1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET3 Protocol independent device support routines. 4 * 5 * Derived from the non IP parts of dev.c 1.0.19 6 * Authors: Ross Biro 7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 8 * Mark Evans, <evansmp@uhura.aston.ac.uk> 9 * 10 * Additional Authors: 11 * Florian la Roche <rzsfl@rz.uni-sb.de> 12 * Alan Cox <gw4pts@gw4pts.ampr.org> 13 * David Hinds <dahinds@users.sourceforge.net> 14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 15 * Adam Sulmicki <adam@cfar.umd.edu> 16 * Pekka Riikonen <priikone@poesidon.pspt.fi> 17 * 18 * Changes: 19 * D.J. Barrow : Fixed bug where dev->refcnt gets set 20 * to 2 if register_netdev gets called 21 * before net_dev_init & also removed a 22 * few lines of code in the process. 23 * Alan Cox : device private ioctl copies fields back. 24 * Alan Cox : Transmit queue code does relevant 25 * stunts to keep the queue safe. 26 * Alan Cox : Fixed double lock. 27 * Alan Cox : Fixed promisc NULL pointer trap 28 * ???????? : Support the full private ioctl range 29 * Alan Cox : Moved ioctl permission check into 30 * drivers 31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 32 * Alan Cox : 100 backlog just doesn't cut it when 33 * you start doing multicast video 8) 34 * Alan Cox : Rewrote net_bh and list manager. 35 * Alan Cox : Fix ETH_P_ALL echoback lengths. 36 * Alan Cox : Took out transmit every packet pass 37 * Saved a few bytes in the ioctl handler 38 * Alan Cox : Network driver sets packet type before 39 * calling netif_rx. Saves a function 40 * call a packet. 41 * Alan Cox : Hashed net_bh() 42 * Richard Kooijman: Timestamp fixes. 43 * Alan Cox : Wrong field in SIOCGIFDSTADDR 44 * Alan Cox : Device lock protection. 45 * Alan Cox : Fixed nasty side effect of device close 46 * changes. 47 * Rudi Cilibrasi : Pass the right thing to 48 * set_mac_address() 49 * Dave Miller : 32bit quantity for the device lock to 50 * make it work out on a Sparc. 51 * Bjorn Ekwall : Added KERNELD hack. 52 * Alan Cox : Cleaned up the backlog initialise. 53 * Craig Metz : SIOCGIFCONF fix if space for under 54 * 1 device. 55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 56 * is no device open function. 57 * Andi Kleen : Fix error reporting for SIOCGIFCONF 58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 59 * Cyrus Durgin : Cleaned for KMOD 60 * Adam Sulmicki : Bug Fix : Network Device Unload 61 * A network device unload needs to purge 62 * the backlog queue. 63 * Paul Rusty Russell : SIOCSIFNAME 64 * Pekka Riikonen : Netdev boot-time settings code 65 * Andrew Morton : Make unregister_netdevice wait 66 * indefinitely on dev->refcnt 67 * J Hadi Salim : - Backlog queue sampling 68 * - netif_rx() feedback 69 */ 70 71 #include <linux/uaccess.h> 72 #include <linux/bitops.h> 73 #include <linux/capability.h> 74 #include <linux/cpu.h> 75 #include <linux/types.h> 76 #include <linux/kernel.h> 77 #include <linux/hash.h> 78 #include <linux/slab.h> 79 #include <linux/sched.h> 80 #include <linux/sched/mm.h> 81 #include <linux/mutex.h> 82 #include <linux/rwsem.h> 83 #include <linux/string.h> 84 #include <linux/mm.h> 85 #include <linux/socket.h> 86 #include <linux/sockios.h> 87 #include <linux/errno.h> 88 #include <linux/interrupt.h> 89 #include <linux/if_ether.h> 90 #include <linux/netdevice.h> 91 #include <linux/etherdevice.h> 92 #include <linux/ethtool.h> 93 #include <linux/skbuff.h> 94 #include <linux/kthread.h> 95 #include <linux/bpf.h> 96 #include <linux/bpf_trace.h> 97 #include <net/net_namespace.h> 98 #include <net/sock.h> 99 #include <net/busy_poll.h> 100 #include <linux/rtnetlink.h> 101 #include <linux/stat.h> 102 #include <net/dsa.h> 103 #include <net/dst.h> 104 #include <net/dst_metadata.h> 105 #include <net/gro.h> 106 #include <net/pkt_sched.h> 107 #include <net/pkt_cls.h> 108 #include <net/checksum.h> 109 #include <net/xfrm.h> 110 #include <linux/highmem.h> 111 #include <linux/init.h> 112 #include <linux/module.h> 113 #include <linux/netpoll.h> 114 #include <linux/rcupdate.h> 115 #include <linux/delay.h> 116 #include <net/iw_handler.h> 117 #include <asm/current.h> 118 #include <linux/audit.h> 119 #include <linux/dmaengine.h> 120 #include <linux/err.h> 121 #include <linux/ctype.h> 122 #include <linux/if_arp.h> 123 #include <linux/if_vlan.h> 124 #include <linux/ip.h> 125 #include <net/ip.h> 126 #include <net/mpls.h> 127 #include <linux/ipv6.h> 128 #include <linux/in.h> 129 #include <linux/jhash.h> 130 #include <linux/random.h> 131 #include <trace/events/napi.h> 132 #include <trace/events/net.h> 133 #include <trace/events/skb.h> 134 #include <linux/inetdevice.h> 135 #include <linux/cpu_rmap.h> 136 #include <linux/static_key.h> 137 #include <linux/hashtable.h> 138 #include <linux/vmalloc.h> 139 #include <linux/if_macvlan.h> 140 #include <linux/errqueue.h> 141 #include <linux/hrtimer.h> 142 #include <linux/netfilter_ingress.h> 143 #include <linux/crash_dump.h> 144 #include <linux/sctp.h> 145 #include <net/udp_tunnel.h> 146 #include <linux/net_namespace.h> 147 #include <linux/indirect_call_wrapper.h> 148 #include <net/devlink.h> 149 #include <linux/pm_runtime.h> 150 #include <linux/prandom.h> 151 152 #include "net-sysfs.h" 153 154 #define MAX_GRO_SKBS 8 155 156 /* This should be increased if a protocol with a bigger head is added. */ 157 #define GRO_MAX_HEAD (MAX_HEADER + 128) 158 159 static DEFINE_SPINLOCK(ptype_lock); 160 static DEFINE_SPINLOCK(offload_lock); 161 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 162 struct list_head ptype_all __read_mostly; /* Taps */ 163 static struct list_head offload_base __read_mostly; 164 165 static int netif_rx_internal(struct sk_buff *skb); 166 static int call_netdevice_notifiers_info(unsigned long val, 167 struct netdev_notifier_info *info); 168 static int call_netdevice_notifiers_extack(unsigned long val, 169 struct net_device *dev, 170 struct netlink_ext_ack *extack); 171 static struct napi_struct *napi_by_id(unsigned int napi_id); 172 173 /* 174 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 175 * semaphore. 176 * 177 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 178 * 179 * Writers must hold the rtnl semaphore while they loop through the 180 * dev_base_head list, and hold dev_base_lock for writing when they do the 181 * actual updates. This allows pure readers to access the list even 182 * while a writer is preparing to update it. 183 * 184 * To put it another way, dev_base_lock is held for writing only to 185 * protect against pure readers; the rtnl semaphore provides the 186 * protection against other writers. 187 * 188 * See, for example usages, register_netdevice() and 189 * unregister_netdevice(), which must be called with the rtnl 190 * semaphore held. 191 */ 192 DEFINE_RWLOCK(dev_base_lock); 193 EXPORT_SYMBOL(dev_base_lock); 194 195 static DEFINE_MUTEX(ifalias_mutex); 196 197 /* protects napi_hash addition/deletion and napi_gen_id */ 198 static DEFINE_SPINLOCK(napi_hash_lock); 199 200 static unsigned int napi_gen_id = NR_CPUS; 201 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 202 203 static DECLARE_RWSEM(devnet_rename_sem); 204 205 static inline void dev_base_seq_inc(struct net *net) 206 { 207 while (++net->dev_base_seq == 0) 208 ; 209 } 210 211 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 212 { 213 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 214 215 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 216 } 217 218 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 219 { 220 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 221 } 222 223 static inline void rps_lock(struct softnet_data *sd) 224 { 225 #ifdef CONFIG_RPS 226 spin_lock(&sd->input_pkt_queue.lock); 227 #endif 228 } 229 230 static inline void rps_unlock(struct softnet_data *sd) 231 { 232 #ifdef CONFIG_RPS 233 spin_unlock(&sd->input_pkt_queue.lock); 234 #endif 235 } 236 237 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev, 238 const char *name) 239 { 240 struct netdev_name_node *name_node; 241 242 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL); 243 if (!name_node) 244 return NULL; 245 INIT_HLIST_NODE(&name_node->hlist); 246 name_node->dev = dev; 247 name_node->name = name; 248 return name_node; 249 } 250 251 static struct netdev_name_node * 252 netdev_name_node_head_alloc(struct net_device *dev) 253 { 254 struct netdev_name_node *name_node; 255 256 name_node = netdev_name_node_alloc(dev, dev->name); 257 if (!name_node) 258 return NULL; 259 INIT_LIST_HEAD(&name_node->list); 260 return name_node; 261 } 262 263 static void netdev_name_node_free(struct netdev_name_node *name_node) 264 { 265 kfree(name_node); 266 } 267 268 static void netdev_name_node_add(struct net *net, 269 struct netdev_name_node *name_node) 270 { 271 hlist_add_head_rcu(&name_node->hlist, 272 dev_name_hash(net, name_node->name)); 273 } 274 275 static void netdev_name_node_del(struct netdev_name_node *name_node) 276 { 277 hlist_del_rcu(&name_node->hlist); 278 } 279 280 static struct netdev_name_node *netdev_name_node_lookup(struct net *net, 281 const char *name) 282 { 283 struct hlist_head *head = dev_name_hash(net, name); 284 struct netdev_name_node *name_node; 285 286 hlist_for_each_entry(name_node, head, hlist) 287 if (!strcmp(name_node->name, name)) 288 return name_node; 289 return NULL; 290 } 291 292 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net, 293 const char *name) 294 { 295 struct hlist_head *head = dev_name_hash(net, name); 296 struct netdev_name_node *name_node; 297 298 hlist_for_each_entry_rcu(name_node, head, hlist) 299 if (!strcmp(name_node->name, name)) 300 return name_node; 301 return NULL; 302 } 303 304 int netdev_name_node_alt_create(struct net_device *dev, const char *name) 305 { 306 struct netdev_name_node *name_node; 307 struct net *net = dev_net(dev); 308 309 name_node = netdev_name_node_lookup(net, name); 310 if (name_node) 311 return -EEXIST; 312 name_node = netdev_name_node_alloc(dev, name); 313 if (!name_node) 314 return -ENOMEM; 315 netdev_name_node_add(net, name_node); 316 /* The node that holds dev->name acts as a head of per-device list. */ 317 list_add_tail(&name_node->list, &dev->name_node->list); 318 319 return 0; 320 } 321 EXPORT_SYMBOL(netdev_name_node_alt_create); 322 323 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node) 324 { 325 list_del(&name_node->list); 326 netdev_name_node_del(name_node); 327 kfree(name_node->name); 328 netdev_name_node_free(name_node); 329 } 330 331 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name) 332 { 333 struct netdev_name_node *name_node; 334 struct net *net = dev_net(dev); 335 336 name_node = netdev_name_node_lookup(net, name); 337 if (!name_node) 338 return -ENOENT; 339 /* lookup might have found our primary name or a name belonging 340 * to another device. 341 */ 342 if (name_node == dev->name_node || name_node->dev != dev) 343 return -EINVAL; 344 345 __netdev_name_node_alt_destroy(name_node); 346 347 return 0; 348 } 349 EXPORT_SYMBOL(netdev_name_node_alt_destroy); 350 351 static void netdev_name_node_alt_flush(struct net_device *dev) 352 { 353 struct netdev_name_node *name_node, *tmp; 354 355 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) 356 __netdev_name_node_alt_destroy(name_node); 357 } 358 359 /* Device list insertion */ 360 static void list_netdevice(struct net_device *dev) 361 { 362 struct net *net = dev_net(dev); 363 364 ASSERT_RTNL(); 365 366 write_lock_bh(&dev_base_lock); 367 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 368 netdev_name_node_add(net, dev->name_node); 369 hlist_add_head_rcu(&dev->index_hlist, 370 dev_index_hash(net, dev->ifindex)); 371 write_unlock_bh(&dev_base_lock); 372 373 dev_base_seq_inc(net); 374 } 375 376 /* Device list removal 377 * caller must respect a RCU grace period before freeing/reusing dev 378 */ 379 static void unlist_netdevice(struct net_device *dev) 380 { 381 ASSERT_RTNL(); 382 383 /* Unlink dev from the device chain */ 384 write_lock_bh(&dev_base_lock); 385 list_del_rcu(&dev->dev_list); 386 netdev_name_node_del(dev->name_node); 387 hlist_del_rcu(&dev->index_hlist); 388 write_unlock_bh(&dev_base_lock); 389 390 dev_base_seq_inc(dev_net(dev)); 391 } 392 393 /* 394 * Our notifier list 395 */ 396 397 static RAW_NOTIFIER_HEAD(netdev_chain); 398 399 /* 400 * Device drivers call our routines to queue packets here. We empty the 401 * queue in the local softnet handler. 402 */ 403 404 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 405 EXPORT_PER_CPU_SYMBOL(softnet_data); 406 407 #ifdef CONFIG_LOCKDEP 408 /* 409 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 410 * according to dev->type 411 */ 412 static const unsigned short netdev_lock_type[] = { 413 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 414 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 415 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 416 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 417 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 418 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 419 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 420 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 421 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 422 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 423 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 424 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 425 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 426 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 427 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 428 429 static const char *const netdev_lock_name[] = { 430 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 431 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 432 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 433 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 434 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 435 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 436 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 437 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 438 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 439 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 440 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 441 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 442 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 443 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 444 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 445 446 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 447 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 448 449 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 450 { 451 int i; 452 453 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 454 if (netdev_lock_type[i] == dev_type) 455 return i; 456 /* the last key is used by default */ 457 return ARRAY_SIZE(netdev_lock_type) - 1; 458 } 459 460 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 461 unsigned short dev_type) 462 { 463 int i; 464 465 i = netdev_lock_pos(dev_type); 466 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 467 netdev_lock_name[i]); 468 } 469 470 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 471 { 472 int i; 473 474 i = netdev_lock_pos(dev->type); 475 lockdep_set_class_and_name(&dev->addr_list_lock, 476 &netdev_addr_lock_key[i], 477 netdev_lock_name[i]); 478 } 479 #else 480 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 481 unsigned short dev_type) 482 { 483 } 484 485 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 486 { 487 } 488 #endif 489 490 /******************************************************************************* 491 * 492 * Protocol management and registration routines 493 * 494 *******************************************************************************/ 495 496 497 /* 498 * Add a protocol ID to the list. Now that the input handler is 499 * smarter we can dispense with all the messy stuff that used to be 500 * here. 501 * 502 * BEWARE!!! Protocol handlers, mangling input packets, 503 * MUST BE last in hash buckets and checking protocol handlers 504 * MUST start from promiscuous ptype_all chain in net_bh. 505 * It is true now, do not change it. 506 * Explanation follows: if protocol handler, mangling packet, will 507 * be the first on list, it is not able to sense, that packet 508 * is cloned and should be copied-on-write, so that it will 509 * change it and subsequent readers will get broken packet. 510 * --ANK (980803) 511 */ 512 513 static inline struct list_head *ptype_head(const struct packet_type *pt) 514 { 515 if (pt->type == htons(ETH_P_ALL)) 516 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 517 else 518 return pt->dev ? &pt->dev->ptype_specific : 519 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 520 } 521 522 /** 523 * dev_add_pack - add packet handler 524 * @pt: packet type declaration 525 * 526 * Add a protocol handler to the networking stack. The passed &packet_type 527 * is linked into kernel lists and may not be freed until it has been 528 * removed from the kernel lists. 529 * 530 * This call does not sleep therefore it can not 531 * guarantee all CPU's that are in middle of receiving packets 532 * will see the new packet type (until the next received packet). 533 */ 534 535 void dev_add_pack(struct packet_type *pt) 536 { 537 struct list_head *head = ptype_head(pt); 538 539 spin_lock(&ptype_lock); 540 list_add_rcu(&pt->list, head); 541 spin_unlock(&ptype_lock); 542 } 543 EXPORT_SYMBOL(dev_add_pack); 544 545 /** 546 * __dev_remove_pack - remove packet handler 547 * @pt: packet type declaration 548 * 549 * Remove a protocol handler that was previously added to the kernel 550 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 551 * from the kernel lists and can be freed or reused once this function 552 * returns. 553 * 554 * The packet type might still be in use by receivers 555 * and must not be freed until after all the CPU's have gone 556 * through a quiescent state. 557 */ 558 void __dev_remove_pack(struct packet_type *pt) 559 { 560 struct list_head *head = ptype_head(pt); 561 struct packet_type *pt1; 562 563 spin_lock(&ptype_lock); 564 565 list_for_each_entry(pt1, head, list) { 566 if (pt == pt1) { 567 list_del_rcu(&pt->list); 568 goto out; 569 } 570 } 571 572 pr_warn("dev_remove_pack: %p not found\n", pt); 573 out: 574 spin_unlock(&ptype_lock); 575 } 576 EXPORT_SYMBOL(__dev_remove_pack); 577 578 /** 579 * dev_remove_pack - remove packet handler 580 * @pt: packet type declaration 581 * 582 * Remove a protocol handler that was previously added to the kernel 583 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 584 * from the kernel lists and can be freed or reused once this function 585 * returns. 586 * 587 * This call sleeps to guarantee that no CPU is looking at the packet 588 * type after return. 589 */ 590 void dev_remove_pack(struct packet_type *pt) 591 { 592 __dev_remove_pack(pt); 593 594 synchronize_net(); 595 } 596 EXPORT_SYMBOL(dev_remove_pack); 597 598 599 /** 600 * dev_add_offload - register offload handlers 601 * @po: protocol offload declaration 602 * 603 * Add protocol offload handlers to the networking stack. The passed 604 * &proto_offload is linked into kernel lists and may not be freed until 605 * it has been removed from the kernel lists. 606 * 607 * This call does not sleep therefore it can not 608 * guarantee all CPU's that are in middle of receiving packets 609 * will see the new offload handlers (until the next received packet). 610 */ 611 void dev_add_offload(struct packet_offload *po) 612 { 613 struct packet_offload *elem; 614 615 spin_lock(&offload_lock); 616 list_for_each_entry(elem, &offload_base, list) { 617 if (po->priority < elem->priority) 618 break; 619 } 620 list_add_rcu(&po->list, elem->list.prev); 621 spin_unlock(&offload_lock); 622 } 623 EXPORT_SYMBOL(dev_add_offload); 624 625 /** 626 * __dev_remove_offload - remove offload handler 627 * @po: packet offload declaration 628 * 629 * Remove a protocol offload handler that was previously added to the 630 * kernel offload handlers by dev_add_offload(). The passed &offload_type 631 * is removed from the kernel lists and can be freed or reused once this 632 * function returns. 633 * 634 * The packet type might still be in use by receivers 635 * and must not be freed until after all the CPU's have gone 636 * through a quiescent state. 637 */ 638 static void __dev_remove_offload(struct packet_offload *po) 639 { 640 struct list_head *head = &offload_base; 641 struct packet_offload *po1; 642 643 spin_lock(&offload_lock); 644 645 list_for_each_entry(po1, head, list) { 646 if (po == po1) { 647 list_del_rcu(&po->list); 648 goto out; 649 } 650 } 651 652 pr_warn("dev_remove_offload: %p not found\n", po); 653 out: 654 spin_unlock(&offload_lock); 655 } 656 657 /** 658 * dev_remove_offload - remove packet offload handler 659 * @po: packet offload declaration 660 * 661 * Remove a packet offload handler that was previously added to the kernel 662 * offload handlers by dev_add_offload(). The passed &offload_type is 663 * removed from the kernel lists and can be freed or reused once this 664 * function returns. 665 * 666 * This call sleeps to guarantee that no CPU is looking at the packet 667 * type after return. 668 */ 669 void dev_remove_offload(struct packet_offload *po) 670 { 671 __dev_remove_offload(po); 672 673 synchronize_net(); 674 } 675 EXPORT_SYMBOL(dev_remove_offload); 676 677 /****************************************************************************** 678 * 679 * Device Boot-time Settings Routines 680 * 681 ******************************************************************************/ 682 683 /* Boot time configuration table */ 684 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 685 686 /** 687 * netdev_boot_setup_add - add new setup entry 688 * @name: name of the device 689 * @map: configured settings for the device 690 * 691 * Adds new setup entry to the dev_boot_setup list. The function 692 * returns 0 on error and 1 on success. This is a generic routine to 693 * all netdevices. 694 */ 695 static int netdev_boot_setup_add(char *name, struct ifmap *map) 696 { 697 struct netdev_boot_setup *s; 698 int i; 699 700 s = dev_boot_setup; 701 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 702 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 703 memset(s[i].name, 0, sizeof(s[i].name)); 704 strlcpy(s[i].name, name, IFNAMSIZ); 705 memcpy(&s[i].map, map, sizeof(s[i].map)); 706 break; 707 } 708 } 709 710 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 711 } 712 713 /** 714 * netdev_boot_setup_check - check boot time settings 715 * @dev: the netdevice 716 * 717 * Check boot time settings for the device. 718 * The found settings are set for the device to be used 719 * later in the device probing. 720 * Returns 0 if no settings found, 1 if they are. 721 */ 722 int netdev_boot_setup_check(struct net_device *dev) 723 { 724 struct netdev_boot_setup *s = dev_boot_setup; 725 int i; 726 727 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 728 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 729 !strcmp(dev->name, s[i].name)) { 730 dev->irq = s[i].map.irq; 731 dev->base_addr = s[i].map.base_addr; 732 dev->mem_start = s[i].map.mem_start; 733 dev->mem_end = s[i].map.mem_end; 734 return 1; 735 } 736 } 737 return 0; 738 } 739 EXPORT_SYMBOL(netdev_boot_setup_check); 740 741 742 /** 743 * netdev_boot_base - get address from boot time settings 744 * @prefix: prefix for network device 745 * @unit: id for network device 746 * 747 * Check boot time settings for the base address of device. 748 * The found settings are set for the device to be used 749 * later in the device probing. 750 * Returns 0 if no settings found. 751 */ 752 unsigned long netdev_boot_base(const char *prefix, int unit) 753 { 754 const struct netdev_boot_setup *s = dev_boot_setup; 755 char name[IFNAMSIZ]; 756 int i; 757 758 sprintf(name, "%s%d", prefix, unit); 759 760 /* 761 * If device already registered then return base of 1 762 * to indicate not to probe for this interface 763 */ 764 if (__dev_get_by_name(&init_net, name)) 765 return 1; 766 767 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 768 if (!strcmp(name, s[i].name)) 769 return s[i].map.base_addr; 770 return 0; 771 } 772 773 /* 774 * Saves at boot time configured settings for any netdevice. 775 */ 776 int __init netdev_boot_setup(char *str) 777 { 778 int ints[5]; 779 struct ifmap map; 780 781 str = get_options(str, ARRAY_SIZE(ints), ints); 782 if (!str || !*str) 783 return 0; 784 785 /* Save settings */ 786 memset(&map, 0, sizeof(map)); 787 if (ints[0] > 0) 788 map.irq = ints[1]; 789 if (ints[0] > 1) 790 map.base_addr = ints[2]; 791 if (ints[0] > 2) 792 map.mem_start = ints[3]; 793 if (ints[0] > 3) 794 map.mem_end = ints[4]; 795 796 /* Add new entry to the list */ 797 return netdev_boot_setup_add(str, &map); 798 } 799 800 __setup("netdev=", netdev_boot_setup); 801 802 /******************************************************************************* 803 * 804 * Device Interface Subroutines 805 * 806 *******************************************************************************/ 807 808 /** 809 * dev_get_iflink - get 'iflink' value of a interface 810 * @dev: targeted interface 811 * 812 * Indicates the ifindex the interface is linked to. 813 * Physical interfaces have the same 'ifindex' and 'iflink' values. 814 */ 815 816 int dev_get_iflink(const struct net_device *dev) 817 { 818 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 819 return dev->netdev_ops->ndo_get_iflink(dev); 820 821 return dev->ifindex; 822 } 823 EXPORT_SYMBOL(dev_get_iflink); 824 825 /** 826 * dev_fill_metadata_dst - Retrieve tunnel egress information. 827 * @dev: targeted interface 828 * @skb: The packet. 829 * 830 * For better visibility of tunnel traffic OVS needs to retrieve 831 * egress tunnel information for a packet. Following API allows 832 * user to get this info. 833 */ 834 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 835 { 836 struct ip_tunnel_info *info; 837 838 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 839 return -EINVAL; 840 841 info = skb_tunnel_info_unclone(skb); 842 if (!info) 843 return -ENOMEM; 844 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 845 return -EINVAL; 846 847 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 848 } 849 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 850 851 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack) 852 { 853 int k = stack->num_paths++; 854 855 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX)) 856 return NULL; 857 858 return &stack->path[k]; 859 } 860 861 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 862 struct net_device_path_stack *stack) 863 { 864 const struct net_device *last_dev; 865 struct net_device_path_ctx ctx = { 866 .dev = dev, 867 .daddr = daddr, 868 }; 869 struct net_device_path *path; 870 int ret = 0; 871 872 stack->num_paths = 0; 873 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) { 874 last_dev = ctx.dev; 875 path = dev_fwd_path(stack); 876 if (!path) 877 return -1; 878 879 memset(path, 0, sizeof(struct net_device_path)); 880 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path); 881 if (ret < 0) 882 return -1; 883 884 if (WARN_ON_ONCE(last_dev == ctx.dev)) 885 return -1; 886 } 887 path = dev_fwd_path(stack); 888 if (!path) 889 return -1; 890 path->type = DEV_PATH_ETHERNET; 891 path->dev = ctx.dev; 892 893 return ret; 894 } 895 EXPORT_SYMBOL_GPL(dev_fill_forward_path); 896 897 /** 898 * __dev_get_by_name - find a device by its name 899 * @net: the applicable net namespace 900 * @name: name to find 901 * 902 * Find an interface by name. Must be called under RTNL semaphore 903 * or @dev_base_lock. If the name is found a pointer to the device 904 * is returned. If the name is not found then %NULL is returned. The 905 * reference counters are not incremented so the caller must be 906 * careful with locks. 907 */ 908 909 struct net_device *__dev_get_by_name(struct net *net, const char *name) 910 { 911 struct netdev_name_node *node_name; 912 913 node_name = netdev_name_node_lookup(net, name); 914 return node_name ? node_name->dev : NULL; 915 } 916 EXPORT_SYMBOL(__dev_get_by_name); 917 918 /** 919 * dev_get_by_name_rcu - find a device by its name 920 * @net: the applicable net namespace 921 * @name: name to find 922 * 923 * Find an interface by name. 924 * If the name is found a pointer to the device is returned. 925 * If the name is not found then %NULL is returned. 926 * The reference counters are not incremented so the caller must be 927 * careful with locks. The caller must hold RCU lock. 928 */ 929 930 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 931 { 932 struct netdev_name_node *node_name; 933 934 node_name = netdev_name_node_lookup_rcu(net, name); 935 return node_name ? node_name->dev : NULL; 936 } 937 EXPORT_SYMBOL(dev_get_by_name_rcu); 938 939 /** 940 * dev_get_by_name - find a device by its name 941 * @net: the applicable net namespace 942 * @name: name to find 943 * 944 * Find an interface by name. This can be called from any 945 * context and does its own locking. The returned handle has 946 * the usage count incremented and the caller must use dev_put() to 947 * release it when it is no longer needed. %NULL is returned if no 948 * matching device is found. 949 */ 950 951 struct net_device *dev_get_by_name(struct net *net, const char *name) 952 { 953 struct net_device *dev; 954 955 rcu_read_lock(); 956 dev = dev_get_by_name_rcu(net, name); 957 if (dev) 958 dev_hold(dev); 959 rcu_read_unlock(); 960 return dev; 961 } 962 EXPORT_SYMBOL(dev_get_by_name); 963 964 /** 965 * __dev_get_by_index - find a device by its ifindex 966 * @net: the applicable net namespace 967 * @ifindex: index of device 968 * 969 * Search for an interface by index. Returns %NULL if the device 970 * is not found or a pointer to the device. The device has not 971 * had its reference counter increased so the caller must be careful 972 * about locking. The caller must hold either the RTNL semaphore 973 * or @dev_base_lock. 974 */ 975 976 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 977 { 978 struct net_device *dev; 979 struct hlist_head *head = dev_index_hash(net, ifindex); 980 981 hlist_for_each_entry(dev, head, index_hlist) 982 if (dev->ifindex == ifindex) 983 return dev; 984 985 return NULL; 986 } 987 EXPORT_SYMBOL(__dev_get_by_index); 988 989 /** 990 * dev_get_by_index_rcu - find a device by its ifindex 991 * @net: the applicable net namespace 992 * @ifindex: index of device 993 * 994 * Search for an interface by index. Returns %NULL if the device 995 * is not found or a pointer to the device. The device has not 996 * had its reference counter increased so the caller must be careful 997 * about locking. The caller must hold RCU lock. 998 */ 999 1000 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 1001 { 1002 struct net_device *dev; 1003 struct hlist_head *head = dev_index_hash(net, ifindex); 1004 1005 hlist_for_each_entry_rcu(dev, head, index_hlist) 1006 if (dev->ifindex == ifindex) 1007 return dev; 1008 1009 return NULL; 1010 } 1011 EXPORT_SYMBOL(dev_get_by_index_rcu); 1012 1013 1014 /** 1015 * dev_get_by_index - find a device by its ifindex 1016 * @net: the applicable net namespace 1017 * @ifindex: index of device 1018 * 1019 * Search for an interface by index. Returns NULL if the device 1020 * is not found or a pointer to the device. The device returned has 1021 * had a reference added and the pointer is safe until the user calls 1022 * dev_put to indicate they have finished with it. 1023 */ 1024 1025 struct net_device *dev_get_by_index(struct net *net, int ifindex) 1026 { 1027 struct net_device *dev; 1028 1029 rcu_read_lock(); 1030 dev = dev_get_by_index_rcu(net, ifindex); 1031 if (dev) 1032 dev_hold(dev); 1033 rcu_read_unlock(); 1034 return dev; 1035 } 1036 EXPORT_SYMBOL(dev_get_by_index); 1037 1038 /** 1039 * dev_get_by_napi_id - find a device by napi_id 1040 * @napi_id: ID of the NAPI struct 1041 * 1042 * Search for an interface by NAPI ID. Returns %NULL if the device 1043 * is not found or a pointer to the device. The device has not had 1044 * its reference counter increased so the caller must be careful 1045 * about locking. The caller must hold RCU lock. 1046 */ 1047 1048 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 1049 { 1050 struct napi_struct *napi; 1051 1052 WARN_ON_ONCE(!rcu_read_lock_held()); 1053 1054 if (napi_id < MIN_NAPI_ID) 1055 return NULL; 1056 1057 napi = napi_by_id(napi_id); 1058 1059 return napi ? napi->dev : NULL; 1060 } 1061 EXPORT_SYMBOL(dev_get_by_napi_id); 1062 1063 /** 1064 * netdev_get_name - get a netdevice name, knowing its ifindex. 1065 * @net: network namespace 1066 * @name: a pointer to the buffer where the name will be stored. 1067 * @ifindex: the ifindex of the interface to get the name from. 1068 */ 1069 int netdev_get_name(struct net *net, char *name, int ifindex) 1070 { 1071 struct net_device *dev; 1072 int ret; 1073 1074 down_read(&devnet_rename_sem); 1075 rcu_read_lock(); 1076 1077 dev = dev_get_by_index_rcu(net, ifindex); 1078 if (!dev) { 1079 ret = -ENODEV; 1080 goto out; 1081 } 1082 1083 strcpy(name, dev->name); 1084 1085 ret = 0; 1086 out: 1087 rcu_read_unlock(); 1088 up_read(&devnet_rename_sem); 1089 return ret; 1090 } 1091 1092 /** 1093 * dev_getbyhwaddr_rcu - find a device by its hardware address 1094 * @net: the applicable net namespace 1095 * @type: media type of device 1096 * @ha: hardware address 1097 * 1098 * Search for an interface by MAC address. Returns NULL if the device 1099 * is not found or a pointer to the device. 1100 * The caller must hold RCU or RTNL. 1101 * The returned device has not had its ref count increased 1102 * and the caller must therefore be careful about locking 1103 * 1104 */ 1105 1106 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 1107 const char *ha) 1108 { 1109 struct net_device *dev; 1110 1111 for_each_netdev_rcu(net, dev) 1112 if (dev->type == type && 1113 !memcmp(dev->dev_addr, ha, dev->addr_len)) 1114 return dev; 1115 1116 return NULL; 1117 } 1118 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 1119 1120 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 1121 { 1122 struct net_device *dev, *ret = NULL; 1123 1124 rcu_read_lock(); 1125 for_each_netdev_rcu(net, dev) 1126 if (dev->type == type) { 1127 dev_hold(dev); 1128 ret = dev; 1129 break; 1130 } 1131 rcu_read_unlock(); 1132 return ret; 1133 } 1134 EXPORT_SYMBOL(dev_getfirstbyhwtype); 1135 1136 /** 1137 * __dev_get_by_flags - find any device with given flags 1138 * @net: the applicable net namespace 1139 * @if_flags: IFF_* values 1140 * @mask: bitmask of bits in if_flags to check 1141 * 1142 * Search for any interface with the given flags. Returns NULL if a device 1143 * is not found or a pointer to the device. Must be called inside 1144 * rtnl_lock(), and result refcount is unchanged. 1145 */ 1146 1147 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 1148 unsigned short mask) 1149 { 1150 struct net_device *dev, *ret; 1151 1152 ASSERT_RTNL(); 1153 1154 ret = NULL; 1155 for_each_netdev(net, dev) { 1156 if (((dev->flags ^ if_flags) & mask) == 0) { 1157 ret = dev; 1158 break; 1159 } 1160 } 1161 return ret; 1162 } 1163 EXPORT_SYMBOL(__dev_get_by_flags); 1164 1165 /** 1166 * dev_valid_name - check if name is okay for network device 1167 * @name: name string 1168 * 1169 * Network device names need to be valid file names to 1170 * allow sysfs to work. We also disallow any kind of 1171 * whitespace. 1172 */ 1173 bool dev_valid_name(const char *name) 1174 { 1175 if (*name == '\0') 1176 return false; 1177 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1178 return false; 1179 if (!strcmp(name, ".") || !strcmp(name, "..")) 1180 return false; 1181 1182 while (*name) { 1183 if (*name == '/' || *name == ':' || isspace(*name)) 1184 return false; 1185 name++; 1186 } 1187 return true; 1188 } 1189 EXPORT_SYMBOL(dev_valid_name); 1190 1191 /** 1192 * __dev_alloc_name - allocate a name for a device 1193 * @net: network namespace to allocate the device name in 1194 * @name: name format string 1195 * @buf: scratch buffer and result name string 1196 * 1197 * Passed a format string - eg "lt%d" it will try and find a suitable 1198 * id. It scans list of devices to build up a free map, then chooses 1199 * the first empty slot. The caller must hold the dev_base or rtnl lock 1200 * while allocating the name and adding the device in order to avoid 1201 * duplicates. 1202 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1203 * Returns the number of the unit assigned or a negative errno code. 1204 */ 1205 1206 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1207 { 1208 int i = 0; 1209 const char *p; 1210 const int max_netdevices = 8*PAGE_SIZE; 1211 unsigned long *inuse; 1212 struct net_device *d; 1213 1214 if (!dev_valid_name(name)) 1215 return -EINVAL; 1216 1217 p = strchr(name, '%'); 1218 if (p) { 1219 /* 1220 * Verify the string as this thing may have come from 1221 * the user. There must be either one "%d" and no other "%" 1222 * characters. 1223 */ 1224 if (p[1] != 'd' || strchr(p + 2, '%')) 1225 return -EINVAL; 1226 1227 /* Use one page as a bit array of possible slots */ 1228 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1229 if (!inuse) 1230 return -ENOMEM; 1231 1232 for_each_netdev(net, d) { 1233 struct netdev_name_node *name_node; 1234 list_for_each_entry(name_node, &d->name_node->list, list) { 1235 if (!sscanf(name_node->name, name, &i)) 1236 continue; 1237 if (i < 0 || i >= max_netdevices) 1238 continue; 1239 1240 /* avoid cases where sscanf is not exact inverse of printf */ 1241 snprintf(buf, IFNAMSIZ, name, i); 1242 if (!strncmp(buf, name_node->name, IFNAMSIZ)) 1243 set_bit(i, inuse); 1244 } 1245 if (!sscanf(d->name, name, &i)) 1246 continue; 1247 if (i < 0 || i >= max_netdevices) 1248 continue; 1249 1250 /* avoid cases where sscanf is not exact inverse of printf */ 1251 snprintf(buf, IFNAMSIZ, name, i); 1252 if (!strncmp(buf, d->name, IFNAMSIZ)) 1253 set_bit(i, inuse); 1254 } 1255 1256 i = find_first_zero_bit(inuse, max_netdevices); 1257 free_page((unsigned long) inuse); 1258 } 1259 1260 snprintf(buf, IFNAMSIZ, name, i); 1261 if (!__dev_get_by_name(net, buf)) 1262 return i; 1263 1264 /* It is possible to run out of possible slots 1265 * when the name is long and there isn't enough space left 1266 * for the digits, or if all bits are used. 1267 */ 1268 return -ENFILE; 1269 } 1270 1271 static int dev_alloc_name_ns(struct net *net, 1272 struct net_device *dev, 1273 const char *name) 1274 { 1275 char buf[IFNAMSIZ]; 1276 int ret; 1277 1278 BUG_ON(!net); 1279 ret = __dev_alloc_name(net, name, buf); 1280 if (ret >= 0) 1281 strlcpy(dev->name, buf, IFNAMSIZ); 1282 return ret; 1283 } 1284 1285 /** 1286 * dev_alloc_name - allocate a name for a device 1287 * @dev: device 1288 * @name: name format string 1289 * 1290 * Passed a format string - eg "lt%d" it will try and find a suitable 1291 * id. It scans list of devices to build up a free map, then chooses 1292 * the first empty slot. The caller must hold the dev_base or rtnl lock 1293 * while allocating the name and adding the device in order to avoid 1294 * duplicates. 1295 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1296 * Returns the number of the unit assigned or a negative errno code. 1297 */ 1298 1299 int dev_alloc_name(struct net_device *dev, const char *name) 1300 { 1301 return dev_alloc_name_ns(dev_net(dev), dev, name); 1302 } 1303 EXPORT_SYMBOL(dev_alloc_name); 1304 1305 static int dev_get_valid_name(struct net *net, struct net_device *dev, 1306 const char *name) 1307 { 1308 BUG_ON(!net); 1309 1310 if (!dev_valid_name(name)) 1311 return -EINVAL; 1312 1313 if (strchr(name, '%')) 1314 return dev_alloc_name_ns(net, dev, name); 1315 else if (__dev_get_by_name(net, name)) 1316 return -EEXIST; 1317 else if (dev->name != name) 1318 strlcpy(dev->name, name, IFNAMSIZ); 1319 1320 return 0; 1321 } 1322 1323 /** 1324 * dev_change_name - change name of a device 1325 * @dev: device 1326 * @newname: name (or format string) must be at least IFNAMSIZ 1327 * 1328 * Change name of a device, can pass format strings "eth%d". 1329 * for wildcarding. 1330 */ 1331 int dev_change_name(struct net_device *dev, const char *newname) 1332 { 1333 unsigned char old_assign_type; 1334 char oldname[IFNAMSIZ]; 1335 int err = 0; 1336 int ret; 1337 struct net *net; 1338 1339 ASSERT_RTNL(); 1340 BUG_ON(!dev_net(dev)); 1341 1342 net = dev_net(dev); 1343 1344 /* Some auto-enslaved devices e.g. failover slaves are 1345 * special, as userspace might rename the device after 1346 * the interface had been brought up and running since 1347 * the point kernel initiated auto-enslavement. Allow 1348 * live name change even when these slave devices are 1349 * up and running. 1350 * 1351 * Typically, users of these auto-enslaving devices 1352 * don't actually care about slave name change, as 1353 * they are supposed to operate on master interface 1354 * directly. 1355 */ 1356 if (dev->flags & IFF_UP && 1357 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK))) 1358 return -EBUSY; 1359 1360 down_write(&devnet_rename_sem); 1361 1362 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1363 up_write(&devnet_rename_sem); 1364 return 0; 1365 } 1366 1367 memcpy(oldname, dev->name, IFNAMSIZ); 1368 1369 err = dev_get_valid_name(net, dev, newname); 1370 if (err < 0) { 1371 up_write(&devnet_rename_sem); 1372 return err; 1373 } 1374 1375 if (oldname[0] && !strchr(oldname, '%')) 1376 netdev_info(dev, "renamed from %s\n", oldname); 1377 1378 old_assign_type = dev->name_assign_type; 1379 dev->name_assign_type = NET_NAME_RENAMED; 1380 1381 rollback: 1382 ret = device_rename(&dev->dev, dev->name); 1383 if (ret) { 1384 memcpy(dev->name, oldname, IFNAMSIZ); 1385 dev->name_assign_type = old_assign_type; 1386 up_write(&devnet_rename_sem); 1387 return ret; 1388 } 1389 1390 up_write(&devnet_rename_sem); 1391 1392 netdev_adjacent_rename_links(dev, oldname); 1393 1394 write_lock_bh(&dev_base_lock); 1395 netdev_name_node_del(dev->name_node); 1396 write_unlock_bh(&dev_base_lock); 1397 1398 synchronize_rcu(); 1399 1400 write_lock_bh(&dev_base_lock); 1401 netdev_name_node_add(net, dev->name_node); 1402 write_unlock_bh(&dev_base_lock); 1403 1404 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1405 ret = notifier_to_errno(ret); 1406 1407 if (ret) { 1408 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1409 if (err >= 0) { 1410 err = ret; 1411 down_write(&devnet_rename_sem); 1412 memcpy(dev->name, oldname, IFNAMSIZ); 1413 memcpy(oldname, newname, IFNAMSIZ); 1414 dev->name_assign_type = old_assign_type; 1415 old_assign_type = NET_NAME_RENAMED; 1416 goto rollback; 1417 } else { 1418 pr_err("%s: name change rollback failed: %d\n", 1419 dev->name, ret); 1420 } 1421 } 1422 1423 return err; 1424 } 1425 1426 /** 1427 * dev_set_alias - change ifalias of a device 1428 * @dev: device 1429 * @alias: name up to IFALIASZ 1430 * @len: limit of bytes to copy from info 1431 * 1432 * Set ifalias for a device, 1433 */ 1434 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1435 { 1436 struct dev_ifalias *new_alias = NULL; 1437 1438 if (len >= IFALIASZ) 1439 return -EINVAL; 1440 1441 if (len) { 1442 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1443 if (!new_alias) 1444 return -ENOMEM; 1445 1446 memcpy(new_alias->ifalias, alias, len); 1447 new_alias->ifalias[len] = 0; 1448 } 1449 1450 mutex_lock(&ifalias_mutex); 1451 new_alias = rcu_replace_pointer(dev->ifalias, new_alias, 1452 mutex_is_locked(&ifalias_mutex)); 1453 mutex_unlock(&ifalias_mutex); 1454 1455 if (new_alias) 1456 kfree_rcu(new_alias, rcuhead); 1457 1458 return len; 1459 } 1460 EXPORT_SYMBOL(dev_set_alias); 1461 1462 /** 1463 * dev_get_alias - get ifalias of a device 1464 * @dev: device 1465 * @name: buffer to store name of ifalias 1466 * @len: size of buffer 1467 * 1468 * get ifalias for a device. Caller must make sure dev cannot go 1469 * away, e.g. rcu read lock or own a reference count to device. 1470 */ 1471 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1472 { 1473 const struct dev_ifalias *alias; 1474 int ret = 0; 1475 1476 rcu_read_lock(); 1477 alias = rcu_dereference(dev->ifalias); 1478 if (alias) 1479 ret = snprintf(name, len, "%s", alias->ifalias); 1480 rcu_read_unlock(); 1481 1482 return ret; 1483 } 1484 1485 /** 1486 * netdev_features_change - device changes features 1487 * @dev: device to cause notification 1488 * 1489 * Called to indicate a device has changed features. 1490 */ 1491 void netdev_features_change(struct net_device *dev) 1492 { 1493 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1494 } 1495 EXPORT_SYMBOL(netdev_features_change); 1496 1497 /** 1498 * netdev_state_change - device changes state 1499 * @dev: device to cause notification 1500 * 1501 * Called to indicate a device has changed state. This function calls 1502 * the notifier chains for netdev_chain and sends a NEWLINK message 1503 * to the routing socket. 1504 */ 1505 void netdev_state_change(struct net_device *dev) 1506 { 1507 if (dev->flags & IFF_UP) { 1508 struct netdev_notifier_change_info change_info = { 1509 .info.dev = dev, 1510 }; 1511 1512 call_netdevice_notifiers_info(NETDEV_CHANGE, 1513 &change_info.info); 1514 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1515 } 1516 } 1517 EXPORT_SYMBOL(netdev_state_change); 1518 1519 /** 1520 * __netdev_notify_peers - notify network peers about existence of @dev, 1521 * to be called when rtnl lock is already held. 1522 * @dev: network device 1523 * 1524 * Generate traffic such that interested network peers are aware of 1525 * @dev, such as by generating a gratuitous ARP. This may be used when 1526 * a device wants to inform the rest of the network about some sort of 1527 * reconfiguration such as a failover event or virtual machine 1528 * migration. 1529 */ 1530 void __netdev_notify_peers(struct net_device *dev) 1531 { 1532 ASSERT_RTNL(); 1533 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1534 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1535 } 1536 EXPORT_SYMBOL(__netdev_notify_peers); 1537 1538 /** 1539 * netdev_notify_peers - notify network peers about existence of @dev 1540 * @dev: network device 1541 * 1542 * Generate traffic such that interested network peers are aware of 1543 * @dev, such as by generating a gratuitous ARP. This may be used when 1544 * a device wants to inform the rest of the network about some sort of 1545 * reconfiguration such as a failover event or virtual machine 1546 * migration. 1547 */ 1548 void netdev_notify_peers(struct net_device *dev) 1549 { 1550 rtnl_lock(); 1551 __netdev_notify_peers(dev); 1552 rtnl_unlock(); 1553 } 1554 EXPORT_SYMBOL(netdev_notify_peers); 1555 1556 static int napi_threaded_poll(void *data); 1557 1558 static int napi_kthread_create(struct napi_struct *n) 1559 { 1560 int err = 0; 1561 1562 /* Create and wake up the kthread once to put it in 1563 * TASK_INTERRUPTIBLE mode to avoid the blocked task 1564 * warning and work with loadavg. 1565 */ 1566 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d", 1567 n->dev->name, n->napi_id); 1568 if (IS_ERR(n->thread)) { 1569 err = PTR_ERR(n->thread); 1570 pr_err("kthread_run failed with err %d\n", err); 1571 n->thread = NULL; 1572 } 1573 1574 return err; 1575 } 1576 1577 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1578 { 1579 const struct net_device_ops *ops = dev->netdev_ops; 1580 int ret; 1581 1582 ASSERT_RTNL(); 1583 1584 if (!netif_device_present(dev)) { 1585 /* may be detached because parent is runtime-suspended */ 1586 if (dev->dev.parent) 1587 pm_runtime_resume(dev->dev.parent); 1588 if (!netif_device_present(dev)) 1589 return -ENODEV; 1590 } 1591 1592 /* Block netpoll from trying to do any rx path servicing. 1593 * If we don't do this there is a chance ndo_poll_controller 1594 * or ndo_poll may be running while we open the device 1595 */ 1596 netpoll_poll_disable(dev); 1597 1598 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1599 ret = notifier_to_errno(ret); 1600 if (ret) 1601 return ret; 1602 1603 set_bit(__LINK_STATE_START, &dev->state); 1604 1605 if (ops->ndo_validate_addr) 1606 ret = ops->ndo_validate_addr(dev); 1607 1608 if (!ret && ops->ndo_open) 1609 ret = ops->ndo_open(dev); 1610 1611 netpoll_poll_enable(dev); 1612 1613 if (ret) 1614 clear_bit(__LINK_STATE_START, &dev->state); 1615 else { 1616 dev->flags |= IFF_UP; 1617 dev_set_rx_mode(dev); 1618 dev_activate(dev); 1619 add_device_randomness(dev->dev_addr, dev->addr_len); 1620 } 1621 1622 return ret; 1623 } 1624 1625 /** 1626 * dev_open - prepare an interface for use. 1627 * @dev: device to open 1628 * @extack: netlink extended ack 1629 * 1630 * Takes a device from down to up state. The device's private open 1631 * function is invoked and then the multicast lists are loaded. Finally 1632 * the device is moved into the up state and a %NETDEV_UP message is 1633 * sent to the netdev notifier chain. 1634 * 1635 * Calling this function on an active interface is a nop. On a failure 1636 * a negative errno code is returned. 1637 */ 1638 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1639 { 1640 int ret; 1641 1642 if (dev->flags & IFF_UP) 1643 return 0; 1644 1645 ret = __dev_open(dev, extack); 1646 if (ret < 0) 1647 return ret; 1648 1649 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1650 call_netdevice_notifiers(NETDEV_UP, dev); 1651 1652 return ret; 1653 } 1654 EXPORT_SYMBOL(dev_open); 1655 1656 static void __dev_close_many(struct list_head *head) 1657 { 1658 struct net_device *dev; 1659 1660 ASSERT_RTNL(); 1661 might_sleep(); 1662 1663 list_for_each_entry(dev, head, close_list) { 1664 /* Temporarily disable netpoll until the interface is down */ 1665 netpoll_poll_disable(dev); 1666 1667 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1668 1669 clear_bit(__LINK_STATE_START, &dev->state); 1670 1671 /* Synchronize to scheduled poll. We cannot touch poll list, it 1672 * can be even on different cpu. So just clear netif_running(). 1673 * 1674 * dev->stop() will invoke napi_disable() on all of it's 1675 * napi_struct instances on this device. 1676 */ 1677 smp_mb__after_atomic(); /* Commit netif_running(). */ 1678 } 1679 1680 dev_deactivate_many(head); 1681 1682 list_for_each_entry(dev, head, close_list) { 1683 const struct net_device_ops *ops = dev->netdev_ops; 1684 1685 /* 1686 * Call the device specific close. This cannot fail. 1687 * Only if device is UP 1688 * 1689 * We allow it to be called even after a DETACH hot-plug 1690 * event. 1691 */ 1692 if (ops->ndo_stop) 1693 ops->ndo_stop(dev); 1694 1695 dev->flags &= ~IFF_UP; 1696 netpoll_poll_enable(dev); 1697 } 1698 } 1699 1700 static void __dev_close(struct net_device *dev) 1701 { 1702 LIST_HEAD(single); 1703 1704 list_add(&dev->close_list, &single); 1705 __dev_close_many(&single); 1706 list_del(&single); 1707 } 1708 1709 void dev_close_many(struct list_head *head, bool unlink) 1710 { 1711 struct net_device *dev, *tmp; 1712 1713 /* Remove the devices that don't need to be closed */ 1714 list_for_each_entry_safe(dev, tmp, head, close_list) 1715 if (!(dev->flags & IFF_UP)) 1716 list_del_init(&dev->close_list); 1717 1718 __dev_close_many(head); 1719 1720 list_for_each_entry_safe(dev, tmp, head, close_list) { 1721 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1722 call_netdevice_notifiers(NETDEV_DOWN, dev); 1723 if (unlink) 1724 list_del_init(&dev->close_list); 1725 } 1726 } 1727 EXPORT_SYMBOL(dev_close_many); 1728 1729 /** 1730 * dev_close - shutdown an interface. 1731 * @dev: device to shutdown 1732 * 1733 * This function moves an active device into down state. A 1734 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1735 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1736 * chain. 1737 */ 1738 void dev_close(struct net_device *dev) 1739 { 1740 if (dev->flags & IFF_UP) { 1741 LIST_HEAD(single); 1742 1743 list_add(&dev->close_list, &single); 1744 dev_close_many(&single, true); 1745 list_del(&single); 1746 } 1747 } 1748 EXPORT_SYMBOL(dev_close); 1749 1750 1751 /** 1752 * dev_disable_lro - disable Large Receive Offload on a device 1753 * @dev: device 1754 * 1755 * Disable Large Receive Offload (LRO) on a net device. Must be 1756 * called under RTNL. This is needed if received packets may be 1757 * forwarded to another interface. 1758 */ 1759 void dev_disable_lro(struct net_device *dev) 1760 { 1761 struct net_device *lower_dev; 1762 struct list_head *iter; 1763 1764 dev->wanted_features &= ~NETIF_F_LRO; 1765 netdev_update_features(dev); 1766 1767 if (unlikely(dev->features & NETIF_F_LRO)) 1768 netdev_WARN(dev, "failed to disable LRO!\n"); 1769 1770 netdev_for_each_lower_dev(dev, lower_dev, iter) 1771 dev_disable_lro(lower_dev); 1772 } 1773 EXPORT_SYMBOL(dev_disable_lro); 1774 1775 /** 1776 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1777 * @dev: device 1778 * 1779 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1780 * called under RTNL. This is needed if Generic XDP is installed on 1781 * the device. 1782 */ 1783 static void dev_disable_gro_hw(struct net_device *dev) 1784 { 1785 dev->wanted_features &= ~NETIF_F_GRO_HW; 1786 netdev_update_features(dev); 1787 1788 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1789 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1790 } 1791 1792 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1793 { 1794 #define N(val) \ 1795 case NETDEV_##val: \ 1796 return "NETDEV_" __stringify(val); 1797 switch (cmd) { 1798 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1799 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1800 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1801 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER) 1802 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO) 1803 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO) 1804 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1805 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1806 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1807 N(PRE_CHANGEADDR) 1808 } 1809 #undef N 1810 return "UNKNOWN_NETDEV_EVENT"; 1811 } 1812 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1813 1814 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1815 struct net_device *dev) 1816 { 1817 struct netdev_notifier_info info = { 1818 .dev = dev, 1819 }; 1820 1821 return nb->notifier_call(nb, val, &info); 1822 } 1823 1824 static int call_netdevice_register_notifiers(struct notifier_block *nb, 1825 struct net_device *dev) 1826 { 1827 int err; 1828 1829 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1830 err = notifier_to_errno(err); 1831 if (err) 1832 return err; 1833 1834 if (!(dev->flags & IFF_UP)) 1835 return 0; 1836 1837 call_netdevice_notifier(nb, NETDEV_UP, dev); 1838 return 0; 1839 } 1840 1841 static void call_netdevice_unregister_notifiers(struct notifier_block *nb, 1842 struct net_device *dev) 1843 { 1844 if (dev->flags & IFF_UP) { 1845 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1846 dev); 1847 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1848 } 1849 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1850 } 1851 1852 static int call_netdevice_register_net_notifiers(struct notifier_block *nb, 1853 struct net *net) 1854 { 1855 struct net_device *dev; 1856 int err; 1857 1858 for_each_netdev(net, dev) { 1859 err = call_netdevice_register_notifiers(nb, dev); 1860 if (err) 1861 goto rollback; 1862 } 1863 return 0; 1864 1865 rollback: 1866 for_each_netdev_continue_reverse(net, dev) 1867 call_netdevice_unregister_notifiers(nb, dev); 1868 return err; 1869 } 1870 1871 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb, 1872 struct net *net) 1873 { 1874 struct net_device *dev; 1875 1876 for_each_netdev(net, dev) 1877 call_netdevice_unregister_notifiers(nb, dev); 1878 } 1879 1880 static int dev_boot_phase = 1; 1881 1882 /** 1883 * register_netdevice_notifier - register a network notifier block 1884 * @nb: notifier 1885 * 1886 * Register a notifier to be called when network device events occur. 1887 * The notifier passed is linked into the kernel structures and must 1888 * not be reused until it has been unregistered. A negative errno code 1889 * is returned on a failure. 1890 * 1891 * When registered all registration and up events are replayed 1892 * to the new notifier to allow device to have a race free 1893 * view of the network device list. 1894 */ 1895 1896 int register_netdevice_notifier(struct notifier_block *nb) 1897 { 1898 struct net *net; 1899 int err; 1900 1901 /* Close race with setup_net() and cleanup_net() */ 1902 down_write(&pernet_ops_rwsem); 1903 rtnl_lock(); 1904 err = raw_notifier_chain_register(&netdev_chain, nb); 1905 if (err) 1906 goto unlock; 1907 if (dev_boot_phase) 1908 goto unlock; 1909 for_each_net(net) { 1910 err = call_netdevice_register_net_notifiers(nb, net); 1911 if (err) 1912 goto rollback; 1913 } 1914 1915 unlock: 1916 rtnl_unlock(); 1917 up_write(&pernet_ops_rwsem); 1918 return err; 1919 1920 rollback: 1921 for_each_net_continue_reverse(net) 1922 call_netdevice_unregister_net_notifiers(nb, net); 1923 1924 raw_notifier_chain_unregister(&netdev_chain, nb); 1925 goto unlock; 1926 } 1927 EXPORT_SYMBOL(register_netdevice_notifier); 1928 1929 /** 1930 * unregister_netdevice_notifier - unregister a network notifier block 1931 * @nb: notifier 1932 * 1933 * Unregister a notifier previously registered by 1934 * register_netdevice_notifier(). The notifier is unlinked into the 1935 * kernel structures and may then be reused. A negative errno code 1936 * is returned on a failure. 1937 * 1938 * After unregistering unregister and down device events are synthesized 1939 * for all devices on the device list to the removed notifier to remove 1940 * the need for special case cleanup code. 1941 */ 1942 1943 int unregister_netdevice_notifier(struct notifier_block *nb) 1944 { 1945 struct net *net; 1946 int err; 1947 1948 /* Close race with setup_net() and cleanup_net() */ 1949 down_write(&pernet_ops_rwsem); 1950 rtnl_lock(); 1951 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1952 if (err) 1953 goto unlock; 1954 1955 for_each_net(net) 1956 call_netdevice_unregister_net_notifiers(nb, net); 1957 1958 unlock: 1959 rtnl_unlock(); 1960 up_write(&pernet_ops_rwsem); 1961 return err; 1962 } 1963 EXPORT_SYMBOL(unregister_netdevice_notifier); 1964 1965 static int __register_netdevice_notifier_net(struct net *net, 1966 struct notifier_block *nb, 1967 bool ignore_call_fail) 1968 { 1969 int err; 1970 1971 err = raw_notifier_chain_register(&net->netdev_chain, nb); 1972 if (err) 1973 return err; 1974 if (dev_boot_phase) 1975 return 0; 1976 1977 err = call_netdevice_register_net_notifiers(nb, net); 1978 if (err && !ignore_call_fail) 1979 goto chain_unregister; 1980 1981 return 0; 1982 1983 chain_unregister: 1984 raw_notifier_chain_unregister(&net->netdev_chain, nb); 1985 return err; 1986 } 1987 1988 static int __unregister_netdevice_notifier_net(struct net *net, 1989 struct notifier_block *nb) 1990 { 1991 int err; 1992 1993 err = raw_notifier_chain_unregister(&net->netdev_chain, nb); 1994 if (err) 1995 return err; 1996 1997 call_netdevice_unregister_net_notifiers(nb, net); 1998 return 0; 1999 } 2000 2001 /** 2002 * register_netdevice_notifier_net - register a per-netns network notifier block 2003 * @net: network namespace 2004 * @nb: notifier 2005 * 2006 * Register a notifier to be called when network device events occur. 2007 * The notifier passed is linked into the kernel structures and must 2008 * not be reused until it has been unregistered. A negative errno code 2009 * is returned on a failure. 2010 * 2011 * When registered all registration and up events are replayed 2012 * to the new notifier to allow device to have a race free 2013 * view of the network device list. 2014 */ 2015 2016 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb) 2017 { 2018 int err; 2019 2020 rtnl_lock(); 2021 err = __register_netdevice_notifier_net(net, nb, false); 2022 rtnl_unlock(); 2023 return err; 2024 } 2025 EXPORT_SYMBOL(register_netdevice_notifier_net); 2026 2027 /** 2028 * unregister_netdevice_notifier_net - unregister a per-netns 2029 * network notifier block 2030 * @net: network namespace 2031 * @nb: notifier 2032 * 2033 * Unregister a notifier previously registered by 2034 * register_netdevice_notifier(). The notifier is unlinked into the 2035 * kernel structures and may then be reused. A negative errno code 2036 * is returned on a failure. 2037 * 2038 * After unregistering unregister and down device events are synthesized 2039 * for all devices on the device list to the removed notifier to remove 2040 * the need for special case cleanup code. 2041 */ 2042 2043 int unregister_netdevice_notifier_net(struct net *net, 2044 struct notifier_block *nb) 2045 { 2046 int err; 2047 2048 rtnl_lock(); 2049 err = __unregister_netdevice_notifier_net(net, nb); 2050 rtnl_unlock(); 2051 return err; 2052 } 2053 EXPORT_SYMBOL(unregister_netdevice_notifier_net); 2054 2055 int register_netdevice_notifier_dev_net(struct net_device *dev, 2056 struct notifier_block *nb, 2057 struct netdev_net_notifier *nn) 2058 { 2059 int err; 2060 2061 rtnl_lock(); 2062 err = __register_netdevice_notifier_net(dev_net(dev), nb, false); 2063 if (!err) { 2064 nn->nb = nb; 2065 list_add(&nn->list, &dev->net_notifier_list); 2066 } 2067 rtnl_unlock(); 2068 return err; 2069 } 2070 EXPORT_SYMBOL(register_netdevice_notifier_dev_net); 2071 2072 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 2073 struct notifier_block *nb, 2074 struct netdev_net_notifier *nn) 2075 { 2076 int err; 2077 2078 rtnl_lock(); 2079 list_del(&nn->list); 2080 err = __unregister_netdevice_notifier_net(dev_net(dev), nb); 2081 rtnl_unlock(); 2082 return err; 2083 } 2084 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net); 2085 2086 static void move_netdevice_notifiers_dev_net(struct net_device *dev, 2087 struct net *net) 2088 { 2089 struct netdev_net_notifier *nn; 2090 2091 list_for_each_entry(nn, &dev->net_notifier_list, list) { 2092 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb); 2093 __register_netdevice_notifier_net(net, nn->nb, true); 2094 } 2095 } 2096 2097 /** 2098 * call_netdevice_notifiers_info - call all network notifier blocks 2099 * @val: value passed unmodified to notifier function 2100 * @info: notifier information data 2101 * 2102 * Call all network notifier blocks. Parameters and return value 2103 * are as for raw_notifier_call_chain(). 2104 */ 2105 2106 static int call_netdevice_notifiers_info(unsigned long val, 2107 struct netdev_notifier_info *info) 2108 { 2109 struct net *net = dev_net(info->dev); 2110 int ret; 2111 2112 ASSERT_RTNL(); 2113 2114 /* Run per-netns notifier block chain first, then run the global one. 2115 * Hopefully, one day, the global one is going to be removed after 2116 * all notifier block registrators get converted to be per-netns. 2117 */ 2118 ret = raw_notifier_call_chain(&net->netdev_chain, val, info); 2119 if (ret & NOTIFY_STOP_MASK) 2120 return ret; 2121 return raw_notifier_call_chain(&netdev_chain, val, info); 2122 } 2123 2124 static int call_netdevice_notifiers_extack(unsigned long val, 2125 struct net_device *dev, 2126 struct netlink_ext_ack *extack) 2127 { 2128 struct netdev_notifier_info info = { 2129 .dev = dev, 2130 .extack = extack, 2131 }; 2132 2133 return call_netdevice_notifiers_info(val, &info); 2134 } 2135 2136 /** 2137 * call_netdevice_notifiers - call all network notifier blocks 2138 * @val: value passed unmodified to notifier function 2139 * @dev: net_device pointer passed unmodified to notifier function 2140 * 2141 * Call all network notifier blocks. Parameters and return value 2142 * are as for raw_notifier_call_chain(). 2143 */ 2144 2145 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 2146 { 2147 return call_netdevice_notifiers_extack(val, dev, NULL); 2148 } 2149 EXPORT_SYMBOL(call_netdevice_notifiers); 2150 2151 /** 2152 * call_netdevice_notifiers_mtu - call all network notifier blocks 2153 * @val: value passed unmodified to notifier function 2154 * @dev: net_device pointer passed unmodified to notifier function 2155 * @arg: additional u32 argument passed to the notifier function 2156 * 2157 * Call all network notifier blocks. Parameters and return value 2158 * are as for raw_notifier_call_chain(). 2159 */ 2160 static int call_netdevice_notifiers_mtu(unsigned long val, 2161 struct net_device *dev, u32 arg) 2162 { 2163 struct netdev_notifier_info_ext info = { 2164 .info.dev = dev, 2165 .ext.mtu = arg, 2166 }; 2167 2168 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 2169 2170 return call_netdevice_notifiers_info(val, &info.info); 2171 } 2172 2173 #ifdef CONFIG_NET_INGRESS 2174 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 2175 2176 void net_inc_ingress_queue(void) 2177 { 2178 static_branch_inc(&ingress_needed_key); 2179 } 2180 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 2181 2182 void net_dec_ingress_queue(void) 2183 { 2184 static_branch_dec(&ingress_needed_key); 2185 } 2186 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 2187 #endif 2188 2189 #ifdef CONFIG_NET_EGRESS 2190 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 2191 2192 void net_inc_egress_queue(void) 2193 { 2194 static_branch_inc(&egress_needed_key); 2195 } 2196 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 2197 2198 void net_dec_egress_queue(void) 2199 { 2200 static_branch_dec(&egress_needed_key); 2201 } 2202 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 2203 #endif 2204 2205 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 2206 #ifdef CONFIG_JUMP_LABEL 2207 static atomic_t netstamp_needed_deferred; 2208 static atomic_t netstamp_wanted; 2209 static void netstamp_clear(struct work_struct *work) 2210 { 2211 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 2212 int wanted; 2213 2214 wanted = atomic_add_return(deferred, &netstamp_wanted); 2215 if (wanted > 0) 2216 static_branch_enable(&netstamp_needed_key); 2217 else 2218 static_branch_disable(&netstamp_needed_key); 2219 } 2220 static DECLARE_WORK(netstamp_work, netstamp_clear); 2221 #endif 2222 2223 void net_enable_timestamp(void) 2224 { 2225 #ifdef CONFIG_JUMP_LABEL 2226 int wanted; 2227 2228 while (1) { 2229 wanted = atomic_read(&netstamp_wanted); 2230 if (wanted <= 0) 2231 break; 2232 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 2233 return; 2234 } 2235 atomic_inc(&netstamp_needed_deferred); 2236 schedule_work(&netstamp_work); 2237 #else 2238 static_branch_inc(&netstamp_needed_key); 2239 #endif 2240 } 2241 EXPORT_SYMBOL(net_enable_timestamp); 2242 2243 void net_disable_timestamp(void) 2244 { 2245 #ifdef CONFIG_JUMP_LABEL 2246 int wanted; 2247 2248 while (1) { 2249 wanted = atomic_read(&netstamp_wanted); 2250 if (wanted <= 1) 2251 break; 2252 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 2253 return; 2254 } 2255 atomic_dec(&netstamp_needed_deferred); 2256 schedule_work(&netstamp_work); 2257 #else 2258 static_branch_dec(&netstamp_needed_key); 2259 #endif 2260 } 2261 EXPORT_SYMBOL(net_disable_timestamp); 2262 2263 static inline void net_timestamp_set(struct sk_buff *skb) 2264 { 2265 skb->tstamp = 0; 2266 if (static_branch_unlikely(&netstamp_needed_key)) 2267 __net_timestamp(skb); 2268 } 2269 2270 #define net_timestamp_check(COND, SKB) \ 2271 if (static_branch_unlikely(&netstamp_needed_key)) { \ 2272 if ((COND) && !(SKB)->tstamp) \ 2273 __net_timestamp(SKB); \ 2274 } \ 2275 2276 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 2277 { 2278 return __is_skb_forwardable(dev, skb, true); 2279 } 2280 EXPORT_SYMBOL_GPL(is_skb_forwardable); 2281 2282 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb, 2283 bool check_mtu) 2284 { 2285 int ret = ____dev_forward_skb(dev, skb, check_mtu); 2286 2287 if (likely(!ret)) { 2288 skb->protocol = eth_type_trans(skb, dev); 2289 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 2290 } 2291 2292 return ret; 2293 } 2294 2295 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2296 { 2297 return __dev_forward_skb2(dev, skb, true); 2298 } 2299 EXPORT_SYMBOL_GPL(__dev_forward_skb); 2300 2301 /** 2302 * dev_forward_skb - loopback an skb to another netif 2303 * 2304 * @dev: destination network device 2305 * @skb: buffer to forward 2306 * 2307 * return values: 2308 * NET_RX_SUCCESS (no congestion) 2309 * NET_RX_DROP (packet was dropped, but freed) 2310 * 2311 * dev_forward_skb can be used for injecting an skb from the 2312 * start_xmit function of one device into the receive queue 2313 * of another device. 2314 * 2315 * The receiving device may be in another namespace, so 2316 * we have to clear all information in the skb that could 2317 * impact namespace isolation. 2318 */ 2319 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2320 { 2321 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 2322 } 2323 EXPORT_SYMBOL_GPL(dev_forward_skb); 2324 2325 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb) 2326 { 2327 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb); 2328 } 2329 2330 static inline int deliver_skb(struct sk_buff *skb, 2331 struct packet_type *pt_prev, 2332 struct net_device *orig_dev) 2333 { 2334 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 2335 return -ENOMEM; 2336 refcount_inc(&skb->users); 2337 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2338 } 2339 2340 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 2341 struct packet_type **pt, 2342 struct net_device *orig_dev, 2343 __be16 type, 2344 struct list_head *ptype_list) 2345 { 2346 struct packet_type *ptype, *pt_prev = *pt; 2347 2348 list_for_each_entry_rcu(ptype, ptype_list, list) { 2349 if (ptype->type != type) 2350 continue; 2351 if (pt_prev) 2352 deliver_skb(skb, pt_prev, orig_dev); 2353 pt_prev = ptype; 2354 } 2355 *pt = pt_prev; 2356 } 2357 2358 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 2359 { 2360 if (!ptype->af_packet_priv || !skb->sk) 2361 return false; 2362 2363 if (ptype->id_match) 2364 return ptype->id_match(ptype, skb->sk); 2365 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 2366 return true; 2367 2368 return false; 2369 } 2370 2371 /** 2372 * dev_nit_active - return true if any network interface taps are in use 2373 * 2374 * @dev: network device to check for the presence of taps 2375 */ 2376 bool dev_nit_active(struct net_device *dev) 2377 { 2378 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all); 2379 } 2380 EXPORT_SYMBOL_GPL(dev_nit_active); 2381 2382 /* 2383 * Support routine. Sends outgoing frames to any network 2384 * taps currently in use. 2385 */ 2386 2387 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 2388 { 2389 struct packet_type *ptype; 2390 struct sk_buff *skb2 = NULL; 2391 struct packet_type *pt_prev = NULL; 2392 struct list_head *ptype_list = &ptype_all; 2393 2394 rcu_read_lock(); 2395 again: 2396 list_for_each_entry_rcu(ptype, ptype_list, list) { 2397 if (ptype->ignore_outgoing) 2398 continue; 2399 2400 /* Never send packets back to the socket 2401 * they originated from - MvS (miquels@drinkel.ow.org) 2402 */ 2403 if (skb_loop_sk(ptype, skb)) 2404 continue; 2405 2406 if (pt_prev) { 2407 deliver_skb(skb2, pt_prev, skb->dev); 2408 pt_prev = ptype; 2409 continue; 2410 } 2411 2412 /* need to clone skb, done only once */ 2413 skb2 = skb_clone(skb, GFP_ATOMIC); 2414 if (!skb2) 2415 goto out_unlock; 2416 2417 net_timestamp_set(skb2); 2418 2419 /* skb->nh should be correctly 2420 * set by sender, so that the second statement is 2421 * just protection against buggy protocols. 2422 */ 2423 skb_reset_mac_header(skb2); 2424 2425 if (skb_network_header(skb2) < skb2->data || 2426 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2427 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2428 ntohs(skb2->protocol), 2429 dev->name); 2430 skb_reset_network_header(skb2); 2431 } 2432 2433 skb2->transport_header = skb2->network_header; 2434 skb2->pkt_type = PACKET_OUTGOING; 2435 pt_prev = ptype; 2436 } 2437 2438 if (ptype_list == &ptype_all) { 2439 ptype_list = &dev->ptype_all; 2440 goto again; 2441 } 2442 out_unlock: 2443 if (pt_prev) { 2444 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2445 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2446 else 2447 kfree_skb(skb2); 2448 } 2449 rcu_read_unlock(); 2450 } 2451 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2452 2453 /** 2454 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2455 * @dev: Network device 2456 * @txq: number of queues available 2457 * 2458 * If real_num_tx_queues is changed the tc mappings may no longer be 2459 * valid. To resolve this verify the tc mapping remains valid and if 2460 * not NULL the mapping. With no priorities mapping to this 2461 * offset/count pair it will no longer be used. In the worst case TC0 2462 * is invalid nothing can be done so disable priority mappings. If is 2463 * expected that drivers will fix this mapping if they can before 2464 * calling netif_set_real_num_tx_queues. 2465 */ 2466 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2467 { 2468 int i; 2469 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2470 2471 /* If TC0 is invalidated disable TC mapping */ 2472 if (tc->offset + tc->count > txq) { 2473 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2474 dev->num_tc = 0; 2475 return; 2476 } 2477 2478 /* Invalidated prio to tc mappings set to TC0 */ 2479 for (i = 1; i < TC_BITMASK + 1; i++) { 2480 int q = netdev_get_prio_tc_map(dev, i); 2481 2482 tc = &dev->tc_to_txq[q]; 2483 if (tc->offset + tc->count > txq) { 2484 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2485 i, q); 2486 netdev_set_prio_tc_map(dev, i, 0); 2487 } 2488 } 2489 } 2490 2491 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2492 { 2493 if (dev->num_tc) { 2494 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2495 int i; 2496 2497 /* walk through the TCs and see if it falls into any of them */ 2498 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2499 if ((txq - tc->offset) < tc->count) 2500 return i; 2501 } 2502 2503 /* didn't find it, just return -1 to indicate no match */ 2504 return -1; 2505 } 2506 2507 return 0; 2508 } 2509 EXPORT_SYMBOL(netdev_txq_to_tc); 2510 2511 #ifdef CONFIG_XPS 2512 static struct static_key xps_needed __read_mostly; 2513 static struct static_key xps_rxqs_needed __read_mostly; 2514 static DEFINE_MUTEX(xps_map_mutex); 2515 #define xmap_dereference(P) \ 2516 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2517 2518 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2519 struct xps_dev_maps *old_maps, int tci, u16 index) 2520 { 2521 struct xps_map *map = NULL; 2522 int pos; 2523 2524 if (dev_maps) 2525 map = xmap_dereference(dev_maps->attr_map[tci]); 2526 if (!map) 2527 return false; 2528 2529 for (pos = map->len; pos--;) { 2530 if (map->queues[pos] != index) 2531 continue; 2532 2533 if (map->len > 1) { 2534 map->queues[pos] = map->queues[--map->len]; 2535 break; 2536 } 2537 2538 if (old_maps) 2539 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL); 2540 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2541 kfree_rcu(map, rcu); 2542 return false; 2543 } 2544 2545 return true; 2546 } 2547 2548 static bool remove_xps_queue_cpu(struct net_device *dev, 2549 struct xps_dev_maps *dev_maps, 2550 int cpu, u16 offset, u16 count) 2551 { 2552 int num_tc = dev_maps->num_tc; 2553 bool active = false; 2554 int tci; 2555 2556 for (tci = cpu * num_tc; num_tc--; tci++) { 2557 int i, j; 2558 2559 for (i = count, j = offset; i--; j++) { 2560 if (!remove_xps_queue(dev_maps, NULL, tci, j)) 2561 break; 2562 } 2563 2564 active |= i < 0; 2565 } 2566 2567 return active; 2568 } 2569 2570 static void reset_xps_maps(struct net_device *dev, 2571 struct xps_dev_maps *dev_maps, 2572 enum xps_map_type type) 2573 { 2574 static_key_slow_dec_cpuslocked(&xps_needed); 2575 if (type == XPS_RXQS) 2576 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2577 2578 RCU_INIT_POINTER(dev->xps_maps[type], NULL); 2579 2580 kfree_rcu(dev_maps, rcu); 2581 } 2582 2583 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type, 2584 u16 offset, u16 count) 2585 { 2586 struct xps_dev_maps *dev_maps; 2587 bool active = false; 2588 int i, j; 2589 2590 dev_maps = xmap_dereference(dev->xps_maps[type]); 2591 if (!dev_maps) 2592 return; 2593 2594 for (j = 0; j < dev_maps->nr_ids; j++) 2595 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count); 2596 if (!active) 2597 reset_xps_maps(dev, dev_maps, type); 2598 2599 if (type == XPS_CPUS) { 2600 for (i = offset + (count - 1); count--; i--) 2601 netdev_queue_numa_node_write( 2602 netdev_get_tx_queue(dev, i), NUMA_NO_NODE); 2603 } 2604 } 2605 2606 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2607 u16 count) 2608 { 2609 if (!static_key_false(&xps_needed)) 2610 return; 2611 2612 cpus_read_lock(); 2613 mutex_lock(&xps_map_mutex); 2614 2615 if (static_key_false(&xps_rxqs_needed)) 2616 clean_xps_maps(dev, XPS_RXQS, offset, count); 2617 2618 clean_xps_maps(dev, XPS_CPUS, offset, count); 2619 2620 mutex_unlock(&xps_map_mutex); 2621 cpus_read_unlock(); 2622 } 2623 2624 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2625 { 2626 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2627 } 2628 2629 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2630 u16 index, bool is_rxqs_map) 2631 { 2632 struct xps_map *new_map; 2633 int alloc_len = XPS_MIN_MAP_ALLOC; 2634 int i, pos; 2635 2636 for (pos = 0; map && pos < map->len; pos++) { 2637 if (map->queues[pos] != index) 2638 continue; 2639 return map; 2640 } 2641 2642 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2643 if (map) { 2644 if (pos < map->alloc_len) 2645 return map; 2646 2647 alloc_len = map->alloc_len * 2; 2648 } 2649 2650 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2651 * map 2652 */ 2653 if (is_rxqs_map) 2654 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2655 else 2656 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2657 cpu_to_node(attr_index)); 2658 if (!new_map) 2659 return NULL; 2660 2661 for (i = 0; i < pos; i++) 2662 new_map->queues[i] = map->queues[i]; 2663 new_map->alloc_len = alloc_len; 2664 new_map->len = pos; 2665 2666 return new_map; 2667 } 2668 2669 /* Copy xps maps at a given index */ 2670 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps, 2671 struct xps_dev_maps *new_dev_maps, int index, 2672 int tc, bool skip_tc) 2673 { 2674 int i, tci = index * dev_maps->num_tc; 2675 struct xps_map *map; 2676 2677 /* copy maps belonging to foreign traffic classes */ 2678 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2679 if (i == tc && skip_tc) 2680 continue; 2681 2682 /* fill in the new device map from the old device map */ 2683 map = xmap_dereference(dev_maps->attr_map[tci]); 2684 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2685 } 2686 } 2687 2688 /* Must be called under cpus_read_lock */ 2689 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2690 u16 index, enum xps_map_type type) 2691 { 2692 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL; 2693 const unsigned long *online_mask = NULL; 2694 bool active = false, copy = false; 2695 int i, j, tci, numa_node_id = -2; 2696 int maps_sz, num_tc = 1, tc = 0; 2697 struct xps_map *map, *new_map; 2698 unsigned int nr_ids; 2699 2700 if (dev->num_tc) { 2701 /* Do not allow XPS on subordinate device directly */ 2702 num_tc = dev->num_tc; 2703 if (num_tc < 0) 2704 return -EINVAL; 2705 2706 /* If queue belongs to subordinate dev use its map */ 2707 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2708 2709 tc = netdev_txq_to_tc(dev, index); 2710 if (tc < 0) 2711 return -EINVAL; 2712 } 2713 2714 mutex_lock(&xps_map_mutex); 2715 2716 dev_maps = xmap_dereference(dev->xps_maps[type]); 2717 if (type == XPS_RXQS) { 2718 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2719 nr_ids = dev->num_rx_queues; 2720 } else { 2721 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2722 if (num_possible_cpus() > 1) 2723 online_mask = cpumask_bits(cpu_online_mask); 2724 nr_ids = nr_cpu_ids; 2725 } 2726 2727 if (maps_sz < L1_CACHE_BYTES) 2728 maps_sz = L1_CACHE_BYTES; 2729 2730 /* The old dev_maps could be larger or smaller than the one we're 2731 * setting up now, as dev->num_tc or nr_ids could have been updated in 2732 * between. We could try to be smart, but let's be safe instead and only 2733 * copy foreign traffic classes if the two map sizes match. 2734 */ 2735 if (dev_maps && 2736 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids) 2737 copy = true; 2738 2739 /* allocate memory for queue storage */ 2740 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2741 j < nr_ids;) { 2742 if (!new_dev_maps) { 2743 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2744 if (!new_dev_maps) { 2745 mutex_unlock(&xps_map_mutex); 2746 return -ENOMEM; 2747 } 2748 2749 new_dev_maps->nr_ids = nr_ids; 2750 new_dev_maps->num_tc = num_tc; 2751 } 2752 2753 tci = j * num_tc + tc; 2754 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL; 2755 2756 map = expand_xps_map(map, j, index, type == XPS_RXQS); 2757 if (!map) 2758 goto error; 2759 2760 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2761 } 2762 2763 if (!new_dev_maps) 2764 goto out_no_new_maps; 2765 2766 if (!dev_maps) { 2767 /* Increment static keys at most once per type */ 2768 static_key_slow_inc_cpuslocked(&xps_needed); 2769 if (type == XPS_RXQS) 2770 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2771 } 2772 2773 for (j = 0; j < nr_ids; j++) { 2774 bool skip_tc = false; 2775 2776 tci = j * num_tc + tc; 2777 if (netif_attr_test_mask(j, mask, nr_ids) && 2778 netif_attr_test_online(j, online_mask, nr_ids)) { 2779 /* add tx-queue to CPU/rx-queue maps */ 2780 int pos = 0; 2781 2782 skip_tc = true; 2783 2784 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2785 while ((pos < map->len) && (map->queues[pos] != index)) 2786 pos++; 2787 2788 if (pos == map->len) 2789 map->queues[map->len++] = index; 2790 #ifdef CONFIG_NUMA 2791 if (type == XPS_CPUS) { 2792 if (numa_node_id == -2) 2793 numa_node_id = cpu_to_node(j); 2794 else if (numa_node_id != cpu_to_node(j)) 2795 numa_node_id = -1; 2796 } 2797 #endif 2798 } 2799 2800 if (copy) 2801 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc, 2802 skip_tc); 2803 } 2804 2805 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps); 2806 2807 /* Cleanup old maps */ 2808 if (!dev_maps) 2809 goto out_no_old_maps; 2810 2811 for (j = 0; j < dev_maps->nr_ids; j++) { 2812 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) { 2813 map = xmap_dereference(dev_maps->attr_map[tci]); 2814 if (!map) 2815 continue; 2816 2817 if (copy) { 2818 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2819 if (map == new_map) 2820 continue; 2821 } 2822 2823 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2824 kfree_rcu(map, rcu); 2825 } 2826 } 2827 2828 old_dev_maps = dev_maps; 2829 2830 out_no_old_maps: 2831 dev_maps = new_dev_maps; 2832 active = true; 2833 2834 out_no_new_maps: 2835 if (type == XPS_CPUS) 2836 /* update Tx queue numa node */ 2837 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2838 (numa_node_id >= 0) ? 2839 numa_node_id : NUMA_NO_NODE); 2840 2841 if (!dev_maps) 2842 goto out_no_maps; 2843 2844 /* removes tx-queue from unused CPUs/rx-queues */ 2845 for (j = 0; j < dev_maps->nr_ids; j++) { 2846 tci = j * dev_maps->num_tc; 2847 2848 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2849 if (i == tc && 2850 netif_attr_test_mask(j, mask, dev_maps->nr_ids) && 2851 netif_attr_test_online(j, online_mask, dev_maps->nr_ids)) 2852 continue; 2853 2854 active |= remove_xps_queue(dev_maps, 2855 copy ? old_dev_maps : NULL, 2856 tci, index); 2857 } 2858 } 2859 2860 if (old_dev_maps) 2861 kfree_rcu(old_dev_maps, rcu); 2862 2863 /* free map if not active */ 2864 if (!active) 2865 reset_xps_maps(dev, dev_maps, type); 2866 2867 out_no_maps: 2868 mutex_unlock(&xps_map_mutex); 2869 2870 return 0; 2871 error: 2872 /* remove any maps that we added */ 2873 for (j = 0; j < nr_ids; j++) { 2874 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2875 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2876 map = copy ? 2877 xmap_dereference(dev_maps->attr_map[tci]) : 2878 NULL; 2879 if (new_map && new_map != map) 2880 kfree(new_map); 2881 } 2882 } 2883 2884 mutex_unlock(&xps_map_mutex); 2885 2886 kfree(new_dev_maps); 2887 return -ENOMEM; 2888 } 2889 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 2890 2891 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2892 u16 index) 2893 { 2894 int ret; 2895 2896 cpus_read_lock(); 2897 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS); 2898 cpus_read_unlock(); 2899 2900 return ret; 2901 } 2902 EXPORT_SYMBOL(netif_set_xps_queue); 2903 2904 #endif 2905 static void netdev_unbind_all_sb_channels(struct net_device *dev) 2906 { 2907 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2908 2909 /* Unbind any subordinate channels */ 2910 while (txq-- != &dev->_tx[0]) { 2911 if (txq->sb_dev) 2912 netdev_unbind_sb_channel(dev, txq->sb_dev); 2913 } 2914 } 2915 2916 void netdev_reset_tc(struct net_device *dev) 2917 { 2918 #ifdef CONFIG_XPS 2919 netif_reset_xps_queues_gt(dev, 0); 2920 #endif 2921 netdev_unbind_all_sb_channels(dev); 2922 2923 /* Reset TC configuration of device */ 2924 dev->num_tc = 0; 2925 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2926 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2927 } 2928 EXPORT_SYMBOL(netdev_reset_tc); 2929 2930 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2931 { 2932 if (tc >= dev->num_tc) 2933 return -EINVAL; 2934 2935 #ifdef CONFIG_XPS 2936 netif_reset_xps_queues(dev, offset, count); 2937 #endif 2938 dev->tc_to_txq[tc].count = count; 2939 dev->tc_to_txq[tc].offset = offset; 2940 return 0; 2941 } 2942 EXPORT_SYMBOL(netdev_set_tc_queue); 2943 2944 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2945 { 2946 if (num_tc > TC_MAX_QUEUE) 2947 return -EINVAL; 2948 2949 #ifdef CONFIG_XPS 2950 netif_reset_xps_queues_gt(dev, 0); 2951 #endif 2952 netdev_unbind_all_sb_channels(dev); 2953 2954 dev->num_tc = num_tc; 2955 return 0; 2956 } 2957 EXPORT_SYMBOL(netdev_set_num_tc); 2958 2959 void netdev_unbind_sb_channel(struct net_device *dev, 2960 struct net_device *sb_dev) 2961 { 2962 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2963 2964 #ifdef CONFIG_XPS 2965 netif_reset_xps_queues_gt(sb_dev, 0); 2966 #endif 2967 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 2968 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 2969 2970 while (txq-- != &dev->_tx[0]) { 2971 if (txq->sb_dev == sb_dev) 2972 txq->sb_dev = NULL; 2973 } 2974 } 2975 EXPORT_SYMBOL(netdev_unbind_sb_channel); 2976 2977 int netdev_bind_sb_channel_queue(struct net_device *dev, 2978 struct net_device *sb_dev, 2979 u8 tc, u16 count, u16 offset) 2980 { 2981 /* Make certain the sb_dev and dev are already configured */ 2982 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 2983 return -EINVAL; 2984 2985 /* We cannot hand out queues we don't have */ 2986 if ((offset + count) > dev->real_num_tx_queues) 2987 return -EINVAL; 2988 2989 /* Record the mapping */ 2990 sb_dev->tc_to_txq[tc].count = count; 2991 sb_dev->tc_to_txq[tc].offset = offset; 2992 2993 /* Provide a way for Tx queue to find the tc_to_txq map or 2994 * XPS map for itself. 2995 */ 2996 while (count--) 2997 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 2998 2999 return 0; 3000 } 3001 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 3002 3003 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 3004 { 3005 /* Do not use a multiqueue device to represent a subordinate channel */ 3006 if (netif_is_multiqueue(dev)) 3007 return -ENODEV; 3008 3009 /* We allow channels 1 - 32767 to be used for subordinate channels. 3010 * Channel 0 is meant to be "native" mode and used only to represent 3011 * the main root device. We allow writing 0 to reset the device back 3012 * to normal mode after being used as a subordinate channel. 3013 */ 3014 if (channel > S16_MAX) 3015 return -EINVAL; 3016 3017 dev->num_tc = -channel; 3018 3019 return 0; 3020 } 3021 EXPORT_SYMBOL(netdev_set_sb_channel); 3022 3023 /* 3024 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 3025 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 3026 */ 3027 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 3028 { 3029 bool disabling; 3030 int rc; 3031 3032 disabling = txq < dev->real_num_tx_queues; 3033 3034 if (txq < 1 || txq > dev->num_tx_queues) 3035 return -EINVAL; 3036 3037 if (dev->reg_state == NETREG_REGISTERED || 3038 dev->reg_state == NETREG_UNREGISTERING) { 3039 ASSERT_RTNL(); 3040 3041 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 3042 txq); 3043 if (rc) 3044 return rc; 3045 3046 if (dev->num_tc) 3047 netif_setup_tc(dev, txq); 3048 3049 dev->real_num_tx_queues = txq; 3050 3051 if (disabling) { 3052 synchronize_net(); 3053 qdisc_reset_all_tx_gt(dev, txq); 3054 #ifdef CONFIG_XPS 3055 netif_reset_xps_queues_gt(dev, txq); 3056 #endif 3057 } 3058 } else { 3059 dev->real_num_tx_queues = txq; 3060 } 3061 3062 return 0; 3063 } 3064 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 3065 3066 #ifdef CONFIG_SYSFS 3067 /** 3068 * netif_set_real_num_rx_queues - set actual number of RX queues used 3069 * @dev: Network device 3070 * @rxq: Actual number of RX queues 3071 * 3072 * This must be called either with the rtnl_lock held or before 3073 * registration of the net device. Returns 0 on success, or a 3074 * negative error code. If called before registration, it always 3075 * succeeds. 3076 */ 3077 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 3078 { 3079 int rc; 3080 3081 if (rxq < 1 || rxq > dev->num_rx_queues) 3082 return -EINVAL; 3083 3084 if (dev->reg_state == NETREG_REGISTERED) { 3085 ASSERT_RTNL(); 3086 3087 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 3088 rxq); 3089 if (rc) 3090 return rc; 3091 } 3092 3093 dev->real_num_rx_queues = rxq; 3094 return 0; 3095 } 3096 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 3097 #endif 3098 3099 /** 3100 * netif_get_num_default_rss_queues - default number of RSS queues 3101 * 3102 * This routine should set an upper limit on the number of RSS queues 3103 * used by default by multiqueue devices. 3104 */ 3105 int netif_get_num_default_rss_queues(void) 3106 { 3107 return is_kdump_kernel() ? 3108 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 3109 } 3110 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 3111 3112 static void __netif_reschedule(struct Qdisc *q) 3113 { 3114 struct softnet_data *sd; 3115 unsigned long flags; 3116 3117 local_irq_save(flags); 3118 sd = this_cpu_ptr(&softnet_data); 3119 q->next_sched = NULL; 3120 *sd->output_queue_tailp = q; 3121 sd->output_queue_tailp = &q->next_sched; 3122 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3123 local_irq_restore(flags); 3124 } 3125 3126 void __netif_schedule(struct Qdisc *q) 3127 { 3128 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 3129 __netif_reschedule(q); 3130 } 3131 EXPORT_SYMBOL(__netif_schedule); 3132 3133 struct dev_kfree_skb_cb { 3134 enum skb_free_reason reason; 3135 }; 3136 3137 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 3138 { 3139 return (struct dev_kfree_skb_cb *)skb->cb; 3140 } 3141 3142 void netif_schedule_queue(struct netdev_queue *txq) 3143 { 3144 rcu_read_lock(); 3145 if (!netif_xmit_stopped(txq)) { 3146 struct Qdisc *q = rcu_dereference(txq->qdisc); 3147 3148 __netif_schedule(q); 3149 } 3150 rcu_read_unlock(); 3151 } 3152 EXPORT_SYMBOL(netif_schedule_queue); 3153 3154 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 3155 { 3156 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 3157 struct Qdisc *q; 3158 3159 rcu_read_lock(); 3160 q = rcu_dereference(dev_queue->qdisc); 3161 __netif_schedule(q); 3162 rcu_read_unlock(); 3163 } 3164 } 3165 EXPORT_SYMBOL(netif_tx_wake_queue); 3166 3167 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 3168 { 3169 unsigned long flags; 3170 3171 if (unlikely(!skb)) 3172 return; 3173 3174 if (likely(refcount_read(&skb->users) == 1)) { 3175 smp_rmb(); 3176 refcount_set(&skb->users, 0); 3177 } else if (likely(!refcount_dec_and_test(&skb->users))) { 3178 return; 3179 } 3180 get_kfree_skb_cb(skb)->reason = reason; 3181 local_irq_save(flags); 3182 skb->next = __this_cpu_read(softnet_data.completion_queue); 3183 __this_cpu_write(softnet_data.completion_queue, skb); 3184 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3185 local_irq_restore(flags); 3186 } 3187 EXPORT_SYMBOL(__dev_kfree_skb_irq); 3188 3189 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 3190 { 3191 if (in_irq() || irqs_disabled()) 3192 __dev_kfree_skb_irq(skb, reason); 3193 else 3194 dev_kfree_skb(skb); 3195 } 3196 EXPORT_SYMBOL(__dev_kfree_skb_any); 3197 3198 3199 /** 3200 * netif_device_detach - mark device as removed 3201 * @dev: network device 3202 * 3203 * Mark device as removed from system and therefore no longer available. 3204 */ 3205 void netif_device_detach(struct net_device *dev) 3206 { 3207 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 3208 netif_running(dev)) { 3209 netif_tx_stop_all_queues(dev); 3210 } 3211 } 3212 EXPORT_SYMBOL(netif_device_detach); 3213 3214 /** 3215 * netif_device_attach - mark device as attached 3216 * @dev: network device 3217 * 3218 * Mark device as attached from system and restart if needed. 3219 */ 3220 void netif_device_attach(struct net_device *dev) 3221 { 3222 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 3223 netif_running(dev)) { 3224 netif_tx_wake_all_queues(dev); 3225 __netdev_watchdog_up(dev); 3226 } 3227 } 3228 EXPORT_SYMBOL(netif_device_attach); 3229 3230 /* 3231 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 3232 * to be used as a distribution range. 3233 */ 3234 static u16 skb_tx_hash(const struct net_device *dev, 3235 const struct net_device *sb_dev, 3236 struct sk_buff *skb) 3237 { 3238 u32 hash; 3239 u16 qoffset = 0; 3240 u16 qcount = dev->real_num_tx_queues; 3241 3242 if (dev->num_tc) { 3243 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 3244 3245 qoffset = sb_dev->tc_to_txq[tc].offset; 3246 qcount = sb_dev->tc_to_txq[tc].count; 3247 } 3248 3249 if (skb_rx_queue_recorded(skb)) { 3250 hash = skb_get_rx_queue(skb); 3251 if (hash >= qoffset) 3252 hash -= qoffset; 3253 while (unlikely(hash >= qcount)) 3254 hash -= qcount; 3255 return hash + qoffset; 3256 } 3257 3258 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 3259 } 3260 3261 static void skb_warn_bad_offload(const struct sk_buff *skb) 3262 { 3263 static const netdev_features_t null_features; 3264 struct net_device *dev = skb->dev; 3265 const char *name = ""; 3266 3267 if (!net_ratelimit()) 3268 return; 3269 3270 if (dev) { 3271 if (dev->dev.parent) 3272 name = dev_driver_string(dev->dev.parent); 3273 else 3274 name = netdev_name(dev); 3275 } 3276 skb_dump(KERN_WARNING, skb, false); 3277 WARN(1, "%s: caps=(%pNF, %pNF)\n", 3278 name, dev ? &dev->features : &null_features, 3279 skb->sk ? &skb->sk->sk_route_caps : &null_features); 3280 } 3281 3282 /* 3283 * Invalidate hardware checksum when packet is to be mangled, and 3284 * complete checksum manually on outgoing path. 3285 */ 3286 int skb_checksum_help(struct sk_buff *skb) 3287 { 3288 __wsum csum; 3289 int ret = 0, offset; 3290 3291 if (skb->ip_summed == CHECKSUM_COMPLETE) 3292 goto out_set_summed; 3293 3294 if (unlikely(skb_is_gso(skb))) { 3295 skb_warn_bad_offload(skb); 3296 return -EINVAL; 3297 } 3298 3299 /* Before computing a checksum, we should make sure no frag could 3300 * be modified by an external entity : checksum could be wrong. 3301 */ 3302 if (skb_has_shared_frag(skb)) { 3303 ret = __skb_linearize(skb); 3304 if (ret) 3305 goto out; 3306 } 3307 3308 offset = skb_checksum_start_offset(skb); 3309 BUG_ON(offset >= skb_headlen(skb)); 3310 csum = skb_checksum(skb, offset, skb->len - offset, 0); 3311 3312 offset += skb->csum_offset; 3313 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 3314 3315 ret = skb_ensure_writable(skb, offset + sizeof(__sum16)); 3316 if (ret) 3317 goto out; 3318 3319 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 3320 out_set_summed: 3321 skb->ip_summed = CHECKSUM_NONE; 3322 out: 3323 return ret; 3324 } 3325 EXPORT_SYMBOL(skb_checksum_help); 3326 3327 int skb_crc32c_csum_help(struct sk_buff *skb) 3328 { 3329 __le32 crc32c_csum; 3330 int ret = 0, offset, start; 3331 3332 if (skb->ip_summed != CHECKSUM_PARTIAL) 3333 goto out; 3334 3335 if (unlikely(skb_is_gso(skb))) 3336 goto out; 3337 3338 /* Before computing a checksum, we should make sure no frag could 3339 * be modified by an external entity : checksum could be wrong. 3340 */ 3341 if (unlikely(skb_has_shared_frag(skb))) { 3342 ret = __skb_linearize(skb); 3343 if (ret) 3344 goto out; 3345 } 3346 start = skb_checksum_start_offset(skb); 3347 offset = start + offsetof(struct sctphdr, checksum); 3348 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 3349 ret = -EINVAL; 3350 goto out; 3351 } 3352 3353 ret = skb_ensure_writable(skb, offset + sizeof(__le32)); 3354 if (ret) 3355 goto out; 3356 3357 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 3358 skb->len - start, ~(__u32)0, 3359 crc32c_csum_stub)); 3360 *(__le32 *)(skb->data + offset) = crc32c_csum; 3361 skb->ip_summed = CHECKSUM_NONE; 3362 skb->csum_not_inet = 0; 3363 out: 3364 return ret; 3365 } 3366 3367 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 3368 { 3369 __be16 type = skb->protocol; 3370 3371 /* Tunnel gso handlers can set protocol to ethernet. */ 3372 if (type == htons(ETH_P_TEB)) { 3373 struct ethhdr *eth; 3374 3375 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 3376 return 0; 3377 3378 eth = (struct ethhdr *)skb->data; 3379 type = eth->h_proto; 3380 } 3381 3382 return __vlan_get_protocol(skb, type, depth); 3383 } 3384 3385 /** 3386 * skb_mac_gso_segment - mac layer segmentation handler. 3387 * @skb: buffer to segment 3388 * @features: features for the output path (see dev->features) 3389 */ 3390 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 3391 netdev_features_t features) 3392 { 3393 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 3394 struct packet_offload *ptype; 3395 int vlan_depth = skb->mac_len; 3396 __be16 type = skb_network_protocol(skb, &vlan_depth); 3397 3398 if (unlikely(!type)) 3399 return ERR_PTR(-EINVAL); 3400 3401 __skb_pull(skb, vlan_depth); 3402 3403 rcu_read_lock(); 3404 list_for_each_entry_rcu(ptype, &offload_base, list) { 3405 if (ptype->type == type && ptype->callbacks.gso_segment) { 3406 segs = ptype->callbacks.gso_segment(skb, features); 3407 break; 3408 } 3409 } 3410 rcu_read_unlock(); 3411 3412 __skb_push(skb, skb->data - skb_mac_header(skb)); 3413 3414 return segs; 3415 } 3416 EXPORT_SYMBOL(skb_mac_gso_segment); 3417 3418 3419 /* openvswitch calls this on rx path, so we need a different check. 3420 */ 3421 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 3422 { 3423 if (tx_path) 3424 return skb->ip_summed != CHECKSUM_PARTIAL && 3425 skb->ip_summed != CHECKSUM_UNNECESSARY; 3426 3427 return skb->ip_summed == CHECKSUM_NONE; 3428 } 3429 3430 /** 3431 * __skb_gso_segment - Perform segmentation on skb. 3432 * @skb: buffer to segment 3433 * @features: features for the output path (see dev->features) 3434 * @tx_path: whether it is called in TX path 3435 * 3436 * This function segments the given skb and returns a list of segments. 3437 * 3438 * It may return NULL if the skb requires no segmentation. This is 3439 * only possible when GSO is used for verifying header integrity. 3440 * 3441 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb. 3442 */ 3443 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3444 netdev_features_t features, bool tx_path) 3445 { 3446 struct sk_buff *segs; 3447 3448 if (unlikely(skb_needs_check(skb, tx_path))) { 3449 int err; 3450 3451 /* We're going to init ->check field in TCP or UDP header */ 3452 err = skb_cow_head(skb, 0); 3453 if (err < 0) 3454 return ERR_PTR(err); 3455 } 3456 3457 /* Only report GSO partial support if it will enable us to 3458 * support segmentation on this frame without needing additional 3459 * work. 3460 */ 3461 if (features & NETIF_F_GSO_PARTIAL) { 3462 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 3463 struct net_device *dev = skb->dev; 3464 3465 partial_features |= dev->features & dev->gso_partial_features; 3466 if (!skb_gso_ok(skb, features | partial_features)) 3467 features &= ~NETIF_F_GSO_PARTIAL; 3468 } 3469 3470 BUILD_BUG_ON(SKB_GSO_CB_OFFSET + 3471 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 3472 3473 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 3474 SKB_GSO_CB(skb)->encap_level = 0; 3475 3476 skb_reset_mac_header(skb); 3477 skb_reset_mac_len(skb); 3478 3479 segs = skb_mac_gso_segment(skb, features); 3480 3481 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs))) 3482 skb_warn_bad_offload(skb); 3483 3484 return segs; 3485 } 3486 EXPORT_SYMBOL(__skb_gso_segment); 3487 3488 /* Take action when hardware reception checksum errors are detected. */ 3489 #ifdef CONFIG_BUG 3490 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3491 { 3492 if (net_ratelimit()) { 3493 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 3494 skb_dump(KERN_ERR, skb, true); 3495 dump_stack(); 3496 } 3497 } 3498 EXPORT_SYMBOL(netdev_rx_csum_fault); 3499 #endif 3500 3501 /* XXX: check that highmem exists at all on the given machine. */ 3502 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3503 { 3504 #ifdef CONFIG_HIGHMEM 3505 int i; 3506 3507 if (!(dev->features & NETIF_F_HIGHDMA)) { 3508 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3509 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3510 3511 if (PageHighMem(skb_frag_page(frag))) 3512 return 1; 3513 } 3514 } 3515 #endif 3516 return 0; 3517 } 3518 3519 /* If MPLS offload request, verify we are testing hardware MPLS features 3520 * instead of standard features for the netdev. 3521 */ 3522 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3523 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3524 netdev_features_t features, 3525 __be16 type) 3526 { 3527 if (eth_p_mpls(type)) 3528 features &= skb->dev->mpls_features; 3529 3530 return features; 3531 } 3532 #else 3533 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3534 netdev_features_t features, 3535 __be16 type) 3536 { 3537 return features; 3538 } 3539 #endif 3540 3541 static netdev_features_t harmonize_features(struct sk_buff *skb, 3542 netdev_features_t features) 3543 { 3544 __be16 type; 3545 3546 type = skb_network_protocol(skb, NULL); 3547 features = net_mpls_features(skb, features, type); 3548 3549 if (skb->ip_summed != CHECKSUM_NONE && 3550 !can_checksum_protocol(features, type)) { 3551 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3552 } 3553 if (illegal_highdma(skb->dev, skb)) 3554 features &= ~NETIF_F_SG; 3555 3556 return features; 3557 } 3558 3559 netdev_features_t passthru_features_check(struct sk_buff *skb, 3560 struct net_device *dev, 3561 netdev_features_t features) 3562 { 3563 return features; 3564 } 3565 EXPORT_SYMBOL(passthru_features_check); 3566 3567 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3568 struct net_device *dev, 3569 netdev_features_t features) 3570 { 3571 return vlan_features_check(skb, features); 3572 } 3573 3574 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3575 struct net_device *dev, 3576 netdev_features_t features) 3577 { 3578 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3579 3580 if (gso_segs > dev->gso_max_segs) 3581 return features & ~NETIF_F_GSO_MASK; 3582 3583 if (!skb_shinfo(skb)->gso_type) { 3584 skb_warn_bad_offload(skb); 3585 return features & ~NETIF_F_GSO_MASK; 3586 } 3587 3588 /* Support for GSO partial features requires software 3589 * intervention before we can actually process the packets 3590 * so we need to strip support for any partial features now 3591 * and we can pull them back in after we have partially 3592 * segmented the frame. 3593 */ 3594 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3595 features &= ~dev->gso_partial_features; 3596 3597 /* Make sure to clear the IPv4 ID mangling feature if the 3598 * IPv4 header has the potential to be fragmented. 3599 */ 3600 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3601 struct iphdr *iph = skb->encapsulation ? 3602 inner_ip_hdr(skb) : ip_hdr(skb); 3603 3604 if (!(iph->frag_off & htons(IP_DF))) 3605 features &= ~NETIF_F_TSO_MANGLEID; 3606 } 3607 3608 return features; 3609 } 3610 3611 netdev_features_t netif_skb_features(struct sk_buff *skb) 3612 { 3613 struct net_device *dev = skb->dev; 3614 netdev_features_t features = dev->features; 3615 3616 if (skb_is_gso(skb)) 3617 features = gso_features_check(skb, dev, features); 3618 3619 /* If encapsulation offload request, verify we are testing 3620 * hardware encapsulation features instead of standard 3621 * features for the netdev 3622 */ 3623 if (skb->encapsulation) 3624 features &= dev->hw_enc_features; 3625 3626 if (skb_vlan_tagged(skb)) 3627 features = netdev_intersect_features(features, 3628 dev->vlan_features | 3629 NETIF_F_HW_VLAN_CTAG_TX | 3630 NETIF_F_HW_VLAN_STAG_TX); 3631 3632 if (dev->netdev_ops->ndo_features_check) 3633 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3634 features); 3635 else 3636 features &= dflt_features_check(skb, dev, features); 3637 3638 return harmonize_features(skb, features); 3639 } 3640 EXPORT_SYMBOL(netif_skb_features); 3641 3642 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3643 struct netdev_queue *txq, bool more) 3644 { 3645 unsigned int len; 3646 int rc; 3647 3648 if (dev_nit_active(dev)) 3649 dev_queue_xmit_nit(skb, dev); 3650 3651 len = skb->len; 3652 PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies); 3653 trace_net_dev_start_xmit(skb, dev); 3654 rc = netdev_start_xmit(skb, dev, txq, more); 3655 trace_net_dev_xmit(skb, rc, dev, len); 3656 3657 return rc; 3658 } 3659 3660 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3661 struct netdev_queue *txq, int *ret) 3662 { 3663 struct sk_buff *skb = first; 3664 int rc = NETDEV_TX_OK; 3665 3666 while (skb) { 3667 struct sk_buff *next = skb->next; 3668 3669 skb_mark_not_on_list(skb); 3670 rc = xmit_one(skb, dev, txq, next != NULL); 3671 if (unlikely(!dev_xmit_complete(rc))) { 3672 skb->next = next; 3673 goto out; 3674 } 3675 3676 skb = next; 3677 if (netif_tx_queue_stopped(txq) && skb) { 3678 rc = NETDEV_TX_BUSY; 3679 break; 3680 } 3681 } 3682 3683 out: 3684 *ret = rc; 3685 return skb; 3686 } 3687 3688 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3689 netdev_features_t features) 3690 { 3691 if (skb_vlan_tag_present(skb) && 3692 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3693 skb = __vlan_hwaccel_push_inside(skb); 3694 return skb; 3695 } 3696 3697 int skb_csum_hwoffload_help(struct sk_buff *skb, 3698 const netdev_features_t features) 3699 { 3700 if (unlikely(skb_csum_is_sctp(skb))) 3701 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3702 skb_crc32c_csum_help(skb); 3703 3704 if (features & NETIF_F_HW_CSUM) 3705 return 0; 3706 3707 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 3708 switch (skb->csum_offset) { 3709 case offsetof(struct tcphdr, check): 3710 case offsetof(struct udphdr, check): 3711 return 0; 3712 } 3713 } 3714 3715 return skb_checksum_help(skb); 3716 } 3717 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3718 3719 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3720 { 3721 netdev_features_t features; 3722 3723 features = netif_skb_features(skb); 3724 skb = validate_xmit_vlan(skb, features); 3725 if (unlikely(!skb)) 3726 goto out_null; 3727 3728 skb = sk_validate_xmit_skb(skb, dev); 3729 if (unlikely(!skb)) 3730 goto out_null; 3731 3732 if (netif_needs_gso(skb, features)) { 3733 struct sk_buff *segs; 3734 3735 segs = skb_gso_segment(skb, features); 3736 if (IS_ERR(segs)) { 3737 goto out_kfree_skb; 3738 } else if (segs) { 3739 consume_skb(skb); 3740 skb = segs; 3741 } 3742 } else { 3743 if (skb_needs_linearize(skb, features) && 3744 __skb_linearize(skb)) 3745 goto out_kfree_skb; 3746 3747 /* If packet is not checksummed and device does not 3748 * support checksumming for this protocol, complete 3749 * checksumming here. 3750 */ 3751 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3752 if (skb->encapsulation) 3753 skb_set_inner_transport_header(skb, 3754 skb_checksum_start_offset(skb)); 3755 else 3756 skb_set_transport_header(skb, 3757 skb_checksum_start_offset(skb)); 3758 if (skb_csum_hwoffload_help(skb, features)) 3759 goto out_kfree_skb; 3760 } 3761 } 3762 3763 skb = validate_xmit_xfrm(skb, features, again); 3764 3765 return skb; 3766 3767 out_kfree_skb: 3768 kfree_skb(skb); 3769 out_null: 3770 atomic_long_inc(&dev->tx_dropped); 3771 return NULL; 3772 } 3773 3774 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3775 { 3776 struct sk_buff *next, *head = NULL, *tail; 3777 3778 for (; skb != NULL; skb = next) { 3779 next = skb->next; 3780 skb_mark_not_on_list(skb); 3781 3782 /* in case skb wont be segmented, point to itself */ 3783 skb->prev = skb; 3784 3785 skb = validate_xmit_skb(skb, dev, again); 3786 if (!skb) 3787 continue; 3788 3789 if (!head) 3790 head = skb; 3791 else 3792 tail->next = skb; 3793 /* If skb was segmented, skb->prev points to 3794 * the last segment. If not, it still contains skb. 3795 */ 3796 tail = skb->prev; 3797 } 3798 return head; 3799 } 3800 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3801 3802 static void qdisc_pkt_len_init(struct sk_buff *skb) 3803 { 3804 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3805 3806 qdisc_skb_cb(skb)->pkt_len = skb->len; 3807 3808 /* To get more precise estimation of bytes sent on wire, 3809 * we add to pkt_len the headers size of all segments 3810 */ 3811 if (shinfo->gso_size && skb_transport_header_was_set(skb)) { 3812 unsigned int hdr_len; 3813 u16 gso_segs = shinfo->gso_segs; 3814 3815 /* mac layer + network layer */ 3816 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3817 3818 /* + transport layer */ 3819 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3820 const struct tcphdr *th; 3821 struct tcphdr _tcphdr; 3822 3823 th = skb_header_pointer(skb, skb_transport_offset(skb), 3824 sizeof(_tcphdr), &_tcphdr); 3825 if (likely(th)) 3826 hdr_len += __tcp_hdrlen(th); 3827 } else { 3828 struct udphdr _udphdr; 3829 3830 if (skb_header_pointer(skb, skb_transport_offset(skb), 3831 sizeof(_udphdr), &_udphdr)) 3832 hdr_len += sizeof(struct udphdr); 3833 } 3834 3835 if (shinfo->gso_type & SKB_GSO_DODGY) 3836 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3837 shinfo->gso_size); 3838 3839 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3840 } 3841 } 3842 3843 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3844 struct net_device *dev, 3845 struct netdev_queue *txq) 3846 { 3847 spinlock_t *root_lock = qdisc_lock(q); 3848 struct sk_buff *to_free = NULL; 3849 bool contended; 3850 int rc; 3851 3852 qdisc_calculate_pkt_len(skb, q); 3853 3854 if (q->flags & TCQ_F_NOLOCK) { 3855 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3856 if (likely(!netif_xmit_frozen_or_stopped(txq))) 3857 qdisc_run(q); 3858 3859 if (unlikely(to_free)) 3860 kfree_skb_list(to_free); 3861 return rc; 3862 } 3863 3864 /* 3865 * Heuristic to force contended enqueues to serialize on a 3866 * separate lock before trying to get qdisc main lock. 3867 * This permits qdisc->running owner to get the lock more 3868 * often and dequeue packets faster. 3869 */ 3870 contended = qdisc_is_running(q); 3871 if (unlikely(contended)) 3872 spin_lock(&q->busylock); 3873 3874 spin_lock(root_lock); 3875 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3876 __qdisc_drop(skb, &to_free); 3877 rc = NET_XMIT_DROP; 3878 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3879 qdisc_run_begin(q)) { 3880 /* 3881 * This is a work-conserving queue; there are no old skbs 3882 * waiting to be sent out; and the qdisc is not running - 3883 * xmit the skb directly. 3884 */ 3885 3886 qdisc_bstats_update(q, skb); 3887 3888 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3889 if (unlikely(contended)) { 3890 spin_unlock(&q->busylock); 3891 contended = false; 3892 } 3893 __qdisc_run(q); 3894 } 3895 3896 qdisc_run_end(q); 3897 rc = NET_XMIT_SUCCESS; 3898 } else { 3899 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3900 if (qdisc_run_begin(q)) { 3901 if (unlikely(contended)) { 3902 spin_unlock(&q->busylock); 3903 contended = false; 3904 } 3905 __qdisc_run(q); 3906 qdisc_run_end(q); 3907 } 3908 } 3909 spin_unlock(root_lock); 3910 if (unlikely(to_free)) 3911 kfree_skb_list(to_free); 3912 if (unlikely(contended)) 3913 spin_unlock(&q->busylock); 3914 return rc; 3915 } 3916 3917 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3918 static void skb_update_prio(struct sk_buff *skb) 3919 { 3920 const struct netprio_map *map; 3921 const struct sock *sk; 3922 unsigned int prioidx; 3923 3924 if (skb->priority) 3925 return; 3926 map = rcu_dereference_bh(skb->dev->priomap); 3927 if (!map) 3928 return; 3929 sk = skb_to_full_sk(skb); 3930 if (!sk) 3931 return; 3932 3933 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 3934 3935 if (prioidx < map->priomap_len) 3936 skb->priority = map->priomap[prioidx]; 3937 } 3938 #else 3939 #define skb_update_prio(skb) 3940 #endif 3941 3942 /** 3943 * dev_loopback_xmit - loop back @skb 3944 * @net: network namespace this loopback is happening in 3945 * @sk: sk needed to be a netfilter okfn 3946 * @skb: buffer to transmit 3947 */ 3948 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3949 { 3950 skb_reset_mac_header(skb); 3951 __skb_pull(skb, skb_network_offset(skb)); 3952 skb->pkt_type = PACKET_LOOPBACK; 3953 skb->ip_summed = CHECKSUM_UNNECESSARY; 3954 WARN_ON(!skb_dst(skb)); 3955 skb_dst_force(skb); 3956 netif_rx_ni(skb); 3957 return 0; 3958 } 3959 EXPORT_SYMBOL(dev_loopback_xmit); 3960 3961 #ifdef CONFIG_NET_EGRESS 3962 static struct sk_buff * 3963 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3964 { 3965 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress); 3966 struct tcf_result cl_res; 3967 3968 if (!miniq) 3969 return skb; 3970 3971 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3972 qdisc_skb_cb(skb)->mru = 0; 3973 qdisc_skb_cb(skb)->post_ct = false; 3974 mini_qdisc_bstats_cpu_update(miniq, skb); 3975 3976 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 3977 case TC_ACT_OK: 3978 case TC_ACT_RECLASSIFY: 3979 skb->tc_index = TC_H_MIN(cl_res.classid); 3980 break; 3981 case TC_ACT_SHOT: 3982 mini_qdisc_qstats_cpu_drop(miniq); 3983 *ret = NET_XMIT_DROP; 3984 kfree_skb(skb); 3985 return NULL; 3986 case TC_ACT_STOLEN: 3987 case TC_ACT_QUEUED: 3988 case TC_ACT_TRAP: 3989 *ret = NET_XMIT_SUCCESS; 3990 consume_skb(skb); 3991 return NULL; 3992 case TC_ACT_REDIRECT: 3993 /* No need to push/pop skb's mac_header here on egress! */ 3994 skb_do_redirect(skb); 3995 *ret = NET_XMIT_SUCCESS; 3996 return NULL; 3997 default: 3998 break; 3999 } 4000 4001 return skb; 4002 } 4003 #endif /* CONFIG_NET_EGRESS */ 4004 4005 #ifdef CONFIG_XPS 4006 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 4007 struct xps_dev_maps *dev_maps, unsigned int tci) 4008 { 4009 int tc = netdev_get_prio_tc_map(dev, skb->priority); 4010 struct xps_map *map; 4011 int queue_index = -1; 4012 4013 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids) 4014 return queue_index; 4015 4016 tci *= dev_maps->num_tc; 4017 tci += tc; 4018 4019 map = rcu_dereference(dev_maps->attr_map[tci]); 4020 if (map) { 4021 if (map->len == 1) 4022 queue_index = map->queues[0]; 4023 else 4024 queue_index = map->queues[reciprocal_scale( 4025 skb_get_hash(skb), map->len)]; 4026 if (unlikely(queue_index >= dev->real_num_tx_queues)) 4027 queue_index = -1; 4028 } 4029 return queue_index; 4030 } 4031 #endif 4032 4033 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 4034 struct sk_buff *skb) 4035 { 4036 #ifdef CONFIG_XPS 4037 struct xps_dev_maps *dev_maps; 4038 struct sock *sk = skb->sk; 4039 int queue_index = -1; 4040 4041 if (!static_key_false(&xps_needed)) 4042 return -1; 4043 4044 rcu_read_lock(); 4045 if (!static_key_false(&xps_rxqs_needed)) 4046 goto get_cpus_map; 4047 4048 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]); 4049 if (dev_maps) { 4050 int tci = sk_rx_queue_get(sk); 4051 4052 if (tci >= 0) 4053 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4054 tci); 4055 } 4056 4057 get_cpus_map: 4058 if (queue_index < 0) { 4059 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]); 4060 if (dev_maps) { 4061 unsigned int tci = skb->sender_cpu - 1; 4062 4063 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4064 tci); 4065 } 4066 } 4067 rcu_read_unlock(); 4068 4069 return queue_index; 4070 #else 4071 return -1; 4072 #endif 4073 } 4074 4075 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 4076 struct net_device *sb_dev) 4077 { 4078 return 0; 4079 } 4080 EXPORT_SYMBOL(dev_pick_tx_zero); 4081 4082 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 4083 struct net_device *sb_dev) 4084 { 4085 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues; 4086 } 4087 EXPORT_SYMBOL(dev_pick_tx_cpu_id); 4088 4089 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 4090 struct net_device *sb_dev) 4091 { 4092 struct sock *sk = skb->sk; 4093 int queue_index = sk_tx_queue_get(sk); 4094 4095 sb_dev = sb_dev ? : dev; 4096 4097 if (queue_index < 0 || skb->ooo_okay || 4098 queue_index >= dev->real_num_tx_queues) { 4099 int new_index = get_xps_queue(dev, sb_dev, skb); 4100 4101 if (new_index < 0) 4102 new_index = skb_tx_hash(dev, sb_dev, skb); 4103 4104 if (queue_index != new_index && sk && 4105 sk_fullsock(sk) && 4106 rcu_access_pointer(sk->sk_dst_cache)) 4107 sk_tx_queue_set(sk, new_index); 4108 4109 queue_index = new_index; 4110 } 4111 4112 return queue_index; 4113 } 4114 EXPORT_SYMBOL(netdev_pick_tx); 4115 4116 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 4117 struct sk_buff *skb, 4118 struct net_device *sb_dev) 4119 { 4120 int queue_index = 0; 4121 4122 #ifdef CONFIG_XPS 4123 u32 sender_cpu = skb->sender_cpu - 1; 4124 4125 if (sender_cpu >= (u32)NR_CPUS) 4126 skb->sender_cpu = raw_smp_processor_id() + 1; 4127 #endif 4128 4129 if (dev->real_num_tx_queues != 1) { 4130 const struct net_device_ops *ops = dev->netdev_ops; 4131 4132 if (ops->ndo_select_queue) 4133 queue_index = ops->ndo_select_queue(dev, skb, sb_dev); 4134 else 4135 queue_index = netdev_pick_tx(dev, skb, sb_dev); 4136 4137 queue_index = netdev_cap_txqueue(dev, queue_index); 4138 } 4139 4140 skb_set_queue_mapping(skb, queue_index); 4141 return netdev_get_tx_queue(dev, queue_index); 4142 } 4143 4144 /** 4145 * __dev_queue_xmit - transmit a buffer 4146 * @skb: buffer to transmit 4147 * @sb_dev: suboordinate device used for L2 forwarding offload 4148 * 4149 * Queue a buffer for transmission to a network device. The caller must 4150 * have set the device and priority and built the buffer before calling 4151 * this function. The function can be called from an interrupt. 4152 * 4153 * A negative errno code is returned on a failure. A success does not 4154 * guarantee the frame will be transmitted as it may be dropped due 4155 * to congestion or traffic shaping. 4156 * 4157 * ----------------------------------------------------------------------------------- 4158 * I notice this method can also return errors from the queue disciplines, 4159 * including NET_XMIT_DROP, which is a positive value. So, errors can also 4160 * be positive. 4161 * 4162 * Regardless of the return value, the skb is consumed, so it is currently 4163 * difficult to retry a send to this method. (You can bump the ref count 4164 * before sending to hold a reference for retry if you are careful.) 4165 * 4166 * When calling this method, interrupts MUST be enabled. This is because 4167 * the BH enable code must have IRQs enabled so that it will not deadlock. 4168 * --BLG 4169 */ 4170 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 4171 { 4172 struct net_device *dev = skb->dev; 4173 struct netdev_queue *txq; 4174 struct Qdisc *q; 4175 int rc = -ENOMEM; 4176 bool again = false; 4177 4178 skb_reset_mac_header(skb); 4179 4180 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 4181 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED); 4182 4183 /* Disable soft irqs for various locks below. Also 4184 * stops preemption for RCU. 4185 */ 4186 rcu_read_lock_bh(); 4187 4188 skb_update_prio(skb); 4189 4190 qdisc_pkt_len_init(skb); 4191 #ifdef CONFIG_NET_CLS_ACT 4192 skb->tc_at_ingress = 0; 4193 # ifdef CONFIG_NET_EGRESS 4194 if (static_branch_unlikely(&egress_needed_key)) { 4195 skb = sch_handle_egress(skb, &rc, dev); 4196 if (!skb) 4197 goto out; 4198 } 4199 # endif 4200 #endif 4201 /* If device/qdisc don't need skb->dst, release it right now while 4202 * its hot in this cpu cache. 4203 */ 4204 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 4205 skb_dst_drop(skb); 4206 else 4207 skb_dst_force(skb); 4208 4209 txq = netdev_core_pick_tx(dev, skb, sb_dev); 4210 q = rcu_dereference_bh(txq->qdisc); 4211 4212 trace_net_dev_queue(skb); 4213 if (q->enqueue) { 4214 rc = __dev_xmit_skb(skb, q, dev, txq); 4215 goto out; 4216 } 4217 4218 /* The device has no queue. Common case for software devices: 4219 * loopback, all the sorts of tunnels... 4220 4221 * Really, it is unlikely that netif_tx_lock protection is necessary 4222 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 4223 * counters.) 4224 * However, it is possible, that they rely on protection 4225 * made by us here. 4226 4227 * Check this and shot the lock. It is not prone from deadlocks. 4228 *Either shot noqueue qdisc, it is even simpler 8) 4229 */ 4230 if (dev->flags & IFF_UP) { 4231 int cpu = smp_processor_id(); /* ok because BHs are off */ 4232 4233 if (txq->xmit_lock_owner != cpu) { 4234 if (dev_xmit_recursion()) 4235 goto recursion_alert; 4236 4237 skb = validate_xmit_skb(skb, dev, &again); 4238 if (!skb) 4239 goto out; 4240 4241 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies); 4242 HARD_TX_LOCK(dev, txq, cpu); 4243 4244 if (!netif_xmit_stopped(txq)) { 4245 dev_xmit_recursion_inc(); 4246 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 4247 dev_xmit_recursion_dec(); 4248 if (dev_xmit_complete(rc)) { 4249 HARD_TX_UNLOCK(dev, txq); 4250 goto out; 4251 } 4252 } 4253 HARD_TX_UNLOCK(dev, txq); 4254 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 4255 dev->name); 4256 } else { 4257 /* Recursion is detected! It is possible, 4258 * unfortunately 4259 */ 4260 recursion_alert: 4261 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 4262 dev->name); 4263 } 4264 } 4265 4266 rc = -ENETDOWN; 4267 rcu_read_unlock_bh(); 4268 4269 atomic_long_inc(&dev->tx_dropped); 4270 kfree_skb_list(skb); 4271 return rc; 4272 out: 4273 rcu_read_unlock_bh(); 4274 return rc; 4275 } 4276 4277 int dev_queue_xmit(struct sk_buff *skb) 4278 { 4279 return __dev_queue_xmit(skb, NULL); 4280 } 4281 EXPORT_SYMBOL(dev_queue_xmit); 4282 4283 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev) 4284 { 4285 return __dev_queue_xmit(skb, sb_dev); 4286 } 4287 EXPORT_SYMBOL(dev_queue_xmit_accel); 4288 4289 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 4290 { 4291 struct net_device *dev = skb->dev; 4292 struct sk_buff *orig_skb = skb; 4293 struct netdev_queue *txq; 4294 int ret = NETDEV_TX_BUSY; 4295 bool again = false; 4296 4297 if (unlikely(!netif_running(dev) || 4298 !netif_carrier_ok(dev))) 4299 goto drop; 4300 4301 skb = validate_xmit_skb_list(skb, dev, &again); 4302 if (skb != orig_skb) 4303 goto drop; 4304 4305 skb_set_queue_mapping(skb, queue_id); 4306 txq = skb_get_tx_queue(dev, skb); 4307 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies); 4308 4309 local_bh_disable(); 4310 4311 dev_xmit_recursion_inc(); 4312 HARD_TX_LOCK(dev, txq, smp_processor_id()); 4313 if (!netif_xmit_frozen_or_drv_stopped(txq)) 4314 ret = netdev_start_xmit(skb, dev, txq, false); 4315 HARD_TX_UNLOCK(dev, txq); 4316 dev_xmit_recursion_dec(); 4317 4318 local_bh_enable(); 4319 return ret; 4320 drop: 4321 atomic_long_inc(&dev->tx_dropped); 4322 kfree_skb_list(skb); 4323 return NET_XMIT_DROP; 4324 } 4325 EXPORT_SYMBOL(__dev_direct_xmit); 4326 4327 /************************************************************************* 4328 * Receiver routines 4329 *************************************************************************/ 4330 4331 int netdev_max_backlog __read_mostly = 1000; 4332 EXPORT_SYMBOL(netdev_max_backlog); 4333 4334 int netdev_tstamp_prequeue __read_mostly = 1; 4335 int netdev_budget __read_mostly = 300; 4336 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */ 4337 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ; 4338 int weight_p __read_mostly = 64; /* old backlog weight */ 4339 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 4340 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 4341 int dev_rx_weight __read_mostly = 64; 4342 int dev_tx_weight __read_mostly = 64; 4343 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */ 4344 int gro_normal_batch __read_mostly = 8; 4345 4346 /* Called with irq disabled */ 4347 static inline void ____napi_schedule(struct softnet_data *sd, 4348 struct napi_struct *napi) 4349 { 4350 struct task_struct *thread; 4351 4352 if (test_bit(NAPI_STATE_THREADED, &napi->state)) { 4353 /* Paired with smp_mb__before_atomic() in 4354 * napi_enable()/dev_set_threaded(). 4355 * Use READ_ONCE() to guarantee a complete 4356 * read on napi->thread. Only call 4357 * wake_up_process() when it's not NULL. 4358 */ 4359 thread = READ_ONCE(napi->thread); 4360 if (thread) { 4361 /* Avoid doing set_bit() if the thread is in 4362 * INTERRUPTIBLE state, cause napi_thread_wait() 4363 * makes sure to proceed with napi polling 4364 * if the thread is explicitly woken from here. 4365 */ 4366 if (READ_ONCE(thread->state) != TASK_INTERRUPTIBLE) 4367 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state); 4368 wake_up_process(thread); 4369 return; 4370 } 4371 } 4372 4373 list_add_tail(&napi->poll_list, &sd->poll_list); 4374 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4375 } 4376 4377 #ifdef CONFIG_RPS 4378 4379 /* One global table that all flow-based protocols share. */ 4380 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 4381 EXPORT_SYMBOL(rps_sock_flow_table); 4382 u32 rps_cpu_mask __read_mostly; 4383 EXPORT_SYMBOL(rps_cpu_mask); 4384 4385 struct static_key_false rps_needed __read_mostly; 4386 EXPORT_SYMBOL(rps_needed); 4387 struct static_key_false rfs_needed __read_mostly; 4388 EXPORT_SYMBOL(rfs_needed); 4389 4390 static struct rps_dev_flow * 4391 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4392 struct rps_dev_flow *rflow, u16 next_cpu) 4393 { 4394 if (next_cpu < nr_cpu_ids) { 4395 #ifdef CONFIG_RFS_ACCEL 4396 struct netdev_rx_queue *rxqueue; 4397 struct rps_dev_flow_table *flow_table; 4398 struct rps_dev_flow *old_rflow; 4399 u32 flow_id; 4400 u16 rxq_index; 4401 int rc; 4402 4403 /* Should we steer this flow to a different hardware queue? */ 4404 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 4405 !(dev->features & NETIF_F_NTUPLE)) 4406 goto out; 4407 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 4408 if (rxq_index == skb_get_rx_queue(skb)) 4409 goto out; 4410 4411 rxqueue = dev->_rx + rxq_index; 4412 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4413 if (!flow_table) 4414 goto out; 4415 flow_id = skb_get_hash(skb) & flow_table->mask; 4416 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 4417 rxq_index, flow_id); 4418 if (rc < 0) 4419 goto out; 4420 old_rflow = rflow; 4421 rflow = &flow_table->flows[flow_id]; 4422 rflow->filter = rc; 4423 if (old_rflow->filter == rflow->filter) 4424 old_rflow->filter = RPS_NO_FILTER; 4425 out: 4426 #endif 4427 rflow->last_qtail = 4428 per_cpu(softnet_data, next_cpu).input_queue_head; 4429 } 4430 4431 rflow->cpu = next_cpu; 4432 return rflow; 4433 } 4434 4435 /* 4436 * get_rps_cpu is called from netif_receive_skb and returns the target 4437 * CPU from the RPS map of the receiving queue for a given skb. 4438 * rcu_read_lock must be held on entry. 4439 */ 4440 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4441 struct rps_dev_flow **rflowp) 4442 { 4443 const struct rps_sock_flow_table *sock_flow_table; 4444 struct netdev_rx_queue *rxqueue = dev->_rx; 4445 struct rps_dev_flow_table *flow_table; 4446 struct rps_map *map; 4447 int cpu = -1; 4448 u32 tcpu; 4449 u32 hash; 4450 4451 if (skb_rx_queue_recorded(skb)) { 4452 u16 index = skb_get_rx_queue(skb); 4453 4454 if (unlikely(index >= dev->real_num_rx_queues)) { 4455 WARN_ONCE(dev->real_num_rx_queues > 1, 4456 "%s received packet on queue %u, but number " 4457 "of RX queues is %u\n", 4458 dev->name, index, dev->real_num_rx_queues); 4459 goto done; 4460 } 4461 rxqueue += index; 4462 } 4463 4464 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 4465 4466 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4467 map = rcu_dereference(rxqueue->rps_map); 4468 if (!flow_table && !map) 4469 goto done; 4470 4471 skb_reset_network_header(skb); 4472 hash = skb_get_hash(skb); 4473 if (!hash) 4474 goto done; 4475 4476 sock_flow_table = rcu_dereference(rps_sock_flow_table); 4477 if (flow_table && sock_flow_table) { 4478 struct rps_dev_flow *rflow; 4479 u32 next_cpu; 4480 u32 ident; 4481 4482 /* First check into global flow table if there is a match */ 4483 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 4484 if ((ident ^ hash) & ~rps_cpu_mask) 4485 goto try_rps; 4486 4487 next_cpu = ident & rps_cpu_mask; 4488 4489 /* OK, now we know there is a match, 4490 * we can look at the local (per receive queue) flow table 4491 */ 4492 rflow = &flow_table->flows[hash & flow_table->mask]; 4493 tcpu = rflow->cpu; 4494 4495 /* 4496 * If the desired CPU (where last recvmsg was done) is 4497 * different from current CPU (one in the rx-queue flow 4498 * table entry), switch if one of the following holds: 4499 * - Current CPU is unset (>= nr_cpu_ids). 4500 * - Current CPU is offline. 4501 * - The current CPU's queue tail has advanced beyond the 4502 * last packet that was enqueued using this table entry. 4503 * This guarantees that all previous packets for the flow 4504 * have been dequeued, thus preserving in order delivery. 4505 */ 4506 if (unlikely(tcpu != next_cpu) && 4507 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 4508 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 4509 rflow->last_qtail)) >= 0)) { 4510 tcpu = next_cpu; 4511 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 4512 } 4513 4514 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 4515 *rflowp = rflow; 4516 cpu = tcpu; 4517 goto done; 4518 } 4519 } 4520 4521 try_rps: 4522 4523 if (map) { 4524 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 4525 if (cpu_online(tcpu)) { 4526 cpu = tcpu; 4527 goto done; 4528 } 4529 } 4530 4531 done: 4532 return cpu; 4533 } 4534 4535 #ifdef CONFIG_RFS_ACCEL 4536 4537 /** 4538 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 4539 * @dev: Device on which the filter was set 4540 * @rxq_index: RX queue index 4541 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 4542 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 4543 * 4544 * Drivers that implement ndo_rx_flow_steer() should periodically call 4545 * this function for each installed filter and remove the filters for 4546 * which it returns %true. 4547 */ 4548 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 4549 u32 flow_id, u16 filter_id) 4550 { 4551 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 4552 struct rps_dev_flow_table *flow_table; 4553 struct rps_dev_flow *rflow; 4554 bool expire = true; 4555 unsigned int cpu; 4556 4557 rcu_read_lock(); 4558 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4559 if (flow_table && flow_id <= flow_table->mask) { 4560 rflow = &flow_table->flows[flow_id]; 4561 cpu = READ_ONCE(rflow->cpu); 4562 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 4563 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 4564 rflow->last_qtail) < 4565 (int)(10 * flow_table->mask))) 4566 expire = false; 4567 } 4568 rcu_read_unlock(); 4569 return expire; 4570 } 4571 EXPORT_SYMBOL(rps_may_expire_flow); 4572 4573 #endif /* CONFIG_RFS_ACCEL */ 4574 4575 /* Called from hardirq (IPI) context */ 4576 static void rps_trigger_softirq(void *data) 4577 { 4578 struct softnet_data *sd = data; 4579 4580 ____napi_schedule(sd, &sd->backlog); 4581 sd->received_rps++; 4582 } 4583 4584 #endif /* CONFIG_RPS */ 4585 4586 /* 4587 * Check if this softnet_data structure is another cpu one 4588 * If yes, queue it to our IPI list and return 1 4589 * If no, return 0 4590 */ 4591 static int rps_ipi_queued(struct softnet_data *sd) 4592 { 4593 #ifdef CONFIG_RPS 4594 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 4595 4596 if (sd != mysd) { 4597 sd->rps_ipi_next = mysd->rps_ipi_list; 4598 mysd->rps_ipi_list = sd; 4599 4600 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4601 return 1; 4602 } 4603 #endif /* CONFIG_RPS */ 4604 return 0; 4605 } 4606 4607 #ifdef CONFIG_NET_FLOW_LIMIT 4608 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 4609 #endif 4610 4611 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 4612 { 4613 #ifdef CONFIG_NET_FLOW_LIMIT 4614 struct sd_flow_limit *fl; 4615 struct softnet_data *sd; 4616 unsigned int old_flow, new_flow; 4617 4618 if (qlen < (netdev_max_backlog >> 1)) 4619 return false; 4620 4621 sd = this_cpu_ptr(&softnet_data); 4622 4623 rcu_read_lock(); 4624 fl = rcu_dereference(sd->flow_limit); 4625 if (fl) { 4626 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 4627 old_flow = fl->history[fl->history_head]; 4628 fl->history[fl->history_head] = new_flow; 4629 4630 fl->history_head++; 4631 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 4632 4633 if (likely(fl->buckets[old_flow])) 4634 fl->buckets[old_flow]--; 4635 4636 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 4637 fl->count++; 4638 rcu_read_unlock(); 4639 return true; 4640 } 4641 } 4642 rcu_read_unlock(); 4643 #endif 4644 return false; 4645 } 4646 4647 /* 4648 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 4649 * queue (may be a remote CPU queue). 4650 */ 4651 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 4652 unsigned int *qtail) 4653 { 4654 struct softnet_data *sd; 4655 unsigned long flags; 4656 unsigned int qlen; 4657 4658 sd = &per_cpu(softnet_data, cpu); 4659 4660 local_irq_save(flags); 4661 4662 rps_lock(sd); 4663 if (!netif_running(skb->dev)) 4664 goto drop; 4665 qlen = skb_queue_len(&sd->input_pkt_queue); 4666 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 4667 if (qlen) { 4668 enqueue: 4669 __skb_queue_tail(&sd->input_pkt_queue, skb); 4670 input_queue_tail_incr_save(sd, qtail); 4671 rps_unlock(sd); 4672 local_irq_restore(flags); 4673 return NET_RX_SUCCESS; 4674 } 4675 4676 /* Schedule NAPI for backlog device 4677 * We can use non atomic operation since we own the queue lock 4678 */ 4679 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 4680 if (!rps_ipi_queued(sd)) 4681 ____napi_schedule(sd, &sd->backlog); 4682 } 4683 goto enqueue; 4684 } 4685 4686 drop: 4687 sd->dropped++; 4688 rps_unlock(sd); 4689 4690 local_irq_restore(flags); 4691 4692 atomic_long_inc(&skb->dev->rx_dropped); 4693 kfree_skb(skb); 4694 return NET_RX_DROP; 4695 } 4696 4697 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 4698 { 4699 struct net_device *dev = skb->dev; 4700 struct netdev_rx_queue *rxqueue; 4701 4702 rxqueue = dev->_rx; 4703 4704 if (skb_rx_queue_recorded(skb)) { 4705 u16 index = skb_get_rx_queue(skb); 4706 4707 if (unlikely(index >= dev->real_num_rx_queues)) { 4708 WARN_ONCE(dev->real_num_rx_queues > 1, 4709 "%s received packet on queue %u, but number " 4710 "of RX queues is %u\n", 4711 dev->name, index, dev->real_num_rx_queues); 4712 4713 return rxqueue; /* Return first rxqueue */ 4714 } 4715 rxqueue += index; 4716 } 4717 return rxqueue; 4718 } 4719 4720 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 4721 struct xdp_buff *xdp, 4722 struct bpf_prog *xdp_prog) 4723 { 4724 void *orig_data, *orig_data_end, *hard_start; 4725 struct netdev_rx_queue *rxqueue; 4726 u32 metalen, act = XDP_DROP; 4727 bool orig_bcast, orig_host; 4728 u32 mac_len, frame_sz; 4729 __be16 orig_eth_type; 4730 struct ethhdr *eth; 4731 int off; 4732 4733 /* Reinjected packets coming from act_mirred or similar should 4734 * not get XDP generic processing. 4735 */ 4736 if (skb_is_redirected(skb)) 4737 return XDP_PASS; 4738 4739 /* XDP packets must be linear and must have sufficient headroom 4740 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also 4741 * native XDP provides, thus we need to do it here as well. 4742 */ 4743 if (skb_cloned(skb) || skb_is_nonlinear(skb) || 4744 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 4745 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 4746 int troom = skb->tail + skb->data_len - skb->end; 4747 4748 /* In case we have to go down the path and also linearize, 4749 * then lets do the pskb_expand_head() work just once here. 4750 */ 4751 if (pskb_expand_head(skb, 4752 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 4753 troom > 0 ? troom + 128 : 0, GFP_ATOMIC)) 4754 goto do_drop; 4755 if (skb_linearize(skb)) 4756 goto do_drop; 4757 } 4758 4759 /* The XDP program wants to see the packet starting at the MAC 4760 * header. 4761 */ 4762 mac_len = skb->data - skb_mac_header(skb); 4763 hard_start = skb->data - skb_headroom(skb); 4764 4765 /* SKB "head" area always have tailroom for skb_shared_info */ 4766 frame_sz = (void *)skb_end_pointer(skb) - hard_start; 4767 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4768 4769 rxqueue = netif_get_rxqueue(skb); 4770 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq); 4771 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len, 4772 skb_headlen(skb) + mac_len, true); 4773 4774 orig_data_end = xdp->data_end; 4775 orig_data = xdp->data; 4776 eth = (struct ethhdr *)xdp->data; 4777 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr); 4778 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 4779 orig_eth_type = eth->h_proto; 4780 4781 act = bpf_prog_run_xdp(xdp_prog, xdp); 4782 4783 /* check if bpf_xdp_adjust_head was used */ 4784 off = xdp->data - orig_data; 4785 if (off) { 4786 if (off > 0) 4787 __skb_pull(skb, off); 4788 else if (off < 0) 4789 __skb_push(skb, -off); 4790 4791 skb->mac_header += off; 4792 skb_reset_network_header(skb); 4793 } 4794 4795 /* check if bpf_xdp_adjust_tail was used */ 4796 off = xdp->data_end - orig_data_end; 4797 if (off != 0) { 4798 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 4799 skb->len += off; /* positive on grow, negative on shrink */ 4800 } 4801 4802 /* check if XDP changed eth hdr such SKB needs update */ 4803 eth = (struct ethhdr *)xdp->data; 4804 if ((orig_eth_type != eth->h_proto) || 4805 (orig_host != ether_addr_equal_64bits(eth->h_dest, 4806 skb->dev->dev_addr)) || 4807 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 4808 __skb_push(skb, ETH_HLEN); 4809 skb->pkt_type = PACKET_HOST; 4810 skb->protocol = eth_type_trans(skb, skb->dev); 4811 } 4812 4813 switch (act) { 4814 case XDP_REDIRECT: 4815 case XDP_TX: 4816 __skb_push(skb, mac_len); 4817 break; 4818 case XDP_PASS: 4819 metalen = xdp->data - xdp->data_meta; 4820 if (metalen) 4821 skb_metadata_set(skb, metalen); 4822 break; 4823 default: 4824 bpf_warn_invalid_xdp_action(act); 4825 fallthrough; 4826 case XDP_ABORTED: 4827 trace_xdp_exception(skb->dev, xdp_prog, act); 4828 fallthrough; 4829 case XDP_DROP: 4830 do_drop: 4831 kfree_skb(skb); 4832 break; 4833 } 4834 4835 return act; 4836 } 4837 4838 /* When doing generic XDP we have to bypass the qdisc layer and the 4839 * network taps in order to match in-driver-XDP behavior. 4840 */ 4841 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 4842 { 4843 struct net_device *dev = skb->dev; 4844 struct netdev_queue *txq; 4845 bool free_skb = true; 4846 int cpu, rc; 4847 4848 txq = netdev_core_pick_tx(dev, skb, NULL); 4849 cpu = smp_processor_id(); 4850 HARD_TX_LOCK(dev, txq, cpu); 4851 if (!netif_xmit_stopped(txq)) { 4852 rc = netdev_start_xmit(skb, dev, txq, 0); 4853 if (dev_xmit_complete(rc)) 4854 free_skb = false; 4855 } 4856 HARD_TX_UNLOCK(dev, txq); 4857 if (free_skb) { 4858 trace_xdp_exception(dev, xdp_prog, XDP_TX); 4859 kfree_skb(skb); 4860 } 4861 } 4862 4863 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 4864 4865 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 4866 { 4867 if (xdp_prog) { 4868 struct xdp_buff xdp; 4869 u32 act; 4870 int err; 4871 4872 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog); 4873 if (act != XDP_PASS) { 4874 switch (act) { 4875 case XDP_REDIRECT: 4876 err = xdp_do_generic_redirect(skb->dev, skb, 4877 &xdp, xdp_prog); 4878 if (err) 4879 goto out_redir; 4880 break; 4881 case XDP_TX: 4882 generic_xdp_tx(skb, xdp_prog); 4883 break; 4884 } 4885 return XDP_DROP; 4886 } 4887 } 4888 return XDP_PASS; 4889 out_redir: 4890 kfree_skb(skb); 4891 return XDP_DROP; 4892 } 4893 EXPORT_SYMBOL_GPL(do_xdp_generic); 4894 4895 static int netif_rx_internal(struct sk_buff *skb) 4896 { 4897 int ret; 4898 4899 net_timestamp_check(netdev_tstamp_prequeue, skb); 4900 4901 trace_netif_rx(skb); 4902 4903 #ifdef CONFIG_RPS 4904 if (static_branch_unlikely(&rps_needed)) { 4905 struct rps_dev_flow voidflow, *rflow = &voidflow; 4906 int cpu; 4907 4908 preempt_disable(); 4909 rcu_read_lock(); 4910 4911 cpu = get_rps_cpu(skb->dev, skb, &rflow); 4912 if (cpu < 0) 4913 cpu = smp_processor_id(); 4914 4915 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4916 4917 rcu_read_unlock(); 4918 preempt_enable(); 4919 } else 4920 #endif 4921 { 4922 unsigned int qtail; 4923 4924 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 4925 put_cpu(); 4926 } 4927 return ret; 4928 } 4929 4930 /** 4931 * netif_rx - post buffer to the network code 4932 * @skb: buffer to post 4933 * 4934 * This function receives a packet from a device driver and queues it for 4935 * the upper (protocol) levels to process. It always succeeds. The buffer 4936 * may be dropped during processing for congestion control or by the 4937 * protocol layers. 4938 * 4939 * return values: 4940 * NET_RX_SUCCESS (no congestion) 4941 * NET_RX_DROP (packet was dropped) 4942 * 4943 */ 4944 4945 int netif_rx(struct sk_buff *skb) 4946 { 4947 int ret; 4948 4949 trace_netif_rx_entry(skb); 4950 4951 ret = netif_rx_internal(skb); 4952 trace_netif_rx_exit(ret); 4953 4954 return ret; 4955 } 4956 EXPORT_SYMBOL(netif_rx); 4957 4958 int netif_rx_ni(struct sk_buff *skb) 4959 { 4960 int err; 4961 4962 trace_netif_rx_ni_entry(skb); 4963 4964 preempt_disable(); 4965 err = netif_rx_internal(skb); 4966 if (local_softirq_pending()) 4967 do_softirq(); 4968 preempt_enable(); 4969 trace_netif_rx_ni_exit(err); 4970 4971 return err; 4972 } 4973 EXPORT_SYMBOL(netif_rx_ni); 4974 4975 int netif_rx_any_context(struct sk_buff *skb) 4976 { 4977 /* 4978 * If invoked from contexts which do not invoke bottom half 4979 * processing either at return from interrupt or when softrqs are 4980 * reenabled, use netif_rx_ni() which invokes bottomhalf processing 4981 * directly. 4982 */ 4983 if (in_interrupt()) 4984 return netif_rx(skb); 4985 else 4986 return netif_rx_ni(skb); 4987 } 4988 EXPORT_SYMBOL(netif_rx_any_context); 4989 4990 static __latent_entropy void net_tx_action(struct softirq_action *h) 4991 { 4992 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4993 4994 if (sd->completion_queue) { 4995 struct sk_buff *clist; 4996 4997 local_irq_disable(); 4998 clist = sd->completion_queue; 4999 sd->completion_queue = NULL; 5000 local_irq_enable(); 5001 5002 while (clist) { 5003 struct sk_buff *skb = clist; 5004 5005 clist = clist->next; 5006 5007 WARN_ON(refcount_read(&skb->users)); 5008 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 5009 trace_consume_skb(skb); 5010 else 5011 trace_kfree_skb(skb, net_tx_action); 5012 5013 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 5014 __kfree_skb(skb); 5015 else 5016 __kfree_skb_defer(skb); 5017 } 5018 } 5019 5020 if (sd->output_queue) { 5021 struct Qdisc *head; 5022 5023 local_irq_disable(); 5024 head = sd->output_queue; 5025 sd->output_queue = NULL; 5026 sd->output_queue_tailp = &sd->output_queue; 5027 local_irq_enable(); 5028 5029 rcu_read_lock(); 5030 5031 while (head) { 5032 struct Qdisc *q = head; 5033 spinlock_t *root_lock = NULL; 5034 5035 head = head->next_sched; 5036 5037 /* We need to make sure head->next_sched is read 5038 * before clearing __QDISC_STATE_SCHED 5039 */ 5040 smp_mb__before_atomic(); 5041 5042 if (!(q->flags & TCQ_F_NOLOCK)) { 5043 root_lock = qdisc_lock(q); 5044 spin_lock(root_lock); 5045 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, 5046 &q->state))) { 5047 /* There is a synchronize_net() between 5048 * STATE_DEACTIVATED flag being set and 5049 * qdisc_reset()/some_qdisc_is_busy() in 5050 * dev_deactivate(), so we can safely bail out 5051 * early here to avoid data race between 5052 * qdisc_deactivate() and some_qdisc_is_busy() 5053 * for lockless qdisc. 5054 */ 5055 clear_bit(__QDISC_STATE_SCHED, &q->state); 5056 continue; 5057 } 5058 5059 clear_bit(__QDISC_STATE_SCHED, &q->state); 5060 qdisc_run(q); 5061 if (root_lock) 5062 spin_unlock(root_lock); 5063 } 5064 5065 rcu_read_unlock(); 5066 } 5067 5068 xfrm_dev_backlog(sd); 5069 } 5070 5071 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 5072 /* This hook is defined here for ATM LANE */ 5073 int (*br_fdb_test_addr_hook)(struct net_device *dev, 5074 unsigned char *addr) __read_mostly; 5075 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 5076 #endif 5077 5078 static inline struct sk_buff * 5079 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 5080 struct net_device *orig_dev, bool *another) 5081 { 5082 #ifdef CONFIG_NET_CLS_ACT 5083 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress); 5084 struct tcf_result cl_res; 5085 5086 /* If there's at least one ingress present somewhere (so 5087 * we get here via enabled static key), remaining devices 5088 * that are not configured with an ingress qdisc will bail 5089 * out here. 5090 */ 5091 if (!miniq) 5092 return skb; 5093 5094 if (*pt_prev) { 5095 *ret = deliver_skb(skb, *pt_prev, orig_dev); 5096 *pt_prev = NULL; 5097 } 5098 5099 qdisc_skb_cb(skb)->pkt_len = skb->len; 5100 qdisc_skb_cb(skb)->mru = 0; 5101 qdisc_skb_cb(skb)->post_ct = false; 5102 skb->tc_at_ingress = 1; 5103 mini_qdisc_bstats_cpu_update(miniq, skb); 5104 5105 switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list, 5106 &cl_res, false)) { 5107 case TC_ACT_OK: 5108 case TC_ACT_RECLASSIFY: 5109 skb->tc_index = TC_H_MIN(cl_res.classid); 5110 break; 5111 case TC_ACT_SHOT: 5112 mini_qdisc_qstats_cpu_drop(miniq); 5113 kfree_skb(skb); 5114 return NULL; 5115 case TC_ACT_STOLEN: 5116 case TC_ACT_QUEUED: 5117 case TC_ACT_TRAP: 5118 consume_skb(skb); 5119 return NULL; 5120 case TC_ACT_REDIRECT: 5121 /* skb_mac_header check was done by cls/act_bpf, so 5122 * we can safely push the L2 header back before 5123 * redirecting to another netdev 5124 */ 5125 __skb_push(skb, skb->mac_len); 5126 if (skb_do_redirect(skb) == -EAGAIN) { 5127 __skb_pull(skb, skb->mac_len); 5128 *another = true; 5129 break; 5130 } 5131 return NULL; 5132 case TC_ACT_CONSUMED: 5133 return NULL; 5134 default: 5135 break; 5136 } 5137 #endif /* CONFIG_NET_CLS_ACT */ 5138 return skb; 5139 } 5140 5141 /** 5142 * netdev_is_rx_handler_busy - check if receive handler is registered 5143 * @dev: device to check 5144 * 5145 * Check if a receive handler is already registered for a given device. 5146 * Return true if there one. 5147 * 5148 * The caller must hold the rtnl_mutex. 5149 */ 5150 bool netdev_is_rx_handler_busy(struct net_device *dev) 5151 { 5152 ASSERT_RTNL(); 5153 return dev && rtnl_dereference(dev->rx_handler); 5154 } 5155 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 5156 5157 /** 5158 * netdev_rx_handler_register - register receive handler 5159 * @dev: device to register a handler for 5160 * @rx_handler: receive handler to register 5161 * @rx_handler_data: data pointer that is used by rx handler 5162 * 5163 * Register a receive handler for a device. This handler will then be 5164 * called from __netif_receive_skb. A negative errno code is returned 5165 * on a failure. 5166 * 5167 * The caller must hold the rtnl_mutex. 5168 * 5169 * For a general description of rx_handler, see enum rx_handler_result. 5170 */ 5171 int netdev_rx_handler_register(struct net_device *dev, 5172 rx_handler_func_t *rx_handler, 5173 void *rx_handler_data) 5174 { 5175 if (netdev_is_rx_handler_busy(dev)) 5176 return -EBUSY; 5177 5178 if (dev->priv_flags & IFF_NO_RX_HANDLER) 5179 return -EINVAL; 5180 5181 /* Note: rx_handler_data must be set before rx_handler */ 5182 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 5183 rcu_assign_pointer(dev->rx_handler, rx_handler); 5184 5185 return 0; 5186 } 5187 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 5188 5189 /** 5190 * netdev_rx_handler_unregister - unregister receive handler 5191 * @dev: device to unregister a handler from 5192 * 5193 * Unregister a receive handler from a device. 5194 * 5195 * The caller must hold the rtnl_mutex. 5196 */ 5197 void netdev_rx_handler_unregister(struct net_device *dev) 5198 { 5199 5200 ASSERT_RTNL(); 5201 RCU_INIT_POINTER(dev->rx_handler, NULL); 5202 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 5203 * section has a guarantee to see a non NULL rx_handler_data 5204 * as well. 5205 */ 5206 synchronize_net(); 5207 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 5208 } 5209 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 5210 5211 /* 5212 * Limit the use of PFMEMALLOC reserves to those protocols that implement 5213 * the special handling of PFMEMALLOC skbs. 5214 */ 5215 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 5216 { 5217 switch (skb->protocol) { 5218 case htons(ETH_P_ARP): 5219 case htons(ETH_P_IP): 5220 case htons(ETH_P_IPV6): 5221 case htons(ETH_P_8021Q): 5222 case htons(ETH_P_8021AD): 5223 return true; 5224 default: 5225 return false; 5226 } 5227 } 5228 5229 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 5230 int *ret, struct net_device *orig_dev) 5231 { 5232 if (nf_hook_ingress_active(skb)) { 5233 int ingress_retval; 5234 5235 if (*pt_prev) { 5236 *ret = deliver_skb(skb, *pt_prev, orig_dev); 5237 *pt_prev = NULL; 5238 } 5239 5240 rcu_read_lock(); 5241 ingress_retval = nf_hook_ingress(skb); 5242 rcu_read_unlock(); 5243 return ingress_retval; 5244 } 5245 return 0; 5246 } 5247 5248 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc, 5249 struct packet_type **ppt_prev) 5250 { 5251 struct packet_type *ptype, *pt_prev; 5252 rx_handler_func_t *rx_handler; 5253 struct sk_buff *skb = *pskb; 5254 struct net_device *orig_dev; 5255 bool deliver_exact = false; 5256 int ret = NET_RX_DROP; 5257 __be16 type; 5258 5259 net_timestamp_check(!netdev_tstamp_prequeue, skb); 5260 5261 trace_netif_receive_skb(skb); 5262 5263 orig_dev = skb->dev; 5264 5265 skb_reset_network_header(skb); 5266 if (!skb_transport_header_was_set(skb)) 5267 skb_reset_transport_header(skb); 5268 skb_reset_mac_len(skb); 5269 5270 pt_prev = NULL; 5271 5272 another_round: 5273 skb->skb_iif = skb->dev->ifindex; 5274 5275 __this_cpu_inc(softnet_data.processed); 5276 5277 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5278 int ret2; 5279 5280 preempt_disable(); 5281 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 5282 preempt_enable(); 5283 5284 if (ret2 != XDP_PASS) { 5285 ret = NET_RX_DROP; 5286 goto out; 5287 } 5288 skb_reset_mac_len(skb); 5289 } 5290 5291 if (eth_type_vlan(skb->protocol)) { 5292 skb = skb_vlan_untag(skb); 5293 if (unlikely(!skb)) 5294 goto out; 5295 } 5296 5297 if (skb_skip_tc_classify(skb)) 5298 goto skip_classify; 5299 5300 if (pfmemalloc) 5301 goto skip_taps; 5302 5303 list_for_each_entry_rcu(ptype, &ptype_all, list) { 5304 if (pt_prev) 5305 ret = deliver_skb(skb, pt_prev, orig_dev); 5306 pt_prev = ptype; 5307 } 5308 5309 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 5310 if (pt_prev) 5311 ret = deliver_skb(skb, pt_prev, orig_dev); 5312 pt_prev = ptype; 5313 } 5314 5315 skip_taps: 5316 #ifdef CONFIG_NET_INGRESS 5317 if (static_branch_unlikely(&ingress_needed_key)) { 5318 bool another = false; 5319 5320 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev, 5321 &another); 5322 if (another) 5323 goto another_round; 5324 if (!skb) 5325 goto out; 5326 5327 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 5328 goto out; 5329 } 5330 #endif 5331 skb_reset_redirect(skb); 5332 skip_classify: 5333 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 5334 goto drop; 5335 5336 if (skb_vlan_tag_present(skb)) { 5337 if (pt_prev) { 5338 ret = deliver_skb(skb, pt_prev, orig_dev); 5339 pt_prev = NULL; 5340 } 5341 if (vlan_do_receive(&skb)) 5342 goto another_round; 5343 else if (unlikely(!skb)) 5344 goto out; 5345 } 5346 5347 rx_handler = rcu_dereference(skb->dev->rx_handler); 5348 if (rx_handler) { 5349 if (pt_prev) { 5350 ret = deliver_skb(skb, pt_prev, orig_dev); 5351 pt_prev = NULL; 5352 } 5353 switch (rx_handler(&skb)) { 5354 case RX_HANDLER_CONSUMED: 5355 ret = NET_RX_SUCCESS; 5356 goto out; 5357 case RX_HANDLER_ANOTHER: 5358 goto another_round; 5359 case RX_HANDLER_EXACT: 5360 deliver_exact = true; 5361 break; 5362 case RX_HANDLER_PASS: 5363 break; 5364 default: 5365 BUG(); 5366 } 5367 } 5368 5369 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) { 5370 check_vlan_id: 5371 if (skb_vlan_tag_get_id(skb)) { 5372 /* Vlan id is non 0 and vlan_do_receive() above couldn't 5373 * find vlan device. 5374 */ 5375 skb->pkt_type = PACKET_OTHERHOST; 5376 } else if (eth_type_vlan(skb->protocol)) { 5377 /* Outer header is 802.1P with vlan 0, inner header is 5378 * 802.1Q or 802.1AD and vlan_do_receive() above could 5379 * not find vlan dev for vlan id 0. 5380 */ 5381 __vlan_hwaccel_clear_tag(skb); 5382 skb = skb_vlan_untag(skb); 5383 if (unlikely(!skb)) 5384 goto out; 5385 if (vlan_do_receive(&skb)) 5386 /* After stripping off 802.1P header with vlan 0 5387 * vlan dev is found for inner header. 5388 */ 5389 goto another_round; 5390 else if (unlikely(!skb)) 5391 goto out; 5392 else 5393 /* We have stripped outer 802.1P vlan 0 header. 5394 * But could not find vlan dev. 5395 * check again for vlan id to set OTHERHOST. 5396 */ 5397 goto check_vlan_id; 5398 } 5399 /* Note: we might in the future use prio bits 5400 * and set skb->priority like in vlan_do_receive() 5401 * For the time being, just ignore Priority Code Point 5402 */ 5403 __vlan_hwaccel_clear_tag(skb); 5404 } 5405 5406 type = skb->protocol; 5407 5408 /* deliver only exact match when indicated */ 5409 if (likely(!deliver_exact)) { 5410 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5411 &ptype_base[ntohs(type) & 5412 PTYPE_HASH_MASK]); 5413 } 5414 5415 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5416 &orig_dev->ptype_specific); 5417 5418 if (unlikely(skb->dev != orig_dev)) { 5419 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5420 &skb->dev->ptype_specific); 5421 } 5422 5423 if (pt_prev) { 5424 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 5425 goto drop; 5426 *ppt_prev = pt_prev; 5427 } else { 5428 drop: 5429 if (!deliver_exact) 5430 atomic_long_inc(&skb->dev->rx_dropped); 5431 else 5432 atomic_long_inc(&skb->dev->rx_nohandler); 5433 kfree_skb(skb); 5434 /* Jamal, now you will not able to escape explaining 5435 * me how you were going to use this. :-) 5436 */ 5437 ret = NET_RX_DROP; 5438 } 5439 5440 out: 5441 /* The invariant here is that if *ppt_prev is not NULL 5442 * then skb should also be non-NULL. 5443 * 5444 * Apparently *ppt_prev assignment above holds this invariant due to 5445 * skb dereferencing near it. 5446 */ 5447 *pskb = skb; 5448 return ret; 5449 } 5450 5451 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 5452 { 5453 struct net_device *orig_dev = skb->dev; 5454 struct packet_type *pt_prev = NULL; 5455 int ret; 5456 5457 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5458 if (pt_prev) 5459 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, 5460 skb->dev, pt_prev, orig_dev); 5461 return ret; 5462 } 5463 5464 /** 5465 * netif_receive_skb_core - special purpose version of netif_receive_skb 5466 * @skb: buffer to process 5467 * 5468 * More direct receive version of netif_receive_skb(). It should 5469 * only be used by callers that have a need to skip RPS and Generic XDP. 5470 * Caller must also take care of handling if ``(page_is_)pfmemalloc``. 5471 * 5472 * This function may only be called from softirq context and interrupts 5473 * should be enabled. 5474 * 5475 * Return values (usually ignored): 5476 * NET_RX_SUCCESS: no congestion 5477 * NET_RX_DROP: packet was dropped 5478 */ 5479 int netif_receive_skb_core(struct sk_buff *skb) 5480 { 5481 int ret; 5482 5483 rcu_read_lock(); 5484 ret = __netif_receive_skb_one_core(skb, false); 5485 rcu_read_unlock(); 5486 5487 return ret; 5488 } 5489 EXPORT_SYMBOL(netif_receive_skb_core); 5490 5491 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 5492 struct packet_type *pt_prev, 5493 struct net_device *orig_dev) 5494 { 5495 struct sk_buff *skb, *next; 5496 5497 if (!pt_prev) 5498 return; 5499 if (list_empty(head)) 5500 return; 5501 if (pt_prev->list_func != NULL) 5502 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv, 5503 ip_list_rcv, head, pt_prev, orig_dev); 5504 else 5505 list_for_each_entry_safe(skb, next, head, list) { 5506 skb_list_del_init(skb); 5507 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 5508 } 5509 } 5510 5511 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 5512 { 5513 /* Fast-path assumptions: 5514 * - There is no RX handler. 5515 * - Only one packet_type matches. 5516 * If either of these fails, we will end up doing some per-packet 5517 * processing in-line, then handling the 'last ptype' for the whole 5518 * sublist. This can't cause out-of-order delivery to any single ptype, 5519 * because the 'last ptype' must be constant across the sublist, and all 5520 * other ptypes are handled per-packet. 5521 */ 5522 /* Current (common) ptype of sublist */ 5523 struct packet_type *pt_curr = NULL; 5524 /* Current (common) orig_dev of sublist */ 5525 struct net_device *od_curr = NULL; 5526 struct list_head sublist; 5527 struct sk_buff *skb, *next; 5528 5529 INIT_LIST_HEAD(&sublist); 5530 list_for_each_entry_safe(skb, next, head, list) { 5531 struct net_device *orig_dev = skb->dev; 5532 struct packet_type *pt_prev = NULL; 5533 5534 skb_list_del_init(skb); 5535 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5536 if (!pt_prev) 5537 continue; 5538 if (pt_curr != pt_prev || od_curr != orig_dev) { 5539 /* dispatch old sublist */ 5540 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5541 /* start new sublist */ 5542 INIT_LIST_HEAD(&sublist); 5543 pt_curr = pt_prev; 5544 od_curr = orig_dev; 5545 } 5546 list_add_tail(&skb->list, &sublist); 5547 } 5548 5549 /* dispatch final sublist */ 5550 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5551 } 5552 5553 static int __netif_receive_skb(struct sk_buff *skb) 5554 { 5555 int ret; 5556 5557 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 5558 unsigned int noreclaim_flag; 5559 5560 /* 5561 * PFMEMALLOC skbs are special, they should 5562 * - be delivered to SOCK_MEMALLOC sockets only 5563 * - stay away from userspace 5564 * - have bounded memory usage 5565 * 5566 * Use PF_MEMALLOC as this saves us from propagating the allocation 5567 * context down to all allocation sites. 5568 */ 5569 noreclaim_flag = memalloc_noreclaim_save(); 5570 ret = __netif_receive_skb_one_core(skb, true); 5571 memalloc_noreclaim_restore(noreclaim_flag); 5572 } else 5573 ret = __netif_receive_skb_one_core(skb, false); 5574 5575 return ret; 5576 } 5577 5578 static void __netif_receive_skb_list(struct list_head *head) 5579 { 5580 unsigned long noreclaim_flag = 0; 5581 struct sk_buff *skb, *next; 5582 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 5583 5584 list_for_each_entry_safe(skb, next, head, list) { 5585 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 5586 struct list_head sublist; 5587 5588 /* Handle the previous sublist */ 5589 list_cut_before(&sublist, head, &skb->list); 5590 if (!list_empty(&sublist)) 5591 __netif_receive_skb_list_core(&sublist, pfmemalloc); 5592 pfmemalloc = !pfmemalloc; 5593 /* See comments in __netif_receive_skb */ 5594 if (pfmemalloc) 5595 noreclaim_flag = memalloc_noreclaim_save(); 5596 else 5597 memalloc_noreclaim_restore(noreclaim_flag); 5598 } 5599 } 5600 /* Handle the remaining sublist */ 5601 if (!list_empty(head)) 5602 __netif_receive_skb_list_core(head, pfmemalloc); 5603 /* Restore pflags */ 5604 if (pfmemalloc) 5605 memalloc_noreclaim_restore(noreclaim_flag); 5606 } 5607 5608 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 5609 { 5610 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 5611 struct bpf_prog *new = xdp->prog; 5612 int ret = 0; 5613 5614 if (new) { 5615 u32 i; 5616 5617 mutex_lock(&new->aux->used_maps_mutex); 5618 5619 /* generic XDP does not work with DEVMAPs that can 5620 * have a bpf_prog installed on an entry 5621 */ 5622 for (i = 0; i < new->aux->used_map_cnt; i++) { 5623 if (dev_map_can_have_prog(new->aux->used_maps[i]) || 5624 cpu_map_prog_allowed(new->aux->used_maps[i])) { 5625 mutex_unlock(&new->aux->used_maps_mutex); 5626 return -EINVAL; 5627 } 5628 } 5629 5630 mutex_unlock(&new->aux->used_maps_mutex); 5631 } 5632 5633 switch (xdp->command) { 5634 case XDP_SETUP_PROG: 5635 rcu_assign_pointer(dev->xdp_prog, new); 5636 if (old) 5637 bpf_prog_put(old); 5638 5639 if (old && !new) { 5640 static_branch_dec(&generic_xdp_needed_key); 5641 } else if (new && !old) { 5642 static_branch_inc(&generic_xdp_needed_key); 5643 dev_disable_lro(dev); 5644 dev_disable_gro_hw(dev); 5645 } 5646 break; 5647 5648 default: 5649 ret = -EINVAL; 5650 break; 5651 } 5652 5653 return ret; 5654 } 5655 5656 static int netif_receive_skb_internal(struct sk_buff *skb) 5657 { 5658 int ret; 5659 5660 net_timestamp_check(netdev_tstamp_prequeue, skb); 5661 5662 if (skb_defer_rx_timestamp(skb)) 5663 return NET_RX_SUCCESS; 5664 5665 rcu_read_lock(); 5666 #ifdef CONFIG_RPS 5667 if (static_branch_unlikely(&rps_needed)) { 5668 struct rps_dev_flow voidflow, *rflow = &voidflow; 5669 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5670 5671 if (cpu >= 0) { 5672 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5673 rcu_read_unlock(); 5674 return ret; 5675 } 5676 } 5677 #endif 5678 ret = __netif_receive_skb(skb); 5679 rcu_read_unlock(); 5680 return ret; 5681 } 5682 5683 static void netif_receive_skb_list_internal(struct list_head *head) 5684 { 5685 struct sk_buff *skb, *next; 5686 struct list_head sublist; 5687 5688 INIT_LIST_HEAD(&sublist); 5689 list_for_each_entry_safe(skb, next, head, list) { 5690 net_timestamp_check(netdev_tstamp_prequeue, skb); 5691 skb_list_del_init(skb); 5692 if (!skb_defer_rx_timestamp(skb)) 5693 list_add_tail(&skb->list, &sublist); 5694 } 5695 list_splice_init(&sublist, head); 5696 5697 rcu_read_lock(); 5698 #ifdef CONFIG_RPS 5699 if (static_branch_unlikely(&rps_needed)) { 5700 list_for_each_entry_safe(skb, next, head, list) { 5701 struct rps_dev_flow voidflow, *rflow = &voidflow; 5702 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5703 5704 if (cpu >= 0) { 5705 /* Will be handled, remove from list */ 5706 skb_list_del_init(skb); 5707 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5708 } 5709 } 5710 } 5711 #endif 5712 __netif_receive_skb_list(head); 5713 rcu_read_unlock(); 5714 } 5715 5716 /** 5717 * netif_receive_skb - process receive buffer from network 5718 * @skb: buffer to process 5719 * 5720 * netif_receive_skb() is the main receive data processing function. 5721 * It always succeeds. The buffer may be dropped during processing 5722 * for congestion control or by the protocol layers. 5723 * 5724 * This function may only be called from softirq context and interrupts 5725 * should be enabled. 5726 * 5727 * Return values (usually ignored): 5728 * NET_RX_SUCCESS: no congestion 5729 * NET_RX_DROP: packet was dropped 5730 */ 5731 int netif_receive_skb(struct sk_buff *skb) 5732 { 5733 int ret; 5734 5735 trace_netif_receive_skb_entry(skb); 5736 5737 ret = netif_receive_skb_internal(skb); 5738 trace_netif_receive_skb_exit(ret); 5739 5740 return ret; 5741 } 5742 EXPORT_SYMBOL(netif_receive_skb); 5743 5744 /** 5745 * netif_receive_skb_list - process many receive buffers from network 5746 * @head: list of skbs to process. 5747 * 5748 * Since return value of netif_receive_skb() is normally ignored, and 5749 * wouldn't be meaningful for a list, this function returns void. 5750 * 5751 * This function may only be called from softirq context and interrupts 5752 * should be enabled. 5753 */ 5754 void netif_receive_skb_list(struct list_head *head) 5755 { 5756 struct sk_buff *skb; 5757 5758 if (list_empty(head)) 5759 return; 5760 if (trace_netif_receive_skb_list_entry_enabled()) { 5761 list_for_each_entry(skb, head, list) 5762 trace_netif_receive_skb_list_entry(skb); 5763 } 5764 netif_receive_skb_list_internal(head); 5765 trace_netif_receive_skb_list_exit(0); 5766 } 5767 EXPORT_SYMBOL(netif_receive_skb_list); 5768 5769 static DEFINE_PER_CPU(struct work_struct, flush_works); 5770 5771 /* Network device is going away, flush any packets still pending */ 5772 static void flush_backlog(struct work_struct *work) 5773 { 5774 struct sk_buff *skb, *tmp; 5775 struct softnet_data *sd; 5776 5777 local_bh_disable(); 5778 sd = this_cpu_ptr(&softnet_data); 5779 5780 local_irq_disable(); 5781 rps_lock(sd); 5782 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 5783 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5784 __skb_unlink(skb, &sd->input_pkt_queue); 5785 dev_kfree_skb_irq(skb); 5786 input_queue_head_incr(sd); 5787 } 5788 } 5789 rps_unlock(sd); 5790 local_irq_enable(); 5791 5792 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 5793 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5794 __skb_unlink(skb, &sd->process_queue); 5795 kfree_skb(skb); 5796 input_queue_head_incr(sd); 5797 } 5798 } 5799 local_bh_enable(); 5800 } 5801 5802 static bool flush_required(int cpu) 5803 { 5804 #if IS_ENABLED(CONFIG_RPS) 5805 struct softnet_data *sd = &per_cpu(softnet_data, cpu); 5806 bool do_flush; 5807 5808 local_irq_disable(); 5809 rps_lock(sd); 5810 5811 /* as insertion into process_queue happens with the rps lock held, 5812 * process_queue access may race only with dequeue 5813 */ 5814 do_flush = !skb_queue_empty(&sd->input_pkt_queue) || 5815 !skb_queue_empty_lockless(&sd->process_queue); 5816 rps_unlock(sd); 5817 local_irq_enable(); 5818 5819 return do_flush; 5820 #endif 5821 /* without RPS we can't safely check input_pkt_queue: during a 5822 * concurrent remote skb_queue_splice() we can detect as empty both 5823 * input_pkt_queue and process_queue even if the latter could end-up 5824 * containing a lot of packets. 5825 */ 5826 return true; 5827 } 5828 5829 static void flush_all_backlogs(void) 5830 { 5831 static cpumask_t flush_cpus; 5832 unsigned int cpu; 5833 5834 /* since we are under rtnl lock protection we can use static data 5835 * for the cpumask and avoid allocating on stack the possibly 5836 * large mask 5837 */ 5838 ASSERT_RTNL(); 5839 5840 get_online_cpus(); 5841 5842 cpumask_clear(&flush_cpus); 5843 for_each_online_cpu(cpu) { 5844 if (flush_required(cpu)) { 5845 queue_work_on(cpu, system_highpri_wq, 5846 per_cpu_ptr(&flush_works, cpu)); 5847 cpumask_set_cpu(cpu, &flush_cpus); 5848 } 5849 } 5850 5851 /* we can have in flight packet[s] on the cpus we are not flushing, 5852 * synchronize_net() in unregister_netdevice_many() will take care of 5853 * them 5854 */ 5855 for_each_cpu(cpu, &flush_cpus) 5856 flush_work(per_cpu_ptr(&flush_works, cpu)); 5857 5858 put_online_cpus(); 5859 } 5860 5861 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */ 5862 static void gro_normal_list(struct napi_struct *napi) 5863 { 5864 if (!napi->rx_count) 5865 return; 5866 netif_receive_skb_list_internal(&napi->rx_list); 5867 INIT_LIST_HEAD(&napi->rx_list); 5868 napi->rx_count = 0; 5869 } 5870 5871 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded, 5872 * pass the whole batch up to the stack. 5873 */ 5874 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs) 5875 { 5876 list_add_tail(&skb->list, &napi->rx_list); 5877 napi->rx_count += segs; 5878 if (napi->rx_count >= gro_normal_batch) 5879 gro_normal_list(napi); 5880 } 5881 5882 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb) 5883 { 5884 struct packet_offload *ptype; 5885 __be16 type = skb->protocol; 5886 struct list_head *head = &offload_base; 5887 int err = -ENOENT; 5888 5889 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 5890 5891 if (NAPI_GRO_CB(skb)->count == 1) { 5892 skb_shinfo(skb)->gso_size = 0; 5893 goto out; 5894 } 5895 5896 rcu_read_lock(); 5897 list_for_each_entry_rcu(ptype, head, list) { 5898 if (ptype->type != type || !ptype->callbacks.gro_complete) 5899 continue; 5900 5901 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete, 5902 ipv6_gro_complete, inet_gro_complete, 5903 skb, 0); 5904 break; 5905 } 5906 rcu_read_unlock(); 5907 5908 if (err) { 5909 WARN_ON(&ptype->list == head); 5910 kfree_skb(skb); 5911 return NET_RX_SUCCESS; 5912 } 5913 5914 out: 5915 gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count); 5916 return NET_RX_SUCCESS; 5917 } 5918 5919 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index, 5920 bool flush_old) 5921 { 5922 struct list_head *head = &napi->gro_hash[index].list; 5923 struct sk_buff *skb, *p; 5924 5925 list_for_each_entry_safe_reverse(skb, p, head, list) { 5926 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 5927 return; 5928 skb_list_del_init(skb); 5929 napi_gro_complete(napi, skb); 5930 napi->gro_hash[index].count--; 5931 } 5932 5933 if (!napi->gro_hash[index].count) 5934 __clear_bit(index, &napi->gro_bitmask); 5935 } 5936 5937 /* napi->gro_hash[].list contains packets ordered by age. 5938 * youngest packets at the head of it. 5939 * Complete skbs in reverse order to reduce latencies. 5940 */ 5941 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 5942 { 5943 unsigned long bitmask = napi->gro_bitmask; 5944 unsigned int i, base = ~0U; 5945 5946 while ((i = ffs(bitmask)) != 0) { 5947 bitmask >>= i; 5948 base += i; 5949 __napi_gro_flush_chain(napi, base, flush_old); 5950 } 5951 } 5952 EXPORT_SYMBOL(napi_gro_flush); 5953 5954 static void gro_list_prepare(const struct list_head *head, 5955 const struct sk_buff *skb) 5956 { 5957 unsigned int maclen = skb->dev->hard_header_len; 5958 u32 hash = skb_get_hash_raw(skb); 5959 struct sk_buff *p; 5960 5961 list_for_each_entry(p, head, list) { 5962 unsigned long diffs; 5963 5964 NAPI_GRO_CB(p)->flush = 0; 5965 5966 if (hash != skb_get_hash_raw(p)) { 5967 NAPI_GRO_CB(p)->same_flow = 0; 5968 continue; 5969 } 5970 5971 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 5972 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb); 5973 if (skb_vlan_tag_present(p)) 5974 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb); 5975 diffs |= skb_metadata_dst_cmp(p, skb); 5976 diffs |= skb_metadata_differs(p, skb); 5977 if (maclen == ETH_HLEN) 5978 diffs |= compare_ether_header(skb_mac_header(p), 5979 skb_mac_header(skb)); 5980 else if (!diffs) 5981 diffs = memcmp(skb_mac_header(p), 5982 skb_mac_header(skb), 5983 maclen); 5984 NAPI_GRO_CB(p)->same_flow = !diffs; 5985 } 5986 } 5987 5988 static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff) 5989 { 5990 const struct skb_shared_info *pinfo = skb_shinfo(skb); 5991 const skb_frag_t *frag0 = &pinfo->frags[0]; 5992 5993 NAPI_GRO_CB(skb)->data_offset = 0; 5994 NAPI_GRO_CB(skb)->frag0 = NULL; 5995 NAPI_GRO_CB(skb)->frag0_len = 0; 5996 5997 if (!skb_headlen(skb) && pinfo->nr_frags && 5998 !PageHighMem(skb_frag_page(frag0)) && 5999 (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) { 6000 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 6001 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 6002 skb_frag_size(frag0), 6003 skb->end - skb->tail); 6004 } 6005 } 6006 6007 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 6008 { 6009 struct skb_shared_info *pinfo = skb_shinfo(skb); 6010 6011 BUG_ON(skb->end - skb->tail < grow); 6012 6013 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 6014 6015 skb->data_len -= grow; 6016 skb->tail += grow; 6017 6018 skb_frag_off_add(&pinfo->frags[0], grow); 6019 skb_frag_size_sub(&pinfo->frags[0], grow); 6020 6021 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 6022 skb_frag_unref(skb, 0); 6023 memmove(pinfo->frags, pinfo->frags + 1, 6024 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 6025 } 6026 } 6027 6028 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head) 6029 { 6030 struct sk_buff *oldest; 6031 6032 oldest = list_last_entry(head, struct sk_buff, list); 6033 6034 /* We are called with head length >= MAX_GRO_SKBS, so this is 6035 * impossible. 6036 */ 6037 if (WARN_ON_ONCE(!oldest)) 6038 return; 6039 6040 /* Do not adjust napi->gro_hash[].count, caller is adding a new 6041 * SKB to the chain. 6042 */ 6043 skb_list_del_init(oldest); 6044 napi_gro_complete(napi, oldest); 6045 } 6046 6047 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 6048 { 6049 u32 bucket = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1); 6050 struct gro_list *gro_list = &napi->gro_hash[bucket]; 6051 struct list_head *head = &offload_base; 6052 struct packet_offload *ptype; 6053 __be16 type = skb->protocol; 6054 struct sk_buff *pp = NULL; 6055 enum gro_result ret; 6056 int same_flow; 6057 int grow; 6058 6059 if (netif_elide_gro(skb->dev)) 6060 goto normal; 6061 6062 gro_list_prepare(&gro_list->list, skb); 6063 6064 rcu_read_lock(); 6065 list_for_each_entry_rcu(ptype, head, list) { 6066 if (ptype->type != type || !ptype->callbacks.gro_receive) 6067 continue; 6068 6069 skb_set_network_header(skb, skb_gro_offset(skb)); 6070 skb_reset_mac_len(skb); 6071 NAPI_GRO_CB(skb)->same_flow = 0; 6072 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 6073 NAPI_GRO_CB(skb)->free = 0; 6074 NAPI_GRO_CB(skb)->encap_mark = 0; 6075 NAPI_GRO_CB(skb)->recursion_counter = 0; 6076 NAPI_GRO_CB(skb)->is_fou = 0; 6077 NAPI_GRO_CB(skb)->is_atomic = 1; 6078 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 6079 6080 /* Setup for GRO checksum validation */ 6081 switch (skb->ip_summed) { 6082 case CHECKSUM_COMPLETE: 6083 NAPI_GRO_CB(skb)->csum = skb->csum; 6084 NAPI_GRO_CB(skb)->csum_valid = 1; 6085 NAPI_GRO_CB(skb)->csum_cnt = 0; 6086 break; 6087 case CHECKSUM_UNNECESSARY: 6088 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 6089 NAPI_GRO_CB(skb)->csum_valid = 0; 6090 break; 6091 default: 6092 NAPI_GRO_CB(skb)->csum_cnt = 0; 6093 NAPI_GRO_CB(skb)->csum_valid = 0; 6094 } 6095 6096 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive, 6097 ipv6_gro_receive, inet_gro_receive, 6098 &gro_list->list, skb); 6099 break; 6100 } 6101 rcu_read_unlock(); 6102 6103 if (&ptype->list == head) 6104 goto normal; 6105 6106 if (PTR_ERR(pp) == -EINPROGRESS) { 6107 ret = GRO_CONSUMED; 6108 goto ok; 6109 } 6110 6111 same_flow = NAPI_GRO_CB(skb)->same_flow; 6112 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 6113 6114 if (pp) { 6115 skb_list_del_init(pp); 6116 napi_gro_complete(napi, pp); 6117 gro_list->count--; 6118 } 6119 6120 if (same_flow) 6121 goto ok; 6122 6123 if (NAPI_GRO_CB(skb)->flush) 6124 goto normal; 6125 6126 if (unlikely(gro_list->count >= MAX_GRO_SKBS)) 6127 gro_flush_oldest(napi, &gro_list->list); 6128 else 6129 gro_list->count++; 6130 6131 NAPI_GRO_CB(skb)->count = 1; 6132 NAPI_GRO_CB(skb)->age = jiffies; 6133 NAPI_GRO_CB(skb)->last = skb; 6134 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 6135 list_add(&skb->list, &gro_list->list); 6136 ret = GRO_HELD; 6137 6138 pull: 6139 grow = skb_gro_offset(skb) - skb_headlen(skb); 6140 if (grow > 0) 6141 gro_pull_from_frag0(skb, grow); 6142 ok: 6143 if (gro_list->count) { 6144 if (!test_bit(bucket, &napi->gro_bitmask)) 6145 __set_bit(bucket, &napi->gro_bitmask); 6146 } else if (test_bit(bucket, &napi->gro_bitmask)) { 6147 __clear_bit(bucket, &napi->gro_bitmask); 6148 } 6149 6150 return ret; 6151 6152 normal: 6153 ret = GRO_NORMAL; 6154 goto pull; 6155 } 6156 6157 struct packet_offload *gro_find_receive_by_type(__be16 type) 6158 { 6159 struct list_head *offload_head = &offload_base; 6160 struct packet_offload *ptype; 6161 6162 list_for_each_entry_rcu(ptype, offload_head, list) { 6163 if (ptype->type != type || !ptype->callbacks.gro_receive) 6164 continue; 6165 return ptype; 6166 } 6167 return NULL; 6168 } 6169 EXPORT_SYMBOL(gro_find_receive_by_type); 6170 6171 struct packet_offload *gro_find_complete_by_type(__be16 type) 6172 { 6173 struct list_head *offload_head = &offload_base; 6174 struct packet_offload *ptype; 6175 6176 list_for_each_entry_rcu(ptype, offload_head, list) { 6177 if (ptype->type != type || !ptype->callbacks.gro_complete) 6178 continue; 6179 return ptype; 6180 } 6181 return NULL; 6182 } 6183 EXPORT_SYMBOL(gro_find_complete_by_type); 6184 6185 static gro_result_t napi_skb_finish(struct napi_struct *napi, 6186 struct sk_buff *skb, 6187 gro_result_t ret) 6188 { 6189 switch (ret) { 6190 case GRO_NORMAL: 6191 gro_normal_one(napi, skb, 1); 6192 break; 6193 6194 case GRO_MERGED_FREE: 6195 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 6196 napi_skb_free_stolen_head(skb); 6197 else 6198 __kfree_skb_defer(skb); 6199 break; 6200 6201 case GRO_HELD: 6202 case GRO_MERGED: 6203 case GRO_CONSUMED: 6204 break; 6205 } 6206 6207 return ret; 6208 } 6209 6210 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 6211 { 6212 gro_result_t ret; 6213 6214 skb_mark_napi_id(skb, napi); 6215 trace_napi_gro_receive_entry(skb); 6216 6217 skb_gro_reset_offset(skb, 0); 6218 6219 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb)); 6220 trace_napi_gro_receive_exit(ret); 6221 6222 return ret; 6223 } 6224 EXPORT_SYMBOL(napi_gro_receive); 6225 6226 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 6227 { 6228 if (unlikely(skb->pfmemalloc)) { 6229 consume_skb(skb); 6230 return; 6231 } 6232 __skb_pull(skb, skb_headlen(skb)); 6233 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 6234 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 6235 __vlan_hwaccel_clear_tag(skb); 6236 skb->dev = napi->dev; 6237 skb->skb_iif = 0; 6238 6239 /* eth_type_trans() assumes pkt_type is PACKET_HOST */ 6240 skb->pkt_type = PACKET_HOST; 6241 6242 skb->encapsulation = 0; 6243 skb_shinfo(skb)->gso_type = 0; 6244 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6245 skb_ext_reset(skb); 6246 6247 napi->skb = skb; 6248 } 6249 6250 struct sk_buff *napi_get_frags(struct napi_struct *napi) 6251 { 6252 struct sk_buff *skb = napi->skb; 6253 6254 if (!skb) { 6255 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 6256 if (skb) { 6257 napi->skb = skb; 6258 skb_mark_napi_id(skb, napi); 6259 } 6260 } 6261 return skb; 6262 } 6263 EXPORT_SYMBOL(napi_get_frags); 6264 6265 static gro_result_t napi_frags_finish(struct napi_struct *napi, 6266 struct sk_buff *skb, 6267 gro_result_t ret) 6268 { 6269 switch (ret) { 6270 case GRO_NORMAL: 6271 case GRO_HELD: 6272 __skb_push(skb, ETH_HLEN); 6273 skb->protocol = eth_type_trans(skb, skb->dev); 6274 if (ret == GRO_NORMAL) 6275 gro_normal_one(napi, skb, 1); 6276 break; 6277 6278 case GRO_MERGED_FREE: 6279 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 6280 napi_skb_free_stolen_head(skb); 6281 else 6282 napi_reuse_skb(napi, skb); 6283 break; 6284 6285 case GRO_MERGED: 6286 case GRO_CONSUMED: 6287 break; 6288 } 6289 6290 return ret; 6291 } 6292 6293 /* Upper GRO stack assumes network header starts at gro_offset=0 6294 * Drivers could call both napi_gro_frags() and napi_gro_receive() 6295 * We copy ethernet header into skb->data to have a common layout. 6296 */ 6297 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 6298 { 6299 struct sk_buff *skb = napi->skb; 6300 const struct ethhdr *eth; 6301 unsigned int hlen = sizeof(*eth); 6302 6303 napi->skb = NULL; 6304 6305 skb_reset_mac_header(skb); 6306 skb_gro_reset_offset(skb, hlen); 6307 6308 if (unlikely(skb_gro_header_hard(skb, hlen))) { 6309 eth = skb_gro_header_slow(skb, hlen, 0); 6310 if (unlikely(!eth)) { 6311 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 6312 __func__, napi->dev->name); 6313 napi_reuse_skb(napi, skb); 6314 return NULL; 6315 } 6316 } else { 6317 eth = (const struct ethhdr *)skb->data; 6318 gro_pull_from_frag0(skb, hlen); 6319 NAPI_GRO_CB(skb)->frag0 += hlen; 6320 NAPI_GRO_CB(skb)->frag0_len -= hlen; 6321 } 6322 __skb_pull(skb, hlen); 6323 6324 /* 6325 * This works because the only protocols we care about don't require 6326 * special handling. 6327 * We'll fix it up properly in napi_frags_finish() 6328 */ 6329 skb->protocol = eth->h_proto; 6330 6331 return skb; 6332 } 6333 6334 gro_result_t napi_gro_frags(struct napi_struct *napi) 6335 { 6336 gro_result_t ret; 6337 struct sk_buff *skb = napi_frags_skb(napi); 6338 6339 trace_napi_gro_frags_entry(skb); 6340 6341 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 6342 trace_napi_gro_frags_exit(ret); 6343 6344 return ret; 6345 } 6346 EXPORT_SYMBOL(napi_gro_frags); 6347 6348 /* Compute the checksum from gro_offset and return the folded value 6349 * after adding in any pseudo checksum. 6350 */ 6351 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 6352 { 6353 __wsum wsum; 6354 __sum16 sum; 6355 6356 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 6357 6358 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 6359 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 6360 /* See comments in __skb_checksum_complete(). */ 6361 if (likely(!sum)) { 6362 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 6363 !skb->csum_complete_sw) 6364 netdev_rx_csum_fault(skb->dev, skb); 6365 } 6366 6367 NAPI_GRO_CB(skb)->csum = wsum; 6368 NAPI_GRO_CB(skb)->csum_valid = 1; 6369 6370 return sum; 6371 } 6372 EXPORT_SYMBOL(__skb_gro_checksum_complete); 6373 6374 static void net_rps_send_ipi(struct softnet_data *remsd) 6375 { 6376 #ifdef CONFIG_RPS 6377 while (remsd) { 6378 struct softnet_data *next = remsd->rps_ipi_next; 6379 6380 if (cpu_online(remsd->cpu)) 6381 smp_call_function_single_async(remsd->cpu, &remsd->csd); 6382 remsd = next; 6383 } 6384 #endif 6385 } 6386 6387 /* 6388 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 6389 * Note: called with local irq disabled, but exits with local irq enabled. 6390 */ 6391 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 6392 { 6393 #ifdef CONFIG_RPS 6394 struct softnet_data *remsd = sd->rps_ipi_list; 6395 6396 if (remsd) { 6397 sd->rps_ipi_list = NULL; 6398 6399 local_irq_enable(); 6400 6401 /* Send pending IPI's to kick RPS processing on remote cpus. */ 6402 net_rps_send_ipi(remsd); 6403 } else 6404 #endif 6405 local_irq_enable(); 6406 } 6407 6408 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 6409 { 6410 #ifdef CONFIG_RPS 6411 return sd->rps_ipi_list != NULL; 6412 #else 6413 return false; 6414 #endif 6415 } 6416 6417 static int process_backlog(struct napi_struct *napi, int quota) 6418 { 6419 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 6420 bool again = true; 6421 int work = 0; 6422 6423 /* Check if we have pending ipi, its better to send them now, 6424 * not waiting net_rx_action() end. 6425 */ 6426 if (sd_has_rps_ipi_waiting(sd)) { 6427 local_irq_disable(); 6428 net_rps_action_and_irq_enable(sd); 6429 } 6430 6431 napi->weight = dev_rx_weight; 6432 while (again) { 6433 struct sk_buff *skb; 6434 6435 while ((skb = __skb_dequeue(&sd->process_queue))) { 6436 rcu_read_lock(); 6437 __netif_receive_skb(skb); 6438 rcu_read_unlock(); 6439 input_queue_head_incr(sd); 6440 if (++work >= quota) 6441 return work; 6442 6443 } 6444 6445 local_irq_disable(); 6446 rps_lock(sd); 6447 if (skb_queue_empty(&sd->input_pkt_queue)) { 6448 /* 6449 * Inline a custom version of __napi_complete(). 6450 * only current cpu owns and manipulates this napi, 6451 * and NAPI_STATE_SCHED is the only possible flag set 6452 * on backlog. 6453 * We can use a plain write instead of clear_bit(), 6454 * and we dont need an smp_mb() memory barrier. 6455 */ 6456 napi->state = 0; 6457 again = false; 6458 } else { 6459 skb_queue_splice_tail_init(&sd->input_pkt_queue, 6460 &sd->process_queue); 6461 } 6462 rps_unlock(sd); 6463 local_irq_enable(); 6464 } 6465 6466 return work; 6467 } 6468 6469 /** 6470 * __napi_schedule - schedule for receive 6471 * @n: entry to schedule 6472 * 6473 * The entry's receive function will be scheduled to run. 6474 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 6475 */ 6476 void __napi_schedule(struct napi_struct *n) 6477 { 6478 unsigned long flags; 6479 6480 local_irq_save(flags); 6481 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6482 local_irq_restore(flags); 6483 } 6484 EXPORT_SYMBOL(__napi_schedule); 6485 6486 /** 6487 * napi_schedule_prep - check if napi can be scheduled 6488 * @n: napi context 6489 * 6490 * Test if NAPI routine is already running, and if not mark 6491 * it as running. This is used as a condition variable to 6492 * insure only one NAPI poll instance runs. We also make 6493 * sure there is no pending NAPI disable. 6494 */ 6495 bool napi_schedule_prep(struct napi_struct *n) 6496 { 6497 unsigned long val, new; 6498 6499 do { 6500 val = READ_ONCE(n->state); 6501 if (unlikely(val & NAPIF_STATE_DISABLE)) 6502 return false; 6503 new = val | NAPIF_STATE_SCHED; 6504 6505 /* Sets STATE_MISSED bit if STATE_SCHED was already set 6506 * This was suggested by Alexander Duyck, as compiler 6507 * emits better code than : 6508 * if (val & NAPIF_STATE_SCHED) 6509 * new |= NAPIF_STATE_MISSED; 6510 */ 6511 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 6512 NAPIF_STATE_MISSED; 6513 } while (cmpxchg(&n->state, val, new) != val); 6514 6515 return !(val & NAPIF_STATE_SCHED); 6516 } 6517 EXPORT_SYMBOL(napi_schedule_prep); 6518 6519 /** 6520 * __napi_schedule_irqoff - schedule for receive 6521 * @n: entry to schedule 6522 * 6523 * Variant of __napi_schedule() assuming hard irqs are masked 6524 */ 6525 void __napi_schedule_irqoff(struct napi_struct *n) 6526 { 6527 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6528 } 6529 EXPORT_SYMBOL(__napi_schedule_irqoff); 6530 6531 bool napi_complete_done(struct napi_struct *n, int work_done) 6532 { 6533 unsigned long flags, val, new, timeout = 0; 6534 bool ret = true; 6535 6536 /* 6537 * 1) Don't let napi dequeue from the cpu poll list 6538 * just in case its running on a different cpu. 6539 * 2) If we are busy polling, do nothing here, we have 6540 * the guarantee we will be called later. 6541 */ 6542 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 6543 NAPIF_STATE_IN_BUSY_POLL))) 6544 return false; 6545 6546 if (work_done) { 6547 if (n->gro_bitmask) 6548 timeout = READ_ONCE(n->dev->gro_flush_timeout); 6549 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs); 6550 } 6551 if (n->defer_hard_irqs_count > 0) { 6552 n->defer_hard_irqs_count--; 6553 timeout = READ_ONCE(n->dev->gro_flush_timeout); 6554 if (timeout) 6555 ret = false; 6556 } 6557 if (n->gro_bitmask) { 6558 /* When the NAPI instance uses a timeout and keeps postponing 6559 * it, we need to bound somehow the time packets are kept in 6560 * the GRO layer 6561 */ 6562 napi_gro_flush(n, !!timeout); 6563 } 6564 6565 gro_normal_list(n); 6566 6567 if (unlikely(!list_empty(&n->poll_list))) { 6568 /* If n->poll_list is not empty, we need to mask irqs */ 6569 local_irq_save(flags); 6570 list_del_init(&n->poll_list); 6571 local_irq_restore(flags); 6572 } 6573 6574 do { 6575 val = READ_ONCE(n->state); 6576 6577 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 6578 6579 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED | 6580 NAPIF_STATE_SCHED_THREADED | 6581 NAPIF_STATE_PREFER_BUSY_POLL); 6582 6583 /* If STATE_MISSED was set, leave STATE_SCHED set, 6584 * because we will call napi->poll() one more time. 6585 * This C code was suggested by Alexander Duyck to help gcc. 6586 */ 6587 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6588 NAPIF_STATE_SCHED; 6589 } while (cmpxchg(&n->state, val, new) != val); 6590 6591 if (unlikely(val & NAPIF_STATE_MISSED)) { 6592 __napi_schedule(n); 6593 return false; 6594 } 6595 6596 if (timeout) 6597 hrtimer_start(&n->timer, ns_to_ktime(timeout), 6598 HRTIMER_MODE_REL_PINNED); 6599 return ret; 6600 } 6601 EXPORT_SYMBOL(napi_complete_done); 6602 6603 /* must be called under rcu_read_lock(), as we dont take a reference */ 6604 static struct napi_struct *napi_by_id(unsigned int napi_id) 6605 { 6606 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 6607 struct napi_struct *napi; 6608 6609 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 6610 if (napi->napi_id == napi_id) 6611 return napi; 6612 6613 return NULL; 6614 } 6615 6616 #if defined(CONFIG_NET_RX_BUSY_POLL) 6617 6618 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule) 6619 { 6620 if (!skip_schedule) { 6621 gro_normal_list(napi); 6622 __napi_schedule(napi); 6623 return; 6624 } 6625 6626 if (napi->gro_bitmask) { 6627 /* flush too old packets 6628 * If HZ < 1000, flush all packets. 6629 */ 6630 napi_gro_flush(napi, HZ >= 1000); 6631 } 6632 6633 gro_normal_list(napi); 6634 clear_bit(NAPI_STATE_SCHED, &napi->state); 6635 } 6636 6637 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll, 6638 u16 budget) 6639 { 6640 bool skip_schedule = false; 6641 unsigned long timeout; 6642 int rc; 6643 6644 /* Busy polling means there is a high chance device driver hard irq 6645 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6646 * set in napi_schedule_prep(). 6647 * Since we are about to call napi->poll() once more, we can safely 6648 * clear NAPI_STATE_MISSED. 6649 * 6650 * Note: x86 could use a single "lock and ..." instruction 6651 * to perform these two clear_bit() 6652 */ 6653 clear_bit(NAPI_STATE_MISSED, &napi->state); 6654 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6655 6656 local_bh_disable(); 6657 6658 if (prefer_busy_poll) { 6659 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs); 6660 timeout = READ_ONCE(napi->dev->gro_flush_timeout); 6661 if (napi->defer_hard_irqs_count && timeout) { 6662 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED); 6663 skip_schedule = true; 6664 } 6665 } 6666 6667 /* All we really want here is to re-enable device interrupts. 6668 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6669 */ 6670 rc = napi->poll(napi, budget); 6671 /* We can't gro_normal_list() here, because napi->poll() might have 6672 * rearmed the napi (napi_complete_done()) in which case it could 6673 * already be running on another CPU. 6674 */ 6675 trace_napi_poll(napi, rc, budget); 6676 netpoll_poll_unlock(have_poll_lock); 6677 if (rc == budget) 6678 __busy_poll_stop(napi, skip_schedule); 6679 local_bh_enable(); 6680 } 6681 6682 void napi_busy_loop(unsigned int napi_id, 6683 bool (*loop_end)(void *, unsigned long), 6684 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6685 { 6686 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6687 int (*napi_poll)(struct napi_struct *napi, int budget); 6688 void *have_poll_lock = NULL; 6689 struct napi_struct *napi; 6690 6691 restart: 6692 napi_poll = NULL; 6693 6694 rcu_read_lock(); 6695 6696 napi = napi_by_id(napi_id); 6697 if (!napi) 6698 goto out; 6699 6700 preempt_disable(); 6701 for (;;) { 6702 int work = 0; 6703 6704 local_bh_disable(); 6705 if (!napi_poll) { 6706 unsigned long val = READ_ONCE(napi->state); 6707 6708 /* If multiple threads are competing for this napi, 6709 * we avoid dirtying napi->state as much as we can. 6710 */ 6711 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6712 NAPIF_STATE_IN_BUSY_POLL)) { 6713 if (prefer_busy_poll) 6714 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6715 goto count; 6716 } 6717 if (cmpxchg(&napi->state, val, 6718 val | NAPIF_STATE_IN_BUSY_POLL | 6719 NAPIF_STATE_SCHED) != val) { 6720 if (prefer_busy_poll) 6721 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6722 goto count; 6723 } 6724 have_poll_lock = netpoll_poll_lock(napi); 6725 napi_poll = napi->poll; 6726 } 6727 work = napi_poll(napi, budget); 6728 trace_napi_poll(napi, work, budget); 6729 gro_normal_list(napi); 6730 count: 6731 if (work > 0) 6732 __NET_ADD_STATS(dev_net(napi->dev), 6733 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6734 local_bh_enable(); 6735 6736 if (!loop_end || loop_end(loop_end_arg, start_time)) 6737 break; 6738 6739 if (unlikely(need_resched())) { 6740 if (napi_poll) 6741 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget); 6742 preempt_enable(); 6743 rcu_read_unlock(); 6744 cond_resched(); 6745 if (loop_end(loop_end_arg, start_time)) 6746 return; 6747 goto restart; 6748 } 6749 cpu_relax(); 6750 } 6751 if (napi_poll) 6752 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget); 6753 preempt_enable(); 6754 out: 6755 rcu_read_unlock(); 6756 } 6757 EXPORT_SYMBOL(napi_busy_loop); 6758 6759 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6760 6761 static void napi_hash_add(struct napi_struct *napi) 6762 { 6763 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state)) 6764 return; 6765 6766 spin_lock(&napi_hash_lock); 6767 6768 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6769 do { 6770 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 6771 napi_gen_id = MIN_NAPI_ID; 6772 } while (napi_by_id(napi_gen_id)); 6773 napi->napi_id = napi_gen_id; 6774 6775 hlist_add_head_rcu(&napi->napi_hash_node, 6776 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6777 6778 spin_unlock(&napi_hash_lock); 6779 } 6780 6781 /* Warning : caller is responsible to make sure rcu grace period 6782 * is respected before freeing memory containing @napi 6783 */ 6784 static void napi_hash_del(struct napi_struct *napi) 6785 { 6786 spin_lock(&napi_hash_lock); 6787 6788 hlist_del_init_rcu(&napi->napi_hash_node); 6789 6790 spin_unlock(&napi_hash_lock); 6791 } 6792 6793 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 6794 { 6795 struct napi_struct *napi; 6796 6797 napi = container_of(timer, struct napi_struct, timer); 6798 6799 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 6800 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 6801 */ 6802 if (!napi_disable_pending(napi) && 6803 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) { 6804 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6805 __napi_schedule_irqoff(napi); 6806 } 6807 6808 return HRTIMER_NORESTART; 6809 } 6810 6811 static void init_gro_hash(struct napi_struct *napi) 6812 { 6813 int i; 6814 6815 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6816 INIT_LIST_HEAD(&napi->gro_hash[i].list); 6817 napi->gro_hash[i].count = 0; 6818 } 6819 napi->gro_bitmask = 0; 6820 } 6821 6822 int dev_set_threaded(struct net_device *dev, bool threaded) 6823 { 6824 struct napi_struct *napi; 6825 int err = 0; 6826 6827 if (dev->threaded == threaded) 6828 return 0; 6829 6830 if (threaded) { 6831 list_for_each_entry(napi, &dev->napi_list, dev_list) { 6832 if (!napi->thread) { 6833 err = napi_kthread_create(napi); 6834 if (err) { 6835 threaded = false; 6836 break; 6837 } 6838 } 6839 } 6840 } 6841 6842 dev->threaded = threaded; 6843 6844 /* Make sure kthread is created before THREADED bit 6845 * is set. 6846 */ 6847 smp_mb__before_atomic(); 6848 6849 /* Setting/unsetting threaded mode on a napi might not immediately 6850 * take effect, if the current napi instance is actively being 6851 * polled. In this case, the switch between threaded mode and 6852 * softirq mode will happen in the next round of napi_schedule(). 6853 * This should not cause hiccups/stalls to the live traffic. 6854 */ 6855 list_for_each_entry(napi, &dev->napi_list, dev_list) { 6856 if (threaded) 6857 set_bit(NAPI_STATE_THREADED, &napi->state); 6858 else 6859 clear_bit(NAPI_STATE_THREADED, &napi->state); 6860 } 6861 6862 return err; 6863 } 6864 EXPORT_SYMBOL(dev_set_threaded); 6865 6866 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 6867 int (*poll)(struct napi_struct *, int), int weight) 6868 { 6869 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state))) 6870 return; 6871 6872 INIT_LIST_HEAD(&napi->poll_list); 6873 INIT_HLIST_NODE(&napi->napi_hash_node); 6874 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 6875 napi->timer.function = napi_watchdog; 6876 init_gro_hash(napi); 6877 napi->skb = NULL; 6878 INIT_LIST_HEAD(&napi->rx_list); 6879 napi->rx_count = 0; 6880 napi->poll = poll; 6881 if (weight > NAPI_POLL_WEIGHT) 6882 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 6883 weight); 6884 napi->weight = weight; 6885 napi->dev = dev; 6886 #ifdef CONFIG_NETPOLL 6887 napi->poll_owner = -1; 6888 #endif 6889 set_bit(NAPI_STATE_SCHED, &napi->state); 6890 set_bit(NAPI_STATE_NPSVC, &napi->state); 6891 list_add_rcu(&napi->dev_list, &dev->napi_list); 6892 napi_hash_add(napi); 6893 /* Create kthread for this napi if dev->threaded is set. 6894 * Clear dev->threaded if kthread creation failed so that 6895 * threaded mode will not be enabled in napi_enable(). 6896 */ 6897 if (dev->threaded && napi_kthread_create(napi)) 6898 dev->threaded = 0; 6899 } 6900 EXPORT_SYMBOL(netif_napi_add); 6901 6902 void napi_disable(struct napi_struct *n) 6903 { 6904 might_sleep(); 6905 set_bit(NAPI_STATE_DISABLE, &n->state); 6906 6907 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 6908 msleep(1); 6909 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 6910 msleep(1); 6911 6912 hrtimer_cancel(&n->timer); 6913 6914 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state); 6915 clear_bit(NAPI_STATE_DISABLE, &n->state); 6916 clear_bit(NAPI_STATE_THREADED, &n->state); 6917 } 6918 EXPORT_SYMBOL(napi_disable); 6919 6920 /** 6921 * napi_enable - enable NAPI scheduling 6922 * @n: NAPI context 6923 * 6924 * Resume NAPI from being scheduled on this context. 6925 * Must be paired with napi_disable. 6926 */ 6927 void napi_enable(struct napi_struct *n) 6928 { 6929 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 6930 smp_mb__before_atomic(); 6931 clear_bit(NAPI_STATE_SCHED, &n->state); 6932 clear_bit(NAPI_STATE_NPSVC, &n->state); 6933 if (n->dev->threaded && n->thread) 6934 set_bit(NAPI_STATE_THREADED, &n->state); 6935 } 6936 EXPORT_SYMBOL(napi_enable); 6937 6938 static void flush_gro_hash(struct napi_struct *napi) 6939 { 6940 int i; 6941 6942 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6943 struct sk_buff *skb, *n; 6944 6945 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list) 6946 kfree_skb(skb); 6947 napi->gro_hash[i].count = 0; 6948 } 6949 } 6950 6951 /* Must be called in process context */ 6952 void __netif_napi_del(struct napi_struct *napi) 6953 { 6954 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state)) 6955 return; 6956 6957 napi_hash_del(napi); 6958 list_del_rcu(&napi->dev_list); 6959 napi_free_frags(napi); 6960 6961 flush_gro_hash(napi); 6962 napi->gro_bitmask = 0; 6963 6964 if (napi->thread) { 6965 kthread_stop(napi->thread); 6966 napi->thread = NULL; 6967 } 6968 } 6969 EXPORT_SYMBOL(__netif_napi_del); 6970 6971 static int __napi_poll(struct napi_struct *n, bool *repoll) 6972 { 6973 int work, weight; 6974 6975 weight = n->weight; 6976 6977 /* This NAPI_STATE_SCHED test is for avoiding a race 6978 * with netpoll's poll_napi(). Only the entity which 6979 * obtains the lock and sees NAPI_STATE_SCHED set will 6980 * actually make the ->poll() call. Therefore we avoid 6981 * accidentally calling ->poll() when NAPI is not scheduled. 6982 */ 6983 work = 0; 6984 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 6985 work = n->poll(n, weight); 6986 trace_napi_poll(n, work, weight); 6987 } 6988 6989 if (unlikely(work > weight)) 6990 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n", 6991 n->poll, work, weight); 6992 6993 if (likely(work < weight)) 6994 return work; 6995 6996 /* Drivers must not modify the NAPI state if they 6997 * consume the entire weight. In such cases this code 6998 * still "owns" the NAPI instance and therefore can 6999 * move the instance around on the list at-will. 7000 */ 7001 if (unlikely(napi_disable_pending(n))) { 7002 napi_complete(n); 7003 return work; 7004 } 7005 7006 /* The NAPI context has more processing work, but busy-polling 7007 * is preferred. Exit early. 7008 */ 7009 if (napi_prefer_busy_poll(n)) { 7010 if (napi_complete_done(n, work)) { 7011 /* If timeout is not set, we need to make sure 7012 * that the NAPI is re-scheduled. 7013 */ 7014 napi_schedule(n); 7015 } 7016 return work; 7017 } 7018 7019 if (n->gro_bitmask) { 7020 /* flush too old packets 7021 * If HZ < 1000, flush all packets. 7022 */ 7023 napi_gro_flush(n, HZ >= 1000); 7024 } 7025 7026 gro_normal_list(n); 7027 7028 /* Some drivers may have called napi_schedule 7029 * prior to exhausting their budget. 7030 */ 7031 if (unlikely(!list_empty(&n->poll_list))) { 7032 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 7033 n->dev ? n->dev->name : "backlog"); 7034 return work; 7035 } 7036 7037 *repoll = true; 7038 7039 return work; 7040 } 7041 7042 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 7043 { 7044 bool do_repoll = false; 7045 void *have; 7046 int work; 7047 7048 list_del_init(&n->poll_list); 7049 7050 have = netpoll_poll_lock(n); 7051 7052 work = __napi_poll(n, &do_repoll); 7053 7054 if (do_repoll) 7055 list_add_tail(&n->poll_list, repoll); 7056 7057 netpoll_poll_unlock(have); 7058 7059 return work; 7060 } 7061 7062 static int napi_thread_wait(struct napi_struct *napi) 7063 { 7064 bool woken = false; 7065 7066 set_current_state(TASK_INTERRUPTIBLE); 7067 7068 while (!kthread_should_stop()) { 7069 /* Testing SCHED_THREADED bit here to make sure the current 7070 * kthread owns this napi and could poll on this napi. 7071 * Testing SCHED bit is not enough because SCHED bit might be 7072 * set by some other busy poll thread or by napi_disable(). 7073 */ 7074 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) { 7075 WARN_ON(!list_empty(&napi->poll_list)); 7076 __set_current_state(TASK_RUNNING); 7077 return 0; 7078 } 7079 7080 schedule(); 7081 /* woken being true indicates this thread owns this napi. */ 7082 woken = true; 7083 set_current_state(TASK_INTERRUPTIBLE); 7084 } 7085 __set_current_state(TASK_RUNNING); 7086 7087 return -1; 7088 } 7089 7090 static int napi_threaded_poll(void *data) 7091 { 7092 struct napi_struct *napi = data; 7093 void *have; 7094 7095 while (!napi_thread_wait(napi)) { 7096 for (;;) { 7097 bool repoll = false; 7098 7099 local_bh_disable(); 7100 7101 have = netpoll_poll_lock(napi); 7102 __napi_poll(napi, &repoll); 7103 netpoll_poll_unlock(have); 7104 7105 local_bh_enable(); 7106 7107 if (!repoll) 7108 break; 7109 7110 cond_resched(); 7111 } 7112 } 7113 return 0; 7114 } 7115 7116 static __latent_entropy void net_rx_action(struct softirq_action *h) 7117 { 7118 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 7119 unsigned long time_limit = jiffies + 7120 usecs_to_jiffies(netdev_budget_usecs); 7121 int budget = netdev_budget; 7122 LIST_HEAD(list); 7123 LIST_HEAD(repoll); 7124 7125 local_irq_disable(); 7126 list_splice_init(&sd->poll_list, &list); 7127 local_irq_enable(); 7128 7129 for (;;) { 7130 struct napi_struct *n; 7131 7132 if (list_empty(&list)) { 7133 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 7134 return; 7135 break; 7136 } 7137 7138 n = list_first_entry(&list, struct napi_struct, poll_list); 7139 budget -= napi_poll(n, &repoll); 7140 7141 /* If softirq window is exhausted then punt. 7142 * Allow this to run for 2 jiffies since which will allow 7143 * an average latency of 1.5/HZ. 7144 */ 7145 if (unlikely(budget <= 0 || 7146 time_after_eq(jiffies, time_limit))) { 7147 sd->time_squeeze++; 7148 break; 7149 } 7150 } 7151 7152 local_irq_disable(); 7153 7154 list_splice_tail_init(&sd->poll_list, &list); 7155 list_splice_tail(&repoll, &list); 7156 list_splice(&list, &sd->poll_list); 7157 if (!list_empty(&sd->poll_list)) 7158 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 7159 7160 net_rps_action_and_irq_enable(sd); 7161 } 7162 7163 struct netdev_adjacent { 7164 struct net_device *dev; 7165 7166 /* upper master flag, there can only be one master device per list */ 7167 bool master; 7168 7169 /* lookup ignore flag */ 7170 bool ignore; 7171 7172 /* counter for the number of times this device was added to us */ 7173 u16 ref_nr; 7174 7175 /* private field for the users */ 7176 void *private; 7177 7178 struct list_head list; 7179 struct rcu_head rcu; 7180 }; 7181 7182 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 7183 struct list_head *adj_list) 7184 { 7185 struct netdev_adjacent *adj; 7186 7187 list_for_each_entry(adj, adj_list, list) { 7188 if (adj->dev == adj_dev) 7189 return adj; 7190 } 7191 return NULL; 7192 } 7193 7194 static int ____netdev_has_upper_dev(struct net_device *upper_dev, 7195 struct netdev_nested_priv *priv) 7196 { 7197 struct net_device *dev = (struct net_device *)priv->data; 7198 7199 return upper_dev == dev; 7200 } 7201 7202 /** 7203 * netdev_has_upper_dev - Check if device is linked to an upper device 7204 * @dev: device 7205 * @upper_dev: upper device to check 7206 * 7207 * Find out if a device is linked to specified upper device and return true 7208 * in case it is. Note that this checks only immediate upper device, 7209 * not through a complete stack of devices. The caller must hold the RTNL lock. 7210 */ 7211 bool netdev_has_upper_dev(struct net_device *dev, 7212 struct net_device *upper_dev) 7213 { 7214 struct netdev_nested_priv priv = { 7215 .data = (void *)upper_dev, 7216 }; 7217 7218 ASSERT_RTNL(); 7219 7220 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 7221 &priv); 7222 } 7223 EXPORT_SYMBOL(netdev_has_upper_dev); 7224 7225 /** 7226 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device 7227 * @dev: device 7228 * @upper_dev: upper device to check 7229 * 7230 * Find out if a device is linked to specified upper device and return true 7231 * in case it is. Note that this checks the entire upper device chain. 7232 * The caller must hold rcu lock. 7233 */ 7234 7235 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 7236 struct net_device *upper_dev) 7237 { 7238 struct netdev_nested_priv priv = { 7239 .data = (void *)upper_dev, 7240 }; 7241 7242 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 7243 &priv); 7244 } 7245 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 7246 7247 /** 7248 * netdev_has_any_upper_dev - Check if device is linked to some device 7249 * @dev: device 7250 * 7251 * Find out if a device is linked to an upper device and return true in case 7252 * it is. The caller must hold the RTNL lock. 7253 */ 7254 bool netdev_has_any_upper_dev(struct net_device *dev) 7255 { 7256 ASSERT_RTNL(); 7257 7258 return !list_empty(&dev->adj_list.upper); 7259 } 7260 EXPORT_SYMBOL(netdev_has_any_upper_dev); 7261 7262 /** 7263 * netdev_master_upper_dev_get - Get master upper device 7264 * @dev: device 7265 * 7266 * Find a master upper device and return pointer to it or NULL in case 7267 * it's not there. The caller must hold the RTNL lock. 7268 */ 7269 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 7270 { 7271 struct netdev_adjacent *upper; 7272 7273 ASSERT_RTNL(); 7274 7275 if (list_empty(&dev->adj_list.upper)) 7276 return NULL; 7277 7278 upper = list_first_entry(&dev->adj_list.upper, 7279 struct netdev_adjacent, list); 7280 if (likely(upper->master)) 7281 return upper->dev; 7282 return NULL; 7283 } 7284 EXPORT_SYMBOL(netdev_master_upper_dev_get); 7285 7286 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev) 7287 { 7288 struct netdev_adjacent *upper; 7289 7290 ASSERT_RTNL(); 7291 7292 if (list_empty(&dev->adj_list.upper)) 7293 return NULL; 7294 7295 upper = list_first_entry(&dev->adj_list.upper, 7296 struct netdev_adjacent, list); 7297 if (likely(upper->master) && !upper->ignore) 7298 return upper->dev; 7299 return NULL; 7300 } 7301 7302 /** 7303 * netdev_has_any_lower_dev - Check if device is linked to some device 7304 * @dev: device 7305 * 7306 * Find out if a device is linked to a lower device and return true in case 7307 * it is. The caller must hold the RTNL lock. 7308 */ 7309 static bool netdev_has_any_lower_dev(struct net_device *dev) 7310 { 7311 ASSERT_RTNL(); 7312 7313 return !list_empty(&dev->adj_list.lower); 7314 } 7315 7316 void *netdev_adjacent_get_private(struct list_head *adj_list) 7317 { 7318 struct netdev_adjacent *adj; 7319 7320 adj = list_entry(adj_list, struct netdev_adjacent, list); 7321 7322 return adj->private; 7323 } 7324 EXPORT_SYMBOL(netdev_adjacent_get_private); 7325 7326 /** 7327 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 7328 * @dev: device 7329 * @iter: list_head ** of the current position 7330 * 7331 * Gets the next device from the dev's upper list, starting from iter 7332 * position. The caller must hold RCU read lock. 7333 */ 7334 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 7335 struct list_head **iter) 7336 { 7337 struct netdev_adjacent *upper; 7338 7339 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7340 7341 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7342 7343 if (&upper->list == &dev->adj_list.upper) 7344 return NULL; 7345 7346 *iter = &upper->list; 7347 7348 return upper->dev; 7349 } 7350 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 7351 7352 static struct net_device *__netdev_next_upper_dev(struct net_device *dev, 7353 struct list_head **iter, 7354 bool *ignore) 7355 { 7356 struct netdev_adjacent *upper; 7357 7358 upper = list_entry((*iter)->next, struct netdev_adjacent, list); 7359 7360 if (&upper->list == &dev->adj_list.upper) 7361 return NULL; 7362 7363 *iter = &upper->list; 7364 *ignore = upper->ignore; 7365 7366 return upper->dev; 7367 } 7368 7369 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 7370 struct list_head **iter) 7371 { 7372 struct netdev_adjacent *upper; 7373 7374 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7375 7376 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7377 7378 if (&upper->list == &dev->adj_list.upper) 7379 return NULL; 7380 7381 *iter = &upper->list; 7382 7383 return upper->dev; 7384 } 7385 7386 static int __netdev_walk_all_upper_dev(struct net_device *dev, 7387 int (*fn)(struct net_device *dev, 7388 struct netdev_nested_priv *priv), 7389 struct netdev_nested_priv *priv) 7390 { 7391 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7392 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7393 int ret, cur = 0; 7394 bool ignore; 7395 7396 now = dev; 7397 iter = &dev->adj_list.upper; 7398 7399 while (1) { 7400 if (now != dev) { 7401 ret = fn(now, priv); 7402 if (ret) 7403 return ret; 7404 } 7405 7406 next = NULL; 7407 while (1) { 7408 udev = __netdev_next_upper_dev(now, &iter, &ignore); 7409 if (!udev) 7410 break; 7411 if (ignore) 7412 continue; 7413 7414 next = udev; 7415 niter = &udev->adj_list.upper; 7416 dev_stack[cur] = now; 7417 iter_stack[cur++] = iter; 7418 break; 7419 } 7420 7421 if (!next) { 7422 if (!cur) 7423 return 0; 7424 next = dev_stack[--cur]; 7425 niter = iter_stack[cur]; 7426 } 7427 7428 now = next; 7429 iter = niter; 7430 } 7431 7432 return 0; 7433 } 7434 7435 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 7436 int (*fn)(struct net_device *dev, 7437 struct netdev_nested_priv *priv), 7438 struct netdev_nested_priv *priv) 7439 { 7440 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7441 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7442 int ret, cur = 0; 7443 7444 now = dev; 7445 iter = &dev->adj_list.upper; 7446 7447 while (1) { 7448 if (now != dev) { 7449 ret = fn(now, priv); 7450 if (ret) 7451 return ret; 7452 } 7453 7454 next = NULL; 7455 while (1) { 7456 udev = netdev_next_upper_dev_rcu(now, &iter); 7457 if (!udev) 7458 break; 7459 7460 next = udev; 7461 niter = &udev->adj_list.upper; 7462 dev_stack[cur] = now; 7463 iter_stack[cur++] = iter; 7464 break; 7465 } 7466 7467 if (!next) { 7468 if (!cur) 7469 return 0; 7470 next = dev_stack[--cur]; 7471 niter = iter_stack[cur]; 7472 } 7473 7474 now = next; 7475 iter = niter; 7476 } 7477 7478 return 0; 7479 } 7480 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 7481 7482 static bool __netdev_has_upper_dev(struct net_device *dev, 7483 struct net_device *upper_dev) 7484 { 7485 struct netdev_nested_priv priv = { 7486 .flags = 0, 7487 .data = (void *)upper_dev, 7488 }; 7489 7490 ASSERT_RTNL(); 7491 7492 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev, 7493 &priv); 7494 } 7495 7496 /** 7497 * netdev_lower_get_next_private - Get the next ->private from the 7498 * lower neighbour list 7499 * @dev: device 7500 * @iter: list_head ** of the current position 7501 * 7502 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7503 * list, starting from iter position. The caller must hold either hold the 7504 * RTNL lock or its own locking that guarantees that the neighbour lower 7505 * list will remain unchanged. 7506 */ 7507 void *netdev_lower_get_next_private(struct net_device *dev, 7508 struct list_head **iter) 7509 { 7510 struct netdev_adjacent *lower; 7511 7512 lower = list_entry(*iter, struct netdev_adjacent, list); 7513 7514 if (&lower->list == &dev->adj_list.lower) 7515 return NULL; 7516 7517 *iter = lower->list.next; 7518 7519 return lower->private; 7520 } 7521 EXPORT_SYMBOL(netdev_lower_get_next_private); 7522 7523 /** 7524 * netdev_lower_get_next_private_rcu - Get the next ->private from the 7525 * lower neighbour list, RCU 7526 * variant 7527 * @dev: device 7528 * @iter: list_head ** of the current position 7529 * 7530 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7531 * list, starting from iter position. The caller must hold RCU read lock. 7532 */ 7533 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 7534 struct list_head **iter) 7535 { 7536 struct netdev_adjacent *lower; 7537 7538 WARN_ON_ONCE(!rcu_read_lock_held()); 7539 7540 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7541 7542 if (&lower->list == &dev->adj_list.lower) 7543 return NULL; 7544 7545 *iter = &lower->list; 7546 7547 return lower->private; 7548 } 7549 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 7550 7551 /** 7552 * netdev_lower_get_next - Get the next device from the lower neighbour 7553 * list 7554 * @dev: device 7555 * @iter: list_head ** of the current position 7556 * 7557 * Gets the next netdev_adjacent from the dev's lower neighbour 7558 * list, starting from iter position. The caller must hold RTNL lock or 7559 * its own locking that guarantees that the neighbour lower 7560 * list will remain unchanged. 7561 */ 7562 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 7563 { 7564 struct netdev_adjacent *lower; 7565 7566 lower = list_entry(*iter, struct netdev_adjacent, list); 7567 7568 if (&lower->list == &dev->adj_list.lower) 7569 return NULL; 7570 7571 *iter = lower->list.next; 7572 7573 return lower->dev; 7574 } 7575 EXPORT_SYMBOL(netdev_lower_get_next); 7576 7577 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 7578 struct list_head **iter) 7579 { 7580 struct netdev_adjacent *lower; 7581 7582 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7583 7584 if (&lower->list == &dev->adj_list.lower) 7585 return NULL; 7586 7587 *iter = &lower->list; 7588 7589 return lower->dev; 7590 } 7591 7592 static struct net_device *__netdev_next_lower_dev(struct net_device *dev, 7593 struct list_head **iter, 7594 bool *ignore) 7595 { 7596 struct netdev_adjacent *lower; 7597 7598 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7599 7600 if (&lower->list == &dev->adj_list.lower) 7601 return NULL; 7602 7603 *iter = &lower->list; 7604 *ignore = lower->ignore; 7605 7606 return lower->dev; 7607 } 7608 7609 int netdev_walk_all_lower_dev(struct net_device *dev, 7610 int (*fn)(struct net_device *dev, 7611 struct netdev_nested_priv *priv), 7612 struct netdev_nested_priv *priv) 7613 { 7614 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7615 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7616 int ret, cur = 0; 7617 7618 now = dev; 7619 iter = &dev->adj_list.lower; 7620 7621 while (1) { 7622 if (now != dev) { 7623 ret = fn(now, priv); 7624 if (ret) 7625 return ret; 7626 } 7627 7628 next = NULL; 7629 while (1) { 7630 ldev = netdev_next_lower_dev(now, &iter); 7631 if (!ldev) 7632 break; 7633 7634 next = ldev; 7635 niter = &ldev->adj_list.lower; 7636 dev_stack[cur] = now; 7637 iter_stack[cur++] = iter; 7638 break; 7639 } 7640 7641 if (!next) { 7642 if (!cur) 7643 return 0; 7644 next = dev_stack[--cur]; 7645 niter = iter_stack[cur]; 7646 } 7647 7648 now = next; 7649 iter = niter; 7650 } 7651 7652 return 0; 7653 } 7654 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 7655 7656 static int __netdev_walk_all_lower_dev(struct net_device *dev, 7657 int (*fn)(struct net_device *dev, 7658 struct netdev_nested_priv *priv), 7659 struct netdev_nested_priv *priv) 7660 { 7661 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7662 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7663 int ret, cur = 0; 7664 bool ignore; 7665 7666 now = dev; 7667 iter = &dev->adj_list.lower; 7668 7669 while (1) { 7670 if (now != dev) { 7671 ret = fn(now, priv); 7672 if (ret) 7673 return ret; 7674 } 7675 7676 next = NULL; 7677 while (1) { 7678 ldev = __netdev_next_lower_dev(now, &iter, &ignore); 7679 if (!ldev) 7680 break; 7681 if (ignore) 7682 continue; 7683 7684 next = ldev; 7685 niter = &ldev->adj_list.lower; 7686 dev_stack[cur] = now; 7687 iter_stack[cur++] = iter; 7688 break; 7689 } 7690 7691 if (!next) { 7692 if (!cur) 7693 return 0; 7694 next = dev_stack[--cur]; 7695 niter = iter_stack[cur]; 7696 } 7697 7698 now = next; 7699 iter = niter; 7700 } 7701 7702 return 0; 7703 } 7704 7705 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 7706 struct list_head **iter) 7707 { 7708 struct netdev_adjacent *lower; 7709 7710 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7711 if (&lower->list == &dev->adj_list.lower) 7712 return NULL; 7713 7714 *iter = &lower->list; 7715 7716 return lower->dev; 7717 } 7718 EXPORT_SYMBOL(netdev_next_lower_dev_rcu); 7719 7720 static u8 __netdev_upper_depth(struct net_device *dev) 7721 { 7722 struct net_device *udev; 7723 struct list_head *iter; 7724 u8 max_depth = 0; 7725 bool ignore; 7726 7727 for (iter = &dev->adj_list.upper, 7728 udev = __netdev_next_upper_dev(dev, &iter, &ignore); 7729 udev; 7730 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) { 7731 if (ignore) 7732 continue; 7733 if (max_depth < udev->upper_level) 7734 max_depth = udev->upper_level; 7735 } 7736 7737 return max_depth; 7738 } 7739 7740 static u8 __netdev_lower_depth(struct net_device *dev) 7741 { 7742 struct net_device *ldev; 7743 struct list_head *iter; 7744 u8 max_depth = 0; 7745 bool ignore; 7746 7747 for (iter = &dev->adj_list.lower, 7748 ldev = __netdev_next_lower_dev(dev, &iter, &ignore); 7749 ldev; 7750 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) { 7751 if (ignore) 7752 continue; 7753 if (max_depth < ldev->lower_level) 7754 max_depth = ldev->lower_level; 7755 } 7756 7757 return max_depth; 7758 } 7759 7760 static int __netdev_update_upper_level(struct net_device *dev, 7761 struct netdev_nested_priv *__unused) 7762 { 7763 dev->upper_level = __netdev_upper_depth(dev) + 1; 7764 return 0; 7765 } 7766 7767 static int __netdev_update_lower_level(struct net_device *dev, 7768 struct netdev_nested_priv *priv) 7769 { 7770 dev->lower_level = __netdev_lower_depth(dev) + 1; 7771 7772 #ifdef CONFIG_LOCKDEP 7773 if (!priv) 7774 return 0; 7775 7776 if (priv->flags & NESTED_SYNC_IMM) 7777 dev->nested_level = dev->lower_level - 1; 7778 if (priv->flags & NESTED_SYNC_TODO) 7779 net_unlink_todo(dev); 7780 #endif 7781 return 0; 7782 } 7783 7784 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 7785 int (*fn)(struct net_device *dev, 7786 struct netdev_nested_priv *priv), 7787 struct netdev_nested_priv *priv) 7788 { 7789 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7790 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7791 int ret, cur = 0; 7792 7793 now = dev; 7794 iter = &dev->adj_list.lower; 7795 7796 while (1) { 7797 if (now != dev) { 7798 ret = fn(now, priv); 7799 if (ret) 7800 return ret; 7801 } 7802 7803 next = NULL; 7804 while (1) { 7805 ldev = netdev_next_lower_dev_rcu(now, &iter); 7806 if (!ldev) 7807 break; 7808 7809 next = ldev; 7810 niter = &ldev->adj_list.lower; 7811 dev_stack[cur] = now; 7812 iter_stack[cur++] = iter; 7813 break; 7814 } 7815 7816 if (!next) { 7817 if (!cur) 7818 return 0; 7819 next = dev_stack[--cur]; 7820 niter = iter_stack[cur]; 7821 } 7822 7823 now = next; 7824 iter = niter; 7825 } 7826 7827 return 0; 7828 } 7829 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 7830 7831 /** 7832 * netdev_lower_get_first_private_rcu - Get the first ->private from the 7833 * lower neighbour list, RCU 7834 * variant 7835 * @dev: device 7836 * 7837 * Gets the first netdev_adjacent->private from the dev's lower neighbour 7838 * list. The caller must hold RCU read lock. 7839 */ 7840 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 7841 { 7842 struct netdev_adjacent *lower; 7843 7844 lower = list_first_or_null_rcu(&dev->adj_list.lower, 7845 struct netdev_adjacent, list); 7846 if (lower) 7847 return lower->private; 7848 return NULL; 7849 } 7850 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 7851 7852 /** 7853 * netdev_master_upper_dev_get_rcu - Get master upper device 7854 * @dev: device 7855 * 7856 * Find a master upper device and return pointer to it or NULL in case 7857 * it's not there. The caller must hold the RCU read lock. 7858 */ 7859 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 7860 { 7861 struct netdev_adjacent *upper; 7862 7863 upper = list_first_or_null_rcu(&dev->adj_list.upper, 7864 struct netdev_adjacent, list); 7865 if (upper && likely(upper->master)) 7866 return upper->dev; 7867 return NULL; 7868 } 7869 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 7870 7871 static int netdev_adjacent_sysfs_add(struct net_device *dev, 7872 struct net_device *adj_dev, 7873 struct list_head *dev_list) 7874 { 7875 char linkname[IFNAMSIZ+7]; 7876 7877 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7878 "upper_%s" : "lower_%s", adj_dev->name); 7879 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 7880 linkname); 7881 } 7882 static void netdev_adjacent_sysfs_del(struct net_device *dev, 7883 char *name, 7884 struct list_head *dev_list) 7885 { 7886 char linkname[IFNAMSIZ+7]; 7887 7888 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7889 "upper_%s" : "lower_%s", name); 7890 sysfs_remove_link(&(dev->dev.kobj), linkname); 7891 } 7892 7893 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 7894 struct net_device *adj_dev, 7895 struct list_head *dev_list) 7896 { 7897 return (dev_list == &dev->adj_list.upper || 7898 dev_list == &dev->adj_list.lower) && 7899 net_eq(dev_net(dev), dev_net(adj_dev)); 7900 } 7901 7902 static int __netdev_adjacent_dev_insert(struct net_device *dev, 7903 struct net_device *adj_dev, 7904 struct list_head *dev_list, 7905 void *private, bool master) 7906 { 7907 struct netdev_adjacent *adj; 7908 int ret; 7909 7910 adj = __netdev_find_adj(adj_dev, dev_list); 7911 7912 if (adj) { 7913 adj->ref_nr += 1; 7914 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 7915 dev->name, adj_dev->name, adj->ref_nr); 7916 7917 return 0; 7918 } 7919 7920 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 7921 if (!adj) 7922 return -ENOMEM; 7923 7924 adj->dev = adj_dev; 7925 adj->master = master; 7926 adj->ref_nr = 1; 7927 adj->private = private; 7928 adj->ignore = false; 7929 dev_hold(adj_dev); 7930 7931 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 7932 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 7933 7934 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 7935 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 7936 if (ret) 7937 goto free_adj; 7938 } 7939 7940 /* Ensure that master link is always the first item in list. */ 7941 if (master) { 7942 ret = sysfs_create_link(&(dev->dev.kobj), 7943 &(adj_dev->dev.kobj), "master"); 7944 if (ret) 7945 goto remove_symlinks; 7946 7947 list_add_rcu(&adj->list, dev_list); 7948 } else { 7949 list_add_tail_rcu(&adj->list, dev_list); 7950 } 7951 7952 return 0; 7953 7954 remove_symlinks: 7955 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7956 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7957 free_adj: 7958 kfree(adj); 7959 dev_put(adj_dev); 7960 7961 return ret; 7962 } 7963 7964 static void __netdev_adjacent_dev_remove(struct net_device *dev, 7965 struct net_device *adj_dev, 7966 u16 ref_nr, 7967 struct list_head *dev_list) 7968 { 7969 struct netdev_adjacent *adj; 7970 7971 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 7972 dev->name, adj_dev->name, ref_nr); 7973 7974 adj = __netdev_find_adj(adj_dev, dev_list); 7975 7976 if (!adj) { 7977 pr_err("Adjacency does not exist for device %s from %s\n", 7978 dev->name, adj_dev->name); 7979 WARN_ON(1); 7980 return; 7981 } 7982 7983 if (adj->ref_nr > ref_nr) { 7984 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 7985 dev->name, adj_dev->name, ref_nr, 7986 adj->ref_nr - ref_nr); 7987 adj->ref_nr -= ref_nr; 7988 return; 7989 } 7990 7991 if (adj->master) 7992 sysfs_remove_link(&(dev->dev.kobj), "master"); 7993 7994 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7995 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7996 7997 list_del_rcu(&adj->list); 7998 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 7999 adj_dev->name, dev->name, adj_dev->name); 8000 dev_put(adj_dev); 8001 kfree_rcu(adj, rcu); 8002 } 8003 8004 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 8005 struct net_device *upper_dev, 8006 struct list_head *up_list, 8007 struct list_head *down_list, 8008 void *private, bool master) 8009 { 8010 int ret; 8011 8012 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 8013 private, master); 8014 if (ret) 8015 return ret; 8016 8017 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 8018 private, false); 8019 if (ret) { 8020 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 8021 return ret; 8022 } 8023 8024 return 0; 8025 } 8026 8027 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 8028 struct net_device *upper_dev, 8029 u16 ref_nr, 8030 struct list_head *up_list, 8031 struct list_head *down_list) 8032 { 8033 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 8034 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 8035 } 8036 8037 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 8038 struct net_device *upper_dev, 8039 void *private, bool master) 8040 { 8041 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 8042 &dev->adj_list.upper, 8043 &upper_dev->adj_list.lower, 8044 private, master); 8045 } 8046 8047 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 8048 struct net_device *upper_dev) 8049 { 8050 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 8051 &dev->adj_list.upper, 8052 &upper_dev->adj_list.lower); 8053 } 8054 8055 static int __netdev_upper_dev_link(struct net_device *dev, 8056 struct net_device *upper_dev, bool master, 8057 void *upper_priv, void *upper_info, 8058 struct netdev_nested_priv *priv, 8059 struct netlink_ext_ack *extack) 8060 { 8061 struct netdev_notifier_changeupper_info changeupper_info = { 8062 .info = { 8063 .dev = dev, 8064 .extack = extack, 8065 }, 8066 .upper_dev = upper_dev, 8067 .master = master, 8068 .linking = true, 8069 .upper_info = upper_info, 8070 }; 8071 struct net_device *master_dev; 8072 int ret = 0; 8073 8074 ASSERT_RTNL(); 8075 8076 if (dev == upper_dev) 8077 return -EBUSY; 8078 8079 /* To prevent loops, check if dev is not upper device to upper_dev. */ 8080 if (__netdev_has_upper_dev(upper_dev, dev)) 8081 return -EBUSY; 8082 8083 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV) 8084 return -EMLINK; 8085 8086 if (!master) { 8087 if (__netdev_has_upper_dev(dev, upper_dev)) 8088 return -EEXIST; 8089 } else { 8090 master_dev = __netdev_master_upper_dev_get(dev); 8091 if (master_dev) 8092 return master_dev == upper_dev ? -EEXIST : -EBUSY; 8093 } 8094 8095 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 8096 &changeupper_info.info); 8097 ret = notifier_to_errno(ret); 8098 if (ret) 8099 return ret; 8100 8101 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 8102 master); 8103 if (ret) 8104 return ret; 8105 8106 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 8107 &changeupper_info.info); 8108 ret = notifier_to_errno(ret); 8109 if (ret) 8110 goto rollback; 8111 8112 __netdev_update_upper_level(dev, NULL); 8113 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 8114 8115 __netdev_update_lower_level(upper_dev, priv); 8116 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 8117 priv); 8118 8119 return 0; 8120 8121 rollback: 8122 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 8123 8124 return ret; 8125 } 8126 8127 /** 8128 * netdev_upper_dev_link - Add a link to the upper device 8129 * @dev: device 8130 * @upper_dev: new upper device 8131 * @extack: netlink extended ack 8132 * 8133 * Adds a link to device which is upper to this one. The caller must hold 8134 * the RTNL lock. On a failure a negative errno code is returned. 8135 * On success the reference counts are adjusted and the function 8136 * returns zero. 8137 */ 8138 int netdev_upper_dev_link(struct net_device *dev, 8139 struct net_device *upper_dev, 8140 struct netlink_ext_ack *extack) 8141 { 8142 struct netdev_nested_priv priv = { 8143 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8144 .data = NULL, 8145 }; 8146 8147 return __netdev_upper_dev_link(dev, upper_dev, false, 8148 NULL, NULL, &priv, extack); 8149 } 8150 EXPORT_SYMBOL(netdev_upper_dev_link); 8151 8152 /** 8153 * netdev_master_upper_dev_link - Add a master link to the upper device 8154 * @dev: device 8155 * @upper_dev: new upper device 8156 * @upper_priv: upper device private 8157 * @upper_info: upper info to be passed down via notifier 8158 * @extack: netlink extended ack 8159 * 8160 * Adds a link to device which is upper to this one. In this case, only 8161 * one master upper device can be linked, although other non-master devices 8162 * might be linked as well. The caller must hold the RTNL lock. 8163 * On a failure a negative errno code is returned. On success the reference 8164 * counts are adjusted and the function returns zero. 8165 */ 8166 int netdev_master_upper_dev_link(struct net_device *dev, 8167 struct net_device *upper_dev, 8168 void *upper_priv, void *upper_info, 8169 struct netlink_ext_ack *extack) 8170 { 8171 struct netdev_nested_priv priv = { 8172 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8173 .data = NULL, 8174 }; 8175 8176 return __netdev_upper_dev_link(dev, upper_dev, true, 8177 upper_priv, upper_info, &priv, extack); 8178 } 8179 EXPORT_SYMBOL(netdev_master_upper_dev_link); 8180 8181 static void __netdev_upper_dev_unlink(struct net_device *dev, 8182 struct net_device *upper_dev, 8183 struct netdev_nested_priv *priv) 8184 { 8185 struct netdev_notifier_changeupper_info changeupper_info = { 8186 .info = { 8187 .dev = dev, 8188 }, 8189 .upper_dev = upper_dev, 8190 .linking = false, 8191 }; 8192 8193 ASSERT_RTNL(); 8194 8195 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 8196 8197 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 8198 &changeupper_info.info); 8199 8200 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 8201 8202 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 8203 &changeupper_info.info); 8204 8205 __netdev_update_upper_level(dev, NULL); 8206 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 8207 8208 __netdev_update_lower_level(upper_dev, priv); 8209 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 8210 priv); 8211 } 8212 8213 /** 8214 * netdev_upper_dev_unlink - Removes a link to upper device 8215 * @dev: device 8216 * @upper_dev: new upper device 8217 * 8218 * Removes a link to device which is upper to this one. The caller must hold 8219 * the RTNL lock. 8220 */ 8221 void netdev_upper_dev_unlink(struct net_device *dev, 8222 struct net_device *upper_dev) 8223 { 8224 struct netdev_nested_priv priv = { 8225 .flags = NESTED_SYNC_TODO, 8226 .data = NULL, 8227 }; 8228 8229 __netdev_upper_dev_unlink(dev, upper_dev, &priv); 8230 } 8231 EXPORT_SYMBOL(netdev_upper_dev_unlink); 8232 8233 static void __netdev_adjacent_dev_set(struct net_device *upper_dev, 8234 struct net_device *lower_dev, 8235 bool val) 8236 { 8237 struct netdev_adjacent *adj; 8238 8239 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower); 8240 if (adj) 8241 adj->ignore = val; 8242 8243 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper); 8244 if (adj) 8245 adj->ignore = val; 8246 } 8247 8248 static void netdev_adjacent_dev_disable(struct net_device *upper_dev, 8249 struct net_device *lower_dev) 8250 { 8251 __netdev_adjacent_dev_set(upper_dev, lower_dev, true); 8252 } 8253 8254 static void netdev_adjacent_dev_enable(struct net_device *upper_dev, 8255 struct net_device *lower_dev) 8256 { 8257 __netdev_adjacent_dev_set(upper_dev, lower_dev, false); 8258 } 8259 8260 int netdev_adjacent_change_prepare(struct net_device *old_dev, 8261 struct net_device *new_dev, 8262 struct net_device *dev, 8263 struct netlink_ext_ack *extack) 8264 { 8265 struct netdev_nested_priv priv = { 8266 .flags = 0, 8267 .data = NULL, 8268 }; 8269 int err; 8270 8271 if (!new_dev) 8272 return 0; 8273 8274 if (old_dev && new_dev != old_dev) 8275 netdev_adjacent_dev_disable(dev, old_dev); 8276 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv, 8277 extack); 8278 if (err) { 8279 if (old_dev && new_dev != old_dev) 8280 netdev_adjacent_dev_enable(dev, old_dev); 8281 return err; 8282 } 8283 8284 return 0; 8285 } 8286 EXPORT_SYMBOL(netdev_adjacent_change_prepare); 8287 8288 void netdev_adjacent_change_commit(struct net_device *old_dev, 8289 struct net_device *new_dev, 8290 struct net_device *dev) 8291 { 8292 struct netdev_nested_priv priv = { 8293 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8294 .data = NULL, 8295 }; 8296 8297 if (!new_dev || !old_dev) 8298 return; 8299 8300 if (new_dev == old_dev) 8301 return; 8302 8303 netdev_adjacent_dev_enable(dev, old_dev); 8304 __netdev_upper_dev_unlink(old_dev, dev, &priv); 8305 } 8306 EXPORT_SYMBOL(netdev_adjacent_change_commit); 8307 8308 void netdev_adjacent_change_abort(struct net_device *old_dev, 8309 struct net_device *new_dev, 8310 struct net_device *dev) 8311 { 8312 struct netdev_nested_priv priv = { 8313 .flags = 0, 8314 .data = NULL, 8315 }; 8316 8317 if (!new_dev) 8318 return; 8319 8320 if (old_dev && new_dev != old_dev) 8321 netdev_adjacent_dev_enable(dev, old_dev); 8322 8323 __netdev_upper_dev_unlink(new_dev, dev, &priv); 8324 } 8325 EXPORT_SYMBOL(netdev_adjacent_change_abort); 8326 8327 /** 8328 * netdev_bonding_info_change - Dispatch event about slave change 8329 * @dev: device 8330 * @bonding_info: info to dispatch 8331 * 8332 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 8333 * The caller must hold the RTNL lock. 8334 */ 8335 void netdev_bonding_info_change(struct net_device *dev, 8336 struct netdev_bonding_info *bonding_info) 8337 { 8338 struct netdev_notifier_bonding_info info = { 8339 .info.dev = dev, 8340 }; 8341 8342 memcpy(&info.bonding_info, bonding_info, 8343 sizeof(struct netdev_bonding_info)); 8344 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 8345 &info.info); 8346 } 8347 EXPORT_SYMBOL(netdev_bonding_info_change); 8348 8349 /** 8350 * netdev_get_xmit_slave - Get the xmit slave of master device 8351 * @dev: device 8352 * @skb: The packet 8353 * @all_slaves: assume all the slaves are active 8354 * 8355 * The reference counters are not incremented so the caller must be 8356 * careful with locks. The caller must hold RCU lock. 8357 * %NULL is returned if no slave is found. 8358 */ 8359 8360 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 8361 struct sk_buff *skb, 8362 bool all_slaves) 8363 { 8364 const struct net_device_ops *ops = dev->netdev_ops; 8365 8366 if (!ops->ndo_get_xmit_slave) 8367 return NULL; 8368 return ops->ndo_get_xmit_slave(dev, skb, all_slaves); 8369 } 8370 EXPORT_SYMBOL(netdev_get_xmit_slave); 8371 8372 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev, 8373 struct sock *sk) 8374 { 8375 const struct net_device_ops *ops = dev->netdev_ops; 8376 8377 if (!ops->ndo_sk_get_lower_dev) 8378 return NULL; 8379 return ops->ndo_sk_get_lower_dev(dev, sk); 8380 } 8381 8382 /** 8383 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket 8384 * @dev: device 8385 * @sk: the socket 8386 * 8387 * %NULL is returned if no lower device is found. 8388 */ 8389 8390 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 8391 struct sock *sk) 8392 { 8393 struct net_device *lower; 8394 8395 lower = netdev_sk_get_lower_dev(dev, sk); 8396 while (lower) { 8397 dev = lower; 8398 lower = netdev_sk_get_lower_dev(dev, sk); 8399 } 8400 8401 return dev; 8402 } 8403 EXPORT_SYMBOL(netdev_sk_get_lowest_dev); 8404 8405 static void netdev_adjacent_add_links(struct net_device *dev) 8406 { 8407 struct netdev_adjacent *iter; 8408 8409 struct net *net = dev_net(dev); 8410 8411 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8412 if (!net_eq(net, dev_net(iter->dev))) 8413 continue; 8414 netdev_adjacent_sysfs_add(iter->dev, dev, 8415 &iter->dev->adj_list.lower); 8416 netdev_adjacent_sysfs_add(dev, iter->dev, 8417 &dev->adj_list.upper); 8418 } 8419 8420 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8421 if (!net_eq(net, dev_net(iter->dev))) 8422 continue; 8423 netdev_adjacent_sysfs_add(iter->dev, dev, 8424 &iter->dev->adj_list.upper); 8425 netdev_adjacent_sysfs_add(dev, iter->dev, 8426 &dev->adj_list.lower); 8427 } 8428 } 8429 8430 static void netdev_adjacent_del_links(struct net_device *dev) 8431 { 8432 struct netdev_adjacent *iter; 8433 8434 struct net *net = dev_net(dev); 8435 8436 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8437 if (!net_eq(net, dev_net(iter->dev))) 8438 continue; 8439 netdev_adjacent_sysfs_del(iter->dev, dev->name, 8440 &iter->dev->adj_list.lower); 8441 netdev_adjacent_sysfs_del(dev, iter->dev->name, 8442 &dev->adj_list.upper); 8443 } 8444 8445 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8446 if (!net_eq(net, dev_net(iter->dev))) 8447 continue; 8448 netdev_adjacent_sysfs_del(iter->dev, dev->name, 8449 &iter->dev->adj_list.upper); 8450 netdev_adjacent_sysfs_del(dev, iter->dev->name, 8451 &dev->adj_list.lower); 8452 } 8453 } 8454 8455 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 8456 { 8457 struct netdev_adjacent *iter; 8458 8459 struct net *net = dev_net(dev); 8460 8461 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8462 if (!net_eq(net, dev_net(iter->dev))) 8463 continue; 8464 netdev_adjacent_sysfs_del(iter->dev, oldname, 8465 &iter->dev->adj_list.lower); 8466 netdev_adjacent_sysfs_add(iter->dev, dev, 8467 &iter->dev->adj_list.lower); 8468 } 8469 8470 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8471 if (!net_eq(net, dev_net(iter->dev))) 8472 continue; 8473 netdev_adjacent_sysfs_del(iter->dev, oldname, 8474 &iter->dev->adj_list.upper); 8475 netdev_adjacent_sysfs_add(iter->dev, dev, 8476 &iter->dev->adj_list.upper); 8477 } 8478 } 8479 8480 void *netdev_lower_dev_get_private(struct net_device *dev, 8481 struct net_device *lower_dev) 8482 { 8483 struct netdev_adjacent *lower; 8484 8485 if (!lower_dev) 8486 return NULL; 8487 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 8488 if (!lower) 8489 return NULL; 8490 8491 return lower->private; 8492 } 8493 EXPORT_SYMBOL(netdev_lower_dev_get_private); 8494 8495 8496 /** 8497 * netdev_lower_state_changed - Dispatch event about lower device state change 8498 * @lower_dev: device 8499 * @lower_state_info: state to dispatch 8500 * 8501 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 8502 * The caller must hold the RTNL lock. 8503 */ 8504 void netdev_lower_state_changed(struct net_device *lower_dev, 8505 void *lower_state_info) 8506 { 8507 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 8508 .info.dev = lower_dev, 8509 }; 8510 8511 ASSERT_RTNL(); 8512 changelowerstate_info.lower_state_info = lower_state_info; 8513 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 8514 &changelowerstate_info.info); 8515 } 8516 EXPORT_SYMBOL(netdev_lower_state_changed); 8517 8518 static void dev_change_rx_flags(struct net_device *dev, int flags) 8519 { 8520 const struct net_device_ops *ops = dev->netdev_ops; 8521 8522 if (ops->ndo_change_rx_flags) 8523 ops->ndo_change_rx_flags(dev, flags); 8524 } 8525 8526 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 8527 { 8528 unsigned int old_flags = dev->flags; 8529 kuid_t uid; 8530 kgid_t gid; 8531 8532 ASSERT_RTNL(); 8533 8534 dev->flags |= IFF_PROMISC; 8535 dev->promiscuity += inc; 8536 if (dev->promiscuity == 0) { 8537 /* 8538 * Avoid overflow. 8539 * If inc causes overflow, untouch promisc and return error. 8540 */ 8541 if (inc < 0) 8542 dev->flags &= ~IFF_PROMISC; 8543 else { 8544 dev->promiscuity -= inc; 8545 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 8546 dev->name); 8547 return -EOVERFLOW; 8548 } 8549 } 8550 if (dev->flags != old_flags) { 8551 pr_info("device %s %s promiscuous mode\n", 8552 dev->name, 8553 dev->flags & IFF_PROMISC ? "entered" : "left"); 8554 if (audit_enabled) { 8555 current_uid_gid(&uid, &gid); 8556 audit_log(audit_context(), GFP_ATOMIC, 8557 AUDIT_ANOM_PROMISCUOUS, 8558 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 8559 dev->name, (dev->flags & IFF_PROMISC), 8560 (old_flags & IFF_PROMISC), 8561 from_kuid(&init_user_ns, audit_get_loginuid(current)), 8562 from_kuid(&init_user_ns, uid), 8563 from_kgid(&init_user_ns, gid), 8564 audit_get_sessionid(current)); 8565 } 8566 8567 dev_change_rx_flags(dev, IFF_PROMISC); 8568 } 8569 if (notify) 8570 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 8571 return 0; 8572 } 8573 8574 /** 8575 * dev_set_promiscuity - update promiscuity count on a device 8576 * @dev: device 8577 * @inc: modifier 8578 * 8579 * Add or remove promiscuity from a device. While the count in the device 8580 * remains above zero the interface remains promiscuous. Once it hits zero 8581 * the device reverts back to normal filtering operation. A negative inc 8582 * value is used to drop promiscuity on the device. 8583 * Return 0 if successful or a negative errno code on error. 8584 */ 8585 int dev_set_promiscuity(struct net_device *dev, int inc) 8586 { 8587 unsigned int old_flags = dev->flags; 8588 int err; 8589 8590 err = __dev_set_promiscuity(dev, inc, true); 8591 if (err < 0) 8592 return err; 8593 if (dev->flags != old_flags) 8594 dev_set_rx_mode(dev); 8595 return err; 8596 } 8597 EXPORT_SYMBOL(dev_set_promiscuity); 8598 8599 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 8600 { 8601 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 8602 8603 ASSERT_RTNL(); 8604 8605 dev->flags |= IFF_ALLMULTI; 8606 dev->allmulti += inc; 8607 if (dev->allmulti == 0) { 8608 /* 8609 * Avoid overflow. 8610 * If inc causes overflow, untouch allmulti and return error. 8611 */ 8612 if (inc < 0) 8613 dev->flags &= ~IFF_ALLMULTI; 8614 else { 8615 dev->allmulti -= inc; 8616 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 8617 dev->name); 8618 return -EOVERFLOW; 8619 } 8620 } 8621 if (dev->flags ^ old_flags) { 8622 dev_change_rx_flags(dev, IFF_ALLMULTI); 8623 dev_set_rx_mode(dev); 8624 if (notify) 8625 __dev_notify_flags(dev, old_flags, 8626 dev->gflags ^ old_gflags); 8627 } 8628 return 0; 8629 } 8630 8631 /** 8632 * dev_set_allmulti - update allmulti count on a device 8633 * @dev: device 8634 * @inc: modifier 8635 * 8636 * Add or remove reception of all multicast frames to a device. While the 8637 * count in the device remains above zero the interface remains listening 8638 * to all interfaces. Once it hits zero the device reverts back to normal 8639 * filtering operation. A negative @inc value is used to drop the counter 8640 * when releasing a resource needing all multicasts. 8641 * Return 0 if successful or a negative errno code on error. 8642 */ 8643 8644 int dev_set_allmulti(struct net_device *dev, int inc) 8645 { 8646 return __dev_set_allmulti(dev, inc, true); 8647 } 8648 EXPORT_SYMBOL(dev_set_allmulti); 8649 8650 /* 8651 * Upload unicast and multicast address lists to device and 8652 * configure RX filtering. When the device doesn't support unicast 8653 * filtering it is put in promiscuous mode while unicast addresses 8654 * are present. 8655 */ 8656 void __dev_set_rx_mode(struct net_device *dev) 8657 { 8658 const struct net_device_ops *ops = dev->netdev_ops; 8659 8660 /* dev_open will call this function so the list will stay sane. */ 8661 if (!(dev->flags&IFF_UP)) 8662 return; 8663 8664 if (!netif_device_present(dev)) 8665 return; 8666 8667 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 8668 /* Unicast addresses changes may only happen under the rtnl, 8669 * therefore calling __dev_set_promiscuity here is safe. 8670 */ 8671 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 8672 __dev_set_promiscuity(dev, 1, false); 8673 dev->uc_promisc = true; 8674 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 8675 __dev_set_promiscuity(dev, -1, false); 8676 dev->uc_promisc = false; 8677 } 8678 } 8679 8680 if (ops->ndo_set_rx_mode) 8681 ops->ndo_set_rx_mode(dev); 8682 } 8683 8684 void dev_set_rx_mode(struct net_device *dev) 8685 { 8686 netif_addr_lock_bh(dev); 8687 __dev_set_rx_mode(dev); 8688 netif_addr_unlock_bh(dev); 8689 } 8690 8691 /** 8692 * dev_get_flags - get flags reported to userspace 8693 * @dev: device 8694 * 8695 * Get the combination of flag bits exported through APIs to userspace. 8696 */ 8697 unsigned int dev_get_flags(const struct net_device *dev) 8698 { 8699 unsigned int flags; 8700 8701 flags = (dev->flags & ~(IFF_PROMISC | 8702 IFF_ALLMULTI | 8703 IFF_RUNNING | 8704 IFF_LOWER_UP | 8705 IFF_DORMANT)) | 8706 (dev->gflags & (IFF_PROMISC | 8707 IFF_ALLMULTI)); 8708 8709 if (netif_running(dev)) { 8710 if (netif_oper_up(dev)) 8711 flags |= IFF_RUNNING; 8712 if (netif_carrier_ok(dev)) 8713 flags |= IFF_LOWER_UP; 8714 if (netif_dormant(dev)) 8715 flags |= IFF_DORMANT; 8716 } 8717 8718 return flags; 8719 } 8720 EXPORT_SYMBOL(dev_get_flags); 8721 8722 int __dev_change_flags(struct net_device *dev, unsigned int flags, 8723 struct netlink_ext_ack *extack) 8724 { 8725 unsigned int old_flags = dev->flags; 8726 int ret; 8727 8728 ASSERT_RTNL(); 8729 8730 /* 8731 * Set the flags on our device. 8732 */ 8733 8734 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 8735 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 8736 IFF_AUTOMEDIA)) | 8737 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 8738 IFF_ALLMULTI)); 8739 8740 /* 8741 * Load in the correct multicast list now the flags have changed. 8742 */ 8743 8744 if ((old_flags ^ flags) & IFF_MULTICAST) 8745 dev_change_rx_flags(dev, IFF_MULTICAST); 8746 8747 dev_set_rx_mode(dev); 8748 8749 /* 8750 * Have we downed the interface. We handle IFF_UP ourselves 8751 * according to user attempts to set it, rather than blindly 8752 * setting it. 8753 */ 8754 8755 ret = 0; 8756 if ((old_flags ^ flags) & IFF_UP) { 8757 if (old_flags & IFF_UP) 8758 __dev_close(dev); 8759 else 8760 ret = __dev_open(dev, extack); 8761 } 8762 8763 if ((flags ^ dev->gflags) & IFF_PROMISC) { 8764 int inc = (flags & IFF_PROMISC) ? 1 : -1; 8765 unsigned int old_flags = dev->flags; 8766 8767 dev->gflags ^= IFF_PROMISC; 8768 8769 if (__dev_set_promiscuity(dev, inc, false) >= 0) 8770 if (dev->flags != old_flags) 8771 dev_set_rx_mode(dev); 8772 } 8773 8774 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 8775 * is important. Some (broken) drivers set IFF_PROMISC, when 8776 * IFF_ALLMULTI is requested not asking us and not reporting. 8777 */ 8778 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 8779 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 8780 8781 dev->gflags ^= IFF_ALLMULTI; 8782 __dev_set_allmulti(dev, inc, false); 8783 } 8784 8785 return ret; 8786 } 8787 8788 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 8789 unsigned int gchanges) 8790 { 8791 unsigned int changes = dev->flags ^ old_flags; 8792 8793 if (gchanges) 8794 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 8795 8796 if (changes & IFF_UP) { 8797 if (dev->flags & IFF_UP) 8798 call_netdevice_notifiers(NETDEV_UP, dev); 8799 else 8800 call_netdevice_notifiers(NETDEV_DOWN, dev); 8801 } 8802 8803 if (dev->flags & IFF_UP && 8804 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 8805 struct netdev_notifier_change_info change_info = { 8806 .info = { 8807 .dev = dev, 8808 }, 8809 .flags_changed = changes, 8810 }; 8811 8812 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 8813 } 8814 } 8815 8816 /** 8817 * dev_change_flags - change device settings 8818 * @dev: device 8819 * @flags: device state flags 8820 * @extack: netlink extended ack 8821 * 8822 * Change settings on device based state flags. The flags are 8823 * in the userspace exported format. 8824 */ 8825 int dev_change_flags(struct net_device *dev, unsigned int flags, 8826 struct netlink_ext_ack *extack) 8827 { 8828 int ret; 8829 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 8830 8831 ret = __dev_change_flags(dev, flags, extack); 8832 if (ret < 0) 8833 return ret; 8834 8835 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 8836 __dev_notify_flags(dev, old_flags, changes); 8837 return ret; 8838 } 8839 EXPORT_SYMBOL(dev_change_flags); 8840 8841 int __dev_set_mtu(struct net_device *dev, int new_mtu) 8842 { 8843 const struct net_device_ops *ops = dev->netdev_ops; 8844 8845 if (ops->ndo_change_mtu) 8846 return ops->ndo_change_mtu(dev, new_mtu); 8847 8848 /* Pairs with all the lockless reads of dev->mtu in the stack */ 8849 WRITE_ONCE(dev->mtu, new_mtu); 8850 return 0; 8851 } 8852 EXPORT_SYMBOL(__dev_set_mtu); 8853 8854 int dev_validate_mtu(struct net_device *dev, int new_mtu, 8855 struct netlink_ext_ack *extack) 8856 { 8857 /* MTU must be positive, and in range */ 8858 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 8859 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 8860 return -EINVAL; 8861 } 8862 8863 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 8864 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 8865 return -EINVAL; 8866 } 8867 return 0; 8868 } 8869 8870 /** 8871 * dev_set_mtu_ext - Change maximum transfer unit 8872 * @dev: device 8873 * @new_mtu: new transfer unit 8874 * @extack: netlink extended ack 8875 * 8876 * Change the maximum transfer size of the network device. 8877 */ 8878 int dev_set_mtu_ext(struct net_device *dev, int new_mtu, 8879 struct netlink_ext_ack *extack) 8880 { 8881 int err, orig_mtu; 8882 8883 if (new_mtu == dev->mtu) 8884 return 0; 8885 8886 err = dev_validate_mtu(dev, new_mtu, extack); 8887 if (err) 8888 return err; 8889 8890 if (!netif_device_present(dev)) 8891 return -ENODEV; 8892 8893 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 8894 err = notifier_to_errno(err); 8895 if (err) 8896 return err; 8897 8898 orig_mtu = dev->mtu; 8899 err = __dev_set_mtu(dev, new_mtu); 8900 8901 if (!err) { 8902 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8903 orig_mtu); 8904 err = notifier_to_errno(err); 8905 if (err) { 8906 /* setting mtu back and notifying everyone again, 8907 * so that they have a chance to revert changes. 8908 */ 8909 __dev_set_mtu(dev, orig_mtu); 8910 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8911 new_mtu); 8912 } 8913 } 8914 return err; 8915 } 8916 8917 int dev_set_mtu(struct net_device *dev, int new_mtu) 8918 { 8919 struct netlink_ext_ack extack; 8920 int err; 8921 8922 memset(&extack, 0, sizeof(extack)); 8923 err = dev_set_mtu_ext(dev, new_mtu, &extack); 8924 if (err && extack._msg) 8925 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 8926 return err; 8927 } 8928 EXPORT_SYMBOL(dev_set_mtu); 8929 8930 /** 8931 * dev_change_tx_queue_len - Change TX queue length of a netdevice 8932 * @dev: device 8933 * @new_len: new tx queue length 8934 */ 8935 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 8936 { 8937 unsigned int orig_len = dev->tx_queue_len; 8938 int res; 8939 8940 if (new_len != (unsigned int)new_len) 8941 return -ERANGE; 8942 8943 if (new_len != orig_len) { 8944 dev->tx_queue_len = new_len; 8945 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 8946 res = notifier_to_errno(res); 8947 if (res) 8948 goto err_rollback; 8949 res = dev_qdisc_change_tx_queue_len(dev); 8950 if (res) 8951 goto err_rollback; 8952 } 8953 8954 return 0; 8955 8956 err_rollback: 8957 netdev_err(dev, "refused to change device tx_queue_len\n"); 8958 dev->tx_queue_len = orig_len; 8959 return res; 8960 } 8961 8962 /** 8963 * dev_set_group - Change group this device belongs to 8964 * @dev: device 8965 * @new_group: group this device should belong to 8966 */ 8967 void dev_set_group(struct net_device *dev, int new_group) 8968 { 8969 dev->group = new_group; 8970 } 8971 EXPORT_SYMBOL(dev_set_group); 8972 8973 /** 8974 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR. 8975 * @dev: device 8976 * @addr: new address 8977 * @extack: netlink extended ack 8978 */ 8979 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 8980 struct netlink_ext_ack *extack) 8981 { 8982 struct netdev_notifier_pre_changeaddr_info info = { 8983 .info.dev = dev, 8984 .info.extack = extack, 8985 .dev_addr = addr, 8986 }; 8987 int rc; 8988 8989 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); 8990 return notifier_to_errno(rc); 8991 } 8992 EXPORT_SYMBOL(dev_pre_changeaddr_notify); 8993 8994 /** 8995 * dev_set_mac_address - Change Media Access Control Address 8996 * @dev: device 8997 * @sa: new address 8998 * @extack: netlink extended ack 8999 * 9000 * Change the hardware (MAC) address of the device 9001 */ 9002 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 9003 struct netlink_ext_ack *extack) 9004 { 9005 const struct net_device_ops *ops = dev->netdev_ops; 9006 int err; 9007 9008 if (!ops->ndo_set_mac_address) 9009 return -EOPNOTSUPP; 9010 if (sa->sa_family != dev->type) 9011 return -EINVAL; 9012 if (!netif_device_present(dev)) 9013 return -ENODEV; 9014 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack); 9015 if (err) 9016 return err; 9017 err = ops->ndo_set_mac_address(dev, sa); 9018 if (err) 9019 return err; 9020 dev->addr_assign_type = NET_ADDR_SET; 9021 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 9022 add_device_randomness(dev->dev_addr, dev->addr_len); 9023 return 0; 9024 } 9025 EXPORT_SYMBOL(dev_set_mac_address); 9026 9027 static DECLARE_RWSEM(dev_addr_sem); 9028 9029 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa, 9030 struct netlink_ext_ack *extack) 9031 { 9032 int ret; 9033 9034 down_write(&dev_addr_sem); 9035 ret = dev_set_mac_address(dev, sa, extack); 9036 up_write(&dev_addr_sem); 9037 return ret; 9038 } 9039 EXPORT_SYMBOL(dev_set_mac_address_user); 9040 9041 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name) 9042 { 9043 size_t size = sizeof(sa->sa_data); 9044 struct net_device *dev; 9045 int ret = 0; 9046 9047 down_read(&dev_addr_sem); 9048 rcu_read_lock(); 9049 9050 dev = dev_get_by_name_rcu(net, dev_name); 9051 if (!dev) { 9052 ret = -ENODEV; 9053 goto unlock; 9054 } 9055 if (!dev->addr_len) 9056 memset(sa->sa_data, 0, size); 9057 else 9058 memcpy(sa->sa_data, dev->dev_addr, 9059 min_t(size_t, size, dev->addr_len)); 9060 sa->sa_family = dev->type; 9061 9062 unlock: 9063 rcu_read_unlock(); 9064 up_read(&dev_addr_sem); 9065 return ret; 9066 } 9067 EXPORT_SYMBOL(dev_get_mac_address); 9068 9069 /** 9070 * dev_change_carrier - Change device carrier 9071 * @dev: device 9072 * @new_carrier: new value 9073 * 9074 * Change device carrier 9075 */ 9076 int dev_change_carrier(struct net_device *dev, bool new_carrier) 9077 { 9078 const struct net_device_ops *ops = dev->netdev_ops; 9079 9080 if (!ops->ndo_change_carrier) 9081 return -EOPNOTSUPP; 9082 if (!netif_device_present(dev)) 9083 return -ENODEV; 9084 return ops->ndo_change_carrier(dev, new_carrier); 9085 } 9086 EXPORT_SYMBOL(dev_change_carrier); 9087 9088 /** 9089 * dev_get_phys_port_id - Get device physical port ID 9090 * @dev: device 9091 * @ppid: port ID 9092 * 9093 * Get device physical port ID 9094 */ 9095 int dev_get_phys_port_id(struct net_device *dev, 9096 struct netdev_phys_item_id *ppid) 9097 { 9098 const struct net_device_ops *ops = dev->netdev_ops; 9099 9100 if (!ops->ndo_get_phys_port_id) 9101 return -EOPNOTSUPP; 9102 return ops->ndo_get_phys_port_id(dev, ppid); 9103 } 9104 EXPORT_SYMBOL(dev_get_phys_port_id); 9105 9106 /** 9107 * dev_get_phys_port_name - Get device physical port name 9108 * @dev: device 9109 * @name: port name 9110 * @len: limit of bytes to copy to name 9111 * 9112 * Get device physical port name 9113 */ 9114 int dev_get_phys_port_name(struct net_device *dev, 9115 char *name, size_t len) 9116 { 9117 const struct net_device_ops *ops = dev->netdev_ops; 9118 int err; 9119 9120 if (ops->ndo_get_phys_port_name) { 9121 err = ops->ndo_get_phys_port_name(dev, name, len); 9122 if (err != -EOPNOTSUPP) 9123 return err; 9124 } 9125 return devlink_compat_phys_port_name_get(dev, name, len); 9126 } 9127 EXPORT_SYMBOL(dev_get_phys_port_name); 9128 9129 /** 9130 * dev_get_port_parent_id - Get the device's port parent identifier 9131 * @dev: network device 9132 * @ppid: pointer to a storage for the port's parent identifier 9133 * @recurse: allow/disallow recursion to lower devices 9134 * 9135 * Get the devices's port parent identifier 9136 */ 9137 int dev_get_port_parent_id(struct net_device *dev, 9138 struct netdev_phys_item_id *ppid, 9139 bool recurse) 9140 { 9141 const struct net_device_ops *ops = dev->netdev_ops; 9142 struct netdev_phys_item_id first = { }; 9143 struct net_device *lower_dev; 9144 struct list_head *iter; 9145 int err; 9146 9147 if (ops->ndo_get_port_parent_id) { 9148 err = ops->ndo_get_port_parent_id(dev, ppid); 9149 if (err != -EOPNOTSUPP) 9150 return err; 9151 } 9152 9153 err = devlink_compat_switch_id_get(dev, ppid); 9154 if (!err || err != -EOPNOTSUPP) 9155 return err; 9156 9157 if (!recurse) 9158 return -EOPNOTSUPP; 9159 9160 netdev_for_each_lower_dev(dev, lower_dev, iter) { 9161 err = dev_get_port_parent_id(lower_dev, ppid, recurse); 9162 if (err) 9163 break; 9164 if (!first.id_len) 9165 first = *ppid; 9166 else if (memcmp(&first, ppid, sizeof(*ppid))) 9167 return -EOPNOTSUPP; 9168 } 9169 9170 return err; 9171 } 9172 EXPORT_SYMBOL(dev_get_port_parent_id); 9173 9174 /** 9175 * netdev_port_same_parent_id - Indicate if two network devices have 9176 * the same port parent identifier 9177 * @a: first network device 9178 * @b: second network device 9179 */ 9180 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) 9181 { 9182 struct netdev_phys_item_id a_id = { }; 9183 struct netdev_phys_item_id b_id = { }; 9184 9185 if (dev_get_port_parent_id(a, &a_id, true) || 9186 dev_get_port_parent_id(b, &b_id, true)) 9187 return false; 9188 9189 return netdev_phys_item_id_same(&a_id, &b_id); 9190 } 9191 EXPORT_SYMBOL(netdev_port_same_parent_id); 9192 9193 /** 9194 * dev_change_proto_down - update protocol port state information 9195 * @dev: device 9196 * @proto_down: new value 9197 * 9198 * This info can be used by switch drivers to set the phys state of the 9199 * port. 9200 */ 9201 int dev_change_proto_down(struct net_device *dev, bool proto_down) 9202 { 9203 const struct net_device_ops *ops = dev->netdev_ops; 9204 9205 if (!ops->ndo_change_proto_down) 9206 return -EOPNOTSUPP; 9207 if (!netif_device_present(dev)) 9208 return -ENODEV; 9209 return ops->ndo_change_proto_down(dev, proto_down); 9210 } 9211 EXPORT_SYMBOL(dev_change_proto_down); 9212 9213 /** 9214 * dev_change_proto_down_generic - generic implementation for 9215 * ndo_change_proto_down that sets carrier according to 9216 * proto_down. 9217 * 9218 * @dev: device 9219 * @proto_down: new value 9220 */ 9221 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down) 9222 { 9223 if (proto_down) 9224 netif_carrier_off(dev); 9225 else 9226 netif_carrier_on(dev); 9227 dev->proto_down = proto_down; 9228 return 0; 9229 } 9230 EXPORT_SYMBOL(dev_change_proto_down_generic); 9231 9232 /** 9233 * dev_change_proto_down_reason - proto down reason 9234 * 9235 * @dev: device 9236 * @mask: proto down mask 9237 * @value: proto down value 9238 */ 9239 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask, 9240 u32 value) 9241 { 9242 int b; 9243 9244 if (!mask) { 9245 dev->proto_down_reason = value; 9246 } else { 9247 for_each_set_bit(b, &mask, 32) { 9248 if (value & (1 << b)) 9249 dev->proto_down_reason |= BIT(b); 9250 else 9251 dev->proto_down_reason &= ~BIT(b); 9252 } 9253 } 9254 } 9255 EXPORT_SYMBOL(dev_change_proto_down_reason); 9256 9257 struct bpf_xdp_link { 9258 struct bpf_link link; 9259 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */ 9260 int flags; 9261 }; 9262 9263 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags) 9264 { 9265 if (flags & XDP_FLAGS_HW_MODE) 9266 return XDP_MODE_HW; 9267 if (flags & XDP_FLAGS_DRV_MODE) 9268 return XDP_MODE_DRV; 9269 if (flags & XDP_FLAGS_SKB_MODE) 9270 return XDP_MODE_SKB; 9271 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB; 9272 } 9273 9274 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode) 9275 { 9276 switch (mode) { 9277 case XDP_MODE_SKB: 9278 return generic_xdp_install; 9279 case XDP_MODE_DRV: 9280 case XDP_MODE_HW: 9281 return dev->netdev_ops->ndo_bpf; 9282 default: 9283 return NULL; 9284 } 9285 } 9286 9287 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev, 9288 enum bpf_xdp_mode mode) 9289 { 9290 return dev->xdp_state[mode].link; 9291 } 9292 9293 static struct bpf_prog *dev_xdp_prog(struct net_device *dev, 9294 enum bpf_xdp_mode mode) 9295 { 9296 struct bpf_xdp_link *link = dev_xdp_link(dev, mode); 9297 9298 if (link) 9299 return link->link.prog; 9300 return dev->xdp_state[mode].prog; 9301 } 9302 9303 static u8 dev_xdp_prog_count(struct net_device *dev) 9304 { 9305 u8 count = 0; 9306 int i; 9307 9308 for (i = 0; i < __MAX_XDP_MODE; i++) 9309 if (dev->xdp_state[i].prog || dev->xdp_state[i].link) 9310 count++; 9311 return count; 9312 } 9313 9314 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode) 9315 { 9316 struct bpf_prog *prog = dev_xdp_prog(dev, mode); 9317 9318 return prog ? prog->aux->id : 0; 9319 } 9320 9321 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode, 9322 struct bpf_xdp_link *link) 9323 { 9324 dev->xdp_state[mode].link = link; 9325 dev->xdp_state[mode].prog = NULL; 9326 } 9327 9328 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode, 9329 struct bpf_prog *prog) 9330 { 9331 dev->xdp_state[mode].link = NULL; 9332 dev->xdp_state[mode].prog = prog; 9333 } 9334 9335 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode, 9336 bpf_op_t bpf_op, struct netlink_ext_ack *extack, 9337 u32 flags, struct bpf_prog *prog) 9338 { 9339 struct netdev_bpf xdp; 9340 int err; 9341 9342 memset(&xdp, 0, sizeof(xdp)); 9343 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG; 9344 xdp.extack = extack; 9345 xdp.flags = flags; 9346 xdp.prog = prog; 9347 9348 /* Drivers assume refcnt is already incremented (i.e, prog pointer is 9349 * "moved" into driver), so they don't increment it on their own, but 9350 * they do decrement refcnt when program is detached or replaced. 9351 * Given net_device also owns link/prog, we need to bump refcnt here 9352 * to prevent drivers from underflowing it. 9353 */ 9354 if (prog) 9355 bpf_prog_inc(prog); 9356 err = bpf_op(dev, &xdp); 9357 if (err) { 9358 if (prog) 9359 bpf_prog_put(prog); 9360 return err; 9361 } 9362 9363 if (mode != XDP_MODE_HW) 9364 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog); 9365 9366 return 0; 9367 } 9368 9369 static void dev_xdp_uninstall(struct net_device *dev) 9370 { 9371 struct bpf_xdp_link *link; 9372 struct bpf_prog *prog; 9373 enum bpf_xdp_mode mode; 9374 bpf_op_t bpf_op; 9375 9376 ASSERT_RTNL(); 9377 9378 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) { 9379 prog = dev_xdp_prog(dev, mode); 9380 if (!prog) 9381 continue; 9382 9383 bpf_op = dev_xdp_bpf_op(dev, mode); 9384 if (!bpf_op) 9385 continue; 9386 9387 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 9388 9389 /* auto-detach link from net device */ 9390 link = dev_xdp_link(dev, mode); 9391 if (link) 9392 link->dev = NULL; 9393 else 9394 bpf_prog_put(prog); 9395 9396 dev_xdp_set_link(dev, mode, NULL); 9397 } 9398 } 9399 9400 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack, 9401 struct bpf_xdp_link *link, struct bpf_prog *new_prog, 9402 struct bpf_prog *old_prog, u32 flags) 9403 { 9404 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES); 9405 struct bpf_prog *cur_prog; 9406 enum bpf_xdp_mode mode; 9407 bpf_op_t bpf_op; 9408 int err; 9409 9410 ASSERT_RTNL(); 9411 9412 /* either link or prog attachment, never both */ 9413 if (link && (new_prog || old_prog)) 9414 return -EINVAL; 9415 /* link supports only XDP mode flags */ 9416 if (link && (flags & ~XDP_FLAGS_MODES)) { 9417 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment"); 9418 return -EINVAL; 9419 } 9420 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */ 9421 if (num_modes > 1) { 9422 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set"); 9423 return -EINVAL; 9424 } 9425 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */ 9426 if (!num_modes && dev_xdp_prog_count(dev) > 1) { 9427 NL_SET_ERR_MSG(extack, 9428 "More than one program loaded, unset mode is ambiguous"); 9429 return -EINVAL; 9430 } 9431 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */ 9432 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) { 9433 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified"); 9434 return -EINVAL; 9435 } 9436 9437 mode = dev_xdp_mode(dev, flags); 9438 /* can't replace attached link */ 9439 if (dev_xdp_link(dev, mode)) { 9440 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link"); 9441 return -EBUSY; 9442 } 9443 9444 cur_prog = dev_xdp_prog(dev, mode); 9445 /* can't replace attached prog with link */ 9446 if (link && cur_prog) { 9447 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link"); 9448 return -EBUSY; 9449 } 9450 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) { 9451 NL_SET_ERR_MSG(extack, "Active program does not match expected"); 9452 return -EEXIST; 9453 } 9454 9455 /* put effective new program into new_prog */ 9456 if (link) 9457 new_prog = link->link.prog; 9458 9459 if (new_prog) { 9460 bool offload = mode == XDP_MODE_HW; 9461 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB 9462 ? XDP_MODE_DRV : XDP_MODE_SKB; 9463 9464 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) { 9465 NL_SET_ERR_MSG(extack, "XDP program already attached"); 9466 return -EBUSY; 9467 } 9468 if (!offload && dev_xdp_prog(dev, other_mode)) { 9469 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time"); 9470 return -EEXIST; 9471 } 9472 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) { 9473 NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported"); 9474 return -EINVAL; 9475 } 9476 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) { 9477 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device"); 9478 return -EINVAL; 9479 } 9480 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) { 9481 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device"); 9482 return -EINVAL; 9483 } 9484 } 9485 9486 /* don't call drivers if the effective program didn't change */ 9487 if (new_prog != cur_prog) { 9488 bpf_op = dev_xdp_bpf_op(dev, mode); 9489 if (!bpf_op) { 9490 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode"); 9491 return -EOPNOTSUPP; 9492 } 9493 9494 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog); 9495 if (err) 9496 return err; 9497 } 9498 9499 if (link) 9500 dev_xdp_set_link(dev, mode, link); 9501 else 9502 dev_xdp_set_prog(dev, mode, new_prog); 9503 if (cur_prog) 9504 bpf_prog_put(cur_prog); 9505 9506 return 0; 9507 } 9508 9509 static int dev_xdp_attach_link(struct net_device *dev, 9510 struct netlink_ext_ack *extack, 9511 struct bpf_xdp_link *link) 9512 { 9513 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags); 9514 } 9515 9516 static int dev_xdp_detach_link(struct net_device *dev, 9517 struct netlink_ext_ack *extack, 9518 struct bpf_xdp_link *link) 9519 { 9520 enum bpf_xdp_mode mode; 9521 bpf_op_t bpf_op; 9522 9523 ASSERT_RTNL(); 9524 9525 mode = dev_xdp_mode(dev, link->flags); 9526 if (dev_xdp_link(dev, mode) != link) 9527 return -EINVAL; 9528 9529 bpf_op = dev_xdp_bpf_op(dev, mode); 9530 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 9531 dev_xdp_set_link(dev, mode, NULL); 9532 return 0; 9533 } 9534 9535 static void bpf_xdp_link_release(struct bpf_link *link) 9536 { 9537 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9538 9539 rtnl_lock(); 9540 9541 /* if racing with net_device's tear down, xdp_link->dev might be 9542 * already NULL, in which case link was already auto-detached 9543 */ 9544 if (xdp_link->dev) { 9545 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link)); 9546 xdp_link->dev = NULL; 9547 } 9548 9549 rtnl_unlock(); 9550 } 9551 9552 static int bpf_xdp_link_detach(struct bpf_link *link) 9553 { 9554 bpf_xdp_link_release(link); 9555 return 0; 9556 } 9557 9558 static void bpf_xdp_link_dealloc(struct bpf_link *link) 9559 { 9560 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9561 9562 kfree(xdp_link); 9563 } 9564 9565 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link, 9566 struct seq_file *seq) 9567 { 9568 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9569 u32 ifindex = 0; 9570 9571 rtnl_lock(); 9572 if (xdp_link->dev) 9573 ifindex = xdp_link->dev->ifindex; 9574 rtnl_unlock(); 9575 9576 seq_printf(seq, "ifindex:\t%u\n", ifindex); 9577 } 9578 9579 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link, 9580 struct bpf_link_info *info) 9581 { 9582 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9583 u32 ifindex = 0; 9584 9585 rtnl_lock(); 9586 if (xdp_link->dev) 9587 ifindex = xdp_link->dev->ifindex; 9588 rtnl_unlock(); 9589 9590 info->xdp.ifindex = ifindex; 9591 return 0; 9592 } 9593 9594 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog, 9595 struct bpf_prog *old_prog) 9596 { 9597 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9598 enum bpf_xdp_mode mode; 9599 bpf_op_t bpf_op; 9600 int err = 0; 9601 9602 rtnl_lock(); 9603 9604 /* link might have been auto-released already, so fail */ 9605 if (!xdp_link->dev) { 9606 err = -ENOLINK; 9607 goto out_unlock; 9608 } 9609 9610 if (old_prog && link->prog != old_prog) { 9611 err = -EPERM; 9612 goto out_unlock; 9613 } 9614 old_prog = link->prog; 9615 if (old_prog == new_prog) { 9616 /* no-op, don't disturb drivers */ 9617 bpf_prog_put(new_prog); 9618 goto out_unlock; 9619 } 9620 9621 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags); 9622 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode); 9623 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL, 9624 xdp_link->flags, new_prog); 9625 if (err) 9626 goto out_unlock; 9627 9628 old_prog = xchg(&link->prog, new_prog); 9629 bpf_prog_put(old_prog); 9630 9631 out_unlock: 9632 rtnl_unlock(); 9633 return err; 9634 } 9635 9636 static const struct bpf_link_ops bpf_xdp_link_lops = { 9637 .release = bpf_xdp_link_release, 9638 .dealloc = bpf_xdp_link_dealloc, 9639 .detach = bpf_xdp_link_detach, 9640 .show_fdinfo = bpf_xdp_link_show_fdinfo, 9641 .fill_link_info = bpf_xdp_link_fill_link_info, 9642 .update_prog = bpf_xdp_link_update, 9643 }; 9644 9645 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 9646 { 9647 struct net *net = current->nsproxy->net_ns; 9648 struct bpf_link_primer link_primer; 9649 struct bpf_xdp_link *link; 9650 struct net_device *dev; 9651 int err, fd; 9652 9653 dev = dev_get_by_index(net, attr->link_create.target_ifindex); 9654 if (!dev) 9655 return -EINVAL; 9656 9657 link = kzalloc(sizeof(*link), GFP_USER); 9658 if (!link) { 9659 err = -ENOMEM; 9660 goto out_put_dev; 9661 } 9662 9663 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog); 9664 link->dev = dev; 9665 link->flags = attr->link_create.flags; 9666 9667 err = bpf_link_prime(&link->link, &link_primer); 9668 if (err) { 9669 kfree(link); 9670 goto out_put_dev; 9671 } 9672 9673 rtnl_lock(); 9674 err = dev_xdp_attach_link(dev, NULL, link); 9675 rtnl_unlock(); 9676 9677 if (err) { 9678 bpf_link_cleanup(&link_primer); 9679 goto out_put_dev; 9680 } 9681 9682 fd = bpf_link_settle(&link_primer); 9683 /* link itself doesn't hold dev's refcnt to not complicate shutdown */ 9684 dev_put(dev); 9685 return fd; 9686 9687 out_put_dev: 9688 dev_put(dev); 9689 return err; 9690 } 9691 9692 /** 9693 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 9694 * @dev: device 9695 * @extack: netlink extended ack 9696 * @fd: new program fd or negative value to clear 9697 * @expected_fd: old program fd that userspace expects to replace or clear 9698 * @flags: xdp-related flags 9699 * 9700 * Set or clear a bpf program for a device 9701 */ 9702 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 9703 int fd, int expected_fd, u32 flags) 9704 { 9705 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags); 9706 struct bpf_prog *new_prog = NULL, *old_prog = NULL; 9707 int err; 9708 9709 ASSERT_RTNL(); 9710 9711 if (fd >= 0) { 9712 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 9713 mode != XDP_MODE_SKB); 9714 if (IS_ERR(new_prog)) 9715 return PTR_ERR(new_prog); 9716 } 9717 9718 if (expected_fd >= 0) { 9719 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP, 9720 mode != XDP_MODE_SKB); 9721 if (IS_ERR(old_prog)) { 9722 err = PTR_ERR(old_prog); 9723 old_prog = NULL; 9724 goto err_out; 9725 } 9726 } 9727 9728 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags); 9729 9730 err_out: 9731 if (err && new_prog) 9732 bpf_prog_put(new_prog); 9733 if (old_prog) 9734 bpf_prog_put(old_prog); 9735 return err; 9736 } 9737 9738 /** 9739 * dev_new_index - allocate an ifindex 9740 * @net: the applicable net namespace 9741 * 9742 * Returns a suitable unique value for a new device interface 9743 * number. The caller must hold the rtnl semaphore or the 9744 * dev_base_lock to be sure it remains unique. 9745 */ 9746 static int dev_new_index(struct net *net) 9747 { 9748 int ifindex = net->ifindex; 9749 9750 for (;;) { 9751 if (++ifindex <= 0) 9752 ifindex = 1; 9753 if (!__dev_get_by_index(net, ifindex)) 9754 return net->ifindex = ifindex; 9755 } 9756 } 9757 9758 /* Delayed registration/unregisteration */ 9759 static LIST_HEAD(net_todo_list); 9760 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 9761 9762 static void net_set_todo(struct net_device *dev) 9763 { 9764 list_add_tail(&dev->todo_list, &net_todo_list); 9765 dev_net(dev)->dev_unreg_count++; 9766 } 9767 9768 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 9769 struct net_device *upper, netdev_features_t features) 9770 { 9771 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 9772 netdev_features_t feature; 9773 int feature_bit; 9774 9775 for_each_netdev_feature(upper_disables, feature_bit) { 9776 feature = __NETIF_F_BIT(feature_bit); 9777 if (!(upper->wanted_features & feature) 9778 && (features & feature)) { 9779 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 9780 &feature, upper->name); 9781 features &= ~feature; 9782 } 9783 } 9784 9785 return features; 9786 } 9787 9788 static void netdev_sync_lower_features(struct net_device *upper, 9789 struct net_device *lower, netdev_features_t features) 9790 { 9791 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 9792 netdev_features_t feature; 9793 int feature_bit; 9794 9795 for_each_netdev_feature(upper_disables, feature_bit) { 9796 feature = __NETIF_F_BIT(feature_bit); 9797 if (!(features & feature) && (lower->features & feature)) { 9798 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 9799 &feature, lower->name); 9800 lower->wanted_features &= ~feature; 9801 __netdev_update_features(lower); 9802 9803 if (unlikely(lower->features & feature)) 9804 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 9805 &feature, lower->name); 9806 else 9807 netdev_features_change(lower); 9808 } 9809 } 9810 } 9811 9812 static netdev_features_t netdev_fix_features(struct net_device *dev, 9813 netdev_features_t features) 9814 { 9815 /* Fix illegal checksum combinations */ 9816 if ((features & NETIF_F_HW_CSUM) && 9817 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 9818 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 9819 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 9820 } 9821 9822 /* TSO requires that SG is present as well. */ 9823 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 9824 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 9825 features &= ~NETIF_F_ALL_TSO; 9826 } 9827 9828 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 9829 !(features & NETIF_F_IP_CSUM)) { 9830 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 9831 features &= ~NETIF_F_TSO; 9832 features &= ~NETIF_F_TSO_ECN; 9833 } 9834 9835 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 9836 !(features & NETIF_F_IPV6_CSUM)) { 9837 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 9838 features &= ~NETIF_F_TSO6; 9839 } 9840 9841 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 9842 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 9843 features &= ~NETIF_F_TSO_MANGLEID; 9844 9845 /* TSO ECN requires that TSO is present as well. */ 9846 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 9847 features &= ~NETIF_F_TSO_ECN; 9848 9849 /* Software GSO depends on SG. */ 9850 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 9851 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 9852 features &= ~NETIF_F_GSO; 9853 } 9854 9855 /* GSO partial features require GSO partial be set */ 9856 if ((features & dev->gso_partial_features) && 9857 !(features & NETIF_F_GSO_PARTIAL)) { 9858 netdev_dbg(dev, 9859 "Dropping partially supported GSO features since no GSO partial.\n"); 9860 features &= ~dev->gso_partial_features; 9861 } 9862 9863 if (!(features & NETIF_F_RXCSUM)) { 9864 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 9865 * successfully merged by hardware must also have the 9866 * checksum verified by hardware. If the user does not 9867 * want to enable RXCSUM, logically, we should disable GRO_HW. 9868 */ 9869 if (features & NETIF_F_GRO_HW) { 9870 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 9871 features &= ~NETIF_F_GRO_HW; 9872 } 9873 } 9874 9875 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 9876 if (features & NETIF_F_RXFCS) { 9877 if (features & NETIF_F_LRO) { 9878 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 9879 features &= ~NETIF_F_LRO; 9880 } 9881 9882 if (features & NETIF_F_GRO_HW) { 9883 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 9884 features &= ~NETIF_F_GRO_HW; 9885 } 9886 } 9887 9888 if (features & NETIF_F_HW_TLS_TX) { 9889 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) == 9890 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM); 9891 bool hw_csum = features & NETIF_F_HW_CSUM; 9892 9893 if (!ip_csum && !hw_csum) { 9894 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n"); 9895 features &= ~NETIF_F_HW_TLS_TX; 9896 } 9897 } 9898 9899 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) { 9900 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n"); 9901 features &= ~NETIF_F_HW_TLS_RX; 9902 } 9903 9904 return features; 9905 } 9906 9907 int __netdev_update_features(struct net_device *dev) 9908 { 9909 struct net_device *upper, *lower; 9910 netdev_features_t features; 9911 struct list_head *iter; 9912 int err = -1; 9913 9914 ASSERT_RTNL(); 9915 9916 features = netdev_get_wanted_features(dev); 9917 9918 if (dev->netdev_ops->ndo_fix_features) 9919 features = dev->netdev_ops->ndo_fix_features(dev, features); 9920 9921 /* driver might be less strict about feature dependencies */ 9922 features = netdev_fix_features(dev, features); 9923 9924 /* some features can't be enabled if they're off on an upper device */ 9925 netdev_for_each_upper_dev_rcu(dev, upper, iter) 9926 features = netdev_sync_upper_features(dev, upper, features); 9927 9928 if (dev->features == features) 9929 goto sync_lower; 9930 9931 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 9932 &dev->features, &features); 9933 9934 if (dev->netdev_ops->ndo_set_features) 9935 err = dev->netdev_ops->ndo_set_features(dev, features); 9936 else 9937 err = 0; 9938 9939 if (unlikely(err < 0)) { 9940 netdev_err(dev, 9941 "set_features() failed (%d); wanted %pNF, left %pNF\n", 9942 err, &features, &dev->features); 9943 /* return non-0 since some features might have changed and 9944 * it's better to fire a spurious notification than miss it 9945 */ 9946 return -1; 9947 } 9948 9949 sync_lower: 9950 /* some features must be disabled on lower devices when disabled 9951 * on an upper device (think: bonding master or bridge) 9952 */ 9953 netdev_for_each_lower_dev(dev, lower, iter) 9954 netdev_sync_lower_features(dev, lower, features); 9955 9956 if (!err) { 9957 netdev_features_t diff = features ^ dev->features; 9958 9959 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 9960 /* udp_tunnel_{get,drop}_rx_info both need 9961 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 9962 * device, or they won't do anything. 9963 * Thus we need to update dev->features 9964 * *before* calling udp_tunnel_get_rx_info, 9965 * but *after* calling udp_tunnel_drop_rx_info. 9966 */ 9967 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 9968 dev->features = features; 9969 udp_tunnel_get_rx_info(dev); 9970 } else { 9971 udp_tunnel_drop_rx_info(dev); 9972 } 9973 } 9974 9975 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 9976 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 9977 dev->features = features; 9978 err |= vlan_get_rx_ctag_filter_info(dev); 9979 } else { 9980 vlan_drop_rx_ctag_filter_info(dev); 9981 } 9982 } 9983 9984 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 9985 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 9986 dev->features = features; 9987 err |= vlan_get_rx_stag_filter_info(dev); 9988 } else { 9989 vlan_drop_rx_stag_filter_info(dev); 9990 } 9991 } 9992 9993 dev->features = features; 9994 } 9995 9996 return err < 0 ? 0 : 1; 9997 } 9998 9999 /** 10000 * netdev_update_features - recalculate device features 10001 * @dev: the device to check 10002 * 10003 * Recalculate dev->features set and send notifications if it 10004 * has changed. Should be called after driver or hardware dependent 10005 * conditions might have changed that influence the features. 10006 */ 10007 void netdev_update_features(struct net_device *dev) 10008 { 10009 if (__netdev_update_features(dev)) 10010 netdev_features_change(dev); 10011 } 10012 EXPORT_SYMBOL(netdev_update_features); 10013 10014 /** 10015 * netdev_change_features - recalculate device features 10016 * @dev: the device to check 10017 * 10018 * Recalculate dev->features set and send notifications even 10019 * if they have not changed. Should be called instead of 10020 * netdev_update_features() if also dev->vlan_features might 10021 * have changed to allow the changes to be propagated to stacked 10022 * VLAN devices. 10023 */ 10024 void netdev_change_features(struct net_device *dev) 10025 { 10026 __netdev_update_features(dev); 10027 netdev_features_change(dev); 10028 } 10029 EXPORT_SYMBOL(netdev_change_features); 10030 10031 /** 10032 * netif_stacked_transfer_operstate - transfer operstate 10033 * @rootdev: the root or lower level device to transfer state from 10034 * @dev: the device to transfer operstate to 10035 * 10036 * Transfer operational state from root to device. This is normally 10037 * called when a stacking relationship exists between the root 10038 * device and the device(a leaf device). 10039 */ 10040 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 10041 struct net_device *dev) 10042 { 10043 if (rootdev->operstate == IF_OPER_DORMANT) 10044 netif_dormant_on(dev); 10045 else 10046 netif_dormant_off(dev); 10047 10048 if (rootdev->operstate == IF_OPER_TESTING) 10049 netif_testing_on(dev); 10050 else 10051 netif_testing_off(dev); 10052 10053 if (netif_carrier_ok(rootdev)) 10054 netif_carrier_on(dev); 10055 else 10056 netif_carrier_off(dev); 10057 } 10058 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 10059 10060 static int netif_alloc_rx_queues(struct net_device *dev) 10061 { 10062 unsigned int i, count = dev->num_rx_queues; 10063 struct netdev_rx_queue *rx; 10064 size_t sz = count * sizeof(*rx); 10065 int err = 0; 10066 10067 BUG_ON(count < 1); 10068 10069 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 10070 if (!rx) 10071 return -ENOMEM; 10072 10073 dev->_rx = rx; 10074 10075 for (i = 0; i < count; i++) { 10076 rx[i].dev = dev; 10077 10078 /* XDP RX-queue setup */ 10079 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0); 10080 if (err < 0) 10081 goto err_rxq_info; 10082 } 10083 return 0; 10084 10085 err_rxq_info: 10086 /* Rollback successful reg's and free other resources */ 10087 while (i--) 10088 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 10089 kvfree(dev->_rx); 10090 dev->_rx = NULL; 10091 return err; 10092 } 10093 10094 static void netif_free_rx_queues(struct net_device *dev) 10095 { 10096 unsigned int i, count = dev->num_rx_queues; 10097 10098 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 10099 if (!dev->_rx) 10100 return; 10101 10102 for (i = 0; i < count; i++) 10103 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 10104 10105 kvfree(dev->_rx); 10106 } 10107 10108 static void netdev_init_one_queue(struct net_device *dev, 10109 struct netdev_queue *queue, void *_unused) 10110 { 10111 /* Initialize queue lock */ 10112 spin_lock_init(&queue->_xmit_lock); 10113 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 10114 queue->xmit_lock_owner = -1; 10115 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 10116 queue->dev = dev; 10117 #ifdef CONFIG_BQL 10118 dql_init(&queue->dql, HZ); 10119 #endif 10120 } 10121 10122 static void netif_free_tx_queues(struct net_device *dev) 10123 { 10124 kvfree(dev->_tx); 10125 } 10126 10127 static int netif_alloc_netdev_queues(struct net_device *dev) 10128 { 10129 unsigned int count = dev->num_tx_queues; 10130 struct netdev_queue *tx; 10131 size_t sz = count * sizeof(*tx); 10132 10133 if (count < 1 || count > 0xffff) 10134 return -EINVAL; 10135 10136 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 10137 if (!tx) 10138 return -ENOMEM; 10139 10140 dev->_tx = tx; 10141 10142 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 10143 spin_lock_init(&dev->tx_global_lock); 10144 10145 return 0; 10146 } 10147 10148 void netif_tx_stop_all_queues(struct net_device *dev) 10149 { 10150 unsigned int i; 10151 10152 for (i = 0; i < dev->num_tx_queues; i++) { 10153 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 10154 10155 netif_tx_stop_queue(txq); 10156 } 10157 } 10158 EXPORT_SYMBOL(netif_tx_stop_all_queues); 10159 10160 /** 10161 * register_netdevice - register a network device 10162 * @dev: device to register 10163 * 10164 * Take a completed network device structure and add it to the kernel 10165 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 10166 * chain. 0 is returned on success. A negative errno code is returned 10167 * on a failure to set up the device, or if the name is a duplicate. 10168 * 10169 * Callers must hold the rtnl semaphore. You may want 10170 * register_netdev() instead of this. 10171 * 10172 * BUGS: 10173 * The locking appears insufficient to guarantee two parallel registers 10174 * will not get the same name. 10175 */ 10176 10177 int register_netdevice(struct net_device *dev) 10178 { 10179 int ret; 10180 struct net *net = dev_net(dev); 10181 10182 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 10183 NETDEV_FEATURE_COUNT); 10184 BUG_ON(dev_boot_phase); 10185 ASSERT_RTNL(); 10186 10187 might_sleep(); 10188 10189 /* When net_device's are persistent, this will be fatal. */ 10190 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 10191 BUG_ON(!net); 10192 10193 ret = ethtool_check_ops(dev->ethtool_ops); 10194 if (ret) 10195 return ret; 10196 10197 spin_lock_init(&dev->addr_list_lock); 10198 netdev_set_addr_lockdep_class(dev); 10199 10200 ret = dev_get_valid_name(net, dev, dev->name); 10201 if (ret < 0) 10202 goto out; 10203 10204 ret = -ENOMEM; 10205 dev->name_node = netdev_name_node_head_alloc(dev); 10206 if (!dev->name_node) 10207 goto out; 10208 10209 /* Init, if this function is available */ 10210 if (dev->netdev_ops->ndo_init) { 10211 ret = dev->netdev_ops->ndo_init(dev); 10212 if (ret) { 10213 if (ret > 0) 10214 ret = -EIO; 10215 goto err_free_name; 10216 } 10217 } 10218 10219 if (((dev->hw_features | dev->features) & 10220 NETIF_F_HW_VLAN_CTAG_FILTER) && 10221 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 10222 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 10223 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 10224 ret = -EINVAL; 10225 goto err_uninit; 10226 } 10227 10228 ret = -EBUSY; 10229 if (!dev->ifindex) 10230 dev->ifindex = dev_new_index(net); 10231 else if (__dev_get_by_index(net, dev->ifindex)) 10232 goto err_uninit; 10233 10234 /* Transfer changeable features to wanted_features and enable 10235 * software offloads (GSO and GRO). 10236 */ 10237 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF); 10238 dev->features |= NETIF_F_SOFT_FEATURES; 10239 10240 if (dev->udp_tunnel_nic_info) { 10241 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 10242 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 10243 } 10244 10245 dev->wanted_features = dev->features & dev->hw_features; 10246 10247 if (!(dev->flags & IFF_LOOPBACK)) 10248 dev->hw_features |= NETIF_F_NOCACHE_COPY; 10249 10250 /* If IPv4 TCP segmentation offload is supported we should also 10251 * allow the device to enable segmenting the frame with the option 10252 * of ignoring a static IP ID value. This doesn't enable the 10253 * feature itself but allows the user to enable it later. 10254 */ 10255 if (dev->hw_features & NETIF_F_TSO) 10256 dev->hw_features |= NETIF_F_TSO_MANGLEID; 10257 if (dev->vlan_features & NETIF_F_TSO) 10258 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 10259 if (dev->mpls_features & NETIF_F_TSO) 10260 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 10261 if (dev->hw_enc_features & NETIF_F_TSO) 10262 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 10263 10264 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 10265 */ 10266 dev->vlan_features |= NETIF_F_HIGHDMA; 10267 10268 /* Make NETIF_F_SG inheritable to tunnel devices. 10269 */ 10270 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 10271 10272 /* Make NETIF_F_SG inheritable to MPLS. 10273 */ 10274 dev->mpls_features |= NETIF_F_SG; 10275 10276 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 10277 ret = notifier_to_errno(ret); 10278 if (ret) 10279 goto err_uninit; 10280 10281 ret = netdev_register_kobject(dev); 10282 if (ret) { 10283 dev->reg_state = NETREG_UNREGISTERED; 10284 goto err_uninit; 10285 } 10286 dev->reg_state = NETREG_REGISTERED; 10287 10288 __netdev_update_features(dev); 10289 10290 /* 10291 * Default initial state at registry is that the 10292 * device is present. 10293 */ 10294 10295 set_bit(__LINK_STATE_PRESENT, &dev->state); 10296 10297 linkwatch_init_dev(dev); 10298 10299 dev_init_scheduler(dev); 10300 dev_hold(dev); 10301 list_netdevice(dev); 10302 add_device_randomness(dev->dev_addr, dev->addr_len); 10303 10304 /* If the device has permanent device address, driver should 10305 * set dev_addr and also addr_assign_type should be set to 10306 * NET_ADDR_PERM (default value). 10307 */ 10308 if (dev->addr_assign_type == NET_ADDR_PERM) 10309 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 10310 10311 /* Notify protocols, that a new device appeared. */ 10312 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 10313 ret = notifier_to_errno(ret); 10314 if (ret) { 10315 /* Expect explicit free_netdev() on failure */ 10316 dev->needs_free_netdev = false; 10317 unregister_netdevice_queue(dev, NULL); 10318 goto out; 10319 } 10320 /* 10321 * Prevent userspace races by waiting until the network 10322 * device is fully setup before sending notifications. 10323 */ 10324 if (!dev->rtnl_link_ops || 10325 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 10326 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 10327 10328 out: 10329 return ret; 10330 10331 err_uninit: 10332 if (dev->netdev_ops->ndo_uninit) 10333 dev->netdev_ops->ndo_uninit(dev); 10334 if (dev->priv_destructor) 10335 dev->priv_destructor(dev); 10336 err_free_name: 10337 netdev_name_node_free(dev->name_node); 10338 goto out; 10339 } 10340 EXPORT_SYMBOL(register_netdevice); 10341 10342 /** 10343 * init_dummy_netdev - init a dummy network device for NAPI 10344 * @dev: device to init 10345 * 10346 * This takes a network device structure and initialize the minimum 10347 * amount of fields so it can be used to schedule NAPI polls without 10348 * registering a full blown interface. This is to be used by drivers 10349 * that need to tie several hardware interfaces to a single NAPI 10350 * poll scheduler due to HW limitations. 10351 */ 10352 int init_dummy_netdev(struct net_device *dev) 10353 { 10354 /* Clear everything. Note we don't initialize spinlocks 10355 * are they aren't supposed to be taken by any of the 10356 * NAPI code and this dummy netdev is supposed to be 10357 * only ever used for NAPI polls 10358 */ 10359 memset(dev, 0, sizeof(struct net_device)); 10360 10361 /* make sure we BUG if trying to hit standard 10362 * register/unregister code path 10363 */ 10364 dev->reg_state = NETREG_DUMMY; 10365 10366 /* NAPI wants this */ 10367 INIT_LIST_HEAD(&dev->napi_list); 10368 10369 /* a dummy interface is started by default */ 10370 set_bit(__LINK_STATE_PRESENT, &dev->state); 10371 set_bit(__LINK_STATE_START, &dev->state); 10372 10373 /* napi_busy_loop stats accounting wants this */ 10374 dev_net_set(dev, &init_net); 10375 10376 /* Note : We dont allocate pcpu_refcnt for dummy devices, 10377 * because users of this 'device' dont need to change 10378 * its refcount. 10379 */ 10380 10381 return 0; 10382 } 10383 EXPORT_SYMBOL_GPL(init_dummy_netdev); 10384 10385 10386 /** 10387 * register_netdev - register a network device 10388 * @dev: device to register 10389 * 10390 * Take a completed network device structure and add it to the kernel 10391 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 10392 * chain. 0 is returned on success. A negative errno code is returned 10393 * on a failure to set up the device, or if the name is a duplicate. 10394 * 10395 * This is a wrapper around register_netdevice that takes the rtnl semaphore 10396 * and expands the device name if you passed a format string to 10397 * alloc_netdev. 10398 */ 10399 int register_netdev(struct net_device *dev) 10400 { 10401 int err; 10402 10403 if (rtnl_lock_killable()) 10404 return -EINTR; 10405 err = register_netdevice(dev); 10406 rtnl_unlock(); 10407 return err; 10408 } 10409 EXPORT_SYMBOL(register_netdev); 10410 10411 int netdev_refcnt_read(const struct net_device *dev) 10412 { 10413 #ifdef CONFIG_PCPU_DEV_REFCNT 10414 int i, refcnt = 0; 10415 10416 for_each_possible_cpu(i) 10417 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 10418 return refcnt; 10419 #else 10420 return refcount_read(&dev->dev_refcnt); 10421 #endif 10422 } 10423 EXPORT_SYMBOL(netdev_refcnt_read); 10424 10425 int netdev_unregister_timeout_secs __read_mostly = 10; 10426 10427 #define WAIT_REFS_MIN_MSECS 1 10428 #define WAIT_REFS_MAX_MSECS 250 10429 /** 10430 * netdev_wait_allrefs - wait until all references are gone. 10431 * @dev: target net_device 10432 * 10433 * This is called when unregistering network devices. 10434 * 10435 * Any protocol or device that holds a reference should register 10436 * for netdevice notification, and cleanup and put back the 10437 * reference if they receive an UNREGISTER event. 10438 * We can get stuck here if buggy protocols don't correctly 10439 * call dev_put. 10440 */ 10441 static void netdev_wait_allrefs(struct net_device *dev) 10442 { 10443 unsigned long rebroadcast_time, warning_time; 10444 int wait = 0, refcnt; 10445 10446 linkwatch_forget_dev(dev); 10447 10448 rebroadcast_time = warning_time = jiffies; 10449 refcnt = netdev_refcnt_read(dev); 10450 10451 while (refcnt != 1) { 10452 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 10453 rtnl_lock(); 10454 10455 /* Rebroadcast unregister notification */ 10456 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 10457 10458 __rtnl_unlock(); 10459 rcu_barrier(); 10460 rtnl_lock(); 10461 10462 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 10463 &dev->state)) { 10464 /* We must not have linkwatch events 10465 * pending on unregister. If this 10466 * happens, we simply run the queue 10467 * unscheduled, resulting in a noop 10468 * for this device. 10469 */ 10470 linkwatch_run_queue(); 10471 } 10472 10473 __rtnl_unlock(); 10474 10475 rebroadcast_time = jiffies; 10476 } 10477 10478 if (!wait) { 10479 rcu_barrier(); 10480 wait = WAIT_REFS_MIN_MSECS; 10481 } else { 10482 msleep(wait); 10483 wait = min(wait << 1, WAIT_REFS_MAX_MSECS); 10484 } 10485 10486 refcnt = netdev_refcnt_read(dev); 10487 10488 if (refcnt != 1 && 10489 time_after(jiffies, warning_time + 10490 netdev_unregister_timeout_secs * HZ)) { 10491 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 10492 dev->name, refcnt); 10493 warning_time = jiffies; 10494 } 10495 } 10496 } 10497 10498 /* The sequence is: 10499 * 10500 * rtnl_lock(); 10501 * ... 10502 * register_netdevice(x1); 10503 * register_netdevice(x2); 10504 * ... 10505 * unregister_netdevice(y1); 10506 * unregister_netdevice(y2); 10507 * ... 10508 * rtnl_unlock(); 10509 * free_netdev(y1); 10510 * free_netdev(y2); 10511 * 10512 * We are invoked by rtnl_unlock(). 10513 * This allows us to deal with problems: 10514 * 1) We can delete sysfs objects which invoke hotplug 10515 * without deadlocking with linkwatch via keventd. 10516 * 2) Since we run with the RTNL semaphore not held, we can sleep 10517 * safely in order to wait for the netdev refcnt to drop to zero. 10518 * 10519 * We must not return until all unregister events added during 10520 * the interval the lock was held have been completed. 10521 */ 10522 void netdev_run_todo(void) 10523 { 10524 struct list_head list; 10525 #ifdef CONFIG_LOCKDEP 10526 struct list_head unlink_list; 10527 10528 list_replace_init(&net_unlink_list, &unlink_list); 10529 10530 while (!list_empty(&unlink_list)) { 10531 struct net_device *dev = list_first_entry(&unlink_list, 10532 struct net_device, 10533 unlink_list); 10534 list_del_init(&dev->unlink_list); 10535 dev->nested_level = dev->lower_level - 1; 10536 } 10537 #endif 10538 10539 /* Snapshot list, allow later requests */ 10540 list_replace_init(&net_todo_list, &list); 10541 10542 __rtnl_unlock(); 10543 10544 10545 /* Wait for rcu callbacks to finish before next phase */ 10546 if (!list_empty(&list)) 10547 rcu_barrier(); 10548 10549 while (!list_empty(&list)) { 10550 struct net_device *dev 10551 = list_first_entry(&list, struct net_device, todo_list); 10552 list_del(&dev->todo_list); 10553 10554 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 10555 pr_err("network todo '%s' but state %d\n", 10556 dev->name, dev->reg_state); 10557 dump_stack(); 10558 continue; 10559 } 10560 10561 dev->reg_state = NETREG_UNREGISTERED; 10562 10563 netdev_wait_allrefs(dev); 10564 10565 /* paranoia */ 10566 BUG_ON(netdev_refcnt_read(dev) != 1); 10567 BUG_ON(!list_empty(&dev->ptype_all)); 10568 BUG_ON(!list_empty(&dev->ptype_specific)); 10569 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 10570 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 10571 #if IS_ENABLED(CONFIG_DECNET) 10572 WARN_ON(dev->dn_ptr); 10573 #endif 10574 if (dev->priv_destructor) 10575 dev->priv_destructor(dev); 10576 if (dev->needs_free_netdev) 10577 free_netdev(dev); 10578 10579 /* Report a network device has been unregistered */ 10580 rtnl_lock(); 10581 dev_net(dev)->dev_unreg_count--; 10582 __rtnl_unlock(); 10583 wake_up(&netdev_unregistering_wq); 10584 10585 /* Free network device */ 10586 kobject_put(&dev->dev.kobj); 10587 } 10588 } 10589 10590 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 10591 * all the same fields in the same order as net_device_stats, with only 10592 * the type differing, but rtnl_link_stats64 may have additional fields 10593 * at the end for newer counters. 10594 */ 10595 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 10596 const struct net_device_stats *netdev_stats) 10597 { 10598 #if BITS_PER_LONG == 64 10599 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 10600 memcpy(stats64, netdev_stats, sizeof(*netdev_stats)); 10601 /* zero out counters that only exist in rtnl_link_stats64 */ 10602 memset((char *)stats64 + sizeof(*netdev_stats), 0, 10603 sizeof(*stats64) - sizeof(*netdev_stats)); 10604 #else 10605 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 10606 const unsigned long *src = (const unsigned long *)netdev_stats; 10607 u64 *dst = (u64 *)stats64; 10608 10609 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 10610 for (i = 0; i < n; i++) 10611 dst[i] = src[i]; 10612 /* zero out counters that only exist in rtnl_link_stats64 */ 10613 memset((char *)stats64 + n * sizeof(u64), 0, 10614 sizeof(*stats64) - n * sizeof(u64)); 10615 #endif 10616 } 10617 EXPORT_SYMBOL(netdev_stats_to_stats64); 10618 10619 /** 10620 * dev_get_stats - get network device statistics 10621 * @dev: device to get statistics from 10622 * @storage: place to store stats 10623 * 10624 * Get network statistics from device. Return @storage. 10625 * The device driver may provide its own method by setting 10626 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 10627 * otherwise the internal statistics structure is used. 10628 */ 10629 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 10630 struct rtnl_link_stats64 *storage) 10631 { 10632 const struct net_device_ops *ops = dev->netdev_ops; 10633 10634 if (ops->ndo_get_stats64) { 10635 memset(storage, 0, sizeof(*storage)); 10636 ops->ndo_get_stats64(dev, storage); 10637 } else if (ops->ndo_get_stats) { 10638 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 10639 } else { 10640 netdev_stats_to_stats64(storage, &dev->stats); 10641 } 10642 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped); 10643 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped); 10644 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler); 10645 return storage; 10646 } 10647 EXPORT_SYMBOL(dev_get_stats); 10648 10649 /** 10650 * dev_fetch_sw_netstats - get per-cpu network device statistics 10651 * @s: place to store stats 10652 * @netstats: per-cpu network stats to read from 10653 * 10654 * Read per-cpu network statistics and populate the related fields in @s. 10655 */ 10656 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 10657 const struct pcpu_sw_netstats __percpu *netstats) 10658 { 10659 int cpu; 10660 10661 for_each_possible_cpu(cpu) { 10662 const struct pcpu_sw_netstats *stats; 10663 struct pcpu_sw_netstats tmp; 10664 unsigned int start; 10665 10666 stats = per_cpu_ptr(netstats, cpu); 10667 do { 10668 start = u64_stats_fetch_begin_irq(&stats->syncp); 10669 tmp.rx_packets = stats->rx_packets; 10670 tmp.rx_bytes = stats->rx_bytes; 10671 tmp.tx_packets = stats->tx_packets; 10672 tmp.tx_bytes = stats->tx_bytes; 10673 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 10674 10675 s->rx_packets += tmp.rx_packets; 10676 s->rx_bytes += tmp.rx_bytes; 10677 s->tx_packets += tmp.tx_packets; 10678 s->tx_bytes += tmp.tx_bytes; 10679 } 10680 } 10681 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats); 10682 10683 /** 10684 * dev_get_tstats64 - ndo_get_stats64 implementation 10685 * @dev: device to get statistics from 10686 * @s: place to store stats 10687 * 10688 * Populate @s from dev->stats and dev->tstats. Can be used as 10689 * ndo_get_stats64() callback. 10690 */ 10691 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s) 10692 { 10693 netdev_stats_to_stats64(s, &dev->stats); 10694 dev_fetch_sw_netstats(s, dev->tstats); 10695 } 10696 EXPORT_SYMBOL_GPL(dev_get_tstats64); 10697 10698 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 10699 { 10700 struct netdev_queue *queue = dev_ingress_queue(dev); 10701 10702 #ifdef CONFIG_NET_CLS_ACT 10703 if (queue) 10704 return queue; 10705 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 10706 if (!queue) 10707 return NULL; 10708 netdev_init_one_queue(dev, queue, NULL); 10709 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 10710 queue->qdisc_sleeping = &noop_qdisc; 10711 rcu_assign_pointer(dev->ingress_queue, queue); 10712 #endif 10713 return queue; 10714 } 10715 10716 static const struct ethtool_ops default_ethtool_ops; 10717 10718 void netdev_set_default_ethtool_ops(struct net_device *dev, 10719 const struct ethtool_ops *ops) 10720 { 10721 if (dev->ethtool_ops == &default_ethtool_ops) 10722 dev->ethtool_ops = ops; 10723 } 10724 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 10725 10726 void netdev_freemem(struct net_device *dev) 10727 { 10728 char *addr = (char *)dev - dev->padded; 10729 10730 kvfree(addr); 10731 } 10732 10733 /** 10734 * alloc_netdev_mqs - allocate network device 10735 * @sizeof_priv: size of private data to allocate space for 10736 * @name: device name format string 10737 * @name_assign_type: origin of device name 10738 * @setup: callback to initialize device 10739 * @txqs: the number of TX subqueues to allocate 10740 * @rxqs: the number of RX subqueues to allocate 10741 * 10742 * Allocates a struct net_device with private data area for driver use 10743 * and performs basic initialization. Also allocates subqueue structs 10744 * for each queue on the device. 10745 */ 10746 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 10747 unsigned char name_assign_type, 10748 void (*setup)(struct net_device *), 10749 unsigned int txqs, unsigned int rxqs) 10750 { 10751 struct net_device *dev; 10752 unsigned int alloc_size; 10753 struct net_device *p; 10754 10755 BUG_ON(strlen(name) >= sizeof(dev->name)); 10756 10757 if (txqs < 1) { 10758 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 10759 return NULL; 10760 } 10761 10762 if (rxqs < 1) { 10763 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 10764 return NULL; 10765 } 10766 10767 alloc_size = sizeof(struct net_device); 10768 if (sizeof_priv) { 10769 /* ensure 32-byte alignment of private area */ 10770 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 10771 alloc_size += sizeof_priv; 10772 } 10773 /* ensure 32-byte alignment of whole construct */ 10774 alloc_size += NETDEV_ALIGN - 1; 10775 10776 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 10777 if (!p) 10778 return NULL; 10779 10780 dev = PTR_ALIGN(p, NETDEV_ALIGN); 10781 dev->padded = (char *)dev - (char *)p; 10782 10783 #ifdef CONFIG_PCPU_DEV_REFCNT 10784 dev->pcpu_refcnt = alloc_percpu(int); 10785 if (!dev->pcpu_refcnt) 10786 goto free_dev; 10787 dev_hold(dev); 10788 #else 10789 refcount_set(&dev->dev_refcnt, 1); 10790 #endif 10791 10792 if (dev_addr_init(dev)) 10793 goto free_pcpu; 10794 10795 dev_mc_init(dev); 10796 dev_uc_init(dev); 10797 10798 dev_net_set(dev, &init_net); 10799 10800 dev->gso_max_size = GSO_MAX_SIZE; 10801 dev->gso_max_segs = GSO_MAX_SEGS; 10802 dev->upper_level = 1; 10803 dev->lower_level = 1; 10804 #ifdef CONFIG_LOCKDEP 10805 dev->nested_level = 0; 10806 INIT_LIST_HEAD(&dev->unlink_list); 10807 #endif 10808 10809 INIT_LIST_HEAD(&dev->napi_list); 10810 INIT_LIST_HEAD(&dev->unreg_list); 10811 INIT_LIST_HEAD(&dev->close_list); 10812 INIT_LIST_HEAD(&dev->link_watch_list); 10813 INIT_LIST_HEAD(&dev->adj_list.upper); 10814 INIT_LIST_HEAD(&dev->adj_list.lower); 10815 INIT_LIST_HEAD(&dev->ptype_all); 10816 INIT_LIST_HEAD(&dev->ptype_specific); 10817 INIT_LIST_HEAD(&dev->net_notifier_list); 10818 #ifdef CONFIG_NET_SCHED 10819 hash_init(dev->qdisc_hash); 10820 #endif 10821 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 10822 setup(dev); 10823 10824 if (!dev->tx_queue_len) { 10825 dev->priv_flags |= IFF_NO_QUEUE; 10826 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 10827 } 10828 10829 dev->num_tx_queues = txqs; 10830 dev->real_num_tx_queues = txqs; 10831 if (netif_alloc_netdev_queues(dev)) 10832 goto free_all; 10833 10834 dev->num_rx_queues = rxqs; 10835 dev->real_num_rx_queues = rxqs; 10836 if (netif_alloc_rx_queues(dev)) 10837 goto free_all; 10838 10839 strcpy(dev->name, name); 10840 dev->name_assign_type = name_assign_type; 10841 dev->group = INIT_NETDEV_GROUP; 10842 if (!dev->ethtool_ops) 10843 dev->ethtool_ops = &default_ethtool_ops; 10844 10845 nf_hook_ingress_init(dev); 10846 10847 return dev; 10848 10849 free_all: 10850 free_netdev(dev); 10851 return NULL; 10852 10853 free_pcpu: 10854 #ifdef CONFIG_PCPU_DEV_REFCNT 10855 free_percpu(dev->pcpu_refcnt); 10856 free_dev: 10857 #endif 10858 netdev_freemem(dev); 10859 return NULL; 10860 } 10861 EXPORT_SYMBOL(alloc_netdev_mqs); 10862 10863 /** 10864 * free_netdev - free network device 10865 * @dev: device 10866 * 10867 * This function does the last stage of destroying an allocated device 10868 * interface. The reference to the device object is released. If this 10869 * is the last reference then it will be freed.Must be called in process 10870 * context. 10871 */ 10872 void free_netdev(struct net_device *dev) 10873 { 10874 struct napi_struct *p, *n; 10875 10876 might_sleep(); 10877 10878 /* When called immediately after register_netdevice() failed the unwind 10879 * handling may still be dismantling the device. Handle that case by 10880 * deferring the free. 10881 */ 10882 if (dev->reg_state == NETREG_UNREGISTERING) { 10883 ASSERT_RTNL(); 10884 dev->needs_free_netdev = true; 10885 return; 10886 } 10887 10888 netif_free_tx_queues(dev); 10889 netif_free_rx_queues(dev); 10890 10891 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 10892 10893 /* Flush device addresses */ 10894 dev_addr_flush(dev); 10895 10896 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 10897 netif_napi_del(p); 10898 10899 #ifdef CONFIG_PCPU_DEV_REFCNT 10900 free_percpu(dev->pcpu_refcnt); 10901 dev->pcpu_refcnt = NULL; 10902 #endif 10903 free_percpu(dev->xdp_bulkq); 10904 dev->xdp_bulkq = NULL; 10905 10906 /* Compatibility with error handling in drivers */ 10907 if (dev->reg_state == NETREG_UNINITIALIZED) { 10908 netdev_freemem(dev); 10909 return; 10910 } 10911 10912 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 10913 dev->reg_state = NETREG_RELEASED; 10914 10915 /* will free via device release */ 10916 put_device(&dev->dev); 10917 } 10918 EXPORT_SYMBOL(free_netdev); 10919 10920 /** 10921 * synchronize_net - Synchronize with packet receive processing 10922 * 10923 * Wait for packets currently being received to be done. 10924 * Does not block later packets from starting. 10925 */ 10926 void synchronize_net(void) 10927 { 10928 might_sleep(); 10929 if (rtnl_is_locked()) 10930 synchronize_rcu_expedited(); 10931 else 10932 synchronize_rcu(); 10933 } 10934 EXPORT_SYMBOL(synchronize_net); 10935 10936 /** 10937 * unregister_netdevice_queue - remove device from the kernel 10938 * @dev: device 10939 * @head: list 10940 * 10941 * This function shuts down a device interface and removes it 10942 * from the kernel tables. 10943 * If head not NULL, device is queued to be unregistered later. 10944 * 10945 * Callers must hold the rtnl semaphore. You may want 10946 * unregister_netdev() instead of this. 10947 */ 10948 10949 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 10950 { 10951 ASSERT_RTNL(); 10952 10953 if (head) { 10954 list_move_tail(&dev->unreg_list, head); 10955 } else { 10956 LIST_HEAD(single); 10957 10958 list_add(&dev->unreg_list, &single); 10959 unregister_netdevice_many(&single); 10960 } 10961 } 10962 EXPORT_SYMBOL(unregister_netdevice_queue); 10963 10964 /** 10965 * unregister_netdevice_many - unregister many devices 10966 * @head: list of devices 10967 * 10968 * Note: As most callers use a stack allocated list_head, 10969 * we force a list_del() to make sure stack wont be corrupted later. 10970 */ 10971 void unregister_netdevice_many(struct list_head *head) 10972 { 10973 struct net_device *dev, *tmp; 10974 LIST_HEAD(close_head); 10975 10976 BUG_ON(dev_boot_phase); 10977 ASSERT_RTNL(); 10978 10979 if (list_empty(head)) 10980 return; 10981 10982 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 10983 /* Some devices call without registering 10984 * for initialization unwind. Remove those 10985 * devices and proceed with the remaining. 10986 */ 10987 if (dev->reg_state == NETREG_UNINITIALIZED) { 10988 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 10989 dev->name, dev); 10990 10991 WARN_ON(1); 10992 list_del(&dev->unreg_list); 10993 continue; 10994 } 10995 dev->dismantle = true; 10996 BUG_ON(dev->reg_state != NETREG_REGISTERED); 10997 } 10998 10999 /* If device is running, close it first. */ 11000 list_for_each_entry(dev, head, unreg_list) 11001 list_add_tail(&dev->close_list, &close_head); 11002 dev_close_many(&close_head, true); 11003 11004 list_for_each_entry(dev, head, unreg_list) { 11005 /* And unlink it from device chain. */ 11006 unlist_netdevice(dev); 11007 11008 dev->reg_state = NETREG_UNREGISTERING; 11009 } 11010 flush_all_backlogs(); 11011 11012 synchronize_net(); 11013 11014 list_for_each_entry(dev, head, unreg_list) { 11015 struct sk_buff *skb = NULL; 11016 11017 /* Shutdown queueing discipline. */ 11018 dev_shutdown(dev); 11019 11020 dev_xdp_uninstall(dev); 11021 11022 /* Notify protocols, that we are about to destroy 11023 * this device. They should clean all the things. 11024 */ 11025 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 11026 11027 if (!dev->rtnl_link_ops || 11028 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 11029 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 11030 GFP_KERNEL, NULL, 0); 11031 11032 /* 11033 * Flush the unicast and multicast chains 11034 */ 11035 dev_uc_flush(dev); 11036 dev_mc_flush(dev); 11037 11038 netdev_name_node_alt_flush(dev); 11039 netdev_name_node_free(dev->name_node); 11040 11041 if (dev->netdev_ops->ndo_uninit) 11042 dev->netdev_ops->ndo_uninit(dev); 11043 11044 if (skb) 11045 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 11046 11047 /* Notifier chain MUST detach us all upper devices. */ 11048 WARN_ON(netdev_has_any_upper_dev(dev)); 11049 WARN_ON(netdev_has_any_lower_dev(dev)); 11050 11051 /* Remove entries from kobject tree */ 11052 netdev_unregister_kobject(dev); 11053 #ifdef CONFIG_XPS 11054 /* Remove XPS queueing entries */ 11055 netif_reset_xps_queues_gt(dev, 0); 11056 #endif 11057 } 11058 11059 synchronize_net(); 11060 11061 list_for_each_entry(dev, head, unreg_list) { 11062 dev_put(dev); 11063 net_set_todo(dev); 11064 } 11065 11066 list_del(head); 11067 } 11068 EXPORT_SYMBOL(unregister_netdevice_many); 11069 11070 /** 11071 * unregister_netdev - remove device from the kernel 11072 * @dev: device 11073 * 11074 * This function shuts down a device interface and removes it 11075 * from the kernel tables. 11076 * 11077 * This is just a wrapper for unregister_netdevice that takes 11078 * the rtnl semaphore. In general you want to use this and not 11079 * unregister_netdevice. 11080 */ 11081 void unregister_netdev(struct net_device *dev) 11082 { 11083 rtnl_lock(); 11084 unregister_netdevice(dev); 11085 rtnl_unlock(); 11086 } 11087 EXPORT_SYMBOL(unregister_netdev); 11088 11089 /** 11090 * __dev_change_net_namespace - move device to different nethost namespace 11091 * @dev: device 11092 * @net: network namespace 11093 * @pat: If not NULL name pattern to try if the current device name 11094 * is already taken in the destination network namespace. 11095 * @new_ifindex: If not zero, specifies device index in the target 11096 * namespace. 11097 * 11098 * This function shuts down a device interface and moves it 11099 * to a new network namespace. On success 0 is returned, on 11100 * a failure a netagive errno code is returned. 11101 * 11102 * Callers must hold the rtnl semaphore. 11103 */ 11104 11105 int __dev_change_net_namespace(struct net_device *dev, struct net *net, 11106 const char *pat, int new_ifindex) 11107 { 11108 struct net *net_old = dev_net(dev); 11109 int err, new_nsid; 11110 11111 ASSERT_RTNL(); 11112 11113 /* Don't allow namespace local devices to be moved. */ 11114 err = -EINVAL; 11115 if (dev->features & NETIF_F_NETNS_LOCAL) 11116 goto out; 11117 11118 /* Ensure the device has been registrered */ 11119 if (dev->reg_state != NETREG_REGISTERED) 11120 goto out; 11121 11122 /* Get out if there is nothing todo */ 11123 err = 0; 11124 if (net_eq(net_old, net)) 11125 goto out; 11126 11127 /* Pick the destination device name, and ensure 11128 * we can use it in the destination network namespace. 11129 */ 11130 err = -EEXIST; 11131 if (__dev_get_by_name(net, dev->name)) { 11132 /* We get here if we can't use the current device name */ 11133 if (!pat) 11134 goto out; 11135 err = dev_get_valid_name(net, dev, pat); 11136 if (err < 0) 11137 goto out; 11138 } 11139 11140 /* Check that new_ifindex isn't used yet. */ 11141 err = -EBUSY; 11142 if (new_ifindex && __dev_get_by_index(net, new_ifindex)) 11143 goto out; 11144 11145 /* 11146 * And now a mini version of register_netdevice unregister_netdevice. 11147 */ 11148 11149 /* If device is running close it first. */ 11150 dev_close(dev); 11151 11152 /* And unlink it from device chain */ 11153 unlist_netdevice(dev); 11154 11155 synchronize_net(); 11156 11157 /* Shutdown queueing discipline. */ 11158 dev_shutdown(dev); 11159 11160 /* Notify protocols, that we are about to destroy 11161 * this device. They should clean all the things. 11162 * 11163 * Note that dev->reg_state stays at NETREG_REGISTERED. 11164 * This is wanted because this way 8021q and macvlan know 11165 * the device is just moving and can keep their slaves up. 11166 */ 11167 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 11168 rcu_barrier(); 11169 11170 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL); 11171 /* If there is an ifindex conflict assign a new one */ 11172 if (!new_ifindex) { 11173 if (__dev_get_by_index(net, dev->ifindex)) 11174 new_ifindex = dev_new_index(net); 11175 else 11176 new_ifindex = dev->ifindex; 11177 } 11178 11179 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 11180 new_ifindex); 11181 11182 /* 11183 * Flush the unicast and multicast chains 11184 */ 11185 dev_uc_flush(dev); 11186 dev_mc_flush(dev); 11187 11188 /* Send a netdev-removed uevent to the old namespace */ 11189 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 11190 netdev_adjacent_del_links(dev); 11191 11192 /* Move per-net netdevice notifiers that are following the netdevice */ 11193 move_netdevice_notifiers_dev_net(dev, net); 11194 11195 /* Actually switch the network namespace */ 11196 dev_net_set(dev, net); 11197 dev->ifindex = new_ifindex; 11198 11199 /* Send a netdev-add uevent to the new namespace */ 11200 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 11201 netdev_adjacent_add_links(dev); 11202 11203 /* Fixup kobjects */ 11204 err = device_rename(&dev->dev, dev->name); 11205 WARN_ON(err); 11206 11207 /* Adapt owner in case owning user namespace of target network 11208 * namespace is different from the original one. 11209 */ 11210 err = netdev_change_owner(dev, net_old, net); 11211 WARN_ON(err); 11212 11213 /* Add the device back in the hashes */ 11214 list_netdevice(dev); 11215 11216 /* Notify protocols, that a new device appeared. */ 11217 call_netdevice_notifiers(NETDEV_REGISTER, dev); 11218 11219 /* 11220 * Prevent userspace races by waiting until the network 11221 * device is fully setup before sending notifications. 11222 */ 11223 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 11224 11225 synchronize_net(); 11226 err = 0; 11227 out: 11228 return err; 11229 } 11230 EXPORT_SYMBOL_GPL(__dev_change_net_namespace); 11231 11232 static int dev_cpu_dead(unsigned int oldcpu) 11233 { 11234 struct sk_buff **list_skb; 11235 struct sk_buff *skb; 11236 unsigned int cpu; 11237 struct softnet_data *sd, *oldsd, *remsd = NULL; 11238 11239 local_irq_disable(); 11240 cpu = smp_processor_id(); 11241 sd = &per_cpu(softnet_data, cpu); 11242 oldsd = &per_cpu(softnet_data, oldcpu); 11243 11244 /* Find end of our completion_queue. */ 11245 list_skb = &sd->completion_queue; 11246 while (*list_skb) 11247 list_skb = &(*list_skb)->next; 11248 /* Append completion queue from offline CPU. */ 11249 *list_skb = oldsd->completion_queue; 11250 oldsd->completion_queue = NULL; 11251 11252 /* Append output queue from offline CPU. */ 11253 if (oldsd->output_queue) { 11254 *sd->output_queue_tailp = oldsd->output_queue; 11255 sd->output_queue_tailp = oldsd->output_queue_tailp; 11256 oldsd->output_queue = NULL; 11257 oldsd->output_queue_tailp = &oldsd->output_queue; 11258 } 11259 /* Append NAPI poll list from offline CPU, with one exception : 11260 * process_backlog() must be called by cpu owning percpu backlog. 11261 * We properly handle process_queue & input_pkt_queue later. 11262 */ 11263 while (!list_empty(&oldsd->poll_list)) { 11264 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 11265 struct napi_struct, 11266 poll_list); 11267 11268 list_del_init(&napi->poll_list); 11269 if (napi->poll == process_backlog) 11270 napi->state = 0; 11271 else 11272 ____napi_schedule(sd, napi); 11273 } 11274 11275 raise_softirq_irqoff(NET_TX_SOFTIRQ); 11276 local_irq_enable(); 11277 11278 #ifdef CONFIG_RPS 11279 remsd = oldsd->rps_ipi_list; 11280 oldsd->rps_ipi_list = NULL; 11281 #endif 11282 /* send out pending IPI's on offline CPU */ 11283 net_rps_send_ipi(remsd); 11284 11285 /* Process offline CPU's input_pkt_queue */ 11286 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 11287 netif_rx_ni(skb); 11288 input_queue_head_incr(oldsd); 11289 } 11290 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 11291 netif_rx_ni(skb); 11292 input_queue_head_incr(oldsd); 11293 } 11294 11295 return 0; 11296 } 11297 11298 /** 11299 * netdev_increment_features - increment feature set by one 11300 * @all: current feature set 11301 * @one: new feature set 11302 * @mask: mask feature set 11303 * 11304 * Computes a new feature set after adding a device with feature set 11305 * @one to the master device with current feature set @all. Will not 11306 * enable anything that is off in @mask. Returns the new feature set. 11307 */ 11308 netdev_features_t netdev_increment_features(netdev_features_t all, 11309 netdev_features_t one, netdev_features_t mask) 11310 { 11311 if (mask & NETIF_F_HW_CSUM) 11312 mask |= NETIF_F_CSUM_MASK; 11313 mask |= NETIF_F_VLAN_CHALLENGED; 11314 11315 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 11316 all &= one | ~NETIF_F_ALL_FOR_ALL; 11317 11318 /* If one device supports hw checksumming, set for all. */ 11319 if (all & NETIF_F_HW_CSUM) 11320 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 11321 11322 return all; 11323 } 11324 EXPORT_SYMBOL(netdev_increment_features); 11325 11326 static struct hlist_head * __net_init netdev_create_hash(void) 11327 { 11328 int i; 11329 struct hlist_head *hash; 11330 11331 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 11332 if (hash != NULL) 11333 for (i = 0; i < NETDEV_HASHENTRIES; i++) 11334 INIT_HLIST_HEAD(&hash[i]); 11335 11336 return hash; 11337 } 11338 11339 /* Initialize per network namespace state */ 11340 static int __net_init netdev_init(struct net *net) 11341 { 11342 BUILD_BUG_ON(GRO_HASH_BUCKETS > 11343 8 * sizeof_field(struct napi_struct, gro_bitmask)); 11344 11345 if (net != &init_net) 11346 INIT_LIST_HEAD(&net->dev_base_head); 11347 11348 net->dev_name_head = netdev_create_hash(); 11349 if (net->dev_name_head == NULL) 11350 goto err_name; 11351 11352 net->dev_index_head = netdev_create_hash(); 11353 if (net->dev_index_head == NULL) 11354 goto err_idx; 11355 11356 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain); 11357 11358 return 0; 11359 11360 err_idx: 11361 kfree(net->dev_name_head); 11362 err_name: 11363 return -ENOMEM; 11364 } 11365 11366 /** 11367 * netdev_drivername - network driver for the device 11368 * @dev: network device 11369 * 11370 * Determine network driver for device. 11371 */ 11372 const char *netdev_drivername(const struct net_device *dev) 11373 { 11374 const struct device_driver *driver; 11375 const struct device *parent; 11376 const char *empty = ""; 11377 11378 parent = dev->dev.parent; 11379 if (!parent) 11380 return empty; 11381 11382 driver = parent->driver; 11383 if (driver && driver->name) 11384 return driver->name; 11385 return empty; 11386 } 11387 11388 static void __netdev_printk(const char *level, const struct net_device *dev, 11389 struct va_format *vaf) 11390 { 11391 if (dev && dev->dev.parent) { 11392 dev_printk_emit(level[1] - '0', 11393 dev->dev.parent, 11394 "%s %s %s%s: %pV", 11395 dev_driver_string(dev->dev.parent), 11396 dev_name(dev->dev.parent), 11397 netdev_name(dev), netdev_reg_state(dev), 11398 vaf); 11399 } else if (dev) { 11400 printk("%s%s%s: %pV", 11401 level, netdev_name(dev), netdev_reg_state(dev), vaf); 11402 } else { 11403 printk("%s(NULL net_device): %pV", level, vaf); 11404 } 11405 } 11406 11407 void netdev_printk(const char *level, const struct net_device *dev, 11408 const char *format, ...) 11409 { 11410 struct va_format vaf; 11411 va_list args; 11412 11413 va_start(args, format); 11414 11415 vaf.fmt = format; 11416 vaf.va = &args; 11417 11418 __netdev_printk(level, dev, &vaf); 11419 11420 va_end(args); 11421 } 11422 EXPORT_SYMBOL(netdev_printk); 11423 11424 #define define_netdev_printk_level(func, level) \ 11425 void func(const struct net_device *dev, const char *fmt, ...) \ 11426 { \ 11427 struct va_format vaf; \ 11428 va_list args; \ 11429 \ 11430 va_start(args, fmt); \ 11431 \ 11432 vaf.fmt = fmt; \ 11433 vaf.va = &args; \ 11434 \ 11435 __netdev_printk(level, dev, &vaf); \ 11436 \ 11437 va_end(args); \ 11438 } \ 11439 EXPORT_SYMBOL(func); 11440 11441 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 11442 define_netdev_printk_level(netdev_alert, KERN_ALERT); 11443 define_netdev_printk_level(netdev_crit, KERN_CRIT); 11444 define_netdev_printk_level(netdev_err, KERN_ERR); 11445 define_netdev_printk_level(netdev_warn, KERN_WARNING); 11446 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 11447 define_netdev_printk_level(netdev_info, KERN_INFO); 11448 11449 static void __net_exit netdev_exit(struct net *net) 11450 { 11451 kfree(net->dev_name_head); 11452 kfree(net->dev_index_head); 11453 if (net != &init_net) 11454 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 11455 } 11456 11457 static struct pernet_operations __net_initdata netdev_net_ops = { 11458 .init = netdev_init, 11459 .exit = netdev_exit, 11460 }; 11461 11462 static void __net_exit default_device_exit(struct net *net) 11463 { 11464 struct net_device *dev, *aux; 11465 /* 11466 * Push all migratable network devices back to the 11467 * initial network namespace 11468 */ 11469 rtnl_lock(); 11470 for_each_netdev_safe(net, dev, aux) { 11471 int err; 11472 char fb_name[IFNAMSIZ]; 11473 11474 /* Ignore unmoveable devices (i.e. loopback) */ 11475 if (dev->features & NETIF_F_NETNS_LOCAL) 11476 continue; 11477 11478 /* Leave virtual devices for the generic cleanup */ 11479 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund) 11480 continue; 11481 11482 /* Push remaining network devices to init_net */ 11483 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 11484 if (__dev_get_by_name(&init_net, fb_name)) 11485 snprintf(fb_name, IFNAMSIZ, "dev%%d"); 11486 err = dev_change_net_namespace(dev, &init_net, fb_name); 11487 if (err) { 11488 pr_emerg("%s: failed to move %s to init_net: %d\n", 11489 __func__, dev->name, err); 11490 BUG(); 11491 } 11492 } 11493 rtnl_unlock(); 11494 } 11495 11496 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 11497 { 11498 /* Return with the rtnl_lock held when there are no network 11499 * devices unregistering in any network namespace in net_list. 11500 */ 11501 struct net *net; 11502 bool unregistering; 11503 DEFINE_WAIT_FUNC(wait, woken_wake_function); 11504 11505 add_wait_queue(&netdev_unregistering_wq, &wait); 11506 for (;;) { 11507 unregistering = false; 11508 rtnl_lock(); 11509 list_for_each_entry(net, net_list, exit_list) { 11510 if (net->dev_unreg_count > 0) { 11511 unregistering = true; 11512 break; 11513 } 11514 } 11515 if (!unregistering) 11516 break; 11517 __rtnl_unlock(); 11518 11519 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 11520 } 11521 remove_wait_queue(&netdev_unregistering_wq, &wait); 11522 } 11523 11524 static void __net_exit default_device_exit_batch(struct list_head *net_list) 11525 { 11526 /* At exit all network devices most be removed from a network 11527 * namespace. Do this in the reverse order of registration. 11528 * Do this across as many network namespaces as possible to 11529 * improve batching efficiency. 11530 */ 11531 struct net_device *dev; 11532 struct net *net; 11533 LIST_HEAD(dev_kill_list); 11534 11535 /* To prevent network device cleanup code from dereferencing 11536 * loopback devices or network devices that have been freed 11537 * wait here for all pending unregistrations to complete, 11538 * before unregistring the loopback device and allowing the 11539 * network namespace be freed. 11540 * 11541 * The netdev todo list containing all network devices 11542 * unregistrations that happen in default_device_exit_batch 11543 * will run in the rtnl_unlock() at the end of 11544 * default_device_exit_batch. 11545 */ 11546 rtnl_lock_unregistering(net_list); 11547 list_for_each_entry(net, net_list, exit_list) { 11548 for_each_netdev_reverse(net, dev) { 11549 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 11550 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 11551 else 11552 unregister_netdevice_queue(dev, &dev_kill_list); 11553 } 11554 } 11555 unregister_netdevice_many(&dev_kill_list); 11556 rtnl_unlock(); 11557 } 11558 11559 static struct pernet_operations __net_initdata default_device_ops = { 11560 .exit = default_device_exit, 11561 .exit_batch = default_device_exit_batch, 11562 }; 11563 11564 /* 11565 * Initialize the DEV module. At boot time this walks the device list and 11566 * unhooks any devices that fail to initialise (normally hardware not 11567 * present) and leaves us with a valid list of present and active devices. 11568 * 11569 */ 11570 11571 /* 11572 * This is called single threaded during boot, so no need 11573 * to take the rtnl semaphore. 11574 */ 11575 static int __init net_dev_init(void) 11576 { 11577 int i, rc = -ENOMEM; 11578 11579 BUG_ON(!dev_boot_phase); 11580 11581 if (dev_proc_init()) 11582 goto out; 11583 11584 if (netdev_kobject_init()) 11585 goto out; 11586 11587 INIT_LIST_HEAD(&ptype_all); 11588 for (i = 0; i < PTYPE_HASH_SIZE; i++) 11589 INIT_LIST_HEAD(&ptype_base[i]); 11590 11591 INIT_LIST_HEAD(&offload_base); 11592 11593 if (register_pernet_subsys(&netdev_net_ops)) 11594 goto out; 11595 11596 /* 11597 * Initialise the packet receive queues. 11598 */ 11599 11600 for_each_possible_cpu(i) { 11601 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 11602 struct softnet_data *sd = &per_cpu(softnet_data, i); 11603 11604 INIT_WORK(flush, flush_backlog); 11605 11606 skb_queue_head_init(&sd->input_pkt_queue); 11607 skb_queue_head_init(&sd->process_queue); 11608 #ifdef CONFIG_XFRM_OFFLOAD 11609 skb_queue_head_init(&sd->xfrm_backlog); 11610 #endif 11611 INIT_LIST_HEAD(&sd->poll_list); 11612 sd->output_queue_tailp = &sd->output_queue; 11613 #ifdef CONFIG_RPS 11614 INIT_CSD(&sd->csd, rps_trigger_softirq, sd); 11615 sd->cpu = i; 11616 #endif 11617 11618 init_gro_hash(&sd->backlog); 11619 sd->backlog.poll = process_backlog; 11620 sd->backlog.weight = weight_p; 11621 } 11622 11623 dev_boot_phase = 0; 11624 11625 /* The loopback device is special if any other network devices 11626 * is present in a network namespace the loopback device must 11627 * be present. Since we now dynamically allocate and free the 11628 * loopback device ensure this invariant is maintained by 11629 * keeping the loopback device as the first device on the 11630 * list of network devices. Ensuring the loopback devices 11631 * is the first device that appears and the last network device 11632 * that disappears. 11633 */ 11634 if (register_pernet_device(&loopback_net_ops)) 11635 goto out; 11636 11637 if (register_pernet_device(&default_device_ops)) 11638 goto out; 11639 11640 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 11641 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 11642 11643 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 11644 NULL, dev_cpu_dead); 11645 WARN_ON(rc < 0); 11646 rc = 0; 11647 out: 11648 return rc; 11649 } 11650 11651 subsys_initcall(net_dev_init); 11652