store name of ifalias
1467  *	@len: size of buffer
1468  *
1469  *	get ifalias for a device.  Caller must make sure dev cannot go
1470  *	away,  e.g. rcu read lock or own a reference count to device.
1471  */
1472 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1473 {
1474 	const struct dev_ifalias *alias;
1475 	int ret = 0;
1476 
1477 	rcu_read_lock();
1478 	alias = rcu_dereference(dev->ifalias);
1479 	if (alias)
1480 		ret = snprintf(name, len, "%s", alias->ifalias);
1481 	rcu_read_unlock();
1482 
1483 	return ret;
1484 }
1485 
1486 /**
1487  *	netdev_features_change - device changes features
1488  *	@dev: device to cause notification
1489  *
1490  *	Called to indicate a device has changed features.
1491  */
1492 void netdev_features_change(struct net_device *dev)
1493 {
1494 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1495 }
1496 EXPORT_SYMBOL(netdev_features_change);
1497 
1498 /**
1499  *	netdev_state_change - device changes state
1500  *	@dev: device to cause notification
1501  *
1502  *	Called to indicate a device has changed state. This function calls
1503  *	the notifier chains for netdev_chain and sends a NEWLINK message
1504  *	to the routing socket.
1505  */
1506 void netdev_state_change(struct net_device *dev)
1507 {
1508 	if (dev->flags & IFF_UP) {
1509 		struct netdev_notifier_change_info change_info = {
1510 			.info.dev = dev,
1511 		};
1512 
1513 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1514 					      &change_info.info);
1515 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1516 	}
1517 }
1518 EXPORT_SYMBOL(netdev_state_change);
1519 
1520 /**
1521  * __netdev_notify_peers - notify network peers about existence of @dev,
1522  * to be called when rtnl lock is already held.
1523  * @dev: network device
1524  *
1525  * Generate traffic such that interested network peers are aware of
1526  * @dev, such as by generating a gratuitous ARP. This may be used when
1527  * a device wants to inform the rest of the network about some sort of
1528  * reconfiguration such as a failover event or virtual machine
1529  * migration.
1530  */
1531 void __netdev_notify_peers(struct net_device *dev)
1532 {
1533 	ASSERT_RTNL();
1534 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1535 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1536 }
1537 EXPORT_SYMBOL(__netdev_notify_peers);
1538 
1539 /**
1540  * netdev_notify_peers - notify network peers about existence of @dev
1541  * @dev: network device
1542  *
1543  * Generate traffic such that interested network peers are aware of
1544  * @dev, such as by generating a gratuitous ARP. This may be used when
1545  * a device wants to inform the rest of the network about some sort of
1546  * reconfiguration such as a failover event or virtual machine
1547  * migration.
1548  */
1549 void netdev_notify_peers(struct net_device *dev)
1550 {
1551 	rtnl_lock();
1552 	__netdev_notify_peers(dev);
1553 	rtnl_unlock();
1554 }
1555 EXPORT_SYMBOL(netdev_notify_peers);
1556 
1557 static int napi_threaded_poll(void *data);
1558 
1559 static int napi_kthread_create(struct napi_struct *n)
1560 {
1561 	int err = 0;
1562 
1563 	/* Create and wake up the kthread once to put it in
1564 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1565 	 * warning and work with loadavg.
1566 	 */
1567 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1568 				n->dev->name, n->napi_id);
1569 	if (IS_ERR(n->thread)) {
1570 		err = PTR_ERR(n->thread);
1571 		pr_err("kthread_run failed with err %d\n", err);
1572 		n->thread = NULL;
1573 	}
1574 
1575 	return err;
1576 }
1577 
1578 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1579 {
1580 	const struct net_device_ops *ops = dev->netdev_ops;
1581 	int ret;
1582 
1583 	ASSERT_RTNL();
1584 
1585 	if (!netif_device_present(dev)) {
1586 		/* may be detached because parent is runtime-suspended */
1587 		if (dev->dev.parent)
1588 			pm_runtime_resume(dev->dev.parent);
1589 		if (!netif_device_present(dev))
1590 			return -ENODEV;
1591 	}
1592 
1593 	/* Block netpoll from trying to do any rx path servicing.
1594 	 * If we don't do this there is a chance ndo_poll_controller
1595 	 * or ndo_poll may be running while we open the device
1596 	 */
1597 	netpoll_poll_disable(dev);
1598 
1599 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1600 	ret = notifier_to_errno(ret);
1601 	if (ret)
1602 		return ret;
1603 
1604 	set_bit(__LINK_STATE_START, &dev->state);
1605 
1606 	if (ops->ndo_validate_addr)
1607 		ret = ops->ndo_validate_addr(dev);
1608 
1609 	if (!ret && ops->ndo_open)
1610 		ret = ops->ndo_open(dev);
1611 
1612 	netpoll_poll_enable(dev);
1613 
1614 	if (ret)
1615 		clear_bit(__LINK_STATE_START, &dev->state);
1616 	else {
1617 		dev->flags |= IFF_UP;
1618 		dev_set_rx_mode(dev);
1619 		dev_activate(dev);
1620 		add_device_randomness(dev->dev_addr, dev->addr_len);
1621 	}
1622 
1623 	return ret;
1624 }
1625 
1626 /**
1627  *	dev_open	- prepare an interface for use.
1628  *	@dev: device to open
1629  *	@extack: netlink extended ack
1630  *
1631  *	Takes a device from down to up state. The device's private open
1632  *	function is invoked and then the multicast lists are loaded. Finally
1633  *	the device is moved into the up state and a %NETDEV_UP message is
1634  *	sent to the netdev notifier chain.
1635  *
1636  *	Calling this function on an active interface is a nop. On a failure
1637  *	a negative errno code is returned.
1638  */
1639 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1640 {
1641 	int ret;
1642 
1643 	if (dev->flags & IFF_UP)
1644 		return 0;
1645 
1646 	ret = __dev_open(dev, extack);
1647 	if (ret < 0)
1648 		return ret;
1649 
1650 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1651 	call_netdevice_notifiers(NETDEV_UP, dev);
1652 
1653 	return ret;
1654 }
1655 EXPORT_SYMBOL(dev_open);
1656 
1657 static void __dev_close_many(struct list_head *head)
1658 {
1659 	struct net_device *dev;
1660 
1661 	ASSERT_RTNL();
1662 	might_sleep();
1663 
1664 	list_for_each_entry(dev, head, close_list) {
1665 		/* Temporarily disable netpoll until the interface is down */
1666 		netpoll_poll_disable(dev);
1667 
1668 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1669 
1670 		clear_bit(__LINK_STATE_START, &dev->state);
1671 
1672 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1673 		 * can be even on different cpu. So just clear netif_running().
1674 		 *
1675 		 * dev->stop() will invoke napi_disable() on all of it's
1676 		 * napi_struct instances on this device.
1677 		 */
1678 		smp_mb__after_atomic(); /* Commit netif_running(). */
1679 	}
1680 
1681 	dev_deactivate_many(head);
1682 
1683 	list_for_each_entry(dev, head, close_list) {
1684 		const struct net_device_ops *ops = dev->netdev_ops;
1685 
1686 		/*
1687 		 *	Call the device specific close. This cannot fail.
1688 		 *	Only if device is UP
1689 		 *
1690 		 *	We allow it to be called even after a DETACH hot-plug
1691 		 *	event.
1692 		 */
1693 		if (ops->ndo_stop)
1694 			ops->ndo_stop(dev);
1695 
1696 		dev->flags &= ~IFF_UP;
1697 		netpoll_poll_enable(dev);
1698 	}
1699 }
1700 
1701 static void __dev_close(struct net_device *dev)
1702 {
1703 	LIST_HEAD(single);
1704 
1705 	list_add(&dev->close_list, &single);
1706 	__dev_close_many(&single);
1707 	list_del(&single);
1708 }
1709 
1710 void dev_close_many(struct list_head *head, bool unlink)
1711 {
1712 	struct net_device *dev, *tmp;
1713 
1714 	/* Remove the devices that don't need to be closed */
1715 	list_for_each_entry_safe(dev, tmp, head, close_list)
1716 		if (!(dev->flags & IFF_UP))
1717 			list_del_init(&dev->close_list);
1718 
1719 	__dev_close_many(head);
1720 
1721 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1722 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1723 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1724 		if (unlink)
1725 			list_del_init(&dev->close_list);
1726 	}
1727 }
1728 EXPORT_SYMBOL(dev_close_many);
1729 
1730 /**
1731  *	dev_close - shutdown an interface.
1732  *	@dev: device to shutdown
1733  *
1734  *	This function moves an active device into down state. A
1735  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1736  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1737  *	chain.
1738  */
1739 void dev_close(struct net_device *dev)
1740 {
1741 	if (dev->flags & IFF_UP) {
1742 		LIST_HEAD(single);
1743 
1744 		list_add(&dev->close_list, &single);
1745 		dev_close_many(&single, true);
1746 		list_del(&single);
1747 	}
1748 }
1749 EXPORT_SYMBOL(dev_close);
1750 
1751 
1752 /**
1753  *	dev_disable_lro - disable Large Receive Offload on a device
1754  *	@dev: device
1755  *
1756  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1757  *	called under RTNL.  This is needed if received packets may be
1758  *	forwarded to another interface.
1759  */
1760 void dev_disable_lro(struct net_device *dev)
1761 {
1762 	struct net_device *lower_dev;
1763 	struct list_head *iter;
1764 
1765 	dev->wanted_features &= ~NETIF_F_LRO;
1766 	netdev_update_features(dev);
1767 
1768 	if (unlikely(dev->features & NETIF_F_LRO))
1769 		netdev_WARN(dev, "failed to disable LRO!\n");
1770 
1771 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1772 		dev_disable_lro(lower_dev);
1773 }
1774 EXPORT_SYMBOL(dev_disable_lro);
1775 
1776 /**
1777  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1778  *	@dev: device
1779  *
1780  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1781  *	called under RTNL.  This is needed if Generic XDP is installed on
1782  *	the device.
1783  */
1784 static void dev_disable_gro_hw(struct net_device *dev)
1785 {
1786 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1787 	netdev_update_features(dev);
1788 
1789 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1790 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1791 }
1792 
1793 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1794 {
1795 #define N(val) 						\
1796 	case NETDEV_##val:				\
1797 		return "NETDEV_" __stringify(val);
1798 	switch (cmd) {
1799 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1800 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1801 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1802 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1803 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1804 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1805 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1806 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1807 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1808 	N(PRE_CHANGEADDR)
1809 	}
1810 #undef N
1811 	return "UNKNOWN_NETDEV_EVENT";
1812 }
1813 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1814 
1815 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1816 				   struct net_device *dev)
1817 {
1818 	struct netdev_notifier_info info = {
1819 		.dev = dev,
1820 	};
1821 
1822 	return nb->notifier_call(nb, val, &info);
1823 }
1824 
1825 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1826 					     struct net_device *dev)
1827 {
1828 	int err;
1829 
1830 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1831 	err = notifier_to_errno(err);
1832 	if (err)
1833 		return err;
1834 
1835 	if (!(dev->flags & IFF_UP))
1836 		return 0;
1837 
1838 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1839 	return 0;
1840 }
1841 
1842 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1843 						struct net_device *dev)
1844 {
1845 	if (dev->flags & IFF_UP) {
1846 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1847 					dev);
1848 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1849 	}
1850 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1851 }
1852 
1853 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1854 						 struct net *net)
1855 {
1856 	struct net_device *dev;
1857 	int err;
1858 
1859 	for_each_netdev(net, dev) {
1860 		err = call_netdevice_register_notifiers(nb, dev);
1861 		if (err)
1862 			goto rollback;
1863 	}
1864 	return 0;
1865 
1866 rollback:
1867 	for_each_netdev_continue_reverse(net, dev)
1868 		call_netdevice_unregister_notifiers(nb, dev);
1869 	return err;
1870 }
1871 
1872 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1873 						    struct net *net)
1874 {
1875 	struct net_device *dev;
1876 
1877 	for_each_netdev(net, dev)
1878 		call_netdevice_unregister_notifiers(nb, dev);
1879 }
1880 
1881 static int dev_boot_phase = 1;
1882 
1883 /**
1884  * register_netdevice_notifier - register a network notifier block
1885  * @nb: notifier
1886  *
1887  * Register a notifier to be called when network device events occur.
1888  * The notifier passed is linked into the kernel structures and must
1889  * not be reused until it has been unregistered. A negative errno code
1890  * is returned on a failure.
1891  *
1892  * When registered all registration and up events are replayed
1893  * to the new notifier to allow device to have a race free
1894  * view of the network device list.
1895  */
1896 
1897 int register_netdevice_notifier(struct notifier_block *nb)
1898 {
1899 	struct net *net;
1900 	int err;
1901 
1902 	/* Close race with setup_net() and cleanup_net() */
1903 	down_write(&pernet_ops_rwsem);
1904 	rtnl_lock();
1905 	err = raw_notifier_chain_register(&netdev_chain, nb);
1906 	if (err)
1907 		goto unlock;
1908 	if (dev_boot_phase)
1909 		goto unlock;
1910 	for_each_net(net) {
1911 		err = call_netdevice_register_net_notifiers(nb, net);
1912 		if (err)
1913 			goto rollback;
1914 	}
1915 
1916 unlock:
1917 	rtnl_unlock();
1918 	up_write(&pernet_ops_rwsem);
1919 	return err;
1920 
1921 rollback:
1922 	for_each_net_continue_reverse(net)
1923 		call_netdevice_unregister_net_notifiers(nb, net);
1924 
1925 	raw_notifier_chain_unregister(&netdev_chain, nb);
1926 	goto unlock;
1927 }
1928 EXPORT_SYMBOL(register_netdevice_notifier);
1929 
1930 /**
1931  * unregister_netdevice_notifier - unregister a network notifier block
1932  * @nb: notifier
1933  *
1934  * Unregister a notifier previously registered by
1935  * register_netdevice_notifier(). The notifier is unlinked into the
1936  * kernel structures and may then be reused. A negative errno code
1937  * is returned on a failure.
1938  *
1939  * After unregistering unregister and down device events are synthesized
1940  * for all devices on the device list to the removed notifier to remove
1941  * the need for special case cleanup code.
1942  */
1943 
1944 int unregister_netdevice_notifier(struct notifier_block *nb)
1945 {
1946 	struct net *net;
1947 	int err;
1948 
1949 	/* Close race with setup_net() and cleanup_net() */
1950 	down_write(&pernet_ops_rwsem);
1951 	rtnl_lock();
1952 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1953 	if (err)
1954 		goto unlock;
1955 
1956 	for_each_net(net)
1957 		call_netdevice_unregister_net_notifiers(nb, net);
1958 
1959 unlock:
1960 	rtnl_unlock();
1961 	up_write(&pernet_ops_rwsem);
1962 	return err;
1963 }
1964 EXPORT_SYMBOL(unregister_netdevice_notifier);
1965 
1966 static int __register_netdevice_notifier_net(struct net *net,
1967 					     struct notifier_block *nb,
1968 					     bool ignore_call_fail)
1969 {
1970 	int err;
1971 
1972 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1973 	if (err)
1974 		return err;
1975 	if (dev_boot_phase)
1976 		return 0;
1977 
1978 	err = call_netdevice_register_net_notifiers(nb, net);
1979 	if (err && !ignore_call_fail)
1980 		goto chain_unregister;
1981 
1982 	return 0;
1983 
1984 chain_unregister:
1985 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1986 	return err;
1987 }
1988 
1989 static int __unregister_netdevice_notifier_net(struct net *net,
1990 					       struct notifier_block *nb)
1991 {
1992 	int err;
1993 
1994 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1995 	if (err)
1996 		return err;
1997 
1998 	call_netdevice_unregister_net_notifiers(nb, net);
1999 	return 0;
2000 }
2001 
2002 /**
2003  * register_netdevice_notifier_net - register a per-netns network notifier block
2004  * @net: network namespace
2005  * @nb: notifier
2006  *
2007  * Register a notifier to be called when network device events occur.
2008  * The notifier passed is linked into the kernel structures and must
2009  * not be reused until it has been unregistered. A negative errno code
2010  * is returned on a failure.
2011  *
2012  * When registered all registration and up events are replayed
2013  * to the new notifier to allow device to have a race free
2014  * view of the network device list.
2015  */
2016 
2017 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2018 {
2019 	int err;
2020 
2021 	rtnl_lock();
2022 	err = __register_netdevice_notifier_net(net, nb, false);
2023 	rtnl_unlock();
2024 	return err;
2025 }
2026 EXPORT_SYMBOL(register_netdevice_notifier_net);
2027 
2028 /**
2029  * unregister_netdevice_notifier_net - unregister a per-netns
2030  *                                     network notifier block
2031  * @net: network namespace
2032  * @nb: notifier
2033  *
2034  * Unregister a notifier previously registered by
2035  * register_netdevice_notifier(). The notifier is unlinked into the
2036  * kernel structures and may then be reused. A negative errno code
2037  * is returned on a failure.
2038  *
2039  * After unregistering unregister and down device events are synthesized
2040  * for all devices on the device list to the removed notifier to remove
2041  * the need for special case cleanup code.
2042  */
2043 
2044 int unregister_netdevice_notifier_net(struct net *net,
2045 				      struct notifier_block *nb)
2046 {
2047 	int err;
2048 
2049 	rtnl_lock();
2050 	err = __unregister_netdevice_notifier_net(net, nb);
2051 	rtnl_unlock();
2052 	return err;
2053 }
2054 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2055 
2056 int register_netdevice_notifier_dev_net(struct net_device *dev,
2057 					struct notifier_block *nb,
2058 					struct netdev_net_notifier *nn)
2059 {
2060 	int err;
2061 
2062 	rtnl_lock();
2063 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2064 	if (!err) {
2065 		nn->nb = nb;
2066 		list_add(&nn->list, &dev->net_notifier_list);
2067 	}
2068 	rtnl_unlock();
2069 	return err;
2070 }
2071 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2072 
2073 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2074 					  struct notifier_block *nb,
2075 					  struct netdev_net_notifier *nn)
2076 {
2077 	int err;
2078 
2079 	rtnl_lock();
2080 	list_del(&nn->list);
2081 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2082 	rtnl_unlock();
2083 	return err;
2084 }
2085 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2086 
2087 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2088 					     struct net *net)
2089 {
2090 	struct netdev_net_notifier *nn;
2091 
2092 	list_for_each_entry(nn, &dev->net_notifier_list, list) {
2093 		__unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2094 		__register_netdevice_notifier_net(net, nn->nb, true);
2095 	}
2096 }
2097 
2098 /**
2099  *	call_netdevice_notifiers_info - call all network notifier blocks
2100  *	@val: value passed unmodified to notifier function
2101  *	@info: notifier information data
2102  *
2103  *	Call all network notifier blocks.  Parameters and return value
2104  *	are as for raw_notifier_call_chain().
2105  */
2106 
2107 static int call_netdevice_notifiers_info(unsigned long val,
2108 					 struct netdev_notifier_info *info)
2109 {
2110 	struct net *net = dev_net(info->dev);
2111 	int ret;
2112 
2113 	ASSERT_RTNL();
2114 
2115 	/* Run per-netns notifier block chain first, then run the global one.
2116 	 * Hopefully, one day, the global one is going to be removed after
2117 	 * all notifier block registrators get converted to be per-netns.
2118 	 */
2119 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2120 	if (ret & NOTIFY_STOP_MASK)
2121 		return ret;
2122 	return raw_notifier_call_chain(&netdev_chain, val, info);
2123 }
2124 
2125 static int call_netdevice_notifiers_extack(unsigned long val,
2126 					   struct net_device *dev,
2127 					   struct netlink_ext_ack *extack)
2128 {
2129 	struct netdev_notifier_info info = {
2130 		.dev = dev,
2131 		.extack = extack,
2132 	};
2133 
2134 	return call_netdevice_notifiers_info(val, &info);
2135 }
2136 
2137 /**
2138  *	call_netdevice_notifiers - call all network notifier blocks
2139  *      @val: value passed unmodified to notifier function
2140  *      @dev: net_device pointer passed unmodified to notifier function
2141  *
2142  *	Call all network notifier blocks.  Parameters and return value
2143  *	are as for raw_notifier_call_chain().
2144  */
2145 
2146 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2147 {
2148 	return call_netdevice_notifiers_extack(val, dev, NULL);
2149 }
2150 EXPORT_SYMBOL(call_netdevice_notifiers);
2151 
2152 /**
2153  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2154  *	@val: value passed unmodified to notifier function
2155  *	@dev: net_device pointer passed unmodified to notifier function
2156  *	@arg: additional u32 argument passed to the notifier function
2157  *
2158  *	Call all network notifier blocks.  Parameters and return value
2159  *	are as for raw_notifier_call_chain().
2160  */
2161 static int call_netdevice_notifiers_mtu(unsigned long val,
2162 					struct net_device *dev, u32 arg)
2163 {
2164 	struct netdev_notifier_info_ext info = {
2165 		.info.dev = dev,
2166 		.ext.mtu = arg,
2167 	};
2168 
2169 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2170 
2171 	return call_netdevice_notifiers_info(val, &info.info);
2172 }
2173 
2174 #ifdef CONFIG_NET_INGRESS
2175 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2176 
2177 void net_inc_ingress_queue(void)
2178 {
2179 	static_branch_inc(&ingress_needed_key);
2180 }
2181 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2182 
2183 void net_dec_ingress_queue(void)
2184 {
2185 	static_branch_dec(&ingress_needed_key);
2186 }
2187 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2188 #endif
2189 
2190 #ifdef CONFIG_NET_EGRESS
2191 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2192 
2193 void net_inc_egress_queue(void)
2194 {
2195 	static_branch_inc(&egress_needed_key);
2196 }
2197 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2198 
2199 void net_dec_egress_queue(void)
2200 {
2201 	static_branch_dec(&egress_needed_key);
2202 }
2203 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2204 #endif
2205 
2206 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2207 #ifdef CONFIG_JUMP_LABEL
2208 static atomic_t netstamp_needed_deferred;
2209 static atomic_t netstamp_wanted;
2210 static void netstamp_clear(struct work_struct *work)
2211 {
2212 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2213 	int wanted;
2214 
2215 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2216 	if (wanted > 0)
2217 		static_branch_enable(&netstamp_needed_key);
2218 	else
2219 		static_branch_disable(&netstamp_needed_key);
2220 }
2221 static DECLARE_WORK(netstamp_work, netstamp_clear);
2222 #endif
2223 
2224 void net_enable_timestamp(void)
2225 {
2226 #ifdef CONFIG_JUMP_LABEL
2227 	int wanted;
2228 
2229 	while (1) {
2230 		wanted = atomic_read(&netstamp_wanted);
2231 		if (wanted <= 0)
2232 			break;
2233 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2234 			return;
2235 	}
2236 	atomic_inc(&netstamp_needed_deferred);
2237 	schedule_work(&netstamp_work);
2238 #else
2239 	static_branch_inc(&netstamp_needed_key);
2240 #endif
2241 }
2242 EXPORT_SYMBOL(net_enable_timestamp);
2243 
2244 void net_disable_timestamp(void)
2245 {
2246 #ifdef CONFIG_JUMP_LABEL
2247 	int wanted;
2248 
2249 	while (1) {
2250 		wanted = atomic_read(&netstamp_wanted);
2251 		if (wanted <= 1)
2252 			break;
2253 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2254 			return;
2255 	}
2256 	atomic_dec(&netstamp_needed_deferred);
2257 	schedule_work(&netstamp_work);
2258 #else
2259 	static_branch_dec(&netstamp_needed_key);
2260 #endif
2261 }
2262 EXPORT_SYMBOL(net_disable_timestamp);
2263 
2264 static inline void net_timestamp_set(struct sk_buff *skb)
2265 {
2266 	skb->tstamp = 0;
2267 	if (static_branch_unlikely(&netstamp_needed_key))
2268 		__net_timestamp(skb);
2269 }
2270 
2271 #define net_timestamp_check(COND, SKB)				\
2272 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2273 		if ((COND) && !(SKB)->tstamp)			\
2274 			__net_timestamp(SKB);			\
2275 	}							\
2276 
2277 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2278 {
2279 	return __is_skb_forwardable(dev, skb, true);
2280 }
2281 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2282 
2283 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2284 			      bool check_mtu)
2285 {
2286 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2287 
2288 	if (likely(!ret)) {
2289 		skb->protocol = eth_type_trans(skb, dev);
2290 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2291 	}
2292 
2293 	return ret;
2294 }
2295 
2296 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2297 {
2298 	return __dev_forward_skb2(dev, skb, true);
2299 }
2300 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2301 
2302 /**
2303  * dev_forward_skb - loopback an skb to another netif
2304  *
2305  * @dev: destination network device
2306  * @skb: buffer to forward
2307  *
2308  * return values:
2309  *	NET_RX_SUCCESS	(no congestion)
2310  *	NET_RX_DROP     (packet was dropped, but freed)
2311  *
2312  * dev_forward_skb can be used for injecting an skb from the
2313  * start_xmit function of one device into the receive queue
2314  * of another device.
2315  *
2316  * The receiving device may be in another namespace, so
2317  * we have to clear all information in the skb that could
2318  * impact namespace isolation.
2319  */
2320 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2321 {
2322 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2323 }
2324 EXPORT_SYMBOL_GPL(dev_forward_skb);
2325 
2326 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2327 {
2328 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2329 }
2330 
2331 static inline int deliver_skb(struct sk_buff *skb,
2332 			      struct packet_type *pt_prev,
2333 			      struct net_device *orig_dev)
2334 {
2335 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2336 		return -ENOMEM;
2337 	refcount_inc(&skb->users);
2338 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2339 }
2340 
2341 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2342 					  struct packet_type **pt,
2343 					  struct net_device *orig_dev,
2344 					  __be16 type,
2345 					  struct list_head *ptype_list)
2346 {
2347 	struct packet_type *ptype, *pt_prev = *pt;
2348 
2349 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2350 		if (ptype->type != type)
2351 			continue;
2352 		if (pt_prev)
2353 			deliver_skb(skb, pt_prev, orig_dev);
2354 		pt_prev = ptype;
2355 	}
2356 	*pt = pt_prev;
2357 }
2358 
2359 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2360 {
2361 	if (!ptype->af_packet_priv || !skb->sk)
2362 		return false;
2363 
2364 	if (ptype->id_match)
2365 		return ptype->id_match(ptype, skb->sk);
2366 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2367 		return true;
2368 
2369 	return false;
2370 }
2371 
2372 /**
2373  * dev_nit_active - return true if any network interface taps are in use
2374  *
2375  * @dev: network device to check for the presence of taps
2376  */
2377 bool dev_nit_active(struct net_device *dev)
2378 {
2379 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2380 }
2381 EXPORT_SYMBOL_GPL(dev_nit_active);
2382 
2383 /*
2384  *	Support routine. Sends outgoing frames to any network
2385  *	taps currently in use.
2386  */
2387 
2388 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2389 {
2390 	struct packet_type *ptype;
2391 	struct sk_buff *skb2 = NULL;
2392 	struct packet_type *pt_prev = NULL;
2393 	struct list_head *ptype_list = &ptype_all;
2394 
2395 	rcu_read_lock();
2396 again:
2397 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2398 		if (ptype->ignore_outgoing)
2399 			continue;
2400 
2401 		/* Never send packets back to the socket
2402 		 * they originated from - MvS (miquels@drinkel.ow.org)
2403 		 */
2404 		if (skb_loop_sk(ptype, skb))
2405 			continue;
2406 
2407 		if (pt_prev) {
2408 			deliver_skb(skb2, pt_prev, skb->dev);
2409 			pt_prev = ptype;
2410 			continue;
2411 		}
2412 
2413 		/* need to clone skb, done only once */
2414 		skb2 = skb_clone(skb, GFP_ATOMIC);
2415 		if (!skb2)
2416 			goto out_unlock;
2417 
2418 		net_timestamp_set(skb2);
2419 
2420 		/* skb->nh should be correctly
2421 		 * set by sender, so that the second statement is
2422 		 * just protection against buggy protocols.
2423 		 */
2424 		skb_reset_mac_header(skb2);
2425 
2426 		if (skb_network_header(skb2) < skb2->data ||
2427 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2428 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2429 					     ntohs(skb2->protocol),
2430 					     dev->name);
2431 			skb_reset_network_header(skb2);
2432 		}
2433 
2434 		skb2->transport_header = skb2->network_header;
2435 		skb2->pkt_type = PACKET_OUTGOING;
2436 		pt_prev = ptype;
2437 	}
2438 
2439 	if (ptype_list == &ptype_all) {
2440 		ptype_list = &dev->ptype_all;
2441 		goto again;
2442 	}
2443 out_unlock:
2444 	if (pt_prev) {
2445 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2446 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2447 		else
2448 			kfree_skb(skb2);
2449 	}
2450 	rcu_read_unlock();
2451 }
2452 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2453 
2454 /**
2455  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2456  * @dev: Network device
2457  * @txq: number of queues available
2458  *
2459  * If real_num_tx_queues is changed the tc mappings may no longer be
2460  * valid. To resolve this verify the tc mapping remains valid and if
2461  * not NULL the mapping. With no priorities mapping to this
2462  * offset/count pair it will no longer be used. In the worst case TC0
2463  * is invalid nothing can be done so disable priority mappings. If is
2464  * expected that drivers will fix this mapping if they can before
2465  * calling netif_set_real_num_tx_queues.
2466  */
2467 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2468 {
2469 	int i;
2470 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2471 
2472 	/* If TC0 is invalidated disable TC mapping */
2473 	if (tc->offset + tc->count > txq) {
2474 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2475 		dev->num_tc = 0;
2476 		return;
2477 	}
2478 
2479 	/* Invalidated prio to tc mappings set to TC0 */
2480 	for (i = 1; i < TC_BITMASK + 1; i++) {
2481 		int q = netdev_get_prio_tc_map(dev, i);
2482 
2483 		tc = &dev->tc_to_txq[q];
2484 		if (tc->offset + tc->count > txq) {
2485 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2486 				i, q);
2487 			netdev_set_prio_tc_map(dev, i, 0);
2488 		}
2489 	}
2490 }
2491 
2492 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2493 {
2494 	if (dev->num_tc) {
2495 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2496 		int i;
2497 
2498 		/* walk through the TCs and see if it falls into any of them */
2499 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2500 			if ((txq - tc->offset) < tc->count)
2501 				return i;
2502 		}
2503 
2504 		/* didn't find it, just return -1 to indicate no match */
2505 		return -1;
2506 	}
2507 
2508 	return 0;
2509 }
2510 EXPORT_SYMBOL(netdev_txq_to_tc);
2511 
2512 #ifdef CONFIG_XPS
2513 static struct static_key xps_needed __read_mostly;
2514 static struct static_key xps_rxqs_needed __read_mostly;
2515 static DEFINE_MUTEX(xps_map_mutex);
2516 #define xmap_dereference(P)		\
2517 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2518 
2519 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2520 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2521 {
2522 	struct xps_map *map = NULL;
2523 	int pos;
2524 
2525 	if (dev_maps)
2526 		map = xmap_dereference(dev_maps->attr_map[tci]);
2527 	if (!map)
2528 		return false;
2529 
2530 	for (pos = map->len; pos--;) {
2531 		if (map->queues[pos] != index)
2532 			continue;
2533 
2534 		if (map->len > 1) {
2535 			map->queues[pos] = map->queues[--map->len];
2536 			break;
2537 		}
2538 
2539 		if (old_maps)
2540 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2541 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2542 		kfree_rcu(map, rcu);
2543 		return false;
2544 	}
2545 
2546 	return true;
2547 }
2548 
2549 static bool remove_xps_queue_cpu(struct net_device *dev,
2550 				 struct xps_dev_maps *dev_maps,
2551 				 int cpu, u16 offset, u16 count)
2552 {
2553 	int num_tc = dev_maps->num_tc;
2554 	bool active = false;
2555 	int tci;
2556 
2557 	for (tci = cpu * num_tc; num_tc--; tci++) {
2558 		int i, j;
2559 
2560 		for (i = count, j = offset; i--; j++) {
2561 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2562 				break;
2563 		}
2564 
2565 		active |= i < 0;
2566 	}
2567 
2568 	return active;
2569 }
2570 
2571 static void reset_xps_maps(struct net_device *dev,
2572 			   struct xps_dev_maps *dev_maps,
2573 			   enum xps_map_type type)
2574 {
2575 	static_key_slow_dec_cpuslocked(&xps_needed);
2576 	if (type == XPS_RXQS)
2577 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2578 
2579 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2580 
2581 	kfree_rcu(dev_maps, rcu);
2582 }
2583 
2584 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2585 			   u16 offset, u16 count)
2586 {
2587 	struct xps_dev_maps *dev_maps;
2588 	bool active = false;
2589 	int i, j;
2590 
2591 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2592 	if (!dev_maps)
2593 		return;
2594 
2595 	for (j = 0; j < dev_maps->nr_ids; j++)
2596 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2597 	if (!active)
2598 		reset_xps_maps(dev, dev_maps, type);
2599 
2600 	if (type == XPS_CPUS) {
2601 		for (i = offset + (count - 1); count--; i--)
2602 			netdev_queue_numa_node_write(
2603 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2604 	}
2605 }
2606 
2607 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2608 				   u16 count)
2609 {
2610 	if (!static_key_false(&xps_needed))
2611 		return;
2612 
2613 	cpus_read_lock();
2614 	mutex_lock(&xps_map_mutex);
2615 
2616 	if (static_key_false(&xps_rxqs_needed))
2617 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2618 
2619 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2620 
2621 	mutex_unlock(&xps_map_mutex);
2622 	cpus_read_unlock();
2623 }
2624 
2625 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2626 {
2627 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2628 }
2629 
2630 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2631 				      u16 index, bool is_rxqs_map)
2632 {
2633 	struct xps_map *new_map;
2634 	int alloc_len = XPS_MIN_MAP_ALLOC;
2635 	int i, pos;
2636 
2637 	for (pos = 0; map && pos < map->len; pos++) {
2638 		if (map->queues[pos] != index)
2639 			continue;
2640 		return map;
2641 	}
2642 
2643 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2644 	if (map) {
2645 		if (pos < map->alloc_len)
2646 			return map;
2647 
2648 		alloc_len = map->alloc_len * 2;
2649 	}
2650 
2651 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2652 	 *  map
2653 	 */
2654 	if (is_rxqs_map)
2655 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2656 	else
2657 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2658 				       cpu_to_node(attr_index));
2659 	if (!new_map)
2660 		return NULL;
2661 
2662 	for (i = 0; i < pos; i++)
2663 		new_map->queues[i] = map->queues[i];
2664 	new_map->alloc_len = alloc_len;
2665 	new_map->len = pos;
2666 
2667 	return new_map;
2668 }
2669 
2670 /* Copy xps maps at a given index */
2671 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2672 			      struct xps_dev_maps *new_dev_maps, int index,
2673 			      int tc, bool skip_tc)
2674 {
2675 	int i, tci = index * dev_maps->num_tc;
2676 	struct xps_map *map;
2677 
2678 	/* copy maps belonging to foreign traffic classes */
2679 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2680 		if (i == tc && skip_tc)
2681 			continue;
2682 
2683 		/* fill in the new device map from the old device map */
2684 		map = xmap_dereference(dev_maps->attr_map[tci]);
2685 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2686 	}
2687 }
2688 
2689 /* Must be called under cpus_read_lock */
2690 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2691 			  u16 index, enum xps_map_type type)
2692 {
2693 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2694 	const unsigned long *online_mask = NULL;
2695 	bool active = false, copy = false;
2696 	int i, j, tci, numa_node_id = -2;
2697 	int maps_sz, num_tc = 1, tc = 0;
2698 	struct xps_map *map, *new_map;
2699 	unsigned int nr_ids;
2700 
2701 	if (dev->num_tc) {
2702 		/* Do not allow XPS on subordinate device directly */
2703 		num_tc = dev->num_tc;
2704 		if (num_tc < 0)
2705 			return -EINVAL;
2706 
2707 		/* If queue belongs to subordinate dev use its map */
2708 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2709 
2710 		tc = netdev_txq_to_tc(dev, index);
2711 		if (tc < 0)
2712 			return -EINVAL;
2713 	}
2714 
2715 	mutex_lock(&xps_map_mutex);
2716 
2717 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2718 	if (type == XPS_RXQS) {
2719 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2720 		nr_ids = dev->num_rx_queues;
2721 	} else {
2722 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2723 		if (num_possible_cpus() > 1)
2724 			online_mask = cpumask_bits(cpu_online_mask);
2725 		nr_ids = nr_cpu_ids;
2726 	}
2727 
2728 	if (maps_sz < L1_CACHE_BYTES)
2729 		maps_sz = L1_CACHE_BYTES;
2730 
2731 	/* The old dev_maps could be larger or smaller than the one we're
2732 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2733 	 * between. We could try to be smart, but let's be safe instead and only
2734 	 * copy foreign traffic classes if the two map sizes match.
2735 	 */
2736 	if (dev_maps &&
2737 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2738 		copy = true;
2739 
2740 	/* allocate memory for queue storage */
2741 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2742 	     j < nr_ids;) {
2743 		if (!new_dev_maps) {
2744 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2745 			if (!new_dev_maps) {
2746 				mutex_unlock(&xps_map_mutex);
2747 				return -ENOMEM;
2748 			}
2749 
2750 			new_dev_maps->nr_ids = nr_ids;
2751 			new_dev_maps->num_tc = num_tc;
2752 		}
2753 
2754 		tci = j * num_tc + tc;
2755 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2756 
2757 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2758 		if (!map)
2759 			goto error;
2760 
2761 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2762 	}
2763 
2764 	if (!new_dev_maps)
2765 		goto out_no_new_maps;
2766 
2767 	if (!dev_maps) {
2768 		/* Increment static keys at most once per type */
2769 		static_key_slow_inc_cpuslocked(&xps_needed);
2770 		if (type == XPS_RXQS)
2771 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2772 	}
2773 
2774 	for (j = 0; j < nr_ids; j++) {
2775 		bool skip_tc = false;
2776 
2777 		tci = j * num_tc + tc;
2778 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2779 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2780 			/* add tx-queue to CPU/rx-queue maps */
2781 			int pos = 0;
2782 
2783 			skip_tc = true;
2784 
2785 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2786 			while ((pos < map->len) && (map->queues[pos] != index))
2787 				pos++;
2788 
2789 			if (pos == map->len)
2790 				map->queues[map->len++] = index;
2791 #ifdef CONFIG_NUMA
2792 			if (type == XPS_CPUS) {
2793 				if (numa_node_id == -2)
2794 					numa_node_id = cpu_to_node(j);
2795 				else if (numa_node_id != cpu_to_node(j))
2796 					numa_node_id = -1;
2797 			}
2798 #endif
2799 		}
2800 
2801 		if (copy)
2802 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2803 					  skip_tc);
2804 	}
2805 
2806 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2807 
2808 	/* Cleanup old maps */
2809 	if (!dev_maps)
2810 		goto out_no_old_maps;
2811 
2812 	for (j = 0; j < dev_maps->nr_ids; j++) {
2813 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2814 			map = xmap_dereference(dev_maps->attr_map[tci]);
2815 			if (!map)
2816 				continue;
2817 
2818 			if (copy) {
2819 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2820 				if (map == new_map)
2821 					continue;
2822 			}
2823 
2824 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2825 			kfree_rcu(map, rcu);
2826 		}
2827 	}
2828 
2829 	old_dev_maps = dev_maps;
2830 
2831 out_no_old_maps:
2832 	dev_maps = new_dev_maps;
2833 	active = true;
2834 
2835 out_no_new_maps:
2836 	if (type == XPS_CPUS)
2837 		/* update Tx queue numa node */
2838 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2839 					     (numa_node_id >= 0) ?
2840 					     numa_node_id : NUMA_NO_NODE);
2841 
2842 	if (!dev_maps)
2843 		goto out_no_maps;
2844 
2845 	/* removes tx-queue from unused CPUs/rx-queues */
2846 	for (j = 0; j < dev_maps->nr_ids; j++) {
2847 		tci = j * dev_maps->num_tc;
2848 
2849 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2850 			if (i == tc &&
2851 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2852 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2853 				continue;
2854 
2855 			active |= remove_xps_queue(dev_maps,
2856 						   copy ? old_dev_maps : NULL,
2857 						   tci, index);
2858 		}
2859 	}
2860 
2861 	if (old_dev_maps)
2862 		kfree_rcu(old_dev_maps, rcu);
2863 
2864 	/* free map if not active */
2865 	if (!active)
2866 		reset_xps_maps(dev, dev_maps, type);
2867 
2868 out_no_maps:
2869 	mutex_unlock(&xps_map_mutex);
2870 
2871 	return 0;
2872 error:
2873 	/* remove any maps that we added */
2874 	for (j = 0; j < nr_ids; j++) {
2875 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2876 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2877 			map = copy ?
2878 			      xmap_dereference(dev_maps->attr_map[tci]) :
2879 			      NULL;
2880 			if (new_map && new_map != map)
2881 				kfree(new_map);
2882 		}
2883 	}
2884 
2885 	mutex_unlock(&xps_map_mutex);
2886 
2887 	kfree(new_dev_maps);
2888 	return -ENOMEM;
2889 }
2890 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2891 
2892 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2893 			u16 index)
2894 {
2895 	int ret;
2896 
2897 	cpus_read_lock();
2898 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2899 	cpus_read_unlock();
2900 
2901 	return ret;
2902 }
2903 EXPORT_SYMBOL(netif_set_xps_queue);
2904 
2905 #endif
2906 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2907 {
2908 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2909 
2910 	/* Unbind any subordinate channels */
2911 	while (txq-- != &dev->_tx[0]) {
2912 		if (txq->sb_dev)
2913 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2914 	}
2915 }
2916 
2917 void netdev_reset_tc(struct net_device *dev)
2918 {
2919 #ifdef CONFIG_XPS
2920 	netif_reset_xps_queues_gt(dev, 0);
2921 #endif
2922 	netdev_unbind_all_sb_channels(dev);
2923 
2924 	/* Reset TC configuration of device */
2925 	dev->num_tc = 0;
2926 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2927 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2928 }
2929 EXPORT_SYMBOL(netdev_reset_tc);
2930 
2931 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2932 {
2933 	if (tc >= dev->num_tc)
2934 		return -EINVAL;
2935 
2936 #ifdef CONFIG_XPS
2937 	netif_reset_xps_queues(dev, offset, count);
2938 #endif
2939 	dev->tc_to_txq[tc].count = count;
2940 	dev->tc_to_txq[tc].offset = offset;
2941 	return 0;
2942 }
2943 EXPORT_SYMBOL(netdev_set_tc_queue);
2944 
2945 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2946 {
2947 	if (num_tc > TC_MAX_QUEUE)
2948 		return -EINVAL;
2949 
2950 #ifdef CONFIG_XPS
2951 	netif_reset_xps_queues_gt(dev, 0);
2952 #endif
2953 	netdev_unbind_all_sb_channels(dev);
2954 
2955 	dev->num_tc = num_tc;
2956 	return 0;
2957 }
2958 EXPORT_SYMBOL(netdev_set_num_tc);
2959 
2960 void netdev_unbind_sb_channel(struct net_device *dev,
2961 			      struct net_device *sb_dev)
2962 {
2963 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2964 
2965 #ifdef CONFIG_XPS
2966 	netif_reset_xps_queues_gt(sb_dev, 0);
2967 #endif
2968 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2969 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2970 
2971 	while (txq-- != &dev->_tx[0]) {
2972 		if (txq->sb_dev == sb_dev)
2973 			txq->sb_dev = NULL;
2974 	}
2975 }
2976 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2977 
2978 int netdev_bind_sb_channel_queue(struct net_device *dev,
2979 				 struct net_device *sb_dev,
2980 				 u8 tc, u16 count, u16 offset)
2981 {
2982 	/* Make certain the sb_dev and dev are already configured */
2983 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2984 		return -EINVAL;
2985 
2986 	/* We cannot hand out queues we don't have */
2987 	if ((offset + count) > dev->real_num_tx_queues)
2988 		return -EINVAL;
2989 
2990 	/* Record the mapping */
2991 	sb_dev->tc_to_txq[tc].count = count;
2992 	sb_dev->tc_to_txq[tc].offset = offset;
2993 
2994 	/* Provide a way for Tx queue to find the tc_to_txq map or
2995 	 * XPS map for itself.
2996 	 */
2997 	while (count--)
2998 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2999 
3000 	return 0;
3001 }
3002 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3003 
3004 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3005 {
3006 	/* Do not use a multiqueue device to represent a subordinate channel */
3007 	if (netif_is_multiqueue(dev))
3008 		return -ENODEV;
3009 
3010 	/* We allow channels 1 - 32767 to be used for subordinate channels.
3011 	 * Channel 0 is meant to be "native" mode and used only to represent
3012 	 * the main root device. We allow writing 0 to reset the device back
3013 	 * to normal mode after being used as a subordinate channel.
3014 	 */
3015 	if (channel > S16_MAX)
3016 		return -EINVAL;
3017 
3018 	dev->num_tc = -channel;
3019 
3020 	return 0;
3021 }
3022 EXPORT_SYMBOL(netdev_set_sb_channel);
3023 
3024 /*
3025  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3026  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3027  */
3028 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3029 {
3030 	bool disabling;
3031 	int rc;
3032 
3033 	disabling = txq < dev->real_num_tx_queues;
3034 
3035 	if (txq < 1 || txq > dev->num_tx_queues)
3036 		return -EINVAL;
3037 
3038 	if (dev->reg_state == NETREG_REGISTERED ||
3039 	    dev->reg_state == NETREG_UNREGISTERING) {
3040 		ASSERT_RTNL();
3041 
3042 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3043 						  txq);
3044 		if (rc)
3045 			return rc;
3046 
3047 		if (dev->num_tc)
3048 			netif_setup_tc(dev, txq);
3049 
3050 		dev->real_num_tx_queues = txq;
3051 
3052 		if (disabling) {
3053 			synchronize_net();
3054 			qdisc_reset_all_tx_gt(dev, txq);
3055 #ifdef CONFIG_XPS
3056 			netif_reset_xps_queues_gt(dev, txq);
3057 #endif
3058 		}
3059 	} else {
3060 		dev->real_num_tx_queues = txq;
3061 	}
3062 
3063 	return 0;
3064 }
3065 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3066 
3067 #ifdef CONFIG_SYSFS
3068 /**
3069  *	netif_set_real_num_rx_queues - set actual number of RX queues used
3070  *	@dev: Network device
3071  *	@rxq: Actual number of RX queues
3072  *
3073  *	This must be called either with the rtnl_lock held or before
3074  *	registration of the net device.  Returns 0 on success, or a
3075  *	negative error code.  If called before registration, it always
3076  *	succeeds.
3077  */
3078 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3079 {
3080 	int rc;
3081 
3082 	if (rxq < 1 || rxq > dev->num_rx_queues)
3083 		return -EINVAL;
3084 
3085 	if (dev->reg_state == NETREG_REGISTERED) {
3086 		ASSERT_RTNL();
3087 
3088 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3089 						  rxq);
3090 		if (rc)
3091 			return rc;
3092 	}
3093 
3094 	dev->real_num_rx_queues = rxq;
3095 	return 0;
3096 }
3097 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3098 #endif
3099 
3100 /**
3101  * netif_get_num_default_rss_queues - default number of RSS queues
3102  *
3103  * This routine should set an upper limit on the number of RSS queues
3104  * used by default by multiqueue devices.
3105  */
3106 int netif_get_num_default_rss_queues(void)
3107 {
3108 	return is_kdump_kernel() ?
3109 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3110 }
3111 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3112 
3113 static void __netif_reschedule(struct Qdisc *q)
3114 {
3115 	struct softnet_data *sd;
3116 	unsigned long flags;
3117 
3118 	local_irq_save(flags);
3119 	sd = this_cpu_ptr(&softnet_data);
3120 	q->next_sched = NULL;
3121 	*sd->output_queue_tailp = q;
3122 	sd->output_queue_tailp = &q->next_sched;
3123 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3124 	local_irq_restore(flags);
3125 }
3126 
3127 void __netif_schedule(struct Qdisc *q)
3128 {
3129 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3130 		__netif_reschedule(q);
3131 }
3132 EXPORT_SYMBOL(__netif_schedule);
3133 
3134 struct dev_kfree_skb_cb {
3135 	enum skb_free_reason reason;
3136 };
3137 
3138 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3139 {
3140 	return (struct dev_kfree_skb_cb *)skb->cb;
3141 }
3142 
3143 void netif_schedule_queue(struct netdev_queue *txq)
3144 {
3145 	rcu_read_lock();
3146 	if (!netif_xmit_stopped(txq)) {
3147 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3148 
3149 		__netif_schedule(q);
3150 	}
3151 	rcu_read_unlock();
3152 }
3153 EXPORT_SYMBOL(netif_schedule_queue);
3154 
3155 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3156 {
3157 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3158 		struct Qdisc *q;
3159 
3160 		rcu_read_lock();
3161 		q = rcu_dereference(dev_queue->qdisc);
3162 		__netif_schedule(q);
3163 		rcu_read_unlock();
3164 	}
3165 }
3166 EXPORT_SYMBOL(netif_tx_wake_queue);
3167 
3168 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3169 {
3170 	unsigned long flags;
3171 
3172 	if (unlikely(!skb))
3173 		return;
3174 
3175 	if (likely(refcount_read(&skb->users) == 1)) {
3176 		smp_rmb();
3177 		refcount_set(&skb->users, 0);
3178 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3179 		return;
3180 	}
3181 	get_kfree_skb_cb(skb)->reason = reason;
3182 	local_irq_save(flags);
3183 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3184 	__this_cpu_write(softnet_data.completion_queue, skb);
3185 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3186 	local_irq_restore(flags);
3187 }
3188 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3189 
3190 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3191 {
3192 	if (in_irq() || irqs_disabled())
3193 		__dev_kfree_skb_irq(skb, reason);
3194 	else
3195 		dev_kfree_skb(skb);
3196 }
3197 EXPORT_SYMBOL(__dev_kfree_skb_any);
3198 
3199 
3200 /**
3201  * netif_device_detach - mark device as removed
3202  * @dev: network device
3203  *
3204  * Mark device as removed from system and therefore no longer available.
3205  */
3206 void netif_device_detach(struct net_device *dev)
3207 {
3208 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3209 	    netif_running(dev)) {
3210 		netif_tx_stop_all_queues(dev);
3211 	}
3212 }
3213 EXPORT_SYMBOL(netif_device_detach);
3214 
3215 /**
3216  * netif_device_attach - mark device as attached
3217  * @dev: network device
3218  *
3219  * Mark device as attached from system and restart if needed.
3220  */
3221 void netif_device_attach(struct net_device *dev)
3222 {
3223 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3224 	    netif_running(dev)) {
3225 		netif_tx_wake_all_queues(dev);
3226 		__netdev_watchdog_up(dev);
3227 	}
3228 }
3229 EXPORT_SYMBOL(netif_device_attach);
3230 
3231 /*
3232  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3233  * to be used as a distribution range.
3234  */
3235 static u16 skb_tx_hash(const struct net_device *dev,
3236 		       const struct net_device *sb_dev,
3237 		       struct sk_buff *skb)
3238 {
3239 	u32 hash;
3240 	u16 qoffset = 0;
3241 	u16 qcount = dev->real_num_tx_queues;
3242 
3243 	if (dev->num_tc) {
3244 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3245 
3246 		qoffset = sb_dev->tc_to_txq[tc].offset;
3247 		qcount = sb_dev->tc_to_txq[tc].count;
3248 	}
3249 
3250 	if (skb_rx_queue_recorded(skb)) {
3251 		hash = skb_get_rx_queue(skb);
3252 		if (hash >= qoffset)
3253 			hash -= qoffset;
3254 		while (unlikely(hash >= qcount))
3255 			hash -= qcount;
3256 		return hash + qoffset;
3257 	}
3258 
3259 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3260 }
3261 
3262 static void skb_warn_bad_offload(const struct sk_buff *skb)
3263 {
3264 	static const netdev_features_t null_features;
3265 	struct net_device *dev = skb->dev;
3266 	const char *name = "";
3267 
3268 	if (!net_ratelimit())
3269 		return;
3270 
3271 	if (dev) {
3272 		if (dev->dev.parent)
3273 			name = dev_driver_string(dev->dev.parent);
3274 		else
3275 			name = netdev_name(dev);
3276 	}
3277 	skb_dump(KERN_WARNING, skb, false);
3278 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3279 	     name, dev ? &dev->features : &null_features,
3280 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3281 }
3282 
3283 /*
3284  * Invalidate hardware checksum when packet is to be mangled, and
3285  * complete checksum manually on outgoing path.
3286  */
3287 int skb_checksum_help(struct sk_buff *skb)
3288 {
3289 	__wsum csum;
3290 	int ret = 0, offset;
3291 
3292 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3293 		goto out_set_summed;
3294 
3295 	if (unlikely(skb_is_gso(skb))) {
3296 		skb_warn_bad_offload(skb);
3297 		return -EINVAL;
3298 	}
3299 
3300 	/* Before computing a checksum, we should make sure no frag could
3301 	 * be modified by an external entity : checksum could be wrong.
3302 	 */
3303 	if (skb_has_shared_frag(skb)) {
3304 		ret = __skb_linearize(skb);
3305 		if (ret)
3306 			goto out;
3307 	}
3308 
3309 	offset = skb_checksum_start_offset(skb);
3310 	BUG_ON(offset >= skb_headlen(skb));
3311 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3312 
3313 	offset += skb->csum_offset;
3314 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3315 
3316 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3317 	if (ret)
3318 		goto out;
3319 
3320 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3321 out_set_summed:
3322 	skb->ip_summed = CHECKSUM_NONE;
3323 out:
3324 	return ret;
3325 }
3326 EXPORT_SYMBOL(skb_checksum_help);
3327 
3328 int skb_crc32c_csum_help(struct sk_buff *skb)
3329 {
3330 	__le32 crc32c_csum;
3331 	int ret = 0, offset, start;
3332 
3333 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3334 		goto out;
3335 
3336 	if (unlikely(skb_is_gso(skb)))
3337 		goto out;
3338 
3339 	/* Before computing a checksum, we should make sure no frag could
3340 	 * be modified by an external entity : checksum could be wrong.
3341 	 */
3342 	if (unlikely(skb_has_shared_frag(skb))) {
3343 		ret = __skb_linearize(skb);
3344 		if (ret)
3345 			goto out;
3346 	}
3347 	start = skb_checksum_start_offset(skb);
3348 	offset = start + offsetof(struct sctphdr, checksum);
3349 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3350 		ret = -EINVAL;
3351 		goto out;
3352 	}
3353 
3354 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3355 	if (ret)
3356 		goto out;
3357 
3358 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3359 						  skb->len - start, ~(__u32)0,
3360 						  crc32c_csum_stub));
3361 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3362 	skb->ip_summed = CHECKSUM_NONE;
3363 	skb->csum_not_inet = 0;
3364 out:
3365 	return ret;
3366 }
3367 
3368 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3369 {
3370 	__be16 type = skb->protocol;
3371 
3372 	/* Tunnel gso handlers can set protocol to ethernet. */
3373 	if (type == htons(ETH_P_TEB)) {
3374 		struct ethhdr *eth;
3375 
3376 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3377 			return 0;
3378 
3379 		eth = (struct ethhdr *)skb->data;
3380 		type = eth->h_proto;
3381 	}
3382 
3383 	return __vlan_get_protocol(skb, type, depth);
3384 }
3385 
3386 /**
3387  *	skb_mac_gso_segment - mac layer segmentation handler.
3388  *	@skb: buffer to segment
3389  *	@features: features for the output path (see dev->features)
3390  */
3391 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3392 				    netdev_features_t features)
3393 {
3394 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3395 	struct packet_offload *ptype;
3396 	int vlan_depth = skb->mac_len;
3397 	__be16 type = skb_network_protocol(skb, &vlan_depth);
3398 
3399 	if (unlikely(!type))
3400 		return ERR_PTR(-EINVAL);
3401 
3402 	__skb_pull(skb, vlan_depth);
3403 
3404 	rcu_read_lock();
3405 	list_for_each_entry_rcu(ptype, &offload_base, list) {
3406 		if (ptype->type == type && ptype->callbacks.gso_segment) {
3407 			segs = ptype->callbacks.gso_segment(skb, features);
3408 			break;
3409 		}
3410 	}
3411 	rcu_read_unlock();
3412 
3413 	__skb_push(skb, skb->data - skb_mac_header(skb));
3414 
3415 	return segs;
3416 }
3417 EXPORT_SYMBOL(skb_mac_gso_segment);
3418 
3419 
3420 /* openvswitch calls this on rx path, so we need a different check.
3421  */
3422 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3423 {
3424 	if (tx_path)
3425 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3426 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3427 
3428 	return skb->ip_summed == CHECKSUM_NONE;
3429 }
3430 
3431 /**
3432  *	__skb_gso_segment - Perform segmentation on skb.
3433  *	@skb: buffer to segment
3434  *	@features: features for the output path (see dev->features)
3435  *	@tx_path: whether it is called in TX path
3436  *
3437  *	This function segments the given skb and returns a list of segments.
3438  *
3439  *	It may return NULL if the skb requires no segmentation.  This is
3440  *	only possible when GSO is used for verifying header integrity.
3441  *
3442  *	Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3443  */
3444 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3445 				  netdev_features_t features, bool tx_path)
3446 {
3447 	struct sk_buff *segs;
3448 
3449 	if (unlikely(skb_needs_check(skb, tx_path))) {
3450 		int err;
3451 
3452 		/* We're going to init ->check field in TCP or UDP header */
3453 		err = skb_cow_head(skb, 0);
3454 		if (err < 0)
3455 			return ERR_PTR(err);
3456 	}
3457 
3458 	/* Only report GSO partial support if it will enable us to
3459 	 * support segmentation on this frame without needing additional
3460 	 * work.
3461 	 */
3462 	if (features & NETIF_F_GSO_PARTIAL) {
3463 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3464 		struct net_device *dev = skb->dev;
3465 
3466 		partial_features |= dev->features & dev->gso_partial_features;
3467 		if (!skb_gso_ok(skb, features | partial_features))
3468 			features &= ~NETIF_F_GSO_PARTIAL;
3469 	}
3470 
3471 	BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3472 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3473 
3474 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3475 	SKB_GSO_CB(skb)->encap_level = 0;
3476 
3477 	skb_reset_mac_header(skb);
3478 	skb_reset_mac_len(skb);
3479 
3480 	segs = skb_mac_gso_segment(skb, features);
3481 
3482 	if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3483 		skb_warn_bad_offload(skb);
3484 
3485 	return segs;
3486 }
3487 EXPORT_SYMBOL(__skb_gso_segment);
3488 
3489 /* Take action when hardware reception checksum errors are detected. */
3490 #ifdef CONFIG_BUG
3491 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3492 {
3493 	pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3494 	skb_dump(KERN_ERR, skb, true);
3495 	dump_stack();
3496 }
3497 
3498 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3499 {
3500 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3501 }
3502 EXPORT_SYMBOL(netdev_rx_csum_fault);
3503 #endif
3504 
3505 /* XXX: check that highmem exists at all on the given machine. */
3506 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3507 {
3508 #ifdef CONFIG_HIGHMEM
3509 	int i;
3510 
3511 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3512 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3513 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3514 
3515 			if (PageHighMem(skb_frag_page(frag)))
3516 				return 1;
3517 		}
3518 	}
3519 #endif
3520 	return 0;
3521 }
3522 
3523 /* If MPLS offload request, verify we are testing hardware MPLS features
3524  * instead of standard features for the netdev.
3525  */
3526 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3527 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3528 					   netdev_features_t features,
3529 					   __be16 type)
3530 {
3531 	if (eth_p_mpls(type))
3532 		features &= skb->dev->mpls_features;
3533 
3534 	return features;
3535 }
3536 #else
3537 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3538 					   netdev_features_t features,
3539 					   __be16 type)
3540 {
3541 	return features;
3542 }
3543 #endif
3544 
3545 static netdev_features_t harmonize_features(struct sk_buff *skb,
3546 	netdev_features_t features)
3547 {
3548 	__be16 type;
3549 
3550 	type = skb_network_protocol(skb, NULL);
3551 	features = net_mpls_features(skb, features, type);
3552 
3553 	if (skb->ip_summed != CHECKSUM_NONE &&
3554 	    !can_checksum_protocol(features, type)) {
3555 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3556 	}
3557 	if (illegal_highdma(skb->dev, skb))
3558 		features &= ~NETIF_F_SG;
3559 
3560 	return features;
3561 }
3562 
3563 netdev_features_t passthru_features_check(struct sk_buff *skb,
3564 					  struct net_device *dev,
3565 					  netdev_features_t features)
3566 {
3567 	return features;
3568 }
3569 EXPORT_SYMBOL(passthru_features_check);
3570 
3571 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3572 					     struct net_device *dev,
3573 					     netdev_features_t features)
3574 {
3575 	return vlan_features_check(skb, features);
3576 }
3577 
3578 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3579 					    struct net_device *dev,
3580 					    netdev_features_t features)
3581 {
3582 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3583 
3584 	if (gso_segs > dev->gso_max_segs)
3585 		return features & ~NETIF_F_GSO_MASK;
3586 
3587 	if (!skb_shinfo(skb)->gso_type) {
3588 		skb_warn_bad_offload(skb);
3589 		return features & ~NETIF_F_GSO_MASK;
3590 	}
3591 
3592 	/* Support for GSO partial features requires software
3593 	 * intervention before we can actually process the packets
3594 	 * so we need to strip support for any partial features now
3595 	 * and we can pull them back in after we have partially
3596 	 * segmented the frame.
3597 	 */
3598 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3599 		features &= ~dev->gso_partial_features;
3600 
3601 	/* Make sure to clear the IPv4 ID mangling feature if the
3602 	 * IPv4 header has the potential to be fragmented.
3603 	 */
3604 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3605 		struct iphdr *iph = skb->encapsulation ?
3606 				    inner_ip_hdr(skb) : ip_hdr(skb);
3607 
3608 		if (!(iph->frag_off & htons(IP_DF)))
3609 			features &= ~NETIF_F_TSO_MANGLEID;
3610 	}
3611 
3612 	return features;
3613 }
3614 
3615 netdev_features_t netif_skb_features(struct sk_buff *skb)
3616 {
3617 	struct net_device *dev = skb->dev;
3618 	netdev_features_t features = dev->features;
3619 
3620 	if (skb_is_gso(skb))
3621 		features = gso_features_check(skb, dev, features);
3622 
3623 	/* If encapsulation offload request, verify we are testing
3624 	 * hardware encapsulation features instead of standard
3625 	 * features for the netdev
3626 	 */
3627 	if (skb->encapsulation)
3628 		features &= dev->hw_enc_features;
3629 
3630 	if (skb_vlan_tagged(skb))
3631 		features = netdev_intersect_features(features,
3632 						     dev->vlan_features |
3633 						     NETIF_F_HW_VLAN_CTAG_TX |
3634 						     NETIF_F_HW_VLAN_STAG_TX);
3635 
3636 	if (dev->netdev_ops->ndo_features_check)
3637 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3638 								features);
3639 	else
3640 		features &= dflt_features_check(skb, dev, features);
3641 
3642 	return harmonize_features(skb, features);
3643 }
3644 EXPORT_SYMBOL(netif_skb_features);
3645 
3646 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3647 		    struct netdev_queue *txq, bool more)
3648 {
3649 	unsigned int len;
3650 	int rc;
3651 
3652 	if (dev_nit_active(dev))
3653 		dev_queue_xmit_nit(skb, dev);
3654 
3655 	len = skb->len;
3656 	PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3657 	trace_net_dev_start_xmit(skb, dev);
3658 	rc = netdev_start_xmit(skb, dev, txq, more);
3659 	trace_net_dev_xmit(skb, rc, dev, len);
3660 
3661 	return rc;
3662 }
3663 
3664 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3665 				    struct netdev_queue *txq, int *ret)
3666 {
3667 	struct sk_buff *skb = first;
3668 	int rc = NETDEV_TX_OK;
3669 
3670 	while (skb) {
3671 		struct sk_buff *next = skb->next;
3672 
3673 		skb_mark_not_on_list(skb);
3674 		rc = xmit_one(skb, dev, txq, next != NULL);
3675 		if (unlikely(!dev_xmit_complete(rc))) {
3676 			skb->next = next;
3677 			goto out;
3678 		}
3679 
3680 		skb = next;
3681 		if (netif_tx_queue_stopped(txq) && skb) {
3682 			rc = NETDEV_TX_BUSY;
3683 			break;
3684 		}
3685 	}
3686 
3687 out:
3688 	*ret = rc;
3689 	return skb;
3690 }
3691 
3692 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3693 					  netdev_features_t features)
3694 {
3695 	if (skb_vlan_tag_present(skb) &&
3696 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3697 		skb = __vlan_hwaccel_push_inside(skb);
3698 	return skb;
3699 }
3700 
3701 int skb_csum_hwoffload_help(struct sk_buff *skb,
3702 			    const netdev_features_t features)
3703 {
3704 	if (unlikely(skb_csum_is_sctp(skb)))
3705 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3706 			skb_crc32c_csum_help(skb);
3707 
3708 	if (features & NETIF_F_HW_CSUM)
3709 		return 0;
3710 
3711 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3712 		switch (skb->csum_offset) {
3713 		case offsetof(struct tcphdr, check):
3714 		case offsetof(struct udphdr, check):
3715 			return 0;
3716 		}
3717 	}
3718 
3719 	return skb_checksum_help(skb);
3720 }
3721 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3722 
3723 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3724 {
3725 	netdev_features_t features;
3726 
3727 	features = netif_skb_features(skb);
3728 	skb = validate_xmit_vlan(skb, features);
3729 	if (unlikely(!skb))
3730 		goto out_null;
3731 
3732 	skb = sk_validate_xmit_skb(skb, dev);
3733 	if (unlikely(!skb))
3734 		goto out_null;
3735 
3736 	if (netif_needs_gso(skb, features)) {
3737 		struct sk_buff *segs;
3738 
3739 		segs = skb_gso_segment(skb, features);
3740 		if (IS_ERR(segs)) {
3741 			goto out_kfree_skb;
3742 		} else if (segs) {
3743 			consume_skb(skb);
3744 			skb = segs;
3745 		}
3746 	} else {
3747 		if (skb_needs_linearize(skb, features) &&
3748 		    __skb_linearize(skb))
3749 			goto out_kfree_skb;
3750 
3751 		/* If packet is not checksummed and device does not
3752 		 * support checksumming for this protocol, complete
3753 		 * checksumming here.
3754 		 */
3755 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3756 			if (skb->encapsulation)
3757 				skb_set_inner_transport_header(skb,
3758 							       skb_checksum_start_offset(skb));
3759 			else
3760 				skb_set_transport_header(skb,
3761 							 skb_checksum_start_offset(skb));
3762 			if (skb_csum_hwoffload_help(skb, features))
3763 				goto out_kfree_skb;
3764 		}
3765 	}
3766 
3767 	skb = validate_xmit_xfrm(skb, features, again);
3768 
3769 	return skb;
3770 
3771 out_kfree_skb:
3772 	kfree_skb(skb);
3773 out_null:
3774 	atomic_long_inc(&dev->tx_dropped);
3775 	return NULL;
3776 }
3777 
3778 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3779 {
3780 	struct sk_buff *next, *head = NULL, *tail;
3781 
3782 	for (; skb != NULL; skb = next) {
3783 		next = skb->next;
3784 		skb_mark_not_on_list(skb);
3785 
3786 		/* in case skb wont be segmented, point to itself */
3787 		skb->prev = skb;
3788 
3789 		skb = validate_xmit_skb(skb, dev, again);
3790 		if (!skb)
3791 			continue;
3792 
3793 		if (!head)
3794 			head = skb;
3795 		else
3796 			tail->next = skb;
3797 		/* If skb was segmented, skb->prev points to
3798 		 * the last segment. If not, it still contains skb.
3799 		 */
3800 		tail = skb->prev;
3801 	}
3802 	return head;
3803 }
3804 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3805 
3806 static void qdisc_pkt_len_init(struct sk_buff *skb)
3807 {
3808 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3809 
3810 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3811 
3812 	/* To get more precise estimation of bytes sent on wire,
3813 	 * we add to pkt_len the headers size of all segments
3814 	 */
3815 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3816 		unsigned int hdr_len;
3817 		u16 gso_segs = shinfo->gso_segs;
3818 
3819 		/* mac layer + network layer */
3820 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3821 
3822 		/* + transport layer */
3823 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3824 			const struct tcphdr *th;
3825 			struct tcphdr _tcphdr;
3826 
3827 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3828 						sizeof(_tcphdr), &_tcphdr);
3829 			if (likely(th))
3830 				hdr_len += __tcp_hdrlen(th);
3831 		} else {
3832 			struct udphdr _udphdr;
3833 
3834 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3835 					       sizeof(_udphdr), &_udphdr))
3836 				hdr_len += sizeof(struct udphdr);
3837 		}
3838 
3839 		if (shinfo->gso_type & SKB_GSO_DODGY)
3840 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3841 						shinfo->gso_size);
3842 
3843 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3844 	}
3845 }
3846 
3847 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3848 				 struct net_device *dev,
3849 				 struct netdev_queue *txq)
3850 {
3851 	spinlock_t *root_lock = qdisc_lock(q);
3852 	struct sk_buff *to_free = NULL;
3853 	bool contended;
3854 	int rc;
3855 
3856 	qdisc_calculate_pkt_len(skb, q);
3857 
3858 	if (q->flags & TCQ_F_NOLOCK) {
3859 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3860 		    qdisc_run_begin(q)) {
3861 			/* Retest nolock_qdisc_is_empty() within the protection
3862 			 * of q->seqlock to protect from racing with requeuing.
3863 			 */
3864 			if (unlikely(!nolock_qdisc_is_empty(q))) {
3865 				rc = q->enqueue(skb, q, &to_free) &
3866 					NET_XMIT_MASK;
3867 				__qdisc_run(q);
3868 				qdisc_run_end(q);
3869 
3870 				goto no_lock_out;
3871 			}
3872 
3873 			qdisc_bstats_cpu_update(q, skb);
3874 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3875 			    !nolock_qdisc_is_empty(q))
3876 				__qdisc_run(q);
3877 
3878 			qdisc_run_end(q);
3879 			return NET_XMIT_SUCCESS;
3880 		}
3881 
3882 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3883 		qdisc_run(q);
3884 
3885 no_lock_out:
3886 		if (unlikely(to_free))
3887 			kfree_skb_list(to_free);
3888 		return rc;
3889 	}
3890 
3891 	/*
3892 	 * Heuristic to force contended enqueues to serialize on a
3893 	 * separate lock before trying to get qdisc main lock.
3894 	 * This permits qdisc->running owner to get the lock more
3895 	 * often and dequeue packets faster.
3896 	 */
3897 	contended = qdisc_is_running(q);
3898 	if (unlikely(contended))
3899 		spin_lock(&q->busylock);
3900 
3901 	spin_lock(root_lock);
3902 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3903 		__qdisc_drop(skb, &to_free);
3904 		rc = NET_XMIT_DROP;
3905 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3906 		   qdisc_run_begin(q)) {
3907 		/*
3908 		 * This is a work-conserving queue; there are no old skbs
3909 		 * waiting to be sent out; and the qdisc is not running -
3910 		 * xmit the skb directly.
3911 		 */
3912 
3913 		qdisc_bstats_update(q, skb);
3914 
3915 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3916 			if (unlikely(contended)) {
3917 				spin_unlock(&q->busylock);
3918 				contended = false;
3919 			}
3920 			__qdisc_run(q);
3921 		}
3922 
3923 		qdisc_run_end(q);
3924 		rc = NET_XMIT_SUCCESS;
3925 	} else {
3926 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3927 		if (qdisc_run_begin(q)) {
3928 			if (unlikely(contended)) {
3929 				spin_unlock(&q->busylock);
3930 				contended = false;
3931 			}
3932 			__qdisc_run(q);
3933 			qdisc_run_end(q);
3934 		}
3935 	}
3936 	spin_unlock(root_lock);
3937 	if (unlikely(to_free))
3938 		kfree_skb_list(to_free);
3939 	if (unlikely(contended))
3940 		spin_unlock(&q->busylock);
3941 	return rc;
3942 }
3943 
3944 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3945 static void skb_update_prio(struct sk_buff *skb)
3946 {
3947 	const struct netprio_map *map;
3948 	const struct sock *sk;
3949 	unsigned int prioidx;
3950 
3951 	if (skb->priority)
3952 		return;
3953 	map = rcu_dereference_bh(skb->dev->priomap);
3954 	if (!map)
3955 		return;
3956 	sk = skb_to_full_sk(skb);
3957 	if (!sk)
3958 		return;
3959 
3960 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3961 
3962 	if (prioidx < map->priomap_len)
3963 		skb->priority = map->priomap[prioidx];
3964 }
3965 #else
3966 #define skb_update_prio(skb)
3967 #endif
3968 
3969 /**
3970  *	dev_loopback_xmit - loop back @skb
3971  *	@net: network namespace this loopback is happening in
3972  *	@sk:  sk needed to be a netfilter okfn
3973  *	@skb: buffer to transmit
3974  */
3975 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3976 {
3977 	skb_reset_mac_header(skb);
3978 	__skb_pull(skb, skb_network_offset(skb));
3979 	skb->pkt_type = PACKET_LOOPBACK;
3980 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3981 	WARN_ON(!skb_dst(skb));
3982 	skb_dst_force(skb);
3983 	netif_rx_ni(skb);
3984 	return 0;
3985 }
3986 EXPORT_SYMBOL(dev_loopback_xmit);
3987 
3988 #ifdef CONFIG_NET_EGRESS
3989 static struct sk_buff *
3990 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3991 {
3992 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3993 	struct tcf_result cl_res;
3994 
3995 	if (!miniq)
3996 		return skb;
3997 
3998 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3999 	qdisc_skb_cb(skb)->mru = 0;
4000 	qdisc_skb_cb(skb)->post_ct = false;
4001 	mini_qdisc_bstats_cpu_update(miniq, skb);
4002 
4003 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4004 	case TC_ACT_OK:
4005 	case TC_ACT_RECLASSIFY:
4006 		skb->tc_index = TC_H_MIN(cl_res.classid);
4007 		break;
4008 	case TC_ACT_SHOT:
4009 		mini_qdisc_qstats_cpu_drop(miniq);
4010 		*ret = NET_XMIT_DROP;
4011 		kfree_skb(skb);
4012 		return NULL;
4013 	case TC_ACT_STOLEN:
4014 	case TC_ACT_QUEUED:
4015 	case TC_ACT_TRAP:
4016 		*ret = NET_XMIT_SUCCESS;
4017 		consume_skb(skb);
4018 		return NULL;
4019 	case TC_ACT_REDIRECT:
4020 		/* No need to push/pop skb's mac_header here on egress! */
4021 		skb_do_redirect(skb);
4022 		*ret = NET_XMIT_SUCCESS;
4023 		return NULL;
4024 	default:
4025 		break;
4026 	}
4027 
4028 	return skb;
4029 }
4030 #endif /* CONFIG_NET_EGRESS */
4031 
4032 #ifdef CONFIG_XPS
4033 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4034 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4035 {
4036 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4037 	struct xps_map *map;
4038 	int queue_index = -1;
4039 
4040 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4041 		return queue_index;
4042 
4043 	tci *= dev_maps->num_tc;
4044 	tci += tc;
4045 
4046 	map = rcu_dereference(dev_maps->attr_map[tci]);
4047 	if (map) {
4048 		if (map->len == 1)
4049 			queue_index = map->queues[0];
4050 		else
4051 			queue_index = map->queues[reciprocal_scale(
4052 						skb_get_hash(skb), map->len)];
4053 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4054 			queue_index = -1;
4055 	}
4056 	return queue_index;
4057 }
4058 #endif
4059 
4060 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4061 			 struct sk_buff *skb)
4062 {
4063 #ifdef CONFIG_XPS
4064 	struct xps_dev_maps *dev_maps;
4065 	struct sock *sk = skb->sk;
4066 	int queue_index = -1;
4067 
4068 	if (!static_key_false(&xps_needed))
4069 		return -1;
4070 
4071 	rcu_read_lock();
4072 	if (!static_key_false(&xps_rxqs_needed))
4073 		goto get_cpus_map;
4074 
4075 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4076 	if (dev_maps) {
4077 		int tci = sk_rx_queue_get(sk);
4078 
4079 		if (tci >= 0)
4080 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4081 							  tci);
4082 	}
4083 
4084 get_cpus_map:
4085 	if (queue_index < 0) {
4086 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4087 		if (dev_maps) {
4088 			unsigned int tci = skb->sender_cpu - 1;
4089 
4090 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4091 							  tci);
4092 		}
4093 	}
4094 	rcu_read_unlock();
4095 
4096 	return queue_index;
4097 #else
4098 	return -1;
4099 #endif
4100 }
4101 
4102 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4103 		     struct net_device *sb_dev)
4104 {
4105 	return 0;
4106 }
4107 EXPORT_SYMBOL(dev_pick_tx_zero);
4108 
4109 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4110 		       struct net_device *sb_dev)
4111 {
4112 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4113 }
4114 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4115 
4116 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4117 		     struct net_device *sb_dev)
4118 {
4119 	struct sock *sk = skb->sk;
4120 	int queue_index = sk_tx_queue_get(sk);
4121 
4122 	sb_dev = sb_dev ? : dev;
4123 
4124 	if (queue_index < 0 || skb->ooo_okay ||
4125 	    queue_index >= dev->real_num_tx_queues) {
4126 		int new_index = get_xps_queue(dev, sb_dev, skb);
4127 
4128 		if (new_index < 0)
4129 			new_index = skb_tx_hash(dev, sb_dev, skb);
4130 
4131 		if (queue_index != new_index && sk &&
4132 		    sk_fullsock(sk) &&
4133 		    rcu_access_pointer(sk->sk_dst_cache))
4134 			sk_tx_queue_set(sk, new_index);
4135 
4136 		queue_index = new_index;
4137 	}
4138 
4139 	return queue_index;
4140 }
4141 EXPORT_SYMBOL(netdev_pick_tx);
4142 
4143 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4144 					 struct sk_buff *skb,
4145 					 struct net_device *sb_dev)
4146 {
4147 	int queue_index = 0;
4148 
4149 #ifdef CONFIG_XPS
4150 	u32 sender_cpu = skb->sender_cpu - 1;
4151 
4152 	if (sender_cpu >= (u32)NR_CPUS)
4153 		skb->sender_cpu = raw_smp_processor_id() + 1;
4154 #endif
4155 
4156 	if (dev->real_num_tx_queues != 1) {
4157 		const struct net_device_ops *ops = dev->netdev_ops;
4158 
4159 		if (ops->ndo_select_queue)
4160 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4161 		else
4162 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4163 
4164 		queue_index = netdev_cap_txqueue(dev, queue_index);
4165 	}
4166 
4167 	skb_set_queue_mapping(skb, queue_index);
4168 	return netdev_get_tx_queue(dev, queue_index);
4169 }
4170 
4171 /**
4172  *	__dev_queue_xmit - transmit a buffer
4173  *	@skb: buffer to transmit
4174  *	@sb_dev: suboordinate device used for L2 forwarding offload
4175  *
4176  *	Queue a buffer for transmission to a network device. The caller must
4177  *	have set the device and priority and built the buffer before calling
4178  *	this function. The function can be called from an interrupt.
4179  *
4180  *	A negative errno code is returned on a failure. A success does not
4181  *	guarantee the frame will be transmitted as it may be dropped due
4182  *	to congestion or traffic shaping.
4183  *
4184  * -----------------------------------------------------------------------------------
4185  *      I notice this method can also return errors from the queue disciplines,
4186  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4187  *      be positive.
4188  *
4189  *      Regardless of the return value, the skb is consumed, so it is currently
4190  *      difficult to retry a send to this method.  (You can bump the ref count
4191  *      before sending to hold a reference for retry if you are careful.)
4192  *
4193  *      When calling this method, interrupts MUST be enabled.  This is because
4194  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4195  *          --BLG
4196  */
4197 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4198 {
4199 	struct net_device *dev = skb->dev;
4200 	struct netdev_queue *txq;
4201 	struct Qdisc *q;
4202 	int rc = -ENOMEM;
4203 	bool again = false;
4204 
4205 	skb_reset_mac_header(skb);
4206 
4207 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4208 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4209 
4210 	/* Disable soft irqs for various locks below. Also
4211 	 * stops preemption for RCU.
4212 	 */
4213 	rcu_read_lock_bh();
4214 
4215 	skb_update_prio(skb);
4216 
4217 	qdisc_pkt_len_init(skb);
4218 #ifdef CONFIG_NET_CLS_ACT
4219 	skb->tc_at_ingress = 0;
4220 # ifdef CONFIG_NET_EGRESS
4221 	if (static_branch_unlikely(&egress_needed_key)) {
4222 		skb = sch_handle_egress(skb, &rc, dev);
4223 		if (!skb)
4224 			goto out;
4225 	}
4226 # endif
4227 #endif
4228 	/* If device/qdisc don't need skb->dst, release it right now while
4229 	 * its hot in this cpu cache.
4230 	 */
4231 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4232 		skb_dst_drop(skb);
4233 	else
4234 		skb_dst_force(skb);
4235 
4236 	txq = netdev_core_pick_tx(dev, skb, sb_dev);
4237 	q = rcu_dereference_bh(txq->qdisc);
4238 
4239 	trace_net_dev_queue(skb);
4240 	if (q->enqueue) {
4241 		rc = __dev_xmit_skb(skb, q, dev, txq);
4242 		goto out;
4243 	}
4244 
4245 	/* The device has no queue. Common case for software devices:
4246 	 * loopback, all the sorts of tunnels...
4247 
4248 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4249 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4250 	 * counters.)
4251 	 * However, it is possible, that they rely on protection
4252 	 * made by us here.
4253 
4254 	 * Check this and shot the lock. It is not prone from deadlocks.
4255 	 *Either shot noqueue qdisc, it is even simpler 8)
4256 	 */
4257 	if (dev->flags & IFF_UP) {
4258 		int cpu = smp_processor_id(); /* ok because BHs are off */
4259 
4260 		if (txq->xmit_lock_owner != cpu) {
4261 			if (dev_xmit_recursion())
4262 				goto recursion_alert;
4263 
4264 			skb = validate_xmit_skb(skb, dev, &again);
4265 			if (!skb)
4266 				goto out;
4267 
4268 			PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4269 			HARD_TX_LOCK(dev, txq, cpu);
4270 
4271 			if (!netif_xmit_stopped(txq)) {
4272 				dev_xmit_recursion_inc();
4273 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4274 				dev_xmit_recursion_dec();
4275 				if (dev_xmit_complete(rc)) {
4276 					HARD_TX_UNLOCK(dev, txq);
4277 					goto out;
4278 				}
4279 			}
4280 			HARD_TX_UNLOCK(dev, txq);
4281 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4282 					     dev->name);
4283 		} else {
4284 			/* Recursion is detected! It is possible,
4285 			 * unfortunately
4286 			 */
4287 recursion_alert:
4288 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4289 					     dev->name);
4290 		}
4291 	}
4292 
4293 	rc = -ENETDOWN;
4294 	rcu_read_unlock_bh();
4295 
4296 	atomic_long_inc(&dev->tx_dropped);
4297 	kfree_skb_list(skb);
4298 	return rc;
4299 out:
4300 	rcu_read_unlock_bh();
4301 	return rc;
4302 }
4303 
4304 int dev_queue_xmit(struct sk_buff *skb)
4305 {
4306 	return __dev_queue_xmit(skb, NULL);
4307 }
4308 EXPORT_SYMBOL(dev_queue_xmit);
4309 
4310 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4311 {
4312 	return __dev_queue_xmit(skb, sb_dev);
4313 }
4314 EXPORT_SYMBOL(dev_queue_xmit_accel);
4315 
4316 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4317 {
4318 	struct net_device *dev = skb->dev;
4319 	struct sk_buff *orig_skb = skb;
4320 	struct netdev_queue *txq;
4321 	int ret = NETDEV_TX_BUSY;
4322 	bool again = false;
4323 
4324 	if (unlikely(!netif_running(dev) ||
4325 		     !netif_carrier_ok(dev)))
4326 		goto drop;
4327 
4328 	skb = validate_xmit_skb_list(skb, dev, &again);
4329 	if (skb != orig_skb)
4330 		goto drop;
4331 
4332 	skb_set_queue_mapping(skb, queue_id);
4333 	txq = skb_get_tx_queue(dev, skb);
4334 	PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4335 
4336 	local_bh_disable();
4337 
4338 	dev_xmit_recursion_inc();
4339 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4340 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4341 		ret = netdev_start_xmit(skb, dev, txq, false);
4342 	HARD_TX_UNLOCK(dev, txq);
4343 	dev_xmit_recursion_dec();
4344 
4345 	local_bh_enable();
4346 	return ret;
4347 drop:
4348 	atomic_long_inc(&dev->tx_dropped);
4349 	kfree_skb_list(skb);
4350 	return NET_XMIT_DROP;
4351 }
4352 EXPORT_SYMBOL(__dev_direct_xmit);
4353 
4354 /*************************************************************************
4355  *			Receiver routines
4356  *************************************************************************/
4357 
4358 int netdev_max_backlog __read_mostly = 1000;
4359 EXPORT_SYMBOL(netdev_max_backlog);
4360 
4361 int netdev_tstamp_prequeue __read_mostly = 1;
4362 int netdev_budget __read_mostly = 300;
4363 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4364 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4365 int weight_p __read_mostly = 64;           /* old backlog weight */
4366 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4367 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4368 int dev_rx_weight __read_mostly = 64;
4369 int dev_tx_weight __read_mostly = 64;
4370 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4371 int gro_normal_batch __read_mostly = 8;
4372 
4373 /* Called with irq disabled */
4374 static inline void ____napi_schedule(struct softnet_data *sd,
4375 				     struct napi_struct *napi)
4376 {
4377 	struct task_struct *thread;
4378 
4379 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4380 		/* Paired with smp_mb__before_atomic() in
4381 		 * napi_enable()/dev_set_threaded().
4382 		 * Use READ_ONCE() to guarantee a complete
4383 		 * read on napi->thread. Only call
4384 		 * wake_up_process() when it's not NULL.
4385 		 */
4386 		thread = READ_ONCE(napi->thread);
4387 		if (thread) {
4388 			/* Avoid doing set_bit() if the thread is in
4389 			 * INTERRUPTIBLE state, cause napi_thread_wait()
4390 			 * makes sure to proceed with napi polling
4391 			 * if the thread is explicitly woken from here.
4392 			 */
4393 			if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4394 				set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4395 			wake_up_process(thread);
4396 			return;
4397 		}
4398 	}
4399 
4400 	list_add_tail(&napi->poll_list, &sd->poll_list);
4401 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4402 }
4403 
4404 #ifdef CONFIG_RPS
4405 
4406 /* One global table that all flow-based protocols share. */
4407 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4408 EXPORT_SYMBOL(rps_sock_flow_table);
4409 u32 rps_cpu_mask __read_mostly;
4410 EXPORT_SYMBOL(rps_cpu_mask);
4411 
4412 struct static_key_false rps_needed __read_mostly;
4413 EXPORT_SYMBOL(rps_needed);
4414 struct static_key_false rfs_needed __read_mostly;
4415 EXPORT_SYMBOL(rfs_needed);
4416 
4417 static struct rps_dev_flow *
4418 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4419 	    struct rps_dev_flow *rflow, u16 next_cpu)
4420 {
4421 	if (next_cpu < nr_cpu_ids) {
4422 #ifdef CONFIG_RFS_ACCEL
4423 		struct netdev_rx_queue *rxqueue;
4424 		struct rps_dev_flow_table *flow_table;
4425 		struct rps_dev_flow *old_rflow;
4426 		u32 flow_id;
4427 		u16 rxq_index;
4428 		int rc;
4429 
4430 		/* Should we steer this flow to a different hardware queue? */
4431 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4432 		    !(dev->features & NETIF_F_NTUPLE))
4433 			goto out;
4434 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4435 		if (rxq_index == skb_get_rx_queue(skb))
4436 			goto out;
4437 
4438 		rxqueue = dev->_rx + rxq_index;
4439 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4440 		if (!flow_table)
4441 			goto out;
4442 		flow_id = skb_get_hash(skb) & flow_table->mask;
4443 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4444 							rxq_index, flow_id);
4445 		if (rc < 0)
4446 			goto out;
4447 		old_rflow = rflow;
4448 		rflow = &flow_table->flows[flow_id];
4449 		rflow->filter = rc;
4450 		if (old_rflow->filter == rflow->filter)
4451 			old_rflow->filter = RPS_NO_FILTER;
4452 	out:
4453 #endif
4454 		rflow->last_qtail =
4455 			per_cpu(softnet_data, next_cpu).input_queue_head;
4456 	}
4457 
4458 	rflow->cpu = next_cpu;
4459 	return rflow;
4460 }
4461 
4462 /*
4463  * get_rps_cpu is called from netif_receive_skb and returns the target
4464  * CPU from the RPS map of the receiving queue for a given skb.
4465  * rcu_read_lock must be held on entry.
4466  */
4467 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4468 		       struct rps_dev_flow **rflowp)
4469 {
4470 	const struct rps_sock_flow_table *sock_flow_table;
4471 	struct netdev_rx_queue *rxqueue = dev->_rx;
4472 	struct rps_dev_flow_table *flow_table;
4473 	struct rps_map *map;
4474 	int cpu = -1;
4475 	u32 tcpu;
4476 	u32 hash;
4477 
4478 	if (skb_rx_queue_recorded(skb)) {
4479 		u16 index = skb_get_rx_queue(skb);
4480 
4481 		if (unlikely(index >= dev->real_num_rx_queues)) {
4482 			WARN_ONCE(dev->real_num_rx_queues > 1,
4483 				  "%s received packet on queue %u, but number "
4484 				  "of RX queues is %u\n",
4485 				  dev->name, index, dev->real_num_rx_queues);
4486 			goto done;
4487 		}
4488 		rxqueue += index;
4489 	}
4490 
4491 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4492 
4493 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4494 	map = rcu_dereference(rxqueue->rps_map);
4495 	if (!flow_table && !map)
4496 		goto done;
4497 
4498 	skb_reset_network_header(skb);
4499 	hash = skb_get_hash(skb);
4500 	if (!hash)
4501 		goto done;
4502 
4503 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4504 	if (flow_table && sock_flow_table) {
4505 		struct rps_dev_flow *rflow;
4506 		u32 next_cpu;
4507 		u32 ident;
4508 
4509 		/* First check into global flow table if there is a match */
4510 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4511 		if ((ident ^ hash) & ~rps_cpu_mask)
4512 			goto try_rps;
4513 
4514 		next_cpu = ident & rps_cpu_mask;
4515 
4516 		/* OK, now we know there is a match,
4517 		 * we can look at the local (per receive queue) flow table
4518 		 */
4519 		rflow = &flow_table->flows[hash & flow_table->mask];
4520 		tcpu = rflow->cpu;
4521 
4522 		/*
4523 		 * If the desired CPU (where last recvmsg was done) is
4524 		 * different from current CPU (one in the rx-queue flow
4525 		 * table entry), switch if one of the following holds:
4526 		 *   - Current CPU is unset (>= nr_cpu_ids).
4527 		 *   - Current CPU is offline.
4528 		 *   - The current CPU's queue tail has advanced beyond the
4529 		 *     last packet that was enqueued using this table entry.
4530 		 *     This guarantees that all previous packets for the flow
4531 		 *     have been dequeued, thus preserving in order delivery.
4532 		 */
4533 		if (unlikely(tcpu != next_cpu) &&
4534 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4535 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4536 		      rflow->last_qtail)) >= 0)) {
4537 			tcpu = next_cpu;
4538 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4539 		}
4540 
4541 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4542 			*rflowp = rflow;
4543 			cpu = tcpu;
4544 			goto done;
4545 		}
4546 	}
4547 
4548 try_rps:
4549 
4550 	if (map) {
4551 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4552 		if (cpu_online(tcpu)) {
4553 			cpu = tcpu;
4554 			goto done;
4555 		}
4556 	}
4557 
4558 done:
4559 	return cpu;
4560 }
4561 
4562 #ifdef CONFIG_RFS_ACCEL
4563 
4564 /**
4565  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4566  * @dev: Device on which the filter was set
4567  * @rxq_index: RX queue index
4568  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4569  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4570  *
4571  * Drivers that implement ndo_rx_flow_steer() should periodically call
4572  * this function for each installed filter and remove the filters for
4573  * which it returns %true.
4574  */
4575 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4576 			 u32 flow_id, u16 filter_id)
4577 {
4578 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4579 	struct rps_dev_flow_table *flow_table;
4580 	struct rps_dev_flow *rflow;
4581 	bool expire = true;
4582 	unsigned int cpu;
4583 
4584 	rcu_read_lock();
4585 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4586 	if (flow_table && flow_id <= flow_table->mask) {
4587 		rflow = &flow_table->flows[flow_id];
4588 		cpu = READ_ONCE(rflow->cpu);
4589 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4590 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4591 			   rflow->last_qtail) <
4592 		     (int)(10 * flow_table->mask)))
4593 			expire = false;
4594 	}
4595 	rcu_read_unlock();
4596 	return expire;
4597 }
4598 EXPORT_SYMBOL(rps_may_expire_flow);
4599 
4600 #endif /* CONFIG_RFS_ACCEL */
4601 
4602 /* Called from hardirq (IPI) context */
4603 static void rps_trigger_softirq(void *data)
4604 {
4605 	struct softnet_data *sd = data;
4606 
4607 	____napi_schedule(sd, &sd->backlog);
4608 	sd->received_rps++;
4609 }
4610 
4611 #endif /* CONFIG_RPS */
4612 
4613 /*
4614  * Check if this softnet_data structure is another cpu one
4615  * If yes, queue it to our IPI list and return 1
4616  * If no, return 0
4617  */
4618 static int rps_ipi_queued(struct softnet_data *sd)
4619 {
4620 #ifdef CONFIG_RPS
4621 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4622 
4623 	if (sd != mysd) {
4624 		sd->rps_ipi_next = mysd->rps_ipi_list;
4625 		mysd->rps_ipi_list = sd;
4626 
4627 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4628 		return 1;
4629 	}
4630 #endif /* CONFIG_RPS */
4631 	return 0;
4632 }
4633 
4634 #ifdef CONFIG_NET_FLOW_LIMIT
4635 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4636 #endif
4637 
4638 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4639 {
4640 #ifdef CONFIG_NET_FLOW_LIMIT
4641 	struct sd_flow_limit *fl;
4642 	struct softnet_data *sd;
4643 	unsigned int old_flow, new_flow;
4644 
4645 	if (qlen < (netdev_max_backlog >> 1))
4646 		return false;
4647 
4648 	sd = this_cpu_ptr(&softnet_data);
4649 
4650 	rcu_read_lock();
4651 	fl = rcu_dereference(sd->flow_limit);
4652 	if (fl) {
4653 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4654 		old_flow = fl->history[fl->history_head];
4655 		fl->history[fl->history_head] = new_flow;
4656 
4657 		fl->history_head++;
4658 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4659 
4660 		if (likely(fl->buckets[old_flow]))
4661 			fl->buckets[old_flow]--;
4662 
4663 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4664 			fl->count++;
4665 			rcu_read_unlock();
4666 			return true;
4667 		}
4668 	}
4669 	rcu_read_unlock();
4670 #endif
4671 	return false;
4672 }
4673 
4674 /*
4675  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4676  * queue (may be a remote CPU queue).
4677  */
4678 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4679 			      unsigned int *qtail)
4680 {
4681 	struct softnet_data *sd;
4682 	unsigned long flags;
4683 	unsigned int qlen;
4684 
4685 	sd = &per_cpu(softnet_data, cpu);
4686 
4687 	local_irq_save(flags);
4688 
4689 	rps_lock(sd);
4690 	if (!netif_running(skb->dev))
4691 		goto drop;
4692 	qlen = skb_queue_len(&sd->input_pkt_queue);
4693 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4694 		if (qlen) {
4695 enqueue:
4696 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4697 			input_queue_tail_incr_save(sd, qtail);
4698 			rps_unlock(sd);
4699 			local_irq_restore(flags);
4700 			return NET_RX_SUCCESS;
4701 		}
4702 
4703 		/* Schedule NAPI for backlog device
4704 		 * We can use non atomic operation since we own the queue lock
4705 		 */
4706 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4707 			if (!rps_ipi_queued(sd))
4708 				____napi_schedule(sd, &sd->backlog);
4709 		}
4710 		goto enqueue;
4711 	}
4712 
4713 drop:
4714 	sd->dropped++;
4715 	rps_unlock(sd);
4716 
4717 	local_irq_restore(flags);
4718 
4719 	atomic_long_inc(&skb->dev->rx_dropped);
4720 	kfree_skb(skb);
4721 	return NET_RX_DROP;
4722 }
4723 
4724 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4725 {
4726 	struct net_device *dev = skb->dev;
4727 	struct netdev_rx_queue *rxqueue;
4728 
4729 	rxqueue = dev->_rx;
4730 
4731 	if (skb_rx_queue_recorded(skb)) {
4732 		u16 index = skb_get_rx_queue(skb);
4733 
4734 		if (unlikely(index >= dev->real_num_rx_queues)) {
4735 			WARN_ONCE(dev->real_num_rx_queues > 1,
4736 				  "%s received packet on queue %u, but number "
4737 				  "of RX queues is %u\n",
4738 				  dev->name, index, dev->real_num_rx_queues);
4739 
4740 			return rxqueue; /* Return first rxqueue */
4741 		}
4742 		rxqueue += index;
4743 	}
4744 	return rxqueue;
4745 }
4746 
4747 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4748 				     struct xdp_buff *xdp,
4749 				     struct bpf_prog *xdp_prog)
4750 {
4751 	void *orig_data, *orig_data_end, *hard_start;
4752 	struct netdev_rx_queue *rxqueue;
4753 	u32 metalen, act = XDP_DROP;
4754 	bool orig_bcast, orig_host;
4755 	u32 mac_len, frame_sz;
4756 	__be16 orig_eth_type;
4757 	struct ethhdr *eth;
4758 	int off;
4759 
4760 	/* Reinjected packets coming from act_mirred or similar should
4761 	 * not get XDP generic processing.
4762 	 */
4763 	if (skb_is_redirected(skb))
4764 		return XDP_PASS;
4765 
4766 	/* XDP packets must be linear and must have sufficient headroom
4767 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4768 	 * native XDP provides, thus we need to do it here as well.
4769 	 */
4770 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4771 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4772 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4773 		int troom = skb->tail + skb->data_len - skb->end;
4774 
4775 		/* In case we have to go down the path and also linearize,
4776 		 * then lets do the pskb_expand_head() work just once here.
4777 		 */
4778 		if (pskb_expand_head(skb,
4779 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4780 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4781 			goto do_drop;
4782 		if (skb_linearize(skb))
4783 			goto do_drop;
4784 	}
4785 
4786 	/* The XDP program wants to see the packet starting at the MAC
4787 	 * header.
4788 	 */
4789 	mac_len = skb->data - skb_mac_header(skb);
4790 	hard_start = skb->data - skb_headroom(skb);
4791 
4792 	/* SKB "head" area always have tailroom for skb_shared_info */
4793 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4794 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4795 
4796 	rxqueue = netif_get_rxqueue(skb);
4797 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4798 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4799 			 skb_headlen(skb) + mac_len, true);
4800 
4801 	orig_data_end = xdp->data_end;
4802 	orig_data = xdp->data;
4803 	eth = (struct ethhdr *)xdp->data;
4804 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4805 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4806 	orig_eth_type = eth->h_proto;
4807 
4808 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4809 
4810 	/* check if bpf_xdp_adjust_head was used */
4811 	off = xdp->data - orig_data;
4812 	if (off) {
4813 		if (off > 0)
4814 			__skb_pull(skb, off);
4815 		else if (off < 0)
4816 			__skb_push(skb, -off);
4817 
4818 		skb->mac_header += off;
4819 		skb_reset_network_header(skb);
4820 	}
4821 
4822 	/* check if bpf_xdp_adjust_tail was used */
4823 	off = xdp->data_end - orig_data_end;
4824 	if (off != 0) {
4825 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4826 		skb->len += off; /* positive on grow, negative on shrink */
4827 	}
4828 
4829 	/* check if XDP changed eth hdr such SKB needs update */
4830 	eth = (struct ethhdr *)xdp->data;
4831 	if ((orig_eth_type != eth->h_proto) ||
4832 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
4833 						  skb->dev->dev_addr)) ||
4834 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4835 		__skb_push(skb, ETH_HLEN);
4836 		skb->pkt_type = PACKET_HOST;
4837 		skb->protocol = eth_type_trans(skb, skb->dev);
4838 	}
4839 
4840 	switch (act) {
4841 	case XDP_REDIRECT:
4842 	case XDP_TX:
4843 		__skb_push(skb, mac_len);
4844 		break;
4845 	case XDP_PASS:
4846 		metalen = xdp->data - xdp->data_meta;
4847 		if (metalen)
4848 			skb_metadata_set(skb, metalen);
4849 		break;
4850 	default:
4851 		bpf_warn_invalid_xdp_action(act);
4852 		fallthrough;
4853 	case XDP_ABORTED:
4854 		trace_xdp_exception(skb->dev, xdp_prog, act);
4855 		fallthrough;
4856 	case XDP_DROP:
4857 	do_drop:
4858 		kfree_skb(skb);
4859 		break;
4860 	}
4861 
4862 	return act;
4863 }
4864 
4865 /* When doing generic XDP we have to bypass the qdisc layer and the
4866  * network taps in order to match in-driver-XDP behavior.
4867  */
4868 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4869 {
4870 	struct net_device *dev = skb->dev;
4871 	struct netdev_queue *txq;
4872 	bool free_skb = true;
4873 	int cpu, rc;
4874 
4875 	txq = netdev_core_pick_tx(dev, skb, NULL);
4876 	cpu = smp_processor_id();
4877 	HARD_TX_LOCK(dev, txq, cpu);
4878 	if (!netif_xmit_stopped(txq)) {
4879 		rc = netdev_start_xmit(skb, dev, txq, 0);
4880 		if (dev_xmit_complete(rc))
4881 			free_skb = false;
4882 	}
4883 	HARD_TX_UNLOCK(dev, txq);
4884 	if (free_skb) {
4885 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4886 		kfree_skb(skb);
4887 	}
4888 }
4889 
4890 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4891 
4892 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4893 {
4894 	if (xdp_prog) {
4895 		struct xdp_buff xdp;
4896 		u32 act;
4897 		int err;
4898 
4899 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4900 		if (act != XDP_PASS) {
4901 			switch (act) {
4902 			case XDP_REDIRECT:
4903 				err = xdp_do_generic_redirect(skb->dev, skb,
4904 							      &xdp, xdp_prog);
4905 				if (err)
4906 					goto out_redir;
4907 				break;
4908 			case XDP_TX:
4909 				generic_xdp_tx(skb, xdp_prog);
4910 				break;
4911 			}
4912 			return XDP_DROP;
4913 		}
4914 	}
4915 	return XDP_PASS;
4916 out_redir:
4917 	kfree_skb(skb);
4918 	return XDP_DROP;
4919 }
4920 EXPORT_SYMBOL_GPL(do_xdp_generic);
4921 
4922 static int netif_rx_internal(struct sk_buff *skb)
4923 {
4924 	int ret;
4925 
4926 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4927 
4928 	trace_netif_rx(skb);
4929 
4930 #ifdef CONFIG_RPS
4931 	if (static_branch_unlikely(&rps_needed)) {
4932 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4933 		int cpu;
4934 
4935 		preempt_disable();
4936 		rcu_read_lock();
4937 
4938 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4939 		if (cpu < 0)
4940 			cpu = smp_processor_id();
4941 
4942 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4943 
4944 		rcu_read_unlock();
4945 		preempt_enable();
4946 	} else
4947 #endif
4948 	{
4949 		unsigned int qtail;
4950 
4951 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4952 		put_cpu();
4953 	}
4954 	return ret;
4955 }
4956 
4957 /**
4958  *	netif_rx	-	post buffer to the network code
4959  *	@skb: buffer to post
4960  *
4961  *	This function receives a packet from a device driver and queues it for
4962  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4963  *	may be dropped during processing for congestion control or by the
4964  *	protocol layers.
4965  *
4966  *	return values:
4967  *	NET_RX_SUCCESS	(no congestion)
4968  *	NET_RX_DROP     (packet was dropped)
4969  *
4970  */
4971 
4972 int netif_rx(struct sk_buff *skb)
4973 {
4974 	int ret;
4975 
4976 	trace_netif_rx_entry(skb);
4977 
4978 	ret = netif_rx_internal(skb);
4979 	trace_netif_rx_exit(ret);
4980 
4981 	return ret;
4982 }
4983 EXPORT_SYMBOL(netif_rx);
4984 
4985 int netif_rx_ni(struct sk_buff *skb)
4986 {
4987 	int err;
4988 
4989 	trace_netif_rx_ni_entry(skb);
4990 
4991 	preempt_disable();
4992 	err = netif_rx_internal(skb);
4993 	if (local_softirq_pending())
4994 		do_softirq();
4995 	preempt_enable();
4996 	trace_netif_rx_ni_exit(err);
4997 
4998 	return err;
4999 }
5000 EXPORT_SYMBOL(netif_rx_ni);
5001 
5002 int netif_rx_any_context(struct sk_buff *skb)
5003 {
5004 	/*
5005 	 * If invoked from contexts which do not invoke bottom half
5006 	 * processing either at return from interrupt or when softrqs are
5007 	 * reenabled, use netif_rx_ni() which invokes bottomhalf processing
5008 	 * directly.
5009 	 */
5010 	if (in_interrupt())
5011 		return netif_rx(skb);
5012 	else
5013 		return netif_rx_ni(skb);
5014 }
5015 EXPORT_SYMBOL(netif_rx_any_context);
5016 
5017 static __latent_entropy void net_tx_action(struct softirq_action *h)
5018 {
5019 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5020 
5021 	if (sd->completion_queue) {
5022 		struct sk_buff *clist;
5023 
5024 		local_irq_disable();
5025 		clist = sd->completion_queue;
5026 		sd->completion_queue = NULL;
5027 		local_irq_enable();
5028 
5029 		while (clist) {
5030 			struct sk_buff *skb = clist;
5031 
5032 			clist = clist->next;
5033 
5034 			WARN_ON(refcount_read(&skb->users));
5035 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5036 				trace_consume_skb(skb);
5037 			else
5038 				trace_kfree_skb(skb, net_tx_action);
5039 
5040 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5041 				__kfree_skb(skb);
5042 			else
5043 				__kfree_skb_defer(skb);
5044 		}
5045 	}
5046 
5047 	if (sd->output_queue) {
5048 		struct Qdisc *head;
5049 
5050 		local_irq_disable();
5051 		head = sd->output_queue;
5052 		sd->output_queue = NULL;
5053 		sd->output_queue_tailp = &sd->output_queue;
5054 		local_irq_enable();
5055 
5056 		rcu_read_lock();
5057 
5058 		while (head) {
5059 			struct Qdisc *q = head;
5060 			spinlock_t *root_lock = NULL;
5061 
5062 			head = head->next_sched;
5063 
5064 			/* We need to make sure head->next_sched is read
5065 			 * before clearing __QDISC_STATE_SCHED
5066 			 */
5067 			smp_mb__before_atomic();
5068 
5069 			if (!(q->flags & TCQ_F_NOLOCK)) {
5070 				root_lock = qdisc_lock(q);
5071 				spin_lock(root_lock);
5072 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5073 						     &q->state))) {
5074 				/* There is a synchronize_net() between
5075 				 * STATE_DEACTIVATED flag being set and
5076 				 * qdisc_reset()/some_qdisc_is_busy() in
5077 				 * dev_deactivate(), so we can safely bail out
5078 				 * early here to avoid data race between
5079 				 * qdisc_deactivate() and some_qdisc_is_busy()
5080 				 * for lockless qdisc.
5081 				 */
5082 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5083 				continue;
5084 			}
5085 
5086 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5087 			qdisc_run(q);
5088 			if (root_lock)
5089 				spin_unlock(root_lock);
5090 		}
5091 
5092 		rcu_read_unlock();
5093 	}
5094 
5095 	xfrm_dev_backlog(sd);
5096 }
5097 
5098 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5099 /* This hook is defined here for ATM LANE */
5100 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5101 			     unsigned char *addr) __read_mostly;
5102 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5103 #endif
5104 
5105 static inline struct sk_buff *
5106 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5107 		   struct net_device *orig_dev, bool *another)
5108 {
5109 #ifdef CONFIG_NET_CLS_ACT
5110 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5111 	struct tcf_result cl_res;
5112 
5113 	/* If there's at least one ingress present somewhere (so
5114 	 * we get here via enabled static key), remaining devices
5115 	 * that are not configured with an ingress qdisc will bail
5116 	 * out here.
5117 	 */
5118 	if (!miniq)
5119 		return skb;
5120 
5121 	if (*pt_prev) {
5122 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
5123 		*pt_prev = NULL;
5124 	}
5125 
5126 	qdisc_skb_cb(skb)->pkt_len = skb->len;
5127 	qdisc_skb_cb(skb)->mru = 0;
5128 	qdisc_skb_cb(skb)->post_ct = false;
5129 	skb->tc_at_ingress = 1;
5130 	mini_qdisc_bstats_cpu_update(miniq, skb);
5131 
5132 	switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
5133 				     &cl_res, false)) {
5134 	case TC_ACT_OK:
5135 	case TC_ACT_RECLASSIFY:
5136 		skb->tc_index = TC_H_MIN(cl_res.classid);
5137 		break;
5138 	case TC_ACT_SHOT:
5139 		mini_qdisc_qstats_cpu_drop(miniq);
5140 		kfree_skb(skb);
5141 		return NULL;
5142 	case TC_ACT_STOLEN:
5143 	case TC_ACT_QUEUED:
5144 	case TC_ACT_TRAP:
5145 		consume_skb(skb);
5146 		return NULL;
5147 	case TC_ACT_REDIRECT:
5148 		/* skb_mac_header check was done by cls/act_bpf, so
5149 		 * we can safely push the L2 header back before
5150 		 * redirecting to another netdev
5151 		 */
5152 		__skb_push(skb, skb->mac_len);
5153 		if (skb_do_redirect(skb) == -EAGAIN) {
5154 			__skb_pull(skb, skb->mac_len);
5155 			*another = true;
5156 			break;
5157 		}
5158 		return NULL;
5159 	case TC_ACT_CONSUMED:
5160 		return NULL;
5161 	default:
5162 		break;
5163 	}
5164 #endif /* CONFIG_NET_CLS_ACT */
5165 	return skb;
5166 }
5167 
5168 /**
5169  *	netdev_is_rx_handler_busy - check if receive handler is registered
5170  *	@dev: device to check
5171  *
5172  *	Check if a receive handler is already registered for a given device.
5173  *	Return true if there one.
5174  *
5175  *	The caller must hold the rtnl_mutex.
5176  */
5177 bool netdev_is_rx_handler_busy(struct net_device *dev)
5178 {
5179 	ASSERT_RTNL();
5180 	return dev && rtnl_dereference(dev->rx_handler);
5181 }
5182 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5183 
5184 /**
5185  *	netdev_rx_handler_register - register receive handler
5186  *	@dev: device to register a handler for
5187  *	@rx_handler: receive handler to register
5188  *	@rx_handler_data: data pointer that is used by rx handler
5189  *
5190  *	Register a receive handler for a device. This handler will then be
5191  *	called from __netif_receive_skb. A negative errno code is returned
5192  *	on a failure.
5193  *
5194  *	The caller must hold the rtnl_mutex.
5195  *
5196  *	For a general description of rx_handler, see enum rx_handler_result.
5197  */
5198 int netdev_rx_handler_register(struct net_device *dev,
5199 			       rx_handler_func_t *rx_handler,
5200 			       void *rx_handler_data)
5201 {
5202 	if (netdev_is_rx_handler_busy(dev))
5203 		return -EBUSY;
5204 
5205 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5206 		return -EINVAL;
5207 
5208 	/* Note: rx_handler_data must be set before rx_handler */
5209 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5210 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5211 
5212 	return 0;
5213 }
5214 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5215 
5216 /**
5217  *	netdev_rx_handler_unregister - unregister receive handler
5218  *	@dev: device to unregister a handler from
5219  *
5220  *	Unregister a receive handler from a device.
5221  *
5222  *	The caller must hold the rtnl_mutex.
5223  */
5224 void netdev_rx_handler_unregister(struct net_device *dev)
5225 {
5226 
5227 	ASSERT_RTNL();
5228 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5229 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5230 	 * section has a guarantee to see a non NULL rx_handler_data
5231 	 * as well.
5232 	 */
5233 	synchronize_net();
5234 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5235 }
5236 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5237 
5238 /*
5239  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5240  * the special handling of PFMEMALLOC skbs.
5241  */
5242 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5243 {
5244 	switch (skb->protocol) {
5245 	case htons(ETH_P_ARP):
5246 	case htons(ETH_P_IP):
5247 	case htons(ETH_P_IPV6):
5248 	case htons(ETH_P_8021Q):
5249 	case htons(ETH_P_8021AD):
5250 		return true;
5251 	default:
5252 		return false;
5253 	}
5254 }
5255 
5256 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5257 			     int *ret, struct net_device *orig_dev)
5258 {
5259 	if (nf_hook_ingress_active(skb)) {
5260 		int ingress_retval;
5261 
5262 		if (*pt_prev) {
5263 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5264 			*pt_prev = NULL;
5265 		}
5266 
5267 		rcu_read_lock();
5268 		ingress_retval = nf_hook_ingress(skb);
5269 		rcu_read_unlock();
5270 		return ingress_retval;
5271 	}
5272 	return 0;
5273 }
5274 
5275 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5276 				    struct packet_type **ppt_prev)
5277 {
5278 	struct packet_type *ptype, *pt_prev;
5279 	rx_handler_func_t *rx_handler;
5280 	struct sk_buff *skb = *pskb;
5281 	struct net_device *orig_dev;
5282 	bool deliver_exact = false;
5283 	int ret = NET_RX_DROP;
5284 	__be16 type;
5285 
5286 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
5287 
5288 	trace_netif_receive_skb(skb);
5289 
5290 	orig_dev = skb->dev;
5291 
5292 	skb_reset_network_header(skb);
5293 	if (!skb_transport_header_was_set(skb))
5294 		skb_reset_transport_header(skb);
5295 	skb_reset_mac_len(skb);
5296 
5297 	pt_prev = NULL;
5298 
5299 another_round:
5300 	skb->skb_iif = skb->dev->ifindex;
5301 
5302 	__this_cpu_inc(softnet_data.processed);
5303 
5304 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5305 		int ret2;
5306 
5307 		migrate_disable();
5308 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5309 		migrate_enable();
5310 
5311 		if (ret2 != XDP_PASS) {
5312 			ret = NET_RX_DROP;
5313 			goto out;
5314 		}
5315 		skb_reset_mac_len(skb);
5316 	}
5317 
5318 	if (eth_type_vlan(skb->protocol)) {
5319 		skb = skb_vlan_untag(skb);
5320 		if (unlikely(!skb))
5321 			goto out;
5322 	}
5323 
5324 	if (skb_skip_tc_classify(skb))
5325 		goto skip_classify;
5326 
5327 	if (pfmemalloc)
5328 		goto skip_taps;
5329 
5330 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5331 		if (pt_prev)
5332 			ret = deliver_skb(skb, pt_prev, orig_dev);
5333 		pt_prev = ptype;
5334 	}
5335 
5336 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5337 		if (pt_prev)
5338 			ret = deliver_skb(skb, pt_prev, orig_dev);
5339 		pt_prev = ptype;
5340 	}
5341 
5342 skip_taps:
5343 #ifdef CONFIG_NET_INGRESS
5344 	if (static_branch_unlikely(&ingress_needed_key)) {
5345 		bool another = false;
5346 
5347 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5348 					 &another);
5349 		if (another)
5350 			goto another_round;
5351 		if (!skb)
5352 			goto out;
5353 
5354 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5355 			goto out;
5356 	}
5357 #endif
5358 	skb_reset_redirect(skb);
5359 skip_classify:
5360 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5361 		goto drop;
5362 
5363 	if (skb_vlan_tag_present(skb)) {
5364 		if (pt_prev) {
5365 			ret = deliver_skb(skb, pt_prev, orig_dev);
5366 			pt_prev = NULL;
5367 		}
5368 		if (vlan_do_receive(&skb))
5369 			goto another_round;
5370 		else if (unlikely(!skb))
5371 			goto out;
5372 	}
5373 
5374 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5375 	if (rx_handler) {
5376 		if (pt_prev) {
5377 			ret = deliver_skb(skb, pt_prev, orig_dev);
5378 			pt_prev = NULL;
5379 		}
5380 		switch (rx_handler(&skb)) {
5381 		case RX_HANDLER_CONSUMED:
5382 			ret = NET_RX_SUCCESS;
5383 			goto out;
5384 		case RX_HANDLER_ANOTHER:
5385 			goto another_round;
5386 		case RX_HANDLER_EXACT:
5387 			deliver_exact = true;
5388 			break;
5389 		case RX_HANDLER_PASS:
5390 			break;
5391 		default:
5392 			BUG();
5393 		}
5394 	}
5395 
5396 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5397 check_vlan_id:
5398 		if (skb_vlan_tag_get_id(skb)) {
5399 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5400 			 * find vlan device.
5401 			 */
5402 			skb->pkt_type = PACKET_OTHERHOST;
5403 		} else if (eth_type_vlan(skb->protocol)) {
5404 			/* Outer header is 802.1P with vlan 0, inner header is
5405 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5406 			 * not find vlan dev for vlan id 0.
5407 			 */
5408 			__vlan_hwaccel_clear_tag(skb);
5409 			skb = skb_vlan_untag(skb);
5410 			if (unlikely(!skb))
5411 				goto out;
5412 			if (vlan_do_receive(&skb))
5413 				/* After stripping off 802.1P header with vlan 0
5414 				 * vlan dev is found for inner header.
5415 				 */
5416 				goto another_round;
5417 			else if (unlikely(!skb))
5418 				goto out;
5419 			else
5420 				/* We have stripped outer 802.1P vlan 0 header.
5421 				 * But could not find vlan dev.
5422 				 * check again for vlan id to set OTHERHOST.
5423 				 */
5424 				goto check_vlan_id;
5425 		}
5426 		/* Note: we might in the future use prio bits
5427 		 * and set skb->priority like in vlan_do_receive()
5428 		 * For the time being, just ignore Priority Code Point
5429 		 */
5430 		__vlan_hwaccel_clear_tag(skb);
5431 	}
5432 
5433 	type = skb->protocol;
5434 
5435 	/* deliver only exact match when indicated */
5436 	if (likely(!deliver_exact)) {
5437 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5438 				       &ptype_base[ntohs(type) &
5439 						   PTYPE_HASH_MASK]);
5440 	}
5441 
5442 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5443 			       &orig_dev->ptype_specific);
5444 
5445 	if (unlikely(skb->dev != orig_dev)) {
5446 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5447 				       &skb->dev->ptype_specific);
5448 	}
5449 
5450 	if (pt_prev) {
5451 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5452 			goto drop;
5453 		*ppt_prev = pt_prev;
5454 	} else {
5455 drop:
5456 		if (!deliver_exact)
5457 			atomic_long_inc(&skb->dev->rx_dropped);
5458 		else
5459 			atomic_long_inc(&skb->dev->rx_nohandler);
5460 		kfree_skb(skb);
5461 		/* Jamal, now you will not able to escape explaining
5462 		 * me how you were going to use this. :-)
5463 		 */
5464 		ret = NET_RX_DROP;
5465 	}
5466 
5467 out:
5468 	/* The invariant here is that if *ppt_prev is not NULL
5469 	 * then skb should also be non-NULL.
5470 	 *
5471 	 * Apparently *ppt_prev assignment above holds this invariant due to
5472 	 * skb dereferencing near it.
5473 	 */
5474 	*pskb = skb;
5475 	return ret;
5476 }
5477 
5478 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5479 {
5480 	struct net_device *orig_dev = skb->dev;
5481 	struct packet_type *pt_prev = NULL;
5482 	int ret;
5483 
5484 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5485 	if (pt_prev)
5486 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5487 					 skb->dev, pt_prev, orig_dev);
5488 	return ret;
5489 }
5490 
5491 /**
5492  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5493  *	@skb: buffer to process
5494  *
5495  *	More direct receive version of netif_receive_skb().  It should
5496  *	only be used by callers that have a need to skip RPS and Generic XDP.
5497  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5498  *
5499  *	This function may only be called from softirq context and interrupts
5500  *	should be enabled.
5501  *
5502  *	Return values (usually ignored):
5503  *	NET_RX_SUCCESS: no congestion
5504  *	NET_RX_DROP: packet was dropped
5505  */
5506 int netif_receive_skb_core(struct sk_buff *skb)
5507 {
5508 	int ret;
5509 
5510 	rcu_read_lock();
5511 	ret = __netif_receive_skb_one_core(skb, false);
5512 	rcu_read_unlock();
5513 
5514 	return ret;
5515 }
5516 EXPORT_SYMBOL(netif_receive_skb_core);
5517 
5518 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5519 						  struct packet_type *pt_prev,
5520 						  struct net_device *orig_dev)
5521 {
5522 	struct sk_buff *skb, *next;
5523 
5524 	if (!pt_prev)
5525 		return;
5526 	if (list_empty(head))
5527 		return;
5528 	if (pt_prev->list_func != NULL)
5529 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5530 				   ip_list_rcv, head, pt_prev, orig_dev);
5531 	else
5532 		list_for_each_entry_safe(skb, next, head, list) {
5533 			skb_list_del_init(skb);
5534 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5535 		}
5536 }
5537 
5538 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5539 {
5540 	/* Fast-path assumptions:
5541 	 * - There is no RX handler.
5542 	 * - Only one packet_type matches.
5543 	 * If either of these fails, we will end up doing some per-packet
5544 	 * processing in-line, then handling the 'last ptype' for the whole
5545 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5546 	 * because the 'last ptype' must be constant across the sublist, and all
5547 	 * other ptypes are handled per-packet.
5548 	 */
5549 	/* Current (common) ptype of sublist */
5550 	struct packet_type *pt_curr = NULL;
5551 	/* Current (common) orig_dev of sublist */
5552 	struct net_device *od_curr = NULL;
5553 	struct list_head sublist;
5554 	struct sk_buff *skb, *next;
5555 
5556 	INIT_LIST_HEAD(&sublist);
5557 	list_for_each_entry_safe(skb, next, head, list) {
5558 		struct net_device *orig_dev = skb->dev;
5559 		struct packet_type *pt_prev = NULL;
5560 
5561 		skb_list_del_init(skb);
5562 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5563 		if (!pt_prev)
5564 			continue;
5565 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5566 			/* dispatch old sublist */
5567 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5568 			/* start new sublist */
5569 			INIT_LIST_HEAD(&sublist);
5570 			pt_curr = pt_prev;
5571 			od_curr = orig_dev;
5572 		}
5573 		list_add_tail(&skb->list, &sublist);
5574 	}
5575 
5576 	/* dispatch final sublist */
5577 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5578 }
5579 
5580 static int __netif_receive_skb(struct sk_buff *skb)
5581 {
5582 	int ret;
5583 
5584 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5585 		unsigned int noreclaim_flag;
5586 
5587 		/*
5588 		 * PFMEMALLOC skbs are special, they should
5589 		 * - be delivered to SOCK_MEMALLOC sockets only
5590 		 * - stay away from userspace
5591 		 * - have bounded memory usage
5592 		 *
5593 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5594 		 * context down to all allocation sites.
5595 		 */
5596 		noreclaim_flag = memalloc_noreclaim_save();
5597 		ret = __netif_receive_skb_one_core(skb, true);
5598 		memalloc_noreclaim_restore(noreclaim_flag);
5599 	} else
5600 		ret = __netif_receive_skb_one_core(skb, false);
5601 
5602 	return ret;
5603 }
5604 
5605 static void __netif_receive_skb_list(struct list_head *head)
5606 {
5607 	unsigned long noreclaim_flag = 0;
5608 	struct sk_buff *skb, *next;
5609 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5610 
5611 	list_for_each_entry_safe(skb, next, head, list) {
5612 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5613 			struct list_head sublist;
5614 
5615 			/* Handle the previous sublist */
5616 			list_cut_before(&sublist, head, &skb->list);
5617 			if (!list_empty(&sublist))
5618 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5619 			pfmemalloc = !pfmemalloc;
5620 			/* See comments in __netif_receive_skb */
5621 			if (pfmemalloc)
5622 				noreclaim_flag = memalloc_noreclaim_save();
5623 			else
5624 				memalloc_noreclaim_restore(noreclaim_flag);
5625 		}
5626 	}
5627 	/* Handle the remaining sublist */
5628 	if (!list_empty(head))
5629 		__netif_receive_skb_list_core(head, pfmemalloc);
5630 	/* Restore pflags */
5631 	if (pfmemalloc)
5632 		memalloc_noreclaim_restore(noreclaim_flag);
5633 }
5634 
5635 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5636 {
5637 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5638 	struct bpf_prog *new = xdp->prog;
5639 	int ret = 0;
5640 
5641 	if (new) {
5642 		u32 i;
5643 
5644 		mutex_lock(&new->aux->used_maps_mutex);
5645 
5646 		/* generic XDP does not work with DEVMAPs that can
5647 		 * have a bpf_prog installed on an entry
5648 		 */
5649 		for (i = 0; i < new->aux->used_map_cnt; i++) {
5650 			if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5651 			    cpu_map_prog_allowed(new->aux->used_maps[i])) {
5652 				mutex_unlock(&new->aux->used_maps_mutex);
5653 				return -EINVAL;
5654 			}
5655 		}
5656 
5657 		mutex_unlock(&new->aux->used_maps_mutex);
5658 	}
5659 
5660 	switch (xdp->command) {
5661 	case XDP_SETUP_PROG:
5662 		rcu_assign_pointer(dev->xdp_prog, new);
5663 		if (old)
5664 			bpf_prog_put(old);
5665 
5666 		if (old && !new) {
5667 			static_branch_dec(&generic_xdp_needed_key);
5668 		} else if (new && !old) {
5669 			static_branch_inc(&generic_xdp_needed_key);
5670 			dev_disable_lro(dev);
5671 			dev_disable_gro_hw(dev);
5672 		}
5673 		break;
5674 
5675 	default:
5676 		ret = -EINVAL;
5677 		break;
5678 	}
5679 
5680 	return ret;
5681 }
5682 
5683 static int netif_receive_skb_internal(struct sk_buff *skb)
5684 {
5685 	int ret;
5686 
5687 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5688 
5689 	if (skb_defer_rx_timestamp(skb))
5690 		return NET_RX_SUCCESS;
5691 
5692 	rcu_read_lock();
5693 #ifdef CONFIG_RPS
5694 	if (static_branch_unlikely(&rps_needed)) {
5695 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5696 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5697 
5698 		if (cpu >= 0) {
5699 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5700 			rcu_read_unlock();
5701 			return ret;
5702 		}
5703 	}
5704 #endif
5705 	ret = __netif_receive_skb(skb);
5706 	rcu_read_unlock();
5707 	return ret;
5708 }
5709 
5710 static void netif_receive_skb_list_internal(struct list_head *head)
5711 {
5712 	struct sk_buff *skb, *next;
5713 	struct list_head sublist;
5714 
5715 	INIT_LIST_HEAD(&sublist);
5716 	list_for_each_entry_safe(skb, next, head, list) {
5717 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5718 		skb_list_del_init(skb);
5719 		if (!skb_defer_rx_timestamp(skb))
5720 			list_add_tail(&skb->list, &sublist);
5721 	}
5722 	list_splice_init(&sublist, head);
5723 
5724 	rcu_read_lock();
5725 #ifdef CONFIG_RPS
5726 	if (static_branch_unlikely(&rps_needed)) {
5727 		list_for_each_entry_safe(skb, next, head, list) {
5728 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5729 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5730 
5731 			if (cpu >= 0) {
5732 				/* Will be handled, remove from list */
5733 				skb_list_del_init(skb);
5734 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5735 			}
5736 		}
5737 	}
5738 #endif
5739 	__netif_receive_skb_list(head);
5740 	rcu_read_unlock();
5741 }
5742 
5743 /**
5744  *	netif_receive_skb - process receive buffer from network
5745  *	@skb: buffer to process
5746  *
5747  *	netif_receive_skb() is the main receive data processing function.
5748  *	It always succeeds. The buffer may be dropped during processing
5749  *	for congestion control or by the protocol layers.
5750  *
5751  *	This function may only be called from softirq context and interrupts
5752  *	should be enabled.
5753  *
5754  *	Return values (usually ignored):
5755  *	NET_RX_SUCCESS: no congestion
5756  *	NET_RX_DROP: packet was dropped
5757  */
5758 int netif_receive_skb(struct sk_buff *skb)
5759 {
5760 	int ret;
5761 
5762 	trace_netif_receive_skb_entry(skb);
5763 
5764 	ret = netif_receive_skb_internal(skb);
5765 	trace_netif_receive_skb_exit(ret);
5766 
5767 	return ret;
5768 }
5769 EXPORT_SYMBOL(netif_receive_skb);
5770 
5771 /**
5772  *	netif_receive_skb_list - process many receive buffers from network
5773  *	@head: list of skbs to process.
5774  *
5775  *	Since return value of netif_receive_skb() is normally ignored, and
5776  *	wouldn't be meaningful for a list, this function returns void.
5777  *
5778  *	This function may only be called from softirq context and interrupts
5779  *	should be enabled.
5780  */
5781 void netif_receive_skb_list(struct list_head *head)
5782 {
5783 	struct sk_buff *skb;
5784 
5785 	if (list_empty(head))
5786 		return;
5787 	if (trace_netif_receive_skb_list_entry_enabled()) {
5788 		list_for_each_entry(skb, head, list)
5789 			trace_netif_receive_skb_list_entry(skb);
5790 	}
5791 	netif_receive_skb_list_internal(head);
5792 	trace_netif_receive_skb_list_exit(0);
5793 }
5794 EXPORT_SYMBOL(netif_receive_skb_list);
5795 
5796 static DEFINE_PER_CPU(struct work_struct, flush_works);
5797 
5798 /* Network device is going away, flush any packets still pending */
5799 static void flush_backlog(struct work_struct *work)
5800 {
5801 	struct sk_buff *skb, *tmp;
5802 	struct softnet_data *sd;
5803 
5804 	local_bh_disable();
5805 	sd = this_cpu_ptr(&softnet_data);
5806 
5807 	local_irq_disable();
5808 	rps_lock(sd);
5809 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5810 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5811 			__skb_unlink(skb, &sd->input_pkt_queue);
5812 			dev_kfree_skb_irq(skb);
5813 			input_queue_head_incr(sd);
5814 		}
5815 	}
5816 	rps_unlock(sd);
5817 	local_irq_enable();
5818 
5819 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5820 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5821 			__skb_unlink(skb, &sd->process_queue);
5822 			kfree_skb(skb);
5823 			input_queue_head_incr(sd);
5824 		}
5825 	}
5826 	local_bh_enable();
5827 }
5828 
5829 static bool flush_required(int cpu)
5830 {
5831 #if IS_ENABLED(CONFIG_RPS)
5832 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5833 	bool do_flush;
5834 
5835 	local_irq_disable();
5836 	rps_lock(sd);
5837 
5838 	/* as insertion into process_queue happens with the rps lock held,
5839 	 * process_queue access may race only with dequeue
5840 	 */
5841 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5842 		   !skb_queue_empty_lockless(&sd->process_queue);
5843 	rps_unlock(sd);
5844 	local_irq_enable();
5845 
5846 	return do_flush;
5847 #endif
5848 	/* without RPS we can't safely check input_pkt_queue: during a
5849 	 * concurrent remote skb_queue_splice() we can detect as empty both
5850 	 * input_pkt_queue and process_queue even if the latter could end-up
5851 	 * containing a lot of packets.
5852 	 */
5853 	return true;
5854 }
5855 
5856 static void flush_all_backlogs(void)
5857 {
5858 	static cpumask_t flush_cpus;
5859 	unsigned int cpu;
5860 
5861 	/* since we are under rtnl lock protection we can use static data
5862 	 * for the cpumask and avoid allocating on stack the possibly
5863 	 * large mask
5864 	 */
5865 	ASSERT_RTNL();
5866 
5867 	get_online_cpus();
5868 
5869 	cpumask_clear(&flush_cpus);
5870 	for_each_online_cpu(cpu) {
5871 		if (flush_required(cpu)) {
5872 			queue_work_on(cpu, system_highpri_wq,
5873 				      per_cpu_ptr(&flush_works, cpu));
5874 			cpumask_set_cpu(cpu, &flush_cpus);
5875 		}
5876 	}
5877 
5878 	/* we can have in flight packet[s] on the cpus we are not flushing,
5879 	 * synchronize_net() in unregister_netdevice_many() will take care of
5880 	 * them
5881 	 */
5882 	for_each_cpu(cpu, &flush_cpus)
5883 		flush_work(per_cpu_ptr(&flush_works, cpu));
5884 
5885 	put_online_cpus();
5886 }
5887 
5888 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5889 static void gro_normal_list(struct napi_struct *napi)
5890 {
5891 	if (!napi->rx_count)
5892 		return;
5893 	netif_receive_skb_list_internal(&napi->rx_list);
5894 	INIT_LIST_HEAD(&napi->rx_list);
5895 	napi->rx_count = 0;
5896 }
5897 
5898 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5899  * pass the whole batch up to the stack.
5900  */
5901 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5902 {
5903 	list_add_tail(&skb->list, &napi->rx_list);
5904 	napi->rx_count += segs;
5905 	if (napi->rx_count >= gro_normal_batch)
5906 		gro_normal_list(napi);
5907 }
5908 
5909 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5910 {
5911 	struct packet_offload *ptype;
5912 	__be16 type = skb->protocol;
5913 	struct list_head *head = &offload_base;
5914 	int err = -ENOENT;
5915 
5916 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5917 
5918 	if (NAPI_GRO_CB(skb)->count == 1) {
5919 		skb_shinfo(skb)->gso_size = 0;
5920 		goto out;
5921 	}
5922 
5923 	rcu_read_lock();
5924 	list_for_each_entry_rcu(ptype, head, list) {
5925 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5926 			continue;
5927 
5928 		err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5929 					 ipv6_gro_complete, inet_gro_complete,
5930 					 skb, 0);
5931 		break;
5932 	}
5933 	rcu_read_unlock();
5934 
5935 	if (err) {
5936 		WARN_ON(&ptype->list == head);
5937 		kfree_skb(skb);
5938 		return NET_RX_SUCCESS;
5939 	}
5940 
5941 out:
5942 	gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5943 	return NET_RX_SUCCESS;
5944 }
5945 
5946 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5947 				   bool flush_old)
5948 {
5949 	struct list_head *head = &napi->gro_hash[index].list;
5950 	struct sk_buff *skb, *p;
5951 
5952 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5953 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5954 			return;
5955 		skb_list_del_init(skb);
5956 		napi_gro_complete(napi, skb);
5957 		napi->gro_hash[index].count--;
5958 	}
5959 
5960 	if (!napi->gro_hash[index].count)
5961 		__clear_bit(index, &napi->gro_bitmask);
5962 }
5963 
5964 /* napi->gro_hash[].list contains packets ordered by age.
5965  * youngest packets at the head of it.
5966  * Complete skbs in reverse order to reduce latencies.
5967  */
5968 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5969 {
5970 	unsigned long bitmask = napi->gro_bitmask;
5971 	unsigned int i, base = ~0U;
5972 
5973 	while ((i = ffs(bitmask)) != 0) {
5974 		bitmask >>= i;
5975 		base += i;
5976 		__napi_gro_flush_chain(napi, base, flush_old);
5977 	}
5978 }
5979 EXPORT_SYMBOL(napi_gro_flush);
5980 
5981 static void gro_list_prepare(const struct list_head *head,
5982 			     const struct sk_buff *skb)
5983 {
5984 	unsigned int maclen = skb->dev->hard_header_len;
5985 	u32 hash = skb_get_hash_raw(skb);
5986 	struct sk_buff *p;
5987 
5988 	list_for_each_entry(p, head, list) {
5989 		unsigned long diffs;
5990 
5991 		NAPI_GRO_CB(p)->flush = 0;
5992 
5993 		if (hash != skb_get_hash_raw(p)) {
5994 			NAPI_GRO_CB(p)->same_flow = 0;
5995 			continue;
5996 		}
5997 
5998 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5999 		diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
6000 		if (skb_vlan_tag_present(p))
6001 			diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
6002 		diffs |= skb_metadata_dst_cmp(p, skb);
6003 		diffs |= skb_metadata_differs(p, skb);
6004 		if (maclen == ETH_HLEN)
6005 			diffs |= compare_ether_header(skb_mac_header(p),
6006 						      skb_mac_header(skb));
6007 		else if (!diffs)
6008 			diffs = memcmp(skb_mac_header(p),
6009 				       skb_mac_header(skb),
6010 				       maclen);
6011 
6012 		diffs |= skb_get_nfct(p) ^ skb_get_nfct(skb);
6013 #if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
6014 		if (!diffs) {
6015 			struct tc_skb_ext *skb_ext = skb_ext_find(skb, TC_SKB_EXT);
6016 			struct tc_skb_ext *p_ext = skb_ext_find(p, TC_SKB_EXT);
6017 
6018 			diffs |= (!!p_ext) ^ (!!skb_ext);
6019 			if (!diffs && unlikely(skb_ext))
6020 				diffs |= p_ext->chain ^ skb_ext->chain;
6021 		}
6022 #endif
6023 
6024 		NAPI_GRO_CB(p)->same_flow = !diffs;
6025 	}
6026 }
6027 
6028 static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff)
6029 {
6030 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
6031 	const skb_frag_t *frag0 = &pinfo->frags[0];
6032 
6033 	NAPI_GRO_CB(skb)->data_offset = 0;
6034 	NAPI_GRO_CB(skb)->frag0 = NULL;
6035 	NAPI_GRO_CB(skb)->frag0_len = 0;
6036 
6037 	if (!skb_headlen(skb) && pinfo->nr_frags &&
6038 	    !PageHighMem(skb_frag_page(frag0)) &&
6039 	    (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) {
6040 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
6041 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
6042 						    skb_frag_size(frag0),
6043 						    skb->end - skb->tail);
6044 	}
6045 }
6046 
6047 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
6048 {
6049 	struct skb_shared_info *pinfo = skb_shinfo(skb);
6050 
6051 	BUG_ON(skb->end - skb->tail < grow);
6052 
6053 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
6054 
6055 	skb->data_len -= grow;
6056 	skb->tail += grow;
6057 
6058 	skb_frag_off_add(&pinfo->frags[0], grow);
6059 	skb_frag_size_sub(&pinfo->frags[0], grow);
6060 
6061 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
6062 		skb_frag_unref(skb, 0);
6063 		memmove(pinfo->frags, pinfo->frags + 1,
6064 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
6065 	}
6066 }
6067 
6068 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
6069 {
6070 	struct sk_buff *oldest;
6071 
6072 	oldest = list_last_entry(head, struct sk_buff, list);
6073 
6074 	/* We are called with head length >= MAX_GRO_SKBS, so this is
6075 	 * impossible.
6076 	 */
6077 	if (WARN_ON_ONCE(!oldest))
6078 		return;
6079 
6080 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
6081 	 * SKB to the chain.
6082 	 */
6083 	skb_list_del_init(oldest);
6084 	napi_gro_complete(napi, oldest);
6085 }
6086 
6087 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6088 {
6089 	u32 bucket = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
6090 	struct gro_list *gro_list = &napi->gro_hash[bucket];
6091 	struct list_head *head = &offload_base;
6092 	struct packet_offload *ptype;
6093 	__be16 type = skb->protocol;
6094 	struct sk_buff *pp = NULL;
6095 	enum gro_result ret;
6096 	int same_flow;
6097 	int grow;
6098 
6099 	if (netif_elide_gro(skb->dev))
6100 		goto normal;
6101 
6102 	gro_list_prepare(&gro_list->list, skb);
6103 
6104 	rcu_read_lock();
6105 	list_for_each_entry_rcu(ptype, head, list) {
6106 		if (ptype->type != type || !ptype->callbacks.gro_receive)
6107 			continue;
6108 
6109 		skb_set_network_header(skb, skb_gro_offset(skb));
6110 		skb_reset_mac_len(skb);
6111 		NAPI_GRO_CB(skb)->same_flow = 0;
6112 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
6113 		NAPI_GRO_CB(skb)->free = 0;
6114 		NAPI_GRO_CB(skb)->encap_mark = 0;
6115 		NAPI_GRO_CB(skb)->recursion_counter = 0;
6116 		NAPI_GRO_CB(skb)->is_fou = 0;
6117 		NAPI_GRO_CB(skb)->is_atomic = 1;
6118 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
6119 
6120 		/* Setup for GRO checksum validation */
6121 		switch (skb->ip_summed) {
6122 		case CHECKSUM_COMPLETE:
6123 			NAPI_GRO_CB(skb)->csum = skb->csum;
6124 			NAPI_GRO_CB(skb)->csum_valid = 1;
6125 			NAPI_GRO_CB(skb)->csum_cnt = 0;
6126 			break;
6127 		case CHECKSUM_UNNECESSARY:
6128 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6129 			NAPI_GRO_CB(skb)->csum_valid = 0;
6130 			break;
6131 		default:
6132 			NAPI_GRO_CB(skb)->csum_cnt = 0;
6133 			NAPI_GRO_CB(skb)->csum_valid = 0;
6134 		}
6135 
6136 		pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6137 					ipv6_gro_receive, inet_gro_receive,
6138 					&gro_list->list, skb);
6139 		break;
6140 	}
6141 	rcu_read_unlock();
6142 
6143 	if (&ptype->list == head)
6144 		goto normal;
6145 
6146 	if (PTR_ERR(pp) == -EINPROGRESS) {
6147 		ret = GRO_CONSUMED;
6148 		goto ok;
6149 	}
6150 
6151 	same_flow = NAPI_GRO_CB(skb)->same_flow;
6152 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6153 
6154 	if (pp) {
6155 		skb_list_del_init(pp);
6156 		napi_gro_complete(napi, pp);
6157 		gro_list->count--;
6158 	}
6159 
6160 	if (same_flow)
6161 		goto ok;
6162 
6163 	if (NAPI_GRO_CB(skb)->flush)
6164 		goto normal;
6165 
6166 	if (unlikely(gro_list->count >= MAX_GRO_SKBS))
6167 		gro_flush_oldest(napi, &gro_list->list);
6168 	else
6169 		gro_list->count++;
6170 
6171 	NAPI_GRO_CB(skb)->count = 1;
6172 	NAPI_GRO_CB(skb)->age = jiffies;
6173 	NAPI_GRO_CB(skb)->last = skb;
6174 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6175 	list_add(&skb->list, &gro_list->list);
6176 	ret = GRO_HELD;
6177 
6178 pull:
6179 	grow = skb_gro_offset(skb) - skb_headlen(skb);
6180 	if (grow > 0)
6181 		gro_pull_from_frag0(skb, grow);
6182 ok:
6183 	if (gro_list->count) {
6184 		if (!test_bit(bucket, &napi->gro_bitmask))
6185 			__set_bit(bucket, &napi->gro_bitmask);
6186 	} else if (test_bit(bucket, &napi->gro_bitmask)) {
6187 		__clear_bit(bucket, &napi->gro_bitmask);
6188 	}
6189 
6190 	return ret;
6191 
6192 normal:
6193 	ret = GRO_NORMAL;
6194 	goto pull;
6195 }
6196 
6197 struct packet_offload *gro_find_receive_by_type(__be16 type)
6198 {
6199 	struct list_head *offload_head = &offload_base;
6200 	struct packet_offload *ptype;
6201 
6202 	list_for_each_entry_rcu(ptype, offload_head, list) {
6203 		if (ptype->type != type || !ptype->callbacks.gro_receive)
6204 			continue;
6205 		return ptype;
6206 	}
6207 	return NULL;
6208 }
6209 EXPORT_SYMBOL(gro_find_receive_by_type);
6210 
6211 struct packet_offload *gro_find_complete_by_type(__be16 type)
6212 {
6213 	struct list_head *offload_head = &offload_base;
6214 	struct packet_offload *ptype;
6215 
6216 	list_for_each_entry_rcu(ptype, offload_head, list) {
6217 		if (ptype->type != type || !ptype->callbacks.gro_complete)
6218 			continue;
6219 		return ptype;
6220 	}
6221 	return NULL;
6222 }
6223 EXPORT_SYMBOL(gro_find_complete_by_type);
6224 
6225 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6226 				    struct sk_buff *skb,
6227 				    gro_result_t ret)
6228 {
6229 	switch (ret) {
6230 	case GRO_NORMAL:
6231 		gro_normal_one(napi, skb, 1);
6232 		break;
6233 
6234 	case GRO_MERGED_FREE:
6235 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6236 			napi_skb_free_stolen_head(skb);
6237 		else if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
6238 			__kfree_skb(skb);
6239 		else
6240 			__kfree_skb_defer(skb);
6241 		break;
6242 
6243 	case GRO_HELD:
6244 	case GRO_MERGED:
6245 	case GRO_CONSUMED:
6246 		break;
6247 	}
6248 
6249 	return ret;
6250 }
6251 
6252 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6253 {
6254 	gro_result_t ret;
6255 
6256 	skb_mark_napi_id(skb, napi);
6257 	trace_napi_gro_receive_entry(skb);
6258 
6259 	skb_gro_reset_offset(skb, 0);
6260 
6261 	ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6262 	trace_napi_gro_receive_exit(ret);
6263 
6264 	return ret;
6265 }
6266 EXPORT_SYMBOL(napi_gro_receive);
6267 
6268 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6269 {
6270 	if (unlikely(skb->pfmemalloc)) {
6271 		consume_skb(skb);
6272 		return;
6273 	}
6274 	__skb_pull(skb, skb_headlen(skb));
6275 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
6276 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6277 	__vlan_hwaccel_clear_tag(skb);
6278 	skb->dev = napi->dev;
6279 	skb->skb_iif = 0;
6280 
6281 	/* eth_type_trans() assumes pkt_type is PACKET_HOST */
6282 	skb->pkt_type = PACKET_HOST;
6283 
6284 	skb->encapsulation = 0;
6285 	skb_shinfo(skb)->gso_type = 0;
6286 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6287 	skb_ext_reset(skb);
6288 	nf_reset_ct(skb);
6289 
6290 	napi->skb = skb;
6291 }
6292 
6293 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6294 {
6295 	struct sk_buff *skb = napi->skb;
6296 
6297 	if (!skb) {
6298 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6299 		if (skb) {
6300 			napi->skb = skb;
6301 			skb_mark_napi_id(skb, napi);
6302 		}
6303 	}
6304 	return skb;
6305 }
6306 EXPORT_SYMBOL(napi_get_frags);
6307 
6308 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6309 				      struct sk_buff *skb,
6310 				      gro_result_t ret)
6311 {
6312 	switch (ret) {
6313 	case GRO_NORMAL:
6314 	case GRO_HELD:
6315 		__skb_push(skb, ETH_HLEN);
6316 		skb->protocol = eth_type_trans(skb, skb->dev);
6317 		if (ret == GRO_NORMAL)
6318 			gro_normal_one(napi, skb, 1);
6319 		break;
6320 
6321 	case GRO_MERGED_FREE:
6322 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6323 			napi_skb_free_stolen_head(skb);
6324 		else
6325 			napi_reuse_skb(napi, skb);
6326 		break;
6327 
6328 	case GRO_MERGED:
6329 	case GRO_CONSUMED:
6330 		break;
6331 	}
6332 
6333 	return ret;
6334 }
6335 
6336 /* Upper GRO stack assumes network header starts at gro_offset=0
6337  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6338  * We copy ethernet header into skb->data to have a common layout.
6339  */
6340 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6341 {
6342 	struct sk_buff *skb = napi->skb;
6343 	const struct ethhdr *eth;
6344 	unsigned int hlen = sizeof(*eth);
6345 
6346 	napi->skb = NULL;
6347 
6348 	skb_reset_mac_header(skb);
6349 	skb_gro_reset_offset(skb, hlen);
6350 
6351 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
6352 		eth = skb_gro_header_slow(skb, hlen, 0);
6353 		if (unlikely(!eth)) {
6354 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6355 					     __func__, napi->dev->name);
6356 			napi_reuse_skb(napi, skb);
6357 			return NULL;
6358 		}
6359 	} else {
6360 		eth = (const struct ethhdr *)skb->data;
6361 		gro_pull_from_frag0(skb, hlen);
6362 		NAPI_GRO_CB(skb)->frag0 += hlen;
6363 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
6364 	}
6365 	__skb_pull(skb, hlen);
6366 
6367 	/*
6368 	 * This works because the only protocols we care about don't require
6369 	 * special handling.
6370 	 * We'll fix it up properly in napi_frags_finish()
6371 	 */
6372 	skb->protocol = eth->h_proto;
6373 
6374 	return skb;
6375 }
6376 
6377 gro_result_t napi_gro_frags(struct napi_struct *napi)
6378 {
6379 	gro_result_t ret;
6380 	struct sk_buff *skb = napi_frags_skb(napi);
6381 
6382 	trace_napi_gro_frags_entry(skb);
6383 
6384 	ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6385 	trace_napi_gro_frags_exit(ret);
6386 
6387 	return ret;
6388 }
6389 EXPORT_SYMBOL(napi_gro_frags);
6390 
6391 /* Compute the checksum from gro_offset and return the folded value
6392  * after adding in any pseudo checksum.
6393  */
6394 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6395 {
6396 	__wsum wsum;
6397 	__sum16 sum;
6398 
6399 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6400 
6401 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6402 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6403 	/* See comments in __skb_checksum_complete(). */
6404 	if (likely(!sum)) {
6405 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6406 		    !skb->csum_complete_sw)
6407 			netdev_rx_csum_fault(skb->dev, skb);
6408 	}
6409 
6410 	NAPI_GRO_CB(skb)->csum = wsum;
6411 	NAPI_GRO_CB(skb)->csum_valid = 1;
6412 
6413 	return sum;
6414 }
6415 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6416 
6417 static void net_rps_send_ipi(struct softnet_data *remsd)
6418 {
6419 #ifdef CONFIG_RPS
6420 	while (remsd) {
6421 		struct softnet_data *next = remsd->rps_ipi_next;
6422 
6423 		if (cpu_online(remsd->cpu))
6424 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6425 		remsd = next;
6426 	}
6427 #endif
6428 }
6429 
6430 /*
6431  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6432  * Note: called with local irq disabled, but exits with local irq enabled.
6433  */
6434 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6435 {
6436 #ifdef CONFIG_RPS
6437 	struct softnet_data *remsd = sd->rps_ipi_list;
6438 
6439 	if (remsd) {
6440 		sd->rps_ipi_list = NULL;
6441 
6442 		local_irq_enable();
6443 
6444 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6445 		net_rps_send_ipi(remsd);
6446 	} else
6447 #endif
6448 		local_irq_enable();
6449 }
6450 
6451 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6452 {
6453 #ifdef CONFIG_RPS
6454 	return sd->rps_ipi_list != NULL;
6455 #else
6456 	return false;
6457 #endif
6458 }
6459 
6460 static int process_backlog(struct napi_struct *napi, int quota)
6461 {
6462 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6463 	bool again = true;
6464 	int work = 0;
6465 
6466 	/* Check if we have pending ipi, its better to send them now,
6467 	 * not waiting net_rx_action() end.
6468 	 */
6469 	if (sd_has_rps_ipi_waiting(sd)) {
6470 		local_irq_disable();
6471 		net_rps_action_and_irq_enable(sd);
6472 	}
6473 
6474 	napi->weight = dev_rx_weight;
6475 	while (again) {
6476 		struct sk_buff *skb;
6477 
6478 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6479 			rcu_read_lock();
6480 			__netif_receive_skb(skb);
6481 			rcu_read_unlock();
6482 			input_queue_head_incr(sd);
6483 			if (++work >= quota)
6484 				return work;
6485 
6486 		}
6487 
6488 		local_irq_disable();
6489 		rps_lock(sd);
6490 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6491 			/*
6492 			 * Inline a custom version of __napi_complete().
6493 			 * only current cpu owns and manipulates this napi,
6494 			 * and NAPI_STATE_SCHED is the only possible flag set
6495 			 * on backlog.
6496 			 * We can use a plain write instead of clear_bit(),
6497 			 * and we dont need an smp_mb() memory barrier.
6498 			 */
6499 			napi->state = 0;
6500 			again = false;
6501 		} else {
6502 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6503 						   &sd->process_queue);
6504 		}
6505 		rps_unlock(sd);
6506 		local_irq_enable();
6507 	}
6508 
6509 	return work;
6510 }
6511 
6512 /**
6513  * __napi_schedule - schedule for receive
6514  * @n: entry to schedule
6515  *
6516  * The entry's receive function will be scheduled to run.
6517  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6518  */
6519 void __napi_schedule(struct napi_struct *n)
6520 {
6521 	unsigned long flags;
6522 
6523 	local_irq_save(flags);
6524 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6525 	local_irq_restore(flags);
6526 }
6527 EXPORT_SYMBOL(__napi_schedule);
6528 
6529 /**
6530  *	napi_schedule_prep - check if napi can be scheduled
6531  *	@n: napi context
6532  *
6533  * Test if NAPI routine is already running, and if not mark
6534  * it as running.  This is used as a condition variable to
6535  * insure only one NAPI poll instance runs.  We also make
6536  * sure there is no pending NAPI disable.
6537  */
6538 bool napi_schedule_prep(struct napi_struct *n)
6539 {
6540 	unsigned long val, new;
6541 
6542 	do {
6543 		val = READ_ONCE(n->state);
6544 		if (unlikely(val & NAPIF_STATE_DISABLE))
6545 			return false;
6546 		new = val | NAPIF_STATE_SCHED;
6547 
6548 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6549 		 * This was suggested by Alexander Duyck, as compiler
6550 		 * emits better code than :
6551 		 * if (val & NAPIF_STATE_SCHED)
6552 		 *     new |= NAPIF_STATE_MISSED;
6553 		 */
6554 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6555 						   NAPIF_STATE_MISSED;
6556 	} while (cmpxchg(&n->state, val, new) != val);
6557 
6558 	return !(val & NAPIF_STATE_SCHED);
6559 }
6560 EXPORT_SYMBOL(napi_schedule_prep);
6561 
6562 /**
6563  * __napi_schedule_irqoff - schedule for receive
6564  * @n: entry to schedule
6565  *
6566  * Variant of __napi_schedule() assuming hard irqs are masked.
6567  *
6568  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6569  * because the interrupt disabled assumption might not be true
6570  * due to force-threaded interrupts and spinlock substitution.
6571  */
6572 void __napi_schedule_irqoff(struct napi_struct *n)
6573 {
6574 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6575 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6576 	else
6577 		__napi_schedule(n);
6578 }
6579 EXPORT_SYMBOL(__napi_schedule_irqoff);
6580 
6581 bool napi_complete_done(struct napi_struct *n, int work_done)
6582 {
6583 	unsigned long flags, val, new, timeout = 0;
6584 	bool ret = true;
6585 
6586 	/*
6587 	 * 1) Don't let napi dequeue from the cpu poll list
6588 	 *    just in case its running on a different cpu.
6589 	 * 2) If we are busy polling, do nothing here, we have
6590 	 *    the guarantee we will be called later.
6591 	 */
6592 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6593 				 NAPIF_STATE_IN_BUSY_POLL)))
6594 		return false;
6595 
6596 	if (work_done) {
6597 		if (n->gro_bitmask)
6598 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6599 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6600 	}
6601 	if (n->defer_hard_irqs_count > 0) {
6602 		n->defer_hard_irqs_count--;
6603 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6604 		if (timeout)
6605 			ret = false;
6606 	}
6607 	if (n->gro_bitmask) {
6608 		/* When the NAPI instance uses a timeout and keeps postponing
6609 		 * it, we need to bound somehow the time packets are kept in
6610 		 * the GRO layer
6611 		 */
6612 		napi_gro_flush(n, !!timeout);
6613 	}
6614 
6615 	gro_normal_list(n);
6616 
6617 	if (unlikely(!list_empty(&n->poll_list))) {
6618 		/* If n->poll_list is not empty, we need to mask irqs */
6619 		local_irq_save(flags);
6620 		list_del_init(&n->poll_list);
6621 		local_irq_restore(flags);
6622 	}
6623 
6624 	do {
6625 		val = READ_ONCE(n->state);
6626 
6627 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6628 
6629 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6630 			      NAPIF_STATE_SCHED_THREADED |
6631 			      NAPIF_STATE_PREFER_BUSY_POLL);
6632 
6633 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6634 		 * because we will call napi->poll() one more time.
6635 		 * This C code was suggested by Alexander Duyck to help gcc.
6636 		 */
6637 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6638 						    NAPIF_STATE_SCHED;
6639 	} while (cmpxchg(&n->state, val, new) != val);
6640 
6641 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6642 		__napi_schedule(n);
6643 		return false;
6644 	}
6645 
6646 	if (timeout)
6647 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6648 			      HRTIMER_MODE_REL_PINNED);
6649 	return ret;
6650 }
6651 EXPORT_SYMBOL(napi_complete_done);
6652 
6653 /* must be called under rcu_read_lock(), as we dont take a reference */
6654 static struct napi_struct *napi_by_id(unsigned int napi_id)
6655 {
6656 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6657 	struct napi_struct *napi;
6658 
6659 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6660 		if (napi->napi_id == napi_id)
6661 			return napi;
6662 
6663 	return NULL;
6664 }
6665 
6666 #if defined(CONFIG_NET_RX_BUSY_POLL)
6667 
6668 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6669 {
6670 	if (!skip_schedule) {
6671 		gro_normal_list(napi);
6672 		__napi_schedule(napi);
6673 		return;
6674 	}
6675 
6676 	if (napi->gro_bitmask) {
6677 		/* flush too old packets
6678 		 * If HZ < 1000, flush all packets.
6679 		 */
6680 		napi_gro_flush(napi, HZ >= 1000);
6681 	}
6682 
6683 	gro_normal_list(napi);
6684 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6685 }
6686 
6687 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6688 			   u16 budget)
6689 {
6690 	bool skip_schedule = false;
6691 	unsigned long timeout;
6692 	int rc;
6693 
6694 	/* Busy polling means there is a high chance device driver hard irq
6695 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6696 	 * set in napi_schedule_prep().
6697 	 * Since we are about to call napi->poll() once more, we can safely
6698 	 * clear NAPI_STATE_MISSED.
6699 	 *
6700 	 * Note: x86 could use a single "lock and ..." instruction
6701 	 * to perform these two clear_bit()
6702 	 */
6703 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6704 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6705 
6706 	local_bh_disable();
6707 
6708 	if (prefer_busy_poll) {
6709 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6710 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6711 		if (napi->defer_hard_irqs_count && timeout) {
6712 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6713 			skip_schedule = true;
6714 		}
6715 	}
6716 
6717 	/* All we really want here is to re-enable device interrupts.
6718 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6719 	 */
6720 	rc = napi->poll(napi, budget);
6721 	/* We can't gro_normal_list() here, because napi->poll() might have
6722 	 * rearmed the napi (napi_complete_done()) in which case it could
6723 	 * already be running on another CPU.
6724 	 */
6725 	trace_napi_poll(napi, rc, budget);
6726 	netpoll_poll_unlock(have_poll_lock);
6727 	if (rc == budget)
6728 		__busy_poll_stop(napi, skip_schedule);
6729 	local_bh_enable();
6730 }
6731 
6732 void napi_busy_loop(unsigned int napi_id,
6733 		    bool (*loop_end)(void *, unsigned long),
6734 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6735 {
6736 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6737 	int (*napi_poll)(struct napi_struct *napi, int budget);
6738 	void *have_poll_lock = NULL;
6739 	struct napi_struct *napi;
6740 
6741 restart:
6742 	napi_poll = NULL;
6743 
6744 	rcu_read_lock();
6745 
6746 	napi = napi_by_id(napi_id);
6747 	if (!napi)
6748 		goto out;
6749 
6750 	preempt_disable();
6751 	for (;;) {
6752 		int work = 0;
6753 
6754 		local_bh_disable();
6755 		if (!napi_poll) {
6756 			unsigned long val = READ_ONCE(napi->state);
6757 
6758 			/* If multiple threads are competing for this napi,
6759 			 * we avoid dirtying napi->state as much as we can.
6760 			 */
6761 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6762 				   NAPIF_STATE_IN_BUSY_POLL)) {
6763 				if (prefer_busy_poll)
6764 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6765 				goto count;
6766 			}
6767 			if (cmpxchg(&napi->state, val,
6768 				    val | NAPIF_STATE_IN_BUSY_POLL |
6769 					  NAPIF_STATE_SCHED) != val) {
6770 				if (prefer_busy_poll)
6771 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6772 				goto count;
6773 			}
6774 			have_poll_lock = netpoll_poll_lock(napi);
6775 			napi_poll = napi->poll;
6776 		}
6777 		work = napi_poll(napi, budget);
6778 		trace_napi_poll(napi, work, budget);
6779 		gro_normal_list(napi);
6780 count:
6781 		if (work > 0)
6782 			__NET_ADD_STATS(dev_net(napi->dev),
6783 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6784 		local_bh_enable();
6785 
6786 		if (!loop_end || loop_end(loop_end_arg, start_time))
6787 			break;
6788 
6789 		if (unlikely(need_resched())) {
6790 			if (napi_poll)
6791 				busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6792 			preempt_enable();
6793 			rcu_read_unlock();
6794 			cond_resched();
6795 			if (loop_end(loop_end_arg, start_time))
6796 				return;
6797 			goto restart;
6798 		}
6799 		cpu_relax();
6800 	}
6801 	if (napi_poll)
6802 		busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6803 	preempt_enable();
6804 out:
6805 	rcu_read_unlock();
6806 }
6807 EXPORT_SYMBOL(napi_busy_loop);
6808 
6809 #endif /* CONFIG_NET_RX_BUSY_POLL */
6810 
6811 static void napi_hash_add(struct napi_struct *napi)
6812 {
6813 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6814 		return;
6815 
6816 	spin_lock(&napi_hash_lock);
6817 
6818 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6819 	do {
6820 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6821 			napi_gen_id = MIN_NAPI_ID;
6822 	} while (napi_by_id(napi_gen_id));
6823 	napi->napi_id = napi_gen_id;
6824 
6825 	hlist_add_head_rcu(&napi->napi_hash_node,
6826 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6827 
6828 	spin_unlock(&napi_hash_lock);
6829 }
6830 
6831 /* Warning : caller is responsible to make sure rcu grace period
6832  * is respected before freeing memory containing @napi
6833  */
6834 static void napi_hash_del(struct napi_struct *napi)
6835 {
6836 	spin_lock(&napi_hash_lock);
6837 
6838 	hlist_del_init_rcu(&napi->napi_hash_node);
6839 
6840 	spin_unlock(&napi_hash_lock);
6841 }
6842 
6843 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6844 {
6845 	struct napi_struct *napi;
6846 
6847 	napi = container_of(timer, struct napi_struct, timer);
6848 
6849 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6850 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6851 	 */
6852 	if (!napi_disable_pending(napi) &&
6853 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6854 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6855 		__napi_schedule_irqoff(napi);
6856 	}
6857 
6858 	return HRTIMER_NORESTART;
6859 }
6860 
6861 static void init_gro_hash(struct napi_struct *napi)
6862 {
6863 	int i;
6864 
6865 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6866 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6867 		napi->gro_hash[i].count = 0;
6868 	}
6869 	napi->gro_bitmask = 0;
6870 }
6871 
6872 int dev_set_threaded(struct net_device *dev, bool threaded)
6873 {
6874 	struct napi_struct *napi;
6875 	int err = 0;
6876 
6877 	if (dev->threaded == threaded)
6878 		return 0;
6879 
6880 	if (threaded) {
6881 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6882 			if (!napi->thread) {
6883 				err = napi_kthread_create(napi);
6884 				if (err) {
6885 					threaded = false;
6886 					break;
6887 				}
6888 			}
6889 		}
6890 	}
6891 
6892 	dev->threaded = threaded;
6893 
6894 	/* Make sure kthread is created before THREADED bit
6895 	 * is set.
6896 	 */
6897 	smp_mb__before_atomic();
6898 
6899 	/* Setting/unsetting threaded mode on a napi might not immediately
6900 	 * take effect, if the current napi instance is actively being
6901 	 * polled. In this case, the switch between threaded mode and
6902 	 * softirq mode will happen in the next round of napi_schedule().
6903 	 * This should not cause hiccups/stalls to the live traffic.
6904 	 */
6905 	list_for_each_entry(napi, &dev->napi_list, dev_list) {
6906 		if (threaded)
6907 			set_bit(NAPI_STATE_THREADED, &napi->state);
6908 		else
6909 			clear_bit(NAPI_STATE_THREADED, &napi->state);
6910 	}
6911 
6912 	return err;
6913 }
6914 EXPORT_SYMBOL(dev_set_threaded);
6915 
6916 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6917 		    int (*poll)(struct napi_struct *, int), int weight)
6918 {
6919 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6920 		return;
6921 
6922 	INIT_LIST_HEAD(&napi->poll_list);
6923 	INIT_HLIST_NODE(&napi->napi_hash_node);
6924 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6925 	napi->timer.function = napi_watchdog;
6926 	init_gro_hash(napi);
6927 	napi->skb = NULL;
6928 	INIT_LIST_HEAD(&napi->rx_list);
6929 	napi->rx_count = 0;
6930 	napi->poll = poll;
6931 	if (weight > NAPI_POLL_WEIGHT)
6932 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6933 				weight);
6934 	napi->weight = weight;
6935 	napi->dev = dev;
6936 #ifdef CONFIG_NETPOLL
6937 	napi->poll_owner = -1;
6938 #endif
6939 	set_bit(NAPI_STATE_SCHED, &napi->state);
6940 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6941 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6942 	napi_hash_add(napi);
6943 	/* Create kthread for this napi if dev->threaded is set.
6944 	 * Clear dev->threaded if kthread creation failed so that
6945 	 * threaded mode will not be enabled in napi_enable().
6946 	 */
6947 	if (dev->threaded && napi_kthread_create(napi))
6948 		dev->threaded = 0;
6949 }
6950 EXPORT_SYMBOL(netif_napi_add);
6951 
6952 void napi_disable(struct napi_struct *n)
6953 {
6954 	might_sleep();
6955 	set_bit(NAPI_STATE_DISABLE, &n->state);
6956 
6957 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6958 		msleep(1);
6959 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6960 		msleep(1);
6961 
6962 	hrtimer_cancel(&n->timer);
6963 
6964 	clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
6965 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6966 	clear_bit(NAPI_STATE_THREADED, &n->state);
6967 }
6968 EXPORT_SYMBOL(napi_disable);
6969 
6970 /**
6971  *	napi_enable - enable NAPI scheduling
6972  *	@n: NAPI context
6973  *
6974  * Resume NAPI from being scheduled on this context.
6975  * Must be paired with napi_disable.
6976  */
6977 void napi_enable(struct napi_struct *n)
6978 {
6979 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
6980 	smp_mb__before_atomic();
6981 	clear_bit(NAPI_STATE_SCHED, &n->state);
6982 	clear_bit(NAPI_STATE_NPSVC, &n->state);
6983 	if (n->dev->threaded && n->thread)
6984 		set_bit(NAPI_STATE_THREADED, &n->state);
6985 }
6986 EXPORT_SYMBOL(napi_enable);
6987 
6988 static void flush_gro_hash(struct napi_struct *napi)
6989 {
6990 	int i;
6991 
6992 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6993 		struct sk_buff *skb, *n;
6994 
6995 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6996 			kfree_skb(skb);
6997 		napi->gro_hash[i].count = 0;
6998 	}
6999 }
7000 
7001 /* Must be called in process context */
7002 void __netif_napi_del(struct napi_struct *napi)
7003 {
7004 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
7005 		return;
7006 
7007 	napi_hash_del(napi);
7008 	list_del_rcu(&napi->dev_list);
7009 	napi_free_frags(napi);
7010 
7011 	flush_gro_hash(napi);
7012 	napi->gro_bitmask = 0;
7013 
7014 	if (napi->thread) {
7015 		kthread_stop(napi->thread);
7016 		napi->thread = NULL;
7017 	}
7018 }
7019 EXPORT_SYMBOL(__netif_napi_del);
7020 
7021 static int __napi_poll(struct napi_struct *n, bool *repoll)
7022 {
7023 	int work, weight;
7024 
7025 	weight = n->weight;
7026 
7027 	/* This NAPI_STATE_SCHED test is for avoiding a race
7028 	 * with netpoll's poll_napi().  Only the entity which
7029 	 * obtains the lock and sees NAPI_STATE_SCHED set will
7030 	 * actually make the ->poll() call.  Therefore we avoid
7031 	 * accidentally calling ->poll() when NAPI is not scheduled.
7032 	 */
7033 	work = 0;
7034 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
7035 		work = n->poll(n, weight);
7036 		trace_napi_poll(n, work, weight);
7037 	}
7038 
7039 	if (unlikely(work > weight))
7040 		pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7041 			    n->poll, work, weight);
7042 
7043 	if (likely(work < weight))
7044 		return work;
7045 
7046 	/* Drivers must not modify the NAPI state if they
7047 	 * consume the entire weight.  In such cases this code
7048 	 * still "owns" the NAPI instance and therefore can
7049 	 * move the instance around on the list at-will.
7050 	 */
7051 	if (unlikely(napi_disable_pending(n))) {
7052 		napi_complete(n);
7053 		return work;
7054 	}
7055 
7056 	/* The NAPI context has more processing work, but busy-polling
7057 	 * is preferred. Exit early.
7058 	 */
7059 	if (napi_prefer_busy_poll(n)) {
7060 		if (napi_complete_done(n, work)) {
7061 			/* If timeout is not set, we need to make sure
7062 			 * that the NAPI is re-scheduled.
7063 			 */
7064 			napi_schedule(n);
7065 		}
7066 		return work;
7067 	}
7068 
7069 	if (n->gro_bitmask) {
7070 		/* flush too old packets
7071 		 * If HZ < 1000, flush all packets.
7072 		 */
7073 		napi_gro_flush(n, HZ >= 1000);
7074 	}
7075 
7076 	gro_normal_list(n);
7077 
7078 	/* Some drivers may have called napi_schedule
7079 	 * prior to exhausting their budget.
7080 	 */
7081 	if (unlikely(!list_empty(&n->poll_list))) {
7082 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7083 			     n->dev ? n->dev->name : "backlog");
7084 		return work;
7085 	}
7086 
7087 	*repoll = true;
7088 
7089 	return work;
7090 }
7091 
7092 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7093 {
7094 	bool do_repoll = false;
7095 	void *have;
7096 	int work;
7097 
7098 	list_del_init(&n->poll_list);
7099 
7100 	have = netpoll_poll_lock(n);
7101 
7102 	work = __napi_poll(n, &do_repoll);
7103 
7104 	if (do_repoll)
7105 		list_add_tail(&n->poll_list, repoll);
7106 
7107 	netpoll_poll_unlock(have);
7108 
7109 	return work;
7110 }
7111 
7112 static int napi_thread_wait(struct napi_struct *napi)
7113 {
7114 	bool woken = false;
7115 
7116 	set_current_state(TASK_INTERRUPTIBLE);
7117 
7118 	while (!kthread_should_stop()) {
7119 		/* Testing SCHED_THREADED bit here to make sure the current
7120 		 * kthread owns this napi and could poll on this napi.
7121 		 * Testing SCHED bit is not enough because SCHED bit might be
7122 		 * set by some other busy poll thread or by napi_disable().
7123 		 */
7124 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
7125 			WARN_ON(!list_empty(&napi->poll_list));
7126 			__set_current_state(TASK_RUNNING);
7127 			return 0;
7128 		}
7129 
7130 		schedule();
7131 		/* woken being true indicates this thread owns this napi. */
7132 		woken = true;
7133 		set_current_state(TASK_INTERRUPTIBLE);
7134 	}
7135 	__set_current_state(TASK_RUNNING);
7136 
7137 	return -1;
7138 }
7139 
7140 static int napi_threaded_poll(void *data)
7141 {
7142 	struct napi_struct *napi = data;
7143 	void *have;
7144 
7145 	while (!napi_thread_wait(napi)) {
7146 		for (;;) {
7147 			bool repoll = false;
7148 
7149 			local_bh_disable();
7150 
7151 			have = netpoll_poll_lock(napi);
7152 			__napi_poll(napi, &repoll);
7153 			netpoll_poll_unlock(have);
7154 
7155 			local_bh_enable();
7156 
7157 			if (!repoll)
7158 				break;
7159 
7160 			cond_resched();
7161 		}
7162 	}
7163 	return 0;
7164 }
7165 
7166 static __latent_entropy void net_rx_action(struct softirq_action *h)
7167 {
7168 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7169 	unsigned long time_limit = jiffies +
7170 		usecs_to_jiffies(netdev_budget_usecs);
7171 	int budget = netdev_budget;
7172 	LIST_HEAD(list);
7173 	LIST_HEAD(repoll);
7174 
7175 	local_irq_disable();
7176 	list_splice_init(&sd->poll_list, &list);
7177 	local_irq_enable();
7178 
7179 	for (;;) {
7180 		struct napi_struct *n;
7181 
7182 		if (list_empty(&list)) {
7183 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
7184 				return;
7185 			break;
7186 		}
7187 
7188 		n = list_first_entry(&list, struct napi_struct, poll_list);
7189 		budget -= napi_poll(n, &repoll);
7190 
7191 		/* If softirq window is exhausted then punt.
7192 		 * Allow this to run for 2 jiffies since which will allow
7193 		 * an average latency of 1.5/HZ.
7194 		 */
7195 		if (unlikely(budget <= 0 ||
7196 			     time_after_eq(jiffies, time_limit))) {
7197 			sd->time_squeeze++;
7198 			break;
7199 		}
7200 	}
7201 
7202 	local_irq_disable();
7203 
7204 	list_splice_tail_init(&sd->poll_list, &list);
7205 	list_splice_tail(&repoll, &list);
7206 	list_splice(&list, &sd->poll_list);
7207 	if (!list_empty(&sd->poll_list))
7208 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
7209 
7210 	net_rps_action_and_irq_enable(sd);
7211 }
7212 
7213 struct netdev_adjacent {
7214 	struct net_device *dev;
7215 
7216 	/* upper master flag, there can only be one master device per list */
7217 	bool master;
7218 
7219 	/* lookup ignore flag */
7220 	bool ignore;
7221 
7222 	/* counter for the number of times this device was added to us */
7223 	u16 ref_nr;
7224 
7225 	/* private field for the users */
7226 	void *private;
7227 
7228 	struct list_head list;
7229 	struct rcu_head rcu;
7230 };
7231 
7232 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7233 						 struct list_head *adj_list)
7234 {
7235 	struct netdev_adjacent *adj;
7236 
7237 	list_for_each_entry(adj, adj_list, list) {
7238 		if (adj->dev == adj_dev)
7239 			return adj;
7240 	}
7241 	return NULL;
7242 }
7243 
7244 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7245 				    struct netdev_nested_priv *priv)
7246 {
7247 	struct net_device *dev = (struct net_device *)priv->data;
7248 
7249 	return upper_dev == dev;
7250 }
7251 
7252 /**
7253  * netdev_has_upper_dev - Check if device is linked to an upper device
7254  * @dev: device
7255  * @upper_dev: upper device to check
7256  *
7257  * Find out if a device is linked to specified upper device and return true
7258  * in case it is. Note that this checks only immediate upper device,
7259  * not through a complete stack of devices. The caller must hold the RTNL lock.
7260  */
7261 bool netdev_has_upper_dev(struct net_device *dev,
7262 			  struct net_device *upper_dev)
7263 {
7264 	struct netdev_nested_priv priv = {
7265 		.data = (void *)upper_dev,
7266 	};
7267 
7268 	ASSERT_RTNL();
7269 
7270 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7271 					     &priv);
7272 }
7273 EXPORT_SYMBOL(netdev_has_upper_dev);
7274 
7275 /**
7276  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7277  * @dev: device
7278  * @upper_dev: upper device to check
7279  *
7280  * Find out if a device is linked to specified upper device and return true
7281  * in case it is. Note that this checks the entire upper device chain.
7282  * The caller must hold rcu lock.
7283  */
7284 
7285 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7286 				  struct net_device *upper_dev)
7287 {
7288 	struct netdev_nested_priv priv = {
7289 		.data = (void *)upper_dev,
7290 	};
7291 
7292 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7293 					       &priv);
7294 }
7295 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7296 
7297 /**
7298  * netdev_has_any_upper_dev - Check if device is linked to some device
7299  * @dev: device
7300  *
7301  * Find out if a device is linked to an upper device and return true in case
7302  * it is. The caller must hold the RTNL lock.
7303  */
7304 bool netdev_has_any_upper_dev(struct net_device *dev)
7305 {
7306 	ASSERT_RTNL();
7307 
7308 	return !list_empty(&dev->adj_list.upper);
7309 }
7310 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7311 
7312 /**
7313  * netdev_master_upper_dev_get - Get master upper device
7314  * @dev: device
7315  *
7316  * Find a master upper device and return pointer to it or NULL in case
7317  * it's not there. The caller must hold the RTNL lock.
7318  */
7319 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7320 {
7321 	struct netdev_adjacent *upper;
7322 
7323 	ASSERT_RTNL();
7324 
7325 	if (list_empty(&dev->adj_list.upper))
7326 		return NULL;
7327 
7328 	upper = list_first_entry(&dev->adj_list.upper,
7329 				 struct netdev_adjacent, list);
7330 	if (likely(upper->master))
7331 		return upper->dev;
7332 	return NULL;
7333 }
7334 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7335 
7336 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7337 {
7338 	struct netdev_adjacent *upper;
7339 
7340 	ASSERT_RTNL();
7341 
7342 	if (list_empty(&dev->adj_list.upper))
7343 		return NULL;
7344 
7345 	upper = list_first_entry(&dev->adj_list.upper,
7346 				 struct netdev_adjacent, list);
7347 	if (likely(upper->master) && !upper->ignore)
7348 		return upper->dev;
7349 	return NULL;
7350 }
7351 
7352 /**
7353  * netdev_has_any_lower_dev - Check if device is linked to some device
7354  * @dev: device
7355  *
7356  * Find out if a device is linked to a lower device and return true in case
7357  * it is. The caller must hold the RTNL lock.
7358  */
7359 static bool netdev_has_any_lower_dev(struct net_device *dev)
7360 {
7361 	ASSERT_RTNL();
7362 
7363 	return !list_empty(&dev->adj_list.lower);
7364 }
7365 
7366 void *netdev_adjacent_get_private(struct list_head *adj_list)
7367 {
7368 	struct netdev_adjacent *adj;
7369 
7370 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7371 
7372 	return adj->private;
7373 }
7374 EXPORT_SYMBOL(netdev_adjacent_get_private);
7375 
7376 /**
7377  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7378  * @dev: device
7379  * @iter: list_head ** of the current position
7380  *
7381  * Gets the next device from the dev's upper list, starting from iter
7382  * position. The caller must hold RCU read lock.
7383  */
7384 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7385 						 struct list_head **iter)
7386 {
7387 	struct netdev_adjacent *upper;
7388 
7389 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7390 
7391 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7392 
7393 	if (&upper->list == &dev->adj_list.upper)
7394 		return NULL;
7395 
7396 	*iter = &upper->list;
7397 
7398 	return upper->dev;
7399 }
7400 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7401 
7402 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7403 						  struct list_head **iter,
7404 						  bool *ignore)
7405 {
7406 	struct netdev_adjacent *upper;
7407 
7408 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7409 
7410 	if (&upper->list == &dev->adj_list.upper)
7411 		return NULL;
7412 
7413 	*iter = &upper->list;
7414 	*ignore = upper->ignore;
7415 
7416 	return upper->dev;
7417 }
7418 
7419 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7420 						    struct list_head **iter)
7421 {
7422 	struct netdev_adjacent *upper;
7423 
7424 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7425 
7426 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7427 
7428 	if (&upper->list == &dev->adj_list.upper)
7429 		return NULL;
7430 
7431 	*iter = &upper->list;
7432 
7433 	return upper->dev;
7434 }
7435 
7436 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7437 				       int (*fn)(struct net_device *dev,
7438 					 struct netdev_nested_priv *priv),
7439 				       struct netdev_nested_priv *priv)
7440 {
7441 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7442 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7443 	int ret, cur = 0;
7444 	bool ignore;
7445 
7446 	now = dev;
7447 	iter = &dev->adj_list.upper;
7448 
7449 	while (1) {
7450 		if (now != dev) {
7451 			ret = fn(now, priv);
7452 			if (ret)
7453 				return ret;
7454 		}
7455 
7456 		next = NULL;
7457 		while (1) {
7458 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7459 			if (!udev)
7460 				break;
7461 			if (ignore)
7462 				continue;
7463 
7464 			next = udev;
7465 			niter = &udev->adj_list.upper;
7466 			dev_stack[cur] = now;
7467 			iter_stack[cur++] = iter;
7468 			break;
7469 		}
7470 
7471 		if (!next) {
7472 			if (!cur)
7473 				return 0;
7474 			next = dev_stack[--cur];
7475 			niter = iter_stack[cur];
7476 		}
7477 
7478 		now = next;
7479 		iter = niter;
7480 	}
7481 
7482 	return 0;
7483 }
7484 
7485 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7486 				  int (*fn)(struct net_device *dev,
7487 					    struct netdev_nested_priv *priv),
7488 				  struct netdev_nested_priv *priv)
7489 {
7490 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7491 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7492 	int ret, cur = 0;
7493 
7494 	now = dev;
7495 	iter = &dev->adj_list.upper;
7496 
7497 	while (1) {
7498 		if (now != dev) {
7499 			ret = fn(now, priv);
7500 			if (ret)
7501 				return ret;
7502 		}
7503 
7504 		next = NULL;
7505 		while (1) {
7506 			udev = netdev_next_upper_dev_rcu(now, &iter);
7507 			if (!udev)
7508 				break;
7509 
7510 			next = udev;
7511 			niter = &udev->adj_list.upper;
7512 			dev_stack[cur] = now;
7513 			iter_stack[cur++] = iter;
7514 			break;
7515 		}
7516 
7517 		if (!next) {
7518 			if (!cur)
7519 				return 0;
7520 			next = dev_stack[--cur];
7521 			niter = iter_stack[cur];
7522 		}
7523 
7524 		now = next;
7525 		iter = niter;
7526 	}
7527 
7528 	return 0;
7529 }
7530 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7531 
7532 static bool __netdev_has_upper_dev(struct net_device *dev,
7533 				   struct net_device *upper_dev)
7534 {
7535 	struct netdev_nested_priv priv = {
7536 		.flags = 0,
7537 		.data = (void *)upper_dev,
7538 	};
7539 
7540 	ASSERT_RTNL();
7541 
7542 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7543 					   &priv);
7544 }
7545 
7546 /**
7547  * netdev_lower_get_next_private - Get the next ->private from the
7548  *				   lower neighbour list
7549  * @dev: device
7550  * @iter: list_head ** of the current position
7551  *
7552  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7553  * list, starting from iter position. The caller must hold either hold the
7554  * RTNL lock or its own locking that guarantees that the neighbour lower
7555  * list will remain unchanged.
7556  */
7557 void *netdev_lower_get_next_private(struct net_device *dev,
7558 				    struct list_head **iter)
7559 {
7560 	struct netdev_adjacent *lower;
7561 
7562 	lower = list_entry(*iter, struct netdev_adjacent, list);
7563 
7564 	if (&lower->list == &dev->adj_list.lower)
7565 		return NULL;
7566 
7567 	*iter = lower->list.next;
7568 
7569 	return lower->private;
7570 }
7571 EXPORT_SYMBOL(netdev_lower_get_next_private);
7572 
7573 /**
7574  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7575  *				       lower neighbour list, RCU
7576  *				       variant
7577  * @dev: device
7578  * @iter: list_head ** of the current position
7579  *
7580  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7581  * list, starting from iter position. The caller must hold RCU read lock.
7582  */
7583 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7584 					struct list_head **iter)
7585 {
7586 	struct netdev_adjacent *lower;
7587 
7588 	WARN_ON_ONCE(!rcu_read_lock_held());
7589 
7590 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7591 
7592 	if (&lower->list == &dev->adj_list.lower)
7593 		return NULL;
7594 
7595 	*iter = &lower->list;
7596 
7597 	return lower->private;
7598 }
7599 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7600 
7601 /**
7602  * netdev_lower_get_next - Get the next device from the lower neighbour
7603  *                         list
7604  * @dev: device
7605  * @iter: list_head ** of the current position
7606  *
7607  * Gets the next netdev_adjacent from the dev's lower neighbour
7608  * list, starting from iter position. The caller must hold RTNL lock or
7609  * its own locking that guarantees that the neighbour lower
7610  * list will remain unchanged.
7611  */
7612 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7613 {
7614 	struct netdev_adjacent *lower;
7615 
7616 	lower = list_entry(*iter, struct netdev_adjacent, list);
7617 
7618 	if (&lower->list == &dev->adj_list.lower)
7619 		return NULL;
7620 
7621 	*iter = lower->list.next;
7622 
7623 	return lower->dev;
7624 }
7625 EXPORT_SYMBOL(netdev_lower_get_next);
7626 
7627 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7628 						struct list_head **iter)
7629 {
7630 	struct netdev_adjacent *lower;
7631 
7632 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7633 
7634 	if (&lower->list == &dev->adj_list.lower)
7635 		return NULL;
7636 
7637 	*iter = &lower->list;
7638 
7639 	return lower->dev;
7640 }
7641 
7642 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7643 						  struct list_head **iter,
7644 						  bool *ignore)
7645 {
7646 	struct netdev_adjacent *lower;
7647 
7648 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7649 
7650 	if (&lower->list == &dev->adj_list.lower)
7651 		return NULL;
7652 
7653 	*iter = &lower->list;
7654 	*ignore = lower->ignore;
7655 
7656 	return lower->dev;
7657 }
7658 
7659 int netdev_walk_all_lower_dev(struct net_device *dev,
7660 			      int (*fn)(struct net_device *dev,
7661 					struct netdev_nested_priv *priv),
7662 			      struct netdev_nested_priv *priv)
7663 {
7664 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7665 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7666 	int ret, cur = 0;
7667 
7668 	now = dev;
7669 	iter = &dev->adj_list.lower;
7670 
7671 	while (1) {
7672 		if (now != dev) {
7673 			ret = fn(now, priv);
7674 			if (ret)
7675 				return ret;
7676 		}
7677 
7678 		next = NULL;
7679 		while (1) {
7680 			ldev = netdev_next_lower_dev(now, &iter);
7681 			if (!ldev)
7682 				break;
7683 
7684 			next = ldev;
7685 			niter = &ldev->adj_list.lower;
7686 			dev_stack[cur] = now;
7687 			iter_stack[cur++] = iter;
7688 			break;
7689 		}
7690 
7691 		if (!next) {
7692 			if (!cur)
7693 				return 0;
7694 			next = dev_stack[--cur];
7695 			niter = iter_stack[cur];
7696 		}
7697 
7698 		now = next;
7699 		iter = niter;
7700 	}
7701 
7702 	return 0;
7703 }
7704 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7705 
7706 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7707 				       int (*fn)(struct net_device *dev,
7708 					 struct netdev_nested_priv *priv),
7709 				       struct netdev_nested_priv *priv)
7710 {
7711 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7712 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7713 	int ret, cur = 0;
7714 	bool ignore;
7715 
7716 	now = dev;
7717 	iter = &dev->adj_list.lower;
7718 
7719 	while (1) {
7720 		if (now != dev) {
7721 			ret = fn(now, priv);
7722 			if (ret)
7723 				return ret;
7724 		}
7725 
7726 		next = NULL;
7727 		while (1) {
7728 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7729 			if (!ldev)
7730 				break;
7731 			if (ignore)
7732 				continue;
7733 
7734 			next = ldev;
7735 			niter = &ldev->adj_list.lower;
7736 			dev_stack[cur] = now;
7737 			iter_stack[cur++] = iter;
7738 			break;
7739 		}
7740 
7741 		if (!next) {
7742 			if (!cur)
7743 				return 0;
7744 			next = dev_stack[--cur];
7745 			niter = iter_stack[cur];
7746 		}
7747 
7748 		now = next;
7749 		iter = niter;
7750 	}
7751 
7752 	return 0;
7753 }
7754 
7755 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7756 					     struct list_head **iter)
7757 {
7758 	struct netdev_adjacent *lower;
7759 
7760 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7761 	if (&lower->list == &dev->adj_list.lower)
7762 		return NULL;
7763 
7764 	*iter = &lower->list;
7765 
7766 	return lower->dev;
7767 }
7768 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7769 
7770 static u8 __netdev_upper_depth(struct net_device *dev)
7771 {
7772 	struct net_device *udev;
7773 	struct list_head *iter;
7774 	u8 max_depth = 0;
7775 	bool ignore;
7776 
7777 	for (iter = &dev->adj_list.upper,
7778 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7779 	     udev;
7780 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7781 		if (ignore)
7782 			continue;
7783 		if (max_depth < udev->upper_level)
7784 			max_depth = udev->upper_level;
7785 	}
7786 
7787 	return max_depth;
7788 }
7789 
7790 static u8 __netdev_lower_depth(struct net_device *dev)
7791 {
7792 	struct net_device *ldev;
7793 	struct list_head *iter;
7794 	u8 max_depth = 0;
7795 	bool ignore;
7796 
7797 	for (iter = &dev->adj_list.lower,
7798 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7799 	     ldev;
7800 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7801 		if (ignore)
7802 			continue;
7803 		if (max_depth < ldev->lower_level)
7804 			max_depth = ldev->lower_level;
7805 	}
7806 
7807 	return max_depth;
7808 }
7809 
7810 static int __netdev_update_upper_level(struct net_device *dev,
7811 				       struct netdev_nested_priv *__unused)
7812 {
7813 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7814 	return 0;
7815 }
7816 
7817 static int __netdev_update_lower_level(struct net_device *dev,
7818 				       struct netdev_nested_priv *priv)
7819 {
7820 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7821 
7822 #ifdef CONFIG_LOCKDEP
7823 	if (!priv)
7824 		return 0;
7825 
7826 	if (priv->flags & NESTED_SYNC_IMM)
7827 		dev->nested_level = dev->lower_level - 1;
7828 	if (priv->flags & NESTED_SYNC_TODO)
7829 		net_unlink_todo(dev);
7830 #endif
7831 	return 0;
7832 }
7833 
7834 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7835 				  int (*fn)(struct net_device *dev,
7836 					    struct netdev_nested_priv *priv),
7837 				  struct netdev_nested_priv *priv)
7838 {
7839 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7840 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7841 	int ret, cur = 0;
7842 
7843 	now = dev;
7844 	iter = &dev->adj_list.lower;
7845 
7846 	while (1) {
7847 		if (now != dev) {
7848 			ret = fn(now, priv);
7849 			if (ret)
7850 				return ret;
7851 		}
7852 
7853 		next = NULL;
7854 		while (1) {
7855 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7856 			if (!ldev)
7857 				break;
7858 
7859 			next = ldev;
7860 			niter = &ldev->adj_list.lower;
7861 			dev_stack[cur] = now;
7862 			iter_stack[cur++] = iter;
7863 			break;
7864 		}
7865 
7866 		if (!next) {
7867 			if (!cur)
7868 				return 0;
7869 			next = dev_stack[--cur];
7870 			niter = iter_stack[cur];
7871 		}
7872 
7873 		now = next;
7874 		iter = niter;
7875 	}
7876 
7877 	return 0;
7878 }
7879 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7880 
7881 /**
7882  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7883  *				       lower neighbour list, RCU
7884  *				       variant
7885  * @dev: device
7886  *
7887  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7888  * list. The caller must hold RCU read lock.
7889  */
7890 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7891 {
7892 	struct netdev_adjacent *lower;
7893 
7894 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7895 			struct netdev_adjacent, list);
7896 	if (lower)
7897 		return lower->private;
7898 	return NULL;
7899 }
7900 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7901 
7902 /**
7903  * netdev_master_upper_dev_get_rcu - Get master upper device
7904  * @dev: device
7905  *
7906  * Find a master upper device and return pointer to it or NULL in case
7907  * it's not there. The caller must hold the RCU read lock.
7908  */
7909 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7910 {
7911 	struct netdev_adjacent *upper;
7912 
7913 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7914 				       struct netdev_adjacent, list);
7915 	if (upper && likely(upper->master))
7916 		return upper->dev;
7917 	return NULL;
7918 }
7919 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7920 
7921 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7922 			      struct net_device *adj_dev,
7923 			      struct list_head *dev_list)
7924 {
7925 	char linkname[IFNAMSIZ+7];
7926 
7927 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7928 		"upper_%s" : "lower_%s", adj_dev->name);
7929 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7930 				 linkname);
7931 }
7932 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7933 			       char *name,
7934 			       struct list_head *dev_list)
7935 {
7936 	char linkname[IFNAMSIZ+7];
7937 
7938 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7939 		"upper_%s" : "lower_%s", name);
7940 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7941 }
7942 
7943 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7944 						 struct net_device *adj_dev,
7945 						 struct list_head *dev_list)
7946 {
7947 	return (dev_list == &dev->adj_list.upper ||
7948 		dev_list == &dev->adj_list.lower) &&
7949 		net_eq(dev_net(dev), dev_net(adj_dev));
7950 }
7951 
7952 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7953 					struct net_device *adj_dev,
7954 					struct list_head *dev_list,
7955 					void *private, bool master)
7956 {
7957 	struct netdev_adjacent *adj;
7958 	int ret;
7959 
7960 	adj = __netdev_find_adj(adj_dev, dev_list);
7961 
7962 	if (adj) {
7963 		adj->ref_nr += 1;
7964 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7965 			 dev->name, adj_dev->name, adj->ref_nr);
7966 
7967 		return 0;
7968 	}
7969 
7970 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7971 	if (!adj)
7972 		return -ENOMEM;
7973 
7974 	adj->dev = adj_dev;
7975 	adj->master = master;
7976 	adj->ref_nr = 1;
7977 	adj->private = private;
7978 	adj->ignore = false;
7979 	dev_hold(adj_dev);
7980 
7981 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7982 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7983 
7984 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7985 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7986 		if (ret)
7987 			goto free_adj;
7988 	}
7989 
7990 	/* Ensure that master link is always the first item in list. */
7991 	if (master) {
7992 		ret = sysfs_create_link(&(dev->dev.kobj),
7993 					&(adj_dev->dev.kobj), "master");
7994 		if (ret)
7995 			goto remove_symlinks;
7996 
7997 		list_add_rcu(&adj->list, dev_list);
7998 	} else {
7999 		list_add_tail_rcu(&adj->list, dev_list);
8000 	}
8001 
8002 	return 0;
8003 
8004 remove_symlinks:
8005 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8006 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8007 free_adj:
8008 	kfree(adj);
8009 	dev_put(adj_dev);
8010 
8011 	return ret;
8012 }
8013 
8014 static void __netdev_adjacent_dev_remove(struct net_device *dev,
8015 					 struct net_device *adj_dev,
8016 					 u16 ref_nr,
8017 					 struct list_head *dev_list)
8018 {
8019 	struct netdev_adjacent *adj;
8020 
8021 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
8022 		 dev->name, adj_dev->name, ref_nr);
8023 
8024 	adj = __netdev_find_adj(adj_dev, dev_list);
8025 
8026 	if (!adj) {
8027 		pr_err("Adjacency does not exist for device %s from %s\n",
8028 		       dev->name, adj_dev->name);
8029 		WARN_ON(1);
8030 		return;
8031 	}
8032 
8033 	if (adj->ref_nr > ref_nr) {
8034 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8035 			 dev->name, adj_dev->name, ref_nr,
8036 			 adj->ref_nr - ref_nr);
8037 		adj->ref_nr -= ref_nr;
8038 		return;
8039 	}
8040 
8041 	if (adj->master)
8042 		sysfs_remove_link(&(dev->dev.kobj), "master");
8043 
8044 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8045 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8046 
8047 	list_del_rcu(&adj->list);
8048 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8049 		 adj_dev->name, dev->name, adj_dev->name);
8050 	dev_put(adj_dev);
8051 	kfree_rcu(adj, rcu);
8052 }
8053 
8054 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8055 					    struct net_device *upper_dev,
8056 					    struct list_head *up_list,
8057 					    struct list_head *down_list,
8058 					    void *private, bool master)
8059 {
8060 	int ret;
8061 
8062 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8063 					   private, master);
8064 	if (ret)
8065 		return ret;
8066 
8067 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8068 					   private, false);
8069 	if (ret) {
8070 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8071 		return ret;
8072 	}
8073 
8074 	return 0;
8075 }
8076 
8077 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8078 					       struct net_device *upper_dev,
8079 					       u16 ref_nr,
8080 					       struct list_head *up_list,
8081 					       struct list_head *down_list)
8082 {
8083 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8084 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8085 }
8086 
8087 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8088 						struct net_device *upper_dev,
8089 						void *private, bool master)
8090 {
8091 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8092 						&dev->adj_list.upper,
8093 						&upper_dev->adj_list.lower,
8094 						private, master);
8095 }
8096 
8097 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8098 						   struct net_device *upper_dev)
8099 {
8100 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8101 					   &dev->adj_list.upper,
8102 					   &upper_dev->adj_list.lower);
8103 }
8104 
8105 static int __netdev_upper_dev_link(struct net_device *dev,
8106 				   struct net_device *upper_dev, bool master,
8107 				   void *upper_priv, void *upper_info,
8108 				   struct netdev_nested_priv *priv,
8109 				   struct netlink_ext_ack *extack)
8110 {
8111 	struct netdev_notifier_changeupper_info changeupper_info = {
8112 		.info = {
8113 			.dev = dev,
8114 			.extack = extack,
8115 		},
8116 		.upper_dev = upper_dev,
8117 		.master = master,
8118 		.linking = true,
8119 		.upper_info = upper_info,
8120 	};
8121 	struct net_device *master_dev;
8122 	int ret = 0;
8123 
8124 	ASSERT_RTNL();
8125 
8126 	if (dev == upper_dev)
8127 		return -EBUSY;
8128 
8129 	/* To prevent loops, check if dev is not upper device to upper_dev. */
8130 	if (__netdev_has_upper_dev(upper_dev, dev))
8131 		return -EBUSY;
8132 
8133 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8134 		return -EMLINK;
8135 
8136 	if (!master) {
8137 		if (__netdev_has_upper_dev(dev, upper_dev))
8138 			return -EEXIST;
8139 	} else {
8140 		master_dev = __netdev_master_upper_dev_get(dev);
8141 		if (master_dev)
8142 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
8143 	}
8144 
8145 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8146 					    &changeupper_info.info);
8147 	ret = notifier_to_errno(ret);
8148 	if (ret)
8149 		return ret;
8150 
8151 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8152 						   master);
8153 	if (ret)
8154 		return ret;
8155 
8156 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8157 					    &changeupper_info.info);
8158 	ret = notifier_to_errno(ret);
8159 	if (ret)
8160 		goto rollback;
8161 
8162 	__netdev_update_upper_level(dev, NULL);
8163 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8164 
8165 	__netdev_update_lower_level(upper_dev, priv);
8166 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8167 				    priv);
8168 
8169 	return 0;
8170 
8171 rollback:
8172 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8173 
8174 	return ret;
8175 }
8176 
8177 /**
8178  * netdev_upper_dev_link - Add a link to the upper device
8179  * @dev: device
8180  * @upper_dev: new upper device
8181  * @extack: netlink extended ack
8182  *
8183  * Adds a link to device which is upper to this one. The caller must hold
8184  * the RTNL lock. On a failure a negative errno code is returned.
8185  * On success the reference counts are adjusted and the function
8186  * returns zero.
8187  */
8188 int netdev_upper_dev_link(struct net_device *dev,
8189 			  struct net_device *upper_dev,
8190 			  struct netlink_ext_ack *extack)
8191 {
8192 	struct netdev_nested_priv priv = {
8193 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8194 		.data = NULL,
8195 	};
8196 
8197 	return __netdev_upper_dev_link(dev, upper_dev, false,
8198 				       NULL, NULL, &priv, extack);
8199 }
8200 EXPORT_SYMBOL(netdev_upper_dev_link);
8201 
8202 /**
8203  * netdev_master_upper_dev_link - Add a master link to the upper device
8204  * @dev: device
8205  * @upper_dev: new upper device
8206  * @upper_priv: upper device private
8207  * @upper_info: upper info to be passed down via notifier
8208  * @extack: netlink extended ack
8209  *
8210  * Adds a link to device which is upper to this one. In this case, only
8211  * one master upper device can be linked, although other non-master devices
8212  * might be linked as well. The caller must hold the RTNL lock.
8213  * On a failure a negative errno code is returned. On success the reference
8214  * counts are adjusted and the function returns zero.
8215  */
8216 int netdev_master_upper_dev_link(struct net_device *dev,
8217 				 struct net_device *upper_dev,
8218 				 void *upper_priv, void *upper_info,
8219 				 struct netlink_ext_ack *extack)
8220 {
8221 	struct netdev_nested_priv priv = {
8222 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8223 		.data = NULL,
8224 	};
8225 
8226 	return __netdev_upper_dev_link(dev, upper_dev, true,
8227 				       upper_priv, upper_info, &priv, extack);
8228 }
8229 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8230 
8231 static void __netdev_upper_dev_unlink(struct net_device *dev,
8232 				      struct net_device *upper_dev,
8233 				      struct netdev_nested_priv *priv)
8234 {
8235 	struct netdev_notifier_changeupper_info changeupper_info = {
8236 		.info = {
8237 			.dev = dev,
8238 		},
8239 		.upper_dev = upper_dev,
8240 		.linking = false,
8241 	};
8242 
8243 	ASSERT_RTNL();
8244 
8245 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8246 
8247 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8248 				      &changeupper_info.info);
8249 
8250 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8251 
8252 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8253 				      &changeupper_info.info);
8254 
8255 	__netdev_update_upper_level(dev, NULL);
8256 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8257 
8258 	__netdev_update_lower_level(upper_dev, priv);
8259 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8260 				    priv);
8261 }
8262 
8263 /**
8264  * netdev_upper_dev_unlink - Removes a link to upper device
8265  * @dev: device
8266  * @upper_dev: new upper device
8267  *
8268  * Removes a link to device which is upper to this one. The caller must hold
8269  * the RTNL lock.
8270  */
8271 void netdev_upper_dev_unlink(struct net_device *dev,
8272 			     struct net_device *upper_dev)
8273 {
8274 	struct netdev_nested_priv priv = {
8275 		.flags = NESTED_SYNC_TODO,
8276 		.data = NULL,
8277 	};
8278 
8279 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
8280 }
8281 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8282 
8283 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8284 				      struct net_device *lower_dev,
8285 				      bool val)
8286 {
8287 	struct netdev_adjacent *adj;
8288 
8289 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8290 	if (adj)
8291 		adj->ignore = val;
8292 
8293 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8294 	if (adj)
8295 		adj->ignore = val;
8296 }
8297 
8298 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8299 					struct net_device *lower_dev)
8300 {
8301 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8302 }
8303 
8304 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8305 				       struct net_device *lower_dev)
8306 {
8307 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8308 }
8309 
8310 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8311 				   struct net_device *new_dev,
8312 				   struct net_device *dev,
8313 				   struct netlink_ext_ack *extack)
8314 {
8315 	struct netdev_nested_priv priv = {
8316 		.flags = 0,
8317 		.data = NULL,
8318 	};
8319 	int err;
8320 
8321 	if (!new_dev)
8322 		return 0;
8323 
8324 	if (old_dev && new_dev != old_dev)
8325 		netdev_adjacent_dev_disable(dev, old_dev);
8326 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8327 				      extack);
8328 	if (err) {
8329 		if (old_dev && new_dev != old_dev)
8330 			netdev_adjacent_dev_enable(dev, old_dev);
8331 		return err;
8332 	}
8333 
8334 	return 0;
8335 }
8336 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8337 
8338 void netdev_adjacent_change_commit(struct net_device *old_dev,
8339 				   struct net_device *new_dev,
8340 				   struct net_device *dev)
8341 {
8342 	struct netdev_nested_priv priv = {
8343 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8344 		.data = NULL,
8345 	};
8346 
8347 	if (!new_dev || !old_dev)
8348 		return;
8349 
8350 	if (new_dev == old_dev)
8351 		return;
8352 
8353 	netdev_adjacent_dev_enable(dev, old_dev);
8354 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8355 }
8356 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8357 
8358 void netdev_adjacent_change_abort(struct net_device *old_dev,
8359 				  struct net_device *new_dev,
8360 				  struct net_device *dev)
8361 {
8362 	struct netdev_nested_priv priv = {
8363 		.flags = 0,
8364 		.data = NULL,
8365 	};
8366 
8367 	if (!new_dev)
8368 		return;
8369 
8370 	if (old_dev && new_dev != old_dev)
8371 		netdev_adjacent_dev_enable(dev, old_dev);
8372 
8373 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8374 }
8375 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8376 
8377 /**
8378  * netdev_bonding_info_change - Dispatch event about slave change
8379  * @dev: device
8380  * @bonding_info: info to dispatch
8381  *
8382  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8383  * The caller must hold the RTNL lock.
8384  */
8385 void netdev_bonding_info_change(struct net_device *dev,
8386 				struct netdev_bonding_info *bonding_info)
8387 {
8388 	struct netdev_notifier_bonding_info info = {
8389 		.info.dev = dev,
8390 	};
8391 
8392 	memcpy(&info.bonding_info, bonding_info,
8393 	       sizeof(struct netdev_bonding_info));
8394 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8395 				      &info.info);
8396 }
8397 EXPORT_SYMBOL(netdev_bonding_info_change);
8398 
8399 /**
8400  * netdev_get_xmit_slave - Get the xmit slave of master device
8401  * @dev: device
8402  * @skb: The packet
8403  * @all_slaves: assume all the slaves are active
8404  *
8405  * The reference counters are not incremented so the caller must be
8406  * careful with locks. The caller must hold RCU lock.
8407  * %NULL is returned if no slave is found.
8408  */
8409 
8410 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8411 					 struct sk_buff *skb,
8412 					 bool all_slaves)
8413 {
8414 	const struct net_device_ops *ops = dev->netdev_ops;
8415 
8416 	if (!ops->ndo_get_xmit_slave)
8417 		return NULL;
8418 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8419 }
8420 EXPORT_SYMBOL(netdev_get_xmit_slave);
8421 
8422 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8423 						  struct sock *sk)
8424 {
8425 	const struct net_device_ops *ops = dev->netdev_ops;
8426 
8427 	if (!ops->ndo_sk_get_lower_dev)
8428 		return NULL;
8429 	return ops->ndo_sk_get_lower_dev(dev, sk);
8430 }
8431 
8432 /**
8433  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8434  * @dev: device
8435  * @sk: the socket
8436  *
8437  * %NULL is returned if no lower device is found.
8438  */
8439 
8440 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8441 					    struct sock *sk)
8442 {
8443 	struct net_device *lower;
8444 
8445 	lower = netdev_sk_get_lower_dev(dev, sk);
8446 	while (lower) {
8447 		dev = lower;
8448 		lower = netdev_sk_get_lower_dev(dev, sk);
8449 	}
8450 
8451 	return dev;
8452 }
8453 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8454 
8455 static void netdev_adjacent_add_links(struct net_device *dev)
8456 {
8457 	struct netdev_adjacent *iter;
8458 
8459 	struct net *net = dev_net(dev);
8460 
8461 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8462 		if (!net_eq(net, dev_net(iter->dev)))
8463 			continue;
8464 		netdev_adjacent_sysfs_add(iter->dev, dev,
8465 					  &iter->dev->adj_list.lower);
8466 		netdev_adjacent_sysfs_add(dev, iter->dev,
8467 					  &dev->adj_list.upper);
8468 	}
8469 
8470 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8471 		if (!net_eq(net, dev_net(iter->dev)))
8472 			continue;
8473 		netdev_adjacent_sysfs_add(iter->dev, dev,
8474 					  &iter->dev->adj_list.upper);
8475 		netdev_adjacent_sysfs_add(dev, iter->dev,
8476 					  &dev->adj_list.lower);
8477 	}
8478 }
8479 
8480 static void netdev_adjacent_del_links(struct net_device *dev)
8481 {
8482 	struct netdev_adjacent *iter;
8483 
8484 	struct net *net = dev_net(dev);
8485 
8486 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8487 		if (!net_eq(net, dev_net(iter->dev)))
8488 			continue;
8489 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8490 					  &iter->dev->adj_list.lower);
8491 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8492 					  &dev->adj_list.upper);
8493 	}
8494 
8495 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8496 		if (!net_eq(net, dev_net(iter->dev)))
8497 			continue;
8498 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8499 					  &iter->dev->adj_list.upper);
8500 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8501 					  &dev->adj_list.lower);
8502 	}
8503 }
8504 
8505 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8506 {
8507 	struct netdev_adjacent *iter;
8508 
8509 	struct net *net = dev_net(dev);
8510 
8511 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8512 		if (!net_eq(net, dev_net(iter->dev)))
8513 			continue;
8514 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8515 					  &iter->dev->adj_list.lower);
8516 		netdev_adjacent_sysfs_add(iter->dev, dev,
8517 					  &iter->dev->adj_list.lower);
8518 	}
8519 
8520 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8521 		if (!net_eq(net, dev_net(iter->dev)))
8522 			continue;
8523 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8524 					  &iter->dev->adj_list.upper);
8525 		netdev_adjacent_sysfs_add(iter->dev, dev,
8526 					  &iter->dev->adj_list.upper);
8527 	}
8528 }
8529 
8530 void *netdev_lower_dev_get_private(struct net_device *dev,
8531 				   struct net_device *lower_dev)
8532 {
8533 	struct netdev_adjacent *lower;
8534 
8535 	if (!lower_dev)
8536 		return NULL;
8537 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8538 	if (!lower)
8539 		return NULL;
8540 
8541 	return lower->private;
8542 }
8543 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8544 
8545 
8546 /**
8547  * netdev_lower_state_changed - Dispatch event about lower device state change
8548  * @lower_dev: device
8549  * @lower_state_info: state to dispatch
8550  *
8551  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8552  * The caller must hold the RTNL lock.
8553  */
8554 void netdev_lower_state_changed(struct net_device *lower_dev,
8555 				void *lower_state_info)
8556 {
8557 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8558 		.info.dev = lower_dev,
8559 	};
8560 
8561 	ASSERT_RTNL();
8562 	changelowerstate_info.lower_state_info = lower_state_info;
8563 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8564 				      &changelowerstate_info.info);
8565 }
8566 EXPORT_SYMBOL(netdev_lower_state_changed);
8567 
8568 static void dev_change_rx_flags(struct net_device *dev, int flags)
8569 {
8570 	const struct net_device_ops *ops = dev->netdev_ops;
8571 
8572 	if (ops->ndo_change_rx_flags)
8573 		ops->ndo_change_rx_flags(dev, flags);
8574 }
8575 
8576 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8577 {
8578 	unsigned int old_flags = dev->flags;
8579 	kuid_t uid;
8580 	kgid_t gid;
8581 
8582 	ASSERT_RTNL();
8583 
8584 	dev->flags |= IFF_PROMISC;
8585 	dev->promiscuity += inc;
8586 	if (dev->promiscuity == 0) {
8587 		/*
8588 		 * Avoid overflow.
8589 		 * If inc causes overflow, untouch promisc and return error.
8590 		 */
8591 		if (inc < 0)
8592 			dev->flags &= ~IFF_PROMISC;
8593 		else {
8594 			dev->promiscuity -= inc;
8595 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8596 				dev->name);
8597 			return -EOVERFLOW;
8598 		}
8599 	}
8600 	if (dev->flags != old_flags) {
8601 		pr_info("device %s %s promiscuous mode\n",
8602 			dev->name,
8603 			dev->flags & IFF_PROMISC ? "entered" : "left");
8604 		if (audit_enabled) {
8605 			current_uid_gid(&uid, &gid);
8606 			audit_log(audit_context(), GFP_ATOMIC,
8607 				  AUDIT_ANOM_PROMISCUOUS,
8608 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8609 				  dev->name, (dev->flags & IFF_PROMISC),
8610 				  (old_flags & IFF_PROMISC),
8611 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8612 				  from_kuid(&init_user_ns, uid),
8613 				  from_kgid(&init_user_ns, gid),
8614 				  audit_get_sessionid(current));
8615 		}
8616 
8617 		dev_change_rx_flags(dev, IFF_PROMISC);
8618 	}
8619 	if (notify)
8620 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
8621 	return 0;
8622 }
8623 
8624 /**
8625  *	dev_set_promiscuity	- update promiscuity count on a device
8626  *	@dev: device
8627  *	@inc: modifier
8628  *
8629  *	Add or remove promiscuity from a device. While the count in the device
8630  *	remains above zero the interface remains promiscuous. Once it hits zero
8631  *	the device reverts back to normal filtering operation. A negative inc
8632  *	value is used to drop promiscuity on the device.
8633  *	Return 0 if successful or a negative errno code on error.
8634  */
8635 int dev_set_promiscuity(struct net_device *dev, int inc)
8636 {
8637 	unsigned int old_flags = dev->flags;
8638 	int err;
8639 
8640 	err = __dev_set_promiscuity(dev, inc, true);
8641 	if (err < 0)
8642 		return err;
8643 	if (dev->flags != old_flags)
8644 		dev_set_rx_mode(dev);
8645 	return err;
8646 }
8647 EXPORT_SYMBOL(dev_set_promiscuity);
8648 
8649 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8650 {
8651 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8652 
8653 	ASSERT_RTNL();
8654 
8655 	dev->flags |= IFF_ALLMULTI;
8656 	dev->allmulti += inc;
8657 	if (dev->allmulti == 0) {
8658 		/*
8659 		 * Avoid overflow.
8660 		 * If inc causes overflow, untouch allmulti and return error.
8661 		 */
8662 		if (inc < 0)
8663 			dev->flags &= ~IFF_ALLMULTI;
8664 		else {
8665 			dev->allmulti -= inc;
8666 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8667 				dev->name);
8668 			return -EOVERFLOW;
8669 		}
8670 	}
8671 	if (dev->flags ^ old_flags) {
8672 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8673 		dev_set_rx_mode(dev);
8674 		if (notify)
8675 			__dev_notify_flags(dev, old_flags,
8676 					   dev->gflags ^ old_gflags);
8677 	}
8678 	return 0;
8679 }
8680 
8681 /**
8682  *	dev_set_allmulti	- update allmulti count on a device
8683  *	@dev: device
8684  *	@inc: modifier
8685  *
8686  *	Add or remove reception of all multicast frames to a device. While the
8687  *	count in the device remains above zero the interface remains listening
8688  *	to all interfaces. Once it hits zero the device reverts back to normal
8689  *	filtering operation. A negative @inc value is used to drop the counter
8690  *	when releasing a resource needing all multicasts.
8691  *	Return 0 if successful or a negative errno code on error.
8692  */
8693 
8694 int dev_set_allmulti(struct net_device *dev, int inc)
8695 {
8696 	return __dev_set_allmulti(dev, inc, true);
8697 }
8698 EXPORT_SYMBOL(dev_set_allmulti);
8699 
8700 /*
8701  *	Upload unicast and multicast address lists to device and
8702  *	configure RX filtering. When the device doesn't support unicast
8703  *	filtering it is put in promiscuous mode while unicast addresses
8704  *	are present.
8705  */
8706 void __dev_set_rx_mode(struct net_device *dev)
8707 {
8708 	const struct net_device_ops *ops = dev->netdev_ops;
8709 
8710 	/* dev_open will call this function so the list will stay sane. */
8711 	if (!(dev->flags&IFF_UP))
8712 		return;
8713 
8714 	if (!netif_device_present(dev))
8715 		return;
8716 
8717 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8718 		/* Unicast addresses changes may only happen under the rtnl,
8719 		 * therefore calling __dev_set_promiscuity here is safe.
8720 		 */
8721 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8722 			__dev_set_promiscuity(dev, 1, false);
8723 			dev->uc_promisc = true;
8724 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8725 			__dev_set_promiscuity(dev, -1, false);
8726 			dev->uc_promisc = false;
8727 		}
8728 	}
8729 
8730 	if (ops->ndo_set_rx_mode)
8731 		ops->ndo_set_rx_mode(dev);
8732 }
8733 
8734 void dev_set_rx_mode(struct net_device *dev)
8735 {
8736 	netif_addr_lock_bh(dev);
8737 	__dev_set_rx_mode(dev);
8738 	netif_addr_unlock_bh(dev);
8739 }
8740 
8741 /**
8742  *	dev_get_flags - get flags reported to userspace
8743  *	@dev: device
8744  *
8745  *	Get the combination of flag bits exported through APIs to userspace.
8746  */
8747 unsigned int dev_get_flags(const struct net_device *dev)
8748 {
8749 	unsigned int flags;
8750 
8751 	flags = (dev->flags & ~(IFF_PROMISC |
8752 				IFF_ALLMULTI |
8753 				IFF_RUNNING |
8754 				IFF_LOWER_UP |
8755 				IFF_DORMANT)) |
8756 		(dev->gflags & (IFF_PROMISC |
8757 				IFF_ALLMULTI));
8758 
8759 	if (netif_running(dev)) {
8760 		if (netif_oper_up(dev))
8761 			flags |= IFF_RUNNING;
8762 		if (netif_carrier_ok(dev))
8763 			flags |= IFF_LOWER_UP;
8764 		if (netif_dormant(dev))
8765 			flags |= IFF_DORMANT;
8766 	}
8767 
8768 	return flags;
8769 }
8770 EXPORT_SYMBOL(dev_get_flags);
8771 
8772 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8773 		       struct netlink_ext_ack *extack)
8774 {
8775 	unsigned int old_flags = dev->flags;
8776 	int ret;
8777 
8778 	ASSERT_RTNL();
8779 
8780 	/*
8781 	 *	Set the flags on our device.
8782 	 */
8783 
8784 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8785 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8786 			       IFF_AUTOMEDIA)) |
8787 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8788 				    IFF_ALLMULTI));
8789 
8790 	/*
8791 	 *	Load in the correct multicast list now the flags have changed.
8792 	 */
8793 
8794 	if ((old_flags ^ flags) & IFF_MULTICAST)
8795 		dev_change_rx_flags(dev, IFF_MULTICAST);
8796 
8797 	dev_set_rx_mode(dev);
8798 
8799 	/*
8800 	 *	Have we downed the interface. We handle IFF_UP ourselves
8801 	 *	according to user attempts to set it, rather than blindly
8802 	 *	setting it.
8803 	 */
8804 
8805 	ret = 0;
8806 	if ((old_flags ^ flags) & IFF_UP) {
8807 		if (old_flags & IFF_UP)
8808 			__dev_close(dev);
8809 		else
8810 			ret = __dev_open(dev, extack);
8811 	}
8812 
8813 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8814 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8815 		unsigned int old_flags = dev->flags;
8816 
8817 		dev->gflags ^= IFF_PROMISC;
8818 
8819 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8820 			if (dev->flags != old_flags)
8821 				dev_set_rx_mode(dev);
8822 	}
8823 
8824 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8825 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8826 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8827 	 */
8828 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8829 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8830 
8831 		dev->gflags ^= IFF_ALLMULTI;
8832 		__dev_set_allmulti(dev, inc, false);
8833 	}
8834 
8835 	return ret;
8836 }
8837 
8838 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8839 			unsigned int gchanges)
8840 {
8841 	unsigned int changes = dev->flags ^ old_flags;
8842 
8843 	if (gchanges)
8844 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8845 
8846 	if (changes & IFF_UP) {
8847 		if (dev->flags & IFF_UP)
8848 			call_netdevice_notifiers(NETDEV_UP, dev);
8849 		else
8850 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8851 	}
8852 
8853 	if (dev->flags & IFF_UP &&
8854 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8855 		struct netdev_notifier_change_info change_info = {
8856 			.info = {
8857 				.dev = dev,
8858 			},
8859 			.flags_changed = changes,
8860 		};
8861 
8862 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8863 	}
8864 }
8865 
8866 /**
8867  *	dev_change_flags - change device settings
8868  *	@dev: device
8869  *	@flags: device state flags
8870  *	@extack: netlink extended ack
8871  *
8872  *	Change settings on device based state flags. The flags are
8873  *	in the userspace exported format.
8874  */
8875 int dev_change_flags(struct net_device *dev, unsigned int flags,
8876 		     struct netlink_ext_ack *extack)
8877 {
8878 	int ret;
8879 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8880 
8881 	ret = __dev_change_flags(dev, flags, extack);
8882 	if (ret < 0)
8883 		return ret;
8884 
8885 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8886 	__dev_notify_flags(dev, old_flags, changes);
8887 	return ret;
8888 }
8889 EXPORT_SYMBOL(dev_change_flags);
8890 
8891 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8892 {
8893 	const struct net_device_ops *ops = dev->netdev_ops;
8894 
8895 	if (ops->ndo_change_mtu)
8896 		return ops->ndo_change_mtu(dev, new_mtu);
8897 
8898 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8899 	WRITE_ONCE(dev->mtu, new_mtu);
8900 	return 0;
8901 }
8902 EXPORT_SYMBOL(__dev_set_mtu);
8903 
8904 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8905 		     struct netlink_ext_ack *extack)
8906 {
8907 	/* MTU must be positive, and in range */
8908 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8909 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8910 		return -EINVAL;
8911 	}
8912 
8913 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8914 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8915 		return -EINVAL;
8916 	}
8917 	return 0;
8918 }
8919 
8920 /**
8921  *	dev_set_mtu_ext - Change maximum transfer unit
8922  *	@dev: device
8923  *	@new_mtu: new transfer unit
8924  *	@extack: netlink extended ack
8925  *
8926  *	Change the maximum transfer size of the network device.
8927  */
8928 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8929 		    struct netlink_ext_ack *extack)
8930 {
8931 	int err, orig_mtu;
8932 
8933 	if (new_mtu == dev->mtu)
8934 		return 0;
8935 
8936 	err = dev_validate_mtu(dev, new_mtu, extack);
8937 	if (err)
8938 		return err;
8939 
8940 	if (!netif_device_present(dev))
8941 		return -ENODEV;
8942 
8943 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8944 	err = notifier_to_errno(err);
8945 	if (err)
8946 		return err;
8947 
8948 	orig_mtu = dev->mtu;
8949 	err = __dev_set_mtu(dev, new_mtu);
8950 
8951 	if (!err) {
8952 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8953 						   orig_mtu);
8954 		err = notifier_to_errno(err);
8955 		if (err) {
8956 			/* setting mtu back and notifying everyone again,
8957 			 * so that they have a chance to revert changes.
8958 			 */
8959 			__dev_set_mtu(dev, orig_mtu);
8960 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8961 						     new_mtu);
8962 		}
8963 	}
8964 	return err;
8965 }
8966 
8967 int dev_set_mtu(struct net_device *dev, int new_mtu)
8968 {
8969 	struct netlink_ext_ack extack;
8970 	int err;
8971 
8972 	memset(&extack, 0, sizeof(extack));
8973 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8974 	if (err && extack._msg)
8975 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8976 	return err;
8977 }
8978 EXPORT_SYMBOL(dev_set_mtu);
8979 
8980 /**
8981  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8982  *	@dev: device
8983  *	@new_len: new tx queue length
8984  */
8985 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8986 {
8987 	unsigned int orig_len = dev->tx_queue_len;
8988 	int res;
8989 
8990 	if (new_len != (unsigned int)new_len)
8991 		return -ERANGE;
8992 
8993 	if (new_len != orig_len) {
8994 		dev->tx_queue_len = new_len;
8995 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8996 		res = notifier_to_errno(res);
8997 		if (res)
8998 			goto err_rollback;
8999 		res = dev_qdisc_change_tx_queue_len(dev);
9000 		if (res)
9001 			goto err_rollback;
9002 	}
9003 
9004 	return 0;
9005 
9006 err_rollback:
9007 	netdev_err(dev, "refused to change device tx_queue_len\n");
9008 	dev->tx_queue_len = orig_len;
9009 	return res;
9010 }
9011 
9012 /**
9013  *	dev_set_group - Change group this device belongs to
9014  *	@dev: device
9015  *	@new_group: group this device should belong to
9016  */
9017 void dev_set_group(struct net_device *dev, int new_group)
9018 {
9019 	dev->group = new_group;
9020 }
9021 EXPORT_SYMBOL(dev_set_group);
9022 
9023 /**
9024  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
9025  *	@dev: device
9026  *	@addr: new address
9027  *	@extack: netlink extended ack
9028  */
9029 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9030 			      struct netlink_ext_ack *extack)
9031 {
9032 	struct netdev_notifier_pre_changeaddr_info info = {
9033 		.info.dev = dev,
9034 		.info.extack = extack,
9035 		.dev_addr = addr,
9036 	};
9037 	int rc;
9038 
9039 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9040 	return notifier_to_errno(rc);
9041 }
9042 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9043 
9044 /**
9045  *	dev_set_mac_address - Change Media Access Control Address
9046  *	@dev: device
9047  *	@sa: new address
9048  *	@extack: netlink extended ack
9049  *
9050  *	Change the hardware (MAC) address of the device
9051  */
9052 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9053 			struct netlink_ext_ack *extack)
9054 {
9055 	const struct net_device_ops *ops = dev->netdev_ops;
9056 	int err;
9057 
9058 	if (!ops->ndo_set_mac_address)
9059 		return -EOPNOTSUPP;
9060 	if (sa->sa_family != dev->type)
9061 		return -EINVAL;
9062 	if (!netif_device_present(dev))
9063 		return -ENODEV;
9064 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9065 	if (err)
9066 		return err;
9067 	err = ops->ndo_set_mac_address(dev, sa);
9068 	if (err)
9069 		return err;
9070 	dev->addr_assign_type = NET_ADDR_SET;
9071 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9072 	add_device_randomness(dev->dev_addr, dev->addr_len);
9073 	return 0;
9074 }
9075 EXPORT_SYMBOL(dev_set_mac_address);
9076 
9077 static DECLARE_RWSEM(dev_addr_sem);
9078 
9079 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9080 			     struct netlink_ext_ack *extack)
9081 {
9082 	int ret;
9083 
9084 	down_write(&dev_addr_sem);
9085 	ret = dev_set_mac_address(dev, sa, extack);
9086 	up_write(&dev_addr_sem);
9087 	return ret;
9088 }
9089 EXPORT_SYMBOL(dev_set_mac_address_user);
9090 
9091 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9092 {
9093 	size_t size = sizeof(sa->sa_data);
9094 	struct net_device *dev;
9095 	int ret = 0;
9096 
9097 	down_read(&dev_addr_sem);
9098 	rcu_read_lock();
9099 
9100 	dev = dev_get_by_name_rcu(net, dev_name);
9101 	if (!dev) {
9102 		ret = -ENODEV;
9103 		goto unlock;
9104 	}
9105 	if (!dev->addr_len)
9106 		memset(sa->sa_data, 0, size);
9107 	else
9108 		memcpy(sa->sa_data, dev->dev_addr,
9109 		       min_t(size_t, size, dev->addr_len));
9110 	sa->sa_family = dev->type;
9111 
9112 unlock:
9113 	rcu_read_unlock();
9114 	up_read(&dev_addr_sem);
9115 	return ret;
9116 }
9117 EXPORT_SYMBOL(dev_get_mac_address);
9118 
9119 /**
9120  *	dev_change_carrier - Change device carrier
9121  *	@dev: device
9122  *	@new_carrier: new value
9123  *
9124  *	Change device carrier
9125  */
9126 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9127 {
9128 	const struct net_device_ops *ops = dev->netdev_ops;
9129 
9130 	if (!ops->ndo_change_carrier)
9131 		return -EOPNOTSUPP;
9132 	if (!netif_device_present(dev))
9133 		return -ENODEV;
9134 	return ops->ndo_change_carrier(dev, new_carrier);
9135 }
9136 EXPORT_SYMBOL(dev_change_carrier);
9137 
9138 /**
9139  *	dev_get_phys_port_id - Get device physical port ID
9140  *	@dev: device
9141  *	@ppid: port ID
9142  *
9143  *	Get device physical port ID
9144  */
9145 int dev_get_phys_port_id(struct net_device *dev,
9146 			 struct netdev_phys_item_id *ppid)
9147 {
9148 	const struct net_device_ops *ops = dev->netdev_ops;
9149 
9150 	if (!ops->ndo_get_phys_port_id)
9151 		return -EOPNOTSUPP;
9152 	return ops->ndo_get_phys_port_id(dev, ppid);
9153 }
9154 EXPORT_SYMBOL(dev_get_phys_port_id);
9155 
9156 /**
9157  *	dev_get_phys_port_name - Get device physical port name
9158  *	@dev: device
9159  *	@name: port name
9160  *	@len: limit of bytes to copy to name
9161  *
9162  *	Get device physical port name
9163  */
9164 int dev_get_phys_port_name(struct net_device *dev,
9165 			   char *name, size_t len)
9166 {
9167 	const struct net_device_ops *ops = dev->netdev_ops;
9168 	int err;
9169 
9170 	if (ops->ndo_get_phys_port_name) {
9171 		err = ops->ndo_get_phys_port_name(dev, name, len);
9172 		if (err != -EOPNOTSUPP)
9173 			return err;
9174 	}
9175 	return devlink_compat_phys_port_name_get(dev, name, len);
9176 }
9177 EXPORT_SYMBOL(dev_get_phys_port_name);
9178 
9179 /**
9180  *	dev_get_port_parent_id - Get the device's port parent identifier
9181  *	@dev: network device
9182  *	@ppid: pointer to a storage for the port's parent identifier
9183  *	@recurse: allow/disallow recursion to lower devices
9184  *
9185  *	Get the devices's port parent identifier
9186  */
9187 int dev_get_port_parent_id(struct net_device *dev,
9188 			   struct netdev_phys_item_id *ppid,
9189 			   bool recurse)
9190 {
9191 	const struct net_device_ops *ops = dev->netdev_ops;
9192 	struct netdev_phys_item_id first = { };
9193 	struct net_device *lower_dev;
9194 	struct list_head *iter;
9195 	int err;
9196 
9197 	if (ops->ndo_get_port_parent_id) {
9198 		err = ops->ndo_get_port_parent_id(dev, ppid);
9199 		if (err != -EOPNOTSUPP)
9200 			return err;
9201 	}
9202 
9203 	err = devlink_compat_switch_id_get(dev, ppid);
9204 	if (!err || err != -EOPNOTSUPP)
9205 		return err;
9206 
9207 	if (!recurse)
9208 		return -EOPNOTSUPP;
9209 
9210 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9211 		err = dev_get_port_parent_id(lower_dev, ppid, recurse);
9212 		if (err)
9213 			break;
9214 		if (!first.id_len)
9215 			first = *ppid;
9216 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9217 			return -EOPNOTSUPP;
9218 	}
9219 
9220 	return err;
9221 }
9222 EXPORT_SYMBOL(dev_get_port_parent_id);
9223 
9224 /**
9225  *	netdev_port_same_parent_id - Indicate if two network devices have
9226  *	the same port parent identifier
9227  *	@a: first network device
9228  *	@b: second network device
9229  */
9230 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9231 {
9232 	struct netdev_phys_item_id a_id = { };
9233 	struct netdev_phys_item_id b_id = { };
9234 
9235 	if (dev_get_port_parent_id(a, &a_id, true) ||
9236 	    dev_get_port_parent_id(b, &b_id, true))
9237 		return false;
9238 
9239 	return netdev_phys_item_id_same(&a_id, &b_id);
9240 }
9241 EXPORT_SYMBOL(netdev_port_same_parent_id);
9242 
9243 /**
9244  *	dev_change_proto_down - update protocol port state information
9245  *	@dev: device
9246  *	@proto_down: new value
9247  *
9248  *	This info can be used by switch drivers to set the phys state of the
9249  *	port.
9250  */
9251 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9252 {
9253 	const struct net_device_ops *ops = dev->netdev_ops;
9254 
9255 	if (!ops->ndo_change_proto_down)
9256 		return -EOPNOTSUPP;
9257 	if (!netif_device_present(dev))
9258 		return -ENODEV;
9259 	return ops->ndo_change_proto_down(dev, proto_down);
9260 }
9261 EXPORT_SYMBOL(dev_change_proto_down);
9262 
9263 /**
9264  *	dev_change_proto_down_generic - generic implementation for
9265  * 	ndo_change_proto_down that sets carrier according to
9266  * 	proto_down.
9267  *
9268  *	@dev: device
9269  *	@proto_down: new value
9270  */
9271 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
9272 {
9273 	if (proto_down)
9274 		netif_carrier_off(dev);
9275 	else
9276 		netif_carrier_on(dev);
9277 	dev->proto_down = proto_down;
9278 	return 0;
9279 }
9280 EXPORT_SYMBOL(dev_change_proto_down_generic);
9281 
9282 /**
9283  *	dev_change_proto_down_reason - proto down reason
9284  *
9285  *	@dev: device
9286  *	@mask: proto down mask
9287  *	@value: proto down value
9288  */
9289 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9290 				  u32 value)
9291 {
9292 	int b;
9293 
9294 	if (!mask) {
9295 		dev->proto_down_reason = value;
9296 	} else {
9297 		for_each_set_bit(b, &mask, 32) {
9298 			if (value & (1 << b))
9299 				dev->proto_down_reason |= BIT(b);
9300 			else
9301 				dev->proto_down_reason &= ~BIT(b);
9302 		}
9303 	}
9304 }
9305 EXPORT_SYMBOL(dev_change_proto_down_reason);
9306 
9307 struct bpf_xdp_link {
9308 	struct bpf_link link;
9309 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9310 	int flags;
9311 };
9312 
9313 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9314 {
9315 	if (flags & XDP_FLAGS_HW_MODE)
9316 		return XDP_MODE_HW;
9317 	if (flags & XDP_FLAGS_DRV_MODE)
9318 		return XDP_MODE_DRV;
9319 	if (flags & XDP_FLAGS_SKB_MODE)
9320 		return XDP_MODE_SKB;
9321 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9322 }
9323 
9324 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9325 {
9326 	switch (mode) {
9327 	case XDP_MODE_SKB:
9328 		return generic_xdp_install;
9329 	case XDP_MODE_DRV:
9330 	case XDP_MODE_HW:
9331 		return dev->netdev_ops->ndo_bpf;
9332 	default:
9333 		return NULL;
9334 	}
9335 }
9336 
9337 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9338 					 enum bpf_xdp_mode mode)
9339 {
9340 	return dev->xdp_state[mode].link;
9341 }
9342 
9343 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9344 				     enum bpf_xdp_mode mode)
9345 {
9346 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9347 
9348 	if (link)
9349 		return link->link.prog;
9350 	return dev->xdp_state[mode].prog;
9351 }
9352 
9353 static u8 dev_xdp_prog_count(struct net_device *dev)
9354 {
9355 	u8 count = 0;
9356 	int i;
9357 
9358 	for (i = 0; i < __MAX_XDP_MODE; i++)
9359 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9360 			count++;
9361 	return count;
9362 }
9363 
9364 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9365 {
9366 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9367 
9368 	return prog ? prog->aux->id : 0;
9369 }
9370 
9371 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9372 			     struct bpf_xdp_link *link)
9373 {
9374 	dev->xdp_state[mode].link = link;
9375 	dev->xdp_state[mode].prog = NULL;
9376 }
9377 
9378 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9379 			     struct bpf_prog *prog)
9380 {
9381 	dev->xdp_state[mode].link = NULL;
9382 	dev->xdp_state[mode].prog = prog;
9383 }
9384 
9385 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9386 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9387 			   u32 flags, struct bpf_prog *prog)
9388 {
9389 	struct netdev_bpf xdp;
9390 	int err;
9391 
9392 	memset(&xdp, 0, sizeof(xdp));
9393 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9394 	xdp.extack = extack;
9395 	xdp.flags = flags;
9396 	xdp.prog = prog;
9397 
9398 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9399 	 * "moved" into driver), so they don't increment it on their own, but
9400 	 * they do decrement refcnt when program is detached or replaced.
9401 	 * Given net_device also owns link/prog, we need to bump refcnt here
9402 	 * to prevent drivers from underflowing it.
9403 	 */
9404 	if (prog)
9405 		bpf_prog_inc(prog);
9406 	err = bpf_op(dev, &xdp);
9407 	if (err) {
9408 		if (prog)
9409 			bpf_prog_put(prog);
9410 		return err;
9411 	}
9412 
9413 	if (mode != XDP_MODE_HW)
9414 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9415 
9416 	return 0;
9417 }
9418 
9419 static void dev_xdp_uninstall(struct net_device *dev)
9420 {
9421 	struct bpf_xdp_link *link;
9422 	struct bpf_prog *prog;
9423 	enum bpf_xdp_mode mode;
9424 	bpf_op_t bpf_op;
9425 
9426 	ASSERT_RTNL();
9427 
9428 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9429 		prog = dev_xdp_prog(dev, mode);
9430 		if (!prog)
9431 			continue;
9432 
9433 		bpf_op = dev_xdp_bpf_op(dev, mode);
9434 		if (!bpf_op)
9435 			continue;
9436 
9437 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9438 
9439 		/* auto-detach link from net device */
9440 		link = dev_xdp_link(dev, mode);
9441 		if (link)
9442 			link->dev = NULL;
9443 		else
9444 			bpf_prog_put(prog);
9445 
9446 		dev_xdp_set_link(dev, mode, NULL);
9447 	}
9448 }
9449 
9450 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9451 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9452 			  struct bpf_prog *old_prog, u32 flags)
9453 {
9454 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9455 	struct bpf_prog *cur_prog;
9456 	enum bpf_xdp_mode mode;
9457 	bpf_op_t bpf_op;
9458 	int err;
9459 
9460 	ASSERT_RTNL();
9461 
9462 	/* either link or prog attachment, never both */
9463 	if (link && (new_prog || old_prog))
9464 		return -EINVAL;
9465 	/* link supports only XDP mode flags */
9466 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9467 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9468 		return -EINVAL;
9469 	}
9470 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9471 	if (num_modes > 1) {
9472 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9473 		return -EINVAL;
9474 	}
9475 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9476 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9477 		NL_SET_ERR_MSG(extack,
9478 			       "More than one program loaded, unset mode is ambiguous");
9479 		return -EINVAL;
9480 	}
9481 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9482 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9483 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9484 		return -EINVAL;
9485 	}
9486 
9487 	mode = dev_xdp_mode(dev, flags);
9488 	/* can't replace attached link */
9489 	if (dev_xdp_link(dev, mode)) {
9490 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9491 		return -EBUSY;
9492 	}
9493 
9494 	cur_prog = dev_xdp_prog(dev, mode);
9495 	/* can't replace attached prog with link */
9496 	if (link && cur_prog) {
9497 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9498 		return -EBUSY;
9499 	}
9500 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9501 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9502 		return -EEXIST;
9503 	}
9504 
9505 	/* put effective new program into new_prog */
9506 	if (link)
9507 		new_prog = link->link.prog;
9508 
9509 	if (new_prog) {
9510 		bool offload = mode == XDP_MODE_HW;
9511 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9512 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9513 
9514 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9515 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9516 			return -EBUSY;
9517 		}
9518 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9519 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9520 			return -EEXIST;
9521 		}
9522 		if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9523 			NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9524 			return -EINVAL;
9525 		}
9526 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9527 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9528 			return -EINVAL;
9529 		}
9530 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9531 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9532 			return -EINVAL;
9533 		}
9534 	}
9535 
9536 	/* don't call drivers if the effective program didn't change */
9537 	if (new_prog != cur_prog) {
9538 		bpf_op = dev_xdp_bpf_op(dev, mode);
9539 		if (!bpf_op) {
9540 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9541 			return -EOPNOTSUPP;
9542 		}
9543 
9544 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9545 		if (err)
9546 			return err;
9547 	}
9548 
9549 	if (link)
9550 		dev_xdp_set_link(dev, mode, link);
9551 	else
9552 		dev_xdp_set_prog(dev, mode, new_prog);
9553 	if (cur_prog)
9554 		bpf_prog_put(cur_prog);
9555 
9556 	return 0;
9557 }
9558 
9559 static int dev_xdp_attach_link(struct net_device *dev,
9560 			       struct netlink_ext_ack *extack,
9561 			       struct bpf_xdp_link *link)
9562 {
9563 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9564 }
9565 
9566 static int dev_xdp_detach_link(struct net_device *dev,
9567 			       struct netlink_ext_ack *extack,
9568 			       struct bpf_xdp_link *link)
9569 {
9570 	enum bpf_xdp_mode mode;
9571 	bpf_op_t bpf_op;
9572 
9573 	ASSERT_RTNL();
9574 
9575 	mode = dev_xdp_mode(dev, link->flags);
9576 	if (dev_xdp_link(dev, mode) != link)
9577 		return -EINVAL;
9578 
9579 	bpf_op = dev_xdp_bpf_op(dev, mode);
9580 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9581 	dev_xdp_set_link(dev, mode, NULL);
9582 	return 0;
9583 }
9584 
9585 static void bpf_xdp_link_release(struct bpf_link *link)
9586 {
9587 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9588 
9589 	rtnl_lock();
9590 
9591 	/* if racing with net_device's tear down, xdp_link->dev might be
9592 	 * already NULL, in which case link was already auto-detached
9593 	 */
9594 	if (xdp_link->dev) {
9595 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9596 		xdp_link->dev = NULL;
9597 	}
9598 
9599 	rtnl_unlock();
9600 }
9601 
9602 static int bpf_xdp_link_detach(struct bpf_link *link)
9603 {
9604 	bpf_xdp_link_release(link);
9605 	return 0;
9606 }
9607 
9608 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9609 {
9610 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9611 
9612 	kfree(xdp_link);
9613 }
9614 
9615 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9616 				     struct seq_file *seq)
9617 {
9618 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9619 	u32 ifindex = 0;
9620 
9621 	rtnl_lock();
9622 	if (xdp_link->dev)
9623 		ifindex = xdp_link->dev->ifindex;
9624 	rtnl_unlock();
9625 
9626 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9627 }
9628 
9629 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9630 				       struct bpf_link_info *info)
9631 {
9632 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9633 	u32 ifindex = 0;
9634 
9635 	rtnl_lock();
9636 	if (xdp_link->dev)
9637 		ifindex = xdp_link->dev->ifindex;
9638 	rtnl_unlock();
9639 
9640 	info->xdp.ifindex = ifindex;
9641 	return 0;
9642 }
9643 
9644 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9645 			       struct bpf_prog *old_prog)
9646 {
9647 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9648 	enum bpf_xdp_mode mode;
9649 	bpf_op_t bpf_op;
9650 	int err = 0;
9651 
9652 	rtnl_lock();
9653 
9654 	/* link might have been auto-released already, so fail */
9655 	if (!xdp_link->dev) {
9656 		err = -ENOLINK;
9657 		goto out_unlock;
9658 	}
9659 
9660 	if (old_prog && link->prog != old_prog) {
9661 		err = -EPERM;
9662 		goto out_unlock;
9663 	}
9664 	old_prog = link->prog;
9665 	if (old_prog == new_prog) {
9666 		/* no-op, don't disturb drivers */
9667 		bpf_prog_put(new_prog);
9668 		goto out_unlock;
9669 	}
9670 
9671 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9672 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9673 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9674 			      xdp_link->flags, new_prog);
9675 	if (err)
9676 		goto out_unlock;
9677 
9678 	old_prog = xchg(&link->prog, new_prog);
9679 	bpf_prog_put(old_prog);
9680 
9681 out_unlock:
9682 	rtnl_unlock();
9683 	return err;
9684 }
9685 
9686 static const struct bpf_link_ops bpf_xdp_link_lops = {
9687 	.release = bpf_xdp_link_release,
9688 	.dealloc = bpf_xdp_link_dealloc,
9689 	.detach = bpf_xdp_link_detach,
9690 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9691 	.fill_link_info = bpf_xdp_link_fill_link_info,
9692 	.update_prog = bpf_xdp_link_update,
9693 };
9694 
9695 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9696 {
9697 	struct net *net = current->nsproxy->net_ns;
9698 	struct bpf_link_primer link_primer;
9699 	struct bpf_xdp_link *link;
9700 	struct net_device *dev;
9701 	int err, fd;
9702 
9703 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9704 	if (!dev)
9705 		return -EINVAL;
9706 
9707 	link = kzalloc(sizeof(*link), GFP_USER);
9708 	if (!link) {
9709 		err = -ENOMEM;
9710 		goto out_put_dev;
9711 	}
9712 
9713 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9714 	link->dev = dev;
9715 	link->flags = attr->link_create.flags;
9716 
9717 	err = bpf_link_prime(&link->link, &link_primer);
9718 	if (err) {
9719 		kfree(link);
9720 		goto out_put_dev;
9721 	}
9722 
9723 	rtnl_lock();
9724 	err = dev_xdp_attach_link(dev, NULL, link);
9725 	rtnl_unlock();
9726 
9727 	if (err) {
9728 		bpf_link_cleanup(&link_primer);
9729 		goto out_put_dev;
9730 	}
9731 
9732 	fd = bpf_link_settle(&link_primer);
9733 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9734 	dev_put(dev);
9735 	return fd;
9736 
9737 out_put_dev:
9738 	dev_put(dev);
9739 	return err;
9740 }
9741 
9742 /**
9743  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9744  *	@dev: device
9745  *	@extack: netlink extended ack
9746  *	@fd: new program fd or negative value to clear
9747  *	@expected_fd: old program fd that userspace expects to replace or clear
9748  *	@flags: xdp-related flags
9749  *
9750  *	Set or clear a bpf program for a device
9751  */
9752 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9753 		      int fd, int expected_fd, u32 flags)
9754 {
9755 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9756 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9757 	int err;
9758 
9759 	ASSERT_RTNL();
9760 
9761 	if (fd >= 0) {
9762 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9763 						 mode != XDP_MODE_SKB);
9764 		if (IS_ERR(new_prog))
9765 			return PTR_ERR(new_prog);
9766 	}
9767 
9768 	if (expected_fd >= 0) {
9769 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9770 						 mode != XDP_MODE_SKB);
9771 		if (IS_ERR(old_prog)) {
9772 			err = PTR_ERR(old_prog);
9773 			old_prog = NULL;
9774 			goto err_out;
9775 		}
9776 	}
9777 
9778 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9779 
9780 err_out:
9781 	if (err && new_prog)
9782 		bpf_prog_put(new_prog);
9783 	if (old_prog)
9784 		bpf_prog_put(old_prog);
9785 	return err;
9786 }
9787 
9788 /**
9789  *	dev_new_index	-	allocate an ifindex
9790  *	@net: the applicable net namespace
9791  *
9792  *	Returns a suitable unique value for a new device interface
9793  *	number.  The caller must hold the rtnl semaphore or the
9794  *	dev_base_lock to be sure it remains unique.
9795  */
9796 static int dev_new_index(struct net *net)
9797 {
9798 	int ifindex = net->ifindex;
9799 
9800 	for (;;) {
9801 		if (++ifindex <= 0)
9802 			ifindex = 1;
9803 		if (!__dev_get_by_index(net, ifindex))
9804 			return net->ifindex = ifindex;
9805 	}
9806 }
9807 
9808 /* Delayed registration/unregisteration */
9809 static LIST_HEAD(net_todo_list);
9810 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9811 
9812 static void net_set_todo(struct net_device *dev)
9813 {
9814 	list_add_tail(&dev->todo_list, &net_todo_list);
9815 	dev_net(dev)->dev_unreg_count++;
9816 }
9817 
9818 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9819 	struct net_device *upper, netdev_features_t features)
9820 {
9821 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9822 	netdev_features_t feature;
9823 	int feature_bit;
9824 
9825 	for_each_netdev_feature(upper_disables, feature_bit) {
9826 		feature = __NETIF_F_BIT(feature_bit);
9827 		if (!(upper->wanted_features & feature)
9828 		    && (features & feature)) {
9829 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9830 				   &feature, upper->name);
9831 			features &= ~feature;
9832 		}
9833 	}
9834 
9835 	return features;
9836 }
9837 
9838 static void netdev_sync_lower_features(struct net_device *upper,
9839 	struct net_device *lower, netdev_features_t features)
9840 {
9841 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9842 	netdev_features_t feature;
9843 	int feature_bit;
9844 
9845 	for_each_netdev_feature(upper_disables, feature_bit) {
9846 		feature = __NETIF_F_BIT(feature_bit);
9847 		if (!(features & feature) && (lower->features & feature)) {
9848 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9849 				   &feature, lower->name);
9850 			lower->wanted_features &= ~feature;
9851 			__netdev_update_features(lower);
9852 
9853 			if (unlikely(lower->features & feature))
9854 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9855 					    &feature, lower->name);
9856 			else
9857 				netdev_features_change(lower);
9858 		}
9859 	}
9860 }
9861 
9862 static netdev_features_t netdev_fix_features(struct net_device *dev,
9863 	netdev_features_t features)
9864 {
9865 	/* Fix illegal checksum combinations */
9866 	if ((features & NETIF_F_HW_CSUM) &&
9867 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9868 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9869 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9870 	}
9871 
9872 	/* TSO requires that SG is present as well. */
9873 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9874 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9875 		features &= ~NETIF_F_ALL_TSO;
9876 	}
9877 
9878 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9879 					!(features & NETIF_F_IP_CSUM)) {
9880 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9881 		features &= ~NETIF_F_TSO;
9882 		features &= ~NETIF_F_TSO_ECN;
9883 	}
9884 
9885 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9886 					 !(features & NETIF_F_IPV6_CSUM)) {
9887 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9888 		features &= ~NETIF_F_TSO6;
9889 	}
9890 
9891 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9892 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9893 		features &= ~NETIF_F_TSO_MANGLEID;
9894 
9895 	/* TSO ECN requires that TSO is present as well. */
9896 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9897 		features &= ~NETIF_F_TSO_ECN;
9898 
9899 	/* Software GSO depends on SG. */
9900 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9901 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9902 		features &= ~NETIF_F_GSO;
9903 	}
9904 
9905 	/* GSO partial features require GSO partial be set */
9906 	if ((features & dev->gso_partial_features) &&
9907 	    !(features & NETIF_F_GSO_PARTIAL)) {
9908 		netdev_dbg(dev,
9909 			   "Dropping partially supported GSO features since no GSO partial.\n");
9910 		features &= ~dev->gso_partial_features;
9911 	}
9912 
9913 	if (!(features & NETIF_F_RXCSUM)) {
9914 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9915 		 * successfully merged by hardware must also have the
9916 		 * checksum verified by hardware.  If the user does not
9917 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9918 		 */
9919 		if (features & NETIF_F_GRO_HW) {
9920 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9921 			features &= ~NETIF_F_GRO_HW;
9922 		}
9923 	}
9924 
9925 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9926 	if (features & NETIF_F_RXFCS) {
9927 		if (features & NETIF_F_LRO) {
9928 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9929 			features &= ~NETIF_F_LRO;
9930 		}
9931 
9932 		if (features & NETIF_F_GRO_HW) {
9933 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9934 			features &= ~NETIF_F_GRO_HW;
9935 		}
9936 	}
9937 
9938 	if (features & NETIF_F_HW_TLS_TX) {
9939 		bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9940 			(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9941 		bool hw_csum = features & NETIF_F_HW_CSUM;
9942 
9943 		if (!ip_csum && !hw_csum) {
9944 			netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9945 			features &= ~NETIF_F_HW_TLS_TX;
9946 		}
9947 	}
9948 
9949 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9950 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9951 		features &= ~NETIF_F_HW_TLS_RX;
9952 	}
9953 
9954 	return features;
9955 }
9956 
9957 int __netdev_update_features(struct net_device *dev)
9958 {
9959 	struct net_device *upper, *lower;
9960 	netdev_features_t features;
9961 	struct list_head *iter;
9962 	int err = -1;
9963 
9964 	ASSERT_RTNL();
9965 
9966 	features = netdev_get_wanted_features(dev);
9967 
9968 	if (dev->netdev_ops->ndo_fix_features)
9969 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9970 
9971 	/* driver might be less strict about feature dependencies */
9972 	features = netdev_fix_features(dev, features);
9973 
9974 	/* some features can't be enabled if they're off on an upper device */
9975 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9976 		features = netdev_sync_upper_features(dev, upper, features);
9977 
9978 	if (dev->features == features)
9979 		goto sync_lower;
9980 
9981 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9982 		&dev->features, &features);
9983 
9984 	if (dev->netdev_ops->ndo_set_features)
9985 		err = dev->netdev_ops->ndo_set_features(dev, features);
9986 	else
9987 		err = 0;
9988 
9989 	if (unlikely(err < 0)) {
9990 		netdev_err(dev,
9991 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9992 			err, &features, &dev->features);
9993 		/* return non-0 since some features might have changed and
9994 		 * it's better to fire a spurious notification than miss it
9995 		 */
9996 		return -1;
9997 	}
9998 
9999 sync_lower:
10000 	/* some features must be disabled on lower devices when disabled
10001 	 * on an upper device (think: bonding master or bridge)
10002 	 */
10003 	netdev_for_each_lower_dev(dev, lower, iter)
10004 		netdev_sync_lower_features(dev, lower, features);
10005 
10006 	if (!err) {
10007 		netdev_features_t diff = features ^ dev->features;
10008 
10009 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10010 			/* udp_tunnel_{get,drop}_rx_info both need
10011 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10012 			 * device, or they won't do anything.
10013 			 * Thus we need to update dev->features
10014 			 * *before* calling udp_tunnel_get_rx_info,
10015 			 * but *after* calling udp_tunnel_drop_rx_info.
10016 			 */
10017 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10018 				dev->features = features;
10019 				udp_tunnel_get_rx_info(dev);
10020 			} else {
10021 				udp_tunnel_drop_rx_info(dev);
10022 			}
10023 		}
10024 
10025 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10026 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10027 				dev->features = features;
10028 				err |= vlan_get_rx_ctag_filter_info(dev);
10029 			} else {
10030 				vlan_drop_rx_ctag_filter_info(dev);
10031 			}
10032 		}
10033 
10034 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10035 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10036 				dev->features = features;
10037 				err |= vlan_get_rx_stag_filter_info(dev);
10038 			} else {
10039 				vlan_drop_rx_stag_filter_info(dev);
10040 			}
10041 		}
10042 
10043 		dev->features = features;
10044 	}
10045 
10046 	return err < 0 ? 0 : 1;
10047 }
10048 
10049 /**
10050  *	netdev_update_features - recalculate device features
10051  *	@dev: the device to check
10052  *
10053  *	Recalculate dev->features set and send notifications if it
10054  *	has changed. Should be called after driver or hardware dependent
10055  *	conditions might have changed that influence the features.
10056  */
10057 void netdev_update_features(struct net_device *dev)
10058 {
10059 	if (__netdev_update_features(dev))
10060 		netdev_features_change(dev);
10061 }
10062 EXPORT_SYMBOL(netdev_update_features);
10063 
10064 /**
10065  *	netdev_change_features - recalculate device features
10066  *	@dev: the device to check
10067  *
10068  *	Recalculate dev->features set and send notifications even
10069  *	if they have not changed. Should be called instead of
10070  *	netdev_update_features() if also dev->vlan_features might
10071  *	have changed to allow the changes to be propagated to stacked
10072  *	VLAN devices.
10073  */
10074 void netdev_change_features(struct net_device *dev)
10075 {
10076 	__netdev_update_features(dev);
10077 	netdev_features_change(dev);
10078 }
10079 EXPORT_SYMBOL(netdev_change_features);
10080 
10081 /**
10082  *	netif_stacked_transfer_operstate -	transfer operstate
10083  *	@rootdev: the root or lower level device to transfer state from
10084  *	@dev: the device to transfer operstate to
10085  *
10086  *	Transfer operational state from root to device. This is normally
10087  *	called when a stacking relationship exists between the root
10088  *	device and the device(a leaf device).
10089  */
10090 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10091 					struct net_device *dev)
10092 {
10093 	if (rootdev->operstate == IF_OPER_DORMANT)
10094 		netif_dormant_on(dev);
10095 	else
10096 		netif_dormant_off(dev);
10097 
10098 	if (rootdev->operstate == IF_OPER_TESTING)
10099 		netif_testing_on(dev);
10100 	else
10101 		netif_testing_off(dev);
10102 
10103 	if (netif_carrier_ok(rootdev))
10104 		netif_carrier_on(dev);
10105 	else
10106 		netif_carrier_off(dev);
10107 }
10108 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10109 
10110 static int netif_alloc_rx_queues(struct net_device *dev)
10111 {
10112 	unsigned int i, count = dev->num_rx_queues;
10113 	struct netdev_rx_queue *rx;
10114 	size_t sz = count * sizeof(*rx);
10115 	int err = 0;
10116 
10117 	BUG_ON(count < 1);
10118 
10119 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10120 	if (!rx)
10121 		return -ENOMEM;
10122 
10123 	dev->_rx = rx;
10124 
10125 	for (i = 0; i < count; i++) {
10126 		rx[i].dev = dev;
10127 
10128 		/* XDP RX-queue setup */
10129 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10130 		if (err < 0)
10131 			goto err_rxq_info;
10132 	}
10133 	return 0;
10134 
10135 err_rxq_info:
10136 	/* Rollback successful reg's and free other resources */
10137 	while (i--)
10138 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10139 	kvfree(dev->_rx);
10140 	dev->_rx = NULL;
10141 	return err;
10142 }
10143 
10144 static void netif_free_rx_queues(struct net_device *dev)
10145 {
10146 	unsigned int i, count = dev->num_rx_queues;
10147 
10148 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10149 	if (!dev->_rx)
10150 		return;
10151 
10152 	for (i = 0; i < count; i++)
10153 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10154 
10155 	kvfree(dev->_rx);
10156 }
10157 
10158 static void netdev_init_one_queue(struct net_device *dev,
10159 				  struct netdev_queue *queue, void *_unused)
10160 {
10161 	/* Initialize queue lock */
10162 	spin_lock_init(&queue->_xmit_lock);
10163 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10164 	queue->xmit_lock_owner = -1;
10165 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10166 	queue->dev = dev;
10167 #ifdef CONFIG_BQL
10168 	dql_init(&queue->dql, HZ);
10169 #endif
10170 }
10171 
10172 static void netif_free_tx_queues(struct net_device *dev)
10173 {
10174 	kvfree(dev->_tx);
10175 }
10176 
10177 static int netif_alloc_netdev_queues(struct net_device *dev)
10178 {
10179 	unsigned int count = dev->num_tx_queues;
10180 	struct netdev_queue *tx;
10181 	size_t sz = count * sizeof(*tx);
10182 
10183 	if (count < 1 || count > 0xffff)
10184 		return -EINVAL;
10185 
10186 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10187 	if (!tx)
10188 		return -ENOMEM;
10189 
10190 	dev->_tx = tx;
10191 
10192 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10193 	spin_lock_init(&dev->tx_global_lock);
10194 
10195 	return 0;
10196 }
10197 
10198 void netif_tx_stop_all_queues(struct net_device *dev)
10199 {
10200 	unsigned int i;
10201 
10202 	for (i = 0; i < dev->num_tx_queues; i++) {
10203 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10204 
10205 		netif_tx_stop_queue(txq);
10206 	}
10207 }
10208 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10209 
10210 /**
10211  *	register_netdevice	- register a network device
10212  *	@dev: device to register
10213  *
10214  *	Take a completed network device structure and add it to the kernel
10215  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10216  *	chain. 0 is returned on success. A negative errno code is returned
10217  *	on a failure to set up the device, or if the name is a duplicate.
10218  *
10219  *	Callers must hold the rtnl semaphore. You may want
10220  *	register_netdev() instead of this.
10221  *
10222  *	BUGS:
10223  *	The locking appears insufficient to guarantee two parallel registers
10224  *	will not get the same name.
10225  */
10226 
10227 int register_netdevice(struct net_device *dev)
10228 {
10229 	int ret;
10230 	struct net *net = dev_net(dev);
10231 
10232 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10233 		     NETDEV_FEATURE_COUNT);
10234 	BUG_ON(dev_boot_phase);
10235 	ASSERT_RTNL();
10236 
10237 	might_sleep();
10238 
10239 	/* When net_device's are persistent, this will be fatal. */
10240 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10241 	BUG_ON(!net);
10242 
10243 	ret = ethtool_check_ops(dev->ethtool_ops);
10244 	if (ret)
10245 		return ret;
10246 
10247 	spin_lock_init(&dev->addr_list_lock);
10248 	netdev_set_addr_lockdep_class(dev);
10249 
10250 	ret = dev_get_valid_name(net, dev, dev->name);
10251 	if (ret < 0)
10252 		goto out;
10253 
10254 	ret = -ENOMEM;
10255 	dev->name_node = netdev_name_node_head_alloc(dev);
10256 	if (!dev->name_node)
10257 		goto out;
10258 
10259 	/* Init, if this function is available */
10260 	if (dev->netdev_ops->ndo_init) {
10261 		ret = dev->netdev_ops->ndo_init(dev);
10262 		if (ret) {
10263 			if (ret > 0)
10264 				ret = -EIO;
10265 			goto err_free_name;
10266 		}
10267 	}
10268 
10269 	if (((dev->hw_features | dev->features) &
10270 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10271 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10272 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10273 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10274 		ret = -EINVAL;
10275 		goto err_uninit;
10276 	}
10277 
10278 	ret = -EBUSY;
10279 	if (!dev->ifindex)
10280 		dev->ifindex = dev_new_index(net);
10281 	else if (__dev_get_by_index(net, dev->ifindex))
10282 		goto err_uninit;
10283 
10284 	/* Transfer changeable features to wanted_features and enable
10285 	 * software offloads (GSO and GRO).
10286 	 */
10287 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10288 	dev->features |= NETIF_F_SOFT_FEATURES;
10289 
10290 	if (dev->udp_tunnel_nic_info) {
10291 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10292 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10293 	}
10294 
10295 	dev->wanted_features = dev->features & dev->hw_features;
10296 
10297 	if (!(dev->flags & IFF_LOOPBACK))
10298 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10299 
10300 	/* If IPv4 TCP segmentation offload is supported we should also
10301 	 * allow the device to enable segmenting the frame with the option
10302 	 * of ignoring a static IP ID value.  This doesn't enable the
10303 	 * feature itself but allows the user to enable it later.
10304 	 */
10305 	if (dev->hw_features & NETIF_F_TSO)
10306 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10307 	if (dev->vlan_features & NETIF_F_TSO)
10308 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10309 	if (dev->mpls_features & NETIF_F_TSO)
10310 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10311 	if (dev->hw_enc_features & NETIF_F_TSO)
10312 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10313 
10314 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10315 	 */
10316 	dev->vlan_features |= NETIF_F_HIGHDMA;
10317 
10318 	/* Make NETIF_F_SG inheritable to tunnel devices.
10319 	 */
10320 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10321 
10322 	/* Make NETIF_F_SG inheritable to MPLS.
10323 	 */
10324 	dev->mpls_features |= NETIF_F_SG;
10325 
10326 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10327 	ret = notifier_to_errno(ret);
10328 	if (ret)
10329 		goto err_uninit;
10330 
10331 	ret = netdev_register_kobject(dev);
10332 	if (ret) {
10333 		dev->reg_state = NETREG_UNREGISTERED;
10334 		goto err_uninit;
10335 	}
10336 	dev->reg_state = NETREG_REGISTERED;
10337 
10338 	__netdev_update_features(dev);
10339 
10340 	/*
10341 	 *	Default initial state at registry is that the
10342 	 *	device is present.
10343 	 */
10344 
10345 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10346 
10347 	linkwatch_init_dev(dev);
10348 
10349 	dev_init_scheduler(dev);
10350 	dev_hold(dev);
10351 	list_netdevice(dev);
10352 	add_device_randomness(dev->dev_addr, dev->addr_len);
10353 
10354 	/* If the device has permanent device address, driver should
10355 	 * set dev_addr and also addr_assign_type should be set to
10356 	 * NET_ADDR_PERM (default value).
10357 	 */
10358 	if (dev->addr_assign_type == NET_ADDR_PERM)
10359 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10360 
10361 	/* Notify protocols, that a new device appeared. */
10362 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10363 	ret = notifier_to_errno(ret);
10364 	if (ret) {
10365 		/* Expect explicit free_netdev() on failure */
10366 		dev->needs_free_netdev = false;
10367 		unregister_netdevice_queue(dev, NULL);
10368 		goto out;
10369 	}
10370 	/*
10371 	 *	Prevent userspace races by waiting until the network
10372 	 *	device is fully setup before sending notifications.
10373 	 */
10374 	if (!dev->rtnl_link_ops ||
10375 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10376 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10377 
10378 out:
10379 	return ret;
10380 
10381 err_uninit:
10382 	if (dev->netdev_ops->ndo_uninit)
10383 		dev->netdev_ops->ndo_uninit(dev);
10384 	if (dev->priv_destructor)
10385 		dev->priv_destructor(dev);
10386 err_free_name:
10387 	netdev_name_node_free(dev->name_node);
10388 	goto out;
10389 }
10390 EXPORT_SYMBOL(register_netdevice);
10391 
10392 /**
10393  *	init_dummy_netdev	- init a dummy network device for NAPI
10394  *	@dev: device to init
10395  *
10396  *	This takes a network device structure and initialize the minimum
10397  *	amount of fields so it can be used to schedule NAPI polls without
10398  *	registering a full blown interface. This is to be used by drivers
10399  *	that need to tie several hardware interfaces to a single NAPI
10400  *	poll scheduler due to HW limitations.
10401  */
10402 int init_dummy_netdev(struct net_device *dev)
10403 {
10404 	/* Clear everything. Note we don't initialize spinlocks
10405 	 * are they aren't supposed to be taken by any of the
10406 	 * NAPI code and this dummy netdev is supposed to be
10407 	 * only ever used for NAPI polls
10408 	 */
10409 	memset(dev, 0, sizeof(struct net_device));
10410 
10411 	/* make sure we BUG if trying to hit standard
10412 	 * register/unregister code path
10413 	 */
10414 	dev->reg_state = NETREG_DUMMY;
10415 
10416 	/* NAPI wants this */
10417 	INIT_LIST_HEAD(&dev->napi_list);
10418 
10419 	/* a dummy interface is started by default */
10420 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10421 	set_bit(__LINK_STATE_START, &dev->state);
10422 
10423 	/* napi_busy_loop stats accounting wants this */
10424 	dev_net_set(dev, &init_net);
10425 
10426 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10427 	 * because users of this 'device' dont need to change
10428 	 * its refcount.
10429 	 */
10430 
10431 	return 0;
10432 }
10433 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10434 
10435 
10436 /**
10437  *	register_netdev	- register a network device
10438  *	@dev: device to register
10439  *
10440  *	Take a completed network device structure and add it to the kernel
10441  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10442  *	chain. 0 is returned on success. A negative errno code is returned
10443  *	on a failure to set up the device, or if the name is a duplicate.
10444  *
10445  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10446  *	and expands the device name if you passed a format string to
10447  *	alloc_netdev.
10448  */
10449 int register_netdev(struct net_device *dev)
10450 {
10451 	int err;
10452 
10453 	if (rtnl_lock_killable())
10454 		return -EINTR;
10455 	err = register_netdevice(dev);
10456 	rtnl_unlock();
10457 	return err;
10458 }
10459 EXPORT_SYMBOL(register_netdev);
10460 
10461 int netdev_refcnt_read(const struct net_device *dev)
10462 {
10463 #ifdef CONFIG_PCPU_DEV_REFCNT
10464 	int i, refcnt = 0;
10465 
10466 	for_each_possible_cpu(i)
10467 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10468 	return refcnt;
10469 #else
10470 	return refcount_read(&dev->dev_refcnt);
10471 #endif
10472 }
10473 EXPORT_SYMBOL(netdev_refcnt_read);
10474 
10475 int netdev_unregister_timeout_secs __read_mostly = 10;
10476 
10477 #define WAIT_REFS_MIN_MSECS 1
10478 #define WAIT_REFS_MAX_MSECS 250
10479 /**
10480  * netdev_wait_allrefs - wait until all references are gone.
10481  * @dev: target net_device
10482  *
10483  * This is called when unregistering network devices.
10484  *
10485  * Any protocol or device that holds a reference should register
10486  * for netdevice notification, and cleanup and put back the
10487  * reference if they receive an UNREGISTER event.
10488  * We can get stuck here if buggy protocols don't correctly
10489  * call dev_put.
10490  */
10491 static void netdev_wait_allrefs(struct net_device *dev)
10492 {
10493 	unsigned long rebroadcast_time, warning_time;
10494 	int wait = 0, refcnt;
10495 
10496 	linkwatch_forget_dev(dev);
10497 
10498 	rebroadcast_time = warning_time = jiffies;
10499 	refcnt = netdev_refcnt_read(dev);
10500 
10501 	while (refcnt != 1) {
10502 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10503 			rtnl_lock();
10504 
10505 			/* Rebroadcast unregister notification */
10506 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10507 
10508 			__rtnl_unlock();
10509 			rcu_barrier();
10510 			rtnl_lock();
10511 
10512 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10513 				     &dev->state)) {
10514 				/* We must not have linkwatch events
10515 				 * pending on unregister. If this
10516 				 * happens, we simply run the queue
10517 				 * unscheduled, resulting in a noop
10518 				 * for this device.
10519 				 */
10520 				linkwatch_run_queue();
10521 			}
10522 
10523 			__rtnl_unlock();
10524 
10525 			rebroadcast_time = jiffies;
10526 		}
10527 
10528 		if (!wait) {
10529 			rcu_barrier();
10530 			wait = WAIT_REFS_MIN_MSECS;
10531 		} else {
10532 			msleep(wait);
10533 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10534 		}
10535 
10536 		refcnt = netdev_refcnt_read(dev);
10537 
10538 		if (refcnt != 1 &&
10539 		    time_after(jiffies, warning_time +
10540 			       netdev_unregister_timeout_secs * HZ)) {
10541 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10542 				 dev->name, refcnt);
10543 			warning_time = jiffies;
10544 		}
10545 	}
10546 }
10547 
10548 /* The sequence is:
10549  *
10550  *	rtnl_lock();
10551  *	...
10552  *	register_netdevice(x1);
10553  *	register_netdevice(x2);
10554  *	...
10555  *	unregister_netdevice(y1);
10556  *	unregister_netdevice(y2);
10557  *      ...
10558  *	rtnl_unlock();
10559  *	free_netdev(y1);
10560  *	free_netdev(y2);
10561  *
10562  * We are invoked by rtnl_unlock().
10563  * This allows us to deal with problems:
10564  * 1) We can delete sysfs objects which invoke hotplug
10565  *    without deadlocking with linkwatch via keventd.
10566  * 2) Since we run with the RTNL semaphore not held, we can sleep
10567  *    safely in order to wait for the netdev refcnt to drop to zero.
10568  *
10569  * We must not return until all unregister events added during
10570  * the interval the lock was held have been completed.
10571  */
10572 void netdev_run_todo(void)
10573 {
10574 	struct list_head list;
10575 #ifdef CONFIG_LOCKDEP
10576 	struct list_head unlink_list;
10577 
10578 	list_replace_init(&net_unlink_list, &unlink_list);
10579 
10580 	while (!list_empty(&unlink_list)) {
10581 		struct net_device *dev = list_first_entry(&unlink_list,
10582 							  struct net_device,
10583 							  unlink_list);
10584 		list_del_init(&dev->unlink_list);
10585 		dev->nested_level = dev->lower_level - 1;
10586 	}
10587 #endif
10588 
10589 	/* Snapshot list, allow later requests */
10590 	list_replace_init(&net_todo_list, &list);
10591 
10592 	__rtnl_unlock();
10593 
10594 
10595 	/* Wait for rcu callbacks to finish before next phase */
10596 	if (!list_empty(&list))
10597 		rcu_barrier();
10598 
10599 	while (!list_empty(&list)) {
10600 		struct net_device *dev
10601 			= list_first_entry(&list, struct net_device, todo_list);
10602 		list_del(&dev->todo_list);
10603 
10604 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10605 			pr_err("network todo '%s' but state %d\n",
10606 			       dev->name, dev->reg_state);
10607 			dump_stack();
10608 			continue;
10609 		}
10610 
10611 		dev->reg_state = NETREG_UNREGISTERED;
10612 
10613 		netdev_wait_allrefs(dev);
10614 
10615 		/* paranoia */
10616 		BUG_ON(netdev_refcnt_read(dev) != 1);
10617 		BUG_ON(!list_empty(&dev->ptype_all));
10618 		BUG_ON(!list_empty(&dev->ptype_specific));
10619 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10620 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10621 #if IS_ENABLED(CONFIG_DECNET)
10622 		WARN_ON(dev->dn_ptr);
10623 #endif
10624 		if (dev->priv_destructor)
10625 			dev->priv_destructor(dev);
10626 		if (dev->needs_free_netdev)
10627 			free_netdev(dev);
10628 
10629 		/* Report a network device has been unregistered */
10630 		rtnl_lock();
10631 		dev_net(dev)->dev_unreg_count--;
10632 		__rtnl_unlock();
10633 		wake_up(&netdev_unregistering_wq);
10634 
10635 		/* Free network device */
10636 		kobject_put(&dev->dev.kobj);
10637 	}
10638 }
10639 
10640 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10641  * all the same fields in the same order as net_device_stats, with only
10642  * the type differing, but rtnl_link_stats64 may have additional fields
10643  * at the end for newer counters.
10644  */
10645 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10646 			     const struct net_device_stats *netdev_stats)
10647 {
10648 #if BITS_PER_LONG == 64
10649 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10650 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10651 	/* zero out counters that only exist in rtnl_link_stats64 */
10652 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
10653 	       sizeof(*stats64) - sizeof(*netdev_stats));
10654 #else
10655 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10656 	const unsigned long *src = (const unsigned long *)netdev_stats;
10657 	u64 *dst = (u64 *)stats64;
10658 
10659 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10660 	for (i = 0; i < n; i++)
10661 		dst[i] = src[i];
10662 	/* zero out counters that only exist in rtnl_link_stats64 */
10663 	memset((char *)stats64 + n * sizeof(u64), 0,
10664 	       sizeof(*stats64) - n * sizeof(u64));
10665 #endif
10666 }
10667 EXPORT_SYMBOL(netdev_stats_to_stats64);
10668 
10669 /**
10670  *	dev_get_stats	- get network device statistics
10671  *	@dev: device to get statistics from
10672  *	@storage: place to store stats
10673  *
10674  *	Get network statistics from device. Return @storage.
10675  *	The device driver may provide its own method by setting
10676  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10677  *	otherwise the internal statistics structure is used.
10678  */
10679 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10680 					struct rtnl_link_stats64 *storage)
10681 {
10682 	const struct net_device_ops *ops = dev->netdev_ops;
10683 
10684 	if (ops->ndo_get_stats64) {
10685 		memset(storage, 0, sizeof(*storage));
10686 		ops->ndo_get_stats64(dev, storage);
10687 	} else if (ops->ndo_get_stats) {
10688 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10689 	} else {
10690 		netdev_stats_to_stats64(storage, &dev->stats);
10691 	}
10692 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10693 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10694 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10695 	return storage;
10696 }
10697 EXPORT_SYMBOL(dev_get_stats);
10698 
10699 /**
10700  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10701  *	@s: place to store stats
10702  *	@netstats: per-cpu network stats to read from
10703  *
10704  *	Read per-cpu network statistics and populate the related fields in @s.
10705  */
10706 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10707 			   const struct pcpu_sw_netstats __percpu *netstats)
10708 {
10709 	int cpu;
10710 
10711 	for_each_possible_cpu(cpu) {
10712 		const struct pcpu_sw_netstats *stats;
10713 		struct pcpu_sw_netstats tmp;
10714 		unsigned int start;
10715 
10716 		stats = per_cpu_ptr(netstats, cpu);
10717 		do {
10718 			start = u64_stats_fetch_begin_irq(&stats->syncp);
10719 			tmp.rx_packets = stats->rx_packets;
10720 			tmp.rx_bytes   = stats->rx_bytes;
10721 			tmp.tx_packets = stats->tx_packets;
10722 			tmp.tx_bytes   = stats->tx_bytes;
10723 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10724 
10725 		s->rx_packets += tmp.rx_packets;
10726 		s->rx_bytes   += tmp.rx_bytes;
10727 		s->tx_packets += tmp.tx_packets;
10728 		s->tx_bytes   += tmp.tx_bytes;
10729 	}
10730 }
10731 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10732 
10733 /**
10734  *	dev_get_tstats64 - ndo_get_stats64 implementation
10735  *	@dev: device to get statistics from
10736  *	@s: place to store stats
10737  *
10738  *	Populate @s from dev->stats and dev->tstats. Can be used as
10739  *	ndo_get_stats64() callback.
10740  */
10741 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10742 {
10743 	netdev_stats_to_stats64(s, &dev->stats);
10744 	dev_fetch_sw_netstats(s, dev->tstats);
10745 }
10746 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10747 
10748 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10749 {
10750 	struct netdev_queue *queue = dev_ingress_queue(dev);
10751 
10752 #ifdef CONFIG_NET_CLS_ACT
10753 	if (queue)
10754 		return queue;
10755 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10756 	if (!queue)
10757 		return NULL;
10758 	netdev_init_one_queue(dev, queue, NULL);
10759 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10760 	queue->qdisc_sleeping = &noop_qdisc;
10761 	rcu_assign_pointer(dev->ingress_queue, queue);
10762 #endif
10763 	return queue;
10764 }
10765 
10766 static const struct ethtool_ops default_ethtool_ops;
10767 
10768 void netdev_set_default_ethtool_ops(struct net_device *dev,
10769 				    const struct ethtool_ops *ops)
10770 {
10771 	if (dev->ethtool_ops == &default_ethtool_ops)
10772 		dev->ethtool_ops = ops;
10773 }
10774 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10775 
10776 void netdev_freemem(struct net_device *dev)
10777 {
10778 	char *addr = (char *)dev - dev->padded;
10779 
10780 	kvfree(addr);
10781 }
10782 
10783 /**
10784  * alloc_netdev_mqs - allocate network device
10785  * @sizeof_priv: size of private data to allocate space for
10786  * @name: device name format string
10787  * @name_assign_type: origin of device name
10788  * @setup: callback to initialize device
10789  * @txqs: the number of TX subqueues to allocate
10790  * @rxqs: the number of RX subqueues to allocate
10791  *
10792  * Allocates a struct net_device with private data area for driver use
10793  * and performs basic initialization.  Also allocates subqueue structs
10794  * for each queue on the device.
10795  */
10796 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10797 		unsigned char name_assign_type,
10798 		void (*setup)(struct net_device *),
10799 		unsigned int txqs, unsigned int rxqs)
10800 {
10801 	struct net_device *dev;
10802 	unsigned int alloc_size;
10803 	struct net_device *p;
10804 
10805 	BUG_ON(strlen(name) >= sizeof(dev->name));
10806 
10807 	if (txqs < 1) {
10808 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10809 		return NULL;
10810 	}
10811 
10812 	if (rxqs < 1) {
10813 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10814 		return NULL;
10815 	}
10816 
10817 	alloc_size = sizeof(struct net_device);
10818 	if (sizeof_priv) {
10819 		/* ensure 32-byte alignment of private area */
10820 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10821 		alloc_size += sizeof_priv;
10822 	}
10823 	/* ensure 32-byte alignment of whole construct */
10824 	alloc_size += NETDEV_ALIGN - 1;
10825 
10826 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10827 	if (!p)
10828 		return NULL;
10829 
10830 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10831 	dev->padded = (char *)dev - (char *)p;
10832 
10833 #ifdef CONFIG_PCPU_DEV_REFCNT
10834 	dev->pcpu_refcnt = alloc_percpu(int);
10835 	if (!dev->pcpu_refcnt)
10836 		goto free_dev;
10837 	dev_hold(dev);
10838 #else
10839 	refcount_set(&dev->dev_refcnt, 1);
10840 #endif
10841 
10842 	if (dev_addr_init(dev))
10843 		goto free_pcpu;
10844 
10845 	dev_mc_init(dev);
10846 	dev_uc_init(dev);
10847 
10848 	dev_net_set(dev, &init_net);
10849 
10850 	dev->gso_max_size = GSO_MAX_SIZE;
10851 	dev->gso_max_segs = GSO_MAX_SEGS;
10852 	dev->upper_level = 1;
10853 	dev->lower_level = 1;
10854 #ifdef CONFIG_LOCKDEP
10855 	dev->nested_level = 0;
10856 	INIT_LIST_HEAD(&dev->unlink_list);
10857 #endif
10858 
10859 	INIT_LIST_HEAD(&dev->napi_list);
10860 	INIT_LIST_HEAD(&dev->unreg_list);
10861 	INIT_LIST_HEAD(&dev->close_list);
10862 	INIT_LIST_HEAD(&dev->link_watch_list);
10863 	INIT_LIST_HEAD(&dev->adj_list.upper);
10864 	INIT_LIST_HEAD(&dev->adj_list.lower);
10865 	INIT_LIST_HEAD(&dev->ptype_all);
10866 	INIT_LIST_HEAD(&dev->ptype_specific);
10867 	INIT_LIST_HEAD(&dev->net_notifier_list);
10868 #ifdef CONFIG_NET_SCHED
10869 	hash_init(dev->qdisc_hash);
10870 #endif
10871 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10872 	setup(dev);
10873 
10874 	if (!dev->tx_queue_len) {
10875 		dev->priv_flags |= IFF_NO_QUEUE;
10876 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10877 	}
10878 
10879 	dev->num_tx_queues = txqs;
10880 	dev->real_num_tx_queues = txqs;
10881 	if (netif_alloc_netdev_queues(dev))
10882 		goto free_all;
10883 
10884 	dev->num_rx_queues = rxqs;
10885 	dev->real_num_rx_queues = rxqs;
10886 	if (netif_alloc_rx_queues(dev))
10887 		goto free_all;
10888 
10889 	strcpy(dev->name, name);
10890 	dev->name_assign_type = name_assign_type;
10891 	dev->group = INIT_NETDEV_GROUP;
10892 	if (!dev->ethtool_ops)
10893 		dev->ethtool_ops = &default_ethtool_ops;
10894 
10895 	nf_hook_ingress_init(dev);
10896 
10897 	return dev;
10898 
10899 free_all:
10900 	free_netdev(dev);
10901 	return NULL;
10902 
10903 free_pcpu:
10904 #ifdef CONFIG_PCPU_DEV_REFCNT
10905 	free_percpu(dev->pcpu_refcnt);
10906 free_dev:
10907 #endif
10908 	netdev_freemem(dev);
10909 	return NULL;
10910 }
10911 EXPORT_SYMBOL(alloc_netdev_mqs);
10912 
10913 /**
10914  * free_netdev - free network device
10915  * @dev: device
10916  *
10917  * This function does the last stage of destroying an allocated device
10918  * interface. The reference to the device object is released. If this
10919  * is the last reference then it will be freed.Must be called in process
10920  * context.
10921  */
10922 void free_netdev(struct net_device *dev)
10923 {
10924 	struct napi_struct *p, *n;
10925 
10926 	might_sleep();
10927 
10928 	/* When called immediately after register_netdevice() failed the unwind
10929 	 * handling may still be dismantling the device. Handle that case by
10930 	 * deferring the free.
10931 	 */
10932 	if (dev->reg_state == NETREG_UNREGISTERING) {
10933 		ASSERT_RTNL();
10934 		dev->needs_free_netdev = true;
10935 		return;
10936 	}
10937 
10938 	netif_free_tx_queues(dev);
10939 	netif_free_rx_queues(dev);
10940 
10941 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10942 
10943 	/* Flush device addresses */
10944 	dev_addr_flush(dev);
10945 
10946 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10947 		netif_napi_del(p);
10948 
10949 #ifdef CONFIG_PCPU_DEV_REFCNT
10950 	free_percpu(dev->pcpu_refcnt);
10951 	dev->pcpu_refcnt = NULL;
10952 #endif
10953 	free_percpu(dev->xdp_bulkq);
10954 	dev->xdp_bulkq = NULL;
10955 
10956 	/*  Compatibility with error handling in drivers */
10957 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10958 		netdev_freemem(dev);
10959 		return;
10960 	}
10961 
10962 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10963 	dev->reg_state = NETREG_RELEASED;
10964 
10965 	/* will free via device release */
10966 	put_device(&dev->dev);
10967 }
10968 EXPORT_SYMBOL(free_netdev);
10969 
10970 /**
10971  *	synchronize_net -  Synchronize with packet receive processing
10972  *
10973  *	Wait for packets currently being received to be done.
10974  *	Does not block later packets from starting.
10975  */
10976 void synchronize_net(void)
10977 {
10978 	might_sleep();
10979 	if (rtnl_is_locked())
10980 		synchronize_rcu_expedited();
10981 	else
10982 		synchronize_rcu();
10983 }
10984 EXPORT_SYMBOL(synchronize_net);
10985 
10986 /**
10987  *	unregister_netdevice_queue - remove device from the kernel
10988  *	@dev: device
10989  *	@head: list
10990  *
10991  *	This function shuts down a device interface and removes it
10992  *	from the kernel tables.
10993  *	If head not NULL, device is queued to be unregistered later.
10994  *
10995  *	Callers must hold the rtnl semaphore.  You may want
10996  *	unregister_netdev() instead of this.
10997  */
10998 
10999 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11000 {
11001 	ASSERT_RTNL();
11002 
11003 	if (head) {
11004 		list_move_tail(&dev->unreg_list, head);
11005 	} else {
11006 		LIST_HEAD(single);
11007 
11008 		list_add(&dev->unreg_list, &single);
11009 		unregister_netdevice_many(&single);
11010 	}
11011 }
11012 EXPORT_SYMBOL(unregister_netdevice_queue);
11013 
11014 /**
11015  *	unregister_netdevice_many - unregister many devices
11016  *	@head: list of devices
11017  *
11018  *  Note: As most callers use a stack allocated list_head,
11019  *  we force a list_del() to make sure stack wont be corrupted later.
11020  */
11021 void unregister_netdevice_many(struct list_head *head)
11022 {
11023 	struct net_device *dev, *tmp;
11024 	LIST_HEAD(close_head);
11025 
11026 	BUG_ON(dev_boot_phase);
11027 	ASSERT_RTNL();
11028 
11029 	if (list_empty(head))
11030 		return;
11031 
11032 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11033 		/* Some devices call without registering
11034 		 * for initialization unwind. Remove those
11035 		 * devices and proceed with the remaining.
11036 		 */
11037 		if (dev->reg_state == NETREG_UNINITIALIZED) {
11038 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11039 				 dev->name, dev);
11040 
11041 			WARN_ON(1);
11042 			list_del(&dev->unreg_list);
11043 			continue;
11044 		}
11045 		dev->dismantle = true;
11046 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
11047 	}
11048 
11049 	/* If device is running, close it first. */
11050 	list_for_each_entry(dev, head, unreg_list)
11051 		list_add_tail(&dev->close_list, &close_head);
11052 	dev_close_many(&close_head, true);
11053 
11054 	list_for_each_entry(dev, head, unreg_list) {
11055 		/* And unlink it from device chain. */
11056 		unlist_netdevice(dev);
11057 
11058 		dev->reg_state = NETREG_UNREGISTERING;
11059 	}
11060 	flush_all_backlogs();
11061 
11062 	synchronize_net();
11063 
11064 	list_for_each_entry(dev, head, unreg_list) {
11065 		struct sk_buff *skb = NULL;
11066 
11067 		/* Shutdown queueing discipline. */
11068 		dev_shutdown(dev);
11069 
11070 		dev_xdp_uninstall(dev);
11071 
11072 		/* Notify protocols, that we are about to destroy
11073 		 * this device. They should clean all the things.
11074 		 */
11075 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11076 
11077 		if (!dev->rtnl_link_ops ||
11078 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11079 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11080 						     GFP_KERNEL, NULL, 0);
11081 
11082 		/*
11083 		 *	Flush the unicast and multicast chains
11084 		 */
11085 		dev_uc_flush(dev);
11086 		dev_mc_flush(dev);
11087 
11088 		netdev_name_node_alt_flush(dev);
11089 		netdev_name_node_free(dev->name_node);
11090 
11091 		if (dev->netdev_ops->ndo_uninit)
11092 			dev->netdev_ops->ndo_uninit(dev);
11093 
11094 		if (skb)
11095 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
11096 
11097 		/* Notifier chain MUST detach us all upper devices. */
11098 		WARN_ON(netdev_has_any_upper_dev(dev));
11099 		WARN_ON(netdev_has_any_lower_dev(dev));
11100 
11101 		/* Remove entries from kobject tree */
11102 		netdev_unregister_kobject(dev);
11103 #ifdef CONFIG_XPS
11104 		/* Remove XPS queueing entries */
11105 		netif_reset_xps_queues_gt(dev, 0);
11106 #endif
11107 	}
11108 
11109 	synchronize_net();
11110 
11111 	list_for_each_entry(dev, head, unreg_list) {
11112 		dev_put(dev);
11113 		net_set_todo(dev);
11114 	}
11115 
11116 	list_del(head);
11117 }
11118 EXPORT_SYMBOL(unregister_netdevice_many);
11119 
11120 /**
11121  *	unregister_netdev - remove device from the kernel
11122  *	@dev: device
11123  *
11124  *	This function shuts down a device interface and removes it
11125  *	from the kernel tables.
11126  *
11127  *	This is just a wrapper for unregister_netdevice that takes
11128  *	the rtnl semaphore.  In general you want to use this and not
11129  *	unregister_netdevice.
11130  */
11131 void unregister_netdev(struct net_device *dev)
11132 {
11133 	rtnl_lock();
11134 	unregister_netdevice(dev);
11135 	rtnl_unlock();
11136 }
11137 EXPORT_SYMBOL(unregister_netdev);
11138 
11139 /**
11140  *	__dev_change_net_namespace - move device to different nethost namespace
11141  *	@dev: device
11142  *	@net: network namespace
11143  *	@pat: If not NULL name pattern to try if the current device name
11144  *	      is already taken in the destination network namespace.
11145  *	@new_ifindex: If not zero, specifies device index in the target
11146  *	              namespace.
11147  *
11148  *	This function shuts down a device interface and moves it
11149  *	to a new network namespace. On success 0 is returned, on
11150  *	a failure a netagive errno code is returned.
11151  *
11152  *	Callers must hold the rtnl semaphore.
11153  */
11154 
11155 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11156 			       const char *pat, int new_ifindex)
11157 {
11158 	struct net *net_old = dev_net(dev);
11159 	int err, new_nsid;
11160 
11161 	ASSERT_RTNL();
11162 
11163 	/* Don't allow namespace local devices to be moved. */
11164 	err = -EINVAL;
11165 	if (dev->features & NETIF_F_NETNS_LOCAL)
11166 		goto out;
11167 
11168 	/* Ensure the device has been registrered */
11169 	if (dev->reg_state != NETREG_REGISTERED)
11170 		goto out;
11171 
11172 	/* Get out if there is nothing todo */
11173 	err = 0;
11174 	if (net_eq(net_old, net))
11175 		goto out;
11176 
11177 	/* Pick the destination device name, and ensure
11178 	 * we can use it in the destination network namespace.
11179 	 */
11180 	err = -EEXIST;
11181 	if (__dev_get_by_name(net, dev->name)) {
11182 		/* We get here if we can't use the current device name */
11183 		if (!pat)
11184 			goto out;
11185 		err = dev_get_valid_name(net, dev, pat);
11186 		if (err < 0)
11187 			goto out;
11188 	}
11189 
11190 	/* Check that new_ifindex isn't used yet. */
11191 	err = -EBUSY;
11192 	if (new_ifindex && __dev_get_by_index(net, new_ifindex))
11193 		goto out;
11194 
11195 	/*
11196 	 * And now a mini version of register_netdevice unregister_netdevice.
11197 	 */
11198 
11199 	/* If device is running close it first. */
11200 	dev_close(dev);
11201 
11202 	/* And unlink it from device chain */
11203 	unlist_netdevice(dev);
11204 
11205 	synchronize_net();
11206 
11207 	/* Shutdown queueing discipline. */
11208 	dev_shutdown(dev);
11209 
11210 	/* Notify protocols, that we are about to destroy
11211 	 * this device. They should clean all the things.
11212 	 *
11213 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
11214 	 * This is wanted because this way 8021q and macvlan know
11215 	 * the device is just moving and can keep their slaves up.
11216 	 */
11217 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11218 	rcu_barrier();
11219 
11220 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11221 	/* If there is an ifindex conflict assign a new one */
11222 	if (!new_ifindex) {
11223 		if (__dev_get_by_index(net, dev->ifindex))
11224 			new_ifindex = dev_new_index(net);
11225 		else
11226 			new_ifindex = dev->ifindex;
11227 	}
11228 
11229 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11230 			    new_ifindex);
11231 
11232 	/*
11233 	 *	Flush the unicast and multicast chains
11234 	 */
11235 	dev_uc_flush(dev);
11236 	dev_mc_flush(dev);
11237 
11238 	/* Send a netdev-removed uevent to the old namespace */
11239 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11240 	netdev_adjacent_del_links(dev);
11241 
11242 	/* Move per-net netdevice notifiers that are following the netdevice */
11243 	move_netdevice_notifiers_dev_net(dev, net);
11244 
11245 	/* Actually switch the network namespace */
11246 	dev_net_set(dev, net);
11247 	dev->ifindex = new_ifindex;
11248 
11249 	/* Send a netdev-add uevent to the new namespace */
11250 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11251 	netdev_adjacent_add_links(dev);
11252 
11253 	/* Fixup kobjects */
11254 	err = device_rename(&dev->dev, dev->name);
11255 	WARN_ON(err);
11256 
11257 	/* Adapt owner in case owning user namespace of target network
11258 	 * namespace is different from the original one.
11259 	 */
11260 	err = netdev_change_owner(dev, net_old, net);
11261 	WARN_ON(err);
11262 
11263 	/* Add the device back in the hashes */
11264 	list_netdevice(dev);
11265 
11266 	/* Notify protocols, that a new device appeared. */
11267 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
11268 
11269 	/*
11270 	 *	Prevent userspace races by waiting until the network
11271 	 *	device is fully setup before sending notifications.
11272 	 */
11273 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11274 
11275 	synchronize_net();
11276 	err = 0;
11277 out:
11278 	return err;
11279 }
11280 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11281 
11282 static int dev_cpu_dead(unsigned int oldcpu)
11283 {
11284 	struct sk_buff **list_skb;
11285 	struct sk_buff *skb;
11286 	unsigned int cpu;
11287 	struct softnet_data *sd, *oldsd, *remsd = NULL;
11288 
11289 	local_irq_disable();
11290 	cpu = smp_processor_id();
11291 	sd = &per_cpu(softnet_data, cpu);
11292 	oldsd = &per_cpu(softnet_data, oldcpu);
11293 
11294 	/* Find end of our completion_queue. */
11295 	list_skb = &sd->completion_queue;
11296 	while (*list_skb)
11297 		list_skb = &(*list_skb)->next;
11298 	/* Append completion queue from offline CPU. */
11299 	*list_skb = oldsd->completion_queue;
11300 	oldsd->completion_queue = NULL;
11301 
11302 	/* Append output queue from offline CPU. */
11303 	if (oldsd->output_queue) {
11304 		*sd->output_queue_tailp = oldsd->output_queue;
11305 		sd->output_queue_tailp = oldsd->output_queue_tailp;
11306 		oldsd->output_queue = NULL;
11307 		oldsd->output_queue_tailp = &oldsd->output_queue;
11308 	}
11309 	/* Append NAPI poll list from offline CPU, with one exception :
11310 	 * process_backlog() must be called by cpu owning percpu backlog.
11311 	 * We properly handle process_queue & input_pkt_queue later.
11312 	 */
11313 	while (!list_empty(&oldsd->poll_list)) {
11314 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11315 							    struct napi_struct,
11316 							    poll_list);
11317 
11318 		list_del_init(&napi->poll_list);
11319 		if (napi->poll == process_backlog)
11320 			napi->state = 0;
11321 		else
11322 			____napi_schedule(sd, napi);
11323 	}
11324 
11325 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11326 	local_irq_enable();
11327 
11328 #ifdef CONFIG_RPS
11329 	remsd = oldsd->rps_ipi_list;
11330 	oldsd->rps_ipi_list = NULL;
11331 #endif
11332 	/* send out pending IPI's on offline CPU */
11333 	net_rps_send_ipi(remsd);
11334 
11335 	/* Process offline CPU's input_pkt_queue */
11336 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11337 		netif_rx_ni(skb);
11338 		input_queue_head_incr(oldsd);
11339 	}
11340 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11341 		netif_rx_ni(skb);
11342 		input_queue_head_incr(oldsd);
11343 	}
11344 
11345 	return 0;
11346 }
11347 
11348 /**
11349  *	netdev_increment_features - increment feature set by one
11350  *	@all: current feature set
11351  *	@one: new feature set
11352  *	@mask: mask feature set
11353  *
11354  *	Computes a new feature set after adding a device with feature set
11355  *	@one to the master device with current feature set @all.  Will not
11356  *	enable anything that is off in @mask. Returns the new feature set.
11357  */
11358 netdev_features_t netdev_increment_features(netdev_features_t all,
11359 	netdev_features_t one, netdev_features_t mask)
11360 {
11361 	if (mask & NETIF_F_HW_CSUM)
11362 		mask |= NETIF_F_CSUM_MASK;
11363 	mask |= NETIF_F_VLAN_CHALLENGED;
11364 
11365 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11366 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11367 
11368 	/* If one device supports hw checksumming, set for all. */
11369 	if (all & NETIF_F_HW_CSUM)
11370 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11371 
11372 	return all;
11373 }
11374 EXPORT_SYMBOL(netdev_increment_features);
11375 
11376 static struct hlist_head * __net_init netdev_create_hash(void)
11377 {
11378 	int i;
11379 	struct hlist_head *hash;
11380 
11381 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11382 	if (hash != NULL)
11383 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11384 			INIT_HLIST_HEAD(&hash[i]);
11385 
11386 	return hash;
11387 }
11388 
11389 /* Initialize per network namespace state */
11390 static int __net_init netdev_init(struct net *net)
11391 {
11392 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11393 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11394 
11395 	if (net != &init_net)
11396 		INIT_LIST_HEAD(&net->dev_base_head);
11397 
11398 	net->dev_name_head = netdev_create_hash();
11399 	if (net->dev_name_head == NULL)
11400 		goto err_name;
11401 
11402 	net->dev_index_head = netdev_create_hash();
11403 	if (net->dev_index_head == NULL)
11404 		goto err_idx;
11405 
11406 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11407 
11408 	return 0;
11409 
11410 err_idx:
11411 	kfree(net->dev_name_head);
11412 err_name:
11413 	return -ENOMEM;
11414 }
11415 
11416 /**
11417  *	netdev_drivername - network driver for the device
11418  *	@dev: network device
11419  *
11420  *	Determine network driver for device.
11421  */
11422 const char *netdev_drivername(const struct net_device *dev)
11423 {
11424 	const struct device_driver *driver;
11425 	const struct device *parent;
11426 	const char *empty = "";
11427 
11428 	parent = dev->dev.parent;
11429 	if (!parent)
11430 		return empty;
11431 
11432 	driver = parent->driver;
11433 	if (driver && driver->name)
11434 		return driver->name;
11435 	return empty;
11436 }
11437 
11438 static void __netdev_printk(const char *level, const struct net_device *dev,
11439 			    struct va_format *vaf)
11440 {
11441 	if (dev && dev->dev.parent) {
11442 		dev_printk_emit(level[1] - '0',
11443 				dev->dev.parent,
11444 				"%s %s %s%s: %pV",
11445 				dev_driver_string(dev->dev.parent),
11446 				dev_name(dev->dev.parent),
11447 				netdev_name(dev), netdev_reg_state(dev),
11448 				vaf);
11449 	} else if (dev) {
11450 		printk("%s%s%s: %pV",
11451 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11452 	} else {
11453 		printk("%s(NULL net_device): %pV", level, vaf);
11454 	}
11455 }
11456 
11457 void netdev_printk(const char *level, const struct net_device *dev,
11458 		   const char *format, ...)
11459 {
11460 	struct va_format vaf;
11461 	va_list args;
11462 
11463 	va_start(args, format);
11464 
11465 	vaf.fmt = format;
11466 	vaf.va = &args;
11467 
11468 	__netdev_printk(level, dev, &vaf);
11469 
11470 	va_end(args);
11471 }
11472 EXPORT_SYMBOL(netdev_printk);
11473 
11474 #define define_netdev_printk_level(func, level)			\
11475 void func(const struct net_device *dev, const char *fmt, ...)	\
11476 {								\
11477 	struct va_format vaf;					\
11478 	va_list args;						\
11479 								\
11480 	va_start(args, fmt);					\
11481 								\
11482 	vaf.fmt = fmt;						\
11483 	vaf.va = &args;						\
11484 								\
11485 	__netdev_printk(level, dev, &vaf);			\
11486 								\
11487 	va_end(args);						\
11488 }								\
11489 EXPORT_SYMBOL(func);
11490 
11491 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11492 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11493 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11494 define_netdev_printk_level(netdev_err, KERN_ERR);
11495 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11496 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11497 define_netdev_printk_level(netdev_info, KERN_INFO);
11498 
11499 static void __net_exit netdev_exit(struct net *net)
11500 {
11501 	kfree(net->dev_name_head);
11502 	kfree(net->dev_index_head);
11503 	if (net != &init_net)
11504 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11505 }
11506 
11507 static struct pernet_operations __net_initdata netdev_net_ops = {
11508 	.init = netdev_init,
11509 	.exit = netdev_exit,
11510 };
11511 
11512 static void __net_exit default_device_exit(struct net *net)
11513 {
11514 	struct net_device *dev, *aux;
11515 	/*
11516 	 * Push all migratable network devices back to the
11517 	 * initial network namespace
11518 	 */
11519 	rtnl_lock();
11520 	for_each_netdev_safe(net, dev, aux) {
11521 		int err;
11522 		char fb_name[IFNAMSIZ];
11523 
11524 		/* Ignore unmoveable devices (i.e. loopback) */
11525 		if (dev->features & NETIF_F_NETNS_LOCAL)
11526 			continue;
11527 
11528 		/* Leave virtual devices for the generic cleanup */
11529 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11530 			continue;
11531 
11532 		/* Push remaining network devices to init_net */
11533 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11534 		if (__dev_get_by_name(&init_net, fb_name))
11535 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11536 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11537 		if (err) {
11538 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11539 				 __func__, dev->name, err);
11540 			BUG();
11541 		}
11542 	}
11543 	rtnl_unlock();
11544 }
11545 
11546 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11547 {
11548 	/* Return with the rtnl_lock held when there are no network
11549 	 * devices unregistering in any network namespace in net_list.
11550 	 */
11551 	struct net *net;
11552 	bool unregistering;
11553 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
11554 
11555 	add_wait_queue(&netdev_unregistering_wq, &wait);
11556 	for (;;) {
11557 		unregistering = false;
11558 		rtnl_lock();
11559 		list_for_each_entry(net, net_list, exit_list) {
11560 			if (net->dev_unreg_count > 0) {
11561 				unregistering = true;
11562 				break;
11563 			}
11564 		}
11565 		if (!unregistering)
11566 			break;
11567 		__rtnl_unlock();
11568 
11569 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11570 	}
11571 	remove_wait_queue(&netdev_unregistering_wq, &wait);
11572 }
11573 
11574 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11575 {
11576 	/* At exit all network devices most be removed from a network
11577 	 * namespace.  Do this in the reverse order of registration.
11578 	 * Do this across as many network namespaces as possible to
11579 	 * improve batching efficiency.
11580 	 */
11581 	struct net_device *dev;
11582 	struct net *net;
11583 	LIST_HEAD(dev_kill_list);
11584 
11585 	/* To prevent network device cleanup code from dereferencing
11586 	 * loopback devices or network devices that have been freed
11587 	 * wait here for all pending unregistrations to complete,
11588 	 * before unregistring the loopback device and allowing the
11589 	 * network namespace be freed.
11590 	 *
11591 	 * The netdev todo list containing all network devices
11592 	 * unregistrations that happen in default_device_exit_batch
11593 	 * will run in the rtnl_unlock() at the end of
11594 	 * default_device_exit_batch.
11595 	 */
11596 	rtnl_lock_unregistering(net_list);
11597 	list_for_each_entry(net, net_list, exit_list) {
11598 		for_each_netdev_reverse(net, dev) {
11599 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11600 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11601 			else
11602 				unregister_netdevice_queue(dev, &dev_kill_list);
11603 		}
11604 	}
11605 	unregister_netdevice_many(&dev_kill_list);
11606 	rtnl_unlock();
11607 }
11608 
11609 static struct pernet_operations __net_initdata default_device_ops = {
11610 	.exit = default_device_exit,
11611 	.exit_batch = default_device_exit_batch,
11612 };
11613 
11614 /*
11615  *	Initialize the DEV module. At boot time this walks the device list and
11616  *	unhooks any devices that fail to initialise (normally hardware not
11617  *	present) and leaves us with a valid list of present and active devices.
11618  *
11619  */
11620 
11621 /*
11622  *       This is called single threaded during boot, so no need
11623  *       to take the rtnl semaphore.
11624  */
11625 static int __init net_dev_init(void)
11626 {
11627 	int i, rc = -ENOMEM;
11628 
11629 	BUG_ON(!dev_boot_phase);
11630 
11631 	if (dev_proc_init())
11632 		goto out;
11633 
11634 	if (netdev_kobject_init())
11635 		goto out;
11636 
11637 	INIT_LIST_HEAD(&ptype_all);
11638 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11639 		INIT_LIST_HEAD(&ptype_base[i]);
11640 
11641 	INIT_LIST_HEAD(&offload_base);
11642 
11643 	if (register_pernet_subsys(&netdev_net_ops))
11644 		goto out;
11645 
11646 	/*
11647 	 *	Initialise the packet receive queues.
11648 	 */
11649 
11650 	for_each_possible_cpu(i) {
11651 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11652 		struct softnet_data *sd = &per_cpu(softnet_data, i);
11653 
11654 		INIT_WORK(flush, flush_backlog);
11655 
11656 		skb_queue_head_init(&sd->input_pkt_queue);
11657 		skb_queue_head_init(&sd->process_queue);
11658 #ifdef CONFIG_XFRM_OFFLOAD
11659 		skb_queue_head_init(&sd->xfrm_backlog);
11660 #endif
11661 		INIT_LIST_HEAD(&sd->poll_list);
11662 		sd->output_queue_tailp = &sd->output_queue;
11663 #ifdef CONFIG_RPS
11664 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11665 		sd->cpu = i;
11666 #endif
11667 
11668 		init_gro_hash(&sd->backlog);
11669 		sd->backlog.poll = process_backlog;
11670 		sd->backlog.weight = weight_p;
11671 	}
11672 
11673 	dev_boot_phase = 0;
11674 
11675 	/* The loopback device is special if any other network devices
11676 	 * is present in a network namespace the loopback device must
11677 	 * be present. Since we now dynamically allocate and free the
11678 	 * loopback device ensure this invariant is maintained by
11679 	 * keeping the loopback device as the first device on the
11680 	 * list of network devices.  Ensuring the loopback devices
11681 	 * is the first device that appears and the last network device
11682 	 * that disappears.
11683 	 */
11684 	if (register_pernet_device(&loopback_net_ops))
11685 		goto out;
11686 
11687 	if (register_pernet_device(&default_device_ops))
11688 		goto out;
11689 
11690 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11691 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11692 
11693 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11694 				       NULL, dev_cpu_dead);
11695 	WARN_ON(rc < 0);
11696 	rc = 0;
11697 out:
11698 	return rc;
11699 }
11700 
11701 subsys_initcall(net_dev_init);
11702