xref: /openbmc/linux/net/core/dev.c (revision 68198dca)
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/pkt_cls.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <linux/pci.h>
136 #include <linux/inetdevice.h>
137 #include <linux/cpu_rmap.h>
138 #include <linux/static_key.h>
139 #include <linux/hashtable.h>
140 #include <linux/vmalloc.h>
141 #include <linux/if_macvlan.h>
142 #include <linux/errqueue.h>
143 #include <linux/hrtimer.h>
144 #include <linux/netfilter_ingress.h>
145 #include <linux/crash_dump.h>
146 #include <linux/sctp.h>
147 #include <net/udp_tunnel.h>
148 #include <linux/net_namespace.h>
149 
150 #include "net-sysfs.h"
151 
152 /* Instead of increasing this, you should create a hash table. */
153 #define MAX_GRO_SKBS 8
154 
155 /* This should be increased if a protocol with a bigger head is added. */
156 #define GRO_MAX_HEAD (MAX_HEADER + 128)
157 
158 static DEFINE_SPINLOCK(ptype_lock);
159 static DEFINE_SPINLOCK(offload_lock);
160 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
161 struct list_head ptype_all __read_mostly;	/* Taps */
162 static struct list_head offload_base __read_mostly;
163 
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_info(unsigned long val,
166 					 struct netdev_notifier_info *info);
167 static struct napi_struct *napi_by_id(unsigned int napi_id);
168 
169 /*
170  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171  * semaphore.
172  *
173  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174  *
175  * Writers must hold the rtnl semaphore while they loop through the
176  * dev_base_head list, and hold dev_base_lock for writing when they do the
177  * actual updates.  This allows pure readers to access the list even
178  * while a writer is preparing to update it.
179  *
180  * To put it another way, dev_base_lock is held for writing only to
181  * protect against pure readers; the rtnl semaphore provides the
182  * protection against other writers.
183  *
184  * See, for example usages, register_netdevice() and
185  * unregister_netdevice(), which must be called with the rtnl
186  * semaphore held.
187  */
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
190 
191 static DEFINE_MUTEX(ifalias_mutex);
192 
193 /* protects napi_hash addition/deletion and napi_gen_id */
194 static DEFINE_SPINLOCK(napi_hash_lock);
195 
196 static unsigned int napi_gen_id = NR_CPUS;
197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198 
199 static seqcount_t devnet_rename_seq;
200 
201 static inline void dev_base_seq_inc(struct net *net)
202 {
203 	while (++net->dev_base_seq == 0)
204 		;
205 }
206 
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 {
209 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210 
211 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212 }
213 
214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215 {
216 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217 }
218 
219 static inline void rps_lock(struct softnet_data *sd)
220 {
221 #ifdef CONFIG_RPS
222 	spin_lock(&sd->input_pkt_queue.lock);
223 #endif
224 }
225 
226 static inline void rps_unlock(struct softnet_data *sd)
227 {
228 #ifdef CONFIG_RPS
229 	spin_unlock(&sd->input_pkt_queue.lock);
230 #endif
231 }
232 
233 /* Device list insertion */
234 static void list_netdevice(struct net_device *dev)
235 {
236 	struct net *net = dev_net(dev);
237 
238 	ASSERT_RTNL();
239 
240 	write_lock_bh(&dev_base_lock);
241 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
242 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
243 	hlist_add_head_rcu(&dev->index_hlist,
244 			   dev_index_hash(net, dev->ifindex));
245 	write_unlock_bh(&dev_base_lock);
246 
247 	dev_base_seq_inc(net);
248 }
249 
250 /* Device list removal
251  * caller must respect a RCU grace period before freeing/reusing dev
252  */
253 static void unlist_netdevice(struct net_device *dev)
254 {
255 	ASSERT_RTNL();
256 
257 	/* Unlink dev from the device chain */
258 	write_lock_bh(&dev_base_lock);
259 	list_del_rcu(&dev->dev_list);
260 	hlist_del_rcu(&dev->name_hlist);
261 	hlist_del_rcu(&dev->index_hlist);
262 	write_unlock_bh(&dev_base_lock);
263 
264 	dev_base_seq_inc(dev_net(dev));
265 }
266 
267 /*
268  *	Our notifier list
269  */
270 
271 static RAW_NOTIFIER_HEAD(netdev_chain);
272 
273 /*
274  *	Device drivers call our routines to queue packets here. We empty the
275  *	queue in the local softnet handler.
276  */
277 
278 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
279 EXPORT_PER_CPU_SYMBOL(softnet_data);
280 
281 #ifdef CONFIG_LOCKDEP
282 /*
283  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
284  * according to dev->type
285  */
286 static const unsigned short netdev_lock_type[] = {
287 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
288 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
289 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
290 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
291 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
292 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
293 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
294 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
295 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
296 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
297 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
298 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
299 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
300 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
301 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
302 
303 static const char *const netdev_lock_name[] = {
304 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
305 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
306 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
307 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
308 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
309 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
310 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
311 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
312 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
313 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
314 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
315 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
316 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
317 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
318 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
319 
320 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
321 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
322 
323 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
324 {
325 	int i;
326 
327 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
328 		if (netdev_lock_type[i] == dev_type)
329 			return i;
330 	/* the last key is used by default */
331 	return ARRAY_SIZE(netdev_lock_type) - 1;
332 }
333 
334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335 						 unsigned short dev_type)
336 {
337 	int i;
338 
339 	i = netdev_lock_pos(dev_type);
340 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
341 				   netdev_lock_name[i]);
342 }
343 
344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345 {
346 	int i;
347 
348 	i = netdev_lock_pos(dev->type);
349 	lockdep_set_class_and_name(&dev->addr_list_lock,
350 				   &netdev_addr_lock_key[i],
351 				   netdev_lock_name[i]);
352 }
353 #else
354 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
355 						 unsigned short dev_type)
356 {
357 }
358 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
359 {
360 }
361 #endif
362 
363 /*******************************************************************************
364  *
365  *		Protocol management and registration routines
366  *
367  *******************************************************************************/
368 
369 
370 /*
371  *	Add a protocol ID to the list. Now that the input handler is
372  *	smarter we can dispense with all the messy stuff that used to be
373  *	here.
374  *
375  *	BEWARE!!! Protocol handlers, mangling input packets,
376  *	MUST BE last in hash buckets and checking protocol handlers
377  *	MUST start from promiscuous ptype_all chain in net_bh.
378  *	It is true now, do not change it.
379  *	Explanation follows: if protocol handler, mangling packet, will
380  *	be the first on list, it is not able to sense, that packet
381  *	is cloned and should be copied-on-write, so that it will
382  *	change it and subsequent readers will get broken packet.
383  *							--ANK (980803)
384  */
385 
386 static inline struct list_head *ptype_head(const struct packet_type *pt)
387 {
388 	if (pt->type == htons(ETH_P_ALL))
389 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
390 	else
391 		return pt->dev ? &pt->dev->ptype_specific :
392 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
393 }
394 
395 /**
396  *	dev_add_pack - add packet handler
397  *	@pt: packet type declaration
398  *
399  *	Add a protocol handler to the networking stack. The passed &packet_type
400  *	is linked into kernel lists and may not be freed until it has been
401  *	removed from the kernel lists.
402  *
403  *	This call does not sleep therefore it can not
404  *	guarantee all CPU's that are in middle of receiving packets
405  *	will see the new packet type (until the next received packet).
406  */
407 
408 void dev_add_pack(struct packet_type *pt)
409 {
410 	struct list_head *head = ptype_head(pt);
411 
412 	spin_lock(&ptype_lock);
413 	list_add_rcu(&pt->list, head);
414 	spin_unlock(&ptype_lock);
415 }
416 EXPORT_SYMBOL(dev_add_pack);
417 
418 /**
419  *	__dev_remove_pack	 - remove packet handler
420  *	@pt: packet type declaration
421  *
422  *	Remove a protocol handler that was previously added to the kernel
423  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
424  *	from the kernel lists and can be freed or reused once this function
425  *	returns.
426  *
427  *      The packet type might still be in use by receivers
428  *	and must not be freed until after all the CPU's have gone
429  *	through a quiescent state.
430  */
431 void __dev_remove_pack(struct packet_type *pt)
432 {
433 	struct list_head *head = ptype_head(pt);
434 	struct packet_type *pt1;
435 
436 	spin_lock(&ptype_lock);
437 
438 	list_for_each_entry(pt1, head, list) {
439 		if (pt == pt1) {
440 			list_del_rcu(&pt->list);
441 			goto out;
442 		}
443 	}
444 
445 	pr_warn("dev_remove_pack: %p not found\n", pt);
446 out:
447 	spin_unlock(&ptype_lock);
448 }
449 EXPORT_SYMBOL(__dev_remove_pack);
450 
451 /**
452  *	dev_remove_pack	 - remove packet handler
453  *	@pt: packet type declaration
454  *
455  *	Remove a protocol handler that was previously added to the kernel
456  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
457  *	from the kernel lists and can be freed or reused once this function
458  *	returns.
459  *
460  *	This call sleeps to guarantee that no CPU is looking at the packet
461  *	type after return.
462  */
463 void dev_remove_pack(struct packet_type *pt)
464 {
465 	__dev_remove_pack(pt);
466 
467 	synchronize_net();
468 }
469 EXPORT_SYMBOL(dev_remove_pack);
470 
471 
472 /**
473  *	dev_add_offload - register offload handlers
474  *	@po: protocol offload declaration
475  *
476  *	Add protocol offload handlers to the networking stack. The passed
477  *	&proto_offload is linked into kernel lists and may not be freed until
478  *	it has been removed from the kernel lists.
479  *
480  *	This call does not sleep therefore it can not
481  *	guarantee all CPU's that are in middle of receiving packets
482  *	will see the new offload handlers (until the next received packet).
483  */
484 void dev_add_offload(struct packet_offload *po)
485 {
486 	struct packet_offload *elem;
487 
488 	spin_lock(&offload_lock);
489 	list_for_each_entry(elem, &offload_base, list) {
490 		if (po->priority < elem->priority)
491 			break;
492 	}
493 	list_add_rcu(&po->list, elem->list.prev);
494 	spin_unlock(&offload_lock);
495 }
496 EXPORT_SYMBOL(dev_add_offload);
497 
498 /**
499  *	__dev_remove_offload	 - remove offload handler
500  *	@po: packet offload declaration
501  *
502  *	Remove a protocol offload handler that was previously added to the
503  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
504  *	is removed from the kernel lists and can be freed or reused once this
505  *	function returns.
506  *
507  *      The packet type might still be in use by receivers
508  *	and must not be freed until after all the CPU's have gone
509  *	through a quiescent state.
510  */
511 static void __dev_remove_offload(struct packet_offload *po)
512 {
513 	struct list_head *head = &offload_base;
514 	struct packet_offload *po1;
515 
516 	spin_lock(&offload_lock);
517 
518 	list_for_each_entry(po1, head, list) {
519 		if (po == po1) {
520 			list_del_rcu(&po->list);
521 			goto out;
522 		}
523 	}
524 
525 	pr_warn("dev_remove_offload: %p not found\n", po);
526 out:
527 	spin_unlock(&offload_lock);
528 }
529 
530 /**
531  *	dev_remove_offload	 - remove packet offload handler
532  *	@po: packet offload declaration
533  *
534  *	Remove a packet offload handler that was previously added to the kernel
535  *	offload handlers by dev_add_offload(). The passed &offload_type is
536  *	removed from the kernel lists and can be freed or reused once this
537  *	function returns.
538  *
539  *	This call sleeps to guarantee that no CPU is looking at the packet
540  *	type after return.
541  */
542 void dev_remove_offload(struct packet_offload *po)
543 {
544 	__dev_remove_offload(po);
545 
546 	synchronize_net();
547 }
548 EXPORT_SYMBOL(dev_remove_offload);
549 
550 /******************************************************************************
551  *
552  *		      Device Boot-time Settings Routines
553  *
554  ******************************************************************************/
555 
556 /* Boot time configuration table */
557 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
558 
559 /**
560  *	netdev_boot_setup_add	- add new setup entry
561  *	@name: name of the device
562  *	@map: configured settings for the device
563  *
564  *	Adds new setup entry to the dev_boot_setup list.  The function
565  *	returns 0 on error and 1 on success.  This is a generic routine to
566  *	all netdevices.
567  */
568 static int netdev_boot_setup_add(char *name, struct ifmap *map)
569 {
570 	struct netdev_boot_setup *s;
571 	int i;
572 
573 	s = dev_boot_setup;
574 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
576 			memset(s[i].name, 0, sizeof(s[i].name));
577 			strlcpy(s[i].name, name, IFNAMSIZ);
578 			memcpy(&s[i].map, map, sizeof(s[i].map));
579 			break;
580 		}
581 	}
582 
583 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
584 }
585 
586 /**
587  * netdev_boot_setup_check	- check boot time settings
588  * @dev: the netdevice
589  *
590  * Check boot time settings for the device.
591  * The found settings are set for the device to be used
592  * later in the device probing.
593  * Returns 0 if no settings found, 1 if they are.
594  */
595 int netdev_boot_setup_check(struct net_device *dev)
596 {
597 	struct netdev_boot_setup *s = dev_boot_setup;
598 	int i;
599 
600 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
601 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
602 		    !strcmp(dev->name, s[i].name)) {
603 			dev->irq = s[i].map.irq;
604 			dev->base_addr = s[i].map.base_addr;
605 			dev->mem_start = s[i].map.mem_start;
606 			dev->mem_end = s[i].map.mem_end;
607 			return 1;
608 		}
609 	}
610 	return 0;
611 }
612 EXPORT_SYMBOL(netdev_boot_setup_check);
613 
614 
615 /**
616  * netdev_boot_base	- get address from boot time settings
617  * @prefix: prefix for network device
618  * @unit: id for network device
619  *
620  * Check boot time settings for the base address of device.
621  * The found settings are set for the device to be used
622  * later in the device probing.
623  * Returns 0 if no settings found.
624  */
625 unsigned long netdev_boot_base(const char *prefix, int unit)
626 {
627 	const struct netdev_boot_setup *s = dev_boot_setup;
628 	char name[IFNAMSIZ];
629 	int i;
630 
631 	sprintf(name, "%s%d", prefix, unit);
632 
633 	/*
634 	 * If device already registered then return base of 1
635 	 * to indicate not to probe for this interface
636 	 */
637 	if (__dev_get_by_name(&init_net, name))
638 		return 1;
639 
640 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
641 		if (!strcmp(name, s[i].name))
642 			return s[i].map.base_addr;
643 	return 0;
644 }
645 
646 /*
647  * Saves at boot time configured settings for any netdevice.
648  */
649 int __init netdev_boot_setup(char *str)
650 {
651 	int ints[5];
652 	struct ifmap map;
653 
654 	str = get_options(str, ARRAY_SIZE(ints), ints);
655 	if (!str || !*str)
656 		return 0;
657 
658 	/* Save settings */
659 	memset(&map, 0, sizeof(map));
660 	if (ints[0] > 0)
661 		map.irq = ints[1];
662 	if (ints[0] > 1)
663 		map.base_addr = ints[2];
664 	if (ints[0] > 2)
665 		map.mem_start = ints[3];
666 	if (ints[0] > 3)
667 		map.mem_end = ints[4];
668 
669 	/* Add new entry to the list */
670 	return netdev_boot_setup_add(str, &map);
671 }
672 
673 __setup("netdev=", netdev_boot_setup);
674 
675 /*******************************************************************************
676  *
677  *			    Device Interface Subroutines
678  *
679  *******************************************************************************/
680 
681 /**
682  *	dev_get_iflink	- get 'iflink' value of a interface
683  *	@dev: targeted interface
684  *
685  *	Indicates the ifindex the interface is linked to.
686  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
687  */
688 
689 int dev_get_iflink(const struct net_device *dev)
690 {
691 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692 		return dev->netdev_ops->ndo_get_iflink(dev);
693 
694 	return dev->ifindex;
695 }
696 EXPORT_SYMBOL(dev_get_iflink);
697 
698 /**
699  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
700  *	@dev: targeted interface
701  *	@skb: The packet.
702  *
703  *	For better visibility of tunnel traffic OVS needs to retrieve
704  *	egress tunnel information for a packet. Following API allows
705  *	user to get this info.
706  */
707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
708 {
709 	struct ip_tunnel_info *info;
710 
711 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
712 		return -EINVAL;
713 
714 	info = skb_tunnel_info_unclone(skb);
715 	if (!info)
716 		return -ENOMEM;
717 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718 		return -EINVAL;
719 
720 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
721 }
722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723 
724 /**
725  *	__dev_get_by_name	- find a device by its name
726  *	@net: the applicable net namespace
727  *	@name: name to find
728  *
729  *	Find an interface by name. Must be called under RTNL semaphore
730  *	or @dev_base_lock. If the name is found a pointer to the device
731  *	is returned. If the name is not found then %NULL is returned. The
732  *	reference counters are not incremented so the caller must be
733  *	careful with locks.
734  */
735 
736 struct net_device *__dev_get_by_name(struct net *net, const char *name)
737 {
738 	struct net_device *dev;
739 	struct hlist_head *head = dev_name_hash(net, name);
740 
741 	hlist_for_each_entry(dev, head, name_hlist)
742 		if (!strncmp(dev->name, name, IFNAMSIZ))
743 			return dev;
744 
745 	return NULL;
746 }
747 EXPORT_SYMBOL(__dev_get_by_name);
748 
749 /**
750  * dev_get_by_name_rcu	- find a device by its name
751  * @net: the applicable net namespace
752  * @name: name to find
753  *
754  * Find an interface by name.
755  * If the name is found a pointer to the device is returned.
756  * If the name is not found then %NULL is returned.
757  * The reference counters are not incremented so the caller must be
758  * careful with locks. The caller must hold RCU lock.
759  */
760 
761 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
762 {
763 	struct net_device *dev;
764 	struct hlist_head *head = dev_name_hash(net, name);
765 
766 	hlist_for_each_entry_rcu(dev, head, name_hlist)
767 		if (!strncmp(dev->name, name, IFNAMSIZ))
768 			return dev;
769 
770 	return NULL;
771 }
772 EXPORT_SYMBOL(dev_get_by_name_rcu);
773 
774 /**
775  *	dev_get_by_name		- find a device by its name
776  *	@net: the applicable net namespace
777  *	@name: name to find
778  *
779  *	Find an interface by name. This can be called from any
780  *	context and does its own locking. The returned handle has
781  *	the usage count incremented and the caller must use dev_put() to
782  *	release it when it is no longer needed. %NULL is returned if no
783  *	matching device is found.
784  */
785 
786 struct net_device *dev_get_by_name(struct net *net, const char *name)
787 {
788 	struct net_device *dev;
789 
790 	rcu_read_lock();
791 	dev = dev_get_by_name_rcu(net, name);
792 	if (dev)
793 		dev_hold(dev);
794 	rcu_read_unlock();
795 	return dev;
796 }
797 EXPORT_SYMBOL(dev_get_by_name);
798 
799 /**
800  *	__dev_get_by_index - find a device by its ifindex
801  *	@net: the applicable net namespace
802  *	@ifindex: index of device
803  *
804  *	Search for an interface by index. Returns %NULL if the device
805  *	is not found or a pointer to the device. The device has not
806  *	had its reference counter increased so the caller must be careful
807  *	about locking. The caller must hold either the RTNL semaphore
808  *	or @dev_base_lock.
809  */
810 
811 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
812 {
813 	struct net_device *dev;
814 	struct hlist_head *head = dev_index_hash(net, ifindex);
815 
816 	hlist_for_each_entry(dev, head, index_hlist)
817 		if (dev->ifindex == ifindex)
818 			return dev;
819 
820 	return NULL;
821 }
822 EXPORT_SYMBOL(__dev_get_by_index);
823 
824 /**
825  *	dev_get_by_index_rcu - find a device by its ifindex
826  *	@net: the applicable net namespace
827  *	@ifindex: index of device
828  *
829  *	Search for an interface by index. Returns %NULL if the device
830  *	is not found or a pointer to the device. The device has not
831  *	had its reference counter increased so the caller must be careful
832  *	about locking. The caller must hold RCU lock.
833  */
834 
835 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
836 {
837 	struct net_device *dev;
838 	struct hlist_head *head = dev_index_hash(net, ifindex);
839 
840 	hlist_for_each_entry_rcu(dev, head, index_hlist)
841 		if (dev->ifindex == ifindex)
842 			return dev;
843 
844 	return NULL;
845 }
846 EXPORT_SYMBOL(dev_get_by_index_rcu);
847 
848 
849 /**
850  *	dev_get_by_index - find a device by its ifindex
851  *	@net: the applicable net namespace
852  *	@ifindex: index of device
853  *
854  *	Search for an interface by index. Returns NULL if the device
855  *	is not found or a pointer to the device. The device returned has
856  *	had a reference added and the pointer is safe until the user calls
857  *	dev_put to indicate they have finished with it.
858  */
859 
860 struct net_device *dev_get_by_index(struct net *net, int ifindex)
861 {
862 	struct net_device *dev;
863 
864 	rcu_read_lock();
865 	dev = dev_get_by_index_rcu(net, ifindex);
866 	if (dev)
867 		dev_hold(dev);
868 	rcu_read_unlock();
869 	return dev;
870 }
871 EXPORT_SYMBOL(dev_get_by_index);
872 
873 /**
874  *	dev_get_by_napi_id - find a device by napi_id
875  *	@napi_id: ID of the NAPI struct
876  *
877  *	Search for an interface by NAPI ID. Returns %NULL if the device
878  *	is not found or a pointer to the device. The device has not had
879  *	its reference counter increased so the caller must be careful
880  *	about locking. The caller must hold RCU lock.
881  */
882 
883 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
884 {
885 	struct napi_struct *napi;
886 
887 	WARN_ON_ONCE(!rcu_read_lock_held());
888 
889 	if (napi_id < MIN_NAPI_ID)
890 		return NULL;
891 
892 	napi = napi_by_id(napi_id);
893 
894 	return napi ? napi->dev : NULL;
895 }
896 EXPORT_SYMBOL(dev_get_by_napi_id);
897 
898 /**
899  *	netdev_get_name - get a netdevice name, knowing its ifindex.
900  *	@net: network namespace
901  *	@name: a pointer to the buffer where the name will be stored.
902  *	@ifindex: the ifindex of the interface to get the name from.
903  *
904  *	The use of raw_seqcount_begin() and cond_resched() before
905  *	retrying is required as we want to give the writers a chance
906  *	to complete when CONFIG_PREEMPT is not set.
907  */
908 int netdev_get_name(struct net *net, char *name, int ifindex)
909 {
910 	struct net_device *dev;
911 	unsigned int seq;
912 
913 retry:
914 	seq = raw_seqcount_begin(&devnet_rename_seq);
915 	rcu_read_lock();
916 	dev = dev_get_by_index_rcu(net, ifindex);
917 	if (!dev) {
918 		rcu_read_unlock();
919 		return -ENODEV;
920 	}
921 
922 	strcpy(name, dev->name);
923 	rcu_read_unlock();
924 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
925 		cond_resched();
926 		goto retry;
927 	}
928 
929 	return 0;
930 }
931 
932 /**
933  *	dev_getbyhwaddr_rcu - find a device by its hardware address
934  *	@net: the applicable net namespace
935  *	@type: media type of device
936  *	@ha: hardware address
937  *
938  *	Search for an interface by MAC address. Returns NULL if the device
939  *	is not found or a pointer to the device.
940  *	The caller must hold RCU or RTNL.
941  *	The returned device has not had its ref count increased
942  *	and the caller must therefore be careful about locking
943  *
944  */
945 
946 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
947 				       const char *ha)
948 {
949 	struct net_device *dev;
950 
951 	for_each_netdev_rcu(net, dev)
952 		if (dev->type == type &&
953 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
954 			return dev;
955 
956 	return NULL;
957 }
958 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
959 
960 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
961 {
962 	struct net_device *dev;
963 
964 	ASSERT_RTNL();
965 	for_each_netdev(net, dev)
966 		if (dev->type == type)
967 			return dev;
968 
969 	return NULL;
970 }
971 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
972 
973 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
974 {
975 	struct net_device *dev, *ret = NULL;
976 
977 	rcu_read_lock();
978 	for_each_netdev_rcu(net, dev)
979 		if (dev->type == type) {
980 			dev_hold(dev);
981 			ret = dev;
982 			break;
983 		}
984 	rcu_read_unlock();
985 	return ret;
986 }
987 EXPORT_SYMBOL(dev_getfirstbyhwtype);
988 
989 /**
990  *	__dev_get_by_flags - find any device with given flags
991  *	@net: the applicable net namespace
992  *	@if_flags: IFF_* values
993  *	@mask: bitmask of bits in if_flags to check
994  *
995  *	Search for any interface with the given flags. Returns NULL if a device
996  *	is not found or a pointer to the device. Must be called inside
997  *	rtnl_lock(), and result refcount is unchanged.
998  */
999 
1000 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1001 				      unsigned short mask)
1002 {
1003 	struct net_device *dev, *ret;
1004 
1005 	ASSERT_RTNL();
1006 
1007 	ret = NULL;
1008 	for_each_netdev(net, dev) {
1009 		if (((dev->flags ^ if_flags) & mask) == 0) {
1010 			ret = dev;
1011 			break;
1012 		}
1013 	}
1014 	return ret;
1015 }
1016 EXPORT_SYMBOL(__dev_get_by_flags);
1017 
1018 /**
1019  *	dev_valid_name - check if name is okay for network device
1020  *	@name: name string
1021  *
1022  *	Network device names need to be valid file names to
1023  *	to allow sysfs to work.  We also disallow any kind of
1024  *	whitespace.
1025  */
1026 bool dev_valid_name(const char *name)
1027 {
1028 	if (*name == '\0')
1029 		return false;
1030 	if (strlen(name) >= IFNAMSIZ)
1031 		return false;
1032 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1033 		return false;
1034 
1035 	while (*name) {
1036 		if (*name == '/' || *name == ':' || isspace(*name))
1037 			return false;
1038 		name++;
1039 	}
1040 	return true;
1041 }
1042 EXPORT_SYMBOL(dev_valid_name);
1043 
1044 /**
1045  *	__dev_alloc_name - allocate a name for a device
1046  *	@net: network namespace to allocate the device name in
1047  *	@name: name format string
1048  *	@buf:  scratch buffer and result name string
1049  *
1050  *	Passed a format string - eg "lt%d" it will try and find a suitable
1051  *	id. It scans list of devices to build up a free map, then chooses
1052  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1053  *	while allocating the name and adding the device in order to avoid
1054  *	duplicates.
1055  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056  *	Returns the number of the unit assigned or a negative errno code.
1057  */
1058 
1059 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1060 {
1061 	int i = 0;
1062 	const char *p;
1063 	const int max_netdevices = 8*PAGE_SIZE;
1064 	unsigned long *inuse;
1065 	struct net_device *d;
1066 
1067 	if (!dev_valid_name(name))
1068 		return -EINVAL;
1069 
1070 	p = strchr(name, '%');
1071 	if (p) {
1072 		/*
1073 		 * Verify the string as this thing may have come from
1074 		 * the user.  There must be either one "%d" and no other "%"
1075 		 * characters.
1076 		 */
1077 		if (p[1] != 'd' || strchr(p + 2, '%'))
1078 			return -EINVAL;
1079 
1080 		/* Use one page as a bit array of possible slots */
1081 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1082 		if (!inuse)
1083 			return -ENOMEM;
1084 
1085 		for_each_netdev(net, d) {
1086 			if (!sscanf(d->name, name, &i))
1087 				continue;
1088 			if (i < 0 || i >= max_netdevices)
1089 				continue;
1090 
1091 			/*  avoid cases where sscanf is not exact inverse of printf */
1092 			snprintf(buf, IFNAMSIZ, name, i);
1093 			if (!strncmp(buf, d->name, IFNAMSIZ))
1094 				set_bit(i, inuse);
1095 		}
1096 
1097 		i = find_first_zero_bit(inuse, max_netdevices);
1098 		free_page((unsigned long) inuse);
1099 	}
1100 
1101 	snprintf(buf, IFNAMSIZ, name, i);
1102 	if (!__dev_get_by_name(net, buf))
1103 		return i;
1104 
1105 	/* It is possible to run out of possible slots
1106 	 * when the name is long and there isn't enough space left
1107 	 * for the digits, or if all bits are used.
1108 	 */
1109 	return -ENFILE;
1110 }
1111 
1112 static int dev_alloc_name_ns(struct net *net,
1113 			     struct net_device *dev,
1114 			     const char *name)
1115 {
1116 	char buf[IFNAMSIZ];
1117 	int ret;
1118 
1119 	BUG_ON(!net);
1120 	ret = __dev_alloc_name(net, name, buf);
1121 	if (ret >= 0)
1122 		strlcpy(dev->name, buf, IFNAMSIZ);
1123 	return ret;
1124 }
1125 
1126 /**
1127  *	dev_alloc_name - allocate a name for a device
1128  *	@dev: device
1129  *	@name: name format string
1130  *
1131  *	Passed a format string - eg "lt%d" it will try and find a suitable
1132  *	id. It scans list of devices to build up a free map, then chooses
1133  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1134  *	while allocating the name and adding the device in order to avoid
1135  *	duplicates.
1136  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1137  *	Returns the number of the unit assigned or a negative errno code.
1138  */
1139 
1140 int dev_alloc_name(struct net_device *dev, const char *name)
1141 {
1142 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1143 }
1144 EXPORT_SYMBOL(dev_alloc_name);
1145 
1146 int dev_get_valid_name(struct net *net, struct net_device *dev,
1147 		       const char *name)
1148 {
1149 	return dev_alloc_name_ns(net, dev, name);
1150 }
1151 EXPORT_SYMBOL(dev_get_valid_name);
1152 
1153 /**
1154  *	dev_change_name - change name of a device
1155  *	@dev: device
1156  *	@newname: name (or format string) must be at least IFNAMSIZ
1157  *
1158  *	Change name of a device, can pass format strings "eth%d".
1159  *	for wildcarding.
1160  */
1161 int dev_change_name(struct net_device *dev, const char *newname)
1162 {
1163 	unsigned char old_assign_type;
1164 	char oldname[IFNAMSIZ];
1165 	int err = 0;
1166 	int ret;
1167 	struct net *net;
1168 
1169 	ASSERT_RTNL();
1170 	BUG_ON(!dev_net(dev));
1171 
1172 	net = dev_net(dev);
1173 	if (dev->flags & IFF_UP)
1174 		return -EBUSY;
1175 
1176 	write_seqcount_begin(&devnet_rename_seq);
1177 
1178 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1179 		write_seqcount_end(&devnet_rename_seq);
1180 		return 0;
1181 	}
1182 
1183 	memcpy(oldname, dev->name, IFNAMSIZ);
1184 
1185 	err = dev_get_valid_name(net, dev, newname);
1186 	if (err < 0) {
1187 		write_seqcount_end(&devnet_rename_seq);
1188 		return err;
1189 	}
1190 
1191 	if (oldname[0] && !strchr(oldname, '%'))
1192 		netdev_info(dev, "renamed from %s\n", oldname);
1193 
1194 	old_assign_type = dev->name_assign_type;
1195 	dev->name_assign_type = NET_NAME_RENAMED;
1196 
1197 rollback:
1198 	ret = device_rename(&dev->dev, dev->name);
1199 	if (ret) {
1200 		memcpy(dev->name, oldname, IFNAMSIZ);
1201 		dev->name_assign_type = old_assign_type;
1202 		write_seqcount_end(&devnet_rename_seq);
1203 		return ret;
1204 	}
1205 
1206 	write_seqcount_end(&devnet_rename_seq);
1207 
1208 	netdev_adjacent_rename_links(dev, oldname);
1209 
1210 	write_lock_bh(&dev_base_lock);
1211 	hlist_del_rcu(&dev->name_hlist);
1212 	write_unlock_bh(&dev_base_lock);
1213 
1214 	synchronize_rcu();
1215 
1216 	write_lock_bh(&dev_base_lock);
1217 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1218 	write_unlock_bh(&dev_base_lock);
1219 
1220 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1221 	ret = notifier_to_errno(ret);
1222 
1223 	if (ret) {
1224 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1225 		if (err >= 0) {
1226 			err = ret;
1227 			write_seqcount_begin(&devnet_rename_seq);
1228 			memcpy(dev->name, oldname, IFNAMSIZ);
1229 			memcpy(oldname, newname, IFNAMSIZ);
1230 			dev->name_assign_type = old_assign_type;
1231 			old_assign_type = NET_NAME_RENAMED;
1232 			goto rollback;
1233 		} else {
1234 			pr_err("%s: name change rollback failed: %d\n",
1235 			       dev->name, ret);
1236 		}
1237 	}
1238 
1239 	return err;
1240 }
1241 
1242 /**
1243  *	dev_set_alias - change ifalias of a device
1244  *	@dev: device
1245  *	@alias: name up to IFALIASZ
1246  *	@len: limit of bytes to copy from info
1247  *
1248  *	Set ifalias for a device,
1249  */
1250 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1251 {
1252 	struct dev_ifalias *new_alias = NULL;
1253 
1254 	if (len >= IFALIASZ)
1255 		return -EINVAL;
1256 
1257 	if (len) {
1258 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1259 		if (!new_alias)
1260 			return -ENOMEM;
1261 
1262 		memcpy(new_alias->ifalias, alias, len);
1263 		new_alias->ifalias[len] = 0;
1264 	}
1265 
1266 	mutex_lock(&ifalias_mutex);
1267 	rcu_swap_protected(dev->ifalias, new_alias,
1268 			   mutex_is_locked(&ifalias_mutex));
1269 	mutex_unlock(&ifalias_mutex);
1270 
1271 	if (new_alias)
1272 		kfree_rcu(new_alias, rcuhead);
1273 
1274 	return len;
1275 }
1276 
1277 /**
1278  *	dev_get_alias - get ifalias of a device
1279  *	@dev: device
1280  *	@name: buffer to store name of ifalias
1281  *	@len: size of buffer
1282  *
1283  *	get ifalias for a device.  Caller must make sure dev cannot go
1284  *	away,  e.g. rcu read lock or own a reference count to device.
1285  */
1286 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1287 {
1288 	const struct dev_ifalias *alias;
1289 	int ret = 0;
1290 
1291 	rcu_read_lock();
1292 	alias = rcu_dereference(dev->ifalias);
1293 	if (alias)
1294 		ret = snprintf(name, len, "%s", alias->ifalias);
1295 	rcu_read_unlock();
1296 
1297 	return ret;
1298 }
1299 
1300 /**
1301  *	netdev_features_change - device changes features
1302  *	@dev: device to cause notification
1303  *
1304  *	Called to indicate a device has changed features.
1305  */
1306 void netdev_features_change(struct net_device *dev)
1307 {
1308 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1309 }
1310 EXPORT_SYMBOL(netdev_features_change);
1311 
1312 /**
1313  *	netdev_state_change - device changes state
1314  *	@dev: device to cause notification
1315  *
1316  *	Called to indicate a device has changed state. This function calls
1317  *	the notifier chains for netdev_chain and sends a NEWLINK message
1318  *	to the routing socket.
1319  */
1320 void netdev_state_change(struct net_device *dev)
1321 {
1322 	if (dev->flags & IFF_UP) {
1323 		struct netdev_notifier_change_info change_info = {
1324 			.info.dev = dev,
1325 		};
1326 
1327 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1328 					      &change_info.info);
1329 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1330 	}
1331 }
1332 EXPORT_SYMBOL(netdev_state_change);
1333 
1334 /**
1335  * netdev_notify_peers - notify network peers about existence of @dev
1336  * @dev: network device
1337  *
1338  * Generate traffic such that interested network peers are aware of
1339  * @dev, such as by generating a gratuitous ARP. This may be used when
1340  * a device wants to inform the rest of the network about some sort of
1341  * reconfiguration such as a failover event or virtual machine
1342  * migration.
1343  */
1344 void netdev_notify_peers(struct net_device *dev)
1345 {
1346 	rtnl_lock();
1347 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1348 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1349 	rtnl_unlock();
1350 }
1351 EXPORT_SYMBOL(netdev_notify_peers);
1352 
1353 static int __dev_open(struct net_device *dev)
1354 {
1355 	const struct net_device_ops *ops = dev->netdev_ops;
1356 	int ret;
1357 
1358 	ASSERT_RTNL();
1359 
1360 	if (!netif_device_present(dev))
1361 		return -ENODEV;
1362 
1363 	/* Block netpoll from trying to do any rx path servicing.
1364 	 * If we don't do this there is a chance ndo_poll_controller
1365 	 * or ndo_poll may be running while we open the device
1366 	 */
1367 	netpoll_poll_disable(dev);
1368 
1369 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1370 	ret = notifier_to_errno(ret);
1371 	if (ret)
1372 		return ret;
1373 
1374 	set_bit(__LINK_STATE_START, &dev->state);
1375 
1376 	if (ops->ndo_validate_addr)
1377 		ret = ops->ndo_validate_addr(dev);
1378 
1379 	if (!ret && ops->ndo_open)
1380 		ret = ops->ndo_open(dev);
1381 
1382 	netpoll_poll_enable(dev);
1383 
1384 	if (ret)
1385 		clear_bit(__LINK_STATE_START, &dev->state);
1386 	else {
1387 		dev->flags |= IFF_UP;
1388 		dev_set_rx_mode(dev);
1389 		dev_activate(dev);
1390 		add_device_randomness(dev->dev_addr, dev->addr_len);
1391 	}
1392 
1393 	return ret;
1394 }
1395 
1396 /**
1397  *	dev_open	- prepare an interface for use.
1398  *	@dev:	device to open
1399  *
1400  *	Takes a device from down to up state. The device's private open
1401  *	function is invoked and then the multicast lists are loaded. Finally
1402  *	the device is moved into the up state and a %NETDEV_UP message is
1403  *	sent to the netdev notifier chain.
1404  *
1405  *	Calling this function on an active interface is a nop. On a failure
1406  *	a negative errno code is returned.
1407  */
1408 int dev_open(struct net_device *dev)
1409 {
1410 	int ret;
1411 
1412 	if (dev->flags & IFF_UP)
1413 		return 0;
1414 
1415 	ret = __dev_open(dev);
1416 	if (ret < 0)
1417 		return ret;
1418 
1419 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1420 	call_netdevice_notifiers(NETDEV_UP, dev);
1421 
1422 	return ret;
1423 }
1424 EXPORT_SYMBOL(dev_open);
1425 
1426 static void __dev_close_many(struct list_head *head)
1427 {
1428 	struct net_device *dev;
1429 
1430 	ASSERT_RTNL();
1431 	might_sleep();
1432 
1433 	list_for_each_entry(dev, head, close_list) {
1434 		/* Temporarily disable netpoll until the interface is down */
1435 		netpoll_poll_disable(dev);
1436 
1437 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1438 
1439 		clear_bit(__LINK_STATE_START, &dev->state);
1440 
1441 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1442 		 * can be even on different cpu. So just clear netif_running().
1443 		 *
1444 		 * dev->stop() will invoke napi_disable() on all of it's
1445 		 * napi_struct instances on this device.
1446 		 */
1447 		smp_mb__after_atomic(); /* Commit netif_running(). */
1448 	}
1449 
1450 	dev_deactivate_many(head);
1451 
1452 	list_for_each_entry(dev, head, close_list) {
1453 		const struct net_device_ops *ops = dev->netdev_ops;
1454 
1455 		/*
1456 		 *	Call the device specific close. This cannot fail.
1457 		 *	Only if device is UP
1458 		 *
1459 		 *	We allow it to be called even after a DETACH hot-plug
1460 		 *	event.
1461 		 */
1462 		if (ops->ndo_stop)
1463 			ops->ndo_stop(dev);
1464 
1465 		dev->flags &= ~IFF_UP;
1466 		netpoll_poll_enable(dev);
1467 	}
1468 }
1469 
1470 static void __dev_close(struct net_device *dev)
1471 {
1472 	LIST_HEAD(single);
1473 
1474 	list_add(&dev->close_list, &single);
1475 	__dev_close_many(&single);
1476 	list_del(&single);
1477 }
1478 
1479 void dev_close_many(struct list_head *head, bool unlink)
1480 {
1481 	struct net_device *dev, *tmp;
1482 
1483 	/* Remove the devices that don't need to be closed */
1484 	list_for_each_entry_safe(dev, tmp, head, close_list)
1485 		if (!(dev->flags & IFF_UP))
1486 			list_del_init(&dev->close_list);
1487 
1488 	__dev_close_many(head);
1489 
1490 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1491 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1492 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1493 		if (unlink)
1494 			list_del_init(&dev->close_list);
1495 	}
1496 }
1497 EXPORT_SYMBOL(dev_close_many);
1498 
1499 /**
1500  *	dev_close - shutdown an interface.
1501  *	@dev: device to shutdown
1502  *
1503  *	This function moves an active device into down state. A
1504  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1505  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1506  *	chain.
1507  */
1508 void dev_close(struct net_device *dev)
1509 {
1510 	if (dev->flags & IFF_UP) {
1511 		LIST_HEAD(single);
1512 
1513 		list_add(&dev->close_list, &single);
1514 		dev_close_many(&single, true);
1515 		list_del(&single);
1516 	}
1517 }
1518 EXPORT_SYMBOL(dev_close);
1519 
1520 
1521 /**
1522  *	dev_disable_lro - disable Large Receive Offload on a device
1523  *	@dev: device
1524  *
1525  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1526  *	called under RTNL.  This is needed if received packets may be
1527  *	forwarded to another interface.
1528  */
1529 void dev_disable_lro(struct net_device *dev)
1530 {
1531 	struct net_device *lower_dev;
1532 	struct list_head *iter;
1533 
1534 	dev->wanted_features &= ~NETIF_F_LRO;
1535 	netdev_update_features(dev);
1536 
1537 	if (unlikely(dev->features & NETIF_F_LRO))
1538 		netdev_WARN(dev, "failed to disable LRO!\n");
1539 
1540 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1541 		dev_disable_lro(lower_dev);
1542 }
1543 EXPORT_SYMBOL(dev_disable_lro);
1544 
1545 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1546 				   struct net_device *dev)
1547 {
1548 	struct netdev_notifier_info info = {
1549 		.dev = dev,
1550 	};
1551 
1552 	return nb->notifier_call(nb, val, &info);
1553 }
1554 
1555 static int dev_boot_phase = 1;
1556 
1557 /**
1558  * register_netdevice_notifier - register a network notifier block
1559  * @nb: notifier
1560  *
1561  * Register a notifier to be called when network device events occur.
1562  * The notifier passed is linked into the kernel structures and must
1563  * not be reused until it has been unregistered. A negative errno code
1564  * is returned on a failure.
1565  *
1566  * When registered all registration and up events are replayed
1567  * to the new notifier to allow device to have a race free
1568  * view of the network device list.
1569  */
1570 
1571 int register_netdevice_notifier(struct notifier_block *nb)
1572 {
1573 	struct net_device *dev;
1574 	struct net_device *last;
1575 	struct net *net;
1576 	int err;
1577 
1578 	rtnl_lock();
1579 	err = raw_notifier_chain_register(&netdev_chain, nb);
1580 	if (err)
1581 		goto unlock;
1582 	if (dev_boot_phase)
1583 		goto unlock;
1584 	for_each_net(net) {
1585 		for_each_netdev(net, dev) {
1586 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1587 			err = notifier_to_errno(err);
1588 			if (err)
1589 				goto rollback;
1590 
1591 			if (!(dev->flags & IFF_UP))
1592 				continue;
1593 
1594 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1595 		}
1596 	}
1597 
1598 unlock:
1599 	rtnl_unlock();
1600 	return err;
1601 
1602 rollback:
1603 	last = dev;
1604 	for_each_net(net) {
1605 		for_each_netdev(net, dev) {
1606 			if (dev == last)
1607 				goto outroll;
1608 
1609 			if (dev->flags & IFF_UP) {
1610 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1611 							dev);
1612 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1613 			}
1614 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1615 		}
1616 	}
1617 
1618 outroll:
1619 	raw_notifier_chain_unregister(&netdev_chain, nb);
1620 	goto unlock;
1621 }
1622 EXPORT_SYMBOL(register_netdevice_notifier);
1623 
1624 /**
1625  * unregister_netdevice_notifier - unregister a network notifier block
1626  * @nb: notifier
1627  *
1628  * Unregister a notifier previously registered by
1629  * register_netdevice_notifier(). The notifier is unlinked into the
1630  * kernel structures and may then be reused. A negative errno code
1631  * is returned on a failure.
1632  *
1633  * After unregistering unregister and down device events are synthesized
1634  * for all devices on the device list to the removed notifier to remove
1635  * the need for special case cleanup code.
1636  */
1637 
1638 int unregister_netdevice_notifier(struct notifier_block *nb)
1639 {
1640 	struct net_device *dev;
1641 	struct net *net;
1642 	int err;
1643 
1644 	rtnl_lock();
1645 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1646 	if (err)
1647 		goto unlock;
1648 
1649 	for_each_net(net) {
1650 		for_each_netdev(net, dev) {
1651 			if (dev->flags & IFF_UP) {
1652 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1653 							dev);
1654 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1655 			}
1656 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1657 		}
1658 	}
1659 unlock:
1660 	rtnl_unlock();
1661 	return err;
1662 }
1663 EXPORT_SYMBOL(unregister_netdevice_notifier);
1664 
1665 /**
1666  *	call_netdevice_notifiers_info - call all network notifier blocks
1667  *	@val: value passed unmodified to notifier function
1668  *	@dev: net_device pointer passed unmodified to notifier function
1669  *	@info: notifier information data
1670  *
1671  *	Call all network notifier blocks.  Parameters and return value
1672  *	are as for raw_notifier_call_chain().
1673  */
1674 
1675 static int call_netdevice_notifiers_info(unsigned long val,
1676 					 struct netdev_notifier_info *info)
1677 {
1678 	ASSERT_RTNL();
1679 	return raw_notifier_call_chain(&netdev_chain, val, info);
1680 }
1681 
1682 /**
1683  *	call_netdevice_notifiers - call all network notifier blocks
1684  *      @val: value passed unmodified to notifier function
1685  *      @dev: net_device pointer passed unmodified to notifier function
1686  *
1687  *	Call all network notifier blocks.  Parameters and return value
1688  *	are as for raw_notifier_call_chain().
1689  */
1690 
1691 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1692 {
1693 	struct netdev_notifier_info info = {
1694 		.dev = dev,
1695 	};
1696 
1697 	return call_netdevice_notifiers_info(val, &info);
1698 }
1699 EXPORT_SYMBOL(call_netdevice_notifiers);
1700 
1701 #ifdef CONFIG_NET_INGRESS
1702 static struct static_key ingress_needed __read_mostly;
1703 
1704 void net_inc_ingress_queue(void)
1705 {
1706 	static_key_slow_inc(&ingress_needed);
1707 }
1708 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1709 
1710 void net_dec_ingress_queue(void)
1711 {
1712 	static_key_slow_dec(&ingress_needed);
1713 }
1714 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1715 #endif
1716 
1717 #ifdef CONFIG_NET_EGRESS
1718 static struct static_key egress_needed __read_mostly;
1719 
1720 void net_inc_egress_queue(void)
1721 {
1722 	static_key_slow_inc(&egress_needed);
1723 }
1724 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1725 
1726 void net_dec_egress_queue(void)
1727 {
1728 	static_key_slow_dec(&egress_needed);
1729 }
1730 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1731 #endif
1732 
1733 static struct static_key netstamp_needed __read_mostly;
1734 #ifdef HAVE_JUMP_LABEL
1735 static atomic_t netstamp_needed_deferred;
1736 static atomic_t netstamp_wanted;
1737 static void netstamp_clear(struct work_struct *work)
1738 {
1739 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1740 	int wanted;
1741 
1742 	wanted = atomic_add_return(deferred, &netstamp_wanted);
1743 	if (wanted > 0)
1744 		static_key_enable(&netstamp_needed);
1745 	else
1746 		static_key_disable(&netstamp_needed);
1747 }
1748 static DECLARE_WORK(netstamp_work, netstamp_clear);
1749 #endif
1750 
1751 void net_enable_timestamp(void)
1752 {
1753 #ifdef HAVE_JUMP_LABEL
1754 	int wanted;
1755 
1756 	while (1) {
1757 		wanted = atomic_read(&netstamp_wanted);
1758 		if (wanted <= 0)
1759 			break;
1760 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1761 			return;
1762 	}
1763 	atomic_inc(&netstamp_needed_deferred);
1764 	schedule_work(&netstamp_work);
1765 #else
1766 	static_key_slow_inc(&netstamp_needed);
1767 #endif
1768 }
1769 EXPORT_SYMBOL(net_enable_timestamp);
1770 
1771 void net_disable_timestamp(void)
1772 {
1773 #ifdef HAVE_JUMP_LABEL
1774 	int wanted;
1775 
1776 	while (1) {
1777 		wanted = atomic_read(&netstamp_wanted);
1778 		if (wanted <= 1)
1779 			break;
1780 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1781 			return;
1782 	}
1783 	atomic_dec(&netstamp_needed_deferred);
1784 	schedule_work(&netstamp_work);
1785 #else
1786 	static_key_slow_dec(&netstamp_needed);
1787 #endif
1788 }
1789 EXPORT_SYMBOL(net_disable_timestamp);
1790 
1791 static inline void net_timestamp_set(struct sk_buff *skb)
1792 {
1793 	skb->tstamp = 0;
1794 	if (static_key_false(&netstamp_needed))
1795 		__net_timestamp(skb);
1796 }
1797 
1798 #define net_timestamp_check(COND, SKB)			\
1799 	if (static_key_false(&netstamp_needed)) {		\
1800 		if ((COND) && !(SKB)->tstamp)	\
1801 			__net_timestamp(SKB);		\
1802 	}						\
1803 
1804 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1805 {
1806 	unsigned int len;
1807 
1808 	if (!(dev->flags & IFF_UP))
1809 		return false;
1810 
1811 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1812 	if (skb->len <= len)
1813 		return true;
1814 
1815 	/* if TSO is enabled, we don't care about the length as the packet
1816 	 * could be forwarded without being segmented before
1817 	 */
1818 	if (skb_is_gso(skb))
1819 		return true;
1820 
1821 	return false;
1822 }
1823 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1824 
1825 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1826 {
1827 	int ret = ____dev_forward_skb(dev, skb);
1828 
1829 	if (likely(!ret)) {
1830 		skb->protocol = eth_type_trans(skb, dev);
1831 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1832 	}
1833 
1834 	return ret;
1835 }
1836 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1837 
1838 /**
1839  * dev_forward_skb - loopback an skb to another netif
1840  *
1841  * @dev: destination network device
1842  * @skb: buffer to forward
1843  *
1844  * return values:
1845  *	NET_RX_SUCCESS	(no congestion)
1846  *	NET_RX_DROP     (packet was dropped, but freed)
1847  *
1848  * dev_forward_skb can be used for injecting an skb from the
1849  * start_xmit function of one device into the receive queue
1850  * of another device.
1851  *
1852  * The receiving device may be in another namespace, so
1853  * we have to clear all information in the skb that could
1854  * impact namespace isolation.
1855  */
1856 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1857 {
1858 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1859 }
1860 EXPORT_SYMBOL_GPL(dev_forward_skb);
1861 
1862 static inline int deliver_skb(struct sk_buff *skb,
1863 			      struct packet_type *pt_prev,
1864 			      struct net_device *orig_dev)
1865 {
1866 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1867 		return -ENOMEM;
1868 	refcount_inc(&skb->users);
1869 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1870 }
1871 
1872 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1873 					  struct packet_type **pt,
1874 					  struct net_device *orig_dev,
1875 					  __be16 type,
1876 					  struct list_head *ptype_list)
1877 {
1878 	struct packet_type *ptype, *pt_prev = *pt;
1879 
1880 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1881 		if (ptype->type != type)
1882 			continue;
1883 		if (pt_prev)
1884 			deliver_skb(skb, pt_prev, orig_dev);
1885 		pt_prev = ptype;
1886 	}
1887 	*pt = pt_prev;
1888 }
1889 
1890 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1891 {
1892 	if (!ptype->af_packet_priv || !skb->sk)
1893 		return false;
1894 
1895 	if (ptype->id_match)
1896 		return ptype->id_match(ptype, skb->sk);
1897 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1898 		return true;
1899 
1900 	return false;
1901 }
1902 
1903 /*
1904  *	Support routine. Sends outgoing frames to any network
1905  *	taps currently in use.
1906  */
1907 
1908 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1909 {
1910 	struct packet_type *ptype;
1911 	struct sk_buff *skb2 = NULL;
1912 	struct packet_type *pt_prev = NULL;
1913 	struct list_head *ptype_list = &ptype_all;
1914 
1915 	rcu_read_lock();
1916 again:
1917 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1918 		/* Never send packets back to the socket
1919 		 * they originated from - MvS (miquels@drinkel.ow.org)
1920 		 */
1921 		if (skb_loop_sk(ptype, skb))
1922 			continue;
1923 
1924 		if (pt_prev) {
1925 			deliver_skb(skb2, pt_prev, skb->dev);
1926 			pt_prev = ptype;
1927 			continue;
1928 		}
1929 
1930 		/* need to clone skb, done only once */
1931 		skb2 = skb_clone(skb, GFP_ATOMIC);
1932 		if (!skb2)
1933 			goto out_unlock;
1934 
1935 		net_timestamp_set(skb2);
1936 
1937 		/* skb->nh should be correctly
1938 		 * set by sender, so that the second statement is
1939 		 * just protection against buggy protocols.
1940 		 */
1941 		skb_reset_mac_header(skb2);
1942 
1943 		if (skb_network_header(skb2) < skb2->data ||
1944 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1945 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1946 					     ntohs(skb2->protocol),
1947 					     dev->name);
1948 			skb_reset_network_header(skb2);
1949 		}
1950 
1951 		skb2->transport_header = skb2->network_header;
1952 		skb2->pkt_type = PACKET_OUTGOING;
1953 		pt_prev = ptype;
1954 	}
1955 
1956 	if (ptype_list == &ptype_all) {
1957 		ptype_list = &dev->ptype_all;
1958 		goto again;
1959 	}
1960 out_unlock:
1961 	if (pt_prev) {
1962 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
1963 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1964 		else
1965 			kfree_skb(skb2);
1966 	}
1967 	rcu_read_unlock();
1968 }
1969 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1970 
1971 /**
1972  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1973  * @dev: Network device
1974  * @txq: number of queues available
1975  *
1976  * If real_num_tx_queues is changed the tc mappings may no longer be
1977  * valid. To resolve this verify the tc mapping remains valid and if
1978  * not NULL the mapping. With no priorities mapping to this
1979  * offset/count pair it will no longer be used. In the worst case TC0
1980  * is invalid nothing can be done so disable priority mappings. If is
1981  * expected that drivers will fix this mapping if they can before
1982  * calling netif_set_real_num_tx_queues.
1983  */
1984 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1985 {
1986 	int i;
1987 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1988 
1989 	/* If TC0 is invalidated disable TC mapping */
1990 	if (tc->offset + tc->count > txq) {
1991 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1992 		dev->num_tc = 0;
1993 		return;
1994 	}
1995 
1996 	/* Invalidated prio to tc mappings set to TC0 */
1997 	for (i = 1; i < TC_BITMASK + 1; i++) {
1998 		int q = netdev_get_prio_tc_map(dev, i);
1999 
2000 		tc = &dev->tc_to_txq[q];
2001 		if (tc->offset + tc->count > txq) {
2002 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2003 				i, q);
2004 			netdev_set_prio_tc_map(dev, i, 0);
2005 		}
2006 	}
2007 }
2008 
2009 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2010 {
2011 	if (dev->num_tc) {
2012 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2013 		int i;
2014 
2015 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2016 			if ((txq - tc->offset) < tc->count)
2017 				return i;
2018 		}
2019 
2020 		return -1;
2021 	}
2022 
2023 	return 0;
2024 }
2025 EXPORT_SYMBOL(netdev_txq_to_tc);
2026 
2027 #ifdef CONFIG_XPS
2028 static DEFINE_MUTEX(xps_map_mutex);
2029 #define xmap_dereference(P)		\
2030 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2031 
2032 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2033 			     int tci, u16 index)
2034 {
2035 	struct xps_map *map = NULL;
2036 	int pos;
2037 
2038 	if (dev_maps)
2039 		map = xmap_dereference(dev_maps->cpu_map[tci]);
2040 	if (!map)
2041 		return false;
2042 
2043 	for (pos = map->len; pos--;) {
2044 		if (map->queues[pos] != index)
2045 			continue;
2046 
2047 		if (map->len > 1) {
2048 			map->queues[pos] = map->queues[--map->len];
2049 			break;
2050 		}
2051 
2052 		RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2053 		kfree_rcu(map, rcu);
2054 		return false;
2055 	}
2056 
2057 	return true;
2058 }
2059 
2060 static bool remove_xps_queue_cpu(struct net_device *dev,
2061 				 struct xps_dev_maps *dev_maps,
2062 				 int cpu, u16 offset, u16 count)
2063 {
2064 	int num_tc = dev->num_tc ? : 1;
2065 	bool active = false;
2066 	int tci;
2067 
2068 	for (tci = cpu * num_tc; num_tc--; tci++) {
2069 		int i, j;
2070 
2071 		for (i = count, j = offset; i--; j++) {
2072 			if (!remove_xps_queue(dev_maps, cpu, j))
2073 				break;
2074 		}
2075 
2076 		active |= i < 0;
2077 	}
2078 
2079 	return active;
2080 }
2081 
2082 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2083 				   u16 count)
2084 {
2085 	struct xps_dev_maps *dev_maps;
2086 	int cpu, i;
2087 	bool active = false;
2088 
2089 	mutex_lock(&xps_map_mutex);
2090 	dev_maps = xmap_dereference(dev->xps_maps);
2091 
2092 	if (!dev_maps)
2093 		goto out_no_maps;
2094 
2095 	for_each_possible_cpu(cpu)
2096 		active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2097 					       offset, count);
2098 
2099 	if (!active) {
2100 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2101 		kfree_rcu(dev_maps, rcu);
2102 	}
2103 
2104 	for (i = offset + (count - 1); count--; i--)
2105 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2106 					     NUMA_NO_NODE);
2107 
2108 out_no_maps:
2109 	mutex_unlock(&xps_map_mutex);
2110 }
2111 
2112 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2113 {
2114 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2115 }
2116 
2117 static struct xps_map *expand_xps_map(struct xps_map *map,
2118 				      int cpu, u16 index)
2119 {
2120 	struct xps_map *new_map;
2121 	int alloc_len = XPS_MIN_MAP_ALLOC;
2122 	int i, pos;
2123 
2124 	for (pos = 0; map && pos < map->len; pos++) {
2125 		if (map->queues[pos] != index)
2126 			continue;
2127 		return map;
2128 	}
2129 
2130 	/* Need to add queue to this CPU's existing map */
2131 	if (map) {
2132 		if (pos < map->alloc_len)
2133 			return map;
2134 
2135 		alloc_len = map->alloc_len * 2;
2136 	}
2137 
2138 	/* Need to allocate new map to store queue on this CPU's map */
2139 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2140 			       cpu_to_node(cpu));
2141 	if (!new_map)
2142 		return NULL;
2143 
2144 	for (i = 0; i < pos; i++)
2145 		new_map->queues[i] = map->queues[i];
2146 	new_map->alloc_len = alloc_len;
2147 	new_map->len = pos;
2148 
2149 	return new_map;
2150 }
2151 
2152 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2153 			u16 index)
2154 {
2155 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2156 	int i, cpu, tci, numa_node_id = -2;
2157 	int maps_sz, num_tc = 1, tc = 0;
2158 	struct xps_map *map, *new_map;
2159 	bool active = false;
2160 
2161 	if (dev->num_tc) {
2162 		num_tc = dev->num_tc;
2163 		tc = netdev_txq_to_tc(dev, index);
2164 		if (tc < 0)
2165 			return -EINVAL;
2166 	}
2167 
2168 	maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2169 	if (maps_sz < L1_CACHE_BYTES)
2170 		maps_sz = L1_CACHE_BYTES;
2171 
2172 	mutex_lock(&xps_map_mutex);
2173 
2174 	dev_maps = xmap_dereference(dev->xps_maps);
2175 
2176 	/* allocate memory for queue storage */
2177 	for_each_cpu_and(cpu, cpu_online_mask, mask) {
2178 		if (!new_dev_maps)
2179 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2180 		if (!new_dev_maps) {
2181 			mutex_unlock(&xps_map_mutex);
2182 			return -ENOMEM;
2183 		}
2184 
2185 		tci = cpu * num_tc + tc;
2186 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2187 				 NULL;
2188 
2189 		map = expand_xps_map(map, cpu, index);
2190 		if (!map)
2191 			goto error;
2192 
2193 		RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2194 	}
2195 
2196 	if (!new_dev_maps)
2197 		goto out_no_new_maps;
2198 
2199 	for_each_possible_cpu(cpu) {
2200 		/* copy maps belonging to foreign traffic classes */
2201 		for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2202 			/* fill in the new device map from the old device map */
2203 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2204 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2205 		}
2206 
2207 		/* We need to explicitly update tci as prevous loop
2208 		 * could break out early if dev_maps is NULL.
2209 		 */
2210 		tci = cpu * num_tc + tc;
2211 
2212 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2213 			/* add queue to CPU maps */
2214 			int pos = 0;
2215 
2216 			map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2217 			while ((pos < map->len) && (map->queues[pos] != index))
2218 				pos++;
2219 
2220 			if (pos == map->len)
2221 				map->queues[map->len++] = index;
2222 #ifdef CONFIG_NUMA
2223 			if (numa_node_id == -2)
2224 				numa_node_id = cpu_to_node(cpu);
2225 			else if (numa_node_id != cpu_to_node(cpu))
2226 				numa_node_id = -1;
2227 #endif
2228 		} else if (dev_maps) {
2229 			/* fill in the new device map from the old device map */
2230 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2231 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2232 		}
2233 
2234 		/* copy maps belonging to foreign traffic classes */
2235 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2236 			/* fill in the new device map from the old device map */
2237 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2238 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2239 		}
2240 	}
2241 
2242 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2243 
2244 	/* Cleanup old maps */
2245 	if (!dev_maps)
2246 		goto out_no_old_maps;
2247 
2248 	for_each_possible_cpu(cpu) {
2249 		for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2250 			new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2251 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2252 			if (map && map != new_map)
2253 				kfree_rcu(map, rcu);
2254 		}
2255 	}
2256 
2257 	kfree_rcu(dev_maps, rcu);
2258 
2259 out_no_old_maps:
2260 	dev_maps = new_dev_maps;
2261 	active = true;
2262 
2263 out_no_new_maps:
2264 	/* update Tx queue numa node */
2265 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2266 				     (numa_node_id >= 0) ? numa_node_id :
2267 				     NUMA_NO_NODE);
2268 
2269 	if (!dev_maps)
2270 		goto out_no_maps;
2271 
2272 	/* removes queue from unused CPUs */
2273 	for_each_possible_cpu(cpu) {
2274 		for (i = tc, tci = cpu * num_tc; i--; tci++)
2275 			active |= remove_xps_queue(dev_maps, tci, index);
2276 		if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2277 			active |= remove_xps_queue(dev_maps, tci, index);
2278 		for (i = num_tc - tc, tci++; --i; tci++)
2279 			active |= remove_xps_queue(dev_maps, tci, index);
2280 	}
2281 
2282 	/* free map if not active */
2283 	if (!active) {
2284 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2285 		kfree_rcu(dev_maps, rcu);
2286 	}
2287 
2288 out_no_maps:
2289 	mutex_unlock(&xps_map_mutex);
2290 
2291 	return 0;
2292 error:
2293 	/* remove any maps that we added */
2294 	for_each_possible_cpu(cpu) {
2295 		for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2296 			new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2297 			map = dev_maps ?
2298 			      xmap_dereference(dev_maps->cpu_map[tci]) :
2299 			      NULL;
2300 			if (new_map && new_map != map)
2301 				kfree(new_map);
2302 		}
2303 	}
2304 
2305 	mutex_unlock(&xps_map_mutex);
2306 
2307 	kfree(new_dev_maps);
2308 	return -ENOMEM;
2309 }
2310 EXPORT_SYMBOL(netif_set_xps_queue);
2311 
2312 #endif
2313 void netdev_reset_tc(struct net_device *dev)
2314 {
2315 #ifdef CONFIG_XPS
2316 	netif_reset_xps_queues_gt(dev, 0);
2317 #endif
2318 	dev->num_tc = 0;
2319 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2320 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2321 }
2322 EXPORT_SYMBOL(netdev_reset_tc);
2323 
2324 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2325 {
2326 	if (tc >= dev->num_tc)
2327 		return -EINVAL;
2328 
2329 #ifdef CONFIG_XPS
2330 	netif_reset_xps_queues(dev, offset, count);
2331 #endif
2332 	dev->tc_to_txq[tc].count = count;
2333 	dev->tc_to_txq[tc].offset = offset;
2334 	return 0;
2335 }
2336 EXPORT_SYMBOL(netdev_set_tc_queue);
2337 
2338 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2339 {
2340 	if (num_tc > TC_MAX_QUEUE)
2341 		return -EINVAL;
2342 
2343 #ifdef CONFIG_XPS
2344 	netif_reset_xps_queues_gt(dev, 0);
2345 #endif
2346 	dev->num_tc = num_tc;
2347 	return 0;
2348 }
2349 EXPORT_SYMBOL(netdev_set_num_tc);
2350 
2351 /*
2352  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2353  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2354  */
2355 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2356 {
2357 	int rc;
2358 
2359 	if (txq < 1 || txq > dev->num_tx_queues)
2360 		return -EINVAL;
2361 
2362 	if (dev->reg_state == NETREG_REGISTERED ||
2363 	    dev->reg_state == NETREG_UNREGISTERING) {
2364 		ASSERT_RTNL();
2365 
2366 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2367 						  txq);
2368 		if (rc)
2369 			return rc;
2370 
2371 		if (dev->num_tc)
2372 			netif_setup_tc(dev, txq);
2373 
2374 		if (txq < dev->real_num_tx_queues) {
2375 			qdisc_reset_all_tx_gt(dev, txq);
2376 #ifdef CONFIG_XPS
2377 			netif_reset_xps_queues_gt(dev, txq);
2378 #endif
2379 		}
2380 	}
2381 
2382 	dev->real_num_tx_queues = txq;
2383 	return 0;
2384 }
2385 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2386 
2387 #ifdef CONFIG_SYSFS
2388 /**
2389  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2390  *	@dev: Network device
2391  *	@rxq: Actual number of RX queues
2392  *
2393  *	This must be called either with the rtnl_lock held or before
2394  *	registration of the net device.  Returns 0 on success, or a
2395  *	negative error code.  If called before registration, it always
2396  *	succeeds.
2397  */
2398 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2399 {
2400 	int rc;
2401 
2402 	if (rxq < 1 || rxq > dev->num_rx_queues)
2403 		return -EINVAL;
2404 
2405 	if (dev->reg_state == NETREG_REGISTERED) {
2406 		ASSERT_RTNL();
2407 
2408 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2409 						  rxq);
2410 		if (rc)
2411 			return rc;
2412 	}
2413 
2414 	dev->real_num_rx_queues = rxq;
2415 	return 0;
2416 }
2417 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2418 #endif
2419 
2420 /**
2421  * netif_get_num_default_rss_queues - default number of RSS queues
2422  *
2423  * This routine should set an upper limit on the number of RSS queues
2424  * used by default by multiqueue devices.
2425  */
2426 int netif_get_num_default_rss_queues(void)
2427 {
2428 	return is_kdump_kernel() ?
2429 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2430 }
2431 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2432 
2433 static void __netif_reschedule(struct Qdisc *q)
2434 {
2435 	struct softnet_data *sd;
2436 	unsigned long flags;
2437 
2438 	local_irq_save(flags);
2439 	sd = this_cpu_ptr(&softnet_data);
2440 	q->next_sched = NULL;
2441 	*sd->output_queue_tailp = q;
2442 	sd->output_queue_tailp = &q->next_sched;
2443 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2444 	local_irq_restore(flags);
2445 }
2446 
2447 void __netif_schedule(struct Qdisc *q)
2448 {
2449 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2450 		__netif_reschedule(q);
2451 }
2452 EXPORT_SYMBOL(__netif_schedule);
2453 
2454 struct dev_kfree_skb_cb {
2455 	enum skb_free_reason reason;
2456 };
2457 
2458 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2459 {
2460 	return (struct dev_kfree_skb_cb *)skb->cb;
2461 }
2462 
2463 void netif_schedule_queue(struct netdev_queue *txq)
2464 {
2465 	rcu_read_lock();
2466 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2467 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2468 
2469 		__netif_schedule(q);
2470 	}
2471 	rcu_read_unlock();
2472 }
2473 EXPORT_SYMBOL(netif_schedule_queue);
2474 
2475 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2476 {
2477 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2478 		struct Qdisc *q;
2479 
2480 		rcu_read_lock();
2481 		q = rcu_dereference(dev_queue->qdisc);
2482 		__netif_schedule(q);
2483 		rcu_read_unlock();
2484 	}
2485 }
2486 EXPORT_SYMBOL(netif_tx_wake_queue);
2487 
2488 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2489 {
2490 	unsigned long flags;
2491 
2492 	if (unlikely(!skb))
2493 		return;
2494 
2495 	if (likely(refcount_read(&skb->users) == 1)) {
2496 		smp_rmb();
2497 		refcount_set(&skb->users, 0);
2498 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
2499 		return;
2500 	}
2501 	get_kfree_skb_cb(skb)->reason = reason;
2502 	local_irq_save(flags);
2503 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2504 	__this_cpu_write(softnet_data.completion_queue, skb);
2505 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2506 	local_irq_restore(flags);
2507 }
2508 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2509 
2510 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2511 {
2512 	if (in_irq() || irqs_disabled())
2513 		__dev_kfree_skb_irq(skb, reason);
2514 	else
2515 		dev_kfree_skb(skb);
2516 }
2517 EXPORT_SYMBOL(__dev_kfree_skb_any);
2518 
2519 
2520 /**
2521  * netif_device_detach - mark device as removed
2522  * @dev: network device
2523  *
2524  * Mark device as removed from system and therefore no longer available.
2525  */
2526 void netif_device_detach(struct net_device *dev)
2527 {
2528 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2529 	    netif_running(dev)) {
2530 		netif_tx_stop_all_queues(dev);
2531 	}
2532 }
2533 EXPORT_SYMBOL(netif_device_detach);
2534 
2535 /**
2536  * netif_device_attach - mark device as attached
2537  * @dev: network device
2538  *
2539  * Mark device as attached from system and restart if needed.
2540  */
2541 void netif_device_attach(struct net_device *dev)
2542 {
2543 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2544 	    netif_running(dev)) {
2545 		netif_tx_wake_all_queues(dev);
2546 		__netdev_watchdog_up(dev);
2547 	}
2548 }
2549 EXPORT_SYMBOL(netif_device_attach);
2550 
2551 /*
2552  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2553  * to be used as a distribution range.
2554  */
2555 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2556 		  unsigned int num_tx_queues)
2557 {
2558 	u32 hash;
2559 	u16 qoffset = 0;
2560 	u16 qcount = num_tx_queues;
2561 
2562 	if (skb_rx_queue_recorded(skb)) {
2563 		hash = skb_get_rx_queue(skb);
2564 		while (unlikely(hash >= num_tx_queues))
2565 			hash -= num_tx_queues;
2566 		return hash;
2567 	}
2568 
2569 	if (dev->num_tc) {
2570 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2571 
2572 		qoffset = dev->tc_to_txq[tc].offset;
2573 		qcount = dev->tc_to_txq[tc].count;
2574 	}
2575 
2576 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2577 }
2578 EXPORT_SYMBOL(__skb_tx_hash);
2579 
2580 static void skb_warn_bad_offload(const struct sk_buff *skb)
2581 {
2582 	static const netdev_features_t null_features;
2583 	struct net_device *dev = skb->dev;
2584 	const char *name = "";
2585 
2586 	if (!net_ratelimit())
2587 		return;
2588 
2589 	if (dev) {
2590 		if (dev->dev.parent)
2591 			name = dev_driver_string(dev->dev.parent);
2592 		else
2593 			name = netdev_name(dev);
2594 	}
2595 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2596 	     "gso_type=%d ip_summed=%d\n",
2597 	     name, dev ? &dev->features : &null_features,
2598 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2599 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2600 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2601 }
2602 
2603 /*
2604  * Invalidate hardware checksum when packet is to be mangled, and
2605  * complete checksum manually on outgoing path.
2606  */
2607 int skb_checksum_help(struct sk_buff *skb)
2608 {
2609 	__wsum csum;
2610 	int ret = 0, offset;
2611 
2612 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2613 		goto out_set_summed;
2614 
2615 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2616 		skb_warn_bad_offload(skb);
2617 		return -EINVAL;
2618 	}
2619 
2620 	/* Before computing a checksum, we should make sure no frag could
2621 	 * be modified by an external entity : checksum could be wrong.
2622 	 */
2623 	if (skb_has_shared_frag(skb)) {
2624 		ret = __skb_linearize(skb);
2625 		if (ret)
2626 			goto out;
2627 	}
2628 
2629 	offset = skb_checksum_start_offset(skb);
2630 	BUG_ON(offset >= skb_headlen(skb));
2631 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2632 
2633 	offset += skb->csum_offset;
2634 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2635 
2636 	if (skb_cloned(skb) &&
2637 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2638 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2639 		if (ret)
2640 			goto out;
2641 	}
2642 
2643 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2644 out_set_summed:
2645 	skb->ip_summed = CHECKSUM_NONE;
2646 out:
2647 	return ret;
2648 }
2649 EXPORT_SYMBOL(skb_checksum_help);
2650 
2651 int skb_crc32c_csum_help(struct sk_buff *skb)
2652 {
2653 	__le32 crc32c_csum;
2654 	int ret = 0, offset, start;
2655 
2656 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2657 		goto out;
2658 
2659 	if (unlikely(skb_is_gso(skb)))
2660 		goto out;
2661 
2662 	/* Before computing a checksum, we should make sure no frag could
2663 	 * be modified by an external entity : checksum could be wrong.
2664 	 */
2665 	if (unlikely(skb_has_shared_frag(skb))) {
2666 		ret = __skb_linearize(skb);
2667 		if (ret)
2668 			goto out;
2669 	}
2670 	start = skb_checksum_start_offset(skb);
2671 	offset = start + offsetof(struct sctphdr, checksum);
2672 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2673 		ret = -EINVAL;
2674 		goto out;
2675 	}
2676 	if (skb_cloned(skb) &&
2677 	    !skb_clone_writable(skb, offset + sizeof(__le32))) {
2678 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2679 		if (ret)
2680 			goto out;
2681 	}
2682 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2683 						  skb->len - start, ~(__u32)0,
2684 						  crc32c_csum_stub));
2685 	*(__le32 *)(skb->data + offset) = crc32c_csum;
2686 	skb->ip_summed = CHECKSUM_NONE;
2687 	skb->csum_not_inet = 0;
2688 out:
2689 	return ret;
2690 }
2691 
2692 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2693 {
2694 	__be16 type = skb->protocol;
2695 
2696 	/* Tunnel gso handlers can set protocol to ethernet. */
2697 	if (type == htons(ETH_P_TEB)) {
2698 		struct ethhdr *eth;
2699 
2700 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2701 			return 0;
2702 
2703 		eth = (struct ethhdr *)skb_mac_header(skb);
2704 		type = eth->h_proto;
2705 	}
2706 
2707 	return __vlan_get_protocol(skb, type, depth);
2708 }
2709 
2710 /**
2711  *	skb_mac_gso_segment - mac layer segmentation handler.
2712  *	@skb: buffer to segment
2713  *	@features: features for the output path (see dev->features)
2714  */
2715 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2716 				    netdev_features_t features)
2717 {
2718 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2719 	struct packet_offload *ptype;
2720 	int vlan_depth = skb->mac_len;
2721 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2722 
2723 	if (unlikely(!type))
2724 		return ERR_PTR(-EINVAL);
2725 
2726 	__skb_pull(skb, vlan_depth);
2727 
2728 	rcu_read_lock();
2729 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2730 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2731 			segs = ptype->callbacks.gso_segment(skb, features);
2732 			break;
2733 		}
2734 	}
2735 	rcu_read_unlock();
2736 
2737 	__skb_push(skb, skb->data - skb_mac_header(skb));
2738 
2739 	return segs;
2740 }
2741 EXPORT_SYMBOL(skb_mac_gso_segment);
2742 
2743 
2744 /* openvswitch calls this on rx path, so we need a different check.
2745  */
2746 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2747 {
2748 	if (tx_path)
2749 		return skb->ip_summed != CHECKSUM_PARTIAL &&
2750 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
2751 
2752 	return skb->ip_summed == CHECKSUM_NONE;
2753 }
2754 
2755 /**
2756  *	__skb_gso_segment - Perform segmentation on skb.
2757  *	@skb: buffer to segment
2758  *	@features: features for the output path (see dev->features)
2759  *	@tx_path: whether it is called in TX path
2760  *
2761  *	This function segments the given skb and returns a list of segments.
2762  *
2763  *	It may return NULL if the skb requires no segmentation.  This is
2764  *	only possible when GSO is used for verifying header integrity.
2765  *
2766  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2767  */
2768 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2769 				  netdev_features_t features, bool tx_path)
2770 {
2771 	struct sk_buff *segs;
2772 
2773 	if (unlikely(skb_needs_check(skb, tx_path))) {
2774 		int err;
2775 
2776 		/* We're going to init ->check field in TCP or UDP header */
2777 		err = skb_cow_head(skb, 0);
2778 		if (err < 0)
2779 			return ERR_PTR(err);
2780 	}
2781 
2782 	/* Only report GSO partial support if it will enable us to
2783 	 * support segmentation on this frame without needing additional
2784 	 * work.
2785 	 */
2786 	if (features & NETIF_F_GSO_PARTIAL) {
2787 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2788 		struct net_device *dev = skb->dev;
2789 
2790 		partial_features |= dev->features & dev->gso_partial_features;
2791 		if (!skb_gso_ok(skb, features | partial_features))
2792 			features &= ~NETIF_F_GSO_PARTIAL;
2793 	}
2794 
2795 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2796 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2797 
2798 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2799 	SKB_GSO_CB(skb)->encap_level = 0;
2800 
2801 	skb_reset_mac_header(skb);
2802 	skb_reset_mac_len(skb);
2803 
2804 	segs = skb_mac_gso_segment(skb, features);
2805 
2806 	if (unlikely(skb_needs_check(skb, tx_path)))
2807 		skb_warn_bad_offload(skb);
2808 
2809 	return segs;
2810 }
2811 EXPORT_SYMBOL(__skb_gso_segment);
2812 
2813 /* Take action when hardware reception checksum errors are detected. */
2814 #ifdef CONFIG_BUG
2815 void netdev_rx_csum_fault(struct net_device *dev)
2816 {
2817 	if (net_ratelimit()) {
2818 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2819 		dump_stack();
2820 	}
2821 }
2822 EXPORT_SYMBOL(netdev_rx_csum_fault);
2823 #endif
2824 
2825 /* Actually, we should eliminate this check as soon as we know, that:
2826  * 1. IOMMU is present and allows to map all the memory.
2827  * 2. No high memory really exists on this machine.
2828  */
2829 
2830 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2831 {
2832 #ifdef CONFIG_HIGHMEM
2833 	int i;
2834 
2835 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2836 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2837 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2838 
2839 			if (PageHighMem(skb_frag_page(frag)))
2840 				return 1;
2841 		}
2842 	}
2843 
2844 	if (PCI_DMA_BUS_IS_PHYS) {
2845 		struct device *pdev = dev->dev.parent;
2846 
2847 		if (!pdev)
2848 			return 0;
2849 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2850 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2851 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2852 
2853 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2854 				return 1;
2855 		}
2856 	}
2857 #endif
2858 	return 0;
2859 }
2860 
2861 /* If MPLS offload request, verify we are testing hardware MPLS features
2862  * instead of standard features for the netdev.
2863  */
2864 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2865 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2866 					   netdev_features_t features,
2867 					   __be16 type)
2868 {
2869 	if (eth_p_mpls(type))
2870 		features &= skb->dev->mpls_features;
2871 
2872 	return features;
2873 }
2874 #else
2875 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2876 					   netdev_features_t features,
2877 					   __be16 type)
2878 {
2879 	return features;
2880 }
2881 #endif
2882 
2883 static netdev_features_t harmonize_features(struct sk_buff *skb,
2884 	netdev_features_t features)
2885 {
2886 	int tmp;
2887 	__be16 type;
2888 
2889 	type = skb_network_protocol(skb, &tmp);
2890 	features = net_mpls_features(skb, features, type);
2891 
2892 	if (skb->ip_summed != CHECKSUM_NONE &&
2893 	    !can_checksum_protocol(features, type)) {
2894 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2895 	}
2896 	if (illegal_highdma(skb->dev, skb))
2897 		features &= ~NETIF_F_SG;
2898 
2899 	return features;
2900 }
2901 
2902 netdev_features_t passthru_features_check(struct sk_buff *skb,
2903 					  struct net_device *dev,
2904 					  netdev_features_t features)
2905 {
2906 	return features;
2907 }
2908 EXPORT_SYMBOL(passthru_features_check);
2909 
2910 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2911 					     struct net_device *dev,
2912 					     netdev_features_t features)
2913 {
2914 	return vlan_features_check(skb, features);
2915 }
2916 
2917 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2918 					    struct net_device *dev,
2919 					    netdev_features_t features)
2920 {
2921 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
2922 
2923 	if (gso_segs > dev->gso_max_segs)
2924 		return features & ~NETIF_F_GSO_MASK;
2925 
2926 	/* Support for GSO partial features requires software
2927 	 * intervention before we can actually process the packets
2928 	 * so we need to strip support for any partial features now
2929 	 * and we can pull them back in after we have partially
2930 	 * segmented the frame.
2931 	 */
2932 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2933 		features &= ~dev->gso_partial_features;
2934 
2935 	/* Make sure to clear the IPv4 ID mangling feature if the
2936 	 * IPv4 header has the potential to be fragmented.
2937 	 */
2938 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2939 		struct iphdr *iph = skb->encapsulation ?
2940 				    inner_ip_hdr(skb) : ip_hdr(skb);
2941 
2942 		if (!(iph->frag_off & htons(IP_DF)))
2943 			features &= ~NETIF_F_TSO_MANGLEID;
2944 	}
2945 
2946 	return features;
2947 }
2948 
2949 netdev_features_t netif_skb_features(struct sk_buff *skb)
2950 {
2951 	struct net_device *dev = skb->dev;
2952 	netdev_features_t features = dev->features;
2953 
2954 	if (skb_is_gso(skb))
2955 		features = gso_features_check(skb, dev, features);
2956 
2957 	/* If encapsulation offload request, verify we are testing
2958 	 * hardware encapsulation features instead of standard
2959 	 * features for the netdev
2960 	 */
2961 	if (skb->encapsulation)
2962 		features &= dev->hw_enc_features;
2963 
2964 	if (skb_vlan_tagged(skb))
2965 		features = netdev_intersect_features(features,
2966 						     dev->vlan_features |
2967 						     NETIF_F_HW_VLAN_CTAG_TX |
2968 						     NETIF_F_HW_VLAN_STAG_TX);
2969 
2970 	if (dev->netdev_ops->ndo_features_check)
2971 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
2972 								features);
2973 	else
2974 		features &= dflt_features_check(skb, dev, features);
2975 
2976 	return harmonize_features(skb, features);
2977 }
2978 EXPORT_SYMBOL(netif_skb_features);
2979 
2980 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2981 		    struct netdev_queue *txq, bool more)
2982 {
2983 	unsigned int len;
2984 	int rc;
2985 
2986 	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2987 		dev_queue_xmit_nit(skb, dev);
2988 
2989 	len = skb->len;
2990 	trace_net_dev_start_xmit(skb, dev);
2991 	rc = netdev_start_xmit(skb, dev, txq, more);
2992 	trace_net_dev_xmit(skb, rc, dev, len);
2993 
2994 	return rc;
2995 }
2996 
2997 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2998 				    struct netdev_queue *txq, int *ret)
2999 {
3000 	struct sk_buff *skb = first;
3001 	int rc = NETDEV_TX_OK;
3002 
3003 	while (skb) {
3004 		struct sk_buff *next = skb->next;
3005 
3006 		skb->next = NULL;
3007 		rc = xmit_one(skb, dev, txq, next != NULL);
3008 		if (unlikely(!dev_xmit_complete(rc))) {
3009 			skb->next = next;
3010 			goto out;
3011 		}
3012 
3013 		skb = next;
3014 		if (netif_xmit_stopped(txq) && skb) {
3015 			rc = NETDEV_TX_BUSY;
3016 			break;
3017 		}
3018 	}
3019 
3020 out:
3021 	*ret = rc;
3022 	return skb;
3023 }
3024 
3025 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3026 					  netdev_features_t features)
3027 {
3028 	if (skb_vlan_tag_present(skb) &&
3029 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3030 		skb = __vlan_hwaccel_push_inside(skb);
3031 	return skb;
3032 }
3033 
3034 int skb_csum_hwoffload_help(struct sk_buff *skb,
3035 			    const netdev_features_t features)
3036 {
3037 	if (unlikely(skb->csum_not_inet))
3038 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3039 			skb_crc32c_csum_help(skb);
3040 
3041 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3042 }
3043 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3044 
3045 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
3046 {
3047 	netdev_features_t features;
3048 
3049 	features = netif_skb_features(skb);
3050 	skb = validate_xmit_vlan(skb, features);
3051 	if (unlikely(!skb))
3052 		goto out_null;
3053 
3054 	if (netif_needs_gso(skb, features)) {
3055 		struct sk_buff *segs;
3056 
3057 		segs = skb_gso_segment(skb, features);
3058 		if (IS_ERR(segs)) {
3059 			goto out_kfree_skb;
3060 		} else if (segs) {
3061 			consume_skb(skb);
3062 			skb = segs;
3063 		}
3064 	} else {
3065 		if (skb_needs_linearize(skb, features) &&
3066 		    __skb_linearize(skb))
3067 			goto out_kfree_skb;
3068 
3069 		if (validate_xmit_xfrm(skb, features))
3070 			goto out_kfree_skb;
3071 
3072 		/* If packet is not checksummed and device does not
3073 		 * support checksumming for this protocol, complete
3074 		 * checksumming here.
3075 		 */
3076 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3077 			if (skb->encapsulation)
3078 				skb_set_inner_transport_header(skb,
3079 							       skb_checksum_start_offset(skb));
3080 			else
3081 				skb_set_transport_header(skb,
3082 							 skb_checksum_start_offset(skb));
3083 			if (skb_csum_hwoffload_help(skb, features))
3084 				goto out_kfree_skb;
3085 		}
3086 	}
3087 
3088 	return skb;
3089 
3090 out_kfree_skb:
3091 	kfree_skb(skb);
3092 out_null:
3093 	atomic_long_inc(&dev->tx_dropped);
3094 	return NULL;
3095 }
3096 
3097 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3098 {
3099 	struct sk_buff *next, *head = NULL, *tail;
3100 
3101 	for (; skb != NULL; skb = next) {
3102 		next = skb->next;
3103 		skb->next = NULL;
3104 
3105 		/* in case skb wont be segmented, point to itself */
3106 		skb->prev = skb;
3107 
3108 		skb = validate_xmit_skb(skb, dev);
3109 		if (!skb)
3110 			continue;
3111 
3112 		if (!head)
3113 			head = skb;
3114 		else
3115 			tail->next = skb;
3116 		/* If skb was segmented, skb->prev points to
3117 		 * the last segment. If not, it still contains skb.
3118 		 */
3119 		tail = skb->prev;
3120 	}
3121 	return head;
3122 }
3123 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3124 
3125 static void qdisc_pkt_len_init(struct sk_buff *skb)
3126 {
3127 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3128 
3129 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3130 
3131 	/* To get more precise estimation of bytes sent on wire,
3132 	 * we add to pkt_len the headers size of all segments
3133 	 */
3134 	if (shinfo->gso_size)  {
3135 		unsigned int hdr_len;
3136 		u16 gso_segs = shinfo->gso_segs;
3137 
3138 		/* mac layer + network layer */
3139 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3140 
3141 		/* + transport layer */
3142 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3143 			hdr_len += tcp_hdrlen(skb);
3144 		else
3145 			hdr_len += sizeof(struct udphdr);
3146 
3147 		if (shinfo->gso_type & SKB_GSO_DODGY)
3148 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3149 						shinfo->gso_size);
3150 
3151 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3152 	}
3153 }
3154 
3155 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3156 				 struct net_device *dev,
3157 				 struct netdev_queue *txq)
3158 {
3159 	spinlock_t *root_lock = qdisc_lock(q);
3160 	struct sk_buff *to_free = NULL;
3161 	bool contended;
3162 	int rc;
3163 
3164 	qdisc_calculate_pkt_len(skb, q);
3165 	/*
3166 	 * Heuristic to force contended enqueues to serialize on a
3167 	 * separate lock before trying to get qdisc main lock.
3168 	 * This permits qdisc->running owner to get the lock more
3169 	 * often and dequeue packets faster.
3170 	 */
3171 	contended = qdisc_is_running(q);
3172 	if (unlikely(contended))
3173 		spin_lock(&q->busylock);
3174 
3175 	spin_lock(root_lock);
3176 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3177 		__qdisc_drop(skb, &to_free);
3178 		rc = NET_XMIT_DROP;
3179 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3180 		   qdisc_run_begin(q)) {
3181 		/*
3182 		 * This is a work-conserving queue; there are no old skbs
3183 		 * waiting to be sent out; and the qdisc is not running -
3184 		 * xmit the skb directly.
3185 		 */
3186 
3187 		qdisc_bstats_update(q, skb);
3188 
3189 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3190 			if (unlikely(contended)) {
3191 				spin_unlock(&q->busylock);
3192 				contended = false;
3193 			}
3194 			__qdisc_run(q);
3195 		} else
3196 			qdisc_run_end(q);
3197 
3198 		rc = NET_XMIT_SUCCESS;
3199 	} else {
3200 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3201 		if (qdisc_run_begin(q)) {
3202 			if (unlikely(contended)) {
3203 				spin_unlock(&q->busylock);
3204 				contended = false;
3205 			}
3206 			__qdisc_run(q);
3207 		}
3208 	}
3209 	spin_unlock(root_lock);
3210 	if (unlikely(to_free))
3211 		kfree_skb_list(to_free);
3212 	if (unlikely(contended))
3213 		spin_unlock(&q->busylock);
3214 	return rc;
3215 }
3216 
3217 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3218 static void skb_update_prio(struct sk_buff *skb)
3219 {
3220 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3221 
3222 	if (!skb->priority && skb->sk && map) {
3223 		unsigned int prioidx =
3224 			sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3225 
3226 		if (prioidx < map->priomap_len)
3227 			skb->priority = map->priomap[prioidx];
3228 	}
3229 }
3230 #else
3231 #define skb_update_prio(skb)
3232 #endif
3233 
3234 DEFINE_PER_CPU(int, xmit_recursion);
3235 EXPORT_SYMBOL(xmit_recursion);
3236 
3237 /**
3238  *	dev_loopback_xmit - loop back @skb
3239  *	@net: network namespace this loopback is happening in
3240  *	@sk:  sk needed to be a netfilter okfn
3241  *	@skb: buffer to transmit
3242  */
3243 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3244 {
3245 	skb_reset_mac_header(skb);
3246 	__skb_pull(skb, skb_network_offset(skb));
3247 	skb->pkt_type = PACKET_LOOPBACK;
3248 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3249 	WARN_ON(!skb_dst(skb));
3250 	skb_dst_force(skb);
3251 	netif_rx_ni(skb);
3252 	return 0;
3253 }
3254 EXPORT_SYMBOL(dev_loopback_xmit);
3255 
3256 #ifdef CONFIG_NET_EGRESS
3257 static struct sk_buff *
3258 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3259 {
3260 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3261 	struct tcf_result cl_res;
3262 
3263 	if (!miniq)
3264 		return skb;
3265 
3266 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3267 	mini_qdisc_bstats_cpu_update(miniq, skb);
3268 
3269 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3270 	case TC_ACT_OK:
3271 	case TC_ACT_RECLASSIFY:
3272 		skb->tc_index = TC_H_MIN(cl_res.classid);
3273 		break;
3274 	case TC_ACT_SHOT:
3275 		mini_qdisc_qstats_cpu_drop(miniq);
3276 		*ret = NET_XMIT_DROP;
3277 		kfree_skb(skb);
3278 		return NULL;
3279 	case TC_ACT_STOLEN:
3280 	case TC_ACT_QUEUED:
3281 	case TC_ACT_TRAP:
3282 		*ret = NET_XMIT_SUCCESS;
3283 		consume_skb(skb);
3284 		return NULL;
3285 	case TC_ACT_REDIRECT:
3286 		/* No need to push/pop skb's mac_header here on egress! */
3287 		skb_do_redirect(skb);
3288 		*ret = NET_XMIT_SUCCESS;
3289 		return NULL;
3290 	default:
3291 		break;
3292 	}
3293 
3294 	return skb;
3295 }
3296 #endif /* CONFIG_NET_EGRESS */
3297 
3298 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3299 {
3300 #ifdef CONFIG_XPS
3301 	struct xps_dev_maps *dev_maps;
3302 	struct xps_map *map;
3303 	int queue_index = -1;
3304 
3305 	rcu_read_lock();
3306 	dev_maps = rcu_dereference(dev->xps_maps);
3307 	if (dev_maps) {
3308 		unsigned int tci = skb->sender_cpu - 1;
3309 
3310 		if (dev->num_tc) {
3311 			tci *= dev->num_tc;
3312 			tci += netdev_get_prio_tc_map(dev, skb->priority);
3313 		}
3314 
3315 		map = rcu_dereference(dev_maps->cpu_map[tci]);
3316 		if (map) {
3317 			if (map->len == 1)
3318 				queue_index = map->queues[0];
3319 			else
3320 				queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3321 									   map->len)];
3322 			if (unlikely(queue_index >= dev->real_num_tx_queues))
3323 				queue_index = -1;
3324 		}
3325 	}
3326 	rcu_read_unlock();
3327 
3328 	return queue_index;
3329 #else
3330 	return -1;
3331 #endif
3332 }
3333 
3334 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3335 {
3336 	struct sock *sk = skb->sk;
3337 	int queue_index = sk_tx_queue_get(sk);
3338 
3339 	if (queue_index < 0 || skb->ooo_okay ||
3340 	    queue_index >= dev->real_num_tx_queues) {
3341 		int new_index = get_xps_queue(dev, skb);
3342 
3343 		if (new_index < 0)
3344 			new_index = skb_tx_hash(dev, skb);
3345 
3346 		if (queue_index != new_index && sk &&
3347 		    sk_fullsock(sk) &&
3348 		    rcu_access_pointer(sk->sk_dst_cache))
3349 			sk_tx_queue_set(sk, new_index);
3350 
3351 		queue_index = new_index;
3352 	}
3353 
3354 	return queue_index;
3355 }
3356 
3357 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3358 				    struct sk_buff *skb,
3359 				    void *accel_priv)
3360 {
3361 	int queue_index = 0;
3362 
3363 #ifdef CONFIG_XPS
3364 	u32 sender_cpu = skb->sender_cpu - 1;
3365 
3366 	if (sender_cpu >= (u32)NR_CPUS)
3367 		skb->sender_cpu = raw_smp_processor_id() + 1;
3368 #endif
3369 
3370 	if (dev->real_num_tx_queues != 1) {
3371 		const struct net_device_ops *ops = dev->netdev_ops;
3372 
3373 		if (ops->ndo_select_queue)
3374 			queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3375 							    __netdev_pick_tx);
3376 		else
3377 			queue_index = __netdev_pick_tx(dev, skb);
3378 
3379 		if (!accel_priv)
3380 			queue_index = netdev_cap_txqueue(dev, queue_index);
3381 	}
3382 
3383 	skb_set_queue_mapping(skb, queue_index);
3384 	return netdev_get_tx_queue(dev, queue_index);
3385 }
3386 
3387 /**
3388  *	__dev_queue_xmit - transmit a buffer
3389  *	@skb: buffer to transmit
3390  *	@accel_priv: private data used for L2 forwarding offload
3391  *
3392  *	Queue a buffer for transmission to a network device. The caller must
3393  *	have set the device and priority and built the buffer before calling
3394  *	this function. The function can be called from an interrupt.
3395  *
3396  *	A negative errno code is returned on a failure. A success does not
3397  *	guarantee the frame will be transmitted as it may be dropped due
3398  *	to congestion or traffic shaping.
3399  *
3400  * -----------------------------------------------------------------------------------
3401  *      I notice this method can also return errors from the queue disciplines,
3402  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3403  *      be positive.
3404  *
3405  *      Regardless of the return value, the skb is consumed, so it is currently
3406  *      difficult to retry a send to this method.  (You can bump the ref count
3407  *      before sending to hold a reference for retry if you are careful.)
3408  *
3409  *      When calling this method, interrupts MUST be enabled.  This is because
3410  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3411  *          --BLG
3412  */
3413 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3414 {
3415 	struct net_device *dev = skb->dev;
3416 	struct netdev_queue *txq;
3417 	struct Qdisc *q;
3418 	int rc = -ENOMEM;
3419 
3420 	skb_reset_mac_header(skb);
3421 
3422 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3423 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3424 
3425 	/* Disable soft irqs for various locks below. Also
3426 	 * stops preemption for RCU.
3427 	 */
3428 	rcu_read_lock_bh();
3429 
3430 	skb_update_prio(skb);
3431 
3432 	qdisc_pkt_len_init(skb);
3433 #ifdef CONFIG_NET_CLS_ACT
3434 	skb->tc_at_ingress = 0;
3435 # ifdef CONFIG_NET_EGRESS
3436 	if (static_key_false(&egress_needed)) {
3437 		skb = sch_handle_egress(skb, &rc, dev);
3438 		if (!skb)
3439 			goto out;
3440 	}
3441 # endif
3442 #endif
3443 	/* If device/qdisc don't need skb->dst, release it right now while
3444 	 * its hot in this cpu cache.
3445 	 */
3446 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3447 		skb_dst_drop(skb);
3448 	else
3449 		skb_dst_force(skb);
3450 
3451 	txq = netdev_pick_tx(dev, skb, accel_priv);
3452 	q = rcu_dereference_bh(txq->qdisc);
3453 
3454 	trace_net_dev_queue(skb);
3455 	if (q->enqueue) {
3456 		rc = __dev_xmit_skb(skb, q, dev, txq);
3457 		goto out;
3458 	}
3459 
3460 	/* The device has no queue. Common case for software devices:
3461 	 * loopback, all the sorts of tunnels...
3462 
3463 	 * Really, it is unlikely that netif_tx_lock protection is necessary
3464 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3465 	 * counters.)
3466 	 * However, it is possible, that they rely on protection
3467 	 * made by us here.
3468 
3469 	 * Check this and shot the lock. It is not prone from deadlocks.
3470 	 *Either shot noqueue qdisc, it is even simpler 8)
3471 	 */
3472 	if (dev->flags & IFF_UP) {
3473 		int cpu = smp_processor_id(); /* ok because BHs are off */
3474 
3475 		if (txq->xmit_lock_owner != cpu) {
3476 			if (unlikely(__this_cpu_read(xmit_recursion) >
3477 				     XMIT_RECURSION_LIMIT))
3478 				goto recursion_alert;
3479 
3480 			skb = validate_xmit_skb(skb, dev);
3481 			if (!skb)
3482 				goto out;
3483 
3484 			HARD_TX_LOCK(dev, txq, cpu);
3485 
3486 			if (!netif_xmit_stopped(txq)) {
3487 				__this_cpu_inc(xmit_recursion);
3488 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3489 				__this_cpu_dec(xmit_recursion);
3490 				if (dev_xmit_complete(rc)) {
3491 					HARD_TX_UNLOCK(dev, txq);
3492 					goto out;
3493 				}
3494 			}
3495 			HARD_TX_UNLOCK(dev, txq);
3496 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3497 					     dev->name);
3498 		} else {
3499 			/* Recursion is detected! It is possible,
3500 			 * unfortunately
3501 			 */
3502 recursion_alert:
3503 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3504 					     dev->name);
3505 		}
3506 	}
3507 
3508 	rc = -ENETDOWN;
3509 	rcu_read_unlock_bh();
3510 
3511 	atomic_long_inc(&dev->tx_dropped);
3512 	kfree_skb_list(skb);
3513 	return rc;
3514 out:
3515 	rcu_read_unlock_bh();
3516 	return rc;
3517 }
3518 
3519 int dev_queue_xmit(struct sk_buff *skb)
3520 {
3521 	return __dev_queue_xmit(skb, NULL);
3522 }
3523 EXPORT_SYMBOL(dev_queue_xmit);
3524 
3525 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3526 {
3527 	return __dev_queue_xmit(skb, accel_priv);
3528 }
3529 EXPORT_SYMBOL(dev_queue_xmit_accel);
3530 
3531 
3532 /*************************************************************************
3533  *			Receiver routines
3534  *************************************************************************/
3535 
3536 int netdev_max_backlog __read_mostly = 1000;
3537 EXPORT_SYMBOL(netdev_max_backlog);
3538 
3539 int netdev_tstamp_prequeue __read_mostly = 1;
3540 int netdev_budget __read_mostly = 300;
3541 unsigned int __read_mostly netdev_budget_usecs = 2000;
3542 int weight_p __read_mostly = 64;           /* old backlog weight */
3543 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3544 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3545 int dev_rx_weight __read_mostly = 64;
3546 int dev_tx_weight __read_mostly = 64;
3547 
3548 /* Called with irq disabled */
3549 static inline void ____napi_schedule(struct softnet_data *sd,
3550 				     struct napi_struct *napi)
3551 {
3552 	list_add_tail(&napi->poll_list, &sd->poll_list);
3553 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3554 }
3555 
3556 #ifdef CONFIG_RPS
3557 
3558 /* One global table that all flow-based protocols share. */
3559 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3560 EXPORT_SYMBOL(rps_sock_flow_table);
3561 u32 rps_cpu_mask __read_mostly;
3562 EXPORT_SYMBOL(rps_cpu_mask);
3563 
3564 struct static_key rps_needed __read_mostly;
3565 EXPORT_SYMBOL(rps_needed);
3566 struct static_key rfs_needed __read_mostly;
3567 EXPORT_SYMBOL(rfs_needed);
3568 
3569 static struct rps_dev_flow *
3570 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3571 	    struct rps_dev_flow *rflow, u16 next_cpu)
3572 {
3573 	if (next_cpu < nr_cpu_ids) {
3574 #ifdef CONFIG_RFS_ACCEL
3575 		struct netdev_rx_queue *rxqueue;
3576 		struct rps_dev_flow_table *flow_table;
3577 		struct rps_dev_flow *old_rflow;
3578 		u32 flow_id;
3579 		u16 rxq_index;
3580 		int rc;
3581 
3582 		/* Should we steer this flow to a different hardware queue? */
3583 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3584 		    !(dev->features & NETIF_F_NTUPLE))
3585 			goto out;
3586 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3587 		if (rxq_index == skb_get_rx_queue(skb))
3588 			goto out;
3589 
3590 		rxqueue = dev->_rx + rxq_index;
3591 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3592 		if (!flow_table)
3593 			goto out;
3594 		flow_id = skb_get_hash(skb) & flow_table->mask;
3595 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3596 							rxq_index, flow_id);
3597 		if (rc < 0)
3598 			goto out;
3599 		old_rflow = rflow;
3600 		rflow = &flow_table->flows[flow_id];
3601 		rflow->filter = rc;
3602 		if (old_rflow->filter == rflow->filter)
3603 			old_rflow->filter = RPS_NO_FILTER;
3604 	out:
3605 #endif
3606 		rflow->last_qtail =
3607 			per_cpu(softnet_data, next_cpu).input_queue_head;
3608 	}
3609 
3610 	rflow->cpu = next_cpu;
3611 	return rflow;
3612 }
3613 
3614 /*
3615  * get_rps_cpu is called from netif_receive_skb and returns the target
3616  * CPU from the RPS map of the receiving queue for a given skb.
3617  * rcu_read_lock must be held on entry.
3618  */
3619 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3620 		       struct rps_dev_flow **rflowp)
3621 {
3622 	const struct rps_sock_flow_table *sock_flow_table;
3623 	struct netdev_rx_queue *rxqueue = dev->_rx;
3624 	struct rps_dev_flow_table *flow_table;
3625 	struct rps_map *map;
3626 	int cpu = -1;
3627 	u32 tcpu;
3628 	u32 hash;
3629 
3630 	if (skb_rx_queue_recorded(skb)) {
3631 		u16 index = skb_get_rx_queue(skb);
3632 
3633 		if (unlikely(index >= dev->real_num_rx_queues)) {
3634 			WARN_ONCE(dev->real_num_rx_queues > 1,
3635 				  "%s received packet on queue %u, but number "
3636 				  "of RX queues is %u\n",
3637 				  dev->name, index, dev->real_num_rx_queues);
3638 			goto done;
3639 		}
3640 		rxqueue += index;
3641 	}
3642 
3643 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3644 
3645 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3646 	map = rcu_dereference(rxqueue->rps_map);
3647 	if (!flow_table && !map)
3648 		goto done;
3649 
3650 	skb_reset_network_header(skb);
3651 	hash = skb_get_hash(skb);
3652 	if (!hash)
3653 		goto done;
3654 
3655 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3656 	if (flow_table && sock_flow_table) {
3657 		struct rps_dev_flow *rflow;
3658 		u32 next_cpu;
3659 		u32 ident;
3660 
3661 		/* First check into global flow table if there is a match */
3662 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3663 		if ((ident ^ hash) & ~rps_cpu_mask)
3664 			goto try_rps;
3665 
3666 		next_cpu = ident & rps_cpu_mask;
3667 
3668 		/* OK, now we know there is a match,
3669 		 * we can look at the local (per receive queue) flow table
3670 		 */
3671 		rflow = &flow_table->flows[hash & flow_table->mask];
3672 		tcpu = rflow->cpu;
3673 
3674 		/*
3675 		 * If the desired CPU (where last recvmsg was done) is
3676 		 * different from current CPU (one in the rx-queue flow
3677 		 * table entry), switch if one of the following holds:
3678 		 *   - Current CPU is unset (>= nr_cpu_ids).
3679 		 *   - Current CPU is offline.
3680 		 *   - The current CPU's queue tail has advanced beyond the
3681 		 *     last packet that was enqueued using this table entry.
3682 		 *     This guarantees that all previous packets for the flow
3683 		 *     have been dequeued, thus preserving in order delivery.
3684 		 */
3685 		if (unlikely(tcpu != next_cpu) &&
3686 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3687 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3688 		      rflow->last_qtail)) >= 0)) {
3689 			tcpu = next_cpu;
3690 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3691 		}
3692 
3693 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3694 			*rflowp = rflow;
3695 			cpu = tcpu;
3696 			goto done;
3697 		}
3698 	}
3699 
3700 try_rps:
3701 
3702 	if (map) {
3703 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3704 		if (cpu_online(tcpu)) {
3705 			cpu = tcpu;
3706 			goto done;
3707 		}
3708 	}
3709 
3710 done:
3711 	return cpu;
3712 }
3713 
3714 #ifdef CONFIG_RFS_ACCEL
3715 
3716 /**
3717  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3718  * @dev: Device on which the filter was set
3719  * @rxq_index: RX queue index
3720  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3721  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3722  *
3723  * Drivers that implement ndo_rx_flow_steer() should periodically call
3724  * this function for each installed filter and remove the filters for
3725  * which it returns %true.
3726  */
3727 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3728 			 u32 flow_id, u16 filter_id)
3729 {
3730 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3731 	struct rps_dev_flow_table *flow_table;
3732 	struct rps_dev_flow *rflow;
3733 	bool expire = true;
3734 	unsigned int cpu;
3735 
3736 	rcu_read_lock();
3737 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3738 	if (flow_table && flow_id <= flow_table->mask) {
3739 		rflow = &flow_table->flows[flow_id];
3740 		cpu = READ_ONCE(rflow->cpu);
3741 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3742 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3743 			   rflow->last_qtail) <
3744 		     (int)(10 * flow_table->mask)))
3745 			expire = false;
3746 	}
3747 	rcu_read_unlock();
3748 	return expire;
3749 }
3750 EXPORT_SYMBOL(rps_may_expire_flow);
3751 
3752 #endif /* CONFIG_RFS_ACCEL */
3753 
3754 /* Called from hardirq (IPI) context */
3755 static void rps_trigger_softirq(void *data)
3756 {
3757 	struct softnet_data *sd = data;
3758 
3759 	____napi_schedule(sd, &sd->backlog);
3760 	sd->received_rps++;
3761 }
3762 
3763 #endif /* CONFIG_RPS */
3764 
3765 /*
3766  * Check if this softnet_data structure is another cpu one
3767  * If yes, queue it to our IPI list and return 1
3768  * If no, return 0
3769  */
3770 static int rps_ipi_queued(struct softnet_data *sd)
3771 {
3772 #ifdef CONFIG_RPS
3773 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3774 
3775 	if (sd != mysd) {
3776 		sd->rps_ipi_next = mysd->rps_ipi_list;
3777 		mysd->rps_ipi_list = sd;
3778 
3779 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3780 		return 1;
3781 	}
3782 #endif /* CONFIG_RPS */
3783 	return 0;
3784 }
3785 
3786 #ifdef CONFIG_NET_FLOW_LIMIT
3787 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3788 #endif
3789 
3790 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3791 {
3792 #ifdef CONFIG_NET_FLOW_LIMIT
3793 	struct sd_flow_limit *fl;
3794 	struct softnet_data *sd;
3795 	unsigned int old_flow, new_flow;
3796 
3797 	if (qlen < (netdev_max_backlog >> 1))
3798 		return false;
3799 
3800 	sd = this_cpu_ptr(&softnet_data);
3801 
3802 	rcu_read_lock();
3803 	fl = rcu_dereference(sd->flow_limit);
3804 	if (fl) {
3805 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3806 		old_flow = fl->history[fl->history_head];
3807 		fl->history[fl->history_head] = new_flow;
3808 
3809 		fl->history_head++;
3810 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3811 
3812 		if (likely(fl->buckets[old_flow]))
3813 			fl->buckets[old_flow]--;
3814 
3815 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3816 			fl->count++;
3817 			rcu_read_unlock();
3818 			return true;
3819 		}
3820 	}
3821 	rcu_read_unlock();
3822 #endif
3823 	return false;
3824 }
3825 
3826 /*
3827  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3828  * queue (may be a remote CPU queue).
3829  */
3830 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3831 			      unsigned int *qtail)
3832 {
3833 	struct softnet_data *sd;
3834 	unsigned long flags;
3835 	unsigned int qlen;
3836 
3837 	sd = &per_cpu(softnet_data, cpu);
3838 
3839 	local_irq_save(flags);
3840 
3841 	rps_lock(sd);
3842 	if (!netif_running(skb->dev))
3843 		goto drop;
3844 	qlen = skb_queue_len(&sd->input_pkt_queue);
3845 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3846 		if (qlen) {
3847 enqueue:
3848 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3849 			input_queue_tail_incr_save(sd, qtail);
3850 			rps_unlock(sd);
3851 			local_irq_restore(flags);
3852 			return NET_RX_SUCCESS;
3853 		}
3854 
3855 		/* Schedule NAPI for backlog device
3856 		 * We can use non atomic operation since we own the queue lock
3857 		 */
3858 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3859 			if (!rps_ipi_queued(sd))
3860 				____napi_schedule(sd, &sd->backlog);
3861 		}
3862 		goto enqueue;
3863 	}
3864 
3865 drop:
3866 	sd->dropped++;
3867 	rps_unlock(sd);
3868 
3869 	local_irq_restore(flags);
3870 
3871 	atomic_long_inc(&skb->dev->rx_dropped);
3872 	kfree_skb(skb);
3873 	return NET_RX_DROP;
3874 }
3875 
3876 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
3877 				     struct bpf_prog *xdp_prog)
3878 {
3879 	u32 metalen, act = XDP_DROP;
3880 	struct xdp_buff xdp;
3881 	void *orig_data;
3882 	int hlen, off;
3883 	u32 mac_len;
3884 
3885 	/* Reinjected packets coming from act_mirred or similar should
3886 	 * not get XDP generic processing.
3887 	 */
3888 	if (skb_cloned(skb))
3889 		return XDP_PASS;
3890 
3891 	/* XDP packets must be linear and must have sufficient headroom
3892 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
3893 	 * native XDP provides, thus we need to do it here as well.
3894 	 */
3895 	if (skb_is_nonlinear(skb) ||
3896 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
3897 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
3898 		int troom = skb->tail + skb->data_len - skb->end;
3899 
3900 		/* In case we have to go down the path and also linearize,
3901 		 * then lets do the pskb_expand_head() work just once here.
3902 		 */
3903 		if (pskb_expand_head(skb,
3904 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
3905 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
3906 			goto do_drop;
3907 		if (troom > 0 && __skb_linearize(skb))
3908 			goto do_drop;
3909 	}
3910 
3911 	/* The XDP program wants to see the packet starting at the MAC
3912 	 * header.
3913 	 */
3914 	mac_len = skb->data - skb_mac_header(skb);
3915 	hlen = skb_headlen(skb) + mac_len;
3916 	xdp.data = skb->data - mac_len;
3917 	xdp.data_meta = xdp.data;
3918 	xdp.data_end = xdp.data + hlen;
3919 	xdp.data_hard_start = skb->data - skb_headroom(skb);
3920 	orig_data = xdp.data;
3921 
3922 	act = bpf_prog_run_xdp(xdp_prog, &xdp);
3923 
3924 	off = xdp.data - orig_data;
3925 	if (off > 0)
3926 		__skb_pull(skb, off);
3927 	else if (off < 0)
3928 		__skb_push(skb, -off);
3929 	skb->mac_header += off;
3930 
3931 	switch (act) {
3932 	case XDP_REDIRECT:
3933 	case XDP_TX:
3934 		__skb_push(skb, mac_len);
3935 		break;
3936 	case XDP_PASS:
3937 		metalen = xdp.data - xdp.data_meta;
3938 		if (metalen)
3939 			skb_metadata_set(skb, metalen);
3940 		break;
3941 	default:
3942 		bpf_warn_invalid_xdp_action(act);
3943 		/* fall through */
3944 	case XDP_ABORTED:
3945 		trace_xdp_exception(skb->dev, xdp_prog, act);
3946 		/* fall through */
3947 	case XDP_DROP:
3948 	do_drop:
3949 		kfree_skb(skb);
3950 		break;
3951 	}
3952 
3953 	return act;
3954 }
3955 
3956 /* When doing generic XDP we have to bypass the qdisc layer and the
3957  * network taps in order to match in-driver-XDP behavior.
3958  */
3959 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
3960 {
3961 	struct net_device *dev = skb->dev;
3962 	struct netdev_queue *txq;
3963 	bool free_skb = true;
3964 	int cpu, rc;
3965 
3966 	txq = netdev_pick_tx(dev, skb, NULL);
3967 	cpu = smp_processor_id();
3968 	HARD_TX_LOCK(dev, txq, cpu);
3969 	if (!netif_xmit_stopped(txq)) {
3970 		rc = netdev_start_xmit(skb, dev, txq, 0);
3971 		if (dev_xmit_complete(rc))
3972 			free_skb = false;
3973 	}
3974 	HARD_TX_UNLOCK(dev, txq);
3975 	if (free_skb) {
3976 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
3977 		kfree_skb(skb);
3978 	}
3979 }
3980 EXPORT_SYMBOL_GPL(generic_xdp_tx);
3981 
3982 static struct static_key generic_xdp_needed __read_mostly;
3983 
3984 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
3985 {
3986 	if (xdp_prog) {
3987 		u32 act = netif_receive_generic_xdp(skb, xdp_prog);
3988 		int err;
3989 
3990 		if (act != XDP_PASS) {
3991 			switch (act) {
3992 			case XDP_REDIRECT:
3993 				err = xdp_do_generic_redirect(skb->dev, skb,
3994 							      xdp_prog);
3995 				if (err)
3996 					goto out_redir;
3997 			/* fallthru to submit skb */
3998 			case XDP_TX:
3999 				generic_xdp_tx(skb, xdp_prog);
4000 				break;
4001 			}
4002 			return XDP_DROP;
4003 		}
4004 	}
4005 	return XDP_PASS;
4006 out_redir:
4007 	kfree_skb(skb);
4008 	return XDP_DROP;
4009 }
4010 EXPORT_SYMBOL_GPL(do_xdp_generic);
4011 
4012 static int netif_rx_internal(struct sk_buff *skb)
4013 {
4014 	int ret;
4015 
4016 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4017 
4018 	trace_netif_rx(skb);
4019 
4020 	if (static_key_false(&generic_xdp_needed)) {
4021 		int ret;
4022 
4023 		preempt_disable();
4024 		rcu_read_lock();
4025 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4026 		rcu_read_unlock();
4027 		preempt_enable();
4028 
4029 		/* Consider XDP consuming the packet a success from
4030 		 * the netdev point of view we do not want to count
4031 		 * this as an error.
4032 		 */
4033 		if (ret != XDP_PASS)
4034 			return NET_RX_SUCCESS;
4035 	}
4036 
4037 #ifdef CONFIG_RPS
4038 	if (static_key_false(&rps_needed)) {
4039 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4040 		int cpu;
4041 
4042 		preempt_disable();
4043 		rcu_read_lock();
4044 
4045 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4046 		if (cpu < 0)
4047 			cpu = smp_processor_id();
4048 
4049 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4050 
4051 		rcu_read_unlock();
4052 		preempt_enable();
4053 	} else
4054 #endif
4055 	{
4056 		unsigned int qtail;
4057 
4058 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4059 		put_cpu();
4060 	}
4061 	return ret;
4062 }
4063 
4064 /**
4065  *	netif_rx	-	post buffer to the network code
4066  *	@skb: buffer to post
4067  *
4068  *	This function receives a packet from a device driver and queues it for
4069  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4070  *	may be dropped during processing for congestion control or by the
4071  *	protocol layers.
4072  *
4073  *	return values:
4074  *	NET_RX_SUCCESS	(no congestion)
4075  *	NET_RX_DROP     (packet was dropped)
4076  *
4077  */
4078 
4079 int netif_rx(struct sk_buff *skb)
4080 {
4081 	trace_netif_rx_entry(skb);
4082 
4083 	return netif_rx_internal(skb);
4084 }
4085 EXPORT_SYMBOL(netif_rx);
4086 
4087 int netif_rx_ni(struct sk_buff *skb)
4088 {
4089 	int err;
4090 
4091 	trace_netif_rx_ni_entry(skb);
4092 
4093 	preempt_disable();
4094 	err = netif_rx_internal(skb);
4095 	if (local_softirq_pending())
4096 		do_softirq();
4097 	preempt_enable();
4098 
4099 	return err;
4100 }
4101 EXPORT_SYMBOL(netif_rx_ni);
4102 
4103 static __latent_entropy void net_tx_action(struct softirq_action *h)
4104 {
4105 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4106 
4107 	if (sd->completion_queue) {
4108 		struct sk_buff *clist;
4109 
4110 		local_irq_disable();
4111 		clist = sd->completion_queue;
4112 		sd->completion_queue = NULL;
4113 		local_irq_enable();
4114 
4115 		while (clist) {
4116 			struct sk_buff *skb = clist;
4117 
4118 			clist = clist->next;
4119 
4120 			WARN_ON(refcount_read(&skb->users));
4121 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4122 				trace_consume_skb(skb);
4123 			else
4124 				trace_kfree_skb(skb, net_tx_action);
4125 
4126 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4127 				__kfree_skb(skb);
4128 			else
4129 				__kfree_skb_defer(skb);
4130 		}
4131 
4132 		__kfree_skb_flush();
4133 	}
4134 
4135 	if (sd->output_queue) {
4136 		struct Qdisc *head;
4137 
4138 		local_irq_disable();
4139 		head = sd->output_queue;
4140 		sd->output_queue = NULL;
4141 		sd->output_queue_tailp = &sd->output_queue;
4142 		local_irq_enable();
4143 
4144 		while (head) {
4145 			struct Qdisc *q = head;
4146 			spinlock_t *root_lock;
4147 
4148 			head = head->next_sched;
4149 
4150 			root_lock = qdisc_lock(q);
4151 			spin_lock(root_lock);
4152 			/* We need to make sure head->next_sched is read
4153 			 * before clearing __QDISC_STATE_SCHED
4154 			 */
4155 			smp_mb__before_atomic();
4156 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4157 			qdisc_run(q);
4158 			spin_unlock(root_lock);
4159 		}
4160 	}
4161 }
4162 
4163 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4164 /* This hook is defined here for ATM LANE */
4165 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4166 			     unsigned char *addr) __read_mostly;
4167 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4168 #endif
4169 
4170 static inline struct sk_buff *
4171 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4172 		   struct net_device *orig_dev)
4173 {
4174 #ifdef CONFIG_NET_CLS_ACT
4175 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4176 	struct tcf_result cl_res;
4177 
4178 	/* If there's at least one ingress present somewhere (so
4179 	 * we get here via enabled static key), remaining devices
4180 	 * that are not configured with an ingress qdisc will bail
4181 	 * out here.
4182 	 */
4183 	if (!miniq)
4184 		return skb;
4185 
4186 	if (*pt_prev) {
4187 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4188 		*pt_prev = NULL;
4189 	}
4190 
4191 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4192 	skb->tc_at_ingress = 1;
4193 	mini_qdisc_bstats_cpu_update(miniq, skb);
4194 
4195 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4196 	case TC_ACT_OK:
4197 	case TC_ACT_RECLASSIFY:
4198 		skb->tc_index = TC_H_MIN(cl_res.classid);
4199 		break;
4200 	case TC_ACT_SHOT:
4201 		mini_qdisc_qstats_cpu_drop(miniq);
4202 		kfree_skb(skb);
4203 		return NULL;
4204 	case TC_ACT_STOLEN:
4205 	case TC_ACT_QUEUED:
4206 	case TC_ACT_TRAP:
4207 		consume_skb(skb);
4208 		return NULL;
4209 	case TC_ACT_REDIRECT:
4210 		/* skb_mac_header check was done by cls/act_bpf, so
4211 		 * we can safely push the L2 header back before
4212 		 * redirecting to another netdev
4213 		 */
4214 		__skb_push(skb, skb->mac_len);
4215 		skb_do_redirect(skb);
4216 		return NULL;
4217 	default:
4218 		break;
4219 	}
4220 #endif /* CONFIG_NET_CLS_ACT */
4221 	return skb;
4222 }
4223 
4224 /**
4225  *	netdev_is_rx_handler_busy - check if receive handler is registered
4226  *	@dev: device to check
4227  *
4228  *	Check if a receive handler is already registered for a given device.
4229  *	Return true if there one.
4230  *
4231  *	The caller must hold the rtnl_mutex.
4232  */
4233 bool netdev_is_rx_handler_busy(struct net_device *dev)
4234 {
4235 	ASSERT_RTNL();
4236 	return dev && rtnl_dereference(dev->rx_handler);
4237 }
4238 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4239 
4240 /**
4241  *	netdev_rx_handler_register - register receive handler
4242  *	@dev: device to register a handler for
4243  *	@rx_handler: receive handler to register
4244  *	@rx_handler_data: data pointer that is used by rx handler
4245  *
4246  *	Register a receive handler for a device. This handler will then be
4247  *	called from __netif_receive_skb. A negative errno code is returned
4248  *	on a failure.
4249  *
4250  *	The caller must hold the rtnl_mutex.
4251  *
4252  *	For a general description of rx_handler, see enum rx_handler_result.
4253  */
4254 int netdev_rx_handler_register(struct net_device *dev,
4255 			       rx_handler_func_t *rx_handler,
4256 			       void *rx_handler_data)
4257 {
4258 	if (netdev_is_rx_handler_busy(dev))
4259 		return -EBUSY;
4260 
4261 	/* Note: rx_handler_data must be set before rx_handler */
4262 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4263 	rcu_assign_pointer(dev->rx_handler, rx_handler);
4264 
4265 	return 0;
4266 }
4267 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4268 
4269 /**
4270  *	netdev_rx_handler_unregister - unregister receive handler
4271  *	@dev: device to unregister a handler from
4272  *
4273  *	Unregister a receive handler from a device.
4274  *
4275  *	The caller must hold the rtnl_mutex.
4276  */
4277 void netdev_rx_handler_unregister(struct net_device *dev)
4278 {
4279 
4280 	ASSERT_RTNL();
4281 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4282 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4283 	 * section has a guarantee to see a non NULL rx_handler_data
4284 	 * as well.
4285 	 */
4286 	synchronize_net();
4287 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4288 }
4289 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4290 
4291 /*
4292  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4293  * the special handling of PFMEMALLOC skbs.
4294  */
4295 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4296 {
4297 	switch (skb->protocol) {
4298 	case htons(ETH_P_ARP):
4299 	case htons(ETH_P_IP):
4300 	case htons(ETH_P_IPV6):
4301 	case htons(ETH_P_8021Q):
4302 	case htons(ETH_P_8021AD):
4303 		return true;
4304 	default:
4305 		return false;
4306 	}
4307 }
4308 
4309 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4310 			     int *ret, struct net_device *orig_dev)
4311 {
4312 #ifdef CONFIG_NETFILTER_INGRESS
4313 	if (nf_hook_ingress_active(skb)) {
4314 		int ingress_retval;
4315 
4316 		if (*pt_prev) {
4317 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4318 			*pt_prev = NULL;
4319 		}
4320 
4321 		rcu_read_lock();
4322 		ingress_retval = nf_hook_ingress(skb);
4323 		rcu_read_unlock();
4324 		return ingress_retval;
4325 	}
4326 #endif /* CONFIG_NETFILTER_INGRESS */
4327 	return 0;
4328 }
4329 
4330 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4331 {
4332 	struct packet_type *ptype, *pt_prev;
4333 	rx_handler_func_t *rx_handler;
4334 	struct net_device *orig_dev;
4335 	bool deliver_exact = false;
4336 	int ret = NET_RX_DROP;
4337 	__be16 type;
4338 
4339 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4340 
4341 	trace_netif_receive_skb(skb);
4342 
4343 	orig_dev = skb->dev;
4344 
4345 	skb_reset_network_header(skb);
4346 	if (!skb_transport_header_was_set(skb))
4347 		skb_reset_transport_header(skb);
4348 	skb_reset_mac_len(skb);
4349 
4350 	pt_prev = NULL;
4351 
4352 another_round:
4353 	skb->skb_iif = skb->dev->ifindex;
4354 
4355 	__this_cpu_inc(softnet_data.processed);
4356 
4357 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4358 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4359 		skb = skb_vlan_untag(skb);
4360 		if (unlikely(!skb))
4361 			goto out;
4362 	}
4363 
4364 	if (skb_skip_tc_classify(skb))
4365 		goto skip_classify;
4366 
4367 	if (pfmemalloc)
4368 		goto skip_taps;
4369 
4370 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
4371 		if (pt_prev)
4372 			ret = deliver_skb(skb, pt_prev, orig_dev);
4373 		pt_prev = ptype;
4374 	}
4375 
4376 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4377 		if (pt_prev)
4378 			ret = deliver_skb(skb, pt_prev, orig_dev);
4379 		pt_prev = ptype;
4380 	}
4381 
4382 skip_taps:
4383 #ifdef CONFIG_NET_INGRESS
4384 	if (static_key_false(&ingress_needed)) {
4385 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4386 		if (!skb)
4387 			goto out;
4388 
4389 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4390 			goto out;
4391 	}
4392 #endif
4393 	skb_reset_tc(skb);
4394 skip_classify:
4395 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4396 		goto drop;
4397 
4398 	if (skb_vlan_tag_present(skb)) {
4399 		if (pt_prev) {
4400 			ret = deliver_skb(skb, pt_prev, orig_dev);
4401 			pt_prev = NULL;
4402 		}
4403 		if (vlan_do_receive(&skb))
4404 			goto another_round;
4405 		else if (unlikely(!skb))
4406 			goto out;
4407 	}
4408 
4409 	rx_handler = rcu_dereference(skb->dev->rx_handler);
4410 	if (rx_handler) {
4411 		if (pt_prev) {
4412 			ret = deliver_skb(skb, pt_prev, orig_dev);
4413 			pt_prev = NULL;
4414 		}
4415 		switch (rx_handler(&skb)) {
4416 		case RX_HANDLER_CONSUMED:
4417 			ret = NET_RX_SUCCESS;
4418 			goto out;
4419 		case RX_HANDLER_ANOTHER:
4420 			goto another_round;
4421 		case RX_HANDLER_EXACT:
4422 			deliver_exact = true;
4423 		case RX_HANDLER_PASS:
4424 			break;
4425 		default:
4426 			BUG();
4427 		}
4428 	}
4429 
4430 	if (unlikely(skb_vlan_tag_present(skb))) {
4431 		if (skb_vlan_tag_get_id(skb))
4432 			skb->pkt_type = PACKET_OTHERHOST;
4433 		/* Note: we might in the future use prio bits
4434 		 * and set skb->priority like in vlan_do_receive()
4435 		 * For the time being, just ignore Priority Code Point
4436 		 */
4437 		skb->vlan_tci = 0;
4438 	}
4439 
4440 	type = skb->protocol;
4441 
4442 	/* deliver only exact match when indicated */
4443 	if (likely(!deliver_exact)) {
4444 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4445 				       &ptype_base[ntohs(type) &
4446 						   PTYPE_HASH_MASK]);
4447 	}
4448 
4449 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4450 			       &orig_dev->ptype_specific);
4451 
4452 	if (unlikely(skb->dev != orig_dev)) {
4453 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4454 				       &skb->dev->ptype_specific);
4455 	}
4456 
4457 	if (pt_prev) {
4458 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4459 			goto drop;
4460 		else
4461 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4462 	} else {
4463 drop:
4464 		if (!deliver_exact)
4465 			atomic_long_inc(&skb->dev->rx_dropped);
4466 		else
4467 			atomic_long_inc(&skb->dev->rx_nohandler);
4468 		kfree_skb(skb);
4469 		/* Jamal, now you will not able to escape explaining
4470 		 * me how you were going to use this. :-)
4471 		 */
4472 		ret = NET_RX_DROP;
4473 	}
4474 
4475 out:
4476 	return ret;
4477 }
4478 
4479 /**
4480  *	netif_receive_skb_core - special purpose version of netif_receive_skb
4481  *	@skb: buffer to process
4482  *
4483  *	More direct receive version of netif_receive_skb().  It should
4484  *	only be used by callers that have a need to skip RPS and Generic XDP.
4485  *	Caller must also take care of handling if (page_is_)pfmemalloc.
4486  *
4487  *	This function may only be called from softirq context and interrupts
4488  *	should be enabled.
4489  *
4490  *	Return values (usually ignored):
4491  *	NET_RX_SUCCESS: no congestion
4492  *	NET_RX_DROP: packet was dropped
4493  */
4494 int netif_receive_skb_core(struct sk_buff *skb)
4495 {
4496 	int ret;
4497 
4498 	rcu_read_lock();
4499 	ret = __netif_receive_skb_core(skb, false);
4500 	rcu_read_unlock();
4501 
4502 	return ret;
4503 }
4504 EXPORT_SYMBOL(netif_receive_skb_core);
4505 
4506 static int __netif_receive_skb(struct sk_buff *skb)
4507 {
4508 	int ret;
4509 
4510 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4511 		unsigned int noreclaim_flag;
4512 
4513 		/*
4514 		 * PFMEMALLOC skbs are special, they should
4515 		 * - be delivered to SOCK_MEMALLOC sockets only
4516 		 * - stay away from userspace
4517 		 * - have bounded memory usage
4518 		 *
4519 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
4520 		 * context down to all allocation sites.
4521 		 */
4522 		noreclaim_flag = memalloc_noreclaim_save();
4523 		ret = __netif_receive_skb_core(skb, true);
4524 		memalloc_noreclaim_restore(noreclaim_flag);
4525 	} else
4526 		ret = __netif_receive_skb_core(skb, false);
4527 
4528 	return ret;
4529 }
4530 
4531 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
4532 {
4533 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4534 	struct bpf_prog *new = xdp->prog;
4535 	int ret = 0;
4536 
4537 	switch (xdp->command) {
4538 	case XDP_SETUP_PROG:
4539 		rcu_assign_pointer(dev->xdp_prog, new);
4540 		if (old)
4541 			bpf_prog_put(old);
4542 
4543 		if (old && !new) {
4544 			static_key_slow_dec(&generic_xdp_needed);
4545 		} else if (new && !old) {
4546 			static_key_slow_inc(&generic_xdp_needed);
4547 			dev_disable_lro(dev);
4548 		}
4549 		break;
4550 
4551 	case XDP_QUERY_PROG:
4552 		xdp->prog_attached = !!old;
4553 		xdp->prog_id = old ? old->aux->id : 0;
4554 		break;
4555 
4556 	default:
4557 		ret = -EINVAL;
4558 		break;
4559 	}
4560 
4561 	return ret;
4562 }
4563 
4564 static int netif_receive_skb_internal(struct sk_buff *skb)
4565 {
4566 	int ret;
4567 
4568 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4569 
4570 	if (skb_defer_rx_timestamp(skb))
4571 		return NET_RX_SUCCESS;
4572 
4573 	if (static_key_false(&generic_xdp_needed)) {
4574 		int ret;
4575 
4576 		preempt_disable();
4577 		rcu_read_lock();
4578 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4579 		rcu_read_unlock();
4580 		preempt_enable();
4581 
4582 		if (ret != XDP_PASS)
4583 			return NET_RX_DROP;
4584 	}
4585 
4586 	rcu_read_lock();
4587 #ifdef CONFIG_RPS
4588 	if (static_key_false(&rps_needed)) {
4589 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4590 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4591 
4592 		if (cpu >= 0) {
4593 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4594 			rcu_read_unlock();
4595 			return ret;
4596 		}
4597 	}
4598 #endif
4599 	ret = __netif_receive_skb(skb);
4600 	rcu_read_unlock();
4601 	return ret;
4602 }
4603 
4604 /**
4605  *	netif_receive_skb - process receive buffer from network
4606  *	@skb: buffer to process
4607  *
4608  *	netif_receive_skb() is the main receive data processing function.
4609  *	It always succeeds. The buffer may be dropped during processing
4610  *	for congestion control or by the protocol layers.
4611  *
4612  *	This function may only be called from softirq context and interrupts
4613  *	should be enabled.
4614  *
4615  *	Return values (usually ignored):
4616  *	NET_RX_SUCCESS: no congestion
4617  *	NET_RX_DROP: packet was dropped
4618  */
4619 int netif_receive_skb(struct sk_buff *skb)
4620 {
4621 	trace_netif_receive_skb_entry(skb);
4622 
4623 	return netif_receive_skb_internal(skb);
4624 }
4625 EXPORT_SYMBOL(netif_receive_skb);
4626 
4627 DEFINE_PER_CPU(struct work_struct, flush_works);
4628 
4629 /* Network device is going away, flush any packets still pending */
4630 static void flush_backlog(struct work_struct *work)
4631 {
4632 	struct sk_buff *skb, *tmp;
4633 	struct softnet_data *sd;
4634 
4635 	local_bh_disable();
4636 	sd = this_cpu_ptr(&softnet_data);
4637 
4638 	local_irq_disable();
4639 	rps_lock(sd);
4640 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4641 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4642 			__skb_unlink(skb, &sd->input_pkt_queue);
4643 			kfree_skb(skb);
4644 			input_queue_head_incr(sd);
4645 		}
4646 	}
4647 	rps_unlock(sd);
4648 	local_irq_enable();
4649 
4650 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4651 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4652 			__skb_unlink(skb, &sd->process_queue);
4653 			kfree_skb(skb);
4654 			input_queue_head_incr(sd);
4655 		}
4656 	}
4657 	local_bh_enable();
4658 }
4659 
4660 static void flush_all_backlogs(void)
4661 {
4662 	unsigned int cpu;
4663 
4664 	get_online_cpus();
4665 
4666 	for_each_online_cpu(cpu)
4667 		queue_work_on(cpu, system_highpri_wq,
4668 			      per_cpu_ptr(&flush_works, cpu));
4669 
4670 	for_each_online_cpu(cpu)
4671 		flush_work(per_cpu_ptr(&flush_works, cpu));
4672 
4673 	put_online_cpus();
4674 }
4675 
4676 static int napi_gro_complete(struct sk_buff *skb)
4677 {
4678 	struct packet_offload *ptype;
4679 	__be16 type = skb->protocol;
4680 	struct list_head *head = &offload_base;
4681 	int err = -ENOENT;
4682 
4683 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4684 
4685 	if (NAPI_GRO_CB(skb)->count == 1) {
4686 		skb_shinfo(skb)->gso_size = 0;
4687 		goto out;
4688 	}
4689 
4690 	rcu_read_lock();
4691 	list_for_each_entry_rcu(ptype, head, list) {
4692 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4693 			continue;
4694 
4695 		err = ptype->callbacks.gro_complete(skb, 0);
4696 		break;
4697 	}
4698 	rcu_read_unlock();
4699 
4700 	if (err) {
4701 		WARN_ON(&ptype->list == head);
4702 		kfree_skb(skb);
4703 		return NET_RX_SUCCESS;
4704 	}
4705 
4706 out:
4707 	return netif_receive_skb_internal(skb);
4708 }
4709 
4710 /* napi->gro_list contains packets ordered by age.
4711  * youngest packets at the head of it.
4712  * Complete skbs in reverse order to reduce latencies.
4713  */
4714 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4715 {
4716 	struct sk_buff *skb, *prev = NULL;
4717 
4718 	/* scan list and build reverse chain */
4719 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4720 		skb->prev = prev;
4721 		prev = skb;
4722 	}
4723 
4724 	for (skb = prev; skb; skb = prev) {
4725 		skb->next = NULL;
4726 
4727 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4728 			return;
4729 
4730 		prev = skb->prev;
4731 		napi_gro_complete(skb);
4732 		napi->gro_count--;
4733 	}
4734 
4735 	napi->gro_list = NULL;
4736 }
4737 EXPORT_SYMBOL(napi_gro_flush);
4738 
4739 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4740 {
4741 	struct sk_buff *p;
4742 	unsigned int maclen = skb->dev->hard_header_len;
4743 	u32 hash = skb_get_hash_raw(skb);
4744 
4745 	for (p = napi->gro_list; p; p = p->next) {
4746 		unsigned long diffs;
4747 
4748 		NAPI_GRO_CB(p)->flush = 0;
4749 
4750 		if (hash != skb_get_hash_raw(p)) {
4751 			NAPI_GRO_CB(p)->same_flow = 0;
4752 			continue;
4753 		}
4754 
4755 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4756 		diffs |= p->vlan_tci ^ skb->vlan_tci;
4757 		diffs |= skb_metadata_dst_cmp(p, skb);
4758 		diffs |= skb_metadata_differs(p, skb);
4759 		if (maclen == ETH_HLEN)
4760 			diffs |= compare_ether_header(skb_mac_header(p),
4761 						      skb_mac_header(skb));
4762 		else if (!diffs)
4763 			diffs = memcmp(skb_mac_header(p),
4764 				       skb_mac_header(skb),
4765 				       maclen);
4766 		NAPI_GRO_CB(p)->same_flow = !diffs;
4767 	}
4768 }
4769 
4770 static void skb_gro_reset_offset(struct sk_buff *skb)
4771 {
4772 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
4773 	const skb_frag_t *frag0 = &pinfo->frags[0];
4774 
4775 	NAPI_GRO_CB(skb)->data_offset = 0;
4776 	NAPI_GRO_CB(skb)->frag0 = NULL;
4777 	NAPI_GRO_CB(skb)->frag0_len = 0;
4778 
4779 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4780 	    pinfo->nr_frags &&
4781 	    !PageHighMem(skb_frag_page(frag0))) {
4782 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4783 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4784 						    skb_frag_size(frag0),
4785 						    skb->end - skb->tail);
4786 	}
4787 }
4788 
4789 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4790 {
4791 	struct skb_shared_info *pinfo = skb_shinfo(skb);
4792 
4793 	BUG_ON(skb->end - skb->tail < grow);
4794 
4795 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4796 
4797 	skb->data_len -= grow;
4798 	skb->tail += grow;
4799 
4800 	pinfo->frags[0].page_offset += grow;
4801 	skb_frag_size_sub(&pinfo->frags[0], grow);
4802 
4803 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4804 		skb_frag_unref(skb, 0);
4805 		memmove(pinfo->frags, pinfo->frags + 1,
4806 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
4807 	}
4808 }
4809 
4810 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4811 {
4812 	struct sk_buff **pp = NULL;
4813 	struct packet_offload *ptype;
4814 	__be16 type = skb->protocol;
4815 	struct list_head *head = &offload_base;
4816 	int same_flow;
4817 	enum gro_result ret;
4818 	int grow;
4819 
4820 	if (netif_elide_gro(skb->dev))
4821 		goto normal;
4822 
4823 	gro_list_prepare(napi, skb);
4824 
4825 	rcu_read_lock();
4826 	list_for_each_entry_rcu(ptype, head, list) {
4827 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4828 			continue;
4829 
4830 		skb_set_network_header(skb, skb_gro_offset(skb));
4831 		skb_reset_mac_len(skb);
4832 		NAPI_GRO_CB(skb)->same_flow = 0;
4833 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4834 		NAPI_GRO_CB(skb)->free = 0;
4835 		NAPI_GRO_CB(skb)->encap_mark = 0;
4836 		NAPI_GRO_CB(skb)->recursion_counter = 0;
4837 		NAPI_GRO_CB(skb)->is_fou = 0;
4838 		NAPI_GRO_CB(skb)->is_atomic = 1;
4839 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4840 
4841 		/* Setup for GRO checksum validation */
4842 		switch (skb->ip_summed) {
4843 		case CHECKSUM_COMPLETE:
4844 			NAPI_GRO_CB(skb)->csum = skb->csum;
4845 			NAPI_GRO_CB(skb)->csum_valid = 1;
4846 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4847 			break;
4848 		case CHECKSUM_UNNECESSARY:
4849 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4850 			NAPI_GRO_CB(skb)->csum_valid = 0;
4851 			break;
4852 		default:
4853 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4854 			NAPI_GRO_CB(skb)->csum_valid = 0;
4855 		}
4856 
4857 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4858 		break;
4859 	}
4860 	rcu_read_unlock();
4861 
4862 	if (&ptype->list == head)
4863 		goto normal;
4864 
4865 	if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4866 		ret = GRO_CONSUMED;
4867 		goto ok;
4868 	}
4869 
4870 	same_flow = NAPI_GRO_CB(skb)->same_flow;
4871 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4872 
4873 	if (pp) {
4874 		struct sk_buff *nskb = *pp;
4875 
4876 		*pp = nskb->next;
4877 		nskb->next = NULL;
4878 		napi_gro_complete(nskb);
4879 		napi->gro_count--;
4880 	}
4881 
4882 	if (same_flow)
4883 		goto ok;
4884 
4885 	if (NAPI_GRO_CB(skb)->flush)
4886 		goto normal;
4887 
4888 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4889 		struct sk_buff *nskb = napi->gro_list;
4890 
4891 		/* locate the end of the list to select the 'oldest' flow */
4892 		while (nskb->next) {
4893 			pp = &nskb->next;
4894 			nskb = *pp;
4895 		}
4896 		*pp = NULL;
4897 		nskb->next = NULL;
4898 		napi_gro_complete(nskb);
4899 	} else {
4900 		napi->gro_count++;
4901 	}
4902 	NAPI_GRO_CB(skb)->count = 1;
4903 	NAPI_GRO_CB(skb)->age = jiffies;
4904 	NAPI_GRO_CB(skb)->last = skb;
4905 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4906 	skb->next = napi->gro_list;
4907 	napi->gro_list = skb;
4908 	ret = GRO_HELD;
4909 
4910 pull:
4911 	grow = skb_gro_offset(skb) - skb_headlen(skb);
4912 	if (grow > 0)
4913 		gro_pull_from_frag0(skb, grow);
4914 ok:
4915 	return ret;
4916 
4917 normal:
4918 	ret = GRO_NORMAL;
4919 	goto pull;
4920 }
4921 
4922 struct packet_offload *gro_find_receive_by_type(__be16 type)
4923 {
4924 	struct list_head *offload_head = &offload_base;
4925 	struct packet_offload *ptype;
4926 
4927 	list_for_each_entry_rcu(ptype, offload_head, list) {
4928 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4929 			continue;
4930 		return ptype;
4931 	}
4932 	return NULL;
4933 }
4934 EXPORT_SYMBOL(gro_find_receive_by_type);
4935 
4936 struct packet_offload *gro_find_complete_by_type(__be16 type)
4937 {
4938 	struct list_head *offload_head = &offload_base;
4939 	struct packet_offload *ptype;
4940 
4941 	list_for_each_entry_rcu(ptype, offload_head, list) {
4942 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4943 			continue;
4944 		return ptype;
4945 	}
4946 	return NULL;
4947 }
4948 EXPORT_SYMBOL(gro_find_complete_by_type);
4949 
4950 static void napi_skb_free_stolen_head(struct sk_buff *skb)
4951 {
4952 	skb_dst_drop(skb);
4953 	secpath_reset(skb);
4954 	kmem_cache_free(skbuff_head_cache, skb);
4955 }
4956 
4957 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4958 {
4959 	switch (ret) {
4960 	case GRO_NORMAL:
4961 		if (netif_receive_skb_internal(skb))
4962 			ret = GRO_DROP;
4963 		break;
4964 
4965 	case GRO_DROP:
4966 		kfree_skb(skb);
4967 		break;
4968 
4969 	case GRO_MERGED_FREE:
4970 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4971 			napi_skb_free_stolen_head(skb);
4972 		else
4973 			__kfree_skb(skb);
4974 		break;
4975 
4976 	case GRO_HELD:
4977 	case GRO_MERGED:
4978 	case GRO_CONSUMED:
4979 		break;
4980 	}
4981 
4982 	return ret;
4983 }
4984 
4985 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4986 {
4987 	skb_mark_napi_id(skb, napi);
4988 	trace_napi_gro_receive_entry(skb);
4989 
4990 	skb_gro_reset_offset(skb);
4991 
4992 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4993 }
4994 EXPORT_SYMBOL(napi_gro_receive);
4995 
4996 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4997 {
4998 	if (unlikely(skb->pfmemalloc)) {
4999 		consume_skb(skb);
5000 		return;
5001 	}
5002 	__skb_pull(skb, skb_headlen(skb));
5003 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
5004 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5005 	skb->vlan_tci = 0;
5006 	skb->dev = napi->dev;
5007 	skb->skb_iif = 0;
5008 	skb->encapsulation = 0;
5009 	skb_shinfo(skb)->gso_type = 0;
5010 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5011 	secpath_reset(skb);
5012 
5013 	napi->skb = skb;
5014 }
5015 
5016 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5017 {
5018 	struct sk_buff *skb = napi->skb;
5019 
5020 	if (!skb) {
5021 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5022 		if (skb) {
5023 			napi->skb = skb;
5024 			skb_mark_napi_id(skb, napi);
5025 		}
5026 	}
5027 	return skb;
5028 }
5029 EXPORT_SYMBOL(napi_get_frags);
5030 
5031 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5032 				      struct sk_buff *skb,
5033 				      gro_result_t ret)
5034 {
5035 	switch (ret) {
5036 	case GRO_NORMAL:
5037 	case GRO_HELD:
5038 		__skb_push(skb, ETH_HLEN);
5039 		skb->protocol = eth_type_trans(skb, skb->dev);
5040 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5041 			ret = GRO_DROP;
5042 		break;
5043 
5044 	case GRO_DROP:
5045 		napi_reuse_skb(napi, skb);
5046 		break;
5047 
5048 	case GRO_MERGED_FREE:
5049 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5050 			napi_skb_free_stolen_head(skb);
5051 		else
5052 			napi_reuse_skb(napi, skb);
5053 		break;
5054 
5055 	case GRO_MERGED:
5056 	case GRO_CONSUMED:
5057 		break;
5058 	}
5059 
5060 	return ret;
5061 }
5062 
5063 /* Upper GRO stack assumes network header starts at gro_offset=0
5064  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5065  * We copy ethernet header into skb->data to have a common layout.
5066  */
5067 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5068 {
5069 	struct sk_buff *skb = napi->skb;
5070 	const struct ethhdr *eth;
5071 	unsigned int hlen = sizeof(*eth);
5072 
5073 	napi->skb = NULL;
5074 
5075 	skb_reset_mac_header(skb);
5076 	skb_gro_reset_offset(skb);
5077 
5078 	eth = skb_gro_header_fast(skb, 0);
5079 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
5080 		eth = skb_gro_header_slow(skb, hlen, 0);
5081 		if (unlikely(!eth)) {
5082 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5083 					     __func__, napi->dev->name);
5084 			napi_reuse_skb(napi, skb);
5085 			return NULL;
5086 		}
5087 	} else {
5088 		gro_pull_from_frag0(skb, hlen);
5089 		NAPI_GRO_CB(skb)->frag0 += hlen;
5090 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
5091 	}
5092 	__skb_pull(skb, hlen);
5093 
5094 	/*
5095 	 * This works because the only protocols we care about don't require
5096 	 * special handling.
5097 	 * We'll fix it up properly in napi_frags_finish()
5098 	 */
5099 	skb->protocol = eth->h_proto;
5100 
5101 	return skb;
5102 }
5103 
5104 gro_result_t napi_gro_frags(struct napi_struct *napi)
5105 {
5106 	struct sk_buff *skb = napi_frags_skb(napi);
5107 
5108 	if (!skb)
5109 		return GRO_DROP;
5110 
5111 	trace_napi_gro_frags_entry(skb);
5112 
5113 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5114 }
5115 EXPORT_SYMBOL(napi_gro_frags);
5116 
5117 /* Compute the checksum from gro_offset and return the folded value
5118  * after adding in any pseudo checksum.
5119  */
5120 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5121 {
5122 	__wsum wsum;
5123 	__sum16 sum;
5124 
5125 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5126 
5127 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5128 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5129 	if (likely(!sum)) {
5130 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5131 		    !skb->csum_complete_sw)
5132 			netdev_rx_csum_fault(skb->dev);
5133 	}
5134 
5135 	NAPI_GRO_CB(skb)->csum = wsum;
5136 	NAPI_GRO_CB(skb)->csum_valid = 1;
5137 
5138 	return sum;
5139 }
5140 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5141 
5142 static void net_rps_send_ipi(struct softnet_data *remsd)
5143 {
5144 #ifdef CONFIG_RPS
5145 	while (remsd) {
5146 		struct softnet_data *next = remsd->rps_ipi_next;
5147 
5148 		if (cpu_online(remsd->cpu))
5149 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5150 		remsd = next;
5151 	}
5152 #endif
5153 }
5154 
5155 /*
5156  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5157  * Note: called with local irq disabled, but exits with local irq enabled.
5158  */
5159 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5160 {
5161 #ifdef CONFIG_RPS
5162 	struct softnet_data *remsd = sd->rps_ipi_list;
5163 
5164 	if (remsd) {
5165 		sd->rps_ipi_list = NULL;
5166 
5167 		local_irq_enable();
5168 
5169 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5170 		net_rps_send_ipi(remsd);
5171 	} else
5172 #endif
5173 		local_irq_enable();
5174 }
5175 
5176 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5177 {
5178 #ifdef CONFIG_RPS
5179 	return sd->rps_ipi_list != NULL;
5180 #else
5181 	return false;
5182 #endif
5183 }
5184 
5185 static int process_backlog(struct napi_struct *napi, int quota)
5186 {
5187 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5188 	bool again = true;
5189 	int work = 0;
5190 
5191 	/* Check if we have pending ipi, its better to send them now,
5192 	 * not waiting net_rx_action() end.
5193 	 */
5194 	if (sd_has_rps_ipi_waiting(sd)) {
5195 		local_irq_disable();
5196 		net_rps_action_and_irq_enable(sd);
5197 	}
5198 
5199 	napi->weight = dev_rx_weight;
5200 	while (again) {
5201 		struct sk_buff *skb;
5202 
5203 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5204 			rcu_read_lock();
5205 			__netif_receive_skb(skb);
5206 			rcu_read_unlock();
5207 			input_queue_head_incr(sd);
5208 			if (++work >= quota)
5209 				return work;
5210 
5211 		}
5212 
5213 		local_irq_disable();
5214 		rps_lock(sd);
5215 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5216 			/*
5217 			 * Inline a custom version of __napi_complete().
5218 			 * only current cpu owns and manipulates this napi,
5219 			 * and NAPI_STATE_SCHED is the only possible flag set
5220 			 * on backlog.
5221 			 * We can use a plain write instead of clear_bit(),
5222 			 * and we dont need an smp_mb() memory barrier.
5223 			 */
5224 			napi->state = 0;
5225 			again = false;
5226 		} else {
5227 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5228 						   &sd->process_queue);
5229 		}
5230 		rps_unlock(sd);
5231 		local_irq_enable();
5232 	}
5233 
5234 	return work;
5235 }
5236 
5237 /**
5238  * __napi_schedule - schedule for receive
5239  * @n: entry to schedule
5240  *
5241  * The entry's receive function will be scheduled to run.
5242  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5243  */
5244 void __napi_schedule(struct napi_struct *n)
5245 {
5246 	unsigned long flags;
5247 
5248 	local_irq_save(flags);
5249 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5250 	local_irq_restore(flags);
5251 }
5252 EXPORT_SYMBOL(__napi_schedule);
5253 
5254 /**
5255  *	napi_schedule_prep - check if napi can be scheduled
5256  *	@n: napi context
5257  *
5258  * Test if NAPI routine is already running, and if not mark
5259  * it as running.  This is used as a condition variable
5260  * insure only one NAPI poll instance runs.  We also make
5261  * sure there is no pending NAPI disable.
5262  */
5263 bool napi_schedule_prep(struct napi_struct *n)
5264 {
5265 	unsigned long val, new;
5266 
5267 	do {
5268 		val = READ_ONCE(n->state);
5269 		if (unlikely(val & NAPIF_STATE_DISABLE))
5270 			return false;
5271 		new = val | NAPIF_STATE_SCHED;
5272 
5273 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
5274 		 * This was suggested by Alexander Duyck, as compiler
5275 		 * emits better code than :
5276 		 * if (val & NAPIF_STATE_SCHED)
5277 		 *     new |= NAPIF_STATE_MISSED;
5278 		 */
5279 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5280 						   NAPIF_STATE_MISSED;
5281 	} while (cmpxchg(&n->state, val, new) != val);
5282 
5283 	return !(val & NAPIF_STATE_SCHED);
5284 }
5285 EXPORT_SYMBOL(napi_schedule_prep);
5286 
5287 /**
5288  * __napi_schedule_irqoff - schedule for receive
5289  * @n: entry to schedule
5290  *
5291  * Variant of __napi_schedule() assuming hard irqs are masked
5292  */
5293 void __napi_schedule_irqoff(struct napi_struct *n)
5294 {
5295 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5296 }
5297 EXPORT_SYMBOL(__napi_schedule_irqoff);
5298 
5299 bool napi_complete_done(struct napi_struct *n, int work_done)
5300 {
5301 	unsigned long flags, val, new;
5302 
5303 	/*
5304 	 * 1) Don't let napi dequeue from the cpu poll list
5305 	 *    just in case its running on a different cpu.
5306 	 * 2) If we are busy polling, do nothing here, we have
5307 	 *    the guarantee we will be called later.
5308 	 */
5309 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5310 				 NAPIF_STATE_IN_BUSY_POLL)))
5311 		return false;
5312 
5313 	if (n->gro_list) {
5314 		unsigned long timeout = 0;
5315 
5316 		if (work_done)
5317 			timeout = n->dev->gro_flush_timeout;
5318 
5319 		if (timeout)
5320 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
5321 				      HRTIMER_MODE_REL_PINNED);
5322 		else
5323 			napi_gro_flush(n, false);
5324 	}
5325 	if (unlikely(!list_empty(&n->poll_list))) {
5326 		/* If n->poll_list is not empty, we need to mask irqs */
5327 		local_irq_save(flags);
5328 		list_del_init(&n->poll_list);
5329 		local_irq_restore(flags);
5330 	}
5331 
5332 	do {
5333 		val = READ_ONCE(n->state);
5334 
5335 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5336 
5337 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5338 
5339 		/* If STATE_MISSED was set, leave STATE_SCHED set,
5340 		 * because we will call napi->poll() one more time.
5341 		 * This C code was suggested by Alexander Duyck to help gcc.
5342 		 */
5343 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5344 						    NAPIF_STATE_SCHED;
5345 	} while (cmpxchg(&n->state, val, new) != val);
5346 
5347 	if (unlikely(val & NAPIF_STATE_MISSED)) {
5348 		__napi_schedule(n);
5349 		return false;
5350 	}
5351 
5352 	return true;
5353 }
5354 EXPORT_SYMBOL(napi_complete_done);
5355 
5356 /* must be called under rcu_read_lock(), as we dont take a reference */
5357 static struct napi_struct *napi_by_id(unsigned int napi_id)
5358 {
5359 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5360 	struct napi_struct *napi;
5361 
5362 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5363 		if (napi->napi_id == napi_id)
5364 			return napi;
5365 
5366 	return NULL;
5367 }
5368 
5369 #if defined(CONFIG_NET_RX_BUSY_POLL)
5370 
5371 #define BUSY_POLL_BUDGET 8
5372 
5373 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5374 {
5375 	int rc;
5376 
5377 	/* Busy polling means there is a high chance device driver hard irq
5378 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5379 	 * set in napi_schedule_prep().
5380 	 * Since we are about to call napi->poll() once more, we can safely
5381 	 * clear NAPI_STATE_MISSED.
5382 	 *
5383 	 * Note: x86 could use a single "lock and ..." instruction
5384 	 * to perform these two clear_bit()
5385 	 */
5386 	clear_bit(NAPI_STATE_MISSED, &napi->state);
5387 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5388 
5389 	local_bh_disable();
5390 
5391 	/* All we really want here is to re-enable device interrupts.
5392 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5393 	 */
5394 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
5395 	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5396 	netpoll_poll_unlock(have_poll_lock);
5397 	if (rc == BUSY_POLL_BUDGET)
5398 		__napi_schedule(napi);
5399 	local_bh_enable();
5400 }
5401 
5402 void napi_busy_loop(unsigned int napi_id,
5403 		    bool (*loop_end)(void *, unsigned long),
5404 		    void *loop_end_arg)
5405 {
5406 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5407 	int (*napi_poll)(struct napi_struct *napi, int budget);
5408 	void *have_poll_lock = NULL;
5409 	struct napi_struct *napi;
5410 
5411 restart:
5412 	napi_poll = NULL;
5413 
5414 	rcu_read_lock();
5415 
5416 	napi = napi_by_id(napi_id);
5417 	if (!napi)
5418 		goto out;
5419 
5420 	preempt_disable();
5421 	for (;;) {
5422 		int work = 0;
5423 
5424 		local_bh_disable();
5425 		if (!napi_poll) {
5426 			unsigned long val = READ_ONCE(napi->state);
5427 
5428 			/* If multiple threads are competing for this napi,
5429 			 * we avoid dirtying napi->state as much as we can.
5430 			 */
5431 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5432 				   NAPIF_STATE_IN_BUSY_POLL))
5433 				goto count;
5434 			if (cmpxchg(&napi->state, val,
5435 				    val | NAPIF_STATE_IN_BUSY_POLL |
5436 					  NAPIF_STATE_SCHED) != val)
5437 				goto count;
5438 			have_poll_lock = netpoll_poll_lock(napi);
5439 			napi_poll = napi->poll;
5440 		}
5441 		work = napi_poll(napi, BUSY_POLL_BUDGET);
5442 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5443 count:
5444 		if (work > 0)
5445 			__NET_ADD_STATS(dev_net(napi->dev),
5446 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
5447 		local_bh_enable();
5448 
5449 		if (!loop_end || loop_end(loop_end_arg, start_time))
5450 			break;
5451 
5452 		if (unlikely(need_resched())) {
5453 			if (napi_poll)
5454 				busy_poll_stop(napi, have_poll_lock);
5455 			preempt_enable();
5456 			rcu_read_unlock();
5457 			cond_resched();
5458 			if (loop_end(loop_end_arg, start_time))
5459 				return;
5460 			goto restart;
5461 		}
5462 		cpu_relax();
5463 	}
5464 	if (napi_poll)
5465 		busy_poll_stop(napi, have_poll_lock);
5466 	preempt_enable();
5467 out:
5468 	rcu_read_unlock();
5469 }
5470 EXPORT_SYMBOL(napi_busy_loop);
5471 
5472 #endif /* CONFIG_NET_RX_BUSY_POLL */
5473 
5474 static void napi_hash_add(struct napi_struct *napi)
5475 {
5476 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5477 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5478 		return;
5479 
5480 	spin_lock(&napi_hash_lock);
5481 
5482 	/* 0..NR_CPUS range is reserved for sender_cpu use */
5483 	do {
5484 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5485 			napi_gen_id = MIN_NAPI_ID;
5486 	} while (napi_by_id(napi_gen_id));
5487 	napi->napi_id = napi_gen_id;
5488 
5489 	hlist_add_head_rcu(&napi->napi_hash_node,
5490 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5491 
5492 	spin_unlock(&napi_hash_lock);
5493 }
5494 
5495 /* Warning : caller is responsible to make sure rcu grace period
5496  * is respected before freeing memory containing @napi
5497  */
5498 bool napi_hash_del(struct napi_struct *napi)
5499 {
5500 	bool rcu_sync_needed = false;
5501 
5502 	spin_lock(&napi_hash_lock);
5503 
5504 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5505 		rcu_sync_needed = true;
5506 		hlist_del_rcu(&napi->napi_hash_node);
5507 	}
5508 	spin_unlock(&napi_hash_lock);
5509 	return rcu_sync_needed;
5510 }
5511 EXPORT_SYMBOL_GPL(napi_hash_del);
5512 
5513 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5514 {
5515 	struct napi_struct *napi;
5516 
5517 	napi = container_of(timer, struct napi_struct, timer);
5518 
5519 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
5520 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5521 	 */
5522 	if (napi->gro_list && !napi_disable_pending(napi) &&
5523 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5524 		__napi_schedule_irqoff(napi);
5525 
5526 	return HRTIMER_NORESTART;
5527 }
5528 
5529 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5530 		    int (*poll)(struct napi_struct *, int), int weight)
5531 {
5532 	INIT_LIST_HEAD(&napi->poll_list);
5533 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5534 	napi->timer.function = napi_watchdog;
5535 	napi->gro_count = 0;
5536 	napi->gro_list = NULL;
5537 	napi->skb = NULL;
5538 	napi->poll = poll;
5539 	if (weight > NAPI_POLL_WEIGHT)
5540 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5541 			    weight, dev->name);
5542 	napi->weight = weight;
5543 	list_add(&napi->dev_list, &dev->napi_list);
5544 	napi->dev = dev;
5545 #ifdef CONFIG_NETPOLL
5546 	napi->poll_owner = -1;
5547 #endif
5548 	set_bit(NAPI_STATE_SCHED, &napi->state);
5549 	napi_hash_add(napi);
5550 }
5551 EXPORT_SYMBOL(netif_napi_add);
5552 
5553 void napi_disable(struct napi_struct *n)
5554 {
5555 	might_sleep();
5556 	set_bit(NAPI_STATE_DISABLE, &n->state);
5557 
5558 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5559 		msleep(1);
5560 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5561 		msleep(1);
5562 
5563 	hrtimer_cancel(&n->timer);
5564 
5565 	clear_bit(NAPI_STATE_DISABLE, &n->state);
5566 }
5567 EXPORT_SYMBOL(napi_disable);
5568 
5569 /* Must be called in process context */
5570 void netif_napi_del(struct napi_struct *napi)
5571 {
5572 	might_sleep();
5573 	if (napi_hash_del(napi))
5574 		synchronize_net();
5575 	list_del_init(&napi->dev_list);
5576 	napi_free_frags(napi);
5577 
5578 	kfree_skb_list(napi->gro_list);
5579 	napi->gro_list = NULL;
5580 	napi->gro_count = 0;
5581 }
5582 EXPORT_SYMBOL(netif_napi_del);
5583 
5584 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5585 {
5586 	void *have;
5587 	int work, weight;
5588 
5589 	list_del_init(&n->poll_list);
5590 
5591 	have = netpoll_poll_lock(n);
5592 
5593 	weight = n->weight;
5594 
5595 	/* This NAPI_STATE_SCHED test is for avoiding a race
5596 	 * with netpoll's poll_napi().  Only the entity which
5597 	 * obtains the lock and sees NAPI_STATE_SCHED set will
5598 	 * actually make the ->poll() call.  Therefore we avoid
5599 	 * accidentally calling ->poll() when NAPI is not scheduled.
5600 	 */
5601 	work = 0;
5602 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5603 		work = n->poll(n, weight);
5604 		trace_napi_poll(n, work, weight);
5605 	}
5606 
5607 	WARN_ON_ONCE(work > weight);
5608 
5609 	if (likely(work < weight))
5610 		goto out_unlock;
5611 
5612 	/* Drivers must not modify the NAPI state if they
5613 	 * consume the entire weight.  In such cases this code
5614 	 * still "owns" the NAPI instance and therefore can
5615 	 * move the instance around on the list at-will.
5616 	 */
5617 	if (unlikely(napi_disable_pending(n))) {
5618 		napi_complete(n);
5619 		goto out_unlock;
5620 	}
5621 
5622 	if (n->gro_list) {
5623 		/* flush too old packets
5624 		 * If HZ < 1000, flush all packets.
5625 		 */
5626 		napi_gro_flush(n, HZ >= 1000);
5627 	}
5628 
5629 	/* Some drivers may have called napi_schedule
5630 	 * prior to exhausting their budget.
5631 	 */
5632 	if (unlikely(!list_empty(&n->poll_list))) {
5633 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5634 			     n->dev ? n->dev->name : "backlog");
5635 		goto out_unlock;
5636 	}
5637 
5638 	list_add_tail(&n->poll_list, repoll);
5639 
5640 out_unlock:
5641 	netpoll_poll_unlock(have);
5642 
5643 	return work;
5644 }
5645 
5646 static __latent_entropy void net_rx_action(struct softirq_action *h)
5647 {
5648 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5649 	unsigned long time_limit = jiffies +
5650 		usecs_to_jiffies(netdev_budget_usecs);
5651 	int budget = netdev_budget;
5652 	LIST_HEAD(list);
5653 	LIST_HEAD(repoll);
5654 
5655 	local_irq_disable();
5656 	list_splice_init(&sd->poll_list, &list);
5657 	local_irq_enable();
5658 
5659 	for (;;) {
5660 		struct napi_struct *n;
5661 
5662 		if (list_empty(&list)) {
5663 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5664 				goto out;
5665 			break;
5666 		}
5667 
5668 		n = list_first_entry(&list, struct napi_struct, poll_list);
5669 		budget -= napi_poll(n, &repoll);
5670 
5671 		/* If softirq window is exhausted then punt.
5672 		 * Allow this to run for 2 jiffies since which will allow
5673 		 * an average latency of 1.5/HZ.
5674 		 */
5675 		if (unlikely(budget <= 0 ||
5676 			     time_after_eq(jiffies, time_limit))) {
5677 			sd->time_squeeze++;
5678 			break;
5679 		}
5680 	}
5681 
5682 	local_irq_disable();
5683 
5684 	list_splice_tail_init(&sd->poll_list, &list);
5685 	list_splice_tail(&repoll, &list);
5686 	list_splice(&list, &sd->poll_list);
5687 	if (!list_empty(&sd->poll_list))
5688 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5689 
5690 	net_rps_action_and_irq_enable(sd);
5691 out:
5692 	__kfree_skb_flush();
5693 }
5694 
5695 struct netdev_adjacent {
5696 	struct net_device *dev;
5697 
5698 	/* upper master flag, there can only be one master device per list */
5699 	bool master;
5700 
5701 	/* counter for the number of times this device was added to us */
5702 	u16 ref_nr;
5703 
5704 	/* private field for the users */
5705 	void *private;
5706 
5707 	struct list_head list;
5708 	struct rcu_head rcu;
5709 };
5710 
5711 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5712 						 struct list_head *adj_list)
5713 {
5714 	struct netdev_adjacent *adj;
5715 
5716 	list_for_each_entry(adj, adj_list, list) {
5717 		if (adj->dev == adj_dev)
5718 			return adj;
5719 	}
5720 	return NULL;
5721 }
5722 
5723 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5724 {
5725 	struct net_device *dev = data;
5726 
5727 	return upper_dev == dev;
5728 }
5729 
5730 /**
5731  * netdev_has_upper_dev - Check if device is linked to an upper device
5732  * @dev: device
5733  * @upper_dev: upper device to check
5734  *
5735  * Find out if a device is linked to specified upper device and return true
5736  * in case it is. Note that this checks only immediate upper device,
5737  * not through a complete stack of devices. The caller must hold the RTNL lock.
5738  */
5739 bool netdev_has_upper_dev(struct net_device *dev,
5740 			  struct net_device *upper_dev)
5741 {
5742 	ASSERT_RTNL();
5743 
5744 	return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5745 					     upper_dev);
5746 }
5747 EXPORT_SYMBOL(netdev_has_upper_dev);
5748 
5749 /**
5750  * netdev_has_upper_dev_all - Check if device is linked to an upper device
5751  * @dev: device
5752  * @upper_dev: upper device to check
5753  *
5754  * Find out if a device is linked to specified upper device and return true
5755  * in case it is. Note that this checks the entire upper device chain.
5756  * The caller must hold rcu lock.
5757  */
5758 
5759 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5760 				  struct net_device *upper_dev)
5761 {
5762 	return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5763 					       upper_dev);
5764 }
5765 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5766 
5767 /**
5768  * netdev_has_any_upper_dev - Check if device is linked to some device
5769  * @dev: device
5770  *
5771  * Find out if a device is linked to an upper device and return true in case
5772  * it is. The caller must hold the RTNL lock.
5773  */
5774 bool netdev_has_any_upper_dev(struct net_device *dev)
5775 {
5776 	ASSERT_RTNL();
5777 
5778 	return !list_empty(&dev->adj_list.upper);
5779 }
5780 EXPORT_SYMBOL(netdev_has_any_upper_dev);
5781 
5782 /**
5783  * netdev_master_upper_dev_get - Get master upper device
5784  * @dev: device
5785  *
5786  * Find a master upper device and return pointer to it or NULL in case
5787  * it's not there. The caller must hold the RTNL lock.
5788  */
5789 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5790 {
5791 	struct netdev_adjacent *upper;
5792 
5793 	ASSERT_RTNL();
5794 
5795 	if (list_empty(&dev->adj_list.upper))
5796 		return NULL;
5797 
5798 	upper = list_first_entry(&dev->adj_list.upper,
5799 				 struct netdev_adjacent, list);
5800 	if (likely(upper->master))
5801 		return upper->dev;
5802 	return NULL;
5803 }
5804 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5805 
5806 /**
5807  * netdev_has_any_lower_dev - Check if device is linked to some device
5808  * @dev: device
5809  *
5810  * Find out if a device is linked to a lower device and return true in case
5811  * it is. The caller must hold the RTNL lock.
5812  */
5813 static bool netdev_has_any_lower_dev(struct net_device *dev)
5814 {
5815 	ASSERT_RTNL();
5816 
5817 	return !list_empty(&dev->adj_list.lower);
5818 }
5819 
5820 void *netdev_adjacent_get_private(struct list_head *adj_list)
5821 {
5822 	struct netdev_adjacent *adj;
5823 
5824 	adj = list_entry(adj_list, struct netdev_adjacent, list);
5825 
5826 	return adj->private;
5827 }
5828 EXPORT_SYMBOL(netdev_adjacent_get_private);
5829 
5830 /**
5831  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5832  * @dev: device
5833  * @iter: list_head ** of the current position
5834  *
5835  * Gets the next device from the dev's upper list, starting from iter
5836  * position. The caller must hold RCU read lock.
5837  */
5838 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5839 						 struct list_head **iter)
5840 {
5841 	struct netdev_adjacent *upper;
5842 
5843 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5844 
5845 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5846 
5847 	if (&upper->list == &dev->adj_list.upper)
5848 		return NULL;
5849 
5850 	*iter = &upper->list;
5851 
5852 	return upper->dev;
5853 }
5854 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5855 
5856 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5857 						    struct list_head **iter)
5858 {
5859 	struct netdev_adjacent *upper;
5860 
5861 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5862 
5863 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5864 
5865 	if (&upper->list == &dev->adj_list.upper)
5866 		return NULL;
5867 
5868 	*iter = &upper->list;
5869 
5870 	return upper->dev;
5871 }
5872 
5873 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5874 				  int (*fn)(struct net_device *dev,
5875 					    void *data),
5876 				  void *data)
5877 {
5878 	struct net_device *udev;
5879 	struct list_head *iter;
5880 	int ret;
5881 
5882 	for (iter = &dev->adj_list.upper,
5883 	     udev = netdev_next_upper_dev_rcu(dev, &iter);
5884 	     udev;
5885 	     udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5886 		/* first is the upper device itself */
5887 		ret = fn(udev, data);
5888 		if (ret)
5889 			return ret;
5890 
5891 		/* then look at all of its upper devices */
5892 		ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5893 		if (ret)
5894 			return ret;
5895 	}
5896 
5897 	return 0;
5898 }
5899 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5900 
5901 /**
5902  * netdev_lower_get_next_private - Get the next ->private from the
5903  *				   lower neighbour list
5904  * @dev: device
5905  * @iter: list_head ** of the current position
5906  *
5907  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5908  * list, starting from iter position. The caller must hold either hold the
5909  * RTNL lock or its own locking that guarantees that the neighbour lower
5910  * list will remain unchanged.
5911  */
5912 void *netdev_lower_get_next_private(struct net_device *dev,
5913 				    struct list_head **iter)
5914 {
5915 	struct netdev_adjacent *lower;
5916 
5917 	lower = list_entry(*iter, struct netdev_adjacent, list);
5918 
5919 	if (&lower->list == &dev->adj_list.lower)
5920 		return NULL;
5921 
5922 	*iter = lower->list.next;
5923 
5924 	return lower->private;
5925 }
5926 EXPORT_SYMBOL(netdev_lower_get_next_private);
5927 
5928 /**
5929  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5930  *				       lower neighbour list, RCU
5931  *				       variant
5932  * @dev: device
5933  * @iter: list_head ** of the current position
5934  *
5935  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5936  * list, starting from iter position. The caller must hold RCU read lock.
5937  */
5938 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5939 					struct list_head **iter)
5940 {
5941 	struct netdev_adjacent *lower;
5942 
5943 	WARN_ON_ONCE(!rcu_read_lock_held());
5944 
5945 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5946 
5947 	if (&lower->list == &dev->adj_list.lower)
5948 		return NULL;
5949 
5950 	*iter = &lower->list;
5951 
5952 	return lower->private;
5953 }
5954 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5955 
5956 /**
5957  * netdev_lower_get_next - Get the next device from the lower neighbour
5958  *                         list
5959  * @dev: device
5960  * @iter: list_head ** of the current position
5961  *
5962  * Gets the next netdev_adjacent from the dev's lower neighbour
5963  * list, starting from iter position. The caller must hold RTNL lock or
5964  * its own locking that guarantees that the neighbour lower
5965  * list will remain unchanged.
5966  */
5967 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5968 {
5969 	struct netdev_adjacent *lower;
5970 
5971 	lower = list_entry(*iter, struct netdev_adjacent, list);
5972 
5973 	if (&lower->list == &dev->adj_list.lower)
5974 		return NULL;
5975 
5976 	*iter = lower->list.next;
5977 
5978 	return lower->dev;
5979 }
5980 EXPORT_SYMBOL(netdev_lower_get_next);
5981 
5982 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5983 						struct list_head **iter)
5984 {
5985 	struct netdev_adjacent *lower;
5986 
5987 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5988 
5989 	if (&lower->list == &dev->adj_list.lower)
5990 		return NULL;
5991 
5992 	*iter = &lower->list;
5993 
5994 	return lower->dev;
5995 }
5996 
5997 int netdev_walk_all_lower_dev(struct net_device *dev,
5998 			      int (*fn)(struct net_device *dev,
5999 					void *data),
6000 			      void *data)
6001 {
6002 	struct net_device *ldev;
6003 	struct list_head *iter;
6004 	int ret;
6005 
6006 	for (iter = &dev->adj_list.lower,
6007 	     ldev = netdev_next_lower_dev(dev, &iter);
6008 	     ldev;
6009 	     ldev = netdev_next_lower_dev(dev, &iter)) {
6010 		/* first is the lower device itself */
6011 		ret = fn(ldev, data);
6012 		if (ret)
6013 			return ret;
6014 
6015 		/* then look at all of its lower devices */
6016 		ret = netdev_walk_all_lower_dev(ldev, fn, data);
6017 		if (ret)
6018 			return ret;
6019 	}
6020 
6021 	return 0;
6022 }
6023 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6024 
6025 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6026 						    struct list_head **iter)
6027 {
6028 	struct netdev_adjacent *lower;
6029 
6030 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6031 	if (&lower->list == &dev->adj_list.lower)
6032 		return NULL;
6033 
6034 	*iter = &lower->list;
6035 
6036 	return lower->dev;
6037 }
6038 
6039 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6040 				  int (*fn)(struct net_device *dev,
6041 					    void *data),
6042 				  void *data)
6043 {
6044 	struct net_device *ldev;
6045 	struct list_head *iter;
6046 	int ret;
6047 
6048 	for (iter = &dev->adj_list.lower,
6049 	     ldev = netdev_next_lower_dev_rcu(dev, &iter);
6050 	     ldev;
6051 	     ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6052 		/* first is the lower device itself */
6053 		ret = fn(ldev, data);
6054 		if (ret)
6055 			return ret;
6056 
6057 		/* then look at all of its lower devices */
6058 		ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6059 		if (ret)
6060 			return ret;
6061 	}
6062 
6063 	return 0;
6064 }
6065 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6066 
6067 /**
6068  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6069  *				       lower neighbour list, RCU
6070  *				       variant
6071  * @dev: device
6072  *
6073  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6074  * list. The caller must hold RCU read lock.
6075  */
6076 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6077 {
6078 	struct netdev_adjacent *lower;
6079 
6080 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
6081 			struct netdev_adjacent, list);
6082 	if (lower)
6083 		return lower->private;
6084 	return NULL;
6085 }
6086 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6087 
6088 /**
6089  * netdev_master_upper_dev_get_rcu - Get master upper device
6090  * @dev: device
6091  *
6092  * Find a master upper device and return pointer to it or NULL in case
6093  * it's not there. The caller must hold the RCU read lock.
6094  */
6095 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6096 {
6097 	struct netdev_adjacent *upper;
6098 
6099 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
6100 				       struct netdev_adjacent, list);
6101 	if (upper && likely(upper->master))
6102 		return upper->dev;
6103 	return NULL;
6104 }
6105 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6106 
6107 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6108 			      struct net_device *adj_dev,
6109 			      struct list_head *dev_list)
6110 {
6111 	char linkname[IFNAMSIZ+7];
6112 
6113 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6114 		"upper_%s" : "lower_%s", adj_dev->name);
6115 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6116 				 linkname);
6117 }
6118 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6119 			       char *name,
6120 			       struct list_head *dev_list)
6121 {
6122 	char linkname[IFNAMSIZ+7];
6123 
6124 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6125 		"upper_%s" : "lower_%s", name);
6126 	sysfs_remove_link(&(dev->dev.kobj), linkname);
6127 }
6128 
6129 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6130 						 struct net_device *adj_dev,
6131 						 struct list_head *dev_list)
6132 {
6133 	return (dev_list == &dev->adj_list.upper ||
6134 		dev_list == &dev->adj_list.lower) &&
6135 		net_eq(dev_net(dev), dev_net(adj_dev));
6136 }
6137 
6138 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6139 					struct net_device *adj_dev,
6140 					struct list_head *dev_list,
6141 					void *private, bool master)
6142 {
6143 	struct netdev_adjacent *adj;
6144 	int ret;
6145 
6146 	adj = __netdev_find_adj(adj_dev, dev_list);
6147 
6148 	if (adj) {
6149 		adj->ref_nr += 1;
6150 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6151 			 dev->name, adj_dev->name, adj->ref_nr);
6152 
6153 		return 0;
6154 	}
6155 
6156 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6157 	if (!adj)
6158 		return -ENOMEM;
6159 
6160 	adj->dev = adj_dev;
6161 	adj->master = master;
6162 	adj->ref_nr = 1;
6163 	adj->private = private;
6164 	dev_hold(adj_dev);
6165 
6166 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6167 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6168 
6169 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6170 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6171 		if (ret)
6172 			goto free_adj;
6173 	}
6174 
6175 	/* Ensure that master link is always the first item in list. */
6176 	if (master) {
6177 		ret = sysfs_create_link(&(dev->dev.kobj),
6178 					&(adj_dev->dev.kobj), "master");
6179 		if (ret)
6180 			goto remove_symlinks;
6181 
6182 		list_add_rcu(&adj->list, dev_list);
6183 	} else {
6184 		list_add_tail_rcu(&adj->list, dev_list);
6185 	}
6186 
6187 	return 0;
6188 
6189 remove_symlinks:
6190 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6191 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6192 free_adj:
6193 	kfree(adj);
6194 	dev_put(adj_dev);
6195 
6196 	return ret;
6197 }
6198 
6199 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6200 					 struct net_device *adj_dev,
6201 					 u16 ref_nr,
6202 					 struct list_head *dev_list)
6203 {
6204 	struct netdev_adjacent *adj;
6205 
6206 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6207 		 dev->name, adj_dev->name, ref_nr);
6208 
6209 	adj = __netdev_find_adj(adj_dev, dev_list);
6210 
6211 	if (!adj) {
6212 		pr_err("Adjacency does not exist for device %s from %s\n",
6213 		       dev->name, adj_dev->name);
6214 		WARN_ON(1);
6215 		return;
6216 	}
6217 
6218 	if (adj->ref_nr > ref_nr) {
6219 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6220 			 dev->name, adj_dev->name, ref_nr,
6221 			 adj->ref_nr - ref_nr);
6222 		adj->ref_nr -= ref_nr;
6223 		return;
6224 	}
6225 
6226 	if (adj->master)
6227 		sysfs_remove_link(&(dev->dev.kobj), "master");
6228 
6229 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6230 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6231 
6232 	list_del_rcu(&adj->list);
6233 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6234 		 adj_dev->name, dev->name, adj_dev->name);
6235 	dev_put(adj_dev);
6236 	kfree_rcu(adj, rcu);
6237 }
6238 
6239 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6240 					    struct net_device *upper_dev,
6241 					    struct list_head *up_list,
6242 					    struct list_head *down_list,
6243 					    void *private, bool master)
6244 {
6245 	int ret;
6246 
6247 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6248 					   private, master);
6249 	if (ret)
6250 		return ret;
6251 
6252 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6253 					   private, false);
6254 	if (ret) {
6255 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6256 		return ret;
6257 	}
6258 
6259 	return 0;
6260 }
6261 
6262 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6263 					       struct net_device *upper_dev,
6264 					       u16 ref_nr,
6265 					       struct list_head *up_list,
6266 					       struct list_head *down_list)
6267 {
6268 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6269 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6270 }
6271 
6272 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6273 						struct net_device *upper_dev,
6274 						void *private, bool master)
6275 {
6276 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6277 						&dev->adj_list.upper,
6278 						&upper_dev->adj_list.lower,
6279 						private, master);
6280 }
6281 
6282 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6283 						   struct net_device *upper_dev)
6284 {
6285 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6286 					   &dev->adj_list.upper,
6287 					   &upper_dev->adj_list.lower);
6288 }
6289 
6290 static int __netdev_upper_dev_link(struct net_device *dev,
6291 				   struct net_device *upper_dev, bool master,
6292 				   void *upper_priv, void *upper_info,
6293 				   struct netlink_ext_ack *extack)
6294 {
6295 	struct netdev_notifier_changeupper_info changeupper_info = {
6296 		.info = {
6297 			.dev = dev,
6298 			.extack = extack,
6299 		},
6300 		.upper_dev = upper_dev,
6301 		.master = master,
6302 		.linking = true,
6303 		.upper_info = upper_info,
6304 	};
6305 	int ret = 0;
6306 
6307 	ASSERT_RTNL();
6308 
6309 	if (dev == upper_dev)
6310 		return -EBUSY;
6311 
6312 	/* To prevent loops, check if dev is not upper device to upper_dev. */
6313 	if (netdev_has_upper_dev(upper_dev, dev))
6314 		return -EBUSY;
6315 
6316 	if (netdev_has_upper_dev(dev, upper_dev))
6317 		return -EEXIST;
6318 
6319 	if (master && netdev_master_upper_dev_get(dev))
6320 		return -EBUSY;
6321 
6322 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6323 					    &changeupper_info.info);
6324 	ret = notifier_to_errno(ret);
6325 	if (ret)
6326 		return ret;
6327 
6328 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6329 						   master);
6330 	if (ret)
6331 		return ret;
6332 
6333 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6334 					    &changeupper_info.info);
6335 	ret = notifier_to_errno(ret);
6336 	if (ret)
6337 		goto rollback;
6338 
6339 	return 0;
6340 
6341 rollback:
6342 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6343 
6344 	return ret;
6345 }
6346 
6347 /**
6348  * netdev_upper_dev_link - Add a link to the upper device
6349  * @dev: device
6350  * @upper_dev: new upper device
6351  *
6352  * Adds a link to device which is upper to this one. The caller must hold
6353  * the RTNL lock. On a failure a negative errno code is returned.
6354  * On success the reference counts are adjusted and the function
6355  * returns zero.
6356  */
6357 int netdev_upper_dev_link(struct net_device *dev,
6358 			  struct net_device *upper_dev,
6359 			  struct netlink_ext_ack *extack)
6360 {
6361 	return __netdev_upper_dev_link(dev, upper_dev, false,
6362 				       NULL, NULL, extack);
6363 }
6364 EXPORT_SYMBOL(netdev_upper_dev_link);
6365 
6366 /**
6367  * netdev_master_upper_dev_link - Add a master link to the upper device
6368  * @dev: device
6369  * @upper_dev: new upper device
6370  * @upper_priv: upper device private
6371  * @upper_info: upper info to be passed down via notifier
6372  *
6373  * Adds a link to device which is upper to this one. In this case, only
6374  * one master upper device can be linked, although other non-master devices
6375  * might be linked as well. The caller must hold the RTNL lock.
6376  * On a failure a negative errno code is returned. On success the reference
6377  * counts are adjusted and the function returns zero.
6378  */
6379 int netdev_master_upper_dev_link(struct net_device *dev,
6380 				 struct net_device *upper_dev,
6381 				 void *upper_priv, void *upper_info,
6382 				 struct netlink_ext_ack *extack)
6383 {
6384 	return __netdev_upper_dev_link(dev, upper_dev, true,
6385 				       upper_priv, upper_info, extack);
6386 }
6387 EXPORT_SYMBOL(netdev_master_upper_dev_link);
6388 
6389 /**
6390  * netdev_upper_dev_unlink - Removes a link to upper device
6391  * @dev: device
6392  * @upper_dev: new upper device
6393  *
6394  * Removes a link to device which is upper to this one. The caller must hold
6395  * the RTNL lock.
6396  */
6397 void netdev_upper_dev_unlink(struct net_device *dev,
6398 			     struct net_device *upper_dev)
6399 {
6400 	struct netdev_notifier_changeupper_info changeupper_info = {
6401 		.info = {
6402 			.dev = dev,
6403 		},
6404 		.upper_dev = upper_dev,
6405 		.linking = false,
6406 	};
6407 
6408 	ASSERT_RTNL();
6409 
6410 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6411 
6412 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6413 				      &changeupper_info.info);
6414 
6415 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6416 
6417 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6418 				      &changeupper_info.info);
6419 }
6420 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6421 
6422 /**
6423  * netdev_bonding_info_change - Dispatch event about slave change
6424  * @dev: device
6425  * @bonding_info: info to dispatch
6426  *
6427  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6428  * The caller must hold the RTNL lock.
6429  */
6430 void netdev_bonding_info_change(struct net_device *dev,
6431 				struct netdev_bonding_info *bonding_info)
6432 {
6433 	struct netdev_notifier_bonding_info info = {
6434 		.info.dev = dev,
6435 	};
6436 
6437 	memcpy(&info.bonding_info, bonding_info,
6438 	       sizeof(struct netdev_bonding_info));
6439 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
6440 				      &info.info);
6441 }
6442 EXPORT_SYMBOL(netdev_bonding_info_change);
6443 
6444 static void netdev_adjacent_add_links(struct net_device *dev)
6445 {
6446 	struct netdev_adjacent *iter;
6447 
6448 	struct net *net = dev_net(dev);
6449 
6450 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6451 		if (!net_eq(net, dev_net(iter->dev)))
6452 			continue;
6453 		netdev_adjacent_sysfs_add(iter->dev, dev,
6454 					  &iter->dev->adj_list.lower);
6455 		netdev_adjacent_sysfs_add(dev, iter->dev,
6456 					  &dev->adj_list.upper);
6457 	}
6458 
6459 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6460 		if (!net_eq(net, dev_net(iter->dev)))
6461 			continue;
6462 		netdev_adjacent_sysfs_add(iter->dev, dev,
6463 					  &iter->dev->adj_list.upper);
6464 		netdev_adjacent_sysfs_add(dev, iter->dev,
6465 					  &dev->adj_list.lower);
6466 	}
6467 }
6468 
6469 static void netdev_adjacent_del_links(struct net_device *dev)
6470 {
6471 	struct netdev_adjacent *iter;
6472 
6473 	struct net *net = dev_net(dev);
6474 
6475 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6476 		if (!net_eq(net, dev_net(iter->dev)))
6477 			continue;
6478 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6479 					  &iter->dev->adj_list.lower);
6480 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6481 					  &dev->adj_list.upper);
6482 	}
6483 
6484 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6485 		if (!net_eq(net, dev_net(iter->dev)))
6486 			continue;
6487 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6488 					  &iter->dev->adj_list.upper);
6489 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6490 					  &dev->adj_list.lower);
6491 	}
6492 }
6493 
6494 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6495 {
6496 	struct netdev_adjacent *iter;
6497 
6498 	struct net *net = dev_net(dev);
6499 
6500 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6501 		if (!net_eq(net, dev_net(iter->dev)))
6502 			continue;
6503 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6504 					  &iter->dev->adj_list.lower);
6505 		netdev_adjacent_sysfs_add(iter->dev, dev,
6506 					  &iter->dev->adj_list.lower);
6507 	}
6508 
6509 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6510 		if (!net_eq(net, dev_net(iter->dev)))
6511 			continue;
6512 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6513 					  &iter->dev->adj_list.upper);
6514 		netdev_adjacent_sysfs_add(iter->dev, dev,
6515 					  &iter->dev->adj_list.upper);
6516 	}
6517 }
6518 
6519 void *netdev_lower_dev_get_private(struct net_device *dev,
6520 				   struct net_device *lower_dev)
6521 {
6522 	struct netdev_adjacent *lower;
6523 
6524 	if (!lower_dev)
6525 		return NULL;
6526 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6527 	if (!lower)
6528 		return NULL;
6529 
6530 	return lower->private;
6531 }
6532 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6533 
6534 
6535 int dev_get_nest_level(struct net_device *dev)
6536 {
6537 	struct net_device *lower = NULL;
6538 	struct list_head *iter;
6539 	int max_nest = -1;
6540 	int nest;
6541 
6542 	ASSERT_RTNL();
6543 
6544 	netdev_for_each_lower_dev(dev, lower, iter) {
6545 		nest = dev_get_nest_level(lower);
6546 		if (max_nest < nest)
6547 			max_nest = nest;
6548 	}
6549 
6550 	return max_nest + 1;
6551 }
6552 EXPORT_SYMBOL(dev_get_nest_level);
6553 
6554 /**
6555  * netdev_lower_change - Dispatch event about lower device state change
6556  * @lower_dev: device
6557  * @lower_state_info: state to dispatch
6558  *
6559  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6560  * The caller must hold the RTNL lock.
6561  */
6562 void netdev_lower_state_changed(struct net_device *lower_dev,
6563 				void *lower_state_info)
6564 {
6565 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
6566 		.info.dev = lower_dev,
6567 	};
6568 
6569 	ASSERT_RTNL();
6570 	changelowerstate_info.lower_state_info = lower_state_info;
6571 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
6572 				      &changelowerstate_info.info);
6573 }
6574 EXPORT_SYMBOL(netdev_lower_state_changed);
6575 
6576 static void dev_change_rx_flags(struct net_device *dev, int flags)
6577 {
6578 	const struct net_device_ops *ops = dev->netdev_ops;
6579 
6580 	if (ops->ndo_change_rx_flags)
6581 		ops->ndo_change_rx_flags(dev, flags);
6582 }
6583 
6584 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6585 {
6586 	unsigned int old_flags = dev->flags;
6587 	kuid_t uid;
6588 	kgid_t gid;
6589 
6590 	ASSERT_RTNL();
6591 
6592 	dev->flags |= IFF_PROMISC;
6593 	dev->promiscuity += inc;
6594 	if (dev->promiscuity == 0) {
6595 		/*
6596 		 * Avoid overflow.
6597 		 * If inc causes overflow, untouch promisc and return error.
6598 		 */
6599 		if (inc < 0)
6600 			dev->flags &= ~IFF_PROMISC;
6601 		else {
6602 			dev->promiscuity -= inc;
6603 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6604 				dev->name);
6605 			return -EOVERFLOW;
6606 		}
6607 	}
6608 	if (dev->flags != old_flags) {
6609 		pr_info("device %s %s promiscuous mode\n",
6610 			dev->name,
6611 			dev->flags & IFF_PROMISC ? "entered" : "left");
6612 		if (audit_enabled) {
6613 			current_uid_gid(&uid, &gid);
6614 			audit_log(current->audit_context, GFP_ATOMIC,
6615 				AUDIT_ANOM_PROMISCUOUS,
6616 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6617 				dev->name, (dev->flags & IFF_PROMISC),
6618 				(old_flags & IFF_PROMISC),
6619 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
6620 				from_kuid(&init_user_ns, uid),
6621 				from_kgid(&init_user_ns, gid),
6622 				audit_get_sessionid(current));
6623 		}
6624 
6625 		dev_change_rx_flags(dev, IFF_PROMISC);
6626 	}
6627 	if (notify)
6628 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
6629 	return 0;
6630 }
6631 
6632 /**
6633  *	dev_set_promiscuity	- update promiscuity count on a device
6634  *	@dev: device
6635  *	@inc: modifier
6636  *
6637  *	Add or remove promiscuity from a device. While the count in the device
6638  *	remains above zero the interface remains promiscuous. Once it hits zero
6639  *	the device reverts back to normal filtering operation. A negative inc
6640  *	value is used to drop promiscuity on the device.
6641  *	Return 0 if successful or a negative errno code on error.
6642  */
6643 int dev_set_promiscuity(struct net_device *dev, int inc)
6644 {
6645 	unsigned int old_flags = dev->flags;
6646 	int err;
6647 
6648 	err = __dev_set_promiscuity(dev, inc, true);
6649 	if (err < 0)
6650 		return err;
6651 	if (dev->flags != old_flags)
6652 		dev_set_rx_mode(dev);
6653 	return err;
6654 }
6655 EXPORT_SYMBOL(dev_set_promiscuity);
6656 
6657 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6658 {
6659 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6660 
6661 	ASSERT_RTNL();
6662 
6663 	dev->flags |= IFF_ALLMULTI;
6664 	dev->allmulti += inc;
6665 	if (dev->allmulti == 0) {
6666 		/*
6667 		 * Avoid overflow.
6668 		 * If inc causes overflow, untouch allmulti and return error.
6669 		 */
6670 		if (inc < 0)
6671 			dev->flags &= ~IFF_ALLMULTI;
6672 		else {
6673 			dev->allmulti -= inc;
6674 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6675 				dev->name);
6676 			return -EOVERFLOW;
6677 		}
6678 	}
6679 	if (dev->flags ^ old_flags) {
6680 		dev_change_rx_flags(dev, IFF_ALLMULTI);
6681 		dev_set_rx_mode(dev);
6682 		if (notify)
6683 			__dev_notify_flags(dev, old_flags,
6684 					   dev->gflags ^ old_gflags);
6685 	}
6686 	return 0;
6687 }
6688 
6689 /**
6690  *	dev_set_allmulti	- update allmulti count on a device
6691  *	@dev: device
6692  *	@inc: modifier
6693  *
6694  *	Add or remove reception of all multicast frames to a device. While the
6695  *	count in the device remains above zero the interface remains listening
6696  *	to all interfaces. Once it hits zero the device reverts back to normal
6697  *	filtering operation. A negative @inc value is used to drop the counter
6698  *	when releasing a resource needing all multicasts.
6699  *	Return 0 if successful or a negative errno code on error.
6700  */
6701 
6702 int dev_set_allmulti(struct net_device *dev, int inc)
6703 {
6704 	return __dev_set_allmulti(dev, inc, true);
6705 }
6706 EXPORT_SYMBOL(dev_set_allmulti);
6707 
6708 /*
6709  *	Upload unicast and multicast address lists to device and
6710  *	configure RX filtering. When the device doesn't support unicast
6711  *	filtering it is put in promiscuous mode while unicast addresses
6712  *	are present.
6713  */
6714 void __dev_set_rx_mode(struct net_device *dev)
6715 {
6716 	const struct net_device_ops *ops = dev->netdev_ops;
6717 
6718 	/* dev_open will call this function so the list will stay sane. */
6719 	if (!(dev->flags&IFF_UP))
6720 		return;
6721 
6722 	if (!netif_device_present(dev))
6723 		return;
6724 
6725 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6726 		/* Unicast addresses changes may only happen under the rtnl,
6727 		 * therefore calling __dev_set_promiscuity here is safe.
6728 		 */
6729 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6730 			__dev_set_promiscuity(dev, 1, false);
6731 			dev->uc_promisc = true;
6732 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6733 			__dev_set_promiscuity(dev, -1, false);
6734 			dev->uc_promisc = false;
6735 		}
6736 	}
6737 
6738 	if (ops->ndo_set_rx_mode)
6739 		ops->ndo_set_rx_mode(dev);
6740 }
6741 
6742 void dev_set_rx_mode(struct net_device *dev)
6743 {
6744 	netif_addr_lock_bh(dev);
6745 	__dev_set_rx_mode(dev);
6746 	netif_addr_unlock_bh(dev);
6747 }
6748 
6749 /**
6750  *	dev_get_flags - get flags reported to userspace
6751  *	@dev: device
6752  *
6753  *	Get the combination of flag bits exported through APIs to userspace.
6754  */
6755 unsigned int dev_get_flags(const struct net_device *dev)
6756 {
6757 	unsigned int flags;
6758 
6759 	flags = (dev->flags & ~(IFF_PROMISC |
6760 				IFF_ALLMULTI |
6761 				IFF_RUNNING |
6762 				IFF_LOWER_UP |
6763 				IFF_DORMANT)) |
6764 		(dev->gflags & (IFF_PROMISC |
6765 				IFF_ALLMULTI));
6766 
6767 	if (netif_running(dev)) {
6768 		if (netif_oper_up(dev))
6769 			flags |= IFF_RUNNING;
6770 		if (netif_carrier_ok(dev))
6771 			flags |= IFF_LOWER_UP;
6772 		if (netif_dormant(dev))
6773 			flags |= IFF_DORMANT;
6774 	}
6775 
6776 	return flags;
6777 }
6778 EXPORT_SYMBOL(dev_get_flags);
6779 
6780 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6781 {
6782 	unsigned int old_flags = dev->flags;
6783 	int ret;
6784 
6785 	ASSERT_RTNL();
6786 
6787 	/*
6788 	 *	Set the flags on our device.
6789 	 */
6790 
6791 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6792 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6793 			       IFF_AUTOMEDIA)) |
6794 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6795 				    IFF_ALLMULTI));
6796 
6797 	/*
6798 	 *	Load in the correct multicast list now the flags have changed.
6799 	 */
6800 
6801 	if ((old_flags ^ flags) & IFF_MULTICAST)
6802 		dev_change_rx_flags(dev, IFF_MULTICAST);
6803 
6804 	dev_set_rx_mode(dev);
6805 
6806 	/*
6807 	 *	Have we downed the interface. We handle IFF_UP ourselves
6808 	 *	according to user attempts to set it, rather than blindly
6809 	 *	setting it.
6810 	 */
6811 
6812 	ret = 0;
6813 	if ((old_flags ^ flags) & IFF_UP) {
6814 		if (old_flags & IFF_UP)
6815 			__dev_close(dev);
6816 		else
6817 			ret = __dev_open(dev);
6818 	}
6819 
6820 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
6821 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
6822 		unsigned int old_flags = dev->flags;
6823 
6824 		dev->gflags ^= IFF_PROMISC;
6825 
6826 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
6827 			if (dev->flags != old_flags)
6828 				dev_set_rx_mode(dev);
6829 	}
6830 
6831 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6832 	 * is important. Some (broken) drivers set IFF_PROMISC, when
6833 	 * IFF_ALLMULTI is requested not asking us and not reporting.
6834 	 */
6835 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6836 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6837 
6838 		dev->gflags ^= IFF_ALLMULTI;
6839 		__dev_set_allmulti(dev, inc, false);
6840 	}
6841 
6842 	return ret;
6843 }
6844 
6845 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6846 			unsigned int gchanges)
6847 {
6848 	unsigned int changes = dev->flags ^ old_flags;
6849 
6850 	if (gchanges)
6851 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6852 
6853 	if (changes & IFF_UP) {
6854 		if (dev->flags & IFF_UP)
6855 			call_netdevice_notifiers(NETDEV_UP, dev);
6856 		else
6857 			call_netdevice_notifiers(NETDEV_DOWN, dev);
6858 	}
6859 
6860 	if (dev->flags & IFF_UP &&
6861 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6862 		struct netdev_notifier_change_info change_info = {
6863 			.info = {
6864 				.dev = dev,
6865 			},
6866 			.flags_changed = changes,
6867 		};
6868 
6869 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
6870 	}
6871 }
6872 
6873 /**
6874  *	dev_change_flags - change device settings
6875  *	@dev: device
6876  *	@flags: device state flags
6877  *
6878  *	Change settings on device based state flags. The flags are
6879  *	in the userspace exported format.
6880  */
6881 int dev_change_flags(struct net_device *dev, unsigned int flags)
6882 {
6883 	int ret;
6884 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6885 
6886 	ret = __dev_change_flags(dev, flags);
6887 	if (ret < 0)
6888 		return ret;
6889 
6890 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6891 	__dev_notify_flags(dev, old_flags, changes);
6892 	return ret;
6893 }
6894 EXPORT_SYMBOL(dev_change_flags);
6895 
6896 int __dev_set_mtu(struct net_device *dev, int new_mtu)
6897 {
6898 	const struct net_device_ops *ops = dev->netdev_ops;
6899 
6900 	if (ops->ndo_change_mtu)
6901 		return ops->ndo_change_mtu(dev, new_mtu);
6902 
6903 	dev->mtu = new_mtu;
6904 	return 0;
6905 }
6906 EXPORT_SYMBOL(__dev_set_mtu);
6907 
6908 /**
6909  *	dev_set_mtu - Change maximum transfer unit
6910  *	@dev: device
6911  *	@new_mtu: new transfer unit
6912  *
6913  *	Change the maximum transfer size of the network device.
6914  */
6915 int dev_set_mtu(struct net_device *dev, int new_mtu)
6916 {
6917 	int err, orig_mtu;
6918 
6919 	if (new_mtu == dev->mtu)
6920 		return 0;
6921 
6922 	/* MTU must be positive, and in range */
6923 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6924 		net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6925 				    dev->name, new_mtu, dev->min_mtu);
6926 		return -EINVAL;
6927 	}
6928 
6929 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6930 		net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6931 				    dev->name, new_mtu, dev->max_mtu);
6932 		return -EINVAL;
6933 	}
6934 
6935 	if (!netif_device_present(dev))
6936 		return -ENODEV;
6937 
6938 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6939 	err = notifier_to_errno(err);
6940 	if (err)
6941 		return err;
6942 
6943 	orig_mtu = dev->mtu;
6944 	err = __dev_set_mtu(dev, new_mtu);
6945 
6946 	if (!err) {
6947 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6948 		err = notifier_to_errno(err);
6949 		if (err) {
6950 			/* setting mtu back and notifying everyone again,
6951 			 * so that they have a chance to revert changes.
6952 			 */
6953 			__dev_set_mtu(dev, orig_mtu);
6954 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6955 		}
6956 	}
6957 	return err;
6958 }
6959 EXPORT_SYMBOL(dev_set_mtu);
6960 
6961 /**
6962  *	dev_set_group - Change group this device belongs to
6963  *	@dev: device
6964  *	@new_group: group this device should belong to
6965  */
6966 void dev_set_group(struct net_device *dev, int new_group)
6967 {
6968 	dev->group = new_group;
6969 }
6970 EXPORT_SYMBOL(dev_set_group);
6971 
6972 /**
6973  *	dev_set_mac_address - Change Media Access Control Address
6974  *	@dev: device
6975  *	@sa: new address
6976  *
6977  *	Change the hardware (MAC) address of the device
6978  */
6979 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6980 {
6981 	const struct net_device_ops *ops = dev->netdev_ops;
6982 	int err;
6983 
6984 	if (!ops->ndo_set_mac_address)
6985 		return -EOPNOTSUPP;
6986 	if (sa->sa_family != dev->type)
6987 		return -EINVAL;
6988 	if (!netif_device_present(dev))
6989 		return -ENODEV;
6990 	err = ops->ndo_set_mac_address(dev, sa);
6991 	if (err)
6992 		return err;
6993 	dev->addr_assign_type = NET_ADDR_SET;
6994 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6995 	add_device_randomness(dev->dev_addr, dev->addr_len);
6996 	return 0;
6997 }
6998 EXPORT_SYMBOL(dev_set_mac_address);
6999 
7000 /**
7001  *	dev_change_carrier - Change device carrier
7002  *	@dev: device
7003  *	@new_carrier: new value
7004  *
7005  *	Change device carrier
7006  */
7007 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7008 {
7009 	const struct net_device_ops *ops = dev->netdev_ops;
7010 
7011 	if (!ops->ndo_change_carrier)
7012 		return -EOPNOTSUPP;
7013 	if (!netif_device_present(dev))
7014 		return -ENODEV;
7015 	return ops->ndo_change_carrier(dev, new_carrier);
7016 }
7017 EXPORT_SYMBOL(dev_change_carrier);
7018 
7019 /**
7020  *	dev_get_phys_port_id - Get device physical port ID
7021  *	@dev: device
7022  *	@ppid: port ID
7023  *
7024  *	Get device physical port ID
7025  */
7026 int dev_get_phys_port_id(struct net_device *dev,
7027 			 struct netdev_phys_item_id *ppid)
7028 {
7029 	const struct net_device_ops *ops = dev->netdev_ops;
7030 
7031 	if (!ops->ndo_get_phys_port_id)
7032 		return -EOPNOTSUPP;
7033 	return ops->ndo_get_phys_port_id(dev, ppid);
7034 }
7035 EXPORT_SYMBOL(dev_get_phys_port_id);
7036 
7037 /**
7038  *	dev_get_phys_port_name - Get device physical port name
7039  *	@dev: device
7040  *	@name: port name
7041  *	@len: limit of bytes to copy to name
7042  *
7043  *	Get device physical port name
7044  */
7045 int dev_get_phys_port_name(struct net_device *dev,
7046 			   char *name, size_t len)
7047 {
7048 	const struct net_device_ops *ops = dev->netdev_ops;
7049 
7050 	if (!ops->ndo_get_phys_port_name)
7051 		return -EOPNOTSUPP;
7052 	return ops->ndo_get_phys_port_name(dev, name, len);
7053 }
7054 EXPORT_SYMBOL(dev_get_phys_port_name);
7055 
7056 /**
7057  *	dev_change_proto_down - update protocol port state information
7058  *	@dev: device
7059  *	@proto_down: new value
7060  *
7061  *	This info can be used by switch drivers to set the phys state of the
7062  *	port.
7063  */
7064 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7065 {
7066 	const struct net_device_ops *ops = dev->netdev_ops;
7067 
7068 	if (!ops->ndo_change_proto_down)
7069 		return -EOPNOTSUPP;
7070 	if (!netif_device_present(dev))
7071 		return -ENODEV;
7072 	return ops->ndo_change_proto_down(dev, proto_down);
7073 }
7074 EXPORT_SYMBOL(dev_change_proto_down);
7075 
7076 u8 __dev_xdp_attached(struct net_device *dev, bpf_op_t bpf_op, u32 *prog_id)
7077 {
7078 	struct netdev_bpf xdp;
7079 
7080 	memset(&xdp, 0, sizeof(xdp));
7081 	xdp.command = XDP_QUERY_PROG;
7082 
7083 	/* Query must always succeed. */
7084 	WARN_ON(bpf_op(dev, &xdp) < 0);
7085 	if (prog_id)
7086 		*prog_id = xdp.prog_id;
7087 
7088 	return xdp.prog_attached;
7089 }
7090 
7091 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7092 			   struct netlink_ext_ack *extack, u32 flags,
7093 			   struct bpf_prog *prog)
7094 {
7095 	struct netdev_bpf xdp;
7096 
7097 	memset(&xdp, 0, sizeof(xdp));
7098 	if (flags & XDP_FLAGS_HW_MODE)
7099 		xdp.command = XDP_SETUP_PROG_HW;
7100 	else
7101 		xdp.command = XDP_SETUP_PROG;
7102 	xdp.extack = extack;
7103 	xdp.flags = flags;
7104 	xdp.prog = prog;
7105 
7106 	return bpf_op(dev, &xdp);
7107 }
7108 
7109 /**
7110  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
7111  *	@dev: device
7112  *	@extack: netlink extended ack
7113  *	@fd: new program fd or negative value to clear
7114  *	@flags: xdp-related flags
7115  *
7116  *	Set or clear a bpf program for a device
7117  */
7118 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7119 		      int fd, u32 flags)
7120 {
7121 	const struct net_device_ops *ops = dev->netdev_ops;
7122 	struct bpf_prog *prog = NULL;
7123 	bpf_op_t bpf_op, bpf_chk;
7124 	int err;
7125 
7126 	ASSERT_RTNL();
7127 
7128 	bpf_op = bpf_chk = ops->ndo_bpf;
7129 	if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7130 		return -EOPNOTSUPP;
7131 	if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7132 		bpf_op = generic_xdp_install;
7133 	if (bpf_op == bpf_chk)
7134 		bpf_chk = generic_xdp_install;
7135 
7136 	if (fd >= 0) {
7137 		if (bpf_chk && __dev_xdp_attached(dev, bpf_chk, NULL))
7138 			return -EEXIST;
7139 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7140 		    __dev_xdp_attached(dev, bpf_op, NULL))
7141 			return -EBUSY;
7142 
7143 		prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7144 					     bpf_op == ops->ndo_bpf);
7145 		if (IS_ERR(prog))
7146 			return PTR_ERR(prog);
7147 
7148 		if (!(flags & XDP_FLAGS_HW_MODE) &&
7149 		    bpf_prog_is_dev_bound(prog->aux)) {
7150 			NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
7151 			bpf_prog_put(prog);
7152 			return -EINVAL;
7153 		}
7154 	}
7155 
7156 	err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
7157 	if (err < 0 && prog)
7158 		bpf_prog_put(prog);
7159 
7160 	return err;
7161 }
7162 
7163 /**
7164  *	dev_new_index	-	allocate an ifindex
7165  *	@net: the applicable net namespace
7166  *
7167  *	Returns a suitable unique value for a new device interface
7168  *	number.  The caller must hold the rtnl semaphore or the
7169  *	dev_base_lock to be sure it remains unique.
7170  */
7171 static int dev_new_index(struct net *net)
7172 {
7173 	int ifindex = net->ifindex;
7174 
7175 	for (;;) {
7176 		if (++ifindex <= 0)
7177 			ifindex = 1;
7178 		if (!__dev_get_by_index(net, ifindex))
7179 			return net->ifindex = ifindex;
7180 	}
7181 }
7182 
7183 /* Delayed registration/unregisteration */
7184 static LIST_HEAD(net_todo_list);
7185 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7186 
7187 static void net_set_todo(struct net_device *dev)
7188 {
7189 	list_add_tail(&dev->todo_list, &net_todo_list);
7190 	dev_net(dev)->dev_unreg_count++;
7191 }
7192 
7193 static void rollback_registered_many(struct list_head *head)
7194 {
7195 	struct net_device *dev, *tmp;
7196 	LIST_HEAD(close_head);
7197 
7198 	BUG_ON(dev_boot_phase);
7199 	ASSERT_RTNL();
7200 
7201 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7202 		/* Some devices call without registering
7203 		 * for initialization unwind. Remove those
7204 		 * devices and proceed with the remaining.
7205 		 */
7206 		if (dev->reg_state == NETREG_UNINITIALIZED) {
7207 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7208 				 dev->name, dev);
7209 
7210 			WARN_ON(1);
7211 			list_del(&dev->unreg_list);
7212 			continue;
7213 		}
7214 		dev->dismantle = true;
7215 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
7216 	}
7217 
7218 	/* If device is running, close it first. */
7219 	list_for_each_entry(dev, head, unreg_list)
7220 		list_add_tail(&dev->close_list, &close_head);
7221 	dev_close_many(&close_head, true);
7222 
7223 	list_for_each_entry(dev, head, unreg_list) {
7224 		/* And unlink it from device chain. */
7225 		unlist_netdevice(dev);
7226 
7227 		dev->reg_state = NETREG_UNREGISTERING;
7228 	}
7229 	flush_all_backlogs();
7230 
7231 	synchronize_net();
7232 
7233 	list_for_each_entry(dev, head, unreg_list) {
7234 		struct sk_buff *skb = NULL;
7235 
7236 		/* Shutdown queueing discipline. */
7237 		dev_shutdown(dev);
7238 
7239 
7240 		/* Notify protocols, that we are about to destroy
7241 		 * this device. They should clean all the things.
7242 		 */
7243 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7244 
7245 		if (!dev->rtnl_link_ops ||
7246 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7247 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7248 						     GFP_KERNEL, NULL);
7249 
7250 		/*
7251 		 *	Flush the unicast and multicast chains
7252 		 */
7253 		dev_uc_flush(dev);
7254 		dev_mc_flush(dev);
7255 
7256 		if (dev->netdev_ops->ndo_uninit)
7257 			dev->netdev_ops->ndo_uninit(dev);
7258 
7259 		if (skb)
7260 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7261 
7262 		/* Notifier chain MUST detach us all upper devices. */
7263 		WARN_ON(netdev_has_any_upper_dev(dev));
7264 		WARN_ON(netdev_has_any_lower_dev(dev));
7265 
7266 		/* Remove entries from kobject tree */
7267 		netdev_unregister_kobject(dev);
7268 #ifdef CONFIG_XPS
7269 		/* Remove XPS queueing entries */
7270 		netif_reset_xps_queues_gt(dev, 0);
7271 #endif
7272 	}
7273 
7274 	synchronize_net();
7275 
7276 	list_for_each_entry(dev, head, unreg_list)
7277 		dev_put(dev);
7278 }
7279 
7280 static void rollback_registered(struct net_device *dev)
7281 {
7282 	LIST_HEAD(single);
7283 
7284 	list_add(&dev->unreg_list, &single);
7285 	rollback_registered_many(&single);
7286 	list_del(&single);
7287 }
7288 
7289 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7290 	struct net_device *upper, netdev_features_t features)
7291 {
7292 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7293 	netdev_features_t feature;
7294 	int feature_bit;
7295 
7296 	for_each_netdev_feature(&upper_disables, feature_bit) {
7297 		feature = __NETIF_F_BIT(feature_bit);
7298 		if (!(upper->wanted_features & feature)
7299 		    && (features & feature)) {
7300 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7301 				   &feature, upper->name);
7302 			features &= ~feature;
7303 		}
7304 	}
7305 
7306 	return features;
7307 }
7308 
7309 static void netdev_sync_lower_features(struct net_device *upper,
7310 	struct net_device *lower, netdev_features_t features)
7311 {
7312 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7313 	netdev_features_t feature;
7314 	int feature_bit;
7315 
7316 	for_each_netdev_feature(&upper_disables, feature_bit) {
7317 		feature = __NETIF_F_BIT(feature_bit);
7318 		if (!(features & feature) && (lower->features & feature)) {
7319 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7320 				   &feature, lower->name);
7321 			lower->wanted_features &= ~feature;
7322 			netdev_update_features(lower);
7323 
7324 			if (unlikely(lower->features & feature))
7325 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7326 					    &feature, lower->name);
7327 		}
7328 	}
7329 }
7330 
7331 static netdev_features_t netdev_fix_features(struct net_device *dev,
7332 	netdev_features_t features)
7333 {
7334 	/* Fix illegal checksum combinations */
7335 	if ((features & NETIF_F_HW_CSUM) &&
7336 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7337 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7338 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7339 	}
7340 
7341 	/* TSO requires that SG is present as well. */
7342 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7343 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7344 		features &= ~NETIF_F_ALL_TSO;
7345 	}
7346 
7347 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7348 					!(features & NETIF_F_IP_CSUM)) {
7349 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7350 		features &= ~NETIF_F_TSO;
7351 		features &= ~NETIF_F_TSO_ECN;
7352 	}
7353 
7354 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7355 					 !(features & NETIF_F_IPV6_CSUM)) {
7356 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7357 		features &= ~NETIF_F_TSO6;
7358 	}
7359 
7360 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7361 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7362 		features &= ~NETIF_F_TSO_MANGLEID;
7363 
7364 	/* TSO ECN requires that TSO is present as well. */
7365 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7366 		features &= ~NETIF_F_TSO_ECN;
7367 
7368 	/* Software GSO depends on SG. */
7369 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7370 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7371 		features &= ~NETIF_F_GSO;
7372 	}
7373 
7374 	/* GSO partial features require GSO partial be set */
7375 	if ((features & dev->gso_partial_features) &&
7376 	    !(features & NETIF_F_GSO_PARTIAL)) {
7377 		netdev_dbg(dev,
7378 			   "Dropping partially supported GSO features since no GSO partial.\n");
7379 		features &= ~dev->gso_partial_features;
7380 	}
7381 
7382 	return features;
7383 }
7384 
7385 int __netdev_update_features(struct net_device *dev)
7386 {
7387 	struct net_device *upper, *lower;
7388 	netdev_features_t features;
7389 	struct list_head *iter;
7390 	int err = -1;
7391 
7392 	ASSERT_RTNL();
7393 
7394 	features = netdev_get_wanted_features(dev);
7395 
7396 	if (dev->netdev_ops->ndo_fix_features)
7397 		features = dev->netdev_ops->ndo_fix_features(dev, features);
7398 
7399 	/* driver might be less strict about feature dependencies */
7400 	features = netdev_fix_features(dev, features);
7401 
7402 	/* some features can't be enabled if they're off an an upper device */
7403 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
7404 		features = netdev_sync_upper_features(dev, upper, features);
7405 
7406 	if (dev->features == features)
7407 		goto sync_lower;
7408 
7409 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7410 		&dev->features, &features);
7411 
7412 	if (dev->netdev_ops->ndo_set_features)
7413 		err = dev->netdev_ops->ndo_set_features(dev, features);
7414 	else
7415 		err = 0;
7416 
7417 	if (unlikely(err < 0)) {
7418 		netdev_err(dev,
7419 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
7420 			err, &features, &dev->features);
7421 		/* return non-0 since some features might have changed and
7422 		 * it's better to fire a spurious notification than miss it
7423 		 */
7424 		return -1;
7425 	}
7426 
7427 sync_lower:
7428 	/* some features must be disabled on lower devices when disabled
7429 	 * on an upper device (think: bonding master or bridge)
7430 	 */
7431 	netdev_for_each_lower_dev(dev, lower, iter)
7432 		netdev_sync_lower_features(dev, lower, features);
7433 
7434 	if (!err) {
7435 		netdev_features_t diff = features ^ dev->features;
7436 
7437 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
7438 			/* udp_tunnel_{get,drop}_rx_info both need
7439 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
7440 			 * device, or they won't do anything.
7441 			 * Thus we need to update dev->features
7442 			 * *before* calling udp_tunnel_get_rx_info,
7443 			 * but *after* calling udp_tunnel_drop_rx_info.
7444 			 */
7445 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
7446 				dev->features = features;
7447 				udp_tunnel_get_rx_info(dev);
7448 			} else {
7449 				udp_tunnel_drop_rx_info(dev);
7450 			}
7451 		}
7452 
7453 		dev->features = features;
7454 	}
7455 
7456 	return err < 0 ? 0 : 1;
7457 }
7458 
7459 /**
7460  *	netdev_update_features - recalculate device features
7461  *	@dev: the device to check
7462  *
7463  *	Recalculate dev->features set and send notifications if it
7464  *	has changed. Should be called after driver or hardware dependent
7465  *	conditions might have changed that influence the features.
7466  */
7467 void netdev_update_features(struct net_device *dev)
7468 {
7469 	if (__netdev_update_features(dev))
7470 		netdev_features_change(dev);
7471 }
7472 EXPORT_SYMBOL(netdev_update_features);
7473 
7474 /**
7475  *	netdev_change_features - recalculate device features
7476  *	@dev: the device to check
7477  *
7478  *	Recalculate dev->features set and send notifications even
7479  *	if they have not changed. Should be called instead of
7480  *	netdev_update_features() if also dev->vlan_features might
7481  *	have changed to allow the changes to be propagated to stacked
7482  *	VLAN devices.
7483  */
7484 void netdev_change_features(struct net_device *dev)
7485 {
7486 	__netdev_update_features(dev);
7487 	netdev_features_change(dev);
7488 }
7489 EXPORT_SYMBOL(netdev_change_features);
7490 
7491 /**
7492  *	netif_stacked_transfer_operstate -	transfer operstate
7493  *	@rootdev: the root or lower level device to transfer state from
7494  *	@dev: the device to transfer operstate to
7495  *
7496  *	Transfer operational state from root to device. This is normally
7497  *	called when a stacking relationship exists between the root
7498  *	device and the device(a leaf device).
7499  */
7500 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7501 					struct net_device *dev)
7502 {
7503 	if (rootdev->operstate == IF_OPER_DORMANT)
7504 		netif_dormant_on(dev);
7505 	else
7506 		netif_dormant_off(dev);
7507 
7508 	if (netif_carrier_ok(rootdev))
7509 		netif_carrier_on(dev);
7510 	else
7511 		netif_carrier_off(dev);
7512 }
7513 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7514 
7515 #ifdef CONFIG_SYSFS
7516 static int netif_alloc_rx_queues(struct net_device *dev)
7517 {
7518 	unsigned int i, count = dev->num_rx_queues;
7519 	struct netdev_rx_queue *rx;
7520 	size_t sz = count * sizeof(*rx);
7521 
7522 	BUG_ON(count < 1);
7523 
7524 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7525 	if (!rx)
7526 		return -ENOMEM;
7527 
7528 	dev->_rx = rx;
7529 
7530 	for (i = 0; i < count; i++)
7531 		rx[i].dev = dev;
7532 	return 0;
7533 }
7534 #endif
7535 
7536 static void netdev_init_one_queue(struct net_device *dev,
7537 				  struct netdev_queue *queue, void *_unused)
7538 {
7539 	/* Initialize queue lock */
7540 	spin_lock_init(&queue->_xmit_lock);
7541 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7542 	queue->xmit_lock_owner = -1;
7543 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7544 	queue->dev = dev;
7545 #ifdef CONFIG_BQL
7546 	dql_init(&queue->dql, HZ);
7547 #endif
7548 }
7549 
7550 static void netif_free_tx_queues(struct net_device *dev)
7551 {
7552 	kvfree(dev->_tx);
7553 }
7554 
7555 static int netif_alloc_netdev_queues(struct net_device *dev)
7556 {
7557 	unsigned int count = dev->num_tx_queues;
7558 	struct netdev_queue *tx;
7559 	size_t sz = count * sizeof(*tx);
7560 
7561 	if (count < 1 || count > 0xffff)
7562 		return -EINVAL;
7563 
7564 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7565 	if (!tx)
7566 		return -ENOMEM;
7567 
7568 	dev->_tx = tx;
7569 
7570 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7571 	spin_lock_init(&dev->tx_global_lock);
7572 
7573 	return 0;
7574 }
7575 
7576 void netif_tx_stop_all_queues(struct net_device *dev)
7577 {
7578 	unsigned int i;
7579 
7580 	for (i = 0; i < dev->num_tx_queues; i++) {
7581 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7582 
7583 		netif_tx_stop_queue(txq);
7584 	}
7585 }
7586 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7587 
7588 /**
7589  *	register_netdevice	- register a network device
7590  *	@dev: device to register
7591  *
7592  *	Take a completed network device structure and add it to the kernel
7593  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7594  *	chain. 0 is returned on success. A negative errno code is returned
7595  *	on a failure to set up the device, or if the name is a duplicate.
7596  *
7597  *	Callers must hold the rtnl semaphore. You may want
7598  *	register_netdev() instead of this.
7599  *
7600  *	BUGS:
7601  *	The locking appears insufficient to guarantee two parallel registers
7602  *	will not get the same name.
7603  */
7604 
7605 int register_netdevice(struct net_device *dev)
7606 {
7607 	int ret;
7608 	struct net *net = dev_net(dev);
7609 
7610 	BUG_ON(dev_boot_phase);
7611 	ASSERT_RTNL();
7612 
7613 	might_sleep();
7614 
7615 	/* When net_device's are persistent, this will be fatal. */
7616 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7617 	BUG_ON(!net);
7618 
7619 	spin_lock_init(&dev->addr_list_lock);
7620 	netdev_set_addr_lockdep_class(dev);
7621 
7622 	ret = dev_get_valid_name(net, dev, dev->name);
7623 	if (ret < 0)
7624 		goto out;
7625 
7626 	/* Init, if this function is available */
7627 	if (dev->netdev_ops->ndo_init) {
7628 		ret = dev->netdev_ops->ndo_init(dev);
7629 		if (ret) {
7630 			if (ret > 0)
7631 				ret = -EIO;
7632 			goto out;
7633 		}
7634 	}
7635 
7636 	if (((dev->hw_features | dev->features) &
7637 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
7638 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7639 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7640 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7641 		ret = -EINVAL;
7642 		goto err_uninit;
7643 	}
7644 
7645 	ret = -EBUSY;
7646 	if (!dev->ifindex)
7647 		dev->ifindex = dev_new_index(net);
7648 	else if (__dev_get_by_index(net, dev->ifindex))
7649 		goto err_uninit;
7650 
7651 	/* Transfer changeable features to wanted_features and enable
7652 	 * software offloads (GSO and GRO).
7653 	 */
7654 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
7655 	dev->features |= NETIF_F_SOFT_FEATURES;
7656 
7657 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
7658 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7659 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7660 	}
7661 
7662 	dev->wanted_features = dev->features & dev->hw_features;
7663 
7664 	if (!(dev->flags & IFF_LOOPBACK))
7665 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
7666 
7667 	/* If IPv4 TCP segmentation offload is supported we should also
7668 	 * allow the device to enable segmenting the frame with the option
7669 	 * of ignoring a static IP ID value.  This doesn't enable the
7670 	 * feature itself but allows the user to enable it later.
7671 	 */
7672 	if (dev->hw_features & NETIF_F_TSO)
7673 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
7674 	if (dev->vlan_features & NETIF_F_TSO)
7675 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7676 	if (dev->mpls_features & NETIF_F_TSO)
7677 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7678 	if (dev->hw_enc_features & NETIF_F_TSO)
7679 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7680 
7681 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7682 	 */
7683 	dev->vlan_features |= NETIF_F_HIGHDMA;
7684 
7685 	/* Make NETIF_F_SG inheritable to tunnel devices.
7686 	 */
7687 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7688 
7689 	/* Make NETIF_F_SG inheritable to MPLS.
7690 	 */
7691 	dev->mpls_features |= NETIF_F_SG;
7692 
7693 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7694 	ret = notifier_to_errno(ret);
7695 	if (ret)
7696 		goto err_uninit;
7697 
7698 	ret = netdev_register_kobject(dev);
7699 	if (ret)
7700 		goto err_uninit;
7701 	dev->reg_state = NETREG_REGISTERED;
7702 
7703 	__netdev_update_features(dev);
7704 
7705 	/*
7706 	 *	Default initial state at registry is that the
7707 	 *	device is present.
7708 	 */
7709 
7710 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7711 
7712 	linkwatch_init_dev(dev);
7713 
7714 	dev_init_scheduler(dev);
7715 	dev_hold(dev);
7716 	list_netdevice(dev);
7717 	add_device_randomness(dev->dev_addr, dev->addr_len);
7718 
7719 	/* If the device has permanent device address, driver should
7720 	 * set dev_addr and also addr_assign_type should be set to
7721 	 * NET_ADDR_PERM (default value).
7722 	 */
7723 	if (dev->addr_assign_type == NET_ADDR_PERM)
7724 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7725 
7726 	/* Notify protocols, that a new device appeared. */
7727 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7728 	ret = notifier_to_errno(ret);
7729 	if (ret) {
7730 		rollback_registered(dev);
7731 		dev->reg_state = NETREG_UNREGISTERED;
7732 	}
7733 	/*
7734 	 *	Prevent userspace races by waiting until the network
7735 	 *	device is fully setup before sending notifications.
7736 	 */
7737 	if (!dev->rtnl_link_ops ||
7738 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7739 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7740 
7741 out:
7742 	return ret;
7743 
7744 err_uninit:
7745 	if (dev->netdev_ops->ndo_uninit)
7746 		dev->netdev_ops->ndo_uninit(dev);
7747 	if (dev->priv_destructor)
7748 		dev->priv_destructor(dev);
7749 	goto out;
7750 }
7751 EXPORT_SYMBOL(register_netdevice);
7752 
7753 /**
7754  *	init_dummy_netdev	- init a dummy network device for NAPI
7755  *	@dev: device to init
7756  *
7757  *	This takes a network device structure and initialize the minimum
7758  *	amount of fields so it can be used to schedule NAPI polls without
7759  *	registering a full blown interface. This is to be used by drivers
7760  *	that need to tie several hardware interfaces to a single NAPI
7761  *	poll scheduler due to HW limitations.
7762  */
7763 int init_dummy_netdev(struct net_device *dev)
7764 {
7765 	/* Clear everything. Note we don't initialize spinlocks
7766 	 * are they aren't supposed to be taken by any of the
7767 	 * NAPI code and this dummy netdev is supposed to be
7768 	 * only ever used for NAPI polls
7769 	 */
7770 	memset(dev, 0, sizeof(struct net_device));
7771 
7772 	/* make sure we BUG if trying to hit standard
7773 	 * register/unregister code path
7774 	 */
7775 	dev->reg_state = NETREG_DUMMY;
7776 
7777 	/* NAPI wants this */
7778 	INIT_LIST_HEAD(&dev->napi_list);
7779 
7780 	/* a dummy interface is started by default */
7781 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7782 	set_bit(__LINK_STATE_START, &dev->state);
7783 
7784 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
7785 	 * because users of this 'device' dont need to change
7786 	 * its refcount.
7787 	 */
7788 
7789 	return 0;
7790 }
7791 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7792 
7793 
7794 /**
7795  *	register_netdev	- register a network device
7796  *	@dev: device to register
7797  *
7798  *	Take a completed network device structure and add it to the kernel
7799  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7800  *	chain. 0 is returned on success. A negative errno code is returned
7801  *	on a failure to set up the device, or if the name is a duplicate.
7802  *
7803  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
7804  *	and expands the device name if you passed a format string to
7805  *	alloc_netdev.
7806  */
7807 int register_netdev(struct net_device *dev)
7808 {
7809 	int err;
7810 
7811 	rtnl_lock();
7812 	err = register_netdevice(dev);
7813 	rtnl_unlock();
7814 	return err;
7815 }
7816 EXPORT_SYMBOL(register_netdev);
7817 
7818 int netdev_refcnt_read(const struct net_device *dev)
7819 {
7820 	int i, refcnt = 0;
7821 
7822 	for_each_possible_cpu(i)
7823 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7824 	return refcnt;
7825 }
7826 EXPORT_SYMBOL(netdev_refcnt_read);
7827 
7828 /**
7829  * netdev_wait_allrefs - wait until all references are gone.
7830  * @dev: target net_device
7831  *
7832  * This is called when unregistering network devices.
7833  *
7834  * Any protocol or device that holds a reference should register
7835  * for netdevice notification, and cleanup and put back the
7836  * reference if they receive an UNREGISTER event.
7837  * We can get stuck here if buggy protocols don't correctly
7838  * call dev_put.
7839  */
7840 static void netdev_wait_allrefs(struct net_device *dev)
7841 {
7842 	unsigned long rebroadcast_time, warning_time;
7843 	int refcnt;
7844 
7845 	linkwatch_forget_dev(dev);
7846 
7847 	rebroadcast_time = warning_time = jiffies;
7848 	refcnt = netdev_refcnt_read(dev);
7849 
7850 	while (refcnt != 0) {
7851 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7852 			rtnl_lock();
7853 
7854 			/* Rebroadcast unregister notification */
7855 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7856 
7857 			__rtnl_unlock();
7858 			rcu_barrier();
7859 			rtnl_lock();
7860 
7861 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7862 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7863 				     &dev->state)) {
7864 				/* We must not have linkwatch events
7865 				 * pending on unregister. If this
7866 				 * happens, we simply run the queue
7867 				 * unscheduled, resulting in a noop
7868 				 * for this device.
7869 				 */
7870 				linkwatch_run_queue();
7871 			}
7872 
7873 			__rtnl_unlock();
7874 
7875 			rebroadcast_time = jiffies;
7876 		}
7877 
7878 		msleep(250);
7879 
7880 		refcnt = netdev_refcnt_read(dev);
7881 
7882 		if (time_after(jiffies, warning_time + 10 * HZ)) {
7883 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7884 				 dev->name, refcnt);
7885 			warning_time = jiffies;
7886 		}
7887 	}
7888 }
7889 
7890 /* The sequence is:
7891  *
7892  *	rtnl_lock();
7893  *	...
7894  *	register_netdevice(x1);
7895  *	register_netdevice(x2);
7896  *	...
7897  *	unregister_netdevice(y1);
7898  *	unregister_netdevice(y2);
7899  *      ...
7900  *	rtnl_unlock();
7901  *	free_netdev(y1);
7902  *	free_netdev(y2);
7903  *
7904  * We are invoked by rtnl_unlock().
7905  * This allows us to deal with problems:
7906  * 1) We can delete sysfs objects which invoke hotplug
7907  *    without deadlocking with linkwatch via keventd.
7908  * 2) Since we run with the RTNL semaphore not held, we can sleep
7909  *    safely in order to wait for the netdev refcnt to drop to zero.
7910  *
7911  * We must not return until all unregister events added during
7912  * the interval the lock was held have been completed.
7913  */
7914 void netdev_run_todo(void)
7915 {
7916 	struct list_head list;
7917 
7918 	/* Snapshot list, allow later requests */
7919 	list_replace_init(&net_todo_list, &list);
7920 
7921 	__rtnl_unlock();
7922 
7923 
7924 	/* Wait for rcu callbacks to finish before next phase */
7925 	if (!list_empty(&list))
7926 		rcu_barrier();
7927 
7928 	while (!list_empty(&list)) {
7929 		struct net_device *dev
7930 			= list_first_entry(&list, struct net_device, todo_list);
7931 		list_del(&dev->todo_list);
7932 
7933 		rtnl_lock();
7934 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7935 		__rtnl_unlock();
7936 
7937 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7938 			pr_err("network todo '%s' but state %d\n",
7939 			       dev->name, dev->reg_state);
7940 			dump_stack();
7941 			continue;
7942 		}
7943 
7944 		dev->reg_state = NETREG_UNREGISTERED;
7945 
7946 		netdev_wait_allrefs(dev);
7947 
7948 		/* paranoia */
7949 		BUG_ON(netdev_refcnt_read(dev));
7950 		BUG_ON(!list_empty(&dev->ptype_all));
7951 		BUG_ON(!list_empty(&dev->ptype_specific));
7952 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
7953 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7954 		WARN_ON(dev->dn_ptr);
7955 
7956 		if (dev->priv_destructor)
7957 			dev->priv_destructor(dev);
7958 		if (dev->needs_free_netdev)
7959 			free_netdev(dev);
7960 
7961 		/* Report a network device has been unregistered */
7962 		rtnl_lock();
7963 		dev_net(dev)->dev_unreg_count--;
7964 		__rtnl_unlock();
7965 		wake_up(&netdev_unregistering_wq);
7966 
7967 		/* Free network device */
7968 		kobject_put(&dev->dev.kobj);
7969 	}
7970 }
7971 
7972 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7973  * all the same fields in the same order as net_device_stats, with only
7974  * the type differing, but rtnl_link_stats64 may have additional fields
7975  * at the end for newer counters.
7976  */
7977 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7978 			     const struct net_device_stats *netdev_stats)
7979 {
7980 #if BITS_PER_LONG == 64
7981 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7982 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
7983 	/* zero out counters that only exist in rtnl_link_stats64 */
7984 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
7985 	       sizeof(*stats64) - sizeof(*netdev_stats));
7986 #else
7987 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7988 	const unsigned long *src = (const unsigned long *)netdev_stats;
7989 	u64 *dst = (u64 *)stats64;
7990 
7991 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7992 	for (i = 0; i < n; i++)
7993 		dst[i] = src[i];
7994 	/* zero out counters that only exist in rtnl_link_stats64 */
7995 	memset((char *)stats64 + n * sizeof(u64), 0,
7996 	       sizeof(*stats64) - n * sizeof(u64));
7997 #endif
7998 }
7999 EXPORT_SYMBOL(netdev_stats_to_stats64);
8000 
8001 /**
8002  *	dev_get_stats	- get network device statistics
8003  *	@dev: device to get statistics from
8004  *	@storage: place to store stats
8005  *
8006  *	Get network statistics from device. Return @storage.
8007  *	The device driver may provide its own method by setting
8008  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8009  *	otherwise the internal statistics structure is used.
8010  */
8011 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8012 					struct rtnl_link_stats64 *storage)
8013 {
8014 	const struct net_device_ops *ops = dev->netdev_ops;
8015 
8016 	if (ops->ndo_get_stats64) {
8017 		memset(storage, 0, sizeof(*storage));
8018 		ops->ndo_get_stats64(dev, storage);
8019 	} else if (ops->ndo_get_stats) {
8020 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8021 	} else {
8022 		netdev_stats_to_stats64(storage, &dev->stats);
8023 	}
8024 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8025 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8026 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8027 	return storage;
8028 }
8029 EXPORT_SYMBOL(dev_get_stats);
8030 
8031 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8032 {
8033 	struct netdev_queue *queue = dev_ingress_queue(dev);
8034 
8035 #ifdef CONFIG_NET_CLS_ACT
8036 	if (queue)
8037 		return queue;
8038 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8039 	if (!queue)
8040 		return NULL;
8041 	netdev_init_one_queue(dev, queue, NULL);
8042 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8043 	queue->qdisc_sleeping = &noop_qdisc;
8044 	rcu_assign_pointer(dev->ingress_queue, queue);
8045 #endif
8046 	return queue;
8047 }
8048 
8049 static const struct ethtool_ops default_ethtool_ops;
8050 
8051 void netdev_set_default_ethtool_ops(struct net_device *dev,
8052 				    const struct ethtool_ops *ops)
8053 {
8054 	if (dev->ethtool_ops == &default_ethtool_ops)
8055 		dev->ethtool_ops = ops;
8056 }
8057 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8058 
8059 void netdev_freemem(struct net_device *dev)
8060 {
8061 	char *addr = (char *)dev - dev->padded;
8062 
8063 	kvfree(addr);
8064 }
8065 
8066 /**
8067  * alloc_netdev_mqs - allocate network device
8068  * @sizeof_priv: size of private data to allocate space for
8069  * @name: device name format string
8070  * @name_assign_type: origin of device name
8071  * @setup: callback to initialize device
8072  * @txqs: the number of TX subqueues to allocate
8073  * @rxqs: the number of RX subqueues to allocate
8074  *
8075  * Allocates a struct net_device with private data area for driver use
8076  * and performs basic initialization.  Also allocates subqueue structs
8077  * for each queue on the device.
8078  */
8079 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8080 		unsigned char name_assign_type,
8081 		void (*setup)(struct net_device *),
8082 		unsigned int txqs, unsigned int rxqs)
8083 {
8084 	struct net_device *dev;
8085 	unsigned int alloc_size;
8086 	struct net_device *p;
8087 
8088 	BUG_ON(strlen(name) >= sizeof(dev->name));
8089 
8090 	if (txqs < 1) {
8091 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8092 		return NULL;
8093 	}
8094 
8095 #ifdef CONFIG_SYSFS
8096 	if (rxqs < 1) {
8097 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8098 		return NULL;
8099 	}
8100 #endif
8101 
8102 	alloc_size = sizeof(struct net_device);
8103 	if (sizeof_priv) {
8104 		/* ensure 32-byte alignment of private area */
8105 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8106 		alloc_size += sizeof_priv;
8107 	}
8108 	/* ensure 32-byte alignment of whole construct */
8109 	alloc_size += NETDEV_ALIGN - 1;
8110 
8111 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8112 	if (!p)
8113 		return NULL;
8114 
8115 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
8116 	dev->padded = (char *)dev - (char *)p;
8117 
8118 	dev->pcpu_refcnt = alloc_percpu(int);
8119 	if (!dev->pcpu_refcnt)
8120 		goto free_dev;
8121 
8122 	if (dev_addr_init(dev))
8123 		goto free_pcpu;
8124 
8125 	dev_mc_init(dev);
8126 	dev_uc_init(dev);
8127 
8128 	dev_net_set(dev, &init_net);
8129 
8130 	dev->gso_max_size = GSO_MAX_SIZE;
8131 	dev->gso_max_segs = GSO_MAX_SEGS;
8132 
8133 	INIT_LIST_HEAD(&dev->napi_list);
8134 	INIT_LIST_HEAD(&dev->unreg_list);
8135 	INIT_LIST_HEAD(&dev->close_list);
8136 	INIT_LIST_HEAD(&dev->link_watch_list);
8137 	INIT_LIST_HEAD(&dev->adj_list.upper);
8138 	INIT_LIST_HEAD(&dev->adj_list.lower);
8139 	INIT_LIST_HEAD(&dev->ptype_all);
8140 	INIT_LIST_HEAD(&dev->ptype_specific);
8141 #ifdef CONFIG_NET_SCHED
8142 	hash_init(dev->qdisc_hash);
8143 #endif
8144 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8145 	setup(dev);
8146 
8147 	if (!dev->tx_queue_len) {
8148 		dev->priv_flags |= IFF_NO_QUEUE;
8149 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8150 	}
8151 
8152 	dev->num_tx_queues = txqs;
8153 	dev->real_num_tx_queues = txqs;
8154 	if (netif_alloc_netdev_queues(dev))
8155 		goto free_all;
8156 
8157 #ifdef CONFIG_SYSFS
8158 	dev->num_rx_queues = rxqs;
8159 	dev->real_num_rx_queues = rxqs;
8160 	if (netif_alloc_rx_queues(dev))
8161 		goto free_all;
8162 #endif
8163 
8164 	strcpy(dev->name, name);
8165 	dev->name_assign_type = name_assign_type;
8166 	dev->group = INIT_NETDEV_GROUP;
8167 	if (!dev->ethtool_ops)
8168 		dev->ethtool_ops = &default_ethtool_ops;
8169 
8170 	nf_hook_ingress_init(dev);
8171 
8172 	return dev;
8173 
8174 free_all:
8175 	free_netdev(dev);
8176 	return NULL;
8177 
8178 free_pcpu:
8179 	free_percpu(dev->pcpu_refcnt);
8180 free_dev:
8181 	netdev_freemem(dev);
8182 	return NULL;
8183 }
8184 EXPORT_SYMBOL(alloc_netdev_mqs);
8185 
8186 /**
8187  * free_netdev - free network device
8188  * @dev: device
8189  *
8190  * This function does the last stage of destroying an allocated device
8191  * interface. The reference to the device object is released. If this
8192  * is the last reference then it will be freed.Must be called in process
8193  * context.
8194  */
8195 void free_netdev(struct net_device *dev)
8196 {
8197 	struct napi_struct *p, *n;
8198 	struct bpf_prog *prog;
8199 
8200 	might_sleep();
8201 	netif_free_tx_queues(dev);
8202 #ifdef CONFIG_SYSFS
8203 	kvfree(dev->_rx);
8204 #endif
8205 
8206 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8207 
8208 	/* Flush device addresses */
8209 	dev_addr_flush(dev);
8210 
8211 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8212 		netif_napi_del(p);
8213 
8214 	free_percpu(dev->pcpu_refcnt);
8215 	dev->pcpu_refcnt = NULL;
8216 
8217 	prog = rcu_dereference_protected(dev->xdp_prog, 1);
8218 	if (prog) {
8219 		bpf_prog_put(prog);
8220 		static_key_slow_dec(&generic_xdp_needed);
8221 	}
8222 
8223 	/*  Compatibility with error handling in drivers */
8224 	if (dev->reg_state == NETREG_UNINITIALIZED) {
8225 		netdev_freemem(dev);
8226 		return;
8227 	}
8228 
8229 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8230 	dev->reg_state = NETREG_RELEASED;
8231 
8232 	/* will free via device release */
8233 	put_device(&dev->dev);
8234 }
8235 EXPORT_SYMBOL(free_netdev);
8236 
8237 /**
8238  *	synchronize_net -  Synchronize with packet receive processing
8239  *
8240  *	Wait for packets currently being received to be done.
8241  *	Does not block later packets from starting.
8242  */
8243 void synchronize_net(void)
8244 {
8245 	might_sleep();
8246 	if (rtnl_is_locked())
8247 		synchronize_rcu_expedited();
8248 	else
8249 		synchronize_rcu();
8250 }
8251 EXPORT_SYMBOL(synchronize_net);
8252 
8253 /**
8254  *	unregister_netdevice_queue - remove device from the kernel
8255  *	@dev: device
8256  *	@head: list
8257  *
8258  *	This function shuts down a device interface and removes it
8259  *	from the kernel tables.
8260  *	If head not NULL, device is queued to be unregistered later.
8261  *
8262  *	Callers must hold the rtnl semaphore.  You may want
8263  *	unregister_netdev() instead of this.
8264  */
8265 
8266 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8267 {
8268 	ASSERT_RTNL();
8269 
8270 	if (head) {
8271 		list_move_tail(&dev->unreg_list, head);
8272 	} else {
8273 		rollback_registered(dev);
8274 		/* Finish processing unregister after unlock */
8275 		net_set_todo(dev);
8276 	}
8277 }
8278 EXPORT_SYMBOL(unregister_netdevice_queue);
8279 
8280 /**
8281  *	unregister_netdevice_many - unregister many devices
8282  *	@head: list of devices
8283  *
8284  *  Note: As most callers use a stack allocated list_head,
8285  *  we force a list_del() to make sure stack wont be corrupted later.
8286  */
8287 void unregister_netdevice_many(struct list_head *head)
8288 {
8289 	struct net_device *dev;
8290 
8291 	if (!list_empty(head)) {
8292 		rollback_registered_many(head);
8293 		list_for_each_entry(dev, head, unreg_list)
8294 			net_set_todo(dev);
8295 		list_del(head);
8296 	}
8297 }
8298 EXPORT_SYMBOL(unregister_netdevice_many);
8299 
8300 /**
8301  *	unregister_netdev - remove device from the kernel
8302  *	@dev: device
8303  *
8304  *	This function shuts down a device interface and removes it
8305  *	from the kernel tables.
8306  *
8307  *	This is just a wrapper for unregister_netdevice that takes
8308  *	the rtnl semaphore.  In general you want to use this and not
8309  *	unregister_netdevice.
8310  */
8311 void unregister_netdev(struct net_device *dev)
8312 {
8313 	rtnl_lock();
8314 	unregister_netdevice(dev);
8315 	rtnl_unlock();
8316 }
8317 EXPORT_SYMBOL(unregister_netdev);
8318 
8319 /**
8320  *	dev_change_net_namespace - move device to different nethost namespace
8321  *	@dev: device
8322  *	@net: network namespace
8323  *	@pat: If not NULL name pattern to try if the current device name
8324  *	      is already taken in the destination network namespace.
8325  *
8326  *	This function shuts down a device interface and moves it
8327  *	to a new network namespace. On success 0 is returned, on
8328  *	a failure a netagive errno code is returned.
8329  *
8330  *	Callers must hold the rtnl semaphore.
8331  */
8332 
8333 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8334 {
8335 	int err, new_nsid;
8336 
8337 	ASSERT_RTNL();
8338 
8339 	/* Don't allow namespace local devices to be moved. */
8340 	err = -EINVAL;
8341 	if (dev->features & NETIF_F_NETNS_LOCAL)
8342 		goto out;
8343 
8344 	/* Ensure the device has been registrered */
8345 	if (dev->reg_state != NETREG_REGISTERED)
8346 		goto out;
8347 
8348 	/* Get out if there is nothing todo */
8349 	err = 0;
8350 	if (net_eq(dev_net(dev), net))
8351 		goto out;
8352 
8353 	/* Pick the destination device name, and ensure
8354 	 * we can use it in the destination network namespace.
8355 	 */
8356 	err = -EEXIST;
8357 	if (__dev_get_by_name(net, dev->name)) {
8358 		/* We get here if we can't use the current device name */
8359 		if (!pat)
8360 			goto out;
8361 		if (dev_get_valid_name(net, dev, pat) < 0)
8362 			goto out;
8363 	}
8364 
8365 	/*
8366 	 * And now a mini version of register_netdevice unregister_netdevice.
8367 	 */
8368 
8369 	/* If device is running close it first. */
8370 	dev_close(dev);
8371 
8372 	/* And unlink it from device chain */
8373 	err = -ENODEV;
8374 	unlist_netdevice(dev);
8375 
8376 	synchronize_net();
8377 
8378 	/* Shutdown queueing discipline. */
8379 	dev_shutdown(dev);
8380 
8381 	/* Notify protocols, that we are about to destroy
8382 	 * this device. They should clean all the things.
8383 	 *
8384 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
8385 	 * This is wanted because this way 8021q and macvlan know
8386 	 * the device is just moving and can keep their slaves up.
8387 	 */
8388 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8389 	rcu_barrier();
8390 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8391 	if (dev->rtnl_link_ops && dev->rtnl_link_ops->get_link_net)
8392 		new_nsid = peernet2id_alloc(dev_net(dev), net);
8393 	else
8394 		new_nsid = peernet2id(dev_net(dev), net);
8395 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid);
8396 
8397 	/*
8398 	 *	Flush the unicast and multicast chains
8399 	 */
8400 	dev_uc_flush(dev);
8401 	dev_mc_flush(dev);
8402 
8403 	/* Send a netdev-removed uevent to the old namespace */
8404 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8405 	netdev_adjacent_del_links(dev);
8406 
8407 	/* Actually switch the network namespace */
8408 	dev_net_set(dev, net);
8409 
8410 	/* If there is an ifindex conflict assign a new one */
8411 	if (__dev_get_by_index(net, dev->ifindex))
8412 		dev->ifindex = dev_new_index(net);
8413 
8414 	/* Send a netdev-add uevent to the new namespace */
8415 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8416 	netdev_adjacent_add_links(dev);
8417 
8418 	/* Fixup kobjects */
8419 	err = device_rename(&dev->dev, dev->name);
8420 	WARN_ON(err);
8421 
8422 	/* Add the device back in the hashes */
8423 	list_netdevice(dev);
8424 
8425 	/* Notify protocols, that a new device appeared. */
8426 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
8427 
8428 	/*
8429 	 *	Prevent userspace races by waiting until the network
8430 	 *	device is fully setup before sending notifications.
8431 	 */
8432 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8433 
8434 	synchronize_net();
8435 	err = 0;
8436 out:
8437 	return err;
8438 }
8439 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8440 
8441 static int dev_cpu_dead(unsigned int oldcpu)
8442 {
8443 	struct sk_buff **list_skb;
8444 	struct sk_buff *skb;
8445 	unsigned int cpu;
8446 	struct softnet_data *sd, *oldsd, *remsd = NULL;
8447 
8448 	local_irq_disable();
8449 	cpu = smp_processor_id();
8450 	sd = &per_cpu(softnet_data, cpu);
8451 	oldsd = &per_cpu(softnet_data, oldcpu);
8452 
8453 	/* Find end of our completion_queue. */
8454 	list_skb = &sd->completion_queue;
8455 	while (*list_skb)
8456 		list_skb = &(*list_skb)->next;
8457 	/* Append completion queue from offline CPU. */
8458 	*list_skb = oldsd->completion_queue;
8459 	oldsd->completion_queue = NULL;
8460 
8461 	/* Append output queue from offline CPU. */
8462 	if (oldsd->output_queue) {
8463 		*sd->output_queue_tailp = oldsd->output_queue;
8464 		sd->output_queue_tailp = oldsd->output_queue_tailp;
8465 		oldsd->output_queue = NULL;
8466 		oldsd->output_queue_tailp = &oldsd->output_queue;
8467 	}
8468 	/* Append NAPI poll list from offline CPU, with one exception :
8469 	 * process_backlog() must be called by cpu owning percpu backlog.
8470 	 * We properly handle process_queue & input_pkt_queue later.
8471 	 */
8472 	while (!list_empty(&oldsd->poll_list)) {
8473 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8474 							    struct napi_struct,
8475 							    poll_list);
8476 
8477 		list_del_init(&napi->poll_list);
8478 		if (napi->poll == process_backlog)
8479 			napi->state = 0;
8480 		else
8481 			____napi_schedule(sd, napi);
8482 	}
8483 
8484 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
8485 	local_irq_enable();
8486 
8487 #ifdef CONFIG_RPS
8488 	remsd = oldsd->rps_ipi_list;
8489 	oldsd->rps_ipi_list = NULL;
8490 #endif
8491 	/* send out pending IPI's on offline CPU */
8492 	net_rps_send_ipi(remsd);
8493 
8494 	/* Process offline CPU's input_pkt_queue */
8495 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8496 		netif_rx_ni(skb);
8497 		input_queue_head_incr(oldsd);
8498 	}
8499 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8500 		netif_rx_ni(skb);
8501 		input_queue_head_incr(oldsd);
8502 	}
8503 
8504 	return 0;
8505 }
8506 
8507 /**
8508  *	netdev_increment_features - increment feature set by one
8509  *	@all: current feature set
8510  *	@one: new feature set
8511  *	@mask: mask feature set
8512  *
8513  *	Computes a new feature set after adding a device with feature set
8514  *	@one to the master device with current feature set @all.  Will not
8515  *	enable anything that is off in @mask. Returns the new feature set.
8516  */
8517 netdev_features_t netdev_increment_features(netdev_features_t all,
8518 	netdev_features_t one, netdev_features_t mask)
8519 {
8520 	if (mask & NETIF_F_HW_CSUM)
8521 		mask |= NETIF_F_CSUM_MASK;
8522 	mask |= NETIF_F_VLAN_CHALLENGED;
8523 
8524 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8525 	all &= one | ~NETIF_F_ALL_FOR_ALL;
8526 
8527 	/* If one device supports hw checksumming, set for all. */
8528 	if (all & NETIF_F_HW_CSUM)
8529 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8530 
8531 	return all;
8532 }
8533 EXPORT_SYMBOL(netdev_increment_features);
8534 
8535 static struct hlist_head * __net_init netdev_create_hash(void)
8536 {
8537 	int i;
8538 	struct hlist_head *hash;
8539 
8540 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8541 	if (hash != NULL)
8542 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
8543 			INIT_HLIST_HEAD(&hash[i]);
8544 
8545 	return hash;
8546 }
8547 
8548 /* Initialize per network namespace state */
8549 static int __net_init netdev_init(struct net *net)
8550 {
8551 	if (net != &init_net)
8552 		INIT_LIST_HEAD(&net->dev_base_head);
8553 
8554 	net->dev_name_head = netdev_create_hash();
8555 	if (net->dev_name_head == NULL)
8556 		goto err_name;
8557 
8558 	net->dev_index_head = netdev_create_hash();
8559 	if (net->dev_index_head == NULL)
8560 		goto err_idx;
8561 
8562 	return 0;
8563 
8564 err_idx:
8565 	kfree(net->dev_name_head);
8566 err_name:
8567 	return -ENOMEM;
8568 }
8569 
8570 /**
8571  *	netdev_drivername - network driver for the device
8572  *	@dev: network device
8573  *
8574  *	Determine network driver for device.
8575  */
8576 const char *netdev_drivername(const struct net_device *dev)
8577 {
8578 	const struct device_driver *driver;
8579 	const struct device *parent;
8580 	const char *empty = "";
8581 
8582 	parent = dev->dev.parent;
8583 	if (!parent)
8584 		return empty;
8585 
8586 	driver = parent->driver;
8587 	if (driver && driver->name)
8588 		return driver->name;
8589 	return empty;
8590 }
8591 
8592 static void __netdev_printk(const char *level, const struct net_device *dev,
8593 			    struct va_format *vaf)
8594 {
8595 	if (dev && dev->dev.parent) {
8596 		dev_printk_emit(level[1] - '0',
8597 				dev->dev.parent,
8598 				"%s %s %s%s: %pV",
8599 				dev_driver_string(dev->dev.parent),
8600 				dev_name(dev->dev.parent),
8601 				netdev_name(dev), netdev_reg_state(dev),
8602 				vaf);
8603 	} else if (dev) {
8604 		printk("%s%s%s: %pV",
8605 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
8606 	} else {
8607 		printk("%s(NULL net_device): %pV", level, vaf);
8608 	}
8609 }
8610 
8611 void netdev_printk(const char *level, const struct net_device *dev,
8612 		   const char *format, ...)
8613 {
8614 	struct va_format vaf;
8615 	va_list args;
8616 
8617 	va_start(args, format);
8618 
8619 	vaf.fmt = format;
8620 	vaf.va = &args;
8621 
8622 	__netdev_printk(level, dev, &vaf);
8623 
8624 	va_end(args);
8625 }
8626 EXPORT_SYMBOL(netdev_printk);
8627 
8628 #define define_netdev_printk_level(func, level)			\
8629 void func(const struct net_device *dev, const char *fmt, ...)	\
8630 {								\
8631 	struct va_format vaf;					\
8632 	va_list args;						\
8633 								\
8634 	va_start(args, fmt);					\
8635 								\
8636 	vaf.fmt = fmt;						\
8637 	vaf.va = &args;						\
8638 								\
8639 	__netdev_printk(level, dev, &vaf);			\
8640 								\
8641 	va_end(args);						\
8642 }								\
8643 EXPORT_SYMBOL(func);
8644 
8645 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8646 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8647 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8648 define_netdev_printk_level(netdev_err, KERN_ERR);
8649 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8650 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8651 define_netdev_printk_level(netdev_info, KERN_INFO);
8652 
8653 static void __net_exit netdev_exit(struct net *net)
8654 {
8655 	kfree(net->dev_name_head);
8656 	kfree(net->dev_index_head);
8657 	if (net != &init_net)
8658 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
8659 }
8660 
8661 static struct pernet_operations __net_initdata netdev_net_ops = {
8662 	.init = netdev_init,
8663 	.exit = netdev_exit,
8664 };
8665 
8666 static void __net_exit default_device_exit(struct net *net)
8667 {
8668 	struct net_device *dev, *aux;
8669 	/*
8670 	 * Push all migratable network devices back to the
8671 	 * initial network namespace
8672 	 */
8673 	rtnl_lock();
8674 	for_each_netdev_safe(net, dev, aux) {
8675 		int err;
8676 		char fb_name[IFNAMSIZ];
8677 
8678 		/* Ignore unmoveable devices (i.e. loopback) */
8679 		if (dev->features & NETIF_F_NETNS_LOCAL)
8680 			continue;
8681 
8682 		/* Leave virtual devices for the generic cleanup */
8683 		if (dev->rtnl_link_ops)
8684 			continue;
8685 
8686 		/* Push remaining network devices to init_net */
8687 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8688 		err = dev_change_net_namespace(dev, &init_net, fb_name);
8689 		if (err) {
8690 			pr_emerg("%s: failed to move %s to init_net: %d\n",
8691 				 __func__, dev->name, err);
8692 			BUG();
8693 		}
8694 	}
8695 	rtnl_unlock();
8696 }
8697 
8698 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8699 {
8700 	/* Return with the rtnl_lock held when there are no network
8701 	 * devices unregistering in any network namespace in net_list.
8702 	 */
8703 	struct net *net;
8704 	bool unregistering;
8705 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
8706 
8707 	add_wait_queue(&netdev_unregistering_wq, &wait);
8708 	for (;;) {
8709 		unregistering = false;
8710 		rtnl_lock();
8711 		list_for_each_entry(net, net_list, exit_list) {
8712 			if (net->dev_unreg_count > 0) {
8713 				unregistering = true;
8714 				break;
8715 			}
8716 		}
8717 		if (!unregistering)
8718 			break;
8719 		__rtnl_unlock();
8720 
8721 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8722 	}
8723 	remove_wait_queue(&netdev_unregistering_wq, &wait);
8724 }
8725 
8726 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8727 {
8728 	/* At exit all network devices most be removed from a network
8729 	 * namespace.  Do this in the reverse order of registration.
8730 	 * Do this across as many network namespaces as possible to
8731 	 * improve batching efficiency.
8732 	 */
8733 	struct net_device *dev;
8734 	struct net *net;
8735 	LIST_HEAD(dev_kill_list);
8736 
8737 	/* To prevent network device cleanup code from dereferencing
8738 	 * loopback devices or network devices that have been freed
8739 	 * wait here for all pending unregistrations to complete,
8740 	 * before unregistring the loopback device and allowing the
8741 	 * network namespace be freed.
8742 	 *
8743 	 * The netdev todo list containing all network devices
8744 	 * unregistrations that happen in default_device_exit_batch
8745 	 * will run in the rtnl_unlock() at the end of
8746 	 * default_device_exit_batch.
8747 	 */
8748 	rtnl_lock_unregistering(net_list);
8749 	list_for_each_entry(net, net_list, exit_list) {
8750 		for_each_netdev_reverse(net, dev) {
8751 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8752 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8753 			else
8754 				unregister_netdevice_queue(dev, &dev_kill_list);
8755 		}
8756 	}
8757 	unregister_netdevice_many(&dev_kill_list);
8758 	rtnl_unlock();
8759 }
8760 
8761 static struct pernet_operations __net_initdata default_device_ops = {
8762 	.exit = default_device_exit,
8763 	.exit_batch = default_device_exit_batch,
8764 };
8765 
8766 /*
8767  *	Initialize the DEV module. At boot time this walks the device list and
8768  *	unhooks any devices that fail to initialise (normally hardware not
8769  *	present) and leaves us with a valid list of present and active devices.
8770  *
8771  */
8772 
8773 /*
8774  *       This is called single threaded during boot, so no need
8775  *       to take the rtnl semaphore.
8776  */
8777 static int __init net_dev_init(void)
8778 {
8779 	int i, rc = -ENOMEM;
8780 
8781 	BUG_ON(!dev_boot_phase);
8782 
8783 	if (dev_proc_init())
8784 		goto out;
8785 
8786 	if (netdev_kobject_init())
8787 		goto out;
8788 
8789 	INIT_LIST_HEAD(&ptype_all);
8790 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
8791 		INIT_LIST_HEAD(&ptype_base[i]);
8792 
8793 	INIT_LIST_HEAD(&offload_base);
8794 
8795 	if (register_pernet_subsys(&netdev_net_ops))
8796 		goto out;
8797 
8798 	/*
8799 	 *	Initialise the packet receive queues.
8800 	 */
8801 
8802 	for_each_possible_cpu(i) {
8803 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8804 		struct softnet_data *sd = &per_cpu(softnet_data, i);
8805 
8806 		INIT_WORK(flush, flush_backlog);
8807 
8808 		skb_queue_head_init(&sd->input_pkt_queue);
8809 		skb_queue_head_init(&sd->process_queue);
8810 		INIT_LIST_HEAD(&sd->poll_list);
8811 		sd->output_queue_tailp = &sd->output_queue;
8812 #ifdef CONFIG_RPS
8813 		sd->csd.func = rps_trigger_softirq;
8814 		sd->csd.info = sd;
8815 		sd->cpu = i;
8816 #endif
8817 
8818 		sd->backlog.poll = process_backlog;
8819 		sd->backlog.weight = weight_p;
8820 	}
8821 
8822 	dev_boot_phase = 0;
8823 
8824 	/* The loopback device is special if any other network devices
8825 	 * is present in a network namespace the loopback device must
8826 	 * be present. Since we now dynamically allocate and free the
8827 	 * loopback device ensure this invariant is maintained by
8828 	 * keeping the loopback device as the first device on the
8829 	 * list of network devices.  Ensuring the loopback devices
8830 	 * is the first device that appears and the last network device
8831 	 * that disappears.
8832 	 */
8833 	if (register_pernet_device(&loopback_net_ops))
8834 		goto out;
8835 
8836 	if (register_pernet_device(&default_device_ops))
8837 		goto out;
8838 
8839 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8840 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8841 
8842 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8843 				       NULL, dev_cpu_dead);
8844 	WARN_ON(rc < 0);
8845 	rc = 0;
8846 out:
8847 	return rc;
8848 }
8849 
8850 subsys_initcall(net_dev_init);
8851