xref: /openbmc/linux/net/core/dev.c (revision 643d1f7f)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/notifier.h>
94 #include <linux/skbuff.h>
95 #include <net/net_namespace.h>
96 #include <net/sock.h>
97 #include <linux/rtnetlink.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/stat.h>
101 #include <linux/if_bridge.h>
102 #include <linux/if_macvlan.h>
103 #include <net/dst.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/kmod.h>
109 #include <linux/module.h>
110 #include <linux/kallsyms.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 
123 #include "net-sysfs.h"
124 
125 /*
126  *	The list of packet types we will receive (as opposed to discard)
127  *	and the routines to invoke.
128  *
129  *	Why 16. Because with 16 the only overlap we get on a hash of the
130  *	low nibble of the protocol value is RARP/SNAP/X.25.
131  *
132  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
133  *             sure which should go first, but I bet it won't make much
134  *             difference if we are running VLANs.  The good news is that
135  *             this protocol won't be in the list unless compiled in, so
136  *             the average user (w/out VLANs) will not be adversely affected.
137  *             --BLG
138  *
139  *		0800	IP
140  *		8100    802.1Q VLAN
141  *		0001	802.3
142  *		0002	AX.25
143  *		0004	802.2
144  *		8035	RARP
145  *		0005	SNAP
146  *		0805	X.25
147  *		0806	ARP
148  *		8137	IPX
149  *		0009	Localtalk
150  *		86DD	IPv6
151  */
152 
153 #define PTYPE_HASH_SIZE	(16)
154 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
155 
156 static DEFINE_SPINLOCK(ptype_lock);
157 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
158 static struct list_head ptype_all __read_mostly;	/* Taps */
159 
160 #ifdef CONFIG_NET_DMA
161 struct net_dma {
162 	struct dma_client client;
163 	spinlock_t lock;
164 	cpumask_t channel_mask;
165 	struct dma_chan *channels[NR_CPUS];
166 };
167 
168 static enum dma_state_client
169 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
170 	enum dma_state state);
171 
172 static struct net_dma net_dma = {
173 	.client = {
174 		.event_callback = netdev_dma_event,
175 	},
176 };
177 #endif
178 
179 /*
180  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
181  * semaphore.
182  *
183  * Pure readers hold dev_base_lock for reading.
184  *
185  * Writers must hold the rtnl semaphore while they loop through the
186  * dev_base_head list, and hold dev_base_lock for writing when they do the
187  * actual updates.  This allows pure readers to access the list even
188  * while a writer is preparing to update it.
189  *
190  * To put it another way, dev_base_lock is held for writing only to
191  * protect against pure readers; the rtnl semaphore provides the
192  * protection against other writers.
193  *
194  * See, for example usages, register_netdevice() and
195  * unregister_netdevice(), which must be called with the rtnl
196  * semaphore held.
197  */
198 DEFINE_RWLOCK(dev_base_lock);
199 
200 EXPORT_SYMBOL(dev_base_lock);
201 
202 #define NETDEV_HASHBITS	8
203 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
204 
205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
206 {
207 	unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
208 	return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
209 }
210 
211 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
212 {
213 	return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
214 }
215 
216 /* Device list insertion */
217 static int list_netdevice(struct net_device *dev)
218 {
219 	struct net *net = dev->nd_net;
220 
221 	ASSERT_RTNL();
222 
223 	write_lock_bh(&dev_base_lock);
224 	list_add_tail(&dev->dev_list, &net->dev_base_head);
225 	hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
226 	hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
227 	write_unlock_bh(&dev_base_lock);
228 	return 0;
229 }
230 
231 /* Device list removal */
232 static void unlist_netdevice(struct net_device *dev)
233 {
234 	ASSERT_RTNL();
235 
236 	/* Unlink dev from the device chain */
237 	write_lock_bh(&dev_base_lock);
238 	list_del(&dev->dev_list);
239 	hlist_del(&dev->name_hlist);
240 	hlist_del(&dev->index_hlist);
241 	write_unlock_bh(&dev_base_lock);
242 }
243 
244 /*
245  *	Our notifier list
246  */
247 
248 static RAW_NOTIFIER_HEAD(netdev_chain);
249 
250 /*
251  *	Device drivers call our routines to queue packets here. We empty the
252  *	queue in the local softnet handler.
253  */
254 
255 DEFINE_PER_CPU(struct softnet_data, softnet_data);
256 
257 #ifdef CONFIG_DEBUG_LOCK_ALLOC
258 /*
259  * register_netdevice() inits dev->_xmit_lock and sets lockdep class
260  * according to dev->type
261  */
262 static const unsigned short netdev_lock_type[] =
263 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
264 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
265 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
266 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
267 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
268 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
269 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
270 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
271 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
272 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
273 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
274 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
275 	 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
276 	 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID,
277 	 ARPHRD_NONE};
278 
279 static const char *netdev_lock_name[] =
280 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
281 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
282 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
283 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
284 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
285 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
286 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
287 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
288 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
289 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
290 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
291 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
292 	 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
293 	 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID",
294 	 "_xmit_NONE"};
295 
296 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
297 
298 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
299 {
300 	int i;
301 
302 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
303 		if (netdev_lock_type[i] == dev_type)
304 			return i;
305 	/* the last key is used by default */
306 	return ARRAY_SIZE(netdev_lock_type) - 1;
307 }
308 
309 static inline void netdev_set_lockdep_class(spinlock_t *lock,
310 					    unsigned short dev_type)
311 {
312 	int i;
313 
314 	i = netdev_lock_pos(dev_type);
315 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
316 				   netdev_lock_name[i]);
317 }
318 #else
319 static inline void netdev_set_lockdep_class(spinlock_t *lock,
320 					    unsigned short dev_type)
321 {
322 }
323 #endif
324 
325 /*******************************************************************************
326 
327 		Protocol management and registration routines
328 
329 *******************************************************************************/
330 
331 /*
332  *	Add a protocol ID to the list. Now that the input handler is
333  *	smarter we can dispense with all the messy stuff that used to be
334  *	here.
335  *
336  *	BEWARE!!! Protocol handlers, mangling input packets,
337  *	MUST BE last in hash buckets and checking protocol handlers
338  *	MUST start from promiscuous ptype_all chain in net_bh.
339  *	It is true now, do not change it.
340  *	Explanation follows: if protocol handler, mangling packet, will
341  *	be the first on list, it is not able to sense, that packet
342  *	is cloned and should be copied-on-write, so that it will
343  *	change it and subsequent readers will get broken packet.
344  *							--ANK (980803)
345  */
346 
347 /**
348  *	dev_add_pack - add packet handler
349  *	@pt: packet type declaration
350  *
351  *	Add a protocol handler to the networking stack. The passed &packet_type
352  *	is linked into kernel lists and may not be freed until it has been
353  *	removed from the kernel lists.
354  *
355  *	This call does not sleep therefore it can not
356  *	guarantee all CPU's that are in middle of receiving packets
357  *	will see the new packet type (until the next received packet).
358  */
359 
360 void dev_add_pack(struct packet_type *pt)
361 {
362 	int hash;
363 
364 	spin_lock_bh(&ptype_lock);
365 	if (pt->type == htons(ETH_P_ALL))
366 		list_add_rcu(&pt->list, &ptype_all);
367 	else {
368 		hash = ntohs(pt->type) & PTYPE_HASH_MASK;
369 		list_add_rcu(&pt->list, &ptype_base[hash]);
370 	}
371 	spin_unlock_bh(&ptype_lock);
372 }
373 
374 /**
375  *	__dev_remove_pack	 - remove packet handler
376  *	@pt: packet type declaration
377  *
378  *	Remove a protocol handler that was previously added to the kernel
379  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
380  *	from the kernel lists and can be freed or reused once this function
381  *	returns.
382  *
383  *      The packet type might still be in use by receivers
384  *	and must not be freed until after all the CPU's have gone
385  *	through a quiescent state.
386  */
387 void __dev_remove_pack(struct packet_type *pt)
388 {
389 	struct list_head *head;
390 	struct packet_type *pt1;
391 
392 	spin_lock_bh(&ptype_lock);
393 
394 	if (pt->type == htons(ETH_P_ALL))
395 		head = &ptype_all;
396 	else
397 		head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
398 
399 	list_for_each_entry(pt1, head, list) {
400 		if (pt == pt1) {
401 			list_del_rcu(&pt->list);
402 			goto out;
403 		}
404 	}
405 
406 	printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
407 out:
408 	spin_unlock_bh(&ptype_lock);
409 }
410 /**
411  *	dev_remove_pack	 - remove packet handler
412  *	@pt: packet type declaration
413  *
414  *	Remove a protocol handler that was previously added to the kernel
415  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
416  *	from the kernel lists and can be freed or reused once this function
417  *	returns.
418  *
419  *	This call sleeps to guarantee that no CPU is looking at the packet
420  *	type after return.
421  */
422 void dev_remove_pack(struct packet_type *pt)
423 {
424 	__dev_remove_pack(pt);
425 
426 	synchronize_net();
427 }
428 
429 /******************************************************************************
430 
431 		      Device Boot-time Settings Routines
432 
433 *******************************************************************************/
434 
435 /* Boot time configuration table */
436 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
437 
438 /**
439  *	netdev_boot_setup_add	- add new setup entry
440  *	@name: name of the device
441  *	@map: configured settings for the device
442  *
443  *	Adds new setup entry to the dev_boot_setup list.  The function
444  *	returns 0 on error and 1 on success.  This is a generic routine to
445  *	all netdevices.
446  */
447 static int netdev_boot_setup_add(char *name, struct ifmap *map)
448 {
449 	struct netdev_boot_setup *s;
450 	int i;
451 
452 	s = dev_boot_setup;
453 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
454 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
455 			memset(s[i].name, 0, sizeof(s[i].name));
456 			strcpy(s[i].name, name);
457 			memcpy(&s[i].map, map, sizeof(s[i].map));
458 			break;
459 		}
460 	}
461 
462 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
463 }
464 
465 /**
466  *	netdev_boot_setup_check	- check boot time settings
467  *	@dev: the netdevice
468  *
469  * 	Check boot time settings for the device.
470  *	The found settings are set for the device to be used
471  *	later in the device probing.
472  *	Returns 0 if no settings found, 1 if they are.
473  */
474 int netdev_boot_setup_check(struct net_device *dev)
475 {
476 	struct netdev_boot_setup *s = dev_boot_setup;
477 	int i;
478 
479 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
480 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
481 		    !strncmp(dev->name, s[i].name, strlen(s[i].name))) {
482 			dev->irq 	= s[i].map.irq;
483 			dev->base_addr 	= s[i].map.base_addr;
484 			dev->mem_start 	= s[i].map.mem_start;
485 			dev->mem_end 	= s[i].map.mem_end;
486 			return 1;
487 		}
488 	}
489 	return 0;
490 }
491 
492 
493 /**
494  *	netdev_boot_base	- get address from boot time settings
495  *	@prefix: prefix for network device
496  *	@unit: id for network device
497  *
498  * 	Check boot time settings for the base address of device.
499  *	The found settings are set for the device to be used
500  *	later in the device probing.
501  *	Returns 0 if no settings found.
502  */
503 unsigned long netdev_boot_base(const char *prefix, int unit)
504 {
505 	const struct netdev_boot_setup *s = dev_boot_setup;
506 	char name[IFNAMSIZ];
507 	int i;
508 
509 	sprintf(name, "%s%d", prefix, unit);
510 
511 	/*
512 	 * If device already registered then return base of 1
513 	 * to indicate not to probe for this interface
514 	 */
515 	if (__dev_get_by_name(&init_net, name))
516 		return 1;
517 
518 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
519 		if (!strcmp(name, s[i].name))
520 			return s[i].map.base_addr;
521 	return 0;
522 }
523 
524 /*
525  * Saves at boot time configured settings for any netdevice.
526  */
527 int __init netdev_boot_setup(char *str)
528 {
529 	int ints[5];
530 	struct ifmap map;
531 
532 	str = get_options(str, ARRAY_SIZE(ints), ints);
533 	if (!str || !*str)
534 		return 0;
535 
536 	/* Save settings */
537 	memset(&map, 0, sizeof(map));
538 	if (ints[0] > 0)
539 		map.irq = ints[1];
540 	if (ints[0] > 1)
541 		map.base_addr = ints[2];
542 	if (ints[0] > 2)
543 		map.mem_start = ints[3];
544 	if (ints[0] > 3)
545 		map.mem_end = ints[4];
546 
547 	/* Add new entry to the list */
548 	return netdev_boot_setup_add(str, &map);
549 }
550 
551 __setup("netdev=", netdev_boot_setup);
552 
553 /*******************************************************************************
554 
555 			    Device Interface Subroutines
556 
557 *******************************************************************************/
558 
559 /**
560  *	__dev_get_by_name	- find a device by its name
561  *	@net: the applicable net namespace
562  *	@name: name to find
563  *
564  *	Find an interface by name. Must be called under RTNL semaphore
565  *	or @dev_base_lock. If the name is found a pointer to the device
566  *	is returned. If the name is not found then %NULL is returned. The
567  *	reference counters are not incremented so the caller must be
568  *	careful with locks.
569  */
570 
571 struct net_device *__dev_get_by_name(struct net *net, const char *name)
572 {
573 	struct hlist_node *p;
574 
575 	hlist_for_each(p, dev_name_hash(net, name)) {
576 		struct net_device *dev
577 			= hlist_entry(p, struct net_device, name_hlist);
578 		if (!strncmp(dev->name, name, IFNAMSIZ))
579 			return dev;
580 	}
581 	return NULL;
582 }
583 
584 /**
585  *	dev_get_by_name		- find a device by its name
586  *	@net: the applicable net namespace
587  *	@name: name to find
588  *
589  *	Find an interface by name. This can be called from any
590  *	context and does its own locking. The returned handle has
591  *	the usage count incremented and the caller must use dev_put() to
592  *	release it when it is no longer needed. %NULL is returned if no
593  *	matching device is found.
594  */
595 
596 struct net_device *dev_get_by_name(struct net *net, const char *name)
597 {
598 	struct net_device *dev;
599 
600 	read_lock(&dev_base_lock);
601 	dev = __dev_get_by_name(net, name);
602 	if (dev)
603 		dev_hold(dev);
604 	read_unlock(&dev_base_lock);
605 	return dev;
606 }
607 
608 /**
609  *	__dev_get_by_index - find a device by its ifindex
610  *	@net: the applicable net namespace
611  *	@ifindex: index of device
612  *
613  *	Search for an interface by index. Returns %NULL if the device
614  *	is not found or a pointer to the device. The device has not
615  *	had its reference counter increased so the caller must be careful
616  *	about locking. The caller must hold either the RTNL semaphore
617  *	or @dev_base_lock.
618  */
619 
620 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
621 {
622 	struct hlist_node *p;
623 
624 	hlist_for_each(p, dev_index_hash(net, ifindex)) {
625 		struct net_device *dev
626 			= hlist_entry(p, struct net_device, index_hlist);
627 		if (dev->ifindex == ifindex)
628 			return dev;
629 	}
630 	return NULL;
631 }
632 
633 
634 /**
635  *	dev_get_by_index - find a device by its ifindex
636  *	@net: the applicable net namespace
637  *	@ifindex: index of device
638  *
639  *	Search for an interface by index. Returns NULL if the device
640  *	is not found or a pointer to the device. The device returned has
641  *	had a reference added and the pointer is safe until the user calls
642  *	dev_put to indicate they have finished with it.
643  */
644 
645 struct net_device *dev_get_by_index(struct net *net, int ifindex)
646 {
647 	struct net_device *dev;
648 
649 	read_lock(&dev_base_lock);
650 	dev = __dev_get_by_index(net, ifindex);
651 	if (dev)
652 		dev_hold(dev);
653 	read_unlock(&dev_base_lock);
654 	return dev;
655 }
656 
657 /**
658  *	dev_getbyhwaddr - find a device by its hardware address
659  *	@net: the applicable net namespace
660  *	@type: media type of device
661  *	@ha: hardware address
662  *
663  *	Search for an interface by MAC address. Returns NULL if the device
664  *	is not found or a pointer to the device. The caller must hold the
665  *	rtnl semaphore. The returned device has not had its ref count increased
666  *	and the caller must therefore be careful about locking
667  *
668  *	BUGS:
669  *	If the API was consistent this would be __dev_get_by_hwaddr
670  */
671 
672 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
673 {
674 	struct net_device *dev;
675 
676 	ASSERT_RTNL();
677 
678 	for_each_netdev(net, dev)
679 		if (dev->type == type &&
680 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
681 			return dev;
682 
683 	return NULL;
684 }
685 
686 EXPORT_SYMBOL(dev_getbyhwaddr);
687 
688 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
689 {
690 	struct net_device *dev;
691 
692 	ASSERT_RTNL();
693 	for_each_netdev(net, dev)
694 		if (dev->type == type)
695 			return dev;
696 
697 	return NULL;
698 }
699 
700 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
701 
702 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
703 {
704 	struct net_device *dev;
705 
706 	rtnl_lock();
707 	dev = __dev_getfirstbyhwtype(net, type);
708 	if (dev)
709 		dev_hold(dev);
710 	rtnl_unlock();
711 	return dev;
712 }
713 
714 EXPORT_SYMBOL(dev_getfirstbyhwtype);
715 
716 /**
717  *	dev_get_by_flags - find any device with given flags
718  *	@net: the applicable net namespace
719  *	@if_flags: IFF_* values
720  *	@mask: bitmask of bits in if_flags to check
721  *
722  *	Search for any interface with the given flags. Returns NULL if a device
723  *	is not found or a pointer to the device. The device returned has
724  *	had a reference added and the pointer is safe until the user calls
725  *	dev_put to indicate they have finished with it.
726  */
727 
728 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
729 {
730 	struct net_device *dev, *ret;
731 
732 	ret = NULL;
733 	read_lock(&dev_base_lock);
734 	for_each_netdev(net, dev) {
735 		if (((dev->flags ^ if_flags) & mask) == 0) {
736 			dev_hold(dev);
737 			ret = dev;
738 			break;
739 		}
740 	}
741 	read_unlock(&dev_base_lock);
742 	return ret;
743 }
744 
745 /**
746  *	dev_valid_name - check if name is okay for network device
747  *	@name: name string
748  *
749  *	Network device names need to be valid file names to
750  *	to allow sysfs to work.  We also disallow any kind of
751  *	whitespace.
752  */
753 int dev_valid_name(const char *name)
754 {
755 	if (*name == '\0')
756 		return 0;
757 	if (strlen(name) >= IFNAMSIZ)
758 		return 0;
759 	if (!strcmp(name, ".") || !strcmp(name, ".."))
760 		return 0;
761 
762 	while (*name) {
763 		if (*name == '/' || isspace(*name))
764 			return 0;
765 		name++;
766 	}
767 	return 1;
768 }
769 
770 /**
771  *	__dev_alloc_name - allocate a name for a device
772  *	@net: network namespace to allocate the device name in
773  *	@name: name format string
774  *	@buf:  scratch buffer and result name string
775  *
776  *	Passed a format string - eg "lt%d" it will try and find a suitable
777  *	id. It scans list of devices to build up a free map, then chooses
778  *	the first empty slot. The caller must hold the dev_base or rtnl lock
779  *	while allocating the name and adding the device in order to avoid
780  *	duplicates.
781  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
782  *	Returns the number of the unit assigned or a negative errno code.
783  */
784 
785 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
786 {
787 	int i = 0;
788 	const char *p;
789 	const int max_netdevices = 8*PAGE_SIZE;
790 	unsigned long *inuse;
791 	struct net_device *d;
792 
793 	p = strnchr(name, IFNAMSIZ-1, '%');
794 	if (p) {
795 		/*
796 		 * Verify the string as this thing may have come from
797 		 * the user.  There must be either one "%d" and no other "%"
798 		 * characters.
799 		 */
800 		if (p[1] != 'd' || strchr(p + 2, '%'))
801 			return -EINVAL;
802 
803 		/* Use one page as a bit array of possible slots */
804 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
805 		if (!inuse)
806 			return -ENOMEM;
807 
808 		for_each_netdev(net, d) {
809 			if (!sscanf(d->name, name, &i))
810 				continue;
811 			if (i < 0 || i >= max_netdevices)
812 				continue;
813 
814 			/*  avoid cases where sscanf is not exact inverse of printf */
815 			snprintf(buf, IFNAMSIZ, name, i);
816 			if (!strncmp(buf, d->name, IFNAMSIZ))
817 				set_bit(i, inuse);
818 		}
819 
820 		i = find_first_zero_bit(inuse, max_netdevices);
821 		free_page((unsigned long) inuse);
822 	}
823 
824 	snprintf(buf, IFNAMSIZ, name, i);
825 	if (!__dev_get_by_name(net, buf))
826 		return i;
827 
828 	/* It is possible to run out of possible slots
829 	 * when the name is long and there isn't enough space left
830 	 * for the digits, or if all bits are used.
831 	 */
832 	return -ENFILE;
833 }
834 
835 /**
836  *	dev_alloc_name - allocate a name for a device
837  *	@dev: device
838  *	@name: name format string
839  *
840  *	Passed a format string - eg "lt%d" it will try and find a suitable
841  *	id. It scans list of devices to build up a free map, then chooses
842  *	the first empty slot. The caller must hold the dev_base or rtnl lock
843  *	while allocating the name and adding the device in order to avoid
844  *	duplicates.
845  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
846  *	Returns the number of the unit assigned or a negative errno code.
847  */
848 
849 int dev_alloc_name(struct net_device *dev, const char *name)
850 {
851 	char buf[IFNAMSIZ];
852 	struct net *net;
853 	int ret;
854 
855 	BUG_ON(!dev->nd_net);
856 	net = dev->nd_net;
857 	ret = __dev_alloc_name(net, name, buf);
858 	if (ret >= 0)
859 		strlcpy(dev->name, buf, IFNAMSIZ);
860 	return ret;
861 }
862 
863 
864 /**
865  *	dev_change_name - change name of a device
866  *	@dev: device
867  *	@newname: name (or format string) must be at least IFNAMSIZ
868  *
869  *	Change name of a device, can pass format strings "eth%d".
870  *	for wildcarding.
871  */
872 int dev_change_name(struct net_device *dev, char *newname)
873 {
874 	char oldname[IFNAMSIZ];
875 	int err = 0;
876 	int ret;
877 	struct net *net;
878 
879 	ASSERT_RTNL();
880 	BUG_ON(!dev->nd_net);
881 
882 	net = dev->nd_net;
883 	if (dev->flags & IFF_UP)
884 		return -EBUSY;
885 
886 	if (!dev_valid_name(newname))
887 		return -EINVAL;
888 
889 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
890 		return 0;
891 
892 	memcpy(oldname, dev->name, IFNAMSIZ);
893 
894 	if (strchr(newname, '%')) {
895 		err = dev_alloc_name(dev, newname);
896 		if (err < 0)
897 			return err;
898 		strcpy(newname, dev->name);
899 	}
900 	else if (__dev_get_by_name(net, newname))
901 		return -EEXIST;
902 	else
903 		strlcpy(dev->name, newname, IFNAMSIZ);
904 
905 rollback:
906 	device_rename(&dev->dev, dev->name);
907 
908 	write_lock_bh(&dev_base_lock);
909 	hlist_del(&dev->name_hlist);
910 	hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
911 	write_unlock_bh(&dev_base_lock);
912 
913 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
914 	ret = notifier_to_errno(ret);
915 
916 	if (ret) {
917 		if (err) {
918 			printk(KERN_ERR
919 			       "%s: name change rollback failed: %d.\n",
920 			       dev->name, ret);
921 		} else {
922 			err = ret;
923 			memcpy(dev->name, oldname, IFNAMSIZ);
924 			goto rollback;
925 		}
926 	}
927 
928 	return err;
929 }
930 
931 /**
932  *	netdev_features_change - device changes features
933  *	@dev: device to cause notification
934  *
935  *	Called to indicate a device has changed features.
936  */
937 void netdev_features_change(struct net_device *dev)
938 {
939 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
940 }
941 EXPORT_SYMBOL(netdev_features_change);
942 
943 /**
944  *	netdev_state_change - device changes state
945  *	@dev: device to cause notification
946  *
947  *	Called to indicate a device has changed state. This function calls
948  *	the notifier chains for netdev_chain and sends a NEWLINK message
949  *	to the routing socket.
950  */
951 void netdev_state_change(struct net_device *dev)
952 {
953 	if (dev->flags & IFF_UP) {
954 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
955 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
956 	}
957 }
958 
959 /**
960  *	dev_load 	- load a network module
961  *	@net: the applicable net namespace
962  *	@name: name of interface
963  *
964  *	If a network interface is not present and the process has suitable
965  *	privileges this function loads the module. If module loading is not
966  *	available in this kernel then it becomes a nop.
967  */
968 
969 void dev_load(struct net *net, const char *name)
970 {
971 	struct net_device *dev;
972 
973 	read_lock(&dev_base_lock);
974 	dev = __dev_get_by_name(net, name);
975 	read_unlock(&dev_base_lock);
976 
977 	if (!dev && capable(CAP_SYS_MODULE))
978 		request_module("%s", name);
979 }
980 
981 /**
982  *	dev_open	- prepare an interface for use.
983  *	@dev:	device to open
984  *
985  *	Takes a device from down to up state. The device's private open
986  *	function is invoked and then the multicast lists are loaded. Finally
987  *	the device is moved into the up state and a %NETDEV_UP message is
988  *	sent to the netdev notifier chain.
989  *
990  *	Calling this function on an active interface is a nop. On a failure
991  *	a negative errno code is returned.
992  */
993 int dev_open(struct net_device *dev)
994 {
995 	int ret = 0;
996 
997 	/*
998 	 *	Is it already up?
999 	 */
1000 
1001 	if (dev->flags & IFF_UP)
1002 		return 0;
1003 
1004 	/*
1005 	 *	Is it even present?
1006 	 */
1007 	if (!netif_device_present(dev))
1008 		return -ENODEV;
1009 
1010 	/*
1011 	 *	Call device private open method
1012 	 */
1013 	set_bit(__LINK_STATE_START, &dev->state);
1014 
1015 	if (dev->validate_addr)
1016 		ret = dev->validate_addr(dev);
1017 
1018 	if (!ret && dev->open)
1019 		ret = dev->open(dev);
1020 
1021 	/*
1022 	 *	If it went open OK then:
1023 	 */
1024 
1025 	if (ret)
1026 		clear_bit(__LINK_STATE_START, &dev->state);
1027 	else {
1028 		/*
1029 		 *	Set the flags.
1030 		 */
1031 		dev->flags |= IFF_UP;
1032 
1033 		/*
1034 		 *	Initialize multicasting status
1035 		 */
1036 		dev_set_rx_mode(dev);
1037 
1038 		/*
1039 		 *	Wakeup transmit queue engine
1040 		 */
1041 		dev_activate(dev);
1042 
1043 		/*
1044 		 *	... and announce new interface.
1045 		 */
1046 		call_netdevice_notifiers(NETDEV_UP, dev);
1047 	}
1048 
1049 	return ret;
1050 }
1051 
1052 /**
1053  *	dev_close - shutdown an interface.
1054  *	@dev: device to shutdown
1055  *
1056  *	This function moves an active device into down state. A
1057  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1058  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1059  *	chain.
1060  */
1061 int dev_close(struct net_device *dev)
1062 {
1063 	might_sleep();
1064 
1065 	if (!(dev->flags & IFF_UP))
1066 		return 0;
1067 
1068 	/*
1069 	 *	Tell people we are going down, so that they can
1070 	 *	prepare to death, when device is still operating.
1071 	 */
1072 	call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1073 
1074 	dev_deactivate(dev);
1075 
1076 	clear_bit(__LINK_STATE_START, &dev->state);
1077 
1078 	/* Synchronize to scheduled poll. We cannot touch poll list,
1079 	 * it can be even on different cpu. So just clear netif_running().
1080 	 *
1081 	 * dev->stop() will invoke napi_disable() on all of it's
1082 	 * napi_struct instances on this device.
1083 	 */
1084 	smp_mb__after_clear_bit(); /* Commit netif_running(). */
1085 
1086 	/*
1087 	 *	Call the device specific close. This cannot fail.
1088 	 *	Only if device is UP
1089 	 *
1090 	 *	We allow it to be called even after a DETACH hot-plug
1091 	 *	event.
1092 	 */
1093 	if (dev->stop)
1094 		dev->stop(dev);
1095 
1096 	/*
1097 	 *	Device is now down.
1098 	 */
1099 
1100 	dev->flags &= ~IFF_UP;
1101 
1102 	/*
1103 	 * Tell people we are down
1104 	 */
1105 	call_netdevice_notifiers(NETDEV_DOWN, dev);
1106 
1107 	return 0;
1108 }
1109 
1110 
1111 static int dev_boot_phase = 1;
1112 
1113 /*
1114  *	Device change register/unregister. These are not inline or static
1115  *	as we export them to the world.
1116  */
1117 
1118 /**
1119  *	register_netdevice_notifier - register a network notifier block
1120  *	@nb: notifier
1121  *
1122  *	Register a notifier to be called when network device events occur.
1123  *	The notifier passed is linked into the kernel structures and must
1124  *	not be reused until it has been unregistered. A negative errno code
1125  *	is returned on a failure.
1126  *
1127  * 	When registered all registration and up events are replayed
1128  *	to the new notifier to allow device to have a race free
1129  *	view of the network device list.
1130  */
1131 
1132 int register_netdevice_notifier(struct notifier_block *nb)
1133 {
1134 	struct net_device *dev;
1135 	struct net_device *last;
1136 	struct net *net;
1137 	int err;
1138 
1139 	rtnl_lock();
1140 	err = raw_notifier_chain_register(&netdev_chain, nb);
1141 	if (err)
1142 		goto unlock;
1143 	if (dev_boot_phase)
1144 		goto unlock;
1145 	for_each_net(net) {
1146 		for_each_netdev(net, dev) {
1147 			err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1148 			err = notifier_to_errno(err);
1149 			if (err)
1150 				goto rollback;
1151 
1152 			if (!(dev->flags & IFF_UP))
1153 				continue;
1154 
1155 			nb->notifier_call(nb, NETDEV_UP, dev);
1156 		}
1157 	}
1158 
1159 unlock:
1160 	rtnl_unlock();
1161 	return err;
1162 
1163 rollback:
1164 	last = dev;
1165 	for_each_net(net) {
1166 		for_each_netdev(net, dev) {
1167 			if (dev == last)
1168 				break;
1169 
1170 			if (dev->flags & IFF_UP) {
1171 				nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1172 				nb->notifier_call(nb, NETDEV_DOWN, dev);
1173 			}
1174 			nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1175 		}
1176 	}
1177 
1178 	raw_notifier_chain_unregister(&netdev_chain, nb);
1179 	goto unlock;
1180 }
1181 
1182 /**
1183  *	unregister_netdevice_notifier - unregister a network notifier block
1184  *	@nb: notifier
1185  *
1186  *	Unregister a notifier previously registered by
1187  *	register_netdevice_notifier(). The notifier is unlinked into the
1188  *	kernel structures and may then be reused. A negative errno code
1189  *	is returned on a failure.
1190  */
1191 
1192 int unregister_netdevice_notifier(struct notifier_block *nb)
1193 {
1194 	int err;
1195 
1196 	rtnl_lock();
1197 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1198 	rtnl_unlock();
1199 	return err;
1200 }
1201 
1202 /**
1203  *	call_netdevice_notifiers - call all network notifier blocks
1204  *      @val: value passed unmodified to notifier function
1205  *      @dev: net_device pointer passed unmodified to notifier function
1206  *
1207  *	Call all network notifier blocks.  Parameters and return value
1208  *	are as for raw_notifier_call_chain().
1209  */
1210 
1211 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1212 {
1213 	return raw_notifier_call_chain(&netdev_chain, val, dev);
1214 }
1215 
1216 /* When > 0 there are consumers of rx skb time stamps */
1217 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1218 
1219 void net_enable_timestamp(void)
1220 {
1221 	atomic_inc(&netstamp_needed);
1222 }
1223 
1224 void net_disable_timestamp(void)
1225 {
1226 	atomic_dec(&netstamp_needed);
1227 }
1228 
1229 static inline void net_timestamp(struct sk_buff *skb)
1230 {
1231 	if (atomic_read(&netstamp_needed))
1232 		__net_timestamp(skb);
1233 	else
1234 		skb->tstamp.tv64 = 0;
1235 }
1236 
1237 /*
1238  *	Support routine. Sends outgoing frames to any network
1239  *	taps currently in use.
1240  */
1241 
1242 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1243 {
1244 	struct packet_type *ptype;
1245 
1246 	net_timestamp(skb);
1247 
1248 	rcu_read_lock();
1249 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1250 		/* Never send packets back to the socket
1251 		 * they originated from - MvS (miquels@drinkel.ow.org)
1252 		 */
1253 		if ((ptype->dev == dev || !ptype->dev) &&
1254 		    (ptype->af_packet_priv == NULL ||
1255 		     (struct sock *)ptype->af_packet_priv != skb->sk)) {
1256 			struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1257 			if (!skb2)
1258 				break;
1259 
1260 			/* skb->nh should be correctly
1261 			   set by sender, so that the second statement is
1262 			   just protection against buggy protocols.
1263 			 */
1264 			skb_reset_mac_header(skb2);
1265 
1266 			if (skb_network_header(skb2) < skb2->data ||
1267 			    skb2->network_header > skb2->tail) {
1268 				if (net_ratelimit())
1269 					printk(KERN_CRIT "protocol %04x is "
1270 					       "buggy, dev %s\n",
1271 					       skb2->protocol, dev->name);
1272 				skb_reset_network_header(skb2);
1273 			}
1274 
1275 			skb2->transport_header = skb2->network_header;
1276 			skb2->pkt_type = PACKET_OUTGOING;
1277 			ptype->func(skb2, skb->dev, ptype, skb->dev);
1278 		}
1279 	}
1280 	rcu_read_unlock();
1281 }
1282 
1283 
1284 void __netif_schedule(struct net_device *dev)
1285 {
1286 	if (!test_and_set_bit(__LINK_STATE_SCHED, &dev->state)) {
1287 		unsigned long flags;
1288 		struct softnet_data *sd;
1289 
1290 		local_irq_save(flags);
1291 		sd = &__get_cpu_var(softnet_data);
1292 		dev->next_sched = sd->output_queue;
1293 		sd->output_queue = dev;
1294 		raise_softirq_irqoff(NET_TX_SOFTIRQ);
1295 		local_irq_restore(flags);
1296 	}
1297 }
1298 EXPORT_SYMBOL(__netif_schedule);
1299 
1300 void dev_kfree_skb_irq(struct sk_buff *skb)
1301 {
1302 	if (atomic_dec_and_test(&skb->users)) {
1303 		struct softnet_data *sd;
1304 		unsigned long flags;
1305 
1306 		local_irq_save(flags);
1307 		sd = &__get_cpu_var(softnet_data);
1308 		skb->next = sd->completion_queue;
1309 		sd->completion_queue = skb;
1310 		raise_softirq_irqoff(NET_TX_SOFTIRQ);
1311 		local_irq_restore(flags);
1312 	}
1313 }
1314 EXPORT_SYMBOL(dev_kfree_skb_irq);
1315 
1316 void dev_kfree_skb_any(struct sk_buff *skb)
1317 {
1318 	if (in_irq() || irqs_disabled())
1319 		dev_kfree_skb_irq(skb);
1320 	else
1321 		dev_kfree_skb(skb);
1322 }
1323 EXPORT_SYMBOL(dev_kfree_skb_any);
1324 
1325 
1326 /**
1327  * netif_device_detach - mark device as removed
1328  * @dev: network device
1329  *
1330  * Mark device as removed from system and therefore no longer available.
1331  */
1332 void netif_device_detach(struct net_device *dev)
1333 {
1334 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1335 	    netif_running(dev)) {
1336 		netif_stop_queue(dev);
1337 	}
1338 }
1339 EXPORT_SYMBOL(netif_device_detach);
1340 
1341 /**
1342  * netif_device_attach - mark device as attached
1343  * @dev: network device
1344  *
1345  * Mark device as attached from system and restart if needed.
1346  */
1347 void netif_device_attach(struct net_device *dev)
1348 {
1349 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1350 	    netif_running(dev)) {
1351 		netif_wake_queue(dev);
1352 		__netdev_watchdog_up(dev);
1353 	}
1354 }
1355 EXPORT_SYMBOL(netif_device_attach);
1356 
1357 
1358 /*
1359  * Invalidate hardware checksum when packet is to be mangled, and
1360  * complete checksum manually on outgoing path.
1361  */
1362 int skb_checksum_help(struct sk_buff *skb)
1363 {
1364 	__wsum csum;
1365 	int ret = 0, offset;
1366 
1367 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1368 		goto out_set_summed;
1369 
1370 	if (unlikely(skb_shinfo(skb)->gso_size)) {
1371 		/* Let GSO fix up the checksum. */
1372 		goto out_set_summed;
1373 	}
1374 
1375 	offset = skb->csum_start - skb_headroom(skb);
1376 	BUG_ON(offset >= skb_headlen(skb));
1377 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
1378 
1379 	offset += skb->csum_offset;
1380 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1381 
1382 	if (skb_cloned(skb) &&
1383 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1384 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1385 		if (ret)
1386 			goto out;
1387 	}
1388 
1389 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
1390 out_set_summed:
1391 	skb->ip_summed = CHECKSUM_NONE;
1392 out:
1393 	return ret;
1394 }
1395 
1396 /**
1397  *	skb_gso_segment - Perform segmentation on skb.
1398  *	@skb: buffer to segment
1399  *	@features: features for the output path (see dev->features)
1400  *
1401  *	This function segments the given skb and returns a list of segments.
1402  *
1403  *	It may return NULL if the skb requires no segmentation.  This is
1404  *	only possible when GSO is used for verifying header integrity.
1405  */
1406 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1407 {
1408 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1409 	struct packet_type *ptype;
1410 	__be16 type = skb->protocol;
1411 	int err;
1412 
1413 	BUG_ON(skb_shinfo(skb)->frag_list);
1414 
1415 	skb_reset_mac_header(skb);
1416 	skb->mac_len = skb->network_header - skb->mac_header;
1417 	__skb_pull(skb, skb->mac_len);
1418 
1419 	if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) {
1420 		if (skb_header_cloned(skb) &&
1421 		    (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1422 			return ERR_PTR(err);
1423 	}
1424 
1425 	rcu_read_lock();
1426 	list_for_each_entry_rcu(ptype,
1427 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1428 		if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1429 			if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1430 				err = ptype->gso_send_check(skb);
1431 				segs = ERR_PTR(err);
1432 				if (err || skb_gso_ok(skb, features))
1433 					break;
1434 				__skb_push(skb, (skb->data -
1435 						 skb_network_header(skb)));
1436 			}
1437 			segs = ptype->gso_segment(skb, features);
1438 			break;
1439 		}
1440 	}
1441 	rcu_read_unlock();
1442 
1443 	__skb_push(skb, skb->data - skb_mac_header(skb));
1444 
1445 	return segs;
1446 }
1447 
1448 EXPORT_SYMBOL(skb_gso_segment);
1449 
1450 /* Take action when hardware reception checksum errors are detected. */
1451 #ifdef CONFIG_BUG
1452 void netdev_rx_csum_fault(struct net_device *dev)
1453 {
1454 	if (net_ratelimit()) {
1455 		printk(KERN_ERR "%s: hw csum failure.\n",
1456 			dev ? dev->name : "<unknown>");
1457 		dump_stack();
1458 	}
1459 }
1460 EXPORT_SYMBOL(netdev_rx_csum_fault);
1461 #endif
1462 
1463 /* Actually, we should eliminate this check as soon as we know, that:
1464  * 1. IOMMU is present and allows to map all the memory.
1465  * 2. No high memory really exists on this machine.
1466  */
1467 
1468 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1469 {
1470 #ifdef CONFIG_HIGHMEM
1471 	int i;
1472 
1473 	if (dev->features & NETIF_F_HIGHDMA)
1474 		return 0;
1475 
1476 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1477 		if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1478 			return 1;
1479 
1480 #endif
1481 	return 0;
1482 }
1483 
1484 struct dev_gso_cb {
1485 	void (*destructor)(struct sk_buff *skb);
1486 };
1487 
1488 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1489 
1490 static void dev_gso_skb_destructor(struct sk_buff *skb)
1491 {
1492 	struct dev_gso_cb *cb;
1493 
1494 	do {
1495 		struct sk_buff *nskb = skb->next;
1496 
1497 		skb->next = nskb->next;
1498 		nskb->next = NULL;
1499 		kfree_skb(nskb);
1500 	} while (skb->next);
1501 
1502 	cb = DEV_GSO_CB(skb);
1503 	if (cb->destructor)
1504 		cb->destructor(skb);
1505 }
1506 
1507 /**
1508  *	dev_gso_segment - Perform emulated hardware segmentation on skb.
1509  *	@skb: buffer to segment
1510  *
1511  *	This function segments the given skb and stores the list of segments
1512  *	in skb->next.
1513  */
1514 static int dev_gso_segment(struct sk_buff *skb)
1515 {
1516 	struct net_device *dev = skb->dev;
1517 	struct sk_buff *segs;
1518 	int features = dev->features & ~(illegal_highdma(dev, skb) ?
1519 					 NETIF_F_SG : 0);
1520 
1521 	segs = skb_gso_segment(skb, features);
1522 
1523 	/* Verifying header integrity only. */
1524 	if (!segs)
1525 		return 0;
1526 
1527 	if (unlikely(IS_ERR(segs)))
1528 		return PTR_ERR(segs);
1529 
1530 	skb->next = segs;
1531 	DEV_GSO_CB(skb)->destructor = skb->destructor;
1532 	skb->destructor = dev_gso_skb_destructor;
1533 
1534 	return 0;
1535 }
1536 
1537 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
1538 {
1539 	if (likely(!skb->next)) {
1540 		if (!list_empty(&ptype_all))
1541 			dev_queue_xmit_nit(skb, dev);
1542 
1543 		if (netif_needs_gso(dev, skb)) {
1544 			if (unlikely(dev_gso_segment(skb)))
1545 				goto out_kfree_skb;
1546 			if (skb->next)
1547 				goto gso;
1548 		}
1549 
1550 		return dev->hard_start_xmit(skb, dev);
1551 	}
1552 
1553 gso:
1554 	do {
1555 		struct sk_buff *nskb = skb->next;
1556 		int rc;
1557 
1558 		skb->next = nskb->next;
1559 		nskb->next = NULL;
1560 		rc = dev->hard_start_xmit(nskb, dev);
1561 		if (unlikely(rc)) {
1562 			nskb->next = skb->next;
1563 			skb->next = nskb;
1564 			return rc;
1565 		}
1566 		if (unlikely((netif_queue_stopped(dev) ||
1567 			     netif_subqueue_stopped(dev, skb)) &&
1568 			     skb->next))
1569 			return NETDEV_TX_BUSY;
1570 	} while (skb->next);
1571 
1572 	skb->destructor = DEV_GSO_CB(skb)->destructor;
1573 
1574 out_kfree_skb:
1575 	kfree_skb(skb);
1576 	return 0;
1577 }
1578 
1579 /**
1580  *	dev_queue_xmit - transmit a buffer
1581  *	@skb: buffer to transmit
1582  *
1583  *	Queue a buffer for transmission to a network device. The caller must
1584  *	have set the device and priority and built the buffer before calling
1585  *	this function. The function can be called from an interrupt.
1586  *
1587  *	A negative errno code is returned on a failure. A success does not
1588  *	guarantee the frame will be transmitted as it may be dropped due
1589  *	to congestion or traffic shaping.
1590  *
1591  * -----------------------------------------------------------------------------------
1592  *      I notice this method can also return errors from the queue disciplines,
1593  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
1594  *      be positive.
1595  *
1596  *      Regardless of the return value, the skb is consumed, so it is currently
1597  *      difficult to retry a send to this method.  (You can bump the ref count
1598  *      before sending to hold a reference for retry if you are careful.)
1599  *
1600  *      When calling this method, interrupts MUST be enabled.  This is because
1601  *      the BH enable code must have IRQs enabled so that it will not deadlock.
1602  *          --BLG
1603  */
1604 
1605 int dev_queue_xmit(struct sk_buff *skb)
1606 {
1607 	struct net_device *dev = skb->dev;
1608 	struct Qdisc *q;
1609 	int rc = -ENOMEM;
1610 
1611 	/* GSO will handle the following emulations directly. */
1612 	if (netif_needs_gso(dev, skb))
1613 		goto gso;
1614 
1615 	if (skb_shinfo(skb)->frag_list &&
1616 	    !(dev->features & NETIF_F_FRAGLIST) &&
1617 	    __skb_linearize(skb))
1618 		goto out_kfree_skb;
1619 
1620 	/* Fragmented skb is linearized if device does not support SG,
1621 	 * or if at least one of fragments is in highmem and device
1622 	 * does not support DMA from it.
1623 	 */
1624 	if (skb_shinfo(skb)->nr_frags &&
1625 	    (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1626 	    __skb_linearize(skb))
1627 		goto out_kfree_skb;
1628 
1629 	/* If packet is not checksummed and device does not support
1630 	 * checksumming for this protocol, complete checksumming here.
1631 	 */
1632 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1633 		skb_set_transport_header(skb, skb->csum_start -
1634 					      skb_headroom(skb));
1635 
1636 		if (!(dev->features & NETIF_F_GEN_CSUM) &&
1637 		    !((dev->features & NETIF_F_IP_CSUM) &&
1638 		      skb->protocol == htons(ETH_P_IP)) &&
1639 		    !((dev->features & NETIF_F_IPV6_CSUM) &&
1640 		      skb->protocol == htons(ETH_P_IPV6)))
1641 			if (skb_checksum_help(skb))
1642 				goto out_kfree_skb;
1643 	}
1644 
1645 gso:
1646 	spin_lock_prefetch(&dev->queue_lock);
1647 
1648 	/* Disable soft irqs for various locks below. Also
1649 	 * stops preemption for RCU.
1650 	 */
1651 	rcu_read_lock_bh();
1652 
1653 	/* Updates of qdisc are serialized by queue_lock.
1654 	 * The struct Qdisc which is pointed to by qdisc is now a
1655 	 * rcu structure - it may be accessed without acquiring
1656 	 * a lock (but the structure may be stale.) The freeing of the
1657 	 * qdisc will be deferred until it's known that there are no
1658 	 * more references to it.
1659 	 *
1660 	 * If the qdisc has an enqueue function, we still need to
1661 	 * hold the queue_lock before calling it, since queue_lock
1662 	 * also serializes access to the device queue.
1663 	 */
1664 
1665 	q = rcu_dereference(dev->qdisc);
1666 #ifdef CONFIG_NET_CLS_ACT
1667 	skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1668 #endif
1669 	if (q->enqueue) {
1670 		/* Grab device queue */
1671 		spin_lock(&dev->queue_lock);
1672 		q = dev->qdisc;
1673 		if (q->enqueue) {
1674 			/* reset queue_mapping to zero */
1675 			skb_set_queue_mapping(skb, 0);
1676 			rc = q->enqueue(skb, q);
1677 			qdisc_run(dev);
1678 			spin_unlock(&dev->queue_lock);
1679 
1680 			rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc;
1681 			goto out;
1682 		}
1683 		spin_unlock(&dev->queue_lock);
1684 	}
1685 
1686 	/* The device has no queue. Common case for software devices:
1687 	   loopback, all the sorts of tunnels...
1688 
1689 	   Really, it is unlikely that netif_tx_lock protection is necessary
1690 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
1691 	   counters.)
1692 	   However, it is possible, that they rely on protection
1693 	   made by us here.
1694 
1695 	   Check this and shot the lock. It is not prone from deadlocks.
1696 	   Either shot noqueue qdisc, it is even simpler 8)
1697 	 */
1698 	if (dev->flags & IFF_UP) {
1699 		int cpu = smp_processor_id(); /* ok because BHs are off */
1700 
1701 		if (dev->xmit_lock_owner != cpu) {
1702 
1703 			HARD_TX_LOCK(dev, cpu);
1704 
1705 			if (!netif_queue_stopped(dev) &&
1706 			    !netif_subqueue_stopped(dev, skb)) {
1707 				rc = 0;
1708 				if (!dev_hard_start_xmit(skb, dev)) {
1709 					HARD_TX_UNLOCK(dev);
1710 					goto out;
1711 				}
1712 			}
1713 			HARD_TX_UNLOCK(dev);
1714 			if (net_ratelimit())
1715 				printk(KERN_CRIT "Virtual device %s asks to "
1716 				       "queue packet!\n", dev->name);
1717 		} else {
1718 			/* Recursion is detected! It is possible,
1719 			 * unfortunately */
1720 			if (net_ratelimit())
1721 				printk(KERN_CRIT "Dead loop on virtual device "
1722 				       "%s, fix it urgently!\n", dev->name);
1723 		}
1724 	}
1725 
1726 	rc = -ENETDOWN;
1727 	rcu_read_unlock_bh();
1728 
1729 out_kfree_skb:
1730 	kfree_skb(skb);
1731 	return rc;
1732 out:
1733 	rcu_read_unlock_bh();
1734 	return rc;
1735 }
1736 
1737 
1738 /*=======================================================================
1739 			Receiver routines
1740   =======================================================================*/
1741 
1742 int netdev_max_backlog __read_mostly = 1000;
1743 int netdev_budget __read_mostly = 300;
1744 int weight_p __read_mostly = 64;            /* old backlog weight */
1745 
1746 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1747 
1748 
1749 /**
1750  *	netif_rx	-	post buffer to the network code
1751  *	@skb: buffer to post
1752  *
1753  *	This function receives a packet from a device driver and queues it for
1754  *	the upper (protocol) levels to process.  It always succeeds. The buffer
1755  *	may be dropped during processing for congestion control or by the
1756  *	protocol layers.
1757  *
1758  *	return values:
1759  *	NET_RX_SUCCESS	(no congestion)
1760  *	NET_RX_DROP     (packet was dropped)
1761  *
1762  */
1763 
1764 int netif_rx(struct sk_buff *skb)
1765 {
1766 	struct softnet_data *queue;
1767 	unsigned long flags;
1768 
1769 	/* if netpoll wants it, pretend we never saw it */
1770 	if (netpoll_rx(skb))
1771 		return NET_RX_DROP;
1772 
1773 	if (!skb->tstamp.tv64)
1774 		net_timestamp(skb);
1775 
1776 	/*
1777 	 * The code is rearranged so that the path is the most
1778 	 * short when CPU is congested, but is still operating.
1779 	 */
1780 	local_irq_save(flags);
1781 	queue = &__get_cpu_var(softnet_data);
1782 
1783 	__get_cpu_var(netdev_rx_stat).total++;
1784 	if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1785 		if (queue->input_pkt_queue.qlen) {
1786 enqueue:
1787 			dev_hold(skb->dev);
1788 			__skb_queue_tail(&queue->input_pkt_queue, skb);
1789 			local_irq_restore(flags);
1790 			return NET_RX_SUCCESS;
1791 		}
1792 
1793 		napi_schedule(&queue->backlog);
1794 		goto enqueue;
1795 	}
1796 
1797 	__get_cpu_var(netdev_rx_stat).dropped++;
1798 	local_irq_restore(flags);
1799 
1800 	kfree_skb(skb);
1801 	return NET_RX_DROP;
1802 }
1803 
1804 int netif_rx_ni(struct sk_buff *skb)
1805 {
1806 	int err;
1807 
1808 	preempt_disable();
1809 	err = netif_rx(skb);
1810 	if (local_softirq_pending())
1811 		do_softirq();
1812 	preempt_enable();
1813 
1814 	return err;
1815 }
1816 
1817 EXPORT_SYMBOL(netif_rx_ni);
1818 
1819 static inline struct net_device *skb_bond(struct sk_buff *skb)
1820 {
1821 	struct net_device *dev = skb->dev;
1822 
1823 	if (dev->master) {
1824 		if (skb_bond_should_drop(skb)) {
1825 			kfree_skb(skb);
1826 			return NULL;
1827 		}
1828 		skb->dev = dev->master;
1829 	}
1830 
1831 	return dev;
1832 }
1833 
1834 
1835 static void net_tx_action(struct softirq_action *h)
1836 {
1837 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
1838 
1839 	if (sd->completion_queue) {
1840 		struct sk_buff *clist;
1841 
1842 		local_irq_disable();
1843 		clist = sd->completion_queue;
1844 		sd->completion_queue = NULL;
1845 		local_irq_enable();
1846 
1847 		while (clist) {
1848 			struct sk_buff *skb = clist;
1849 			clist = clist->next;
1850 
1851 			BUG_TRAP(!atomic_read(&skb->users));
1852 			__kfree_skb(skb);
1853 		}
1854 	}
1855 
1856 	if (sd->output_queue) {
1857 		struct net_device *head;
1858 
1859 		local_irq_disable();
1860 		head = sd->output_queue;
1861 		sd->output_queue = NULL;
1862 		local_irq_enable();
1863 
1864 		while (head) {
1865 			struct net_device *dev = head;
1866 			head = head->next_sched;
1867 
1868 			smp_mb__before_clear_bit();
1869 			clear_bit(__LINK_STATE_SCHED, &dev->state);
1870 
1871 			if (spin_trylock(&dev->queue_lock)) {
1872 				qdisc_run(dev);
1873 				spin_unlock(&dev->queue_lock);
1874 			} else {
1875 				netif_schedule(dev);
1876 			}
1877 		}
1878 	}
1879 }
1880 
1881 static inline int deliver_skb(struct sk_buff *skb,
1882 			      struct packet_type *pt_prev,
1883 			      struct net_device *orig_dev)
1884 {
1885 	atomic_inc(&skb->users);
1886 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1887 }
1888 
1889 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
1890 /* These hooks defined here for ATM */
1891 struct net_bridge;
1892 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
1893 						unsigned char *addr);
1894 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
1895 
1896 /*
1897  * If bridge module is loaded call bridging hook.
1898  *  returns NULL if packet was consumed.
1899  */
1900 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
1901 					struct sk_buff *skb) __read_mostly;
1902 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
1903 					    struct packet_type **pt_prev, int *ret,
1904 					    struct net_device *orig_dev)
1905 {
1906 	struct net_bridge_port *port;
1907 
1908 	if (skb->pkt_type == PACKET_LOOPBACK ||
1909 	    (port = rcu_dereference(skb->dev->br_port)) == NULL)
1910 		return skb;
1911 
1912 	if (*pt_prev) {
1913 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
1914 		*pt_prev = NULL;
1915 	}
1916 
1917 	return br_handle_frame_hook(port, skb);
1918 }
1919 #else
1920 #define handle_bridge(skb, pt_prev, ret, orig_dev)	(skb)
1921 #endif
1922 
1923 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
1924 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
1925 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
1926 
1927 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
1928 					     struct packet_type **pt_prev,
1929 					     int *ret,
1930 					     struct net_device *orig_dev)
1931 {
1932 	if (skb->dev->macvlan_port == NULL)
1933 		return skb;
1934 
1935 	if (*pt_prev) {
1936 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
1937 		*pt_prev = NULL;
1938 	}
1939 	return macvlan_handle_frame_hook(skb);
1940 }
1941 #else
1942 #define handle_macvlan(skb, pt_prev, ret, orig_dev)	(skb)
1943 #endif
1944 
1945 #ifdef CONFIG_NET_CLS_ACT
1946 /* TODO: Maybe we should just force sch_ingress to be compiled in
1947  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
1948  * a compare and 2 stores extra right now if we dont have it on
1949  * but have CONFIG_NET_CLS_ACT
1950  * NOTE: This doesnt stop any functionality; if you dont have
1951  * the ingress scheduler, you just cant add policies on ingress.
1952  *
1953  */
1954 static int ing_filter(struct sk_buff *skb)
1955 {
1956 	struct Qdisc *q;
1957 	struct net_device *dev = skb->dev;
1958 	int result = TC_ACT_OK;
1959 	u32 ttl = G_TC_RTTL(skb->tc_verd);
1960 
1961 	if (MAX_RED_LOOP < ttl++) {
1962 		printk(KERN_WARNING
1963 		       "Redir loop detected Dropping packet (%d->%d)\n",
1964 		       skb->iif, dev->ifindex);
1965 		return TC_ACT_SHOT;
1966 	}
1967 
1968 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
1969 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
1970 
1971 	spin_lock(&dev->ingress_lock);
1972 	if ((q = dev->qdisc_ingress) != NULL)
1973 		result = q->enqueue(skb, q);
1974 	spin_unlock(&dev->ingress_lock);
1975 
1976 	return result;
1977 }
1978 
1979 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
1980 					 struct packet_type **pt_prev,
1981 					 int *ret, struct net_device *orig_dev)
1982 {
1983 	if (!skb->dev->qdisc_ingress)
1984 		goto out;
1985 
1986 	if (*pt_prev) {
1987 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
1988 		*pt_prev = NULL;
1989 	} else {
1990 		/* Huh? Why does turning on AF_PACKET affect this? */
1991 		skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
1992 	}
1993 
1994 	switch (ing_filter(skb)) {
1995 	case TC_ACT_SHOT:
1996 	case TC_ACT_STOLEN:
1997 		kfree_skb(skb);
1998 		return NULL;
1999 	}
2000 
2001 out:
2002 	skb->tc_verd = 0;
2003 	return skb;
2004 }
2005 #endif
2006 
2007 /**
2008  *	netif_receive_skb - process receive buffer from network
2009  *	@skb: buffer to process
2010  *
2011  *	netif_receive_skb() is the main receive data processing function.
2012  *	It always succeeds. The buffer may be dropped during processing
2013  *	for congestion control or by the protocol layers.
2014  *
2015  *	This function may only be called from softirq context and interrupts
2016  *	should be enabled.
2017  *
2018  *	Return values (usually ignored):
2019  *	NET_RX_SUCCESS: no congestion
2020  *	NET_RX_DROP: packet was dropped
2021  */
2022 int netif_receive_skb(struct sk_buff *skb)
2023 {
2024 	struct packet_type *ptype, *pt_prev;
2025 	struct net_device *orig_dev;
2026 	int ret = NET_RX_DROP;
2027 	__be16 type;
2028 
2029 	/* if we've gotten here through NAPI, check netpoll */
2030 	if (netpoll_receive_skb(skb))
2031 		return NET_RX_DROP;
2032 
2033 	if (!skb->tstamp.tv64)
2034 		net_timestamp(skb);
2035 
2036 	if (!skb->iif)
2037 		skb->iif = skb->dev->ifindex;
2038 
2039 	orig_dev = skb_bond(skb);
2040 
2041 	if (!orig_dev)
2042 		return NET_RX_DROP;
2043 
2044 	__get_cpu_var(netdev_rx_stat).total++;
2045 
2046 	skb_reset_network_header(skb);
2047 	skb_reset_transport_header(skb);
2048 	skb->mac_len = skb->network_header - skb->mac_header;
2049 
2050 	pt_prev = NULL;
2051 
2052 	rcu_read_lock();
2053 
2054 #ifdef CONFIG_NET_CLS_ACT
2055 	if (skb->tc_verd & TC_NCLS) {
2056 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2057 		goto ncls;
2058 	}
2059 #endif
2060 
2061 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
2062 		if (!ptype->dev || ptype->dev == skb->dev) {
2063 			if (pt_prev)
2064 				ret = deliver_skb(skb, pt_prev, orig_dev);
2065 			pt_prev = ptype;
2066 		}
2067 	}
2068 
2069 #ifdef CONFIG_NET_CLS_ACT
2070 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2071 	if (!skb)
2072 		goto out;
2073 ncls:
2074 #endif
2075 
2076 	skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2077 	if (!skb)
2078 		goto out;
2079 	skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2080 	if (!skb)
2081 		goto out;
2082 
2083 	type = skb->protocol;
2084 	list_for_each_entry_rcu(ptype,
2085 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2086 		if (ptype->type == type &&
2087 		    (!ptype->dev || ptype->dev == skb->dev)) {
2088 			if (pt_prev)
2089 				ret = deliver_skb(skb, pt_prev, orig_dev);
2090 			pt_prev = ptype;
2091 		}
2092 	}
2093 
2094 	if (pt_prev) {
2095 		ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2096 	} else {
2097 		kfree_skb(skb);
2098 		/* Jamal, now you will not able to escape explaining
2099 		 * me how you were going to use this. :-)
2100 		 */
2101 		ret = NET_RX_DROP;
2102 	}
2103 
2104 out:
2105 	rcu_read_unlock();
2106 	return ret;
2107 }
2108 
2109 static int process_backlog(struct napi_struct *napi, int quota)
2110 {
2111 	int work = 0;
2112 	struct softnet_data *queue = &__get_cpu_var(softnet_data);
2113 	unsigned long start_time = jiffies;
2114 
2115 	napi->weight = weight_p;
2116 	do {
2117 		struct sk_buff *skb;
2118 		struct net_device *dev;
2119 
2120 		local_irq_disable();
2121 		skb = __skb_dequeue(&queue->input_pkt_queue);
2122 		if (!skb) {
2123 			__napi_complete(napi);
2124 			local_irq_enable();
2125 			break;
2126 		}
2127 
2128 		local_irq_enable();
2129 
2130 		dev = skb->dev;
2131 
2132 		netif_receive_skb(skb);
2133 
2134 		dev_put(dev);
2135 	} while (++work < quota && jiffies == start_time);
2136 
2137 	return work;
2138 }
2139 
2140 /**
2141  * __napi_schedule - schedule for receive
2142  * @n: entry to schedule
2143  *
2144  * The entry's receive function will be scheduled to run
2145  */
2146 void fastcall __napi_schedule(struct napi_struct *n)
2147 {
2148 	unsigned long flags;
2149 
2150 	local_irq_save(flags);
2151 	list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2152 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2153 	local_irq_restore(flags);
2154 }
2155 EXPORT_SYMBOL(__napi_schedule);
2156 
2157 
2158 static void net_rx_action(struct softirq_action *h)
2159 {
2160 	struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2161 	unsigned long start_time = jiffies;
2162 	int budget = netdev_budget;
2163 	void *have;
2164 
2165 	local_irq_disable();
2166 
2167 	while (!list_empty(list)) {
2168 		struct napi_struct *n;
2169 		int work, weight;
2170 
2171 		/* If softirq window is exhuasted then punt.
2172 		 *
2173 		 * Note that this is a slight policy change from the
2174 		 * previous NAPI code, which would allow up to 2
2175 		 * jiffies to pass before breaking out.  The test
2176 		 * used to be "jiffies - start_time > 1".
2177 		 */
2178 		if (unlikely(budget <= 0 || jiffies != start_time))
2179 			goto softnet_break;
2180 
2181 		local_irq_enable();
2182 
2183 		/* Even though interrupts have been re-enabled, this
2184 		 * access is safe because interrupts can only add new
2185 		 * entries to the tail of this list, and only ->poll()
2186 		 * calls can remove this head entry from the list.
2187 		 */
2188 		n = list_entry(list->next, struct napi_struct, poll_list);
2189 
2190 		have = netpoll_poll_lock(n);
2191 
2192 		weight = n->weight;
2193 
2194 		/* This NAPI_STATE_SCHED test is for avoiding a race
2195 		 * with netpoll's poll_napi().  Only the entity which
2196 		 * obtains the lock and sees NAPI_STATE_SCHED set will
2197 		 * actually make the ->poll() call.  Therefore we avoid
2198 		 * accidently calling ->poll() when NAPI is not scheduled.
2199 		 */
2200 		work = 0;
2201 		if (test_bit(NAPI_STATE_SCHED, &n->state))
2202 			work = n->poll(n, weight);
2203 
2204 		WARN_ON_ONCE(work > weight);
2205 
2206 		budget -= work;
2207 
2208 		local_irq_disable();
2209 
2210 		/* Drivers must not modify the NAPI state if they
2211 		 * consume the entire weight.  In such cases this code
2212 		 * still "owns" the NAPI instance and therefore can
2213 		 * move the instance around on the list at-will.
2214 		 */
2215 		if (unlikely(work == weight)) {
2216 			if (unlikely(napi_disable_pending(n)))
2217 				__napi_complete(n);
2218 			else
2219 				list_move_tail(&n->poll_list, list);
2220 		}
2221 
2222 		netpoll_poll_unlock(have);
2223 	}
2224 out:
2225 	local_irq_enable();
2226 
2227 #ifdef CONFIG_NET_DMA
2228 	/*
2229 	 * There may not be any more sk_buffs coming right now, so push
2230 	 * any pending DMA copies to hardware
2231 	 */
2232 	if (!cpus_empty(net_dma.channel_mask)) {
2233 		int chan_idx;
2234 		for_each_cpu_mask(chan_idx, net_dma.channel_mask) {
2235 			struct dma_chan *chan = net_dma.channels[chan_idx];
2236 			if (chan)
2237 				dma_async_memcpy_issue_pending(chan);
2238 		}
2239 	}
2240 #endif
2241 
2242 	return;
2243 
2244 softnet_break:
2245 	__get_cpu_var(netdev_rx_stat).time_squeeze++;
2246 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2247 	goto out;
2248 }
2249 
2250 static gifconf_func_t * gifconf_list [NPROTO];
2251 
2252 /**
2253  *	register_gifconf	-	register a SIOCGIF handler
2254  *	@family: Address family
2255  *	@gifconf: Function handler
2256  *
2257  *	Register protocol dependent address dumping routines. The handler
2258  *	that is passed must not be freed or reused until it has been replaced
2259  *	by another handler.
2260  */
2261 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2262 {
2263 	if (family >= NPROTO)
2264 		return -EINVAL;
2265 	gifconf_list[family] = gifconf;
2266 	return 0;
2267 }
2268 
2269 
2270 /*
2271  *	Map an interface index to its name (SIOCGIFNAME)
2272  */
2273 
2274 /*
2275  *	We need this ioctl for efficient implementation of the
2276  *	if_indextoname() function required by the IPv6 API.  Without
2277  *	it, we would have to search all the interfaces to find a
2278  *	match.  --pb
2279  */
2280 
2281 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2282 {
2283 	struct net_device *dev;
2284 	struct ifreq ifr;
2285 
2286 	/*
2287 	 *	Fetch the caller's info block.
2288 	 */
2289 
2290 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2291 		return -EFAULT;
2292 
2293 	read_lock(&dev_base_lock);
2294 	dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2295 	if (!dev) {
2296 		read_unlock(&dev_base_lock);
2297 		return -ENODEV;
2298 	}
2299 
2300 	strcpy(ifr.ifr_name, dev->name);
2301 	read_unlock(&dev_base_lock);
2302 
2303 	if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2304 		return -EFAULT;
2305 	return 0;
2306 }
2307 
2308 /*
2309  *	Perform a SIOCGIFCONF call. This structure will change
2310  *	size eventually, and there is nothing I can do about it.
2311  *	Thus we will need a 'compatibility mode'.
2312  */
2313 
2314 static int dev_ifconf(struct net *net, char __user *arg)
2315 {
2316 	struct ifconf ifc;
2317 	struct net_device *dev;
2318 	char __user *pos;
2319 	int len;
2320 	int total;
2321 	int i;
2322 
2323 	/*
2324 	 *	Fetch the caller's info block.
2325 	 */
2326 
2327 	if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2328 		return -EFAULT;
2329 
2330 	pos = ifc.ifc_buf;
2331 	len = ifc.ifc_len;
2332 
2333 	/*
2334 	 *	Loop over the interfaces, and write an info block for each.
2335 	 */
2336 
2337 	total = 0;
2338 	for_each_netdev(net, dev) {
2339 		for (i = 0; i < NPROTO; i++) {
2340 			if (gifconf_list[i]) {
2341 				int done;
2342 				if (!pos)
2343 					done = gifconf_list[i](dev, NULL, 0);
2344 				else
2345 					done = gifconf_list[i](dev, pos + total,
2346 							       len - total);
2347 				if (done < 0)
2348 					return -EFAULT;
2349 				total += done;
2350 			}
2351 		}
2352 	}
2353 
2354 	/*
2355 	 *	All done.  Write the updated control block back to the caller.
2356 	 */
2357 	ifc.ifc_len = total;
2358 
2359 	/*
2360 	 * 	Both BSD and Solaris return 0 here, so we do too.
2361 	 */
2362 	return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2363 }
2364 
2365 #ifdef CONFIG_PROC_FS
2366 /*
2367  *	This is invoked by the /proc filesystem handler to display a device
2368  *	in detail.
2369  */
2370 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2371 	__acquires(dev_base_lock)
2372 {
2373 	struct net *net = seq_file_net(seq);
2374 	loff_t off;
2375 	struct net_device *dev;
2376 
2377 	read_lock(&dev_base_lock);
2378 	if (!*pos)
2379 		return SEQ_START_TOKEN;
2380 
2381 	off = 1;
2382 	for_each_netdev(net, dev)
2383 		if (off++ == *pos)
2384 			return dev;
2385 
2386 	return NULL;
2387 }
2388 
2389 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2390 {
2391 	struct net *net = seq_file_net(seq);
2392 	++*pos;
2393 	return v == SEQ_START_TOKEN ?
2394 		first_net_device(net) : next_net_device((struct net_device *)v);
2395 }
2396 
2397 void dev_seq_stop(struct seq_file *seq, void *v)
2398 	__releases(dev_base_lock)
2399 {
2400 	read_unlock(&dev_base_lock);
2401 }
2402 
2403 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2404 {
2405 	struct net_device_stats *stats = dev->get_stats(dev);
2406 
2407 	seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2408 		   "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2409 		   dev->name, stats->rx_bytes, stats->rx_packets,
2410 		   stats->rx_errors,
2411 		   stats->rx_dropped + stats->rx_missed_errors,
2412 		   stats->rx_fifo_errors,
2413 		   stats->rx_length_errors + stats->rx_over_errors +
2414 		    stats->rx_crc_errors + stats->rx_frame_errors,
2415 		   stats->rx_compressed, stats->multicast,
2416 		   stats->tx_bytes, stats->tx_packets,
2417 		   stats->tx_errors, stats->tx_dropped,
2418 		   stats->tx_fifo_errors, stats->collisions,
2419 		   stats->tx_carrier_errors +
2420 		    stats->tx_aborted_errors +
2421 		    stats->tx_window_errors +
2422 		    stats->tx_heartbeat_errors,
2423 		   stats->tx_compressed);
2424 }
2425 
2426 /*
2427  *	Called from the PROCfs module. This now uses the new arbitrary sized
2428  *	/proc/net interface to create /proc/net/dev
2429  */
2430 static int dev_seq_show(struct seq_file *seq, void *v)
2431 {
2432 	if (v == SEQ_START_TOKEN)
2433 		seq_puts(seq, "Inter-|   Receive                            "
2434 			      "                    |  Transmit\n"
2435 			      " face |bytes    packets errs drop fifo frame "
2436 			      "compressed multicast|bytes    packets errs "
2437 			      "drop fifo colls carrier compressed\n");
2438 	else
2439 		dev_seq_printf_stats(seq, v);
2440 	return 0;
2441 }
2442 
2443 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2444 {
2445 	struct netif_rx_stats *rc = NULL;
2446 
2447 	while (*pos < NR_CPUS)
2448 		if (cpu_online(*pos)) {
2449 			rc = &per_cpu(netdev_rx_stat, *pos);
2450 			break;
2451 		} else
2452 			++*pos;
2453 	return rc;
2454 }
2455 
2456 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2457 {
2458 	return softnet_get_online(pos);
2459 }
2460 
2461 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2462 {
2463 	++*pos;
2464 	return softnet_get_online(pos);
2465 }
2466 
2467 static void softnet_seq_stop(struct seq_file *seq, void *v)
2468 {
2469 }
2470 
2471 static int softnet_seq_show(struct seq_file *seq, void *v)
2472 {
2473 	struct netif_rx_stats *s = v;
2474 
2475 	seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
2476 		   s->total, s->dropped, s->time_squeeze, 0,
2477 		   0, 0, 0, 0, /* was fastroute */
2478 		   s->cpu_collision );
2479 	return 0;
2480 }
2481 
2482 static const struct seq_operations dev_seq_ops = {
2483 	.start = dev_seq_start,
2484 	.next  = dev_seq_next,
2485 	.stop  = dev_seq_stop,
2486 	.show  = dev_seq_show,
2487 };
2488 
2489 static int dev_seq_open(struct inode *inode, struct file *file)
2490 {
2491 	return seq_open_net(inode, file, &dev_seq_ops,
2492 			    sizeof(struct seq_net_private));
2493 }
2494 
2495 static const struct file_operations dev_seq_fops = {
2496 	.owner	 = THIS_MODULE,
2497 	.open    = dev_seq_open,
2498 	.read    = seq_read,
2499 	.llseek  = seq_lseek,
2500 	.release = seq_release_net,
2501 };
2502 
2503 static const struct seq_operations softnet_seq_ops = {
2504 	.start = softnet_seq_start,
2505 	.next  = softnet_seq_next,
2506 	.stop  = softnet_seq_stop,
2507 	.show  = softnet_seq_show,
2508 };
2509 
2510 static int softnet_seq_open(struct inode *inode, struct file *file)
2511 {
2512 	return seq_open(file, &softnet_seq_ops);
2513 }
2514 
2515 static const struct file_operations softnet_seq_fops = {
2516 	.owner	 = THIS_MODULE,
2517 	.open    = softnet_seq_open,
2518 	.read    = seq_read,
2519 	.llseek  = seq_lseek,
2520 	.release = seq_release,
2521 };
2522 
2523 static void *ptype_get_idx(loff_t pos)
2524 {
2525 	struct packet_type *pt = NULL;
2526 	loff_t i = 0;
2527 	int t;
2528 
2529 	list_for_each_entry_rcu(pt, &ptype_all, list) {
2530 		if (i == pos)
2531 			return pt;
2532 		++i;
2533 	}
2534 
2535 	for (t = 0; t < PTYPE_HASH_SIZE; t++) {
2536 		list_for_each_entry_rcu(pt, &ptype_base[t], list) {
2537 			if (i == pos)
2538 				return pt;
2539 			++i;
2540 		}
2541 	}
2542 	return NULL;
2543 }
2544 
2545 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
2546 	__acquires(RCU)
2547 {
2548 	rcu_read_lock();
2549 	return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
2550 }
2551 
2552 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2553 {
2554 	struct packet_type *pt;
2555 	struct list_head *nxt;
2556 	int hash;
2557 
2558 	++*pos;
2559 	if (v == SEQ_START_TOKEN)
2560 		return ptype_get_idx(0);
2561 
2562 	pt = v;
2563 	nxt = pt->list.next;
2564 	if (pt->type == htons(ETH_P_ALL)) {
2565 		if (nxt != &ptype_all)
2566 			goto found;
2567 		hash = 0;
2568 		nxt = ptype_base[0].next;
2569 	} else
2570 		hash = ntohs(pt->type) & PTYPE_HASH_MASK;
2571 
2572 	while (nxt == &ptype_base[hash]) {
2573 		if (++hash >= PTYPE_HASH_SIZE)
2574 			return NULL;
2575 		nxt = ptype_base[hash].next;
2576 	}
2577 found:
2578 	return list_entry(nxt, struct packet_type, list);
2579 }
2580 
2581 static void ptype_seq_stop(struct seq_file *seq, void *v)
2582 	__releases(RCU)
2583 {
2584 	rcu_read_unlock();
2585 }
2586 
2587 static void ptype_seq_decode(struct seq_file *seq, void *sym)
2588 {
2589 #ifdef CONFIG_KALLSYMS
2590 	unsigned long offset = 0, symsize;
2591 	const char *symname;
2592 	char *modname;
2593 	char namebuf[128];
2594 
2595 	symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset,
2596 				  &modname, namebuf);
2597 
2598 	if (symname) {
2599 		char *delim = ":";
2600 
2601 		if (!modname)
2602 			modname = delim = "";
2603 		seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim,
2604 			   symname, offset);
2605 		return;
2606 	}
2607 #endif
2608 
2609 	seq_printf(seq, "[%p]", sym);
2610 }
2611 
2612 static int ptype_seq_show(struct seq_file *seq, void *v)
2613 {
2614 	struct packet_type *pt = v;
2615 
2616 	if (v == SEQ_START_TOKEN)
2617 		seq_puts(seq, "Type Device      Function\n");
2618 	else {
2619 		if (pt->type == htons(ETH_P_ALL))
2620 			seq_puts(seq, "ALL ");
2621 		else
2622 			seq_printf(seq, "%04x", ntohs(pt->type));
2623 
2624 		seq_printf(seq, " %-8s ",
2625 			   pt->dev ? pt->dev->name : "");
2626 		ptype_seq_decode(seq,  pt->func);
2627 		seq_putc(seq, '\n');
2628 	}
2629 
2630 	return 0;
2631 }
2632 
2633 static const struct seq_operations ptype_seq_ops = {
2634 	.start = ptype_seq_start,
2635 	.next  = ptype_seq_next,
2636 	.stop  = ptype_seq_stop,
2637 	.show  = ptype_seq_show,
2638 };
2639 
2640 static int ptype_seq_open(struct inode *inode, struct file *file)
2641 {
2642 	return seq_open(file, &ptype_seq_ops);
2643 }
2644 
2645 static const struct file_operations ptype_seq_fops = {
2646 	.owner	 = THIS_MODULE,
2647 	.open    = ptype_seq_open,
2648 	.read    = seq_read,
2649 	.llseek  = seq_lseek,
2650 	.release = seq_release,
2651 };
2652 
2653 
2654 static int __net_init dev_proc_net_init(struct net *net)
2655 {
2656 	int rc = -ENOMEM;
2657 
2658 	if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
2659 		goto out;
2660 	if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
2661 		goto out_dev;
2662 	if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
2663 		goto out_softnet;
2664 
2665 	if (wext_proc_init(net))
2666 		goto out_ptype;
2667 	rc = 0;
2668 out:
2669 	return rc;
2670 out_ptype:
2671 	proc_net_remove(net, "ptype");
2672 out_softnet:
2673 	proc_net_remove(net, "softnet_stat");
2674 out_dev:
2675 	proc_net_remove(net, "dev");
2676 	goto out;
2677 }
2678 
2679 static void __net_exit dev_proc_net_exit(struct net *net)
2680 {
2681 	wext_proc_exit(net);
2682 
2683 	proc_net_remove(net, "ptype");
2684 	proc_net_remove(net, "softnet_stat");
2685 	proc_net_remove(net, "dev");
2686 }
2687 
2688 static struct pernet_operations __net_initdata dev_proc_ops = {
2689 	.init = dev_proc_net_init,
2690 	.exit = dev_proc_net_exit,
2691 };
2692 
2693 static int __init dev_proc_init(void)
2694 {
2695 	return register_pernet_subsys(&dev_proc_ops);
2696 }
2697 #else
2698 #define dev_proc_init() 0
2699 #endif	/* CONFIG_PROC_FS */
2700 
2701 
2702 /**
2703  *	netdev_set_master	-	set up master/slave pair
2704  *	@slave: slave device
2705  *	@master: new master device
2706  *
2707  *	Changes the master device of the slave. Pass %NULL to break the
2708  *	bonding. The caller must hold the RTNL semaphore. On a failure
2709  *	a negative errno code is returned. On success the reference counts
2710  *	are adjusted, %RTM_NEWLINK is sent to the routing socket and the
2711  *	function returns zero.
2712  */
2713 int netdev_set_master(struct net_device *slave, struct net_device *master)
2714 {
2715 	struct net_device *old = slave->master;
2716 
2717 	ASSERT_RTNL();
2718 
2719 	if (master) {
2720 		if (old)
2721 			return -EBUSY;
2722 		dev_hold(master);
2723 	}
2724 
2725 	slave->master = master;
2726 
2727 	synchronize_net();
2728 
2729 	if (old)
2730 		dev_put(old);
2731 
2732 	if (master)
2733 		slave->flags |= IFF_SLAVE;
2734 	else
2735 		slave->flags &= ~IFF_SLAVE;
2736 
2737 	rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
2738 	return 0;
2739 }
2740 
2741 static void __dev_set_promiscuity(struct net_device *dev, int inc)
2742 {
2743 	unsigned short old_flags = dev->flags;
2744 
2745 	ASSERT_RTNL();
2746 
2747 	if ((dev->promiscuity += inc) == 0)
2748 		dev->flags &= ~IFF_PROMISC;
2749 	else
2750 		dev->flags |= IFF_PROMISC;
2751 	if (dev->flags != old_flags) {
2752 		printk(KERN_INFO "device %s %s promiscuous mode\n",
2753 		       dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
2754 							       "left");
2755 		if (audit_enabled)
2756 			audit_log(current->audit_context, GFP_ATOMIC,
2757 				AUDIT_ANOM_PROMISCUOUS,
2758 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
2759 				dev->name, (dev->flags & IFF_PROMISC),
2760 				(old_flags & IFF_PROMISC),
2761 				audit_get_loginuid(current),
2762 				current->uid, current->gid,
2763 				audit_get_sessionid(current));
2764 
2765 		if (dev->change_rx_flags)
2766 			dev->change_rx_flags(dev, IFF_PROMISC);
2767 	}
2768 }
2769 
2770 /**
2771  *	dev_set_promiscuity	- update promiscuity count on a device
2772  *	@dev: device
2773  *	@inc: modifier
2774  *
2775  *	Add or remove promiscuity from a device. While the count in the device
2776  *	remains above zero the interface remains promiscuous. Once it hits zero
2777  *	the device reverts back to normal filtering operation. A negative inc
2778  *	value is used to drop promiscuity on the device.
2779  */
2780 void dev_set_promiscuity(struct net_device *dev, int inc)
2781 {
2782 	unsigned short old_flags = dev->flags;
2783 
2784 	__dev_set_promiscuity(dev, inc);
2785 	if (dev->flags != old_flags)
2786 		dev_set_rx_mode(dev);
2787 }
2788 
2789 /**
2790  *	dev_set_allmulti	- update allmulti count on a device
2791  *	@dev: device
2792  *	@inc: modifier
2793  *
2794  *	Add or remove reception of all multicast frames to a device. While the
2795  *	count in the device remains above zero the interface remains listening
2796  *	to all interfaces. Once it hits zero the device reverts back to normal
2797  *	filtering operation. A negative @inc value is used to drop the counter
2798  *	when releasing a resource needing all multicasts.
2799  */
2800 
2801 void dev_set_allmulti(struct net_device *dev, int inc)
2802 {
2803 	unsigned short old_flags = dev->flags;
2804 
2805 	ASSERT_RTNL();
2806 
2807 	dev->flags |= IFF_ALLMULTI;
2808 	if ((dev->allmulti += inc) == 0)
2809 		dev->flags &= ~IFF_ALLMULTI;
2810 	if (dev->flags ^ old_flags) {
2811 		if (dev->change_rx_flags)
2812 			dev->change_rx_flags(dev, IFF_ALLMULTI);
2813 		dev_set_rx_mode(dev);
2814 	}
2815 }
2816 
2817 /*
2818  *	Upload unicast and multicast address lists to device and
2819  *	configure RX filtering. When the device doesn't support unicast
2820  *	filtering it is put in promiscuous mode while unicast addresses
2821  *	are present.
2822  */
2823 void __dev_set_rx_mode(struct net_device *dev)
2824 {
2825 	/* dev_open will call this function so the list will stay sane. */
2826 	if (!(dev->flags&IFF_UP))
2827 		return;
2828 
2829 	if (!netif_device_present(dev))
2830 		return;
2831 
2832 	if (dev->set_rx_mode)
2833 		dev->set_rx_mode(dev);
2834 	else {
2835 		/* Unicast addresses changes may only happen under the rtnl,
2836 		 * therefore calling __dev_set_promiscuity here is safe.
2837 		 */
2838 		if (dev->uc_count > 0 && !dev->uc_promisc) {
2839 			__dev_set_promiscuity(dev, 1);
2840 			dev->uc_promisc = 1;
2841 		} else if (dev->uc_count == 0 && dev->uc_promisc) {
2842 			__dev_set_promiscuity(dev, -1);
2843 			dev->uc_promisc = 0;
2844 		}
2845 
2846 		if (dev->set_multicast_list)
2847 			dev->set_multicast_list(dev);
2848 	}
2849 }
2850 
2851 void dev_set_rx_mode(struct net_device *dev)
2852 {
2853 	netif_tx_lock_bh(dev);
2854 	__dev_set_rx_mode(dev);
2855 	netif_tx_unlock_bh(dev);
2856 }
2857 
2858 int __dev_addr_delete(struct dev_addr_list **list, int *count,
2859 		      void *addr, int alen, int glbl)
2860 {
2861 	struct dev_addr_list *da;
2862 
2863 	for (; (da = *list) != NULL; list = &da->next) {
2864 		if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
2865 		    alen == da->da_addrlen) {
2866 			if (glbl) {
2867 				int old_glbl = da->da_gusers;
2868 				da->da_gusers = 0;
2869 				if (old_glbl == 0)
2870 					break;
2871 			}
2872 			if (--da->da_users)
2873 				return 0;
2874 
2875 			*list = da->next;
2876 			kfree(da);
2877 			(*count)--;
2878 			return 0;
2879 		}
2880 	}
2881 	return -ENOENT;
2882 }
2883 
2884 int __dev_addr_add(struct dev_addr_list **list, int *count,
2885 		   void *addr, int alen, int glbl)
2886 {
2887 	struct dev_addr_list *da;
2888 
2889 	for (da = *list; da != NULL; da = da->next) {
2890 		if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
2891 		    da->da_addrlen == alen) {
2892 			if (glbl) {
2893 				int old_glbl = da->da_gusers;
2894 				da->da_gusers = 1;
2895 				if (old_glbl)
2896 					return 0;
2897 			}
2898 			da->da_users++;
2899 			return 0;
2900 		}
2901 	}
2902 
2903 	da = kmalloc(sizeof(*da), GFP_ATOMIC);
2904 	if (da == NULL)
2905 		return -ENOMEM;
2906 	memcpy(da->da_addr, addr, alen);
2907 	da->da_addrlen = alen;
2908 	da->da_users = 1;
2909 	da->da_gusers = glbl ? 1 : 0;
2910 	da->next = *list;
2911 	*list = da;
2912 	(*count)++;
2913 	return 0;
2914 }
2915 
2916 /**
2917  *	dev_unicast_delete	- Release secondary unicast address.
2918  *	@dev: device
2919  *	@addr: address to delete
2920  *	@alen: length of @addr
2921  *
2922  *	Release reference to a secondary unicast address and remove it
2923  *	from the device if the reference count drops to zero.
2924  *
2925  * 	The caller must hold the rtnl_mutex.
2926  */
2927 int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
2928 {
2929 	int err;
2930 
2931 	ASSERT_RTNL();
2932 
2933 	netif_tx_lock_bh(dev);
2934 	err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
2935 	if (!err)
2936 		__dev_set_rx_mode(dev);
2937 	netif_tx_unlock_bh(dev);
2938 	return err;
2939 }
2940 EXPORT_SYMBOL(dev_unicast_delete);
2941 
2942 /**
2943  *	dev_unicast_add		- add a secondary unicast address
2944  *	@dev: device
2945  *	@addr: address to delete
2946  *	@alen: length of @addr
2947  *
2948  *	Add a secondary unicast address to the device or increase
2949  *	the reference count if it already exists.
2950  *
2951  *	The caller must hold the rtnl_mutex.
2952  */
2953 int dev_unicast_add(struct net_device *dev, void *addr, int alen)
2954 {
2955 	int err;
2956 
2957 	ASSERT_RTNL();
2958 
2959 	netif_tx_lock_bh(dev);
2960 	err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
2961 	if (!err)
2962 		__dev_set_rx_mode(dev);
2963 	netif_tx_unlock_bh(dev);
2964 	return err;
2965 }
2966 EXPORT_SYMBOL(dev_unicast_add);
2967 
2968 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
2969 		    struct dev_addr_list **from, int *from_count)
2970 {
2971 	struct dev_addr_list *da, *next;
2972 	int err = 0;
2973 
2974 	da = *from;
2975 	while (da != NULL) {
2976 		next = da->next;
2977 		if (!da->da_synced) {
2978 			err = __dev_addr_add(to, to_count,
2979 					     da->da_addr, da->da_addrlen, 0);
2980 			if (err < 0)
2981 				break;
2982 			da->da_synced = 1;
2983 			da->da_users++;
2984 		} else if (da->da_users == 1) {
2985 			__dev_addr_delete(to, to_count,
2986 					  da->da_addr, da->da_addrlen, 0);
2987 			__dev_addr_delete(from, from_count,
2988 					  da->da_addr, da->da_addrlen, 0);
2989 		}
2990 		da = next;
2991 	}
2992 	return err;
2993 }
2994 
2995 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
2996 		       struct dev_addr_list **from, int *from_count)
2997 {
2998 	struct dev_addr_list *da, *next;
2999 
3000 	da = *from;
3001 	while (da != NULL) {
3002 		next = da->next;
3003 		if (da->da_synced) {
3004 			__dev_addr_delete(to, to_count,
3005 					  da->da_addr, da->da_addrlen, 0);
3006 			da->da_synced = 0;
3007 			__dev_addr_delete(from, from_count,
3008 					  da->da_addr, da->da_addrlen, 0);
3009 		}
3010 		da = next;
3011 	}
3012 }
3013 
3014 /**
3015  *	dev_unicast_sync - Synchronize device's unicast list to another device
3016  *	@to: destination device
3017  *	@from: source device
3018  *
3019  *	Add newly added addresses to the destination device and release
3020  *	addresses that have no users left. The source device must be
3021  *	locked by netif_tx_lock_bh.
3022  *
3023  *	This function is intended to be called from the dev->set_rx_mode
3024  *	function of layered software devices.
3025  */
3026 int dev_unicast_sync(struct net_device *to, struct net_device *from)
3027 {
3028 	int err = 0;
3029 
3030 	netif_tx_lock_bh(to);
3031 	err = __dev_addr_sync(&to->uc_list, &to->uc_count,
3032 			      &from->uc_list, &from->uc_count);
3033 	if (!err)
3034 		__dev_set_rx_mode(to);
3035 	netif_tx_unlock_bh(to);
3036 	return err;
3037 }
3038 EXPORT_SYMBOL(dev_unicast_sync);
3039 
3040 /**
3041  *	dev_unicast_unsync - Remove synchronized addresses from the destination
3042  *			     device
3043  *	@to: destination device
3044  *	@from: source device
3045  *
3046  *	Remove all addresses that were added to the destination device by
3047  *	dev_unicast_sync(). This function is intended to be called from the
3048  *	dev->stop function of layered software devices.
3049  */
3050 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
3051 {
3052 	netif_tx_lock_bh(from);
3053 	netif_tx_lock_bh(to);
3054 
3055 	__dev_addr_unsync(&to->uc_list, &to->uc_count,
3056 			  &from->uc_list, &from->uc_count);
3057 	__dev_set_rx_mode(to);
3058 
3059 	netif_tx_unlock_bh(to);
3060 	netif_tx_unlock_bh(from);
3061 }
3062 EXPORT_SYMBOL(dev_unicast_unsync);
3063 
3064 static void __dev_addr_discard(struct dev_addr_list **list)
3065 {
3066 	struct dev_addr_list *tmp;
3067 
3068 	while (*list != NULL) {
3069 		tmp = *list;
3070 		*list = tmp->next;
3071 		if (tmp->da_users > tmp->da_gusers)
3072 			printk("__dev_addr_discard: address leakage! "
3073 			       "da_users=%d\n", tmp->da_users);
3074 		kfree(tmp);
3075 	}
3076 }
3077 
3078 static void dev_addr_discard(struct net_device *dev)
3079 {
3080 	netif_tx_lock_bh(dev);
3081 
3082 	__dev_addr_discard(&dev->uc_list);
3083 	dev->uc_count = 0;
3084 
3085 	__dev_addr_discard(&dev->mc_list);
3086 	dev->mc_count = 0;
3087 
3088 	netif_tx_unlock_bh(dev);
3089 }
3090 
3091 unsigned dev_get_flags(const struct net_device *dev)
3092 {
3093 	unsigned flags;
3094 
3095 	flags = (dev->flags & ~(IFF_PROMISC |
3096 				IFF_ALLMULTI |
3097 				IFF_RUNNING |
3098 				IFF_LOWER_UP |
3099 				IFF_DORMANT)) |
3100 		(dev->gflags & (IFF_PROMISC |
3101 				IFF_ALLMULTI));
3102 
3103 	if (netif_running(dev)) {
3104 		if (netif_oper_up(dev))
3105 			flags |= IFF_RUNNING;
3106 		if (netif_carrier_ok(dev))
3107 			flags |= IFF_LOWER_UP;
3108 		if (netif_dormant(dev))
3109 			flags |= IFF_DORMANT;
3110 	}
3111 
3112 	return flags;
3113 }
3114 
3115 int dev_change_flags(struct net_device *dev, unsigned flags)
3116 {
3117 	int ret, changes;
3118 	int old_flags = dev->flags;
3119 
3120 	ASSERT_RTNL();
3121 
3122 	/*
3123 	 *	Set the flags on our device.
3124 	 */
3125 
3126 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3127 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3128 			       IFF_AUTOMEDIA)) |
3129 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3130 				    IFF_ALLMULTI));
3131 
3132 	/*
3133 	 *	Load in the correct multicast list now the flags have changed.
3134 	 */
3135 
3136 	if (dev->change_rx_flags && (dev->flags ^ flags) & IFF_MULTICAST)
3137 		dev->change_rx_flags(dev, IFF_MULTICAST);
3138 
3139 	dev_set_rx_mode(dev);
3140 
3141 	/*
3142 	 *	Have we downed the interface. We handle IFF_UP ourselves
3143 	 *	according to user attempts to set it, rather than blindly
3144 	 *	setting it.
3145 	 */
3146 
3147 	ret = 0;
3148 	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
3149 		ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3150 
3151 		if (!ret)
3152 			dev_set_rx_mode(dev);
3153 	}
3154 
3155 	if (dev->flags & IFF_UP &&
3156 	    ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3157 					  IFF_VOLATILE)))
3158 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
3159 
3160 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
3161 		int inc = (flags & IFF_PROMISC) ? +1 : -1;
3162 		dev->gflags ^= IFF_PROMISC;
3163 		dev_set_promiscuity(dev, inc);
3164 	}
3165 
3166 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3167 	   is important. Some (broken) drivers set IFF_PROMISC, when
3168 	   IFF_ALLMULTI is requested not asking us and not reporting.
3169 	 */
3170 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3171 		int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3172 		dev->gflags ^= IFF_ALLMULTI;
3173 		dev_set_allmulti(dev, inc);
3174 	}
3175 
3176 	/* Exclude state transition flags, already notified */
3177 	changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3178 	if (changes)
3179 		rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3180 
3181 	return ret;
3182 }
3183 
3184 int dev_set_mtu(struct net_device *dev, int new_mtu)
3185 {
3186 	int err;
3187 
3188 	if (new_mtu == dev->mtu)
3189 		return 0;
3190 
3191 	/*	MTU must be positive.	 */
3192 	if (new_mtu < 0)
3193 		return -EINVAL;
3194 
3195 	if (!netif_device_present(dev))
3196 		return -ENODEV;
3197 
3198 	err = 0;
3199 	if (dev->change_mtu)
3200 		err = dev->change_mtu(dev, new_mtu);
3201 	else
3202 		dev->mtu = new_mtu;
3203 	if (!err && dev->flags & IFF_UP)
3204 		call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
3205 	return err;
3206 }
3207 
3208 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3209 {
3210 	int err;
3211 
3212 	if (!dev->set_mac_address)
3213 		return -EOPNOTSUPP;
3214 	if (sa->sa_family != dev->type)
3215 		return -EINVAL;
3216 	if (!netif_device_present(dev))
3217 		return -ENODEV;
3218 	err = dev->set_mac_address(dev, sa);
3219 	if (!err)
3220 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3221 	return err;
3222 }
3223 
3224 /*
3225  *	Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
3226  */
3227 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
3228 {
3229 	int err;
3230 	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3231 
3232 	if (!dev)
3233 		return -ENODEV;
3234 
3235 	switch (cmd) {
3236 		case SIOCGIFFLAGS:	/* Get interface flags */
3237 			ifr->ifr_flags = dev_get_flags(dev);
3238 			return 0;
3239 
3240 		case SIOCGIFMETRIC:	/* Get the metric on the interface
3241 					   (currently unused) */
3242 			ifr->ifr_metric = 0;
3243 			return 0;
3244 
3245 		case SIOCGIFMTU:	/* Get the MTU of a device */
3246 			ifr->ifr_mtu = dev->mtu;
3247 			return 0;
3248 
3249 		case SIOCGIFHWADDR:
3250 			if (!dev->addr_len)
3251 				memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3252 			else
3253 				memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3254 				       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3255 			ifr->ifr_hwaddr.sa_family = dev->type;
3256 			return 0;
3257 
3258 		case SIOCGIFSLAVE:
3259 			err = -EINVAL;
3260 			break;
3261 
3262 		case SIOCGIFMAP:
3263 			ifr->ifr_map.mem_start = dev->mem_start;
3264 			ifr->ifr_map.mem_end   = dev->mem_end;
3265 			ifr->ifr_map.base_addr = dev->base_addr;
3266 			ifr->ifr_map.irq       = dev->irq;
3267 			ifr->ifr_map.dma       = dev->dma;
3268 			ifr->ifr_map.port      = dev->if_port;
3269 			return 0;
3270 
3271 		case SIOCGIFINDEX:
3272 			ifr->ifr_ifindex = dev->ifindex;
3273 			return 0;
3274 
3275 		case SIOCGIFTXQLEN:
3276 			ifr->ifr_qlen = dev->tx_queue_len;
3277 			return 0;
3278 
3279 		default:
3280 			/* dev_ioctl() should ensure this case
3281 			 * is never reached
3282 			 */
3283 			WARN_ON(1);
3284 			err = -EINVAL;
3285 			break;
3286 
3287 	}
3288 	return err;
3289 }
3290 
3291 /*
3292  *	Perform the SIOCxIFxxx calls, inside rtnl_lock()
3293  */
3294 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3295 {
3296 	int err;
3297 	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3298 
3299 	if (!dev)
3300 		return -ENODEV;
3301 
3302 	switch (cmd) {
3303 		case SIOCSIFFLAGS:	/* Set interface flags */
3304 			return dev_change_flags(dev, ifr->ifr_flags);
3305 
3306 		case SIOCSIFMETRIC:	/* Set the metric on the interface
3307 					   (currently unused) */
3308 			return -EOPNOTSUPP;
3309 
3310 		case SIOCSIFMTU:	/* Set the MTU of a device */
3311 			return dev_set_mtu(dev, ifr->ifr_mtu);
3312 
3313 		case SIOCSIFHWADDR:
3314 			return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3315 
3316 		case SIOCSIFHWBROADCAST:
3317 			if (ifr->ifr_hwaddr.sa_family != dev->type)
3318 				return -EINVAL;
3319 			memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3320 			       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3321 			call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3322 			return 0;
3323 
3324 		case SIOCSIFMAP:
3325 			if (dev->set_config) {
3326 				if (!netif_device_present(dev))
3327 					return -ENODEV;
3328 				return dev->set_config(dev, &ifr->ifr_map);
3329 			}
3330 			return -EOPNOTSUPP;
3331 
3332 		case SIOCADDMULTI:
3333 			if (!dev->set_multicast_list ||
3334 			    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3335 				return -EINVAL;
3336 			if (!netif_device_present(dev))
3337 				return -ENODEV;
3338 			return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3339 					  dev->addr_len, 1);
3340 
3341 		case SIOCDELMULTI:
3342 			if (!dev->set_multicast_list ||
3343 			    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3344 				return -EINVAL;
3345 			if (!netif_device_present(dev))
3346 				return -ENODEV;
3347 			return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3348 					     dev->addr_len, 1);
3349 
3350 		case SIOCSIFTXQLEN:
3351 			if (ifr->ifr_qlen < 0)
3352 				return -EINVAL;
3353 			dev->tx_queue_len = ifr->ifr_qlen;
3354 			return 0;
3355 
3356 		case SIOCSIFNAME:
3357 			ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3358 			return dev_change_name(dev, ifr->ifr_newname);
3359 
3360 		/*
3361 		 *	Unknown or private ioctl
3362 		 */
3363 
3364 		default:
3365 			if ((cmd >= SIOCDEVPRIVATE &&
3366 			    cmd <= SIOCDEVPRIVATE + 15) ||
3367 			    cmd == SIOCBONDENSLAVE ||
3368 			    cmd == SIOCBONDRELEASE ||
3369 			    cmd == SIOCBONDSETHWADDR ||
3370 			    cmd == SIOCBONDSLAVEINFOQUERY ||
3371 			    cmd == SIOCBONDINFOQUERY ||
3372 			    cmd == SIOCBONDCHANGEACTIVE ||
3373 			    cmd == SIOCGMIIPHY ||
3374 			    cmd == SIOCGMIIREG ||
3375 			    cmd == SIOCSMIIREG ||
3376 			    cmd == SIOCBRADDIF ||
3377 			    cmd == SIOCBRDELIF ||
3378 			    cmd == SIOCWANDEV) {
3379 				err = -EOPNOTSUPP;
3380 				if (dev->do_ioctl) {
3381 					if (netif_device_present(dev))
3382 						err = dev->do_ioctl(dev, ifr,
3383 								    cmd);
3384 					else
3385 						err = -ENODEV;
3386 				}
3387 			} else
3388 				err = -EINVAL;
3389 
3390 	}
3391 	return err;
3392 }
3393 
3394 /*
3395  *	This function handles all "interface"-type I/O control requests. The actual
3396  *	'doing' part of this is dev_ifsioc above.
3397  */
3398 
3399 /**
3400  *	dev_ioctl	-	network device ioctl
3401  *	@net: the applicable net namespace
3402  *	@cmd: command to issue
3403  *	@arg: pointer to a struct ifreq in user space
3404  *
3405  *	Issue ioctl functions to devices. This is normally called by the
3406  *	user space syscall interfaces but can sometimes be useful for
3407  *	other purposes. The return value is the return from the syscall if
3408  *	positive or a negative errno code on error.
3409  */
3410 
3411 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
3412 {
3413 	struct ifreq ifr;
3414 	int ret;
3415 	char *colon;
3416 
3417 	/* One special case: SIOCGIFCONF takes ifconf argument
3418 	   and requires shared lock, because it sleeps writing
3419 	   to user space.
3420 	 */
3421 
3422 	if (cmd == SIOCGIFCONF) {
3423 		rtnl_lock();
3424 		ret = dev_ifconf(net, (char __user *) arg);
3425 		rtnl_unlock();
3426 		return ret;
3427 	}
3428 	if (cmd == SIOCGIFNAME)
3429 		return dev_ifname(net, (struct ifreq __user *)arg);
3430 
3431 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3432 		return -EFAULT;
3433 
3434 	ifr.ifr_name[IFNAMSIZ-1] = 0;
3435 
3436 	colon = strchr(ifr.ifr_name, ':');
3437 	if (colon)
3438 		*colon = 0;
3439 
3440 	/*
3441 	 *	See which interface the caller is talking about.
3442 	 */
3443 
3444 	switch (cmd) {
3445 		/*
3446 		 *	These ioctl calls:
3447 		 *	- can be done by all.
3448 		 *	- atomic and do not require locking.
3449 		 *	- return a value
3450 		 */
3451 		case SIOCGIFFLAGS:
3452 		case SIOCGIFMETRIC:
3453 		case SIOCGIFMTU:
3454 		case SIOCGIFHWADDR:
3455 		case SIOCGIFSLAVE:
3456 		case SIOCGIFMAP:
3457 		case SIOCGIFINDEX:
3458 		case SIOCGIFTXQLEN:
3459 			dev_load(net, ifr.ifr_name);
3460 			read_lock(&dev_base_lock);
3461 			ret = dev_ifsioc_locked(net, &ifr, cmd);
3462 			read_unlock(&dev_base_lock);
3463 			if (!ret) {
3464 				if (colon)
3465 					*colon = ':';
3466 				if (copy_to_user(arg, &ifr,
3467 						 sizeof(struct ifreq)))
3468 					ret = -EFAULT;
3469 			}
3470 			return ret;
3471 
3472 		case SIOCETHTOOL:
3473 			dev_load(net, ifr.ifr_name);
3474 			rtnl_lock();
3475 			ret = dev_ethtool(net, &ifr);
3476 			rtnl_unlock();
3477 			if (!ret) {
3478 				if (colon)
3479 					*colon = ':';
3480 				if (copy_to_user(arg, &ifr,
3481 						 sizeof(struct ifreq)))
3482 					ret = -EFAULT;
3483 			}
3484 			return ret;
3485 
3486 		/*
3487 		 *	These ioctl calls:
3488 		 *	- require superuser power.
3489 		 *	- require strict serialization.
3490 		 *	- return a value
3491 		 */
3492 		case SIOCGMIIPHY:
3493 		case SIOCGMIIREG:
3494 		case SIOCSIFNAME:
3495 			if (!capable(CAP_NET_ADMIN))
3496 				return -EPERM;
3497 			dev_load(net, ifr.ifr_name);
3498 			rtnl_lock();
3499 			ret = dev_ifsioc(net, &ifr, cmd);
3500 			rtnl_unlock();
3501 			if (!ret) {
3502 				if (colon)
3503 					*colon = ':';
3504 				if (copy_to_user(arg, &ifr,
3505 						 sizeof(struct ifreq)))
3506 					ret = -EFAULT;
3507 			}
3508 			return ret;
3509 
3510 		/*
3511 		 *	These ioctl calls:
3512 		 *	- require superuser power.
3513 		 *	- require strict serialization.
3514 		 *	- do not return a value
3515 		 */
3516 		case SIOCSIFFLAGS:
3517 		case SIOCSIFMETRIC:
3518 		case SIOCSIFMTU:
3519 		case SIOCSIFMAP:
3520 		case SIOCSIFHWADDR:
3521 		case SIOCSIFSLAVE:
3522 		case SIOCADDMULTI:
3523 		case SIOCDELMULTI:
3524 		case SIOCSIFHWBROADCAST:
3525 		case SIOCSIFTXQLEN:
3526 		case SIOCSMIIREG:
3527 		case SIOCBONDENSLAVE:
3528 		case SIOCBONDRELEASE:
3529 		case SIOCBONDSETHWADDR:
3530 		case SIOCBONDCHANGEACTIVE:
3531 		case SIOCBRADDIF:
3532 		case SIOCBRDELIF:
3533 			if (!capable(CAP_NET_ADMIN))
3534 				return -EPERM;
3535 			/* fall through */
3536 		case SIOCBONDSLAVEINFOQUERY:
3537 		case SIOCBONDINFOQUERY:
3538 			dev_load(net, ifr.ifr_name);
3539 			rtnl_lock();
3540 			ret = dev_ifsioc(net, &ifr, cmd);
3541 			rtnl_unlock();
3542 			return ret;
3543 
3544 		case SIOCGIFMEM:
3545 			/* Get the per device memory space. We can add this but
3546 			 * currently do not support it */
3547 		case SIOCSIFMEM:
3548 			/* Set the per device memory buffer space.
3549 			 * Not applicable in our case */
3550 		case SIOCSIFLINK:
3551 			return -EINVAL;
3552 
3553 		/*
3554 		 *	Unknown or private ioctl.
3555 		 */
3556 		default:
3557 			if (cmd == SIOCWANDEV ||
3558 			    (cmd >= SIOCDEVPRIVATE &&
3559 			     cmd <= SIOCDEVPRIVATE + 15)) {
3560 				dev_load(net, ifr.ifr_name);
3561 				rtnl_lock();
3562 				ret = dev_ifsioc(net, &ifr, cmd);
3563 				rtnl_unlock();
3564 				if (!ret && copy_to_user(arg, &ifr,
3565 							 sizeof(struct ifreq)))
3566 					ret = -EFAULT;
3567 				return ret;
3568 			}
3569 			/* Take care of Wireless Extensions */
3570 			if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
3571 				return wext_handle_ioctl(net, &ifr, cmd, arg);
3572 			return -EINVAL;
3573 	}
3574 }
3575 
3576 
3577 /**
3578  *	dev_new_index	-	allocate an ifindex
3579  *	@net: the applicable net namespace
3580  *
3581  *	Returns a suitable unique value for a new device interface
3582  *	number.  The caller must hold the rtnl semaphore or the
3583  *	dev_base_lock to be sure it remains unique.
3584  */
3585 static int dev_new_index(struct net *net)
3586 {
3587 	static int ifindex;
3588 	for (;;) {
3589 		if (++ifindex <= 0)
3590 			ifindex = 1;
3591 		if (!__dev_get_by_index(net, ifindex))
3592 			return ifindex;
3593 	}
3594 }
3595 
3596 /* Delayed registration/unregisteration */
3597 static DEFINE_SPINLOCK(net_todo_list_lock);
3598 static LIST_HEAD(net_todo_list);
3599 
3600 static void net_set_todo(struct net_device *dev)
3601 {
3602 	spin_lock(&net_todo_list_lock);
3603 	list_add_tail(&dev->todo_list, &net_todo_list);
3604 	spin_unlock(&net_todo_list_lock);
3605 }
3606 
3607 static void rollback_registered(struct net_device *dev)
3608 {
3609 	BUG_ON(dev_boot_phase);
3610 	ASSERT_RTNL();
3611 
3612 	/* Some devices call without registering for initialization unwind. */
3613 	if (dev->reg_state == NETREG_UNINITIALIZED) {
3614 		printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
3615 				  "was registered\n", dev->name, dev);
3616 
3617 		WARN_ON(1);
3618 		return;
3619 	}
3620 
3621 	BUG_ON(dev->reg_state != NETREG_REGISTERED);
3622 
3623 	/* If device is running, close it first. */
3624 	dev_close(dev);
3625 
3626 	/* And unlink it from device chain. */
3627 	unlist_netdevice(dev);
3628 
3629 	dev->reg_state = NETREG_UNREGISTERING;
3630 
3631 	synchronize_net();
3632 
3633 	/* Shutdown queueing discipline. */
3634 	dev_shutdown(dev);
3635 
3636 
3637 	/* Notify protocols, that we are about to destroy
3638 	   this device. They should clean all the things.
3639 	*/
3640 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
3641 
3642 	/*
3643 	 *	Flush the unicast and multicast chains
3644 	 */
3645 	dev_addr_discard(dev);
3646 
3647 	if (dev->uninit)
3648 		dev->uninit(dev);
3649 
3650 	/* Notifier chain MUST detach us from master device. */
3651 	BUG_TRAP(!dev->master);
3652 
3653 	/* Remove entries from kobject tree */
3654 	netdev_unregister_kobject(dev);
3655 
3656 	synchronize_net();
3657 
3658 	dev_put(dev);
3659 }
3660 
3661 /**
3662  *	register_netdevice	- register a network device
3663  *	@dev: device to register
3664  *
3665  *	Take a completed network device structure and add it to the kernel
3666  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3667  *	chain. 0 is returned on success. A negative errno code is returned
3668  *	on a failure to set up the device, or if the name is a duplicate.
3669  *
3670  *	Callers must hold the rtnl semaphore. You may want
3671  *	register_netdev() instead of this.
3672  *
3673  *	BUGS:
3674  *	The locking appears insufficient to guarantee two parallel registers
3675  *	will not get the same name.
3676  */
3677 
3678 int register_netdevice(struct net_device *dev)
3679 {
3680 	struct hlist_head *head;
3681 	struct hlist_node *p;
3682 	int ret;
3683 	struct net *net;
3684 
3685 	BUG_ON(dev_boot_phase);
3686 	ASSERT_RTNL();
3687 
3688 	might_sleep();
3689 
3690 	/* When net_device's are persistent, this will be fatal. */
3691 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
3692 	BUG_ON(!dev->nd_net);
3693 	net = dev->nd_net;
3694 
3695 	spin_lock_init(&dev->queue_lock);
3696 	spin_lock_init(&dev->_xmit_lock);
3697 	netdev_set_lockdep_class(&dev->_xmit_lock, dev->type);
3698 	dev->xmit_lock_owner = -1;
3699 	spin_lock_init(&dev->ingress_lock);
3700 
3701 	dev->iflink = -1;
3702 
3703 	/* Init, if this function is available */
3704 	if (dev->init) {
3705 		ret = dev->init(dev);
3706 		if (ret) {
3707 			if (ret > 0)
3708 				ret = -EIO;
3709 			goto out;
3710 		}
3711 	}
3712 
3713 	if (!dev_valid_name(dev->name)) {
3714 		ret = -EINVAL;
3715 		goto err_uninit;
3716 	}
3717 
3718 	dev->ifindex = dev_new_index(net);
3719 	if (dev->iflink == -1)
3720 		dev->iflink = dev->ifindex;
3721 
3722 	/* Check for existence of name */
3723 	head = dev_name_hash(net, dev->name);
3724 	hlist_for_each(p, head) {
3725 		struct net_device *d
3726 			= hlist_entry(p, struct net_device, name_hlist);
3727 		if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
3728 			ret = -EEXIST;
3729 			goto err_uninit;
3730 		}
3731 	}
3732 
3733 	/* Fix illegal checksum combinations */
3734 	if ((dev->features & NETIF_F_HW_CSUM) &&
3735 	    (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3736 		printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
3737 		       dev->name);
3738 		dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3739 	}
3740 
3741 	if ((dev->features & NETIF_F_NO_CSUM) &&
3742 	    (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3743 		printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
3744 		       dev->name);
3745 		dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
3746 	}
3747 
3748 
3749 	/* Fix illegal SG+CSUM combinations. */
3750 	if ((dev->features & NETIF_F_SG) &&
3751 	    !(dev->features & NETIF_F_ALL_CSUM)) {
3752 		printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n",
3753 		       dev->name);
3754 		dev->features &= ~NETIF_F_SG;
3755 	}
3756 
3757 	/* TSO requires that SG is present as well. */
3758 	if ((dev->features & NETIF_F_TSO) &&
3759 	    !(dev->features & NETIF_F_SG)) {
3760 		printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n",
3761 		       dev->name);
3762 		dev->features &= ~NETIF_F_TSO;
3763 	}
3764 	if (dev->features & NETIF_F_UFO) {
3765 		if (!(dev->features & NETIF_F_HW_CSUM)) {
3766 			printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3767 					"NETIF_F_HW_CSUM feature.\n",
3768 							dev->name);
3769 			dev->features &= ~NETIF_F_UFO;
3770 		}
3771 		if (!(dev->features & NETIF_F_SG)) {
3772 			printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3773 					"NETIF_F_SG feature.\n",
3774 					dev->name);
3775 			dev->features &= ~NETIF_F_UFO;
3776 		}
3777 	}
3778 
3779 	ret = netdev_register_kobject(dev);
3780 	if (ret)
3781 		goto err_uninit;
3782 	dev->reg_state = NETREG_REGISTERED;
3783 
3784 	/*
3785 	 *	Default initial state at registry is that the
3786 	 *	device is present.
3787 	 */
3788 
3789 	set_bit(__LINK_STATE_PRESENT, &dev->state);
3790 
3791 	dev_init_scheduler(dev);
3792 	dev_hold(dev);
3793 	list_netdevice(dev);
3794 
3795 	/* Notify protocols, that a new device appeared. */
3796 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
3797 	ret = notifier_to_errno(ret);
3798 	if (ret) {
3799 		rollback_registered(dev);
3800 		dev->reg_state = NETREG_UNREGISTERED;
3801 	}
3802 
3803 out:
3804 	return ret;
3805 
3806 err_uninit:
3807 	if (dev->uninit)
3808 		dev->uninit(dev);
3809 	goto out;
3810 }
3811 
3812 /**
3813  *	register_netdev	- register a network device
3814  *	@dev: device to register
3815  *
3816  *	Take a completed network device structure and add it to the kernel
3817  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3818  *	chain. 0 is returned on success. A negative errno code is returned
3819  *	on a failure to set up the device, or if the name is a duplicate.
3820  *
3821  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
3822  *	and expands the device name if you passed a format string to
3823  *	alloc_netdev.
3824  */
3825 int register_netdev(struct net_device *dev)
3826 {
3827 	int err;
3828 
3829 	rtnl_lock();
3830 
3831 	/*
3832 	 * If the name is a format string the caller wants us to do a
3833 	 * name allocation.
3834 	 */
3835 	if (strchr(dev->name, '%')) {
3836 		err = dev_alloc_name(dev, dev->name);
3837 		if (err < 0)
3838 			goto out;
3839 	}
3840 
3841 	err = register_netdevice(dev);
3842 out:
3843 	rtnl_unlock();
3844 	return err;
3845 }
3846 EXPORT_SYMBOL(register_netdev);
3847 
3848 /*
3849  * netdev_wait_allrefs - wait until all references are gone.
3850  *
3851  * This is called when unregistering network devices.
3852  *
3853  * Any protocol or device that holds a reference should register
3854  * for netdevice notification, and cleanup and put back the
3855  * reference if they receive an UNREGISTER event.
3856  * We can get stuck here if buggy protocols don't correctly
3857  * call dev_put.
3858  */
3859 static void netdev_wait_allrefs(struct net_device *dev)
3860 {
3861 	unsigned long rebroadcast_time, warning_time;
3862 
3863 	rebroadcast_time = warning_time = jiffies;
3864 	while (atomic_read(&dev->refcnt) != 0) {
3865 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
3866 			rtnl_lock();
3867 
3868 			/* Rebroadcast unregister notification */
3869 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
3870 
3871 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
3872 				     &dev->state)) {
3873 				/* We must not have linkwatch events
3874 				 * pending on unregister. If this
3875 				 * happens, we simply run the queue
3876 				 * unscheduled, resulting in a noop
3877 				 * for this device.
3878 				 */
3879 				linkwatch_run_queue();
3880 			}
3881 
3882 			__rtnl_unlock();
3883 
3884 			rebroadcast_time = jiffies;
3885 		}
3886 
3887 		msleep(250);
3888 
3889 		if (time_after(jiffies, warning_time + 10 * HZ)) {
3890 			printk(KERN_EMERG "unregister_netdevice: "
3891 			       "waiting for %s to become free. Usage "
3892 			       "count = %d\n",
3893 			       dev->name, atomic_read(&dev->refcnt));
3894 			warning_time = jiffies;
3895 		}
3896 	}
3897 }
3898 
3899 /* The sequence is:
3900  *
3901  *	rtnl_lock();
3902  *	...
3903  *	register_netdevice(x1);
3904  *	register_netdevice(x2);
3905  *	...
3906  *	unregister_netdevice(y1);
3907  *	unregister_netdevice(y2);
3908  *      ...
3909  *	rtnl_unlock();
3910  *	free_netdev(y1);
3911  *	free_netdev(y2);
3912  *
3913  * We are invoked by rtnl_unlock() after it drops the semaphore.
3914  * This allows us to deal with problems:
3915  * 1) We can delete sysfs objects which invoke hotplug
3916  *    without deadlocking with linkwatch via keventd.
3917  * 2) Since we run with the RTNL semaphore not held, we can sleep
3918  *    safely in order to wait for the netdev refcnt to drop to zero.
3919  */
3920 static DEFINE_MUTEX(net_todo_run_mutex);
3921 void netdev_run_todo(void)
3922 {
3923 	struct list_head list;
3924 
3925 	/* Need to guard against multiple cpu's getting out of order. */
3926 	mutex_lock(&net_todo_run_mutex);
3927 
3928 	/* Not safe to do outside the semaphore.  We must not return
3929 	 * until all unregister events invoked by the local processor
3930 	 * have been completed (either by this todo run, or one on
3931 	 * another cpu).
3932 	 */
3933 	if (list_empty(&net_todo_list))
3934 		goto out;
3935 
3936 	/* Snapshot list, allow later requests */
3937 	spin_lock(&net_todo_list_lock);
3938 	list_replace_init(&net_todo_list, &list);
3939 	spin_unlock(&net_todo_list_lock);
3940 
3941 	while (!list_empty(&list)) {
3942 		struct net_device *dev
3943 			= list_entry(list.next, struct net_device, todo_list);
3944 		list_del(&dev->todo_list);
3945 
3946 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
3947 			printk(KERN_ERR "network todo '%s' but state %d\n",
3948 			       dev->name, dev->reg_state);
3949 			dump_stack();
3950 			continue;
3951 		}
3952 
3953 		dev->reg_state = NETREG_UNREGISTERED;
3954 
3955 		netdev_wait_allrefs(dev);
3956 
3957 		/* paranoia */
3958 		BUG_ON(atomic_read(&dev->refcnt));
3959 		BUG_TRAP(!dev->ip_ptr);
3960 		BUG_TRAP(!dev->ip6_ptr);
3961 		BUG_TRAP(!dev->dn_ptr);
3962 
3963 		if (dev->destructor)
3964 			dev->destructor(dev);
3965 
3966 		/* Free network device */
3967 		kobject_put(&dev->dev.kobj);
3968 	}
3969 
3970 out:
3971 	mutex_unlock(&net_todo_run_mutex);
3972 }
3973 
3974 static struct net_device_stats *internal_stats(struct net_device *dev)
3975 {
3976 	return &dev->stats;
3977 }
3978 
3979 /**
3980  *	alloc_netdev_mq - allocate network device
3981  *	@sizeof_priv:	size of private data to allocate space for
3982  *	@name:		device name format string
3983  *	@setup:		callback to initialize device
3984  *	@queue_count:	the number of subqueues to allocate
3985  *
3986  *	Allocates a struct net_device with private data area for driver use
3987  *	and performs basic initialization.  Also allocates subquue structs
3988  *	for each queue on the device at the end of the netdevice.
3989  */
3990 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
3991 		void (*setup)(struct net_device *), unsigned int queue_count)
3992 {
3993 	void *p;
3994 	struct net_device *dev;
3995 	int alloc_size;
3996 
3997 	BUG_ON(strlen(name) >= sizeof(dev->name));
3998 
3999 	/* ensure 32-byte alignment of both the device and private area */
4000 	alloc_size = (sizeof(*dev) + NETDEV_ALIGN_CONST +
4001 		     (sizeof(struct net_device_subqueue) * (queue_count - 1))) &
4002 		     ~NETDEV_ALIGN_CONST;
4003 	alloc_size += sizeof_priv + NETDEV_ALIGN_CONST;
4004 
4005 	p = kzalloc(alloc_size, GFP_KERNEL);
4006 	if (!p) {
4007 		printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
4008 		return NULL;
4009 	}
4010 
4011 	dev = (struct net_device *)
4012 		(((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
4013 	dev->padded = (char *)dev - (char *)p;
4014 	dev->nd_net = &init_net;
4015 
4016 	if (sizeof_priv) {
4017 		dev->priv = ((char *)dev +
4018 			     ((sizeof(struct net_device) +
4019 			       (sizeof(struct net_device_subqueue) *
4020 				(queue_count - 1)) + NETDEV_ALIGN_CONST)
4021 			      & ~NETDEV_ALIGN_CONST));
4022 	}
4023 
4024 	dev->egress_subqueue_count = queue_count;
4025 
4026 	dev->get_stats = internal_stats;
4027 	netpoll_netdev_init(dev);
4028 	setup(dev);
4029 	strcpy(dev->name, name);
4030 	return dev;
4031 }
4032 EXPORT_SYMBOL(alloc_netdev_mq);
4033 
4034 /**
4035  *	free_netdev - free network device
4036  *	@dev: device
4037  *
4038  *	This function does the last stage of destroying an allocated device
4039  * 	interface. The reference to the device object is released.
4040  *	If this is the last reference then it will be freed.
4041  */
4042 void free_netdev(struct net_device *dev)
4043 {
4044 	/*  Compatibility with error handling in drivers */
4045 	if (dev->reg_state == NETREG_UNINITIALIZED) {
4046 		kfree((char *)dev - dev->padded);
4047 		return;
4048 	}
4049 
4050 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
4051 	dev->reg_state = NETREG_RELEASED;
4052 
4053 	/* will free via device release */
4054 	put_device(&dev->dev);
4055 }
4056 
4057 /* Synchronize with packet receive processing. */
4058 void synchronize_net(void)
4059 {
4060 	might_sleep();
4061 	synchronize_rcu();
4062 }
4063 
4064 /**
4065  *	unregister_netdevice - remove device from the kernel
4066  *	@dev: device
4067  *
4068  *	This function shuts down a device interface and removes it
4069  *	from the kernel tables.
4070  *
4071  *	Callers must hold the rtnl semaphore.  You may want
4072  *	unregister_netdev() instead of this.
4073  */
4074 
4075 void unregister_netdevice(struct net_device *dev)
4076 {
4077 	ASSERT_RTNL();
4078 
4079 	rollback_registered(dev);
4080 	/* Finish processing unregister after unlock */
4081 	net_set_todo(dev);
4082 }
4083 
4084 /**
4085  *	unregister_netdev - remove device from the kernel
4086  *	@dev: device
4087  *
4088  *	This function shuts down a device interface and removes it
4089  *	from the kernel tables.
4090  *
4091  *	This is just a wrapper for unregister_netdevice that takes
4092  *	the rtnl semaphore.  In general you want to use this and not
4093  *	unregister_netdevice.
4094  */
4095 void unregister_netdev(struct net_device *dev)
4096 {
4097 	rtnl_lock();
4098 	unregister_netdevice(dev);
4099 	rtnl_unlock();
4100 }
4101 
4102 EXPORT_SYMBOL(unregister_netdev);
4103 
4104 /**
4105  *	dev_change_net_namespace - move device to different nethost namespace
4106  *	@dev: device
4107  *	@net: network namespace
4108  *	@pat: If not NULL name pattern to try if the current device name
4109  *	      is already taken in the destination network namespace.
4110  *
4111  *	This function shuts down a device interface and moves it
4112  *	to a new network namespace. On success 0 is returned, on
4113  *	a failure a netagive errno code is returned.
4114  *
4115  *	Callers must hold the rtnl semaphore.
4116  */
4117 
4118 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
4119 {
4120 	char buf[IFNAMSIZ];
4121 	const char *destname;
4122 	int err;
4123 
4124 	ASSERT_RTNL();
4125 
4126 	/* Don't allow namespace local devices to be moved. */
4127 	err = -EINVAL;
4128 	if (dev->features & NETIF_F_NETNS_LOCAL)
4129 		goto out;
4130 
4131 	/* Ensure the device has been registrered */
4132 	err = -EINVAL;
4133 	if (dev->reg_state != NETREG_REGISTERED)
4134 		goto out;
4135 
4136 	/* Get out if there is nothing todo */
4137 	err = 0;
4138 	if (dev->nd_net == net)
4139 		goto out;
4140 
4141 	/* Pick the destination device name, and ensure
4142 	 * we can use it in the destination network namespace.
4143 	 */
4144 	err = -EEXIST;
4145 	destname = dev->name;
4146 	if (__dev_get_by_name(net, destname)) {
4147 		/* We get here if we can't use the current device name */
4148 		if (!pat)
4149 			goto out;
4150 		if (!dev_valid_name(pat))
4151 			goto out;
4152 		if (strchr(pat, '%')) {
4153 			if (__dev_alloc_name(net, pat, buf) < 0)
4154 				goto out;
4155 			destname = buf;
4156 		} else
4157 			destname = pat;
4158 		if (__dev_get_by_name(net, destname))
4159 			goto out;
4160 	}
4161 
4162 	/*
4163 	 * And now a mini version of register_netdevice unregister_netdevice.
4164 	 */
4165 
4166 	/* If device is running close it first. */
4167 	dev_close(dev);
4168 
4169 	/* And unlink it from device chain */
4170 	err = -ENODEV;
4171 	unlist_netdevice(dev);
4172 
4173 	synchronize_net();
4174 
4175 	/* Shutdown queueing discipline. */
4176 	dev_shutdown(dev);
4177 
4178 	/* Notify protocols, that we are about to destroy
4179 	   this device. They should clean all the things.
4180 	*/
4181 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4182 
4183 	/*
4184 	 *	Flush the unicast and multicast chains
4185 	 */
4186 	dev_addr_discard(dev);
4187 
4188 	/* Actually switch the network namespace */
4189 	dev->nd_net = net;
4190 
4191 	/* Assign the new device name */
4192 	if (destname != dev->name)
4193 		strcpy(dev->name, destname);
4194 
4195 	/* If there is an ifindex conflict assign a new one */
4196 	if (__dev_get_by_index(net, dev->ifindex)) {
4197 		int iflink = (dev->iflink == dev->ifindex);
4198 		dev->ifindex = dev_new_index(net);
4199 		if (iflink)
4200 			dev->iflink = dev->ifindex;
4201 	}
4202 
4203 	/* Fixup kobjects */
4204 	err = device_rename(&dev->dev, dev->name);
4205 	WARN_ON(err);
4206 
4207 	/* Add the device back in the hashes */
4208 	list_netdevice(dev);
4209 
4210 	/* Notify protocols, that a new device appeared. */
4211 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
4212 
4213 	synchronize_net();
4214 	err = 0;
4215 out:
4216 	return err;
4217 }
4218 
4219 static int dev_cpu_callback(struct notifier_block *nfb,
4220 			    unsigned long action,
4221 			    void *ocpu)
4222 {
4223 	struct sk_buff **list_skb;
4224 	struct net_device **list_net;
4225 	struct sk_buff *skb;
4226 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
4227 	struct softnet_data *sd, *oldsd;
4228 
4229 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
4230 		return NOTIFY_OK;
4231 
4232 	local_irq_disable();
4233 	cpu = smp_processor_id();
4234 	sd = &per_cpu(softnet_data, cpu);
4235 	oldsd = &per_cpu(softnet_data, oldcpu);
4236 
4237 	/* Find end of our completion_queue. */
4238 	list_skb = &sd->completion_queue;
4239 	while (*list_skb)
4240 		list_skb = &(*list_skb)->next;
4241 	/* Append completion queue from offline CPU. */
4242 	*list_skb = oldsd->completion_queue;
4243 	oldsd->completion_queue = NULL;
4244 
4245 	/* Find end of our output_queue. */
4246 	list_net = &sd->output_queue;
4247 	while (*list_net)
4248 		list_net = &(*list_net)->next_sched;
4249 	/* Append output queue from offline CPU. */
4250 	*list_net = oldsd->output_queue;
4251 	oldsd->output_queue = NULL;
4252 
4253 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
4254 	local_irq_enable();
4255 
4256 	/* Process offline CPU's input_pkt_queue */
4257 	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
4258 		netif_rx(skb);
4259 
4260 	return NOTIFY_OK;
4261 }
4262 
4263 #ifdef CONFIG_NET_DMA
4264 /**
4265  * net_dma_rebalance - try to maintain one DMA channel per CPU
4266  * @net_dma: DMA client and associated data (lock, channels, channel_mask)
4267  *
4268  * This is called when the number of channels allocated to the net_dma client
4269  * changes.  The net_dma client tries to have one DMA channel per CPU.
4270  */
4271 
4272 static void net_dma_rebalance(struct net_dma *net_dma)
4273 {
4274 	unsigned int cpu, i, n, chan_idx;
4275 	struct dma_chan *chan;
4276 
4277 	if (cpus_empty(net_dma->channel_mask)) {
4278 		for_each_online_cpu(cpu)
4279 			rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL);
4280 		return;
4281 	}
4282 
4283 	i = 0;
4284 	cpu = first_cpu(cpu_online_map);
4285 
4286 	for_each_cpu_mask(chan_idx, net_dma->channel_mask) {
4287 		chan = net_dma->channels[chan_idx];
4288 
4289 		n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask))
4290 		   + (i < (num_online_cpus() %
4291 			cpus_weight(net_dma->channel_mask)) ? 1 : 0));
4292 
4293 		while(n) {
4294 			per_cpu(softnet_data, cpu).net_dma = chan;
4295 			cpu = next_cpu(cpu, cpu_online_map);
4296 			n--;
4297 		}
4298 		i++;
4299 	}
4300 }
4301 
4302 /**
4303  * netdev_dma_event - event callback for the net_dma_client
4304  * @client: should always be net_dma_client
4305  * @chan: DMA channel for the event
4306  * @state: DMA state to be handled
4307  */
4308 static enum dma_state_client
4309 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
4310 	enum dma_state state)
4311 {
4312 	int i, found = 0, pos = -1;
4313 	struct net_dma *net_dma =
4314 		container_of(client, struct net_dma, client);
4315 	enum dma_state_client ack = DMA_DUP; /* default: take no action */
4316 
4317 	spin_lock(&net_dma->lock);
4318 	switch (state) {
4319 	case DMA_RESOURCE_AVAILABLE:
4320 		for (i = 0; i < NR_CPUS; i++)
4321 			if (net_dma->channels[i] == chan) {
4322 				found = 1;
4323 				break;
4324 			} else if (net_dma->channels[i] == NULL && pos < 0)
4325 				pos = i;
4326 
4327 		if (!found && pos >= 0) {
4328 			ack = DMA_ACK;
4329 			net_dma->channels[pos] = chan;
4330 			cpu_set(pos, net_dma->channel_mask);
4331 			net_dma_rebalance(net_dma);
4332 		}
4333 		break;
4334 	case DMA_RESOURCE_REMOVED:
4335 		for (i = 0; i < NR_CPUS; i++)
4336 			if (net_dma->channels[i] == chan) {
4337 				found = 1;
4338 				pos = i;
4339 				break;
4340 			}
4341 
4342 		if (found) {
4343 			ack = DMA_ACK;
4344 			cpu_clear(pos, net_dma->channel_mask);
4345 			net_dma->channels[i] = NULL;
4346 			net_dma_rebalance(net_dma);
4347 		}
4348 		break;
4349 	default:
4350 		break;
4351 	}
4352 	spin_unlock(&net_dma->lock);
4353 
4354 	return ack;
4355 }
4356 
4357 /**
4358  * netdev_dma_regiser - register the networking subsystem as a DMA client
4359  */
4360 static int __init netdev_dma_register(void)
4361 {
4362 	spin_lock_init(&net_dma.lock);
4363 	dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask);
4364 	dma_async_client_register(&net_dma.client);
4365 	dma_async_client_chan_request(&net_dma.client);
4366 	return 0;
4367 }
4368 
4369 #else
4370 static int __init netdev_dma_register(void) { return -ENODEV; }
4371 #endif /* CONFIG_NET_DMA */
4372 
4373 /**
4374  *	netdev_compute_feature - compute conjunction of two feature sets
4375  *	@all: first feature set
4376  *	@one: second feature set
4377  *
4378  *	Computes a new feature set after adding a device with feature set
4379  *	@one to the master device with current feature set @all.  Returns
4380  *	the new feature set.
4381  */
4382 int netdev_compute_features(unsigned long all, unsigned long one)
4383 {
4384 	/* if device needs checksumming, downgrade to hw checksumming */
4385 	if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
4386 		all ^= NETIF_F_NO_CSUM | NETIF_F_HW_CSUM;
4387 
4388 	/* if device can't do all checksum, downgrade to ipv4/ipv6 */
4389 	if (all & NETIF_F_HW_CSUM && !(one & NETIF_F_HW_CSUM))
4390 		all ^= NETIF_F_HW_CSUM
4391 			| NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
4392 
4393 	if (one & NETIF_F_GSO)
4394 		one |= NETIF_F_GSO_SOFTWARE;
4395 	one |= NETIF_F_GSO;
4396 
4397 	/* If even one device supports robust GSO, enable it for all. */
4398 	if (one & NETIF_F_GSO_ROBUST)
4399 		all |= NETIF_F_GSO_ROBUST;
4400 
4401 	all &= one | NETIF_F_LLTX;
4402 
4403 	if (!(all & NETIF_F_ALL_CSUM))
4404 		all &= ~NETIF_F_SG;
4405 	if (!(all & NETIF_F_SG))
4406 		all &= ~NETIF_F_GSO_MASK;
4407 
4408 	return all;
4409 }
4410 EXPORT_SYMBOL(netdev_compute_features);
4411 
4412 static struct hlist_head *netdev_create_hash(void)
4413 {
4414 	int i;
4415 	struct hlist_head *hash;
4416 
4417 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
4418 	if (hash != NULL)
4419 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
4420 			INIT_HLIST_HEAD(&hash[i]);
4421 
4422 	return hash;
4423 }
4424 
4425 /* Initialize per network namespace state */
4426 static int __net_init netdev_init(struct net *net)
4427 {
4428 	INIT_LIST_HEAD(&net->dev_base_head);
4429 
4430 	net->dev_name_head = netdev_create_hash();
4431 	if (net->dev_name_head == NULL)
4432 		goto err_name;
4433 
4434 	net->dev_index_head = netdev_create_hash();
4435 	if (net->dev_index_head == NULL)
4436 		goto err_idx;
4437 
4438 	return 0;
4439 
4440 err_idx:
4441 	kfree(net->dev_name_head);
4442 err_name:
4443 	return -ENOMEM;
4444 }
4445 
4446 static void __net_exit netdev_exit(struct net *net)
4447 {
4448 	kfree(net->dev_name_head);
4449 	kfree(net->dev_index_head);
4450 }
4451 
4452 static struct pernet_operations __net_initdata netdev_net_ops = {
4453 	.init = netdev_init,
4454 	.exit = netdev_exit,
4455 };
4456 
4457 static void __net_exit default_device_exit(struct net *net)
4458 {
4459 	struct net_device *dev, *next;
4460 	/*
4461 	 * Push all migratable of the network devices back to the
4462 	 * initial network namespace
4463 	 */
4464 	rtnl_lock();
4465 	for_each_netdev_safe(net, dev, next) {
4466 		int err;
4467 
4468 		/* Ignore unmoveable devices (i.e. loopback) */
4469 		if (dev->features & NETIF_F_NETNS_LOCAL)
4470 			continue;
4471 
4472 		/* Push remaing network devices to init_net */
4473 		err = dev_change_net_namespace(dev, &init_net, "dev%d");
4474 		if (err) {
4475 			printk(KERN_WARNING "%s: failed to move %s to init_net: %d\n",
4476 				__func__, dev->name, err);
4477 			unregister_netdevice(dev);
4478 		}
4479 	}
4480 	rtnl_unlock();
4481 }
4482 
4483 static struct pernet_operations __net_initdata default_device_ops = {
4484 	.exit = default_device_exit,
4485 };
4486 
4487 /*
4488  *	Initialize the DEV module. At boot time this walks the device list and
4489  *	unhooks any devices that fail to initialise (normally hardware not
4490  *	present) and leaves us with a valid list of present and active devices.
4491  *
4492  */
4493 
4494 /*
4495  *       This is called single threaded during boot, so no need
4496  *       to take the rtnl semaphore.
4497  */
4498 static int __init net_dev_init(void)
4499 {
4500 	int i, rc = -ENOMEM;
4501 
4502 	BUG_ON(!dev_boot_phase);
4503 
4504 	if (dev_proc_init())
4505 		goto out;
4506 
4507 	if (netdev_kobject_init())
4508 		goto out;
4509 
4510 	INIT_LIST_HEAD(&ptype_all);
4511 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
4512 		INIT_LIST_HEAD(&ptype_base[i]);
4513 
4514 	if (register_pernet_subsys(&netdev_net_ops))
4515 		goto out;
4516 
4517 	if (register_pernet_device(&default_device_ops))
4518 		goto out;
4519 
4520 	/*
4521 	 *	Initialise the packet receive queues.
4522 	 */
4523 
4524 	for_each_possible_cpu(i) {
4525 		struct softnet_data *queue;
4526 
4527 		queue = &per_cpu(softnet_data, i);
4528 		skb_queue_head_init(&queue->input_pkt_queue);
4529 		queue->completion_queue = NULL;
4530 		INIT_LIST_HEAD(&queue->poll_list);
4531 
4532 		queue->backlog.poll = process_backlog;
4533 		queue->backlog.weight = weight_p;
4534 	}
4535 
4536 	netdev_dma_register();
4537 
4538 	dev_boot_phase = 0;
4539 
4540 	open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL);
4541 	open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL);
4542 
4543 	hotcpu_notifier(dev_cpu_callback, 0);
4544 	dst_init();
4545 	dev_mcast_init();
4546 	rc = 0;
4547 out:
4548 	return rc;
4549 }
4550 
4551 subsys_initcall(net_dev_init);
4552 
4553 EXPORT_SYMBOL(__dev_get_by_index);
4554 EXPORT_SYMBOL(__dev_get_by_name);
4555 EXPORT_SYMBOL(__dev_remove_pack);
4556 EXPORT_SYMBOL(dev_valid_name);
4557 EXPORT_SYMBOL(dev_add_pack);
4558 EXPORT_SYMBOL(dev_alloc_name);
4559 EXPORT_SYMBOL(dev_close);
4560 EXPORT_SYMBOL(dev_get_by_flags);
4561 EXPORT_SYMBOL(dev_get_by_index);
4562 EXPORT_SYMBOL(dev_get_by_name);
4563 EXPORT_SYMBOL(dev_open);
4564 EXPORT_SYMBOL(dev_queue_xmit);
4565 EXPORT_SYMBOL(dev_remove_pack);
4566 EXPORT_SYMBOL(dev_set_allmulti);
4567 EXPORT_SYMBOL(dev_set_promiscuity);
4568 EXPORT_SYMBOL(dev_change_flags);
4569 EXPORT_SYMBOL(dev_set_mtu);
4570 EXPORT_SYMBOL(dev_set_mac_address);
4571 EXPORT_SYMBOL(free_netdev);
4572 EXPORT_SYMBOL(netdev_boot_setup_check);
4573 EXPORT_SYMBOL(netdev_set_master);
4574 EXPORT_SYMBOL(netdev_state_change);
4575 EXPORT_SYMBOL(netif_receive_skb);
4576 EXPORT_SYMBOL(netif_rx);
4577 EXPORT_SYMBOL(register_gifconf);
4578 EXPORT_SYMBOL(register_netdevice);
4579 EXPORT_SYMBOL(register_netdevice_notifier);
4580 EXPORT_SYMBOL(skb_checksum_help);
4581 EXPORT_SYMBOL(synchronize_net);
4582 EXPORT_SYMBOL(unregister_netdevice);
4583 EXPORT_SYMBOL(unregister_netdevice_notifier);
4584 EXPORT_SYMBOL(net_enable_timestamp);
4585 EXPORT_SYMBOL(net_disable_timestamp);
4586 EXPORT_SYMBOL(dev_get_flags);
4587 
4588 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
4589 EXPORT_SYMBOL(br_handle_frame_hook);
4590 EXPORT_SYMBOL(br_fdb_get_hook);
4591 EXPORT_SYMBOL(br_fdb_put_hook);
4592 #endif
4593 
4594 #ifdef CONFIG_KMOD
4595 EXPORT_SYMBOL(dev_load);
4596 #endif
4597 
4598 EXPORT_PER_CPU_SYMBOL(softnet_data);
4599